

Contents
Cover

Half Title page

Title page

Copyright page

Dedication

About the Author

About the Foreword Author

Foreword

Preface

Part I: Introduction

Chapter 1: Motivation and Objectives
1.1 Why Do We Need Security Patterns?
1.2 Some Basic Definitions
1.3 The History of Security Patterns
1.4 Industrial Use of Security Patterns
1.5 Other Approaches to Building Secure Systems

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_cbdhgb/ds5gei_pdf_out/OEBPS/cvi.htm

Chapter 2: Patterns and Security Patterns
2.1 What is a Security Pattern?
2.2 The Nature of Security Patterns
2.3 Pattern Descriptions and Catalogs
2.4 The Anatomy of a Security Pattern
2.5 Pattern Diagrams
2.6 How Can We Classify Security Patterns?
2.7 Pattern Mining
2.8 Uses for Security Patterns
2.9 How to Evaluate Security Patterns and their Effect on
Security
2.10 Threat Modeling and Misuse Patterns
2.11 Fault Tolerance Patterns

Chapter 3: A Secure Systems Development
Methodology

3.1 Adding Information to Patterns
3.2 A Lifecyle-Based Methodology
3.3 Using Model-Driven Engineering

Part II: Patterns

Chapter 4: Patterns for Identity Management
4.1 Introduction
4.2 Circle of Trust
4.3 Identity Provider
4.4 Identity Federation
4.5 Liberty Alliance Identity Federation

Chapter 5: Patterns for Authentication
5.1 Introduction
5.2 Authenticator
5.3 Remote Authenticator/Authorizer
5.4 Credential

Chapter 6: Patterns for Access Control
6.1 Introduction
6.2 Authorization
6.3 Role-Based Access Control
6.4 Multilevel Security
6.5 Policy-Based Access Control
6.6 Access Control List
6.7 Capability
6.8 Reified Reference Monitor
6.9 Controlled Access Session
6.10 Session-Based Role-Based Access Control
6.11 Security Logger and Auditor

Chapter 7: Patterns for Secure Process
Management

7.1 Introduction
7.2 Secure Process/Thread
7.3 Controlled-Process Creator
7.4 Controlled-Object Factory
7.5 Controlled-Object Monitor
7.6 Protected Entry Points
7.7 Protection Rings

Chapter 8: Patterns for Secure Execution and File
Management

8.1 Introduction
8.2 Virtual Address Space Access Control
8.3 Execution Domain
8.4 Controlled Execution Domain
8.5 Virtual Address Space Structure Selection

Chapter 9: Patterns for Secure OS Architecture
and Administration

9.1 Introduction
9.2 Modular Operating System Architecture
9.3 Layered Operating System Architecture
9.4 Microkernel Operating System Architecture
9.5 Virtual Machine Operating System Architecture
9.6 Administrator Hierarchy
9.7 File Access Control

Chapter 10: Security Patterns for Networks
10.1 Introduction
10.2 Abstract Virtual Private Network
10.3 IPSec VPN
10.4 TLS Virtual Private Network
10.5 Transport Layer Security
10.6 Abstract IDS
10.7 Signature-Based IDS
10.8 Behavior-Based IDS

Chapter 11: Patterns for Web Services Security

11.1 Introduction
11.2 Application Firewall
11.3 XML Firewall
11.4 XACML Authorization
11.5 XACML Access Control Evaluation
11.6 Web Services Policy Language
11.7 WS-Policy
11.8 WS-Trust
11.9 SAML Assertion

Chapter 12: Patterns for Web Services
Cryptography

12.1 Introduction
12.2 Symmetric Encryption
12.3 Asymmetric Encryption
12.4 Digital Signature with Hashing
12.5 XML Encryption
12.6 XML Signature
12.7 WS-Security

Chapter 13: Patterns for Secure Middleware
13.1 Introduction
13.2 Secure Broker
13.3 Secure Pipes and Filters
13.4 Secure Blackboard
13.5 Secure Adapter
13.6 Secure Three-Tier Architecture
13.7 Secure Enterprise Service Bus
13.8 Secure Distributed Publish/Subscribe

13.9 Secure Model-View-Controller

Chapter 14: Misuse Patterns
14.1 Introduction
14.2 Worm
14.3 Denial-of-Service in VoIP
14.4 Spoofing Web Services

Chapter 15: Patterns for Cloud Computing
Architecture

15.1 Introduction
15.2 Infrastructure-as-a-Service
15.3 Platform-as-a-Service
15.4 Software-as-a-Service

Part III: Use of the Patterns

Chapter 16: Building Secure Architectures
16.1 Enumerating Threats
16.2 The Analysis Stage
16.3 The Design Stage
16.4 Secure Handling of Legal Cases
16.5 SCADA Systems
16.6 Medical Applications
16.7 Conclusions

Chapter 17: Summary and the Future of Security
Patterns

17.1 Summary of Patterns
17.2 Future Research Directions for Security Patterns
17.3 Security Principles
17.4 The Future

Appendix A: Pseudocode for XACML Access
Control Evaluation

A.1 Pseudocode for retrieveApplicablePolicy()
A.2 Pseudocode for evaluateApplicablePolicy()

Glossary

References

Index of Patterns

Index

Wiley Series in Software Design Patterns
The WILEY SERIES IN SOFTWARE DESIGN PATTERNS is designed to
meet the needs of today’s software architects, developers, programmers and
managers interested in design patterns. Frank Buschmann (Series Editor), as
well as authors, shepherds and reviewers work collaboratively within the
patterns community to strive for high-quality, highly researched, thoroughly
validated, classic works, which document accepted and acknowledged
design experience. Priority is given to those titles that catalog software
patterns and pattern languages with a practical, applied approach in
domains such as:

Distributed systems
Real time systems
Databases
Business information systems
Telecommunications
Organizations
Concurrency
Networking

Books in the series will also cover conceptual areas of how to apply
patterns, pattern language developments and architectural/component-based
approaches to pattern-led software development.
TITLES PUBLISHED
•PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 1
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and
Michael Stal

•PATTERN-ORENTED SOFTWARE ARCHITECTURE, Volume 2
Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann

•A PATTERN APPROACH TO INTERACTION DESIGN
Jan Borchers

•SERVER COMPONENT PATTERNS
Markus Völter, Alexander Schmid, Eberhard Wolff

•ARCHITECTING ENTERPRISE SOLUTIONS
Paul Dyson, Andy Longshaw

•PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 3
Michael Kircher, Prashant Jain

•SECURITY PATTERNS
Markus Schumacher, Eduardo B. Fernandez, Duane Hybertson, Frank
Buschmann, Peter Sommerlad

•PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 4
Frank Buschmann, Kevlin Henney, Douglas C. Schmidt

•PATTERN-ORIENTED SOFTWARE ARCHITECTURE, Volume 5
Frank Buschmann, Kevlin Henney, Douglas C. Schmidt

•PATTERNS FOR COMPUTER-MEDIATED INTERACTION
Till Schümmer, Stephan Lukosch

•PATTERNS FOR FAULT TOLERANT SOFTWARE
Robert Hanmer

•WHERE CODE AND CONTENT MEET
Andreas Rüping

•PATTERNS FOR PARALLEL SOFTWARE DESIGN
Jorge Luis Ortega-Arjona

•SECURITY PATTERNS IN PRACTICE
Eduardo B. Fernandez

Security Patterns in Practice

This edition first published 2013
© 2013 John Wiley & Sons, Ltd.
Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for
information about how to apply for permission to reuse the copyright
material in this book please see our website at www.wiley.com.
The right of the author to be identified as the author of this work has been
asserted in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, except as permitted by
the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.
Wiley also publishes its books in a variety of electronic formats. Some
content that appears in print may not be available in electronic books.
Designations used by companies to distinguish their products are often
claimed as trademarks. All brand names and product names used in this
book are trade names, service marks, trademarks or registered trademarks
of their respective owners. The publisher is not associated with any product
or vendor mentioned in this book. This publication is designed to provide
accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the publisher is not engaged in
rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be
sought.
Trademarks: Wiley and the Wiley logo are trademarks or registered
trademarks of John Wiley and Sons, Inc. and/ or its affiliates in the United
States and/or other countries, and may not be used without written
permission. All other trademarks are the property of their respective

http://www.wiley.com/

owners. John Wiley & Sons, Ltd. is not associated with any product or
vendor mentioned in the book.
Images on pages page 289, 293, 309 and 316, clockwise from top-left,
Teneresa/Shutterstock, gitan100/Shutterstock, dedMazay/Shutterstock
A catalogue record for this book is available from the British Library.
ISBN 978-1-119-99894-5 (hardback)
978-1-119-97049-1 (ebook)
978-1-119-97048-4 (ebook)
978-1-119-97057-6 (ebook)

To Minjie, Lian and Anna

Publisher’s Acknowledgements
Some of the people who helped bring this book to market include the
following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director – Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Executive Commissioning Editor: Birgit Gruber
Associate Commissioning Editor: Ellie Scott
Project Editor: Steve Rickaby
Shepherd: Markus Schumacher
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Annie Sullivan

Marketing
Associate Marketing Director: Louise Breinholt
Marketing Manager: Lorna Mein
Senior Marketing Executive: Kate Parrett
Marketing Assistant: Tash Lee

Composition Services, Printed Edition
Steve Rickaby, WordMongers Ltd

About the Author
Eduardo B. Fernandez (aka Eduardo Fernandez-Buglioni) is a professor in
the Department of Computer Science and Engineering at the Florida
Atlantic University in Boca Raton, Florida. He is now a visiting professor at
Universidad Tecnica Federico Santa Maria, Chile, on leave from FAU. Ed
has published numerous papers and four books on authorization models,
object-oriented analysis and design and security patterns. He has lectured
all over the world at both academic and industrial meetings. His current
interests include security patterns, web services, cloud computing security
and fault tolerance. He holds an MS degree in Electrical Engineering from
Purdue University and a PhD in Computer Science from UCLA. Ed is an
active consultant for industry, including assignments with IBM, Allied
Signal, Motorola, Lucent, and others. His web page is
www.cse.fau.edu/~ed.

http://www.cse.fau.edu/~ed

About the Foreword Author
Markus Schumacher has served as CEO and Co-Founder of Virtual Forge
GmbH since 2006. The company specializes in the security of SAP
applications. He was previously a representative of the Fraunhofer Institute
for Secure Information Technology (SIT) and worked at SAP as Security
Product Manager. Focus topics were secure development, security testing,
security response, product certification (Common Criteria) as well as
awareness events for the development crew. Markus earned his Doctorate in
the field of computer science. He has published numerous articles and
coauthored a handful of books, including Secure ABAP Programming and
Security Patterns – Volume 1, and speaks regularly at international
conferences.

Foreword
Security is simple. We use a little bit of cryptography, add some firewalls
and passwords – done! In theory…

When I started work in the field of security in the mid 1990s, I met many
people who thought they could easily secure their applications. They used
certain ingredients of security measures and applied them to whatever
problem they had. Even worse: sometimes they didn’t use existing
ingredients, but build their own – making the same errors made in hundreds
of previous projects. And practice proved them wrong: security was never
simple – there’s always at least one loophole. There’s always an unexpected
side-effect. There’s always something that you miss if you are not an expert.
Front page news regularly proves that we obviously never learn.

Key reasons for insecure applications are:
 Lack of time, due to aggressive deadlines and tight budgets
 Lack of knowledge – IT experts are usually not security experts
 Lack of priorities – functionality and performance usually come top

That’s why we are literally doomed to failure. Hackers have an easy job
entering a system, stealing or changing data and leaving without a trace.
Sometimes the victim doesn’t even know that something really bad
happened until his new designs are somehow copied by a competitor, or
supposedly protected customer data is published on public web sites. Or a
journalist gets a hint of a fantastic new story. Even worse, modern
applications are becoming more and more complex – think of recent trends
like mobility and cloud computing. Borders disappear and the means of
protecting known areas is difficult.

In traditional engineering we have hundreds of years of knowledge that
has evolved over time. We know how to build bridges that survive rain,
wind and earthquakes. We know how to build solid cars that give you a
good chance of surviving a crash. We know of proven solutions to problems
in specific contexts. Written down, these are called a patterns, paradigms
that have also been applied to software engineering for quite some time.
Towards the end of the 1990s we saw work on patterns that were dedicated

to security problems. The pattern community came together and collected
the work in progress, resulting in one of the first comprehensive security
pattern collections, which captured security expertise for getting it done the
right way.

It was obvious that the work was not completed by the publication of a
few books. Besides mining additional knowledge and writing more patterns,
an interesting question is how to apply them effectively. Both of these
issues are answered with this new book from Eduardo Fernandez, a pioneer
of computer science and security patterns. He has continued the work that
we started ten years ago, and I’m honored that I could be his sparring
partner while he wrote it.

The result is the most up-to-date guide for software engineers who want
to understand how to build reliable applications. It provides guidance for
applying the captured expertise of security pattern in your day-to-day work.
Security is still not easy, but it is much easier when you understand the
benefits, liabilities and dependencies of specific solutions.

Markus Schumacher
Heidelberg, Germany, March 2013

Preface

El que lee mucho y anda mucho, ve mucho y sabe mucho.
(The one who reads a lot and goes around a lot, sees much and knows
much.)

Miguel de Cervantes, El ingenioso hidalgo don Quijote de la Mancha
I started working on security when I joined IBM, where I worked for almost
nine years doing security research. I coauthored a book on database security
while there, one of the first to appear on this topic. I later realized that a
large amount of security knowledge was wasted, because practitioners had
not read the variety of books and papers that had started to appear; they
kept repeating the same mistakes. In particular, software developers knew
little about security. Later I participated in a conference about patterns and
realized that expressing security knowledge as patterns could be an
effective way to spread this knowledge. Around that time, Yoder and
Barcalow [Yod97] published a paper about expressing security solutions as
patterns that further convinced me that this was a good direction. I found
later that security patterns could do more than propagate security
knowledge to inexperienced developers; they could also be useful for
security experts, to help them apply security in a systematic way to build
new applications or products, understand complex standards, audit complex
applications and reengineer legacy systems. I was coauthor of a book that
published most of the security patterns known up to 2005. However, since
that book was published, many more patterns have appeared.

I have written over 80 patterns, most of which are shown in this book.
Other authors have presented patterns which complement ours (see Chapter
1). I have listed most of them in the See Also sections of each pattern. Note
that they may use a different notation or pattern form to ours.

I did not try to be exhaustive, and I may have left out some useful
patterns. I hope to include those discovered later, or that appear later, on the
book’s web page at http://www.wiley.com/go/securitypatterns or in a
new edition of this book. Patterns can be improved after one uses them or
understands them better. Some of these patterns were written as long as 15

http://www.wiley.com/go/securitypatterns

years ago, while others are still under development. When I looked at the
older patterns, I realized that I could write them better now, which delayed
the completion of this book. It is not a second volume or a continuation of
our 2006 book [Sch06b], but it reflects my own views and my own work.
Some of my patterns from the earlier book are included here for
completeness; my intention is to eventually produce a complete catalog,
although I am not there yet. Other authors have also produced some good
patterns, and altogether there is a good quantity of patterns that developers
and researchers can use. My audience is mostly made up from software
developers who are trying to incorporate security in their work. However,
there is material here for researchers and computer science students, as well
as for anybody interested in systems security.

A difficult point was to unify the style of patterns produced over a long
time span. All the patterns presented here have either been discussed at a
pattern conference or presented at a research conference. However, I have
reworked all of them for this book, some extensively. I also participated
very actively in the original versions, having usually provided the initial
ideas, read every line of them and improved their contents. In other words, I
am really a full author of this book, not just an editor of past works or a
presenter of my students’ work.

Patterns alone are not enough: the final objective is to build secure
systems. For that purpose, I have been working on a methodology for
building secure systems using patterns, of which several examples are
shown here. The approach I use is strictly an engineering one. This does not
mean avoidance of theory, but I use it only when necessary. It does not
mean code either: although I give some code examples, I use mostly
models. To handle the complexity of current systems, we need the
abstraction power of models. An important value of patterns is that they
lead to systems thinking. A system is more than the sum of its parts;
looking at isolated code and hardware components is a microscopic view
that cannot lead to secure systems.

Patterns can be described from single page ideas to 30-page detailed
descriptions. I have chosen an intermediate level, where I give enough
detail for a user to understand the meaning of the pattern and evaluate its
possibilities. I have found this level of detail the most useful in my work. I

have resisted the temptation of adding background material on security:
several good textbooks exist (see Chapter 1).

Because I work in a university, I have been accused a few times of not
being ‘practical enough’. I did work in industry for about ten years, and I
occasionally do consulting for companies, so I do have some industrial
experience. Some of my students have also provided an important industrial
perspective, since many of them were working in local industry when we
wrote these patterns. In some respect, this is an interdisciplinary book, in
that it connects security to software architecture.

I would greatly appreciate comments or corrections. These patterns
encompass all areas of computer systems architecture, and I am sure I may
have misunderstood some aspects. I am also particularly interested to hear
of any interesting use of security patterns in industrial projects. Write to me
at ed@cse.fau.edu. Markus Schumacher and I will publish comments on
patterns at securitypatterns.org.

Book Structure
The book is divided into three parts. The first three chapters describe
motivation, experience in using patterns, the objectives of the book, and
present my secure development methodology. Part II is a pattern catalog,
including patterns for different architectural levels of a computer system.
Part III shows some examples of application of the patterns, has tables of
patterns, and indicates possible research directions.

Acknowledgements
This work is the result of my work on security over many years, attending
security and patterns conferences, listening and talking to many colleagues
around the world, all of whom contributed to this work. More specifically,
my students, in particular Nelly Delessy, Keiko Hashizume, Ola Ajaj, Juan
C. Pelaez and Ajoy Kumar, wrote several versions of these patterns. My
colleagues Maria M. Larrondo-Petrie and Mike Van Hilst collaborated in
some of the published patterns. My international collaborators included
Nobukazu Yoshioka and Hironori Washizaki (Japan), Günther Pernul
(Germany), David LaRed (Argentina), Anton Uzunov (Australia), Fabricio
Braz (Brazil), Jaime Muñoz Arteaga (Mexico) and Antonio Maña (Spain).

mailto:ed@cse.fau.edu
http://securitypatterns.org/

The shepherds and workshop participants in the Pattern Languages
conferences (PLoP, EuroPLoP, Asian PLoP and Latin American PLoP) gave
valuable comments, in particular Joe Yoder, Fabio Kon, Richard Gabriel,
Rosana Braga, Ralph Johnson, Lior Schachter, and others. Craig Heath
commented on the first three chapters.

The editorial staff of Wiley UK – Ellie Scott, Birgit Gruber and Sara
Shlaer – and Steve Rickaby of WordMongers, were very helpful and
encouraging. Markus Schumacher was an ideal shepherd, in that he caught
important errors or missing aspects. My thanks to all of them.

Part I

Introduction

CHAPTER 1

Motivation and Objectives

We will bankrupt ourselves in the vain search for absolute security.
Dwight D Eisenhower

1.1 Why Do We Need Security
Patterns?
Most modern applications are distributed and connected by some type of
network – often the Internet, but also LANs and other specialized network
types. Their platforms may support web interfaces, web services and even
agents. The complexity of such systems makes them hard to understand,
design and maintain. This complexity also brings vulnerabilities which,
when coupled with the fact that these applications may handle valuable
information, attract security attacks. The increasing use of mobile devices
with improved capabilities and the growing use of sensors make this
problem even more acute. Every day the press reports attacks on web sites
or databases around the world, which result in millions of dollars of direct
or indirect losses. Systems are constantly attacked and often breached.
There is also the fear that a hostile adversary may try to disrupt the
infrastructure systems of an entire country.

Why do we fail to secure such systems? One important reason is their
complexity, which makes errors common and vulnerabilities hard to find.
Another important reason is that security is built piecemeal: parts of a
system are secured using specific products, but there is rarely a global
analysis of the complete system. If done, different models may be used in
different parts, for example one for the databases and another for wireless
devices. Regrettably, security requires a comprehensive approach if it is to

block all possible means of attack. Very secure components cannot make
the whole system secure if they do not protect all parts of the system and do
not work in a coordinated way. Threat analysis is done locally, but many
threats only emerge when different units are interconnected. Further,
methodologies for building secure systems focus mostly on new systems,
but the majority of the systems in use are legacy systems, often in a state of
constant maintenance. Even systems that have been built carefully can
suffer from architecture erosion, in which changes made, once in
production, can invalidate or weaken security defenses.

We need a way to handle the complexity of new systems and make them
secure in a systematic and holistic way. We need a way to reengineer legacy
systems to make them more secure, by tracing back code changes so that
their impact on security mechanisms can be detected and corrected.
Software developers know a particular language and its environment well;
however, they may not know much about security, and their systems exhibit
many vulnerabilities which can be easily exploited by attackers. They are
also under pressure to produce results quickly.

Secure systems need to be built in a systematic way in which security is
an integral part of the software lifecycle [Fer04b][How06][McG06]: the
same applies to reliability and other quality factors. If when we build
applications we also consider the effect of middleware, operating systems
and networks as a whole, we can build systems that can withstand a whole
spectrum of attacks from external or internal users. We believe that to build
secure applications, it is not effective to build a secure platform and then
run some application made secure in isolation on it, but rather that the
application and its platform should be designed together and the platform
match the type of application. In addition, all security and reliability
constraints should be defined at the application level, where their semantics
are understood and propagated to lower architectural levels [Fer99b]
[Fer06b] [Sum97].

Lower levels provide the assurance that the constraints are being
followed; that is, they enforce an absence of ways to bypass these
constraints. The only way to provide this unification in the presence of
myriad implementation details of the component units is to use abstraction.
In particular, we can apply abstraction through the use of patterns. Patterns

are encapsulated solutions to recurrent system problems and define a way to
express requirements and solutions concisely, as well as providing a
communication vocabulary for designers [Bus96] [Gam94]. The description
of architectures using patterns makes them easier to understand, provides
guidelines for design and analysis, and can define a way of making their
structure more secure. Security patterns allow application developers to use
security measures without being experts on security. We can also use
patterns to evaluate existing systems by examining them to see if they
contain the required patterns. Further, we can reengineer legacy systems by
using patterns to add missing security features. (I compare the use of
patterns to other approaches to producing secure systems below.)

We need to unify the total architecture of the network along horizontal
and vertical partitions to apply a holistic approach – specifically, along the
system development lifecycle and along its architectural levels [Fer11a].
This book presents a complete pattern-based methodology for building
secure systems, covering pure information systems as well as embedded
systems. I proposed its main ideas in [Fer06b] and am still refining and
extending it. A far-reaching objective is to establish the fact that patterns
offer a robust way to build security and reliability into systems. Neumann
calls for the need to have ‘principled’ systems, based on solid conceptual
approaches [Neu04]: patterns allow the implicit application of principles. I
have done a substantial amount of work in this direction, but further work is
still needed to consolidate and extend this. The use of security patterns and
other approaches to building secure systems is surveyed in [Uzu 12c].

