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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in re-
search and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numeri-
cal and symbolic computer systems, dynamical systems, and chaos, mix
with and reinforce the traditional methods of applied mathematics. Thus,
the purpose of this textbook series is to meet the current and future needs
of these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



Preface

This book should serve as an undergraduate text to introduce students of sci-
ence and engineering to the fascinating field of optimization. Several features
have been united: conciseness and completeness, brevity and clarity, emphasis
on the justification of ideas and techniques and also on applications, etc. One
of the novelties of the text is that it ties together fields that are often treated as
separate. Indeed, it is hard to find a single textbook where mathematical pro-
gramming, variational problems, and optimal control problems are explained
and integrated as a unity. Thus, our readers may gain an overall view of all
aspects of optimization.

It is also true that each of the chapters is but a timid introduction to such
broad subjects as linear programming, nonlinear programming, numerical opti-
mization algorithms, variational problems, dynamic programming, and optimal
control. As a primer in optimization, our aim with this text is no more than to
provide a succinct introduction to those worlds, presented in a single resource
reference. This text cannot and does not pretend to substitute in the least other

vii



viii Preface

more profound textbooks on those subfields of optimization. Readers with some
experience in optimization seeking a more specialized source in some of those
parts will have to look for other references. Real-world applications are also far
from this introduction to the subject. Although we have tried to motivate the
ideas and techniques by using examples, these are most of the time academic
simplifications of much more complex situations. Many of our examples and
exercises are part of the standard collection of problems often used to intro-
duce optimization. Many of these, even in a much more general form, can also
be found in other textbooks.

Applied mathematicians, physicists, and all types of engineers and scien-
tists, may benefit from such an introduction to optimization that does not pay
much attention to formalities, technicalities, rigorous proofs, and statements,
in order to produce a brief text stressing the main ideas and the main reasons
for techniques. We have also tried to keep prerequisites to a minimum. Linear
algebra, calculus, and differential equations are essentially the only fields where
elementary knowledge is assumed. We hope to help students understand the
first principles of optimization so that they may be able to start solving some of
the problems they are interested in, and deepen their knowledge of a particular
area when needed.

I would like to thank Eduardo Casas, Carlos Corona, Julio Mufioz, and An-
tonio Ornelas for their reading of the manuscript and for the various, interesting
remarks they made. My thanks also go to the staff at Springer, particularly Achi
Dosanjh, Joel Ariaratnam, Frank Ganz, Margaret Mitchell, Timothy Taylor,
and Elizabeth Young. They all made the preparation of the manuscript and
the review process a rewarding and enjoyable task. I am well aware that errors,
inaccuracies, ambiguous statements and explanations, misprints, etc., are still
part of this text. Anyone interested in letting me know will be welcome to do
so by contacting me at pablo.pedregal@uclm.es.

Pablo Pedregal
Ciudad Real, April 2003
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Chapter 1

Introduction

1. SOME EXAMPLES

We believe that there is no better way to convince our readers of the interest and
applicability of certain mathematical ideas or techniques than to show the type
of practical problems and situations that can be tackled, and eventually solved,
by using them. At the same time, this initial list of problems and examples
may serve as a clear statement of the objectives and goals of this text. Some
of the examples might not be completely understandable in a first reading.
This should not bother our readers, since we will insist on them throughout
this chapter and their significance will be more clearly grasped by the end of
it. Most of the examples we will analyze are very well known and academic,
in the sense that the size of real problems is not comparable, in the least, to
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the situations we will study. More complex versions of these problems can be
found in advanced textbooks. We think, however, that the main ideas will be
conveyed through them and will endow readers with the basic tools for more
realistic situations.

The transportation problem. A certain product is to be shipped in amounts
w1, U, ..., Uy from n service points to m destinations, where it is to be received
in amounts v, Vg, ..., Up. See Figure 1.1. If the cost of sending one unit of
product from origin i to destination j is known to be c;;, determine the quan-
tity x;; to be sent from origin ¢ to destination j so that the total transportation
cost is minimum.

“oo \
u; O O v
g
iy O
/ ©

u, O
Figure 1.1. A transportation network.

The diet problem. The nutritive contents of certain foods are known as
well as their prices and the daily minimum required for each nutrient. The task
consists in determining the amount of each food that must be purchased to
ensure that the minimum required for each nutrient is met and the total cost
of the diet is as small as possible.

The scaffolding system.  Consider the scaffolding system of Figure 1.2,
where loads x1 and x5 are applied at certain points of beams 2 and 3, respec-
tively. Ropes A and B can bear a maximum weight of 300 kg each, C and D
can bear 200 kg, and E and F, a maximum of 100 kg each. Find the maximum
load x1 + xo the system can bear without failure in equilibrium of forces and
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moments, the optimal loads x1 and x5, and the optimal points where they must
be applied, assuming that the weight of ropes and beams is negligible.

12

A~ "-"—-—"-—— —| B
|

Cie 2, lxl D
|
4

E:d—————h A-zi F
|

Figure 1.2. Scaffolding system.

Power circuit state estimation. The state variables of an electric network
are the voltages, each a complex number with modulus v; and argument &;,
at each node of the network. The active and reactive powers of the connection
between the nodes i and j are given, respectively, by

2
V; ViV;
_ )
pij = COS 0”- — COS(gij + 51 — 5]'),
Zij Zij
’U2 ViV;
_ 1 . (e} .
¢ij = ——sinb;; — —=sin(6;; + 9; — 9;),
Zij Zij

where the modulus z;; and the phase 0;; determine the impedance of the line
ij. If experimental measurements v;, p,;, q;; of the respective values v;, p;j, and
qij are available, and the parameters of the goodness of the measurements are
ky, kfj, kfj, respectively, estimate the state of the network by minimizing, on
the variables v;, the mean quadratic error of the available measurements with
respect to the predicted values so that the above formulas hold in the best way
possible.

Design of a moving solid. = We wish to design a solid with radial symmetry
around a given axis that must travel in a straight line with constant velocity
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within a fluid. If the density of the fluid is sufficiently small, then the modulus
of the normal pressure in the direction of the outer normal to the surface of
the body exerted by the fluid over the solid comes in the form

p = 2pv?sin’ 6,

where p and v are the (constant) density and the (constant) velocity of the fluid
relative to the solid, and 0 is the angle formed by the tangent to the profile of
the surface in the xy-plane and the velocity of the fluid (see Figure 1.3). How
can we find the optimal profile of the solid in order to minimize the pressure
exerted by the fluid on it?

Figure 1.3. A moving solid within a fluid.

Design of a channel.  Channels are a particular type of conducting device
for fluids. Typically, the fluid does not ocupy all of the channel (Figure 1.4),
and in general, losses originate at the walls.

In some specific regime, friction can be approximated by the expression

1 7D
z210g37 h

Vv ¢
where f is the friction coeficcient, Dy, is the so-called hydraulic diameter, and
e represents a measure of rugosity. Moreover, we have

Dy =4Ry,, Ry =A/P,
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where A is the (area of the) cross section of the channel ocupied by the fluid,
and P is the perimeter reached by the same cross section of fluid. If we assume
that A is fixed, the question is to determine the profile of the cross section of
the channel that will minimize losses of fluid through the walls.

Figure 1.4. The cross section of a channel.

Boat manufacturer. A boat manufacturer has the following commitments
for a certain year: at the end of March, one boat; in April, 2; in May, 5; at the
end of June, 3; during July, 2, and 1 in August. He can build a maximum of
four boats per month, and can keep three in stock at most. The cost of each
boat is 10,000 euros while keeping one in stock is 1,000 euros per month. What
is the optimal strategy for building the boats so as to minimize costs?

The harmonic oscillator with friction. A control surface in a flying object
must be kept in equilibrium in a certain position. The fluctuations move the
surface, and if they were not addressed, it will vibrate according to the law

0" + ab' + w30 =0,
where 6 is the angle measured from the desired equilibrium position, and a and
w are given constants. A servomechanism applies a torque that changes the
behavior of the oscillator to

0" + ab’ + w*0 = u,

where the control v must be bounded |u(t)| < C. The problem consists in
determining the servomechanism parameter u(t) such that the surface goes
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back to rest @ = 6’ = 0 from an arbitrary state = 0y, 8’ = 6(, in minimum
time.

A positioning problem. A certain mobile object moving in the plane is
controlled by two parameters: the magnitude of acceleration r and the rate
of change of the angle of rotation §'. If we assume that r and ¢’ are allowed
to move on the intervals [—a,al, [—«, o], respectively, determine the optimal
strategy to bring the mobile object from some initial conditions to rest at the
origin.

Although the collection of problems and situations could be considerably
enlarged (including some examples, as suggested earlier, closer to reality and
to technological or engineering situations), the ones stated above may already
serve to suggest that we are before a subject of a relevant applied character.
We will be learning to treat and solve these problems and many more in the
chapters that follow. Once those ideas have been understood and matured,
the reader will be able to analyze and solve by himself (herself) many more
situations from science and technology. He (she) may also choose to deepen his
(her) knowledge of a particular class of problems by looking for more advanced
textbooks on that particular area.

2. THE MATHEMATICAL SETTING

The examples of the previous section are apparently very different among them-
selves, although they all share something that enables them to be present in this
book. In all of those situations we are seeking an optimal solution, the best way
to do things, the most efficient manner, the most economical process. Because
of this, all of the ideas that have been developed over the years to examine
and solve these problems can be put under the label of OPTIMIZATION. Yet,
the above problems are very different from one another, and the techniques to
solve them or approximate their solutions reflect this same variety and wealth.
We do not pretend at this point that readers may discover by themselves these
differences, even more so before putting them in a more precise, quantitative
fashion reflecting faithfully each situation and allowing an appropriate treat-
ment leading to the solution or a good numerical approximation of it. This
process of going from the statement in plain words of a particular situation
to its formulation in precise, mathematical terms is of such importance that
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failure to carry it out accurately may result in absurd answers to problems.
The ultimate success of a certain optimization technique greatly depends on it.

The statement of the problem in precise mathematical terms should reflect
exactly what we desire to solve. In particular, in dealing with optimization
problems there are two important steps to cover. Firstly, the objective or cost
function must measure faithfully our idea of optimality. A more desirable so-
lution must have a smaller (or greater) cost functional, be a minimum time, a
greater efficiency, greater benefits, minimum losses, etc. If our cost functional
does not correctly reflect our optimization criterion, the final solution will not
presumably be the optimal situation sought. Secondly, it is equally important
to explicitly state the constraints that must be enforced so that admissible
solutions are truly feasible in our problem or situation. Once again, if these
restrictions are not accurately written, some of them are forgotten, or we are
enforcing several that are too restrictive, our final answer may not be what we
are looking for. With the aim of emphasizing these issues, we are going to treat,
sucessively, the previous problems and provide their mathematical formulation.
Before proceeding to such an endeavor, let us indicate some general comments
to bear in mind when facing some particular situation.

We have emphasized the importance of the passage from the statement of a
certain optimization problem, often in plain words, to its precise, quantitative
formulation that enables us to eventually solve the problem. Scientists and
engineers should become experts in this process. A fundamental attitude not
to be forgotten when trying to set up a particular problem or reformulate a
situation is to insist on reflecting at every stage of this process our original
objective, in such a way that the connection between a situation to be solved
and its precise formulation is always there. This requires an active attitude
with respect to the formulation or reformulation of a particular problem until
we have interpreted every aspect of the situation.

To prevent these general comments from being useless, we dare to provide
the following recommendations for those facing an optimization problem.

Understanding the optimality criterion. There should be a very clear state-
ment of the objective and the way in which optimality is to be measured. In
particular, the decision about the variables that the cost depends upon and
the constraints among them is crucial. One problem can be set up in many
different ways, and it is important to discern which might be the most efficient
form of the statement. Moreover, it is important to check extreme values of
the variables (or other relevant values) and whether the associated cost is co-
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herent with what might be expected. This sort of analysis may often lead to
the realization that an error has been made in the statement, and a revision of
variables, restrictions, and objective functional should be made.

Understanding the constraints. Restrictions linking in different ways the vari-
ables of the problem are equally significant. Those can be of a very distinct
nature: equalities, inequalities, differential equations, integral restrictions, etc.,
and may also be hidden in several forms, sometimes in a tacit or implicit
manner. What is vital is to analyze the relationship among the variables and
the constraints that must be respected. In particular, equalities may be con-
veniently utilized to decrease the number of variables. The same attitude de-
scribed above ought to push us to check constraints and their coherence with
respect to the situation we want to examine.

Reflecting on the precise formulation. Once the two previous steps have
been covered, it is worthwhile to ponder the mathematical formulation of our
problem. Do constraints seem coherent? Could the set of feasible vectors or
fields be empty? Could some of the restrictions be simplified or eliminated
altogether because some constraints are stricter than others? Could the cost
be made as small as we like without violating any of the constraints? If so, it
is more than likely that we have forgotten some restriction. Could we possibly
anticipate whether there is a single optimal solution or whether there could be
several?

Brief analysis of solutions.  Finally, it is a good thing to get used to examining
briefly the optimal solution that has been obtained or approximated. Does it
seem like a minimum cost, a maximum efficiency, etc.? Is it plausible that it is
indeed an optimal solution? Does it reflect the desired optimality with respect
to the terms of the initial problem? Does it satisfy all the requirements?

As the saying goes, “practice makes perfect,” and optimization problems
and techniques are no exception. Exercises and situations will help students
to go through all the stages described above rapidly and accurately. In the
beginning there will be errors, insecurity, inefficiency, shortage of ideas to over-
come difficulties, etc., but as students master these aspects, self-confidence will
result.

We now proceed to provide the precise formulation of the different problems
proposed in the last section. We urge students to work on understanding the
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connection between the original formulation of a problem and its translation
into equations, formulas, inequalities, equalities, etc. This process typically in-
volves setting up a model of the proposed situation. In some simple cases, such
a model will be sufficiently clear, and no particular difficulty will be encoun-
tered in putting the problem in the appropriate format. In others, however,
there may be an initial gap in understanding the mechanisms associated with a
specific situation, and additional effort will be necessary to grasp its significance
and reach a precise formulation.

The transportation problem. If z;; is the amount of the product sent from
initial location i to destination j, the total cost will be

E Cijxij
,J

if ¢;; is the unit cost of sending the product from i to j. What are the restrictions
we must respect? For a fixed service point i, u; is the quantity to be shipped,

so that
inj:ui, i:1,2,...,n;
J

likewise, for every fixed destination, the amount v; should be received, and this
enforces

Zl‘ij:’l)j, j:1,27...,m.
%

Notice that these two sets of equalities are compatible if
IUED A
i J

which is a restriction that the data of the problem must satisfy for the problem
to be well posed. Moreover, if we accept that the feature of being a service
point or a destination cannot be reversed, then we must ask for

Tij > 0, for all Z,j
Altogether, we are seeking to

Minimize E CijTij
0,
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under
E Tij = Uq, i=1,2,...,n;
J

E Tij = Vj, j:1,2,...,m;
%

x5 >0, foralli,j.

The diet problem. Let x; be the amount of food i to be bought. The total
cost we would like to minimize is

E Cili
i

if ¢; is the unit price of food i. Let a;; be the content of nutrient j per unit of
food i, and b; the daily minimum required of nutrient j. Then we must make
sure that in our choice of the diet this minimum is met:

Zajixi Z bj, for all j

Finally, we must ask for the nonnegativity of each x;:
x; >0, for alli.

The problem is
Minimize Z CiT;
i

subject to
Zaﬁxi >b;, forall j,
i

x; >0, for alli.

The scaffolding system. If we denote by Ta, T, Tc, Tp, Tk, Tr the
tensions on each rope when they bear an overall load x1 and xo, applied at
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points x3 and x4 units away from the left endpoints of each corresponding beam,
the conditions of equilibrium of force and momentum lead to the equations

Tg+Tp =2, 8Tp =422,
Te+Tp=21+Tg+Tp, 10Tp = xz321 + 2T + 10T,
Ta+Tg=Tc+Tp, 12T =2Tc+ 12Tp.

If we now express the different tensions on each rope in terms of our design
variables x;, we have

8 —
Loy _ TF < 100’ % = TE < 100,
2x9 + m1151£)3 + oty Tp < 200, 10z1 + 8z2 onl'TS — Toly Te < 200,
e ﬁ;l% ol T < 300, SAA 1;1% DT, < 300,

and these inequalities should be satisfied. Moreover, we must ask for
2120, 2220, 0<23<10, 0< 2y <8.

The problem is then to
Maximize x1+ X2

subject to

120, x>0,
0<23<10, 0<my <8,
zoxy < 800, 8xg — xaxy < 800,
2x9 + 123 + oy < 2000, 1027 4+ 8x9 — 2123 — X214 < 2000,
221 + 4xo + r123 + oy < 3600, 1027 4+ 8x9 — 123 — T4 < 3600.

