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PREFACE

Life inevitably involves decision making, choices and searching for compro-
mises. It is only natural to want all of these to be as good as possible, in other
words, optimal. The difficulty here lies in the (at least partial) conflict between
our various objectives and goals. Most everyday decisions and compromises are
made on the basis of intuition, common sense, chance or all of these. However,
there are areas where mathematical modelling and programming are needed,
such as engineering and economics. Here, the problems to be solved vary from
designing spacecraft, bridges, robots or camera lenses to blending sausages,
planning and pricing production systems or managing pollution problems in
environmental control. Many phenomena are of a nonlinear nature, which is
why we need tools for nonlinear programming capable of handling several con-
flicting or incommensurable objectives. In this case, methods of traditional
single objective optimization are not enough; we need new ways of thinking,
new concepts, and new methods — nonlinear multiobjective optimization.

Problems with multiple objectives and criteria are generally known as mul-
tiple criteria optimization or multiple criteria decision-making (MCDM) prob-
lems. The area of multiple criteria decision making has developed rapidly, as
the statistics collected in Steuer et al. (1996) demonstrate. For example, by the
year 1994, a number of 144 conferences had been held and over 200 books and
proceedings volumes had appeared on the topic. Moreover, some 1216 refereed
journal articles were published between 1987 and 1992.

The MCDM field is so extensive that there is good reason to classify prob-
lems on the basis of their characteristics. They can be divided into two distinct
types (in accordance with MacCrimmon (1973)). Depending on the properties
of the feasible solutions, we distinguish multiattribute decision analysis and
multiobjective optimization. In multiattribute decision analysis, the set of fea-
sible alternatives is discrete, predetermined and finite. Specific examples are
the selection of the locations of power plants and dumping sites or the pur-
chase of cars and houses. In multiobjective optimization problems, the feasible
alternatives are not explicitly known in advance. An infinite number of them
exists and they are represented by decision variables restricted by constraint
functions. These problems can be called continuous. In these cases, one has to
generate the alternatives before they can be valuated.

As far as multiattribute decision analysis is concerned, we refer to the mono-
graphs by Hwang and Yoon (1981) and Keeney and Raiffa (1976). More ref-
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erences, together with 17 major methods in the area accompanied by simple
examples, can be found in the latter monograph. A more recent summary of
the methodology is given in Yoon and Hwang (1995). A brief historical account,
including the basic ideas behind both multiobjective optimization and multiat-
tribute decision analysis together with suggestions for further reading, can be
found in Dyer et al. (1992) and Zionts (1992). (The latter also handles multi-
attribute utility theory and negotiation.) In addition, a review of the research
in both of these problem classes accompanied by future directions appears in
Korhonen et al. (1992a). It contains short descriptions of many concepts and
areas in multiple criteria optimization and decision making not included here.

In this book we concentrate solely on continuous multiobjective optimiza-
tion. This does not mean that some of the methods presented cannot be applied
to multiattribute decision analysis. Nevertheless, most of the methods have
been designed only for one or other of the problem types, exploiting certain
special characteristics.

The importance of multiobjective optimization can be seen from the large
variety of applications presented in the literature. Some idea of its possibilities
can be gained from the fact that over 500 papers describing different applica-
tions (between the years 1955 and 1986) are listed in White (1990). They cover,
for example, problems concerning agriculture, banking, the health service, en-
ergy, industry, water and wildlife.

Even though we have restricted ourselves to handling only multiobjective
optimization problems, it nonetheless remains a broad area of research and we
are therefore obliged to omit several topics to be able to give a uniform presen-
tation. We shall restrict the treatment to deterministic problems. Nevertheless,
a few words and further references are in order in relation to problems involv-
ing uncertainties. These can be divided into stochastic and fuzzy problems. In
stochastic programming it is usually assumed that uncertainty is due to a lack
of information about prevailing states, and that this uncertainty only concerns
the occurrence of the states and not the definition of the states, results or cri-
teria themselves. A problem containing random variables as coefficients on a
certain probability space is called a stochastic programming problem (treated,
for example, in the monographs of Guddat et al. (1985) and Stancu-Minasian
(1984)). When decision making takes place in an environment where the goals,
constraints and consequences of possible actions are not precisely known, it
is called decision making in fuzzy environments (handled, for example, in the
proceedings of Kacprzyk and Orlovski (1987)). Fuzzy coefficients may also be
involved in the problem formulation. Both stochastic and fuzzy multiobjective
optimization (for linear problems) are dealt with and compared in the proceed-
ings of Slowinski and Teghem (1990). Let us stress once again that here we
assume the problems to be deterministic; that is, the outcome of any feasible
solution is known for certain.

Solving problems with several conflicting objectives usually requires the
participation of a human decision maker who can express preference relations
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between alternative solutions and who continues from the point where math-
ematical tools end. Here we assume that a single decision maker is involved.
With several decision makers, the whole question of problem setting is very dif-
ferent. In addition to the mathematical side of the solution process, there is also
the aspect of negotiation and consensus striving between the decision makers.
The number of decision makers affects the means of approaching and solving
the problem significantly. A summary of group decision making is given in the
monograph of Hwang and Lin (1987). Here we settle for one decision maker.

A number of specific problem types requires special handling (not included
here). Among these are problems in which the feasible solutions must have inte-
ger values or 0-1 values, multiobjective trajectory optimization problems, where
the multiple objectives have multiple observation points, multiobjective net-
works or transportation networks and multiobjective dynamic programming.
Here we shall not go into these areas but adhere to standard methods.

Thus far we have outlined our interest here as being in deterministic contin-
uous multiobjective optimization with a single decision maker. This definition
still contains two broad areas, namely linear and nonlinear cases. Because lin-
ear programming utilizes the special characteristics of the problem, its methods
are not usually applicable to nonlinear problems. Further, linear multiobjective
optimization theory and methodology have been extensively treated in the lit-
erature, so there is no reason to repeat them here. One of the best presentations
focusing mainly on linear problems is Steuer (1986). However, the methodol-
ogy of nonlinear multiobjective optimization has not been drawn together since
Hwang and Masud (1979) (currently out of print). One more fact to notice is
that improved computational capacity enables problems to be handled with-
out linearizations and simplifications. Finally, linear problems are a subset of
nonlinear problems and that is why nonlinear methods can be used in both
cases. For these reasons, this book concentrates on nonlinear multiobjective
optimization.

The aim here is to provide an up-to-date, self-contained and consistent
survey and review of the literature and the state of the art on nonlinear (de-
terministic) multiobjective optimization starting with basic results.

The amount of literature on multiobjective optimization is immense. The
treatment in this book is based on about 1500 publications in English printed
mainly after the year 1980. Almost 700 of them are cited and listed in the bib-
liography. This extensive list of references supplements the contents regarding
areas not covered.

Problems related to real-life applications often contain irregularities and
nonsmoothnesses. The treatment of nondifferentiable multiobjective optimiza-
tion in the literature is rather rare. For this reason we also include in this book
material about the possibilities, background, theory and methods of nondiffer-
entiable multiobjective optimization.

Theory and methods for multiobjective optimization have been developed
chiefly during the last four decades. Here we do not go into the history as
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the origin and the achievements in this field of research from 1776 to 1960
are widely treated in Stadler (1979). A brief summary of the history is also
given in Gal and Hanne (1997). There it is demonstrated that multiobjective
optimization has its foundations in utility theory and economics, game theory,
mathematical research on order relations and vector norms, linear production
theory, and nonlinear programming.

Let us mention some further readings. The monographs of Chankong and
Haimes (1983b), Cohon (1978), Hwang and Masud (1979), Osyczka (1984),
Sawaragi et al. (1985), Steuer (1986) and Yu (1985) provide an extensive
overview of the area of multiobjective optimization. Further noteworthy mono-
graphs on the topic are those of Rietveld (1980), Vincke (1992) and Zeleny
(1974, 1982). A significant part of Vincke (1992) deals, however, with multiat-
tribute decision analysis. The behavioural aspects of multiobjective optimiza-
tion are mostly treated in Ringuest (1992), whereas the theoretical aspects are
extensively handled in the monographs by Jahn (1986a) and Luc (1989).

As far as this book is concerned, the contents are divided into three parts.
Part I provides the theoretical background. Chapter 1 leads into the topic and
Chapter 2 presents important notation, concepts and definitions in multiob-
jective optimization with some illustrative figures. Various theoretical aspects
appear in Chapter 3. For example, analogous optimality conditions for dif-
ferentiable and nondifferentiable problems are considered. A solid, conceptual
basis and foundation for the remainder of the book is laid. Throughout the
book we keep to problems involving only finite-dimensional Euclidean spaces.
(Dauer and Stadler (1986) provide a survey on multiobjective optimization in
infinite-dimensional spaces.)

The methodology is handled in Part II. Methods are divided into four classes
in Chapter 1 according to the role of a (single) decision maker in the solution
process. The state of the art in method development is portrayed by describing
a number of different methods accompanied by their theoretical background in
Chapters 2 to 5. For ease of comparison, all the methods are presented using a
uniform notation. The good and the weak properties of the methods are also in-
troduced with references to extensions and applications. The class of interactive
methods in Chapter 5 contains most of the methods, and it is the most exten-
sively handled. Linear problems and methods are only occasionally touched
on. In addition to describing solution methods, we introduce some implemen-
tations. In connection with every method described, some author’s comments
appear in the concluding remarks. Some of the methods are depicted in more
detail and some only mentioned. Appropriate references to the literature are
always included.

Part III is Related Issues. After the presentation of a set of different so-
lution methods, some comparison is appropriate in Chapter 1. Naturally, no
absolute order of superiority can be given, but some points can be raised. A
table comparing some of the features of the interactive methods described is
included. In addition, we present brief summaries of some of the comparisons
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available in the literature. Moreover, we suggest some outlines regarding the
important question of selecting an appropriate method. Method selection itself
is a problem with multiple objectives. Nevertheless, in addition to considering
some significant factors, we present a decision tree to aid selection. This tree
contains all the interactive methods previously described in some detail. It is
based on some of the fundamental assumptions underlying the methods and
different ways of exchanging information between the method and its user.

Compared with the plethora of methods, only a relatively few computer
implementations are widely known and available. However, some implementa-
tional aspects are touched on and some software mentioned in Chapter 2.

As computers and monitors have developed, graphical illustration has in-
creased in importance and has also become easier to produce. Hence graphical
illustration of alternative solutions together with related matters are featured
in Chapter 3. The potential and restrictions of graphics are treated and some
clarifying figures are enclosed.

We conclude with comments on future directions in Chapter 4 and an epi-
logue in Chapter 5.

This book is intended both for researchers and students in the areas such as
(applied) mathematics, engineering, economics, operations research and man-
agement, science; it is meant both for professionals and practitioners in many
different fields of application. For beginners, this book provides an introduc-
tion to the theory and methodology of nonlinear multiobjective optimization.
For other readers, it offers an extensive reference to many related results and
methods. Obviously it is not possible in a single book to include all the aspects
and methods of nonlinear multiobjective optimization. However, the intention
has been to provide a consistent summary using a uniform notation leading
to further references. The uniform style of presentation may help in selecting
an appropriate method for the problem to be solved. It is hoped the extensive
bibliography will be of value to researchers.

The book gives sufficient theoretical background to allow those interested to
follow the derivation of the featured methods. However, the theoretical treat-
ment in Chapter 3 of Part I, for example, is not essential for the continua-
tion. For both theoretically and practically oriented readers, the algorithms
are described in a consistent manner with some implementational remarks and
software information also presented. Because, however, this is not an actual
textbook, no exercises or illustrative examples have been included.
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Part 1

TERMINOLOGY AND THEORY



1. INTRODUCTION

We begin by laying a conceptual and theoretical basis for the continuation
and restrict our treatment to finite-dimensional Euclidean spaces. First, we
present the deterministic, continuous problem formulation to be handled and
some genera) notation. Then we introduce several concepts and definitions of
multiobjective optimization as well as their interconnections. The concepts and
terms used in the field of multiobjective optimization are not completely fixed.
The terminology used here is occasionally slightly different from that in gen-
eral use. In some cases, only one of the existing terms is employed. Somewhat
different definitions of concepts are presented, for example, in Zionts (1989).

To deepen the theoretical basis, we treat optimality conditions for differ-
entiable and nondifferentiable multiobjective optimization problems. We also
briefly touch on the topics of sensitivity analysis, stability and duality.

Throughout the book, even some simple results are proved, for the conve-
nience of the reader (with possible appropriate references), in order to lay firm
cornerstones for the continuation. However, to keep the text to a reasonable
length, some proofs have been omitted if they can directly be found as such
elsewhere. In those cases, appropriate references in the literature are indicated.

Multiobjective optimization problems are usually solved by scalarization.
Scalarization means that the problem is converted into a single (scalar) or a
family of single objective optimization problems. In this way the new problem
has a real-valued objective function, possibly depending on some parameters.
After the multiobjective optimization problem has been scalarized, the widely
developed theory and methods for single objective optimization can be used.
Even though multiobjective optimization methods are presented in Part II,
we emphasize here at the outset that the methods and the theory of single
objective optimization are presumed to be known.



2. CONCEPTS

This chapter introduces the basic concepts of (nonlinear) multiobjective
optimization and the notations used in the continuation.

2.1. Problem Setting and General Notation
We begin by defining the problem to be handled.

2.1.1. Multiobjective Optimization Problem

We study a multiobjective optimization problem of the form

minimize  {fi(x), f2(x),..., fe(x)}

(2.1.1) .
subject to x € S,

where we have k (> 2) objective functions f;: R™ — R. We denote the vector
of objective functions by f(x) = (f1(x), f2(x),..., fr(x))T. The decision (vari-
able) vectors x = (z1,%3,...,2,)T belong to the (nonempty) feasible region
(set) S, which is a subset of the decision variable space R™. We do not yet fix
the form of the constraint functions forming S, but refer to S in general.

The word ‘minimize’ means that we want to minimize all the objective func-
tions simultaneously. If there is no conflict between the objective functions, then
a solution can be found where every objective function attains its optimum. In
this case, no special methods are needed. To avoid such trivial cases we assume
that there does not exist a single solution that is optimal with respect to every
objective function. This means that the objective functions are at least partly
conflicting. They may also be incommensurable (i.e., in different units).

In the following, we denote the image of the feasible region by Z (= £(S))
and call it a feasible objective region. It is a subset of the objective space R*. The
elements of Z are called objective (function) vectors or criterion vectors and
denoted by f(x) or z = (21, 23, ..., 2x)T, where z; = f;(x) foralli = 1,... k are
objective (function) values or criterion values. The words in the parentheses
above are usually omitted for short.

K. Miettinen, Nonlinear Multiobjective Optimization
© Springer Science+Business Media New York 1998
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For clarity and simplicity of the treatment we assume that all the objective
functions are to be minimized. If an objective function f; is to be maximized,
it is equivalent to minimize the function — f;.

In what follows, whenever we refer to a multiobjective optimization prob-
lem, it is problem (2.1.1) unless stated otherwise. Finding a solution to (2.1.1)
in one way or another is called a solution process in the continuation.

2.1.2. Background Concepts

First, we present some general concepts and notations. We use bold face
and superscripts for vectors, for example, x!, and subscripts for components
of vectors, for example, z;. All the vectors here are assumed to be column
vectors. For two vectors, x and x* € R™, the notation x7x* denotes their
scalar product and the vector inequality x < x* means that z; < z} for all
i =1,...,n. Correspondingly x < x* stands for z; < z foralli =1,...,n.

The nonnegative orthant of R™ is denoted by R’. In other words, R} =
{x€R" | z; >0fori =1,...,n}. The Euclidean norm of a vector x € R"

is denoted by ||x|| = (X1, :c?)l/ ? The Euclidean distance function between a
point x* and a set S is denoted by dist(x*,S) = infyes [|x* — x||. The symbol
B(x*,d) denotes an open ball with a centre x* and a radius § > 0, B(x*,0) =
{x € R" | ||x* — x|| < 6}. The notation int S stands for the interior of a set S.

The vectors x¢, i = 1,..., m, are linearly independent if the only weighting
coefficients B; for which Y .-, Bix* = 0 are 8; = 0,4 = 1,...,m. The sum
S, Bixt is called a convex combination of the vectors x,x%,...,xme s, if
B; > 0 for all 7 and Z:’;l Bi = 1. The convexz hull of a set S C R™, denoted by
conv S, is the set of all convex combinations of vectors in S.

A set S C R™ is a cone if Bx = (Bzy,...,Bzm)T € S whenever x € S and
B > 0. The negative of a cone is —S = {—-x € R" | x € §}. A cone S is said to
be pointed if it satisfies SN —S = {0}. A cone —S transformed to x* € R" is
denoted by x* — § = {x € R" | x = x* + d, whered € —-S}.

It is said that d € R™ is a feasible direction emanating from x € S if there
exists a* > 0 such that x+ ad € S for 0 < a < a*.

In some connections we assume that the feasible region is formed of inequal-
ity constraints, that is, S = {x € R" | g(x) = (g1(x), g2(x), - .., gm (x))T < 0}.
An inequality constraint g; is said to be active at a point x* if g;(x*) = 0,
and the set of active constraints at x* is denoted by J(x*) = {j € {1,...,m} |
g9;(x*) = 0}.

Different types of multiobjective optimization problems can be defined.

Definition 2.1.1. When all the objective functions and the constraint func-
tions forming the feasible region are linear, then the multiobjective optimiza-
tion problem is called linear. In brief, it is an MOLP (multiobjective linear
programming) problem.

If at least one of the objective or the constraint functions is nonlinear, the
problem is called a nonlinear multiobjective optimization problem.
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A large variety of solution techniques have been created as to enable the
special characteristics of MOLP problems to be taken into account. Here we
concentrate on cases where nonlinear functions are included and thus methods
for nonlinear problems are needed. Methods and details of MOLP problems are
mentioned only incidentally.

Before we define convex multiobjective optimization problems, we briefly
write down the definitions of convex functions and convex sets.

Definition 2.1.2. A function f;: R™ = R is convez if for all x!,x% € R" is
valid that f;(Bx! + (1 — B)x?) < Bfi(x) + (1 = B) fi(x?) forall 0 < B < 1.

A set S C R"™ is conver if x!,x? € S implies that x! + (1 — B)x% € S for
al0< g <.

Definition 2.1.3. The multiobjective optimization problem is convez if all the
objective functions and the feasible region are convex.

A convex multiobjective optimization problem is an important concept in
the continuation. We shall also need related generalized concepts, quasiconvex
and pseudoconvex functions. The pseudoconvexity of a function calls for dif-
ferentiability. For completeness, we write down the definitions of differentiable
and continuously differentiable functions.

Definition 2.1.4. A function f;: R"™ — R is differentiable at x* if
fi(x* +d) - fi(x*) = Vfi(x")Td + ||d]| e(x",q),

where V f;(x*) is the gradient of f; at x* and £(x*,d) — 0 as ||d]| = 0.
In addition, f; is continuously differentiable at x* if all of its partial deriva-
tives aféz’:_ (j = 1,...,n), that is, all the components of the eradient are

continuous at x*.

The gradient of f; at x* can also be denoted by V, f;(x*) to emphasize that
the derivation is carried out subject to x.
Now we can define quasiconvex and pseudoconvex functions.

Definition 2.1.5. A function f;: R® = R is quasiconvez if fi(8x! + (1 —
B)x?) < max [fi(x!), fi(x?)] for all 0 < B < 1 and for all x!,x? € R™.

Let f; be differentiable at every x € R"™. Then it is pseudoconvez if for all
x!,x2 € R™ such that V f;(x*)T(x% — x') > 0, we have f;(x?) > fi(x!).

As far as the relations of quasiconvex and pseudoconvex functions are con-
cerned, every pseudoconvex function is also quasiconvex.

The definition of convex functions can be modified for concave functions by
replacing ‘<’ by ‘>’. Correspondingly, the definition of quasiconvex functions
becomes appropriate for quasiconcave functions by the exchange of ‘<’ to ‘>’
and ‘max’ to ‘min’. In the definition of pseudoconvex functions we replace
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> by ‘<’ to get the definition for pseudoconcave functions. Notice that if a
function f; is quasiconvex, all of its level sets {x € R" | fi(x) < a} are convex
and if it is quasiconcave, all of its level sets {x € R" | f;(x) > a} are convex
(see, for example, Mangasarian (1969, pp. 133-134)).

Sometimes we also need strict definitions.

Definition 2.1.6. A function fi: R* = R is strictly convez if f;(8x! + (1 -
B)x2) < Bfi(x') + (1 — B)fi(x?) and strictly quasiconvez if f;(Bx' + (1 —
B)x2) < max[fi(x'), fi(x?)] for all 0 < 8 < 1 and for all x!,x* € R", where

filx') # fi(x?).

