

Formulae Final Examination

Financial Accounting and Financial Statement Analysis

Equity Valuation and Analysis

Corporate Finance

Economics

Table of Contents

1. F	inancial Accounting and Financial Statement Analysis 1
1.1	Generally Accepted Accounting Principles: Assets, Liabilities and Shareholders' Equities1
1.1	.1 Assets: Recognition, Valuation and Classification
1.2	Financial Reporting and Financial Statement Analysis
1.2	2.1 Earning per Share
1.3	Analytical tools for Assessing Profitability and Risk
1.3	8.1 Profitability Analysis
1.3	8.2 Risk Analysis
1.3	3.3 Break-Even Analysis
2. E	quity Valuation and Analysis 7
2.1	Valuation Model of Common Stock7
2.1	.1 Dividend Discount Model7
2.1	.2 Free Cash Flow Model8
2.1	.3 Measures of Relative Value
<u>3.</u> C	Corporate Finance 9
3.1	Fundamentals of Corporate Finance9
3.1	.1 Discounted Cash Flow
3.1	.2 Capital Budgeting
3.2	Short-Term Finance Decisions
3.2	2.1 Short-Term Financing
3.2	2.2 Cash Management
3.3	Capital Structure and Dividend Policy
3.3	5.1 Leverage and the Value of the Firm
<u>4.</u> E	conomics 18
4.1	Macroeconomics18
4.1	.1 Measuring National Income and Prices18
4.1	.2 Equilibrium in the Real Market19
4.1	.3 Equilibrium in the Money Market
4.1	.4 Equilibrium in Economy and Aggregate Demand
4.1	.5 Aggregate Supply and Determination of Price of Goods/Services 22
4.2	Macro Dynamics23
4.2	23 Inflation
4.2	2.2 Economic Growth
4.2	24 Business Cycles
4.3	International Economy and Foreign Exchange Market
4.3	3.1 Open Macro Economics

4.3.2	Foreign Exchange Rate	27
4.3.3	Central Bank and Monetary Policy	30

1. Financial Accounting and Financial Statement Analysis

1.1 Generally Accepted Accounting Principles: Assets, Liabilities and Shareholders' Equities

1.1.1 Assets: Recognition, Valuation and Classification

1.1.1.1 Property, Plant, Equipment and Intangible Assets

Depreciation Methods

Straight Line Method

Depreciation per Year = (Original Cost – Salvage Value) / Useful Life

Accelerated Method

- Double-Declining-Balance-Depreciation

Depreciation = 2. Straight Line Rate · Book Value at the Beginning of the Year

where:

straight line rate = 1 / Estimated Useful Life

- Sum-of-the-Years Method (SYD)

Depreciation = (Original Cost – Salvage Value) · Applicable Fraction

where:

Applicable Fraction = number of years of estimated useful life remaining / SYD, where

$$SYD = \frac{n \cdot (n+1)}{2}$$

and n = estimated useful life

1.2 Financial Reporting and Financial Statement Analysis

1.2.1 Earning per Share

1.2.1.1 Calculation of EPS

$$EPS = \frac{Earnings available to the common stockholders}{Number of shares of common stock outstanding}$$

With a change in the number of shares outstanding during the year, the formula is modified as follows:

 $EPS = \frac{Earnings \ available \ to \ the \ common \ stockholders}{Weighted \ average \ number \ of \ common \ shares \ outstanding}$

1.2.1.2 Using EPS to Value Firms

- Constant Dividend Growth Model (Gordon-Shapiro)

$$P_0 = \frac{\pi \cdot EPS_0 \cdot (1+g)}{(k_e - g)}$$

where:

P_0	initial market price
g	growth rate
k _e	cost of equity
π	payout ratio
EPS_0	earning per share in $t = 0$

1.3 Analytical tools for Assessing Profitability and Risk

1.3.1 Profitability Analysis

1.3.1.1 Return on Assets

Annual Return

$$Annual Return = \frac{Annual profit}{Invested capital}$$

Return on Assets

$$ROA = return on assets = \frac{Earnings before interests and tax(EBIT)}{Assets}$$

$$ROA = \frac{EBIT}{Sales} \cdot \frac{Sales}{Assets} = EMR \cdot ATR$$

where:

