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Widely used in civil, mechanical and automotive engineering since the early 1980s, multilayer 
rubber bearings have been used as seismic isolation devices for buildings in highly seismic 
areas in many countries. Their appeal in these applications comes from their ability to provide 
a component with high stiffness in one direction and with high fl exibility in one or more 
orthogonal directions. This combination of vertical stiffness with horizontal fl exibility, achieved 
by reinforcing the rubber with thin steel shims perpendicular to the vertical load, enables them to 
be used as seismic and vibration isolators for machinery, buildings and bridges. 

Mechanics of Rubber Bearings for Seismic and Vibration Isolation collates the most important 
information on the mechanics of multilayer rubber bearings. It explores a unique and 
comprehensive combination of relevant topics, covering all prerequisite fundamental theory and 
providing a number of closed-form solutions to various boundary value problems as well as a 
comprehensive historical overview on the use of isolation. 

Many of the results presented in the book are new and are essential for a proper understanding 
of the behavior of these bearings and for the design and analysis of vibration or seismic isolation 
systems. The advantages afforded by adopting these natural rubber systems is clearly explained 
to designers and users of this technology, bringing into focus the design and specifi cation of 
bearings for buildings, bridges and industrial structures. 

This comprehensive book:

• includes state of the art, as yet unpublished research along with all required 
fundamental concepts;

• is authored by world-leading experts with over 40 years of combined experience 
on seismic isolation and the behavior of multilayer rubber bearings;

• is accompanied by a website at www.wiley.com/go/kelly 

The concise approach of Mechanics of Rubber Bearings for Seismic and Vibration Isolation 
forms an invaluable resource for graduate students and researchers/practitioners in structural 
and mechanical engineering departments, in particular those working in seismic and 
vibration isolation.

www.wiley.com/go/kelly
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Preface

The multilayer rubber bearing is an apparently simple device that is used in a wide
variety of industries that include civil, mechanical and automotive engineering. It is so
ubiquitous that it may be difficul to believe that it is a relatively recent development,
having been used for only about fift years. The idea of reinforcing rubber blocks by
thin steel plates was firs proposed by the famous French engineer Eugène Freyssinet
(1879–1962). He recognized that the vertical capacity of a rubber pad was inversely
proportional to its thickness, while its horizontal flexibilit was directly proportional to
it. He is best known for the development of prestressed concrete and for the discovery of
creep in concrete. It is possible that his invention of the reinforced rubber pad was driven
by the need to accommodate the shrinkage of the deck due to creep and prestress load,
while sustaining the weight of a prestressed bridge deck. He obtained a French patent
in 1954 for his invention, and within a few years the concept was adopted worldwide
and led to the extraordinary variety of applications in which multilayer rubber bearings
are used today.

These reinforced rubber bearings in their various forms are a source of fascinating
problems in solid mechanics. It is the combination of vertical stiffness and horizontal
flexibilit , achieved by reinforcing the rubber by thin steel plates perpendicular to the
vertical load, that enables them to be used in many applications, including the seismic
protection of buildings and bridges and the vibration isolation of buildings and ma-
chinery. The horizontal, vertical, and bending stiffnesses are important to the design
of bearings for these applications and for predicting the buckling load, the interaction
between vertical load and horizontal stiffness, and the dynamic response of structures
and equipment mounted on the bearings.

We will cover the theory for vertical stiffness in Chapter 2 and for bending stiffness
in Chapter 3. Some of the results in these two chapters are new. The results of Chap-
ters 2 and 3 are used to predict the stresses in the steel reinforcing plates in Chapter 4.
The analysis used to calculate these stresses is new to this text and was only recently
developed by the authors. Also new and original to this text is the development of a
theory for these stresses when the effect of the bulk compressibility of the rubber is
included, which is necessary for seismic isolation bearings, but usually not for vibra-
tion isolation bearings. In Chapter 5 we study the stability of these bearings, showing
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how to estimate buckling loads and the interaction between vertical load and horizontal
stiffness as well as a new way to calculate the effect of horizontal displacement on the
vertical stiffness. One unexpected aspect of these bearings is that they can buckle in
tension, and this is covered in Chapter 6. Chapter 7 is concerned with the influenc
of the flexibilit of the reinforcing plates on the buckling load. This could be impor-
tant in efforts to reduce the weight of bearings in the possible application to low-cost
housing. Chapters 8 and 9 present some recent research work by the authors on the
mechanics of bearings that are not bonded to their supports, but are held in place by
friction. This research includes some experimental work on bearings of this type used as
bridge bearings.

The original work on the mechanics of rubber bearings was done at the Malaysian
Rubber Producers Research Association (MRPRA, now the Tun Abdul Razak Research
Centre) in the United Kingdom in the 1960s under the leadership of Dr A.G. Thomas and
Dr P.B. Lindley and applied firs to bridge bearings and then to the vibration isolation
of residences, hospitals and hotels in the United Kingdom.

The firs building to be isolated from low-frequency ground-borne vibration using
natural rubber was an apartment block built in 1966 directly above a station of
the London Underground. Many such projects have been completed in the United
Kingdom using natural rubber isolators, including a low-cost public housing complex
adjacent to two eight-track railway lines that carry 24-hour traffic Several hotels
have been completed using this technology, and a number of hospitals have been
built with this approach. More recently, vibration isolation has been applied to
concert halls.

Some time later MRPRA suggested the use of bearings for the protection of buildings
against earthquakes. Dr C.J. Derham, of MRPRA, approached Professor J.M. Kelly and
asked him if he was interested in conducting shaking table tests at the Earthquake Sim-
ulator Laboratory at the Earthquake Engineering Research Center (EERC), University
of California at Berkeley, to see to what extent natural rubber bearings could be used
to protect buildings from earthquakes. Very quickly they conducted such a test using
a 20-ton model and handmade isolators. The results from these early tests were very
promising and led to the firs base-isolated building in the United States, also the firs
building in the world to use isolation bearings made from high-damping natural rubber
developed for this project by MRPRA.

The mathematical complexity in the text varies in different parts of the book, depend-
ing on which aspects of the bearings are being studied, but the reader should be assured
that no more complicated mathematics than absolutely necessary to address the problem
at hand has been used.

This text has been written for structural engineers, acoustic engineers and mechanical
engineers with an interest in applying isolation methods to buildings, bridges and
industrial equipment. If they have a background in structural dynamics and an interest
in structural mechanics, they will fin that much of the analysis in the text may be
applied to their work. The text can be used as supplementary reading for graduate
courses and as a introduction to dissertation research.
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Preface xv

It will also be useful to those who are charged with preparing or updating design
rules and design guidelines for isolated bridges and buildings. The text is the firs that
attempts to bring together in one place the mechanics of rubber bearings now widely
scattered in many journals and reports.

www.wiley.com/go/kelly

James M. Kelly
Dimitrios A. Konstantinidis

Berkeley, California
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1
History of Multilayer
Rubber Bearings

Multilayer rubber bearings are widely used in civil, mechanical and automotive engi-
neering. They have been used since the 1950s as thermal expansion bearings for highway
bridges and as vibration isolation bearings for buildings in severe acoustic environments.
Since the early 1980s, they have been used as seismic isolation devices for buildings in
highly seismic areas in many countries. Their appeal in these applications is the ability
to provide a component with high stiffness in one direction and high flexibilit in one or
more orthogonal directions. The idea of using thin steel plates as reinforcement in rub-
ber blocks was apparently suggested by the famous French engineer Eugène Freyssinet
(1879–1962). He recognized that the vertical capacity of a rubber pad was inversely pro-
portional to its thickness, while its horizontal flexibilit was directly proportional to the
thickness. He is of course best known for the development of prestressed concrete, but
also for the discovery of creep in concrete. It is possible that his invention of the rein-
forced rubber pad was driven by the need to accommodate the shrinkage of the deck
due to creep and the prestress load while sustaining the weight of a prestressed bridge
deck. In any case, he obtained a French patent in 1954 for “Dispositif de liaison élastique
à un ou plusieurs degrés de liberté” (translated as “Elastic device of connection to one
or more degrees of freedom”; Freyssinet 1954; the patent, with an English translation, is
given in the Appendix). It seems from his patent that he envisaged that the constraint
on the rubber sheets by the reinforcing steel plates be maintained by friction. However,
in practical use a more positive connection was desired, and by 1956 bonding of thin
steel plates to rubber sheets during vulcanization was adopted worldwide and led to
the extraordinary variety of applications in which rubber pads are used today.

This combination of horizontal flexibilit and vertical stiffness, achieved by reinforcing
the rubber by thin steel shims perpendicular to the vertical load, enables them to be
used in many applications, including seismic protection of buildings and bridges and
vibration isolation of machinery and buildings.

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

1
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2 History of Multilayer Rubber Bearings

The isolation of equipment from vibration via anti-vibration mounts is a well-
established technology, and the theory and practice are covered in several books, papers,
and reviews; the survey by Snowden (1979) is an example. Although the isolated ma-
chine is usually the source of the unwanted vibrations, the procedure can also be used to
protect either a sensitive piece of equipment or an entire building from external sources
of vibration. The use of vibration isolation for entire buildings originated in the United
Kingdom and is now well accepted throughout Europe and is beginning to be used
in the United States. Details of this method of building construction can be found in
Grootenhuis (1983) and Crockett (1983).

The predominant disturbance to a building by rail traffi is a vertical ground motion
with frequencies ranging from 25 to 50 Hz, depending on the local soil conditions and the
source. To achieve a degree of attenuation that takes the disturbance below the threshold
of perception or below the level that interferes with the operation of delicate equipment
(e.g., an electron microscope), rubber bearings are designed to provide a vertical natural
frequency for the structure about one-third of the lowest frequency of the disturbance.

The firs building to be isolated from low-frequency ground-borne vibration using
natural rubber was an apartment block built in London in 1966. Known as Albany
Court, this building is located directly above the St James’ Park Station of the London
Underground. This project was experimental to a certain extent, and the performance
and durability of the isolation system in the years since its construction was monitored
for several years by the Malaysian Rubber Producers Research Association (MRPRA,
now the Tun Abdul Razak Research Centre) in conjunction with Aktins Research and
Development (Derham and Waller 1975).

Since then, many projects have been completed in the United Kingdom using natural
rubber isolators. These have included Grafton 16, a low-cost public housing complex that
was built on a site adjacent to two eight-track railway lines that carry 24-hour traffic In
this project the isolators produced a vertical frequency of 6.5 Hz to isolate against ground
motion in the 20 Hz range. Several hotels have been completed using this technology, for
example, the Holiday Inn in Swiss Cottage in London. In addition, a number of hospitals
have been built with this approach, which is particularly advantageous when precision
diagnostic equipment is present.

More recently, vibration isolation has been applied for use in concert halls. In 1990, the
Glasgow Royal Concert Hall, which is sited directly above two underground railway
lines, was completed in Glasgow, Scotland. The building has a reinforced concrete
structural frame that is supported on 450 natural rubber bearings. In addition to housing
the 2850-seat concert hall, it also contains a conference hall and a number of restaurants.

Another concert hall is the International Convention Centre in Birmingham, England,
which was completed in 1991. Home of the City of Birmingham Symphony Orchestra, the
building comprises ten conference halls and a 2211-seat concert hall. The entire complex
was built at a cost of £121 million and is supported on 2000 natural rubber bearings to
isolate it from noise from a main line railway running in a tunnel near the site.

The International Congress Center (ICC) in Berlin (Figure 1.1), Germany, constructed
between 1970 and 1979, was Berlin’s largest post-war project. It is 320 m (1050 ft)
long, 80 m (260 ft) across and 40 m (130 ft) high. It has a cubic content of 800 000 m3

(1 000 000 yd3), and the total weight of steel in the roof is 8500 tons (18700 kips). A
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History of Multilayer Rubber Bearings 3

Figure 1.1 The International Congress Center (ICC) in Berlin, Germany. Reproduced from
Hans-Georg Weimar, Wikimedia

“box-in-box” construction, developed specially for this center, permits several func-
tions to be held simultaneously under one roof. The building is supported on neoprene
bearings (Figure 1.2) which range in size up to 2.5 m in diameter that can carry loads of
8000 tons (17600 kips; Freyssinet International 1977). They were constructed in segments
which were placed in position with space between the segments to allow for bulging of
the neoprene layers – described in the literature on the center as a kind of architectural

Figure 1.2 2.5-m diameter bearing for the ICC Berlin. Reproduced by permission of
Freyssinet, Inc.
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4 History of Multilayer Rubber Bearings

shock absorber – and were intended to exclude outside noise and absorb vibrations from
an adjacent highway and railway. ICC Berlin has over 80 halls and conference rooms,
with seating capacities ranging from 20 to 5000, with a sophisticated information and
direction system. The largest hall (Hall 1) can seat up to 5000 and has the second-largest
stage in Europe.

Two recent applications of vibration isolation to concert halls in the United States are
the Benaroya Concert Hall in Seattle, Washington, completed in 1999 and the Walt Disney
Concert Hall in Los Angeles, California, completed in 2003. The firs uses rubber bearings
to mitigate ground-borne noise from trains in a tunnel below the hall. The Walt Disney
Concert Hall is built directly above a loading dock for an immediately adjacent building.
The interesting thing about these two buildings is that they are located in highly seismic
areas, yet there was no attempt on the part of the structural engineers for either project to
combine both vibration isolation and seismic isolation in the same system. Experimental
results of tests done at the shake table at the Earthquake Engineering Research Center
of the University of California, Berkeley, many years before the construction of these
two concert halls, demonstrated that it was possible to design a rubber bearing system
that would provide both vibration isolation and seismic protection. In the concert hall
projects, lateral movement of the bearings that support the buildings is prevented by a
system of many vertically located bearings, the additional cost of which is substantial
and could have been avoided by appropriate design.

Seismic isolation can also be provided by multilayer rubber bearings that, in this
case, decouple the building or structure from the horizontal components of the ground
motion through the low horizontal stiffness of the bearings, which give the structure a
fundamental frequency that is much lower than both its fixed-bas frequency and the
predominant frequencies of the ground motion. The firs dynamic mode of the isolated
structure involves deformation only in the isolation system, the structure above being
to all intents and purposes rigid. The higher modes that produce deformation in the
structure are orthogonal to the firs mode and, consequently, to the ground motion
(Kelly 1997). These higher modes do not participate, so that if there is high energy in
the ground motion at these higher frequencies, this energy cannot be transmitted into
the structure. The isolation system does not absorb the earthquake energy, but rather
deflect it through the dynamics of the system. This type of isolation system works when
the system is linear, and even when undamped; however, a certain level of damping is
beneficia to suppress any possible resonance at the isolation frequency. This damping
can be provided by the rubber compound itself through appropriate compounding. The
rubber compounds in common engineering use have an intrinsic energy dissipation
equivalent to 2–3% of linear viscous damping, but in compounds referred to as high-
damping rubber this can be increased to 10–20% (Naeim and Kelly 1999).

The firs use of rubber for the earthquake protection of a structure was in an elementary
school, completed in 1969 in Skopje, in the Former Yugoslav Republic of Macedonia (see
Figure 1.3). The building is a three-story concrete structure that rests on large blocks of
natural rubber (Garevski et al. 1998). Unlike more recently developed rubber bearings,
these blocks are completely unreinforced so that the weight of the building causes them
to bulge sideways (see Figure 1.4). Because the vertical and horizontal stiffnesses of the
system are about the same, the building will bounce and rock backwards and forwards
in an earthquake. These bearings were designed when the technology for reinforcing
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Figure 1.3 The firs rubber isolated building: the Pestalozzi elementary school completed
in 1969 in Skopje. Courtesy of James M. Kelly. NISEE Online Archive, University of California,
Berkeley

rubber blocks with steel plates – as in bridge bearings – was neither highly developed
nor widely known, and this approach has not been used again. More recent examples
of isolated buildings use multilayered laminated rubber bearings with steel reinforcing
layers as the load-carrying component of the system. These are easy to manufacture, have

Figure 1.4 Unreinforced bearing in the Pestalozzi school building in Skopje. Courtesy of
James M. Kelly. NISEE Online Archive, University of California, Berkeley
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Figure 1.5 Foothill Communities Law and Justice Center, Rancho Cucamonga,
California. Courtesy of James M. Kelly. NISEE Online Archive, University of California,
Berkeley

no moving parts and are extremely durable. Many manufacturers guarantee lifetimes of
around 50 or 60 years.

The firs base-isolated building to be built in the United States was the Foothill Com-
munities Law and Justice Center (FCLJC), a legal services center for the County of San
Bernardino that is located in the city of Rancho Cucamonga, California, about 97 km
(60 miles) east of downtown Los Angeles (see Figure 1.5). In addition to being the firs
base-isolated building in the United States, it is also the firs building in the world to use
isolation bearings made from high-damping natural rubber (Derham and Kelly 1985)
(Figure 1.6). The FCLJC was designed with rubber isolators at the request of the County
of San Bernardino. The building is only 20 km (12 miles) from the San Andreas fault,
which is capable of generating very large earthquakes on its southern branch. This fault
runs through the county, and, as a result, the county has had for many years one of the
most thorough earthquake-preparedness programs in the United States. Approximately
15 794 m2 (170 000 ft2), the building is four stories high with a full basement and was
designed to withstand an earthquake with a Richter magnitude 8.3 on the San Andreas
fault. A total of 98 isolators were used to isolate the building, and these are located in
a special sub-basement. The construction of the building began in early 1984 and was
completed in mid-1985 at a cost of $38 million (Tarics et al. 1984). Since then, many new
buildings have been built in the United States on seismic isolation systems.

The same high-damping rubber system was adopted for a building commissioned
by Los Angeles County, the Fire Command and Control Facility (FCCF), shown in
Figure 1.7. This building houses the computer and communications systems for the
fi e emergency services program of the county and is required to remain functional
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Figure 1.6 Natural rubber isolator for the Foothill Communities Law and Justice Center
showing laminated construction. Courtesy of James M. Kelly. NISEE Online Archive,
University of California, Berkeley

during and after an extreme earthquake. The decision to isolate this building was
based on a comparison between conventional and isolation schemes designed to pro-
vide the same degree of protection. On this basis the isolated design was estimated to
cost 6% less than the conventional design (Anderson 1989). For most projects an iso-
lated design generally costs around 5% more when compared with a conventional code

Figure 1.7 Fire Command and Control Facility, Los Angeles, California. Courtesy of James
M. Kelly. NISEE Online Archive, University of California, Berkeley
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design; however, the design code provides a minimum level of protection against strong
ground shaking, guaranteeing only that the building will not collapse. It does not protect
the building from structural damage. When equivalent levels of design performance are
compared, an isolated building is always more cost effective. Additionally, these are
the primary costs when contemplating a structural system and do not address the life-
cycle costs, which are also more favorable when an isolation system is used as compared
to conventional construction.

A second base-isolated building, also built for the County of Los Angeles, is at the
same location as the FCCF. The Emergency Operations Center (EOC) is a two-story
steel braced-frame structure isolated using 28 high-damping natural rubber bearings
provided by the Bridgestone Engineered Products Co., Inc.

The most recent example of an isolated emergency center is the two-story Caltrans/
CHP Traffi Management Center in Kearny Mesa near San Diego, California (Walters
et al. 1995). The superstructure has a steel frame with perimeter concentrically braced
bays. The isolation system, also provided by Bridgestone, consists of 40 high-damping
natural rubber isolators. The isolators are 60 cm (24 in) in diameter.

The use of seismic isolation for emergency control centers is clearly advantageous
since these buildings contain essential equipment that must remain functional during
and after an earthquake. They are designed to a much higher level of performance than
conventional buildings, and the increased cost for the isolators is easily justified Other
examples are the San Francisco 911 Center and the Public Safety Building in the city of
Berkeley, California.

Other base-isolated building projects in California include a number of hospitals.
The M. L. King Jr–C. R. Drew Diagnostics Trauma Center in Willowbrook, California,
is a 13 006 m2 (140 000 ft2), five-stor structure supported on 70 high-damping
natural rubber bearings and 12 sliding bearings with lead–bronze plates that slide on
a stainless steel surface. Built for the County of Los Angeles, the building is located
within 5 km (3 miles) of the Newport–Inglewood fault, which is capable of generat-
ing earthquakes with a Richter magnitude of 7.5. The isolators are 100 cm (40 in) in
diameter, and at the time of their manufacture were the largest isolation bearings fab-
ricated in the United States. Many other hospitals have been built in California since
then on rubber isolation systems, some with lead–rubber bearings (i.e., multilayered
rubber bearings featuring a cylindrical lead core) and some with high-damping rubber
bearings. They include the University of Southern California Teaching hospital, using
lead–rubber bearings, completed in 1991. This hospital, which was instrumented with
strong-motion seismic acceleration instruments was impacted by the 1994 Northridge
Earthquake and performed remarkably well. The peak ground acceleration in the free
fiel (the parking lot) was 0.49g, which was reduced within the building to around
0.10–0.11g by the isolation system. The Arrowhead Regional Medical Center, part of the
County of San Bernardino, was completed in 1998, and the St Johns Medical Center, a
private hospital in Santa Monica, in 2001. Two hospitals owned by Hoag Presbyterian
in Irvine, one a retrofi and one new, were built on high-damping rubber bearings in the
mid 2000s.

In addition to new buildings, there are a number of very large retrofi projects in
California using base isolation, including the retrofi of the Oakland City Hall and the
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Figure 1.8 The Oakland City Hall, Oakland, California. Courtesy of James M. Kelly.
University of California, Berkeley

San Francisco City Hall, both of which were badly damaged in the 1989 Loma Prieta
earthquake, and the Los Angeles City Hall.

When it was built in 1914, Oakland City Hall was the tallest building on the west
coast. Its height was later surpassed by the Los Angeles City Hall, which was com-
pleted in 1928. The seismic rehabilitation of Oakland City Hall (Figure 1.8) using
base isolation was completed in 1995, and it was at the time the tallest seismically
isolated building in the world. It was once again surpassed when the seismic reha-
bilitation of the Los Angeles City Hall retrofi was completed in 1998, making that
structure now the tallest seismically isolated building in the world. The Oakland City
Hall isolation system uses 110 bearings ranging from 74 cm (29 in) to 94 cm (37 in) in
diameter. A moat was constructed around the building to provide a seismic gap of 51 cm
(20 in). Installing the isolators proved to be very complicated and required shoring up
of the columns, cutting of the columns, and transferring of the column loads to tem-
porary supports. In order to protect the interior, the columns were raised not more
than 2.5 mm (0.1 in) during the jacking process. The cost of the retrofi was very
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Figure 1.9 The Los Angeles City Hall, Los Angeles, California. Reproduced from Brion
Vibber, Wikimedia

substantial – about $84 million – with the isolators comprising around 2.5% of that
figu e. Details of the retrofi are given in Walters et al. (1995).

The Los Angeles City Hall, shown in Figure 1.9, is a 28-story steel frame building com-
pleted in 1928. The total floo area is close to 82 728 m2 (912 000 ft2). The lateral resistance
is provided by several different elements, including steel cross-bracing, reinforced con-
crete walls, and interior clay hollow core tile walls, with the most of the superstructure
stiffness provided by masonry infil perimeter walls. The building was damaged in the
1994 Northridge earthquake, with the most severe damage occurring on the 25th and
26th floors which have the characteristic of soft stories. The base isolation retrofi scheme
(Youssef 2001) uses 416 high-damping natural rubber isolators in combination with 90
sliders and is supplemented by 52 mechanical viscous dampers at the isolation level. In
addition, 12 viscous dampers were installed between the 24th and 25th floor to control
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Figure 1.10 The San Francisco City Hall, San Francisco, California. Courtesy of James M.
Kelly. University of California, Berkeley

interstory drifts at the soft-story levels. The total cost of this retrofi was estimated to be
around $150 million, with the isolators comprising $3.5 million of that figu e.

The San Francisco City Hall, shown in Figure 1.10, was built in 1912 to replace the
original city hall that was destroyed in the 1906 San Francisco Earthquake and was itself
damaged in the 1989 Loma Prieta Earthquake. The repair and retrofi of the building
included an isolation system with 530 lead–rubber bearings. The project involved a great
deal of internal restoration and redecoration and was very expensive, but the isolation
system and its installation accounted for only a small portion of the cost.

Other major base isolation retrofi projects using natural rubber bearings are the City
of Berkeley administration building called the Martin Luther King Jr Civic Center and
the Hearst Memorial Mining Building on the University of California, Berkeley campus
(see Figures 1.11 and 1.12).

The use of isolation for earthquake-resistant design has been very actively pursued in
Japan, from the completion of the firs large base-isolated building in 1986. Up to the late
1990s, all base-isolation projects in Japan had to be approved by a standing committee of
the Ministry of Construction. As of June 30, 1998, 550 base-isolated buildings had been
approved by the Ministry of Construction, but nowadays this approval is no longer nec-
essary, and it is quite difficul to keep account of the number of base-isolated buildings.
Many of the completed buildings have experienced earthquakes, and, in some cases,
their response has been compared with adjacent conventionally designed structures. In
every case where such a comparison has been made, the response of the isolated building
has been highly favorable, particularly for ground motions with high levels of acceler-
ation. The system most commonly used in the past has been undamped natural rubber
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Figure 1.11 Hearst Memorial Mining Building on the University of California, Berkeley
campus. Courtesy of Ian D. Aiken. SIE, Inc.

bearings with additional mechanical dampers using steel, lead or friction. However,
there has been an increasing use of high-damping natural rubber isolators. There are
now many large buildings that use high-damping natural rubber bearings. An example
is the computer center for Tohoku Electric Power Co. in Sendai, Miyako Province.

The building houses the computers for the billing and production records of the
electric power utility. It is a six-story, 10 000 m2 (108 000 ft2) structure and is one of the

Figure 1.12 Bearings for Hearst Memorial Mining Building on the University of California,
Berkeley campus. Courtesy of James M. Kelly. University of California, Berkeley
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larger base-isolated buildings in Japan. To accommodate a large number of mainframe
computers and hard disk data storage equipment, the building was designed with large
internal clear spans to facilitate location of this equipment. As a result of its height,
the large column spacing, and the type of equipment in the building, the column loads
are very large. Bridgestone provided a total of 40 bearings of three different sizes – 90 cm
(35 in), 100 cm (39 in), and 120 cm (46 in) in diameter – to isolate the building. The
vertical loads range from 400 tons (880 kips) to 800 tons (1760 kips). Construction of this
building began in March 1989 and was completed in March 1990. The isolation system
proved simple to install. All of the bearings were placed within three days and their
base plates grouted after a further six days. The total construction cost, not including
the internal equipment, was $20 million; the cost of the isolators was $1 million. This
building represents a significan example of buildings housing expensive and critical
equipment, and many more such structures were built in Japan in the following years.

One of the largest base-isolated buildings in the world is the West Japan Postal Com-
puter Center, which is located in Sanda, Kobe Prefecture. This six-story, 47 000 m2

(500 000 ft2) structure is supported on 120 rubber isolators with a number of additional
steel and lead dampers. The building, which has an isolated period of 3.9 s, is located
approximately 30 km (19 miles) from the epicenter of the 1995 Hyogo-Ken Nanbu (Kobe)
earthquake and experienced severe ground motion in that earthquake. The peak ground
acceleration under the isolators was 400 cm/s2 (0.41g) and was reduced by the isolation
system to 127 cm/s2 (0.13g) at the sixth floo . The estimate of the displacement of the iso-
lators is around 12 cm (4.8 in). There was no damage to the isolated building; however,
a fixed-base building adjacent to the computer center experienced some damage.

The use of isolation in Japan continues to increase, especially in the aftermath of
the Kobe earthquake. As a result of the superior performance of the West Japan Postal
Computer Center, there has been a rapid increase in the number of applications of base
isolation, including many apartments and condominiums. In recent years the number
of base-isolated buildings in Japan built each year has been around 100, and the total
number is probably around 1500 (Kamada and Fujita 2007). This does not include single
family homes of which there are around 3000, but not all of these use rubber bearings,
although rubber bearings play an auxiliary role in many. The latest concept to be applied
in Japan is the idea of isolated ground. In Sagamihara City near Tokyo an artificia ground,
in fact a large concrete slab, with 21 separate buildings of 6–14 stories has been built
on 150 isolation devices which include many very large rubber bearings (Terashima
and Miyazaki 2001). With this approach any concerns for overturning and unacceptably
large displacements are eliminated. It seems to be a very promising method of extending
this technology to large complexes of high-rise condominium buildings.

The emphasis in most base isolation applications up to this time has been on large
structures with sensitive or expensive contents, but there is increasing interest in apply-
ing this technology to public housing, schools, and hospitals in developing countries
where the replacement cost due to earthquake damage could be a significan part of
the country’s Gross National Product (GNP). Several projects are under way for such
applications. The challenge in such applications is to develop low-cost isolation systems
that can be used in conjunction with local construction methods, such as masonry block
and lightly reinforced concrete frames. The United Nations Industrial Development
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Organization (UNIDO) partially finance a joint effort between the Malaysian Rubber
Producers’ Research Association (MRPRA, now the Tun Abdul Razak Research Centre)
of the United Kingdom and the Earthquake Engineering Research Center (EERC) of the
University of California at Berkeley to research and promote the use of rubber bearings
for base-isolated buildings in developing countries.

To date, a number of base-isolated demonstration projects have been completed. In
most cases an identical structure of fixed-bas construction was built adjacent to the
isolated building to compare their behavior during earthquakes. There are demonstra-
tion projects in Reggio Calabria, Italy; Santiago, Chile; Guangdong Province, China; and
Pelabuhan Ratu, Indonesia.

One of the demonstration projects completed under this program is a base-isolated
apartment building in the coastal city of Shantou, Guangdong Province, an earthquake-
prone area of southern China. Completed in 1994, this building is the firs rubber
base-isolated building in China. This demonstration project involved the construction
of two eight-story housing blocks. Two identical and adjacent buildings were built; one
building is of conventional fixed-bas construction, and the other is base-isolated with
high-damping natural rubber isolators. The design, testing, and manufacture of the
isolators was funded by the MRPRA from a grant provided by the UNIDO. The demon-
stration project was a joint effort by the MRPRA, the EERC, and Nanyang University,
Singapore. Details of this project can be found in Taniwangsa and Kelly (1996).

As part of the UNIDO support, several rubber technologists from a rubber
company in Shantou went to the MRPRA laboratory and were trained in the manu-
facture of rubber isolators. The city of Shantou provided a site, and a factory producing
rubber isolators was established in this city. This company has supplied isolators for
projects all over China, many of them large complexes of perhaps 30–40 identical eight-
story multi-family housing blocks. It also supplied isolators for buildings in Japan and
in Russia.

In 1994 construction of a base-isolated four-story reinforced concrete building in Java,
Indonesia, was completed (Figure 1.13). The construction of this demonstration building
was part of the same UNIDO-sponsored program to introduce base isolation technology
to developing countries. In order for this new technology to be readily adopted by
building officials it was essential that the design and construction of the superstructure
of the isolated building did not deviate substantially from common building practice
and building codes used for fixed-bas buildings.

The demonstration building in Indonesia is located in the southern part of West
Java, about 1 km (0.6 miles) southwest of Pelabuhan Ratu. The building is a four-
story moment-resisting reinforced concrete structure, accommodating eight low-cost
apartment units. The building is 7.2 × 18.0 m (24 × 59 ft) in plan, and the height to
the roof above the isolators is 12.8 m (42 ft). The walls that enclose each apartment
unit are made out of unreinforced masonry with special seismic gaps fille with soft
mortar. A common building practice in Indonesia, this type of seismic gap separates
the walls from the main structure. This building is supported by 16 high-damping
natural rubber bearings. The isolation bearings are located at the ground level and are
connected to the superstructure using an innovative recessed end-plate connection, as
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Figure 1.13 Demonstration building in Pelabuhan Ratu, West Java, Indonesia. Courtesy
of James M. Kelly. University of California, Berkeley

opposed to the more usual bolted connection. This use of a recessed end-plate connection
proved to be cost-effective and very easy to install. The bearings were designed and
manufactured by the MRPRA in the United Kingdom. To achieve overall economy of
fabrication, installation, and maintenance of the isolation system, two different high-
damping natural rubber compounds were used, and a single bearing size was selected
so that only one mold was necessary for the fabrication process. The dynamic properties
of the bearings were confirme by full-size bearing tests. Details of this project can be
found in Taniwangsa and Kelly (1996).

Nuclear power plants are another example of a type of structure for which seismic
isolation can be extremely beneficial Nuclear structures are generally very stiff and
heavy, thus the benefit of a large-period shift can be obtained easily without resorting
to long-period isolation systems. Also, as will be shown later, it is much easier to design
stable isolators for heavier loads than light loads. Because the response of a base-isolated
structure is dominated by the lowest mode, i.e., the structure moves in an approximately
rigid-body manner, the stress analysis of the structure is greatly simplified A substantial
level of design effort in nuclear facilities is devoted to the dynamic analysis of equipment
and piping systems. The conventional design involves computing floo spectra for each
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level, and, in some cases, multiple input spectra when piping systems or equipment
items are attached at more than one level, and then broadening these spectra to account
for uncertainties in the analysis.

In an isolated structure, however, because the dominant mode is a rigid-body mode
with all the deformation concentrated at the isolation level, all parts of the building
move in the same way at the low isolation frequency. The response uncertainties are
reduced, multiple input spectra are not needed, and the peaks in all the floo spectra
are at the low frequency of the isolation system, which is generally much lower than
equipment or piping frequencies (Yang et al. 2010).

Thus using an isolation system allows a high degree of standardization, with equip-
ment qualificatio processes simplifie through reduced seismic levels. A further benefi
is that if the regulatory environment changes during the life of the plant, mandating an
upgrade of the seismic input, the response of the equipment may not be greatly affected.
If there is more than a negligible increase in the design forces at the isolation frequency,
it is a relatively simple matter to reduce the overall stiffness of the isolation system and
maintain the original equipment standards.

Because nuclear plants are a natural application of base isolation technology, it is no
surprise that one of the earliest applications of the technology was a nuclear facility.
Completed in 1980, the Koeberg Power Plant in South Africa was both the firs base-
isolated nuclear power plant and one of the firs base-isolated buildings (Renault et al.
1979; Plichon et al. 1980). The power plant, designed by Électricité de France and built
by Spie Batignolles, has two 900 MWe standardized units, which had been qualifie for
seismic inputs up to 0.2g. The nuclear island is constructed on 1829 aseismic bearings
on concrete pedestals. Standard bridge bearings were used, consisting of multilayer
neoprene bearings topped by bronze slip plates which slide on stainless steel plates
attached to the underside of the upper base mat. These bearings were designed in the
early 1970s when the technology of rubber isolators was such that the maximum lateral
displacements were quite small, of the order of 5 cm (2 in). If the bearings reach this
displacement, the sliding plates are expected to slip and provide further displacement.
Because of subsequent developments in isolator design and manufacturing, it is unlikely
that this design will be used again; in fact, a subsequent isolated nuclear power plant
building by Électricité de France at Cruas uses only rubber pads.

The Cruas Nuclear Power Plant (Postollec 1982), shown in Figure 1.14, comprised
four 900 MWe PWR units supported on 3600 neoprene isolators, was constructed on an
isolated nuclear island. The designers decided to isolate Cruas because the seismicity of
the site exceeded that for which all previous examples of this standardized plant had
been designed. The buildings and equipment of the standardized plant were designed
for the basic EDF spectrum anchored at 0.2g, whereas at Cruas the required spectrum
was 0.3g. In order to utilize the standardized plant design, the use of an isolation system
was necessary.

Another French nuclear application of isolation consists of three large, spent-fuel
storage tanks at a reprocessing plant at La Hague, France, built by COGEMA (Bouchon
1988). The three tanks are on a single reinforced concrete base mat, 1.65 m (5.4 ft) thick,
supported on rubber pads on pedestals. The use of the isolators produced simplification
in the design process as compared with conventional construction.
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Figure 1.14 The Cruas-Meysse nuclear power plant. Courtesy of James M. Kelly. University
of California, Berkeley

Other countries besides France were also interested in applying isolation technol-
ogy to their nuclear facilities. During 1987–1993, the Japanese Ministry of International
Trade and Industry (MITI) funded a large program of seismic isolation research for
nuclear applications. Directed by the Central Research Institute of Electric Power
Industry (CRIEPI) and involving the CRIEPI research laboratory at Abiko, numerous
construction companies, plant manufacturers, and rubber companies, this program cov-
ered all aspects of seismic isolation and focused primarily on the application of seismic
isolation to liquid-metal fast breeder reactors (FBR). The program was extremely com-
prehensive, and the results are available in a great many reports, mainly in Japanese. A
number of these reports have been translated into English, generally appearing in the
proceedings of SMiRT and Post-SMiRT Symposia.

In the United Kingdom, the use of isolation for a nuclear facility specificall for seismic
protection is limited to a pipe bridge at a British Nuclear Fuels reprocessing facility
in the north of England. Although a gas-cooled reactor with a prestressed concrete
containment built on rubber pads, the primary goal of this application was to control
stresses due to shrinkage and thermal effects. The Central Electricity Generating Board
(CEGB) sponsored a program of isolation studies in the late 1980s intending to develop
an isolation system for a standardized plant design. The proposed system used both
natural rubber bearings and viscous dampers. The natural rubber bearings were to
be made of a compound which was exactly linear in its shear response and without
damping; the viscous dampers (provided by GERB of Germany) were intended to be
entirely linear in velocity, thus producing a system which exactly matched the linear
mechanical model used in the dynamic analysis of the plant.
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The material to be covered in this book focuses on the mechanics of rubber bearings
used in isolation systems. The analysis will be mainly linear and will emphasize the
simplicity of these systems. Many of the results are new and are needed for a proper
understanding of these bearings and for the design and analysis of vibration isolation
or seismic isolation systems. It is hoped that the advantages afforded by adopting these
natural rubber systems – their cost effectiveness, simplicity, and reliability – will become
apparent to designers and their use will continue to expand.
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2
Behavior of Multilayer
Rubber Bearings under
Compression

2.1 Introduction

The vertical frequency of an isolation system, often an important design criterion in a
seismic isolation project, is the most important design quantity for the vibration isolation
of a piece of equipment or a structure. This vertical frequency is controlled by the
vertical stiffness of the bearings that comprise the system. In order to predict it, the
designer need only compute the vertical stiffness of the bearings under a specifie dead
load, and for this a linear analysis is adequate. The initial response of a bearing under
vertical load is very nonlinear and depends on several factors. Normally, bearings have
a substantial run-in before the full vertical stiffness is developed. This run-in, which is
strongly influence by the alignment of the reinforcing shims and other aspects of the
workmanship in the molding process, cannot be predicted by analysis, but is generally
of little importance in predicting the vertical response of a bearing.

Another important bearing property that must be analyzed for design is the buckling
behavior of the isolator. In order to conduct this analysis, the response of the compressed
bearing to bending moment is necessary. Referred to as the bending stiffness, this can be
ascertained by an extension of the same analysis that is done to determine the vertical
stiffness. The bending stiffness of rubber pads is examined in the following chapter.