Notice that strict convexity of a function implies convexity and convexity
implies both strict quasiconvexity and quasiconvexity. If differentiability is as-
sumed, convexity implies pseudoconvexity which implies strict quasiconvexity.
See Bazaraa et al. (1993, pp. 78-118) or Mangasarian (1969, pp. 131-147) for
the details of the relations. The corresponding results are valid for concave
functions and their generalizations. It is worth pointing out that convexity,
concavity and related concepts can be defined in a convex set S C R" as well
as in R"™.

We also need other function types. The first of these are related to mono-
tonicity.

- Definition 2.1.7. A function f;: R” — R is increasing if for x! and x* € R™

z; <z forall j=1,...,n imply fi(x}) < fi(x?).

Correspondingly, the function f; is decreasing if fi(x!) > fi(x?).

A function is monotonic (or order preserving) if it is either increasing or
decreasing. Monotonicity can be tightened up in several ways.

Definition 2.1.8. A function f;: R® = R is strictly increasing if for x! and
2 n
x‘ e R
x; < z? forall j=1,...,n imply fi(x') < fi(x?).
Definition 2.1.9. A function fi: R® = R is strongly increasing if for x* and
2 n
x* e R

z; < :1:? forall j=1,...,n and z} <z? for some ! imply fi(x') < fi(x?).

Correspondingly, the function f; is strongly decreasing if fi(x') > fi(x?).

Notice that if a function is strongly decreasing and differentiable, all of its
partial derivatives have to be (strictly) negative.
In the next definition we need a subset R? of R™. It is defined as
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R” = {x € R" | dist (x, R") < ¢[|x])}.

Definition 2.1.10. A function f;: R® — R is e-strongly increasing if for x*
and x2 € R

x' e x? R} \ {0} imply fi(x') < fi(x?).

For the convenience of the reader we define twice differentiable functions
and some related concepts.

Definition 2.1.11. A function f;: R™ — R is twice-differentiable at x* if
1
fi(x* +d) — fi(x*) = Vfi(x*)Td + -2-dTV2fi(x‘)d + ||d||%e(x*, d),

where V f;(x*) is the gradient, the symmetric n xn matrix V? f;(x*) is a Hessian
matriz of f; at x* and e(x*,d) — 0 as ||d|| = 0. The Hessian matrix of a

2. *
twice-differentiable function consists of second-order partial derivatives %B__zf;_g%

(4, ! =1,...,n). In other words,

82f|'(x‘2 62f|‘ (x‘z
321 e 8z10x,
vhx) = o
62f‘.£x¢2 Bzf.-'(x‘)
0z, 01, te Oz

In addition, f; is twice continuously differentiable at x* if all of its second-
order partial derivatives are continuous at x*.

A symmetric n X n matrix M is called positive definite, if xT” Mx > 0 for
all 0 # x € R™,

We shall also handle nondifferentiable multiobjective optimization prob-
lems. For that reason we define locally Lipschitzian functions (see Clarke (1983,
pp. 9-11) and Mékeld and Neittaanmaki (1992, pp. 5-10)).

Definition 2.1.12. A function f;: R® — R is locally Lipschitzian at a point
x* € R" if there exist scalars K > 0 and § > 0 such that

Ifi(x!) = fi(x?)] < K||x! — x?|| for all x!,x% € B(x*,4).

Notice that a convex function f;: R™ = R is for any point x € R"™ locally
Lipschitzian at x.

In what follows, a function is called nondifferentiable if it is locally Lip-
schitzian (and not necessarily continuously differentiable).
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Definition 2.1.13. The multiobjective optimization problem is nondifferen-
tiable if some of the objective functions or the constraint functions forming the
feasible region are nondifferentiable.

According to Rademacher’s Theorem (see, e.g., Federer (1969)), we know
that a locally Lipschitzian function, defined in an open set, is differentiable
almost everywhere in that set. A set where a function f; is not differentiable
is denoted here by (2f,. In the sequel, we employ the concept subdifferential
as defined in Clarke (1983). It corresponds to the gradient in the differentiable
case.

Definition 2.1.14. Let the function f;: R™ — R be locally Lipschitzian at a
point x* € R". The set

Ofi(x*)=conv{feR" | €= 11“1:2’ Viixh; = x*, x e R\ 02,

is called a subdifferential of the function f; evaluated at the point x*. In addi-
tion, the vectors £ € 8f;(x*) are called subgradients.

We end with a special type of upper semidifferentiable function (see Wang
(1989)).

Definition 2.1.15. Let the function f;: R® — R be locally Lipschitzian at a
point x* € R™. Then it is upper semidifferentiable at x* if for every d € R",
any sequence {t;}32; with ¢; — 0 and sequence {¢}, where & € Of;(x* +t;d)
for every j, we have

timing SO ED = HO) iy qup )74,

00 t; j—roo

Special properties of nondifferentiable functions are introduced in Section
3.2, in the context where nondifferentiability is handled.

After these general definitions and concepts we can continue with multiob-
jective optimization terminology.

2.2. Pareto Optimality

In this section, we handle a crucial concept in optimization, namely op-
timality. In single objective optimization problems, the main focus is on the
decision variable space. In the multiobjective context we are often more inter-
ested in the objective space. For one thing, it is usually of a lower dimension
than the decision variable space. Further, objective values are used below in

defining optimality.
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Because of the contradiction and possible incommensurability of the objec-
tive functions, it is not possible to find a single solution that would be optimal
for all the objectives simultaneously. Multiobjective optimization problems are
in a sense ill-defined. There is no natural ordering in the objective space be-
cause it is only partially ordered (meaning that, for example, (1,1)7 can be
said to be less than (3,3)7, but how to compare (1,3)7 and (3,1)7). This is
always the case when vectors are compared in real spaces (see also Chankong
and Haimes (1983b, pp. 64-67)).

Anyway, some of the objective vectors can be extracted for examination.
Such vectors are those where none of the components can be improved without
deterioration to at least one of the other components. Edgeworth (1987) pre-
sented this definition in 1881. However, the definition is usually called Pareto
optimality after the French-Italian economist and sociologist Vilfredo Pareto,
who in 1896 developed it further (see Pareto (1964, 1971)). However, in some
connections, like in Stadler (1988b), the term Edgeworth-Pareto optimality is
used for the above-mentioned reason. Koopmans was one of the first to employ
in 1951 the concept of Pareto optimality in Koopmans (1971). A more formal
definition of Pareto optimality is the following:

Definition 2.2.1. A decision vector x* € § is Pareto optimal if there does not
exist another decision vector x € § such that f;(x) < fi(x*) foralli=1,... k
and f;(x) < f;(x*) for at least one index j.

An objective vector z* € Z is Pareto optimal if there does not exist another
objective vector z € Z such that z; < 2z} for all ¢ = 1,...,k and z; < z; for
at least one index j; or equivalently, z* is Pareto optimal if the decision vector

corresponding to it is Pareto optimal.

In Figure 2.2.1, a feasible region S C R? and its image, a feasible objective
region Z C R?, are illustrated. The fat line contains all the Pareto optimal
objective vectors. The vector z* is an example of them.

z*  Pareto optimal
set

X3 X 2]

Figure 2.2.1. The sets S and Z and the Pareto optimal objective vectors.
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There are usually a lot (infinite number) of Pareto optimal solutions. We
can speak about a set of Pareto optimal solutions or a Pareto optimal set. This
set can be nonconvex and nonconnected.

In addition to Pareto optimality, several other terms are sometimes used for
the optimality concept described above. These terms are, for example, nonin-
feriority, efficiency and nondominance. At variance with this practice, a more
general meaning is given to efficiency later. In general, Pareto optimality is
here used as a concept of optimality, unless stated otherwise.

Definition 2.2.1 introduces global Pareto optimality. Another important con-
cept is local Pareto optimality.

Definition 2.2.2. A decision vector x* € S is locally Pareto optimal if there
exists 6 > 0 such that x* is Pareto optimal in S N B(x*,d).

An objective veator z* € Z is locally Pareto optimal if the decision vector
corresponding to it is locally Pareto optimal.

Naturally, any globally Pareto optimal solution is locally Pareto optimal.
The converse is valid for convex multiobjective optimization problems. (For
this result, see e.g., Censor (1977).)

Theorem 2.2.3. Let the multiobjective optimization problem be convex.
Then every locally Pareto optimal solution is also globally Pareto optimal.

Proof. Let x* € S be locally Pareto optimal. Thus there exist some § > 0 and
a neighbourhood B(x*, ) of x* such that there is no x € SNB(x*,d) for which
fi(x) < fi(x*) for alli = 1,...,k and for at least one index j is f;(x) < f;j(x").

Let us assume that x* is not globally Pareto optimal. In this case, there
exists some other point x° € S such that

(2.2.1) fi(x°) < fi(x*) foralli =1,...,k and f;(x°) < f;(x*) for some j.

Let us define x = 8x° + (1 — 8)x*, where 0 < § < 1 is selected such that
% € B(x*, ). The convexity of S implies that X € S.

By the convexity of the objective functions and employing (2.2.1), we obtain
fi®) € Bfi(x°) + (1 = B) fu(x*) < Bfi(x*) + (1 - B)fi(x*) = fi(x") for every
i =1,..., k. Because x* is locally Pareto optimal and x € B(x*,d), we must
have f;(x) = fi(x*) for all 4.

Further, f;(x*) < Bfi(x°) + (1 — B) fi(x*) for every i = 1,...,k. Because
B8 > 0, we can divide by it and obtain f;(x*) < fi(x°) for all i. According
to assumption (2.2.1), we have f;(x*) > f;j(x°) for some j. Here we have a
contradiction. Thus, x* is globally Pareto optimal. 0

We can establish the above-mentioned result with somewhat weaker as-
sumptions. It is sufficient to assume that all the objective functions are qua-
siconvex and strictly quasiconvex. This result has been treated, for example,
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in Ruiz-Canales and Rufidn-Lizana (1995). These assumptions can be further
relaxed according to Luc and Schaible (1997).

Theorem 2.2.4. Let the multiobjective optimization problem have a convex
feasible region and quasiconvex objective functions with at least one strictly
quasiconvex objective function. Then every locally Pareto optimal solution is
also globally Pareto optimal.

Proof. Let x* € S be locally Pareto optimal. Thus there exist some § > 0 and
a neighbourhood B(x*,4) of x* such that there is no x € SN B{x*, ) for which
fi(x) < fi(x*) foralli =1,...,k and for at least one index j is f;(x) < f;(x*).

Let us assume that x* is not globally Pareto optimal. In this case, there
exists some other point x° € S such that

(2.2.2) fi(x°) < fi(x*) foralli=1,...,k and f;(x°) < f;(x*) for some j.

Let us define x = fx° + (1 — B)x*, where 0 < 8 < 1 is selected such that
% € B(x*,4). The convexity of S implies that % € S.

Employing (2.2.2) and by the quasiconvexity of the objective functions,
respectively, for each index i such that f;(x°) = fi(x*), we obtain

fi(®) < max[fi(x°), fi(x")] = fi(x*),
and for each index j such that f;(x°) < f;(x*), we have
fi(%) < max [f;(x°), £;(x")] = f;(x*).

Because at least one of the objective functions is strictly quasiconvex, at least
one of the inequalities above is strict. Here we have a contradiction with the
local Pareto optimality of x*. Thus, x* is globally Pareto optimal. O

For the sake of brevity, we shall usually speak only about Pareto optimality
in the sequel. In practice, however, we only have locally Pareto optimal solu-
tions computationally available, unless some additional requirement, such as
convexity, is fulfilled.

Usually, we are interested in Pareto optimal solutions and can forget the
other feasible solutions. Exceptions to this practice are problems where one of
the objective functions is an approximation of an unknown function or there
are underlying unexpressed objective functions involved. Then, the real Pareto
optimal set is unknown.

According to the definition of Pareto optimality, moving from one Pareto
optimal solution to another necessitates trading off. This is one of the basic
concepts in multiobjective optimization. Let us, however, mention that the
idea of trading off can be called into question, as suggested, for example, in
Zeleny (1997). It is not perhaps always necessary to trade off in order to attain
improved results. One can argue that it has been possible to produce things
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both at lower cost and with higher quality. Changing the way of approaching the
problem and its formulation may produce better results than simply trading off
in the old formulation. (This can also be regarded as an example of expanding
habitual domains, to be introduced in Section 2.3.) Zeleny goes so far as to
claiming that trade-offs are properties of inadequately designed systems. For
that reason one can claim that we should aim at designing systems better.

2.3. Decision Maker

Mathematically, every Pareto optimal point is an equally acceptable solu-
tion of the multiobjective optimization problem. However, it is generally desir-
able to obtain one point as a solution. Selecting one out of the set of Pareto
optimal solutions calls for information that is not contained in the objective
functions. This is why — compared to single objective optimization — a new
element is added in multiobjective optimization.

We need a decision maker to make the selection. The decision maker is a
person (or a group of persons) who is supposed to have better insight into the
problem and who can express preference relations between different solutions.
Usually, the decision maker is responsible for the final solution.

Solving a multiobjective optimization problem calls for the co-operation
of the decision maker and an analyst. By an analyst we here mean a person
or a computer program responsible for the mathematical side of the solution
process. The analyst generates information for the decision maker to consider
and the solution is selected according to the preferences of the decision maker.

It is assumed in the following that we have a single decision maker or a
unanimous group of decision makers. Generally, group decision making is a
world of its own. It calls for negotiations and specific methods when searching
for compromises between different interest groups (see, for example, Hwang
and Lin (1987) and Yu (1973)).

In Part II, solution methods are classified according to the role of the deci-
sion maker in the solution process. In some methods, various assumptions are
made concerning the preference structure and behaviour of the decision maker.
Note that assuming a single decision maker does not exclude the possibility
that there may be others involved influencing the decision maker (as stressed
in Zionts (1997a, b)).

During solution processes, various kinds of information are solicited from the
decision maker. Such items of information may include, for example, desirable
or acceptable levels in the values of the objective functions. These objective
values (whether feasible or not) are of special interest and importance to the
decision maker.

Definition 2.3.1. Objective function values that are satisfactory or desirable
to the decision maker are called aspiration levels and denoted by z;,¢ = 1,...,k.
The vector Z € R¥, consisting of aspiration levels, is called a reference point.
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By solving a multiobjective optimization problem we here mean finding a
feasible decision vector such that it is Pareto optimal and satisfies the needs
and the requirements of the decision maker. Assuming such a solution exists,
it is called a final solution. However, as stressed in Zionts (1997a, b), it may
be difficult for the decision maker to distinguish between good and optimal
solutions in real problems. If this is the case, the emphasis should be on finding
good solutions (and sometimes, only, on finding solutions).

We do not focus here on the problems of decision making, which is a research
area of its own. Interesting topics in this area are, for instance, decision making
with incomplete information, validity of the problem formulation and habitual
domains. The first of these matter is treated, for example, in Weber (1987).
Reasons for incomplete information include lack of knowledge, pressure of time,
fear of commitment and matters related to the future.

We usually assume that decision makers are only interested in Pareto op-
timal points and the rest can be excluded. However, this is not the case if the
problem has not been formulated well enough. As already emphasized, non-
Pareto optimal solutions may be important if there are some unformulated or
hidden objective functions in the mind of the decision maker or some of the
objective functions are simply proxies of the objective functions proper (see,
for example, Zionts (1997a, b)). In such cases, the Pareto optimal sets of the
problem handled and the actual problem which should be solved, do not co-
incide. Here we assume the mathematical model to be accurate and static so
that we can mainly concentrate on Pareto optimal solutions.

A habitual domain is defined in Yu (1991) as a set of ways of thinking, judg-
ing and responding, as well as the knowledge and experience on which they are
based. Yu emphasizes that in order to make effective decisions it is important
to expand and enrich the habitual domains of the decision makers. Several ways
of carrying this out are presented in Yu (1991, 1995). Understanding, expand-
ing and enriching the domains of thinking is also stressed, for example, in Yu
(1994) and Yu and Liu (1997).

2.4. Ranges of the Pareto Optimal Set

Let us for a while investigate the ranges of the set of Pareto optimal so-
lutions. We assume that the objective functions are bounded over the feasible
region S.

2.4.1. Ideal Objective Vector

An objective vector minimizing each of the objective functions is called an
ideal (or perfect) objective vector.
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Definition 2.4.1. The components 2 of the ideal objective vector z* € R*
are obtained by minimizing each of the objective functions individually subject
to the constraints, that is, by solving

minimize  fi(x)

subject to x € S,

fori=1,...,k.

It is obvious that if the ideal objective vector were feasible (that is, z* € Z),
it would be the solution of the multiobjective optimization problem (and the
Pareto optimal set would be reduced to it). This is not possible in general since
there is some conflict among the objectives. Even though the ideal objective
vector is not attainable, it can be considered a reference point, something to go
for. From the ideal objective vector we obtain the lower bounds of the Pareto
optimal set for each objective function.

Note that in practice some caution is in order with nonconvex problems.
The definition of the ideal objective vector assumes that we know the global
minima of the individual objective functions. Guaranteeing global optimality
in numerical calculations is not that simple. This must be kept in mind with
practical problems. Properties of ideal objective vectors, for example, their
uniqueness, are treated in Skulimowski (1992).

Sometimes we also need a vector that is strictly better than, in other words,
strictly dominates, every Pareto optimal solution.

Definition 2.4.2. A utopian objective vector z** € R¥ is an infeasible objec-
tive vector whose components are formed by

z¥

* ok
i =% €

for all i = 1,...,k, where 2 is a component of the ideal objective vector and
g; > 0 is a relatively small but computationally significant scalar.

2.4.2. Nadir Objective Vector

The upper bounds of the Pareto optimal set, that is, the components of
a nadir objective vector (or imperfect objective vector) z"®, are much more
difficult to obtain. However, they can be estimated from a payoff table.

A payoff table is formed by using the decision vectors obtained when calcu-
lating the ideal objective vector. Row i of the payoff table displays the values of
all the objective functions calculated at the point where f; obtained its minimal
value. Hence, z} is at the main diagonal of the table. The maximal value of the
column i in the payoff table can be selected as an estimate of the upper bound
of the objective f; for i = 1,...,k over the Pareto optimal set.

The black points in Figure 2.4.1 represent ideal objective vectors, and the
grey ones are nadir objective vectors. The nadir objective vector may be feasible
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or not, as illustrated in Figure 2.4.1. The Pareto optimal set is represented by
the bold lines.

22 22

Zl zl

Figure 2.4.1. Ideal objective vectors and nadir objective vectors.

Note that the objective vectors in the rows of the payoff table are Pareto
optimal if they are unique. In other words, if the individual objective functions
have alternative optima, the obtained objective vector may not be Pareto op-
timal. This fact can weaken the approach and it can happen in linear as well
as in nonlinear problems.

It is important to note that the estimates based on the payoff table are
not necessarily equal to the real components of the nadir objective vector as
demonstrated, for example, in Korhonen et al. (1997) and Weistroffer (1985).
Instead of being correct, the nadir objective value approximate may be either
far too low or too high.

The difference between the complete Pareto optimal set and the subset of
the Pareto optimal set bounded by the ideal objective vector and the upper
bounds obtained from the payoff table in linear cases is explored in Reeves and
Reid (1988). It is proposed that relaxing (i.e., increasing) the approximated up-
per bounds by a relatively small tolerance should improve the approximation,
although it is ad hoc in nature. However, small tolerances may not necessar-
ily help because the error between the correct and the approximated nadir
objective value may be significant.

For nonlinear problems, there is no constructive method for calculating the
nadir objective vector. That is why we here mention some treatments for MOLP
problems. Isermann and Steuer (1988) include an examination of how many of
the Pareto optimal extreme solutions of some MOLP problems are above the
upper bounds obtained from the payoff table. Three methods for determining
the exact nadir objective vector in a linear case are also suggested. None of
them is especially economical computationally. In Dessouky et al. (1986), three
heuristics are presented for calculating the nadir objective vector when the



18 Part I — 2. Concepts

problem is linear. A heuristic for MOLP problems is also described in Korho-
nen et al. (1997). It is demonstrated how much better are the approximations
the heuristic can provide. Heuristics are usually able to improve the approxi-
mations obtained from the payoff table even though they may not always find
the correct nadir objective values. Heuristics are often computationally much
less demanding than exact procedures.

Nonetheless, the payoff table may be used as a rough estimate as long
as its robustness is kept in mind. Because of the above-described difficulty
of calculating the actual nadir objective vector, we shall usually refer to the
approximate nadir objective vector as z"2d.

2.4.3. Related Topics

In many occasions it is advisable to rescale, that is, normalize the objective
functions so that their objective values are of approximately the same mag-
nitude. If the ideal objective vector and a good enough approximation to the
nadir objective vector are known, we can replace each objective function f;(x)
(i =1,...,k) by the function

filx) = z¢
EEEr
In this case, the range of each new objective function is [0, 1].

