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PREFACE

The idea to write this book came about purely by accident. Neither of the authors
even considered this prior to 2005. In the summer of 2005, the authors were invited
by Dr. Constantine Balanis to contribute a chapter on “Finite Element Analysis and
Modeling of Antennas” for his Modern Antenna Handbook. During the preparation
of this book chapter, the authors discovered two interesting facts. First, the work
by their two research groups combined had touched nearly all aspects of the finite
element analysis of antennas, ranging from frequency- and time-domain analysis of
narrow- and broadband antennas, to the modeling of antenna feeds and dispersive
media, and to the simulation of phased-array antennas and finite arrays. Second, the
amount of material collected was by far more than what can be included in a book
chapter. The idea of expanding the book chapter into a full book was mentioned, but
eventually dropped after submission of the book chapter in the summer of 2006. In
May 2007 the authors jointly offered a short course on “Finite Element Analysis of
Complex Antennas and Arrays” for the Electromagnetic Code Consortium’s Annual
Conference. This short course provided an opportunity for the authors to organize
the course material into various topics, which resulted in over 200 viewgraphs and
formed the framework of this book.

The book is organized into 12 chapters. In Chapter 1 we describe the need for
numerical simulation in the design of complex antennas and arrays and compare the
finite element method with other numerical techniques from the viewpoint of antenna
analysis. Chapter 2 covers the formulations of finite element analysis of antennas in
the frequency and time domains. Chapter 3 deals with the problem of mesh truncation
in the finite element analysis of antennas. In Chapter 4 we describe a hybrid technique
that combines the finite element time-domain method with the finite-difference time-
domain method. Chapter 5 deals with the critical problem of modeling antenna feeds
for radiation analysis and plane-wave excitation for scattering analysis. In Chapter 6
we consider the finite element modeling of complex structures and circuit compo-
nents that are widely used in antenna designs. In Chapter 7 we present a variety
of antenna simulation examples to demonstrate the capability and versatility of the
finite element method. Chapter 8 covers the analysis of axisymmetric antennas using
a two-dimensional finite element method. The modeling of infinitely large phased
arrays is the topic of Chapter 9, which covers both the frequency- and time-domain
analyses. In Chapter 10 we present various domain-decomposition techniques for the
analysis of large finite arrays, which is one of the most challenging problems for
computational electromagnetics. Chapter 11 deals with another challenging problem,
which is modeling of antenna–platform interactions by combining the finite element

xi
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xii PREFACE

method with other numerical or asymptotic techniques. Finally, in Chapter 12 we
discuss various numerical and practical considerations in the finite element analysis
of antennas and arrays.

In the writing of this book, special care was exercised to avoid significant over-
lap with existing books on the finite element method for electromagnetic analysis,
including a book by the first author. The writing assumed that the reader has basic
knowledge of antennas, electromagnetics, and the finite element method. For the
frequency-domain analysis, the time convention e jωt is used and suppressed through-
out. References are listed at the end of each chapter. All the numerical examples
were obtained using our in-house-developed computer codes and whenever possible
they were verified using published data, experimental data, or results computed using
commercial software.

The book is the result of a close collaboration between the two authors—both
have worked on every chapter. Each author takes responsibility for the accuracy of
the material he wrote. The first author (J.M.J.) was mainly responsible for writing
Chapters 1 to 3, 5, and 7 to 11. The second author (D.J.R.) was mainly responsible
for writing Chapters 4, 6, and 12 and Sections 9.2.3, 10.2.2, and 11.1.2, and he also
contributed to the writing of Chapter 7 and Sections 2.3, 5.1.2, and 5.2.3. The authors
would appreciate having any errors brought to their attention.

This book can be used as a research reference by graduate students and researchers
in the fields of computational electromagnetics and antennas and as a general refer-
ence by practicing antenna designers and engineers. It can also be used as a textbook
for a graduate course on numerical analysis and modeling of electromagnetic fields.
The techniques presented in the book can be extended to deal with problems in other
electromagnetics-, RF-, microwave-, and optics-related technical fields.
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1 Introduction

In recent years, antenna technologies have received heightened interest because of
their importance in wireless communication, remote sensing, space exploration, de-
fense, electronic warfare, and many other electronic systems. Quantitative antenna
analysis is critical to the design and optimization of antennas, especially complex
antennas that are not easily designed by intuitive approaches. In a typical antenna
analysis, the goal is to find the radiated field and input impedance. In the case of
multiple antennas, such as antenna arrays, it is also important to quantify the mutual
coupling between antennas, which can be characterized by either a mutual impedance
matrix or a scattering matrix. The calculation of radiated fields, input impedances, and
scattering matrices requires solving Maxwell’s equations subject to certain boundary
conditions determined by antenna configurations. Unfortunately, Maxwell’s equa-
tions can be solved analytically only for a very few idealized antenna geometries.
For example, when a linear antenna can be approximated as an infinitesimally short
current element or a finite wire with a known current distribution, its radiated field can
be calculated analytically. When a biconical antenna is assumed to extend to infinity,
its radiated field and input impedance can also be obtained analytically. Without an
approximation, antennas cannot be analyzed analytically primarily because of their
structural configurations. Whereas a variety of approximate analytical techniques
have been developed for relatively simple antennas, accurate and complete analysis
of complex antennas, especially antenna arrays, can be accomplished only through
a numerical method that solves Maxwell’s equations numerically with the aid of
high-speed computers.

1.1 NUMERICAL SIMULATION OF ANTENNAS

Computational electromagnetics deals with the art and science of solving Maxwell’s
equations numerically or with the numerical simulation of electromagnetic fields.
It has become an indispensable tool for antenna analysis because of the predictive
power of Maxwell’s equations: If these equations are solved correctly, the solution can
predict experimental outcomes and design performances. Because of their high pre-
dictive power and capability of dealing with complex structures, numerical simulation
tools can support a wide variety of engineering applications, such as designing anten-
nas analytically and predicting the impact of platforms on antenna performance, and

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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2 INTRODUCTION

address more complex applications, including calibration of antenna systems, esti-
mating co-site interference of multiple-antenna systems on a platform, and predicting
scattering from low-observable antenna installations.

In addition to the capability of analyzing complex antennas, numerical simulation
has four more distinctive advantages over traditional antenna design by experiment.
The first advantage is low cost. When an antenna can be designed, analyzed, and
optimized on a computer, its design cost is reduced significantly compared to that of
constructing a prototype physically and measuring it in an anechoic chamber. The
second advantage is the short design cycle. It typically takes far less time to simulate
an antenna on a computer than to actually build one and measure it in a laboratory.
The third advantage is the full exploration of the design space. Because of the low cost
and short design cycle, the designer can evaluate a large variety of design parameters
systematically to come up with an optimal design through numerical simulation,
which is simply impossible with laboratory experiments. The last but not the least
advantage of numerical simulation is the enormous amount of physical insight it
provides. With a numerical solution to Maxwell’s equations, the designer can now
use a computer visualization tool to “see” the current flow on an antenna and field
distributions around the antenna. Such a capability is extremely useful because it
can help to pinpoint the source of design deficiency, such as the source of mutual
coupling between antennas and the source of interference for antennas mounted on
a platform. All these advantages become much more pronounced when dealing with
more complex antennas involving many design parameters. Indeed, in many cases
numerical simulation coupled with an appropriate set of validating measurements is
the best practical solution to an antenna design problem.

Unfortunately, the great advantages of numerical simulation are also accompanied
by a series of challenges. The main challenge is due to improper use of a numerical
simulation, such as insufficient discretization and use of a method outside its bounds.
Such improper use would yield either a poor or a completely erroneous design
while wasting time and resources. Therefore, it is very important to understand the
basic principles, solution technologies, and applicability and capabilities of numerical
methods behind the numerical simulation tools. Such knowledge can not only reduce
the possibility of improper use of a method, but also help in choosing from a suite of
tools the technique best suited for a specific problem, thus increasing the designer’s
productivity.

1.2 FINITE ELEMENT ANALYSIS VERSUS OTHER
NUMERICAL METHODS

Among a variety of numerical simulation tools in computational electromagnetics
that provide a complete solution to Maxwell’s equations, many are based on the
method of moments, the finite-difference time-domain method, and the finite ele-
ment method. Other methods, such as the transmission-line method and the finite
integration technique, can be identified as either a variation or an equivalent of one
of the first three.
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FINITE ELEMENT ANALYSIS VERSUS OTHER NUMERICAL METHODS 3

Among the three major numerical techniques, the method of moments [1–6] has
the longest history for antenna analysis. The method is based on the formulation
of integral equations in terms of Green’s functions as the fundamental solution to
Maxwell’s equations. Early development of the moment method for antenna analysis
is natural because certain traditional antennas, such as dipoles and monopoles, can
be represented by wires and thus require only a one-dimensional discretization for a
numerical solution by the moment method. Furthermore, the Sommerfeld radiation
condition, which has to be satisfied by an antenna’s radiated fields, is built into the
moment-method formulation automatically through the use of an appropriate Green’s
function; therefore, it requires no special treatment. The moment method is ideally
suited for modeling metallic antennas because by using a surface integral equation,
the computational domain is confined to the metallic surfaces. It is also highly effi-
cient for antennas consisting of layered substrates, such as microstrip patch antennas,
and for antennas comprising bulk homogeneous dielectrics, such as dielectric res-
onator antennas, because for these cases, the effect of the dielectrics can either be
accounted for by a special Green’s function or be modeled by equivalent electric
and magnetic surface currents. However, the capability of the moment method is
challenged when one attempts to model complex antennas designed with complex
materials that may be anisotropic and inhomogeneous. Moreover, because of the use
of Green’s functions, the moment method generates a fully populated matrix whose
computation and solution are associated with a high degree of computational com-
plexity. Therefore, the traditional moment method becomes very time consuming and
memory intensive for the analysis of large antennas, especially array-type antennas,
which are often modeled with millions of unknowns. Fortunately, this challenge has
largely been alleviated by the development of a variety of fast solvers, such as the
fast multipole method, the adaptive integral method, and other fast fourier transform
(FFT)–based methods [7–10]. Despite its drawbacks, the distinctive advantages of
the moment method (mainly a surface-only discretization for a three-dimensional
problem), coupled with the development of fast solvers, make the method a powerful
tool and a preferred choice for the analysis of metallic antennas and antennas mounted
on a metallic platform.

The finite-difference time-domain method [11–13], invented in the mid-1960s,
solves Maxwell’s equations discretized on a rectangular grid directly in the time
domain. The method can easily handle material anisotropy and inhomogeneity and
has become very powerful and increasingly popular because of its simplicity in
formulation, implementation, and grid generation. It is also highly efficient because
it does not involve any matrix solutions, and through the Fourier transform it yields a
broadband solution with one time-domain calculation. As a method that solves partial
differential equations directly, the finite-difference time-domain method requires a
grid discretization of a three-dimensional volume to compute the fields in the volume.
Since the solution region extends to infinity in an antenna radiation problem, the
volume must be truncated and treated specially so that the truncated volume still
mimics the original open environment. This was a major limiting factor affecting
the accuracy and use of the method for many years; however, this difficulty has
been removed successfully with the development of perfectly matched layers for grid
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4 INTRODUCTION

truncation [14]. The remaining major challenge for the finite-difference time-domain
method is the accurate modeling of complex geometrical structures, especially very
fine structures whose sizes are on the order of a few hundredths or even thousandths
of a wavelength, by using a rectangular grid. Although the geometrical modeling
accuracy can be improved by the use of conformal grids or subgriding techniques, the
resulting numerical schemes become either more complicated or much less efficient
because in such a case one has to reduce the time-step size to maintain the stability of
the numerical solution. Nevertheless, since most antenna geometries can be modeled
accurately with a sufficiently fine grid, the finite-difference time-domain method will
remain a powerful and popular choice for the modeling of antennas with complex
structures and embedded in complex materials.

Compared to the method of moments and the finite-difference time-domain
method, the finite element method [15–22] is not as mature and popular for antenna
analysis because its formulation is more complicated than that of the finite-difference
time-domain method and its use requires sophisticated volumetric mesh generation.
However, the finite element method has an unmatched capability for modeling both
complex structures and materials. By using unstructured meshes with curvilinear tri-
angular and tetrahedral elements, the method can accurately model curved surfaces,
fine structures, and artificial engineered materials. Since the finite element method in
the time domain can be formulated to be unconditionally stable, the time-step size
does not have to be reduced even for problems containing very small finite elements.
This unconditional stability is critical to the analysis of complicated antenna appli-
cations such as the one illustrated in Figure 1.1. Although the finite element method
requires solving a large matrix equation, the associated matrix is very sparse and

Figure 1.1 Example showing very small finite elements to model fine structures on a large
object. Such a problem is challenging for explicit, conditionally stable time-domain methods
and can be better handled by either implicit, unconditionally stable time- or frequency-domain
techniques. (See insert for color representation of figure.)
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often symmetrical, and its solution can be obtained efficiently by using advanced
sparse solvers. Furthermore, the finite element method is well suited for parallel
computation through the use of a variety of domain-decomposition algorithms. Like
the finite-difference time-domain method, the finite element method solves partial
differential equations directly without using Green’s functions. As such, it requires
the discretization of the three-dimensional space that surrounds the antenna to be
analyzed and the truncation of this open space to make the solution domain finite.
Proper treatment of the mesh truncation has been one of the major research subjects
for the finite element analysis of antenna problems, and a variety of highly effec-
tive techniques have now been developed. The remaining major obstacle that has
made the finite element method a less popular choice is the necessity for complicated
mesh generation. However, this situation is changing quickly because of tremendous
ongoing activities in the development of highly robust mesh generators.

From the discussions above, it can be seen clearly that the three methods have
unique strengths and shortcomings. No single method is superior to the other two for
every application. The moment method models free space accurately and requires
only a surface discretization; thus, it is an attractive choice for modeling large metallic
surfaces and homogeneous objects. The finite-difference time-domain method does
not require a solution of a matrix equation and thus is highly efficient. Its imple-
mentation of perfectly matched layers for grid truncation has been well developed
and is highly robust. For the finite element method to be competitive with these two
methods, it must absorb their strengths into its formulation to compensate for its de-
ficiencies. For example, the finite element method can be combined with the moment
method such that the exterior open space and the antenna platform can be modeled
accurately using the moment method, and the finite element method can then focus on
the modeling of complex antenna structures. The finite element method can also be
combined with the finite-difference time-domain method, with the latter being used
to model the surrounding free space and any other homogeneous regions to fully
exploit its high efficiency and its robust implementation of perfectly matched layers.
These ideas lead to the development of various hybrid techniques, which are much
more powerful than their individual components. These hybrid techniques should not
simply “bundle” different methods together; rather, they should be formulated based
on well-established electromagnetic and mathematical principles, they should be er-
ror controllable, and it should be possible to improve their accuracy in a systematic
manner. Two such hybrid techniques are covered in this book; one combines the finite
element method and the moment method, and the other combines the finite element
method and the finite-difference time-domain method.

1.3 FREQUENCY- VERSUS TIME-DOMAIN SIMULATIONS

Since Maxwell’s equations can be cast in both the time and frequency domains, a
numerical solution to an electromagnetic problem can be sought in either the time
or the frequency domain. In principle, it is sufficient to seek a solution in only
one domain because the solution in the other domain can always be obtained using
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the Fourier transform. However, since the solution processes in the two domains
are different, the two solutions possess different strengths. For example, when a
frequency-domain numerical method is employed to solve Maxwell’s equations, we
have to solve a system of linear equations (matrix equation) for each frequency.
However, for a general electromagnetic problem, the system matrix is independent
of the excitation. Once this matrix is inverted or factorized, it becomes trivial to find
a solution for a new excitation. This feature makes the frequency-domain method
ideally suited for scattering analysis, where one is often interested in scattering
due to plane waves from many incident directions, and perhaps less attractive for
antenna analysis, where the number of different excitations is usually small and the
response over many frequencies is typically required. On the other hand, when a
time-domain numerical method is adopted to solve Maxwell’s equations, we have to
seek a solution by time marching for each excitation. Once the solution in the time
domain is obtained, we can find the solution over a wide band of frequency using the
Fourier transform. However, the entire solution process must be repeated for a new
excitation. Therefore, the time-domain method is ideally suited for antenna analysis,
where one is often interested in a solution over a broad frequency band for one or a
few excitations, and becomes less efficient for scattering analysis because it requires
many solutions to many excitations. Because of its importance to antenna analysis,
we have devoted much effort in this book to time-domain techniques.

Although the discussions and the conclusion above are true in a general sense,
we have to consider many factors when we evaluate and choose a specific solution
method. For example, when a frequency-domain method is equipped with a fast
solver and a robust frequency interpolation algorithm, it can become as efficient as,
or even more efficient than, a time-domain technique even for the broadband analysis
of antennas. Besides the use of a fast solver, a frequency-domain method has three
additional unique capabilities. The first is the ability to use different mesh densities
at different frequencies. This allows the use of a much coarser mesh at a lower
frequency, which can speed up the simulation greatly. In contrast, the mesh density
in a time-domain solution has to be determined based on the highest frequency
of interest. The second capability is the ease of performing parallel computations
for a broadband simulation. One need only assign different processors to carry out
computations at different frequencies. This embarrassingly simple parallelization
requires no interprocessor communications and hence is highly efficient. The third
capability, which is perhaps also the most important, is that in the frequency domain
a large discretized electromagnetic problem can be represented by a reduced-order
model that contains only a few degrees of freedom. For example, the property of
an antenna, which is originally characterized by a matrix having an order of a few
thousands, can be represented accurately by a much smaller matrix having an order
of a few tens. This feature allows the development of special techniques that can
handle very large antenna arrays which originally have to be modeled with millions
or even billions of degrees of freedom. The development of such a technique in
the time domain is, however, not as straightforward. Therefore, because of these
enhancements, the frequency-domain methods will remain important simulation tools
for antenna analysis.
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The truly unique strength of time-domain methods is their capability to model
nonlinear components, devices, and media in an antenna system, similar to the non-
linear circuits treated in Ref. 23. This capability will become more important in the
future with the development of advanced antenna systems that integrate active devices
such as sources directly into antenna radiating elements. Simulation of such antenna
systems in the frequency domain by means of harmonic balancing is cumbersome
and very time consuming. Although the time-domain methods discussed in the book
can be employed to model nonlinear antenna problems, this topic is discussed only
briefly, in the context of nonlinear lumped-circuit components.

1.4 BRIEF REVIEW OF PAST WORK

Since Silvester [24] introduced the finite element method into the field of microwave
engineering and electromagnetics in 1969, a tremendous amount of research has been
carried out to develop the method for the analysis of electrostatic, magnetostatic,
and electrodynamic problems. Most early applications dealt with problems within a
bounded region, such as waveguide problems. In 1974, Mei developed a technique
that combined the finite element method with a wavefunction expansion to deal
with open-region electromagnetic problems such as antenna and scattering analysis
[25]. In 1982, Marin developed an alternative method to deal with open-region
scattering problems, which combined the finite element method with a boundary
integral equation [26]. This work can be considered an extension of early formulations
[27,28] for static fields. These developments enabled the application of the finite
element method to open-region electromagnetic problems.

An important breakthrough in the finite element analysis of vector electromagnetic
field problems occurred in the 1980s with the development of edge-based vector
elements [29–31]. These new elements accurately model the nature of the electric and
magnetic fields and eliminate many of the challenges associated with traditional node-
based scalar elements that were used in the early finite element formulations. Since
the development of vector elements, the finite element method has become a very
powerful numerical technique for the analysis of three-dimensional electromagnetic
fields. Although much research has been carried out and published on the finite
element method for electromagnetic analysis, most of it focused on bounded field
and open-region scattering problems. The subject of the finite element analysis of
antennas has not received as much attention as it deserves. In the following text
we review briefly the development and application of the finite element method for
antenna analysis.

Application of the finite element method for the analysis and design of various
antennas dates back to the 1970s, when Mei developed the first accurate approach
that enabled the finite element method to deal with unbounded open-region problems
[25]. The method was applied to axisymmetric antennas. For many years, the finite
element method was limited to simplified two-dimensional and axisymmetric models
of antennas [32–35] because of the difficulty of using the node-based elements
to model vector electromagnetic fields, with the exception that Ref. 34 contained
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an example of calculating the field radiated by an electric current element in free
space using edge-based elements. The first full-wave three-dimensional finite element
analysis of realistic antennas appeared in the early 1990s [36], where the finite element
method was coupled with a boundary integral equation to simulate cavity-backed
microstrip antennas on a ground plane. A simple probe feed model was developed to
excite antennas, and both radiation patterns and input impedances were calculated and
compared with measured data. Thereafter, a variety of finite element–based numerical
techniques have been developed for the analysis and simulation of various antennas
and antenna arrays.

Most notably, the finite element–based numerical techniques have been developed
to analyze infinitely periodic array antennas [37–40] and finite array antennas [41–48].
For the analysis of infinite array antennas, boundary integral equations were devel-
oped based on the Floquet theorem to accurately model the radiation condition, and
periodic boundary conditions were formulated to confine the analysis to a single
unit cell. For the analysis of large finite array antennas, novel domain-decomposition
schemes were proposed that exploit the geometric repetition in the array configu-
ration to make the analysis possible. The finite element method has also been used
for the analysis of complex horn antennas [49–54] and dielectric lens antennas and
radomes [55–58]. For these analyses, the axisymmetric feature of the antenna geom-
etry, except for the excitation, can be utilized to reduce the computational domain
from a three-dimensional volume to a two-dimensional slice by expanding the fields
in terms of Fourier modes. The finite element method has been found to be ideally
suited for modeling conformal antennas, such as cavity-backed aperture, slot, and
patch antennas [59–66], because the finite element analysis can be confined to the
cavity region, which contains complex antenna geometries, leaving the aperture field
to be handled by a boundary integral equation. The excellent material modeling ca-
pability of the finite element method enabled the analysis of antennas residing on
complex materials, such as those designed with ferrite and chiral substrates [67–69].
Combined with the moment method and a high-frequency asymptotic technique,
the finite element method has been employed to analyze antennas mounted on a
finite platform [70–77]. In this type of analysis, the finite element method is used to
model antennas, and the effect of platforms is modeled either by the moment method
based on a surface integral equation or by a high-frequency asymptotic technique
such as physical optics, the geometrical theory of diffraction, the uniform theory of
diffraction, and the shooting- and bouncing-ray method.

Most of the analyses discussed above were carried out in the frequency domain.
To perform a frequency sweep analysis, a model-order reduction technique has been
proposed [78,79], which was based on the asymptotic waveform evaluation technique
originally developed for circuit analysis. Recently, the finite element method has been
developed for antenna analysis directly in the time domain [80–93]. As discussed
earlier, such a time-domain analysis is highly efficient for the characterization of
broadband responses and is capable of modeling nonlinear materials and devices. In
these works, the computational domain was truncated by perfectly matched layers
implemented either directly in the finite element method [82,85] or in combination
with the finite-difference time-domain method [81,83,84]. Accurate feed models have
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been developed to provide an excitation to antennas and to extract input impedances
or S-parameters [85]. Novel domain-decomposition schemes have been developed for
the analysis of large antennas and finite arrays [86–88]. A highly effective approach
based on field transformation has been proposed for the analysis of infinitely periodic
antenna arrays using time-domain finite element formulations [89–91]. Preliminary
studies have also been conducted on incorporating a distributed feed network into
the finite element modeling of antenna arrays [92] and on the simulation of antennas
installed on a platform by combining the time-domain finite element method with a
fast solution of a time-domain surface integral equation for induced currents on the
platform [93].

1.5 OVERVIEW OF THE BOOK

The objective of this book is to present the basic formulations and discuss all the
technical aspects in the finite element analysis of complex antennas and arrays. The
remaining 11 chapters of the book are organized as follows.

In Chapter 2 we describe the formulations of the finite element analysis of antennas
in the frequency and time domains. In this description, emphasis is placed on the basic
principle of the finite element method instead of its numerical implementation. The
modeling of complex anisotropic, dispersive, and lossy materials in the time-domain
finite element analysis is discussed in detail. Techniques for solving finite element
equations and the use of higher-order curvilinear finite elements are also addressed
briefly.

Chapter 3 deals with the fundamental challenge in the partial differential equation–
based numerical analysis of open-region electromagnetic radiation and scattering
problems, which is the truncation of the infinite solution space into a finite-sized com-
putational domain. The truncation techniques covered include first- and second-order
absorbing boundary conditions, various perfectly matched layers, and free-space and
half-space boundary integral equations. Their formulation and implementation in the
frequency and time domains are discussed in detail.

In Chapter 4 we describe a stable formulation that combines the finite element time-
domain method with the highly efficient finite-difference time-domain method. An
immediate benefit of this combination is to use the well-established finite-difference
time-domain implementation of perfectly matched layers for the truncation of com-
putational domains. Certain equivalence between the finite-difference time-domain
and finite element time-domain methods, which provides a theoretical foundation
for the stable interface formulation, is illustrated and an accurate near-to-far-field
transformation is described.

Chapter 5 deals with another critical challenge specific to the finite element analy-
sis of antennas: the modeling of antenna feeds for radiation analysis and plane-wave
excitation for scattering analysis. Described are simplified feed models such as cur-
rent probes and voltage gaps, as well as a more accurate modeling of waveguide
feeds using a waveguide port boundary condition. For scattering analysis, we de-
scribe the total- and scattered-field formulations and a novel total- and scattered-field
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decomposition approach. Far-field computation and near-field visualization are also
addressed briefly.

In Chapter 6 we consider the finite element modeling of complex structures and
circuit components, such as thin-material layers and sheets, thin wires and slots,
lumped-circuit components, and feeding networks. Such modeling is important for
practical applications since these types of structures and circuit components are
used widely in antenna designs. The chapter includes many practical examples and,
in particular, an example of predicting electromagnetic coupling into an electronic
subsystem.

Chapter 7 covers a variety of antenna simulation examples, including two scat-
tering examples, to demonstrate the capability and versatility of the finite element
method based on Chapters 2 through 6. The narrowband examples include monopole
and microstrip patch antennas, and the broadband examples include the horn, spiral,
sinuous, Vivaldi, and Vlasov antennas. Whenever possible, the simulation results
are validated or verified with published data, experimental data, or results computed
using commercial software.

In Chapter 8 we describe the finite element analysis of axisymmetric antennas
in conjunction with absorbing boundary conditions, perfectly matched layers, and
boundary integral equations. The analysis exploits the rotational symmetry of the
problem by expanding fields and excitations in terms of Fourier modes, which reduces
the original three-dimensional problem to a two-dimensional problem where the
simulation can be carried out more efficiently using a two-dimensional finite element
method.

The modeling of infinitely large phased arrays is the topic of Chapter 9, which
covers both the frequency- and time-domain analyses. The implementation of peri-
odic boundary conditions, the formulation of mesh truncation techniques specific to
this class of problems, and the modeling of general complex materials are discussed
in detail. The use of an infinite phased-array solution to approximate a correspond-
ing finite array is also addressed as a fast practical solution to a very complicated
problem.

In Chapter 10 we treat one of the more challenging applications in the numerical
simulation of antennas and perhaps in the entire field of computational electromagnet-
ics: analysis of large finite arrays. Two major numerical techniques are presented to
deal with this problem. One is based on the finite element tearing and interconnecting
algorithm in the frequency domain, and the other is based on domain decomposition
strategies in the time domain. Both approaches effectively exploit the geometrical
repetitions of a finite array to make the problem tractable.

Chapter 11 deals with another highly challenging problem for antenna analysis:
modeling of antenna–platform interactions. Two approaches are described. One ap-
proach is based on an accurate simultaneously coupled analysis, which simulates the
entire problem numerically in one stage. The other approach is first to apply the finite
element method to the antenna and its nearby structure and compute the near field,
then calculate the far-field radiation according to Huygens’ principle using either a
numerical method based on surface integral equations or a high-frequency asymptotic
technique based on ray tracing.
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Finally, in Chapter 12 we discuss various numerical and practical considerations
in the application of finite element analysis to antennas and arrays, such as selection
of the most suitable analysis tool and solver for a specific problem, finite element
discretization and corresponding numerical convergence, fast frequency sweep based
on sampled frequency solutions, the application of domain decomposition and parallel
computing, and the verification and validation of numerical predictions.

REFERENCES

1. R. F. Harrington, Field Computation by Moment Methods. New York: Macmillan, 1968;
reprinted by IEEE Press, 1993.

2. R. Mittra, Ed., Computer Techniques for Electromagnetics. Elmsford, NY: Permagon,
1973.

3. R. C. Hansen, Ed., Moment Methods in Antennas and Scattering. Norwood, MA: Artech
House, 1990.

4. J. J. H. Wang, Generalized Moment Methods in Electromagnetics. New York: Wiley, 1991.

5. E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman, Eds., Computational
Electromagnetics: Frequency-Domain Method of Moments. New York: IEEE Press,
1992.

6. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics.
New York: IEEE Press, 1998.

7. N. N. Bojarski, “k-Space formulation of the electromagnetic scattering problem,” Tech.
Rep. AFAL-TR-71-75, Air Force Avionics Laboratory, Mar. 1971.

8. R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave
equation: a pedestrian prescription,” IEEE Antennas Propagat. Mag., vol. 35, pp. 7–12,
June 1993.

9. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: adaptive integral method for
solving large-scale electromagnetic scattering and radiation problems,” Radio Sci., vol. 31,
pp. 1225–1251, Sept.–Oct. 1996.

10. W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Eds., Fast and Efficient Algorithms
in Computational Electromagnetics. Norwood, MA: Artech House, 2001.

11. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307,
May 1966.

12. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electro-
magnetics. Boca Raton, FL: CRC Press, 1994.

13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference
Time Domain Method, 3rd ed. Norwood, MA: Artech House, 2005.

14. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,”
J. Comput. Phys., vol. 114, no. 2, pp. 185–200, 1994.

15. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed.
Cambridge, UK: Cambridge University Press, 1996.

16. J.-M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. Hoboken, NJ: Wiley,
2002.



P1: JYS
c01 JWBK322-Jin September 20, 2008 9:7 Printer: Yet to come

12 INTRODUCTION

17. P. P. Silvester and G. Pelosi, Eds., Finite Elements for Wave Electromagnetics. New York:
IEEE Press, 1994.

18. T. Itoh, G. Pelosi, and P. P. Silvester, Eds., Finite Element Software for Microwave Engi-
neering. New York: Wiley, 1996.

19. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnet-
ics: Antennas, Microwave Circuits and Scattering Applications. New York: IEEE Press,
1998.

20. M. Salazar-Palma, T. K. Sarkar, L. E. Garcia-Castillo, T. Roy, and A. R. Djordjevic,
Iterative and Self-Adaptive Finite Elements in Electromagnetic Modeling. Norwood, MA:
Artech House, 1998.

21. A. Bossavit, Computational Electromagnetism: Variational Formulations, Complemen-
tarity, Edge Elements. San Diego, CA: Academic Press, 1998.

22. Y. Zhu and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field
Modeling. New York: IEEE Press, 2006.

23. S.-H. Chang, R. Coccioli, Y. Qian, and T. Itoh, “Global finite-element time-domain analysis
of active nonlinear microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 47,
no. 12, pp. 2410–2416, Dec. 1999.

24. P. P. Silvester, “Finite element solution of homogeneous waveguide problems,” Alta Freq.,
vol. 38, pp. 313–317, May 1969.

25. K. K. Mei, “Unimoment method of solving antenna and scattering problems,” IEEE Trans.
Antennas Propagat., vol. 22, pp. 760–766, Nov. 1974.

26. S. P. Marin, “Computing scattering amplitudes for arbitrary cylinders under incident plane
waves,” IEEE Trans. Antennas Propagat., vol. 30, pp. 1045–1049, Nov. 1982.

27. P. P. Silvester and M. S. Hsieh, “Finite-element solution of 2-dimensional exterior field
problems,” IEE Proc. H, vol. 118, pp. 1743–1747, Dec. 1971.

28. B. H. McDonald and A. Wexler, “Finite-element solution of unbounded field problems,”
IEEE Trans. Microwave Theory Tech., vol. 20, pp. 841–847, Dec. 1972.

29. J. C. Nedelec, “Mixed finite elements in R3,” Numer. Math., vol. 35, pp. 315–341, 1980.

30. A. Bossavit and J. C. Verite, “A mixed FEM–BIEM method to solve 3-D eddy current
problems,” IEEE Trans. Magn., vol. 18, pp. 431–435, Mar. 1982.

31. M. L. Barton and Z. J. Cendes, “New vector finite elements for three-dimensional magnetic
field computation,” J. Appl. Phys., vol. 61, pp. 3919–3921, Apr. 1987.

32. T. Orikasa, S. Washisu, T. Honma, and I. Fukai, “Finite element method for unbounded
field problems and application to two-dimensional taper,” Int. J. Numer. Methods Eng.,
vol. 19, pp. 157–168, 1983.

33. J. D’Angelo, M. J. Povinelli, and M. A. Palmo, “Hybrid finite element/boundary element
analysis of a strip line notch array,” IEEE AP-S Int. Symp. Dig., vol. 3, pp. 1126–1129,
1988.

34. J. D’Angelo and I. D. Mayergoyz, “Finite element methods for the solution of RF radiation
and scattering problems,” Electromagnetics, vol. 10, pp. 177–199, 1990.

35. H. Ali and G. Costache, “Finite-element time-domain analysis of axisymmetrical radia-
tors,” IEEE Trans. Antennas Propagat., vol. 42, no. 2, pp. 272–275, Feb. 1994.

36. J. M. Jin and J. L. Volakis, “A hybrid finite element method for scattering and radiation
by microstrip patch antennas and arrays residing in a cavity,” IEEE Trans. Antennas
Propagat., vol. 39, pp. 1598–1604, Nov. 1991.



P1: JYS
c01 JWBK322-Jin September 20, 2008 9:7 Printer: Yet to come

REFERENCES 13

37. J. M. Jin and J. L. Volakis, “Scattering and radiation analysis of three-dimensional cavity
arrays via a hybrid finite element method,” IEEE Trans. Antennas Propagat., vol. 41,
pp. 1580–1586, Nov. 1993.

38. D. T. McGrath and V. P. Pyati, “Phased array antenna analysis with the hybrid finite
element method,” IEEE Trans. Antennas Propagat., vol. 42, pp. 1625–1630, Dec. 1994.

39. E. W. Lucas and T. P. Fontana, “A 3-D hybrid finite element/boundary element method
for the unified radiation and scattering analysis of general infinite periodic arrays,” IEEE
Trans. Antennas Propagat., vol. 43, no. 2, pp. 145–153, Feb. 1995.

40. Z. Lou and J. M. Jin, “Finite element analysis of phased array antennas,” Microwave Opt.
Tech. Lett., vol. 40, no. 6, pp. 490–496, Mar. 2004.

41. R. Kindt, K. Sertel, E. Topsakal, and J. L. Volakis, “Array decomposition method for the ac-
curate analysis of finite arrays,” IEEE Trans. Antennas Propagat., vol. 51, pp. 1364–1372,
June 2003.

42. M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation
with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering
problems,” IEEE Trans. Antennas Propagat., vol. 52, no. 11, pp. 3060–3070, Nov. 2004.

43. S.-C. Lee, M. N. Vouvakis, and J.-F. Lee, “A non-overlapping domain decomposition
method with non-matching grids for modeling large finite antenna arrays,” J. Comput.
Phys., vol. 203, pp. 1–21, Feb. 2005.

44. J. Rubio, M. A. Gonzalez, and J. Zapata, “Generalized-scattering-matrix analysis of a class
of finite arrays of coupled antennas by using 3-D FEM and spherical mode expansion,”
IEEE Trans. Antennas Propagat., vol. 53, no. 3, pp. 1133–1144, Mar. 2005.

45. Y. J. Li and J. M. Jin, “A vector dual–primal finite element tearing and interconnecting
method for solving 3-D large-scale electromagnetic problems,” IEEE Trans. Antennas
Propagat., vol. 54, no. 10, pp. 3000–3009, Oct. 2006.

46. K. Zhao, V. Rawat, S.-C. Lee, and J.-F. Lee, “A domain decomposition method with non-
conformal meshes for finite periodic and semi-periodic structures,” IEEE Trans. Antennas
Propagat., vol. 55, no. 9, pp. 2559–2570, Sept. 2007.

47. Y. J. Li and J. M. Jin, “A new dual–primal domain decomposition approach for finite
element simulation of 3D large-scale electromagnetic problems,” IEEE Trans. Antennas
Propagat., vol. 55, no. 10, pp. 2803–2810, Oct. 2007.

48. C. Smith, M. Little, B. Porter, and M. N. Vouvakis, “Analysis of co-planar phased ar-
ray coupling using finite element domain decomposition,” IEEE AP-S Int. Symp. Dig.,
pp. 3524–3527, 2007.

49. G. C. Chinn, L. W. Epp, and D. J. Hoppe, “A hybrid finite-element method for axisymmetric
waveguide-fed horns,” IEEE Trans. Antennas Propagat., vol. 44, no. 3, pp. 280–285, Mar.
1996.

50. C. Zuffada, T. Cwik, and V. Jamnejad, “Modeling radiation with an efficient hybrid finite-
element integral-equation waveguide mode-matching technique,” IEEE Trans. Antennas
Propagat., vol. 45, no. 1, pp. 34–39, Jan. 1997.

51. D. T. McGrath and C. E. Baum, “Scanning and impedance properties of TEM horn arrays
for transient radiation,” IEEE Trans. Antennas Propagat., vol. 47, no. 3, pp. 469–473,
Mar. 1999.

52. A. D. Greenwood and J. M. Jin, “Finite element analysis of complex axisymmetric radi-
ating structures,” IEEE Trans. Antennas Propagat., vol. 47, no. 8, pp. 1260–1266, Aug.
1999.



P1: JYS
c01 JWBK322-Jin September 20, 2008 9:7 Printer: Yet to come

14 INTRODUCTION

53. J. M. Gil, J. Monge, J. Rubio, and J. Zapata, “A CAD-oriented method to analyze and
design radiating structures based on bodies of revolution by using finite elements and gen-
eralized scattering matrix,” IEEE Trans. Antennas Propagat., vol. 54, no. 3, pp. 899–907,
Mar. 2006.

54. G. G. Gentili, P. Bolli, R. Nesti, G. Pelosi, and L. Toso, “High-order FEM mode matching
analysis of circular horns with rotationally symmetric dielectrics,” IEEE Trans. Antennas
Propagat., vol. 55, no. 10, pp. 2915–2918, Oct. 2007.

55. A. D. Greenwood and J. M. Jin, “A field picture of wave propagation in inhomoge-
neous dielectric lenses,” IEEE Antennas Propagat. Mag., vol. 41, no. 5, pp. 9–18, Oct.
1999.

56. C. S. Liang, D. A. Streater, J. M. Jin, E. Dunn, and T. Rozendal, “A quantitative study of
Luneberg lens reflectors,” IEEE Antennas Propagat. Mag., vol. 47, no. 2, pp. 30–42, Apr.
2005.

57. R. K. Gordon and R. Mittra, “Finite element analysis of axisymmetric radomes,” IEEE
Trans. Antennas Propagat., vol. 41, no. 7, pp. 975–981, July 1993.

58. E. Dunn, J. K. Byun, E. Branch, and J. M. Jin, “Numerical simulation of BOR scattering
and radiation using a higher-order FEM,” IEEE Trans. Antennas Propagat., vol. 54, no. 3,
pp. 945–952, Mar. 2006.

59. L. C. Kempel, J. L. Volakis, and R. J. Sliva, “Radiation by cavity-backed antennas on a
circular cylinder,” IEE Proc. Microwaves Antennas Propagat., vol. 142, no. 3, pp. 233–239,
June 1995.

60. G. E. Antilla and N. G. Alexopoulos, “Radiation and scattering from complex 3D curvi-
linear geometries using a hybrid finite element–integral equation method,” IEEE AP-S Int.
Symp. Dig., pp. 1758–1761, 1992.

61. M. A. Gonzalez de Aza, J. A. Encinar, J. Zapata, and M. Lambea, “Full-wave analysis
of cavity-backed and probe-fed microstrip patch arrays by a hybrid mode-matching gen-
eralized scattering matrix and finite-element method,” IEEE Trans. Antennas Propagat.,
vol. 46, no. 2, pp. 234–242, Feb. 1998.

62. T. Ozdemir, J. L. Volakis, and M. W. Nurnberger, “Analysis of thin multioctave cavity-
backed slot spiral antennas,” IEE Proc. Microwaves Antennas Propagat., vol. 146,
pp. 447–454, Dec. 1999.

63. C. A. Macon, L. C. Kempel, and S. W. Schneider, “Radiation and scattering by complex
conformal antennas on a circular cylinder,” Adv. Comput. Math., vol. 16, pp. 191–209,
2002.

64. M. N. Vouvakis, C. A. Balanis, C. Birtcher, and A. C. Polycarpou, “Multilayer effects
on cavity-backed slot antennas,” IEEE Trans. Antennas Propagat., vol. 52, no. 3, pp.
880–887, Mar. 2004.

65. C. A. Macon, L. C. Kempel, S. W. Schneider, and K. D. Trott, “Modeling conformal
antennas on metallic prolate spheroid surfaces using a hybrid finite element method,”
IEEE Trans. Antennas Propagat., vol. 52, no. 3, pp. 750–758, Mar. 2004.

66. K. Mao, J. K. Byun, and J. M. Jin, “Enhancing the modeling capability of the FE-BI
method for simulation of cavity-backed antennas and arrays,” Electromagnetics, vol. 26,
no. 7, pp. 503–515, Oct. 2006.

67. A. C. Polycarpou and C. A. Balanis, “Finite-element investigation of scan performance
characteristics of probe-fed phased arrays on magnetized ferrite substrates,” IEEE AP-S
Int. Symp. Dig., vol. 1, pp. 666–669, July 1999.



P1: JYS
c01 JWBK322-Jin September 20, 2008 9:7 Printer: Yet to come

REFERENCES 15

68. M. N. Vouvakis, C. A. Balanis, C. R. Birtcher, and A. C. Polycarpou, “Ferrite-loaded
cavity-backed antennas including nonuniform and nonlinear magnetization effects,” IEEE
Trans. Antennas Propagat., vol. 51, no. 5, pp. 1000–1010, May 2003.

69. F. Bilotti, A. Toscano, and L. Vegni, “FEM–BEM formulation for the analysis of cavity-
backed patch antennas on chiral substrates,” IEEE Trans. Antennas Propagat., vol. 51,
no. 2, pp. 306–311, Feb. 2003.
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2 Finite Element Formulation

The finite element method is a numerical procedure used to obtain approximate
solutions to boundary-value problems of mathematical physics with the aid of an
electronic computer. The method was proposed by Courant in 1943 to solve varia-
tional problems in potential theory [1]. Thereafter, the method has been developed
and applied extensively to problems of structural analysis and increasingly to prob-
lems in other fields. Today, the finite element method is recognized as a general
preeminent method applicable to a wide variety of engineering and mathematical
problems, including those in antenna and microwave engineering.

In this chapter we describe the general formulation of the finite element method
for solving the vector wave equations arising from Maxwell’s equations for electric
and magnetic fields. Our presentation assumes that the reader is familiar with the
basic concepts in the finite element method, such as subdivision of a computational
domain into finite elements, formulation of basis or interpolation functions, varia-
tional formulation or the weak-form representation of partial differential equations,
and finite element matrix assembly. The reader is referred to a textbook on the finite
element method for electromagnetic analysis, such as the one by Jin [2], to acquire
the necessary background material. In this chapter the emphasis is on the general
principle of the finite element method and the modeling of general materials in the
time-domain finite element method since such modeling has not been well developed
elsewhere.

2.1 FINITE ELEMENT FORMULATION
IN THE FREQUENCY DOMAIN

We first formulate finite element analysis in the frequency domain. Consider a generic
antenna, sketched in Figure 2.1. The antenna is excited by a current source with
electric current density denoted by Jimp. This current radiates an electromagnetic
field that is modified by the structure of the antenna. The antenna may contain or
may be embedded in anisotropic materials characterized by the permittivity and
permeability tensors, denoted as ↔

ε and ↔
μ, respectively. The main objective of an

antenna analysis is to predict the performance characteristics of the antenna, which

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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Conducting surface

μ ε

ε0 0,μ

Feed

,

Figure 2.1 Original boundary-value problem: a generic antenna consisting of a conducting
surface, a dielectric, and a feed.

include the input impedance and radiation patterns. To this end, we have to solve
Maxwell’s equations:

∇ × E = − jω
↔
μ · H − Mimp (2.1)

∇ × H = jω
↔
ε · E + Jimp (2.2)

∇ · (↔
ε · E) = − 1

jω
∇ · Jimp (2.3)

∇ · (↔
μ · H) = − 1

jω
∇ · Mimp (2.4)

together with the boundary condition

n̂ × E = 0 r ∈ SPEC (2.5)

where SPEC denotes the perfect electrically conducting (PEC) surface of the antenna.
In (2.1), Mimp denotes the magnetic current density of an impressed magnetic current.
Although a magnetic current does not exist in reality, it is a useful quantity to model
certain antenna feeds, such as a magnetic frill generator. In addition to (2.5), the
electric and magnetic fields have to satisfy the Sommerfeld radiation condition at
infinity:

lim
r→∞ r

[
∇ ×

(
E
H

)
+ jk0r̂ ×

(
E
H

)]
= 0 (2.6)

where k0 is the free-space wavenumber.
The electromagnetic problem defined by (2.1)–(2.6) can be solved analytically

for only a very few cases where SPEC has a very simple shape. For most practical
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Conducting surface

,μ ε

0 0,μ  ε

Feed

Computational
domain

Truncation
surface So

Figure 2.2 Approximate boundary-value problem: computational domain truncated by an
artificial surface for numerical finite element analysis.

problems, one has to resort to a numerical method such as the finite element method
for an approximate solution. Since the antenna radiates an electromagnetic field to
infinity, the problem has an unbounded solution space. To use the finite element
method, this unbounded space must be truncated into a finite space. This can be
accomplished by introducing a fictitious surface to enclose the antenna, which is
denoted as So in Figure 2.2. To define the electromagnetic problem bounded by So

uniquely, one has to specify a boundary condition on So. This boundary condition
should make So as transparent as possible to the radiated field. The ideal boundary
condition is to make So completely transparent, such that the radiated field can pass
through it without any distortion or reflection. This is, unfortunately, not possible in
practice. Therefore, instead, we employ an approximate boundary condition,

n̂ × ∇ ×
(

E
H

)
+ jk0n̂ × n̂ ×

(
E
H

)
≈ 0 r ∈ So (2.7)

which is similar to the Sommerfeld radiation condition in (2.6), where n̂ denotes the
unit vector normal to So and pointing toward the exterior space. Here we assume
that So resides in air. The approximate radiation condition (2.7) is also called the
first-order absorbing boundary condition. For this absorbing boundary condition to
be reasonably accurate, So must be placed some distance (practically on the order
of a half-wavelength, but theoretically, the larger the better) away from the antenna.
More accurate treatment of the truncation surface So is discussed in Chapters 3
and 4.
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The electromagnetic problem defined by (2.1)–(2.5) and (2.7) can be solved in
terms of either the electric field E or the magnetic field H. Here we describe the
solution procedure for the electric field; the magnetic field can be solved in a similar
manner. By eliminating H in (2.1)–(2.4), we can derive the vector wave equation for
E as

∇ × (↔
μr

−1 · ∇ × E
)− k2

0
↔
εr · E = − jk0 Z0Jimp − ∇ × (↔

μr
−1 · Mimp

)
r ∈ V

(2.8)

where ↔
μr = ↔

μ/μ0 and ↔
εr = ↔

ε/ε0 are the relative permeability and permittivity ten-
sors, respectively; k0 = ω

√
μ0ε0 and Z0 = √

μ0/ε0 are the free-space wavenumber
and intrinsic impedance, respectively; and V denotes the volume enclosed by So.

To solve the approximate boundary-value problem defined in Figure 2.2 with (2.7)
and (2.8), we can multiply (2.8) by an appropriate testing function T and integrate
over V to find ∫∫∫

V
T · [∇ × (↔

μr
−1 · ∇ × E

)− k2
0

↔
εr · E

]
dV

= −
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (2.9)

By invoking the vector identity,

T · [∇ × (↔
μr

−1 · ∇ × E
)] = (∇ × T) · ↔

μr
−1 · (∇ × E) − ∇ · [T × (↔

μr
−1 · ∇ × E

)]
(2.10)

and Gauss’s theorem,

∫∫∫
V

∇ · [T × (↔
μr

−1 · ∇ × E
)]

dV =
∫∫
©

S
n̂ · [T × (↔

μr
−1 · ∇ × E

)]
dS (2.11)

we obtain ∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

=
∫∫
©

So∪SPEC

n̂ · [T × (↔
μr

−1 · ∇ × E
)]

dS

−
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (2.12)

In the formulas above, S denotes the surface that encloses the volume V . Since there
exists no electric field in a perfect conductor, the volume V is bounded by the outer
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surface So and the surface of any conductor inside So. Application of the first-order
absorbing boundary condition in (2.7) to (2.12) yields

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

=
∫∫
©

SPEC

(n̂ × T) · ↔
μr

−1 · (∇ × E) dS − jk0

∫∫
©

So

(n̂ × T) · (n̂ × E) dS

−
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (2.13)

To find a numerical solution of (2.13) using the finite element method, the entire
volume V is first divided into small finite elements, such as hexahedral, tetrahedral,
prism, and/or pyramidal cells (Figure 2.3). The size of finite elements is determined
primarily by the wavelength and the geometrical structure of the antenna. Typically,
the elements should be smaller than one-tenth to one-twentieth of a wavelength when
one uses the first-order basis functions discussed below. Local to the fine structure of

(a) (b)

(c) (d)

Figure 2.3 Examples of finite element meshes (Only surface meshes are shown for clarity).
(a) A microstrip patch antenna fed by a coaxial line with the substrate and ground plane
removed. (b) A horn antenna. (c) A 4 × 4 dual-polarized Vivaldi antenna array. (d) The feed
structure of a Vivaldi antenna. (See insert for color representation of figure.)
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i th edge

Figure 2.4 Vector plot of the first-order vector basis function associated with the ith edge.
There are six such first-order vector basis functions associated with the six edges of a tetrahedral
element.

the antenna, the elements have to be much smaller in order to resolve the geometry
as well as the fast variation of the fields.

Once the finite element mesh is generated, within each small finite element volume,
E can be interpolated using a set of discrete values. One approach is to assign E at
a few points on the element and then interpolate E elsewhere using a set of scalar
interpolation functions. This approach turns out to be very problematic because of the
difficulty in applying correct boundary conditions (boundary conditions at conducting
surfaces and interfaces between different media) to the interpolated E-field. A better
approach is to assign the tangential component of E at each edge of the element and
then interpolate E elsewhere using a set of vector basis functions. For example, the
field in a tetrahedral element can be interpolated as

Ee(x, y, z) =
6∑

i=1

Ne
i (x, y, z)Ee

i (2.14)

where Ee
i denotes the tangential component of E at edge i of element e, and Ne

i is the
corresponding interpolation or basis function. Denoting the simplex coordinates of
a tetrahedron as λl(l = 1, 2, 3, 4) [2], the vector basis function associated with the
edge that connects nodes l and k can be written as

Ne
lk(r) = �lk(λl ∇λk − λk ∇λl) (2.15)

where �lk denotes the length of the edge and l, k = 1, 2, 3, 4 with l < k. Figure 2.4
shows one of the six first-order vector basis functions for a tetrahedral element.† To

†Note that the order of vector basis functions here is defined differently from that in Ref. 2. The basis
functions defined in (2.15) are referred to here as the first order instead of the zeroth order as in Ref. 2.
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Figure 2.5 Vector basis functions for a linear triangular element, which can be considered
as one of the four facets of a tetrahedral element.

visualize the vector basis functions more clearly, Figure 2.5 plots the three vector
basis functions on one of the four facets of a tetrahedral element. Clearly, such
basis functions have a tangential component only along the associated edge, and as
such they ensure the tangential continuity of the interpolated field while allowing
the normal component to be discontinuous at a material discontinuity. Hence, they
accurately model the nature of the vector field E. Higher-order vector basis functions
can also be constructed to achieve better interpolation accuracy [2].

When the E-field is interpolated in each element using its tangential values at the
edges of the element, the E-field in the entire volume V can be expressed as

E =
Nedge∑
i=1

Ni Ei (2.16)

where Nedge denotes the total number of edges excluding those on SPEC, Ei denotes
the tangential component of E at the ith edge, and Ni is the vector basis function
corresponding to the ith edge. Obviously, for an edge inside V , Ni spans several
neighboring elements that share the common edge. Also note that by excluding the
edges on SPEC in (2.16), the interpolated field is guaranteed to satisfy the required
boundary condition in (2.5).

By substituting (2.16) into (2.13) and using the same Ni as the weighting function
T, we obtain

Nedge∑
j=1

Ki j E j = bi i = 1, 2, . . . , Nedge (2.17)

where

Ki j =
∫∫∫

V

[
(∇ × Ni ) · ↔

μr
−1 · (∇ × N j ) − k2

0Ni · ↔
εr · N j

]
dV

+ jk0

∫∫
©

So

(n̂ × Ni ) · (n̂ × N j ) dS (2.18)

bi = −
∫∫∫

V
Ni · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (2.19)
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This formulation is called Galerkin’s formulation since the same functions are used
for both expansion and testing. Note that the integral over SPEC in (2.13) vanishes
here since n̂ × Ni = 0 on SPEC. Equation (2.17) can be written compactly as

[K ]{E} = {b} (2.20)

which can be solved for {E}. Because the elemental interactions in (2.18) are local
in nature, [K ] is a sparse and symmetric (if ↔

εr and ↔
μr are symmetric) matrix that

can be solved efficiently using a sparse matrix solver. Once {E} is obtained, the field
everywhere in V can be calculated using (2.16), from which other parameters, such
as the input impedance and radiation patterns, can be computed.

The formulation described above can easily be extended to the case where materials
are lossy and/or dispersive because

↔
εr and ↔

μr can be made complex (to include the
electric and magnetic losses) and can have different values for different frequencies
since the analysis is performed at a single frequency each time.

2.2 FINITE ELEMENT FORMULATION IN THE TIME DOMAIN

The finite element formulation described in Section 2.1 operates in the frequency
domain. It takes the frequency as an input parameter and solves for the electric field
at that specific frequency. However, for most antenna analyses, one is interested in
the characteristics of an antenna over a frequency band. In such a case, one often has
to repeat a frequency-dependent analysis at many frequencies, which can be quite
time consuming for both narrow- and broadband antennas. For narrowband anten-
nas, the antenna characteristics change rapidly with frequency due to resonance. A
very small frequency step has to be used to capture impedance variations accurately
near resonance. For broadband antennas, the frequency step can be made larger;
however, the entire frequency band may be very wide, thus requiring many fre-
quency samples as well. Furthermore, it is found to be difficult to model nonlinear
devices/media accurately using a frequency-domain-based method. These two chal-
lenges can be alleviated by using the finite element method formulated in the time
domain.

In the time domain, the first two of Maxwell’s equations (2.1)–(2.4) become

∇ × E(t) = −↔
μ · ∂H(t)

∂t
− Mimp(t) (2.21)

∇ × H(t) = ↔
ε · ∂E(t)

∂t
+ ↔

σ e · E(t) + Jimp(t) (2.22)

where ↔
σ e denotes the electrical conductivity tensor. The boundary condition on the

perfectly conducting surface remains the same as in (2.5), and the boundary condition
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corresponding to (2.7) becomes

n̂ ×
(

1

μ0
∇ × E

)
+ Y0n̂ ×

(
n̂ × ∂

∂t
E
)

≈ 0 r ∈ So (2.23)

where Y0 = 1/Z0 and So is assumed to reside in air. By eliminating the magnetic
field from (2.21) and (2.22), we obtain the vector wave equation for the electric
field as

∇ × [
↔
μ−1 · ∇ × E(t)] + ↔

ε · ∂2E(t)

∂t2
+ ↔

σ e · ∂E(t)

∂t
= −∂Jimp

∂t
− ∇ × (↔

μ−1 · Mimp)

(2.24)

and its weak-form representation as

∫∫∫
V

[
(∇ × T) · ↔

μ−1 · (∇ × E) + T · ↔
ε · ∂2E

∂t2
+ T · ↔

σ e · ∂E
∂t

]
dV

+ Y0

∫∫
©

So

(n̂ × T) ·
(

n̂ × ∂E
∂t

)
dS

= −
∫∫∫

V
T ·

[
∂Jimp

∂t
+ ∇ × (↔

μ−1 · Mimp)

]
dV. (2.25)

The derivation follows that in the frequency domain. Note that the vector testing
function is assumed to satisfy the boundary condition n̂ × T = 0 on SPEC since (2.5)
is enforced in the solution of (2.25).

To seek the finite element solution of (2.25), we first perform the spatial discretiza-
tion in exactly the same manner as in the frequency domain. To be more specific, by
subdividing the solution volume into small finite elements and expanding the electric
field within each element using the vector basis functions, we can express the electric
field as

E(r, t) =
Nedge∑
i=1

Ni (r)Ei (t). (2.26)

Substituting (2.26) into (2.25) yields the second-order ordinary differential equation

[T ]
d2{E}

dt2
+ [R]

d{E}
dt

+ [S]{E} = { f } (2.27)
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where [T ], [R], and [S] represent sparse, symmetric (if ↔
ε, ↔

μ, and ↔
σ e are all symmetric)

matrices whose elements are given by

Ti j =
∫∫∫

V
Ni · ↔

ε · N j dV (2.28)

Ri j =
∫∫∫

V
Ni · ↔

σ e · N j dV + Y0

∫∫
©

So

(n̂ × Ni ) · (n̂ × N j ) dS (2.29)

Si j =
∫∫∫

V
(∇ × Ni ) · ↔

μ−1 · (∇ × N j ) dV. (2.30)

Furthermore, {E} = [E1, E2, . . . , ENedge ]
T (where the superscript T denotes the trans-

pose) and the elements of the excitation vector { f } are given by

fi (t) = −
∫∫∫

V
Ni ·

[
∂Jimp

∂t
+ ∇ × (↔

μ−1 · Mimp)

]
dV. (2.31)

Having resolved the spatial variation by the finite element procedure, the tem-
poral variation of (2.27) can be solved by using direct time integration or by the
finite-difference method [2]. In the finite-difference method, the time variable t is
uniformly discretized such that it is represented by t = n �t (n = 0, 1, . . .), where
�t is denoted as the time step. The continuous time derivatives are then approxi-
mated by finite differences, which yields an equation that allows for calculation of
the unknown vector {E} based on its previous values in time. This process is called
time marching. As shown in Ref. 2, the use of forward differencing will result in
an unstable time-marching equation (the solution grows exponentially and becomes
completely erroneous). The use of backward differencing will result in an uncondi-
tionally stable (the time-step size �t is not constrained by the spatial discretization)
time-marching equation, which unfortunately is only first-order accurate—the ac-
curacy of the solution is proportional to �t . The use of central differencing will
yield a second-order-accurate time-marching equation, which is conditionally sta-
ble—the time marching is stable only when �t is smaller than a certain value
dictated by the spatial discretization. For (2.27), a preferred choice is to use a dif-
ferencing formula derived from the Newmark-beta time integration method [3–5],
which is equivalent to using central differencing for the first- and second-order time
derivatives

d{E}
dt

≈ {E}n+1 − {E}n−1

2�t
(2.32)

d2{E}
dt2

≈ {E}n+1 − 2{E}n + {E}n−1

(�t)2
(2.33)
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and using a weighted average for the undifferentiated quantities

{E} ≈ β{E}n+1 + (1 − 2β){E}n + β{E}n−1 (2.34)

{ f } ≈ β{ f }n+1 + (1 − 2β){ f }n + β{ f }n−1 (2.35)

where β is a parameter that takes a value between 0 and 1. In (2.32)–(2.35), the
superscript denotes the time at which the associated quantity is evaluated; for example,
{E}n denotes the vector {E} evaluated at t = n �t . Substituting these into (2.27), we
obtain the time-marching or time-stepping equation

{
1

(�t)2
[T ] + 1

2�t
[R] + β[S]

}
{E}n+1 =

{
2

(�t)2
[T ] − (1 − 2β)[S]

}
{E}n

−
{

1

(�t)2
[T ] − 1

2�t
[R] + β[S]

}
{E}n−1 + β{ f }n+1 + (1 − 2β){ f }n + β{ f }n−1.

(2.36)

When β = 0, this equation reduces to the formula obtained using central differencing.
However, it can be shown that when β ≥ 1/4, this equation is unconditionally stable
[4] while maintaining second-order accuracy. Given the initial values of {E}, that is,
{E}0 and {E}1, and the values of the excitation vector { f }, (2.36) can be employed
to compute all subsequent values for {E}. To compute each new {E}, we have to
solve a matrix equation at each time step. The unconditional stability of (2.36) is very
important for problems involving very small finite elements in order to model fine
structures such as the example shown in Figure 1.1. With this unconditional stability,
�t can be chosen based entirely on the temporal variation of the field instead of being
constrained by the smallest finite elements in the solution domain.

2.3 MODELING OF COMPLEX MATERIALS

The formulation described in Section 2.2 assumes that the materials involved are
dispersion free. In other words, both the permeability

↔
μ and the permittivity ↔

ε are in-
variant with respect to frequency. Furthermore, the magnetic loss is ignored. Because
advanced antenna designs often take advantage of engineered materials to achieve
desired antenna characteristics, it is critical that any analysis tool be able to model
complex materials accurately. In this section we describe the modeling of materials
in the time-domain finite element method that can be simultaneously electrically and
magnetically lossy and dispersive. (As mentioned earlier, modeling these types of
materials in the frequency domain is rather straightforward.) To improve understand-
ing, we first treat nondispersive lossy materials, which is followed by the treatment
of electrically and magnetically dispersive materials, and finally, we combine these
results to treat the case of general materials [6–11].
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2.3.1 Modeling of Electrically and Magnetically Lossy Materials

Consider a nondispersive, anisotropic, lossy volume, which is characterized by per-
meability ↔

μ, permittivity ↔
ε, electrical conductivity ↔

σ e, and magnetic conductivity ↔
σ m .

Maxwell’s equations in such a domain can be written as

∇ × E = −↔
μ · ∂H

∂t
− ↔

σ m · H − Mimp (2.37)

∇ × H = ↔
ε · ∂E

∂t
+ ↔

σ e · E + Jimp. (2.38)

Taking the curl of (2.37), we obtain

∇ × (↔
μ−1 · ∇ × E) = − ∂

∂t
(∇ × H) − ∇ × (↔

μ−1 · ↔
σ m · H) − ∇ × (↔

μ−1 · Mimp).

(2.39)
Substituting (2.38) into (2.39) yields

∇ × (↔
μ−1 · ∇ × E) = −↔

ε · ∂2E
∂t2

− ↔
σ e · ∂E

∂t
− ∂Jimp

∂t

−∇ × (↔
μ−1 · ↔

σ m · H) − ∇ × (↔
μ−1 · Mimp) (2.40)

which can also be written as

∇ × (↔
μ−1 · ∇ × E) + ↔

ε · ∂2E
∂t2

+ ↔
σ e · ∂E

∂t
+ ∇ × (↔

μ−1 · ↔
σ m · H)

= −∂Jimp

∂t
− ∇ × (↔

μ−1 · Mimp). (2.41)

Testing (2.41) with T and integrating over a volume V yields

∫∫∫
V

T ·
[
∇ × (↔

μ−1 · ∇ × E)
]

dV +
∫∫∫

V
T ·

(
↔
ε · ∂2E

∂t2
+ ↔

σ e · ∂E
∂t

)
dV

+
∫∫∫

V
T · ∇ × (↔

μ−1 · ↔
σ m · H) dV =

∫∫∫
V

T · gimp dV (2.42)

where

gimp = −∂Jimp

∂t
− ∇ × (↔

μ−1 · Mimp). (2.43)
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The finite element discretization of the second and last integrals in (2.42) is
straightforward. Let us focus on the first integral, which can be written as

∫∫∫
V

T ·
[
∇ × (↔

μ−1 · ∇ × E)
]

dV = −
∫∫∫

V
∇ ·

[
T × (↔

μ−1 · ∇ × E)
]

dV

+
∫∫∫

V
(∇ × T) · ↔

μ−1 · (∇ × E) dV

= −
∫∫
©

S

[
T × (↔

μ−1 · ∇ × E)
]

· n̂ dS

+
∫∫∫

V
(∇ × T) · ↔

μ−1 · (∇ × E) dV (2.44)

where we applied a common vector identity and Gauss’s divergence theorem. Sub-
stituting (2.37) into (2.44), we obtain

∫∫∫
V

T ·
[
∇ × (↔

μ−1 · ∇ × E)
]

dV =
∫∫
©

S

[
T × ∂H

∂t
+ T × (↔

μ−1 · ↔
σ m · H)

]
· n̂ dS

+
∫∫∫

V
(∇ × T) · ↔

μ−1 · (∇ × E) dV (2.45)

where it is assumed that no surface magnetic current exists on S.
Let us now consider the third term in (2.42), which can be written as

∫∫∫
V

T · ∇ × (↔
μ−1 · ↔

σ m · H) dV =
∫∫∫

V

{
(∇ × T) · (↔

μ−1 · ↔
σ m · H)

−∇ ·
[
T × (↔

μ−1 · ↔
σ m · H)

]}
dV

=
∫∫∫

V
(∇ × T) · (↔

μ−1 · ↔
σ m · H) dV

−
∫∫
©

S

[
T × (↔

μ−1 · ↔
σ m · H)

]
· n̂ dS. (2.46)

Surprisingly, the second term on the right-hand side of (2.46) cancels the second term
in the surface integral of (2.45). Hence, (2.42) becomes

∫∫∫
V

(∇ × T) · ↔
μ−1 · (∇ × E) dV +

∫∫∫
V

T ·
(

↔
ε · ∂2E

∂t2
+ ↔

σ e · ∂E
∂t

)
dV

+
∫∫∫

V
(∇ × T) · (↔

μ−1 · ↔
σ m · H) dV +

∫∫
©

S

(
T × ∂H

∂t

)
· n̂ dS =

∫∫∫
V

T · gimp dV.

(2.47)
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The surface integral in this equation facilitates the application of the boundary con-
dition over S.

We note that in the finite element implementation of (2.47), the magnetic field H
should not be treated as an independent unknown function. Rather, it can be moved to
the right-hand side and treated as the source for the electric field. In particular, with
the electric and magnetic fields En and Hn−1/2, where n denotes the time step, we can
calculate the magnetic field at the next step using (2.37) via central differencing,

Hn+1/2 =
[
2↔
μ + ↔

σ m �t
]−1

·
[
2↔
μ − ↔

σ m �t
]

· Hn−1/2

− 2�t
[
2↔
μ + ↔

σ m �t
]−1

·
[
(∇ × E)n + Mn

imp

]
(2.48)

which can be used to update the right-hand side of the time-marching equation. When
the first-order edge elements are used to represent the electric field, ∇ × E—and,
hence, the discretized magnetic field—is constant within each element.

To verify the formulation presented above, we consider the problem of scattering
from a rectangular slab for the case of plane-wave incidence along the z-axis. The
rectangular slab has dimensions of 1 m × 1 m × 0.1 m in the x-, y-, and z-directions,
respectively. We analyze the problem for both a magnetically and an electrically
lossy slab [9]. For the magnetically lossy case, σm = 1.047 × 104 
/m, and for the
electrically lossy case, σe = 0.0738 S/m. With these parameters, both slabs would
produce the same normalized backscattered field. For the finite element time-domain
(FETD) solution, the geometry was discretized with first-order tetrahedral edge ele-
ments with an average edge length of 1.25 cm external to the slab and 6.25 mm within
the slab. For the reference finite-difference time-domain (FDTD) solution, 6.25-mm
cubes were used throughout the computational domain. The transient result for the
case of the magnetically lossy slab for a unit-amplitude Gaussian pulse excitation is
shown in Figure 2.6(a), which shows excellent agreement between the finite element
and FDTD solutions. The corresponding backscattered electric field as a function of
frequency is shown in Figure 2.6(b), where the finite element and FDTD curves for
the magnetically lossy case coincide with each other and a small deviation is observed
for the finite element solution of the electrically lossy slab.

2.3.2 Modeling of Electrically Dispersive Materials

In an anisotropic, electrically dispersive material, Maxwell’s equations (neglecting
the source terms for simplicity) become

∇ × E(t) = −↔
μ · ∂H(t)

∂t
(2.49)

∇ × H(t) = ∂D(t)

∂t
(2.50)
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Figure 2.6 Backscattered electric field from a rectangular slab of dimensions 1 m ×
1 m × 0.1 m. Comparison between the FETD magnetic loss formulation based on (2.47)
and a traditional FDTD formulation. (a) Field versus time (The FETD curve is shifted for clar-
ity). (b) Field versus frequency (Similar results for an electrically conductive slab are provided
for reference). (After Riley and Jin [9], Copyright C© Wiley 2005.)
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where ↔
μ is a time-invariant permeability tensor and D(t) is related to E(t) by the

constitutive relation

D(t) = ε0
↔
ε∞ · E(t) + ε0

↔
χ e(t) ∗ E(t)

= ε0
↔
ε∞ · E(t) + ε0

∫ t

0

↔
χ e(t − τ ) · E(τ ) dτ (2.51)

where ↔
ε∞ denotes the relative permittivity tensor at the optical frequency, ↔

χ e(t)
represents the electrical susceptibility tensor, and ∗ denotes the time convolution.
From (2.49) and (2.50), we obtain

∇ ×
[

↔
μ−1 · ∇ × E(t)

]
+ ε0

↔
ε∞ · ∂2E(t)

∂t2
+ ε0

∂2

∂t2

[
↔
χ e(t) ∗ E(t)

]
= 0. (2.52)

The last term on the left-hand side in (2.52) has two equivalent expressions,

∂2

∂t2

[
↔
χ e(t) ∗ E(t)

]
= ∂2 ↔

χ e(t)

∂t2
∗ E(t) ≡ ↔̈

χ e(t) ∗ E(t) (2.53)

and

∂2

∂t2

[
↔
χ e(t) ∗ E(t)

]
= ↔

χ e(t) ∗ ∂2E(t)

∂t2
≡ ↔

χ e(t) ∗ Ë(t). (2.54)

Therefore, there are two approaches to dealing with the convolution term in (2.52).
One is based on (2.53), which requires the second derivative of the electrical suscep-
tibility; the other employs (2.54), which involves the second derivative of the electric
field.

Let us first consider the approach based on the use of (2.53), for which (2.52) can
be written as

∇ ×
[

↔
μ−1 · ∇ × E(t)

]
+ ε0

↔
ε∞ · ∂2E(t)

∂t2
+ ε0

↔̈
χ e(t) ∗ E(t) = 0. (2.55)

The weak form of (2.55) can be obtained by taking the dot product with a testing
function T and then invoking Gauss’s divergence theorem, yielding

∫∫∫
V

[
(∇ × T) · ↔

μ−1 · ∇ × E(t) + ε0T · ↔
ε∞ · ∂2E(t)

∂t2
+ ε0T · ↔̈

χ e(t) ∗ E(t)

]
dV

+
∫∫
©

S
T · n̂ ×

[
↔
μ−1 · ∇ × E(t)

]
dS = 0. (2.56)

The last term (surface integral) can be used to incorporate the boundary condition
on the surface that encloses the volume of interest. Before we consider the finite
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element discretization of (2.56), let us assume that the electrical susceptibility can be
represented by

↔
χ e(ω) =

↔
ae

jω + be
(2.57)

with the corresponding time-domain expression given by

↔
χ e(t) = ↔

aee−bet u(t) (2.58)

where u(t) represents the unit step function and
↔
ae and be are parameters related to

specific materials, which for the time being are taken to be real (such as the case of
Debye material). Using (2.58), we find that

↔̈
χ e(t) ∗ E(t) = ↔

ae · ∂E(t)

∂t
− be

↔
ae · E(t) + ↔

aeϕe(t) ∗ E(t) (2.59)

where

ϕe(t) = b2
e e−bet u(t). (2.60)

The finite element discretization of (2.56) together with (2.59) is straightforward,
and the resulting second-order ordinary differential equation contains a convolution
term, which can be denoted by [Z ]{ψ}. By using Galerkin’s approach, the matrix [Z ]
is given by

Zi j = ε0

∫∫∫
V

Ni · ↔
ae · N j dV (2.61)

and the vector {ψ} is given by

ψi (t) = ϕe(t) ∗ Ei (t) (2.62)

where Ei (t) is the finite element expansion coefficient for E(t). Since ϕe(t) has the
assumed form of an exponential function, the convolution in (2.62) can be evaluated
recursively as

ψn
i = e−be�tψn−1

i + b2
e e−ben�t

∫ n�t

(n−1)�t
ebeτ Ei (τ ) dτ (2.63)

where n denotes the time-step index and �t denotes the length of each time step.
To evaluate (2.63) accurately, we can employ a linear interpolation for Ei (t) in
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the time interval [(n − 1) �t, n �t] to obtain the second-order accurate recursive
formula [6]

ψn
i = e−be�tψn−1

i + b2
e

�t

2

(
En

i + e−be�t En−1
i

)
. (2.64)

The use of this recursive convolution saves significant computation time and mem-
ory [6,7]. Obviously, the value of {ψ}n depends only on {E}n and its previous values;
hence, {ψ}n can be calculated once {E}n is computed. However, to obtain an un-
conditionally stable solution using the Newmark-beta method, we have to use a
weighted average for {ψ}, which would require the value of {ψ}n+1 to calculate the
right-hand side of the time-marching equation for computing {E}n+1. Since {ψ}n+1

contains {E}n+1, the unknown term must first be moved to the left-hand side of the
time-marching equation. Otherwise, implementation of the Newmark-beta method is
incomplete and the time-marching solution is only conditionally stable.

Now, we consider the second approach based on the use of (2.54). In this case,
(2.52) can be written as

∇ ×
[

↔
μ−1 · ∇ × E(t)

]
+ ε0

↔
ε∞ · ∂2E(t)

∂t2
+ ε0

↔
χ e(t) ∗ ∂2E(t)

∂t2
= 0. (2.65)

The convolution can be written in semidiscrete form as [8]

↔
χ e(t) ∗ ∂2E(t)

∂t2

∣∣∣∣
t=n�t

∼=
∫ �t/2

0

↔
χ e(τ ) · Ë(n�t − τ ) dτ

+
n−1∑
k=0

∫ (k+3/2)�t

(k+1/2)�t

↔
χ e(τ ) · Ë(n�t − t) dτ (2.66)

and it is understood that E(t) = 0 for t ≤ 0. Assuming that Ë is constant over the time
integration intervals and the electric susceptibility can be written as (2.58), (2.66)
becomes

↔
χ e ∗ ∂2E

∂t2

∣∣∣∣
t=n�t

∼=
[∫ �t/2

0

↔
χ e(τ ) dτ

]
· Ën +

n−1∑
k=0

[∫ (k+3/2)�t

(k+1/2)�t

↔
χ e(τ ) dτ

]
· Ën−k−1

=
[

1

be
(1 − e−be �t/2)

↔
ae

]
· Ën

+
n−1∑
k=0

[
1

be
(1 − e−be �t )e−be (k+1/2)�t ↔

ae

]
· Ën−k−1. (2.67)

We can now construct the finite element discretization by first noting that the weak-
form representation of (2.65) is similar to (2.56), with the exception of the placement
of the time derivatives in the convolution. By using Galerkin’s approach and applying
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the Newmark-beta method with β = 1/4, we obtain the following equation for the
expansion coefficients of the electric field:

{
1

(�t)2
[T ] + 1

2 �t
[R] + 1

4
[S]

}
{E}n+1

= 2

{
1

(�t)2
[T ] − 1

4
[S]

}
{E}n −

{
1

(�t)2
[T ] − 1

2 �t
[R] + 1

4
[S]

}
{E}n−1

− 1

(�t)2
{�e}n (2.68)

where the differences from the nondispersive case are given by

Ti j = ε0

∫∫∫
V

Ni · ↔
ε∞ · N j dV + �̃0

i j (2.69)

{�e}n =
n−1∑
k=0

[�]k({E}n−k − 2{E}n−k−1 + {E}n−k−2) (2.70)

with

�̃0
i j = ε0

[
1

be
(1 − e−be �t/2)

] ∫∫∫
V

Ni · ↔
ae · N j dV

�k
i j = ε0

[
1

be
(1 − e−be �t )e−be (k+1/2)�t

] ∫∫∫
V

Ni · ↔
ae · N j dV k ≥ 0.

(2.71)

The recursive relationship [�]k = e−be �t [�]k−1 enables (2.70) to be written recur-
sively as

{�e}n = [�]0({E}n − 2{E}n−1 + {E}n−2) + e−be�t {�e}n−1. (2.72)

Comparing the two approaches presented above, we find that the first approach
requires an analytical expression for ↔

χ e(t) to find its second time derivative, whereas
the second approach only requires the value of ↔

χ e(t). The numerical efficiency of the
two approaches is expected to be very similar, and when implemented carefully, both
approaches are unconditionally stable.

The formulation described in this section can easily be extended to model materi-
als, such as Lorentz materials, with an electrical susceptibility that is characterized by
a simultaneous decay and oscillation according to ↔

χ e(t) = ↔
ae e−δet cos(αet) u(t). All

that is required is to rewrite this as ↔
χ e(t) = ↔

ae Re[e−bet ] u(t), where be = δe − jαe,
and then modify the equations that contain e−bet by taking their real part [6]. The
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formulation can further be extended to model materials that have an electrical sus-
ceptibility represented by a multipole expansion

↔
χ e(ω) =

Ne∑
p=1

↔
ae,p

jω + be,p
↔ ↔

χ e(t) =
Ne∑

p=1

Re
{↔
ae,p e−be,pt

}
u(t) (2.73)

where Ne denotes the number of poles in the expansion. Such an expansion is useful
for simulation over a broad frequency range because it provides increased generality
with regard to characterizing specific material behavior as a function of frequency.

2.3.3 Modeling of Magnetically Dispersive Materials

In an anisotropic, magnetically dispersive material, Maxwell’s equations become

∇ × E(t) = −∂B(t)

∂t
(2.74)

∇ × H(t) = ↔
ε · ∂E(t)

∂t
(2.75)

where ↔
ε is a time-invariant permittivity tensor and B(t) is related to H(t) by the

constitutive relation

B(t) = μ0
↔
μ∞ · H(t) + μ0

↔
χm(t) ∗ H(t)

= μ0
↔
μ∞ · H(t) + μ0

∫ t

0

↔
χm(t − τ ) · H(τ ) dτ (2.76)

where ↔
μ∞ denotes the relative permeability tensor at the optical frequency and ↔

χm(t)
represents the magnetic susceptibility tensor. This magnetically dispersive material
case can be considered analogous to the case treated in the preceding section; hence,
we can easily develop a dual solution, which solves for the magnetic field. However,
such a solution cannot be combined with that in the preceding section to deal with both
electrically and magnetically dispersive materials. Consequently, in this subsection,
we describe a different method that still solves for the electric field.

First, we note that the time derivative of (2.76) can be expressed as either

∂B(t)

∂t
= μ0

↔
μ∞ · ∂H(t)

∂t
+ μ0

∂
↔
χm(t)

∂t
∗ H(t) (2.77)

or

∂B(t)

∂t
= μ0

↔
μ∞ · ∂H(t)

∂t
+ μ0

↔
χm(t) ∗ ∂H(t)

∂t
. (2.78)
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To avoid the use of a time-consuming convolution while still employing the second-
order wave equation, we take the time derivative of (2.75) to obtain

∇ × ∂H(t)

∂t
= ↔

ε · ∂2E(t)

∂t2
(2.79)

whose weak-form representation can be written as

∫∫∫
V

T ·
[
−∇ × ∂H(t)

∂t
+ ↔

ε · ∂2E(t)

∂t2

]
dV = 0 (2.80)

or

∫∫∫
V

[
−(∇ × T) · ∂H(t)

∂t
+ T · ↔

ε · ∂2E(t)

∂t2

]
dV −

∫∫
©

S
T ·

[
n̂ × ∂H(t)

∂t

]
dS = 0

(2.81)

where we applied a simple vector identity and Gauss’s divergence theorem. The
surface integral term can be used to incorporate an appropriate boundary condition
on S. The finite element discretization of (2.81) yields

[T ]
d2{E}

dt2
+ [W ]{Ḣ} + other terms = 0 (2.82)

where {E} is a vector whose entries are the coefficients of the finite element expansion
of E(t) and {Ḣ} is a vector whose entries are the coefficients of the compatible finite
element expansion of ∂H(t)/∂t . If we use the first-order vector basis functions to
expand E(t), then ∂H(t)/∂t is constant within each element and the entries of {Ḣ}
represent the values of the x-, y-, and z-components of ∂H(t)/∂t within each element.
In this case, the entries for the matrices [T ] and [W ] are given by

Ti j =
∫∫∫

V
Ni · ↔

ε · N j dV (2.83)

Wik = −
∫∫∫

V
(∇ × Ni ) · Pk dV (2.84)

where Pk = (x̂, ŷ, ẑ) within element k and is zero elsewhere. Using central differ-
encing for the second-order derivative in (2.82), we obtain a time-marching equation
to solve for {E}. To calculate {E}n+1, we need the value of {Ḣ}n , which can be
calculated using either (2.77) or (2.78) as described below.

Let us consider first the evaluation of {Ḣ}n based on (2.77). By substituting (2.74)
into (2.77), we obtain

↔
μ∞ · ∂H(t)

∂t
= − 1

μ0
∇ × E(t) − ↔̇

χm(t) ∗ H(t) (2.85)



P1: JYS
c02 JWBK322-Jin October 3, 2008 16:36 Printer: Yet to come

38 FINITE ELEMENT FORMULATION

which can be used to compute {H}n+1/2 by using a central difference for ∂H(t)/∂t
and an average for H(t). If the time dependence of ↔

χm(t) can be expressed in terms
of the exponential function

↔
χm(t) = ↔

ame−bm t u(t) (2.86)

the convolution in (2.85) can be evaluated recursively as described earlier. To be more
specific, if we denote

[
↔̇
χm(t) ∗ H(t)

]n
= ↔

am · Hn − �n (2.87)

�n = e−bm�t�n−1 + bm�t

2
↔
am · [Hn + e−bm�t Hn−1

]
(2.88)

(2.85) can be written as

1

�t
↔
μ∞ · [Hn+1/2 − Hn−1/2] = − 1

μ0
(∇ × E)n − 1

2
↔
am · [Hn+1/2 + Hn−1/2]

+ e−bm�t�n−1 + �t

4
bm

↔
am · [Hn+1/2 + Hn−1/2

]
+ �t

4
bme−bm�t ↔

am · [Hn−1/2 + Hn−3/2]
(2.89)

from which Hn+1/2 can be computed. Once Hn+1/2 is computed, Ḣn can be calcul-
ated as

Ḣn = Hn+1/2 − Hn−1/2

�t
. (2.90)

The evaluation above requires an analytical expression for ↔
χm(t) to calculate

its time derivative. This requirement can be avoided by using (2.78), where the
convolution term can be written as

↔
χm(t) ∗ ∂H(t)

∂t

∣∣∣∣
t=n�t

∼=
∫ �t/2

0

↔
χm(τ ) · Ḣ(n�t − τ ) dτ

+
n∑

k=1

∫ (k+1/2)�t

(k−1/2)�t

↔
χm(τ ) · Ḣ(n�t − τ ) dτ (2.91)

and it is understood that H(t) = 0 for t ≤ 0. Using central differencing to approximate
the time derivative in (2.91) and assuming that the magnetic field is constant within
the time-integration intervals yield

μ0
↔
χm(t) ∗ ∂H(t)

∂t

∣∣∣∣
t=n�t

∼= μ0

�t
↔
χm

0 · (Hn+1/2 − Hn−1/2) + μ0

�t
�n (2.92)
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where

�n =
n∑

k=1

↔
χm

k · (Hn−k+1/2 − Hn−k−1/2) (2.93)

and

↔
χm

k =
∫ (k+1/2)�t

(k−1/2)�t

↔
χm(τ ) dτ . (2.94)

In (2.94), causality of the susceptibility tensor is assumed so that the lower limit of
the integral is zero for the case k = 0.

Substituting (2.92) and (2.78) into (2.74), we obtain

μ0
(↔
μ∞ + ↔

χm
0
) · Hn+1/2 = μ0

(↔
μ∞ + ↔

χm
0
) · Hn−1/2 − �t (∇ × E)n − μ0 �n

(2.95)

from which Hn+1/2 can be computed, and subsequently Ḣn using (2.90). If ↔
χm(t) can

be expressed as (2.86), then (2.93) can be evaluated efficiently using the recursive
relation

�n = ↔
χm

1 · (Hn−1/2 − Hn−3/2) + e−bm�t �n−1. (2.96)

It is evident that both approaches to calculating Ḣn can be extended to model more
general materials with magnetic susceptibility represented by the pole expansion

↔
χm(ω) =

Nm∑
p=1

↔
am,p

jω + bm,p
↔ ↔

χm(t) =
Nm∑
p=1

Re
{↔
am,p e−bm,p t

}
u(t) (2.97)

where Nm denotes the number of poles in the expansion.
The time-marching procedure derived from (2.82) using central differencing is

only conditionally stable. Application of the Newmark-beta method to (2.82) is
complicated since it requires a weighted average for the second term in the form
of (2.35). To facilitate the application of the Newmark-beta method and obtain an
unconditionally stable solution, we can rewrite (2.81) as

∫∫∫
V

{
1

μ0
(∇ × T) · ↔

μ∞
−1 · [∇ × E(t)] − (∇ × T) · Q(t) + T · ↔

ε · ∂2E(t)

∂t2

}
dV

−
∫∫
©

S
T ·

[
n̂ × ∂H(t)

∂t

]
dS = 0 (2.98)

where

Q(t) = ∂H(t)

∂t
+ 1

μ0

↔
μ∞

−1 · [∇ × E(t)] . (2.99)
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The finite element discretization of (2.98) yields

[T ]
d2{E}

dt2
+ [S]{E} + [W ]{Q} + other terms = 0 (2.100)

where [T ] and [W ] are given in (2.83) and (2.84) and the entries of [S] are given by

Si j = 1

μ0

∫∫∫
V

(∇ × Ni ) · ↔
μ∞

−1 · (∇ × N j ) dV. (2.101)

The vector {Q} stores the value of Q(t) in each element (assuming the use of the
first-order edge elements), which can be calculated using (2.99) once ∂H(t)/∂t is
evaluated using one of the two approaches described earlier. Applying the Newmark-
beta method with β = 1/4 to (2.98) yields an unconditionally stable time-marching
equation

{
1

(�t)2
[T ] + 1

4
[S]

}
{E}n+1 = 2

{
1

(�t)2
[T ] − 1

4
[S]

}
{E}n

−
{

1

(�t)2
[T ] + 1

4
[S]

}
{E}n−1 − [W ]{Q}n − other terms. (2.102)

On the surface, (2.102) appears to be an incomplete Newmark-beta implementation
since {Q}n has been used instead of its weighted average. However, because of the
extraction of the term [S]{E}, it is actually equivalent to a complete Newmark-beta
implementation with an effective β greater than 1/4. Because an increased value in β

does not compromise the stability of a Newmark-beta formulation, (2.102) remains
unconditionally stable, although its accuracy is slightly compromised due to the use
of a larger value of the effective β. The practical consequence is an increase in
the discretization error associated with the time derivatives, which can be offset by
defining a reduced time step.

2.3.4 Modeling of Doubly Dispersive Lossy Materials

With the modeling techniques described so far, we are now ready to consider the
modeling of a general anisotropic, dispersive, lossy, electric and magnetic material.
For this case, Maxwell’s equations can be written as

∇ × E(t) = −∂B(t)

∂t
− ↔

σ m · H(t) − Mimp(t) (2.103)

∇ × H(t) = ∂D(t)

∂t
+ ↔

σ e · E(t) + Jimp(t) (2.104)
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where D(t) is related to E(t) by the constitutive relation

D(t) = ε0
↔
ε∞ · E(t) + ε0

↔
χ e(t) ∗ E(t) (2.105)

and B(t) is related to H(t) by the constitutive relation

B(t) = μ0
↔
μ∞ · H(t) + μ0

↔
χm(t) ∗ H(t). (2.106)

Note that ↔
σ e and ↔

σ m represent the electrical and magnetic conductivities as the
frequency approaches zero. The dispersion of the material is also accompanied by
a loss mechanism where the equivalent conductivities are given by −ωε0 Im[↔

χ e(ω)]
and −ωμ0 Im[↔

χm(ω)]. The effect of this loss is included in the modeling of the
material dispersion.

To formulate a weak-form solution of (2.103) and (2.104), we first take the time
derivative of (2.104) to obtain

∇ × ∂H(t)

∂t
= ∂2D(t)

∂t2
+ ↔

σ e · ∂E(t)

∂t
+ ∂Jimp(t)

∂t
. (2.107)

Substituting the equation

∂2D(t)

∂t2
= ε0

↔
ε∞ · ∂2E(t)

∂t2
+ ε0

↔
χ e(t) ∗ ∂2E(t)

∂t2
(2.108)

into (2.107), we obtain

−∇ × ∂H(t)

∂t
+ ε0

↔
ε∞ · ∂2E(t)

∂t2
+ ↔

σ e · ∂E(t)

∂t
+ ε0

↔
χ e(t) ∗ ∂2E(t)

∂t2
= −∂Jimp(t)

∂t
.

(2.109)

To find the weak-form solution of (2.109), we take the dot product with a testing
function T and integrate over a volume V to obtain

∫∫∫
V

{
−(∇ × T) · ∂H(t)

∂t
+ ε0T · ↔

ε∞ · ∂2E(t)

∂t2
+ T · ↔

σ e · ∂E(t)

∂t

+ ε0T · ↔
χ e(t) ∗ ∂2E(t)

∂t2

}
dV −

∫∫
©

S
T ·

[
n̂ × ∂H(t)

∂t

]
dS

= −
∫∫∫

V
T · ∂Jimp(t)

∂t
dV. (2.110)

To cast the final discrete finite element system in a form similar to the standard one
that contains the [S] matrix with the intention of obtaining an unconditionally stable
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solution, as was done in Section 2.3.3, we rewrite (2.110) as

∫∫∫
V

{
1

μ0
(∇ × T) · ↔

μ∞
−1 · [∇ × E(t)] − (∇ × T) · Q(t) + ε0T · ↔

ε∞ · ∂2E(t)

∂t2

+ T · ↔
σ e · ∂E(t)

∂t
+ ε0T · ↔

χ e(t) ∗ ∂2E(t)

∂t2

}
dV −

∫∫
©

S
T ·

[
n̂ × ∂H(t)

∂t

]
dS

= −
∫∫∫

V
T · ∂Jimp(t)

∂t
dV (2.111)

where Q(t) is given by (2.99). The convolution term and Q(t) can be evaluated
by using various approaches discussed in the preceding sections. Here, we sum-
marize their evaluations by using the approach that renders the time-marching so-
lution unconditionally stable. The convolution in the fifth term of (2.111) can be
discretized as

[
↔
χ e(t) ∗ ∂2E(t)

∂t2

]n

= ↔
χ e

0 ·
[
∂2E(t)

∂t2

]n

+ 1

(�t)2

n∑
k=1

↔
χ e

k · (En−k+1 − 2En−k + En−k−1)

(2.112)
where

↔
χ e

0 =
∫ �t/2

0

↔
χ e(τ ) dτ (2.113)

↔
χ e

k =
∫ (k+1/2)�t

(k−1/2)�t

↔
χ e(τ ) dτ k > 0. (2.114)

As shown earlier, if ↔
χ e can be represented by a pole expansion, this convolution can

be evaluated efficiently by using a recursive relation.
To evaluate Q(t) at the time instant t = n �t , which requires the value of ∂H(t)/∂t ,

we first take the time derivative of (2.106) to find

∂B(t)

∂t
= μ0

↔
μ∞ · ∂H(t)

∂t
+ μ0

↔
χm(t) ∗ ∂H(t)

∂t
(2.115)

and then substitute it into (2.103) to obtain

μ0
↔
μ∞ · ∂H(t)

∂t
= −∇ × E(t) − ↔

σ m · H(t) − μ0
↔
χm(t) ∗ ∂H(t)

∂t
− Mimp(t). (2.116)



P1: JYS
c02 JWBK322-Jin October 3, 2008 16:36 Printer: Yet to come

MODELING OF COMPLEX MATERIALS 43

Using the central-difference approximation for ∂H(t)/∂t and the time average for
H(t), we obtain

μ0

�t
↔
μ∞ · (Hn+1/2 − Hn−1/2) = −(∇ × E)n − 1

2
↔
σ m · (Hn+1/2 + Hn−1/2)

−μ0

�t
↔
χm

0 · (Hn+1/2 − Hn−1/2)

−μ0

�t

n∑
k=1

↔
χm

k · (Hn−k+1/2 − Hn−k−1/2) − Mn
imp

(2.117)

from which we can solve for Hn+1/2, which can then be used to calculate Qn . Note
that if ↔

χm can be represented by a pole expansion, the summation in (2.117) can be
evaluated efficiently by recursion, as discussed earlier.

