
Shared Pool Management
Shared pool is used to cache different types of data such as textual and executable forms of PL/SQL blocks and
SQL statements, dictionary cache data, and other data. If you use shared pool effectively you can reduce resource
consumption in at least four ways

1. Parse overhead is avoided if the SQL statement is already in the shared pool. This saves CPU resources on
the host and elapsed time for the end user.

2. Latching resource usage is significantly reduced, which results in greater scalability.
3. Shared pool memory requirements are reduced, because all applications use the same pool of SQL

statements and dictionary resources.
4. I/O resources are saved, because dictionary elements that are in the shared pool do not require disk access.

Main components of shared pool are library cache (executable forms of SQL cursors, PL/SQL programs, and
Java classes.) and the dictionary cache (usernames, segment information, profile data, tablespace information,
and sequence numbers.).The library cache stores the executable (parsed or compiled) form of recently referenced
SQL and PL/SQL code. The dictionary cache stores data referenced from the data dictionary. This caches are
managed by LRU algorithm to “age out” memory structures that have not been reused over time. Allocation of
memory from the shared pool is performed in chunks. This allows large objects (over 5k) to be loaded into the
cache without requiring a single contiguous area, hence reducing the possibility of running out of enough
contiguous memory due to fragmentation. Starting with 9i The Shared Pool divide its shared memory areas into
subpools. Each subpool will have Free List Buckets (containing pointers to memory chunks within the subpool)
and , memory structure entries, and LRU list. This architecture is designed to to increase the throughput of shared
pool in that now each subpool is protected by a Pool child latch. This means there is no longer contention in the
Shared Pool for a single latch as in earlier versions.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared pool that are larger than 5k
then Oracle must search for and free enough memory to satisfy this request. This operation could conceivably hold
the latch resource for detectable periods of time, causing minor disruption to other concurrent attempts at memory
allocation. To allow these allocations to occur most efficiently, Oracle segregates a small amount of the shared
pool. This memory is used if the shared pool does not have enough space. The segregated area of the shared pool
is called the reserved pool which is also divided into subpools. Smaller objects will not fragment the reserved list,
helping to ensure the reserved list will have large contiguous chunks of memory. Once the memory allocated from
the reserved list is freed, it returns to the reserved list.

By using automatic shared memory management (ASMM) option available with 10G, which is activated by
setting SGA_TARGET parameter with a value greater than 0 and STATISTICS_LEVEL to TYPICAL or ALL,
shared pool size is started to be managed by Oracle, under the limits of SGA_TARGET and other SGA
components.

After these explanations lets start to explain how to manage shared pool with ASMM.

1- Using Shared Pool Effectively

avoid hard parsing by

using bind variables instead of literal values in your queries The script below can be used to find sqls which
use literals
SELECT substr(sql_text,1,40) “SQL”, count(*) , sum(executions) “TotExecs”;
 FROM v$sqlarea
 WHERE executions < 5
 GROUP BY substr(sql_text,1,40)
 HAVING count(*) > 30
 ORDER BY 2;

Standardizing naming conventions for bind variables and spacing conventions for SQL statements and
PL/SQL blocks.

Firefox http://www.pafumi.net/Shared_Pool_Management.html

1 of 10 6/20/2021, 9:30 AM

Because they are stored, Consider using stored procedures whenever possible
Avoiding users from change the optimization approach and goal for their individual sessions.
Reducing the number of entries in the dictionary cache by explicitly qualifying the segment owner, rather
than using public synonyms or try to connect to the database through a single user ID, rather than individual
user IDs because Reducing the number of distinct userIDs also reduces the load on the dictionary
cache.SELECT employee_id FROM hr.employees WHERE department_id = :dept_id;
Using PL/SQL packages when your system has thousands of users, each with individual user sign-on and
public synonyms because a package is executed as the owner, rather than the caller, which reduces the
dictionary cache load considerably.
Avoid performing DDLs in peak hours because ddl operations invalidate the dependent SQLs and cause
hard parsing when the statement called again.
Cache the sequence numbers by using CACHE keyword of CREATE/ALTER SEQUENCE clause to reduce
the frequency of dictionary cache locks,
Try to avoid closing of rapidly executed cursors
Check for hash values which maps different literals. The query below should return no rows otherwise there
is possibility for a bug
SELECT hash_value, count(*)
 FROM v$sqlarea
 GROUP BY hash_value
 HAVING count(*) > 5;