2.2 Pure Compression of Bearing Pads with Incompressible Rubber

The vertical stiffness of a rubber bearing is given by the formula

KV = Ec A
tr

(2.1)

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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20 Behavior of Multilayer Rubber Bearings under Compression

whereA is the loaded area of the bearing, tr is the total thickness of rubber in the bearing
(i.e., the sum of the thicknesses of the individual layers), and Ec is the instantaneous
compression modulus of the rubber-steel composite under the specifie level of vertical
load. The value of Ec, which is computed for a single rubber layer, is controlled by the
shape factor S, define as

S = loaded area
force-free area

(2.2)

which is a dimensionless measure of the aspect ratio of the single layer of the rubber.
For example, for an infinit strip of width 2b and thickness t,

S = b
t

(2.3)

for a circular pad of radius R and thickness t,

S = R
2t

(2.4)

for a rectangular pad of side dimensions 2b and l and thickness t,

S = bl
(l + 2b) t

(2.5)

and for an annular pad of inner radius a, outer radius b, and thickness t,

S = b − a
2t

(2.6)

In order to predict the compression stiffness and the bending stiffness, a linear elastic
theory is used. The firs analysis of the compression stiffness was done using an energy
approach by Rocard (1937), and further developments were made by Gent and Lindley
(1959b) and Gent and Meinecke (1970). The theory given here is a version of these
analyses and is applicable to bearings with shape factors greater than about five

The analysis for the compression and bending stiffnesses is an approximate one based
on two sets of assumptions, the firs relating to the kinematics of the deformation and
the second to the stress state. For direct compression, the kinematic assumptions are
as follows:

(i) points on a vertical line before deformation lie on a parabola after loading;
(ii) horizontal planes remain horizontal.

Consider an arbitrarily shaped pad of thickness t and locate, as shown in Figure 2.1(a),
a rectangular Cartesian coordinate system (x, y, z) in the middle surface of the pad. As
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Figure 2.1 (a) Cartesian coordinate system on an arbitrarily shaped pad; (b) displace-
ment field of an arbitrarily shaped pad

shown in Figure 2.1(b) under the kinematic assumptions described above, the displace-
ments (u, v,w) in the coordinate directions are

u (x, y, z) = u0 (x, y)
(

1 − 4z2

t2

)

v (x, y, z) = v0 (x, y)
(

1 − 4z2

t2

)

w (x, y, z) = w (z)

(2.7)

This displacement fiel satisfie the constraint that the top and bottom surfaces of the
pad are bonded to rigid layers. The assumption of incompressibility produces a further
constraint on the three components of strain, εxx = ∂u/∂x, εyy = ∂v/∂y, εzz = ∂w/∂z, in
the form

εxx + εyy + εzz = 0 (2.8)

which leads to
(

∂u0

∂x
+ ∂v0

∂y

)(
1 − 4z2

t2

)
+ dw

dz
= 0 (2.9)

Rearranging this to read

∂u0

∂x
+ ∂v0

∂y
= − 1

1 − 4z2

t2

dw
dz

(2.10)
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22 Behavior of Multilayer Rubber Bearings under Compression

we see that we have a function of x and y on the left-hand side and a function of z on
the right, and since the equation is an identity that holds everywhere, both sides must
equal a constant k. To determine k, we solve

dw
dz

= −k
(

1 − 4z2

t2

)
(2.11)

to get

w(z) = −k
(
z− 4z3

3t2

)
+ c (2.12)

where c is a constant of integration. Using the boundary conditions w(t/2) = −�/2 and
w(−t/2) = �/2, we fin that c = 0 and k = 3�/(2t) = 3 εc/2, where the compression
strain εc is define by

εc = −w (t/2) − w (−t/2)
t

,
(
εc > 0 in compression

)
(2.13)

From this we obtain the distribution of the displacement w through the thickness of the
pad, if this is needed, and the integrated form of the compressibility constraint as

∂u0

∂x
+ ∂v0

∂y
= 3 εc

2
(2.14)

The stress state is assumed to be dominated by the internal pressure, p, such that the
normal stress components, σ xx, σ yy, σ zz, differ from –p only by terms of order (t2/l2)p
(where l is a characteristic length in the x−y plane), i.e.,

σxx ≈ σyy ≈ σzz ≈ −p
(

1 + O
(
t2

l2

))
(2.15)

This stress assumption gives the solution its name: pressure solution. The shear stress
components, τ xz and τ yz, which are generated by the constraints at the top and bottom
of the pad, are assumed to be of order (t/l)p; the in-plane shear stress, τ xy, is assumed to
be of order (t2/l2)p.

The complete equations of equilibrium for the stresses are

∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0

∂τxy

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
= 0

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
= 0

(2.16)
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and the firs two, if we identify σ xx and σ yy, with –p, reduce under these assumptions to

∂τxz

∂z
= ∂p

∂x
∂τyz

∂z
= ∂p

∂y

(2.17)

The third of the equations of equilibrium can be differentiated with respect to z, the order
of differentiation inverted, and Equation (2.17) substituted into the resulting equation,
to give

∂2 p
∂x2 + ∂2 p

∂y2 = ∇2 p = ∂2σzz

∂z2 (2.18)

Assuming that the material is linearly elastic, the shear stresses, τ xz and τ yz, are related
to the shear strains, γ xz and γ yz, by

τxz = Gγxz, τyz = Gγyz (2.19)

with G being the shear modulus of the rubber; since γxz = ∂u/∂z+ ∂w/∂x and
γyz = ∂v/∂z+ ∂w/∂y,

τxz = −8G
t2 zu0, τyz = −8G

t2 zv0 (2.20)

From the equilibrium equations, therefore,

∂p
∂x

= −8G
t2

u0,
∂p
∂y

= −8G
t2 v0 (2.21)

which, when inverted to give u0 and v0 and inserted into the incompressibility condi-
tion, give

t2

8G

(
∂2 p
∂x2 + ∂2 p

∂y2

)
= −3 εc

2
(2.22)

and this, in turn, reduces to

∂2 p
∂x2 + ∂2 p

∂y2 = ∇2 p = −12Gεc

t2 (2.23)

as the partial differential equation to be satisfie by p(x, y) over the area of the pad. The
boundary condition, p = 0, on the edge of the pad completes the system for p(x, y).



P1: TIX/XYZ P2: ABC
JWST069-02 JWST069-Kelly-Style2 July 15, 2011 14:23 Printer Name: Yet to Come
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To use this to determine Ec, we solve for p and integrate over the area of the pad A to
determine the resultant normal load, P. Ec is then given by

Ec = P
Aεc

(2.24)

The significanc of the third equation of equilibrium is now clear: with the substitution
of Equation (2.23), we have an equation for the distribution of σ zz through the thickness
of the pad in the form

∂2σzz

∂z2 = 12Gεc

t2
(2.25)

2.2.1 Infinit Strip Pad

For an infinit strip of width 2b (Figure 2.2), Equation (2.23) reduces to

∇2 p = d2 p
dx2 = −12Gεc

t2 (2.26)

which, with p(±b) = 0, gives

p = 6Gεc

t2

(
b2 − x2) (2.27)

In this case the load per unit length of the strip, P, is given by

P =
+b∫

−b
p dx = 8Gεcb3

t2
(2.28)

Figure 2.2 Coordinate system for an infinit strip pad of width 2b
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Because the shape factor, S, is b/t, and the area per unit length, A, is 2b,

Ec = P
Aεc

= 4GS2 (2.29)

2.2.2 Circular Pad

For a circular pad of radius, R (Figure 2.3), the equation for p becomes

∇2 p = d2 p
dr 2 + 1

r
dp
dr

= −12Gεc

t2 , r =
√
x2 + y2 (2.30)

The general solution of Equation (2.30) is

p = A ln r + B − 3Gεc

t2 r2 (2.31)

and because p is bounded at r = R, and p = 0 at r = R, the solution for the complete pad
becomes

p = 3Gεc

t2
(
R2 − r 2) (2.32)

and

P = 2π

R∫
0

p (r ) rdr = 3GεcπR4

2t2
(2.33)

Recalling that S = R/(2t) and A = πR2, we have

Ec = 6GS2 (2.34)

Figure 2.3 Coordinate system for a circular pad of radius R
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2.2.3 Rectangular Pad (with Transition to Square or Strip)

For a rectangular pad with width 2b and length l as shown in Figure 2.4, Equation (2.23)
can be solved using Fourier series. We let p(x, y) =∑∞

m=1 Pm(y) sin
(mπx

2b

)
with the co-

ordinate system as shown in Figure 2.4, which automatically satisfie the boundary
conditions at x = 0 and x = 2b. The Fourier coeff cients, Pm, satisfy

d2Pm
dy2 −

(mπ

2b

)2
Pm = −12Gεc

t2 am (2.35)

where

am =

⎧⎪⎨
⎪⎩

4
mπ

; m = 1, 3, 5 . . .

0; m = 2, 4, 6 . . .

(2.36)

Symmetry over −l/2 ≤ y ≤ + l/2 and the boundary condition Pm = 0 at y = ±l/2 give

Pm = 12Gεc

t2 am

(
2b
mπ

)2

⎛
⎜⎜⎝1 −

cosh
(mπy

2b

)

cosh
(
mπl
4b

)
⎞
⎟⎟⎠ (2.37)

and, therefore,

p (x, y) = 12Gεc

t2

∞∑
m=1

am

(
2b
mπ

)2

⎛
⎜⎜⎝1 −

cosh
(mπy

2b

)

cosh
(
mπl
4b

)
⎞
⎟⎟⎠ sin

(mπx
2b

)
(2.38)

Figure 2.4 Coordinate system for a rectangular pad with side lengths l and 2b
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We note that the series associated with the firs term in the parenthesis is the solution of

d2 p(x)
dx2 = −12Gεc

t2 (2.39)

on 0 ≤ x ≤ 2b and can be summed separately to give

p(x) = 12Gεc

t2
2b2
(
x
2b

− x2

4b2

)
(2.40)

giving the fina result

p(x, y) = 12Gεc

t2

⎡
⎢⎢⎣2b2

(
x

2b
− x2

4b2

)
−

∞∑
m= 1,3,5...

16b2

m3π3

cosh
(mπy

2b

)

cosh
(
mπl
4b

) sin
(mπx

2b

)
⎤
⎥⎥⎦ (2.41)

The corresponding result for Ec = P/(Aεc) is

Ec = G (2b)2

t2

⎛
⎝1 −

∞∑
m= 1,3,5...

192 (b/l)
m5π5 tanh

(
mπl
4b

)⎞⎠ (2.42)

The shape factor for a rectangular pad is given by S= bl/[(l+ 2b)t], and the compression
modulus can also be expressed in terms of the shape factor S and the aspect ratio of the
bearing ρ = 2b/l as

Ec = 384
π4 GS

2 (1 + ρ)2
∞∑

m= odd

1
m4

(
1 − 2ρ

mπ
tanh

(
mπ

2ρ

))
(2.43)

Figure 2.5 is a graph of the compression modulus as a Ec/(GS2) ratio. The graph shows
that for a square pad, Ec = 6.748GS2, while for an infinit strip, Ec = 4GS2, which is in
agreement with Equation (2.29).

2.2.4 Annular Pad

Consider an annular pad with inner radius a, outer radius b, and thickness t. The shape
factor in this case is

S = π
(
b2 − a2

)
2π (a + b) t

= b − a
2t

(2.44)
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Figure 2.5 Compression modulus for a rectangular bearing with side lengths l and 2b

The solution of Equation (2.30), with p(a) = 0 and p(b) = 0, is

p (r ) = 3Gεc

t2

((
b2 − a2

)
ln (r/a )

ln (b/a )
− (r2 − a2)

)
(2.45)

The total load, P, is given by

P = 2π

b∫
a

p (r ) rdr = 3Gεc

2t2
π (b2 − a2)

(
b2 + a2 − b2 − a2

ln (b/a )

)
(2.46)

from which we have

Ec = P
Aεc

= 3G
2t2

(
b2 + a2 − b2 − a2

ln (b/a )

)
(2.47)

Using the expression for S, we can write this in the form

Ec = 6GS2λ (2.48)

where

λ =
b2 + a2 − b2 − a2

ln (b/a )
(b − a )2 (2.49)
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Figure 2.6 Reduction of compression modulus for an annular pad

which, in terms of the ratio a/b, becomes

λ =
1 + (a/b)2 + 1 − (a/b)2

ln (a/b)
(1 − a/b)2 (2.50)

The solution for λ that is plotted versus the ratio a/b from 0 ≤ a/b ≤ 1 in Figure 2.6
shows that Ec drops very rapidly from the value of 6GS2, which corresponds to a circular
pad, to the value of 4GS2, which corresponds to an infinit strip pad.

If we let a = εb with ε � 1 and assume that the hole is small enough that its effect on
the compression modulus can be ignored, then we would assume that Ec = 6GS2, where
S is given by b/(2t), so that Equation (2.50) becomes

λ = Ec
6GS2 = 1 + ε2 + 1 − ε2

ln ε
(2.51)

Clearly as ε → 0, λ → 1, but for ε 	= 0 we have the unexpected result that the mod-
ulus drops rapidly with ε. If we denote λ = f (ε), the fact is that the derivative of f at
ε = 0 is negative infinit , and it is this that causes the sensitivity. For example if the hole
diameter is only 5% of the full diameter, the value of f (ε) is 0.67, implying a drop in the
modulus of one third for such a small hole. This shows that the presence of a small hole
cannot be ignored.

At the other extreme, when a/b → 1, by writing a/b = 1 − ε in Equation (2.50) and
letting ε → 0, we fin that λ → 2/3 and Ec → 4GS2, which is the result for the infinit
strip. In fact, the solution goes very rapidly to this value. Clearly for the case when
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(a) (b)

(c) (d)

Figure 2.7 Pressure distributions for various pad geometries: (a) infinit strip; (b) rectan-
gular; (c) circular; (d) annular

a/b > 0.10, the value of λ is almost two-thirds, indicating that the presence of even a
small hole has a large effect on Ec; therefore, in most cases for bearings with central
holes, the value of Ec should be taken as 4GS2 rather than 6GS2.

Figure 2.7 plots pressure distributions for the four pad geometries presented in
this chapter.

2.3 Shear Stresses Produced by Compression

The shear stresses (or shear strains) that develop under direct compression by the con-
straint of the rigid steel layers to which the rubber is bonded (Figure 2.8) are also very
important for design purposes. From Equation (2.20), we have

τxz = −8G
t2 zu0

τyz = −8G
t2 zv0

(2.52)

but from the equilibrium equation, Equation (2.17), and the assumptions that led to
Equation (2.23), we get

∂τxz

∂z
= −∂σxx

∂x
= ∂p

∂x
∂τyz

∂z
= −∂σyy

∂y
= ∂p

∂y

(2.53)
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Figure 2.8 Shear stresses produced by pure compression

Given p, these equations can be used to determine the shear stress or shear strain
distribution, particularly the maximum shear stress and shear strain.

For the infinit strip of width 2b, where

p = 6Gεc

t2

(
b2 − x2) (2.54)

we have

τxz = −12Gεc

t2 xz (2.55)

and the maximum value occurs at x = b, z = t/2, giving

τmax = 6Gεc
b
t

(2.56)

In terms of S, the maximum shear strain is given by

γmax = 6 Sεc = γc (2.57)

Thus, the compression strain causes a shear strain with a peak value 6S times greater,
and since S can be quite large for a thin pad, the multiplying factor will be correspond-
ingly large.

For a circular pad, we have

p = 3Gεc

t2

[
R2 − (x2 + y2)] (2.58)

and

τxz = −6Gεc

t2
xz, τyz = −6Gεc

t2 yz (2.59)
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The maximum shear stress occurs at the top and bottom edges of the periphery of the
pad and is

τmax = 3Gεc R
t

(2.60)

which is equivalent to

γc = 6 Sεc (2.61)

as before. These results can be used to establish a maximum strain criterion for the
rubber. For example, some bridge-bearing design codes denote the shear strain due to
shear deformation of the pad by γ s, which when added to the shear strain produced by
compression, γ c, is used to defin a maximum strain unit, such as, for example,

γs + γc ≤ 0.5εbr (2.62)

where εbr is the elongation to break of the rubber.
The maximum shear strain due to compression is not the only shear strain quantity

of interest to the designer. It is also useful to have an estimate of the average strain for
the following reason: because rubber is somewhat strain sensitive, G is often modifie
according to the strain level, particularly in highly fille rubbers. In compression, the
shear strain varies from positive to negative over the volume of the pad in such a way
that the simple average is zero; therefore, the appropriate average is the square root of
the integrated squared strains. We defin γave through the integral

γ 2
ave = 1

At

∫
Vol

(
γ 2
xz + γ 2

yz

)
dV (2.63)

On the other hand the total elastic stored energy, U, in the pad is given by

U = 1
2G

∫
A

∫
t

(
τ 2
xz + τ 2

yz

)
dzdA (2.64)

so that the average shear strain, γave, can be obtained from

U = 1
2
Gγ 2

aveAt (2.65)

But the total elastic stored energy is in turn equal to the external work P�/2, from which

U = 1
2
Gγ 2

ave = At = 1
2

(Ec Aεc) (εc t) (2.66)
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Therefore,

γ 2
ave = Ec

G
ε2
c (2.67)

For the strip, we have

γave = 2 Sεc (2.68)

and for the circular pad,

γave =
√

6 Sεc (2.69)

Although a certain degree of trial and error is needed, computations of this kind allow
the designer to estimate the appropriate value of G, which can then be used to estimate
the vertical stiffness. First, we must assume a value of G in order to calculate εc, and
from that calculate γave; we then modifyG and iterate as necessary. Because the modulus
is not very sensitive to strain above about 20%, few iterations are needed.

2.4 Pure Compression of Single Pads with Compressible Rubber

The theory for the compression of a rubber pad given in this section is based on two
assumptions: first the displacement pattern determined in Equation (2.7); second, the
normal stress components in all three directions can be approximated by the pressure,
p, in the material. Integration through the thickness of the pad of the equation of
incompressibility leads to an equation for p(x,y). To include the influenc of bulk
compressibility, we need only replace the equation of incompressibility constraint,
Equation (2.8), by

εxx + εyy + εzz = − p
K

(2.70)

where K is the bulk modulus. Integration through the thickness leads to

∇2 p − 12G
Kt2

p = −12Gεc

t2 (2.71)

that is solved, as before, with p = 0 on the edge of the pad.

2.4.1 Infinit Strip Pad

For an infinit strip, –b≤ x≤ b, of thickness t, the solution for p is of the form (Chalhoub
and Kelly 1991)

p = K εc

(
1 − cosh (λx)

cosh (λb)

)
(2.72)
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where λ2 = 12G/(Kt2). Integrating p over the area of the pad gives

P =
+b∫

−b
p(x) dx = 2K εcb

(
1 − 1

λb
tanh (λb)

)
(2.73)

and

Ec = K
(

1 − 1
λb

tanh (λb)
)

(2.74)

In terms of the shape factor, S, here taken as b/t, we have

λb =
√

12G
K

S (2.75)

and then Equation (2.74) can be expressed as

Ec = K

⎛
⎜⎜⎜⎜⎝1 −

tanh

(√
12G
K

S

)

√
12G
K

S

⎞
⎟⎟⎟⎟⎠ (2.76)

For small values of the parameter x, tanh x can be approximated by

tanh x = x − x3

3
+ 2x5

15
+ · · ·

Thus,

1 − 1
x

tanh x = x2

3
− 2x4

15

and from this, Ec can be approximated by

Ec = 4GS2

(
1 − 24GS2

5K

)
(2.77)

For example, for a fille rubber with G = 1.0 MPa (145 psi), K = 2000 MPa (289 855 psi),
and a shape factor of 10, the contribution provided by the second term in Equation (2.77)
is 24%.
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The recommended ad hoc modificatio (Lindley 1966) for the effect of bulk compress-
ibility is

1
Ec

= 1
E∞
c

+ 1
K

(2.78)

where E∞
c is the effective compression modulus assuming incompressibility. The ap-

proximation for small S can be inverted to give

1
Ec

= 1

4GS2

(
1 − 24GS2

5K

) (2.79)

which, in turn, can be approximated by

1
Ec

= 1

4GS2 + 6
5K

(2.80)

indicating that the ad hoc modificatio is not completely correct. For very large values of
S, where (12GS2/K)1/2 ≥ 1,

Ec = K

[
1 −

√
K

12GS2

]
(2.81)

showing that K is an upper bound to Ec.
The effect of the shape factor on the pressure distribution also confirm this result.

If we set λb � 1, and approximate cosh(λx) and cosh(λb) by Taylor’s series, clearly, the
previously noted parabolic distribution of pressure occurs; however, if λb � 1, we can
approximate cosh(λb) by eλb/2 and cosh(λx) by eλx/2, from which

p = K εc

(
1 − e−λ(b−x)

)
(2.82)

implying a constant distribution of pressure across the width of the strip (except on the
edges, where x = ±b, therefore, the pressure must go to zero).

When the pressure, p(x) of Equation (2.72), is normalized with the average pressure,
P/(2b), then

p̄ = p
P/ (2b)

=
1 − cosh (λx)

cosh (λb)

1 − tanh (λb)
λb

(2.83)

Figure 2.9 shows the normalized pressure distribution, p̄, due to pure compression for
different shape factors (S = 10, 50, 500) for a strip with G = 1.0 MPa (145 psi) and
K = 2000 MPa (289 855 psi).
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Figure 2.9 Normalized pressure distribution on an infinit strip pad under pure com-
pression

2.4.2 Circular Pad

Consider a circular pad with a large shape factor, an external radius, R, and thickness,
t. The pressure in the pad is axisymmetrical, i.e., p = p(r), where 0 ≤ r ≤ R, therefore,
Equation (2.71) becomes

d2 p
dr 2 + 1

r
dp
dr

− λ2 (p − K εc) = 0

λ2 = 12G
Kt2

(2.84)

with p = 0 at r = R.
The general solution of the homogeneous part of this modifie Bessel equation of

order 0, r2 p′′ + rp′ − λ2r2 p = 0, has the form p(r ) = C1I0(λr ) + C2K0(λr ), where I0 is the
modifie Bessel function of the firs kind of order 0, and K0 is the modifie Bessel function
of the second kind of order 0. The complete solution, together with the constraint that
p(0) is bounded, is

p (r ) = K εc

(
1 − I0 (λr )

I0 (λR)

)
(2.85)

Integrating p over the area of the pad gives

P = K εcπR2
(

1 − 2
λR

I1 (λR)
I0 (λR)

)
(2.86)

where I1 is the modifie Bessel function of the firs kind of order 1.
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The resulting expression for the compression modulus is

Ec = K
(

1 − 2
λR

I1 (λR)
I0 (λR)

)
(2.87)

where

λR =
√

12GR2

Kt2 =
√

48G
K

S (2.88)

and the shape factor, S, is R/(2t). In terms of S, Equation (2.87) can be expressed as

Ec = K

⎛
⎜⎜⎜⎜⎝1 − 2√

48G
K

S

I1

(√
48G
K

S

)

I0

(√
48G
K

S

)

⎞
⎟⎟⎟⎟⎠ (2.89)

Figure 2.10 shows graphs of Ec/(GS2) as a function of S for different K/G values.
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Figure 2.10 Effect of bulk compressibility on Ec for circular pads
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When the argument of the modifie Bessel functions is small, the functions may be
approximated by

I1(x) = x
2

(
1 + x2

8
+ x4

192
+ · · ·

)

I0(x) =
(

1 + x2

4
+ x4

64
+ · · ·

)

from which

2
x

I1(x)
I0(x)

= 1 − x2

8
+ x4

48

Thus, for small values of S, the compression modulus may be estimated by

Ec = 6GS2

(
1 − 8GS2

K

)
(2.90)

The firs term is the standard result from the incompressibility analysis given in Equa-
tion (2.34), and the second term is the correction for compressibility at moderately large
shape factors. For typical values ofG and K for fille rubbers, e.g.,G= 1.0 MPa (145 psi),
K= 2000 MPa (289 855 psi), and S= 10, the second term is of order 40%. We also note that

1
Ec

= 1

6GS2

(
1 − 8GS2

K

) = 1

6GS2

(
1 + 8GS2

K

)
= 1

6GS2 + 4
3

1
K

(2.91)

demonstrating again that the ad hoc modificatio to include compressibility is not quite
correct. For a more exact result, K must be replaced by 3K /4 in the empirical formula.

For very large values of the argument, the modifie Bessel functions can be approxi-
mated by the asymptotic expansions

I1(x) = ex√
2πx

(
1 − 3

8x
− 15

128
1
x2 − · · ·

)

I0(x) = ex√
2πx

(
1 + 1

8x
+ 9

128
1
x2 + · · ·

)

from which

2
x

I1(x)
I0(x)

= 2
x

(
1 − 1

2x
− 1

8x2

)
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giving

Ec = K

⎛
⎜⎜⎝1 − 1√

12G
K

S

+ 1
48G
K

S2

⎞
⎟⎟⎠ (2.92)

This equation is useful when values for the modifie Bessel functions at large arguments
are not available, and it can be used with negligible error when the shape factor is greater
than 25.

There are two points that should be mentioned about these results. The firs is that the
effect of compressibility on the compression modulus happens at such a low value of
the shape factor. It is clear that bulk compressibility must be included for pads with
shape factors a low as 10. In current practice, bearings tend to have shape factors in the
range 30–40, where the compressibility will play a very large role. The other point is that
the ad hoc approximation is not very accurate and that the designer should use the Bessel
function solution, which is not the usual practice. There is the further complication that
we need a good estimate of the value of the bulk modulus, K, when designing these
high-shape-factor bearings, but this quantity is very difficul to measure, and estimates
in the literature vary widely, for example from 1000 to 3500 MPa. To provide accurate
estimates of the vertical frequency or the buckling load, covered in Chapters 5 and 6, a
better estimate is needed, although it is not yet available.

2.4.3 Rectangular Pad

To compute the effective stiffness, Ec, for a rectangular pad (as shown in Figure 2.4) with
a large shape factor, we f rst solve Equation (2.71) by using the same rapidly convergent
single series solution, p(x, y) =∑∞

m=1 Pm(y) sin
(mπx

2b

)
, used to develop the earlier result

for incompressible rubber. The Fourier coefficients Pm(y), must satisfy

d2Pm
dy2 − β2

mPm = −12Gεc

t2 am (2.93)

where am = 4/(mπ ) for odd m and zero otherwise, and β2
m = [mπ/(2b)]2 + 12G/(Kt2).

After solving for Pm, the pressure distribution takes the fina form

p = (x, y) = 12Gεc

t2

∞∑
m=1

am
β2
m

⎛
⎜⎜⎝1 − cosh (βmy)

cosh
(

βml
2

)
⎞
⎟⎟⎠ sin

(mπx
2b

)
(2.94)
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Integrating over the domain,

P =
l/2∫

−l/2

2b∫
0

p (x, y) dx dy = 12Gεc

t2

∞∑
m=odd

ba2
m

β2
m

(
l − 2

βm
tanh

(
βml
2

))
(2.95)

and using S = lb/[t(l + 2b)] and Ec = P/(Aεc), we obtain

Ec = 384
π4 GS

2 (1 + ρ)2
∞∑

m=odd

1
m4ξ 2

m

(
1 − 2ρ

mπξm
tanh

(
mπξm

2ρ

))
(2.96)

where ρ = 2b/l is the aspect ratio of the pad, and

ξm =
√

1 + 48GS2 (1 + ρ)2

K (mπ)2 (2.97)

Figure 2.11 shows Ec/(GS2) as a function of the shape factor, S, for different K/G values.
The effect of bulk compressibility is pronounced, even for bearings with moderate
shape factors. For example, for a rectangular pad with aspect ratio ρ = 3, shape
factor S = 20, shear modulus G = 1.0 MPa, and bulk modulus K = 2000 MPa,
(i.e., K/G = 2000), Equation (2.43) which ignores bulk-compressibility effects gives
Ec/(GS2) = 5.62, while Equation (2.96) which takes bulk-compressibility effects into
account gives only Ec/(GS2) = 2.32.

2.4.4 Annular Pad

Consider a annular pad of thickness t, inner radius a, and outer radius b. The boundary
value problem for pressure p is

d2 p
dr 2 + 1

r
dp
dr

− λ2 (p − K εc) = 0

p (a ) = 0, p (b) = 0
(2.98)

where λ2 = 12G/(Kt2). The problem was studied by Chalhoub and Kelly (1987) and
Constantinou et al. (1992). The solution of the homogeneous part of the modifie Bessel
equation, r2p′′ + rp′ − λ2r2p = 0, has the form p(r) = C1I0(λr) + C2K0(λr), where I0 is
the modifie Bessel function of the firs kind of order 0, and K0 is the modifie Bessel
function of the second kind of order 0. This, together with the boundary conditions
p(a) = 0 and p(b) = 0, gives the complete solution to Equation (2.98) as

p (r ) = K εc (1 + C1I0 (λr ) + C2K0 (λr )) (2.99)
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Figure 2.11 Effect of bulk compressibility on Ec for rectangular pads with different length-
to-width ratios, ρ

where

C1 = K0 (λb) − K0 (λa )
I0 (λb) K0 (λa ) − I0 (λa ) K0 (λb)

C2 = − I0 (λb) − I0 (λa )
I0 (λb) K0 (λa ) − I0 (λa ) K0 (λb)

(2.100)

Integrating p over the area of the pad gives the total load P

P =
2π∫

0

b∫
a

p(r )rdrdθ = 2πK εc

[
b2 − a 2

2
+ C1

λ
(bI1(λb) − a I1(λa )) − C2

λ
(bK1(λb) − aK1(λa ))

]

(2.101)
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and since Ec = P/(Aεc),

Ec = K
[

1 + 2C1

λ2 (b2 − a2)
(λbI1 (λb) − λa I1 (λa )) − 2C2

λ2 (b2 − a2)
(λbK1 (λb) − λaK1 (λa ))

]

(2.102)

where I1 is the modifie Bessel function of firs kind of order 1, and K1 is the modifie
Bessel function of the second kind of order 1. Using S= (b – a)/(2t) and η = a/b (the ratio
of the inner diameter to the outer diameter), we can express the compression modulus as

Ec = K
[
1 + C ′

1 (I1 (ϑ) − ηI1 (ηϑ)) + C ′
2 (K1 (ϑ) − ηK1 (ηϑ))

]
(2.103)

where

ϑ =
√

48G
K

S
1 − η

(2.104)

and

C ′
1 = 1√

12G
K

(1 + η) S

K0 (ϑ) − K0 (ηϑ)
I0 (v) K0 (ηϑ) − I0 (ηϑ) K0(ϑ)

C ′
2 = 1√

12G
K

(1 + η) S

I0 (ϑ) − I0 (ηϑ)
I0 (υ) K0 (ηϑ) −I0 (ηϑ) K0(ϑ)

(2.105)

Figure 2.12 shows graphs of the normalized compression modulus of an annular pad as
a function of the shape factor, S, for different η and K/G values. The f gure shows that
for realistic values of K/G (e.g., K/G = 2000), neglecting bulk-compressibility effects
may grossly overestimate the compression modulus even for moderate shape factors.

We now seek to investigate the effect of a small hole on a circular pad. We firs
normalize Ec with respect to 6GS2, the value for a complete pad based on the radius R
(here = b), when incompressibility is assumed and note that (λR)2 = (48GS2)/K, so that

K

6GS2 = 8

(λR)2 (2.106)

We now consider small η (i.e., <0.1) and denote it as ε. Using y= Ec/(6GS2) and x= λR,
Equation (2.102) can be approximated by

y = 8
x2

(
1 − 2

x
(K0(x) − K0 (εx)) (I1(x) − εI1(εx)) + (K1(x) − εK1 (εx)) (I0(x) − I0 (εx))

I0 (εx) K0(x) − I0(x)K0 (εx)

)

(2.107)

We now consider the particular case with G = 1.0 MPa, K = 2000 MPa and S = 20, for
which x = 3.098. The value of the normalized modulus y when ε= 0 is 0.3936, and the
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Figure 2.12 Effect of bulk compressibility on Ec for annular pads with different inner-to-
outer radius ratios, η

curve of y as a function of ε over the range 0 < ε ≤ 0.10 is shown in Figure 2.13. As with
the analysis conducted for incompressible material, the solution exhibits a singularity
at ε = 0, where the tangent is negative infinity however, the value of the compression
modulus does not drop as dramatically as it does for the incompressible material. For
example, for ε = 0.1, y = 0.320 (while the exact solution, Equation (2.103), gives 0.351
for η = 0.1). For comparison, Ec/(6GS2) for the incompressible material drops from 1 for
η = 0 to 0.716 for η = 0.1. Therefore, the effect that a small hole in a circular bearing has on
the compression modulus decreases as the compressibility increases. This is evident in
Figure 2.13 which shows both the solution for compressible and incompressible material.

This chapter has provided results for the behavior of a wide variety of bearings under
pure compression which will form the basis of further analysis in later chapters. One
of the most interesting aspects of the analyses in this chapter has been the unexpected
result that bulk compressibility plays an important role, even at shape factors as low
as 10. It means that for the bearings used in seismic isolation systems which tend
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Figure 2.13 Effect of small hole on the compression modulus of a circular pad
(G = 1.0 MPa, K = 2000 MPa, S = 20)

to have shape factors in the range of 30–40, compressibility of the rubber cannot be
ignored. The bulk modulus of elastomeric materials is an extremely difficul property to
measure. Elastomers, such as natural rubber, have a bulk modulus that is several orders
of magnitude larger than their shear modulus so that the material will deform only
in shear—if at all possible. In most other types of applications, the deformation can be
assumed to be a constant volume one, and the material be assumed to be incompressible,
but for seismic isolators the design formula based on the incompressible model can
seriously over-predict the vertical stiffness and the buckling load of a bearing.

It is accordingly essential to have an accurate estimate of the bulk modulus. A quick
review of the data available on this property for natural rubber in particular reveals
that an accurate estimate is difficul to find For example, the widely used handbook
EngineeringDesignwithNaturalRubber (Lindley 1978) published by the Malaysian Rubber
Producers Research Association (now the Tun Abdul Razac Research Center) provides
a table of bulk modulus values based on the International Rubber Hardness Degrees
(IRHD) that range from 1000 to 1330 MPa as the hardness varies from 30 to 75 IRHD.
On the other hand the reference Engineering Use of Natural Rubber (Fuller et al. 1988)
published by Oxford University Press gives values in the range from 2000 to 3500 MPa.

The analysis given in this chapter suggests that a possible way to determine the bulk
modulus even if in a somewhat indirect way is to use the measured vertical stiffness
of isolators to estimate its value. Seismic isolators are usually made with high damp-
ing rubber compounds that are nonlinear and have large hysteresis which can make
interpretation of the measurements difficult but in some projects the compounds used
(LNR) have almost no hysteresis and are very linear in shear up to very large shear
strains. For these, the results of horizontal shear tests can be used to infer the shear mod-
ulus, and the results of vertical stiffness tests can be used to obtain an estimate of the
bulk modulus.
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3
Behavior of Multilayer
Rubber Bearings
under Bending

3.1 Bending Stiffness of Single Pad with Incompressible Rubber

An important bearing property that must be analyzed for design is the buckling behavior
of the isolator. For this analysis, the response of the compressed bearing to bending
moment is necessary. Referred to as the bending stiffness, this can be ascertained by an
extension of the same analysis that is done to determine the vertical stiffness. The bending
stiffness plays an important role in the estimate of the buckling load in a bearing and
also is needed to determine the influenc of the vertical load on the horizontal (shear)
stiffness of a bearing. In addition, when the isolator is subject to shear deformation, a
bending moment is generated by the unbalanced shear forces at the top and bottom of the
bearing. These bending moments cause shear strains in the rubber that are important for
design, and they also affect the stresses in the steel shims. In contrast to the case of pure
compression, these stresses can be compressive and could produce buckling of the shims.

The bending stiffness of a single pad is computed using an approach similar to that for
compression stiffness; however, the displaced configuratio is obtained in two stages.
First visualize the deformation that would occur if the bending conformed to elementary
beam theory (shown dotted in Figure 3.1). Because this cannot satisfy the incompress-
ibility constraint, a further pure shear deformation is superimposed. The displacement
fiel is given by

u(x, y, z) = u0(x, y)
(

1 − 4z2

t2

)
− αz2

2t

v(x, y, z) = v0(x, y)
(

1 − 4z2

t2

)

w(x, y, z) = αzx
t

(3.1)

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

45



P1: TIX/XYZ P2: ABC
JWST069-03 JWST069-Kelly-Style2 July 15, 2011 16:32 Printer Name: Yet to Come

46 Behavior of Multilayer Rubber Bearings under Bending

α

α

Figure 3.1 Rubber pad between rigid plates in pure bending

Here, α is the angle between the rigid plates in the deformed configuration and the
bending is about the y-axis. The radius of curvature, �, generated by the deformation is
related to α by

1
�

= α

t
(3.2)

When integrated through the thickness, the incompressibility condition

εxx + εyy + εzz = 0 (3.3)

gives

∂u0

∂x
+ ∂v0

∂y
+ 3α

2t
x = 0 (3.4)

The shear stresses, τxz = Gγxz = G(∂u/∂z+ ∂w/∂x) and τyz = Gγyz = G(∂v/∂z +
∂w/∂y), are given by

τxz = −8G
t2 zu0

τyz = −8G
t2 zv0

(3.5)

and substitution into the equations of equilibrium,

∂σxx

∂x
+ ∂τxz

∂z
= 0

∂σyy

∂y
+ ∂τyz

∂z
= 0

(3.6)



P1: TIX/XYZ P2: ABC
JWST069-03 JWST069-Kelly-Style2 July 15, 2011 16:32 Printer Name: Yet to Come

Bending Stiffness of Single Pad with Incompressible Rubber 47

gives

u0 = − t2

8G
∂p
∂x

, v0 = − t2

8G
∂p
∂y

(3.7)

which, with the incompressibility condition, leads to

∂2 p
∂x2 + ∂2 p

∂y2 = ∇2 p = 12Gα

t3 x (3.8)

with p = 0 on the edges.
The solution technique is to solve Equation (3.8) for p and to compute the bending

moment M from

M = −
∫
A

p(x, y)xdA (3.9)

Using the analogy with beam theory, where

M = EI
1
�

(3.10)

we compute the bending stiffness

(EI)eff = M
α/t

(3.11)

3.1.1 Infinit Strip Pad

For the example of the infinit strip of width 2b, shown in Figure 2.2, we have

d2 p
dx2 = 12Gα

t3 x (3.12)

or

p = −2Gα

t3 (b2 − x2)x (3.13)

The resultant moment M is given by

M = −
+b∫

−b
pxdx = 8Gαb5

15t3 (3.14)
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If we compare this with the usual bending equation for a beam, namely, M = EI(1/�),
where I = 2b3/3 is the moment of inertia of a beam cross-section with the shape of the
pad, we can obtain an effective bending stiffness (EI)eff ,

(EI)eff = M� = M
α/t

= 8Gb5

15t2 = 4
5
GS2

(
2
3
b3

)
= 4

5
GIS2 (3.15)

As seen in Chapter 2, Ec = 4GS2, then (EI)eff = EcI/5. Thus, the effective I for the strip
is I/5. This reduction is caused by the pressure distribution that varies cubically across
the width of the strip, whereas in a beam the bending stress distribution varies linearly
through the thickness.