To design a secure system, we first need to understand the possible threats
to the system. We have proposed an approach for identifying threats by
considering the activities in each use case [Bra08a] [Fer06c]. Such an
approach finds threats – as goals of an attacker – that are realized through
the lower levels of a system. We need to understand how the specific
components of the architecture are compromised, or used by an attacker, to
fulfill their objectives. We use the concept of misuse (attack) patterns to
model how a misuse is performed [Fer07a].

There is a need for ways to define and enforce standards and regulations;
our proposed pattern-based approach can be valuable for that purpose. In
fact, some standards – for example HIPAA, FEMA and Sarbanes-Oxley –

and regulations are very complex, or even ambiguous; patterns can describe
them in a precise way and make them more understandable and usable. Web
services and cloud computing have brought about a need for certification of
services; patterns could be a good way to achieve this [Dam09].

When we talk about modeling, we do not mean yet another authorization
model, but rather a model of the integration of security controls for a
variety of devices and units in a computer system, fundamental when
dealing with complex systems. We can get a measure of completeness by
adding patterns to cover all the threats identified in each layer and approach
the holistic ideal required to secure systems. We think this is also a good
approach to defend against a possible cyber war. Patterns do not provide
provable security, but they are a good practical approach to apply to
increasingly complex systems.

1.2 Some Basic Definitions
Before we start, we need to define a few basic terms. Security is the
protection against:

 Unauthorized data disclosure (confidentiality or secrecy).
 Unauthorized data modification (integrity). Unauthorized

modification of data may result in inconsistencies or erroneous data.
Data destruction may bring all kinds of losses.
 Denial of service: users or other systems may prevent the legitimate

users from using their system. Denial of service is an attack on the
availability of the system.
 Lack of accountability: Users should be responsible for their actions

and should not be able to deny what they have done (non-repudiation).
The definition of security above describes security as defense against some
types of attacks. The generic types of defenses (also known as
countermeasures) that we can use include:

 Identification and authentication (I&A). Identification implies a user
or system providing an identity to access a system. Authentication
implies providing some proof that a user or system is who or what they
claim to be. The result of authentication may be a set of credentials,

which later can be used to prove identity and may describe some
attributes of the authenticated entity. Patterns for identity management
and patterns for authentication are described in Chapter 4 and Chapter 5
respectively.
 Authorization and access control (A & A). Authorization defines

permitted access to resources depending on the accessor (user,
executing process), the resource being accessed and the intended use of
the resource. Access control is the use of some mechanism to enforce
authorization. Chapter 6 describes patterns for access control.
 Logging and auditing. These functions imply keeping a record (log)

of actions that may be relevant for security and analyzing it later. They
can be used to collect evidence for prosecution (forensics) and to
improve the system by analyzing why an attack succeeded. Logging
and auditing is also described in Chapter 6.
 Hiding of information. Information hiding is usually performed by the

use of cryptography, but steganography is another option (see Chapter
12). The idea is to hide information to protect it.
 Intrusion detection. Intrusion Detection Systems (IDS) alert the

system in real time when an intruder is trying to attack it. Chapter 10
discusses patterns for networks.

My objective in this book is the construction of complex applications.
These include medical systems, financial applications, legal applications,
operating systems and others. Such applications are typically implemented
with systems that are subject to non-functional requirements such as
reliability or fault tolerance. Often they are composed of a variety of
software and/or hardware units, some built ad hoc and some bought or
outsourced. In such systems the security of the application software itself
cannot be separated from the security of the rest of the system.

Another common aspect of such systems is that they frequently must
comply with regulatory standards. Systems may include several databases,
and usually have Internet access as well as distributed and wireless access.
Data is typically accessed using a web application server (WAS) that
integrates web and database applications and uses a global enterprise
model, usually implemented using components such as J2EE or .NET,
applications that are of fundamental value to enterprises and institutions of

any type. A systematic approach is required towards building these
applications such that they can reach the appropriate level of security. We
focus on these applications because they define worst-case scenarios for the
application of our patterns methodology.

Security was first studied from a systems viewpoint [Sum97], and
standards appeared for evaluating security [cc] [DoD83]. The emphasis
then moved to software; numerous papers indicated its importance and gave
the impression that software security was the only objective we need to
fulfill to produce secure systems [How03]; there is now a considerable
effort to improve the security of code [De W09]. However, things are not so
simple: the whole system must be secure, including its hardware and the
way the whole system is configured. We need a global and holistic view if
we want to produce secure systems. Typical textbooks, for example [Gol06]
[Sta 12], are very good for discussions of specific topics, but they don’t
provide a global view. Most research papers study specific mechanisms but
rarely look at the complete system. Much work as also been done on
stochastic system views of security [Nic04], but while this is an interesting
direction for evaluating global aspects of systems, it does not provide
constructive solutions for systems security.

In this book we take a systems view of security, for which software
architecture is an important basis [Bus07] [Tay10]. Software architecture
provides a global view of systems, but until now most studies have not
considered the early lifecycle stages or said much about security [Fer12a];
however, the software architecture viewpoint is very important. To apply
any methodology, we need a good catalog of patterns: providing that is one
of the main objectives of this book.

A related aspect is that of how to apply these patterns through some
systematic methodology. We have applied the patterns described here
throughout a secure system development methodology based on a
hierarchical architecture whose layers define the scope of each security
mechanism [Fer04b] [Fer06b]. We discuss this approach in Chapter 3.

1.3 The History of Security
Patterns
Yoder and Barcalow wrote the first paper on security patterns [Yod97].
They included a variety of patterns useful in different aspects of security.
Before them, at least three papers [Fer93a] [Fer94a] [Ess97] had shown
object-oriented models of secure systems without calling them ‘patterns’, or
using one of the standard pattern templates. In 1998, two more patterns
appeared: a pattern for cryptography [Bra00] and a pattern for access
control [Das98]. After that, several others appeared, and we have now three
books on the subject [Bla04] [Sch06b] [Ste05], one of which [Sch06b] was
the first to try to categorize and unify a variety of security patterns. Many
papers have also appeared, some of which are surveyed here.

Security patterns are now accepted by many companies, Microsoft [msd],
Sun [jav] and IBM [IBMb] have papers and web pages on this subject. A
general web page for security patterns also exists [sec]. Pattern catalogs
include [Ste05][Kie02][Bla04][Dou09], [Sch06b][Ysk06][Haf11]1. Some
surveys of security patterns include [Fer06a][Yos08] [Uzu 12a]. This book
extends the ideas of [Sch06b] and adds many new patterns, as well as a
methodology for building secure systems.

1.4 Industrial Use of Security
Patterns
Most developers don’t use models, they just code. However, this situation is
slowly changing and design patterns have been successfully applied in
many industrial projects, for example [Bec96] [Sch95]. Several major
companies now maintain patterns web pages and have published books
about them.

Until now, security patterns have not been used as much as design
patterns, but some interesting applications exist, such as qmail [Haf08] and
BBVA [Mor12]. [ElK09] reports the use of security patterns to enforce

security for remote healthcare in smart homes. [Ela11] describes a survey of
237 institutions in China to discover their use of security requirements for
software construction. One of their most common sources of security
knowledge were standards and security patterns.

One of the reasons for the lack of use of security patterns is the lack of a
good catalog; we hope to help with this. Another reason could be lack of a
methodology, and we expect that our methodology can be of value here.

1.5 Other Approaches to Building
Secure Systems
There are several other approaches to building secure systems, of which the
most prominent are those based on secure coding:

 Microsoft’s Security Development Lifecycle (SDL) [How06]. [Lip05]
defines activities for all the stages of a lifecycle based on coding with
almost no modeling. The analysis stage is almost ignored, and threats
are defined with respect to the deployment units of the software.
 OWASP’s CLASP is a lightweight process to define requirements for

secure software [OWAa]. It also starts from deployment units and
analyzes their threats. Similarly to SDL it ignores the semantic aspects
of the application.
 Building Security in Maturity Model (BSIMM) is a software security

framework, which includes twelve practices organized into the four
domains of Governance, Intelligence, SSDL Touchpoints and
Deployment [BSI].

DeWin [De W09] made a detailed comparison of SDL, CLASP and
Touchpoints [McG06], looking for similarities and differences, as well as
suggesting improvements. Code-based security, while valuable, cannot
produce secure systems by itself, but it can be a good complement to
model-based methods.

1Strictly, Haf11 and Ysk06 are not catalogs, they are pattern inventories
where they organize existing patterns according to some classification,

but do not provide pattern descriptions.

CHAPTER 2

Patterns and Security Patterns

Each problem that I solved became a rule which served afterwards to
solve other problems.

René Descartes, Discourse on Method

2.1 What is a Security Pattern?
A security pattern describes a solution to the problem of controlling
(stopping or mitigating) a set of specific threats through some security
mechanism, defined in a given context [Sch06b]. This solution needs to
resolve a set of forces, and can be expressed using UML class, sequence,
state and activity diagrams. A set of consequences indicate how well the
forces were satisfied; in particular, how well the attacks were handled. A
security pattern is not directly related to a vulnerability, but is directly
related to a threat. The specific threat may be the result of one or more
vulnerabilities, but the pattern is not intended to repair the vulnerability, but
to stop or mitigate the threat.

Figure 2.1 shows a generic diagram illustrating the effect of the use of
security patterns as deployed in a specific architecture. The sequence
diagrams on the left of the figure indicate possible attacks (threats) to a
context defined by a deployment diagram. For example, a context may
include distributed systems, distributed systems using web services, or
operating systems. Typical objects in the deployment diagram (O1, O2, O3)
are instantiated from classes in the application class diagram (Classes A, B
and C respectively for this example). SP1 denotes the security pattern
solution that is able to stop or mitigate these threats. There may be more

than one SP1 that can handle the threats. Theoretical models of security
patterns can be found in [Was09] and in Chapter 8 of [Sch03].

Figure 2.1: A security pattern controlling two attacks

2.2 The Nature of Security Patterns
There are several ways to look at security patterns:

 As an architectural pattern. Security patterns can be considered a
type of architectural pattern because they usually describe global
software architecture concepts; for example, do we need authentication
between two distributed units? We prefer this interpretation because
security is a global property.
 As a design pattern. The fact that security can be considered an aspect

of a software subsystem has made some groups consider them design
patterns [Bla04] [Dou09]. We think that design patterns are code-
oriented and security is an architectural property, but this view can be
useful to analyze the effect of code structure on security.
 As an analysis pattern. Security constraints should be defined at the

highest possible level, that is, at the conceptual model of the
application. For example, we can define which users have which roles
and what rights they need to perform their tasks. A conceptual,

implementation-free definition of a security mechanism is, in effect, an
analysis pattern. We use this approach in our methodology to define
system-independent requirements, as described in Chapter 3.
 As a special type of pattern. We can add new sections, remove some

sections from the standard template, or we can use a different notation
and model. The problem with using special notations is that the
designer needs to learn a new language to use the patterns, which is
time-consuming and prone to error. This type of pattern is useful for
researchers and security experts, but not so much for the average
developer.

Can we describe principles as patterns? We agree with [Hey07a] that
security principles, for example separation of duty, are in general too broad
to be considered patterns. We do not consider less broad concepts, such as
confidentiality or integrity, as patterns, because there are many ways to
obtain such properties: a pattern should describe a single solution.

Two other interesting points are:
 Are security patterns styles or architectural patterns?
 Are security patterns the same as tactics?

Styles are more application-oriented and describe the basic structure of an
architecture [Tay10]; should we also have a catalog of security styles? We
are not elaborating these points further here: we discuss some of them in
[Fer12a].

Other varieties of security patterns include:
 Security design patterns. The Open Group used the style of [Gam94]

to build security patterns [Bla04]. They also included some availability
patterns in their catalog.
 A group at CERT took a more literal approach and built secure design

patterns [Dou09], in which they added security to several of the
patterns described in [Gam94].
 Patterns for enterprise models to define global security concerns

[Sch06b]. These patterns include Asset Valuation, Threat Assessment,
Security Needs Identification and others. These patterns can be useful
for security governance.

 Some authors, for example [Ray04], consider patterns as
parameterized templates or types that are instantiated in applications.
The additional precision this provides reduces flexibility in applying the
pattern.
 Jackson’s Problem Frames have been used as the basis for patterns for

security requirements [Hat07].
 Security and Dependability (S&D) patterns describe implementations

of specific security mechanisms, supported by a complete runtime
framework [Gal09] [SER] [Spa09].
 Mouratidis uses Secure Tropos, an approach to support multiple views

of security, including organizational and external aspects [Mou06]
[SeT].
 Security usability patterns, patterns oriented to build good user

interfaces for security [Mun09].
 [IBMb] describes five security patterns. They are very high-level and

do not follow any standard template. They also define a simple
methodology for their application.
 Privacy patterns: patterns to help users express their privacy concerns

[Lob09] [Sad05]. These can be a useful complement to the patterns
presented in this book.
 Enterprise Security Patterns (ESPs) [Mor12]. Chapter 3 discusses

these in more detail.
 [Bas06] presents an approach to building secure systems in which

designers specify system models along with their security requirements,
and use tools to generate system architectures from the models
automatically, including complete, configured access-control
infrastructures. Their approach includes a combination of UML-based
modeling languages with a security modeling language for formalizing
access control requirements. They do not really use patterns, but their
models are related to pattern models.
 Two security antipatterns are proposed by Kis [Kis02]. An antipattern

indicates practices that should be avoided.
Having such variety can be confusing to potential users. Not all of these

pattern varieties are mutually exclusive; some can be combined. For

example, ESPs include the standard type of security patterns as
components.

2.3 Pattern Descriptions and
Catalogs
Patterns are usually described using a pattern template with predefined
sections. This type of description permits systematic use of the pattern and
provides a guideline for the pattern writer. The selection of template is an
important issue, because it defines the type and characteristics of the
information about the pattern. Patterns using ad hoc templates or no
templates are difficult to incorporate into existing catalogs, and make the
job of comparing and applying patterns much harder. In our patterns we use
a template based on that of [Bus96], known as the POSA (Pattern Oriented
Software Architecture) template. We show its use in describing a specific
pattern below. Other templates used for security patterns include the ‘Gang
of Four’ (GOF) template [Gam94], as used by the Open Group and some
authors. That template is intended for design patterns, which are more code-
oriented, and does not describe architectural aspects well. Some
enhancements of security pattern templates have been proposed, which
extend the GOF template with security aspects [Mor12] [Ysk06].

We have tried to provide a reasonable amount of information in our
pattern descriptions, aimed at the needs of an application designer, although
another audience could be product designers, for example designers of
firewalls: our descriptions are probably insufficient for them, although they
could be used as initial guidelines. Each pattern is described in an abstract
form [Fer08a], independent of implementation details. For some patterns
we also show concrete versions, for example for web services. The idea is
that one should decide first, in the conceptual model, what security
mechanisms are needed, then map them to concrete versions depending on
the software choices. In one of our papers we define precise models for the
templates that we use for our patterns [Was09]. We used those models to
classify security patterns in [Was09] and [Van09].

Some authors describe patterns showing only their main idea, taking
about half to one page and using only words. While such patterns may be
useful for experienced designers to remind them of possibilities, they are
not detailed or precise enough to fulfill the function of communicating
experience and knowledge. We think that the solution section of the pattern
should be expressed with enough detail and precision to allow a designer to
use it. We prefer using an informal description with a diagram, followed by
a UML class diagram to describe the information static structure, and
several sequence diagrams describing the dynamics of the main use cases.
CRC cards can be used to introduce the needed classes, but we don’t see
them as necessary. Other UML diagrams may be convenient in complex
cases, such as state charts and activity diagrams.

Patterns solutions expressed in UML can be implemented readily in
appropriate languages such as Java, Smalltalk, C++, XML or C#. Making a
solution very precise or formal is against the spirit of patterns, which are
suggestions rather than plug-in solutions: a pattern needs to be tailored to
satisfy the requirements of the application. If a formal solution is used, it is
hard to know if the tailoring has affected the model of the solution. When
more formality is needed, we prefer to add OCL annotations to class
diagrams [War03a].

2.4 The Anatomy of a Security
Pattern
This section uses a Packet Filter Firewall [Sch06b] as an example; each
pattern section is preceded by a description of its purpose.

Every pattern starts with a thumbnail – called an ‘intent’ by some authors
– a description of the problem it solves, and optionally a brief description of
how it solves the problem.

The Packet Filter Firewall filters incoming and outgoing network traffic
in a computer system based on packet inspection at the IP level.

Example

We then give an example of a problem situation where use of this pattern
may provide a solution.

Our system has been attacked recently by a variety of hackers, including
somebody who penetrated our operating system and stole our clients’ credit
card numbers. Our employees are wasting time at work by looking at
inappropriate sites in the Internet. If we continue like this we will be out of
business soon.

Context
We define the context in which the pattern solution is applicable. We may
explain relevant characteristics of this context.

Computer systems on a local network connected to the Internet and to
other networks with different levels of trust. A host in a local network
receives and sends traffic to other networks. This traffic has several layers
or levels. The most basic level is the IP level, made up of packets consisting
of headers and bodies (payloads). The headers include the source and
destination addresses as well as other routing information; the bodies
include the message payloads.

Problem
We follow the context with a generic description of what happens when we
don’t have a good solution. We also indicate the forces that affect the
possible solution. (Here we show only a few forces.)

Some of the hosts in other networks may try to attack the local network
through their IP-level payloads. These payloads may include viruses or
application-specific attacks. We need to identify and block those hosts.

The solution to this problem must resolve the following forces:
 We need to communicate with other networks, so isolating our

network is not an option. However, we do not want to take on a high
risk for doing so.
 Any protection mechanism should be transparent to the users. Users

should not need to perform special actions to be secure.
 The cost and overhead of the protection mechanism should be

relatively low or the system may become too expensive to run.

 The attacks are constantly changing, so it should be easy to make
changes to the configuration of the protection mechanism.

Solution
The solution section describes the idea of the pattern. A descriptive figure
may help to visualize the solution.

A Packet Filter Firewall intercepts all traffic coming/going from a port P
and inspects its packets (Figure 2.2). Those coming from or going to
untrusted addresses are rejected. The untrusted addresses are determined
from a set of rules that implement the security policies of the institution. A
client from another network can only access the local host if a rule exists
authorizing traffic from its address. Specific rules may indicate an address
or a range of addresses. Rules may be positive (allow traffic from some
address) or negative (block traffic from some address). Most commercial
products order these rules for efficiency in checking. Additionally, if a
request is not satisfied by any of the explicit rules, then a default rule is
applied.

Figure 2.2: The idea of the packet filter firewall

Structure
We next describe the structure (static view) of the solution and some
dynamic aspects in the form of sequence diagrams for a use case.

Figure 2.3 shows the class diagram for an external host requesting access
to a local host (a server) through a Packet Filter Firewall (PFFirewall).
The institution policies are embodied in the objects of class Rule collected
by the rule base RuleBase. The rule base includes data structures and

operations to manage rules in a convenient way. The rules in this set are
ordered and can be explicit or default.

Figure 2.3: Class diagram for Packet Filter Firewall pattern

Dynamics
We describe the dynamic aspects of the Packet Filter Firewall using a
sequence diagram for one of its use cases (Figure 2.4). There is a
symmetrical use case, ‘Filtering an outgoing request’, which we omit for
briefness. We also omit use cases for adding, removing or reordering rules
because they are straightforward. (Some authors describe the use case
scenario more informally; we also do this at times in this book.)

Figure 2.4: Sequence diagram for filtering a client’s request

Use Case: Filtering a Client’s Request – Figure 2.4
Actors A host in an external network (client).

Precondition An existing set of rules to filter the request must be in place in the firewall.
Description 1 An external host requests access to the local host.

2 A firewall filters the request according to a set of ordered rules. If none of the
explicit rules in the rule set allows or denies the request, a default rule is used for
making a decision.
3 If the request is accepted, the firewall allows access to the local host.

Alternate
flow

The request is denied.

Postcondition The firewall has accepted the access of a trustworthy client to the local host.

Implementation
The objective of this section is to describe what one should consider when
implementing the pattern. This can be a set of general recommendations, or
a sequence of what to do to use the pattern. It may include some sample
code, if appropriate. It is possible to add details of how some products
implement this pattern, for example how a particular firewall is
implemented by a specific company.

1 Define an institution policy about network access, classifying sites
according to our trust in them.
2 Convert this policy into a set of access rules. This can be done
manually, which may be complex for large systems. An alternative is
using an appropriate commercial product.
3 Write the rules for each firewall. Products such as Solsoft and others
automatically propagate the rules to each registered firewall.
4 Configure the corresponding firewalls according to standard
architectures. A common deployment architecture is the Demilitarized
Zone (DMZ) [Sch06b].

Now we can see what happens in the example after the pattern solution
has been applied.

Example Resolved
We were able to trace the addresses of our attackers and we got a firewall
to block requests from those addresses from reaching our system. We also
made a list of addresses of inappropriate sites and blocked access to them

from the hosts in our network. All this reduced the number of attacks and
helped control the behavior of some of our employees.

Consequences
The Consequences section indicates the benefits and liabilities of the
solution embodied in this pattern. The benefits should match the forces in
the Problem section. Benefits that do not correspond to any force may
appear. For our example pattern a truncated list might be as shown below.

The Packet Filter Firewall Pattern offers the following benefits:
 A firewall transparently filters all the traffic that passes through it,

thus lowering the risk of communicating with potentially hostile
networks.
 It is easy to update the rule set to counter new threats.
 It is low cost, and is included as part of many operating systems and

simple network devices such as routers.
 It offers good performance: it only needs to look at the headers of IP

packets, not at the complete packet.
The Packet Filter Firewall Pattern has the following (possible) liabilities:

 The firewall’s effectiveness and speed may be limited due to its rule
set (order of precedence). Addition of new rules may interfere with
existing rules in the rule set; so a careful approach should be taken to
adding and updating access rules.
 The firewall can only enforce security policies on traffic that goes

through the firewall. This means that one must make changes to the
network to ensure that there are no other paths into its hosts.
 An IP-level firewall cannot stop attacks coming through the higher

levels of the network. For example, a hacker could put malicious
commands or data in header data not used for routing, and in the
packet contents.

Known Uses
To accept this solution as a pattern, we should find at least three examples
of its use in real systems. We occasionally break this rule, for example
when we see that the solution is clearly generic.

This model corresponds to an architecture that is seen in commercial
firewall products, such as:

 ARGuE (Advanced Research Guard for Experimentation), which is
based on Network Associates’ Gauntlet Firewall.
 OpenBSD Packet Filtering Firewall, which is the basic firewall

architecture for the Berkeley Software Distribution system.
 The Linux Firewall, which is the basic firewall architecture used with

the Linux operating system.
 The Packet Filter Firewall is also used as an underlying architecture

for other types of firewalls that include more advanced features.

