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315 Structured ring spectra, A. BAKER & B. RICHTER (eds)
316 Linear logic in computer science, T. EHRHARD, P. RUET, J.-Y. GIRARD & P. SCOTT (eds)
317 Advances in elliptic curve cryptography, I.F. BLAKE, G. SEROUSSI & N.P. SMART (eds)
318 Perturbation of the boundary in boundary-value problems of partial differential equations, D.

HENRY
319 Double affine Hecke algebras, I. CHEREDNIK
320 L-functions and Galois representations, D. BURNS, K. BUZZARD & J. NEKOVÁŘ (eds)
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Preface
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at the University of Warwick, May 21st–23rd, 2007.
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contributions to the workshop, while others have written more tradi-
tional research papers. All the papers have been carefully edited in the
interests of clarity and consistency, and the research papers have been
externally refereed. We are very grateful to the referees for their work.
We believe that this volume therefore provides an accessible summary
of a wide range of active research topics, along with some exciting new
results, and we hope that it will prove a useful resource for both graduate
students new to the area and to more established researchers.

We would like to express their gratitude to the following sponsors of
the workshop: the London Mathematical Society, the Royal Society, via
a University Research Fellowship awarded to James Robinson, the North
American Fund and Research Development Fund schemes of Warwick
University, and the Warwick Mathematics Department (via MIR@W).
JCR is currently supported by the EPSRC, grant EP/G007470/1.

Finally it is a pleasure to thank Yvonne Collins and Hazel Higgens
from the Warwick Mathematics Research Centre for their assistance
during the organization of the workshop.

Warwick, James C. Robinson
December 2008 José L. Rodrigo
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Institute, Sokolovská 83, 186 75 Prague 8. Czech Republic.
mbul8060@karlin.mff.cuni.cz

Masoumeh Dashti �

Mathematics Department, University of Warwick, Coventry, CV47AL.
United Kingdom.
M.Dashti@warwick.ac.uk

Enrique Fernández-Cara �

Departamento de Ecuaciones Diferenciales y Análisis Numérico,
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Shear flows and their attractors
Mahdi Boukrouche

Laboratory of Mathematics, University of Saint-Etienne,
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Mahdi.Boukrouche@univ-st-etienne.fr

Grzegorz �Lukaszewicz
University of Warsaw, Mathematics Department,

ul. Banacha 2, 02-957 Warsaw. Poland.
glukasz@mimuw.edu.pl

Abstract

We consider the problem of the existence and finite dimensionality
of attractors for some classes of two-dimensional turbulent boundary-
driven flows that naturally appear in lubrication theory. The flows admit
mixed, non-standard boundary conditions and time-dependent driving
forces. We are interested in the dependence of the dimension of the
attractors on the geometry of the flow domain and on the boundary
conditions.

1.1 Introduction

This work gives a survey of the results obtained in a series of papers
by Boukrouche & �Lukaszewicz (2004, 2005a,b, 2007) and Boukrouche,
�Lukaszewicz, & Real (2006) in which we consider the problem of the
existence and finite dimensionality of attractors for some classes of two-
dimensional turbulent boundary-driven flows (Problems I–IV below).
The flows admit mixed, non-standard boundary conditions and also
time-dependent driving forces (Problems III and IV). We are interested
in the dependence of the dimension of the attractors on the geometry
of the flow domain and on the boundary conditions. This research is
motivated by problems from lubrication theory. Our results generalize
some earlier ones devoted to the existence of attractors and estimates of
their dimensions for a variety of Navier–Stokes flows. We would like to
mention a few results that are particularly relevant to the problems we
consider.

Most earlier results on shear flows treated the autonomous Navier–
Stokes equations. In Doering & Wang (1998), the domain of the flow is

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.



2 M. Boukrouche & G. �Lukaszewicz

an elongated rectangle Ω = (0, L) × (0, h), L � h. Boundary condi-
tions of Dirichlet type are assumed on the bottom and the top parts
of the boundary and a periodic boundary condition is assumed on the
lateral part of the boundary. In this case the attractor dimension can be
estimated from above by cL

hRe
3/2, where c is a universal constant, and

Re = Uh
ν is the Reynolds number. Ziane (1997) gave optimal bounds for

the attractor dimension for a flow in a rectangle (0, 2πL) × (0, 2πL/α),
with periodic boundary conditions and given external forcing. The esti-
mates are of the form c0/α ≤ dimA ≤ c1/α, see also Miranville & Ziane
(1997). Some free boundary conditions are considered by Ziane (1998),
see also Temam & Ziane (1998), and an upper bound on the attrac-
tor dimension established with the use of a suitable anisotropic version
of the Lieb-Thirring inequality, in a similar way to Doering & Wang
(1998). Dirichlet-periodic and free-periodic boundary conditions and
domains with more general geometry were considered by Boukrouche &
�Lukaszewicz (2004, 2005a,b) where still other forms of the Lieb-Thirring
inequality were established to study the dependence of the attractor
dimension on the shape of the domain of the flow. The Navier slip bound-
ary condition and the case of an unbounded domain were considered
recently by Mucha & Sadowski (2005).

Boundary-driven flows in smooth and bounded two-dimensional
domains for a non-autonomous Navier–Stokes system are considered
by Miranville & Wang (1997), using an approach developed by Chep-
yzhov & Vishik (see their 2002 monograph for details). An extension to
some unbounded domains can be found in Moise, Rosa, & Wang (2004),
cf. also �Lukaszewicz & Sadowski (2004).

Other related problems can be found, for example, in the monographs
by Chepyzhov & Vishik (2002), Doering & Gibbon (1995), Foias et al.
(2001), Robinson (2001), and Temam (1997), and the literature quoted
there.

Formulation of the problems considered.

We consider the two-dimensional Navier–Stokes equations,

ut − νΔu+ (u · ∇)u+ ∇p = 0 (1.1)

and

div u = 0 (1.2)

in the channel

Ω∞ = {x = (x1, x2) : −∞ < x1 <∞, 0 < x2 < h(x1)},
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where the function h is positive, smooth, and L-periodic in x1.
Let

Ω = {x = (x1, x2) : 0 < x1 < L, 0 < x2 < h(x1)}
and ∂Ω = Γ̄0 ∪ Γ̄L ∪ Γ̄1, where Γ0 and Γ1 are the bottom and the top,
and ΓL is the lateral part of the boundary of Ω.

We are interested in solutions of (1.1)–(1.2) in Ω that are L-periodic
with respect to x1 and satisfy the initial condition

u(x, 0) = u0(x) for x ∈ Ω, (1.3)

together with the following boundary conditions on the bottom and on
the top parts, Γ0 and Γ1, of the domain Ω.

Case I. We assume that

u = 0 on Γ1 (1.4)

(non-penetration) and

u = U0e1 = (U0, 0) on Γ0. (1.5)

Case II. We assume that

u.n = 0 and τ · σ(u, p) · n = 0 on Γ1, (1.6)

i.e. the tangential component of the normal stress tensor σ · n vanishes
on Γ1. The components of the stress tensor σ are

σij(u, p) = ν

(
∂ui

∂xj
+
∂uj

∂xi

)
− p δij , 1 ≤ i, j ≤ 3, (1.7)

where δij is the Kronecker symbol. As for case I, we set

u = U0e1 = (U0, 0) on Γ0. (1.8)

Case III. We assume that

u = 0 on Γ1 and (1.9)

u = U0(t)e1 = (U0(t), 0) on Γ0, (1.10)

where U0(t) is a locally Lipschitz continuous function of time t.

Case IV. We assume that

u = 0 on Γ1. (1.11)
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We also impose no flux across Γ0 so that the normal component of the
velocity on Γ0 satisfies

u · n = 0 on Γ0, (1.12)

and the tangential component of the velocity uη on Γ0 is unknown and
satisfies the Tresca law with a constant and positive friction coefficient k.
This means (Duvaut & Lions, 1972) that on Γ0

|ση(u, p)| < k ⇒ uη = U0(t)e1 and
|ση(u, p)| = k ⇒ ∃ λ ≥ 0 such that uη = U0(t)e1 − λση(u, p),

(1.13)

where ση is the tangential component of the stress tensor on Γ0 (see
below) and

t �→ U0(t)e1 = (U0(t), 0)

is the time-dependent velocity of the lower surface, producing the driving
force of the flow. We suppose that U0 is a locally Lipschitz continuous
function of time t.

If n = (n1, n2) is the unit outward normal to Γ0, and η = (η1, η2) is
the unit tangent vector to Γ0 then we have

ση(u, p) = σ(u, p) · n− ((σ(u, p) · n) · n)n, (1.14)

where σij(u, p) is the stress tensor whose components are defined in (1.7).

Each problem is motivated by a flow in an infinite (rectified) journal
bearing Ω × (−∞,+∞), where Γ1 × (−∞,+∞) represents the outer
cylinder, and Γ0 × (−∞,+∞) represents the inner, rotating cylinder. In
the lubrication problems the gap h between cylinders is never constant.
We can assume that the rectification does not change the equations as
the gap between cylinders is very small with respect to their radii.

This article is organized as follows. In Sections 1.2 and 1.3 we consider
Problem I: (1.1)–(1.5), and Problem II: (1.1)–(1.3), (1.6), and (1.8). In
Section 1.4 we consider Problem III: (1.1)–(1.3), (1.9), and (1.10). In
Section 1.5 we consider Problem IV: (1.1)–(1.3), and (1.11)–(1.13).

1.2 Time-independent driving: existence of global solutions
and attractors

In this section we consider Problem I: (1.1)–(1.5), and Problem II: (1.1)–
(1.3), (1.6), and (1.8) and present results on the existence of unique
global-in-time weak solutions and the existence of the associated global
attractors.
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Homogenization and weak solutions.

Let u be a solution of Problem I or Problem II, and set

u(x1, x2, t) = U(x2)e1 + v(x1, x2, t),

with

U(0) = U0, U(h(x1)) = 0, and U ′(h(x1)) = 0, x1 ∈ (0, L).

Then v is L-periodic in x1 and satisfies

vt − νΔv + (v.∇)v + Uv,x1 +(v)2U ′e1 + ∇p = νU ′′e1 (1.15)

and

div v = 0,

together with the initial condition

v(x, 0) = v0(x) = u0(x) − U(x2)e1.

By (v)2 in (1.15) we have denoted the second component of v. The
boundary conditions are

v = 0 on Γ0 ∪ Γ1

for Problem I, and

v = 0 on Γ0, v · n = 0 and τ · σ(v) · n = 0 on Γ1

for Problem II.
Now we define a weak form of the homogenized problem above. To this

end we need some notation. Let C∞
L (Ω∞)2 denote the class of functions

in C∞(Ω∞)2 that are L-periodic in x1; define

Ṽ = {v ∈ C∞
L (Ω∞)2 : div v = 0, v = 0 at Γ0 ∪ Γ1}

for Problem I, and

Ṽ = {v ∈ C∞
L (Ω∞)2 : div v = 0, v|Γ0

= 0, v · n|Γ1
= 0}

for Problem II; and let

V = closure of Ṽ in H1(Ω) ×H1(Ω), and

H = closure of Ṽ in L2(Ω) × L2(Ω).

We define the scalar product and norm in H as

(u, v) =
∫

Ω

u(x)v(x) dx and |v| = (v, v)1/2 ,
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and in V the scalar product and norm are

(∇u,∇v) and |∇v|2 = (∇v,∇v).

We use the notation 〈·, ·〉 for the pairing between V and its dual V ′, i.e.
〈f, v〉 denotes the action of f ∈ V ′ on v ∈ V .

Let

a(u, v) = ν(∇u,∇v) and B(u, v, w) = ((u · ∇)v, w).

Then the natural weak formulation of the homogenized Problems I and
II is as follows.

Problem 1.2.1 Find

v ∈ C([0, T ];H) ∩ L2(0, T ;V )

for each T > 0, such that

d
dt

(v(t),Θ) + a(v(t),Θ) +B(v(t), v(t),Θ) = F (v(t),Θ),

for all Θ ∈ V , and

v(x, 0) = v0(x),

where

F (v,Θ) = −a(ξ,Θ) −B(ξ, v,Θ) −B(v, ξ,Θ),

and ξ = Ue1 is a suitable background flow.

We have the following existence theorem (the proof is standard, see,
for example, Temam, 1997).

Theorem 1.2.2 There exists a unique weak solution of Problem 1.2.1
such that for all η, T , 0 < η < T , v ∈ L2(η, T ;H2(Ω)), and for each
t > 0 the map v0 �→ v(t) is continuous as a map from H into itself.
Moreover, there exists a global attractor for the associated semigroup
{S(t)}t≥0 in the phase space H.

1.3 Time-independent driving: dimensions of
global attractors

The standard procedure for estimating the global attractor dimen-
sion, which we use here, is based on the theory of dynamical systems
(Doering & Gibbon, 1995; Foias et al., 2001; Temam, 1997) and involves
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two important ingredients: an estimate of the time-averaged energy dis-
sipation rate ε and a Lieb–Thirring-like inequality. The precision and
physical soundness of an estimate of the number of degrees of freedom
of a given flow (expressed by an estimate of its global attractor dimen-
sion) depends directly on the quality of the estimate of ε and a good
choice of the Lieb–Thirring-like inequality which depends, in particu-
lar, on the geometry of the domain and on the boundary conditions of
the flow.

In this section we continue to consider the time-independent Prob-
lems I and II. First, we present an estimate of the time-averaged energy
dissipation rate of these two flows and then present two versions of
the Lieb–Thirring inequality for functions defined on a non-rectangular
domain. Finally we use these inequalities to give an upper bound on
the global attractor dimension in terms of the data and the geometry of
the domain. We use the fractal (or upper box-counting) dimension: for
a subset X of a Banach space B, this is given by

df (X) = lim sup
ε→0

logN(X, ε)
− log ε

,

where N(X, ε) is the minimum number of B-balls of radius ε required
to cover X, see Falconer (1990) for more details.

We define the time-averaged energy dissipation rate per unit mass ε
of weak solutions u of Problems I and II as follows,

ε =
ν

|Ω| 〈|∇u|
2〉 : = lim sup

T→+∞
ν

|Ω|
1
T

∫ T

0

|∇u(t)|2 dt. (1.16)

Let h0 = min
0≤x1≤L

h(x1). We define the Reynolds number of the flow u

by Re = (h0U0)/ν. Then we have (Boukrouche & �Lukaszewicz, 2004,
2005a):

Theorem 1.3.1 For the Navier–Stokes flows u of Problems I and II
with Re >> 1 the time-averaged energy dissipation rate per unit mass ε
defined in (1.16) satisfies

ε ≤ C
U3

0

h0
, (1.17)

where C is a numerical constant.

Observe that the above estimate coincides with a Kolmogorov-type
bound on the time-averaged energy-dissipation rate which is indepen-
dent of viscosity at large Reynolds numbers (Doering & Gibbon, 1995;
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Foias et al., 2001). Estimate (1.17) is the same as that obtained ear-
lier for a rectangular domain by Doering & Constantin (1991) who used
a background flow suitable for the channel case (see also Doering &
Gibbon, 1995).

To find upper bounds on the dimension of global attractors in terms
of the geometry of the flow domain Ω we use the following versions of the
anisotropic Lieb–Thirring inequality (Boukrouche & �Lukaszewicz, 2004,
2005a).

Let

H̃1 = {v ∈ C∞
L (Ω∞)2 : v = 0 on ∂Ω∞}

and

H1 = closure of H̃1 in H1(Ω) ×H1(Ω).

Lemma 1.3.2 Let ϕj ∈ H1, j = 1, . . . ,m be an orthonormal family in
L2(Ω) and let hM = max

0≤x1≤L
h(x1). Then

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx ≤ σ

[
1 +

(
hM

L

)2
]

m∑
j=1

∫
Ω

|∇ϕj |2 dx,

where σ is an absolute constant.

Rather than proving this lemma here, we give the full argument for
the following result whose proof is more involved. Let

H̃1
f = {v ∈ C∞

L (Ω∞)2 : v|Γ0
= 0, v · n|Γ1

= 0}
and

H1
f = closure of H̃1

f in H1(Ω) ×H1(Ω).

Lemma 1.3.3 Let ϕj ∈ H1
f , j = 1, . . . ,m be an sub-orthonormal family

in L2(Ω), i.e.

m∑
i,j=1

ξiξj

∫
Ω1

ϕiϕj dy ≤
m∑

k=1

ξ2k ∀ ξ ∈ Rm.

Then ∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx ≤ σ1

m∑
j=1

∫
Ω

|∇ϕj |2 dx+ σ2m+ σ3, (1.18)
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where σ1 = κ1(1 + max
0≤x1≤L

|h′(x1)|2), σ2 = κ2( 1
L2 + 1

h2
0
),

σ3 = κ3

∫
Ω

(
h′(x1)
h(x1)

)4

(1 + h′(x1)4) dx,

and κ1, κ2, and κ3 are some absolute constants.

Proof (Boukrouche & �Lukaszewicz, 2005b) Let Ω1 = (0, L) × (0, h0),
and let ψj ∈ H1(Ω1), j = 1, . . . ,m, be a family of functions that are
sub-orthonormal in L2(Ω1). Ziane (1998) showed that

∫
Ω1

⎛⎝ m∑
j=1

ψ2
j

⎞⎠2

dy ≤ C0

⎛⎝ m∑
j=1

∫
Ω1

(
∂ψj

∂y1

)2

dy +
|ψj |2L2(Ω1)

L2

⎞⎠
1
2

×
⎛⎝ m∑

j=1

∫
Ω1

(
∂ψj

∂y2

)2

dy +
|ψj |2L2(Ω1)

h2
0

⎞⎠
1
2

for some absolute constant C0. Now, for our family ϕj defined in Ω,
we set

ψj(y1, y2) = ϕj(x1, x2)

√
h(x1)
h0

,

where h0 = min
0≤x1≤L1

h(x1), y1 = x1, and y2 = x2h0/h(x1). For x =

(x1, x2) in Ω, y = (y1, y2) is in Ω1, and the family ψj , j = 1, . . . ,m, in Ω1

has the required properties. Changing variables in the above inequality
and observing that

dy1dy2 =
h0

h(x1)
dx1dx2 ,

∂ψj

∂y1
=

⎛⎝∂ϕj

∂x1

√
h(x1)
h0

+ ϕj
h′(x1)

2
√
h0h(x1)

⎞⎠+

√
h(x1)
h0

∂ϕj

∂x2

h′(x1)
h(x1)

x2 , and

∂ψj

∂y2
=
∂ϕj

∂x2

√
h(x1)
h0

,
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with h(x1)/h0 ≥ 1, we obtain

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx

≤ C0

⎛⎝ m∑
j=1

∫
Ω

(
∂ϕj

∂x1
a+ ϕjb+ aμ

∂ϕj

∂x2
x2

)2 dx
a2

+
|ϕj |2L2(Ω)

L2

⎞⎠
1
2

×
⎛⎝ m∑

j=1

∫
Ω

(
∂ϕj

∂x2

)2

dx+
|ϕj |2L2(Ω)

h2
0

⎞⎠
1
2

,

where

a(x) =

√
h(x1)
h0

, b(x) =
h′(x1)

2
√
h0h(x1)

, and μ(x) =
h′(x1)
h(x1)

.

After simple calculations we get

∫
Ω

⎛⎝ m∑
j=1

ϕj
2

⎞⎠2

dx ≤ C0

2

m∑
j=1

∫
Ω

((
∂ϕj

∂x1

)2

+
(
∂ϕj

∂x2

)2
)

dx

+ C0|ϕj |2L2(Ω)

(
1
L2

+
1
h2

0

)
+
C0

2

∫
Ω

m∑
j=1

∂ϕj

∂x1
ϕjμdx

+
C0

8

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠μ2 dx+ C0

∫
Ω

m∑
j=1

∂ϕj

∂x1

∂ϕj

∂x2
μx2 dx

+
C0

2

∫
Ω

m∑
j=1

ϕj
∂ϕj

∂x2
μ2x2 dx+

C0

2

∫
Ω

m∑
j=1

(
∂ϕj

∂x2

)2

μ2x2
2 dx. (1.19)

When h′ = 0, only the first two terms on the right hand side are not
zero. We estimate the additional terms as follows.
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C0

2

∫
Ω

m∑
j=1

∂ϕj

∂x1
ϕjμdx ≤ C0

2

∫
Ω

⎛⎝ m∑
j=1

(
∂ϕj

∂x1

)2
⎞⎠

1
2
⎛⎝ m∑

j=1

ϕ2
j

⎞⎠
1
2

μdx

≤ C0

2

∫
Ω

m∑
j=1

(
∂ϕj

∂x1

)2

dx+
C0

8

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠μ2dx

≤ C0

2

∫
Ω

m∑
j=1

(
∂ϕj

∂x1

)2

dx+
1
16

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx+
(C0)2

16

∫
Ω

μ4 dx,

and

C0

8

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠μ2dx ≤ 1
16

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx+
(C ′

0)2

16

∫
Ω

μ4 dx.

Now,

C0

∫
Ω

m∑
j=1

∂ϕj

∂x1

∂ϕj

∂x2
μx2 dx

≤ C0

∫
Ω

⎛⎝ m∑
j=1

(
∂ϕj

∂x1

)2
⎞⎠

1
2
⎛⎝ m∑

j=1

(
∂ϕj

∂x2

)2
⎞⎠

1
2

μx2 dx

≤ C0

2

∫
Ω

μ2x2
2

m∑
j=1

(
∂ϕj

∂x1

)2

dx+
C0

2

∫
Ω

m∑
j=1

(
∂ϕj

∂x2

)2

dx,

and

C0

2

∫
Ω

m∑
j=1

ϕj
∂ϕj

∂x2
μ2x2 dx

≤ C0

2

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠
1
2
⎛⎝ m∑

j=1

(
∂ϕj

∂x2

)2
⎞⎠

1
2

μ2x2 dx

≤ C0

8

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠μ4x2
2 dx+

C0

2

∫
Ω

m∑
j=1

(
∂ϕj

∂x2

)2

dx

≤ 1
16

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx+
(C0)2

16

∫
Ω

μ8x4
2 dx+

C0

2

∫
Ω

m∑
j=1

(
∂ϕj

∂x2

)2

dx.
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Applying the above inequalities in (1.19) and replacing x2 by h(x1) in
some integrals we obtain the elegant estimate

∫
Ω

⎛⎝ m∑
j=1

ϕ2
j

⎞⎠2

dx ≤ C ′′
0

m∑
j=1

∫
Ω

(1 + h′(x1)2)|∇ϕj |2 dx

+ C0

(
1
L2

+
1
h2

0

) m∑
j=1

|ϕj |L2(Ω)

+ C ′′
3

∫
Ω

(
h′(x1)
h(x1)

)4

(1 + h′(x1)4) dx;

since
m∑

j=1

|ϕj |L2(Ω) = m,

(1.18) follows.

Now, to estimate from above the dimension of the global attractor we
follow the standard procedure (Robinson, 2001; Temam, 1997). Using
Lemmas 1.3.2 and 1.3.3 to estimate the usual trace operator we obtain
the following results (Boukrouche & �Lukaszewicz, 2004, 2005a).

Theorem 1.3.4 Problem I. Assume that the domain Ω is thin and that
the flow is strongly turbulent, namely

hM

L
<< 1 and Re >> 1.

Then the fractal dimension of the global attractor ANSE can be estimated
as follows,

df (ANSE) ≤ κ
|Ω|
h2

0

(Re)3/2, (1.20)

where κ is an absolute constant. For a rectangular domain Ω = (0, L) ×
(0, h0) we obtain, in particular,

df (ANSE) ≤ κ
L

h0
(Re)3/2. (1.21)

Theorem 1.3.5 Problem II. Assume that the domain Ω is thin and that
the flow is strongly turbulent, namely

hM

L
<< 1 and Re >> 1.
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Then the fractal dimension of the global attractor ANSE can be estimated
as follows,

df (ANSE) ≤ κmax

{
σ2|Ω| ,

√
2σ3|Ω| + σ2

1

(
LhM

h2
0

)2

(Re)3
}

(1.22)

where σ1 = κ1(1 + max
0≤x1≤L

|h′(x1)|2), σ2 = κ2( 1
L2 + 1

h2
0
), and

σ3 = κ3

∫
Ω

(
h′(x1)
h(x1)

)4

(1 + h′(x1)4) dx,

with κ, κ1, κ2, and κ3 some numerical constants. For a rectangular
domain Ω = (0, L) × (0, h0) we obtain, in particular,

df (ANSE) ≤ κ
L

h0
(Re)3/2.

Estimate (1.21) was obtained by Doering & Wang (1998). Estimate
(1.20) is its direct generalization for more general geometry of the flow
domain. Estimate (1.22) reduces to that obtained earlier for a rectangle
and agrees with our expectations about the behaviour of strongly tur-
bulent shear flows in thin domains met in lubrication theory. It helps
us to understand the influence of geometry of the flow and roughness of
the boundary (as measured by h′) on the behaviour of the fluid.

1.4 Time-dependent driving: dimension of the
pullback attractor

In this section we consider Problem III written in a weak form, and
present a result about the existence of a unique global in time solution.
Then we show the existence of a pullback attractor for the correspond-
ing evolutionary process by using the energy equation method developed
recently by Caraballo, �Lukaszewicz, & Real (2006a,b) to cover the pull-
back attractor case. We also obtain an upper bound on the dimension
of the pullback attractor in terms of the data, by using the method
proposed by Caraballo, Langa, & Valero (2003).

The weak formulation of Problem III is similar to that of Problem
I, the only difference being that now the problem is non-autonomous.
This comes from the time-dependent boundary condition on the bottom
part of the boundary. Accordingly, the background flow now depends on
time,

u(x1, x2, t) = U(x2, t)e1 + v(x1, x2, t), (1.23)
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with

U(0, t) = U0(t) and U(h(x1), t) = 0, x1 ∈ (0, L) , t ∈ (−∞,∞).
(1.24)

Let H and V be the same function spaces as for Problem I. Then the
natural weak formulation of the homogenized Problem III is as follows.

Problem 1.4.1 Find

v ∈ C([τ, T ];H) ∩ L2(τ, T ;V )

for each T > τ , such that

d
dt

(v(t),Θ) + νa(v(t),Θ) + b(v(t), v(t),Θ) = F (v(t),Θ), t > τ, (1.25)

for all Θ ∈ V , and

v(x, τ) = v0(x),

where

F (v,Θ) = −νa(ξ,Θ) − b(ξ, v,Θ) − b(v, ξ,Θ) − (ξ,t ,Θ), (1.26)

and ξ = Ue1 is a suitable background flow.

We have the following existence and uniqueness theorem (Boukrouche
et al., 2006).

Theorem 1.4.2 Let U0 be a locally Lipschitz continuous function on
the real line. Then there exists a unique weak solution of Problem 1.4.1
such that for all η, T , τ < η < T , v ∈ L2(η, T ;H2(Ω)), and for each
t > τ the map v0 �→ v(t) is continuous as a map from H into itself.

We shall now study the existence of the pullback attractor for the
evolutionary process associated with this problem. First, we recall some
basic notions about pullback attractors.

Let us consider an evolutionary process U on a metric space X, i.e. a
family {U(t, τ); −∞ < τ ≤ t < +∞} of continuous mappings U(t, τ) :
X → X, such that U(τ, τ)x = x, and

U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t.

Suppose that D is a nonempty class (‘universe’) of parameterized sets
D̂ = {D(t); t ∈ R} ⊂ P(X), where P(X) denotes the family of all
nonempty subsets of X, with the property that if D ∈ D and D̃(t) ⊆
D(t) for every t ∈ R then D̃ ∈ D.
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Definition 1.4.3 A process U(t, τ) is said to be pullback D-asymptotic-
ally compact if for each t ∈ R and D̂ ∈ D, any sequence τn → −∞,

and any sequence xn ∈ D(τn), the sequence {U(t, τn)xn} (τn ≤ t) is
relatively compact in X.

Definition 1.4.4 A family B̂ ∈ D is said to be pullback D-absorbing
for the process U(t, τ) if for any t ∈ R and any D̂ ∈ D, there exists a
τ0(t, D̂) ≤ t such that

U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0(t, D̂).

Definition 1.4.5 A family Â = {A(t); t ∈ R} ⊂ P(X) is said to be a
pullback D-attractor for U(·, ·) if
(a) A(t) is compact for all t ∈ R,
(b) Â is pullback D-attracting, i.e.

lim
τ→−∞ dist(U(t, τ)D(τ), A(t)) = 0 for all D̂ ∈ D and all t ∈ R,

(c) Â is invariant, i.e.

U(t, τ)A(τ) = A(t) for all τ ≤ t.

We have the following result (Caraballo et al., 2006b):

Theorem 1.4.6 Suppose that the process U(t, τ) is pullback D-asymptot-
ically compact, and that B̂ ∈ D is a family of pullback D-absorbing sets
for U(·, ·). Then the family Â = {A(t); t ∈ R} ⊂ P(X) defined by

A(t) = Λ(B̂, t), t ∈ R,

where for each D̂ ∈ D

Λ(D̂, t) =
⋂
s≤t

⎛⎝⋃
τ≤s

U(t, τ)D(τ)

⎞⎠ ,

is a pullback D-attractor for U(·, ·). In addition

A(t) =
⋃

D̂∈D
Λ(D̂, t).

Furthermore, Â is minimal in the sense that if {C(t); t ∈ R} ⊂ P(X)
is a family of closed sets such that for every B ∈ D

lim
τ→−∞ dist(U(t, τ)B(τ), C(t)) = 0,
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then A(t) ⊆ C(t).
Now, we come back to the context of Problem 1.4.1. For t ≥ τ let us

define the map U(t, τ) in H by

U(t, τ)v0 = v(t; τ, v0), t ≥ τ, v0 ∈ H, (1.27)

where v(t; τ, v0) is the solution of Problem 1.4.1. From the uniqueness
of solutions to this problem, one immediately obtains

U(t, τ)v0 = U(t, r)(U(r, τ)v0), for all τ ≤ r ≤ t, v0 ∈ H.

From Theorem 1.4.2 it follows that for all t ≥ τ, the process mapping
U(t, τ) : H → H, defined by (1.27), is continuous. Consequently, the
family {U(t, τ), τ ≤ t} defined by (1.27) is a process in H.

We define the universe of the parameterized families of sets as follows:
for σ = νλ1 and |D(t)|+ = sup{|y| : y ∈ D(t)}, let

Dσ = {D : R → P(H); lim
t→−∞ eσt(|D(t)|+)2 = 0}.

Then we have the following (Boukrouche et al., 2006):

Theorem 1.4.7 Let U0 be a locally Lipschitz continuous function on
the real line such that∫ t

−∞
eσs(|U0(s)|3 + |U ′

0(s)|2) ds < +∞ for all t ∈ R.

Then, there exists a unique pullback Dσ-attractor Â ∈ Dσ for the process
U(t, τ) defined by (1.27).

We can also show that the dimension of the attractor is finite:

Theorem 1.4.8 Let U0 be a locally Lipschitz continuous function on
the real line such that for some real t�, r > 0, Mb > 0, M > 0, all t ≤ t�

and all s ≤ t� − r,

|U0(t)| ≤Mb and
∫ s+r

s

|U ′
0(η)|2dη ≤M.

Then the attractor {A(t) : t ∈ R} from Theorem 1.4.7 has finite fractal
dimension, namely,

df (A(t)) ≤ d

for all t ∈ R and some constant d.
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For the proof of Theorem 1.4.8 (Boukrouche et al., 2006) we have used
a result due to Caraballo et al. (2003) which in our notation can be
expressed as follows:

Theorem 1.4.9 Suppose that there exist constants K0,K1, θ > 0 such
that

|A(t)|+ = sup{|y| : y ∈ A(t)} ≤ K0|t|θ +K1

for all t ∈ R. Also assume that for any t ∈ R there exists T = T (t),
l = l(t, T ) ∈ [1,+∞), δ = δ(t, T ) ∈ (0, 1/

√
2), and N = N(t) such that

for any u, v ∈ A(τ), τ ≤ t− T ,

|U(τ + T, τ)u− U(τ + T, τ)v| ≤ l|u− v|,

|QN (U(τ + T, τ)u− U(τ + T, τ)v)| ≤ δ|u− v|,

where QN is the projector mapping H onto some subspace H⊥
N of co-

dimension N ∈ N. Then, for any η = η(t) > 0 such that σ = σ(t) =
(6
√

2l)N (
√

2δ)η < 1, the fractal dimension of A(t) is bounded, with
df (A(t)) ≤ N + η.

The new element in Problem III in relation to Problem I is the
allowance of the speed of rotation of the cylinder to depend on time.
We emphasize that neither quasi-periodicity nor even boundedness of
the non-autonomous term are required to prove the existence of the
corresponding pullback attractor and to estimate its fractal dimension.
The theory of pullback attractors allowed us to impose quite general
assumptions on the velocity of the boundary.

To prove the existence of the pullback attractor we used the energy
equation method, as applied recently by Caraballo et al. (2006a,b) to
pullback attractors, which also works in the case of some unbounded
domains of the flow as it bypasses the usual compactness argument. In
turn, to estimate the pullback attractor dimension we used the method
proposed by Caraballo et al. (2003), an alternative to the usual one
based on Lyapunov exponents (Temam, 1997). Notice that to estimate
the pullback attractor dimension no restriction was imposed on the non-
autonomous term in the future, but the term had to be bounded in the
past. While the latter property could seem a strong condition, at the
moment there is no result in the literature on the finite dimensionality
of pullback attractors that avoids this assumption.
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1.5 Time-dependent driving with Tresca’s
boundary condition

In this section we consider Problem IV: (1.1)–(1.3), (1.11)–(1.13). First,
we homogenize the boundary condition (1.13). Then we present a vari-
ational formulation of the homogenized problem. In the end we present
results about the existence and uniqueness of a solution that is global
in time, and about the existence of a pullback attractor.

To homogenize the boundary condition (1.13) let

u(x1, x2, t) = U(x2, t)e1 + v(x1, x2, t),

with

U(0, t) = U0(t), U(h(x1), t) = 0,
∂U(x2, t)
∂x2

|x2=0 = 0,

for x ∈ (0, L) and t ∈ (−∞,∞). We obtain

v = 0 on Γ1,

and

v · n = 0 on Γ0.

The Tresca condition transforms to the following conditions on Γ0:

|ση(v, p)| < k ⇒ vη = 0,

while

|ση(v, p)| = k ⇒ ∃ λ ≥ 0 such that vη = −λση(v, p).

In the end the initial condition becomes

v(x, τ) = v0(x) = u0(x) − U(x2, τ)e1.

Let H and V be function spaces as for Problem II, and let us define the
functional j on V by

j(u) =
∫

Γ0

k|u(x1, 0)|dx1.

The variational formulation of the homogenized problem is as follows.

Problem 1.5.1 Given τ ∈ R and v0 ∈ H, find v : (τ,∞) → H such
that:
(i) for all T > τ ,

v ∈ C([τ, T ];H) ∩ L2(τ, T ;V ), with vt ∈ L2(τ, T ;V ′),
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(ii) for all Θ in V , all T > τ , and for almost all t in the interval [τ, T ],
the following variational inequality holds

〈vt(t) , Θ − v(t)〉 + ν a(v(t) , Θ − v(t)) + b(v(t) , v(t) , Θ − v(t))

+ j(Θ) − j(v(t)) ≥ (L(v(t)) , Θ − v(t)),

and
(iii) the initial condition

v(x, τ) = v0(x)

holds.
In (1.28) the functional L(v(t)) is defined for almost all t ≥ τ by,

(L(v(t)) , Θ) = −νa(ξ , Θ) − (ξ,t(t) , Θ)

−b(ξ(t) , v(t) , Θ) − b(v(t) , ξ(t),Θ),

where ξ = Ue1 is a suitable smooth background flow.

We have the following relation between classical and weak formulations
(Boukrouche & �Lukaszewicz, 2007).

Proposition 1.5.2 Every classical solution of Problem IV is also a
solution of Problem 1.5.1. On the other hand, every solution of Problem
1.5.1 that is smooth enough is also a classical solution of Problem IV.

Theorem 1.5.3 (Boukrouche & �Lukaszewicz, 2007) Let v0 ∈ H

and the function s �→ |U0(s)|3 + |U ′
0(s)|2 be locally integrable on the real

line. Then there exists a solution of Problem 1.5.1.

Proof We sketch here only the main steps of the proof. Observe that the
functional j is convex but not differentiable. To overcome this difficulty
we use the following approach (Haslinger, Hlavâcek, & Necas, 1996). For
δ > 0 let jδ : V → R be a functional defined by

ϕ �→ jδ(ϕ) =
1

1 + δ

∫
Γ0

k|ϕ|1+δdx,

which is convex, lower continuous and finite on V , and has the following
properties:

(i) ∃ χ ∈ V ′ and μ ∈ R such that jδ(ϕ) ≥ 〈χ , ϕ〉 + μ ∀ϕ ∈ V ,
(ii) limδ→0+ jδ(ϕ) = j(ϕ) ∀ϕ ∈ V , and

(iii) vδ ⇀ v (weakly) in V ⇒ limδ→0+ jδ(vδ) ≥ j(v).
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The functional jδ is Gâteaux differentiable in V , with

(j′δ(v) , Θ) =
∫

Γ0

k|v|δ−1 vΘ dx ∀ Θ ∈ V.

We consider the following equation(
dvδ

dt
, Θ

)
+ νa(vδ(t) , Θ) + b(vδ(t) , vδ(t),Θ) + (j′δ(vδ) , Θ)

= −νa(ξ(t) , Θ) − (ξ,t , Θ) − b(ξ(t) , vδ(t),Θ) − b(vδ(t) , ξ(t) ,Θ),

with initial condition

vδ(τ) = v0,

establish an a priori estimate for vδ for δ > 0, and then show that the
limit function v is a solution to Problem 1.5.1.

Moreover, the solution is unique and depends continuously on the
initial data, namely, we have the following:

Theorem 1.5.4 Under the hypotheses of Theorem 1.5.3, the solution
v of Problem 1.5.1 is unique and the map v(τ) → v(t), for t > τ , is
continuous from H into itself.

Now we shall study existence of the pullback attractor using a method
based on the concept of the Kuratowski measure of non-compactness of
a bounded set, developed by Song & Wu (2007). This method is very
useful when one deals with variational inequalities as it overcomes obsta-
cles coming from the usual methods. One needs neither compactness
of the dynamics which results from the second energy inequality nor
asymptotic compactness, see Boukrouche et al. (2006), Caraballo et al.
(2006a,b), or Temam (1997), which results from the energy equation.
In the case of variational inequalities it is sometimes very difficult to
obtain the second energy inequality due to the presence of boundary
functionals, on the other hand, we do not have any energy equation.

We now recast the theory of Song & Wu (2007) in the language of
evolutionary processes, and then apply it to our problem. Recall that
the Kuratowski measure of non-compactness (Kuratowski, 1930) of a
bounded subset B of H, α(B), is defined as

α(B) = inf{δ : B admits a finite cover by sets of diameter ≤ δ}.
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Definition 1.5.5 The process U(t, τ) is said to be pullback ω-limit
compact if for any B ∈ B(H), for t ∈ R,

lim
τ→∞α

⎛⎝ ⋃
s≤t−τ

U(t, s)B

⎞⎠ = 0.

In fact U is pullback ω-limit compact if and only if it is pullback
D-asymptotically compact in the sense of Definition 1.4.3, where D is
taken to be the collection of all time-independent bounded sets (see, for
example, Kloeden & Langa, 2007).

Definition 1.5.6 Let H be a Banach space. The process U is said to be
norm-to-weak continuous on H if for all (t, s, x) ∈ R×R×H with t ≥ s

and for every sequence (xn) ∈ H,

xn → x strongly in H =⇒ U(t, s)xn ⇀ U(t, s)x weakly in H.

Theorem 1.5.7 Let H be a Banach space, and U a process on H. If U
is norm-to-weak continuous and possesses a uniformly absorbing set B0,
then U possesses a pullback attractor A = {A(t)}t∈R, with

A(t) = Λ(B0, t) ∀ t ∈ R,

if and only if it is pullback ω-limit compact.

We now state the main theorem from Song & Wu (2007). The
terminology “flattening property” was coined by Kloeden & Langa
(2007).

Theorem 1.5.8 (cf. Song & Wu, 2007) Let H be a Banach space. If
the process U has the pullback flattening property, i.e. if for any t ∈ R,
a bounded subset B of H, and ε > 0, there exists an s0(t, B, ε) and a
finite-dimensional subspace E of H such that for some bounded projector
P : H → E,

P

⎛⎝ ⋃
s≤s0

U(t, s)B

⎞⎠ is bounded

and ∣∣∣∣∣(I − P )

⎛⎝ ⋃
s≤s0

U(t, s)B

⎞⎠∣∣∣∣∣ ≤ ε,

then U is pullback ω-limit compact.
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Now let U be the evolutionary process associated with Problem 1.5.1.

Lemma 1.5.9 Let

sup
h∈R

∫ h+1

h

F (s) ds < R(F ) <∞, (1.28)

σ > 0 and t ≥ τ . Then for every ε > 0 there exists δ = δ(ε) > 0 such
that ∫ t

τ

e−σ(t−s)F (s) ds ≤ ε

2
+

e−σδ

1 − e−σ
R(F ).

Proof Let δ be such that
∫ t

t−δ
F (s)ds ≤ ε

2 , τ < δ < t. Then, by (1.28),∫ t

τ

e−σ(t−s)F (s)ds ≤ ε

2
+

∞∑
k=1

∫ t−(δ+k)

t−(δ+k+1)

e−σ(t−s)F (s)ds

≤ ε

2
+

e−σδ

1 − e−σ
R(F ).

Let F (s) = |U0(s)|3 + |U ′
0(s)|2, cf. Theorem 1.5.3. Then we have

Lemma 1.5.10 Let the initial condition v0 in Problem 1.5.1 belong to
a ball B(0, ρ) in H. Suppose that (1.28) holds. Then the solution v of
Problem 1.5.1 satisfies

sup
h≥τ

∫ h+1

h

|∇v(s)|2ds ≤ 2
ν
{ρ2 + (1 +

e−σδ

1 − e−σ
)R(F )}. (1.29)

Proof Taking Θ = 0 in (1.28) we obtain,

1
2

d
dt

|v(t)|2 +
ν

2
|∇v(t)|2 ≤ F (t) (1.30)

and, in consequence,

1
2

d
dt

|v(t)|2 +
σ

2
|v(t)|2 ≤ F (t), (1.31)

with σ = νλ1. By Gronwall’s inequality and Lemma 1.5.9 with ε = ρ2

we conclude from the last inequality that for t ≥ τ ,

|v(t)|2 ≤ 2ρ2 +
2e−σδ

1 − e−σ
R(F ). (1.32)
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Integrating (1.30) we obtain the first energy estimate: for τ ≤ η ≤ t,

|v(t)|2 + ν

∫ t

η

|∇v(s)|2ds ≤ 2
∫ t

η

F (s)ds+ |v(η)|2.

Using this estimate and (1.32) we obtain (1.29).

Theorem 1.5.11 Let v0 ∈ H and U0 be such that (1.28) holds, with
F (s) = |U0(s)|3 + |U ′

0(s)|2. Then there exists a pullback attractor A in
the sense of Theorem 1.5.7 for the evolutionary process U .

Proof From (1.31), (1.32), the Gronwall inequality, and Lemma 1.5.9
we obtain

|U(s+ t, t)v0|2 ≤ e−σs|v0|2 + ε+
2e−σδ

1 − e−σ
R(F ).

For v0 in B(0, ρ) and s large enough, U(s + t, t)v0 ∈ B(0, ρ0), where
ρ0 depends only on ε, ρ, and R(F ), which means that there exists a
uniformly absorbing ball in H.

From Theorem 1.5.4 it follows that the evolutionary process U is
strongly continuous in H, whence, in particular, it is norm-to-weak
continuous on H.

Thus, according to Theorem 1.5.7 and Theorem 1.5.8, to finish the
proof we have to prove that U has the pullback flattening property.

Let A be the Stokes operator in H. Since A−1 is continuous and com-
pact in H, there exists a sequence {λj}∞j=1 such that 0 < λ1 ≤ λ2 ≤ . . . ≤
λj ≤ . . . with limj→+∞ λj = ∞, and a family of elements {ϕj}∞j=1 of
D(A), which are orthonormal in H such that Aϕj = λjϕj .

We define the m-dimensional subspace Vm, of V , and the orthogonal
projection operator Pm : V → Vm by Vm = span{ϕ1, . . . , ϕm} and
Pmv =

∑m
j=1(v , ϕj)ϕj . For v ∈ D(A) ⊂ V we can decompose v as

v = Pmv + (I − Pm)v = Pmv + v2.

Set Θ = v1(t) in (1.28) to get

1
2

d
dt

|v2(t)|2 + ν|∇v2(t)|2 ≤ j(v1(t)) − j(v(t)) − b(v(t) , v(t) , v2(t))

+ (L(v(t)) , v2(t)).

From the continuity of the trace operator we have

j(v1(t)) − j(v(t)) ≤ j(v2(t)) ≤ C +
ν

4
‖v2(t)‖2.
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Using the anisotropic Ladyzhenskaya inequality ‖v‖L4(Ω) ≤ C|v| 12 |∇v| 12
(where C = C(Ω)) we easily arrive at

d
dt

|v2(t)|2 + ν|∇v2(t)|2 ≤ C2(1 + F (t) + |∇v(t)|2).

and
d
dt

|v2(t)|2 + νλm+1|v2(t)|2 ≤ C2(1 + F (t) + |∇v(t)|2).

Now, let ε > 0 be given. Using Lemmas 1.5.9 and 1.5.10, and taking
m large enough, we obtain

|(I − Pm)U(s+ t, t)v0|2 ≤ ε

uniformly in t, for v0 ∈ B(0, ρ) and all s ≥ s0(ρ, ε) large enough. This
ends the proof of the theorem.

Acknowledgements

This research was supported by the Polish Government Grant MEiN 1
P303A 017 30 and Project FP6 EU SPADE2.

References
Boukrouche, M. & �Lukaszewicz, G. (2004) An upper bound on the attractor

dimension of a 2D turbulent shear flow in lubrication theory. Nonlinear
Analysis 59, 1077–1089.

Boukrouche, M. & �Lukaszewicz, G. (2005a) An upper bound on the attractor
dimension of a 2D turbulent shear flow with a free boundary condition,
in Regularity and other Aspects of the Navier–Stokes Equations, Banach
Center Publications 70, 61–72, Institute of Mathematics, Polish Academy
of Science, Warszawa.

Boukrouche, M. & �Lukaszewicz, G. (2005b) Attractor dimension estimate for
plane shear flow of micropolar fluid with free boundary. Mathematical
Methods in the Applied Sciences 28, 1673–1694.

Boukrouche, M. & �Lukaszewicz, G. (2007) On the existence of pullback attrac-
tor for a two-dimensional shear flow with Tresca’s boundary condition, in
Parabolic and Navier–Stokes Equations. Banach Center Publications 81,
81–93, Institute of Mathematics, Polish Academy of Science, Warszawa.

Boukrouche, M., �Lukaszewicz, G., & Real, J. (2006) On pullback attractors
for a class of two-dimensional turbulent shear flows. International Journal
of Engineering Science 44, 830–844.

Caraballo, T., Langa, J.A., & Valero, J. (2003) The dimension of attractors of
non-autonomous partial differential equations. ANZIAM J. 45, 207–222.

Caraballo, T., �Lukaszewicz, G., & Real, J. (2006a) Pullback attractors for
asymptotically compact non-autonomous dynamical systems. Nonlinear
Analysis, TMA 64, 484–498.



Shear flows and their attractors 25

Caraballo, T., �Lukaszewicz, G., & Real, J. (2006b) Pullback attractors for non-
autonomous 2D-Navier–Stokes equations in some unbounded domains.
C. R. Acad. Sci. Paris, Ser. I 342, 263–268.

Chepyzhov, V.V. & Vishik, M.I. (2002) Attractors for equations of mathemat-
ical physics. Providence, RI.

Doering, C.R. & Constantin, P. (1991) Energy dissipation in shear driven
turbulence. Phys. Rev. Lett. 69, 1648–1651.

Doering, C.R. & Gibbon, J.D. (1995) Applied Analysis of the Navier–Stokes
Equations. Cambridge University Press, Cambridge.

Doering, C.R. & Wang, X. (1998) Attractor dimension estimates for two-
dimensional shear flows. Physica D 123, 206–222.

Duvaut, G. & Lions, J.L. (1972) Les inéquations en mécanique et en physique.
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Abstract

We investigate the mathematical properties of unsteady three-
dimensional internal flows of chemically reacting incompressible shear-
thinning (or shear-thickening) fluids. Assuming that we have Navier’s
slip at the impermeable boundary we establish the long-time existence
of a weak solution when the data are large.

2.1 Introduction

Even though 150 years have elapsed since Darcy (1856) published his
celebrated study, the equation he introduced (or minor modifications of
it) remains as the main model to describe the flow of fluids through
porous media due to a pressure gradient. While the equation that Darcy
provided in his study is referred to as a “law” it is merely an approx-
imation, and a very simple one at that, for the flow of a fluid through
porous media. The original equation due to Darcy can be shown to be
an approximation of the equations governing the flow of a fluid through
a porous solid within the context of the theory of mixtures by appeal-
ing to numerous assumptions (Atkin & Craine, 1976a,b; Bowen, 1975;
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Green & Naghdi, 1969; Adkins, 1963a,b). Hassanizadeh (1986) and Gray
(1983) have also shown that Darcy’s equation can be obtained using
an averaging technique, but not within the context of mixtures. To
obtain Darcy’s equation within the context of the theory of mixtures, one
ignores the balance of linear momentum for the solid (which is assumed
to be rigid and thus the stress is whatever it needs to be in order for
the flow to take place), assumes that the only interaction between the
fluid and the solid is the frictional resistance at the pores of the solid,
and that this resistance is proportional to the difference in the velocity
between the fluid and solid. The frictional effects within the fluid and
thus the dissipation within the fluid are ignored. If the frictional resis-
tance at the pore, between the solid and the fluid, is not assumed to be
proportional to the difference in velocity between the fluid and the solid,
but depends, in another way, in a nonlinear manner on the difference,
one obtains the Darcy–Forchheimer equation (see Forchheimer, 1901).
If the viscosity of the fluid is not neglected, i.e. the viscous dissipation
in the fluid is not ignored, and if it is assumed that it is like that in the
classical Navier–Stokes fluid, then one obtains the equation developed
by Brinkman (1947a,b) (see also Rajagopal, 2007).

An interesting counterpart presents itself when we consider a complex
fluid such as blood which is maintained in a state of delicate balance
by virtue of a myriad of chemical reactions that take place, some that
cause the blood to coagulate, others that cause lysis, etc. In fact, even
the development of a simple model for blood requires dozens of equa-
tions and these govern the biochemical reactions that have to be coupled
to the balance equations (Anand, Rajagopal, & Rajagopal, 2003, 2005).
As blood involves constituents that can be modelled by the Navier–
Stokes model (for the plasma for instance) or a purely elastic model (say
for platelets) and others that are viscoelastic solids (cells) or viscoelas-
tic fluids, one would have a system of equations that would be totally
intractable. Thus, it is absolutely necessary to simplify the model while
capturing the quintessential feature of the mechanical response charac-
teristics. Instead of keeping track of all the constituents of blood, even
though it might be an oversimplification, one could consider blood as
a homogeneous fluid whose properties change due to a chemical state
variable, which we shall refer to as the concentration c, which is a con-
sequence of all chemical reactions that take place. Thus, in essence, we
are replacing a plethora of chemical reactions by a single equation that
has the same effect, on average, as the system of reactions that actually
occur.
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It is then possible to model the flow of blood through a coupled system
of equations: the balance of mass, linear and angular momentum for the
homogeneous single fluid, and an advection-diffusion equation for the
chemical state variable c, the concentration. It is also possible to think
of blood as a single homogeneous fluid that is co-occupying the flow
domain with another fluid that is capable of reacting with the homo-
geneous fluid and thereby changing its properties. This reacting fluid
is carried along by the flowing fluid, and in the spirit of the develop-
ment of Darcy’s equation, we can choose to ignore the balance equation
for the reacting fluid (similar to ignoring the balance equations for the
porous solid). As the second fluid moves with the same velocity as the
carrier, we do not have an interactive force like the “drag force” that
is a consequence of the relative velocity between the two fluids, acting
on the fluids. Bridges & Rajagopal (2006) associate the concentration
with the ratio of the density of the reactant to the sum of the density of
the reactant and the homogeneous fluid. While a concentration defined
in such a manner tends to zero when the density of the second fluid
tends to zero, it cannot tend to unity as the density of the carrier fluid
(which they assume to be incompressible) is not zero and the density of
the reacting fluid is finite. Though Bridges & Rajagopal (2006) motivate
the concentration through such a ratio, as far as their study is concerned
the concentration c is merely treated as a variable that can change (one
could view it as an internal variable with a clear physical underpinning,
namely the concentration of a second fluid that is undergoing a reaction).

As blood is a multi-constituent material, with the constituents dis-
tributed in the vessel in an inhomogeneous manner, it would be more
appropriate to approximate it as a single constituent fluid that is inho-
mogeneous; that is, the homogenization of the multi-constituent body
leads to an inhomogeneous body. It is important to recognize that while
referring to the “homogenization” of the body we are referring to an
averaging procedure of the multi-constituents, while when describing the
body as inhomogeneous we are referring to the fact that the averaged
body has properties that change from one material point to another. It
is important to keep this distinction in mind. In the study that is being
carried out, we are able to capture this inhomogeneity by allowing the
material properties to change due to the presence of chemical reactions
which arise from the concentration of reactants that are carried along
by the homogeneous fluid (see the more detailed explanation that fol-
lows). It is also important to recognize that if the properties of a fluid
vary in a particular configuration of the fluid this does not imply that
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the fluid is inhomogeneous as one merely needs a configuration (some
configuration in which the body can be placed) in which the properties
of a body are the same for the body to be homogeneous. A body is said
to be homogeneous if there exists a configuration in which the properties
of the body are the same at every point in the configuration. Consider
a fluid with shear-rate-dependent viscosity. At rest, corresponding to
zero shear rate, the viscosity of the fluid is the zero-shear-rate viscos-
ity. However, during a flow in which the shear rate varies in the body,
the viscosity will not be the same everywhere. We cannot conclude from
the viscosity not being the same everywhere that the body is inhomoge-
neous. There is a configuration, namely that corresponding to the state
of rest where the properties are the same, and hence the body is homoge-
neous. The monograph by Truesdell (1991) contains a general discussion
of homogeneity and Anand & Rajagopal (2004) give examples of flows
of inhomogeneous fluids where material properties other than just the
density being non-constant are considered. There are numerous studies
concerning fluids with non-constant density, going back to the seminal
work of Lord Rayleigh (1883), and the books by Yih (1965, 1980) are
devoted to the study of the flows of such fluids.

Bridges & Rajagopal (2006) studied the pulsating flow of a chemically
reacting incompressible fluid in terms of the balance equations for a
homogenized fluid (as explained above, the equation considered there is
an averaged equation for a single “average” constituent, the averaged
single constituent not being necessarily a homogeneous body in that
its properties are the same at every material point) and a diffusion-
convection equation for the concentration c.

If the fluid (reactant) that is being carried along and the carrier fluid
(which is the fluid obtained by “homogenizing” the multi-constituent
fluid such as blood) are of comparable density, then assigning the notion
of the ratio of the density of the reactant to the total density would not
be appropriate as the balance of linear momentum for the fluid that is
carried, whose properties are changing due to the reaction, cannot be
expressed merely in terms of its density as the inertial term would have
a contribution due to the density of the fluid that is also carried along.
We are primarily interested in the fluid that is carried along and reacting
with our fluid of interest having associated with it a much smaller and
in fact ignorable density. Thus, as mentioned earlier, in the work of
Bridges & Rajagopal (2006) the concentration has to be interpreted in
the sense of a variable that is a measure of the reaction rather than
a ratio of densities. This point is not made clear in their work though
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they do mention that c could be an internal variable, which we refer to
as a chemical state variable. Here, we shall choose to think of c as a
chemical state variable rather than the ratio of densities, and we shall
suppose that the reactant that is carried is not of comparable density to
the fluid of interest.

While it would be preferable to study the problem of multi-constituent
materials such as blood within the context of mixture theory such an
approach is not without serious difficulties. Not only is it necessary to
keep track of all the individual constituents and provide constitutive
relations for them, as well as model all the interactions between the
constituents, we have a far deeper problem, that of providing boundary
conditions for each of the constituents. Usually, one is able to ascertain
only the boundary conditions for the mixture as a whole and this is a
basic problem that is inherent to mixture theory (see Rajagopal & Tao
(1995) for a detailed discussion of the same topic).

It is well established that blood in large blood vessels like the aorta
behaves essentially as a Navier–Stokes fluid while in narrower blood ves-
sels it can be approximated as a single-constituent fluid that shear thins.
In fact, the generalized viscosity associated with such a shear-thinning
fluid can change by a factor of forty (Yeleswarapu, 1996; Yeleswarapu
et al., 1998). This is a consequence of the diameter of the cells becoming
significant with respect to the diameter of the blood vessel. In even nar-
rower capillarities and arterioles where the diameter of the blood vessel
is comparable or even smaller than the diameter of a cell, we would not
be justified in modelling the flowing blood as a continuum. Experiments
by Thurston (1972, 1973) also indicate that blood is capable of stress
relaxation. This is not surprising as blood contains a considerable num-
ber of cells, platelets, etc. The cells have membranes that are elastic or
viscoelastic. Thus, were we to model blood in an averaged sense as a
single-constituent fluid we would have to take into account its ability for
shear thinning and stress relaxation. In this study we shall not concern
ourselves with fluids that are capable of stress relaxation.

We shall assume that the homogenized single-constituent fluid is
incompressible. This means that the fluid can only undergo isochoric
motions and thus

div v = 0 .

We shall further suppose that the viscosity of the fluid depends on the
concentration c and the symmetric part of the velocity gradient to allow
for the possibility that the properties of the fluid can change due to
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chemical reactions as well as shear-thinning or shear-thickenning1, and
thus the Cauchy stress TTT in our fluid of interest is given by

TTT = −p III + 2μ(c, |DDD(v)|2)DDD =: −p III + SSS(c,DDD), (2.1)

where

DDD =
1
2
[
(∇v) + (∇v)T

]
.

Finally, we assume that the flux vector qc related to the chemical
reactions is given by

qc = qc(c,∇c, |DDD|2) := −KKK(c, |DDD|2)∇c. (2.2)

The specific form of the coefficients Kij of the matrix KKK depends on
the specific application (chemical reaction or system of reactions) under
consideration. If we are interested in a fluid such as blood and use the
equations developed here, we have to replace a host of chemical reactions
by one “averaged” reaction and one cannot say much about the form of
KKK unless we decide on which specific problem we are interested in. For
instance, coagulation and lysis have totally different effects on the fluid,
one leading to an increase in the viscosity and the other leading to a
decrease in viscosity. Similarly, if we are interested in ATIII deficiency
or Sickle cell anaemia we would have to consider other forms for the
coefficient. Also, when dealing with a complex system like blood wherein
one has numerous chemical reactions one has to be cognizant of the fact
that each of these reactions take place at different rates and blood is
maintained in a delicate state of balance while a myriad of biochemical
reactions take place. On the other hand if we were dealing with a polymer
melt undergoing some reaction we would have a totally different form
for the diffusion coefficient. Thus, in this study we shall merely assume
a specific form for the coefficient to illustrate our ideas.

Recently, Buĺıček, Feireisl, & Málek (2009) considered an incompress-
ible Navier–Stokes fluid whose density and thermal conductivity depend
on the temperature. Under the assumption that the fluid meets Navier’s
slip and zero-heat-flux boundary conditions, they established the exis-
tence of weak (as well as suitable weak) solutions for long times when the
data can be large. Around the same time, Buĺıček, Málek, & Rajagopal
(2008) considered unsteady flows of incompressible fluids whose viscosity
depends on the temperature, shear-rate and pressure. Such a fluid model
is markedly different from the classical incompressible Navier–Stokes

1When blood coagulates its viscosity increases while lysis leads the viscosity of
the coagulated blood to decrease.
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or incompressible Navier–Stokes–Fourier fluid in that the relationship
between the stress and the symmetric part of the velocity gradient is
implicit. Assuming Navier’s slip at the solid boundary they established
the existence of suitable weak solutions for long time, when the data is
large.

If we were to ignore the dependence of the viscosity on the pressure,
and replace the dependence of the viscosity on the temperature by its
dependence on the chemical state variable c (the concentration), we have
a problem that bears close relationship to the models studied by Buĺıček
et al. (2008). While in the problem wherein the viscosity depends on the
temperature we have to satisfy the balance of energy, which leads to an
equation for the temperature (or the internal energy), in the problem
being considered here, we have a diffusion-convection equation for the
chemical state variable c.