EMR = economic margin ratio =
$$\frac{EBIT}{Sales}$$

ATR = asset turnover ratio = $\frac{Sales}{Assets}$

Return on Total Assets

$$ROTA = \frac{EBIT}{Total\ assets}$$

Return on Operating Assets

$$ROOA = \frac{OEBIT}{Operating \ assets}$$

Return on Non-Operating Assets

$$RONOA = \frac{EBIT - OEBIT}{Assets - Operating assets}$$

OEBIT	operating earnings before interests and tax
ROOA	return on operating assets
RONOA	return on non-operating assets

Financial Accounting and Financial Statement Analysis

Let **ROTA** be an average return of the two parts:

$$ROTA = ROOA \cdot x_1 + RONOA \cdot x_2$$

where:

- x_1 weight of the operating assets (Operating assets/Total assets)
- x_2 weight of the non-operating assets ($x_2 = 1 x_1$)

1.3.1.2 ROCE

Return on Equity (ROE) or Return on Common Equity (ROCE)

$$ROE = \frac{Net \ Profit}{Equity} = \frac{(1 - t)(EBIT - Interest)}{Equity}$$

which can be written:

$$ROE = (1-t) \cdot \left[\frac{EBIT - Interest}{Equity} \right]$$
$$= (1-t) \cdot \left[\frac{ROA \cdot Assets - i \cdot Debt}{Equity} \right]$$
$$= (1-t) \cdot \left[ROA \cdot \frac{Equity + Debt}{Equity} - i \cdot \frac{Debt}{Equity} \right]$$
$$= (1-t) \cdot \left[ROA + (ROA - i) \cdot \frac{Debt}{Equity} \right]$$
$$= (1-t) \cdot \left[ROA + (ROA - i) \cdot \frac{Debt}{Equity} \right]$$

ROE can be decomposed as follows:

$$ROE = \frac{Net \ profit}{Earning \ before \ tax} \cdot \frac{Earning \ before \ tax}{EBIT} \cdot \frac{EBIT}{Sales} \cdot \frac{Sales}{Assets} \cdot \frac{Assets}{Equity}$$

i average interest rate on total debts =
$$\frac{\text{Interest expenses}}{\text{Total debts}}$$

EBIT earnings before interests and tax
t corporate tax rate

Return on Equity before Tax

$$ROEbT = \frac{EBT}{Equity} = ROA + (ROA - i) \cdot \frac{Debt}{Equity}$$

where:

i	average interest rate on total debts =	Interest expenses
		Total debts
EBT	earnings before income tax	

1.3.2 Risk Analysis

1.3.2.1 Short-Term Liquidity Risk

Current Ratio

Current assets Current liabilities

Quick Ratio

 $\frac{Current \ assets - Inventory}{Current \ liabilities} \qquad \text{or}$ $\frac{Cash + Marketable \ securities + Receivables}{Cash + Marketable \ securities + Receivables}$

Current liabilities

Working Capital Activity Ratio

Sales revenue Average Working Capital

1.3.2.2 Long-Term Solvency Risk

Debt Ratio

 $\frac{Debt}{Equity}$

Interest Coverage Ratio

EBIT

Interest Expenses

1.3.3 Break-Even Analysis

Break-even volume =
$$\frac{F}{m}$$

S	unit sales price
V	unit variable costs
F	fixed cost during a period
s - v = m	unit contribution margin

2. Equity Valuation and Analysis

2.1 Valuation Model of Common Stock

2.1.1 Dividend Discount Model

2.1.1.1 Zero Growth Model

$$P_0 = \frac{Div}{k_E}$$

where

P_0	price of share
Div	dividend (assumed constant)
k _E	cost of equity capital

2.1.1.2 Constant Growth Model

Constant Dividend Growth Model

$$P_0 = \frac{Div_1}{k_E - g}$$

where

P_0	price of share
Div ₁	$Div_0 \cdot (1+g)$ = expected dividend in period 1
k _E	cost of equity capital
g	growth rate of dividend (assumed constant)

Gordon Shapiro Model

$$P_0 = \frac{EPS_1 \cdot \pi}{k_E - (1 - \pi) \cdot r}$$

P_0	price of share
EPS ₁	earnings per share in $t = 1$
π	payout ratio
k _E	cost of equity capital
1 <i>– π</i>	earnings retention rate
r	return on equity (<i>ROE</i>)