Power circuit state estimation. In this example, we are told to minimize
the mean quadratic error of certain measurements with respect to the predicted
values. Specifically, we seek to

Minimize Zkf v; — Tj) +sz (pij — Pij) +sz (gi; — q”

i€Q 1€Q JjEQ; 1€Q JEQ;
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where the different data are given in the statement and

2
v; ;U
pij = ——cosb;; — cos(0;; + 6; — 6;),
sz Zij
2
P . ViV .
qij = —+ Sin Hij — J sm(Gij + 51 — 5])
Zij Zij

The unknown variables are (v;,9;), and we do not have any explicit restriction
on these. Here () is the set of nodes, while §; is the set of those connected to
node 1.

Design of a moving solid. According to our previous explanation and the
corresponding diagram, the component along the x-axis of the normal pressure
on a point on the surface of the solid is

psinf = 2pv? sin® 6.

The total pressure in a slice of width dx will be the product of the previous
expression times the lateral surface of the slice,

dP = 2pv*sin® 0 2my(z)\/1 + o/ ()2 dx,

if a given profile of the solid is obtained by rotating the graph of the function
y(z). If we write sin 6 in terms of tan @ = y'(x), we arrive at

)14y (z)? dx,

y' ()

dP = 2 1)227r—
T oy

or simplifying,

dP = 47 pv? (f_):;/(())g dx.

The objective functional providing the total pressure is

L 17N
P = 47rpv2/ 7y(x)y/ (x)2 dx,
o 1+y'(x)

and we are interested in finding the profile y(x) that minimizes the previous
integral among all (continuous) profiles satistfying y(0) = 0, y(L) = R.
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Design of a channel.  Since losses at the wall of a channel are proportional
to the inverse of the perimeter, for a given fixed cross section A, the best profile
is to be found in the sense that it should have the least perimeter possible. More
specifically, we are seeking the profile y(x) such that it minimizes the integral

R
/0 VIt y @2 dr,

which provides the length of the graph of y(x), subject to

Boat manufacturer. This problem is self-explanatory, and no further com-
ments are needed.

The harmonic oscillator with friction. In this example, the best control
u(t) is to be found that leads the oscillating surface to rest as soon as possible
and at the same time respects the restriction on the size |u(t)| < C.

A positioning problem. A mobile object in a plane can be controlled by
two parameters at our disposal, r1 and ro, expressing the modulus of change of
velocity and the rapidity with which the direction of movement can be changed
(angular velocity of movement), respectively. The equations of motion are

2 (t) = cosO(t)r1(t), ' (t) =sin0(t)ri(t), 60 (t) =ra(t).
Restrictions on the feasible pairs (r1,r3) are written by requiring

(ri,72) € [—a,a] X [—a, al.

The objective is to change the position of the object from, say, (xo,yo) standing
at rest ' (0) = 3/(0) = 0 at the initial time, to the origin in minimum time

for T' as small as possible.
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3. THE VARIETY OF OPTIMIZATION PROBLEMS

We have already noted, and it is more than likely that readers have also ap-
preciated it, the tremendous differences among optimization problems. These
differences have motivated the structure of this text.

Perhaps the most significant difference lies in the fact that in some problems,
vectors describe solutions and optimal solutions, whereas in other cases func-
tions are needed to formulate and solve the problem. This important, profound
qualitative distinction results in a difference between optimization techniques
for these two categories of problems. The situation is similar to the case of
equations or systems of equations in which we are interested in a vector solu-
tion, a bunch of numbers, and differential equations where the unknown is a
function. In the first case, we talk about mathematical programming; in the
second, about variational problems. In a second approximation, mathematical
programming can be divided into linear programming (Chapter 2), dealing with
the simpler world of linear problems, and nonlinear programming (Chapter 3),
for the complex nonlinear optimization techniques. The transportation and
diet problems correspond to linear programming, while the scaffolding system
and the power circuit state estimation are examples of nonlinear optimization
problems.

The type of situations where we intend to find optimal functions for specific
situations can be classified into variational problems (Chapter 5) with a brief in-
cursion into dynamic programming, and optimal control problems (Chapter 6).
The design of a moving solid or a channel and the boat manufacturer problem
correspond to variational problems and dynamic programming. The harmonic
oscillator and the positioning problem are typical examples of optimal control
problems.

Chapter 4 is like a point of intersection between the world of vectors and that
of functions. We will understand this assertion later. Our aim in this chapter
is to describe the most basic and relevant numerical algorithms for computing
and/or approximating optimal solutions to problems. Since in most of the real
situations one may encounter, exact optimal solutions are not to be expected,
these computational techniques are crucial. We will restrict attention to the
most basic, well-known such techniques. Our objective is to let readers have
some idea about the nature of approximation techniques for optimization prob-
lems. We have not included explicit implementation of algorithms for two main
reasons. There are a number of existing and tested commercial optimization
software packages (see Chapter 4 for some specific references) that are quite
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helpful, since they free us from having to be concerned about technical issues
related to approximation, and instead focus on the modeling task. On the other
hand, the fine tuning of algorithms, especially when nonlinear restrictions must
be taken into account, requires considerable experience and expertise as soon
as the number of independent variables grows above a few. The nonexpert
would probably do a poor job compared to that carried out in those software
packages. This does not mean that it is useless to have some experience trying
to write personal programs for some simple situations. We have written down
some simple versions of algorithms in pseudocode format.

Finally, it is important to stress that each of these chapters is but a timid
initiation into the corresponding ideas. The wealth of situations, the peculiari-
ties of realistic problems, the need for better computational methods and algo-
rithms, and the need for a deeper understanding of the structure of problems
can be such that a whole book would be needed to more fully cover each of these
small chapters. Our intention is to furnish a first overall view of optimization,
emphasizing the basic ideas and techniques in each category of optimization
problem.

4. EXERCISES

1. An investor is seeking to invest a certain capital K in a diversified manner
so as to maximize expected profits at the end of a certain period of time.
If r; is the expected average interest rate for investment ¢, and to avoid
excesive risk he (she) does not want to put on any one investment more
than a fixed percentage r of the capital, formulate the problem leading to
the best solution. Can you figure out other types of reasonable restrictions
to enforce in such a situation?

2. In the context of the scaffolding system described earlier in the chapter,
assume that the points where loads x; and x5 are applied are exactly the
midpoints of beams CD and EF, respectively. Formulate the problem. What
is the main difference between this situation and the one described in the
text?

3. A company that manufactures tiling elements for roofs must provide 7800 m?
of these elements for several houses. Two different elements can be used:
Model A10 requires 9.5 elements per square meter, and model A13 needs
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12.5 elements per square meter. Both models can be used in the same roof.
The respective prices are 0.70 and 0.80 euros per element. The company has
1600 labor hours to finish the roofs. In one hour, 5 m? of model A10 and 4
m? of model A13 can be installed. Due to baking restrictions, the maximum
amount of model A13 that can be sent is 2500 m?2. Formulate the problem
of maximizing benefits subject to all of the restrictions indicated.

Figure 1.5. A system of springs.

In the system of springs of Figure 1.5, each node is free to rotate about
itself. If each spring has a constant k; characterizing elongation (according
to Hooke’s law) and the equilibrium position of the free central node is
determined through the system

Zkl(lﬂ — 351) = 0,

where z; is the position of fixed joints, describe how to determine the optimal
spring constants k; that minimize the work done by a constant force F' on
the free node, assuming that

> ki=k,

a fixed positive constant.

A company is to build several (m) service points to serve a certain number
(n) of known clients. A decision is to be made about the optimal location of
those service points. Assuming that the criterion chosen is global minimal
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10.

distance from service points to clients, state the problem as a nonlinear
programming problem. Describe other ways of making that decision.

A quadrature formula is a way to efficiently approximate definite integrals
through sums of the type

b n
[ t@yde~ Y asstey)

where weights a; and points x; determine the particular quadrature rule.
We would like to determine the vector of n weights (o) and n points (z;)
in the interval [—1,1] so that the corresponding quadrature is exact for
polynomials of degree as high as possible. The procedure is to minimize
the quadratic error of the quadrature formula for polynomials of degree m.
State the problem as a nonlinear programming problem.

The Cobb—Douglas utility function is of the form

u(z,y) =2 O0<a<l, >0, y>0.

Assume an economy of two consumers, 1 and 2, and two commodities X
and Y. Both consumers have the same utility function of the type above
with the same exponent «, and resources

(Tiayi), 1=1,2,

for each commodity. If prices p = (px,py) prevail in the market for both
commodities, formulate the problem of maximizing satisfaction for each
consumer as measured by their utility functions.

A ladder must lean against a wall where a box of dimensions a x b is placed
against the same wall as in Figure 1.6. Formulate the problem of finding the
shortest such ladder.

. John is supposed to cut n; bars of length a;, i = 1,2,...,d, from bars of

fixed given length L, a; < L for all i. What is the minimum number of such
bars he needs? Find a precise formulation of this optimization problem.

An airplane is flying with speed v with respect to the ground in a bounded
irrotational wind field given by V(x, y, z) and such that v > |Vy|. Starting
and ending at the same point, what are the longest and shortest paths it
can fly in a given time interval [0,7]? Write down the problem assuming
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that v is constant and the direction of velocity is at our disposal. (Hint:
Write a parametrization of a curve

What do we know about z’, ¢/, 2’ in terms of v, the direction of velocity
and V7 Keep in mind that the length of such a curve is given by

T
/ o] dt.)
0

._“.{
Figure 1.6. A ladder against a wall.

11. A rope is hanging vertically in equilibrium from its upper fixed endpoint
(Figure 1.7). It is stretched by the action of its own weight and a constant
mass W at its lower end. The problem consists in determining the optimum
distribution of the cross-sectional area a(z), 0 < & < L, so as to minimize
the total elongation. The unstretched length L, the total volume V', the
density p, and Young modulus E are constant and known.

1. What is the integral restriction related to the volume V that the function
a(x) must satisfy to be admissible?

2. Let y(z) be the distance, measured form the upper fixed endpoint and
corresponding to the design a(z), that the section at distance x in the
unstretched configuration moves to when the rope is pulled by the weight
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W. Assume that Hooke’s law applies: The strain y’(z) at each point is
proportional (with proportionality constant 1/FE) to the stress there,
where the stress at z is the total downward force divided by the cross-
sectional area a(z). Write down this law in the form of an equation.

3. How is the objective expressed in terms of y? Is there a further restriction
to be imposed on y?

Figure 1.7. A rope with varying cross section.

12. The problem of the slowest descent to the moon can be formulated in the
following terms. If v(t) and m(t) are the velocity and combined mass of the
spacecraft and fuel at time ¢, o is the (constant) relative ejection velocity
of fuel, and ¢ is gravity, then the state law is written

(m+dm)(v+dv) —dm (v+ o) —mv = mgdt,

or equivalently,
dv o dm

— =g+ ——.
at 9T ae

If the rate of ejection per unit time —dm/dt can be controlled within an

interval [0, ], formulate the problem of soft landing in minimum time in

precise terms.
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13.

14.

15.

A jet plane is to reach a certain point in space in minimum time from take-
off. Assuming that the total energy (kinetic plus potential plus (minus) fuel)
is constant, the jet burns fuel at its maximum constant rate, and it has
zero velocity at takeoff, formulate the corresponding optimization problem.
(Hint: The equation of total energy leads us to postulate

v + 29y = at,

where v = (2/,y’) is the velocity, g is the acceleration due to gravity, and a
is the constant maximum rate at which the jet burns fuel.)
In connection with the construction of an optimal refracting medium, the
following problem arises:

Maximize y(1)

subject to

y'(x) — F(z)y(x) =0, y(0)=1, ¢(0)=0,

1
F>0, /F(m)dx:M.
0

Reformulate this problem as an optimal control problem with an integral
objective functional.

An aggregate model of economic growth can be described by the following
equations

where Y is the single output of the economy, using two inputs, labor (L)
and capital (K), X denotes the amount of consumption, p is the rate of
depreciation, the variable ¢ indicates time, and n is the constant rate at
which labor grows. The objective of this economy is to maximize the welfare
integral

| wxopeera,

where p is the time discount factor. Try to simplify the formulation of this
problem as much as possible.
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16. Sometimes, optimization problems may not adapt themselves to either of
the formats described in this chapter, mainly because the optimality crite-
rion is more involved than the ones envisioned in this text. For example,
a hydraulic cushion unit (Figure 1.8), such as those used in the railroad
industry, develops a cushioning force given by

0<z <,

where ¢ is a constant, v = v(x) is the velocity of the cushion, a(x) is an
orifice area that is allowed to vary with displacement x, and x,, is the
maximum displacement permitted under appropriate geometric constraints.
The design of such units seeks to choose a(x) so as to minimize the maximum
force for a given impact mass m with impacting velocity vg. Show that the
optimum is obtained when a(x)? varies linearly with z. (Hint: The work

energy formula is
1 9 1 9 / z F(s)d
—mu® = —muv§ — s)ds.
2 20/,
What information does this equation provide at the end of impact when

v =07)

", vy

Fy
h

| ‘CJJ'I'
|

Figure 1.8. A cushion unit.



Chapter 2

Linear Programming

1. INTRODUCTION

The main feature of a linear programming problem (LPP) is that all functions
involved, the objective function and those expressing the constraints, must be
linear. The appearance of a single nonlinear function, either on the objective
or in the constraints, suffices to reject the problem as an LPP.

Definition 2.1  (General form of an LPP) An LPP is an optimization prob-

lem of the general form

Minimize cx = E CiT;i

7

23
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subject to
Za]lngb]a j:17"'ap7
i

Zajixizij ]:p+177Q7
i
Zajimi:bja J=q+1,....m,
9

where c¢;, bj, a;; are data of the problem. Depending on the particular values
of p and q we may have inequality constraints of one type and/or the other,
and equality restrictions as well.

We can gain some insight into the structure and features of an LPP by
looking at one simple example.

Example 2.2  Consider the LPP
Maximize x1 — X2
subject to

1 +x2 <1, —w1 42w <2
> —1, —x1+4 3z, > —3.

-)c1+2_1c2 =2

Figure 2.1. The feasible region and level curves in an LPP.
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It is interesting to realize the shape of the set of vectors in the plane satisfy-
ing all the requirements that the constraints express: Each inequality represents
a “half-space” at one side of the line corresponding to changing the inequality
to an equality. Thus the intersection of all four half-paces will be the “feasi-
ble region” for our problem. Notice that this set has the form of a polygon or
polyhedron. See Figure 2.1.

On the other hand, the cost, being linear, has level curves that are again
straight lines of equation x1 — xo = t, a constant. When t moves, we obtain
parallel lines. The question is then how big t can become so that the line of
equation r1 — xo = t meets the above polygon somewhere. Graphically, it is not
hard to realize that the optimal vector corresponds to the vertex (—1/2,3/2),
and the value of the maximum is 2.

Note that regardless of what the cost is, as long as it is linear, the optimal
value will always correspond to one of the four vertices of the feasible set. These
vertices play a crucial role in the understanding of LPP, as we will see.

An LPP can adopt several equivalent forms. The initial form usually de-
pends on the particular formulation of the problem, or the most convenient
way in which the constraints can be represented. The fact that all possible
formulations correspond to the same underlying optimization problem enables
us to fix one reference format, and refer to this form of any particular problem
for its analysis.

Definition 2.3  (Standard form of an LPP) An LPP in standard form is

Minimize cx under Az =b, xz>0. (P)

Thus, the ingredients of every LPP are:
1. an m X n matrix A, with n > m and typically n much greater than m;
2. a vector b € R™;
3. a vector c € R".

Notice that cz is the inner product of the two vectors ¢ and x, while Az is
the product of the matrix A and the vector . We will not make the distinction
between these possibilities, since it will be clear from the context. It is there-
fore a matter of finding the minimum value the inner product cx can take on
as x runs through all feasible vectors x € R™ with nonnegative components
(z > 0) satisfying the additional, and important restriction Az = b. We are
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also interested in one vector x (or all vectors x) where this minimum value is
achieved.

We have argued that any LPP can in principle be transformed into the
standard form. It is therefore desirable that readers understand how this trans-
formation can be accomplished. We will proceed in three steps.

1. Variables not restricted in sign. For the variables not restricted in sign,
we use the decomposition into positive and negative parts according to the
identities

r=zt -2, |z|=2T+2,

where
r =max{0,z} >0, 2~ =max{0,—x}>0.

What we mean with this decomposition is that a variable z; not restricted in
sign can be written as the difference of two new variables that are nonnegative:
x§2) xz(-l),:c?) > 0.

(1)
Xr; = .CCi — ,

2. Transforming inequalities into equalities. Quite often, restrictions are for-
mulated in terms of inequalities. In fact, an LPP will come many times in the
form

Minimize cx under Az <b, Az=0b, z>0.

Notice that by using multiplication by minus signs we can change the direction
of an inequality. In this situation, the use of “slack variables” permits the
passage from inequalities to equalities in the following way. Introduce new
variables by putting

y=b—Ax > 0.