As the structure of the diffusion-convection equation is simpler in com-
parison to the equation representing the balance of energy, the problem
studied here might, at the first glance, seem easier than that considered
by Buĺıček et al. (2008). On the other hand, the dependence of the mate-
rial moduli on the pressure considered by Buĺıček et al. (2008) allows one
to consider only fluids that can shear thin, while in the present study we
investigate unsteady flows of both shear-thinning and shear-thickening
fluids. As a consequence, we can establish several new solutions and we
also are able to make statements concerning the effect of the material
parameters on the nature of these solutions.

The structure of the paper is the following. In the next section, we
formulate the governing equations, and state the appropriate initial and
boundary conditions. For the sake of simplicity, and in order to make
some comparison with the earlier study by Buĺıček et al. (2008), Navier’s
slip boundary conditions and C1,1 domains are considered first. We also
state the assumptions concerning the constitutive quantities SSS and qc,
define the notion of weak solution to our problem and formulate the
result regarding its existence. Section 2.3 is focused on the proof (we
merely provide the main steps and refer the reader to former studies
for details). Section 2.4 contains several extensions of the main result
in various directions (no-slip boundary conditions, qualitative proper-
ties of the solution, validity of the result for a large range of model
parameters, etc). Here we do not provide any details, but rather refer to
studies where results are established for similar problems, so the inter-
ested reader can (with some effort) deduce the validity of the results that
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are presented. An appendix at the end of this article includes several
auxiliary assertions used in the proof of the main result.

2.2 Formulation of the problem and the results

2.2.1 Balance equations, boundary and initial conditions.

Structure of SSS and qc.

We are interested in understanding the mathematical properties relevant
to unsteady flows of chemically reacting fluids whose transport coeffi-
cients depend on the concentration and on the shear rate, flowing in a
bounded open set Ω in R3 with boundary ∂Ω. We would like to establish
the existence of a solution in the domain Q := (0, T ) × Ω, where (0, T )
denotes the time interval of interest. It would be worthwhile to find how
these solutions behave with time and in space, i.e. to carry out an anal-
ysis that discusses the nature of the solution. We shall however restrict
ourselves to the question of existence of solutions in this study.

Motions of incompressible fluids that are reacting chemically are
described in terms of the velocity field v, the pressure (mean normal
stress) p, and the concentration c by means of a system of partial differ-
ential equations that are a consequence of the balance of mass, balance
of linear and angular momentum, and the diffusion equation for c. The
balance of angular momentum which leads to the Cauchy stress being
symmetric is automatically met by virtue of the form chosen for the
Cauchy stress TTT. The system governing the flows of interest takes the
form

div v = 0, v,t + div(v ⊗ v) − divSSS =f −∇p,
c,t + div(cv) = − div qc,

(2.3)

where f represents the specific body forces. In this setting, for given
functions v0 and c0 defined in Ω, we prescribe the initial conditions

v(0, x) = v0(x) and c(0, x) = c0(x) (x ∈ Ω) . (2.4)

We assume that the boundary ∂Ω is completely described from outside
by a finite number of overlapping C0,1-mappings: for this we use the
notation Ω ∈ C0,1. We also set Γ := (0, T ) × ∂Ω. We prescribe the
following boundary conditions

v · n = 0 , vτ = − 1
α

[TTTn]τ = − 1
α

[SSSn]τ on Γ ,

qc · n = 0 on ΓN and c = cb on ΓD ,
(2.5)
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where n is the unit outward normal and zτ stands for the projection of
the quantity z along the tangent plane, i.e. zτ = z − (z · n)n and ΓD,
ΓN are regular surfaces (i.e. they are images of open two-dimensional
intervals by a C1,1 mapping) with ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = Γ. The
first line in (2.5) expresses the fact that the solid boundary is impervious
and tangential components of the velocity fulfil Navier’s slip boundary
condition; the second line in (2.5) says that on ΓN there is no flux of
concentration through the boundary and a nonhomogeneous Dirichlet
boundary condition for c holds on ΓD.

We will also require that for some open Ω0 ⊆ Ω∫
Ω0

p(t, x) dx = h(t) for all t ∈ [0, T ] , (2.6)

where h is a given function. The above requirement concerning the mean
value of the pressure over a domain of non-zero area measure is com-
pletely consistent with how pressure measurements are made, namely a
pressure gauge sensing the total force due to the normal stress on a small
portion of the surface area on which the pressure gauge is mounted.

Regarding the admissible structure for the constitutive quantities SSS

and qc characterizing the specific fluid, we assume that SSS : [0, 1] ×
R3×3

sym → R3×3
sym that appears in (2.1) is a continuous mapping such that

for some r > 1

there are C1, C2, C3 ∈ (0,∞) and a function γ1 ∈ L∞([0, 1])

such that for all c ∈ [0, 1] and DDD ∈ R3×3
sym we have: (2.7)

C1|DDD|r − C3 ≤ SSS(c,DDD) ·DDD and |SSS(c,DDD)| ≤ C2γ1(c)|DDD|r−1 + C3

and

for all DDD1,DDD2 ∈ R3×3
sym, DDD1 �= DDD2 and all c ∈ [0, 1] we have

(SSS(c,DDD1) − SSS(c,DDD2)) · (DDD1 −DDD2) > 0.
(2.8)

We also assume that KKK that appears in (2.2) is a continuous mapping
of [0, 1] × R+

0 into R3×3 such that for some β ∈ R, and c4, c5 ∈ (0,∞)
the flux vector qc = qc(c,z, s) = −KKK(c, s)z is such that for all c ∈ [0, 1],
z ∈ R3, s ∈ R+

0

C4(1 + s)β |z|2 ≤ −qc(c,z, s) · z and

|qc(c,z, s)| ≤ C5γ1(c)(1 + s)β |z|. (2.9)

We are unaware of any experimental evidence concerning the structure
of the diffusion matrix KKK. In fact, one has to recognize that in order to
have such information one needs to correlate raw experimental data with
the model that we are using and since we are proposing a new model it
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is not surprising that such data is unavailable. In light of this we shall
attempt to develop the theory for as large a range of β as possible.

2.2.2 Function spaces, definition of solution, main theorem

We first characterize the regularity of the domain by requiring that the
boundary of Ω is smooth enough so that Lq-regularity for certain values
of q ∈ [1,∞] holds. We shall make this statement more precise in the
next paragraph.

Given z ∈ Lq(Ω) with
∫
Ω
z dx = 0, let the symbol N−1

Ω0
(z) denote the

unique solution of the Neumann problem

Δu = z in Ω, ∇u · n = 0 on ∂Ω,
∫

Ω0

u dx = 0. (2.10)

For the special case Ω0 = Ω we use the abbreviation N−1(z) := N−1
Ω (z).

Thus, in particular, denoting gv := N−1(div v) we can define the vector
vdiv as

vdiv := v −∇gv, (2.11)

which implies the Helmholtz decomposition v = vdiv + ∇gv.
It is known, see Novotný & Straškraba (2004, Lemma 3.17), that if

Ω ∈ C0,1, then for any s ∈ (1,∞)

‖gv‖1,s ≤ C(Ω, s)‖v‖s and

‖vdiv‖s ≤ (C(Ω, s) + 1)‖v‖s,

where ‖ · ‖s denotes the norm in Ls(Ω) and ‖ · ‖1,s the norm in W 1,s(Ω).
We say that a bounded domain Ω ⊂ R3 with Lipschitz boundary is

of class R, and we then write Ω ∈ R, if the Lq-regularity theory for
the Neumann problem (2.10) holds for q = r and q = 5r

5r−6 (where r is
introduced in (2.7)), and consequently the following estimates are valid
for the same qs:

‖gv‖2,q ≤ Creg(Ω, q)‖div v‖q and

‖vdiv‖1,q ≤ (Creg(Ω, q) + 1)‖v‖1,q .
(2.12)

It is known, see (Grisvard, 1985, Proposition 2.5.2.3, p. 131), that if
Ω ∈ C1,1, then (2.12) holds for any q ∈ (1,∞), and thus Ω ∈ R. For
another set of conditions that are sufficient for Ω ∈ R we refer the
reader to Buĺıček et al. (2008) where this issue is discussed in detail.

Before giving the definition of what we mean by a solution to (2.3)–
(2.6), we need to introduce subspaces (and their duals) of vector-valued
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Sobolev functions from W 1,q(Ω)3 that have zero normal component on
the boundary (note that q′ = q/(q − 1)). We define

W 1,q
n :=

{
v ∈W 1,q(Ω)3; tr v ·n = 0 on ∂Ω

}
, W−1,q′

n :=
(
W 1,q

n

)∗
,

W 1,q
n,div :=

{
v ∈W 1,q

n ; div v = 0
}
, W−1,q′

n,div :=
(
W 1,q

n,div

)∗
,

W 1,q
ΓD

(Ω):={h ∈W 1,q(Ω); trh = 0 on ΓD}, W−1,q′
ΓD

(Ω):=
(
W 1,q

ΓD
(Ω)

)∗
,

Lq
n,div :=

{
v ∈W 1,q

n,div

}‖·‖q

.

For r, q ∈ [1,+∞], we also introduce relevant spaces of a Bochner-type,
namely,

Xr,q := {u ∈ Lr(0, T ;W 1,r
n ) ∩ Lq(0, T ;Lq(Ω)3),

tr u ∈ L2(0, T ; (L2(∂Ω))3)},
Xr,q

div := {u ∈ Xr,q,div u = 0},
C(0, T ;Lq

w(Ω)3) := {u ∈ L∞(0, T ;Lq(Ω)3);

(u(t),ϕ) ∈ C([0, T ]) ∀ ϕ ∈ C(Ω)3}.
In the last definition, we used the notation (f, g) for

∫
Ω
f(x)g(x) dx if

fg ∈ L1(Ω). In an analogous manner, we shall use the symbols (f, g)Q,
(f, g)∂Ω, (f, g)Γ, etc. If f ∈ X and g ∈ X∗ we often use the symbol
〈g, f〉 instead of 〈g, f〉X∗,X . The same bracket notation is used for vector
functions f , h and tensor functions FFF, HHH as well.

We assume that f that appears on the right hand side of (2.3)1, the
prescribed function h for the pressure (see (2.6)), and the initial values
v0 and c0 that appear in (2.4) satisfy

f ∈ Lr′
(0, T ;W−1,r′

n ), h ∈ Lr′
(0, T ) ,

v0 ∈ L2
n,div, 0 ≤ c0(x) ≤ 1 for a.e. x ∈ Ω ,

(2.13)

and we also require that the given concentration cb on ΓD appearing in
(2.5)4 is such that

for n := max {2, r/(r − 2β)} there is a c̃b ∈ L∞(Q) ∩ Ln(0, T ;W 1,n(Ω)),

with c̃b,t ∈ L1(Q) such that 0 ≤ tr c̃b = cb ≤ 1 on ΓD.

(2.14)

Definition 2.2.1 Take Ω ∈ R, α ∈ [0,∞) and assume that (2.13)
and (2.14) hold. Assume that SSS satisfies (2.7)–(2.8) with r > 6

5 , and qc

satisfies (2.9) with −r < 2β < r. Setting
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m = min { 5r
6 , r

′}, q = min
{

2, 2r
r−2β

}
, and s = min {2, 2r

r+2β }, (2.15)

we say that (v, p, c) is a weak solution to (2.3)–(2.6) if

v ∈ C([0, T ];L2
w(Ω)3) ∩Xr,

5r
3

div , v,t ∈ Lm(0, T ;W−1,m
n ), (2.16)

p ∈ Lm(0, T ;Lm(Ω)) and∫
Ω0

p(x, t) dx = h(t) for a.e. t ∈ (0, T ),
(2.17)

c− c̃b ∈ Lq(0, T ;W 1,q
ΓD

(Ω)), c,t ∈ Ls′
(0, T ;W−1,s′

ΓD
(Ω)), (2.18)

0 ≤ c ≤ 1 a.e. in Q , (2.19)

(1 + |DDD(v)|2)
β
2 ∇c ∈ L2(0, T ;L2(Ω)3) , (2.20)

(v, p, c) satisfy the following weak formulation of the equations

〈v,t,ϕ〉 − (v ⊗ v,∇ϕ)Q + α(v,ϕ)Γ + (SSS(c,DDD(v)),DDD(ϕ))Q

= 〈f ,ϕ〉 + (p,div ϕ)Q for all ϕ ∈ Lm′
(0, T ;W 1,m′

n ) ,
(2.21)

(c,t, ϕ)Q − (cv,∇ϕ)Q +
(
KKK(c, |DDD(v)|2)∇c,∇ϕ)

Q
= 0

for all ϕ ∈ Ls(0, T ;W 1,s
ΓD

(Ω)),
(2.22)

and (v, c) satisfy the initial conditions in the following sense

lim
t→0+

‖v(t) − v0‖2
2 + ‖c(t) − c0‖2

2 = 0 . (2.23)

Theorem 2.2.2 Let r > 8
5 . Then for any data fulfilling (2.13) and

(2.14) and for any T ∈ (0,∞) there exists a weak solution to (2.3)–(2.6)
in the sense of Definition 2.2.1.

To the best of our knowledge, this is the first result concerning long-
time existence of solutions to a model such as (2.3) where the material
coefficients depend on c (concentration) and |DDD|2 (shear rate). In addi-
tion, the result holds for large data fulfilling (2.13)–(2.14) and the
result concerns flows in general domains (with C1,1 boundary, for exam-
ple) under reasonable Navier’s slip boundary conditions. Following Wolf
(2007), the result can be extended to no-slip boundary conditions and
to more general domains (we then, however, lose the integrability of the
pressure), and it is also possible to include lower values of the power-
law index r (this follows by applying the approach due to Diening,
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Růžička, & Wolf, 2008). We discuss these possible extensions in more
detail in Section 2.4.

The related studies that we are aware of wherein the existence of weak
solutions are established for different models of chemically reacting fluids
are due to Roub́ıček (2005, 2007) who in addition considers a system of
chemical reactions together with electrical and thermal stimuli. However,
he only treats the case r ≥ 11

5 and the fluxes related to the chemical
reactions are independent of the shear rate.

The problem considered here shares certain similarities with the initial
boundary value problems for inhomogeneous incompressible fluids driven
by the system of equations

div v = 0, �,t + div(�v) = 0,

(�v),t + div(�v ⊗ v) − divSSS = �f −∇p,
SSS = 2μ(�, |DDD(v)|2)DDD(v) .

(2.24)

We refer the reader to Antontsev, Kazhikhov, & Monakhov (1990) and
Lions (1996) for the analysis of models when the stress tensor is given
by SSS = 2μ(�)DDD(v). The models where the viscosity μ also depends in a
polynomial way on |DDD(v)|2 are analysed in Fernández-Cara, Guillén, &
Ortega (1997) (for r ≥ 12

5 ), in Guillén-González (2004) (for r ≥ 2 and
the spatially periodic problem), and in Frehse & Růžička (2008) (for
r ≥ 11

5 and the problem with no-slip boundary conditions). In contrast,
the result presented here holds even for r < 2 and one needs to handle
the additional nonlinear diffusion term in (2.3) that provides informa-
tion on the gradient of the concentration (not currently available for �
in (2.24)).

2.3 A proof of Theorem 2.2.2

Before establishing the main existence result we would like to make a
few comments about the construction of the proofs in this paper. Many
of the lemmas and other results such as interpolation inequalities that
are necessary to establish the main theorem have been proved elsewhere
with regard to problems with similar mathematical structures. Thus, in
order to avoid repetition we do not document detailed proofs for these
but merely refer the reader to where such details can be found. In this
paper we shall only focus on the main or new parts of the proofs.
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2.3.1 An (ε, η)-approximate problem and uniform estimates

For positive and fixed ε and η, we consider the following approximation

− εΔp+ div v = 0 in Q,
∂p

∂n
= 0 on Γ,

∫
Ω0

p dx = h(t), (2.25)

v,t + div(vη ⊗ v) − divSSS(c,DDD(v)) = −∇p+ f , (2.26)

c,t + div(vηc) = −div qc(c,∇c,DDD(v)), (2.27)

where for a given v ∈ Lr(0, T ;W 1,r
n ) we use vη to denote a function

defined through

vη := ((vωη) ∗ rη)div,

where rη(x) := 1
η3 r

(
x
η

)
with r ∈ D(R3) non-negative, radially sym-

metric, with
∫

R3 r dx = 1 (i.e. r is a regularization kernel); ωη is a
smooth function such that dist(supp ωη, ∂Ω) ≥ η and ωη = 1 for all x
satisfying dist(x, ∂Ω) ≥ 2η; and zdiv := z −∇N−1(div z) (see (2.11)).

Rewriting (2.25) as p − h/|Ω0| = 1
εN−1

Ω0
(div v), and inserting it into

(2.26) we can also equivalently rewrite (2.25)–(2.27) as a system for v

and c only.
We will assume (referring to Buĺıček et al. (2008) for details concerning

the solvability of a similar, yet more complicated, system) that for fixed
ε, η > 0 there is a solution (v, p, c) = (vε,η, pε,η, cε,η) satisfying

ε(∇p,∇ψ)Ω = (v,∇ψ)Ω for a.e. t ∈(0, T ) and all ψ ∈W 1,2(Ω), (2.28)

〈v,t,ϕ〉 − (vη ⊗ v,∇ϕ)Q + α(v,ϕ)Γ + (SSS(c,DDD(v),DDD(ϕ))Q

= (p,div ϕ)Q + 〈f ,ϕ〉 for all ϕ ∈ Lr(0, T ;W 1,r
n ),

(2.29)

and

〈c,t, ϕ〉 − (vηc,∇ϕ) − (qc(c,DDD(v),∇c),∇ϕ)Q = 0

for all ϕ ∈ Ls(0, T ;W 1,s
ΓD

(Ω)).
(2.30)

Even more, we will require that we can take ϕ = v in (2.29), ϕ = c− c̃b
in (2.30) and ψ = p in (2.28). These additional assumptions can be
easily verified on the level of Galerkin approximations; see Buĺıček et al.
(2008) for details. Here, these requirements enable us to derive uniform
estimates that are independent of ε, η in the function spaces that appear
in Definition 2.2.1.
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Taking ϕ = v in (2.29) and ψ = p in (2.28) and adding the equations,
we obtain (after using integration by parts)

sup
t∈(0,T )

‖v(t)‖2
2 +

∫ T

0

(SSS(c,DDD(v)),DDD(v)), dt+ α‖v‖2
2,∂Ω

+ ε‖∇p‖2
2 dτ ≤ ‖v0‖2

2 +
∫ T

0

〈f ,v〉 dt .

(2.31)

Applying (2.7) and Korn’s inequality (Lemma 2.5.3 in the Appendix) to
the second term, standard duality estimates and Young’s inequality to
the last term in (2.31), and also the interpolation inequality (2.75) with
q = 5r

3 , we conclude that

sup
t∈(0,T )

‖v(t)‖2
2 +

∫ T

0

‖v(t)‖r
1,r + ‖v(t)‖ 5r

3
5r
3

+ ε‖∇p(t)‖2
2 dt ≤ C. (2.32)

Next, we define ϕ1 := min {0, c} and ϕ2 := max {c, 1}−1. Since c = cb on
ΓD, using (2.14) we get that ϕ1, ϕ2 = 0 on ΓD. Thus, setting ϕ = ϕiχ[0,t]

in (2.30) we get

‖ϕi(t)‖2
2 −2

∫ t

0

(vηc,∇ϕi)Ω −2
∫ t

0

(qc(c,DDD(∇v),∇c),∇ϕi)Ω = 2‖ϕi(0)‖2
2.

Hence, using div vη = 0 and the assumption (2.9) we deduce that

‖ϕ1(t)‖2
2 + ‖ϕ2(t)‖2

2 ≤ ‖ϕ1(0)‖2
2 + ‖ϕ2(0)‖2

2.

It follows from (2.14) that ϕi(0, x) = 0 for a.e. x ∈ Ω. Combining all
these results we finally obtain that

0 ≤ c(x, t) ≤ 1 for a.e. (x, t) ∈ Q. (2.33)

Next, taking ϕ = c− c̃b in (2.30), we arrive at

〈c,t, c− c̃b〉 − (vηc,∇(c− c̃b))Q − (qc(c,DDD(v),∇c),∇(c− c̃b))Q = 0.

Adding and subtracting c̃b into the first term, integrating the result with
respect to time, using (2.14), (2.33) and the facts that div vη = 0 and
vη · n = 0 on ∂Ω, we find that

−(qc(c,DDD(v),∇c),∇c)Q ≤ 1 + (c̃b,t, c̃b − c)Q − (vηc,∇c̃b)Q

− (qc(c,DDD(v),∇c),∇c̃b)Q.
(2.34)
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Using the assumptions (2.9) and (2.14), the uniform estimates (2.32)
and (2.33), and the fact that 2β ≤ r we deduce from (2.34) that∫

Q

(1 + |DDD(v)|2)β |∇c|2 dx dt ≤ C + C

∫
Q

(1 + |DDD(v)|2)β |∇c||∇c̃b| dx dt

≤ C +
1
2

∫
Q

(1 + |DDD(v)|2)β |∇c|2 dx dt+ C

∫
Q

(1 + |DDD(v)|2)β |∇c̃b|2 dx dt

(2.14),(2.32)

≤ C +
1
2

∫
Q

(1 + |DDD(v)|2)β |∇c|2 dx dt.

Thus ∫
Q

(1 + |DDD(v)|2)β |∇c|2 dx dt ≤ C. (2.35)

Therefore, for β ≥ 0 we conclude that∫ T

0

‖c‖2
1,2 dt ≤ C. (2.36)

For β < 0, recalling that then q = 2r
r−2β > 1 (see definition in (2.15)),

we can compute∫
Q

|∇c|q =
∫

Q

|∇c|q(1 + |DDD(v)|2)
βq
2 (1 + |DDD(v)|2)−

βq
2

≤
∫

Q

|∇c|2(1 + |DDD(v)|2)β +
∫

Q

(1 + |DDD(v)|2)−
βq
2−q

=
∫

Q

|∇c|2(1 + |DDD(v)|2)β +
∫

Q

(1 + |DDD(v)|2)
r
2

(2.32),(2.35)

≤ C.

(2.37)

It is a direct consequence of (2.32), (2.33), (2.36) and (2.37), and the
assumptions (2.7) and (2.9), that∫

Q

|SSS(c,DDD(v))|r′
+ |qc(c,DDD(v),∇c)|s dx dt ≤ C (2.38)

with s = min {2, 2r
r+2β } > 1 defined in (2.15). Finally, it follows from

(2.29) and (2.30) and the estimates established above that (for details
see Málek et al. (1996) or Buĺıček et al. (2008))

‖vε
,t‖

(X
r, 5r

5r−8
div )∗

+ ‖cε,t‖Ls′ (0,T ;W−1,s′ (Ω)) ≤ C. (2.39)

To obtain uniform estimates on p, we assume, without loss of gener-
ality, that h(t) ≡ 0. We introduce p0 := p− 1

|Ω|
∫
Ω
p dx and observe (by
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contradiction) that since
∫
Ω0
p(t) dx = h(t) = 0 there is a constant C

independent of ε, η such that

‖p‖q ≤ C‖p0‖q. (2.40)

Consequently, it suffices to find uniform estimates for p0. For this
purpose, we consider ϕ in (2.29) first of the form

ϕ = ∇N−1(|p0|r′−2p0 − 1
|Ω|

∫
Ω

|p0|r′−2p0 dx)

and then

ϕ = ∇N−1(|p0|m−2p0 − 1
|Ω|

∫
Ω

|p0|m−2p0 dx)

(with m defined in (2.15) as m = min {r′, 5r
6 }). Such a choice of ϕ clearly

leads to

(p,div ϕ)Q =
∫ T

0

‖p0‖α
α dt (first with α = r′ and then with α = m).

Replacing the left-hand side by means of (2.29), proceeding step by step
as in Buĺıček et al. (2008), and in particular using the fact that∫ T

0

〈v,t,ϕ〉dt = −2ε
α
‖p0(T )‖α

α ≤ 0 (α = r′ or m) ,

we conclude that∫ T

0

‖p0‖r′
r′dt ≤ C(η)

(2.40)
=⇒

∫ T

0

‖p‖r′
r′dt ≤ C(η),∫ T

0

‖p0‖m
mdt ≤ C

(2.40)
=⇒

∫ T

0

‖p‖m
mdt ≤ C.

(2.41)

Using (2.29) and (2.32), these estimates imply that∫ T

0

‖v,t‖r′

W−1,r′
n

dt ≤ C(η) and
∫ T

0

‖v,t‖m
W−1,m

n
dt ≤ C; (2.42)

see Buĺıček et al. (2008) for details.

2.3.2 Limit as ε→ 0

Let (vε, cε, pε) be used in this subsection to denote (vε,η, cε,η, pε,η),
the solution of the (ε, η)-approximation (2.28)–(2.30). We introduce the
notation

qε
c := qc(cε,DDD(vε),∇cε) and SSSε := SSS(cε,DDD(vε)) .
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It is then a consequence of the estimates (2.32)–(2.42) (which
are all independent of ε), Corollary 2.5.2, and Aubin–Lions Lemma
(Lemma 2.5.5) that we can find (again labelled by ε) subsequences of
{vε, cε, pε,SSSε, qε

c} such that

vε
,t ⇀ v,t weakly in Lr′

(0, T ;W−1,r′
n ), (2.43)

vε ⇀ v weakly in Lr(0, T ;W 1,r
n ), (2.44)

vε → v strongly in Lh(0, T ;Lh(Ω)3) for all h < 5r
3 , (2.45)

tr vε → tr v strongly in L2(0, T ;L2(∂Ω)3), (2.46)

cε,t → c,t weakly in Ls′
(0, T ;W−1,s′

), (2.47)

cε → c weakly in Lq(0, T ;W 1,q(Ω)), (2.48)

cε → c strongly in Ls(0, T ;Ls(Ω)) for all s <∞, (2.49)

pε ⇀ p weakly in Lr′
(0, T ;Lr′

(Ω)), (2.50)

SSSε ⇀ SSS weakly in Lr′
(0, T ;Lr′

(Ω)3×3), and (2.51)

qε
c ⇀ qc weakly in Ls(0, T ;Ls(Ω)3). (2.52)

Since
√
ε∇pε is uniformly bounded in L2(0, T ;L2(Ω)3), applying (2.44)

to (2.28) we immediately conclude that div v = 0 in Q.
In order to take the limit in (2.29) and (2.30) we first identify the

limits of SSSε and qε
c. To prove that SSS = SSS(c,DDD(v)), it is enough to establish

almost everywhere convergence for ∇vε. To show this, we observe that
(2.51), (2.49), (2.7), and Lebesgue’s Dominated Convergence Theorem
(used to show that ‖SSS(cε,DDD(v))−SSS(c,DDD(v))‖r′ → 0 as ε→ 0) imply that
(SSS(cε,DDD(v)),DDD(vε − v))Q → 0 as ε → 0. Next, taking ϕ := vε − v as a
test function in (2.29) it is easy to observe, using the above convergence
results, that lim supε→0(SSSε,DDD(vε − v))Q ≤ 0. Thus we obtain

0
(2.8)

≤ (SSS(cε,DDD(vε)) − SSS(cε,DDD(v)),DDD(vε − v))Q ≤ o(1),

where o(1) denotes a quantity that vanishes as ε→ 0. Then the assump-
tion (2.8) on the strict monotonicity of SSS implies that at least for a
(labelled again by ε) subsequence ∇vε → ∇v a.e. in Q. Therefore,

vε → v strongly in Lh(0, T ;W 1,h
n ) for all h < r, (2.53)

which is sufficient to prove (modulo a subsequence) that SSS = SSS(c,DDD(v)).
To show that qc = qc(c,DDD(v),∇c), we first observe (using (2.49),

(2.53), and (2.9)) that

KKK(cε, |DDD(vε)|2) → KKK(c, |DDD(v)|2) strongly in Lh(0, T ;Lh(Ω)3×3) (2.54)
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for all h ∈ [1, r
2β ) if β > 0 and all h ∈ (1,∞) if β ≤ 0. Thus, for β ≤ 0 it

is a direct consequence of the convergence properties shown above that
qc = qc(c,DDD(v),∇c). For β ≥ 0 we proceed more carefully. Using the
notation κε := |KKK(cε,DDD(vε))|, (2.54) implies that for all h ∈ (1,∞)

KKK(cε, |DDD(vε)|2)
κε

→ KKK(c, |DDD(v)|2)
κ

strongly in Lh(0, T ;Lh(Ω)3×3) .

Thus, to identify qc, it is enough to identify κ∇c (here the symbol κ∇c
denotes the weak limit of κε∇cε). Then (2.9), (2.33), and (2.35) imply
(modulo a subsequence) that

√
κε∇cε ⇀ √

κ∇c weakly in L2(Q). Thus,
having 2β < r and the strong convergence (2.54), we know that

√
κε →√

κ strongly in L2(Q). Hence, to identify the limit qc it is enough to
identify the limit

√
κ∇c. Using this procedure inductively, we see that

it is enough that for some k ∈ N we have(
κε
)2−k

∇cε ⇀ κ2−k∇c weakly in L1(Q). (2.55)

Hence, we find k such that
(

r2k−1

β

)′
> q′. Then it is a consequence of

(2.54) and (2.48) that the convergence (2.55) is valid and this finishes
the proof of the convergence of qε

c.
Finally, having all these convergence results (2.43)–(2.52) in hand

together with the identification of the limit of the nonlinear terms, we
can take the limit ε → 0 in (2.29) and in (2.30) in a standard way and
conclude that for any η > 0 the triplet (v, c, p) := (vη, cη, pη) satisfies

〈v,t,ϕ〉 − (vη ⊗ v,∇ϕ)Q + (SSS(c,DDD(v)),∇ϕ)Q

+ α(v,ϕ)Γ − (p,div ϕ)Q = 〈f ,ϕ〉
for all ϕ ∈ Lr(0, T ;W 1,r

n ) such that tr ϕ ∈ L2(Γ),

(2.56)

and

〈c,t, ϕ〉 − (vηc,∇ϕ)Q = (qc(c,DDD(v),∇c),∇ϕ)Q

for all ϕ ∈ Lm′
(0, T ;W 1,m′

(Ω)) such that ϕ|ΓD = 0.
(2.57)

The attainment of initial conditions is again standard and can be
proved by using the same methods as those described in Málek et al.
(1996).

2.3.3 Limit as η → 0

Let (vη, cη, pη,SSSη, qη
c ), the solution of the η-approximation, satisfy (2.56)

and (2.57). Our final goal is to take the limit η → 0 in (2.56) and in
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(2.57), and to establish the existence of a suitable weak solution to our
original problem.

Using weak lower semicontinuity of appropriate norms, we find that
(2.32)–(2.39), (2.41)2 and (2.42)2 hold. These estimates together with
the Aubin–Lions Lemma (Lemma 2.5.5) and Corollary 2.5.2 are suf-
ficient to find a (labelled again by ε) subsequence of (vη, cη, pη) such
that

vη
,t ⇀ v,t weakly in Lm(0, T ;W−1,m

n ) ∩ (Xr, 5r
5r−8 )∗, (2.58)

vη ⇀ v weakly in Lr(0, T ;W 1,r
n ), (2.59)

vη → v strongly in Lh(0, T ;Lh(Ω)3) for all h < 5r
3 , (2.60)

tr vη → tr v strongly in L2(0, T ;L2(∂Ω)3), (2.61)

cη,t ⇀ c,t weakly in Ls′
(0, T ;W−1,s′

(Ω)), (2.62)

cη ⇀ c weakly in Lq(0, T ;W 1,q(Ω)), (2.63)

cη → c strongly in Lh(0, T ;Lh(Ω)) for all h <∞, (2.64)

pη ⇀ p weakly in Lm(0, T ;Lm(Ω)), (2.65)

SSSη → SSS weakly in Lr′
(0, T ;Lr′

(Ω)3×3), and (2.66)

qη
c → qc weakly in Ls(0, T ;Ls(Ω)3). (2.67)

Assume for a moment that DDD(vη) converges to DDD(v) almost everywhere
in Q. Then using the same procedure as in Subsection 2.3.2 we get
qc = qc(c,DDD(v)∇c). Then we are able to take the limit in (2.57) and to
achieve (2.22).

Thus it remains to show that ∇vη converges a.e. in Q. To do this,
we follow the approach described in Boccardo & Murat (1992), Frehse,
Málek, & Steinhauer (2000), or Buĺıček et al. (2008). We define

gη := |∇vη|r + |∇v|r + (|SSSη| + |SSS|) (|DDD(vη)| + |DDD(v)|) .

It follows from (2.59) and (2.66) that there is K ∈ [1,∞) so that
for all η

0 ≤
∫ T

0

∫
Ω

gη dx dt ≤ K .
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Let ε∗ > 0 be arbitrary. Then the following statement is proved in
Buĺıček et al. (2008):

There exist L ≤ ε∗

K
, a subsequence {vj}∞j=1 ⊂ {vη}η>0,

and sets Ej :=
{

(t, x) ∈ Q;L2 ≤ |vj(t, x) − v(t, x)| < L
}

such that
∫

Ej

gj dx dt ≤ ε∗.

(2.68)

For the obtained sequence {vj}∞j=1 and L we define uj and the sets Qj as

uj :=(vj − v)
(

1 − min
{

|v−vj |
L , 1

})
;

Qj :=
{

(t, x) ∈ Q; |v − vj | < L
}
.

By using (2.59), (2.60), and the fact that |uj | ≤ L in Q we have (as
j → ∞)

uj ⇀ 0 weakly in Lr(0, T ;W 1,r
n ), (2.69)

uj → 0 strongly in Ls(0, T ;Ls(Ω)3) ∀s <∞, (2.70)

tr uj → 0 strongly in L2(0, T ;L2(∂Ω)3). (2.71)

Since (see equation (2.60) in Buĺıček et al., 2008, for details)∫ T

0

‖div uj‖r
r dt ≤ Cε∗,

the Helmholtz decomposition uj = uj
div + ∇guj

then implies that∫ T

0

‖guj‖r
2,r dt ≤ Cε∗ (2.72)

and

uj
div → 0 strongly in Ls(0, T ;Ls(Ω)3) for all s <∞.

Using the assumption (2.9) we have

0 ≤ (SSS(cj ,DDD(vj)) − SSS(cj ,DDD(v)),DDD(vj − v))Qj

= −(SSS(cj ,DDD(v)),DDD(vj − v))Qj + (SSS(cj ,DDD(vj)),DDD(vj − v))Qj

=: Y1 + Y2.

By virtue of (2.64), the Lebesgue Dominated Convergence Theorem and
(2.7), we observe that

SSS(cj ,DDD(v)) → SSS(c,DDD(v)) strongly in Lr′
(0, T ;Lr′

(Ω)3×3).
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Therefore (as j → ∞)

Y1 := (SSS(cj ,DDD(v)),DDD(v − vj))Qj

= (SSS(cj ,DDD(v)),DDD(uj))Q + (SSS(cj ,DDD(v)),DDD((v − vj) |v−vj |
L ))Qj

(2.3.3)

≤
(2.69)

o(1) + (SSS(cj ,DDD(v)),DDD((v − vj) |v−vj |
L ))Qj\Ej

+ (SSS(cj ,DDD(v)),DDD((v − vj) |v−vj |
L ))Ej

(2.68)

≤ o(1) + CL+ Cε∗ ≤ o(1) + Cε∗ ,

where o(1) → 0 as j → ∞. To estimate Y2 we set ϕ = uj
div in (2.56) and

denoting SSSj := SSS(cj ,DDD(vj)) obtain

Y2 := (SSSj ,DDD(vj − v))Qj = (SSSj ,DDD(uj))Q + (SSSj ,DDD((v − vj) |v−vj |
L ))Qj

= (SSSj ,DDD(uj
div))Q + (SSSj ,DDD(∇guj

))Q + (SSSj ,DDD((v − vj) |v−vj |
L ))Qj

(2.68)

≤
(2.72)

(SSSj ,DDD(uj
div))Q + Cε∗

(2.56)
= :

4∑
i=1

Ii + Cε∗,

where2

I1 = −〈vj
,t,u

j
div〉 = −〈v,t,u

j
div〉 + 〈v,t − vj

,t,u
j
div〉

≤ o(1) + 〈v,t − vj
,t,u

j
div〉

div v−vj=0= o(1) + 〈v,t − vj
,t,u

j〉 ≤ o(1),

I2 = −
(

[∇vj ]vj
η(j),u

j
div

)
Q
≤ C‖uj‖ 5r

5r−8 ,Q‖vj‖ 5r
3 ,Q‖∇vj‖r,Q

(2.70)
= o(1),

I3 = −α(vj ,uj
div)Γ ≤ C‖uj‖L2(Γ)

(2.71)
= o(1), and

I4 = 〈f ,uj
div〉 = o(1).

Thus, we can conclude that for θ < 1∫
Q

|(SSSj − SSS(cj ,DDD(v))) ·DDD(vj − v)|θ =
∫

Qj

| . . . |θ +
∫

Q\Qj

| . . . |θ

≤ C(Y1 + Y2)θ + C|Q \Qj |1−θ ≤ o(1)

and using strict monotonicity of SSS, i.e. the assumption (2.9) we obtain
that DDD(vj) converges to DDD(v) a.e. in Q. Thus with the help of Vitali’s
Theorem, it is standard to take limit in (2.56) to obtain (2.21). The
proof is complete.

2For details concerning the estimate of I1 see Buĺıček et al. (2008).
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2.4 Extensions of Theorem 2.2.2

This section is devoted to the formulation of extensions that are not
proved in detail anywhere but are direct consequences of the approaches
described here and those presented in recent studies by Wolf (2007)
and Diening et al. (2008). These extensions are focused on including
general domains with no smoothness of the boundary, incorporating no-
slip boundary conditions, and lowering the power-law index r. We wish
to underline that to the best of our knowledge we can deal with globally
integrable pressure for the low exponents of r only for domains of class
R and for Navier’s slip boundary conditions, the case that is studied in
previous sections.

We first formulate the result for the same range of r as in Theorem
2.2.2 and for no-slip boundary conditions (corresponding to α = ∞
in (2.5)1) which also enables us to consider any bounded domain. The
pressure is omitted from the weak formulation. As the pressure is not
in general an integrable function it is also no longer clear how to fix its
mean value over any spatial subdomain.

Theorem 2.4.1 Let Ω be a bounded domain and let (2.13)–(2.14) hold
(with the exception of the condition fixing the pressure). Assume that SSS

satisfies (2.7)–(2.8) with r > 8
5 , and qc satisfies (2.9) with −r < 2β < r.

Let m, q and s be defined as in (2.15). Then there is a weak solution
(v, c) of (2.3)–(2.6) such that

v ∈ C([0, T ];L2
w(Ω)3) ∩ Lr(0, T ;W 1,r

0,div), v,t ∈ Lm(0, T ;W−1,m
0,div ),

c− c̃b ∈ Lq(0, T ;W 1,q
ΓD

(Ω)), c,t ∈ Ls′
(0, T ;W−1,s′

ΓD
(Ω)),

0 ≤ c ≤ 1 a.e. in Q ,

(1 + |DDD(v)|2)
β
2 ∇c ∈ L2(0, T ;L2(Ω)3) ,

(v, c) satisfy the following weak formulation

〈v,t,ϕ〉 − (v ⊗ v,∇ϕ)Q + α(v,ϕ)Γ + (SSS(c,DDD(v)),DDD(ϕ))Q = 〈f ,ϕ〉
for all ϕ ∈ Lm′

(0, T ;W 1,m′
0,div) ,

(c,t, ϕ)Q − (cv,∇ϕ)Q +
(
KKK(c, |DDD(v)|2)∇c,∇ϕ)

Q
= 0

for all ϕ ∈ Ls(0, T ;W 1,s
ΓD

(Ω)),

and (v, c) attain the initial conditions as in (2.23).

The next theorem extends the result stated in Theorem 2.2.2 also to
the case r ∈ (6/5, 8/5].
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Theorem 2.4.2 Let 6
5 < r ≤ 8

5 . Then for any data fulfilling (2.13)–
(2.14) and for any T ∈ (0,∞) there exists a weak solution to (2.3)–(2.6)
in the sense of Definition 2.2.1.

The extension of the existence result in the sense of Theorem 2.4.1 to
no-slip boundary conditions for r ∈ (6/5, 8/5] can be also proved. We
skip the formulation.

Our final remark concerns the possible extension of the result estab-
lished here and formulated in the above theorem to models describing
unsteady flows of incompressible chemically reacting and heat conduct-
ing fluids. Such a problem requires one to consider the full thermo-
dynamical system including the balance of energy and possibly also
the second law of thermodynamics in combination with the convection-
diffusion equation for c. An interested reader could combine the results
established here with those proved in Buĺıček et al. (2009) and Buĺıček
et al. (2008) where incompressible Navier–Stokes–Fourier-like systems
are analysed.

2.5 Appendix

The following lemmas summarize helpful properties of functions belong-
ing to certain Sobolev spaces.

Lemma 2.5.1 Let 1 < q1, q2 <∞. Set

S := {v; v ∈ L∞(0, T ;L2(Ω)3)∩Lr(0, T ;W 1,r
n ),v,t ∈ Lq1(0, T ;W−1,q2

n,div )}.
If r > 3

2 and {vi}∞i=1 is bounded in S, then {tr vi}∞i=1 is precompact in
Lp(0, T ;Ls(∂Ω)3) for all p, s ∈ (1,∞) satisfying

p < s5r−6
3s−4 , max (2, r) ≤ s ≤ 2r

3−r . (2.73)

Proof See Buĺıček et al. (2008, Lemma 1.4) where an even more general
result is proved.

Corollary 2.5.2 Let r > 8
5 . Let {vi}∞i=1 be bounded in S. Then

{tr vi}∞i=1 is precompact in L2(0, T ;L2(∂Ω)3).

Lemma 2.5.3 (Korn’s inequality) Let q ∈ (1,∞). Then there exists
a positive constant C depending only on Ω and q such that for all v ∈
W 1,q(Ω)3 that has trace tr v ∈ L2(∂Ω)3 the following inequality holds

C‖v‖1,q ≤ ‖DDD(v)‖q + ‖v‖L2(∂Ω). (2.74)
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Proof For the proof we refer the reader to a modification of the result
in Nečas (1966) and Buĺıček et al. (2008).

Lemma 2.5.4 (Interpolation inequalities) For 2 ≤ q ≤ 3r
3−r (if

6/5 < r < 3) and for any q ∈ [1,∞) if r ≥ 3 the following inequality
holds

‖z‖q ≤ ‖z‖
6r−6q+2qr

q(5r−6)
2 ‖z‖

3r(q−2)
q(5r−6)
1,r . (2.75)

Proof See Nirenberg (1966).

Lemma 2.5.5 (Aubin–Lions) Let V1, V2, V3 be reflexive separable
Banach spaces such that

V1 ↪→↪→ V2 and V2 ↪→ V3.

Let 1 < p <∞, 1 ≤ q ≤ +∞ and 0 < T <∞. Then

{v; v ∈ Lp(0, T ;V1), v,t ∈ Lq(0, T ;V3)}
is compactly embedded into Lp(0, T ;V2).

Proof See for example Simon (1987) or Feireisl (2004, Lemma 6.3).
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Abstract

Given an initial condition in H(d/2)−1, the d-dimensional Navier–Stokes
equations (d = 2, 3) have a unique solution; when d = 2 this solution
exists for all t ≥ 0, while when d = 3 its existence can only be guaran-
teed on some time interval [0, T ). Given such a solution, we show by
elementary methods (in the periodic case) that the Lagrangian par-
ticle trajectories are also unique. In fact, we prove a general result
that solutions of the ordinary differential equation Ẋ = u(X, t)
are unique if u ∈ L2(0, T ;H(d/2)−1) and

√
t u ∈ L2(0, T ;H(d/2)+1),

and verify that these conditions hold for the Navier–Stokes equations
via some straightforward energy estimates. We also show that the
Lagrangian trajectories depend continuously on the Eulerian initial data
u0 ∈ H(d/2)−1.

3.1 Introduction

We consider the Navier–Stokes equations

ut − νΔu+ (u · ∇)u+ ∇p = 0 ∇ · u = 0. (3.1)

In the two-dimensional case it is well known that an initial con-
dition u0 ∈ L2 gives rise to a unique weak solution u with
u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) for every T > 0 (see Constantin &
Foias, 1988, for example). In the three-dimensional case, if u0 ∈ H1/2

then (Kato & Fujita, 1962; Chemin et al., 2006) there is a unique solu-
tion u ∈ L∞(0, T ;H1/2) ∩ L2(0, T ;H3/2) that exists for at least some
small time interval [0, T ∗). In other words, for u0 ∈ H(d/2)−1 there exists
a unique solution u ∈ L∞(0, T ;H(d/2)−1) ∩ L2(0, T ;Hd/2), d = 2, 3.

Using Littlewood–Paley theory, Chemin & Lerner (1995) showed that
for flows on the whole of Rd (d = 2, 3) the associated Lagrangian

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.
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trajectories – the paths traced out by ‘fluid particles’ – inherit this
uniqueness, despite the rough nature of the vector field u. Here we give a
much more elementary proof of the same result, in a form that is largely
independent of the structure of the Navier–Stokes equations themselves.

For the sake of simplicity we restrict here to periodic boundary condi-
tions and initial conditions that have zero average (a condition which is
preserved under the evolution). However, a similar analysis is also possi-
ble in the more technically challenging case of flows in bounded domains
with no slip boundary conditions: for details see Dashti & Robinson
(2009).

More precisely, the question is whether the solutions of the ordinary
differential equation

Ẋ = u(X, t) X(0) = X0 (3.2)

are unique, when u(t) is a solution of the Navier–Stokes equations with
u0 ∈ H(d/2)−1. An elementary computation – which uses the result

|u(X) − u(Y )| ≤ c‖u‖H(d/2)+1 |X − Y |(− log |X − Y |)1/2

due to Zuazua (2002) – shows that u does not have enough regularity
to proceed in an entirely straightforward manner.

To this end, let X(t) and Y (t) be two solutions of (3.2) with X(0) =
Y (0) = X0. Then with W (t) = X(t) − Y (t) one has

d
dt

|W | ≤ |u(X, t) − u(Y, t)| ≤ c‖u(t)‖H(d/2)+1 |W |(− log |W |)1/2.

Integrating this differential inequality between s > 0 and t > s one
obtains

−(− log |W (t)|)1/2 ≤ −(− log |W (s)|)1/2+c
∫ t

s

‖u(r)‖H(d/2)+1 dr. (3.3)

If one had u ∈ L1(0, T ;H(d/2)+1) then one could put s = 0 in (3.3) and
immediately obtain uniqueness. However, such regularity for u is not
known to be true for the Navier–Stokes equations, nor even for solutions
of the heat equation.

3.2 An abstract result for ordinary differential equations

We now prove two abstract results. One guarantees uniqueness of solu-
tion of the ODE Ẋ = u(X, t) given sufficient regularity of u, the second
is related to continuity of solutions with respect to perturbations of
the vector field u. These results are valid in any dimension d; we show
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in Section 3.3 that they apply to solutions of the Navier–Stokes equa-
tions with initial conditions in H(d/2)−1 for d = 2, 3 when the boundary
conditions are periodic.

3.2.1 Existence and uniqueness

We now state and prove an abstract existence and uniqueness result.
One can weaken the assumption on u to u ∈ Lp(0, T ;H(d/2)−1) for some
p > 1 (Dashti & Robinson, 2009); and note that the assumption that√
tu ∈ L2(0, T ;H(d/2)+1) implies that u ∈ Lr(0, T ;H(d/2)+1) for any

r < 1, since∫ T

0

‖u(t)‖r
H(d/2)+1 dt =

∫ T

0

t−r/2tr/2‖u(t)‖r
H(d/2)+1 dt

≤
(∫ T

0

t−r/(2−r) dt

)1−(r/2)(∫ T

0

t‖u(t)‖2
H(d/2)+1 dt

)r/2

.

Theorem 3.2.1 Let Ω be Rd, a periodic domain in Rd, or a bounded
domain in Rd whose boundary is sufficiently smooth. Then provided that

u ∈ L2(0, T ;H(d/2)−1(Ω)) and
√
tu ∈ L2(0, T ;H(d/2)+1(Ω)) (3.4)

along with the additional assumption that u = 0 on ∂Ω if Ω is bounded,
the ordinary differential equation

dX
dt

= u(X, t) with X(0) = X0 (3.5)

has a unique solution for every X0 ∈ Ω.

The argument of the proof depends only on certain Sobolev embedding
results and Hölder’s inequality; bounded domains are required to be
‘sufficiently smooth’ that these results are valid, see Adams (1975) for
details.

Proof We need to guarantee first that (3.5) does indeed have at least
one solution, which we do, following Foias, Guillopé, & Temam (1985),
by considering the equation in its equivalent integral form

X(t) = X0 +
∫ t

0

u(X(s), s) ds. (3.6)

Note that (3.4) implies that u ∈ L1(0, T ;L∞); indeed, using
Agmon’s inequality ‖u‖∞ ≤ c‖u‖1/2

H(d/2)−1‖u‖1/2

H(d/2)+1 (see Lemma 4.9
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in Constantin & Foias, 1988, for example), and the extended Hölder
inequality with exponents (2, 4, 4),∫ s

0

‖u(t)‖∞ dt ≤ c

∫ s

0

‖u(t)‖1/2

H(d/2)−1‖u(t)‖1/2

H(d/2)+1 dt

= c

∫ s

0

t−1/4‖u(t)‖1/2

H(d/2)−1t
1/4‖u(t)‖1/2

H(d/2)+1 dt

≤ c

(∫ s

0

t−1/2 dt
)1/2(∫ s

0

‖u(t)‖2
H(d/2)−1 dt

)1/4

×
(∫ s

0

t‖u(t)‖2
H(d/2)+1 dt

)1/4

≤ cs1/4‖u‖1/2

L2(0,T ;H(d/2)−1)
‖√tu‖1/2

L2(0,T ;H(d/2)+1)
. (3.7)

In the case of a periodic or bounded domain let un be a sequence of
Galerkin approximations of u based on eigenfunctions of the Laplacian
on Ω with appropriate boundary conditions, while in the case of Rd let un

be a sequence of mollified versions of u. Thus un has the same regularity
as that of u given in (3.4), with the bounds for un being dominated by
those for u. Let Xn be the solution of the integral equation

Xn(t) = X0 +
∫ t

0

un(Xn(s), s) ds,

which by standard results exists and is unique on [0, T ]; when Ω is
bounded the eigenfunctions used in the Galerkin expansion preserve the
condition that u|∂Ω = 0, which ensures that Xn(t) cannot leave Ω. (Of
course, Xn is precisely the solution of the smooth ordinary differential
equation Ẋn = un(Xn, t) with Xn(0) = X0.) Note that (3.7) in fact
shows that

|Xn(t) −Xn(s)| ≤ K|t− s|1/4,

and so the Xn form a bounded equicontinuous family. It follows using
the Arzelà–Ascoli Theorem that there is a subsequence that converges
uniformly on [0, T ] to some X(·). To guarantee that X solves (3.6), it
suffices to prove that un(Xn(·), ·) → u(X(·), ·) in L1(0, T ). To this end,
we write

|un(Xn(t), t) − u(X(t), t)|
≤ |un(Xn(t), t) − u(Xn(t), t)| + |u(Xn(t), t) − u(X(t), t)|
≤ ‖un(t) − u(t)‖L∞ + |u(Xn(t), t) − u(X(t), t)|.
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We already know that un → u in L1(0, T ;L∞), so it only remains to
show that

u(Xn(·), ·) → u(X(·), ·) in L1(0, T ). (3.8)

But for almost every t > 0, u(·, t) ∈ H(d/2)+1, and therefore u(t) is
continuous, from whence u(Xn(t), t) → u(X(t), t) for almost every t.
Since we also have |u(Xn(t), t)| ≤ ‖u(t)‖∞ ≤ c‖u‖1/2

H(d/2)−1‖u‖1/2

H(d/2)+1

and the right-hand side of this inequality is integrable by (3.7), we obtain
(3.8) using Lebesgue’s Dominated Convergence Theorem.

We now prove uniqueness. To do this we want to fix t > 0 and let
s → 0 on the right-hand side of (3.3) in the hope of deducing that
W (t) = 0. Note that this need only hold for all t ≤ t0 for some t0 > 0,
since

√
t u ∈ L2(0, T ;H(d/2)+1) implies that u ∈ L1(t0, T ;H(d/2)+1) for

any t0 > 0, and so uniqueness for t ∈ [t0, T ] is easy to obtain.

We therefore require

lim
s→0

[
(− log |W (s)|)1/2 −

∫ t

s

‖u(r)‖H(d/2)+1 dr
]

= +∞.

In order to prove this we find an upper bound on both |W (s)| and∫ t

s
‖u(r)‖H(d/2)+1 dr.

For an upper bound on |W (s)|, we have

d
dt

|W | ≤ |u(X, t) − u(Y, t)| ≤ 2‖u(t)‖∞,

and so integrating from 0 to s, using the fact that |W (0)| = 0,

|W (s)| ≤ 2
∫ s

0

‖u(t)‖∞ dt.

It follows from (3.7) that |W (s)| ≤ Ks1/4, and hence

(− log |W (s)|)1/2 ≥ (− logK − 1
4

log s)1/2 ≥ α(− log s)1/2,

for some appropriate fixed α > 0 for all s ≤ s0 for some s0 sufficiently
small.
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An upper bound on the integral follows easily, since∫ t

s

‖u(r)‖H(d/2)+1 dr =
∫ t

s

r−1/2r1/2‖u(r)‖H(d/2)+1 dr

≤
(∫ t

s

r−1 dr
)1/2(∫ t

s

r‖u(r)‖2
H(d/2)+1 dr

)1/2

≤ (log t− log s)1/2

(∫ t

0

r‖u(r)‖2
H(d/2)+1 dr

)1/2

.

So for all s ≤ s0 the right-hand side of (3.3) is bounded below by

α(− log s)1/2 − (log t− log s)1/2

(∫ t

0

r‖u(r)‖2
H(d/2)+1 dr

)1/2

.

Since r‖u(r)‖2
H(d/2)+1 is integrable, one can choose t∗ small enough that∫ t∗

0

r‖u(r)‖2
H(d/2)+1 dr <

α2

4
.

Fixing such a t∗, for any t ≤ t∗ one can then take s→ 0 to deduce that
X(t) = 0, and hence the solutions of Ẋ = u(X, t) are unique.

3.2.2 Continuity with respect initial data

We now prove another abstract result which, for the case of the
Navier–Stokes equations, will guarantee continuity of the Lagrangian
trajectories X(t) with respect to the Eulerian initial data u0.

Theorem 3.2.2 Let Ω be as in Theorem 3.2.1. Suppose that un → u

strongly in L2(0, T ;H(d/2)−1(Ω)) and that
√
tun is uniformly bounded in

L2(0, T ;H(d/2)+1(Ω)). For some X0 ∈ Ω let Xn(t) be the unique solution
of

Ẋn = un(Xn, t) Xn(0) = X0.

Then Xn(t) → X(t) uniformly on [0, T ], where X(t) solves

Ẋ = u(X, t) X(0) = X0. (3.9)

Proof Applying the argument of (3.7) to un − u yields∫ s

0

‖un(t) − u(t)‖∞ ds

≤ cs1/4‖un − u‖1/2

L2(0,T ;H(d/2)−1)
‖√t(un − u)‖1/2

L2(0,T ;H(d/2)+1)
,
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and so un → u strongly in L1(0, T ;L∞). One can now show that a
subsequence of the Xn(t) converges to a solution X(t) of (3.9), essen-
tially by repeating the argument used to prove existence of solutions in
Theorem 3.2.1: one simply notes that the uniform bounds on un and
u in L2(0, T ;H(d/2)−1) and on

√
tun and

√
tu in L2(0, T ;H(d/2)+1) are

sufficient to guarantee the equicontinuity of Xn(·) via (3.7).
Since X(t) is a solution to (3.9), and this solution is unique, any

convergent subsequence of the {Xn} must have the same limit. A con-
tradiction argument then guarantees that the original sequence Xn(t)
itself must converge to X(t), and the proof is complete.

3.3 A priori estimates for the Navier–Stokes equations

We now verify that the conditions of Theorems 3.2.1 and 3.2.2 are sat-
isfied by the solutions of the d-dimensional Navier–Stokes equations on
periodic domains with initial conditions in H(d/2)−1.

To be more precise, let Ω = [0, L]d, and denote by V the space of
smooth (C∞) divergence-free, periodic functions on Ω that have zero
average (

∫
Ω
u = 0). We denote by H the completion of V with respect

to the L2 norm on Ω, and by V the completion of V with respect to the
H1 norm on Ω.

We let Π denote the orthogonal projection of L2(Ω) onto H, and
define the Stokes operator A = −ΠΔ. In the periodic case, which we
are considering here, Au = −Δu for u ∈ D(A) = H2(Ω) ∩ H, and
D(Am/2) = Hm(Ω)∩H. For simplicity we denote D(Am/2) by V m, and
equip it with the natural norm

‖u‖m = |Am/2u|;
on V m this is equivalent to the standard Hm Sobolev norm,

c−1
m ‖u‖Hm ≤ ‖u‖m ≤ cm‖u‖Hm for all u ∈ V m

(this is easy to see using the Fourier expansion of u, appealing to the
fact that u has zero average). We identify V 0 with H.

Theorem 3.3.1 If u0 ∈ V (d/2)−1 and u(t) is the corresponding solution
of the d-dimensional Navier–Stokes equations on [0, T ], then the solution
X(·) of Ẋ = u(X, t) with X(0) = X0 is unique. Furthermore, for each
fixed X0 ∈ Ω the map u0 �→ X(·) is continuous from H(d/2)−1 into
C0([0, T ],Rd).

As remarked in the introduction, a similar result is true for bounded
domains (Dashti & Robinson, 2009). This requires a more careful
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analysis to obtain the a priori estimates we prove below for the peri-
odic case, but is broadly along the lines of what follows. In particular
the three-dimensional case requires some consideration of the fractional
powers of the Laplacian (rather than the Stokes operator), and estimates
for the term involving the pressure, which does not vanish in the case of
bounded domains.

3.3.1 The two-dimensional case

In the two-dimensional case, it is well known (e.g. Constantin & Foias,
1988) that if u0 ∈ H then there exists a unique weak solution u that for
each T > 0 satisfies u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1), with

1
2
‖u(t)‖2 +

∫ t

0

‖Du(s)‖2 ds =
1
2
‖u0‖2. (3.10)

Given this, the additional estimate required to apply Theorem 3.2.1
is straightforward to obtain. Indeed, taking the inner product of (3.1)
with tΔu one can use the orthogonality property∫

(u · ∇u) · Δu dx = 0

(only available for periodic boundary conditions in the two-dimensional
case) to deduce that

1
2

d
dt

(t‖Du‖2) − 1
2
‖Du‖2 + νt‖Δu‖2 = 0.

An integration yields

t‖Du(t)‖2 + 2ν
∫ t

0

s‖Δu(s)‖2 ds ≤
∫ t

0

‖Du(s)‖2 ds; (3.11)

since ‖Δu‖ = ‖u‖2 ≥ c−1
2 ‖u‖H2 , it follows that

√
tu ∈ L2(0, T ;H2).

Theorem 3.2.1 now guarantees uniqueness of the Lagrangian trajectories
corresponding to weak solutions of the equations in two dimensions.

Theorem 3.2.2 requires uniform estimates for
√
tun in L2(0, T ;H2)

when un(0) → u0 strongly in L2. These follow immediately from (3.10)
and (3.11) since un(0) must be uniformly bounded in L2. The strong
convergence of un to u in L2(0, T ;L2) follows – for some appropriate sub-
sequence – from uniform bounds on un in L2(0, T ;H1) and on dun/dt in
L2(0, T ;H−1) via the Aubin–Lions compactness theorem (see Theorem
8.1 in Robinson, 2001, for example).
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3.3.2 The three-dimensional case

In the three-dimensional case we take u0 ∈ V 1/2, and obtain a locally
unique solution u ∈ L∞(0, T ;H1/2) ∩ L2(0, T ;H3/2) for some T > 0
(Kato & Fujita, 1962; Chemin et al., 2006).

Taking the inner product of (3.1) with tA3/2u yields

1
2

d
dt

(
t‖u‖2

3/2

)
− 1

2
‖u‖2

3/2 + νt‖u‖2
5/2 ≤ t‖(u · ∇)u ·A3/2u‖L1 .

In the periodic case A = −Δ for u ∈ D(A), and so we can integrate by
parts on the right-hand side,

‖(u · ∇u) ·A3/2u‖L1 ≤ ∥∥|Du|2|D2u|∥∥
L1 +

∥∥|u||D2u|2∥∥
L1

≤ ‖Du‖2
L3‖D2u‖L3 + ‖u‖L6‖D2u‖L3‖D2u‖L2

≤ ‖u‖2
H3/2‖u‖H5/2 + ‖u‖1/2

H1/2‖u‖H3/2‖u‖3/2

H5/2

≤ c‖u‖4
3/2 + c‖u‖2

1/2‖u‖4
3/2 +

ν

2
‖u‖2

5/2.

