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Abstract—This paper presents a nonlinear mixing model for hy-
perspectral image unmixing. The proposedmodel assumes that the
pixel reflectances are nonlinear functions of pure spectral compo-
nents contaminated by an additive white Gaussian noise. These
nonlinear functions are approximated using polynomial functions
leading to a polynomial postnonlinear mixing model. A Bayesian
algorithm and optimization methods are proposed to estimate the
parameters involved in the model. The performance of the un-
mixing strategies is evaluated by simulations conducted on syn-
thetic and real data.

Index Terms—Hyperspectral imagery, postnonlinear model,
spectral unmixing (SU).

I. INTRODUCTION

S PECTRAL UNMIXING (SU) is one of the major issues
when analyzing hyperspectral images. SU consists of iden-

tifying the macroscopic materials present in an hyperspectral
image and quantifying the proportions of these materials in the
image pixels. Most SU strategies assume that pixel reflectances
are linear combinations of pure component spectra [1]–[5]. The
resulting linear mixing model (LMM) has been widely used
in the literature and has provided interesting results. However,
as explained in [6], the LMM can be inappropriate for some
hyperspectral images, such as those containing sand, trees, or
vegetation areas. Nonlinear mixing models provide an inter-
esting alternative for overcoming the inherent limitations of the
LMM. They have been proposed in the hyperspectral image
literature for specific kinds of nonlinearities. More precisely,
the bidirectional reflectance-based model proposed in [7] has
been introduced for hyperspectral images including intimate
mixtures. Conversely, the bilinear models recently studied
in [8]–[11] address the problem of scattering effects, mainly
observed in vegetation areas. Other more flexible unmixing
techniques have been also proposed to handle a wider class of
nonlinearity, including radial basis function networks [12], [13]
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and kernel-based models [14], [15]. This paper considers a class
of nonlinear mixing models referred to as postnonlinear mixing
models (PNMMs). PNMMs are flexible generalizations of the
standard LMMs that have been introduced in [16] and [17] for
source separation problems. The main advantage of PNMMs is
that they can accurately model many different nonlinearities (as
will be shown in this paper). This paper addresses the problem
of supervised SU of hyperspectral images using PNMMs. Note
that “supervised” means that the endmembers contained in
the image have been estimated by an endmember extraction
algorithm (EEA). As a consequence, the only parameters to be
estimated are the abundances and the nonlinearity coefficients
for all pixels of the image. In the last decades, many EEAs
have been developed to identify the pure spectral components
contained in a hyperspectral image (the reader is invited to
consult [18] for a recent review of these methods). Most EEAs
implicitly rely on the LMM and might be inappropriate for
nonlinear models such as PNMMs. However, as noticed in [6],
geometric EEAs are still adapted to identify endmembers and
can be reasonably employed when the mixing model involves
nonlinearities. Therefore, this paper proposes to extract the
endmembers contained in the hyperspectral image using a geo-
metric EEA, known as vertex component analysis (VCA) [19].
The recent nonlinear EEA introduced in [20] is also considered.
Once the endmembers have been extracted from the image,
we propose to estimate the abundances and the nonlinearity
parameters involved in the PNMM using estimation algorithms
based on Bayesian and least-square (LS) methods.
In the Bayesian framework, appropriate prior distributions

are chosen for the unknown PNMM parameters. The joint pos-
terior distribution of these parameters is then derived. However,
the classical Bayesian estimators cannot be easily computed
from this joint posterior. To alleviate this problem, a Markov-
chain Monte Carlo (MCMC) method is used to generate sam-
ples according to the posterior of interest. As in any Bayesian
algorithm, the joint posterior distribution can be also used to
compute confidence intervals for the parameter estimates. How-
ever, the resulting computational complexity can be too heavy
for practical applications. In order to reduce this computational
complexity, we propose to study LS methods that have already
received considerable attention in the hyperspectral imagery [2],
[10], [14]. A first method based on Taylor series expansions is
proposed to iteratively solve the LS criterion associated with the
PNMM observation model. The Taylor approximations allow
quadratic optimization problems to be solved at each iteration.