If we now set
X=(z y), A=(A 1),

where 1 is the identity matrix of the appropriate size, the inequality restrictions
are written now as

AX =,

so all constraints are now in the form of equalities, but we have a greater
number of variables (one more for each inequality).
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3. Transforming a max into a min. If the LPP asks for a maximum instead of
for a minimum, we can keep in mind that

max(expression) = — min(—expression);
or more explicitly,
max {cz : Ar =b,z > 0} = —min {(—c¢)z : Az = b,z > 0}.
An example will clarify any doubt about these transformations.
Example 2.4 Consider the LPP
Maximize 3x1 — 3

subject to
1 +x0+a3 =1,
r1 —x2 —w3 < 1,
1+ w3 > —1,
1 >0, x92>0.

1. Since there are variables not restricted in sign, we must set

T3 =y1—Y2, Y1 20,4220,
so that the problem will change to
Maximize 3x1 —y1 + Y2
subject to
T1+ X2 +y1 —y2 =1,
Ty —x2—y1+y2 <1,
Tty —y2 = —1,
z1 Z 03 T2 2 Oa
y1 20, y2>0.
2. We use slack variables so that inequality restrictions may be transformed

into equalities: z;1 > 0 and zo > 0 are used to transform

T —To—y1+y2 <1, 1 +y1 —y2 > -1,
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respectively, into

Ty —T2o—y1+y2+21=1, 2z >0,

and
T1+yr—y2 —2z2=-—1, 29>0.

The problem will now have the form

Maximize 3x1 —y1 + Y2

subject to
T+ a2 +y1 —y2 =1,
Ty1—T2—Y1+y2t+2=1,
T1+y1 —y2— 22 = —1,
120, 292>0
y1 20, y22>0,
z1 >0, 202>0.

3. Finally, we easily change the maximum to a minimum:
Minimize — 3x1+ Y1 — Y2

subject to
T+ T2 +y1 —y2 =1,
T1—T2—Y1+yY2+21=1,
1ty —y2— 22 =—1,
x1 20, x22>0,
y1 >0, y22>0,
2120, 2220,

bearing in mind that once the value of this minimum is found, the corresponding
maximum will have its sign changed.

If we uniformize the notation by writing

(X17X27X37X4u X57—X6) = (:Ela x2,Y1,Y2, %1, 22)7



2.1 Introduction 29

the problem will obtain its standard form
Minimize X3 — X4 —3X3

subject to
X1+ Xo+X3-Xy =1,
X1 —Xo—Xs+Xu+ X5 =1,
X1+ X3 — Xy — Xg=-1,
X >0.

Once this problem has been solved and we have an optimal solution X and the
value of the minimum m, the answer to the original LPP would be as follows:
The maximum is —m, and it is achieved at the point (X1, X2, X3 — X4). Or
if you like, the value of the maximum will be the value of the original linear
cost function at the optimal solution (X1, Xo, X3 — X4). Notice how the slack
variables do not enter into the final answer, since they are auxiliary variables.

Concerning the optimal solution of an LPP, all situations can actually hap-
pen:

1. the set of admisible vectors is empty;

2. it can have no solution at all, because the cost cx can decrease indefinitely
toward —oo for feasible vectors ;

3. it can admit a single optimal solution, and this is the most desirable situa-
tion;

4. it can also have several, in fact infinitely many, optimal solutions; indeed,
it is very easy to check that if z; and x are optimal, then any convex
combination

tey + (1 —t)ze, t€][0,1],

is again an optimal solution.

In the next section, we will see how to solve an LPP in its standard form by
the simplex method. Though interior-point methods are becoming more and
more important in mathematical programming, in both versions, linear and
nonlinear, we tend to believe that they are the subject of a second course on
mathematical programming. The fact is that the simplex method helps greatly
in understanding the special structure of linear programming as well as duality.
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2. THE SIMPLEX METHOD

We look more closely at an LPP in its standard form, and describe the simplex
method, which is one of the most successful approaches for finding the optimal
solution for such problems. Let us concentrate, then, on the problem of finding
a vector z solving

Minimize cx

subject to
Ax=b, x>0.

There is no restriction in assuming that the linear system Ax = b is solvable, for
otherwise, there would be no feasible vectors. Moreover, if A is not a full-rank
matrix, we can select a submatrix A’ by eliminating several rows of A, and the
corresponding components of b, so that the new matrix A’ has full rank. In this
case we obtain the new, equivalent, LPP

Minimize cz

subject to
Ar=V, x>0,

where b is the subvector of b obtained by eliminating the components cor-
responding to the rows of A we have previously discarded. This new LPP is
equivalent to the initial one in the sense that they both have the same optimal
solutions, but the matrix A’ for the reduced problem is a full-rank matrix. We
shall therefore assume, without loss of generality, that the rank of the m x n
matrix A is m (remember m < n) and that the linear system Az = b is solvable.

There are special feasible vectors that play a central role in the simplex
method. These are the solutions of the linear system Ax = b with nonnegative
and at least n—m null components. In fact, all of these extremal points or basic
solutions, as they are typically called, can, in principle, be obtained by solving
all square m x m linear systems Az = b where n — m components of = are set
to zero, and discarding those solutions with at least one negative component.
The very special linear structure of an LPP enables us to concentrate on these
basic solutions when looking for optimal solutions.

Lemma 2.5 If the LPP

Minimize cx
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subject to

admits an optimal solution, then there is also an optimal solution that is a
basic solution.

This is quite evident if we realize that the feasible set of an LPP is some
kind of “polyhedron,” and therefore minimum (or maximum) values of linear
functions must be taken on at a vertex. See Figure 2.2, and remember the
comments on Example 2.2.

Minimum of ¢z

Figure 2.2. Optimal basic solution.

For the proof of the lemma, assume that x is an optimal solution with at
least m + 1 strictly positive components, and let d be a nonvanishing vector
in the kernel of A with the property that x; = 0 implies d; = 0. If = has at
least m + 1 strictly positive components, such a vector d can always be found
(why?).

We claim that necessarily cd = 0. For otherwise, if ¢ is small enough so that
x + td is feasible (i.e., © + td > 0) and tcd < 0, then the cost of the vector
x +td is stricly smaller than that of x itself, which is impossible if x is optimal.
Therefore, cd = 0, and the vectors x + td are also optimal as long as they
are feasible. All that remains to be done is to move ¢ away from zero (either
positive or negative) until some of the components of  + td hit zero for the
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first time. For such value of ¢ we would have an optimal solution with at least
one more vanishing component than x. This process can be repeated as long as
the vector d is not the zero vector, i.e., until the optimal solution has at least
n — m vanishing components.

As an immediate consequence of Lemma 2.5, we can find optimal solutions
for an LPP by looking at all solutions of the system Ax = b with at least n—m
zeros, discarding those with some negative component, and, by computing the
cost of the remaining ones, decide on the optimal vector. This process would
indeed lead us to one optimal solution, but the simplex method aims to organize
these computations in a judicious way so that we can reach the optimal solution
as soon as possible without having to go through an exhaustive analysis of
all extremal points. In some cases, though, the simplex method actually goes
through all basic solutions before finding an extremal solution. This situation
is, however, rare.

The SM starts at one particular extremal feasible vector x, which, after an
appropriate permutation of indices, can be written as

x=(xp 0), zpeR™, 0€R"™™, x5>0.

The basic iterative step consists in setting one of the components of x g to zero
(the so-called “leaving variable”), and letting a vanishing component of 0 €
R™ ™ (the “entering variable”) become positive. In this way, we have moved
from an extremal point to an adjacent one. The key issue is to understand how
to make these choices (leaving and entering variables) in such a way that we
lower the cost as much as possible. Furthermore, we need a criterion to decide
when the cost cannot be decreased any more, so that we have actually found
an optimal solution and no more iterative steps are needed. We discuss this
procedure more precisely in what follows.
Let
x=(xp 0), zpeR™, 0eR"™™, x>0,

be a feasible extremal vector. In the same way, the matrix A, after the same
permutation of columns, can be decomposed as

A=(B N).

The equation Az = b is equivalent to

(B N) (x(f) =b, zp=B"'b
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The cost of such a vector x is

cx=(cgp c¢n) (x(f) = cpxp = cgBb.

The basic step of the simplex method consists in moving to another feasible
(adjacent) extremal point so that the cost has been lowered in such a movement.
The change from 2 = (zp 0) toT = (Tp N ), where xy is at our disposal,
will take place if we can ensure three requirements:
1. AT = b;
2. T < cx;
3. T>0.

The first one forces us to take

Ip =2Ip 7B71N:17N.

Indeed, notice that

implies

Zp =B '(b— Nay) =2 — B 'Nzy.
Consequently, the new cost will be

— BN _
(CB CN) (173 - mN) :CB(IEB*B ININ)+CNIN

= (CN - CBBilN)IL'N +cprp.

We see that the sign of
(CN - CBB_IN)QSN

will dictate whether we have been able to decrease the cost by moving to the
new vector

(QZB 7BilN’l,’N JZN).

The so-called vector of reduced costs

r=cy—cgB N
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will play an important role in deciding whether we can move to a new ba-
sic solution and lower the cost. Since z > 0 (by requirement 3 above), two
situations may occur:

1.Stopping criterion. If all components of r turn out to be nonnegative,
there is no way to lower the cost, and the present extremal point is indeed
optimal. We have found a solution for our problem.

2. Iterative step. If r has some negative components, we can, in principle,
lower the cost by letting those components of xn become positive. However,
we must exercise caution in this change in order to ensure that the vector

rp— B 'Nzy (2-1)

is feasible, i.e., will always have nonnegative coordinates. If this is not the case,
even though the cost will have a smaller value in the vector

(QZB 7BilN’l,’N JZN),

it will not be feasible and therefore wil not be admissible as an optimal solution
of the LPP. We must ensure the nonnegativity of the extremal vectors.

Instead of looking for more general choices of xy, the simplex method fo-
cuses on taking xny = tv, where ¢t > 0 and v is a basis vector having vanishing
coordinates in all but one place, where it has 1. This means that we will change
one component at a time. The chosen component is precisely the “entering vari-
able.” How is this variable to be selected? According to our previous discussion,
we are trying to ensure that the product

rey = tro

will be as negative as it possibly can. Since v is a basis vector, v is a component
of r, and therefore v must be chosen as the basis vector corresponding to the
most negative variable of r. Once v has been selected, we have to examine

g — B 'Ney =B 'b—tB 'Nv (2-2)

in order to determine the leaving variable. The idea is the following. When
t = 0, we are sitting on our basic solution zp. What can happen if ¢ starts to
move away from zero to the positive part? At this point three situations may
occur. We discuss them succesively.
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1. Infeasible solution. As soon as t becomes positive, the vector in (2-2)
is not feasible any longer because one of its components is less than zero. In
this case, we cannot use the chosen variable to reduce the cost, and we must
turn to the next negative variable in r; or alternatively, we can simply take
this variable as the leaving variable in spite of the fact that the cost will not
decrease. This second choice is usually preferred due to coherence of the whole
process.

2. Leaving variable. There is a positive threshold value of ¢ at which one
of the coordinates of (2-2) vanishes for the first time. We choose precisely this
one as the leaving variable, and compute a new extremal point with smaller
cost than the previous one.

3. No solution. No matter how big ¢t becomes, we can lower and lower the
cost, and none of the components in (2-2) will ever reach zero. The problem
does not admit an optimal solution because we can reduce the cost indefinitely.

N S
N

Figure 2.3. Three possibilities in choosing the leaving variable.

The issue is how we can decide in each particular situation whether we are
in case 1, 2, or 3, above, and how to proceed accordingly. Notice that each
expression in (2-2) represents a straight line as a function of ¢. The three
possibilities are drawn in Figure 2.3.

Assume that we have chosen an entering variable identified with a basis
vector v. We proceed as follows:

1. If there is one vanishing component of £ = B~'b corresponding to a pos-
itive component of B~!Nwv (diagram 1 in Figure 2.3), then as soon as t
becomes positive this coordinate will be smaller than zero in (2-2), and the
vector will not be feasible. We might resort to a different entering variable (a
different basis vector v), which corresponds to another negative component
of r, if available. If » does not have more negative components, we already
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have the optimal solution, and the simplex method stops. Alternatively, and
this choice is typically preferred for coherence, we can consider the vanishing
ratio as one candidate for the process in 2 below.

2. Examine the ratios of the vectors B~'b over B~!Nv componentwise, and
choose as leaving variable the one corresponding to the least of those ratios
among the strictly positive ones, including, as remarked earlier, the van-
ishing ratios with positive denominators. These would certainly be chosen,
if present, since they are smaller than the strictly positive ones. Disregard
the quotients over zero including 0/0. Start the whole process with the new
extremal vector. Notice that these ratios correspond to the values of ¢ when
t intersects the horizontal axis in diagram 2 of Figure 2.3.

3. If there are no positive ratios, the LPP does not admit an optimal solution,
since the cost can be indefinitely lowered by increasing the entering variable.
This situation occurs when all diagrams are of the type 3 in Figure 2.3.

Since the set of feasible extremal points is finite, after a finite number of
steps, the simplex method leads us to an optimal solution or to the conclusion
that there is no optimal vector. In some very peculiar instances, the simplex
method can enter a cyclic, infinite process. Such cases are so rare that we will
pay no attention to them. One easy example is proposed as an exercise at the
end of the chapter.

In practice, the computations can be organized in the following algorithmic
fashion.

1. Initialization. Find a square m X m submatrix B such that the solution of
the linear system Bxp = b is such that xg > 0.

2. Stopping criterion.  Write
c=(cg ecn), A=(B N).

Solve
2TB=cp

and look at the vector
r=cy — 2 N.

If r > 0, stop: We already have an optimal solution. If not, choose the entering
variable corresponding to the most negative component of r.
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3. Main iterative step. Solve
Bw =y,

where y is the entering column of N corresponding to the entering variable, and
look at the ratios xg/w componentwise. Among these ratios select those with
positive denominators. Choose as leaving variable the one corresponding to the
smallest ratio among the selected ones. Go to step 2. If there is no variable to
select from, the problem does not admit an optimal solution.

We have tried to reflect the main iterative step of the simplex method in
Figure 2.4.

Figure 2.4. Several iterative steps in the simplex method.

In order to ensure that our readers understand the strategy in the simplex
method, how the entering and leaving variables are chosen and the stopping
criterion, we are going to look briefly at several simple examples.

Example 2.6  (Unique solution)
Minimize 3z + xo + 923 + x4

subject to
T+ 23+ 14 =4

To 4+ T3 — Ty = 2,
1’120
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In this particular instance,

1 0 2 1 4
=302 ) e (1) s 1o

1. Initialization. Choose

B—(é?» N—(TEJ,63431% en=(9 1).

2. Checking the stopping criterion. It is trivial to find

o= ()

such that the initial vertex is (4,2,0,0) with cost 14. On the other hand,

c=cep=(3 1), r=(9 U—@]JG i):m 1),

Since not all components of r are nonnegative, we must go through the
iterative process in the simplex method.

3. Iterative step. Choose x4 as the entering variable, since this is the one
associated with the negative component of r. Moreover,

w=(1) Z-u-2,

so that 1 is the leaving variable, being the one corresponding to the least
ratio among the ones we would select (ratios with positive denominators).

4. Checking the stopping criterion. These computations lead us to the new
choice

B=(% ), N=(12) ;=01 1), ew=(3 9).
(1) =01

It is easy to find
- 6
B4
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and the new extremal vector (0,6,0,4) with associated cost 10. The new
vectors z and r are

=(2 1), r=(3 9)—(2 1)<é f)u 4).

Since all components of r are nonnegative, we have ended our search: The
minimum cost is 10, and it is taken on at the vector (0,6,0,4).

Example 2.7 (Degenerate example)
Minimize 3z + T + 923 + x4

subject to
T, 4+ 223+ 24 =0,
Ty + X3 — T4 = 2,

In this particular case,

1 0 2 1 0
A=(302 0) ee(D) e 1

1. Initialization. Choose

B:((l) ‘f) N:(f _11) cs=(3 1), ex=(9 1).

2. Checking the stopping criterion. It is trivial to find

o (3

such that the initial vertex is (0,2,0,0) with cost 2. On the other hand,

z=cg=(3 1), r=(9 1)—(3 1)(? _11>:(2 -1).

Since not all components of r are nonnegative, we must go through the
iterative process in the simplex method.
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3. Iterative step. Choose x4 as the entering variable, since it is the one associ-
ated with the negative component of r. Moreover,

w= (1)) -2

so that x1 is the leaving variable, being the one corresponding to the least
ratio among the ones we would select (ratios with positive denominators).
We can predict, however, that because our only choice is a vanishing ratio,
we will not be able to lower the cost in spite of going through an iterative
step of the simplex method. In other words, the vertex (0,2,0,0) is already
an optimal solution. Since for this optimal solution the stopping criterion
does not hold for our original choice of B (r has negative coordinates), we
must, for the sake of coherence of the scheme, go through an iterative step
of the simplex method.
4. Checking the stopping criterion. The new choice

B:((l) _11) N:(é f) cs=(1 1), ex=(3 9),

leads us to find
0
o (2)

and the new extremal vector is again (0,2,0,0) with associated cost 2. The
vectors z and r are

2=(2 1), r=(3 9)—(2 1)((1) f):u 4).