Another related possibility is to use a range equalization factor, as suggested
in Steuer (1986). The range R; of each objective function is first estimated by
the difference between the (possibly approximated) nadir objective vector and
the ideal objective vector. Then, constants

1 1
K,‘ = =k 1
. 1
Ry 1w
are defined for every i = 1,...,k, and finally each objective function is multi-

plied by K;.

A simple alternative for normalizing the objective function values is to di-
vide each objective function by its (nonzero) ideal objective value. This has
been suggested, for example, in Osyczka (1984, 1992). This is not as exact as
the previous methods but does not necessitate information about the nadir
objective vector.

It is usually advisable to use normalized objective values only in calcu-
lations and to display restored objective values in the original scales to the
decision maker. In this way the different scales do not confuse computation
and significant objective values are offered to the decision maker.

It is possible that (some) objective functions are unbounded, for instance,
from below. In this case some caution is in order. In multiobjective optimiza-
tion problems this does not necessarily mean that the problem is formulated
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incorrectly. There may still exist Pareto optimal solutions. However, if, for in-
stance, some component of the ideal objective vector is unbounded and it is
replaced by a small but finite number, methods utilizing the ideal objective
vector may not be able to overcome the replacement.

Finally, let us look at some examples of the problem of optimizing a function
over the Pareto optimal set of a multiobjective optimization problem. This is a
more general problem than just looking for the ranges of the Pareto optimal set.
In Benson and Sayin {1994), the authors deal with the maximization of a linear
function over the Pareto optimal set of an MOLP problem. A general function
is minimized over the Pareto optimal set of an MOLP problem in Dauer and
Fosnaugh (1995), and a convex function is optimized over the Pareto optimal set
of linear objective functions and a convex feasible region by duality techniques
in Thach et al. (1996). Maximization of a function over the Pareto optimal set
is also considered in Horst and Thoai (1997).

2.5. Weak Pareto Optimality

In addition to Pareto optimality, other related concepts are widely used.
These are weak and proper Pareto optimality. The relationship between these
concepts is that the properly Pareto optimal set is a subset of the Pareto
optimal set which is a subset of the weakly Pareto optimal set.

A vector is weakly Pareto optimal if there does not exist any other vector
for which all the components are better. More formally it means the following:

Definition 2.5.1. A decision vector x* € S is weakly Pareto optimal if there
does not exist another decision vector x € S such that f;(x) < f;(x*) for all
i=1,...,k.

An objective vector z* € Z is weakly Pareto optimal if there does not
exist another objective vector z € Z such that z; < 2] foralli = 1,...,k; or
equivalently, if the decision vector corresponding to it is weakly Pareto optimal.

The bold line in Figure 2.5.1 represents the set of weakly Pareto optimal
objective vectors. The fact that the Pareto optimal set is a subset of the weakly
Pareto optimal set can also be seen in the figure. The Pareto optimal objective
vectors are situated along the line between the dots.

Similarly to Pareto optimality, local weak Pareto optimality can be defined
in addition to the global weak Pareto optimality of Definition 2.5.1. It must
still be kept in mind that usually only locally weakly Pareto optimal solutions
are computationally available. Nevertheless, for the sake of brevity, we shall
usually refer only to weak Pareto optimality.

Let us state as a curiosity that if the feasible region is convex and the objec-
tive functions are quasiconvex with at least one strictly quasiconvex function,
the set of locally Pareto optimal solutions is a subset of the set of weakly Pareto



20 Part I — 2. Concepts

Z2

weakly Pareto
<« optimal set

Pareto optimal

set /

2]

Figure 2.5.1. Weakly Pareto optimal vectors.

optimal solutions. This result is an immediate corollary of Theorem 2.2.4, where
we proved that under the above-mentioned assumptions all the locally Pareto
optimal solutions are also globally Pareto optimal.

The connectedness of the sets of Pareto optimal and weakly Pareto optimal
solutions has not been widely treated. Yet, this is an important feature because
it is often useful to know how well one can move continuously from one (weakly)
Pareto optimal solution to another.

The Pareto optimal set of an MOLP problem is proved to be connected in
Steuer (1986, pp. 158, 220). It is stated in Warburton (1983), that the Pareto
optimal set is connected in convex multiobjective optimization problems. In
addition, Warburton shows that if the feasible region is convex and compact
and the objective functions are quasiconvex, then the set of weakly Pareto
optimal solutions is connected. The connectedness of the Pareto optimal set is
guaranteed for a certain subclass of quasiconvex functions. A noncompact case
is also studied in Warburton (1983).

The structure, including connectedness, of the sets of weakly, properly or
Pareto optimal solutions for nonconvex problems with two objective functions
is investigated in Tenhuisen and Wiecek (1996). A review of connectedness
results for Pareto optimality is given in Benoist (1998). Benoist also proves
that the Pareto optimal set is connected for continuous, strictly quasiconvex
objective functions (when transformed for minimization problems) defined on
a convex and compact set.

Although weakly Pareto optimal solutions are important for theoretical
considerations, they are not always useful in practice, because of the large
size of the weakly Pareto optimal set. However, they are often relevant from
a technical point of view because they are sometimes easier to generate than
Pareto optimal points. A more restrictive concept than Pareto optimality is
proper Pareto optimality (to be defined in Section 2.9).
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2.6. Value Function

It is often assumed that the decision maker makes decisions on the basis of
an underlying function of some kind. This function is called a value function.

Definition 2.6.1. A function U: R* — R representing the preferences of the
decision maker among the objective vectors is called a value function.

Let 2! and z? € Z be two different objective vectors. If U(z!) > U(z?), then
the decision maker prefers z* to z?. If U(z') = U(2?), then the decision maker
finds the objective vectors equally desirable, that is, they are indifferent.

It must be pointed out that the value function is totally a decision maker-
dependent concept. Different decision makers may have different value functions
for the same problem.

Sometimes the term utility function is used instead of the value function.
Here we follow the common way of referring to value functions in deterministic
problems. The term utility function is reserved for stochastic problems (not to
be handled here). See Keeney and Raiffa (1976) for a more extended discussion
of both terms.

If we had at our disposal the mathematical expression of the decision
maker’s value function, it would be easy to solve the multiobjective optimiza-
tion problem. The value function would simply be maximized by some method
of single objective optimization. The value function would offer a total (com-
plete) ordering of the objective vectors. However, there are several reasons why
this seemingly easy way is not generally used in practice. The most important
reason is that it is extremely difficult, if not impossible, for a decision maker
to specify mathematically the function behind her or his preferences. Secondly,
even if the function were known, it could be difficult to optimize because of its
possible complicated nature. An example of such situations is the nonconcavity
of the value function. In this case, only a local maximum may be found instead
of the global one. In addition, as pointed out in Steuer and Gardiner (1991), it
is not necessarily all to the good that optimizing the value function results in
a single solution. After specifying the value function, the decision maker may
have doubts about its validity. This is why (s)he may want to explore different
alternatives before selecting the final solution.

One more thing to keep in mind about value functions is that their existence
is not necessarily guaranteed. At least it may be restricting to assume that a
fixed and stable function can explain the behaviour and the preferences of the
decision maker.

Even though value functions are seldom explicitly used in solving multi-
objective optimization problems, they are very important in the development
of solution methods and as a theoretical background. In many multiobjective
optimization methods, the value function is assumed to be known implicitly
and the decision maker is assumed to make selections on this basis. In several
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methods, convergence results are obtained by making certain assumptions, for
example, quasiconcavity about the implicit value function. In all, we can say
that value functions are usually more important to the analyst than to the
decision maker (see Zionts (1997a, b)).

Generally, the value function is assumed to be strongly decreasing. This
means that the preference of the decision maker will increase if the value of
an objective function decreases while all the other objective values remain un-
changed (i.e., less is preferred to more). This assumption is justified by Rosen-
thal (1985), who stresses that “Clearly, under the monotonicity assumption a
rational decision maker would never deliberately select a dominated point. This
is probably the only important statement in multiobjective optimization that
can be made without the possibility of generating some disagreement.”

However, there are exceptions to this situation. Rosenthal mentions as an
(maximization) example the deer population, where more deer are usually pre-
ferred to fewer for aesthetic and recreational reasons, but not in the case when
the deer population is large enough to remove all the forest undergrowth.

The following theorem presents an important result concerning the solutions
of strongly decreasing value functions.

Theorem 2.6.2. Let the value function U: R* —» R be strongly decreasing.
Let U attain its maximum at z* € Z. Then z* is Pareto optimal.

Proof. Let z* € Z be a maximal solution of a strongly decreasing value func-
tion U. Let us assume that z* is not Pareto optimal. Then there exists an
objective vector z € Z such that z; < 2} for all i = 1,...,k and z; < 2] for
at least one index j. Because U is strongly decreasing, we have U(z) > U(z*).
Thus U does not attain its maximum at z*. This contradiction implies that z*
is Pareto optimal. O

Different properties and forms of value functions are widely treated in Hem-
ming (1978). Some references handling the existence of value functions are listed
in Stadler (1979) where different value functions are also presented.

The way a final solution was earlier defined means that a solution is final if
it maximizes the decision maker’s value function. Sometimes another concept,
that of the satisficing solution, is distinguished.

Satisficing solutions are connected with so-called satisficing decision making.
Satisficing decision making means that the decision maker does not intend to
maximize any general value function but tries to achieve certain aspirations.
A solution which satisfies all the aspirations of the decision maker is called
a satisficing solution. In the most extreme case, one can define a solution to
be satisficing independent of whether it is Pareto optimal or not. Here we,
however, always assume that a satisficing solution is Pareto optimal or at least
weakly Pareto optimal.
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It is important to realize that regardless of the existence of an underlying
value function, a general assumption still is that that less is preferred to more
by the decision maker, that is, lower objective function values are preferred to
higher. This assumption is usually made even in methods not involving value
functions in any way. Thus, assuming that less is preferred to more is a more
general assumption than assuming a strongly decreasing value function.

2.7. Efficiency

It is possible to define optimality in a multiobjective context in more general
ways than by Pareto or weak Pareto optimality. Let us have a pointed convex
cone D defined in R¥. This cone D is called an ordering cone and it is used to
induce a partial ordering on Z. Let us have two objective vectors, z! and z? € Z.
An objective vector z! dominates z2, denoted by z! <p 22, if 22 —2z' € D and
z! # 22, that is, z° — 2! € D\ {0}. The same can also be written as z? € z! + D
and z! # 22, that is, z* € z! + D \ {0} as illustrated in Figure 2.7.1.

Figure 2.7.1. Domination induced by a cone D.

We can now present a definition of optimality based on domination, which
is an alternative to the definitions previously given. When an ordering cone
is used in defining optimality, then the term efficiency will be used in what
follows.

Definition 2.7.1. Let D be a pointed convex cone. A decision vector x* € S
is efficient (with respect to D) if there does not exist another decision vector
x € S such that f(x) <p f(x*).

An objective vector z* € Z is efficient if there does not exist another objec-
tive vector z € Z such that z <p z*.
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This definition means that a vector is efficient (nondominated) if it is not
dominated by any other feasible vector. The definition above can be formulated
in many ways. If we substitute <p for its definition, we have the condition in
the form 0 # z* —z € D or z* —z € D\ {0} (see Corley (1980)).

Other equivalent formulations are, for instance, z* € Z is efficient if (Z —
z*) N (=D) = {0} (see Pascoletti and Serafini (1984) and Weidner (1988)), if
(z* — D\ {0})NZ = O (see Tapia and Murtagh (1989) and Wierzbicki (1986b))
or if (z* — D) N Z = z* (see Chen (1984) and Jahn (1987)).

Let us give an alternative formulation to Definition 2.7.1 using one of the
equivalent representations.

Definition 2.7.2. Let D be a pointed convex cone. A decision vector x* € S
is efficient (with respect to D) if there does not exist another decision vector
x € S such that f(x*) € f(x) + D\ {0}, that is, (f(x*) =D\ {0}) N Z = 0.
An objective vector z* € Z is efficient if there does not exist another objec-
tive vector z € Z such that z* € z + D\ {0}, that is, (z* — D\ {0}) N Z = 0.

Different notions of efficiency are collected in Ester and Tréltzsch (1986).
They provide several auxiliary problems in the interests of obtaining efficient
solutions.

Remark 2.7.3. The above definitions are equivalent to Pareto optimality if
D =Rk (see Figure 2.7.2).

z¥- Rzi

2]

Figure 2.7.2. Pareto optimality with the help of cone R% .

When Pareto optimality or efficiency is defined with the help of ordering
cones, it is trivial to verify that Pareto optimal or efficient objective vectors
always lie on the boundary of the feasible objective region Z.

Instead of a cone D, which is constant for every objective vector, we can use
a point-to-set map D from Z into R* to represent the domination structure. In
this case domination is dependent on the current objective vector. For details
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of ordering cones, see Sawaragi et al. (1985, pp. 25-31) and Yu (1974, 1985,
pp. 163-209).

Theorem 2.6.2 gives a relationship between Pareto optimal solutions and
value functions. Relations can also be established between efficient solutions and
value functions. To give an idea of them, let us consider a pseudoconcave value
function U. According to pseudoconcavity whenever VU (z!)7 (z? - 2') < 0, we
have U(z?) < U(z'). We can now define an ordering cone as a map D(z) =
{d € R¥ | VU(2)"d < 0}. This ordering cone can be used to determine efficient
solutions. Note that if we have a value function, we can derive its domination
structure, but not generally vice versa. See Yu (1974) for an example.

Weakly efficient decision and objective vectors can be defined in a corre-
sponding fashion to efficient ones. If the set Z of objective vectors is ordered
by an ordering cone D, weakly efficient vectors may be characterized in the
following way (see Jahn (1987) and Wierzbicki (1986b)):

Definition 2.7.4. Let D be a pointed convex cone. A decision vector x* € §
is weakly efficient (with respect to D) if there does not exist another decision
vector x € S such that f(x*) € f(x) + int D, that is, (f(x*) —int D) N Z = .
An objective vector z* € Z is weakly efficient if there does not exist another
objective vector z € Z such that z* € z + int D, that is, (z* ~int D) N Z = 0.

An alternative formulation is that an objective vector z* € Z is weakly
efficient if (Z — 2*) N (~int D) = @ (see Sawaragi et al. (1985, pp. 33-34)).

Connectedness of the sets of weakly efficient and efficient points is studied
in Helbig (1990) whereas Luc (1989, pp. 148-154) treats particularly weakly
efficient sets in convex problems where the objective functions are quasiconvex.
In addition, connectedness results for efficient points in multiobjective combi-
natorial problems are given in Ehrgott and Klamroth (1997).

In the following, we mostly settle for treating Pareto optimality. Some ex-
tensions related to efficiency are only mentioned in passing.

Thus far, we have defined Pareto and weak Pareto optimality and more
general efficiency and weak efficiency. Proper Pareto optimality and proper
efficiency are yet to be introduced. To clarify their practical meaning and for
other further purposes we must first, however, define trade-offs and marginal
rates of substitution.

2.8. From One Solution to Another

Trade-offs and marginal rates of substitution are related to changes in the
objective values when we move from one solution to another. Trade-offs are
defined mathematically whereas marginal rates of substitution depend on the
decision maker.
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2.8.1. Trade-Offs

We have several concepts involved in trading off. A trade-off reflects the
ratio of change in the values of the objective functions concerning the increment
of one objective function that occurs when the value of some other objective
function decreases. In the following definitions we have ¢, j = 1,...,k, 1 # j.

Definition 2.8.1. (From Chankong and Haimes (1983b)) Let x! and x? € S
be two decision vectors and let f(x!) and f(x?) be the corresponding objective
vectors, respectively. We denote the ratio of change between the functions f;

and f; by
(aelY _ F (2
Ay = Ay(xt x?) = S —fi)
1= A0 = N = 1 6)
where f;(x') — f;(x%) #0.

Now, A;; is called a partial trade-off, involving f; and f; between x' and
x2if fi(x!) = fi(x?) foralll = 1,...,k, I #14,j. If fi(x!) # fi(x?) for at least
onel =1,...,k and ! # i,j, then A;; is called a total trade-off, involving f;
and f; between x' and x2.

Note that in the case of two objective functions there is no difference be-
tween partial and total trade-offs. If partial trade-offs are presented to the de-
cision maker, (s)he can compare changes in two objective functions at a time.
This is usually a more comfortable procedure than comparing several objec-
tives. If the points x! and x? are Pareto optimal, then there always exist some
objective functions f; and f; for which the trade-off is negative. A concept
related to the trade-off is the trade-off rate.

Definition 2.8.2. (From Chankong and Haimes (1983b)) Let x* € S be a
decision vector and let d* be a feasible direction emanating from x*. The total
trade-off rate at x*, involving f; and f; along the direction d”*, is given by

Aij = A (x*,d") = lim A (x* + ad®, x*).
a—0t
If d” is a feasible direction so that there exists & > 0 satisfying fi(x* + ad™) =

filx*)foralll =1,...,k, 1 #1,7 and for all 0 < & < @&, then the corresponding
Aij is called a partial trade-off rate.

Remark 2.8.3. If the objective functions are continuously differentiable, then

z, = AL
1] T vfj(x*)Td*l
where the denominator differs from zero.

For continuously differentiable objective functions we can alternatively give
the following definition.
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Definition 2.8.4. Let the objective functions be continuously differentiable
at a decision vector x* € S. Then a partial trade-off rate at x*, involving f;
and f;, is given by

/\ij = /\,‘j (X*) = afé(f);*)

Differing from the idea of the definitions above, a so-called global trade-
off is defined in Kaliszewski and Michalowski (1995, 1997). A global trade-off
involves two objective functions and one decision vector which does not have to
be Pareto optimal. It is the largest pairwise trade-off of two objective functions
for one decision vector. Let us consider x* € S and modify the definitions for
minimization problems. We define a subset of the feasible decision vectors in
the form

S7(x") ={x €S| f;(x) > f;(x*), filx) < fi(x"), fori=1,...,k, i#j}.

Now we can introduce global trade-offs.

Definition 2.8.5. (From Kaliszewski and Michalowski (1995, 1997)) Let x* €
S be a decision vector. We denote a global trade-off between the functions f;

nd f; b
e AS = AS(x*) =  sup Silx') = fi(x) .
Y “ x€S7 (x*) fi(x) — £ (x*)

If $7(x*) = 0, then A (x*) = —oo for every i = 1,...,k, i # j.

A generalized definition of trade-offs in terms of tangent cones, meaning
feasible directions, in the objective space is presented in Henig and Buchanan
(1994, 1997). These generalized trade-off directions can be used for calculat-
ing trade-off rates at every Pareto optimal point of a convex multiobjective
optimization problem.

Note that trade-offs are defined mathematically and the decision maker
cannot affect them. If we take into consideration the opinions of the decision
maker, we can define indifference curves and marginal rates of substitution.

2.8.2. Marginal Rate of Substitution

It is said that two feasible solutions are situated on the same indifference
curve (or isopreference curve) if the decision maker finds them equally desir-
able, that is, neither of them is preferred to the other one. This means that
indifference curves are contours of the underlying value function. There may
also be a ‘wider’ indifference band. In this case we do not have any well-defined
boundary between preferences, but a band where indifference occurs. This con-
cept is studied in Passy and Levanon (1984).
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For any two solutions on the same indifference curve there is a trade-off
involving a certain increment in the value of one objective function (f;) that
the decision maker is willing to tolerate in exchange for a certain amount of
decrement in some other objective function (f;) while the preferences of the
two solutions remain the same. This is called the marginal rate of substitution.
This kind of trading between different solutions is characteristic of multiobjec-
tive optimization problems when moving from one Pareto optimal solution to
another. The marginal rate of substitution (sometimes also called indifference
trade-off) is the negative of the slope of the tangent to the indifference curve
at a certain point.

Definition 2.8.6. A marginal rate of substitution m;; = m;;(x*) represents
the preferences of the decision maker at a decision vector x* € S. It is the
amount of decrement in the value of the objective function f; that compensates
the decision maker for the one-unit increment in the value of the objective
function f;, while the values of all the other objectives remain unaltered.

Note that in the definition the starting and the resulting objective vectors lie
on the same indifference curve and ¢, j =1,...,k, 1 # j.

It can be stated that the final solution of a multiobjective optimization
problem is a Pareto optimal solution where the indifference curve is tangent to
the Pareto optimal set. This tangency condition means finding an indifference
curve intersecting the feasible objective region that is farthest to the southwest.
This property is illustrated in Figure 2.8.1.