Thus one can obtain

d
dt

(
t‖u‖2

3/2

)
− ‖u‖2

3/2 + νt‖u‖2
5/2 ≤ ct‖u‖4

3/2.

Multiplying by E(t) = exp(−c ∫ t

0
‖u(s)‖2

3/2 ds) gives

d
dt

(
t‖u(t)‖2

3/2E(t)
)

+ νtE(t)‖u‖2
5/2 ≤ E(t)‖u‖2

3/2,

and integrating between 0 and t one obtains

t‖u(t)‖2
3/2E(t) + ν

∫ t

0

sE(s)‖u(s)‖2
5/2 ds ≤

∫ t

0

‖u(s)‖2
3/2 ds.

It follows that

ν

∫ t

0

s‖u(s)‖2
5/2 ds ≤

(∫ t

0

‖u(s)‖2
3/2 ds

)
exp

(
c

∫ t

0

‖u(s)‖2
3/2 ds

)
<∞.

Standard energy estimates show that un is uniformly bounded in
L2(0, T ;H1), and dun/dt is uniformly bounded in L4/3(0, T ;H−1) (this
is true even if u0 ∈ L2). It follows from the Aubin–Lions compactness
theorem that un → u strongly in L2(0, T ;Hs) for any s < 1; in particular
un → u strongly in L2(0, T ;H1/2).
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Abstract

This contribution is devoted to recalling several recent results concern-
ing the controllability of some linear and nonlinear equations from fluid
mechanics. More precisely, the local and global exact controllability to
bounded trajectories will be analyzed.

4.1 Introduction: the null controllability problem

Let us first recall some general ideas that can be applied to a large family
of linear and nonlinear evolution problems.

Suppose that we are considering an abstract state equation of the form{
yt −A(y) = Bv, t ∈ (0, T ),
y(0) = y0,

(4.1)

which governs the behaviour of a physical system (yt denotes the time
derivative of y). For simplicity, in the analysis of the system above we
will restrict to the context of Hilbert spaces, and so we assume that
the spaces U and H introduced below are Hilbert spaces. We make the
following additional assumptions about (4.1):

• A : D(A) ⊂ H �→ H is a (generally nonlinear) operator,
• y : [0, T ] �→ H is the state, i.e. the variable that serves to identify the

physical properties of the system,
• v : [0, T ] �→ U is the control, i.e. the variable that we can choose,
• B ∈ L(U ;H), and
• y0 ∈ H.

Suppose that the state equation is well posed in the sense that, for
any y0 ∈ H and v ∈ L2(0, T ;U), it possesses exactly one solution. Then
the null controllability problem for (4.1) can be stated as follows:

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.
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For each y0 ∈ H, find v ∈ L2(0, T ;U) such that the associated solution
satisfies y(T ) = 0.

For each system of the form (4.1), the null controllability problem
leads to many interesting questions. Let us mention several of them:

• First, are there controls v such that y(T ) = 0?

• Then, if this is the case, what is the cost we have to pay to drive
y to zero? In other words, what is the minimal norm of a control
v ∈ L2(0, T ;U) satisfying this property?

• How can these controls be computed?

From the practical viewpoint, controllability results are crucial since,
roughly speaking, they allow one to drive the solution to rest and,
consequently, are associated with finite-time work.

The controllability of differential systems is an important area of
research and has been the subject of many papers in recent years. In
particular, in the context of partial differential equations, some relevant
references for the null controllability problem are Russell (1973, 1978),
Lions (1988a,b), Imanuvilov (1995), and Lebeau & Robbiano (1995).
For semilinear systems of this kind, the first contributions have been
given in Zuazua (1991), Fabre, Puel, & Zuazua (1995), and Fursikov &
Imanuvilov (1996).

In these notes, I will try to recall some of the results that are known
concerning the controllability of systems stemming from fluid mechanics.

4.2 The classical heat equation. Carleman estimates

In this section, in order to fix the main ideas, we will consider the con-
trolled heat equation, complemented with initial and Dirichlet boundary
conditions: ⎧⎨⎩

yt − Δy = v1ω, (x, t) ∈ Ω × (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
y(x, 0) = y0(x), x ∈ Ω.

(4.2)

Here (and also in the following sections), Ω ⊂ RN is a nonempty
bounded domain, ω ⊂⊂ Ω is a (small) nonempty open subset, 1ω is
the characteristic function of ω, and y0 ∈ L2(Ω).
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It is well known that for every y0 ∈ L2(Ω) and every v ∈ L2(ω×(0, T )),
there exists a unique solution y of (4.2), with

y ∈ L2(0, T ;H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)).

In this context, the null controllability problem reads:

For each y0 ∈ L2(Ω), find v ∈ L2(ω × (0, T )) such that the
corresponding solution of (4.2) satisfies

y(x, T ) = 0 a.e. in Ω. (4.3)

Together with (4.2), for each ϕ1 ∈ L2(Ω) we can introduce the
associated adjoint system⎧⎨⎩

−ϕt − Δϕ = 0, (x, t) ∈ Ω × (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
ϕ(x, T ) = ϕ1(x), x ∈ Ω.

(4.4)

Then, it is well known, see for instance Coron (2007), that the null
controllability of (4.2) is equivalent to the following property of (4.4):

There exists C > 0 such that

‖ϕ(·, 0)‖2
L2 ≤ C

∫∫
ω×(0,T )

|ϕ|2 dxdt ∀ ϕ1 ∈ L2(Ω). (4.5)

This is called an observability estimate. We thus find that, in order to
solve the null controllability problem for (4.2), it suffices to prove (4.5).

The estimate (4.5) is implied by the so-called global Carleman inequal-
ities. These have been introduced in the context of the controllability of
PDEs by Imanuvilov (1995) and Fursikov & Imanuvilov (1996). When
they are applied to the solutions of the adjoint systems (4.4), they take
the form1∫∫

Ω×(0,T )

ρ2 |ϕ|2 dxdt ≤ K

∫∫
ω×(0,T )

ρ2 |ϕ|2 dxdt ∀ ϕ1 ∈ L2(Ω),

(4.6)
where ρ = ρ(x, t) is an appropriate weight, depending on Ω, ω and T

and the constant K only depends on Ω and ω.

1 In order to prove (4.6), as a first step we have to use a weight ρ decreasing to
zero, as t → 0 and also as t → T , for instance exponentially. Then, the parabolicity
of (4.4) makes it possible to choose ρ only decreasing to zero as t → 0.
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Combining (4.6) and the dissipativity properties of the backwards
heat equation (4.4), it is not difficult to deduce (4.5) for some C only
depending on Ω, ω and T .

As a consequence, we have:

Theorem 4.2.1 The linear system (4.2) is null controllable. In other
words, for each y0 ∈ L2(Ω), there exists v ∈ L2(ω× (0, T )) such that the
corresponding solution of (4.2) satisfies (4.3).

There are many generalizations and variants of this result that provide
the null controllability of other similar linear state equations:

• Time-space dependent (and sufficiently regular) coefficients can
appear in the equation, other boundary conditions can be used,
boundary control (instead of distributed control) can be imposed, etc.
For a review of recent applications of Carleman inequalities to the
controllability of parabolic systems, see Fernández-Cara & Guerrero
(2006).

• The controllability of Stokes-like systems can also be analyzed with
these techniques. This includes systems of the form

yt − Δy + (a · ∇)y + (y · ∇)b+ ∇p = v1ω, ∇ · y = 0,

where a and b are regular enough; see for instance Fernández-Cara
et al. (2004).

• Other linear parabolic (non-scalar) systems can also be considered.

As mentioned above, an interesting question related to Theorem 4.2.1
concerns the cost of null controllability. One has the following result
from Fernández-Cara & Zuazua (2000a):

Theorem 4.2.2 For each y0 ∈ L2(Ω), let us set

C(y0) = inf{ ‖v‖L2(ω×(0,T )) : solution of (4.2) with y(x, T ) = 0 in Ω }.
Then we have the following estimate

C(y0) ≤ eC(1+ 1
T )‖y0‖L2 ,

where the constant C only depends on Ω and ω.

Remark 4.2.3 Notice that Theorem 4.2.1 ensures the null controllabil-
ity of (4.2) for any ω and T . Of course, this is related to the fact that,
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in a parabolic equation, the information is transmitted at infinite speed.
For instance, this is not the case for the wave equation2.

4.3 Positive and negative controllability results for the
one-dimensional Burgers equation

Let us now consider the following system for the viscous Burgers
equation: ⎧⎪⎨⎪⎩

yt − yxx + yyx = v1ω, (x, t) ∈ (0, 1) × (0, T ),

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1).

(4.7)

Some controllability properties of (4.7) have been studied by Fur-
sikov & Imanuvilov (1996, Chapter 1, Theorems 6.3 and 6.4). It is shown
there that, in general, a stationary solution of (4.7) with large L2-norm
cannot be reached (not even approximately) at any time T . In other
words, with the help of one control, the solutions of the Burgers equation
cannot be driven to an arbitrary state in finite time.

For each y0 ∈ L2(0, 1), let us introduce

T (y0) = inf{T > 0 : (4.7) is null controllable at time T }.
Then, for each r > 0, let us define the quantity

T ∗(r) = sup{T (y0) : ‖y0‖L2 ≤ r }.
Let us show that T ∗(r) > 0, with explicit sharp estimates from above and
from below. In particular, this will imply that (global) null controllability
at any positive time does not hold for (4.7). We have the following result
from Fernández-Cara & Guerrero (2007b):

Theorem 4.3.1 Let φ(r) = (log 1
r )−1. We have

C0φ(r) ≤ T ∗(r) ≤ C1φ(r) as r → 0, (4.8)

for some positive constants C0 and C1 not depending on r.

2 For the linear wave equation, null controllability is equivalent to exact control-
lability, but does not always hold. On the contrary, the couple (ω, T ) has to satisfy
appropriate geometrical assumptions; see Lions (1988b) and Bardos, Lebeau, &
Rauch (1992) for more details.
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Remark 4.3.2 The same estimates hold when the control v acts on the
system (4.7) through the boundary only at x = 1 (or only at x = 0).
Indeed, it is easy to transform the boundary controlled system⎧⎪⎨⎪⎩

yt − yxx + yyx = 0, (x, t) ∈ (0, 1) × (0, T ),

y(0, t) = 0, y(1, t) = w(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1)

into a system of the kind (4.7). The boundary controllability of the
Burgers equation with two controls (at x = 0 and x = 1) has been
analyzed in Guerrero & Imanuvilov (2007); see also Coron (2007). There,
it is shown that even in this more favourable situation null controllability
does not hold for small time. It is also proved in that paper that exact
controllability does not hold for large time3.

Proof (Theorem 4.3.1) The proof of the estimate from above in (4.8)
can be obtained by solving the null controllability problem for (4.7) via
a (more or less) standard fixed point argument, using global Carleman
inequalities to estimate the control and energy inequalities to estimate
the state and being very careful with the role of T in these inequalities.

Let us give more details. We will denote byQ the domain (0, 1)×(0, T ).
First we recall that, as long as a ∈ L∞(Q), we can find controls v such
that the solution of the linear system⎧⎪⎪⎨⎪⎪⎩

yt − yxx + a(x, t)yx = v1ω, (x, t) ∈ (0, 1) × (0, T ),

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1)

satisfies

y(x, T ) = 0 in Ω. (4.9)

This is implied by the observability of the associated adjoint system⎧⎪⎪⎨⎪⎪⎩
−ϕt − ϕxx + a(x, t)ϕx = 0, (x, t) ∈ (0, 1) × (0, T ),

ϕ(0, t) = ϕ(1, t) = 0, t ∈ (0, T ),

ϕ(x, T ) = ϕ0(x), x ∈ (0, 1),

which, in turn, is implied by an appropriate Carleman estimate, see for
example Fursikov & Imanuvilov (1996).

3 However, the results in Guerrero & Imanuvilov (2007) do not allow one to
estimate T (r); in fact, the proofs are based on contradiction arguments.
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Moreover, the controls v can be found in L∞(ω×(0, T )) and such that

‖v‖∞ ≤ eC∗/T ‖y0‖L2(0,1) (4.10)

for some C∗ = C∗(ω, ‖a‖∞); see Fernández-Cara & Zuazua (2000b).
Let us show that this provides a local controllability result for the

nonlinear system (4.7):

Lemma 4.3.3 Assume that

y0 ∈ H1
0 (0, 1), ‖y0‖∞ ≤ 1

2
and ‖y0‖L2(Ω) ≤ 1

2T
e−C∗

1 /T , (4.11)

where C∗
1 corresponds to the constant C∗ in (4.10) for ‖a‖∞ = 1. Then

there exist controls v ∈ L∞(ω× (0, T )) such that the associated solutions
to (4.7) satisfy (4.9).

Proof (Sketch) The proof of this lemma relies on well known arguments,
but we present a sketch for the sake of completeness.

For s in (1
2 , 1) we define the set-valued mapping A : Hs(Q) → Hs(Q)

as follows: for each z ∈ Hs(Q), we first denote by A0(z) the set of
all controls v ∈ L∞(ω × (0, T )) such that (4.10) is satisfied and the
associated solution of⎧⎪⎪⎨⎪⎪⎩

yt − yxx + z(x, t)yx = v1ω (x, t) ∈ Q,

y(0, t) = y(1, t) = 0 t ∈ (0, T ),

y(x, 0) = y0(x) x ∈ (0, 1)

(4.12)

fulfills (4.9); then, A(z) is by definition the family of these associated
solutions.

Let K be the closed convex set K = {z ∈ Hs(Q) : ‖z‖∞ ≤ 1}. Let us
check that the hypotheses of Kakutani’s Fixed-Point Theorem are satis-
fied by A in K (for the statement of this theorem, see for instance Aubin,
1984):

• First, we note that the solution of (4.12) belongs to the space

X := L2(0, T ;H2(0, 1)) ∩H1(0, T ;L2(0, 1)).

In particular, y ∈ Hs(Q). Then, an application of the classical maximum
principle yields

‖y‖∞ ≤ T‖v‖∞ + ‖y0‖∞.
Now, from (4.10) and (4.11), we deduce that

‖y‖∞ ≤ 1.
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Consequently, A maps K into K.

• It is not difficult to prove that, for each z ∈ K, A(z) is a nonempty
compact convex subset of Hs(Q), in view of the compactness of the
embedding X ↪→ Hs(Q).

• Furthermore, A is upper hemicontinuous in Hs(Q), that is for each
μ ∈ (Hs(Q))′, the single-valued mapping z �→ supy∈A(z)〈μ, y〉 is upper
semi-continuous. Indeed, let us assume that zn ∈ K for all n and zn → z0
in Hs(Q). For each n, there exists yn ∈ A(zn) such that

sup
y∈A(zn)

〈μ, y〉 = 〈μ, yn〉.

Then, from classical regularity estimates for the linear heat equation
(see for instance Ladyzenskaya, Solonnikov, & Uraltzeva, 1967), we see
that, at least for a subsequence, one has

yn → y∗ weakly in L2(0, T ;H2(0, 1))

and

yn,t → y∗t weakly in L2(Q),

whence

yn → y∗ strongly in L2(0, T ;H1
0 (0, 1)).

Consequently, znyn,x converges weakly in L2(Q) to z0y
∗
x and the limit

function y∗ satisfies (4.12) and y∗ ∈ A(z0). This shows that

lim sup
n→∞

sup
y∈A(zn)

〈μ, y〉 ≤ sup
y∈A(z0)

〈μ, y〉,

as desired.
In view of Kakutani’s Theorem, there exists ŷ ∈ K such that ŷ ∈ A(ŷ).

This ends the proof of Lemma 4.3.3.

Let us now finish the proof of the right inequality in (4.8). Assume
that y0 ∈ L2(0, 1) and ‖y0‖L2(0,1) ≤ r. In a first step, we take
v(x, t) ≡ 0. Then, from classical parabolic regularity results, see for
instance Ladyzenskaya et al. (1967), we know that y(·, t) ∈ H1

0 (0, 1) for
any t > 0 and there exist constants τ and M such that the solution of
(4.7) satisfies

‖y(·, t)‖∞ ≤Mt−1/4‖y0‖L2(0,1) ∀ t ∈ (0, τ).
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We allow the solution to evolve freely, until it reaches a set of the form{
w ∈ L∞(0, 1) : ‖w‖∞ ≤ 1

2
, ‖w‖L2(0,1) ≤ r

}
.

More precisely, we take v(x, t) ≡ 0 for t ∈ (0, T0), where T0 = (2M)4r4.
Let us set y0 = y0(·, T0). Then y0 ∈ H1

0 (0, 1),

‖y0‖∞ ≤ 1
2
, and ‖y0‖L2(0,1) ≤ r.

Let us now consider the system⎧⎪⎨⎪⎩
yt − yxx + yyx = v1ω, (x, t) ∈ (0, 1) × (T0, T0 + T1),

y(0, t) = y(1, t) = 0, t ∈ (T0, T0 + T1),

y(x, T0) = y0(x), x ∈ (0, 1),

(4.13)

where

T1 =
C∗

1

log 1
r

.

Since one can assume that 1
2C∗ log 1

r ≥ 1, in view of Lemma 4.3.3
there exist controls v̂ ∈ L∞(ω × (T0, T0 + T1)) such that the associated
solutions of (4.13) satisfy

y(x, T0 + T1) = 0 in (0, 1).

We then set v(x, t) ≡ v̂(x, t) for t ∈ (T0, T0 + T1). In this way, we have
shown that we can drive the solution of (4.7) exactly to zero in a time
interval of length

T0 + T1 = (2M)4r4 +
C∗

1

log 1
r

.

Hence, the second inequality in (4.8) is proved.
Let us now give the proof of the estimate from below in (4.8). This is

inspired by the arguments in Anita & Tataru (2002).
We will prove that there exist positive constants C0 and C ′

0 such that,
for any sufficiently small r > 0, we can find initial data y0 satisfying
‖y0‖L2 ≤ r with the following property: for any state y associated to y0,
one has

|y(x, t)| ≥ C ′
0r for some x ∈ (0, 1) and any t : 0 < t < C0φ(r).

Thus, let us set T = φ(r) and let ρ0 ∈ (0, 1) be such that (0, ρ0)∩ω = ∅.
Notice that this is not restrictive, since it is always possible to work in
a suitable open subset ω̃ ⊂ ω.
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We can suppose that 0 < r < ρ0. Let us choose y0 ∈ L2(0, 1) such
that y0(x) = −r for all x ∈ (0, ρ0) and let us denote by y an associated
solution of (4.7).

Let us introduce the function Z = Z(x, t), with

Z(x, t) = exp
{
−2
t

(
1 − e−ρ2

0(ρ0−x)3/(ρ0/2−x)2
)

+
1

ρ0 − x

}
.

Then one has Zt − Zxx + ZZx ≥ 0.

Let us now set w(x, t) = Z(x, t) − y(x, t). It is immediate that⎧⎪⎨⎪⎩
wt − wxx + ZZx − yyx ≥ 0, (x, t) ∈ (0, ρ0) × (0, T ),

w(0, t) ≥ 0, w(ρ0, t) = +∞, t ∈ (0, T ),

w(x, 0) = r, x ∈ (0, ρ0).

(4.14)

Consequently, w−(x, t) ≡ 0, where w− denotes the negative part of w.
Indeed, let us multiply the differential equation in (4.14) by −w− and
let us integrate in (0, ρ0). Since w− vanishes at x = 0 and x = ρ0, after
some manipulation we find that

1
2

d
dt

∫ ρ0

0

|w−|2 dx+
∫ ρ0

0

|w−
x |2 dx

=
∫ ρ0

0

w−(ZZx − yyx) dx ≤ C

∫ ρ0

0

|w−|2 dx.

Hence,

y ≤ Z in (0, ρ0) × (0, T ). (4.15)

Let us set ρ1 = ρ0/2 and let r̃ be a regular function satisfying the
following: r̃(0) = r̃(ρ1) = 0; r̃(x) = r for all x ∈ (δρ1, (1 − δ)ρ1) and
some δ ∈ (0, 1/4); −r ≤ −r̃(x) ≤ 0; and

|r̃x| ≤ Cr and |r̃xx| ≤ C in (0, ρ1), (4.16)

where C = C(ρ1) is independent of r.

Let us introduce the solution u of the auxiliary system⎧⎪⎨⎪⎩
ut − uxx + uux = 0, (x, t) ∈ (0, ρ1) × (0, T ),

u(0, t) = Z(ρ1, t), u(ρ1, t) = Z(ρ1, t), t ∈ (0, T ),

u(x, 0) = −r̃(x), x ∈ (0, ρ1).
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We will need the following lemma from Fernández-Cara & Guerrero
(2007b), whose proof will be given below:

Lemma 4.3.4 One has

|u| ≤ Cr and |ux| ≤ Cr1/2 in (0, ρ1) × (0, φ(r)), (4.17)

where C is independent of r.

Taking into account (4.15) and that ux, y ∈ L∞((0, ρ1) × (0, T )) (see
Lemma 4.3.4 above), a standard application of Gronwall’s Lemma shows
that

y ≤ u in (0, ρ1) × (0, T ).

On the other hand, we see from (4.17) that ut − uxx ≤ C∗r3/2 in
(0, ρ1) × (0, φ(r)) for some C∗ > 0. Let us consider the functions p and
q, given by p(t) = C∗r3/2t− r and

q(x, t) = c(e−(x−(ρ1/4))2/4t + e−(x−3(ρ1/4))2/4t).

It is then clear that b = u− p− q satisfies

bt − bxx ≤ 0 in (ρ1/4, 3ρ1/4) × (0, φ(r)),

b(ρ1/4, t) ≤ Z(ρ1, t) − C∗r3/2t+ r − c(1 + e−ρ2
1/(16t)) ∀ t ∈ (0, φ(r)),

b(3ρ1/4, t) ≤ Z(ρ1, t) − C∗r3/2t+ r − c(1 + e−ρ2
1/(16t)) ∀ t ∈ (0, φ(r)),

b(x, 0) = 0 for x ∈ (ρ1/4, 3ρ1/4).

Obviously, in the definition of q the constant c can be chosen large
enough to have Z(ρ1, t) − C∗r3/2t + r − c(1 + e−ρ2

1/(16t)) < 0 for any
t ∈ (0, φ(r)). If this is the case, we get u ≤ p+ q and, in particular,

u(ρ1/2, t) ≤ (p+ q)(ρ1/2, t) = 2ce−ρ2
1/(64t) + C∗r3/2t− r.

Therefore, we see that there exist C0 and C ′
0 such that u(ρ1/2, t) < −C ′

0r

for any t ∈ (0, C0φ(r)).
This proves (4.8) and, consequently, ends the proof of Theo-

rem 4.3.1.

We now give the promised proof of Lemma 4.3.4.

Proof (Lemma 4.3.4) The first estimate in (4.17) can be obtained in a
classical way, using arguments based on the maximum principle for the
heat equation and the facts that

|r̃(x)| ≤ r, Z(ρ1, t) ≤ Cr2, and Zt(ρ1, t) ≤ Cr2φ(r)−2

for x ∈ (0, ρ1) and t ∈ (0, C0φ(r)).
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Let us explain how the second estimate in (4.17) can be deduced. Let
us set ũ(x, t) = u(x, t) − Z(ρ1, t). This function satisfies⎧⎪⎨⎪⎩
ũt − ũxx + (ũ+ Z(ρ1, t))ũx = −Zt(ρ1, t), (x, t)∈(0, ρ1) × (0, C0φ(r)),

ũ(0, t) = 0, ũ(ρ1, t) = 0, t ∈ (0, C0φ(r)),

ũ(x, 0) = −r̃(x), x ∈ (0, ρ1).

• In a standard way, we can deduce energy estimates for ũ:

‖ũ‖2
L∞(0,C0φ(r);L2(0,ρ1))

+ ‖ũx‖2
L2((0,ρ1)×(0,C0φ(r)))

≤ C‖r̃‖2
L2(0,ρ1)

+ C

∫ ρ1

0

∫ C0φ(r)

0

|ũ Zt(ρ1, t)|dt dx.

Since |ũ| ≤ Cr, we obtain

‖ũ‖2
L∞(0,C0φ(r);L2(0,ρ1))

+ ‖ũx‖2
L2((0,ρ1)×(0,φ(r))) ≤ Cr2. (4.18)

From the definition of ũ, a similar estimate holds for u. Multiplying
the equation for ũ by ũt, we also get ũt ∈ L2((0, ρ1) × (0, C0φ(r))),
ũx ∈ C0([0, C0φ(r)];L2(0, ρ1)) and

‖ũt‖2
L2((0,ρ1)×(0,C0φ(r))) + ‖ũx‖2

L∞(0,C0φ(r);L2(0,ρ1))

≤ 1
2
‖ũt‖2

L2((0,ρ1)×(0,C0φ(r))) + C
(
‖(ũ+ Z(ρ1, t))ũx‖2

L2((0,ρ1)×(0,C0φ(r)))

+‖Zt(ρ1, ·)‖2
L2(0,C0φ(r)) + ‖r̃x‖2

L2(0,ρ1)

)
.

Taking into account (4.16), (4.18) and the fact that |ũ| ≤ Cr, we deduce
that

‖ũt‖2
L2((0,ρ1)×(0,C0φ(r))) + ‖ũx‖2

L∞(0,C0φ(r);L2(0,ρ1))
≤ Cr2. (4.19)

Obviously, this also holds for the norm of ũxx in L2((0, ρ1)×(0, C0φ(r))).
Again, these estimates are satisfied by u.

• Next, by multiplying the equation for ũ by −ũtxx and then
integrating with respect to x in (0, ρ1), we have∫ ρ1

0

|ũtx|2 dx+
1
2

d
dt

∫ ρ1

0

|ũxx|2 dx

=
∫ ρ1

0

ũtxx(ũ+ Z(ρ1, t))ũx dx+
∫ ρ1

0

ũtxxZt(ρ1, t) dx.
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Integrating with respect to the time variable in (0, t), we obtain the
following after several integrations by parts:∫ t

0

∫ ρ1

0

|ũsx|2 dxds+
(∫ ρ1

0

|ũxx|2 dx
)

(t) ≤ 1
2

(∫ ρ1

0

|ũxx|2 dx
)

(t)

+
1
2

∫ t

0

∫ ρ1

0

|ũsx|2 dxds+ C

[(∫ ρ1

0

|ũ+ Z(ρ1, s)|2|ũx|2 dx
)

(t)

+
∫ ρ1

0

r̃ r̃x r̃xx dx+
∫ ρ1

0

|r̃xx|2 dx+
∫ t

0

∫ ρ1

0

|ũxx|2|ũ+ Z(ρ1, s)|2 dxds

+r2 +
∫ t

0

∫ ρ1

0

((|ũs|2 + |Zs(ρ1, s)|2) + |ũxx|2)|ũx|2 dxds

+|Zt(ρ1, t)|2 +
∫ t

0

|Zss(ρ1, s)|2 ds
]
.

Using again that |ũ| ≤ Cr and (4.19), we deduce that

‖ũtx‖2
L2((0,ρ1)×(0,C0φ(r))) + ‖ũxx‖2

L∞(0,C0φ(r);L2(0,ρ1))

≤ C(r4 + r2 + 1 + r4φ(r)−4 + r4φ(r)−8).
(4.20)

As a consequence, (4.20) implies that

‖ũtx‖2
L2((0,ρ1)×(0,C0φ(r))) + ‖ũxx‖2

L∞(0,C0φ(r);L2(0,ρ1))
≤ C. (4.21)

• Finally, in order to estimate ũx in L∞((0, ρ1) × (0, C0φ(r))), we
observe that for each t ∈ (0, C0φ(r)) there exists a(t) ∈ (0, ρ1) such that
ũx(a(t), t) = 0. Using this fact, we obtain:

|ũx(x, t)|2 =
1
2

∫ x

a(t)

ũx(ξ, t)ũxx(ξ, t) dξ.

Applying the estimates (4.19) and (4.21) to the functions ũx and ũxx,
which belong to L∞(0, C0φ(r);L2(0, ρ1)) and L∞(0, C0φ(r);L2(0, ρ1))
respectively, we deduce at once that

‖ũx‖2
L∞((0,ρ1)×(0,C0φ(r))) ≤ Cr,

which in particular implies the second estimate in (4.17).

4.4 Other more realistic nonlinear equations and systems

There are many more realistic nonlinear equations and systems from
fluid mechanics that can also be considered in this context. First, we
have the well known Navier–Stokes equations:
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⎧⎪⎨⎪⎩
yt + (y · ∇)y − Δy + ∇p = v1ω, ∇ · y = 0, (x, t) ∈ Q,

y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.
(4.22)

Here and below, Q and Σ respectively stand for the sets

Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ),

where Ω ⊂ RN is a nonempty bounded domain, N = 2 or N = 3 and
(again) ω ⊂⊂ Ω is a nonempty open set.

To my knowledge, the best results concerning the controllability of this
system have been given in Fernández-Cara et al. (2004) and Fernández-
Cara et al. (2006)4. Essentially, these results establish the local exact
controllability of the solutions of (4.22) to uncontrolled trajectories
(this is, more or less, the analog of the positive controllability result
in Theorem 4.3.1).

More precisely, in these references it is proved that, for any solution
(ŷ, p̂) of the Navier–Stokes system (with v = 0) with ŷ ∈ L∞(Q)N , there
exists ε > 0 such that, if ‖y0 − ŷ(·, 0)‖H1 ≤ ε, then there exist controls
v and associated solutions (y, p) of (4.22) with the following property:

y(x, T ) = ŷ(x, T ) in Ω.

Similar results have been given in Guerrero (2006) for the Boussinesq
equations{

yt + (y · ∇)y − Δy + ∇p = θk + v1ω, ∇ · y = 0,

θt + y · ∇θ − Δθ = u1ω

complemented with initial and Dirichlet boundary conditions for y and
θ (see Fernández-Cara et al. (2006) for a controllability result with a
reduced number of scalar controls).

Let us also mention Barbu et al. (2003) and Havarneanu, Popa, &
Sritharan (2006), where the controllability of the MHD and other related
equations has been analyzed.

Another system is considered in Fernández-Cara & Guerrero (2007a):{
yt + (y · ∇)y − Δy + ∇p = ∇× w + v1ω, ∇ · y = 0,

wt + (y · ∇)w − Δw −∇(∇ · w) = ∇× y + u1ω.
(4.23)

4 The main ideas come from Fursikov & Imanuvilov (1999) and Imanuvilov
(2001); some additional results have appeared recently in Guerrero, Imanuvilov, &
Puel (2006) and González-Burgos, Guerrero, & Puel (2009).
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Here, N = 3. These equations govern the behavior of a micropo-
lar fluid, see �Lukaszewicz (1999). As usual, y and p stand for the velocity
field and pressure and w is the microscopic velocity of rotation of the
fluid particles. Again, the local exact controllability of the solutions to
the trajectories is established.

In this case, it is shown that, for any triplet (ŷ, p̂, ŵ) solving (4.23)
with v = 0 and u = 0 and satisfying ŷ, ŵ ∈ L∞(Q)N , there exists ε > 0
such that, if ‖y0− ŷ(·, 0)‖H1 +‖w0− ŵ(·, 0)‖H1 ≤ ε, we can find controls
v and associated solutions (y, p, w) of (4.23) with the following property:

y(x, T ) = ŷ(x, T ) and w(x, T ) = ŵ(x, T ) in Ω.

Notice that this case involves a non-trivial difficulty. The main reason
is that w is not a scalar variable and the equations satisfied by its com-
ponents wi are coupled through the second-order terms ∂i(∇ · w). This
is a serious obstacle and an appropriate strategy has to be developed in
order to deduce the required Carleman estimates.

For all these systems, the proof of the local controllability results can
be achieved arguing as in the first part of the proof of Theorem 4.3.1.
This is the general structure of the argument:

• First, consider a linearized similar problem and the associated adjoint
system and rewrite the original controllability problem in terms of a
fixed point equation.

• Then, prove a global Carleman inequality and an observability esti-
mate for the adjoint system. This provides a controllability result for
the linearized problem.

• Prove appropriate estimates for the control and the state (this needs
some kind of smallness of the data); prove an appropriate compactness
property of the state and deduce that there exists at least one fixed
point.

There is an alternative method that relies on the Implicit Function
Theorem, which corresponds to another strategy introduced by Fur-
sikov & Imanuvilov (1996):

• First, rewrite the original controllability problem as a nonlinear
equation in a space of admissible “state-control” pairs.

• Then, prove an appropriate global Carleman inequality and a regular-
ity result and deduce that the linearized equation possesses at least
one solution. Again, this provides a controllability result for a related
linear problem.
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• Check that the hypotheses of a suitable implicit function Theorem are
satisfied and deduce a local result.

At present, no negative result is known to hold for these nonlinear
systems (apart from the one-dimensional Burgers equation).
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Abstract

In this paper we review some results concerning the behaviour of the
incompressible Navier–Stokes solutions in the zero viscosity limit. Most
of the emphasis is put on the phenomena occurring in the boundary layer
created when the no-slip condition is imposed. Numerical simulations
are used to explore the limits of the theory. We also consider the case
of 2D vortex layers, i.e. flows with internal layers in the form of a rapid
variation, across a curve, of the tangential velocity.

5.1 Introduction

The aim of this paper is to give a short review of some recent results
in the study of the behaviour of a high-Reynolds-number fluid that
has developed an internal scale due to the interaction with a physical
boundary. Our starting point is the incompressible Navier–Stokes (NS)
equations:

∂tuν + uν · ∇uν + ∇p = νΔuν (5.1)

∇ · uν = 0 (5.2)

uν(x, t = 0) = u0(x), (5.3)

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.
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where, with the coefficient ν, which we shall call viscosity, we denote the
reciprocal of the Reynolds number Re.

Understanding the behaviour of a high Reynolds number flow is a
fundamental and challenging problem which has received great atten-
tion from the research community. This is due to the relevance of this
problem from the practical point of view and to the fact that the system
(5.1)–(5.3) is one of the paradigms of a complex system. It is in fact
well known that when the Reynolds number is increased above a critical
value, internal flows and boundary layers undergo a remarkable transi-
tion from the laminar to the turbulent regime. The orderly pattern of
laminar flow ceases to exist and the velocity and pressure fields exhibit
very irregular, high-frequency fluctuations distributed over a large range
of time and length scales. The mechanism responsible for the develop-
ment of turbulence is still a matter of debate. A discussion of the various
scenarios that have been proposed in the literature is beyond the scope
of this paper. We shall restrict our attention to the question of whether,
in the zero viscosity limit, the solutions of the NS system converge to
the solutions of the Euler equations.

If the fluid does not interact with a physical boundary (i.e. when the
fluid fills the whole Rn or for periodic domains) it is known that the
answer is positive, see e.g. Swann (1971).

In this paper we shall focus on the case when the fluid interacts with
a solid boundary. In this case the NS equations must be supplemented
with the appropriate boundary condition, and most of our attention will
be devoted to the no-slip boundary condition:

uν(x, t) = 0 for x ∈ ∂Ω , (5.4)

where Ω is the region where the fluid is confined. The above boundary
condition can be derived from a kinetic description based on the Boltz-
mann equation in the zero mean free-path limit. For example, suppose
that the interaction of the molecules with the wall is described by the
Maxwell kernel. Then, if a non negligible fraction of the molecules hitting
the wall accommodates, i.e. is re-emitted with the Gaussian distribution
of the wall, then in the zero mean free–path limit one derives (5.4). The
Navier boundary condition (the main competitor of the no-slip BC) is
derived when all the particles hitting the wall, except a fraction of the
same order of magnitude as the mean free-path, are specularly reflected.
The consensus is that (5.4) is the relevant BC for ordinary flows, while
the Navier BC are a useful tool in the modelling of micro-fluids or of
geo-fluids.
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The reason why the analysis of a wall-bounded flow is challenging, is
that this is a true singular perturbation problem. The fluid, close to the
boundary, experiences a sharp transition to pass from rest, as prescribed
by (5.4), to the free-stream non-viscous regime. Therefore a strong gra-
dient in the direction normal to the wall appears and a large amount of
vorticity is created. This is the first stage of a complicated process (not
yet fully understood, as will be illustrated in more detail in Section 4)
whose ultimate results are the injection of vorticity in the free-stream
inviscid flow, the break-up of Prandtl’s scenario and, probably, the fail-
ure of the convergence of the NS solutions to the Euler solutions (at least
in the classical sense). An understanding of this process would be a major
advance because it would shed light on the mechanisms of the onset of
turbulence. From the mathematical point of view among the questions
one would like to answer are the following. First, whether NS solutions
converge to Prandtl’s boundary layer solutions (and if so under which
conditions and up to what time). If the answer to this question is posi-
tive this would imply that NS solutions converge to Euler solutions away
from boundaries, thanks to Kato’s criterion (Kato, 1984). Second, given
that Prandtl’s solutions in general develop a singularity, does this singu-
larity have anything to do with the onset of turbulence, or is it a mere
mathematical curiosity? Third, supposing that Prandtl’s solution does
not correctly describe the NS solutions close to the boundary, can one
still hope to have the convergence of the NS solutions to the Euler solu-
tions away from boundaries? And in this case, is it possible to describe
the generation of vorticity at the boundary and the shedding of vorticity
away from the boundary, without resorting to the full NS equations?

None of the above questions has so far received a fully satisfactory
answer.

The plan of the paper is the following. In the next section we shall
briefly review some of the most important results concerning the conver-
gence of the Navier–Stokes solutions to the Euler solutions. We shall see
that the theory is particularly unsatisfactory when the fluid interacts
with a boundary at which no-slip is enforced. This leads to Section 3
where Prandtl’s equations are derived and some of the available well-
posedness theorems are reviewed. In Section 4 we report some results,
based on numerics as well as on analysis, on the blow up of the solu-
tions of Prandtl’s equations. In Section 5 we focus on a planar inviscid
flow with vorticity concentrated on a curve (vortex sheets). After a brief
review of some of the results that have appeared in the last three decades,
we consider the role of the viscosity and derive the vortex layer equations.
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5.2 Convergence of Navier–Stokes solutions to Euler solutions

5.2.1 Domains without boundaries

In the absence of boundaries (periodic solutions or solutions decaying at
infinity), the convergence of viscous planar flow to ideal planar flow with
smooth initial data has been shown independently by McGrath (1968)
and Golovkin (1966) with no restriction on the time interval of solution.
The inviscid Eulerian dynamics is approached at a rate that is O(ν).
Swann (1971) proved the existence of a unique classical solution to the
Navier–Stokes equations in R3 for a small time interval independent of
the viscosity and that, for vanishing viscosity, the solutions converge
uniformly to a function that is solution to the Euler equations in R3.

Other results of this type (convergence at rate O(ν) for smooth enough
initial data in 2D or 3D) can also be found in Marsden (1970), Kato
(1972), and Beale & Majda (1981). Constantin & Wu (1995) considered
the case of vortex patches (2D flows with vorticity supported on bounded
sets) with smooth boundaries. They proved the following:

Theorem 5.2.1 (Constantin & Wu, 1995) Consider the velocity
difference

w(x, t) = uν(x, t) − u(x, t)

between a solution of the Navier–Stokes equation and a solution of the
Euler equation on the plane. Assume that these have the same initial
datum, corresponding to a vortex patch with smooth boundary. Then the
difference w(x, t) is square integrable and obeys the estimate:

‖w(·, t)‖2
L2 ≤ (2νt)‖ω0‖2

L2 exp
(∫ t

0

2‖∇u(·, τ)‖L∞ dτ
)
.

Given that for vortex patches the quantity
∫ t

0
2‖∇u(·, τ)‖L∞ dτ

is globally bounded, convergence in L2 at rate (νt)1/2 follows. More
recently this rate of convergence has been made sharp by Abidi &
Danchin (2004) who proved that the optimal rate is (νt)3/4.

Regarding the case of less regular data we mention the result of
Chemin (1996), where an initial vorticity ω0 in L2

⋂
L∞ is considered.

In this case one still has convergence in L2. However the rate is not
(νt)1/2 but it is exp (−Ct‖ω0‖L2

⋂
L∞)/2, thus degrading exponentially

in time. See also Cozzi & Kelliher (2007).
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5.2.2 Navier slip boundary conditions

The presence of boundaries complicates the situation significantly, since
a boundary acts as a source of vorticity and it is precisely the lack of
control on the production of vorticity that makes the problem difficult.
This can be avoided by imposing the so-called free-boundary conditions:
ω = 0 and uν · n = 0 at the boundary, as was proposed by Lions
(1969). However, in many situations, setting ω = 0 at the boundary is
not realistic.

A generalization of the free boundary condition is the Navier friction
or slip boundary condition which still allows for vorticity production
at the boundary but in a controlled way. Defining n and τ to be the
normal and the tangent unit vector to the boundary ∂Ω, and the rate-of-
strain tensor D(v) =

(∇v + (∇v)T
)
/2, the Navier (or ‘slip’) boundary

condition can be expressed in the form:

v · n = 0 2 (n ·D(v)) · τ + αv · τ = 0 on ∂Ω,

where α > 0 is a fixed constant. It states that the tangential component
of the viscous stress at the boundary has to be proportional to the tan-
gential velocity. This boundary condition approximates the interaction
of the flow with an infinitely rough boundary. In fact Jager & Mikelic
(2001) derived, rigorously, the Navier friction boundary conditions as
the limit of the no-slip boundary condition when a laminar flow inter-
acts with a boundary whose profile oscillates. The limit is taken in the
sense that the size and the amplitude of the oscillations go to zero.

The inviscid limit of the Navier–Stokes equations with Navier slip
boundary conditions was studied in Clopeau, Mikelic, & Robert (1998)
and Lopes Filho, Nussenzveig Lopes, & Planas (2005). These works show
that the boundary layer arising from the inviscid limit can be controlled
in 2D, thus proving the convergence to solutions of the Euler equations
in L∞([0, T ];L2(Ω)). The rate of convergence with respect to the vis-
cosity in the case of the Navier slip boundary conditions and bounded
initial vorticity is studied by Kelliher (2006). The rate of convergence
is essentially the same as that found by Chemin (1996) (in a different
context) as mentioned in the previous section.

Finally we mention Chemetov & Antontsev (2008) where the vanishing
viscosity limit with a permeable boundary is studied. In dimension three
the problem with the Navier slip boundary condition has been studied
by Iftimie & Planas (2006), where also the case of anisotropic viscosity
is treated (see also Masmoudi, 1998, and Paicu, 2005).
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More information on this line of research can be found in the nice
review paper by Lopes Filho (2007).

5.2.3 No-slip boundary conditions: Kato’s type criteria

Regarding the no-slip boundary condition, an important contribution to
the mathematical understanding of the inviscid limit was given by Kato
(1984). He proved a necessary and sufficient condition for the conver-
gence of the weak solutions of the NS equations to the solution of Euler
equations.

Theorem 5.2.2 (Kato, 1984) Suppose that in a bounded domain Ω
and on the time interval [0, T ], u is a smooth solution of the Euler
system with initial velocity u0. Let uν be a Leray–Hopf solution to the
Navier–Stokes system with the same initial velocity. Then the following
two conditions are equivalent:

(i)

uν → u, strongly in L∞([0, T ];L2(Ω))

(ii)

ν

∫ T

0

‖∇uν(·, t)‖2
L2(Γcν) dt→ 0 as ν → 0.

where Γcν denotes a boundary strip of width cν with c > 0 fixed but
arbitrary.

Kato’s condition requires that, for the convergence to take place, the
energy dissipation in a strip of width cν close to the boundary must
vanish as the viscosity tends to zero. The idea of the proof is to construct
a time-dependent boundary layer velocity v that is different from zero
only within a distance O(ν) from the boundary ∂Ω and equal to u on
∂Ω (thus v has no direct relation with the true boundary layer belonging
to uν) and then use v to estimate the L2 norm of uν − u. The result
is important as it places the condition for the convergence to hold in a
sublayer O(ν), which is much smaller than the O(

√
ν) boundary layer

prescribed by Prandtl’s theory.
There have been several results extending and improving Kato’s cri-

terion. Temam & Wang (1998) proved that Kato’s condition can be
replaced by a condition on the integrability of the pressure on the
boundary. Their main result reads:
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Theorem 5.2.3 (Temam & Wang, 1998) Let (uν , pν) and (u, p) be
the classical solutions of the Navier–Stokes equations and Euler equa-
tions respectively in the 2D strip Ω∞ = R × (0, 1). Fix T > 0 and
assume that there exist two constants κ and δ, not depending on ν, with
0 ≤ δ ≤ 1/2 such that

‖∇pν‖L2([0,T ];L2(∂Ω)) ≤ κ ν−δ− 1
4 .

Then there exists a constant c, not depending on ν such that:

‖uν − u‖L∞([0,T ];L2(Ω)) ≤ c ν(1−2δ)/15.

Wang (2001) showed that, at the expense of a slight increase of the
size of the boundary layer, one needs to consider only the tangential
derivatives of the velocity. Namely he proved the following:

Theorem 5.2.4 (Wang, 2001) Under the hypotheses of Theorem 5.2.2,
conditions (i) and (ii) from that theorem are equivalent to the following:

(iii) There exists δ(ν) such that

lim
ν→0

ν

δ(ν)
= 0

lim
ν→0

ν

∫ T

0

∫
Γδ

|∇τuντ |2 = 0.

(iv) There exists δ(ν) such that

lim
ν→0

ν

δ(ν)
= 0

lim
ν→0

ν

∫ T

0

∫
Γδ

|∇τuνn|2 = 0,

where ∇τ denotes tangential (to the boundary) derivatives, uντ denotes
the tangential components of the velocity, uνn denotes the normal com-
ponents of the velocity, and Γδ is the δ(ν) neighbourhood of the boundary
∂Ω. One possible choice for δ(ν) is ν log ν.

The basic idea of the proof is to construct explicitly a corrector θν

(a background flow) supported in the ν/α neighbourhood of the bound-
ary, where α is a free parameter which interpolates between the viscous
sublayer used by Kato and the laminar boundary layer prescribed by
Prandtl’s theory. The explicit construction of the corrector and an
upper bound on the energy dissipation rate independent of the viscosity
then allow the estimate in L∞([0, T ];L2(Ω)) of the adjusted difference
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w = uν − u − θν . One consequence of this result is that, in 2D, if the
pressure gradient along the boundary does not grow too fast (less than
ν−3/2), then convergence must occur. Thus, even in the presence of an
adverse pressure gradient, when Prandtl’s equations can develop a sin-
gularity, the viscous solution might converge to the Euler solution. This
is a further indication of the fact that the problem of the inviscid limit
in the presence of boundaries may not be related to the validity of the
boundary layer equations. Moreover, another interesting consequence of
Wang’s work indicates the numerical difficulty in verifying the inviscid
limit: essentially one has to resolve a small scale of the order 1/ν in the
direction parallel to the wall in order to be able to say anything about
the inviscid limit (see also Cheng & Wang, 2007, for a discrete version
of Kato’s result).

Finally, leaving the size of Kato’s boundary layer unchanged, Kelliher
(2007) showed that the gradient of the velocity appearing in Kato’s
condition (ii) can be replaced by the vorticity.

However, all these results give no ultimate solution to the problem
because of the unverified energy estimates on the Navier–Stokes solution.

5.2.4 Convergence with analytic initial data

When the flow satisfies the no–slip boundary conditions, one can prove
the convergence of the Navier–Stokes solutions to the Euler solution
under the assumption that the initial condition is analytic. This has
been done for the half space (x, y) ∈ R2×R+ by Sammartino & Caflisch
(1998b), following an earlier unpublished analysis of Asano (1988).
Sammartino & Caflisch (1998b) also proved that, close to the bound-
ary, the Navier–Stokes solutions converge to the solution of Prandtl’s
equations. Here we give only an informal statement of this result.

Theorem 5.2.5 (Sammartino & Caflisch, 1998b) Suppose that the
initial condition for the NS equations u0(x, y) is analytic with respect to
x and y. Then, up to a time T1 that does not depend on the viscosity,
the solution of the Navier–Stokes equations has the following structure:

uν = uP +
√
ν
(
uP

1 + w
)

close to the boundary

uν = uE +
√
ν
(
uE

1 + w
)

away from the boundary .

In the above theorem uP denotes the solution of Prandtl’s equations
(which will be introduced in the next section and which, with analytic
data, admit a unique solution, as proved by Sammartino & Caflisch,



Singularity and separation in boundary layers 89

1998a). With uP
1 and uE

1 we have denoted first order correctors to the
Prandtl and Euler solutions. These correctors satisfy linear equations.
Finally w is an overall correction term.

The meaning of “close to the boundary” or “away from the boundary”
has to be understood in the following sense. The solutions uP and uP

1

depend on the rescaled normal variable Y = y/
√
ν. The first order corre-

ctor satisfies uP
1 (x, Y → ∞) → 0, while uP (x, Y → ∞) → uE(x, y = 0).

In other words, in Sammartino & Caflisch (1998b), the solution of the
Navier–Stokes equation is constructed as a matched asymptotic expan-
sion involving the Euler (outer solution) and the Prandtl (inner solution)
flows. The time of existence of this NS solution does not depend on the
viscosity.

Remark 5.2.6 The overall corrector w can be made O(νN/2) for any
N . This can be accomplished by considering the higher order terms in
the matched asymptotic expansion (Van Dyke, 1975). In this case the
NS solution would be of the form

uν = uP +
√
νuP

1 + νuP
2 + · · · + νN/2

(
uP

N + w
)

close to the boundary, and

uν = uE +
√
νuE

1 + νuE
2 + · · · + νN/2

(
uE

N + w
)

away from the boundary.

Remark 5.2.7 In Sammartino & Caflisch (1998b) the initial condi-
tion is more general than is considered in Theorem 5.2.5. In fact there
u0(x, y) is also allowed to have a boundary-layer global corrector struc-
ture. In other words, one can allow an initial condition that, close to
the boundary has an O(1) dependence on the rescaled variable Y , and
that away from the boundary has an O(

√
ν) dependence on the rescaled

variable Y . Denoting by uNS
0 the initial condition for the NS equations,

one can allow the following structure:

uNS
0 = uP

0 (x, Y ) +
√
ν
(
uP

10(x, Y ) + w0(x, Y )
)

close to the boundary, and

uNS
0 = uE

0 (x, y) +
√
ν
(
uE

10(x, y) + w0(x, Y )
)

away from the boundary, where the various terms in the two expansions
must match smoothly.
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As we mentioned, a byproduct of the above theorem is the existence
of the NS solution (in a 3D domain with boundaries and with the no-slip
boundary condition) for a time which does not depend on the viscosity.
This result, for analytic data, can be obtained, as done by Lombardo
(2001), directly without the analysis of the boundary layer structure of
the solution. We now briefly sketch how this can be accomplished. First
define the heat operator E(w) as the operator solving the heat equation
in the half space with source term w and with zero boundary data and
initial condition:

(∂t − νΔ)u = w

u(x, y, t = 0) = 0
u(x, y = 0, t) = 0.

Define the Stokes operator SB(g) as the operator solving the Stokes
equation in the half space with boundary data g and with zero source
term and initial condition:

(∂t − νΔ) u + ∇p = 0

∇ · u = 0

u(x, y, t = 0) = 0

u(x, y = 0, t) = g.

One can define analogously the operator SIC(u0) solving the Stokes
equation in the half space with initial condition u0 and with zero source
term and zero boundary data. Then one can define the Navier–Stokes
operator as:

N = PE − SγPE ,

where P is the Leray projection onto the divergence-free vector fields,
which can be defined in such a way it commutes with the operator
(∂t − νΔ), and where γ is the trace operator on the boundary y = 0. The
solution of the Navier–Stokes equations (5.1)–(5.4), can be written as:

uν = −N (uν · ∇uν) + SIC(u0) . (5.5)

The difficulty in applying a fixed point theorem to the above expression
lies in the fact that if one tries to use the regularizing properties of the
heat kernel to compensate the derivatives, one gets estimates that are
not uniform in the viscosity. If, on the other hand, the data are analytic,
one can use the Cauchy estimate which, for a function f that is analytic



Singularity and separation in boundary layers 91

in a strip of the complex plane of width ρ0, can be written as:

|∂xf |ρ′ ≤ |f |ρ
ρ− ρ′

with ρ′ < ρ < ρ0.

Theorem 5.2.8 (Lombardo, 2001) If u0(x, y) is analytic with respect
to x in a strip of width ρ0, and analytic with respect to y in an angular
sector of the complex plane with angle θ0, then there exists a β > 0 such
that the Navier–Stokes equations (5.5) admit a unique solution uν(x, y, t)
which is analytic with respect to x in a strip of width ρ0−βt, and analytic
with respect to y in an angular sector of the complex plane with angle
θ0 − βt.

Clearly the solution exists up to a time T2 < min (ρ0/β, θ0/β). The
quantity β is the speed at which the strip (or the angular sector) of
analyticity shrinks with time.

The proof is based on the abstract Cauchy–Kowalewski Theorem
(Safonov, 1995), which is a fixed point theorem on a scale of Banach
spaces Bδ such that Bδ′ ⊃ Bδ when δ′ < δ. In our case the index δ

is the vector index δ = (ρ, θ) expressing the width of the strip and of
the angular sector of analyticity. Various estimates, uniform in ν, for
the Navier–Stokes operator are also a key ingredients for the proof of
Theorem 5.2.8.

Remark 5.2.9 Theorem 5.2.5 ensures that up to a time T1 the NS
solution has a boundary layer structure (made up of analytic solutions of
the Prandtl and Euler equations). Theorem 5.2.8 ensures the existence,
up to a time T2, of an analytic solution of the NS solution. Both T1 and
T2 do not depend on the viscosity. Clearly T1 ≤ T2.

It would be interesting to know whether T1 = T2, i.e. if the break
up of the boundary layer structure (for example because Prandtl’s solu-
tion becomes singular) necessarily leads to the break up of the analytic
solution of the NS solution.

Remark 5.2.10 Grenier (2000) proved that there exist solutions of the
NS equations that initially have a boundary layer structure and that, in
zero time, violate the expansion. The building block for this construction
is a shear layer profile that is unstable for the Euler equations.
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5.3 Prandtl’s equations

The origin of the theory of boundary layers can be traced back to the
beginning of the 20th century when Prandtl established the mathemati-
cal basis of flows for very large Reynolds number. The basic observation
of Prandtl was that the Navier–Stokes equations are a singular pertur-
bation of the Euler equations. This means that, in the zero viscosity
limit, one derives the Euler equations because the terms with higher
derivatives, i.e. the Laplacian in (5.1), are dropped. When the fluid
interacts with a physical boundary, the change in the order of the equa-
tions is reflected in the boundary conditions to be imposed. In fact the
Euler equations admit, as a boundary condition, only a condition on the
velocity normal to the boundary, while the tangential velocity remains
unknown and must be recovered through the solution of the equations.
On the other hand, for the Navier–Stokes equations, one must impose
the value of the velocity tangential to the boundary. Therefore the NS
solution and the Euler solution take different values at the boundary.
If one still wants to keep the hypothesis of the convergence of the NS
solutions to the Euler solutions one must allow a layer, close to the
boundary, where the NS solutions adjust to the Euler solution. In real
wall-bounded laminar flows one observes that this adjustment is very
rapid, and the higher the Reynolds number, the smaller the boundary
layer is. There is also a mathematical reason why the thickness of the
boundary layer should scale with some power of the Reynolds number.
If there is a discrepancy between the Euler and the NS flows, this is
necessarily due to viscous forces, i.e. to the Laplacian of the velocity
times the viscosity. To have the viscous term (νΔuν) comparable with
the inertial term (uν · ∇uν), one must have the derivatives of uν to be
of the order of some inverse power of the viscosity.

The simplest asymptotic hypothesis based on the experiments on high
Reynolds number laminar flows (rapid variation close to the boundary),
and on the above heuristic considerations, is that close to the boundary

∂yuν = O(ν−1/2) and ∂xuν = O(1).

This implies that the boundary layer thickness (necessary for the adjust-
ment of the NS solution to the inviscid regime) is O(ν1/2). Another key
observation is that at the boundary the normal velocity is zero (both for
the NS and the Euler flows). Therefore the normal velocity, inside the
boundary layer, must be O(ν1/2).
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All these observations can be implemented in a formal setting by intro-
ducing a rescaled normal variable Y = y/ε, with ε =

√
ν, and assuming

that close to the boundary,

uν = (uP , εvP ) with ∂Y u
P ∼ ∂Y v

P ∼ ∂xu
P ∼ ∂xv

P ∼ O(1) .

In the above expressions uP denotes the tangential components of the
velocity, while ∂x denotes the tangential gradient.

If one introduces the above asymptotic ansatz into the NS equations,
at the leading order one derives the Prandtl equations:

∂tu
P + uP∂xu

P + vP∂Y u
P = ∂tU + U∂xU + ∂Y Y u

P (5.6)

∂xu
P + ∂Y v

P = 0 (5.7)

uP |t=0 = u0 (5.8)

uP |Y =0 = 0 (5.9)

uP −→ U as Y → ∞ . (5.10)

In the above equations U(x, t) denotes the Euler solution calculated at
the boundary.

Notice that there is no evolution equation for the normal component
vP . In fact, the conservation of momentum in the normal direction, at
the leading order O(ε−1), simply gives ∂Y p

P = 0, i.e. the pressure is
constant inside the boundary layer. Imposing that this value matches
with the pressure predicted by the Euler equations at the boundary, one
gets ∂xp

P = −∂tU − U∂xU . This identity has been used to write (5.6).
The normal velocity vP can be recovered using (5.7), which can be

written as

vP = −
∫ Y

0

∂xu
P (x, Y ′, t) dY ′ . (5.11)

Equation (5.9) is the no–slip condition, while (5.10) is the matching
condition with the outer flow. The above equations are written supposing
that the domain in the tangential variable x is either periodic or the real
line (the plane in 3D). If the domain is finite in the x direction (say
[0, L]) then the above equation must be supplemented with some inflow
boundary conditions.

Prandtl’s equations, from the mathematical point of view, pose a
difficult problem. There are several technical points that have, so far,
prevented researchers from proving a well-posedness theorem under gen-
eral hypotheses. We mention two of them. The lack of the streamwise
viscosity, i.e. the term ∂xxu, is one difficulty because one does not have a
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regularizing effect which can prevent the energy transfer to high Fourier
modes. The second difficulty is given by the peculiar expression for
the normal velocity (5.11), which involves the derivative of the stream-
wise velocity (therefore with a loss of regularity), and an integration in
the normal velocity. This integration, in general, leads to a linear growth
in the normal direction Y .

In the sixties Oleinik (1967a,b) obtained several important existence
results. These results are based on monotonicity hypotheses for the data:
one has to assume that

U(x, t) > 0 and ∂Y u0(x, Y ) > 0 ,

together with the compatibility between initial and boundary data. The
monotonicity allows one to use the Crocco transformation that recasts
Prandtl’s equations as a degenerate parabolic equation. For a review
of the various results of Oleinik and coworkers, see the book she wrote
together with Samokhin (Oleinik & Samokhin, 1999), and also the review
papers by Caflisch & Sammartino (2000) and E (2000). Oleinik’s results
are for short time, or for long time when one considers Prandtl’s equa-
tions for x ∈ [0, L] with prescribed monotone inflow at x = 0 and for
sufficiently small L. The requirement of small L was removed by Xin &
Zhang (2004) where global weak solutions are constructed by imposing
a favourable pressure gradient, i.e.

−∂xp = ∂tU + U∂xU ≥ 0 t > 0 0 < x < L .

This theory is particularly interesting because it corresponds to what
one would expect on physical grounds. In fact a precursor of the sin-
gularity is the formation of a back flow. Oleinik’s hypotheses have the
physical meaning that initially no back flow is present. The hypothesis
of Xin & Zhang means that the external forcing (the outer Euler flow)
does not create back flow.

A different point of view was adopted by Sammartino & Caflisch
(1998a). No restriction was assumed on the sign of the data, which
were however supposed to be analytic. They proved short time exis-
tence and uniqueness of analytic solutions. This result was improved in
Cannone, Lombardo, & Sammartino (2001) and Lombardo, Cannone, &
Sammartino (2003), where the data were supposed to be analytic in
the streamwise variable, but only C2 in the normal variable. Lombardo
et al. (2003) introduced the variable ũ = uP − U and wrote Prandtl’s
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equations in the following form:

(∂t − ∂Y Y + Y ∂xU∂Y ) ũ+ 2ũ∂xũ− ∂Y

(
ũ

∫ Y

0

dY ′∂xũ

)
+ U∂xũ+ ũ∂xU = 0.

An inversion of the parabolic operator (∂t − ∂Y Y + Y ∂xU ∂Y ) through
an operator E, which can be written explicitly in terms of the Gaussian,
gives

ũ = E[ũ∂xũ] + E

[
∂Y

(
ũ

∫ Y

0

dY ′∂xũ

)]
+ E[LT] + IC + BC, (5.12)

where by LT we denote the linear terms and by IC and BC the initial
and boundary data.