Since all components of r are nonnegative, we have ended our search as we
had anticipated: The minimum cost is 2 and it is taken on at the vector
(0,2,0,0).

Example 2.8  (No solution)

Minimize — 3x1 4+ xo + 923 + 24

subject to
xry — 2563 — Ty = —2,
To 4+ T3 — Ty = 2,
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In this case,

1 0 -2 -1 -2
(302 ) e (F) s o

1. Initialization. If we were to choose

5=(y 1) v=(F D) (3 DL =9 1),

then we would obtain
— b —
rp=0={ ,

which is not a feasible vector, since there is one negative coordinate. Let us
take instead (second and fourth columns of A)

B—(? _1) N—(é 12), ecg=(1 1), exn=(-3 9).

2. Checking the stopping criterion. It is easy to find

oo =)

such that the initial vertex is (0,4,0,2) with cost 6. On the other hand,

z=(-2 1), r=(-3 9)— (-2 1)(é _12)=(—1 4).

Since not all components of r are nonnegative, we must go through the
iterative process in the simplex method.

3. Iterative step. Choose x1 as the entering variable, since it is the one associ-
ated with the negative component of r. Moreover,

w= (j) TB _ (_4 9},

w

In this situation, we have no choice for the leaving variable: no positive
denominator. This means that the proposed LPP does not admit an optimal
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solution, i.e., the cost can be lowered indefinitely. This can be easily checked
by considering the feasible vectors

t—2

t+2
0 )
t

t > 0.

The cost associated with such points is 8 — t, which can clearly be sent to
—oo by taking t sufficiently large.

Example 2.9 (Multiple solution)
Minimize 3xq1 4+ 229 4+ 8x3 + 24

subject to
1 — 203 — x4 = —2
To 4+ T3 — Ty = 2,
z; > 0.

In order to argue that there are infinitely many optimal solutions for this LPP,
we will use the equality constraints to “solve” for x1 and xo and take these
expressions back into the objective function. Namely,
Ty =2x34+24—22>0, x3—2x3+x4+22>0,
and the cost function becomes
6(2x3 + x4) — 2.
Since the first constraint reads
2x3 + 14 > 2,

it is clear that the minimum value of the cost will be achieved when

2x3 + x4 = 2.
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We have the two basic solutions (0,1,1,0) and (0,4,0,2). Any convex combi-
nation of these two will also be an optimal solution

t(0,1,1,0) + (1 —¢)(0,4,0,2), t€][0,1].

We believe that it is elementary to understand the way in which the simplex
method works after several examples. Computations can, however, be organized
in tables (tableaux) to facilitate the whole process without having to explicitly
write down the different steps as we have done in the previous examples. We
will treat some of these practical issues in a subsequent section.

3. DUALITY

Duality is a concept that intimately links the two following LPP:

Minimize cx subject to Az >b, x> 0;
Maximize yb subjectto yA <¢, y>0.

We will identify the first problem as the primal, and the second one as its
associated dual. Notice how the same elements, the matrix A and the vectors
b and ¢, determine both problems.

Definition 2.10  (Dual problem) The dual problem of the LPP
Minimize cx subject to Az >0b, x>0

is the LPP
Maximize yb subject to yA<c¢, y>0.

Although this format is not the standard one we have utilized in our discus-
sion of the simplex method, it allows us to see in a more transparent fashion
that the dual of the dual is the primal. This is, in fact, very easy to check by
transforming minima to maxima and reversing inequalities by appropriately
using minus signs (this is left to the reader).

If the primal problem is formulated in the standard form

Minimize cx under Ax=0b, x>0,
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what is its dual version? Answering this question is an elementary exercise
that involves writing an LPP in standard form in the above format, applying
duality, and then trying to simplify the final form of the dual. As a matter of
fact, all we have to do is put

Ar =b isequivalent to Ax >0b, —Ax > —b,

so that if we write

A=(A —A), b=(b —b),

our initial LPP is
Minimize cx under Az >b, x>0.
Therefore, its dual will have the form
Maximize 7b subject to A <e, 7> 0.
If we now try to simplify the formulation of this problem by setting
7=y ),
we arrive at
Maximize (y™ —y@)b under (y —yPHA<e, F>0,
and letting y = y(*) — 42 there is no restriction on the sign of y, and we have
Maximize yb under yA <e¢,

which is the form of the dual when the primal is given in the standard form.

Lemma 2.11  (Dual problem in standard form) If the primal problem is
Minimize cx under Ax=0b, x>0,

its dual is
Maximize yb under yA <c.
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Before proceeding in analyzing duality more formally, it may be worthwhile
to motivate this analysis by providing an interpretation of the meaning of the
relationship between a primal and its dual. Indeed, it is interesting to realize
that they are different, but equivalent, ways of looking at the same underlying
problem. We are going to emphasize this point by describing a typical LPP
related to networks. The practical implications of duality are often tied to the
underlying problem behind a formal LPP. We restrict attention here to formally
checking the equivalence of a primal and its dual without paying much attention
to other implications. A full analysis and understanding of these would be
required in realistic situations.

Example 2.12  We wish to send a certain product from node A to node D
in the simplified network of Figure 2.5.

Figure 2.5. A simple network.

As you can see, we have five possible channels with associated costs given in
the same figure. If we use variables x pg to denote the fraction of the product
transferred through channel P(Q), we must minimize the total cost

2048 +3xac + xBc +4xBp + 220D
subject to the restrictions
A =Tpc +xpp (no part of the product is lost at node B),
Zac + e =xcp (no part of the product is lost at node C),
xpp +xcp =1 (the total amount of the product reaches node D),

TAB,TAC,TBC,ZTBD,Zcp = 0.
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Notice that as a consequence of these restrictions, it is easy to obtain
zap +2ac =1,

so that the total amount of the product departs from node A. This is the primal
formulation of the problem.

We can also think in terms of prices per unit of product at the different
nodes of the network ya, yp, yo, yp and consider the differences between
these prices at nodes as the profit when that particular channel is used. In this
situation we are seeking the maximum for yp — ya, the profit in transferring
the good from A to D. The profits for the five channels will be

YB — YA, Yc —Ya, Yc —YB, YD —YB, YD —YcC-

If we take as a normalization rule y4 = 0, then we must demand that these
profits not exceed the prices for the use of each channel:

YB—Ya=9YB <2, yc—ya=Yc <3, yc—yp <1,
yp—yp <4, yp—yc <2.

This would be the dual formulation of the problem.

We somehow suspect that these two problems must be equivalent and that
their optimal solutions must be related to each other. Indeed, this is the case.
The connection is precisely the duality link. With the elements

0
c=(2 31 4 2), b=[0],
1
10 -1 -1 0
A=|o 1 1 0 -1/,
00 0 1 1

these two problems can be formulated in compact form as

Minimize cx under Ax=0b, x>0,

Maximize yb under yA <c,

where
= (zaB,TACc,TBC,ZBD,TcD), Y= (YB,YC,YD)-
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This is precisely the form of a primal and its dual.

Next we briefly describe in two steps the relationship between the solutions
of a primal problem (P) and its dual (D), where we assume that (P) is given
in standard form.

Lemma 2.13  (Weak duality) If © and y are feasible for (P) and (D),
respectively, then
yb < cx.

Moreover, if equality holds,
yb = czx,

then z is an optimal solution for (P) and y for (D).

The proof is rather simple. Indeed, from
Ax=0b, x>0, yA<eg,

we have
yb = yAx < cx.

In particular, we have
max {yb: yA < ¢} <min{cx: Az = b,z > 0}.

If yb = cx, this number must be at the same time the previous maximum and
minimum, and this in turn implies that y is optimal for (D) and z for (P).

This result also informs us that degenerate cases, when either the maximum
for the dual is +00 or the minimum for the primal is —co, occur when the other
problem does not have feasible vectors.

The full duality theorem follows.

Theorem 2.14  (Duality theorem) Either both problems (P) and (D) are
solvable simultaneously, or one of the two is degenerate in the sense that it
does not admit feasible vectors.

What this statement amounts to is that if = is optimal for (P), then there
exists an optimal vector y for (D), and the common value yb = cx is at the
same time the minimum for (P) and the maximum for (D). Conversely, if y
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is optimal for (D), there exists an optimal vector z for (P) with the common
value yb = cx being at the same time the minimum and the maximum.

The proof relies on our previous discussion of the simplex method. If = is
optimal for (P), then

r=(xp 0), xzg=DB"'b, cx=cpB b,

r=cy —cgB™IN > 0 (stopping criterion),
where ¢ = (cg ¢y ). If we examine y = cg B~} it turns out that
yA=cgB ' (B N)=(cg ¢gB 'N)<(cp cn)=c,
so y is admissible for (D). On the other hand, y is such that
cx = cgB7b = yb.

By the weak duality principle,  and y must be optimal.
The fact that the dual of the dual is the primal lets us pass from an optimal
solution for (D) to an optimal solution for (P).

Notice how an optimal solution for the dual has been obtained from an
optimal solution of the primal: If x = (zp 0) is optimal for (P) with

JjB:Bilb, C:(CB CN),

then y = cgB~! is optimal for (D). We will return to this observation later.

It is important to stress the information on the primal provided by the
optimal solution of the dual. One such interpretation comes directly from the
duality theorem, and refers to how changes to the vector b affect the optimal
value of the primal. This is an issue of great practical importance, since we are
also interested in assessing how good changes in the independent term b are.
Constraints involving b are typically related to restrictions such as production
capacities and total investments, and we would like to know whether making
such changes would pay off. If M (b) stands for the dependence of the value of
the minimum of an LPP problem on b, we are seeking the partial derivatives
VM. These are called sensitivity parameters, shadow prices, and dual prices
as well. By the duality theorem,

M (b) = yb,
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where y is the optimal solution of the dual. Intuitively,
VM) =y

and this is usually interpreted by saying that the dual solution provides the rate
of change of the optimal value for the primal when the vector b of restrictions
changes. It is therefore as important to know the optimal solution of an LPP
as the optimal solution of the dual. To be rigorous, the above computation of
VM has not been justified, since the optimal solution for the dual depends on
b. But since the result is essentially correct and plausible, we will not insist on
this point.

4. SOME PRACTICAL ISSUES

In the preceding sections, we have been concerned with the understanding of

the structure of an LPP and the standard mechanism to solve it by the simplex

method. There are, however, a number of issues of some practical importance.

We will treat in this section three such topics:

1. how to initialize the simplex method from a practical viewpoint;

2. how to organize computations in an efficient manner through tables;

3. how the optimal solution of the dual can be rapidly found from the solution
of the primal.

The significance of such issues is of relative value, since as soon as the number of

variables involved in an LPP exceeds a few, software packages must be employed

to find optimal solutions in reasonable periods of time.

In our discussion of the simplex method, we have not indicated how to find
a first feasible choice for the matrix B. This amounts to selecting m columns
among the n columns of A such that the solution of the linear system Bx = b
is such that = > 0. In some cases, doing this directly may be a rather tedious
task. What we would like to do is to describe a more-or-less efficient mechanism
that may lead us to find such a feasible submatrix B without going over an
exhaustive enumeration of all possibilities, which would be, after all, solving
the LPP by brute force. We will describe two different ways of finding such an
initialization.

The first one relies on an auxiliary LPP, with trivial initialization, whose
optimal solution will tell us how to choose the initial feasible submatrix B. The
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auxiliary problem is
Minimize E T;
i

subject to R ~
(A 1)X=b X2>0,

where X = (z Z), and A and b are such that the system Az = b is equivalent
to Az = b but b > 0. This can be simply done by multiplying by —1 those con-
straints associated with negative components of b. Notice that a valid feasible
extremal vector for this problem is (0 b).

We claim that if the initial LPP admits an optimal solution z, then the
minimum for the auxiliary problem is 0, and it is attained at X = (z 0).
This is very easy to check and left to the reader as an instructive exercise.
Consequently, if we solve this auxiliary LPP with initial vertex (0 I;) by the
simplex method, the optimal solution found will be of the form X = (= 0),
where x will have at most m nonvanishing components. Observe that the auxil-
iary problem has the same value for m. The positive components of this vector
2 will indicate which columns must be chosen for a feasible starting point for
our LPP. If the number of such positive components is strictly less than the
number of columns we should select, the remaining columns can be taken ar-
bitrarily, as long as they remain a linearly independent set of vectors. In order
to clarify the mechanism that leads to a feasible initialization of any LPP, let
us consider the following example.

Example 2.15 We are interested in finding a valid initialization for the
LpPP
Minimize 2xq1 4+ 3x9 + T3

subject to
T, + T2 + 223 + x4 = 500,
T + T2 + 3 — 24 = 500,
Ty + 2z + 223 = 600,
x; > 0.

In this particular example,

112 1 500
A=|[12 1 —1], b=[500], c=(2 3 1 0).
122 0 600
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The issue here is how to choose the initial matrix B in order to initialize the
simplex method. In this simple case we have four possibilities that correspond
to choosing three different columns from a set of four. We could certainly go
through all these possibilities and choose the first basic solution with non-
negative coordinates. As we have argued before, this amounts to solving the
LPP itself by an exhaustive analysis of all basic solutions. When the dimen-
sion of the problem is large, this enumerative approach is not admissible, and
the mechanism described to initialize the simplex method becomes interesting.
In our example, this scheme would amount to considering the auxiliary LPP
associated with the data

/112 1 100 /500
A=(12 1 -1 01 0|, b=1500],

122 0 001 600
c=(0 0 0 0 1 1 1).

The initialization for the simplex method to solve this problem is to choose
the matrix B as the identity matrix for the last three columns of A. The
nonvanishing components of an optimal solution for this problem, found by
applying the simplex method, will indicate an initialization for our original
problem. In this case, by applying the simplex method we obtain the optimal
solution

(200, 100, 100, 0,0,0,0),

and this indicates that the initial matrix B, made up of the three first columns
of A, is a valid initialization for the simplex method for our original LPP.

The second approach to the initialization issue does not require us to con-
sider an additional, auxiliary, LPP. It is based instead on transforming the given
LPP into a new, equivalent, LPP for which the initialization is trivial. Rather
than stating a formal result, we will intuitively discuss this transformation.
Consider a typical LPP,

Minimize c¢x under Ax=b, x>0,

where b > 0 (multiplying by —1 those equations corresponding to negative
components of b). Let us introduce new variables y € R™ and study the LPP

Minimize cx+dy under Az +y=0>0, x>0, y>0,
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where the vector d € R™ is assumed to have very large unspecified components.
The whole point is that (0 b) is a valid initialization for the second LPP, and
for sufficiently large components in the vector d, the optimal solution will be
of the form (z 0), where z is an optimal solution of our initial LPP. The first
assertion is trivial. The second is plausible, since if the components of d are
very large and we are seeking to minimize the sum cx + dy with y > 0, we
see that optimal solutions will essentially require y = 0, and therefore we fall
back in our initial LPP. The disadvantage of this procedure is that in solving
this transformed LPP, we must work symbolically with the vector d, or else we
should assign a very large value for d. We will see an example later.

The computations involved in the simplex method are usually organized in
the form of tables reflecting the different steps we have already described in
Section 2.2. Since the simplex method proceeds by changing feasible subma-
trices B from the original matrix A, and renaming columns so that the first
m columns correspond to those in B, it is extremely important not to get lost
with such reorganization and to keep a record of the initial enumeration of
columns regardless of the position they ocupy in the succesive steps. Each of
these tables has the structure

A b

c d,

where d is the value indicating the cost, changed in sign, of the different basic
feasible solutions the simplex method passes through. In each of these tables
the following calculations must be performed succesively:

1. Choose the columns corresponding to the next feasible submatrix B,
place them on the first m columns of the table, and by using the elementary
transformations of linear algebra obtain the identity matrix from the columns
of B (it is not enough to have an upper or lower triangular matrix). Do not
forget to keep a record of the columns belonging to B.

2. Transform in the same manner the components of ¢ (last row) so that
those corresponding to the columns of B vanish.

3. If the remaining components of ¢ are nonnegative (stopping criterion),
one (the) optimal solution is found by solving the linear system Bz = b with the
current submatrix B and independent term b, putting zero in the components
not contained in B (this is why it is important to keep track of which columns
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are part of the submatrices B). If there are some negative components, we
select the entering column as the one with the least component in c.

4. Examine the ratios of b over the entering column componentwise; if there
is no positive denominator, the problem lacks an optimal solution; otherwise,
choose as leaving column the one associated with the least nonnegative ratio
among the selected ones. Go back to 1 until the stopping criterion is fulfilled
or we reach the conclusion that there does not exist an optimal solution.

Instead of insisting on clarifying these steps, which faithfully reflect those
described in Section 2.2, we propose to examine one concrete example.

Example 2.16 We want to minimize —3x1 —5x5 under the constraints x > 0

and
3r1 + 220 +ax3 =18, x1+x4=4, x4+ x5 =0.