3.1.2 Circular Pad

For a circular pad of radius R (see Figure 2.3), the equation to be solved, using polar
coordinates r and θ , is

∂2 p
∂r2 + 1

r
∂p
∂r

+ 1
r2

∂2 p
∂θ 2 = 12Gα

t3 r cos θ (3.16)

The solution is

p(r, θ ) =
(
Ar + B

1
r

+ Cr3
)

cos θ (3.17)

where

C = 3Gα

2t3

For the complete circle, 0 ≤ r≤ R, B has to be zero for p to be bounded at r= 0, and using
p = 0 at r = R gives

p = 3Gα

2t3
(r2 − R2)r cos θ (3.18)

and

M = −
2π∫

0

R∫
0

pr2 cos(θ )drdθ = Gα

8t3 πR6 (3.19)

The effective moment of inertia in this case, taking E = Ec = 6GS2 and I = πR4/4, is
one-third of the conventional moment of inertia,

(EI)eff = M
α/t

= G
8t2 πR6 = 2GS2

(
πR4

4

)
= 2GIS2 (3.20)

Also, since for a circular pad, Ec = 6GS2, (EI)eff = EcI/3.
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3.1.3 Rectangular Pad

We consider the bending of a rectangular pad of sides 2b and l about the y-axis as shown
in Figure 3.2. The result for a rectangular pad can be determined by assuming a single
Fourier series solution of the form

p(x, y) =
∞∑
m=1

Pm(y) sin
(mπx

b

)
(3.21)

Substituting into Equation (3.8) gives

∞∑
m=1

[
d2Pm(y)

dy2 −
(mπ

b

)2
Pm(y)

]
sin

(mπx
b

)
= 12Gα

t3
x (3.22)

Multiplying by sin(nπx/b) and integrating from –b to b gives

P ′′
n (y) −

(nπ
b

)2
Pn(y) = 24Gα

t3

b
nπ

(−1)n−1 (3.23)

Symmetry and the boundary condition Pn(±l/2) = 0 (from p(x, ±l/2) = 0) give the
solution to this ordinary differential equation as

Pn(y) = 24Gα

t3

(
b
nπ

)3

(−1)n

⎛
⎜⎜⎝1 −

cosh
(nπy

b

)

cosh
(
nπl
2b

)
⎞
⎟⎟⎠ (3.24)

Figure 3.2 Coordinate system of a rectangular pad under bending
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The complete solution for the pressure then becomes

p(x, y) = 24Gb3α

π3t3

∞∑
n=1

(−1)n

n3

⎛
⎜⎜⎝1 −

cosh
(nπy

b

)

cosh
(
nπl
2b

)
⎞
⎟⎟⎠ sin

(nπx
b

)
(3.25)

which can also be expressed in terms of the shape factor S = bl/[(2 b + l)t] as

p(x, y) = 24GS2bα
π3t

(
1 + 2b

l

)2 ∞∑
n=1

(−1)n

n3

⎛
⎜⎜⎝1 −

cosh
(nπy

b

)

cosh
(
nπl
2b

)
⎞
⎟⎟⎠ sin

(nπx
b

)
(3.26)

Then

(EI)eff = M
α/t

= − 1
α/t

l/2∫
−l/2

b∫
−b

p(x, y) xdxdy

= 48GS2lb3

π4

(
1 + 2b

l

)2 ∞∑
n=1

1
n4

(
1 − 2b

nπl
tanh

(
nπl
2b

))
(3.27)
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Figure 3.3 Effective EI of a rectangular pad
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With I = 2lb3/3, the effective bending stiffness can be expressed as

(EI)eff = 72GIS2

π4 (1 + ρ)2
∞∑
n=1

1
n4

(
1 − ρ

nπ
tanh

(
nπ
ρ

))
(3.28)

where ρ = 2b/l. Figure 3.3 shows the effective EI of a rectangular pad as a function of ρ.
For a square pad,

(EI)eff = 288GIS2

π4

∞∑
n=1

1
n4

(
1 − 1

nπ
tanh(nπ )

)
≈ 2.228GIS2 (3.29)

3.1.4 Annular Pad

For an annular pad of inner radius, a, outer radius, b, where a ≤ r ≤ b, we have

p = 3Gα

2t3

(
a 2b2

r
+ r3 − (b2 + a2)r

)
cos θ (3.30)

and

M = −3Gα

2t3

2π∫
0

⎡
⎣

b∫
a

(
a 2b2

r
+ r3 − (b2 + a2)r

)
r2dr

⎤
⎦ cos2 θdθ = Gαπ

8t3
(b2 − a 2)3 (3.31)

which leads to

(EI)eff = π

8
G

(b2 − a2)3

t2

= π

2
GS2(b − a )(b + a )3

= π

2
GS2 I

(
4

(b − a )(b + a )3

π (b4 − a4)

)

= 2GS2 I
(b + a )2

b2 + a2 = 2GS2 I
(1 + ρ)2

1 + ρ2 (3.32)

where here ρ = a/b is the ratio of the inner radius to the outer radius. Figure 3.4 shows a
graph of (EI)eff/(2GS2I) as a function of ρ.

There are two ways to express this result. One is to assume that a/b is greater
than about 0.1, in which case the effective compression modulus is 4GS2 where
S = (b – a)/(2t), giving

(EI)eff
EI

= 1
2

(
1 + a

b

)2

1 +
(a
b

)2 (3.33)
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Figure 3.4 Effective EI of an annular pad with inner radius a and outer radius b

On the other hand, if a → 0, then (EI)eff → 6GS2(I/3). In addition, if we write a = bε
and let ε → 0, we get (EI)eff → 4GS2(1 + 2ε) (I/2), showing that in contrast to case of
the compression modulus, the presence of a small hole has a negligible effect on the
bending stiffness. The reason, of course, is that the pressure at the edge of the hole, if it
is small, is very close to zero anyway, and the boundary condition of zero pressure is
already met.

3.2 Bending Stiffness of Single Pads with Compressible Rubber

If we take into account the bulk compressibility when estimating the bending stiffness,
the equation to be solved is

∇2 p − λ2 p = λ2Kα

t
x (3.34)

where λ2 = 12G/(Kt2) and p = 0 at the edge of the pad.

3.2.1 Infinit Strip Pad

For an infinit strip of width 2b, Equation (3.34) becomes

d2 p
dx2 − λ2 p = λ2Kα

t
x (3.35)
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with p(±b) = 0. The solution is

p(x) = Kαb
t

(
sinh(λx)
sinh(λb)

− x
b

)
(3.36)

The moment per unit length generated by this pressure distribution is

M = −
+b∫

−b
xp(x)dx = 2 Kαb

λ2t

(
1 + λ2b2

3
− λb coth(λb)

)
(3.37)

Because 1/� = α/t, the effective bending stiffness is

(EI)eff = 2Kb
λ2

(
1 + λ2b2

3
− λb coth(λb)

)
(3.38)

The effective EI of the compressible rubber, given by Equation (3.38), can be expressed
as a ratio of the effective EI of the incompressible rubber, given by Equation (3.15),

(EI)comp
eff

(EI)inc
eff

=
2Kb
λ2

(
1 + λ2b2

3
− λb coth(λb)

)

8Gb5

15t2

= 45
λ4b4

(
1 + λ2b2

3
− λb coth(λb)

)
(3.39)

which, with λb = √
12G/KS, can also be expressed as

(EI)comp
eff

(EI)inc
eff

= 5 K 2

16G2S4

(
1 + 4GS2

K
−

√
12G
K

S coth

(√
12G
K

S

))
(3.40)

Figure 3.5, which is a graph of the ratio given by Equation (3.40) for various values
of K/G, shows that compressibility can have a significan effect even for pads with
moderate shape factors.

For small values of λb, an approximation of Equation (3.38) can be obtained from the
power series for coth for small x by

coth x = 1
x

(
1 + x2

3
− x4

45
+ 2x6

945
· · ·

)

from which we obtain

(EI)eff = 4GIS2

5

(
1 − 8

7
GS2

K

)
(3.41)
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Figure 3.5 Ratio of the effective bending stiffness with compressible rubber to the effec-
tive bending stiffness with incompressible rubber for a strip pad

For large values of λb, coth(λb) tends to 1 and (EI)eff tends to 2Kb3/3, implying that
the effective I tends to the actual I, which, in turn, implies that the pressure distribution
is linear across the strip. In fact, for large λb, we can approximate p by

p(x) = Kαb
t

(
e−λ(b−x) − x

b

)
(3.42)

which means that the distribution is linear except when x is close to ±b.
When the pressure, p(x), of Equation (3.36) is normalized with the maximum pressure

due to the moment M of Equation (3.37), we get

p̄ = p

M
/(

2
3
b2

) =
λ2b2

(
sinh(λx)
sinh(λb)

− x
b

)

3
(

1 + λ2b2

3
− λb coth(λb)

) (3.43)

Figure 3.6 shows the normalized pressure distribution, p̄, of Equation (3.43) under pure
bending for different shape factors (S= 10, 50, 500) for a strip usingG= 1.0 MPa (145 psi)
and K = 2000 MPa (289 855 psi).

3.2.2 Circular Pad

For a circular pad, the equation to be solved is

∂2 p
∂r 2 + 1

r
∂p
∂r

+ 1
r2

∂2 p
∂θ2 − λ2 p = λ2Kα

t
r cos θ (3.44)

with p(r = R) = 0.
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Figure 3.6 Normalized pressure distribution of infinit strip pad under pure bending

The result for p(r, θ ) is

p = KαR
t

(
I1(λr )
I1(λR)

− r
R

)
cos θ (3.45)

where I1 is the modifie Bessel function of the firs kind of order 1. The moment pro-
duced by this pressure distribution is

M = −
2π∫

0

R∫
0

p(r, θ )r2 cos θdrdθ

= πK
α

t
R2

λ2

(
(λR)2

4
− λR

I2(λR)
I1(λR)

) (3.46)

where I2 is the modifie Bessel function of the firs kind of order 2. Then the effective
bending stiffness is

(EI)eff = πKR2

λ2

(
(λR)2

4
− λR

I2(λR)
I1(λR)

)
(3.47)

The result in Equation (3.47) is most conveniently used as a ratio to the bending
stiffness in the incompressible case, which is given by Equation (3.20). Dividing Equa-
tion (3.47) by this gives

(EI)comp
eff

(EI)inc
eff

= 24
λ2R2

(
1 − 4

λR
I2(λR)
I1(λR)

)
(3.48)



P1: TIX/XYZ P2: ABC
JWST069-03 JWST069-Kelly-Style2 July 15, 2011 16:32 Printer Name: Yet to Come

56 Behavior of Multilayer Rubber Bearings under Bending

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

S

(
E
I
)
co

m
p

e
f
f

(
E
I
)
in

c
e
f
f

 

 

K/G=50000
K/G=10000
K/G=4000
K/G=2000
K/G=1000

Figure 3.7 Ratio of the effective bending stiffness with compressible rubber to the effec-
tive bending stiffness with incompressible rubber for a circular pad

Or, since λR = √
48G/KS,

(EI)comp
eff

(EI)inc
eff

= K

2GS2

⎛
⎜⎜⎜⎜⎝1 − 4√

48G
K

S

I2

(√
48G
K

S

)

I1

(√
48G
K

S

)

⎞
⎟⎟⎟⎟⎠ (3.49)

The form of this ratio as a function of shape factor S for various K/G in Figure 3.7, where
it is clear that the bending stiffness is affected by compressibility at surprisingly low
values of S.

An approximation of the bending stiffness for the compressible rubber can be obtained
by expanding the modifie Bessel functions for small x. We get

I1(x) = x
2

+ x3

16
+ x5

384
+ · · ·

I2(x) = x2

8
+ x4

96
+ x6

3072
+ · · ·

and

λR
I2(λR)
I1(λR)

= (λR)2

4
− (λR)4

96
+ (λR)6

1536
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leading to

(EI)eff = 2GIS2

(
1 − 3GS2

K

)
(3.50)

For very large values of x, both I1 and I2 tend to ex/
√

2πx, and the asymptotic value of
(EI)eff is KI, which is what would be expected if the pressure distribution was linear and
the compression modulus was K. In fact, for large values of S, the pressure distribution
does tend to be linear, as shown by Equation (3.45), which when λ → ∞, tends to

p = −Kα

t
r cos θ (3.51)

3.2.3 Rectangular Pad

The result for a rectangular pad (Figure 3.2) can be determined by assuming a single
Fourier series solution of the form

p(x, y) =
∞∑
m=1

Pm(y) sin
(mπx

b

)
(3.52)

Substituting this into Equation (3.34) gives

∞∑
m=1

{
d2Pm(y)

dy2 −
[(mπ

b

)2
+ λ2

]
Pm(y)

}
sin

(mπx
b

)
= λ2Kα

t
x (3.53)

Multiplying by sin(nπx/b) and integrating from –b to b gives

d2Pn(y)
dy2 − β2

n Pn(y) = 2λ2Kαb
nπ t

(−1)n−1 (3.54)

where β2
n = (nπ/b)2 + λ2. Symmetry and the boundary condition Pn(±l/2) = 0 (from

p(x, ±l/2) = 0) give the solution to this ordinary differential equation as

Pn(y) = 2λ2Kαb
nπ tβ2

n
(−1)n

(
1 − cosh(βny)

cosh(βnl/2)

)
(3.55)

The complete solution for the pressure becomes

p(x, y) = 2λ2Kαb
t

∞∑
n=1

(−1)n

nπβ2
n

[
1 − cosh(βny)

cosh(βnl/2)

]
sin

(nπx
b

)
(3.56)
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Then

(EI)eff = M
α/t

= − 1
α/t

l/2∫
−l/2

b∫
−b

p(x, y)xdxdy

= 4λ2Klb3

π2

∞∑
n=1

1
n2β2

n

(
1 − 2

βnl
tanh

(
βnl
2

))

= 48GS2lb
π2

(
1 + 2b

l

)2 ∞∑
n=1

1
n2β2

n

(
1 − 2

βnl
tanh

(
βnl
2

))
(3.57)

To examine the effect of compressibility on the bending stiffness, we can express
Equation (3.57) as a ratio to the effective EI for incompressible material, Equa-
tion (3.27), obtaining

(EI)comp
eff

(EI)inc
eff

=

∞∑
n=1

1

n4

(
1 + 12GS2

n2π2K
(1 + ρ)2

)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ρ

nπ

tanh

⎛
⎝nπ

ρ

√
1 + 12GS2

n2π2K
(1 + ρ)2

⎞
⎠

√
1 + 12GS2

n2π2K
(1 + ρ)2

⎤
⎥⎥⎥⎥⎥⎥⎦

∞∑
n=1

1
n4

(
1 − ρ

nπ
tanh

(
nπ
ρ

))

(3.58)

where ρ = 2b/l. Figure 3.8 shows graphs of (EI)comp
eff /(EI)inc

eff versus S for different K/G
and ρ values.

3.2.4 Annular Pad

For an annular pad of inner radius a, outer radius b, where a ≤ r ≤ b, Equa-
tion (3.34) becomes

∂2 p
∂r 2 + 1

r
∂p
∂r

+ 1
r2

∂2 p
∂θ2 − λ2 p = λ2 Kα

t
r cos θ (3.59)

with boundary conditions p(a, θ ) = p(b, θ ) = 0. Assuming a solution of the form

p(r, θ ) = f (r )cosθ (3.60)
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Figure 3.8 Ratio of the effective bending stiffness with compressible rubber to the effec-
tive bending stiffness with incompressible rubber for a rectangular pad

and substituting into Equation (3.59) gives the ordinary differential equation

r2 d2 f
dr2 + r

d f
dr

− (1 + λ2r2) f = λ2Kα

t
r3 (3.61)

The solution has the form

f (r ) = Kα

t
(B1I1(λr ) + B2K1(λr ) − r ) (3.62)
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where K1 is the modifie Bessel function of the second kind of order 1. Using the
boundary conditions f (a) = f (b) = 0, we obtain the constants B1 and B2,

B1 = −bK1(λa ) + aK1(λb)
I1(λa )K1(λb) − I1(λb)K1(λa )

B2 = bI1(λa ) − a I1(λb)
I1(λa )K1(λb) − I1(λb)K1(λa )

(3.63)

Then

p(r, θ ) =Kα

t
(B1I1(λr ) + B2K1(λr ) − r ) cos θ (3.64)

and

M = −
2π∫

0

b∫
a

p(r, θ )r2 cos θdrdθ

= −π
Kα

t

[
B1
r2

λ
I2(λr ) − B2

r2

λ
K2(λr ) − r 4

4

]b
a

= −π
Kα

t

[
B1

λ
(b2I2(λb) − a2I2(λa )) − B2

λ
(b2K2(λb) − a2K2(λa )) − b4 − a4

4

]
(3.65)

where I2 and K2 are order-1 modifie Bessel functions of the firs and of the second kind
respectively. The bending stiffness of the pad is

(EI)eff = −πK
[
B1

λ
(b2I2(λb) − a2I2(λa )) − B2

λ
(b2K2(λb) − a2K2(λa )) − b4 − a4

4

]
(3.66)

Using S = (b – a)/(2t), η = a/b (the ratio of the inner radius to the outer radius), and
I = π (b4 – a4)/4, we can express the bending stiffness as

(EI)eff = K I [1 − B ′
1(I2(ϑ) − η2I2(ηϑ)) + B ′

2(K2(ϑ) − η2K2(ηϑ))] (3.67)

where

ϑ =
√

48G
K

S
1 − η

(3.68)

and

B ′
1 = 4

ϑ(1 − η4)
−K1(ηϑ) + ηK1(ϑ)

I1(ηϑ)K1(ϑ) − I1(ϑ)K1(ηϑ)

B ′
2 = 4

ϑ(1 − η4)
I1(ηϑ) − ηI1(ϑ)

I1(ηϑ)K1(ϑ) − I1(ϑ)K1(ηϑ)

(3.69)
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The result in Equation (3.67) is most conveniently used as a ratio to the bending stiffness
in the incompressible case, which is given by Equation (3.32). We obtain,

(EI)comp
eff

(EI)inc
eff

= K

2GS2

1 + η2

(1 + η)2 [1 − B ′
1(I2(ϑ) − η2I2(ηϑ)) + B ′

2(K2(ϑ) − η2K2(ηϑ))] (3.70)

Figure 3.9 shows graphs of (EI)comp
eff /(EI)inc

eff versus S for different K/G and η values.
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Figure 3.9 Ratio of the effective bending stiffness with compressible rubber to the effec-
tive bending stiffness with incompressible rubber for an annular pad
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The analysis given in this chapter has focused on the bending stiffness for a wide
variety of isolator shapes. The bending stiffness of a rubber isolator is an important
bearing property that must be available for design in estimating the buckling behavior of
the isolator. It allows us to assess the response of the compressed bearing to an externally
applied bending moment and is needed to estimate the influenc of the vertical load on
the horizontal stiffness of a bearing. In addition, when the isolator is subject to shear
deformation, a bending moment is generated by the unbalanced shear forces at the top
and bottom of the bearing. These bending moments cause shear strains in the rubber
that are important for design. Also, the moments produce compressive stresses in the
shims that can result in buckling. The bending stiffness analyses that were presented
in this chapter for many shapes of isolators and which include bulk-compressibility
effects are entirely new and are essential for a complete analysis of the types of bearings
that are used in current design practise, where very large shape-factor rubber layers are
preferred by the manufacturers.
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4
Steel Stress in Multilayer
Rubber Bearings under
Compression and Bending

The essential characteristic of the rubber isolator is the very large ratio of the vertical
stiffness to the horizontal stiffness. This is produced by the reinforcing plates, which in
current industry standard are thin steel plates called shims. The shims prevent lateral
bulging of the rubber, but allow the rubber to shear freely. The vertical stiffness of the
bearing can be several hundred times the horizontal stiffness. The steel reinforcement
has the effect of generating shear stresses in the rubber, and these stresses act on the steel
plates to cause tensile stresses which, if they were to become large enough, could result
in failure of the steel shims through yielding or fracture. The external pressure on the
isolator at which this might happen is an important design quantity, and it is therefore
necessary to be able to estimate these tensile stresses under the applied external load.

In this chapter, solutions are developed for the tensile stresses in the steel reinforcing
shims of rubber isolators. The method makes use of generalized plane stress and uses
a stress function approach, treating the shim as a thin plate with body forces generated
by surface shears on the top and bottom of the plate. It is shown that the pressure
in the rubber acts as a potential for these body forces. Solutions are presented for the
case of rubber bearings with low and moderate shape factors, where it is acceptable to
assume that the rubber is incompressible, and also for the more common case in current
practice where the shape factor is so large that the assumption of incompressibility
cannot be made, and the effect of the bulk modulus of the rubber must be included.
The stress state in the steel reinforcing plates is calculated for pure compression and for

The material in Sections 4.2 and 4.3 firs appeared in the article by Kelly, J. M. and Konstantinidis, D. (2009).
“Steel Shim Stresses in Multilayer Bearings under Compression and Bending.” Journal of Mechanics of Materials
and Structures, 4(6), 1109–1125, DOI: 10.2140/jomms.2009.4.1109. Reproduced by permission of Mathematical
Sciences Publishers.

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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64 Steel Stress in Multilayer Rubber Bearings under Compression and Bending

pure bending of the bearing. These two cases, separately and their combination, are the
typical situation in current practice. While a solution for the stress state in the shims of
a circular isolator, assuming incompressibility and under pure compression, has been
available using an analogy with the stresses in a rotating circular plate, the use of the
stress function method is new (Kelly and Konstantinidis 2009a) and suggests a method
to extend the solutions to isolators with shapes other than circular.

In the later part of the chapter we look into the yielding of the steel shims, and we
show that the result for the pressure that causes full yielding throughout the steel shim
in the incompressible case is a conservative estimate of the pressure to produce full yield
in the case of the larger-shape-factor isolator, for which the compressibility of the rubber
must be taken into account.

4.1 Review of the Compression and Bending of a Pad

In Chapters 2 and 3, the pure compression and pure bending of a single pad were inves-
tigated, and the results important for the developments in this chapter are restated here
for convenience to the reader. The pressure solution for the case of a circular bearing of
radiusRwith incompressible rubber, which applies to low and moderate shape factors, is

p(r ) = 3Gεc

t2 (R2 − r2) (4.1)

The compressive load is then given by

P = 2π

∫ R

0
p (r ) rdr = 3GεcπR4

2t2 (4.2)

and, with S = R/(2t) and A= πR2, the compression modulus, Ec = P/(Aεc), becomes

Ec = 6GS2 (4.3)

Under pure bending, the pressure solution for the circular pad with incompressible
rubber is

p(r ) = 3G
2t2

α

t
(r2 − R2)r cos θ (4.4)

It is useful to defin a bending strain εb, analogous to the compression strain εc, as

εb = α

t
R (4.5)

Then Equation (4.4) becomes

p(r ) = 3Gεb

2Rt2 (r2 − R2) r cos θ = 6GS2εb

(
r 2

R2 − 1
)
r
R

cos θ (4.6)
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In the case of compressible rubber, which applies to bearings with larger shape factors,
the pressure solution for a circular bearing under pure compression is

p(r ) = K εc

(
1 − I0(λr )

I0(λR)

)
(4.7)

where I0 is the zero-order modifie Bessel function of the firs kind. Integrating p over
the area of the pad gives P = K εc R2[1 − 2I1(λR)/(λRI0(λR))] where I1 is the modifie
Bessel function of the firs kind of order 1. The resulting expression for the compression
modulus is

Ec = K
(

1 − 2
λR

I1(λR)
I0(λR)

)
(4.8)

where λR =
√

12GR2/(Kt2) = √
48G/K S.

For a circular pad with compressible rubber under pure bending, it was shown in
Chapter 3 that the pressure distribution takes the form

p(r ) = Kα

t

(
R
I1(λr )
I1(λR)

− r
)

cos θ = K εb

(
I1(λr )
I1(λR)

− r
R

)
cos θ (4.9)

4.2 Steel Stresses in Circular Bearings with Incompressible Rubber

The state of stress in a rubber layer, within a multilayer bearing under compression or
bending, or a combination of the two, is assumed to be a state of pressure that would
induce a bulging of the rubber were it not restrained by the thin steel reinforcing shims
that are bonded to the rubber (see Figure 1.4). The restraint of the rubber by the steel
causes shear stresses in the rubber which act on each side of the steel plate to induce
tensile or compressive stresses in the plane of the plate. It is possible to solve for these
in-plane stresses using two-dimensional elasticity theory, assuming that the plate is in
a state of generalized plane stress and that the surface shear stresses are equivalent
to in-plane body forces. While it is possible to formulate the plane-stress problem for
an arbitrarily shaped plate, we will consider only the circular bearing. We will use the
notations for the stresses and the stress function from Timoshenko and Goodier (1970).

In polar coordinates (r, θ ), the equations of equilibrium for the stresses in the
rubber are

∂σr

∂r
+ 1
r

∂τrθ

∂θ
+ ∂τrz

∂z
+ σr − σθ

r
= 0

∂τrθ

∂r
+ 1
r

∂σθ

∂θ
+ ∂τθz

∂z
+ 2τrθ

r
= 0

∂τrz

∂r
+ 1
r

∂τθz

∂θ
+ ∂σz

∂z
+ τrz

r
= 0

(4.10)



P1: TIX/XYZ P2: ABC
JWST069-04 JWST069-Kelly-Style2 July 27, 2011 11:34 Printer Name: Yet to Come

66 Steel Stress in Multilayer Rubber Bearings under Compression and Bending

It is assumed that σr = σθ = σz = −p, and are independent of z, and also that the inplane
shear stress τrθ is negligible. Hence the firs of the equilibrium equations yields

∂τrz

∂z
= ∂p

∂r
(4.11)

and the second

∂τθz

∂z
= 1
r

∂p
∂θ

(4.12)

Inserting these equilibrium equations into the third equation in (4.10), differentiating
with respect to z, and interchanging the order of differentiation, changes it to

∂2 p
∂r 2 + 1

r
∂p
∂r

+ 1
r2

∂2 p
∂θ 2 + ∂σz

∂z
= 0 (4.13)

This equation, with substitution from either Equation (4.11) or (4.12), allows us, if nec-
essary, to calculate the distribution of σ z through the thickness of the pad. Within the
stress assumptions above, we have p = p(r, θ ), which means that we can write

τrz = ∂p
∂r
z

τθz = 1
r

∂p
∂θ

z
(4.14)

The shear stresses at the bottom of the rubber layer τrz|z=−t/2 and τθz|z=−t/2 become the
shear stresses on the top surface of the plate, and the shear stresses at the top of the
rubber layer τrz|z=t/2 and τθz|z=t/2 are the shear stresses on the lower surface of the plate
(Figure 4.1).

r

Z

tp

Rubber

Rubber

z t
2

=

z t
2

= –

Rtp

Figure 4.1 Shear stresses producing equivalent body forces in the plate
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The internal stresses in the steel shims satisfy the equilibrium equations

∂σr

∂r
+ 1
r

∂τrθ

∂θ
+ σr − σθ

r
+ R = 0

∂τrθ

∂r
+ 1
r

∂σθ

∂θ
+ 2τrθ

r
+ S = 0

(4.15)

where R and S are the equivalent body forces per unit volume created by the surface
shear stresses and are given by

tp R = τrz|z=−t/2 − τrz|z=t/2

tpS = τθz|z=−t/2 − τθz|z=t/2

(4.16)

where tp is the thickness of the steel shim, leading to

R = − t
tp

∂p
∂r

S = − t
tp

1
r

∂p
∂θ

(4.17)

It follows that the pressure plays the role of a potential, V, for the body forces in
the form

V(r, θ ) = t
tp
p(r, θ ) (4.18)

with

R = −∂V
∂r

and S = −1
r

∂V
∂θ

(4.19)

The equations of equilibrium for the plate then become

∂(σr − V)
∂r

+ 1
r

∂τrθ

∂θ
+ (σr − V) − (σθ − V)

r
= 0

∂τrθ

∂r
+ 1
r

∂(σθ − V)
∂θ

+ 2τrθ

r
= 0

(4.20)
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These equations are satisfie by a stress function 
(r, θ ) for the stresses, such that

σr − V = 1
r

∂


∂r
+ 1
r2

∂2


∂θ2

σθ − V = ∂2


∂r 2

τrθ = − ∂

∂r

(
1
r

∂


∂θ

)
(4.21)

and under the assumption of plane stress, the equation for 
 is

∇2∇2
 + (1 − ν)∇2V = 0 (4.22)

where ν is the Poisson’s ratio of the steel. In the case of pure compression, the pres-
sure satisfie

∇2 p = −12Gεc

t2 (4.23)

and for bending

∇2 p = 12Gεb

t2
r
R

cos θ (4.24)

4.2.1 Stress Function Solution for Pure Compression

The stress function 
 for pure compression is given by the solution of

∇2∇2
 + C = 0 (4.25)

where C is a constant having the value

C = −(1 − ν)
12Gεc

tpt
(4.26)

In this case the stress function depends only on r, and we look for a solution of that form.
The result is (Timoshenko and Goodier 1970)


 = Aln r + Br2 ln r + Cr2 + D− Cr4

64
(4.27)

The resulting stresses are given by

σr − t
tp
p(r ) = A

r2 + B(1 + 2 ln r ) + 2C − 1
16
Cr2

σθ − t
tp
p(r ) = − A

r2 + B(3 + 2 ln r ) + 2C − 3
16
Cr2

(4.28)
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It is clear that both A and B must vanish for the completely circular plate, and using
σ r(R) = 0 and the fact that the pressure is also zero at r = R, we have

2C = CR2

16
(4.29)

Using the pressure from Equation (4.1) and C from Equation (4.26), the solution for the
tensile stresses becomes

σr = 3Gεc

ttp

3 + ν

4
(R2 − r2) = 3GS2εc

t
tp

(3 + ν)
(

1 − r2

R2

)

σθ = 3
4
Gεc

ttp

[
(3 + ν)R2 − (1 + 3ν)r 2] = 3GS2εc

t
tp

(
3 + ν − (1 + 3ν)

r2

R2

) (4.30)

The distribution of the stresses in the plate with ν = 0.3 under pure compression is
shown in Figure 4.2, where

Sr = σr

3GS2εc(t/tp)
and Sθ = σθ

3GS2εc(t/tp)
(4.31)

At the center of the plate, we have

σmax = σr = σθ = 3GS2εc
t
tp

(3 + ν) (4.32)
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Figure 4.2 Plate stresses in compression, assuming incompressibility
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By expressing the maximum stresses in terms of the average pressure over the plate,
pave, given by

pave = Ecεc = 6GS2εc (4.33)

we obtain

σmax

Pave
= 3 + ν

2
t
tp

(4.34)

which can be used to determine the maximum pressure needed to cause yield in the
shim at the center. It shows why, under normal circumstances, the stresses in the shims
due to the pressure are not considered important. For example, if we have steel shims
3-mm (0.118 in.) thick and 15-mm (0.591 in.) thick rubber layers, the stresses in the steel
due to a pressure of 7.0 MPa (1.0 ksi), which is standard, are only 58 MPa (8.4 ksi), well
below the yield level of the plate material. If the tension stress at the center is in fact the
yield stress of the material σ o, then the average pressure to initiate yield is

pave = 2
3 + ν

tp
t

σo (4.35)

This is only the start of yield, but the plate will experience further yielding as the pressure
increases. The zone of yielding will spread from the center to the outer radius so that the
pressure can increase further until the entire plate has yielded, that is, until the region
0 ≤ r ≤ R is fully plastic.

It is interesting to note that the problem in this case is the same as that for the
stresses in a thin disk due to centrifugal forces. That solution was given in Timoshenko
and Goodier (1970) using an entirely different approach based on displacements, and,
except for constants, is identical to this. Timoshenko and Goodier (1970) also provide the
solution for a circular plate of radius bwith a central hole of radius a, which for a≤ r≤ b is

σr = 3
4
Gεc

ttp
(3 + ν)

(
b2 + a2 − a2b2

r2 − r2
)

σθ = 3
4
Gεc

ttp
(3 + ν)

(
b2 + a2 + a2b2

r2 − 1 + 3ν

3 + ν
r 2

) (4.36)

The maximum radial stress is at r = √
ab, where

σr = 3
4
Gεc

ttp
(3 + ν)(b − a )2 (4.37)

and the maximum tangential stress is at the inner boundary, where

σθ = 3
4
Gεc

ttp
(3 + ν)

(
b2 + 1 − ν

3 + ν
a2

)
(4.38)

This is always larger than the maximum radial stress. When the radius a of the hole be-
comes very small, the maximum tangential stress approaches a value twice as large as the
complete circular plate. This is another example of a stress concentration at a small hole.
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4.2.2 Stress Function Solution for Pure Bending

For the case of pure bending on the pad, the equation for the stress function takes
the form

∇2∇2
 + Cr cos θ = 0 (4.39)

where now

C = (1 − ν)
12Gεb

Rttp
(4.40)

We look for a solution of the form


(r, θ ) = f (r ) cos θ (4.41)

From Timoshenko and Goodier (1970), the ordinary differential equation for f is

d4 f
dr 4 + 2

r
d3 f
dr3 − 3

r2

d2 f
dr 2 + 3

r3

d f
dr

− 3
r4 f + Cr = 0 (4.42)

The solution is

f (r ) = Ar3 + B
r

+ Cr + Dr ln r − Cr5

192
(4.43)

The resulting stresses are

σr − t
tp
p =

(
2Ar − 2B

r3 + D
r

)
cos θ + R

σθ − t
tp
p =

(
6Ar + 2B

r3 + D
r

)
cos θ + S

τrθ =
(

2Ar − 2B
r3 + D

r

)
sin θ + T

(4.44)

where

R =
(

1
r

∂

∂r
+ 1
r2

∂2

∂θ2

)(
−Cr5

192
cos θ

)
= −Cr3

48
cos θ

S = ∂2

∂r 2

(
−Cr5

192
cos θ

)
= −5Cr3

48
cos θ

T = − ∂

∂r

[
1
r

∂

∂θ

(
−Cr5

192
cos θ

)]
= −Cr3

48
sin θ

(4.45)

For the complete plate, 0 ≤ r ≤ R, both B and D must vanish, giving

σr = t
tp
p(r, θ ) + 2Ar cos θ − Cr3

48
cos θ (4.46)



P1: TIX/XYZ P2: ABC
JWST069-04 JWST069-Kelly-Style2 July 27, 2011 11:34 Printer Name: Yet to Come

72 Steel Stress in Multilayer Rubber Bearings under Compression and Bending

and since p(r, θ ) is zero on the boundary, the requirement that σr (R, θ ) = 0 gives
2A= CR2/48, leading, with Equation (4.6), to the fina results

σr (r, θ ) = − Gεb

4 ttp R
(5 + ν)(R2 − r 2)r cos θ

σθ (r, θ ) = Gεb

4 ttp R
[
(1 + 5ν)r2 − 3(1 + ν)R2] r cos θ

τrθ (r, θ ) = − Gεb

4 ttp R
(1 − ν)(R2 − r 2)r sin θ

(4.47)

These results are plotted as nondimensional stresses in Figure 4.3, where

Sr = σr (r, θ )

GS2εb
t
tp

= −(5 + ν)
[

1 −
( r
R

)2
]
r
R

cos θ

Sθ = σθ (r, θ )

GS2εb
t
tp

=
[

(1 + 5ν)
( r
R

)2
− 3(1 + ν)

]
r
R

cos θ

Trθ = τrθ (r, θ )

GS2εb
t
tp

= (1 − ν)
[

1 −
( r
R

)2
]
r
R

sin θ

(4.48)
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Figure 4.3 Plate stresses under bending moment for the incompressible case
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4.3 Steel Stresses in Circular Bearings with Compressible Rubber

4.3.1 Stress Function Solution for Pure Compression

The tension stresses in the steel reinforcing plates can be calculated in the same way as
before by using the stress function method. The equation for the stress function remains
the same, ∇2∇2
 + (1 − ν)∇2V = 0, and the definitio of the potentialV(r, θ ) is the same,
V = (t/tp)p(r, θ ), but the pressure now satisfie the equation

∇2 p − 12G
Kt2

p = −12Gεc

t2 (4.49)

Thus the stress function now must satisfy the equation

∇2∇2
 + (1 − ν)
t
tp

12G
t2

( p
K

− εc

)
= 0 (4.50)

With p given by Equation (4.7), we have

∇2∇2
 − (1 − ν)
t
tp

12G
t2

I0(λr )
I0(λR)

εc = 0 (4.51)

The solution for pure compression is rotationally symmetric, and the complementary
part of the solution remains the same, but it is necessary to determine the partic-
ular integral that corresponds to the term I0(λr ). To develop this, we recall that in
radial symmetry,

∇2∇2( f ) = 1
r

d
dr

(
r

d
dr

(
1
r

d
dr

(
r

d f
dr

)))
(4.52)

By taking f = I0(λr ), changing the variable to x = λr , and recalling that x so define is
dimensionless and that λ is a reciprocal length, we have ∇2∇2
|r = (1/λ4)∇2∇2
|x.

Thus, we have successively

1
x

d
dx

(
x

d
dx

(
1
x

d
dx

(
x

d f
dx

)))
= I0(x)

x
d

dx

(
1
x

d
dx

(
x

d f
dx

))
=

∫
xI0(x) dx = xI1(x)

1
x

d
dx

(
x

d f
dx

)
=

∫
I1(x) dx = I0(x)

x
d f
dx

=
∫
xI0(x) dx = xI1(x)

f = I0(x)
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The result for the stress function 
 is


 = Aln r + Br2 ln r + Cr2 + D+ 1
λ4CI0(λr ) (4.53)

where now the constant C is given by

C = (1 − ν)
t
tp

12Gεc

t2

1
I0(λR)

(4.54)

and the stresses are

σr − t
tp
p(r ) = A

r2 + B(1 + 2 ln r ) + 2C + C
λ2

I1(λr )
λr

σθ − t
tp
p(r ) = − A

r2 + B(3 + 2 ln r ) + 2C + C
λ2

(
I0(λr ) − I1(λr )

λr

) (4.55)

Since, in the case of a complete plate, A and B must vanish, and the pressure is zero at
the outside radius, the condition that σr (R) = 0 means that

C = − C
2λ2

I1(λR)
λR

(4.56)

and, with p(r) given by Equation (4.7), we have

σr = t
tp
K εc

[
1 − I0(λr )

I0(λR)
− 1 − ν

I0(λR)

(
I1(λR)

λR
− I1(λr )

λr

)]

σθ = t
tp
K εc

[
1 − I0(λr )

I0(λR)
− 1 − ν

I0(λR)

(
I1(λR)

λR
+ I1(λr )

λr
− I0(λr )

)] (4.57)

At the center of the plate, the stresses become

σr = σθ = t
tp
K εc

[
1 − 1

I0(λR)
− 1 − ν

I0(λR)

(
I1(λR)

λR
− 1

2

)]
(4.58)

To illustrate these results we look at the case when the shape factor is 30, the rubber
shear modulus is 0.42 MPa (60.9 psi) and the bulk modulus is 2000 MPa (289 855 psi),
giving λR = 3. The normalized plate stresses denoted by

Sr = σr

K εc(t/tp)
and Sθ = σθ

K εc(t/tp)
(4.59)

are shown as functions of r/R in Figure 4.4.
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Figure 4.4 Plate stresses in compression for the large-shape-factor case

If we compare the maximum value of the stress at the center of the plate of this solution
with the same result for the incompressible case, we can use Equation (4.8) to determine
the average pressure and Equation (4.58) to get

σmax

pave
= t
tp

I0(λR) − 1 − (1 − ν)
(

I1(λR)
λR

− 1
2

)

I0(λR) − 2
λR

I1(λR)
(4.60)

Figure 4.5 is a graph of Equation (4.60) for a range of values of λR from zero to fiv
(zero being the incompressible case). It shows that for the same value of εc and t/tp, the
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Figure 4.5 Ratio of maximum plate stresses for compressible and incompressible cases
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peak stresses get smaller as compressibility increases. This implies that the result for the
incompressible computation is a conservative estimate of the stresses in the large-shape-
factor case, which, if it can be used, greatly simplifie the prediction of the maximum
value of the tension stress.