See Also
Finally, we relate our pattern to other known patterns. Those may be
complementary patterns, variations of our pattern or extensions of it.

The Authorization pattern [Fer01a] defines the standard security model
for the Packet Filter Firewall pattern. This pattern is also a special case of
the Single Access Point pattern [Sch06b], and it is the basis for other, more
complex, types of firewalls. The DMZ pattern [Sch06b] defines a way to
configure this pattern in a network. This pattern can also be combined with
the Stateful Inspection Firewall [Sch06b].

We also include a Variants section if appropriate.

2.5 Pattern Diagrams
Figure 2.5 describes the relationships of the patterns described in Chapter 4
using a pattern diagram in which rounded rectangles represent patterns and
arrows indicate the contribution of a pattern to another. For example,
IDENTITY PROVIDER creates identities to be used by an IDENTITY
FEDERATION1.

Figure 2.5: Pattern diagram for identity management patterns

This diagram is based on those used in [Bus96], but we have used UML
generalization notation to indicate patterns that are specializations of other
patterns; for example, SAML ASSERTION is a specialized type of
CREDENTIAL. We believe that pattern diagrams offer very important help
for designers to select which patterns to use at a given point [Fer06d]. This
value was confirmed in the experiment described in [Ysk 12]. Their use can
be improved by illustrating with a tool that can display them at different
stages of design [Fer06d].

2.6 How Can We Classify Security
Patterns?
According to [Hey07a], in 2007 about 220 security patterns had been
described, but the paper’s authors considered only 55% of them to be core
patterns. [Haf11] considered 96 patterns to be core patterns. It is not clear
how many security patterns have been written, because several are the same
pattern with different names, or different patterns with the same name.
Patterns can also be defined at different architectural levels, which may lead
to several variants of the same pattern. We think of a computer system as a
hierarchy of layers, in which the application layer uses the services of the

database and operating system layers, which in turn execute on a hardware
layer. In fact, this structure (Layers) is a pattern in itself [Bus96], and was
reinterpreted as a security pattern in [Fer01a] and [Yod97].

[Avg05] classifies architectural patterns using the type of concerns they
address, for example layered structure, data flow, adaptation, user
interaction, distribution. We classified security patterns based on
architectural levels and concerns [Fer08b]. For example, access control can
be defined in the application and propagated to the database and to the
operating system. Architecture levels and security concerns are two
possible dimensions, both used in this book. Other classifications are
discussed in [Haf06].

We refined the basic classifications through the use of a multi-
dimensional matrix of concerns [Van09]. Each dimension of the matrix is a
distinct list of concerns along a single axis, with a simple concept and a set
of distinctions that define the categories. The categories along an axis or
dimension should be easily understood and represent widely-used and
accepted classifications related to that concept. For example, one dimension
would correspond to lifecycle stages, covering domain analysis,
requirements, problem analysis, design, implementation, integration,
deployment (including configuration), operation, maintenance and disposal.
The list of component source types forms another dimension. Types of
security response could form yet a third dimension, covering avoidance,
deterrence, prevention, detection, mitigation, recovery and investigation
(forensics). Cells at the intersections of two or more dimensions represent a
concern that is more specific than would be expressed by the list of
classifications in any one dimension. For example, with two dimensions we
can target security patterns for requirements when using COTS for
outsourced components. Similarly, we can target security patterns for
analysis and design with web services, and of those, more specifically,
patterns that address detection or recovery.

Figure 2.6 illustrates a mapping of design patterns in two lifecycle phases
and at different levels of architecture. Only a small sample of patterns is
shown. While all of the patterns in the figure are applicable to Service
Oriented Architecture, some apply more generally to other domains as well.
We grouped the patterns within Design along a secondary dimension with

Filtering, Access Control and Authentication. In the figure, we show
patterns from the domain analysis phase, where the developer would find
patterns that explain the domain standards and technologies later used in the
design phase. A developer might also navigate to adjoining analysis phase
cells (not shown) to look for general patterns on Filtering, Access Control
and Authentication. While the patterns are found in these locations in the
matrix, understanding their role in a system, and how they relate to one
another, still requires a pattern language diagram and other tools and
methods for pattern application.

Figure 2.6: A matrix of patterns

The patterns presented in this book are grouped by concern, and within
that, by the architectural level at which they would be used.

2.7 Pattern Mining
While applying security patterns in a design may not require a deep
knowledge of security, mining security patterns does require such
knowledge: you need to understand what mechanisms exist to prevent
threats and need some abstraction capability to see the common aspects of
such mechanisms. This is how we have found most of our patterns.
Designers working on a project where security is an important issue, in
addition to using security patterns from a catalog, should also be able to

discover new patterns by abstracting recurrent security problems they may
encounter.

Schumacher proposes digging into security standards, in particular in the
Common Criteria [Sch01], to find patterns by observing the
recommendations and approaches to evaluation of this standard. Another
approach is to write patterns describing the main aspects of security
standards. The justification for this is that standards define generic
architectures and all implementations of the standard reflect it. We have
produced a variety of standards of this type [Fer 12c].

2.8 Uses for Security Patterns
The most common use for security patterns is to help application developers
who are not security experts to add security in their designs. With the help
of a good catalog and a tool for guidance, developers can select security
pattern for a complex application. Other than ours, there are few
methodologies that guide designers in selection of security patterns [Bla04]
[Mou06].

A set of abstract security patterns can be a good description of the
security requirements of a system [Che03] [Fer06c]. Requirements should
not include any implementation details, and abstract patterns define the
conceptual security needed without deciding about specific
implementations.

Another important use is as guidelines for designers of security
mechanisms to define the objectives or intended features of their products.
For example, a designer of a new XML firewall can find the basic functions
for such a device in the corresponding pattern, and use patterns describing
security standards to define its support for them in the product.

Another use is in the evaluation of existing systems. This may be the most
frequent application of security patterns in practice, when we need to
reinforce a legacy system or need to evaluate a system we are acquiring.

Making complex standards understandable is another valuable use. We
have distilled the essence of security standards for web services to make
them much easier to understand than by reading the corresponding

documents [Fer06a] [Fer 12c] [Has09b]. We also showed how to use these
patterns to simplify the standards for use in mobile devices [Del07c].

Finally, security patterns are a useful tool for teaching security concepts
[Fer05a]. Security models and mechanisms must be described in a precise
and systematic way. Our experience with formalizing complex access
control models has shown that the resulting expressions are not intuitive,
require mathematical sophistication, and make it difficult to describe
structural properties of the system. On the other hand, UML models are
quite intuitive and can conveniently describe structural properties.
However, they are less precise than formal methods. We can therefore take
a middle ground, integrating formal and informal techniques, describing our
models using UML notation enhanced with constraints expressed in OCL.

In the same way that general architectural patterns can be used for
recording architectural decisions, we can use security patterns to record
decisions we have made about handling security requirements [Fer07e].

The use of patterns for traceability is just starting to be explored.

2.9 How to Evaluate Security
Patterns and their Effect on
Security
There has been little work on evaluating patterns. How can one define their
quality? What makes a good pattern? Patterns are normally evaluated by
submitting them to one of the pattern conferences, such as Pattern
Languages of Programs (PLoP) or one of its variants, EuroPLoP, Latin
American PLoP or Asian PLoP. In these conferences, a pattern paper is
developed with the help of a ‘shepherd’ and then discussed in a workshop.
The pattern is then published and exposed for criticism, the intention being
to produce a better quality pattern. Of course, the ultimate evaluation comes
when developers use such patterns in their designs and find they are useful
in producing a robust system. But because security patterns have not been
used extensively in practice, it is hard to use experience to evaluate them.

[Ysk 12] evaluated their use with a student experiment; they added
annotations to the patterns to help in their selection and found this useful.

Formal modeling of patterns, combined with model checking, can prove
some of the properties of a pattern’s solution. Patterns are also evaluated for
understandability, how well they fit the context of the problem, how easy it
is to tailor them to the requirements and how reusable they are. In practice,
the evaluation applies mostly to the solution, but other aspects are just as
important. Any pattern that has gone through all these steps is believed to
be of good quality: this conclusion applies to security patterns as well.

Halkidis et al. evaluated 13 patterns from the Open Group catalog
[Bla04]. They used as criteria how well the patterns followed some
principles and the threats they could handle [Hal06]. The quality of pattern
documentation is an aspect considered by [Hey07a], which also uses
coverage of concerns as a further quality factor. We think that factors such
as how well a pattern implies security principles and its coverage of
concerns are inherent aspects, while documentation is not related to quality
of the pattern itself: a bad pattern cannot be improved, while a bad
description can be redone easily [Uzu 12a].

The evaluation of how patterns can improve security may be more useful.
Security is a quality of system architectures and we need ways to evaluate
the effect of patterns on improving this quality. But security is a quality for
which there are no numerical measures. It can only be defined in a relative
way with respect to another system, or by showing that a system satisfies
some predefined security properties. In particular, we are developing a
methodology for building secure systems based on adding security patterns
along the lifecycle and in all the architectural layers of the system
(described in Chapter 3).

Can we show that a system built in this way is secure in some sense? We
have explored some issues about evaluating the security of a system built
using security patterns [Fer 10a]. As far as we know, none of the secure
development methodologies [Uzu 12c] analyzed the security of a complete
system built using their approaches. Later, he evaluated the security risk of
systems that used specific security patterns by seeing how well they
handled a set of threats (the STRIDE set) [Hal08a].

Yskout et al tried to evaluate the use of patterns by an inventory [Ysk08]
and by experiment [Ysk 12]. Heyman tried to evaluate whether a pattern
was instantiated properly during design and was working appropriately at
run time [Hey07a]. [Bre08] used an enterprise metamodel to perform
quantitative risk evaluation.

2.10 Threat Modeling and Misuse
Patterns
To design a secure system, we first need to understand the possible threats
to the system. Without this understanding we may produce a system that is
more expensive than necessary and that has a large performance overhead.
We have proposed a systematic approach to threat identification, starting
from the analysis of the activities in the use cases of the system and
postulating possible threats [Fer06c]. This method identifies high-level
threats such as ‘the customer can be an imposter’, but once the system is
designed. we need to see how the chosen components could be used by the
attacker to reach their objectives.

The misuse pattern describes, from the point of view of the attacker, how
a type of attack is performed (what units it uses and how), analyzes ways of
stopping the attack by enumerating possible security patterns that can be
applied for this purpose, and describes how to trace the attack once it has
happened by appropriate collection and observation of forensic data. It also
describes precisely the context in which the attack may occur. We have
produced several misuse patterns, some of which are described in Chapter
14. Misuse patterns should not be confused with attack patterns [Hog04]
[Whi01], which are specific actions to take advantage of a vulnerability, for
example producing a buffer overflow. Okubo defined two other types of
patterns with similar objectives [Oku11].

2.11 Fault Tolerance Patterns

Reliability and fault tolerance aim to control accidental errors, not
intentional attacks. However, some of their aspects are common to security,
and of course systems that need security very often also need reliability. We
have produced a few patterns of this type [Buc09a] and we are writing a
survey of them. We also combined some of them to produce Secure
Reliability and Reliable Security patterns [Buc11]. We have not included
any of these patterns in this book, but some catalogs of security patterns,
such as [Bla04], include several of them.

1We use this uppercase notation, for example ‘IDENTITY PROVIDER’,
to refer to patterns in this book.

CHAPTER 3

A Secure Systems Development
Methodology

By three methods we may learn wisdom: first, by reflection, which is
noblest; second, by imitation, which is easiest; and third by experience,
which is the bitterest.

Confucius

3.1 Adding Information to Patterns
A big problem for designers is to know where to apply the patterns. For an
expert on security this aspect should not be a problem, but for a designer
with little experience of security it can be a daunting task. Guiding the
designer in the selection of patterns along the development lifecycle is very
important in getting patterns accepted and used by developers.

As a possible approach to simplifying the use of patterns by designers, we
can define extended patterns that include more information about their use:

 Secure semantic analysis patterns (SSAPs). In this approach a SAP is
made secure by adding security patterns after analyzing its use cases
and its possible threats. A SAP is a pattern combining a set of basic use
cases [Fer00]. For example, we produced a set of secure functions for
law firms [Fer07c]. The work described in [Rod07] is also related to
this topic.
 Enterprise security patterns (ESPs) [Mor12]. An enterprise security

pattern combines a wide range of items describing generic enterprise
security architectures that protect a set of information assets in a
specific context. They are a more comprehensive type of pattern that
can handle more threats, to facilitate the selection and tailoring of

security policies, patterns, mechanisms and technologies for designers
when building enterprise security architectures.
 Tags [Ysk 12]. Tags include the security objective, the pattern

applicability, trade-off labels (impact on other concerns) and
relationships between patterns.

Another approach is to define a complete methodology that guides the
designer at each step. [Uzu 12c] surveys the methodologies that have been
proposed up to now. Any methodology should start from some basic
principles, of which the two most important are:

 Security constraints should be defined at the highest layer, where their
semantics are clear, and propagated to the lower levels, which enforce
them.
 All the layers of the architecture must be secure.

These principles fit well with the ‘security context’, defined in [Sch03], a
set of lifecycle phases and hierarchical layers.

3.2 A Lifecyle-Based Methodology
There is already consensus that security must be applied throughout the
complete lifecycle: adding security at the end of the development lifecycle
has been shown to be insufficient. This means that every methodology for
building secure systems, using patterns or not, must consider all stages of
the lifecycle. We understand the lifecycle to encompass the use of the
platform, not just the application levels. Security depends on all levels and
must be considered from the beginning. Our use of patterns is guided by
these principles. We can define patterns at all levels, which allows a
designer to ensure that all levels are secured, and also makes propagating
high-level constraints to lower levels easier.

A better approach is extending a development process to incorporate
security in all the stages of the lifecycle: this makes it more acceptable to
practitioners. The most common lifecycle process approaches are the
Rational Unified Process (RUP) and Agile methodologies [Bra 10]. Both
have several variants. We use the standard RUP as the basis for our
approach.

A fundamental idea in our proposed methodology is that security
principles must be applied at every development stage, and that each stage
can be tested for compliance with those principles. Some approaches to
object-oriented development already emphasize tests at every stage.

We first sketch a secure software development cycle that we consider
effective for building secure systems, then we discuss each stage in detail.
Figure 3.1 shows a secure software lifecycle. The white arrows show where
security can be applied, while the black arrows show where we can audit
compliance with security policies:

Figure 3.1: Secure software lifecycle

 From the requirements stage we generate secure use cases.
 From the analysis stage we generate authorization rules that apply to

the conceptual model.
 From the design stage we enforce rules through the architecture.
 In the implementation, deployment and maintenance stages, language

enforcement of the countermeasures and rules is required.
Security verification and testing occurs at every stage of development. We

describe the details of each stage below.
 Domain analysis stage. Conceptual models to cover areas relevant to

the type of applications we are building are defined. Legacy systems are
identified and their security implications analyzed. General security or
reliability constraints can be applied at this stage.
 Requirements stage. Use cases define the required interactions with

the system. Applying the principle that security must start from the
highest levels, it makes sense to relate attacks to use cases and develop

what we call secure use cases. We study each action within a use case
and see which attacks are possible [Fer06c], then determine which
policies would stop these attacks. From the use cases we can also
determine the required rights for each actor, and thus apply a need-to-
know policy. Note that the set of all use cases defines all the uses of the
system; from all the use cases we can determine all the rights for each
actor. The security test cases for the complete system can also be
defined at this stage. Risk analysis should also be applied at this stage.
 Analysis stage. Analysis patterns, and in particular semantic analysis

patterns, can be used to build the conceptual model in a more reliable
and efficient way [Fer00]. Security patterns describe security models or
mechanisms. We can build a conceptual model in which repeated
applications of a security pattern realize the rights determined from use
cases. In fact, analysis patterns can be built with predefined
authorizations according to the roles in their use cases. Then we only
need to additionally specify the rights for those parts not covered by
patterns. We can then start to define mechanisms (countermeasures) to
prevent attacks.
 Design stage. We express the abstract security patterns identified in

the analysis stage in the design artifacts; for example interfaces,
components, distribution and networking. Figure 3.2 shows some
possible attacks to a system. Design mechanisms are selected to stop
these attacks. User interfaces should correspond to use cases, and may
be used to enforce the authorizations defined in the analysis stage.
Secure interfaces enforce authorizations when users interact with the
system. Components can be secured by using authorization rules for
Java or .NET components.

Figure 3.2: Typical attacks to the layers of a system

 Distribution provides another dimension to which security restrictions
can be applied. Deployment diagrams can define secure configurations
to be used by security administrators. A multilayer architecture is
needed to enforce the security constraints defined at the application
level. In each level we use patterns to represent appropriate security
mechanisms. Security constraints must be mapped between levels.
 Implementation stage. This stage requires reflecting in the code the

security rules defined in the design stage. Because these rules are
expressed as classes, associations and constraints, they can be
implemented as classes in object-oriented languages. In this stage we
can also select specific security packages or COTS components, for
example a firewall product or a cryptographic package.
 Deployment and maintenance stages. Our methodology does not yet

address issues in these stages. When the software is in use other
security problems may be discovered by users. These problems can be
handled by patching, although the amount of patching after applying
our approach should be significantly smaller compared to current
systems.

If necessary security constraints can be made more precise by using
Object Constraint Language (OCL) [War03a] in place of textual constraints.
Patterns for security models define the highest level of the architecture. At
each lower level we apply the model patterns to specific mechanisms that

enforce these models. In this way we can define patterns for file systems,
web documents, J2EE components and so on. We can also evaluate new or
existing systems using patterns. If a system doesn’t contain an embodiment
of a correct pattern, it cannot support the corresponding secure model or
mechanism.

3.3 Using Model-Driven
Engineering
Metamodels describe sets of related concepts that are instantiated together
(maybe partially) as part of a methodology or procedure to design a system.
The UML class diagrams that describe the solutions of patterns are
metamodels that are instantiated to apply security, reliability or some other
property to the functional aspects of an application. Metamodels are useful
for understanding the security design process and in the implementation of
model-driven engineering (MDE) approaches. Alternatives or complements
could be the use of ontologies: an ontology is a logical theory making
precise the intended meaning of a formal vocabulary. Ontologies have been
used to organize repositories for security patterns [Dri05].

Figure 3.3 shows a metamodel connecting threats and failures to patterns
[Fer11c]. In the diagram, a threat can be neutralized by a security policy.
Similarly, a failure can be neutralized by a reliability policy. Policies may
also include regulations and institution policies. Security and reliability
policies are realized by security and reliability patterns, respectively. A
policy realization pattern is a pattern that realizes any type of policy and
consists of a few classes and associations. Security and reliability patterns
are special cases of policy realization patterns.

Figure 3.3: Metamodel for requirements and patterns

We have done some work on MDE [Del08], but we need to use it more to
make this methodology easier to use, by automating parts of it and adding
appropriate tools. [Del08] proposed a metamodel to go from the analysis to
a design model. [Ysk08] presented a set of transformations for specific
security requirements: delegation of execution, authorization and auditing,
using a metamodel tailored for these requirements. A sub-product of MDE
is traceability; it now becomes easier to trace back the effect of changes in
the code.

It is clearly fundamental to have some methodology for applying the
patterns. We considered three approaches here:

 Adding more information to each pattern.
 A stage-by-stage approach applied to an existing lifecycle process.
 Model-driven engineering, in which we transform models from stage

to stage following metamodels and rules.

Part II

Patterns

CHAPTER 4

Patterns for Identity Management

He allowed himself to be swayed by his conviction that human beings are
not born once and for all on the day their mothers give birth to them, but
that life obliges them over and over again to give birth to themselves.

Gabriel García Márquez, ‘Love in the Time of Cholera’
‘Who are you?’ said the Caterpillar. Alice replied, rather shyly, ‘I – I
hardly know, Sir, just at present – at least I know who I was when I got up
this morning, but I think I must have been changed several times since
then’.

Lewis Carroll, ‘Alice in Wonderland’

4.1 Introduction
The development of software has recently changed significantly.
Applications are typically distributed and built from a variety of
components, which are themselves developed ad hoc, bought or outsourced.
The context for which these applications are intended has also evolved:
users have become mobile and access applications from diverse devices that
are more vulnerable to theft, eavesdropping or other attacks. In addition,
with the ubiquity of computing, users may need to access a wider range of
applications, which may not be known to them in advance. The increasing
importance of web or cloud services is another important factor. So in many
cases there is a need for dynamic trust establishment and identity exchange
protocols, and whatever security model is used must support these aspects.

A user may not be known in advance by the resource manager at the time
of the request, and consequently their identity may need to be transmitted to
the resource’s domain. Traditional models don’t address the dynamic

aspects of identity management. Furthermore, the channels of
communication between the participating entities are much more vulnerable
than for example in operating system design, or within the boundaries of an
organization’s computer network.

A decision to grant access must be based on the service’s access control
rules and the user’s degree of trustworthiness. So far there is no accepted
way to evaluate this degree of trustworthiness. One solution is to leverage
the existing trust relationships between a user and the services that ‘know’
the user, and propagate identity information about the user to other services
[Jos05]. A large amount of work has been done on the propagation of
identity information [Bha05] [Mad05] [Rod]. In particular, web services
standards have been published that deal with identity management and trust.
However, currently web services standards tend to overlap, and how we can
integrate them with other components to produce secure applications is not
clear. Our patterns may contribute to making the implementation for trust
simpler.

Figure 4.1 describes the relationships of the patterns described in this
chapter, and associated patterns, using a pattern diagram. We use UML
generalization to indicate patterns that are specializations of other patterns;
for example, the SAML ASSERTION is a specialized type of
CREDENTIAL. A security domain is a set of resources in which the
administration of security is performed by a unique entity, which typically
stores identity information about the subjects1 of the domain:

Figure 4.1: Pattern diagram for identity management

 The IDENTITY PROVIDER pattern centralizes the administration of
a security domain’s users, creating and managing identities for their
credentials.
 The CIRCLE OF TRUST pattern represents a federation of service

providers that share trust relationships.
 The IDENTITY FEDERATION pattern allows the federation of

multiple identities across multiple organizations under a common
identity. In web services environments, this pattern relies on the SAML
ASSERTION pattern, which provides a unifying format for
communicating identity information between different security domains
[Fer06d].
 CREDENTIALs carry subjects’ identities, and may also carry

authorization and descriptive information for that subject.
 The LIBERTY ALLIANCE IDENTITY FEDERATION pattern

describes a specific architecture for an identity federation.
 The Liberty Alliance PAOS Identity Service pattern further

specializes that standard to apply it to wireless systems.
All these patterns are described in this chapter with the exception of

CREDENTIAL (Chapter 5), SAML ASSERTION (Chapter 11) and Liberty
Alliance PAOS Identity Service. The patterns in this chapter were published

in [Del06] and [Fer06d]; Nelly Delessy and Maria M. Larrondo-Petrie were
coauthors.