2.1.2 Free Cash Flow Model

Net Income (Net Profit)

Net	Sal	es
-----	-----	----

- Cost of goods sold
- Selling, general + administrative expenses
- Depreciation
- = EBIT = Earnings before interest and taxes
- Interest
- = EBT = Earnings before taxes
- Taxes
- = Net Income

Free Cash Flows (FCF)

Earnings from operations before interest and taxes (EBIT)

- Taxes (calculated as EBIT · tax rate)
- + non cash relevant expenses (depreciation, provisions for doubtful debt, etc.)
- non cash relevant revenues (adjustments for currency changes, etc.)
- = Gross cash flow
- Increase in net working capital
- + Reduction in net working capital
- Capital expenditure (buildings, equipment, ...)
- + Liquidation of fixed assets
- = Free cash flow from operations

2.1.3 Measures of Relative Value

2.1.3.1 Price Earnings Ratio

$$P_0 = EPS \cdot \frac{P}{E}$$

P_0	price of the share
EPS	earnings per share
P/E	price-earnings ratio

3. Corporate Finance

3.1 Fundamentals of Corporate Finance

3.1.1 Discounted Cash Flow

The present value of an annuity is given by

Present value =
$$\sum_{t=1}^{n} \frac{CF}{(1+k)^{t}} = \frac{CF}{k} \cdot \left(1 - \frac{1}{(1+k)^{n}}\right)$$

where

CF	constant cash flow
k	discount rate, assumed to be constant over time
n	number of cash flows

The future value of an annuity is given by

Future value =
$$CF \cdot \left(\frac{(1+k)^n - 1}{k}\right)$$

where

CF	constant cash flow
k	discount rate, assumed to be constant over time
n	number of cash flows

3.1.2 Capital Budgeting

3.1.2.1 Investment Decision Criteria

Net Present Value

$$\mathsf{NPV} = -I_0 + \sum_{t=1}^{N} \frac{E(FCF_t)}{(I + WACC_t)^t}$$

I 0	initial investment
$E(FCF_t)$	expected free cash flows in period t
$WACC_t$	weighted average cost of capital in period t
Ν	number of cash flows
NPV	Net Present Value

3.1.2.2 Cost of Capital

Cost of Equity Capital

<u>CAPM</u>

$$k_E = R_f + \left(R_M - R_f\right) \cdot \beta_E$$

where

k _E	cost of equity capital
R_{f}	risk-free return
$R_M - R_F$	expected return on the market portfolio - risk-free return,
	expected Risk premium
β_E	beta equity = systematic or market risk of equity

The beta equity (β_E) can be calculated using the following formula:

$$\beta_{A} = \beta_{D} \frac{D(1 - t_{c})}{D(1 - t_{c}) + E} + \beta_{E} \frac{E}{D(1 - t_{c}) + E}$$

where

β_{A}	beta asset
β_{D}	beta debt
β_E	beta equity
t _c	marginal corporate tax rate for the firm being valued
D	market value of interest-bearing debt
E	market value of equity

If we assume that the debt is riskless ($\beta_D = 0$) the beta of the firm's asset can be written as:

$$\beta_A = \beta_E \frac{E}{D(1 - t_c) + E}$$

In this case, the beta equity (β_E) can be written as:

$$\boldsymbol{\beta}_{E} = \boldsymbol{\beta}_{A} \left(1 + (1 - t_{c}) \cdot \frac{D}{E} \right)$$

with

beta asset = $\beta_A = \beta_{Unlevered}$ beta equity = $\beta_E = \beta_{Levered}$

Modigliani-Miller

$$k_E = k_u + (k_u - k_d)(1 - T) \cdot \frac{D}{E}$$

where

k _E	cost of equity (required return on equity)
k u	equity rate of return were the company 100% equity
<i>k</i> _d	cost of debt (required return on debt)
Т	statutory marginal tax rate
D	debt (market value)
E	equity (market value)

Zero Growth Model

$$k_E = \frac{Div}{P_0}$$

where

k _E	cost of equity capital
Div	dividend (assumed constant)
P_0	price of share

Constant Growth Model

$$k_E = \frac{Div_1}{P_0} + g$$

where

k _E	cost of equity capital
g	growth rate of dividend
Div ₁	$Div_0 \cdot (1+g)$ = expected dividend in period 1
P_0	market price of share