2.3.5 Validation Examples

To demonstrate the validity of the formulations presented in Sections 2.3.2 through
2.3.4, we consider the problem of plane-wave incidence on an infinitely large, uniform
dielectric slab of thickness 10 cm, illustrated in Figure 2.7(a). The plane wave is
normally incident on the slab and the slab is both electrically and magnetically
dispersive. This problem can be solved analytically in the frequency domain and the
results can be used as reference. It can also be solved using a one-dimensional finite
element formulation. However, to test our formulations for the three-dimensional
case, we employ a rectangular box to define a three-dimensional computational
domain, as illustrated in Figure 2.7(b). On the two side surfaces perpendicular to the
electric field, the electric field satisfies the boundary condition n̂ × E = 0; hence,
these two side surfaces can be modeled as perfect electrically conducting surfaces.
On the other two side surfaces parallel to the electric field, the field satisfies the
boundary condition n̂ × H = 0 or n̂ × ∇ × E = 0; hence, these two side surfaces
can be modeled as perfect magnetically conducting surfaces. It remains to specify
a boundary condition for the top and bottom surfaces. For the top surface, the total
field is the superposition of the incident and reflected plane waves,

E = Einc + Eref = x̂ E0e jk0z + x̂ E0�e− jk0z (2.118)

where E0 denotes the magnitude of the incident field and � denotes the reflection
coefficient. From (2.118), we can easily find

n̂ × (∇ × E) + jk0n̂ × (n̂ × E) = −2 jk0Einc (2.119)
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(a) (b)

Frequency (GHz)

ε r
,μ

r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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4
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8

10

12

εr''

εr'

μr'

μr''

εr (ω) = 1 + 9/(1 + j ω 5•100–11)
μr(ω) = 2 + 4/(1 + j ω 2•10–10)

(c)

∞∞ 10 cm μ(ω), ε(ω)

Einc

Einc

Figure 2.7 Doubly dispersive slab with a normally incident plane wave. (a) Geometry. (b)
Computational domain. (c) Dispersive permittivity and permeability frequency profiles of the
slab.

which can be transformed into the time domain as

n̂ ×
(

1

μ0
∇ × E

)
+ Y0 n̂ ×

(
n̂ × ∂

∂t
E
)

= −2Y0
∂

∂t
Einc. (2.120)

This equation can be used as the boundary condition at the top surface. Similarly, for
the bottom surface, we can find that the field satisfies the boundary condition

n̂ ×
(

1

μ0
∇ × E

)
+ Y0 n̂ ×

(
n̂ × ∂

∂t
E
)

= 0. (2.121)

With the specification of the boundary conditions on the entire surface of the rectan-
gular box, the field inside and on the surface of this box can be solved for by using
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Frequency (GHz)
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Exact - Reflection
Exact - Transmission
FETD - Reflection
FETD - Transmission

Transmission Coefficient

Reflection Coefficient

Figure 2.8 Reflection and transmission coefficients of a doubly dispersive slab at normal
incidence.

the time-domain finite element method, from which the reflection and transmission
coefficients can be calculated. For the relative permittivity and permeability profiles
plotted in Figure 2.7(c), the reflection and transmission coefficients of the doubly dis-
persive slab are given in Figure 2.8 [11]. The results computed are compared with the
exact solution, showing excellent agreement and thus verifying the formulations in
Sections 2.3.2 through 2.3.4. Figure 2.9 provides another example, where the problem
setup is identical to the preceding one, except that the slab is only magnetically dis-
persive. The Lorentz permeability profile of the slab is given in Figure 2.9(a), which
exhibits a sharp resonance at 1 GHz. The reflection and transmission coefficients
computed are shown in Figure 2.9(b). The remarkable agreement at the −120-dB
level clearly demonstrates the high accuracy of the numerical scheme described in
this section.

The formulation presented in this section employs a recursive algorithm for the
efficient evaluation of the discrete convolutions introduced by the electric and mag-
netic dispersion of the medium. To use this algorithm, the electric and magnetic
susceptibility functions must first be expressed as a pole expansion, which imposes a
restriction on the type of medium that can be modeled. This restriction on the math-
ematical form of the susceptibility functions can be removed by direct evaluation of
the discrete convolutions in (2.66) for the electrically dispersive case, (2.91) for the
magnetically dispersive case, or (2.112) and (2.117) for the doubly dispersive case.
These discrete convolutions can be written in a general format as

ψn =
n∑

k=1

χ kun−k =
n−1∑
k=0

χn−kuk (2.122)
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Figure 2.9 Plane-wave reflection by a sharply resonant Lorentz magnetic slab at normal
incidence. (a) Permeability profile. (b) Reflection and transmission coefficients.

where χ k is related to the susceptibility, which is known for all the time steps, and uk is
either the electric or the magnetic field, which is known only for k up to n − 1. Direct
evaluation of (2.122) is very time consuming because it requires O(n) operations in
every time step. A better approach is to evaluate (2.122) using a recursive fast Fourier
transform (FFT) algorithm [12,13].

The basic idea of the recursive FFT algorithm is first to select an integer M, which
is a power of 2, and then evaluate (2.122) using the FFT when n reaches n = M − 1.
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Specifically, the FFT is used to calulate

{mk}2M−1
k=0 = {χ k}2M−1

k=0 ∗ {ũk}2M−1
k=0 (2.123)

where ũk = uk for k ≤ M − 1 and ũk = 0 for k ≥ M . Subsequent convolutions are
then evaluated as

ψn = mn +
n−1∑
k=M

χn−kuk for M ≤ n < 2M (2.124)

where the second term is evaluated directly. Once n reaches n = 2M − 1, (2.122) is
evaluated again using the FFT to yield

{mk}4M−1
k=0 = {χ k}4M−1

k=0 ∗ {ũk}4M−1
k=0 (2.125)

where ũk = uk for k ≤ 2M − 1 and ũk = 0 for k ≥ 2M . Subsequent convolutions
are then evaluated as

ψn = mn +
n−1∑

k=2M

χn−kuk for 2M ≤ n < 3M (2.126)

where the second term is evaluated directly. Once n reaches n = 3M − 1, the second
term can be evaluated using the FFT as

{lk}2M−1
k=0 = {χ k}2M−1

k=0 ∗ {ṽ k}2M−1
k=0 (2.127)

where ṽ k = uk+2M for k ≤ M − 1 and ṽ k = 0 for k ≥ M . Subsequent convolutions
are then calculated as

ψn = mn + ln−2M +
n−1∑

k=3M

χn−kuk for 3M ≤ n < 4M (2.128)

where the third term is evaluated directly. This process can continue until n reaches
the maximum number of time steps. By doing this, the total cost of evaluating
(2.122) for n up to n = Nt is reduced from O(N 2

t ) to O(Nt log2 Nt ). In theory, we
can implement the recursive FFT algorithm using M = 2. However, because the FFT
calculation requires zero padding and operates on complex numbers, the optimal
value for M has been found to fall within the interval defined by M = 64 to 128 [12].

Since there are no approximations in the use of the recursive FFT algorithm, the
accuracy of the final solution is the same as that based on the recursive convolution
algorithm. To illustrate this, we again consider the example of plane-wave incidence
on a 10-cm-thick dielectric slab; however, we now solve for the reflection and trans-
mission coefficients by using both the recursive FFT algorithm and the recursive
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convolution approach [13]. For this example, the dielectric slab is made of a fourth-
order Lorentz medium, which has two resonances. The relative permittivity is shown
in Figure 2.10(a), and the power reflection and transmission coefficients are plotted in
Figure 2.10(b) together with the exact solution. As can be seen, the solution obtained
using the recursive FFT overlays the solution obtained using the recursive convolu-
tion based on the pole expansion of the electrical susceptibility, although use of the
recursive FFT makes no specific assumptions with regard to the mathematical form of
the electrical susceptibility. However, implementation of the recursive FFT algorithm
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Figure 2.10 Plane-wave reflection by a fourth-order Lorentz medium slab at normal inci-
dence. (a) Permittivity profile. (b) Power reflection and transmission coefficients. (After Li and
Jin [13], Copyright C© Wiley 2008.)
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requires additional memory because all the past field values in the dispersive medium
must be stored. In addition, it requires slightly more computational time because of
the direct evaluation of a summation in each time step and the overhead associated
with the FFT calculations.

2.4 SOLUTION OF THE FINITE ELEMENT EQUATIONS

As described above, when we employ frequency-domain finite element analysis,
we have to solve the matrix equation (2.20). Alternatively, when we use the time-
domain finite element method, we have to solve a matrix equation similar to (2.36)
at each time step. For either formulation, the matrices are usually large, although
they are sparse and symmetric. Therefore, an efficient solution of the finite element
matrix equation is very important, because this aspect typically dominates the overall
computer resource requirements. The important issues are matrix storage schemes,
matrix solvers (direct or iterative), and matrix preconditioners (in the iterative case).

The matrices produced by the finite element method are sparse, with only a very
small percentage of nonzero elements. By storing only the nonzero entries, the matrix
storage requirement is reduced from O(N 2) to O(N ). Popular approaches to sparse
matrix storage are those based on either a compressed row or a compressed column
storage format. In these approaches, the nonzero entries of a sparse matrix are stored
in a floating-point vector. In addition, an integer vector is employed to store the row
or column indexes of the nonzero entries, and another integer vector is introduced to
store the location of the first nonzero entry of each row in the compressed vector. For
a symmetric matrix, only the nonzero entries in the upper or lower triangle (including
those on the diagonal) need to be stored.

The choice of a matrix solver can have a significant impact on the computational
efficiency, and it is therefore important to choose a solver that can best exploit the
properties of the finite element matrix. There are two types of matrix solvers. The
first, known as a direct solver, is based on Gaussian elimination or LU decomposition.
These solvers are commonly used for full matrices, although they are also applicable
to sparse matrices stored in a banded format, or even a fully sparse format in the
case of the frontal and multifrontal methods [14,15]. The alternative to direct solvers
is iterative solvers, which require significantly less memory than do direct solvers
because they are based on calculating successive matrix–vector products according
to an iterative algorithm that is designed to converge to the solution [16]. The main
drawback of iterative techniques is that they may require a large number of iterations to
converge, due primarily to the locations of the eigenvalues of the matrix in the complex
plane; however, if the eigenvalues are all clustered around (1, 0), convergence is
usually rapid. To improve the convergence of an iterative solver, a preconditioner
is typically adopted to move the eigenvalues closer to (1, 0), thereby reducing the
iteration count. A preconditioner can be constructed based on physical insight into
the problem or on the structure of the original matrix.

During the past two decades, remarkable progress has been made on techniques
for solving sparse matrix equations. Today, there are many highly robust and efficient
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direct and iterative solvers available that deal with sparse matrices. For example,
Intel’s Math Kernel Library (MKL) [17], SGI’s Scientific Computing Software Li-
brary (SCSL) [18], and IBM’s Watson Sparse Matrix Package (WSMP) [19,20]
contain sparse direct solvers for both symmetric and unsymmetric matrices. For
unsymmetric sparse matrices, UMFPACK [21], MUMPS [22], and SuperLU [23]
provide a scalable parallel solution on distributed memory computing systems. For
iterative solvers, PETSc [24] and SPARSKIT [25] provide a variety of Krylov sub-
space algorithms, such as those based on the stabilized biconjugate gradient squared
(BiCGStab) and generalized minimal residual (GMRES) methods, and a variety of
preconditioners, such as the incomplete LU and successive over relaxation (SSOR)
preconditioners, to speed up the iterative convergence. Note that both MKL and SCSL
also contain sparse iterative solvers, and that PETSc can also interface with certain
external sparse direct solvers noted above.

2.5 HIGHER-ORDER AND CURVILINEAR FINITE ELEMENTS

Most finite element methods use spatial basis functions which vary linearly within
every element. However, it is also possible, and often very advantageous, to consider
basis functions with higher polynomial orders. Such basis functions are described for
vector elements by Graglia et al. [26] and Webb [27].

Higher-order basis functions can be categorized into two classes: interpolatory
and hierarchical. Interpolatory basis functions relate to a set of elemental points,
such that every basis function is of the same order and is equal to unity at one point
and zero at all others. On the other hand, hierarchical basis functions are formed by
adding new higher-order basis functions to the lower-order ones; thus, the elemental
solution is expanded in terms of basis functions of differing polynomial orders. The
two approaches have the same accuracy, although one may be favored over the other,
depending on the application. Interpolatory basis functions generally lead to better
conditioned matrices, while hierarchical basis functions permit the use of different
elemental orders in a single finite element solution.

Because higher-order basis functions interpolate the solution field much more ac-
curately than do first-order basis functions, the finite element method may be expected
to yield much more accurate results with increasing elemental order. Specifically, for
smooth functions it can be shown that if p is the order of the basis functions, h denotes
the elemental size divided by the order of the element, and λ denotes the excitation
wavelength, the interpolation error is of the order O[(h/λ)p+1]. Therefore, in the case
of smooth solutions, the finite element solution error may be reduced accordingly by
using higher-order basis functions. If the true solution to the finite element analysis
contains a singularity, this interpolation error estimate does not hold and it becomes
more advantageous to use smaller elements of low polynomial order local to the
singularity.

When the finite element method is applied to the Helmholtz equations (scalar as
well as vector cases), the simulated wave propagates at a speed that is slightly different
from the exact value. Consequently, there is a numerical error in the phase of the
solution called dispersion error. Analysis based on the finite element discretization
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of plane-wave propagation in a uniform medium shows that the dispersion error
per wavelength is proportional to O[(h/λ)2p].† From this result follows the very
important conclusion that phase errors may be decreased exponentially by increasing
the order of the basis functions. Therefore, higher-order elements are especially well
suited for simulating large-scale wave propagation problems. Note that in the case
of time-domain formulations, we have both a finite element discretization in space
and, typically, a finite-difference type of discretization in time. Consequently, we
have both spatial dispersion errors, which can be reduced by using the same higher-
order basis functions as described above, and temporal dispersion errors. Although a
higher-order basis function representation can be adopted for the time dependency,
a reduced time step is typically used if the temporal discretization errors become
unacceptably large.

In the same way that elemental basis functions can be defined to an arbitrary
polynomial order, so can the geometric representation of the elements. The elements
shown in Figures 2.4 and 2.5 are of linear geometric order because all edges and faces
are straight and flat and can thus be described by linear functions of position. Such
elements are termed rectilinear. Elements of higher geometrical polynomial order
may be defined by modeling elemental edges and faces with higher-order polynomial
functions of position. For example, one may require the edge of a triangular element
to pass through two of its vertex nodes together with an additional node which
may not lie on the straight line connecting the vertices. In this case, a second-order
geometrical representation would suffice. Such elemental representations are very
useful when modeling curved boundaries and are termed curvilinear. When the order
of geometrical representation is the same as the order of basis functions, the element
is called isoparametric. Otherwise, it is called either subparametric (when the order
of geometrical modeling is lower) or superparametric (when the order of geometrical
modeling is higher).

By using higher-order curvilinear elements, we can obtain a much more accurate
solution than is possible with lower-order rectilinear elements. More important, with
higher-order curvilinear elements this improvement in accuracy can often be obtained
by using spatially larger finite elements (when the problem geometry permits) such
that the overall number of unknowns is reduced compared to a lower-order formu-
lation based on rectilinear elements. This can increase the efficiency of the finite
element analysis significantly. Our experience indicates that for most applications,
we can use four to eight second-order elements per wavelength, or two to four third-
order elements per wavelength, or one or two fourth-order elements per wavelength
to achieve accuracy similar to that obtained with 10 to 20 first-order elements per
wavelength. This results in a reduction in the number of unknowns by a factor of 2,
5, and 15, respectively. Of course, this is simply a guideline, and it ignores the factor
of geometrical modeling. The use of higher-order curvilinear elements is particu-
larly beneficial when the computational domain is very large in terms of wavelength
and/or when very high accuracy is required, which is a direct result of the exponential
convergence discussed earlier.

†Because the order of vector basis fuctions in this book is defined differently from that in Ref. 2, the
expression for the grid dispersion error is different.
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2.6 SUMMARY

In this chapter we described the finite element formulation used to solve for the
electric field surrounding a generic antenna. Starting from the original boundary-value
problem for antenna radiation, we first established an approximate representation that
truncates the computational domain using a simple, first-order absorbing boundary
condition. We then formulated the full three-dimensional finite element solution to
solve for the electric field in the frequency domain. This was followed by the finite
element formulation in the time domain, where the solution was computed by time
marching. Next, we presented various numerical schemes to model electrically and
magnetically anisotropic, dispersive, and lossy materials. Finally, we discussed briefly
techniques for solving the finite element matrix equations and the benefit of using
higher-order curvilinear finite elements.

For the finite element method described in this chapter to be more accurate, more
efficient, and more powerful for the analysis of complex antennas and arrays, we
have to address three major issues further. The first issue concerns truncation of
the computational domain. In this chapter we employed a simple absorbing bound-
ary condition for this truncation. Unfortunately, this absorbing boundary condition
absorbs perfectly only the propagating field incident in the normal direction. For
obliquely incident propagating fields, and for any incident evanescent fields, the
absorbing boundary condition produces significant reflection back to the compu-
tational domain, which degrades the accuracy of the numerical solution. Although
these undesirable reflections can be reduced a certain extent by placing the truncation
boundary farther away from the antenna, doing so will greatly increase the size of
the computational domain and thereby compromise the efficiency of the finite ele-
ment solution. Therefore, more accurate and efficient mesh truncation techniques are
needed to enhance the accuracy and efficiency of the finite element analysis, and this
topic is addressed in Chapters 3 and 4.

The second issue is related to the modeling of antenna feeds and the calculation
of antenna parameters, such as the input impedance. In this chapter the source region
for the antenna was specified as a known electric or magnetic current. However,
in practical applications, antennas are typically fed with some form of waveguide,
which is often a coaxial transmission line. To predict antenna parameters accurately,
especially those related to antenna feeds, such as the input and mutual impedances,
more realistic models of the feed region are required. In addition, many advanced
antennas are designed with small features such as thin wires and thin-material sheets.
Accurate and efficient modeling of these small features is critical in the simulation
of the antenna performance characteristics. The modeling of antenna feeds in both
the frequency and time domains is discussed in Chapter 5, and accurate modeling of
small details is addressed in Chapter 6.

As illustrated in this chapter, a finite element analysis requires solving a large,
sparse matrix equation at each frequency or at each time step. For very large antenna
applications, such as finite phased-array antennas and antennas placed on an electri-
cally large platform, the finite element matrix equation can easily exceed tens or even
hundreds of millions of unknowns. The solution of such a large matrix problem can be
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very time consuming, and perhaps even impractical, although the matrix is extremely
sparse. Therefore, special techniques have to be developed to deal with such large
applications. For example, a large phased-array antenna with a uniform excitation
can be approximated as an infinitely periodic array, where the analysis can be con-
fined to a unit cell. Furthermore, a large phased-array antenna is often comprised of
many identical radiating elements, such that the finite element discretization of these
radiating elements will yield identical matrix equations. The ability to utilize this
geometrical repetition creates the possibility of designing extremely efficient algo-
rithms to accommodate large finite phased-array antennas. For the case of an antenna
on a large platform, a numerical simulation can be made much more efficient through
a better understanding of the specific interaction mechanisms that exist between
the platform and the antenna. These important topics are discussed in Chapters 8
through 11.
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3 Finite Element Mesh Truncation

As illustrated in Chapter 2, one of the major challenges in the finite element analysis
of antenna problems is the truncation of infinite space into a finite computational
domain. This truncation can be accomplished by introducing an artificial surface to
enclose the antenna. However, to emulate the original free-space environment, the
artificial truncation surface should absorb as much of the radiated field as possible in
order to reduce any artificially reflected fields back to the computational domain. This
situation is similar to what occurs in antenna measurement in an anechoic chamber,
where absorbers are used to cover the walls of the chamber so that reflections from
the walls do not interfere with the measurement of antenna characteristics.

Although, in principle, we can use the finite element method to simulate an actual
anechoic chamber for an antenna analysis, this approach is not practical because an
anechoic chamber is electrically very large, and hence its numerical simulation is
extremely time consuming. Fortunately, there are many other approaches to reducing
the reflection of an artificial surface. These include the use of a mathematical boundary
condition, the use of fictitious absorbing material layers, and the use of a surface
integral equation. In this chapter we discuss these three approaches in detail.

3.1 ABSORBING BOUNDARY CONDITIONS

Among the three approaches for mesh truncation, the use of a mathematical boundary
condition is simplest. In this section we describe the derivation and application of the
first- and second-order absorbing boundary conditions.

3.1.1 First-Order Absorbing Boundary Condition

It is well known that when a plane wave is incident normally on a planar impedance
surface, the impedance surface can absorb all the incident power without any reflection
if the surface impedance matches the intrinsic impedance of free space. It can easily
be verified that on such a surface the electric field E satisfies the relation

n̂ × (∇ × E) + jk0n̂ × (n̂ × E) = 0 (3.1)

where n̂ is the outward unit normal vector of the surface and k0 is the wavenumber
of the plane wave. Equation (3.1) can also be considered as a boundary condition

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
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because it provides a relationship between the tangential components of the electric
and magnetic fields. When this boundary condition is applied to the artificial trunca-
tion surface, the surface will absorb any normally incident plane wave. Hence, this
boundary condition is often referred to as an absorbing boundary condition (ABC).
Note that this condition is identical to the approximate Sommerfeld radiation condi-
tion (2.7). In reality, the radiated field at a point on the truncation surface is usually
a summation of many plane waves propagating in different directions. For a plane
wave incident at a large angle, a significant reflection may be caused by the bound-
ary. However, when placed sufficiently far away from all sources of excitation, most
waves would be incident on the truncation boundary only at small angles from normal
and hence would mostly be absorbed. The truncation distance, measured from the
antenna to the boundary, required for good absorptive performance depends on the
nature of the radiation. Typically, a minimum distance of one-half wavelength (0.5λ)
is necessary to obtain useful results.

3.1.2 Second-Order Absorbing Boundary Condition

It will be shown later that the boundary condition (3.1) is only the first-order approx-
imation to the true Sommerfeld radiation condition (2.6). To derive more accurate
ABCs, we can start with Wilcox’s expansion,

E(r) = e− jk0r

r

∞∑
n=0

An(θ, φ)

rn
(3.2)

which converges uniformly for the field outside a spherical surface that encloses the
source. By taking the curl of (3.2) and then the cross product with r̂ , we can derive
a variety of approximate boundary conditions applicable at a spherical surface [1,2].
One set of such boundary conditions derived by Webb and Kanellopoulos [2] is
given by

Bm(E) = O(r−2m−1) m = 1, 2, . . . (3.3)

where

Bm(E) = (Lm−1)m(Et ) + s(Lm)m−1(∇t Er ) (3.4)

in which

Lm(u) = r̂ × (∇ × u) −
(

jk0 + m

r

)
u m = 0, 1, 2, . . . (3.5)

and s is a constant, which has no effect on the electric field transverse to r (TEr field)
and affects only the transverse magnetic field (TMr field). In (3.4), the superscript
on Lm−1 denotes that the operator Lm−1 is applied m times, and the superscript on
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Lm denotes that the operator Lm is applied m − 1 times. By letting m = 1 and s = 1,
(3.3) becomes

r̂ × (∇ × E) + jk0r̂ × (r̂ × E) ≈ 0 (3.6)

which is identical to (3.1) and is referred to as the first-order ABC. It is clear now
that this first-order ABC is accurate up to r−2 since it neglects all terms on the order
of r−3 and higher. To derive a more accurate ABC, we can let m = 2 in (3.3) to
find that

r̂ × (∇ × E) ≈ − jk0r̂ × (r̂ × E) + β {∇ × [r̂ r̂ · (∇ × E)] + ∇t (∇t · E)} (3.7)

where

β = 1

2

(
jk0 + 1

r

)−1

. (3.8)

In deriving (3.7), we set s = 2 in (3.4) to eliminate a term that would destroy the
symmetry of the finite element matrix equation. Equation (3.7) is accurate up to r−4

since it neglects only terms on the order of r−5 and higher. It has much better accuracy
than (3.6) and is referred to as the second-order ABC.

Although (3.6) and (3.7) are derived for a spherical surface, they can be applied
to arbitrarily shaped convex surfaces with a certain loss of accuracy. This trade-off
is worthwhile in many applications because one can often reduce the size of the
computational domain significantly by using a surface other than a spherical shape.
In this case, r̂ is replaced by n̂ and 1/r in (3.8) is replaced by the local curvature
of the surface or is simply set to zero. The absorption performances of (3.6) and
(3.7) can be examined and compared easily by applying them to a planar surface and
evaluating their reflection coefficients [3], which are given by

R(θ ) = cos θ − 1

cos θ + 1
(3.9)

for the first-order ABC (3.6) and approximately by

R(θ ) = cos θ + 1
2 sin2 θ − 1

cos θ − 1
2 sin2 θ + 1

(3.10)

for the second-order ABC (3.7).† Note that even though higher-order ABCs pro-
vide improved absorbing performances, they still cannot absorb fields incident at

†To be more rigorous, (3.10) is valid only for the TEr field. For the TMr field, the reflection coefficient is
slightly compromised by setting s = 2 in (3.4) and hence a little bit larger than that predicted by (3.10).
See Ref. 3 for detailed discussion on this issue.



P1: JYS
c03 JWBK322-Jin October 3, 2008 16:39 Printer: Yet to come

58 FINITE ELEMENT MESH TRUNCATION

near-grazing angles. Therefore, their application still requires a certain distance be-
tween the absorbing surface and the antenna structures.

The major advantage of ABCs, apart from their simplicity, is that they lead to
a localized relation between boundary fields and consequently preserve the highly
sparse and banded pattern of the finite element system matrices. In addition, the
boundary condition (3.1) can easily be incorporated into a weak-form wave equation
such as (2.13). Thus, implementation of the first-order ABC in the finite element
method is straightforward, as demonstrated in Chapter 2. Implementation of the
second-order ABC (3.7), however, is somewhat more involved. When we apply (3.7)
to (2.12), we obtain

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

=
∫∫
©

SPEC

(n̂ × T) · ↔
μr

−1 · (∇ × E) dS

+
∫∫
©

So

T · { jk0r̂ × (r̂ × E) − β∇ × [r̂ r̂ · (∇ × E)] − β∇t (∇t · E)} dS

−
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (3.11)

By some mathematical manipulations with the aid of vector identities and the surface
divergence theorem [3], (3.11) can be written as

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

=
∫∫
©

SPEC

(n̂ × T) · ↔
μr

−1 · (∇ × E) dS

−
∫∫
©

So

[ jk0(r̂ × T) · (r̂ × E) + β(∇ × T)r · (∇ × E)r − β(∇t · T)(∇t · E)] dS

−
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (3.12)

This equation is also applicable to an arbitrarily shaped smooth convex surface. The
smoothness requirement is due to application of the surface divergence theorem.
Therefore, one must always employ a smooth truncation surface for the second-order
ABC, whereas there is no such requirement on use of the first-order ABC.

The weak-form equation in (3.12) has a desired symmetry, which can yield a
symmetric finite element matrix equation. Unfortunately, the term β(∇t · T)(∇t · E)
cannot be implemented easily using the curl-conforming vector basis functions dis-
cussed in Chapter 2. As we pointed out, these basis functions are continuous in the
tangential direction and discontinuous in the normal direction across interfaces be-
tween elements. As such, their surface divergence gives rise to a delta function, which
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cannot be evaluated. If we simply neglect this term [4], the absorption of the TMr

component of the field would be compromised, although the absorption of the TEr

component remains second order. The importance of the term β(∇t · T)(∇t · E) to the
second-order ABC has been studied together with a treatment using special basis func-
tions [5]. Recently, a relatively simple remedy was proposed [6], which was shown
to be highly effective and to retain the symmetry of the final finite element matrix
equation. In this approach, an auxiliary scalar variable is defined on the surface So:

v = ∇t · E r ∈ So. (3.13)

With this, (3.12) can be written as

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

=
∫∫
©

SPEC

(n̂ × T) · ↔
μr

−1 · (∇ × E) dS

−
∫∫
©

So

[ jk0(r̂ × T) · (r̂ × E) + β(∇ × T)r · (∇ × E)r + βT · ∇t v] dS

−
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (3.14)

To discretize (3.14), the scalar auxiliary variable v can be expanded using scalar inter-
polatory basis functions defined on the surface So. Figure 3.1 shows a linear basis func-
tion for a node on a surface mesh. By using such basis functions, v can be expanded as

v =
Nnode∑
i=1

Ni vi (3.15)

1

node i

Figure 3.1 Scalar interpolatory basis function Ni for a node on a surface triangular mesh.
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where Nnode denotes the total number of nodes on So. By substituting (2.16) and
(3.15) into (3.14) and using Ni as the weighting function T, we obtain

[K B]

{
E
v

}
= {b} (3.16)

where

Ki j =
∫∫∫

V

[
(∇ × Ni ) · ↔

μr
−1 · (∇ × N j ) − k2

0Ni · ↔
εr · N j

]
dV

+
∫∫
©

So

[ jk0(r̂ × Ni ) · (r̂ × N j ) + β(∇ × Ni )r · (∇ × N j )r ] dS (3.17)

Bi j =
∫∫
©

So

βNi · ∇t Nj dS (3.18)

and bi is the same as given by (2.19). To complete (3.16), we multiply (3.13) by βNi

and integrate over So to find

∫∫
©

So

βNi v dS =
∫∫
©

So

βNi∇t · E dS. (3.19)

By substituting (2.16) and (3.15) into (3.19) and applying the surface divergence
theorem, we obtain

[BT C]

{
E
v

}
= {0} (3.20)

where

Ci j =
∫∫
©

So

βNi Nj dS. (3.21)

Combining (3.16) and (3.20), we obtain a symmetric matrix equation

[
K B
BT C

]{
E
v

}
=
{

b
0

}
(3.22)

for the solution of the electric field everywhere in the computational domain and the
auxiliary variable on the absorbing surface.

It has been shown [6] that with this implementation, the second-order ABC con-
sistently outperforms the first-order ABC. One example calculates the scattering of
a plane wave by a conducting sphere having a radius of 0.1λ. A spherical trunca-
tion surface is placed 0.1λ away from the surface of the conducting sphere, and the
first-order basis functions are used in the finite element simulation. The L2-norm
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Figure 3.2 Normalized bistatic RCS error in the finite element solutions using first- and
second-order ABCs versus the size of the finite elements in terms of wavelength.

error in the bistatic radar cross section (RCS) computed is plotted in Figure 3.2 as a
function of the size of the finite elements used for the discretization. The L2-norm
error shown is calculated by integrating the bistatic RCS error over all directions and
then normalized by the integral of the analytical RCS. As can be seen, when the finite
elements are sufficiently small, the error approaches a constant that depends on the
specific ABC. The second-order ABC reduces the error by approximately one order
of magnitude compared to the first-order ABC.

It should be emphasized once again that implementation of the second-order
ABC, as described above, requires So to be a smooth surface, whereas there is no
such requirement for implementation of the first-order ABC. Furthermore, the finite
element matrix obtained using the first-order ABC is always better conditioned than
the one using the second-order ABC. Therefore, when an iterative solver is employed
to solve the finite element matrix equation, the first-order ABC is more efficient than
the second-order ABC for a similarly discretized computational domain. These two
distinctive advantages of the first-order ABC make it a preferred choice when one
desires a quick and approximate solution for an initial antenna design.

3.2 PERFECTLY MATCHED LAYERS

Instead of using a mathematical boundary condition, an open computational domain
may also be terminated by using absorptive materials. Whereas it is extremely costly
to model the absorbers used in anechoic chambers due to their electrically large
thickness and their wedged and pyramidal shapes, we can instead design thin layers
of artificial absorbers solely for simulation purposes.
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Specifically, by adjusting the number and thickness of layers, as well as their
permittivity, permeability, and conductivity (all of which can be made tensors), these
artificial absorbing layers can be designed to provide negligible reflection and suf-
ficient attenuation to the field transmitted such that the field mostly vanishes as it
propagates into the layers. An early attempt to use this method for finite element
analysis was made in the frequency domain [7], which provided good absorbing
performance at a specific frequency. An alternative and popular approach proposed
by Berenger within the finite-difference time-domain (FDTD) setting [8] is known
as perfectly matched layers (PMLs).

A PML is an artificial material that is theoretically defined to create no reflections
regardless of the frequency, polarization, and angle of incidence of a plane wave.
The frequency independence is especially important because it enables broadband
simulation with a time-domain method. In its original form, the PML was formulated
with the aid of nonphysical “split” fields [8,9]. Later, it was found that the PML
could be derived alternatively from a modified form of Maxwell’s equations based on
stretched coordinates [10]. In addition, a PML can be derived based on an artificial
anisotropic medium model [11,12].

3.2.1 PML in Terms of Stretched Coordinates

To introduce the basic idea of the PML, we consider the modified source-free
Maxwell’s equations [10]

∇s × E = − jωμH (3.23)

∇s × H = jωεE (3.24)

∇s · (εE) = 0 (3.25)

∇s · (μH) = 0 (3.26)

where ∇s is defined by

∇s = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
. (3.27)

Clearly, ∇s can be considered as the standard ∇ operator in Cartesian coordinates,
where the x-, y-, and z-axes are stretched by a factor of sx , sy , and sz , respectively.
Here, we assume that sx , sy , and sz are either constants or functions of x, y, and z,
respectively; that is, sx = sx (x), sy = sy(y), and sz = sz(z).

For a plane wave governed by the modified Maxwell’s equations, its propagation
constant satisfies the dispersion relation

(
kx

sx

)2

+
(

ky

sy

)2

+
(

kz

sz

)2

= ω2με = k2 (3.28)
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Figure 3.3 Plane wave incident on the interface between the upper and lower half-spaces.

where the solution is given by

kx = ksx sin θ cos φ, ky = ksy sin θ sin φ, kz = ksz cos θ. (3.29)

This indicates that if sx is a complex number with a negative imaginary part, the wave
will be attenuated in the x-direction, and the same is true in the other two directions.

Consider further the reflection of a plane wave by an interface between two half-
spaces in the stretched coordinate system. The interface is assumed to coincide with
the xy-plane and the plane wave is incident upon the interface from the upper space
(Figure 3.3). Using the phase-matching and tangential continuity conditions for E
and H, we can find the reflection coefficient for the TEz case as

RTE = k1zs2zμ2 − k2zs1zμ1

k1zs2zμ2 + k2zs1zμ1
(3.30)

where the subscript 1 is used to denote the parameters in the upper half-space and
the subscript 2, to denote those in the lower half-space. Similarly, we can find the
reflection coefficient for the TMz case as

RTM = k1zs2zε2 − k2zs1zε1

k1zs2zε2 + k2zs1zε1
. (3.31)

If ε1 = ε2 = ε, μ1 = μ2 = μ, s1x = s2x , and s1y = s2y , we find that θ1 = θ2 and
φ1 = φ2, and consequently,

RTE = 0, RTM = 0 (3.32)

which indicates that the interface is reflectionless. More important, this property
remains true regardless of (1) the choice of s1z and s2z , (2) the angle of incidence,
and (3) the frequency. Because of this, the interface is called a perfectly matched
interface (PMI).
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3.2.2 PML as an Anisotropic Material Absorber

The PML formulation based on stretched coordinates is inconvenient to implement
in the finite element method because of the stretched operator in (3.27). A better
approach is to consider the PML as an anisotropic absorbing medium [11,12] so that
it can be implemented in the finite element method without much modification. This
can be accomplished by converting the modified Maxwell’s equations (3.23)–(3.26)
based on stretched coordinates into a more traditional form using the standard ∇
operator. Let Ec and Hc denote the field quantities used in the modified Maxwell’s
equations (3.23)–(3.26). We can define the new field quantities Ea and Ha such that

Ea =
⎡
⎣ sx 0 0

0 sy 0
0 0 sz

⎤
⎦ · Ec, Ha =

⎡
⎣ sx 0 0

0 sy 0
0 0 sz

⎤
⎦ · Hc. (3.33)

With this, we can easily find

∇s × Ec =

⎡
⎢⎢⎢⎢⎢⎣

1

sysz
0 0

0
1

szsx
0

0 0
1

sx sy

⎤
⎥⎥⎥⎥⎥⎦ · ∇ × Ea, Hc =

⎡
⎢⎢⎢⎢⎢⎣

1

sx
0 0

0
1

sy
0

0 0
1

sz

⎤
⎥⎥⎥⎥⎥⎦ · Ha .

(3.34)

Substituting these into (3.23), we obtain

∇ × Ea = − jωμ
↔
� · Ha (3.35)

where

↔
� =

⎡
⎢⎢⎢⎢⎣

sysz

sx
0 0

0
szsx

sy
0

0 0
sx sy

sz

⎤
⎥⎥⎥⎥⎦ . (3.36)

Similarly, (3.24)–(3.26) can be converted into

∇ × Ha = jωε
↔
� · Ea (3.37)

∇ · (ε
↔
� · Ea) = 0 (3.38)

∇ · (μ
↔
� · Ha) = 0. (3.39)
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These equations are recognized as the ordinary Maxwell’s equations for an anisotropic

medium with a permittivity tensor ε
↔
� and a permeability tensor μ

↔
�. Just like the

modified Maxwell’s equations (3.23)–(3.26), they reduce to the regular Maxwell’s
equations outside the PML where sx = sy = sz = 1. However, inside the PML, the
field quantities are different from those in (3.23)–(3.26), which nevertheless is not
important because the fields inside the PML are of no interest. Since (3.35)–(3.39)
are derived directly from (3.23)–(3.26), they define an anisotropic medium that has
no reflection for an incident plane wave on its interface regardless of frequency,
polarization, and angle of incidence.

The perfectly matched anisotropic absorbing medium described above is derived
based on the property of the modified Maxwell’s equations (3.23)–(3.26). It can,
alternatively, be derived without such prior knowledge [11].

3.2.3 PML for Truncating the Computational Domain

Since the perfectly matched interface in the xy-plane is independent of s1z and s2z ,
we can choose any values for s1z and s2z without causing any reflection. If we
choose s2z = s ′ − js ′′, where s ′ and s ′′ are real numbers with s ′ ≥ 1 and s ′′ ≥ 0, then
k2z = k2(s ′ − js ′′) cos θ . The wave transmitted will be attenuated exponentially by
the factor exp(k2s ′′z cos θ ) in the −ẑ-direction. If we truncate medium 2 into a layer
with a finite thickness L and place a conducting surface at its back (Figure 3.4), the
magnitude of the reflection coefficient becomes

|R(θ )| = e−2k2
∫ L

0 s ′′(z) dz cos θ . (3.40)

Clearly, this reflection has a minimum value for normal incidence and a maximum
value at grazing incidence. This characteristic is very similar to that of the mathe-
matical absorbing boundary conditions. However, for a PML, we can systematically
reduce its reflection simply by increasing the value of

∫ L
0 s ′′(z) dz.

PML

L

z
θ Perfect Electric

Conductor

Figure 3.4 Perfectly matched layer backed by a conducting surface.
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Because of the presence of k2 in (3.40), the reflection coefficient is frequency
dependent, which is not desirable for broadband simulations. This frequency depen-
dence can be eliminated by choosing s ′′ as

s ′′(z) = σ (z)

ωε
(3.41)

which yields a frequency-independent reflection coefficient

|R(θ )| = e−2η
∫ L

0 σ (z) dz cos θ (3.42)

where η = √
μ/ε. For a propagating wave such as that considered here, s ′ has no

effect and can be set to 1. With this choice, s2z can be written as

s2z = s ′ − js ′′ = 1 + σ

jωε
. (3.43)

The conductor-backed PML in Figure 3.4 can be used to truncate the computa-
tional domain for the finite element simulations. The basic scheme is sketched in
Figure 3.5, where the problem of interest is boxed by a conductor-backed PML. The

x

y

sx = sz = 1

sy = 1 σ+

sx = sz = 1

sy = 1 σ+

sy = sz = 1

sx = 1
jωε
σ+

sy = sz = 1

sx = 1
jωε
σ+

sz = 1

sx = sy = 1
jωε jωε
σ+

sz = 1

sx = sy = 1
jωε
σ+

sz = 1

sx = sy = 1
jωε
σ+

Conducting surface

PML

μ0, ε0

μ, ε

Feed

sz = 1

sx = sy = 1
jωε
σ+

jωε

Figure 3.5 Computational domain truncated by perfectly matched layers.
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choice of PML parameters depends on its position. For the PML perpendicular to the
x-axis, we choose

sx = s ′ − js ′′ = 1 + σ

jωε
, sy = sz = 1 (3.44)

and for the PML perpendicular to the y-axis, we choose

sy = s ′ − js ′′ = 1 + σ

jωε
, sx = sz = 1. (3.45)

For the four corner regions, we choose

sx = sy = s ′ − js ′′ = 1 + σ

jωε
, sz = 1 (3.46)

to satisfy the conditions for a perfectly matched interface. The extension to the
three-dimensional case is straightforward. Note that because of the truncation of the
PML with a conducting surface, it is necessary to make sure that the truncated PML
provides sufficient attenuation such that after the field is reflected by the truncation
boundary, it becomes negligible when it reenters into the physical solution domain.
This can be done relatively easily since the PML attenuation can be estimated with a
simple formula given in (3.40). However, since the PML attenuates primarily waves
propagating normal to the PML, the truncated PML will provide less attenuation
for obliquely incident waves; consequently, a significant nonphysical reflection can
occur for a wave incident at a near-grazing angle. For this reason, the PML has to be
placed some distance (typically, a fourth to a half of a wavelength) away from all the
sources of the field, similar to the case of a simple ABC termination.

3.2.4 Finite Element Implementation of PML

The PML modeled as an anisotropic medium can be implemented easily in the
frequency-domain finite element method because the finite element formulation de-
scribed in Chapter 2 can handle a general anisotropic medium. All that is required
is to assign an appropriate value for

↔
ε and ↔

μ for the elements in the PML based
on their locations. The finite element implementation in the time domain is, how-
ever, more complicated because the PML represents an electrically and magnetically
anisotropic, dispersive, and lossy medium. Toward this end, the general procedure
for the time-domain finite element modeling of general dispersive media described in
Section 2.3 can be applied. The first implementation of the PML in the time-domain
finite element method was developed by Jiao et al. [13] and is summarized here.

By eliminating the magnetic field from Maxwell’s equations in (3.35)–(3.39), the
vector wave equation for the electric field in the PML becomes

∇ × 1

μ

(↔
�−1 · ∇ × E

) − ω2ε
↔
� · E = 0. (3.47)
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To find the time-domain counterpart of (3.47), we first substitute (3.36) into (3.47)
and then rearrange the terms according to their frequency dependency on jω. Doing
so, we obtain

∇ × 1

μ

[↔
�−1(s) · ∇ × E

] + s2ε
↔
�(s) · E = 0 (3.48)

where s = jω and

↔
�(s) = ↔

I + 1

sε

↔
J + 1

s2ε2

↔
K 1 − 1

s2ε3

↔
K 2 · ε

sε + ↔
σ

(3.49)

↔
�−1(s) = ↔

I + 1

ε

↔
L1 · ε

sε + ↔
σ

+ + 1

ε

↔
L2 · ε

sε + ↔
σ

++ . (3.50)

In the equations above,
↔
I denotes the identity tensor and the other tensors are defined

by

↔
J =

⎡
⎣σy + σz − σx 0 0

0 σz + σx − σy 0
0 0 σx + σy − σz

⎤
⎦ (3.51)

↔
K 1 =

⎡
⎣ (σx − σy)(σx − σz) 0 0

0 (σy − σz)(σy − σx ) 0
0 0 (σz − σx )(σz − σy)

⎤
⎦ (3.52)

↔
K 2 =

⎡
⎣σx (σx − σy)(σx − σz) 0 0

0 σy(σy − σz)(σy − σx ) 0
0 0 σz(σz − σx )(σz − σy)

⎤
⎦
(3.53)

↔
L1 =

⎡
⎢⎢⎢⎢⎢⎣

σx − σy

σy − σz
σy 0 0

0
σy − σz

σz − σx
σz 0

0 0
σz − σx

σx − σy
σx

⎤
⎥⎥⎥⎥⎥⎦ (3.54)

↔
L2 =

⎡
⎢⎢⎢⎢⎢⎣

σz − σx

σy − σz
σz 0 0

0
σx − σy

σz − σx
σx 0

0 0
σy − σz

σx − σy
σy

⎤
⎥⎥⎥⎥⎥⎦ . (3.55)
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The following shorthand notations are also employed in (3.49) and (3.50) to make
them more compact:

ε

sε + ↔
σ

=

⎡
⎢⎢⎢⎢⎣

ε

sε + σx
0 0

0
ε

sε + σy
0

0 0
ε

sε + σz

⎤
⎥⎥⎥⎥⎦ (3.56)

ε

sε + ↔
σ

+ =

⎡
⎢⎢⎢⎢⎣

ε

sε + σy
0 0

0
ε

sε + σz
0

0 0
ε

sε + σx

⎤
⎥⎥⎥⎥⎦ (3.57)

ε

sε + ↔
σ

++ =

⎡
⎢⎢⎢⎢⎣

ε

sε + σz
0 0

0
ε

sε + σx
0

0 0
ε

sε + σy

⎤
⎥⎥⎥⎥⎦ . (3.58)

It is obvious here that the superscript + denotes one cyclic permutation and the
superscript ++ denotes two cyclic permutations. Note that

↔
J ,

↔
K 1,

↔
K 2,

↔
L1, and

↔
L2

are all independent of frequency.
With the rearrangement above, (3.48) can now be transformed into the time domain

using the inverse Laplace transform, yielding

∇ × 1

μ
[

↔L2(t) · ∇ × E(t)] + ε
↔L1(t) · E(t) = 0 (3.59)

where
↔L1(t) is the inverse Laplace transform of s2

↔
�(s) and is given by

↔L1(t) = ↔
I

∂2

∂t2
+ 1

ε

↔
J

∂

∂t
+ 1

ε2

↔
K 1 − 1

ε3

↔
K 2 · e−↔

σ t/εu(t) ∗ (3.60)

and
↔L2(t) is the inverse Laplace transform of

↔
�−1(s) and is given by

↔L2(t) = ↔
I + 1

ε

↔
L1 · e−↔

σ
+

t/εu(t) ∗ +1

ε

↔
L2 · e−↔

σ
++

t/εu(t) ∗ (3.61)

where u(t) denotes the unit step function and ∗ denotes the convolution operator. The
weak-form representation of (3.59) is given by

∫∫∫
V

[
1

μ
(∇ × T) · ↔L2(t) · ∇ × E(t) + εT · ↔L1(t) · E(t)

]
dV = 0 (3.62)
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and the corresponding finite element discretization via (2.26) yields

[T ]
d2{E}

dt2
+ [R]

d{E}
dt

+ [S]{E} + {h} + {g} = {0} (3.63)

where

Ti j =
∫∫∫

V
εNi · N j dV (3.64)

Ri j =
∫∫∫

V
Ni · ↔

J · N j dV (3.65)

Si j =
∫∫∫

V

1

μ
(∇ × Ni ) · (∇ × N j ) dV +

∫∫∫
V

1

ε
Ni · ↔

K 1 · N j dV (3.66)

hi = −
∫∫∫

V

1

ε2
Ni ·

∑
j

( ↔
K 2 · ↔

u j · N j
)

dV (3.67)

gi =
∫∫∫

V

1

με
(∇ × Ni ) ·

∑
j

[(↔
L1 · ↔

u
+
j + ↔

L2 · ↔
u

++
j

) · (∇ × N j )
]

dV. (3.68)

In the equations above, the summation is carried out for all Ej inside and on the PML,

and the tensors
↔
u j ,

↔
u

+
j , and

↔
u

++
j are given by

↔
u j =

⎡
⎣ e−σx t/εu(t) ∗ Ej (t) 0 0

0 e−σy t
/
εu(t) ∗ Ej (t) 0

0 0 e−σz t/εu(t) ∗ Ej (t)

⎤
⎦ (3.69)

↔
u

+
j =

⎡
⎣ e−σy t

/
εu(t) ∗ Ej (t) 0 0

0 e−σz t/εu(t) ∗ Ej (t) 0
0 0 e−σx t/εu(t) ∗ Ej (t)

⎤
⎦ (3.70)

↔
u

++
j =

⎡
⎣ e−σz t/εu(t) ∗ Ej (t) 0 0

0 e−σx t/εu(t) ∗ Ej (t) 0
0 0 e−σy t

/
εu(t) ∗ Ej (t)

⎤
⎦ . (3.71)

Next, we discretize the time domain to convert (3.63) into a time-marching equa-
tion. To this end, we can apply the Newmark-beta method, described in Chapter 2.
However, we present a more general approach here, which employs the concept of
basis and testing functions [14]. First, we expand the time-dependent variables Ej (t)
in terms of time-domain basis functions as

Ej (t) =
∑

n

Tn(t)En
j (3.72)
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where Tn(t) denotes a basis function defined on (n − 1) �t ≤ t ≤ (n + 1) �t . Sub-
stituting (3.72) into (3.63) and testing the resulting equation using testing functions
Wn(t) also defined on (n − 1) �t ≤ t ≤ (n + 1) �t , we obtain the discrete system

[T ](a1{E}n+1 + a0{E}n + a−1{E}n−1) + [R](b1{E}n+1 + b0{E}n + b−1{E}n−1)

+ [S](c1{E}n+1 + c0{E}n + c−1{E}n−1) + c1{h}n+1 + c0{h}n + c−1{h}n−1

+ c1{g}n+1 + c0{g}n + c−1{g}n−1 = 0 (3.73)

where

ak =
∫

Wn(t)
d2

dt2
Tn+k(t) dt k = −1, 0, 1 (3.74)

bk =
∫

Wn(t)
d

dt
Tn+k(t) dt k = −1, 0, 1 (3.75)

ck =
∫

Wn(t) Tn+k(t) dt k = −1, 0, 1. (3.76)

The expressions for {h}n and {g}n can be inferred from (3.67)–(3.71), and the required
convolutions can be evaluated very efficiently in a recursive manner, as illustrated in
Chapter 2. The values of the constants ak, bk , and ck depend on the specific form of
the basis and testing functions used in the temporal discretization. If linear functions
are used for both Tn(t) and Wn(t), we obtain

a±1 = 1

(�t)2
, a0 = − 2

(�t)2
, b±1 = ± 1

2�t
, b0 = 0, c±1 = 1

6
, c0 = 2

3
.

(3.77)

This result is equivalent to that of the Newmark-beta method with β = 1/6 for the
non-PML region. The resulting time-marching equation is only conditionally stable.
However, if we employ linear functions for Tn(t) and a quadratic function for Wn(t),
which are illustrated in Figure 3.6, we obtain the same results as in (3.77) except

1

−Δt Δt0 −Δt Δt0

(a) (b)

1

Figure 3.6 (a) Linear temporal basis function: Tn(t) = 1 − |t − n �t |/�t . (b) Quadratic
temporal testing function: Wn(t) = 1 − 3|t − n �t |/�t + 3(t − n �t)2/(�t)2.
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that c±1 = 1/4 and c0 = 1/2. This result is equivalent to that of the Newmark-beta
method with β = 1/4 for the non-PML region, which is known to be unconditionally
stable. Numerous tests have shown that this temporal discretization scheme is able to
produce highly stable solutions through time marching [15].

Although the PML interface is reflectionless in the continuous space, this is not
true in numerical simulations because of finite discretization. When an abrupt ma-
terial change occurs and the finite element discretization is not sufficiently dense to
resolve the change, undesirable numerical reflections may occur [16]. One approach
to reducing these numerical reflections is to vary the material parameters smoothly
within the PML. For example, for a PML perpendicular to the x-direction and inter-
facing with air, instead of using a constant σ, we can use a nonconstant σ expressed
in terms of a pth-order polynomial:

σ = σmax

∣∣∣∣ x − x0

L

∣∣∣∣
p

p = 1, 2, . . . (3.78)

where x0 is the x-coordinate of the PML–air interface, L is the thickness of the PML,
and σmax is the maximum conductivity inside the PML. It is found that p = 2 or 3 is
generally a good choice. For a given thickness L, the absorbing performance of the
PML can be improved by increasing the maximum conductivity and the discretization
level.

3.2.5 ABC-Backed, Complementary, CFS, and Second-Order PMLs

As noted earlier, when a PML has a finite thickness and is backed by a perfect con-
ductor, it is no longer perfectly matched. Its absorption is controlled by its thickness
and conductivity. To increase this absorption and reduce the reflection, one must
increase either its thickness or its conductivity. In either case, one has to increase
the number of finite elements across the thickness of the PML, resulting in a larger
number of unknowns to deal with. There are a variety of simple tricks to improve the
performance of a PML without increasing its finite element discretization density.
One is to replace the perfect conductor backing of a PML with an impedance surface
or an absorbing surface described by an absorbing boundary condition such as the
simple first-order ABC [17]. When a PML is backed by an ABC, the field entering
the PML is both attenuated inside the PML and partially absorbed by the ABC at the
end. The total reflection then becomes

RPML-ABC(θ ) = RPML(θ ) · RABC(θ ) (3.79)

where RPML(θ ) is given by (3.42) and RABC(θ ) is given by either (3.9) or (3.10),
depending on which ABC is used.

Another simple approach to improving the performance of a PML is to employ
a pair of PMLs that have exactly the same material composition or parameters,
but one is backed by a perfect electric conductor (PEC) and the other by a perfect
magnetic conductor (PMC) [18]. As a result, the PEC-backed PML has a reflection
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coefficient negative to that of the PMC-backed PML, or in other words, the PEC- and
PMC-backed PMLs are complementary to each other. Assuming that the PML has a
reflection coefficient R, the numerical solution obtained with the PEC-backed PML
can be expressed as

EPEC-PML = ED − RED + R2 ED − · · · (3.80)

where ED denotes the numerical solution without any reflection from the PML. The
second term on the right-hand side is due to the first reflection by the PEC, and the
third term is due to the second reflection by the PEC. When the same problem is
solved using the PMC-backed PML, the numerical solution can be expressed as

EPMC-PML = ED + RED + R2 ED + · · · . (3.81)

By adding (3.80) and (3.81), we obtain

EAve = 1
2 (EPEC-PML + EPMC-PML) = ED + R2 ED + · · · (3.82)

which eliminates the error proportional to R such that the remaining error is propor-
tional to R2, which is due to the double reflection of the fields. Therefore, by using
complementary PMLs, the reflection error can be reduced to R2 from R at the expense
of doubling the computational time.

Apart from the errors due to numerical discretization, the PML is also known to
have poor absorption for evanescent and near-grazing-propagating waves. Although
the effect of such waves in free-space propagation can usually be neglected, this
may not be the case in waveguide and antenna simulations. To demonstrate this, we
consider the periodic dielectric slab illustrated in Figure 3.7(a), which is formed by
alternating two different dielectric materials. A TM-polarized plane wave is incident
upon this dielectric slab at an angle of θ inc = 45◦. As a periodic structure, this
dielectric slab can support higher-order Floquet modes. The first Floquet mode would
start to appear at the cutoff frequency

fc = c0

(1 + sin θ inc)Tx
(3.83)

where c0 denotes the speed of the incident wave and Tx denotes the periodic length
(Tx = 1.0 cm). For θ inc = 45◦, the cutoff frequency is 17.6 GHz. Below this frequency
the first Floquet mode behaves as an evanescent wave, and above this frequency this
mode becomes a propagating wave. The FDTD calculation using the regular PML [19]
is shown in Figure 3.7(b), and the result is compared with the accurate modal solution.
While the agreement between the two solutions is very good below 17.6 GHz, the
FDTD calculation overpredicts the specular reflection by 20% around 17.6 GHz, due
to ineffective absorption of evanescent and near-grazing-propagating waves by the
regular PML.
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Figure 3.7 Plane-wave reflection by a one-dimensional periodic dielectric slab. (a) Geome-
try (each unit cell consists of two 0.5-cm-wide dielectrics). (b) Specular reflection coefficient
calculated using the regular PML, which has a poor absorption around the cutoff frequency of
the first Floquet mode (17.6 GHz). (After Correia and Jin [19], Copyright C© IEEE 2005.)

To provide better absorption of evanescent and near-grazing-propagating waves,
a modified version of the PML, referred to as the complex-frequency shifted (CFS)
PML, has been proposed for the FDTD method [20,21]. For the CFS-PML, the PML
parameters are modified as

sα = κ + σ

a + jωε
α = x, y, z (3.84)

where κ ≥ 1 and a ≥ 0 are introduced to better attenuate evanescent and near-grazing-
propagating waves. The reflection coefficient associated with (3.84) is given by

RCFS = e−2ησ L[ω2ε2/(ω2ε2+a2)] cos θ (3.85)
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where, for simplicity, the PML parameters are assumed to be constant in the PML. It is
seen that a value of a > 0 compromises the absorption of low-frequency propagating
waves since RCFS → 1 as ω → 0. The performance of the CFS-PML is demonstrated
clearly in Figure 3.8(a), which shows the FDTD calculation using the CFS-PML for
the problem illustrated in Figure 3.7(a). Although an accurate solution is now obtained
around 17.6 GHz, the solution at low frequencies deviates significantly from the
reference solution, due to poor absorption of low-frequency propagating waves.
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Figure 3.8 Specular reflection coefficient of a periodic dielectric slab. (a) Results calculated
using the CFS-PML. (b) Results calculated using the second-order PML. (After Correia and
Jin [19], Copyright C© IEEE 2005.)
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This shortcoming of the CFS-PML has recently been alleviated by using the
second-order PML [19], whose parameters are defined as

sα =
(

1 + σ1

jωε

)(
κ + σ2

a + jωε

)
. (3.86)

This PML combines the excellent capability of the regular PML in absorbing prop-
agating waves and the capability of the CFS-PML in absorbing evanescent and
near-grazing-propagating waves. Its reflection coefficient is given by

R2nd-order = exp

[
−2ηL

(
κσ1 + σ2ω

2ε2

ω2ε2 + a2
+ σ1σ2a

ω2ε2 + a2

)
cos θ

]
(3.87)

which can be designed to absorb both the evanescent and propagating waves for
all frequencies. The performance of the second-order PML is demonstrated in
Figure 3.8(b), which shows the FDTD calculation using the second-order PML for
the problem illustrated in Figure 3.7(a). In this case, an accurate solution is obtained
in the entire frequency range.

It should be pointed out that implementation of the CFS-PML and second-order
PML is trivial in the frequency-domain finite element method, and the overhead of
using these PMLs is negligible. This is not, however, the case for the time-domain
finite element analysis, which becomes much more complicated in the implementation
and expensive in the computation [22].

A major advantage of the PML over the ABC approach is that the absorbing
performance of the PML can be improved systematically simply by increasing the
number of PML layers or, equivalently, by increasing the conductivity and discretiza-
tion inside the PML. Despite the fact that the PML has been used extensively and
successfully in the FDTD method, its application in the finite element method has
not achieved similar popularity. In the frequency-domain finite element method, it
has been observed that the system matrix becomes poorly conditioned when PML
absorbing layers are present [23,24]. As a result, the number of iterations required
by an iterative solver to converge increases substantially. In the time-domain finite
element method, the PML implementation becomes much more complicated, due to
the need to model anisotropic dispersive media. Moreover, it has been found that
improper use of high PML conductivity values may cause undesirable instability
problems. A better approach is to utilize the well-established implementation of the
PML in the FDTD method by combining the time-domain finite element method and
the FDTD method. This approach is discussed in Chapter 4.

3.3 BOUNDARY INTEGRAL EQUATIONS

Both the ABC and PML approaches have a distinct advantage in that they produce a
highly sparse matrix. However, they share a disadvantage in that they are approximate,
or in other words, they are not reflectionless for obliquely incident waves. Although
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the performance of the PML can be improved by increasing the number of layers, one
still has to place it some distance (typically, 0.25λ to 0.5λ) away from the antenna,
thereby increasing the computational volume. The third approach, discussed here,
is the one based on boundary integral equations, which can provide a truly perfect
boundary condition for mesh truncation at higher computational cost.

It is well known that integral equation–based methods are particularly suited for an-
alyzing open-region radiation and scattering problems because they accurately model
the wave propagation into free space via the use of appropriate Green’s functions.
However, these methods can encounter challenges when handling the complicated
geometries and materials present in complex antenna and feed region designs. The
finite element method, on the other hand, is most suitable for modeling complicated
geometries and material compositions. The individual successes of the two methods
in their own realms of applications have led to the development of a hybrid tech-
nique, known as the finite element–boundary integral (FE-BI) method [25–31], which
combines the advantages of both methods and permits accurate analysis of highly
complicated electromagnetic problems.

The FE-BI method employs an arbitrary boundary, tightly enclosing the object
to be analyzed, to terminate the finite element mesh. Interior to the boundary, finite
element discretization is applied. Exterior to the boundary, the fields are represented
by boundary integral equations. The fields in the two regions are then coupled at the
boundary via field continuity conditions, leading to a coupled system from which
the interior and boundary fields can be determined. In the following we describe the
basic formulations of the FE-BI method in the frequency and time domains.

3.3.1 Frequency-Domain Formulations

Consider the antenna radiation problem illustrated in Figure 2.1. To use the FE-
BI method, we first introduce a surface So to truncate the computational domain
(Figure 3.9). However, unlike what we usually do with an ABC or PML, this truncation

Conducting surface

μ0, ε0

μ, ε

Feed

Truncating
surface So

Figure 3.9 Computational domain truncated by a surface that tightly encloses the object to
be analyzed.
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surface can be placed very close to the antenna to be analyzed. In many problems
it can be placed directly on the surface of the antenna. The only requirement is that
it encloses the entire antenna such that there is nothing in the space exterior to this
surface. With the introduction of this surface, the entire problem is decomposed into
an interior and an exterior problem, where the fields can be formulated using the
finite element and boundary integral methods, respectively.

In the interior region enclosed by So, the field satisfies the vector wave equation

∇ × (↔
μr

−1 · ∇ × E
)− k2

0
↔
εr · E = − jk0 Z0Jimp − ∇ × (↔

μr
−1 · Mimp

)
r ∈ V

(3.88)

and certain boundary conditions for the specific problem. On the truncation surface,
the boundary condition is unknown. However, since the field has to satisfy Maxwell’s
equations there, we can postulate a Neumann boundary condition with an unknown
right-hand side:

n̂ × (↔
μr

−1 · ∇ × E
) = − jk0 Z0n̂ × H = − jk0n̂ × H r ∈ So (3.89)

where H = Z0H and n̂ denotes an outward normal to So. The boundary-value
problem defined by (3.88) and (3.89) can be formulated into the weak-form wave
equation as

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV + jk0

∫∫
©

So

n̂ · (T × H) dS

= −
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (3.90)

After expanding the electric field E according to (2.16) and a similar expansion of
the surface magnetic field, (3.90) can be converted into the matrix equation

[
KII KIS 0
KSI KSS B

] ⎧⎨
⎩

EI

ES

H S

⎫⎬
⎭ =

{
bI

bS

}
(3.91)

assuming that Jimp and Mimp are strictly inside So. In (3.91), {EI } represents the
discrete electric field inside So, {ES} the discrete tangential electric field on So, and
{H S} the discrete tangential magnetic field on So. The matrix [K ] comprising four
submatrices is a sparse symmetric matrix, and the matrix [B] is also a sparse matrix.
The expressions for the elements of [K ] and [B] can easily be obtained from (3.90).
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To be more specific, if the vector basis functions used to expand E and H on So are
denoted as NS

i , then

Ki j =
∫∫∫

V

[
(∇ × Ni ) · ↔

μr
−1 · (∇ × N j ) − k2

0Ni · ↔
εr · N j

]
dV (3.92)

Bi j = jk0

∫∫
©

So

n̂ · (NS
i × NS

j

)
dS. (3.93)

The expression for the elements of {b} is the same as (2.19).
Equation (3.91) is not sufficient to solve for {EI }, {ES}, and {H S}. It has to be

complemented by an additional relationship between {ES} and {H S}, which comes
from the formulation of the exterior field. In the exterior region occupied purely by
free space, the E and H satisfy the vector wave equations

∇ × ∇ × E(r) − k2
0E(r) = 0 r ∈ V∞ (3.94)

∇ × ∇ × H(r) − k2
0H(r) = 0 r ∈ V∞ (3.95)

where V∞ denotes the spatial volume external to V . To define the boundary-value
problem properly, (3.94) and (3.95) are complemented by the Sommerfeld radiation
condition (2.6). To formulate the exterior fields E and H, we introduce the three-
dimensional Green’s function G0 that satisfies the scalar Helmholtz equation

∇2G0(r, r′) + k2
0 G0(r, r′) = −δ(r − r′) (3.96)

and the radiation condition

r

[
∂G0(r, r′)

∂r
+ jk0G0(r, r′)

]
= 0 r → ∞. (3.97)

The solution to (3.96) and (3.97) has the well-known form

G0(r, r′) = e− jk0|r−r′|
4π |r − r′| . (3.98)

Next we make use of the scalar–vector Green’s theorem [32],

∫∫∫
V

[b(∇ × ∇ × a) + a∇2b + (∇ · a)∇b)] dV

=
∫∫
©

S
[(n̂ · a)∇b + (n̂ × a) × ∇b + (n̂ × ∇ × a)b] dS. (3.99)
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By specially applying (3.99) to the external volume V∞ and letting a = E and b = G0,
we find that∫∫∫

V∞
[G0(∇ × ∇ × E) + E ∇2G0 + (∇ · E) ∇G0)] dV

=
∫∫
©

S∞
[(r̂ · E) ∇G0 + (r̂ × E) × ∇G0 + (r̂ × ∇ × E)G0] dS

−
∫∫
©

So

[(n̂ · E) ∇G0 + (n̂ × E) × ∇G0 + (n̂ × ∇ × E)G0] dS. (3.100)

By making use of (3.94) and (3.96), the left-hand side of (3.100) becomes∫∫∫
V∞

[G0(∇ × ∇ × E) + E ∇2G0 + (∇ · E) ∇G0)] dV

= −
∫∫∫

V∞
Eδ(r − r′) dV = −E(r′) r′ ∈ V∞. (3.101)

Using the radiation conditions in (2.6) and (3.97), we can show that the integrand
in the first integral on the right-hand side of (3.100) vanishes. As a result, (3.100)
becomes∫∫
©

So

[(n̂′ · E) ∇′G0 + (n̂′ × E) × ∇′G0 − jk0 Z0(n̂′ × H)G0] dS′ = E(r) r ∈ V∞

(3.102)

where we have switched the primed and unprimed coordinates. Alternatively,

E(r) = −
∫∫
©

So

[(n̂′ · E) ∇G0 + (n̂′ × E) × ∇G0 + jk0 Z0(n̂′ × H)G0] dS′ r ∈ V∞

(3.103)

where we used the fact that ∇′G0 = −∇G0. Similarly, if we let a = H, we obtain

H(r) = −
∫∫
©

So

[(n̂′ · H) ∇G0 + (n̂′ × H) × ∇G0 − jk0Y0(n̂′ × E)G0] dS′ r ∈ V∞.

(3.104)

Both (3.103) and (3.104) contain the normal component of the field on surface So,
which is not desirable. However, using the surface vector analysis, it can be shown
that

n̂′ · E = j Z0

k0
∇′ · (n̂′ × H) (3.105)

n̂′ · H = Y0

jk0
∇′ · (n̂′ × E). (3.106)



P1: JYS
c03 JWBK322-Jin October 3, 2008 16:39 Printer: Yet to come

BOUNDARY INTEGRAL EQUATIONS 81

Substituting these into (3.103) and (3.104) finally yields

E(r) = −
∫∫
©

So

[
j

k0
∇′ · (n̂′ × H) ∇G0 + (n̂′ × E) × ∇G0 + jk0(n̂′ × H)G0

]
dS′

r ∈ V∞ (3.107)

H(r) = −
∫∫
©

So

[
1

jk0
∇′ · (n̂′ × E) ∇G0 + (n̂′ × H) × ∇G0 − jk0(n̂′ × E)G0

]
dS′

r ∈ V∞. (3.108)

To write these in a compact form, we define the operators

L(X) = jk0

∫∫
©

So

[
X(r′)G0(r, r′) + 1

k2
0

∇′ · X(r′) ∇G0(r, r′)
]

dS′ (3.109)

K(X) =
∫∫
©

So

X(r′) × ∇G0(r, r′) dS′ (3.110)

and introduce the equivalent surface currents

Js(r′) = n̂′ × H(r′), Ms(r′) = E(r′) × n̂′. (3.111)

As a result, (3.107) and (3.108) can be written as

E(r) = −L(Js) + K(Ms) r ∈ V∞ (3.112)

H(r) = −L(Ms) − K(Js) r ∈ V∞. (3.113)

The two equations above provide the foundation to derive integral equations
for Js and Ms , which can be obtained by taking the cross product with n̂ and
letting r approach So. However, when r approaches So, the integrals in (3.109) and
(3.110) contain a singular point at r = r′. It can be shown that the singularity has no
contribution to the evaluation of n̂ × L(X). However, the singular term in n̂ × K(X)
does not vanish, and the result is

n̂ × K(X) = n̂ × K̃(X) − 1
2 X (3.114)

where K̃(X) is the same integral as in (3.110), except that the singular point r = r′

is now removed. By taking the cross product of (3.112) and (3.113) with n̂, letting r
approach So, and using (3.114), we obtain

1
2 Ms(r) − n̂ × L(Js) + n̂ × K̃(Ms) = 0 r ∈ So (3.115)

1
2 Js(r) + n̂ × L(Ms) + n̂ × K̃(Js) = 0 r ∈ So. (3.116)
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Equation (3.115) is known as the electric field integral equation (EFIE) and (3.116)
is called the magnetic field integral equation (MFIE).

Either (3.115) or (3.116) can be discretized into a desired matrix equation to be
solved together with (3.91). However, when used independently for a closed surface
So, the EFIE and MFIE can both support singular frequencies (nonphysical interior
resonances), which can corrupt the numerical solutions. To eliminate this problem
effectively, we may combine the EFIE and MFIE to form the combined field integral
equation (CFIE)

1
2 Js(r) + n̂ × L(Ms) + n̂ × K̃(Js) + n̂ × [

1
2 Ms(r) − n̂ × L(Js) + n̂ × K̃(Ms)

] = 0

r ∈ So. (3.117)

By adopting the same finite element expansions that were used for E and H, we can
write the expansions for Js and Ms as

Js(r′) = n̂′ × H(r′) =
Ns∑
j=1

g j (r′)H
S
j (3.118)

Ms(r′) = E(r′) × n̂′ = −
Ns∑
j=1

g j (r′)E S
j (3.119)

where g j = n̂′ × NS
j , with NS

j denoting the vector basis functions used to expand

E and H on the surface So, and Ns denoting the number of element edges on So.
Substituting (3.118) and (3.119) into (3.117), we obtain

Ns∑
j=1

{[
1
2 g j − n̂ × n̂ × L(g j ) + n̂ × K̃(g j )

]
H

S
j

− [
1
2 n̂ × g j + n̂ × L(g j ) + n̂ × n̂ × K̃(g j )

]
E S

j

}
= 0 r ∈ So. (3.120)

To convert (3.120) into a matrix equation, we need to choose a set of proper testing
functions to take a dot product. A relatively simple analysis [28] shows that while gi

is a good testing function for the coefficient function of H
S
j in (3.120), it is a poor

testing function for the coefficient function of E S
j . On the other hand, although n̂ × gi

is a good testing function for the coefficient function of E S
j , it is a poor choice for

the coefficient function of H
S
j . Therefore, to test both coefficient functions well, we

combine gi and n̂ × gi to form a testing function

ti (r) = gi (r) + n̂ × gi (r). (3.121)

Now, by taking the dot product of (3.120) by ti (r) and integrating over So, we obtain
the matrix equation

[P]{ES} + [Q]{H S} = 0 (3.122)



P1: JYS
c03 JWBK322-Jin October 3, 2008 16:39 Printer: Yet to come

BOUNDARY INTEGRAL EQUATIONS 83

where [P] and [Q] represent two full matrices with elements that are given by

Pi j =
∫∫
©

So

[n̂ × ti (r)] · [ 1
2 g j + L(g j ) + n̂ × K̃(g j )

]
dS (3.123)

Qi j =
∫∫
©

So

ti (r) · [ 1
2 g j + L(g j ) + n̂ × K̃(g j )

]
dS. (3.124)

In arriving at (3.123) and (3.124), we have applied vector identities and used the fact
that ti (r) is tangential to So. The evaluation of the double surface integrals in (3.123)
and (3.124) can be carried out using Gaussian quadrature in conjunction with Duffy’s
transformation [3]. Equation (3.122) can now be combined with (3.91) to form the
complete coupled system

⎡
⎣ KII KIS 0

KSI KSS B
0 P Q

⎤
⎦
⎧⎨
⎩

EI

ES

H S

⎫⎬
⎭ =

⎧⎨
⎩

bI

bS

0

⎫⎬
⎭ (3.125)

for the solution of {EI }, {ES}, and {H S}.
The coefficient matrix in (3.125) is a partly sparse and partly full matrix. It can be

solved using a direct solver, where the efficiency can be improved by exploiting the
sparsity of the matrix. For large problems involving many thousands of unknowns,
an iterative solution is more efficient in both computational time and memory re-
quirements. The iterative solution can be greatly accelerated by using a robust pre-
conditioning technique. One such preconditioner can be obtained by neglecting the
contributions of Green’s function in the CFIE (3.117), which is then reduced to

Js(r) + n̂ × Ms(r) ≈ 0 r ∈ So. (3.126)

Note that (3.126) is simply the first-order absorbing boundary condition (2.7). With
this ABC-based preconditioner [33], (3.125) can be written as

⎡
⎣ KII KIS 0

KSI KSS B
0 P̃ Q̃

⎤
⎦

−1 ⎡
⎣ KII KIS 0

KSI KSS B
0 P Q

⎤
⎦
⎧⎨
⎩

EI

ES

H S

⎫⎬
⎭ =

⎡
⎣ KII KIS 0

KSI KSS B
0 P̃ Q̃

⎤
⎦

−1 ⎧⎨
⎩

bI

bS

0

⎫⎬
⎭

(3.127)

where [P̃] and [Q̃] represent two purely sparse matrices given by

P̃i j =
∫∫
©

So

[n̂ × ti (r)] · g j (r) dS (3.128)

Q̃i j =
∫∫
©

So

ti (r) · g j (r) dS. (3.129)
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Figure 3.10 Convergence of the FE-BI iterative solution of scattering by a dielectric coated
sphere. Comparison of the preconditioned solution and those without using a preconditioner.
(After Liu and Jin [33], Copyright C© IEEE 2002.)

Since the preconditioner is a purely sparse matrix, it can be constructed and factorized
efficiently using a sparse direct solver. Alternatively, it can be solved iteratively
with an incomplete LU preconditioner, resulting in a two-loop iteration algorithm.
Extensive numerical studies showed that the ABC-based preconditioner is highly
effective and in many applications, a converged solution can be obtained with a few
tens of iterations [33]. An example is given in Figure 3.10, which shows the residual
error of an iterative solution of the FE-BI equation for plane-wave scattering by a
dielectric-coated conducting sphere. The diameter of the sphere is 6λ0 and the coating
is 0.05λ0 thick and has a relative permittivity εr of 4.0 − j1.0. Two finite element
computations are performed: One uses first-order elements with 158,404 unknowns,
and the other employs third-order elements with 26,248 unknowns. As can be seen, the
iterative solutions without using any preconditioners converge very slowly, especially
when higher-order elements are used. However, a rapid convergence is achieved using
the preconditioner in (3.127), regardless of the order of finite elements.

It should be emphasized that the FE-BI method represents a general approach for
solving open-region electromagnetic problems. The standard formulation described
above is just one of many ways to formulate an FE-BI solution. For example, an-
other fictitious surface can be introduced inside the truncation surface to define the
equivalent surface currents Js and Ms . When applying an integral equation to eval-
uate the field on the truncation surface by using these currents on the new shifted
surface, we can avoid the singularity in the double surface integrals. In the following
we describe briefly a new approach proposed recently to demonstrate a variety of
ways to hybridize the finite element method and boundary integral equations. This
approach, proposed in Refs. 30 and 31, makes use of the EFIE and MFIE separately
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on a single truncation surface. First, we substitute the MFIE (3.113) into (3.90) to
obtain ∫∫∫

V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

− jk0

∫∫
©

So

(n̂ × T)·[L(Ms) + K(Js)] dS

= −
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (3.130)

Next, we test the EFIE (3.112) with n̂ × T and scale it with jk0 to find another
equation,

− jk0

∫∫
©

So

(n̂ × T)· [n̂ × Ms + L(Js) − K(Ms)] dS = 0 (3.131)

which complements (3.130) and completes the solution. The finite element discretiza-
tion of these two equations yields⎡

⎣ KII KIS 0
KSI KSS + U M V M

0 V E U E

⎤
⎦
⎧⎨
⎩

EI

ES

H S

⎫⎬
⎭ =

⎧⎨
⎩

bI

bS

0

⎫⎬
⎭ (3.132)

where [K] is the same symmetric matrix as that defined in (3.92), and the elements
of the other matrices are given by

U M
i j = jk0

∫∫
©

So

gi · L(g j ) dS (3.133)

U E
i j = − jk0

∫∫
©

So

gi · L(g j ) dS (3.134)

V M
i j = − jk0

∫∫
©

So

gi · K(g j ) dS

= jk0

2

∫∫
©

So

(n̂ × gi ) · g j dS − jk0

∫∫
©

So

gi · K̃(g j ) dS (3.135)

V E
i j = jk0

∫∫
©

So

gi · (n̂ × g j ) dS − jk0

∫∫
©

So

gi · K(g j ) dS

= jk0

2

∫∫
©

So

gi · (n̂ × g j ) dS − jk0

∫∫
©

So

gi · K̃(g j ) dS. (3.136)

By using the definitions of the operators L and K in (3.109) and (3.110), it can be
shown that both [U M ] and [U E ] are symmetric and [V M ] and [V E ] are transpose to
each other. Hence, the coefficient matrix in (3.132) is completely symmetric, which
can be solved using symmetric matrix solvers. Following the same approach, we
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can derive symmetric formulations for solving the interior magnetic field or both the
interior electric and magnetic fields [31].

Unlike the ABC and PML, the boundary conditions derived from the boundary
integral equations are exact. This allows the truncation boundary to be placed con-
formally to the antenna structure to be analyzed. However, this accuracy is achieved
at the cost of an increased computational burden because the boundary integrals
produce full matrices [P] and [Q] for the boundary unknowns, which are computa-
tionally much more expensive than those required for sparse matrices. Fortunately,
fast algorithms such as the fast multipole method (FMM) [34,35] can be employed
to speed up the computation, and one such formulation was described in Ref. 28.

3.3.2 Time-Domain Formulations

The hybridization of the finite element method with the boundary integral method can
be achieved in the time domain as well. Recent developments in the time-domain finite
element and time-domain integral equation methods have made such hybridization
possible. The time-domain FE-BI method can be formulated in one of two different
approaches, which have been fully studied and verified to be accurate and stable. We
begin with a simpler approach and then proceed to a more complex one.

The first approach [36] employs two artificial surfaces: one, denoted as So, is to
truncate the computational domain, and the other, denoted as Seq, is to define a set of
surface equivalent currents (Figure 3.11). Inside So, the electric field is governed by
the vector wave equation

∇ × [↔
μ−1 · ∇ × E(r, t)

]+ ↔
ε · ∂2E(r, t)

∂t2
+ ↔

σ e · ∂E(r, t)

∂t

= −∂Jimp(r, t)

∂t
− ∇ × [↔

μ−1 · Mimp(r, t)
]

r ∈ V (3.137)

Conducting surface

Feed

Truncation
surface So

Equivalent source
surface Seq

μ0, ε0

μ, ε

Figure 3.11 Equivalent source surface introduced to apply boundary integral equations.
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where, for simplicity, we assumed that the medium involved is both nondispersive
and magnetically lossless. The formulation to deal with general dispersive and lossy
media was given in Section 2.3. To solve this equation, we need to define a boundary
condition on So. Because this boundary condition is problem dependent, we postulate
a mixed boundary condition with an unknown right-hand side,

n̂ ×
[

1

μ0
∇ × E(r, t)

]
+ Y0 n̂ ×

[
n̂ × ∂

∂t
E(r, t)

]
= U(r, t) r ∈ So (3.138)

where So is assumed to reside in air. The weak-form representation for the interior
electric field is then given by

∫∫∫
V

[
(∇ × T) · ↔

μ−1 · (∇ × E) + T · ↔
ε · ∂2E

∂t2
+ T · ↔

σ e · ∂E
∂t

]
dV

+
∫∫
©

So

[
Y0(n̂ × T) ·

(
n̂ × ∂E

∂t

)
+ T · U

]
dS

= −
∫∫∫

V
T ·

[
∂Jimp

∂t
+ ∇ × (↔

μ−1 · Mimp)

]
dV (3.139)

where the finite element discretization yields

[T ]
d2{E}

dt2
+ [R]

d{E}
dt

+ [S]{E} = { f } + {u}. (3.140)

The matrices [T ], [R], and [S] and the vectors {E} and { f } are the same as those
defined in (2.28)–(2.31). The elements of the vector {u} are given by

ui (t) = −
∫∫
©

So

Ni · U(r, t) dS (3.141)

which contains the unknown function U(r, t). When central differencing is applied
to (3.140), we obtain the time-marching equation

{
1

(�t)2
[T ] + 1

2�t
[R]

}
{E}n+1 =

{
2

(�t)2
[T ] − [S]

}
{E}n

−
{

1

(�t)2
[T ] − 1

2�t
[R]

}
{E}n−1 + { f }n + {u}n.

(3.142)

To calculate {E}n+1, we require {u}n , which can be computed using the boundary
integral equations, and a technique to accomplish this is described below.
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Given the electric field E(r, t) on Seq, we can define the surface equivalent electric
and magnetic currents as

Js(r, t) = n̂ × H(r, t) = −n̂ × 1

μ0

∫ t

0
∇ × E(r, τ ) dτ r ∈ Seq (3.143)

and

Ms(r, t) = −n̂ × E(r, t) r ∈ Seq (3.144)

where Seq is also assumed to reside in air. From these currents, the electric and
magnetic vector potentials can be evaluated as

A(r, t) = μ0

∫∫
©

Seq

Js(r′, t − |r − r′|/c)

4π |r − r′| dS′ (3.145)

F(r, t) = ε0

∫∫
©

Seq

Ms(r′, t − |r − r′|/c)

4π |r − r′| dS′ (3.146)

where c is the speed of light. From the vector potentials A and F, the fields on So can
be computed as

∂

∂t
E(r, t) = −

(
∂2

∂t2
− c2∇∇·

)
A(r, t) − 1

ε0

∂

∂t
∇ × F(r, t) (3.147)

1

μ0
∇ × E(r, t) = − 1

μ0

∂

∂t
∇ × A(r, t) +

(
∂2

∂t2
− c2∇∇·

)
F(r, t) (3.148)

and when these are substituted into (3.138), we obtain U(r, t). Hence, (3.141) can be
written as

ui (t) =
∫∫
©

So

Ni ·
{

n̂ ×
[

1

μ0

∂

∂t
∇ × A(r, t) −

(
∂2

∂t2
− c2∇∇·

)
F(r, t)

]}
dS

− Y0

∫∫
©

So

(n̂ × Ni ) ·
{

n̂ ×
[

1

ε0

∂

∂t
∇ × F(r, t) +

(
∂2

∂t2
− c2∇∇·

)
A(r, t)

]}
dS.

(3.149)

Using this equation in conjunction with a temporal expansion for the electric field,
we can compute {u}n based on {E}n and the values calculated previously, which then
can be used in (3.142) to calculate {E}n+1.

The approach described above has an advantage in that the integrals in (3.149)
are nonsingular, due to the offset between Seq and So; hence, they can be evaluated
relatively easily. The solution is also free of spurious modes where these frequencies
correspond to the resonant frequencies of a cavity that is formed by covering So

with either a perfect electric or a perfect magnetic conductor and is filled with
the materials in the exterior medium, which is air in the current formulation. The
major disadvantage of this formulation is that the time-marching scheme is only



P1: JYS
c03 JWBK322-Jin October 3, 2008 16:39 Printer: Yet to come

BOUNDARY INTEGRAL EQUATIONS 89

conditionally stable because of the use of the central-difference method for temporal
discretization. The Newmark-beta method cannot be applied directly in this approach
because its discretization of (3.140) would require {u}n+1, which cannot be calculated
prior to the calculation of {E}n+1.

The second approach, proposed in Ref. 37, transforms the standard FE-BI formu-
lation directly from the frequency domain into the time domain using the Laplace
transform. For example, (3.90) is transformed into the time domain as

∫∫∫
V

[
(∇ × T) · ↔

μ−1 · (∇ × E) + T · ↔
ε · ∂2E

∂t2
+ T · ↔

σ e · ∂E
∂t

]
dV

− Y0

∫∫
©

So

T ·
(

n̂ × ∂H
∂t

)
dS = −

∫∫∫
V

T ·
[
∂Jimp

∂t
+ ∇ × (↔

μ−1 · Mimp)

]
dV

(3.150)

and the corresponding finite element matrix equation becomes

[T ]
d2{E}

dt2
+ [R]

d{E}
dt

+ [S]{E} + [B]
d{H S}

dt
= { f }. (3.151)

The matrices [T ] and [S] and the vectors {E} and { f } are the same as those defined
in (2.28), (2.30), and (2.31). The elements of the matrices [R] and [B] are given by

Ri j =
∫∫∫

V
Ni · ↔

σ e · N j dV (3.152)

Bi j = Y0

∫∫
©

So

n̂ · (Ni × NS
j

)
dS. (3.153)

The EFIE (3.112) and MFIE (3.113) can also be transformed into the time
domain as

E(r, t) = −L(Js, r, t) + K(Ms, r, t) r ∈ V∞ (3.154)

H(r, t) = −L(Ms, r, t) − K(Js, r, t) r ∈ V∞ (3.155)

where

L(X, r, t) = 1

c0

∫∫
©

So

∂t X(r′, t − |r − r′|/c0)

4π |r − r′| dS′

− c0∇
∫∫
©

So

∫ t−|r−r′ |/c0

0

∇′ · X(r′, τ )

4π |r − r′| dτ dS′ (3.156)

K(X, r, t) = −∇ ×
∫∫
©

So

X(r′, t − |r − r′|/c0)

4π |r − r′| dS′. (3.157)
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These can be used to construct the CFIE, which after taking a time derivative and
testing with ti (r) becomes∫∫

©
So

ti (r)· ∂t
{
[Js(r, t) + n̂ × L(Ms, r, t) + n̂ × K(Js, r, t)]

+ n̂ × [Ms(r, t) − n̂ × L(Js, r, t) + n̂ × K(Ms, r, t)]
}

dS = 0 r ∈ So.

(3.158)

The discretization of (3.158) yields the matrix equation

[P] ∗ {ES} + [Q] ∗ {H S} = 0 (3.159)

where [P] and [Q] represent two full matrices with elements that are given by

Pi j (t) ∗ E S
j (t) = ∂t

∫∫
©

So

[n̂ × ti (r)] · [g j E S
j (t) + L(g j E S

j , r, t
)

+ n̂ × K(g j E S
j , r, t

)]
dS (3.160)

Qi j (t) ∗ H
S
j (t) = ∂t

∫∫
©

So

ti (r) · [g j H
S
j (t) + L(g j H

S
j , r, t

)
+ n̂ × K(g j H

S
j , r, t

)]
dS. (3.161)

By applying the Newmark-beta method to discretize (3.151) and converting
(3.159) into a discrete convolution, we obtain the time-marching equation to up-
date {E} simultaneously, including {ES}, and {H S}:⎡

⎢⎣
K 0

II K 0
IS 0

K 0
SI K 0

SS B0

0 P0 Q0

⎤
⎥⎦
⎧⎪⎨
⎪⎩

En+1
I

En+1
S

H
n+1
S

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

bn+1
I

bn+1
S

b
n+1
S

⎫⎪⎬
⎪⎭ (3.162)

where for the sake of clarity, {E} has been explicitly split into {EI } and {ES}. In
(3.162),⎧⎪⎨
⎪⎩

bn+1
I

bn+1
S

b
n+1
S

⎫⎪⎬
⎪⎭ = β

⎧⎪⎨
⎪⎩

f n+1
I

f n+1
S

0

⎫⎪⎬
⎪⎭+ (1 − 2β)

⎧⎪⎨
⎪⎩

f n
I

f n
S

0

⎫⎪⎬
⎪⎭+ β

⎧⎪⎨
⎪⎩

f n−1
I

f n−1
S

0

⎫⎪⎬
⎪⎭

−

⎡
⎢⎣

K 1
II K 1

IS 0

K 1
SI K 1

SS 0

0 P1 Q1

⎤
⎥⎦
⎧⎪⎨
⎪⎩

En
I

En
S

H
n
S

⎫⎪⎬
⎪⎭−

⎡
⎢⎣

K 2
II K 2

IS 0

K 2
SI K 2

SS B2

0 P2 Q2

⎤
⎥⎦
⎧⎪⎨
⎪⎩

En−1
I

En−1
S

H
n−1
S

⎫⎪⎬
⎪⎭

−
n−2∑
k=0

⎡
⎣0 0 0

0 0 0
0 Pn−k+1 Qn−k+1

⎤
⎦
⎧⎪⎨
⎪⎩

0

Ek
S

H
k
S

⎫⎪⎬
⎪⎭ (3.163)
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where

[K 0] = 1

(�t)2
[T ] + 1

2�t
[R] + β[S] (3.164)

[K 1] = − 2

(�t)2
[T ] + (1 − 2β)[S] (3.165)

[K 2] = 1

(�t)2
[T ] − 1

2�t
[R] + β[S] (3.166)

[B0] = 1

2�t
[B], [B2] = − 1

2�t
[B] (3.167)

Pn−k+1
i j = Pi j (t) ∗ T (t − k�t)

∣∣
t=(n+1)�t (3.168)

Qn−k+1
i j = Qi j (t) ∗ T (t − k�t)

∣∣
t=(n+1)�t . (3.169)

In (3.168) and (3.169), T (t) denotes temporal basis functions used to approximate
the convolution integrals [37]. Equation (3.162) is highly stable, due to use of the
Newmark-beta method. Of course, care must be exercised to ensure accurate expan-
sion of the unknown functions and accurate evaluation of the temporal derivatives and
computation of the singular integrals in the discretization of the boundary integral
equation (3.158). More detailed discussion on this topic can be found in Ref. 37.

Similar to the frequency-domain FE-BI method, the most computationally time-
consuming part in the time-domain FE-BI solution is calculation of the time-domain
boundary integrals. This calculation can be accelerated using fast algorithms based
either on the plane-wave time-domain method or the time-domain adaptive integral
method, as demonstrated in Refs. 36 and 37. As an example to demonstrate application
of the time-domain FE-BI to antenna analysis, we consider a Vivaldi antenna residing
on a finite ground plane (Figure 3.12). The antenna is excited by a TEM pulse with

(a) (b)
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Figure 3.12 Vivaldi antenna on a finite ground plane. (a) Front view. (b) Side view. Also
shown are the FE-BI interface � and FE-PML interface �PML. The PML are 16 mm thick, and
all dimensions are in millimeters. (After Yilmaz et al. [37], Copyright C© IEEE 2007.)
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f0 = 3.2 GHz and fbw = 2.8 GHz. The inner and outer coaxial cable radii are 1 and
3 mm, respectively. The FE-BI interface � (which is So) and the FE-PML interface
�PML are chosen as shown in Figure 3.12. Figure 3.13 plots the reflection coefficient
of the antenna as a function of frequency and the radiation pattern in the E-plane
at 3.0 GHz. It can be seen that the time-domain FE-BI solution agrees very well

Figure 3.13 Radiation from a Vivaldi antenna on a finite ground plane. (a) Reflection coef-
ficients versus frequency observed at the feed. (b) Radiation patterns at 3 GHz. (After Yilmaz
et al. [37], Copyright C© IEEE 2007.)
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with those obtained by the time-domain finite element method using PML for mesh
truncation.

3.3.3 Treatment of the Infinite Ground Plane

In practical applications, some antennas, such as aperture and conformal antennas,
are designed to work in the presence of a ground plane. To analyze this type of
antenna, the boundary integral equations have to be modified to take into account
the effect of the ground plane. A simple approach is to employ the image theory and
make use of the equations derived above for the free-space case.

Consider the problem illustrated in Figure 3.14(a), where an antenna structure
is situated partially in a cavity below a ground plane and partially protruded above
the ground plane, which is assumed to coincide with the xy-plane. To analyze this
problem using the FE-BI method, we introduce a mathematical surface So to tightly
cover the antenna structure above the ground plane. In contrast to the free-space
case, So is no longer a closed surface. To formulate the field exterior to So using the
equivalent surface currents on So, we can first remove the ground plane and replace its
effect with the image currents on the image surface Sim, as shown in Figure 3.14(b).
In accordance with the image theory, the image currents are given by

Jim
s (x, y, z) = 2ẑ ẑ · Js(x, y,−z) − Js(x, y,−z) (3.170)

Mim
s (x, y, z) = −2ẑ ẑ · Ms(x, y,−z) + Ms(x, y,−z) (3.171)

where Js and Ms represent the original currents on So. With the currents on a closed
surface formed by So and Sim radiating in free space, we can use the integral equations
derived earlier to formulate the exterior fields. For example, we can use the EFIE
(3.112) to find

E(r) = −L(Js) + K(Ms) r ∈ V∞ (3.172)

(a) (b)

Ground
plane

Truncation
surface So

Original
surface So

Image
surface Sim

μ0, ε0

μ0, ε0

μ0, ε0

Figure 3.14 Antenna structure partially residing in a cavity and protruding above a ground
plane. (a) Original problem. (b) Equivalent image problem for the truncation surface.
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where

L(Js) = jk0

∫∫
So

[
Js(r′)G0(r, r′) + 1

k2
0

∇′ · Js(r′) ∇G0(r, r′)
]

dS′

+ jk0

∫∫
Sim

[
J

im
s (r′)G0(r, r′) + 1

k2
0

∇′ · J
im
s (r′) ∇G0(r, r′)

]
dS′ (3.173)

K(Ms) =
∫∫

So

Ms(r′) × ∇G0(r, r′) dS′ +
∫∫

Sim

Mim
s (r′) × ∇G0(r, r′) dS′. (3.174)

Substituting (3.170) and (3.171) into the equations above, we have

L(Js) = jk0

∫∫
So

{
Js(r′)[G0(r, r′) − G0(r, r′

i )] + 2ẑ ẑ · Js(r′)G0(r, r′
i )

+ 1

k2
0

∇′ · Js(r′) ∇[G0(r, r′) − G0(r, r′
i )]

}
dS′ (3.175)

K(Ms) =
∫∫

So

{
Ms(r′) ×∇[G0(r, r′) + G0(r, r′

i )] − 2ẑ ẑ · Ms(r′) × ∇G0(r, r′
i )
}

dS′

(3.176)

where ri = x x̂ + y ŷ − zẑ denotes the image position. Equation (3.172) can now be
used in the FE-BI solution of the problem in the same manner as for the free-space
case. The singularity treatment is also the same. Since So now is not a closed surface,
there is no internal resonance problem and hence no need to use the CFIE.