We consider CIRCLE OF TRUST, IDENTITY PROVIDER, IDENTITY
FEDERATION and CREDENTIAL as abstract patterns, independent of
any specific platform-oriented implementation (see Chapter 2 and
[Fer08a]). LIBERTY ALLIANCE IDENTITY FEDERATION, Liberty
Alliance PAOS Identity Service and SAML ASSERTION are concrete
patterns that apply to web services. The CREDENTIAL pattern relates this
diagram to the patterns in Chapter 5 (Authentication), where we describe
how we use identities to validate the user access to a system.

4.2 Circle of Trust
The CIRCLE OF TRUST pattern allows the formation of trust relationships
among service providers to allow their subjects to access an integrated and
more secure environment.

Example
Our university had different ways to access different services. For each
service, one needed a different protocol and to remember a different
password. This was cumbersome and prone to error; it was also insecure,
because people would write their multiple passwords on their office bulletin
boards.

Context
Service providers that provide services to consumers (subjects) over large
systems such as the Internet.

Problem
In such large open environments, subjects are typically registered (have
accounts) with unrelated services. Subjects may have no relationships with
many other services available in the open environment. It may be
cumbersome for the subject to deal with multiple accounts, and it may not

be secure to build new relationships with other services, since identity theft
or violation of privacy can be performed by rogue services. How can we
take advantage of relationships between service providers to avoid the
inconvenience of multiple log-ins and to select trusted services?

The solution to this problem must resolve the following forces:
 Service providers are numerous on public networks. It can be

cumbersome, indeed impossible, for each service provider to define
relations with every other provider.
 The service providers’ infrastructures for their subjects’ login may be

implemented using different technologies.

Solution
Each service provider establishes business relationships with a set of other
service providers. These relationships are materialized by the existence of
operational and possibly business agreements between services. Such
relationships are trust relationships, since each service provider expects the
other to behave according to the operating agreements. Therefore, a circle
of trust is a set of service providers that have business and operational
relationships with each other – that is, that trust each other. Operational
agreements could include information about whether they can exchange
information about their subjects, for example, and how and what type of
information can be exchanged. Business agreements could describe how to
offer cross-promotions to their subjects. Service providers need to agree on
operational processes before their users can benefit from the seamless
environment.

Structure
Figure 4.2 shows a UML class diagram with an OCL constraint describing
the structure of the solution. A CircleOfTrust includes several
ServiceProviders, who trust each other, as described by the OCL
expression.

Figure 4.2: Class diagram for the CIRCLE OF TRUST pattern

Implementation
Operational agreements should include a means to concretely enable trust,
such as the sharing of a secret key or the secure distribution of certificates.
The providers have to exchange credentials through some kind of external
channel to trust and recognize each other.

Example Resolved
Our university can now trust the identity providers who are members of our
federation, so we do not have to worry that they will misuse our
information.

Consequences
The CIRCLE OF TRUST pattern offers the following benefits:

 The subjects can interact more securely with (potentially unknown)
trusted services from the circle of trust.
 The services can provide a seamless environment to the subjects, and

can exchange information about their users by using operating
agreements that describe what common technologies to use.

Liabilities include keeping the participants synchronized in the presence of
changes.

Known Uses
 Identity federation systems and models such as the LIBERTY

ALLIANCE IDENTITY FEDERATION standard (page 44).
 PayPal has a variety of partners that trust their payment system,

including Verifone and Equinox [Pay].

See Also
 IDENTITY PROVIDER (below) and IDENTITY FEDERATION

(page 38).
 LIBERTY ALLIANCE IDENTITY FEDERATION (page 44).
 [Niza 10] formally discusses the CIRCLE OF TRUST.
 CREDENTIAL (page 62).

4.3 Identity Provider
The IDENTITY PROVIDER pattern allows the centralization of the
administration of subjects’ identity information for a security domain.

Example
Having applied the CIRCLE OF TRUST pattern, we can trust the identity
providers who are members of our federation, but we still have a variety of
identities.

Context
One or several resources, such as web services, CORBA services,
applications and so on that are accessed by a predetermined set of subjects.
The subjects and resources are typically from the same organization.

Problem
Each application or service may implement its own code for managing
subjects’ identity information, leading to an overloading of implementation
and maintenance costs that may lead to inconsistencies across the
organization’s units.

Solution
The management of the subjects’ information for an organization is
centralized in an IDENTITY PROVIDER, which is responsible for storing

and propagating parts of the subjects’ information (that form their identity)
to the applications and services that need it.

We define a security domain as the set of resources whose subjects’
identities are managed by the IDENTITY PROVIDER. Typically, the
IDENTITY PROVIDER issues a set of credentials to each subject that will
be verified by the accessed resources. Notice that the security domain is a
special kind of CIRCLE OF TRUST within an organization.

Structure
Figure 4.3 shows a UML class diagram describing the structure of the
solution. This pattern combines the CIRCLE OF TRUST, making explicit
its Resources and specializing ServiceProvider to the IdentityProvider.
Subjects are identified using CREDENTIALs given by a specific identity
provider.

Figure 4.3: Class diagram for the IDENTITY PROVIDER pattern

Example Resolved
Now that we can trust the identity providers who are members of our
federation and have a centralized identity managed by a specific identity
provider, we do not need multiple identities.

Consequences
The IDENTITY PROVIDER pattern offers the following benefits:

 Maintenance costs are reduced
 The system is consistent in terms of its users

It also suffers from the following liability:
 The IDENTITY PROVIDER can be a bottleneck in the organization’s

network.

Known Uses
 Identity management products, such as IBM Tivoli [IBMc], Sun One

Identity Server [SunC], Netegrity’s SiteMinder and WSO2 [WSO].
 SAP NetWeaver Identity Management [SAP] manages user access to

applications by providing a central mechanism for provisioning users in
accordance with their current business roles. It also supports related
processes, such as password management, self-service and approvals
workflow.
 The Empower Identity Manager is oriented to cloud computing

[emp]. These products use SAML 2.0 (Chapter 11).

See Also
IDENTITY FEDERATION (below) uses this pattern, as well as the
CREDENTIAL (page 62) and CIRCLE OF TRUST (page 34) patterns.

4.4 Identity Federation
The IDENTITY FEDERATION pattern allows the formation of a
dynamically created identity within an identity federation consisting of
several service providers. Therefore, identity and security information about
a subject can be transmitted in a transparent way for the user among service
providers from different security domains.

Example
Having a centralized identity is not much good unless we can use it in many
places. We need some structure to allow this behavior.

Context
We have several security domains in a distributed environment that trust
each other. A security domain is a set of resources (web services,
applications, CORBA services and so on) in which administration of
security is performed by a unique entity, which typically stores identity
information about the subjects known to the domain. Subjects can perform
actions in one or more security domains.

Problem
There may be no relationship between some of the security domains
accessed by a subject. Thus, subjects may have multiple unrelated identities
within each security domain. Consequently, they may experience multiple
and cumbersome registrations, authentications and other identity-related
tasks prior to accessing the services they need.

How can we avoid the inconvenience of multiple registrations and
authorizations across security domains? The solution to this problem must
resolve the following forces:

 The identity of a user can be represented in a variety of ways in
different domains.
 Parts of a subject’s identity within a security domain may include

sensitive information that should not be disclosed to other security
domains.
 The identity and security-related information in transit between two

security domains should be kept confidential, so that eavesdropping,
tampering or identity theft cannot be realized.
 A subject may want to access a security domain’s resources in an

anonymous way.

Solution
Service providers, which are normally part of a security domain in which
the local identity of subjects is managed by an identity provider, form
identity federations by developing offline operating agreements with other
service providers from other security domains. In particular, they can agree
about their privacy policies.

In a security domain, the local identity associated with a user consists of a
set of attributes. Some of those attributes can be marked as confidential and
should not be passed to other security domains. A federated identity is
created gradually and transparently by gathering some of a subject’s
attributes from its local identities within an identity federation. Therefore,
identity and security information about a subject can be transmitted
between service providers from the same identity federation transparently to
the user. In particular, its authentication status can be propagated to perform
single sign-on within the identity federation.

Figure 4.4 illustrates an example of how security domains and identity
federations can coexist: a security domain is typically a circle of trust
within an organization, whereas an identity federation is a circle of trust
whose members can come from different organizations.

Figure 4.4: Federation and domains

Structure
Figure 4.5 shows a UML class diagram with an OCL constraint describing
the structure of the solution. An IdentityFederation consists of a set of
ServiceProviders which provide services to Subjects. A Subject has
multiple LocalIdentities with some ServiceProviders. A
LocalIdentity can be described as a set of Attributes of the Subject.

Figure 4.5: Class diagram for the IDENTITY FEDERATION pattern

A Subject can have several FederatedIdentities. This
FederatedIdentity is composed of a union of attributes from the
LocalIdentities of the IdentityFederation. An IdentityProvider is
responsible for managing the LocalIdentities within a SecurityDomain,
and can authenticate any Subjects on behalf of any ServiceProvider of the
IdentityFederation. A Subject has been issued a set of Credentials that
collect information about its authentication status and its identity within a
SecurityDomain.

Dynamics

We illustrate the dynamic aspects of the IDENTITY FEDERATION pattern
by showing sequence diagrams for two use cases: ‘Federate two local
identities’ (Figure 4.6) and ‘Single sign on’ (Figure 4.7). The first use case
describes how a local entity invites another to join, and their mutual
authentication. The second use case shows how a subject, after receiving a
credential from an identity provider, uses it to access a new domain.

Figure 4.6: Sequence diagram for the use case ‘Federate two local
identities’

Figure 4.7: Sequence diagram for the use case ‘Single sign on’

Implementation
The identity federation can be structured hierarchically or in a peer-to-peer
manner. The most basic federation could be based on bilateral agreements
between two service providers. In the LIBERTY ALLIANCE IDENTITY
FEDERATION pattern (page 44), an IdentityFederation has an
IdentityProvider responsible for managing the federated identity,
whereas Shibboleth [Shi] defines a club as a set of service providers that
has reached some operating agreements.

In the LIBERTY ALLIANCE IDENTITY FEDERATION model, the
identity provider proposes incentives for other service providers to affiliate
with them and federate their local identities. Furthermore, no attribute can
be classified as private: privacy is achieved by letting the user provide their
consent each time its identity is federated.

Example Resolved
Having implemented an IDENTITY FEDERATION, we can visit different
services using the same identity for all of them.

Consequences
The IDENTITY FEDERATION pattern offers the following benefits:

 Subjects can access resources within the identity federation in a
seamless and secure way without reauthenticating in each new domain.
 Many different representations of the identity of a user can be

consolidated under the same federated identity.
 Subjects can classify some of their attributes as private. Therefore, an

identity provider can identify which attributes it should transmit to
other parties and which it should not.
 Parts of the security credentials issued about a subject can be

encrypted, so that the subject’s privacy can be protected.
 The security credential can be signed, so that its integrity and

authenticity is protected and attackers cannot forge security tokens or
change some of the subject’s attributes.
 A subject can access a security domain’s resources in an anonymous

way, since not all attributes from a local identity (such as a name) are
required to be federated.

The pattern also has some potential liabilities:
 Service providers need to have some kind of agreement before their

identities can be federated. They have to exchange credentials through
some external channel to trust and recognize each other.
 Even when a subject’s sensitive information is classified as private, a

security domain can still disclose the subject’s private information
secretly to other parties, thus violating the subject’s privacy.
 A security token can be stolen and presented by an attacker, resulting

in identity theft. This is alleviated by the use of expiration dates and
unique IDs for credentials.
 In spite of an expiration date and the unique ID feature of a credential,

which guarantees its freshness, the unconditional revocation of a
credential is not addressed in this solution.

Known Uses
 WS-Federation [Aja 13] is a proposed standard allowing web services

to federate their identities.
 Liberty Alliance is a standard that allows services to federate into

Identity Federations [Liba].

 Microsoft Account (previously Microsoft Wallet, Microsoft Passport,
.NET Passport, Microsoft Passport Network and Windows Live ID) is
an identity federation that lets users log in to a variety of web sites
using only one account [MAJ].
 Shibboleth is an open solution for realizing identity federation among

enterprises [Shi].

See Also
 LIBERTY ALLIANCE IDENTITY FEDERATION (below) is a

specialization of this pattern.
 CREDENTIAL (page 62).
 A Single Sign On pattern is shown in [Ste05].
 A formal description of identity management patterns is given in

[Niza 10].

4.5 Liberty Alliance Identity
Federation
The LIBERTY ALLIANCE IDENTITY FEDERATION pattern allows
merging of identities across multiple organizations under a federated
identity and following a common set of rules.

Example
Now that we have centralized identities, we can use them in different
places. However, our federation uses a variety of providers, following
different standards, and sometimes it is complex to visit some places. We
would like to simplify this sharing of resources.

Context
Service providers, such as financial institutions, entertainment companies,
Internet portals and so on, that offer services to users. A user typically has
accounts with several service providers. Those providers manage a set of

attributes of the user, such as a name, date of birth, social security number,
preferences and others, that constitute the user’s identity. Web services have
identities that can be used to access other services.

Problem
There may not be any relationship between service providers, thus users
may have multiple unrelated accounts. Consequently, they may experience
multiple and cumbersome registrations, authentications and other identity-
related tasks prior to accessing the services they need on the Internet.

How can we leverage a federated identity of a user on the Internet? The
solution to this problem is affected by the forces of IDENTITY
FEDERATION (page 39), and by the following additional forces:

 The identity of a user can be represented in a variety of ways by
different services.
 Parts of the user’s information may need to be kept confidential and

not shown to some service providers.

Solution
Service providers manage local accounts for their clients. They form
identity federations by developing offline operating agreements. Among
those service providers comprising an identity federation, at least one acts
as an identity provider, which is responsible for managing a federated
identity. A federated identity is the composite of several local identities.
Therefore, identity information about a user or service can be transmitted
between service providers in a way that is transparent to the subjects. In
particular, their authentication status can be propagated to perform single
sign-on within the identity federation. The subject has to provide their
consent so that each of their local identities can be federated.

Structure
Figure 4.8 illustrates the solution. An IdentityFederation consists of a set
of ServiceProviders which provide services to Subjects. At least one of
the ServiceProviders acts as the IdentityProvider, with which other
ServiceProviders affiliate. A Subject has multiple LocalIdentities with

some ServiceProviders. A LocalIdentity can be described as a set of
Attributes of the Subject.

Figure 4.8: Class diagram for the LIBERTY ALLIANCE IDENTITY
FEDERATION pattern

This Subject can have several FederatedIdentities. Each
FederatedIdentity is composed of several LocalIdentities. The
IdentityProvider is responsible for managing the FederatedIdentities,
and can authenticate any Subject on behalf of any ServiceProvider of the
IdentityFederation. A Subject has a set of
SAMLAuthenticationAssertions (Chapter 11) that collect information
about its authentication status with a ServiceProvider.

Dynamics

We illustrate the dynamic aspects of the LIBERTY ALLIANCE IDENTITY
FEDERATION pattern with sequence diagrams for two use cases: ‘Federate
two local identities’ and ‘Single sign on’.

Use Case: Federate Two Local Identities – Figure 4.9
Figure 4.9: Sequence diagram for the use case ‘Federate two local
identities’

Summary A Subject accesses a ServiceProvider and is asked to allow the federation of its
local identities between this ServiceProvider and one of the IdentityProvider.

Actors Subject, ServiceProvider, IdentityProvider.
Preconditions The IdentityProvider and the ServiceProvider are parts of a common identity

federation. The Subject has previously agreed to let the IdentityProvider manage
its federated identity. The Subject has been authenticated with the
IdentityProvider, which has issued a SAMLAuthenticationAssertion.

Description 1 A Subject sends a request to a ServiceProvider.
 2 The ServiceProvider accesses the SAMLAuthenticationAssertion previously

created by the IdentityProvider, detects that the Subject has been authenticated

with the IdentityProvider, and retrieves its IdentityProviderLocalID.
 3 The ServiceProvider requests its consent for federating the two local identities of

the Subject.
 4 The Subject consents to federate these local identities, and is requested to

authenticate with the ServiceProvider using its local identity.
 5 The ServiceProvider is now able to retrieve the Subject’s local identity.
 6 The ServiceProvider transmits this identity to the IdentityProvider along with

the IdentityProviderLocalID for the Subject.
 7 The IdentityProvider retrieves the identity corresponding to the

IdentityProviderLocalID.
 8 The IdentityProvider creates a FederatedIdentity and inserts the attributes

from both the retrieved LocalIdentity and the Identity received from the
ServiceProvider.

 9 The ServiceProvider transmits its response to the Subject.
Alternate
flows

If the Subject does not consent to federate the two identities, the user authenticates
with the ServiceProvider as usual and no identity information is exchanged.

Postcondition A FederatedIdentity, that is the union of the attributes from the two identities, has
been created.

Use Case: Single Sign On – Figure 4.10
Figure 4.10: Sequence diagram for the use case ‘Single sign on’

Summary A Subject requests access to a ServiceProvider. If the Subject has not been
authenticated by an IdentityProvider that is trusted by the ServiceProvider, the
ServiceProvider redirects the request to an IdentityProvider that can authenticate
the Subject and redirect it to the ServiceProvider.

Actors Subject, ServiceProvider, IdentityProvider.
Precondition The Subject has previously established identity federation between the

IdentityProvider and the ServiceProvider.
Description 1 A Subject sends a request to a ServiceProvider.
 2 The ServiceProvider checks if any SAMLAuthenticationAssertions have been

previously created by an IdentityProvider that it trusts.
 3 If the Subject has not been authenticated yet, the ServiceProvider redirects the

Subject towards IdentityProviders that it trusts, so that the Subject can
authenticate itself.

 4 The Subject chooses an IdentityProvider and authenticates itself.
 5 The IdentityProvider creates and transfers the Subject’s

SAMLAuthenticationAssertion in an authentication response.
 6 The Subject transparently resends a request to the ServiceProvider, this time

including its SAMLAuthenticationAssertion.
 7 The ServiceProvider can verify that the Subject has been authenticated and sends

its response back to the Subject.
Postcondition The access to the service offered by the ServiceProvider has been controlled based

on the identity provided by the IdentityProvider. If the Subject has already been
authenticated by the IdentityProvider, it does not need to reauthenticate.

Example Resolved
We decided to join the Liberty Alliance Federation. Now all our services
are uniform and can be accessed with the same credentials.

Consequences
The LIBERTY ALLIANCE IDENTITY FEDERATION pattern offers the
following benefits:

 Subjects can perform transactions within the identity federation in a
seamless and secure way.
 Many different representations of the identity of a user can be

consolidated under the same federated identity.
 There is no need to reauthenticate in each new domain.
 Subjects can control whether or not a local identity can be federated.

Thus parts of the user’s information may be kept confidential.
The pattern also has the following liabilities:

 Service providers need to have some kind of agreement before their
accounts can be federated. They have to exchange credentials through
some external channel to be able to trust and recognize each other.
 Both the subjects and the service providers from the identity

federation need to trust the identity provider.

Known Uses
 Nokia provides a framework for wireless web services based on the

LIBERTY ALLIANCE IDENTITY FEDERATION pattern (Nokia web
services framework).
 Several vendors use the LIBERTY ALLIANCE IDENTITY

FEDERATION pattern in their access management products: IBM
Tivoli Federated Identity Manager [IBMc], Sun Java System Access
Manager [SunC].

See Also
 SAML ASSERTION (page 279) is the fundamental building block for

implementing the LIBERTY ALLIANCE IDENTITY FEDERATION
pattern [Liba].
 The AUTHENTICATOR pattern (page 52) is used between the

subject and the Identity Provider [Sch06b].

1A subject is an active system component that is able to request
resources.

CHAPTER 5

Patterns for Authentication

This above all; to thine own self be true, and it must follow, as the night
the day, thou canst not then be false to any man.

William Shakespeare, ‘Hamlet’

5.1 Introduction
The previous chapter discussed how users are identified in a system. Before
they can perform any activities, both users and other systems must identify
themselves and be authenticated – that is, prove to the system that they are
who they say they are.

Identification and authentication (I&A) uses some kind of protocol to
establish identity. I&A is the basis for authorization and for logging: it
provides accountability. Once identity is verified, the system may provide a
proof of authentication to avoid further authentications.

Figure 5.1 shows how the patterns described in this chapter are
interrelated. Once a subject (a user or a system) has identified themselves to
the system, we need to verify that their identity is correct. This is the
function of the authentication function. AUTHENTICATOR is an abstract
pattern, and we show here two concrete versions: REMOTE
AUTHENTICATOR/AUTHORIZER and CREDENTIAL. CREDENTIALs
may have also authorization properties, discussed later. In distributed
systems where users may have access to several systems a Single Sign On
service is very convenient1. REMOTE
AUTHENTICATOR/AUTHORIZER and CREDENTIAL have dual
purposes; they can also be used for authorization if they include user rights.

Chapter 6 describes how to let users access specific resources once they
have been authenticated.

Figure 5.1: Relationships between the patterns in this chapter

AUTHENTICATOR was first published in [Fer03b] and is joint work
with John Sinibaldi. Remote Authenticator was first described in [War03a],
and was written with Reghu Warrier. CREDENTIAL is joint work with
Patrick Morrison [Mor06a].

5.2 Authenticator
When a subject identifies itself to the system, the AUTHENTICATOR
pattern allows verification that the subject intending to access the system is
who or what it claims to be.

Example
The computer system at Melmac State University has legitimate users who
use it to host their files. However, there is no way to ensure that a user who
is logged in is a legitimate user. When Melmac was a small school and
everybody knew everybody, this was acceptable and convenient. Now the
school is bigger and there are many students, faculty members and
employees who use the system. Some incidents have occurred in which
users impersonated others and gained illegal access to their files.

Context
Computer systems that contain resources that may be valuable because they
include information about business plans, user medical records and so on.

We only want subjects that have some reason to gain access to our system
to be able to do so.

Problem
How can we prevent imposters from accessing our system? A malicious
attacker could try to impersonate a legitimate user to gain access to their
resources. This could be particularly serious if the user impersonated has a
high level of privilege. How do we verify that a user intending to access the
system is legitimate?

The solution to this problem must resolve the following forces:
 Flexibility. A variety of users require access to the system and a

variety of system units exist with differently sensitive assets. We need
to be able to handle all this variety appropriately, or we risk security
exposures.
 Dependability. We need to authenticate users in a reliable and secure

way. This means using a robust protocol and a way to protect the results
of authentication. Otherwise, users may skip authentication, or illegally
modify its results, exposing the system to security violations.
 Cost. There are trade-offs between security and cost: more secure

systems are usually more expensive.
 Performance. If authentication needs to be performed frequently,

performance may become an issue.
 Frequency. We should not make subjects authenticate frequently.