4.3.2 Stress Function Solution for Pure Bending

For a circular pad under pure bending with an angle of rotation α between the shims
(see Figure 3.1), Equations (4.9) and (4.22) give the equation to be solved for the
stress function

∇2∇2
 + (1 − ν)
t
tp

12Gεb

t2
I1(λr )
I1(λR)

cos θ = 0 (4.61)

We look for a solution of the form


(r, θ ) = f (r ) cos θ (4.62)

Substitution into Equation (4.61) results in the ordinary differential equation for f

d4 f
dr 4 + 2

r
d3 f
dr 3 − 3

r2

d2 f
dr2 + 3

r3

d f
dr

− 3
r4 f + CI1(λr ) = 0 (4.63)

where

C = (1 − ν)
t
tp

12Gεb

t2

1
I1(λR)

(4.64)

The complementary part of the solution is

f (r ) = Ar3 + B
r

+ Cr + Dr ln r (4.65)

and the particular integral can be shown (after considerable algebraic manipulation) to
be −(C/λ4)I1(λr ).

The resulting stresses are

σr − t
tp
p =

(
2Ar − 2B

r3 + D
r

)
cos θ + R

σθ − t
tp
p =

(
6Ar + 2B

r3 + D
r

)
cos θ + S

τrθ =
(

2Ar − 2B
r3 + D

r

)
sin θ + T

(4.66)
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where

R =
(

1
r

∂

∂r
+ 1
r2

∂2

∂θ2

)(
− (CI1(λr ) cos θ )

λ4

)
= 2I1(λr ) − I0(λr )λr

λ2r2

C
λ2 cos θ

S = ∂2

∂r2

(
−

(
CI1(λr ) cos θ

)
λ4

)
= I0(λr )λr − I1(λr )

(
2 + λ2r2

)
λ2r2

C
λ2 cos θ

T = − ∂

∂r

(
1
r

∂

∂θ

(
−

(
CI1 (λr ) cos θ

)
λ4

))
= 2I1(λr ) − I0(λr )λr

λ2r2

C
λ2 sin θ

(4.67)

For the complete plate, 0 ≤ r ≤ R, both B and D must vanish and σr (R, θ ) = 0,
giving

A= 1
2 R

I0 (λR) λR− 2I1 (λR)
λ2R2

C
λ2 (4.68)

Substituting for p(r, θ ) from Equation (4.9) and C from Equation (4.64), and making use
of λ2 = 12G/(Kt2) leads to

σr = K εb
t
tp

[
I1(λr )
I1(λR)

− r
R

+ 1 − ν

I1(λR)

(
I0 (λR) λR− 2I1 (λR)

λ2R2

r
R

− I0 (λr ) λr − 2I1 (λr )
λ2r2

)]
cos θ

σθ = K εb
t
tp

[
I1 (λr )
I1 (λR)

− r
R

+ 1 − ν

I1 (λR)

(
3

I0 (λR) λR− 2I1 (λR)
λ2R2

r
R

+ I0 (λr ) λr − I1 (λr )
(
λ2r2 + 2

)
λ2r2

)]
cos θ

τrθ = K εb
t
tp

1 − ν

I1 (λR)

(
I0 (λR) λR− 2I1 (λR)

λ2R2

r
R

− I0 (λr ) λr − 2I1 (λr )
λ2r2

)
sin θ

(4.69)

These results are plotted in Figure 4.6 for the case when λR = 3.
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Figure 4.6 Plate stresses for bending in the large-shape-factor case

4.4 Yielding of Steel Shims under Compression

The analysis in this section will show that the pressure that causes full yielding through-
out the steel shim in the incompressible case is a conservative estimate of the pressure to
produce full yield in the case of the larger-shape-factor isolator when the compressibility
of the rubber must be included.

4.4.1 Yielding of Steel Shims for the Case of Incompressible Rubber

While the previous analyses have concentrated on the tensile stresses in the shims,
assuming that the plates were completely elastic, it is possible in the case of pure com-
pression to estimate the pressure that will produce fully plastic yielding of the shims.
Making use of the Tresca yield condition (Prager and Hodge 1951), which is shown
in Figure 4.7, allows a particularly simple solution for the prediction of the pressure
necessary to cause complete yield. We denote the yield force in the plate by No,
where No = σ otp, with σ o being the yield stress of the steel. It is reasonable to assume
both the force in the radial direction, Nr, and the force in the tangential direction, Nθ , to
be tensile and to take Nθ = No and 0 ≤ Nr ≤ No, for which the equation of equilibrium
for the plate is

dNr
dr

+ Nr − Nθ

r
+ τrz

∣∣
z=−t/2 − τrz

∣∣
z= t/2 = 0 (4.70)

or when the shear stresses from Equation (4.14), with p from Equation (4.1), are inserted

dNr
dr

+ Nr − Nθ

r
= −6Gεc

t
r (4.71)
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Figure 4.7 Tresca yield condition

If the plate is assumed to be rigid, there is no unique solution of the equilibrium equa-
tion. But if we assume the plate to be deformable, even if the deformations are negligible,
we can obtain a unique solution. Rearranging the expression and using Nθ = No,

d (rNr )
dr

= No − 6Gεc

t
r 2 (4.72)

Integrating this equation with the boundary condition that Nr = Nθ = No at r = 0 gives

Nr (r ) = No − 2Gεc

t
r 2 (4.73)

and the other boundary condition that Nr = 0 at r = R provides the maximum value of
εc. In turn, using pave = Ecεc = 6GS2εc gives

pave = 3
4
tp
t

σo (4.74)

as the value of the average pressure needed to produce full yielding of the plate. Thus
the ratio of the pressure at full yielding to that when yield is initiated is around 1.23.
It should be emphasized that this computation is based on the assumption that the
rubber is incompressible and, in most cases, in practice the shape factors used are much
larger than those for which this assumption can be made. Accordingly, it is necessary
to extend the calculation to cases where the compressibility of the rubber is taken
into account.

4.4.2 Yielding of Steel Shims for the Case of Compressible Rubber

The theory for the compression of a rubber pad given in the preceding section is based
on two assumptions: first the displacement pattern is that given by Equation (2.7);
second, the normal stress components in all three directions can be approximated by the
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pressure, p, in the material. To include the influenc of bulk compressibility, we need
only replace the equation of incompressibility constraint by

εxx + εyy + εzz = − p
K

(4.75)

where K is the bulk modulus. Integration through the thickness leads to an equation for
p(x,y) of the form

∇2 p − 12G
Kt2 p = −12Gεc

t2 (4.76)

that is solved, as before, with p = 0 on the edge of the pad.
As shown in Section 2.4.2, the pressure distribution is given by

p (r ) = K εc

(
1 − I0 (λr )

I0 (λR)

)
(4.77)

The tensile stresses in the steel reinforcing plates can be calculated in the same way
as before by using the pressure distribution given in Equation (4.77). Here we will only
calculate the fully plastic state of the plate when yielding has reached the outer edge of
the plate.

The equilibrium equation in the rubber becomes

∂τrz

∂z
= ∂p

∂r
= −λK εc

I1 (λr )
I0 (λR)

(4.78)

and the equation of equilibrium for the plate becomes

dNr
dr

+ Nr − Nθ

r
= −λK εc t

I1 (λr )
I0 (λR)

(4.79)

Using, as before, the Tresca yield condition and assuming Nθ = No and 0 ≤ Nr ≤ No,
we have

d (rNr )
dr

= No − K εct
λr I1 (λr )
I0 (λR)

(4.80)

which by integration and use of the boundary condition Nr =Nθ =No at r= 0, results in

rNr (r ) = Nor − K εc t

r∫
0

λr I1 (λr )
I0 (λR)

dr (4.81)
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This can, in turn, be written in the form

Nr (r ) = No − K εc t
λr I0 (λR)

L (λr ) (4.82)

where

L (λr ) =
λr∫

0

xI1 (x) dx (4.83)

The boundary condition that Nr = 0 at r = R provides the maximum value of εc from

K εct
λRI0 (λR)

L (λR) = No (4.84)

and, in turn, using pave = Ecεc, where the compression modulus is given by Equation
(4.8), gives the value of the average pressure needed to fully yield the plate

tpave

λRI0 (λR) − 2I1 (λR)
L (λR) = No (4.85)

The integral for L(λR) can be expressed in terms of Bessel Functions and Struve Functions
(McLachlan 1955) in the form

∫
xI1 (x) dx = 1

2
πx (I1 (x) H0 (x) − I0 (x) H1 (x)) (4.86)

where H0, H1 are the Struve functions.
The four functions that appear in the integral can be expressed as series in x as follows

I1 (x) = x
2

(
1 + x2

8
+ x4

192
+ O

(
x6))

I0 (x) =
(

1 + x2

4
+ x4

64
+ O

(
x6))

H1 (x) = 2
3π

(
x2 − x4

15
+ x6

525
+ O

(
x8))

H0 (x) = 2
π

(
x − x3

8
+ x5

225
+ O

(
x7))

Substituting all of these into Equation (4.85) gives as the firs approximation for small
values of λR the result

pave = 3
4
σo
tp
t

(
1 + (λR)2

120
+ O

(
(λR)4

))
(4.87)
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The firs term corresponds to the incompressible solution, and since (λR)2 = 48G/(KS2),
it shows that for increasing shape factor the multiplier increases; in fact, by using the
asymptotic expressions for the four functions, it can be shown that the multiplier mono-
tonically increases to the asymptotic value of unity. The point of this result is that the
estimate of the average pressure needed to fully yield the plate is bounded from below
by the value for the incompressible case, so that for design purposes it is really only
necessary to take for the maximum pressure

pave = 3
4
tp
t

σo (4.88)

The solution for the pressure to initiate yield within the assumption of incompressibility
has been well known, but the fully plastic case is new (Kelly and Konstantinidis 2009a). It
had been a point of concern until recently that the known result might not be conservative
for bearings with large shape factors, the analysis of which requires the inclusion of
compressibility in the rubber. However, the analysis in this chapter shows that the
solution for the incompressible case can be used as a conservative estimate of the limiting
pressure in the more general case of large-shape-factor bearings.
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5
Buckling Behavior of
Multilayer Rubber Isolators

5.1 Stability Analysis of Bearings

A multilayered rubber bearing can be susceptible to a buckling type of instability similar
to that of an ordinary column, but dominated by the low-shear stiffness of a bearing. The
previous analysis of the overall deformation of a single pad can be used in a buckling
analysis that treats the bearing as a continuous composite system. This analysis considers
the bearing to be a beam, and the deformation is assumed to be such that plane sections
normal to the undeformed central axis remain plane, but not necessarily normal to the
deformed axis.

The theory for the buckling of isolation bearings is an outgrowth of work by Haringx
in 1947 on the mechanical characteristics of helical steel springs and rubber rods used for
vibration mountings. This work was published in a series of reports, the third of which
(Haringx 1949) covers the stability of solid rubber rods. The Haringx theory was later
applied by Gent (1964) to the problem of the stability of multilayered rubber compression
springs, and it is this application that forms the basis for the theory given here.

The deformation pattern, shown in Figure 5.1, is define by two quantities: v(x) is
the displacement of the middle surface of the bearing, and ψ(x) is the rotation of a
face originally normal to the undeformed axis. The overall shear deformation, γ , is
the difference between the rotation of the horizontal axis, v′(x), and the rotation of the
normal face, ψ (i.e., γ = v′ − ψ). Figure 5.2 shows the internal and external forces on the
bearing in the deformed position. The shear force, V, and the axial force, N, are shown
parallel and perpendicular, respectively, to the rotated face. The end loads, including
the axial load, P, are define by a lateral reaction, H0, and bending moment, M0, which
may be specifie or unknown, depending on the problem.

The internal shear force, V, is related to the shear deformation through

V = GAS(v′ − ψ)

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Figure 5.1 Deformation pattern for a bearing (plane sections remain plane after defor-
mation, but not necessarily perpendicular to the deformed axis)

where AS is not exactly the total cross-sectional area, A, but A(h/tr ), where h is the
total height of the bearing (rubber plus steel) and tr is the total height of rubber.
The increase in A is needed to account for the fact that the steel does not deform in the
composite system.

Here, the curvature, which for a single pad was α/t, becomes ψ ′; the relationship
between the curvature and bending moment,M, which for a single pad was EI = Ec I/3,

Figure 5.2 Internal forces and external loads on a deformed bearing (shear force V is
parallel and axial force N is perpendicular to the deformed section)
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must now be modifie in the same way as was the shear stiffness to account for the
presence of the steel plates. In the following we denote the shear and bending stiffnesses
of the composite system by GAS, as define above, and EIS = (1/3)Ec I (h/tr ), with shear
force V, and bending moment M, given by

V = GAS(v′ − ψ) (5.1a)

M = EISψ ′ (5.1b)

The equations of equilibrium for bending moment and shear force in the deformed state,
shown in Figure 5.2, are

M+ P (v − v0) − M0 − H0x = 0 (5.2a)

V + H0 − Pψ = 0 (5.2b)

and with the constitutive equations, we have

EISψ ′ + Pv = Pv0 + M0 + H0x (5.3a)

GAS(v′ − ψ) − Pψ = −H0 (5.3b)

Equation (5.3b) gives

ψ = GASv′ + H0

GAS + P
(5.4)

and

ψ ′ = GAS

GAS + P
v′′ (5.5)

If ψ ′ is substituted in Equation (5.3a), we get

EIS
GAS

GAS + P
v′′ + Pv = Pv0 + M0 + H0x (5.6)

We can also write Equation (5.3b) in the form

v′ = GAS + P
GAS

ψ − H0

GAS
(5.7)

and when v′ is inserted into the derivative of Equation (5.3a), we get

EISψ ′′ + P (GAS + P)
GAS

ψ = H0 + P
GAS

H0 (5.8)
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or

EIS
GAS

GAS + P
ψ ′′ + Pψ = H0 (5.9)

Thus, the two equations to be solved for the two kinematic variables, v and ψ , are

EIS
GAS

GAS + P
v′′ + Pv = Pv0 + M0 + H0x (5.10a)

EIS
GAS

GAS + P
ψ ′′ + Pψ = H0 (5.10b)

It is useful to defin two parameters α and β as

α2 = P (GAS + P)
EISGAS

and β = GAS

GAS + P
(5.11)

The solutions for the two differential equations in Equations (5.10a) and (5.10b) are

v = Acos(αx) + B sin(αx) + v0 + M0

P
+ H0

P
x

ψ = C cos(αx) + D sin(αx) + H0

P

(5.12)

The constantsA, B,C,D are not independent, but are interrelated through Equation (5.7),
which can be written in the form

v′ = 1
β

ψ − H0

GAS
(5.13)

and by substitution of Equation (5.12), leads to

− αAsin(αx) + αB cos(αx) + H0

P
= 1

β
C sin(αx) + 1

β
D sin(αx) + 1

β

H0

P
− H0

GAS
(5.14)

giving the relationship between the constants as

C = αβB and D = −αβA (5.15)

The most general form of solution of Equations (5.10a) and (5.10b) becomes

v = Acos(αx) + B sin(αx) + v0 + M0

P
+ H0

P
x (5.16a)

ψ = αβB cos(αx) − αβAsin(αx) + H0

P
(5.16b)
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Figure 5.3 Boundary conditions for an isolation bearing under a vertical load P (the
bearing buckles with no lateral force constraint but is prevented from rotating at
each end)

We now turn our attention to the specifi example of a bearing in an isolation system.
As shown in Figure 5.3, the bearing is constrained against displacement at the bottom,
rotation at the top and bottom, and is free to move laterally at the top. Setting x = 0 at
the bottom of the bearing and x = h at the top, we have

v(0) = 0, ψ(0) = 0, ψ(h) = 0, H0 = 0 (5.17)

thus Equation (5.16a) gives

A+ M0

P
= 0 (5.18)

and Equation (5.16b) yields

ψ(0) = αβB = 0

ψ(h) = −αβAsin(αh) = 0
(5.19)

Therefore, αh = π , and the general solution becomes

v(x) = 1
2
δ
(

1 − cos
(πx
h

))

ψ(x) = 1
2
αβδ sin

(πx
h

) (5.20)

and M0 = Pδ/2, where δ = v(h).
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The result αh = π means

α2 = π2

h2 (5.21)

If we substitute the definitio of α2 from Equation (5.11), we get

P (GAS + P)
GAS

= π2EIS
h2 = PE (5.22)

where PE is the Euler load for the standard column. If we denote GAS = PS, the above
equation for the critical load, P, becomes

P2 + PSP − PSPE = 0 (5.23)

from which the critical load, Pcrit, is given by

Pcrit =
−PS +

√
P2
S + 4PSPE

2
(5.24)

If we now assume that PS ≈ GA and

PE ≈ π2

h2

1
3

6GS2 I ≈ GA
(

2π2S2 I
Ah2

)
(5.25)

then, for most types of bearings where S is 5 or greater, PE � PS, the critical load can be
approximated by

Pcrit =
√
PSPE (5.26)

Using this expression and recalling that

PS = GA
h
tr

PE = π2

h2

1
3
Ec I

h
tr

(5.27)

we have

Pcrit =
√(

GA
h
tr

) (
π2

h2

1
3

6GS2Ar 2 h
tr

)

=
√

2πGASr
tr

(5.28)
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where r is the radius of gyration, which is r = √
I/A= a/(2

√
3) for a square bearing

with side dimension a, and �/4 for a circular bearing with diameter �.
The critical pressure, pcrit = Pcrit/A, can be expressed in terms of S and the quantity

S2, referred to as the aspect ratio or the second shape factor, define by

S2 = �

tr
for a circular bearing (5.29a)

S2 = a
tr

for a square bearing (5.29b)

Thus

pcrit
G

= π

2
√

2
SS2 for a circular bearing (5.30a)

pcrit
G

= π√
6
SS2 for a square bearing (5.30b)

In actual design, the load carried by a bearing (say, W) will be less than the critical
load, and neglecting the effect of the vertical load on the horizontal stiffness, KH , of the
bearing, this is given by KH = GA/tr , which in turn is related to the horizontal frequency,
ωH , through

ω2
H = KH

W
g (5.31)

Thus, the safety factor, S.F., against buckling, which is define by S.F. = Pcrit/W, becomes

S.F. =
√

2πSω2
Hr

g
(5.32)

All other things being equal, the safety factor increases with shape factor, S, frequency,
ωH , or bearing size (either a or �).

The bearing size will, of course, depend on the carried load. If the pressure, p = W/A,
is specified then

r = 1
2
√

π

(
W
p

)1/2

for a circular bearing (5.33a)

r = 1

2
√

3

(
W
p

)1/2

for a square bearing (5.33b)

If the pressure is fixed the safety factor will diminish as W1/2, leading to the unexpected
result that buckling can become a problem for bearings that are lightly loaded.
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To get a feeling for the magnitude of the quantities involved, suppose that the safety
factor must be at least three, the shape factor, S, is 10, and the frequency is π rad/s
(2.0 s period), all of which are typical values. In this case, r must be at least

r = 3 · 9810√
2 · π · 10 · π2

= 67.01 mm (2.64 in)

If the bearing is circular, then � = 268 mm (10.6 in). This minimum dimension is
independent of the carried load or the pressure, but if the pressure is specified say, for
example, at 6.90 MPa (1000 psi), it translates to a minimum load of 39 tons (88 kips). For
most buildings, the bearings will be much larger than this minimum size, and the carried
loads will be in the hundreds of tons, so that buckling is not likely to be a problem for
the design.

There have been cases, however, when it has been necessary to design isolators for
lighter loads, for example, circuit breakers in electric power plant switch yards. These
components weigh as little as a few tons, and the bearing design should be stable under
loads that range from 1 to perhaps 5 tons. Bearings developed for such applications
are referred to as “enhanced stability bearings.” In these bearings the tilting stiffness is
increased either by making the bearing an assembly of small bearings connected by steel
plates (Kircher et al. 1979) or by individual rubber discs connected by steel plates (Tyler
1991). The firs application of a bearing of this kind was carried out by Kircher et al.
(1979) for circuit breakers at the Edmunson Power Plant near Bakersfield California.
The stability analysis given here for the single bearing is applicable to these enhanced
stability bearings.

5.2 Stability Analysis of Annular Bearings

Another way to improve the stability of a bearing that is intended to support a light
load is to use an annular bearing. The presence of a large central hole reduces the
horizontal stiffness, but has only a small effect on the bending stiffness. Using the
analysis developed in the previous chapter, the bending stiffness of a single annular pad
is given by

(EI)eff = πG
8t2

(
b2 − a2)3

(5.34)

where a and b are the inside and outside radii of the pad, and t is the pad thick-
ness. If this is substituted into the approximate form for the buckling load, i.e.,
Pcrit = √

PSPE , with

PS = GA
h
tr

= Gπ
(
b2 − a2) h

tr
(5.35)

and

PE = π2(EI)eff
h
tr

1
h2 = π2πG

htr8t2
(
b2 − a2)3

(5.36)
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we have

P2
crit = Gπ

(
b2 − a2) h

tr

π2

htr

πG
8t2

(
b2 − a2)3 = G2π4

(
b2 − a2

)4

8t2r t2

Pcrit = π2G
(
b2 − a2

)2

2
√

2tr t
(5.37)

The specifie horizontal frequency is related to the carried load per bearing, W, by

ω2
H = KH

W
g = Gπg

(
b2 − a2

)
Wtr

(5.38)

so that the safety factor against buckling is given by

S.F. = Pcrit
W

= π 2G
(
b2 − a 2

)2

2
√

2tr t

ω2
Htr

Gπ (b2 − a2) g
= π

(
b2 − a2

)
ω2
H

2
√

2tg
(5.39)

If we fi ωH and layer thickness t, then the safety factor must decrease as the size of the
hole increases. This apparently contradictory result occurs because if we fi b and vary
a, the pressure is not kept constant. If the pressure is fixed then (b2 − a2) is f xed, thus
the safety factor remains constant. If the pressure is held constant, then the only way
to increase the safety factor is to reduce the individual layer thickness t. It follows that
simply replacing a circular bearing with an annular bearing does not improve stability;
it is necessary to reduce the pressure and the layer thickness. An annular bearing does
have merit in certain cases, however. Because the total rubber thickness, tr , does not
enter into the safety factor, a larger value of tr can be used, thus lowering the peak shear
strain and the ratio of the displacement to diameter with no reduction of the safety factor
against buckling; this will certainly lead to better performance when light loads are to
be isolated.

5.3 Influenc of Vertical Load on Horizontal Stiffness

If the load carried by a bearing is comparable to the buckling load, then the simple
formula for horizontal stiffness, KH = GA/tr , may need to be modified The analysis
that led to the buckling load can be used to determine the effective horizontal stiffness
in the presence of axial load (Koh and Kelly 1987). Consider a horizontal force, FH , at
the top of a bearing. When the resulting displacement at the top, v(h), is computed, then
the horizontal stiffness, KH , is given by

KH = FH
v(h)

(5.40)
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The basic equations, Equations (5.16a) and (5.16b), are solved using the boundary
conditions

v(0) = 0, ψ(0) = 0, ψ(h) = 0, H0 = −FH (5.41)

Thus

v(x) = Acos(αx) + B sin(αx) + M0

P
− FH

P
x (5.42a)

and

ψ(x) = αβB cos(αx) − αβAsin(αx) − FH
P

(5.42b)

Using the boundary conditions, we have

A= FH
P

cos(αh) − 1
αβ sin(αh)

(5.43)

and

B = FH
αβP

(5.44)

When these are substituted back into Equation (5.42a), we obtain

v(h) = FH
αβP

(
2 tan

(
αh
2

)
− αβh

)
(5.45)

for the displacement evaluated at x = h. Thus the horizontal stiffness is

KH = FH
v(h)

= αβP

2 tan
(

αh
2

)
− αβh

(5.46)

When αh → π , the term tan(αh/2) → ∞ and KH → 0. For small values of P,

α2 → P
EIS

and β → 1 − P
GAS

(5.47)

Expanding 2 tan(αh/2) in a Taylor series gives

2 tan
(

αh
2

)
= αh + 1

12
(αh)3 + · · ·
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so that

KH = α [1 − P/ (GAS)] P
1

12
α3h3 + αh

P
GAS

≈ P
1

12
P
EIS

h3 + Ph
GAS

= 1
h3/(12EIS) + h/(GAS)

≈ GAS

h

(
1 − GASh2

12EIS

)
(5.48)

The second term in the brackets is the effect of the bending flexibilit on the stiffness.
For circular isolators this is

h2

6 S2R2

and is generally negligible compared to the firs term.
For values of P between PS and PE , the approximations that led to Equation (5.26)

give

α2 = P2

EISGAS
(5.49)

and

αh = π

(
P
Pcrit

)

β = GAS

P
= PS

P

(5.50)

leading to

KH = GAS

h

π

2
P
Pcrit

tan
(

π

2
P
Pcrit

)
− π

2
P
Pcrit

GAS

P

(5.51)

When P is close to Pcrit, the tangent term dominates and an approximation can be made

KH = GAS

h

π

2
P
Pcrit

tan
(

π

2
P
Pcrit

) (5.52)

as shown in Figure 5.4, with the exact result, Equation (5.51), also shown for com-
parison. Although Equation (5.52) is only valid when P is near Pcrit, it is a good
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Figure 5.4 Influenc of the axial load on the horizontal stiffness. Solid line: “exact”, Equa-
tion (5.51) with GAS/P = 0.05; dashed line: approximation of Equation (5.52); dash-dotted
line: approximation of Equation (5.53)

approximation over the entire range of P; however, an even simpler fi to the exact
result is the function

KH = GAS

h

[
1 −

(
P
Pcrit

)2
]

(5.53)

which is also shown in Figure 5.4.
The exact value of KH can be most easily expressed in terms of dimensionless quan-

tities p and λ, if we introduce the load, PA, by

P2
A = π2EISGAS

h2 (5.54)

(PA is Pcrit when PS 	 Pcrit 	 PE ) and p = P/PA, λ = GAS/PA. In terms of these
variables, we have

KH = GAS

h

π

2
p2/3(p + λ)−1/2

tan
[π

2
p1/2(p + λ)−1/2

]
− π

2
p1/2λ(p + λ)−1/2

(5.55)

The value of λ is
√

2h/(πSR) and generally is small compared with one.
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5.4 Downward Displacement of the Top of a Bearing

The downward displacement of the top of a bearing due to a horizontal displacement
is often needed in the design process, and this can also be calculated using the buckling
analysis. Suppose that the bearing is just at critical load, but undeflected and imagine
the work done externally and internally as it moves to a buckled position. The external
work is denoted by Pδv, where δv is the downward displacement, since we assume that
the load remains constant during this process. The internal work, WD, is given by

WD = 1
2

h∫
0

[V(v′ − ψ) + Mψ ′]dx (5.56)

but by equilibrium Equations (5.2a) and (5.2b),

V = −H0 + Pψ

M = M0 + H0x − Pv + Pv0

(5.57)

so that

WD = 1
2

h∫
0

[
(−H0 + Pψ) (v′ − ψ) + (M0 + H0x − Pv + Pv0) ψ ′] dx

= 1
2
P

h∫
0

(
ψv′ − ψ2 − vψ ′) dx

−1
2
H0

h∫
0

[(v′ − ψ) − xψ ′]dx + (M0 + Pv0) [ψ(h) − ψ(0)] (5.58)

In the buckling problem, we have v0 = 0, ψ(0) = 0, ψ(h) = 0, and H0 = 0. Accordingly,
the work equality becomes

Pδv = P
2

h∫
0

(
2ψv′ − ψ2) dx (5.59)

The implication of this result is that the downward displacement is given by

δv = 1
2

h∫
0

(
2ψv′ − ψ2) dx (5.60)
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Figure 5.5 Geometry of the axial displacement of a bearing due to lateral deformation

Although somewhat counter intuitive, this result can be obtained geometrically, as
shown in Figure 5.5. Here the downward displacement is represented by the displace-
ment, u, in the x, or axial, direction. We visualize a displacement of the center line of
the element through an angle of v′ − ψ with no downward displacement, then a further
rotation of the entire element through an angle, ψ . The change in the projected length of
the element, shown as du in the figu e, is given by

du = da (cos(v′ − ψ) − cos v′) (5.61)

where

da = dx
cos(v′ − ψ)

(5.62)

Since

cos(v′ − ψ) − cos v′ = −2 sin
[

1
2

(v′ − ψ + v′)
]

sin
[

1
2

(v′ − ψ − v′)
]

when we use small-angle approximations for sine and cosine, we have

du = dx
(

1 + 1
2

(v′ − ψ)2
) (

1
2

(2v′ − ψ)ψ
)

(5.63)
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leading to

δv = 1
2

h∫
0

(2v′ − ψ)ψ dx (5.64)

When the bearing is buckled, the relationship between the vertical movement and the
lateral displacement is given by Equation (5.64) by inserting

v(x) = δ

2

(
1 − cos

πx
h

)

ψ(x) = αβδ

2
sin

πx
h

(5.65)

giving

δv = 1
2

h∫
0

(
2
αβδ

2
π

h
δ

2
− α2β2δ2

4

)
sin2 πx

h
dx

= αβπ

8

(
1 − αβh

2π

)
δ2 (5.66)

At buckling, αh = π , so

δv = π2

8 h
β

(
1 − β

2

)
δ2 (5.67)

Since

β = GAS

GAS + Pcrit
≈ GAS

Pcrit
	 1 (5.68)

δv = π 2GAS

8 hPcrit
δ2 (5.69)

Using the approximation for Pcrit in Equation (5.26) for a circular bearing with radius
R, we have

δv =
√

2π

8SR
δ2 (5.70)

which surprisingly does not depend on the height of the bearing. For example, suppose
R = h, δ = h, S = 10, then

δv =
√

2π

80
h = 0.055 h
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Although the same procedure can be used to estimate δv when P < Pcrit and the bearing
is laterally displaced, the algebraic complexity has reached the point of diminishing
returns. A simpler model will be developed in Section 5.5.

The previous result Equation (5.60) can be used to calculate the displacement of the
top of the bearing when it is loaded by a lateral load FH and a downward vertical load P.

The starting point for the calculation is the solution for v(x) and ψ(x), namely

v(x) = FH
αβP

[
sin(αx) − αβx + 1 − cos(αh)

sin(αh)
(1 − cos(αx))

]
(5.71)

and

ψ(x) = FH
P

[
1 − cos(αh)

sin(αh)
sin(αx) − (1 − cos(αx))

]
(5.72)

from these, we have

v(h) = δh = FH
αβP

(
2

1 − cos(αh)
sin(αh)

− αβh
)

(5.73)

and

v′(x) = FH
βP

(
cos(αx) + 1 − cos(αh)

sin(αh)
sin(αx) − β

)
(5.74)

Using Equations (5.72) and (5.74), we form the product

2ψv′ − ψ2 = F 2
H

βP2 {−2[β cos αh cos2 αx − β cos αh + cos αh − 2 cos αh cos2 αx

+ cos αh cos αx − 1 + sin αh sin αx − 2 sin αh cos αx sin αx

+β cos αx sin αx sin αh + cos αx]/[cos αh + 1]} (5.75)

Integrating this expression from x = 0 to x = h, and plugging into Equation (5.64)
leads to

δv = 1
2
F 2
H

βP2

αhβ cos αh − 2 sin αh + 2αh − β sin αh
α(cos αh + 1)

(5.76)

The terms FH and P can be eliminated by dividing this by the square of δh from
Equation (5.73), giving

δv =
[
αhβ

2
αhβ cos(αh) − 2 sin(αh) + 2αh − β sin(αh)

−4 cos(αh) + β2α2h2 cos(αh) + 4 + β2α2h2 − 4βαh sin(αh)

]
δ2
h

h
(5.77)

In Equation (5.77) the expression in the brackets is a function of the two dimensionless
quantities αh and β both of which depend on the vertical load P. The result shows
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that when the bearing parameters PS and PE are specified the vertical displacement is
quadratic in the lateral displacement δh and can easily be computed for any value of
axial load.

If we use the approximations made in the earlier section neglecting GAS as compared
with P, giving αh = πp and β ≈ 0, this reduces to

δv = πGAS

4Pcrit

(
πp − sin(πp)
1 − cos(πp)

)
δ2
h

h
= πGAS

4Pcrit
f (πp)

δ2
h

h
(5.78)

The function f (x) = (x − sin x)/(1 − cos x) varies from 0 when x = 0 to π/2 when
x = π and increases monotonically over the range 0 ≤ x ≤ π . When x is replaced by −x,
it is anti-symmetric, i.e., f (−x) = − f (x). The derivative

f ′(x) = (1 − cos x) − x sin x
(1 − cos x)2 (5.79)

is symmetric and varies from 1/3 to 1 as x varies from 0 to π and monotonically increases
over this range.

The vertical stiffness of the isolator in the undeformed position is given by

K 0
v = Ec AS

h
(5.80)

where Ec is the compression modulus given by

Ec = 6GS2 (5.81)

The vertical stiffness when sheared through a displacement δh will be

Kv =
(

dδ
t
v

dP

)−1

(5.82)

where

δtv = Ph
Ec AS

+ δv (5.83)

Now

dδv

dP
= dδv

dx
dx
dP

= π 2GAS

4P2
crit

f ′(πp)
δ2
h

h
(5.84)

giving

Kv = K 0
v

1

1 + π2

4
GASEc AS

P2
crit

f ′(πp)
δ2
h

h

(5.85)
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Since P2
crit = GASEIS(π2/h2), this becomes

Kv = K 0
v

1

1 + 3
4
f ′(πp)

δ2
h

r2

(5.86)

where r2 = I/A. For a circular bearing of diameter �, r 2 = �2/16 leading to

Kv = K 0
v

1

1 + 12 f ′(πp)
δ2
h

�2

(5.87)

In many cases the displacement can be a significan fraction of the diameter so that
the vertical stiffness can be considerably reduced by the lateral displacement. This
result has implications for the computer modelling of isolation bearings. The models
of isolators in most structural analysis programs have two sets of independent springs
that represent the horizontal stiffness and the vertical stiffness. This result shows that
if we are to properly model an isolator, we need to include the interaction between the
vertical stiffness and the horizontal displacement. In principle this could be done by a
finit element model, but this is much too complicated to be included in a structural
analysis program. In the next section, however, we will demonstrate a simple two-
spring mechanical model that will very accurately represent the behavior of a bearing
including interaction between these quantities, and that could be easily incorporated
into a structural analysis program.

5.5 A Simple Mechanical Model for Bearing Buckling

There are a number of other aspects of bearing behavior that can be modelled using the
shear-weak column theory, but the algebraic complexity becomes considerable and one
loses the direct physical understanding of the phenomenon that is useful in design. The
other aspects of bearing behavior that are useful to cover are the downward movement of
the top of the bearing produced by horizontal displacement, the postbuckling behavior,
and the influenc of the axial load on the damping in the bearing. To provide a simple
physical interpretation of these factors, a simple mechanical model with two mechanisms
of deformation has been developed that closely fit the exact theory and demonstrates
these aspects of bearing behavior in a simple way.

In the model shown in Figure 5.6, two rigid elements in the shape of tees are connected
by moment springs across hinges at top and bottom and by shear springs and friction-
less rollers at mid-height. The two deformation variables shown are shear displacement,
s, and relative rotation, θ ; the two moment spring stiffnesses are shown as K1/2 each
(moment/radian), the shear spring stiffness as K2 (shear force/displacement), the ver-
tical load as P, and the horizontal load at the top of the column as FH . The horizontal
displacement, v, of the top of the column is given, in terms of s and θ , by

v = h sin θ + s cos θ (5.88)
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Figure 5.6 A simple two-spring model of an isolation bearing

Or, if we assume the displacements and rotations to be small, is

v = hθ + s (5.89)

To relate the quantities of this system to those of the exact theory, we recognize that if
the shear stiffness, K2, is set to infinit , the buckling load of the model is K1/h. On the
other hand, if the rotational spring stiffness, K1, is infinit and only shear deformation is
allowed, the horizontal stiffness is K2h. It follows that K1 should be equated to PEh and
K2 to GAS/h, where PE = π2EIS/h2 is the Euler buckling load of the column neglecting
shear deformation, and GAS and EIS are the effective shear and bending stiffnesses of
the bearing. As before, it is convenient to write GAS as PS.

If we assume small displacements i.e., Equation (5.89), the equilibrium equations
become

(PE − P) θ − P
s
h

= FH (5.90)

and

− Pθ + PS
s
h

= FH (5.91)

If FH = 0, the possibility of nonzero values of θ and s/h leads to the determinental
equation

(PE − P) PS = P2 = 0 (5.92)

This is the same equation for the buckling load as that developed for the exact theory in
Equation (5.23).
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When the horizontal force, FH , is present, the solutions for θ and s are

θ = FH
PS + P

PSPE − PPS − P2

s
h = FH

PE
PSPE − PPS − P2

(5.93)

The horizontal stiffness of the model is given by

KH = FH/v (5.94)

and

v = hθ + s = hFH (PS + P + PE )
PSPE − PPS − P2 (5.95)

so that

KH = 1
h
PSPE − PPS − P2

PE + P + PS
(5.96)

To the same order of approximation that gave the buckling load as (PE PS)1/2, this
result reduces to

KH = GAS

h

(
1 − P2

PSPE

)
(5.97)

This result is identical to the approximate Equation (5.53) and is plotted in Figure 5.4 for
comparison with the exact formula, Equation (5.51), for GAS/P = 0.05.