If the entire antenna structure is confined in the cavity and there is no protrusion
above the ground plane, the cavity’s aperture can then be used as So (Figure 3.15). In
this case, L(Js) = 0 and

K(Ms) = 2
∫∫

So

Ms(r′) × ∇G0(r, r′) dS′. (3.177)

Ground plane

Truncation
surface So

μ0, ε0

Figure 3.15 Antenna structure completely residing in a cavity recessed in a ground plane.
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Equation (3.172) then becomes

E(r) = 2
∫∫

So

Ms(r′) × ∇G0(r, r′) dS′ r ∈ V∞. (3.178)

From the MFIE (3.113), we find that

H(r) = 2

jk0

∫∫
So

[
k2

0Ms(r′)G0(r, r′) + ∇′ · Ms(r′) ∇G0(r, r′)
]

dS′ r ∈ V∞

(3.179)

which can also be obtained from (3.178) using Maxwell’s equations. Substituting
(3.179) into the weak-form representation (3.90) for the field inside the cavity, we
obtain ∫∫∫

V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV + 2

∫∫
So

(ẑ × T)

·
∫∫

So

[
k2

0Ms(r′)G0(r, r′) + ∇′ · Ms(r′) ∇G0(r, r′)
]

dS′ dS

= −
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV. (3.180)

By using vector identities and Gauss’s theorem, (3.180) can be written as

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV + 2k2

0

∫∫
So

(ẑ × T)

·
∫∫

So

Ms(r′)G0(r, r′) dS′ dS − 2
∫∫

So

∇ · (ẑ × T)
∫∫

So

∇′ · Ms(r′)G0(r, r′) dS′ dS

= −
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp)

]
dV. (3.181)

The finite element discretization of (3.181) yields the matrix equation

[
KII KIS

KSI KSS + P

] {
EI

ES

}
=
{

bI

bS

}
(3.182)

where [K ] is defined by (3.92) and the elements of [P] are given by

Pi j = 2
∫∫

So

∇ · gi (r)
∫∫

So

∇′ · g j (r′)G0(r, r′) dS′ dS − 2k2
0

∫∫
So

gi (r)

·
∫∫

So

g j (r′)G0(r, r′) dS′ dS. (3.183)
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Since both [K ] and [P] are symmetric, the coefficient matrix in (3.182) is also
symmetric. Once the aperture field is solved for, the fields in the exterior region can
be computed using (3.178) and (3.179).

3.4 SUMMARY

In this chapter we discussed three approaches to truncating an infinite free-space en-
vironment surrounding an antenna into a finite computational domain that is suitable
for a finite element formulation. Of the three approaches, the one based on absorb-
ing boundary conditions is the most efficient and also the easiest to implement. In
fact, the implementation of the first-order absorbing boundary condition was covered
in Chapter 2 in both the frequency and time domains. The second-order absorbing
boundary condition can be implemented with the aid of an auxiliary variable for a
smooth surface, which maintains the symmetry of the finite element matrix.

The second approach, based on perfectly matched layers, has gained a great deal of
popularity in recent years mainly because of its excellent performance in the FDTD
method. This approach is also simple to implement in the frequency-domain finite
element method, although its implementation in the time domain becomes much
more complicated and hence was described in detail. The performance of perfectly
matched layers can be improved by several relatively simple modifications, which
include using an absorbing boundary condition to terminate the PML region, as well
as alternative formulations such as the complementary, complex-frequency shifted,
and second-order perfectly matched layers.

The third approach employs a boundary integral equation to truncate the com-
putational domain, and the resulting numerical technique is often referred to as the
hybrid finite element–boundary integral (FE-BI) method. This approach is the most
accurate, but it is also the most difficult to implement. We described two formulations
for the frequency-domain implementation: One is the standard formulation and the
other yields a symmetric final system of equations, together with the derivation of
the boundary integral equations. We also described two formulations to implement
the FE-BI method in the time domain. One uses two mathematical surfaces, yielding
a conditionally stable time-marching process. The other employs a single surface and
results in a more stable time-marching scheme when implemented with an accurate
discretization of the boundary integral equation involved. The second formulation
can be regarded as the Laplace transform of the standard FE-BI formulation in the
frequency domain. The efficiency of the FE-BI solution as compared with the other
two approaches depends on individual problems. In general, the FE-BI solution is
more costly because of the necessity to compute and solve the full submatrices due
to the boundary integral equations. However, the cost can be reduced significantly by
using fast integral equation solvers.

At the end of the chapter we discussed the modeling of antennas in the presence
of an infinite ground plane and derived the corresponding integral equations that can
be used in the FE-BI solution of such problems. This treatment is important because
many antennas, such as aperture and conformal antennas or any antennas placed
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near a large smooth conducting surface, can be approximated as having an infinite
ground plane. For antennas designed with a layered medium, we can either use the
finite element method combined with an absorbing boundary condition or perfectly
matched layers to discretize the layered medium directly or incorporate the effect of
the layered medium into the boundary integral equation in the FE-BI formulation.
The first approach is straightforward, and the second is rather involved because of
the complexity of the Green’s function for a layered medium [38].
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4 Hybrid FETD–FDTD Technique

The finite-difference time-domain (FDTD) method has been widely used for the
analysis and design of antennas [1]. The basic FDTD technique is highly efficient be-
cause it utilizes both a structured grid and explicit time marching. A three-dimensional
structured grid is defined by three integer indices, typically i–j–k, and as such, stor-
age of the full mesh is often not required. In contrast, finite element grids based on
tetrahedral elements are typically unstructured, and in this case the entire mesh gen-
erally needs to be stored and a simple integer cell-referencing scheme is generally not
possible. In addition, because the standard FDTD algorithm gives rise to a diagonal
system matrix, it yields an explicit time-marching algorithm. Explicit time-marching
algorithms are conditionally stable, meaning that the time step must be proportion-
ally reduced with finer levels of spatial discretization. The FDTD method can also
be parallelized in a distributed sense in a very straightforward manner [2], and the
grid-truncation technology based on the perfectly matched layer (PML) is mature and
numerically stable [3]. These features make the FDTD method a powerful and pop-
ular tool for many applications. However, because the traditional FDTD technique
is based primarily on a rectilinear grid, the accurate modeling of complex antenna
feed regions and/or complex antenna geometry may require an exceedingly fine level
of spatial discretization along with extensive computational resources. In addition,
because the formulation is conditionally stable, which is again a requirement for
explicit time marching, the Courant limit dictates that a fine spatial discretization
also requires a corresponding decrease in the time-step size and thus an increase in
the number of time steps to obtain an accurate solution.

An alternative approach to the global application of the traditional FDTD algorithm
is to utilize a hybridization of locally conformal solution techniques with the standard
FDTD method. The techniques that have been proposed for the conformal portion
include (1) the use of local modifications to the basic FDTD method to accommodate
surface curvature [4,5], (2) finite-volume techniques [6–9], and (3) finite element
methods [10–20]. The first technique is known as the conformal FDTD method and
is based on a weighting procedure that analyzes how an arbitrary surface intersects
the traditional FDTD rectangular cells. This has been found to be a useful and
efficient approach, although there are limits to the geometrical complexity that can
be accommodated and the technique often requires using locally refined rectangular
grids, which then reduce the global time step.

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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In this chapter we address primarily the local application of finite element methods;
specifically, a finite element time-domain (FETD) hybridization with FDTD. By uti-
lizing this technique, the antenna details can be characterized by the unconditionally
stable and conformal aspects of the FETD, while the efficiency of the rectangular-
grid FDTD method can be utilized in the external regions of the problem domain.
The advantage of this approach is that fine discretization, common in antenna feed
regions such as spirals and other antennas, does not require an increase in the number
of time steps. In addition, the efficiency of FDTD is advantageous in the regions
surrounding the antenna that typically contain only air or simple materials out to the
termination of the grid boundary, at which point the well-established FDTD PML [3]
can easily be applied. This hybrid FETD-FDTD concept is provably numerically
stable up to the Courant limit of the FDTD region that supports the finite element
domains [16]. In other words, the grid associated with the internal FETD regions can
expand and contract as needed to characterize the local geometry without imposing
further restrictions on the global time step with regard to numerical stability.

The success of this hybridization depends fundamentally on an underlying equiv-
alence between the FDTD and the FETD formulations, which are based on vector
edge basis functions. Specifically, when trapezoidal integration is applied to rect-
angular hexahedral cells used in the FETD method, the FDTD algorithm can be
recovered [13,21,22]. Consequently, a symmetric interface between these two meth-
ods can be constructed, which is typically a necessary condition for proving numerical
stability [16,20].

The topics discussed in this chapter include the following. First, we provide an
overview of the FDTD method along with the well-established FDTD PML formula-
tions based on the stretched-coordinate and anisotropic-medium techniques. Because
of the importance in obtaining far-field simulation data in antenna applications, we
also discuss an effective near-to-far-field transformation technique for the FDTD
method. We then examine an FETD formulation that is based fundamentally on
Maxwell’s two first-order curl equations and note the relationship of this FETD for-
mulation as a generalization of FDTD to unstructured grids. We show further that
FDTD can be constructed as a special case of the vector edge FETD method, which
will ultimately enable construction of a numerically stable FETD–FDTD interface.
Because the construction of the hybridized mesh imposes certain requirements on
grid generation, we subsequently discuss techniques to facilitate this process. Also,
the wave equation is known to support solutions that can drift in the late time for
some applications, and therefore a simple suppression technique is discussed. Fi-
nally, we present a few applications that demonstrate this powerful hybrid technique,
which synergistically leverages many of the best features of the FETD and FDTD
methods.

4.1 FDTD METHOD

The finite-difference time-domain (FDTD) method represents an intuitive and pow-
erful solution technique for the transient differential Maxwell’s equations. Originally
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developed by Yee [23], the method has been applied extensively and enhanced algo-
rithmically over its long history [24]. Some of the desirable features of the FDTD
method are the following: (1) natural representation of Ampère’s and Faraday’s laws,
(2) second-order convergence in both space and time, (3) divergence free in the ab-
sence of electric and magnetic charges, (4) continuity of the tangential components of
the electric and magnetic fields, (5) nondissipative and hence energy conserving, and
(6) fully explicit in time. Although the most common implementation of the FDTD
method conforms to a Cartesian grid, spherical [25] and cylindrical [26] coordinate
implementations have also been reported. In the following we restrict the discussion
to the Cartesian grid, where this grid consists of a lattice of rectangular, or brick,
cells with indexing defined by (i, j, k) = (i �x, j �y, k �z). As noted previously,
this indexing is associated with a structured mesh, or alternatively, a mapped mesh.
For simplicity, the discussion here is limited to the uniform spatial discretization
(�x,�y,�z) in each of the three Cartesian axes (x, y, z), although more general
implementations can incorporate a nonuniform bias along any or all of the axes.

The traditional Yee cell with the electric and magnetic field components is shown
in Figure 4.1. Based on this orientation, it is easy to see how the field circulations
correspond directly to both Faraday’s and Ampère’s laws. Mathematically, Faraday’s
and Ampère’s laws in linear, lossless, and isotropic media are given by (2.21) and
(2.22), respectively, and are repeated here for convenience:

μ
∂H
∂t

= −∇ × E − σmH − Mimp (4.1)

ε
∂E
∂t

= ∇ × H − σeE − Jimp. (4.2)

i  j k

,

z k
Ex Ex

Ex

Ex

Ey

Ey

Ey

Ey

Ez Ez

EzEz

Hz

Hz

HyHy

Hx

Hx

( , , )

,x i
y j

,

Figure 4.1 FDTD “Yee” basic cell showing the offset nature of electric and magnetic fields.
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In the Cartesian coordinate system, the specific components of (4.1) and (4.2) are
given by

∂ Hx

∂t
= 1

μ

(
∂ Ey

∂z
− ∂ Ez

∂y
− σm Hx − Mimp,x

)
(4.3)

∂ Hy

∂t
= 1

μ

(
∂ Ez

∂x
− ∂ Ex

∂z
− σm Hy − Mimp,y

)
(4.4)

∂ Hz

∂t
= 1

μ

(
∂ Ex

∂y
− ∂ Ey

∂x
− σm Hz − Mimp,z

)
(4.5)

∂ Ex

∂t
= 1

ε

(
∂ Hz

∂y
− ∂ Hy

∂z
− σe Ex − Jimp,x

)
(4.6)

∂ Ey

∂t
= 1

ε

(
∂ Hx

∂z
− ∂ Hz

∂x
− σe Ey − Jimp,y

)
(4.7)

∂ Ez

∂t
= 1

ε

(
∂ Hy

∂x
− ∂ Hx

∂y
− σe Ez − Jimp,z

)
. (4.8)

By adopting the spatial grid shown in Figure 4.1 along with a centered finite differ-
ence for the time derivatives, the fully discrete FDTD form for (4.3)–(4.8) is easily
obtained. The resulting time advancement of the electric and magnetic fields is known
as leapfrogging. The truncation error is O(�t2) in time and O(�2) in space, where
� corresponds to �x, �y, or �z. In a fully discrete form, the traditional FDTD
equations are given by

H n+1/2
x

(
i, j + 1

2 , k + 1
2

) (
1 + σm�t

2μ

)
=
(

1 − σm�t

2μ

)
H n−1/2

x

(
i, j + 1

2 , k + 1
2

)

+ �t

μ�z

[
En

y

(
i, j + 1

2 , k + 1
)− En

y

(
i, j + 1

2 , k
)]

− �t

μ�y

[
En

z

(
i, j + 1, k + 1

2

)− En
z

(
i, j, k + 1

2

)]− �t

μ
Mn

imp,x

(
i, j + 1

2 , k + 1
2

)
(4.9)

H n+1/2
y

(
i + 1

2 , j, k + 1
2

) (
1 + σm�t

2μ

)
=
(

1 − σm�t

2μ

)
H n−1/2

y

(
i + 1

2 , j, k + 1
2

)

+ �t

μ�x

[
En

z

(
i + 1, j, k + 1

2

)− En
z

(
i, j, k + 1

2

)]

− �t

μ�z

[
En

x

(
i + 1

2 , j, k + 1
)− En

x

(
i + 1

2 , j, k
)]− �t

μ
Mn

imp,y

(
i + 1

2 , j, k + 1
2

)
(4.10)



P1: JYS

c04 JWBK322-Jin September 30, 2008 14:53 Printer: Yet to come

104 HYBRID FETD–FDTD TECHNIQUE

H n+1/2
z

(
i + 1

2 , j + 1
2 , k

) (
1 + σm�t

2μ

)
=
(

1 − σm�t

2μ

)
H n−1/2

z

(
i + 1

2 , j + 1
2 , k

)

+ �t

μ�y

[
En

x

(
i + 1

2 , j + 1, k
)− En

x

(
i + 1

2 , j, k
)]

− �t

μ�x

[
En

y

(
i + 1, j + 1

2 , k
)− En

y

(
i, j + 1

2 , k
)]− �t

μ
Mn

imp,z

(
i + 1

2 , j + 1
2 , k

)
(4.11)

En+1
x

(
i + 1

2 , j, k
) (

1 + σe�t

2ε

)
=
(

1 − σe�t

2ε

)
En

x

(
i + 1

2 , j, k
)
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ε�y

[
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(
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z

(
i + 1
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2 , k

)]
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(
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2
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y

(
i + 1
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2

)]
− �t

ε
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imp,x

(
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2 , j, k
)

(4.12)

En+1
y

(
i, j + 1

2 , k
) (

1 + σe�t
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)
=
(
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)
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(
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2 , k
)
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(
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2

)− H n+1/2
x

(
i, j + 1

2 , k − 1
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ε�x

[
H n+1/2

z

(
i + 1

2 , j + 1
2 , k
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z

(
i − 1

2 , j + 1
2 , k

)]
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ε
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(
i, j + 1

2 , k
)

(4.13)

En+1
z

(
i, j, k + 1

2

) (
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=
(
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2ε

)
En
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(
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[
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(
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(
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ε�y

[
H n+1/2
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(
i, j + 1

2 , k + 1
2
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(
i, j − 1

2 , k + 1
2

)]

− �t

ε
J n+1/2

imp,z

(
i, j, k + 1

2

)
. (4.14)

When constructing finite-difference representations such as those used in
(4.9)–(4.14), it is important to keep track of where the particular differences are
centered. If a particular formulation requires a field value at a time or spatial location
that is not directly available, an average value of the known fields is adopted. For
example, one possible time-averaging form is J n+1/2

imp, x = (J n+1
imp, x + J n

imp, x )/2, and a
spatial average will involve a stencil across two or more cells, where the term stencil
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is used to denote the field locations involved in the construction process. Averages of
these types do not compromise the second-order accuracy of the FDTD solution. Note
that finite element formulations permit the interpolation to arbitrary spatial locations
within the finite element cell, due to the use of basis functions.

Many of the numerical properties of the coupled system of equations described
by (4.9)–(4.14) can be established by using a technique known as Fourier stability
analysis [27]. Properties of interest include the stability criterion, which relates the
time step to the spatial cell size, as well as the dispersion and dissipation aspects of
the numerical scheme. In the Fourier method, the various discrete field components
are assumed to have a sinusoidal representation, such as

U n(i, j, k) = U0e jωn�t e− j(k̃x i�x+k̃y j�y+k̃z k�z) (4.15)

where k̃x,y,z denote the numerical wavenumbers in the directions x, y, and z. By apply-
ing (4.15) to the lossless Yee algorithm with σe = σm = 0, the following dispersion
relationship is obtained:

(
1

c�t
sin

ω�t

2

)2

=
(

1

�x
sin

k̃x�x

2

)2

+
(

1

�y
sin

k̃y�y

2

)2

+
(

1

�z
sin

k̃z�z

2

)2

.

(4.16)

To derive (4.16), Maxwell’s equations are first written in a normalized form as j∇ ×
U = ∂U/∂t , where U ≡ (H + jE) and j = √−1 [28]. The representation (4.15) is
then substituted into a Yee discretization of j ∇ × U = ∂U/∂t , which is similar to
(4.9)–(4.14). A 3 × 3 system of equations for the components of U will result, and
by setting the determinant equal to zero, (4.16) is obtained. Note that (4.16) is for
a grid of infinite extent; in other words, the influence of boundary conditions is not
included in the analysis.

The numerical dispersion relationship (4.16) can be compared against the ideal
theoretical dispersion relationship for a plane wave propagating in an infinite free-
space medium:

(ω

c

)2
= k2

x + k2
y + k2

z . (4.17)

Note that by applying a small argument expansion for the sine functions in
(4.16)—namely, sin x ≈ x for x � 1—(4.16) reduces to (4.17). However, for more
practical choices of the time step and the cell size, (4.16) reveals that the disper-
sion characteristics of the Yee algorithm are anisotropic over a three-dimensional
space. The largest dispersion error occurs along the principal axes, whereas the
smallest errors occur for propagation in directions diagonal to the grid. In fact,
for a plane wave propagating along the diagonal of a three-dimensional Yee lat-
tice under the conditions of cubical cells with edge length � and c�t/� = 1/

√
3,

(4.16) reduces to (4.17), which indicates that ideal propagation is obtained. It is also
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noted that in a three-dimensional space with propagation along a principal axis, the
three-dimensional dispersion relationship is equivalent to that associated with the
one-dimensional Maxwell’s equations discretized with the Yee algorithm. Detailed
studies and additional observations for the dispersion relationship (4.16) as compared
to ideal propagation can be found in Ref. 29.

Equation (4.16) is also used to determine the numerical stability condition, or
alternatively, the Courant criterion, of equations (4.9)–(4.14). This is accomplished
initially by substituting ω̃ for ω in (4.15) and (4.16), where ω̃ = ω̃r + jω̃i represents a
complex angular frequency, and then solving (4.16) for ω̃. By restricting the solution
to only real values for ω̃ [since complex values would lead to exponential growth in
time as seen in (4.15)], the following relationship between the time and spatial steps
is required:

c�t ≤ 1√
1/�x2 + 1/�y2 + 1/�z2

. (4.18)

In the case of cubical elements such that � = �x = �y = �z, (4.18) simplifies to
c �t ≤ �/

√
3. Also note that because (4.18) is associated only with real values for

ω̃, the solution (4.15) does not decay in time, which is a necessary condition for the
algorithm to be nondissipative and hence energy conserving.

For typical applications to which the FDTD method is applied, 15 to 20 cells
per wavelength is the traditional spatial discretization for the definition of �x, �y,
and �z. However, for electrically large applications involving propagation over, say,
tens of wavelengths, much finer spatial discretization may be necessary to obtain an
acceptable dispersion error. Equation (4.16) can be used to provide an estimate of
the phase-velocity error to be expected for a given spatial resolution. For example,
under the conditions of propagation along a principal axis, for cubical cells with an
edge length �, where � is chosen to provide 30 points per free-space wavelength,
and for a time step defined by c�t/� = 0.5, the phase-velocity error of the Yee
algorithm relative to ideal propagation is approximately 0.13% per wavelength of
travel. Thus, through the use of (4.16) an estimate of the cell size required for a given
application is readily obtained. In addition, most practical implementations of the
three-dimensional Yee algorithm choose the time step �t to be slightly smaller than
the theoretical limit defined by (4.18), where a typical value for cubical elements
would be c�t = 0.99 �/

√
3.

4.2 PML IMPLEMENTATION IN FDTD

A beneficial feature of adopting an FETD–FDTD hybridized formulation is to lever-
age the advances in the mature grid-truncation techniques that are widely used in
the FDTD method. One of the more robust and accurate methods for truncation of
the FDTD grid is the PML concept originally developed by Berenger [30]. By
splitting the fields to add additional degrees of freedom, Berenger found that a the-
oretically reflectionless interface could be constructed for any frequency and angle
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of incidence. This split-field PML was later found to be represented equivalently
by a modified form for Maxwell’s equations based on stretched coordinates. The
stretched-coordinate PML was described in Section 3.2.1, and it was shown to pro-
vide a reflectionless interface independent of frequency and the angle of incidence.
In an FDTD setting, the split-field PML in the three-dimensional space revealed
reflections from the outer grid boundary more than 40 dB lower than were obtained
previously with analytical absorbing boundary conditions that were similar to those
described in Section 3.1 [31]. In Sections 4.2.1 and 4.2.2, we apply the stretched-
coordinate PML and anisotropic-medium PML, respectively, to the FDTD setting.

4.2.1 FDTD Stretched-Coordinate PML

The source-free Maxwell’s equations in a stretched-coordinate space are given by
(3.23)–(3.26). By expanding the stretched-coordinate curl operator in (3.23), we have

− jωμH = ∇s × E = x̂

(
1

sy

∂ Ez

∂y
− 1

sz

∂ Ey

∂z

)
+ ŷ

(
1

sz

∂ Ex

∂z
− 1

sx

∂ Ez

∂x

)

+ ẑ

(
1

sx

∂ Ey

∂x
− 1

sy

∂ Ex

∂y

)
(4.19)

and similarly for (3.24),

jωεE = ∇s × H = x̂

(
1

sy

∂ Hz

∂y
− 1

sz

∂ Hy

∂z

)
+ ŷ

(
1

sz

∂ Hx

∂z
− 1

sx

∂ Hz

∂x

)

+ ẑ

(
1

sx

∂ Hy

∂x
− 1

sy

∂ Hx

∂y

)
. (4.20)

By further splitting the electric and magnetic fields in (4.19) and (4.20), it is
apparent that sx, sy, and sz can be isolated and removed from the denominators. This
will be useful for obtaining a simple time-domain PML implementation. Specifically,
the field components can be split as

x̂ Hx = x̂(Hxy + Hxz); ŷ Hy = ŷ(Hyx + Hyz); ẑHz = ẑ(Hzx + Hzy) (4.21)

x̂ Ex = x̂(Exy + Exz); ŷEy = ŷ(Eyx + Eyz); ẑEz = ẑ(Ezx + Ezy). (4.22)

With (4.21) and (4.22), the components of (4.19) and (4.20) become

jωμsy Hxy x̂ = −∂(Ezx + Ezy)

∂y
x̂ (4.23)

jωμsz Hxz x̂ = ∂(Eyx + Eyz)

∂z
x̂ (4.24)
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jωμsz Hyz ŷ = −∂(Exy + Exz)

∂z
ŷ (4.25)

jωμsx Hyx ŷ = ∂(Ezx + Ezy)

∂x
ŷ (4.26)

jωμsx Hzx ẑ = −∂(Eyx + Eyz)

∂x
ẑ (4.27)

jωμsy Hzy ẑ = ∂(Exy + Exz)

∂y
ẑ (4.28)

jωεsy Exy x̂ = ∂(Hzx + Hzy)

∂y
x̂ (4.29)

jωεsz Exz x̂ = −∂(Hyx + Hyz)

∂z
x̂ (4.30)

jωεsz Eyz ŷ = ∂(Hxy + Hxz)

∂z
ŷ (4.31)

jωεsx Eyx ŷ = −∂(Hzx + Hzy)

∂x
ŷ (4.32)

jωεsx Ezx ẑ = ∂(Hyx + Hyz)

∂x
ẑ (4.33)

jωεsy Ezy ẑ = −∂(Hxy + Hxz)

∂y
ẑ. (4.34)

Although sx , sy, and sz can have a general form, and the particular form selected
gives rise to different PML behavior, the following simple definitions are made to
facilitate transformation into the time domain:

sx = 1 − j
σx

ωε
; sy = 1 − j

σy

ωε
; sz = 1 − j

σz

ωε
. (4.35)

With (4.35), (4.23)–(4.34) are easily written in time-dependent form as

μ
∂ Hxy

∂t
x̂ + σy

μ

ε
Hxy x̂ = −∂(Ezx + Ezy)

∂y
x̂ (4.36)

μ
∂ Hxz

∂t
x̂ + σz

μ

ε
Hxz x̂ = ∂(Eyx + Eyz)

∂z
x̂ (4.37)

μ
∂ Hyz

∂t
ŷ + σz

μ

ε
Hyz ŷ = −∂(Exy + Exz)

∂z
ŷ (4.38)

μ
∂ Hyx

∂t
ŷ + σx

μ

ε
Hyx ŷ = ∂(Ezx + Ezy)

∂x
ŷ (4.39)

μ
∂ Hzx

∂t
ẑ + σx

μ

ε
Hzx ẑ = −∂(Eyx + Eyz)

∂x
ẑ (4.40)



P1: JYS

c04 JWBK322-Jin September 30, 2008 14:53 Printer: Yet to come

PML IMPLEMENTATION IN FDTD 109

μ
∂ Hzy

∂t
ẑ + σy

μ

ε
Hzy ẑ = ∂(Exy + Exz)

∂y
ẑ (4.41)

ε
∂ Exy

∂t
x̂ + σy Exy x̂ = ∂(Hzx + Hzy)

∂y
x̂ (4.42)

ε
∂ Exz

∂t
x̂ + σz Exz x̂ = −∂(Hyx + Hyz)

∂z
x̂ (4.43)

ε
∂ Eyz

∂t
ŷ + σz Eyz ŷ = ∂(Hxy + Hxz)

∂z
ŷ (4.44)

ε
∂ Eyx

∂t
ŷ + σx Eyx ŷ = −∂(Hzx + Hzy)

∂x
ŷ (4.45)

ε
∂ Ezx

∂t
ẑ + σx Ezx ẑ = ∂(Hyx + Hyz)

∂x
ẑ (4.46)

ε
∂ Ezy

∂t
ẑ + σy Ezy ẑ = −∂(Hxy + Hxz)

∂y
ẑ. (4.47)

By applying the Yee algorithm to (4.36)–(4.47), we obtain the following time-
advancement equations in the PML region:
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(4.48)
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zy

(
i + 1

2 , j + 1
2 , k

)

+ �t

μ�y

[
En

xy

(
i + 1

2 , j + 1, k
)− En

xy

(
i + 1

2 , j, k
)]

+ �t

μ�y

[
En

xz

(
i + 1

2 , j + 1, k
)− En

xz

(
i + 1

2 , j, k
)]

(4.53)

En+1
xy

(
i + 1

2 , j, k
) (

1 + σy�t

2ε

)
=
(

1 − σy�t

2ε

)
En

xy

(
i + 1

2 , j, k
)

+ �t

ε�y

[
H n+1/2

zx

(
i + 1

2 , j + 1
2 , k

)− H n+1/2
zx

(
i + 1

2 , j − 1
2 , k

)]

+ �t

ε�y

[
H n+1/2

zy

(
i + 1

2 , j + 1
2 , k

)− H n+1/2
zy

(
i + 1

2 , j − 1
2 , k

)]
(4.54)

En+1
xz

(
i + 1

2 , j, k
) (

1 + σz�t

2ε

)
=
(

1 − σz�t

2ε

)
En

xz

(
i + 1

2 , j, k
)

− �t

ε�z

[
H n+1/2

yx

(
i + 1

2 , j, k + 1
2

)− H n+1/2
yx

(
i + 1

2 , j, k − 1
2

)]
− �t

ε�z

[
H n+1/2

yz

(
i + 1

2 , j, k + 1
2

)− H n+1/2
yz

(
i + 1

2 , j, k − 1
2

)]
(4.55)

En+1
yz

(
i, j + 1

2 , k
) (

1 + σz�t

2ε

)
=
(

1 − σz�t

2ε

)
En

yz

(
i, j + 1

2 , k
)

+ �t

ε�z

[
H n+1/2

xy

(
i, j + 1

2 , k + 1
2

)− H n+1/2
xy

(
i, j + 1

2 , k − 1
2

)]
+ �t

ε�z

[
H n+1/2

xz

(
i, j + 1

2 , k + 1
2

)− H n+1/2
xz

(
i, j + 1

2 , k − 1
2

)]
(4.56)
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En+1
yx

(
i, j + 1

2 , k
) (

1 + σx�t

2ε

)
=
(

1 − σx�t

2ε

)
En

yx

(
i, j + 1

2 , k
)

− �t

ε�x

[
H n+1/2

zx

(
i + 1

2 , j + 1
2 , k

)− H n+1/2
zx

(
i − 1

2 , j + 1
2 , k

)]
− �t

ε�x

[
H n+1/2

zy

(
i + 1

2 , j + 1
2 , k

)− H n+1/2
zy

(
i − 1

2 , j + 1
2 , k

)]
(4.57)

En+1
zx

(
i, j, k + 1

2

) (
1 + σx�t

2ε

)
=
(

1 − σx�t

2ε

)
En

zx

(
i, j, k + 1

2

)

+ �t

ε�x

[
H n+1/2

yx

(
i + 1

2 , j, k + 1
2

)− H n+1/2
yx

(
i − 1

2 , j, k + 1
2

)]
+ �t

ε�x

[
H n+1/2

yz

(
i + 1

2 , j, k + 1
2

)− H n+1/2
yz

(
i − 1

2 , j, k + 1
2

)]
(4.58)

En+1
zy

(
i, j, k + 1

2

) (
1 + σy�t

2ε

)
=
(

1 − σy�t

2ε

)
En

zy

(
i, j, k + 1

2

)

− �t

ε�y

[
H n+1/2

xy

(
i, j + 1

2 , k + 1
2

)− H n+1/2
xy

(
i, j − 1

2 , k + 1
2

)]

− �t

ε�y

[
H n+1/2

xz

(
i, j + 1

2 , k + 1
2

)− H n+1/2
xz

(
i, j − 1

2 , k + 1
2

)]
. (4.59)

4.2.2 FDTD Anisotropic-Medium PML

The split-field or stretched-coordinate PML is based on a mathematical as opposed
to a physical medium description. However, a PML based on a physical model can be
formulated in terms of a dispersive and anisotropic medium, with a performance that
is similar to that of the mathematical model of PMLs. This approach was discussed
in a finite element setting in Section 3.2.2, and applies similarly using the FDTD
formulation. The uniaxial PML (UPML [32]) is based on an anisotropic medium
formulation and is widely used in FDTD applications and commercial software. For
the FDTD implementation of the UPML, we begin with Faraday’s and Ampère’s
laws in time-harmonic form,

∇ × E = − jωμ
↔
� · H (4.60)

∇ × H = jωε
↔
� · E (4.61)

where
↔
� is given by (3.36). For an efficient FDTD implementation, we use the

constitutive relationships

Bx = μ
sz

sx
Hx ; By = μ

sx

sy
Hy ; Bz = μ

sy

sz
Hz (4.62)

Dx = ε
sz

sx
Ex ; Dy = ε

sx

sy
Ey ; Dz = ε

sy

sz
Ez (4.63)
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and further generalize sx, sy, and sz such that

sx = κx − j
σx

ω ε
; sy = κy − j

σy

ω ε
; sz = κz − j

σz

ω ε
(4.64)

where κx = κx (x), κy = κy(y), and κz = κz(z). A representative spatial profile for κξ

is κξ = 1 + (κmax,ξ − 1)(ξ/L)p, where ξ = x, y, z, and a typical spatial profile for
σξ is σξ (ξ ) = σmax(ξ/L)p, where 1 ≤ p ≤ 4 and L denotes the total thickness of the
PML. It has been found that p = 3 is a good overall choice for the FDTD uniaxial
PML.

By using (4.62) in (4.60) and (3.36), and (4.63) in (4.61) and (3.36), and then
inverse Fourier transforming to the time domain, we obtain

↔
�κ · ∂B

∂t
= −∇ × E − 1

ε

↔
�σ · B (4.65)

↔
�κ · ∂D

∂t
= ∇ × H − 1

ε

↔
�σ · D (4.66)

where

↔
�κ ≡

⎡
⎣ κy 0 0

0 κz 0
0 0 κx

⎤
⎦ ;

↔
�σ ≡

⎡
⎣σy 0 0

0 σz 0
0 0 σx

⎤
⎦ . (4.67)

The Yee algorithm can be applied to (4.65) and (4.66), and advancement equa-
tions for B and D similar to (4.9)–(4.14) are obtained. However, the constitutive
relationships (4.62) and (4.63) are additionally required to properly relate B with
H and D with E. This is easily accomplished by using (4.64) in (4.62) and (4.63)
and then inverse Fourier transforming the results into the time domain. For example,
sx Bx = μsz Hx has the time-dependent form

μκz
∂ Hx

∂t
+ μ

σz

ε
Hx = κx

∂ Bx

∂t
+ σx

ε
Bx (4.68)

and the corresponding finite-difference relationship on a Yee lattice is

H n+1/2
x

(
i, j + 1

2 , k + 1
2

) (
κz + σz�t

2ε

)
=
(

κz − σz�t

2ε

)
H n−1/2

x

(
i, j + 1

2 , k + 1
2

)

+ Bn+1/2
x

(
i, j + 1

2 , k + 1
2

) 1

μ

(
κx + σx�t

2ε

)

− Bn−1/2
x

(
i, j + 1

2 , k + 1
2

) 1

μ

(
κx − σx�t

2ε

)
. (4.69)
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Finite-difference equations for the other components in (4.62) and (4.63) are ob-
tained similarly. The discrete constitutive relationships in conjunction with the finite-
difference representation of (4.65) and (4.66) form a self-consistent system of equa-
tions to advance the fields within the PML region of the FDTD grid. In fact, for an
FDTD computational volume with lossless materials outside the PML region, this
system of equations can be used for the entire volume simply by defining

↔
� = ↔

I
outside the PML region, where

↔
I denotes the identity dyadic.

Within the FDTD setting, the split-field PML, as well as the UPML, are known
to suffer from additional inaccuracies that are associated with low frequency as well
as evanescent fields. This has led to the investigation of alternative PML representa-
tions, many of which were described in Section 3.3.5. An additional PML formulation
that also shows promise for improving evanescent-field performance is the convo-
lutional PML (CPML) [33]. The CPML is related to the CFS PML discussed in
Section 3.3.5 and is based on the use of the recursive convolution technique to ac-
celerate the convolution integrals inherent to this method, where the convolutions
result from the inverse Fourier transformation of (4.19) and (4.20), specifically the
product of the reciprocals of sx, sy, and sz with the fields. The CPML has been found
to provide on the order of 20-dB lower reflections on the FDTD grid compared to
the split-field and UPML techniques traditionally used for FDTD applications for
problems involving evanescent fields.

Although there are currently a variety of formulations and implementations of
the PML available to FDTD codes, the PML concept has proven to be a robust
and accurate grid termination for open-region scattering and radiation applications.
Because certain formulations may permit the PML to be placed closer to a scatterer
than is possible with other approximate formulations, examining the convergence
of the solution with different placements of the PML, as well as different PML
thicknesses, is recommended.

4.3 NEAR-TO-FAR-FIELD TRANSFORMATION IN FDTD

The finite element and finite-difference formulations for Maxwell’s equations typ-
ically provide near-field data. Although it is possible to extend the computational
volume into the far-field region, the computational resources required will often be
prohibitive. However, far-field data are extremely important for the analysis and de-
sign of antennas and arrays since fundamental quantities, such as gain, require the
knowledge of far-field performance.

The FDTD near-to-far-field (NTF) techniques are related directly to the similar
NTF techniques for the finite element method described in Section 5.3. However,
there are some differences due primarily to the offset nature of the electric and
magnetic fields in the Yee stencil, as well as the use of finite differencing instead
of basis functions. Consequently, an accurate FDTD NTF formulation based on the
technique described in Ref. 34 is reviewed in this section. The basic strategy of this
method is to apply the NTF to two distinct equivalent surfaces that naturally follow
the offset of the Yee discretization.
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Figure 4.2 FDTD near-to-far-field transformation technique based on offset surfaces for the
electric and magnetic fields [34].

The two surfaces Sh and Se along with their tangential field components are shown
in Figure 4.2. On the surface Se the equivalent electric current is given by

Js |Se
= n̂ × H|Sh

(4.70)

and on the surface Sh the equivalent magnetic current is given by

Ms |Sh
= − n̂ × E|Se

. (4.71)

Following Ref. 34, the motivation for using two offset equivalent surfaces is rooted
in the Huygens’ surface concept for launching plane waves into the total-field region
of the FDTD computational volume. This can be seen by rewriting (4.12) for the
x-component of the electric field in a lossless medium:

En+1
x

(
i + 1

2 , j, k
)

= En
x

(
i + 1

2 , j, k
)+ �t

ε�y

[
H n+1/2

z

(
i + 1

2 , j + 1
2 , k

)− H n+1/2
z

(
i + 1

2 , j − 1
2 , k

)]

− �t

ε�z

[
H n+1/2

y

(
i + 1

2 , j, k + 1
2

)− H n+1/2
y

(
i + 1

2 , j, k − 1
2

)]
− �t

ε
J n+1/2

imp,x

(
i + 1

2 , j, k
)

(4.72)

where the incident magnetic field can be written in terms of the surface electric
current as

J n+1/2
imp,x

(
i + 1

2 , j, k
) = H inc,n+1/2

y

(
i + 1

2 , j, k + 1
2

)
. (4.73)
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The important observation is that although the impressed surface electric current
is collocated with the electric field Ex (i + 1

2 , j, k), it is dependent on the specified
incident magnetic field shifted a half-cell in the z-direction. Similarly, the incident
electric field is shifted a half-cell relative to the impressed surface magnetic current.
The placement of the current sources is an important aspect in an FDTD total- and
scattered-field decomposition technique so that only scattered fields exist outside the
equivalent source surfaces.

This same concept is applied in the construction of an NTF transformation. In
the time-harmonic case, the far electric and magnetic fields are given in terms of the
electric and magnetic vector potentials by

Eθ (r, ω) = − jω

4πr

(
Aθ +

√
μ0

ε0
Fφ

)
(4.74)

Eφ(r, ω) = − jω

4πr

(
Aφ −

√
μ0

ε0
Fθ

)
(4.75)

and in time-dependent form by

Eθ (r, t) = − 1

4πr

(
∂ Aθ

∂t
+
√

μ0

ε0

∂ Fφ

∂t

)
(4.76)

Eφ(r, t) = − 1

4πr

(
∂ Aφ

∂t
−
√

μ0

ε0

∂ Fθ

∂t

)
. (4.77)

The vector potentials specialized to the offset equivalent surfaces Sh and Se are given
in time-harmonic form by

A(r, ω) = μ0e− jk0r
∫∫
©

Se

n̂ × H|Sh
e jk0 r̂·r′

e dS′ (4.78)

F(r, ω) = −ε0e− jk0r
∫∫
©

Sh

n̂ × E|Se
e jk0 r̂·r′

h dS′ (4.79)

and in time-dependent form by

A(r, t) = μ0

∫∫
©

Se

n̂ × H|Sh

(
t −

{
r − r̂ · r′

e

c

})
dS′ (4.80)

F(r, t) = −ε0

∫∫
©

Sh

n̂ × E|Se

(
t −

{
r − r̂ · r′

h

c

})
dS′. (4.81)

Computing the far fields directly in the time domain is useful for obtaining broad-
band information, such as frequency-swept antenna gain, at a few observation angles.
An efficient time-domain implementation procedure is based on shifting the retarded
time indices off the fields in (4.80) and (4.81) and onto the potentials [35], or in other
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words, from the terms on the right-hand sides of (4.80) and (4.81) to the potentials on
the left-hand sides. For example, with reference to (4.81), consider the contribution
to the Fz component by the tangential field En

x over one discrete face of the surface
Se, where the surface area of this face is defined by �x �z. Specifically, at time step
n and assuming that the fields are constant over this cell face, we can write

�Fz(r, n�t + (r − r̂ · r′
h)/c) = ε0 �x�zEn

x . (4.82)

The fields from the other discrete elemental faces of Se contribute similarly to the total
vector potential. For an efficient computer implementation, it is convenient to store
the potentials in the form of arrays with an integer indexing scheme. However, two
issues need to be addressed to accomplish this. First, for a given observation angle
and source location (i.e., r̂ · r′

h), the argument of the electric potential will typically
not be an integral multiple of �t , and second, r̂ · r′

h will generally lead to multiple
contributions with the same retarded time index. The first issue can be resolved by
taking the integer part of n�t + (r − r̂ · r′

h)/c such that

m = int
{
tc/�t + 1

2

}
(4.83)

where tc = n�t + (r − r̂ · r′
h)/c. The second issue is resolved by interpolating and

apportioning the field contributions across several integral time indices associated
with the vector potentials. For example, on a surface with a ŷ outward normal and
using a linear interpolation, En

x will contribute across three time indices for the vector
potential such that

�Fm−1
z =

(
1

2
− tc

�t
+ m

)
ε0 �x�zEn

x

�Fm
z = 2

(
tc
�t

− m

)
ε0 �x�zEn

x

�Fm+1
z = −

(
1

2
+ tc

�t
− m

)
ε0 �x�zEn

x . (4.84)

Note that the contributions will accumulate in the various array registers depending on
the source and observation locations as well as the particular time step. Higher-order
interpolations can be used, although this is not necessary. The additional components
of the vector potentials (4.81) and (4.80) are evaluated similarly, noting that an
additional factor of 1/2 is included in (4.83) for the magnetic field evaluation in
(4.80) due to the time offset between the electric and magnetic fields. In this way
the vector potentials are built during the course of the time-marching simulation, and
the far fields are then constructed with a simple postprocessing procedure following
(4.76) and (4.77).

The time-dependent NTF described above can be used to compute frequency-
dependent patterns from an antenna; however, to do so requires generating the full time
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history at numerous observation angles and then extracting the desired frequencies
from the Fourier transform for each angle of interest. A much more efficient procedure
for computing the patterns at a few frequencies, yet with numerous observation angles,
is to alternatively build up the Fourier transformation at specific frequencies inline
with the time-marching process. For example, the discrete Fourier transform (DFT)
for the tangential electric and magnetic fields on the equivalent surfaces Se and Sh is
efficiently computed directly from the calculated transient fields by

n̂ × E(r, ω)|Se
=

N∑
n=1

n̂ × E(r, n�t)|Se
e jωn�t

n̂ × H(r, ω)|Sh
=

N∑
n=1

n̂ × H
(
r,
(
n + 1

2

)
�t
)∣∣

Sh
e jω

(
n+ 1

2

)
�t (4.85)

where ω defines the angular frequency for the pattern computation desired, and the
summations are simply accumulated with each time iteration over the duration of the
simulation, which is taken to be a total of N time steps in (4.85). The vector potentials
are then computed directly in the frequency domain from (4.78) and (4.79), and the
patterns from (4.74) and (4.75).

4.4 ALTERNATIVE FETD FORMULATION

The FETD method described in Chapter 2 was formulated based on the second-order
wave equation for the electric field, where the electric field was represented by vector
edge basis functions. When formulated in this way, use of the Newmark-beta time-
integration technique leads to an unconditionally stable time-marching scheme. An
alternative FETD formulation [21] is based directly on the two first-order Maxwell’s
equations: Ampère’s and Faraday’s laws. The resulting time-marching algorithm can
be considered as a generalization of the FDTD method to unstructured grids. Because
this formulation treats both the electric and magnetic fields within a finite element
setting, vector basis functions are now required for each type of field. The location
of the vector fields will be defined so that the electric field resides on the edges of
the finite elements, whereas the magnetic field will be defined on the faces, or facets,
of the finite elements. Hence, the traditional vector edge basis functions described in
Chapter 2 are again used for the electric fields, whereas a new vector basis function
is introduced for the magnetic fields. The new vector basis functions will be defined
so that the normal component of the magnetic (B) field will be continuous across
neighboring finite elements, and such basis functions are known as vector facet basis
functions.

When the traditional FDTD leapfrogging time-marching technique is applied to
this alternative FETD representation, a direct analogy between this FETD formulation
and the traditional FDTD method will be apparent. Further, and as shown in Sec-
tion 4.5, when the cells of the computational mesh are defined to be rectangular brick
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elements and trapezoidal integration is used in the construction of the elemental ma-
trices, the FETD algorithm can reduce identically to the FDTD algorithm. This holds
whether the FETD is formulated using the traditional wave-equation representation
based only on vector edge basis functions, or using the one based on the first-order
Maxwell’s equations with the vector edge and vector facet basis functions to be de-
scribed in this section. We will see that the possible equivalence of all these methods
will be critical to the construction of a numerically stable hybridization scheme that
combines FETD and FDTD.

To formulate an FETD algorithm that is based on the first-order Maxwell’s equa-
tions, we begin with Maxwell’s equations in the time domain that are defined through-
out a linear, isotropic, lossless (σe = σm = 0) volume V with boundary So by

∂

∂t
B = −∇ × E − Mimp (4.86)

ε
∂

∂t
E = ∇ × 1

μ
B − Jimp (4.87)

where E and B denote the time-dependent electric and magnetic fields, respectively.
For simplicity, a Dirichlet boundary condition on So is assumed:

n̂ × E(r, t) = γ (r, t) r ∈ So (4.88)

along with the initial conditions

B(r, 0) = B0(r) r ∈ V (4.89)

E(r, 0) = E0(r) r ∈ V . (4.90)

To construct a finite element representation of (4.86)–(4.90), we seek a weak
solution such that E ∈ W , B ∈ W f , where W denotes the space of curl-conforming
functions defined by W = H (curl;V ) = {N ∈ (L2(V ))3,∇ × N ∈ (L2(V ))3}, and Wf

denotes the space of divergence-conforming functions defined by Wf = H (div;V ) =
{N f ∈ (L2(V ))3, ∇ · N f ∈ (L2(V ))3} [36,37]. The edge (curl-conforming) basis func-
tions provide for tangential continuity between neighboring finite elements, whereas
facet (divergence-conforming) basis functions provide for normal continuity. Note
that the edge basis functions defined here are identical to those used in previous
chapters. The weak-form representations for (4.86) and (4.87) are given by∫∫∫

V

{
(∇ × E) ·

(
1

μ
N f

)
+ N f · ∂

∂t

(
1

μ
B
)}

dV

+
∫∫∫

V
N f ·

(
1

μ
Mimp

)
dV = 0 ∀N f ∈ W f (4.91)

∫∫∫
V

{
−(∇ × N) ·

(
1

μ
B
)

+ εN · ∂

∂t
E
}

dV +
∫∫∫

V
N · Jimp dV = 0 ∀N ∈ W

(4.92)
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along with (4.88)–(4.90) to complete the boundary-value problem. The system of
equations defined by (4.91) and (4.92) can be viewed as a variational analog of the
FDTD method.

The semidiscrete representation for (4.91) and (4.92) is obtained by expanding B
in terms of time-dependent coefficients Bi and spatial facet basis functions N f

i as

B(r, t) =
∑

i

Bi (t)N
f
i (r) (4.93)

where i = 1, 2, . . . , N f . Similarly, the expansion for E in terms of spatial edge basis
functions Ni is given by

E(r, t) =
∑

i

Ei (t) Ni (r) (4.94)

where i = 1, 2, . . . , N . Note that these expansions correspond to a Galerkin for-
mulation for (4.91) and (4.92) due to the equivalence of the basis and testing
functions.

Substituting (4.93) and (4.94) into (4.91) and (4.92) leads to the semidiscrete
system of equations

[T f ]
d{B}

dt
+ [A]{E} = −{g} (4.95)

[T ]
d{E}

dt
− [A]T{B} = { f } (4.96)

with {E} = [E1(t), E2(t), . . . , EN (t)]T and {B} = [
B1(t), B2(t), . . . , BN f (t)

]T
,

where the superscript T denotes the transpose, and

Ti j = ε

∫∫∫
V

Ni · N j dV (4.97)

T f
i j =

∫∫∫
V

1

μ
N f

i · N f
j dV (4.98)

Ai j =
∫∫∫

V

1

μ
N f

i · (∇ × N j ) dV (4.99)

fi = −
∫∫∫

V
Ni · Jimp dV (4.100)

gi =
∫∫∫

V
N f

i ·
(

1

μ
Mimp

)
dV. (4.101)
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Note that the matrix [T ] is of dimension N × N , [T f ] is of dimension N f × N f ,

and [A] is of dimension N f × N . Also, {H} and {B} are related by

{H} = [T f ]{B}. (4.102)

Well-defined relationships exist between the vector edge and vector facet basis
functions [37]. Because of these fundamental properties, (4.95) can be rewritten
conveniently as

d

dt
{B}= − [C] {E} − [T f ]−1{g} (4.103)

where [C] ≡ [T f ]−1[A] is a sparse rectangular (incidence) matrix with nonzero
entries consisting simply of ±1 [38]. Consequently, the magnetic field becomes
related to the circulation of the electric field around the cell faces, and a direct
analogy is found with the FDTD representation of Faraday’s law.

The fully discrete representation of (4.95) and (4.96) is obtained through the
definition of a suitable time-integration scheme. If a traditional leapfrog method is
adopted through the use of central differences, a conditionally stable scheme results.
In this case the fully discrete system is given by

{B}n+1/2 = {B}n−1/2 − �t
(
[C]{E}n + [T f ]−1 {g}|t=n�t

)
(4.104)

{E}n+1 = {E}n + �t[T ]−1([A]T {B}n+1/2 + { f }|t=(n+1/2)�t

)
. (4.105)

Equations (4.104) and (4.105) represent a compact description of a finite element for-
mulation to time advance both the electric and magnetic fields on a three-dimensional
mesh.

In the next section we show that the elemental matrices associated with the finite
element formulation for rectangular brick elements can be reduced to a representation
that is equivalent to a finite-difference formulation. In this case, (4.104) and (4.105)
are equivalent to a wave-equation formulation based on central time differencing,
which in turn is equivalent to the FDTD method.

4.5 EQUIVALENCE BETWEEN FETD AND FDTD

Explicit time-stepping algorithms, such as the traditional FDTD method, are appeal-
ing because the field advancement to the next time step requires only the simple
inversion of a diagonal matrix. On the other hand, implicit methods require the in-
version of matrices that are nondiagonal. Although this adds to the computational
complexity, implicit methods can give rise to an unconditionally stable time-stepping
algorithm, which is something that is not theoretically possible [39] with explicit
schemes. This is easily seen since a large time step could permit a wavefront to
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interact simultaneously with numerous spatial cells, and hence this potential multi-
cell interaction must be accounted for within the governing matrices.

The elemental matrices associated with a finite element analysis are of small di-
mension and are constructed by forming the reaction integrals of the vector basis
functions within a given discrete cell. In the standard finite element method, these
integrals are evaluated either by exact analytical integration or by Gaussian quadra-
ture, which usually gives rise to densely populated elemental matrices [40]. The
assembly of these local elemental matrices into the global finite element matrices
will lead to global matrices that are highly sparse, although not diagonal. How-
ever, it is well known that by alternatively using a trapezoidal integration process in
the construction of the elemental matrices instead of an exact integration process,
an inherently implicit finite element algorithm can be reduced to an explicit finite-
difference scheme [39]. Indeed, in the field of acoustics, this concept was applied
over 30 years ago to construct a provably stable explicit–implicit transient numerical
algorithm [41].

In a broader sense, the process of diagonalizing the inherently nondiagonal finite
element system matrix is known as lumping [42,43], with the goal of being able to
obtain an explicit algorithm. Here, the off-diagonal matrix entries are either combined
or discarded, with the final result being included, or lumped, into the diagonal entries.
Depending on the technique used and the elements it is applied to, this process can
have undesirable consequences, such as the creation of singular matrices or the cor-
ruption of the eigenvalue spectrum [22]. Although the undesirable aspects of lumping
often occur when applied to the more general elemental shapes, such as tetrahedral
elements, good results have been obtained when lumping is applied to rectangular
hexahedral, or brick, elements [43]. In fact, lumping techniques have been used to
establish an equivalence between vector edge–based finite element formulations on
brick elements and the traditional FDTD algorithm [21,38]. Trapezoidal integration
can, in a sense, be considered to be a lumping technique; however, it is more general
and systematic in nature and provides a mechanism to recover the FDTD method
readily from the edge-based FETD method when applied to rectangular brick-shaped
finite elements. We now examine in more detail the use of trapezoidal integration in
establishing an equivalence between these two techniques.

In Chapter 2 it was shown that the traditional finite element formulation gives rise
to matrices with elements given by (2.28)–(2.30). For the purposes of this section,
only the so-called “mass” matrix [T ] and “stiffness” matrix [S] will be considered,
and in the case of a free-space environment, the matrix elements are described by

Ti j = ε0

∫∫∫
V

Ni · N j dV (4.106)

Si j = 1

μ0

∫∫∫
V

(∇ × Ni ) · (∇ × N j ) dV. (4.107)

For definiteness, we consider the brick-shaped element shown in Figure 4.3. There
are 12 first-order vector edge basis functions Ni, i = 1, . . . ,12 for this element, and
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Figure 4.3 Reference rectangular hexahedral (brick) element used to construct elemental
matrices [40]. Edge and node numbers are shown in the figure.

the resulting elemental matrices are of dimension 12 × 12 [40]. For a cubical brick
element centered at the origin of a Cartesian space and with edge length �, the four
basis functions associated with the x-directed edges are given by

N e
x1 = 1

�2

(
�

2
− y

)(
�

2
− z

)

N e
x2 = 1

�2

(
y + �

2

)(
�

2
− z

)

N e
x3 = 1

�2

(
�

2
− y

)(
z + �

2

)

N e
x4 = 1

�2

(
y + �

2

)(
z + �

2

)
(4.108)

with similar definitions for the y- and z-directed edges. By substituting (4.108) into
(4.106) and evaluating the integrals exactly, we obtain the following matrix for the
xx-portion of the full elemental matrix:

[T e
xx ] = ε0

�3

36

⎡
⎢⎢⎣

4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

⎤
⎥⎥⎦ (4.109)
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where the notation [T e
xx ] corresponds to the xx block of a single element’s contribution

to [T ]. Clearly, an elemental matrix with fully populated subblocks will lead to a
nondiagonal mass matrix [T ] and consequently, an implicit time-stepping algorithm.

We now consider, alternatively, the evaluation of (4.106) by trapezoidal integration.
In one dimension, integrating over a line segment of length � gives rise to the integral
evaluation

∫ �

0
ν(z) dz = �

2
[ν(�) + ν(0)]. (4.110)

Applying this technique to (4.106) now leads to a block diagonal form for (4.109):

[
T e

xx

] = ε0
�3

4
[I ] (4.111)

where [I ] denotes the identity matrix. The resulting mass matrix [T ] will now be
fully diagonalized.

In the absence of sources and loss, the finite element problem (2.27) can be
written as

[T ]
d2{E}

dt2
+ [S]{E} = 0. (4.112)

By applying central time differencing to (4.112), specifically the case β = 0 in (2.36),
we obtain

[T ]{E}n+1 = 2[T ]{E}n − [T ]{E}n−1 − (�t)2[S]{E}n (4.113)

which is clearly an explicit time-advancement scheme when trapezoidal spatial in-
tegration is used because of the resulting diagonalization of [T]. The trapezoidal
integration technique is applied similarly in the evaluation of the stiffness matrix [S];
however, to preserve the coupling between the various components of the electric
field, this matrix will obviously not be diagonal.

It is straightforward to establish the equivalence of (4.113) and the traditional
FDTD method in one-dimensional space [22]. To accomplish this, we proceed simi-
larly to Section 4.1 and write the standard one-dimensional FDTD update equations
for the electric and magnetic fields as

En+1
x (i) = En

x (i) − �t

ε0�

[
H n+1/2

y

(
i + 1

2

)− H n+1/2
y

(
i − 1

2

)]
H n+1/2

y

(
i + 1

2

) = H n−1/2
y

(
i + 1

2

)− �t

μ0�

[
En

x (i + 1) − En
x (i)

]
. (4.114)
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We then combine the coupled equations to obtain a single equation for the electric
field:

En+1
x (i) = 2En

x (i) − En−1
x (i) +

(
c�t

�

)2 [
En

x (i + 1) − 2En
x (i) + En

x (i − 1)
]

(4.115)

which corresponds to a central-difference representation for the wave equation
∂2 Ex/∂t2 = c2 ∂2 Ex/∂x2. We now consider (4.113) in a one-dimensional infinite
space. Using linear (rooftop) basis functions [40] along with trapezoidal integra-
tion, the stiffness matrix [S] in (4.113) is tridiagonal, with the elements on a typical
row given by [0 . . . , (−1/μ0�), (2/μ0�), (−1/μ0�), . . . 0]. Also, the mass ma-
trix becomes [T ] = ε0�[I ]. By substituting these matrices into (4.113) and exam-
ining the central row entries, the resulting equivalence of (4.113) and (4.115) is
apparent. Thus, the traditional FDTD leapfrog algorithm (4.114) for the two coupled
curl equations has an equivalent wave-equation representation based on central dif-
ferencing in both space and time, and the use of trapezoidal integration in the finite
element formulation (4.113), along with central time differencing, is also equiva-
lent to the discrete wave equation (4.115) based directly on central time and spatial
differencing.

A similar equivalence between finite elements and the FDTD method exists
in two- and three-dimensional spaces; however, this is awkward to show analyti-
cally in three dimensions, so a numerical example will instead be used. The ex-
ample is a closed, conducting rectangular resonator that is meshed with nonuni-
form brick elements, as shown in Figure 4.4(a). We selected interior element
edges randomly to impress a Gaussian-pulse voltage source and to monitor the
transient response induced. The voltages observed for solutions based on the tra-
ditional FDTD, the FETD using the wave equation based exclusively on vector
edge basis functions, and the FETD using Maxwell’s two first-order curl equa-
tions based on vector edge and vector facet basis functions are shown in Figure
4.4(b). All solutions differ only by the machine precision of the computational
hardware.

4.6 STABLE FETD–FDTD INTERFACE

The development of a stable finite element and FDTD interface evolved from a
similar hybridization concept that was based initially on finite-volume techniques.
In this section we review briefly the initial approaches to developing the hybrid-grid
interface and then describe the current finite element–based methodologies. The grid-
generation requirements for constructing a conformal-grid interface that is suitable
for a direct connection to FDTD are largely independent of the particular conformal
method used, and practical methodologies to realize this interface construction are
described in Section 4.7.
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Figure 4.4 Equivalence of three-dimensional FETD and FDTD using brick elements with
trapezoidal integration. (a) Nonuniform mesh for a rectangular resonator. (b) Internal voltage
response based on three solution methods. All solutions differ only by the machine precision
of the computational hardware.

4.6.1 Initial Approaches

Over the past 15 years there have been a variety of techniques proposed to interface
conformal grids with the rectilinear FDTD method [6–20]. Indeed, hybrid techniques
leverage the beneficial features of two or more methods with the goal of producing a
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more powerful solution technique, so an interface of this type represents a natural pro-
gression for differential equation–based computational electromagnetics. The origi-
nal hybrid methods in this area were based on finite-volume time-domain (FVTD)
methods interfaced to the FDTD method. In their simplest form, finite-volume meth-
ods assume constant fields throughout the volumetric integration domain of the small
cells used to partition a spatial domain. Although a variety of FVTD methods are
used in computational electromagnetics [44–47], the techniques that are naturally
suited to hybridization with FDTD are those based on the offset mesh concept that
employ primal and dual grids for the electric and magnetic fields, respectively [44].

An FVTD–FDTD hybrid that was based on overlapping grids, similar to the
Chimara grids that have been widely used in the computational fluid dynamics dis-
cipline [48], was first described by Yee et al. [6,7]. An example of this type of grid
is shown in Figure 4.5. The surface conformal mesh used in this approach is based
on extruding surface elements, such as triangles or quadrilaterals, normal to the sur-
face of the geometry so that three-dimensional prisms or hexahedral elements are
created. A beneficial feature of this approach is that the resulting conformal mesh
can be represented using an i–j–k indexing system, that is, a structured mesh, just
as in the case of the standard FDTD grid. However, this method has two disadvan-
tages. First, structured conformal meshes typically lack the geometrical flexibility of
fully unstructured grids, and second, complicated interpolations are required at the
boundary of the conformal grid and the background FDTD mesh. In addition, a more
serious consequence of the latter is that these types of interpolations often give rise
to numerical instabilities that appear in the late time.

An alternative approach to interfacing fully unstructured grids directly to the rec-
tilinear FDTD grid was described in Refs. 8 and 9. A two-dimensional cross section

Figure 4.5 Overlapping conformal mesh with a background rectangular mesh.
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Figure 4.6 Directly interfacing conformal unstructured mesh with a uniform rectangular
mesh.

of this type of hybridization is shown in Figure 4.6, where in three dimensions the
triangular elements typically correspond to tetrahedra and the quadrilaterals corre-
spond to the FDTD brick elements. The original approach to the numerical solution
in the unstructured (tetrahedral) portion of this mixed-element grid was also based on
FVTD concepts. Similar to the equivalence between FETD and FDTD shown in the
preceding section, an important feature of the particular FVTD method used was that
the technique could be shown to reduce identically to the standard FDTD algorithm
when the cells took on the shape of the traditional FDTD rectangular bricks [9].

In three dimensions, the triangular faces of tetrahedra do not fully edge-align
with the quadrilateral faces associated with the rectangular brick elements, so special
care is required in this interface region. Because finite-volume techniques simply
integrate over cell volumes, this apparent misalignment challenge is readily resolved
by introducing a new interfacing hexahedral element that had one of its traditional
quadrilateral faces subdivided into two triangles [8]. In this way, the direct interface
of tetrahedral and hexahedral elements can be accomplished. Alternatively, a single
layer of pyramidal elements can also be used to accomplish this transition without
the creation of nonstandard elemental cells.

Although finite-volume techniques that are based on offset primal and dual grids
facilitate the realization of an interface of unstructured grids with the FDTD method,
all known offset-grid FVTD methods suffer from late-time instabilities on nonrect-
angular cell shapes. Consequently, all known hybridizations involving offset-grid
FVTD methods with the FDTD method similarly experience these types of insta-
bilities in the late time. Lowpass filtering schemes have been found to be some-
what effective at suppressing or delaying the onset of instabilities [9]; however,
this is accomplished by introducing dissipative loss, and consequently, the resulting
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algorithms no longer conserve energy. Alternative time-stepping algorithms have also
been investigated [18] and have similarly been reported to simply delay the onset of
instability, which may or may not be sufficient for practical applications.

Although conceptually the same with regard to the topology of the FVTD–FDTD
hybrid-grid interface, the use of finite element techniques to advance the fields in the
conformal region of the grid provides significant advantages. Most notably, FETD
methods are well known to be provably numerically stable, and hence there is no
issue with the onset of late-time instabilities caused by the presence of eigenvalues
that fall outside the unit circle in the complex plane [49]. Consequently, early work to
construct a conformal mesh technique that interfaced with FDTD also utilized FETD
methods in the unstructured mesh region [10–12]. However, the possible equivalence
of FETD and FDTD described in the preceding section was not utilized in these early
studies, so the interface region lacked the necessary symmetry requirements to obtain
a globally stable algorithm. Subsequent formulations made use of this equivalence
and a stable interface was obtained. An algorithm of this type is described next.

4.6.2 Stable Formulation

The electric-field time advancement in a finite element domain was given previously
by (2.36) and is repeated here for convenience:

(
1

(�t)2
[T ] + 1

2�t
[R] + β[S]

)
{E}n+1 =

(
2

(�t)2
[T ] − (1 − 2β)[S]

)
{E}n

−
(

1

(�t)2
[T ] − 1

2�t
[R] + β[S]

)
{E}n−1 + β{ f }n+1 + (1 − 2β){ f }n + β{ f }n−1.

(4.116)

Two cases of this equation will be of interest. By defining β = 0, we obtain the
conditionally stable central-difference field advancement:

(
[T ] + �t

2
[R]

)
{E}n+1 = (

2[T ] − (�t)2[S]
) {E}n

−
(

[T ] − �t

2
[R]

)
{E}n−1 + (�t)2{ f }n (4.117)

and by defining β = 1/4, we obtain the unconditionally stable field advancement

(
[T ] + �t

2
[R] + (�t)2

4
[S]

)
{E}n+1 = 2

(
[T ] − (�t)2

4
[S]

)
{E}n

−
(

[T ] − �t

2
[R] + (�t)2

4
[S]

)
{E}n−1 + (�t)2

4

({ f }n+1 + 2{ f }n + { f }n−1
)
.

(4.118)
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As described in the preceding section, when trapezoidal integration is used in the
construction of the finite element matrices for the case of brick elements, (4.117) can
be viewed as an explicit FDTD field advancement for the electric field. However, for
the case of more general elemental shapes, such as tetrahedra, skewed hexahedra,
prisms, and/or pyramidal elements, we will use (4.118) and construction of the
elemental matrices will be based on exact integration techniques, which will give
rise to a traditional implicit finite element field advancement for these cells. Thus,
the possible realization of a global implicit–explicit algorithm is apparent. Similar
to what is described in Refs. 16 and 20, a succinct global algorithm that combines
(4.117) and (4.118) can be written in terms of the “implicitness” factor βel as well
as the form of the spatial integration taken over the ensemble of elements in the
computational domain: namely,

Nel∑
el=1

(
[Tel ] + �t

2
[Rel] + βel (�t)2[Sel ]

)
{E}n+1

=
Nel∑

el=1

(
2[Tel ] − (1 − 2βel )(�t)2[Sel ]

) {E}n

−
Nel∑

el=1

(
[Tel] − �t

2
[Rel ] + βel (�t)2[Sel ]

)
{E}n−1

+ (�t)2
Nel∑

el=1

(
βel{ fel}n+1 + (1 − 2βel ){ fel}n + βel{ fel}n−1

)
. (4.119)

In (4.119), [T ] = [T1] + [T2] + · · · + [TNel ], where [T] has simply been decomposed
into the contributing elements [Tel], el = 1, . . . , Nel . Decomposing the finite element
matrices into their regional elemental contributions highlights the two different in-
tegration schemes that are used: trapezoidal and exact spatial integration. Similar
interpretations are used for the matrices [R] and [S] as well as for the forcing func-
tion. The definition of the implicitness parameter βel has also been extended to
accommodate the type of time differencing to be used on an elemental level; specifi-
cally, βel = 0 in the case of the rectangular bricks that are to be associated with the
FDTD region of the hybrid grid (the explicit time-stepping region), and βel = 1/4
elsewhere (the implicit time-stepping region). An analytical proof of the algorithmic
stability of (4.119) is available [16,20], and the specific form for the vector edge basis
functions for the brick, tetrahedral, and pyramidal elements used in the FETD portion
of the hybrid grid can be found in Ref. 20.

Note that by writing the time-advancement scheme in the form of (4.119), it is
seen that the entire computational domain is formally considered to be based on a
global finite element discretization. The distinction between finite element and FDTD
regions of the hybridized grid is largely one of preference and coding. Specifically,
the FDTD algorithm based on the first-order coupled-curl Maxwell’s equations is
traditionally used for structured grids and the resulting coding can be written in
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Figure 4.7 Portion of the interface between an explicit and structured FDTD grid and an
implicit and unstructured FETD grid. Data exchange from the FDTD grid to the FETD grid
occurs on the thick solid line, whereas data exchange from the FETD grid to the FDTD grid
occurs on the thick dashed lines. Trapezoidal integration is used for the brick elements in the
interface region that are associated with the FETD region.

a highly efficient manner. Consequently, to maximize computational efficiency and
minimize the use of computer memory, practical implementations of (4.119) typically
utilize the traditional FDTD algorithms for the uniform portions of the hybrid grid
and finite element algorithms elsewhere. In this way, the matrices [T], [R], and [S]
do not need to be stored for the FDTD region of the grid.

At the interface between the FETD and FDTD algorithms, a simple data exchange
is required. More specifically, and with reference to Figure 4.7, the global time
advancement can be accomplished by the following algorithm:

The electric fields in the FDTD region are updated explicitly to time step n + 1: namely,
{EFDTD}n+1. The portion of these electric fields that resides on the thick solid line in
Figure 4.7 defines a Dirichlet boundary condition for the finite element domain such
that {EFDTD}n+1 → {E}n+1. Subject to this interface boundary condition, the remaining
electric fields in the finite element region are advanced implicitly to time step n + 1.
The resulting solution for the finite element–based electric fields that reside on the thick
dashed line shown in Figure 4.7 are then transferred to the FDTD region according to
{E}n+1 → {EFDTD}n+1. With these electric fields in place, the magnetic fields on the
FDTD portion of the grid can be advanced to time step n + 3/2, and the time step is
completed. This procedure continues for the duration of the simulation.
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Figure 4.8 Locations of the FETD, FDTD, and PML regions, as well as the near-to-far-field
transformation surface used for a complete FETD–FDTD implementation. (See insert for color
representation of figure.)

Note that this basic data-exchange procedure is applicable to many hybridized-grid
formulations. For example, for a finite volume–based algorithm in the unstructured-
grid region, {E}n+1 would simply be computed by the finite-volume technique. Thus,
the adaptation to a variety of new hybrid-grid algorithms is apparent and will prob-
ably be a topic of future research. As noted previously, the key to the success of
the FETD–FDTD scheme is the potential equivalence of FETD to FDTD on brick
elements, which leads to a symmetric interface condition. To obtain a globally stable
algorithm, a similar symmetry condition would need to be established for alternative
hybridized algorithms. More specifically, the stability of each constituent algorithm
is not sufficient to ensure the stability of a hybridized formulation.

The locations of the FETD, FDTD, PML, and near-to-far-field transformation sur-
face for a complete FETD–FDTD implementation are shown in Figure 4.8. Although
only a single FETD region is shown, multiple FETD instances may be present.

4.7 BUILDING HYBRID MESHES

The realization of a global mesh that permits interfacing unstructured finite elements
with a structured uniform grid is independent of the particular regional algorithm
to be used to solve for the fields. In the specific case of the FETD–FDTD hybrid
technique, unstructured tetrahedral elements are typically used in the finite element
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region, whereas structured rectangular brick elements are used in the FDTD region.
Alternative element combinations, such as skewed hexahedral or prismatic elements
are, of course, possible within the FETD spatial region; however, for purposes of
this section we consider the tetrahedral element case. Obviously, a direct connection
between tetrahedral and brick elements is not possible, due to the edge misalignment
between these two elements, and consequently, a transitional element such as a
pyramid is typically required. However, because pyramidal elements are not widely
used in practical applications across a variety of scientific disciplines, this element
type is not widely supported by commercial mesh generation software, although a
few exceptions exist [50,51].

In the event that pyramidal elements are not supported by specific mesh generation
software, they can still be constructed readily in a straightforward manner. The basic
procedure is either to merge the interior faces of two neighboring tetrahedral elements
that connect to the grid interface, or to add an additional node at the barycenter of
a brick element to which new edges are constructed. For example, in the latter
case the brick element may be subdivided into five pyramidal elements along with
two tetrahedra. In this way, the triangular faces of the constructed tetrahedra will
naturally match to the tetrahedral elements within the unstructured grid region, and
the quadrilateral faces of the bases of the pyramids will edge-align with the structured-
grid brick elements used throughout the FDTD region. Both approaches have been
adopted in the development of effective FETD–FDTD solutions.

Even though the construction of pyramidal elements is straightforward, certain
constraints are required for the termination of the tetrahedral-grid region if a direct
connection to an FDTD grid is to be accomplished. Specifically, the nodes on the
tetrahedral-grid outer boundary ultimately need to align with those of the FDTD
brick elements. A simple way to accomplish this is to place a uniform, or mapped,
triangular mesh on this boundary as first described in Ref. 8. More specifically, Figure
4.9 shows a possible path to constructing a tetrahedral grid that will interface directly
to a structured FDTD grid. In Figure 4.9(a) we have defined the solid model of a
scattering geometry of interest. The desired geometry is then placed into a rectangular
container as shown in Figure 4.9(b). On the boundary of the container we place a
mapped triangular mesh as shown in Figure 4.9(c), where the specified size of the
triangles is based on the desired �x, �y, and �z edge lengths associated with the
FDTD cells to which the tetrahedra will interface. The scatterer within the container
is then meshed as desired, and finally, the region exterior to the scatterer is meshed
out volumetrically to the mapped triangular mesh that was defined on the boundary
of the container. This unstructured tetrahedral mesh is now suitable for placement
within an FDTD background mesh, and the pyramidal transitioning elements can be
constructed following one of the two procedures described above. The simulation on
the hybrid mesh can then be realized, as illustrated in Figure 4.9(d).

A useful aspect to this procedure is that multiple instances of the original geometry
can easily be placed within the FDTD background grid through a simple translation
and/or rotation process. Thus, geometry can be relocated without recreating the
tetrahedral mesh. In addition, materials can extend through the interface regions
between the solution methods. For example, complex antennas and feed regions can
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Arbitrary geometry

Rectangular container

3. Fill volume with tetrahedra

Surface currents

1. Arbitrary surface mesh
on principal geometry

2. Uniform surface mesh

(a)

(b)

(c)

(d)

Figure 4.9 Procedure to construct a simple unstructured tetrahedral grid interfaced to a
structured brick-element grid. (a) Solid geometry desired. (b) Suitably sized rectangular box
to hold the geometry. (c) Uniform triangular surface mesh on the box and arbitrary triangular
mesh on the geometry (filled with a tetrahedral mesh in between). (d) Unstructured mesh
embedded in a background FDTD mesh (not shown) and the solution. (See insert for color
representation of figure.)
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be modeled accurately using finite element technology, and then their ground planes
and/or substrates can be carried into and solved efficiently within the FDTD region.
The FDTD region also accommodates the global grid termination, where the FDTD
PML techniques described in Section 4.2 can be applied.

4.8 WAVE-EQUATION STABILIZATION

The wave equation

∇ ×
[

1

μ
∇ × E(t)

]
+ ε

∂2E(t)

∂t2
+ σe

∂E(t)

∂t
= −∂Jimp(t)

∂t
(4.120)

supports the nontrivial solution

E(t) = −(at + b) ∇ϕ (4.121)

with σe = 0 and Jimp = 0, where ϕ denotes a scalar potential and a and b are constants.
Because a is not necessarily zero in (4.121), a solution to (4.120) can theoretically
drift linearly in time. However, by integrating (4.120) such that

∇ ×
[

1

μ
∇ ×

∫ t

0
E(τ ) dτ

]
+ ε

∂E(t)

∂t
+ σe E(t) = −Jimp(t) (4.122)

the value of a must now be exactly zero in (4.121). It is noted that formulations
based on the two first-order Maxwell’s equations instead of the second-order wave
equation, such as the traditional FDTD algorithm and the alternative FETD algorithm
defined by (4.104) and (4.105), will not typically support a solution that will drift
in time.

To remove this potential theoretical challenge associated with the direct numerical
solution of the wave equation (4.120), Artuzi [52] proposed solving (4.122) using the
alternative discrete finite element equation

(
[T ] + �t

2
[R] + (�t)2

4
[S]

)
{v}n = { f }n − [R]{E}n−1/2 − [S]{w}n (4.123)

with

{E}n+1/2 = {E}n−1/2 + �t{v}n (4.124)

{w}n+1 = {w}n + �t{E}n+1/2 (4.125)
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where the desired solution is given by {E}n+1/2. The elements of the matrices [T],
[R], and [S] are the same as those defined previously by (2.28)–(2.30), respectively;
however, the elements of the excitation vector {f} are given by

fi (t) = −
∫∫∫

V
Ni · Jimp dV (4.126)

which corresponds to the time integral of (2.31) in the absence of an impressed mag-
netic current source. The system (4.123)–(4.125) has been found to be unconditionally
stable and free of a low-frequency or late-time drift.

Practical antenna applications with realistic loss mechanisms, which include ra-
diation loss, are typically well characterized by the traditional Newmark-beta for-
mulation for the wave equation defined by (4.118). However, lossless internal res-
onator simulations perpetuating for hundreds of thousands of time iterations and
low-frequency applications utilizing a time step that is hundreds or perhaps thou-
sands of times larger than a Courant-limited algorithm can both benefit from the
alternative formulation (4.123)–(4.125).

To demonstrate the utility of the finite element formulation defined by
(4.123)–(4.125), we consider a lossless rectangular resonator example. This example
is solved by both the traditional Newmark-beta discretization given by (4.118) and
the alternative formulation (4.123)–(4.125), with the results presented in Figures 4.10
and 4.11. The nonphysical drift in the traditional solution of this type of application
is shown in Figure 4.10(a), where an iterative matrix solution with a 10−4 residual
error was used. When using iterative techniques to solve the governing system of
equations associated with the traditional Newmark-beta formulation, a simple reduc-
tion in the residual error can be effective in delaying the onset of the linear growth
term in (4.121) beyond a steady-state solution for most practical applications. For ex-
ample, in the case of the lossless resonator, iteratively solving (4.118) with a residual
error of 10−8 instead of 10−4 leads to the interior solution shown in Figure 4.10(b),
where the drift seen in Figure 4.10(a) has been largely eliminated over the 100,000
time iterations used for this simulation. Direct solution methods, wherever feasible
based on the number of unknowns, can provide further benefits. The reason for this
improvement is that either a smaller residual error in the case of iterative solutions or
the use of direct solution methods will lead to globally reduced numerical error on
the grid and thereby further suppress the emergence of solutions such as (4.121) in
the traditional Newmark-beta formulation. Alternatively, representation (4.123) pro-
vides a simple approach to fully remove the linear transient growth term in the finite
element solution of the wave equation even with larger definitions for the residual
error, and this is shown in Figure 4.11(a) for the lossless resonator. Finally, since the
precise temporal behavior predicted by the two solution procedures is difficult to see
when visualized over numerous time steps, an early-time comparison of both (4.118)
and (4.123) is shown in Figure 4.11(b), and the results are seen to overlay. In addition
to the approach described by (4.123)–(4.125), alternative techniques to stabilize the
wave equation have been proposed [53,54].
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Figure 4.10 Traditional Newmark solution based on (4.118) for a lossless rectangular res-
onator. (a) Traditional Newmark method with 10−4 residual. (b) Traditional Newmark method
with 10−8 residual. The source term was a differentiated Gaussian pulse.
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Figure 4.11 Modified Newmark solution based on (4.123) for a lossless rectangular res-
onator. (a) Modified Newmark method with 10−4 residual and 2 million time iterations. (b)
Early time comparison of the traditional Newmark method with 10−8 residual and the modified
Newmark method with 10−4 residual. The source term was a differentiated Gaussian pulse.

4.9 VALIDATION EXAMPLES

The first example of the FETD–FDTD hybrid technique is a coaxial-fed recessed
patch antenna with an infinite flange, as shown in Figure 4.12. The patch antenna re-
sides on a substrate with a thickness of 0.08779 cm and a relative permittivity of 2.17.
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3.4 cm
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Pin

1.28 cm 0.85 cm
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εr=2.17

Flange

Patch

(a)

(b)

Figure 4.12 Coaxial-fed patch antenna recessed in a ground plane. (a) Geometry. (b) Local
finite element surface mesh of the coaxial feed with an inner radius of 0.045 cm, an outer
radius of 0.155 cm, and a relative permittivity of 2.2.

The patch was driven by a 50-
 coaxial feed with an inner radius of 0.045 cm, an
outer radius of 0.155 cm, and a relative permittivity of 2.2. A 50-
 resistor was used
to load the antenna by using a technique described in Chapter 6. The antenna and a
portion of the conducting flange were included within the conformal FETD mesh,
and the continuation of the flange was accomplished by pushing it initially through
the FETD–FDTD interface region and onto the FDTD grid. The FDTD grid was ter-
minated with a PML. Predicted and measured [55] data for the input resistance and
reactance are shown in Figure 4.13(a) and (b), and the data correlation is generally
very good.

The second example is plane-wave scattering by a metallic double ogive, where
the geometry is shown in Figure 4.14(a). The double ogive is formed by combining
two half-ogives. The first half-ogive has a length of 6.36 cm, a maximum radius of
2.54 cm, and a half-angle at the tip of 46.4◦. The second half-ogive has a length
of 12.72 cm, a maximum radius of 2.54 cm, and a half-angle of 22.62◦ at the
tip. The double ogive was modeled by first-order tetrahedral elements within the
conformal FETD region of the hybrid FETD–FDTD grid, whereas the surrounding
space was modeled by the FDTD technique with a PML grid termination. The surface
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Figure 4.13 Solution for the input impedance of a recessed antenna based on the hybrid
FETD–FDTD technique. (a) Resistance. (b) Reactance.

current density due to a plane wave incident on the smaller angled tip is shown in
Figure 4.14(b), where the plane wave had a sinusoidal profile with a frequency of
30 GHz. At 30 GHz, the double ogive has an electrical length of 19.05 wavelengths.
Measurements [56] and predictions for the monostatic RCS of the double ogive in the
xz-plane at 9 GHz are shown in Figure 4.15, where the data correlation is generally
very good.

Because the FETD–FDTD hybrid formulation is a transient solution method, the
technique computes the monostatic RCS directly at a single incident angle over a
wide bandwidth. For example, for a unit amplitude plane wave with a Gaussian
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Figure 4.14 Metallic double ogive. (a) Geometry. (b) Surface current density for a sinusoidal
plane-wave excitation at 30 GHz. (See insert for color representation of figure.)

time profile incident on the double ogive shown in Figure 4.14(a), the transient
VV-polarized monostatic electric field in the elevation direction θ = 60◦ is shown in
Figure 4.16(a). Using the Fourier transform, the broadband, monostatic VV-polarized
RCS in this direction is shown in Figure 4.16(b), and it is noted that the 9-GHz
numerical value of −52 dB corresponds to the θ = 60◦ monostatic data plotted in
Figure 4.15(a).

4.10 SUMMARY

The FETD method represents a powerful numerical method for the broadband solu-
tion of practical antenna, array, and scattering applications. This is because an FETD
implementation will conform precisely to a complex geometry of arbitrary shape
and can be formulated to be unconditionally stable so that the time step does not
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Figure 4.15 Monostatic RCS of the metallic double ogive at 9 GHz. (a) VV polarization.
(b) HH polarization.

have to be reduced when spatially resolving small features, such as the antenna feed
region. However, due to the typical use of unstructured grids, these methods are more
computationally expensive on a per-cell basis than approaches based exclusively on
structured grids, such as the traditional FDTD method. Consequently, it is of inter-
est to formulate techniques that can utilize the best features of both methodologies,
and an effective hybridization of FETD and FDTD was the topic of this chapter.
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Figure 4.16 Monostatic RCS of the metallic double ogive at elevation angle θ = 60◦.
(a) Transient excitation and response. (b) Monostatic RCS as a function of frequency.

By demonstrating that the FDTD method is a special case of the vector edge–based
FETD technique, it was shown that a globally stable FETD–FDTD hydridization can
be constructed. The resulting method is an implicit–explicit time-stepping algorithm
where the unconditionally stable implicit FETD method is used to accommodate the
complex surface, material, and feeding regions of antennas and arrays, whereas the
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structured-grid and explicit FDTD technique is used for efficient accommodation to
the geometrically less complex regions of the global grid.

Because of the importance and maturity of both the FDTD PML and FDTD
near-to-far-field transformation techniques in the context of the FETD–FDTD hybrid
concept, these techniques were also reviewed in this chapter. In addition, an alternative
FETD technique based on the two first-order Maxwell’s curl equations, as well as grid
generation approaches and a technique to stabilize the transient solution for the wave
equation, were discussed further in this chapter. The alternative FETD formulation
based on the two first-order equations is also suitable for interfacing to the FDTD
method.

The FETD–FDTD technique is a mature technology that has been applied suc-
cessfully to diverse electromagnetic applications, ranging from electromagnetic com-
patibility and interference (EMC and EMI) of circuit and system components to
large-scale, ultrawideband finite phased arrays, as well as complex antennas having
small details located on electrically large platforms. Many of these applications can
be found throughout the book, as well as in Refs. 13–20.
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5 Antenna Source Modeling and
Parameter Calculation

To characterize an antenna, the principal measured parameters of interest are the
input impedance and radiation patterns, from which other parameters can be derived.
For example, the reflection coefficient and the voltage standing-wave ratio (VSWR)
observed at the feed can be calculated from the input impedance, and the antenna
directivity and gain can be calculated from the radiation pattern. Calculation of
the antenna input impedance depends on the feed model employed in the numerical
simulation; hence, an appropriate feed model is often essential to obtaining correlation
of measured and predicted input impedances. Simplified feed models, such as voltage
gap sources, are frequently used to predict accurate far-field patterns and in initial
antenna design studies. By using Huygens’ principle, the antenna radiation pattern
can be computed from a near-field surface integral based on equivalent currents
located on the surfaces within the finite element mesh. Because integration tends
to average out small errors in the currents, antenna radiation patterns are much less
sensitive to the fidelity of the feed model than are impedance predictions.

In this chapter, the numerical modeling of antenna feeds and plane-wave excita-
tions and the calculation of the input impedance and far-field patterns are discussed
in detail. The antenna feed models discussed include current probes, voltage gaps,
and accurate models for coaxial and other types of waveguides. In addition to the
calculation of the input impedance and far-field patterns, the near-field distribution
may also reveal useful information about the underlying physics of the antenna per-
formance. Therefore, visualization for the near field is also described briefly at the
end of the chapter.

5.1 ANTENNA FEED MODELING

A proper antenna feed model provides not only the desired excitation to the antenna
but also a means by which the input impedance and other parameters can be calcu-
lated. Despite the various types of feeds that an antenna may actually employ, the
numerical models for an antenna feed can be classified into two categories. The first
type of feed model incorporates the precise feed geometry into the numerical sim-
ulation. Although numerically accurate, these models increase the burden of mesh

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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generation. More important, challenges may arise when the antenna feed is small in
dimensions compared to the wavelength. In these situations, a much denser spatial
discretization has to be employed in the vicinity of the feed to resolve the feed ge-
ometry, resulting in a highly unbalanced mesh over the entire computational domain.
Handled inappropriately, this may cause a significant increase in run time, due to an
increase in the condition number of the system matrix.

The second type of feed model is based on a simplified approach that uses a current
probe or a voltage gap (usually the low-frequency approximation) to represent the ac-
tual antenna feed. Such models are numerically convenient and efficient to implement
and do not require especially dense spatial discretization in the vicinity of the feed.
Moreover, they enable the separation of antenna properties from the effect of feeding
networks. This may be helpful during the design process, in which the objective is to
understand the behavior of the antenna itself. However, the accuracy of these models
may depend on the frequency, the antenna type, and the parameters of interest.

5.1.1 Current Probe

Simplified feed models are widely used in the numerical simulation of antennas.
Although a voltage source such as a delta-gap source is commonly used in moment-
method simulations, it is more convenient to model a current source in finite element
simulations. The simplest current source model is a short and infinitesimally thin
current probe inserted at the feed point of the antenna, as illustrated in Figure 5.1(a).
This model was first proposed to excite a microstrip patch antenna in a finite element
simulation [1]. In this simple model, the excitation current density Jimp(r) can be
modeled as a delta function in three-dimensional space; for example, a short current
probe oriented in the z-direction and located at (xf, yf) can be modeled as

Jimp(x, y, z) = ẑ Ioδ(x − x f , y − y f ) z ∈ L (5.1)

where Io is the lumped current flowing into the antenna and L is the length of the
probe. Such a current source can also be considered as an infinitesimal dipole with a

I I

+

(a) (b)

−

+

−

+

−
V V1 V2

Figure 5.1 Electric current probe excitation. (a) Simplified model. (b) Improved model that
calculates the voltage along offset lines. (After Lou and Jin [4], Copyright C© IEEE 2005.)
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constant current distribution. Using (5.1) as excitation, the electric field everywhere
inside the computational domain can be determined uniquely. Once the electric field
is determined, the voltage across the probe can be computed according to

V =
∫

L
ẑ · E(x f , y f ) dz (5.2)

and the input impedance of the antenna, by its definition, can be calculated as

Z in = V/I. (5.3)

The use of an electrically small input current source corresponds to a Norton equiv-
alent network for the source. As such, if one desires a voltage source with amplitude
Vo and internal resistance Ro, the definition of Io in (5.1) would be Vo/Ro. In addition,
the input current I in (5.3) can be represented by I = Io − V /Ro. This strategy can be
extended to model commonly used circuit elements in the finite element method [2],
and this topic is discussed in more detail in Section 6.3.

The current probe model can be used to approximate a variety of actual antenna
feeds, such as coaxial cable and microstrip lines. Typically, the length of the probe
has to be small compared to the shortest wavelength in the frequency band of interest
in order for the distributed effect to be negligible. To illustrate the performance of
the current probe model, we consider a microstrip patch antenna geometry consisting
of a 5.0-cm × 3.4-cm rectangular conducting patch residing on a dielectric substrate
of thickness 0.0877 cm, relative permittivity 2.17, and conductivity 0.362 mS/m.
The substrate is housed in a 7.5-cm × 5.1-cm rectangular cavity recessed in a ground
plane (Figure 5.2). The patch is excited by a current probe applied at xf = 1.22 cm and
yf = 0.85 cm. A 50-
 impedance load is placed at xL = −2.2 cm and yL = −1.5 cm.

Patch

Cavity

Ground Plane

A

B

L

W x

yz

d

Figure 5.2 Microstrip patch antenna recessed in a ground plane (A = 7.5 cm, B = 5.1 cm,
L = 5.0 cm, W = 3.4 cm, d = 0.0877 cm). The antenna is fed by a coaxial line, which is
modeled as an electric current probe.
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Figure 5.3 Input impedance of a loaded microstrip patch antenna. (a) Resistance. (b) Reac-
tance. (After Jiao and Jin [3], Copyright C© Wiley 2002.)

This impedance load can be modeled as a post of finite conductivity between the
patch antenna and the ground plane. The required conductivity of the post is given by
σ = L/ZLs, where L and s denote the length and the cross section of the post and ZL

is the impedance. Figure 5.3 shows the input impedance of the antenna as a function
of frequency from 1 to 4 GHz. Two sets of results are shown in the figure. One set is
calculated by the frequency-domain finite element method using a boundary integral
equation for mesh truncation [1]. The other set is calculated using the time-domain
finite element method using perfectly matched layers for mesh truncation [3]. Since
both calculations employ the same probe model, their results agree well. Although not
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included in Figure 5.3, the first set of results has also been compared to experimental
data, and the agreement is quite good [1]. This example is the same as the one treated
in Figures 4.12 and 4.13 using the FETD–FDTD hybrid technique, where the coaxial
feed was modeled physically. It can be seen that the results shown in Figure 5.3
correlate very well with those in Figure 4.13.

In the example above, a good agreement with measurement and the solution of a
precise feed modeling is obtained because the dielectric substrate is very thin; hence,
the current probe is very short. If we increase the substrate thickness—and, thus, the
length of the current probe—the calculation of the input impedance becomes less
accurate, although the prediction of far-field behaviors such as radiation patterns and
polarization characteristics is not affected. One reason is that for a long probe, the
current is no longer constant along the probe. In this case, one can break up the feed
line into several segments and replace one segment with a current probe so that the
probe can be made short. The fundamental reason for the inaccuracy of the current
probe model is that the simplified numerical model does not correspond exactly to
the original geometry of the antenna feed. For example, since a radius is not specified
for the probe and is usually assumed to be infinitesimally thin, the electromagnetic
field is singular in the vicinity of the probe, even though this singularity is dampened
in the numerical solution. Numerical errors due to this imprecise feed model affect
the calculation of the input impedance much more so than far-field quantities because
this calculation depends directly on the field solution local to the feed.