3- Identify which sqls are using lots of shared memory

SELECT substr(sql_text,1,20) “Stmt”, count(*),
 sum(sharable_mem) “Mem”,
 sum(users_opening) “Open”,
 sum(executions) “Exec”
 FROM v$sql
 GROUP BY substr(sql_text,1,20)
 HAVING sum(sharable_mem) > 1426063 –%10 of Shared Pool Size;

Stmt COUNT(*) Mem Open Exec

/* OracleOEM */ SEL 18 1445971 2 54

This should show if there are similar literal statements, or multiple versions of a statements which account for a
large portion of the memory in the shared pool.

4- Identify which allocations causing shared pool to be aged out

spool ageout.txt
SELECT *FROM x$ksmlru
where ksmlrnum>0;
spool off

This select returns no more than 10 rows and then erases the contents of the X$KSMLRU table so be sure to
SPOOL the output. The X$KSMLRU table shows which memory allocations have caused the MOST memory
chunks to be thrown out of the shared pool since it was last queried. This is sometimes useful to help identify
sessions or statements which are continually causing space to be requested.

5- Why are there multiple child cursors.

V$SQL_SHARED_CURSOR explains why a particular child cursor is not shared with existing child cursors.
Each column identifies a specific reason why the cursor cannot be shared.

SELECT SA.SQL_TEXT, SA.VERSION_COUNT,SS.*
FROM V$SQLAREA SA, V$SQL_SHARED_CURSOR SS
WHERE SA.ADDRESS=SS.ADDRESS
AND SA.VERSION_COUNT > 5
ORDER BY SA.VERSION_COUNT ;

6- Monitor Shared Pool sizing operations

You can see the shrinking and growing operations from V$SGA_RESIZE_OPS dynamic view and you can guess

Firefox http://www.pafumi.net/Shared_Pool_Management.html

2 of 10 6/20/2021, 9:30 AM

why there is need for this operations by focusing the sql at the sizing operation times.

select to_char(end_time, ‘dd-Mon-yyyy hh24:mi’) end, oper_type, initial_size,
 target_size, final_size from V$SGA_RESIZE_OPS
 where component=’shared pool
 order by end;

END OPER_TYPE INITIAL_SIZE TARGET_SIZE FINAL_SIZE

12-Sep-2007 19:05 STATIC 0 134217728 134217728

12-Sep-2007 22:01 SHRINK 134217728 130023424 130023424

13-Sep-2007 11:35 SHRINK 130023424 125829120 125829120

13-Sep-2007 11:36 SHRINK 125829120 121634816 121634816

13-Sep-2007 22:08 GROW 121634816 125829120 125829120

13-Sep-2007 22:09 GROW 125829120 130023424 130023424

13-Sep-2007 22:10 GROW 130023424 134217728 134217728

13-Sep-2007 22:12 GROW 134217728 138412032 138412032

14-Sep-2007 09:49 GROW 138412032 142606336 142606336

14-Sep-2007 16:13 GROW 142606336 146800640 146800640

7- Minimum Size of Shared Pool

Current size of the shared pool;

select bytes
from v$sgainfo
where name=’Shared Pool Size’;

BYTES

138412032

138412032

You can use the sizig advices from the view v$shared_pool_advice. This view displays information about
estimated parse time in the shared pool for different pool sizes and the sizes range from %10 to %200 of current
shared pool size. This can give you idea for sizing SGA and obliquely shared pool by the help of ASMM.

select * from V$SHARED_POOL_ADVICE;