The downward movement of the top of the bearing due to the horizontal displacement
can also be derived from this model. The height reduction of a bearing is often useful to
know for detailing adjacent foundation components. If we assume a small rotation, the
downward movement of the top of the bearing, denoted by δv, is given by

δv = sθ + hθ2/2 (5.98)

If we substitute for θ and s/h, using Equation (5.93), and eliminate FH in terms of v from
Equation (5.95), we have

δv = v2

2 h
(GAS + P) (GAS + P + 2PE )

(GAS + P + PE )2 (5.99)

Since PE is very much larger than P or PS, we can approximate this expression by

δv = v2

h
GAS + P

PE
(5.100)
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Koh and Kelly (1987) presented the exact form of this result. The result above, however,
is considerably simpler and has been verifie by experimental work presented in the
same publication. This simplifie result is very useful for practical applications and
can be used to estimate the vertical stiffness of an isolator in a deformed position. This
parameter is necessary for some applications, and the standard recommendation is to
use the formula KV = Ec A/tr , replacing the area, A, by the area of overlap between
the top plate and the bottom plate when the bearing is displaced horizontally. This
very simplistic approach is not based on rational analysis; it ignores the fact that the
downward movement of the top of the bearing (with respect to the bottom during
lateral displacement) is caused by a tilting of the reinforcing layers at the middle of the
bearing away from the end restraints. This tilting process means that some of the layers
experience a shear stress produced by the component of the vertical load in the direction
of the rotated plates.

Thus, if we take the horizontal displacement, v, to be f xed and vary load P, the
additional displacement, δv, due to the column action of the bearing is given by
Equation (5.100), and the total vertical displacement, which includes δv and the com-
pression of the rubber, δtv, is

δtv = Ph
Ec AS

+ GAS + P
PE

v2

h
(5.101)

The instantaneous vertical stiffness is given by

KV = dP
dδ

t
v

= 1
h/ (Ec AS) + v2/ (PEh)

(5.102)

Recalling that PE = π2EIS/(3 h2), this reduces to

KV = Ec AS
h

1
1 + (3v2) / (π2r2)

(5.103)

For a circular bearing, r = �/4; therefore

3v2

πr2 = 1 (5.104)

when

v2 = π2

3
�2

16
(5.105)

or when

v = 1√
3

π

4
� = 0.45 � (5.106)
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It follows that the influenc of horizontal displacement on the vertical stiffness can play
a significan role at displacements that are comparable to the bearing diameter.

5.5.1 Postbuckling Behavior

The behavior of a bearing under large displacements can be described by the simple
two-spring model if we do not linearize the equations of equilibrium, but retain the
exact trigonometric terms. The equations of equilibrium are

Pv + hFH cos θ = PEh θ

P sin θ + FH cos θ = PS
s
h

(5.107)

(where the small term FHs sin θ has been neglected) with displacement v related to θ

and h by Equation (5.88). The second of the equations of equilibrium allows us to solve
for s/h in terms of θ , which when substituted into the firs equation gives

P sin θ + P (FH cos θ + P sin θ)
PS

cos θ + FH cos θ = PEθ (5.108)

Equations (5.88) and (5.108) can be used in two ways. We can fi FH and solve the second
as a quadratic equation for P in terms of θ , and from the first we can determine the value
of v that corresponds to this value of P, thus obtaining a relationship for P as a function
of horizontal displacement v. For example, to determine whether or not the postbuckled
state is stable, we set FH = 0 and solve for P to obtain

P = PS
2 cos θ

[(
1 + 4

PE
PS

θ

tan θ

)1/2

− 1

]
(5.109)

and

v
h

= sin θ

2

[
1 +

(
1 + 4

PE
PS

θ

tan θ

)1/2
]

(5.110)

The dominant term in both equations is PE/PS, and to the same level of approximation
that gave the critical load as (PS/PE )1/2, these two equations can be approximated by

P = (PSPE )1/2

cos θ

(
θ

tan θ

)1/2

(5.111)

and

v
h

= sin θ

(
PE
PS

)1/2 (
θ

tan θ

)1/2

(5.112)
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To determine whether the bearing is stable in the postbuckled configuration it is only
necessary to determine the sign of dP/dv. Now

dP
dv

= dP
d θ

d θ

dv
(5.113)

and

dP
d θ

= (PE PS)1/2
(

sin(2 θ )
2 θ

)1/2 sin(2 θ ) − 2 θ cos(2θ )
(sin(2 θ ))2

dv
d θ

= h (PE PS)1/2
(

2
θ sin(2 θ )

)1/2 sin(2 θ ) − 2 θ cos(2 θ )
4

(5.114)

so that

dP
dv

= PS
h

sin(2 θ ) − 2 θ cos(2 θ )
sin(2 θ )(sin(2 θ ) + 2 θ cos(2 θ ))

(5.115)

which can be written as

dP
dv

= PS
h

tan(2 θ ) − 2 θ

sin(2 θ )(tan(2 θ ) + 2 θ )
(5.116)

Now, tan(2θ ) > 2θ for 0 < θ < π/2, so that dP/dv > 0 over this range, therefore, the
bearing is stable (i.e., the equilibrium load P increases as v increases).

Another way to interpret the equations is to assume that P is fixed solve the firs
equation for FH as a function of θ , the second equation for v as a function of θ , and then
determine a relationship for FH as a function of v for constant P. First we get

FH = PSPE θ − PPS sin θ − P2 sin θ cos θ

cos θ (PS + P cos θ )
(5.117)

and the second equation

v
h

= sin θ

(
P
PS

cos θ + 1
)

+ FH cos2 θ

PS
(5.118)

becomes

v
h

= PE θ cos θ + P cos θ sin θ + PS sin θ

PS + P cos θ
(5.119)

By making the same approximations as before, these become

FH = PE PS θ − P2 sin θ cos θ

P cos2 θ
(5.120)
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and

v
h

= PE θ + P sin θ

P
(5.121)

Again, we are interested in the sign of the derivative dFH/dv, for if it becomes negative,
it implies that the bearing could become unstable under a lateral force, FH , for vertical
loads that do not exceed (PSPE )1/2. Proceeding in the same way as before, we have

dFH
d θ

= PSPE (cos θ + 2 θ sin θ ) − P2(cos θ cos(2θ ) + sin θ sin(2θ ))
P cos3 θ

(5.122)

and

dv
dθ

= h
PE + P cos θ

P
(5.123)

so that

dFH
dv

= P
h
PSPE (cos θ + 2θ sin θ ) − P2 cos θ

(PE + P cos θ ) cos3 θ
(5.124)

The denominator of this expression is always positive, and the numerator is positive if

PSPE
P2 >

cos θ

cos θ + 2θ sin θ
= 1

1 + 2θ tan θ
(5.125)

Now, PSPE/P2 will always be greater than 1, and because θ tan θ > 0 for 0 < θ < π/2,
the right-hand side is always less than one over this range, therefore, the bearing is
always stable.

5.5.2 Influenc of Compressive Load on Bearing Damping Properties

The simple two-spring model can also be used to estimate the effect of the vertical
load on the damping properties of a bearing. In this case we replace E and G by
E∗ = E(1 + i tan δ) and G by G∗ = G(1 + i tan δ), where δ is define as the loss angle
of the material and tan δ the loss factor of the rubber. The corresponding quantities, P∗

E ,
P∗
S , are define as

P∗
E = PE (1 + i tan δ)

P∗
S = PS(1 + i tan δ)

(5.126)

The horizontal stiffness becomes

K ∗
H = P∗

S

h
P∗
S P

∗
E − PP∗

S − P2

P∗
S P

∗
E + PP∗

S + P∗2
S

(5.127)
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The corresponding complex rotations, θ∗, and shear deformation, s∗, are given by

θ∗ = FH
P∗
S + P

P∗
S P

∗
E − PP∗

S − P2

s∗

h
= FH

P∗
E

P∗
S P

∗
E − PP∗

S − P2

(5.128)

from which we see that the phase angle for θ∗ and s∗ differs if δ �= 0.
The dynamic shear stiffness of the bearing, KD, is define by

KD = ∣∣K ∗
H

∣∣ (5.129)

and the loss factor, tan η, for the bearing, as opposed to that for the material (e.g., tan δ), is
define by

tan η = Im(K ∗
H)

Re
(
K ∗
H

) (5.130)

The results for a number of cases can be evaluated easily. For example, if PE � GAS > P ,
which define the case when the entire deformation is shear deformation, the loss factor
for the bearing becomes

tan η = tan δ (5.131)

Thus, the loss factor is unaffected by compressive load, and no amplificatio of the
damping occurs. On the other hand, if PS = GAS � PE > P , which is the situation that
leads to flexura deformation only, the loss factor of the bearing becomes

tan η = tan δ

1 − P/PE
(5.132)

In this case the buckling load is PE ; therefore, although an amplificatio of the damping
occurs, it is solely due to the reduction in the stiffness, i.e., Re(K ∗

H), as a result of the axial
load. There is no increase in the energy dissipated over a complete cycle.

For the typical bearing where PE � GAS but P > GAS, the result for the loss
factor becomes

tan η = tan δ
1 + tan2 δ + P2/P2

crit

1 + tan2 δ − P2/P2
crit

(5.133)

where Pcrit = √
PE PS. The term in the denominator comes from the reduction in the

stiffness, but the term in the numerator shows that the total energy dissipated in a cycle
increases. This increase in the energy dissipation in a cycle is due to the compression
load increasing the phase difference between the force, FH , and displacement, v, through
its effects on θ and s. It is also significan that the dynamic stiffness, KD, does not vanish
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at the static buckling load, Pcrit = √
PE PS, but at Pcrit(1 + tan2 δ)1/2; however, since tan δ

is generally no more than about 0.20–0.30; in practice the increase can be neglected.
The accuracy of these predictions of the enhancement of damping by the axial load

was verifie by a testing program on reduced-scale natural rubber bearings conducted at
the Earthquake Engineering Research Center (EERC), University of California, Berkeley.
The results, given in Koh and Kelly (1987) verify that the simple two-spring model
can be used to accurately predict the downward movement resulting from horizontal
displacement and the damping and dynamic stiffness as influence by the axial load.

5.6 Rollout Stability

An isolation bearing, even if inherently stable under its design load, can experience
another form of instability if it is connected to the foundation below and the super-
structure above through shear keys that cannot sustain tensile loads. Initially designers
felt that rubber should not be subjected to tension, therefore, early designs of rubber
bearings used dowelled shear connections rather than bolted connections. Dowelled
bearings, however, can experience an unstable mode of behavior – called rollout – that
is associated with lateral displacement and which puts a limit on the maximum dis-
placement that the bearing can sustain. The bearing is unstable in the sense that beyond
this displacement, the force–displacement curve has a decreasing slope. Because the
bearing cannot sustain tension, the movement at the top and bottom of the bearing is
produced by a change in the line of action of the resultant of the vertical load, as shown in
Figure 5.7(a). The limit of this migration of the resultant is reached when the resultant is
at the edge of the bearing, and equilibrium of the moment generated by the lateral force,
FH , with that generated by the vertical load, P, gives

P (b − δmax) = hFH (5.134)

where b is the bearing width (either a if square or � if circular). The relationship between
the lateral force, FH , and the displacement, δ, is shown in Figure 5.7(b).

If we take FH = KHδ, then this gives

δmax

b
= P

P + KHh
(5.135)

If we take KH as GA/tr and the pressure, p = P/A, this becomes

δmax

b
= 1

1 + G
p
h
tr

(5.136)

In typical bearings whereG≈ 0.828 MPa (120 psi), p≈ 6.90 MPa (1000 psi), and h = 1.2tr ,
for example,

δmax

b
= 0.88
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Figure 5.7 Mechanics of rollout for dowelled bearings

Thus, if the lateral displacement is less than about 88% of the least plan dimension
of a dowelled bearing, it can be expected to be stable against rollout. Conversely, if a
bearing is bolted into place, no significan tension will develop in the bearing until the
displacement exceeds this value. Tests conducted at the EERC, and in Japan demonstrate
that rubber is capable of sustaining quite high tensile stresses, and it has now become
more common to use bolted rather than dowelled connections for isolation bearings.
Additional research, however, needs to be done as the failure process in tension is not
yet well understood; in bearings it can involve cavitation in the rubber (Gent and Lindley
1959a) or loss of bond. Although some tests (Kelly 1991) have shown that there have
been cases where the displacement has exceeded the bearing diameter, it is certainly
good design practice to limit the displacement to the rollout value, even when bolted
connections are used.
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5.7 Effect of Rubber Compressibility on Buckling

In the previous chapter, it was shown that bulk compressibility in the rubber had a
surprisingly large effect on both the compression stiffness and bending stiffness of a
bearing even for shape factors as low as 10. The impression given by Equation (5.32)
is that it is possible to improve the stability of a bearing with a certain diameter and
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Figure 5.8 Effect of compressibility on buckling load
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thickness of rubber by the simple process of increasing the shape factor, i.e., increasing
the number of layers and reducing their thickness. However, because of the effect of
bulk compressibility on the effective stiffness, the improvement is limited. We assume
that the buckling load is given by the solution in Equation (5.26) but use

PS = GA
h
tr

PE = π2

h2 (EI)eff
h
tr

(5.137)

and substitute for (EI)eff the expression

(EI)eff = KπR4

4

(
1 − 4 I2(λR)

λRI1(λR)

)
(5.138)

where λR =
√

48GS2/K . The resulting value of the critical load, Pcrit, can be reduced to
an expression that depends only on the quantity λR by dividing by the result for the
critical load when the material is taken as incompressible, P0

crit, leading to

(
Pcrit
P0
crit

)2

= 24
λ2R2

(
1 − 4 I2(λR)

λRI1(λR)

)
(5.139)

or, in term of the shape factor, shear and bulk modulus,

(
Pcrit
P0
crit

)2

= 1

2GS2

K

⎛
⎜⎜⎜⎜⎝1 −

4 I2

(√
48G
K

S

)

√
48G
K

SI1

(√
48G
K

S

)

⎞
⎟⎟⎟⎟⎠ (5.140)

The graphs in Figure 5.8 show that there is a significan reduction of the buckling load
when compressibility is taken into account. They also indicate that the effort to get a
higher bucking load by increasing the shape factor is self-defeating. While the incom-
pressible analysis suggest that the bucking load will increase linearly with increasing
shape factor, this result shows that this is not the case. Most bearing designs at present
use very large shape factors in the range of 30–40 in an attempt to get a larger buckling
load, but to no avail.
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6
Buckling of Multilayer
Rubber Isolators in Tension

6.1 Introduction

We recall from the last chapter that the equation for the buckling of the isolator in
compression is

P2 + PSP − PSPE = 0 (6.1)

where PS = GAS and PE = π2ESI/h2. This equation has two solutions, one of which is
positive and the other negative. These solutions are given by

Pcrit =
−PS ±

√
P2
S + 4PSPE

2

The compression solution has been treated in detail in the last chapter. The negative
solution

Pcrit =
−PS −

√
P2
S + 4PSPE

2
(6.2)

implies that there exists a tensile buckling load, and the question now is the significanc
of that solution. The tensile critical load, which, if the isolator has a shape factor larger

The material in Sections 6.2 and 6.3 firs appeared in the article by Kelly, J. M. (2003). “Tension
Buckling in Multilayer Elastomeric Bearings.” Journal of Engineering Mechanics (ASCE), 129(12), 1363–1368.
DOI 10.1061/(ASCE)0733-9399(2003)129:12(1363). Reproduced with permission from ASCE.

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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than say 5, as shown in the previous chapter in Equation (5.26), is the negative of the
compression critical load. We can then defin a tension critical load by

Tcrit =
√
PSPE (6.3)

The unexpected implication of this result is that there is a tensile buckling load for
this type of rubber component that has the same numerical value as the compression
buckling load. In addition, the quantities α and β when P is replaced by –T become

α2 = T(T − GAS)
E ISGAS

(6.4)

β = − GAS

T − GAS
(6.5)

so that if T > GAS, the buckled shape in tension is the same solution as in the com-
pression case. Since the value of β is now negative, the rotation ψ(x) (Equation 5.20) is
reversed, and the central layers are rotated in the direction that facilitates the upward
movement of the top of the isolation through a shear deformation. Of course this buck-
ling load could not be achieved in practice since the rubber will have cavitated before
the bearing buckles, but the tensile buckling load and buckled shape are opposites of
the compression case due to the fact that the deformation is entirely shear – and shear is
intrinsically symmetric.

There are many examples of strange systems that buckle in tension, but these are
entirely pathological in that the tension forces are always transferred to compression
elements that produce the instability. This is not the case here. The buckling process
is really tensile. The linear elastic model that leads to both compression and tension
buckling is an extremely simple one, and it might be argued that the tensile buck-
ling may be an artifact of the model itself and not of the isolator. For this reason it
was decided to verify the results of the simple model by numerical simulation us-
ing a finit element model of a multilayer rubber bearing to show that the prediction
of tensile buckling by the simple linear elastic theory is in fact accurate and not an
artifact of the way the model was set up. This numerical experiment, done in two di-
mensions to reduce the size of the computation, simulates the behavior of a bearing
in the shape of a long strip, and it shows clearly that tensile bucking is a real pos-
sibility and not an artifact of the model. The essential point is that the mechanics of
the isolator in tension are the mirror image of those of the isolator in compression.
In particular when the isolator is in compression below the buckling load, but later-
ally displaced, the layers in the center experience rotations that give the vertical load
a component along the layer, causing a shear deformation. In tension the layers in
the center experience rotations in the opposite direction, giving a shear deformation
due to the tensile force that permits the top of the isolator to move upwards by a
much larger displacement than that which could be sustained in pure tension with no
lateral displacement.
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6.2 Influenc of a Tensile Vertical Load on the Horizontal Stiffness

If the load carried by a bearing is comparable to the buckling load, then the simple
formula for horizontal stiffness, KH = GA/tr = GAS/h, may need to be modified The
analysis that led to the buckling load can be used to determine the effective horizontal
stiffness in the presence of axial load. Consider a horizontal force, FH, at the top of a
bearing. When the resulting displacement at the top, v(h) = δh, is computed, then KH is
given by

KH = FH
v(h)

= FH
δh

(6.6)

The basic equations, Equations (5.42a) and (5.42b), are solved using the boundary
conditions

v(0) = 0, ψ(0) = 0, ψ(h) = 0, H0 = −FH (6.7)

Thus

v(x) = A cos(αx) + B sin(αx) + M0

P
− FH

P
x (6.8a)

and

ψ(x) = αβ B cos (αx) − αβAsin (αx) − FH
P

(6.8b)

Using the boundary conditions, we have

A= FH
P

(cos(αh) − 1)
1

αβ sin (αh)
= −M0

P
(6.9)

and

B = FH
αβP

(6.10)

When these are substituted back into Equation (6.8a) we obtain

v(x) = FH
αβP

[
1 − cos(αh)

sin (αh)
(1 − cos (αx)) + sin (αx) − αβx

]
(6.11a)

ψ(x) = FH
P

[
1 − cos (αh)

sin (αh)
sin (αx) − (1 − cos (αx))

]
(6.11b)
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The horizontal displacement at x = h is given by

δh = v(h) = FH
αβP

(
2 tan

(
αh
2

)
− βαh

)
(6.12)

and the rotation at x = h/2 is

ψ

(
h
2

)
= FH

P

⎛
⎜⎜⎝

1 − cos
(

αh
2

)

cos
(

αh
2

)
⎞
⎟⎟⎠ (6.13)

The horizontal stiffness KH is given by Equation (6.6)

KH = FH
δh

= αβP

2 tan
(

αh
2

)
− βαh

(6.14)

When P is replaced by –T, and T > GAS, both β and P change sign in Equation (6.14),
and the stiffness is still positive, but the rotation at the center of the isolator changes
sign, facilitating the upward displacement of the top.

When T < GAS, the solution for this case will involve hyperbolic instead of trigono-
metric functions, and, when T = GAS, the firs terms in the basic Equations (5.10a) and
(5.10b) become indeterminate. The solutions for v(x) and ψ(x) for this case are

v(x) = FH
GAS

x (6.15a)

ψ(x) = 0 (6.15b)

Thus the deformation is one of pure shear, and it is easy to show from Equation (5.60)
that there is no change in height in the bearing (Kelly 2003).

The result for the influenc of the vertical load on the horizontal stiffness does not
give physical insight into the effect, but if we recall that the value of GAS is very small as
compared with PE and P, we can approximate αh and β by αh = πp (where p = P/Pcrit)
and β ≈ GAS/P, which is much less than 1, giving

KH = GAS

h
πp

2 tan(πp)
(6.16)

which leads to KH = GAS/h = GA/tr as p → 0, and KH → 0 as p → 1. When P is replaced
by –T and p by –t, where t = T/

√
PE PS, we get the same result, showing that both P and

T affect the stiffness in a symmetric way.
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6.3 Vertical Displacement under Lateral Load

The previous result Equation (5.60) can be used to calculate the displacement of the top
of the bearing when it is loaded by a lateral load FH and a tension load T > GAS.

The starting point for the calculation is the solution for v(x) and ψ(x), namely Equations
(6.11a) and (6.11b). Evaluating Equation (6.11a) at x= hgives the horizontal displacement

δh = v(h) = FH
αβP

(
2

1 − cos (αh)
sin (αh)

− βαh
)

(6.17)

Differentiating (6.11a), we obtain

v′(x) = FH
βP

(
cos (αx) + 1 − cos (αh)

sin (αh)
sin (αx) − β

)
(6.18)

and using Equation (6.11b), we form the product

2ψv′ − ψ2 = F 2
H

βP2 {−2[β cos αh cos2 αx − β cos αh + cos αh − 2 cos αh cos2 αx

+ cos αh cos αx − 1 + sin αh sin αx − 2 sin αh cos αx sin αx + β cos αx sin αx sin αh

+ cos αx]/[cos αh + 1]}

Integrating this expression from x = 0 to x = h gives

δv = 1
2

h∫
0

(2ψv′ − ψ2) dx = 1
2
F 2
H

βP2

(
αhβcos(αh) − 2sin(αh) + 2αh − β sin (αh)

α(cos(αh) + 1)

)
(6.19)

The terms FH and P can be eliminated by dividing this by the square of δh from Equation
(6.17), giving

δv = βαh
2

(
βαh cos (αh) − 2 sin(αh) + 2αh − β sin(αh)

−4 cos(αh) + β2α2h2 cos (αh) + 4 + β2α2h2 − 4βαh sin (αh)

)
δ2
h

h
(6.20)

In Equation (6.20), the expression in the brackets is a function of the two dimensionless
quantities αh and β, both of which depend on the vertical load, P or T. The result shows
that when the bearing parameters PS and PE are specified the vertical displacement is
quadratic in the lateral displacement δh and can easily be computed for any value of
axial load, compressive or tensile.

If we use the approximations made in the earlier section neglecting GAS as compared
to P, giving αh = πp and β ≈ 0, this reduces to

δv = πGAS

4Pcrit

(
πp − sin(πp)
1 − cos(πp)

)
δ2
h

h
= πGAS

4Pcrit
f (πp)

δ2
h

h
(6.21)
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The function f (x) = (x − sin x)/(1 − cos x) varies from 0 when x = 0 to π/2 when
x = π and increases monotonically over the range 0 ≤ x ≤ π . When x is replaced
by –x, it is antisymmetric, i.e., f (−x) = –f (x). The derivative

f ′(x) = 2(1 − cos x) − x sin x
(1 − cos x)2 (6.22)

is symmetric and varies from 1/3 to 1 as x varies from 0 to π and monotonically
increases over this range, and at say x = π/2, which corresponds to p = 1/2, it has the
value 0.429.

The vertical stiffness of the isolator in the undeformed position is given by

K 0
v = Ec AS

h
(6.23)

where Ec is the compression modulus. For a circular bearing, Ec = 6 GS2. The vertical
stiffness when sheared through a displacement δh will be

Kv =
(

dδtv

dP

)−1

(6.24)

where

δtv = P
K 0
v

+ δv = h
Ec AS

P + δv (6.25)

Now

dδv

dP
= dδv

dx
dx
dP

= π 2

4
GAS

P2
crit

f ′(πp)
δ2
h

h
(6.26)

giving

Kv = K 0
v

1

1 + π2

4
GASEc AS

P2
crit

f ′(πp)
δ2
h

h2

(6.27)

Since P2
crit = GASEIS(π2/h2), this becomes

Kv = K 0
v

1

1 + 3
4
f ′(πp)

δ2
h

r2

(6.28)
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where r2 = I/A. For a circular bearing of diameter �, r2 = �2/16 leading to

Kv = K 0
v

1

1 + 12 f ′(πp)
δ2
h

�2

(6.29)

In many cases, the displacement that is calculated from code requirements at extreme
seismic loads can be a significan fraction of the diameter so that the vertical stiffness in
both compression and tension is considerably reduced by the lateral displacement. For
example, if δh = 0.5� and p = P/Pcrit = 0.5, then Equation (6.29) gives Kv = 0.437K 0

v .
While the bearings are normally in compression, the code requirements for base-isolated
tall buildings in near-fault locations can lead to situations where peripheral bearings in
the isolation system can be required to take some amount of tension. This tension is
caused by global overturning of the building produced by the lateral inertial force at the
center of the mass of the building. The maximum inertial force and the resulting maxi-
mum overturning moment occur at the same time as the maximum lateral displacement
of the isolators, which at firs sight would seem to be a critical situation. It is well known
that elastomers, such as natural rubber (polyisoprene) or neoprene (polycloroprene),
will cavitate at a negative pressure of around 3G (Gent 1990). Since the value of G is in
the range 0.5 to 1.0 MPa (75 to 150 psi), and the state of internal stress in a thin layer
of a multilayer isolator is virtually hydrostatic, the tension stress to produce cavitation
is quite low. The tensile strain is also extremely small, since the stiffness of an isolator
in tension before cavitation occurs is the same as that in compression. The effective
compression modulus Ec of a circular pad of rubber is 6 GS2, where S is the shape factor
of an individual layer of the isolator, which can be in the range of 10 to 20, so that the
tensile strain εt at the onset of cavitation will be εt = 1/(2S2), and the corresponding
upward displacement will be of the order of a few millimeters or less.

So concerned are design engineers that an isolator not experience tension due to uplift,
that many have resorted to a design approach called “loose bolts.” This certainly solves
the tension problem, but raises other questions such as the reliability of the bolts if uplift
should occur, since the bolts will have to transfer the shear load to the isolator while
acting as cantilever elements. Other strategies have been tried, but each approach to
eliminating tension has its own disadvantages.

All current seismic isolation codes require that the prototype tests include an uplift
test if uplift is predicted by analysis. In two seismic isolation projects, isolators were
displaced laterally to very large displacements, and then the top of the isolator was
jacked up by, in one case, 12.5 mm (0.5 inch) and, in the other, by 19.0 mm (0.75 inch).
In neither case did the test isolators fail, but clearly the tensile strain greatly exceeds the
strain at cavitation. The value of the buckling theory is to explain how the isolators can
survive this tensile loading. The essential point is that the mechanics of the isolator in
tension are the mirror image of those for the isolator in compression. In particular when
the isolator is in compression below the buckling load but laterally displaced, the layers
in the center experience a rotation which gives the vertical load a component along the
layer and induces a shear deformation. In tension, the layers in the center experience a
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rotation in the opposite direction, which allows a shear deformation caused by the tensile
force and permits the top of the isolator to move upwards by a much larger displacement
than that which could be sustained in pure tension with no lateral displacement. Thus the
simultaneous occurrence of tension and shear allows the isolator to avoid the damage
of cavitation. The rubber can sustain only small strains in the state of triaxial stress
generated by pure tension on a multilayer isolator with a large shape factor, but can
sustain shear strains on the order of 500 or 600%. Thus the simultaneous occurrence of
tension and shear allows the isolator to avoid the damaging effects of cavitation.

6.4 Numerical Modelling of Buckling in Tension

6.4.1 Modelling Details

In order to verify that the tension buckling predicted by the simple analytical theory
is real, the general purpose finit element ABAQUS (HKS 2001) was used to model a
steel-reinforced multilayer bearing and to study its buckling behavior in both tension
and compression. The complete details of the procedure are given in (Kelly and Takhirov
2004). Five finit element models of a bearing were created. These numerical models all
have the same width, the same total rubber thickness, and all the steel shims have the
same thickness. The only difference between the models is the shape factor of the rubber
layers. The total thickness of rubber is the same in each model, but the thickness of
the rubber layer varies from model to model. The correspondence between the model
number and the layer thickness is given in Table 6.1.

The bearings are visualized as being long strip isolators, as shown in Figure 6.1, and
the finit element analysis is restricted to plane strain. Thus the numerical solutions to
be described in the next sections are based on a two-dimensional analysis of an isolator
with infinit length.

The y-axis of the coordinate system is a vertical axis that extends across the steel shims
and rubber layers, and the horizontal axis x corresponds to the lateral direction of the
bearing, as shown in Figure 6.1. Generally steel-reinforced rubber bearings have a hole
in the middle of the steel plates and a rubber cover on the traction-free sides of the

Table 6.1 Finite element models with various shape factors

Model
name

Steel shim
thickness

[mm]

Total rubber
thickness

[mm]
Width
[mm]

Rubber layer
thickness

[mm]
Shape
factor

Model 1 2.60 80.01 160.02 5.72 14
Model 2 2.60 80.01 160.02 8.00 10
Model 3 2.60 80.01 160.02 11.43 7
Model 4 2.60 80.01 160.02 16.00 5
Model 5 2.60 80.01 160.02 26.67 3
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Y

X

Figure 6.1 Geometry and coordinate axes of finit element simulation models

bearing. In order to create a model close to the theoretical one given earlier, the hole in
the middle and the rubber cover are not included in the consideration.

The end-plates of the bearing are assumed to be undeformable; therefore, in the finit
element model, the top rubber layer of the bearing is connected to a rigid surface with
the reference point in the middle; the vertical load is applied to this reference point.
The bottom surface of the bearing is fixed The two vertical sides of the bearing model
are traction free. The top surface is restrained against rotation about the z (out-of-plane)
axis, but free to move horizontally.

Linearly elastic material properties are assumed for the steel plates with Young’s
modulus and Poisson’s ratio equal to 200 GPa (29 000 ksi) and 0.30, respectively. Rub-
ber materials have very little compressibility compared with their shear flexibilit , and
these materials are usually modeled by a hyperelastic material model. ABAQUS (HKS
2001) has a special family of “hybrid” elements to model the fully incompressible be-
havior seen in a rubber material. The following assumptions are made in modelling a
rubber material: (1) the material is elastic, (2) the material is isotropic, (3) the material
is incompressible or almost incompressible, and (4) the simulation includes nonlinear
geometric effects.

Hyperelastic materials are described in terms of a strain energy potential, U, which
define the strain energy stored in the material per unit of reference volume (volume
in the initial configuration as a function of the strain at that point in the material. The
rubber is modelled as a polynomial hyperelastic material of the second order. In this
case, the strain energy potential has the following form:

U = 1
D1

(J el − 1)2 +
2∑

i+ j=1

Cij(I1 − 3)i (I2 − 3) j (6.30)

where Cij and D1 are the material parameters, I1 and I2 are the firs and the second
deviatoric strain invariants, respectively, and Jel is the elastic volume ratio.
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Table 6.2 Material parameters for the two rubber models

C10 C01 C20 C11 C02 D1

Rubber model [kPa] [kPa] [kPa] [kPa] [kPa] [kPa–1]

Polynomial 193.4 −0.1 −0.8 0.2 0 0
Neo-Hookean 345.0 0 0 0 0 9.7 × 10–7

Two rubber models are included in the consideration: a fully incompressible model,
called here Polynomial, and an almost incompressible model, called here Neo-Hookean
(Gent 2001). The material parameters of the rubber can be expressed in terms of initial
shear modulus, G, and initial bulk modulus, K, in the following form:

G = 2(C10 + C10)

K = 2/D1
(6.31)

The values of the material parameters for both rubber models are presented in Ta-
ble 6.2. Since D1 is not equal to zero for the Neo-Hookean model, this model allows
some compressibility in the rubber material.

A supplemental study on the properties of the rubber models was conducted with
ABAQUS on a rubber cylinder and a rubber layer. The cylinder was used to study the
material model in compression and tension, while the layer, representing one single
layer of the rubber locked between two rigid horizontal surfaces, was used to study
the material model in shear with no vertical load. While both rubber materials are
linearly elastic up to about 250% strain in shear, they exhibit nonlinearity in tension or
compression at lower strains, as shown in Figure 6.2(a) and (b).

6.4.2 Critical Buckling Load in Compression and Tension

The model was studied by a classical buckling analysis scheme available in ABAQUS.
In this approach, the buckling mode of each bearing model is determined. Very small
imperfections (about 1% of the steel layer thickness) are introduced in the model, and
they are based on the buckling mode obtained in the buckling mode analysis. The
postbuckling behavior is followed up to about 30% shear deformation.

The buckling analysis of the numerical bearing models reveals the following results.
All models have significan horizontal drift caused by a large vertical load. The curves of
the compression vertical load versus horizontal drift for all numerical models are shown
in Figure 6.3. The critical buckling load increases with the increase in the shape factor. All
plots show similar behavior with a significantl changing part before 3% deformation,
and after that they become almost fla when the bearing is buckling. Figure 6.4 presents
the corresponding curves of buckling in tension. The critical load is again dependent on
the shape factor and increases with increasing shape factor. The buckling in tension is
more sudden, so the point at which buckling starts moves very close to the vertical axis,
and the shear when the buckling starts in tension can be as low as 0.2%, as it is observed
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Figure 6.2 Behavior of the Polynomial rubber material model in: (a) shear; (b) compres-
sion/tension
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Figure 6.3 Buckling behavior in compression
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Figure 6.4 Buckling behavior in tension
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Figure 6.5 Buckled shape and von Mises stresses for Model 2 (compression)

for Model 5 with the smallest shape factor. Increase in the shape factor moves this point
closer to the 3% critical strain obtained for the compression buckling.

Figures 6.5 to 6.8 show deformed shapes of two numerical models in compression
and tension simulations.

The numerical results on buckling behavior of the bearing have satisfactory correlation
with the theoretical solutions. The theoretical study and the finit element analyses lead
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Figure 6.6 Buckled shape and von Mises stresses for Model 2 (tension)
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Figure 6.7 Buckled shape and von Mises stresses for Model 5 (compression)

to the following conclusions. The critical buckling load increases with increasing shape
factor, and it has an almost linear behavior relative to shape factor, as predicted by
the theory. The numerical compression buckling load is almost always higher than
the theoretically estimated one for all bearings. The numerical models have different
postbuckling behaviors in compression and tension. In compression, the vertical load
remains almost the same after the buckling occurs and the bearing deflect horizontally.
In contrast, the vertical load in tension slowly decreases with horizontal deflection
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Figure 6.8 Buckled shape and von Mises stresses for Model 5 (tension)
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Figure 6.9 Critical buckling load (normalized by GA) versus shape factor, S

Figure 6.9, which plots the critical load as a function of shape factor, shows no sig-
nifican differences between critical buckling load for incompressible (Polynomial) and
compressible (Neo-Hookean) rubber materials.

The theoretical buckling compression load is always less than the absolute value of
the tension load for the simple theoretical solution presented by Equation (6.2), which
is not consistent with the numerical analysis results shown in Figure 6.9. The figu e
shows that the compression buckling load is always greater than the absolute value of
the tension buckling load for the same shape factor (shown in Figure 6.9 by dashed and
dot-dashed lines, respectively). This might seem to indicate a fla in the theory, but in
fact it arises from the way length is used in elementary column buckling theory. The
theory neglects the change in length due to the axial load, whereas in the finit element
analysis lengthening or shortening has occurred when buckling initiates. For smaller
values of the shape factor, the changes in length can be significant

Using the approximations for GAS � P and the values of GAS and EIS, the critical
pressures pcrit = Pcrit/A= √

PSPE/A are given in the theoretical analysis by (Kelly and
Takhirov 2007)

pcrit
G

= ± 2πbS√
15tr

(6.32)

for a long strip bearing. Here, tr is the total thickness of rubber in the bearing. To bring
the theory into conformance with the finit element simulation, we replace tr by

tr = t0r

(
1 ∓ pcrit

4GS2

)
(6.33)
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Figure 6.10 Normalized critical load versus shape factor for strip bearing (Equations 6.32,
6.35a and 6.35b)

where t0r is the total thickness of the rubber in the undeformed configuration The minus
sign is for compression and the plus for tension. The buckling loads are then given by
(Kelly and Takhirov 2007)

pcrit
G

= ± 2πbS
√

15t0r

(
1 ∓ pcrit

4GS2

) (6.34)

So

pcrit
G

= 2S2

⎡
⎣1 −

(
1 − 2πb√

15 t0r

1
S

)1/2
⎤
⎦ , in compression (6.35a)

pcrit
G

= 2S2

⎡
⎣

(
1 + 2πb√

15 t0r

1
S

)1/2

− 1

⎤
⎦ , in tension (6.35b)

The compression and tension critical loads, Pcrit/(GA) = pcrit/G, computed by means of
Equations (6.35a) and (6.35b) are presented in Figure 6.10. It is easy to see that the value
in compression is always larger than that in tension. The difference between |pcrit/G|
in compression and tension is approximately 2(πb/(

√
15t0

r ))2. For b = t0
r , the difference

is 4/3 and thus becomes less important with increasing S.
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7
Influenc of Plate Flexibility
on the Buckling Load of
Multilayer Rubber Isolators

7.1 Introduction

In the previous two chapters, the buckling behavior in compression and tension of a
multilayer rubber bearing used for the seismic or vibration isolation of buildings or
equipment was studied under the assumption that the reinforcing steel plates were
rigid. In the buckling analysis used, the isolator was treated as a composite column with
low shear stiffness. In Chapter 5, where the buckling of bearings under compression
loading was studied, the bearing was modelled as a continuous beam and plane sections,
normal to the undeformed axis before deformation, were assumed to remain plane,
but not necessarily normal after deformation. The theory is an outgrowth of work by
Haringx on the mechanical characteristics of helical steel springs and rubber rods used
for vibration mountings. This work was published as a series of technical reports, the
third of which (Haringx 1949), covers the stability of rubber rods. The Haringx theory
was later applied by Gent (1964) to multilayer rubber bearings. In all earlier analyses of
the stability of isolators the reinforcing plates have been assumed to be rigid, and there is
no way to know how thick the plates must be in order for this to be a valid assumption,
or, if not, how thick they must be for the effect of their flexibilit to be negligible. For
seismic isolators, which are generally circular in cross-section and about 0.6 to 1 m
(24 to 40 in) in diameter and about 0.3 to 0.4 m (12 to 16 in) high, the steel reinforcing
shims are about 3.18 mm (1/8 in) thick as a general rule.

The application of seismic isolation to buildings in the United States, Japan and Europe
has been so far to large expensive buildings with sensitive internal equipment such as
computer centers, emergency operations centers and hospitals. The isolators used in
these applications are large, expensive and may weigh anywhere from 0.5 to 1.5 tons

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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(1.1 to 3.3 kips). There have been efforts to apply this approach to low-cost public
housing in developing countries or poorer regions of developed countries with severe
seismic problems. Examples of demonstration projects have been completed in Chile and
in the southern Italian region of Reggio Calabria. Demonstration projects with partial
support from United Nations Industrial Development Organization (UNIDO) were built
in Guangzhou Province, China, and in Indonesia.