To demonstrate the problem of field singularity, we calculate the input admittance
of a monopole antenna over a ground plane, as illustrated in Figure 5.4(a), using
the simplified probe model shown in Figure 5.4(b). In the simplified probe model, a
1.6-mm-long electric probe is placed between the ground plane and the monopole as
an excitation. The calculated input conductance and susceptance are shown in Fig-
ure 5.5 and are compared with the calculation based on the accurate coaxial model
to be discussed in Section 5.1.3 [4]. It is clearly evident that there is a significant dif-
ference between the probe-model (solid line) and coaxial-model (dotted line) results,
despite the fact that both employ an overly dense mesh (to ensure that the numerical
discretization error does not affect the comparison). The difference persists when an
even denser mesh is employed, which indicates that the difference is indeed due to
the aforementioned intrinsic drawback in the simplified probe model. A remedy to
avoid the problem caused by the singular field at the probe is to calculate the voltage
using the field on a cylindrical surface centered at the probe and having a radius equal
to that of the physical feed (the inner conductor in the case of a coaxial feed). Since
the field on this cylindrical surface is quite axisymmetric, it is sufficient to calculate
the field along one or two lines (called observation probes here) on the surface, as
illustrated in Figure 5.1(b). When two observation probes are used, the terminal volt-
age is then calculated as the average voltage on the two probes. The input admittance
calculated by using this improved model is also shown (dashed line) in Figure 5.5.
It is noted that the result agrees with the coaxial model much better than does the
original probe model. In contrast with the delta-gap model (discussed next), where
the susceptance is slightly smaller compared to the accurate measurement [5], it is
observed that the input susceptance calculated by the probe model is always slightly
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h
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dI

(a) (b)

Figure 5.4 Cylindrical monopole antenna on a ground plane. (a) Geometry (a = 1.52 mm,
b = 3.5 mm, h = 5 cm). (b) Simplified probe feed model (d = 1.6 mm).

larger than the corresponding coaxial-model result, as can be seen in Figure 5.5(b).
The difference can be explained by the additional susceptance associated with
the artificial gap between the conductors. Figure 5.6 shows an equivalent circuit for
the feed, where the gap is modeled as a capacitor in parallel with the antenna. In the
case of the monopole antenna, the gap is modeled conveniently as a parallel-plate
capacitor, and its capacitance is determined by

C = ε0 A

d
(5.4)

where A is the cross-sectional area of the monopole and d is the length of the gap.
After C is determined, the antenna admittance Ya can be corrected as

Ya = Yp − jωC (5.5)

where Yp denotes the antenna admittance calculated using the improved probe model.
With this correction, the input susceptance result becomes more accurate, as shown
in Figure 5.5(b), especially at higher frequencies. It should be noted that the good
agreement shown in Figure 5.5 is obtained specific to the coaxial-fed monopole
antenna problem. The accuracy of the simplified source model with respect to the
original feeding structure will, of course, depend on the specific geometries and con-
figurations. The example above is intended to demonstrate that the simplified probe
feed model can still be used to predict the antenna input impedance or admittance if
the electromagnetic field in the feed region is modeled properly.

5.1.2 Voltage Gap Generator

As noted previously, the concept of the delta-gap voltage generator is used widely
for the analysis of linear antennas based on the moment method [6] and the
finite-difference time-domain (FDTD) method [5]. Although the current-probe model
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Figure 5.5 Cylindrical monopole antenna. (a) Input conductance. (b) Input susceptance.
(After Lou and Jin [4], Copyright C© IEEE 2005.)

Ya

Yp

jωc

Figure 5.6 Equivalent circuit of the probe feed.
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Figure 5.7 Linear dipole antenna showing local spatial grid region for impressing a dis-
tributed voltage source for modeling a delta-gap voltage generator.

discussed in the preceding section is commonly used in finite element analyses, the
delta-gap voltage generator is also straightforward to apply within the finite element
method [1]. The delta-gap source assumes that the impressed voltage induces an
incident electric field that exists only within the region of the gap. A simple dipole
antenna is shown in Figure 5.7, and the feed region is represented by the surface
Sg, which corresponds to a “belt” of width d (� λ) around the circumference of the
ẑ-directed linear antenna with radius a. The potential difference across the belt is
defined to be Vo. Consequently, the electric field on Sg can be defined as

E(r) = − Vo

d
ẑ r ∈ Sg. (5.6)

In the finite element setting, this expression can be incorporated conveniently as a
Dirichlet boundary condition by projecting the defined electric field onto the finite
element edges located on Sg. Specifically, the coefficient for the gap electric field
associated with the ith finite element edge on Sg is defined by

Ei = − Vo

d

ẑ · Ni

Ni · Ni
. (5.7)

Once the electric field is computed globally, we can calculate the magnetic field and
integrate along a closed contour encircling the feed to find the current flowing along
the feed, from which the input impedance can subsequently be evaluated as

Z in = Vo∮
C H · dl

(5.8)

where the integration contour C is illustrated in Figure 5.7.



P1: JYS

c05 JWBK322-Jin October 3, 2008 16:42 Printer: Yet to come

ANTENNA FEED MODELING 155

Frequency (GHz)

A
d

m
it

ta
n

ce
 (

m
S

)

0 0.2 0.4 0.6 0.8 1–10

–8
–6
–4
–2

0
2
4
6
8

10
12
14
16

Conductance (Thin-Wire Integral Equation)
Susceptance (Thin-Wire Integral Equation)
Conductance (FEM - Voltage Gap Source)
Susceptance (FEM - Voltage Gap Source)

Susceptance

Conductance

Ω = 2 ln(2h/a)
h = 0.25 m
a = 3.3242 mm

Figure 5.8 Input admittance of a straight wire antenna of half-length 0.25 m and radius
3.32 mm. The finite element solution is compared with the moment-method solution of the
thin-wire integral equation.

As an example to demonstrate the application of the voltage gap generator, we
simulate a straight wire antenna having a half-length h = 0.25 m and a radius
a = 3.32 mm using the hybrid FETD–FDTD algorithm described in Chapter 4. The
antenna thickness factor is 2 1n(2h/a) = 10, which corresponds to a moderately thin
wire antenna. A voltage gap generator is created by impressing (5.7) over the entire
circumference of the 5-mm-long gap region created at the middle of the antenna.
The input admittance calculated using (5.8) is plotted in Figure 5.8 and compared
with the well-established solution obtained by solving a thin-wire integral equation
using the method of moments. Even though the two solutions are obtained using two
very different approaches, the agreement is remarkably good over the frequency band
from 0 to 1 GHz. It is observed that the moment-method solution appears to model a
very slightly shorter antenna because of the thin-wire approximation. As pointed out
earlier, the voltage gap model may underestimate the susceptance slightly and has to
be used carefully to obtain converged results [5].

5.1.3 Waveguide Feed Model

Although simplified feed models are numerically attractive, their use is limited in
certain applications. For example, in the simulation of a horn antenna fed by a
rectangular waveguide, it is impossible to employ a simplified feed model to account
for the modal distribution inside the waveguide and to absorb the field reflected back
into the waveguide. In these situations it is necessary to model the antenna feed in a



P1: JYS

c05 JWBK322-Jin October 3, 2008 16:42 Printer: Yet to come

156 ANTENNA SOURCE MODELING AND PARAMETER CALCULATION

precise manner. This modeling requires the truncation of the feeding waveguide to
create a waveguide port and the formulation of an appropriate boundary condition
to be applied at the waveguide port. The desired boundary condition should be able
to launch an incident wave into the waveguide and, at the same time, absorb the
reflected wave from the antenna without any spurious reflection. Moreover, it is
desirable to place the port boundary as close to the antenna as possible to reduce
the size of the computational domain. One approach to terminating a waveguide port
is to use perfectly matched layers. However, the absorption of perfectly matched
layers becomes less effective as the frequency approaches the cutoff frequency of the
operating mode. Furthermore, the original perfectly matched layers were not designed
to absorb the evanescent waves that are present in the waveguide for modes below their
cutoff frequencies, although a modified formulation of the perfectly matched layers
has been proposed recently to improve its ability to absorb evanescent waves without
compromising its ability to absorb propagating waves, as discussed in Section 3.2.3.
Nevertheless, the modified formulation is computationally intensive, thus making
perfectly matched layers less attractive for terminating waveguides.

A more accurate and efficient approach is to impose a mixed boundary condi-
tion, specifically designed for the waveguide, on the waveguide port [7]. The exact
boundary condition can be derived based on waveguide modal expansions. All wave-
guide modes, including both propagation and evanescent modes, can be perfectly
absorbed by the boundary condition. This allows the waveguide to be truncated very
close to the antenna. To derive this boundary condition, consider a waveguide port
with a given incident electric field Einc and an unknown reflected field Eref (Fig-
ure 5.9). If this waveguide is homogeneous and isotropic, the reflected field can be
expressed as the superposition of orthogonal TEM (if it exists), TE, and TM waveg-
uide modes as

E = Einc + Eref

= Einc + a0eTEM
0 eγ TEM

0 z +
∞∑

m=1

ameTE
m eγ TE

m z +
∞∑

m=1

bmeTM
m eγ TM

m z (5.9)

Figure 5.9 Coaxial feed model.
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where m is the modal index; a0, am, and bm are the modal amplitudes; γ TEM
0 , γ TE

m , and
γ TM

m are the modal propagation constants; and eTEM
0 , eTE

m , and eTM
m are the modal func-

tions for the TEM, TE, and TM modes, respectively. In (5.9), z is a local coordinate,
which is defined to be perpendicular to the port surface and point in the direction of
the propagation of the incident field. Applying a curl operator to both sides of (5.9)
yields

n̂ × (∇ × E) = n̂ × (∇ × Einc) + γ TEM
0 a0eTEM

0 eγ TEM
0 z

+
∞∑

m=1

γ TE
m ameTE

m eγ TE
m z +

∞∑
m=1

−k2

γ TM
m

bmeTM
tm eγ TM

m z (5.10)

where eTM
tm denotes the transverse component of eTM

m . By modal orthogonality, the
modal amplitudes a0, am, and bm can be found as

a0 =
∫∫

Sp

eTEM
0 · [E − Einc] dS (5.11)

am =
∫∫

Sp

eTE
m · [E − Einc] dS m = 1, 2, . . . (5.12)

bm =
∫∫

Sp

eTM
tm · [E − Einc] dS m = 1, 2, . . . (5.13)

where Sp denotes the waveguide port cross section. By substituting (5.11)–(5.13) into
(5.10), (5.10) can be written in compact form as

n̂ × (∇ × E) + P(E) = Uinc (5.14)

where

P(E) = −γ TEM
0 eTEM

0

∫∫
Sp

eTEM
0 · E dS −

∞∑
m=1

γ TE
m eTE

m

∫∫
Sp

eTE
m · E dS

−
∞∑

m=1

−k2

γ TM
m

eTM
tm

∫∫
Sp

eTM
tm · E dS (5.15)

Uinc = n̂ × (∇ × Einc) − γ TEM
0 eTEM

0

∫∫
Sp

eTEM
0 · Einc dS

−
∞∑

m=1

γ TE
m eTE

m

∫∫
Sp

eTE
m · Einc dS −

∞∑
m=1

−k2

γ TM
m

eTM
tm

∫∫
Sp

eTM
tm · Einc dS.

(5.16)
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Equation (5.14) was first derived in the first edition of Ref. 7, applied to the analysis of
a variety of waveguide devices by Liu et al. [8], and was later referred to as the waveg-
uide port boundary condition (WPBC) [9]. Note that similar formulations based on
the modal expansion and mode matching have also been developed by others [10].
The analytical modal functions and their propagation constants (γm = √

k2
cm − k2)

can be found for certain common waveguide geometries, such as coaxial, rectangu-
lar, and circular waveguides (Tables 5.1 to 5.3). For waveguides with an irregular
cross section, the modal functions and their propagation constants can be computed
using a two-dimensional finite element method [7]. In fact, even for regular coaxial,
rectangular, and circular waveguide ports, it is often more efficient to employ the
numerical modal functions than the analytical ones in Tables 5.1 to 5.3.

The waveguide port boundary condition in (5.14) can readily be incorporated into
the frequency-domain weak-form wave equation (2.12), yielding

∫∫∫
V

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV + jk0

∫∫
©

So

(n̂ × T) · (n̂ × E) dS

−
∫∫

Sp

1

μr
T · P(E) dS = −

∫∫
Sp

1

μr
T · Uinc dS (5.17)

where μr denotes the relative permeability of the material filling at the waveguide
port, which is assumed to be homogeneous and isotropic. Following the spatial
discretization procedure outlined in Chapter 2, a linear system of equations can be
derived from (5.17) for a unique determination of the electric field everywhere inside
the antenna and at the waveguide port.

The procedure described above can be extended to inhomogeneously filled waveg-
uides [11]. For such a waveguide, the modes can no longer be expressed as TEM,

TABLE 5.1 Modal Functions and Their Cutoff Wavenumbers for a Rectangular
Waveguide with a Cross Section of a × b

Modal Functions eTEM
0 , eTE

m , and eTM
tm Cutoff Wavenumbers kcm

eTEM
0 = 0

eTE
pq =

√
νpνq

ab

1

kTE
cpq

(
x̂

qπ

b
cos

pπx

a
sin

qπy

b

− ŷ
pπ

a
sin

pπx

a
cos

qπy

b

)
kTE

cpq =
√( pπ

a

)2
+
(qπ

b

)2

eTM
tpq =

√
νpνq

ab

1

kTM
cpq

(
x̂

pπ

a
cos

pπx

a
sin

qπy

b

+ ŷ
qπ

b
sin

pπx

a
cos

qπy

b

)
kTM

cpq =
√( pπ

a

)2
+
(qπ

b

)2

νp =
{

1 p = 0
2 p �= 0

νq =
{

1 q = 0
2 q �= 0
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TABLE 5.2 Modal Functions and Their Cutoff Wavenumbers for a Circular
Cylindrical Waveguide with a Radius of a

Modal Functions eTEM
0 , eTE

m , and eTM
tm Cutoff Wavenumbers kcm

eTEM
0 = 0

eTE
pq =

√
νp/2

π
√

χ ′2
pq − p2 Jp(χ ′

pq )

[
ρ̂

p

ρ
Jp(χ ′

pqρ/a)

{− sin pφ

cos pφ

}

− φ̂
χ ′

pq

a
J ′

p(χ ′
pqρ/a)

{
cos pφ

sin pφ

}]
kTE

cpq = χ ′
pq

a
, J ′

p(χ ′
pq ) = 0

eTM
tpq =

√
νp/2

πχpq J ′
p(χpq )

[
ρ̂

χpq

a
J ′

p(χpqρ/a)

{
cos pφ

sin pφ

}

+ φ̂
p

ρ
Jp(χpqρ/a)

{− sin pφ

cos pφ

}]
kTM

cpq = χpq

a
, Jp(χpq ) = 0

TABLE 5.3 Modal Functions and Their Cutoff Wavenumbers for a Coaxial
Waveguide with an Inner Radius a and an Outer Radius b

Modal Functions eTEM
0 , eTE

m , and eTM
tm Cutoff Wavenumbers kcm

eTEM
0 = ρ̂

1√
2π ln(b/a)

1

ρ
kTEM

c0 = 0

eTE
pq = b

√
νp

2πχ ′
pq IT (χ ′

pq )

[
ρ̂

p

ρ
Tp(χ ′

pqρ/b)

{− sin pφ

cos pφ

}

− φ̂
χ ′

pq

b
T ′

p(χ ′
pqρ/b)

{
cos pφ

sin pφ

}]
kTE

cpq = χ ′
pq

b
, T ′

p(χ ′
pq ) = 0

IT (χ ′
pq ) =

[∫ b

a
T 2

p (χ ′
pqρ/b)dρ

]1/2
Tp(χ ′

pqρ/b)

= Y ′
p(χ ′

pqa/b)Jp(χ ′
pqρ/b)

−J ′
p(χ ′

pqa/b)Yp(χ ′
pqρ/b)

eTM
tpq = b

√
νp

2πχpq IS(χpq )

[
ρ̂

χpq

b
S′

p(χpqρ/b)

{
cos pφ

sin pφ

}

+ φ̂
p

ρ
Sp(χpqρ/b)

{− sin pφ

cos pφ

}]
kTM

cpq = χpq

b
, Sp(χpq ) = 0

IS(χpq ) =
[∫ b

a
S2

p(χpqρ/b)dρ

]1/2
Sp(χpqρ/b)

= Yp(χpqa/b)Jp(χpqρ/b)

−Jp(χpqa/b)Yp(χpqρ/b)
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TE, and TM modes. Furthermore, except for a few special cases, the modal functions
cannot be derived analytically. Instead, they have to be calculated numerically using
a two-dimensional finite element method [12,13]. If we denote the electric and mag-
netic modal functions as em and hm for mode m, which satisfy the modal orthogonal
relation

∫∫
Sp

(hm × en) · ẑ dS =
{

κm m = n
0 m �= n

(5.18)

the total field at the waveguide port can be expanded as

E = Einc + Eref = Einc +
∞∑

m=1

amemeγm z . (5.19)

The expansion coefficient can be determined using (5.18) as

am = 1

κm

∫∫
Sp

[hm × (E − Einc)] · ẑ dS. (5.20)

Applying a curl operator to both sides of (5.19) and using Maxwell’s equations for
the modal fields, we obtain

n̂ × (∇ × E) = n̂ × (∇ × Einc) − jωμ

κm

∞∑
m=1

am(n̂ × hm)eγm z . (5.21)

Since

hmeγm z = j

ωμ
∇ × (emeγm z) = j

ωμ
(∇t + γm ẑ) × emeγm z (5.22)

we have

ẑ × hm = 1

jωμ
(γmetm − ∇t ezm). (5.23)

Substituting this into (5.20) and (5.21), we obtain the waveguide port boundary
condition for an inhomogeneously filled waveguide:

n̂ × (∇ × E) + P(E) = Uinc (5.24)
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with

P(E) =
∞∑

m=1

1

jωμκm
(γmetm − ∇t ezm)

∫∫
Sp

(γmetm − ∇t ezm) · E dS (5.25)

Uinc = n̂ × (∇ × Einc) +
∞∑

m=1

1

jωμκm
(γmetm − ∇t ezm)

∫∫
Sp

(γmetm − ∇t ezm) · Einc dS.

(5.26)

Note that for an inhomogeneously filled waveguide, the modal fields are functions of
frequency, whereas for a homogeneously filled waveguide, they are independent of
frequency.

The frequency-domain waveguide port boundary condition for a homogeneous
waveguide derived above can be converted to the time domain in a straightforward
manner. Using the Laplace transform pair, which is denoted by ↔, we find that

γ TEM
0 = jk = jω

c
↔ 1

c

∂

∂t
(5.27)

γ TE
m =

√
k2

cm − k2 =
√

k2
cm + ( jω/c)2 ↔ 1

c

∂

∂t
+ hm(t) ∗ (5.28)

−k2

γ TM
m

= −k2√
k2

cm − k2
= ( jω/c)2√

k2
cm + ( jω/c)2

↔ 1

c

∂

∂t
+ gm(t) ∗ (5.29)

where kcm is the cutoff wavenumber of the mth mode, c = 1/
√

με, * again stands
for the time-domain convolution, and hm and gm are time-domain functions with
expressions that can be found analytically as

hm(t) = kcm

t
J1(kcmct)u(t) (5.30)

gm(t) = kcm

t
J1(kcmct)u(t) − k2

cmcJ0(kcmct)u(t) (5.31)

in which u(t) denotes a step function and J0 and J1 denote the first- and second-order
Bessel functions, respectively. Using these results, we obtain the waveguide port
boundary condition in the time domain as

n̂ × (∇ × E) + P(E) = Uinc (5.32)
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where

P(E) = −eTEM
0

∫∫
Sp

eTEM
0 · 1

c

∂

∂t
E dS −

∞∑
m=1

eTE
m

∫∫
Sp

eTE
m ·

(
1

c

∂

∂t
E + hm ∗ E

)
dS

−
∞∑

m=1

eTM
tm

∫∫
Sp

eTM
tm ·

(
1

c

∂

∂t
E + gm ∗ E

)
dS (5.33)

Uinc = n̂ × (∇ × Einc) − eTEM
0

∫∫
Sp

eTEM
0 · 1

c

∂

∂t
Einc dS

−
∞∑

m=1

eTE
m

∫∫
Sp

eTE
m ·

(
1

c

∂

∂t
Einc + hm ∗ Einc

)
dS

−
∞∑

m=1

eTM
tm

∫∫
Sp

eTM
tm ·

(
1

c

∂

∂t
Einc + gm ∗ Einc

)
dS. (5.34)

Equations (5.32), (5.33), and (5.34) can easily be incorporated into the time-domain
weak-form wave equation (2.25), which after spatial and temporal discretization can
be converted into a time-marching system [9].

In both the frequency- and time-domain versions, the waveguide port boundary
condition is expressed as a summation of an infinite number of waveguide modes.
When the series are not truncated, the expression is the exact boundary condition
satisfied on the waveguide port. In a numerical implementation, however, the infinite
summation is always truncated, and hence the boundary condition is only approxi-
mate. Nevertheless, since the magnitudes of the higher-order evanescent modes decay
quickly, it is usually sufficient to include only a small number of evanescent modes in
the boundary condition in addition to all the propagating modes, or alternatively, in-
crease the separation distance to the waveguide port such that most evanescent modes
are attenuated before reaching the waveguide port. Once the field at the waveguide
port is computed, the reflection coefficient (or S11) at the waveguide port can be
extracted according to

R =
∫∫

Sp
(E − Einc) · Einc dS∫∫

Sp
|Einc|2 dS

. (5.35)

Then the input impedance can be calculated from the reflection coefficient R
according to

Z in = 1 + R

1 − R
Z0 (5.36)

where Z0 is the characteristic impedance of the waveguide.
The waveguide port boundary condition has been implemented and studied exten-

sively for the finite element analysis of waveguide devices and antennas in both the
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frequency domain [8,11] and the time domain [4,9]. Its accuracy has been demon-
strated by many successful examples. Here, we consider three examples related to
antenna simulation. The first example is the simulation of a cylindrical monopole
antenna, illustrated in Figure 5.10(a). The antenna is fed by a coaxial line with an
incident TEM mode. The coaxial line is terminated by the waveguide port boundary
condition a small distance below the ground plane. The open computational domain
above the ground plane is truncated by a hemispherical surface on which the first-
order absorbing boundary condition is imposed to absorb the radiated fields. Accurate
analysis and measurement of the same antenna have been reported in the past [14]
and the results are used here as reference data. The reflection coefficients calculated

(a)

(b)
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Figure 5.10 Cylindrical monopole antenna. (a) Geometry (a = 1 mm, b = 2.3 mm, h =
32.8 mm). (b) Time-domain reflection coefficient at the coaxial port (τa = h/c). (After Lou
and Jin [9], Copyright C© IEEE 2005.)
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on the coaxial port are shown in Figure 5.10(b). As can be seen, the simulated results
are in excellent agreement with the measured data.

The second example is a 2 × 2 microstrip patch antenna array with the specific
geometry described in Figure 5.11(a). The coaxial line feed has inner and outer
radii ri = 0.48 mm and ro = 1.5 mm and is filled with dielectric material with
an εr value of 1.86. The entire array is printed on a substrate with εr = 2.67 and
μr = 1.0 and is housed in a 127.2-mm × 116-mm × 7-mm cavity in a ground plane.
Figure 5.11(b) shows the calculation of the mutual coupling (S-parameters) among its
four antenna elements [15]. More specifically, it gives the plots of the 4 × 4 scattering
matrix from 1 to 3 GHz. For the calculation, one antenna is excited and the other
three are terminated with a matched load, all using the waveguide port boundary
condition. The results obtained by the frequency-domain finite element method using
a boundary integral equation for mesh truncation (circles) compare very well with
the results (lines) of another calculation by the time-domain finite element method
using perfectly matched layers for mesh truncation [16].

The third example deals with a rectangular waveguide port, as opposed to the
coaxial ports in the two preceding examples. Specifically, we consider a pyramidal
horn antenna, which is fed by a 2.29-cm × 1.02-cm rectangular waveguide with a
TE10 incident mode. The size of the horn’s open aperture is 6.75 cm × 4.95 cm,
and the length of the horn measured from the waveguide/horn junction to the open
aperture is 13.87 cm. The inclusion of higher-order modes in the waveguide port
boundary condition allows truncation of the waveguide placed very close to the
horn (1.3 cm away from the junction). The horn antenna is enclosed by 1-cm-thick
perfectly matched layers for mesh truncation. The simulation is carried out using the
time-domain finite element method. The far field radiated by the antenna is computed
by a time-domain near-to-far-field transformation (discussed in Section 5.3), and the
antenna gain is calculated using

G(θ, φ) = 4π
U (θ, φ)

P inc
= 4πr2

∣∣∣∣E(θ, φ)

E0

∣∣∣∣
2 Z10

Z0
(5.37)

where Z0 and Z10 are the wave impedance of free space and the TE10 mode, respec-
tively. The antenna gain versus frequency at broadside is plotted in Figure 5.12 for 8
to 12 GHz, which is in good agreement with the predication given by an analytical
model [17]. The E- and H-plane antenna gain patterns at 10 GHz are shown in Fig-
ure 5.13. The finite element results are found to agree well with the moment-method
results published by Liu et al. [18]. The difference occurring at larger angles in the
H-plane pattern is probably due to different modeling of the exterior surfaces of the
antenna.

5.2 PLANE-WAVE EXCITATION

For many practical antenna applications, the radar cross section (RCS) of the antenna
is of interest. For the analysis of the scattering characteristics of an antenna, the source
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Figure 5.11 (a) Layout of a 2 × 2 microstrip patch antenna array. (b) Scattering matrix as a
function of frequency from 1 to 3 GHz. (Circles: The frequency-domain FE-BI solution. Lines:
The time-domain finite element solution). The graph on the ith row and jth column shows |Sij

(f )|. (After Mao et al. [15], Copyright C© Taylor & Francis 2006.)
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Figure 5.12 Pyramidal horn antenna. (a) Geometry. (b) Gain versus frequency at broadside.
(After Lou and Jin [4], Copyright C© IEEE 2005.)

of excitation is usually a plane wave incident from a certain direction. For such a
scattering problem, the finite element solution can be formulated in terms of either
the total or the scattered field. In this section we discuss these two formulations in the
context of different mesh truncation techniques using absorbing boundary conditions,
perfectly matched layers, and boundary integral equations. It will be shown that the
two formulations excite the problem in a different manner, and consequently, they
have different limitations and accuracy for scattering applications. We then introduce
a third formulation that employs a decomposition of the total and scattered fields to
retain the benefits of both the total- and scattered-field formulations while avoiding
their limitations.
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Figure 5.13 Radiation pattern for a 15-dB standard pyramidal gain horn at 10 GHz. (a)
E-plane pattern. (b) H-plane pattern. (After Lou and Jin [4], Copyright C© IEEE 2005.)

5.2.1 Total-Field Formulation

When the total field is employed to formulate the finite element solution, the boundary
condition on a perfectly conducting surface remains the same as (2.5) and the vector
wave equation remains the same as (2.8), except that now Jimp = Mimp = 0 since
there are no internal sources in the computational domain. The only difference is the
formulation of the field at the truncation surface. For the radiation case, the radiated
field has to satisfy the absorbing boundary condition (2.7) so that the radiated field can
leave the computational domain without any significant nonphysical reflection. For
the scattering case, it is the scattered field, instead of the total field, that should satisfy
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the absorbing boundary condition (2.7). To convert (2.7) into a boundary condition
applicable to the total field, we substitute the scattered field Esc = E − Einc for E in
(2.7) to obtain

n̂ × (∇ × E) + jk0n̂ × (n̂ × E) ≈ Uinc r ∈ So (5.38)

where

Uinc = n̂ × (∇ × Einc) + jk0n̂ × (n̂ × Einc) (5.39)

and Einc denotes the incident electric field. Equation (5.38) represents the absorbing
boundary condition for the total field, and its right-hand side denotes a boundary
excitation due to the incident field. The weak-form solution to the electric field
becomes

∫∫∫
V

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV + jk0

∫∫
©

So

(n̂ × T) · (n̂ × E) dS

= −
∫∫
©

So

T · Uinc dS (5.40)

together with the explicit enforcement of (2.5).
It is evident from (5.40) that in the total-field formulation of the finite element

solution, the excitation is effected by generating the incident field on the truncation
surface, as illustrated in Figure 5.14(a). The advantage of this formulation is that it
requires little modification of the finite element solution developed for the radiation
analysis to deal with scattering problems. For example, the treatment of the boundary
condition on perfectly conducting surfaces would remain the same. The disadvantage
is that when used together with approximate absorbing boundary conditions such
as the first-order absorbing boundary condition, the errors associated with these
absorbing boundary conditions can often require that the truncation surface be placed
a wavelength or more away from the scattering object of interest. Consequently,
the resulting impressed wave may undergo a considerable dispersion error as it
propagates across the large computational domain between the truncation surface
and the scattering object. This would result in a loss of accuracy in the final field
computation. This disadvantage is mitigated when a boundary integral equation is
employed for mesh truncation because in this case the truncation surface So can be
placed very close to the surface of the scatterer.

When the boundary integral equations are used for mesh truncation, as discussed
in Section 3.3, the electric field integral equation (EFIE) becomes

1
2 Ms(r) − n̂ × L(Js) + n̂ × K̃(Ms) = −n̂ × Einc(r) r ∈ So (5.41)
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Figure 5.14 Incident-field excitation in three scattering formulations. (a) Total-field formu-
lation. (b) Scattered-field formulation. (c) Total- and scattered-field decomposition.
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and the magnetic field integral equation (MFIE) becomes

1
2 Js + n̂ × L(Ms) + n̂ × K̃(Js) = n̂ × H

inc
(r) r ∈ So. (5.42)

The discretization of either of these two integral equations or their combination yields
the boundary matrix equation

[P]{ES} + [Q]{HS} = {binc} (5.43)

where the right-hand-side vector is due entirely to the incident field. Equation (5.43)
can be solved together with the finite element matrix equation, which defines a finite
element–boundary integral formulation for the scattering case.

Note that the implementation of the total-field formulation for the finite element
solution using perfectly matched layers as mesh truncation can be quite cumbersome
because perfectly matched layers should absorb only the scattered field, not the total
field, and without the explicit separation of the scattered field from the total field, this
selective absorption is difficult to implement. Therefore, the total-field formulation is
often best used in the finite element solution using a boundary integral equation for
mesh truncation.

5.2.2 Scattered-Field Formulation

In addition to the total-field formulation, the finite element solution of a scattering
problem can also be formulated in terms of the scattered field. With the scattered
field, the absorbing boundary condition remains the same as (2.7); that is,

n̂ × (∇ × Esc) + jk0n̂ × (n̂ × Esc) ≈ 0 r ∈ So. (5.44)

However, the usual boundary condition and vector wave equation become different.
By substituting the relation E = Einc + Esc into (2.5) and (2.8), we obtain

n̂ × Esc = −n̂ × Einc r ∈ SPEC (5.45)

and

∇ × (↔
μr

−1 · ∇ × Esc
)− k2

0
↔
εr · Esc = Finc r ∈ V (5.46)

where

Finc = −∇ × (↔
μ

−1
r · ∇ × Einc

)+ k2
0

↔
εr · Einc r ∈ V . (5.47)

Note that Finc = 0 in the free-space region since the incident field satisfies the vector
wave equation with μr = εr = 1. The weak-form solution to the boundary-value
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problem defined above is given by

∫∫∫
V

[
(∇ × T) · ↔

μ
−1
r · (∇ × Esc) − k2

0T · ↔
εr · Esc

]
dV

+ jk0

∫∫
©

So

(n̂ × T) · (n̂ × Esc) dS =
∫∫∫

Vsc

T · Finc dV (5.48)

together with the explicit enforcement of (5.45). In (5.48), Vsc denotes the penetrable
volume of the scatterer, which vanishes if the scatterer contains only perfect con-
ductors. This scattered-field formulation can be applied directly to the case where
perfectly matched layers are employed for mesh truncation. In this case, one need
only place perfectly matched layers on the inside of So.

It is clear that in the scattered-field formulation, incident fields are only impressed
on the conducting surface of the scatterer using (5.45) and/or within the penetra-
ble volume of the scatterer throughout the computational domain, as illustrated in
Figure 5.14(b). When formulated in this manner, dispersion errors associated with
an incident field are eliminated because the incident field does not have to propa-
gate numerically across the computational domain between the truncation surface
and the scattering object. Because of this, the scattered-field approach is generally
believed to provide better accuracy than the total-field formulation. However, it of-
fers no significant advantage when a boundary integral equation is used for mesh
truncation since the truncation surface can be placed very close to the scatterer in
this case.

5.2.3 Total- and Scattered-Field Decomposition Approach

As discussed above, the scattered-field formulation is advantageous because it can
eliminate the dispersion error associated with the propagation of the incident field
from the mesh truncation surface to the scatterer, and it can facilitate the use of
perfectly matched layers for the finite element solution of wave scattering. However,
there are applications where it is desirable to formulate the problem directly with the
total-field variables. One such example is interior coupling through small apertures,
where the incident and scattered fields may be nearly equal in amplitude and opposite
in polarization such that the internal total field is small.

To retain the advantages of the scattered-field formulation while preserving a total-
field region local to the geometry of interest, it is desirable to split the finite element
computational domain into a scattered-field and a total-field region so that the inci-
dent field can be impressed closer to the scatterer. The mathematical foundation of
this total- and scattered-field decomposition (TSFD) concept has been addressed for
the frequency-domain Helmholtz equation [19]. In addition, the total- and scattered-
field decomposition concept has been widely applied and developed for the FDTD
simulations [20–23]. It has also been developed recently for the time-domain finite
element method [24–27]. In particular, a volumetric TSFD scheme has been pro-
posed [26,27] as an alternative to the more traditional Huygens’ surface formulations
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[25,26]. This volumetric scheme permits an essentially dispersion-free plane wave to
be impressed within the total-field region while providing nearly zero leakage of the
incident wave into the scattered-field region, independent of the mesh density and
propagation angle. Consequently, the volumetric TSFD method provides a solution
accuracy that is very similar to a formulation based globally on the scattered-field
variables. This approach is particularly useful when it is desirable to solve the total-
field equations local to a scatterer along with a requirement of high phase accuracy
in the incident wave over electrically long propagation distances.

To describe the total- and scattered-field decomposition scheme, consider the
problem illustrated in Figure 5.14(c). The surface, Stsfd, splits the entire computa-
tional domain into total- and scattered-field volumes, Vt and Vs, respectively, while
the surface, So, defines the outer surface of the overall finite element region. For
convenience, the scattered-field region, Vs, is assumed to consist of only free space,
and the decomposition surface, Stsfd, is surrounded by free space. In this region, the
boundary-value problem in terms of the scattered electric field, Esc, is then given by

∇ × (∇ × Esc) − k2
0Esc = 0 r ∈ Vs (5.49)

n̂ × (∇ × Esc) + jk0n̂ × (n̂ × Esc) ≈ 0 r ∈ So. (5.50)

The vector wave equation in the total-field region is

∇ × (↔
μ

−1
r · ∇ × E) − k2

0
↔
εr · E = 0 r ∈ Vt . (5.51)

The weak-form equation for the scattered-field region is given by

∫∫∫
Vs

[
(∇ × T) · (∇ × Esc) − k2

0T · Esc
]

dV + jk0

∫∫
©

So

(n̂ × T) · (n̂ × Esc) dS

+
∫∫
©

Stsfd

(n̂ × T) · (∇ × Esc) dS = 0 (5.52)

where the unit normal on Stsfd points from inside to outside. The weak-form equation
for the total-field region is given by

∫∫∫
Vt

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV

−
∫∫
©

Stsfd

(n̂ × T) · (∇ × E) dS = 0. (5.53)
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Combining the weak-form equations for the two regions yields

∫∫∫
Vt

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV +

∫∫∫
Vs

[
(∇ × T) · (∇ × Esc)

− k2
0T · Esc] dV + jk0

∫∫
©

So

(n̂ × T) · (n̂ × Esc) dS =
∫∫
©

Stsfd

(n̂ × T) · (∇ × Einc) dS

(5.54)

where E = Einc + Esc has been used to yield the right-hand side.
Since the incident field satisfies the free-space wave equation, the surface integral

on Stsfd can be written as

∫∫
©

Stsfd

(n̂ × T) · (∇ × Einc) dS =
∫∫∫

Vt

[
(∇ × T) · (∇ × Einc) − k2

0T · Einc
]

dV.

(5.55)

Alternatively, we can use Maxwell’s equations for the incident field to write it as

∫∫
©

Stsfd

(n̂ × T) · (∇ × Einc) dS = − jk0 Z0

∫∫
©

Stsfd

(n̂ × T) · Hinc dS. (5.56)

Equation (5.55) yields a volumetric representation for the impressed wave throughout
the total-field region, and in this case (5.54) becomes

∫∫∫
Vt

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV

+
∫∫∫

Vs

[
(∇ × T) · (∇ × Esc) − k2

0T · Esc
]

dV

+ jk0

∫∫
©

So

(n̂ × T) · (n̂ × Esc) dS =
∫∫∫

Vt

[
(∇ × T) · (∇ × Einc) − k2

0T · Einc
]

dV.

(5.57)

Equation (5.56), on the other hand, leads to a surface representation for the impressed
wave, which is also known as Huygens’ surface representation. In this case, (5.54)
can be written as∫∫∫

Vt

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV

+
∫∫∫

Vs

[
(∇ × T) · (∇ × Esc) − k2

0T · Esc
]

dV

+ jk0

∫∫
©

So

(n̂ × T) · (n̂ × Esc) dS = jk0 Z0

∫∫
©

Stsfd

T · (n̂ × Hinc) dS (5.58)
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where n̂ × Hinc can be interpreted as the surface equivalent electric current due to the
incident field.

In the numerical implementation, the unknown expansion coefficients on the
interface surface Stsfd can be associated with either the total field or the scattered
field. If they are associated with the total field, the incident field should be subtracted
from these expansion coefficients in the evaluation of the corresponding volume
integral over Vs in (5.57) or (5.58). On the other hand, if they are associated with the
scattered field, the incident field should be added to these expansion coefficients in the
evaluation of the corresponding volume integral over Vt in (5.57) or (5.58). Note again
that this is done only for the basis functions with their unknown expansion coefficients
residing on Stsfd. To facilitate either the subtraction or addition of the incident field,
the incident field should be expanded in a similar fashion to the scattered and total
fields. Theoretically, the volumetric approach gives rise to zero leakage from the
total-field region into the scattered-field region. In practice, the undesired leakage
is limited by the machine precision and the residual of the solution method. In
the Huygens’ surface approach, the electric current is entering through the surface
integral in (5.58), whereas the magnetic current is entering through volume integrals;
consequently, there will be a slight spatial misalignment in the implementation of this
scheme within the finite element method. Because of this, there will not be perfect
cancellation of these sources in the scattered-field region.

The total- and scattered-field decomposition scheme described above has been
extended to the finite element analysis of scattering in free space in the time do-
main [26]. It has also been extended to the analysis of scattering in a layered
medium [27]. Extensive numerical tests have shown that by using the volumetric ap-
proach, the undesired leakage in the scattered-field region could easily be reduced to
−120 dB, and the field computation has accuracy comparable to that of the scattered-
field approach. This is illustrated by considering plane-wave propagation through a
cubical computational domain having a side length of 130 cm. Since there are no
scattering objects in this computational domain, the scattered field should be identi-
cally zero. To test the effectiveness of the volumetric and surface TSFD schemes, we
place a spherical surface with a radius of 60 cm to impress the incident field inside the
surface. The entire computational domain is discretized with first-order tetrahedral
and hexahedral elements with an average edge length of 4 cm and is terminated with
perfectly matched layers, as illustrated in Figure 5.15(a).

Figure 5.16 shows forward- and backward-scattered far-field results versus
frequency for the case of plane-wave incidence propagating broadside to the left face
of the cubical domain shown in Figure 5.15(a). Three sets of results are shown in
the figure. The first two sets are computed by the time-domain finite element method
using the volumetric and Huygens’ surface TSFD schemes, respectively. The third
set is computed by the FDTD method using a Huygens’ surface technique [23–25]
implemented on a pure FDTD grid having a grid size of 5 cm, which is shown
in Figure 5.15(b). As can be seen in Figure 5.16, the Huygens’ surface excitation
employed in the finite element simulation provides results in the backscatter
direction comparable to those obtained using the Huygens’ surface scheme on a
pure FDTD grid (note that no dispersion-compensation methods were used for the
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Total/Scattered
Interface On
Internal Finite-
Element Grid

Far-Field Transformation Surface

Figure 5.15 Two-dimensional cross section of finite element and FDTD grids, showing
location of total- and scattered-field interface surfaces as well as near-to-far-field transformation
surfaces. (a) Mixed tetrahedral and hexahedral element grid. (b) Traditional all-hexahedral-
element (FDTD) grid.
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Figure 5.16 Forward and backward scattering versus frequency for plane-wave incidence
using the proposed TSFD techniques on the finite element grid as well as a traditional Huygens’
surface technique on a pure FDTD grid. Ideally, there should be zero leakage of the incident
field into the scattered-field region. The volumetric TSFD excitation proposed is nearly ideal
by suppressing leakage by over 12 orders of magnitude. All Huygens’ surface–based methods
exhibit much higher levels of leakage. (After Riley et al. [26], Copyright C© IEEE 2006.)
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FDTD results). However, the volumetric excitation technique provides significantly
improved results. The dispersion error associated with the basis functions, as well as
the misalignment between the electric and magnetic current sources on the interface,
affects all results based on the Huygens’ surface excitation, whereas there is essen-
tially no dispersion error or source misalignment introduced into the impressed wave
with the volumetric approach.

To demonstrate the scattering application, consider a simple case of plane-wave
scattering by a perfectly conducting sphere computed by the time-domain finite ele-
ment method using the volumetric TSFD scheme. The sphere has a radius of 50 cm
and is enclosed by a cubic computational domain having a side length of 130 cm. The
total- and scattered-field regions are split by a spherical surface having a radius of
60 cm. The entire computational domain is discretized with first-order tetrahedral ele-
ments with an average edge length of 2.5 cm and is terminated with perfectly matched
layers. The monostatic RCS as a function of frequency is shown in Figure 5.17(a).
The solutions shown are based on the Mie series (exact), the volumetric TSFD exci-
tation method, and a pure scattered-field formulation described in Section 5.2.2. The
absolute difference in the RCS as calculated by the volumetric TSFD method and
the pure scattered-field formulation is shown in Figure 5.17(b). Note that the RCS
computed using these two very different formulations are in agreement to at least
five decimal places. This level of agreement with a pure scattered-field formulation
is generally not possible with traditional Huygens’ surface excitation methods.

5.3 FAR-FIELD PATTERN COMPUTATION

The far field radiated or scattered by an antenna can be calculated numerically from
the near field on an arbitrary surface completely enclosing the antenna structure,
denoted here as SNTF. This procedure is referred to as the near-to-far-field (NTF)
transformation. In Section 4.3 we described an accurate NTF technique for the
FDTD method. In this section we reconsider it from the finite element perspective,
where surfaces of more general shape could be used. Given the near-zone electric
and magnetic fields on SNTF, it can be shown that the electric field in the far zone can
be expressed as

Eθ (r) = − jk0e− jk0r

4πr
(Lφ + Z0 Nθ ) (5.59)

Eφ(r) = jk0e− jk0r

4πr
(Lθ − Z0 Nφ) (5.60)

where Z0 is the free-space impedance and

N(r̂) =
∫∫

SNTF

J(r′)e jk0r ′ ·r̂ dS′ (5.61)

L(r̂) =
∫∫

SNTF

M(r′)e jk0r ′ ·r̂ dS′ (5.62)
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Figure 5.17 (a) Monostatic RCS for a PEC sphere using the TSFD volumetric excitation
method compared to a pure scattered-field solution. (b) Absolute difference between the
volumetric TSFD and scattered-field solutions. (After Riley et al. [26], Copyright C© IEEE
2006.)

where J = n̂ × H and M = −n̂ × E are equivalent surface electric and magnetic
currents, respectively. The near-to-far-field transformation surface SNTF must be a
closed surface containing all the sources inside. If an infinite ground plane is present
(e.g., in the case of monopole antennas), the near-to-far-field transformation surface
SNTF and its image S′

NTF together comprise a closed surface. The equivalent surface
currents on S′

NTF can easily be obtained by invoking the image theory.
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In time-domain simulations, the far field can be calculated in either the frequency or
the time domain. In the frequency-domain approach, the time-domain surface currents
J and M are first transformed to the frequency domain via FFT, or alternatively,
their frequency-domain representation at specific frequencies can be constructed
concurrently with the time-stepping process via a DFT. Next, the frequency-domain
far-field pattern is calculated using (5.59)–(5.62). In the time-domain approach, the
far-field pattern is calculated directly from the time-domain surface currents J and M
according to

Eθ (r, t) = − 1

4πrc0

[
∂

∂t
Lφ

(
r̂, t − r · k̂

c0

)
+ Z0

∂

∂t
Nθ

(
r̂, t − r · k̂

c0

)]
(5.63)

Eφ(r, t) = 1

4πrc0

[
∂

∂t
Lθ

(
r̂, t − r · k̂

c0

)
− Z0

∂

∂t
Nφ

(
r̂, t − r · k̂

c0

)]
(5.64)

where

N(r̂, τ ) =
∫∫

SNTF

J
(

r′, τ + r′ · r̂
c0

)
dS′ (5.65)

L(r̂, τ ) =
∫∫

SNTF

M
(

r′, τ + r′ · r̂
c0

)
dS′. (5.66)

Similar to the FDTD implementation in Section 4.4, the frequency-domain finite
element near-to-far-field transformation is most suitable for computing far-field pat-
terns with dense angular sampling at only a few frequencies, while the time-domain
near-to-far-field transformation is most suitable for computing far-field patterns over
a wide frequency range at only a few observation angles.

It is evident that to calculate the far field, we have to have both the tangential
electric and magnetic fields on the near-to-far-field transformation surface SNTF. When
a boundary integral equation is used for mesh truncation, the truncation surface can
be used as SNTF since both the tangential electric and magnetic fields are computed
in this approach. When approximate absorbing boundary conditions or perfectly
matched layers are employed for mesh truncation, a surface tightly enclosing the
antenna structure should be chosen as SNTF. In this case, since the finite element
solution usually computes one field, say the electric field, the other field has to be
calculated using one of Maxwell’s equations, which would result in a slight loss of
accuracy because of differentiation in the curl operator. Special formulations can be
designed for the finite element solution of both electric and magnetic fields on a
surface; however, they are not yet used widely in practice. When a spherical surface
is used as SNTF, a formulation can be derived to calculate the far field based on only
one field on SNTF. However, this would require a large computational domain, making
the finite element solution less efficient.
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5.4 NEAR-FIELD VISUALIZATION

Antenna measurements typically provide knowledge of impedance, radiation pattern,
and gain. Because measurements often reveal that improvements are necessary to a
particular antenna’s performance, it becomes important to understand the physical
cause of the undesired performance characteristics. Visualization of near fields
provides insight that is not typically available through measurement. In this way,
analysis augments measurement, allowing antenna designers to perform analytical
experiments.

Visualization can be used in numerous useful ways, each providing insight into the
physics driving antenna performance. Each antenna application will drive the specific
use of field visualizations. Although it is not possible to discuss all possible uses here,
a few examples are given where field visualizations have proven their usefulness to
practicing antenna engineers. For instance, strong magnetic field lines might unin-
tentionally couple the horizontal and vertical ports of an antenna, causing degraded
cross polarization. Alternatively, when designing antennas having anisotropic sub-
strates, visualization of the fields provides physical insight into how the various field
components are affected by the anisotropy. Visualization of the Poynting vector can
be extremely useful in providing printed-antenna designers insight into the physical
mechanisms related to substrate losses, including surface wave phenomena. In the
following we present two specific examples to show how field visualization can help
us to gain a better understanding of electromagnetic field radiation and propagation.

One example concerns the design of the Luneburg lens as a wideband antenna
enabling wide-angle scan of beams at microwave frequencies. This lens was designed
initially using geometrical optics [28], which concluded that when the relative per-
mittivity of a dielectric sphere varies in the radial direction according to εr (r) =
2 −(r/a)2, where a is the radius of the sphere, the rays produced by a point source
placed on the surface of the sphere and entering into the sphere would be collimated
into parallel rays when exiting at the other side of the sphere, as illustrated in Fig-
ure 5.18. Because of spherical symmetry, this unique feature made the Luneburg
lens highly attractive as an antenna capable of wide-angle scanning and multibeam
transmission. However, due to the difficulty of manufacturing the lens with a con-
tinuous variation of the permittivity, Luneburg lenses were made in a stepped-index
model which consisted of several homogeneous dielectric spherical shells whose
permittivities were different [29,30]. However, the experimental outcomes were dis-
appointing; more specifically, the gain measured was reported to be lower than the
value expected and in some cases worse than that of a simple homogeneous dielec-
tric sphere. The poor performance was often attributed to the stepped-index model,
which was necessary due to the limited capability of manufacturing materials with
an arbitrary permittivity. With the development of numerical techniques for solving
Maxwell’s equations, we can now simulate the propagation of electromagnetic fields
in a perfect Luneburg lens without a need for the stepped-index model [31]. If the
fields are calculated in the frequency domain, the complex fields can be converted
into the fields in the time domain by E(r, t) = Re[E(r, ω)ejωt], from which the field
variation can be visualized. One snapshot of the electric field in the E- and H-planes
calculated using the finite element method is shown in Figure 5.19, where a radiating
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Figure 5.18 Ideal spherical Luneburg lens.
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Figure 5.19 Snapshot of the electric field inside and nearby a Luneburg lens excited by a
Hertzian dipole. (After Greenwood and Jin [31], Copyright C© IEEE 1999.) (See insert for
color representation of figure.)
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Hertzian dipole is placed on the bottom surface of a Luneburg lens that has a diameter
of 10λ0. From the figure it can be seen that the spherical wave radiated by the dipole
is gradually transformed into a plane wave exiting at the top side of the lens. How-
ever, a more careful examination reveals that the exiting plane wave is not perfect;
the amplitude is not perfectly uniform and the phase front is not perfectly planar.
Numerical tests indicated that this undesired field variation was not due to numerical
errors. To investigate this further, a reciprocal problem was simulated, where a plane
wave was incident on the Luneburg lens from the bottom side [31]. According to the
reciprocity and geometrical optics, this plane wave should be focused on a point at the
top surface of the lens. A snapshot of the electric field from this simulation is shown
in Figure 5.20, which shows that, indeed, the field is gradually focused to a small
spot at the top surface of the lens. However, the focal point does not reside stationary
on the surface of the lens. Instead, it is initially formed inside the lens, then moves
across the surface of the lens, and eventually disappears when it moves farther away
from the lens. This phenomenon can be observed more clearly from the animation of
the field using a series of snapshots. Therefore, it is the movement or the oscillation
of the focal point, which cannot be predicted by geometrical optics, rather than the
stepped-index model, that is responsible for the poor performance of the Luneburg
lens in the radiation case. Even if one can manufacture a perfect Luneburg lens,
one would not be able to achieve the performance predicted by geometrical optics.
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Figure 5.20 Snapshot of the electric field inside and nearby a Luneburg lens excited by
a plane wave incident from the bottom. (After Greenwood and Jin [31], Copyright C© IEEE
1999.) (See insert for color representation of figure.)
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Numerical simulations also revealed that the region that confines the oscillation of
the focal point becomes smaller as the Luneburg lens becomes larger in terms of
wavelength. Therefore, the performance of the Luneburg lens as an antenna would
improve as the frequency goes higher. At the optical frequencies, the Luneburg lens
would perform as expected.

When an antenna is deployed and installed on a platform such as an aircraft,
it is critical to understand the interactions between the antenna and the platform.
This subject is discussed in more detail in Chapter 11. A good understanding of the
interactions can often be obtained by the visualization of the fields or the currents
induced on the surface of the platform. Such visualization can easily reveal the spots
that would seriously affect the radiation pattern of the antenna and the spot that would
couple the antenna radiation into the interior of the host object. The antenna designer
can then treat these specific spots, instead of the entire surface of the platform, to
reduce the undesired impact on the radiation pattern and the undesired coupling
into the interior electronic systems. To give an example simply for the purpose of
illustration, Figure 5.21 shows the surface electric current induced on an aircraft
(Beechcraft King Air 200) due to a Vivaldi antenna mounted underneath. The aircraft
is approximately 13.3 m long and 16.6 m wide (including the wings), and the antenna
excitation is a modulated Gaussian pulse with a central frequency of 200 MHz and
a bandwidth of 100 MHz. The simulation was performed using the time-domain
finite element method combined with the time-domain boundary integral equations
discussed in Section 3.3.2. Evaluation of the boundary integrals was accelerated using
the time-domain adaptive integral method [32]. In Figure 5.21, the surface electric
current is shown on the decibel scale at several time instants sampled to cover the
entire radiation period. Similar to the previous example, an animation movie made
of the current distributions at each time step can easily be generated and would show
the variation of the surface currents more clearly.

In summary, the near-field visualization allows the antenna designer to “see” how
the field radiates, propagates, and interacts with the environment. As such, it often
provides valuable physical insight that is not easily obtained with experiments.

5.5 SUMMARY

In this chapter we discussed an important aspect for the numerical simulation of
antennas: the modeling of antenna sources. For the antenna radiation analysis, we
discussed three types of antenna feed modeling. The simple current probe and voltage
gap generator are easy to implement and can be employed to predict the antenna’s
far-field radiation patterns accurately. They can also generate reasonably accurate
near-field quantities, such as the input impedance and mutual coupling coefficients
for certain types of antennas. But their accuracy cannot be guaranteed for the analysis
of general and more complex antennas. The third model, based on direct modeling
of the antenna feed structure, is most accurate. In this model, the antenna waveguide
feed is truncated and an accurate boundary condition is formulated and applied to the
truncating waveguide port. Specific formulations were given for coaxial, circular, and
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Figure 5.21 Snapshots of the surface electric current (on the decibel scale) on an aircraft at
various time steps. (a) At the 120th time step. (b) At the 220th time step. (c) At the 320th time
step. (d) At the 420th time step. (e) At the 520th time step. (f) At the 620th time step. (After
Yilmaz et al. [32], Copyright C© IEEE 2007.) (See insert for color representation of figure.)

rectangular waveguide ports in both the frequency and time domains. The formulation
for more complex waveguide ports was also outlined in the frequency domain. This
feed model has been found to yield excellent accuracy and is especially useful in the
computation of near-field characteristics. The calculation of the input impedance was
described for the three feed models.

For the antenna scattering analysis, we described three approaches to formulating
the finite element solution and discussed their utilities. The total-field formulation is
simple to implement and is best suited for analysis using a boundary integral equa-
tion for mesh truncation. When used in conjunction with an approximate absorbing
boundary condition, it has, however, a slight loss of accuracy due to the grid disper-
sion error because it impresses the incident field at the absorbing boundary, which is
usually placed some distance away from the scatterer. Moreover, the total-field for-
mulation is not directly applicable to the case when perfectly matched layers are used
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for mesh truncation. The scattered-field formulation, on the other hand, impresses
the incident field directly on the scatterer; hence, it can be employed easily in the
simulations using either an absorbing boundary condition or perfectly matched layers
for mesh truncation. It also has slightly better accuracy because it avoids the propaga-
tion of the incident wave from the truncation boundary to the scatterer. However, the
direct impression of the incident field on the scatterer may be somewhat challenging
for applications involving complex materials or specialized local boundary condi-
tions. To retain the simplicity of the total-field formulation and the advantages of the
scattered-field formulation, we then described the third approach, which is based on
the decomposition of the total and scattered fields. This approach introduces a sur-
face to divide the computational domain into an interior total-field region that tightly
encloses the scatterer, and an exterior scattered-field region bounded by either the
absorbing boundary or perfectly matched layers. Highly accurate numerical schemes
were developed to impress the incident field.

After the discussion of the antenna source modeling, we addressed briefly the issue
of far-field computation in both the frequency and time domains based on the near-to-
far-field transformation, and finally, discussed the benefits of near-field visualization
that can be used to gain insight into the underlying physics of antenna radiation and
scattering by using two numerical examples.
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6 Modeling of Complex Structures

The past five to 10 years have witnessed a remarkable improvement in our ability
to provide accurate electromagnetic predictions for complex, practical geometry by
using full-wave solution techniques that solve Maxwell’s equations directly in both
the frequency and time domains. This includes not only the resolution of diverse
geometrical details that span a wide range of length scales, but also the ability to
predict accurately high-frequency behavior that significantly increases the electrical
size of the geometry. To accommodate these modeling challenges, sophisticated
domain-decomposition and hybrid techniques have been developed. For example, an
important aspect of electrical applications is the resolution of wires and wire cables.
Although, in principle, individual wires can be resolved by finite element methods
along with advanced solid modeling and meshing software, the implementation of
this approach can lead to a tremendous increase in the number of discrete elements
that fill the computational volume. Consequently, an alternative approach that models
the physics of the wires locally can be beneficial. Similarly, the resolution of narrow
apertures, thin-material layers, and even underlying electrical circuitry are all well
suited to formulations that are specialized to incorporating the physics of these
various system details instead of attempting their direct discretization. However,
even though it is often straightforward to construct a hybridized solution procedure
that interfaces specialized physical models into a broader volumetric finite element
description, making these formulations robust and numerically stable often poses
a significant challenge. In addition, interfacing various solution techniques is often
done in a “weak-coupling” sense, where the feedback across the solution interface
is not accounted for rigorously, and the resulting accuracy of this approach becomes
highly application dependent.

In this chapter we discuss techniques to enhance the domain of applications that
can be addressed by traditional finite element methods. The enhancements include
the characterization of thin-material features, the resolution of narrow wires and
narrow slot apertures, techniques to model complex lumped-element circuitry, and
an approach to including distributed feeding networks in phased-array applications.
These enhancements were selected because of their importance in antenna and array
applications, which include the platform installation and supporting electronics. For
example, antennas are often etched on thin-material sheets, and thin-material coatings
are commonly used for electrical insulation, scattering mitigation, and environmen-
tal protection. Electrically thin wires and cables typically provide the means for
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component interconnection, and various types of narrow slot apertures naturally oc-
cur as part of the system fabrication process.

A final topic discussed in this chapter is a validated example of predicting elec-
tromagnetic coupling into an electronic subsystem. Predicting and understanding the
phenomenology of coupling down to the circuit-trace level is important to backdoor
coupling assessments, where the term backdoor denotes electromagnetic penetration
through nonintentional entry points, as well as co-site mitigation. Co-site mitigation
is increasingly important, due to higher levels of integration of antennas and phased
arrays into platforms such as airframes, ground vehicles, ships, and satellites. Al-
though many factors affect a complete co-site analysis, the magnitude of the mutual
coupling between the antennas and the direct radio-frequency (RF) coupling into
the electronics compartments represent two of the more significant concerns. Pre-
dicting electromagnetic coupling into electronic subsystems poses many practical
challenges, due to the often imprecise knowledge of the necessary geometrical and
electrical parameters. Nevertheless, advanced finite element techniques represent a
powerful predictive approach to this challenging application area.

6.1 THIN-MATERIAL LAYERS AND SHEETS

To include the influence of thin-material sheets and coatings in the finite element
setting, we initially discuss the scalar impedance boundary condition (IBC) [1–4]. It
will be seen that although the IBC approach has a straightforward formulation, the
technique affects only the tangential component of the electric field. The jump in the
normal component of the electric field can be accommodated by adopting degenerate
three-dimensional finite elements so that they take the form of two-dimensional
surface elements, and this is discussed in the second part of this section.

6.1.1 Impedance Boundary Conditions

Impedance boundary conditions have been used widely in integral-equation for-
mulations [5,6], the finite-difference time-domain (FDTD) technique [7–10], the
frequency-domain finite element method [11,12], and high-frequency asymptotic
formulations [13]. In this section we examine the application of the IBC to the finite
element method for several practical cases: (1) thin dielectric sheets, (2) resistive
sheets and coatings, and (3) capacitive and inductive surface coatings. The formula-
tions for incorporating these boundary conditions into the finite element method will
initially be done in the frequency domain and then will be inverse Fourier transformed
into the finite element time-domain (FETD) setting.

The approach adopted is based on the first-order IBC, which is attributed to both
Leontovich [1–4] and Shchukin [3,4]. A finite element implementation [14] requires
the adaptation of these impedance boundary conditions to the mixed boundary condi-
tion that was incorporated into the weak-form solution discussed in Section 2.1. For
edge-based formulations, the IBC directly affects the electric field component tangen-
tial to the thin sheet. For many practical applications this is the primary component
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Figure 6.1 Configurations for thin-material sheets and coatings. (a) Dielectric sheet. (b)
Resistive sheet. (c) Lossless magnetic coating on a PEC. (d) Lossy magnetic coating on a PEC.
(e) Surface location for application of IBC.

affected by the presence of an electrical thin-material layer; however, the jump in the
normal component of the electric field across the sheet is ignored in this approach.
For example, for edge-on incidence on a planar thin dielectric sheet with the electric
field perpendicular to a sheet’s surface, the scattered field will be predicted to be
zero based upon this formulation, whereas the true solution will typically be nonzero,
albeit small.

Figure 6.1 shows four typical geometrical configurations involving thin sheets and
coatings on a perfect electric conductor (PEC). The sheet resistivity will be denoted
by Rs with units of 
/� (ohms per square). The permittivity of a dielectric sheet
will be denoted by εs, with σ s and μs used to denote conductivity and permeability,
respectively. The material layer thickness is denoted by d. To incorporate an IBC, d is
generally assumed to be less than 1/10 to 1/20 of the wavelength in the material layer,
and in the case of the lossy magnetic coating shown in Figure 6.1(d), the thickness
of the coating is assumed to be at least one or two skin depths over the bandwidth of
interest, where the skin depth δ is given by δ = √

1/π f μsσs .
The surface impedance boundary condition is defined by [4,10]

Etan = ↔
Zs · (n̂s × H) r ∈ Ss (6.1)

where n̂s defines an outward normal to the interface surface Ss. By applying the
equivalence principle to a planar interface between two material regions, where the
upper region is free space and the lower region is a lossy dielectric, it is possible to
replace the dielectric region by the exact surface impedance boundary condition [10]

↔
Zs = Zs(ω)

ks
(↔
I tan + ∇tan∇tan/k2

s

)
√

k2
s + ∇2

tan

(6.2)
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where
↔
I tan is a two-dimensional dyadic, ∇ tan is a two-dimensional gradient operator,

and ks denotes the wavenumber in the dielectric region. The Leontovich IBC is based
on the scalar coefficient Zs(ω) and leads to the following approximate representation
for (6.1) [1–4]:

Etan = Zs(ω)n̂s × H r ∈ Ss . (6.3)

The Leontovich IBC formally assumes planar interfaces, and its application re-
quires that the fields internal to a thin sheet or coating propagate normal to the
material interface for all frequencies and also remain constant along the interface.
However, the Leontovich IBC can often yield acceptable results for curved surfaces
provided that the electrical thickness of the sheet or coating is small relative to the
local curvature. In addition, as the refractive index of the material region increases,
the requirement for normal propagation is approximately satisfied even for the case
of oblique incidence. Only the scalar Leontovich IBC is discussed in this section;
however, it is noted that higher-order IBCs can be constructed from (6.2) and have
been used to provide increased generality and accuracy in the FDTD method [9,10]
and other techniques [15].

In the finite element formulation, the mixed boundary condition corresponding to
(6.3) on the interface surface Ss is given by

n̂s ×
(

1

μ0
∇ × E

)
+ jωYs(ω)n̂s × (n̂s × E) = 0 r ∈ Ss (6.4)

where Ys denotes a surface admittance such that Ys = 1/Zs. The surface impedances
for the specific geometries shown in Figure 6.1 are discussed next along with their
adaptation to (6.4).

To first order, the surface impedance for the two-sided dielectric sheet shown in
Figure 6.1(a) can be written in terms of the complex relative permittivity as [2]

Zs(ω) = 1

jωε0(εrs − 1)d
(6.5)

where

εrs = ε′
rs − j

σs

ωε0
(6.6)

and εs = ε0εrs . Because the sheet has two sides, the frequency-domain impedance
boundary condition (6.4) is [1]

n̂s ×
(

1

μ0
∇ × E+ − 1

μ0
∇ × E−

)
+ jω

1

Zs
n̂s × (n̂s × E±) = 0 r ∈ S±

s

(6.7)
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where E± denotes the electric field above and below the sheet and S±
s denotes surfaces

above (+) and below (−) a midsurface represented by Ss. The tangential component
of the electric field is continuous across the sheet and n̂s is directed toward the “+”
side. It is noted that a two-sided magnetic sheet with complex permeability μs is
described by a dual representation of boundary condition (6.7) [1].

For the special case of a lossless dielectric sheet, the permittivity is real and
εs = ε0ε

′
rs . With this assumption, the surface impedance is a pure capacitive reactance

and is given by

Zs(ω) = 1

jωε0(ε′
rs − 1) d

. (6.8)

Substituting (6.8) into (6.7) and adopting the inverse Fourier transform leads to the
following transient form for the mixed boundary condition for a lossless dielectric
sheet:

n̂s ×
(

1

μ0
∇ × E+ − 1

μ0
∇ × E−

)
+ ε0(ε′

rs − 1) dn̂s ×
(

n̂s × ∂2E±

∂t2

)
= 0

r ∈ S±
s . (6.9)

Note, that the contribution from the lossless dielectric sheet will enter into a transient
finite element formulation through a second-order time derivative of the electric field.

Next, we consider the similar case of a resistive sheet as shown in Figure 6.1(b).
In (6.5), we assume that ε′

rs = 1, σs � ω ε0, and d < 2δ. The surface impedance Zs

is now purely resistive and given by

Rs = 1

σsd
. (6.10)

The two-sided mixed boundary condition similar to (6.7) becomes

n̂s ×
(

1

μ0
∇ × E+ − 1

μ0
∇ × E−

)
+ jω

1

Rs
n̂s × (n̂s × E±) = 0 r ∈ S±

s

(6.11)

and the corresponding transient form is simply

n̂s ×
(

1

μ0
∇ × E+ − 1

μ0
∇ × E−

)
+ 1

Rs
n̂s ×

(
n̂s × ∂E±

∂t

)
= 0 r ∈ S±

s .

(6.12)

As expected, a resistive sheet adds dissipative loss to the wave equation and hence
contributes through the first-order time derivative of the electric field. It is noted
that the first-order ABC described by (3.1) can be recovered by defining Rs to
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be the characteristic impedance of the medium, Rs = √
μ0/ε0, when applying

condition (6.4).
We now consider the lossless magnetic coating on a PEC shown in Figure 6.1(c).

By using the transmission-line theory, the frequency-domain form for Zs is well
known and given by [1]

Zs(ω) = jωμsd
tan ksd

ksd
(6.13)

where ks denotes the wavenumber in the coating. For the case of an electrically thin
coating such that ksd � 1, then Zs ≈ jωμsd. With this approximation, and further
noting that μs is purely real, the transient form of (6.4) becomes

n̂s ×
(

1

μ0
∇ × E

)
+ 1

μsd
n̂s × (n̂s × E) = 0 r ∈ Ss . (6.14)

Extensions to (6.13) to accommodate surface curvature as well as coatings that consist
of multiple absorptive layers are available [1].

The single lossy magnetic coating shown in Figure 6.1(d) is considered next. Under
the good-conductor assumption, σs � ωε0, and also assuming that the thickness of
the coating is greater than one to two skin depths, the surface impedance is given
by [16]

Zs(ω) =
√

j ωμs

σs
= (1 + j)

√
ωμs

2σs
= 1 + j

σsδ
. (6.15)

Note that the wavelength λs in a good conducting medium is

λs ≈ 2
√

π

σsμs f
= 2πδ. (6.16)

In terms of resistive and inductive components, (6.15) can be written as

Zs(ω) = Rs(ω) + jωLs(ω) (6.17)

with

Rs(ω) =
√

ωμs

2σs
, Ls(ω) =

√
μs

2σsω
(6.18)

where Ls denotes the surface inductance. In a frequency-domain finite element for-
mulation, (6.17) and (6.18) are easily incorporated into (6.4). However, the dispersive
nature of (6.15) will introduce a convolution into the time-domain representation for
(6.4), where the inverse transform of Ys = √

σs/jωμs is
√

σs/πμs t, t ≥ 0. For sim-
plicity, we consider a narrow bandlimited excitation with center frequency f = f 0.



P1: JYS
c06 JWBK322-Jin October 3, 2008 16:48 Printer: Yet to come

THIN-MATERIAL LAYERS AND SHEETS 193

With this assumption, the resulting surface admittance has the approximate represen-
tation

Ys(ω)|ω=ω0
≈ 1

2

√
2σs

ω0μs

(
1 − j

ω

ω0

)
(6.19)

where ω0 = 2π f 0, and the transient form of (6.4) becomes

n̂s ×
(

1

μ0
∇ × E

)
+ 1

2

√
2 σs

ω0μs
n̂s ×

(
n̂s × ∂E

∂t

)
+ ω0

2

√
2σs

ω0μs
n̂s × (n̂s × E) = 0

r ∈ Ss (6.20)

which is valid for bandlimited waveforms with the center frequency f = f 0.
An additional case of interest for (6.17) is where both Rs and Ls are assumed to

be frequency independent. To obtain a time-domain representation for (6.4) with this
assumption, we introduce the Fourier transform pair

1

Rs + jωLs
↔ u(t)

Ls
e− Rs t/Ls (6.21)

where u(t) ≡ 1 for t ≥ 0 and 0 otherwise. Even though Rs and Ls are assumed to be
invariant with frequency, the time-domain form of (6.4) will involve a convolution
given by

n̂s ×
(

1

μ0
∇ × E

)
+ 1

Ls

∫ t

0
n̂s ×

(
n̂s × ∂E

∂τ

)
e−Rs (t−τ )/Ls dτ = 0 r ∈ Ss .

(6.22)

In the limiting case Rs = 0 with Ls �= 0, the second term in (6.22) simplifies to
(1/Ls) n̂s × (n̂s × E).

Finally, we consider a capacitive coating defined by Ys ≡ Gs + jωCs, where Gs

denotes a surface conductance and Cs denotes the surface capacitance. In a frequency-
domain finite element formulation, arbitrary frequency dependency for Gs and Cs is
easily accommodated in (6.4). However, to obtain a time-domain representation that
avoids convolutions, we assume that these terms are frequency independent over the
bandwidth of interest. With this assumption, the transient form for (6.4) is simply

n̂s ×
(

1

μ0
∇ × E

)
+ Gs n̂s ×

(
n̂s × ∂E

∂t

)
+ Cs n̂s ×

(
n̂s × ∂2E

∂t2

)
= 0

r ∈ Ss . (6.23)

We now incorporate these boundary conditions in the finite element formulation
for the time-domain wave equation. By generalizing the matrices associated with the
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second-order ordinary differential equation (2.27), we can easily accommodate the
derived time-domain thin-material boundary conditions, with the frequency-domain
representations being similar. For this purpose, we rewrite the semidiscrete equation
(2.27) as

([T ] + [G(a)])
d2{E}

dt2
+ ([R] + [G(b,d1)])

d{E}
dt

+ ([S] + [G(c,d2)]){E} + {K } = { f }.
(6.24)

The standard matrices [T], [R], and [S] are defined by (2.28), (2.29), and (2.30),
respectively, while the additional matrices [G(a)], [G(b)], [G(c)], [G(d1)], and [G(d2)],
as well as the vector {K}, will incorporate the IBCs derived previously.

The lossless dielectric sheet boundary condition (6.9) has the matrix elements

G(a)
i j =

∫∫
Ss

ε0(ε′
rs − 1) d (n̂s × Ni ) · (n̂s × N j ) dS (6.25)

and the matrix elements for the resistive sheet boundary condition (6.12) are
given by

G(b)
i j =

∫∫
Ss

1

Rs
(n̂s × Ni ) · (n̂s × N j ) dS. (6.26)

The lossless magnetic coating boundary condition (6.14) gives rise to the matrix
elements

G(c)
i j =

∫∫
Ss

1

μsd
(n̂s × Ni ) · (n̂s × N j ) dS (6.27)

while the lossy magnetic coating (6.20) has two matrix contributions with elements

G(d1)
i j = 1

2

∫∫
Ss

√
2σs

ω0μs
(n̂s × Ni ) · (n̂s × N j ) dS (6.28)

G(d2)
i j = ω0

2

∫∫
Ss

√
2σs

ω0μs
(n̂s × Ni ) · (n̂s × N j ) dS. (6.29)

The capacitive boundary condition (6.23) with frequency-independent conductance
and capacitance has the matrix elements

G(b)
i j =

∫∫
Ss

Gs (n̂s × Ni ) · (n̂s × N j ) dS (6.30)

G(a)
i j =

∫∫
Ss

Cs (n̂s × Ni ) · (n̂s × N j ) dS. (6.31)
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Finally, the vector {K} is used to accommodate the inductive boundary condition
(6.22) and is given in semidiscrete form by

{K } = [G(e)]
∫ t

0
e−Rs (t−τ )/Ls

d{E}
dτ

dτ (6.32)

where

G(e)
i j =

∫∫
Ss

1

Ls
(n̂s × Ni ) · (n̂s × N j ) dS. (6.33)

For the limiting case Rs = 0 with Ls �= 0, {K}→[G(e)]{E}.
We now consider several examples based on the first-order impedance boundary

conditions discussed in this section. The first example is the microstrip bandpass
filter shown in Figure 6.2. The particular design utilizes a thin dielectric sheet, or
pad, under the central region to shift the passband associated with the filter. The
application is modeled by using the FETD technique for three configurations. First,
the relative permittivity of the pad will be defined equal to that of the dielectric

1 mm

Inlet
Port

Outlet
Port
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0.794 mm
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Dielectric Pad
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Figure 6.2 Microstrip bandpass filter with a high-contrast thin dielectric layer. (a) Three-
dimensional geometry. (b) Cross section. [See insert for color representation of (a).]
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Figure 6.3 Insertion loss (S21) for a bandpass filter showing the influence of a thin-material
layer.

substrate; second, the 5-mil pad will be fully gridded using linear tetrahedral finite
elements; and third, the 5-mil pad will be treated by the IBC described by (6.9). The
results for the insertion loss (S21) for the three cases are shown in Figure 6.3.
The presence of the thin dielectric sheet is seen to affect the center frequency
for the passband significantly, as evidenced by both the gridded and IBC solutions.
It is interesting to note that because the tangential component of the electric field is
dominate within the pad region, the first-order IBC is effective for this application.

The second example is a thin resistive sheet placed above a PEC ground plane
as shown in Figure 6.4. For the case of normal incidence along with a sheet

Ground Plane

d
Resistive
Sheet

∞∞

Einc

d1

d

k̂

ε0, μ0

σs

Figure 6.4 Cross section of a resistive sheet (R-card) placed above a PEC ground plane for
the case of normal incidence.
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Figure 6.5 Magnitude of the reflection coefficient for a resistive sheet above a ground plane.
The sheet surface resistivity is 377 
/�.

impedance that is matched to free space, the exact reflection coefficient is given
by � = −e j2k0d1/(1 + j2 tan k0d1), where d1 denotes the height of the sheet above
the ground plane. For application of (6.12), either Rs = 377 
/� can be defined di-
rectly, or alternatively, a thin conductive sheet with a finite thickness d can be defined
according to (6.10). If we assume a thickness of 2 mm, a conductivity of 1.33 S/m
will provide the desired sheet resistance. A comparison of an FETD solution with the
exact equation for |�| is provided in Figure 6.5.

The next two examples are based on applying inductive and capacitive coatings to a
perfectly conducting sphere. For the FETD solution method, the appropriate boundary
conditions are given by (6.22) and (6.23), respectively. The Mie series provides an
exact reference solution. The frequency-dependent monostatic radar cross section
(RCS) for the inductive sphere is shown in Figure 6.6, whereas the capacitive case
is shown in Figure 6.7. For comparison, the result for a noncoated PEC sphere is also
shown in the figures.

6.1.2 Shell Element Formulation

Thin-material sheets and coatings can be resolved by finite volumetric methods
through local refinements to the mesh. In this way, the thin-material feature is fully
characterized in three-dimensional space. However, this approach is typically im-
practical except for isolated instances, and therefore alternative approaches, such
as the first-order Leontovich IBC technique described in the preceding section, are
usually adopted. As noted previously, the simple Leontovich IBC has limitations,
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Figure 6.6 Inductive surface coating on a PEC sphere. The surface impedance is given by
Zs = Rs + jωLs = 377/2 + jω 377/(4π × 108). (After Riley and Riley [12], Copyright C© IEEE
2004.)
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Figure 6.7 Capacitive surface coating on a PEC sphere. The surface impedance is given
by Zs = 1/(Gs + jωCs) with Gs = 0.00531 S/� and Cs = 8.44 pF/�. (After Riley and
Riley [12], Copyright C© IEEE 2004.)
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however, because it only affects the tangential field components, and in the case of
lossless dielectric coatings on a conducting surface, a nonunity relative permittivity
is ignored.

A more general approach that does not increase the total number of volumet-
ric cells within the finite element domain is to adopt degenerate finite elements,
constructed by collapsing the height of a three-dimensional element such that a two-
dimensional surface element is obtained. The degrees of freedom associated with
the original volumetric element are preserved in the process, and thus the technique
is three-dimensional with regard to the finite element expansion coefficients. More
specifically, possible discontinuities in the normal component of the electric field
across the material interface can be resolved. However, because the physical thick-
ness of the layer is now treated as a mathematical parameter, the technique inherently
requires that the material layer be electrically thin, although this can be relaxed to
some extent by using higher-order basis functions. Obviously, only certain types of
volumetric finite elements can be used for this purpose, and these include hexahedral
and prismatic elements. Because unstructured finite element meshes are typically
based on tetrahedral elements, the class of prismatic elements is then well suited
to be used to model the thin-material regions. Degenerate prismatic elements have
previously been used for eddy current applications [17] as well as high-frequency
scattering based on the FETD method [18]. Higher-order interpolatory vector basis
functions are readily available for prism elements [19].

A prism element placed between two tetrahedra is shown in Figure 6.8, where the
actual thickness d of the material layer is shown in Figure 6.8(a) and the degenerate
form is shown in Figure 6.8(b). In the degenerate form, note that the degrees of
freedom associated with the edges on the interior triangular faces are now doubled

Shell
(Degenerate
prism)

d

Prism
(Material layer)

Ss

Ss

Ss

Ss

Ss

Ss

(a) (b)

+

+

−
−

Figure 6.8 Use of degenerate prism elements to model thin-material sheets and coatings.
(a) Physical three-dimensional model of a prism interfaced between two tetrahedral elements.
(b) Simulation model that has collapsed the three-dimensional prism into a two-dimensional
shell element such that the original degrees of freedom are retained.
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such that there are edge unknowns associated with the tetrahedra both above and
below the material layer. In addition, even though the vertical edges of the prism
have been collapsed, the degrees of freedom associated with these edges have been
accounted for properly in the construction of the finite element system matrices. For
example, when using a right prism in the material layer, the matrices [T], [R], and
[S] in (2.27) have additional elemental contributions from the prism element given
by [18]

Ti j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

3

∫∫
Ss

εsdNp
i · Np

j dS, i, j on same face

1

6

∫∫
Ss

εsdNp
i · Np

j dS, i, j on opposite faces

∫∫
Ss

εsdλ
p
i λ

p
j dS, i, j both vertical

(6.34)

Ri j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

3

∫∫
Ss

σsdNp
i · Np

j dS, i, j on same face

1

6

∫∫
Ss

σsdNp
i · Np

j dS, i, j on opposite faces

∫∫
Ss

σsdλ
p
i λ

p
j dS, i, j both vertical

(6.35)

Si j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

3

∫∫
Ss

d

μs

(∇ × Np
i

) · (∇ × Np
j

)
dS, i, j on same face

1

6

∫∫
Ss

d

μs

(∇ × Np
i

) · (∇ × Np
j

)
dS, i, j on opposite faces

∫∫
Ss

d

μs

(
n̂s × ∇λ

p
i

) · (n̂s × ∇λ
p
j

)
dS, i, j both vertical

(6.36)

where the Np’s denote the prism vector edge basis functions and the λ
p’s denote the

prism nodal basis functions [19].
Around the perimeter of the thin-material layer some care is required with regard to

the interface with the surrounding tetrahedral elements. This is because termination of
the layer requires transitioning back to a single degree of freedom for the tetrahedral
elements that are connected to the perimeter edges. One approach is to collapse these
degrees of freedom into a single edge. For the special case of a thin coating on
a PEC surface, these collapsed edges would then be treated with a PEC boundary
condition; that is, the electric field would be set to zero. For other configurations, the
collapsed perimeter edges are free unknowns associated with the connecting edges
of the surrounding tetrahedra.

This shell-element approach to modeling thin-material sheets and coatings is,
of course, an approximate solution technique. The primary reasons for this are
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the following: (1) When using linear basis functions there is only one degree of
freedom through the layer thickness; (2) the physical thickness is described math-
ematically instead of being resolved directly by the mesh; and (3) the perimeter
of the layer region may not be defined adequately because it is necessary to com-
bine the perimeter unknowns so that surrounding tetrahedral elements can be inter-
faced properly. Nevertheless, this technique has been found to provide similar results
for those applications that are well characterized by the first-order IBC, yet pro-
vides increased generality and accuracy for applications where the first-order IBC is
inadequate [18].

6.2 THIN WIRES AND SLOTS

Practical applications often possess many wires, cables, and apertures. Wires are typ-
ically very thin in both their physical and electrical radii, and narrow apertures often
occur through the interconnection of metal faceplates. As noted previously, although
an unstructured finite element mesh can resolve these features by transitioning the
element size, this approach is typically impractical for all but a few isolated instances
of these features, due to the resulting large number of finite elements. An alternative
approach that exploits and incorporates the fundamental physics of the wires and
slots into the finite element method is therefore desirable, and this approach has been
developed and applied for many years within the FDTD method [20–29]. In this
section we present techniques to resolve thin wires and narrow slot apertures within
the FETD method. Because of the increased geometrical flexibility of FETD relative
to FDTD, the paths followed by the wires and slots can be quite general. In addition,
it is possible to construct hybrid algorithms that preserve the unconditional stability
of the FETD method.

6.2.1 Thin Wires

Electrically thin wires and cables can be treated accurately by integral equation
techniques as well as the telegrapher’s (transmission-line) equations. The approach
adopted in this section will be based on the telegrapher’s equations interfaced with
the FETD method. To account properly for full three-dimensional coupling between
the telegrapher’s equations and possible surrounding geometry will require the devel-
opment of a specialized hybridization technique that couples the three-dimensional
finite element method with the one-dimensional wire model.

We consider a conducting cylindrical wire with radius a and local path direction
characterized by the position-dependent unit vector ŝ, as illustrated in Figure 6.9.
Although randomly oriented in three-dimensional space, the current distribution is
assumed to be void of azimuthal variation and hence will be described by one-
dimensional equations such that the resulting description is often referred to as a
filament model. For convenience, we assume that the wire(s) are edge-aligned with
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2 a
r0

ŝ

r=r0

Cylindrical surface of radius r0 where
surrounding electric fields are evaluated

ˆ

Wire centerline

E.s

Figure 6.9 Physical wire oriented in three-dimensional space. Simulation model replaces
the wire with a filament placed along the centerline. A hybrid field-wire solution technique is
used.

the surrounding three-dimensional finite element cells [30], although this restriction
can be relaxed [31]. The governing telegrapher’s equations are given by [20]

Cw
∂V

∂t
= −Cw

σ

ε
V − ∂ I

∂s
(6.37)

Lw
∂ I

∂t
= −∂V

∂s
+ (

E · ŝ|r=r0
+ Vimp − IRw

)
(6.38)

where I denotes the wire current, V denotes the voltage (or charge) along the wire,
V imp denotes a possible impressed voltage source with unit of volts per unit length, Rw

denotes possible resistive loading with unit of ohms per unit length, and the material
parameters σ and ε are those associated with the medium supporting the wire.

As illustrated in Figure 6.9, the radial distance r = r0 in (6.38) is measured from
the centerline of the wire and defines a local cylindrical tube where the surrounding
three-dimensional electric fields are evaluated. These electric fields are represented
by E · ŝ|r=r0

in (6.38) and provide the field coupling to the wire. For example, for
the simple case of a straight wire that resides along the edges of a uniform grid of
cubical hexahedral cells with edge length �, r0 = � would be used. In this case,
an edge of the wire is surrounded by four parallel edges each a distance � away
from the wire edge. These parallel edges define the electric field locations used to
drive the corresponding wire edge, where a single average value is then constructed
to provide the source term to be used in (6.38) for the specific wire edge. In the
more complicated case of unstructured tetrahedral elements surrounding the wire, we
define r0 = �av, where �av denotes the average edge length of the three-dimensional
cells locally surrounding a given wire edge. The corresponding vector electric field
values within the surrounding cells can then be evaluated through interpolation of
the vector basis functions, and a single average value of these interpolated fields is
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used in (6.38) for the specific wire edge with direction ŝ. Each edge of the wire is
evaluated similarly.

The parameters Cw and Lw are referred to as the in-cell capacitance and inductance,
respectively, and are given by [20]

Lw = μ

2π
ln

r0

a
, Cw = εμ

Lw
. (6.39)

These expressions for Lw and Cw are based on an assumed 1/r variation for both
the radially directed electric field and the circumferential magnetic field local to the
wire. In particular, Lw has units of inductance per unit length and Cw has units of
capacitance per unit length.

It is convenient to rewrite the first-order equations (6.37) and (6.38) in a wave-
equation form given by [30]

Lw Cw
∂2 I

∂t2
+
(

Lw Cw
σ

ε
+ Rw Cw

) ∂ I

∂t
− ∂2 I

∂s2
+ Cw Rw

σ

ε
I

= Cw
∂

∂t
(E · ŝ|r=r0

+ Vimp) + Cw
σ

ε

(
E · ŝ|r=r0

+ Vimp
)
. (6.40)

For simplicity, we assume that the medium around the wire is nonconducting such
that σ = 0. In this case, (6.40) simplifies to

Lw
∂2 I

∂t2
+ Rw

∂ I

∂t
− 1

Cw

∂2 I

∂s2
= ∂

∂t

(
E · ŝ|r=r0

+ Vimp
)

. (6.41)

For a one-dimensional finite element discretization of (6.41) defined along a path
denoted by s, the weak-form representation is given by

∫
s

(
Lw

με

∂�

∂s

∂ I

∂s
+ Lw�

∂2 I

∂t2
+ Rw �

∂ I

∂t

)
ds =

∫
s
�

∂

∂t

(
E · ŝ|r=r0

+ Vimp
)

ds

(6.42)

where we have used Cw = εμ/Lw and the basis functions � for I will be the traditional
linear nodal functions [14] such that

I (s, t) =
Nnode∑
i=1

�i (s)Ii (t). (6.43)

The corresponding semidiscrete finite element representation of (6.42) is then

[Tw ]
d2{I }
dt2

+ [Rw ]
d{I }
dt

+ [Sw ]{I } = { fw } (6.44)
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and the matrix entries are given by

Tw,i j =
∫

s
Lw �i� j ds (6.45)

Rw,i j =
∫

s
Rw �i� j ds (6.46)

Sw,i j =
∫

s

Lw

με

∂�i

∂s

∂� j

∂s
ds . (6.47)

In addition, {I } = [I1, I2, . . . , INnode ]
T and the elements of the excitation vector

{ fw} are

fw,i (t) =
∫

s
�i

∂

∂t
(E · ŝ|r=r0

+ Vimp) ds. (6.48)

Equation (6.44) will be referred to as the finite element thin-wire equation.
The basic strategy for the hybridization of (6.44) with a three-dimensional finite

element method is initially to use the local three-dimensional electric fields E · ŝ|r=r0

surrounding the wire as distributed source terms for the thin-wire problem. The
current on the wire segments is then obtained through the solution of (6.44), and
these currents are used subsequently as source terms for the three-dimensional finite
element method.

More specifically, for the FETD method the weak-form representation of the
electric field wave equation is

∫∫∫
V

[
(∇ × T) ·

(
1

μ
∇ × E

)
+ ε T · ∂2E

∂t2

]
dV + Y0

∫∫
©

So

(n̂ × T) ·
(

n̂ × ∂E
∂t

)
dS

= −
∫∫∫

V
T ·

[
∂Jimp

∂t
+ ∇ ×

(
1

μ
Mimp

)]
dV (6.49)

and the semidiscrete form for (6.49) is given by (2.27). With standard first-order vector
edge basis functions, the elements of the excitation vector (2.31) simply become
−∂ Ĩi/∂t , where Ĩi denotes an arithmetic average of the nodal wire current values
to obtain an average edge current for the ith edge, and Mimp = 0. A self-consistent
time-stepping algorithm that advances both (6.44) and (6.49) can be formulated in
a straightforward manner [30]. However, we recall from Chapter 4 that symmetry is
generally a requirement in the construction of stable hybrid formulations in the time
domain, and this simple coupling technique will generally not be symmetric with
regard to the source terms E · ŝ|r=r0

for (6.44) and the wire current I for (6.49). The
lack of symmetry is apparent because the electric fields driving the wire equation form
a distribution around the wire (Figure 6.9), yet the wire currents driving the volumetric
region are constrained to the wire edges. Consequently, this hybrid technique may
be susceptible to late-time weak instabilities on a general unstructured mesh. It is
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interesting to note that if the computational domain is discretized with brick-shaped
elements and we adopt the two-point trapezoidal integration formula discussed in
Chapter 4 for both (6.44) and (6.49), this simple wire-field coupling approach is, in
fact, equivalent to the traditional FDTD thin-wire algorithm [20].

A more general and robust hybridization scheme that preserves symmetry between
(6.44) and (6.49) has been formulated in Ref. 31. The basic strategy with this approach
is to introduce a radial weighting function g(r) around the wire such that g(r) has the
property

∫
r≥a

2πrg(r )dr = 1. (6.50)

A suitable representation for g(r) is

g(r ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r < a
1 + cos (πr/r0)

π
(
r2

0 − a2
)− 2 r2

0 /π (1 + cos (πa/r0) + πa/r0 sin (πa/r0))
, a ≤ r ≤ r0

0, r > r0.

(6.51)

The distance r0 is shown in Figure 6.9 and was defined previously by r0 = �av,
where �av denotes the average edge length of the three-dimensional cells locally
surrounding a given wire edge. By using this weighting function and integrating over
a volume V , an alternative weak-form representation for (6.41) is obtained:

∫
s

(
Lw

με

∂�

∂s

∂ I

∂s
+ Lw�

∂2 I

∂t2
+ Rw �

∂ I

∂t

)
ds =

∫
s

�
∂Vimp

∂t
ds

+
∫∫∫

V
g(r ) � ŝ · ∂E

∂t
dV (6.52)

where the property (6.50) was used to obtain the two simplified line integral represen-
tations in (6.52). The electric field E is now expanded in vector edge basis functions
according to (2.26):

E(r, t) =
Nedge∑
i=1

Ni (r) Ei (t). (6.53)

With this expansion, the second term on the right-hand side of (6.52) becomes

Nedge∑
i=1

∂ Ei (t)

∂t

∫∫∫
V

Ni (r) · ŝg(r )� dV. (6.54)
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The only change in the semidiscrete finite element representation (6.44) is with regard
to the excitation vector { fw}, and with (6.54) the elements now become

fw,i (t) =
∫

s
�i

∂Vimp

∂t
ds +

Nedge∑
j=1

∂ E j (t)

∂t

∫∫∫
V

�i (s)g(r )N j (r) · ŝ dV. (6.55)

To enable a symmetric excitation between (6.44) and (6.49), the current density
Jimp is written as Jimp(r, t) = I (s, t) g(r ) ŝ, where g(r) is recalled to have the property
(6.50). By using (6.43), Jimp becomes

Jimp(r, t) =
Nnode∑
i=1

�i (s)g(r )Ii (t)ŝ. (6.56)

The elements of the excitation vector for the semidiscrete representation of (6.49) are
given by (2.31), and with (6.56) these become (assuming that Mimp = 0)

fi (t) = −
Nnode∑
j=1

∂ I j (t)

∂t

∫∫∫
V

� j (s)g(r )Ni (r) · ŝ dV. (6.57)

The elements of the excitation vector (6.55) for the finite element thin-wire equa-
tion (6.44) and the excitation vector (6.57) for the volumetric region (2.27) lead to
the following coupled system of equations:

[
[T ] 0
0 [Tw ]

]
d2

dt2

{ {E}
{I }

}
+
[

[R] [Pw ]T

−[Pw ] [Rw ]

]
d

dt

{ {E}
{I }

}

+
[

[S] 0
0 [Sw ]

]{ {E}
{I }

}
=
{

0
{ f̃w }

}
(6.58)

where we have introduced the matrix [Pw] and the excitation vector { f̃w }, with
elements given, respectively, by

Pw,i j =
∫∫∫

V
�i (s)g(r )N j (r) · ŝ dV (6.59)

f̃w,i =
∫

s
�i

∂Vimp

∂t
ds. (6.60)

A formal proof is available of the unconditional stability for the coupled wire and
field system (6.58) discretized using the Newmark-beta method [31].

An example of a thin-wire Archimedean spiral antenna is shown in Figure 6.10.
The overall diameter of the antenna is 2.4 inches. Archimedean spirals can be
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2.4 Inches

u ∈[−30.48, 30.48] mm

x = u cos u/v

y

x = u sin  u/v

v = 1 mm

x
(0,0,0)

Figure 6.10 Thin-wire Archimedean spiral antenna. An ideal voltage source is placed at the
origin. (See insert for color representation of figure.)

constructed easily within an xy-plane according to the equations x = u cos u and
y = u sin u where u is specified over an interval. Because the specific radius a of
the wire is a mathematical parameter when using the FETD field-wire hybrid for-
mulation, a variety of cases for the performance of the Archimedean spiral can be
studied rapidly. An interesting case is when the wire and air have approximately equal
surface areas within the xy-plane of the spiral. The antenna is then approximately
self-complementary, and as described in Section 7.2.2, we would expect an input
impedance of 188.5 
 between the two arms of the antenna. For the geometry in
Figure 6.10, this situation occurs when the wire radius is a = π /8 mm. The input
impedance calculated is shown in Figure 6.11, and we see that the FETD predictions
for the spiral agree well with the self-complementary theory within the broadband
operating range of the antenna.

An example of a rectangular resonator fed by a coaxial waveguide is shown in
Figure 6.12. Although the geometry for this example was originally developed to
validate thin-wire algorithms for the Cartesian grid FDTD method [29], application
of the FETD method using unstructured tetrahedral elements is used here. A thin
wire of radius a = 0.8 mm was extended from the lower surface to the upper
surface of the resonator and terminated with 50- and 47-
 lumped resistors on the
respective surfaces. A voltage source with the 50-
 impedance was used to represent
the excitation from the coaxial waveguide. The real power delivered to the input
port is given by P = 1

2 Re[Ṽ (ω) Ĩ ∗(ω)], where Ṽ and Ĩ denote the deconvolved port
voltage and current, respectively, and the asterisk denotes complex conjugation. A
comparison of the FETD prediction and the data measured for the power delivered is
shown in Figure 6.13.
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Figure 6.11 Input impedance of a thin-wire Archimedean spiral antenna. When the wire
radius a is π /8 mm, the spiral is approximately self-complementary with an input impedance
of 188.5 
.