Suggested minimum Shared Pool Size:

set numwidth 20
column cr_shared_pool_size format 999,999,999,999
column sum_obj_size format 999,999,999,999
column sum_sql_size format 999,999,999,999
column sum_user_size format 999,999,999,999
column min_shared_pool format 999,999,999,999
select cr_shared_pool_size, sum_obj_size, sum_sql_size, sum_user_size,
 (sum_obj_size + sum_sql_size+sum_user_size)* 1.3 min_shared_pool
 from (select sum(sharable_mem) sum_obj_size from v$db_object_cache where type<> 'CURSOR'),
 (select sum(sharable_mem) sum_sql_size from v$sqlarea),
 (select sum(250*users_opening) sum_user_size from v$sqlarea),
 (select to_Number(b.ksppstvl) cr_shared_pool_size from x$ksppi a, x$ksppcv b, x$ksppsv c
 where a.indx = b.indx and a.indx = c.indx
 and a.ksppinm ='__shared_pool_size');

CR_SHARED_POOL_SIZE SUM_OBJ_SIZE SUM_SQL_SIZE SUM_USER_SIZE MIN_SHARED_POOL

146800640 9520659 25660770 11750 45751132,7

Firefox http://www.pafumi.net/Shared_Pool_Management.html

3 of 10 6/20/2021, 9:30 AM

You should set the suggested minimum shared pool size to avoid shrinking operation of ASMM

 alter system set shared_pool_size=73M;

8- How much free memory in SGA is available for shared pool and how to interpret the free memory

First of all find the free memory in shared pool. If you have free memory you should relax but if you don’t have go
to the step below

SELECT * FROM V$SGASTAT
 WHERE NAME = ‘FREE MEMORY’
 AND POOL = ‘SHARED POOL’;no rows selected

The X$KSMSP view shows the breakdown of memory in the SGA. You can run this query to build trend
information on memory usage in the SGA. Remember, the ‘free’ class in this query is not specific to the Shared
Pool, but is across the SGA. Dont use the script below when db is under load. Check out Jonathan Lewis’s
experiences on this view from here

SELECT KSMCHCLS CLASS, COUNT(KSMCHCLS) NUM, SUM(KSMCHSIZ) SIZ,
 To_char(((SUM(KSMCHSIZ)/COUNT(KSMCHCLS)/1024)),’999,999.00′)||’k’ “AVG SIZE”
 FROM X$KSMSP GROUP BY KSMCHCLS;

CLASS NUM SIZ AVG SIZE

freeabl 19010 34519404 1.77k

recr 23581 24967956 1.03k

R-freea 68 1632 .02k

perm 22 39801268 1,766.75k

R-free 34 7238192 207.90k

free 2389 36075980 14.75k

Watch for trends using these guidelines:

a) if ‘free’ memory is low (less than 5mb or so) you may need to increase the shared_pool_size and
shared_pool_reserved_size. You should expect ‘free’ memory to increase and decrease over time. Seeing trends
where ‘free’ memory decreases consistently is not necessarily a problem, but seeing consistent spikes up and down
could be a problem.
b) if ‘freeable’ or ‘perm’ memory continually grows then it is possible you are seeing a memory bug.
c) if ‘freeabl’ and ‘recr’ memory classes are always huge, this indicates that you have a lot of cursor info stored
that is not releasing.
d) if ‘free’ memory is huge but you are still getting 4031 errors, the problem is likely reloads and invalids in the
library cache causing fragmentation.
!!!!!!!!!! Note says that this query can hang database on HP platforms