Equation (5.12) is in a form suitable for application of the abstract
Cauchy-Kowalewski Theorem (Safonov, 1995) in a time-integrated ver-
sion. The term ũ∂xũ is bounded using the Cauchy estimate for the
derivative of an analytic function. The term involving the normal deriva-
tive ∂Y requires an integration by parts so that one can use the
regularizing properties of the diffusion in the normal direction.

What is missing in the theory of Prandtl’s equations is a well-posedness
result for data that are not monotone and with a weaker restriction on
the regularity than the analyticity assumption. Many evolution prob-
lems that are known to be ill-posed for Sobolev data because of the
exponential growth of high Fourier modes (the typical example of this
situation is the Kelvin–Helmholtz problem), turn out to be well posed
for analytic data. In fact the exponential decay of the Fourier spectrum
of an analytic datum can compensate, at least for a short time for the
exponential growth of the higher modes.

The longstanding lack of a general well-posedness result has led to the
conjecture that Prandtl’s equations could be ill-posed, but no proof of
this is available. The only result on this direction is numerical evidence
of the ill-posedness in H1 (Gargano, Sammartino, & Sciacca, 2007).
However this is far from being a full answer to the question.

An important phenomenon that Prandtl’s equations show is the
appearance, in finite time, of a singularity, typically in the form of the
blow up of the tangential derivative of the solution. This phenomenon,
besides being intriguing from the mathematical point of view, is also
interesting from a physical perspective. The formation of a singularity
could in fact be related to the separation of the boundary layer, which
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is one of the most striking phenomena observed in wall-bounded flows,
and which is one of the most important mechanisms of transition to
turbulence.

The finite-time blow-up of solutions to Prandtl’s equations is the
subject of the next section.

5.4 Singularity and separation

The possibility of the spontaneous generation of a singularity in solu-
tions of Prandtl’s equations was a long standing conjecture. During the
seventies many authors had tackled this problem from the numerical
point of view, but the difficulties in the numerics did not allow for any
definite conclusion.

It was in the seminal work of Van Dommelen & Shen (1980) that a
new approach, the use of Lagrangian coordinates, finally provided strong
numerical evidence that solutions of Prandtl’s equations can blow up in
a finite time.

E & Engquist (1997) finally gave a rigorous proof of this fact. The
singularity construction is based on an initial datum with a stagnation
line throughout the boundary layer and on recasting Prandtl’s equation,
along the stagnation line, in the form of a nonlinear heat equation for
∂xu. E & Engquist were able to prove that the solution of this nonlinear
heat equation blows up in finite time. The construction of E & Engquist
is based on physical grounds, because it is known that the formation of
back flow is the precursor of a possible singularity and that stagnation
points are the preferred location for the blow up of solutions of Prandtl’s
equation.

5.4.1 Van Dommelen & Shen’s singularity

All boundary layer calculations before Van Dommelen & Shen (1980)
were carried out using mesh grids with fixed partial mesh in the conven-
tional Eulerian description, see for example Collins & Dennis (1973),
Walker (1978), and Brickman & Walker (2001). It was evident that
numerical difficulties arose in these calculations, and it was impossi-
ble to resolve the problem because of the low computational resources
available at the time. A loss of accuracy was evident mainly because of
the development of large normal velocity and large streamwise gradients.
The flow assumed an eruptive character and the computation could not
be continued reliably.
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The main idea of Van Dommelen & Shen was to treat the problem
using a Lagrangian description, which turned out to be the right choice
to follow the growth of the boundary layer.

Van Dommelen & Shen considered the case of the two-dimensional
flow past an impulsively started disc in a uniform background flow. This
means that they solved (5.6)–(5.10) in a domain periodic in x ∈ [0, 2π],
with U = 2 sin (x) and with u0(x, Y ) = 2 sin (x). The incompatibil-
ity between the initial datum and the boundary datum is immediately
smoothed out by the normal viscosity which makes the flow regular in
zero time.

The flow past an impulsively started disc shows several interesting
physical phenomena such as the appearance of reverse flow, recircu-
lation, separation, and vorticity shedding. In Van Dommelen & Shen
(1980) the boundary layer terminal state was reached via an accurate
numerical integration, revealing, at time t = 1.5, the formation of a sin-
gularity which starts the interaction of the viscous boundary layer with
the inviscid outer flow. The singularity observed in the Lagrangian set-
ting of Van Dommelen & Shen, consisted in the focusing of the boundary
layer into a narrow region that forms in the upstream side of the recir-
culation zone; as a fluid particle is rapidly compressed in the streamwise
location (∇x = 0), an eruption in the normal direction occurs, with a
sharp spike forming in the displacement thickness.

The important result obtained by Van Dommelen & Shen (VDS)
seemed to confirm the ideas reported by Sears & Telionis (1975) who pro-
posed to define “unsteady separation” as the phenomenon that occurs
when the velocity and the shear stress become singular. This is generally
called the MRS (Moore, Rott, and Sears) model of separation, accord-
ing to which the unsteady separation is connected with a breakdown
of the boundary layer assumptions. Before this, the classical definition
of unsteady separation was connected with the formation of reversed
flow and the vanishing of wall shear. However, Sears & Telionis (1975)
observed that the vanishing of the wall shear and the presence of reversed
flow is not in itself sufficient to lead to unsteady separation; they quoted
several examples of flows with vanishing wall shear and for which a
breakaway is never expected to occur. An interesting and provocative
review about boundary layer theory and the many numerical experi-
ments exploring the problem of unsteady separation which followed Van
Dommelen & Shen’s work is given by Cowley (2001).
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5.4.2 Tracking Van Dommelen & Shen’s singularity

The singularity tracking method was initiated by Sulem, Sulem, & Frisch
(1983) and the long-term goal of this research is the investigation of the
possibility of a finite time singularity for the 3D Euler solutions. The idea
behind the method is that a singularity does not come out of the blue
(Frisch, Matsumoto, & Bec, 2003), but stays in the complex plane at
some distance from the real axis. Its presence before the real blow up of
the solution can be detected through a careful study of the asymptotic
properties of the Fourier spectrum. When the singularity hits the real
axis one has the real blow up of the solution. It is clear that if the issue
is to know whether an equation develops a singularity, the method can
run out of steam (Frisch et al., 2003) when the singularity is closer to
the real axis than (let us say) three or four mesh sizes, particularly when
the rate at which the singularity approaches the real axis assumes an
exponential character. If instead there is a reasonable confidence that a
particular equation develops a singularity, the tracking method has been
revealed as a powerful tool to follow and characterize the whole process.
Prandtl’s equations are therefore the perfect candidate for the use of the
singularity tracking method.

Suppose that an analytic function f(z) has an algebraic singularity at
z∗ = x∗ + iδ, i.e. that close to z∗ one has f(z) ∼ (z − z∗)α. Then the
Fourier coefficients have the following asymptotic expression (Carrier,
Krook, & Pearson, 1966; Boyd, 2000):

fk = Ck−(α+1)e−δkeikx∗
. (5.13)

The singularity tracking technique consists of fitting the Fourier coef-
ficients of f(z) using the asymptotic formula (5.13) to determine the
distance δ of the singularity that is closest to the real axis and the
algebraic character α of this complex singularity.

It is possible to extend the technique of singularity tracking to two-
dimensional functions. Let the analytic function u(z, w) admit the
following Fourier expansion:

u(z, w) =
∑
h,k

ahk e−ihze−ikw .

One can consider the coefficients ahk along the direction specified by
(h, k) = κ(cos θ, sin θ) in the space of Fourier modes. Denoting the rate
of exponential decay in κ as δ(θ), the width of the analyticity strip is

δ = min
θ
δ(θ)
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(Matsumoto, Bec, & Frisch, 2005). The angular direction θ� along which
the minimum is achieved is called the most singular direction.

We now discuss some results obtained applying this methodology to
the case of the VDS singularity (Della Rocca et al., 2006; Gargano et al.,
2007). Although the initial condition is not analytic in the normal direc-
tion one can show that the presence of the diffusion in the normal
direction makes the solution analytic in Y when t > 0. In Figure 5.1
the angular dependence of δ is shown. One can see that the most singu-
lar direction is θ� = 0, i.e. the direction parallel to the x variable. The

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

θ/π

δ(θ)

Fig. 5.1. The angular dependence of the rate of exponential decay of the
Fourier coefficients ahk. The most singular direction is θ� = 0.

VDS singularity is therefore the result of a complex singularity hitting
the real x-axis at t = 1.5; this is also confirmed by the study of the spec-
trum in the x variable of the solution u(x, Y ) keeping Y as parameter.
The singularity occurs at Y = 5 (in agreement with the results of Van
Dommelen & Shen) as a loss of exponential decay of the spectrum at
time t = 1.5. The real location of the singularity x� ≈ 1.94 also agrees
with the findings of Van Dommelen & Shen. These results are shown in
Figure 5.2.

Let us now discuss our result in terms of the physical phenom-
ena occurring within the boundary layer that lead to the singularity
formation. Vorticity is generated at the boundary because of the no-
slip condition (5.9) imposed to the velocity at the wall. The solution
exhibits a recirculation region with back-flow formation at approxi-
mately t ≈ 0.35 in response to the adverse pressure gradient imposed by
the outer flow. The formation of the recirculation region can be inferred,
in this case, from the vanishing of the wall shear (see Figure 5.3), defined
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Fig. 5.2. On the left: the loss of exponential decay of the spectrum as the
singularity time is approached. On the right: the result of singularity tracking
at Y = 5. At t ≈ 1.5 the strip of analyticity shrinks to zero as the result of a
cubic-root singularity hitting the real axis at the location x ≈ 1.94.
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Fig. 5.3. The evolution of wall shear from t = 0.05 up to t = 1.4 with a time
step increment of 0.15, and at time t = 1.5. At time t = 0.35 the wall shear has
just vanished in correspondence with the formation of a recirculation region.

here as τw(x, t) = ∂u
∂Y |Y =0. For a flow that, at the initial time, has

an everywhere positive wall shear, the condition τw(x, t) = 0 signals
the onset of reversed flow within the boundary layer. The first point of
zero wall shear appears at the rear stagnation point, and moves rapidly
upstream along the cylinder surface, defining the upstream location of
a growing recirculation region attached to the back of the cylinder.
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As time passes, the recirculating eddy grows in both the streamwise
and normal direction within the boundary layer, until a kink forms in
the vorticity contours on the upstream side of the recirculation region
at approximately t ≈ 1.35 (see Figure 5.4). This is the precursor of
the interaction of the boundary layer flow with the inviscid outer flow,
which is revealed by the formation of a sharp spike as consequence of
the singularity formation for the Prandtl solution at time t = 1.5.

0 1.94 3
0

4

8
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Fig. 5.4. Time evolution of the vorticity. At time t = 0.4 a little recirculation
region attached to the wall has been formed. At t ≈ 1.35 a kink is formed and
evolves in a sharp spike at the singularity time when the vorticity shows an
erupting behaviour.

5.4.3 Zero-time blow-up in Prandtl’s equations

Gargano et al. (2007) consider the Van Dommelen & Shen solution at
time t = 0.75, and perturb this solution with an analytic function having
a dipole singularity in the complex plane at distance δ. The dipole sin-
gularity is constructed in such a way that this initial condition has norm
bounded in H1 by a constant K, no matter how close the singularity
is to the real axis (i.e. how small δ is). The presence of this singularity
speeds up the process of singularity formation. Moreover, it is shown
that the singularity time seems to tend to zero when δ → 0.

This provides numerical evidence that Prandtl’s equations are ill-
posed in H1.
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5.4.4 A rigorous result: E & Engquist’s singularity

All the above is based on numerical approximations of Prandtl’s equa-
tions. As already remarked, after the breakthrough of Van Dommelen &
Shen, the existence of a finite time singularity for the solutions of
the Prandtl equations with physically relevant initial data is based on
solid numerical evidence. The boundary-layer unsteady separation is
caused by the presence of an adverse streamwise pressure gradient, which
involves the formation of a recirculation region and eventually leads to
an intense eruption of the near-wall vorticity, and is characterized by a
sharp spike that erupts into the outer Euler inviscid flow. The adverse
pressure gradient may be due to the surface geometry, as in the case
of the flow around a circular cylinder or it may be due to the presence
of a vortex convecting near a surface (Cassel, 2000; Obabko & Cassel,
2002). Moreover, we have seen in the previous sections that using com-
plex singularity tracking methods it is possible to classify the separation
singularity as a shock cubic–root singularity with α = 1/3.

Another advance in the theory of Prandtl’s equations was obtained by
E & Engquist (1997), who proved rigorously that solutions of Prandtl’s
equations can develop singularities in finite time.

Let us consider Prandtl’s equations with periodic initial data in the
domain D = [−π, π] × [0,∞) and with zero Euler forcing at infinity:

∂tu
P + uP∂xu

P + vP∂Y u
P = ∂Y Y u

P (5.14)

∂xu
P + ∂Y v

P = 0 (5.15)

uP |t=0 = u0 (5.16)

uP |Y =0 = vP |Y =0 = 0 (5.17)

uP |x=−π = uP |x=π (5.18)

uP −→ 0 when Y → ∞ . (5.19)

We impose an initial condition of the following form:

u0 = − sin(x)b0(x, Y ), (5.20)

with b0 ≥ 0 a regular function of x and Y in D, that is zero at Y = 0
and decays to zero as Y → ∞. It is clear that equation (5.14) preserves
the odd symmetry of the initial condition, so that we may assume the
solution to have the following form:

uP (x, Y, t) = − sin(x)b(x, Y, t), (5.21)

vP (x, Y, t) =
∫ Y

0

(
cos(x) b(x, y′, t) + sin(x) ∂xb(x, y′, t)

)
dy′.
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Substituting the expressions (5.21) into (5.14), we can write

∂tb = ∂Y Y b+ cos(x) b2 + sin(x) b ∂xb− vP ∂Y b. (5.22)

If we evaluate equation (5.22) at x = 0, and define a(Y, t) = b(0, Y, t),
we get

∂ta = ∂Y Y a+ a2 − (∂Y a)
∫ Y

0

a(y′, t) dy′, (5.23)

with the following boundary and initial conditions

a(0, t) = 0; lim
Y →∞

a(Y, t) = 0; a(Y, 0) = a0(Y ) = b0(0, Y ) .

(5.24)
Equation (5.23) is a nonlinear heat equation with quadratic nonlinearity
(which is well known to admit finite time blow-up), plus an integral term,
which E & Engquist were able to prove does not prevent singularity
formation.

Lemma 5.4.1 (E & Engquist, 1997) Let the initial condition be
a0 ≥ 0, and assume that

E(a0) =
∫ ∞

0

(
1
2

(∂Y a0)2 − 1
4
a3
0

)
dY < 0 . (5.25)

Then there exists a finite time T such that

either lim
t→T

max
Y

|a| = +∞ or lim
t→T

∂Y a(0, t) = +∞ ,

where a(Y, t) is the solution of equation (5.23) with boundary and initial
conditions given in (5.24).

This means that we have limt→T supY >0 |u(x,Y,t)
sin x |x=0 = +∞ or

lim
t→T

sup
Y >0

|∂xu(0, Y, t)| = +∞ .

One can therefore conclude the following:

Theorem 5.4.2 (E & Engquist, 1997, periodic version) Assume
that the initial condition for the periodic Prandtl equations (5.14)–(5.19)
has the form (5.20) and suppose that it satisfies the condition (5.25),
where a0 = b|x=0. Then there exists a finite time T such that the x–
derivative of the solution blows up.

In the next section we shall investigate E & Engquist’s singularity
numerically. What seems to emerge is the fact that the structure of this
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singularity is different from Van Dommelen & Shen’s singularity (alth-
ough the algebraic character as given by the exponent α is again 1/3).

5.4.5 A numerical investigation of E & Engquist’s singularity

We impose an initial condition of the form (5.20) with

b0(x, Y ) = a0(Y ) =
1
4
Y 2e−(Y −2), (5.26)

which satisfies the condition (5.25).
As was done in the previous Section for the VDS initial condition, we

shall solve Prandtl’s equations (5.14)–(5.19) using a spectral method in
the streamwise x–direction and a finite difference method in the normal
Y -direction.

In Figure 5.5 we show the behaviour in time of the solutions for
Prandtl’s equations with initial condition given by (5.26). In this case
the configuration corresponds to flow impinging from the left and right
at the line x = 0, which is the rear stagnation point. At time t � 1.20 the
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Fig. 5.5. The streamwise velocity u of Prandtl’s equations with initial datum
given by (5.26). One can follow the formation of the shock at t ≈ 1.20.

Gibbs phenomenon can be observed for the velocity u, so we argue that
at this time Prandtl’s equations have already developed a singularity.
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As the singularity forms, the singular structure seems to be convected
at infinity in the normal direction, thus making the numerical compu-
tations difficult. The computational domain used is [−π, π] × [0, YMAX],
and we chose YMAX = 60 where the velocity u is of the order of 10−18 at
time t ≈ 1.20.

On the left in Figure 5.6 we show the behaviour of a(Y, t) =
∂xu(0, Y, t). One can see that at time t ≈ 1.20 the maximum grows
around the location Y ≈ 20. On the right in the same figure we show,
at different times, the profile of u at the location Y = 20 where the
maximum of a seems to be reached.
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Fig. 5.6. On the right the behaviour of the function a(Y, t) = ∂xu(0, Y, t). On
the left the profiles of u at the cut Y = 20 and at different times.

The structure of the complex singularity found by E & Engquist seems
to be more complicated than the VDS singularity. If one investigates the
angular dependence δ(θ), reported in Figure 5.7, one sees that the most
singular direction is θ� ≈ π/4, which differs from the VDS case for which
the most singular direction is parallel to the x-axis.

Hence we consider the full (both in x then in Y ) spectrum ûk1k2 of
the velocity u and analyse the behaviour in time of the corresponding
shell–summed Fourier amplitude (Matsumoto et al., 2005; Pauls et al.,
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Fig. 5.7. The angular dependence of δ(θ) at the singularity time t = 1.20. The
distance δ seems to reach its minimum at θ ≈ π/4.

2006), defined by:

AK ≡
∑

K≤|k|<K+1

ûk,

where |k| = |(k1, k2)|. On the right in Figure 5.8 we show the evolution
of AK at different times. We fit the shell–summed amplitude of u by a
function of the form CK−αe−δK . The results show that the solution has
complex–space singularities, the closest one being within a distance δ.

As one can see in Figure 5.8, the singularity reaches the real axis
slightly before the time t = 1.20, and α is equal to 1/3. This confirms the
formation of a shock-type singularity in the x derivative for the solution
of Prandtl’s equations with an E & Engquist type initial condition given
by (5.26).

5.5 Vortex layers

In this section we shall consider the physically interesting case when the
vorticity is highly concentrated. Vortex patches or vortex sheets are two
examples of this situation. A plane vortex sheet is a curve across which
the tangential component of the fluid velocity has a discontinuity, while
the normal component is continuous.

Suppose that at time t = 0 in the plane (x, y) the flow has a tangential
discontinuity across the curve y = φ0(x) and that the flow outside the
curve is irrotational. Then the initial vorticity ω0 can be represented as
a Dirac measure supported on the curve, see Marchioro & Pulvirenti
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Fig. 5.8. The singularity tracking results for the solution of Prandtl’s equation
with initial datum given by (5.26). On the right is the time evolution of the
shell–summed amplitude of the Fourier spectrum. On the left is the evolution
in time of the analyticity strip δ and of the algebraic factor α.

(1994) or Saffman (1992):

ω0(x, y) = γ(x)δ(y − φ0(x)) ,

where γ(x) is the intensity of the tangential jump discontinuity at the
point (x, φ(x)). Supposing the fluid to be inviscid, the evolution of the
vorticity is governed by

∂tω + u · ∇ω = 0

u = K � ω (5.27)

ω(x, t = 0) = ω0,

where the kernel K is given by K(x) = ∇⊥ log |x|/2π.
If one makes the ansatz that, under the flow specified by the above

equations, a vortex sheet remains a vortex sheet (i.e. that the vorticity
will remain supported on a curve at a later time), one can write

ω(x, y, t) = γ(x, t)δ(y − φ(x, t)) ,

and one is interested in finding φ(x, t). At this point the analysis proceeds
as follows:

• characterize a point in the plane as a complex variable z = x+ iy;
• denote by Z the points on the curve and parameterize the curve using

the intrinsic arc length s:

x+ iφ(x, t) = Z(s, t) ;
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• use (5.27) to write:

u(z, t) − iv(z, t) = − i
2π

∫
γ(s′, t)

z − Z(s′, t)
ds′ ;

• using the above formula write the velocity of the sheet (U, V ) as the
principal value of the integral:

U(s, t) − iV (s, t) ≡ ∂Z̄

∂t
= − i

2π
PV

∫
γ(s′, t)

Z(s, t) − Z(s′, t)
ds′ ;

• finally, parameterize the curve using the total circulation Γ(s, t)
contained between a reference point Z(s∗, t) and the generic point
Z(s, t):

∂Z̄

∂t
= − i

2π
PV

∫
dΓ′

Z(Γ, t) − Z(Γ′, t)
.

The above equation is the Birkhoff–Rott equation, which has been exten-
sively studied from the mathematical point of view as well as from the
numerical one.

The Birkhoff–Rott equation develops a singularity, which first man-
ifests itself as an infinite curvature (a cusp) in the shape of the sheet.
Moreover, the singularity time can be made short, thus making the
Birkhoff–Rott equation an ill–posed problem. This was found using
asymptotic methods by Moore (1979), verified numerically by Krasny
(1986), and proved rigorously by Caflisch & Orellana (1986).

On the other hand it was proved by Sulem et al. (1981) that, if the
initial condition has an exponentially decaying Fourier spectrum, then
one has local-in-time existence and uniqueness of the solution. One can
achieve long-time existence for small enough perturbations of the flat
sheet (Caflisch & Orellana, 1986) or taking into account the regularizing
effect of the surface tension (Hou, Lowengrub, & Shelley, 1997).

A different kind of regularization has been recently achieved in Bardos,
Linshiz, & Titi (2008) using the 2D Euler-α equations instead of the
Euler equations. The Euler–α equations are

∂tω + u · ∇ω = 0

u = Kα � ω

ω(x, t = 0) = ω0,

where Kα = Gα � K with Gα a regularizing kernel that has symbol
(1 + α2|k|2)−1, and k is the dual Fourier variable of x.
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The fact that the Birkhoff–Rott–α model has a better behaviour than
the usual Birkhoff–Rott equations can be understood by studying the
linear stability of the flat sheet. In this case it is more convenient to
start with the equations

∂tφ = −u1∂xφ+ u2

∂tγ = −γ∂xu1 − u1∂xγ

(Marchioro & Pulvirenti, 1994). Denoting by φ̃, (ũ1, ũ2), and γ̃ the
(small) deviations from a flat sheet with constant jump intensity γ0,
one derives the linear system

∂tφ̃ = ũ2

∂tγ̃ = −γ0∂xũ1 .

If one passes to the Fourier representation and uses the fact that the
velocity is governed by the Euler–α equations, one can show that the
above system admits a positive eigenvalue λ(k),

λ(k) =
1
2
|γ0||k|

[
1 −

(
α2k2

1 + α2k2

)1/2
]
,

which however decays to zero like 1/(α2k) as k → ∞. This has to be
contrasted with the usual Birkhoff–Rott behaviour (which can be recov-
ered from the above equation when α = 0) which gives a linear growth
with k of the positive eigenvalue. It is this growth which, ultimately, is
the origin of the ill–posed behaviour of the Birkhoff–Rott equations.

A different line of thought, which we shall not review here, is based
on the analysis of the vortex sheet data in terms of measure solutions of
the Euler equations. The reader can consult the papers by Delort (1991),
Majda (1993), Evans & Muller (1994), Schochet (1996), and Lopes Filho,
Nussenzveig Lopes, & Schochet (2007), and references therein.

5.5.1 Vortex layers

From the physical point of view, it is clear that the most natural kind
of regularization to be considered is viscous regularization. If a small
viscosity is present the vorticity would be spread out. Even initially if
it is highly concentrated on a curve, after a small time τ the vorticity
would stay on a layer of thickness

√
ντ . A vortex sheet is therefore an

approximation of a vortex layer and the main mathematical question
regarding this model is to know if, when the viscosity is small, a vortex
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layer of thickness O(
√
ν) would move as predicted by the Birkhoff–Rott

equation (up to corrections that are small with the viscosity).
Moore (1978) considered the problem of the motion of a small layer

of uniform vorticity. He identified the centre of the vortex layer with a
moving curve r = R(s, t) described parametrically with the arc length s.
Denoting by ŝ and n̂ the unit tangent and normal vectors (as in Figure
5.9), one can write the position of a point r close to the curve as

r = R + nn̂ .

The line element in the orthogonal frame (ŝ, n̂) is

dr = h1ŝ ds+ n̂ dn ,

where h1 = 1 − n/ρ, with ρ the radius of curvature of the sheet, and
where the Frenet–Serret formula have been used:

∂ŝ

∂s
=

n̂

ρ
and

∂n̂

∂s
= − ŝ

ρ
.

Denoting by ∂/∂τ the time derivative in the comoving frame one can

U+

U−

0 

n

s

R(s,t)

Fig. 5.9. Tangent and normal vectors near the centre R(s, t) of the vortex
layer.

also introduce the angular velocity Ω of the comoving frame (ŝ, n̂) and
write:

∂ŝ

∂τ
= Ωn̂ and

∂n̂

∂τ
= −Ωŝ .

The fluid velocity of a particle close to the layer can be decomposed into
a velocity relative to the centre of the sheet (which is uŝ + vn̂), and
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a part due to the motion of the sheet (which is ∂τR + n∂τ n̂):

U = [u+ ∂τX − Ω(Y + n)] ŝ + [v + ∂τY + ΩX] n̂ . (5.28)

In the above equation, by X and Y we have denoted the components of
R (the vector giving the centre of the sheet) in the intrinsic coordinate
system, i.e. R = Xŝ + Y n̂.

Moore supposed that the vorticity is uniformly distributed in a small
layer surrounding the curve of thickness 2H = O(ε), while it is zero
outside this layer. Moreover he assumed that the radius of curvature
is uniformly much larger than the thickness of the layer, specifically
H ≤ ρε. Introducing the rescaled normal variable

N =
n

ε
, (5.29)

and expanding the velocity field as:

u(s, n, t) = u0(s, n, t) + εu1(s, n, t) + ε2u2(s, n, t) + . . . (5.30)

v(s, n, t) = εv0(s, n, t) + ε2v1(s, n, t) + . . . , (5.31)

Moore performed an asymptotic matching procedure between the outer
flow and the inner flow and obtained the following equation for the
motion of the centre of the sheet:

∂Z∗

∂t
= − i

2π
PV

∫
dΓ′

Z(Γ, t) − Z(Γ′, t)
− ε

i
6ω

∂

∂Γ

(
G4 ∂Z

∗

∂Γ

)
+O(ε2) ,

(5.32)

which contains an O(ε) correction to the Birkhoff–Rott equation. In
(5.32), G denotes the quantity γ(s, t) expressed in terms of the variable
Γ, and ω = O(1) denotes the rescaled constant vorticity of the layer.

Later, Benedetto & Pulvirenti (1992) proved rigorously, in an analytic
function space, that the Euler dynamics of a layer of constant vortic-
ity converges to the dynamics of the Birkhoff–Rott equation when the
thickness of the layer goes to zero.

Clearly, assuming that vorticity is a constant inside the layer does not
describe correctly the smoothing effects of the viscosity. Later Dhanak
(1994a,b) derived an interesting generalization of Moore’s equation. He
took into account the role of the viscosity ν and assumed that the vor-
ticity, not supposed uniform, decays exponentially fast away from the
centre of the sheet,
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For the motion of the sheet he derived the following equation, valid
to O(ε2),

∂Z∗

∂t
= − i

2π
PV

∫
dΓ′

Z(Γ, t) − Z(Γ′, t)
− iε

∂

∂Γ

(
δ2G3 ∂Z

∗

∂Γ

)
+ νG ∂G

∂Γ
∂Z∗

∂Γ
,

(5.33)

where δ2 is the momentum thickness of the layer:

δ2 =
∫ ∞

−∞

(U+ − u)(U− − u)
(U+ − U−)2

dN ,

with U+ and U− the free stream tangential velocities. One can recover
Moore’s equation (5.32) if the vorticity is constant and supported in a
layer of thickness 2H = O(ε).

If one supposes that the thickness of the layer ε is related to the square
root of the viscosity, as suggested by the diffusive scaling, then the third
term in (5.33) is O(ε2) and should be consistently neglected.

Notice that, to get the momentum thickness of the layer, one has
to specify the distribution of the velocity inside the layer. This is the
problem we shall address in the following sections.

5.5.2 The vortex layer equations

If one inserts the expression (5.28) for the velocity U into the Navier–
Stokes equations and writes the differential operators in the intrinsic
coordinate frame comoving with the curve, one gets the following expres-
sions for (u, v) which are the tangential and normal components of the
relative velocity, see Caflisch & Sammartino (2006):

∂τu + ∂ττX − 2Ω(v + ∂τY ) − Ω2X − ∂τ Ω(Y + n)

+
u

h1

[
∂su+ ∂s∂τX − ∂sΩ(Y + n) − 1

ρ
(v + ∂τY )

]
+ v∂nu+

∂sp

h1

= ν (ΔU) · ŝ

∂τv + ∂ττY + 2Ω(u+ ∂τX) − Ω2(Y + n) + ∂τ ΩX

+
u

h1

[
∂sv + ∂s∂τY + ∂sΩX +

1
ρ

(u+ ∂τX)
]

+ v∂nv + ∂np

= ν (ΔU) · n̂
1
h1

{∂su+ ∂n [h1v]} = 0 .
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In the above equations we have denoted by (ΔU) the Laplacian of U in
the comoving frame; this is given by a complicated expression which we
do not report here, but can be found in Caflisch & Sammartino (2006).

If one introduces the rescaled normal variable (5.29) and expands
the velocity field as in (5.30)–(5.31), the leading order terms yield the
following equations for u0 and v0:

∂τu+ ∂ττX − 2Ω∂τY − Ω2X − ∂τ ΩY

+ u

[
∂su+ ∂s∂τX − Y ∂sΩ − ∂τY

ρ

]
+ v∂Nu+ ∂sp

L = ∂NNu (5.34)

∂Np
L = 0 (5.35)

∂su+ ∂Nv = 0 (5.36)

u(s,N → ±∞, t) −→ u±(s, t) (5.37)

u(s,N, t = 0) = uin(s,N) , (5.38)

where we have renamed u0 and v0 as u and v to simplify the notation.
Equation (5.35) implies that the pressure is constant inside the vortex

layer, which is consistent with the fact that the pressure is continuous
across the layer. The fact that the pressure is continuous across the
layer can be recovered through the same argument used to derive the
continuity of the pressure across a vortex sheet, see pp. 28–29 in Saffman
(1992). The value of the pressure must be recovered through a matching
with the pressure of the outer flow. If one writes the Euler equation in the
frame adapted to the centre of the layer, and calculates the tangential
momentum equation at n = 0 (i.e. at the layer), one gets the following
two expressions for the pressure gradient, the first taking the limit from
above the sheet, the second from below:

− ∂sp
L = ∂τu

+ + ∂ττX − 2Ω∂τY − Ω2X − Y ∂τ Ω

+
[
∂su

+ + ∂s∂τX − Y ∂sΩ − ∂τY ρ
−1
]
u+

−∂sp
L = ∂τu

− + ∂ττX − 2Ω∂τY − Ω2X − Y ∂τ Ω

+
[
∂su

− + ∂s∂τX − Y ∂sΩ − ∂τY ρ
−1
]
u− .

Here u+ and u− denote the matching values of the vortex layer tangential
velocity with the outside Euler velocity, which are related to U+ and U−

by the relations (see (5.28))

U+ = u+ + ∂τX − ΩY , U− = u− + ∂τX − ΩY .
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Equation (5.36) is the incompressibility condition and allows one to
recover the normal velocity from the tangential velocity through an
integration. Equation (5.37) is the matching condition with the outer
flow.

The similarities of the structure of the above equations with Prandtl’s
system are evident. In the next section we shall suppose that X(s, t)
and Y (s, t) are given by the solution of the Birkhoff–Rott equation, and
we shall briefly sketch a proof that the vortex layer equations are well
posed.

5.5.3 Well posedness of the vortex layer equations

In this section we shall see that the vortex layer equations are well
posed supposing that the data are analytic with respect to the tangential
variable s. The proof is based on a version of the Cauchy–Kowalewski
Theorem that allows a mild singularity in time, see Lombardo et al.
(2003).

Define Hm
δ,T as the space of functions f(s, t) that are analytic (together

with the s derivatives up to order m) with respect to s on a strip of width
δ and that are C1 with respect to t in [0, T ].

Define Hm
δ,μ as the space of functions f(s,N) that are analytic

(together with the s derivatives up to order m) with respect to s on
a strip of width δ, that are C2 with respect to Y and exponentially
decaying to zero, at rate μ, for N → ±∞.

The space Hm
δ,μ,T is defined analogously.

Define the functions ϕ±(N) so that, at an exponential rate μ0 one
has ϕ± → 1 when N → ±∞, and ϕ± → 0 when N → ∓∞. For exam-
ple ϕ± = exp (±μ0N)/(exp (μ0N) + exp (−μ0N)). Let us introduce the
function ϕ = u+ϕ+ + u−ϕ− and define the new variable ũ:

ũ = u− ϕ .

The ũ above is defined so that, if u satisfies (5.37) exponentially, then ũ
decays to zero exponentially when N → ±∞. We can now give a formal
statement of the well posedness of the vortex layer equations:

Theorem 5.5.1 Suppose that the free-streaming velocities u+ and u−

are in Hm
δ0,T and that the initial condition uin is such that uin −ϕ is in

Hm
δ0,μ0

. Then, there exists β > 0 such that there exists a unique solution
u of the vortex layer equations (5.34)–(5.38) with u ∈ Hm

δ0−βt,μ0−βt,T .
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We now briefly sketch the proof. Written in terms of the new variable
ũ, the vortex layer equations read[
∂t − ∂NN − (Φ+∂su

+ + Φ−∂su
−)∂N

]
ũ = K1[ũ] + ∂NK2[ũ] + L[ũ] + S

(5.39)
with

ũ(s,N, t = 0) = uin − ϕ,

where

Φ±(N) =
∫ N

0

ϕ±(N ′) dN ′,

K1[ũ] = −2ũ∂sũ ,

K2[ũ] = ũ

∫ N

0

∂sũ(s,N ′, t) dN ′ ,

L[ũ] = −ũ∂sϕ , and

S = −ϕ+(ϕ+ − 1)u+∂su
+ − ϕ−(ϕ− − 1)u−∂su

−

−(u+∂su
− + u−∂su

+)ϕ+ϕ− + u+∂NNϕ
+ + u−∂NNϕ

− .

Notice that Φ+ grows to infinity linearly fast when N → ∞, and that
Φ− grows to infinity linearly fast when N → −∞. The term L[ũ] is
linear in ũ, while the source term S decays to zero exponentially fast
when N → ±∞.

The next step is to rewrite (5.39) in a form appropriate for the use of
the Cauchy–Kowalewski Theorem.

To accomplish this we introduce some operators that, roughly speak-
ing, invert the parabolic operator [∂t − ∂NN − (Φ+∂su

+ + Φ−∂su
−)∂N ].

The operator M0 solves a homogeneous parabolic equation with non-
zero initial conditions,[

∂t − ∂NN − (Φ+∂su
+ + Φ−∂su

−)∂N

]
M0u0 = 0,

M0u0(s,N, t = 0) = u0,

while the operator M2 solves the same parabolic equation with a source
term but zero initial condition,[

∂t − ∂NN − (Φ+∂su
+ + Φ−∂su

−)∂N

]
M2f = f,

M2f(s,N, t = 0) = 0.

The operator M3 has the property that M3f = M2∂Nf .
With the use of these operators, one can recast (5.39) as

ũ = G(ũ, t) ,
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where

G[ũ, t] = M2 (K1[ũ] + L[ũ] + S) +M3K2[ũ] +M0 (u0 − ϕ) .

Using the Cauchy–Kowalewski Theorem, the Cauchy estimate on the
derivative of an analytic function, and some estimates on the operators
Mi, the proof of the well posedness is relatively straightforward.

5.6 Concluding remarks

In this paper we have reviewed some relevant results, both numerical and
theoretical, regarding the well posedness of the boundary layer equations
in relation to the zero-viscosity limit of the Navier–Stokes equations. In
this respect a well-established mathematical framework is still lacking,
the main open problems being the following:

• In presence of a boundary, both in two and three spatial dimensions,
the convergence of the solutions of the Navier–Stokes equations to
the solutions of the Euler equations for smooth initial data is still an
open question. The problem is even more striking on plane domains,
where regular global solutions of both the Navier–Stokes and the Euler
equations are known to exist. If the data are analytic, then convergence
occurs.

The study of the inviscid limit may also be complicated, even in
the absence of boundary effects, in the case of non-smooth initial data
such as vortex patches or sheets. In this case the Birkhoff–Rott equa-
tion, which governs the evolution of the vortex sheet, is an ill-posed
problem. In the case of a vortex layer of thickness O(

√
ν) the equa-

tions of motion are known but their well-posedness has been proved
only in the space of analytic functions.

• Prandtl’s equations, which govern the behaviour of the fluid in a
O(

√
ν) neighbourhood of the boundary, are conjectured to be gen-

erally ill-posed in Sobolev spaces. In fact the existing well-posedness
theorems require either monotone or analytic (with respect to the
tangential variable) data. Related to the well-posedness of Prandtl’s
equations is the important mathematical problem of the finite time
blow-up of its solutions: in fact the only known theoretical result in
this direction holds for initial data with strong recirculation.

Careful numerical studies are required to investigate the above ques-
tions. We have presented some recent numerical results that confirm
the development of a zero-time singularity formation (in H1) for the
boundary-layer equations.
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We conclude this paper with a few words about the bibliography. The
reference list, although of some length (as one would expect for a sub-
ject in which many different approaches have contributed to our current
understanding), is far from being exhaustive. It should be considered
only a guide for the interested reader who will find, in the cited papers
and in the references therein, material for further investigation.
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Abstract

In this paper we provide a self-contained proof of the partial regularity
result for the Navier-Stokes system when the force satisfies f ∈ L5/3. We
do so by estimating the size of the space-time singularities when a force
belongs to a more general Morrey-type class and then proving that the
condition for regularity agrees with the classical condition due to Serrin
when f ∈ L5/3.

6.1 Introduction

In this paper we address the partial regularity of solutions of the three-
dimensional Navier–Stokes system

∂tu− Δu+ ∂j(uju) + ∇p = f

∇ · u = 0 (6.1)

in the whole of R3, a bounded smooth domain in R3 with Dirichlet
boundary conditions, or a periodic domain. Here, u and p represent the
unknown velocity and the pressure in the incompressible fluid, while
the function f stands for the external force. Given an initial condition
u(·, 0) = u0 ∈ L2, it was proven by Leray (1934) and Hopf (1951) that
there exists a global weak solution u ∈ L∞

t L
2
x ∩L2

t locH
1
x if, for instance,

f ∈ L∞
t L

2
x. Such solutions satisfy the Navier–Stokes system and an

energy inequality, but they are not known to be unique and are not
known to belong to a higher regularity space L∞

t H
1
x ∩ L2

t locH
2
x. Also,

Leray and Hopf proved existence of a local strong solution u ∈ L∞
t H

1
x ∩

L2
tH

2
x if the initial data satisfies u0 ∈ H1. Strong solutions agree with

weak solutions on the common interval of existence (Serrin, 1963), but
it is not known whether they can be extended to global strong solutions.
For a more detailed presentation on the existence theory we refer the
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reader to Constantin & Foias (1988), Fabes et al. (1972), Lemarié-
Rieusset (2002), Serrin (1962, 1963), Sohr (1983), and Temam (2001).

In a series of papers Scheffer (1976a,b, 1977) took a different approach
towards regularity by estimating the size of a (possible) set S of space-
time singularities for suitable weak solutions, i.e. solutions that satisfy
a local version of the energy inequality. For instance, he proved that
when f = 0, we have H5/3(S) = 0, where Ha denotes the a-dimensional
Hausdorff measure. In a classical paper Caffarelli et al. (1982) proved
that P1(S) = 0 where P1 is the one-dimensional parabolic measure
(in particular P1(A) ≤ H1(A) for every set A) if the force satisfies
f ∈ L5/2+δ for some δ > 0. A simpler argument leading to the same
result was presented by Lin (1998) (see also Ladyzhenskaya & Seregin
(1999) for f satisfying a Morrey-type condition with the same scaling
as the Caffarelli–Kohn–Nirenberg condition f ∈ L5/2+δ). In Kukavica
(2008a) we give a simple proof of the statement P1(S) = 0 with the
condition on the force f ∈ L5/3+δ for δ > 0. For other results on partial
regularity, see Lemarié-Rieusset (2002), Robinson & Sadowski (2007),
Struwe (1998), and Vasseur (2007).

The purpose of the present paper is three-fold. The first goal is to
present a concise and self-contained proof of the partial regularity the-
orem when a force belongs to a Morrey-type space in the same scaling
class as L5/3. The second goal is to prove the partial regularity theorem
for forces in the borderline class f ∈ L5/3, the case left open in Kukavica
(2008a). The third goal of the paper is to clarify the role of the energy
inequality—namely to separate the proof into parts where the energy
inequality is necessary and the parts where it is not.

The structure of the paper is as follows. In Section 6.2, we specify
when (x, t) is a singular point and prove that the singular set has one-
dimensional parabolic measure zero. In Sections 6.3 and 6.4, we prove
that the definition of the singular set agrees with the classical one when
the force belongs to f ∈ L5/3+δ and f ∈ L5/3 respectively. Thus Sec-
tions 6.2 and 6.3 constitute a self contained proof of the partial regularity
result when f ∈ L5/3+δ, while Sections 6.2 and 6.4 contain the proof in
the case f ∈ L5/3.

6.2 Notation and the main theorem

Let D be an open, bounded, and connected subset of R3×R. We always
assume that (u, p) is a suitable weak solution in D by which we mean
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(i) u ∈ L∞
t L

2
x(D) ∩ L2

tH
1
x(D) and p ∈ L3/2(D),

(ii) f ∈ L
10/7
loc (D) is divergence free,

(iii) the Navier–Stokes equations (6.1) are satisfied in D in the weak
sense, and
(iv) the local energy inequality holds in D, i.e.∫

|u|2φ|T + 2
∫∫

R3×(−∞,T ]

|∇u|2φ

≤
∫∫

R3×(−∞,T ]

(
|u|2(φt + Δφ) + (|u|2 + 2p)u · ∇φ+ 2(u · f)φ

)
(6.2)

for all T ∈ R and all φ ∈ C∞
0 (D) such that φ ≥ 0 in D. In an effort to

simplify the expressions in the paper, we will not include dx or dt in the
integrals when it is clear from the domain of integration which variables
are being integrated. Above and in the sequel, we define

Ls
tL

q
x(D) =

{
u measurable in D :

‖u‖Ls
t Lq

x(D) =
∥∥‖u(x, t)‖Lq

x

∥∥
Ls

t
<∞

}
.

By the Gagliardo–Nirenberg inequality, (i) implies that u ∈ L10/3(D),
and therefore the assumption (ii) is a natural one to guarantee that the
last integral in (6.2) exists. The assumption p ∈ L3/2(D) on the pressure
can be weakened to p ∈ Lq

tL
1
x(D),where q > 1 (cf. Remark 6.2.5 below).

Above and in the sequel, we write ∇ = (∂1, ∂2, ∂2). We denote by
Br(x0) the standard Euclidean ball in R3 with centre x0 and radius r and
abbreviate Br = Br(0). By Qr(x0, t0) = Br(x0)× [t0 − r2, t0] we denote
the parabolic cylinder in R4 labelled by the top-centre point (x0, t0) ∈ D.
Also, let Q∗

r(x0, t0) = Br(x0)× [t0 − r2, t0 + r2]. For simplicity, we write
Qr = Qr(0, 0) and Br = Br(0).

Let μ be a fixed universal constant (in Sections 6.3 and 6.4 it will be
assumed to be sufficiently small). We write (x, t) ∈ R (and we say that
(x, t) is regular) if there exists r0 > 0 such that

1
r2

∫∫
Qr(x,t)∩D

(|u|3 + |p|3/2
) ≤ μ3 (6.3)

for all (x, t) ∈ Q∗
r0

(x0, t0) and r ∈ (0, r0]. We also define S = D\R.
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For the force f , we assume that

sup
(x,t)∈D

sup
r>0

1
r5/7

∫∫
Qr(x,t)∩D

|f |10/7 <∞. (6.4)

By Hölder’s inequality, a sufficient condition for (6.4) is f ∈ L5/3(D).
Let (x0, t0) ∈ D and r > 0 be such that Qr(x0, t0) ⊆ D. Define

α(x0,t0)(r) =
1
r1/2

‖u‖L∞
t L2

x(Qr(x0,t0)),

β(x0,t0)(r) =
1
r1/2

‖∇u‖L2
t L2

x(Qr(x0,t0)),

γ(x0,t0)(r) =
1
r2/3

‖u‖L3
t L3

x(Qr(x0,t0)),

δ(x0,t0)(r) =
1
r2/3

‖p‖1/2

L
3/2
t L

3/2
x (Qr(x0,t0))

,

λ(x0,t0)(r) =
1
r1/2

‖f‖
L

10/7
t L

10/7
x (Qr(x0,t0))

,

and

Γ(x0,t0)(r) =
1
r1/2

‖u‖
L

10/3
t L

10/3
x (Qr(x0,t0))

.

If the label (x0, t0) is omitted, it is understood to be (0, 0), that is,
α(r) = α(0,0)(r). All the quantities above, as well as the left-hand sides
of (6.3) and (6.4), are dimensionless when following the usual convention
that the dimension exponents of x, t, u, p, and f are 1, 2, −1, −2, and −3
respectively. (The dimension exponents are obtained from the following
scaling property of the Navier–Stokes equation: if u(x, t) is a solution
with the pressure p(x, t) and force f(x, t), so is Lu(Lx,L2t) with the
pressure L2p(Lx,L2t) and the force L3f(Lx,L2t) for any L > 0.) Also,
the exponents are chosen so that the the expressions are of order 1 as
far as the dependence on u is concerned; thus it is easier to track which
expressions arise from linear and which from nonlinear terms.

Let P1 be the one-dimensional parabolic measure (see Caffarelli et al.
(1982) for the definition). The following implies the partial regularity
result if the force f belongs to a Morrey space.

Theorem 6.2.1 There exists a sufficiently small universal constant
ε∗ > 0 with the following property: if (x0, t0) ∈ D, and if there is r0 > 0
such that

λ(x,t)(r) ≤ ε∗ (6.5)
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for (x, t) ∈ Q∗
r(x0, t0) with r ∈ (0, r0], and if

lim sup
r→0+

β(x0,t0)(r) ≤ ε∗, (6.6)

then (x0, t0) ∈ R. In particular, P1(S) = 0.

From Caffarelli et al. (1982), recall that P1(S) = 0 means that for
every ε > 0 there exist points (xi, ti) ∈ R3×R and ri > 0 for i = 1, 2, . . .
such that

∑∞
i=1(ri) < ε and S ⊆ ∪∞

i=1Qri
(xi, ti).

The second assertion in the theorem, P1(S) = 0, follows from the
first using arguments from Caffarelli et al. (1982). Therefore, we only
need to show that (6.5) and (6.6) with a sufficiently small ε∗ imply that
(x0, t0) ∈ R.

For 0 < r < ρ/2, define

ψ(x, t) = r2G(x, r2 − t), (x, t) ∈ R3 × R,

where G is the Gaussian kernel, i.e.

G(x, t) = (4πt)−3/2 exp(−|x|2/4t)
for t > 0 and G(x, t) = 0 for t ≤ 0. Let η0 : R3 × R → [0, 1] be
a smooth function such that supp η0 ⊆ B1 × (−1, 1) and η0 ≡ 1 on
B1/2 × (−1/4, 1/4), and let η(x, t) = η0(x/ρ, t/ρ2). We shall use

φ(x, t) = ψ(x, t)η(x, t)η(t) (6.7)

as a test function, where η ∈ C∞(R, [0, 1]) is such that η ≡ 1 on
(−∞, r2/4) and η ≡ 0 on [r2/2,∞). In the first lemma, we collect useful
upper and lower bounds from Kukavica (2008a) for this test function.

Lemma 6.2.2 Let 0 < r ≤ ρ/2. Then on Qr = Br(0)× [−r2, 0] we have

φ(x, t) ≥ 1
Cr

, (x, t) ∈ Qr, (6.8)

while on Qρ we have

φ(x, t) ≤ C

r
, (x, t) ∈ Qρ (6.9)

and

|∇φ(x, t)| ≤ C

r2
, (x, t) ∈ Qρ. (6.10)

Moreover,

|φt(x, t) + Δφ(x, t)| ≤ Cr2

ρ5
, (x, t) ∈ Qρ. (6.11)
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Above and in the sequel, the symbol C stands for a generic universal
constant except when other dependence is stated explicitly.

The inequality (6.11) is the essential one for a simple proof the partial
regularity result since in the iterative proof below it is actually the linear
part that causes the main difficulty. The inequality (6.11) ensures that
the first term on the right-hand side of the local energy inequality (6.2)
(which is the term resulting from the linear part) has a small constant
in front.

Proof of Lemma 6.2.2. The inequality (6.8) can be rewritten as

(4π(1 − t/r2))−3/2 exp(−|x|2/4r2(1 − t/r2)) ≥ 1/C for (x, t) ∈ Qr.

By rescaling, we can reduce this to the case r = 1, for which
the inequality is clear. The inequalities (6.9) and (6.10) follow from
rψ(x, t) ≤ C and r2|∇ψ(x, t)| ≤ C for (x, t) ∈ R3 × (−∞, 0), which
can be established by rescaling.

Regarding (6.11), note that φt + Δφ = ψ(∂t + Δ)(ηη) + 2 η∇η · ∇ψ
due to (∂t + Δ)ψ = 0. The functions (∂t + Δ)(η η) and ∇η vanish on
Qρ/2, and the inequality (6.11) then follows from

|ψ(x, t)| ≤ Cr2

ρ3
, (x, t) ∈ Qρ\Qρ/2,

and

|∇ψ(x, t)| ≤ Cr2

ρ4
, (x, t) ∈ Qρ\Qρ/2,

which can be checked directly.

We start with estimates on α and β. These follow from the generalized
energy inequality (6.2). They are stated for quantities centred at (0, 0)
for simplicity of notation, but they can be used around any point in D.

Lemma 6.2.3 Assume that (0, 0) ∈ D. Then for 0 < r ≤ ρ/2 such that
Qρ ⊆ D, we have

α(r) + β(r) ≤ Cκ2/3
(
α(ρ) + β(ρ)

)
+
C

κ6
β(ρ)3 +

C

κ
α(ρ)β(ρ)1/2

+
C

κ8/3
δ(ρ)2 +

C

κ5/3
λ(ρ) (6.12)

and

α(r)+β(r) ≤ Cκγ(ρ)+
C

κ
γ(ρ)3/2 +

C

κ
δ(ρ)γ(ρ)1/2 +

C

κ1/2
Γ(ρ)1/2λ(ρ)1/2,

(6.13)
where κ = r/ρ.
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Proof of Lemma 6.2.3. Let φ be as in (6.7). Then for all t0 ∈ [−r2, 0]
(6.2) yields∫

Br

|u|2φ|t0 + 2
∫∫

Qrn{t≤t0}

|∇u|2φ ≤
∫∫

Qρn{t≤t0}

|u|2(φt + Δφ) +
∫∫

Qρn{t≤t0}

|u|2u · ∇φ

+ 2
∫∫

Qρn{t≤t0}

p u · ∇φ+ 2
∫∫

Qρn{t≤t0}

(u · f)φ

= I1 + I2 + I3 + I4. (6.14)

In order to obtain (6.13), note that we have

I1 ≤ Cr2ρ−5

∫∫
Qρ

|u|2 ≤ Cr2ρ−10/3
(∫∫

Qρ

|u|3)2/3 = Cκ2γ(ρ)2

by definition of γ, (6.11), and Hölder’s inequality. Similarly,

I2 ≤ C

r2

∫∫
Qρ

|u|3 = Cκ−2γ(ρ)3,

and

I3 ≤ C

r2

∫∫
Qρ

|p| |u| ≤C

r2
‖p‖L3/2(Qρ)‖u‖L3(Qρ)

=
Cρ2

r2
δ(ρ)2γ(ρ) =

C

κ2
δ(ρ)2γ(ρ)

(6.15)

by (6.10) and Hölder’s inequality; also, by (6.9),

I4 ≤ C

r

∫∫
Qρ

|u| |f | ≤ C

r
‖u‖L10/3(Qρ)‖f‖L10/7(Qρ)

≤ Cκ−1λ(ρ)Γ(ρ). (6.16)

Using the above inequalities and (6.8) then gives (6.13). For (6.12), we
estimate I1 and I2 differently. By (6.11), we get

I1 ≤ Cr2

ρ5

∫∫
Qρ

|u|2 ≤ Cκ2α(ρ)2. (6.17)

Next, defining

Aρg = Aρg(·, t) = |Bρ|−1

∫
Bρ

g(·, t),

we have (as in Caffarelli et al., 1982), using∫
Qρn{t≤t0}

|u|2u · ∇φ =
∫

Qρn{t≤t0}
(|u|2 −Aρ|u|2)u · ∇φ
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and (6.10), that

I2 ≤ C

r2

∫∫
Qρ

∣∣|u|2 −Aρ|u|2
∣∣ |u| ≤ C

r2
‖u‖L3(Qρ)

∥∥|u|2 −Aρ|u|2
∥∥

L3/2(Qρ)

≤ C

r2
‖u‖L3(Qρ)‖∇(|u|2)‖

L
3/2
t L1

x(Qρ)

≤ C

r2
‖u‖L3(Qρ)‖u‖L6

t L2
x(Qρ)‖∇u‖L2

t L2
x(Qρ)

≤ Cρ1/3

r2
‖u‖L3(Qρ)‖u‖L∞

t L2
x(Qρ)‖∇u‖L2(Qρ),

whence

I2 ≤ C

κ2
α(ρ)β(ρ)γ(ρ). (6.18)

Using (6.8) on the left side of (6.14), collecting the estimates (6.15),
(6.16), (6.17), (6.18), and taking the square root of the resulting
inequality, we get

α(r) + β(r) ≤ Cκα(ρ) +
C

κ
α(ρ)1/2β(ρ)1/2γ(ρ)1/2+

+
C

κ
δ(ρ)γ(ρ)1/2 +

C

κ1/2
Γ(ρ)1/2λ(ρ)1/2. (6.19)

The Gagliardo–Nirenberg inequality

‖v‖Lq
x
≤ C‖v‖3/q−1/2

L2
x

‖∇v‖3/2−3/q
L2

x
+

C

r3/2−3/q
‖v‖L2

x

for 2 ≤ q ≤ 6 implies that

1
ρ1/2

‖u‖Ls
t Lq

x(Qρ) ≤ Cα(ρ)3/q−1/2β(ρ)3/2−3/q + Cα(ρ)

for 2 ≤ q ≤ 6 and 2/s+ 3/q = 3/2. Therefore,

γ(ρ) ≤ Cα(ρ)1/2β(ρ)1/2 + Cα(ρ), (6.20)

whence
C

κ
α(ρ)1/2β(ρ)1/2γ(ρ)1/2 ≤ Cκ2/3α(ρ) +

C

κ6
β(ρ)3 +

C

κ
α(ρ)β(ρ)1/2

and
C

κ
δ(ρ)γ(ρ)1/2 ≤ Cκ2/3

(
α(ρ) + β(ρ)

)
+

C

κ8/3
δ(ρ)2. (6.21)

Similarly to above, we have

Γ(ρ) ≤ Cα(ρ)2/5β(ρ)3/5 + Cα(ρ). (6.22)
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Hence,

C

κ1/2
Γ(ρ)1/2λ(ρ)1/2 ≤ Cκ(α(ρ) + β(ρ)) +

C

κ2
λ(ρ)

and (6.12) follows.

Next, we state an inequality for the pressure term. It is based solely
on the identity

− Δp = ∂i∂j(uiuj), (6.23)

which is obtained by taking the divergence of the Navier–Stokes equation
(6.1).

Lemma 6.2.4 For 0 < r ≤ ρ/2, we have

δ(r) ≤ C

κ1/2
α(ρ)1/2β(ρ)1/2 + Cκ1/3δ(ρ) (6.24)

where κ = r/ρ.

The pressure estimate follows Caffarelli et al. (1982), Kukavica (2008a),
Lemarié-Rieusset (2002), and Lin (1998).

Proof of Lemma 6.2.4. Let η0 : R3 → [0, 1] be a smooth function such
that η0 ≡ 1 on B3/5 and η0 ≡ 0 on Bc

4/5, and let let η(x) = η0(x/ρ).
Denoting Uij = −ui(uj −Aρuj), the equation (6.23) can be written as1

Δp = ∂ijUij , from where it follows by a short calculation that

Δ(ηp) = ∂ij(ηUij) + (∂ijη)Uij − ∂j(Uij∂iη) − ∂i(Uij∂jη)

− pΔη + 2∂j((∂jη)p).
(6.25)

(An advantage of writing the equation for the localized pressure ηp this
way rather than, say, as Δ(ηp) = pΔη+ 2∂iη∂ip+ ∂ij(ηUij)−Uij∂ijη−
∂iη∂jUij − ∂jη∂iUij is that in this way no derivative falls directly on U

or p.) Using g = N ∗ (Δg), where N(x) = −1/4π|x| is the Newtonian
potential, valid for compactly supported and smooth g, and the fact that
N ∗ ∂ig = (∂iN) ∗ g we get

ηp = −RiRj(ηUij) +N ∗ ((∂ijη)Uij) − ∂jN ∗ (Uij∂iη)

− ∂iN ∗ (Uij∂jη) −N ∗ (pΔη) + 2∂jN ∗ ((∂jη)p), (6.26)

where Ri is the standard i-th Riesz transform (cf. Stein, 1993, p. 26).
Denote the terms on the right by p1 through p6. For p1, we use the
Calderón–Zygmund theorem and obtain

1We use the notation ∂ij = ∂i∂j .
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‖p1‖L3/2(Qr) ≤ ‖p1‖L3/2(R3×(−r2,0)) ≤ C
∑
i,j

‖ηUij‖L3/2(R3×(−r2,0))

≤ C‖u‖L6
t L2

x(R3×(−r2,0))‖u−Aρu‖L2
t L6

x(Qρ)

≤ Cr1/3‖u‖L∞
t L2

x(R3×(−r2,0))‖u−Aρu‖L2
t L6

x(Qρ)

≤ Cr1/3‖u‖L6
t L2

x(Qρ)‖∇u‖L2
t L2

x(Qρ) ≤ Cr1/3ρα(ρ)β(ρ).

In order to bound p2 = N ∗ ((∂ijη)Uij), note that ∂ijη vanishes on
B3ρ/5 ∪Bc

4ρ/5, so the convolution does not contain a singularity. We get

‖p2‖L3/2(Qr) ≤ Cr7/3‖p2‖L2
t L∞

x (Br×(−r2,0))

≤ Cr7/3

ρ
‖Uij∂ijη‖L2

t L1
x(Bρ×(−r2,0))

≤ Cr7/3

ρ2
‖u‖L∞

t L2
x(Qρ)‖∇u‖L2

t L2
x(Qρ) =

Cr7/3

ρ
α(ρ)β(ρ).

The estimate for p3 is analogous; namely,

‖p3‖L3/2(Qr) ≤ Cr7/3‖p3‖L2
t L∞

x (Br×(−r2,0))

≤ Cr7/3

ρ2

∑
j

‖Uij∂iη‖L2
t L1

x(Bρ×(−r2,0))

≤ Cr7/3

ρ3

∑
i,j

‖Uij‖L2
t L1

x(Bρ×(−r2,0))

≤ Cr7/3

ρ2
‖u‖L∞

t L2
x(Qρ)‖∇u‖L2

t L2
x(Qρ) ≤

Cr7/3

ρ
α(ρ)β(ρ).

The bound for p4 is the same as for p3. The estimate for p5 is similar as
that for p2, namely,

‖p5‖L3/2(Qr) ≤ Cr2‖p5‖L
3/2
t L∞

x (Br×(−r2,0))

≤ Cr2

ρ
‖pΔη‖

L
3/2
t L1

x(Bρ×(−r2,0))

≤ Cr2

ρ2
‖p‖

L
3/2
t L

3/2
x (Qρ)

≤ Cr2

ρ2/3
δ(ρ)2.
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Similarly,

‖p6‖L3/2(Qr) ≤ Cr2‖p6‖L
3/2
t L∞

x (Br×(−r2,0))

≤ Cr2

ρ2
‖p∇η‖

L
3/2
t L1

x(R3×(−r2,0))

≤ Cr2

ρ2
‖p‖

L
3/2
t L

3/2
x (Qρ)

≤ Cr2

ρ2/3
δ(ρ)2

and (6.24) follows by collecting all the estimates above.