Coax Feed Line
(Modeled by Thin Wire Load)

30 cm

22 cm

47Ω Load
on Wire

50Ω Load
on Wire

Thin Wire

14 cm

Figure 6.12 Rectangular cavity with a thin wire and coaxial feed. The FETD solution method
is based on unstructured tetrahedral elements. The geometry is based on the original FDTD
test object by Li et al. [29].

6.2.2 Thin Slots

Slot apertures that are electrically narrow in both width and depth occur frequently
in practical applications. Similar to the case of electrically thin wires, unstructured
finite element techniques can be used to resolve narrow slots. However, because the
resolution of even a single narrow aperture could possibly lead to the creation of a large
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Figure 6.13 Input power for the geometry in Figure 6.12. Measured data are extracted from
Li et al. [29].

number of finite elements, alternative approaches to accounting accurately for the
physics of the aperture without its complete discretization are again desirable. Within
the FDTD setting, many such techniques to characterize these types of apertures have
been reported, including local modifications of the FDTD path integrals [26] and the
integration of an integral equation for a slot in an infinite plane [28,29]. More recently,
an alternative approach is to use the local telegrapher’s equations cast in a form dual
to those described previously for thin-wire applications [30,32]. By approaching the
narrow slot application from a perspective dual to the wire case, a unified treatment
of the two configurations can be formulated, and this is the approach taken in this
section.

The geometry of a slot in a conducting wall is shown in Figure 6.14. From
the perspective of the three-dimensional finite element method that supports this
conducting wall, the slot is assumed to be short-circuited and hence identified only
by a virtual line segment that defines the path of the slot, which is described by the
position-dependent unit vector ŝ. The primary attribute of interest will be the voltage
across the slot aperture, which can also be interpreted mathematically as a magnetic
current. For the case of an electrically narrow slot with width w and depth d, where
w � λ and d � λ, the slot voltage is described by the following time-harmonic
transmission-line equations [33]:

∂ Is(ω)

∂s
= −Yslot(ω) Vs(ω) + Hdiff(ω) · ŝ (6.61)

∂Vs(ω)

∂s
= −Zslot(ω) Is(ω) (6.62)
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Figure 6.14 Slot aperture in a conducting wall. (a) Physical geometry of a slot with an
electrically narrow width and depth, showing driving local magnetic fields offset from the wall
by a distance r0. (b) Slot path in the conducting plane with a local direction ŝ. The slot depth
is accounted for mathematically in the local transmission-line formulation.

where Vs denotes the voltage across the slot width (or the axial magnetic current),
Is can be interpreted as magnetic charge, and Hdiff denotes the difference in the
external local magnetic field across the (short-circuited) surface(s) containing the slot;
specifically, Hdiff ≡ H2 − H1, where regions 1 and 2 are as defined in Figure 6.14.
The impedance per unit length, Zslot(ω), and the admittance per unit length, Yslot(ω),
both depend on the physical properties associated with the slot, such as internal



P1: JYS
c06 JWBK322-Jin October 3, 2008 16:48 Printer: Yet to come

THIN WIRES AND SLOTS 211

gaskets and/or internal wall losses [33]. For the simple lossless case with air in the
interior of the slot, Zslot (ω) and Yslot (ω) are given by

1

Zslot(ω)
= 1

jωLextr
s

+ 1

jωL intr
s

(6.63)

Yslot(ω) = jω (Cextr
s + C intr

s ) (6.64)

where the capacitance and inductance internal to the slot, C intr
s and L intr

s , respectively,
have the representations

C intr
s = ε0

d

w
, L intr

s = μ0
w

d
(6.65)

while the capacitance and inductance external to the slot, Cextr
s and Lextr

s , respectively,
are

Cextr
s = 2

π
ε0 ln

4r0

w
, Lextr

s = ε0μ0

Cextr
s

. (6.66)

Here, r0 denotes an offset distance in the direction normal to the slot, which will
typically be the distance to the location where the local magnetic fields will be
evaluated (Figure 6.14). The definition of r0 is similar to the previous case of thin
wires, and more specific discussion on its application to thin slots will be provided
later.

Because of the simple form of (6.65) and (6.66), we can define a single slot
capacitance Cs and inductance Ls such that

Cs = 2

π
ε0 ln

r0

as
, Ls = ε0 μ0

Cs

(6.67)

where

Cs ≡ Cextr
s + C intr

s ,
1

Ls

≡ 1

Lextr
s

+ 1

L intr
s

(6.68)

and the equivalent radius as is defined by as = (w/4) exp(−πd/2w) [33].
The time-domain form for (6.61) and (6.62) is then

Cs
∂Vs

∂t
= −∂ Is

∂s
+ Hdiff · ŝ (6.69)

Ls
∂ Is

∂t
= −∂Vs

∂s
(6.70)
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and the wave equation for the slot voltage Vs is given by

Cs
∂2Vs(t)

∂t2
− 1

Ls

∂2Vs(t)

∂s2
= ∂

∂t
Hdiff(t) · ŝ

∣∣∣∣
r=r0

. (6.71)

As illustrated in Figure 6.14, r0 is the distance perpendicular from the wall con-
taining the slot to the location where the local magnetic fields that excite the slot are
evaluated. For example, for the simple case of a straight slot that resides within a
uniform FDTD grid of cubical hexahedral cells with edge length �, r0 = �/2 would
be used on each side of the wall containing the slot. Note that this is the distance
to the closest magnetic field edges that are parallel to a particular slot edge in both
regions 1 and 2, as shown in Figure 6.14. The magnetic field difference required
in (6.71) is then constructed by forming Hdiff = H2 − H1. In the more complicated
case of unstructured tetrahedral elements surrounding the slot, we define r0 = �av/2,
where �av denotes the average edge length of the three-dimensional cells locally
surrounding a given slot edge. The corresponding vector magnetic field values within
the surrounding cells can then be evaluated through interpolation of the vector basis
functions, and a single average value of these interpolated fields is used in (6.71) for
the specific ŝ-directed slot edge. Each edge of the slot is evaluated similarly. Note
that in the case with first-order vector edge basis functions, only the magnetic field at
the barycenter of the local cells will be available since taking the curl of these basis
functions will lead to a constant value for the magnetic field.

Equation (6.71) corresponds to a dual representation to the thin-wire equation
(6.41). A simple field-slot finite element formulation can be realized by the following:
(1) Vs is obtained from a one-dimensional finite element discretization of (6.71); (2)
because Vs corresponds to a magnetic current, it is used in (2.31) to update the electric
fields using (2.36); and (3) Maxwell’s equations are used to construct Hdiff based
on the magnetic fields local to the slot in regions 1 and 2, as shown in Figure 6.14.
Although an implementation based on this concept can provide accurate results [30], it
will generally not be symmetric with regard to the field-based forcing function for the
slot equation and the slot-based forcing function for the field equation. Consequently,
weak instabilities may occur.

Similar to the field-wire formulation, a symmetric field-slot implementation can be
constructed that is provably unconditionally stable [32]. However, the field-slot case is
more complicated because the excitation is based on the local magnetic fields instead
of the local electric fields, and consequently, a symmetric formulation is currently
based on the use of the vector facet basis functions introduced in Section 4.4 as the
expansion functions for Hdiff in (6.71). The following provides a brief derivation of the
symmetric field-slot coupled finite element system, which is patterned after Ref. 32.

By using the weighting function g(r) defined in (6.51), the weak-form representa-
tion for (6.71) becomes

∫
s

(
1

Ls

∂�

∂s

∂Vs

∂s
+ Cs�

∂2Vs

∂t2

)
ds =

∫∫∫
V

g(r ) �
∂

∂t
Hdiff(t) · ŝ dV (6.72)
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where � denotes the same linear nodal basis functions used for the thin-wire appli-
cation. Because of the two-sided nature of the slot configuration, and in particular the
difference in the local magnetic fields associated with the two sides, we redefine the
weighting function g(r) from (6.51) such that

g̃(r ) ≡
{

2g(r ), r ∈ region 2
−2g(r ), r ∈ region 1

(6.73)

where the two regions are shown in Figure 6.14. With this definition, we can conve-
niently write the right-hand side of (6.72) as

∫∫∫
V

g̃(r ) �
∂

∂t
H(t) · ŝ dV. (6.74)

From (4.93), we now expand the magnetic field B(r, t) in terms of the vector facet
basis functions N f

i (r), and for the case of simple materials such that H = (1/μ0)B,
this expansion becomes

H(r, t) = 1

μ0

∑
i

Bi (t) N f
i (r). (6.75)

In terms of the nodal basis functions, the slot voltage Vs is expanded as

Vs(s, t) =
Nnode∑
i=1

�i (s) Vs,i (t). (6.76)

With (6.75) and (6.76), the semidiscrete form for (6.72) becomes

[Ts]
d2{Vs}

dt2
+ [Ss]{Vs} = { fs} (6.77)

where the matrix entries are given by

Ts,i j =
∫

s
Cs�i� j ds (6.78)

Ss,i j =
∫

s

1

Ls

∂�i

∂s

∂� j

∂s
ds. (6.79)

In addition, {Vs} = [Vs,1, Vs,2, . . . , Vs,Nnode ]
T and the elements of the excitation vector

{ fs} are

fs,i (t) =
Nface∑
j=1

∂ B j (t)

∂t

∫∫∫
V

1

μ0
N f

j (r) · ŝ g̃(r ) �i dV. (6.80)
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Alternatively, we can write (6.80) in matrix form and obtain

[Ts]
d2{Vs}

dt2
+ [Ss]{Vs} = [Ps]

d{B}
dt

(6.81)

where the elements of [Ps] are

Ps,i j =
∫∫∫

V

1

μ0
N f

j (r) · ŝ g̃(r ) �i dV. (6.82)

From (4.103), we eliminate d{B}/dt from (6.81) to obtain

[Ts]
d2{Vs}

dt2
+ [Ss]{Vs} = −[Ps][C]{E} − [Ps][M f ]−1{g} (6.83)

where [C] is the incidence matrix with nonzero entries consisting simply of ±1 [34]
and the elements of {g} are given by (4.101).

We now expand Mimp in terms of vector facet basis functions such that

Mimp(r, t) =
∑

i

Jm,i (t) N f
i (r). (6.84)

With (6.84), [M f]−1{g} in (6.83) simply becomes {Jm}, and (6.83) simplifies to

[Ts]
d2{Vs}

dt2
+ [Ss]{Vs} = −[Ps][C]{E} − [Ps]{Jm}. (6.85)

Because the slot voltage Vs ŝ corresponds to Mimp, (6.84) can also be represented by

Mimp(r, t) =
Nnode∑
i=1

Vs,i (t) g̃(r ) �i (s) ŝ . (6.86)

By setting (6.84) equal to (6.86), multiplying by N f
j , and integrating over all space,

we obtain

∫∫∫
V

Nnode∑
i=1

Vs,i (t) g̃(r ) �i (s) ŝ · N f
j dV =

∫∫∫
V

∑
i

Jm,i (t) N f
i · N f

j dV. (6.87)

In matrix form, (6.87) can be written as

[Ps]T{Vs} = [T f ]{Jm} (6.88)

where [T f] is defined by (4.98).
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We now focus on the three-dimensional field equations described by (6.49). By
using vector edge basis functions for the electric field and using the vector facet
expansion (6.84), the semidiscrete representation for (6.49) becomes

[T ]
d2{E}

dt2
+ [R]

d{E}
dt

+ [S]{E} = { f } (6.89)

where the elements of the excitation vector {f} are given by

fi (t) = −
∫∫∫

V
Ni · ∂Jimp

∂t
dV −

Nface∑
j=1

Jm, j (t)
∫∫∫

V
N f

j ·
[

1

μ0
∇ × Ni

]
dV.

(6.90)

We now use (6.88) and (6.90) and rewrite the right-hand side of (6.89) in matrix form
such that

[T ]
d2{E}

dt2
+ [R]

d{E}
dt

+ [S]{E} = −[C]T[Ps]T{Vs} + { f̃ } (6.91)

where we have used [A]T[T f]−1=[C]T, with [A] defined by (4.99) and [C] again
denoting the incidence matrix, and the elements of { f̃ } are

f̃i (t) = −
∫∫∫

V
Ni · ∂Jimp

∂t
dV. (6.92)

The final field-slot coupled system of equations is given by (6.85) and (6.91). In
matrix form, this system can be written as

[
[T ] 0
0 [Ts]

]{ {Ë}
{V̈s}

}
+
[

[R] 0
0 0

]{ {Ė}
{V̇s}

}
+
[

[S] [C]T[Ps]T

[Ps][C] [Ss] + [Ps][T f ]−1[Ps]T

]

×
{ {E}

{Vs}
}

=
{ { f̃ }

0

}
(6.93)

where we have used the dot notation to indicate time differentiation. A formal proof
of the unconditional stability of system (6.93) discretized using the Newmark-beta
method is available [32].

An example of a rectangular resonator with a thin wire and a corner-mounted
thin slot is illustrated in Figure 6.15. Similar to the thin-wire example shown in
Figure 6.12, this test object was originally developed to validate thin-wire and
thin-slot algorithms for the Cartesian grid FDTD method [29]. Application of the
FETD method using unstructured tetrahedral elements is alternatively applied here.
The slot length was 12 cm, while the slot width was 1.58 mm and the depth was
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Thin Wire

Figure 6.15 Rectangular cavity with a thin wire, thin slot, and coaxial feed. The FETD
solution method is based on unstructured tetrahedral elements. The geometry is based on the
original FDTD test object by Li et al. [29].

0.5 mm The radius of the thin wire was 0.8 mm and was terminated with 50- and
47-
 resistors. A voltage source with a 50-
 impedance was used similarly to rep-
resent excitation from the coaxial waveguide. A comparison of the FETD prediction
and the data measured for the power delivered for the geometry in Figure 6.15 is
shown in Figure 6.16.
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Figure 6.16 Input power for the geometry in Figure 6.15. Measured data are extracted from
Li et al. [29].
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Figures 6.13 and 6.16 both show remarkable correlations between measured and
predicted data for these simple internal applications. Unfortunately, most practical
interior applications have far greater complexity and often require accurate domain
knowledge, such as geometrical, electrical, and material parameters, that may be
difficult to obtain precisely.

6.3 LUMPED-CIRCUIT ELEMENTS

Within the FDTD method, techniques to include isolated lumped elements, as well
as the integration of external circuit simulators, are well known [35]. In the finite
element setting, it is straightforward to include isolated lumped-circuit elements
such as resistors, capacitors, and inductors directly into the finite element system of
equations [14]. More specifically, the contribution of a lumped resistor with static
resistance R on the kth edge is obtained by making the substitution Rs → R/δ(r − rk)
in (6.26), where δ(r) denotes the Dirac delta function, while a lumped capacitor C is
included by the substitution Cs → Cδ(r − rk) in (6.31), and a lumped inductor L is
included by the substitution Ls → L/δ(r − rk) in (6.33). Note that these contributions
will affect the diagonal entries of the primary finite element matrices. An example of
an isolated resistor placed on a finite element edge is shown in Figure 6.17(a).

EeEc

ic

R

(a)

di cE

ci

Distributed Part

Lumped Part

(b)

di cZdC

Figure 6.17 Lumped-circuit modeling in the finite element method. (a) Isolated resistor on a
finite element edge. (b) Circuit diagram to accommodate complex circuit networks in the FETD
method. Field data are accommodated within the distributed region, and the lumped-circuit
network is accommodated within the lumped region.
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To include more extensive circuit networks into the finite element method, or to in-
clude the more complex behavior of isolated lumped elements, such as nonlinearities,
it is convenient to isolate the edges of the finite element domain that are associated
with the circuitry. In this way, the circuit aspects can be treated as a separate appli-
cation, yet remain fully coupled to the surrounding noncircuit edges within the finite
element domain. The basic strategy is to create a separate schematic representation
for the circuit edges that can be solved by an external circuit simulator. In this section
we discuss formulations for both the conditionally stable FETD representation based
on the first-order Maxwell’s equations described by (4.104) and (4.105), as well as
the unconditionally stable FETD representation based on the wave equation (2.27).
The development based on the first-order Maxwell’s equations follows Refs. 36 and
37, and the development based on the wave equation is patterned after Ref. 38.

6.3.1 Coupled First-Order Equations

A derivation of an FETD algorithm that is based on the first-order Maxwell’s equations
was provided in Section 4.4. Recall that this formulation is conditionally stable,
although it is implicit with regard to the electric field advancement. The principal
semidiscrete equations are (4.95) and (4.96), which are restated here for convenience:

[T f ]
d{B}

dt
+ [A] {E} = −{g} (6.94)

[T ]
d{E}

dt
− [A]T {B} = { f } (6.95)

where {H} and {B} are related through {H}=[T f]{B} and the matrices [T], [T f],
[A], and the incidence matrix [C]= [T f]−1[A] are as defined in Section 4.4.

It is convenient to separate the finite element edges that are associated with the
circuitry from the noncircuit finite element edges and write (6.95) compactly as

{ {be}
{bc}

}
=
[

[Tee] [Tec]
[Tce] [Tcc]

]
d

dt

{ {Ee}
{Ec}

}
+
{ {ie}

{ic}
}

(6.96)

where the variables with the subscript e are those associated with the noncircuit
edges, whereas the variables with the subscript c correspond to the edges connected
to circuitry, and we have introduced the definition

{ {be}
{bc}

}
≡
[

[Aee] [Aec]
[Ace] [Acc]

]T { {Be}
{Bc}

}
. (6.97)

The two rows of (6.96) can be written as

d{Ee}
dt

= [Tee]−1

(
−[Tec]

d{Ec}
dt

− {ie} + {be}
)

(6.98)
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and

{id} = [Cd ]
d{Ec}

dt
+ {ic} (6.99)

where

{id} ≡ {bc} − [Tce][Tee]−1({be} − {ie}) (6.100)

[Cd ] ≡ −[Tce][Tee]−1[Tec] + [Tcc]. (6.101)

In (6.99), the current {ic} can often be written conveniently as {ic} = [Yc]{Ec},
where [Yc] denotes the admittance matrix for the lumped-circuit elements within the
finite element mesh. However, to increase generality, (6.99) can be combined with the
state equations for complex networks that may be connected to these finite element
edges. Note that the electric field coefficients will be scaled by their corresponding
edge lengths to obtain voltage coefficients.

The solution procedure is to obtain {Ec} from (6.99) and then construct {Ee}
from (6.98). A circuit representation for (6.98) and (6.99) is shown in Figure 6.17(b).
When the lumped-circuit network contains nonlinear elements, general nonlinear
equation solvers such as Newton–Raphson methods [40] can be used to obtain {Ec}.
Alternatively, an external network simulator such as SPICE [39] can be used for this
purpose. However, as with all hybridizations of dissimilar solution methods, it is not
generally possible to make definitive statements with regard to the stability of the
resulting algorithm unless the interface region is defined precisely.

6.3.2 Wave Equation

A decomposition that isolates the finite element edges that are connected to circuitry
can similarly be developed for the second-order wave equation. The semidiscrete
wave equation (2.27) is restated as

[T ]
d2{E}

dt2
+ [S]{E} = { f } (6.102)

where for simplicity we have set [R] = 0. We now separate the finite element edges
that are associated with the circuitry from the noncircuit finite element edges; conse-
quently, (6.102) can be written equivalently as

[
[Tee] [Tec]
[Tce] [Tcc]

]
d2

dt2

{ {Ee}
{Ec}

}
+
[

[See] [Sec]
[Sce] [Scc]

]{ {Ee}
{Ec}

}
=
{ { fe}

{ fc}
}

(6.103)

where {Ee} denotes the scaled electric-field expansion coefficients associated with
noncircuit edges, while {Ec} denotes the coefficients associated with the circuit
edges. The excitation vector {f} is decomposed similarly and the interpretation of
the matrix decompositions is apparent.
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By applying the Newmark-beta scheme with β = 1/4 to the {Ee} equation, we
can rewrite (6.103) as the following two equations:

[Mee] {Ee}n+1 = 2 [Mee] {Ee}n − [Mee] {Ee}n−1 − [See] {Ee}n

−
(

[Tec]
d2{Ec}

dt2
+ [Sec]{Ec}

)∣∣∣∣
t=n�t

+ { fe}|t=n�t (6.104)

(
[Tcc]

d2{Ec}
dt2

+ [Scc]{Ec}
)∣∣∣∣

t=n�t

= −[Mce] {Ee}n+1 + 2[Mce] {Ee}n

− [Sce] {Ee}n − [Mce] {Ee}n−1

+ { fc}|t=n�t (6.105)

where

[Mee] ≡ 1

�t2
[Tee] + 1

4
[See]; [Mce] ≡ 1

�t2
[Tce] + 1

4
[Sce]. (6.106)

We now substitute (6.104) into (6.105) to obtain the following coupled system of
equations:

(
[Cd ]

d2{Ec}
dt2

+ [Ld ]−1{Ec} − { fc}
)∣∣∣∣

t=n�t

= −[Mce] {Ẽe}n+1 − [Mce] {Ee}n−1 + (2[Mce] − [Sce]) {Ee}n (6.107)

{Ee}n+1 = {Ẽe}n+1 − [Mee]−1

(
[Tec]

d2{Ec}
dt2

+ [Sec]{Ec}
)∣∣∣∣

t=n�t

(6.108)

where {Ẽe}n+1 is obtained from the traditional (noncircuit) FETD formulation

{Ẽe}n+1 = 2{Ee}n − {Ee}n−1 − [Mee]−1([See]{Ee}n − { fe}|t=n�t ) (6.109)

and

[Cd ] ≡ [Tcc] − [Mce]([Mee]−1[Tec]) (6.110)

[Ld ]−1 ≡ [Scc] − [Mce]([Mee]−1[Sec]). (6.111)
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By defining {fc} = −d{ic}/dt, (6.107) can be rewritten equivalently as

{id} = [Cd ]
d{Ec}

dt
+ {ic} (6.112)

d{id}
dt

= −[Ld ]−1{Ec} − [Mce] ({Ẽe}n+1 + {Ee}n−1)

+ (2[Mce] − [Sce]) {Ee}n. (6.113)

Note that in a fully discrete form, (6.112) and (6.113) become coupled when a
traditional Newmark-beta average for {Ec} is adopted. Equation (6.112) can be
combined with the state equations for complex connecting networks, if necessary.

If we assume that {ic}= [Yc]{Ec}, where [Yc] denotes a (possibly time-dependent)
admittance matrix for the lumped elements, an unconditionally stable time-stepping
algorithm for (6.112) and (6.113) is given by

[
2

�t
[Cd ] + [Yc] + �t

2
[Ld ]−1

]
{Ec}n+1 =

[
2

�t
[Cd ] − [Yc] − �t

2
[Ld ]−1

]
{Ec}n−1

− (2[Yc] + �t[Ld ]−1){Ec}n + {ĩd}n

(6.114)

{id}n+1 = {id}n−1 − �t

2
[Ld ]−1({Ec}n+1 + {Ec}n−1 + 2{Ec}n)

+ 2�t
[
(2[Mce] − [Sce]){Ee}n − [Mce]({Ẽe}n+1 + {Ee}n−1)

]
(6.115)

where

{ĩd}n = 2{id}n + 2{id}n−1 + 2�t[(2[Mce] − [Sce]){Ee}n

− [Mce]({Ẽe}n+1 + {Ee}n−1)] (6.116)

and {Ẽe}n+1 is obtained from (6.109). The solution procedure is to solve (6.109)
initially to obtain {Ẽe}n+1, which is then used to construct {ĩd}n . Equation (6.114)
can then be solved for {Ec}n+1, and finally, {id}n+1 is advanced from (6.115). The
circuit diagram is similar to Figure 6.17(b).

For simple lumped-circuit components, the solution of (6.114)–(6.116) will yield
results that are numerically identical to a direct solution of the finite element for-
mulation (2.27). The advantage of separating the circuit edges from the noncircuit
edges is that the circuit problem becomes a subdomain application with the global
finite element solution. For example, a simple time-dependent resistor will affect
only the small matrices in (6.114) associated with the local circuit edges instead of
introducing a time dependency into the large global finite element matrices. The more
complicated situation of a nonlinear Gunn diode is considered in the next section.
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6.3.3 Example

An active patch antenna that contains two Gunn diodes is shown in Figure 6.18. This
example was originally used for the validation of nonlinear lumped-circuit models
for the FDTD method [41], and was subsequently used for validation of the FETD
lumped-circuit modeling technique described in Section 6.3.1 [36]. A discussion of
the oscillation modes associated with this geometry can be found in Ref. 42. When
the two antenna structures are connected by a metal strip, a difference mode occurs
at 11.84 GHz, whereas when the two structures are connected by a chip resistor, a
sum mode occurs at 11.04 GHz. The difference mode is considered in this example.

The circuit model for the Gunn diodes shown in Figure 6.18(b) leads to the
following nonlinear differential equation:

C1
dVd

dt
+ Vd

R1
+ F(Vd ) = − Vc

R1
(6.117)

3.23 mm

0.74 mm

2.31 mm

17.02 mm

7.89 mm

3.83 mm

5.26 mm

7.92 mm
11.15 mm

Radiating Elements

Gunn Diodes

(a)

C1 = 0.2pF

R1 = 1Ω

F(Vd)

(b)

Vd
Vc

+

+

−

−

Figure 6.18 Active patch antenna on a dielectric substrate with a thickness of 0.789 mm
and a relative permittivity of 2.33. (a) Geometry. (b) Circuit diagram for Gunn diodes.
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where the active current source is given by [41]

F(Vd ) = −0.0252Vd + 0.0265(Vd )3. (6.118)

When each of the two Gunn diodes is connected to a single finite element edge of
length �, the electric field along this edge is given by Ec = −Vc/�, where Ec is
as shown in Figure 6.17(b). By observing in Figure 6.18(b) that Vd = −icR1−Vc,
(6.117) can be written equivalently in terms of the current ic as

C1
dVc

dt
+ C1 R1

d ic

dt
+ ic = F(Vd ). (6.119)

When combining (6.119) with either (6.99) or (6.112), it is apparent that a time-
marching algorithm will require the solution of a nonlinear system of equations to
obtain the port parameter {Ec}n+1. As noted previously, this can be accomplished
by using either the Newton–Raphson method or a network simulation tool such as
SPICE. By adopting an FETD–SPICE solution approach [36], the steady-state voltage
appearing across each diode of the active antenna is shown in Figure 6.19, and the
H-plane pattern at 11.84 GHz is shown in Figure 6.20. Although good results have
been obtained with an FETD–SPICE interface, no known proof of the stability of this
interface has been established.
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Diode 2

Figure 6.19 Steady-state voltage across each diode based on the FETD-SPICE method.
(After Guillouard et al. [36], Copyright C© IEEE 1999.)
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Figure 6.20 H-plane difference-mode pattern at 11.84 GHz. (After Guillouard et al. [36],
Copyright C© IEEE 1999.)

6.4 DISTRIBUTED FEED NETWORK

In the preceding section we described techniques to decompose a finite element
application into a field portion and a circuit portion that are solved concurrently
in time. The approach was based fundamentally on lumped-circuit concepts, where
complex networks are connected to individual edges of the finite element mesh and
solved concurrently with the fields by using linear or nonlinear equation solution
techniques.

In this section we consider a related decomposition for the case of distributed
ports [43]. Because phased-array antennas are often fed by waveguides, such as coax-
ial transmission lines, a port-based decomposition can provide increased accuracy
and generality compared to feed models that are based on lumped-circuit techniques.
The basic strategy is based on a bidirectional decomposition of the fields as well as the
port voltages and port currents, and this formulation has been found to provide an ac-
curate and numerically stable hybrid algorithm for interfacing the FETD method with
a secondary simulation solver for the feeding network. We note that a bidirectional
decomposition approach has also been reported for interfacing the FDTD method
with embedded circuit networks based on the multiconductor transmission-line
theory [44].

Figure 6.21 illustrates the relationship between the antennas, the feeding network,
and the port interfaces. The port surfaces between the antennas and the feeding
network are represented by Sp, where p = 1, 2 . . . , Np, and we assume that the feeding
network is connected to a source through an additional port surface denoted by S0.
The transverse electric fields on the port surfaces are denoted by E0, E1, . . . , ENp ,
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Source

Feed
Network

Antennas

ENp

SNp

S1

S0

(−)
(+)

(−)
(+)

(−)
(+)

HNp

E1

H1

E0

H0

Figure 6.21 Port interfaces between source, feeding network, and antennas with bi-
directional propagation.

and the magnetic fields are defined similarly. The (−) convention is used to represent
fields propagating from the feeding network toward the antennas, whereas the (+)
convention is used to represent fields propagating from the antennas toward the
feeding network. Similarly, across the source port S0, the (−) convention is used to
represent fields propagating from the feeding network toward the source, whereas
the (+) convention corresponds to propagation from the source toward the feeding
network. In terms of these bidirectional decompositions, the total transverse electric
and magnetic fields on the pth port are represented in time-harmonic form by

Ep(ω) = E(+)
p (ω) + E(−)

p (ω) (6.120)

Hp(ω) = H(+)
p (ω) + H(−)

p (ω). (6.121)

The port modal voltages and currents can be decomposed similarly, and in the case
of an assumed TEM-dominant mode, we can represent the TEM modal coefficients
for the voltage and current at the pth port by

Vp(ω) = V (+)
p (ω) + V (−)

p (ω) (6.122)

Ip(ω) = I (+)
p (ω) − I (−)

p (ω). (6.123)

The corresponding time-domain representations of (6.122) and (6.123) are

Vp(t) = V (+)
p (t) + V (−)

p (t) (6.124)

Ip(t) = I (+)
p (t) − I (−)

p (t). (6.125)

To construct the field-network hybrid algorithm, the implementation strategy will
be to rigorously impress the V (−)

p (t) port voltages associated with the feeding network
into the FETD method that is used to describe the antenna domain, and impress the
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V (+)
p (t) port voltages associated with the antenna domain into the network circuit

solver associated with the feeding network. To realize this strategy, we focus initially
on the relationship between V (−)

p (ω) and V (+)
p (ω) within the feeding network, which

is easily established through the S-parameter matrix.
The bidirectional modal voltage coefficients V (±)

p (ω), p = 0,1, . . . , Np, are de-
scribed by [43]

{Ṽ (−)(ω)} = [S(ω)]{Ṽ (+)(ω)} (6.126)

where {Ṽ (±)(ω)} = [V (±)
0 (ω)/

√
Z0, V (±)

1 (ω)/
√

Z1, . . . , V (±)
N p (ω)/

√
Z N p]T, with Zp

denoting the TEM port impedance of the pth port, and [S(ω)] denotes the traditional
S-matrix description of the feeding network.

The time-domain representation of (6.126) is

{Ṽ (−)(t)} = [S(t)] ∗ {Ṽ (+)(t)} (6.127)

where * denotes the time convolution. An efficient recursive evaluation for the con-
volution operator can be implemented by adopting a rational function representation
for the elements of the S-matrix [S(ω)]; specifically,

Si j (ω) ≈
Nk∑

k=1

ci j,k

jω − ak
+ di j i, j = 0, 1, 2, . . . , Np (6.128)

where ak and cij, k denote the poles and residues, respectively, and dij denotes an
optional real function. To construct (6.128), the VECTFIT algorithm [45] can be
used. The time-domain representation for (6.128) is obtained by inverse Fourier
transformation,

Si j (t) ≈
Nk∑

k=1

Re(ci j,k eak t )u(t) + di jδ(t) (6.129)

where u(t) ≡ 1 for t ≥ 0 and 0 otherwise, and δ(t) denotes the Dirac delta function.
With (6.129) the convolution operation in (6.127) can be evaluated efficiently by a
recursive convolution. It is noted that for the case that the feeding network can be
described by the multiconductor transmission-line theory, modal analysis techniques
can alternatively be used to construct V (±)

p directly in the time domain [46].
We now focus our attention on adapting the modal port voltages V (−)

p (t) to the
FETD algorithm, which is facilitated by using the waveguide port boundary condition
(WPBC) described by (5.30)–(5.34) in Section 5.1.3. By considering the case that
E(−)

p (t) is incident on the pth port, we can rewrite (5.32)–(5.34) such that

n̂ p × (∇ × E) + Pp(E) = Uinc
p (E(−)) (6.130)
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where

Pp(E) = −eTEM
0,p

∫∫
Sp

eTEM
0,p · 1

c

∂

∂t
E dS −

∞∑
m=1

eTE
m,p

∫∫
Sp

eTE
m,p ·

(
1

c

∂

∂t
E + hm ∗ E

)
dS

−
∞∑

m=1

eTM
tm,p

∫∫
Sp

eTM
tm,p ·

(
1

c

∂

∂t
E + gm ∗ E

)
dS (6.131)

Uinc
p (E(−)) = n̂ p × (∇ × E(−)) − eTEM

0,p

∫∫
Sp

eTEM
0,p · 1

c

∂

∂t
E(−) dS

−
∞∑

m=1

eTE
m,p

∫∫
Sp

eTE
m,p ·

(
1

c

∂

∂t
E(−) + hm ∗ E(−)

)
dS

−
∞∑

m=1

eTM
tm,p

∫∫
Sp

eTM
tm,p ·

(
1

c

∂

∂t
E(−) + gm ∗ E(−)

)
dS . (6.132)

Because (6.131) and (6.132) accommodate higher-order modes, the WPBC can
be applied arbitrarily close to the antenna termination at each port. However, if
we assume only TEM propagation and place the WPBC sufficiently far from the
antenna aperture such that higher-order evanescent modes have decayed sufficiently,
both (6.131) and (6.132) simplify significantly. With this assumption, E(−)

p (t) =
V (−)

p (t) eTEM
0,p , which results in

Pp(E) ≈ −eTEM
0,p

∫∫
Sp

eTEM
0,p · 1

c

∂

∂t
E dS (6.133)

Uinc
p (E(−)) = −2 eTEM

0,p

1

c

dV (−)
p (t)

dt
(6.134)

where V (−)
p is obtained from a discrete representation of (6.127) and (6.129). Equa-

tions (6.130), (6.131), and (6.132) can easily be incorporated into the time-domain
weak-form wave equation (2.25), after which a time-marching system for the total
electric field {E} can be constructed [43,47]. From the electric field we can obtain
the total TEM modal voltage Vp on the pth port by forming

Vp =
∑

i

Ei�
TEM
i0,p (6.135)

where

�TEM
i0,p =

∫∫
Sp

Ni · eTEM
0,p dS (6.136)
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and Ei are the usual expansion coefficients for the electric field. The incident TEM
modal voltage on the feeding network, V (+)

p , is subsequently obtained by using (6.124)
such that V (+)

p (t) = Vp(t) − V (−)
p (t). Consequently, a time-stepping algorithm that

couples V (+)
p from the antenna region with V (−)

p from the network region can be
developed in a straightforward manner [43].

An example that applies the technique described in this section to a single-
polarization 8×8 printed Vivaldi antenna array with a multistage feeding network is
shown in Figure 6.22. Feeding networks typically consist of power dividers and phase
shifters. The power dividers split the source power, where port 0 is assumed to be the

(a)

(b)

Figure 6.22 (a) Single-polarization 8 × 8 printed Vivaldi antenna array. (b) Multistage feed-
ing network. Transmission lines are represented schematically by the rectangular blocks in the
distribution diagram. (After Wang et al. [43], Copyright C© IEEE 2008.)
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source port, into the several paths required to feed the various array elements. Mul-
tistage dividers often consist of several lossless transmission lines and T-junctions
that are arranged in multiple stages. The phase shifters control the relative elemental
phase, which enables the array to scan to various directions. True time delay between
the elements can be accomplished by using transmission lines with appropriate elec-
trical length. In Figure 6.22(b), transmission lines are represented schematically by
the rectangular blocks shown in the distribution diagram. Radiation patterns for the
scan angle θ s = 45◦ and φs = 0◦ are shown in Figure 6.23 for both the multistage
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Figure 6.23 Scanning radiated patterns for the 8×8 Vivaldi array with individual and multi-
stage feeding for the case θ s = 45◦ and φs = 0◦. (a) E-plane. (b) H-plane. (After Wang
et al. [43], Copyright C© IEEE 2008.)
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feeding network described above as well as feeding each array element individu-
ally. The multistage feeding approach is seen to affect primarily the amplitude of
the sidelobes. More examples involving different feeding networks can be found in
Ref. 43.

6.5 SYSTEM-LEVEL COUPLING EXAMPLE

Practical antenna systems require electronic components behind the antenna aperture
structure. Depending on the shielding and circuit isolation design, the performance of
these components can be affected through inadvertent coupling mechanisms. When
very high power is transmitted by the antenna apertures, the coupling into nearby
electronics can be of interest. For example, modern systems often place numerous
antennas in close proximity to one another, and therefore mutual coupling may
adversely affect the performance of the underlying circuit components, due to RF
penetration through apertures and/or coupling onto wires and cables.

In this section we examine the use of finite element techniques to predict L-band
(1–2 GHz) and S-band (2–4 GHz) coupling into complex electronics enclosures where
the coupling mechanisms can be through various types of apertures. A solid model
of a chassis with an internally shielded electronic compartment that contains a circuit
board is shown in Figure 6.24. This particular electronics chassis used commercially
available Eccosorb to reduce internal reflections, and a cross section of the chassis
depicting the Eccosorb material layers is shown in Figure 6.24(b). Note that the RF
circuits are placed within the inner metal box, and that a second metal box surrounds
the first. Finite element surface mesh representations of the internal regions of the
chassis and also the internal electronics box are shown in Figures 6.25 and 6.26,
respectively. A current observer was placed on one of the traces of the internal circuit
board. To couple energy onto these traces first requires coupling onto the cable wire
within the chassis, which then propagates through the multipin connector into the
small internal electronics box, where the central pin connects to the circuit trace
containing the current observer.

The electronics chassis has the following dimensions: 0.432, 0.358, and 0.13 m
along the x-, y-, and z-directions. For an empty rectangular cavity of these dimen-
sions the first few resonant modal frequencies are given by TE011 = 0.544 GHz,
TE101 = 1.2 GHz, TE110 = 1.23 GHz, TE111 = 1.275 GHz, and TM111 = 1.275 GHz.
However, and as noted previously, to suppress internal resonances the electronics
boxes used Eccosorb absorptive material layers, and therefore the true internal cavity
resonances are not predicable by a simple analysis. Consequently, the first step of this
study was to characterize the electrical properties of these absorptive material layers.

6.5.1 Internal Dispersive Material Calibration

Practical systems often contain important features where the electrical properties are
not readily known across the entire bandwidth of interest. This is particularly true
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Figure 6.24 (a) Device under test (DUT) geometry showing various sensors and aperture
configurations. (b) Cross section showing two Eccosorb absorptive layers (LS-14 and LS-16)
mounted under the top surface of DUT. (See insert for color representation of figure.)

in the characterization of materials. The fidelity of a detailed finite element analysis
is reduced when material properties cannot be specified precisely in the simulation.
Because detailed material properties may not be readily available from manufacturers,
empirical characterization over the bandwidth of interest may be required.

To examine the interior response of the chassis shown in Figure 6.24, the dispersive
electrical properties of the two Eccosorb absorptive material layers (LS-14 and LS-16)
were assumed to follow the complex permittivity profiles shown in Figure 6.27. All
apertures in the chassis were sealed for this configuration, and the interior response
at the B-Dot Sideways sensor due to the MGL-7 sensor driven in an antenna mode
was predicted by the FETD method and also measured. The cavity response is shown
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B-Dot Sensors

Figure 6.25 Finite element surface mesh local to the internal electronics compartment.
(After Riley et al. [48], Copyright C© IEEE 2006.) (See insert for color representation of
figure.)

in Figure 6.28, where the data correspond to a transfer function that relates the
sensor power received to the power transmitted. The noise floor for the measured
data for this configuration was approximately −100 dB. Although the locations of
the peaks and nulls do not align in frequency precisely between the predictions
and the measurements, the overall correlation in the frequency trend, amplitude,
and bandwidth of the internal resonances observed is considered to be good. For
purposes of estimating shielding needs, an upper bound is important, whereas the
exact frequency location of the peaks and nulls generally is not.

Trace Current
Observer

Figure 6.26 Finite element surface mesh on the internal circuit board. (After Riley et al. [48],
Copyright C© IEEE 2006.) (See insert for color representation of figure.)
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Figure 6.27 Estimated complex permittivity for Eccosorb material layers placed on the
interior top surface of the test object.
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Figure 6.28 Comparison of the FETD predicted and measured data for coupling between
the MGL-7 and the B-Dot Sideways sensors with all apertures closed.
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Figure 6.29 Comparison of the FETD and measured data for the current trace observer
shown in Figure 6.26. Coupling is through the wide slot aperture for the case of an external
plane wave with normal incidence and horizontal polarization. Linear data fits are also provided.
(After Riley et al. [48], Copyright C© IEEE 2006.)

6.5.2 External Illumination and Aperture Coupling

A horn antenna was used to illuminate the electronics chassis externally with the wide
slot aperture open (Figure 6.24). Energy could then couple onto the internal wires and
multipin connectors and into the internal electronics box containing the circuit-board
traces. Figure 6.29 shows FETD predictions and experimental data for the trace cur-
rent observer on the circuit board within the secondary internal compartment, where
the location of the trace-current observer is shown in Figure 6.26. Additional results
for coupling based on other open aperture configurations can be found in Ref. 48.

Unlike the analysis of isolated antennas, practical internal RF coupling assess-
ments involve numerous uncertainties in both geometrical and electrical parameters.
Because internal electronics compartments can exhibit extensive resonance charac-
teristics, small variations in the physical placement of components and the material
properties can affect the overall internal system response significantly. Nevertheless,
this example has demonstrated that high-fidelity finite element techniques provide
useful data to system integrators with regard to the coupling levels that may be present
in a complex system assessment.

6.6 SUMMARY

In this chapter we have discussed several techniques to enhance finite element for-
mulations so that their application scope can be extended. The techniques addressed
included the modeling of thin-material sheets and coatings, thin wires and thin slots,



P1: JYS
c06 JWBK322-Jin October 3, 2008 16:48 Printer: Yet to come

SUMMARY 235

lumped-circuit networks, and distributed port feeding systems for antennas and ar-
rays. The thin-material models were based on both the formulation of appropriate
impedance boundary conditions and the adaptation of degenerate prism finite ele-
ments. The first-order impedance boundary condition is easily incorporated into both
the frequency- and time-domain finite element formulations, although it affects only
the tangential component of the electric field and requires certain other conditions
for its application, such as local uniformity of the surface fields and restrictions on
the angle of incidence. Alternatively, thin-material layers can often be rigorously
modeled by using extruded finite elements such as prisms and hexahedra. The three-
dimensional degrees of freedom associated with these elements can be preserved
by collapsing their original three-dimensional forms into two-dimensional surface
elements. Consequently, this approach can provide increased generality and accu-
racy because the impact of the material layer on both the tangential and normal
field components is accounted for, in an approximate sense, within the finite element
solution.

The modeling of thin wires and thin slots within the finite element method adopted
a different approach that combined two independent mathematical models. More
specifically, in the case of wires, the physics of the wire was treated by a local
transmission-line model, while its supporting environment was described by the
traditional three-dimensional finite element formulation of the wave equation. A
field-wire coupling technique was described where the local electric fields from the
FETD method provided distributed source terms for the transmission-line model,
which in turn provided the current distribution along the wire that supplied source
terms for the volumetric FETD model. Thin slots were modeled similarly using a
dual form for the thin-wire transmission-line equations. As with all hybridization
schemes that interface different solution techniques, care is required to preserve
symmetry within the global solution method; otherwise, numerical instabilities are
likely to occur within time-domain formulations. Techniques were described that
provide unconditionally stable interfaces between both the FETD method and the
thin-wire and thin-slot transmission-line equations.

A technique to incorporate complex lumped-circuit networks into the FETD
method was also discussed. The approach was based on isolating those edges within
the finite element domain that are interfaced to circuitry. By decomposing the global
formulation into a distributed field portion and a lumped-element portion, alterna-
tive solution methods for the circuit network can be solved concurrently with the
volumetric FETD technique. Formulations to include lumped-circuit elements in the
conditionally stable FETD method based on the two first-order Maxwell’s equations,
as well as the unconditionally stable FETD method based on the wave equation, were
discussed. Subsequently, a generalization of this field-circuit concept to the case of
rigorously interfacing antenna feeding networks to the antenna ports was discussed.
The approach was based on a bidirectional decomposition of the fields at the port
interfaces between the antenna and network feeding portions of the antenna system.
Because the output of the feeding region is impressed into the finite element model
for the antennas through waveguide modes at the ports, high solution accuracy and
generality can be obtained. An example of a scanning 64-element Vivaldi array with
a multistage feeding network was provided.
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The final topic considered in this chapter was electromagnetic coupling into an
electronic subsystem. In cases where modern platforms support high-power antenna
systems, the potential interaction of these antennas may represent an important con-
cern in the overall system design. In particular, the possible RF coupling into elec-
tronics boxes may require additional attention to shielding. We presented a validated
example of using the FETD method to predict free-field coupling into an electron-
ics chassis that contained a shielded electronics compartment with simple internal
circuitry. One of the challenges associated with rigorously modeling certain system
features is to obtain accurate domain knowledge of the various system components,
such as the specification of complex material properties over a wide frequency band.
For complex internal coupling applications, this limited domain knowledge often
restricts our ability to obtain pointwise correlation between measurements and pre-
dictions over wide bandwidths. Nevertheless, advanced finite element techniques
provide a useful tool for establishing upper bounds on the coupling levels that are
important to the integration of high-power antenna systems into platforms.

REFERENCES

1. K. M. Mitzner, “Effective boundary conditions for reflection and transmission by an
absorbing shell of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. 16, pp. 706–712,
Nov. 1968.

2. T. B. A. Senior, “Combined resistive and conductive sheets,” IEEE Trans. Antennas
Propagat., vol. 33, pp. 577–579, May 1985.

3. G. Pelosi and P. Ya. Ufimtsev, “The impedance boundary condition,” IEEE Antennas
Propagat. Mag., vol. 38, no. 1, pp. 31–35, Feb. 1996.

4. I. V. Lindell and A. H. Sihvola, “Realization of impedance boundary,” IEEE Trans.
Antennas Propagat., vol. 54, pp. 3669–3676, Dec. 2006.

5. L. N. Medgyesi-Mitschang and D.-S. Y. Wang, “Hybrid solutions for large-impedance
coated bodies of revolution,” IEEE Trans. Antennas Propagat., vol. 34, pp. 1319–1329,
Nov. 1986.

6. A. Bendali, M’B. Fares, and J. Gay, “A boundary-element solution of the Leontovich
problem,” IEEE Trans. Antennas Propagat., vol. 47, pp. 1597–1605, Oct. 1999.

7. J. H. Beggs, R. J. Luebbers, K. S. Yee, and K. S. Kunz, “Finite-difference time-domain
implementation of surface impedance boundary conditions,” IEEE Trans. Antennas Prop-
agat., vol. 40, pp. 49–56, Jan. 1992.

8. J. G. Maloney and G. S. Smith, “A comparison of methods for modeling electrically thin
dielectric and conducting sheets in the finite-difference time-domain (FDTD) method,”
IEEE Trans. Antennas Propagat., vol. 41, pp. 690–694, May 1993.

9. N. Farahat, S. Yuferev, and N. Ida, “High order surface impedance boundary conditions
for the FDTD method,” IEEE Trans. Magn., vol. 37, pp. 3242–3245, May 2001.
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7 Antenna Simulation Examples

With the development of the basic finite element formulation in Chapters 2, the
mesh truncation techniques in Chapters 3 and 4, the antenna feed modeling and
parameter calculation in Chapter 5, and the treatment of fine features in Chapter 6,
computer codes can be developed to analyze single antennas and small arrays, where
the resulting matrix equation can be solved without resorting to special solution
techniques (discussed in Chapters 8 to 11). In this chapter we present a variety of
antenna simulation examples to demonstrate the capability and versatility of the finite
element method. All the simulations were performed using our in-house-developed
computer codes based on the techniques discussed in the preceding chapters.

7.1 NARROWBAND ANTENNAS

Narrowband antennas are often based on resonant configurations. Because of reso-
nance, the electromagnetic field in a narrowband antenna decays very slowly in time
and varies considerably as a function of frequency. For a rigorous solution, a small
frequency step has to be employed in a frequency-domain simulation to capture this
frequency variation, and a long time duration has to be simulated in the time domain
for the fields to either vanish or to reach steady state. In this section we examine
two types of narrowband antennas that are widely used in practice: the coaxial-fed
monopole antenna and the coaxial-fed patch antenna.

7.1.1 Coaxial-Fed Monopole Antenna

Monopole antennas have a typical bandwidth of approximately 10% and are used
widely in communication systems. A coaxial-fed monopole antenna mounted on
a small cylinder residing on an infinite ground plane is shown in Figure 7.1(a).
The height h of the antenna is 20.68 cm and the radius a is 1.62 mm, which
leads to the antenna thickness factor, 2 ln(2h/a) = 11, corresponding to a moder-
ately thin monopole. Both the radius and height of the small mounting cylinder are
24.31 mm. All metal surfaces were assumed to be perfect electrical conductors, and
the coaxial feed model was based on the techniques described in Section 5.1.3. Mea-
surements [1] and predictions for the input admittance are shown in Figure 7.1(b),

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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Figure 7.1 Coaxially fed monopole antenna on a ground plane. (a) Geometry. (b) Input
admittance. Measured data are adapted from Liu and Grimes [1].

where the predictions were based on the hybrid FETD–FDTD algorithm discussed in
Chapter 4.

7.1.2 Monopole Antennas on a Plate

This example consists of five monopole antennas mounted on a 30.48-cm × 30.48-
cm finite ground plane of thickness 3.175 mm, with the location of each antenna
shown in Figure 7.2(a) [2]. Each monopole has a radius of 0.635 mm and a length of
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Figure 7.2 Five monopole antennas mounted on a finite ground plane. (a) Top view showing
the size of the plate and locations of the monopoles (unit in inches). (b) Cross-sectional view
of one monopole with an SMA connector.

14.68 mm, which is the extension of the inner conductor of the coaxial feed, whose
outer radius is 2.057 mm, and is filled with Teflon that has a relative permittivity
of 2.0. A cross-sectional view of one monopole and its SMA connector is displayed
in Figure 7.2(b). Figure 7.3 gives the impedance matrix from 3 to 6 GHz. To be
more specific, the graph on the ith row and jth column plots the real part (solid line)



P1: JYS
c07 JWBK322-Jin October 3, 2008 20:8 Printer: Yet to come

NARROWBAND ANTENNAS 243

Figure 7.3 Impedance matrix (solid lines for real part and dashed lines for imaginery part)
for the five monopole antennas on a finite plate. The graph on the ith row and jth column
shows Zij.

and imaginary part (dashed line) of the impedance Zij observed at the aperture of
the coaxial feed. The results were computed using the time-domain finite element
method with the first-order absorbing boundary condition for mesh truncation and
the coaxial feed model for excitation. To compute Zij, we first excite the jth antenna
and match-load all other antennas and then calculate the S-parameters. The symmetry
of the impedance matrix is clear in the numerical solution. Figure 7.4 displays the
radiations patterns at 4.7 GHz in the two principal planes and two diagonal planes
when the center antenna is excited and all other antennas are terminated with a
match load.

7.1.3 Patch Antennas on a Plate

Microstrip patch antennas are typically narrowband antennas, which are compact,
easy and inexpensive to fabricate, and can be placed conformally on host platforms.
A small 2 × 2 patch antenna array is shown in Figure 7.5 [2]. The patches are
printed on a 1.52-mm-thick substrate having a relative permittivity of 3.38. Both the
substrate and its ground plane have a finite size of 30.48 cm × 30.48 cm. The patches
are fed with coaxial lines whose dimensions and dielectric filling are the same as
the one shown in Figure 7.2(b). The edge-to-edge distance between the adjacent
patches is 6.86 mm and the size of the patches is 2.54 cm × 2.54 cm. Figure 7.6
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Figure 7.4 Radiation patterns in four planes at 4.7 GHz when only the center antenna is
excited. (a) φ = 0◦. (b) φ = 45◦. (c) φ = 90◦. (d) φ = 135◦.

gives the impedance matrix from 2.8 to 3.2 GHz, with the graph on the ith row and
jth column plotting the real part (solid line) and the imaginary part (dashed line)
of the impedance Zij observed at the aperture of the coaxial feed. The results were
computed using the time-domain finite element method with the first-order absorbing
boundary condition for mesh truncation and the coaxial feed model for excitation. In
this case, because of the perfect symmetry of the array configuration, many of the
graphs in Figure 7.6 are identical. For example, all the self-impedances are the same,
and also, Z14 = Z12, Z23 = Z12, and Z24 = Z13. This example was also simulated using
the frequency-domain finite element method combined with the boundary integral
equation for mesh truncation, and the results are very similar to those in Figure 7.6.

(a) (b)

x

y

1

43

2

12”

y

z

Figure 7.5 Four patch antennas mounted on a finite ground plane. (a) Top view. (b) Side
view.
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Figure 7.6 Impedance matrix (solid lines for real part and dashed lines for imaginery part)
for the four patch antennas on a finite plate. The graph on the ith row and jth column shows Zij.

Figure 7.7 displays the radiation patterns at 3.0 GHz in the two principal planes when
the two diagonal antennas are excited with the same phase and the other two diagonal
antennas are fed with the same phase, which is 180◦ out-of-phase from the other two.
The asymmetry in the radiation patterns is due to the feeding mode.

7.1.4 Conformal Patch Antenna Array

This example consists of an 11 × 11 microstrip patch antenna array with the specific
geometry described in Figure 7.8. The patches have the dimensions 3.0 cm × 3.56 cm,
and the edge-to-edge distance between adjacent patches is 1.4 cm in both the x- and
y-directions. The coaxial line feed has inner and outer radii ri = 0.48 mm and
ro = 1.5 mm and is filled with dielectric material of relative permittivity 1.86.
The feed is placed symmetrically in the x-direction but is offset 0.86 cm from
the center of a given patch in the y-direction. The entire array is printed on a
52-cm × 58-cm substrate having a thickness of 7.0 mm and dielectric constants of
εr = 2.67 and μr = 1.0 and is flush-mounted on an infinite ground plane. The
frequency-domain finite element method combined with the boundary integral equa-
tion for mesh truncation is employed for the simulation, and the time-consuming
boundary integral equation is evaluated using acceleration based on the adaptive in-
tegral method [3]. Discretization of the entire problem resulted in 26,513 unknowns
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Figure 7.7 Radiation patterns in the xz- and yz-planes at 3.0 GHz. (a) In the xz-plane. (b) In
the yz-plane.

Figure 7.8 Geometry of an 11 × 11 microstrip patch antenna array.
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Figure 7.9 Radiation patterns of an 11 × 11 microstrip patch antenna array. (b) The array
is fed with the same phase. (b) The array is fed with −30◦ progressive phase shift resulting in
a scan toward the x-direction. (After Mao et al. [3], Copyright C© Taylor & Francis 2006.)

on the top surface of the antenna array and 133,025 unknowns inside the substrate.
Figure 7.9 shows the radiation patterns of the microstrip patch antenna array at
2.25 GHz when the antenna elements are fed, respectively, with the same phase,
which produces the main radiation lobe in the z-direction, and with a −30◦ progres-
sive phase shift, which results in a scan toward the x-direction.

7.2 BROADBAND ANTENNAS

Broadband antennas are often more geometrically complex and their meshing more
challenging than that for narrowband antennas. Electromagnetic fields in a broadband
antenna are characterized by a relatively short duration in time and a rapid spatial
variation, although the far fields vary slowly as a function of frequency. In this section
we examine five broadband antennas solved by the finite element method.

7.2.1 Ridged Horn Antenna

Ridged horn antennas are broadband radiators that are used widely as standard gain
horns for calibrated gain measurements as well as for feed elements in satellite
tracking or communication systems. Ridges are introduced to increase the band-
width of regular horn antennas, which are known to have a large gain but a limited
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Figure 7.10 Coaxial-fed ridged horn antenna. (a) Geometry. (b) S11 versus frequency.

bandwidth [4]. A 10.16-cm × 35.56-cm single-polarization design is shown in Fig-
ure 7.10(a). The antenna is fed by a 50-
 coaxial transmission line. Predictions and
measurements for S11 versus frequency are shown in Figure 7.10(b). The hybrid
FETD–FDTD algorithm described in Chapter 4 was used to predict performance
and the measurements were performed by the ESL Division of Northrop Grumman
Corporation. The antenna and coaxial feed were modeled with the FETD algorithm,
while the region external to the antenna was modeled using the FDTD algorithm with
a mesh termination by perfectly matched layers. The coaxial feed model was based on
the technique described in Section 5.1.3. The global time step was based on the cell
size in the FDTD region, and even though the maximum-to-minimum element size in
the finite element region was approximately 100 : 1, no further reduction in the time
step was required in the finite element region, due to its local unconditional stability.
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7.2.2 Sinuous Antenna

A planar sinuous antenna is a wideband, low-profile antenna that was invented by
DuHamel [5]. It can provide dual linear or dual circular polarizations and the planar
sinuous radiates equivalently in both the forward and backward directions unless
a reflector or an absorber is placed on one side. Without loss, planar reflectors
will short out the antenna at frequencies determined by transmission-line theory,
thereby reducing the useful bandwidth. Consequently, practical applications often
place the antenna in a cavity with absorptive material, although this reduces the gain by
3 dB, due to the suppression of the backlobe. Alternative implementations project the
planar antenna onto a cone that can largely preserve both the operational bandwidth
and the efficiency of the planar structure, although this may not be a feasible option
in surface conformal applications.

The sinuous antenna is typically based on two or four arms rotationally centered
about the feed point. Although less common, six- and eight-arm sinuous antennas
have also been developed. The arms are generated in a zigzag fashion [5], and a
representative four-arm structure is shown in Figure 7.11(a). When the generating
zigzag curve for each arm is rotated ±22.5◦ about its centerline, an infinite four-
arm sinuous antenna in a homogeneous environment will be a self-complementary
structure and falls formally into the class of frequency-independent antennas with
a resulting theoretically infinite bandwidth. However, because the current vanishes
precisely at the tip location where the sinuous arms change direction, small oscilla-
tions with frequency are normally observed in the active input impedance, as well as
frequency variations observed in the radiated beamwidth. Consequently, the sinuous
tends to scale with frequency in a more discrete sense, similar to the log-periodic
antenna. The sinuous antenna is generally believed to radiate in active regions that
are one wavelength in circumference.

Depending on the number of arms, both the sinuous and related spiral antennas
are fed by baluns or coaxial transmission lines, along with beamforming circuitry
to extract different modes of operation [6]. The arm-to-ground input impedance for
an N-arm ideal self-complementary antenna in free space is given by the expression
30π /sin(πM/N), where M = 1 and M = N − 1 correspond to the sum mode and
M = 2 and M = N − 2 correspond to the difference mode. The radiation pattern
for the sum mode has a peak on the boresight, whereas the difference mode has a
null. For an ideal four-arm self-complementary antenna in free space, the sum-mode,
arm-to-ground active input impedance is 133.3 
. For the two-arm structure, the
arm-to-arm input impedance is 188.5 
.

Because the sinuous antenna can have a very wide range in length scales from the
outer boundary of the antenna into the feed region, it presents significant challenges to
any predictive method. In addition, these structures are often etched on thin dielectric
substrates that can affect the input impedance significantly, and therefore these thin-
material layers must also be modeled accurately. For very wide bandwidth sinuous
antenna designs that are on the order of 9 : 1, for example, from 2 to 18 GHz,
the feed region is electrically very small, and the variation of the edge lengths
required to mesh this type of antenna can be greater than 100 : 1. Lower-bandwidth
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Figure 7.11 Four-arm sinuous antenna etched on a 20-mil dielectric substrate. (a) Geometry.
(b) Predicted arm-to-common active input impedance and average measured impedance. [See
insert for color representation of (a).]

designs normally expand the physical size of the feed region, which reduces the
high-frequency performance, and these designs are therefore simpler to analyze by
numerical methods.

As noted above, sinuous antennas can be driven in either dual linear or dual
circular polarizations. To obtain circular polarization for the sum mode of the four-
arm antenna, the feeds are usually phased progressively 90◦ relative to each other.
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For the four-arm design that is etched on a 20-mil dielectric substrate and illustrated
in Figure 7.11(a), the computed sum mode, arm-to-ground input impedance over
a bandwidth of 4 to 8 GHz is shown in Figure 7.11(b). As shown in this figure,
the presence of the thin dielectric substrate significantly lowers the nominal input
impedance compared to the ideal free-space configuration of 133.3 
, and this effect
has been confirmed by measurements. As noted above and observed in Figure 7.11(b),
oscillations are seen in the input impedance of practical sinuous antennas, which are
again believed to be due to small reflections from the corner regions associated with
the alternating directions of the arms.

The hybrid FETD–FDTD technique described in Chapter 4 was used to analyze this
geometry. Time-domain methods are well suited to the analysis of broadband antennas
[7] because their entire bandwidth can be recovered through a single simulation. The
use of a local, unconditionally stable solution technique is particularly beneficial for
this class of antenna because the time step does not need to be reduced for numerical
stability as the element size becomes progressively smaller into the feed region. In
addition, an interesting observation with regard to the time-domain modeling of self-
complementary antennas is that due to the infinite bandwidth and constant real active
impedance of ideal structures, the ratio of the nonzero transient voltage and current
in the feed must be constant for all time. Consequently, in the very early time of the
simulation, this impedance will be established.

7.2.3 Logarithmic Spiral Antenna

The logarithmic spiral antenna is a broadband antenna that is commonly used in com-
munication and direction-finding applications [8–10]. Due to the smooth variation of
the arms along their entire length, the logarithmic spiral has continuous scaling with
frequency in a nontruncated configuration. Because the infinite logarithmic spiral
in a homogeneous environment is self-complementary, it has the same active input
impedance characteristics as a function of the number of arms that were described in
Section 7.2.2.

Figure 7.12(a) shows the top view of a logarithmic spiral antenna consisting of
two free-standing conducting arms. The centerline of the arms is prescribed by r =
r0τ

φ /2π in the polar coordinate system, where r0 is a constant and the scaling factor
τ is 1.588. The inner and outer radii of the spiral are 0.22 and 3.5 cm, respectively.
The inner radius determines the upper limit of the bandwidth, and the outer radius
determines the lower limit. This antenna radiates in two broad lobes whose directions
are perpendicular to the plane of the antenna. In the simulation, the antenna is fed
by the probe feed model described in Section 5.1.1, and the solution is obtained
using the time-domain finite element method with the first-order absorbing boundary
condition for mesh truncation [11]. A detailed view of the feed region is shown
in Figure 7.12(b). A 0.56-mm-long current probe is placed at the center to excite
the antenna, and the voltage across the feed is measured along the two observation
probes 0.28 mm away from the current probe. The input resistance (solid line) and
reactance (dashed line) versus frequency calculated are shown in Figure 7.13. The
curves exhibit a transition from the resonant region to the broadband region as the
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Figure 7.12 Two-arm logarithmic spiral antenna. (a) Geometry of the arms. (b) Enlarged
feed region.

frequency increases and good broadband behavior for frequencies beyond 8 GHz. We
also observe that the calculated input impedance converges to the theoretical value
(188.5 
 arm to arm for the two-arm self-complementary antenna) [10] at the higher-
frequency end. In practice, many logarithmic spiral antennas are constructed on a
dielectric substrate and some might be backed with a cavity filled with an absorbing
material to eliminate one of the two broad lobes in the radiation pattern [6]. All these
configurations can be simulated effectively using the finite element method.
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Figure 7.13 Input impedance of a two-arm logarithmic spiral antenna. (After Lou and
Jin [11], Copyright C© IEEE 2005.)
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7.2.4 Inverted Conical Spiral Antenna

Unlike planar spiral and sinuous antennas, conical spiral antennas and their inverted
versions above a ground plane radiate unidirectionally along their axes [12]. Fig-
ure 7.14(a) shows a two-arm conical spiral that has been inverted and fed against a
ground plane to support wide-bandwidth antenna performance. An inset of the finite
element mesh of the coaxial feed region is shown in Figure 7.14(b). As the frequency

Figure 7.14 Inverted two-arm conical spiral over a ground plane. (a) Geometry. (b) Finite
element surface mesh local to the inverted conical spiral feed region. [See insert for color
representation of (b).]
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Figure 7.15 Input impedance of an inverted two-arm conical spiral over a ground plane for
a free-space and a solid dielectric (εr = 4) cone.

decreases, significant current moves out along the arms, thereby increasing the phys-
ical distance of the peak current from the feed region and ground plane. Preserving
the electrical distance of the peak current above the ground plane as the frequency
is varied is important in obtaining the broadband performance of conical multiarm
antennas in the presence of a ground plane, and this consideration affects the choice
of the cone angle for the best wideband performance.

Although this early model is etched on the outer surface of a solid dielectric cone,
it is also possible to use a thin-material approximation inside the finite element region
to analyze the spiral etched on a thin dielectric shell. In practice, multiarm printed
antennas such as spiral, sinuous, helical, and multiarmed log-periodic antennas can be
etched in a similar way on a thin dielectric shell having three-dimensional shapes that
include not only cones, but also truncated cones and hemispheres. Figure 7.15 shows
the arm-to-arm input impedance of this inverted two-arm conical spiral for both a
free-space and a solid dielectric cone of relative permittivity 4. With the presence
of the dielectric cone, the oscillation in the resonant region is reduced significantly
compared to the spiral in free space.

7.2.5 Antipodal Vivaldi Antenna

Vivaldi antennas belong to the class of traveling-wave tapered slot antennas that have
been noted for their wideband performance [13,14]. These endfire antennas are often
printed on a dielectric substrate, although machined three-dimensional implementa-
tions are also widely used. The term flared-notch antenna is also commonly used
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to describe this class of endfire antenna. The free-space electrical width of the open
end of these antennas is typically designed to be about one-half wavelength at the
lower end of the operating bandwidth. Both the printed Vivaldi and the machined
flared-notch antennas are commonly used as either isolated radiators or in an array
configuration. Because of their compact size for a given low frequency, flared-notch
antennas are excellent choices for wideband arrays. In the case of arrays, flared
notches must be designed in the array to obtain acceptable active impedance over
their wide bandwidth.

In this example we compute the impedance and radiation characteristics of a
single balanced antipodal Vivaldi antenna fed by a stripline [15]. As shown in Figure
7.16(a), the antenna consists of a 3-mm-wide conducting strip sandwiched between
two dielectric boards with a combined thickness of 3.15 mm. The conducting strip,
which is connected to the center conductor of a stripline, is gradually flared to form
the radiating arm shown by the dashed lines in Figure 7.16(a). Ground planes are
printed on the outer sides of the dielectric boards and are connected to the outer
conductor of the stripline, and both are tapered to form the other two radiating arms.
The shape of all the flares is described by elliptical arcs. In our numerical simulation,
the stripline input is modeled as a 12-mm × 3.15-mm TEM port. The results were
computed using the time-domain finite element method with perfectly matched layers
for mesh truncation and the waveguide port boundary condition to model the stripline
feed [11]. The return loss (S11) calculated at the TEM port is plotted in Figure 7.16(b)
over the frequency range of 1 to 10 GHz. The simulation result by the Ansoft HFSS
commercial software package is plotted in the same figure for comparison [15]. The
time-domain signal reveals that the strongest reflection occurs at the interface between
the flare and the external free space, which points out possible ways to improve the
design. Figure 7.17 displays the E- and H-plane co-polarized radiation patterns at
10 GHz. The E-plane cut exhibits a dip at boresight, while the H-plane cut shows a
broadside main lobe.

7.2.6 Vlasov Antenna

The Vlasov antenna [16,17], a coaxial-fed circular waveguide antenna, is shown in
cross-sectional view in Figure 7.18(a). The antenna is fed by a 50-
 coaxial cable,
which is connected to a segment of a coaxial waveguide where its radius is gradually
increased to connect to a segment of coaxial waveguide of constant radius. This
segment is then followed by a coaxial/circular waveguide transition, which launches
the TM01 mode into the circular waveguide. The radiating aperture is formed by
cutting the hollow circular waveguide at an oblique angle of 26.18◦. The geometry
of this antenna is challenging for numerical simulations because the radius of the
circular waveguide is approximately 50 times larger than the inner radius of the
coaxial feed. The spatial discretization results in a very nonuniform mesh, which in
turn yields an ill-conditioned linear system to solve.

The Vlasov antenna of Figure 7.18(a) was simulated using the time-domain finite
element method (TDFEM, which is an alternative acronym to FETD) in conjunction
with the first-order absorbing boundary condition [11,18]. It was also analyzed using
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Figure 7.16 Antipodal Vivaldi antenna. (a) Geometry. (b) Return loss versus frequency.
(After Lou and Jin [11], Copyright C© IEEE 2005.) [See insert for color representation of (a).]

the hybrid FETD–FDTD technique described in Chapter 4 to further verify the
solution. The total number of unknowns in the TDFEM simulation is approximately
1 million. The return loss computed at the coaxial port is plotted in Figure 7.18(b). The
agreement between the two numerical simulations is truly remarkable except at the
higher end of the frequency range. It is noted that at a return loss of −20 dB,
the power reflection is only about 1%. The antenna gains versus frequency at various
far-field angles are displayed in Figure 7.19. Good agreement is observed between
the TDFEM predictions and the measured data [19].
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Figure 7.17 Radiation patterns of a Vivaldi antenna at 10 GHz. (a) E-plane cut. (b) H-plane
cut. (After Lou and Jin [11], Copyright C© IEEE 2005.)

7.3 ANTENNA RCS SIMULATIONS

In addition to the prediction of antenna radiation characteristics, such as the input
impedance and radiation patterns, simulation of the antenna scattering characteristics
is also important for the design of antennas used in low-observable applications. The
finite element method can easily be adapted to perform this important simulation by
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Figure 7.18 (a) Cross-sectional view of a Vlasov antenna. (b) Return loss at the coaxial port
for the Vlasov antenna. (After Lou and Jin [18], Copyright C© IEEE 2006.)

using the techniques in Section 5.2. Here we present two examples to demonstrate
the scattering simulation of two relatively simple antennas.

7.3.1 Microstrip Patch Antenna

The first example is scattering by a microstrip patch antenna consisting of a
3.66-cm × 2.6-cm rectangular conducting patch printed on a finite dielectric substrate
of size 7.32 cm × 5.2 cm × 0.158 cm, relative permittivity 2.17, and loss tangent
0.001, as sketched in Figure 7.20(a). The entire antenna is recessed in an infinitely
large ground plane such that the patch lies in the same surface of the ground plane.
Figure 7.20(b) gives the monostatic radar cross section (RCS) for the antenna as a
function of frequency for a plane wave incident at φinc = 45◦ and θ inc = 60◦. The re-
sults are computed by the frequency-domain finite element method using a boundary
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Figure 7.19 E-plane antenna gain for a Vlasov antenna versus frequency at various angles.
Dashed line: TDFEM prediction. Solid line: measurement [19]. (After Lou and Jin [11],
Copyright C© IEEE 2005.)

integral equation for mesh truncation [20] and the time-domain finite element method
using perfectly matched layers for mesh truncation [21]. The calculations agree with
each other very well. These results also agree well with experimental data and the
moment-method solutions [22–24] for an infinitely large substrate, because the RCS
for this structure is dominated by the contribution of the conducting patch. Without
the patch, the RCS of the structure is below −44 dBsm for the entire frequency band
of 2 to 8 GHz. It is interesting to observe that the monostatic RCS is characterized by
a series of peaks, each corresponding to a resonant frequency of the patch. Numerical
simulation can not only verify our intuitive prediction of the sources of scattering,
but also quantify the level of the scattering by each source. This, in turn, can be very
useful to the antenna designer in developing various schemes to reduce the RCS.

7.3.2 Standard Gain Horn Antenna

The second example is scattering by a standard gain horn with the feed removed
and the end of the waveguide terminated by a conductor. The front and side views
of the antenna are shown in Figure 7.21, together with the detailed dimensions.
The measurement was conducted in the anechoic chamber of Lockheed Martin
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Figure 7.20 Scattering by a rectangular patch printed on the top of a substrate housed in
a 0.158-cm-deep cavity. (a) Geometry of the patch and the cavity filled with a substrate of
relative permittivity 2.17 and loss tangent 0.001. (b) Monostatic RCS versus frequency for
the plane-wave incidence at φinc = 45◦ and θ inc = 60◦. (After Jiao and Jin [21], Copyright C©
Wiley 2002.)

Aeronautics Company, Fort Worth, Texas. The monostatic RCS was measured from
2 to 18 GHz and from −90◦ to 90◦ in the azimuthal xy-plane for both HH and VV
polarizations. Simulation results were performed at several frequencies using the
frequency-domain finite element method in conjunction with a boundary integral
equation for mesh truncation [25]. It is noted that the RCS of this geometry exhibits
a variety of physical phenomena, such as that associated with the cutoff of the feed-
ing waveguide [25]. The data calculated and measured at 10 GHz are provided in
Figure 7.22, which show excellent agreement. Accurate numerical predictions can
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reveal complex physical scattering phenomena that can be used to reduce the cost
and timeline of measurements.

7.4 SUMMARY

In this chapter we demonstrated the finite element analysis of a variety of narrow-
and broadband antennas. The narrowband antennas included a single coaxial-fed
monopole, multiple monopoles mounted on a plate, multiple patch antennas mounted
on a plate, and a conformal patch antenna array. The broadband antennas included a
ridged horn antenna, a sinuous antenna, the logarithmic spiral antenna, an inverted
conical spiral antenna, an antipodal Vivaldi antenna, and the Vlasov antenna. In
addition to the radiation case, we also examined scattering by a microstrip patch
antenna as well as by a horn antenna. All the examples showed clearly that the finite
element method can model and simulate very complex antennas with high accuracy.
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8 Axisymmetric Antenna Modeling

The term axisymmetric antenna refers to a certain class of antennas whose geometry
and material property (but not necessarily the feed excitation) exhibit rotational
symmetry. Such an object is also often called a body of revolution (BOR). Although
these antennas can be analyzed using a three-dimensional finite element method,
the rotational symmetry present in them allows a much more efficient solution with
two-dimensional finite element analysis. Since axisymmetric antennas have wide
applications in practice, we devote this chapter to the finite element analysis of this
type of antenna.

8.1 METHOD OF ANALYSIS

Because of its rotational symmetry, an axisymmetric antenna can be simulated in
a two-dimensional domain corresponding to its angular cross section with the aid
of the Fourier expansion. The first finite element analysis of axisymmetric antennas
was developed by Mei [1], which employed the finite element method to formu-
late the field inside a spherical surface that encloses the entire antenna and then
the wavefunction expansion to represent the radiated field outside the spherical sur-
face. Another approach to truncating the finite element mesh, proposed more re-
cently [2], made use of cylindrical perfectly matched layers. The most accurate and
general BOR method is one that combines the finite element and boundary integral
(FE-BI) methods [3,4]. This method has recently seen a significant improvement,
with correct modeling of the boundary conditions along the rotational axis in both
the finite element and boundary integral formulations [5,6].

8.1.1 Finite Element Formulation

Consider an axisymmetric object whose rotational axis coincides with the z-axis.
The relative permittivity and permeability of its material composition are position-
dependent diagonal tensors

↔
εr = ερρ(ρ, z)ρ̂ρ̂ + εzz(ρ, z)ẑ ẑ + εφφ(ρ, z)φ̂φ̂ (8.1)

↔
μr = μρρ(ρ, z)ρ̂ρ̂ + μzz(ρ, z)ẑ ẑ + μφφ(ρ, z)φ̂φ̂. (8.2)

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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We assume further that the object may contain anisotropic impedance and/or resistive
surfaces with a normalized surface impedance/resistivity

↔
ηs = ηt t (ρ, z)t̂ t̂ + ηφφ(ρ, z)φ̂φ̂ (8.3)

where t̂ denotes the tangential unit vector in the transverse plane. At such a surface,
the fields satisfy the standard impedance/resistive boundary condition. The weak-
form representation of the vector wave equation for the electric field is given by

∫∫∫
V

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV

− jk0

∫∫
SR

(n̂ × T) · ↔
η

−1
s · (n̂ × E) dS + jk0

∫∫
So

(n̂ × T) · (n̂ × E) dS

= −
∫∫∫

V
T ·

[
jk0 Z0Jimp + ∇ × (↔

μ
−1
r · Mimp)

]
dV (8.4)

where SR denotes the impedance/resistive surfaces and V denotes the computational
domain, which is bounded by surface So. Furthermore, the first-order absorbing
boundary condition (2.7) is applied to So as illustrated in Figure 8.1. Because of the

O

z

ρ

So

Figure 8.1 Cross-sectional view of an axisymmetric antenna with computational domain
truncated by an absorbing boundary condition.
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axisymmetry, both the field and source can be represented by the Fourier series

E(ρ, φ, z) =
∞∑

m=−∞
E(m)(ρ, z)e jmφ (8.5)

Jimp(ρ, φ, z) =
∞∑

m=−∞
J(m)

imp(ρ, z)e jmφ (8.6)

Mimp(ρ, φ, z) =
∞∑

m=−∞
M(m)

imp(ρ, z)e jmφ. (8.7)

Substituting (8.5)–(8.7) into (8.4) and choosing the testing function as

T(ρ, φ, z) = T(m)(ρ, z)e− jmφ (8.8)

we obtain

∫∫
S

{[(
∇t − φ̂

jm

ρ

)
× T(m)

]
· ↔
μ

−1
r ·

[(
∇t + φ̂

jm

ρ

)
× E(m)

]
− k2

0T(m) · ↔
εr · E(m)

}
dS

− jk0

∫
CR

[
n̂ × T(m)

] · ↔
η

−1
s · [n̂ × E(m)

]
dC + jk0

∫
Co

[
n̂ × T(m)

] · [n̂ × E(m)
]

dC

= −
∫∫

S
T(m) ·

[
jk0 Z0J(m)

imp +
(

∇t + φ̂
jm

ρ

)
×
[

↔
μ

−1
r · M(m)

imp

]]
dS (8.9)

where S denotes the cross section of V in the xz-plane, CR is the line of intersection
between SR and the xz-plane, and Co is the line of intersection between So and the
xz-plane. As a result, the volume integrals in (8.4) are reduced to surface integrals over
the angular cross section, and accordingly, the surface integrals in (8.4) are reduced
to line integrals. Because of the orthogonality of the Fourier modes, the analysis can
then be carried out independently for each Fourier mode.

Next, we need to choose proper basis functions to expand E(m) and proper testing
functions for T(m) to convert (8.9) into a matrix equation. The basis functions have to
be able to represent E(m) accurately. Note that the Fourier components of the electric
and magnetic fields at the z-axis satisfy the following conditions:

E (0)
ρ = E (0)

φ = 0 (8.10)

E (±1)
ρ = ∓ j E (±1)

φ , E (±1)
z = 0 (8.11)

E (m)
ρ = E (m)

φ = E (m)
z = 0 |m| > 1. (8.12)
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To satisfy these conditions, the Fourier component of the electric field can be expanded
as [7]

E(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nedge∑
i=1

Ni (ρ, z)e(m)
t,i + φ̂

Nnode∑
i=1

Ni (ρ, z)e(m)
φ,i m = 0

Nedge∑
i=1

ρNi (ρ, z)e(m)
t,i + (φ̂ ∓ j ρ̂)

Nnode∑
i=1

Ni (ρ, z)e(m)
φ,i m = ±1

Nedge∑
i=1

ρNi (ρ, z)e(m)
t,i + φ̂

Nnode∑
i=1

Ni (ρ, z)e(m)
φ,i |m| > 1

(8.13)

where Ni (ρ, z) denotes the edge-based vector basis function whose unknown expan-
sion coefficient is e(m)

t,i , and Ni (ρ, z) denotes the nodal basis function whose unknown
expansion coefficient is e(m)

φ,i . The conditions (8.10) and (8.12) on E (0)
φ and E (m)

φ can
be imposed either by setting e(m)

φ,i = 0 for the nodes on the z-axis or by excluding
those nodes in the count of Nnode for m = 0 and |m| > 1. By using the same basis
functions in (8.13) as the testing function T(m), (8.9) can be converted into a matrix
equation for each Fourier mode. Once E(m) is solved for, the electric field can be
obtained from (8.5).

8.1.2 Mesh Truncation Using Perfectly Matched Layers

The main limitation on the accuracy of the finite element solution described above is
the mesh truncation by the first-order absorbing boundary condition. The accuracy
of this mesh truncation can be improved significantly by using a layer of perfectly
matched absorbing material just inside the truncation boundary where the absorbing
boundary condition is applied. In this case we can use either a spherical or a cylindrical
perfectly matched layer since both have been developed in the past [8–10]. For
most problems, a finite cylindrical perfectly matched layer is preferred because
compared with a spherical layer, a cylindrical mesh truncation usually yields a smaller
computational domain. For a cylindrical perfectly matched layer (Figure 8.2), the
anisotropic permittivity and permeability are given by

↔
ε = ε

↔
�,

↔
μ = μ

↔
� (8.14)

where

↔
� =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ̃

ρ

sz

sρ

0 0

0
ρ

ρ̃
sρsz 0

0 0
ρ̃

ρ

sρ

sz

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8.15)
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ρ

ρ
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z = z1

z = z2
=

1

Figure 8.2 Cross-sectional view of an axisymmetric antenna with computational domain
truncated by perfectly matched layers.

In (8.15), ρ̃ is defined as

ρ̃ =
∫ ρ

0
sρ(ρ ′) dρ ′ (8.16)

where sρ(ρ) is a parameter characterizing the property of the perfectly matched layer.
For a pth-order profile, sρ(ρ) is expressed as

sρ =

⎧⎪⎪⎨
⎪⎪⎩

1 0 ≤ ρ ≤ ρ1

1 + σmax

jωε0

(
ρ − ρ1

L

)p

ρ > ρ1

(8.17)

where ρ1 denotes the interface between the air and matched layer in the ρ-direction
and L denotes the thickness of the matched layer. Accordingly, ρ̃ is given by

ρ̃ =

⎧⎪⎪⎨
⎪⎪⎩

ρ 0 ≤ ρ ≤ ρ1

ρ + σmax

jωε0

L

p + 1

(
ρ − ρ1

L

)p+1

ρ > ρ1.

(8.18)
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For the top and bottom perfectly matched layers that truncate the computational
domain in the z-direction, the corresponding sz(z) is given by

sz =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + σmax

jωε0

(
z − z1

L

)p

z > z1

1 z1 ≥ z ≥ z2

1 + σmax

jωε0

(
z2 − z

L

)p

z < z2

(8.19)

where z1 denotes the interface between the air and the upper matched layer and z2

denotes the interface between the air and the lower matched layer. As for any other
perfectly matched layers, for a fixed layer thickness, an increasing value of σmax/ωε0

increases the absorption, thus reducing reflection of the matched layer, but it also
increases the spurious reflection due to the spatial discretization. A smaller value
of σmax/ωε0 reduces the spurious reflection, but it also reduces the absorption of
the layer. Therefore, there is a trade-off in the selection of the value for σmax/ωε0.
Numerical experiments found that for a mesh density of 20 first-order elements per
wavelength and a thickness L = 0.25λ, the optimal value for σmax/ωε0 is between
5.5 to 6.0 for p = 2 [11].

8.1.3 Mesh Truncation Using Boundary Integral Equations

As discussed in Chapter 3, mesh truncation using perfectly matched layers is still
approximate because of the fact that perfectly matched layers have a finite thickness
and have to be terminated by an impenetrable surface. To obtain highly accurate
finite element solutions of open-region scattering and radiation, we have to use more
accurate mesh truncation techniques such as the one based on boundary integral
equations (Figure 8.3). In this case, the weak-form representation of the vector wave
equation for the electric field is given by

∫∫∫
V

[
(∇ × T) · ↔

μ
−1
r · (∇ × E) − k2

0T · ↔
εr · E

]
dV

− jk0

∫∫
SR

(n̂ × T) · ↔
η

−1
s · (n̂ × E) dS − jk0 Z0

∫∫
So

T · (n̂ × H) dS

= −
∫∫∫

V
T ·

[
jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV (8.20)

which contains the unknown tangential magnetic field on the truncation surface.
Similar to the electric field, the magnetic field can be expanded into a Fourier
series as

H(ρ, φ, z) =
∞∑

m=−∞
H(m)(ρ, z)e jmφ (8.21)
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O

z

ρ

So

Figure 8.3 Cross-sectional view of an axisymmetric antenna with computational domain
truncated by a boundary integral equation.

which, together with (8.5)–(8.8), reduces (8.20) to the two-dimensional expression

∫∫
S

{[(
∇t − φ̂

jm

ρ

)
× T(m)

]
· ↔
μ

−1
r ·

[(
∇t + φ̂

jm

ρ

)
× E(m)

]
− k2

0T(m) · ↔
εr · E(m)

}
dS

− jk0

∫
CR

[
n̂ × T(m)

] · ↔
η

−1
s · [n̂ × E(m)

]
dC − jk0 Z0

∫
Co

T(m) · [n̂ × H(m)
]

dC

= −
∫∫

S
T(m) ·

[
jk0 Z0J(m)

imp +
(

∇t + φ̂
jm

ρ

)
×
[

↔
μ

−1
r · M(m)

imp

]]
dS. (8.22)

The Fourier components of the magnetic field have to satisfy the same conditions as
(8.10)–(8.12), or more explicitly,

H (0)
ρ = H (0)

φ = 0 (8.23)

H (±1)
ρ = ∓ j H (±1)

φ , H (±1)
z = 0 (8.24)

H (m)
ρ = H (m)

φ = H (m)
z = 0 |m| > 1. (8.25)

To satisfy these conditions and couple correctly to the boundary integral equations, we
can expand the transverse tangential magnetic field along each segment of the exterior
boundary using the zeroth-order basis function; that is, the transverse tangential



P1: JYS
c08 JWBK322-Jin October 3, 2008 20:11 Printer: Yet to come

METHOD OF ANALYSIS 271

magnetic field is approximated as a constant along each segment. Mathematically,
this is expressed as

H (m)
t,s = h(m)

t,s

ρs
(8.26)

where the subscript s denotes the segment number, ρs is the cylindrical radius of the
segment taken at its midpoint, and h(m)

t,s is the unknown coefficient on the segment.
Furthermore, we expand the angular component of the magnetic field along the
exterior boundary using the modified linear basis functions

H (m)
φ,i =

⎧⎪⎪⎨
⎪⎪⎩

Ni (t)

ρ
h(m)

φ,i |m| = 1

Ni (t)

ρi
h(m)

φ,i |m| �= 1

(8.27)

where i denotes a node on the exterior boundary (except for the two nodes on the
axis), Ni (t) is a linear (rooftop) basis function that has a value of 1 at node i and
decreases linearly to zero at the adjacent nodes, ρi is the cylindrical radius of node i,
and h(m)

φ,i is the unknown expansion coefficient corresponding to node i. Substituting
(8.13), (8.26), and (8.27) into (8.22), for each Fourier mode, we obtain the matrix
equation

[
A(m)

] {
e(m)

}+ [
B(m)

] {
h(m)

S

}
=
{

b(m)
imp

}
(8.28)

where [A(m)] is an NT × NT sparse and symmetric matrix, {e(m)} is an NT × 1
vector that stores all the unknown coefficients e(m)

t,i and e(m)
φ,i , [B(m)] is an NT × NS

sparse rectangular matrix, and {h(m)
S } is an NS × 1 vector that stores all the unknown

coefficients h(m)
t,s and h(m)

φ,i . Here NT is the sum of the total numbers of the edges and
nodes in the entire finite element mesh and NS is the sum of the numbers of the edges
and nodes on the exterior boundary. Since [A(m)] is a highly sparse and symmetric
matrix, it can be solved very efficiently using a robust sparse solver. As a result,
(8.28) can be reduced to

{
e(m)

S

}
+ [

C (m)
] {

h(m)
S

}
=
{

b̃(m)
imp

}
(8.29)

where [C (m)] is now an NS × NS full matrix, which relates the surface electric and
magnetic fields, and {e(m)

S } is an NS × 1 vector that stores all the unknown coefficients
e(m)

t,s and e(m)
φ,i associated with the electric field on the exterior boundary. The e(m)

t,s and
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e(m)
φ,i are defined similarly to (8.26) and (8.27), that is,

E (m)
t,s = e(m)

t,s

ρs
(8.30)

E (m)
φ,i =

⎧⎪⎪⎨
⎪⎪⎩

Ni (t)

ρ
e(m)
φ,i |m| = 1

Ni (t)

ρi
e(m)
φ,i |m| �= 1.

(8.31)

Note that [C (m)] contains all the information about the electromagnetic properties of
the object.

Next, we consider the formulation of the fields outside the object. It was shown in
Chapter 3 that the field has to satisfy the combined field integral equation (CFIE)

1
2 JS + n̂ × K̃(JS) + n̂ × L(MS) + n̂ × [

1
2 MS + n̂ × K̃(MS) − n̂ × L(JS)

]
= Z0n̂ × Hinc − n̂ × (n̂ × Einc) on So (8.32)

where

MS = E × n̂, JS = Z0n̂ × H (8.33)

and the operators L and K̃ are the same as defined in (3.109) and (3.110) with (3.114).
In (8.32), Einc and Hinc denote the incident electric and magnetic fields, which are
absent in a radiation case. By using the same expansion as (8.26) and (8.27) for the
magnetic field and (8.30) and (8.31) for the electric field, we can employ Galerkin’s
method to discretize (8.32) into the matrix equation

[
P (m)

] {
e(m)

S

}
+ [

Q(m)
] {

h(m)
S

}
= {

b(m)
inc

}
(8.34)

where both [P (m)] and [Q(m)] are NS × NS full matrices and {b(m)
inc } is an NS × 1

known vector that can be calculated from the incident field. The computation of
(8.34) is similar to the moment-method computation for a body of revolution [12,
13]. The angular integration can be performed using a Gaussian quadrature and the
integration along each segment can be performed analytically for the singular part
and numerically for the nonsingular part. Equation (8.34) can then be solved together
with (8.29) for the surface electric and magnetic fields {e(m)

S } and {h(m)
S }.

8.1.4 Far-Field Computation

Once the surface electric and magnetic near-fields are calculated, we can evaluate the
far fields by integrating them on a closed surface, as discussed in Section 5.3. For the
axisymmetric case, the angular integral can be evaluated analytically; consequently,
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the far field can be calculated by evaluating a line integral [11]. The θ - and φ-
components of the far field are given by

Eθ (r, θ, φ) = k0e− jk0r

2r

∞∑
m=−∞

jme jmφ

∫
C ′

ρ ′e jk0z′ cos θ

{
jJ

(m)
S ·

[
ρ̂ cos θ j J ′

m(k0ρ
′ sin θ )

+ φ̂ cos θ
m Jm(k0ρ

′ sin θ )

k0ρ ′ sin θ
+ ẑ sin θ Jm(k0ρ

′ sin θ )

]

− M(m)
S ·

[
ρ̂

jm Jm(k0ρ
′ sin θ )

k0ρ ′ sin θ
+ φ̂ J ′

m(k0ρ
′ sin θ )

]}
dl ′ (8.35)

Eφ(r, θ, φ) = k0e− jk0r

2r

∞∑
m=−∞

jme jmφ

∫
C ′

ρ ′e jk0z′ cos θ

{
jJ

(m)
S ·

[
−ρ̂

m Jm(k0ρ
′ sin θ )

k0ρ ′ sin θ

+ φ̂ j J ′
m(k0ρ

′ sin θ )

]
+ M(m)

S ·
[
ρ̂ cos θ J ′

m(k0ρ
′ sin θ )

− φ̂ cos θ
jm Jm(k0ρ

′ sin θ )

k0ρ ′ sin θ
− ẑ sin θ j Jm(k0ρ

′ sin θ )

]}
dl ′ (8.36)

where C ′ denotes the integration contour, Jm(x) denotes the Bessel function of order
m, and J ′

m(x) denotes the derivative of Jm(x) with respect to its argument. In the
following we give a few examples that have been analyzed using the numerical
method described in this section.

8.2 APPLICATION EXAMPLES

In this section we consider three axisymmetric antenna configurations to demonstrate
the application of the finite element analysis described in the preceding section. These
three configurations are a Luneburg lens, a corrugated horn antenna, and a current
loop sandwiched between a conducting sphere and a dielectric spherical shell.

8.2.1 Luneburg Lens

The Luneburg lens is a dielectric sphere with the relative permittivity given by

εr (r ) = 2 −
( r

a

)2
0 ≤ r ≤ a (8.37)

where a denotes the radius of the sphere. As mentioned in Section 5.4, the Luneburg
lens offers aberration-free scanning at all aspects and over an extremely wide band-
width at microwave frequencies. The lens has the property that energy propagated
from a surface feed point through the lens is collimated into parallel rays emerg-
ing from the other side. Numerous studies and investigations were conducted in the
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1950s with the goal of using the spherical Luneburg lens as a wideband, large-sector
multiple-beam radar antenna. However, because of the advent of phased-array tech-
nology, only the geodesic analog of the Luneburg lens found applications in several
limited-scan military radar systems. One area of recent interest relates to poten-
tial applications involving low-cost, wideband, multibeam airborne communications
antennas over a ground plane.

The Luneburg lens is commonly analyzed using Fermat’s principle from geomet-
rical optics. However, this asymptotic analysis cannot accurately describe the wave
propagation through the lens. In contrast, the finite element method can compute the
field distribution inside and outside the lens and provide a much better understanding
of the unique properties and performance characteristics of the lens [14]. As an ex-
ample, the radiation patterns of a Hertzian dipole placed on the surface of both 7λ0-
and 10λ0-diameter Luneburg lenses are shown in Figure 8.4. Clearly, the radiation
pattern becomes more directive as the size of the lens increases, and the sidelobe level
is at −15 dB. However, this directivity is lower than that predicted with geometrical
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Figure 8.4 Radiation patterns for a Luneburg lens excited by a Hertzian dipole. (a) 7λ0

diameter. (b) 10λ0 diameter. (After Greenwood and Jin [14], Copyright C© IEEE 1999.)
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optics, and it was found recently that this is caused by the nonstationary oscillating
focal point of the Luneburg lens [14], as illustrated in Figure 5.19.