1057-7149/$31.00 © 2012 IEEE
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A second approach is based on a classical gradient method ded-
icated to constrained problems.
This paper is organized as follows: Section II introduces the

PNMM for hyperspectral image analysis. Section III presents
a Bayesian unmixing algorithm associated with the proposed
PNMM. Section IV studies the two alternative unmixing algo-
rithms based on LSmethods. Some simulation results conducted
on synthetic and real data are shown and discussed in Section V.
Conclusions are finally reported in Section VI.

II. POLYNOMIAL PNMM

This section defines the nonlinear mixing model used for hy-
perspectral image SU. More precisely, the -spectrum

of a mixed pixel is defined as a nonlinear trans-
formation of a linear mixture of spectra contaminated
by additive noise, i.e.,

(1)

where is the spectrum of the th ma-
terial present in the scene, is its corresponding proportion,
is the number of endmembers contained in the image, and is
an appropriate nonlinear function. Moreover, is the number
of spectral bands, and is an additive independent and identi-
cally distributed zero-mean Gaussian noise sequence with vari-
ance , denoted as , where is the
identity matrix. Note that the usual matrix and vector notations

and have been used in
the right-hand side of (1).
The choice of an appropriate nonlinearity deserves a

specific attention. Polynomials, sigmoids, and combinations
of polynomial and sigmoidal nonlinearities have shown inter-
esting properties for source separation [17]. This paper focuses
on second-order polynomial nonlinearities defined by

(2)

with . An interesting property of the resulting
nonlinear model referred to as polynomial PNMM (PPNMM)
is that it reduces to the classical LMM for . Thus, we
can expect unmixing results at least as good as those presented
in [21] and [2] where Bayesian and LS methods were investi-
gated. Another motivation for using the PPNMM is the Weier-
strass approximation theorem, which states that any continuous
function defined on a bounded interval can be uniformly ap-
proximated by a polynomial with any desired precision [22, p.
15]. As explained in [9], it is reasonable to consider polynomials
with first- and second-order terms (since higher order terms can
generally be neglected), which leads to (2). Higher order terms
could be considered in the presence of more than two reflec-
tions. However, the resulting interaction spectra are, in prac-
tice, of low amplitude and are hardly distinguishable from the
noise. Straightforward computations allow the PPNMM obser-
vation vector (for a given pixel of the image) to be expressed as
follows:

(3)

where denotes the Hadamard (term-by-term) product. Note
that the resulting PPNMM includes bilinear terms such as those
considered in [8]–[11]. However, the nonlinear terms are char-
acterized by a single amplitude parameter , leading to a less
complex model when compared with the models introduced in
[8], [9], and [11]. Note that endmember (contained in )
can be obtained in the noise free case by setting
and in (3).
Due to physical considerations, the abundance vector sat-

isfy the following positivity and sum-to-one constraints:

(4)

It is straightforward to show that the function is
noninjective for a fixed . However, the unmixing problem is
identifiable since the application

is injective under specific conditions related to the pure compo-
nent spectra (see [23] for details).

III. BAYESIAN ESTIMATION

This section generalizes the hierarchical Bayesian model in-
troduced in [21] to the PPNMM. The unknown parameter vector
associated with the PPNMM contains the pixel abundances
[satisfying constraints (4)], the nonlinearity parameter , and the
additive noise variance . This section summarizes the likeli-
hood and the parameter priors associated with the proposed hi-
erarchical Bayesian PPNMM.

A. Likelihood

Equation (3) shows that , , are distributed according
to a Gaussian distribution with mean and covariance
matrix (denoted as , , ). As
a consequence, the likelihood function of the observation vector
can be expressed as

(5)

where is the standard norm.