To make the seismic isolation useful for such applications, it is necessary to reduce
the cost of the isolators and reduce their weight in order to limit the dependence on
site equipment. Both aims can be met either by reducing the thickness of the reinforcing
steel plates or by replacing the steel with a fabric reinforcement, such as carbon fibe
(Kelly and Takhirov 2001, Tsai and Kelly 2002). It is possible that flexibilit of the shims
or the lack of bending stiffness in the fibe reinforcement could have a large effect on the
buckling load of a bearing. It is necessary, therefore, to have a theory for the buckling of
these isolators that takes into account the flexibilit of the reinforcement; such a theory
will be covered in this chapter.

This theory is similar to the compression buckling theory of Chapter 5 in that it treats
the isolator as a composite beam. The warping of the cross-section, which is permitted by
the flexibilit of the reinforcing sheets, is taken into account by introducing an additional
kinematic displacement function, which will be referred to as the warping function. It
will be selected to produce no additional rotation of the section, but to measure the
deviation from plane of the deformed cross-section. Force resultants that arise from the
presence of this kinematic quantity are also introduced, and constitutive equations for
these quantities are derived. The appropriate equations of equilibrium incorporating
these new force quantities are developed: first in the undeformed configuratio for
non-buckling problems; secondly, in the deformed configuratio for buckling problems.

The development of the constitutive equations for rubber bearings is complicated by
the fact that the mechanical response of the thin rubber layers is governed by equations
that lead to a parabolic stress distribution under pure axial load and a cubic stress
distribution under pure bending (both with zero stress at the free edges), and these have
to be included in the buckling analysis of the isolator.

The outcome of this analysis will include completely rigid plates and completely
flexibl reinforcement as special cases, and it will show that for the typical range of sizes
of isolators for buildings, the reduction in buckling load from the completely rigid plate
case to the completely flexibl plate case is from 25 to 50%. The analysis will also show
that the 3.18 mm (1/8 in) thick steel plates have almost the same buckling load as the
completely rigid case, and that 0.79 mm (1/32 in) thick steel plates have almost the same
buckling load as the completely flexibl case. These results are very encouraging for
the design of low-cost isolators and should encourage the development of alternative
lightweight reinforcing systems.

7.2 Shearing Deformations of Short Beams

Before developing a theory for the buckling of the isolator with flexibl reinforcing
plates, it is useful to develop the theory for a simple beam of rectangular cross-section
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Figure 7.1 Beam model showing dimensions and shear loading

and to obtain the response of this beam model to the two cases: (i) simple shear, and
(ii) column buckling. The theory could be extended to arbitrary cross-sections, albeit
with a considerable increase in algebraic complexity, but for the purpose of illustration
the rectangular section is adequate. The geometry of the beam is shown in Figure 7.1.
Shear loading will be covered in this section and buckling under axial load will be
considered in the next section.

The deformation of the beam is characterized by four displacement variables, u, v, ψ

and φ, all of which are functions of x. The displacement field (u, v), shown in Figure 7.2,
is taken to be

u(x, y) = u0(x) − ψ(x)y+ φ(x) fw(y)

v(x, y) = v(x)
(7.1)

The function ψ is the average angle of rotation of the section and φ is the measure of the
warping of the section. The functions u0 and v are the displacement of the middle surface
in the x and y directions. It is convenient to select the function fw(y) to be orthogonal to
both 1 and y so that no rotation of the section is produced by fw(y); thus the product φfw
can be identifie as the deviation from a planar displacement field or in other words,
the warping of the section.

The appropriate form of fw(y) for the rectangular section is

fw(y) = y3

h3 − 3
5
y
h

(7.2)

The selection of fw(y) to be dimensionless means the warping function, φ(x), has units of
displacement.
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Figure 7.2 Displacement fiel of beam with shear and warping

The resulting strains are

εxx = u′
0 − ψ ′y+ φ′ fw

γxy = (v′ − ψ) + φ f ′
w

(7.3)

and assuming elastic behavior, the stresses become

σxx = Eu′
0 − Eψ ′y+ Eφ′ fw(y)

τxy = G(v′ − ψ) + Gφ f ′
w(y)

(7.4)

We defin a set of stress resultants by

N =
∫
A

σxxdA (7.5a)

M = −
∫
A

σxx ydA (7.5b)

Q =
∫
A

fw(y)σxxdA (7.5c)

V =
∫
A

τxydA (7.5d)

R =
∫
A

f ′
w(y)τxydA (7.5e)
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The resultants are related to the kinematic variables by

N = EAu′
0 (7.6)

M = E Iψ ′ (7.7)

Q = E J φ′ (7.8)

and

V = GA(v′ − ψ) + GBφ (7.9)

R = GB(v′ − ψ) + GCφ (7.10)

where

A=
∫
A

dA= 2 h (7.11a)

I =
∫
A

y2dA= 2
3
h3 (7.11b)

J =
∫
A

f 2
w(y)dA= 8

175
h (7.11c)

B =
∫
A

f ′
w(y)dA= 4

5
(7.11d)

C =
∫
A

(
f ′
w(y)

)2 dA= 48
25 h

(7.11e)

Substitution back into the stress equations gives

σxx = N
A

− M
I
y+ Q

J
fw(y)

τxy = CV − BR
AC − B2 − BV − AR

AC − B2 f ′
w(y)

(7.12)

The equilibrium equations for the stress resultants are derived from the equilibrium
equations for the stress, namely

∂σxx

∂x
+ ∂τxy

∂y
= 0 (7.13)

∂τxy

∂x
+ ∂σyy

∂y
= 0 (7.14)
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Integrating the firs through the thickness and assuming zero external shear on y = ±h
leads to

N′ = 0 (7.15)

Multiplying the firs by y and integrating gives

M′ + V = 0 (7.16)

and multiplying the firs by fw(y) and integrating through the thickness gives

Q′ − R = 0 (7.17)

Finally, integrating the second equation of equilibrium through the thickness gives

V′ + q = 0 (7.18)

where q(x) is the external load per unit length on the beam.
This set of equilibrium equations derived by integration through the thickness of the

beam can be verifie using virtual work. The firs variation of the internal virtual work,
δWi, is given by

δWi =
l∫

0

∫
A

(σxxδεxx + τxyδεxy)dA dl (7.19)

and the external virtual work, δWe, is

δWe =
l∫

0

q (x)δv(x) dx (7.20)

By expanding the virtual strains in terms of the virtual displacements and carrying out
the resulting integrations over the cross-section, A, the internal virtual work in terms of
the kinematic variables and the stress resultants becomes

δWi =
l∫

0

[
Nδu′

0 + Mδψ ′ + Qδφ′ + Vδv′ − Vδψ + Rδφ
]

dx (7.21)

Using integration by parts and reorganizing the result into terms in each of the four
virtual displacements, δu0, δv, δψ and δφ, we have

δWi − δWe = Nδu0
∣∣l
0 + Mδψ

∣∣l
0 + Vδv

∣∣l
0 + Qδφ

∣∣l
0

−
l∫

0

N′δu0dx−
l∫

0

(M′ + V)δψdx −
l∫

0

(Q′ − R)δφ dx −
l∫

0

(V′ + q )δv dx
(7.22)
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which for equilibrium must vanish for all kinematically acceptable virtual displace-
ments, leading to consistent boundary conditions and the same set of equilibrium
equations as before.

When the resultants are replaced by the kinematic variables, we have

EIψ ′′ + GA(v′ − ψ) + GBφ = 0 (7.23)

GA(v′ − ψ)′ + GBφ′ + q = 0 (7.24)

EJφ′′ − GB(v′ − ψ) − GCφ = 0 (7.25)

These three equations can be reduced to a single equation for v′ − ψ , ψ or φ by the
following process. We write the three equations in matrix form using the symbol D in
place of the derivative with respect to x, i.e., D = d/dx. The equations then become

⎡
⎣ GA E ID2 GB

−GB 0 EJD2 − GC
GAD 0 GBD

⎤
⎦

⎡
⎣v′ − ψ

ψ

φ

⎤
⎦ = −

⎡
⎣ 0

0
1

⎤
⎦ q (7.26)

The determinant of the 3 × 3 matrix on the left-hand side is

EID2[(GB)2 D + (EJD2 − GC)GAD] (7.27)

This operator controls the left-hand side of the differential equations for the three
variables v′ − ψ , ψ , φ. The right hand sides of the equations are determined by the
determinants of the matrices

⎡
⎣ 0 EID2 GB

0 0 EJD2 − GC
1 0 GBD

⎤
⎦

which gives the information for v′ − ψ ;

⎡
⎣ GA 0 GB

−GA 0 EJD2 − GC
GAD 1 GBD

⎤
⎦

which provides this for ψ , and

⎡
⎣ GA EID2 0

−GA 0 0
GAD 0 1

⎤
⎦

which applies to φ.
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Figure 7.3 Beam model under shear end load

Using Cramer’s rule, we have

GAEJ(v′ − ψ)′′′ + [(GB)2 − GAGC](v′ − ψ) = −EJq′′ + GCq (7.28)

EIGAEJψ ′′′′ + EI[(GB)2 − GAGC]ψ ′′ = GAEJq′′ + GA(GB− GC)q (7.29)

GAEJφ′′′′ + [(GB)2 − GAGC]φ′′ = −GAq (7.30)

The problem to which we intend to apply these equations is that of a beam under
endshears, V, only (i.e., q = 0) and constraints against rotation and warping at each
end, as shown in Figure 7.3. The problem is clearly anti-symmetric in displacement v
and symmetric in ψ and φ. The shear force is constant throughout the beam, and the
moment is

M = −Vx (7.31)

The equations for the displacement variables, v′ − ψ , ψ and φ, reduce to

EIψ ′ = −Vx (7.32)

GA(v′ − ψ) + GBφ = V (7.33)

EJφ′′ − GB(v′ − ψ) − GCφ = 0 (7.34)

From Equation (7.33), we have

v′ − ψ = − B
A

φ + V
GA

(7.35)

and this inserted into Equation (7.34) gives

EJGAφ′′ − [GAGC− (GB)2]φ = GBV (7.36)
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The alternative form in terms of (v′ − ψ) is

EJGA(v′ − ψ)′′ − [GAGC− (GB)2](v′ − ψ) = −GCV (7.37)

We note that the combination AC − B2 for the rectangular section is positive, so that the
solutions are hyperbolic functions. The solutions are

φ = C1 cosh (ωx) − GB
GAGC− (GB)2V

and

v′ − ψ = D1 cosh (ωx) − GC
GAGC− (GB)2V

where

ω2 = GAGC− (GB)2

EJGA
(7.38)

and where C1 and D1 are related through Equation (7.35) as

D1 cosh(ωx) + C
AC− B2

V
G

= − B
A

(
C1 cosh(ωx) − B

AC− B2

V
G

)
+ V
GA

i.e.,

D1 = − B
A
C1 (7.39)

The boundary conditions at x = ±l require that both ψ and φ vanish, and this deter-
mines that

φ(x) = − B
AC− B2

(
1 − cosh (ωx)

cosh (ωl)

)
V
G

(7.40)

and

v′ − ψ = V
GA

(
AC

AC− B2 − B2

AC− B2

cosh (ωx)
cosh (ωl)

)
(7.41)

From Equation (7.32), we have

ψ = − V
2EI

x2 + C3

and since ψ (±l) = 0

ψ = V
2EI

(l2 − x2) (7.42)
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To complete the solution, we substitute for ψ in Equation (7.41) and integrate, obtaining

v(x) = V
2EI

(
l2x − x3

3

)
− V
GA

(
B2

AC− B2

1
ω

sinh (ωx)
cosh (ωl)

− AC
AC− B2 x

)
(7.43)

where we have set v(0) = 0 to maintain the anti-symmetry of the solution for v(x). The
deflection at each end are ±δ where

δ = Vl3

3EI
+ Vl
GA

(
AC

AC− B2 − B2

AC− B2

tanh(ωl)
ωl

)
(7.44)

For the rectangular section considered here

AC
AC− B2 = 6

5
(7.45)

and

B2

AC− B2 = 1
5

(7.46)

so that if we suppress the warping by setting E J → ∞, i.e., φ everywhere zero, then
ωl → 0, and δs, the part of δ due to shear, becomes

δs → Vl
GA

(7.47)

On the other hand, to model the case when there is no restraint on the warping at the
end of the beam, the warping stiffness EJ is set to zero, then

λl → ∞ and δs → 6
5
Vl
GA

= Vl

G
(

5A
6

) (7.48)

which corresponds to the usual theory of shear deformation in beams. Furthermore, if
φ is not constrained and either EJ → 0 or alternatively φ ′′ → 0, then

φ = − B
C

(v′ − ψ) (7.49)

and

τxy = G
(

1 − B
C
f ′
w(y)

)
(v′ − ψ) (7.50)

which with Equation (7.12) gives

τxy = 3V
2 A

(
1 − y2

h2

)
(7.51)
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Thus, if the effect of the warping is not included, the solution reduces to the standard
beam theory with shear deformation included. The influenc of the constraint of the
warping depends on the parameter ωl, which is given by

(ωl)2 = G
E
AC− B2

JA
l2 = 35G

E
l2

h2 (7.52)

It follows that ω is likely to be large, and the solution for φ(x) near x = ±l can be
written as

φ(x) = − AB
AC− B2 [1 − e−ω(l−x)]

V
GA

(7.53)

We can defin a penetration length l p for the distance over which the constraint of the
warping is important by setting ωl p = 1, which gives l p ≈ h/3.5. Clearly this means that
the constraint of the warping is of no significanc in normal beams. The effective E in
isolators is of the order of several hundred times G and, in such cases, the constraint
of the warping at the ends will be effective over much larger distances from the ends.
Before turning to the equivalent isolator problem, however, in the next section we will
consider the buckling problem for this beam example.

7.3 Buckling of Short Beams with Warping Included

The main problem associated with the determination of the buckling load for the short
beam with shear and warping included, is the determination of the appropriate equi-
librium equations in the buckled configuration Since we have no physically intuitive
understanding of Q and R, a direct method is not available and a formal approach must
be used, such as that which led to Q′ − R = 0. To verify the results of the formal approach,
we can compare it to the form of the equilibrium equations in Chapter 5 on compression
buckling, where plane sections remain plane, which corresponds to EJ → ∞ and φ → 0,
in which case an intuitive approach is possible.

To develop the equations of equilibrium that correspond to Equations (5.2a) and (5.2b)
in Chapter 5 when the warping variables Q and R are included, we resort to integration
of the stress equations of equilibrium through the thickness.

We consider a differential element of the material with sides dx and dy in the un-
deformed configuratio parallel and perpendicular to the undeformed beam axis as
shown in Figure 7.4. In the deformed configuration the edges of the element parallel to
the x-axis are parallel to the deformed middle surface of the beam and the edges parallel
to the y-axis are rotated through the angles θ and θ + (∂θ/∂x) dx, where θ is the local
rotation of the vertical line element given by

θ = −∂u
∂y

= ψ − φ f ′
w(y) (7.54)
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Figure 7.4 Stresses on deformed element when warping is included

The stresses in the deformed configuratio are shown in Figure 7.4. Equilibrium in
the x-direction gives

∂

∂x
(σxx − τxyθ ) + ∂

∂y
(τyx − σyyv′) = 0 (7.55)

Equilibrium in the y-direction leads to

∂

∂x
(τxy + σxxθ ) + ∂

∂y
(σyy + τyxv′) = 0 (7.56)

and moment equilibrium about the left center of the element leads to

τyx − τxy + σxx(v′ − θ ) = 0 (7.57)

Substitution of Equation (7.57) into Equations (7.55) and (7.56) gives

∂

∂x
(σxx − θ τxy) + ∂

∂y
[τxy − σxx(v′ − θ ) − σyyv′] = 0 (7.58)

∂

∂x
(θσxx + τxy) + ∂

∂y
(σyy + τxyv′) = 0 (7.59)
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Integration of both equations over the cross-section −h ≤ y ≤ h and assuming traction-
free surfaces at y = ±h leads to

dN
dx

= 0 (7.60)

d
dx

(
Nψ − NB

A
φ + V

)
= 0 (7.61)

Multiplication of the firs by y and integration over the cross-section leads to

dM
dx

+ V − N(v′ − ψ) − N
A
Bφ = 0 (7.62)

Multiplication of the firs by fw(y) and integration over the cross-section leads to

dQ
dx

− R+ N
A
B(v′ − ψ) + N

A
Cφ = 0 (7.63)

These equations of equilibrium in the deformed configuration developed by integration
over the cross-sectional area of the equations of stress equilibrium can be verifie as
before by the use of virtual work. However when the stability of the beam model is
considered, it is necessary to include length changes due to second-order effects. The
lateral displacement of the beam, v(x) causes an increase in length of any horizontal
plane that depends on the slope v′(x) in the form

ε1 dx = (1 − cos v′) dx = 1
2
v′2dx (7.64)

and the shear deformation causes a reduction in length

ε2 dx = (1 − cos γxy) dx = 1
2
γ 2
xy dx (7.65)

These two terms contribute to the internal virtual work δWi such that the f rst variation
of the internal virtual work becomes

δ Wi =
l∫

0

∫
A

{
σxx

[
δ

(
1
2
v′2

)
− δ

(
1
2
γ 2
xy

)]}
dA dx +

l∫
0

∫
A

(σxxδεxx + τxyδεxy) dA dl

(7.66)

The firs integral can be written as

I1 =
l∫

0

∫
A

(σxxv′δv′ − σxxγxyδγxy) dA dx (7.67)
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which with γxy = v′ − ψ + φ f ′
w and δγxy = δv′ − δψ + δφ f ′

w means that

γxyδγxy = v′δv′ − ψδv′ + φ f ′
wδv′ − v′δψ + ψδψ − φ f ′

wδψ + v′ f ′
wδφ

−ψ f ′
wδφ + φ f ′

wδφ (7.68)

and from this, the firs integral becomes

I1 =
l∫

0

[(
NB
A

φ − Nψ

)
δv′ +

(
Nψ − NB

A
φ − Nv′

)
δψ +

(
NB
A
v′ − NB

A
ψ + NB

A
φ

)
δφ

]
dx

(7.69)
The second integral becomes

I2 =
l∫

0

(Nδu′
0 + Mδψ ′ + Qδφ′ + Vδv′ − Vδψ + Rδφ) dx (7.70)

Adding the two integrals together and using integration by parts in the usual way, the
firs variation of the virtual work takes the form

I1 + I2 = Nδu0
∣∣l
0 +

(
−Nψ + NB

A
φ + V

)
δv

∣∣l
0 + Mδψ

∣∣l
0 +

l∫
0

N′δu0 dx

+
l∫

0

[(
−Nψ + NB

A
φ

)′
+ V′

]
δv dx +

l∫
0

(
−Nv′ + Nψ − NB

A
φ − M′ − V

)
δψ dx

+
l∫

0

(
−NB

A
v′ + NB

A
ψ − NC

A
φ − Q′ + R

)
δφdx (7.71)

It is easy to see that this expression leads to the same equations of equilibrium as before
and also provides the appropriate boundary conditions for the beam.

The firs equation, Equation (7.60), reduces to

N = −P (7.72)

Integration of Equation (7.61) gives

V − P
(

ψ − B
A

φ

)
= −H0 (7.73)

and when this is inserted into Equation (7.62), it can be integrated to give

M+ Pv = H0x + M0 + Pv0 (7.74)
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If we set φ = 0, i.e., θ = ψ , then the set of equilibrium equations reduces to the system
of Equations (5.2a) and (5.2b), derived by direct application of equilibrium. When the
constitutive equations are used, the equilibrium equations become

EIψ ′ + Pv = H0x + M0 + Pv0 (7.75)

GA(v′ − ψ) +
(
G + P

A

)
Bφ − Pψ = −H0 (7.76)

EJφ′′ −
(
G + P

A

)
B(v′ − ψ) −

(
G + P

A

)
Cφ = 0 (7.77)

These three equations can be reduced to a single equation for φ or ψ by the following
process. We write the three equations in matrix form, using the symbol D in place of the
derivative with respect to x, i.e. D = d/dx. The equations then become

⎡
⎢⎢⎢⎣

P EID 0

GAD −(GA+ P) (GA+ P)
B
A

−(GA+ P)
B
A

D (GA+ P)
B
A

EJD2 − (GA+ P)
C
A

⎤
⎥⎥⎥⎦

⎡
⎣ v

ψ

φ

⎤
⎦ =

⎡
⎣H0x + M0 + Pv0

−H0

0

⎤
⎦

(7.78)

The determinant of the 3 × 3 matrix on the left-hand side is

P(GA+ P)2C
A

− P(GA+ P)EJD2 − EI(GA+ P)2 B
2

A2 D2 − P(GA+ P)2 B
2

A2

+EIGA(GA+ P)
C
A

D2 − EIGAEJD4 (7.79)

This operator controls the left hand side of the differential equations for the three vari-
ables v, ψ, φ. The right hand sides of the equations are determined by the determinants
of the matrices

⎡
⎢⎢⎢⎣
H0x + M0 + Pv0 EID 0

−H0 −(GA+ P) (GA+ P)
B
A

0 (GA+ P)
B
A

EJD2 − (GA+ P)
C
A

⎤
⎥⎥⎥⎦

which gives the information for v;

⎡
⎢⎢⎢⎣

P H0x + M0 + Pv0 0

GAD −H0 (GA+ P)
B
A

−(GA+ P)
B
A

D 0 EJD2 − (GA+ P)
C
A

⎤
⎥⎥⎥⎦



P1: TIX/XYZ P2: ABC
JWST069-07 JWST069-Kelly-Style2 July 27, 2011 11:47 Printer Name: Yet to Come

144 Influenc of Plate Flexibility on the Buckling Load of Multilayer Rubber Isolators

which provides this for ψ , and
⎡
⎢⎣

P EID H0x + M0 + Pv0

GAD −(GA+ P) −H0

−(GA+ P)
B
A

D (GA+ P)
B
A

0

⎤
⎥⎦

which applies to φ.
Using Cramer’s rule, we have

EJGAEI
d4

dx4

⎡
⎣ v

ψ

φ

⎤
⎦ +

[
EJ(GA+ P)P + EI(GA+ P)2 B

2

A2 − GAEI(GA+ P)
C
A

]
d2

dx2

⎡
⎣ v

ψ

φ

⎤
⎦

+
[

(GA+ P)2 B
2

A2 P − (GA+ P)2P
C
A

] ⎡
⎣ v

ψ

φ

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(GA+ P)2

[(
B
A

)2

− C
A

]
(H0x + M0 + Pv0)

(GA+ P)2

[(
B
A

)2

− C
A

]
H0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.80)

As before, we take H0 = 0 and ψ = cos(πx/(2l)) to satisfy the constraints at x = ±l
and determine the buckling load P from

EJGAEI
π4

4 l4
−

[
EJ

(
G + P

A

)
AP+ EI

(
G + P

A

)2

B2 − GAEI
(
G + P

A

)
C

]
π2

4 l2

+
(
G + P

A

)2

(B2 − AC) P = 0 (7.81)

It is convenient to defin the following dimensionless quantities:

(i) the normalized buckling load:

p = P
GA

(7.82)

(ii) the normalized column geometry:

λ = πh
2l

(7.83)

(iii) the normalized stiffnesses:

k1 = GB2h2

EAJ
k2 = GAh2

EI
(7.84)
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and the parameter γ = AC/B2 in terms of which Equation (7.81) becomes

λ4 − {k1[(1 + p)2 − γ (1 + p)] + k2 p(1 + p)}λ2 + k1k2 p(1 + p)2(1 − γ ) = 0 (7.85)

It is useful to factor this into the form

{λ2 − k1[(1 + p)2 − γ (1 + p)]}[λ2 − k2 p(1 + p)] − k1k2 p2(1 + p)2 = 0 (7.86)

We note that if k1 → 0, i.e., EJ → ∞, or no warping, we have

λ2 = k2 p(1 + p) (7.87)

which is the same result as we had in Chapter 5 for the buckling with no warping; and
if k2 → 0, i.e., EJ → ∞ (no rotation, ψ ≡ 0), we have

λ2 = k1[(1 + p)2 − γ (1 + p)] (7.88)

Furthermore, if the quantity γ is allowed to become very large (although in this case it
is fixe at 6), we see that

λ2 → k2 p(1 + p) (7.89)

Another possible case is EI 	= 0 and EJ → 0, which corresponds to the buckling of a
beam with no restraint on warping. In this case, k1 → ∞, and if we divide by k1, we have

λ2 = k2 p(1 + p)2(1 − γ )
(1 + p)2 − γ (1 + p)

= 5 k2 p(1 + p)
5 − p

(7.90)

In this case, as λ → 0, p → λ2/k2, i.e.,

P
GA

→ π2EI
4l2

(7.91)

and as λ → ∞,

P → 5GA (7.92)

The solution for p in terms of λ for the complete solution and the various special cases
is shown in Figure 7.5 using the parameters E = 2.5G and the values of A, B, C, I, J, as
given in Section 7.2. A comparison of the values of p for the case where φ = 0 and the
full equation shows that neglecting warping can greatly overestimate the buckling load.
Comparison of the case when the warping is unconstrained, i.e., EJ → 0, shows that
neglecting the end constraints against warping can greatly underestimate the load. It
has to be emphasized, of course, that these results are of very little practical application
to real beams since it is almost certain that for most materials the value of the buckling
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Figure 7.5 Buckling load as a function of beam length for short beam model

stress, P/A, would be too high to be sustainable by the material. The purpose of the
analysis has been to demonstrate the structure of the theory and guide its application to
the more elaborate problem of the buckling of the isolator.

7.4 Buckling Analysis for Bearing

To make it easier for the reader to draw parallels, the notation used in the buckling
analysis for a bearing in this section follows that presented earlier in this chapter.
This notation, however, is in some cases different than that presented in earlier chapters
in this book. Most importantly, the width of the strip bearing which was 2 b in earlier
chapters (see Figure 2.2) is 2 h here; the total height of the bearing, i.e., total rubber
thickness plus thickness of the steel shims (see Figure 5.3) was h, but is 2 l here.

In developing the buckling analysis for isolators, it is necessary to extend the equation
for the pressure to situations where the displacement fiel in the thickness direction
varies in the lateral direction. Because the individual pads are thin compared with their
width, and the variation in the displacement in the lateral direction is small, it is assumed
that the pressure can be given by the equation

∇2 p = 12G
t3 w (7.93)

where w(x, y) is now the displacement in the thickness direction.
It is clear from the analysis of the warping of the short beam that the selection of

a warping function, fw , that permits the uncoupling of the constitutive equations for
bending moment M and warping resultant Q, is extremely convenient. To achieve this
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for an isolator when the stress in the axial direction is obtained from Equation (7.93) by
replacing p by −σxx and w/t by εxx, we need to select fw(y) such that

∫
A

σxx ydA (7.94)

is independent of φ(x), and

∫
A

σxx fw(y) dA (7.95)

is independent of ψ(x) when σxx is given by

∇2σxx = −12G
t2 εxx (7.96)

A suitable selection of fw(y) is

fw(y) = y3

h3 − 3
7
y
h

(7.97)

and with this, we have

u(x, y) = u(x) − ψ(x)y+ φ(x)
(
y3

h3 − 3
7
y
h

)
(7.98)

v(x, y) = v(x) (7.99)

from which

εxx = u′ − ψ ′(x)y+ φ′(x)
(
y3

h3 − 3
7
y
h

)
(7.100)

The equation for σxx becomes

d2σxx

dy2 = −12G
t2

[
u′ − ψ ′y+ φ′

(
y3

h3 − 3
7
y
h

)]
(7.101)

and with σxx = 0 at y = ±h, this leads to

σxx = −6G
t2 h2

(
y2

h2 − 1
)
u′ + 2G

t2 h3
(
y3

h3 − y
h

)
ψ ′ − 12Gh2

20 t2

(
y5

h5 − 10
7
y3

h3 + 3
7
y
h

)
φ′

(7.102)
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With the previous definition of M and Q, this leads to

N = 4Gh2

t2 hu′ = EAu′ (7.103)

M = 8Gh2

15 t2 h
3ψ ′ = EIψ ′ (7.104)

Q = 2Gh2

1225 t2 hφ
′ = EJφ′ (7.105)

We calculate the other resultants from

τxy = G
(
v′ − ψ

) + Gφ
3
h

(
y2

h2 − 1
7

)
(7.106)

obtaining as before

V = GA
(
v′ − ψ

) + GBφ (7.107)

R = GB
(
v′ − ψ

) + GCφ (7.108)

where now

A= 2 h (7.109a)

B = 24
21

(7.109b)

C = 552
245 h

(7.109c)

The structure of the theory for non-buckling problems is now exactly the same as
before with the values of the nominal EI and EJ being given in terms of G and the shape
factor of a single layer, S = h/t, which may be quite large.

For the pure shear of an isolator in the absence of vertical load, the characteristic
length of penetration of the restraint produced by the boundary condition at the ends of
the bearing, which for the short beam model was

l p ≈
√

E
35 g

h (7.110)

is now given by

(
λl p

)2 = 1 (7.111)

where

(
λl p

)2 = GAGC− (GB)2

EJGA
l2p (7.112)



P1: TIX/XYZ P2: ABC
JWST069-07 JWST069-Kelly-Style2 July 27, 2011 11:47 Printer Name: Yet to Come

Buckling Analysis for Bearing 149

with

EJ = 2Gh3

1225t2 (7.113)

Thus

(
λlp

)2 = 980
l2pt

2

h2h2 (7.114)

giving

lp ≈ h
30

h
t

≈ S
30
h (7.115)

In this case, the penetration length is of the same order as the width of the bearing.
When we turn to the buckling problem, it is necessary to have the stress distribution of

σxx due to the axial load N, denoted here by σ a
xx. From Equation (7.96) and the boundary

conditions on σxx at y = ±h we have

σ a
xx = 3N

4 h

(
1 − y2

h2

)
(7.116)

The equations of equilibrium in the deformed configuratio are as before

∂

∂x
(
σxx − θτ xy

) + ∂

∂y
(
τxy − σxx

(
v′ − θ

) − σyyv′) = 0 (7.117)

∂

∂x
(
θσ xx + τxy

) + ∂

∂y
(
σyy + τxyv′) = 0 (7.118)

with

θ = ψ − φ f ′
w (y) (7.119)

The same process of integration of the firs through the thickness when it is multiplied
by 1, y, and fw(y), and the use of σ a

xx as given above, leads to

d
dx

N = 0 (7.120)

d
dx

(
V + Nψ − N

A
Bφ

)
= 0 (7.121)

d
dx

M+ V − N
(
v′ − ψ

) − N
A
Bφ = 0 (7.122)

d
dx

Q− R+ N
A
B

(
v′ − ψ

) + N
A
Cφ = 0 (7.123)
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These are the same as before with the difference that the parabolic stress distribution for
σ a
xx leads to the modificatio of B and C . The constants B and C are given by

B =
h∫

−h

3
2

(
1 − y2

h2

)
f ′
w (y) dy = 12

35
(7.124)

and

C =
h∫

−h

3
2

(
1 − y2

h2

)
f ′2
w (y) dy = 216

245 h
(7.125)

Returning to Figure 5.2, which shows the generic beam element with end loads, setting
N = −P and integrating Equation (7.121) gives

V − Pψ + P
A
Bφ = −H0 (7.126)

When this is used to eliminate V from Equation (7.122), we obtain

M′ + Pv′ = H0 (7.127)

which, when integrated, gives

M+ Pv = H0x + M0 + Pv0 (7.128)

and when the constitutive relationships for the force resultants are used, the complete
system becomes

EIψ ′ + Pv = H0 + M0 + Pv0 (7.129)

GA
(
v′ − ψ

) + GB

(
1 + P

GA
B
B

)
φ − Pψ = −H0 (7.130)

EJφ′′ − GB

(
1 + P

GA
B
B

) (
v′ − ψ

) − GC

(
1 + P

GA
C
C

)
φ = 0 (7.131)

Proceeding as before to reduce these to a single equation in ψ , we obtain

EIEJGAψ ′′′′ +
[
EJ

(
G + P

A

)
AP+ EI

(
G + P

A
B

2

B

)
B2 − GA

(
G + P

A
C
C

)
C

]
ψ ′′

+
⎡
⎣

(
G + P

A
B
B

)2

+
(
G + P

A

)
A

(
G + P

A
C
C

)
C

⎤
⎦ Pψ =

[(
G + P

A

)2

−
(
G + P

A

)
AC

]
H0

(7.132)
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As before, we take ψ = cos(πx/(2l)) and H0 = 0, as shown in Figure 5.2, and obtain as
the equation for P

EIEJGA
π4

16 l4
−

⎡
⎣EJ

(
G + P

A

)
AP+ EI

(
G + P

A
B
B

)2

B2 − GA

(
G + P

A
C
C

)
C

⎤
⎦ π2

4l2

+P

⎡
⎣

(
G + P

A
B
B

)2

−
(
G + P

A

)
A

(
G + P

A
C
C

)
C

⎤
⎦ = 0 (7.133)

In this case, it is convenient to use the same set of normalized quantities as earlier,
namely,

p = P
GA

(7.134a)

λ = πh
2l

(7.134b)

k1 = GB2h2

EAJ
(7.134c)

k2 = GAh2

EI
(7.134d)

γ = AC
B2 (7.134e)

and to add α = B/B, β = C/C in terms of which the equation for relating p and λ

becomes

λ4 −
{
k1

[
(1 + αp)2 − γ (1 + βp)

]
+ k2 p (1 + p)

}
λ2

+k1k2 p
[
(1 + αp)2 − γ (1 + βp) (1 + p)

]
= 0

(7.135)

In the derivation so far it has been assumed that the steel reinforcing plates are
completely flexibl and provide no resistance to the warping of the cross-section. To
include the effect of the plates, it is useful to consider the various terms that contribute
to the elastic stored energy of the deformation. These are

(i) bending

1
2
Mψ ′ = 1

2
EIψ ′2 (7.136)

(ii) warping

1
2
Qφ′ = 1

2
E J φ′2 (7.137)
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(iii) shear

1
2
V

(
v′ − ψ

) + 1
2
Rφ = 1

2
GA

(
v′ − ψ

)2 + GB
(
v′ − ψ

)
φ + 1

2
GCφ2 (7.138)

When the plates are bent into the shape φ(x) fw(y), they add to the stored energy a
term Wp (per unit width) of the form

Wp = 1
2

Ept3p
12

(
1 − ν2

p

)φ2 (x)

h∫
−h

(
f ′′
w y

)2 dy (7.139)

where Ep and vp are the Young’s modulus and Poisson’s ratio of the plate material and
tp is the plate thickness. For the present form of fw this becomes

Wp = Ept3
p(

1 − ν2
p

) 1
h3 φ2 (7.140)

This contribution must be divided by t + tp to reduce it to energy per unit width per unit
length, and is then added to GCφ2/2. Thus, the term C in Equation (7.133) is replaced by
C∗ where

C∗ = C + 2 Ep

G
(
1 − ν2

p

) t2p
h3

1
t + tp

(7.141)

From the initial definitio of C (Equation 7.109c) we have C = 552/(245h), thus

C∗ = C

(
1 + 490

552
Ep

G
(
1 − ν2

p

) t3
p

h2

1
t + tp

)
(7.142)

The fina form of the equation for p in terms of λ is

λ4 −
{
k1

[
(1 + αp)2 − γ (1 + βp)

]
+ k2 p (1 + p)

}
λ2

+ k1k2 p
[
(1 + αp)2 − γ (1 + βp) (1 + p)

]
= 0

(7.143)

where

γ = AC∗

B2 (7.144)

The solution of this equation for the normalized buckling load as a function of the
aspect ratio of the bearing, λ, can be obtained for different values of the reinforcing plate
thickness. Examples will be given in the next section.
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7.5 Computation of Buckling Loads

In order to use the analysis for the buckling of short uniform beams as a guide in the
development of the buckling load for the isolator, it was useful to retain the notation EI
and EJ for the bending and warping stiffnesses of the isolator. At this point, it is more
convenient to have them expressed in terms of the isolation geometry as follows.

In terms of the half width, h, and the rubber layer thickness, t, we have

EI = 8Gh5

15 t2 (7.145)

and

EJ = 2Gh3

1225 t2
(7.146)

from which with

A= 2 h (7.147a)

B = 24
21

(7.147b)

C = 552
245 h

(7.147c)

k1 = GB2h2

E J A
= 400

S2 (7.147d)

k2 = GAh2

EI
= 15

4 S2 (7.147e)

where S is the shape factor of a single layer. The other parameters are

α = B
B

= 3
10

(7.148a)

β = C
C

= 9
23

(7.148b)

γ = AC
B2 = 3.45 (7.148c)

and

γ = γ

(
1 + 490

552
Ep

G
(
1 − ν2

p

) t2
p

h2

tp
1 + tp

)
(7.148d)
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For purposes of a demonstration example, we will fi the following quantities:

h = 254 mm (10 in)

Ep = 0.21 × 106 MPa
(
30 × 106psi

)
νp = 0.3

t = h/S

G = 0.7 MPa
(
100 psi

)

and evaluate p in terms of λ for a range of shape factors, S = 5, 10, 15, 20, and plate
thicknesses tp = 3.18 mm (1/8 in), 1.59 mm (1/16 in) and 0.79 mm (1/32 in).

The results of this are shown in Figures 7.6 through 7.9 for values of λ = πh/(2l) from
1.5 to 4.5, which corresponds to the range of typical isolator geometries. Also included in
the diagrams are the normalized buckling loads for the cases of completely rigid plates,
which are calculated from

λ2 = k1

[
(1 + αp)2 − γ (1 + βp)

]
(7.149)

and for the cases of completely flexibl plates, which are calculated from Equation (7.135).
The results show that for this choice of isolator and for the typical range of the overall

aspect ratio (determined by λ), the influenc of the flexibilit of the reinforcing plates

Figure 7.6 Buckling load as a function of bearing height, S = 5
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Completely Rigid

Completely Flexible

3.18 mm thick

1.59 mm thick

0.79 mm thick

Figure 7.7 Buckling load as a function of bearing height, S = 10

Completely Rigid

Completely Flexible

1.59 mm thick

3.18 mm thick

0.79 mm thick

Figure 7.8 Buckling load as a function of bearing height, S = 15
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Completely Rigid

Completely Flexible

1.59 mm thick

3.18 mm thick

0.79 mm thick

Figure 7.9 Buckling load as a function of bearing height, S = 20

is quite significant From completely rigid plates to completely flexibl plates, the drop
in the buckling load can be as much as 50%. The most interesting result is that the
range of selected plate thicknesses almost completely covers the spread in the buckling
load in the sense that the 3.18-mm(1/8 in)-thick plate has almost the same result as the
assumed rigid plate, and the 0.79-mm(1/32 in)-thick plate has almost the same result
as the assumed fully flexibl plate; thus it would be possible to reduce the thickness
below 0.79 mm (1/32 in) with negligible effect on the buckling load. However, there
may be practical problems in working with such thin plates. The reinforcing plates have
to sustain an axial tension when the isolator carries vertical load, and the capacity of
the plate in this mode of response would have to be checked. In addition, the plates are
sand-blasted before being bonded to the rubber, and it might not be possible to do this
without damaging the plates when they are very thin.