The initial table for this example is

T xT9 T3 Ty T5

3 2 1 0 0 18
1 0 0 1 0 4
0 1 0 0 1 6
-3 -5 0 0 0 0.

If we choose the columns or variables 3, 4, and 5 to make up the matrix
B, we find that the vertex (0,0,18,4,6) is feasible. If we reorganize the three
selected columns as the first three columns, we have the table

X3 X4 Ts X1 €2

1 0 0 3 2 18
0 1 0 1 0 4
0 0 1 0 1 6
0 0 0 -3 =5 0.

Since in this particular case the matrix B is already the identity, no further
computation is required on the table for this purpose. On the other hand, the
components of ¢ not corresponding to columns in B are both negative (—3 and
—5); hence the stopping criterion does not hold, and we ought to transform the
table according to the main step of the simplex method. The entering variable
would be x4 (associated with —5 in ¢). To determine the leaving variable, we
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94

examine the ratios 18/2 and 6/1 (4/0 is discarded because it has a vanishing
denominator) and select the third ratio 6 as the smallest one. Accordingly, the
third column of B (corresponding to xs5) is the leaving column. After these two
variables are interchanged, the table looks like this:

T3 XTq To X1 Ts

1 0 2 3 0 18
0 1 0 1 0 4
0 0 1 0 1 6
0 0o -5 =3 0 0.

With this new table we should obtain, by means of elementary transformations,
the identity matrix in the first three columns, and the null vector on the three
components of c. In this particular case, these two objectives are obtained by
changing the first row to itself minus twice the third one, and replacing the
fourth one by itself plus five times the third one. After these changes we arrive

at
T3 T4 T2 X1 Z5
1 0 0 3 -2 6
0 1 0 1 0 4
0 0 1 0 1 6
0 0 0 -3 5 30.

Once again we look at the nonvanishing components of ¢ and select the least one
(negative) as entering variable (x1). To choose the leaving one, we examine the
ratios 6/3, 4/1, and choose the smallest among the positive ones, associated,
in this case, with xs. These changes lead to

xr1 X4 T2 T3 T

3 0 0 1 -2 6
1 1 0 0 0 4
0 0 1 0 1 6
-3 0 0 0 5 30.

As before, we seek the identity matrix in the first three columns, and the
null vector on the three components of c¢. The new table is
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I Ty X2 I3 Is

1 0 o0 1/3 —2/3 2

0o 1 0 -1/3 2/3 2

0 0 1 0 1 6

0 0 0 1 3 36.

Since in this table the stopping criterion holds (all nonvanishing components
of ¢ are nonnegative), the optimal solution is found in column b. The optimal
cost (changed in sign) appears in d, —36. It is important to determine the
components associated with the values in b. In the last table the matrix B
is formed by the three columns x1, x4, and x2, and the components of b will
correspond (in this order) to these variables. The variables not present in B
are assigned a vanishing value. Thus the optimal solution is (2,6,0,2,0) with
optimal cost —36. In practice, computations proceed by transforming the tables
without any further comment.

We solve another example including the discussion on initialization by the
second method we have indicated before.

Example 2.17  The problem is
Minimize 3z + T + 923 + x4

subject to
T + 223 + x4 = 4,

To 4+ T3 — Ty = 2,

According to our discussion on how to set up a new equivalent optimization
problem for which initialization is trivial, we consider the modified LPP

Minimize 3xq1 + 22 + 923 + x4 + dxs + dxg

subject to
r1 + 2x3 + x4 + x5 = 4,

Ty + T3 — T4 +Tg = 2,
%20»
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where d is assumed to be a very large parameter. The initial table for this
problem is

1 0 2 1 1 0 4
0 1 1 -1 0 1 2
3 1 9 1 d d 0

We notice that we can choose as an admissible initialization the identity matrix
corresponding to the fifth and sixth columns. The second table is

Trs Tg r1 T2 3 Ty

1 0 1 0 2 1 4
0 1 0 1 1 —1 2
0 0 3-d 1-d 9-3d 1 —6d.

If d is a very large positive number, the most negative coefficient in the last
row will be 9 — 3d, so that we choose x3 as entering variable, and then x1 as
leaving variable (in this particular instance both ratios are equal, and we could
equally choose xz¢ as leaving variable). After rearranging columns and making
computations we have

3 Tg 1 To Ts T4

1 0 1/2 0 1/2 1/2 2
0 1 ~1/2 1 ~1/2 —3/2 0
0 0 (d-3)/2 1-d 3(d—3)/2 (3d—7)/2 —18.

Again, having in mind that d is a very large positive number, we would choose
o as entering variable and xg as our leaving variable. After computations the

table is

T3 T2 T Tg T5 Ty

1 0 1/2 0 1/2 1/2 2
0 1 —1/2 1 —1/2 —3/2 0
0 0 -1 d—1 d—4 —2 —18.

Our next entering variable is x4, and x3 our leaving variable. We obtain
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T4 xTo xT1 Tg Ts5 T3

1 0 1 0 1 2 4
0 1 1 1 1 3 6
0 0 1 d-1 d-2 4 —10.

Since all nonvanishing coefficients in the last row are positive, we have already
found the optimal solution, which is given by the last column 4, 6 for x4 and x5,
respectively, and the remaining variables should be set to zero. The optimal
cost is 10 and the optimal solution (0,6,0,4,0,0). Notice how this optimal
solution has vanishing components for the auxiliary variables x5 and x¢. The
optimal solution for the original problem will be (0,6,0,4) with optimal cost
10.

Altenatively, we can also assign a very large numeric value to d (much larger
than any of those participating in the problem, for instance d = 100) and solve
the problem. If the final solution yields vanishing values for x5 and x¢g, we have
our optimal solution. If not, the problem must be solved again with a larger
value for d.

Finally, we want to stress more explicitly how the passage from the optimal
solution of the primal to the optimal solution of the dual can be done in an
efficient manner. In fact, this was indicated when we treated duality, but we
would like to emphasize it here. Assume that the primal is

Minimize c¢x under Ax =0b, x>0,

with dual
Maximize yb under yA <c.

If
r=(xp 0), wp=B'h

is the optimal solution of the primal, the optimal solution of the dual will be
y=cpB,

where cp incorporates the components of ¢ corresponding to columns selected
in B. In practice, it is a matter of solving the linear system

CB :yB7
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where B and cp include the columns for the optimal solution. Indeed, these
columns are associated with the inequalities that must be converted to equali-
ties to find the optimal solution of the dual. One example will clarify this last
sentence.

Example 2.18 We want to maximize the function 18y, + 4ys + 6ys under
the constraints

3yt +y2 < -3, 2y +yz3 < -5, y<O0.

In matrix form, these restrictions can be written as

3 1 0 -3
20 1) [n -5
1 0 0 y2 | < 0
01 0] \ys 0
0 0 1 0

We have used the y-variable to suggest that this problem may be diretly un-
derstood as the dual of a certain primal LPP. It is true that we can solve it
directly by transforming it to standard form and applying the simplex method.
But this process requires more labor than if we treat it as a dual problem. In
fact, its associated primal is

Minimize — 3x1 — 5xo

subject to
3x1+2x0+ 23 =18, x4+ x4 =4,
To+x5 =6, x>0.

This problem has already been solved. Its optimal solution is the vector
(2,6,0,2,0).

The nonvanishing components of this vector indicate that the matrix B in-
cludes the first, second, and fourth columns of A. If we had only two (or fewer)
nonvanishing components, the third column could be arbitrarily chosen as long
as the resulting matrix were nonsingular. This information suffices to solve the
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dual, since its optimal solution can be found through the solution of the linear
system

31 0\ /wn -3
20 1| |w]=(-5],
01 0/ \ys 0

obtained by transforming into equalities the first, second, and fourth inequali-
ties of the dual. The optimal solution is thus (—1,0,—3) and the optimal cost
—36.

5. INTEGER PROGRAMMING

Engineering applications of linear programming often require variables to take
on integer values rather than real ones. In some cases, neglecting this restriction
would provide a reasonable approximation. In others, it is crucial to pay close
attention to this constraint. In such cases, in addition to the typical linear
constraints

Ax=b, x>0,

we must force some (or all) variables to take on (nonnegative) integer values
x; € Z. This new constraint will be dictated by the nature of the problem we

are interested in. We therefore face the LPP, which we will identify as (P),

Minimize cx under Ax=0b, x>0,
x, €4, i€l CN={L2...,n},

where the subset of indices I is known. Reasonably enough, we will care first
about the underlying LPP (P) without the integer constraint

Minimize cx under Ax=0b, x>0.

Assume for a moment that z(©), the optimal solution for (P), satisfies the inte-

grality requirement x§0> € Z. In this case, it is evident that we have found the
(or one) optimal solution for (P). Most likely, however, we will not be so lucky,
and such an optimal solution will not verify the complete integrality condition.

How will we proceed in such a situation? The scheme to follow is called the
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“branch and bound method,” and it consists in generating a sequence of sub-
problems, solving them, and analyzing and comparing the different solutions
until we reach a feasible optimal solution for our original problem.

The basic idea behind decomposing a problem into two disjoint subproblems
(“branching”) is the following. Assume, by recursion, that we have one LPP as
a result of previous steps and we have not yet found a feasible vector for our
initial problem. We find its optimal solution x(°). Obviously, if the problem is
infeasible, it is discarded altogether. Two situations may occur:

1. If (9 satisfies the integrality constraints, it becomes our provisional optimal
solution, and we discard the subproblem;
2. if (9 does not satisfy all of the integrality constraints, choose one variable

29 ¢e(kk+1), keZ, icl,

and add to the collection of subproblems to be analyzed the two disjoint
subproblems (“branching”) obtained by adding to the constraints of the
problem the further constraint x; < k in one case, and x; > k + 1 in the
other. Notice how the feasible sets for these two subproblems are disjoint,
and their union is the complete feasible set of the LPP they come from. See
Figure 2.6.

Once we have found a feasible provisional optimal solution z*, and we have
to analyze one subproblem previously generated by the branching procedure,
the discussion would be as follows:

1. If

cx* < cac(o),

we discard this LPP altogether, since it cannot improve the optimal solution
we have already found, and choose another subproblem;
2. if
ca* > ca?,

and z(?) satisfies the integrality requirement, change the provisional optimal
solution to z(9), discard the corresponding problem, and analyze another
subproblem;
3. if
cx* > cx®,
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and z(© does not satisfy the complete integrality constraint, proceed to
branch this problem as indicated above.

Figure 2.6. Branching of a domain.

In this way, we are ensuring that the optimal solution will be found by this
exhaustive process. Again, whenever subproblems are infeasible due to lack of
feasible vectors, they are eliminated.

After all of the generated subproblems have been analyzed, the provisional
optimal solution indeed becomes the optimal solution of our initial problem.
This is always a finite process.

Example 2.19 We want to solve the problem (P)
Minimize 3xo + 213

under
2x1 4+ 220 —4dax3 =5, 4dxy + 23 < 3,

z; >0, x1,x3 € Z.
The underlying LPP is

Minimize 3x9+ 2x3 under
2x1 + 2209 —4xs =5, 4dwo+2x3 <3, x; >0,
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whose optimal solution is (5/2,0,0). Since 1 is not an integer, we must proceed
to “branch” this problem. We still do not have a feasible provisional solution.
The two subproblems are

Minimize 3x9 4+ 2x3 under
2x1 4+ 220 —4dax3 =5, 4dxo + 23 < 3,
Z1 S 23 X 2 07

and
Minimize 3x9 4+ 2x3 under

21‘1 + 21‘2 - 4133 = 5, 41‘2 + 21}3 S 3,
T1 Z 3a L Z 0.

Their respective optimal solutions are

(2 1 O) cost =
b 2’ )

1
(3, 0, 4> , cost=

The first of these respects the integrality requirement, and therefore it is taken
as our provisional solution. Since the cost of the second is smaller than the cost
for the provisional solution, this subproblem must be considered, since it could
contain a better solution. On the other hand, since the second solution does not
respect the integrality restriction, we must branch this subproblem and obtain

)

N = N W

Minimize 3xo + 2x3 under
21 + 2x9 —4dx3 =5, 4dxo + 213 < 3,
.%'123, x3S0a x7,207

and
Minimize 3xo 4+ 2x3 under

2.’E1 + 2%2 - 41’3 = 57 4%2 + 21’3 < 37
I1237 ngZl, 1'720

The first one is infeasible since x3 = 0, and from the first constraint we get
2x1 + 2x9 = 5. This together with x1 > 3 and xo > 0 is impossible. This
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subproblem is thus discarded. The optimal solution for the second is (9/2,0,1)
with cost 2. Since this cost is greater than the one for the provisional solution,
we eliminate this subproblem without changing the optimal solution. Since
there are no more subproblems to analyze, the provisional optimal solution is
proclaimed as the optimal solution for the initial problem

1 3
(2, 2,0) , cost= ok

Notice how it differs from the optimal solution without the integrality require-
ment.

In practice, it is not an easy task to decide on the variable to be branched
in such a way that the whole process turns out to be as short and efficient as
possible. There are no fixed rules to determine the most efficient choice in any
situation. Any available a priori information on the problem may dictate that
one should follow one particular path over other possible alternatives.

6. EXERCISES

1. Draw in the plane the region determined by the inequalities
2020, 0<2 <3, —z1+a2<51, z1+w2 <4

Find the point(s) where the following functions attain their maximum and
minimum values:

2y + 22, X1+ T2, X1+ 2T9.
2. Solve graphically the next two problems:
Maximize 2x71 + 629
subject to

—r1+2x2 <1, 2x1+x2<2, w1 >0,292>0;
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Minimize — 3x1 + 225
subject to
CL’]+$2§5, 0§£C1§4, ].S.’EQSG
3. Determine the values of the parameter d such that the feasible set deter-
mined by
T1+T2+23<d, T1+T2—w3=1, 2132>4d,
is empty.
4. Determine the vectors where the linear function 2z + 3x5 + x3 takes on its
maximum under the constraints
IlZO, ‘rQZOa 1'320,
T + x2 + 223 < 200,
3x1 + 222 + x2 < 500,
xr + 21’2 + 21’3 S 300.
5. The maximum value of the function 3z, 4+ 2z — 2x3 is sought subject to
the constraints
4x1 4+ 229 + 223 < 20,
2.’E1 + 2LE2 + 41’3 Z 67
120, 2220,
but the sign of z3 is not restricted. Find the optimal solution(s).
6. Determine the maximum value of 18z + 4x5 + 623 under the constraints
31 +22 <=3, 2x1+23< -5, x1<0,20<0,23 <0,
by looking at the dual problem.
7. Consider the following primal problem:

Maximize 1.1z + 1.2z9 + 23
subject to

21 + 229 + 2203 <10, x1 + 329 + 23 <10, 4z + 29 + 23 < 10,
3x1 + a2 +3x3 <10, =z + 229 + 323 < 10, 3x1 + 229 + 23 < 10,
120, x22>0, z32>0.
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10.

11.

12.

13.

14.

Formulate the dual and solve it.
Find explicitly the optimal value of the LPP
Minimize 7 + zo + 23

subject to

r1 4+ 229 +3x3 =b1, X1 — To— T3 = bo,
in terms of b; and bs. Find the optimal solution of the dual problem and
check its relationship to the gradient of the optimal value of the primal with
respect to by and bs.
For the problem of the tiling elements of Chapter 1, compute the amounts
of each model that can be sent in order to maximize benefits.
Solve the exercise of the spring system of Chapter 1 for the following data
set:
1. location of fixed nodes: (1,0), (0,1), (—1,0), (0, —1);
2. k=1,
3. F=(1,1).
Solve the transportation problem of Chapter 1 for the following data set:
1. n=3 m=2;
2. up =2, up =2, us =3, v1 =95, v = 2;
3. C11 = 27 Cl1g = 1, Co1 = 3, Co2 = 1, C31 = 2, C32 — 3.
Try to describe the best solution to the investment exercise of Chapter 1
(Exercise 1).
Solve the problem of the scaffolding system proposed in Chapter 1, where
loads x; and x5 are applied exactly at the midpoints of beams CD and EF,
respectively.
Although there are many software packages to solve LPP of large dimension,
it is not especially difficult to design a program to implement the simplex
method. Do so in some language (C, Fortran, Maple, Mathematica, Matlab,
etc) and use it to solve the following problems.
1. Maximize x1 + x2 — zg subject to

2120, 2220, 1320, 14 20, x5 20, xg > 0,

T+ To+ T3+ T4+ 25+ 26 = 1.
2. Maximize x1 — xo + x3 — 4 + x5 — x¢ under the constraints
21 <0, 22<0, 23 <0, 24 <0, x5 <0, 26 <0,

T1 + T2 +x3+ x4 + 25 + 16 > —1.
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15.

16.

3. Maximize x1 + 229 + 3x3 + 44 + bxs + 66 subject to

.'1/'120, $220a 56'320, .’1,'4207 .'17520, mGZOa
621+ 510 +4r3+3x4+2x5+x6 < 1, 621 +22+523+204+425+326 < 1.