Proof of Theorem 6.2.1. Without loss of generality, set (x0, t0) = (0, 0).
Let 0 < r ≤ ρ/2 ≤ r0/4, and denote κ = r/ρ. By (6.12) and (6.24), the
quantity

θ(r) = α(r) + β(r) +
1
κ4
δ(r)2 (6.27)

satisfies

θ(r) ≤ C0κ
2/3θ(ρ) +

C0

κ5
β(ρ)θ(ρ) +

C0

κ6
β(ρ)3 +

C0

κ5/3
λ(ρ). (6.28)

Now, fix κ = min {1/2, 1/(4C0)3/2} in order to ensure that κ ≤ 1/2 and
that the factor in front of θ(ρ) in the first term of (6.28) is less than
or equal to 1/4. By possibly reducing r0, we may assume without loss
of generality that β(r) ≤ 2ε∗ for r ∈ (0, r0). Using also λ(r) ≤ ε∗ for
r ∈ (0, r0), we get

θ(κρ) ≤ 1
4
θ(ρ) +

C0

κ5
ε∗θ(ρ) +

C0

κ6
ε3∗ +

C0

κ5/3
ε∗. (6.29)

Now, assume that ε∗ is so small that C0ε∗/κ5 ≤ 1/4 and ε∗ ≤ 1. Then
in fact

θ(κρ) ≤ 1
2
θ(ρ) + Cε∗.

Let ε ∈ (0, 1]. Then there exist ε∗ ∈ (0, ε] and m ∈ N such that
θ(κmr0) ≤ ε. Define r1 = κmr0. By (6.20), we get γ(r1) ≤ C1ε and by
(6.22), Γ(r1) ≤ C1ε. Also, by the definition of θ, we have δ(r1) ≤ C1ε

1/2.
By the continuity of the integral, there exists r2 > 0 so small that
γ(x,t)(r1) ≤ 2C1ε, Γ(x,t)(r1) ≤ 2C1ε, and δ(x,t)(r1) ≤ 2C1ε

1/2 for
(x, t) ∈ Q∗

r2
(0, 0). Additionally, we may assume that λ(x,t)(r) ≤ ε∗ for

(x, t) ∈ Q∗
r2

(0, 0) and r ∈ (0, r1]. (To summarize the proof so far, we are
able to make γ(r1), Γ(r1), and δ(r1) as small as we wish for some r1 > 0
and for (x, t) in a sufficiently small neighbourhood of (0,0).)
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Fix (x, t) ∈ Q∗
r2

(0, 0). By (6.13), max {α(x,t)(κr1), β(x,t)(κr1)} ≤ Cε.
Similarly, using the monotonicity of the integral (or by (6.24)), we obtain
δ(x,t)(κr1) ≤ Cε1/2. Therefore, θ(x,t)(κr1) ≤ C2ε, where θ(x,t) denotes the
analog of (6.27) centred at (x, t) instead of (0, 0). Now, by (6.28) and by
the definition of κ, we have

θ(x,t)(κρ) ≤ 1
4
θ(x,t)(ρ) + C3θ(x,t)(ρ)3 + C3ε∗.

If ε is so small that C3(C2ε)2 ≤ 1/4 and ε∗ > 0 is so small that
C3ε∗ ≤ C2ε/4, we get θ(x,t)(κnr1) ≤ C2ε for every n ∈ N as long as
(x, t) ∈ Q∗

r2
(0, 0). By the monotonicity of the integral, it then follows

that θ(x,t)(r) ≤ Cε for all r ∈ (0, r1]. This implies that

α(x,t)(r) + β(x,t)(r) + δ(x,t)(r)2 ≤ Cε

for all r ∈ (0, r1]. By (6.20) and (6.22), we get

max {γ(x,t)(r),Γ(x,t)(r)} ≤ Cε

for all r ∈ (0, r1]. Since (x, t) ∈ Q∗
r2

(0, 0) was arbitrary, we conclude that
(x0, t0) ∈ R as claimed.

Remark 6.2.5 Theorem 6.2.1 in this section remains valid if (i) is
replaced by
(i)′ u ∈ L∞

t L
2
x(D) ∩ L2

tH
1
x(D) and p ∈ Lq

tL
1
x(D), where q > 1,

and the inequality (6.3) in the definition of a regular point is replaced
by

1
r2/3

‖u‖L3(Qr) +
1

r2/q−1/2
‖p‖Lq

t L2
x(Qr) ≤ μ.

Observe that, by elliptic regularity, we get

p ∈
⋂

1<s≤3

L
2s/(3s−3)
t Ls

x(Qρ) + Lq
tL

∞
x (Qρ).

The proof is similar to the proof of Theorem 6.2.1. The inequality (6.12)
is replaced by

α(r) + β(r) ≤ Cκ2/3
(
α(ρ) + β(ρ)

)
+
C

κ6
β(ρ)3 +

C

κ
α(ρ)β(ρ)1/2

+
1

κ8/3
Δ(ρ)2 +

C

κ5/3
λ(ρ),

where

Δ(r) =
1

r1/q−1/4
‖p‖1/2

Lq
t L2

x(Qr)
.
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Similarly, (6.13) is replaced by

α(r)+β(r) ≤ Cκγ(ρ)+
C

κ
γ(ρ)3/2+

C

κ
Δ(ρ)Γ̃(ρ)1/2+

C

κ1/2
Γ(ρ)1/2λ(ρ)1/2,

where Γ̃(r) = r−1/2‖u‖
L

q/(q−1)
t L

6q/(4−q)
x (Qr)

, while instead of (6.24) we
have

Δ(r) ≤ C

κ
α(ρ)1/2β(ρ)3/2 +

C

κ
α(ρ)β(ρ) + Cκ2−2/qΔ(ρ)

as one can readily verify. The proof of Theorem 6.2.1 is then the same
except that δ is replaced by Δ.

6.3 A partial regularity result for f ∈ L5/3+q with q > 0

In this section, we show that if (x0, t0) ∈ R with μ sufficiently small,
then u is regular in a neighborhood of (x0, t0) in a classical sense, that
is, it belongs to Serrin’s L5 class. Assume that

f ∈ L5/3+q(D), (6.30)

where q > 0. Although this case is less general than the case f ∈ L5/3(D)
discussed in the next section, we address it separately since the proof is
much simpler.

It is convenient to introduce the following parabolic type Morrey
spaces (O’Leary, 2003). For a measurable function g on Rn, n ≥ 3,
λ ∈ [0, n+ 2], and q ∈ [1,∞), define

‖g‖Lq
λ

= sup
(x,t)∈Rn×R

sup
ρ>0

1
ρλ/q

‖g‖Lq(Q∗
ρ(x,t)).

Let Lq
λ be the set of measurable functions g for which ‖g‖Lq

λ
<∞. Also,

for any open nonempty set V ⊆ Rn × R, write ‖g‖Lq
λ(V) = ‖gχV‖Lq

λ

and denote Lq
λ(V) =

{
g measurable on V : ‖g‖Lq

λ(V) < ∞}
, identifying

functions that are equal almost everywhere .
From Kukavica (2008b) we recall the following inequality.

Lemma 6.3.1 Let g ∈ Lp(Rn ×R)∩Lq
λ(Rn ×R), where 1 ≤ q ≤ p <∞

and λ ∈ [0, n+ 2) with p > 1. Define

h(x, t) =
∫∫

Rn×R

g(y, s)
(|x− y| + |t− s|1/2)n+2−α

dy ds , (6.31)
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where α > 0. Assume q < (n+ 2 − λ)/α. Then for p̃ = p
(1−qα/(n+2−λ))

we have h ∈ Lp̃(Rn × R) and

‖h‖Lp̃ ≤ C‖g‖1−p/p̃

Lq
λ

‖g‖p/p̃
Lp ,

where the constant C depends on α, λ, q, and p.

Proof. Since the inequality is proved in Kukavica (2008b), we only pro-
vide a sketch of the proof. We may assume that g is not the null function.
For m ∈ Z, write

hm(x, t) =
∫∫

Q∗
2m (x,t)\Q∗

2m−1 (x,t)

g(y, s)
(|x− y| + |t− s|1/2)n+2−α

dy ds.

Fix m0 ∈ Z, which is to be determined below. If m ≤ m0, we use

|hm(x, y)| ≤ C2mα(Mparg)(x, t) ,

where

(Mparg)(x, t) = sup
r>0

|Q∗
r(x, t)|−1

∫∫
Q∗

r(x,t)

|g(y, s)|dy ds

is the parabolic maximal function. For m ≥ m0 + 1, we estimate

|hm(x, t)| ≤ C

2m(n+2−α)

∫∫
Q∗

2m

|g(y, s)|dy ds

≤ C2−m(−λ/q−α+(n+2)/q)‖g‖Lq
λ
.

We get

|h(x, t)| ≤C(Mparg)(x, t)
m0∑

m=−∞
2mα

+C‖g‖Lq
λ

∞∑
m=m0+1

2−m(−λ/q−α+(n+2)/q).

Summing up the geometric series, we get

|h(x, t)| ≤ C2m0α(Mparg)(x, t) + C2−m0(−λ/q−α+(n+2)/q)‖g‖Lq
λ
,

where the constants depend on α, λ, and q. Choosing a suitable m0, we
get

|h(x, t)| ≤ C(n, α, λ, q)‖g‖αq/(n+2−λ)

Lq
λ

(Mparg)(x, t)1−αq/(n+2−λ)

and the rest follows by the Lr-boundedness property of Mpar (Stein,
1993, p. 83).
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Remark 6.3.2 An analogous statement is valid also for the classical
Morrey spaces. First, for measurable g : Rn → R, we define

‖g‖Mq
λ

= sup
x∈Rn

sup
ρ>0

1
ρλ/q

‖g‖Lq(Bρ(x)).

Now let g ∈ Lp(Rn) ∩ Mq
λ(Rn), where 1 ≤ q ≤ p < ∞ and λ ∈ [0, n)

with p > 1. Define

h(x) =
∫

Rn

g(y) dy
|x− y|n−α

,

where α > 0. Assume q < (n − λ)/α. Then for p̃ = p/(1 − qα/(n − λ))
we have h ∈ Lp̃(Rn) and

‖h‖Lp̃ ≤ C‖g‖1−p/p̃

M1−p/p̃
λ

‖g‖p/p̃
Lp ,

where the constant C depends on α, λ, q, and p. Note that the statement
reduces to the classical Hardy–Littlewood–Sobolev inequality if p = q

and λ = 0. For other properties of classical Morrey spaces cf. Olsen
(1995) and Taylor (1992).

We shall also need below space-time convolution inequalities in the
Lebesgue spaces. For the integral (6.31) and α ∈ (0, n+ 2], we have

‖g‖L
s3
t L

q3
x

≤ C(s2, s3, q2, q3)‖f‖L
s2
t L

q2
x

(6.32)

where 1 ≤ s1, s2, s3, q1, q2, q3 ≤ ∞ satisfy

1
q3

+ 1 =
1
q2

+
1
q1

1
s3

+ 1 =
1
s2

+
1
s1
,

with the conditions q1 > n/(n + 2 − α) and 1 < s2 < s3 < ∞ with
s1 = 2q1/((n + 2 − α)q1 − n). The proof is a simple application of
Young’s inequality in space and the Hardy–Littlewood–Sobolev inequal-
ity in time. The inequality also holds in the case q1 = n/(n+ 2 − α)
and (s1, s2, s3) = (∞, 1,∞), but we need to add the condition
1 < q2 < q3 <∞. We shall refer to (6.32) with the stated conditions
as the parabolic Hardy–Littlewood–Sobolev inequality.

Theorem 6.3.3 Assume that (6.30) holds for some q > 0. If μ > 0 in
(6.3) is a small enough universal constant, then (x0, t0) ∈ R implies that
u ∈ L5(V) for some neighborhood V of (x0, t0).
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It is possible to prove the above theorem without using the local energy
inequality (6.2) (cf. the next section)—however, the proof is simpler if
we use it.

Proof. Without loss of generality, assume that (x0, t0) = (0, 0). By reduc-
ing D, we may assume that ‖f‖L5/3(D) ≤ 1. Since f has more regularity
than that required by Theorem 6.2.1, we may improve (6.13) slightly.
Namely, I4 in (6.14) can be estimated as

I4 ≤ C

r
‖f‖L3/2(Qρ)‖u‖L3(Qρ) =

Cρ2/3

r
‖f‖L3/2(Qρ)γ(ρ)

≤ Cρ

r
‖f‖L5/3(Qρ)γ(ρ)

and thus (6.13) may be replaced by

α(x,t)(r)+β(x,t)(r) ≤ Cκγ(x,t)(ρ)+
C

κ
γ(x,t)(ρ)3/2 +

C

κ
δ(x,t)(ρ)γ(x,t)(ρ)1/2

+
C

κ1/2
‖f‖1/2

L5/3(Qρ(x,t))
γ(x,t)(ρ)1/2, (6.33)

where as before κ = r/ρ. Therefore, if (x, t) ∈ Q∗
r0

(x0, t0) and we have
0 < 2r ≤ ρ ≤ r0 then

α(r) + β(r) ≤ Cκμ+
C

κ
μ3/2 +

Cμ1/2

κ1/2
‖f‖1/2

L5/3(Qρ)
.

Let κ > 0 be as in the proof of Theorem 6.2.1. If μ > 0 is sufficiently
small, we get

α(x,t)(r) + β(x,t)(r) + γ(x,t)(r) + δ(x,t)(r) ≤ Cμ1/2

for all r and (x, t) as above. Now, the assumption (6.30) on f implies
that

λ(x,t)(r) ≤ C‖f‖L5/3+q(D)r
q0

for all r > 0 and all (x, t), where q0 = 9q/(5 + 3q). By (6.28), we have

θ(x,t)(r) ≤ 1
4
θ(x,t)(ρ) + Cθ(x,t)(ρ)3 + C‖f‖L5/3+q(D)ρ

q0 .

Iterating this inequality, we obtain u ∈ L3
2+q1

(V) and p ∈ L3/2
2+q1

(V)
for some q1 > 0 and a neighbourhood V of (x0, t0). Without loss of
generality q1 < 3.

With this last information, u ∈ L10/3(D) can be bootstrapped to a
higher Lr space in a neighbourhood of (x0, t0). Namely, let η ∈ C∞

0 (Rn)
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be a function that is identically 1 on a neighbourhood D0 of (x0, t0) and
is supported in V. Consider

vk(x, t) =
∫ t

−∞

∫
∂jG(x− y, t− s)η(y, s)uj(y, s)uk(y, s) dy ds

+
∫ t

−∞

∫
∂kG(x− y, t− s)η(y, s)p(y, s) dy ds

+
∫ t

−∞

∫
G(x− y, t− s)η(y, s)fk(y, s) dy ds

= v
(1)
k + v

(2)
k + v

(3)
k .

Then u − v is smooth in D0 since it solves the heat equation there.
On the other hand using G(x, t) ≤ C(|x| +

√
t)−3 and |∇G(x, t)| ≤

C(|x| +
√
t)−4 for all (x, t) ∈ R3 × (0,∞) and Lemma 6.3.1, we get

v
(1)
k ∈ L(10/3)/(1−q1/(3−q1))(V1), where V1 is a neighborhood of (x0, t0).

Since u ∈ Lq
loc(V) and p ∈ L3/2(D) imply p ∈ L

q/2
loc (V)+(L3/2

t L∞
x )loc(V),

we get

v
(2)
k ∈ L(10/3)/(1−q1/(3−q1))(V1) + (L6

tL
∞
x )loc(V1),

by shrinking V1 if required. On the other hand, by Young’s inequality,
v
(3)
k ∈ L5(D). Repeating this argument finitely many times, we conclude

that u belongs to L5 in a neighborhood of (x0, t0) as claimed.

6.4 A partial regularity result for f ∈ L5/3

In this section, we prove that the same theorem as in Section 6.3 holds
even if q = 0. The theorem below is proved in Kukavica (2008b) for the
case of zero forcing.

Theorem 6.4.1 Assume that

f ∈ L5/3(D). (6.34)

If μ > 0 in (6.3) is a small enough universal constant, then (x0, t0) ∈ R
implies that u ∈ L5(V) for some neighbourhood V of (x0, t0).

Instead of (6.3), we shall only need the assumption

1
r2

∫∫
Q∗

r(x,t)

|u|3 ≤ μ3 (6.35)

for (x, t) ∈ Q∗
r0

(x0, t0) and r ∈ (0, r0] where μ is sufficiently small con-
stant which is to be determined. (We are allowed to take the centred
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parabolic cubes Q∗
r(x, t) rather than Qr(x, t) since (6.3) is assumed to

hold for (x, t) in a neighbourhood of (x0, t0).)

Proof. Using a standard fixed point argument, we may assume that
r0 > 0 is so small that the equation

∂tuf − Δuf + uf · ∇uf + ∇pf = fχQ∗
r0

(x0,t0)

uf (x, t0 − r20) = 0

is uniquely solvable on R3 × [t0 − r20,∞). By taking r0 sufficiently small,
we may assume that ‖uf‖L5(R3×(t0−r2

0 ,∞)) and ‖pf‖L5/2(R3×(t0−r2
0 ,∞)) are

as small as we wish. Let ũ = u− uf and p̃ = p− pf . Then

∂tũ− Δũ+ uf · ∇ũ+ ũ · ∇uf + ũ · ∇ũ+ ∇p̃ = f̃

∇ · ũ = 0,

where f̃ vanishes in Q∗
r0

(x0, t0). Since ‖uf‖L5(R3×(t0−r2
0 ,∞)) is as small

as we wish, we may assume that ‖uf‖L5(R3×(t0−r2
0,∞)) and

1
r2

∫∫
Q∗

r(x,t)

|ũ|3 ≤ 2μ3

for all (x, t) ∈ Q∗
r0

(x0, t0) and r ≤ r0. For simplicity of notation, we omit
from here on the tilde on ũ and p̃. First, we have

∂tu− Δu+ uf · ∇u+ u · ∇uf + u · ∇u+ ∇p = 0

∇ · u = 0

in Q∗
r0

(x0, t0). Assume that 0 < 100r ≤ ρ̃ ≤ 100ρ̃ ≤ ρ ≤ 100ρ ≤ r0/4.
(Further below we shall choose ρ̃ =

√
rρ.) Let (x1, t1) ∈ Q∗

r0/2(x0, t0)
be arbitrary. For simplicity of notation, we translate in (x, t) so that
(x1, t1) = (0, 0). Let η0(x, t) = η1(x)η2(t), where η1 ∈ C∞

0 (B4/5, [0, 1]) is
such that η1 ≡ 1 on B3/5, and η2 ∈ C∞

0 ((−16/25, 16/25), [0, 1]) is such
that η1 ≡ 1 on (−9/25, 9/25). Denote

η̃(x, t) = η0

(
x

ρ̃
,
t

ρ̃2

)
and

η(x, t) = η0

(
x

ρ
,
t

ρ2

)
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and let v = η̃u = (η̃u1, η̃u2, η̃u3) and U = χQ∗
ρ̃
u. Then

∂tvk − Δvk = −∂j(Ujvk) − ∂k(η̃p) − ∂j(Ufjvk) − ∂j(vjUfk) + UjUk∂j η̃

+ p∂kη̃ + UfjUk∂j η̃ + UjUfk∂j η̃ + Uk(η̃t + Δη̃) − 2∂j(Uk∂j η̃),

where Uf = (Uf1, Uf2, Uf3) = ufχQ∗
ρ̃
. Recalling that G(x, t) = 0 for

t ≤ 0, we get

vk(x, t) = −
∫∫

∂jG(x− y, t− s)
(
Uj(y, s)vk(y, s) + Ufj(y, s)vk(y, s)

+ Ufk(y, s)vj(y, s)
)

dy ds

+
∫∫

G(x− y, t− s)
(
UjUk∂j η̃ + UfjUk∂j η̃ + UjUfk∂j η̃ + p∂kη̃

+ Uk(η̃t + Δη̃)
)
(y, s) dy ds

− 2
∫∫

∂jG(x− y, t− s)(Uk∂j η̃)(y, s) dy ds

−
∫∫

∂kG(x− y, t− s)(η̃p)(y, s) dy ds

= I1 + I2 + I3 + I4.

Note that

|I1(x, t)| ≤ C

∫∫
(|v| |U | + |v| |Uf |)(y, s)

(|x− y| +
√
t− s)4

dy ds,

whence, by Lemma 6.3.1 and the parabolic Hardy–Littlewood–Sobolev
inequality,

‖I1‖L3(Q∗
r) ≤ C‖Uv‖1/2

L3/2
2

‖Uv‖1/2

L3/2 + C‖v‖L3‖Uf‖L5 ≤ Cμ‖u‖L3(Q∗
ρ).

Note that each term of the integrand in I2 contains a derivative of η̃ and
thus vanishes for (y, s) ∈ Q∗

3ρ̃/5 ∪ (Q∗
4ρ̃/5)c; therefore, the integrand is

bounded if (x, t) ∈ Q∗
r . In fact, for (x, t) ∈ Q∗

r ,

|I2(x, t)| ≤ C

ρ̃4

∑
j,k

‖UjUk‖L1(Q∗
ρ̃
) +

C

ρ̃4
‖p‖L1(Q∗

ρ̃
)

+
C

ρ̃4

∑
j,k

‖UfjUk‖L1(Q∗
ρ̃
) +

C

ρ̃ 5
‖U‖L1(Q∗

ρ̃
)
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and thus, assuming μ ≤ 1,

‖I2‖L3(Q∗
r) ≤ Cr5/3

ρ̃ 7/3

(‖U‖2
L3(Q∗

ρ̃
) + ‖p‖L3/2(Q∗

ρ̃
)

+ ‖Uf‖L3(Q∗
ρ̃
)‖U‖L3(Q∗

ρ̃
) + ρ̃ 2/3‖U‖L3(Q∗

ρ̃
)

)
≤ Cκ̃5/3‖u‖L3(Q∗

ρ̃
) +

Cr5/3ρ2/3

ρ̃ 7/3

1
ρ2/3

‖p‖L3/2(Q∗
ρ̃
)

≤ Cκ̃5/3‖u‖L3(Q∗
ρ) +

Cκ̃5/3

κ2/3

1
ρ2/3

‖p‖L3/2(Q∗
ρ),

where κ̃ = r/ρ̃ and κ = ρ̃/ρ. Similarly, for (x, t) ∈ Q∗
r ,

|I3(x, t)| ≤ C

ρ̃ 5
‖U‖L1(Q∗

ρ̃
),

from where

‖I3‖L3(Q∗
r) ≤ Cr5/3

ρ̃ 5/3
‖U‖L3 ≤ Cκ̃5/3‖u‖L3(Q∗

ρ̃
).

Since η̃ = ηη̃, we may rewrite

I4(x, t) = −
∫∫

∂kG(x− y, t− s)(η̃ηp)(y, s) dy ds.

Then we use a representation of the type (6.26), which takes the form

ηp = −RiRj(ηUij) +N ∗ ((∂ijη)Uij) − ∂jN ∗ (Uij∂iη)

− ∂iN ∗ (Uij∂jη) −N ∗ (pΔη) + 2∂jN ∗ ((∂jη)p)

= π1 + π2 + π3 + π4 + π5 + π6,

where

Uij = uiuj + ufiuj + uiufj . (6.36)

Define

Jm(x, t) = −
∫∫

∂kG(x−y, t−s)η̃(y, s)πm(y, s) dy ds, m = 1, . . . , 6.

For the first term J1, we have

J1(x, t) =
∫∫

∂kG(x− y, t− s)η̃(y, s)RiRj(ηUij)(y, s) dy ds

=
∫∫

∂kRiRjG(x− y, t− s)(ηUij)(y, s) dy ds

+
∫∫

∂kG(x− y, t− s)(η̃(y, s) − 1)RiRj(ηUij)(y, s) dy ds

= J11 + J12. (6.37)
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For the term J11, we have by Fabes et al. (1972),

|∇RiRjG(x, t)| ≤ C

(|x| +
√
t)4

, x ∈ R3, t > 0, i, j = 1, 2, 3.

Using Lemma 6.3.1 and the parabolic Hardy–Littlewood–Sobolev
inequality, we obtain

‖J11‖L3(Q∗
r) ≤ C‖ηuiuj‖1/2

L3/2
2

‖ηuiuj‖1/2

L3/2 + C
∑
i,j

‖ηuiufj‖L15/8

≤ Cμ‖u‖L3(Q∗
ρ).

For the term J12, note that η̃ − 1 vanishes on Q∗
ρ̃/2. Therefore,

|J12(x, t)| ≤ C

∫∫
Q∗

ρ̃/2(x,t)c

|RiRj(ηuiuj)(y, s)| + |RiRj(ηufiuj)(y, s)|
(|x− y| + |t− s|1/2)4

dy ds

for (x, t) ∈ Q∗
r . Then write

Q∗
ρ̃/2(x, t)c =

∞⋃
m=0

(
Q∗

2mρ̃(x, t) ∩Q∗
2m−1ρ̃(x, t)c

)
and obtain

|J12(x, t)| ≤
∞∑

m=0

C

24mρ̃4

(
‖RiRj(ηuiuj)‖L1(Q∗

2mρ̃
(x,t)∩Q∗

2m−1ρ̃
(x,t)c)

+ ‖RiRj(ηufiuj)‖L1(Q∗
2mρ̃

(x,t)∩Q∗
2m−1ρ̃

(x,t)c)

)
≤

∞∑
m=0

C

27m/3ρ̃ 7/3

(
‖RiRj(ηuiuj)‖L3/2(Q∗

2mρ̃
(x,t)∩Q∗

2m−1ρ̃
(x,t)c)

+ ‖RiRj(ηufiuj)‖L3/2(Q∗
2mρ̃

(x,t)∩Q∗
2m−1ρ̃

(x,t)c)

)
≤

∞∑
m=0

C

27m/3ρ̃ 7/3

(∑
i,j

‖ηuiuj‖L3/2(R3×(−ρ2,ρ2))

+
∑
i,j

‖ηufiuj‖L3/2(R3×(−ρ2,ρ2))

)

≤
∞∑

m=0

C

27m/3ρ̃ 7/3

(
‖u‖2

L3(Q∗
ρ) + ‖u‖L3(Q∗

ρ)‖uf‖L3(Q∗
ρ)

)
≤ Cμρ2/3

ρ̃ 7/3
‖u‖L3(Q∗

ρ)
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for (x, t) ∈ Q∗
r . Therefore,

‖J12‖L3(Q∗
r) ≤ Cr5/3‖J12‖L∞(Q∗

r) ≤ Cμκ̃5/3

κ2/3
‖u‖L3(Q∗

r).

Next, using the parabolic Hardy–Littlewood–Sobolev inequality, we get

‖J2‖L3(Q∗
r) ≤ Cr7/10‖J2‖L3

t L10
x (Q∗

r) ≤ Cr7/10‖η̃π2‖L
3/2
t L

90/19
x

≤ Cr7/10ρ̃19/30‖N ∗ ((∂ijη)Uij)‖
L

3/2
t L∞

x (Q∗
ρ̃
)
.

Now, note that, by the construction of η, we have ∂ijη(y, s) = 0 on the
set {(y, s) : |y| ≤ 3/5}. Therefore, the convolution above is not singular,
and we have ‖N ∗ ((∂ijη)Uij)‖

L
3/2
t L∞

x (Q∗
ρ̃
)
≤ Cρ−3‖U‖

L
3/2
t L1

x(Q∗
ρ)

, and

thus

‖J2‖L3(Q∗
r) ≤ Cr7/10ρ̃ 19/30

ρ3
‖U‖

L
3/2
t L1

x(Q∗
ρ)

≤ Cr7/10ρ̃ 19/30

ρ2
‖U‖L3/2(Q∗

ρ)

≤ Cμr7/10ρ̃ 19/30

ρ4/3
‖u‖L3(Q∗

ρ) ≤ Cμ‖u‖L3(Q∗
ρ).

The same upper bounds can be derived for J3 and J4. As for J5, we have
by the parabolic Hardy–Littlewood–Sobolev inequality

‖J5‖L3(Q∗
r) ≤ Cr7/10‖J5‖L3

t L10
x (Q∗

r) ≤ Cr7/10‖η̃π5‖L
3/2
t L

90/19
x

≤ Cr7/10ρ̃ 19/30‖N ∗ (pΔη)‖
L

3/2
t L∞

x (Q∗
ρ̃
)

≤ Cr7/10ρ̃ 19/30

ρ3
‖p‖

L
3/2
t L1

x(Q∗
ρ)

≤ Cr7/10ρ̃ 19/30

ρ2
‖p‖L3/2(Q∗

ρ) = Cκ̃7/10κ4/3 1
ρ2/3

‖p‖L3/2(Q∗
ρ).

The same estimate holds also for J6. In summary, we get

‖u‖L3(Q∗
r) ≤ C

(
μ+ κ̃5/3 +

μκ̃5/3

κ2/3

)
‖u‖L3(Q∗

ρ)

+ C

(
κ̃5/3

κ2/3
+ κ̃7/10κ4/3

)
1
ρ2/3

‖p‖L3/2(Q∗
ρ).

Setting ρ̃ =
√
ρr, we have κ̃ = κ = κ1/2, where κ = r/ρ, and thus the

inequality reduces to

‖u‖L3(Q∗
r) ≤ C(μ+ κ5/6)‖u‖L3(Q∗

ρ) +
Cκ1/2

ρ2/3
‖p‖L3/2(Q∗

ρ)
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whence

1
r2/3

‖u‖L3(Q∗
r) ≤ C

( μ

κ2/3
+ κ1/6

) 1
ρ2/3

‖u‖L3(Q∗
ρ) +

C

κ1/6ρ4/3
‖p‖L3/2(Q∗

ρ).

By a similar estimate for the pressure, we get

‖p‖L3/2(Q∗
r) ≤ C‖u‖2

L3(Q∗
ρ) + C‖u‖L3(Q∗

ρ)‖uf‖L3(Q∗
ρ) + Cκ2‖p‖L3(Q∗

ρ)

≤ Cμρ2/3‖u‖L3(Q∗
ρ) + Cκ2‖p‖L3(Q∗

ρ),

from where

1
r4/3

‖p‖L3/2(Q∗
ρ) ≤

Cμ

κ4/3ρ2/3
‖u‖L3(Q∗

ρ) +
Cκ2/3

ρ4/3
‖p‖L3/2(Q∗

ρ). (6.38)

The function θ(r) = r−2/3‖u‖L3(Q∗
r) + κ−1/3r−4/3‖p‖L3/2(Q∗

r) satisfies

θ(r) ≤ C
( μ

κ5/3
+ κ1/6

)
θ(ρ). (6.39)

Next, choosing κ and μ as appropriate constants (first we choose κ

sufficiently small and then μ sufficiently small compared to κ5/3), the
equation (6.39) becomes

θ(κρ) ≤ 1
2
θ(ρ) (6.40)

provided that 0 < ρ < r0/C with C a sufficiently large universal
constant. Iterating this inequality, we get existence of ε > 0 such that

1
r2+ε

∫∫
Q∗

r(x1,t1)

(|u|3 + |p|3/2
) ≤ μ3 (6.41)

for all (x1, t1) is a neighbourhood of (x0, t0) and all sufficiently small
r > 0. Now, this condition is no longer critical, so we may bootstrap as in
the previous section and obtain u ∈ L5(D0), where D0 is a neighborhood
of (x0, t0).
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Abstract

In this paper, we study the global and local existence and uniqueness
of solutions to the Navier–Stokes equations with anisotropic viscosity in
a bounded cylindrical domain Q = Ω × (0, 1), where Ω is a star-shaped
domain in R2. Here we consider the case of homogeneous Dirichlet
boundary conditions on the lateral boundary and vanishing normal trace
on the top and the bottom of the cylinder.

7.1 Introduction

The Navier–Stokes equations with anisotropic viscosity are classical
in geophysical fluid dynamics. Instead of choosing the more standard
viscosity −ν(∂2

1 + ∂2
2 + ∂2

3) in the case of three-dimensional fluids, mete-
orologists often model turbulent flows using a viscosity of the form
−νh(∂2

1 + ∂2
2) − νv∂

2
3 , where νv is usually much smaller than νh and

thus can be neglected (see Chapter 4 in Pedlosky (1979), for a detailed
discussion).

More precisely, in geophysical fluids, the rotation of the earth plays
a crucial role. The Coriolis force introduces a penalized skew-symmetric
term ε−1u × e3 into the equations, where ε > 0 is the Rossby num-
ber and e3 = (0, 0, 1) is the unit vertical vector. This leads to an
asymmetry between the horizontal and vertical motions. By the Taylor–
Proudman Theorem (see Pedlosky (1979) and Taylor (1923)), the fluid
tends to have a two-dimensional behaviour far from the boundary of the
domain. When the fluid evolves between two parallel plates with homo-
geneous Dirichlet boundary conditions, Ekman boundary layers of the

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.
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form UBL(x1, x2, ε
−1x3) appear near the boundary. In order to compen-

sate the term ε−1UBL × e3 by the term −νv∂
2
3UBL, we need to impose

the requirement that νv = βε, for β > 0 (Grenier & Masmoudi, 1997;
Chemin et al., 2006).

When the fluid occupies the whole space, the Navier–Stokes equations
with vanishing or small vertical viscosity are as follows:

∂tu+ u∇u− νh(∂2
1 + ∂2

2)u− νv∂
2
3u = −∇p in R3 , t > 0

div u = 0 in R3 , t > 0

u|t=0 = u0,

(7.1)

where νh > 0 and νv ≥ 0 represent the horizontal and vertical viscosities
and where u = (u1, u2, u3) and p are the vector field of the velocities and
the pressure respectively. In the case of vanishing vertical viscosity, the
classical theory of the Navier–Stokes equations does not apply and new
difficulties arise. Some partial L2-energy estimates still hold for system
(7.1), but they do not allow one to pass to the limit and to obtain a weak
solution as in the well-known construction of weak Leray solutions nor to
use directly the results of Fujita & Kato (1964) on the existence of strong
solutions. Of course, neglecting the horizontal viscosity and requiring a
lot of regularity of the initial data, one can prove the local existence of
strong solutions within the framework of hyperbolic symmetric systems.
Thus, new methods have to be developed.

In the case νv = 0, this system was first studied by Chemin et al.
(2000), who showed local and global existence of solutions in anisotropic
Sobolev spaces which take into account this anisotropy. More precisely,
for s ≥ 0, let us introduce the anisotropic Sobolev spaces,

H0,s = {u ∈ L2(R3)3 | ‖u‖2
H0,s =

∫
R3

(1 + |ξ3|2)s|û(ξ)|2 dξ < +∞}

and H1,s = {u ∈ H0,s | ∂iu ∈ H0,s , i = 1, 2} (such anisotropic spaces
were introduced in Iftimie (1999) for the study of the Navier–Stokes
system in thin domains).

Chemin et al. (2000) showed that, for any s0 > 1/2, and any u0 ∈
H0,s0 , there exist T > 0 and a local solution

u ∈ L∞((0, T ),H0,s0) ∩ L2((0, T ),H1,s0)

of the anisotropic Navier–Stokes equations (7.1). If ‖u0‖H0,s0 ≤ cνh,
where c > 0 is a small constant, then the solution is global in time. In
the same paper, the authors proved that there exists at most one solution
u(t) of the equations (7.1) in the space L∞((0, T ),H0,s)∩L2((0, T ),H1,s)
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for s > 3/2. In these results, there was a gap between the regularity
required for the existence of solutions and that required for uniqueness.
This gap was closed by Iftimie (2002) who showed the uniqueness of the
solution in the space L∞((0, T ),H0,s) ∩ L2((0, T ),H1,s) for s > 1/2.

Like the classical Navier–Stokes equations, the system (7.1) on the
whole space R3 has a scaling. Indeed, if u is a solution of the equa-
tions (7.1) on a time interval [0, T ] with initial data u0, then uμ(t, x) =
μu(μ2t, μx) is also a solution of (7.1) on the time interval [0, μ−2T ], with
initial data μu0(μx). This was one of the motivations of Paicu for con-
sidering initial data in the scaling invariant Besov space B0,1/2. Paicu
(2005b) proved the local existence and uniqueness of the solutions of
(7.1), for initial data u0 ∈ B0,1/2. He showed global existence of the
solution when the initial data in B0,1/2 are small, compared to the hor-
izontal viscosity νh (for further details see Paicu, 2004, 2005a,b). Very
recently Chemin & Zhang (2007) introduced the scaling invariant Besov–
Sobolev spaces B−1/2,1/2

4 and showed existence of global solutions when
the initial data u0 in B−1/2,1/2

4 are small compared to the horizontal
viscosity νh. This result implies the global well-posedness of (7.1) with
highly oscillatory initial data.

Notice that in all the above results, as well as in this paper, one of
the key observations is that, in the various essential energy estimates,
the partial derivative ∂3 appears only when applied to the component
u3 in terms like u3∂3u3. Even if there is no vertical viscosity and thus no
smoothing in the vertical variable, the divergence-free condition implies
that ∂3u3 is regular enough to get good estimates of the nonlinear term.

Considering the anisotropic Navier–Stokes equations on the whole
space R3 (or on the torus T3) instead of on a bounded domain with
boundary leads to some simplifications. For example, the Stokes operator
coincides with the operator −Δ on the space of smooth divergence-free
vector fields. Also one can use Fourier transforms and Littlewood–Paley
theory.

One of the few papers considering the anisotropic Navier–Stokes equa-
tions on a domain with a boundary is the article by Iftimie & Planas
(2006), who studied the anisotropic equations (7.1) on a half-space H,
supplemented with the boundary condition

u3 = 0 in ∂H , t > 0. (7.2)

This system of equations can be reduced to the case of the whole
space R3. Indeed, let w be a solution of the anisotropic Navier–Stokes
equations on the half-space H. Extending the components w1 and w2 to
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R3 by an even reflection and the third component w3 by an odd reflection
with respect to the plane x3 = 0, we obtain a vector field w̃, which is
a solution of the equations (7.1) on the whole space R3. Conversely,
if u(t) is a solution of the anisotropic Navier–Stokes equations on the
whole space R3 with initial data u0 ∈ H0,1 satisfying the condition
u0,3 = 0 on ∂H, then the restriction of u(t) to H is a solution of the
anisotropic Navier–Stokes equations on H, satisfying the condition (7.2).
For initial data u0 ∈ L2(H)3, satisfying the condition ∂3u0 ∈ L2(H)3,
Iftimie & Planas (2006) showed that the solutions of the anisotropic
Navier–Stokes equations on H are limits of solutions uε of the Navier–
Stokes equations on H with Navier boundary conditions on the boundary
∂H and viscosity term −νh(∂2

1 +∂2
2)uε−ε∂2

3uε on a time interval (0, T0),
where T0 > 0 is independent of ε. If the initial data u0 are small with
respect to the horizontal viscosity νh, they showed the convergence on
the infinite time interval (0,+∞). In our study of the anisotropic Navier–
Stokes equations on a bounded domain, we are also going to introduce
an auxiliary Navier–Stokes system with viscosity −νh(∂2

1 +∂2
2)uε−ε∂2

3uε

(see system (NSε) below), but instead of considering Navier boundary
conditions in the vertical variable, we will choose periodic conditions.

In this paper, we study the global and local existence and uniqueness
of solutions to the anisotropic Navier–Stokes equations on a bounded
product domain of the type Q = Ω × (0, 1), where Ω is a smooth two-
dimensional domain, with homogeneous Dirichlet boundary conditions
on the lateral boundary ∂Ω×(0, 1). For the sake of simplicity, we assume
that Ω is a star-shaped domain. We denote by Γ0 = Ω × {0} and Γ1 =
Ω × {1} the top and the bottom of Q. More precisely, we consider the
system of equations

(NSh)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u∇u− νhΔhu = −∇p in Q , t > 0

div u = 0 in Q , t > 0

u|∂Ω×(0,1) = 0 , t > 0

u3|Γ0∪Γ1 = 0 , t > 0

u|t=0 = u0 ∈ H0,1(Q),

where the operator Δh = ∂2
x1

+∂2
x2

denotes the horizontal Laplacian and
νh > 0 is the horizontal viscosity. Here u ≡ (u1, u2, u3) ≡ (uh, u3) is the
vector field of velocities and p denotes the pressure term. To simplify
the discussion, we suppose that the forcing term f vanishes (the case
of a non-vanishing forcing term as well as the asymptotic behaviour in
time of the solutions of (NSh) will be studied in a subsequent paper).
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Since the viscosity is anisotropic, we want to solve the above system in
the anisotropic function space

H̃0,1(Q) = {u ∈ L2(Q)3 |div u = 0 ; γnu = 0 on ∂Q ; ∂3u ∈ L2(Q)3},
where γnu is the extension of the normal trace u ·n to H−1/2(∂Q). Since
u belongs to L2(Q)3 and div u = 0, γnu is well defined and belongs to
H−1/2(∂Q). For later use, we also introduce the space

H0,1(Ω×(a, b)) = {u ∈ L2(Ω×(a, b))3 |div u = 0 ; ∂3u ∈ L2(Ω×(a, b))3},
where −∞ < a < b < +∞. Clearly, H̃0,1(Q) is a closed subspace of
H0,1(Q).

Considering a bounded domain Q with lateral Dirichlet boundary con-
ditions instead of working with periodic boundary conditions introduces
a new difficulty. In particular, we have to justify that these Dirichlet
boundary conditions make sense. Before stating existence results for
solutions u(t) to the system (NSh), we describe our strategy to solve
this problem. One way of solving the system (NSh) consists of adding
an artificial viscosity term −ε∂2

3u (where ε > 0) to the first equation in
(NSh) and in replacing the initial data u0 by more regular data uε

0, that
is, in solving the system

(NSh,ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u∇u− νhΔhu− ε∂2
3u = −∇p in Q , t > 0

div u = 0 in Q , t > 0

u|∂Ω×(0,1) = 0 , t > 0

u3|Γ0∪Γ1 = 0 , t > 0

u|t=0 = uε
0 ,

where the initial data uε
0 are chosen in the function space

H̃1
0 (Q) = {u ∈ H1(Q)3 |div u = 0 ; u|∂Ω×(0,1) = 0 ; u3 = 0 on Γ0 ∪ Γ1},

and are close to u0. In what follows, we will actually consider a sequence
of positive numbers εn converging to 0, as n goes to infinity. Thus, we
will also choose a sequence of initial data uεn

0 ∈ H̃1
0 (Q) converging to u0

in the space H̃0,1(Q) when n goes to infinity. A choice of such a sequence
is possible since the space H̃1

0 (Q) is dense in H̃0,1(Q) (see Lemma 7.2.1
in the next section). Notice that, for ε > 0, we need to replace u0 by
more regular initial data uε

0 in order to be able to apply the Fujita–Kato
Theorem.

However, the system of equations (NSh,ε) is still not a classical system.
Indeed, we need to impose boundary conditions on the horizontal part
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uh(t, xh, x3) on the top x3 = 1 and the bottom x3 = 0 (that is on Γ0∪Γ1).
As in Iftimie & Planas (2006), we could impose Navier-type boundary
conditions on the horizontal part of u on Γ0 and Γ1, but here we will
take another path. We will extend the velocity field u by symmetry to
the domain Q̃ = Ω× (−1, 1) and then solve the equations (NSh,ε) on the
symmetrical domain Q̃ by imposing homogeneous Dirichlet boundary
conditions on the lateral boundary and periodic conditions in the vertical
variable x3. More precisely, let u be a vector in H̃1

0 (Q). We extend u to
a vector ũ ≡ Σu on Q̃ = Ω × (−1, 1) by setting

(Σu)i(xh,−x3) ≡ ũi(xh,−x3) =ui(xh, x3), i = 1, 2, 0 ≤ x3 ≤ 1

(Σu)3(xh,−x3) = ũ3(xh,−x3) = − u3(xh, x3), 0 ≤ x3 ≤ 1,

and (Σu)(xh, x3) ≡ ũ(xh, x3) = u(xh, x3) for 0 ≤ x3 ≤ 1; notice that the
vector ũ = Σu belongs to the space H1(Q̃)3. We introduce the function
space

Ṽ ≡ H1
0,per(Q̃) = {u ∈ H1(Q̃)3 |div u = 0 ;u|∂Ω×(0,1) = 0 ;

u(xh, x3) = u(xh, x3 + 2)}.

The vector ũ = Σu clearly belongs to the space H1
0,per(Q̃).

We finally consider the problem

(NSε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tuε + uε∇uε − νhΔhuε − ε∂2
x3
uε = −∇pε in Q̃ , t > 0

div uε = 0 in Q̃ , t > 0

uε|∂Ω×(−1,1) = 0 , t > 0

uε(xh, x3) = uε(xh, x3 + 2) , t > 0

uε|t=0 = uε,0 ∈ H1
0,per(Q̃).

According to the classical theorem of Fujita & Kato (1964), for any ini-
tial condition uε,0 ∈ Ṽ there exists a unique local strong solution uε(t) ∈
C0([0, Tε), Ṽ ) of the Navier–Stokes equations (NSε). Moreover, this solu-
tion is classical and belongs to C0((0, Tε),H2(Q̃)3)∩C1((0, Tε), L2(Q̃)3).
If the time interval of existence is bounded, that is, if Tε < +∞, then

‖uε(t)‖Ṽ −→ +∞, as t→ T−
ε .

We next introduce the “symmetry map” S : u ∈ Ṽ �→ Su ∈ Ṽ defined
as follows

(Su)i(xh,−x3) = ui(xh, x3) , i = 1, 2,

(Su)3(xh,−x3) = −u3(xh, x3).
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We remark that if uε(t) ∈ C0([0, Tε), Ṽ ) is a solution of the Navier–
Stokes equations (NSε), then Suε ∈ C0([0, Tε), Ṽ ) is a solution of the
equations (NSε) with Suε(0) = Suε,0. If uε,0 = Σu0, where u0 belongs
to H̃1

0 (Q), then, Suε,0 = uε,0 and by the above uniqueness property,
the solutions Suε(t) and uε(t) coincide. This implies in particular that
uε,3(t) vanishes on Γ0 ∪ Γ1 for any t ∈ [0, Tε). Since uε(t) = Suε(t)
belongs to C0((0, Tε),H2(Q̃)), this also implies that ∂3uε,h vanishes on
Γ0 ∪ Γ1 for any t ∈ (0, Tε) and for any ε > 0.

In what follows, we denote by ∇h the gradient operator in the horizon-
tal direction, that is, the gradient with respect to the variables x1 and
x2. To summarize, for any u0 ∈ H̃0,1(Q), we will construct a (unique)
local (respectively global) solution ū ∈ L∞((0, T0), H̃0,1(Q)), with
∇hū ∈ L2((0, T0),H0,1(Q)) (respectively ū ∈ L∞((0,+∞), H̃0,1(Q)),
with ∇hū in the space L2

loc((0,+∞),H0,1(Q))) by proceeding as fol-
lows. We consider a (decreasing) sequence of positive numbers εm

converging to zero and, using Lemma 7.2.1, a sequence of initial data
um

0 ∈ H̃1
0 (Q) converging to u0 in H̃0,1(Q), when m goes to infin-

ity. Then, for each m, we solve the problem (NSεm) with initial data
uεm,0 = Σum

0 . We thus obtain a unique local (respectively global) solu-
tion uεm

(t) ∈ C0((0, T ), Ṽ ) of the problem (NSεm) where 0 < T < +∞
(respectively T = +∞). We show that this sequence uεm

(t) is uniformly
bounded in L∞((0, T0),H0,1(Q̃)) and that the sequence of derivatives
∇huεm

(t) is uniformly bounded in L2((0, T0),H0,1(Q̃)), where T0 > 0
is independent of m (depending only on u0). If the initial data are
small enough, we show the global existence of these solutions, again
with bounds in L∞((0,+∞),H0,1(Q̃)) and L2((0,+∞),H0,1(Q̃)), inde-
pendent of m. Using these uniform bounds, we show that the sequences
uεm

(t) and ∇huεm
(t) are Cauchy sequences in L∞((0, T0), L2(Q̃)) and in

L2((0, T0), L2(Q̃)) respectively, which implies the existence of a solution
ū ∈ L∞((0, T0), H̃0,1(Q)) of (NSh), with ∇hū ∈ L2((0, T0),H0,1(Q)).
The uniqueness of the solution ū is straightforward and is proved in the
same way as the Cauchy property of the sequence uεm

(t).

This paper is organized as follows. In the second section, we intro-
duce several notations and spaces. We also prove auxiliary results, which
will be used in the following sections. In the third section, we show
global existence results under various smallness assumptions. The fourth
section is devoted to the proof of the local existence of solutions for
general initial data.



Anisotropic Navier–Stokes equations in a bounded cylinder 153

7.2 Preliminaries and auxiliary results

In what follows, for any u in H0,1(Q), we will often use the notation
div hu ≡ div huh = ∂1u1 + ∂2u2. This quantity is well defined since, by
the divergence-free condition, div huh = −∂3u3.

We begin this section by proving the density of H̃1
0 (Q) in the space

H̃0,1(Q). For the sake of simplicity, we assume below that Ω is star-
shaped. This hypothesis allows us to give a constructive proof of the
density result. This density result should be true even without this
additional assumption.

Lemma 7.2.1 Let Ω be a smooth bounded star-shaped domain. Then
the space H̃1

0 (Q) is dense in the space H̃0,1(Q).

Proof Without loss of generality, we will assume that Ω is star-shaped
with respect to the origin 0.
Let u be an element of H̃0,1(Q). We denote by u∗(xh, x3) the extension
of u(xh, x3) by zero on R2 × (0, 1), that is,

u∗(xh, x3) = u(xh, x3), ∀(xh, x3) ∈ Ω × (0, 1)

u∗(xh, x3) = 0, ∀(xh, x3) ∈ (R2\Ω) × (0, 1).

We notice that the property γnu = 0 on ∂Ω× (0, 1) implies that, for any
Φ ∈ D(R2 × (0, 1)) with Φ|Ω = ϕ, we have

〈div u∗,Φ〉D′,D = − 〈u∗,∇Φ〉D′,D = −
∫

Ω×(0,1)

u · ∇ϕdxh dx3

=
∫

Ω×(0,1)

div uϕdxh dx3 − 〈γnu, ϕ|∂Ω×(0,1)〉H−1/2,H1/2

=
∫

Ω×(0,1)

div uϕdxh dx3,

which implies that div u∗ = 0. We also notice that u∗ and ∂3u
∗ belong

to L2(R2 × (0, 1))3 and that thus div hu
∗
h = −∂3u

∗
3 is in L2(R2 × (0, 1)).

We next want to approximate the vector u∗ by a vector with compact
support in Ω × [0, 1]. To this end, inspired by Remark 1.7 in Chapter I
of Temam (1979), we introduce the vector u∗λ, for λ > 1, defined by

u∗λ,i(xh, x3) =u∗i (λxh, x3), i = 1, 2,

u∗λ,3(xh, x3) =λu∗3(λxh, x3).

We remark that both u∗λ and ∂3u
∗
λ belong to L2(R2 × (0, 1))3 and that

u∗λ,3(xh, 0) = u∗λ,3(xh, 1) = 0. Moreover,
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div hu
∗
λ(xh, x3) =λ(div hu

∗)(λxh, x3),

∂3u
∗
λ,3(xh, x3) =λ(∂3u

∗
3)(λxh, x3), and

div u∗λ(xh, x3) =λ((div hu
∗)(λxh, x3) + (∂3u

∗
3)(λxh, x3)) = 0.

For any λ > 1, the support of u∗λ is contained in ( 1
λ Ω̄) × [0, 1] and

therefore is a compact strict subset of Ω× [0, 1]. Furthermore, using the
Lebesgue Dominated Convergence Theorem, one easily shows that u∗λ
converges to u∗ and thus to u in H̃0,1(Q), when λ converges to 1.
We next introduce a smooth bump function with compact support ρ ∈
D(R2) such that

ρ(xh) ≥ 0 and
∫

R2
ρ(xh) dxh = 1.

For any small positive number η, we set

ρη(xh) =
1
η2
ρ(
xh

η
).

It is well-known that ρη(xh) converges in the sense of distributions to
the Dirac distribution δR2 . For any λ > 1 and any η > 0, where η is
small with respect to 1 − λ, we consider the vector u∗λ,η, which is the
“horizontal convolution” (denoted by �h) of u∗λ with ρη, that is,

u∗λ,η(xh, x3) =(ρη �h u
∗
λ)(xh, x3)

=
∫

R2
ρη(yh)u∗λ(xh − yh, x3)dyh.

Since, for any i = 1, 2, 3,

∂iu
∗
λ,η(x) ≡ ∂i(ρη �h u

∗
λ)(x) = (ρη �h ∂i(u∗λ))(x), (7.3)

it follows directly that, for any (xh, x3) ∈ R2 × (0, 1),

div u∗λ,η = ρη �h (div u∗λ) = 0.

Using Young’s inequality,

‖ρη �h f(xh)‖L2(R2) ≤ c‖ρη‖L1(R2)‖f(xh)‖L2(R2) ≤ c‖f(xh)‖L2(R2),

we can write

‖u∗λ,η‖2
L2 =

∫ 1

0

(∫
R2

|u∗λ,η(xh, x3)|2dxh

)
dx3

≤ c2
∫ 1

0

(∫
R2

|u∗λ(xh, x3)|2dxh

)
dx3 = c2‖u∗λ‖2

L2 .

(7.4)



Anisotropic Navier–Stokes equations in a bounded cylinder 155

Properties (7.3) and (7.4) also imply that

‖∂3u
∗
λ,η‖L2 ≤ c‖∂3u

∗
λ‖L2 .

We remark that u∗λ,η is a C∞-function in the horizontal variable. Indeed,
for any integers k1, k2, we have

∂k1+k2u∗λ,η

∂xk1
1 ∂x

k2
2

(xh, x3) =
∫

R2

∂k1+k2ρη

∂xk1
1 ∂x

k2
2

(xh − yh)u∗λ(yh, x3) dyh.

If η > 0 is small with respect to λ − 1, the support of u∗λ,η(xh, x3) =
(ρη �h u

∗
λ)(xh, x3) is a compact set strictly contained in Ω × [0, 1]. All

these properties imply in particular that u∗λ,η belongs to the Sobolev
space H1(Q). We also check that u∗λ,η vanishes on Γ0 ∪ Γ1. Thus, u∗λ,η

belongs to the space H̃1
0 (Q), for η > 0 small enough with respect to

λ− 1.
For any fixed λ > 0, one shows, as in the classical case of convolutions
in all the variables, that as η → 0

ρη �h u
∗
λ → u∗λ in L2(Q)

∂3(ρη �h u
∗
λ) → ∂3u

∗
λ in L2(Q).

(7.5)

A quick proof of the first property of (7.5) is as follows. Let wn ∈ D(Q̄)3

be a sequence of smooth vectors converging to u∗λ in L2(Q)3. Arguing as
in (7.4), by using Young’s inequality, one proves that, for any positive
number δ, there exists an integer nδ such that, for n ≥ nδ, for any η > 0,

‖wn − u∗λ‖L2 + ‖ρη �h wn − ρη �h u
∗
λ‖L2 ≤ δ

2
.

It thus remains to show, for instance, that ‖wnδ
−ρη �hwnδ

‖L2 converges
to zero as η tends to zero. Using the C1-regularity of the vector wnδ

as
well as the properties of ρη, one easily shows that

lim
η→0

(ρη �h wnδ
)(xh, x3) = wnδ

(xh, x3) for a.e. (xh, x3).

Moreover, by (7.4),

‖wnδ
− ρη �h wnδ

‖L2 ≤ (c+ 1)‖wnδ
‖L2 .

These two properties imply, due to the Lebesgue Dominated Conver-
gence Theorem, that ‖wnδ

− ρη �h wnδ
‖L2 converges to zero as η tends

to zero, that is, there exists η0 > 0 such that, for any 0 < η ≤ η0,

‖wnδ
− ρη �h wnδ

‖L2 ≤ δ

2
.
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The first property in (7.5) is thus proved. The second property in (7.5)
is shown in the same way.
Finally, let λn > 1 and ηn > 0 be two sequences converging to 1 and zero
respectively as n tends to infinity. To complete the proof of the lemma,
it suffices to notice that, by a diagonal procedure, one can extract two
subsequences λnk

and ηnk
such that u∗λnk

,ηnk
converges to u∗ in H̃0,1(Q)

as nk tends to infinity. The lemma is thus proved.

Remark 7.2.2 We can also define spaces with higher regularity in the
vertical variable. For instance, let

H̃0,2(Q) = {u ∈ L2(Q)3 |div u = 0 ; γnu = 0 on ∂Q ;

∂i
3u ∈ L2(Q)3 , i = 1, 2}

and

H̃0,2
0 (Q) = {u ∈ L2(Q)3 | div u = 0 ; γnu = 0 on ∂Q ;

∂3uh = 0 on Γ0 ∪ Γ1 ; ∂i
3u ∈ L2(Q)3 , i = 1, 2}.

For later use, we also introduce the space

H0,2(Ω × (a, b)) = {u ∈ L2(Ω × (a, b))3 | div u = 0 ;

∂i
3u ∈ L2(Ω × (a, b))3 , i = 1, 2},

where −∞ < a < b < +∞.
Arguing as in the proof of Lemma 7.2.1, one shows that, under the
same hypothesis, H̃1

0 (Q)∩H2(Q) is dense in H̃0,2(Q) and that H̃1
0 (Q)∩

H2(Q) ∩ H̃0,2
0 (Q) is dense in H̃0,2

0 (Q).
Let 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞. We use the notation Lq

vL
p
h(Q̃) =

Lq((−1,+1);Lp(Ω)) or simply Lq
vL

p
h for the space of (equivalence classes

of) functions g such that

‖g‖Lq
vLp

h
=

(∫ +1

−1

(∫
Ω

|g(xh, x3)|p dxh

)q/p

dx3

)1/q

<∞.

We point out that the order of integration is important. Of course, Lq
vL

q
h

is the usual space Lq(Q̃) and the norm ‖g‖Lq
vLq

h
is denoted by ‖g‖Lq .

Likewise we define the spaces Lq
vL

p
h(Q) = Lq((0,+1);Lp(Ω)).

Lemma 7.2.3 The following anisotropic estimates hold.
1) For any function g in L2(Q̃) (with ∇hg ∈ L2(Q̃)) satisfying homoge-
neous Dirichlet boundary conditions on the boundary ∂Ω × (−1,+1),

‖g‖L2
v(L4

h) ≤ C0‖g‖
1
2
L2‖∇hg‖

1
2
L2 , (7.6)
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2) For any function g in L2(Q̃), with ∂3g ∈ L2(Q̃),

‖g‖L∞
v (L2

h) ≤ C0

(
‖g‖ 1

2
L2‖∂3g‖

1
2
L2 + ‖g‖L2

)
, (7.7)

where C0 > 1 is a constant independent of g.

Proof We first prove inequality (7.6). Since g vanishes on the lateral
boundary, using the Gagliardo–Nirenberg and the Poincaré inequalities
in the horizontal variable and also the Cauchy–Schwarz inequality in the
vertical variable, we obtain,

‖g‖2
L2

v(L4
h) ≤ C

∫ +1

−1

( ∫
Ω

|g(xh, x3)|2dxh

)1/2( ∫
Ω

|∇hg(xh, x3)|2dxh

)1/2dx3

≤ C2
0

( ∫ +1

−1

∫
Ω

|g(xh, x3)|2dxhdx3

)1/2( ∫ +1

−1

∫
Ω

|∇hg(xh, x3)|2dxhdx3

)1/2 .
To prove inequality (7.7), we first apply the Agmon inequality in the ver-
tical variable and then the Cauchy–Schwarz inequality in the horizontal
variable to obtain,

sup
x3∈(−1,+1)

(
∫

Ω

|g(xh, x3)|2dxh)1/2 ≤ (
∫

Ω

sup
x3∈(−1,+1)

|g(xh, x3)|2dxh)1/2

≤C
(∫

Ω

[
(
∫ +1

−1

|g(xh, x3)|2dx3)1/2(
∫ +1

−1

|∂3g(xh, x3)|2dx3)1/2

+
∫ +1

−1

|g(xh, x3)|2dx3

]
dxh

)1/2

≤C0

(
‖g‖1/2

L2 ‖∂3g‖1/2
L2 + ‖g‖L2

)
.

The previous lemma allows us to estimate the term (u∇u, u)H0,1 ,
which will often appear in the estimates given below. More precisely,
we can prove the following lemma.