Although the Luneburg lens has not found widespread applications as an antenna,
Luneburg lens reflectors, which provide passive wideband and wide-angle radar sig-
nature augmentation, have found steady applications in small military target drones,
decoys, and marine vessels. In this case the lens collects the energy that impinges
on a hemispherical lens surface, refracts it through the lens, and focuses it onto the
center of the opposite hemispherical surface. If the energy is reflected at the focal
point, it will be reradiated back in the original direction. The Luneburg lens becomes
an extremely efficient retroreflector with the simple addition of a spherical metallic
cap and provides coverage over a solid angle roughly equal to that subtended by
the cap. Figure 8.5 shows the geometrical dimensions and the respective indices
of refraction of the Rozendal RA-2850 monostatic Luneburg lens reflector, with a
three-layer dielectric lens, including a 60◦ half-cone angle spherical reflector cap.
The HH- or VV-polarized monostatic RCS of this reflector at 10 GHz was computed
by using the finite element method together with the boundary integral equation for
mesh truncation. The result is displayed in Figure 8.6 and compared with the data
measured [15]. It is seen that the peak amplitude achieved by the RA-2850 with a
standard 120◦ spherical reflector cap spans over an extremely wide angular sector of
nearly 120◦, defined at the −3-dB points. In addition, the computed results are seen
to be in very good agreement with the test data.

Azimuth

n = 1.22

2.268"

0.40"

3.706" 5.292"

n = 1.34

n = 1.4

n = index of refraction

Air

120 Degree Spherical
PEC Reflector Cap

H

V

Figure 8.5 Three-layer stepped-index RA-2850 Luneburg lens reflector with a fourth virtual
layer of air.
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Figure 8.6 Comparison between the computed and measured RCS for a three-layer
Luneburg lens with a 120◦ spherical PEC reflector cap. (a) HH polarization. (b) VV po-
larization. (After Liang et al. [15], Copyright C© IEEE 2005.)

8.2.2 Corrugated Horn

Circular horn antennas with corrugated boundaries have been investigated exten-
sively [16] as antennas that can radiate circularly polarized waves over a wide
beamwidth and wide bandwidth. As part of the investigation, measurements on
several corrugated horn antennas have been carried out. A diagram showing one such
antenna is given in Figure 8.7(a). The antenna is constructed by bolting together
metal washers with thicknesses alternating between 0.07938 and 0.3175 cm. In the
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(a)

SLIDING
CYLINDER

DIPOLE
20°

METAL
SLEEVE

(b)

Figure 8.7 Corrugated horn antenna. (a) Cross-sectional diagram. (b) Photo.

section of the waveguide in front of the 20◦ flare, the washers have inner radii of
3 and 4.8 cm, respectively. A photograph of the antenna is shown in Figure 8.7(b).
Measurements of the radiation pattern of this antenna are given in Ref. 16 at 4.5, 5.0,
5.2, 5.5, 6.0, and 6.5 GHz. The radiation pattern was computed by the finite element
method using cylindrical perfectly matched layers at these same frequencies [2], and
some of the simulation and measured results are shown in Figures 8.8 to 8.10. The
agreement between the simulation results and the measured results is excellent. At
power levels above −30 dB, note the agreement between the finite element simu-
lation and measurement in predicting slight offsets in the E- and H-plane patterns
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Figure 8.11 Radiation of a current loop in the presence of a conducting sphere and dielectric
radome. (a) Geometry. (b) Far-field radiation pattern. (After Dunn et al. [6], Copyright C© IEEE
2006.)

with respect to each other. The similar E- and H-plane patterns indicate that when
properly fed, this antenna can be used to radiate circularly polarized waves.

8.2.3 Current Loop Inside a Radome

The final example consists of a perfectly conducting sphere of radius 25λ0 surrounded
by a uniform current loop of radius 25.2λ0 and a spherical radome shell of inner radius
25.4λ0, outer radius 25.9λ0, and relative permittivity 2. This example was simulated
using the finite element method with a boundary integral equation [6]; the result
is shown in Figure 8.11 and is compared with the analytical solution presented by
Partal et al. [17]. Because of the large electrical size of the problem, the radiated field



P1: JYS
c08 JWBK322-Jin October 3, 2008 20:11 Printer: Yet to come

282 AXISYMMETRIC ANTENNA MODELING

oscillates rapidly especially near the z-axis; yet the finite element solution captures
these oscillations very accurately.

8.3 SUMMARY

In this chapter we described an efficient approach to analyzing axisymmetric antennas.
By adopting the Fourier expansion, the approach reduces a three-dimensional analysis
problem to a two-dimensional problem. We started with a detailed finite element
formulation using the first-order absorbing boundary condition and then discussed
more accurate mesh truncation using perfectly matched layers and boundary integral
equations. We presented three examples to illustrate use of the finite element analysis
of axisymmetric antennas. Because axisymmetric antennas are very common in
practical applications, numerical formulations that exploit this rotational symmetry
lead to powerful and efficient simulation tools.
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9 Infinite Phased-Array Modeling

Phased-array antennas are of great importance in modern radar and communication
systems [1]. Accurate prediction of array performance using numerical methods not
only reduces the development cost and design timeline but also provides invaluable
physical insight to design engineers. Increasing demands on array performance may
require nontraditional designs using anisotropic dispersive materials and/or com-
plex radiating elements. Furthermore, a successful antenna array design may require
a complicated feeding and matching network, which may impose certain numeri-
cal analysis challenges. Among the various numerical methods, the finite element
method is well suited to perform such analyses, due to its versatility in geometry
and material modeling. In fact, much work has been carried out during the past
two decades on the development of the finite element method for modeling three-
dimensional doubly periodic phased arrays for a variety of configurations [2–10].
In particular, Jin and Volakis [2] developed the first three-dimensional finite el-
ement analysis for infinitely periodic arrays of cavity-backed antennas. McGrath
and Pyati [3] and Lucas and Fontana [4] extended this method to more general
periodic arrays consisting of more complicated antennas. Eibert et al. [6] applied
a special technique to accelerate the evaluation of the periodic Green’s function
employed in the boundary integral equation for the truncation of the finite ele-
ment computational domain. Recently, Petersson and Jin [9,10] developed a nu-
merical scheme to carry out finite element analysis of periodic arrays in the time
domain.

In this chapter we consider the finite element analysis of arrays that are infinitely
periodic in the two-dimensional xy-plane. Although not a physically realistic con-
figuration, the infinite-array model provides a reasonably good approximation to
the performance of the interior elements in a large finite array. The numerical anal-
ysis of an infinite array with a uniform progressively phased excitation is rela-
tively easy because the computational domain can be confined to a single array
element (unit cell) due to the periodicity in the electromagnetic fields. In the in-
terior region of the unit cell, the standard finite element discretization is applied.
On the boundaries of the unit cell, proper boundary conditions are imposed to
model the field behavior correctly in both the periodic and nonperiodic directions.
Such boundary conditions have been developed in both the frequency and time
domains.

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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Figure 9.1 Infinite periodic array in the xy-plane that extends to infinity in four directions.
(After Petersson and Jin [10], Copyright C© IEEE 2006.)

9.1 FREQUENCY-DOMAIN MODELING

When a phased array is operating with a harmonic time dependence (frequency
domain), each antenna element is excited by an individual source with a specific
phase difference relative to the other sources, resulting in a main beam being radiated
in a desired direction. To steer the beam, the relative phase shift between the elements
is changed such that the beam radiates in a new direction. An infinite antenna array
can be analyzed using a single unit cell, as shown in Figure 9.1, where the field at one
periodic surface of a unit cell is related to the field at the opposite parallel surface of
the unit cell through a simple phase shift. This fact makes it straightforward to utilize
a unit cell to numerically analyze infinitely periodic phased-array antenna structures
in the frequency domain, and two approaches to realize these periodic boundary
conditions in the finite element method are discussed in Section 9.1.1. The more
difficult task is to truncate the computational domain along the nonperiodic direction
(the z-direction in this case), and this topic is discussed in Section 9.1.2.

9.1.1 Periodic Boundary Conditions

Consider a planar array extending infinitely in the xy-plane as shown in Figure 9.1.
According to the Floquet theorem [11], the electric and magnetic fields satisfy the
following periodic relations:

E(x + mTx , y + nTy, z) = E(x, y, z)e− j(mks
x Tx +nks

y Ty ) (9.1)

H(x + mTx , y + nTy, z) = H(x, y, z)e− j(mks
x Tx +nks

y Ty ) (9.2)
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Figure 9.2 (a) Unit cell with an open bottom. (b) Unit cell assuming a ground plane and
waveguide port excitation. (After Petersson and Jin [10], Copyright C© IEEE 2006.)

where Tx and Ty are the unit cell spacings in the x- and y-directions, and ks
x =

k0 sin θs cos φs and ks
y = k0 sin θs sin φs , with (θs, φs) being the scan angle of the

array. Applying (9.1) and (9.2) to the four side surfaces of the unit cell results
in periodic boundary conditions that relate the electric and magnetic fields on the
opposite side surfaces with a phase-shift term determined from the scan angle of the
array (Figure 9.2).

To formulate the finite element equations and implement the periodic boundary
conditions, we assume initially that perfectly matched layers are used to truncate
the computational domain in the nonperiodic direction. In other words, if the orig-
inal problem domain is infinite in the z-direction, we use a perfectly matched layer
above the unit cell and another one below the unit cell (if necessary) to make the
computational domain finite in the z-direction. In Section 9.1.2 we address alterna-
tive boundary conditions in the nonperiodic direction. For simplicity, the perfectly
matched layers are backed by a perfect electric conductor. As we have shown in
Chapter 3, the uniaxial perfectly matched layers can be implemented using a ten-
sorial relative permittivity

↔
εr and permeability ↔

μr . According to the formulation
presented in Chapter 2, the weak-form representation of the vector wave equation for
the electric field is given by

∫∫∫
V

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

= jωμ0

∫∫
S

T · (n̂ × H) dS −
∫∫∫

V
T · [ jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp

)]
dV

(9.3)
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(a) (b)

Sy2

Sx2

Sy1

Sx1

S

Figure 9.3 (a) Two-dimensional illustration of a finite element mesh for a unit cell. (b) Unit
cell enclosed in a larger surface S.

where S denotes a surface that encloses V . Since we do not have a known boundary
condition on S, we have to treat the surface integral in (9.3). There are two approaches
to dealing with this surface integral. In the first approach we add a layer of finite
elements around the perimeter of the unit cell so that S becomes offset from the
periodic boundaries. By offsetting this surface, the surface integral does not contribute
to the finite element matrix for the unit cell. In the second approach, no additional
elements will be added and S will then coincide with the periodic boundaries of the
unit cell. By enforcing the proper phase relationships for the fields on the periodic
boundaries, it will be seen that the two approaches are equivalent.

As mentioned above, the first approach employs a surface S that encloses a volume
larger than the unit cell such that when we assemble the finite element matrix over
the unit cell, the surface integral has no contribution to this matrix. For the unit
cell shown in Figure 9.3(a), the enlarged volume is illustrated in Figure 9.3(b). The
corresponding finite element matrix equation can be written as

[K ]{E} = {b} (9.4)

where

Kij =
∫∫∫

Vuc

[
(∇ × Ni ) · ↔

μr
−1 · (∇ × N j ) − k2

0Ni · ↔
εr · N j

]
dV (9.5)

bi = −
∫∫∫

Vuc

Ni · [ jk0 Z0Jimp + ∇ × (↔
μr

−1 · Mimp
)]

dV. (9.6)

In the equations above, Vuc denotes the volume of the unit cell, and {E} represents the
column vector whose entries are the expansion coefficients of the electric field inside
the unit cell as well as on the side surfaces of the unit cell. Whereas the equations in
(9.4) for any Ei ’s that reside inside the unit cell are complete, the equations for Ei ’s
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that reside on the side surfaces on the unit cell are incomplete because these Ei ’s are
also associated with basis functions residing outside the specific unit cell. To make
these equations complete, we have to consider the contributions from these exterior
basis functions.

To account for the contributions from the outside basis functions associated with
Ei ’s that reside on the side surfaces, we can mesh the unit cell such that the surface
meshes on the opposite side surfaces are identical. Furthermore, we can also number
the expansion coefficients on the opposite side surfaces in the same manner such that
for an expansion coefficient on one side surface, we have a corresponding expansion
coefficient on the opposite surface. With such a volumetric mesh for the unit cell, we
can repeat the mesh in the x- and y-directions to generate the mesh for the infinitely
periodic array. For the convenience of description, let us denote the side surface on
the left side as Sx1 and the one on the right side as Sx2. We can similarly define Sy1

and Sy2, as illustrated in Figure 9.3(a). Based on the specific mesh described above,
it is evident that for an Ei that resides on Sx1, the contribution from the basis function
on the left side of Sx1 is the same as the contribution of the left-side basis function
with the corresponding expansion coefficient, denoted by E j , on Sx2, except for the
phase shift represented by e− j�x , where �x = ks

x Tx . Denoting the equations for Ei

and E j as

N∑
l=1

Kil El = bi ∀Ei ∈ Sx1 (9.7)

N∑
l=1

K jl El = b j ∀E j ∈ Sx2 (9.8)

where N denotes the total number of the unknown expansion coefficients in the unit
cell, we can make the equation for Ei complete by adding (9.8) to (9.7) with a proper
compensation of the phase shift. This gives us

N∑
l=1

(Kil + K jle
j�x )El = bi + b j e

j�x ∀Ei ∈ Sx1. (9.9)

We can also add (9.7) to (9.8) with a phase shift to make the equation for E j com-
plete; however, this is unnecessary because when we enforce the periodic boundary
condition, (9.8) will be replaced by the equation

E j = Ei e
− j�x ∀Ei ∈ Sx1, E j ∈ Sx2. (9.10)

Similarly, for an Ei that resides on Sy1 we can make its equation complete by adding
the equation for the corresponding E j on Sy2 with a proper phase shift. This results in

N∑
l=1

(Kil + K jle
j�y )El = bi + b j e

j�y ∀Ei ∈ Sy1 (9.11)
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and then we apply the periodic boundary condition

E j = Ei e
− j�y ∀Ei ∈ Sy1, E j ∈ Sy2 (9.12)

where �y = ks
y Ty . Equation (9.11) accounts for the contribution of the basis function

below Sy1 to the equation for Ei . However, for an Ei that resides on the corner edge
intersected by Sx1 and Sy1, its equation is contributed by basis functions in all four
quadrants. The contribution from the first quadrant is already included in (9.4), the
contribution from the second quadrant is accounted for by (9.9), and the contribution
from the fourth quadrant is included by (9.11). What is missing is the contribution
from the associated basis function in the third quadrant, and this contribution is the
same, except for a phase shift, as that for the corresponding E j that resides on the
corner edge intersected by Sx2 and Sy2, which was calculated in (9.4). To add this
contribution, we further modify the equation for Ei by

N∑
l=1

[K ′
il + K jle

j(�x +�y )]El = b′
i + b j e

j(�x +�y ) ∀Ei ∈ Sx1 ∩ Sy1 (9.13)

and then apply the periodic boundary condition

E j = Ei e
− j(�x +�y ) ∀Ei ∈ Sx1 ∩ Sy1, E j ∈ Sx2 ∩ Sy2. (9.14)

In (9.13), K ′
il and b′

i represent the matrix elements after the modifications through
(9.9) and (9.11). After the application of (9.9)–(9.14) to (9.4), we obtain the complete
finite element matrix equation, which can be solved for the electric field expansion
coefficients in the unit cell.

In the approach described above, the surface integral in (9.3) is avoided by using
a larger enclosure surface that does not contribute to the finite element equations in
the unit cell, and the equations on the side surfaces are made complete by including
the contributions from basis functions outside the unit cell. The same result can also
be obtained by setting the volume in (9.3) to be the volume of the unit cell, that is,
V = Vuc. In this second approach, (9.3) becomes∫∫∫

Vuc

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

= jωμ0

∫∫
Suc

T · (n̂ × H) dS −
∫∫∫

Vuc

T · [ jk0 Z0Jimp + ∇ × (↔
μr

−1 · Mimp
)]

dV

(9.15)

where Suc consists of all side surfaces of that unit cell; that is, Suc = Sx1 ∪ Sx2 ∪
Sy1 ∪ Sy2. In this case we have to consider the surface integral. The corresponding
finite element matrix equation for (9.15) can be written as

[K ]{E} = {b} + {h} (9.16)
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where [K] and {b} are the same as those defined by (9.5) and (9.6), respectively, and
the elements of {h} are given by

hi = jωμ0

∫∫
Suc

Ni · (n̂ × H) dS. (9.17)

If Ei resides inside the unit cell, its basis function Ni has no tangential component
on any side surfaces; hence, hi = 0 for all Ei ’s inside the unit cell. Now consider an
Ei with a basis function that has a tangential component only on the surface Sx1. In
this case its equation can be written as

N∑
l=1

Kil El = bi + hi ∀Ei ∈ Sx1 (9.18)

where

hi = − jωμ0

∫∫
Sx1

Ni · (x̂ × H) dS (9.19)

since n̂ = −x̂ on Sx1. Using the special mesh described earlier (i.e., that opposing
surfaces have identical surface meshes), we can find the corresponding coefficient E j

with basis function N j that has a tangential component only on Sx2 and is identical
to Ni . The equation for E j is given by

N∑
l=1

K jl El = b j + h j ∀E j ∈ Sx2 (9.20)

with

h j = jωμ0

∫∫
Sx2

N j · (x̂ × H) dS. (9.21)

Both hi in (9.18) and h j in (9.20) are unknown. However, because of the periodic
condition for the magnetic field given in (9.2), we find their relation as

h j = −hi e
− j�x . (9.22)

Hence, we can cancel hi in (9.18) by multiplying (9.20) by e j�x and adding the
resulting equation to (9.18). This yields

N∑
l=1

(Kil + K jle
j�x )El = bi + b j e

j�x ∀Ei ∈ Sx1 (9.23)
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which is identical to (9.9). Equation (9.20) can then be replaced by the periodic
boundary condition in (9.10). The treatment for an Ei where its basis function has a
tangential component only on Sy1 is the same, yielding the same results as given by
(9.11) and (9.12).

It is interesting to look at an Ei that resides on the corner edge intersected by Sx1

and Sy1, whose basis function has a tangential component on both Sx1 and Sy1. In
this case the equation is given by

N∑
l=1

Kil El = bi + hi ∀Ei ∈ Sx1 ∩ Sy1 (9.24)

where

hi = h(x)
i + h(y)

i = − jωμ0

∫∫
Sx1

Ni · (x̂ × H) dS − jωμ0

∫∫
Sy1

Ni · (ŷ × H) dS.

(9.25)

This unknown hi can be eliminated by the equations for the corresponding expansion
coefficients residing at the three other corner edges of the unit cell. For the corre-
sponding Em that resides on the corner edge intersected by Sy1 and Sx2, its equation
is given by

N∑
l=1

Kml El = bm + hm ∀Em ∈ Sy1 ∩ Sx2 (9.26)

with

hm = h(x)
m + h(y)

m = − jωμ0

∫∫
Sy1

Nm · (ŷ × H) dS + jωμ0

∫∫
Sx2

Nm · (x̂ × H) dS.

(9.27)

For the corresponding En that resides on the corner edge intersected by Sx1 and Sy2,
its equation is given by

N∑
l=1

Knl El = bn + hn ∀En ∈ Sx1 ∩ Sy2 (9.28)

with

hn = h(x)
n + h(y)

n = − jωμ0

∫∫
Sx1

Nn · (x̂ × H) dS + jωμ0

∫∫
Sy2

Nn · (ŷ × H) dS.

(9.29)
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Finally, for the corresponding E j that resides on the corner edge intersected by Sx2

and Sy2, its equation is given by

N∑
l=1

K jl El = b j + h j ∀E j ∈ Sx2 ∩ Sy2 (9.30)

with

h j = h(x)
j + h(y)

j = jωμ0

∫∫
Sx2

N j · (x̂ × H) dS + jωμ0

∫∫
Sy2

N j · (ŷ × H) dS.

(9.31)

Using the periodic condition for the magnetic field and the relation between the basis
functions Ni , N j , Nm , and Nn , we find that

h(y)
m = −h(y)

i e− j�x , h(x)
n = −h(x)

i e− j�y (9.32)

h(x)
j = −h(x)

m e− j�y , h(y)
j = −h(y)

n e− j�x . (9.33)

Using these relations, we can multiply (9.26) by e j�x , (9.28) by e j�y , and (9.30) by
e j(�x +�y ), and add the resulting equations to (9.24) to find

N∑
l=1

[Kil + Kmle
j�x + Knle

j�y + K jle
j(�x +�y )]El

= bi + bme j�x + bne j�y + b j e
j(�x +�y ) ∀Ei ∈ Sx1 ∩ Sy1. (9.34)

This equation can be shown to be identical to (9.13). Hence, the two approaches yield
the identical finite element matrix equation, as can be expected.

Although the formulations described above seem quite complicated, the numerical
implementation is very straightforward. Let us first denote the periodic boundary
condition as

E j = Ei e
− j�ij (9.35)

where the phase-shift term is given by

�ij =

⎧⎪⎨
⎪⎩

ks
x Tx ∀Ei ∈ Sx1, E j ∈ Sx2

ks
y Ty ∀Ei ∈ Sy1, E j ∈ Sy2

ks
x Tx + ks

y Ty ∀Ei ∈ Sx1 ∩ Sy1, E j ∈ Sx2 ∩ Sy2.

(9.36)
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Given (9.4), we can then complete the matrix equation and enforce the periodic
boundary conditions by the following operations:

Kil ← Kil + K jle
j�ij , bi ← bi + b j e

j�ij (9.37)

K jl ← 0, b j ← 0, K j j ← 1, K ji ← −e− j�ij . (9.38)

Here, the backward arrow simply means to replace the value for the left-hand side
with that of the right-hand side. The matrix equation so obtained contains all the
unknown expansion coefficients residing either inside the unit cell or on the surface
of the unit cell. Actually, we can simply eliminate all the dependent unknown E j ’s
on Sx2 and Sy2 to obtain a smaller matrix equation. This can be achieved by carrying
out the following operations after (9.37):

Kli ← Kli + Kl j e
− j�ij (9.39)

and then eliminating all the rows and columns corresponding to E j ’s. These opera-
tions can be written in matrix form as the transformation [3]

[K ′] = [R][K ][R]H (9.40)

where the transformation matrix [R] has a dimension of M × N , with N denoting
the total number of unknowns in the unit cell and M denoting the total number of
unknowns in the unit cell excluding those residing on Sx2 and Sy2, and the super-
script H denotes the conjugate transpose or Hermitian transpose. Assuming that the
unknowns residing on Sx2 and Sy2 are numbered last, the first M columns of [R] are
the M × M identity matrix. The other entries for [R] are given by

Rij =
⎧⎨
⎩

e jks
x Tx ∀Ei ∈ Sx1, E j ∈ Sx2

e jks
y Ty ∀Ei ∈ Sy1, E j ∈ Sy2

e j(ks
x Tx +ks

y Ty ) ∀Ei ∈ Sx1 ∩ Sy1, E j ∈ Sx2 ∩ Sy2

(9.41)

and all the rest unspecified entries are zeros. The final matrix equation can be written
as

[K ′]{E ′} = {b′} (9.42)

where {E ′} contains all the unknowns in the unit cell except for those residing on
Sx2 and Sy2 and {b′} = [R]{b}. Finally, we note that it is not necessary to generate
[K] and {b} initially and then compute [K ′] and {b′} either through operations in
(9.37)–(9.39) or through the matrix multiplication in (9.40). Instead, the unknowns
residing on Sx2 and Sy2 will not even be assigned, and [K ′] and {b′} are assembled
directly from the finite elements in the unit cell.
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9.1.2 Mesh Truncation Techniques

As discussed in Chapter 3, the three commonly used mesh truncation techniques are
based on the use of absorbing boundary conditions, perfectly matched layers, and
boundary integral equations. The implementation of perfectly matched layers can be
effected by the modeling of a uniaxial anisotropic medium, which was used in the
preceding section to illustrate the finite element formulation. The standard first-order
absorbing boundary condition for the upper truncation surface is given by

ẑ × (∇ × E) + jk0 ẑ × (ẑ × E) ≈ 0 r ∈ ST (9.43)

where we assume that the truncation surface ST resides in air. The implementation of
this boundary condition in the finite element formulation is straightforward. However,
this condition absorbs only the wave propagating along the z-direction (i.e., θs = 0),
and it has a significant reflection for waves propagating in other directions. The
implementation of (9.43) in the finite element formulation yields the same matrix
equation as (9.4) except that Kij is modified as

Kij =
∫∫∫

Vuc

[
(∇ × Ni ) · ↔

μr
−1 · (∇ × N j ) − k2

0Ni · ↔
εr · N j

]
dV

+ jk0

∫∫
ST

(ẑ × Ni ) · (ẑ × N j ) dS. (9.44)

As we discussed in Chapter 3, absorbing boundary conditions and perfectly
matched layers are only approximate because they cannot absorb all kinds of waves
impinging on the truncation boundary. To derive a more accurate truncation technique
and also shed light on better use of absorbing boundary conditions and perfectly
matched layers, let us examine the fields above the periodic array more carefully. For
example, consider the electric field, which satisfies the periodic condition in (9.1). If
we define a new field function as

P(x, y, z) = E(x, y, z)e j(ks
x x+ks

y y) (9.45)

this function then becomes a two-dimensional periodic function in any plane (z = zc)
parallel to the xy-plane with the periodicities Tx and Ty . Consequently, it can be
expanded into a Fourier series as

P(x, y, zc) =
∞∑

p=−∞

∞∑
q=−∞

P̃pq (zc) e j(2πpx/Tx +2πqy
/

Ty ) (9.46)

where P̃pq (zc) is the Fourier transform of P(x, y, zc) and is given by

P̃pq (zc) = 1

Tx Ty

∫∫
ST

P(x, y, zc) e− j(2πpx/Tx +2πqy
/

Ty ) dS. (9.47)
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Substituting (9.45) into (9.46) and (9.47), we obtain the Fourier expansion for the
electric field as

E(x, y, zc) =
∞∑

p=−∞

∞∑
q=−∞

Ẽpq (zc) e− j(kxp x+kyq y) (9.48)

and

Ẽpq (zc) = 1

Tx Ty

∫∫
ST

E(x, y, zc) e j(kxp x+kyq y) dS (9.49)

where

kxp = ks
x − 2πp

Tx
, kyq = ks

y − 2πq

Ty
. (9.50)

By using the dispersion relation, the field above the plane z = zc is given by

E(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

Ẽpq (zc) e− j[kxp x+kyq y+kzpq (z−zc)] ∀z ≥ zc (9.51)

where

kzpq =
⎧⎨
⎩
√

k2
0 − k2

xp − k2
yq , when k2

xp + k2
yq ≤ k2

0

− j
√

k2
xp + k2

yq − k2
0, when k2

xp + k2
yq > k2

0 .
(9.52)

The result in (9.51) reveals that the field excited by a periodic phased array can be
decomposed into an infinite number of modes, which are referred to as Floquet modes.
Depending on the frequency, some modes can propagate and some modes decay along
the z-direction. The former are usually referred to as propagating waves and the
latter are often called evanescent waves. The number of propagating modes depends
on the frequency, but there usually exists one propagating mode corresponding to
p = q = 0 (the fundamental mode), which represents a plane wave propagating in
the (θs, φs) direction. For the special case of θs = φs = 0◦, the fundamental Floquet
mode can be absorbed perfectly with (9.43); however, since (9.43) does not absorb
any evanescent waves, we should always place the truncation surface ST sufficiently
far away to allow the evanescent waves to decay to an insignificant amplitude. When
(θs, φs) �= (0◦, 0◦) or when the frequency is high enough to support more propagating
waves, the use of (9.43) can introduce a significant reflection error. When perfectly
matched layers are employed for mesh truncation, one should either use the complex-
shifted-frequency or second-order models to absorb the evanescent waves effectively
since these waves can be strong in some periodic structures. These perfectly matched
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layers have been demonstrated in the finite-difference time-domain simulations of
periodic structures [12,13].

To absorb all the propagating and evanescent waves effectively, we have to employ
an exact boundary integral equation. To derive such an equation for an infinitely
periodic phased array, we first take the curl of (9.51) and then cross it with ẑ to obtain

ẑ × (∇ × E) = − j
∞∑

p=−∞

∞∑
q=−∞

[
ẑ × (ktpq × Ẽpq ) + kzpq ẑ × (ẑ × Ẽpq )

]

· e− j[kxp x+kyq y+kzpq (z−zc)]

= − j
∞∑

p=−∞

∞∑
q=−∞

[
ktpq(ẑ · Ẽpq ) + kzpq ẑ × (ẑ × Ẽpq )

]

· e− j[kxp x+kyq y+kzpq (z−zc)] (9.53)

where ktpq = kxp x̂ + kyq ŷ. Applying Gauss’s electric law ∇ · E = 0 to (9.51), we
find that

ktpq · Ẽpq + kzpq ẑ · Ẽpq = 0 (9.54)

and its substitution into (9.53) yields

ẑ × (∇ × E) =
∞∑

p=−∞

∞∑
q=−∞

[
jktpq

kzpq
(ktpq · Ẽpq ) − jkzpq ẑ × (ẑ × Ẽpq )

]

· e− j(kxp x+kyq y) ∀z = zc. (9.55)

Equation (9.55) can also be written in a more familiar form as

ẑ × (∇ × E) = 2k2
0 ẑ ×

∞∑
p=−∞

∞∑
q=−∞

G̃(kxp,kyq ) · (ẑ × Ẽpq ) e− j(kxp x+kyq y) ∀z = zc

(9.56)

where

G̃(kxp,kyq ) = 1

2 jkzpqk2
0

[
k2

0 − k2
xp −kxpkyq

−kxpkyq k2
0 − k2

yq

]
(9.57)

which is called the periodic dyadic Green’s function in the spectral domain. Equation
(9.55) or (9.56) provides a relation between the tangential electric and magnetic
fields on the truncation surface ST placed at z = zc. Since it is derived rigorously,
this condition is exact and can absorb all the Floquet modes without reflection. It can
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be referred to as the periodic boundary integral equation or the periodic radiation
condition.

The application of (9.56) at the top truncation surface ST yields the weak-form
solution for the electric field as

∫∫∫
Vuc

[
(∇ × T) · ↔

μr
−1 · (∇ × E) − k2

0T · ↔
εr · E

]
dV

= jωμ0

∫∫
Suc

T · (n̂ × H) dS + 2k2
0

∫∫
ST

(ẑ × T) ·
∞∑

p=−∞

∞∑
q=−∞

G̃(kxp, kyq )

· (ẑ × Ẽpq ) e− j(kxp x+kyq y) dS

−
∫∫∫

Vuc

T · [ jk0 Z0Jimp + ∇ × (↔
μr

−1 · Mimp
)]

dV. (9.58)

The resulting finite element matrix equation before the application of the periodic
boundary conditions is the same as (9.4) except that Kij now becomes

Kij =
∫∫∫

Vuc

[
(∇ × Ni ) · ↔

μr
−1 · (∇ × N j ) − k2

0Ni · ↔
εr · N j

]
dV

− 2k2
0 Tx Ty

∞∑
p=−∞

∞∑
q=−∞

(ẑ × Ñ∗
i,pq ) · G̃(kxp,kyq ) · (ẑ × Ñ j,pq ) (9.59)

where

Ñi,pq = 1

Tx Ty

∫∫
ST

Ni e j(kxp x+kyq y) dS. (9.60)

For the numerical implementation, the infinite summations in (9.59) are always
truncated. A good truncation point is to include all the propagating Floquet modes
and a few evanescent modes. Larger array periods or a higher frequency permit more
propagating Floquet modes; hence, more terms should be included in the summation.
It is also important that the spatial discretization on ST be dense enough to resolve
the spatial variation of the highest-order Floquet mode included. A similar treatment
can be applied to the bottom truncation surface, if necessary.

It is interesting to consider the use of an approximation of (9.56) where we keep
only the dominant term corresponding to p = q = 0. Such an approximation yields

ẑ × (∇ × E) = 2k2
0 ẑ × G̃

(
ks

x , ks
y

) · (ẑ × Ẽ00) e− j(ks
x x+ks

y y) ∀z = zc. (9.61)

This boundary condition will absorb perfectly a plane wave propagating in the (θs, φs)

direction. Since G̃(ks
x , ks

y) represents a nondiagonal 2 × 2 tensor, this indicates that
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to absorb perfectly a wave incident at an oblique angle, the absorbing boundary must
be anisotropic. Equation (9.61) can also be written as

ẑ × (∇ × E) = 2k2
0 ẑ × G̃

(
ks

x , ks
y

) · (ẑ × E) ∀z = zc (9.62)

which is slightly easier to implement than (9.61). The alternative expression of (9.62)
is

ẑ × (∇ × E) = jk0

cos θs
k̂s

t

(
k̂s

t · E
)− jk0 cos θs ẑ × (ẑ × E) ∀z = zc (9.63)

where k̂s
t = sin θs cos φs x̂ + sin θs sin φs ŷ.

9.1.3 Extension to Skew Arrays

For the sake of simplicity, the finite element analysis described above applies to arrays
with an orthogonal lattice. The formulation can be extended easily to analyze arrays
with a skew lattice (Figure 9.4). Let us denote the principal axes of the skew lattice
as η1 and η2 and the angle between these axes as α. The periodic relation becomes

E(η1 + mT1, η2 + nT2, z) = E(η1, η2, z)e− j(mks
1T1+nks

2T2) (9.64)

where T1 and T2 are the periodicities measured along the η1- and η2-axes, and ks
1 and

ks
2 are the projected wavenumbers in the two directions. Without loss of generality,

x, η1

y
η2

α

Figure 9.4 Array with a skew lattice. The principal axes of the skew lattice are labeled as
η1 and η2 and the angle between these axes is labeled as α.
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we can assume that the η1-axis coincides with the x-axis so that T1 = Tx and ks
1 = ks

x .
It can be seen easily that

ks
2 = kx cos α + ky sin α, T2 = Ty

sin α
. (9.65)

Substituting these into (9.64), we obtain the periodic relation in Cartesian coordinates
as

E(x + mTx + nTy cot α, y + nTy, z) = E(x, y, z)e− j[mks
x Tx +n(ks

y +ks
x cot α)Ty ]

.

(9.66)

Therefore, the finite element formulation in Section 9.1.1 remains the same except
that all ks

y’s should be replaced by ks
y + ks

x cot α. Consequently, (9.36) becomes

�ij =

⎧⎪⎨
⎪⎩

ks
x Tx ∀Ei ∈ Sx1, E j ∈ Sx2(
ks

y + ks
x cot α

)
Ty ∀Ei ∈ Sy1, E j ∈ Sy2

ks
x Tx + (

ks
y + ks

x cot α
)
Ty ∀Ei ∈ Sx1 ∩ Sy1, E j ∈ Sx2 ∩ Sy2

(9.67)

and (9.41) becomes [3]

Rij =

⎧⎪⎪⎨
⎪⎪⎩

e jks
x Tx ∀Ei ∈ Sx1, E j ∈ Sx2

e j
(

ks
y +ks

x cot α
)

Ty ∀Ei ∈ Sy1, E j ∈ Sy2

e j
[

ks
x Tx +

(
ks

y +ks
x cot α

)
Ty

]
∀Ei ∈ Sx1 ∩ Sy1, E j ∈ Sx2 ∩ Sy2.

(9.68)

The implementation of the first-order absorbing boundary condition and perfectly
matched layers also remain unchanged. The periodic boundary integral equation can
be formulated using the Fourier expansion in η1 and η2, which is given by [11]

E(η1, η2, z) =
∞∑

p=−∞

∞∑
q=−∞

Ẽpq (zc) e− j[k1pη1+k2qη2+kzpq (z−zc)] ∀z ≥ zc (9.69)

where

k1p = ks
1 − 2πp

T1
, k2q = ks

2 − 2πq

T2
. (9.70)

Since η1 = x − y cot α and η2 = y/ sin α, (9.69) can be written in the same form as
(9.53) except that now

kyq = ks
y − 2πq

Ty
+ 2πp

Tx
cot α. (9.71)
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Therefore, the formulation in Section 9.1.2 can be applied to a skew-lattice array by
replacing all kyq ’s with the one given in (9.71).

9.1.4 Extension to Scattering Analysis

The formulation described above is pertinent to the radiation case where the sources
are embedded in the computational domain. The formulation can be modified to
deal with the case of scattering of an incident uniform plane wave. In fact, the
formulations that we have been developing in Section 9.1 remain intact, except that
ks

x = −k0 sin θ inc cos φinc and ks
y = −k0 sin θ inc sin φinc, where (θ inc, φinc) denotes the

angle of incidence. For the mesh truncation, when the first-order absorbing boundary
condition is employed, (9.43) becomes

ẑ × (∇ × E) + jk0 ẑ × (ẑ × E) ≈ Uinc r ∈ ST (9.72)

where Uinc = ẑ × (∇ × Einc) + jk0 ẑ × (ẑ × Einc). This yields the right-hand-side
vector

bi = jωμ0

∫∫
ST

Ni · [ẑ × Hinc − Y0 ẑ × (ẑ × Einc)] dS (9.73)

which replaces (9.6). When the periodic boundary integral equation is employed,
(9.56) becomes

ẑ × (∇ × E) = −2 jωμ0 ẑ × Hinc + 2k2
0 ẑ ×

∞∑
p=−∞

∞∑
q=−∞

G̃(kxp,kyq )

· (ẑ × Ẽpq ) e− j(kxp x+kyq y) (9.74)

which gives the right-hand-side vector

bi = 2 jωμ0

∫∫
ST

Ni · (ẑ × Hinc) dS (9.75)

to replace (9.6). When perfectly matched layers are employed for mesh truncation,
we can either formulate the finite element analysis in terms of the scattered field or
use the total- and scattered-field decomposition scheme to excite the incident field
through a Huygens surface, as discussed in Section 5.2.3.

9.1.5 Application Examples

We first consider the finite element simulation of an infinite array of microstrip patch
antennas. The microstrip patches, shown in Figure 9.5, are placed on a grounded
dielectric substrate with height h and permittivity εr . The patches are fed with coaxial
cables that enter the substrate from below the ground plane. In the simulation, the
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Figure 9.5 Infinite periodic microstrip patch array on a substrate. Each patch is fed by a
coaxial line.

computational domain, or unit cell, contains only a single patch, and proper periodic
boundary conditions are imposed on its boundaries. For a phased array, a critical
performance parameter is the active reflection coefficient. One definition for this is
given by

R(θs,φs) = Z in(θs,φs) − Z in(0,0)

Z in(θs,φs) + Z∗
in(0,0)

(9.76)

where Z in is the active input impedance of the antenna. The use of the conjugate
operator in (9.76) discounts the imaginary part of the input impedance and more
clearly reveals the scan properties of the array. The array under consideration has
a period of 0.5λ0 in both the x- and y-directions. The patches are 0.3λ0 × 0.3λ0

in size and the relative permittivity of the substrate is 2.55. The E-plane active
reflection coefficients are calculated for two different substrate heights: h = 0.02λ0

and h = 0.06λ0. The results calculated using the simplified probe and precise coaxial
feed models are plotted in Figure 9.6. A moment-method analysis by Pozar and
Schaubert [14] is used here for reference results. It is noted that all three results
agree with one another very well. All results predict a scan blindness at θ = 68.8◦

for h = 0.06λ0 as a result of surface-wave excitation. Moreover, for this particular
array, the agreement between the simplified and precise feed models suggests that
scan performances such as active reflection coefficients are insensitive to the specific
feed scheme, as indicated in Ref. 14.

Another independent verification is obtained for a microstrip patch array consisting
of 0.25λ0 × 0.25λ0 rectangular patches with periodic spacings of Tx = Ty = 0.5λ0

and a dielectric substrate with a relative permittivity of 2.5. Figure 9.7 shows the
active input resistance versus the scan angle for two different dielectric substrate
thicknesses calculated using the current probe feed (Section 5.1.1), and the results
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Figure 9.6 Active reflection coefficients for a microstrip patch array consisting of 0.3λ0 ×
0.3λ0 rectangular patches (Tx = Ty = 0.5λ0, εr = 2.55). (a) h = 0.02λ0 and s = 0.075λ0. (b)
h = 0.06λ0 and s = 0.14λ0. (After Lou and Jin [7], Copyright C© Wiley 2004.)

are compared with the moment-method solutions based on the same feed model [15].
Again, the two solutions agree very well. However, if we compare the calculations
of the active input impedance versus frequency, we find that the simplified probe
and precise coaxial feed models give significantly different results [7], especially at
higher frequencies, and this difference is much more pronounced in the case of the
thick substrate (h = 0.1λ0) than in the case of the thin substrate (h = 0.05λ0).

Next, we consider a circular patch array fed with coaxial lines. The periodic
element spacings are given by Tx = 34 mm and Ty = 36.1 mm, and the patch radius
is Ro = 14.29 mm. The dielectric substrate has a thickness of 0.79 mm and a relative
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Figure 9.7 Active resistance versus scan angle for a microstrip patch array consisting of
0.25λ0 × 0.25λ0 rectangular patches (Tx = Ty = 0.5λ0, εr = 2.5).

permittivity of 2.33. The outer and inner radii of the coaxial line used in the simulation
are ro = 1.492 mm and ri = 0.456 mm, respectively, and it is filled with a dielectric
having εr = 2.024. The S11 parameter measured at the coaxial port is shown in
Figure 9.8. Both the magnitude and phase of the S11 parameter calculated agree with
the results obtained by the generalized scattering matrix (GSM) combined with the
finite element method [8] since in both simulations the coaxial feed model is used.
These results also agree very well with those of experiments [8].

9.2 TIME-DOMAIN MODELING

As illustrated above, when analyzing an infinitely periodic antenna array using a unit
cell, it is necessary to impose periodic boundary conditions which reflect a uniform
phase shift between the antenna elements. This is straightforward in the frequency
domain. It is, however, more challenging in the time domain when the antenna
elements are excited by a pulse in time with an appropriate time shift to steer the main
beam into a particular direction. The difficulty of enforcing the periodic boundary
conditions for this case is due to the fact that the simple phase shift in the frequency
domain translates into a time shift in the time domain. This time shift of the field at
two parallel periodic surfaces requires future knowledge of the field at one of the two
surfaces in order to enforce the periodic boundary conditions. Clearly, this is a major
obstacle for a time-domain numerical method to overcome. Various methods have
been suggested in the literature to tackle the problem of periodic boundary conditions
in the time domain for the finite-difference time-domain (FDTD) analysis [16,17]
and for time-domain integral-equation analysis [18]. One of the techniques originally
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Figure 9.8 Active reflection coefficients for a microstrip patch array consisting of circular
patches. (a) Magnitude. (b) Phase. (After Lou and Jin [7], Copyright C© Wiley 2004.)

suggested for the periodic FDTD analysis has recently been adopted for the time-
domain finite element analysis [9,10], which is to be presented in this section.

9.2.1 Transformed Field Variable

The method developed in Refs. 9 and 10 is based on transforming Maxwell’s equations
into a new set of equations involving transformed field variables instead of the regular
field variables. By doing this, a transformed field variable at one periodic surface can
be made equal to the transformed field variable at the parallel periodic surface for all
time so that the periodic boundary conditions can easily be implemented.
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To be more specific, we introduce the transformed field variable Pe, which is
related to the electric field vector by

E(x, y, z; ω) = Pe(x, y, z; ω)e− j(ks
x x+ks

y y). (9.77)

By substituting (9.77) into (9.1), we obtain the periodic boundary conditions for
Pe as

Pe(x, y, z; ω) =
{

Pe(x + Tx , y, z; ω)
Pe(x, y + Ty, z; ω).

(9.78)

Note that (9.78) remains the same in the time domain, which makes the periodic
boundary conditions straightforward to enforce because there is no time delay be-
tween the fields at two parallel surfaces of the unit cell. By substituting the transformed
field variable defined in (9.77) into the frequency-domain vector wave equation for
the electric field,

∇ × (↔
μr

−1 · ∇ × E
)− k2

0
↔
εr · E + jωμ0

↔
σ · E = − jωμ0Jimp − ∇ × (↔

μr
−1 · Mimp

)
(9.79)

and then transforming the resulting equation into the time domain, we obtain the
following modified wave equation:

∇ × ↔
μr

−1 · (∇ × Pe) + 1

c2

↔
εr · ∂2Pe

∂t2
+ 1

c2
k̂s

t × ↔
μr

−1 ·
(

k̂s
t × ∂2Pe

∂t2

)
+ μ0

↔
σ · ∂Pe

∂t

− 1

c
∇ × ↔

μr
−1 ·

(
k̂s

t × ∂Pe

∂t

)
− 1

c
k̂s

t × ↔
μr

−1 ·
(

∇ × ∂Pe

∂t

)
= G(Jimp, Mimp)

(9.80)

where Pe = Pe(x, y, z; t), k̂s
t = sin θs cos φs x̂ + sin θs sin φs ŷ, and G(Jimp, Mimp) is

the sum of the source terms:

G(Jimp, Mimp) = −μ0
∂

∂t
Jimp

(
t + k̂s

t · r
c

)
− ∇ ×

[
↔
μr

−1 · Mimp

(
t + k̂s

t · r
c

)]

+ k̂s
t

c
×
[

↔
μr

−1 · ∂

∂t
Mimp

(
t + k̂s

t · r
c

)]
. (9.81)

Equation (9.80) is to be solved over a unit cell with the associated truncation bound-
aries shown in Figure 9.2. With the coordinate system shown for the unit cell in
Figure 9.2, we have the following periodic boundary conditions:

Pe(x = 0, y, z; t) = Pe(x = Tx , y, z; t) (9.82)

Pe(x, y = 0, z; t) = Pe(x, y = Ty, z; t). (9.83)
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The weak-form representation for (9.80) can be formulated by taking the dot
product with a testing function and integrating over the unit cell, yielding

∫∫∫
Vuc

{
(∇ × T) · ↔

μr
−1 · (∇ × Pe) + 1

c2
T · ↔

εr · ∂2Pe

∂t2
− 1

c2
(k̂s

t × T) · ↔
μr

−1 ·
(

k̂s
t × ∂2Pe

∂t2

)

+ μ0T · ↔
σ · ∂Pe

∂t
+ 1

c

[(
k̂s

t × T
)

· ↔
μr

−1 ·
(

∇ × ∂Pe

∂t

)
− (∇ × T) · ↔

μr
−1 ·

(
k̂s

t × ∂Pe

∂t

)]}
dV

+
∫∫

Suc∪ST

T ·
[

n̂ × ↔
μr

−1 ·
(

∇ × Pe − 1

c
k̂s

t × ∂Pe

∂t

)]
dS =

∫∫∫
Vuc

T · G(Jimp, Mimp) dV

(9.84)

where we have applied vector identities and Gauss’s divergence theorem. An alter-
native and much easier approach to deriving (9.84) is to start with the weak-form
representation of (9.79) using Te j(ks

x x+ks
y y) as the testing function, substitute in (9.77),

and then transform the resulting equation into the time domain.
The surface integral in (9.84) over the side surfaces Suc can be used to implement

the periodic boundary conditions, as we discussed in Section 9.1.1. The surface inte-
gral over the truncation surface ST can be used to implement an absorbing boundary
condition, as described in the next section.

9.2.2 Mesh Truncation Techniques

To complete the finite element formulation, we have to choose and implement a
mesh truncation technique through the surface integral over ST in (9.84). Although
the use of the transformed field variable gives rise to two terms in this surface
integral—one has the familiar form of n̂ × (↔

μr
−1 · ∇ × Pe) and the other contains

n̂ × ↔
μr

−1 · (k̂s
t × ∂Pe/∂t)—both terms originate from n̂ × (↔

μr
−1 · ∇ × E). Therefore,

the absorbing boundary conditions derived in Section 9.1.2 can be employed to derive
the absorbing boundary conditions for the transformed field variable.

For simplicity, we first consider the use of the first-order absorbing boundary
condition given in (9.63). By substituting (9.77) into (9.63), we obtain

ẑ × (∇ × Pe − jk0k̂s
t × Pe) = jk0

cos θs
k̂s

t

(
k̂s

t · Pe
)− jk0 cos θs ẑ × (ẑ × Pe)

∀z = zc (9.85)

which can be transformed into the time domain as

ẑ ×
(

∇ × Pe − 1

c
k̂s

t × ∂Pe

∂t

)
= 1

c cos θs
k̂s

t

(
k̂s

t · ∂Pe

∂t

)
− 1

c
cos θs ẑ ×

(
ẑ × ∂Pe

∂t

)
∀z = zc. (9.86)
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Substituting (9.86) into the surface integral over ST in (9.84) results in a successful
implementation of the first-order absorbing boundary condition, which absorbs per-
fectly the fundamental Floquet mode in any direction. The resulting finite element
matrix equation is given by

[T ]
d2{Pe}

dt2
+ [R + RABC]

d{Pe}
dt

+ [S]{Pe} = { f } (9.87)

where

Tij = 1

c2

∫∫∫
Vuc

[
Ni · ↔

εr · N j − (
k̂s

t × Ni
) · ↔

μr
−1 · (k̂s

t × N j
)]

dV (9.88)

Rij =
∫∫∫

Vuc

{
μ0Ni · ↔

σ · N j + 1

c

[(
k̂s

t × Ni
) · ↔

μr
−1 · (∇ × N j )

− (∇ × Ni ) · ↔
μr

−1 · (k̂s
t × N j

)]}
dV (9.89)

RABC
ij =

∫∫
ST

[
cos θs

c
(ẑ × Ni ) · (ẑ × N j ) + 1

c cos θs

(
k̂s

t · Ni
)(

k̂s
t · N j

)]
dS (9.90)

Sij =
∫∫∫

Vuc

(∇ × Ni ) · ↔
μr

−1 · (∇ × N j ) dV (9.91)

fi =
∫∫∫

Vuc

Ni · G(Jimp, Mimp) dV. (9.92)

Equation (9.87) can be solved by time marching using the Newmark-beta integration
method, as discussed in Chapter 2.

The first-order absorbing boundary condition given in (9.86) can absorb the fun-
damental Floquet mode propagating in any direction. For most practical applications
where only the fundamental Floquet mode is excited, this mesh truncation is suffi-
ciently accurate. An example is a well-designed phased array having no grating lobes.
However, occasionally in certain periodic phased arrays and in many scattering ap-
plications, propagating higher-order modes may be important. More sophisticated
boundary conditions for absorbing higher-order Floquet modes can be derived by
taking these higher-order modes into account [10]. The most accurate one is the
periodic boundary integral equation in (9.55), which in terms of the transformed field
variable (Pe) is given by

ẑ × (∇ × Pe − jk0k̂s
t × Pe

) =
∞∑

p=−∞

∞∑
q=−∞

[
jktpq

kzpq
(ktpq · P̃pq ) − jkzpq ẑ × (ẑ × P̃pq )

]

× e j(κxp x+κyq y) ∀z ≥ zc (9.93)
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where κxp = 2πp/Tx , κyq = 2πq/Ty , and P̃pq is given by (9.47). To transform this
into the time domain, we first rewrite ktpq(ktpq · P̃pq ) as

ktpq(ktpq · P̃pq ) = (
k2

0 k̂s
t k̂s

t − k0k̂s
t κ pq − k0κ pq k̂s

t + κ pqκ pq
) · P̃pq (9.94)

where κ pq = κxp x̂ + κyq ŷ. Hence, (9.93) can be written as

ẑ × (∇ × Pe − jk0k̂s
t × Pe

)=
∞∑

p=−∞

∞∑
q=−∞

{
k̂s

t k̂s
t · W (P̃pq ) + (

k̂s
t κ pq + κ pq k̂s

t

) · X (P̃pq )

+ κ pqκ pq · Y (P̃pq ) − ẑ ×[ẑ × Z (P̃pq )]
}
e j(κxp x+κyq y)

(9.95)

where

W (P̃pq ) = jk2
0

kzpq
P̃pq (9.96)

X (P̃pq ) = − jk0

kzpq
P̃pq (9.97)

Y (P̃pq ) = j

kzpq
P̃pq (9.98)

Z (P̃pq ) = jkzpq P̃pq . (9.99)

These four functions can be transformed into the time domain if we rewrite jkzpq as

jkzpq = cos θs

c

√
a2

pq + (s + jbpq )2 (9.100)

where s = jω, apq =
√

c2κ2
pq

/
cos2 θs + b2

pq , and bpq = ck̂s
t · κ pq/ cos2 θs , and use

the Laplace transform pairs

1√
a2 + (s + b)2

↔ J0(at)e−bt u(t) (9.101)

√
a2 + (s + b)2 ↔ ∂

∂t
+ bδ(t) + a

t
J1(at)e−bt u(t) (9.102)

and the operation rules

s F(s) ↔ ∂

∂t
f (t) (9.103)

s2 F(s) ↔ ∂2

∂t2
f (t) (9.104)
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along with the fact that multiplication of two functions in one domain results in a
convolution in the other domain. In the equations above, J0 is the zeroth-order Bessel
function of the first kind, J1 is the first-order Bessel function of the first kind, δ

denotes the Dirac delta function, and u denotes the unit step function. The results are

W (P̃pq ) ↔ 1

c cos θs

[
∂

∂t
P̃pq (t) + w pq (t) ∗ P̃pq (t)

]
(9.105)

X (P̃pq ) ↔ j

cos θs
x pq (t) ∗ P̃pq (t) (9.106)

Y (P̃pq ) ↔ c

cos θs
ypq (t) ∗ P̃pq (t) (9.107)

Z (P̃pq ) ↔ cos θs

c

[
∂

∂t
P̃pq (t) + z pq (t) ∗ P̃pq (t)

]
(9.108)

where

w pq (t) =
[(

2apqbpq + apq

t

)
J1(apq t) − (a2

pq + b2
pq )J0(apq t)

]
× e− jbpq t u(t) − jbpqδ(t) (9.109)

x pq (t) = [
apq J1(apq t) + jbpq J0(apq t)

]
e− jbpq t u(t) − δ(t) (9.110)

ypq (t) = −J0(apq t)e− jbpq t u(t) (9.111)

z pq (t) = apq

t
J1(apq t)e− jbpq t u(t) + jbpqδ(t). (9.112)

By substituting the time-domain counterpart of (9.95) into the surface integral
over ST in (9.84), we obtain the finite element matrix equation

[T ]
d2{Pe}

dt2
+ [R + RPRC]

d{Pe}
dt

+ [S + SPRC∗]{Pe} = { f } (9.113)

where the elements of [T], [R], [S], and { f } are given by (9.88), (9.89), (9.91), and
(9.92), respectively, and the elements of [RPRC] and [SPRC] are given by

RPRC
ij = 1

Tx Ty

∞∑
p=−∞

∞∑
q=−∞

[
1

c cos θs

(
k̂s

t · Ñ∗
i,pq

)(
k̂s

t · Ñ j,pq

)

+ cos θs

c
(ẑ × Ñ∗

i,pq ) · (ẑ × Ñ j,pq )

]
(9.114)
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SPRC
ij = 1

Tx Ty

∞∑
p=−∞

∞∑
q=−∞

{
1

cos θs

[
1

c

(
k̂s

t · Ñ∗
i,pq

)(
k̂s

t · Ñ j,pq

)
w pq (t)

+ j
[(

k̂s
t · Ñ∗

i,pq

)(
κpq · Ñ j,pq

)+ (
κpq · Ñ∗

i,pq

)(
k̂s

t · Ñ j,pq

)]
x pq (t)

+ c
(
κpq · Ñ∗

i,pq

)(
κpq · Ñ j,pq

)
ypq (t)

]
+cos θs

c

(
ẑ × Ñ∗

i,pq

)(
ẑ × Ñ j,pq

)
z pq (t)

}

(9.115)

in which

Ñi,pq = 1

Tx Ty

∫∫
ST

Ni e− j(κxp x+κyq y) dS. (9.116)

Note the difference between (9.116) and (9.60), although the same symbol is used
[κxp and κyq are used in (9.116), whereas kxp and kyq were used in (9.60), in addition
to the sign difference in the exponential function]. The detailed implementation of the
formulation above is described in Ref. 10, which is quite complicated. However, the
resulting method is highly effective, and numerical experiments show that highly ac-
curate solutions are always obtained with a few higher-order Floquet modes included
in the double summations in (9.114) and (9.115).

9.2.3 General Material Modeling

Whereas it is straightforward to model general dispersive, lossy materials in the
frequency-domain simulation, the modeling in the time domain is much more chal-
lenging, as we have demonstrated in Chapter 2. The unit cell analysis of general
materials in the time domain that is based on the transformed field variable is the
topic of this section.

The finite element formulation for anisotropic, lossy, and dispersive electric and
magnetic materials was described in Section 2.3.4. For convenience, the fundamental
equations are restated here:

∇ × E(t) = −∂B(t)

∂t
− ↔

σ m · H(t) (9.117)

∇ × H(t) = ∂D(t)

∂t
+ ↔

σ e · E(t) + Jimp(t) (9.118)

where D(t) is related to E(t) by the constitutive relation

D(t) = ε0
↔
ε∞ · E(t) + ε0

↔
χ e(t) ∗ E(t) (9.119)

and B(t) is related to H(t) by the constitutive relation

B(t) = μ0
↔
μ∞ · H(t) + μ0

↔
χm(t) ∗ H(t). (9.120)
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Note that for nondispersive materials, ↔
ε∞ → ↔

εr , ↔
μ∞ → ↔

μr , and the susceptibility
tensors are zero. The magnetic current term is omitted in (9.117) for simplicity.

The transformed field variable technique is now applied to (9.117)–(9.120) and the
approach will be based on the E–H concept of Section 2.3.4. The electric field E(ω)
is replaced by Pe, as defined in (9.77), and a similar transformation is introduced for
the magnetic field H(ω):

H(x, y, z; ω) = Ph(x, y, z; ω)e− j(ks
x x+ks

y y). (9.121)

The time-domain equations (9.117) and (9.118) then become

μ0
↔
μ∞ · ∂Ph(t)

∂t
= −∇ × Pe(t) + 1

c
k̂s

t × ∂Pe

∂t
− ↔

σ m · Ph(t) − μ0
↔̇
χm(t) ∗ Ph(t)

(9.122)

ε0
↔
ε∞ · ∂Pe(t)

∂t
= ∇ × Ph(t) − 1

c
k̂s

t × ∂Ph

∂t
− ↔

σ e · Pe(t) − ε0
↔̇
χ e(t) ∗ Pe(t)

− Jimp

(
t + k̂s

t · r
c

)
(9.123)

where the constitutive relations have been used. Differentiating (9.123) with respect
to time and integrating its weighted expression over the volume of the unit cell leads
to the weak-form equation

∫∫∫
Vuc

{
−(∇ × T) · ∂Ph(t)

∂t
+ T ·

[
1

c
k̂s

t × ∂2Ph(t)

∂t2

]

+ ε0T · ↔
ε∞ · ∂2Pe(t)

∂t2
+ T · ↔

σ e · ∂Pe(t)

∂t
+ ε0T · ↔̈

χ e(t) ∗ Pe(t)

}
dV

−
∫∫

Suc∪ST

T ·
[

n̂ × ∂Ph(t)

∂t

]
dS = −

∫∫∫
Vuc

T · ∂

∂t
Jimp

(
t + k̂s

t · r
c

)
dV.

(9.124)

Note that by differentiating (9.122) with respect to time, the second term in (9.124)
can be written as

μ0
1

c
k̂s

t × ∂2Ph

∂t2
= k̂s

t

c
×
{

↔
μ∞

−1 ·
[
−∇ × ∂Pe(t)

∂t
+ 1

c
k̂s

t × ∂2Pe(t)

∂t2
− ↔

σ m · ∂

∂t
Ph(t)

−μ0
↔
χm ∗ ∂2

∂t2
Ph(t)

]}
(9.125)
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where the time derivatives in the convolution have been transferred equivalently onto
the fields.

To ultimately obtain an unconditionally stable numerical scheme that solves
self-consistently for both Pe and Ph , we add and subtract

∫∫∫
Vuc

(∇ × T) · ↔
μ∞−1 ·

(∇ × Pe) dV to (9.124) and then substitute ∇ × Pe in the subtracted term with the
expression derived from (9.122). By doing so, the weak-form equation can then be
written as∫∫∫

Vuc

{
(∇ × T) · ↔

μ∞
−1 · (∇ × Pe) + μ0 T ·

[
1

c
k̂s

t × ∂2Ph

∂t2

]

− (∇ × T) ·
[

k̂s
t

c
× ∂Pe

∂t
− ↔

σ m · Ph − μ0
↔
χm ∗ ∂Ph

∂t

]

+ 1

c2
T · ↔

ε∞ · ∂2Pe

∂t2
+ μ0T · ↔

σ e · ∂Pe

∂t
+ 1

c2
T · ↔

χ e ∗ ∂2Pe

∂t2

}
dV

−μ0

∫∫
Suc∪ST

T ·
[

n̂ × ∂Ph

∂t

]
dS = −μ0

∫∫∫
Vuc

T · ∂

∂t
Jimp

(
t + k̂s

t · r
c

)
dV.

(9.126)

We now consider the finite element solution of (9.126) and restrict development to the
recursive convolution formulation for the susceptibility tensors, as discussed in Chap-
ter 2. Although (9.126) involves many terms, the solution is relatively straightforward.
The basic strategy will be to solve a finite element equation for Pe that advances Pe

to time t = (n + 1)�t , and solve a difference equation for Ph that advances Ph to
time t = (n + 1/2)�t . However, for oblique scan angles, we will find that there will
be time dependencies between Pn+1

e and Pn+1/2
h that will require special attention.

We begin by noting that for both the electric and magnetic transformed fields, the
convolutions can be written as

↔
χm(t) ∗ ∂Ph(t)

∂t

∣∣∣∣
t=n�t

∼= ↔
χ

0
m · ∂Ph(t)

∂t

∣∣∣∣
t=n�t

+ �n (9.127)

↔
χ e(t) ∗ ∂2Pe(t)

∂t2

∣∣∣∣
t=n�t

∼= ↔
χ

0
e · ∂2Pe(t)

∂t2

∣∣∣∣
t=n�t

+ �n (9.128)

where

�n =
n∑

k=1

∫ (k+1/2)�t

(k−1/2)�t

↔
χm(τ ) · Ṗn−k

h dτ = 1

�t

n∑
k=1

↔
χ

k

m · (Pn−k+1/2
h − Pn−k−1/2

h

)
(9.129)

�n =
n∑

k=1

∫ (k+1/2)�t

(k−1/2)�t

↔
χ e(τ ) · P̈n−k

e dτ = 1

�t2

n∑
k=1

↔
χ

k

e · (Pn−k+1
e − 2Pn−k

e + Pn−k−1
e

)
(9.130)
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in which

↔
χ

k

e,m =
∫ (k+1/2)�t

(k−1/2)�t

↔
χ e,m(τ ) dτ. (9.131)

The fields are assumed to be identically zero at zero time, and causality of the
susceptibility tensors is used in the evaluation of (9.131) for the case k = 0 required
in (9.127) and (9.128). If the electric and magnetic susceptibilities can be represented
by a pole expansion such that

↔
χ e,m(t) = Re{↔

ae,m e−be,m t } u(t) (9.132)

both (9.129) and (9.130) can be evaluated efficiently using the recursive relations

�̂
n = 1

�t
↔
χm

1 · (Pn−1/2
h − Pn−3/2

h

)+ e−bm�t�̂
n−1

(9.133)

�̂
n = 1

�t2

↔
χ e

1 · (Pn
e − 2Pn−1

e + Pn−2
e

)+ e−be�t�̂
n−1

(9.134)

and �n = Re{�̂n}, �n = Re{�̂n}. Such a recursive evaluation of the convolutions
has been discussed in Chapter 2.

To formulate a time-marching equation for Pe from (9.126), we need to convert
the term involving the second time derivative on Ph into an equivalent expression
without such a second derivative. This can be accomplished by differentiating (9.127)
with respect to time and then substituting into (9.125) to obtain the semidiscrete form

μ0
1

c
k̂s

t × ∂2Ph

∂t2

∣∣∣∣
t=n�t

= k̂s
t

c
× ↔

ξ−1 ·
[
−∇ × ∂Pe

∂t

∣∣∣∣
t=n�t

+ 1

c
k̂s

t × ∂2Pe

∂t2

∣∣∣∣
t=n�t

− ↔
σ m · ∂Ph

∂t

∣∣∣∣
t=n�t

−μ0
∂�n

∂t

∣∣∣∣
t=n�t

]
(9.135)

where
↔
ξ = Re{↔

χm
0 } + ↔

μ∞. Using (9.127) and (9.135), we can now write (9.126) as

∫∫∫
Vuc

{
(∇ × T) · ↔

μ∞
−1 · (∇ × Pe|t=n�t )

+ T · k̂s
t

c
×
[

↔
ξ−1 ·

(
−∇ × ∂Pe

∂t
+ 1

c
k̂s

t × ∂2Pe

∂t2
− ↔

σ m · ∂Ph

∂t
− μ0

∂�n

∂t

)∣∣∣∣
t=n�t

]

− (∇ × T) ·
[(

k̂s
t

c
× ∂Pe

∂t
− ↔

σ m · Ph − μ0 Re{↔
χm

0 } · ∂Ph

∂t

)∣∣∣∣∣
t=n�t

− μ0�
n

]
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+ 1

c2
T · (↔

ε∞ + Re{↔
χ e

0}) · ∂2Pe

∂t2

∣∣∣∣
t=n�t

+μ0T · ↔
σ e · ∂Pe

∂t

∣∣∣∣
t=n�t

+ 1

c2
T · �n

}
dV

−μ0

∫∫
Suc∪ST

T ·
[

n̂ × ∂Ph

∂t

∣∣∣∣
t=n�t

]
dS

= −μ0

∫∫∫
Vuc

T · ∂

∂t
Jimp

(
t + k̂s

t · r
c

)∣∣∣∣∣
t=n�t

dV. (9.136)

In this equation, �n is defined by (9.130) from which a recurrence relationship
similar to (9.134) will be obtained to accommodate the case of electric dispersion.
The situation of both magnetic dispersion and oblique scan/incident angles introduces
a further complication because Ph and its time derivative at time step n will be
dependent on Pe at time step n + 1. A technique to resolve this is the following. By
using the second-order central-difference approximation for the time derivatives, a
semidiscrete equation for (9.122) is given by

Pn+1/2
h = ↔

�+−1 · (↔
�− · Pn−1/2

h

)− �t
↔
�+−1 · (∇ × Pe|t=n�t ) − μ0 �t

↔
�+−1 · �n

+�t
↔
�+−1 ·

(
1

c
k̂s

t × ∂Pe

∂t

∣∣∣∣
t=n�t

)
(9.137)

where

↔
�± = μ0

↔
ξ ±

↔
σ m �t

2
. (9.138)

Note that for the case of oblique scan/incident angles, (9.137) is dependent on Pe at
time t = (n + 1)�t when a centered difference is used for ∂Pe/∂t . To resolve this
challenge, we can write Pn+1/2

h as

Pn+1/2
h = P̃n+1/2

h + �t
↔
�+−1 ·

(
1

c
k̂s

t × ∂Pe

∂t

∣∣∣∣
t=n�t

)
(9.139)

where

P̃n+1/2
h = ↔

�+−1 · (↔
�− · Pn−1/2

h

)− �t
↔
�+−1 · (∇ × Pe|t=n�t ) − μ0 �t

↔
�+−1 · �n.

(9.140)

This decomposition permits the term involving ∂Pe/∂t to be extracted from (9.139)
and included into the finite element formulation for Pe based on (9.136), whereas the
partial field P̃n+1/2

h contributes as an additional forcing function to the right-hand side
of (9.136). Note that after Pn+1

e is obtained, it must be included in (9.139) to finalize
the advancement of Pn+1/2

h .
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Similarly, the time derivative ∂�n/∂t in (9.136) can be written as

∂�n

∂t

∣∣∣∣
t=n�t

= 1

2 �t
(�n+1 − �n−1). (9.141)

From the recursive relationship (9.133), along with (9.139), we obtain

�̂
n+1 = 1

�t
↔
χm

1 · (Pn+1/2
h − Pn−1/2

h

)+ e−bm�t �̂
n

= 1

�t
↔
χm

1 ·(P̃n+1/2
h − Pn−1/2

h

)+ e−bm�t �̂
n + �t

�t
↔
χm

1 · ↔
�+−1 ·

(
1

c
k̂s

t × ∂Pe

∂t

∣∣∣∣
t=n�t

)

= �̃
n+1 + ↔

χm
1 · ↔

�+−1 ·
(

1

c
k̂s

t × ∂Pe

∂t

∣∣∣∣
t=n�t

)
(9.142)

where

�̃
n+1 = 1

�t
↔
χm

1 · (P̃n+1/2
h − Pn−1/2

h

)+ e−bm�t �̂
n
. (9.143)

The time derivative ∂�n/∂t can now be written in semidiscrete form as

∂�n

∂t

∣∣∣∣
t=n�t

= 1

2 �t
Re{�̃n+1 − �̂

n−1} + 1

2�t
Re
{↔
χm

1
} · ↔

�+−1 ·
(

1

c
k̂s

t × ∂Pe

∂t

∣∣∣∣
t=n�t

)

(9.144)

which allows the extraction of the ∂Pe/∂t term and then including it into the traditional
finite element formulation for Pe based on (9.136).

Decompositions of the types described by (9.139) and (9.144) permit a standard
Newmark-beta discretization of (9.136) for Pe. The solution procedure for (9.136)
for oblique scan/incident angles is initially to advance the partial terms P̃n+1/2

h and
�̃

n+1
from (9.140) and (9.143), respectively, and then use these results as additional

source terms in the right-hand side of (9.136). The Pn+1
e calculated is then used in

(9.139) and (9.142) to build the full solutions for Pn+1/2
h and �n+1, respectively. This

iterative procedure continues for the duration of the simulation. Extensive numerical
experiments have indicated that this algorithm is unconditionally stable with regard
to the time step, scan/incident angle, and many forms of material dispersion, although
a theoretical proof is not currently available.

To verify the validity of the formulation described above and test the accuracy and
stability of its numerical implementation, we consider the problem of plane-wave
incidence on a uniform magnetically dispersive slab, as illustrated in Figure 9.9(a).
The slab has a thickness of 10 cm, and its complex relative permeability is plotted in
Figure 9.9(b). This slab can be modeled as a periodic structure with a uniform unit cell;
hence, the problem can be solved numerically using the time-domain finite element
formulation described in this section. The computed reflection and transmission
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Figure 9.9 Magnetically dispersive slab with a thickness of 10 cm with an obliquely incident
plane wave. (a) Geometry. (b) Dispersive permeability frequency profile of the slab.

coefficients are shown in Figures 9.10 and 9.11 for two angles of incidence and two
polarizations. The results are compared with the exact solution, and it can be seen
that the agreement is excellent for all the cases. Numerical examples for electrically
dispersive and doubly dispersive dielectric slabs can be found in Ref. 19 along with
an example that demonstrates the very high accuracy achieved with this formulation.

9.2.4 Application Examples

The numerical scheme described above can be implemented to analyze any infinitely
periodic phased-array antenna. One issue that we need to be careful about is the
handling of the excitation. When the antennas are excited by coaxial lines and the
waveguide port boundary condition is employed to truncate the mesh at the coaxial
port, the right-hand-side excitation term becomes Uinc(t + k̂s

t · r/c) when the port
boundary condition is converted for the transformed field variable and transformed
into the time domain. A similar treatment is applied to the incident field for the
plane-wave scattering analysis. Furthermore, once the transformed field variable is
solved for, we have to convert it back to the electric field first and then calculate
the radiation or scattering parameters. This conversion can be done in the frequency
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Figure 9.10 Reflection and transmission coefficients of a magnetically dispersive slab for
incident angle θ inc = 30◦. (a) Horizontal polarization. (b) Vertical polarization.

domain according to (9.77) or in the time domain according to the Fourier transform
of (9.77), which yields

E(x, y, z; t) = P

(
x, y, z; t − k̂s

t · r
c

)
. (9.145)
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Figure 9.11 Reflection and transmission coefficients of a magnetically dispersive slab for
incident angle θ inc = 80◦. (a) Horizontal polarization. (b) Vertical polarization.

In this section we present four numerical examples to demonstrate the time-
domain finite element analysis of infinite phased-array antennas. As the first example,
consider a phased-array antenna based on a Vivaldi element shown in Figure 9.12.
A dielectric substrate (εr = 6) with an etched conducting surface on one side is
positioned normal to the ground plane such that it partially covers the aperture of a
coaxial waveguide. The side of the substrate containing the etched conducting surface
bisects the aperture of the coaxial waveguide, and the conducting surface is etched
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Figure 9.12 Unit cell of an infinite phased array of Vivaldi antennas.

such that it forms a short coplanar waveguide starting at the ground plane with the
dimension of the two slots being equal to the width of the aperture of the coaxial
waveguide. One of the slots of the coplanar waveguide transitions into a flared slotline,
and the other slot is terminated by an open load formed by an etched circle of radius
2.5 mm. The dimensions of the unit cell are Tx = 36 mm and Ty = 34 mm, and the
height of the substrate is 33.3 mm with a thickness of 1.27 mm. The coaxial waveguide
is empty with the radii of the inner and outer conductors equal to 0.375 and 0.875 mm,
respectively. The half-width of the flared slotline is given by 0.25e0.123z mm, which
gives a half width of 15 mm at the open end. The etched circle forming the open
load of the other slot intersects the slot at a distance 3.5 mm from the ground plane.
Note that the xz-plane that coincides with the center of the flared slotline divides the
unit cell into two equal-sized parts. Figure 9.13 shows the simulated results for the
magnitude of S11 as a function of frequency for broadside scanning (θs, φs) = (0◦, 0◦)
and oblique scanning (θs, φs) = (45◦, 135◦). The results are computed using the time-
domain finite element method [10] and are compared with another solution obtained
using the commercial software suite HFSS, which is based on the frequency-domain
finite element method. A prominent feature of the reflection coefficient is the sharp
peak occurring at 4.6 GHz when the array is configured for broadside radiation.
Such a phenomenon, referred to as the impedance anomaly, has been observed
previously [20]. The anomaly can be modeled as the excitation of a certain resonant
mode in the unit cell cavities, which are formed by the ground plane, the electric
conducting surfaces on the sidewalls, and a magnetic conducting surface on the open
aperture.

Simulation of scanning of periodic phased arrays to a very wide scan angle is
often problematic for time-domain methods such as the FDTD because a significant
reduction in the time step is required [21]. The periodic time-domain finite element
method imposes no such restriction on the time step, due to its unconditional stability.
This is demonstrated in the second example with the coaxially fed, doubly periodic
monopole array shown in Figure 9.14. Scan performance over 0◦ ≤ θs < 90◦ in both
the principal and diagonal planes is shown in Figure 9.15. Comparison data are based
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Figure 9.13 Reflection coefficient of a coaxial waveguide connected to an element in an
infinite phased array of Vivaldi antennas. (After Petersson and Jin [10], Copyright C© IEEE
2006.)

Figure 9.14 Unit cell geometry of a quarter-wavelength monopole array and the finite
element surface mesh local to the feed region.
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Figure 9.15 Scan performance of a quarter-wavelength monopole array. (a) In the principal
(φs = 0◦) plane. (b) In the diagonal (φs = 45◦) plane.

on an approximate analytical solution that assumed a sinusoidal current distribution
on the monopoles [22].

The third example concerns an infinite periodic array whose unit cell design is
shown in Figure 9.16(a). The surface of the right-front corner is made semitrans-
parent to show the internal structure of the unit cell. This is a novel, ultrawide-
bandwidth array based on a dispersive magnetic substrate and a bowtie-shaped radia-
tor. The two coaxial feeds are modeled using the waveguide port boundary condition.
The insertion loss and VSWR for the broadside scan are shown in Figure 9.16(b),
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Figure 9.16 Ultrawideband phased array. (a) Unit cell geometry of the radiator and substrate.
(b) Insertion loss and VSWR for the broadside scan of the ultrawideband phased array based on
both time- and frequency-domain finite element solutions. [See insert for color representation
of (a).]
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where the periodic time-domain finite element solution is compared against the more
traditional frequency-domain finite element solution (HFSS). The insertion loss is
defined as the ratio of the power radiated to the power impressed into the two coaxial
ports. Insertion loss contains both the absorptive and mismatch losses in the antenna.
Note that this particular array design provides a 1-dB insertion loss bandwidth of
approximately 20 : 1 based on this criterion. The results for the 30◦ H-plane scan
are given in Figure 9.17. In addition to the insertion loss and VSWR, the return
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Figure 9.17 Performance of an ultrawideband phased array for the 30◦ H-plane scan based
on both time- and frequency-domain finite element solutions. (a) Insertion loss and VSWR.
(b) Return loss.
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loss is also given, which shows the reflection observed at the feed port due to the
impedance mismatch. The results for the E-plane scan can be found in Ref. 19. In all
the cases, the periodic time-domain finite element solution agrees very well with the
frequency-domain finite element calculation.

The last example demonstrates application of the periodic time-domain finite
element method to the analysis of frequency-selective surfaces, which are often
used in the design of antenna and array systems. The three-dimensional frequency-
selective surface considered here consists of perfectly conducting rectangular patches
periodically embedded in a dielectric slab with a relative permittivity of 2. The top

Figure 9.18 Power reflection coefficient due to a plane wave obliquely incident (θ inc, φinc =
30◦, 0◦) on a frequency-selective surface. The electric field is parallel to the longest side of
the PEC patches. (a) Results obtained using the first-order absorbing boundary condition.
(b) Results obtained using the accurate periodic radiation condition. (After Petersson and
Jin [9,10], Copyright C© IEEE 2006.)
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and side views of the unit cell are shown in Figure 9.18. The plane wave is obliquely
incident with an angle of incidence (θ inc, φinc) = (30◦, 0◦), and the electric field is
parallel to the longest side of the conducting patches. The problem is simulated
by the time-domain finite element method using the first-order Floquet absorbing
boundary condition (9.86) and then using the accurate periodic radiation condition
given in (9.93). The results are shown as the solid curves in Figure 9.18(a) and
(b), respectively, and are compared with the solutions obtained using the frequency-
domain finite element method using the periodic boundary integral equation (9.56).
It is evident from Figure 9.18 that the first-order absorbing boundary condition (9.86)
is accurate below the cutoff frequency of the first higher-order Floquet mode, and the
periodic radiation condition (9.93) remains accurate even above the cutoff frequency
of the first higher-order Floquet mode.

9.3 APPROXIMATION TO FINITE ARRAYS

The analysis of the unit cell of an infinitely periodic phased array can be used to
evaluate approximately the radiation patterns or the scattering patterns of a corre-
sponding finite array. Once the field over a unit cell is obtained, we can find the field
over every array element in the finite array by adding an appropriate phase shift and
then computing the far-field patterns. This is equivalent to a simpler alternative in
which one calculates the array factor based on the configuration of the finite array
and then simply multiplies it by the far-field pattern of the unit cell. For a rectangular
array having Nx elements in the x-direction and Ny elements in the y-direction, the
array factor is given by [23]

AF(θ, φ) =
∣∣∣∣∣ sin[(Nx Tx

/
2)�x ]

sin[(Tx
/

2)�x ]

∣∣∣∣∣ ·
∣∣∣∣∣ sin[(Ny Ty

/
2)�y]

sin[(Ty
/

2)�y]

∣∣∣∣∣ (9.146)

where �x = k0 sin θ cos φ − ks
x and �y = k0 sin θ sin φ − ks

y . For a nonrectangular
array, the array factor can be evaluated numerically using the expression

AF(θ, φ) =
NP∑
i=1

e j(�x xi +�y yi ) (9.147)

where NP denotes the total number of the array elements and (xi , yi ) denotes the
center of the ith element.

We present three examples to demonstrate the performance of this simple ap-
proximation for finite arrays. The first example concerns a finite periodic 10 × 10
microstrip phased array in a ground plane with periodicity: Tx = 5 cm and
Ty = 5 cm (Figure 9.19). Each 3-cm × 3-cm microstrip patch antenna resides in
a square cavity with dimensions of 4.5 cm × 4.5 cm × 0.2 cm, and the substrate has a
relative permittivity of 2.8. The scanning angle is φs = 0◦ and θs = 50◦. The radiation
pattern in the xz-plane at 3 GHz is calculated using a rigorous analysis of the finite
array and an approximate analysis based on the truncation of a corresponding infinite
array. The results, given in Figure 9.20, show that both solutions agree very well for the
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Figure 9.19 Finite periodic 10 × 10 microstrip phased array in a ground plane with period-
icity: Tx = 5 cm and Ty = 5 cm. Each microstrip patch antenna of size 3 cm × 3 cm resides in
a square cavity with the dimensions 4.5 cm × 4.5 cm × 0.2 cm, and the substrate has a relative
permittivity of 2.8.
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Figure 9.20 Radiation patterns of a 10 × 10 microstrip patch array in the xz-plane at 3 GHz.
The scanning angle is set at φs = 0◦ and θs = 50◦. Solid line: co-polarization. Dashed line:
cross-polarization. All lines: approximate solution based on the truncation of an infinite array.
Circles: accurate solution for the finite array.
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Figure 9.21 Finite periodic 20 × 20 microstrip phased array in a ground plane with peri-
odicity: Tx = 5 cm and Ty = 5 cm. The microstrip patch antennas, of size 3 cm × 3 cm, are
printed on one substrate of thickness 0.2 cm and relative permittivity 2.8. The entire array is
housed in a square cavity with dimensions 100 cm × 100 cm × 0.2 cm.

co-polarization and differ by 3 dB for the cross-polarization in the main lobe. Similar
agreement is obtained for the radiation pattern in the yz-plane.

The second example is a finite periodic 20 × 20 microstrip phased array in a ground
plane with periodicity Tx = 5 cm and Ty = 5 cm (Figure 9.21). The microstrip patch
antennas having a size of 3 cm × 3 cm are printed on one substrate having a thickness
of 0.2 cm and a relative permittivity of 2.8. The entire array is housed in a square cav-
ity with dimensions of 100 cm × 100 cm × 0.2 cm. The scanning angle is again set at
φs = 0◦ and θs = 50◦. The radiation pattern in the xz-plane at 3 GHz is calculated
using a rigorous analysis of the finite array, given in Figure 9.22(a), and an approx-
imate analysis based on the truncation of a corresponding infinite array, displayed in
Figure 9.22(b). Again both solutions agree very well for the co-polarization.

The third example considers the plane-wave scattering by a finite periodic 21 × 21
array of cavities in a ground plane with periodicity Tx = 1 cm and Ty = 0.5 cm
(Figure 9.23). Each cavity has a dimension of 0.9 cm × 0.4 cm × 0.1 cm and is
filled with air. A uniform plane wave is incident at φinc = 0◦ and θ inc = 45◦. The VV-
polarized bistatic radar cross section (RCS) in the xz-plane at 30 GHz is calculated
using a rigorous analysis of the finite array and an approximate analysis based on
the truncation of a corresponding infinite array. The results are given in Figure 9.24,
which shows that the two solutions agree within 4 dB.

In all three examples, the difference between the accurate and approximate solu-
tions is caused mainly by the edge effects because the fields on the elements close
to the edges and corners of the array can be significantly different from the field
on an element at the center of the array. Such an edge/corner effect can only be
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Figure 9.22 Radiation patterns of a 20 × 20 microstrip patch array in the xz-plane at 3 GHz.
The scanning angle is set at φs = 0◦ and θs = 50◦. Solid line: co-polarization. Dashed line:
cross-polarization. (a) Accurate solution for the finite array. (b) Approximate solution based
on the truncation of an infinite array.
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Figure 9.23 Finite periodic 21 × 21 cavity array in a ground plane with periodicity: Tx =
1 cm and Ty = 0.5 cm. Each cavity has dimensions 0.9 cm × 0.4 cm × 0.1 cm and is filled
with air.

captured accurately by analyzing the finite array directly. Nevertheless, the simple,
approximate solution described in this section is highly useful in practical array ap-
plications because of its fast solution time and reasonable accuracy. An intermediate
step to evaluate the edge effects is to analyze an array that is finite in one direction
and infinite in the other direction [24,25]. In this case, the computational domain is

Figure 9.24 VV-polarized bistatic RCS in the xz-plane at 30 GHz for a uniform plane wave
incident at φinc = 0◦ and θ inc = 45◦. Solid line: approximate solution based on the truncation
of an infinite array. Dashed line: accurate solution for the finite array.
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reduced to one row of elements in the finite direction, and the periodic boundary and
radiation conditions can be formulated to take into account the periodicity in the infi-
nite direction. However, with the development of highly efficient numerical solutions
for finite arrays, which are described in Chapter 10, the analysis of finite-by-infinite
arrays becomes less important because it is still incapable of capturing the corner
effect.

As the final example, we consider a finite frequency-selective surface (FSS) con-
sisting of a 50 × 50 array of cross-shaped conducting patches printed on an infinitely
large dielectric sheet of thickness 0.1 cm and a relative permittivity of 4.0. The finite
array is shown in Figure 9.25(a), and the dimensions of the unit cell are given in
Figure 9.25(b). The bistatic RCS in the xz-plane is computed using the approximate
approach for the finite frequency-selective surface at 9 and 18 GHz with a plane-wave

(b)

(a)

50
elements

50 elements

W

Ty

Tx

L

Figure 9.25 Finite frequency-selective surface consisting of a 50 × 50 array of cross-shaped
conducting patches printed on an infinitely large dielectric sheet of thickness 0.1 cm and relative
permittivity 4.0. (a) Finite array. (b) The unit cell (Tx = Ty = 2 cm, L = 1.5 cm, W = 0.5 cm).
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Figure 9.26 Bistatic RCS in the xz-plane for a finite FSS on an infinitely large dielectric
slab at 9 GHz with a plane-wave incidence at φinc = 0◦ and θ inc = 20◦. (a) HH polarization.
(b) VV polarization.

incidence at φinc = 0◦ and θ inc = 20◦. The results are displayed in Figures 9.26 and
9.27, respectively. It can be seen that at 9 GHz, there are two main peaks in the bistatic
RCS, corresponding to the specular reflection and forward transmission. However,
when the frequency is increased to 18 GHz, there are two additional peaks, which
correspond to the first higher-order Floquet mode.
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Figure 9.27 Bistatic RCS in the xz-plane for a finite FSS on an infinitely large dielectric
slab at 18 GHz with a plane-wave incidence at φinc = 0◦ and θ inc = 20◦. (a) HH polarization.
(b) VV polarization.

9.4 SUMMARY

In this chapter we discussed the finite element analysis of three-dimensional doubly
periodic infinite phased arrays. The periodicity of the problem reduces the computa-
tional domain to that of a unit cell. For the analysis in both the frequency and time
domains, the main issues are to impose periodic boundary conditions on the side
surfaces of the unit cell and to truncate the computational domain in the nonperiodic
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direction. For the latter, the simplest and most efficient approach is to employ the
first-order Floquet absorbing boundary condition that can perfectly absorb the funda-
mental Floquet mode for any propagation direction, and the most accurate approach
is to employ the exact periodic radiation condition that includes all Floquet modes.
Although perfectly matched layers can also be used for mesh truncation, the perfor-
mance is not as robust as the other two approaches since perfectly matched layers
cannot be designed to absorb the fundamental Floquet mode in an arbitrary direction.
Consequently, increasing the separation distance to a traditional perfectly matched
layer may not add further improvement. To obtain possible improved performance,
one has to employ more complicated perfectly matched layers, such as the complex
frequency shifted and the second-order models, to absorb evanescent Floquet modes
which are present when the frequency is close to or surpasses the cutoff frequency of
the first Floquet mode.

Whereas the implementation of the finite element method in the frequency domain
is rather straightforward once the periodic boundary conditions and mesh truncation
are formulated, the implementation in the time domain is much more challenging.
Although enforcement of the periodic boundary conditions can be simplified with
introduction of the transformed field variable, implementation of the periodic radia-
tion condition that includes higher-order Floquet modes for mesh truncation requires
the time-consuming calculation of convolutions for each of the higher-order Floquet
modes. Fortunately, numerical experiments showed that only the propagating Flo-
quet modes and a few evanescent Floquet modes are needed to yield very accurate
solutions. Moreover, for many practical applications, the first-order Floquet absorb-
ing boundary condition that perfectly absorbs the fundamental Floquet mode in any
propagation direction is sufficient to yield engineering accuracy without requiring
the calculation of convolutions.

We have given a few examples to demonstrate use of the finite element method
for the analysis of a variety of phased-array antennas. It is worthwhile to point out
that phased-array antennas constitute only a small class of periodic structures that
can be analyzed using the finite element method described here. Periodic structures
have widespread applications in electrical and optical engineering. Other applications
include frequency-selective surfaces, metamaterials (left-handed or double-negative
materials), electromagnetic and photonic bandgap materials, photonic crystals, and
propagation through walls containing metal reinforcing structures as well as periodic
air holes in bricks. All these structures can be analyzed effectively with the method
presented here. Although the method is formulated to deal with doubly periodic
structures, it can be extended easily to handle either singly or triply periodic structures.
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10 Finite Phased-Array Modeling

The modeling and analysis of a large finite phased-array antenna consisting of hun-
dreds or even thousands of array elements is technically very challenging because of
its large electrical size and often fine geometrical feed details. Traditionally, the design
of a finite phased-array aperture is carried out by first approximating the finite array
with a corresponding infinite array, where the analysis can be performed on a unit
cell [1–3], and then approximately modeling the truncation effect on the radiated fields
using the array theory, as demonstrated in Chapter 9. However, this design approach
neglects the complex edge truncation effects seen at the element level of the array.
Even though the radiation patterns for a finite array are often adequately predicted by
the simple array theory based on a unit cell analysis, the impact of the edge truncation
effects is particularly important with regard to understanding the variation in the in-
put impedance seen by the outer elements of the array as a function of their distance
from the edge of the array. Early in the phased-array design process, the beam-
former and electronics required to perform full finite array measurements are rarely
available. In addition, the active impedance of an element in an array is extremely dif-
ficult to measure and therefore such measurement is rarely performed. Consequently,
accurate predictive methods not only for the radiation patterns for finite phased arrays
but also for the active element impedances are of great practical importance in the
design of modern phased-array antennas.

For arrays with one dimension much larger than the other, the truncation ef-
fect can be partially modeled using a finite-by-infinite array model [4]. For general
arrays, an accurate numerical analysis of a finite array can be obtained by apply-
ing a conventional numerical method, such as the finite element method, directly to
model the entire array. However, this application often results in a linear system with
many millions or even billions of unknowns, whose solution requires a vast amount
of memory and many floating-point operations. To fully model large finite arrays
more efficiently, various fast algorithms have been developed, including the array
decomposition method [5], which uses the fast Fourier transform (FFT) to evaluate
the product of a block-Toeplitz matrix with a vector in an iterative solution for a
finite periodic array; the characteristic basis function method [6], which forms larger
basis functions using a collection of traditional basis functions to reduce the size of
the moment-method system matrix; and the domain-decomposition methods [7–10],
which divide the computational domain into subdomains and then recombine the
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reduced systems for the subdomains to obtain a global solution. In this chapter
we focus on the domain-decomposition methods for the finite element analysis and
modeling of finite arrays because of their high efficiency and generality. Both the
frequency- and time-domain formulations are presented along with many numerical
examples.

10.1 FREQUENCY-DOMAIN MODELING

Among the various numerical schemes proposed for large-scale finite element sim-
ulations, the domain-decomposition method is one of the most efficient and ver-
satile. Here we describe three such domain-decomposition algorithms which are
especially well suited for simulating large finite-array antennas. The first method is
the dual–primal finite element tearing and interconnecting method designed for elec-
tromagnetic analysis (referred to as FETI–DPEM1) [8]. This method is an extension
of the dual–primal finite element tearing and interconnecting method for solving the
Helmholtz equation in computational acoustics [11–14]. The second method is an
improved formulation over the first method and is referred to as FETI–DPEM2. Un-
like the first method, this improved formulation is numerically scalable with respect
to the frequency of electromagnetic fields, which is critical for high-frequency appli-
cations. The third method is the nonconforming domain-decomposition method,
which relaxes the requirement of periodic meshes and thereby simplifies mesh
generation.

10.1.1 FETI–DPEM1 Formulation

The general principle of the FETI–DPEM1 method [8] is first to divide the entire
computational domain into nonoverlapping subdomains, where an incomplete solu-
tion of the field is first evaluated using a direct solver for the finite element equations
(in contrast to an iterative solver, a direct solver provides a complete factorization of
the governing finite element system matrix in the subdomains). Next, the tangential
continuity of electric and magnetic fields is enforced at the subdomain interfaces by
using the Lagrange multipliers or dual variables. This yields a reduced-order interface
problem, which can be solved using an iterative algorithm. The solution to the inter-
face problem can then serve as the boundary condition for individual subdomains to
evaluate the field inside the subdomains.

For an array type of geometry, the natural domain decomposition is to divide or
tear the entire domain such that each array element becomes a subdomain. For an
array that consists of M × N array elements, such a decomposition yields M × N
subdomains, as sketched in Figure 10.1. Note that the method to be described is also
applicable to skew arrays and hexagonal arrays. The rectangular array is used here
simply for the purpose of illustration. To formulate the field in each subdomain, we
need to prescribe an appropriate boundary condition at the surface of the subdomain.
In addition to the standard Dirichlet, Neumann, and mixed boundary conditions
for electrically conducting, magnetically conducting, and impedance surfaces, we
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Figure 10.1 Decomposition of a computational domain into subdomains, with �s denoting
the surface of subdomain s that interfaces with neighboring subdomains and �c denoting the
corner edges shared by more than two subdomains.

assume that the field at the surfaces coincident with the exterior surface of the entire
computational domain satisfies the first-order absorbing boundary condition

n̂ × [↔
μr

−1 · (∇ × E)
]+ jk0n̂ × [↔

ς · (n̂ × E)] ≈ 0 r ∈ So (10.1)

where ↔
ς denotes the normalized admittance tensor chosen to minimize the reflection

of the truncation boundary (for an isotropic medium, ↔
ς becomes a scalar with a value

of
√

εr/μr ). The first-order absorbing boundary condition is used here simply for the
sake of simplicity since other more accurate truncation techniques can be employed
as well. At the surfaces that border the adjacent subdomains, we assume that the field
satisfies the Neumann boundary condition

n̂ × (↔
μr

−1 · ∇ × E
) = − jk0 Z0n̂ × H (10.2)

where the tangential magnetic field is initially unknown. By following the finite
element formulation described in Section 2.1, we obtain the finite element matrix
equation for the subdomain as

[K s]{Es} = {bs} − {λs} (10.3)

where the superscript s denotes the subdomain number and the matrix and vectors
are given by

[K s] =
∫∫∫

Vs

[
∇ × {Ns} · ↔

μr
−1 · ∇ × {Ns}T − k2

0{Ns} · ↔
εr · {Ns}T

]
dV

+ jk0

∫∫
Ss∩So

n̂s × {Ns} · ↔
ς · n̂s × {Ns}T dS (10.4)
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{bs} = −
∫∫∫

Vs

{Ns} ·
[

jk0 Z0Jimp + ∇ × (↔
μr

−1 · Mimp)
]

dV (10.5)

{λs} = − jk0 Z0

∫∫
Ss∩�s

{Ns} · (n̂s × H) dS. (10.6)

In the equations above, Vs denotes the volume of the subdomain, Ss ∩ So denotes
the portion of the surface of the subdomain coincident with the exterior surface,
Ss ∩ �s denotes the remaining portion that interfaces with adjacent subdomains, and
{Ns} is a column vector that stores all the vector basis functions associated with the
subdomain.