To see the free memory chunks detailed use the script below

select KSMCHIDX “SubPool”, ’sga heap(’||KSMCHIDX||’,0)’sga_heap,ksmchcom ChunkComment,
 decode(round(ksmchsiz/1000),0,’0-1K’, 1,’1-2K’, 2,’2-3K’,3,’3-4K’, 4,’4-5K’,5,’5-6k’,6,’6-7k’,7,’7-8k’,8,‘8-9k’, 9,’9-10k’,'> 10K’) “size”,
 count(*),ksmchcls Status, sum(ksmchsiz) Bytes
 from x$ksmsp
 where KSMCHCOM = ‘free memory’
 group by ksmchidx, ksmchcls,
 ’sga heap(’||KSMCHIDX||’,0)’,ksmchcom, ksmchcls,decode(round(ksmchsiz/1000),0,’0-1K’, 1,’1-2K’, 2,’2-3K’, 3,’3-4K’,4,’4-5K’,5,’5-6k’,6, ‘6-7k’,7,’7-8k’,8,’8-9k’, 9,’9-10k’,'> 10K’);

SubPool SGA_HEAP CHUNKCOMMENT size COUNT(*) STATUS BYTES

1 sga heap(1,0) free memory > 10K 34 R-free 7238192

1 sga heap(1,0) free memory 3-4K 2 free 6284

1 sga heap(1,0) free memory > 10K 241 free 35707400

1 sga heap(1,0) free memory 8-9k 1 free 7712

Firefox http://www.pafumi.net/Shared_Pool_Management.html

4 of 10 6/20/2021, 9:30 AM

1 sga heap(1,0) free memory 2-3K 4 free 6752

1 sga heap(1,0) free memory 0-1K 2090 free 133288

1 sga heap(1,0) free memory 9-10k 21 free 188676

1 sga heap(1,0) free memory 1-2K 30 free 25868

If you see lack of large chunks it is possible that you can face with ORA-04031 in near future.
9- Is library_cache or dictionary_cache utilization satisfactory ?

The statistics below is based since the start of the instance. You should take interval statistics to interpret these
values for performance issues .

Library Cache Stats

SELECT NAMESPACE, PINS, PINHITS, RELOADS, INVALIDATIONS
 FROM V$LIBRARYCACHE
 ORDER BY NAMESPACE;

NAMESPACE PINS PINHITS RELOADS INVALIDATIONS

BODY 72782 72582 49 0

CLUSTER 1175 1161 3 0

INDEX 2800 2023 42 0

JAVA DATA 0 0 0 0

JAVA RESOURCE 0 0 0 0

JAVA SOURCE 0 0 0 0

OBJECT 0 0 0 0

PIPE 0 0 0 0

SQL AREA 563349 541678 2069 342

TABLE/PROCEDURE 175850 165318 2005 0

TRIGGER 6923 6802 34 0

High invalidations indicates that there is parsing problem with the namespace and high reloads indicates that there
is a sizing problem which causes aging out.

Library cache hit ratio;

 SELECT SUM(PINHITS)/SUM(PINS) FROM V$LIBRARYCACHE;

SUM(PINHITS)/SUM(PINS)
———————-
95558088

low hit ratio is an indication of a sizing or caching problem

Dictionary cache stats

SELECT PARAMETER, SUM(GETS) , SUM(GETMISSES), 100*SUM(GETS - GETMISSES) / SUM(GETS) PCT_SUCC_GETS, SUM(MODIFICATIONS) UPDATES
 FROM V$ROWCACHE
 WHERE GETS > 0
 GROUP BY PARAMETER;

PARAMETER SUM(GETS) SUM(GETMISSES) PCT_SUCC_GETS UPDATES

dc_constraints 99 35 64,6464646 99

dc_tablespaces 90104 14 99,9844624 0

dc_tablespace_quotas 13 3 76,9230769 0

dc_awr_control 1351 2 99,8519615 121

Firefox http://www.pafumi.net/Shared_Pool_Management.html

5 of 10 6/20/2021, 9:30 AM

dc_object_grants 867 174 79,9307958 0

dc_histogram_data 52053 6181 88,1255643 3047

dc_rollback_segments 55098 92 99,8330248 263

dc_sequences 100 27 73 100

dc_usernames 6632 33 99,5024125 0

dc_segments 23404 2466 89,4633396 331

dc_objects 37434 3776 89,9129134 358

dc_histogram_defs 65987 16796 74,5465016 3280

dc_table_scns 8 8 0 0

dc_users 171638 105 99,9388247 0

outstanding_alerts 1674 58 96,5352449 66

dc_files 80 10 87,5 0

dc_object_ids 134005 2646 98,0254468 123

dc_global_oids 52337 185 99,6465216 0

dc_profiles 1962 4 99,7961264 0

High updates with low pct_succ_gets can be a clue of performance problems when accessing that dictionary
object. For frequently accessed dictionary caches, the ratio of total GETMISSES to total GETS should be less than
10% or 15%, depending on the application. If this ratio is higher and every previous control is OK then you should
consider to increase the shared pool size