Earnings-Price Ratio Approach

$$k_E = \frac{EPS_1}{P}$$

k _E	cost of equity capital
EPS₁	expected earnings per share in <i>t</i> =1
Ρ	current market price of share

Gordon Shapiro Model

$$k_E = \frac{EPS_1 \cdot \pi}{P_0} + (1 - \pi) \cdot ROE$$

where

k _E	cost of equity capital
EPS₁	earnings per share in <i>t</i> =1
π	payout ratio
P_0	price of share
ROE	return on equity

Cost of Debt Capital

Cost of Debt Capital before Taxes

- CAPM

$$k_D = R_f + (R_M - R_f) \cdot \beta_D$$

where

<i>k</i> _D	cost of debt capital (expected return on debt)
R_{f}	risk-free return
$R_M - R_f$	expected excess return on the market portfolio
β_D	beta debt = systematic or market risk of debt

- Yield to Maturity

$$k_D = \sum_{i=1}^N w_i \cdot YTM_i$$

where

<i>k</i> _D	cost of debt capital
Wi	weight of debt <i>i</i>
YTM _i	yield to maturity of debt i

Cost of Debt Capital after Taxes

$$k_{DA} = k_D \cdot (1 - t_c)$$

<i>k</i> _{DA}	cost of debt capital after taxes
<i>k</i> _D	cost of debt capital before taxes
t _c	marginal corporate tax rate

Weighted Average Cost of Capital (WACC)

$$WACC = k_D (1 - t_c) \frac{D}{V} + k_E \frac{E}{V}$$

where

<i>k</i> _D	pre (corporate) tax cost of debt
k _E	cost of equity
t _c	marginal corporate tax rate for the entity being valued
D	market value of interest-bearing debt
E	market value of equity
V	=E + D

If the firm has preferred stock, WACC becomes:

$$WACC = k_D (1 - t_c) \frac{D}{V} + k_E \frac{E}{V} + k_P \frac{P}{V}$$

where

kр	after tax cost of preferred stock
Ρ	market value of preferred stock
V	= <i>E</i> + <i>D</i> + <i>P</i> (here)

Corporate Taxes, Interest Subsidy and Cost of Capital

Average Tax Rate

 $t = average \ tax \ rate = \frac{Taxes}{Earnings \ before \ taxes}$

Average Interest Rate

$$\underline{i}$$
 = average interest rate = $\frac{\text{Interest payments}}{\text{Debt}}$

Value of Tax Shield

Value of tax shield =
$$\frac{k_D \cdot D \cdot t_c}{k_D} = D \cdot t_c$$

where

 $\begin{array}{ll} D & \text{market value of debt} \\ k_D & \text{cost of debt} \\ t_C & \text{marginal average corporate tax rate} \end{array}$

3.2 Short-Term Finance Decisions

3.2.1 Short-Term Financing

3.2.1.1 Current Asset Financing

Net Working Capital

Net Working Capital = Current assets - Current liabilities

where

Current assets = cash + receivable + inventories

3.2.2 Cash Management

Inventory Turnover

Cost of goods sold Inventory

Accounts Receivable Turnover

Sales Accounts receivable

Accounts Payable Turnover

Material purchases Accounts payable

Inventory Period

365 (or 360) daysInventory turnover

Accounts Receivable Period

365 (or 360) days

Accounts receivable turnover

Accounts Payable Period

365 (or 360) daysAccounts payable turnover

Operating Cycle

Inventory period + Accounts receivable period

Cash Conversion Cycle

Operating Cycle - Accounts payable period

Average Collection Period

Accounts Receivable · 365 Sales

Optimal Cash Balance (Baumol Model)

$$\sqrt{\frac{2FC}{I}}$$

where

- *F* fixed cost incurred when selling securities to raise cash
- *C* annual cash disbursement
- *I* annual interest earned on the marketable securities portfolio

Target Cash Balance (Miller-Orr model)

Target Cash Balance =
$$Z = \left[\frac{3F\sigma^2}{4I_{daily}}\right]^{\frac{1}{3}} + L$$

F	fixed cost of buying and selling securities
σ^2	variance of the net daily cash flows
L	lower control limit, determined by the firm
I _{daily}	opportunity cost of holding cash