Next, we split the unknowns in each subdomain into two parts. The first part
consists of all the unknowns associated with the edges shared by more than two
subdomains, which are called corner edges, and the vector storing these unknowns
is denoted as {Es

c}. The second part consists of all other unknowns in the subdomain,
which include those inside the subdomain and on the surface of the subdomain, and
the vector storing these unknowns is denoted as {Es

r }. With this partition, (10.3) can
be written as [

K s
rr K s

rc

K s
cr K s

cc

]{
Es

r

Es
c

}
=
{

bs
r

bs
c

}
−
{

λs
r

λs
c

}
(10.7)

which can be split further into two equations as

{
Es

r

} = [
K s

rr

]−1({
bs

r

}− {
λs

r

}− [
K s

rc

]{
Es

c

})
(10.8)([

K s
cc

]− [
K s

cr

][
K s

rr

]−1[
K s

rc

]
)
{

Es
c

} = {
bs

c

}− {
λs

c

}− [
K s

cr

][
K s

rr

]−1({
bs

r

}− {
λs

r

})
.

(10.9)

This formulation is carried out for each and every subdomain. It can be seen that the
subdomain finite element systems are fully decoupled and the interaction between
the subdomains is accounted for through {λs

r } and {λs
c

}
.

The next step is to couple or interconnect the fields for all the subdomains. For this,
we introduce two Boolean matrices to facilitate the mathematical formulation. The
first one is a signed Boolean matrix, denoted as [Bs

r ], which extracts the unknowns
on the interface from {Es

r } and places them in the global interface vector. Therefore,
[Bs

r ]{Es
r } represents the signed global vector that stores all the primal unknowns on

the interface of subdomain s. Conversely, if we define the global interface vector
{λ} as

{λ} = − jk0 Z0

∫∫
�b

{Nb} · (n̂ × H) dS (10.10)

where �b denotes all the subdomain interfaces in the computational domain and {Nb}
denotes all the vector basis functions associated with the unknowns on the interfaces
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but excluding those on the corner edges, {λs
r } can be extracted as {λs

r } = [Bs
r ]T{λ}.

The second Boolean matrix, denoted as [Bs
c ], extracts {Es

c} from the global vector
{Ec} that stores all the unknowns on the corner edges; that is, {Es

c} = [Bs
c ]{Ec}.

With the introduction of these two Boolean matrices, (10.8) and (10.9) can now be
written as

[
Bs

r

]{
Es

r

} = [
Bs

r

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λ} − [
K s

rc

][
Bs

c

]{Ec}
)

(10.11)[
Bs

c

]T([
K s

cc

]− [
K s

cr

][
K s

rr

]−1[
K s

rc

])[
Bs

c

]{Ec}
= [

Bs
c

]T({
bs

c

}− {
λs

c

}− [
K s

cr

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λ})). (10.12)

Note that the left-hand side of (10.11) consists of the unknown tangential electric
fields on the subdomain interfaces.

To couple the fields over all the subdomains, we note that at the interface between
two subdomains, say subdomains s and q, the electric field satisfies the tangential
continuity condition

n̂s × Es = −n̂q × Eq or n̂s × Es + n̂q × Eq = 0. (10.13)

This condition can be enforced by summing (10.11) over all the subdomains and
setting it to zero, which yields

Ns∑
s=1

[
Bs

r

]{
Es

r

} =
Ns∑

s=1

[
Bs

r

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λ} − [
K s

rc

][
Bs

c

]{Ec}
) = 0

(10.14)

where Ns denotes the total number of subdomains. This enforcement can only be
done under the assumption that the meshes of two adjacent subdomains have to match
at their interface. Equation (10.14) provides an incomplete system of equations for
the unknown {λ} and {Ec}. The remaining equations can be obtained by summing
(10.12) over all the subdomains, resulting in

Ns∑
s=1

[
Bs

c

]T([
K s

cc

]− [
K s

cr

][
K s

rr

]−1[
K s

rc

])[
Bs

c

]{Ec}

=
Ns∑

s=1

[
Bs

c

]T({
bs

c

}− {
λs

c

}− [
K s

cr

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λ})). (10.15)

Because the tangential component of the magnetic field is continuous across the
interface between the subdomains (assuming that there is no surface electric currents



P1: JYS

c10 JWBK322-Jin September 30, 2008 12:54 Printer: Yet to come

FREQUENCY-DOMAIN MODELING 341

on the interface), based on the definition of {λs
c} in (10.6), we have

Ns∑
s=1

[
Bs

c

]T{
λs

c

} = 0. (10.16)

Consequently, (10.15) can be written as

Ns∑
s=1

[
Bs

c

]T([
K s

cc

]− [
K s

cr

][
K s

rr

]−1[
K s

rc

])[
Bs

c

]{Ec}

=
Ns∑

s=1

[
Bs

c

]T({
bs

c

}− [
K s

cr

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λ})) (10.17)

which can be coupled with (10.14) to form a complete system of equations for the
solution of {λ} and {Ec}. In (10.14) and (10.17), {λ} is called the dual variable and
{Ec} is called the primal variable; hence, the formulation above is named as the
dual–primal method.

Although (10.14) and (10.17) can be solved simultaneously for {λ} and {Ec}, a
more efficient approach is to eliminate {Ec} in these two equations to find a system
of equations for only {λ}. To show this clearly, we first rewrite (10.14) and (10.17),
respectively, in compact form as

[Frr ]{λ} = {dr } − [Frc]{Ec} (10.18)

[K̃cc]{Ec} = {b̃c} + [Frc]T{λ} (10.19)

where the matrices and vectors are defined as

[K̃cc] =
Ns∑

s=1

[
K̃ s

cc

] =
Ns∑

s=1

([
Bs

c

]T[
K s

cc

][
Bs

c

]− ([
K s

rc

][
Bs

c

])T[
K s

rr

]−1([
K s

rc

][
Bs

c

]))
(10.20)

[Frr ] =
Ns∑

s=1

[
Fs

rr

] =
Ns∑

s=1

[
Bs

r

][
K s

rr

]−1[
Bs

r

]T
(10.21)

[Frc] =
Ns∑

s=1

[
Fs

rc

] =
Ns∑

s=1

[
Bs

r

][
K s

rr

]−1[
K s

rc

][
Bs

c

]
(10.22)

{dr } =
Ns∑

s=1

{
ds

r

} =
Ns∑

s=1

[
Bs

r

][
K s

rr

]−1{
bs

r

}
(10.23)

{b̃c} =
Ns∑

s=1

{
b̃s

c

} =
Ns∑

s=1

[
Bs

c

]T({
bs

c

}− [
K s

rc

]T[
K s

rr

]−1{
bs

r

})
. (10.24)



P1: JYS

c10 JWBK322-Jin September 30, 2008 12:54 Printer: Yet to come

342 FINITE PHASED-ARRAY MODELING

In the above we used the symmetric property of the subdomain finite element matrix
given by [K s

cr ] = [K s
rc]T. Here, we assume that ↔

εr , ↔
μr , and ↔

ς are all symmetric;
however, the formulation can be modified easily to deal with nonsymmetric cases.
Although the expressions above seem complicated, every matrix and vector quantity
is well defined and the summations can be carried out efficiently provided that the
inverse of [K s

rr ] is available. In particular, [K̃cc] is a highly sparse and symmetric
matrix that relates all the unknowns on the corner edges in the entire computational
domain; hence, (10.19) is referred to as the coarse or corner-related problem. Fur-
thermore, [Frr ] is also a symmetric matrix. Now, we can eliminate {Ec} in (10.18)
and (10.19) to find

([Frr ] + [Frc][K̃cc]−1[Frc]T){λ} = {dr } − [Frc][K̃cc]−1{b̃c} (10.25)

which can be solved for {λ}.
Equation (10.25), called the global interface system of equations, is much smaller

than the size of the original finite element system since {λ} is defined only on
the subdomain interfaces. This interface equation can be solved iteratively using a
Krylov subspace method such as the generalized minimum residual (GMRES) and
the stabilized biconjugate gradient method (BiCGSTAB). In an iterative solution
process, the system matrix is required only in matrix–vector multiplication. To carry
out this multiplication efficiently, we can prefactorize all [K s

rr ] (s = 1,2, . . . , Ns)
and [K̃cc] so that the matrix–vector products involving [K s

rr ]−1 and [K̃cc]−1 can be
evaluated efficiently by a forward and a backward substitution. To accelerate the
convergence of the iterative solution, we can construct a preconditioner, which is a
good approximation of the inverse of [Frr ]. A simple approximation of the inverse
of [Frr ] is given by

[
F L

rr

]−1 =
Ns∑

s=1

[
Bs

r

][
K s

rr

][
Bs

r

]T
(10.26)

which is called the lumped preconditioner [15]. To simplify (10.26), we can first split
{Es

r } into two parts, one for all the interior unknowns, {Es
i }, and the other for the

unknowns on the interface, {Es
b}. The corresponding [K s

rr ] can then be partitioned as

[
K s

rr

] =
[

K s
ii K s

ib

K s
bi K s

bb

]
. (10.27)

Since [Bs
r ] extracts only those on the interface, (10.26) can be written as

[
F L

rr

]−1 =
Ns∑

s=1

[
Bs

r

] [0 0

0 K s
bb

] [
Bs

r

]T
(10.28)
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which shows clearly that this lumped preconditioner neglects all the effects of the
subdomain interior matrices. Although this preconditioner is computationally inex-
pensive to construct and works well for definite problems such as those arising from
the analysis of static fields, it is not very effective and optimal for indefinite problems
resulting from the analysis of electrodynamic problems. A much more effective pre-
conditioner can be obtained by replacing [K s

bb] in (10.28) by the Schur complement
[Ss

bb] = [K s
bb] − [K s

bi ][K s
ii ]

−1[K s
ib], so that it becomes

[
F D

rr

]−1 =
Ns∑

s=1

[
Bs

r

] [0 0

0 Ss
bb

] [
Bs

r

]T
. (10.29)

This preconditioner is called the Dirichlet preconditioner [15], and the matrix [K s
ii ]

is the same as the subdomain finite element matrix when the Dirichlet boundary
condition is applied to the subdomain interface. Although this preconditioner is
more expensive to construct, it is much more effective and mathematically optimal,
especially for the high-frequency applications we are dealing with here.

Once the dual unknown {λ} is obtained by solving (10.25), the primal unknown
{Ec} can then be computed by solving (10.19), which yields

{Ec} = [K̃cc]−1
({b̃c} + [Frc]T{λ}). (10.30)

With the computed values of {λ} and {Ec}, the electric field in each subdomain can
be calculated using (10.8) or (10.11), which can be written as

{
Es

r

} = [
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λ} − [
K s

rc

][
Bs

c

]{Ec}
)
. (10.31)

Once the field is computed, all other engineering parameters can be extracted or
evaluated based on their definitions.

From the formulation described above, it is obvious that the FETI–DPEM1 method
is applicable to general electromagnetic problems with an arbitrary computational
domain. However, the method is particularly suitable for the analysis of finite arrays
because in a typical finite array, many array elements are identical. As a result, we
only have to calculate and factorize a few different subdomain finite element matrices
[K s

rr ]. For example, if all the array elements in a rectangular array are identical, there
are nine different subdomain finite element matrices in the entire computational
domain, which are illustrated in Figure 10.2. (Due to the application of exterior
boundary conditions such as absorbing boundary conditions and perfectly matched
layers, the finite element matrices for the subdomains at the edges and corners
of the array are different from those in the interior.) All other subdomain finite
element matrices can then be identified with one of these nine basic subdomains.
Therefore, once these nine subdomain finite element matrices [K s

rr ] are calculated
and factorized, they can be used for all other subdomains in the iterative solution
of the global interface equation and in the final calculation of the fields in each
subdomain. This full exploitation of the geometrical repetitions in a finite array can



P1: JYS

c10 JWBK322-Jin September 30, 2008 12:54 Printer: Yet to come

344 FINITE PHASED-ARRAY MODELING

VI II VII

IV I V

VIII III IX

Figure 10.2 Nine subdomains having different subdomain finite element matrices because
of the exterior boundary condition. The subdomain finite element matrix for any of other
subdomains can be identified with one of the nine labeled here.

result in tremendous savings in computation time and memory. Note that if we extend
the dual variable {λ} over the exterior surface of the computational domain, all the
subdomains would have the same finite element matrix for an array consisting of
identical array elements. Consequently, only one [K s

rr ], instead of nine, would have
to be calculated and factorized. However, this would approximately double the size
of the global interface system of equations, which would actually increase the total
computation time. Also note that for an array that has identical interior array elements
but different edge and corner elements, there are still only nine different subdomain
finite element matrices to be calculated and factorized. The ability to treat different
edge and corner elements is important for numerical simulations since it allows finite
elements to be used to extend the location of the mesh truncation surface, thereby
reducing the grid truncation error, and it is also important for investigating different
practical designs, which may contain various edge and corner treatments that control
undesirable edge effects.

When designing a numerical method for large-scale applications such as the simu-
lation of large finite arrays considered here, it is very important to design the method
such that it is numerically scalable. A numerically scalable algorithm can solve an
n-times-larger problem in a constant time by using n times the number of parallel pro-
cessors, or n times the computation time by using a fixed number of processors. From
its formulation, it can be observed that the FETI–DPEM1 would be numerically scal-
able if the number of iterations for solving the global interface problem is independent
of problem size. Numerical tests have shown that the number of iterations for solving
(10.25) is indeed independent of the number of subdomains, the spatial size of the
finite elements, and the wavenumber when the size of the subdomains is smaller than
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one-half wavelength. Such excellent scalability is due mainly to the construction
of the corner-related coarse problem given by (10.19). In fact, it is this construc-
tion that distinguishes the dual–primal method from all other domain-decomposition
methods. The reader can verify easily that one can still formulate a relatively simple
domain-decomposition algorithm without separating the corner-related unknowns by
following the basic procedure outlined in this section. The resulting global interface
system propagates the residual error in its iterative solution from a subdomain to its
neighboring subdomains. However, with the construction of the corner-related coarse
problem, all the subdomains are coupled in this small system, and the residual error
is propagated globally at each iteration. As a result, the low-frequency component of
the residual error is effectively damped and the convergence of the iterative solution
is improved significantly.

However, when the size of the subdomain exceeds one-half wavelength, the num-
ber of iterations for solving the global interface equation increases noticeably and the
FETI–DPEM1 algorithm becomes numerically unscalable. This problem is caused
by use of the Neumann boundary condition (10.2) at the subdomain interface. With
this boundary condition, the subdomain finite element matrix in (10.4) is the same as
that for a cavity formed by covering the interface with a perfect magnetic conductor,
which can support resonant modes when the size exceeds one-half wavelength. Even
though for phased-array antenna problems, where we have employed an absorbing
boundary condition at the top surface (and perhaps also at the bottom surface if the
bottom is open), there remain transverse resonant modes which are not affected by
the absorbing boundary condition. For most practical array applications, this is not a
serious problem because the array element size is usually designed to be smaller than
one-half wavelength at the highest frequency of operation to prevent higher-order
Floquet modes (grating lobes) from propagating. Even in applications when the array
element size exceeds one-half wavelength, a possible solution is to subdivide an array
element into smaller subdomains to control the number of iterations at the cost of
increasing the size of the interface system and the time required to construct the finite
element meshes. Another possible solution is simply to let the computation continue
until it reaches convergence at the cost of a significantly longer computation time.

10.1.2 FETI–DPEM2 Formulation

The FETI–DPEM2 method [10] is designed to make the algorithm fully numeri-
cally scalable regardless of the electrical size of the subdomains or the frequency
of electromagnetic fields, and this is accomplished with the introduction of two La-
grange multipliers [16]. As discussed in the preceding section, the FETI–DPEM1
becomes numerically unscalable because of the use of the Neumann boundary con-
dition (10.2) at the subdomain interface. Therefore, instead of assuming (10.2) at the
subdomain interface, we assume that the field satisfies a mixed boundary condition,
or an impedance boundary condition, given by

n̂s × [↔
μr

−1 · (∇ × Es)
]+ jk0n̂s × [↔

ς s · (n̂s × Es)
] = �s (10.32)
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where the superscript s denotes the subdomain number, ↔
ς s denotes the normalized ad-

mittance tensor at the interface, and �s denotes the dual unknown vector to be solved
for. Equation (10.32) is also called the Robin transmission condition in mathematics.
With this, the finite element matrix equation for the subdomain becomes

[
K s

rr K s
rc

K s
cr K s

cc

]{
Es

r

Es
c

}
=
{

bs
r

bs
c

}
−
{

λs
r

λs
c

}
(10.33)

where

[
K s

rr

] =
∫∫∫

Vs

[
∇ × {

Ns
r

} · ↔
μr

−1 · ∇ × {
Ns

r

}T − k2
0

{
Ns

r

} · ↔
εr · {Ns

r

}T
]

dV

+ jk0

∫∫
Ss

n̂s × {
Ns

r

} · ↔
ς s · n̂s × {

Ns
r

}T
dS (10.34)

[
K s

rc

] =
∫∫∫

Vs

[
∇ × {

Ns
r

} · ↔
μr

−1 · ∇ × {
Ns

c

}T − k2
0

{
Ns

r

} · ↔
εr · {Ns

c

}T
]

dV

+ jk0

∫∫
Ss∩So

n̂s × {
Ns

r

} · ↔
ς s · n̂s × {

Ns
c

}T
dS (10.35)

[K s
cr ] =

∫∫∫
Vs

[
∇ × {

Ns
c

} · ↔
μr

−1 · ∇ × {
Ns

r

}T − k2
0

{
Ns

c

} · ↔
εr · {Ns

r

}T
]

dV

+ jk0

∫∫
Ss∩So

n̂s × {
Ns

c

} · ↔
ς s · n̂s × {

Ns
r

}T
dS (10.36)

[
K s

cc

] =
∫∫∫

Vs

[
∇ × {

Ns
c

} · ↔
μr

−1 · ∇ × {
Ns

c

}T − k2
0

{
Ns

c

} · ↔
εr · {Ns

c

}T
]

dV

+ jk0

∫∫
Ss∩So

n̂s × {
Ns

c

} · ↔
ς s · n̂s × {

Ns
c

}T
dS (10.37)

{
bs

r

} = −
∫∫∫

Vs

{Ns
r } ·

[
jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp)

]
dV (10.38)

{
bs

c

} = −
∫∫∫

Vs

{Ns
c} ·

[
jk0 Z0Jimp + ∇ × (↔

μr
−1 · Mimp)

]
dV (10.39)

{
λs

r

} =
∫∫

Ss∩�s

{Ns
r } · �s dS + jk0

∫∫
Ss∩�s

n̂s × {
Ns

r

} · ↔
ς s · n̂s × {

Ns
c

}T
dS{Es

c}

(10.40)

{
λs

c

} = − jk0 Z0

∫∫
Ss∩�s

{Ns
c} · (n̂s × H) dS. (10.41)
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Note that [K s
rr ] is different from that in the preceding subsection since its surface

integral is now over the entire surface of the subdomain because of the use of (10.32).
It is important to note that although some notations used in this subsection are the
same as those in the preceding subsection, the definitions may differ. Also note that
the second terms in (10.35)–(10.37) do not exist for the current domain decomposition
arrangement depicted in Figure 10.1 since n̂s × {Ns

c} vanishes on the exterior surface
So. They are included here to make the formulation applicable to more general cases.
From (10.33) we obtain the electric fields on the subdomain interfaces as

[
Bs

r

]{
Es

r

} = [
Bs

r

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λs} − [
K s

rc

][
Bs

c

]{Ec}
)

(10.42)

[
Bs

c

]T([
K s

cc

]− [
K s

cr

][
K s

rr

]−1[
K s

rc

])[
Bs

c

]{Ec}
= [

Bs
c

]T({
bs

c

}− {
λs

c

}− [
K s

cr

][
K s

rr

]−1({
bs

r

}− [
Bs

r

]T{λs})). (10.43)

These two equations are nearly the same as (10.11) and (10.12) except that {λ} is now
replaced by {λs} because the dual variable �s is related to each specific subdomain.
Note that [Bs

r ] in (10.42) and (10.43) is defined differently from that in Section 10.1.1.
Here, it denotes a Boolean matrix that simply extracts the unknowns on the interface
from {Es

r } without sign assignment.
To couple the fields over all the subdomains, we enforce the continuity condition

on the tangential components of the electric and magnetic fields across the subdomain
interfaces. However, since the postulated boundary condition has the form of (10.32),
the continuity condition has to be enforced in a weak sense. To illustrate this process
clearly, consider two adjacent subdomains s and q; the continuity condition across
their interface denoted by �

q
s is given by

n̂s × Es = −n̂q × Eq and n̂s × Hs = −n̂q × Hq . (10.44)

In formulating the field in subdomain s, we assumed the boundary condition given
by (10.32), which can be written for the interface between subdomains s and q as

n̂s × [↔
μr

−1 · (∇ × Es
q

)]+ jk0n̂s × [↔
ς s · (n̂s × Es

q

)] = �s
q (10.45)

where Es
q and �s

q denote the associated quantities Es and �s on �
q
s . The corresponding

boundary condition for formulating the field in subdomain q is given by

n̂q × [↔
μr

−1 · (∇ × Eq
s

)]+ jk0n̂q × [↔
ς

q · (n̂q × Eq
s

)] = �q
s . (10.46)

By adding (10.45) and (10.46) and applying (10.44), we obtain

�s
q + �q

s = jk0n̂s × [(↔
ς s + ↔

ς
q) · (n̂s × Es

q

)]
(10.47)

�s
q + �q

s = jk0n̂q × [(↔
ς s + ↔

ς
q) · (n̂q × Eq

s

)]
(10.48)
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which weakly enforces the continuity conditions in (10.44). By testing it with {Ns
r }

and integrating over �
q
s , (10.48) can be converted into a matrix equation as

{
λs

q

}+ {
λq

s

} = [
Ms

q

]{
Eq

s

}
s = 1, 2, . . . , Ns and q ∈ neighbor(s) (10.49)

where

{
λs

q

} =
∫∫

�
q
s

{
Ns

r

} · �s
q dS + jk0

∫∫
�

q
s

n̂s × {
Ns

r

} · ↔
ς s · n̂s × {

Ns
c

}T
dS
{

Es
c

}
(10.50)

{
λq

s

} =
∫∫

�
q
s

{
Ns

r

} · �q
s dS + jk0

∫∫
�

q
s

n̂q × {
Ns

r

} · ↔
ςq · n̂q × {

Nq
c

}T
dS
{

Eq
c

}
(10.51)[

Ms
q

] = jk0

∫∫
�

q
s

n̂s × {
Ns

r

} · (↔
ς s + ↔

ςq
) · n̂q × {

Nq
r

}T
dS. (10.52)

Although {λs
q} and {λq

s } have long and complicated expressions, we do not have to
be concerned with these specific forms, because we will find that they will be solved
directly and then employed to calculate the fields in the subdomains using the first
equation in (10.33).

Equation (10.49) can be employed to connect the discrete dual variables and the
fields in (10.42) and (10.43) across all the interfaces. To assemble the subdomains, we
introduce several projection matrices. Assume that {λ} = [{λ1

r }, {λ2
r }, . . . , {λNs

r }]T. A
projection Boolean matrix [Qs] is introduced to extract {λs

r } from {λ}; that is,

{
λs

r

} = [Qs]{λ}. (10.53)

Another projection Boolean matrix [T s
q ] is introduced to extract {Es

q} from {Es
b},

which stores the discrete fields on the interface of subdomain s. Hence,

{
Es

q

} = [
T s

q

]{
Es

b

}
,

{
λs

q

} = [
T s

q

]{
λs

r

}
. (10.54)

Consequently, we have

{λ} =
Ns∑

s=1

[Qs]T
{
λs

r

}
,

{
λs

r

} =
∑

q∈neighbor(s)

[
T s

q

]T{
λs

q

}
. (10.55)

With the aid of (10.53)–(10.55), (10.49) can be written as

{
λs

q

}+ [
T q

s

]{
λq

r

} = [
Ms

q

][
T q

s

][
Bq

r

]{
Eq

r

}
. (10.56)

By eliminating {Eq
r } using (10.42), this can be written further as

{
λs

q

}+ ([
T q

s

]+ [
Pq

s

][
Fq

rr

]){
λq

r

}+ [
Pq

s

][
Fq

rc

]{Ec} = [
Pq

s

]{
dq

r

}
(10.57)
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where [Pq
s ] = [Ms

q ][T q
s ], and [Fq

rr ], [Fq
rc], and {dq

r } are defined similarly to
(10.21)–(10.23).

Now we are ready to assemble the global system of equations. We first premultiply
(10.57) by [T s

q ]T, then sum over all the neighboring subdomains for q, and finally,
sum over all the subdomains for s. Doing so, we find the global interface-related
system to be

[F̃rr ]{λ} + [F̃rc]{Ec} = {d̃r } (10.58)

where

[F̃rr ] = [I ] +
Ns∑

s=1

[Qs]T
∑

q∈neighbor(s)

[
T s

q

]T([
T q

s

]+ [
Pq

s

][
Fq

rr

])
[Qq ] (10.59)

[F̃rc] =
Ns∑

s=1

[Qs]T
∑

q∈neighbor(s)

[
T s

q

]T[
Pq

s

][
Fq

rc

]
(10.60)

{d̃r } =
Ns∑

s=1

[Qs]T
∑

q∈neighbor(s)

[
T s

q

]T[
Pq

s

]{
dq

r

}
. (10.61)

In (10.59), [I ] denotes the identity matrix. The global corner-related system can be
obtained by assembling (10.43) over all the subdomains as

[K̃cc]{Ec} = {b̃c} + [F̃cr ]{λ} (10.62)

where the expressions of [K̃cc] and {b̃c} are given by (10.20) and (10.24), respectively,
and [F̃cr ] is given by

[F̃cr ] =
Ns∑

s=1

[
Fs

rc

]T
[Qs] (10.63)

with [Fs
rc] given by (10.22). Equations (10.58) and (10.62) form a complete system

of equations for the solution of the dual unknown {λ} and the primal unknown {Ec}.
We can also eliminate {Ec} to find a reduced system

([F̃rr ] + [F̃rc][K̃cc]−1[F̃cr ]){λ} = {d̃r } − [F̃rc][K̃cc]−1{b̃c} (10.64)

which can be solved for {λ} by using a Krylov subspace method such as GMRES or
BiCGSTAB. In general, BiCGSTAB is more efficient for this solution [10]. Once {λ}
is available, {Ec} can be computed by solving (10.62). When both {λ} and {Ec} are
computed, the field in each subdomain can be calculated using the first equation of
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(10.33), which can be written as

{
Es

r

} = [
K s

rr

]−1({
bs

r

}− [
Bs

r

]T
[Qs]{λ} − [

K s
rc

][
Bs

c

]{Ec}
)
. (10.65)

Compared to the FETI–DPEM1 formulation, the global interface system (10.64)
in the FETI–DPEM2 formulation is twice as large since two sets of dual variables
are defined on the subdomain interfaces. However, the amount of computation and
computer memory needed for an iterative solution is about the same because of the
identity matrix in (10.59), which requires no computation and storage. More interest-
ingly, because of the identity matrix in (10.59) and the global corner-related system
(10.62), the final global interface system (10.64) is very well conditioned and can be
solved efficiently without using a preconditioner. Numerical tests have shown [10]
that FETI–DPEM2 maintains the numerical scalability of FETI–DPEM1 with regard
to the number of iterations required for solving (10.64) being independent of the
number of subdomains and the spatial size of the finite elements. More important,
it is also numerically scalable with respect to the frequency of the electromag-
netic field, which was a critical property lacking in the FETI–DPEM1 formulation.
This is because [K s

rr ] in (10.34) corresponds to the finite element matrix for subdo-
main s with all six of its surfaces made resistive through the application of the mixed
boundary condition (10.45) and the radiation condition (10.1). As a result, [K s

rr ]
cannot support any resonant modes with real-valued frequencies. This is the major
difference between the two FETI–DPEM formulations. The introduction of two sets
of dual variables in the FETI–DPEM2 is simply the cost to achieve this important
distinction.

For the numerical implementation of the FETI–DPEM2 algorithm, we have to
choose the values for

↔
ς s and ↔

ςq to be used in (10.52). In theory, the best choice is
such that they minimize the reflection by the interface associated with the transmission
conditions (10.45) and (10.46). If the material at the interface is isotropic, ↔

ς s and ↔
ςq

become scalars and a good choice for their values is given by
√

εr/μr . If the material
property has a jump at the interface, ↔

ς s will use the value on the side of subdomain
s and ↔

ςq will use the value on the side of subdomain q. However, since (10.45)
and (10.46) are not true physical boundary conditions and are introduced simply to
weakly enforce the field continuity conditions, the choice of the values for ↔

ς s and
↔
ςq is not critical for the numerical solution. We can simply set them to unity for all
practical applications.

10.1.3 Nonconforming Domain Decomposition

In the two FETI–DPEM formulations described above, the finite element surface
meshes on the two sides of an interface are required to be the same or to conform to
each other. This requirement is caused by the use of a single set of the primal variable
{Ec} on the corner edges and by the elimination of the discrete electric fields on the
interfaces. In practical applications, generating conforming meshes at an interface
may not be an easy task for some mesh generators. In that case it is desirable to
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have a domain-decomposition algorithm that can handle different surface meshes, or
nonconforming surface meshes, at the subdomain interfaces. Such an algorithm is
often called a nonconforming domain-decomposition algorithm.

In fact, if we are willing to sacrifice the corner-related coarse system of equations
and introduce two sets of discrete electric fields on the subdomain interfaces, we can
extend the FETI–DPEM formulations to deal with nonconforming interface meshes.
Here, we describe a well-tested algorithm [7,9] which combines the alternating
Schwarz nonoverlapping domain-decomposition method [17,18] with the concept of
“cement” elements [19]. Like all other domain-decomposition methods, this algo-
rithm first decomposes a computational domain into smaller subdomains and then
calculates the fields in all the subdomains iteratively with some form of enforcement
of the field continuity through the subdomain interfaces. While direct enforcement
of the field continuity has been found to lead to convergence problems when solv-
ing the wave equations (similar to FETI–DPEM1), the weak enforcement through
Robin-type transmission conditions effectively ensures the convergence of the itera-
tive process (similar to FETI–DPEM2). At the interface between subdomains s and
q, the Robin-type transmission conditions are given by

n̂s × [↔
μr

−1 · (∇ × Es)
]+ jk0n̂s × (n̂s × Es)

= −n̂q × [↔
μr

−1 · (∇ × Eq )
]+ jk0n̂q × (n̂q × Eq ) (10.66)

n̂q × [↔
μr

−1 · (∇ × Eq )
]+ jk0n̂q × (n̂q × Eq )

= −n̂s × [↔
μr

−1 · (∇ × Es)
]+ jk0n̂s × (n̂s × Es). (10.67)

It can be seen easily that the sum of the two equations yields the tangential electric
field continuity condition

n̂s × (n̂s × Es) = n̂q × (n̂q × Eq ) (10.68)

and subtraction of the two equations yields the tangential magnetic field continuity
condition

n̂s × [↔
μr

−1 · (∇ × Es)
] = −n̂q × [↔

μr
−1 · (∇ × Eq )

]
. (10.69)

Hence, (10.66) and (10.67) can be considered to be equivalent to (10.68) and (10.69).
With the formulation of the transmission conditions at the subdomain inter-

faces, the iterative process for the alternating Schwarz nonoverlapping domain-
decomposition method is given by

∇ × (↔
μr

−1 · ∇ × Es
(i)

)− k2
0

↔
εr · Es

(i) = − jk0 Z0Jimp − ∇ × (↔
μr

−1 · Mimp
)

r ∈ Vs

(10.70)

n̂ × [↔
μr

−1 · (∇ × Es
(i)

)]+ jk0n̂ × [↔
ς · (n̂ × Es

(i)

)] ≈ 0 r ∈ Ss ∩ So (10.71)



P1: JYS

c10 JWBK322-Jin September 30, 2008 12:54 Printer: Yet to come

352 FINITE PHASED-ARRAY MODELING

n̂s × [↔
μr

−1 · (∇ × Es
(i)

)]+ jk0n̂s × (
n̂s × Es

(i)

)
= −n̂q × [↔

μr
−1 · (∇ × Eq

(i−1)

)]+ jk0n̂q × (
n̂q × Eq

(i−1)

)
r ∈ Ss ∩ �q

s

(10.72)

in conjunction with the appropriate boundary conditions inside the subdomain, and
here the subscript (i) denotes the iteration number. In other words, the iteration process
starts with an initial guess for the field and then solves the boundary-value problem
defined in (10.70)–(10.72) for each subdomain (s = 1, 2, . . . , Ns). The tangential
fields computed at the interfaces are then passed to the neighboring subdomains to
construct the right-hand side of the transmission condition, which is used for the
calculation in the next iteration. This iterative process continues until the solution
converges to certain accuracy.

Although the implementation of (10.72), which is nothing more than a mixed
boundary condition, is well established in the finite element method, construction of
its right-hand side is less straightforward. To facilitate the finite element implementa-
tion and, more important, to handle nonconforming surface meshes at the interfaces
illustrated in Figure 10.3, a cement element method has been proposed [7,9] that
introduces an additional quantity, called the cement variable, over the subdomain
interfaces. This quantity is defined as

js = n̂s × [↔
μr

−1 · (∇ × Es)
]

(10.73)

which is related to the equivalent surface electric current in electromagnetics. With
this cement variable, the boundary-value problem for subdomain s at the ith iteration
becomes

∇ × (↔
μr

−1 · ∇ × Es
(i)

)− k2
0

↔
εr · Es

(i) = − jk0 Z0Jimp − ∇ × (↔
μr

−1 · Mimp
)

r ∈ Vs

(10.74)

n̂ × [↔
μr

−1 · (∇ × Es
(i)

)]+ jk0n̂ × [↔
ς · (n̂ × Es

(i)

)] ≈ 0 r ∈ Ss ∩ So (10.75)

Subdomain s

Γs
q

Subdomain q

Figure 10.3 Subdomains with nonconforming meshes at the interface.
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n̂s × [↔
μr

−1 · (∇ × Es
(i)

)] = js
(i) r ∈ Ss ∩ �s (10.76)

js
(i) + jk0n̂s × (

n̂s × Es
(i)

) = −jq
(i−1) + jk0n̂q × (n̂q × Eq

(i−1)) r ∈ Ss ∩ �q
s .

(10.77)

The finite element discretization of this boundary-value problem defined by
(10.74)–(10.76) yields

[
K s

ii K s
ib 0

K s
bi K s

bb Bs
bb

]⎧⎨
⎩

Es
i

Es
b

j s

⎫⎬
⎭

(i)

=
{

bs
i

bs
b

}
(10.78)

where the combined [K s] matrix is given by (10.4), the combined {bs} is given by
(10.5), and

[
Bs

bb

] =
∫∫

Ss∩�s

{
Ns

b

} · n̂s × {
Ns

b

}T
dS. (10.79)

In (10.78), the subscript i denotes the quantities inside the subdomain and the subscript
b denotes the quantities on the surface (including the corner edges) of the subdomain.
By testing it with n̂s × {Ns

b}, integrating over �
q
s , and summing over all the interfaces

between subdomain s and its neighboring subdomains, the transmission condition
(10.77) can be converted into a matrix equation as

[
Bs

bb
T Cs

bb

] { Es
b

j s

}
(i)

=
∑

q∈neighbor(s)

[
U q

s V q
s
] { Eq

b
jq

}
(i−1)

(10.80)

where

[
Cs

bb

] = j

k0

∫∫
Ss∩�s

n̂s × {
Ns

b

} · n̂s × {
Ns

b

}T
dS (10.81)

[
U q

s

] =
∫∫

Ss∩�
q
s

n̂s × {
Ns

b

} · {Nq
b

}T
dS (10.82)

[
V q

s

] = 1

jk0

∫∫
Ss∩�

q
s

n̂s × {
Ns

b

} · n̂q × {
Nq

b

}T
dS. (10.83)

Equations (10.78) and (10.80) can now be combined to form a complete system for
subdomain s as ⎡

⎢⎣
K s

ii K s
ib 0

K s
bi K s

bb Bs
bb

0 Bs
bb

T Cs
bb

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Es
i

Es
b

j s

⎫⎪⎬
⎪⎭

(i)

=

⎧⎪⎨
⎪⎩

bs
i

bs
b

gs

⎫⎪⎬
⎪⎭

(i−1)

(10.84)
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where

{gs} =
∑

q∈neighbor(s)

[
U q

s V q
s
] { Eq

b

jq

}
. (10.85)

Equation (10.84) can be solved using either the Jacobi or the Gauss–Seidel method
[7,9].

For very large arrays modeled with millions, or perhaps billions, of unknowns,
calculating all the fields in all the subdomains is not only time consuming but also
memory intensive. In this case we can first reduce (10.84) into a smaller system that
involves only the fields and the cement variables on the subdomain surfaces. This can
be done by extracting [Es

b, j s]T from (10.84) as

{
Es

b

j s

}
(i)

=
[

0 I s
bb 0

0 0 I s
bb

]⎧⎪⎨
⎪⎩

Es
i

Es
b

j s

⎫⎪⎬
⎪⎭

(i)

=
[

0 I s
bb 0

0 0 I s
bb

]⎡⎢⎣
K s

ii K s
ib 0

K s
bi K s

bb Bs
bb

0 Bs
bb

T Cs
bb

⎤
⎥⎦

−1 ⎛
⎜⎝
⎧⎪⎨
⎪⎩

bs
i

bs
b

0

⎫⎪⎬
⎪⎭+

⎧⎪⎨
⎪⎩

0

0

gs

⎫⎪⎬
⎪⎭

(i−1)

⎞
⎟⎠ (10.86)

where [I s
bb] denotes the identity matrix. This equation can be placed into a compact

form as

{vs}(i) = [
Rs

b

]{us}(i) = [
Rs

b

]
[As]−1({b̃s} + [

Rs
j

]T{gs}(i−1)) (10.87)

where

{vs} =
{

Es
b

j s

}
, {us} =

⎧⎪⎨
⎪⎩

Es
i

Es
b

j s

⎫⎪⎬
⎪⎭ , {b̃s} =

⎧⎪⎨
⎪⎩

bs
i

bs
b

0

⎫⎪⎬
⎪⎭ (10.88)

[
Rs

b

] =
[

0 I s
bb 0

0 0 I s
bb

]
,

[
Rs

j

] = [ 0 0 I s
bb ] (10.89)

[As] =

⎡
⎢⎣

K s
ii K s

ib 0

K s
bi K s

bb Bs
bb

0 Bs
bb

T Cs
bb

⎤
⎥⎦ . (10.90)

It is now clear that we can precompute [Rs
b][As]−1{b̃s} and [Rs

b][As]−1[Rs
j ]

T so that in
subsequent iterations the calculation of (10.87) is reduced to a simple matrix–vector
multiplication. Furthermore, for identical subdomains, the matrix [Rs

b][As]−1[Rs
j ]

T is
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identical in each subdomain, which makes the method highly attractive for array-type
problems, similar to the FETI–DPEM methods.

Although the Gauss–Seidel method is simple to implement, its convergence is
rather slow and in some applications it may not converge [20]. This problem can
be alleviated by replacing the stationary iterative method with a Krylov subspace
method. For this, we have to convert (10.87) into a system with all the unknown
variables moved to the left-hand side. Let us first denote the global unknown vector
as {v} = [{v1}, {v2}, . . . , {v Ns }]T and introduce a Boolean matrix [Qs] to extract {vs}
from {v}. Hence,

{vs} = [Qs]{v}, {v} =
Ns∑

s=1

[Qs]T{vs}. (10.91)

With this, we can premultiply (10.87) by [Qs]T and sum the result over all the
subdomains to find the final system of equations as

([I ] − [S]){v} = { f } (10.92)

where

[S] =
Ns∑

s=1

[Qs]T
[
Rs

b

]
[As]−1

[
Rs

j

]T ∑
q∈neighbor(s)

[
Dq

s

]
[Qq ] (10.93)

{ f } =
Ns∑

s=1

[Qs]T
[
Rs

b

]
[As]−1[b̃s] (10.94)

in which [Dq
s ] = [ U q

s V q
s ]. Equation (10.92) can now be solved using a Krylov

subspace method such as GMRES or BiCGSTAB. The convergence of the iterative
solution can be accelerated by using the symmetric Gauss–Seidel (SGS) precon-
ditioner [20] or the block symmetric successive over relaxation (SSOR) precondi-
tioner [21], which reduces to the SGS preconditioner when the relaxation factor is
set to 1. Once {v} is obtained, the field inside each subdomain can be calculated by
solving either the first set of equations in (10.78), the entire system of equations in
(10.78), or the system of equations in (10.84), where the invertibility is guaranteed.

10.1.4 Application Examples

In this section we present three numerical examples to demonstrate the finite element
simulation of large finite antenna arrays using the domain-decomposition methods.
The first example considered is a broadband single-polarized Vivaldi antenna array
having 31 × 31 array elements, which are identical to the one shown in Figure
9.12. Figure 10.4(a) shows the magnitude of the active reflection coefficient (defined
by using the characteristic impedance of the feeding coaxial line as the reference
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Figure 10.4 Active reflection coefficient for a 31 × 31 Vivaldi antenna array. (a) For the
center element as a function of frequency. (b) For the midrow elements at 3 GHz. (After Li
and Jin [8], Copyright C© IEEE 2006.)

impedance) as a function of frequency for the center element. The result, obtained
using the FETI–DPEM1, is compared with those for the corresponding infinite array
from the time-domain finite element method and HFSS [8]. Good agreement can be
observed between the three different methods over a wide frequency band.

To show the edge effects of the finite array as compared with the corresponding
infinite array, the active reflection coefficient for the elements from the central row
of the array is computed at 3 GHz and the result is shown in Figure 10.4(b) with
respect to the element position. As can be expected, the infinite-array approximation
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Figure 10.5 Radiation patterns of a 31 × 31 Vivaldi antenna array at 3 GHz. (a) Broadside
scan. (b) θs = 40◦ and φs = 0◦. (After Li and Jin [8], Copyright C© IEEE 2006.)

is accurate only for the interior elements, and the edge effects are prominent for the
outer elements. Finally, the radiation patterns of the arrays are shown in Figure 10.5
for two excitations. For this simulation, nearly 40 million unknowns were used and
the computation required 541 MB of memory and 12 minutes of computation time
on a 1.5-GHz Itanium II processor using the FETI–DPEM1 method.
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TABLE 10.1 Data for Various Vivaldi Antenna Array Simulations

Size of
Array

Total
Number of
Unknowns

Number of
Dual

Unknowns
Memory

Used (MB)

Interface
Solution

Time
(h:min:s)

Number of
Iterations

Total
Solution

Time
(h:min:s)

10 × 10 5.7M 0.1M 500 00:00:10 19 00:06:36
50 × 50 100.9M 1.9M 685 00:03:02 18 00:20:23
100 × 100 396.2M 7.8M 2,100 00:10:54 17 01:12:30
200 × 200 1,572.2M 31.5M 6,700 01:09:36 20 04:16:35
300 × 300 3,528.4M 70.8M 15,000 05:27:15 20 12:27:14

To further demonstrate the capability of the FETI–DPEM1 method, a series of
Vivaldi antenna arrays have been simulated on a 1.5-GHz Itanium II processor. The
array size ranges from 10 × 10 to 300 × 300. Table 10.1 gives the total number
of unknowns, the number of dual unknowns, the number of iterations for solving
the global interface equation using GMRES with a restart number of 5, the memory
requirements, the computation time for solving the interface equation, and the total
simulation time. Note that for the 300 × 300 array, the total number of unknowns
exceeds 3.5 billion, and the number of dual unknowns is about 70.8 million. A
computation time of 5.5 hours was required to solve the global interface equation
and 12.5 hours was required to simulate the entire problem, including computing the
fields in all the subdomains.

The second example deals with a 51 × 51 microstrip patch antenna array on a
cylindrical surface having a radius of 454.5 cm, as illustrated in Figure 10.6. The
patch antenna array consists of 2601 square metallic patches, each having a size of
3.0 cm × 2.0 cm printed periodically on a dielectric substrate of thickness 0.08 cm, a
relative permittivity of 2.17, and a relative permeability of 1.0. The center-to-center
distance between adjacent patches is 4.5 cm in the φ-direction and 3.5 cm in the
z-direction. The coaxial feeds have a filling material of εr = 2.0, an inner radius
ri = 0.2 mm, and an outer radius ro = 0.6 mm, and are offset by s = 0.38 cm in
the φ-direction. The entire array is flush-mounted on the metallic cylindrical surface,
which is assumed to be infinitely long along the z-direction. In the simulation by the
FETI–DPEM2 [22], the patch array is excited uniformly at the frequency of 3.3 GHz,
which corresponds to the resonant frequency of a single patch antenna. The radiation
pattern in the θ = 90◦ plane is plotted in Figure 10.7 and is compared with that on
a planar platform. The radiation patterns are normalized with respect to the results
from the planar array calculation. The active reflection coefficients for the central line
of elements in both the E- and H-planes are shown in Figure 10.8. It is shown that
the shape of the host cylinder has little effect on the reflection coefficient and thus
on the input impedance of the patch antenna array, in contrast to the significant effect
on the radiation patterns. For this simulation, the total number of the primal unknowns
is 120.3 million and the dimension of the interface equation is 4.76 million. The
BiCGSTAB was employed to solve the global interface equation, which converged
with the residual error below 10−3 within 70 iterations. The entire simulation required
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Figure 10.6 Geometry of a 51 × 51 patch antenna array flush-mounted on an infinitely
long metallic cylinder. (a) The patch antenna array on a platform. (b) The array element
configuration. (After Jin et al [22], Copyright C© IEEE 2008.)

1.6 GB of memory and 66 minutes of computation time on a 1.5-GHz Itanium II
processor.

The third example is concerned with the mutual coupling between two identical
microstrip patch arrays placed in the near-field region of each other. This example,
where the configuration is shown in Figure 10.9, is modified from a similar example
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Figure 10.7 Normalized radiation patterns for the 51 × 51 patch antenna array at 3.3 GHz.
(After Jin et al. [22], Copyright C© IEEE 2008.)

presented in Ref. 23. Each array consists of 9 × 9 patch antennas, which are printed
on a dielectric substrate of thickness 0.08 cm, a relative permittivity of 2.17, and
a relative permeability of 1.0. The patch antennas have the same configuration as
those in the preceding example, except that now they are placed on a flat surface.
The center-to-center distance between two adjacent patches is Tx = 4.5 cm in the x-
direction and Ty = 3.5 cm in the y-direction. The dielectric substrate has a dimension
of 42 cm and 33 cm in the x- and y-directions, respectively. Each array is housed in
a 42-cm × 33-cm × 0.08-cm cavity recessed on an infinitely large ground plane and
the two arrays are separated by 34.5 cm. To characterize the mutual coupling between
the two arrays, we first calculate the total normalized voltage induced at the feeds
of the 81 patch antennas of the receiving array shown on the right-hand side of
Figure 10.9 as a function of the scanning angle of the transmitting array on the left-
hand side. Direct calculation is very time consuming because of the large number
of scanning angles to be considered. A more efficient approach [23] is to use the
following expression for the normalized voltage received at the element on the mth
column and nth row of the receiving array:

Vmn = 1

Nx Ny

Nx∑
p=1

Ny∑
q=1

Smn,pqe− jk0 pTx Ut e− jk0qTy Vt (10.95)
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Figure 10.8 Active reflection coefficient for the 51 × 51 patch antenna array at 3.3 GHz.
(a) For the midrow elements. (b) For the midcolumn elements. (After Jin et al. [22], Copyright
C© IEEE 2008.)

where Nx = Ny = 9 are the number of patch antennas in the x- and y-directions,
Ut = sin θt cos φt and Vt = sin θt sin φt , with (θt , φt ) being the scanning angle of
the transmitting array, and Smn,pq are the scattering parameters, which represent
the transmission between two elements in the transmitting and receiving arrays. The
scattering parameters Smn,pq can be calculated by exciting only the element on the pth
column and qth row of the transmitting array. Because of the symmetry in the
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Figure 10.9 Geometry of two 9 × 9 microstrip patch antenna arrays placed on a ground
plane. Each array is housed in a shallow cavity recessed in the ground plane so that it is
flush-mounted. (See insert for color representation of figure.)

y-direction, this calculation can be accomplished by simulating the problem with 45
different excitations. Once the normalized received voltages are computed, the total
normalized power coupled from the transmitting array to the receiving array can be
calculated as

Pr =
∣∣∣∣∣∣

Nx∑
m=1

Ny∑
n=1

Vmne− jk0mTx Ur e− jk0nTy Vr

∣∣∣∣∣∣
2

(10.96)

where Ur = sin θr cos φr and Vr = sin θr sin φr , with (θr , φr ) being the scanning an-
gle of the receiving array. Figure 10.10 plots the normalized power as a function
of Ur and Vr for the broadside scan of the transmitting array at 3.3 GHz [24]. By
the reciprocity theorem, this also represents the normalized power as a function of
Ut and Vt when the receiving array operates at the broadside scan. It can be seen
that the maximum mutual coupling occurs at the endfire scan, where Ur = ±1 and
Vr = 0, and the maximum normalized coupled power is about −40 dB. The simula-
tion was carried out using the FETI–DPEM2 with approximately 24 million primal
unknowns and 645,000 dual unknowns. The BiCGSTAB was employed to solve the
global interface equation and the convergence was declared when the residual was
reduced below 10−3. The average number of iterations for the 45 excitations was
57, and the entire simulation used 1.2 GB of memory and 5 hours of computation
time.

For the nonconforming domain-decomposition algorithm described in Section
10.1.3, many examples have been presented in Refs. 7 and 9 using the Gauss–Seidel
method and in Refs. 20 and 21 using the Krylov subspace method for solving the
global interface system of equations.
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Figure 10.10 Normalized power (in decibels) coupled from the transmitting array with
broadside scan to the receiving array as a function of the scan angle of the receiving array. (See
insert for color representation of figure.)

10.2 TIME-DOMAIN MODELING

Time-domain analysis can be particularly beneficial when modeling broadband
phased arrays; however, developing an efficient time-domain formulation for a large
finite array is not as straightforward as the analogous frequency-domain formulation
described above. Whereas the system matrix is solved only once in a frequency-
domain simulation, it is solved at each time step in a time-domain simulation. Hence,
the matrix solving is more critical in a time-domain simulation, and a tremendous
amount of research effort has been directed into this aspect. To minimize the total
computational time, solving the linear system using a direct solver is preferable in the
time domain since the factorization can be reused at each time step. For large finite
arrays, however, the computer time and memory storage required by a direct solver
become impractically large for the factorization of a sparse matrix resulting from a
global finite element discretization, although the computer time for each time step
becomes more manageable once the matrix is factorized. As a result, the time-domain
finite element method often resorts to an iterative solver for large problems to avoid
excessive memory use and computer time for the matrix factorization. However, the
convergence of an iterative solver heavily depends on the properties of the system
matrix and the preconditioner it employs.

In this section we discuss two domain-decomposition schemes for simulating large
finite arrays using the time-domain finite element method. The first, the dual-field
domain-decomposition method, employs a direct solver to deal with the finite element
matrix for each subdomain and computes the electric and magnetic fields based on a
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leapfrogging time-marching scheme [25,26]. The second method maintains the basic
formulation of the time-domain finite element method, as described in Chapter 2, but
employs the domain-decomposition idea to distribute the computation over parallel
processors for the iterative solution of the matrix equation in each time step.

10.2.1 Dual-Field Domain-Decomposition Method

Similar to frequency-domain simulations, one strategy to solve large-scale problems
more efficiently in the time domain is to employ the domain-decomposition idea
by dividing the original global computational domain into several smaller subdo-
mains. With a reduced size, each smaller subdomain problem can then be factored
and solved using a sparse direct solver such that the overall computational com-
plexity can be reduced as compared to the original single-domain (global) prob-
lem. To further reduce the computational time, the subdomain problems can be
distributed onto a parallel computing system and solved concurrently. To this end
we can use the FETI–DPEM or any other domain-decomposition method described
earlier. A drawback of this method is that the global interface problem, which is
usually solved by an iterative solver, needs to be solved at each time step. A more
efficient time-domain domain-decomposition scheme that does not require solving a
global problem has recently been proposed [25,26]. This method, referred to as the
dual-field domain-decomposition (DFDD) time-domain finite element method, solves
the dual-field second-order vector wave equations in each subdomain and couples
the adjacent subdomains explicitly using the equivalent surface currents on the sub-
domain interfaces. Since adjacent subdomains are coupled explicitly at each time
step, a global interface problem does not need to be formulated and solved. At every
time step, each subdomain problem is solved efficiently using its local prefactorized
matrix.

To describe the dual-field domain-decomposition method for the analysis of a
finite array, we consider the domain decomposition shown in Figure 10.1. In each
subdomain, the electric and magnetic fields satisfy the second-order vector wave
equations

∇ ×
[

↔
μ−1 · ∇ × Es(t)

]
+ ↔

ε · ∂2Es(t)

∂t2
= −∂Js

imp

∂t
− ∇ × (↔

μ−1 · Ms
imp

)
(10.97)

∇ ×
[

↔
ε−1 · ∇ × Hs(t)

]
+ ↔

μ · ∂2Hs(t)

∂t2
= −∂Ms

imp

∂t
+ ∇ × (↔

ε−1 · Js
imp

)
(10.98)

where the superscript s denotes the subdomain number. For simplicity, we assume
that the medium is lossless and nondispersive; however, the formulation can be ex-
tended to deal with lossy and dispersive media by following the approaches described
in Chapter 2. Also for simplicity, we assume the following first-order absorbing
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boundary conditions for the outer surface of the entire computational domain:

n̂ ×
[

↔
μ−1 · ∇ × E(t)

]
+ Y0n̂ ×

[
↔
ς · n̂ × ∂E(t)

∂t

]
≈ 0 r ∈ So (10.99)

n̂ ×
[

↔
ε−1 · ∇ × H(t)

]
+ Z0n̂ ×

[
↔
ζ · n̂ × ∂H(t)

∂t

]
≈ 0 r ∈ So (10.100)

where ↔
ς and

↔
ζ denote the normalized admittance and impedance tensors chosen to

minimize the reflection of the truncation boundary. (For an isotropic medium, ↔
ς and

↔
ζ become scalars with values of

√
εr/μr and

√
μr/εr , respectively.)

By taking the dot product with the vector basis function {Ns}, integrating over the
volume of the subdomain, and then invoking the divergence theorem, the weak-form
representations of (10.97) and (10.98) can be written as

∫∫∫
Vs

[
(∇ × {Ns}) · ↔

μ−1 · (∇ × Es) + {Ns} · ↔
ε · ∂2Es

∂t2

]
dV

+ Y0

∫∫
Ss∩So

(n̂ × {Ns}) · ↔
ς ·

(
n̂ × ∂Es

∂t

)
dS

=
∫∫

Ss∩�s

(n̂s × {Ns}) · ↔
μ−1 · (∇ × Es) dS

−
∫∫∫

Vs

{Ns} ·
[
∂Js

imp

∂t
+ ∇ × (↔

μ−1 · Ms
imp

)]
dV (10.101)

∫∫∫
Vs

[
(∇ × {Ns}) · ↔

ε−1 · (∇ × Hs) + {Ns} · ↔
μ · ∂2Hs

∂t2

]
dV

+Z0

∫∫
Ss∩So

(n̂ × {Ns}) · ↔
ζ ·

(
n̂ × ∂Hs

∂t

)
dS

=
∫∫

Ss∩�s

(n̂s × {Ns}) · ↔
ε−1 · (∇ × Hs) dS

−
∫∫∫

Vs

{Ns} ·
[
∂Ms

imp

∂t
− ∇ × (↔

ε−1 · Js
imp

)]
dV (10.102)

where Vs denotes the volume of subdomain s and �s denotes its interface with adjacent
subdomains. At the subdomain interface �s , an application of Maxwell’s equations
yields

n̂s ×
[

↔
μ−1 · ∇ × Es(t)

]
= −n̂s × ∂Hs(t)

∂t
r ∈ �s (10.103)

n̂s ×
[

↔
ε−1 · ∇ × Hs(t)

]
= n̂s × ∂Es(t)

∂t
r ∈ �s (10.104)
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under the assumption that there is no source on �s (a condition that can be removed
easily). Hence, (10.101) and (10.102) become

∫∫∫
Vs

[
(∇ × {Ns}) · ↔

μ−1 · (∇ × Es) + {Ns} · ↔
ε · ∂2Es

∂t2

]
dV

+Y0

∫∫
Ss∩So

(n̂ × {Ns}) · ↔
ς ·

(
n̂ × ∂Es

∂t

)
dS

=
∫∫

Ss∩�s

(n̂s × {Ns}) ·
(

n̂s × ∂Js

∂t

)
dS

−
∫∫∫

Vs

{Ns} ·
[
∂Js

imp

∂t
+ ∇ × (↔

μ−1 · Ms
imp

)]
dV (10.105)

∫∫∫
Vs

[
(∇ × {Ns}) · ↔

ε−1 · (∇ × Hs) + {Ns} · ↔
μ · ∂2Hs

∂t2

]
dV

+ Z0

∫∫
Ss∩So

(n̂ × {Ns}) · ↔
ζ ·

(
n̂ × ∂Hs

∂t

)
dS

=
∫∫

Ss∩�s

(n̂s × {Ns}) ·
(

n̂ × ∂Ms

∂t

)
dS

−
∫∫∫

Vs

{Ns} ·
[
∂Ms

imp

∂t
− ∇ × (↔

ε−1 · Js
imp

)]
dV (10.106)

where Js and Ms denote the equivalent surface currents, which are defined by

Js = n̂s × Hs, Ms = Es × n̂s r ∈ �s . (10.107)

From (10.105) and (10.106), it can be observed that the electric field in subdomain s
is produced by the impressed source (Js

imp, Ms
imp) and the equivalent surface electric

current Js on �s , whereas the magnetic field in subdomain s is produced by the
impressed source (Js

imp, Ms
imp) and the equivalent surface magnetic current Ms on �s .

Therefore, if Js is obtained, the electric field can be evaluated, and similarly, if Ms is
available, the magnetic field can be calculated.

The finite element discretization of (10.105) and (10.106) yields the matrix
equations

[
T s

e

]d2{Es}
dt2

+ [
Rs

e

]d{Es}
dt

+ [
Ss

e

]{Es} = {
f s
e

}+ d{ j s}
dt

(10.108)

[
T s

h

]d2{H s}
dt2

+ [
Rs

h

]d{H s}
dt

+ [
Ss

h

]{H s} = {
f s
h

}+ d{ms}
dt

(10.109)
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where

[
T s

e

] =
∫∫∫

Vs

{Ns} · ↔
ε · {Ns}T dV (10.110)

[
Rs

e

] = Y0

∫∫
Ss∩So

n̂ × {Ns} · ↔
ς · n̂ × {Ns}T dS (10.111)

[
Ss

e

] =
∫∫∫

Vs

∇ × {Ns} · ↔
μ−1 · ∇ × {Ns}T dV (10.112)

{
f s
e

} = −
∫∫∫

Vs

{Ns} ·
[
∂Js

imp

∂t
+ ∇ × (↔

μ−1 · Ms
imp

)]
dV (10.113)

{ j s} =
∫∫

Ss∩�s

n̂s × {Ns} · (n̂s × Js) dS (10.114)

and

[
T s

h

] =
∫∫∫

Vs

{Ns} · ↔
μ · {Ns}T dV (10.115)

[
Rs

h

] = Z0

∫∫
Ss∩So

n̂ × {Ns} · ↔
ζ · n̂ × {Ns}T dS (10.116)

[
Ss

h

] =
∫∫∫

Vs

∇ × {Ns} · ↔
ε−1 · ∇ × {Ns}T dV (10.117)

{
f s
h

} = −
∫∫∫

Vs

{Ns} ·
[
∂Ms

imp

∂t
− ∇ × (↔

ε−1 · Js
imp

)]
dV (10.118)

{ms} =
∫∫

Ss∩�s

n̂s × {Ns} · (n̂s × Ms) dS. (10.119)

It remains to discretize (10.108) and (10.109) in the time domain so that the fields
can be updated step by step in time. Since the updating of the electric field depends on
{ j s}, which in turn depends on the magnetic field on the interface, and the updating
of the magnetic field depends on {ms}, which in turn depends on the electric field
on the interface, the electric and magnetic fields should be discretized so that they
are staggered one-half of a time step with respect to each other. In other words, we
can discretize the electric field on integer time indices (n = 0, 1, 2, . . . , N ) and the
magnetic field on half-integer indices (n = 1

2 , 3
2 , 5

2 , . . . , N + 1
2 ). Once the fields are
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discretized, we apply the Newmark-beta method to integrate (10.108) and (10.109),
which yields

{Es}n+1 = [
As

e

]−1
([

Bs
e

]{Es}n − [
Cs

e

]{Es}n−1 + {
f s
e

}n

+{ j s}n+1/2 − { j s}n−1/2

�t

)
(10.120)

{H s}n+3/2 = [
As

h

]−1
([

Bs
h

]{H s}n+1/2 − [
Cs

h

]{H s}n−1/2 + {
f s
h

}n+1/2

+{ms}n+1 − {ms}n

�t

)
(10.121)

where

[
As

e,h

] = 1

(�t)2

[
T s

e,h

]+ 1

2�t

[
Rs

e,h

]+ 1

4

[
Ss

e,h

]
(10.122)

[
Bs

e,h

] = 2

(�t)2

[
T s

e,h

]− 1

2

[
Ss

e,h

]
(10.123)

[
Cs

e,h

] = 1

(�t)2

[
T s

e,h

]− 1

2�t

[
Rs

e,h

]+ 1

4

[
Ss

e,h

]
. (10.124)

In the equations above, we assumed that β = 1/4 in the application of the Newmark-
beta method. Equations (10.120) and (10.121) can be used to compute the electric
and magnetic fields in a leapfrog fashion.

To compute the electric field in subdomain s using (10.120), we require { j s}n−1/2

and { j s}n+1/2 in addition to the electric fields at the previous two steps and the
impressed source. Similarly, to compute the magnetic field in subdomain s using
(10.121), we require {ms}n and {ms}n+1 in addition to the magnetic fields at the
previous two steps and the impressed source. From (10.107), (10.114), and (10.119),
it can be seen that { j s} is related to the tangential magnetic field at the subdomain
interface and {ms} is related to the tangential electric field at the subdomain interface.
It is these two quantities that couple the fields across the subdomains. At the interface
between subdomains s and q, the field continuity conditions are given by (10.44),
which can also be written as

Js(r) = n̂s × Hq (r) and Ms(r) = Eq (r) × n̂s r ∈ �q
s . (10.125)

Therefore, when {Hq}n+1/2 is computed, we can calculate { j s}n+1/2 as

{ j s}n+1/2 = −
∑

q∈neighbor(s)

∫∫
�

q
s

n̂s × {Ns} · Hq(n+1/2)
s dS (10.126)



P1: JYS

c10 JWBK322-Jin September 30, 2008 12:54 Printer: Yet to come

TIME-DOMAIN MODELING 369

and when {Eq}n+1 is computed, we can calculate {ms}n+1 as

{ms}n+1 =
∑

q∈neighbor(s)

∫∫
�

q
s

n̂s × {Ns} · Eq(n+1)
s dS (10.127)

where Eq
s and Hq

s denote the electric and magnetic fields on the subdomain q side
of �

q
s . With the calculation of { j s}n+1/2 and {ms}n+1, the time-marching process can

now be carried out to compute the electric and magnetic fields step by step. Given
the initial field values and the impressed source, we first calculate {Es}(1) for each
subdomain (s = 1, 2, . . . , Ns) using (10.120). Once this calculation is completed, we
calculate {ms}(1) using (10.127), which is then used to compute {H s}(3/2) for each
subdomain using (10.121). Once {H s}(3/2) is computed, we calculate { j s}(3/2), which
is then employed to compute {Es}(2) for each subdomain. This process continues
until either the fields vanish or they reach the steady state, depending on the type of
impressed source used for the simulation.

If we examine (10.126) and (10.127) carefully, we find that the interfacing be-
tween the subdomains in the dual-field domain-decomposition method is very simple.
Once we compute the electric field in each subdomain, all we do is to pass its tan-
gential component on the interface to the neighboring subdomains and receive the
corresponding tangential component computed in the neighboring subdomain for
the calculation of the magnetic field in the next half-step. Similarly, once we com-
pute the magnetic field in each subdomain, we pass its tangential component on the
interface to the neighboring subdomains and receive the corresponding tangential
component computed in the neighboring subdomain for the calculation of the elec-
tric field in the next half-step. Surprisingly, such a simple field-exchanging scheme
works very effectively and yields a highly stable time-marching process. Although
the field continuity conditions are not enforced explicitly at the subdomain interfaces
and there are two values for the tangential field at any instant (associated with the two
neighboring subdomains), these two values converge to one when the finite element
discretization and the time-step size are sufficiently fine [25]. From the physical point
of view, the field-exchanging scheme models the phenomenon described by the well-
known Huygens’ principle. The field generated in a subdomain becomes the part of
the source for the field in the neighboring subdomains and hence should be passed to
the neighboring subdomains in the form of a surface equivalent current. Numerical
analysis and tests show that this interfacing scheme maintains the overall accuracy
of the final numerical solution [25,26].

The simple yet robust subdomain interfacing scheme via an explicit field ex-
changing described above does not come without cost. Although we have employed
the Newmark-beta method to discretize the time domain in each subdomain, and
consequently, the time marching in each subdomain using (10.120) and (10.121) is
unconditionally stable, the global time marching for the entire domain becomes only
conditionally stable because the subdomain fields are exchanged at the interfaces
explicitly.
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A stability analysis [25,26] shows that the global time marching is stable when
the time-step size satisfies the stability condition given by

�t <
2

c0

1

ρ([L])
(10.128)

where c0 = 1/
√

μ0ε0 and ρ([L]) denotes the spectral radius of [L], which is defined
as

[L] =
[

Me 0

0 Mh

]−1 [
0 P

P 0

]
(10.129)

in which

[Me] =
∫∫∫

V
{N} · ↔

εr · {N}T dV (10.130)

[Mh] =
∫∫∫

V
{N} · ↔

μr · {N}T dV (10.131)

[P] =
∫∫

�

{N} · n̂ × {N}T dS. (10.132)

In the expressions above, {N} denotes the column vector consisting of all the basis
functions in the computational domain and � denotes all the subdomain interfaces.
It is evident that [P] has nonzero entries only for basis functions residing on the
subdomain interfaces. Therefore, [L] depends only on the spatial discretization di-
rectly related to the interfaces. If the computational domain is meshed into tetrahedral
elements, the stability condition depends only on the tetrahedral elements directly
connected to the interfaces. It does not depend on the size of tetrahedral elements
inside each subdomain. Therefore, we can use very small elements inside each subdo-
main to resolve small geometrical details without any adverse impact on the stability
condition. This stability condition has been fully verified in numerical tests [25,26].
For equilateral tetrahedral elements with a side length of h that are connected to the
interface, the estimated stability criterion is �t < 0.3h/c when the first-order basis
functions are employed, where c denotes the speed of light in the medium. Therefore,
it is rather straightforward to determine the maximum time-step size based on the
size of elements attached to the interfaces. When higher-order basis functions are
used, the estimate above can be scaled by the order of the basis functions.

From its formulation it is clear that the dual-field domain-decomposition method
can be applied not only to array-type problems, but also to arbitrary geometries. For
arbitrary geometries, the efficiency of the method is due mainly to the decomposition
of an extremely large finite element system for the entire computational domain into
many smaller systems for the subdomains. Because of the exponential increases in
the computer time and memory requirements for the factorization of a matrix with an
increasing dimension (even if the matrix is sparse), decomposing a large matrix into
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many smaller ones greatly reduces the computer resources required for the matrix
factorization. The highest efficiency can be achieved when the domain decomposition
is applied to the extreme case where every finite element is treated as a subdomain,
resulting in a completely explicit algorithm [27]. The drawback for this limiting case
is that the maximum time-step size is now dictated by the smallest finite element in
the entire computational domain since every element is now connected directly to the
subdomain interfaces. This is usually undesirable for practical applications. A more
balanced approach is to include small finite elements inside subdomains and treat
each large finite element as a subdomain so that a high efficiency can be obtained
without significantly reducing the maximum time-step size. This approach can be
considered as a hybrid explicit–implicit numerical algorithm [27].

Based on the discussions above, it is clear that when the dual-field domain-
decomposition method is implemented on a serial computer, the matrix factorization
time and memory requirements can be reduced significantly when the computa-
tional domain is decomposed into subdomains. The computational complexity for
the factorization and time marching approaches O(N ) as the number of subdomains
increases. When the method is implemented on a parallel computer, we can achieve a
superlinear speedup for the matrix factorization, a superlinear reduction in the mem-
ory requirements, and a nearly linear speedup (corresponding to a parallel efficiency
of nearly 100%) for time marching [25].

When the dual-field domain-decomposition method is applied to large finite array
problems, additional savings can be obtained by exploiting the geometrical repe-
titions of an array structure. As discussed earlier, when the computational domain
is divided such that each array element becomes a subdomain, there are only nine
subdomains that have different finite element matrices (Figure 10.2). For each of the
nine basic subdomains, we can assemble the finite element matrix and then factorize
it and store the result in memory at the beginning of the simulation. During the time
marching, each of the array elements is updated using the appropriate factorized ma-
trix according to its position in the array. Thus, the dual-field domain decomposition
requires the storage of only nine factorized matrices regardless of the actual size
of the array. Considering that matrix factorization typically dominates the memory
consumption, a significant reduction in the memory requirements can be achieved by
using this method for large arrays. The same argument can be made for the factoriza-
tion time. However, the total computation time required by the time-marching process
remains unaffected. The reason for this is that even though the system matrices are
the same for the subdomains with identical geometry, the electric fields throughout
these subdomains must be updated individually at every time step.

10.2.2 Domain Decomposition for Iterative Solutions

As discussed in the preceding subsection, the dual-field domain-decomposition
method achieves its high performance by decomposing the finite element system
of equations into many smaller subsystems and exploiting the repetitions of the sub-
systems for array-type applications. The only drawback is the compromise of the
otherwise unconditional stability of the time-domain finite element solution because
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of the explicit, and therefore conditionally stable, field-exchanging scheme at the
subdomain interfaces. For problems having small geometries next to or across the
subdomain interfaces that have to be modeled with small finite elements, the time-
step size must be reduced accordingly to maintain the stability of the time-marching
process. For such problems it may be more efficient to apply directly the traditional
time-domain finite element method described in Chapter 2, or its hybridization with
the finite-difference time-domain (FDTD) algorithm discussed in Chapter 4, and
then employ the domain-decomposition idea for an iterative solution of the global
finite element matrix equation in each time step on a parallel computer. A domain-
decomposition strategy based on this approach is described in this subsection.

An appealing aspect of the traditional finite element time-domain (FETD) method
is its global unconditional stability when the Newmark-beta time-integration method
is applied to the wave equation. Because unconditionally stable time-marching al-
gorithms must necessarily be implicit, a system of equations needs to be solved at
each time step, and this can be accomplished by either a direct or an iterative solution
procedure. As mentioned previously, a direct solver is appealing for time-domain
applications because the matrix equation typically only needs to be factored once
and then applied at each time step. However, because the factorization of a sparse
matrix generally leads to a relatively dense matrix, this solution approach is appli-
cable only to small discretization domains, such as those used with the dual-field
domain-decomposition method described in the preceding subsection. Iterative so-
lution techniques can be applied to much larger discretization domains, although
practical limits still remain with regard to the number of the degrees of freedom that
can be solved efficiently. Indeed, this aspect was one of the primary reasons for adopt-
ing the hybrid FETD–FDTD technique described in Chapter 4. In addition, generating
a single three-dimensional unstructured finite element grid that may contain tens, or
perhaps hundreds, of millions of cells can be challenging for mesh generation soft-
ware. Consequently, there is a need for a domain-decomposition method that globally
preserves the properties of the original FETD method, and is also applicable to ex-
tremely large unstructured finite element grids. The iterative domain-decomposition
(IDD) approach can be used to address both of these issues effectively.

Similar to the dual-field domain-decomposition method, we consider a single
global domain with volume V that is subdivided into Ns subdomains such that Vs

denotes the volume of subdomain s and �s denotes its interface with adjacent sub-
domains. In the IDD method, the basic strategy will be to construct finite element
matrices for each subdomain that correspond identically to the equivalent edges asso-
ciated with the global matrices that characterize the original single domain discretiza-
tion. Because each subdomain can be gridded in isolation with the IDD approach,
the assembled finite element matrix entries for the interface edges will be incom-
plete, and hence will require a computer message-passing procedure to extract the
necessary matrix information from the neighboring subdomains. The IDD method
fundamentally assumes that the cell edges on �s are aligned between the neighboring
subdomains and hence is considered to be a conformal domain-decomposition tech-
nique. In addition, because the matrix entries for the interface edges are completed
by using the local matrix information from neighboring subdomains, it is also an
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Figure 10.11 Edges associated with the finite element cells in the interface region between
two subdomains for application of the iterative domain-decomposition method. Finite element
cells within the master region are used to augment the finite element matrices associated with
the slave region.

overlapping domain-decomposition technique. There are two benefits of the IDD
approach for time-domain applications: (1) Because the assembled matrices for each
subdomain are identical to their respective portions of an equivalent discretization
of the original single domain application, the unconditional stability properties for
the traditional FETD method apply to the decomposed volume, and (2) limitations
associated with traditional mesh generation software can be avoided because the
subdomains can be gridded independently.

To implement the IDD method, we consider the interface between the two subdo-
mains illustrated in Figure 10.11. The implementation strategy is based on defining a
master–slave relationship for the two subdomains relative to the interface �s . Because
each subdomain is assumed to be gridded independently, additional grid information
will be required by either the master or slave regions to formulate the global solu-
tion. More specifically, the proper assembly of the finite element matrices based on
vector edge basis functions will require the local cell topology for all the cells that
share edges and faces along the subdomain interface. Because the interface edges
associated with both the master and slave regions are missing many of these required
cells, the additional matrix information associated with these cells is acquired by a
message-passing procedure.

To examine more carefully how the matrix entries are augmented, we consider a
portion of an assembled finite element matrix for the slave subdomain as illustrated
in Figure 10.12, where the diagonal entry for edge i that resides on the interface has
been highlighted. It is noted that this submatrix would correspond to a portion of
the [T], [R], or [S] matrices that are associated with a Newmark-beta time-marching
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Figure 10.12 Portion of an assembled finite element matrix for the slave-region subdomain
showing augmented matrix entries due to contributions from cells residing in the master-region
subdomain. The regional locations of the edges i, j, k, a1, and a2 are defined in Figure 10.11.
The modified entries are denoted by circles.

scheme for the wave equation, such as the one described by (2.36). The highlighted
ii matrix entry has contributions from both the slave and master regions, where the
additive contribution due to the master region is acquired by message passing.

As described above, a message-passing procedure can be used to complete the
matrix entries for the interface edges associated with the slave region. However,
additional edge-based information will be required to fully time advance the fields
associated with these interface edges, which can be seen by examining the time-
marching scheme described by (2.36). More specifically, field data at the previous
time step for the master region edges that are adjacent to but not connected directly
to the interface will be needed by the interface edges associated with the slave
region. Thus, the slave region finite element matrices require further augmentation
by these master region offset edges, and the corresponding matrix additions for these
edges are also illustrated in Figure 10.12, where the labels a1 and a2 have been
used. A message-passing procedure is again used to acquire this matrix data from
the master region. With the matrix entries for the interface edges corrected, along
with the augmentation due to the offset edges, the slave region matrices are now
suitable for time marching. No additional modifications are required for the master
region matrices. The final solution procedure is to pass the electric field coefficients
associated with the interface edges in the slave region to the master region, and pass
the offset interface edge coefficients from the master region to the slave region.
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master region 

Master
Region
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Figure 10.13 Two-dimensional decomposition of a three-dimensional tetrahedral mesh for
application of the IDD technique. The master region edges that are used to augment the slave
region are highlighted. (See insert for color representation of figure.)

The approach described above corresponds directly to a one-dimensional domain
decomposition. However, the strategy is also used for two- and three-dimensional de-
compositions by additionally considering the edges and corners between the subdo-
mains. A simple two-dimensional decomposition of a three-dimensional tetrahedral
grid that highlights the overlapping edges between the master and slave regions is
shown in Figure 10.13.

A variety of software packages currently exist to partition a global domain into
an arbitrary number of subdomains [28,29], and the procedure above to construct
the finite element matrices for these subdomains is directly applicable. However,
because traditional grid partitioning algorithms operate on the global mesh, practical
limitations may exist with regard to the total number of cells that can be simul-
taneously partitioned. An alternative approach is to independently grid the various
subdomains, subject to conformal surface meshes on the interfaces, and this is why
the IDD technique was formulated in a general manner. Assuming that a sufficient
number of distributed computer processors are available, this later approach removes
any restriction on the overall number of finite elements that can be constructed and
solved, although the load balancing efficiency of the subdomains may not be optimal
for certain applications.

As mentioned previously, iterative solution techniques can benefit from well-
designed preconditioners. For the FETD method, the incomplete LU (ILU) factoriza-
tion technique leads to an efficient preconditioner for the global system matrix. By
judiciously increasing the matrix fill-in for the ILU, the number of iterations required
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for a defined solution residual can be reduced, albeit at the expense of increased
computer memory storage requirements as well as a larger number of floating-point
operations per iteration. As the variation between the maximum and minmum finite
element edge lengths increases, which typically occurs when resolving the fine de-
tails of antenna feeds, a proportional increase in the ILU fill-in can effectively keep
the required number of iterations relatively low, with a typical iteration count being
less than 10, even with edge-length ratios exceeding 100 : 1. As the fill-in is further
increased, the ILU technique will eventually reduce to a full LU factorization and
the iterative solution method will converge in a single iteration, thereby rendering a
functional equivalence between iterative and direct solution techniques.

The ILU preconditioner can also be applied to the individual subdomains associ-
ated with a domain decomposition. However, when applied at the subdomain level
the ILU performance can become degraded relative to its application to the global
matrix. This is because the dot products associated with an iterative solution method
must be accumulated globally, even though only those edges within a particular sub-
domain are included in the matrix–vector multiplications. Consequently, application
of a local ILU preconditioner at the subdomain level may not provide a sufficiently
robust preconditioner relative to the global level. The result may be an increase in the
number of iterations required to reach a defined solution residual for the partitioned
domain relative to a single global domain. The development of robust preconditioners
for the massively parallel application of iterative solution methods remains an impor-
tant research topic in computational sciences. A promising class of preconditioners
for this purpose is based on multigrid concepts [30].

The iterative domain-decomposition technique described in this subsection is ap-
plicable to arbitrary three-dimensional geometry, although the method is particularly
beneficial to applications with repetitive subdomains, such as phased arrays and
frequency-selective surfaces. For example, by applying a one-dimensional domain
decomposition of a finite phased array, it is only necessary to grid three rows of
the array: specifically, the front and back rows, as well as a single row from the
center region. Each row is then mapped to a computer processor, with the center
row simply being translated the appropriate number of times to construct the desired
physical depth of the array. With a two-dimensional decomposition strategy it is only
necessary to build nine zones of the finite array, where these zones also correspond
to those shown in Figure 10.2. For a massively parallel computer implementation,
each of these unit cells, with the appropriate spatial translations, could be placed
on a separate processor and solved concurrently, with the result being numerically
equivalent to treating the entire array as a single domain. An example of a 25 × 25
ultrawideband phased array using the one-dimensional IDD approach is discussed in
the following section.

10.2.3 Application Examples

In this section we present three examples simulated using the time-domain finite
element method: The first two employ the dual-field domain-decomposition method
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Figure 10.14 (a) Geometry of a 10 × 10 Vivaldi array. (b) The unit cell (w = 40 mm,
d = 55 mm; substrate thickness h = 1.5 mm, relative permittivity εr,sub = 3.0; stripline width
is 2 mm, relative permittivity εr,strip = 1.0). (After Lou and Jin [26], Copyright C© Elsevier
2007.) [See insert for color representation of (a).]

and the third uses the iterative domain-decomposition method for the solution of the
matrix equation in each time step.

The first example deals with the characterization of a broadband phased-array
antenna, which consists of 10 × 10 Vivaldi elements illustrated in Figure 10.14(a).
The unit cell configuration is shown in Figure 10.14(b). This configuration is similar
to the one shown in Figure 9.12, but now having different dimensions and the feed
is a stripline from below the ground plane. The spacing between the array elements
is 40 mm in both the x- and y-directions. The separation corresponds to one-half
wavelength at 3.75 GHz. An infinite ground plane is assumed and the stripline feed
is modeled as a TEM port. The simulation employs 144 subdomains, and the total
number of unknowns is approximately 3.3 million. The voltage standing-wave ratio
(VSWR) parameter calculated at the feed port of the center element is shown in Figure
10.15 for two scan angles. A prominent feature of the VSWR curve is the two sharp
peaks occurring at 3.92 and 5.32 GHz when the array is configured for broadside
radiation. As discussed in Chapter 9, such phenomena, referred to as the impedance
anomalies, have been observed in the frequency-domain analysis of the infinite array
of Vivaldi antennas [31,32]. The anomalies can be modeled as the excitation of certain
resonant modes in the unit cell cavities, which are formed by the ground plane, the
electric conducting surfaces on the sidewalls, and a magnetic conducting surface
on the open aperture. The resonant frequencies predicted by the cavity model are
f10 = 3.99 GHz and f11 = 5.55 GHz, which are similar to the resonant frequencies
obtained by the numerical simulation. Note that the cavity model does not take into
account the thin dielectric substrate. If the effect of the dielectrics is considered, the
resonant frequencies predicted would become slightly lower. The radiation patterns
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Figure 10.15 VSWR calculated at the feed port of the center element for a 10 × 10 Vivaldi
array. (After Lou and Jin [26], Copyright C© Elsevier 2007.)

for a few scan angles are displayed in Figures 10.16 and 10.17 for both E- and
H-planes.

The second example was not designed for any practical applications; rather, it
was designed as one of the test cases to verify the dual-field domain-decomposition
method and demonstrate the unique characteristics of electromagnetic bandgap struc-
tures. The example consists of a monopole placed in the center of a 9 × 9 square
array of dielectric cylinders on an infinitely large ground plane, as illustrated in Fig-
ure 10.18. The periodic length of the array is denoted as a in both directions, which
is often referred to as the lattice constant. The dielectric cylinders have a height of
h = 1.5a, a radius of r = 0.18a, and a relative permittivity of 11.56. The monopole
has a height of h′ = 0.75a and a radius of r ′ = 0.1a and is fed by a coaxial waveg-
uide below the ground plane with an inner radius of ri = 0.1a and an outer radius
of ro = 0.23a. The monopole replaces the dielectric cylinder at the center and is
excited with a modulated Gaussian pulse with a central frequency of f0 = 0.4c0/a.
This problem was simulated using the dual-field domain-decomposition method in
the time domain [26] with approximately 1.4 million unknowns, and the reflection
coefficient calculated at the coaxial port in the time domain is plotted in Figure
10.19(a). The reflection coefficient as a function of frequency obtained using the
Fourier transform is given in Figure 10.19(b) and is compared with the prediction by
the FETI–DPEM1 in the frequency domain [33]. We chose to compare the predictions
of the reflection coefficient because this parameter is related directly to the near field
and is more sensitive to errors in the numerical computation. Radiation patterns, in
contrast, are rather insensitive to the errors in the near-field computation and are not
ideal to verify a solution. Figure 10.19(b) shows excellent agreement between two
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Figure 10.16 E- and H-plane radiation patterns for a 10 × 10 Vivaldi array. (a) Broadside
scan. (b) θs = 45◦ and φs = 90◦. (After Lou and Jin [26], Copyright C© Elsevier 2007.)
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Figure 10.17 E- and H-plane radiation patterns for a 10 × 10 Vivaldi array. (a) θs = 45◦

and φs = 0◦. (b) θs = 45◦ and φs = 45◦. (After Lou and Jin [26], Copyright C© Elsevier 2007.)
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Figure 10.18 Monopole placed at the center of a 9 × 9 array of dielectric cylinders on an
infinitely large ground plane.

predictions even though the two simulations are based on different formulations and
simulated in different domains. The slight frequency shift is caused by the insuffi-
cient mesh density in the dual-field domain-decomposition calculation. A bandgap
is observed clearly around f = 0.35c0/a, where the electromagnetic field is unable
to propagate through the lattice, and the total power is reflected back into the feed
line.

The third example is a 25 × 25 ultrabroadband finite array as illustrated in Figure
10.20. The design of this array is based on the unit cell shown in Figure 9.16, where
the radiating elements are connected bowties. The substrate of the array is based on
a single-pole Debye dispersive magnetic material. The hybrid FETD–FDTD method
described in Chapter 4 was used for this application, where the FETD region contained
the array. The finite array was spatially partitioned by using a one-dimensional
domain decomposition. Because of the repetitive nature of the array elements in
the center region, it was only necessary to create a 25 × 3 finite element grid that
would be used to characterize the entire 25 × 25 array. Specifically, the center row
of the 25 × 3 grid was translated to fill the complete center section of the array
structure, as shown in Figure 10.20. The 25 rows of the array were each mapped to a
separate distributed computer processor and solved concurrently by using the iterative
domain-decomposition technique described in Section 10.2.2. The global FETD
domain consisted of approximately 50 million unknowns, and its solution required
approximately 12 seconds per time step using 2.6-GHz Opteron processors, with a
steady state being achieved in 3600 time steps. The broadside realized gain, which
includes the mismatch and absorptive losses for each element in the array, is shown in
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Figure 10.19 Reflection coefficient observed at the coaxial port. (a) The amplitude in time
computed by the dual-field domain-decomposition method. (b) The magnitude as a function
of the normalized frequency computed by the dual-field domain-decomposition method and
the FETI–DPEM1 method. (After Li and Jin [33], Copyright C© Optical Society of America
2007.)

Figure 10.21. The performance of this array is compared to that of the ideal aperture
(i.e., 4π A/λ2, where A = 0.25 m2 denotes the aperture area).

10.3 SUMMARY

In this chapter we discussed the finite element modeling and analysis of large finite
antenna arrays, which is often considered to be one of grand challenges in compu-
tational electromagnetics because of the size of the resulting numerical system and
the importance of arrays to both commercial and military applications. The complete
and rigorous analysis of a finite array has many practical benefits. First, it provides
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Figure 10.20 Ultrabroadband, 25 × 25 bowtie phased array etched on a dispersive magnetic
substrate with a ground plane. The unit cell is based on Figure 9.16.

a reference solution to assess the accuracy of more efficient approximate solutions,
such as those based on the unit cell analysis, array theory, and asymptotic approaches.
Second, it provides critical information about the edge truncation effect, including
edge diffraction and the variation of the active input impedances for the elements
near the edges of the array, which is difficult to measure. Third, the ability to apply
arbitrary excitations to the radiating elements permits the study of many problems
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Figure 10.21 Realized gain for a 25 × 25 connected bowtie array compared to that of an
ideal aperture.



P1: JYS

c10 JWBK322-Jin September 30, 2008 12:54 Printer: Yet to come

384 FINITE PHASED-ARRAY MODELING

that cannot be handled using an infinite array model that requires uniform excitation.
Some of these problems include the characterization of mutual coupling between
individual array elements and mutual coupling between subarrays.

Similar to the analysis of individual antennas, the finite element analysis of large
finite antenna arrays can be accomplished in either the frequency or the time domain,
both of which were covered in this chapter. The basic approach was to employ the
idea of domain decomposition, where each array element, or a collection of array
elements, is considered as a subdomain. For the frequency-domain analysis, many
domain-decomposition algorithms have been proposed, such as those based on the
Schwarz methods and the Schur complement methods. In this chapter we described
three methods that have been fully developed, tested extensively, and are well suited
for the analysis of finite arrays.

The first frequency-domain method was based on the dual–primal finite element
tearing and interconnecting method adapted for solving electromagnetic field prob-
lems. This method distinguished itself from other domain-decomposition methods
in the construction of a global corner-related coarse problem, which was coupled
with the global interface system of equations. The global coarse problem related the
subdomain fields over the entire computational domain and propagated the residual
error globally in each iteration for solving the reduced interface equation. As a result,
the method exhibited an excellent numerical scalability with respect to the num-
ber of subdomains, the finite element mesh density, and the wavenumber when the
subdomain size is smaller than one-half wavelength. The second method was an im-
proved version of the first method, where the fields across the subdomain interfaces
were coupled through weak enforcement of the Robin-type transmission conditions.
In this method, two sets of Lagrange multipliers or dual variables were introduced
over each subdomain interface. Again, a global corner-related coarse problem was
constructed together with the global reduced interface system of equations. Because
of the use of the Robin-type transmission conditions, the second method became
numerically scalable regardless of the frequency of the electromagnetic fields, which
is an important characteristic that is particularly attractive for high-frequency appli-
cations. The third method was designed to be applicable when the subdomains do
not have matching meshes at their interface, which could alleviate the requirement of
periodic meshes and thus simplify mesh generation. In this method, two sets of primal
variables (related to the tangential electric fields) and two sets of Lagrange multipli-
ers (related to the tangential magnetic fields) were introduced over the subdomain
interfaces. The subdomain interior unknowns were eliminated first to formulate a
system of equations for the interface unknowns, which were then solved using either
the Gauss–Seidel iteration method or a Krylov subspace method with a symmetric
Gauss–Seidel preconditioner. All three methods can effectively exploit the geomet-
rical repetitions in a finite array and are capable of simulating large finite arrays even
on a desktop computer.

Compared with the frequency-domain analysis, the time-domain analysis of large
finite antenna arrays is more challenging because the fields over the entire compu-
tational domain have to be updated in each time step. In this chapter we described
two strategies to perform the time-domain finite element modeling of a large finite
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array using the idea of domain decomposition. The first strategy was based on a
recently developed novel technique, the dual-field domain-decomposition method. In
this method the vector wave equations for both the electric and magnetic fields were
discretized using the finite element method in each subdomain. A leapfrog algorithm
was then designed that allowed the electric and magnetic fields to be updated in
an alternating fashion. The fields across the subdomains were coupled explicitly by
exchanging the surface fields at the interface between adjacent subdomains. With this
domain decomposition, the finite element matrix for the entire computational domain
was decomposed into many smaller matrices, whose factorization requires signifi-
cantly less computer time and memory, thus permitting the analysis of large-scale
electromagnetic problems. The geometrical repetitions in a finite array could also be
utilized since most subdomains have the identical finite element matrices. However,
since the fields at the subdomain interfaces were exchanged explicitly, the dual-field
domain-decomposition algorithm was only conditionally stable, with the maximum
time-step size dictated by the finite element discretization of the subdomain interfaces.
The second strategy was to apply the traditional time-domain finite element method
and employ the domain-decomposition idea for the iterative solution of the large finite
element matrix equation in each time step. This approach preserved the unconditional
stability of the time-domain finite element solution. Because of the need to update the
fields over the entire computational domain in each time step, the efficiency of time-
domain finite element domain-decomposition techniques may be reduced relative to
their frequency-domain counterparts, particularly if only narrowband information is
required. However, the ability of the finite element time-domain method to perform
broadband characterizations and to model nonlinear devices, components, and media
(a feature that has not yet been explored extensively) can be highly attractive for the
future design of advanced actively driven broadband phased arrays.
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11 Antenna–Platform Interaction
Modeling

In practice, antennas are integrated into platforms, such as airframes, missiles, satel-
lites, ships, or structural supports for commercial wireless applications. Mounting
an antenna on a platform frequently introduces distortion in its expected radiation
pattern and causes coupling between the antenna and the platform. The distortion
in the radiation pattern may reduce the desired coverage for effective communica-
tions or alternatively, compromise the accuracy of postprocessing algorithms used
for separating and locating signals. The term installed performance typically refers
to the performance of the antenna in the presence of the platform. The existence
of mutual coupling between multiple onboard antennas—caused by space waves,
surface waves, and scattering by the platform—can further degrade the performance
of antenna systems through co-site interference, where the term co-site is used to de-
scribe two or more antenna systems that are operating simultaneously and is related
to the underlying electronics as well as the phenomenology of the electromagnetic
coupling. In addition, because antenna systems utilizing amplitude and phase re-
ceived at various antenna ports to locate signals may experience degraded accuracy,
it is important to calibrate direction finding and angle-of-arrival systems by using
analytical or numerical predictions of the anticipated amplitude and phase received
at the antenna ports as a function of angle, frequency, and polarization. For these
reasons, it is important to develop accurate numerical prediction tools to characterize
the radiation patterns and mutual coupling of antennas mounted on a complex, and
often electrically large, platform.