Pareto optimal set

final solution

\ Zl

indifference curve

Figure 2.8.1. The final solution.
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Remark 2.8.7. If the partial derivatives exist, then

_ dUE(x") /6U(f(x*))
af; ofi

mi;(x”)

If the Pareto optimal set is smooth (that is, at every Pareto optimal point
there exists a unique tangent), we have the following result. When one examines
the definition of a trade-off rate at some point, one sees that it is the slope of
the tangent of the Pareto optimal set at that point. We can also define that
when a Pareto optimal solution is a final solution, then the tangents of the
indifference curve and the Pareto optimal set coincide at it, that is,

(2.8.1) —mg =X, forall i,5=1,...,k i#j.

Thus, with the help of the negative of the marginal rate of substitution and
the trade-off rate one can get a local linear approximation of the indifference
curve and the Pareto optimal set, respectively.

Usually, one of the objective functions is selected as a reference function
when trade-offs and marginal rates of substitution are treated. The trade-offs
and the marginal rates of substitution are generated with respect to it. In the
notations above, f; is the reference function. When co-operating with decision
makers, it is important to select the reference function in a meaningful way. An
important criterion in the selection is, for example, that the reference function
is in familiar units or that it is dominant.

2.9. Proper Pareto Optimality

Kuhn and Tucker were the first to note that some of the Pareto optimal solu-
tions had undesirable properties (see Kuhn and Tucker (1951)). To avoid such
properties, they introduced properly Pareto optimal solutions and suggested
that Pareto optimal solutions be divided into properly and improperly Pareto
optimal ones. The idea of properly Pareto optimal solutions is that unbounded
trade-offs between objectives are not allowed. Practically, a properly Pareto op-
timal solution with very high or very low trade-offs does not essentially differ
from a weakly Pareto optimal solution for a human decision maker.

There exist several definitions for proper Pareto optimality. The idea is
easiest to understand from the following definition.

Definition 2.9.1. (From Geoffrion (1968)) A decision vector x* € S is prop-
erly Pareto optimal (in the sense of Geoffrion) if it is Pareto optimal and if
there is some real number M > 0 such that for each f; and each x € § sat-
isfying fi(x) < fi(x*), there exists at least one f; such that f;(x*} < f;(x)
and
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filx™) - fi(x*) <M.
fi(x) = fi(x*)
An objective vector z* € Z is properly Pareto optimal if the decision vector
corresponding to it is properly Pareto optimal.

In other words, a solution is properly Pareto optimal if there is at least one
pair of objectives for which a finite decrement in one objective is possible only
at the expense of some reasonable increment in the other objective.

Geoffrion’s definition can be generalized so that the upper bound is a pos-
itive function M (x) instead of a constant (see Mishra (1996) and Mishra and
Mukherjee (1995)). This leads to the definition of conditional proper Pareto
optimality.

A method for obtaining all the properly Pareto optimal solutions satisfy-
ing prescribed marginal rates of substitution in the convex case is proposed
in Geromel and Ferreira (1991). Upper estimates for properly Pareto optimal
solutions are given as well.

Durier (1988) studies the relationships between Pareto optimal and properly
Pareto optimal sets in a convex case. One of the results is that if the set of
properly Pareto optimal solutions is closed, then the two sets are equal. A
property called a locally flat surface, which guarantees the very same equality
in convex and differentiable problems, is presented in Zhou et al. (1993).

Results concerning Pareto optimal and properly Pareto optimal solutions
~ are collected in Gal (1986). In Chew and Choo (1984), it is proved that every
Pareto optimal solution is also properly Pareto optimal for a nonlinear prob-
lem involving. only pseudolinear functions (i.e., differentiable functions which
are both pseudoconvex and pseudoconcave). The results of Chew and Choo can
be considered special cases of more general results presented in Weir (1990). In
Gulati and Islam (1990), it is shown that the preceding result can be generalized
by assuming quasiconvexity of the active constraints (of the form g(x) < 0)
with some regularity properties. Pseudolinearity is extended by defining semilo-
cally pseudolinear functions in Kaul et al. (1988).

We shall present some results concerning the relationships between Pareto
optimal, weakly and properly Pareto optimal solutions in the context of solution
methods in Part II.

Next, we introduce e-proper Pareto optimality, which is easy to illustrate
graphically.

Definition 2.9.2. (From Wierzbicki (1980b)) A decision vector x* € S and
the corresponding objective vector z* € Z are e-properly Pareto optimal if

(z" -RE\{0})nZ =0,

where R¥ = {z € R* | dist (z, R%) < ellz|} or RF = {z € R¥ | max;=1,...x 2 +
€ Zle z; > 0} and € > 0 is a predetermined scalar.
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Note that this definition differs from that of Pareto optimality so that a
larger set R is used instead of the set R’j_. The set of e-properly Pareto optimal
solutions is depicted in Figure 2.9.1 and denoted by a bold line. The solutions
are obtained by intersecting the feasible objective region with a blunt cone.
The end points of the Pareto optimal set, z! and z?2, have also been marked to
ease the comparison.

An alternative formulation of Definition 2.9.2 is that a decision vector x* €
S and the corresponding z* € Z are e-properly Pareto optimal if (z* —~RF)nNZ =
z*. (The definition can be generalized into proper efficiency by using a convex
cone D such that RE C int DU {0}.)

[P

\ 2y

Figure 2.9.1. The set of e-properly Pareto optimal solutions.

An interesting aspect of e-properly Pareto optimal solutions is that the
trade-offs are bounded by e and 1/e (see Wierzbicki (1986a, b)). We return to
this concept in Section 3.5 of Part II.

Before we continue with the original definition of Kuhn and Tucker, we
should mention briefly another way of decreasing the set of Pareto optimal
solutions according to Liu (1996). There, z* € Z is called e-Pareto optimal if
(z* — (RE +\ {0})NZ =0, where e € RE.

Let us for a while assume that the feasible region is defined with the
help of inequality constraints. In other words, S = {x € R" | g(x) =
(91(x),92(x),...,9m(x))T < 0}. In addition, all the objective and the con-
straint functions are assumed to be continuously differentiable at every point
x € 5. Thus the next definition is not applicable to nondifferentiable multiob-
jective optimization problems.

Definition 2.9.3. (From Kuhn and Tucker (1951)) A decision vector x* € S
is properly Pareto optimal (in the sense of Kuhn and Tucker) if it is Pareto
optimal and if there does not exist any vector d € R™ such that

VHGETd <0
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foralli=1,...,k, for some j
Vfi(x*)Td <0,

and
Va(x*)Td <0

for all | satisfying g;(x*) = 0, that is, for all active constraints at x*.
An objective vector z* € Z is properly Pareto optimal if the decision vector
corresponding to it is properly Pareto optimal.

Kuhn and Tucker also derived necessary and sufficient conditions for proper
Pareto optimality in Kuhn and Tucker (1951). Those conditions will be pre-
sented in the next section.

A comparison of the definitions of Kuhn and Tucker and Geoffrion is pre-
sented in Geoffrion (1968). For example, in convex cases the definition of Kuhn
and Tucker implies the definition of Geoffrion. The reverse result is valid if
the so-called Kuhn-Tucker constraint qualification (see Definition 3.1.3) is sat-
isfied. The relationships of these two definitions are also treated, for example,
in Sawaragi et al. (1985, pp. 42-46). Several practical examples are given in
Tamura and Arai (1982) to illustrate the fact that properly Pareto optimal so-
lutions according to the definitions of Kuhn and Tucker and Geoffrion (and one
more definition by Klinger; see Klinger (1967)) are not necessarily consistent.
Conditions under which (local) proper Pareto optimality in the sense of Kuhn
and Tucker implies (local) proper Pareto optimality in the sense of Geoffrion
are proved as well. More mathematical results concerning the properties and
the relationships of the definitions of Kuhn and Tucker, Geoffrion and Klinger
are given in White (1983a).

Borwein (1977) and Benson (1979a) have both defined proper efficiency
when a closed, convex cone D is used as an ordering cone. Borwein’s definition
is based on tangent cones and Benson’s on so-called projecting cones. Let us
mention that proper efficiency according to Benson’s definition implies proper
efficiency in the sense of Borwein. (The reverse is valid in convex cases.) These
two definitions are generalized in Henig (1982b) using convex ordering cones.
The ordering cone D used in defining efficiency is utilized in the following.

Definition 2.9.4. (From Henig (1982b)) Let D be a pointed convex cone.
A decision vector x* € S is properly efficient (in the sense of Henig) (with
respect to D) if there does not exist another decision vector x € S such that
f(x*) € f(x)+ E'\ {0}, that is, (f(x*) — E\ {0}) N Z = @ for some convex cone
E such that D\ {0} C int E.

An objective vector z* € Z is properly efficient if there does not exist
another objective vector z € Z such that z* € z + E \ {0}, in other words,
(z* — E\{0})N Z = @ with E as above.
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The desirable property is valid also here: if a point is properly efficient, it
is also efficient. Notice that Definition 2.9.4 is related to Definition 2.9.2 when
weset D = RE.

As pointed out, different definitions of proper efficiency (and proper Pareto
optimality) are not equivalent with each other but they have connections. The
relationships between the definitions in the sense of Kuhn and Tucker, Geof-
frion, Borwein, Benson and Henig are analysed in Sawaragi et al. (1985, pp. 39-
44). For instance, Geoffrion’s and Benson’s definitions are equal when D = RE
(see also Benson (1983)). On the other hand, Definition 2.9.4 is equivalent to
Benson’s definition if the ordering cone D is closed and its closure is pointed.
For further analysis we refer to Sawaragi et al. (1985, pp. 39-44).

In Henig (1982b), necessary and sufficient conditions for the existence of
properly efficient solutions are given.

Let us finally mention that a new kind of proper efficiency, called super
efficiency, is suggested in Borwein and Zhuang (1991, 1993).

In the following, proper Pareto optimality is understood in the sense of
Geoffrion unless stated otherwise.

2.10. Pareto Optimality Tests with Existence Results

Let us have a look at how the Pareto optimality of feasible decision vectors
can be tested. The procedures presented can also be used to find an initial
Pareto optimal solution for (interactive) solution methods or to examine the
existence of Pareto optimal and properly Pareto optimal solutions.

Specific results for MOLP problems are presented in Ecker and Kouada
(1975). They are generalized for nonlinear problems with the help of duality
theory in Wendell and Lee (1977). The treatment is based on an auxiliary
problem

k
minimize E fi(x)
i=1

subject to  fi(x) < fu(%) forall i=1,... k,
X €S,

(2.10.1)

where X is any vector in S. Let us denote the optimal objective function value
by ¢(%).

Theorem 2.10.1. Let a decision vector x* € S be given. The vector x*
is Pareto optimal if and only if it is a solution of problem (2.10.1) so that
b(x*) = S0 filx*).

On the other hand, let x* € S be a solution of problem (2.10.1). Then x*
is Pareto optimal and f;(x*) < fi(X) foralli =1,...,k.
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Proof. See Wendell and Lee (1977).

Theorem 2.10.1 means that if problem (2.10.1) has an optimal solution for
some % € S, then either % is Pareto optimal or the optimal solution of (2.10.1)
is.

When studying the (primal) problem (2.10.1) and its dual, a duality gap is
said to occur if the optimal value of the primal problem is not equivalent to
the optimal value of the dual problem.

Theorem 2.10.2. Let a decision vector x € S be given and assume that
$(%) = —o0. Then some x* € S is Pareto optimal only if there is a duality gap
between the primal {2.10.1) and its dual problem at x*. If such a gap exists,
the optimal solution of (2.10.1) is Pareto optimal.

Proof. See Wendell and Lee (1977).

The significance of Theorem 2.10.2 is that precluding duality gaps the
nonexistence of Pareto optimal points is characterized by the condition that
(%) = —oo for some X € S. It can also be proved that if a multiobjective
optimization problem is convex and if ¢(x) = —oo for some X € S, then no
properly Pareto optimal solutions exist. See the details in Wendell and Lee
(1977).

Tests for Pareto optimality and the existence of Pareto optimal and properly
Pareto optimal solutions are also investigated in Benson (1978). The results can
be combined into the following theorem.

Theorem 2.10.3. Let a decision vector x* € S be given. Solve the problem

k
maximize E €;
i=1

(2.10.2) subject to  fi(x) +&; = fi(x*) forall i =1,...,k,
g >0 forall i=1,...,k,
x €5,

where both x € R" and € € Rﬁ_ are variables. Then the following results are
valid.

(1) The vector x* is Pareto optimal if and only if problem (2.10.2) has an
optimal objective function value of zero.

(2) If problem (2.10.2) has a finite nonzero optimal objective function value
obtained at a point X, then % is Pareto optimal.

(3) If the multiobjective optimization problem is convex and if problem
(2.10.2) does not have a finite optimal objective function value, then
the set of properly Pareto optimal solutions is empty.
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(4) If in addition to the conditions in (3), the set {Z € R* | 2 < f(x) for
some X € S} is closed, then the Pareto optimal set is empty.

Proof. See Benson (1978) or Chankong and Haimes (1983b, pp. 151-152).

Problem (2.10.2) is a popular way of checking Pareto optimality and of
generating Pareto optimal solutions. However, sometimes equality constraints
cause computational difficulties. Therefore it is useful to note that the equalities
in (2.10.2) can be replaced with inequalities f;(x) + &; < fi(x*) for all i =
1,...,k without affecting the generality of the results presented.

Two simple tests are suggested in Brosowski and da Silva (1994) for deter-
mining whether a given point is (locally) Pareto optimal or not. The tests are
not based on any scalarizing functions but linear systems of equations. There
are, however, several limitations. The objective functions are assumed to be
continuously differentiable and their number has to be strictly larger than the
number of variables. Further, no constraints can be included. Finally, the tests
may also fail as demonstrated in Brosowski and da Silva (1994).

It is proved in Sawaragi et al. (1985, p. 59), that Pareto optimal solutions
exist to multiobjective optimization problems where all the objective functions
are lower semicontinuous (more general than continuity) and the feasible region
is compact. Several ways of determining the Pareto optimality of a particular
point in an MOLP problem are presented in Eiselt et al. (1987). They all apply
to special situations. Further, the existence of Pareto optimal solutions when
there is an infinite number of objective functions is considered in Alekseichik
and Naumov (1981).

The existence of weakly Pareto optimal solutions in convex differentiable
multiobjective optimization problems is treated in Deng (1998a). In addition,
the compactness of the weakly Pareto optimal set is considered. The nonempti-
ness of the Pareto optimal and the weakly Pareto optimal sets in convex prob-
lems is also characterized in Deng (1998b).

As mentioned, auxiliary problems (2.10.1) and (2.10.2) can be used to pro-
duce Pareto optimal solutions, for example, from weakly Pareto optimal solu-
tions. However, in some practical problems it is very expensive to carry out
these additional optimizations. An alternative is suggested in Helbig (1991). If
optimality is defined by an ordering cone, efficient solutions can be generated
by perturbing this cone. In other words, using a method producing weakly effi-
cient solutions with respect to the perturbed cone gives results that are efficient
vis a vis the original problem.

The existence and the characterization of efficient solutions with respect
to ordering cones are studied in Henig (1982a), and the existence of efficient
solutions in linear spaces is treated in Borwein (1983). In addition, the existence
of weakly and properly efficient (in the sense of Borwein) and efficient solutions
in the presence of ordering cones is studied in Jahn (1986b). The existence of
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efficient solutions is also treated in Cambini and Martein (1994) by introducing
so-called quasi-D-bounded sets.

A phenomenon called complete efficiency occurs when every feasible deci-
sion vector of a multiobjective optimization problem is Pareto optimal. Tests
are presented in Benson (1991) to check for complete efficiency in linear and
nonlinear cases. A significant saving of computational efforts can be attained if
the problem is tested for complete efficiency before it is solved. If the problem is
completely efficient, no time, effort and special machinery for generating some
or all of the Pareto optimal solutions is needed. Anyway, no solution algorithm
exists which first checks for complete efficiency. The frequency of completely ef-
ficient problems among multiobjective optimization problems deserves further
study. It may be more common than is generally thought, especially with spe-
cial problem types, for example, when the feasible region S has no interior, as
Benson points out. Transportation problems feature in this category. Complete
efficiency is also treated in Weidner (1990).

One further area of research concerns the domination property. It refers to
the situation where there always exists an efficient solution that is superior to
any nonefficient solution, that is, for each x € S and corresponding z € Z there
exists an efficient point x* and corresponding z* such that z — z* € D, where
D is the ordering cone. Validity conditions for the domination property are
examined in Benson (1983). The results of Benson are corrected and necessary
and sufficient conditions for the domination property to hold are supplied in
Luc (1984a). The domination property and its sufficient conditions are also
treated in Henig (1986). Further, it is demonstrated that the existence of an
efficient solution, the existence of a properly efficient solution, and the dom-
ination property are equivalent in solving convex problems. The domination
property in infinite-dimensional spaces and for the sum of two sets is handled
in Luc (1990).

The last concept to be mentioned here is the redundancy of objective func-
tions. In MOLP cases this can be understood as linear dependency. In other
words, an objective function is redundant if it does not affect the Pareto optimal
set (see Gal and Leberling (1977)). This is not necessarily valid for nonlinear
problems or in connection with interactive methods. For both of these, it is
important to define redundancy on the basis of conflict between the objectives,
which is why in Agrell (1997), an objective function is defined as redundant if
it is not in conflict with any other objective function. Agrell suggests a proba-
bilistic Monte-Carlo simulation-based redundancy test for nonlinear problems
where the correlation of the objective function is observed. Redundancy checks
are important because it may ease the burden of the decision maker if redun-
dant objectives are eliminated.



3. THEORETICAL
BACKGROUND

We present a set of optimality conditions for multiobjective optimization
problems. Because the conditions are different for differentiable and nondiffer-
entiable problem, they are handled separately.

3.1. Differentiable Optimality Conditions

Optimality conditions are an important sector in optimization. As else-
where, we restrict the treatment also here to finite-dimensional Euclidean
spaces. We consider problems of the form

(3.1.1)
minimize  {f;(x), fa(x),..., fe (%)}
subject to x € § = {x € R" | g(x) = (g1(x), g2(%), ..., 9m (x))T < 0}.

We denote the set of active constraints at a point x* by
J(X*) = {.7 € {1)' - 'am} | g]'(X*) = 0}

We assume in this section that the objective and the constraint functions are
continuously differentiable. In Section 3.2 we treat nondifferentiable functions.

Similar optimality results are also handled, for example, in Da Cunha and
Polak (1967), Kuhn and Tucker (1951), Marusciac (1982), Simon (1986) and
Yu (1985, pp. 35-38, 49-50). In order to highlight the ideas, the theorems are
here presented in a simplified form as compared to the general practice. For
this reason, the proofs have been modified.

3.1.1. First-Order Conditions
We begin with a necessary condition of the Fritz John type.
Theorem 3.1.1. (Fritz John necessary condition for Pareto optimality) Let

the objective and the constraint functions of problem (3.1.1) be continuously
differentiable at a decision vector x* € S. A necessary condition for x* to be

K. Miettinen, Nonlinear Multiobjective Optimization
© Springer Science+Business Media New York 1998
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Pareto optimal is that there exist vectors 0 < A € RF and 0 < p € R™ for
which (A, ) # (0,0) such that

k m
(1) DONVAC) + 30 Vg5(x7) =0

i=1 j=1
(2) pjgj(x*)=0 forall j=1,...,m.

Proof. See, for instance, Da Cunha and Polak (1967).

We do not present the proof here because it is quite extensive. The theorem
can be considered a special case of the corresponding theorem for nondifferen-
tiable problems, which is proved in Subsection 3.2.1. For convex problems, nec-
essary optimality conditions can be derived by using separating hyperplanes.
This is realized, for example, in Zadeh (1963). A separation theorem is also
employed in the proof of the general case in Da Cunha and Polak (1967).

Corollary 3.1.2. (Fritz John necessary condition for weak Pareto optimality)
The condition of Theorem 3.1.1 is also necessary for a decision vector x* € S
to be weakly Pareto optimal.

The difference between Fritz John type and Karush-Kuhn-Tucker type op-
timality conditions in single objective optimization is that the multiplier ()) of
the objective function is assumed to be positive in the latter case. This elimi-
nates degeneracy since it implies that the objective function plays its important
role in the optimality conditions. To guarantee the positivity of A, some regu-
larity has to be assumed in the problem. Different regularity conditions exist
and they are called constraint qualifications.

In the multiobjective case it is equally important that all the multipliers
of the objective functions are not equal to zero. Sometimes the multipliers
connected to Karush-Kuhn-Tucker optimality conditions are called Karush-
Kuhn- Tucker multipliers. This concept will be used later.

In order to present the Karush-Kuhn-Tucker optimality conditions we must
formulate some constraint qualification. From among several different alterna-
tives we here present the so-called Kuhn-Tucker constraint qualification.