Lemma 7.2.4 There exists a positive constant C1 such that, for any
smooth enough divergence-free vector field u and any smooth enough
vector field v, both satisfying homogeneous Dirichlet boundary conditions
on the boundary ∂Ω × (−1,+1), we have

|(u∇v, v)H0,1 | ≤ C1

(‖u‖1/2
H0,1‖∇hu‖1/2

H0,1‖v‖1/2
H0,1‖∇hv‖3/2

H0,1

+ ‖∇hu‖H0,1‖v‖H0,1‖∇hv‖H0,1

)
.
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Proof The proof of this lemma is very simple. Integrating by parts and
using the divergence-free condition on u, we can write

(u∇v, v)H0,1 = (∂3(u∇v), ∂3v) = (∂3u∇v, ∂3v)

= (∂3uh∇hv, ∂3v) + (∂3u3∂3v, ∂3v)

= (∂3uh∇hv, ∂3v) − (div huh∂3v, ∂3v).

(7.8)

Applying Lemma 7.2.3, we obtain the estimate,

|(div huh∂3v,∂3v)L2 | ≤ C‖∇hu‖L∞
v (L2

h)‖∂3v‖2
L2

v(L4
h)

≤C
(
‖∇hu‖1/2

L2 ‖∇h∂3u‖1/2
L2 + ‖∇hu‖L2

)
‖∂3v‖L2‖∇h∂3v‖L2

≤C‖∇hu‖H0,1‖∂3v‖L2‖∇h∂3v‖L2

(7.9)

Furthermore, using Lemma 7.2.3 once more, we get

|(∂3uh∇hv, ∂3v)| ≤C‖∂3u‖L2
v(L4

h)‖∇hv‖L∞
v (L2

h)‖∂3v‖L2
v(L4

h)

≤C‖∂3u‖1/2
L2 ‖∇h∂3u‖1/2

L2 ‖∂3v‖1/2
L2 ‖∇h∂3v‖1/2

L2

×
(
‖∇hv‖1/2

L2 ‖∇h∂3v‖1/2
L2 + ‖∇hv‖L2

)
≤ C‖∂3u‖1/2

L2 ‖∇h∂3u‖1/2
L2 ‖∂3v‖1/2

L2 ‖∇h∂3v‖1/2
L2 ‖∇hv‖H0,1 .

(7.10)

Together, estimates (7.8), (7.9) and (7.10) imply the lemma.

The next proposition shows that sequences of uniformly bounded
(with respect to εm) classical solutions of the equations (NSεm) con-
verge to solutions of the system (NSh) when εm goes to zero. The same
type of proof implies the uniqueness of the solutions of system (NSh).
In order to state the result, we introduce the space

H1,0(Ω×(a, b)) = {u ∈ L2(Ω×(a, b))3 |div u = 0 ; ∇hu ∈ L2(Ω×(a, b))3},
where −∞ < a < b < +∞.

Proposition 7.2.5 1) Let u0 ∈ H̃0,1(Q) be given. Let εm > 0 be a
(decreasing) sequence converging to zero and um

0 ∈ H̃1
0 (Q) be a sequence

of initial data converging to u0 in H̃0,1(Q), as m→ ∞. Assume that the
system (NSεm), with initial data Σum

0 , admits a strong solution uεm
(t) ∈

C0((0, T0), Ṽ ) where T0 does not depend on εm and that the sequences
uεm

(t) and ∇huεm
(t) are uniformly bounded in L∞((0, T0),H0,1(Q̃)) and

in L2((0, T0),H0,1(Q̃)) respectively.
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Then uεm
(t) converges in L∞((0, T0), L2(Q̃)3) ∩ L2((0, T0),H1,0(Q̃)) to

a solution u∗ ∈ L∞((0, T0), H0,1(Q̃)) of the problem (NSh), such that
∇hu

∗ belongs to L2((0, T0),H0,1(Q̃)). In particular, the vector field u∗

belongs to L∞((0, T0), H̃0,1(Q)).
2) The problem (NSh) has at most one solution u∗ in L∞((0, T0),H0,1(Q̃))
with ∇hu

∗ in L2((0, T0),H0,1(Q̃)).

Proof We recall that uεm
(t) ∈ C0((0, T0), Ṽ ) is a classical solution of

the equations

∂tuεm
+ uεm

∇uεm
− νhΔhuεm

− εm∂
2
x3
uεm

= −∇pεm

div uεm
= 0

uεm
|t=0 = Σum

0 .

We first want to show that, under the hypotheses of the proposition,
uεm

(t) and ∇huεm
(t) are Cauchy sequences in L∞((0, T0), L2(Q̃)3) and

in L2((0, T0), L2(Q̃)3) respectively.
In order to simplify the notation in the estimates below, we will simply
denote the vector uεm

by um. Let m > k. Since the sequence εn is
decreasing, εm < εk. The vector wm,k = um − uk satisfies the equation

∂twm,k − νhΔhwm,k − εk∂
2
3wm,k =(εm − εk)∂2

3um − wm,k∇um

− uk∇wm,k −∇(pεm
− pεk

).

Taking the inner product in L2(Q̃)3 of the previous equality with wm,k,
we obtain the equality

1
2
∂t‖wm,k‖2

L2 + νh‖∇hwm,k‖2
L2 + εk‖∂3wm,k‖2

L2 =

= (εk − εm)(∂3um, ∂3wm,k)L2 +B1 +B2,
(7.11)

where

B1 = −(wm,k,h∇hum, wm,k)L2

B2 = −(wm,k,3∂3um, wm,k)L2 .

Applying the Hölder and Young inequalities and Lemma 7.2.3, we
estimate B1 as follows,

|B1| ≤‖wm,k,h‖L2
v(L4

h)‖wm,k‖L2
v(L4

h)‖∇hum‖L∞
v (L2

h)

≤‖wm,k‖L2‖∇hwm,k‖L2

(‖∇hum‖L2 + ‖∇hum‖1/2
L2 ‖∇h∂3um‖1/2

L2

)
≤νh

4
‖∇hwm,k‖2

L2 +
4
νh

‖wm,k‖2
L2

(‖∇hum‖2
L2 + ‖∇h∂3um‖2

L2

)
.

(7.12)
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Using the same arguments as above and also the fact that ∂3wm,k,3 =
−div hwm,k,h, we can bound B2 as follows,

|B2| ≤‖∂3um‖L2
v(L4

h)‖wm,k‖L2
v(L4

h)‖wm,k,3‖L∞
v (L2

h)

≤‖∂3um‖1/2
L2 ‖∇h∂3um‖1/2

L2 ‖wm,k‖1/2
L2 ‖∇hwm,k‖1/2

L2

× (‖wm,k,3‖L2 + ‖wm,k,3‖1/2
L2 ‖∂3wm,k,3‖1/2

L2

)
≤‖∂3um‖1/2

L2 ‖∇h∂3um‖1/2
L2 ‖wm,k‖3/2

L2 ‖∇hwm,k‖1/2
L2

+ ‖∂3um‖1/2
L2 ‖∇h∂3um‖1/2

L2 ‖wm,k‖L2‖∇hwm,k‖L2

≤νh

4
‖∇hwm,k‖2

L2 +
3

2ν1/3
h

‖∂3um‖2/3
L2 ‖∇h∂3um‖2/3

L2 ‖wm,k‖2
L2

+
2
νh

‖∂3um‖L2‖∇h∂3um‖L2‖wm,k‖2
L2 . (7.13)

The estimates (7.11), (7.12), and (7.13) together with the Cauchy–
Schwarz inequality imply that, for t ∈ [0, T0],

∂t‖wm,k‖2
L2 + νh‖∇hwm,k‖2

L2 + (εk + εm)‖∂3wm,k‖2
L2

≤(εk − εm)‖∂3um‖2
L2 +

8
νh

‖wm,k‖2
L2

(‖∇hum‖2
L2 + ‖∇h∂3um‖2

L2

)
+

3

ν
1/3
h

‖∂3um‖2/3
L2 ‖∇h∂3um‖2/3

L2 ‖wm,k‖2
L2

+
4
νh

‖∂3um‖L2‖∇h∂3um‖L2‖wm,k‖2
L2 . (7.14)

Integrating the inequality (7.14) from 0 to t, and applying the Gronwall
Lemma, we obtain, for 0 < t ≤ T0,

‖wm,k(t)‖2
L2 + νh

∫ t

0

‖∇hwm,k(s)‖2
L2ds+ (εk + εm)

∫ t

0

‖∂3wm,k(s)‖2
L2ds

≤
[
(εk − εm)

∫ T0

0

‖∂3um(s)‖2
L2ds+ ‖um

0 − uk
0‖2

L2

]
× exp

( c0
νh

∫ T0

0

(‖∇hum(s)‖2
L2 + ‖∇h∂3um(s)‖2

L2 + ‖∂3um(s)‖2
L2

)
ds
)

× exp

⎡⎣ c1

ν
1/3
h

(∫ T0

0

‖∇h∂3um(s)‖2
L2ds

)1/3(∫ T0

0

‖∂3um(s)‖L2ds

)2/3
⎤⎦ ,

(7.15)

where c0 and c1 are two positive constants independent of m and k.
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Since the sequences uεm
(t) and ∇huεm

(t) are uniformly bounded
in L∞((0, T0), H0,1(Q̃)) and in L2((0, T0),H0,1(Q̃)) respectively, the
estimate (7.15) implies that uεm

and ∇huεm
are Cauchy sequences

in L∞((0, T0), L2(Q̃)3) and L2((0, T0), L2(Q̃)3) respectively. Thus uεm

converges in L∞((0, T0), L2(Q̃)3) ∩L2((0, T0),H1,0(Q̃)) to an element
u∗ in this same space. Moreover, u∗ and ∇hu

∗ are bounded in
L∞((0, T0),H0,1(Q̃)) and in L2((0, T0),H0,1(Q̃)) respectively. The con-
vergence in the sense of distributions of uεm

to u∗ and the divergence-free
property of the sequence uεm

imply that u∗ is also divergence-free. Fur-
thermore, one easily shows that the restriction of u∗ to Q is a weak
solution of the system (NSh). From the equality Σuεm

(t) = uεm
(t), it

follows that Σu∗(t) = u∗(t). In particular, u∗3(t) vanishes on Γ0 ∪ Γ1.
Finally, we notice that, since uεm

(t) ∈ C0((0, T0), Ṽ ) converges in
L2((0, T0),H1,0(Q̃)), u∗(t) satisfies the homogeneous Dirichlet boundary
condition on the lateral boundary ∂Ω× (−1, 1) for almost all t ∈ (0, T0).
One proves the uniqueness of the solution u∗ in L∞((0, T0),H0,1(Q̃))
with ∇hu

∗ in L2((0, T0),H0,1(Q̃)) in the same way as the above Cauchy
property.

We now state the classical energy estimate which will be widely used
in the subsequent sections.

Lemma 7.2.6 Let uε(t) ∈ C0([0, T0], Ṽ ) be the classical solution of the
equations (NSε) with initial data uε,0 ∈ Ṽ . Then the following estimates
are satisfied, for any t ∈ [0, T0], for any 0 ≤ t0 ≤ t,

‖uε(t)‖2
L2 ≤ ‖uε(0)‖2

L2 exp(−2νhλ
−1
0 t), and

νh

∫ t

t0

‖∇huε(s)‖2
L2ds+ ε

∫ t

t0

‖∂3uε(s)‖2
L2ds

≤ 1
2
‖uε(0)‖2

L2 exp(−2νhλ
−1
0 t0),

(7.16)

where λ0 is the constant from the Poincaré inequality.

Proof Since uε ∈ C0([0, T0], Ṽ ) is the classical solution of (NSε), we can
take the inner product in L2(Q̃)3 of the first equation in (NSε) with uε

and integrate by parts. We thus obtain, for 0 ≤ t ≤ T0,

∂t‖uε(t)‖2
L2 + 2νh‖∇huε(t)‖2

L2 + 2ε‖∂3uε(t)‖2
L2 ≤ 0. (7.17)

Since uε satisfies homogeneous Dirichlet boundary conditions on the
lateral boundary, there exists a positive constant λ0 depending only on
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Ω such that

‖uε‖2
L2 ≤ λ0‖∇huε‖2

L2 . (7.18)

The inequalities (7.17) and (7.18) imply that, for 0 ≤ t ≤ T0,

∂t‖uε(t)‖2
L2 + 2νhλ

−1
0 ‖uε(t)‖2

L2 ≤ 0.

Integrating the previous inequality and applying the Gronwall Lemma,
we obtain the first inequality in (7.16). Integrating now inequality (7.17)
from t0 to t and taking into account the first estimate in (7.16), we obtain
the second estimate of (7.16).

We continue this section with an auxiliary proposition, which will be
used several times in the proof of global existence of solutions of the
system (NSε).

Proposition 7.2.7 Let uε ∈ C0([0, T0), Ṽ ) be a classical solution of
(NSε). Let Tn < T0 be a sequence converging to T0 as n → ∞. If uε(t)
is uniformly bounded in L∞((0, Tn),H0,1(Q̃)) ∩ L2((0, Tn),H0,1(Q̃)) and
if ∇huε and ε∂3uε are uniformly bounded in L2((0, Tn),H0,1(Q̃)) as
n→ ∞, then uε is uniformly bounded in C0([0, Tn], Ṽ ) and the classical
solution uε exists on a time interval [0, Tε) where Tε > T0. In particular,
if Tn → ∞ as n→ ∞, then the classical solution uε exists globally.

Proof Let uε ∈ C0([0, T0), Ṽ ) be a (local) classical solution of (NSε). In
order to prove the proposition, we have to show that ∇huε is uniformly
bounded in L∞((0, Tn), L2(Q̃)3) as n → ∞. Since uε is a classical solu-
tion, all the a priori estimates made below can be justified. Let P be
the classical Leray projection of L2(Q̃)3 onto H̃, where

H̃ = {u ∈ L2(Q̃)3 |div u = 0 ; γnu|∂Ω×(0,1) = 0 ;

u(xh, x3) = u(xh, x3 + 2)}.

Taking the inner product in L2(Q̃) of the first equation of (NSε) with
−PΔhuε, we obtain the equality

−(∂tuε,Δhuε)+νh‖PΔhuε‖2
L2 +ε(∂2

3uε, PΔhuε) = −(uε ·∇uε, PΔhuε).

We remark that, for 0 < t < T0, ∂tuε, ∂3uε and ∂2
3uε vanish on the

lateral boundary and are periodic in x3. Moreover, the divergence of
∂2
3uε vanishes. These properties imply on the one hand that

−
∫

Q̃

∂tuε · Δhuε dx =
∫

Q̃

∂t∇huε · ∇huε dx =
1
2
∂t‖∇huε‖2

L2 .
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On the other hand, we can write, for 0 < t < T0,∫
Q̃

∂2
3uε · PΔhuεdx =

∫
Q̃

∂2
3uε · Δhuεdx

= −
∫

Q̃

∂3uε · Δh∂3uεdx = ‖∇h∂3uε‖2
L2 .

The previous three equalities imply that, for 0 < t < T0,

∂t‖∇huε‖2
L2 +νh‖PΔhuε‖2

L2 +2ε‖∇h∂3uε‖2
L2 ≤ 1

νh
‖uε ·∇uε‖2

L2 . (7.19)

To estimate the term ‖uε · ∇uε‖2
L2 , we write

‖uε · ∇uε‖2
L2 =

∫
Q̃

(uε,h · ∇huε + uε,3 · ∂3uε)2dx

≤ 2‖uε,h · ∇huε‖2
L2 + 2‖uε,3 · ∂3uε‖2

L2 .

(7.20)

It remains to bound both terms on the right-hand side of the inequality
(7.20). Using the Gagliardo–Nirenberg and the Poincaré inequalities, we
can write

‖uε,h · ∇huε‖2
L2 ≤

∫ 1

−1

‖uε(., x3)‖2
L4

h
‖∇huε(., x3)‖2

L4
h

dx3

≤ c0

(∫ 1

−1

‖uε(., x3)‖L2
h
‖∇huε(., x3)‖2

L2
h
‖Dh∇huε(., x3)‖L2

h
dx3

+
∫ 1

−1

‖uε(., x3)‖L2
h
‖∇huε(., x3)‖3

L2
h

dx3

)
≤ c1

(
‖uε‖L∞

v (L2
h)‖∇huε‖L∞

v (L2
h)‖∇huε‖L2‖Dh∇huε‖L2

+ ‖uε‖L∞
v (L2

h)‖∇huε‖L∞
v (L2

h)‖∇huε‖2
L2

)
.

Applying Lemma 7.2.3 to the previous inequality, we obtain,

‖uε,h · ∇huε‖2
L2 ≤c2

(
‖uε‖L2 + ‖∂3uε‖1/2

L2 ‖uε‖1/2
L2

)
×
(
‖∇huε‖L2 + ‖∂3∇huε‖1/2

L2 ‖∇huε‖1/2
L2

)
×
(
‖∇huε‖L2 + ‖Dh∇huε‖L2

)
‖∇huε‖L2 .

(7.21)

The classical regularity theorem for the stationary Stokes problem (see
for example Constantin & Foias, 1988; Solonnikov & Ščadilov, 1973; or
Temam, 1979) implies that there exists a positive constant K0(ε), which
could depend on ε, such that,

‖Dh∇huε‖L2 ≤ K0(ε)
(‖PΔhuε‖L2 +

ε

νh
‖∂2

3uε‖L2

)
. (7.22)
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Using the inequality 2ab ≤ a2 + b2, we deduce from (7.21) and (7.22)
that

‖uε,h · ∇huε‖2
L2 ≤4c2

(
‖uε‖L2 + ‖∂3uε‖L2

)(
‖∇huε‖L2 + ‖∂3∇huε‖L2

)
×
(
‖∇huε‖L2 +K0(ε)(‖PΔhuε‖L2 +

ε

νh
‖∂2

3uε‖L2)
)
‖∇huε‖L2 ,

and also

2
νh

‖uε,h · ∇huε‖2
L2 ≤ νh

2
‖PΔhuε‖2

L2 +
ε2

νh
‖∂2

3uε‖2
L2 +

νh

2
‖∇huε‖2

L2

+ c5
K0(ε)2 + 1

ν3
h

(‖uε‖2
L2 + ‖∂3uε‖2

L2)

× (‖∇huε‖2
L2 + ‖∂3∇huε‖2

L2)‖∇huε‖2
L2 . (7.23)

Likewise, using the Gagliardo–Nirenberg and the Poincaré inequalities,
we can write

‖uε,3 · ∂3uε‖2
L2 ≤ c1‖uε,3‖L∞

v (L2
h)‖∇huε,3‖L∞

v (L2
h)‖∂3uε‖L2‖∇h∂3uε‖L2 ,

which implies, due to Lemma 7.2.3, that

‖uε,3 · ∂3uε‖2
L2 ≤c2

(
‖uε‖L2 + ‖∂3uε,3‖1/2

L2 ‖uε,3‖1/2
L2

)
×
(
‖∇huε,3‖L2 + ‖∂3∇huε,3‖1/2

L2 ‖∇huε,3‖1/2
L2

)
× ‖∂3uε‖L2‖∇h∂3uε‖L2 .

Using the Young inequalities ab ≤ 1
2a

2 + 1
2b

2 and ab ≤ 1
4a

4 + 3
4b

4/3, we
deduce from the previous inequality that

2
νh

‖uε,3 · ∂3uε‖2
L2 ≤ c6

νh

(
‖uε‖L2 + ‖∂3uε,3‖L2

)
‖∂3uε‖L2

× (‖∇huε,3‖2
L2 + ‖∂3∇huε,3‖2

L2

)
.

(7.24)

Finally, we deduce from the estimates (7.19), (7.23) and, (7.24) that, for
0 ≤ t < T0,

∂t‖∇huε(t)‖2
L2 +

νh

2
‖PΔhuε‖2

L2

≤ ε2

νh
‖∂2

3uε(t)‖2
L2 +

νh

2
‖∇huε(t)‖2

L2

+ Lε(uε(t))
(2c6
νh

+ c5
(K0(ε)2 + 1)

ν3
h

‖∇huε(t)‖2
L2

)
,

(7.25)
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where

Lε(uε(t)) = (‖uε(t)‖2
L2 + ‖∂3uε(t)‖2

L2) (‖∇huε(t)‖2
L2 + ‖∂3∇huε(t)‖2

L2).

Integrating the inequality (7.25) from 0 to Tn, where 0 < Tn < T0, we
infer from (7.25) that, for any Tn, with 0 < Tn < T0,

‖∇huε(Tn)‖2
L2 +

νh

2

∫ Tn

0

‖PΔhuε(s)‖2
L2ds

≤
∫ Tn

0

( ε2
νh

‖∂2
3uε(s)‖2

L2 +
νh

2
‖∇huε(s)‖2

L2 +
2c6
νh

Lε(uε(s))
)
ds

+‖∇huε(0)‖2
L2 +

c5(K0(ε)2 + 1)
ν3

h

∫ Tn

0

Lε(uε(s))‖∇huε(s)‖2
L2ds.

(7.26)

Using the Gronwall Lemma and taking into account the hypotheses made
on uε, we deduce from (7.26) that, for any Tn, with 0 < Tn < T0,

‖∇huε(Tn)‖2
L2 ≤[ ∫ Tn

0

( ε2
νh

‖∂2
3uε(s)‖2

L2 +
νh

2
‖∇huε(s)‖2

L2 +
2c6
νh

Lε(uε(s))
)
ds

+ ‖∇huε(0)‖2
L2

]
exp

(c5(K0(ε)2 + 1)
ν3

h

∫ Tn

0

Lε(uε(s))ds
)

≤ [‖∇huε(0)‖2
L2 + k1 +

2c6
νh

k2

]
exp

(c5(K0(ε)2 + 1)
ν3

h

k2

)
,

where k1 and k2 are positive constants independent of Tn (k1 and k2 can
depend on ε). Thus the proposition is proved.

We end this section by giving an upper bound of the H0,2-norm of the
solution uε(t) of the system (NSε) on any subinterval of the maximal
interval of existence, when the initial data uε,0 belong to Ṽ ∩H2(Q̃)3.

Proposition 7.2.8 Let uε ∈ C0([0, T0], Ṽ ) be a classical solution of
(NSε) with initial data uε,0 in H2(Q̃)3 ∩ Ṽ . We assume that uε(t) and
∇huε are uniformly bounded with respect to ε in L∞((0, T0],H0,1(Q̃)) ∩
L2((0, T0],H0,1(Q̃)) and L2((0, T0),H0,1(Q̃)) respectively. Then ∂2

3uε

and ∂2
3∇huε are bounded in L∞((0, T0), L2(Q̃3)) and L2((0, T0), L2(Q̃3)),

respectively, uniformly with respect to ε and the following estimate holds
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for any 0 ≤ t ≤ T0,

‖∂2
3uε(t)‖2

L2 + νh

∫ t

0

‖∇h∂
2
3uε(s)‖2

L2ds

≤ [
exp(

C

νh

∫ T0

0

‖∇huε(s)‖2
H0,1ds)

](‖∂2
3uε,0‖2

L2

+
C

νh
sup

0≤s≤T0

(‖∂3uε(s)‖2
L2 + νh‖∂3uε(s)‖L2

) ∫ T0

0

‖∇huε(s)‖2
H0,1ds

)
.

Proof Since uε(t) is a very regular solution for t > 0, all the a priori
estimates made below are justified. Differentiating the first equation in
(NSε) twice with respect to x3 and taking the inner product in L2(Q̃)
of the resulting equation with ∂2

3uε, we obtain the following equality, for
0 ≤ t ≤ T0,

1
2
∂t‖∂2

3uε‖2
L2 − νh(Δh∂

2
3uε, ∂

2
3uε) − ε(∂4

3uε, ∂
2
3uε)

= −(∂2
3∇pε, ∂

2
3uε) − (∂2

3(uε · ∇uε), ∂2
3uε).

Since ∂2
3uε vanishes on ∂Ω × (−1, 1) and is periodic in the variable x3,

the following equalities hold:

−
∫

Q̃

Δh∂
2
3uε · ∂2

3uεdxhdx3 =
∫

Q̃

|∇h∂
2
3uε|2dxhdx3,

−
∫

Q̃

∂4
3uε · ∂2

3uεdxhdx3 =
∫

Q̃

(∂3
3uε)2dxhdx3,

and

−
∫

Q̃

∇∂2
3pε∂

2
3uεdxhdx3 =

∫
Q̃

∂2
3pεdiv ∂2

3uεdxhdx3,

−
∫

∂Q̃

∂2
3pε(∂2

3uε · n)dσ = 0.

We deduce from the above equalities that, for 0 ≤ t ≤ T0,
1
2
∂t‖∂2

3uε‖2
L2+νh‖∇h∂

2
3uε‖2

L2 + ε‖∂3
3uε‖2

L2

= − (∂2
3uε · ∇uε, ∂

2
3uε) − 2(∂3uε · ∇∂3uε, ∂

2
3uε).

(7.27)

As in the proof of Lemma 7.2.4, using the divergence-free condition (see
(7.8)), we decompose the terms in the right hand side of (7.27) as follows:

(∂2
3uε · ∇uε, ∂

2
3uε) = (∂2

3uε,h · ∇huε, ∂
2
3uε) − (∂3div huε,h∂3uε, ∂

2
3uε)

(∂3uε · ∇∂3uε, ∂
2
3uε) = (∂3uε,h · ∇h∂3uε, ∂

2
3uε) − (div huε∂

2
3uε, ∂

2
3uε).
(7.28)
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Arguing as in the inequality (7.10) and applying Lemma 7.2.3, we obtain
the estimate

|(∂2
3uε,h·∇huε, ∂

2
3uε)| ≤ C‖∂2

3uε‖2
L2

v(L4
h)‖∇huε‖L∞

v (L2
h)

≤C‖∂2
3uε‖L2‖∇h∂

2
3uε‖L2‖∇huε‖H0,1

≤ C

νh
‖∂2

3uε‖2
L2‖∇huε‖2

H0,1 +
νh

8
‖∇h∂

2
3uε‖2

L2 . (7.29)

In the same way

2|(div huε∂
2
3uε, ∂

2
3uε)| ≤ C

νh
‖∂2

3uε‖2
L2‖∇huε‖2

H0,1 +
νh

8
‖∇h∂

2
3uε‖2

L2 .

(7.30)

In order to estimate the term |(∂3div huε,h∂3uε, ∂
2
3uε)|, we proceed as in

(7.9), by applying Lemma 7.2.3. We thus get

|(∂3div huε,h∂3uε, ∂
2
3uε)|≤ C‖∂3∇huε‖L∞

v (L2
h)‖∂3uε‖L2

v(L4
h)‖∂2

3uε‖L2
v(L4

h)

≤C‖∂3uε‖1/2
L2 ‖∇h∂3uε‖1/2

L2 ‖∂2
3uε‖1/2

L2 ‖∇h∂
2
3uε‖1/2

L2

× (‖∂3∇huε‖L2 + ‖∂3∇huε‖1/2
L2 ‖∂2

3∇huε‖1/2
L2

)
≤C‖∂3uε‖1/2

L2 ‖∇h∂3uε‖3/2
L2 ‖∂2

3uε‖1/2
L2 ‖∇h∂

2
3uε‖1/2

L2

+ ‖∂3uε‖1/2
L2 ‖∇h∂3uε‖L2‖∂2

3uε‖1/2
L2 ‖∇h∂

2
3uε‖L2 .

Applying the Young inequalities 2ab ≤ a2 + b2 and ab ≤ (1/4)a4 +
(3/4)b4/3 to the previous estimates we obtain

|(∂3div huε,h∂3uε, ∂
2
3uε)|

≤ νh

8
‖∇h∂

2
3uε‖2

L2 +
C

νh
‖∇h∂3uε‖2

L2‖∂3uε‖L2‖∂2
3uε‖L2

+
C

ν
1/3
h

‖∇h∂3uε‖2
L2‖∂3uε‖2/3

L2 ‖∂2
3uε‖2/3

L2 . (7.31)

In the same way, we prove that

2|(∂3uε,h · ∇h∂3uε, ∂
2
3uε)|

≤ νh

8
‖∇h∂

2
3uε‖2

L2 +
C

νh
‖∇h∂3uε‖2

L2‖∂3uε‖L2‖∂2
3uε‖L2

+
C

ν
1/3
h

‖∇h∂3uε‖2
L2‖∂3uε‖2/3

L2 ‖∂2
3uε‖2/3

L2 . (7.32)
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The equalities (7.27) and (7.28) as well as the inequalities (7.29) to (7.32)
imply that, for 0 ≤ t ≤ T0,

∂t‖∂2
3uε‖2

L2+νh‖∇h∂
2
3uε‖2

L2 + 2ε‖∂3
3uε‖2

L2

≤ C

νh
‖∇huε‖2

H0,1

(
‖∂2

3uε‖2
L2 + ‖∂3uε‖2

L2 + νh‖∂3uε‖L2

)
.

(7.33)

Integrating the inequality (7.33) from 0 to t, we obtain, for 0 ≤ t ≤ T0,

‖∂2
3uε(t)‖2

L2 + νh

∫ t

0

‖∇h∂
2
3uε(s)‖2

L2ds+ 2ε
∫ t

0

‖∂3
3uε(s)‖2

L2ds

≤‖∂2
3uε,0‖2

L2 +
C

νh

∫ t

0

‖∇huε(s)‖2
H0,1‖∂2

3uε(s)‖2
L2ds

+
C

νh
sup

0≤s≤T0

(‖∂3uε(s)‖2
L2 + νh‖∂3uε(s)‖L2

) ∫ T0

0

‖∇huε(s)‖2
H0,1ds.

Applying the Gronwall Lemma, we deduce from the previous inequality
that, for 0 ≤ t ≤ T0,

‖∂2
3uε(t)‖2

L2 + νh

∫ t

0

‖∇h∂
2
3uε(s)‖2

L2ds+ 2ε
∫ t

0

‖∂3
3uε(s)‖2

L2ds

≤ [
exp(

C

νh

∫ T0

0

‖∇huε(s)‖2
H0,1ds)

](‖∂2
3uε,0‖2

L2

+
C

νh
sup

0≤s≤T0

(‖∂3uε(s)‖2
L2 + νh‖∂3uε(s)‖L2

) ∫ T0

0

‖∇huε(s)‖2
H0,1ds

)
.

The proposition is thus proved.

Propositions 7.2.5 and 7.2.8 together with Remark 7.2.2 imply the
following H0,2-propagation result.

Corollary 7.2.9 Let u0 ∈ H̃0,1(Q) ∩ H̃0,2
0 (Q) be given. Let εm > 0 be

a (decreasing) sequence converging to zero and um
0 ∈ H̃1

0 (Q) ∩H2(Q) ∩
H̃0,2

0 (Q) be a sequence of initial data converging to u0 in H̃0,2(Q), as
m → ∞. Assume that the system (NSεm), with initial data Σum

0 , has
a strong solution uεm

(t) ∈ C0((0, T0), Ṽ ) where T0 does not depend on
εm and that the sequences uεm

(t) and ∇huεm
(t) are uniformly bounded

in L∞((0, T0),H0,1(Q̃)) and L2((0, T0),H0,1(Q̃)) respectively. Then, the
sequence uεm

(t) converges in L∞((0, T0), L2(Q̃)3)∩L2((0, T0),H1,0(Q̃))
to a solution u∗ ∈ L∞((0, T0), H0,2(Q̃)) of the problem (NSh), such
that ∇h∂

i
3u

∗ belongs to L2((0, T0), L2(Q̃)3), for i = 0, 1, 2. Moreover,
the solution u∗ belongs to L∞((0, T0), H̃0,2

0 (Q)).
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Proof Let u0 ∈ H̃0,1(Q)∩ H̃0,2
0 (Q) be given. We notice that, by Remark

7.2.2, there exists a sequence um
0 ∈ H̃1

0 (Q) ∩H2(Q) ∩ H̃0,2
0 (Q) of initial

data converging to u0 in H̃0,2(Q), as m→ ∞. Let um
0 be such a sequence.

As we have remarked in the introduction, Σum
0 belongs to H2(Q̃)3 and

∂3u
m
0,h vanishes on Γ0 ∪ Γ1. By Proposition 7.2.8, the classical solution

uεm
of (NSεm) is more regular in the sense that ∂2

3uεm
(respectively

∇h∂
2
3uεm

) is uniformly bounded in L∞((0, T0), L2(Q̃)3) (respectively in
L2((0, T0), L2(Q̃)3). Thus the limit ∂2

3u
∗ belongs to L∞((0, T0), L2(Q̃)3)

and ∇h∂
2
3u

∗ belongs to L2((0, T0), L2(Q̃)3).

7.3 Global existence results for small initial data

We begin with the simplest result.

Theorem 7.3.1 There exists a positive constant c0 such that, if u0

belongs to H̃0,1(Q) and ‖u0‖H0,1 ≤ c0νh, then the system (NSh) admits
a (unique) global solution u(t), with u(0) = u0, such that

u ∈ L∞(R+, H̃
0,1(Q)) and ∂3∇hu ∈ L2(R+, L

2(Q)3).

Proof According to the strategy explained in the introduction and
according to Proposition 7.2.5, it is sufficient to prove that there exists
a positive constant c1 such that if uε(0) = w0 belongs to H1

0,per(Q̃) and
satisfies

‖w0‖H0,1 ≤ c1νh,

then, for any ε > 0, the equations (NSε) admit a unique global solution
uε(t) ∈ C0([0,+∞), Ṽ ) with uε(0) = w0 and moreover, uε and ∂3∇huε

are uniformly bounded (with respect to ε) in L∞((0,+∞),H0,1(Q̃)) and
L2((0,+∞), L2(Q̃)3).
Let uε be the local solution of the equations (NSε) with uε(0) = w0.
Since uε is a classical solution on the maximal interval of existence, all
the a priori estimates made below can be justified rigorously. Differenti-
ating the first equation in (NSε) with respect to x3 and taking the inner
product in L2(Q̃)3 with ∂3uε, we obtain, for 0 ≤ t ≤ Tε, where Tε > 0
is the maximal time of existence,

1
2
∂t‖∂3uε‖2

L2−νh(Δh∂3uε, ∂3uε) − ε(∂3
3uε, ∂3uε)

= −(∇∂3pε, ∂3uε) − (∂3(uε∇uε), ∂3uε).
(7.34)
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Since uε and hence ∂3uε vanish on the lateral boundary ∂Ω × (−1, 1)
and uε and pε are periodic in the vertical variable,

−
∫

Q̃

Δh∂3uε · ∂3uεdxhdx3 =
∫

Q̃

|∇h∂3uε|2dxhdx3

−
∫

Q̃

∂3
3uε · ∂3uεdxhdx3 =

∫
Q̃

(∂2
3uε)2dxhdx3,

(7.35)

and

−
∫

Q̃

∇∂3pε∂3uεdxhdx3 =
∫

Q̃

∂3pεdiv ∂3uεdxhdx3

−
∫

∂Q̃

∂3pε(∂3uε · n)dσ = 0 .
(7.36)

The equalities (7.34), (7.35), and (7.36) together with Lemma 7.2.4 imply
that, for 0 ≤ t ≤ Tε,

∂t‖∂3uε‖2
L2 + 2νh‖∇h∂3uε|‖2

L2 + 2ε‖∂2
3uε‖2

L2

≤ 4C1‖uε‖H0,1‖∇huε‖2
H0,1 . (7.37)

We deduce from the estimates (7.17) and (7.37) that, for 0 ≤ t ≤ Tε,

∂t

(‖uε‖2
L2 + ‖∂3uε‖2

L2

)
+ 2νh

(‖∇huε|‖2
L2 + ‖∇h∂3uε|‖2

L2

)
+ 2ε

(‖∂3uε‖2
L2 + ‖∂2

3uε‖2
L2

)
≤ 8C1‖uε‖H0,1

(‖∇huε|‖2
L2 + ‖∇h∂3uε|‖2

L2

)
.

(7.38)

Suppose now that the initial condition uε(0) = w0 is small enough in
the sense that

‖w0‖H0,1 ≤ νh

32C1
.

Then, by continuity, there exists a time interval [0, τε) such that, for
t ∈ [0, τε), ‖uε(t)‖H0,1 < νh/(8C1). If τε < Tε, then ‖uε(τε)‖H0,1 =
νh/(8C1). Assume now that τε < Tε. If t belongs to the time interval
[0, τε], we deduce from the inequality (7.38) that

∂t

(‖uε‖2
L2 + ‖∂3uε‖2

L2

)
+ νh

(‖∇huε‖2
L2 + ‖∇h∂3uε‖2

L2

)
+ 2ε

(‖∂3uε‖2
L2 + ‖∂2

3uε‖2
L2

) ≤ 0. (7.39)
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Integrating the inequality (7.39) from 0 to t, we obtain that, for t ≤ τε,

‖uε(t)‖2
L2+‖∂3uε(t)‖2

L2 + νh

∫ t

0

(‖∇huε(s)‖2
L2 + ‖∇h∂3uε(s)‖2

L2

)
ds

+ 2ε
∫ t

0

(‖∂3uε(s)‖2
L2 + ‖∂2

3uε(s)‖2
L2

)
ds ≤ ‖w0‖2

L2 + ‖∂3w0‖2
L2 .

(7.40)

The estimate (7.40) implies that, for t ≤ τε,

‖uε(t)‖H0,1 ≤ νh

16C1
.

In particular, ‖uε(τε)‖H0,1 ≤ νh/(16C1), which contradicts the definition
of τε. Thus τε = Tε and one deduces from (7.40) that, for 0 ≤ t < Tε,

‖uε(t)‖2
L2+‖∂3uε(t)‖2

L2 + νh

∫ Tε

0

(‖∇huε(s)‖2
L2 + ‖∇h∂3uε(s)‖2

L2

)
ds

+ 2ε
∫ Tε

0

(‖∂3uε(s)‖2
L2 + ‖∂2

3uε(s)‖2
L2

)
ds ≤ ‖w0‖2

L2 + ‖∂3w0‖2
L2 .

To prove that uε(t) exists globally, that is, that Tε = +∞, it remains to
show that ‖∇huε(t)‖L2 is uniformly bounded with respect to t ∈ [0, Tε).
But this property is a direct consequence of Proposition 7.2.7, and so
Theorem 7.3.1 is proved.

A more careful analysis allows us to prove the following more refined
global existence result.

Theorem 7.3.2 There exist positive constants c0 and c∗0 such that, if
u0 belongs to H̃0,1(Q) and satisfies the following smallness condition

‖∂3u0‖
1
2
L2(Ω)‖u0‖

1
2
L2(Ω) exp(

c0‖u0‖2
L2

ν2
h

) ≤ c∗0νh,

then the system (NSh) with u(0) = u0 admits a (unique) global solution
u(t), such that

u ∈ L∞(R+, H̃
0,1(Q)) and ∂3∇hu ∈ L2(R+;L2(Q)3).

Proof As in the proof of Theorem 7.3.1, it is sufficient to prove that there
exist positive constants c1 and c∗1 such that if uε(0) = w0 belongs to
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H1
0,per(Q̃) and satisfies

‖∂3w0‖
1
2
L2(Ω)‖w0‖

1
2
L2(Ω) exp(c1

‖w0‖2
L2

ν2
h

) ≤ c∗1νh,

then, for any ε > 0, the equations (NSε) with uε(0) = w0 admit a unique
global solution uε(t) ∈ C0([0,+∞), Ṽ ) and moreover, uε and ∇huε are
uniformly bounded (with respect to ε) in L∞((0,+∞),H0,1(Q̃)) and
L2((0,+∞),H0,1(Q̃)).

Now let uε be the local solution of the equations (NSε) with uε(0) = w0

and let Tε > 0 be the maximal time of existence. As in the proof of
Theorem 7.3.1, uε satisfies the equality (7.34). But here, in order to
estimate the term (∂3(uε∇uε), ∂3uε), we take into account the estimates
(7.9) and (7.10), instead of applying Lemma 7.2.4 directly. The equalities
(7.34), (7.35), (7.36), (7.8) and, the estimates (7.9) and (7.10) imply that,
for 0 ≤ t < Tε,

∂t‖∂3uε‖2
L2 + 2νh‖∇h∂3uε‖2

L2 + 2ε‖∂2
3uε‖2

L2

≤ C2

(‖∇huε‖1/2
L2 ‖∂3uε‖L2‖∇h∂3uε‖3/2

L2 +

+ ‖∇huε‖L2‖∂3uε‖L2‖∇h∂3uε‖L2

)
.

(7.41)

Using the Young inequalities ab ≤ 3
4a

4
3 + 1

4b
4 and ab ≤ 1

2a
2 + 1

2b
2, we

get the following estimates,

C2‖∇huε‖1/2
L2 ‖∂3uε‖L2‖∇h∂3uε‖3/2

L2

≤ 27C4
2

32ν3
h

‖∇huε‖2
L2‖∂3uε‖4

L2 +
νh

2
‖∇h∂3uε‖2

L2

(7.42)

and

C2‖∇huε‖L2‖∂3uε‖L2‖∇h∂3uε‖L2

≤ C2
2

2νh
‖∇huε‖2

L2‖∂3uε‖2
L2 +

νh

2
‖∇h∂3uε‖2

L2 . (7.43)

From the estimates (7.41), (7.42), and (7.43), we deduce that, for
0 ≤ t < Tε,

d
dt

‖∂3uε(t)‖2
L2 + νh‖∇h∂3uε(t)‖2

L2 + 2ε‖∂2
3uε‖2

L2

≤ C3

( 1
νh

‖∇huε‖2
L2‖∂3uε‖2

L2 +
1
ν3

h

‖∇huε‖2
L2‖∂3uε‖4

L2

)
, (7.44)
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where C3 = max (C2
2/2, 27C4

2/32). The inequality (7.44) shows that, if
there exists τε < Tε such that ‖∂3uε(τε)‖2

L2 vanishes, then ‖∂3uε(t)‖2
L2

is identically equal to zero for τε ≤ t < Tε.

On the time interval [0, τε), the inequality

d
dt

‖∂3uε(t)‖2
L2 ≤ C3

( 1
νh

‖∇huε‖2
L2‖∂3uε‖2

L2

+
1
ν3

h

‖∇huε‖2
L2‖∂3uε‖4

L2

) (7.45)

can be written as

− d
dt

‖∂3uε(t)‖−2
L2 ≤ C3

νh
‖∇huε‖2

L2‖∂3uε‖−2
L2 +

C3

ν3
h

‖∇huε‖2
L2

or also

− d
dt

(
‖∂3uε‖−2

L2 exp(
C3

νh

∫ t

0

‖∇huε(s)‖2
L2ds)

)
≤ C3

ν3
h

‖∇huε(t)‖2
L2 exp(

C3

νh

∫ t

0

‖∇huε(s)‖2
L2ds).

Integrating this inequality from 0 to t, we obtain, for 0 ≤ t < τε,

‖∂3w0‖−2
L2 − ‖∂3uε(t)‖−2

L2 exp(
C3

νh

∫ t

0

‖∇huε(s)‖2
L2ds)

≤ C3

ν3
h

∫ t

0

‖∇huε(s)‖2
L2ds× exp(

C3

νh

∫ t

0

‖∇huε(s)‖2
L2ds). (7.46)

The second energy estimate in Lemma 7.2.6 and the inequality (7.46)
imply that, for 0 ≤ t < τε,

‖∂3w0‖−2
L2 − C3

ν4
h

‖w0‖2
L2 exp(

C3‖w0‖2
L2

ν2
h

) ≤ ‖∂3uε(t)‖−2
L2 exp(

C3‖w0‖2
L2

ν2
h

).

Thus, if we assume that,

‖∂3w0‖−2
L2 − C3‖w0‖2

L2

ν4
h

exp(
C3‖w0‖2

L2

ν2
h

) > 0,

that is,

‖∂3w0‖1/2
L2 ‖w0‖1/2

L2 exp(
C3‖w0‖2

L2

4ν2
h

) < C
−1/4
3 νh,
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then we get the following uniform bound, for 0 ≤ t < τε,

‖∂3uε(t)‖2
L2

≤ exp(
C3‖w0‖2

L2

ν2
h

)
(
‖∂3w0‖−2

L2 − C3

ν4
h

‖w0‖2
L2 exp(

C3‖w0‖2
L2

ν2
h

)
)−1

.

(7.47)

Let us denote by B0 the right-hand side of this inequality. Integrating
the estimate (7.44) from 0 to t and taking into account the second energy
estimate in Lemma 7.2.6 as well as the estimate (7.47) and the definition
of τε, we at once obtain the following inequality, for any 0 ≤ t < Tε,

νh

∫ t

0

‖∇h∂3uε(s)‖2
L2ds+ 2ε

∫ t

0

‖∂2
3uε(s)‖2

L2ds

≤ C3

νh
B2

0

(
1 +

1
ν2

h

B2
0

) ∫ t

0

‖∇huε(s)‖2
L2ds

≤ C3

2ν2
h

B2
0

(
1 +

1
ν2

h

B2
0

)‖w0‖2
L2 .

To prove that uε(t) exists globally, that is, that Tε = +∞, it remains to
show that ‖∇huε(t)‖L2 is uniformly bounded with respect to t ∈ [0, Tε).
As in the proof of Theorem 7.3.1, this property is a direct consequence
of Proposition 7.2.7. Theorem 7.3.2 is thus proved.

Remark 7.3.3 The previous theorem allows us to take large initial data
in the following sense. For example, we can take u0 ∈ H̃0,1(Q) such that

‖u0‖L2(Q) ≤ Cηα

and

‖∂3u0‖L2(Q) ≤ Cη−α,

where η is a small positive constant going to 0 and C > 0 is an
appropriate positive constant.

Remark 7.3.4 Let us come back to the inequality (7.45). If we set

y(t) =
νh

2
+

1
νh

‖∂3uε(t)‖2
L2 and g(t) =

C3

νh
‖∇huε(t)‖2

L2 ,

then the inequality (7.45) becomes, for 0 ≤ t < τε,

dy
dt

(t) ≤ g(t) y2(t).
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Integrating this inequality from 0 to t, for 0 ≤ t < τε, we get

− 1
y(t)

+
1

y(0)
≤
∫ t

0

g(s) ds,

hence

y(t) ≤ y(0)

1 − y(0)
∫ t

0
g(s)ds

,

as long as 1 − y(0)
∫ t

0
g(s) ds > 0. This implies that

νh

2
+

1
νh

‖∂3uε(t)‖2
L2 ≤

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

)
×
(

1 − C3

νh

∫ t

0

‖∇huε(s)‖2
L2 ds

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

))−1

.

(7.48)

Inequality (7.48) and Lemma 7.2.6 imply that

νh

2
+

1
νh

‖∂3uε(t)‖2
L2 ≤

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

)
×
(

1 − C3

2ν2
h

‖uε(0)‖2
L2

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

))−1

.

Thus, if

C3‖uε(0)‖2
L2

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

) ≤ ν2
h, (7.49)

we obtain the following uniform bound, for 0 ≤ t < τε,

νh

2
+

1
νh

‖∂3uε(t)‖2
L2 ≤ 2

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

)
.

As in the proof of Theorem 7.3.2, we deduce that, under the condition
(7.49), the solution uε(t) exists globally.

Theorems 7.3.1 and 7.3.2 together with Corollary 7.2.9 imply, at once,
the following result of propagation of regularity.

Corollary 7.3.5 Under the hypotheses of Theorem 7.3.1 or 7.3.2, if in
addition the initial condition u0 belongs to H̃0,2

0 (Q), then the solution u

of system (NSh) with u(0) = u0 belongs to L∞(R+, H̃
0,2
0 (Q)) and ∂2

3∇hu

belongs to L2(R+, L
2(Q)3).
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7.4 The case of general initial data

In this section, we want to prove the local existence of the solution u(t)
of the equations (NSh), when the initial data are not necessarily small.

Theorem 7.4.1 Let U0 be given in H̃0,1(Q). There exist a positive time
T0 and a positive constant η such that, if u0 belongs to H̃0,1(Q) and
‖U0 − u0‖H0,1 ≤ η, then the system (NSh) admits a (unique) strong
solution u(t), with u(0) = u0, such that

u ∈ L∞((0, T0), H̃0,1(Q)) and ∂3∇hu ∈ L2((0, T0), L2(Q)3).

Proof According to the strategy explained in the introduction and
according to Proposition 7.2.5, it is sufficient to prove that there exist
positive constants η and T0 such that, if uε(0) = v0 belongs to H1

0,per(Q̃)
and satisfies

‖v0 − ΣU0‖H0,1(Q̃) ≤ η, (7.50)

then, for any ε > 0 small enough, the equations (NSε) admit a unique
(local) solution uε(t) ∈ C0([0, T0], Ṽ ) with uε(0) = v0 and more-
over, uε and ∂3∇huε are uniformly bounded with respect to ε in
L∞((0, T0),H0,1(Q̃)) and L2((0, T0), L2(Q̃)3).
Let uε(t) be the strong solution of the equations (NSε) with initial data
uε(0) = v0 ∈ H1

0,per(Q̃) satisfying the condition (7.50). Let Tε > 0 be
the maximal time of existence of this solution. The proof of Theorem
7.3.2 and Remark 7.3.4 show that, if

C3

νh

∫ τ

0

‖∇huε(s)‖2
L2ds

(νh

2
+

1
νh

‖∂3uε(0)‖2
L2

)
< 1,

then Tε > τ .
It is thus sufficient to show that, for η > 0 small enough, there exists a
positive constant T0 such that, for any ε > 0, the strong solution uε of
(NSε) satisfies the inequality

C3

νh

∫ T0

0

‖∇huε(s)‖2
L2 ds

(νh

2
+

1
νh

‖∂3v0‖2
L2

)
<

1
2
. (7.51)

Actually, property (7.51) will be proved if we show that, for any positive
number δ, there exist two positive numbers T0 = T0(δ) and η0 = η0(δ)
such that ∫ T0

0

‖∇huε(s)‖2
L2ds ≤ 4δ. (7.52)



Anisotropic Navier–Stokes equations in a bounded cylinder 177

The remaining part of the proof consists in showing (7.52). Notice that
Lemma 7.2.6 gives us an estimate of the quantity

∫ t

0
‖∇huε(s)‖2

L2ds,
which we have used in the proofs of Theorems 7.3.1 and 7.3.2. Unfor-
tunately, here the initial data uε(0) = v0 are not necessarily small. In
order to prove (7.52), we write the solution uε as

uε = vε + zε,

where vε is the solution of the linear Stokes problem

(LSε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tvε − νhΔhvε − ε∂2
x3
vε = −∇qε in Q̃, t > 0,

div vε = 0 in Q̃, t > 0,

vε|∂Ω×(−1,1) = 0, t > 0,

vε(xh, x3) = vε(xh, x3 + 2), t > 0,

vε|t=0 = v0,

and where zε is the solution of the following auxiliary nonlinear system

(Zε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tzε+(zε+ vε)∇(zε+ vε)− νhΔhzε− ε∂2
x3
zε = −∇q∗ε in Q̃, t > 0,

div zε = 0 in Q̃, t > 0,

zε|∂Ω×(−1,1) = 0 , t > 0,

zε(xh, x3) = zε(xh, x3 + 2), t > 0,

zε|t=0 = 0.

The Stokes problem (LSε) admits a unique (global) classical solution vε

in C0([0,+∞), Ṽ ). Lemma 7.2.6 implies that, for any t ≥ 0,

‖vε(t)‖2
L2 + νh

∫ t

0

‖∇hvε(s)‖2
L2ds+ ε

∫ t

0

‖∂3vε(s)‖2
L2ds ≤ ‖v0‖2

L2 .

(7.53)
Arguing as in the proofs of Theorems 7.3.1 and 7.3.2, one at once shows
that, for t ≥ 0,

‖∂3vε(t)‖2
L2 + νh

∫ t

0

‖∇h∂3vε(s)‖2
L2ds+ ε

∫ t

0

‖∂2
3vε(s)‖2

L2ds ≤ ‖∂3v0‖2
L2 .

(7.54)

Notice that (Zε) also admits a unique classical solution zε∈C0([0, Tε),Ṽ ),
where Tε is the maximal time of existence of uε.
We will prove that, for η > 0 small enough, there exists a T0 > 0,
independent of ε, but depending on U0, such that∫ T0

0

‖∇hvε(s)‖2
L2ds ≤ δ and

∫ T0

0

‖∇hzε(s)‖2
L2ds ≤ δ . (7.55)
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We introduce a positive number δ0 ≤ δ, which will be made more precise
later. In order to prove the first inequality of (7.55), we proceed as follows
by decomposing the linear Stokes problem (LSε) into two auxiliary linear
systems, the first one with very regular initial data and the second one
with small initial data. We recall that P is the classical Leray projector.
Let A0 be the Stokes operator A0 = −PΔ with homogeneous Dirichlet
boundary conditions on ∂Ω × (−1, 1) and periodic boundary conditions
in the vertical variable. The spectrum of A0 consists of a non-decreasing
sequence of eigenvalues

0 < λ0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ,
which tends to infinity as m tends to infinity. We denote by Pk the
projection onto the space generated by the eigenfunctions associated
to the first k eigenvalues of the operator A0. There exists an integer
k0 = k0(δ0) such that,

‖(I − Pk)ΣU0‖2
L2 ≤ δ0νh

16
∀k ≥ k0. (7.56)

If v0 ∈ H1
0,per(Q̃) satisfies condition (7.50), property (7.56) implies that

‖(I−Pk0)v0‖2
L2 ≤2‖(I−Pk0)U0‖2

L2+2‖(I−Pk0)(U0−v0)‖2
L2 ≤ δ0νh

8
+2η2.

On the other hand, the following obvious estimate holds,

‖Pk0v0‖2
H1(Q̃)

≤ λk0+1‖v0‖2
L2 ≤ λk0+1(2‖U0‖2

L2 + 2η2). (7.57)

We next decompose vε into the sum vε = v1,ε + v2,ε where v1,ε is the
solution of the Stokes problem

(LS1,ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tv1,ε − νhΔhv1,ε − ε∂2
x3
v1,ε = −∇q1,ε in Q̃, t > 0,

div v1,ε = 0 in Q̃, t > 0,

v1,ε|∂Ω×(−1,1) = 0, t > 0,

v1,ε(xh, x3) = v1,ε(xh, x3 + 2), t > 0,

v1,ε|t=0 = Pk0v0,

and v2,ε is the solution of the Stokes problem

(LS2,ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tv2,ε − νhΔhv2,ε − ε∂2
x3
v2,ε = −∇q2,ε in Q̃, t > 0,

div v2,ε = 0 in Q̃, t > 0,

v2,ε|∂Ω×(−1,1) = 0, t > 0,

v2,ε(xh, x3) = v2,ε(xh, x3 + 2), t > 0,

v2,ε|t=0 = (I − Pk0)v0.
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From Lemma 7.2.6 we deduce that, for t ≥ 0,

‖v2,ε(t)‖2
L2 + νh

∫ t

0

‖∇hv2,ε(s)‖2
L2ds+ ε

∫ t

0

‖∂3v2,ε(s)‖2
L2ds

≤‖(I − Pk0)v0‖2
L2 ≤ δ0νh

8
+ 2η2.

(7.58)

Hence, if η2 ≤ δ0νh/16, we obtain, for any t ≥ 0,∫ t

0

‖∇hv2,ε(s)‖2
L2ds ≤ δ0

8
+

2η2

νh
≤ δ0

4
. (7.59)

In order to get an upper bound of the term
∫ t

0
‖∇hv1,ε(s)‖2

L2ds, we first
estimate ‖∇hv1,ε(s)‖2

L2 for any s ≥ 0. As in the proof of Proposition
7.2.7, we take the inner product in L2(Q̃)3 of the first equation of (LS1,ε)
with −PΔhv1,ε. Arguing as in the proof of Proposition 7.2.7, we obtain,
for any t ≥ 0,

∂t‖∇hv1,ε‖2
L2 + νh‖PΔhv1,ε‖2

L2 + 2ε‖∇h∂3v1,ε‖2
L2 ≤ 0.

Integrating the above inequality between 0 and t and taking into account
the estimate (7.57), we obtain, for t ≥ 0,

‖∇hv1,ε(t)‖2
L2 + νh

∫ t

0

‖PΔhv1,ε(s)‖2
L2ds+ 2ε

∫ t

0

‖∇h∂3v1,ε(s)‖2
L2ds

≤‖Pk0v0‖2
H1(Q̃)

≤ λk0+1(2‖U0‖2
L2 + 2η2).

From the above inequality, we deduce that, for t ≥ 0,∫ t

0

‖∇hv1,ε(s)‖2
L2ds ≤ tλk0+1(2‖U0‖2

L2+2η2) ≤ tλk0+1(2‖U0‖2
L2+

δ0νh

8
),

and thus, if

0 < T0 ≤ δ0
4λk0+1

(2‖U0‖2
L2 +

δ0νh

8
)−1, (7.60)

then ∫ T0

0

‖∇hv1,ε(s)‖2
L2 ds ≤ δ0

4
. (7.61)

Inequalities (7.59) and (7.61) imply that, if η2 ≤ δ0νh/16 and if the
condition (7.60) holds, then∫ T0

0

‖∇hvε(s)‖2
L2 ds ≤ δ0 ≤ δ. (7.62)



180 M. Paicu & G. Raugel

It remains to bound the integral
∫ T0

0
‖∇hzε(s)‖2

L2ds. Taking the inner
product in L2(Q̃)3 of the first equation of System (Zε) with zε, we obtain
the equality

1
2
∂t‖zε‖2

L2+νh‖∇hzε‖2
L2 + ε‖∂3zε‖2

L2 = −(zε,3∂3vε, zε)

− (zε,h∇hvε, zε) − (vε,3∂3vε, zε) − (vε,h∇hvε, zε). (7.63)

We next estimate the four terms of the right-hand side of the equal-
ity (7.63). Applying Lemma 7.2.3 and using the fact that ∂3zε,3 =
−div hzε,h, we obtain, for 0 ≤ t ≤ Tε,

|(zε,3∂3vε, zε)| ≤ ‖zε,3‖L∞
v (L2

h)‖∂3vε‖L2
v(L4

h)‖zε‖L2
v(L4

h)

≤C3
0

(‖zε,3‖1/2
L2 ‖∂3zε,3‖1/2

L2 + ‖zε,3‖L2

)
× ‖∂3vε‖1/2

L2 ‖∂3∇hvε‖1/2
L2 ‖zε‖1/2

L2 ‖∇hzε‖1/2
L2

≤C3
0

(‖zε,3‖1/2
L2 ‖∇hzε,h‖1/2

L2 + ‖zε,3‖L2

)
× ‖∂3vε‖1/2

L2 ‖∂3∇hvε‖1/2
L2 ‖zε‖1/2

L2 ‖∇hzε‖1/2
L2 .