Predicting the installed performance of antenna systems has historically been
based on the use of ray-optics techniques, such as physical optics (PO), geometrical
optics (GO), and their extensions, which include the geometrical theory of diffraction
(GTD) and the uniform theory of diffraction (UTD). In these approaches, predicted
or measured antenna patterns based on the antenna in isolation can be used as a
source for eminating rays which then interact with the platform and thereby lead to
predictions for the effect of the platform on the radiated antenna patterns. Provided
that the frequency is sufficiently high that optics-based assumptions are valid, these
techniques have been proven to be powerful and useful. However, these methods
can have challenges with the effects of complex materials, shadow boundaries, and
near-field physics.

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.

388



P1: JYS
c11 JWBK322-Jin October 3, 2008 20:14 Printer: Yet to come

COUPLED ANALYSIS 389

To provide a more rigorous analysis of installed antenna performance, especially
in the lower-frequency bands, the use of fast multipole–accelerated boundary integral
formulations has recently become popular. Because these acceleration techniques
can reduce the traditional moment-method computational complexity of O(N3) down
to O(N log N), the full-wave analysis of, for example, moderate-size airframes in
the S-band (2–4 GHz) frequency region is tractable with small distributed parallel
computer systems. In contrast to a purely ray optics–based analysis, the accelerated
boundary integral approaches use detailed models of the antennas, and therefore
account rigorously for their near-field physics, which can be important in a co-site
analysis. In addition, the hybridization of boundary integrals and ray-optical methods
is also widely used for the analysis of installed antenna performance. However,
accommodating material regions that cannot be characterized by a surface impedance
representation, or by a known Green’s function, will reduce the performance and
hence the application domain of the boundary integral methods. To address this
issue, fast multipole–accelerated volumetric integral equations that can accommodate
inhomogeneous regions of complex materials are currently an active research topic
in computational electromagnetics.

A third approach to an installed antenna performance analysis is based on the direct
use of differential equation methods, such as the finite element and finite-difference
methods, as well as their hybridization with the other two approaches discussed
above. By adopting advanced domain-decomposition techniques, and because of the
excellent ability of finite element and finite-difference techniques to accommodate
complex materials, this approach can provide increased generality with regard to the
overall complexity of an antenna–platform interaction analysis. Therefore, in this
chapter we discuss the finite element modeling of antennas mounted on a platform,
using two approaches. The first is a rigorous coupled analysis in which the effect
of the platform is included in both the computation of the radiation patterns and
the calculation of the input impedance and mutual coupling in the multiantenna
case. The second is an approximate and decoupled approach in which antennas are
first analyzed in isolation from the platform to determine their near-field equivalent
surface currents or their radiation patterns, and then the effect of the platform is
considered in computation of the radiation patterns by using either a numerical or
an asymptotic technique. The two approaches will leverage some of the best known
domain-decomposition concepts, as well as accelerated boundary integral equation
formulations and ray-optical techniques.

11.1 COUPLED ANALYSIS

The most accurate approach to analyzing antennas installed on a platform is to treat
both the antennas and the platform as a single electromagnetic system and apply any
first-principle method for its analysis. For example, we can enclose the entire system
with an artificial surface and use the finite element method in conjunction with an
absorbing boundary condition to compute the electromagnetic fields. Alternatively,
we can combine the finite element method and the finite-difference time-domain
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(FDTD) method so that the FDTD can be used to model any regular regions inside
the artificial surface. If the platform is made of perfectly conducting surfaces, a more
efficient approach is to tailor the finite element–boundary integral (FE-BI) method
specifically to this application so that the induced surface currents on the platform
can be formulated accurately with a boundary integral equation. In this section we
discuss these three approaches briefly together with their technical challenges and
solutions.

11.1.1 FETI–DPEM with Domain Decomposition

As mentioned earlier, one of the simplest approaches to analyzing antennas installed
on a platform is to apply the finite element method directly to the entire problem.
The efficiency of this approach depends highly on the size and shape of the platform.
When the platform is electrically large and has an irregular shape, the resulting finite
element system can be extremely large, involving a few hundred millions or perhaps
billions of unknowns. Even though the finite element matrix is highly sparse, solving
such a large linear system of equations is challenging for both direct and iterative
solvers. A solution to this problem is to use a domain-decomposition technique that
leverages the increasing power of parallel computing.

Among various domain-decomposition schemes, the electromagnetic dual–primal
finite element tearing and interconnecting (FETI–DPEM) method described in Chap-
ter 10 for the finite-array analysis is one of the most efficient. If we examine the
formulation of the FETI–DPEM carefully, we find that this method is not restricted
to only finite-array geometries and, in fact, can be applied to arbitrary geometries as
well. There are two differences between its applications to an array and to an arbitrary
geometry. The first is that the array geometry provides a natural decomposition of the
entire domain into subdomains, whereas for an arbitrary domain, one has to design an
algorithm to divide the entire domain automatically into a desired number of subdo-
mains. Each subdomain should have an approximately equal number of unknowns,
and the number of unknowns on the subdomain interfaces should be kept to a min-
imum to minimize the size of the final reduced-order interface system. Fortunately,
partitioning algorithms have been researched actively over the past several years, and
a variety of software tools are now available [1]. The second difference is that in an
array problem many subdomains are identical and hence have the same finite element
matrix. When this matrix is assembled and factorized for one subdomain, it can be
used for the remaining identical subdomains. In contrast, for an arbitrary problem the
subdomains are generally different and a finite element matrix has to be assembled
and factorized for each subdomain, which could greatly increase the computational
time of the FETI–DPEM. However, with the availability of massively parallel com-
puting systems, the computation associated with the subdomains can be distributed
effectively to different processors for parallel computation. No interprocessor com-
munication is required with this step of the FETI–DPEM technique because the finite
element matrix for each subdomain is completely independent of other subdomains,
and coupling between the subdomains occurs later through solution of the global in-
terface problem. Once the interface equation is solved, the calculation of the fields in
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the subdomains is again completely independent of each other and can be distributed
to different processors. Consequently, the parallel FETI–DPEM is highly efficient.

The approach described above has recently been implemented for the analysis
of arbitrary electromagnetic scattering and radiation problems [2]. For example, the
problem discussed in Section 7.1.2, which was solved with the time-domain finite
element method, has also been simulated using the FETI–DPEM. This problem
consists of five monopole antennas mounted on a finite ground plane, and its ge-
ometrical details are given in Figure 7.2. The finite element discretization results
in 1.4 million unknowns. When the computational domain is decomposed into 66
subdomains, the dimension of the interface system is 134,000. The computation is
distributed onto 16 processors. Figures 11.1 and 11.2 show calculated input and

Figure 11.1 Self- and mutual impedances for five monopole antennas on the finite plate
shown in Figure 7.2. (a) Z22. (b) Z25. (After Li and Jin [2], Copyright C© IEEE 2008.)
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Figure 11.2 Self- and mutual impedances for five monopole antennas on the finite plate
shown in Figure 7.2. (a) Z55. (b) Z51. (After Li and Jin [2], Copyright C© IEEE 2008.)

mutual impedances observed at the input port of the SMA connector, which is 1.08
cm below the surface of the ground plane. The results are compared with the pre-
vious calculations using the time-domain finite element method, which are given in
Figure 7.3. Note that the results displayed in Figure 7.3 are measured at the aperture
of the coaxial feed coincident with the ground plane, and these results have been
converted to those shown in Figures 11.1 and 11.2 by using transmission-line theory.
Considering the fact that the calculation of the input and mutual impedances depends
directly on the fields local to the antenna feeds, agreement between the two solutions
is good. The calculated radiation patterns also agree well with those displayed in
Figure 7.4.
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11.1.2 Hybrid FETD–FDTD with Domain Decomposition

As noted in the preceding subsection, the major challenge in the finite element
analysis of antennas on a large platform is to solve the extremely large number
of unknowns associated with the volumetric finite element mesh that fills the large
space between the platform and the truncation surface. This challenge can be partially
resolved by using the hybrid FETD–FDTD technique described in Chapter 4. With
this technique, the finite element method is used to model the antennas and the
curved surfaces of the platform, while the remainder of the computational domain is
discretized with the efficient FDTD method. This approach can significantly reduce
the size of the finite element region and hence the finite element matrix. Consequently,
both computer memory requirements and the computational time can be reduced
significantly. In addition, further computational benefits may be obtained by applying
parallel computing algorithms to both the finite element and FDTD regions of the
computational volume. Because the finite element subdomains are contained within
the FDTD background grid, a variety of parallelization strategies become possible,
and a few of these are described in this subsection.

Distributed parallelization techniques for the FDTD method are mature and very
efficient [3,4]. One-, two-, and three-dimensional decompositions of FDTD grids that
contain billions of cells have been mapped successfully onto parallel computers with
hundreds of processors [5]. One of the more common parallelization strategies for
the FDTD method is similar to the iterative domain decomposition (IDD) that was
described in Section 10.2.2 for the time-domain finite element technique. However,
because the traditional FDTD method is an explicit time-stepping algorithm, there
is no need to augment the matrix entries for those edges that lie on the interface
between subdomains, and therefore implementation of parallel FDTD algorithms is
considerably simplified.

Figure 11.3 illustrates a possible one-dimensional domain decomposition along
the z-direction for the FDTD algorithm. The approach is based on a one-cell overlap-
ping region in which a message-passing procedure is used to exchange the boundary

FDTD
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FDTD
Domain 1

(3)y,1E

z,k

FDTD Subdomain
Overlap Region

y,j

0
max(       )k

n

(2)y,1En

(1)y,1Eny,0En

0
max( −1)ky,0En

0
max( −2)ky,0En

Figure 11.3 Interface region between two FDTD subdomains, showing an interchange of
electric fields.
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electric fields. In the FDTD domain 0, the electric field component Ey at local
position z0 = k0

max �z is denoted by Ey,0(k0
max), where k0

max denotes the number
of cells in the z-direction in domain 0. Similarly, the Ey component in domain 1
at local position z1 = 0�z is denoted by Ey,1(1). Because domain 0 terminates
at the local index k0

max, En
y,0(k0

max) must be updated from domain 1 through the
mapping En

y,1(2) → En
y,0(k0

max). Similarly, domain 1 requires the update mapping
En

y,0(k0
max − 1) → En

y,1(1). This procedure can easily be extended to two- and three-
dimensional FDTD domain decompositions. Because advanced parallel computers
often dedicate separate processors to the message-passing communication, it is pos-
sible to time-advance the field components while communicating the field data map-
pings. Consequently, parallel efficiencies exceeding 90% are often obtainable, even
with a large number of subdomains and computer processors.

The hybrid FETD–FDTD technique can be applied with either a single FETD re-
gion or multiple FETD regions inset into the FDTD background grid. The inclusion
of multiple FETD regions can be useful for predicting installed antenna performance
because the interaction effects between these regions can easily be studied through
simple spatial translations of their locations within the supporting FDTD mesh. A
simple parallel decomposition would place each of the FETD regions on a separate
processor and then further adopt an FDTD decomposition such as that described
above. Alternatively, the iterative domain-decomposition technique described in Sec-
tion 10.2.2 could be used for the distributed parallel processing of each of the FETD
regions, where each region could have a different number of subdomains. For ex-
ample, a two-dimensional representation of four FETD regions inset into an FDTD
grid is illustrated in Figure 11.4. Each FETD region contains a cylindrical monopole
antenna along with its coaxial feeding system. The monopoles reside on a metallic

FETD
Region 0

FETD
Region 1

FETD
Region 2

FETD
Region 3

Coaxial Fed Monopoles Platform

FDTD Background Mesh

Figure 11.4 Four coaxial-fed monopoles on a simple platform. Each monopole is enclosed
in an unconditionally stable FETD region that is inset into an FDTD uniform background grid.
Independent domain decompositions could be applied to each region of the global domain.
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platform that resides primarily within the FDTD grid, although the metallic surface
of the platform extends into the FETD regions as shown in Figure 11.4. A practical
parallel computer implementation could partition each FETD monopole region into
several finite element subdomains, as well as partition the background FDTD region
into several FDTD subdomains. Note that the total number of FETD subdomains
does not have to equal the total number of FDTD subdomains, although this will
be the case in certain decompositions. Because the IDD technique preserves the lo-
cal unconditional stability of the FETD regions, the parallel FETD–FDTD method
retains the original properties of the serial formulation.

To illustrate the application of the parallel FETD–FDTD method, we consider the
problem illustrated in Figure 11.5, where two monopole antennas are mounted on

Figure 11.5 (a) Solid model of a 15-m-long airframe. (b) Enclosure of the finite element
discretization region. (After Riley et al. [6], Copyright C© IEEE 2002.) (See insert for color
representation of figure.)
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the front edges of the wings of an airframe [6]. The 15-m-long airframe is illustrated
in Figure 11.5(a), and its surface is discretized by 95,000 triangular patches. The
entire airframe, including the antennas, is enclosed by a rectangular container that
defines the unstructured finite element region as shown in Figure 11.5(b). This single
finite element region is then decomposed into 256 subdomains for 256 processors by
using a technique based the Kernighan–Lin partitioning algorithm [7], and the total
number of unknowns in this unstructured grid region is approximately 2.7 million.
By using the techniques described in Chapter 4, the unstructured grid is interfaced
with a rectangular structured FDTD grid with approximately 12 million FDTD cells,
including those in the perfectly matched layers that provide the grid truncation. The
FDTD grid is further partitioned and its calculation is distributed onto 256 proces-
sors by using a simple three-dimensional block decomposition process. The surface
current on the airframe at a time instant of 45 ns (900 time steps) for the monopoles
driven by a Gaussian-modulated 500-MHz sinusoid is shown in Figure 11.6.
At this frequency, the airframe is approximately 25 wavelengths long. Surface cur-
rent visualizations can provide a useful diagnostic tool to identify coupling paths for
specific platform-installed antenna configurations.

An additional example based on the hybrid FETD–FDTD technique is shown in
Figure 11.7(a). This geometry consists of two surface-mounted, dual-frequency and
circularly polarized, stacked patch GPS antennas mounted on a missile platform that
is approximately 40 wavelengths in length and 20 wavelengths in circumference. The
two antennas are located on opposite sides of the platform. A domain-decomposition
approach that isolates the patch antennas from the platform yet retains full coupling

Figure 11.6 Surface electric current distribution due to radiation by two monopole antennas
mounted on a simple airplane model. (After Riley et al. [6], Copyright C© IEEE 2002.) (See
insert for color representation of figure.)
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Figure 11.7 Two dual-frequency coaxially fed stacked patch antennas mounted on an elec-
trically large platform. (a) Geometry. (b) Measurement setup.

is used, where the basic strategy is similar to that shown in Figure 11.4. The time-
domain finite element method is used to model the antennas and a thin volumetric
layer placed around the perimeter of the platform. The finite element region is tran-
sitioned to an FDTD grid that is terminated with perfectly matched layers using
the technique described in Chapter 4. The radiation patterns of the antennas on the
platform were measured using the setup shown in Figure 11.7(b). The measurements
were performed by the Physical Science Laboratory, New Mexico State University.
Predictions and measurements for the right-hand circularly polarized (RHCP) gain
pattern at approximately 1.5 GHz are shown in Figure 11.8. The cut plane is through
the antennas and along the axis of the platform. Good agreement is seen for all angles,
with the exception of the tail section. The positioner shown in Figure 11.7(b) that was
used to support and rotate the physically large platform adversely affected the mea-
surements for observation angles in this region. It is noteworthy that RF predictions
often overcome practical measurement challenges, such as blockage by positioners
or ground reflections when antennas are mounted on the bottom of airplanes and
measured on the runway.
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Figure 11.8 Predicted and measured RHCP gain for a cut plane taken axially through the
antennas. (a) Prediction. (b) Measurement. Equivalent decibel scales with 2-dB increments.
The platform positioner affected the data measured for observation angles in the tail section.

As discussed in Chapter 2, one of the major sources of error in the finite ele-
ment analysis of electrically large wave propagation problems is the grid dispersion
error. The same is true for the FDTD analysis. For both the FDTD technique and
the finite element method based on first-order basis functions, the dispersion error is
proportional to (h/λ)2, where h denotes the elemental edge length and λ denotes the
wavelength. Because the dispersion error is accumulative, the total dispersion error
becomes larger over electrically large distances. Therefore, when the finite element
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method and the FDTD are applied to electrically large geometries, the grid density
must be increased accordingly to control the dispersion error. For example, when
the computational domain is increased by a factor of 10, the element size must be
reduced by a factor of 3 to maintain a similar overall dispersion error. However, it
must be pointed out that although both structured and unstructured grids have dis-
persion error proportional to (h/λ)2, the magnitude of the error in an unstructured
grid is typically much smaller than that in a structured grid because the inherent ran-
domness of an unstructured grid tends to mitigate the accumulation of the dispersion
errors [8].

11.1.3 Hybrid FE–BI Method with FMM Acceleration

One of the most accurate methods for the analysis of complex antennas that are
mounted on a platform with electromagnetically impenetrable surfaces is the finite
element method combined with boundary integral equations, which is commonly
known as the FE-BI method and was described in Section 3.3. In the FE-BI method,
the finite element technique is used to model the details of the antennas, while
boundary integral equations are employed to model the effects of the platform. Since
boundary integral equations model wave propagation by using a Green’s function,
they are free of the spatial dispersion errors that are associated with the volumetric
finite element or finite-difference methods. This characteristic, combined with the
facts that they require only surface discretization and satisfy the Sommerfeld radiation
condition rigorously, makes the FE-BI method an attractive approach for modeling
antennas on a platform.

Formulation of the FE-BI method for the analysis of antennas on a platform is
similar to the approach described in Section 3.3. To illustrate it briefly, we consider
the problem shown in Figure 11.9, where two antennas are mounted on a perfect
electrically conducting (PEC) platform. To formulate an FE-BI solution, the first
step is to separate the finite element region from the exterior region where the fields
are formulated by a surface integral equation. For conformal antennas, the aperture

PEC Platform

SA
SP

SB

VA

VB

Figure 11.9 Two antennas mounted on an electrically conducting platform.
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provides a natural separation surface, which is denoted as SA. For nonconformal
antennas, we can introduce an arbitrary surface, such as a hemispherical surface, to
enclose the antenna. This surface is denoted as SB in Figure 11.9. The remainder of
the conducting surface of the platform is denoted by SP. Both tangential electric and
magnetic fields exist on SA and SB; however, only tangential magnetic fields exist on
SP, which are, of course, related to the induced surface electric currents. Therefore,
for the problem illustrated in Figure 11.9, the coupled FE-BI system corresponding
to (3.125) is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KVA,VA KVA,SA 0 0 0 0 0
KSA,VA KSA,SA BSA,SA 0 0 0 0

0 0 0 KVB ,VB KVB ,SB 0 0
0 0 0 KSB ,VB KSB ,SB BSB ,SB 0
0 PSA,SA QSA,SA 0 PSA,SB QSA,SB QSA,SP

0 PSB ,SA QSB ,SA 0 PSB ,SB QSB ,SB QSB ,SP

0 PSP ,SA QSP ,SA 0 PSP ,SB QSP ,SB QSP ,SP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bVA

bSA

bVB

bSB

binc
SA

binc
SB

binc
SP

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(11.1)

This system is obtained by combining the finite element matrix equations for the
fields in the antenna regions VA and VB with the boundary matrix equation discretized
from the combined-field integral equation, and the resulting matrices are similar to
those defined in Section 3.3. To be more specific, the K matrices are defined by
(3.92) with the exception that the volume integral is now defined over either VA or
VB, and the B matrices are defined by (3.93) except that the surface integral is now
defined over either SA or SB. The P and Q matrices are defined by (3.123) and (3.124),
respectively, except that the surface integration in (3.123) and (3.124) is carried out
over the surface defined by the first subscript and the surface integration in (3.109)
and (3.110) is carried out over the surface defined by the second subscript. For the
right-hand-side vector in (11.1), the top four vectors are due to internal sources and
they are given by (2.19), with the exception that the volume integral is now defined
over either VA or VB. In a scattering analysis, the bottom three vectors are due to
incident field excitations on SA, SB, and SP, respectively; however, in an antenna
radiation analysis, these terms vanish.

The K and B matrices are highly sparse, whereas the P and Q matrices are fully
populated. Therefore, the system matrix in (11.1) consists of both dense and sparse
matrices. Depending on the size of the problem, (11.1) can be solved either by a
direct solver when the matrix size is sufficiently small, or otherwise by iteration. If a
direct solver is employed, it is preferable to reduce (11.1) into a system of a smaller
size,

⎡
⎣ Q ′

SA,SA
Q′

SA,SB
QSA,SP

Q′
SB ,SA

Q′
SB ,SB

QSB ,SP

Q′
SP ,SA

Q′
SP ,SB

QSP ,SP

⎤
⎦
⎧⎨
⎩

H SA

H SB

H SP

⎫⎬
⎭ =

⎧⎨
⎩

b′
SA

b′
SB

b′
SP

⎫⎬
⎭ (11.2)
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where

⎡
⎣ Q′

SA,SA

Q′
SB ,SA

Q′
SP ,SA

⎤
⎦ =

⎡
⎣ QSA,SA

QSB ,SA

QSP ,SA

⎤
⎦−

⎡
⎣ PSA,SA

PSB ,SA

PSP ,SA

⎤
⎦[ 0SA,VA ISA,SA

] [ KVA,VA KVA,SA

KSA,VA KSA,SA

]−1 [
0VA,SA

BSA,SA

]

(11.3)⎡
⎣ Q′

SA,SB

Q′
SB ,SB

Q′
SP ,SB

⎤
⎦ =

⎡
⎣ QSA,SB

QSB ,SB

QSP ,SB

⎤
⎦−

⎡
⎣ PSA,SB

PSB ,SB

PSP ,SB

⎤
⎦[ 0SB ,VB ISB ,SB

] [ KVB ,VB KVB ,SB

KSB ,VB KSB ,SB

]−1 [
0VB ,SB

BSB ,SB

]

(11.4)

⎧⎨
⎩

b′
SA

b′
SB

b′
SP

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

binc
SA

binc
SB

binc
SP

⎫⎪⎬
⎪⎭−

⎡
⎣ PSA,SA

PSB ,SA

PSP ,SA

⎤
⎦[ 0SA,VA ISA,SA

] [ KVA,VA KVA,SA

KSA,VA KSA,SA

]−1 {
bVA

bSA

}

−
⎡
⎣ PSA,SB

PSB ,SB

PSP ,SB

⎤
⎦[ 0SB ,VB ISB ,SB

] [ KVB ,VB KVB ,SB

KSB ,VB KSB ,SB

]−1 {
bVB

bSB

}
. (11.5)

In these equations, subscripts have been added to both the null and identity matri-
ces to indicate their dimensions. The calculation of (11.3)–(11.5) requires solving
two purely sparse, symmetric finite element matrices, which can be accomplished
efficiently by using sparse direct solvers. This direct solution procedure is especially
attractive for the scattering analysis of antennas mounted on a platform.

Equation (11.1) can alternatively be solved using an iterative solver. The iterative
solution approach is preferred if the number of surface unknowns on SA, SB, and
SP is sufficently large such that a direct solution is no longer feasible, or if we are
only interested in just a few right-hand-side vectors. However, to obtain an efficient
iterative solution, there are two challenges that we must overcome. The first is slow
convergence because the matrix in (11.1) typically has a large condition number.
This problem can be handled by using a preconditioned iterative solver. A simple
preconditioner can be obtained from the inverse of the coefficient matrix simply by
retaining the K matrices and discarding all other matrices. The use of this precon-
ditioner is equivalent to solving (11.2) iteratively. A more robust preconditioner can
be constructed by retaining both the K and B matrices and replacing the fully pop-
ulated P and Q matrices with the corresponding sparse matrices defined by (3.128)
and (3.129). As noted in Section 3.3, this highly effective preconditioner is actually
the same as the inverse of the finite element system matrix obtained by replacing
the combined-field integral equation with the first-order absorbing boundary condi-
tion [8]. Since this system matrix is purely sparse, it can be constructed and factorized
efficiently by using a sparse direct solver. Alternatively, the associated precondition-
ing equation can be solved iteratively with an incomplete LU preconditioner. This
results in a two-loop iteration algorithm, in which the outer loop is to solve (11.1)
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iteratively and the inner loop is to solve the preconditioning equation iteratively in
each iteration of the outer loop.

The second challenge to obtaining an efficient iterative solution is the time-
consuming evaluation of the matrix–vector multiplications involving the fully pop-
ulated P and Q matrices. This challenge can be overcome by using a fast algorithm
such as the adaptive integral method or the fast multipole method [9–12]. For a
surface-based application, the fast multipole method is a better choice. To understand
the basic idea of the fast multipole method, we first recognize that matrix–vector
products involving the P and Q matrices represent interactions between the basis
and testing functions. Therefore, Pij and Qij as defined by (3.123) and (3.124) can
be considered as the fields radiated by the basis function gj and received by the
testing function ti(r). To calculate such interactions directly O(N2) operations are
required, where N denotes the total number of basis or testing functions involved.
The basic idea of the fast multipole method [9] for obtaining a fast evaluation of
these matrix–vector products is first to divide the entire surface SA ∪ SB ∪ SP into
groups. The addition theorem is then used to translate the field radiated by different
basis functions within a group into a single center, and this process is called aggre-
gation. By doing this, the number of radiation centers is reduced significantly from
the number of basis functions to the number of groups. Similarly, for each group,
the field radiated by all other group centers can be first received by its center and
then redistributed to the testing functions belonging to the group. This process is
called disaggregation. It has been shown that this one-level fast multipole method
can reduce the memory requirement and computational complexity to O(N1.5 log N).
To further reduce the memory requirement and computational complexity, we can
extend the one-level algorithm to multiple levels. In this multilevel algorithm, which
is known as the multilevel fast multipole algorithm [10], the entire object is first en-
closed in a large box, which is divided into eight smaller boxes. Each subbox is then
recursively subdivided into smaller boxes until the edge length of the smallest boxes
is about one-half wavelength. For a testing and basis function spatially residing in
the same or nearby smallest boxes, their interaction is calculated in a direct manner.
However, when they reside in different boxes such that they are in the far field with
respect to each other their interaction is calculated by the fast multipole method,
as described above. The level of the boxes on which the fast multipole method is
applied depends upon the spatial separation between the testing and basis functions.
The efficiency of the algorithm is obviously enhanced by increasing the ratio of the
far-field interactions to the near-field interactions, and this ratio can be affected by
the manner in which a particular application is discretized. A detailed description of
the multilevel fast multipole algorithm and its application to the FE-BI method may
be found in Refs. 10–12.

The FE-BI formulation described here can be extended to deal with nonmetallic
platforms such as those coated with radar-absorbing materials [13]. It can also be
replicated into a time-domain setting [14]. The following example is taken from
Ref. 13 to demonstrate the capability of the method. The example consists of a
microstrip patch antenna housed in a cavity that resides on a platform consisting
of a conducting circular cylinder and a conducting plate (wing). The microstrip
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cylinder

antenna

Figure 11.10 Microstrip patch antenna placed on a cylinder with a wing. (a) Entire structure.
(b) Cross-sectional view. (After Liu and Jin [13], Copyright C© Wiley 2003.)

patch antenna is designed to operate at 3.3 GHz, and its longer edge is aligned
with the cylinder’s axis. The entire structure is shown in Figure 11.10, and the
detailed information about the patch antenna is given in Figure 11.11. The normalized
radiation pattern in the H-plane is shown in Figure 11.12 for two cases: one has the
patch antenna placed α = 28◦ from the wing and the other is for α = 45◦. It is

6.
0 

cm

3.
0 

cm

2.0 cm

(a)

5.0 cm

cavity

patch

feed

(b)

1.5 cm1.5 cm

0.38 cm

εr = 2.17
0.08 cm

probe feed

substrate

Figure 11.11 Configuration of a microstrip patch antenna. (a) Top view. (b) Side view. (After
Liu and Jin [13], Copyright C© Wiley 2003.)
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Figure 11.12 Normalized radiation pattern in the H-plane at 3.3 GHz for a microstrip patch
antenna placed on a cylinder with a wing. (a) α = 28◦. (b) α = 45◦. (After Liu and Jin [13],
Copyright C© Wiley 2003.)

seen that the numerical results agree well with the measurement for both co- and
cross-polarizations, and the effect of the platform is significant in both cases. For
these numerical simulations, the total number of unknowns is approximately 60,000.
Because of the use of a highly effective preconditioner, only 14 iterations are required
to obtain a converged solution, and the memory used was on the order of 1 GB, due to
the application of the multilevel fast multipole algorithm. This geometry has also been
simulated using the time-domain FE-BI method accelerated with the time-domain
adaptive integral algorithm, which yielded similar results [14].
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The FE-BI formulation presented in this section requires that the finite element
meshes for the antenna regions match exactly at interfaces SA and SB with the surface
mesh used to discretize the boundary integral equation. This requirement may create
challenges for some mesh generators, especially when the finite element regions
and the exterior surfaces are meshed separately. The requirement can be relaxed by
adopting a variety of domain-decomposition schemes. For example, when the finite
element mesh does not match the exterior surface mesh at the interface, we can
introduce two sets of equivalent surface currents (which are related to the tangential
fields) over the interface [15]. One set is used in the finite element formulation of the
interior field, and the other set is used in the boundary integral equation to formulate
the exterior field. These two sets of equivalent surface currents can then be related
by using the Robin-type transmission condition and field continuity conditions. They
can also be expanded independently using different basis functions. In addition to the
regular subdomain basis functions, we can use macro basis functions or entire-domain
basis functions defined over the interface, and the field coupling at the interface can
be accomplished using the generalized scattering matrix approach [16,17].

11.2 DECOUPLED ANALYSIS

In the preceding section we described techniques for a rigorous, coupled analysis of
antenna–platform interactions. These techniques are very accurate, although they are
computationally intensive and their implementation can be tedious. To simplify the
analysis, various approximate numerical schemes have been developed. In a recent
paper by Yilmaz et al. [14], one of the applications analyzed involves the radiation of
a Vivaldi antenna installed on the bottom of an airplane (see Figure 5.21). The results
show that although the platform has a significant effect on the radiation patterns,
its effect on the input impedance is very small and can be neglected for practical
purposes. This is to be expected because when the field radiated by the antenna
is reflected and diffracted by the platform, the radiation patterns can be changed
significantly. However, for the platform to affect the input impedance the platform
has to reflect a significant amount of power back to the antenna, and the antenna
has to couple the power reflected to the input port. This is unlikely to happen in
many practical applications. Therefore, one of the primary goals for the analysis of
antenna–platform interactions is to evaluate the effect of the platform on the radiation
patterns instead of the effect of the platform on the input impedance. This evaluation
can be carried out in an approximate sense by a decoupling process, which can
simplify the analysis significantly. In this decoupled analysis, we first analyze the
antenna by focusing on the antenna and its nearby structures to obtain the current
distribution on the antenna or the radiated near field, and then compute the far-field
radiation pattern by letting the current radiate in the presence of the platform or by
letting the near field propagate in the presence of the platform. The computation of the
radiation pattern can be carried out by either a numerical method or an asymptotic
technique such as physical optics or the geometrical theory of diffraction. In this
section we describe this decoupled analysis in more detail.
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11.2.1 Near-Field Calculation

The first step in the decoupled analysis is either to calculate the current distribution
on an isolated antenna or calculate its radiated near field. Since the finite element
method works with the field directly, it is more convenient to calculate the near field.
The calculation can be done using the finite element method with the computational
domain truncated with an absorbing boundary condition, a perfectly matched layer,
or a boundary integral equation, as discussed in Chapters 3 and 4. For a conformal
antenna on a flat surface, such as antenna A in Figure 11.9, we can use the FE-BI
method with the half-space Green’s function discussed in Section 3.3.3. For other
types of antennas, such as antenna B in Figure 11.9, we can use either an absorbing
boundary condition or a perfectly matched layer to enclose the antenna locally. From
the finite element solution, we can extract the tangential electric fields on SA and SB,
which can then be converted into the equivalent surface magnetic currents, which are
denoted here as MSA and MSB , respectively.

11.2.2 Far-Field Evaluation by Numerical Methods

The second step is to calculate the far-field radiation based on the near fields or
the equivalent surface magnetic currents obtained in the first step. For this, we let
So = SA ∪ SB ∪ SP in (3.107) and (3.108) and note that n̂′ × E = 0 on SP, to find

E(r) = Eex(r) − jk0

∫∫
©

SA∪SB∪SP

[
Js(r′)G0(r, r′) + 1

k2
0

∇′ · Js(r′) ∇G0(r, r′)
]

dS′

r ∈ V∞ (11.6)

H(r) = H
ex

(r) −
∫∫
©

SA∪SB∪SP

Js(r′) × ∇G0(r, r′) dS′ r ∈ V∞ (11.7)

where H = Z0H, Js = Z0Js , and

Eex(r) =
∫∫

SA

MSA (r′) × ∇G0(r, r′) dS′ +
∫∫

SB

MSB (r′) × ∇G0(r, r′) dS′ (11.8)

H
ex

(r) = − jk0

∫∫
SA

[
MSA (r′)G0(r, r′) + 1

k2
0

∇′ · MSA (r′) ∇G0(r, r′)
]

dS′

− jk0

∫∫
SB

[
MSB (r′)G0(r, r′) + 1

k2
0

∇′ · MSB (r′) ∇G0(r, r′)
]

dS′. (11.9)

Since MSA and MSB are known, Eex and H
ex

can be calculated, which represent
the fields radiated by MSA and MSB in free space. This field induces surface electric
currents Js on SA, SB, and SP, which modify the total radiated field due to the presence
of the platform. Note that because SA and SB are not true conducting surfaces, the
surface electric currents on those surfaces are actually equivalent currents, whereas
the surface current on SP is a truly induced current. Equations (11.6) and (11.7)
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PEC Platform

MSA

MSB

Figure 11.13 Equivalent problem for calculating the exterior fields.

are the mathematical expressions of the surface equivalence principle, which states
that the exterior radiated field can be obtained by letting MSA and MSB radiate in
the presence of the platform with both SA and SB replaced by perfect electrically
conducting surfaces. The equivalent problem for Figure 11.9 is shown in Figure
11.13.

It remains to find Js on SA, SB, and SP, and for this we apply (11.6) and (11.7) to
SA, SB, and SP to obtain

n̂ × L(Js) = n̂ × Eex(r) +
⎧⎨
⎩

MSA (r) r ∈ SA

MSB (r) r ∈ SB

0 r ∈ SP

(11.10)

1
2 Js(r) + n̂ × K̃(Js) = n̂ × H

ex
(r) r ∈ SA, SB, SP . (11.11)

These two integral equations can be discretized and solved using a procedure similar
to the one described in Section 3.3, which also provides definitions for the operators
L and K̃. Once Js is obtained numerically, the exterior field can be calculated by
using (11.6) and (11.7).

The forward calculation approach described above can be used to evaluate any
exterior field, including the far field. It has the advantage of calculating the radiated
field in all directions once Js is obtained by solving (11.10) and (11.11). However,
the evaluation of Eex and H

ex
in (11.10) and (11.11) must be done carefully because

of the singularity that occurs when r = r′. If we are interested only in the far field,
this can be obtained by solving a plane-wave scattering problem and utilizing the
reciprocity theorem [18]. In this approach, an infinitesimally small current element
is placed at the observation point. Because this current element is located far from
the platform, the wave it produces can be regarded as a plane wave when incident on
the platform. More specifically, let the field radiated by MSA and MSB be denoted as
Erad, the field produced by the current element in the presence of the platform (with
both SA and SB replaced by perfect electrically conducting surfaces) be denoted as
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HD, and the current density of the current element be denoted as JD. According to
the reciprocity theorem [19], we have

∫∫∫
Erad · JD dV = −

∫∫
SA

HD · MSA dS−
∫∫

SB

HD · MSB dS. (11.12)

Assuming that the current element has a dipole moment of Il and is located at (r, θ, φ)
with an orientation in the â-direction, then (11.12) becomes

â · Erad(r, θ, φ) = − 1

Il

∫∫
SA

HD · MSA dS − 1

Il

∫∫
SB

HD · MSB dS. (11.13)

To find the θ - and φ-components of the radiated field, we let â = θ̂ and φ̂, respectively,
and then use the expression of the field produced by a current element to find

E rad
θ (r, θ, φ) = jk0 Z0e− jk0r

4πr

[∫∫
SA

Hθ · MSA dS+
∫∫

SB

Hθ · MSB dS

]
(11.14)

E rad
φ (r, θ, φ) = jk0 Z0e− jk0r

4πr

[∫∫
SA

Hφ · MSA dS+
∫∫

SB

Hφ · MSB dS

]
(11.15)

where Hθ and Hφ denote the magnetic field induced on the surface of the platform
by an incident plane wave with unit magnitude and with the electric field polarized
in the θ̂ - and φ̂-directions, respectively. Equations (11.14) and (11.15) can also be
written in terms of the induced surface current as

E rad
θ (r, θ, φ) = jk0e− jk0r

4πr

[∫∫
SA

J
θ

s · ESA dS+
∫∫

SB

J
θ

s · ESB dS

]
(11.16)

E rad
φ (r, θ, φ) = jk0e− jk0r

4πr

[∫∫
SA

J
φ

s · ESA dS+
∫∫

SB

J
φ

s · ESB dS

]
(11.17)

where ESA and ESB are the electric fields calculated in the first step, as described in

Section 11.2.1, and J
θ,φ

s = Z0n̂ × Hθ,φ .
The induced surface currents J

θ

s and J
φ

s can be obtained by solving the following
integral equations using the moment-method procedure:

n̂ × L(Js) = n̂ × Einc(r) r ∈ SA, SB, SP (11.18)

1
2 Js(r) + n̂ × K̃(Js) = n̂ × H

inc
(r) r ∈ SA, SB, SP . (11.19)

Comparing these two equations with (11.10) and (11.11), we find that their left-
hand sides are the same, and therefore the moment-method matrices will also be
the same. The difference between (11.10), (11.11) and (11.18), (11.19) is due to the
right-hand sides. In (11.18) and (11.19), the right-hand sides are simply the tangential



P1: JYS
c11 JWBK322-Jin October 3, 2008 20:14 Printer: Yet to come

DECOUPLED ANALYSIS 409

components of the incident field. By using the θ̂- and φ̂-polarized incident fields, we
can solve (11.18) and (11.19) for J

θ

s and J
φ

s , respectively. Note that in this reverse
calculation approach, we have to solve a scattering problem for each observation
angle in order to calculate the radiation patterns, whereas in the previous approach
using (11.10) and (11.11) the moment-method matrix only needs to be solved once.
Therefore, this approach is efficient only when a direct solver is used to solve the
moment-method matrix equation.

11.2.3 Far-Field Evaluation by Asymptotic Techniques

Because many platforms are electrically large, calculation of the far fields using a
numerical method, as discussed in the preceding subsection, can be time consuming.
A more efficient alternative is to use an asymptotic technique such as physical optics
or the geometrical theory of diffraction [19]. In this subsection we describe the
shooting- and bouncing-ray method, which is a combination of geometrical optics
and physical optics.

Similar to the far-field evaluation by a numerical method, there are two approaches
to using the shooting- and bouncing-ray method to compute the far-field radiation.
One approach is first to compute the radiated field over a small hemispherical surface
covering the antenna, as discussed in Section 11.2.1. This field is then converted
into many outgoing rays which shoot along the radial directions [20]. Each ray is
then traced as it bounces across the platform, and here the bounces are governed by
geometrical optics. At each and every intersection point of the ray with the platform,
a physical-optics type of integration is performed to determine the ray contribution
to the radiated far field, which is given by

HPO(r) = 2
∫∫

σray

∇G0(r, r′) × [n̂′ × Hray(r′)] dS′ (11.20)

where σray denotes the footprint of the ray and Hray is the magnetic field of the ray.
The final result is the summation of the contributions from all rays. This process is
illustrated in Figure 11.14, where only one ray is traced and calculated for clarity.
As mentioned earlier, this forward calculation has the advantage of computing the
radiated field in all directions simultaneously. However, to obtain accurate results, the
field on the hemispherical surface surrounding the antenna must be divided into many
rays, and in tracing each ray its divergence factor must be calculated and tracked,
as described in Ref. 19. This approach has been implemented into the commercial
AntFarm [21] antenna simulation toolkit.

The second approach is to use the reciprocity theorem to calculate the radiated
field by initially carrying out the scattering analysis. The theoretical formulation
is the same as that described in the preceding subsection. The equations used to
calculate the radiated field are given by (11.16) and (11.17). The difference is in
the calculation of J

θ

s and J
φ

s , which are now calculated by using the shooting- and
bouncing-ray method. For this approach, the incident wave is represented by a dense
grid of parallel rays, typically about 10 to 20 rays per wavelength, which shoot
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Figure 11.14 Shooting- and bouncing-ray method, which combines the geometrical optics
(GO) and physical optics (PO) to calculate radiated fields at two observation points. The rays
(solid lines) are traced according to GO, and a PO integration is performed at each and every
hit point to evaluate the contribution to the fields at the observation points (dashed lines). For
the sake of clarity, the edge diffraction is not included here.

from the observation direction and bounce across the platform (with both SA and
SB replaced by perfect electrically conducting surfaces). As the rays hit SA and SB,
their magnetic fields are recorded, from which the induced currents (either J

θ

s or J
φ

s ,
depending on the polarization of the incident field) are computed, which are then
used in (11.16) and (11.17) for calculation of the radiated far field.

Although the principle of the shooting- and bouncing-ray method, as illustrated in
Figure 11.15, is simple and the method has been implemented in the XPATCH [22]
scattering simulation code, its use for the calculation of J

θ

s and J
φ

s needs to be
implemented carefully to obtain accurate results, because SA and SB are part of the
platform. First, it is recognized that the major contribution to J

θ

s and J
φ

s is the direct
illumination. This field can be calculated efficiently by launching a ray from the field
point on SA and SB toward the observation direction. If the ray is not intercepted by the
platform, the field point is illuminated directly and a direct incident field is then added
to the total magnetic field at that point. This calculation is rather straightforward. It
is the calculation of the field reflected by the platform to SA or SB that requires extra
care. In practical applications, some platforms may have curved surfaces instead of
planar surfaces. When a curved surface is represented by a faceted model, each facet
actually represents a small portion of the curved surface, although each facet itself is
either flat or planar. Thus, when a ray hits one of these curved facets, its reflected ray
tube must either converge (when reflected from a concave surface), diverge (when
reflected from a convex surface), or do a combination of the two (when reflected
from a saddle point) in order to model the physics accurately. Neglecting the effect
of the curved facets on ray tubes will lead to an erroneous calculation of the near
field, although its effect on the far-field calculation is insignificant because the latter
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Incident
plane
wave

Antenna

Platform

Figure 11.15 Shooting- and bouncing-ray method to calculate the field over a surface that
encloses an antenna. A grid of parallel rays is shooting from the observation direction. As
the rays are bounced around the platform, some hit the surface enclosing the antenna and
contribute to the surface magnetic field. The edge diffraction is not included here for the sake
of clarity.

is calculated by integrating the surface field as described above. For example, the
reflected ray tubes may fail to cover the entire space and have large gaps between
the adjacent ray tubes. A simple method to solve this problem is to multiply each ray
tube by a diverging factor determined at the hit point of the center of the tube so that
each ray will diverge as it leaves the curved surface. This method works satisfactorily
for a surface having a constant curvature such as a cylindrical and spherical surface.
However, most curved surfaces have different curvatures at different points. For
such surfaces, the simple method described above leads to gaps or false overlapping
between adjacent ray tubes, resulting in errors in the field calculation. To solve this
problem, we trace the four corner rays of a ray tube separately instead of tracing the
centerline of a ray tube and determining the reflecting direction and diverging factor
based on the hit point of the center of the ray tube [23]. Each corner ray is reflected
into the direction based on its hit point, and the reflected ray tube is then formed
by connecting the four corners. The diverging factor used to calculate the field is
determined from the ratio of the cross section of the ray tube at the field point to its
original size.

The procedure described above works well in most cases; however, some chal-
lenges arise due to the finite round-off errors inherent in the numerical computations.
Ideally, the grid of ray tubes launched into the problem domain is intended to cover
the space uniformly, but in cases where a point lies either on or very near the border
of two ray tubes, it can often be either double-counted (hit by two adjacent ray tubes)
or missed completely. This can lead to inaccurate field calculations. The solution to
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this problem is to redefine the ray tube and introduce ray-tube basis functions [23].
Instead of having a grid of barely touching ray tubes with a constant magnitude
within each ray tube, the new ray tubes are defined with twice the width and twice
the height, so that the ray tubes are overlapping. To ensure a uniform incident field,
a ray-tube basis function is then introduced such that at any point in space the con-
tributions from all overlapping tubes add up to unity. This basis function can be
written as f (u, v) = (1 − |u|)(1 − |v|) for a ray tube that extends over −1 ≤ u ≤ 1
and −1 ≤ v ≤ 1 in normalized ray-tube coordinates. Clearly, the magnitude is 1 at
the center of the ray tube and decreases to zero at the edges of the tube. With this
modification, we can accurately calculate the field reflected to SA and SB by the
platform.

When SA and SB reside in the shadow region of the incident and reflected fields, the
calculation described above will yield J

θ

s = J
φ

s = 0. To obtain a more accurate value
for J

θ

s and J
φ

s for this case, we can include the contribution from the fields diffracted
by the edges on the platform. To show how the edge diffraction is calculated, we first
break an arbitrary edge into short segments, then calculate the diffracted field from
each segment, and finally, add the contributions from all the segments to find the
diffracted field from the entire edge. The diffracted field from a short edge segment
is computed using the incremental length diffraction coefficients, and the following
description is adapted from Ref. 24. Consider an arbitrary wedge as illustrated in
Figure 11.16, where a wave is incident upon the edge from the ŝ ′-direction and we
are interested in calculating the diffracted field at point P. According to the method

P

Q

ŝ

ŝ′

t̂
0β

0β ′

ψ
ψ ′

0β̂

0̂β ′

Diffraction

Incident

α

Figure 11.16 Geometry of edge diffraction. Note that ψ ′ and ψ are measured from the
illuminated face of the edge so that 0 < ψ ′ < π and 0 < ψ < nπ , where α = (2 − n)π .
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of incremental length diffraction coefficients [25,26], the electric field diffracted by
a short edge segment of length l located at Q is given by

{
Ed

θ (P)

Ed
φ(P)

}
= −1

s

[
dθθ dθφ

dφθ dφφ

]{
E inc

θ (Q)

E inc
φ (Q)

}
e− jk0s (11.21)

where s denotes the distance from the segment at Q to the field point at P, and
E inc

θ (Q) and E inc
φ (Q) denote the components of the incident field at Q. Furthermore,

duv (u, v = θ, φ), the incremental length diffraction coefficients, are given by

duv = l

4π
e jk0l(ŝ−ŝ ′)·t̂ [(û · t̂)(t̂ · v̂)Ds + û · (t̂ × ŝ)(t̂ × ŝ ′) · v̂ Dh] sinc

k0l(ŝ − ŝ ′) · t̂

2
(11.22)

where sinc x = sin x/x and Ds,h are diffraction coefficients defined in terms of the
Keller–Ufimtsev diffraction coefficients [26]

Ds,h = 2e jπ/4

√
2πk0

sin β ′
0 sin β0

Ddif
s,h . (11.23)

If the interior wedge angle is denoted as α = (2 − n)π , the Ddif
s,h are then [19,27]

Ddif
s,h = − e− jπ/4

2n
√

2πk0 sin β ′
0 sin β0

(D1 ∓ D2) (11.24)

where

D1 = cot
π + (ψ − ψ ′)

2n
F[k0Lg+(ψ − ψ ′)] + cot

π − (ψ − ψ ′)
2n

F[k0Lg−(ψ − ψ ′)]

(11.25)

D2 = cot
π + (ψ + ψ ′)

2n
F[k0Lg+(ψ + ψ ′)] + cot

π − (ψ + ψ ′)
2n

F[k0Lg−(ψ + ψ ′)].

(11.26)

In the equations above, the function F[•] involves a Fresnel integral, which is defined
by

F[x] = 2 j
√

xe jx
∫ ∞

√
x

e− j t2
dt (11.27)

and the other parameters are given by L = s sin β ′
0 sin β0 and

g±(X ) = 1 + cos(X − 2nπ N±) (11.28)
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51.6 cm

Figure 11.17 Microstrip patch antenna mounted on a finite circular ground plane.

where N± are the integers that most closely satisfy 2nπ N± = X ± π . Once the
diffracted electric field is calculated from (11.21), the diffracted magnetic field can
be found through the use of Maxwell’s equations.

The edge-diffraction computation described above can be used in the forward cal-
culation as well. For most practical applications, only the first-order edge diffraction,
which is the diffraction from the edges directly illuminated by the incident wave,
needs to be considered. The edge diffraction by multiply bounced and diffracted
rays typically has a rather small contribution and can usually be neglected, which
makes the numerical implementation more manageable and the computation more
efficient.

To demonstrate the performance of the reverse calculation approach described
above, we provide two examples [24]. The first example is for a cavity-backed mi-
crostrip patch antenna placed at the center of a finite, circular ground plane, as illus-
trated in Figure 11.17. The patch antenna has the configuration shown in Figure 11.11,
which resonates at 3.3 GHz. The computed E- and H-plane radiation patterns are
shown in Figure 11.18 and compared with the radiation patterns of the same antenna
residing on an infinitely large ground plane. The difference between the two patterns
is due primarily to edge diffraction, which is more pronounced in the E-plane pattern.

The second example is the waveguide-fed trihedral shown in Figure 11.19. The
incident waveguide mode is TE10 and the frequency is 9.0 GHz. The computed E- and
H-plane radiation patterns are compared with measured data in Figure 11.20, showing
good agreement. For this geometry, the E-plane radiation pattern can be calculated
by using a two-dimensional technique if the vertical side plate is removed, and the
H-plane radiation pattern can be calculated by using a two-dimensional technique if
the bottom plate is removed. The two-dimensional results are given in Ref. 18 and
generally agree well with the three-dimensional results, with the exceptions that the
variation is missing in the region from 40◦ to 90◦ in the H-plane pattern and from −90◦

to −40◦ in the E-plane pattern. These variations are caused primarily by the diffraction
from the side edges, which are not modeled in the two-dimensional calculations. The
fact that these variations are predicted correctly in the three-dimensional analysis is
a clear indication of the validity of the edge diffraction calculation described in this
subsection.

Although accurate radiation patterns can be computed efficiently by using the
method discussed in this subsection, we emphasize that asymptotic (ray optics)
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Figure 11.18 Radiation patterns of a microstrip patch antenna on a finite circular ground
plane. (a) H-plane pattern. (b) E-plane pattern. (After Greenwood et al. [24], Copyright C©
Wiley 1996.)

techniques are not capable of accurately modeling surface waves and near-field
scattering for the general case of complex, noncanonical geometry. Consequently, the
approach described above cannot accurately simulate the mutual coupling of antennas
on general platforms when surface wave and near-field physics are important, which
is often the case when there is no line of sight between the antennas. In this situation,
to carry out the analysis it is necessary to use a first-principle method such as the one
described in the preceding subsection.
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25.4 cm

25.4 cm

25.4 cm

Figure 11.19 Waveguide-fed trihedral made of three 25.4-cm × 25.4-cm square conducting
plates. The waveguide opening has the dimensions 2.286 cm × 1.016 cm.

11.2.4 Direct and Iterative Improvements

The decoupled analysis approach discussed in this chapter incorporates the effect of
the platform on the radiation pattern but ignores the effect of the platform on the
antenna itself. An improvement to this approach is to incorporate the first- or higher-
order effect of the platform on the antenna by considering the reflected field by the
platform as an incident field on the antenna. There are two ways to accomplish this.
If the analysis employs the FE-BI method, this can be accomplished by modifying
the Green’s function in the boundary integral equation to include the presence of the
platform [28,29], similar to the formulation of the hybrid moment and asymptotic
methods for antenna analysis [30]. For example, in Ref. 28 the Green’s function
is modified by using the geometrical theory of diffraction [31] to account for edge
diffraction, and in Ref. 29 the modification is made by using the more accurate uniform
theory of diffraction [32]. Alternatively, we can first let the antenna radiate in free
space and then compute the field reflected back to the antenna by the platform using
an asymptotic technique. The analysis is then repeated by considering the reflected
field as the excitation to the antenna. This iterative process can be repeated until a
converged solution is obtained. In practice, a single iteration is often sufficient unless
the antenna is placed in a highly resonant platform. This approach has been tested for
scattering analyses by using the shooting- and bouncing-ray method as the asymptotic
technique [23], and for antenna radiation analyses by using physical optics and the
uniform theory of diffraction [33]. For example, in Ref. 33 the analysis of antennas
is carried out iteratively by using the finite element method in conjunction with a
Robin boundary condition calculated by boundary integral equations. Specifically,
the field reflected and diffracted by electrically large conducting objects is calculated
by using physical optics and the uniform theory of diffraction, and this contribution
is then added to the field computed by the boundary integral equations.
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Figure 11.20 Radiation patterns of a waveguide-fed trihedral at 9.0 GHz. (a) H-plane pattern.
(b) E-plane pattern. (After Greenwood et al. [24], Copyright C© Wiley 1996.)

11.3 SUMMARY

In this chapter we discussed the numerical modeling of the interactions between
antennas and the host platform. In particular, we described two approaches to ana-
lyzing the effect of the platform on the performance of the installed antennas. The
first approach models the entire problem as a single object and applies a numerical
method for a rigorous, coupled analysis. Three numerical methods were described,
including the domain-decomposition implementation of the finite element method,
the hybrid finite element and finite-difference time-domain technique, and the hybrid
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finite element and boundary integral method accelerated using the fast multipole al-
gorithm. Because the fully coupled analysis is based on first-principle techniques, it
can be used to accurately calculate both the antenna radiation patterns and the mutual
coupling between the antennas installed on platforms having arbitrary geometry and
materials. However, the primary drawback of this approach is that the computation
is intensive.

The second approach decouples the analysis of the antennas from that of the plat-
form by first simulating the isolated antennas to obtain their near fields, and then
calculating the far-field radiation patterns in the presence of the platform by using
these near fields as the excitation mechanism. The far-field calculation can be carried
out by using either a numerical method such as the moment method or an asymp-
totic technique. In both cases, the far field can be calculated in either a forward or a
reverse manner. The forward calculation is more efficient, although its implementa-
tion is more complicated. The reverse calculation based on the reciprocity theorem
is simpler, although it can be more computationally time consuming. The applica-
tion of asymptotic techniques was described in detail by using the shooting- and
bouncing-ray method as an example. When an asymptotic technique is employed,
the decoupled analysis becomes very efficient and can handle large platforms. The
only drawback is that it cannot accurately characterize the mutual coupling between
antennas, especially those which are not placed in the line of sight. Finally, we de-
scribed briefly approaches to incorporate multiple interactions between the antennas
and the platform that can improve the accuracy of the decoupled analysis.
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12 Numerical and Practical
Considerations

After reading Chapters 1 to 11, readers should have a solid understanding of the basic
principles, technical issues, and solution technologies for the finite element analysis
of complex antennas and arrays. In this chapter we discuss various numerical and
practical considerations regarding the choice of simulation techniques, the applicabil-
ity of frequency- or time-domain formulations, ensuring numerical convergence, the
application of domain decomposition combined with parallel computing, and finally,
some observations on the verification and validation of predictions.*

12.1 CHOICE OF SIMULATION TECHNOLOGIES

Over the past several decades, many electromagnetic simulation techniques have
been developed for antenna analysis. A wide variety of radio-frequency (RF) pre-
diction tools are available to antenna engineers, including integral and differential
equation–based solvers implemented in both frequency and time domains, as well
as high-frequency solvers that are useful when the physical size of the geometry is
electrically very large. Every validated analysis approach has a place in the antenna
engineer’s suite of tools. The discussion in this section is intended to support antenna
design by identifying specifically when frequency- and time-domain finite element
formulations are a preferred choice of analytic tool. Due to the many competing
considerations, it is difficult to provide hard and fast rules; therefore, only general
guidance is provided.

The attraction of the finite element solvers is their generality. With a good mesh
generator, the finite element method can model arbitrarily complex geometries that
have very general material parameters. As an example, a wideband sinuous antenna,
etched on a thick conical dielectric shell and fed by coaxial lines, would be a good
candidate for the time-domain finite element method, or possibly the frequency-
domain finite element method, while it may be challenging for many other solution
methods. The reasons for this are the presence of the material regions along with a

*This chapter is expanded from Section 7 of the book chapter “Finite Element Analysis and Modeling of
Antennas” in Modern Antenna Handbook, C. Balanis, Ed., Wiley, Hoboken, NJ, 2008.

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright C© 2009 John Wiley & Sons, Inc.
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very wide range of element sizes, as well as the absence of a known Green’s function
that describes the conical substrate. The price that one pays for the generality with
finite element approaches is the increased time required to build volumetric meshes
compared to the surface meshes generally used by integral equation–based moment
methods.

When selecting an analysis approach, it is important to understand both the ca-
pabilities and limitations of the techniques and codes that are available. Capabilities
and limitations may depend either on a code’s specific implementation or on the fun-
damental underlying theory. For instance, although theory exists to allow thin wires,
thin slots, and thin materials to be accurately included in the finite element analysis
tools without directly meshing these geometrical details, a particular computer code
may not have implemented that theory. Moreover, although it may, in principle, be
possible to mesh a particular antenna geometry, the specific mesh generator integrated
into a software package may be challenged by an especially complex geometry. In
practice, limitations are often experienced as excessively long setup and/or run times.

Although any of a variety of analysis tools may be able to provide accurate
solutions, it is important to choose the tool that provides the necessary accuracy within
reasonable computer execution times. For instance, although predicting coupling
between two monopoles on a large structure may be possible using either frequency-
or time-domain finite element methods, run times for high-frequency methods may
be orders of magnitude faster and should be used if acceptable accuracy can be
demonstrated. However, it is important to keep in mind that high-frequency methods
may not provide sufficient accuracy when one antenna is deep in the shadow region,
and in such a case, the finite element method or other numerical methods might be
required to predict coupling to antennas in regions of the structure where there is no
line of sight.

It is also important to realize that the appropriate choice of tool for a specific
problem changes slowly as new capabilities are formulated within the various classes
of solvers. For example, simulation of wide-angle scanning of phased arrays to nearly
90◦ has recently become possible in the time-domain finite element method, making
it an excellent choice for an analysis of wideband phased arrays. Another example
is the acceleration of integral-equation solvers using the fast multipole method. This
acceleration now makes integral-equation solvers a practical choice for applications
that are moderately electrically large. In addition, research currently being performed
to add general materials to the fast multipole method will probably further increase the
class of problems to which integral-equation solvers will apply in the future. Finally, as
discussed in Chapters 10 and 11, advancements in domain-decomposition techniques
for the finite element method now permit the method to efficiently address electrically
large applications such as large finite arrays in both the time and frequency domains.

12.2 FREQUENCY- VERSUS TIME-DOMAIN SIMULATION TOOLS

When beginning a simulation, it is useful to have a desired goal in mind to nar-
row the solution space and guide the simulation approach. The antenna engineer’s
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expectation of analysis tools often differs from one application to another. For in-
stance, when predicting impedance and radiation patterns of an existing antenna
design, physical insight may not be needed, whereas if a novel class of antenna is
being developed, physical insight is of great importance. Therefore, before choosing
a simulation tool, some of the first questions to ask are: What information is needed
from the predictions? Does one need simply to predict only impedance and radiation
patterns of an existing antenna? Or is the goal of the analysis to explain why a partic-
ular antenna has specific measured characteristics, such as a high cross-polarization
value?

When it is necessary to fully understand the underlying physics, both the
frequency- and time-domain responses of the antenna provide useful and different
insights. A frequency-domain simulation provides direct visualizations of how field
lines and Poynting vectors in the near-field region vary spatially at a given frequency.
For example, a visualization of strong field lines coupling the vertical polarization port
of a printed antenna to the horizontal polarization port might guide design improve-
ments in cross-polarization performance of that antenna. Alternatively, time-domain
predictions provide additional insight into where physical phenomena occur within
an antenna model, in the same way that time-domain reflectometry measurements
provide knowledge of the locations from where signals are reflected by disconti-
nuities along a transmission line. For example, edge reflections from finite arrays
can be clearly observed as reflected waves move across an array and enter individ-
ual radiator feeds. Distances to reflections and other physical phenomena that cause
the impedance of wideband antennas to vary with frequency are easily recognized.
Knowledge of those distances guides the antenna designer by providing valuable
insight into the locations of the reflections as well as the coupling to adjacent sources,
where both affect wideband impedance.

A good example of the use of a frequency-domain finite element solution method
is for the case of electrically small resonant antennas, because this method does not
suffer numerical challenges due to the small electrical size until perhaps the zero-
frequency limit is approached. On the other hand, time-domain approaches may not
be well suited to electrically small antennas because these resonant structures often
require exceedingly long run times to reach a steady solution state.

The analysis of wideband phased arrays, however, is an excellent application for
the time-domain finite element method because of its efficiency for this type of ap-
plication. Wideband predictions are obtained with a single simulation, often in less
time than is required to sample the frequency band using a frequency-domain finite
element method. In addition, due to its unconditional stability, the time-domain fi-
nite element method provides reasonable run times even at wide scan angles when
performing a unit cell analysis. Because phased arrays are designed to operate with-
out grating lobes, a well-designed infinite phased array radiates a single plane wave
within its intended band of operation. The Floquet absorbing boundary conditions
described in Chapter 9 for both time- and frequency-domain finite element meth-
ods, which are specialized to absorb energy nearly perfectly when a plane wave is
incident from a known scan angle up to nearly 90◦, can significantly improve the
prediction of scan impedance, particularly over wide bandwidths. Furthermore, the
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fine frequency resolution available in a time-domain simulation through the FFT
ensures that sharp resonant anomalies, sometimes found in flared-notch arrays and
log-periodic antennas, are captured.

In both frequency- and time-domain formulations, various interpolation and ex-
trapolation strategies can be useful. For example, frequency interpolation has been
implemented in some frequency-domain finite element solvers to increase efficiency
when many frequencies are of interest [1–3]. Similarly, a postprocessing extrapolation
of the time-domain response into the late time may be possible [4]. This extrapola-
tion improves efficiency of time-domain methods for highly resonant antennas, which
would otherwise require long run times to obtain accurate antenna performance char-
acteristics. While such methods extend the usefulness of a particular code, additional
care is required to ensure that these techniques are applicable and properly used. In
addition, visualizations of all field quantities may not be available for the interpolated
frequencies or time steps. However, by adopting various interpolation and extrapola-
tion strategies, it is often possible to extend the utility of a given method so that it can
address a design problem that is slightly outside the primary strengths of the method.

12.3 FAST FREQUENCY SWEEP

Many antenna designs require computation of frequency responses over a broad band
rather than at one or a few isolated frequencies. Such calculations can be very time
consuming when a traditional frequency-domain numerical method is used because
a matrix equation must be solved repeatedly at many frequencies. The number of
calculations is proportional to the electrical size and the resonance of the problem
and can be large for many applications. Therefore, there is a need to find approximate
solution techniques that can simulate a frequency response efficiently over a broad
band. This can be accomplished by the method of asymptotic waveform evaluation [1].
In this method, the unknown solution vector, the right-hand vector, and the system
matrix are first expanded into a Taylor series at a chosen frequency. The expansion
coefficients of the solution vector are then determined by moment matching. The
Taylor series of the solution vector is then converted into a Padé rational function
to broaden the radius of convergence. With this approach, we obtain a solution that
is accurate at frequencies near the point of expansion. The accuracy of the solution
decreases gradually when the frequency moves away from the point of expansion.
In many practical applications, a solution is required over a specified frequency
band, where one point of expansion may not be sufficient, and multiple points of
expansion become necessary. These points can be selected automatically using a
simple binary search algorithm [1]. In this algorithm, the asymptotic waveform
evaluation method is first applied to the two ends of the frequency band, denoted
by fmin and fmax, respectively. The two corresponding solutions are then compared
at the midfrequency point of the band, denoted as fmid. If the difference exceeds a
user-determined tolerance, the asymptotic waveform evaluation method is applied
at the midpoint fmid, and its solution is then compared with that of the start point,
fmin, at their midpoint, ( fmin + fmid)/2, and also compared with that of the end point,
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fmax, at their midpoint, ( fmid + fmax)/2, to check the convergence. This process is
applied recursively until convergence is obtained over the entire band. This method
can significantly reduce the number of frequency points where the matrix equation
has to be solved and is capable of capturing sharp resonances. A few examples for
antenna analysis can be found in Refs. 2 and 3.

12.4 NUMERICAL CONVERGENCE

A requirement for a numerical method is that it must be used within its range of
applicability. When a numerical method is applied outside its intended domain, it is
possible that poor results will be obtained, which may then lead the user to conclude
that a particular numerical technique, or a simulation package, is of limited or no
practical utility. In light of the enormous amount of physical insight that can be
gained from modern numerical methods, and the range of the design space that can
be explored only by simulation, this would be an unfortunate conclusion. Therefore,
it is very important to use a numerical method within its range of applicability. One of
the most probable reasons for obtaining poor results with numerical solution methods
is the use of a mesh that is not sufficiently fine to resolve the field variation, which
then yields unconverged results. Such unconverged results are particularly troubling
because they often appear to be physically plausible but are, in fact, inaccurate. For
problems where the field variation is due primarily to wave propagation, a general rule
of thumb for finite element and finite-difference formulations is to use 20 points per
wavelength to obtain a reasonably accurate solution. However, this rule has to be used
with care because it does not guarantee any specific accuracy—different problems
often have different accuracy considerations in their finite element solutions. For
example, an accurate computation of the input impedance of an antenna may require
a much finer mesh than that required for the antenna patterns. In addition, a finer
mesh may be required to model wave propagation accurately over large electrical
distances.

To understand this further, it is necessary to address briefly the issue related to
the accuracy of a finite element solution. In the finite element method presented in
this book, the field is spatially interpolated within each finite element using a set of
basis functions. Since the basis functions have a finite interpolation order, such as the
first-order basis in (2.15), this interpolation often cannot represent an arbitrary field
exactly. As a result, there is an interpolation error in a finite element solution. For
static problems, this is usually the major source of error. For wave-related problems,
the imperfect interpolation causes waves to propagate on a finite element mesh at a
slightly different speed than the true speed, which in the frequency domain leads to an
error in the phase of the complex field. This error, often referred to as grid dispersion
error, is particularly detrimental to the solution of wave-related problems. This is
because phase errors can accumulate as waves propagate over a finite element or finite-
difference mesh, and the larger the computational domain in terms of wavelength,
the larger the final accumulated phase error, which can eventually render a solution
inaccurate. As a result, even with a fixed mesh density, the accuracy of a finite element
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solution will be different for different problems, and the accuracy typically decreases
as the size of the computational domain increases in terms of wavelength. Theoretical
as well as numerical investigations [5] show that for the first-order basis functions
defined in (2.15), the grid dispersion error is proportional to n−2, where n denotes
the number of points per wavelength. As a result, one can always reduce the error
in a finite element solution by increasing the mesh density. For example, when the
mesh density is doubled, say, from 10 to 20 points per wavelength, the error will be
reduced by a factor of 4.

A much more effective approach to reducing the grid dispersion error is to em-
ploy higher-order basis functions in the finite element formulation, as discussed in
Section 2.5. It has been shown [5] that the grid dispersion error is proportional to
n−2p, where p denotes the order of the basis functions employed. Therefore, for a
mesh density of 10 points per wavelength, if the order of basis functions is increased
from the first to second (which will yield a similar number of unknowns to a mesh
with 20 points per wavelength), the dispersion error will be reduced by a factor of
100, which results in much faster convergence. Of course, this can only be done with
codes in which higher-order basis functions have been implemented.

Time-domain formulations require slightly more attention to convergence cri-
teria, because the solution must converge in both space and time. Both the tradi-
tional leapfrog time-integration technique used by the finite-difference time-domain
(FDTD) method and the Newmark-beta formulation used with the finite element
time-domain (FETD) method have a temporal truncation error proportional to �t2.
With explicit, and therefore, conditionally stable time-stepping methods such as the
FDTD technique, the Courant condition on a uniform mesh with grid size � con-
strains the time step according to c�t ≤ �/

√
3 for numerical stability purposes.

As noted above, if we assume a spatial sampling of 20 points per wavelength at
the highest frequency of interest, then �t ≤ 1/(20

√
3 fmax) and we see that we have

a relatively high temporal sampling even at the highest frequencies. Consequently,
sufficient temporal resolution is normally not an issue with the traditional FDTD
method. However, with unconditionally stable techniques, such as the FETD method
based on the Newmark-beta formulation, additional care is required in the selection
of the time step, because numerical stability no longer constrains how large the time
step can be with these methods. Therefore, accuracy limits the largest practical time
step and the user must choose it appropriately. Unconditionally stable formulations
are particularly beneficial to practical applications having a mix of both coarse and
fine geometrical details. This is because the fine geometrical details will not force
a further reduction in the time step, which is a significant benefit that is not pos-
sible with a conditionally stable formulation. For example, for wideband antennas
such as spirals, the complex and geometrically small details associated with the
feed region will have no impact on the time step associated with an unconditionally
stable formulation. As a simple guideline, defining the time step for the uncon-
ditionally stable FETD method according to c�t ≤ hmax, where hmax denotes the
maximum spatially resolved edge length on the grid, has been found to provide a
good balance of accuracy and efficiency. It is also important with time-domain sim-
ulations to let the solution reach a steady state, either through direct time marching
or possibly by using a time extrapolation method [4]. Premature truncation of the
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transient response will give rise to inaccurate artifacts in the transformed frequency
spectrum.

Finally, we note that besides the field variation caused by wave propagation,
geometry singularities such as edges, corners, and sharp tips and material disconti-
nuities can also cause fields to vary rapidly. These issues should also be considered
in the finite element discretization by using finer meshes around these singularities
and discontinuities. Of course, all numerical solution methods are subject to these
considerations and the discussions here are therefore not unique to finite element
formulations.

In summary, it is recommended that numerical simulations be run with either
multiple discretizations/mesh densities, or an increased order of the basis functions,
to check for a change in physical quantities of interest so that a converged solution is
ensured. Note that different physical quantities may require different mesh densities;
for example, a low mesh density may be sufficient for calculating antenna radiation
patterns, whereas a much higher mesh density, or a higher-order basis function, may
be required for near-field quantities such as the input impedance.

12.5 DOMAIN DECOMPOSITION AND PARALLEL COMPUTING

As discussed in Chapters 10 and 11, it is often beneficial to partition an electrically
large application regionally, a process generally known as domain decomposition.
Within the regions, different solution algorithms and/or parallel processing techniques
are applied. For example, it is often useful to decompose certain applications into
regions where first-principle techniques, such as finite element methods and the
method of moments, are applied, and regions where asymptotic techniques, such as
physical or geometrical optics, are applied. A domain decomposition of this type
can be solved effectively on a serial computer. Alternatively, the various regions can
be further partitioned into subdomains that are distributed onto a parallel computing
system and solved concurrently. Because domain-decomposition strategies can enable
the solution of important and practical applications that could not otherwise be solved,
the development and implementation of robust and efficient domain-decomposition
methods are of great practical importance and therefore an active research area
in computational science. A few commercial RF prediction codes have adopted
certain levels of distributed parallel computing strategies, and these range from the
simple concurrent processing of multiple frequencies associated with a single finite
element mesh to the true decomposition of finite element or finite-difference meshes
distributed across multiple computer processors.

For an efficient solution on a parallel computer that provides good scaling with
an increasing number of processors, it is important to have equally distributed work-
loads, a process typically referred to as load balancing. As discussed previously,
because of the repetitive nature of the large finite-array problem, this type of appli-
cation can easily be decomposed such that the computational work is nearly ideally
balanced across a very large number of processors working in parallel. For more
general three-dimensional applications, there are at least two fundamental challenges
associated with very large scale finite element simulations. First, the direct creation of
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unstructured grids that consist of tens or even hundreds of millions of elements can be
challenging. Grids of large magnitude are often constructed in pieces which are then
“stitched” together to form the global mesh. Because grids of realistic geometry will
typically have elements with widely varying dimensions, this leads to the second chal-
lenge of logically decomposing this global mesh such that the computational work
levels are uniformly balanced across the distributed computing platform. To simplify
this decomposition process, a variety of techniques are currently available [6–10].

12.6 VERIFICATION AND VALIDATION OF PREDICTIONS

The term verification addresses the following question: Are the equations for the
theoretical model being solved correctly? In comparison, the term validation ad-
dresses the question: Are all the required physics included in the theoretical model?
These two questions have significant differences in the assessment of results obtained
through predictive methods. Verification of a solution is established by comparing the
result against similar results obtained from other codes or solution techniques that
have been applied to an equivalent system of equations and boundary conditions,
and this process is often well defined. However, to answer the question posed by
validation requires careful measurements. Although many examples could be cited
for electromagnetics, a practical example of a formulation that may perform ex-
tremely well from the verification perspective, yet possibly perform poorly from the
validation perspective, is with regard to the surface impedance boundary condition
(IBC). In this case, various numerical implementations of the IBC may be applied,
for example, to a spherical geometry and then compared against the exact solution
based on the Mie series subject to the similar IBC. Such a comparison was performed
in Chapter 6, where good correlation from a verification perspective was shown when
the numerical solution was based on the finite element time-domain technique. How-
ever, as pointed out in Chapter 6, the scalar IBC is an approximate technique that
represents a three-dimensional volumetric material region by a two-dimensional sur-
face along with an assumption of normally incident waves. Although this and similar
approximations may be sufficient in many practical applications, comparison with
measurements is valuable in determining the limitations of the approximate models,
particularly when they are incorporated into otherwise rigorous solution methods.

Balancing the fidelity of the solution method with the domain knowledge, such
as the geometrical details and material definitions, required by the application is
also important, and an interesting example based on this concept is the following.
The radar cross section (RCS) solution of, for example, the metallic double ogive
discussed in Chapter 4 can be calculated precisely using either integral or differential
equation formulations. In fact, the resulting RCS predictions could possibly be used
in calibration of the measurement facility since they are not subject to certain mea-
surement errors, such as those due to positioners. Because the geometry is defined
precisely, excellent correlation would be expected from both verification and valida-
tion perspectives, and this was demonstrated in Chapter 4. However, if we desired a
similar RCS analysis when the metallic double ogive was simply buried in a medium
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such as sand, the overall fidelity of the analysis may become significantly different,
even if the same solution techniques are applied. The distinction, of course, lies in
one’s ability to characterize precisely the material properties of the sand, as well as
its surface irregularities. In many practical applications, acquiring sufficient domain
knowledge can be challenging, particularly if various system components come from
different manufacturers and information is required over wide bandwidths for which
measurements may not exist. Consequently, it is important to understand the overall
errors that may be present in an RF assessment when selecting a particular solution
strategy, which include both the uncertainties in the input parameters and the errors
in the particular numerical formulation.

12.7 SUMMARY

Finite element methods in both the frequency and time domains have advanced sig-
nificantly in recent years and now represent a powerful technology for the solution
of complex antennas and phased arrays both in isolation and in the presence of plat-
forms. In addition to the many theoretical and numerical formulations described in
detail throughout the book, there are many practical considerations for an accurate
numerical simulation. In this chapter we discussed some of these considerations,
which include choosing the basic solution technology, such as finite element or inte-
gral equation methods, the applicability of frequency- and time-domain formulations,
and guidelines for ensuring numerical convergence. Also discussed briefly was the
application of parallel computing and domain-decomposition concepts, and finally
some observations on the verification, validation, and overall error assessment asso-
ciated with the application of numerical methods to predict physical electromagnetic
phenomena.
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Absorbing boundary condition:
first-order, 19, 25, 55–57, 168, 170, 338, 365
for Floquet modes, 325, 333
for oblique incidence, 298, 306
implementation of, 58
reflection coefficients, 57–61
second-order, 56

Active input impedance, 301
Active reflection coefficient, 301, 361
Active resistance, 303
Adaptive integral method, 91, 402
Aggregation, fast multipole method, 402
Anisotropic-medium PML, 64, 111
Antenna feed modeling, 147–164

current probe, 148–152
voltage gap generator, 152–155
waveguide feed, 155–164

Antenna gain, 164, 259
Antenna–platform interaction:

coupled analysis, 389
decoupled analysis, 405

Antenna thickness factor, 155, 240
AntFarm, 409
Antipodal Vivaldi antenna, 254
Approximate boundary condition, 19
Archimedean spiral antenna, 207
Array factor, 325
Axisymmetric antenna, 264–283

BiCGSTAB, 342, 349, 355
Bandpass filter, 195
Basis functions:

hierarchical, 50
higher-order, 50
interpolatory, 50
vector, 22

Biconjugate gradient method, 342
Boundary condition, 18, 44
Boundary integral equation, 269

for periodic structures, 296

Boundary-value problem, 18, 19
Broadband antennas, 247

CFIE, 82, 272, 400
in time domain, 90

CFS-PML, 74–76
CPML, 113
Cement element method, 352
Central differencing, 26, 87
Chimara grids, 126
Conditional stability, 26, 100
Combined field integral equation, see CFIE
Computational electromagnetics, 1
Conformal domain decomposition, 372
Constitutive relation, 32, 36, 41, 310
Convergence, numerical, 425–427
Corrugated horn, 276
Co-site interference, 388
Coupling:

backdoor, 188
system-level, 230–234
weak, 187

Current probe, 148
Curvilinear elements, 51

DFDD, 364
Debye material, 33
Degenerate finite elements, 199
Dirichlet preconditioner, 343
Direct solver, 49
Disaggregation, fast multipole method, 402
Dispersion error, 50, 168, 176, 425
Distributed feed networks, 224–230

bidirection decompositions, 225
Vivaldi antenna array, 228
waveguide port boundary condition, 226

Domain-decomposition method, 336, 390, 427
in time domain, 363
nonconforming, 351
Schwarz nonoverlapping, 351
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Dual-field domain-decomposition, 363
stability analysis, 370
stability condition, 370

Dual–primal, 337, 341
Duffy’s transformation, 83

EFIE, 82, 168
for half space, 93
in time domain, 89

EMC and EMI, 143
Eccosorb, 231
Electric field integral equation, see EFIE
Electrical susceptibility, 32, 313

multipole expansion, 36
Electromagnetic bandgap, 378
Electromagnetic compatibility and interference,

143
Equivalent surface currents, 81
Explicit time stepping, 100

FDTD, 62, 76, 101, 174, 303, 372, 390
analysis of lossy slab, 30
analysis of periodic structures, 73–76
conformal, 100
difference equations, Cartesian, 103–104
dispersion relationship, 105
equivalence with FETD, 120
numerical properties, 102
stability criterion, 106
PML, stretched-coordinate, 107
PML, anisotropic-medium, 111
Yee cell, 102

FE-BI, 170, 390, 399
for half space, 93–96
in time domain, 86–92
standard formulation, 77–84
symmetric formulation, 84–86

FEMTD, see FETD
FETD, 30, 117, 372

equivalence with FDTD, 120
FETD–FDTD, 128-134, 372, 393

mesh construction, 131
parallelization of, 372
stable formulation, 128

FETI–DPEM1, 337
numerical scalability, 345

FETI–DPEM1, 345
numerical scalability, 350

FVTD, 126
FVTD–FDTD, 126
Facet basis functions, 118
Far-field computation, 113, 176

frequency-domain, 116
time-domain, 115, 176

Fast frequency sweep, 424–425
Fast multipole method, 86, 389, 402
Field exchanging scheme, 369
Finite-difference method, 26
Finite-difference time-domain method, 3, 30,

100, 303
Finite element–boundary integral, see FE-BI
Finite element formulation, 17–53

frequency-domain, 17
time-domain, 24

Finite element method, 4
Finite element tearing and interconnecting, 337
Finite element time-domain method, 14
Finite-volume time-domain method, 126
First-principle method, 389, 415, 418
Flared-notch antenna, 254
Floquet absorbing boundary condition, 325, 333
Floquet modes, 73, 295
Floquet theorem, 285
Fourier stability analysis, 105
Frequency-selective surface, 324, 330

GMRES, 50, 342, 349, 355
GO, 388
GPS antenna, 396
GTD, 388
Galerkin’s formulation, 24, 33, 272
Gauss–Seidel method, 354
Gaussian elimination, 49
Gaussian quadrature, 83, 121
Gauss’s divergence theorem, 20, 29, 32, 37
Generalized minimal residual, 50, 342
Geometrical optics, 388
Geometrical theory of diffraction, 388, 409, 416
Green’s function, 79
Green’s theorem, 79
Grid dispersion error, 398, 425

HFSS, 319, 323, 356
Helmholtz equation, 79
Higher-order elements, 50
Horn antenna, 164, 247, 259, 276
Huygens’ surface, 114, 173
Hybrid explicit–implicit algorithm, 129, 371

IBC, 188
IDD, 372, 393
ILU, 375
Impedance anomaly, 319, 377
Impedance boundary conditions, 188–195

exact, 189
scalar, Leontovich, 189

Implicit time marching, 120
Incomplete LU preconditioner, 84, 375, 401
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Incremental length diffraction coefficients,
412

Input impedance, 162
Insertion loss, 323
Installed performance, 388
Integral equations:

combined field, 272
electric field, 168
magnetic field, 170

Interpolation error, 50, 425
Inverted conical spiral antenna, 253
Isoparametric elements, 51
Iterative domain decomposition, 372, 393
Iterative solver, 49

Keller–Ufimtsev diffraction coefficients, 413
Kernighan–Lin partitioning algorithm, 396
Krylov subspace method, 50, 342, 349, 355

LU decomposition, 49
Leapfrogging scheme, 103–104, 120, 364
Laplace transform, 161, 308
Load balancing, 427
Logarithmic spiral antenna, 251
Lorentz material, 35, 46, 48
Lumped-circuit elements, 217–224

Gunn diodes, 222
isolated components, 217
with first-order Maxwell curl equations,

218
with wave equation, 219

Lumped preconditioner, 342
Luneburg lens, 179, 273

MFIE, 82, 170
for half space, 95
in time domain, 89

MKL, 50
MUMPS, 50
Magnetic field integral equation, see MFIE
Magnetic susceptibility, 36, 313

multipole expansion, 39
Mass lumping, 121
Mass matrix, finite element, 121
Materials, calibration of, 230
Maxwell’s equations:

in anisotropic-medium PML, 64, 112
in dispersive media, 30, 36, 40
in frequency domain, 18
in lossy medium, 28, 40
in stretched coordinates, 62
in time domain, 24, 40

Message-passing, 372
Method of moments, 3

Microstrip patch antenna, 149, 243, 258
on a circular plate, 414
on a platform, 397, 402

Microstrip patch antenna array, 164, 300
Modal orthogonal relation, 160
Moment-method solution, 259

for horn antenna, 164
for periodic array, 301
for wire antenna, 155

Monopole antenna, 152, 163, 240
on a plate, 391
on an airplane, 395

Multilevel fast multipole algorithm, 402
Mutual coupling, 359

NTF, 113, 176
Narrowband antennas, 240
Near-to-far-field transformation, 113–117,

176–178
Neumann boundary condition, 78, 338
Newmark-beta method, 26, 35, 40, 71, 368

Overlapping grids, 126, 130, 371–376
FETD-FDTD, 130
FDTD domain decomposition, 393
FETD domain decomposition, 372

PETSc, 50
PML, 61–76, 107–113

ABC-backed, 72
anisotropic-medium model, 64, 111
complementary, 73
complex-frequency shifted, 74–76
cylindrical, 267
finite difference implementation, 107
finite element implementation, 67
reflection coefficient, 65, 66, 72, 74, 76
second-order, 76

PO, 388
Parallelization of:

FETD–FDTD, 372, 381, 393
FETI–DPEM, 390

Perfectly matched interface, 63
Perfectly matched layers, see PML
Periodic boundary conditions, 286, 305
Periodic boundary integral equation, 297, 307
Periodic Green’s function, 296
Periodic radiation condition, 297
Phased array, finite, 325

mutual coupling, 359
of bowtie-shaped radiators, 381
of cavity-backed patch antennas, 326
of microstrip patch antennas, 327, 358
of vivaldi antennas, 356
on a curved surface, 359
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434 INDEX

Phased array, infinite, 284
of bowtie-shaped radiators, 321
of microstrip patch antennas, 300
of monopole antennas, 319
of vivaldi antennas, 318

Physical optics, 388, 409
Preconditioner, 49

ABC-based, 83, 84
Dirichlet, 343
ILU, 375
lumped, 342
SGS, 355
SSOR, 355

Pyramidal finite elements, construction of,
132

Pyramidal horn antenna, 164

RCS, 61, 140, 176, 327, 330
RHCP, 397
R-Card, 196
Radiation condition, 79
Radar cross section, 164, 258

of a cavity array, 329
of a conducting sphere, 61, 177
of a finite frequency-selective surface, 331
of a metallic double ogive, 141
of a microstrip patch antenna, 260
of a standard gain horn antenna, 261

Ray-diverging factor, 411
Ray-tube basis function, 412
Realized gain, 381
Recursive convolution, 33, 312
Recursive FFT, 46
Reflection coefficient:

active, 301
in a waveguide, 162
of ABC, 57
of PML, 63, 65
of R-Card, 196

Ridged horn antenna, 247
Right-hand circularly polarization, 397
Robin transmission condition, 346, 351, 405

SCSL, 50
SGS, 355
SPARSKIT, 50
SSOR, 50, 355
Scattered-field formulation, 170
Scattering analysis:

scattered-field formulation, 170
total-field formulation, 167
total-scattered field decomposition, 171

Schur complement, 343

Schwarz domain decomposition, 351
Shooting- and bouncing-ray, 409
Sinuous antenna, 249
Skew array, 298
Skin depth, 189
Sommerfeld radiation condition, 18
Spiral antenna, 251, 253
Stability analysis, 370
Stability condition, 370
Standard gain horn antenna, 259
Stiffness matrix, finite element, 121
Stretched coordinates, 62
Structured grid, 100
Subparametric elements, 51
SuperLU, 50
Superparametric elements, 51

TDFEM, see FETD
TSFD, 171
Telegrapher’s equations, 201
Thin materials, 188–201

capacitive boundary condition, 193
degenerate finite elements, 199
dielectric sheet, 190–191
impedance boundary conditions, 188
inductive boundary condition, 193
lossy coating, 192
magnetic coating, lossless, 192
resistive Sheet, 191

Thin slots, 208–217
rectangular cavity, 216
symmetric field coupling, 212–215
transmission-line equations, 209
wave equation, 212

Thin wires, 201–208
Archimedean spiral antenna, 107
finite element thin-wire equation, 204
rectangular cavity, 207
symmetric field coupling, 205–206
transmission-line equations, 202

Time-marching equation, 27, 40
Time-marching extrapolation, 424
Total-field formulation, 167
Total-scattered field decomposition, 171
Transformed field variable, 304
Trapezoidal integration, 123
Trihedral, waveguide-fed, 416

UTD, 388
UMFPACK, 50
UPML, 111
Ultrabroadband phased array, 321, 381
Unconditional stability, 4, 27
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Uniform theory of diffraction, 388, 416
Unstructured grid, 100

VWSR, 377
Vector basis functions:

curl-conforming, edge elements, 118
divergence-conforming, facet elements, 118
first-order, 22

Vector potentials:
in time domain, 88

Vector wave equation:
for scattered field, 170
for transformed field variable, 305
in free space, 79
in frequency domain, 20, 78
in time domain, 25, 364

Verification and Validation, 428
Vivaldi antenna, 91, 182, 254, 318, 356
Vivaldi array, 377
Vlasov antenna, 255
Voltage gap generator, 152
Voltage standing-wave ratio, 377

WPBC, 158
WSMP, 50
Wave equation, 25

stabilization of, 134–137
Waveguide port boundary condition, 157, 160

for homogeneous port, 157
for inhomogeneous port, 160
in time domain, 161

Weak-form representation:
in frequency domain, 21, 78, 265, 269, 286
in time domain 25, 37, 87, 365
in perfectly matched layers, 69
with waveguide port boundary condition,

158
Weak-form solution:

in a dispersive medium, 41
for periodic problems, 297, 305, 311
for scattering analysis, 168, 171, 172

Wilcox expansion, 56
Wire antenna, 155

XPATCH, 410
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Figure 1.1 Example showing very small finite elements to model fine structures on a large
object. Such a problem is challenging for explicit, conditionally stable time-domain methods
and can be better handled by either implicit, unconditionally stable time- or frequency-domain
techniques.

1
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(a) (b)

(c) (d)

Figure 2.3 Examples of finite element meshes (only surface meshes are shown for clarity).
(a) A microstrip patch antenna fed by a coaxial line with the substrate and ground plane
removed. (b) A horn antenna. (c) A 4 × 4 dual-polarized Vivaldi antenna array. (d) The feed
structure of a Vivaldi antenna.

2
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Total-Field / Scattered-Field Interface

Near-Field to Far-Field Transformation Boundary

Perfectly Matched Layer

E
inc

Finite-Difference Region
(Structured Hexahedra, Explicit)

G
ri

d
 T

er
m

in
at

io
n Finite-Element Region 

(Unstructured, Implicit)

Figure 4.8 Locations of the FETD, FDTD, and PML regions, as well as the near-to-far-field
transformation surface used for a complete FETD–FDTD implementation.
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Arbitrary geometry

Rectangular container

3. Fill volume with tetrahedra

Surface currents

1. Arbitrary surface mesh
on principal geometry

2. Uniform surface mesh

(a)

(b)

(c)

(d)

Figure 4.9 Procedure to construct a simple unstructured tetrahedral grid interfaced to a
structured brick-element grid. (a) Solid geometry desired. (b) Suitably sized rectangular box
to hold the geometry. (c) Uniform triangular surface mesh on the box and arbitrary triangular
mesh on the geometry (filled with a tetrahedral mesh in between). (d) Unstructured mesh
embedded in a background FDTD mesh (not shown) and the solution.

4
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(a)

(b)

x

z

7.5 Inches

2 Inches

Einc

Figure 4.14 Metallic double ogive. (a) Geometry. (b) Surface current density for a sinusoidal
plane-wave excitation at 30 GHz.
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H-plane E-plane

Figure 5.19 Snapshot of the electric field inside and nearby a Luneburg lens excited by a
Hertzian dipole.

H-plane E-plane

Figure 5.20 Snapshot of the electric field inside and nearby a Luneburg lens excited by a
plane wave incident from the bottom.
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(a) (b)

(c) (d)

(e) (f)

0 −10 −20 −30 −40 −50 −60

Figure 5.21 Snapshots of the surface electric current (on the decibel scale) on an aircraft at
various time steps. (a) At the 120th time step. (b) At the 220th time step. (c) At the 320th time
step. (d) At the 420th time step. (e) At the 520th time step. (f) At the 620th time step.
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1 mm

Inlet
Port

Outlet
Port

5 mm

1 mm

0.794 mm

25 mm

8.75 mm

0.5 mm

7 mm

Dielectric Pad

Substrate

Ground Plane

PEC Trace

d = 5 mils
εsr = 10

εr = 2.2

Z

YX

Figure 6.2(a) Three-dimensional geometry of a microstrip bandpass filter with a high-
contrast thin dielectric layer.

2.4 Inches

u ∈[−30.48, 30.48] mm

x = u cos u/v

y

x = u sin  u/v

v = 1 mm

x
(0,0,0)

Figure 6.10 Thin-wire Archimedean spiral antenna. An ideal voltage source is placed at the
origin.
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B-Dot Sideways
Sensor

B-Dot Side
Sensor

Coaxial Cables

Wire Aperture

Wide Slot Aperture
Narrow Slot Aperture

Circular Aperture

EccosorbTM on Top Inside
Surface to Reduce Q
(not shown)

B-Dot F-B
Sensor

MGL-7
Sensor / Antenna

(a)

MGL-7 Local Mesh

E inc

Circuit Board

MGL-7
Sensor/Antenna

LS-16
LS-14

B-Dot Sideways
Sensor

(Antenna mode used
for internal calibration
of EccosorbTM permittivity)

Circuit Board

(b)

Circuit BoardCircuit Board

EccosorbTM

Internal electronics
compartment

Figure 6.24 (a) Device-under-test (DUT) geometry showing various sensors and aperture
configurations. (b) Cross section showing two Eccosorb absorptive layers (LS-14 and LS-16)
mounted on the top surface of DUT.
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B-Dot Sensors

Figure 6.25 Finite element surface mesh local to the internal electronics compartment.

Trace Current
Observer

Figure 6.26 Finite element surface mesh on the internal circuit board.
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20-mil Substrate
Coaxial
Feeds

Figure 7.11(a) Geometry of a four-arm sinuous antenna etched on a 20-mil dielectric sub-
strate.

Figure 7.14(b) Finite element surface mesh local to the inverted conical spiral feed region
for an inverted two-arm conical spiral over a ground plane.
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Figure 7.16(a) Three-dimensional representation of a balanced antipodal Vivaldi antenna.
Yellow is stripline track/flare (sandwiched by two 1.575-mm-thick Duroid layers), brown is
back ground plane transition/flare, and purple (unshaded) is front ground plane transition/flare,
which is the same as the back ground plane. Cyan is the substrate outline. The figure on the
right shows the input TEM port.

Coaxial
Feeds (2)

Radiator

Ground Plane

Periodic Boundaries

Periodic Boundaries

Dispersive Magnetic Substrate

Figure 9.16(a) Unit cell geometry of an ultrawideband phased array. The surface of the
right-front corner is made semitransparent to show the internal structure of the unit cell.
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Figure 10.9 Geometry of two 9 × 9 microstrip patch antenna arrays placed on a ground
plane. Each array is housed in a shallow cavity recessed in the ground plane so that it is
flush-mounted.

Figure 10.10 Normalized power (in decibels) coupled from the transmitting array with
broadside scan to the receiving array as a function of the scan angle of the receiving array.
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Edges added to slave region
matrices from neighboring
master region 

Master
Region

Slave Region

Figure 10.13 Two-dimensional decomposition of a three-dimensional tetrahedral mesh for
application of the IDD technique. The master region edges that are used to augment the slave
region are highlighted.

Figure 10.14(a) Geometry of a 10 × 10 Vivaldi array on a ground plane.
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Figure 11.5 (a) Solid model of a 15-m-long airframe. (b) Enclosure of the finite element
discretization region decomposed into subdomains.
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Figure 11.6 Surface electric current distribution due to radiation by two monopole antennas
mounted on a simple airplane model.
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