Definition 3.1.3. Let the constraint functions g; of problem (3.1.1) be con-
tinuously differentiable at x* € S. The problem satisfies the Kuhn-Tucker con-
straint qualification at x* if for any d € R”™ such that Vg;(x*)Td < 0 for
all j € J(x*), there exists a function a: [0,1] = R"™ which is continuously
differentiable at 0, and some real scalar a > 0, such that

a(0) =x*, g(a(t)) <0 foral 0<t<1 and a'(0)=oad.
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Before we can continue, we write down the so-called Motzkin’s theorem
of the alternative. It will be needed in the proof of the following necessary
condition.

Theorem 3.1.4. (Motzkin’s theorem) Let A and C be given matrices. Then
either the system of inequalities

Ax <0, Cx<0
has a solution x, or the system
ATA+CTu=0, A>0, A#0, u>0

has a solution (A, gs), but never both.
Proof. See, for example, Mangasarian (1969, pp. 28-29).

Now we can formulate the Karush-Kuhn-Tucker necessary condition for
Pareto optimality.

Theorem 3.1.5. (Karush-Kuhn-Tucker necessary condition for Pareto opti-
mality) Let the assumptions of Theorem 3.1.1 be satisfied by the Kuhn-Tucker
constraint qualification. Theorem 3.1.1 is then valid with the addition that
A#0.

Proof. Let x* € S be Pareto optimal. The idea of this proof is to apply
Theorem 3.1.4. For this reason we prove that there does not exist any d € R®
such that

(3.1.2) V#ix*)Td<0 forall i=1,...,k and
o Vg;(x*)Td <0 forall je J(x*).

Let us on the contrary assume that there exists some d* € R™ satisfying
(3.1.2). Then from the Kuhn-Tucker constraint qualification we know that there
exists a function a: {0,1] = R" which is continuously differentiable at 0 and
some real scalar & > 0 such that a(0) = x*, g(a(t)) <0forall 0 <t <1 and
a'(0) = ad™.

Because the functions f; are continuously differentiable, we can approximate
fi(a(t)) linearly as
fia(®) = £i(x*) + VAi(x") T (a(t) - x*) + [la(t) - x|lp(alt), x*)

= fi(x*) + Vfi(x")"(a(t) ~ a(0)) + |[a(t) — a(0)|l¢(a(t), a(0))
. wr(a0+1t) — a0
= 5i6e) + 29y (AL 2200 oy — a@)lp(ace), a),

where p(a(t),a(0)) — 0 as ||a(t) — a(0)|| = 0. As ¢ — O tends ||a(t) — a(0)]| to
zero and (a(0 + ¢) — a(0))/t = a’(0) = ad”.
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After utilizing the assumption Vfi(x*)¥d* < 0 for all ¢ = 1,...,k (and
t > 0), we have f;(a(t)) < fi(x*) for all i = 1,...,k for a sufficiently small ¢.
This contradicts the Pareto optimality of x*.

Thus we have proved statement (3.1.2). Now we conclude from Theorem
3.1.4 that there exist multipliers \; > 0 for i = 1,...,k, A # 0, and pu; > 0
for j € J(x*) such that ELI AV (X" + X ierxr) #;Vgi(x*) = 0. We obtain
statement (1) of Theorem 3.1.1 by setting p; = O for all j € {1,...,m}\ J(x*).

If gj(x*) < 0 for some j = 1,...,m, then according to the above setting
p; = 0 and equalities (2) of Theorem 3.1.1 follow. O

A proof basically similar but different in realization is presented in Marus-
ciac (1982).

Corollary 3.1.6. (Karush-Kuhn-Tucker necessary condition for weak Pareto
optimality) The condition of Theorem 3.1.5 is also necessary for a decision
vector x* € S to be weakly Pareto optimal.

Constraint qualifications based on the linear independence of gradient vec-
tors are stated in Da Cunha and Polak (1967). Other constraint qualifications
are collected in Simon (1986). In addition, a new constraint qualification for
convex problems is introduced in Zhou et al. (1993).

If the multiobjective optimization problem is convex, then we can state
a sufficient condition for Pareto optimality. Let us first recall the sufficient
condition of optimality in the single objective case.

Theorem 3.1.7. (Karush-Kuhn-Tucker sufficient condition for optimality)
A sufficient condition for a point x* € R™ to be a (global) minimum of the
problem

minimize  f;(x)

SUbjeCt to g(X) = (gl(x)wg2(x)1 e ,gm(x))T S 07

where the objective function f;: R® — R and the constraints g;: R" — R,
j =1,...,m, are convex and continuously differentiable at x~, is that there
exist multipliers 0 < g € R™ such that

(1) Vfilx*)+ Z ,ungj(x*) =0

i=1
(2) pjgj(x*)=0 forall j=1,...,m.
Proof. See, for example, Simon (1986).
Now we can extend Theorem 3.1.7 for the multiobjective case.

Theorem 3.1.8. (Karush-Kuhn-Tucker sufficient condition for Pareto opti-
mality) Let the objective and the constraint functions of problem (3.1.1) be
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convex and continuously differentiable at a decision vector x* € S. A sufficient
condition for x* to be Pareto optimal is that there exist multipliers 0 < A € R*
and 0 < p € R™ such that

Z,\ Vfi(x +Zu,vg, =

(2) p,jgj(x*) =0 for all i=1....m

Proof. Let the vectors A and g be such that the COIldlthIlS stated are satisfied.
We define a function F: R™ =+ R as F(x) = El L Aifi(x), where x € S.
Trivially F' is convex because all the functions f; are and we have A > 0.
Now from statements (1) and (2), we obtain VF(x*) + ZJ L1 Vgi(x*) =0
and p;g;(x*) =0 for all j = 1,...,m. Thus, according to Theorem 3.1.7, the
sufficient condition for F to atta.m its minimum at x* is satisfied. So F(x*) <
F(x) for all x € S. In other words,

k k
(3.1.3) D oNfix) €Y Nfilx)
i=1 i=1

forall x € S.

Let us assume that x* is not Pareto-optimal. Then there exists some point
x € S such that fi(X) < fi{x*) for all ¢ = 1,...,k and for at least one index
Jis f;(%) < fi(x* ) Because every A; was assumed to be positive, we have
Zr. Aifi(X) < Zl_ Aifi(x*). This is a contradiction with inequality (3.1.3)
and x” is thus Pareto optimal. (]

Note that because the multiobjective optimization problem is assumed to
be convex, Theorem 3.1.8 provides a sufficient condition for global Pareto op-
timality. This was stated in Theorem 2.2.3.

Theorem 3.1.9. (Karush-Kuhn-Tucker sufficient condition for weak Pareto
optimality) The condition in Theorem 3.1.8 is sufficient for a decision vector
x* € S to be weakly Pareto optimal for 0 < A € R* with A # 0.

Proof. The proof is a straightforward modification of the proof of Theorem
3.1.8.

The convexity assumption in Theorem 3.1.8 can be relaxed. The stated
sufficient condition is also valid if the objective functions are pseudoconvex
and the constraint functions are quasiconvex. This extension is handled, for
example, in Majumdar (1997), Marusciac (1982) and Simon (1986).

If an ordering cone D is used in defining efficiency, then the optimality con-
ditions are similar to those presented above except for the multipliers \;. Now
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they are not only nonnegative real scalars but belong to a dual cone D*, where
D* = {A€ R* | ATy > 0 for all y € D}. Because of the close resemblance, we
do not here handle optimality conditions separately for efficiency. For details
see, for example, Chen (1984) and Luc (1989, pp. 74-79).

3.1.2. Second-Order Conditions

Second-order optimality conditions (presuming twice continuously differen-
tiable objective and constraint functions) have been examined substantially
less than first-order optimality conditions. Second-order optimality conditions
provide a means of reducing the set of candidate solutions produced by the
first-order conditions but at the same time tighten the assumptions set to the
regularity of the problem.

Second-order optimality conditions for (local) Pareto optimality are treated,
for example, in Wan (1975). For completeness, we here present examples of nec-
essary and sufficient second-order optimality conditions following Wang (1991).

First we need one more constraint qualification, namely the regularity of
decision vectors.

Definition 3.1.10. A point x* € S is said to be a regular point if the gradients
of the active constraints at x* are linearly independent.

Theorem 3.1.11. (Second-order necessary condition for Pareto optimality)
Let the objective and the constraint functions of problem (3.1.1) be twice con-
tinuously differentiable at a regular decision vector x* € S. A necessary condi-
tion for x* to be Pareto optimal is that there exist vectors 0 <A € R¥ A # 0,
and 0 < p € R™ such that

k m
(1) D NVAED+ Y #Vei(x7) =0
i=1 j=1

(2) pjg;(x*)=0 forall j=1,...,m

k m
3) a7 ( PIPASACHEDY ujvzgj(x*)) d>0

=1 =1

foralde {0 #d e R" | Vfi(x*)Td < Oforalli =1,...,k, Vg;(x)Td =
0 for all j € J(x™)}.

Proof. See Wang (1991).

Note that when second-order optimality conditions are concerned, we need
some kind of second-order constraint qualifications even if we do not obtain a
result satisfying A # 0. In Theorem 3.1.11, the regularity, that is, the linear
independence of the gradients of the active constraints at the point considered,
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is the kind of a second-order constraint qualification that can guarantee an
even stronger result where not all the A-coefficients can vanish.

The following theorem gives two second-order sufficient optimality condi-
tions. The difference lies in the sets of search directions.

Theorem 3.1.12. (Second-order sufficient condition for Pareto optimality)
Let the objective and the constraint functions of problem (3.1.1) be twice con-
tinuously differentiable at a decision vector x* € S. A sufficient condition for
X* to be Pareto optimal is that there exist vectors 0 <A € R¥ and 0 < pe R™
for which (A, g) # (0,0) such that

k m
(1) D AVAE)+ Y Ve(x7) =0
i=1 ji=1
(2) pigi(x*)=0 forall j=1,...,m
k m
3 dT( 3 AV fi(x") + Zu,-wg,-(x*))d >0
=1 i=1

for eitheralld € {0 #d € R™ | Vfi(x*)Td < Oforalli=1,...,k, Vg;(x*)T
d<OforaljeJx*)}orallde {0#£deR"|Vg;(x*)Td=0forall j €
JH(x*), Vgj(x*)Td < Oforall j € J(x*)\ J*(x*)}, where J*(x*) = {j €
J(x*) | pj > 0}

Proof. See Wang (1991).

Second-order sufficient conditions for Pareto optimality are also treated in
Simon (1986), and more necessary and sufficient conditions for Pareto and
weakly Pareto optimal solutions are presented in Wang (1991).

3.1.3. Conditions for Proper Pareto Optimality

For completeness we also present the original necessary optimality condition
formulated for proper Pareto optimality in the sense of Kuhn and Tucker (see
Definition 2.9.3) as stated by Kuhn and Tucker (1951). To begin with, we write
down Tucker’s theorem of the alternative, which will be utilized in the proof.

Theorem 3.1.13. (Tucker’s theorem) Let A and C be given matrices. Then
either the system of inequalities

Ax <0, Ax#0, Cx<0
has a solution x, or the system
ATA+CTu=0, XA>0, p>0

has a solution (A, ), but never both.
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Proof. The proof is similar to the proof of Theorem 3.1.4.
We can now present the necessary condition for proper Pareto optimality.

Theorem 3.1.14. (Kuhn-Tucker necessary condition for proper Pareto opti-
mality) Let the objective and the constraint functions of problem (3.1.1) be
continuously differentiable at a decision vector x* € S. A necessary condition
for x* to be properly Pareto optimal (in the sense of Kuhn and Tucker) is that
there exist vectors 0 <A € R* and 0 < u € R™ such that

k m

(1) Y AVAE)+ Y Vg (x7) =0
i=1 j=1

(2) pjgj(x*)=0 forall j=1,...,m.

Proof. Let x* be properly Pareto optimal (in the sense of Kuhn and Tucker).
From the definition we know that no vector d € R™ exists such that V f;(x*)7d
<Oforalli =1,...,k, Vfj(x*)Td < 0 for some index j, and Vg;(x*)7d < 0 for
all I € J(x*). Then, from Theorem 3.1.13 we know that there exist multipliers
A >0fori=1,...,kand g; >0 for j € J(x*) such that "5 AV fi(x*) +
Yicax) HiVg;(x*) = 0. We obtain statement (1) by setting p; = 0 for all
jeA{1,...,m}\ J(x).

If g;j(x*) < O for some j, then according to the above setting u; = 0 and
equalities (2) follow. O

It is proved in Geoffrion (1968) and Sawaragi et al. (1985, p. 90), that if the
Kuhn-Tucker constraint qualification (Definition 3.1.3) is satisfied at a decision
vector x* € S, then the condition in Theorem 3.1.14 is also necessary for x* to
be properly Pareto optimal in the sense of Geoffrion. Finally, we write down
the sufficient condition for proper Pareto optimality.

Theorem 3.1.15. (Kuhn-Tucker sufficient condition for proper Pareto opti-
mality) If problem (3.1.1) is convex, then the condition in Theorem 3.1.14 is
also sufficient for a decision vector x* € S to be properly Pareto optimal (in
the sense of Kuhn and Tucker).

Proof. See Sawaragi et al. (1985, p. 90) or Shimizu et al. (1997, p. 112).

Let us finally mention that necessary and sufficient conditions for proper
Pareto optimality in the sense of Geoffrion are presented in Gulati and Islam
(1990) for pseudolinear objective (i.e., differentiable functions that are both
pseudoconvex and pseudoconcave) and quasiconvex constraint functions.
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3.2. Nondifferentiable Optimality Conditions

In this section, we no longer necessitate differentiability but put forward
nondifferentiable counterparts for the optimality conditions presented in Sec-
tion 3.1. Usually, when the assumption of continuous differentiability is given
up, functions are assumed to be locally Lipschitzian (see Definition 2.1.12).
Remember that a function is here called nondifferentiable if it is locally Lip-
schitzian (and not necessarily continuously differentiable).

In every other way the multiobjective optimization problem to be solved is
still of the form

(3.2.1)
minimize  {fi(x), f2(x),..., fi(x)}
subject to x € § = {x € R™| g(x) = (g1(x),92(x),...,gm(x))T < 0}.

We first briefly present some properties of subdifferentials (see Definition
2.1.14) without any proofs.

Theorem 3.2.1. Let the functions f;: R* - R, 1 = 1,...,k, be locally
Lipschitzian at a point x* € R". Then, for weights w; € R we have

a(gwifi)(x*) c gwiamx*).

The two sets are equal if at least k — 1 of the functions f; are continuously
differentiable, or if the functions are convex and the weights are positive.

Proof. See, for example, Mékeld and Neittaanmiki (1992, p. 39) and Clarke
(1983, pp. 38-39).

Theorem 3.2.2. Let the functions f;: R* - R, 7 = 1,...,k, be locally
Lipschitzian at a point x* € R". Then the function f: R" -+ R

£ = max fi(x)

is also locally Lipschitzian at x*. In addition,
Of(x*) C conv {8f;(x") | i € I(x*)},

where I(x*) C {1,...,k} denotes the set of indices 7 for which f(x*) = f;(x*).
Proof. See, for example, Makeld and Neittaanmaki (1992, pp. 47-49).

Theorem 3.2.3. Let the function f;: R® — R be locally Lipschitzian at a
point x* € R™ and attain its (local} minimum at x*, then
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0 € afi(x").

If the function f; is convex, then the condition is also sufficient and the mini-
mum is global.

Proof. See, for example, Mikeld and Neittaanmiki (1992, pp. 70-71).

Before moving on to the optimality conditions of the Fritz John and Karush-
Kuhn-Tucker type we should point out the following. If a single objective func-
tion is defined on a set, the counterpart of the condition in Theorem 3.2.3
says that zero belongs to the algebraic sum of two sets formed at the point
considered. The sets are the subdifferential of the objective function and the
normal cone of the feasible region. This result is adapted for convex multiobjec-
tive optimization problems involving continuous objective functions and closed
feasible regions in Plastria and Carrizosa (1996). The necessary and sufficient
condition for weak Pareto optimality is that zero belongs to the sum of the
union of the subdifferentials of the objective functions and the normal cone
of the feasible region. Note that the functions do not have to be even locally
Lipschitzian. According to Clarke (1983, pp. 230-231), the same condition is
necessary for weak Pareto optimality in general problems as well. We do not
treat these results more thoroughly here. Instead, we present one more result
for single objective nondifferentiable optimization.

Theorem 3.2.4. (Fritz John necessary condition for optimality) A necessary
condition for a point x* € R™ to be a local minimum of the problem

minimize  f;(x)
subject to  g(x) = (91 (x), g2(%), ..., gm(x))" <0,

where the objective function f;: R® — R and the constraints g;: R" = R,
j = 1,...,m, are locally Lipschitzian at x*, is that there exist multipliers
0< XeRand 0 <pe R™ for which (A, ) # (0,0) such that

(1) 0€Xfi(x") + > _ u;0g;(x")

j=1
(2) njgi(x*) =0 forall j=1,...,m.

Proof. See, for example, Clarke (1983, pp. 228-230) or Kiwiel (1985c, p. 16).

Now that we have assembled a set of tools, we are in a position to handle
the actual optimality conditions. More information can be found, for example,
in Craven (1989), Dolezal (1985), Minami (1980-81, 1981, 1983), Shimizu et
al. (1997, pp. 322-325) and Wang (1984). The theorems are presented in a
simplified form here compared to the general practice so as to emphasize the
ideas. For this reason, the proofs have been modified.
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3.2.1. First-Order Conditions

The first result to be presented is a necessary condition of the Fritz John
type for Pareto optimality.

Theorem 3.2.5. (Fritz John necessary condition for Pareto optimality) Let
the objective and the constraint functions of problem (3.2.1) be locally Lip-
schitzian at a point x* € S. A necessary condition for the point x* to be
Pareto optimal is that there exist multipliers 0 <A € R* and 0 < up € R™ for
which (A, ) # (0, 0) such that

k m
(1) o€ Z)\iaf,-(x*) + Y pBg;(x)

i=1 =1
(2) pjgi(x*)=0 foral j=1,...,m.

Proof. Because it is assumed that (A, u) # (0,0), we can normalize the mul-
tiplziers to sum up to one. We shall here prove a stronger condition, where
Yo At Z;n:1 B =1

Let x* € S be Pareto optimal. At first we define an additional function
F:R"” > R by

F(x) = max [fi(x) — fi(x*),g;(x) |[i=1,...,k, j=1,...,m]
and show that for all x € R" is
(3.2.2) F(x) > 0.

Let us on the contrary assume that for some x° € R™ is F(x°) < 0. Then
g;(x°) < 0 for all § = 1,...,m and the point x° is thus feasible in problem
(3.2.1). In addition, fi(x°) < fi(x*) for alli = 1,...,%, which contradicts the
Pareto optimality of x*. Thus (3.2.2) must be true.

Noting that the point x* is feasible in problem (3.2.1), we obtain g(x*) < 0.
This implies F(x*) = 0. Combining this fact with property (3.2.2), we know
that F' attains its (global}) minimum at x*. As all the functions f; and g; are
locally Lipschitzian at x*, likewise F* (according to Theorem 3.2.2). We deduce
from Theorem 3.2.3 that 0 € 9F(x*).

Note that

(32.3) O(fi(x) = fi(x")) = 8fi(x),

applying Theorem 3.2.1.
We designate the set of indices j for which F(x*) = g;(x*) by J(x*) C
{1,...,m}. Now we can employ Theorem 3.2.2 and (3.2.3) and obtain

0 € conv {Bfi(x*),8g9;(x*) |i=1,...,k, j € J(x*)}.
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Employing the definition of a convex hull, we know that there exist vectors
X and p of real multipliers for which A; > 0 for alli = 1,...,k, p; > 0 for all

j € J(x*) and Zle A+ Zjej(x.) p; = 1, such that

k
0¢ Z)\iafi(X*) + Z pi0g;(x*).

i=1 JEJ(x*)

Now we can set p; = 0 for all j € {1,...,m}\ J(x*). Statement (1) follows
from this setting.

Part (2) is trivial. If g;(x*) < 0 for some j, then j € {1,...,m}\ J(x*) and
we have pj = 0. This completes the proof. O

Now we can define decision vectors called substationary points.

Definition 3.2.6. A decision vector x* € S is called a substationary point if
it satisfies the (necessary) optimality condition presented in Theorem 3.2.5.

Theorem 3.2.5 can also be proved by first employing a scalarization method
and then Theorem 3.2.4 for the resulting single objective optimization problem
(see, e.g., Dolezal (1985)).

Corollary 3.2.7. (Fritz John necessary condition for weak Pareto optimality)
The condition of Theorem 3.2.5 is also necessary for a decision vector x* € S
to be weakly Pareto optimal.