4. Maximize ©1 — X2 + T3 — T4 + 5 — Tg + 7 — Tg + Tg — 10 under the
constraints

—1<z +22<1, 1< +x2+23<1,

—1<zo+a3+24<1, —1<z3+24+25<1,
“1<zy+x5+x6 <1, —1<z5+76+77 <1,
—1<zstar+ws <1, —-1<x7+wg+w9=<1,

—1<zg+axg+w10<1, —-1<x9+m10<1.

Some nonlinear functions may be treated in the context of LPP. Try to
formulate and solve the following problem:

Minimize |z1| — 2

subject to
£E1+|SC2|§1, 2|I1|7‘12|§2

(Hint: The function |-| can be modeled in a linear fashion by decomposing
it into the sum of two independent nonnegative variables, just as a vari-
able that is unrestricted in sign is the difference of two such independent
variables.)

Consider the simple LPP

Maximize x1 + 222

subject to 1 + 22 < 1,0 < x7 <1, 0 < x5. Check that the simplex method
enters into a cyclic infinite process by choosing as initialization the matrix
corresponding to the variables x1, x2. Notice how the inequality x; < 1 is
redundant with 7 + 22 < 1, 0 < 21, x2. Find out whether by eliminating
such an inequality, the simplex method avoids the cyclic process.



Chapter 8

Nonlinear Programming

1. MODEL PROBLEM

The problem we will be concerned with in this chapter has a similar structure
to that of an LPP. We would like to learn how to

Minimize C(x) under A(z)<0.

In the situation of an LPP both the cost functional C' and the functions deter-
mining admissibility A were linear. If either C' or some of the components of
A are nonlinear, the previous problem is said to be a nonlinear programming
problem (NLPP). As our readers may easily infer, these problems are consider-
ably more complex than their linear counterparts. We assume that all functions
are smooth, unless otherwise explicitly stated.

67
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Although we have written the constraints in the form of inequalities, they
can be formulated as equalities and inequalities, as has been indicated in the
previous chapter, where we emphasized that multiplying by —1 reverses the di-
rection of an inequality, and that an equality is equivalent to two inequalities.
Because constraints in the form of equalities and inequalities play a differ-
ent role in NLPP, they are typically distinguished by different names, so that
throughout this chapter, we will stick to the following general form of an NLPP:

Definition 3.1  The standard form of an NLPP is
Minimize f(z) subject to g(z) <0, h(z)=0,

where r € R".

A first important question is related to the existence of optimal solutions for
this problem. We already know that even LPP may not have optimal solutions.
This is also true for NLPP. A typical result ensuring the existence of optimal
solutions is based on the continuity of the functions involved in such a problem.

Theorem 3.2  Assume that f, g, and h are continuous functions and one
of the two following situations holds:
1. the set of feasible vectors g(x) < 0, h(z) = 0 is a bounded set in R";
2. the set of feasible vectors is not bounded, but

lim T) = +00.
|w|—>oo7g(w)S0,h(w):0f( )

Then the associated minimization problem admits at least one solution.

There is a further situation in which an NLPP admits an optimal solution,
but to elucidate that is part of the aim of this chapter (Section 5).

In many practical settings the above theorem is enough to ensure the ex-
istence of an optimal solution. The main topic of this chapter is how to find
them.

To better understand how we can find or approximate optimal solutions,
we will proceed in two main steps. First, we will treat the case in which all
constraints come in the form of equalities:

Minimize f(x) subject to h(z)=0.
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Then, we will examine the general case by appropriately applying the situation
of equality constraints. The main issue we would like to understand is, what is
special about optimal solutions of NLPP? what must they satisfy in order to
be eligible as an optimal solution for a particular optimization problem? This
is the question about necessary conditions of optimality, and it will lead to the
Karush-Kuhn-Tucker (KKT) conditions. We will investigate several explicit
examples. Next, we will be concerned with situations in which those necessary
conditions of optimality are indeed sufficient to detect (global) optimal solutions
of a NLPP. This will open the whole problem of understanding convexity, and
why it is so desirable a property, in minimizing a cost functional under a set
of constraints. We will finish the chapter with a brief discussion about duality
for NLPP.

In the treatment of NLPP it is important to make a distinction between
local and global minima.

Definition 3.3 A vector () € R" is a local minimum of f subject to
g(x) <0, h(z) = 0 if
9(®@) <0, n=®) =0,

and

f@?) < f(a)
for all x such that

g(x) <0, h(z)=0, ‘:c - :c(o)’ <€,
for some € > 0.
A vector (9 is a global minimum of f subject to g(x) <0, h(z) = 0 if
gy <0, h@®) =0,

and

f@?) < f(a)
for all x such that

g(x) <0, h(z)=0.

Notice the difference between these two concepts.

2. LAGRANGE MULTIPLIERS

In this section we will try to derive the conditions that a vector must satisfy so
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that it can possibly be an optimal solution for the problem
Minimize f(x) under h(x)=0.

It may be possible that some of our readers may already know how to write
down the optimality conditions for the above problem, i.e., those equations in
terms of f and h that optimal solutions must satisfy. This is sometimes taught
in advanced calculus courses. One needs to introduce Lagrange multipliers,
which are parameters associated with the constraints, one for each individual
constraint. If A is such a vector of multipliers, then optimal solutions of the
NLPP must be solutions for the system of equations

Vf(x)+ X Vh(z) =0, h(z)=0, (3-1)

where the pairs (z,\) of points and multipliers are the unknowns. Notice that
we have as many equations as unknowns, n + m altogether if x € R™, A € R™,
and we have m constraints, so that h : R™ — R™. It is important to stress
that not all solutions of (3-1) will be optimal solutions for our problem. What
is true is that optimal solutions are to be found among the solutions of (3-1).
Other solutions of this system may correspond to maxima, local minima and
maxima, saddle points, etc.

Theorem 3.4  Every optimal solution of
Minimize f(xz) under h(x)=0
must be a solution of the system of necessary conditions of optimality
Vfi(x)+ A Vh(z) =0, h(z)=0.
Before providing some justification for the conditions of optimality for those

interested readers, we are going to look at several examples and see how they
can be used to find optimal solutions.

Example 3.5 We would like to find the extreme values (maximum and
minimum) of the function

f($1,1'27373) = {E? + {173 + x%
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over the sphere ¥3 + x3 + 22 = 4. In this case n = 3, m = 1, and
h(x1,$271'3) = CL’% + ZL’% + l’g — 4.
The optimality conditions (3—1) can be written

322 4+ A2z, =0,
322 + A2y = 0,
322 + \2x3 = 0,

2 2 2
]+ x5+ 23 =4

Writing down these equations should not pose any particular difficulty. Finding
their solutions may require, however, some computational maturity. Since we
have to deal with a nonlinear system of equations, there is no way we can
know in advance how many vectors we are looking for, so that in manipulating
equations we have to ensure that no solution is lost, since in particular, the
optimal solution we are seeking might be precisely the one not found. In our
particular situation, factoring out the first three equations, we obtain

(3:61 + )\2)501 = 0,
(3.132 + )\2).132 =0,
(3.%'3 + )\2)5(}3 =0,

2 2 2
]+ x5+ 23 =4

The first three equations have a product structure, and so we will have eight
possibilities depending on the factors that vanish. Moreover, due to the symme-
try of the equations with respect to the three independent variables, it suffices
to consider four cases:

1. x1 = xo = x3 = 0: this situation is inconsistent with the constraint;

2. x1 = x9 = 0, z3 # 0: bearing in mind the constraint, we obtain r3 = £2,
and the third equation may be used to determine the value of the multiplier
(for the moment we are not especially interested in that);

3. 1 = 0, 9,23 # 0: from the second and third equations we conclude that
x9 = x3, and taking this information into the constraint, xo = x5 = +v/2;

4. x1,x9,x3 # 0: the first three equations lead to x1 = x9 = x3, and the
constraint ensures that this common value is +2/ V3.
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In summary, and having in mind the symmetry, we have the following candi-
dates for the maximum and minimum points

(£2,0,0), (0,£2,0), (0,0,£2),
(0,v2,v2), (0,-V2,-v2), (v2,0,v2), (-v2,0,—v?2),
(\/i \/57 0)7 (_\/ia _\/ia 0)7 (2/\/§7 2/\/37 2/\/3)7 (_2/\/§7 _2/\/§a _2/\/3)

On the other hand, the important observation that the sphere is a bounded
surface in space enables us to know that indeed the continuous function f
ought to attain its two extreme values somewhere. Therefore, the points where
the maximum and minimum are assumed must be contained in the preceding
list. By simply computing f at those points and comparing their values, we find
that the maximum is 8 and is attained at (2,0,0), (0,2,0), and (0,0, 2) while
the minimum is —8 and corresponds to (—2,0,0), (0,—2,0), and (0,0, —2).

Example 3.6 Let us now assume that we might be interested in knowing
the extreme values (maximum and minimum) of the same function f not over
all the points of the sphere but only over those that lie at the same time in the
plane x1 + xo + x3 = 1, that is, we would like to find the extreme points of the
function

f(x1,20,23) = 23 + 23 + 23

over the set of points satisfying
o b adtati =4, xy+ay+arz=1
The equations of optimality this time are

323 4+ \221 + Ay = 0,
375 4+ \229 + Ay = 0,
373 + M223 + Ag = 0,
o3+ a3+ x% =4,
z1+x2 + w3 =1,

a system of five equations and five unknowns x1,xs, T3, A\1, Ag. Since we are
not particularly interested in finding the values of the multipliers, and the first
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three equations imply that the gradient of f must be a linear combination of
the gradients of the two restrictions, we can rewrite the previous system as

31’% 2I1 1
373 2z 1| =0,
33 2x3 1

2 2 2
] + x5 + 23 = 4,

X1 +I2+I3:1.

After factoring out 3 in the first column and 2 in the second, we arrive at a
Vandermonde determinant whose expression is well known

(x1 — @2) (w1 — w3) (w2 — 23) =0,
o a2 42t =4,

£L'1+£L'2+$3:1.

It is elementary to find the solutions of this system. There are three distinct
possibilities, which due to symmetry, reduce to essentially one:

Ty =29, m3=1-23, 207+ (1-221)*=4.

The other solutions are obtained by permutations of the variables. The explicit
solutions are

1+\/22 1+\/22 1 v22
3 6 '3 6 '3 3 ’

(1 V22 1 V22

1 1, V22
3 6'3 63 3 )

and those obtained by permutations of these. It is straightforward to check that
the first set of solutions correspond to the maximum value, and the others to
the minimum. Notice how these solutions differ from those of Example 3.5.

How can we understand where multipliers come from? How do they arise?
A simple way of understanding this is by considering parametrized curves

T:(=0,0) = R", >0,
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whose image 7(—4, 0) is entirely contained in the feasible set of our optimization
problem; that is
h(r(t)) =0, forallte (-d,9).

If we suppose that zop € R™ is a point of local minimum or maximum, or
even a saddle point with respect to vectors in the feasible set, and assume that
T passes through xo for ¢ = 0, 7(0) = xo, then the composition f(7(¢)) must
likewise have a local minimum, local maximum, or saddle point for ¢ = 0. What
characterizes any of these situations is that the derivative must vanish. By the
chain rule,

0= —2 1 =Vf(r(0)) 7(0) = Vf(zo) 7'(0).

Th

Tf hix)=0

Level sets of f

Figure 3.1. Lagrange multipliers.

On the other hand, since h(7(t)) = 0 for all ¢, we should also have in the same

way
0 = Vh(wo) 7'(0).
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Since the tangent vector 7/(0) is arbitrary, as far as it respects these two equal-
ities, we conclude that these can hold simultaneously if and only if V f(z¢)
belongs to the span of Vh(zg). This linear dependence gives rise to the multi-
pliers. See Figure 3.1.

It is important to point out that the method of multipliers may fail in
providing the extreme points when some of the constraints h;(z) = 0 represent
a surface (or hypersurface) that is not regular in the sense that its gradient
vector Vh; vanishes at some point, or when the intersection of the sets h;(z) =0
is somehow not regular. These points are thus called singular, and we should
include them in the list of candidates for maximum and/or minimum points.
This issue (nonsmooth optimization) is, however, beyond the scope of this text.
See [8].

Example 3.7 We would like to determine the minimum value that the

expression
n
2
Y= E iy
i=1

can attain with respect to the variables x; (a; > 0 are given numbers) under

the constraint
n
C = E Zq,
i=1

where c is another given constant. Optimality conditions lead to
202 + A =0, j=12,...,n,

so that
A
T = ——.
J 2aj

If we take these expressions back into the constraint

LEEDY
c=— -,
= 20
then 5
A=
1
ai



76 3.2 Lagrange multipliers

and consequently,

which is the only solution of the system. Notice that since the objective function
tends to +00 when some of the variables grow indefinitely, the attainment of the
minimum value is guaranteed. Therefore, the solution found must correspond
to the minimum. The maximum is +o0o, since the constraint is not able to keep
all variables from growing indefinitely.

A more sophisticated, but instructive, example follows.

Example 3.8 Let a be a fixed vector in R®. We want to determine the
extreme values of the linear cost function ax under the constraints

T1To + 123 + x2x3 = 0,
2 2 2 2
|x|” = 2] + 25 + a5 = 1.

For simplicity, we will use the notation
detz = 129 + T123 + T223.

Notice that the set of vectors x satisfying the two constraints is a subset of the
unit sphere in R?, so that it is bounded, and the cost functional necessarily
attains its maximum and minimum values. These can be detected by examining
the necessary conditions of optimality, namely,
a+ MAz + Aoz = 0,
detx = 0,

lz|* = 1.
The matrix A is
0 1 1
A=11 0 1
1 1 0

The first (vector) equation informs us that the vector a must be a linear combi-
nation (whose coefficients are the multipliers) of the other two vectors, Az and
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x. By eliminating the multipliers, we could equivalently write this equation by
requiring

a
0=|Ax
T
But since
a
0=|z|,
T
we can also have
a a a
O=|Az |+ |2z| = |2+ Az
T T T

Let e = (1,1, 1). Notice that x + Az = (x e)e, so that
O==ze|e

Observe that xe can never vanish because for one of our feasible vectors x we
have
2 2
|ze]” = |z|” +2detz = 1.

Therefore, we must have

and this implies
T = sa—+te

for certain coefficients s and t. If we take this expression into the two constraints
|:17|2 = 1 and detx = 0, after a few computations we get the two quadratic
equations
deta s* + 2st a e+ 3t> =0,
|a|® s* 4 2st a e+ 3> = 1.

We immediately obtain
s <|a|2 - deta) =1.
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Note that (why?)
|la)® — deta > 0.

If
|la)* — deta = 0,

then the equation for s is inconsistent. In fact, in this situation we do not have
any solution for the optimality equations. However, this situation can occur
only when a is a multiple of e (why?), so that the cost function is

cze,
and as indicated earlier,

ze|” = |z|* 4+ 2detz = 1,

and therefore the cost functional is constant for all feasible vectors.
Assume that a is such that

|la|* — deta > 0.

In this case we have two solutions for s:
+1

la)* — deta

Taking these values into the first of the quadratic equations above and solving
for t leads to (using again the formula for (ae)®)

f—tl g e
3

3v/|al® — deta

The valid pairs of solutions are

1 il ae 1
\/]al®> = deta 3 3¢/ |al® — deta la|* — deta 3 3¢/ |al® — deta
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Among these four vectors we have to find the maximum and minimum values
of the inner product
2
ax = slal” + tae.

By examining carefully the four possibilities, we conclude that the maximum

value is
1 2
3 (2 la|” — deta + |ae|> )

and it is attained at
xr = sa + te
for

1 ae 1 ae
§=———, t

la)* — deta jae| 3 3v/|a> — deta

The minimum value is the maximum changed in sign, and it is attained at the
opposite of the point of maximum.

3. KARUSH-KUHN—-TUCKER OPTIMALITY CONDITIONS

We would like to treat the general case in which some of the constraints come
in the form of equalities and some come in the form of inequalities:

Minimize f(x) subject to g(xz) <0, h(z)=0.

Let us first explore what sort of conditions a point needs to satisfy so that it
can be an optimal solution of our problem. What is special about such a point?

Let (9 be one such point of minimum, and let M be the set of indices
M ={1,2,...,m}, where m is precisely the number of components of g. We
consider the following subset of M:

J = {jEM:gj(x(O))zo}.

It might well happen that this set is empty. For j belonging to M \ J, we say
that the corresponding constraint is nonbinding or inactive. Let us look at the
auxiliary problem

Minimize f(z) under g;(z)=0, jeJ, h(z)=0.
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Our initial solution z(® will certainly be a point of local minimum, perhaps
not global (why?), and consequently, since all constraints for this new problem
are in the form of equalities, there exists a collection of multipliers

i, je€J. AeRY

such that
V@) + 1 Vg;(@?) + AVA(z) = 0. (3-2)
jeJ

Furthermore, we assert that 11; can be taken to be nonnegative. The intuitive
reason for this is that f has a minimum at the point #(%) but each of the g; has
a maximum, because g; () = 0 is the maximum value that g; can attain in
the feasible set for our initial problem. Hence the gradients of f and g; at the
point z(®) “must point in different directions.” This assertion actually requires
more rigor and care, but it is enough for our purposes. For j € M \ J, we take
p; = 0. We thus arrive at the necessary conditions of optimality, known as
Karush-Kuhn-Tucker (KKT) conditions.