Solution
Use a single point of access to receive the interactions of a subject with the
system and apply a protocol to verify the identity of the subject. The
protocol used may be simple or complex, depending on the needs of the
application.

Structure
Figure 5.2 shows the class diagram for this pattern. A Subject requests
access to the system. The Authenticator receives this request and applies a
protocol using some AuthenticationInformation. If the authentication is

successful, the Authenticator creates a ProofOfIdentity, which is
assigned to the subject to indicate that they are legitimate.

Figure 5.2: Class diagram for the AUTHENTICATOR pattern

Dynamics
Figure 5.3 shows the dynamics of the authentication process. A subject
User requests access to the system through the Authenticator. The
Authenticator applies some authentication protocol, for example by
verifying some information presented by the subject, and as a result a
ProofOfIdentity is created and assigned to the subject.

Figure 5.3: Sequence diagram for the use case ‘Authenticate subject’

Implementation
In centralized systems, the operating system controls the creation of a
session in response to the request by a subject, typically a user. The
authenticated user (represented by processes running on their behalf) is then
allowed to access resources according to their rights.

Some database systems have their own authentication systems, even when
running on top of an operating system. There are many ways to implement

authentication protocols, described in specific authentication patterns, for
example in REMOTE AUTHENTICATOR/AUTHORIZER (page 56).
Sensitive resource access, for example data in financial systems, requires
more elaborate process authentication than systems that handle lower-value
assets. Distributed systems may implement this function in specialized
servers.

Patterns for selecting authentication approaches are described in
[Sch06b].

Example Resolved
Melmac State University implemented an authentication system and now
only legitimate users can access their system. Illegal access to files has
stopped.

Consequences
The AUTHENTICATOR pattern offers the following benefits:

 Flexibility. Depending on the protocol and the authentication
information used, we can handle any types of users and we can
authenticate them in diverse ways.
 Dependability. Since the authentication information is separated, we

can store it in a protected area, to which all subjects may have at most
read-only access.
 Cost. We can use a variety of algorithms and protocols of different

strength for authentication. The selection depends on the security and
cost trade-offs. Three varieties include something the user knows
(passwords), something the user has (ID cards), or something the user is
(biometrics).
 Authentication can be performed in centralized or distributed

environments.
 Performance. We can produce a proof of identity to be used in lieu of

further authentication. This improves performance.
 Frequency. Using a token means that we do not need to authenticate

users.
The pattern also has the following potential liabilities:

 The authentication process takes some time: the overhead depends on
the protocol used.
 The general complexity and cost of the system increase with the level

of security.
 If the protocol is complex, users waste time and get annoyed.

Variants
Single Sign On. Single Sign On (SSO) is a process whereby a subject
verifies their identity and the results of this verification can be used across
several domains and for a given amount of time [Kin01]. The result of the
authentication is an authentication token, used to qualify all future accesses
by the user.

Known Uses
 Commercial operating systems use some form of authentication,

typically passwords, to authenticate their users.
 RADIUS (Remote Authentication Dial-In User Service) provides a

centralized authentication service for network and distributed systems
[Gar02] [Has02] – see REMOTE AUTHENTICATOR/AUTHORIZER
below.
 The SSL authentication protocol uses a PKI arrangement for

authentication (Chapter 10).
 SAML, a web services standard for security, defines one of its main

uses as a way to implement authentication in web services (Chapter 11).
 E-commerce sites such as eBay and Amazon.

See Also
 Distributed Authenticator [Bro99] discusses an approach to

authentication in distributed systems.
 The Distributed Filtering and Access Control framework includes

authentication [Hay00].

 REMOTE AUTHENTICATOR/AUTHORIZER (see below) provides
facilities for authentication and authorization when accessing shared
resources in a loosely-coupled distributed system.
 CREDENTIAL (page 62) provides a secure means of recording

authentication and authorization information for use in distributed
systems.
 Single Access Point and Check Point. See [Sch06b] [Yod97].

5.3 Remote
Authenticator/Authorizer
The REMOTE AUTHENTICATOR/AUTHORIZER pattern provides
facilities for authentication and authorization when accessing shared
resources in a loosely-coupled distributed system.

Example
A multinational corporation may have employees in more than one country,
say in the US and Brazil. The user authentication and authorization
information necessary to support an employee in the US is stored in the US
servers and the information to support that of a Brazilian employee is stored
in the Brazil servers. Now assume that an employee from the US is
traveling to Brazil and has the need to access some data from the Brazilian
database servers.
There are two possible ways to achieve this:

 Replicate the user information of the employee in the Brazilian server
and give them the proper authorizations to access the data.
 Borrow the user name of an employee in Brazil who has similar rights

and use that to access the required information.
Neither of these solutions are satisfactory. The system administrators will

be faced with creating and managing coordinated access to user accounts
within each of the multiple systems, to maintain the consistency of the
security policy enforcement. If the username of another employee is
borrowed, accountability is compromised.

Context
Loosely-coupled distributed systems such as the Internet that consist of a
variety of computational nodes, and in which some nodes need to share
resources. For example, a company with several divisions in different
countries.

Problem
A system with centralized authentication is easier to manage and potentially
more secure, but it is not flexible enough for distributed systems. How can
we provide authentication and authorization in a distributed environment
without the need for redundant storage of rights?

The solution to this problem must resolve the following forces:
 Non-redundancy. Storing user authentication and authorization

information at multiple locations makes it redundant, difficult to
administer and prone to inconsistencies.
 Rights transparency. Although authentication information may be

stored anywhere, this location should be transparent to users.
 Rights consistency. Users typically work in the context of some role,

and these roles should be standard across a variety of domains, at least
within a company or institution.
 Accountability. We need a way to keep users accountable when they

are accessing remote resources.

Solution
Set up a single entry point that can transparently redirect the user to the
correct server where their user login and access information can be
validated.

We can achieve this redirection by using a specialized
authentication/authorization server. This server is used for embedded
network devices such as routers, modem servers, switches and so on. The
authentication servers are responsible for receiving user connection
requests, authenticating the user, then returning all configuration
information necessary for the client to deliver service to the user.

Structure
Figure 5.4 shows this approach. The Client makes a request for a service
through a ProxyAuthenticator/Authorizer that represents the actual
server that contains the user login information. The request is routed to the
Authenticator/Authorizer, which validates it, based on the role of the
subject of the request and the rights of this role with respect to the
protection object1.

Figure 5.4: Class diagram for the REMOTE
AUTHENTICATOR/AUTHORIZER pattern

Dynamics
Typical systems use the following types of messages:

 Access-request. Sent by a client to request authentication and
authorization for a network access connection attempt.
 Access-accept. Sent by a server in response to an access-request

message. This message informs the client that the connection attempt is
authenticated and authorized.
 Access-reject. Sent by a server in response to an access-request

message. This message informs the client that the connection attempt is
rejected. A server sends this message if either the credentials are not
authentic or the connection attempt is not authorized.

 Access-challenge. Sent by a server in response to an access-request
message. This message is a challenge to the client that requires a
response.
 Accounting-request. Sent by a client to specify accounting

information for a connection that was accepted.
 Accounting-response. Sent by the server in response to the

accounting-request message. This message acknowledges the
successful receipt and processing of the accounting-request message.

A message consists of a header and attributes. Each attribute specifies a
piece of information about the connection attempt. The scenario of Figure
5.5 illustrates a proxy-based communication between a client and the
forwarding and remote servers:

Figure 5.5: Sequence diagram for client authentication

1 A client sends its access-request to the forwarding server.
2 The forwarding server forwards the access-request to the remote
server.
3 The remote server sends an access-challenge back to the forwarding
server.
4 The forwarding server sends the access-challenge to the client.
5 The client calculates a response for the challenge and forwards it to
the forwarding server via a second access-request.
6 The forwarding server forwards the access-request to the remote
server.

7 If the response matches the expected response, the remote server
replies with an access-accept, otherwise an access-reject.
8 The forwarding server sends the access-accept to the client.

Implementation
For this approach to work:

 Roles and access rights have to be standard across locations.
 Both servers and clients should support the base protocol.

Authorization functions are discussed in Chapter 6: we consider here only
authentication aspects. An authentication server can function as both a
forwarding server and a remote server, serving as a forwarding server for
some realms and a remote server for others. One forwarding server can act
as a forwarder for any number of remote servers. A remote server can have
any number of servers forwarding to it and can provide authentication for
any number of realms. One forwarding server can forward to another
forwarding server to create a chain of proxies. A lookup service is
necessary to find the remote server.

Figure 5.6 shows an example of a remote authentication dial-in user
service (RADIUS) system using a challenge-response approach. (More
details of the RADIUS system are shown in the next section.)

Figure 5.6: RADIUS challenge/response authentication

Example Resolved
When the US employee travels to Brazil he logs in a remote
authenticator/authorizer, which reroutes his request to the US server that
stores their login information.

Consequences
The REMOTE AUTHENTICATOR/AUTHORIZER pattern offers the
following benefits:

 Roaming permits two or more administrative entities to allow each
other’s users to dial in to either entity’s network for service.
 Storing the user login and access rights at a single location makes it

more secure and easy to maintain.
 The user’s login ID, password and other details are stored in the

internal RADIUS database, or can be accessed from an SQL database.

 The location where the user information is stored is transparent to the
user.
 Devices such as active cards [ACS] allow complex request/challenge

interactions.
The pattern also has some potential liabilities:

 The additional messages needed increase overhead, thus reducing
performance for simple requests. This is not a problem if remote
accesses are not very frequent.
 The system is more complex than a system that directly validates

clients.

Known Uses
RADIUS is a widely deployed IETF protocol enabling centralized
authentication, authorization and accounting for network access [Has02]
[Rig00]. Originally developed for dial-up remote access, RADIUS is now
supported by virtual private network (VPN) servers, wireless access points,
authenticating Ethernet switches, digital subscriber line (DSL) access and
other network access types [Hil].

With proxy RADIUS, one RADIUS server receives an authentication (or
accounting) request from a RADIUS client such as a network-attached
storage (NAS) system, forwards the request to a remote RADIUS server,
receives the reply from the remote server, and sends that reply to the client.
A common use for proxy RADIUS is roaming. Roaming permits two or
more administrative entities to allow each other’s users to dial in to either
entity’s network for service.

There are many commercially available RADIUS servers in use today.
These include:

 FreeRADIUS. FreeRADIUS Server [Frea] is a daemon for UNIX
operating systems that allows one to set up a RADIUS protocol server,
which is usually used for authentication and accounting of dial-up
users. FreeRADIUS is an open source product, and has all the benefits
open source provides.
 Steel-Belted Radius. Steel-Belted Radius is a complete

implementation of RADIUS. It provides full user authentication,

authorization and accounting capabilities.
Steel-Belted Radius fully supports proxy RADIUS; it can:
 Forward proxy RADIUS requests to other RADIUS servers.
 Act as a target server that processes requests from other RADIUS

servers.
 Pass accounting information to a target server, either to the one

performing the authentication or a different one.
 NavisRadius. NavisRadius is an implementation of the RFC standard

RADIUS protocol that provides authentication, authorization and
accounting (AAA) services. NavisRadius provides an integrated
network-wide remote access security solution for service providers and
carriers. NavisRadius supports the RADIUS standard as defined by the
IETF RADIUS RFC 2865 (RADIUS authentication) and 2866
(RADIUS accounting), and is used to provision a wide range of
network services.

Earlier authentication servers were used in products from CKS, MyNet
and Security Dynamics [CTR96].

See Also
 The whole architecture is an application of the Check Point pattern

[Sch06b] [Yod97]. It uses the Proxy pattern [Gam94] as a fundamental
component.
 User rights may be defined using a Role-Based Access Control model

[Fer01a] [Yod97].
 A pattern for authenticating distributed objects is given in [Bro99].
 The AUTHENTICATOR pattern (page 52) defines its abstract

properties.

5.4 Credential
The CREDENTIAL pattern provides a secure means of recording
authentication and authorization information for use in distributed systems.

Example
Suppose we are building an instant messaging service to be used by
members of a university community. Students, teachers and staff of the
university may communicate with each other, while outside parties are
excluded. Members of the community may use computers on school
grounds, or their own systems, so the client software is made available to
the community and is installed on the computers of their choice. Any
community member may use any computer with the client software
installed.

The client software communicates with servers run by the university in
order to locate active participants and to exchange messages with them. In
this environment, it is important to establish that the user of the client
software is a member of the community, so that communications are kept
private to the community. Further, when a student graduates, or an
employee leaves the university, it must be possible to revoke their
communications rights. Each member needs to be uniquely and correctly
identified, and a member’s identity should not be forgeable.

Context
Systems in which the users of one system may wish to access the resources
of another system, based on a notion of trust shared between the systems.

Problem
In centralized computer systems, the authentication and authorization of a
principal can be handled by that system’s operating system, middleware
and/or application software; all attributes of the principal’s identity and
authorization are created by and are available to the system. With
distributed systems this is no longer the case. A principal’s identity,
authentication and authorization on one system does not carry over to
another system. If a principal is to gain appropriate access to another
system, some means of conveying this information must be introduced.

More broadly, this is a problem of exchanging data between trust
boundaries. Within a given trust boundary, a single authority is in control,
and can authenticate and make access decisions on its own. If the system is

to accept requests from outside its own authority/trust boundary, the system
has no inherent way of validating the identity or authorization of the entity
making that request. How then do we allow external users to access some of
our resources?

The solution to this problem must resolve the following forces:
 Privacy. The user must provide enough information to grant

authorization, without being exposed to intrusive data mining.
 Persistence. The information must be packaged and stored in a way

that survives travel between systems, while allowing the data to be kept
private.
 Authentication. The data available must be sufficient for identifying

the principal to the satisfaction of the accepting system’s requirements,
while disallowing others from accessing the system.
 Authorization. The data available must be sufficient for determining

what actions the presenting principal is permitted to take within the
accepting system, while also disallowing actions the principal is not
permitted to take.
 Trust. The system accepting the credential must trust the system

issuing the credential.
 Generation. There must be entities that produce the credentials such

that other domains recognize them.
 Tamper freedom. It should be very difficult to falsify the credential.
 Validity. The credential should have an explicit temporal validity.
 Additional documents. It might be necessary to use the credential

together with other documents.
 Revocation. It should be possible to revoke the credential

conveniently.

Solution
Store authentication and authorization data in a data structure external to the
systems in which the data is created and used. When presented to a system,
the data (credential) can be used to grant access and authorization rights to
the requester. For this to be a meaningful security arrangement, there must
be an agreement between the systems which create the credential

(credential authority) and the systems which allow their use, dictating the
terms and limitations of system access.

Structure
In Figure 5.7 the Principal is an active entity such as a person or a
process1. The Principal possesses a Credential, representing its identity
and its authorization rights. A Credential is a composite describing facts
about the rights available to the principal. The Attribute may flag whether
it is presently enabled, allowing principal control over whether to exercise
the right implied by the Credential. An expiration date allows control over
the duration of the rights implied by the attribute.

Figure 5.7: Class diagram for the CREDENTIAL pattern

A Credential is issued by an Authority, and is checked by an
Authenticator or an Authorizer. Specialization of a Credential is
achieved through setting Attribute names and values.

Some specializations of Attributes are worth mentioning. Identity,
created by setting an attribute name to, say, ‘username’ and the value to the
appropriate username instance, shows that the subject has been
authenticated and identified as a user known to the Authenticator.
Privilege, named after the intended privilege, implies some specific ability
granted to the subject. Group and Role can be indicated in a similar fashion
to Identity.

Dynamics
There are four primary use cases:

 Issue credential, by which a credential is granted to the principal by
an authority.
 Principal authentication, where an authenticator accepts a credential

provided to it by a principal, and makes an access decision based on the
credential.
 Principal authorization, in which the principal is allowed access to

specific items.
 Revoke credential, in which a principal’s credential are invalidated.

Use Case: Issue Credential – Figure 5.8

Figure 5.8: Sequence diagram for the use case ‘Issue credential’

The Principal presents itself and any required documentation of its identity
to an Authority. Based upon its rules and what it ascertains about the
Principal, the Authority creates and returns a Credential. The returned data
may include an identity credential, group and role membership credential
attribute, and privilege credential attributes. As a special case, the Authority
may generate a defined ‘public’ Credential for Principals not previously
known to the system. This Credential is made available to
Authenticators which reference this Authority.
Use Case: Principal Authentication – Figure 5.9

Figure 5.9: Sequence diagram for the use case ‘Principal authentication’

The Principal requests authentication at an Authenticator, supplying its
name and authentication Credential. The Authenticator checks the
Credential and makes an access decision. There are different phases and
strengths of check that may be appropriate for this step, discussed in the
Implementation section. It is necessary for the Authenticator to be
established in conjunction with the original authority. Not shown in the
sequence diagram, but it is also optionally possible to forward the
authentication request and credentials to the authority for verification.
Use Case: Revoke Credential
If it is determined that a given principal should no longer have access to the
system, or that a principal’s credentials have been stolen or forged, the
authority can issue a revocation message to each authenticator and
authorizer. Once this message has been received, the authentication and
authorization subsystems reject future requests from the affected
credentials. If the principal is still authorized to use the system, new
credentials must be issued.

Implementation
The most significant factor in implementing the CREDENTIAL pattern is
to determine the nature of the agreement between the participating systems.
This begins with consideration of the functions to be provided by the
system to which credentials will give access, the potential users of those
functions, and the set of rights that are required for each user to fulfill its
role. Once these are understood, a clear representation of the subjects,
objects and rights can be developed. This representation forms the basis for
storing credentials in some persistent medium and sets the terms of
authentication and authorization. It also forms the basis for portability, as

persisted data may be placed on portable media for transmission to the
location(s) of its use1.

The problem with a clear representation of security rights is that potential
attackers can read them as well as valid participants in the systems in
question. In the physical world, anti-forgery devices for credentials use
techniques such as embedding the credential data in media that is too
expensive to be worth forging for the benefit received: drivers’ licenses and
other ID cards, passports and currency all are based on the idea that it is too
complex and costly for the majority of users to create realistic fakes.

In the digital world, however, copies are cheap. There are two common
means of addressing this. One is to require that credentials be established
and used within a closed context, and encrypting the communications
channels used in that context. The other is to encrypt the credentials when
they are issued, and to set up matching decryption on the authenticating
system. This further subdivides into ‘shared secret’ systems, in which the
issuing and accepting systems share the cryptographic keys necessary to
encrypt and decrypt credentials, and ‘public key’ systems, in which
participating systems can establish means for mutual encryption/decryption
without prior sharing. These design choices are part of the terms set by the
authority agreement under which the credentials apply. The authenticator
must use the same scheme as the authority. Kerberos tokens and X.509
certificates are examples of this that require more specific approaches
[Lop04].

As a simple example of ‘shared secret’ systems, consider a typical online
banking authority and authentication setup; at sign-up, the customer verifies
their identity to the bank, the authority. As part of the bank’s processing, it
creates customer data on its website, and allows the customer to create a
username and password to gain access to the account. This data is stored on
the bank’s web server, which serves as the authenticator. The customer later
presents their credentials through a browser to the web server, which
authenticates under the authority of the bank.

In implementing the ‘principal authentication’ use case, there are different
phases and strengths of check that may be appropriate. For example, when
entering my local warehouse club1, I need only show a card that looks like
a membership card to the authenticator standing at the door. When it comes

time to make a purchase, however, the membership card is checked for
validity, expiration date and ownership of the person presenting it. In
general, the authenticator is responsible for checking the authenticity of the
credentials themselves (anti-forgery), whether they belong to their bearer,
and whether they constitute valid access to the requested object(s).

Example Resolved
The university created a credential authority, ‘IM Registration’. It gave it
the responsibility of verifying identity and granting a username and
password, in the form of an ID card, to university community members
when they join the university community. This login embodies the authority
of the granting agency and that of the identity of the subject as verified by
the agency. The university defined policies such that members were
encouraged to keep their login information private.

The client software is coded to implement an authenticator when someone
wants to start a session. Access is granted or denied based on the results of
the authentication. Checks on the servers ensure that the member’s
credential is not expired.

Consequences
The CREDENTIAL pattern offers the following benefits:

 Fine-grained authentication and authorization information can be
recorded in a uniform and persistent way.
 A credential from a trusted authority can be considered proof of

identity and of authorization.
 It is possible to protect credentials using encryption or other means.

The pattern has the following potential liabilities:
 It might be difficult to find an authority that can be trusted. This can

be resolved with chains (trees) of credentials, by which an authority
certifies another authority.
 Making credentials tamper-resistant incurs extra time and complexity.
 Storing credentials outside of the systems that use them leaves system

authentication and authorization mechanisms open to offline attack.

Known Uses
This pattern is a generalization of the concepts embodied in X.509
Certificates, CORBA Security Service’s Credentials [And01], Windows
security tokens [Bro05], SAML assertions ([Hug05] and Chapter 11) and
the Credential Tokenizer pattern [Ste05]. Capabilities, as used in operating
systems, are another implementation of the idea (Chapter 6).

Passports are a non-technical example of the problem and its solution.
Countries must be able to distinguish between their citizens, citizens of
nations friendly and unfriendly to them, trading partners, guests and
unwanted people. There may be different rules for how long visitors may
stay, and for what they may engage in while they are in the country.
Computer systems share some of these traits: they must be able to
distinguish between members and non-members of their user community;
non-members may be eligible or ineligible to gain system access or
participate in transactions.

See Also
 Metadata-Based Access Control [Pri04] describes a model in which

credentials can be used to represent subjects.
 The CREDENTIAL pattern complements Security Session [Sch06b]

by giving an explicit definition of that pattern’s ‘session object’, as
extracted from several existing platforms.
 The Authenticator pattern [Bro99] and the REMOTE

AUTHENTICATOR/AUTHORIZER pattern ([War03b], also page 56)
describe types of authenticator.
 An Authorizer is a concrete version of the abstract concept of

Reference Monitor ([Sch06b] and Chapter 6).
 Delegation of credentials is discussed in [Wei06a].
 [Ste05] describes a Session Object pattern that ‘abstracts

encapsulation of authentication and authorization credentials that can be
passed across boundaries’. They seems to be talking about access rights
rather than credentials: credentials abstract authentication and
authorization rights.

 The CIRCLE OF TRUST pattern (page 34) allows the formation of
trust relationships among service providers in order for their subjects to
access an integrated and more secure environment. CREDENTIALs
can be used for identification in a circle of trust.

1We show this pattern as a variant of AUTHENTICATOR.

1Protection object refers to the object (data item or other resource) being
requested by the user.

1The principal is the responsible subject.

1It is important to note that ‘portability’ is used in a restricted sense here,
meaning only that the credential data can be read by a node of the system
not directly connected at the time of credential creation, and not
necessarily meaning that the data can be transferred for use in other
systems.