Next, we examine some constraint qualifications. It is obvious that they
differ from the differentiable case.

Note that when the necessary optimality conditions are derived with the
help of a scalarizing function, it is easy to generalize the constraint qualifica-
tions from single objective optimization to the multiobjective case. One simply
assumes that both the original constraints and the possible additional con-
straints satisfy a constraint qualification. This is expressed in Dolezal (1985).
The constraint qualifications used there are those of calmness and Mangasarian-
Fromovitz.

The so-called Cottle constraint qualification is used in the following theo-
rem. Other constraint qualifications are presented, for example, in Ishizuka and
Shimizu (1984).

Definition 3.2.8. Let the objective and the constraint functions of problem
(3.2.1) be locally Lipschitzian at a point x* € S. Problem (3.2.1) satisfies the
Cottle constraint qualification at x* if either g;(x*) <O forallj=1,...,mor

0 ¢ conv {dg;(x") | g;(x*) = 0}.

Assuming the Cottle constraint qualification, we obtain the Karush-Kuhn-
Tucker necessary condition for Pareto optimality.
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Theorem 3.2.9. (Karush-Kuhn-Tucker necessary condition for Pareto opti-
mality) Let the assumptions of Theorem 3.2.5 be satisfied by the Cottle con-
straint qualification. Theorem 3.2.5 is then valid with the addition that X 5 0.

Proof. The proof of Theorem 3.2.5 is here valid up to the observation 0 €
OF (x*) and result (3.2.3). We prove also this theorem in a stronger form,
where the multipliers sum up to one.

From the definition of F' we know that

F(x*)=0.

We continue by first assuming that g;(x*) < 0 for all j = 1,...,m. In this case,
F(x*) > g;(x*) for all j. Now we can apply Theorem 3.2.2 and equation (3.2.3)
and obtain

0 € conv{dfi(x*) |i=1,...,k}.

From the definition of a convex hull we know that there exists a vector
0 < X € R* of multipliers for which Zle A; =1 (thus X # 0) such that

k
0€ ) Nofi(x").

i=1

We obtain the statement to be proved (denoted by (1) in Theorem 3.2.5) by
setting u; = 0forall j =1,...,m.

On the other hand, if there exists some index j such that g;(x*) = 0, we
denote the set of such indices by J(x*). By the Cottle constraint qualification
we know that

(3.2.4) 0 ¢ conv {0g,(x*) | 7 € J(x*)}.

In this case, we deduce from Theorem 3.2.2 and result (3.2.3) that
0 € conv {Ofi(x*),09;(x*) | i =1,...,k, j € J(x*)}.

Applying the definition of a convex hull, we know that there exist multipliers
Ai>0,i=1,....kand p; >0, j € J(x*), for which f_; Xi+ e e 5 =
1, and by assumption (3.2.4), especially A # 0, such that

k
0e Z/\iafi(x*) + Z wi0g;(x*).

i=1 eI (x*)

Again, we obtain the statement to be proved by setting p; = 0 for all j €

{1,...,m}\ J(x*).
The proof of part (2) is the same as in Theorem 3.2.5. O
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Corollary 3.2.10. (Karush-Kuhn-Tucker necessary condition for weak Pareto
optimality) The condition of Theorem 3.2.9 is also necessary for a decision
vector x* € S to be weakly Pareto optimal.

If we assume the multiobjective optimization problem to be convex and A >
0, we get a Karush-Kuhn-Tucker sufficient condition for Pareto optimality. Note
that the convexity of a function implies that the function is locally Lipschitzian
at any point x € S.

Theorem 3.2.11. (Karush-Kuhn- Tucker sufficient condition for Pareto op-
timality) Let problem (3.2.1) be convex. A sufficient condition for a decision
vector x* € S to be Pareto optimal is that there exist multipliers 0 < A € R*
and 0 < p € R™ such that

k m
(1) 0€ D NOfi(x")+ Y p;09;(x")
i=1 7=1

(2) pjgi(x*)=0 forall j=1,...,m

Proof. To start with, we define an additional function F: R™ —+ R by F(x) =
Zl L Aifi(x) + Z *, ijg;(x), where the multipliers A; and p; satisfy the above
assumptlons Because the functlons fz and g; are convex, A > 0 and u > 0,
then F too is convex, and 0F'(x) = Zz_ A0 fi(x) + Z ~, 1;0g;(x) (as stated
in Theorem 3.2.1).

From assumption (1) we know that 0 € dF(x*), and, according to Theorem
3.2.3, the point x* is a (global) minimum of F. This implies that for any
x° € R™, especially any x° satisfying g(x°) < 0, the following is valid:

0< F(x°) - F(x*)
k m k m
=S ONfi(x0) + D g (%) = DO NFixT) = Y pygi(x
i=1 j=1 i=1 ji=1
Employing assumption (2), the fact that g(x°) < 0 and u > 0, we obtain

k k
(3.2.5) STNfilx7) <Y NSilx0)
=1 =1

for any x° € S.

Let us assume that x* is not Pareto-optimal. Then there exists some feasible
% such that f;(%) < fi(x*) for all ¢ = 1,...,k and for at least one index
jis fj(X) < f;(x"). Because every \; was assumed to be positive, we have
Zle Aifi(%) < ZLI Aifi(x*). This contradicts inequality (3.2.5) and x* is
thus Pareto optimal. (]
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Theorem 3.2.12. (Karush-Kuhn-Tucker sufficient condition for weak Pareto
optimality) The condition stated in Theorem 3.2.11 is sufficient for a decision
vector x* € S to be weakly Pareto optimal for 0 < A € R* with A # 0.

Proof. The proof is a trivial modification of the proof of Theorem 3.2.11.

Finally, we introduce one more constraint qualification. It can only be ap-
plied to convex problems and it will also be needed in Part IT (Section 2.2) in
connection with the multiobjective proximal bundle method. It is called the
Slater constraint qualification. It is independent of the differentiability of the
functions involved.

Definition 3.2.13. Let problem (3.2.1) be convex. Problem (3.2.1) satisfies
the Slater constraint gualification if there exists some x with g;(x) < 0 for all
j=1,...,m.

Theorem 3.2.9 and Corollary 3.2.10 can now be reformulated for convex
problems assuming the Slater constraint qualification. Remember that convex-
ity implies that functions are locally Lipschitzian at any point in the feasible
region.

Theorem 3.2.14. (Karush-Kuhn- Tucker necessary condition for (weak) Pareto
optimality) Let problem (3.2.1) be convex, satisfying the Slater constraint quali-
fication. A necessary condition for a point x* € S to be (weakly) Pareto optimal
is that there exist multipliers 0 < A € R* with A # 0 and 0 < u € R™ such
that

k m
(1) 0e Z)\,‘afi(x*) + Z /L,-ng(x*)

i=1 =1
(2) pig9;(x")=0 foral j=1,...,m.

Proof. The proof is a trivial modification of the proof of Theorem 3.2.9 when
we note the following. In case the set J(x*) is nonempty we denote g(x) =
max[g;(x) | = 1,...,m]. Now g(x*) = g;(x*) for j € J(x*). By the Slater
constraint qualification there exists some x° such that g;(x°) < 0 for all j.
Thus, x* cannot be the global minimum of the convex function g. According
to Theorem 3.2.3 we derive

0 ¢ conv {0g;(x") | j € J(x")}.

The proof of Theorem 3.2.9 can now be applied. O

Necessary optimality conditions for Pareto optimality in those nondiffer-
entiable problems where the objective functions are fractions of convex and
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concave functions are formulated in Bhatia and Datta (1985). In addition, nec-
essary Fritz John and Karush-Kuhn-Tucker type optimality conditions for weak
Pareto optimality involving so-called semidifferentiable pre-invex functions are
treated in Preda (1996).

If an ordering cone D is used in defining efficiency, then the optimality
conditions are similar to those presented above, except for the multipliers A;
(simply as in the differentiable case). The multipliers belong to the dual cone
D* = {A e R* | ATy > Oforally € D}. Because of the similarity, we do
not present here separate optimality conditions for efficiency. Necessary and
sufficient conditions for efficiency and weak efficiency are handled, for example,
in Wang (1984). Furthermore, in Craven (1989) and El Abdouni and Thibault
(1992), necessary conditions for weak efficiency in normed spaces and Banach
spaces, respectively, are presented. The objective and the constraint functions
are still assumed to be locally Lipschitzian.

Direct counterparts of optimality conditions for proper Pareto optimality
in the sense of Kuhn and Tucker, presented in Section 3.1, cannot be stated
in the nondifferentiable case. The reason is that the definition of Kuhn and
Tucker assumes continuous differentiability. However, a sufficient condition for
proper Pareto optimality in the sense of Geoffrion, when the objective and the
constraint functions are compositions of convex, locally Lipschitzian functions,
is formulated in Jeyakumar and Yang (1993). This treatment naturally includes
ordinary convex, locally Lipschitzian functions. The authors also present nec-
essary conditions for weak Pareto optimality and sufficient conditions of their
own for Pareto optimality in problems with convex composite functions. A nec-
essary and sufficient condition for proper efficiency (in the sense of Henig) is
derived in Henig and Buchanan (1994, 1997) for convex problems.

3.2.2. Second-Order Conditions

At the end of this section we shall say a few words about the case where the
functions involved are continuously differentiable and their gradients are locally
Lipschitzian. Such functions are called C1!-functions. Second-order optimality
conditions for multiobjective problems with C1}-functions are handled in Liu
(1991). Here we briefly state the main results. First we must introduce one
concept according to Liu.

Definition 3.2.15. Let the function f;: S — R be a C!'!-function at the point
x* € S. The set

2 fi(x*)(d,d) = {(f’z‘ € R | there exists a sequence {¢;}52;,

. 2 * * *
o = tjl_1+n5+ g(fi(x + tjd) ~ fi(x") - thfi(x )Td)}
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is called a generalized second-order directional derivative of the function f;
evaluated at x* in the direction d € R".

The set 82 f;(x*)(d, d) is nonempty according to Liu and K#izek (1997).

The following second-order necessary and sufficient conditions are presented
in Liu (1991), for both the case where all the objective functions are C:!-
functions and all the constraint functions are twice continuously differentiable
and the case where all the objective functions are twice continuously differen-
tiable and all the constraint functions are C'!"!-functions. Here, we formulate
only the first case, while the only difference in the conditions is the reversed
roles of the Hessian matrices and generalized second-order directional deriva-
tives.

Let us again denote the set of active constraints at x* € S by J(x*).

Theorem 3.2.16. (Second-order necessary condition for Pareto optimality)
Let the objective functions of problem (3.2.1) be C''!-functions and its con-
straint functions twice continuously differentiable at a decision vector x* € S.
A necessary condition for x* to be Pareto optimal is that there exist vectors
0 <€ RF and 0 < pe R™ for which (A, ) # (0,0) such that

k m
(1) Z /\,-Vfi(x") + Zungj(x*) =0

i=1 i=1
(2) pjg;(x")=0 forall j=1,...,m

k
(3 D AVax1)Td =0, Zujvgj )Td=0
i=1

k
(4) Z/\i¢i+dT(Zujvng )d>0
i=1

for all d € {0 ;é deR" | Vfi(x)Td < Oforalli=1,...,k Vg;(x*)Td <
0 for all j € J(x*)} and ¢; € 8% f;(x*)(d,d).

Proof. See Liu (1991).

Finally, we present a second-order sufficient optimality condition for prob-
lems involving C'+'-functions.

Theorem 3.2.17. (Second-order sufficient condition for Pareto optimality)
Let the objective functions of problem (3.2.1) be C'!'!-functions and its con-
straint functions twice continuously differentiable at a decision vector x* € .
A sufficient condition for x* to be Pareto optimal is that there exist vectors
0 <Xe€ R* and 0 < g€ R™ for which (A, ps) # (0,0) such that
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k m
1) Y NV + ) 4 Vei(x*) =0
1=1

Jj=1
(2) pygi(x*)=0 forall j=1,...,m

k m
(3) Y AVAE)Td=0, > u;Vg;(x")Td=0

i=1 Jj=1 .
k m
4) D dgi+d” ( > ﬂszgj(X*)) d>0
=1 j=1

foralld € {0 #d € R" | Vfi(x*)Td < Oforalli =1,...,k Vg;(x*)7d <
0 for all j € J(x*)} and ¢; € 82f;(x*)(d, d).

Proof. See Liu (1991).

Actually, the results in Liu (1991) are given in a more general form for
efficient solutions and for problems where the constraint functions belong to a
polyhedral convex cone.

3.3. More Optimality Conditions

Many necessary and sufficient conditions for weak, proper or Pareto opti-
mality (or efficiency) have been suggested in the literature. They are based on
different kinds of assumptions as to the properties and form of the problem.
Many of them are based on a scalarization of the original problem and con-
ditions are set to both the original functions and the scalarization parameters
(some such conditions are presented in Part II in connection with the scalariza-
tion methods). In this book, we settle for a closer handling of the Fritz John and
the Karush-Kuhn-Tucker type conditions, presented in the two earlier sections.
For the interested reader we list some other references.

Necessary conditions for proper and improper Pareto optimality in the sense
of Kuhn and Tucker are derived with the help of cones in Tamura and Arai
(1982). Geoffrion (1968) was the first to give the basic characterization of prop-
erly Pareto optimal solutions in terms of a scalar problem, called a weighting
problem (see Section 3.1 of Part II). He extended the results by a compre-
hensive theorem into necessary and sufficient conditions for local and global
proper Pareto optimality. Geoffrion’s treatment is closely followed in Chou et
al. (1985), where properly Pareto optimal solutions are characterized for multi-
objective optimization problems with set-valued functions. In addition, neces-
sary and sufficient Karush-Kuhn-Tucker type optimality conditions for e-Pareto
optimality in convex problems using the weighting method for the objectives
and exact penalty functions for the constraints are handled in Liu (1996).
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In Chankong and Haimes (1982), the Karush-Kuhn-Tucker optimality con-
ditions for Pareto optimality are modified for use in connection with certain
solution methods (the e-constraint method and the jth Lagrangian problem;
see Section 3.2 of Part II). Chankong and Haimes also propose optimality
conditions for proper Pareto optimality (in the sense of Geoffrion) with the
e-constraint method. Further, in Benson and Morin (1977), necessary and suf-
ficient conditions are given for a Pareto optimal solution to be properly Pareto
optimal. This is done with the help of the jth Lagrangian problem. Necessary
and sufficient conditions for Pareto optimality with convex and differentiable
functions partly based on the e-constraint, problem are proved in Zlobec (1984).

Necessary and sufficient conditions for Pareto optimality and proper Pareto
optimality are proved with the help of duality theory and auxiliary problem
(2.10.1) (presented in Section 2.10) in Wendell and Lee (1977). However, it
is stated that nonlinear problems do not generally satisfy the conditions de-
veloped. In such cases Pareto optimal solutions have to be tested for proper
Pareto optimality on a point-by-point basis.

In Gulati and Islam (1988), linear fractional objective functions and general-
ized convex constraints are handled. Necessary conditions of the Karush-Kuhn-
Tucker type are presented for Pareto optimal solutions, and the conditions
under which Pareto optimal solutions are properly Pareto optimal are stated.
Necessary and sufficient conditions for Pareto optimality in problems with non-
linear fractional objective functions and nonlinear constraints are proved in Lee
(1992). In addition, necessary optimality conditions for fractional multiobjec-
tive optimization problems with square root terms are given in Egudo (1991).
In Benson (1979b), a necessary and sufficient condition is given for a point to
be Pareto optimal when there are two concave objective functions (problem of
maximization) and a convex feasible set.

The following references deal with conditions for efficiency, where the ob-
jective space is ordered by an ordering cone.

In Zubiri (1988), necessary and sufficient conditions are proved for weak
efficiency in Banach spaces with the help of a weighted L.,-metric (see Sec-
tion 3.4 of Part II). Several necessary and sufficient conditions for efficient,
weakly efficient and properly efficient solutions (in the sense of Borwein) in
real topological linear spaces are collected in Jahn (1985). Necessary and suf-
ficient optimality conditions of the Karush-Kuhn-Tucker type are derived in
Hazen (1988), for cases where preferences are and are not representable by
cones.

Let us finally briefly mention some further references handling nondiffer-
entiable cases. Necessary and sufficient conditions for Pareto optimality and
proper Pareto optimality are derived in Bhatia and Aggarwal (1992), by the
weighting method (see Section 3.1 of Part II} and Dini derivatives. The func-
tions in the problem are assumed to be nondifferentiable such that the objec-
tive functions are pseudoconcave and the constraint functions are quasiconvex.
Some duality results are provided as well.
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Optimality conditions based on the optimization theory of Dubovitskii and
Milyutin presuming certain convexity assumptions are presented in Censor
(1977) for Pareto optimality in R™ and in Minami (1981) for weak Pareto
optimality in a linear topological space. No differentiability assumptions are
needed. Necessary and sufficient conditions for weak, proper and Pareto opti-
mality in finite-dimensional normed spaces are presented in Staib (1991) under
different assumptions. In Shimizu et al. (1997, pp. 319-322), nondifferentiable
optimality conditions assuming constraint qualifications based on directional
derivatives are derived.

3.4. Sensitivity Analysis and Duality

The last topics to be mentioned in this chapter are sensitivity analysis,
stability and duality. Sensitivity analysis studies situations when the input
parameters defining the multiobjective optimization problem change or contain
errors. In sensitivity analysis, an answer is sought to the guestion of how much
the parameters can be altered and varied without affecting the solution. More
justification for sensitivity analysis is provided in Rarig and Haimes (1983).

Given a family of parametrized multiobjective optimization problems, a
set-valued perturbation function is defined in Tanino (1990), such that it as-
sociates with each parameter value the set of Pareto optimal points of the
perturbed feasible region. The behaviour of the perturbation function is ana-
lyzed both qualitatively and quantitatively. In this context stability means the
study of various continuity properties of the perturbation function of a family
of parametrized optimization problems, that is, qualitative analysis. Sensitiv-
ity means the study of the derivatives of the perturbation function, that is,
quantitative analysis.

In general multiobjective optimization problems, considerable attention has
been paid to the stability of the preference structure of the decision maker. In
these cases, it is usually assumed that the partial ordering of the objective
space is induced by an ordering cone.

However, mathematical stability and sensitivity analysis are broad areas of
research, and we do not intend to go into details here. Instead, we refer, for
example, to Balbds and Guerra (1996), Craven (1988), Ester (1984), Gal and
Wolf (1986), Kuk et al. (1996), Luc (1989), Lucchetti (1985), Papageorgiou
(1985), Tanino (1988a, b, 1990) and Tanino and Sawaragi (1980), for further
analysis.

Let us still mention that stability is not an unambiguous notion. As stressed,
for example, in Dauer and Liu (1997), the terms and results connected to stabil-
ity and sensitivity analysis are not universally defined in the literature. Different
types of stability can be defined and measured in many ways. Often stability is
associated with worst case performance and analysing how fast a solution de-
grades to a certain still acceptable level. Thus, analysis of stability is important
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in implementing solutions in practice. Regardless if its significance, stability has
been widely ignored in the multiple criteria decision-making context thus far.

A review of sensitivity analysis results for both linear and nonlinear prob-
lems is given in Dauer and Liu (1997). In addition, they study sensitivity analy-
sis for MOLP problems in the objective space and deal with priority structures
in goal programming. Sensitivity analysis for MOLP problems is also treated
in Gal (1995).

Changes that occur in the solution of an MOLP problem, if the number of
objective functions, the number of variables or the number of constraint func-
tions is altered, are examined in Eiselt et al. (1987). This is also an interesting
topic for nonlinear problems, as, for example, an objective function may have
been left out of the model, and it would be useful to know how this can affect
the solution obtained. For example, if a convex objective function is added to
a convex multiobjective optimization problem, all weakly Pareto optimal solu-
tions remain weakly Pareto optimal (see Lowe et al. (1984)). The corresponding
result is not always valid for Pareto optimal solutions. A counterexample can
be found in Steuer (1986, p. 179). A result regarding the generation of the
weakly Pareto optimal set of a convex problem as a union of such Pareto op-
timal sets where subsets of the objective functions are used, is proved in Lowe
et al. (1984).

An overview is presented of duality theory for linear and nonlinear cases
in Nakayama (1985c). Duality theory for nonlinear muitiobjective optimiza-
tion problems is also presented, for example, in Bitran (1981), Gopfert (1986),
Luc (1984b, 1987, 1989), Nakayama (1984, 1985b, 1996), Singh et al. (1996)
and Weir (1987); for convex problems in Jahn (1983) and Martinez-Legaz and
Singer (1987); for more general convex-like problems in Das and Nanda (1997),
Preda (1992, 1996) and Wang and Li (1992); for nonconvex problems in Luc
and Jahn (1992); and for nonconvex nondifferentiable problems in Preda and
Stancu-Minasian (1997). Some regularity results for multiobjective optimiza-
tion problems are presented in Martein (1989). On the other hand, duality
theory designed for a decision maker determining preferred solutions in convex
multiobjective optimization problems is derived in Tarvainen (1996).