B. Parameter Priors

In order to satisfy the sum-to-one constraint, the abundance
vector can be rewritten1 with

and where notation indicates that the th com-
ponent of has been removed, i.e., .
The positivity constraints in (4) impose that belongs to the
following simplex

(6)

1Note that the proposed parameterization is chosen for notation simplicity.
However, the component to be discarded can be randomly chosen.
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A uniform prior distribution on is chosen for to reflect
the absence of prior knowledge about the abundance vector. A
Jeffreys prior is chosen for

(7)

which also reflects the absence of knowledge for this param-
eter (see [24] for details). A conjugate Gaussian prior is finally
chosen for the nonlinearity parameter , i.e.,

(8)

The Gaussian prior is zero mean since the value of can be
equally likely positive or negative. Moreover, it favors small
values of and is a conjugate prior for parameter , which will
simplify the computations.

C. Hyperparameter Prior

The hyperparameter is also included within the Bayesian
model. A conjugate inverse-gamma prior is assigned to

(9)

where are fixed to obtain a flat prior, reflecting the absence
of knowledge about variance [ will be set to (1, )
in the simulation section].

D. Posterior Distribution of

The joint posterior distribution of the unknown parameter
vector can be computed using the fol-
lowing hierarchical structure:

(10)

where means “proportional to” and is defined in (5).
By assuming that parameters , , and are a priori inde-
pendent, the joint prior distribution of the unknown parameter
vector can be expressed as

(11)

The joint posterior distribution can then be computed
up to a multiplicative constant, i.e.,

(12)

Unfortunately, it is difficult to obtain closed form expressions
of the standard Bayesian estimators [including the maximum a
posteriori (MAP) and the minimummean square error (MMSE)
estimators] associated with (12). The last part of this section
studies an MCMC method that can be used to generate samples
asymptotically distributed according to (12). These generated
samples are then used to compute theMAP orMMSE estimators
of the unknown parameter vector .

E. Metropolis-Within-Gibbs Sampler

The principle of the Gibbs sampler is to sample according
to the conditional distributions of the posterior of interest [25,
Chap. 10]. The probability density functions (pdf) associated
with (12) are studied below.
1) Conditional pdf : Straightforward computa-

tions lead to

(13)

where . Since it is not easy to sample according
to (13) [mainly because of the indicator function ], we
propose to update the abundance using aMetropolis–Hasting
move. More precisely, a new abundance coefficient is proposed
following a Gaussian random walk procedure (the variance of
the proposal distribution has been adjusted to obtain an accep-
tance rate close to 0.5, as recommended in [26, p. 8]). The gener-
ated abundance is accepted or rejected with an appropriate prob-
ability provided in Algorithm 1.
2) Conditional pdf : Using (5), it can be easily

shown that is distributed according to the following Gaussian
distribution:

(14)

where

and . As a consequence, sampling ac-
cording to (14) is straightforward.
3) Conditional pdf : Looking carefully at (12),

it can be shown that , is distributed according to the
following inverse-gamma distribution:

(15)

from which it is easy to sample.
4) Conditional pdf : Finally, by looking at the

posterior distribution (12), it can be seen that , is dis-
tributed according to the following inverse-gamma distribution:

(16)

The resulting Metropolis-within-Gibbs sampler used to
sample according to (12) is summarized in Algorithm 1.
After generating samples using the procedures defined pre-

viously, the MMSE estimator of the unknown parameters can
be approximated by computing the empirical averages of these
samples, after an appropriate burn-in period.2 Even if the sam-
pling strategy has been observed to converge very fast, its com-
putational complexity can be heavy for practical applications.
The next section studies LS estimators, which allow this com-
putational complexity to be significantly reduced.

2The length of the burn-in period has been determined using appropriate con-
vergence diagnoses [26].
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IV. LS METHODS

LS methods have been successfully used for linear SU [2].
The LS method associated with the observation equation (3)
consists of minimizing the following criterion:

(17)

under the positivity and sum-to-one constraints (4). This opti-
mization problem is not easy to handle mainly because of con-
straints (4). However, the cost function is quadratic with
respect to parameter . As a consequence, by differentiating

with respect to , the following closed-form expression
for can be obtained

(18)

After replacing (18) in , we obtain

(19)

where

(20)

We introduce below two strategies to compute the optimal
abundance vector

under constraints (4). Note that, once has been computed, the
nonlinearity parameter can be estimated as follows:

(21)