1In the US there are ‘warehouse clubs’, such as Costco and Sam’s, whose
members can buy goods at a discount.

CHAPTER 6

Patterns for Access Control

With the Berlin (defense) I was able to set up a fortress that he could
come near but not breach.

Vladimir Kramnik (ex-world chess champion)

6.1 Introduction
Once a subject has been granted access to a system, we need to control their
access to specific resources. The rights of the subjects of the system are
defined using some model of access control and expressed in the form of
authorization rules. Security models are a more precise and detailed
expression of policies and are used as guidelines to build and evaluate
systems, usually are described in a formal or semi-formal way.

Models can be discretionary or mandatory. In a discretionary access
control (DAC) model, users can be owners of data and can transfer their
rights at their discretion: that is, in a DAC model, there is no clear
separation of use and administration; users can be owners of the data they
create and act as their administrators. In a mandatory access control (MAC)
model, only designated users are allowed to grant rights, and users cannot
transfer them. Users and data are classified by administrators, and the
system applies a set of built-in rules that users cannot circumvent.

Orthogonal to this classification, there are several models for information
access control that differ in how they define and enforce their policies
[Gol06], [Sum97]. The most common are:

 An Access Matrix describes access by subjects (actors, entities) to
protected objects (data/resources) in specific ways (access types)
[Gol06] [Har76] [Sum97]. It is more flexible than the multilevel model
and it can be made even more flexible and precise using predicates and

other extensions. However, it is intrinsically a discretionary model in
which users own the data objects and may grant access to other
subjects. It is not clear who owns the information in companies and
institutions, and the discretionary property reduces security. This model
is usually implemented using access control lists (lists of the subjects
that can access a given object) or capabilities (tickets that allow a
process to access some objects).
 Role-Based Access Control (RBAC) collects users into roles based on

their tasks or functions and assigns rights to each role [San96]. Some of
these models [San96], [Tho98] have their roles structured as
hierarchies, which may simplify administration. RBAC has been
extended and combined in many ways.
 Attribute-Based Access Control (ABAC). This model controls access

based on properties (attributes) of subjects or objects. It is used in
environments where subjects may not be pre-registered [Pri04].
 The Multilevel Model organizes data using security levels. This model

is usually implemented as a mandatory model in which its entities are
labeled indicating their levels. The multilevel model is able to achieve a
high degree of security, although it can be too rigid for some
applications. Usually it is not possible to structure the variety of entities
involved in complex applications into strictly hierarchical structures.

While these basic models may be useful for specific domains or
applications, they are not flexible enough for the full range of policies
present in some of these applications [DeC02] [DeC05]. This is manifested
in the large variety of ad hoc RBAC variations that have been proposed,
most of which add specialized policies to a basic RBAC model. For
example, some models have added content or context-dependent access
[Cha01], delegation [Zha02], task-based access [Tho97] and relationships
between role entities [Bar99]. All these models effectively incorporate a set
of built-in access control policies and cannot handle situations not
considered by these policies, which means that a complex system may need
such models for specific users or divisions. The variety of access control
models makes it difficult for software developers to select an appropriate
model for the application they build.

The contents of the rules are defined by institution policies. Policies are
high-level guidelines defining the way an institution conducts its activities
in its business, professional, economic, social and legal environment. The
institution security policy includes laws, rules and practices that regulate
how an institution uses, manages and protects resources.

We present here several patterns for access control that correspond to the
models described on page 72 and some of their extensions or
generalizations. Figure 6.1 starts from the basic components of access
control to provide a more general approach to developing access control
models. This diagram can be the starting point that allows a designer to
select the type of access control they need in their application. Once this
abstract level is clear, we need to go to a software-oriented level, where we
can choose more specific approaches. The center of this diagram is
POLICY-BASED ACCESS CONTROL (PBAC, page 84) which indicates
that the rules represent access policies, which are in turn defined by a
Policy pattern (see Figure 6.1). The POLICY-BASED ACCESS
CONTROL pattern decides whether a subject is authorized to access an
object according to policies defined in a central policy repository. The
enforcement of these policies is defined by a Reference Monitor pattern.
Depending on its administration, PBAC can be mandatory or discretionary.
XACML is a type of PBAC-oriented Service-Oriented Architectures (SOA)
[Del07a], shown here as two patterns to separate its aspects of rule
definition and evaluation. Policies can be implemented as access control
lists (ACLs) or capabilities. The Reference Monitor may use a policy
enforcement point (PEP), a policy decision point (PDP), and other patterns
to describe the administrative structure of enforcement.

Figure 6.1: A classification of access control patterns

Authorization, RBAC, and multilevel patterns appeared in [Sch06b]; we
have revised and updated them. Policy-Based Authorization, Access
Control List and Capability are from [Del07a]. The Reified Reference
Monitor pattern is from [Fer09c], while the Controlled Access Session
pattern is from [Fer06e]. The Security Logger/Auditor pattern comes from
[Fer11d].

6.2 Authorization
Also known as Access Matrix
The AUTHORIZATION pattern describes who is authorized to access
specific resources in a system, in an environment in which we have

resources whose access needs to be controlled. The model indicates, for
each active subject, which resources the subject can access and what it can
do with them.

Example
In a medical information system we keep sensitive information about
patients. Unrestricted disclosure of this data would violate the privacy of
the patients, while unrestricted modification could jeopardize their health.

Context
A computing environment that has resources that have value for its users or
their institution.

Problem
We need a way to control access to resources, otherwise any active entity
(user, process) could access any resource and we could have confidentiality
and integrity problems, as well as misuse of network bandwidth or
peripheral devices.

How can we describe who is authorized to access specific resources in a
system? The solution to this problem must resolve the following forces:

 Independence. The resource control structure must be independent of
the type of resources and must apply to all of them.
 Flexibility. The resource control structure should be flexible enough

to accommodate different types of subjects and resources.
 Modifiability. It should be easy to modify the rights of active entities

in response to changes in their duties or responsibilities.
 Security. The resource control structure should be protected against

tampering.

Solution
Indicate, for each active subject that can access resources – objects or
protection objects (see page 58) – which resources it can access and how
(access type).

Structure
Figure 6.2 shows a class diagram of the entities involved. The Subject class
describes an active entity that attempts to access a resource
(ProtectionObject) in some way. The association between the Subject and
the ProtectionObject defines an authorization, from which the pattern gets
its name. The association class Right describes the access type (for example
read, write) the subject has to the corresponding object. Through this class
one can check the rights that a subject has on some object, or who is
allowed to access a given object.

Figure 6.2: Class diagram for the AUTHORIZATION pattern

Dynamics
Use cases include ‘Add a rule’, ‘Delete a rule’, ‘Modify a rule’, ‘Create
user’ and so on. We do not show their sequence diagrams here because they
are very simple.

Implementation
An organization, according to its policies, should define all the required
accesses to resources. The most common policy is need-to-know, in which
active entities receive access rights according to their needs (see the Least
Privilege pattern [Fer11d]). The AUTHORIZATION pattern is abstract and
many implementations of it are possible: the two most common approaches
are access control lists and capabilities. Access control lists (ACLs) are kept
with the protected objects to indicate who is authorized to access them,
while capabilities are assigned to processes to define their execution rights.
Access types should be application-oriented.

Example Resolved

A hospital using an authorization system can define rules that allow only
doctors or nurses to modify patient records, and only medical personnel to
read patient records. We can also define specific types of access for finer
control, for example readMedicine for an assistant nurse.

Consequences
The AUTHORIZATION pattern offers the following benefits:

 Independence. The pattern applies to any type of resource. Subjects
can be executing processes, users, roles, user groups. Protection objects
can be transactions, data, memory areas, I/O devices, files or other
resources. Access types are individually definable and can be
application-specific in addition to the usual read and write. It is easy to
add or remove authorizations.
 Security. Some systems separate administrative authorizations from

user authorizations for further security, on the principle of separation of
duties [Sum97]. Authorization rules can be protected in the same way
as other data structures such as relations.
 Flexibility. The rules apply to any type of subject or object.
 Modifiability. It is easy to add new rules to reflect policy changes.
 An access request may not need to specify the exact object in the rule:

the object may be implied by an existing protected object [Fer75].
Subjects and access types may also be implied. This reduces the
number of rules, at the cost of some extra processing time to deduce the
specific rule needed.

The pattern also has the following potential liabilities:
 If there are many users or many objects, a large number of rules must

be written. This makes administration difficult and error-prone.
 It may be hard for the security administrator to realize why a given

subject needs a right, or the implications of a new rule. There is no
semantic relation between subjects and objects.
 Defining authorization rules is not enough, we also need an

enforcement mechanism.

Variants

AUTHORIZATION is usually represented by an access matrix model,
which is the model usually described in textbooks, and may also include:

 Predicates or guards, which may restrict the use of the authorization
according to specific conditions, or provide content-dependent
authorization.
 Delegation of some of the authorizations by their holders to other

subjects through the use of a Boolean ‘copy’ flag [Sum97].
 Packet Filter Firewall [Sch06b] implements a variety of this pattern in

which the subjects and objects are defined by Internet addresses.
Figure 6.3 extends AUTHORIZATION to include those aspects. A Right

now includes not only the type of access allowed, but also a predicate that
must be true for the authorization to hold, and a copy flag that can be true or
false, indicating whether or not the right can be transferred. CheckRights is
an operation to determine the rights of a subject or to find who has the
rights to access a given object.

Figure 6.3: Access matrix with predicates and copy flag

Known Uses
This pattern defines the most basic type of authorization rule, from which
more complex access-control models can be built. It is based on the concept
of the access matrix, a fundamental security model [Gol06] [Sum97]. Its
first object-oriented form appeared in [Fer93b]. Subsequently, it has
appeared in several other papers and products. It is the basis for the access
control systems of most commercial operating system and database
products, such as UNIX, Windows, Oracle and many others.

See Also

 ROLE-BASED ACCESS CONTROL (below) is a specialization of
this pattern.
 The Reference Monitor pattern complements the AUTHORIZATION

pattern by defining how to enforce the defined rights.
 There is a discussion of authorization in [Fer81].

6.3 Role-Based Access Control
The ROLE-BASED ACCESS CONTROL pattern describes how to assign
rights based on the functions or tasks of users in an environment in which
control of access to computing resources is required.

Context
Any environment in which we need to control access to computing
resources and in which there is a large number of users and information
types, or a large variety of resources.

Problem
For convenient administration of authorization rights, we need to have a
means of factoring out rights. Otherwise, the number of individual rights is
just too large; granting rights to individual users would require storing
many authorization rules, and it would be hard for administrators to keep
track of these rules. It is also hard to associate semantic meanings to the
rules. How can we reduce the number of rules and make their semantics
clearer?

The solution to this problem must resolve the following forces:
 Complexity. We would like to make the work of the security

administrator as simple as possible.
 Semantics. In most organizations people are assigned specific

functions or tasks. Their rights should correspond to those tasks.
 Policy. We need to define rights according to organizational policies.
 Commonality. People performing the same tasks should have the same

rights.

 Policy enforcement. We want to help the organization to define
precise access rights for its members according to a need-to-know
policy.
 Flexibility. People joining, leaving and changing functions should not

require complex rights manipulation.

Solution
Most organizations have a variety of job functions that require different
skills and responsibilities. Users should be assigned rights based on their
job functions or their designated tasks. This corresponds to the application
of the need-to-know principle, a fundamental security policy [Sum97]. Job
functions can be interpreted as roles that people play in performing their
duties. In particular, web-based systems have a variety of users: company
employees, customers, partners, search engines and so on.

Structure
Figure 6.4 shows a class diagram for ROLE-BASED ACCESS CONTROL.
The User and Role classes describe registered users and their predefined
roles respectively. Users are assigned to roles, roles are given rights
according to their functions. The association class Right defines the access
types that a user within a role is authorized to apply to the protection object.
The combination Role, ProtectionObject and Right is an instance of the
AUTHORIZATION pattern.

Figure 6.4: Class diagram for the ROLE-BASED ACCESS CONTROL
pattern

Dynamics

Use cases include ‘Add a rule’, ‘Delete a rule’, ‘Modify a rule’, ‘Assign
user to role’, ‘Assign rights to role’ and so on. We do not show their
sequence diagrams here because they are very simple.

Implementation
Roles may correspond to job titles, for example ‘manager’, ‘secretary’. A
finer-grained approach is to make them correspond to tasks. For example, a
professor has the roles of ‘thesis advisor’, ‘teacher’, ‘committee member’,
‘researcher’ and so on. An approach to defining role rights is described in
[Ful07].

There are many possible ways to implement roles in a software system.
[Kod01] considers the implementation of the data structures needed to
apply an RBAC model. Concrete implementations can be found in
operating systems, database systems and web application servers.

Example Resolved
The hospital now assigns rights to the roles of doctors, nurses and so on.
The number of authorization rules has decreased dramatically as a result.

Consequences
The ROLE-BASED ACCESS CONTROL pattern offers the following
benefits:

 Semantics. We can make the rights given to a role correspond to tasks.
 Complexity. It allows administrators to reduce the complexity of

security. Because there are many more users than roles, the number of
roles becomes much smaller.
 Policy. Organization policies about job functions can be reflected

directly in the definition of roles and the assignment of users to roles.
 Commonality. People performing the same tasks can be given the

same rights.
 Flexibility. It is very simple to accommodate users joining, leaving or

being reassigned. All these use cases require only manipulation of the
associations between users and roles.

 Structure. Roles can be structured into hierarchies for further
flexibility and reduction of rules.
 Role separation. Users can activate more than one session at a time

for functional flexibility: some tasks may require multiple views or
different types of actions. Role separation is also important to avoid
conflicts of interest: we can add UML constraints to indicate that some
roles cannot be used in the same session or given to the same user
(separation of duties).

The following potential liability may arise from applying this pattern:
 Some institutions may not have clearly defined roles in their

organization, and some work must therefore be done to define these
roles.

Variants
The model shown in Figure 6.5 additionally considers composite roles and
objects: it is an application of the Composite pattern [Gam94]. The figure
also includes the concept of a session, which defines a context for the use of
a role, may restrict the number of roles used together at execution time, and
can be used to enforce role exclusion at execution time.

Figure 6.5: Class diagram for the Extended RBAC model

Known Uses

The RBAC pattern represents in object-oriented form a model described in
terms of sets in [San96]. That model has been the basis of most research
papers and implementations of this concept. RBAC is implemented in a
variety of commercial systems, including Sun’s J2EE, Microsoft’s Windows
2000 and later, Microsoft’s .NET [Fen06], IBM’s WebSphere, and Oracle,
among others. The basic security facilities of Java’s JDK 1.2 have been
shown to be able to support a rich variety of RBAC policies. The NIST has
developed a standard for RBAC [Fer01b]. We have used RBAC to describe
access to physical structures [Fer07f].

See Also
Earlier versions of this pattern appeared in [Fer93b] and [Yod97], and a
pattern language for its software implementation appears in [Kod01],
although this paper does not consider composite roles, groups and sessions.

The pattern whose class diagram is shown in Figure 6.5 includes
AUTHORIZATION and Composite. A session object is used to provide
execution context (see Variants).

6.4 Multilevel Security
In some environments data and documents may have critical value and their
disclosure could bring serious problems. The MULTILEVEL SECURITY
pattern describes how to categorize sensitive information and prevent its
disclosure. It describes how to assign classifications (clearances) to users
and classifications (sensitivity levels) to data, and how to separate different
organizational units into categories. Access of users to data is based on
policies, while changes to the classifications are performed by trusted
processes that are allowed to violate the policies.

Example
The general command of an army has decided on a plan of attack in a war.
It is extremely important that this information is not known outside a small
group of people, or the attack may be a failure.

Context
In some environments data and documents may have critical value and their
disclosure could bring serious problems.

Problem
How can you control access in an environment with sensitive documents so
as to prevent leakage of information?

The solution to this problem must resolve the following forces:
 We need to protect the confidentiality and integrity of data based on

its sensitivity.
 Users have to be allowed to read documents based on their position in

the organization.
 There should be a way to increase or decrease the ability of users to

read documents and the sensitivity of the documents. Otherwise, people
promoted to higher positions, for example, will not be able to read
sensitive documents, and we will end up with a proliferation of
sensitive and obsolete documents.

Solution
Assign classifications (as clearances) to users and classifications (as
sensitivity levels) to data. Separate different organizational units into
categories. For example, classifications may include levels such as ‘top
secret’, ‘secret’ and so on, and categories may include units such as
engDept, marketingDept and so on. For confidentiality purposes, access of
users to data is based on policies defined by the Bell-LaPadula model
[Gol06], while for integrity the policies are defined by Biba’s model
[Sum97]. Changes to the classifications are performed by trusted processes
that are allowed to violate the policies of these models.

Structure
Figure 6.6 shows the class diagram of the MULTILEVEL SECURITY
pattern. The UserClassification and DataClassification classes define
the active entities and the objects of access respectively. Both classifications

may include categories and levels. Trusted processes are allowed to assign
users and data to classifications, as defined by the Assignment class.

Figure 6.6: Class diagram for the MULTILEVEL SECURITY pattern

Implementation
Data classification is a tedious task, because every piece of information or
document must be examined and assigned a classification tag. New
documents may get automatic tags based on their links to other documents.
User classifications are based on users’ rank and units of work and are only
changed when they change jobs. It is hard to classify users in commercial
environments in this way: for example, in a medical system it makes no
sense to assign a doctor a higher classification than a patient, because a
patient has the right to see their record.

Example Resolved
The group involved in planning attacks, as well as all the related documents
it produces, are given a classification of ‘top secret’. This will prevent
leakage towards lower-level army staff.

Consequences
The MULTILEVEL SECURITY pattern offers the following benefits:

 The classification of users and data is relatively simple and can follow
organization policies.
 This model of the pattern can be proved to be secure under certain

assumptions [Sum97].

 The pattern is useful to isolate processes and execution domains.
The following potential liabilities may arise from applying this pattern:

 Implementations should use labels in data to indicate their
classification. This assures security: if not done, the general degree of
security is reduced.
 We need trusted programs to assign users and data to classifications.
 Data must be able to be structured into hierarchical sensitivity levels

and users should be able to be structured into clearances. This is usually
hard, or even impossible, in commercial environments.
 This model can handle only secrecy and prevention of leakage of

information. A dual model is needed to also handle integrity.
 Covert channels may break the assumed security.

Variants
It is possible to define a similar pattern to control integrity in multilevel
models according to the Biba rules [Gol06].

Known Uses
This pattern has been used by several military-sponsored projects and in a
few commercial products, including DBMSs (Informix, Oracle) and
operating systems (Pitbull [Arg] and HP’s Virtual Vault [HP]).

See Also
The concept of roles can also be applied when implementing this pattern,
role classifications replacing user classifications.

6.5 Policy-Based Access Control
The POLICY-BASED ACCESS CONTROL pattern describes how to
decide whether a subject is authorized to access an object according to
policies defined in a central policy repository.

Example

Consider a financial company that provides services to its clients. Their
computer systems can be accessed by clients, who send orders to the
company for buying or selling commodities (stocks, bonds, real estate, art
and so on) via e-mail or through their website. Brokers employed by the
company can carry out the clients’ orders by sending requests to the
systems of various financial markets, or by consulting information from
financial news websites. A government auditor visits periodically to check
for compliance with laws and regulations.

All of these activities are regulated by policies with various granularities
within the company. For example, the billing department can have the rule
‘Only registered clients whose account status is in good standing may send
orders’, the technical department can decide that ‘E-mails with attachments
bigger than x Mb won’t be delivered’, the company security policy can state
that ‘Only employees with a broker role can access the financial market’s
web services’ and that ‘Only the broker or custodian of a client can access
its transaction information’, whereas the legal department can issue the rule
that ‘Auditors can access all transaction information’, and so on.

All of these policies are enforced by different components of the
company’s computer system (e-mail server, file system, web service access
control component, and financial application). This approach has several
problems: the policies may be described in different syntaxes, and it is
difficult to have a global view of which policies apply to a specific case.
Moreover, two policies can be conflicting, and there is no way to combine
them in a clear way. In summary, this approach could be error-prone and
complex to manage.

Context
Consider centralized or distributed systems with a large number of
resources (objects). A large number of subjects may access those objects.
Rules are defined to control access to objects. The rules defined by the
organization are typically designed by different actors (technical,
organizational, legal and so on), and each set of rules designed by a specific
policy designer can concern overlapping sets of objects and/or subjects.

Problem

Enforcing these rules for a particular access request may be complex, and
thus error-prone, because there is no clear view of which rules to apply to a
request.

How can we enforce access control according to the predefined rules in a
consistent way? The solution to this problem must resolve the following
forces:

 Objects may be frequently added or removed.
 The solution should be able to implement a wide variety of access

control models, such as access matrix, RBAC.
 Malicious users can attempt unauthorized access to objects.
 There should be no direct access to objects: every request must be

mediated.

Solution
Most access control systems are based on the AUTHORIZATION pattern
(page 74), in which the access of a subject to an object depends only on the
existence of a positive applicable rule. If no such rule exists, the access is
denied.

In our case, the situation is more complicated: the existence of a positive
applicable rule should not necessarily imply that access should be granted.
All the rules must be taken into account, and a final decision must be made
from the set of applicable rules and some meta-information about the way
they should be combined. Part of that meta-information is located in a
policy object. This policy object aggregates a set of rules, and specifies how
those rules must be combined. For more flexibility about the combination
of rules, a composite object regroups the rules into policies and policy sets.
Policy sets aggregate policies, and include information about how to
combine rules from different policies. To be able to select all applicable
rules easily, they should be stored in a unique repository for the
organization and administered in a centralized way.

At access time, all requests are intercepted by policy enforcement points
(PEPs), a specific type of Reference Monitor [Sch06b]. The repository is
accessed by a unique policy decision point (PDP), which is responsible for
computing the access decision by cooperating with a policy information

point (PIP), which may provide information about the subject or the
resource accessed. The rules and policies are administered through a unique
policy administration point (PAP).

Finally, because rules and policies are designed by different teams,
possibly for the same objects and subjects, this scheme does not guarantee
that a conflict between rules in different policy components would never
occur. In that case, the PDP may have a dynamic policy conflict resolver to
resolve the conflict, which would need to use meta-rules. A complementary
static policy conflict resolver may be a part of the PAP, and should detect
conflicts between rules at the time they are entered into the repository.

Structure
Figure 6.7 illustrates the solution. A Subject’s access requests to particular
objects are intercepted by PEPs, which are a part of the security
infrastructure that is responsible for enforcing the organization Policy about
this access. PEPs query another part of the security infrastructure, the PDP,
which is responsible for computing an access decision. To compute the
decision, the PDP uses information from a PIP, and retrieves the applicable
Policy from the unique PolicyRepository, which stores all of the
PolicyRules for the organization.