3.3 Capital Structure and Dividend Policy

3.3.1 Leverage and the Value of the Firm

Free Cash Flow Approach

$$V = -I_0 + \sum_{t=1}^{N} \frac{\mathbf{E}(FCF_t)}{(1 + WACC_t)^t}$$

where

V	value of the firm
$\mathbf{E}(FCF_t)$	expected free cash flows in period t
$WACC_t$	weighted average cost of capital in period t

With the continuing value (terminal value) of the firm at time T equal to:

Continuing value at time
$$T = \frac{FCF_{T+1}}{WACC - g}$$

where

Т	point in time where the explicit free cash flow forecasting horizon ends
FCF_{T+1}	level of expected free cash flow in the first year after the explicit forecast period; then assumed to grow at rate g
WACC	weighted average cost of capital (assumed constant)
g	expected growth rate of free cash flows after T (assumed
	constant)

Firm Value

V = D + E

where

V	value of the firm

- D debt (market values)
- *E* equity (market values)

MM Proposition I (assuming no taxes)

$$V = V_L = V_U = D + E = \frac{EBIT}{k_A}$$

V_L	value of levered firm
V_U	value of unlevered firm
D	debt (market values)
E	equity (market values)
EBIT	earning before interest and taxes (assumed permanent)
<i>k</i> _A	constant overall cost of capital (return on assets)

4. Economics

4.1 Macroeconomics

4.1.1 Measuring National Income and Prices

GNP

$$Y = C + I + G + (X - M) + NIRA$$

where:

Y	GNP
С	private consumption
Ι	investment
G	government expenditure
X	exports
M	imports
NIRA	net income received from abroad
X - M + N	URA current account balance

National Saving and Current Account Balance

$$CA = S^{P} + S^{G} - I$$
$$= S^{P} - BD - I$$

where

CA	current account balance
S^{P}	private saving
S^{G}	government saving
$S^{P} + S^{G}$	national saving (S)
BD	budget deficit
Ι	investment

Price Index: GDP (implicit price) Deflator and Consumer Price Index (CPI)

$$GDP \ deflator_{t} = \frac{Nominal \ GDP_{t}}{Real \ GDP_{t}} \cdot 100 = \frac{\sum_{it} p_{it} \cdot q_{it}}{\sum_{i} p_{i}^{*} \cdot q_{it}} \cdot 100$$

$$CPI_{t} = \frac{\sum_{i} p_{it} \cdot q_{i}^{*}}{\sum_{i} p_{i}^{*} \cdot q_{i}^{*}} \cdot 100$$

where

p_{it}	price of final good or service <i>i</i> in year <i>t</i>
$q_{_{it}}$	quantity of final good or service <i>i</i> in year t
p_i^*	price of final good or service <i>i</i> in the base year

 q_i^* quantity of final good or service *i* in the representative basket

Inflation Rate

$$\pi_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

where

P_t	(index) price level at time <i>t</i>
P_{t-1}	(index) price level at time <i>t</i> -1
$\pi_{_t}$	inflation rate over period t-1 to t

Ex-post Fisher Parity

$$r_t \approx i_t - \pi_t$$

where

r_t	real interest rate for the period $(t-1, t)$
i_t	nominal interest rate for the period $(t-1, t)$
$\pi_{_t}$	inflation rate for the period (t-1, t)

4.1.2 Equilibrium in the Real Market

Consumption Function

$$C^{D} = c_0 + MPC(Y - T)$$

C^{D}	desired consumption
c_0	constant intercept term
MPC	marginal propensity to consume
Y - T	disposable income with $T = T(Y)$

Desired Investment

$$I^{D} = Y - C^{D} - G$$

where:

- *I^D* desired investment
- C^{D} desired consumption
- *G* government expenditure
- Y output

Budget Surplus

$$BS = T - (G + TR + NINT)$$

where:

BS	budget surplus
Т	taxation
TR	transfer payments
NINT	net interest payments on public debt
G	government expenditure

Government-Purchases Multiplier

$$Y = \frac{c_o}{1 - MPC} - \frac{MPC}{1 - MPC} \cdot T + \frac{1}{1 - MPC} \cdot I + \frac{1}{1 - MPC} \cdot G$$

where:

constant intercept term of the consumption function
marginal propensity to consume
laxalion
investment
government-purchases multiplier
government expenditure
output