Theorem 3.10 If x is a nonsingular optimal solution of our problem, then
there exists a vector of multipliers (j, A) such that

)

The necessity of such conditions means that optimal solutions must be
sought among those vectors x for which we can find a set of multipliers (p, \)
satisfying the preceding conditions. This information lets us select those points
that are feasible for minimum points. In those situations in which all such so-
lutions may be found, and we have the information that our problem actually
must have at least one solution, these can be identified by simply computing
the cost of all such candidates and deciding on the minimum.

Before analyzing several explicit examples, we would like to make a couple
of interesting observations.

1. If the optimization problem consists in finding the maximum instead of
the minimum, playing with the appropriate minus signs, it is not difficult to
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write down the changes in the KKT conditions. In fact, we should have

Vf(z)+ uVg(z) + AVh(z)

=
Q
—~
S
~
I

0,
0,
0.

If we do not care about the sign of the components of p, the list of feasible
points for extrema will significantly increase with solutions that cannot be
either maxima or minima, since the signs of components of y will be mixed up
positive and negative. Therefore, if all components of p are nonnegative, the
corresponding point may possibly be a point of minimum (never a maximum); if
all components are nonpositive, the point may possibly be a point of maximum
(never a minimum); and if there are positive and negative components of ,
then the point can never be either a point of maximum or of minimum (saddle
point).
2. The conditions

are equivalent (why?) to

w>0, g(z)<0, pgi(z)=0,j=12,...,m,

so that to find all solutions for the KKT conditions, we have to look for all
solutions of the system of n + m + d equations in n +m + d unknowns x, u, A,

Vf(z)+ uVg(z) + AVh(z) = 0,
1igi(x) =0, j=12,...,m,
hi(z) =0, i=1,2,...,d,

that also satisfy u > 0, g(x) < 0, in the case we are interested in the minimum;
and that satisfy p <0, g(z) <0, in the case of the maximum. When trying to
solve the previous system, and due to its particular structure, we can always
proceed by examining the 2™ cases

pi =0, gj(z)=0, jeldieM\J,
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where J runs through all possible subsets of M = {1,2,...,m}. Among all
different possibilities that we may obtain, we must discard those that are im-
possible or those that we are not interested in. Although there can be other
reasonable methods of solving the system, this is a rational way of organiz-
ing computations. On the other hand, any observation based on the particular
nature of the problem, leading to discarding some of the solutions, may also
simplify considerably the solution-finding procedure.
Let us look at several examples.

Example 3.10 Suppose that a certain electrical network consists of three
different channels through which electric power flows. If x;, i = 1,2, 3, stands
for the amount of power through channel i, the total loss in the network is
given by the function

L/, 2 93:2’,
p(I1,$2,I3):I3+§ Ty +$2+T0 .

If a total amount of r is to be transferred, determine the amounts through each
channel so as to minimize the loss of power. Evidently, the problem reduces to
finding the minimum of the above function providing a measure of the loss of
power under the constraints

T+ +23="1, 2;>0.

Since the set of points of R? satisfying these constraints is bounded (why?),
the point of minimum we are looking for should be one of the solutions of the
system of optimality

Tl AA=0, 2—pg+A=0, 1+%—u3+>\:0,

piry =0, poxa =0, pzwr3=0, x1+x2+23=",

where the unknowns are x1,Ts, T3, j41, 2, 43, A. We are interested in those so-
lutions satisfying x1, xs, T3, 41, 2, 3 > 0. Notice that X\ is associated with the
equality constraint x1+ xs+x3 = r, and thus we cannot demand any condition
on its sign. Solving the previous system requires a little bit of ability in finding
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all the solutions corresponding to the eight possibilities

1 =20 = a3 =0,
x1 =122 =p3 =0,
x1 = p2 = x3 =0,
1 =1x2 =123 =0,
Ty = p2 = p3 =0,
p1=2x2 = p3 =0,
1= po =x3 =0,
p1 = p2 = pg =0.

After studying with a little bit of care all these possibilities and discarding
those solutions we are not interested in, we arrive at the optimal solution

(r/2,r/2,0) with associated multipliers (0,0,1 —r/2,—r/2)
when r < 2, and
((10+17)/12,(104+7)/12,5(r — 2)/6) with multipliers (0,0,0, —(104r)/12)

for r > 2. Notice how both solutions coincide when r = 2.

Example 3.11 We have a rope of length a to tie a box from top to bottom
along the two perpendicular directions. What is the maximum volume that
such a box can contain?

We would like to determine the maximum of the volume function

V(x1,72,73) = 2127273
subject to the conditions
T1, 2,73 > 0, 21 + 279 + 473 < a,

assuming that xs is the height. With some care about the minus signs that
must be introduced to transform the problem to our standard format, we have
the system

Tox3 — pt1 + 214 =0, T173 —p2 + 2014 =0, 172 — p3 +4ps =0,
i1 =0, xopo =0, w3p3=0, (2214222 +4w3 —a)us =0.
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We look for those solutions with

T1,T2,T3 Z Oa
221 + 2x9 + 423 < a,
ps 2, 35 pa < 0.
Since the first three equations enable us to express 1, p2, and us in terms of

T1, To, T3, and uy, we can eliminate the first variables and obtain an equivalent
system

w1 (223 + 2p4) = 0,
zo(z123 + 2p4) =0,
.’L‘g(lL'lIIZQ -+ 4/144) = 0,

(221 4 229 + 423 — a)pg = 0.

If we add the first three equations and bear in mind the last one, we arrive at
0 = 3z17273 + a4,

whence
1y = —3x12223/ 0

If we apply this identity to the same three last equations, and notice that the
maximum of V' cannot vanish (rixzexs # 0), since this would rather be the
minimum, we obtain the unique solution for the maximum

x1 =23 =a/6, xz3=a/l2.
Moreover, the associated multipliers are

(0,0,0, —a?/144),

which indeed correspond to a point of maximum. Since the constraint region
is bounded, this is the optimal solution sought.

Example 3.12 We would like to find the minimum and maximum of

f(x17x27x3) = {E? + {173 + x%



3.3 Karush—Kuhn—Tucker optimality conditions 85

over the region determined by the constraints
2 2 2
itz +23<4, T1+x24+w23< 1

It is a simple exercise to write down the KKT conditions for this situation,
namely,

377 + p12x1 + p2 = 0,

373 + 1272 + p2 = 0,

373 + 1273 + p2 = 0,

pr (22 + 23+ 22 —4) =0,

/,LQ(xl +£L’2 +l’3 - ].) = 0,

2+ 22 4 x% <4,

1+ X2 + 23 S 1.
In addition, we must keep in mind the constraints on the signs of the multipliers,
w1 and po, when looking for the maximum or the minimum: p, e > 0 for the
minimum, and p1, pe < 0 for the maximum. We organize the discussion of the

previous system in four cases.

1. 1 = po = 0: in this case we immediately obtain the solution x1 = x2 =

x3 = 0, which is admissible for both the maximum and the minimum;
2. uy =0, x1 + x2 + x3 = 1: it is straightforward to get

o = *31‘% = 73x§ = 73:1352,,7

whence (1/3,1/3,1/3) is the unique solution, which is admissible for the
maximum, not for the minimum, since s = —1/3;

3. po =0, 22 + 23 + 2% = 4: adding the first three equations (after eliminating
o) and keeping in mind that the sum of squares is unity, we obtain

12 + 2(371 + 29 + .133)/11 =0.

This identity discards the possibility that 1 + x2 + x3 = 0, and so

—6

Ml_l’1+l’2+l’3.
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If we apply this equality to the first three equations of the optimality system,
we arrive at the fact that either the coordinates of the points vanish or else
their common value is

4
X1 + o + I3 ’
From here, the following solutions arise (discarding simultaneously those
solutions not satisfying x1 + o + x5 < 1):
(_27070)’ (07 _270)7 (0707 _2)5
(7\/577\/57 0) (7\/57077\[2) (077\/577\[2) ’

(4'4'4>
V3 V3 V3
Since all these solutions satisfy 1 + x2 + x3 < 0 (u; > 0), they will be

feasible for the minimum.
4. The last case is associated with the equalities

v Faotaz =1, a7 +x3+al=4,

which has been solved in the previous section.
After computing the values of the cost function f in all those selected points,
we come to the conclusion that the maximum is taken at

(1 V21 V21 Jﬂ)

37763763 3
and the minimum value is attained at
(_270a0)7 (05_270)’ (ana_2)

Compare these results with those of Examples 3.5 and 3.6.

4. CONVEXITY

We have developed a basic understanding of how to detect necessary conditions
of optimality that must be satisfied at a point of (local) maximum or minimum.
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We have also sufficiently stressed the fact that solutions to the KKT conditions
may include other points that are not the solutions we are looking for. There
might exist solutions to the KKT optimality conditions that do not correspond
to the extreme values. The fundamental question we would like to address is
whether there is some further requirement on the objective function and/or
the functions expressing the constraints so that we can ensure that solutions of
the KKT conditions are exactly the points where the minimum (or maximum)
is attained, without a discussion “a posteriori” on the nature of the different
solutions. As we will understand later, this is a vital issue since in most of the
situations one encounters in practice, solutions for the KKT conditions cannot
be explicitly found and need to be approximated. One is never sure whether all
solutions have been found. Because of the relevance of this issue, we will analyze
the situation in greater detail starting with the most basic case in nonlinear
programming so that we may grasp the whole point of the notion of convexity.
Let us consider the problem

Minimize f(x), z €R,

assuming that f is as regular as we may need. The KKT condition reduces in
this simplified situation to

f(x)=0.

This (nonlinear) equation might have many solutions, even infinitely many,
and any one of them could be the point of minimum sought. But some of those
could also correspond to points of local minima, local maxima, saddle points,
etc. Let us imagine the following situation: We know that

f(x) = 400 when z — +o0,

f/(z) =0 has a unique solution .

It is not difficult to realize that xq is truly the point of global minimum, and
therefore the unique solution of our initial minimization problem (why?). The
first requirement on the infinite limits of f can be more or less easy to check
once we know what f is. But how can we be sure about the uniqueness of
the solution of the equation of critical points without having to solve it? If we
assume that f admits a continuous second derivative f”(z), and f”(x) > 0 for
all  (which in many instances can be easily checked), then we can ensure the
second requirement: The equation f/(z) = 0 can have only one solution (why?).
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On the other hand, we know from elementary calculus that the condition f” > 0
means that f is convex. In summary:
1. f(x) — 400, & — £oo: the equation f’(z) = 0 has at least one solution
corresponding to the global minimum of f;
2. f"’(x) > 0 for all z: f is strictly convex, and the equation f’(x) = 0 has at
most one solution.
Consequently, if both requirements hold, the only solution of the equation
f'(x) = 0 will correspond to the global minimum, and in particular, there
is no local minimum that is not global. This is basically the reason why con-
vexity is so desperately needed in treating minimization problems (the same is
true with concavity for maximum problems). Another way of summing up the
preceding remarks is by saying that under convexity, necessary conditions of
optimality become sufficient, because convexity rules out the existence of local
minima that are not global. Since we are in front of one of the main concepts
in optimization, we are going to treat it with a little bit of care.

Figure 3.2. A convex and a nonconvex function.

Definition 3.13 A set K in R" is convex if for every pair of vectors x,y €
K, the segment joining them is also contained in K:

tr+(1—tye K, telo1].

A function f : K C R™ — R is said to be convex if K is a convex set of vectors
and

fllz+ (1 -ty <tf(x)+ (1 —-1t)f(y), wheneverz,yec K, te][0,1].
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Before proceeding to attempting a better understanding of this condition, it
is worthwhile to be persuaded that it is a key concept relevant for minimization
problems. We will learn more about convexity in the next section. Our readers
will most likely know what the convexity condition means geometrically. See
Figure 3.2.

The reason why convexity is so important in minimization problems can be
formulated as follows.

Theorem 3.14 Let
f:KCR"—R

be convex where K is also convex. If x¢ is a local minimum for f in K, then it
is also a global minimum for f in K.

For a justification of this result, notice that the condition of zy being a local
minimum for f in K means that

f(xo) < flz), |z —x| <€z €K,
where € > 0 is some given number. Let us put
B.={re K:|x— x| <e€}.

Let y € K be an arbitrary point in K. The segment joining xy and y undoubt-
edly has points belonging to B,

txg+ (1 —t)y € Be, t sufficiently close to 1.
Hence for such t’s and by the convexity of f,
f(wo) < fltwo+ (1 —t)y) < tf(wo) + (1 —1)f(y).
Rearranging these terms, we have
(L=t)f(zo) = (1 —1)f(y).

Since 1 — ¢t > 0 for some such ¢, we conclude that

f(xo) < fly).
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The arbitrariness of y € K yields the desired result.

The definition of convexity (Definition 3.13) means that for every couple of
points in K, x, y, the values of f along the points in the segment joining them
do not exceed those of the “line” through (z,g(x)), (v,9(y)); said differently,
the values of f are under each one of its (f’s) secants. If the function f is
differentiable, then an alternative characterization of convexity can be given.
This is the most appropriate in our context because it can be directly related
to optimality conditions. Even further, if the function f is twice differentiable
with continuous Hessian matrix, then one can also verify convexity in terms of
second derivatives.

Proposition 3.15 Let
f:KCR"—>R

be a continuous function where K is convex and open.
1. If f is differentiable and V f is continuous, then f is convex if and only if

fy) = f@)+ V() (y—=), zyek (3-3)

2. If f is twice differentiable and V?f is continuous, then f is convex if and
only if V2 f(x) is positive semidefinite for all z € K.

Since the expression

f(@) + Vi) (y - =),

considered as a function of y € K, is the equation of the tangent hyperplane of f
at z, the inequality (3-3) says that the graph of f stays above any of its tangent
hyperplanes. Concerning the characterization with the second derivatives, we
can equivalently say that if f is twice differentiable and V2f is continuous,
then it is convex if and only if the eigenvalues of V2 f(x) are nonnegative at
every x € K.

The proof of Proposition 3.15 proceeds in two steps. First, we will try to
show that it is true for functions of a single variable h : J — R, where J is an
interval in R.

Let us therefore assume that such an h is differentiable and satisfies

h(tzx + (1 —t)y) < th(z)+ (1 —t)h(y), =yeJ, tel0,1].
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By rearranging and manipulating terms, we can transform it (when 1 —¢ > 0
and x # y) to

hz+ (1 =t)(y —x)) = hiz)
1=ty — =)

(y — ) < h(y) — h(z).

Since this inequality is correct for every ¢ € [0, 1], by taking limits as ¢t — 17,
we can conclude that

(y —2)h (x) < h(y) — h(x).

This is the first part of the proposition. If we further assume that h has a
second derivative at every point of J where the above inequalities hold, we will
have, depending on whether y > x or x > y,

> h'(z),

h(y) — h(z)
Yy—x - Yy—x

By the mean value theorem applied to h’ we ascertain the existence of z such
that
h'(z) > W (x), 2>z, or h'(z) <K (x), z <.

The arbitrariness of y leads to the arbitrariness of z, and hence A’ is a nonde-
creasing function that translates in the nonnegativity of h”. This is the criterion
for convexity when functions are twice differentiable.

We finally argue that if h is a twice differentiable function, and its second
derivative is nonnegative, then we must necessarily have

h(tz + (1 —t)y) < th(z)+ (1 —t)h(y), =z yeJ, tel0,1].
To this aim we rearrange terms in the expression
th(z) + (1 —t)h(y) — h(tz + (1 — t)y)
in the following fashion:

t(h(x) — hite + (1 1)y) + (1 - ) (h(y) - h(tz + (1 - t)y))
= 11— t)(x — ) (@)—t(L — t)(x — y)I' (D),
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where we have used the mean value theorem, and points a and b lie between
z and tx + (1 — t)y, and tx + (1 — t)y and y, respectively. Again by the mean
value theorem applied to h’ we show the existence of a number ¢ between x
and y such that

th(z) + (1 —t)h(y) — h(tz + (1 — t)y) = t(1 — t)(x — y)(a — b)A"(c).

If we notice that the product (x —y)(a —b) is always nonnegative (even though
the two factors could be negative), the nonnegativity of the remaining factors
leads us to have

th(z) + (1 — )h(y) — h(tz + (1 — t)y) > 0

as desired.

For the second step, consider a function f : K — R of several variables. In
fact, the proof of this case is based on what we have already shown for functions
of one variable by simply applying the previous conclusions to the sections

h(s) = f(z +s(y — z))
for fixed x,y, and conveniently applying the chain rule to compute derivatives

and second derivatives. We leave the details to the interested reader.