Applying Young’s inequality to the above estimate, we get the inequality

|(zε,3∂3vε, zε)| ≤ νh

8
‖∇hzε‖2

L2 +
4C6

0

νh
‖∂3vε‖L2‖∂3∇hvε‖L2‖zε‖2

L2

+
3C4

0

2ν1/3
h

‖∂3vε‖2/3
L2 ‖∂3∇hvε‖2/3

L2 ‖zε‖2
L2 . (7.64)

Applying Lemma 7.2.3 and Young’s inequality again, we also obtain the
following estimate, for 0 ≤ t ≤ Tε,

|(zε,h∇hvε, zε)| ≤ C2
0‖∇hvε‖L∞

v (L2
h)‖∇hzε‖L2‖zε‖L2

≤ C3
0

(
‖∇hvε‖1/2

L2 ‖∇h∂3vε‖1/2
L2 + ‖∇hvε‖L2

)
‖∇hzε‖L2‖zε‖L2

≤ νh

8
‖∇hzε‖2

L2 +
C6

0

νh
‖zε‖2

L2

(
9‖∇hvε‖2

L2 + ‖∇h∂3vε‖2
L2

)
. (7.65)

Applying Lemma 7.2.3 again, we can write, for 0 ≤ t ≤ Tε,

|(vε,3∂3vε, zε)| ≤ ‖vε,3‖L∞
v (L2

h)‖∂3vε‖L2
v(L4

h)‖zε‖L2
v(L4

h)

≤C3
0

(‖vε,3‖1/2
L2 ‖∂3vε,3‖1/2

L2 + ‖vε,3‖L2

)
× ‖∂3vε‖1/2

L2 ‖∂3∇hvε‖1/2
L2 ‖zε‖1/2

L2 ‖∇hzε‖1/2
L2 .
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Using Young’s inequality several times, we deduce from the above
estimate that

|(vε,3∂3vε, zε)|

≤ 3C4
0

2ν1/3
h

(
‖vε‖2/3

L2 ‖∂3vε‖2/3
L2 + ‖vε‖4/3

L2

)
‖∂3vε‖2/3

L2 ‖∂3∇hvε‖2/3
L2 ‖zε‖2/3

L2

+
νh

8
‖∇hzε‖2

L2 ,

and so

|(vε,3∂3vε, zε)| ≤ νh

8
‖∇hzε‖2

L2 +
C4

0

νh
‖∂3∇hvε‖2

L2‖zε‖2
L2

+ C4
0‖vε‖2

L2‖∂3vε‖L2 + C4
0‖vε‖L2‖∂3vε‖2

L2 . (7.66)

Finally, arguing as above by applying Lemma 7.2.3 and Young’s
inequality, we get the estimate

|(vε,h∇hvε, zε)| ≤C2
0‖∇hvε‖L∞

v (L2
h)‖∇hvε‖1/2

L2 ‖vε‖1/2
L2 ‖∇hzε‖1/2

L2 ‖zε‖1/2
L2

≤C3
0

(
‖∇hvε‖1/2

L2 ‖∇h∂3vε‖1/2
L2 + ‖∇hvε‖L2

)
× ‖∇hvε‖1/2

L2 ‖vε‖1/2
L2 ‖∇hzε‖1/2

L2 ‖zε‖1/2
L2

≤ νh

8
‖∇hzε‖2

L2 + 2C4
0‖∇hvε‖2

L2‖vε‖L2

+
C4

0

2νh
‖zε‖2

L2

(
‖∇hvε‖2

L2 + ‖∇h∂3vε‖2
L2

)
. (7.67)

Integrating the equality (7.63) from 0 to t, taking into account the
estimates (7.64) to (7.67) and, applying Gronwall’s lemma yields, for
0 ≤ t ≤ Tε,

‖zε(t)‖2
L2 + νh

∫ t

0

‖∇hzε(s)‖2
L2ds+ 2ε

∫ t

0

‖∂3zε(s)‖2
L2ds

≤
∫ t

0

B1(s)‖zε(s)‖2
L2ds+

∫ t

0

B2(s)ds,
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and

‖zε(t)‖2
L2 + νh

∫ t

0

‖∇hzε(s)‖2
L2ds ≤ 2

∫ t

0

B2(s)ds
(

exp 2
∫ t

0

B1(s)ds
)
,

(7.68)
where

B1(s) =2
[C4

0

νh
(3C2

0 + 2)‖∇h∂3vε(s)‖2
L2 +

C4
0

2νh
(18C2

0 + 1)‖∇hvε(s)‖2
L2

+
2C6

0

νh
‖∂3vε(s)‖2

L2 + C4
0‖∂3vε(s)‖L2

]
B2(s) = 2C4

0

(
‖vε(s)‖2

L2‖∂3vε(s)‖L2 + ‖vε(s)‖L2‖∂3vε(s)‖2
L2

+ 2‖vε(s)‖L2‖∇hvε(s)‖2
L2

)
. (7.69)

The inequalities (7.68) and (7.69) and the estimates (7.53), (7.54), and
(7.62) imply that, for 0 ≤ t ≤ Tε,∫ t

0

‖∇hzε(s)‖2
L2ds ≤ c1

νh
‖v0‖L2

(
t‖v0‖L2‖∂3v0‖L2 + t‖∂3v0‖2

L2 + δ0

)
× exp c2

(
t‖∂3v0‖L2 + ν−1

h ‖∂3v0‖2
L2(t+ ν−1

h ) + ν−1
h δ0

)
, (7.70)

where c1 and c2 are two positive constants independent of v0 and ε.
Since

‖v0‖H0,1(Q̃) ≤ ‖ΣU0‖H0,1(Q̃) + η ≤ ‖ΣU0‖H0,1(Q̃) +
(δ0νh)1/2

4
,

inequality (7.70) shows that we can choose δ0 > 0 and T0 > 0
independent of ε and v0 such that

c1
νh

‖v0‖L2

(
T0‖v0‖L2‖∂3v0‖L2 + T0‖∂3v0‖2

L2 + δ0

)
× exp c2

(
T0‖∂3v0‖L2 + ν−1

h ‖∂3v0‖2
L2(T0 + ν−1

h ) + ν−1
h δ0

)
≤ δ

2
.

(7.71)

As we have explained at the beginning of the proof, properties (7.70)
and (7.71) imply that the maximal time Tε of existence of zε and of uε

is larger than T0 and that∫ T0

0

‖∇hzε(s)‖2
L2ds ≤ δ

2
.
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Thus the inequalities (7.55) are proved, which concludes the proof of the
theorem.

Notice that the classical approach to showing the local-in-time exis-
tence result for large initial data, consisting in the decomposition of the
problem into a large data linear problem and a small data, perturbed
nonlinear problem, does not work here, since we cannot prove that, for
initial data U0 in H̃0,1(Q), the quantity ‖(I−Pk0)v0‖H0,1(Q̃) is small. In
the above proof, the decomposition of the linear system into two systems,
one with smooth initial data Pk0v0 and the other one with small initial
data (I − Pk0)v0 avoids this difficulty. Indeed, in the estimates (7.58)
and (7.59), we only need to know that ‖(I − Pk0)v0‖L2(Q̃) is small.
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Abstract

This paper gives a brief summary of some of the main results concerning
the regularity of solutions of the three-dimensional Navier–Stokes equa-
tions. We then outline the basis of a numerical algorithm that, at least
in theory, can verify regularity for all initial conditions in any bounded
subset of H1.

8.1 Introduction

The aim of this paper is to present some partial results concerning the
problem of regularity of global solutions of the three-dimensional Navier–
Stokes equations. Since these equations form the fundamental model of
hydrodynamics it is a matter of great importance whether or not they
can be uniquely solved. However, one hundred and fifty years after the
Navier–Stokes model was presented for the first time, we still lack an
existence and uniqueness theorem, and the most significant contributions
to the subject remain those of Leray (1934) and Hopf (1951).

Nevertheless, there have been many advances since their work, and
it would not be possible to give an exhaustive presentation of these in
a short article. We give a brief overview of some of the main results,
and then concentrate on one specific and in some ways non-standard
approach to the problem, with a discussion of the feasibility of testing
for regularity via numerical computations following Chernysehnko et al.
(2007), Dashti & Robinson (2008), and Robinson & Sadowski (2008).

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.
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In some ways this contribution can be viewed as a companion to the
introductory review by Robinson (2006).

The plan of this paper is as follows. First we formulate the main
problem and define the function spaces that provide us with a conve-
nient framework in which to present the modern research in this field.
Then we formulate classical theorems due to Leray and Hopf and sketch
some state-of-the-art results concerning sufficient conditions for regu-
larity (‘conditional regularity’) and restrictions on singularities (‘partial
regularity’). We then move on to the main part of the paper and describe
some recent results that show that in theory one can verify numerically
the regularity of solutions of the Navier–Stokes equations arising from
large sets of initial conditions.

8.2 Formulation of the problem

The Navier–Stokes equations that model the motion of an incompressible
fluid in three dimensions are

∂u

∂t
− νΔu+ (u · ∇)u+ ∇p = f (8.1)

(momentum conservation) and the incompressibility condition

∇ · u = 0.

We consider the problem with the initial condition u(x, 0) = u0(x).
The unknowns are the three-component velocity u(x, t) and the scalar

pressure p(x, t). The coefficient ν > 0 is the kinematic viscosity of the
fluid and f(x, t) denotes a body force applied (by some means) internally.
Throughout what follows we take ν = 1, and generally we will treat the
case of unforced ‘decaying turbulence’, i.e. we take f = 0 and consider

∂u

∂t
− Δu+ (u · ∇)u+ ∇p = 0 ∇ · u = 0. (8.2)

We will consider the flow of the fluid in a three-dimensional torus or
in the whole of R3. While these cases are less physically relevant than
that of a bounded domain, they avoid technical difficulties that arise
from the presence of boundaries while retaining the vortex stretching
mechanism which arises from the nonlinear term and appears to be the
main factor obstructing a proof of existence and uniqueness of solutions.

Indeed, when the Clay Institute chose to include the question of the
regularity of Navier–Stokes solutions as one of their seven Millennium
Problems, it is the boundary-free cases that were listed in the official
description (Fefferman, 2000).
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8.3 Classical results of Leray and Hopf

8.3.1 Function spaces

The formulation of the problem in terms of smooth functions is not
mathematically convenient and it is very useful to recast it in a form
that allows for solutions in a larger function space.

We take Ω = [0, 2π]3 to be the domain of the flow, and let C denote the
space of all divergence-free smooth periodic three-component functions
with zero average on Ω (the zero average condition corresponds to zero
total momentum). We introduce a collection of function spaces that arise
as the closure of C with respect to various norms.

The space H, which consists essentially of allowable (divergence-free)
fields with finite kinetic energy, is the closure of C in the L2 norm

‖u‖ = ‖u‖[L2(Ω)]3 =

(
3∑

i=1

∫
Ω

|ui(x)|2 dx

)1/2

.

We denote by P the orthogonal projector from [L2(Ω)]3 onto H.
The enstrophy space V is the closure of C in the norm

‖Du‖ =
(∫

Ω

|Du(x)|2 dx
)1/2

, where |Du(x)|2 =
3∑

i,j=1

∣∣∣∣∂ui(x)
∂xj

∣∣∣∣2 ,
which, since u has zero average, is equivalent to the standard H1 norm.
(The quantity ‖Du‖2 is equal to the square integral of the vorticity (curl
u), a quantity that is commonly referred to as the enstrophy.)

Finally, by V 2 we denote the closure of C in the norm

‖Δu‖ =
(∫

Ω

|Δu(x)|2 dx
)1/2

,

which is equivalent to the H2 norm in this periodic setting (again we
use the fact that u has zero average).

Since we are working in a periodic domain we can characterize the
spaces V s in a very simple way, in terms of the eigenfunctions of the
Stokes operator A, defined as Au = −P (Δu). The periodic geometry
simplifies calculations greatly, since in this case if u ∈ V 2 then Au =
−Δu.

The Stokes operator is self-adjoint with compact inverse; it fol-
lows that there exists an orthonormal basis {wk} for H consisting of
eigenfunctions of A:

Awk = −Δwk = λkwk
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where

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

are the eigenvalues of the Stokes operator corresponding to the eigen-
functions w1, w2, w3, . . ., with λ1 = 1 and λk → ∞ as k → ∞.

The spaces V s (s = 0, 1, 2) consist of all those u that can be obtained
as

u =
∞∑

k=1

ckwk,

with coefficients {ck} for which

‖u‖s :=

( ∞∑
k=1

λ2s
k c

2
k

)1/2

is finite. This expression in fact coincides with the norms defined above
(identifying V 0 with H and V 1 with V ). However, note that there is
no reason to restrict to integer values of s in this definition, so in this
way we can obtain a family of spaces V s for any s ∈ R, which have the
property that V 0 = H, V 1 = V , and (since λk ≥ 1 for all k) that

‖u‖s ≤ ‖u‖s′ if s ≤ s′. (8.3)

We adopt the more compact notation ‖u‖s (as opposed to ‖u‖V s) from
now on.

As a final piece of notation, we use B(u, v) to denote the bilinear form
defined by

B(u, v) = P [(u · ∇)v].

8.3.2 Weak solutions

Now we are in a position to define weak and strong solutions of the
Navier–Stokes equations. First let us notice that taking the inner product
of both sides of (8.1) with a function ϕ(x, t) ∈ C and then integrating
by parts we obtain (for ν = 1 and f ≡ 0)

−
∫ T

0

∫
Ω

u
dϕ
dt

+
∫ T

0

∫
Ω

uAϕ−
∫ T

0

∫
Ω

uB(u, ϕ) = 0. (8.4)

Thus any smooth solution of the Navier–Stokes equations has to satisfy
(8.4) for every choice of ϕ. However, it is not a priori excluded that a
function u satisfying (8.4) for all such ϕ may not satisfy (8.1). This leads
us to the following notion of a weak solution.
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Definition 8.3.1 Let u ∈ L∞(0, T ;H)∩L2(0, T ;V ) satisfy the equation

du
dt

+A(u) +B(u, u) = 0 (8.5)

in a weak sense, i.e. for every smooth divergence-free function ϕ(x, t)
(with ϕ(·, t) ∈ C for each t) the equation (8.4) holds. Then the function
u is called a weak solution of the Navier–Stokes equations. If in addition
u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2) then u is called a strong solution of the
Navier–Stokes equations.

Since the works of Leray (1934) and Hopf (1951) it has been known
that given an initial condition in H at least one weak solution exists
for all time. Indeed, using the modern language of functional analy-
sis this can be shown relatively easily. The main idea is to construct
Galerkin approximations of the solution u: for each k ∈ N we find smooth
functions b(k)

i (t) (i = 1, . . . , k) such that

uk(t) =
k∑

i=1

b
(k)
i (t)wi

satisfies the equation

duk

dt
+Auk + PkB(uk, uk) = 0, (8.6)

where Pk denotes the orthogonal projection from [L2(Ω)]3 onto the
span of {w1, . . . , wk}. Such functions – which are all smooth since the
eigenfunctions wk are smooth – exist due to basic theory of ordinary
differential equations. Then one proves estimates on uk that are uniform
(with respect to k) in various spaces, and uses compactness theorems to
show that, for some appropriate subsequence (which we relabel here),
uk → u strongly in L2(0, T ;H), weakly-* in L∞(0, T ;H), and weakly
in L2(0, T ;V ); the limit function u is an element of both L∞(0, T ;H)
and L2(0, T ;V ), and satisfies (8.4), i.e. is a weak solution. (Note that
although each uk is smooth, the limiting function u may be much less
regular.) For more detail see Constantin & Foias (1988), Doering &
Gibbon (1995), Robinson (2001), or Temam (2001).

Strong solutions are the key to the regularity problem. While unique-
ness of weak solutions is not known, strong solutions are unique in the
larger class of weak solutions (see, for example, Temam, 2001). Fur-
thermore, it is relatively straightforward to show that a strong solution
is automatically smooth for t > 0 using the following bounds on the
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nonlinear term, which are proved in Constantin & Foias (1988):

|(B(w, v), Amw)| ≤ cm‖v‖m+1‖w‖2
m m ≥ 2, (8.7)

|(B(v, w), Amw)| ≤ cm‖v‖m‖w‖2
m m ≥ 3. (8.8)

Theorem 8.3.2 (cf. Constantin & Foias, 1988, Theorem 10.6)
Let u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2) be a strong solution of (8.2) with
u0 ∈ V m. Then in fact u ∈ L∞(0, T ;V m) ∩ L2(0, T ;V m+1).

Proof We give a formal argument which can be made rigorous using the
Galerkin procedure outlined above. The proof is inductive, supposing
initially that u ∈ L2(0, T ;V k) for some k ≤ m. Taking the inner product
of equation (8.2) with Aku we obtain

1
2

d
dt

‖u‖2
k + ‖u‖2

k+1 ≤ |(B(u, u), Aku)|

and so using (8.7) (valid here for k ≥ 2)

1
2

d
dt

‖u‖2
k + ‖u‖2

k+1 ≤ ck‖u‖2
k‖u‖k+1.

Therefore
d
dt

‖u‖2
k + ‖u‖2

k+1 ≤ c2k‖u‖4
k. (8.9)

Dropping the term ‖u‖2
k+1 we have

d
dt

‖u‖2
k ≤ (

c2k‖u‖2
k

) ‖u‖2
k.

It now follows from the Gronwall inequality that our inductive assump-
tion u ∈ L2(0, T ;V k) implies that u ∈ L∞(0, T ;V k).
Returning to (8.9) and integrating between 0 and T we obtain∫ T

0

‖u(s)‖2
k+1 ds ≤ ‖u(0)‖2

k + c2k

∫ T

0

‖u(s)‖4
k ds,

which shows in turn that u ∈ L2(0, T ;V k+1).
Since by assumption u ∈ L2(0, T ;V 2), the first use of the induction
requires k = 2, for which inequality (8.7) is valid: we can therefore
conclude by induction that u ∈ L∞(0, T ;V m) ∩ L2(0, T ;V m+1).

It follows from this theorem that strong solutions (whatever the reg-
ularity of the initial condition) immediately become smooth: given any
T > 0 and k ∈ N, one can easily show that u(T ) ∈ V k. Indeed, if u is
a strong solution then u ∈ L2(0, T ;V 2); it follows that u(t) ∈ V 2 for
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almost every t ∈ (0, T ), and in particular u(t2) ∈ V 2 for some t2 < T .
So u ∈ L2(t2, T ;V 3), which gives u(t3) ∈ V 3 for some t3 ∈ (t2, T ); one
can proceed inductively to show that u(T ) ∈ V k. Thus u(t) ∈ C∞ for
every t > 0. Given this, we also refer to a strong solution as a ‘regular’
solution.

8.3.3 Energy and enstrophy inequalities

Taking the inner product of both sides of (8.6) with uk and integrating
over Ω we obtain

1
2

d
dt

‖uk‖2 + ‖Duk‖2 = 0,

since the nonlinear term vanishes (this can be checked by a direct
computation). Now, integration with respect to time gives us

‖uk(T )‖2 +
∫ T

0

‖Duk(s)‖2 ds = ‖uk(0)‖2,

the energy equality for the Galerkin approximations. Since

‖uk(0)‖ ≤ ‖u(0)‖
we also have the energy inequality which is satisfied by the function u

that is the weak limit of uk:

‖u(T )‖2 +
∫ T

0

‖Du(s)‖2 ds ≤ ‖u(0)‖2. (8.10)

Note that this energy inequality is derived here as a consequence
of the Galerkin procedure for constructing weak solutions. While it
is not known if any weak solution must satisfy the energy inequality
(see Cheskidov, Friedlander, & Shvydkoy (2008) for recent work on this
problem), this shows that there exists at least one solution that satis-
fies (8.10). A weak solution that satisfies the energy inequality is called
a Leray–Hopf weak solution, and we concentrate on this class of weak
solutions from now on.

In a similar way we can obtain an enstrophy inequality. To this end,
we take the inner product of (8.5) with −Δu, integrate over Ω and get

1
2

d
dt

‖Du‖2 + ‖Δu‖2 −
∫

Ω

B(u, u) · (Δu) = 0.

This time the nonlinear term does not vanish, but standard inequalities
(Hölder and interpolation inequalities) allow us to estimate the last term
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on the left-hand side as∣∣∣∣∫
Ω

B(u, u) · (Δu)
∣∣∣∣ ≤ CB‖Du‖3/2‖Δu‖3/2, (8.11)

to obtain

2
d
dt

‖Du‖2 + ‖Δu‖2 ≤ C4
B‖Du‖6. (8.12)

8.3.4 Regularity of solutions for small times

We will now investigate consequences of the energy and enstrophy
inequalities. Dropping the second term on the left-hand side of (8.12)
we obtain

2
dX
dt

≤ C4
BX

3,

where X = ‖Du‖2. Since this implies that for t ≥ s

‖Du(t)‖2 ≤ ‖Du(s)‖2√
1 − 2C4

B(t− s)‖Du(s)‖4
, (8.13)

it follows that if the enstrophy of an initial condition is bounded then it
cannot blow-up immediately and the minimal time T in which a blow-up
could potentially occur can be estimated from below.

Theorem 8.3.3 Let u(t) be a Leray–Hopf weak solution of the Navier–
Stokes equations arising from initial condition u0 ∈ V . Then there exists
a time T ∗,

T ∗ =
1

2C4
B‖Du(0)‖4

, (8.14)

such that for each T < T ∗

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2).

Therefore weak solutions obtained from the Galerkin approximation
and arising from sufficiently smooth initial conditions remain regular
for sufficiently small times. However, what happens after time T ∗ is
unknown.

8.3.5 Regularity of solutions arising from a bounded set of

initial conditions

Another consequence of (8.12) is that if the initial enstrophy is suffi-
ciently small then the corresponding solution cannot blow up at all.
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Indeed, it follows from (8.3) and (8.12) that

2
d
dt

‖Du‖2 ≤ C4
B‖Du‖6 − ‖Du‖2. (8.15)

Therefore if

‖Du‖ < C−1
B (8.16)

the right-hand side of (8.15) is negative and as a consequence the
enstrophy ‖Du‖2 is decreasing in time. We can rephrase this as follows:

Theorem 8.3.4 There exists an R0 > 0 such that every initial condition
with ‖Du0‖ ≤ R0 gives rise to a strong solution that exists for all t ≥ 0.

The value of R0 depends only on absolute constants involved in certain
Sobolev embedding results (recall that we have set L = 2π, ν = 1, and
f = 0), and one can find an explicit bound on this quantity. For our
parameter values, one has

R0 ≈ 0.00008

(see Dashti & Robinson (2008) for a derivation of (8.11) that keeps
careful track of the constants involved in estimating CB).

8.3.6 Regularity of solutions for large times

It turns out that even if the initial enstrophy of an unforced flow (f = 0)
is large then nevertheless any weak solution arising from this initial
condition has to be strong eventually. Indeed, it follows from the energy
inequality (8.10) that ∫ T

0

‖Du(s)‖2 ds ≤ ‖u(0)‖2, (8.17)

which shows that if T > T ∗∗, where

T ∗∗ =
‖u(0)‖2

C−2
B

, (8.18)

then there must be some time s ∈ (0, T ) such that ‖Du(s)‖ < C−1
B . By

(8.16) this implies that u(t) is regular for all t > s, and so in particular
any such u is regular for all t ≥ T ∗∗.

Theorem 8.3.5 If u(t) is a Leray–Hopf weak solution of the unforced
Navier–Stokes equations on Ω = [0, 2π]3 then it is a strong solution for
all times t > T ∗∗, where T ∗∗ is defined by (8.18).
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8.4 Modern approach

At present there are only partial results concerning the existence of
regular solutions of the Navier–Stokes equations, which can roughly be
divided into three groups: results that give sufficient conditions for reg-
ularity; results that restrict the occurrence of possible singularities; and
results that provide large sets of forces or initial conditions that give rise
to regular solutions. The main part of this paper is devoted to present-
ing some of the results from the last group, but first we briefly review
conditional and partial regularity results.

8.4.1 Conditional regularity results

In this section we state some of the current results (which mainly con-
cern flows in R3) that give sufficient conditions for regularity of weak
solutions. We state them as simply as possible, and skip any technical
assumptions: an interested reader should consult the relevant papers for
details.

The first example provides regularity criteria for the velocity field that
ensure the existence and uniqueness of smooth solutions (Serrin, 1962;
Fabes, Jones, & Riviere, 1972; Escauriaza, Seregin, & Šverák, 2003): if
a weak Leray–Hopf solution u of the Navier–Stokes equations satisfies

u ∈ Lr(0, T ;Ls(R3)) for some
2
r

+
3
s
≤ 1, 3 ≤ s ≤ ∞ (8.19)

then u is regular.
The second example involves an analogous criterion for the pressure

(Chae & Lee, 2001; Berselli & Galdi, 2002; Zhou, 2006): if the pressure
p satisfies

p ∈ Lr(0, T ;Ls) for some
2
r

+
3
s
≤ 2, s >

3
2

(8.20)

or

∇p ∈ Lr(0, T ;Ls) for some
2
r

+
3
s
≤ 3, 1 ≤ s ≤ ∞ (8.21)

then the corresponding velocity u is regular.
It is also possible to state a sufficient condition for regularity in terms

of the vorticity (da Veiga, 1995): if the vorticity ω = curl u of a Leray–
Hopf weak solution u belongs to the space

Lr(0, T ;Ls) for some
2
r

+
3
s
≤ 2, s > 1 (8.22)
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then the corresponding velocity u is regular. Note that this generalizes
the well-known criterion due to Beale, Kato, & Majda (1984) that a
solution cannot blow up as t→ T if ω ∈ L1(0, T ;L∞).

8.4.2 Restrictions on singularities

One of the two most celebrated results that places restrictions on singu-
larities is the following theorem of Scheffer (1976), which treats the set
of singular times:

Theorem 8.4.1 (Scheffer, 1976) If u is a Leray–Hopf weak solu-
tion of the Navier–Stokes equations then the 1/2-dimensional Hausdorff
measure of the set

X = {t : ‖Du(t)‖ = ∞}
of singular times of the flow is zero.

Here we give a very simple proof of a related result due to Robin-
son & Sadowski (2007), which guarantees that the upper box-counting
dimension of X is no greater than 1/2. This notion of dimension (which
provides an upper bound on the Hausdorff dimension) is usually defined
as

dbox(X) = lim sup
ε→0

logN(X, ε)
− log ε

,

where N(X, ε) is the minimum number of balls of radius ε required to
cover X. However, one can also take N(X, ε) to be the maximum number
of disjoint balls of radius ε with centres in X, a variant of the definition
that will be useful here. (For more details about this definition, see
Falconer, 1990.)

Theorem 8.4.2 (Robinson & Sadowski, 2007) If X denotes the set
of singular times of a Leray–Hopf weak solution then dbox(X) ≤ 1

2 .

As remarked above, this implies that the Hausdorff dimension of X
is no larger than one half, but not that its 1/2-dimensional Hausdorff
measure is zero. However, there are subsets of R (e.g. the rationals) that
have Hausdorff dimension zero but box-counting dimension one.

Proof The proof relies on the observation that (8.13) implies a lower
bound on singular solutions: if ‖Du(t)‖ = +∞ then

‖Du(s)‖2 ≥ c(t− s)−1/2 for all s ≤ t
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(this observation goes back to Leray, 1934). Suppose that dbox(X) =
d > 1/2. Then for some δ with 1/2 < δ < d there exists a sequence
εj → 0 such that Nj = N(X, εj) > ε−δ

j . If the centres of these Nj balls
are at tn, 1 ≤ n ≤ Nj , then since the balls are disjoint∫ 1

0

‖Du(s)‖2 ds ≥
Nj∑

n=1

∫ tn+εj

tn−εj

‖Du(s)‖2 ds >
Nj∑

n=1

∫ tn

tn−εj

‖Du(s)‖2 ds.

Since ‖Du(tn)‖ = +∞, ‖Du(s)‖2 ≥ c(tn − s)−1/2, and so∫ 1

0

‖Du(s)‖2 ds ≥ 1
2c

Nj∑
i=1

√
cεj ≥ 1

2
√
c
ε
(1/2)−δ
j .

The right-hand side tends to infinity as j → ∞, but we know that the
left-hand side is finite by (8.17); so we must have dbox(X) ≤ 1/2.

The other well-known result is due to Caffarelli, Kohn, & Nirenberg
(1982), which considers the points of singularity in space-time:

Theorem 8.4.3 (Caffarelli et al., 1982) Let u(t) be a suitable weak
solution1 of the Navier–Stokes equations and let S be the set of all points
(x, t) for which there is no M > 0 such that |u(y, s)| < M for almost
all (y, s) in some neighbourhood of (x, t). Then the one-dimensional
parabolic Hausdorff measure of S is zero.

The statement that the one-dimensional parabolic Hausdorff measure
of S is zero is equivalent to the statement that for any ε > 0, S can
be covered by a (perhaps countable) collection of ‘parabolic cylinders’
B(xj , rj) × [tj − r2j , tj + r2j ] such that

∑
j rj < ε.

Finally, it should be mentioned that some other restrictions on the
singular behaviour of the Navier–Stokes flows are known. For example,
it has been proved that if the vorticity blows up in a finite time, then
at least two of its components must blow up simultaneously (Chae &
Choe, 1999).

8.5 Regularity for a dense set of forces

Another approach to the problem of global regularity of weak solutions
focuses on proving regularity of solutions for large sets of initial condi-
tions or forces. Much effort has been made to prove regularity of solutions

1One has to assume, in addition to the usual definition of a weak solution, that
p ∈ L5/4((0, T ) × Ω) and that a local form of the energy inequality holds. It can be
shown that at least one such suitable weak solution exists.
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arising from initial conditions that are in some sense ‘small’. For exam-
ple, flows in thin domains have been investigated in detail and many
interesting results have been proved in this direction (see Raugel & Sell,
1993, or Temam & Ziane, 1996, for example). However, we will not dis-
cuss these problems here and we refer the reader directly to the relevant
research papers.

Instead we will concentrate on the following two problems, of which
the second appears to be much harder:

Problem 1. For a given initial condition u0, find a large set F of forces
such that u0 gives rise to a strong solution of the Navier–Stokes equations
for any forcing f ∈ F .
Problem 2. For a given force f find large set U of initial conditions
such that any u0 ∈ U gives rise to a strong solution of the Navier–Stokes
equations with forcing f .

In what follows we restrict ourselves to a periodic domain with L = 2π
and ν = 1 as above.

First we will address Problem 1. A slightly naive question is whether
for a given initial condition u0 we can always find at least one forcing
f(t) for which u0 gives rise to the strong solution of the Navier–Stokes
equations. An easy answer is provided by the following lemma, which
although elementary contains an idea that will be significant later.

Lemma 8.5.1 Each u0 ∈ V gives rise to a strong solution of the Navier–
Stokes equations for some forcing f ∈ L2(0, T ;H).

Proof Let u(t) = e−Atu0 ∈ C0([0, T ];V ). Then since u is the unique
solution of

du
dt

= −Au u(0) = u0

it follows that u ∈ L2(0, T ;V 2) and du/dt ∈ L2(0, T ;H). In addition,
therefore, B(u, u) ∈ L2(0, T ;H). Now define

f̂ =
du
dt

+Au+B(u, u);

we have shown that f̂ ∈ L2(0, T ;H), and clearly u is the unique strong
solution of the Navier–Stokes equations with forcing f̂ .
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A great improvement on this result is the following theorem:

Theorem 8.5.2 (Fursikov, 1980) For a given initial condition
u0 ∈ V 1/2 there exists an open set F ⊂ L2(0, T ;V −1/2) such that for
every function f ∈ F there exists a unique solution of the Navier–Stokes
equations on the time interval (0, T ). Moreover, the set F is dense in the
topology of Lp(0, T ;V −l), where 1 ≤ p < 4/(5 − 2l) for 1/2 < l ≤ 3/2,
and 1 ≤ p ≤ 2 for l > 3/2.

As we can see, for a given initial condition we can find a very large
set F of forces that induce regularity of weak solutions arising from u0.

Proof We sketch the idea of the density part of the proof, following the
presentation in Fursikov (1980).
Step 1. Let Pk be the orthogonal projector from H onto the k-
dimensional space spanned by the first k eigenvectors of the Stokes
operator A. For a given initial condition u0 ∈ V 1/2 and a given
f ∈ L2(0, T ;V −1/2) we consider yk = zk + vk, where zk is a solution
of the Galerkin system

dzk

dt
+Azk + PkB(zk, zk) = Pkf zk(0) = Pku0

and vk is the solution of a linear problem

dvk

dt
+Avk = 0 vk(0) = u0 − Pku0.

Step 2. We show that yk is the solution of the Navier–Stokes equations
for a forcing f + gk, where

‖gk‖L2(0,T ;V −l) → 0 as k → ∞,

which finishes the proof.

However, it should be noticed that the density of F is proved in a
weaker topology than the openness property. So the set of forces is not
‘generic’ in the standard sense. Note also that for a given forcing f ,
Fursikov’s theorem says nothing about the sets of initial conditions that
give rise to strong solutions.

8.6 Robustness of regularity under perturbation

In this section we consider two results that show that regularity is stable
‘under perturbation’. First we present a result that requires u0 ∈ V m
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with m ≥ 3, which is also valid for the Euler equations (ν = 0), and
then a result valid for standard ‘strong solutions’ with u0 ∈ V .

8.6.1 Robustness of regularity for u0 ∈ V m, m ≥ 3

The next theorem, due to Chernysehnko et al. (2007), addresses the
problem of regularity both in the space of initial conditions and of forces,
showing that regularity is stable under perturbations:

Theorem 8.6.1 (Chernysehnko et al., 2007) Let m ≥ 3. Assume
that v0 ∈ V m gives rise to a strong solution v(t) on [0, T ] when the
forcing is g(t) ∈ L∞(0, T ;V m−1)∩L1(0, T ;V m). Then so does any initial
condition u0 ∈ V m and forcing f(t) ∈ L2(0, T ;V m−1) for which

‖v0 − u0‖m +
∫ T

0

‖g(s) − f(s)‖m ds ≤ P (v), (8.23)

where

P (v) = (cmT )−1 exp

(
−cm

∫ T

0

‖v(s)‖m + ‖v(s)‖m+1 ds

)
. (8.24)

Here ‖ · ‖m denotes the norm in V m, and cm is an absolute constant
related to certain Sobolev embedding results.

(We have fixed L = 2π and ν = 1, so the statement of this theorem
here hides the fact that P (v) does not depend on ν; with some extra
work the same result can be shown to hold for the Euler equations, see
Chernysehnko et al., 2007, for details.)

Proof (Sketch) First, using inequalities (8.7) and (8.8) for the nonlinear
term, we prove that w = u− v satisfies

d
dt

‖w‖m ≤ ‖f − g‖m + c(‖v‖m + ‖v‖m+1)‖w‖m + ‖w‖2
m.

Multiplication by exp(−c ∫ T

0
‖v(s)‖m + ‖v(s)‖m+1 ds) gives

dy
dt

≤ ‖f − g‖m + αy2,

where

y(t) = ‖w(t)‖m exp(−c
∫ T

0

‖v(s)‖m + ‖v(s)‖m+1 ds)
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and y(0) = ‖u0 − v0‖m. One then applies a simple ODE result due to
Constantin (1986): if

dy
dt

≤ δ(t) + αy2 y(0) = y0 ≥ 0, t ∈ [0, T ],

where α > 0 and δ(t) ≥ 0, then

y(t) ≤ η

1 − αηt

for all αηt < 1, where

η = y0 +
∫ T

0

δ(s) ds.

8.6.2 Robustness of regularity for u0 ∈ V

In what follows we will frequently use a similar robustness result that
requires less regularity for the initial condition:

Theorem 8.6.2 (Dashti & Robinson, 2008) Assume that v0 ∈ V

gives rise to a strong solution v(t) on [0, T ∗] with forcing f̃(t). Then so
does any initial condition u0 ∈ V and forcing f(t) with

‖D(v0 − u0)‖ +
∫ T∗

0

‖Df̃(s) −Df(s)‖ds ≤W (v), (8.25)

where

W (v) = (cT ∗)−1/4 exp

(
−c

∫ T∗

0

‖Dv(s)‖4 + ‖Dv(s)‖ ‖Av(s)‖ds

)
(8.26)

and c is an absolute constant related to certain Sobolev embedding results.

The proof is as above, but is based on the differential inequality

d
dt

‖Dw‖ ≤ (c1‖Du‖4 + c2‖Du‖‖Au‖)‖Dw‖ + c1‖Dw‖5 + ‖D(f − g)‖

where w = u− v, and properties of functions y(t) that satisfy

dy
dt

≤ δ(t) + αy5 α ≥ 0, δ(t) ≥ 0.
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8.7 Numerical verification of regularity

We now discuss how this robustness result can be used to provide a
method of (at least theoretical) numerical verification of regularity: first
for a single initial condition, then for any bounded set in V 2, and finally
for any bounded set in V .

8.7.1 Verification for a single initial condition in V

The following result is a simple consequence of Theorem 8.6.2 when
it is combined with the idea used in Lemma 8.5.1 that if both v and
f := dv/dt + Av + B(v, v) are sufficiently regular then v is the unique
strong solution of the Navier–Stokes equation du/dt+Au+B(u, u) = f .

Corollary 8.7.1 (Dashti & Robinson, 2008) Suppose that the
function v ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2) satisfies

dv
dt

+Av +B(v, v) ∈ L1(0, T ;V ) ∩ L2(0, T ;V )

and

‖Dv(0) −Du0‖ +
∫ T

0

∥∥∥∥dv
dt

(s) +Av(s) +B(v(s), v(s))
∥∥∥∥

1

ds ≤W (v),

(8.27)
where W (v) is defined by (8.26). Then u is a regular solution of the
Navier–Stokes equations with u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2).

This corollary tells us that we can obtain a purely theoretical result
(regularity of the solution arising from a given initial condition) from
approximate numerical computations. (Of course, a numerical solution
will be given only at discrete time points but this is not an obstacle since
one can, for example, construct u via linear interpolation between these
points.)

In fact, it is possible to verify regularity corresponding to a particular
initial condition u0 in a finite time: if u0 does give rise to a regular
solution on [0, T ], finite-dimensional Galerkin approximations (based on
the eigenfunctions of the Stokes operator) can be guaranteed to converge
to u(t) (see Dashti & Robinson, 2008, for details). It follows that if
u0 leads to such a regular solution, one can take v to be the result of
successively larger-dimensional Galerkin approximations until (8.27) is
satisfied. On the other hand, if a weak solution arising from u0 evolves
to produce a singularity then the numerical computation will not be
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able to show this. In other words, we can verify regularity of a strong
solution, but we cannot obtain in this way any proof of the hypothetical
breakdown of regularity of a weak solution.

8.7.2 Verification for a ball in V 2

Since it is possible to use numerical computations to check regularity
of a single given initial condition it is sensible to ask whether numerical
computations may improve the theoretical result given in Theorem 8.3.4.
The answer is yes. However, before we prove this we will investigate an
auxiliary problem. Instead of considering a set of initial conditions in
the space V we will, for the moment, restrict our attention to a set of
more regular initial conditions that is a ball in V 2. Our aim is to present
a method of verifying the following statement, for some fixed S > 0:

Statement 1. Every initial condition with ‖Au0‖ ≤ S gives rise to a strong
solution that exists for all t ≥ 0.

Following Robinson & Sadowski (2008) we will sketch the proof of the
following theorem.

Theorem 8.7.2 (Robinson & Sadowski, 2008) Assume that State-
ment 1 is true. Then it is possible to verify it numerically in a finite
time.

Proof (Sketch)
Step 1. We have already remarked (Theorem 8.3.5) that any weak solu-
tion is strong for t ≥ T ∗∗, where T ∗∗ depends only on the norm of
the initial data in V . So we need only verify regularity on the bounded
interval [0, T ∗∗].
Step 2. We assume that Statement 1 is true. Following Constantin, Foias,
& Temam (1985) one can prove, under this assumption, that for any
T > 0 there exist constants DS(T ) and ES(T ) such that every initial
condition u0 with ‖Au0‖ ≤ S gives rise to a solution u satisfying

sup
0≤t≤T

‖Du(s)‖ ≤ DS and
∫ T

0

‖Au(s)‖2 ds ≤ ES .

Step 3. Using these bounds one can deduce that for any such a solution
u the following integral is uniformly bounded:∫ T∗∗

0

‖Du(s)‖4 + ‖Du(s)‖ ‖Au(s)‖ds < Q.
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It follows that there exists a δ = δ(S) such that if ‖Au0‖ ≤ S then
W (u) > δ. Theorem 8.6.2 implies that every initial condition v0 ∈ V

with

‖Du0 −Dv0‖ < δ

also gives rise to a strong solution on [0, T ∗∗].
Step 4. One can find an explicit finite collection of balls in V of radius
δ that cover the ball in V 2 (centred at the origin) of radius S. One can
then check numerically, using Corollary 8.7.1, that the centres of each
of these balls are initial conditions giving rise to strong solutions on
[0, T ∗∗].

Observe that the proof is based only on an assumption of regularity
of solutions arising from initial conditions with ‖Au0‖ ≤ S. Whether or
not singularities may occur in solutions arising from initial conditions u0

with ‖Au0‖ > S has no effect on the possibility of numerical verification
of regularity of solutions with ‖Au0‖ < S.

8.7.3 Verification for a ball in V

Our main aim now is to show that we can verify numerically the regu-
larity of solutions arising from initial conditions in some ball in V . More
precisely, we wish to verify the following statement for some fixed R > 0:

Statement 2. Every initial condition with ‖Du0‖ ≤ R gives rise to a strong
solution that exists for all t ≥ 0.

In order to verify this we have to make the stronger assumption that
the Navier–Stokes equations are in fact regular, i.e. that Statement 2
holds for any value of R > 0.

Theorem 8.7.3 (Robinson & Sadowski, 2008) Assume that the
Navier–Stokes equations are regular. Then it is possible to verify State-
ment 2 numerically in a finite time.

Proof (Sketch)
Step 1. We find time TR > 0 such that every solution with initial con-
dition ‖Du0‖ ≤ R is regular on the interval [0, TR] and has an explicit
bound on ‖Au(TR)‖. We can do this using a result due to Foias & Temam
(1989) on the Gevrey regularity of solutions, a consequence of which is
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that for

TR =
1

K(1 +R2)

we have

‖Au(TR)‖2 ≤ K2(1 +R2)5/2,

where K ≤ 3266.

Step 2. If an initial condition with ‖Du0‖ ≤ R leads to a singularity,
then so does some initial condition v0 = u(TR) with ‖Av0‖ ≤ S, where
S = S(R) = K1(1 + R2)5/2. So it suffices to verify the regularity of all
initial conditions within this ball in V 2, which we know that we can
do.

Observe that in order to prove Statement 2 we need to assume that
all solutions of the Navier–Stokes equations with initial conditions in V
are regular. Indeed, we cannot exclude the possibility that there is an
initial condition with ‖Au0‖ ≤ S that gives rise to a solution developing
a singularity, while initial conditions with ‖Du0‖ ≤ R all give rise to
strong solutions, as illustrated below.

��
�������������

����������

� � ��	
‖Au0‖ ≤ S

‖Du0‖ ≤ R

singularity

singularity

singularity

Of course, in this case one would not be able to “verify” numerically
a false statement about the regularity of solutions arising from initial
conditions with ‖Au0‖ ≤ S, even though it would be true that every
solution with ‖Du0‖ ≤ R leads to a regular solution.
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Abstract

We review recent progress on the evolution of sharp fronts for the surface
quasi-geostrophic equations and related problems, with special emphasis
on techniques that can be extended to the study of vortex dynamics for
the 3D Euler equations.

9.1 Introduction

In these notes we will review a series of problems related to contour
dynamics for two-dimensional active-scalar equations. More precisely,
the central problem we will concentrate on is the evolution of sharp fronts
for the surface quasi-geostrophic equation, obtained by considering the
evolution of initial data given by the indicator of a smooth, open set by
the equations

Dθ

Dt
:=

∂θ

∂t
+ u · ∇θ = 0, (9.1)

u = ∇⊥ψ = (−∂x2ψ, ∂x1ψ), (9.2)

(−Δ)
1
2ψ = θ. (9.3)

Here the variable θ represents a two-dimensional active scalar (potential
temperature in physical terms) advected by the velocity field u and ψ is
the stream function. Finally, we define the fractional Laplacian in terms
of the Fourier transform,

̂(−Δ)
1
2ψ(ξ) = |ξ|ψ̂(ξ).

We will refer to the system (9.1)–(9.3) as SQG.
The term ‘sharp front’, to denote the boundary of the set whose indi-

cator we are considering, stems from the fact that the SQG system was

Published in Partial Differential Equations and Fluid Mechanics, edited by
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originally introduced as a model for atmospheric turbulence, where the
curve represents an abrupt change in temperature, called a sharp front.

θ = 0

θ = 1

Fig. 9.1. Sharp Front

It is easy to see that if the initial condition is the indicator of an
open set with C1 boundary then the solution remains of the same form,
reducing the problem to understanding the evolution of the boundary
(hence the name contour dynamics).

The surface quasi-geostrophic equation has been studied extensively,
both from the geophysical and mathematical point of view. A derivation
of the system of equations can be found in Pedlosky (1987), for the evo-
lution of the temperature on the 2D boundary of a half-space with small
Rossby and Ekman numbers and constant potential vorticity. See Held,
Pierrehumbert, & Swanson (1994) for an analysis of the statistical tur-
bulence theory for the equation and Garner et al. (1995) for a qualitative
analysis of the solutions. We will not make a systematic review of the
literature concerning SQG here. Concerning the question that we con-
sider here, that is, the evolution of sharp fronts, one of the most active
questions about SQG is the study of the frontogenesis, precisely the for-
mation of a discontinuous temperature front in finite time. We refer the
reader to Constantin, Majda, & Tabak (1994a,b), Córdoba (1998), Ohk-
itani & Yamada (1997), Constantin, Nie, & Schörghofer (1998, 1999),
Rodrigo (2004, 2005), Córdoba, Fefferman, & Rodrigo (2004), Córdoba
et al. (2005) and Gancedo (2008) for more details on the questions of
the frontogenesis and the evolution of sharp fronts.

The main mathematical interest in SQG arises from the analogies
of this system with the 3D Euler equations (described in detail in the
next section) and it is this connection that motivates our approach to
the problems considered. More precisely, we attempt to consider only
techniques that can be extended to the study of the analogous problems
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in 3D Euler, that is, as we will see in next section, the study of vortex
lines for 3D Euler.

9.2 SQG and 3D Euler

As mentioned before, the main mathematical interest in the surface
quasi-geostrophic system lies in its strong analogies with the 3D Euler
equation. SQG presents a two-dimensional equation that contains many
of the features of 3D Euler. We will present a very brief review of the
analogies between these two equations. These similarities are best estab-
lished when considering 3D Euler in vorticity form. Recall that in terms
of the vorticity ω = curlu, 3D Euler becomes

Dω

Dt
= (∇u)ω,

where u = (u1, u2, u3) is the 3D velocity satisfying div u = 0.
In particular, we observe that by differentiating equation (9.1) we

obtain
D(∇⊥θ)
Dt

= (∇u)∇⊥θ.

This shows a very strong analogy between the 3D Euler equation
and QG, where ∇⊥θ plays the role of ω. We briefly recall some further
analogies:

• The velocity is recovered via the formulas

u(x) =
∫

R3
K3(y)ω(x+ y)dy u(x) =

∫
R2
K2(y)∇⊥θ(x+ y)dy,

where the kernels Kd, d = 2, 3 are homogeneous of degree 1 − d.
Additionally, the strain matrix (the symmetric part of the gradient of
the velocity) can be recovered via a singular integral operator, given
by kernels of degree −d.

• Both systems have conserved energy.
• Both |ω| and |∇⊥θ| evolve according to the same type of equation.

(|ω| measures the infinitesimal length of a vortex line).
• Both systems have analogous conditions for a break up of a solution,

that is, the well-known criterion due to Beale, Kato, & Majda (1984)
translates directly to SQG with ∇⊥θ in place of ω.

• The integral curves of ω, and of ∇⊥θ move with the fluid.
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These analogies were first noticed by Constantin, Majda, & Tabak.
We refer the reader to Constantin et al. (1994a,b) and Majda & Tabak
(1996) for a complete presentation. Another detailed exposition is found
in Majda & Bertozzi (2002).

It is the last analogy in the previous list that motivates the work
presented in these notes. We will start by reviewing some results about
vortex lines.

9.2.1 Sharp Fronts and Vortex Lines

An outstanding open problem in fluid dynamics is the evolution of a
single (idealized) vortex line. In general, a vortex line is an integral
curve of the vorticity field, but the problem we want to understand here
is the solution of 3D Euler when the vorticity ω is supported on a curve
Γ, and has the form

ω = |ω| δΓ T , (9.4)

where T is the tangent to the curve (see Figure 9.2). One can con-
sider this problem as the evolution of an idealized vortex tube of
thickness zero. It is not known whether solutions of 3D Euler of this
form actually exist, and if they do what the evolution equation for the
curve Γ is.

TΓ

Γ

ω = |ω| δ

T

Fig. 9.2. Vortex Line
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The main difficulty in the study the evolution of a vortex line is that
we need to understand the velocity field (given by the Biot–Savart Law)

u(x, t) =
1

4π

∫
x− y

|x− y|3 × ω(y, t) dy, (9.5)

which appears in the Euler equation in vorticity form

Dω

Dt
= (∇u)ω.

Equation (9.5) is obtained by inverting the curl operator under rea-
sonable assumptions on the regularity and decay of ω that, of course, are
not satisfied by a vortex line as defined in (9.4). In the case of a vortex
line, the velocity is of order

u(x) ≈ 1
distance to the curve

,

which means that u is not in L2(R3). This means that we cannot use
any of the various definitions of solution for 3D Euler to understand a
vortex line.

No rigorous derivation of an equation for the evolution of a vortex line
is known but a well-known approximation for its evolution is given by
the equation

∂tγ = κB, (9.6)

where κ is the curvature of γ and B is the binormal. Equation (9.6) is
known as the LIA equation (Locally Induced Approximation), and was
first introduced by da Rios in 1906. We refer the reader to Ricca (1996)
for an excellent review of the work of da Rios and the derivation of the
LIA equation.

Equation (9.6) can be converted into a nonlinear Schrödinger equation
using the Hasimoto transformation. Using this formulation the existence
of self-similar singular solutions has been proved (Vega, 2003; Gutiérrez,
Rivas, & Vega, 2003; Gutiérrez & Vega, 2004). We also remark that
modifications of equation (9.6) have been studied for example by Klein
& Majda (1991a,b). The main reason for introducing these modified
equations is to obtain an equation that contains self-stretching, since
the length of any curve evolving under (9.6) remains constant in time.

Postponing the details until the next section, we compare in the pic-
ture below the velocity fields for both problems, to show that sharp
fronts for SQG retain many of the features of vortex lines, while being a
more tractable problem. In particular, the velocity field for SQG while
still singular, contains only a logarithmic singularity (see Figure 9.3).
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Vortex
Line

Sharp
Front

QG

3D−Euler

v~1
d

v~log|d|

Fig. 9.3. Velocity for a Sharp Front (v ∼ | log d|) and a Vortex Line (v ∼ 1
d
)

9.2.2 The vortex patch problem: 2D Euler and SQG

We have motivated the study of sharp fronts by considering the evolution
of vortex lines for 3D Euler. But the evolution of sharp fronts for SQG
also has an analogous problem in 2D Euler. We notice that 2D Euler, in
its vorticity formulation, provides us with a scalar equation that presents
a very similar analytical structure to SQG. The 2D Euler equation reads

Dω

Dt
= 0, (9.7)

where

(u1, u2) = (−∂ψ
∂y

,
∂ψ

∂x
), (9.8)

and

− Δψ = ω. (9.9)
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Observe that the above system is very similar to (9.1)–(9.3) except
for the relationship between the stream function and the active scalar.
In this case the analogy takes place at the level of ω and θ, not at the
level of ω and ∇⊥θ as before. In the case of SQG the fractional power
of the Laplacian makes the equation more singular than 2D Euler.

For 2D Euler, the evolution of the indicator of a set is known as the
vortex patch problem, and in this case, the evolution of the boundary
curve is well understood. In particular, the derivation of the equa-
tion presents no problems (the velocity is not singular) and the global
regularity of the vortex patches was proved by Chemin (1993) using
paradifferential calculus. A simpler proof can be found in Bertozzi &
Constantin (1993) and Majda & Bertozzi (2002).

It is natural to introduce the following family of interpolating models
between 2D Euler (9.7)–(9.9) and SQG (9.1)–(9.3), that we will refer to
as the α-models:

Dθα

Dt
= 0,

u = ∇⊥ψ, and

(−Δ)1−
α
2 ψ = θα,

where 0 < α < 1. They were first introduced in Córdoba et al. (2005) in
the context of sharp fronts and vortex patches. Notice that when α = 0
we recover 2D Euler, and when α = 1 we obtain SQG. Also, the larger
the parameter α the more complicated the problem becomes. For all this
family of equations we could consider the evolution of the indicator of
a smooth set (see Figure 9.1). We remark that the global regularity of
the evolution of the boundary of the set is only known when α = 0,
precisely when we are back in the case of 2D Euler and so considering
the evolution of a vortex patch. We will return to this family later in
these notes.

9.3 Evolution equation

In order to simplify the presentation we will consider the evolution of
sharp fronts that are periodic in one of the space variables.

We consider the front originally given by the curve y = ϕ0(x) (see
Figure 9.4), a smooth periodic function, and assume that the solution
to the system (9.1)–(9.3) is of the same form and is given by ϕ(x, t), a



214 J.L. Rodrigo

θ = 1

nn

n

y

θ = 0

Ω

Γ
ϕ

Fig. 9.4. Periodic sharp front

smooth periodic function. This means that the scalar function θ(x, y, t)
is given by {

θ(x, y, t) = 1 y ≥ ϕ(x, t)
θ(x, y, t) = 0 y < ϕ(x, t).

(9.10)

The first derivation we will consider is purely formal but it shows
interesting features of the velocity field, and how it affects the evolution
of the front.

9.3.1 First approach: redefining the velocity

We will start by eliminating the stream function ψ from the system (9.1)–
(9.3), by using the second and third equations. The operator (−Δx,y)−

1
2

in the cylinder is given by a convolution with the kernel

K(x, y) =
χ(x, y)

(x2 + y2)
1
2

+ η(x, y), (9.11)

for (x, y) in [−1
2 ,

1
2 ]×R, and defined in the rest of the plane by extending

it periodically in x. Here, χ is a smooth function with compact support
that satisfies

χ(x, y) = 1 if |x− y| ≤ r and supp χ ⊂ {|x− y| ≤ R},
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where 0 < r < R < 1
2 are positive numbers to be chosen later. Also η is

smooth with compact support1 and satisfies η(0, 0) = 0.
Observe that both χ and η can be taken to be even functions. Also,

changing the value of r and R does not affect the structure of K given
by (9.11), since the difference in the function χ created by changing r

and R can be absorbed by the correction term η.
And so, by inverting the fractional Laplacian we have (for a point

(x, y) not in the front)

ψ(x, y, t) =
∫

R×R/
Z

θ(x̃, ỹ, t)χ(x− x̃, y − ỹ)
[(x− x̃)2 + (y − ỹ)2]

1
2

+ θ(x̃, ỹ, t)η(x−x̃, y−ỹ) dx̃ dỹ

and since u = ∇⊥ψ we obtain

u(x, y, t) =
∫

R×R/
Z

∇⊥
x̃,ỹθ(x̃, ỹ, t)χ(x− x̃, y − ỹ)

[(x− x̃)2 + (y − ỹ)2]
1
2

dx̃dỹ

+
∫

R×R/
Z

∇⊥
x̃,ỹθ(x̃, ỹ, t)η(x− x̃, y − ỹ) dx̃ dỹ. (9.12)

A simple calculation yields

∇⊥θ(x, y, t) = (−1,−∂ϕ
∂x

(x, t))δ(y − ϕ(x, t)). (9.13)

Plugging this expression into (9.12), and carrying out the integration
with respect to ỹ, we obtain

u(x, y, t) = −
∫

R/
Z

(1,
∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, y − ϕ(x̃, t))
[(x− x̃)2 + (y − ϕ(x̃, t))2]

1
2

dx̃

−
∫

R/
Z

(1,
∂ϕ

∂x̃
(x̃, t))η(x− x̃, y − ϕ(x̃, t)) dx̃. (9.14)

Notice that the first integral (9.14) is divergent as we approach the front,
i.e. as y → ϕ(x, t). We look more closely at the original equation (9.1)
to redefine u as we approach the front. We use the following simple
observation: if θ solves equation (9.1) then it also solves

(∂t + [u+ h∇⊥θ] · ∇x,y)θ = 0

for any smooth periodic function h.

We want to use this observation to correct the singularity of u in
equation (9.14). Since the direction of ∇⊥θ (see (9.13)) is the same as

1In order to avoid irrelevant considerations at ∞ we will consider the correcting
function η to be compactly supported. This has the effect of modifying (−Δx,y)−1/2

by adding a smoothing operator.
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the tangent to the curve, given by (1,
∂ϕ

∂x
(x, t)), we redefine u by adding

the term h∇⊥θ given by

(1,
∂ϕ

∂x
(x, t))

∫
R/

Z

χ(x− x̃, y − ϕ(x̃, t))
[(x− x̃)2 + (y − ϕ(x̃, t))2]

1
2

dx̃

+(1,
∂ϕ

∂x
(x, t))

∫
R/

Z

η(x− x̃, y − ϕ(x̃, t)) dx̃.

We obtain

u(x, y, t) =
∫

R/
Z

(0,
∂ϕ

∂x
(x, t)−∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, y − ϕ(x̃, t))
[(x− x̃)2 + (y − ϕ(x̃, t))2]

1
2

dx̃ +

+
∫

R/
Z

(0,
∂ϕ

∂x
(x, t) − ∂ϕ

∂x̃
(x̃, t))η(x− x̃, y − ϕ(x̃, t)) dx̃.

Notice that now we can pass to the limit when (x, y) approaches the
front, i.e. as (x, y) approaches (x, ϕ(x, t)). We obtain

u(x, ϕ(x, t), t) =

=
∫

R/
Z

(0,
∂ϕ

∂x
(x, t) − ∂ϕ

∂x̃
(x̃, t))

χ(x− x̃, ϕ(x, t) − ϕ(x̃, t))
[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t))2]

1
2

dx̃

+
∫

R/
Z

(0,
∂ϕ

∂x
(x, t) − ∂ϕ

∂x̃
(x̃, t))η(x− x̃, ϕ(x, t) − ϕ(x̃, t)) dx̃.

Since u is now purely vertical, the fact that Ω = {y ≥ ϕ(x, t)} is
convected by u we obtain the evolution equation we were looking for:

∂ϕ

∂t
(x, t) =

=
∫

R/
Z

∂ϕ

∂x
(x, t) − ∂ϕ

∂x̃
(x̃, t)

[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t))2]
1
2
χ(x− x̃, ϕ(x, t) − ϕ(x̃, t)) dx̃

+
∫

R/
Z

[∂ϕ
∂x

(x, t) − ∂ϕ

∂x̃
(x̃, t)

]
η(x− x̃, ϕ(x, t) − ϕ(x̃, t)) dx̃,

with initial data ϕ(x, 0) = ϕ0(x).
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9.3.2 Rigorous derivation: using weak solutions

The above derivation is purely formal, but it clearly shows the main
features of the velocity. These notes are designed with special emphasis
on the connections with vortex dynamics. Before we present a rigorous
derivation that could be applied to 3D Euler we briefly include a deriva-
tion using weak solutions (an idea that cannot be used for vortex lines
since u /∈ L2). We start with the definition of a weak solution for SQG.

Definition 9.3.1 A bounded function θ is a weak solution of SQG if for
any function φ εC∞

0 (R/Z × R × [0, ε]) we have∫
R+×R/

Z
×R

θ(x, y, t) ∂tφ (x, y, t) + θ (x, y, t)u(x, y, t) · ∇φ (x, y, t) dy dxdt = 0.

We state the following two theorems that justify the previous formal
derivation (details can be found in Rodrigo, 2004).

Theorem 9.3.2 If θ is a weak solution of SQG of the form described in
(9.10), then the function ϕ satisfies the equation

∂ϕ

∂t
(x, t) =

+
∫

R/
Z

∂ϕ

∂x
(x, t) − ∂ϕ

∂y
(y, t)

[(x− y)2 + (ϕ(x, t) − ϕ(y, t))2]
1
2
χ(x− y, ϕ(x, t) − ϕ(y, t)) dy

+
∫

R/
Z

[∂ϕ
∂x

(x, t) − ∂ϕ

∂y
(y, t)

]
η(x− y, ϕ(x, t) − ϕ(y, t)) dy. (9.15)

Theorem 9.3.3 Given any periodic, smooth function ϕ0(x) the ini-
tial value problem determined by the equation (9.15) with initial data
ϕ(x, 0) = ϕ0(x) has a unique smooth solution for a small time, deter-
mined by the initial data ϕ. Moreover the function θ defined by (9.10) is
a weak solution of the SQG equation.

In the last section of these notes we will present an additional deriva-
tion that does not use the fact that sharp fronts are weak solutions
for SQG. The reason for looking for a new approach is that, as men-
tioned before, vortex lines are not weak solutions for 3D Euler, and we
would like to obtain a derivation that only requires techniques available
for vortex lines. The derivation will use a family of almost sharp fronts
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(the analogue of vortex tubes for 3D Euler). Before we go into this con-
struction we will briefly review the existence theory for equation (9.15).

9.4 Existence Results

Concerning the existence of solutions for equation (9.15) the following
local existence theorem was proved by Rodrigo (2005).

Theorem 9.4.1 (SQG, α = 1) Given any periodic, smooth function
ϕ0(x) the equation (9.15) for the evolution of sharp fronts has a unique
smooth solution for a small time, determined by the initial data ϕ0.

For the case 0 < α < 1, which we have not explicitly considered here,
the following result was obtained in Córdoba et al. (2005).

Theorem 9.4.2 (0 < α < 1) Given ϕ0 a smooth, periodic curve, the
equation obtained for the evolution of α-patches is locally well posed (has
a unique solution on a short time interval).

Remark 9.4.3 We have presented the results for the periodic version
(in one variable), requiring smooth initial conditions. Gancedo (2008)
has obtained local existence results for closed curves in R2 with initial
data in Sobolev spaces. This improvement is due to the presence of an
extra cancellation that does not appear in the periodic case.

We briefly review some features of the proof of Theorem 9.4.1. We refer
the reader to Rodrigo (2005) for more details. The analysis of Theorem
9.4.2 is similar (and simpler). Details can be found in Córdoba et al.
(2005).

First, we observe that equation (9.15) is a nonlinear version of

∂ϕ

∂t
=
[ ∂
∂x

log
(∣∣ ∂
∂x

∣∣)]︸ ︷︷ ︸
i k log |k|

ϕ, (9.16)

where the notation in the above expression means that the operator in
the right hand side is given by the Fourier multiplier ik log |k|.