IS Relation

$$Y = C(Y - T) + I(i) + G,$$

where:

Y	output
C(.)	private consumption function
Y-T	disposable income
<i>l</i> (.)	investment function
i	interest rate
G	government expenditure

Equilibrium Condition for the Market for Goods and Services

$$I + G = S + T,$$

where:

- *G* government expenditure
- S saving
- T taxation

4.1.3 Equilibrium in the Money Market

4.1.3.1 Demand for Money

$$\frac{MD}{P} = L(Y,i) = b_0 + b_1 \cdot Y - b_2 \cdot i,$$

where:

MD	nominal money demand
Р	general price level
L(.)	demand function
Y	real income (output)
i	nominal interest rate
b_0	constant parameter
b_{1}, b_{2}	positive parameters

4.1.3.2 Equilibrium Relationship in the Monetary Market: LM Curve

$$\frac{MS}{P} = \frac{MD}{P} \equiv L(Y,i),$$

- *MS* nominal money supply (exogenous)
- MD nominal money demand
- *P* general price level
- *L*(.) demand function
- *Y* real income (output)
- *i* nominal interest rate

4.1.4 Equilibrium in Economy and Aggregate Demand

4.1.4.1 Aggregate Demand

$$AD = Y = C^D + I^D + G,$$

where:

AD	aggregate demand
----	------------------

- *Y* real income (output)
- C^{D} desired consumption
- *I^D* desired investment
- *G* government expenditure

Quantity Theory of Money (Absolute Form)

$$M \cdot V = P \cdot Y,$$
$$\implies P = \frac{M \cdot V}{Y},$$

where:

- *M* quantity of money
- *V* velocity, a measure of turnover of money stock in a year
- *P* general price level
- Y real income (output)

4.1.5 Aggregate Supply and Determination of Price of Goods/Services

4.1.5.1 Aggregate Supply Relation (short-run)

$$P = \mathsf{E}(P) \cdot (1 + \mu) \cdot \mathsf{F}(1 - \frac{Y}{L}, z),$$

- Pprice levelE(P)expected price level
 - markup variable
- *F(.)* function
- Y output
- L labor force
- z catchall variable

4.2 Macro Dynamics

4.2.1 Inflation

Expectations-Augmented Phillips Curve

$$\pi_t = \pi_t^e + \alpha - \beta (u_t - u_t^*),$$

where:

$\pi_{_t}$	inflation	rate
t		

- π_t^e expected inflation rate for time *t*
- α constant parameter
- β constant positive parameter
- $u_t u_t^*$ cyclical unemployment (or "Keynesian" unemployment) at time t

4.2.2 Economic Growth

Aggregate Production Function

$$Y = A \cdot F(K, L),$$

where:

Y	aggregate output
---	------------------

A total factor productivity

F(.) aggregate production function

- *L* aggregate labour supply
- *K* aggregate capital stock

Growth Accounting Equation

$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \xi_{\kappa} \cdot \frac{\Delta K}{K} + \xi_{L} \cdot \frac{\Delta L}{L},$$

$\frac{\Delta Y}{Y}$	growth of the output
$\frac{\Delta A}{A}$	growth in productivity
$\frac{\Delta K}{K}$	growth of the capital stock
$\frac{\Delta L}{L}$	growth of the labour supply
$\xi_{\kappa} = \frac{K}{F(K,L)} \cdot \frac{\partial F(K,L)}{\partial K}$	elasticity of output with respect to capital

$$\xi_L = \frac{L}{F(K,L)} \cdot \frac{\partial F(K,L)}{\partial L}$$

elasticity of output with respect to labour

4.2.3 Business Cycles

Random Productivity Shocks

$$Y_t = F(K_t, L_t) \cdot A_t \mathcal{E}_t,$$

where:

Y_t	aggregate output at time t
F(.)	aggregate function production
K_t , L_t	aggregate capital and labour supply at time t
$\boldsymbol{\mathcal{E}}_t$	random productivity shock at time t
$A_t \mathcal{E}_t$	total factor productivity at time t

4.3 International Economy and Foreign Exchange Market

4.3.1 Open Macro Economics

4.3.1.1 **International Balance of Payment and Capital Flows**

Balance of Payments Accounting

$$BP = CA + KA - \Delta RA,$$

where:

BP	balance of payments
CA	current account
KA	capital account
ΔRA	official reserve account