A. Taylor Approximation

Motivated by the method introduced in [10], we propose to
approximate function defined in (20) using the first-order
terms of a Taylor series expansion. Let denotes the esti-
mated abundance vector estimate at the th iteration, and its
corresponding estimated spectrum following (20). The
Taylor approximation of at can be written

(22)

where is the gradient matrix of of size
and is the unknown parameter vector to be estimated. The th
column of can be derived from (3) as

(23)
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where and the partial derivatives of and
are available in [23]. Approximating in (19) using (22),
vector can be estimated by solving the following con-
strained LS problem:

(24)

under constraints (4), where

(25)

and is the gradient matrix. Problem
(24) can be finally solved by the FCLS algorithm [2]. More pre-
cisely, the sum-to-one constraint of the abundances is consid-
ered by penalizing (24), leading to

(26)

subject to the nonnegativity constraints for the parameter
vector , where controls the impact of the sum-to-one
constraint. Procedure (26) is repeated until convergence. The
convergence of this iterative procedure to the global minimum
of the objective function (21) is difficult to prove because of
constraints (4) in (24). The next section introduces an alter-
native subgradient-based algorithm whose convergence (to a
local minimum of the associated objective function) is ensured.

B. Subgradient-Based Optimization

A gradient approach could be used to solve the cost func-
tion defined in (19) in the absence of constraints. However,
the problem is more complicated when constraints (4) have to
be considered. The estimation method studied in this section
is based on a subgradient optimization (SO) algorithm [27, p.
339] that is appropriate for constrained problems. More pre-
cisely, subgradient-based optimization allows each abundance

to be independently updated. Due to the sum-to-one
constraint of the abundance vector, the cost function (19) can be
expressed as a function of by setting .
In that case, the cost function (19) can be rewritten as

(27)

where

(28)

(29)

At a given point , the SO algorithm performs sequential
line searches along directions defined by the partial deriva-
tives with respect to (for ), i.e.,

where the partial derivatives of are provided in [23].
Finally, the line search procedure solves the following problem:

(30)

where is a direction vector of
size , and (for

) are upper bounds for the line search parameters.
More precisely, upper bounding according to the rule

if
if
if

ensures that constraints (4) are satisfied. Problem (30) can be
solved using the golden section method [27, p. 270]. The abun-
dances are then updated component by component (see [23] for
more details about the algorithm). Here again, the procedure is
repeated until convergence. The next section presents the per-
formance of the proposed algorithms on synthetic and real hy-
perspectral images.

V. SIMULATIONS

A. Synthetic Data

The performance of the proposed nonlinear SU algorithms is
first evaluated by unmixing four synthetic images of size 50
50 pixels. The endmembers contained in these images
have been extracted from the spectral libraries provided with
the ENVI software [28] (i.e., green grass, olive-green paint, and
galvanized steel metal). The first synthetic image has been
generated using the standard LMM.A second image has been
generated according to the bilinear mixing model introduced in
[10], referred to as “Fanmodel” (FM). A third image has been
generated according to the generalized bilinear mixing model
(GBM) presented in [11], whereas a fourth image has been
generated according to the PNMM. For each image, the abun-
dance vectors , , have been randomly gen-
erated according to a uniform distribution over the admissible
set defined by the positivity and sum-to-one constraints. All im-
ages have been corrupted by an additive white Gaussian noise
of variance , corresponding to a signal-to-noise
ratio SNR dB. The nonlinearity co-
efficients are uniformly drawn in the set (0, 1) for the GBM,
and parameter has been uniformly generated in the set ( 0.3,
0.3) for the PPNMM.Different estimation procedures have been
considered for the four mixing models.
1) For the LMM, we have considered the standard FCLS al-
gorithm [2] and the Bayesian algorithm of [21].

2) The FM has been unmixed using the LSmethod introduced
in [10] and a Bayesian algorithm similar to the one derived
in [11] but assuming all the nonlinearity coefficients are
equal to 1.