The main tool used is a Nash–Moser implicit function theorem. As
part of the iterative argument, in the analysis of the linearization, a
series of integrating factors and canonical transformations are used to
simplify the structure of the singular terms. In particular it is necessary
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to deal with terms presenting singularities of the form log |k| and k log |k|.
After these series of transformations the linearization becomes

∂f

∂t
(x, t) =

∫
|y|< 1

2

∂f
∂x (x, t) − ∂f

∂y (y, t)

|y − x| dy + “smooth bounded terms”

In this form, it is now possible to complete a Banach fixed point
argument in various Sobolev spaces. In obtaining energy estimates we
exploit the fact that the most singular term in the linearization is skew
symmetric. We remark that this is reasonable, since the most singular
term in the right-hand side of (9.16) is skew symmetric, since it can be
easily seen that it is given by a purely imaginary multiplier, a fact that
the linearization also shares.

9.4.1 About Global Existence

The equation for the evolution of sharp fronts is believed to be ill-posed.
Numerical work (Córdoba et al., 2005) shows the existence of a self-
similar blow up for SQG, and the α systems, at least for α ≥ 1

2 .
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Fig. 9.5. Singularity for sharp fronts

We present in bullet form the main results obtained in the numerical
work, and reproduce some of pictures obtained for SQG (α = 1) when
we consider two circular patches. Figure 9.5 corresponds to the evolution
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Fig. 9.7. Self-similar blow up

of the two patches at 6 different times, Figure 9.6 to a close up near the
singularity for 10 different times, and finally Figure 9.7 to a rescaled plot
near the singularity to illustrate the asymptotically self-similar blow-up.
In summary, the numerics suggest the following conclusions:

(i) There exists a singularity in finite time, say T .
(ii) The singularity is point-like.

(iii) The singularity is self-similar (T − t)−
1
α , for the corresponding

α-model (including SQG).
(iv) The minimum distance d between the curves tends to 0 like



Contour dynamics for SQG 221

d ∼ C1(T − t)
1
α .

(v) The maximum curvature κ tends to ∞ like

κ ∼ C2

(T − t)
1
α

.

9.5 Almost Sharp Fronts

As indicated before it would be desirable to have a derivation of the
equation for a sharp front that does not use the fact that the sharp
front itself is a weak solution. This can be accomplished by considering
almost sharp fronts. These are weak solutions of the equation with large
gradient (∼ δ−1, where 2δ is the thickness of the transition layer for θ).

ΙΙΙ

Ι

ΙΙ

x

y

θ=1

ϕ       −δ(x,t)

ϕ      (x,t)

θ=0

θ bounded

ϕ       +δ(x,t)

Fig. 9.8. Almost Sharp Front

More precisely, we consider θ of the following form

θ = 0 if y ≤ ϕ(x, t) − δ

θ bounded if |ϕ(x, t) − y| ≤ δ

θ = 1 if y ≥ ϕ(x, t) + δ
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where ϕ is a smooth periodic function and 0 < δ < 1
2 . We will denote the

three regions determining the structure of θ by I, II and III respectively
(see Figure 9.8).

This type of solution can be thought of as the analogue of a vortex
tube for 3D Euler, i.e. a regularized vortex line.

9.5.1 Stability and derivation

Almost-sharp fronts can be used to obtain a derivation of equation (9.15)
using the following theorem (see Córdoba et al., 2004).

Theorem 9.5.1 If θ is an almost-sharp front and is a weak solution of
SQG, then ϕ satisfies the equation

∂ϕ

∂t
(x, t) =

=
∫

R/
Z

∂ϕ

∂x
(x, t) − ∂ϕ

∂x̃
(x̃, t)

[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t))2]
1
2
χ(x− x̃, ϕ(x, t) − ϕ(x̃, t)) dx̃

+
∫

R/
Z

[∂ϕ
∂x

(x, t) − ∂ϕ

∂x̃
(x̃, t)

]
η(x− x̃, ϕ(x, t) − ϕ(x̃, t)) dx̃

+ Error,

with |Error| ≤ C δ| log δ| where C depends only on ‖θ‖L∞ and ‖∇ϕ‖L∞ .

Remark 9.5.2 Note that an almost-sharp front specifies the function
ϕ up to an error of order δ. The above theorem provides an evolution
equation for the function ϕ up to an error of order δ| log δ|.

Proof We briefly sketch the main ideas in the proof. Recall the definition
of a weak solution∫

R+×R/
Z
×R

θ(x, y, t) ∂tφ (x, y, t) + θ (x, y, t)u(x, y, t) · ∇φ (x, y, t) dy dx dt = 0.

We need to study the above equation in the three regions of θ. Notice
that region I does not contribute since θ = 0. We will concentrate on
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region II, where θ is simply bounded. There we have∫
II×R+

θ(x, y, t)∂tφ(x, y, t) dxdy dt = O(δ)

since θ = O(1), and area(II) = O(δ).

We still have to estimate
∫

R2
u · (1IIθ∇φ) dxdy. Recall that the velocity

for SQG is given by

u = ∇⊥((−Δ)−
1
2 θ) = K ∗ θ,

where K looks locally like the orthogonal of the Riesz transform.

In order to complete the estimate all that is required are two classical
results in harmonic analysis. Namely, the fact that the Riesz transform
maps bounded functions into functions of exponential class and the fact
that the integral of a function of exponential class on a domain of area
δ is of order δ log δ. The first guarantees the fact that u is of exponential
class, and hence the whole integrand in the expression below, while the
second directly leads to

∫
R2
u · (1IIθ∇φ) dxdy = O(δ log δ).

Region III can be handled in a similar manner to obtain more error
terms of order δ log δ and the terms from the equation of a sharp front
in a similar manner to Theorem 9.3.2.

9.5.2 Construction of Almost-Sharp Fronts

In order to use Theorem 9.5.1 to find a derivation of the equation, we
need to prove the existence of almost-sharp fronts of thickness δ for some
small time independent of δ. Notice that only local existence results are
know for SQG and so the time of existence for a family of almost-sharp
fronts is not uniform with respect to δ, but rather goes to zero as δ
goes to zero. In this section we present some of the ideas involved in
the constructions of some families of solutions such that for δ ≤ δ0 the
solutions θδ exist for at least time T , independent of δ. In particular
we concentrate on the crucial problem of finding a limit equation when
δ goes to zero. This corresponds to upcoming joint work with Charles
Fefferman.
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As a first approach, we look for solutions of the form

θδ(x, y, t) = Ω(x,
y − ϕ(x, t)

δ
, t),

where Ω is smooth and satisfies⎧⎨⎩
Ω(x, ξ, t) = 1

2 ξ > 1
Ω(x, ξ, t) smooth |ξ| ≤ 1

Ω(x, ξ, t) = −1
2 ξ < −1.

(9.17)

In order to simplify the presentation, we will use the following
expression for the velocity

u(x, y, t) =
∫

(−∂ỹθ(x̃, ỹ, t), ∂x̃θ(x̃, ỹ, t))
[(x− x̃)2 + (y − ỹ)2]

1
2

dx̃dỹ,

which amounts to taking the cut-off function χ as 1 and the correction
term η as 0, as can be seen by comparing the above formula with the
true expression for u (see (9.12).

Once the equation is rewritten in terms of Ω, x, ξ we expect, since the
logarithmic singularity in the velocity for a sharp front does not affect
the shape of the front, to obtain an equation of the form

1
δ

(Sharp Front Equation for ϕ) + terms of order 1 depending on Ω, x, ξ

so that if the curve ϕ solves the sharp front equation we could take a
limit in the equation. Unfortunately that is not the case, and while we
do obtain the term of order 1

δ there are a priori harmless terms for which
we cannot take a limit. Namely, among the terms arising from u ·∇θ we
have the term∫ ∫ Ωξ̃(x̃, ξ̃, t)Ωx(x, ξ, t) − Ωx̃(x̃, ξ̃, t)Ωξ(x, ξ, t)

[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t) + δ(ξ − ξ̃))2]
1
2

dx̃dξ̃.

The problem with this term is that when δ = 0 the kernel looses the
dependence on ξ̄ making the integral singular! We have∫ ∫ Ωξ̃(x̃, ξ̃, t)Ωx(x, ξ, t) − Ωx̃(x̃, ξ̃, t)Ωξ(x, ξ, t)

[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t))2]
1
2

dx̃dξ̃ =

=
∫

Ωx(x, ξ, t) − ∫
Ωx̃(x̃, ξ̃, t)dξ̃ Ωξ(x, ξ, t)

[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t))2]
1
2

dx̃

since
∫

Ωξ̃(x̃, ξ̃, t) dξ̃ = 1 due to the form of Ω (see (9.17)).
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At this formal level, having made δ = 0 we observe that an integration
of the equation with respect to ξ makes the singular term convergent∫ ∫

Ωx(x, ξ, t) dξ − ∫
Ωx̃(x̃, ξ̃, t) dξ̃

[(x− x̃)2 + (ϕ(x, t) − ϕ(x̃, t))2]
1
2

dx̃.

Remark 9.5.3
The above formal calculation suggests that

(i)
∫

Ω(x, ξ, t) dξ =: h(x, t) satisfies a much better equation.
(ii) If the velocity can be expressed in terms of h rather than in terms

of Ω, then we can convert the initial equation into a transport-like
equation with coefficients that tend to ∞ as δ → 0.

The main reason for the presence of these unexpected singular terms
can be found in the expression for the velocity. We know that it is sin-
gular and of order log δ and we have seen in the initial derivation of the
equation that it does not influence the evolution of the curve, but there
is a nonsingular term, which will lead to a singularity in the term u ·∇θ.
We have, for δ > 0, an expression of the form

u(x, ξ, t) ≈ log δ (1, ϕ(x, t)) + δ log δ term + · · ·
or more precisely

u(x, t) = (log δ)α(x, t)(1, ϕ(x, t))

− δ log δ
{
αx(x, t)ξ + αx(x, t)h(x, t) + α(x, t)hx(x, t)

}
(0, 1) + · · · ,

where α only depends on ϕ and h(x, t) =
∫

Ω(x, ξ, t) dξ. Observe that
as remarked before, the velocity can be expressed in terms of h(x, t).

Notice that since the gradient of θ is of order δ−1, the term of order
δ log δ will generate a singularity. In more detail, we have

∇θ = Ωx(x, ξ, t)(1, 0) + (−ϕ(x, t), 1)
1
δ

Ωξ(x, ξ, t)

and so

u · ∇θ = log δ
{
αΩx − [

αx ξ + αxh+ αhx

]
Ωξ

}
+ · · ·

Notice that integrating in the vertical direction, that is with respect
to ξ, has the same regularizing effect, since a simple calculation shows
that ∫

αΩx − [
αx ξ + αxh+ αhx

]
Ωξ dξ = 0.
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The advantage of integrating the equation with respect to ξ is that it
allows us to obtain a “simple” equation for h(x, t) =

∫
Ω(x, ξ, t)dξ, that

actually has a limit as δ goes to 0.
We use its solution in the original equation for Ω,

Ωt + log δ
{
αΩx − [

αx ξ + αxh+ αhx

]
Ωξ

}
+ · · · = 0, (9.18)

which is now a transport-like equation since h is known.
While equation (9.18) does not have a limiting form when δ goes to

zero, all we need to do is integrate the following vector fields⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx
dt

= α(x, t)

dξ
dt

= −[αx ξ + αxh+ αhx],

with initial conditions x(0) = x0 and ξ(0) = ξ0.
The process of integrating the system of ODEs and rewriting the equa-

tion in terms of x0 and ξ0 corresponds to unwinding the logarithmic
divergence that appears in u · ∇θ, before considering the map

(x, y, t) �−→ (x,
y − ϕ(x, t)

δ
, t).

It is this unwinding process that makes it possible to obtain a limiting
equation for Ω, in terms of the Lagrangian coordinates x0 and ξ0.
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Abstract

Since the 1970s the use of statistical solutions of the Navier–Stokes equa-
tions has led to a number of rigorous results for turbulent flows. This
paper reviews the concept of a statistical solution, its role in the math-
ematical foundation of the theory of turbulence, some of its successes,
and the theoretical and applied challenges that still remain. The theory
is illustrated in detail for the particular case of a two-dimensional flow
driven by a uniform pressure gradient.

10.1 Introduction

It is believed that turbulent fluid motions are well modelled by the
Navier–Stokes equations. However, due to the complicated nature of
these equations, most of our understanding of turbulence relies to a great
extent on laboratory experiments and on heuristic and phenomenological
arguments. Nevertheless, a number of rigorous mathematical results have
been obtained directly from the Navier–Stokes equations, particularly in
the last two decades.

Of great interest in turbulence theory are mean quantities, which are
in general well behaved, in contrast to the corresponding instantaneous
values, which tend to vary quite dramatically in time. The treatment of
mean values, however, is a delicate problem, as remarked by Monin &
Yaglom (1975). In practice time and space averages are the most gener-
ally used, while in theory averages with respect to a large ensemble of
flows avoid some analytical difficulties and have a more universal char-
acter. In the conventional theory of turbulence, all three types of average
are taken to agree by invoking some sort of ergodic property, although
no general result in this direction exists.

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. c© Cambridge University Press 2009.
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Rigorous results for time and space averages can be obtained from
individual weak solutions of the Navier–Stokes equations, while rigorous
results for ensemble averages are obtained via the concept of statistical
solutions.

Probability theory has been used to formalize the concept of an ensem-
ble average since very early in the development of the conventional
theory. Later on, Hopf (1952) published one of the first works with
a more mathematical flavour. A rigorous mathematical foundation for
this formalization, however, came only with the introduction of statis-
tical solutions by Foias (1972, 1973). Another rigorous framework was
introduced a few years later by Vishik & Fursikov (1977, 1988). Both
frameworks involve measures on function spaces and require a number
of deep results in analysis. Just as for individual solutions of the Navier–
Stokes equations, there are various challenging problems regarding the
regularity of such statistical solutions.

Statistical solutions can be time-dependent or stationary in time. The
time-dependent case is suitable, for instance, for the study of decaying
turbulence, while the stationary case applies to turbulence in statistical
equilibrium in time.

The stationary statistical solution is a generalization of the notion
of an invariant measure for a semigroup. The major difficulty here lies
in the fact that the three-dimensional Navier–Stokes equations are not
know to generate a well-defined semigroup. An invariant measure in
this case does not make sense, and the statistical solution allows one to
address this issue. In the two-dimensional case, in which the associated
semigroup is well defined, both notions coincide.

Beyond the theoretical issues permeating the concept of statistical
solutions, a number of applications have been given yielding rigorous
bounds for characteristic physical quantities taken in the mean with
respect to such solutions. Estimates have been obtained involving the
mean energy dissipation rate, mean enstrophy dissipation rate, mean
skin-drag coefficient, mean kinetic-energy flux between different scales
of motions, and so on. A number of such rigorous results are related to
important properties of turbulent flows as derived in the conventional
theory of turbulence via heuristic or phenomenological arguments, and
yield rigorous results such as estimates for the number of degrees of
freedom, estimates related to the Kolmogorov energy dissipation law,
exponential decay of the power spectrum in the two-dimensional case,
conditions for the existence of an energy cascade in the three-dimensional
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case, conditions for the existence of inverse energy and direct enstrophy
cascades in the two-dimensional case, etc.

While the results for time averages and ensemble averages have
recently paralleled one another, our main concern in this article is on
ensemble averages. We recall the definition of a statistical solution, dis-
cuss some of the associated delicate theoretical problems, and mention,
without proof, a number of rigorous estimates obtained recently. We
also include, for the sake of illustration, a proof of two estimates per-
taining to a two-dimensional channel flow driven by a uniform pressure
gradient. More precisely, we prove the curious fact that, for this geom-
etry, the plane Poiseuille flow minimizes the mean rate of enstrophy
dissipation and maximizes the mean rate of energy dissipation. These
minimization and maximization properties are with respect to invariant
measures of the semigroup generated by the two-dimensional Navier–
Stokes equations; a Dirac measure concentrated on the velocity field for
the Poiseuille flow is one such measure. The minimization part is new
while the maximization is an adaptation of a corresponding recent result
for the three-dimensional channel problem treated by Ramos, Rosa, &
Temam (2008). Although this example is for a two-dimensional prob-
lem, it has many similarities with the corresponding estimates for the
three-dimensional problem and so serves as a useful illustration.

10.2 The incompressible Navier–Stokes equations

We consider the incompressible Navier–Stokes equations (NSE) and
write them in the form

∂u
∂t

− νΔu + (u · ∇)u + ∇p = f , ∇ · u = 0, (10.1)

where u = u(x, t) = (u1, u2, u3) denotes the three-component velocity
field, x = (x1, x2, x3) is the space variable; t is the time variable; ν
is the kinematic viscosity; p = p(x, t) is the kinematic pressure; and
f = f(x, t) = (f1, f2, f3) is the density of volume forces.

For the classical mathematical theory of the NSE the reader is referred
to Ladyzhenskaya (1963), Temam (1984), and Constantin & Foias
(1988), which are based on the earlier works of Leray (1933, 1934a,b)
and Hopf (1951).

The spatial domain is denoted by Ω ⊂ R3. The boundary condi-
tions are assumed to be homogeneous and may be no-slip, periodic,
or combinations of these, as in the case of a periodic channel flow. In
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the fully-periodic case, the velocity field and the forcing term can be
assumed, without loss of generality, to have zero space average over the
periodic domain, while in cases involving no-slip boundary conditions,
the domain is assumed to be either bounded or to have finite width in
one direction. In all these cases, the Stokes operator (the linear part of
the time-independent problem), which will be denoted by A, is strictly
positive.

The NSE can be written in the form
du
dt

= F(u),

in a suitable space H of square-integrable divergence-free vector fields
with the appropriate boundary conditions, and with an appropriate
function F : V → V ′, with V ⊆ H ⊆ V ′. Here, V is the space of
divergence-free vector fields that are square integrable along with their
first order partial derivatives, equipped with the appropriate boundary
conditions, and V ′ is its dual. See, for instance, Section 6 for a precise
definition of these spaces in the case of a two-dimensional channel. The
pressure can, in principle, be determined from the vector field u.

The L2-like norm and inner product in H are denoted by | · | and (·, ·),
while the H1

0 -like norm and inner product in V are denoted by ‖ · ‖ and
((·, ·)). For the sake of simplicity, the duality product between V and V ′

is also denoted by (·, ·). These inner products can be written explicitly
as

(u,v) =
∫

Ω

3∑
i=1

uivi dx and ((u,v)) =
∫

Ω

3∑
i,j=1

∂ui

∂xj

∂vi

∂xj
dx.

The inner products and duality are such that (Au,v) = ((u,v)) for all
u,v ∈ V . Under the assumptions made on the domain Ω, there is a
largest positive number λ1 > 0 such that (Au,u) = ‖u‖2 ≥ λ1|u|2, for
all u ∈ V .

The nonlinear term gives rise to a bilinear form B : V × V → V ′,
which can be defined by duality through

(B(u,v),w) = b(u,v,w),

where the trilinear term b : V × V × V → R is defined by

b(u,v,w) =
∫

Ω

((u · ∇)v) · w dx. (10.2)

In the three-dimensional case and with typical boundary conditions
(periodic, no-slip, etc.) it is well-known that given an initial velocity field
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u0 in H, there exists a weak solution (in a suitable sense) u = u(t) that
is defined for all t ≥ 0 and satisfies u(0) = u0. In fact, there exists a
weak solution satisfying, in addition, a certain energy-type inequality,
and this solution is called a Leray–Hopf weak solution. But the regu-
larity obtained for this solution is still not sufficient to guarantee its
uniqueness. If the initial condition is more regular, however, there exists
a time interval, 0 ≤ t < δ, with δ depending on the size of the ini-
tial condition in an appropriate sense, in which the solution is regular
and unique. Therefore, we have local unique regular solutions and global
Leray–Hopf weak solutions.

In the two-dimensional case, the system is more amenable to anal-
ysis, and the existence and uniqueness of global regular solutions are
known for arbitrary initial conditions in H; the system is well-posed and
generates a continuous nonlinear semigroup {S(t)}t≥0 in H.

10.3 Mean quantities and statistical solutions

As mentioned in the introduction, there is much interest in mean quanti-
ties, whether space averaged, time averaged, or with respect to ensemble
averages. One is typically interested in relating different quantities in
the hope of finding universal properties of turbulent flows (Kolmogorov,
1941; Batchelor, 1953; Monin & Yaglom, 1975; Hinze, 1975; Tennekes &
Lumley, 1972; Lesieur, 1997; Frisch, 1995; Foias et al., 2001a; Rosa, 2002,
2006).

Types of averages

Time averages can be easily defined for a given individual solution
u(t) of the NSE through the relation

1
T

∫ t+T

t

ϕ(u(s)) ds,

where T > 0 and ϕ : H → R is associated with some physical quantity
one wants to consider (energy, rate of energy dissipation, etc.). Space
averages can be defined in a similar way, although one must be careful
with the boundary conditions.

In situations where a statistical equilibrium is of interest (the instan-
taneous quantities still vary widely in time but average quantities seem
stationary), an “infinite-time” average is often more meaningful and in
this case the limit as T → ∞ is taken in the definition of the average.
One may assume that the limit exists, although there is no general result
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about this, or one may consider superior or inferior limits, or generalized
limits.

In the case of ensemble averages, one may think of a number of exper-
iments yielding velocity fields u(n)(t), t ≥ 0, n = 1, . . . , N , and take the
average over this ensemble of experiments:

1
N

N∑
n=1

ϕ(u(n)(t)).

In a more general and rigorous way, one considers a family of probability
measures {μt}t≥0 defined on H, representing the probability distribution
of the velocity field, and takes the average∫

H

ϕ(v) dμt(v).

Note that in this expression the quantity v is simply a dummy variable
in the integration. The important quantity is the family of measures.

Time-dependent statistical solutions

In relation with the ensemble averages, for a family {μt}t≥0 of mea-
sures to be meaningful for the flow, it must satisfy an equation analogous
to the Liouville equation in Statistical Mechanics, namely

d
dt

∫
H

Φ(v) dμt(v) =
∫

H

(F(v),Φ′(v)) dμt(v), (10.3)

for all “test” functions Φ. Note that since F : V → V ′, the measures
μt are expected to be carried by V , while the derivative Φ′(v) of the
test function is assumed to belong to V . More general test functions
ϕ : H → R can be evaluated in the mean, but for the Liouville equation,
a more restricted set of test functions Φ is considered, which explains
the difference in notation.

The reason behind the form of the equation (10.3) can be seen from
the following derivation, for a family of measures

μt =
1
N

N∑
i=1

δu(n)(t)
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obtained as a convex combination of Dirac measures concentrated on N
weak solutions u(n)(t) with equal probability 1/N :

d
dt

∫
H

Φ(v) dμt(v) =
d
dt

1
N

N∑
n=1

Φ(u(n)(t)) =
1
N

N∑
n=1

d
dt

Φ(u(n)(t))

=
1
N

N∑
n=1

Φ′(u(n)(t)) ◦ d
dt

u(n)(t) =
1
N

N∑
n=1

Φ′(u(n)(t)) ◦ F(u(n)(t))

=
1
N

N∑
n=1

(F(u(n)(t)),Φ′(u(n))) =
∫

H

(F(v),Φ′(v)) dμt(v).

Other conditions are necessary for the problem to make sense. For
instance, concerning generalized moments, one asks that

t �→
∫

H

ϕ(v) dμt(v) is measurable on [0,∞), (10.4)

for every bounded and continuous real-valued function ϕ on H.
From the physical point of view, it is also natural to assume that the

mean kinetic energy per unit mass and the mean rate of enstrophy dissi-
pation per unit time per unit mass are finite, at least almost everywhere.
In fact, it is assumed that

t �→
∫

H

|v|2 dμt(v) ∈ L∞
loc(0,∞), t �→

∫
H

‖v‖2 dμt(v) ∈ L2
loc(0,∞),

(10.5)
as obtained for individual weak solutions.

Finally, a mean energy inequality for the statistical solutions is
also assumed, analogous to the energy inequality for Leray–Hopf weak
solutions:

1
2

∫
H

|v|2 dμt(v) + ν

∫ t

t′

∫
H

‖v‖2 dμs(v) ds

≤ 1
2

∫
H

|v|2 dμt′(v) +
∫ t

t′

∫
H

(f ,v) dμs(v) ds,

for almost all t′ ≥ 0, and all t ≥ t′, with t′ = 0 included.
A stricter definition requires the validity of the following strengthened

form of energy inequality:

1
2

∫
H

ψ
(|v|2) dμt(v) + ν

∫ t

t′

∫
H

ψ′ (|v|2) ‖v‖2 dμs(v) ds

≤ 1
2

∫
H

ψ
(|v|2) dμt′(v) +

∫ t

t′

∫
H

ψ′ (|v|2) (f ,v) dμs(v) ds, (10.6)
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for almost all t′ ≥ 0, and all t ≥ t′, with t′ = 0 included, and for
arbitrary non-negative, non-decreasing, continuously-differentiable real-
valued function ψ with bounded derivative.

For us here, a family {μt}t≥0 of Borel probability measures on H

satisfying (10.4), (10.5), (10.3) (for suitable “test functions”), and the
strengthened energy inequality (10.6), is then called a statistical solution
on the time-interval [0,∞).

This fundamental definition of statistical solution, which makes rigor-
ous the concept of ensemble average which is ubiquitous in turbulence
theory, was introduced by Foias (1972, 1973) (see also Hopf, 1952;
Vishik & Fursikov, 1977, 1988; Foias et al., 2001a) and has been
extensively exploited in recent years.

As with the theory for individual solutions, there are results on the
global existence of statistical solutions. The typical assumption on the
initial measure μ0 is that it has finite mean kinetic energy:∫

H

|v|2 dμ0(v) <∞.

Stationary statistical solutions

In the case of turbulence in statistical equilibrium in time, the mean
quantities are time independent and a single measure μ represents the
statistics of the flow. This measure satisfies the stationary Liouville-type
equation, ∫

H

(F(v),Φ′(v)) dμ(v) = 0, (10.7)

and is called a stationary statistical solution of the NSE.
These stationary statistical solutions, first defined by Foias (1973),

are generalizations of invariant measures, which do not make sense in
the three-dimensional case due to the lack of a global well-posedness
result. Foias’s concept of a statistical solution was inspired by the two
unpublished pioneering works of Prodi (1960, 1961), who insisted on the
idea of working with measures that should be invariant in some suitable
sense.

In the two-dimensional case, on the other hand, global well-posedness
has been established and ensemble averages can be interpreted as aver-
ages with respect to invariant measures. We recall here that an invariant
Borel probability measure for the semigroup {S(t)}t≥0 generated by the
2D Navier–Stokes equations is a Borel probability measure μ on H such
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that

μ(S(t)−1E) = μ(E),

for all Borel sets E in H. An analogous definition of a stationary sta-
tistical solution can be given in 2D and it turns out to be equivalent to
the definition of an invariant measure (Foias, 1973; Foias et al., 2001a).

Time-average stationary statistical solutions

A particular class of stationary statistical solution is obtained via a
generalized limit of time averages of weak solutions, as in the Krylov–
Bogoliubov procedure (Krylov & Bogoliubov, 1937). More precisely,
given a global weak solution u = u(t) defined for all t ≥ 0 and given a
function ϕ : H → R which is weakly continuous on H, the generalized
Banach limit

ϕ �→ Lim
T→∞

1
T

∫ T

0

ϕ(u(t)) dt

exists and defines a linear functional with respect to ϕ. It can be proved
(Bercovici et al., 1995; Foias et al., 2001a) that there exists a measure
μu associated with this weak solution for which

Lim
T→∞

1
T

∫ T

0

ϕ(u(t)) dt =
∫

H

ϕ(v) dμu(v)

for all such ϕ, and that this measure is a stationary statistical solution.

Mean quantities

A common notation for the ensemble average is 〈·〉. We use this
notation here in the case of stationary statistical turbulence, writing

〈ϕ〉 =
∫

H

ϕ(u) dμ(u),

for a given functional ϕ : H → R and a given stationary statistical
solution μ on H. The quantity 〈ϕ〉 is called a generalized moment.

Taking κ0 to denote a macro-scale wavenumber (e.g. κ0 = λ
1/2
1 ), two

important examples of ensemble-averaged mean quantities in the three-
dimensional case are the mean kinetic energy per unit mass e and the
mean energy dissipation rate per unit time per unit mass ε, defined
respectively as

e =
κ3

0

2
〈|u|2〉 , ε = κ3

0ν
〈‖u‖2

〉
, (10.8)
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which are obtained with the choices

ϕ(u) =
κ3

0

2
|u|2, ϕ(u) = κ3

0ν‖u‖2,

respectively.
Several other mean quantities can be considered, such as mean velocity

field, Reynolds number, Taylor wavenumber, structure functions, skin-
friction coefficient in the case of a channel, and so on (see Section 5).

In the two-dimensional case, two important physical quantities are the
mean enstrophy per unit mass and the mean enstrophy dissipation rate
per unit time and unit mass, given respectively by

E =
κ2

0

2
〈‖u‖2

〉
, η = νκ2

0

〈|Au|2〉 . (10.9)

10.4 Mathematical aspects of the theory of
statistical solutions

As introduced above a statistical solution is a family {μt}t≥0 of prob-
ability measures μt on the phase space H satisfying the Liouville-type
equation (10.3) along with appropriate regularity conditions.

A delicate issue when working with such a statistical solution is the
measurability of certain dynamic sets with respect to the measures
μt. The lack of a well-posedness result for the 3D NSE makes this a
nontrivial and intriguing issue.

There are also a number of interesting regularity problems for the
statistical solutions. One type of regularity problem is related to the
localization of the carriers of the measures. Let us just recall that a car-
rier for a measure is any set of full measure, i.e. for which the measure of
the complement of the carrier is null. From the definition of the statis-
tical solutions (the assumption that enstrophy is finite almost always),
it follows immediately that μt is carried by the set V for almost every
t ≥ 0. This is important, in particular, for the definition of the mean
rate of energy dissipation. More regular statistical solutions exists for
which μt is carried by the domain of the Stokes operator D(A).

A related “asymptotic regularity” problem is whether a stationary
statistical solution is carried by a set in H for which all weak solutions
are in fact global strong solutions. This is a major and challenging open
problem akin to the global well-posedness problem for the 3D NSE. The
Prodi conjecture is that this asymptotic regularity holds true.

Another problem relates to a different notion of statistical solution
due to Vishik & Fursikov (1988). They considered a measure ρ defined
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on the space of trajectories Z = L2(0, T ;H)∩ C([0, T ], V −s), for a given
s ≥ 2, where V −s is the dual of the space V s = D(As/2) defined in terms
of the domain of powers of the Stokes operator. The assumption that
makes this measure relevant to the NSE is that this measure be carried
by the space of weak solutions (not necessarily of Leray–Hopf type, in
their framework, although a certain form of mean energy estimate is
assumed).

A slightly different definition in the spirit of Vishik & Fursikov is to
consider a Borel probability measure on the space C([0, T ],Hw) that is
carried by the set of Leray–Hopf weak solutions, where Hw denotes the
space H endowed with its weak topology. Under natural integrability
and continuity assumptions, the family of projections in H, at each time
t, of this measure, gives rise to a statistical solution in the sense given
earlier and that we term a Vishik–Fursikov statistical solution. With
this definition, any Vishik–Fursikov statistical solution is a statistical
solution as defined earlier.

The statistical solutions obtained as projections of measures in some
suitable trajectory space have a few additional properties which make
them much more amenable to analysis. Another important open problem
is then the converse statement, characterizing under which conditions a
statistical solution is a Vishik–Fursikov statistical solution.

Similar regularity problems appear in the two-dimensional case. Note,
for instance, that an important quantity is the mean rate of enstrophy
dissipation per unit time per unit mass, associated with the choice of the
generalized moment ϕ(u) = νκ2

0|Au|2. It is important to know whether
this choice is allowed in the expression for 〈ϕ〉. It can be proved that
if f belongs to H then any invariant measure μ for the 2D NSE is
carried by D(A) and

〈|Au|2〉 is finite (Bercovici et al., 1995; Foias et al.,
2001a). If the forcing is more regular, so is the invariant measure. For
example, if f is in some Gevrey space, any invariant measure is carried
by an associated Gevrey space. This has important consequences for the
exponential decay of the energy spectrum, for instance.

10.5 Applications to turbulent flows

A number of rigorous results related to the conventional theory of turbu-
lence have been obtained in different contexts. We briefly mention some
of them in what follows.
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The Reynolds equations

One of the pioneering works in turbulence to address statistical prop-
erties of turbulent flows is due to Reynolds (1895), who proposed
decomposing the flow into a regular mean part and an irregular fluc-
tuating part. The mean flow was found to satisfy what are now called
the Reynolds equations.

In the framework of statistical solutions, for a family {μt}t≥0, a mean
velocity field U(t) can be defined by duality,

(U(t),v) =
∫

H

(u,v) dμt,

and it follows that U ∈ L∞
loc(0,∞;H)∩L2

loc(0,∞;V ). Thus the Reynolds
equations can be written rigorously as a functional equation in the space
L

4/3
loc (R, V ′):

Ut + νAU +B(U,U) = f + 〈B(u − U,u − U)〉 ,
where the second term in the right-hand side is due to the fluctuations
from the mean and is related to the Reynolds stress tensor. The mean
pressure term P , the Reynolds stress tensor 〈u′ ⊗ u′〉, where u′ = u−U ,
and the usual form of the Reynolds equations,

Ut + νΔU + (U · ∇)U + ∇P = f + ∇ · 〈u′ ⊗ u′〉 ,
can be recovered just as in the classical mathematical theory of the
Navier–Stokes equations. The Reynolds stress tensor

〈u′ ⊗ u′〉 =
(∫

H

u′iu
′
j dμ(u)

)
i,j=1,2,3

belongs to L4/3
loc (R, L2(Ω)3×3), for instance.

For more details, the reader is referred to Foias (1974). See also Foias
et al. (2001a) and Vishik & Fursikov (1988).

The closure problem

The mean flow is one part of the puzzle. Notice that the Reynolds
equations are not closed since they involve a term that depends
on the fluctuations. One way to look at this problem is to notice that
the mean velocity field is a first-order moment, and the extra term
in the Reynolds equations involves second-order moments. Equations
for the second-order moments can be derived but they depend on third-
order moments. This process can be continued indefinitely, leading to
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an infinite system of equations, with the equations for the nth order
moment depending on the moments of order n + 1. This is called the
Friedmann-Keller system of equations.

Keller & Friedman (1925) stated that the statistical moments are the
fundamental characteristic of turbulent flows. Here, it must be recalled
that a result in Probability Theory, the so-called moment problem, guar-
antees that the distribution function of a probability measure is uniquely
determined by the corresponding infinite set of moments, provided that
a summability criterion holds. Attempts to truncate the sequence to a
finite system lead to the so-called closure models. The moment problem
has been addressed by Vishik & Fursikov in a number of papers (e.g.
Vishik & Fursikov, 1988, and Fursikov, 1999).

The Hopf equation

Hopf (1952) studied the evolution of the probability measure of a
flow and arrived at an equation with infinitely many variables for the
corresponding characteristic functions. This equation is now known as
the Hopf equation.

Two decades later, Foias (1974) recast this problem in a rigorous form
as a functional equation for the characteristic functions χ(t,g) associated
with a statistical solution {μt}t and a test function g ∈ H, with

χ(t,g) =
∫

H

ei(u,g) dμt(u).

The Hopf equation has also been addressed by Vishik & Fursikov (1988)
within their rigorous framework.

The energy cascade

The cascade of energy is a fundamental prediction of the conventional
theory of turbulence associated with the famous κ−5/3 Kolmogorov spec-
trum. It is based on the phenomenological eddy cascade mechanism
devised by Richardson (1922). It says that, for a homogeneous turbulent
flow, driven by large scale forces, there exists a certain range of scales,
termed the inertial range, within which the transfer of energy from larger
to smaller scales is constant and equal to the mean rate of energy dissi-
pation. The main idea is that energy is injected into the system at the
largest scales and dissipated through viscosity only at the very smallest
scales, leaving a range of scales in between in which the energy is simply
transferred to smaller and smaller scales.

This idealized process is usually modelled by a periodic flow and the
energy in different scales can be interpreted by the Fourier components
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in different Fourier wavenumber modes. One expands the velocity field
in Fourier modes and writes the energy-budget equation for different
wavenumbers. We denote the wavenumbers by κ. The smallest wavenum-
ber κ0 is the square-root of the first eigenvalue of the Stokes operator
and is positive. The energy inequality for a given weak solution in the
range of modes larger than a certain κ can then be written as

κ3
0

2
d
dt

|uκ,∞|2 + νκ3
0‖uκ,∞‖2 ≤ κ3

0(f ,uκ,∞) + κ3
0eκ(u),

where uκ,∞ represents the part of the velocity field with modes higher
than κ. The term κ3

0eκ(u) = −κ3
0b(u,u,uκ,∞) is interpreted as the

energy flux per unit time per unit mass to modes with wavenumber
higher than κ (recall that b is defined in (10.2)). The inequality comes
from a possible lack of regularity for the weak solution.

In statistical equilibrium in time, the corresponding mean energy
inequality takes the form

νκ3
0

〈‖uκ,∞‖2
〉 ≤ κ3

0 〈(f ,uκ,∞)〉 + κ3
0 〈eκ(u)〉 .

The assumption that the energy injection is concentrated on the large
scales is typically modelled by assuming that the forcing term f is only
active in lower modes, i.e. fκ,∞ = 0 for sufficiently large wavenumber
κ, say for κ ≥ κ̄f . Then, it can be show that for κ ≥ κ̄f , κ3

0 〈eκ(u)〉 is
non-negative and decreasing, and the limit

〈e(u)〉∞ = lim
κ→∞ 〈eκ(u)〉

exists. Defining the restricted energy flux through wavenumber κ by

〈e∗κ(u)〉 = 〈eκ(u)〉 − 〈e(u)〉∞ ,

one recovers an energy-budget equation:

νκ3
0

〈‖uκ,∞‖2
〉

= κ3
0 〈(f ,uκ,∞)〉 + κ3

0 〈e∗κ(u)〉 .
Then, the following estimate can be rigorously proved:

1 −
(
κ

κτ

)2

≤
〈
κ3

0e
∗
κ(u)

〉
ε

≤ 1,

for κ ≥ κ̄f , where

κτ =

(〈‖u‖2
〉

〈|u|2〉

)1/2
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is a wavenumber associated with the Taylor wavenumber from the con-
ventional theory. Therefore, if κτ � κ̄f , as expected for turbulent flows,
we find the energy cascade

κ3
0 〈e∗κ(u)〉 ≈ ε,

for a range of wavenumbers κ with κ̄f < κ � κτ . Therefore, proving
the energy cascade mechanism has been reduced to proving that the
Taylor-like wavenumber κτ is much larger than the largest wavenum-
ber κ̄f active in the forcing term. More details can be found in Foias
et al. (2001a,b), Foias et al. (2001c), and Rosa (2002). The corresponding
result for finite-time averages can be found in Foias et al. (2005b).

A similar result has been given by Foias et al. (2002) for the exis-
tence of an enstrophy cascade in the two-dimensional case. See also
Foias, Jolly, & Manley (2005a) for the corresponding results for finite-
time averages, and Rosa (2002) for discussions about the inverse energy
cascade.

The energy dissipation law

The energy dissipation law in the conventional theory of turbulence
says that for a homogeneous turbulent flow the mean rate of energy
dissipation per unit time per unit mass ε is related to a characteristic
macro-scale length � and a characteristic mean macro-scale velocity U by

ε ∼ U3

�
.

In the case of shear-driven flow (with the flow confined between two
parallel plates separated by a distance �, with one plate fixed and the
other sliding with a longitudinal velocity U), Doering & Constantin
(1992) proved the estimate

ε ≤ 1
8
√

2
U3

�
,

for Re = U�/ν ≥ 8
√

2.
A number of similar rigorous results of the form

ε ≤ c
U3

�
,

for a suitable constant c, have also been proved in a number of other
geometries and with various forcing terms or inhomogeneous bound-
ary conditions; see e.g. Constantin & Doering (1994), Foias (1997),
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Wang (1997), Nicodemus, Grossman, & Holthaus (1997, 1998), Ker-
swell (1998), Wang (2000), Foias et al. (2001a), Foias et al. (2001c),
Childress, Kerswell, & Gilbert (2001), Doering & Foias (2002), Doering,
Eckhardt, & Schumacher (2003), and Foias et al. (2005b). Related esti-
mates for the rate of energy dissipation can also be found in Howard
(1972), Busse (1978), Foias, Manley, & Temam (1993), and Constantin &
Doering (1995).

Other estimates and characteristic quantities

A number of parameters are important in turbulence theory. Besides
the Taylor wavenumber κτ given above, another fundamental micro-scale
characteristic number is the Kolmogorov wavenumber κε = (ε/ν3)1/4.
The conventional theory exploits the Kolmogorov dissipation law to
establish a few relations between these quantities and the Reynolds
number, namely κε ∼ κ0Re3/4, κτ ∼ κ

1/3
0 κ

2/3
ε , and κτ ∼ κ0Re1/2. Like-

wise, in the periodic or no-slip cases with a steady forcing, the following
rigorous results hold for large Reynolds number flows: κε ≤ cκ0Re3/4,
κτ ≤ cκ

1/3
0 κ

2/3
ε , and κτ ≤ cκ0Re1/2, for a suitable universal constant c

(see Foias et al., 2001c).
Further estimates involve the non-dimensional Grashof number G∗ =

|A−1/2f |/ν2κ
1/2
0 , such as Re ≤ G∗, κε ≤ κ0G

∗1/2, and so on. This also
includes estimates for the number of degrees of freedom (κε/κ0)3 of the
flow, as derived in the conventional theory of turbulence, which is slightly
different from the rigorous estimate obtained for the fractal dimensional
of invariant sets in 3D NSE, which involves a Kolmogorov wave number
based on a supremum of a certain quantity based on weak solutions
(instead of an average for a stationary statistical solution).

For similar estimates in the two-dimensional case, including an
improved estimate for the number of degrees of freedom (κη/κ0)2, where
κη = (η/ν3)1/6 is the Kraichnan dissipation wave-number, see Foias et al.
(2002); Foias et al. (2003).

Homogeneous turbulence

The right framework for treating homogeneous turbulence requires the
definition of a homogeneous statistical solution and is a highly non-trivial
problem. The case of decaying homogeneous turbulence has been con-
sidered by Vishik & Fursikov (1978), Foias & Temam (1980), and more
recently by Basson (2006) (see also Dostoglu, Fursikov, & Kahl, 2006).
In this framework, a certain self-similar homogeneous statistical solution
can also be defined that displays the famous Kolmogorov κ−5/3 law for
the energy spectrum (Foias & Temam, 1983; Foias, Manley, & Temam,
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1983). But several basic open problems still persist in this respect, such
as the very existence of these self-similar solutions and their relevance
to the dynamics of arbitrary homogeneous statistical solutions. Some
results for the two-dimensional case can be found in Chae & Foias (1994).

A rigorous framework to treat forced, stationary, locally homogeneous
turbulence would also be of crucial importance. In this situation, forcing
in the large scales is inhomogeneous but somehow the behaviour at the
smaller scales should approach a homogeneous behaviour.

Characterization of “turbulent” statistical solutions

This is one of the most important open problems in the statistical
theory of turbulence. Most of the estimates obtained so far are for arbi-
trary stationary statistical solutions and hold in particular for a Dirac
delta measure concentrated on an individual stationary solution of the
Navier–Stokes equations. Therefore, the estimates and properties of sta-
tistical solutions are not necessarily sharp estimates for turbulent flows
since they also include laminar flows.

For instance, while for turbulent flows it is expected that the Kol-
mogorov dissipation law ε ∼ U3/� holds, it has only been proved
rigorously that ε ≤ cU3/�. This means that for some stationary statis-
tical solutions the corresponding value of ε may be close to cU3/�, and
these are expected to be associated with turbulent flows, while for other
stationary statistical solutions, associated possibly with non-turbulent
flows, the equality may be far from being achieved. See for instance the
estimates for the skin-friction coefficient in the case of a channel flow
driven by a uniform pressure gradient mentioned later in this section, in
which this discrepancy is more explicit.

It is therefore of crucial importance to characterize turbulent statisti-
cal solutions and obtain sharper results for them.

This is also true for regularity purposes. The idea that mean flows are
usually better-behaved than the fluctuations is expected to be reflected
by further smoothness of the mean flow. This, however, is not expected
to hold in general since a time-dependent statistical solution can be
concentrated on an individual weak solution.

Estimates for a channel flow driven by a uniform pressure gradient

In the particular case of a channel flow driven by a uniform pressure
gradient, Constantin & Doering (1995) have obtained a lower bound for
the mean energy dissipation rate which leads to an important estimate
for the skin-friction coefficient. More recently, the same problem was
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considered by Ramos et al. (2008) and a sharp upper bound for the
mean rate of energy dissipation was obtained, corresponding to a sharp
lower bound for the skin-friction coefficient. The lower bound for the
mean rate of energy dissipation and the corresponding upper bound for
the skin-friction coefficient were also slightly improved. All the estimates
in Ramos et al. (2008) were obtained for mean quantities averaged with
respect to arbitrary stationary statistical solutions.

For the skin-friction coefficient, for example, which is defined by

Cf =
Ph

L1U2
, (10.10)

where h is the height of the channel, U is the mean longitudinal velocity,
and P/L1 is the imposed pressure gradient, the following estimates, for
high-Reynolds-number flows (associated with large pressure gradients),
hold:

12
Re

≤ Cf ≤ 0.484 +O

(
1

Re

)
, (10.11)

where Re = hU/ν is the corresponding Reynolds number.
The lower-bound for Cf coincides with the corresponding value of Cf

for Poiseuille flow, making this estimate optimal since the estimate is for
an arbitrary stationary statistical solution, and a Dirac delta measure
concentrated on the Poiseuille flow (which is unstable for high-Reynolds-
number flows, but nevertheless exists in a mathematical sense) is an
example of a stationary statistical solution. The upper bound, however,
might not be optimal since heuristic arguments and flow experiments
suggest that Cf ∼ (ln Re)−2 for high-Reynolds-number turbulent flows.

The lower-bound for Cf in (10.11) follows more precisely from the
following upper bound for the mean rate of energy dissipation per unit
time per unit mass:

ε ≤ εPoiseuille, (10.12)

where

εPoiseuille =
h2

12ν

(
P

L1

)2

(10.13)

is the corresponding rate of energy dissipation for the plane Poiseuille
flow. (The definition of ε is given in (10.8).)

The estimate related to the Kolmogorov dissipation law in this
geometry reads

ε ≤
(

0.054 +O

(
1

Re2

))
U3

h
. (10.14)
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The upper bound in (10.14) is not related to the upper bound
in (10.12). In fact, computing U3/h for the Poiseuille flow yields
(h5/27ν3)(P/L1)3, which is much larger than εPoiseuille for large pressure
gradients.

Two-dimensional forced turbulence

In the two-dimensional case, the Kraichnan–Leith–Batchelor theory
(Kraichnan, 1967; Leith, 1968; Batchelor, 1969) predicts a direct enstro-
phy cascade to lower scales and an inverse energy cascade to larger scales,
with different power laws for the energy spectrum in each range of scales.

We already mentioned above the result due to Foias et al. (2002) that
gives a sufficient condition for the existence of an enstrophy cascade in
the two-dimensional case. But this condition is in terms of a parameter
that depends on the flow (the Taylor-like wavenumber κτ ) and is not
fully characterized a priori from the data of the problem, such as the
forcing term.

An important model problem is the Kolmogorov flow, in which the
forcing term has only one active mode (associated with an eigenvalue
of the Stokes operator). A number of numerical experiments have been
performed for this problem in search of the direct and inverse cascades in
the two-dimensional case. Many experiments resort to stochastic forcing
or a nonlinear feedback-type forcing in the Kolmogorov flow in order to
achieve the cascades.

However, no successful experiment has been devised with a steady
forcing in a single mode. In fact, it was eventually proved by Constantin,
Foias, & Manley (1994) that a single-mode steady forcing is not able to
sustain the direct enstrophy cascade (see also Foias et al., 2002, for a
slightly different argument). Both works also give necessary conditions
for the existence of the direct enstrophy cascade in the case of a two-
mode steady forcing. But no proof has been given for the existence of
such a forcing term. The existence of a two-mode steady forcing able
to sustain the cascades is still an open problem, and it would also be
important to characterize such forcings if they exist.

Exponential decay of the power spectrum

A fundamental quantity in the theory of turbulence is the observed
power spectrum of the flow. In general, a spectrum is associated with a
decomposition of a given quantity with respect to different scales. The
energy spectrum in turbulence is usually associated with a decomposition
of the kinetic energy with respect to different length scales of the flow,
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while the power spectrum is usually associated with the decomposition
of the same quantity with respect to different time scales. In practice
and in the conventional theory, the Taylor hypothesis is usually invoked
to relate length-wise and time-wise quantities, in particular the energy
and power spectra.

It has been observed that both power and energy spectra decay very
fast (with respect to increasing frequency and increasing wave-number,
respectively), but how fast is still a matter of debate. One of the first
rigorous results using statistical solutions in connection with the conven-
tional theory of turbulence addresses this problem and is due to Bercovici
et al. (1995). In this work, the power spectrum is defined in a rigor-
ous way and it is proved that, in the two-dimensional case, the power
spectrum decays at least exponentially fast with respect to increasing fre-
quency. The proof is based on the Wiener–Khintchine theory connecting
the spectrum with a correlation function through a Fourier transform,
and the crucial point guaranteeing the exponential decay is the ana-
lyticity in time of the solutions of the two-dimensional Navier–Stokes
equations.

The corresponding result for the energy spectrum (exponential decay
with respect to wave-number) follows from the analyticity in space, and
in this case it follows from assuming that the forcing term is in some
Gevrey space; see Foias & Temam (1989) and Foias, Manley, & Sirovich
(1989) (see also Doering & Titi, 1995, for a discussion of the three-
dimensional case).

It is interesting to notice that these two rigorous mathematical results
ignore the Taylor hypothesis and, in fact, need different assumptions:
the result for the decay of the power spectrum only assumes that the
forcing term belongs to H, while the result for the decay of the energy
spectrum depends on the forcing term being analytic in space in some
suitable sense.

Inviscid limit

The inviscid limit of the Navier–Stokes equations to the Euler equa-
tions (ν = 0 in (10.1)) has been studied in a number of contexts and from
different perspectives. Particularly relevant to the conventional theory
of turbulence is the limit of the mean energy dissipation rate as the vis-
cosity goes to zero. It is one of the main hypotheses of the Kolmogorov
theory of turbulence that this limit is strictly positive, despite the fact
that there is no dissipation in the Euler equations. This phenomenon is
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called anomalous dissipation, and its existence (or non-existence) is a
major open problem.

The corresponding anomalous dissipation in two-dimensional turbu-
lence was postulated by Kraichnan (1967) and concerns the mean rate
of enstrophy dissipation η instead (see (10.9)). However, in this two-
dimensional case this has been a controversial issue, and is still an open
problem although some partial results have been presented. Most of
the results, however, are for finite-time averages, which are not quite
the right object to look at in this case since the transient time increases
with decreasing viscosity and the long-time behaviour and the associated
stationary statistics are not captured. This is one example in which the
use of infinite-time averages or, more generally, of stationary statistical
solutions is of crucial importance.

One result on the inviscid limit that addresses this long-time, statis-
tical behaviour is due to Constantin & Ramos (2007) (see also Chae,
1991a,b, and Constantin & Wu, 1997) in the context of a damped and
driven two-dimensional Navier–Stokes equations on the whole plane.
This equation has an extra non-diffusive linear damping term and is
known as the Charney–Stommel model of the Gulf Stream. The absence
of anomalous dissipation for the Charney–Stommel model had been
suggested by Lilly (1972) and Bernard (2000).

Constantin & Ramos (2007) prove that for initial conditions and a
forcing term in suitable function spaces, the corresponding time-average
stationary statistical solutions are such that their mean rate of enstrophy
dissipation vanishes in the inviscid limit, thus proving that in this case
there is no anomalous dissipation.

Other fluid-flow problems

A few other rigorous statistical results have been obtained for other
fluid-flow problems. See for instance Constantin (1999, 2001) on tur-
bulent convection and transport, Doering & Constantin (2001), and
Doering, Otto, & Reznikoff (2006) on infinite Prandlt number convec-
tion, and Wang (2008, 2009) on Rayleigh–Bénard convection and some
singular perturbation problems.

10.6 Two-dimensional channel flow driven by a uniform
pressure gradient

We consider in this section a two-dimensional homogeneous incompress-
ible Newtonian flow confined to a rectangular periodic channel and
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driven by a uniform pressure gradient. More precisely, the velocity vector
field u = (u1, u2) of the fluid satisfies the Navier–Stokes equations

∂u
∂t

− νΔu + (u · ∇)u + ∇p =
P

L1
e1, ∇ · u = 0,

in the domain Ω = (0, L1) × (0, h), L1, h > 0. We denote by x = (x, y)
the space variable; the scalar p = p(x, y) is the kinematic pressure;
the boundary conditions are no-slip on the walls y = 0 and y = h

and periodic in the x direction with period L1 for both u and p; the
parameter P/L1 denotes the magnitude of the applied pressure gradient
and we assume P > 0; the parameter ν > 0 is the kinematic viscosity;
and e1 is the unit vector in the x direction. We sometimes refer to the
direction x of the pressure gradient as the longitudinal direction.

This problem admits a laminar solution known as the plane Poiseuille
flow, for which the velocity field takes the form

uPoiseuille(x, y) =
P

2νL1
y(h− y)e1.

The mathematical formulation of the Navier–Stokes equations in this
geometry can be easily adapted from the no-slip and fully-periodic cases,
and yields a functional equation for the time-dependent velocity field
u = u(t) of the form:

du
dt

+ νAu +B(u,u) = fP ,

where

fP =
P

L1
e1.

The two fundamental spaces H and V are characterized in this case
by

H =

⎧⎪⎨⎪⎩u = w|Ω;

w ∈ (L2
loc(R × (0, h)))2, ∇ · w = 0,

w(x+ L1, y) = w(x, y), a.e. (x, y) ∈ R × (0, h),

w2(x, 0) = w2(x, h) = 0, a.e. x ∈ R.

⎫⎪⎬⎪⎭ ,

and

V =

⎧⎪⎨⎪⎩u = w|Ω;

w ∈ (H1
loc(R × (0, h)))2, ∇ · w = 0,

w(x+ L1, y) = w(x, y), a.e. (x, y) ∈ R × (0, h),

w(x, 0) = w(x, h) = 0, a.e. x ∈ R.

⎫⎪⎬⎪⎭ .

The Poiseuille flow satisfies

νAuPoiseuille = fP
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and is a stationary solution of the NSE since the nonlinear term vanishes
for this flow.

In this two-dimensional channel problem, we are interested in mean
quantities averaged with respect to an arbitrary invariant measure μ for
the associated semigroup. Our main interest is in the mean enstrophy
dissipation rate per unit time and unit mass, given by

η =
ν

L1h

〈|Au|2〉 .
We also consider the mean energy dissipation rate per unit time per unit
mass which in this case takes the form

ε =
ν

L1h

〈‖u‖2
〉
.

We want to show that the plane Poiseuille flow (or more precisely the
invariant measure concentrated on the plane Poiseuille flow) minimizes
the mean enstrophy dissipation rate and maximizes the mean energy
dissipation rate among all the invariant measures for the system.

Since we assume statistical equilibrium in time, we can recover the
stationary form of the Reynolds equations,

νA 〈u〉 + 〈B(u,u)〉 = fP .

In this two-dimensional case, the mean velocity field 〈u〉 belongs to
D(A), and the Reynolds equations hold in H.

Using the Reynolds equations, we now prove that for every invariant
measure, the corresponding enstrophy dissipation rate satisfies

η ≥ ηPoiseuille,

where

ηPoiseuille =
ν

L1h

〈|AuPoiseuille|2
〉

=
1
ν

(
P

L1

)2

is the enstrophy dissipation rate for the plane Poiseuille flow.
Subsequently, we will show that

ε ≤ εPoiseuille,

where

εPoiseuille =
ν

L1h

〈‖uPoiseuille‖2
〉

=
h2

12ν

(
P

L1

)2

. (10.15)

is the energy dissipation rate for the plane Poiseuille flow.
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Note that fP = (1/ν)P/Le1 belongs to H since it is square integrable,
divergence free, periodic (in fact constant) in the longitudinal direction,
and has zero normal component on the top and bottom walls. Also, any
invariant measure in the 2D channel is carried by a bounded set in D(A);
this follows from the fact that any invariant measure is carried by the
global attractor and that the global attractor in this case is bounded in
D(A) (Foias & Temam, 1979; Foias et al., 2001a).

In particular, A 〈u〉 ∈ H and 〈B(u,u)〉 ∈ H, and hence A 〈u〉 and
〈B(u,u)〉 belong to L1(Ω)2. Therefore, the Reynolds equations hold in
L1(Ω)2 and we are allowed to integrate each term over Ω.

The most notable and important fact in this geometry is that the
nonlinear term has zero space average. Let us prove this.

For any smooth vector field u = (u, v), using that e1 = (1, 0) belongs
to H, we can write the integral of the first component B(u,u)1 of the
nonlinear term B(u,u) = P (u · ∇)u as

∫
Ω

B(u,u)1 dx = (B(u,u), e1) = (P (u · ∇u), e1) = ((u · ∇u), e1)

=
∫ L

0

∫ h

0

{
u
∂u

∂x
+ v

∂u

∂y

}
dxdy.

Using an integration by parts, the homogeneous no-slip boundary con-
ditions on the walls of the channel, the divergence-free condition, and
the periodicity condition in the streamwise direction, we find that

∫
Ω

B(u,u)1 dx =
∫ L

0

∫ h

0

{
u
∂u

∂x
+ v

∂u

∂y

}
dxdy

=
∫ L

0

∫ h

0

{
u
∂u

∂x
− ∂v

∂y
u

}
dxdy

+
∫ L

0

{v(x, h)u(x, h) − v(x, 0)u(x, 0)} dx

=
∫ L

0

∫ h

0

{
u
∂u

∂x
− ∂v

∂y
u

}
dxdy

= 2
∫ L

0

∫ h

0

u
∂u

∂x
dxdy

=
∫ h

0

{
u(L, y)2 − u(0, y)2

}
dy

= 0.
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(Although the space average of the second component (u · ∇)v also
vanishes, the divergence-free part of B(u,u) and the second component
of the associated gradient part, of the form py, may not. Note, also,
that the argument above does not work in this case because e2 does not
belong to H.)

Now, we integrate in space the first component of the Reynolds
equations to find that

Lh
P

L
= ν

∫
Ω

〈Au〉 · e1 dx ≤ νL1/2h1/2

(∫
Ω

| 〈Au〉 |2 dx
)1/2

≤ νL1/2h1/2
〈|Au|2〉1/2

.

Taking the square of this relation we find

1
ν

P 2

L2
≤ ν

Lh

〈|Au|2〉 ,
which is precisely

ηPoiseuille ≤ η.

Note that in the above we may proceed in a different way to obtain a
few interesting exact relations, namely

ν

∫
Ω

〈Au〉 · e1 dx = ν

∫
Ω

〈−Δu〉 · e1 dx = −ν
∫

Ω

〈uxx + uyy〉 dx

= −ν
∫ h

0

{ux(L, y) − ux(0, y)} dy − ν

∫
Ω

〈uyy〉 dx = −ν
∫

Ω

〈uyy〉 dx,

so that

− 1
Lh

〈∫
Ω

uyy(x) dx
〉

=
1
ν

P

L
.

Integrating in y we also obtain

− 1
L

〈∫ L

0

{uy(x, h) − uy(x, 0)} dx

〉
=
h

ν

P

L
.

In terms of the vorticity ω = vx − uy we may rewrite this as

1
L

〈∫ L

0

{ω(x, h) − ω(x, 0)} dx

〉
=
h

ν

P

L
.

The other remarkable fact is that while the Poiseuille flow mini-
mizes the enstrophy dissipation rate among all the invariant measures,
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it also maximizes the energy dissipation rate. This follows easily from
the energy inequality. Indeed,

ν
〈‖u‖2

〉 ≤ 〈(fP ,u)〉 ≤ |A−1/2fP | 〈‖u‖〉 ≤ |A−1/2fP |
〈‖u‖2

〉1/2
,

so that

ε =
ν

L1h

〈‖u‖2
〉 ≤ 1

νL1h
|A−1/2fP |2.

But note that the plane Poiseuille flow is such that

A−1fP = νuPoiseuille,

so that

ε ≤ 1
νL1h

|A−1/2fP |2 =
1

νL1h
‖A−1fP ‖2 =

ν

L1h
‖uPoiseuille‖2.

The right hand side is exactly the mean rate of energy dissipation per
unit time per unit mass, and hence we obtain

ε ≤ εPoiseuille.

This mean value can be computed explicitly in terms of the parameters
of the problem, as given in (10.15).
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256 R. Rosa
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