The results of the analysis indicate that although flexibilit of the plates plays a signif-
icant role in the behavior of the isolator, it is quantifiable This should be of considerable
value in the design of isolators for low-cost applications.

We have shown here an approximate analysis for the buckling load of an multilayer
rubber isolator that includes the effect of the flexibilit of the steel reinforcing plates.
This analysis has treated the isolator as a short elastic column in which shear defor-
mation and warping of the cross-section are included. The warping of the cross-section
is taken to be an independent kinematic quantity and corresponding force resultants
have been defined Constitutive equations relating the kinematic quantities that arise
in the theory to the force quantities have been developed, and equilibrium equations
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have been obtained in the undeformed configuratio for non-buckling problems, and
in the deformed configuratio for the buckling problem. Although the theory has been
developed for the problem of the buckling of the isolator, a by-product of the analysis is
the buckling analysis of short elastic beams of uniform configuratio in which shear and
warping are taken into account. Of course, the influenc of shear and warping on the
buckling loads of regular beams will not be very important or of practical application,
except in extremely short beams where the stresses would be extremely high, and elastic
buckling would probably not apply.

The results show that the influenc of warping can be significan for typically sized
isolators and for the typical height-to-width ratio. It also shows that to provide an isolator
with a buckling load that is negligibly reduced from that obtained from the usual theory
with assumed rigid plates, the plates thickness need not be greater than 3.18 mm (1/8 in),
and that if the plate thickness is reduced to less than 0.79 mm (1/32 in), there is only a
negligible further reduction in the buckling load.

There is increasing interest in several developing countries to use rubber isolators
in the earthquake-resistant design of public housing and other local facilities, such as
schools and hospitals. For these isolators to be cost-effective in these applications, it will
be essential to reduce the steel content, both to reduce cost and to reduce weight to
obviate the use of lifting equipment. The results of this analysis show that this should
be possible, and this should lead to increased use of this potentially valuable technology
in earthquake-prone regions of the developing world.
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8
Frictional Restraint on
Unbonded Rubber Pads

8.1 Introduction

In Chapter 1 we referred to the patent by the French engineer Eugène Freyssinet on his
proposal (1954) for the use of multilayer rubber bearings as bridge supports and his
suggestions of several types of steel reinforcement for these bearings. In his patent, it is
clear that he envisaged that the rubber layers and the steel plates could be held together
only by friction, and in fact he indicated that he thought that friction would be a more
reliable method than gluing the rubber and steel together. He also thought, correctly,
that the pressure would rise from zero at the edge of a bearing to a maximum at the
center, but, mistakenly, that the shear stress between the rubber and steel also varied
from zero at the edge to a maximum at the center. We saw in Chapter 2 that this is not
the case.

This raises the question as to what the result of using friction and only friction to
hold the bearing together can mean for the device. In this chapter, we will examine this
through two special cases, namely the long strip pad and the circular pad. The analysis
is an extension of the pressure solution for a fully bonded pad, and it will show that
the results of Chapter 2 must be modifie if friction is the connecting process, but also
that at the high levels of friction that can be attained between rubber and steel, the effect
of slip between the rubber and the steel is not very significant In the next chapter, we
will describe a theory for a type of unbonded multilayer bearing that is held in place by
friction and show test results on such a bearing.

The material in Sections 8.2 and 8.3 firs appeared in the article by Kelly, J. M. and Konstantinidis, D. (2009).
“Effect of Friction on Unbonded Elastomeric Bearings.” Journal of Engineering Mechanics (ASCE), 135(9),
953–960. DOI 10.1061/(ASCE)EM.1943-7889.0000019. Reproduced with permission from ASCE.

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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8.2 Compression of Long Strip Pad with Frictional Restraint

In this section we are only interested in the theory for a pad in the form of a long
strip when the effects of the ends can be neglected, and the strip is taken to be infinite
The theory for an arbitrarily shaped pad is given in Chapter 2, and the important
points applicable to the analysis of a long strip pad are repeated here for the reader’s
convenience. We consider a pad of thickness t and width 2b and locate a rectangular
Cartesian coordinate system, (x, y, z), in the middle surface of the pad, as shown in
Figure 8.1(a). Figure 8.1(b) shows the displacements, (u,w), in the coordinate directions
under the following assumptions: (i) points on a vertical line before deformation lie on
a parabola after loading, and (ii) horizontal planes remain horizontal,

u(x, z) = u0(x)
(

1 − 4 z2

t2

)

w(x, z) = w(z)
(8.1)

This displacement fiel satisfie the constraint that the top and bottom surfaces of the
pad are bonded to rigid substrates. The assumption of incompressibility produces a
further constraint on the normal components of strain, εxx, εzz, in the form

εxx + εzz = ∂u
∂x

+ ∂w
∂z

= du0

dx

(
1 − 4 z2

t2

)
+ dw

dz
= 0 (8.2)

Figure 8.1 Infinitel long rectangular pad showing dimensions
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When integrated through the thickness, this gives

du0

dx
= 3

2
�

t
= 3

2
εc (8.3)

where � is the change of thickness (� > 0 in compression), and εc = �/t is the compres-
sion strain.

The other assumptions of the theory are that the material is incompressible and that the
stress state is dominated by the pressure p in the sense that the normal stress components
can be taken as –p. The vertical shear stress components are included in the analysis,
but the in-plane shear stress is assumed to be negligible. The only equation of stress
equilibrium in this case is

∂σxx

∂x
+ ∂τxz

∂z
= 0 (8.4)

which with the assumption that σ xx = σ zz = –p provides the sole equation of equilibrium

∂τxz

∂z
= dp

dx
(8.5)

The assumption of linear elastic behavior means that

τxz = Gγxz = G
(

∂u
∂z

+ ∂w
∂x

)
= −8G

t2
zu0 (8.6)

This equation together with (8.3) and (8.5) leads to

d2 p
dx2 = −12Gεc

t2 (8.7)

The boundary condition at the edges of the pad, p(x= ±b) = 0, completes the system for
the pressure distribution, p(x). The solution is given by

p (x) = 6Gεc

t2

(
b2 − x2) = 6GS2εc

(
1 − x2

b2

)
(8.8)

since S= b/t. The effective compression modulusEc of the pad is obtained by integrating
p(x) over the area of the pad to determine the resultant load P, i.e., the load per unit
length of the strip. The effective compression modulus Ec is then given by

Ec = P
Aεc

= 1
2 bεc

b∫
−b

p (x) dx = 4GS2 (8.9)
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t

s

s

p(x) p(x +dx)

x x +dx

Figure 8.2 Definition of surface shears

The only equation of stress equilibrium in this case remains Equation (8.5). Integration
of this through the thickness of the pad with the definitio of the surface shear stresses
as shown in Figure 8.2

τxz

∣∣∣
z= t

2

= −τs ; τxz

∣∣∣
z=− t

2

= τs (8.10)

leads, using Equation (8.8), to

τs = − t
2

dp
dx

= 6Gεc

t
x = 6GSεc

x
b

(8.11)

It is clear that the shear stress increases toward the edges, whereas the pressure decreases,
and if the constraint is controlled only by friction, that is by

τs ≤ μp (8.12)

where μ is the friction coefficient at some point slip must happen. In fact, if the pressure
is given by Equation (8.8), τ s and μp would be equal at

x
b

=
√

1 + 1
4 μ2S2 − 1

2 μS
(8.13)

For example if μ = 1, then slip occurs for x = b – t/2 showing that for the high level
of friction typical of rubber against steel, very little slip would take place. On the other
hand, if the surface is fully lubricated, such that μ = 0, there will be no shear stress at any
point in the pad, and the pressure is given byE0εc, whereE0 = 3G is the Young’s Modulus
of the incompressible material. In most cases of thin bonded pads, this is completely
negligible since the Ec of a single bonded layer can be two orders of magnitude larger
than this. We will see in the next section that in the case of a pad with partial slip, E0εc is
required as a nonzero boundary condition at the edge of the pad for the homogeneous
equation for p.
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8.3 The Effect of Surface Slip on the Vertical Stiffness
of an Infinit Strip Pad

In order to accommodate the slip at the surface due to the shear stresses overcoming
the frictional resistance between the rubber and the steel or concrete, we need to modify
the original kinematic assumptions. In this approach, as before, the rubber is assumed
incompressible and the pressure is assumed to be the dominant stress component.
The kinematic assumption of quadratically variable displacement is supplemented by
an additional displacement that is constant through the thickness and is intended to
accommodate the squeezing out of the rubber where slip occurs, as shown in Figure 8.3.
Thus, in this case the displacement pattern that leads to the pressure solution of Equation
(8.8) is replaced by the displacement fiel

u (x, z) = u0 (x)
(

1 − 4 z2

t2

)
+ u1 (x)

w (x, z) = w (z)

(8.14)

where u1(x) = 0 for 0 ≤ x ≤ x1, with x1 being the location where slip starts.
The constraint of incompressibility consistent with the displacement pattern of Equa-

tion (8.14) leads to

du0

dx
+ 3

2
du1

dx
= 3

2
�

t
= 3

2
εc (8.15)

The only equation of stress equilibrium in this case is

∂σxx

∂x
+ ∂τxz

∂z
= 0 (8.16)

and the assumption of elastic behavior means that

τxz = Gγxz (8.17)

Figure 8.3 Coordinate system and displacement field for a single, infinitel long strip pad
with slip
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which, with

γxz = ∂u
∂z

+ ∂w
∂x

= − 8
t2 zu0 (8.18)

from Equation (8.14), gives

∂σxx

∂x
= 8G

t2 u0 (8.19)

which, with the assumption that σ xx = σ zz = −p, provides the sole equation of
equilibrium as

dp
dx

= −8G
t2 u0 (8.20)

In the region where no slip has occurred, i.e. 0 ≤ x ≤ x1, the slip displacement is zero
and Equation (8.20) can be inverted to give u0 in terms of pressure and inserted into the
incompressibility constraint (Equation 8.15), to give

p (x) = −6Gεc

t2 x2 + Ax + B

Symmetry implies that A = 0, giving

p (x) = −6Gεc

t2 x2 + B

It is convenient to absorb the unknown constant into the other constants and write the
pressure as

p (x) = 6Gεc
b2

t2

(
B − x2

b2

)
= 6GS2εc

(
B − x2

b2

)
(8.21)

For x1 ≤ x≤ b, we need to determine u1(x) subject to the simultaneous requirements that
τ s = μp and τ s = –(t/2) dp/dx. This leads to the equation

dp
dx

+ 2 μ

t
p = 0 (8.22)

which has solution p(x) = Ce−2μx/t, where C is a constant of integration. To determine
it, we use as boundary condition at x = b the fact that p(b) = E0εc = 3Gεc. Thus for
x1 ≤ x ≤ b, the pressure is given by

p (x) = −3Gεce (2μ/t)(b−x) (8.23)
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and at x = x1, we have continuity in p and dp/dx (since τ s must be continuous across
x = x1). From Equations (8.21) and (8.23), we have

dp
dx

= −12Gεc

t2
x, 0 ≤ x ≤ x1

dp
dx

= −3Gεc
2 μ

t
e (2 μ/t)(b−x), x1 ≤ x ≤ b

(8.24)

which in turn gives us the equation for x1

2 μx1

t
e (2 μ/t)x1 = μ2e (2 μ/t)b (8.25)

which can be written in the form

2 μS
x1

b
e2 μSx1/b = μ2e2 μS (8.26)

The procedure is now to solve for 2 μSx1/b knowing μ and S and then to evalu-
ate p(x1) from which B can be determined. From this, we calculate τ s then u0 from
τ s = 4 Gu0/t. Finally the extent of the slip in x1 ≤ x ≤ b is calculated from the equation
of incompressibility, Equation (8.15).

We denote y = 2 μSx1/b and λ = μ2e2μS and solve

y = λe−y (8.27)

The solution of this equation is given by the Lambert W function (Weisstein 2002),
y=W(λ), and is plotted in Figure 8.4. Since the LambertW function cannot be expressed
in terms of elementary functions, its use here is somewhat limited. Another way to de-
termine y is graphical. Since λ = μ2e2 μS > 0, and the right-hand side of Equation (8.27)
always decreases from λ at y = 0, and the left-hand side increases from zero, there is
always a solution. Figure 8.5 shows this graphical solution for various λ values (de-
scending curves). From the root y, we readily obtain x1. The two expressions for the
pressure at x = x1

p(x−
1 ) = 6GS2εc

(
B − x2

1

b2

)

p(x+
1 ) = 3Gεce2 μS(1−x1/b)

(8.28)

are equal because of continuity, giving

B = 1
2 S2 e

2 μS(1−x1/b) + x2
1

b2 (8.29)
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Figure 8.4 The solution for y = 2 μSx1/b is given by the Lambert W function
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Figure 8.6 Pressure distributions for a strip pad with S = 10 and μ ranging from 0.1 to 1
(in increments of 0.1) and for a fully bonded pad

The pressure distribution is then given by

p(x) = 6GS2εc

(
B − x2

b2

)
, 0 ≤ x ≤ x1

p(x) = 3Gεce2 μS(1−x/b), x1 ≤ x ≤ b

(8.30)

Let us take for example the case where b/t = S = 10 and μ = 0.3. We get λ = 36.3, and
the result for y is 2.63, from which we have x1/b = 0.438. Equation (8.29) then gives
B = 0.3375, and the pressure distribution from Equation (8.30) is plotted in Figure 8.6
together with pressure distributions for various other values of μ between 0.1 and 1
and the pressure distribution of a fully bonded pad given by Equation (8.8). We note a
considerable reduction in peak pressure with decreasing μ.

The shear stresses that result from this pressure distribution are

τs = − t
2

dp
dx

= 6GSεc
x
b
, 0 ≤ x ≤ x1

τs = − t
2

dp
dx

= 3 μGεce2 μS(1−x/b), x1 ≤ x ≤ b

(8.31)

In the slipped region, x1 ≤ x ≤ b, where u1 �= 0, use of τ s = 4Gu0/t gives

u0 = 3
4

μtGεce2 μS(1−x/b), x1 ≤ x ≤ b (8.32)
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We now calculate u1 from the equation of incompressibility (Equation 8.15), which when
integrated from x1 to x ≥ x1 with u0(x1) = (3/2)x1εc and u1(x1) = 0 gives

u1(x) =
(
x − μt

2
e2 μS(1−x/b)

)
εc (8.33)

Thus the maximum amount of slip is

u1(b) = b
2

(
2 − μt

b

)
εc (8.34)

To calculate the value of Ec that is developed when the pad slips, we must integrate
the pressure over the range –b ≤x ≤ b to determine P and divide by 2 bεc. We have

P = 2εc

⎡
⎣

x1∫
0

6GS2
(
B − x2

b2

)
dx +

b∫
x1

3Ge2 μS(1−x/b)dx

⎤
⎦ (8.35)

which leads to

Ec = P
2 bεc

= 6GS2 x1

b

(
B − x2

1

3 b2

)
+ 3G

2 μs

[
e2 μS(1−x1/b) − 1

]
(8.36)

In the case of μ = 0.3 and S = 10 with B = 0.3375 and x1/b = 0.438, we have
Ec/(4GS2) = 0.2149, which implies a very substantial reduction in the modulus for
this value of the coefficien of friction. Similar results for values of μ between 0.1 and
1.0 are given in Table 8.1 and plots of x1/b and Ec/(4GS2)for these values are shown in
Figure 8.7.

Table 8.1 Compression modulus of strip pad for
different friction coefficient (S = 10)

μ y
x1

b
B

Ec
4GS2

0.1 0.069 0.035 0.036 0.024
0.2 0.894 0.223 0.162 0.089
0.3 2.626 0.438 0.338 0.215
0.4 4.634 0.579 0.480 0.346
0.5 6.710 0.671 0.585 0.457
0.6 8.803 0.734 0.660 0.544
0.7 10.898 0.778 0.717 0.613
0.8 12.990 0.812 0.761 0.668
0.9 15.076 0.838 0.795 0.712
1.0 17.158 0.858 0.822 0.748
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Figure 8.7 Top: location where slip initiates for a long strip pad. Bottom: compression
modulus as a fraction of the compression modulus of a fully bonded strip pad

8.4 The Effect of Surface Slip on the Vertical Stiffness of a Circular Pad

The previous analysis for the unbonded pad in the form of a long strip can be extended
to the case of the circular pad of radius R. In this case the displacement pattern that is
the starting point of the analysis is

u(r, z) = u0(r )
(

1 − 4 z2

t2

)
+ u1(r )

w(r, z) = w(z)

(8.37)

where u1(r) = 0 for 0 ≤ r ≤ r1, with r1 being the radius at which the slip starts.
The strains in the rubber in polar coordinates (r, θ, z) are

εr = ∂u
∂r

εθ = u
r

εz = ∂w
∂z

γrz = ∂u
∂z

γθz = 0 γrθ = 0
(8.38)
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The three normal strains when computed using Equation (8.37) are

εr = du0

dr

(
1 − 4 z2

t2

)
+ du1

dr
εθ = u0

r

(
1 − 4 z2

t2

)
+ u1

r
εz = dw

dz
(8.39)

The constraint of incompressibility εr + εθ + εz = 0 consistent with the displacement
pattern of Equation (8.37) leads, after integration through the thickness, to

1
r

d
dr

(ru0) + 3
2

1
r

d
dr

(ru1) = 3
2
εc (8.40)

The only shear stress component is γ rz = ∂u/∂z= –8u0z/t2, and the assumption of elastic
behavior means that

τrz = Gγrz = −8G
t2 zu0 (8.41)

The equations of stress equilibrium in polar coordinates are

∂σr

∂r
+ ∂τrz

∂z
+ σr − σθ

r
= 0

∂τrz

∂r
+ ∂σz

∂z
+ τrz

r
= 0

(8.42)

which with the assumption that the normal stresses are all equal to the negative pressure
–p, reduces the firs to

∂τrz

∂z
= dp

dr
(8.43)

and the second can be used to determine the distribution of pressure through the thick-
ness of the pad. Equation (8.43) with the result from Equation (8.41) gives

dp
dr

= −8G
t2

u0 (8.44)

In the region where no slip has occurred, i.e., 0 ≤ r ≤ r1, the slip displacement is
zero, and Equation (8.44) can be inverted to give u0 in terms of p and inserted into the
incompressibility constraint (Equation 8.40), to give

p(r ) = −3Gεc

t2 r2 + Aln r + B

Regularity at r = 0 implies that A = 0, giving

p(r ) = −3Gεc

t2 r2 + B (8.45)
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It is convenient to absorb the unknown constant into the other constants and write the
pressure as

p(r ) = 3Gεc
R2

t2

(
B − r 2

R2

)
(8.46)

If there were no slip anywhere, we could use p(R) = 0 to determine B and get
p(r) = (3Gεc/t2)(R2 – r2), which is the same result we obtained in Chapter 2 for the
bonded circular pad. It is convenient to express this in terms of the shape factor S,which
for the circular pad is R/(2t), with which Equation (8.46) becomes

p(r ) = 12GS2εc

(
B − r2

R2

)
(8.47)

The maximum value of the pressure when there is no slip is 12GS2εc which we will use
later for comparison purposes.

For x1 ≤ r ≤ R, we need to determine u1(r) subject to the simultaneous requirements
that τ s = μp and τ s = –(t/2)dp/dr. This leads to the equation

dp
dr

+ 2 μ

t
p = 0 (8.48)

This equation has the solution p(r) = Ce−2 μr/t, where C is a constant of integration. To
determine it, we use as the boundary condition at r= R the fact that p(R) = E0εc = 3Gεc.
Thus for r1 ≤ r ≤ R, the pressure is given by

p(r ) = 3Gεce (2 μ/t)(R−r ) (8.49)

and at r = r1, we have continuity in p and dp/dr (since τ s must be continuous r = r1).
Differentiating Equations (8.46) and (8.49) and equating them, we obtain

dp
dr

∣∣∣∣
r=r1

= −6G
t2 r1εc = −3Gεc

(
2 μ

t

)
e(2 μ/t)(R−r1) (8.50)

which in turn gives

2 μr1

t
e (2 μ/t)r1 = 2 μ2e (2 μ/t)R (8.51)

or, in terms of S,

4 μS
r1

R
e4 μSr1/R = 2 μ2e4 μS (8.52)

Letting y = 4 μSr1/R and λ = 2 μ2e4μS, this equation reduces to

y = λe−y (8.53)
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which has the same form as in the case of the strip pad, except that y and λ are define
differently. As discussed earlier, the solution to this equation is the Lambert W function,
y = W(λ), although it is more practical to obtain the solution graphically. Once y has
been determined, r1/R is also known. p(r+

1 ) can then be computed from Equation (8.49).
From continuity, p(r−

1 ) = p(r+
1 ), therefore Equations (8.47) and (8.49) give

B = 1
4 S2 e

4 μS(1−r1/R) + r2
1

R2 (8.54)

Let us take for example the case where S = 10 and μ = 0.3. We have λ = 0.18e12,
and the result for y is 8.18, from which we have r1/R = 0.682. Substituting into
Equation (8.54) gives B = 0.5787. The corresponding pressure distribution is plotted
in Figure 8.8. We note that pmax = p(0) = 694Gεc, and if fully bonded this would be
pmax = 12GS2εc = 1200Gεc, implying that slip for this value of friction has reduced the
peak pressure by almost one half. The figu e also shows pressure distributions for vari-
ous other values of μ between 0.1 and 1 and the pressure distribution of a fully bonded
pad.

The shear stresses corresponding to the pressure distributions given by Equa-
tions (8.47) and (8.49) are

τs = − t
2

dp
dr

= 6G
r
t
εc = 12GSεc

r
R

, 0 ≤ r ≤ r1

τs = − t
2

dp
dr

= 3 μGεce4 μS(1−r/R), r1 ≤ r ≤ R
(8.55)
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Figure 8.8 Pressure distributions for a circular pad with S = 10 and μ ranging from 0.1 to
1 (in increments of 0.1) and for a fully bonded pad
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In the slipped region, r1 ≤ r ≤ R, where u1 �= 0, use of τ s = 4Gu0/t gives

u0 = 3
4

μtεce4 μS(1−r/R), r1 ≤ r ≤ R (8.56)

We now calculate u1 from the equation of incompressibility (Equation 8.40), which when
integrated from to r1 to r ≥ r1 with u0(r1) = (3/4) r1εc and u1(r1) = 0 gives

u1(r ) = εc

2

(
r − μte4 μS(1−r/R)

)
, r1 ≤ r ≤ R (8.57)

Thus the maximum amount of slip is

u1(R) = εc

2
(R− μt) (8.58)

To calculate the value of Ec that is developed when the pad slips we must integrate
the pressure over the range 0 ≤ r ≤ R to determine P and divide by Aεc = πR2εc. We
have,

P = 2πεc

⎡
⎣

r1∫
0

12GS2
(
B − r2

R2

)
rdr +

R∫
r1

3Ge4 μS(1−r/R)rdr

⎤
⎦ (8.59)

which leads to

Ec
6GS2 =

r1∫
0

4
(
B − r2

R2

)
r
R2 dr +

R∫
r1

1
S2 e

4 μS(1−r/R) r
R2 dr (8.60)

The result is

Ec
6GS2 = 2B

r 2
1

R2 − r4
1

R4 + 1
S2

(1 + 4 μSr1/R) e4 μS(1−r1/R) − (1 + 4 μS)
(4 μS)2 (8.61)

In the case of μ = 0.3 and S = 10 with B = 0.5787 and r1/R = 0.682, we have
Ec/(6GS2) = 0.350, which implies a significan reduction in the modulus for this value
of friction coefficient Similar results for values of μ between 0.1 and 1.0 are given in
Table 8.2 and plots of r1/R and Ec/(6GS2) for these values are shown in Figure 8.9.

The analysis in this chapter has concentrated on a single pad, either long strip or
circular, that is held in place between rigid surfaces only by friction. One purpose of this
has been to quantify the suggestion of Freyssinet that friction might be more reliable
than gluing the rubber to steel when constructing a multilayer bearing. He seemed not
to be confiden in the glues that were available for this purpose at that time. Of course
the subsequent development of bonding compounds with very reliable properties has
eliminated this concern. There may, however, be a few situations where unbonded single
layers are used in technical applications.



P1: TIX/XYZ P2: ABC
JWST069-08 JWST069-Kelly-Style2 July 27, 2011 1:16 Printer Name: Yet to Come

174 Frictional Restraint on Unbonded Rubber Pads

Table 8.2 Compression modulus of circular pad
for different friction coefficient (S = 10)

μ y
r1
R

B
Ec

6GS2

0.1 0.600 0.150 0.097 0.031
0.2 4.071 0.509 0.386 0.172
0.3 8.183 0.682 0.579 0.350
0.4 12.347 0.772 0.692 0.489
0.5 16.503 0.825 0.763 0.590
0.6 20.644 0.860 0.812 0.664
0.7 24.770 0.885 0.846 0.719
0.8 28.884 0.903 0.871 0.762
0.9 32.986 0.916 0.891 0.795
1.0 37.080 0.927 0.906 0.822
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Figure 8.9 Top: location where slip initiates for a circular pad. Bottom: compression
modulus as a fraction of the compression modulus of a fully bonded circular pad
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The real value of the analysis in this chapter is to a type of bearing that we will cover
in detail in the following chapter. We will extend the analysis of this chapter to a type of
multilayer bearing where the reinforcing steel sheets are bonded to the rubber, but the
top and bottom of the bearing are held in place only by friction. Eliminating the heavy
end-plates leads to a potential seismic or vibration isolator that is much lighter than a
conventional isolator and possibly much less expensive. The theory for the single pad is
extended in the next chapter to this type of bearing. A very common application of this
unbonded bearing is to accommodate non-seismic lateral motions due to traff c loads
and thermal expansions and contractions in highway bridges.
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9
Effect of Friction on
Unbonded Rubber Bearings

This chapter describes the mechanics of a type of multilayer rubber bearing that is cur-
rently used very widely as a standard thermal expansion bridge bearing, but could also
be used as a lightweight low-cost rubber isolator for application to housing, schools and
other public buildings in highly seismic areas of the developing world. A characteristic
of these bearings is that the reinforcing steel shims (normally thick and inflexibl in con-
ventional seismic isolators) are thin and flexible In an effort to determine the ultimate
lateral displacement of these bearings, the analysis assumes that the steel shims are in
fact completely without flexura stiffness, which is in contrast to the analysis done for
conventional rubber isolators, where the steel shims are typically assumed to be perfectly
rigid, both in extension and flexu e. The assumption that the shims are perfectly flexibl
is not entirely accurate, but it allows us to determine a lower bound to the ultimate
lateral displacement of the bearing.

Another very important characteristic of the bearings examined in this chapter is that
they do not have thick steel end-plates, which reduces their weight, but also means that
they are not bonded to the upper and lower support surfaces; thus, they are held in
place only by friction. This at firs sight might seem to be a deficienc of this design, but
it has the advantage that it eliminates the presence of tensile stresses in the bearings. It
is these tensile stresses and the bonding requirements that arise from them that lead to
the high costs of the conventional rubber isolation bearings.

An approximate theoretical analysis of the ultimate displacement of these bearings
suggests, and test results confirm that it is possible to produce an unbonded strip- or
rectangular-shaped isolator that matches the behavior of a conventional seismic isolator.
The unbonded isolator is significantl lighter, and, because it can be made by a much

The material in Section 9.4 firs appeared in the article by Kelly, J. M. and Konstantinidis, D. (2009). “Effect
of Friction on Unbonded Elastomeric Bearings.” Journal of Engineering Mechanics (ASCE), 135(9), 953–960.
DOI 10.1061/(ASCE)EM.1943-7889.0000019. Reproduced with permission from ASCE.

Mechanics of Rubber Bearings for Seismic and Vibration Isolation, First Edition. James M. Kelly and Dimitrios A. Konstantinidis.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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less labor-intensive manufacturing process, it is significantl cheaper than a conventional
seismic isolator. A further advantage of a strip isolator is that it can be easily used in
buildings with masonry walls.

9.1 Introduction

Recent earthquakes in India, Turkey and South America have emphasized the fact that
the major loss of life in earthquakes happens when the event occurs in developing
countries. Even in relatively moderate earthquakes in areas with poor housing, many
people are killed by the collapse of brittle, heavy, unreinforced masonry or poorly
constructed concrete buildings. Modern structural control technologies, such as active
control or energy dissipation devices, can do little to alleviate this, but it is possible that
seismic isolation could be adopted to improve the seismic resistance of poor housing
and other buildings such as schools and hospitals in developing countries.

The theoretical basis of seismic isolation (Kelly 1997) shows that the reduction of
seismic loading produced by the isolation systems depends primarily on the ratio of the
isolation period to the fixed-bas period. Since the fixed-bas period of a masonry-block
or brick building may be of the order of 0.1 s, an isolation period of 1.0 s or longer
would provide a significan reduction in the seismic loads on the building and would
not require a large isolation displacement. For example, the current code for seismic
isolation (ICC 2009) has a formula for minimum isolator displacement, which, for a 1.5-s
system, would be around 15 cm (6 in).

The problem with adopting seismic isolation in developing countries is that conven-
tional isolators are large, expensive, and heavy. An individual isolator can weigh one ton
or more and cost as much as $10 000. To extend this valuable earthquake-resistant strat-
egy to housing and commercial buildings, it is necessary to reduce the cost and weight
of the isolators. The primary weight in an isolator is due to the end-plates and the steel
reinforcing plates which are used to provide the vertical stiffness of the rubber–steel
composite element. A typical rubber isolator has two large end-plates, each at least
25 mm (1 in) thick, and 20–30 or more thin reinforcing plates, each typically 3.18 mm
(1/8 in) thick. The high cost of producing the isolators results from the labor involved
in preparing the steel plates and laying-up of the rubber sheets and steel plates for vul-
canization bonding in a mold. The steel plates are cut, sand-blasted, acid-cleaned, and
then coated with bonding compound. Next, the compounded rubber sheets with the
interleaved steel plates are put into a mold and heated under pressure for several hours
to complete the manufacturing process. The research outlined in this chapter suggests
that both the weight and the cost of isolators can be reduced by using thinner steel rein-
forcing plates, no end-plates and no bonding to the support surfaces. Since the demands
on the bonding between the rubber and the reinforcing plates are reduced, a simpler
and less expensive manufacturing process can be used.

The manufacturing process for conventional isolators has to be done very carefully
because the testing requirements in the current codes for seismic isolation require
that the isolators be tested under very extreme loading conditions prior to use. The
bond between the rubber and the steel reinforcement and between the rubber and the
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Figure 9.1 Tensile-stress regions produced by the presence of unbalanced moments in a
bonded bearing

end-plates must be very good to survive these tests. The effect of a large shear displace-
ment of the isolator is to generate an unbalanced moment that must be equilibrated
by tensile stresses, as shown in the diagram in Figure 9.1. The compression load is car-
ried through the overlap region between top and bottom surfaces, and the unbalanced
moment is carried by tension stresses in the regions outside the overlap.

Bridge bearings are much less expensive than seismic bearings for buildings. The
in-service demands that the former are expected to satisfy are of course much lower, but
tests on the response of unbonded rubber bridge bearings to seismic level displacements
(Konstantinidis et al. 2008) have shown that even if such large displacements are applied
to them, they can deform without damage. The primary reason for this is the fact that
the top and bottom surfaces can roll off the support surfaces (Figure 9.2), and no tension
stresses are produced. The unbalanced moments are resisted by the vertical load through
offset of the force resultants on the top and bottom surfaces (Figure 9.3).

The bearings in the tests survived very large shear strains, comparable to those ex-
pected of conventional seismic isolators under seismic loading. However, their cost
is in the hundreds of dollars as compared to the cost of conventional isolators in the
thousands of dollars. In this chapter, we will describe the various aspects of this type

Figure 9.2 The corners of an unbonded rubber bearing rolling off the top and bottom
supports as the bearing is sheared (to a displacement approximately 1.5 times the total
rubber thickness of the bearing) in the direction pointed by the arrows
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Figure 9.3 Left: Normal and shear stress distributions on the top and bottom faces of the
unbonded bearing in its deformed shape. Right: The moment created by the offset of
the resultant compressive loads, P, balances the moment created by the shear, V

of thermal expansion bridge bearing, which could be used as a lightweight, low-cost
rubber seismic isolator for application to housing, schools and other public buildings
in earthquake prone areas of the developing world. The most important aspect of these
bearings is that, not having end-plates, they are not bonded to the upper and lower
support surfaces and are held in place only by friction.

In the later part of the chapter, we examine the behavior of unbonded rubber bearings
under vertical load and show that slip between the unbonded surfaces and rigid supports
above and below can have a significan influenc on the vertical stiffness and the internal
pressure distribution.

9.2 Bearing Designs and Rubber Properties

Figure 9.4 is a photograph of a typical unbonded multilayer rubber bearing, and
Figure 9.5 shows its cross-section. The particular bearing was manufactured by Scougal
Rubber Corporation. The rubber compound is Neoprene (polychloroprene) with a spec-
ifie hardness of 55 on the Shore A scale. Each intermediate rubber layer is 12 mm
(0.47 in) thick, while the top and bottom rubber layers are 6 mm (0.24 in) thick. A 3-mm
(0.12 in) protective cover surrounds the bearing on the sides. The bearings are lami-
nated with 1.9-mm-thick (14-ga) A1011 steel shims. Table 9.1 shows detailed geometric
properties for two typical-size rubber bridge bearings.

9.3 Ultimate Displacement of Unbonded Bearings

The highly favorable response of an isolator which is not bonded to the top or bottom
plates is due to the elimination of tension in the rubber. In a bonded bearing under the
simultaneous action of shear and compression, the presence of an unbalanced moment at
both top and bottom surfaces produces a distribution of tensile stresses in the triangular
region outside the overlap between top and bottom (Figure 9.1). The compression load
is carried through the overlap area, and the triangular regions created by the shear
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Figure 9.4 A 120-mm-tall unbonded multilayer rubber bearing (plan dimensions: 375 ×
575 mm).

displacement provide the tensile stresses to balance the moment. These tensile stresses
must be sustained by the rubber and also by the bonding between the rubber and the steel
reinforcing plates. The provision of these bonding requirements is the main reason for
the high cost of current designs of isolator bearings for buildings. With the elimination
of these tension stresses, the bonding requirements for unbonded bridge bearing are
reduced.

In unbonded multilayer rubber bridge bearings, the steel reinforcing plates are rel-
atively thin as compared with the reinforcing in current designs of building seismic
isolators. This flexibilit allows the unbonded surfaces to roll off the loading surfaces
and thus relieves the tensile stresses that would be produced if the top and bottom
surfaces of the bearing were bonded. This in turn puts much lower demands on the
internal bonding between the rubber layers and reinforcing steel plates.

3 mm

6 mm

12 mm

3 mm

375 mm

6 mm

1.9 mm
steel plates

Figure 9.5 Cross-section of 120-mm-tall unbonded steel-laminated rubber bearing
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Table 9.1 Geometric characteristics of the steel–laminated rubber bearings

Bearing Rubber height Number of Total height Width Depth
designation [mm (in)] steel shims [mm (in)] [mm (in)] [mm (in)]

S-48 48.0
(1.89)

4 55.6
(2.19)

375.0
(14.76)

575.0
(22.64)

S-120 120.0
(4.72)

10 139.0
(5.47)

375.0
(14.76)

575.0
(22.64)

Experimental results (Konstantinidis et al. 2008) show that the roll-off response is
limited by the fact that the free edge of the bearing rotates from the vertical towards
the horizontal with increasing horizontal displacement, and the limit of this process
is reached when the originally vertical surfaces at each side come in contact with the
horizontal support surfaces at both top and bottom. Further horizontal displacement
beyond this point can only be achieved by slip. The friction factor between rubber and
other surfaces can often take very large values, possibly as high as 1, and slip can produce
damage to the bearing through tearing of the surface, distortion of the reinforcing steel
and heat generated by the sliding motion. Thus the maximum displacement for a bearing
of this type can be specifie as that which transforms the vertical free edge to a horizontal
plane. In the normal situation, where the bearing thickness is small in comparison with
the plan dimension in the direction of loading, this can be estimated by studying only
the deformation of one side and neglecting the interaction between the deformations at
each end.

The basic assumptions used in the development of the prediction of the limiting shear
deformation are:

(1) the material is incompressible;
(2) the plates are completely flexible
(3) the free surface of the roll-off portion is stress free.

The firs two are reasonable for the rubber and reinforcement of these bearings, and
the third means that the displacement when the vertical surface touches the horizontal
support is the length of the curved arc of the free surface.

The geometry assumed in the derivation is shown in Figure 9.6. The thickness of the
bearing is 1, the length of the horizontal surface is a, and we assume that the curved free

Figure 9.6 Schematic of the deformed unbonded bearing
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surface is a parabolic arc; then in the coordinate system (x, y) shown in Figure 9.6, the
curved surface is given by

y = x2

a 2 , or x = a
√
y (9.1)

The area of the region enclosed by the curved arc of length S is

A=
1∫

0

dy

a
√
y∫

0

dx = 2
3
a (9.2)

The requirement of incompressibility means that the volume before deformation and
after are preserved. Thus,

1
2
S = 2

3
a or a = 3

4
S (9.3)

The curved arc length S is given by

dS =
√

dx2 + dy2 (9.4)

where

dy = 2x
a 2 dx (9.5)

and

S =
a∫

0

√
1 + 4x2

a 4 dx (9.6)

Using the change of variable u = 2x/a 2, we have

S = a2

2

2/a∫
0

√
1 + u2du (9.7)

Letting u = sinh t, we have

S = a2

2

sinh−1(2/a )∫
0

cosh2 tdt (9.8)

Since cosh2 t = (cosh(2t) + 1)/2, this leads to

S = a2

4
[sinh t cosh t + t]sinh−1(2/a )

0 (9.9)
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and with cosh t =
√

1 + sinh2 t, we have

S = a2

4

(
2
a

√
1 + 4

a2 + sinh−1
(

2
a

))
(9.10)

The incompressibility condition requires that S = 4a/3, leading to an equation for a in
the form

sinh−1
(

2
a

)
= 16

3a
− 2
a

√
1 + 4

a2 (9.11)

Replacing 2/a by t and inverting the equation leads to a transcendental equation for t in
the form

t = sinh
[(

8
3

−
√

1 + t2
)
t
]

(9.12)

which after solving for tgives a and, in turn,S. The solution to a high degree of accuracy is
t = 1.60, a = 1.25 and S = 1.67. This is the overall shear strain. Since the steel will not
deform in shear, the shear in the rubber is increased by the ratio of the total thickness (steel
plus rubber) to rubber thickness. For the bridge bearings in (Konstantinidis et al. 2008),
the rubber and steel thicknesses are 12 mm (0.48 in) and 1.9 mm (0.004 in), respectively.
Thus the limiting shear strain based on the thickness of rubber is 1.92. The conclusion
is that in broad terms these bearings with small thickness compared with their plan
dimension can experience a displacement of twice the thickness of rubber before they
run the risk of damage by sliding. This is quite comparable to the shear maxima usually
imposed on building bearings in current practice in the United States, although it is
somewhat less than that permitted in Japan. It is also worth noting that this is a lower
bound to the maximum displacement since the reinforcement is not completely flexibl
and the bending stiffness will allow the bearing to displace further.