Dictionary cache hit ratio;

SELECT (SUM(GETS - GETMISSES - FIXED)) / SUM(GETS) “ROW CACHE” FROM V$ROWCACHE;

ROW CACHE
———————
9516921886454345524

Low hit ratio is an indication of a sizing problem.

10- Are there any objects candidate for library cache pinning ?

Having objects pinned will reduce fragmentation and changes of encountering the ORA-04031 error. Objects
causing a large number of other objects been flushed out from the shared pool are candidates to be pinned into the
shared pool using dbms_shared_pool.keep procedure. You can check the x$ksmlru fixed table to see the
candidates. This table keeps track of the objects and the corresponding number of objects flushed out of the shared
pool to allocate space for the load. These objects are stored and flushed out based on the Least Recently Used
(LRU) algorithm. Because this is a fixed table, once you query the table, Oracle will automatically reset the table
so first insert the contents to temporary table like below,

CREATE TABLE LRU_TMP AS SELECT * FROM X$KSMLRU;

and on regular intervals issue

INSERT INTO LRU_TMP SELECT * FROM X$KSMLRU;

Use the LRU_TMP table for analysis. You can use a query below to see more information on candidate code in the
library cache.

SELECT USERNAME, KSMLRCOM, KSMLRHON, KSMLRNUM, KSMLRSIZ, SQL_TEXT
FROM V$SQLAREA A, LRU_TMP K, V$SESSION S
WHERE KSMLRSIZ > 3000
AND A.ADDRESS=S.SQL_ADDRESS AND A.HASH_VALUE = S.SQL_HASH_VALUE
AND SADDR=KSMLRSES;

Firefox http://www.pafumi.net/Shared_Pool_Management.html

6 of 10 6/20/2021, 9:30 AM

You can see the candidates to pin from the query below

COL STORED_OBJECT FORMAT A40;
COL SQ_EXECUTIONS FORMAT 999,999;
SELECT /*+ ORDERED USE_HASH(D) USE_HASH(C) */ O.KGLNAOWN||’.'||O.KGLNAOBJ STORED_OBJECT, SUM(C.KGLHDEXC) SQL_EXECUTIONS
FROM SYS.X$KGLOB O, SYS.X$KGLRD D, SYS.X$KGLCURSOR C
WHERE O.INST_ID = USERENV(’INSTANCE’) AND
 D.INST_ID = USERENV(’INSTANCE’) AND
 C.INST_ID = USERENV(’INSTANCE’) AND
 O.KGLOBTYP IN (7, 8, 9, 11, 12) AND
 D.KGLHDCDR = O.KGLHDADR AND
 C.KGLHDPAR = D.KGLRDHDL
GROUP BY O.KGLNAOWN, O.KGLNAOBJ
HAVING SUM(C.KGLHDEXC) > 0
ORDER BY 2 DESC;

You should pin objects you find immediatelly after the each restart of instance. You can pin the object by
DBMS_SHARED_POOL package like below

EXECUTE DBMS_SHARED_POOL.KEEP(OWNER.TRIGGER, ‘R’)

11- Is my Reserved Area sized properly?