Finally, we state that an excellent account of stability and duality in mul-
tiobjective optimization can be found in Sawaragi et al. (1985). More than a
third of the contents of the monograph addresses these topics.
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1. INTRODUCTION

Generating Pareto optimal solutions plays an important role in multiobjec-
tive optimization, and mathematically the problem is considered to be solved
when the Pareto optimal set is found. The term vector optimization is some-
times used to denote the problem of identifying the Pareto optimal set. How-
ever, this is not always enough. We want to obtain only one solution. This
means that we must find a way to put the Pareto optimal solutions in a com-
plete order. This is why we need a decision maker and her or his preference
structure. Here in Part II, we present several methods for solving multiobjective
optimization problems. Usually, this means finding the Pareto optimal solution
that best satisfies the decision maker.

We are not here going to interfere with the formulation of a real-life phe-
nomenon as a mathematically well-defined problem. We merely stress that a -
proper formulation is important. Let us emphasize that in real-life problems
inaccuracy in some form is often present. Remember that we exclude the han-
dling of stochastic or fuzzy problems in this context. Even when the problems
are modelled in a deterministic form, restricting the treatment to Pareto opti-
mal solutions only may be misleading. For example, forgetting or misspelling
an objective function may affect the Pareto optimal set. If it is impossible to
model the practical problem in an explicit and precise mathematical form, we
cannot automatically leave non-Pareto optimal solutions out of consideration.
For example, imprecision of the data, the measurement or the objective func-
tions means that the Pareto optimal set available is only an approximation of
the real one. Here we have a gap between theory and practice.

Several crucial issues to bear in mind in the formulation of problems are
treated in Haimes (1985) and Nijkamp et al. (1988). Among these are risk
assessment, sufficient representativeness of the objective functions and precision
of information. In many complicated, practical cases it may be impossible to
give a correct formulation to the problem before it is solved. This means that
the modelling and the solution phases should not be undertaken separately,
which is generally the case nowadays. In other words, the modelling phase may
require interaction with the solution phase. A parallel idea of approaching the
modelling phase by including the decision maker in the modelling is suggested
in Brans (1996). The goal is to give more freedom to the decision maker and
not to limit her or his way of thinking to a prespecified model and its concepts.
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In most methods we are interested in the objective space instead of the de-
cision variable space. One reason for this is that the dimension of the objective
space is usually considerably smaller than the dimension of the decision vari-
able space. Another reason is that decision makers are often more interested
in the objective values. However, calculation still takes place in the decision
variable space because we do not usually know the explicit form of the feasi-
ble objective region. In brief, decision makers usually handle objective values
whereas mathematical programming takes place in the decision variable space.

In general, multiobjective optimization problems are solved by scalarization.
The most important exceptions to, this are MOLP problems, which are not
to be dealt with here, where some simplex-based solution methods can find
Pareto optimal extreme points or, in some cases, the whole Pareto optimal
set. Another exception, which is presented here, is the multiobjective proximal
bundle method for nondifferentiable problems. It is not based on scalarization
in the traditional sense.

As mentioned in Part I, scalarization means converting the problem into a
single or a family of single objective optimization problems with a real-valued
objective function, termed the scalarizing function, depending possibly on some
parameters. This enables the use of the theory and the methods of scalar opti-
mization, that is, nonlinear programming. Of fundamental importance is that
the optimal solutions of multiobjective optimization problems can be charac-
terized as solutions of certain single objective optimization problems. Because
scalarizing functions usually depend on certain auxiliary parameters, some nu-
merical difficulties may appear if the single objective optimization problem has
feasible solutions only with very few parameter values or it is not solvable with
all the parameter values. Thus the seemingly promising idea of simplifying the
problem into single objective optimizations has also its weaknesses. In what
follows, we assume that solutions to scalarizing functions exist.

In Sawaragi et al. (1985), three requirements are set for a scalarizing func-
tion:

(1) It can cover any Pareto optimal solution.
(2) Every solution is Pareto optimal.

If the scalarizing function is based on aspiration levels, then, in addition
(3) Its solution is satisficing if the aspiration levels used are feasible.

Unfortunately, there is no scalarizing function that can satisfy all three require-
ments.

An important fact to keep in mind is that standard routines for single objec-
tive optimization problems can only find local optima. This is why only locally
Pareto optimal solutions are usually obtained and handled when dealing with
scalarizing functions. Global Pareto optimality can be guaranteed, for exam-
ple, if the objective functions and the feasible region are convex (as stated in
Theorem 2.2.3 of Part I) or quasiconvex and convex, respectively (see Theorem
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2.2.4 of Part I). An alternative is to employ global single objective optimiz-
ers. In the following, however, the solutions are understood to be local, unless
stated otherwise.

Another matter to consider is the possibility of the scalarizing function
having several alternative optimal solutions. In this case, the objective vector
produced depends on the solution chosen. This may affect in an uncontrolled
way the direction in which the solution process proceeds. This fact has not been
taken into account in most method developments. Ideas for handling alternative
optima in MOLP problems are presented in Sarma and Merouani (1995).

There is a large variety of methods for accomplishing multiobjective opti-
mization. None of them can be said to be generally superior to all the others.
When selecting a solution method, the specific features of the problem to be
solved must be taken into consideration. In addition, the opinions of the de-
cision maker are important. It is not enough that the analyst simply prefers
some method. It may happen that the decision maker cannot or does not want
to use it. The decision maker may be busy or mathematically ignorant. One
can say that selecting an appropriate multiobjective optimization method itself
is a problem with multiple objectives! We shall return to the method selection
problem in Section 1.3 of Part III.

Methods of multiobjective optimization can be classified in many ways ac-
cording to different criteria. In Cohon (1985), they are categorized into two
relatively distinct subsets: generating methods and preference-based methods.
In generating methods, the set of Pareto optimal (or efficient) solutions is gen-
erated for the decision maker, who then chooses one of the alternatives. In
preference-based methods, the preferences of the decision maker are taken into
consideration as the solution process goes on, and the solution that best satisfies
the decision maker’s preferences is selected.

Rosenthal (1985) suggests three classes of solution methods: partial gen-
eration of the Pareto optimal set, explicit value function maximization and
interactive implicit value function maximization. In Carmichael (1981), meth-
ods are classified according to whether a composite single objective function,
a single objective function with constraints, or many single objective functions
are the basis for the approach. One more rough division could be made into
interactive and noninteractive methods. These classes can be further divided
in many ways.

Here we apply the classification presented in Hwang and Masud (1979). This
classification is followed, for instance, in Buchanan (1986), Hwang et al. (1980)
and Lieberman (1991a, b). Hwang and Masud classify the methods according
to the participation of the decision maker in the solution process. The classes
are:

1) methods where no articulation of preference information is used (no-

preference methods),

2) methods where a posteriori articulation of preference information is used

(a posteriori methods),
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3) methods where a priori articulation of preference information is used (a
priori methods), and

4) methods where progressive articulation of preference information is used
(interactive methods).

For short, the names in the parentheses are used in the following.

However, no classification can be complete, as demonstrated, for example,
in Despontin et al. (1983). Thus, one must bear in mind that the classifications
are not absolute. Overlapping and combinations of classes are possible and some
methods can be considered to belong to more than one class. The presented
grouping is for guidance only.

In addition to the role of the decision maker we consider an alternative way
of classification into ad hoc and non ad hoc methods. This division, suggested
by Steuer and Gardiner (1991), is mainly intended for interactive methods, but
can be applied to some other methods as well. It is based on the existence of an
underlying value function. The common feature of ad hoc methods is that even
if one knew the decision maker’s value function, one would not exactly know
how to respond to the questions posed by the algorithm. On the other hand,
in non ad hoc methods the responses can be determined or at least confidently
simulated if the decision maker’s value function is known.

It should be pointed out that several concepts and assumptions underlying
methods and solution processes can be questioned. For example, ten myths of
multiobjective optimization and decision making are discussed and called into
question in Michalowski (1997) and Zionts (1997a, b). Among them are con-
cepts of well-defined decisions, isolated decision makers, optimal solutions, the
value of Pareto optimal solutions, value functions, static decisions, preference of
sophistication, mathematical convergence and technical assumptions. Here we
do not go into details of these myths but refer to the presentations mentioned.
A further aspect concerns the relative importance of objective functions. As
emphasized in Roy and Mousseau (1996), such a notion is more complex than
is usually recognized.

Before presenting the methods, we mention several references for further
information. In Hwang and Masud (1979), a large number of methods is pre-
sented and illustrated by solving numerical examples in detail. A similar but
shortened presentation is given in Hwang et al. (1980). The detailed solution
process descriptions are intended to help in selecting solution methods.

Extensive surveys of concepts and methods for multiobjective optimization
are provided in the monographs Chankong and Haimes (1983b) and Steuer
(1986). Similar matters are studied briefly in Buchanan (1986), Chankong and
Haimes (1983a), Chankong et al. (1985), Dyer and Sarin (1981), Rosenthal
(1985), Steuer (1989b), Steuer and Gardiner (1990), Stewart (1992) and Van-
derpooten (1990). An overview is given in Evans (1984) and several methods
are also presented in Cohon (1985) and Osyczka (1984).

A set of methods developed up to the year 1973 for both multiattribute
decision analysis and multiobjective optimization is collected in MacCrimmon
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(1973). A wide collection of methods available (up to the year 1983) is assembled
also in Despontin et al. (1983). Almost 100 methods for both multiobjective
and multiattribute cases are included.

As far as different nationalities are concerned, overviews of multiobjective
optimization methods in the former Soviet Union are presented in Lieberman
(1991a, b) and of theory and applications in China in Hu (1990). Nine multi-
objective optimization methods developed in Germany are briefly introduced
in Ester and Holzmiiller (1986).

A great number of interactive multiobjective optimization methods is col-
lected in Shin and Ravindran (1991) and Vanderpooten and Vincke (1989).
Interactive methods are also presented in Narula and Weistroffer (1989a) and
White (1983b). Information about applications of the methods is also reported.
Some literature on interactive multiobjective optimization between the years
1965 and 1988 is gathered in Aksoy (1990). A set of scalarizing functions is out-
lined in Wierzbicki (1986b) with special attention to whether weakly, properly
or Pareto optimal solutions are produced.

As to different problem types, an overview of methods for MOLP problems
can be found in Zionts (1980, 1989). Methods for hierarchical multiobjective
optimization problems are reviewed in Haimes and Li (1988). Such methods are
needed in large-scale problems. A wide survey on the literature of hierarchical
multiobjective analysis is also provided.

Methods with applications to large-scale systems and industry are presented
in the monographs Haimes et al. (1990) and Tabucanon (1988), respectively.
Several groups of methods applicable to computer-aided design systems are
presented briefly in Eiduks (1983). Methods for applications in structural op-
timization are reported in Eschenauer (1987), Jendo (1986), Koski and Silven-
noinen (1987) and Osyczka and Koski (1989). The collections of papers edited
by Eschenauer et al. (1990a) and Stadler (1988a) contain mainly applications
in engineering.

In the following, we present several methods (in four classes) for multiob-
jective optimization. Some of them will be described in more detail and some
only briefly mentioned. It must be kept in mind that the existing methodology
is very wide. We do not intend to cover every existing method but to introduce
several philosophies and ways of approaching multiobjective optimization prob-
lem solving. Where possible we try to link references to some of the applications
and extensions available in the literature with the methods presented here. The
description of each method ends with concluding remarks by the author taking
up important aspects of the method. Unless stated otherwise, we assume that
we solve problem (2.1.1) defined in Part 1.

In connection with methods, a mention is made only of such implementa-
tions as have been made available to the author for testing purposes. By a
user we mean either a decision maker or an analyst who uses the solution pro-
gram. If the user is a decision maker, it is usually assumed that the problem
has been formulated earlier (and perhaps loaded in the system) so that the
decision maker can concentrate on the actual solution process.
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In no-preference methods, where the opinions of the decision maker are
not taken into consideration, the multiobjective optimization problem is solved
using some relatively simple method and the solution obtained is presented to
the decision maker. The decision maker may either accept or reject the solution.
It seems quite unlikely that the solution best satisfying the decision maker could
be found with these methods. That is why no-preference methods are suitable
for situations where the decision maker does not have any special expectations
of the solution and (s)he is satisfied simply with some optimal solution. The
working order here is: 1) analyst, 2) none.

As examples of this class we present the method of the global criterion and
the multiobjective proximal bundle method.

2.1. Method of the Global Criterion

The method of the global criterion is also sometimes called compromise
programming (see Yu (1973) and Zeleny (1973)). In this method, the distance
between some reference point and the feasible objective region is minimized.
The analyst has to select the reference point and the metric for measuring the
distances. All the objective functions are thought to be equally important.

2.1.1. Different Metrics

Here we examine the method where the ideal objective vector is used as a
reference point and L,-metrics are used for measuring. In this case, the L-
problem to be solved is

k 1/p
(2.1.1) minimize (Z lfz(x) _ z;lp)
- i=1

subject to x € S.

From the definition of the ideal objective vector z* we know that f;(x) > 27
foralli =1,...,k and all x € §. This is why no absolute values are needed if
we know the global ideal objective vector. If the global ideal objective vector
K. Miettinen, Nonlinear Multiobjective Optimization
© Springer Science+Business Media New York 1998
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is not known, the method does not necessarily work as it should. In order to
emphasize this fact, we keep the absolute value signs in the notations when
introducing the method.

If the ideal objective vector is replaced by some other vector, it must be se-
lected carefully. Pessimistic reference points must be avoided since the method
cannot find solutions better than the reference point.

The exponent 1/p may be dropped. Problems with or without the exponent
1/p are equivalent for 1 < p < oo, since Ly-problem (2.1.1) is an increasing
function of the corresponding problem without the exponent.

If p = oo, the metric is also called a Tchebycheff metric and the Lo, — or
the Tchebycheff problem is of the form

minimize  max | |fi(x) — 2|
(2.1.2) ek | :
subject to x € S.

Notice that problem (2.1.2) is nondifferentiable even in the absence of absolute
values. In this case, it can, however, be transformed into a differentiable form
if the objective and the constraint functions are differentiable. Then, instead
of problem (2.1.2), the problem

minimize «
subject to a > fi(x) — 2z} forall i=1,...,k,
x €S,

is solved, where both x € R™ and a € R are variables.

The solution obtained depends greatly on the value chosen for p. Widely
used choices are p = 1,2 or 0o. In Figure 2.1.1, the contours of these three
different metrics are shown. The black point is the ideal objective vector and
the bold line represents the Pareto optimal set. It is worth noticing that if the
original problem is linear, the choice p = 1 maintains the linearity. As the value
of p increases, the nonlinear minimization problem becomes more difficult and
badly conditioned to solve.

For linear problems, the solutions obtained by the L,-problems where
1 < p < oo are situated between the solutions obtained by the L;- and Lo-
problems. It is illustrated in Zeleny (1973) that this set of solutions is a part
of the Pareto optimal set, but only a substantially small part.

Instead of the terms |f;(x) — z}|, denominators may be added to prob-
lems (2.1.1) and (2.1.2) to normalize the components, that is, to use the terms
|fi(x) — z¥| / |2| instead. Some other denominators, like |72 — 2|, can also
be used. The reason for employing denominators is that sometimes it is worth-
while to use relative distances in the calculations. For example, using the com-
ponents of z* forms the contour of the metric to reflect better the location of
the ideal objective vector. Naturally, the denominators 2} cannot be used if
some of them equals zero.

The objective functions may also be normalized by
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Figure 2.1.1. Different metrics.
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before the distance is minimized. In this case, the range of the new objec-
tive functions is [0, 1]. This normalizing is possible only if the objectives are
bounded. However, it is usually better to employ the ranges of the Pareto opti-
mal set and replace the max term by the component of the approximated nadir

objective vector 272 in (2.1.3).
A variation of the Tchebycheff problem is suggested in Osyczka (1989a,
1992), where the problem to be solved is

filx) = 2}
Ji(x)

fix) — #f

*
Z;

3

minimize max | max
(2.1.4) i=1,...k [ {

subject to x € S.

2.1.2. Theoretical Results

Next, we present some theoretical results concerning the method of the
global criterion. We assume that we know the global ideal objective vector and
can, thus, leave the absolute values.
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Theorem 2.1.1. The solution of Ly-problem (2.1.1) (where 1 < p < o) is
Pareto optimal.

Proof. Let x* € S be a solution of problem (2.1.1) with 1 < p < co. Let us
suppose that x* is not Pareto optimal. Then there exists a point x € S such
that fi(x) < fi(x*) foralli =1,...,k and f;(x) < f;(x*) for at least one j.
Now (fi(x) - 2)? < (fi(x*) = 2f)? for all § and (f;(x) - 2})? < (f;(x*) - 22)P.
From this we obtain

k
(fix) = 25)" < 3 (filx*) - 2)".

k
=1 =1

2

When both sides of the inequality are raised into the power 1/p we have a
contradiction to the assumption that x* is a solution of problem (2.1.1). This
completes the proof. a

Yu has pointed out in Yu (1973) that if Z is a convex set, then for 1 < p < oo
the solution of problem (2.1.1) is unique.

Theorem 2.1.2. The solution of Tchebycheff problem (2.1.2) is weakly Pareto
optimal.

Proof. Let x* € S be a solution of problem (2.1.2). Let us suppose that x* is
not weakly Pareto optimal. In this case, there exists a point x € S such that
fi(x) < fi(x*) for all 4 = 1,...,k. It means that, fi(x) — 2z} < fi(x*) — 2}
for all ¢. Thus, x* cannot be a solution of problem (2.1.2). Here we have a
contradiction which completes the proof. ]

Theorem 2.1.3. Tchebycheff problem (2.1.2) has at least one Pareto optimal
solution.

Proof. Let us suppose that none of the optimal solutions of problem (2.1.2) is
Pareto optimal. Let x* € S be an optimal solution of problem (2.1.2). Since we
assume that it is not Pareto optimal, there must exist a solution x € S which is
not optimal for problem (2.1.2) but for which f;(x) < fi(x*) foralli =1,...k
and fj(x) < f;j(x*) for at least one j.

We have now f;(x) — 2z < fi(x*) — 2 for all i with the strict inequality
holding for at least one index j, and further max;[f;(x)—z}] < max;[f;(x*)—z}].
Because x* is an optimal solution of problem (2.1.2), x has to be an optimal
solution, as well. This contradiction completes the proof. O

Corollary 2.1.4. If Tchebycheff problem (2.1.2) has a unique solution, it is
Pareto optimal.

A linear numerical application example of the method is given in Hwang and
Masud (1979, pp. 23-29). Sufficient conditions for the solution of an L,-problem
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to be stable with respect to changes in the feasible region S are presented in
Jurkiewicz (1983). Reference points more general than the ideal objective vector
guaranteeing Pareto optimal results are handled in Skulimowski (1996).

2.1.3. Concluding Remarks

The method of the global criterion is a simple method to use if the aim
is simply to obtain a solution where no special hopes are set. The properties
of the metrics imply that if the objective functions are not normalized in any
way, then an objective function whose ideal objective value is situated nearer
the feasible objective region receives more importance.

The solution obtained with the Ly-metric (1 < p < c0) is guaranteed to be
Pareto optimal. If the Tchebycheff metric is used, the solution may be weakly
Pareto optimal. In the latter case, for instance, problem (2.10.2) of Part 1 can
be used to produce Pareto optimal solutions. It is up to the analyst to select
an appropriate metric.

2.2. Multiobjective Proximal Bundle Method

The multiobjective proximal bundle (MPB) method is an extension of
single-objective bundle-based methods of nondifferentiable optimization into
the multiobjective case. It is derived in Makeld (1993) and Miettinen and
Mikela (1995, 1996a) according to the ideas of Kiwiel (1984, 1985a, b) and
Wang (1989). The underlying proximal bundle method, presented in Kiwiel
(1990), is an advanced version of the bundle family for convex, unconstrained
nondifferentiable single objective optimization. It is generalized for nonconvex
and constrained problems in Mékeld and Neittaanmaiki (1992, pp. 112-137).

The idea of the MPB method, in brief, is to move in a direction where the
values of all the objective functions improve simultaneously. Here we describe
features of the MPB method from an implementational viewpoint. For details
see Makeld, (1993).

2.2.1. Introduction

The MPB method is capable of solving problems with nonlinear (possi-
bly nondifferentiable) functions. It is assumed that all the objective and the
constraint functions are locally Lipschitzian.