9.4 Vertical Stiffness of Unbonded Rubber Bearings with Slip on their
Top and Bottom Supports

Friction in rubber is relatively high, but there is always the possibility that some level
of lubrication can be introduced either intentionally or by accident. This results in a
reduction of frictional resistance that develops in the support–rubber interface, and thus
it is important to be able to predict the effect of slip in these bearings. This section
presents an analysis of the mechanics of the bearing with slip, and this will include
the effect on the internal pressure in the bearing and the reduction of the vertical stiff-
ness caused by slip. Also, the maximum amount of slip at the unbonded surfaces will
be calculated.
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In addition to the unbonded surfaces, another aspect of these bearings that distin-
guishes them from other isolation bearings is that the outer layers are only half the
thickness of the inner layers. This means that if the friction is high enough to simulate
the fully bonded situation at the top and bottom surfaces, these two outer layers will
each be four times stiffer than each inner layer. On the other hand, if the top and bottom
surfaces are fully lubricated to the extent that there is no shear stress on either surface,
the two outer layers will act as if they were a single inner layer since the analysis for
the fully bonded inner layer has zero shear stress on the center of the layer. Thus, the
two layers together will have the stiffness of an inner layer. Frictional slip will cause the
stiffness of these two outer layers to vary between these two extreme values.

In the analysis that follows, only the outer layers are considered, and the compression
modulus, Ec , of the two-outer-layer system is determined. Then the vertical stiffness of
the outer layers is Ec A/t, and once the vertical stiffness of the inner layers is computed
using the formulas presented in Chapter 2, the total vertical stiffness of the bearing can
be computed by treating the inner and outer layers as springs in series.

To determine the effect of slip on the vertical stiffness of the two outer layers of the
bearing the inner layers are replaced by a central line. The deformation is divided into
two parts: (a) the parabolic displacement fiel assumed for the fully bonded bearing;
and (b) an additional linear displacement pattern that varies from zero at the inner
surface to u1(x) at the outer edges to characterize the slip. Symmetry in both horizontal
and vertical directions is assumed and deformation in the y direction is neglected.

This displacement fiel is shown in Figure 9.7 and takes the form

u(x, z) = u0(x)
2z
t

(
1 − 2z

t

)
+ u1(x)

2z
t

w(x, z) = w(z)
(9.13)

Figure 9.7 Coordinate system and displacement field for bearing with two slipping
outer layers
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The normal strains are given by

εxx = ∂u
∂x

= du0

dx
2z
t

(
1 − 2z

t

)
+ du1

dx
2z
t

εzz = ∂w
∂z

= dw
dz

(9.14)

The material is assumed to be incompressible so that

εxx + εzz = du0

dx
2z
t

(
1 − 2z

t

)
+ du1

dx
2z
t

+ dw
dz

= 0 (9.15)

Integration of this through the half thickness 0 ≤ z ≤ t/2 gives

du0

dx
t

12
+ du1

dx
t
4

= −w
(
t
2

)
+ w(0) = �

2
(9.16)

or

du0

dx
+ 3

du1

dx
= 6εc (9.17)

where the compression strain εc = �/t is positive in compression. The only significan
shear strain is given by

γxz = ∂u
∂z

+ ∂w
∂x

=
(

2
t

− 8z
t2

)
u0 + 2

t
u1 (9.18)

and the shear stress is τxz = Gγxz. The important shear stresses are the surface stresses,
which will be denoted by τs and define by τs = −τxz|z=t/2 and τs = τxz|z=−t/2 and the
inner shear stresses at the bonded surface, which will be denoted by τl = τxz|z=0, as shown
in Figure 9.8. These two shear stresses can be expressed in terms of the displacement
variables u0 and u1 by

τs = 2G
t

(u0 − u1) ; τl = 2G
t

(u0 + u1) (9.19)

The normal stresses σxx, σyy and σzz are all represented by the pressure p(x) = −σxx =
−σyy = −σzz. The surface shear stress (Figure 9.8) is define in the negative x-direction

t/2

s

l

steel shim

p(x +dx)p(x)
x x +dx

Figure 9.8 Definition of surface shears
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on the top surface and in the positive direction on the bottom surface, as shown in the
diagram, to allow us to make use of symmetry.

The assumption that all the normal stress components are equal to the negative pres-
sure reduces the equations of stress equilibrium to the single equation

∂τxz

∂z
= dp

dx
(9.20)

and integration of this through the upper half layer 0 ≤ z ≤ t/2 gives

t/2∫
0

∂τxz

∂z
dz = t

2
dp
dx

= −(τs + τl) (9.21)

which is also shown in the diagram. From this equation and the fact that for both the non-
slip and slipped regions, τs + τl = 4Gu0/t, we have a connection between the pressure
and the displacement fiel valid everywhere in the form

dp
dx

= −8G
t2 u0 (9.22)

We assume that slip occurs at x = x1 and assume symmetry and continuity at x = 0 and
x = x1. In the non-slip region 0 ≤ x ≤ x1, we have u1 = 0, and with the above equation,
we have

u0 = − t2

8G
dp
dx

(9.23)

Substitution into the equation of incompressibility, which now takes the form
du0/dx = 6εc , gives

d2 p
dx2 = −48Gεc

t2 (9.24)

from which

p(x) = −24Gεc

t2 x2 + Ax + B

Symmetry dictates that A = 0, and, if there were no slip, we could use a boundary
condition at x= b to determine B. In this case, we cannot use such a condition and must
leave B as an unknown. It is convenient to absorb it into the other constants and write
p(x) and dp/dx as

p(x) = 24GS2εc

(
B − x2

b2

)
, 0 ≤ x ≤ x1 (9.25)

dp
dx

= −48Gεc

t2 x, 0 ≤ x ≤ x1 (9.26)
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The displacement fiel in this region is simply u0 = 6xεc and u1 = 0. We note that at
x = x1 the value of the surface shear stress is related to the pressure through τs = μp,
where μ is the coefficien of friction, so that from Equations (9.17) and (9.22)

48Gεc

t
x1 = 24μGεc

b2

t2

(
B − x2

1

b2

)

or

x1 = μb2

2t

(
B − x2

1

b2

)
(9.27)

which shows that the location of the slip is not affected by the level of the compression
strain.

For the region x1 ≤ x ≤ b, where u1 �= 0, the equation of incompressibility becomes

du0

dx
+ 3

du1

dx
= 6εc (9.28)

This can be integrated over the region x1 ≤ x ≤ b using the fact that continuity requires
that u0(x1) = 6x1εc and u1(x1) = 0, giving

u0(x) + 3u1(x) = 6xεc (9.29)

In addition, over the slipped region, we have τs = μp and also dp/dx = −2(τs + τl )/t,
which taken together give

dp
dx

+ 2μ

t
p = −2

t
τl = −4G

t2 (u0 + u1) (9.30)

We can replace u1 using the integrated form of the equation of incompressibility,
leading to

dp
dx

+ 2μ

t
p = −4G

t2

(
2
3
u0 + 2xεc

)
(9.31)

which, in turn, by replacing u0 from Equation (9.22), gives

dp
dx

+ 3μ

t
p = −12Gεc

t2 x (9.32)

Using the integrating factor e3μx/t, this can be written in the form

d
dx

(e3μx/t p) = −12Gεc

t2
xe3μx/t (9.33)
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Integration from x to b gives

e3μb/t p(b) − e3μx/t p(x) = −12Gεc

t2

b∫
x

x′e3μx′/tdx′ (9.34)

If we assume that p(b) = 0 (in this case we do not need to use the Young’s Modulus,
E0, to provide the boundary condition) and carry out the integration, the result for p(x)
takes the form

p(x) = 4Gεc

3μ2

[
(3μS− 1)e3μS[1−(x/b)] −

(
3μS

x
b

− 1
)]

, x1 ≤ x ≤ b (9.35)

from which we have

dp
dx

= −4Gεc

μt
[1 + (3μS− 1)e3μS[1−(x/b)]] (9.36)

At this point, we can use continuity across x = x1 of the pressure and its derivative to
determine the two unknowns B and x1. At x = x1, we have

dp
dx

(x−
1 ) = −48Gεcx1

t
(9.37)

dp
dx

(x+
1 ) = −4G

μt
[1 + (3μS− 1)e3μS[1−(x1/b)]] (9.38)

Setting the two equal to each other and definin y = 3μSx1/b, we obtain the identity

(4y− 1)e y = (3μS− 1)e3μS (9.39)

After solving this identity for y, we readily obtain x1/b, which depends only on the
coefficien of friction and the shape factor S = b/t. The constant B is then obtained by
equating p(x−

1 ) and p(x+
1 ),

24GS2εc

(
B − x2

1

b2

)
= 4Gεc

3μ2

[
(3μS− 1)e3μS[1−(x1/b)] −

(
3μS

x1

b
− 1

)]

which reduces to

B = x2
1

b2 + 1
18μ2S2

[
(3μS− 1)e3μS[1−(x1/b)] −

(
3μS

x1

b
− 1

)]
(9.40)
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Figure 9.9 Pressure distributions for bearing (S = 10) with slip on the top and bottom
surfaces

and leads to the result for the pressure in the non-slip region in the from

p(x) = 24GS2εc

(
B − x2

b2

)
, 0 ≤ x ≤ x1 (9.41)

In Figure 9.9, pressure distributions are shown for a bearing with S = 10 and slip on the
top and bottom surfaces for various values of μ.

To calculate the value of Ec , we integrate the pressure over the range −b ≤ x ≤ b to
determine P and then divide by Aεc = 2bεc . From Equations (9.35) and (9.41), we have

P = 2

⎧⎨
⎩

x1∫
0

24GS2εc

(
B − x2

b2

)
dx +

b∫
x1

4Gεc

3μ2

[
(3μS− 1)e3μS[1−(x/b)] −

(
3μS

x
b

− 1
)]

dx

⎫⎬
⎭

(9.42)

which leads to

Ec = 24GS2 x1

b

(
B − x2

1

3b2

)
+ 4G

9μ3S
(1 − 3μS)(1 − e3μS[1−(x1/b)])

− 2G
3μ2

[x1

b

(
2 − 3μS

x1

b

)
− (2 − 3μS)

]
(9.43)

Table 9.2 lists values of x1/b and Ec/4GS2 for S = 10 and various values of μ, and
Figure 9.10 shows these quantities as a function of μ for S = 10, 15, and 20.
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Table 9.2 Compression modulus for bearing with slip on the top and bottom
surfaces (S = 10 )

μ y
x1

b
B

Ec

4GS2

0.01 0.018 0.060 0.303 1.122
0.05 0.568 0.378 0.522 1.733
0.10 1.842 0.614 0.684 2.359
0.20 4.725 0.788 0.817 2.985
0.30 7.687 0.854 0.872 3.271
0.40 10.668 0.889 0.902 3.433
0.50 13.657 0.911 0.920 3.536
0.60 16.650 0.925 0.933 3.607
0.70 19.645 0.936 0.942 3.660
0.80 22.641 0.943 0.949 3.700
0.90 25.638 0.950 0.954 3.731
1.00 28.635 0.955 0.959 3.757
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Figure 9.10 Top: location where slip initiates for a bearing with slip on the top and bottom
surfaces. Bottom: compression modulus as a fraction of the compression modulus of a
fully bonded pad
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This chapter has provided an analysis of a type of rubber bearing that is not bonded
to the supports above and below it, but held in place solely by friction. These bearings
have been previously tested and survived very large shear strains (of the order of
200% or larger, Konstantinidis et al. 2008). While the seismic performance objectives
that unbonded bearings are expected to achieve are not as high as those of isolation
bearings, their low cost and light weight makes them very appealing for use as a low-
cost alternative to seismic isolators for schools, housing and other public buildings in
highly seismic areas of the developing world, where conventional seismic isolators are
not affordable (Kelly and Konstantinidis 2007).

The effect of the frictional resistance of the top and bottom supports on the pressure
distribution and the compression modulus of an unbonded bearing under compressive
load were firs examined by Kelly and Konstantinidis (2009b) in an effort to predict the
behavior of a type of rubber bridge bearing permitted in California for use as a thermal
expansion bridge bearing. The analysis shows that friction has an important effect on
both the maximum pressure and the compression modulus.
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Application on 25 May 1954, 16h 47m, in Paris
Issued on 12 October 1955.—Published 10 February 1956

(Patent of invention, the grant has been issued pursuant to Article 11, § 7, of the Law of 5 July
1844 amended by the Act of 7 April 1902.)

Mechanical construction projects frequently require connections between rigid parts that
allow relative displacements, with one or more degrees of freedom, between these parts.
One can provide these by means of machined mechanical components, eliminating by
lubrication the friction between bearing surfaces or by intermediate roller bearings,
providing connections with a limited number of degrees of freedom. Obtaining several
degrees of freedom at a time can often require very complex assemblies. The connections
that use machined components are nevertheless regarded as essential when the struc-
tures are important or when a high degree of accuracy is required in providing relative
displacements between the parts.

However, it has already been proposed that in the case of relatively low forces and
also when the precision in the displacement is not required, that connections allowing
limited displacements can be provided, by interposing rubber-like components between
the rigid parts. These rubber parts working through the distortion of the rubber, allow
relative movements with low friction and provide the added advantage of an elastic
recovery after displacement from their original position. This type of connection has
another advantage in the fact that they need no maintenance and are protected from the
type of seizure to which links made with mechanical parts are subject.

The purpose of the present invention is the realization of connections between rigid
parts that allow displacements on boundaries with at least one degree of freedom by the
use of rubber components that are deformed by distortion, but, unlike the conventional
connections using rubber, these connections can have virtually unlimited size and can
ensure precise radial relative displacements to parts as large as we desire.

It thus becomes possible to apply such connections in projects involving huge efforts,
as is the case in public works or in high-precision machines with very small dimensional
tolerances. Nevertheless, the invention allows these results to be achieved with costs
that are very economic both in terms of the raw materials used and for labor costs
and machining.

According to the invention, a block formed of rubber plates within which are inter-
spersed inextensible sheets whose surfaces are parallel to the surfaces of the rigid parts
and which have a large coefficien of friction in contact with the rubber plates, is inter-
posed between the substantially parallel surfaces of two rigid parts to which one wishes
to establish a connection.

The high coefficien of friction can be obtained by bonding between the inextensible
sheets and the plates of rubber or, preferably, by using an inextensible sheet surface with
a strong surface roughness such as embossed, perforated or corrugated sheets or yet
again gratings.

Preferably, the block formed by the assembly of the alternating plates of rubber and
inextensible sheets is compressed in the direction perpendicular to the surfaces of the
sheets, either by a prior compression or by the loads applied to the rigid parts including
the weight of these parts.
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It will be shown later in the memoir that the deformation that can be sustained by
such a block under the applied compression depends only to a small degree on the
elasticity modulus of the rubber, and that it is possible to apply to such a block loads,
within the extent of crushing of the rubber, that, nevertheless, allows in directions
tangential to the lamination, displacements between the two rigid parts by distortion
of the rubber that separates them, in the same way as would happen if this rubber was
not laminated by the sheets.

The displacements permitted by such a laminated block, interposed between parallel
surfaces, correspond mainly to the possibility of two parallel surfaces to slide one versus
the other while remaining in contact over all of their extent.

Geometrically, the surfaces that perfectly satisfy this condition are the plane, the
surfaces of revolution (including the sphere) and the helicoidal surfaces. Nevertheless,
should the movements be limited, other surfaces of more complex geometric definitio
can be chosen for the surfaces of the rigid parts, if the approximation of parallelism
corresponding to the maximum displacement remains acceptable.

With surfaces that meet the strict requirement of parallelism during the relative dis-
placement, it is possible to obtain the following displacements:

Two parallel fla surfaces allow for translations in all directions in their plane and also
rotations around any axis perpendicular to their plane;

Two parallel surfaces of revolution can rotate around their common axis and possibly
a translation along this axis if these surfaces are cylinders or portions of a cylinder;
in the case of two spheres, the axis of relative rotation is any axis provided it passes
through the common center of these two spheres;

Two helicoidal surfaces permit a helical displacement, i.e., the combination of a trans-
lation and a rotation.

It was implicitly assumed in the above that the distribution of stresses in the laminated
block remained the same during the motion and, therefore, this block is distorted by
the deformation of the rubber. One can however also vary the distribution of stresses
in the laminated block during the displacement by means of elastic deformation, thus
providing additional degrees of freedom. Thus, a prismatic block, laminated parallel to
its bases, can allow not only translations parallel to these bases or rotations perpendicular
to them, but also rotations with an axial component parallel to the plane of these bases, a
rotation which allows a dihedral angle between the planes of these bases. It may facilitate
a displacement of this kind by giving to such a prismatic block a rectangular section
aligned in the direction of the preferred axis of rotation.

One of the main applications of the invention is the realization of support pads for
structures that allow for displacements of these structures by internal causes (expan-
sion) or by external causes (moving structures such as turning or lifting bridges, dam
gates, etc.).

For such works the invention allows the substitution for heavy metal components
which have machining and maintenance requirements by components that are easy to
install, do not need extreme precision in their execution and installation and that will
work reliably, even in the absence of maintenance. In addition, the invention allows the
realization of high-precision mechanical joints in machines and equipment, especially in
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the fiel of machine tools and vehicles, when relative displacements of limited amplitude
are required.

The description, which follows regarding the attached drawings, but not limited by
these examples, will help to understand how the invention can be realized and describe
the features that will emerge in the development of the text, as part of the invention:

Fig. 1 is a schematic for understanding the principle of the invention;
Fig. 2 is a schematic elevation of a bearing conforming to the invention;
Fig. 2a shows the same device after deformation;
Fig. 3 and Fig. 4 illustrate two examples of devices based on the invention;
Fig. 5 and Fig. 6 show schematic cross-sections of devices allowing translations in a

single direction;
Fig. 7 and Fig. 7a show before and after deformation of a device allowing a rotation

about an axis parallel to the plane of lamination;
Fig. 8 and Fig. 9 show elevations of two structures to which are applied devices based

on the invention;
Fig. 10 is an axial cross-section of a device based on the invention;
Fig. 11 and Fig. 12 show respectively, in plan and elevation, a device according to the

invention allowing helicoidal movement;
Fig. 13 is the elevation of a bearing allowing a limited rotation about a fully determined

axis.

We know that certain materials such as natural and artificia rubbers, and many
synthetic resins or plastics, can be deformed at virtually constant volume by lengthen-
ing or shortening, or distortion, and that these bodies have, for such deformations
the property of behaving much like a liquid in terms of transmission of pressure.
Such materials also have the facility of adhering to certain surfaces such as steel or
concrete, in other words creating on such contact surfaces a strong coefficien of fric-
tion that can be increased by gluing or by increasing the roughness of the surfaces
in contact.

Consider a parallelepiped block 1 (Fig. 1) of such a material, lying (to simplify the
reasoning) between two fla and parallel surfaces 2 and 3, then compressed between
these surfaces by a certain force F which moves the surface 2 to 2a and gives block 1 the
shape 1a. Calling S the surface of the block, h the shortening and E the elastic modulus
of the material, the ratio F/h is not equal to the product SE. Indeed, the material of the
block being virtually incompressible, the deformation of this block is only possible by
an internal displacement of matter which tends to slide the contact surfaces 2a and 3
and, because of friction, curves the lateral faces of the block. Thus an element of material
initially rectangular a, b, c with small slip (smaller if the adherence is stronger) at its
ends at the contact surfaces 2a and 3, curves to take the shape a’, b’, c’ and thus develops
within the block a centripetal state of stress which depends on friction, and which
is proportional to its elongation and inversely proportional to its radius of curvature.
This creates in the body of the block a state of stress that gives a resultant pressure
p, which varies from zero at the periphery to a maximum value at the center and the
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frictional stress on the surfaces a and c, caused by this pressure, also grow with this and
reach their maximum value at the center of the block.

The resistance to the flattenin is not SE, but SE +� and if the smallest dimension in
the plane of the block is much larger than its thickness, the second term is much larger
than the firs providing the coefficien of friction of rubber on the surface of the rigid
parts 2 and 3 is large.

If we assume that the thickness of the block 1 is halved, we see, assuming the same
values of friction that the pressure p is doubled since the radius of curvature of element
of rubber is divided by two. Moreover, the value p, i.e., friction pϕ which before was
reached at a certain distance ρ from the periphery, is now reached at a distance ρ/2 from
the same periphery. The pressure in the central zone will therefore be much larger and
� will be much more than double.

If one considers, instead of a homogeneous rubber block 1, a block formed from
two plates of half thickness separated by a sheet of inextensible material with a high
coefficien of friction in contact with these plates, the presence of this sheet will have a
multiplier effect of at least four in the resistance to deformation of this block compared
with the homogeneous composite block.

The division of the block by nine intermediate sheets giving ten equal plates of rubber
can also increase the resistance by a factor of more than 100.

This resistance, unrelated to the intrinsic strength of the rubber against compression,
can be increased without limit other than the resistance to efforts to stretch the interme-
diate leaves and the lowering of the coefficien of friction with pressure, which reduction
is only obtained under extremely high pressures.

One can create a block of rubber plates, as shown schematically in Fig. 2, separated by
6 thin inextensible sheets 5 with a high coefficien of friction in contact with these plates.

If, as shown in Fig. 2a, there is a relative displacement between parts 2 and 3 in a
direction parallel to the lamination, this displacement is produced by deformation over
the entire set of 6 plates providing there is adherence between the plates and sheets.

The force which opposes this displacement is always (SE .d)/e, where e is the total
thickness and d the amplitude of the displacement. It does not matter in fact that the total
thickness e is in one or several plates, since the division into plates also modifie equally
d and e. Moreover, in the case of a homogeneous block, the value of the force necessary
to cause the displacement is bounded in the block by the presence of a marginal zone
in which the distortion of the rubber is irregular, while the division into separate plates
divides at the same time the width of the marginal zone by the same factor.

To obtain a high coefficien of friction for the rubber plates in contact with the inex-
tensible sheets one could use smooth inextensible sheets and glue their surfaces to the
rubber plates. In this case, however, reliability in use will depend to a large extent on
the quality and consistency of the gluing and that reliability could disappear under the
effect of loss of quality of the glue.

It is therefore preferable to ensure that a bearing has a high coefficien of friction
between the plates and the sheets and they have enough roughness between the surfaces
of the rubber and the sheets.

To this end, as shown in Fig. 3, the inextensible sheets can be metal gratings formed
for example by woven wire or of expanded metal. In the case of wire, it may of interest to
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use a grating of forged or welded mesh to avoid slippage of the wires where they contact
each other. It may also be useful, as shown in Fig. 4, to use inextensible sheets 8 formed
of folded or embossed sheets or sheets punctured by numerous openings of any shape.

However, while the use of sheets glued to the smooth slabs of rubber permits, at least
theoretically, the reduction as much as wished in the thickness of these rubber plates,
using roughened sheets limits the amount of reduction of the thickness of the rubber
plates. It is necessary, indeed, that this thickness is such that it fill the gap between
the sheets, even when two of the deepest hollows in the sheets are opposite each other.
Therefore, the thickness of the rubber plates must be at least twice the height of the relief
of the sheets. To fi ideas, for a sheet with a relief of about 3 mm, the thickness of plates
of rubber should be at least 6 mm.

The following example of realization will help to understand the economic benefit of
the invention. Consider, in Fig. 8, a bridge deck 9, supported on the abutments 10 and
on the intermediate pier, by laminated blocks 12 made in accordance with the invention
to allow the free expansion of the bridge deck on its supports. Suppose, to fi ideas, that
the load applied to one of the laminated blocks is 100 tons.

If we accept a level of compression (regarded as normal for rubber) of 10 kg/cm2, the
base area of this block 12 should be 10 000 cm2 or one meter square. If it is assumed,
moreover, that the rubber used has a shear modulus also 10 kg/cm2 and if one imposes a
limit to the force to produce a horizontal displacement equal to its thickness, for example,
of one tonne per centimeter displacement, this block should have a thickness of 10 cm.

Such a bearing would in principle be satisfactory, but it would be prohibitive both in
price and the space it would require.

In contrast, if we replace this solid block of rubber of 100 dm3 in volume (130 kg)
by three plates 0.40 m × 0.40 m × 0.006 m, separated by adhering inextensible sheets,
the horizontal section of rubber that deforms is reduced in the ratio from 1 to 0.16, and
the thickness of deforming rubber is reduced from 10 cm to 1.8 cm, the resistance to
deformation in the horizontal direction will be amended in the ratio (0.16 × 10)/1.8, i.e.,
it is substantially the same as before. Nevertheless, the resistance to vertical deformations
is significantl increased and in particular the weight of rubber used is reduced from
130 kg to 3.700 kg. The value and weight of both the interlayer sheets is negligible
because the tensile force to which these sheets are subject is of the order of 500 kg.

Such a device is a laminated component placed between parallel fla surfaces, al-
lowing displacements parallel to the plane of the lamination in any direction and the
coefficien of distortion, i.e., the ratio of the displacement reaction to the amplitude of
this movement, for a given surface of the plate, decreases as the total thickness of the
plates increases.

But one can get coefficient of distortion that are very different in the two directions
perpendicular to the plane of lamination by using seat surfaces and intermediate sheets
that are not planes.

Thus, in Fig. 5, the support surfaces 2 and 3 are in the form of cylinders and the surfaces
between the rubber plates 6 and the sheets 5 are in the form of cylinders parallel to the
surfaces 2 and 3. In Fig. 6, the surfaces 2 and 3 are grooved in the direction perpendicular
to this figu e and plates 6 and sheets 5 are equally grooved.
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Such laminated blocks can obviously permit relative translations on surfaces 2 and 3
in the direction perpendicular to this figu e, but resist translations directed in the plane
of this figu e. The transverse stiffness of such connections can be increased as necessary
by increasing the height of ribs and corresponding grooves and vice versa. It is thus
possible to adjust the coefficien of transverse distortion to any value until the desired
rigidity is achieved.

The elastic bearing devices such as shown in Fig. 5 and 6, for example, may fin
their application in examples of the kind shown in Fig. 8. One can for example wish
to disconnect the transverse reactions to the right of the intermediate pier 11, from the
transverse reactions provided by the abutments 10 and the stiffness of the deck 9. To this
end, the devices 12 carried on the abutments 10 can be realized as shown on Fig. 5 and
Fig. 6, the grooves being oriented in the longitudinal direction of the bridge.

One may also need to add to the freedom of longitudinal and transverse defor-
mation a certain freedom of angular deformation about an axis parallel to the plane
determined by these directions of deformation. To do this, as shown in Fig. 7, we
can use narrow laminated blocks with a short width l, the length L of which being
increased so as to keep the required block area. Such a block can be deformed not
only as mentioned above by relative translations of its faces parallel to their plane, but
as shown by Fig. 7b by pivoting about an axis parallel to the longest dimension of
this block.

Rotation around an axis of a preference is obtained using seat surfaces and a lamination
of revolution around the desired axis of rotation.

Thus, the bridge 13 shown in Fig. 9 can reposition through the convex cylindrical
surface 16 on the concave cylindrical surface 18 of support 15 through a laminated block
17 in the form of a portion of a cylinder similar to that shown in Fig. 5, but which this
time, is used for a different purpose.

Such a bridge can open by the action of external forces around the common axis of
revolution of the surfaces 16, 17 and 18. However, if one assumes that these surfaces
are portions of spherical caps, the bridge can not only open, but also rotate around the
vertical axis passing through the common center of these different spheres and, more
generally, rotate around any axis passing through the common center. In this case one
must accept very high values for the distortion of the rubber and, for example, obtain
rotations about 45 degrees with a total thickness of rubber of the order of a third of the
radius of the concave surface of the support.

The pivot and the mechanism of opening the deck may be made entirely of standard
concrete, without any machined metal part, given the relatively low value of the local
pressure. Of course, the center of gravity of the pivoting mass can depend on the choice
of the manufacturer either above, below or at the level of the center of the axis of rotation.

Fig. 10 concerns the case where we need to consider only the possibility of rotation
about a vertical axis. The rigid part 2 is a convex spherical surface 19 and a cone of
revolution 21 and the part 3 includes a concave spherical cap 20 and a conical surface 22
parallel to the surface 21. Between the support surfaces are laminated blocks 23 and 24,
the firs in the form of a spherical shell, the second in the form of truncated cone. The
thickness of the second is larger than the first Of course, the orientation of the shell and
the truncated cone can be inverted between the parts 2 and 3.
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As shown in Fig. 11 and Fig. 12, parts 2 and 3 and the laminated block which separates
them are arranged to allow a helicoidal motion between these parts (on Fig. 11 and
Fig. 12, for clarity, the piece 2 is supposed transparent). The two cylindrical forms have
two identical helicoidal support surfaces 25 and 26 with a development of a turn, but
are shifted one relative to the other by the angle α.

Between these two helicoids 25 and 26 is a laminated block with the shape of helicoidal
plates and helicoidal sheets, parallel to surfaces 25 and 26. The total development of this
block is equal to a turn diminished by the angle α, its thickness is such that by deforma-
tion of the rubber the two helicoidal surfaces can slide one with respect to the other by
the angle α one in one direction and the other in the opposite direction. The two pieces
2 and 3 can thus move one in relation to the other through a relative helicoidal movement
of amplitude 2α. A central guide rod 28 (which can be attached to one or the other
piece) prevents lateral relative displacements. Such a device may be applied to a press.

Finally, Fig. 13 shows a bearing permitting guided rotation and possibly translation
of a limited amplitude along the axis 29. This axle is surrounded by a sleeve 30 of thin
rubber layers separated by inextensible sheets. The inextensible sheets may be strips of
metal bonded on one side to a layer of rubber rolled tightly around the axle 29. The sleeve
thus obtained forms a pad that is held in place by the clamp 31. One can get guidance
with virtually no lateral play on the axis 29 by this bearing for a specifie amplitude of
rotation and longitudinal translation, since these are essentially determined by the total
thickness of rubber used.

It goes without saying that changes may be made to the ways of realizing the examples
described above, particularly by substitution of technically equivalent methods, without
it affecting the scope of the present invention.

Summary

The present invention includes:

1. A device of elastic connection to at least one degree of freedom between two rigid
parts, this device being placed between the substantially parallel surfaces of the rigid
parts and taking the form of a block of stacked plates of a material with the nature
of rubber between which are inter-layered inextensible sheets whose surfaces have a
high coefficien of friction in contact with the rubber plates.

2. The various ways in which device specifie in item 1 can be developed, either sepa-
rately or in combinations, to provide the following features are:

a. The laminated block formed by the plates and the inter-layered sheets is com-
pressed perpendicular to the surfaces of these sheets;

b. The interlayer sheets are metal and include surface roughness;
c. The inextensible sheets specifie under b are gratings;
d. The sheets specifie in b are folded, embossed or perforated sheets;
e. The parallel surfaces of the rigid parts are planes;
f. The parallel surfaces of the rigid parts are coaxial surfaces of revolution;
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g. The parallel surfaces of the rigid parts are helicoidal surfaces of the same axis and
the same pitch;

h. The parallel surfaces of the rigid parts are concentric spherical caps;
i. The parallel surfaces of rigid parts have on one part, at least one rib and on the

other at least one groove corresponding to that rib allowing them to nest into one
another;

j. The laminated block includes plates and sheets of rectangular shape, of which
the length far exceeds the width, with its greatest dimension, directed along an
eventual axis of rotation;

k. The laminated block is obtained by the simultaneous winding of a metal strip and
a strip of rubber which are bonded to each other around a cylindrical surface.

3. The application of these elastic connections, as specifie in items 1 and 2, to structures
that can move with respect to their supports, and especially to bridges, are for the
provision of supports allowing expansion, or to allow the displacement of these
structures with the help of external forces.

4. The application of these devices of elastic connection, as specifie in items 1 and 2,
with mechanical precision to two parts with a view to allow for relative displacements,
limited but guided, of the two parts with respect to each other.
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78
purpose of, 63
stresses in, 53

for bearings with compressible rubber, 73
under pure bending, 77
under pure compression, 74

for bearings with incompressible rubber,
65

under pure bending, 72
under pure compression, 69

thickness, of, 67, 129, 178
yielding under compression, 78

in bearings with compressible rubber, 79
in bearings with incompressible rubber, 78

Shore A Scale, 180
slip, 159, 163, 169

heat generated by, 182
unbonded circular pad under compression,

in, 173
unbonded infinit strip pad under

compression, in, 168
Spie Batignolles, 16
stability

multilayered rubber bearings, of, 83
multilayered rubber springs (Gent), of, 83
rollout, see rollout stability
solid rubber rods (Haringx), of, 83, 129

stored energy, 151–2
strain energy potential, 121
stress concentration, 70
stress function, 63–6, 68, 71, 73–4, 76
Struve functions, 81
surface shear stresses, 65, 67
surface shears, 63, 162

surface stresses, 186
symmetry, 185, 187

tensile stresses, 177, 179–81
bonding, 181

cost of, 181
total elastic stored energy, 32
Tresca yield condition, 78–80
triaxial stress, 120
Tun Abdul Razak Research Centre, 2, 14
two-spring model, 100–1, 104, 106, 108

deformations, 102
downward displacement, 102
postbuckling behavior, 104
vertical stiffness, 103

ultimate lateral displacement, see bearings,
unbonded

unbalanced moment, 179–80
unbonded pads

frictional restraint on, 159
United Nations Industrial Development

Organization (UNIDO), 13–14, 130
unreinforced masonry buildings, 14, 178

vertical frequency, 2, 19, 39
vertical stiffness, 1, 19, 33, 44

as a function of horizontal displacement,
99–100, 118

of two-spring model, see two-spring model
reduction of, due to slip, 184
run-in effect, 19
unbonded bearings, of, 177

vibration isolation, 1–2, 4, 18
isolation of equipment, 2
rail traffic 2
vertical ground motion, 2

vibration-isolated buildings
Germany

International Congress Center (Berlin),
2–3

United Kingdom
Albany Court (London), 2
Glasgow Royal Concert Hall, 2
Grafton 16 public housing complex, 2
Holiday Inn London, 2
International Convention Center

(Birmingham), 2
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vibration-isolated buildings (Continued )
United States

Benaroya Concert Hall (Seattle),
4

Walt Disney Concert Hall (Lost
Angeles), 4

virtual work
external, 134
internal, 134

viscous dampers, 10, 17
vulcanization, 1

warping, 130–2
warping function, 130

yield stress, 70, 78
yielding, see shims, yielding of
Young’s modulus, 121, 152, 162, 189


	Mechanics of Rubber Bearings for
Seismic and Vibration Isolation
	Contents
	About the Authors
	Preface
	1 History of Multilayer Rubber Bearings
	2 Behavior of Multilayer Rubber Bearings under Compression
	2.1 Introduction
	2.2 Pure Compression of Bearing Pads with Incompressible Rubber
	2.2.1 Infinite Strip Pad
	2.2.2 Circular Pad
	2.2.3 Rectangular Pad (with Transition to Square or Strip)
	2.2.4 Annular Pad

	2.3 Shear Stresses Produced by Compression
	2.4 Pure Compression of Single Pads with Compressible Rubber
	2.4.1 Infinite Strip Pad
	2.4.2 Circular Pad
	2.4.3 Rectangular Pad
	2.4.4 Annular Pad


	3 Behavior of Multilayer Rubber Bearings under Bending
	3.1 Bending Stiffness of Single Pad with Incompressible Rubber
	3.1.1 Infinite Strip Pad
	3.1.2 Circular Pad
	3.1.3 Rectangular Pad
	3.1.4 Annular Pad

	3.2 Bending Stiffness of Single Pads with Compressible Rubber
	3.2.1 Infinite Strip Pad
	3.2.2 Circular Pad
	3.2.3 Rectangular Pad
	3.2.4 Annular Pad


	4 Steel Stress in Multilayer Rubber Bearings under Compression and Bending
	4.1 Review of the Compression and Bending of a Pad
	4.2 Steel Stresses in Circular Bearings with Incompressible Rubber
	4.2.1 Stress Function Solution for Pure Compression
	4.2.2 Stress Function Solution for Pure Bending

	4.3 Steel Stresses in Circular Bearings with Compressible Rubber
	4.3.1 Stress Function Solution for Pure Compression
	4.3.2 Stress Function Solution for Pure Bending

	4.4 Yielding of Steel Shims under Compression
	4.4.1 Yielding of Steel Shims for the Case of Incompressible Rubber
	4.4.2 Yielding of Steel Shims for the Case of Compressible Rubber


	5 Buckling Behavior of Multilayer Rubber Isolators
	5.1 Stability Analysis of Bearings
	5.2 Stability Analysis of Annular Bearings
	5.3 Influence of Vertical Load on Horizontal Stiffness
	5.4 Downward Displacement of the Top of a Bearing
	5.5 A Simple Mechanical Model for Bearing Buckling
	5.5.1 Postbuckling Behavior
	5.5.2 Influence of Compressive Load on Bearing Damping Properties

	5.6 Rollout Stability
	5.7 Effect of Rubber Compressibility on Buckling

	6 Buckling of Multilayer Rubber Isolators in Tension
	6.1 Introduction
	6.2 Influence of a Tensile Vertical Load on the Horizontal Stiffness
	6.3 Vertical Displacement under Lateral Load
	6.4 Numerical Modelling of Buckling in Tension
	6.4.1 Modelling Details
	6.4.2 Critical Buckling Load in Compression and Tension


	7 Influence of Plate Flexibility on the Buckling Load of Multilayer Rubber Isolators
	7.1 Introduction
	7.2 Shearing Deformations of Short Beams
	7.3 Buckling of Short Beams with Warping Included
	7.4 Buckling Analysis for Bearing
	7.5 Computation of Buckling Loads

	8 Frictional Restraint on Unbonded Rubber Pads
	8.1 Introduction
	8.2 Compression of Long Strip Pad with Frictional Restraint
	8.3 The Effect of Surface Slip on the Vertical Stiffness of an Infinite Strip Pad
	8.4 The Effect of Surface Slip on the Vertical Stiffness of a Circular Pad

	9 Effect of Friction on Unbonded Rubber Bearings
	9.1 Introduction
	9.2 Bearing Designs and Rubber Properties
	9.3 Ultimate Displacement of Unbonded Bearings
	9.4 Vertical Stiffness of Unbonded Rubber Bearings with Slip on their Top and Bottom Supports

	Appendix: Elastic Connection Device for One or More Degrees of Freedom
	References
	Photograph Credits
	Author Index
	Subject Index