3) The unmixing strategies used for the GBM are the three
algorithms presented in [29], i.e., a Bayesian algorithm and
two LS methods.
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TABLE I
ABUNDANCE RMSES : SYNTHETIC IMAGES

4) The Bayesian and LS algorithms presented in Sections III
and IV have been used for unmixing the proposed
PPNMM. Note that all results presented in this paper have
been obtained using the Bayesian MMSE estimator.

The quality of the unmixing procedures can be measured by
comparing the estimated and actual abundance vector using the
root mean square error (RMSE) defined by

RMSE (31)

where and are the actual and estimated abundance vec-
tors for the th pixel of the image and is the number of
image pixels. Table I shows the RMSEs associated with images

for the different estimation procedures. Note that the
best results (in terms of RMSE) for each image have been repre-
sented in underlined bold, whereas the second best results have
been depicted in bold. Table I shows that the abundances esti-
mated by the Bayesian algorithm and the LSmethods are similar
for the PPNMM. Moreover, for these four images, the PPNMM
seems to be more robust than the other mixing models to de-
viations from the actual model. Indeed, the PPNMM provides
small abundance RMSEs for the four images .
The unmixing quality can be also evaluated by the reconstruc-

tion error (RE) defined as

RE (32)

where is the th observation vector and is its estimate.
Table II compares the REs obtained for the different synthetic
images. These results show that the REs are close for the
different unmixing algorithms. Again, the proposed PPNMM
seems to be more robust than the other mixing models to
deviations from the actual model in terms of RE.
Fig. 1 shows the estimated distributions of for images

using the three presented algorithms (i.e., Bayesian,
linearization, and subgradient). This figure shows that the algo-
rithms similarly perform for the estimation of the nonlinearity
parameter .
Table III shows the execution times of MATLAB implemen-

tations on a 1.66-GHz Dual Core of the proposed algorithms for
unmixing the proposed images (2500 pixels for each image).
The linearization-based algorithm has the lowest computational

TABLE II
RES : SYNTHETIC IMAGES

Fig. 1. Histograms of the estimated nonlinearity parameter for the four syn-
thetic images estimated by the (black) Bayesian, (red) linearization-based and
(blue) subgradient-based algorithms.

TABLE III
COMPUTATIONAL TIMES OF THE UNMIXING ALGORITHMS FOR 2500 PIXELS

(IN SECOND)

cost and also provides accurate estimations. Note that the com-
putational cost of the Bayesian algorithm (which allows prior
knowledge to be included in the unmixing procedure) can be
prohibitive for larger images and a high number of endmembers.
However, the computational cost of the two proposed optimiza-
tion methods (linearization and gradient based) is very reason-
able, which make them very useful for practical applications.
The next set of simulations analyzes the performance of the

proposed nonlinear SU algorithms for different numbers of end-
members by unmixing four synthetic im-
ages of 500 pixels. The endmembers contained in these images
have been randomly selected from the 14 endmembers extracted
by VCA from the full Cuprite scene described in [30]. For each
image, the abundance vectors , , have been
randomly generated according to a uniform distribution over the
admissible set defined by the positivity and sum-to-one con-
straints. All images have been corrupted by an additive white
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TABLE IV
AVERAGE RMSES : SYNTHETIC IMAGES

TABLE V
AVERAGE RES : SYNTHETIC IMAGES

Gaussian noise corresponding to a signal-to-noise ratio SNR
dB. The nonlinearity coefficient is uniformly drawn in the

set ( 0.3, 0.3). Tables IV and V compare the performance of the
three proposed methods in terms of abundance estimation and
RE. These results show that the three methods similarly perform
in terms of RE. The Bayesian estimators tend to provide more
accurate abundance estimations (i.e., smaller RMSEs) for large
values of . Indeed, the Taylor and gradient algorithms may be
trapped in local minima of the LS criterion (17) for large values
of .