Figure 6.7: Class diagram for the POLICY-BASED ACCESS CONTROL
pattern

The PolicyRepository is also responsible for retrieving the applicable
rules by selecting those rules whose subjectDescriptor,
resourceDescriptor and environmentDescriptor match the information
about the subject, the resource and the environment obtained from the PIP,
and whose accessType matches the required accessType from the request.
The PAP is a unique point for administering the rules. In case the evaluation

of the Policy leads to a conflict between the decisions of the applicable
Rules, a part of the PDP, the DynamicPolicyConflictResolver, is
responsible for producing a uniquely determined access decision. Similarly,
a StaticPolicyConflictResolver is a part of the PAP and is responsible
for identifying conflicting rules within the PolicyRepository.

Dynamics
Figure 6.8 shows a sequence diagram describing the most commonly used
case of ‘Request access to an object’. The Subject’s request for accessing an
Object is intercepted by a PEP, which forwards the request to the PDP. The
PDP can retrieve information about the Subject, the Object and the current
environment from the PIP. This information is used to retrieve the
applicable Rules from the PolicyRepository.

Figure 6.8: Sequence diagram for the use case ‘Request access to an object’

The PDP can then compute the access decision by combining the decisions
from the Rules forming the applicable policy and can finally send this
decision back to the PEP. If the access has been granted by the PDP, the PEP
forwards the request to the Object.

Example Resolved
Use of the POLICY-BASED ACCESS CONTROL pattern allows the
company to centralize its rules. Now the billing department, as well as the
technical department, the legal department and the corporate management
department can insert their rules in the same repository, using the same
format. The different components of the computer system that used to
enforce policies directly (that is, e-mail server, file system, web service
access control component and financial application) just need to intercept
the requests and redirect them to the central policy decision point. To do
that, each of them runs a policy enforcement point, which interfaces with
the main policy decision point.

The rules could be grouped in the following way: a unique company
policy set might include all other policies and express the fact that all
policies coming from the corporate management should dominate all other
policies. Each department would have their own policy, composed of rules
from that department, and combined according to each department’s policy.

Finally, a simple dynamic conflict resolver could be configured to enforce
a closed policy in case of conflict. The rules can be managed easily, since
they are written to the same repository, conflicts can be resolved, and there
is a clearer view of the company’s security policy.

Consequences
The POLICY-BASED ACCESS CONTROL pattern offers the following
benefits:

 Since the access decisions are requested in a standard format, an
access decision becomes independent of its enforcement. A wide
variety of enforcement mechanisms can be supported and can evolve
separately from the policy decision point.
 The pattern can support the access matrix, RBAC or multilevel

models for access control.
 Since every access is mediated, illegal accesses are less likely to be

performed.
The pattern also has some potential liabilities:

 It could affect the performance of the protected system, since the
central PDP/PolicyRepository/PIP subsystem may be a bottleneck in
the system.
 Complexity.
 We need to protect the access control information.

Known Uses
 XACML (eXtensible Access Control Markup Language), defined by

OASIS, uses XML for expressing authorization rules and for access
decision following this pattern.
 Symlabs’ Federated Identity Access Manager Federation is an identity

management that implements identity federation. Its components
include a PDP and PEPs.
 Components Framework for Policy-Based Admission Control, a part

of the Internet 2 project, is a framework for the authentication of
network components. It is based on five major components: Access
Requester (AR), Policy Enforcement Point (PEP), Policy Decision
Point (PDP), Policy Repository (PR) and the Network Detection Point
(NDP).
 XML and Application firewalls [Del05] also use policies.
 SAML (Security Assertion Markup Language) is an XML standard

defined by OASIS for exchanging authentication and authorization data
between security domains. It can be used to transmit the authorization
decision.

See Also
 XACML patterns [Del05] is an implementation of this pattern

(Chapter 11).
 The ACCESS CONTROL LIST (below) and CAPABILITY (page 96)

patterns are specific implementations of this pattern.
 The PEP is just a Reference Monitor [Fer01a].
 This pattern can implement the Access Matrix and ROLE-BASED

ACCESS CONTROL patterns.
A general discussion of security policies, including some IETF models

that resemble patterns, is given in [Slo02].

6.6 Access Control List
The ACCESS CONTROL LIST (ACL) pattern allows controlled access to
objects by indicating which subjects can access an object and in what way.
There is usually an ACL associated with each object.

Example
We are designing a system in which documents should be accessible only to
specific registered users, who can either retrieve them for reading or submit
modified versions. We need to verify that a specific user can access the
document requested in a rapid manner.

Context
Centralized or distributed systems in which access to resources must be
controlled. The systems comprise a policy decision point and policy
enforcement points that enforce the access policy. A system has subjects
that need to access resources to perform tasks. In the system, not every
subject can access any object: access rights are defined and can be modeled
as an access matrix, in which each row represents a subject and each
column represents an object. An entry in the matrix is indexed by a specific
subject and a specific object, and lists the types of actions that this subject
can execute on this object.

Problem
In some systems the number of subjects and/or objects can be large. In this
case, the direct implementation of an access matrix can use significant
amounts of storage, and the time used for searching this large matrix can be
significant.

In practice, the matrix is sparse. Subjects have rights on few objects and
thus most of the entries are empty.

How can we implement the access matrix in a space- and time-efficient
way? The solution to this problem must resolve the following forces:

 The matrix may have many subjects and objects. Finding the rule that
authorizes a specific request to an object may take a lot of time, as
entries are unordered.
 The matrix can be very sparse: storing it as a matrix would require

storing many empty entries, thus wasting space.
 Subjects and objects may be frequently added or removed. Making

changes in a matrix representation is inefficient.
 The time spent for accessing a centralized access matrix may result in

an additional overhead.
 A request received by a policy enforcement point indicates the

requester identity, the requested object and the type of access requested.
The requester identity, in particular, is controlled by the requester, and
so may be forged by a malicious user.

Solution
Implement the access matrix by associating each object with an access
control list (ACL) that specifies which actions are allowed on the object, by
which authenticated users. Each entry in the list comprises a subject’s
identifier and a set of rights. Policy enforcement points enforce the access
policy by requesting the policy decision point to search the object’s ACL
for the requesting subject identifier and access type. For the system to be
secure, the subject’s identity must be authenticated prior to its access to any
objects. Since the ACLs may be distributed, like the objects they are
associated with, several policy administration points may be responsible for
creating and modifying the ACLs.

Structure
Figure 6.9 illustrates the solution. To be protected, an Object must have an
associated ACL. This ACL is made up of ACLEntries, each of which
contains a set of Rights permitted for a specific authenticated Subject. An
authenticated Subject accesses an Object only if a corresponding Right
exists in the Object’s ACL. For security reasons, only the PDP can create
and modify ACLs. At execution time, the PDP is responsible for searching an
Object’s ACL for a Right in order to make an access decision.

Figure 6.9: Class diagram for the ACCESS CONTROL LIST pattern

Dynamics
Figure 6.10 shows a sequence diagram describing the typical use case for
‘Request object access’. The authenticated Subject’s request for access to
an Object is intercepted by a PEP, which forwards the request to the PDP. It
can then check that the ACL corresponding to the Object contains an
ACLEntry which corresponds to the Subject and which holds the
accessType requested by the Subject.

Figure 6.10: Sequence diagram for use case ‘Request object access’

Implementation
A decision must be made regarding the granularity of the ACLs. For
example, it is possible to regroup users, such as the minimal access control
lists in UNIX. It is also possible to have a finer-grained access control
system. For example, the extended access control lists in UNIX allow
specified access not only for the file’s owner and owner’s group, but also
for additional users or groups.

The choice of access types can also contribute to a finer-grained access
control system. For example, Windows defines over ten different
permissions, whereas UNIX-like systems usually define three.

A creation/inheritance policy must also be defined: what should the ACL
look like at the creation of an object? From what objects should it inherit its
permissions?

ACLs are pieces of information of variable length. A strategy for storing
ACLs must be chosen. For example, in the Solaris UFS file system, each
inode has a field called i_shadow. If an inode has an ACL, this field points
to a shadow inode. On the file system, shadow inodes are used like regular
files. Each shadow inode stores an ACL in its data blocks. Linux and most
other UNIX-like operating systems implement a more general mechanism
called extended attributes (EAs). Extended attributes are name/value pairs

associated permanently with file system objects, similar to the environment
variables for a process [Gru03].

Example Resolved
To enforce access control, we create a policy decision point and its
corresponding policy enforcement points, which are responsible for
intercepting and controlling accesses to the documents. For each document,
we provide the policy decision point with a list of the users authorized to
access the document and how (read or write). At access time, the policy
decision point is able to search the list for the user. If the user is on the list
with the proper access type, it can grant access to the document, otherwise
it will refuse access.

In our distributed system, we make sure that only authenticated users —
that is, users who provided a valid credential — can make requests.

Consequences
The ACCESS CONTROL LIST pattern offers the following benefits:

 Because all authorizations for a given object are kept together, we can
go to the requested object and find out if a subject is there. This is much
quicker than searching the whole matrix.
 The time spent accessing an ACL is less than the time that would

have been spent accessing a centralized matrix.
 Access to unauthorized objects using forged requests on behalf of

legitimate subjects is not possible, because we make sure that the
requests are from only authenticated subjects.

The pattern also has the following potential liabilities:
 The administration of the subjects is rendered more difficult: the

deletion of a subject may imply a scan of all ACLs, although this can be
done automatically.
 When the environment is heterogeneous, it needs to be adapted to

each type of PEPs. PDPs and PAPs must be implemented in a different
way, adding an additional development cost.

Known Uses

 Operating systems such as Microsoft Windows (from NT/2000 on),
Novell’s NetWare, Digital’s OpenVMS and UNIX-based systems use
ACLs to control access to their resources.
 In Solaris 2.5, file ACLs allow a finer control over access to files and

directories than the control that was possible with the standard UNIX
file permissions. It is possible to specify specific users in an ACLEntry.
It is also possible to modify ACLs for a file testfile by using the setfacl
command in a similar way to the chmod command used for changing
standard UNIX permissions:
setfacl -s u::rwx,g::—,o::—,m:rwx,u:user1:rwx,u:user2:rwx
testfile

 IBM Tivoli Access Manager for e-businesses uses ACLs to control
access to the web and application resources [IBMc].
 Cisco IOS, Cisco’s network infrastructure software, provides basic

traffic filtering capabilities with ACLs [Cisa].

See Also
 The PEP and PDP come from the previous pattern in this chapter. The

CAPABILITY pattern (below) is another way to implement the Access
Matrix.
 Access Matrix and RBAC [Fer01a] are models that can be

implemented using ACLs.
 PEP is just a Reference Monitor [Fer01a].
 A variant exists oriented to centralized systems, Policy Enforcement,

which leverages ad hoc data structures to enhance efficiency [Zho02].
 Acegi is a security framework for Java, used to build ACLs [Sid07].

6.7 Capability
The CAPABILITY pattern allows controlled access to objects by providing
a credential or ticket to a subject to allow it to access an object in a specific
way. Capabilities are given to the principal.

Example

We are designing a system that allows registered users to read or modify
confidential documents. We need to verify that a specific user can access a
confidential document in an efficient and secure manner. In particular, we
worry that if the parts of our system that deal with access control are too
large and/or distributed, they may be compromised by attackers.

Context
Distributed systems in which access to resources must be controlled. The
systems have a policy decision point and its corresponding policy
enforcement points that enforce the access policy. A system is composed of
subjects that need to access resources to perform their tasks. In the system,
not every subject can access any object: access rights are defined and can be
modeled as an access matrix, in which each row represents a subject and
each column represents an object. An entry of the matrix is indexed by a
specific subject and a specific object, and lists the types of actions that this
subject can execute on this object. The system’s implementation is
vulnerable to threats from attackers that may compromise its components.

Problem
In some of these systems the number of subjects and/or objects can be large.
In this case, the direct implementation of the access matrix can use
significant amounts of storage, and the time to search a large matrix can be
significant.
In practice, the matrix is sparse. Subjects have rights on few objects and
thus most of the entries are empty. How can we implement the access
matrix in a space- and time-efficient way?

The solution to this problem must resolve the following forces:
 The matrix may have many subjects and objects. Finding the rule that

authorizes a specific request to an object may take a lot of time
(unordered entries).
 The matrix can be very sparse, and storing it as a matrix would

require storing many empty entries, thus wasting space.
 Subjects and objects may be frequently added or removed. Making

changes in a matrix representation is inefficient.

 The time spent for accessing a centralized access matrix may result in
an additional overhead.
 A request received by a policy enforcement point indicates the

requester identity, the requested object and the type of access requested.
The requester identity, in particular, is controlled by the requester, and
so may be forged by a malicious user.
 The size of the units that can create and/or modify the policies (such

as policy administration points) has an impact on the security of the
system. Minimizing their size will reduce their chance of being
compromised by attackers.

Solution
Implement the access matrix by issuing a set of capabilities to each subject.
A capability specifies that the subject possessing the capability has a right
on a specific object. Policy enforcement points and the policy decision
point of the system enforce the access policy by checking that the capability
presented by the subject at the access time is authentic, and by searching the
capability for the requested object and access type. Trust a minimum part of
the system – create a unique capability issuer that is responsible for issuing
the capabilities. The capabilities must be implemented in a way that allows
the policy decision point to verify their authenticity, so that a malicious user
cannot forge one.

Structure
Figure 6.11 illustrates the solution. In order to protect the Objects, a
CapabilityProvider, the minimum trusted part of our system, issues a set
of Capabilities to each Subject by using a secure channel. A Capability
contains a set of Rights that the Subject can perform on a specific Object.
A Subject accesses an Object only if a corresponding Right exists in one
of the Subject’s Capabilities. At execution time, the PDP is responsible
for checking the Capability’s authenticity and searching the Capability
for both the requested Object and the requested accessType in order to
make an access decision.

Figure 6.11: Class diagram for the CAPABILITY pattern

Dynamics
Figure 6.12 shows a sequence diagram describing the typical use case of
‘Request object access’. The Subject requests access to an Object by
including a corresponding Capability. The request is intercepted by a PEP,
which forwards the request to the PDP. It can then check that the
Capability holds the accessType requested by the Subject.

Figure 6.12: Sequence diagram for the use case ‘Request object access’

Implementation

Since a capability must be unforgeable and unmodifiable, it can be
implemented as hardware or software:

 As hardware:
 Tags. Tagging allows for the categorization of each word as data or a

capability. Then no copying should be allowed from capability to data
or vice versa, no arithmetic operation should be allowed on capabilities.
A disadvantage of this method is the memory waste by using tags.
 Segmentation. Whole segments of memory are used exclusively for

capabilities or for data. No operation should be allowed between
partitions of different types. A disadvantage of this is that many
processes may need two segments.
 As software:
 Cryptography. Usually used, the capabilities may be encrypted by the

capability issuer’s key.

Example Resolved
To enforce access control, we create a policy decision point and its
corresponding policy enforcement points that are responsible for
intercepting and controlling accesses to confidential documents. When a
user logs on to the system, a robust token issuer provides a set of tokens
that indicate which confidential documents are authorized. Tokens are
digitally signed so that they can’t be created or modified by users. At
request time, a user wishing to access a confidential document presents its
token to the policy enforcement point, and then to the policy decision point,
which grants them access to the document. If a user does not present a
token corresponding to the document and the access mode, access is
refused.

Consequences
The CAPABILITY pattern offers the following benefits:

 Because the capability is sent together with the request, the time spent
for accessing an authorization is much less than the time that would
have been spent searching a whole matrix, or searching an access
control list (ACL).

 The time spent accessing a capability at request time is less than the
time that would have been spent accessing a centralized matrix.
 The part of the system that we need to trust is minimal. The capability

provider is only responsible for issuing capabilities to the right users at
an initial time.
 It is harder for malicious users to forge or modify capabilities, since a

capability provides a way to verify its authenticity.
The pattern also has some potential liabilities:

 The administration of the objects is more difficult: The addition of an
object implies the issuing of capabilities to every authorized user.
 When the environment is heterogeneous, the administration of the

rights is more complex. There is no straightforward way to revoke a
right, since users are in control of the capabilities they have acquired. A
solution could be to add a validity time to each capability, or through
indirection, or by using virtual addresses [And08].
 The right is transferable: that is, a capability can be stolen and

replayed by (or given to) a malicious user. (This is not the case in OSs
in which accesses to the capabilities are also controlled by the TCB, but
those need the support of special hardware.)

Known Uses
 Most of the capability-based systems are operating systems. Usually

hardware assistance is needed; for example, capabilities are placed in
special registers and manipulated with special instructions (Plessey
P250), or they are stored in tagged areas of memory (IBM 6000).

 Many distributed capability-based systems have been researched and
described [Joh85] [Don76] [San96] [Amo96]. Among those, Amoeba
[Amo96] is a distributed operating system in which multiple machines
can be connected together. It has a microkernel architecture. All objects
in the system are protected using a simple scheme. When an object
(representing a resource) is created, the server doing the creation
constructs a capability in the form of an 128-bit value and returns it to
the caller. Subsequent operations on the object require the user to send
its capability to the server to both specify the object and to prove the
user has permission to manipulate the object. Capabilities are protected
cryptographically to prevent tampering. The Symbian operating system
uses capabilities [Hea06].

See Also
 The PEP and PDP are from the ACCESS CONTROL LIST pattern

(page 91). The ACCESS CONTROL LIST pattern is another way to
implement the access matrix.
 Capabilities can be implemented into the VAS (virtual address space)

using segmentation.
 The PEP is just a Reference Monitor [Fer01a].
 Access Matrix, RBAC [Fer01a] are models that can be implemented

using ACLs. Credentials [Mor06a] are a type of capability.

6.8 Reified Reference Monitor
Also known as Intercepting Filter, Application
Controller
The REIFIED REFERENCE MONITOR pattern describes how to force
authorizations when a subject requests a protection object and provide the
subject with a decision.

In a computational environment in which users or processes make
requests for data or resources, this pattern describes how to define an

abstract process that intercepts all requests for resources from subjects and
checks them for compliance with authorizations.

Context
A multiprocessing environment in which subjects request protection objects
to perform their functions and access resources based on a decision made
by a reference monitor.

Problem
Not enforcing the defined authorizations is the same as not having them:
subjects can perform all types of illegal actions. Any user could read any
file, for example. How can we control the subjects’ actions?

Also, an access decision can be sometimes more complex than a Boolean
response; for example, when a user wants to access a database type: they
may be authorized to access a subset of the data requested as per the rules.
In this case, the reference monitor communicates with the subject and the
decision is not Boolean – ‘yes’ or ‘no’: it can be either a display on the
screen, some statement, or maybe negation. In many cases there is also the
need to keep decisions in memory. If the same subject requests the same
object again, the system should not spend time in re-deciding, as it affects
performance.

The solution to this problem must resolve the following forces:
 Defining authorization rules is not enough: they must be enforced

whenever a subject makes a request for a protection object.
 There are many possible implementations: we need an abstract model

of enforcement.
 Decisions should be sent to the subject, as they can be more complex

than mere Boolean decisions. By defining set of attributes for decisions,
we can make the reference monitor more flexible.

Solution
Define an abstract process that intercepts all requests for resources, checks
them for compliance with authorizations, makes decisions based on these

authorization rules, and stores the decisions, including their attributes
(Figure 6.13).

Figure 6.13: The concept of the Reference Monitor

Figure 6.14 shows the class diagram for a reified Reference Monitor. In
this figure SetofAuthorizationRules denotes a collection of authorization
rules organized in some convenient way. Figure 6.15 shows a sequence
diagram illustrating how checking is performed. An executing subject
(ActualSubject) requests some type of access to a ProtectionObject. The
ReferenceMonitor intercepts the request and searches in the set of
authorization rules for a matching Authorization (rule). After the search a
Decision is created. If positive, the request proceeds to access the
ProtectionObject.

Figure 6.14: Class diagram for the REIFIED REFERENCE MONITOR
pattern

Figure 6.15: Sequence diagram for enforcing security of requests

Consequences
The REIFIED REFERENCE MONITOR pattern offers the following
benefits:

 If all requests are intercepted we can make sure that they comply with
the rules.
 The subject has better understanding of the decision made by the

reference monitor to grant or deny its request.
 Implementation has not been constrained by using this abstract

process.

The pattern also has the following potential liabilities:
 Specific implementations (concrete Reference Monitors) are needed

for each type of resource. For example, a file manager controls requests
for files.
 Checking each request and making decision may result in

unacceptable performance loss. We may need to perform some checks
at compile time, for example, and not repeat them at execution time.
Another possibility is to factor out checks, for example when opening a
file, or having trusted processes that are not checked.
 We may have to keep decisions in memory, so that when the same

subject requests the same protection object, we already know the
decision and do not compromise performance in making it again.

Known Uses
Most modern operating systems implement this concept, for example
Solaris 9, Windows 2000, AIX and others. The Java Security Manager is
another example.

See Also
 This pattern is a generalization of the Reference Monitor pattern we

described in [Sch06b]. Some patterns combine it with the
AUTHORIZATION, ROLE-BASED ACCESS CONTROL or DAC
patterns [Kim06], but we feel that it is better to separate it so that it can
be combined with other models for the authorization rules.
 The Java community has rediscovered this pattern and call it

Intercepting Filter [Rad04] or Application Controller [OWAb].

6.9 Controlled Access Session
The CONTROLLED ACCESS SESSION pattern describes how to provide
a context in which a subject (user, system) can access resources with
different rights without need to reauthenticate every time they access a new
resource.

Example
Lisa is a secretary in a medical organization who sometimes helps with
patient tests in the laboratory. As a secretary she has access to patients’
information such as name, address, social security number and so on. This
is necessary so that she can bill them and their insurance companies. In the
lab she has access to anonymized patient test results. Combining the
accesses provided by her two jobs in one window allows her to associate
test results and patients’ names, which violates patient privacy.

Context
Any environment in which we need to control access to computing
resources and in which users can be classified according to their jobs,
groups, departments, assignments or tasks.

Problem
A given user may be authorized to access a system because they need to
perform several functional activities. However, for a particular access, only
those privileges should be active that are necessary to perform the intended
task. This is an application of the principle of least privilege, and is
necessary to prevent the user from misusing the system, either intentionally,
accidentally by performing an error, or without knowledge and tricked to do
so, for example through a Trojan Horse attack. Additionally, it potentially
restricts damage in the case of session hijacking: a successful attack process
would not have all the privileges of a user available, only the active subset.

The solution to this problem must resolve the following forces:
 Subjects may have many rights directly or indirectly through the

execution contexts they need for their tasks. Using all of them at one
time may result in conflicts of interest and security violations. We need
to restrict the use of those rights depending on the application or task
the subject is performing.
 In the context of an interaction we can make access to some functions

implicit, thus facilitating the use of the system and preventing errors
that may result in vulnerabilities. For example, some editors or other
tools could be implicitly available in some sessions.