An ORA-04031 error referencing a large failed requests indicates the Reserved Area is too fragmented.

col free_space for 999,999,999,999 head “TOTAL FREE”
col avg_free_size for 999,999,999,999 head “AVERAGE|CHUNK SIZE
col free_count for 999,999,999,999 head “COUNT”
col request_misses for 999,999,999,999 head “REQUEST|MISSES
col request_failures for 999,999,999,999 head “REQUEST|FAILURES”
col max_free_size for 999,999,999,999 head “LARGEST CHUNK”
select free_space, avg_free_size, free_count, max_free_size, request_misses, request_failures
from v$shared_pool_reserved;

TOTAL FREE
AVERAGE
CHUNK SIZE

COUNT LARGEST CHUNK
REQUEST
MISSES

REQUEST
FAILURES

7,238,192 212,888 34 212,888 0 0

The reserved pool is small when:

REQUEST_FAILURES > 0 (and increasing)

The DBA should Increase shared_pool_reserved_size and shared_pool_size together.

It is possible that too much memory has been allocated to the reserved list.
If:

REQUEST_MISS = 0 or not increasing
FREE_MEMORY = > 50% of shared_pool_reserved_size minimum

The DBA should Decrease shared_pool_reserved_size

You should also use hidden and unsupported parameter “_shared_pool_reserved_pct” to control reserved pool.
This parameter controls the allocated percentage of shared pool for reserved pool. By default it is %5 of the shared
pool and if you use ASMM for memory management you can set this value higher like 10 to allocate reserved pool
dynamically. When you set the parameter you will see the shared_pool_reserved_size parameter will be adjusted
to the new setting.

The parameter can not be modified when instance is started. You can use the query below to see the current value

select a.ksppinm “Parameter”, b.ksppstvl “Session Value”, c.ksppstvl “Instance Value”
from sys.x$ksppi a, sys.x$ksppcv b, sys.x$ksppsv c
where a.indx = b.indx and a.indx = c.indx
 and a.ksppinm = ‘_shared_pool_reserved_pct’;

Parameter Session Value Instance Value

Firefox http://www.pafumi.net/Shared_Pool_Management.html

7 of 10 6/20/2021, 9:30 AM

_shared_pool_reserved_pct 10 10

12-Is there any fragmentation in shared pool?

The primary problem that occurs is that free memory in the shared pool becomes fragmented into small pieces
over time. Any attempt to allocate a large piece of memory in the shared pool will cause large amount of objects in
the library cache to be flushed out and may result in an ORA-04031 out of shared memory error. But how to
understand the fragmentation ?

Occurrence of ORA-04031 error. Before this error signalled, memory is freed from unnecessary objects and
merged. This error only occurs when there is still not a large enough contiguous piece of free memory after
this cleaning process. There may be very large amounts of total free memory in the shared pool, but just not
enough contiguous memory.
Using X$KSMLRU internal fixed table. We told about this view before about its usage for tracking age out
operations, it also can be used to identify what is causing the large allocations. KSMLRSIZ column of this
table shows the amount of contiguous memory being allocated. Values over around 5K start to be a problem,
values over 10K are a serious problem, and values over 20K are very serious problems. Anything less then
5K should not be a problem. Again be careful to save spool the result when you query this table
select * from x$ksmlru where ksmlrsiz > 5000;

After finding the result you should do the followings to correct fragmentation

Keep object by pinning them as we discussed above
Use bind variables as we discussed before
Eliminate large anonymous PL/SQL block. Large anonymous PL/SQL blocks should be turned into small
anonymous PL/SQL blocks that call packaged functions. The packages should be ‘kept’ in memory. To view
candidates
select sql_text from v$sqlarea
where command_type=47 — command type for anonymous block
and length(sql_text) > 500;

Fallacies about solving shared pool fragmentation

Free memory in shared pool prevents fragmentation. This is not true because Free memory is more
properly thought of as ‘wasted memory’. You would rather see this value be low than very high. In fact, a
high value of free memory is sometimes a symptom that a lot of objects have been aged out of the shared
pool and therefore the system is experiencing fragmentation problems.
Flushing shared pool frequently solves fragmentation and improves performance. This is also incorrect
because Executing this statement causes a big spike in performance and does nothing to improve
fragmentation. You lost your cached cursors when you flush and they will hard parsed next time with high
CPU consumption.