Sometimes it is important, because it leads to significant consequences, to
know about strict inequalities in all three ways of checking convexity. Functions
enjoying this additional requirement are called strictly convex, and we talk
about strict convexity.

Definition 3.16 A function f : K — R, where K C R" is convex, is called
strictly convex if f is continuous (this is in fact redundant) and

ftz+ (1 =t)y) <tf(z) + A =Df(y), z#yek, tc(0,1).

A characterization similar to Proposition 3.15 can be shown for strict con-
vexity when the function f is more regular.

Proposition 3.17 Let

f:KCR"—=R
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be a continuous function where K is convex and open.
1. If f is differentiable and V f is continuous, then f is strictly convex if and
only if
fy)> fl@)+ V() (y—2z), z#yek;

2. If f is twice differentiable and V2 f is continuous, then f is stricly convex
if and only if its Hessian matrix is positive definite at every point in K;
alternatively, all eigenvalues are strictly positive at every point in K ; or even,
by Sylvester’s criterion, the principal subdeterminants are strictly positive
at every point of K.

The proof is an interesting exercise in going over the proof of Proposition
3.15 and checking inequalities and strict inequalities. As a general rule, we can
say that convexity lacking strict convexity is typically associated with “flat
parts of the graph.”

We end this section by looking at several examples of convex functions.

Example 3.18  Every linear (or affine) function is convex but not strictly
convex.
There are four elementary operations that respect convexity:
1. a linear combination of convex functions with nonnegative coefficients is
again a convex function;
2. if T : RV — R™ is linear, and g : R™ — R is convex, the composition
f(x) = g(Tx) is also convex;
3. ifg: K C RN — R is convex and h : R — R is convex and nondecreasing,
the composition f(x) = h(g(z)) is also convex;
4. the supremum of any family of convex functions is again a convex function.
These four statements are easy to check by using directly the definition of
convexity itself.
By using linear functions and the basic operations we have listed above, we
can generate new convex functions, or deduce the convexity of known examples.
For instance, if we realize that

|z| =sup{a x:|a| =1},
it turns out that the distance to the origin, |x|, is a convex function. Moreover,

since
h(t)=1t*, t>0,
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is a convex increasing function if p > 1,
g(x) = [zl
is convex if p > 1. This function is strictly convex if p > 1. If we take
ht) = V1+12,

which is again a convex nondecreasing function when t > 0, the function

g(z) = /1 + |z

will be convex if p > 2, and strictly convex if p > 2. The functions
2l +[al®, g w142,
[z —al”, laaf"+[bal,

are convex when the exponents p, q are greater or equal to 1.
If a function f is not convex, we define its convexification by putting

Cf(x) =sup{h(x): h<g, h, convex},

which is the greatest convex function among all those under f. If f is already
convex, its convexification is f itself. For instance, if f is given by

f(@) = min {(z + 12 (& — 1)} ,

which is not convex, its convexification is the function defined piecewise by

a convex, not strictly convex function.
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5. SUFFICIENCY OF THE KKT CONDITIONS

We have learned in the preceding section about the convexity condition, trying
to emphasize its relevance concerning minimization problems. In this section,
we would like to apply those ideas to the particular situation of NLPP, and
in particular show that necessary conditions of optimality become sufficient as
well, under the main assumption of convexity of all functions involved. Since
optimality conditions are formulated in terms of first derivatives, the appropri-
ate notion of convexity is the one in which first derivatives appear: A function
f: K CR"™— R is convex if K is a convex set of vectors and

fy) =z f@)+ V() (y—=), yzeKtel0l]
As usual, our model problem is
Minimize f(z) subject to g(x)<0,h(x)=0,

where we explicitly assume that f, g, and h are defined on all of R". As a first
step we will consider only constraints in the form of inequalities

Minimize f(z) subject to g(z) <0.

In this situation we know that optimal solutions must also be solutions of the
conditions

Vf(z)+pVg(z)=0, pg(x)=0 p=0, gz)<0. (3-4)

The main result of this section is the following:

Theorem 3.19  Assume that f and g are convex differentiable functions.
If the pair (x, u) satisfy the KKT conditions above, x is an optimal solution of
the problem. If in addition, f is strictly convex, x is the only solution of the
problem.

In fact, this result is almost a consequence of Theorem 3.14, since a solution
of the optimality conditions should always be a local minimum. What convexity
allows is the passage from a local minimum to a global minimum as stated in
that theorem.
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A clear, direct proof is almost immediate. Assume that the pair (x, pu) is
such that all constraints in (3-4) hold. Notice that the set

K={reR":g(z) <0}

is convex, provided that ¢ is a convex function. This is easy to check. Imagine
that y is any other vector in K. We would like to conclude that

fly) = f(z) > 0.

This is a consequence of the following chain of inequalities, each one of which
is explained to the right:

fly) = f(x) 2 Vf(z) (y—x)  (convexity of f)
= —u Vyg(x)(y — x) (KKT conditions)
p (g(z) —g(y)) (convexity of g and p > 0)

:*ug() (1 g(x) =0)
>0  (p=>0,9(y) <0),

as desired.

The uniqueness fact is also straightforward if we realize that if f(z) =
f(y) for some z,y € K, then all above inequalities are indeed equalities. In
particular, we must have

fly) = f(z) = Vf(z) (y — )
and this implies, by the strict convexity of f, that x = y.

This result clearly justifies again the great importance of convexity in min-
imization problems.

The case in which the NLPP incorporates constraints in the form of equal-
ities places rigid constraints for the sufficiency of optimality conditions. As a
matter of fact, since

h(z) =0 is equivalent to h(xz) < 0,—h(z) <0,

the convexity condition on both A and —h can occur only if A is linear or affine,
so that only this type of equality constraints are permitted.
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Corollary 3.20 Assume that f, g are convex differentiable functions and h
is affine. Then, optimal solutions for the corresponding NLPP are exactly the
solutions of the KKT conditions.

We will end this section by looking at several examples.

Example 3.21  We would like to write down optimality conditions for the
LPP
Minimize cx under Az =b,z > 0.

It is immediate to obtain the corresponding KK'T conditions

c+AA+p=0,
pux =0,
Ax =0,
x>0, p<O0.

By eliminating p from the first equation we arrive at

Ax = b,
AM+¢>0, >0, (M+c)x=0.

Since in a LPP all functions involved are linear, they are in particular convex,
and therefore any pair (x, \) verifying the previous restrictions will be an op-
timal solution of the problem. Notice that the previous system is equivalent
to

Az =b, ((M);+c)x; =0, i=1,2,...,n,

AM+c¢>0, z>0.
Example 3.22  Find an optimal solution of

e . 2 .
Minimize |z|° subject to ax =c¢,

where a is a given vector, and c is a constant. Since the objective function
is strictly convex, and the one in the constraint is linear, we know that the
optimal solution (it must be unique if it exists) of this problem corresponds
exactly with the unique solution of the KKT conditions. These are

2c +Xa=0, ax=c.
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The unique solution is

c —2c
T =T
|al |al

so that the minimum value is ¢*/ |a|2. Notice that we are calculating the square
of the minimum distance to the origin from the hyperplane ax = c. Our result
coincides with the formula given in elementary analytic geometry, ¢/ |al.

Example 3.23  Consider now
Minimize |x\2 under ax <e¢, bx <d,

with a,b,z € R", ¢,d € R. Once again the objective function is strictly convex,
and those involved in the constraints are linear, so that the problem has at most
one solution, which, in case it actually exists, must be the only solution of the
KKT conditions. These are

2z 4+ pra + peb =0,
p(ax—c)=0, pz(bz—d) =0,

together with 1, e > 0, ax < ¢, bx < d. A full discussion of these equations
will lead to four possibilities:

1. p1 = pe = 0, x = 0: this will be the optimal solution, provided that x = 0
is feasible, i.e., ¢ > 0 and d > 0.

2 =0, py = —2d/ |b]?, z = (d/ |b|2) b: d must be negative, and feasibility
of this vector x implies the further restriction

dab < ¢ |b?;

3. w2 =0, uy = —2¢/ |a\2, T = (c/ |a|2> a: ¢ must be negative, and feasibility
for x implies
cab < d|a)?;

4. when both multipliers do not vanish, they can be determined as the solution
of the linear system
la|® 1 + abus = —2c,

abpy + || p2 = —2d,
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whose determinant, |a|” |b|®> — (ab)?, does not vanish unless a and b are
collinear. The solution is given by

~2(dab—c|b?) ~ 2(cab—dlal’)
PGP = @) T P P = (ab)?

and the optimal vector is

1
= _E(/ila + pi2b).

Figure 3.3. The four possibilities in Example 3.23.

To sum up, and depending on the particular data a,b,c,d, we can have the
following four situations:

1.¢>0,d>0;

2.d <0, dab < c|b*;

3. ¢<0,cab<dlal’;

4. dab > c|b|*, cab > d|a)’.

It is important to point out that these are not four different solutions but a
unique one that depends on the relationship among the different vectors a and
b, and scalars ¢ and d. All these possibilities are drawn in Figure 3.3.
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Example 3.24  Consider the problem of finding the minimum of
o'+ — af
under the constraint
jof* <1,

where a is a given vector. Due to the strict convexity of the cost function, the
optimal solution must correspond to the unique solution of the KKT conditions

Az 42 —a)+p2z =0, p(lz]>—1)=0,

where we must bear in mind the additional restrictions y > 0, |z| < 1. The two
admissible cases are

w=0, x=ta, 2|a|2t3—|—t—1:0,

and
p=la|-3, z=afld.

In the first situation, we must demand |a| < 3 if x = ta is to be feasible, since
2
(2\x| —&-a)xza.

Notice that the cubic polynomial specifying t has a unique real root that lies
in the interval (0,1/]a|) if |a| < 3, whereas if |a| > 3, the optimal solution
corresponds to the second alternative.

Example 3.25 A typical truss structure as shown in Figure 3.4 is to be
designed according to the criterion of minimum weight subject to a constraint
on the maximum deflection permissible at the free node and a lower bound on
the crossectional areas of members. The data of the problem are

ay,az, AOvAlv A27.’E0.

They should all be positive and depend upon the geometry of the truss, material
constants, loads at the indicated points, etc. Specifically, the problem can be
stated as

Minimize aix1 + asx2
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subject to

A Ay
— + — < Ay, 1,72 > o,
Z1 €2

where x1 and x5 are precisely the crossectional areas to be designed.

I
>

1

|
—

O -x—
D - ¥ —

Figure 3.4. A truss structure.

The reader is invited to check that this NLPP is convex, so that the op-
timal solution can be found by solving the KKT conditions. Namely, if p;,
i =1,2,3, are the multipliers associated with the three restrictions in the form
of inequalities, we have

p1 AL
a; — D) _/1'2:07
Ty
A
a2_‘u222 _/1'3:07
L3
A A
H1 <1+2_A0) :07
X1 xro

p2(xg — 1) =0,
ps(ro — x3) =0,

A A
L2 A<,

z1 2
xo—x1 <0, z9—122<0,

120, po >0, p3>0.
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A full discussion of the solution would require a number of different cases de-
pending on the particular current values of the data set above. For definiteness,
we will take

1 1
a] = — as = —
1 57 2 67
AO = 12, A1 = 25, A2 = 100,
o = 10,

all given in appropriate units. For this particular data set, the optimal solution

turns out to be
Tr1 = 10, To =V 120,

with multipliers
1
p1 = p3 =0, p2 =g

Details are left to the interested reader.

6. DUALITY AND CONVEXITY

As in LP, we can associate with every NLPP another NLPP, called its dual,
such that there is a close relationship between the two. Since we now feel that
NLP is much more complicated than its linear counterpart, duality in NLP
is also much more delicate. This section intends to be a mere introduction to
the subject. From the practical point of view, duality in NLP appears to be
a powerful tool in trying to better approximate optimal solutions in NLP. As
such, it is closely connected to convexity, as we will see.

Definition 3.26  Given a primal problem
Minimize f(z) under g¢g(x) <0, h(xz)=0,
we define its dual as the NLPP
Maximize 6(u,\) under p >0,

where the so-called dual function 6 is defined on pairs of multipliers (i, A) by
putting
0(p, A) = inf [f(z) + p g(x) + A h(z)] .
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Why the dual problem is defined in this way will become clearer as we
proceed to better understand the connection between these two NLPP and
link them to the KKT optimality conditions. In a sense, the undelying idea is
to incorporate necessary conditions of optimality as part of feasibility for a new
problem as follows:

Minimize F(z,pu, ) = f(x)

subject to
g(x) <0, h(z)=0,
=0,

Vf(x)+p Vg(z) + A Vh(z)
pn>0, pg(r)=0.

The function appearing in the definition of the dual function is known as the
Lagrangian associated with the problem

L(z,p, A) = f(x) + 1 g(x) + A h(z).

Lemma 3.27  Assume that the functions f, g, and h are such that the
infimum defining the dual function 6 is always attained for all pairs (p, \),
w > 0. Let X = X(u, \) denote one such point where that infimum is taken
on, so that

O(p, A) = f(X) + 1 g(X) + A h(X).

Then if the function X (u, \) is differentiable, so is 0, and
Vub(p, A) = 9(X),
Val(p, ) = h(X).
Our justification consists of a straightforward computation. If
01, A) = f(X) + p 9(X) + A h(X),
on the one hand, by the chain rule,
Vil = (V(X) +p Vg(X) + A VA(X)) V. X + g(X);

but on the other, if the Lagrangian attains its minimum at X, its gradient with
respect to & must vanish,

VF(X)+p Vg(X)+ X Vh(X) =0,
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so that
Vb = g(X),

as desired. We have a similar result with the gradient with respect to .

As we argued in the LP case, duality is shown in two steps. The next
proposition is typically known as weak duality.

Proposition 3.28 Let f, g, and h be differentiable.
1. We always have

max {0(u, A) : p >0} <min{f(x):g(z) <0,h(z)=0}.

2. If (u, \) is feasible for the dual problem (u > 0), x is feasible for the primal
(9(z) <0, h(z) =0), and

then (u, \) and x are optimal solutions for the dual and primal, respectively.

The explanation is elementary. Notice that if p > 0, g(z) < 0, and h(z) = 0,
then

O(p, A) < f(2) +p g(x) + A h(z) < f(z).

This implies weak duality. The second part of the statement is also straight-
forward.

The difference
min {f(z) : g(x) <0,h(z) =0} —max {O(u,\) : p >0}

is called the duality gap. When there is no such gap, both problems are equiv-
alent, and the primal problem can be solved by means of the dual. This is the
main idea of all numerical algorithms to compute optimal solutions by looking
at the dual. Apart from the interpretation of the dual problem itself, this is the
main reason why the dual problem is important in NLP. Convexity is again the
main hypothesis under which the duality gap vanishes.

Theorem 3.29  Assume that f and g are convex differentiable functions, h
is affine, and the optimization problem defining the dual function is always solv-
able. Then both problems, the primal and the dual, are solvable simultaneously
and there is no duality gap.
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For a justification, let us identify by (P) and (D), the primal and dual
problems, respectively. Assume first that the primal is solvable, so that there
exist a vector x and multipliers (i, \) satisfying the KKT conditions, namely,

Vi(z)+ puVg(x) + AVh(z) =0,
pg(z) =0, p=>0, g(x) <0, hz)=0.

All of these conditions imply that x is feasible for (P), and (p, A) is feasible

for (D); under the convexity of f and g, and the linearity of h, x is a point of

attainment of the minimum for the Lagrangian, but since u g(z) = h(z) = 0,
we have

0(p, A) = f ().
Proposition 3.28 implies that (u, A) is an optimal solution for (D).

Conversely, assume that (u, A) is an optimal solution for the dual. If we then
apply the KKT conditions to this NLPP, we obtain

vﬂa(:ua /\) —y=0, V,\O(u, )‘) =0,
p=0, y=>0, yu=0,

where y is the multiplier associated with the constraint ¢ > 0. Keeping in mind
Lemma 3.27, and if x is a point where

0(p, A) = f(x) + pg(x) + Ah(z),

so that
Vf(z) + uVg(z) + AVh(z) =0,
we can reinterpret those optimality conditions as
g(x) = V;ﬂ(/% /\) =y >0,
h(z) = VAO(u, A) =0,
pg(x) = py = 0.

Under convexity assumptions on f, g and linearity on h, satisfying the KKT
conditions ensures that z is an optimal solution for (P).

It is relevant to emphasize that this duality fact means that the minimum

min {max {f(z) + p g(x) + A h(z) : p = 0} : g(x) < 0, h(z) = 0}
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and the maximum
max {min {f(z) + 1 g(z) + A h(z) : g(x) < 0,h(z) =0} : p > 0}

are equal. Duality is always a question about whether the min—max operation
is reversible.

We end this section by computing the dual function in one particular ex-
ample.

Example 3.30 Consider the NLPP
Minimize 23 + 23 + 22

subject to

5
x%+x§+3x3§—§, T+ To + x3 = —2.

Since in this situation all th