The MPB method is not like the other scalarization methods. Ordinary
scalarization methods transform the problem into one with a single objective
function. This new problem can then be solved with any appropriate method
for nonlinear programming. In the MPB method the scalarizing function lies
inside a special (nondifferentiable) optimizer, which is why its philosophy is so
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different from that of the other methods described here, and why implemen-
tational aspects that can be forgotten with other methods have to be touched
on.

Let us now suppose that the feasible region is of the form

S={xeR"|g(x) = (1(x),92(x),...,gm(x))T < O}.

As mentioned above, the MPB method is not directly based on employing
any scalarizing function. Some kind of scalarization is, however, needed in de-
riving the minimization method for all the objective functions. Theoretically,
we utilize an unconstrained improvement function H: R™ x R™ — R defined
by

H(x', x?) = max [fi(x!) —fi(x?), q(x") |i=1,...,k 1=1,...,m].

Let us first prove a result about the optimal solutions of improvement func-
tions. The sufficient condition necessitates the Slater constraint qualification
(Definition 3.2.13 in Part I).

Theorem 2.2.1. A necessary condition for a point x* € R" to be weakly
Pareto optimal is that the improvement function H(x,x*) attains its minimum
at x*. If the multiobjective optimization problem is convex and the Slater
constraint qualification is satisfied, then the condition above is also sufficient.

Proof. The necessity follows immediately from the proof of Theorem 3.2.5
(and Corollary 3.2.7) in Section 3.2 of Part 1.

As to the sufficiency component, let the assumptions stated be valid and
let x* € R™ be a minimal solution of H(x,x*). Let us assume that x* is not
weakly Pareto optimal. Then, there exists some X € R™ such that g;(%X) <0
forall j = 1,...,m and f;(X) < fi(x*) foralli =1,...,k. If g;(%x) < 0 for all
j=1,...,m, then

H(x,x*) < 0= H(x*,x"),

which contradicts the assumption that H(x,x*) attains its minimum at x*.

Otherwise, that is, if g;(X) = 0 for some index j, it follows from the Slater
constraint qualification that there exists some X € R™ such that g;(x) < 0 for
all j=1,...,m. If fi(X) < fi(x*) foralli=1,...,k, then

H(%,x*) <0 = H(x",x")

and we have a contradiction with x* minimizing H.

Otherwise, we define Iy C {1,...,k} such that f;(X) > fi(x*) > fi(k) for
all i € Iy. Let us denote y = Ax + (1 — A)x for 0 < A < 1. Then the convexity
of the constraint and the objective functions implies that foral 0 < A < 1

(2.2.1) gi(y) € Agj(X) + (1 - AN)g;(x) <0

forallj=1,...,m, and
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fily) S M(E) + (1= X fi(%) < Afi(x™) + (1 = A fi(x®) = fi(x")
for all i € {1,...,k} \ Ip. If I, is nonempty, we choose
_ min [fi(x*) — fi(X) |1 € o] c
max [fi(%) - fi(x) |[i € o]

where € > 0 is small enough so that 0 < A < 1. By the convexity of the
objective functions, we have for all ¢ € I

(2.2.2) )= 1)

‘ filx*) = fi(X) . _ fix®) - filx
0 < fa gm0 (- @
= Jix) = U8~ Ji(8) < ilx").

Then, combining the results (2.2.1) and (2.2.2), we obtain

V1R = e(fi(®) = £i(%))

H(y,x") < 0= H(x",x"),

which is again a contradiction with the condition that x* minimized H. Thus,
x* is weakly Pareto optimal. O

2,2.2. MPB Algorithm

In the following, we take a look at the MPB method. We do not describe
the method completely but present its idea roughly. The reason is that the
structure of the method is highly connected to the underlying nondifferentiable
proximal bundle method.

In the MPB method, the solution is looked for iteratively, until some stop-
ping criterion is fulfilled. The iteration counter h refers to the inner iterations
of the MPB method. Let x* be the current approximation to the solution of
the multiobjective optimization problem at the iteration h. Then, by Theorem
2.2.1, we seek for the search direction d" as a solution of the unconstrained
optimization problem

minimize H(x" + d, x")

(2.2.3) _
subject to d € R™.

Since problem (2.2.3) is still nondifferentiable, we must approximate it some-
how.

Let us assume for a moment that the problem is convex. We suppose that,
at the iteration k in addition to the iteration point x*, we have some auxiliary
points y’ € R™ from past iterations and subgradients &}, € 8f;(y?) for j € J*,
i=1,...,k,and & € dgi(y?) forj € J* 1 =1,...,m, where J" is a nonempty
subset of {1,...,h}. We linearize the objective and the constraint functions at
the point y’/ and denote
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fii(x) = fily’)) + (f;.-)T(x"yj) forall i=1,...,k, j€J" and
9,;x) =g+ @) x—-y’) foral =1,...,m, j€ Jh.

We can now define a convex piecewise linear approximation to the improve-
ment function by

I:Ih(x) = ma‘x[ﬁ,j(x) - fi(xh)u gl,j(x) I 1= 11' . ’k) l= 1,...,m, J € Jh]
and we get an approximation to (2.2.3) by

minimize ~ H"*(x" + d) + Lu”||d|?

(2.2.4) i
subject to d € R%,

where u” > 0 is an inner parameter to be updated automatically. The penalty
term u”||d||? is added to guarantee that there exists a solution to problem
(2.2.4) and to keep the approximation local enough.

Notice that (2.2.4) is still a nondifferentiable problem, but due to its min-
max-nature it is equivalent to the following differentiable quadratic problem
with d € R™ and v € R as variables:

minimize v + Ju®||d|]?

(2.2.5) subject to v > —a?‘.,j + ({i)Td, i=1,...,k jeJt
v>—al +@E)"d, 1=1,...,m, jeJ",
where

ah = filxh) = fii(xM), i=1,...,k, j€J" and

hoo_ = h _ : k
Qg ;= -g;(x"), l=1,....m, j€J
are so-called linearization errors.

In the nonconvex case, we replace the linearization errors by so-called sub-

gradient locality measures:

B3 = max [lof 5[, vrlx" = y7II°]
.5 = max [lag, 51,7 1x" = ¥7I1°],

where vy, > 0fori =1,...,kand vy, > 0forl =1,...,m are so-called distance

measure parameters (v, = 0 if f; is convex and «,, = 0 if g, is convex).

Let (d”, ") be a solution of problem (2.2.5). Then the two-point line search
strategy is carried out. It detects discontinuities in the gradients of the objective
functions. Roughly speaking, we try to find a step-size 0 < t* < 1 such that
H(x" + thd" x") is minimal when x" + t"d" € S.

A line search algorithm (in Mikeld and Neittaanmaki (1992, pp. 126-130))
is used to produce the step-sizes. The iteration is terminated when a pre-
determined accuracy is reached. The subgradient aggregation strategy due to
Kiwiel (1985¢) is used to bound the storage requirements (i.e., the size of the
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index set J*) and a modification of the weight-updating algorithm described in
Kiwiel (1990) is used to update the weight u?. For details, see Miettinen and
Miikeld (1995, 1998a).

This is roughly the MPB method. Next, some words about optimality are
in order.

2.2.3. Theoretical Results

According to Theorem 2.2.1 we, on the one hand, know that minimizing an
improvement function produces weakly Pareto optimal solutions. On the other
hand, any weakly Pareto optimal solution of a convex problem can be found
under minor conditions. While we do not optimize the improvement function
but its approximation, the optimality results of the MPB method are somewhat
different. Here we only present some results without proofs, since giving these
would necessitate explicit expression of the MPB algorithm.

Theorem 2.2.2. Let the multiobjective optimization problem be convex and
the Slater constraint qualification be satisfied. If the MPB method stops with
a finite number of iterations, then the solution is weakly Pareto optimal. On
the other hand, any accumulation point of the infinite sequence of solutions
generated by the MPB method is weakly Pareto optimal.

Proof. See Kiwiel (1985a) or Wang (1989).

If the convexity assumption is not satisfied, we obtain somewhat weaker
results about substationary points (See Definition 3.2.6 of Part I). This result
involves upper semidifferentiable functions (see Definition 2.1.15 of Part I).

Theorem 2.2.3. Let the objective and the constraint functions of the multi-
objective optimization problem be upper semidifferentiable at every x € S. If
the MPB method stops with a finite number of iterations, then the solution is a
substationary point. On the other hand, any accumulation point of an infinite
sequence of solutions generated by the MPB method is a substationary point.

Proof. See Wang (1989) and references therein.

Note that only the substationarity of the solutions of the MPB routine is
guaranteed for general multiobjective optimization problems.

2.2.4. Concluding Remarks

The MPB method can be used as a method where no opinions of the decision
maker are sought. In this case, we must select the starting point so that it is not
(weakly) Pareto optimal but that every component of the objective vector can
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be improved. The method can also handle other than nonlinear constraints, but
they have not been included here for the sake of the clarity of the presentation.

The MPB routine can also be used as a black-box optimized within inter-
active multiobjective optimization methods. This is the case with the vector
version of NIMBUS (see Section 5.12).

The accuracy of the computation in the MPB method is an interesting mat-
ter. Accuracy can be considered in a more extensive meaning as a separating
factor between ordinary scalarizing functions and inner scalarizing function, as
in the MPB method. If some ordinary scalarizing function is employed, then it
is the accuracy of that additional function that can be followed along with the
solution process. It may happen that when the accuracy of the scalarizing func-
tion has reached the desired level, the values of the actual objective functions
could still change considerably.

Many scalarizing functions have positive features whose importance is not to
be underestimated, such as producing only Pareto optimal solutions. However,
employing some scalarizing function usually brings along extra parameters and
the difficulty of specifying their values. This causes additional stability concern.
To put it briefly, scalarizing functions add extra characteristics to the problem.

Scalarization cannot completely be avoided even in the MPB routine. How-
ever, the scalarization is carried out under the surface, invisible to the user.
Whatever additional parameters or phases are needed, they cannot be seen
and the user does not have to be bothered with them. The weakness of the
MPB routine is that the Pareto optimality of the solutions obtained cannot
be guaranteed. In theory, only the substationarity of the solutions is certain.
In practice, it is, however, very likely that the solutions are at least weakly
Pareto optimal. As a matter of fact, in the numerical experiments performed,
the final solutions obtained have usually proved to be Pareto optimal at the
final testing.

For problems with nondifferentiable functions the MPB routine represents
an efficient proximal bundle-based solution approach. The implementation of
the MPB routine (called MPBNGC) is described in Mékeld (1993). It calls a
quadratic solver derived in Kiwiel (1986).



3. A POSTERIORI METHODS

A posteriori methods could also be called methods for generating Pareto
optimal solutions. After the Pareto optimal set (or a part of it) has been gen-
erated, it is presented to the decision maker, who selects the most preferred
among the alternatives. The inconveniences here are that the generation process
is usually computationally expensive and sometimes in part, at least, difficult.
On the other hand, it is hard for the decision maker to select from a large set
of alternatives. One more important question is how to present or display the
alternatives to the decision maker in an effective way. The working order in
these methods is: 1) analyst, 2) decision maker.

If there are only two objective functions, the Pareto optimal set can be gen-
erated parametrically (see, for example, Benson (1979b) and Gass and Saaty
(1955)). When there are more objectives, the problem becomes more compli-
cated.

Let us briefly mention that in solving MOLP problems the methods can be
divided into two subclasses. In the first are the methods that can find all the
Pareto optimal solutions and in the second are the methods that can find only
all the Pareto optimal extreme solutions. In the latter case, edges connecting
Pareto optimal extreme points may be Pareto optimal or not. In nonlinear
problems, the distinction lies between convex and nonconvex problems. In other
words, some methods can only generate Pareto optimal solutions of convex
problems.

The methods presented in detail here are called basic methods, since they
are used frequently in practical problems, and they are also used as elements
of more developed methods. Basic methods are the weighting method and the
g-constraint method. After them, we give a limited overview of a method com-
bining features of both the weighting and the e-constraint method. Then we in-
troduce two more basic methods. The method of weighted metrics is a weighted
extension of the method of the global criterion. It is followed by the handling
of achievement scalarizing functions. Finally, some other methods in this class
are briefly mentioned.

K. Miettinen, Nonlinear Multiobjective Optimization
© Springer Science+Business Media New York 1998



78 Part II — 3. A Posteriori Methods

3.1. Weighting Method

In the weighting method, presented, for example, in Gass and Saaty (1955)
and Zadeh (1963), the idea is to associate each objective function with a weight-
ing coefficient and minimize the weighted sum of the objectives. In this way, the
multiple objective functions are transformed into a single objective function.
We suppose that the weighting coefficients w; are real numbers such that w; > 0
foralli =1,...,k. It is also usually supposed that the weights are normalized,
that is, ZLI w; = 1. To be more exact, the multiobjective optimization prob-
lem is modified into the following problem, to be called a weighting problem:

k
(3.11) minimize ; w; fi(x)

subject to x € .5,

where w; > 0 for all i = 1,...,k and 35, w; = 1.

3.1.1. Theoretical Results

In the following, several theoretical results are presented concerning the
weighting method.

Theorem 3.1.1. The solution of weighting problem (3.1.1) is weakly Pareto
optimal.

Proof. Let x* € S be a solution of the weighting problem. Let us suppose
that it is not weakly Pareto optimal. In this case, there exists a solution x € S
such that f;(x) < fi(x*) for all i = 1,...,k. According to the assumptions
set to the weighting coefficients, w; > 0 for at least one j. Thus we have
Zle w; fi(x) < Zf=1 w; f;(x*). This is a contradiction to the assumption that
x* is a solution of the weighting problem. Thus x* is weakly Pareto optimal.
0

Theorem 3.1.2. The solution of weighting problem (3.1.1) is Pareto optimal
if the weighting coeflicients are positive, that is w; >0 for alli =1,...,k.

Proof. Let x* € S be a solution of the weighting problem with positive weight-
ing coefficients. Let us suppose that it is not Pareto optimal. This means that
there exists a solution x € S such that f;(x) < fi(x*) foralli =1,...,k and
[i(x) < fj(x*) for at least one j. Since w; > 0 for all ¢ = 1,...,k, we have
Zle w; fi(x) < Zle w; f;(x*). This contradicts the assumption that x* is a
solution of the weighting problem and, thus, x* must be Pareto optimal. O
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Theorem 3.1.3. The unique solution of weighting problem (3.1.1) is Pareto
optimal.

Proof. Let x* € S be a unique solution of the weighting problem. Let us
suppose that it is not Pareto optimal. In this case, there exists a solution
x € S such that f;(x) < fi(x*) for all ¢ = 1,...,k and f;(x) < f;(x*) for
at least one j. Because all the weighting coefficients w; are nonnegative, we
have Ele w; fi(x) < Zle w; f;(x*). On the other hand, the uniqueness of x*
means that }:le w; fi(x*) < ZLI w; fi(X) for all X € S. The two inequalities
above are contradictory and, thus, x* must be Pareto optimal. O

As Theorems 3.1.2 and 3.1.3 state, the solution of the weighting method is
always Pareto optimal if the weighting coeflicients are all positive or if the solu-
tion is unique, without any further assumptions. The weakness of the weighting
method is that not all of the Pareto optimal solutions can be found unless the
problem is convex. This feature can be relaxed to some extent by convexifying
the nonconvex Pareto optimal set as suggested in Li (1996). The convexifica-
tion is realized by raising the objective functions to a high enough power under
certain assumptions. However, the main result is the following:

Theorem 3.1.4. Let the multiobjective optimization problem be convex. If
x* € S is Pareto optimal, then there exists a weighting vector w (w; > 0,
1,...,k, ELl w; = 1) such that x* is a solution of weighting problem
1).

il

G

[y

Proof. The proof is presented after Theorem 3.2.6.

According to Theorem 3.1.4 any Pareto optimal solution of a convex mul-
tiobjective optimization problem can be found by the weighting method. Note
that the weighting vector is not necessarily unique. The contents of Theorem
3.1.4 is illustrated in Figure 3.1.1. On the left, every Pareto optimal solution
along the bold line can be obtained by altering the weighting coefficients. On
the right, it is not possible to obtain the Pareto optimal solutions in the ‘hol-
low.’

An equivalent trigonometric formulation to the weighting problem with two
objective functions is presented in Das and Dennis (1997). This formulation can
be used in illustrating geometrically why not all the Pareto optimal solutions
of nonconvex problems can be found.

Remark 3.1.5. According to Theorem 3.1.4, all the Pareto optimal solutions
of MOLP problems can be found by the weighting method.

Let us have a look at linear cases for a while. In practice, Remark 3.1.5 is
not quite true. The single objective optimization routines for linear problems
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Figure 3.1.1. Weighting method with convex and nonconvex problems.

usually find only extreme point solutions. Thus, if some facet of the feasible re-
gion is Pareto optimal, then the infinity of Pareto optimal non-extreme points
must be described in terms of linear combinations of the Pareto optimal ex-
treme solutions. On the other hand, note that if two adjacent Pareto optimal
extreme points for an MOLP problem are found, the edge connecting them is
not necessarily Pareto optimal.

The conditions under which the whole Pareto optimal set can be gener-
ated by the weighting method with positive weighting coefficients are presented
in Censor (1977). The solutions that it is possible to reach by the weighting
method with positive weighting coefficients are characterized in Belkeziz and
Pirlot (1991). Some generalized results are also given. More relations between
nonnegative and positive weighting coefficients, convexity of S and Z, and
Pareto optimality are studied in Lin (1976b).

If the weighting coefficients in the weighting method are all positive, we
can say more about the solutions than that they are Pareto optimal. The fol-
lowing results concerning proper Pareto optimality were originally presented in
Geoffrion (1968).

Theorem 3.1.6. The solution of weighting problem (3.1.1) is properly Pareto
optimal if all the weighting coefficients are positive (sufficient condition).

Proof. Let x* € S be a solution of the weighting problem with positive
weighting coefficients. In Theorem 3.1.2 we showed that the solution is Pareto
optimal. We shall now show that x* is properly Pareto optimal with M =
(k — 1) max; ;(w; /w;).

Let us on the contrary suppose that x* is not properly Pareto optimal. Then
for some i (which we fix) and for x € S such that fi(x*) > fi(x) we have

fi(x®) = fi(x) > M(f;(x) = f;(x7))

for all j such that f;(x*) < f;j(x). We can now write



3.1. Weighting Method 81
Fix) = () > (b= 1) 22 (1500 = f5(x"))-
After multiplying both sides by w;/(k — 1) > 0, we get
(£ = £i0) > wi(f5(0) — ) (> 02 wifil) - £(x")),

where [ differs from the fixed index ¢ and the indices 7, which were specified
earlier. After this reasoning we can sum over all j # ¢ and obtain

k
wi(fi(x") = fi(x)) > Y (w;(f3(x) = £;(x™))),
—
G
which means
k k
ijfj(x*) > ijfj(x).
i=1 J=1
Here we have a contradiction to the assumption that x* is a solution of the

weighting problem. Thus, x* has to be properly Pareto optimal. ]

Theorem 3.1.7. If the multiobjective optimization problem is convex, then
the condition in Theorem 3.1.6 is also necessary.

Proof. See Geoffrion (1968) or Chou et al. (1985).

Corollary 3.1.8. A necessary and sufficient condition for a point to be a
properly Pareto optimal solution of an MOLP problem is that it is a solution
of a weighting problem with all the weighting coefficients being positive.

The ratio of the weighting coefficients gives an upper bound to global trade-
offs.

Theorem 3.1.9. Let x* be a solution of weighting problem (3.1.1), when all
the weighting coeflicients w;, ¢ = 1, ..., k, are positive. Then

G W
A'ij(xt) = iznllf_i?(”k w—z

foreveryt,7 =1,...,k, 1 # 7.
Proof. See Kaliszewski (1994, p. 93).

Some results concerning weak, proper and Pareto optimality of the solutions
obtained by the weighting method are combined in Wierzbicki (1986b). Proper
Pareto optimality and the weighting method are also discussed in Belkeziz and
Pirlot (1991) and Luc (1995). The weighting method is used in Isermann (1974)
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in proving that for linear multiobjective optimization problems all the Pareto
optimal solutions are also properly Pareto optimal. More results concerning
MOLP problems and the weighting method are assembled in Chankong and
Haimes (1983a, b, pp. 153-159).

3.1.2. Applications and Extensions

As far as applications are concerned, the weighting method is used to gen-
erate Pareto optimal solutions in Sadek et al. (1988-89) in solving a problem of
the optimal control of a damped beam. The weighting method is also applied in
Weck and Foértsch (1988) to structural systems in the optimization of a spindle
bearing system and in the optimization of a table, as well as in ReVelle (1988),
where reductions in strategic nuclear weapons fo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>