13- Using related database parameters

CURSOR_SHARING: Setting this parameter to smilar can solve your hard parse problems caused by using
literals but can have side effects mostly on DSS environments and systems which uses stored outlines.
CURSOR_SPACE_FOR_TIME: This parameter specifies whether a cursor can be deallocated from the
library cache to make room for a new SQL statement. CURSOR_SPACE_FOR_TIME has the following
values meanings:

If CURSOR_SPACE_FOR_TIME is set to false (the default), then a cursor can be deallocated from
the library cache regardless of whether application cursors associated with its SQL statement are
open. In this case, Oracle must verify that the cursor containing the SQL statement is in the library
cache.
If CURSOR_SPACE_FOR_TIME is set to true, then a cursor can be deallocated only when all
application cursors associated with its statement are closed. In this case, Oracle need not verify that a

Firefox http://www.pafumi.net/Shared_Pool_Management.html

8 of 10 6/20/2021, 9:30 AM

cursor is in the cache, because it cannot be deallocated while an application cursor associated with it is
open.

You must be sure that the shared pool is large enough for the work load otherwise performance will
be badly affected and ORA-4031 eventually signalled.

OPEN_CURSORS: This parameter sets the upper bound for the number of cursor that a session can have
open and if you size it correctly, cached cursors can be stay opened and won’t have to be closed to let new
cursor open
PROCESSES / SESSIONS: You can review the high water mark for Sessions and Processes in the
V$RESOURCE_LIMIT view. If the hard-coded values for these parameters are much higher than the high
water mark information, consider decreasing the parameter settings to free up some memory in the Shared
Pool for other uses.
SESSION_CACHED_CURSORS: When a cursor is closed, Oracle divorces all association between the
session and the library cache state. If no other session has the same cursor opened, the library cache object
and its heaps are unpinned and available for an LRU operation. The parameter
SESSION_CACHED_CURSORS controls the number of cursors “soft” closed, much like the cached
PL/SQL cursors. Oracle checks the library cache to determine whether more than three parse requests have
been issued on a given statement. If so, then Oracle assumes that the session cursor associated with the
statement should be cached and moves the cursor into the session cursor cache. Subsequent requests to parse
that SQL statement by the same session then find the cursor in the session cursor cache.To determine
whether the session cursor cache is sufficiently large for your instance, you can examine the session statistic
session cursor cache hits in the V$SYSSTAT view. This statistic counts the number of times a parse call
found a cursor in the session cursor cache. If this statistic is a relatively low percentage of the total parse call
count for the session, then consider setting SESSION_CACHED_CURSORS to a larger value. Steve Adams also
wrote usefully queries to find the usage and the maximum cacheable cursors.session_cursor_cache.sql

This was a long article and if you see anything wrong or suspicious please feel free to comment for correction

All of the queries are tested on Oracle 10.2.0.3 for Windows

Code Depot of The Queries (All scripts are taken from metalink notes and official documentation)
References :

Oracle® Database Performance Tuning Guide 10g Release 2 (10.2)

Metalink Notes

Note:396940.1 Troubleshooting and Diagnosing ORA-4031 Error

Note:146599.1 Diagnosing and Resolving Error ORA-04031

Note:61623.1 Resolving Shared Pool Fragmentation In Oracle7

Note:62143.1 Understanding and Tuning the Shared Pool

Note:1012047.6 How To Pin Objects in Your Shared Pool

Note:274496.1 ora-7445 and ora-4031 in 9.2.0.5 and 10g if SESSION_CACHED_CURSORS is used

www.ixora.com Oracle Advanced Performance Tuning Scripts

Mailing list threads from Oracle-l

http://www.freelists.org/archives/oracle-l/08-2007/msg00975.html

Firefox http://www.pafumi.net/Shared_Pool_Management.html

9 of 10 6/20/2021, 9:30 AM

Firefox http://www.pafumi.net/Shared_Pool_Management.html

10 of 10 6/20/2021, 9:30 AM