Government-Purchases Multiplier in an Open Economy

$$\Delta Y = \frac{1}{1 - MPC + m_1} \cdot \Delta G,$$

- ΔY variation of the output m_1 positive constant parameter (marginal propensity to import)
- MPC marginal propensity to consume
- ΔG variation of the government expenditure

IS Relation in an Open Economy

$$Y = C + I + G - S_{real} \cdot M + X ,$$

where:

Y	output
С	private consumption
Ι	investment
G	government expenditure
Sreal	real exchange rate
X	exports

M imports in foreign currency

Equilibrium Condition for the Goods and Services Market in an Open Economy

in terms of GDP:

$$NX = S + (T - G) - I,$$

in terms of GNP:

$$CA = S + (T - G) - I,$$

where:

NX	net exports
CA	current account balance
S	private saving
T–G	public saving
I	investment

Real Exchange Rate

$$S_{real} = \frac{S_n \cdot P^F}{P},$$

- S_n nominal spot exchange rate (in American terms)
- *P^F* foreign general price level in foreign currency
- *P* domestic general price level in domestic currency

Trade Balance and Depreciation: the Marshall-Lerner Condition

$$\frac{\Delta X}{X} - \frac{\Delta M}{M} - \frac{\Delta S_{real}}{S_{real}} > 0.$$

where:

 $\begin{array}{ll} \frac{\Delta X}{X} & \mbox{proportional change in exports} \\ \frac{\Delta M}{M} & \mbox{proportional change in imports} \\ \frac{\Delta S_{real}}{S_{real}} & \mbox{proportional change in the real exchange rate} \end{array}$

Equilibrium Model of an Open Economy, the Mundell-Fleming Model

$$Y = C(Y - T) + I(i) + G + NX(Y, Y_F, \frac{E(S_n)}{1 + i - i_F}),$$

$$\frac{MS}{P} = \frac{MD}{P} = L(Y, i).$$

Y	output
<i>C</i> (.)	consumption
Т	taxation
<i>I</i> (.)	investment function
i	interest rate
G	government expenditure
NX(.)	net exports function
Y_F	output in the rest of the world
i_F	foreign nominal interest rate
$E(S_n)$	expected nominal spot exchange rate (in American terms)
MS	nominal money supply
MD	nominal money demand
Ρ	general price level
L(.)	demand function

Aggregate Demand in an Open Economy (for the Mundell-Fleming Model with Fixed Exchange Rate)

$$AD = C(Y - T) + I(i - E(\pi)) + G + NX(Y, Y_F, \frac{S_n \cdot P^F}{P})$$

where:

C(.)	consumption function
Y	domestic output (income)
Т	taxation
<i>I</i> (.)	investment function
i	domestic nominal interest rate
<i>E</i> (<i>π</i>)	expected inflation
G	government expenditure
NX(.)	net exports function
Y_F	foreign output (income)
\overline{S}_n	nominal fixed exchange rate
<i>P, P</i> ^F	domestic and foreign prices level

4.3.2 Foreign Exchange Rate

Absolute Purchasing Power Parity

$$S_t = \frac{P_t}{P_t^F},$$

where:

 P_t^F foreign general price level in foreign currency at t

 P_t domestic general price level in domestic currency at t

Relative Purchasing Power Parity

$$s_{t} = \frac{S_{t} - S_{t-1}}{S_{t-1}} = \frac{(1 + \pi_{t})}{(1 + \pi_{t}^{F})} - 1 \approx \pi_{t} - \pi_{t}^{F},$$

- s_t relative spot exchange rate over period *t*-1 to *t*
- S_t nominal spot exchange rate at t
- π_t^F foreign inflation rate over period *t*-1 to *t*
- π_t domestic inflation rate over period *t*-1 to *t*

Covered Interest Rate Parity (CIP)

$$\frac{F_{t-1,t}}{S_{t-1}} - 1 = \frac{1+i_t}{1+i_t^F} - 1 \approx i_t - i_t^F,$$

where:

$\frac{F_{t-1,t}}{S_{t-1}} -$	1 relative forward foreign exchange rate premium
$F_{t-1,t}$	forward foreign exchange rate over period $t-1$ to t
S_{t-1}	nominal spot exchange rate at t-1
i_t^F	foreign nominal interest rate over period $t-1$ to t
i_t	domestic nominal interest rate over period t-1 to t