B. Real Data

The first real image considered in this section is composed
of spectral bands and was acquired in 1997 by the
airborne visible infrared imaging spectrometer (AVIRIS) over
the Cuprite mining site in Nevada. A subimage of size 50 50
pixels has been chosen here to evaluate the proposed unmixing
procedures. The scene is mainly composed of muscovite, alu-
nite, and kaolinite, as explained in [31]. The endmembers ex-
tracted by VCA [19] and the nonlinear EEA proposed in [20]
(referred to as “Heylen”), with , are depicted in Fig. 2.
The endmembers obtained by the two methods have similar
shapes. This result confirms the fact that the geometric EEAs
(such as VCA) can be used as a first approximation for end-
member estimation [6]. The estimation algorithms presented in
Sections III and IV have been applied to each pixel of the scene
using the endmembers extracted by the two EEAs. Examples
of abundance maps obtained for endmembers estimated using
Heylen’s method are presented in Fig. 3 (see [23] for similar
results obtained with endmembers estimated by VCA]. The ad-
vantage of the PPNMM is that it allows the nonlinearities be-
tween the observations and the abundance vectors to be ana-
lyzed. For instance, Fig. 4 shows the estimated maps of for
the Cuprite image. These results show that the observations are
nonlinearly related to the endmembers (since ). However,
the nonlinearity is weak since the estimated values of are close
to 0.
The second real image considered in this section is composed

of spectral bands and was acquired in 1997 by the
satellite AVIRIS over the Moffett Field, CA. A subimage of size

Fig. 2. endmembers estimated by (blue lines) VCA and (red lines)
Heylen for the Cuprite scene.

Fig. 3. Abundance maps estimated by the Bayesian, linearization, and subgra-
dient methods for the Cuprite scene.

Fig. 4. Maps of the nonlinearity parameter estimated by the Bayesian, lin-
earization, and subgradient methods for the Cuprite scene.

Fig. 5. endmembers estimated by (blue lines) VCA and (red lines)
Heylen for the Moffett scene.

50 50 pixels has been also chosen here to evaluate the pro-
posed unmixing procedures. The scene is mainly composed of
water, vegetation, and soil. The endmembers extracted by VCA
and the Heylen’s method with are depicted in Fig. 5.
Again, the endmembers obtained by the two methods are sim-
ilar. Examples of abundance maps estimated by the proposed
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Fig. 6. Abundance maps estimated by the Bayesian, linearization, and subgra-
dient methods for the Moffett scene.

Fig. 7. Maps of the nonlinearity parameter estimated by the Bayesian, lin-
earization, and subgradient methods for the Moffett scene.

TABLE VI
RES : CUPRITE AND MOFFETT IMAGES

algorithms are presented in Fig. 6 (endmembers have been es-
timated using Heylen’s method). They are similar to the abun-
dancemaps obtained with estimation algorithms associated with
the LMM (available in [21]). Fig. 7 shows the estimated maps
of for the Moffett image. In the water area, the observations
are nonlinearly related to the endmembers (since ). These
nonlinearities can be due to the low amplitude of the water spec-
trum and possible nonlinear bathymetric effects.
The quality of unmixing is finally evaluated using the REs

for both real images. These REs are compared in Table VI
with those obtained by assuming other mixing models. The
proposed PPNMM provides smaller REs when compared with
other models, which is a very encouraging result. Additional
results on the full Cuprite scene are available in [23].

VI. CONCLUSION AND FUTURE WORKS

A Bayesian and two least squares algorithms were presented
for nonlinear spectral unmixing of hyperspectral images. These
algorithms assumed that the hyperspectral image pixels are re-
lated to the endmembers by a polynomial post-nonlinear mixing
model. In the Bayesian framework, the constraints related to
the unknown parameters were ensured by using appropriate
prior distributions. The posterior distribution of the unknown
parameter vector was then derived. The corresponding min-
imum mean square error estimator was approximated from
samples generated using Markov chain Monte Carlo methods.
Least squares methods were also investigated for unmixing
the PPNMM. These methods provided results similar to the
Bayesian algorithm with a reduced computational cost, making
them very attractive for hyperspectral image unmixing. Results
obtained on synthetic and real images illustrated the accuracy
of the PPNMM and the performance of the corresponding esti-
mation algorithms. Future works include the study of nonlinear
EEAs appropriate for the proposed parametric PPNMM. De-
riving nonlinearity detectors based on the proposed parametric
PPNMM is also under investigation.
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