Uncovered Interest Rate Parity (UIP)

$$\frac{E(S_t)}{S_{t-1}} - 1 = \frac{1 + i_t}{1 + i_t^F} - 1 \approx i_t - i_t^F,$$

where:

 i_t^F

 $\frac{E(S_t)}{S_{t-1}}$ expected relative depreciation of the domestic currency

foreign nominal interest rate over period t-1 to t

 i_t domestic nominal interest rate over period *t*-1 to *t*

Monetary Approach

- The central bank's balance sheet identity

$$MS = B^C + S_n \cdot R^F + N,$$

where:

- *MS* home money supply, which is assumed to consist only of monetary base
- *B^C* central bank's holdings of home securities (constant term)
- S_n exchange rate
- *R^F* central bank's international reserve holdings in units of foreign currency
- N net worth (the residual), constant term

Balance of payments identity in terms of official reserve and value of the trade balance:

$$\Delta R^{\mathsf{F}} = P^{\mathsf{F}} \cdot \mathsf{T},$$

where *T* is the trade balance (i.e. T = Y - E, where *E* is the home expenditure), and P^{F} is the foreign price level.

- Link between the trade balance and the flows of money (BC and N are held constant, S_n is fixed):

$$\Delta MS = P \cdot T,$$

where P is the home currency price.

- The condition for money market equilibrium

$$\frac{MS}{P} = L\left(i, Y, \frac{w}{P}\right),$$

where w is the nominal value of privately held assets, w = MS + B, where B is the home interest bearing securities or bonds.

Overshooting Model: the Basic Equations

- $i = i^* + \frac{E(s_t s_{t-1})}{s_{t-1}},$ •
- $\frac{E(s_t s_{t-1})}{s_{t-1}} = -\theta \cdot (s \overline{s}),$ $m p = \phi \cdot y \lambda \cdot i ,$
- $y = u + \delta \cdot (p^* + s p) + \gamma \cdot y \sigma \cdot i$,
- $\frac{p_t p_{t-1}}{p_{t-1}} = \pi \cdot (y \overline{y}),$

i, i [*]	the domestic and foreign interest rates
E(.)	expectation
S	the logarithm of the spot exchange rate measured in domestic currency per unit of foreign currency
\overline{S}	the long-run equilibrium level of s
т	the logarithm of the domestic money supply
p, p [*]	are the logarithms of the domestic and foreign price levels
y , <u>y</u>	the level of domestic real income (output) and the steady state
level of	y
φ, λ, u,	δ, γ, σ and π are constant parameters
θ	a model-consistent function of the other parameters

Portfolio Balance Approach

The nominal portfolio wealths of the home and foreign private sectors:

$$w = MS + B + S_n \cdot F,$$
$$w^* = MS^* + B^* \cdot \frac{1}{S_n} + F^*,$$

where $B + B^* = \overline{B}$, $F + F^* = \overline{F}$, and where:

- w, w^* the nominal portfolio wealths of the home and foreign private sectors
- *MS, MS**home and foreign money supply, which is assumed to consist only of monetary base
- $\overline{B}, \overline{F}$ respectively denote the privately-held stocks of interest bearing claims on the home and foreign governments, referred to as bonds or securities
- B^*, F^* foreign residents privately-held stocks of interest bearing claims on the home and foreign governments
- *B*, *F* home residents privately-held stocks of interest bearing claims on the home and foreign governments
- S_n nominal exchange rate

The Risk Premium

$$\phi_t = \dot{i}_t - \dot{i}_t^* - \frac{E_{t-1}(S_t) - S_{t-1}}{S_{t-1}}$$
,

where:

 i, i^* the domestic and foreign interest rates

 $E_{t-1}(.)$ expectation at time t-1

 ϕ represents a premium for bearing a composite of exchange rate risk and the difference in credit risks

 S_t nominal exchange rate at time t

4.3.3 Central Bank and Monetary Policy

Money Multiplier

$$M_1 = m \cdot M_0$$
, with $m = \frac{1+c}{c+\theta}$,

- M_1 money stock M₁
- *m* money multiplier
- *M*₀ monetary base
- *c* the ratio of the demand for currency to the demand for sight deposit
- θ the ratio of reserves to sight deposits