 It is not convenient to make subjects reauthenticate every time they
request a new resource. Once the subject is authenticated, this condition
should remain valid during the whole session.

Solution
Define a unit of interaction, a session, which has a limited lifetime, for
example between login and logoff of a user, or between the beginning and
the end of a transaction. When a user logs on and after authentication, the
session activates some execution contexts with only a subset of the
authorizations they possess. This should be the minimum subset that is
needed for the user or transaction to perform the intended task. Only those
rights are available within the session. A subject can be in several sessions
at the same time; however, in every session only the necessary rights are
active.

Structure
Figure 6.16 shows the class model of the CONTROLLED ACCESS
SESSION pattern. The classes Subject and Session have obvious meanings.
The class ExecutionContext contains the set of active rights that the
subject may use within the session.

Figure 6.16: Class model for the CONTROLLED ACCESS SESSION
pattern

Dynamics
Figure 6.17 shows the use case ‘Open (activate) a session’. A subject logs
on and the logon interface authenticates it. The box with a double arrow

indicates some authentication dialog or protocol. After the subject is
authenticated, the interface creates a session object and returns a handle to
the subject.

Figure 6.17: Sequence diagram for the use case ‘Open a session’

Implementation
Based on institution and application policies, define which contexts
(implying specific rights) should be used in each task and grant them to the
corresponding subject. The rights should be selected using the least
privilege principle, and there should be no contexts with excessive rights;
for example, the administrator rights should be divided into smaller sets.

Example Resolved
Lisa can log on a secretary or as a lab assistant, but she cannot combine
these activities in one session. Now she cannot relate test results to patients’
names.

Consequences
The CONTROLLED ACCESS SESSION pattern offers the following
benefits:

 We can give only the necessary rights to each execution context,
according to its function, and we can invoke in a session only those
contexts that are needed for a given task.
 We can exclude combinations of contexts that might result in possible

access violations or conflicts of interest.
 Any functions can be made implicit in a session.

 Once a subject starts a session it doesn’t have to be reauthenticated:
its status is kept by the session.

The pattern also has the following potential liabilities:
 If we need to apply fine-grained access, it might be inefficient to

include many contexts in order to perform complex activities.
 Using sessions may be confusing to the users.

Known Uses
 Session Access is part of the RBAC standard proposal by NIST,

which has been adopted by the American National Standards Institute,
International Committee for Information Technology Standards
(ANSI/INCITS) as ANSI INCITS 359-2004 [Fer01b].
 Multics [Sum97] used execution contexts (based on projects) to limit

access rights.
 Session Access is implemented in the security module CSAP [Dri03]

of the Webocrat system in conjunction with an RBAC policy.
 Views in relational databases can be used to define sets of rights.

Controlling the use of views by users can control their use of rights in
sessions. This is done for example in Oracle and DB2, where SQL can
be used to define restricted views [Elm03].

See Also
 The Access Session pattern is used in the SESSION-BASED ROLE-

BASED ACCESS CONTROL pattern (page 107) and Attribute-Based
Access Control [Pri04] patterns.
 The Session pattern of [Yod97] created a session object that defined a

namespace to hold all the variables that need to be referenced by many
objects.
 Peter Sommerlad remade this pattern as a Security Session [Sch06b],

intended to prevent a user having to be reauthenticated every time they
access a new object.

 Abstract Session [Pry00] is a pattern with a similar objective to
Security Session: when an object’s services are invoked by clients, the
server object may have to maintain state for each client. The server
creates a session object that encapsulates state information for the
client, and returns a pointer to the session object.

However, none of these patterns considers limitation of rights. Our pattern
is an extension of these patterns, concentrating all its security functions and
emphasizing the function of a session as a limiter of rights.

6.10 Session-Based Role-Based
Access Control
The SESSION-BASED ROLE-BASED ACCESS CONTROL pattern
allows access to resources based on the role of the subject, and limits the
rights that can be applied at a given time based on the roles defined by the
access session.

Example
John is a developer on a project. He is also a project leader for another
project. As a project leader he can evaluate the performance of the members
of his project. He combines his two roles and adds several flattering
evaluations about himself in the project where he is a developer. Later, his
manager, thinking that the comments came from the project leader of the
project on which John is a developer, gives John a big bonus.

Context
Any environment in which we need to control access to computing
resources, in which users can be classified according to their jobs or their
tasks, and in which we assign rights to the roles needed to perform those
tasks.

We assume the existence of a Session pattern that can be used for the
solution.

Problem
In an organization a user may play several roles. However, for each access
the user must act only within the authorizations of a single role (that is,
within the context of the role) or combinations of roles that do not violate
institution policies. How can we force subjects to follow the policies of the
institution when using their roles?

In addition to the forces defined for the CONTROLLED ACCESS
SESSION pattern, the solution to this problem must resolve the following
forces:

 People in institutions have different needs for access to information,
according to their functions. They may have several roles associated
with specific functions or tasks.
 We want to help the institution to define precise access rights for its

members so that the least privilege policy can be applied when they
perform specific tasks.
 Users may have more than one role and we may want to enforce

policies such as separation of duty, where a user cannot be in two or
more specific roles in the same session.

Solution
A subject may have several roles. Each role collects the rights that a user
can activate at a given moment (execution context), while a session controls
the way in which roles are used, and can enforce role exclusion at execution
time.

Structure
The structure of the SESSION-BASED ROLE-BASED ACCESS
CONTROL pattern is shown in the class diagram in Figure 6.18. The class
Role is an intermediary between Subject and Object, holding all
authorizations a user possesses while performing the role, and acts here as
an execution context. Within a Session, only a subset of the roles assigned
to a Subject may be activated, just those necessary to perform the intended
task. Roles may be composed according to a Composite pattern [Gam94], in
which higher-level roles acquire (inherit) rights from lower-level roles.

Figure 6.18: Class diagram for the SESSION-BASED ROLE-BASED
ACCESS CONTROL pattern

Dynamics
Figure 6.19 shows a sequence diagram for the use case ‘Request access to
an object’. A Subject has already opened a Session (see Figure 6.17 on page
106) and requests access to an object in a specific way (accessType). The
session uses the corresponding ReferenceMonitor, which in turn checks
whether the rights of the Session roles allow the access. If so, the access is
permitted.

Figure 6.19: Sequence diagram for the use case ‘Request access to an
object’

Implementation
1 Determine the roles the system should contain (role catalog),
according to the user functions or tasks.

2 Collect lists of incompatible roles and use these lists when a session is
started (static constraints). These constraints can be defined using OCL
or some other formal language as additions to the class diagram of the
pattern.
3 Determine the number of roles which may be active within a session
(dynamic constraints).
4 When a user opens a session, they must declare what roles they intend
to use, and the system will open the corresponding session, or refuse to
do so in the case of conflicts.

See [Fer06e] for an example of a real implementation.

Example Resolved
When John logs on in the project where he is a developer, he only gets the
rights for a developer and cannot add evaluations. When he logs on in the
project where he is a project leader he can only evaluate the members of his
group. He cannot combine the rights of his role in the same session, and
now he only gets legitimate evaluations.

Consequences
In addition to the benefits mentioned for CONTROLLED ACCESS
SESSION (page 104), additional benefits of the SESSION-BASED ROLE-
BASED ACCESS CONTROL pattern are:

 Sessions may include all needed roles for those subjects authorized
for some task.
 Users can activate more than one session at a time for functional

flexibility (some tasks may require multiple roles).
 Fine-grained rights can be assigned to roles to enforce a need-to-know

policy.
 When a session is open, we can exclude roles that violate institution

policies.
The pattern has the following potential liabilities

 Additional conceptual complexity is required to define which roles
can be used together and which should be mutually exclusive.
 User confusion if they have to use several roles to perform their work.

Known Uses
 The structure and dynamics of a Session-Based RBAC are

implemented in the security module CSAP [Dri03] of the Webocrat
system. Webocrat is a portal supporting E-Democracy which was
developed within the European Webocracy project (FP5IST-1999-
20364) between 2000-2003.
 Views in relational databases can be used to define sets of rights.

Controlling the use of views by roles can control the use of rights in
sessions. In both Oracle and DB2 SQL can be used to define restricted
views based on roles [Elm03].

See Also
This pattern is a combination of the CONTROLLED ACCESS SESSION
pattern (page 104) and the RBAC pattern [Sch06b]. As indicated earlier,
structuring of roles can be represented by a Composite pattern. A Reference
Monitor pattern is needed to enforce the use of rights during execution.

6.11 Security Logger and Auditor
Also known as Audit Trail
The SECURITY LOGGER AND AUDITOR pattern describes how to keep
track of users’ actions in order to determine who did what and when. It logs
all security-sensitive actions performed by users and provides controlled
access to records for audit purposes.

Example
A hospital uses RBAC to define the rights of its employees. For example,
doctors and nurses can read and write medical records and related patient
information (lab tests and medicines). When a famous patient came to the
hospital, one of the doctors, who was not treating him, read his medical
record and leaked this information to the press. When the leak was

discovered there was no way to find out which doctor had accessed the
patient’s records.

Context
Any system that handles sensitive data, in which it is necessary to keep a
record of access to data.

Problem
How can we keep track of users’ actions in order to determine who did
what and when? The solution to this problem must resolve the following
forces:

 Accuracy. We should faithfully record what a user or process has
done with respect to the use of system resources.
 Security. Any information we use to keep track of what the users have

done must be protected. Unauthorized reading may reveal sensitive
information. Tampering may erase past actions.
 Forensics. When a misuse of data occurs, it may be necessary to audit

the access operations performed by users to determine possible
unauthorized actions, and maybe trace the attacker or understand how
the attack occurred.
 System improvement. The same misuses may keep occurring; we need

to learn from past attacks.
 Compliance. We need a way to verify and to prove to third parties that

we have complied with institution policies and external regulations.
 Performance. We need to minimize the overhead of logging.

Solution
Each time a user accesses some object, we record this access, indicating the
user identifier, the type of access, the object accessed and the time when the
access happened.

The database of access entries must have authentication and authorization
systems, and possibly an encryption capability.

Structure
In Figure 6.20 User operations are logged by the LoggerAuditor. The
LoggerAuditor keeps the Log of user accesses, in which each access is
described by a LogEntry. The security administrator (SecAdmin) activates
or deactivates the Log. The Auditor can read the Log to detect possible
unauthorized actions.

Figure 6.20: Class diagram of the SECURITY LOGGER AND AUDITOR
pattern

Dynamics
Possible use cases include ‘Log user access’, ‘Audit log’, ‘Query log
database’.

A sequence diagram for the use case ‘Log user access’ is shown in Figure
6.21. The User performs an operation to apply an access type on some
object: operation (accessType, object). The LoggerAuditor adds an entry
with this information, and the name of the user, to the Log. The Log creates
a LogEntry, adding the time of the operation.

Figure 6.21: Sequence diagram for the use case ‘Log user access’

Implementation
The class diagram shown in Figure 6.20 provides a clear guideline for
implementation, since its classes can be directly implemented in any object-
oriented language. We need to define commands to activate or deactivate
logging, apply filters, indicate devices to be used, allocate amount of
storage and select security mechanisms. One can filter some logging by
selecting users, events, importance of events, times and objects in the
filters. Administrative security actions, for example account
creation/deletion, assignment of rights and others, must also be logged.

Logging is performed by calling methods on the LoggerAuditor class.
Every non-filtered user operation should be logged. Logged messages can
have levels of importance associated with them.

Audit is performed by an auditor reading the log. This can be
complemented with manual assessments that include interviewing staff,
performing security vulnerability scans, reviewing application and
operating system access controls and analyzing physical access to the
systems [sau]. The Model-View-Controller pattern can be used to visualize
the data using different views during complex statistical analysis of the log
data.

Example Resolved
After the incident, the hospital installed a SECURITY LOGGER AND
AUDITOR, so in the future such violations can be discovered.

Consequences
The SECURITY LOGGER AND AUDITOR pattern offers the following
benefits:

 Security. It is possible to add appropriate security mechanisms to
protect recorded data, for example access control and/or encryption.
 Forensics. The pattern enables forensic auditing of misused data

objects. Records of access can be used to determine whether someone
has maliciously gained access to data. This pattern can also be used to
log access to data objects by system processes. For example, malicious

code planted in the system can be tracked by finding processes that
have misused objects.
 System improvement. By studying how past attacks happened, we can

improve the system security.
 Compliance. Auditing a log can be used to verify and prove that

institutional and regulatory policies have been followed.
 Performance. We can reduce overhead by parallel or background

logging. We can also not log some events not considered significant.
Finally, we can merge this log with the recovery log, needed for
possible rollback.

The pattern has the following potential liabilities:
 It can incur significant overhead, since each object access has to be

logged.
 A decision must be made by software designers as to the granularity

at which objects are logged. There is a trade-off between security and
performance.
 It is not easy to perform forensic analysis, and specialists are required.
 Protecting the log adds some overhead and cost.

Variants
Most systems have a system logger, used to undo/rollback actions after a
system crash. That type of logger has different requirements, but sometimes
is merged with the security logger [SAP09]. System logs are of interest to
system and database administrators, while security logs are used by security
administrators, auditors and system designers.

Another variant could include the automatic raising of alarms by periodic
examination of the log, searching records that match a number of rules that
characterize known violations. For example, intrusion detection systems use
this variant.

We can also add logging for reliability, to detect accidental errors.

Known Uses
 Most modern operating systems, including Microsoft Windows

[Smi04], AIX [aix10], Solaris and others have security loggers.

 SAP uses both a security audit log and a system log [SAP09].

See Also
 The Secure Logger is a pattern for J2EE [Ste06]. It defines how to

capture application-specific events and exceptions to support security
auditing. This pattern is mostly implementation-oriented and does not
consider the conceptual aspects discussed in our pattern. It should have
been called a ‘security logger’, because it does not include any
mechanisms to protect the logged information.
 Martin Fowler has an Audit Log analysis pattern [Fow] for tracking

temporal information. The idea is that whenever something significant
happens, you write some record indicating what happened and when it
happened.
 Patterns for authentication (Chapter 5): how can we make sure that a

subject is who they say they are?
 AUTHORIZATION (page 74) describes how we can control who can

access to which resources, and how, in a computer system.

CHAPTER 7

Patterns for Secure Process
Management

Music is given to us with the sole purpose of establishing an order in
things, including, and particularly, the coordination between man and
time.

Igor Stravinsky

7.1 Introduction
Operating systems are fundamental to the provision of security to
computing systems. The operating system supports the execution of
applications, and any security constraints defined by applications must be
enforced by the operating system. The operating system must also protect
itself, because compromise would give access to all the user accounts and
all the data in their files. A weak operating system would allow hackers
access not only to data in the operating system files, but data in database
systems that use the services of the operating system. The operating system
enables this protection by protecting processes from each other and
protecting the permanent data stored in its files [Sil05]. For this purpose,
the operating system controls access to resources such as memory address
spaces and I/O devices. Most operating systems use an access matrix or the
ROLEBASED ACCESS CONTROL pattern (page 78) as a security model.
For example, an access matrix defines which processes (subjects in general)
have what types of access to specific resources (resources are represented as
objects in modern operating systems).

In a computer system processes typically collaborate to perform some
activity or call each other to request services. Process invocations occur

through local or remote procedure calls; these operations are supported at
the kernel level through send/receive operations, which may be direct or
indirect (using mailboxes) [Sil05]. The operation name used for invocation,
plus the number, type, and length of the parameters in the call is called the
procedure signature. The controlled interaction of processes in a computing
environment is fundamental to its security and reliability. Processes can be
attacked by other processes or by external clients; errors in one process can
propagate to others. Executing processes in a computing system need to be
protected from attacks from other processes. Many of those attacks come
from the invocation of unprotected (no access control) or wrong entry
points, or using the wrong type or size of parameters in these calls.

Computer system functionality can be divided between the kernel (or
operating system proper) components and user-oriented utilities such as
browsers, media players and so on. Typically, an operating system includes
the following functional components:

 Process management: handles creation and deletion of processes,
communication and scheduling.
 Memory management: keeps track of which parts of memory are used

by which processes; allocates and deallocates memory.
 File management: handles creation and deletion of files and

directories, file searches, and mapping files to secondary storage.
 I/O management: provides interfaces to hardware device drivers, as

well as handling mass memory management components including
buffering, caching and spooling.
 Networking: controls communication paths between two or more

systems.
 Protection system: includes authentication of users and file and

memory protection.
 User interface: communicates between user and operating system,

including command interpreters.
Operating systems authenticate users when they first log in. A user then

executes an application composed of several concurrent processes.
Processes are usually created through system calls to the operating system.

A process that needs to create a new process gets the operating system to
create a child process that is given access to some resources.

Executing applications need to create objects for their work. Some objects
are created at program initialization, while others are created dynamically
during execution. The access rights of processes with respect to objects
must be defined when these processes are created. Applications also need
resources such as I/O devices and others that may come from resource
pools; when these resources are allocated, the application must be given
rights for them. These rights are defined by authorization rules or policies
that must be enforced when a process attempts to access an object. This
means that we need to intercept every access request; this is done by the
REIFIED REFERENCE MONITOR (page 100).

In this chapter we present patterns for secure process management. Figure
7.1 shows how these patterns work together. They include:

Figure 7.1: Patterns for secure process management

 SECURE PROCESS/THREAD. How can we make sure that a process
does not interfere with other processes or misuse shared resources? A
process is a program in execution; a secure process is also a unit of

execution isolation as well as a holder of rights to access resources, and
has a separate virtual address space. A thread is a lightweight process.
A variant, called Secure Thread, is a lightweight process with
controlled access to resources.
 CONTROLLED-PROCESS CREATOR. How can we define the rights

to be given to new processes? Define the rights of a new process as part
of their creation.
 CONTROLLED-OBJECT FACTORY. How can we specify the rights

of processes with respect to a new object? When a process creates a
new object through a Factory, the request includes the features of the
new object. These features include a list of rights to access the object.
 CONTROLLED-OBJECT MONITOR. How can we control access by

a subject to an object? A specialized Reference Monitor can intercept
access requests from processes. The Reference Monitor checks whether
the process has the requested type of access to the object.

We also included in this chapter two patterns that are useful for process
isolation:

 PROTECTED ENTRY POINTS. This pattern forces a call from one
process to another to go through only pre-specified entry points where
the correctness of the call is checked and other access restrictions can
be applied.
 PROTECTION RINGS. This pattern assigns processes to a set of

hierarchical rings that control how processes call each other and how
they access data. Crossing of rings is done through gates that check the
rights of the crossing process. A process calling another process or
accessing data in a higher ring must go through a gate.

Patterns for process scheduling [wik1] and resource management [Kir04]
also exist, but are not relevant to security and so are not discussed here.

The Controlled-Process Creator, the Controlled-Object Factory and the
Controlled-Object Monitor patterns were published in [Fer03b], coauthored
by John C. Sinibaldi. The Secure Process/Thread pattern was published in
[Fer06f], coauthored with Tami Sorgente and Maria M. Larrondo-Petrie.
The Protected Entry Points pattern appeared in [Fer08c], coauthored with
David LaRed. Some of these patterns are updated versions of the ones in
Chapter 8 of [Sch06b].

7.2 Secure Process/Thread
The SECURE PROCESS/THREAD pattern describes how to make sure
that a process does not interfere with other processes or misuse shared
resources. A process is a program in execution; a secure process is also a
unit of execution isolation as well as a holder of rights to access resources,
and has a separate virtual address space. A thread is a lightweight process.
A variant, called Secure Thread, is a thread with controlled access to
resources.

Example
A group of designers in Company X built an operating system and did not
include any mechanisms to control the actions of processes. This resulted in
processes being able to access the address space and resources of other
processes. In this environment we cannot protect the shared information,
nor assure the correct execution of any process – their code and stack
sections may be corrupted by other processes. While its performance was
good, nobody wanted to use this operating system once its poor security
was known.

Context
Typically, operating systems support a multiprogramming environment,
with many user-defined and system processes active at a given time. During
execution it is essential to maintain all information regarding a process,
including its current status (the value of the program counter), the contents
of the processor’s registers, and the process stack containing temporary data
(subroutine parameters, return addresses, temporary variables and
unresolved recursive calls). All this information is called the process
context. When a process needs to wait, the operating system must save the
context of the first process and load the next process for execution; this is a
context switch. The saved process context is brought back when a
suspended process resumes execution.

Problem

We need to control the resources accessed by a process during its execution
and protect its context from other processes. The resources that can be
accessed by a process define its execution domain, and the process should
not break the boundaries of this domain. The integrity of a process’ context
is essential, not only for context switching, but also for security, so that it
cannot be controlled by another process, and for reliability, to prevent a
rogue process from interfering with other processes.

The solution to this problem must resolve the following forces:
 If processes have unrestricted access to resources, they can interfere

with the execution of other processes and misuse shared resources. We
need to control what resources they can access.
 Processes should be given only the rights they need to perform their

functions (need to know or least privilege principle ([Gol06], Chapter
3).
 The rights assigned to a process should be fine-grained, otherwise we

cannot apply the least privilege principle.
 Each process requires some data, a stack, and space for temporary

variables to store the status of its devices and other information. All this
information resides in its address space and needs to be protected.

Solution
Assign to each process a set of authorization rights to access the resources
they need. Assign to the process a unique address space to store its context
and execution-time data. This protects processes from interference from
other processes, assuring confidentiality and integrity of the shared data and
proper use of shared resources. In the process descriptor, a data structure
containing all the information a process needs for its execution, add rights
to make access to any resource explicitly authorized. Ensure that every
access to a resource is intercepted and checked for authorization.

It may also be possible to add resource quotas, to avoid denial of service
problems, but this requires some global resource usage policies.

Structure

Figure 7.2 shows the class diagram for the SECURE PROCESS/THREAD
pattern. In the figure, each ProcessDescriptor has ProcessRights for
specific Resources. Additional security information indicates the owner of
the process. The ProcessRights are defined by the AUTHORIZATION
pattern (page 74; the ProcessDescriptor acts as subject in this pattern) and
are enforced by the REIFIED REFERENCE MONITOR pattern (page 100),
which intercepts request for resources and checks them for authorization.
More than one ProcessDescriptor can be created, describing different
processes and corresponding to multiple executions of ProgramCode. A
separate VirtualAddressSpace is associated with each process (defined by
the VIRTUAL ADDRESS SPACE ACCESS CONTROL pattern (page
146). The process context is stored in the VirtualAddressSpace of the
process, while the ProgramCode can be shared by several processes.

Figure 7.2: Class diagram for the SECURE PROCESS pattern

Dynamics

Figure 7.3 shows a sequence diagram for the use case ‘Access a resource’.
A requestResource operation from a process includes the process ID and the
intended type of access. The request is intercepted by the
ReferenceMonitor, which determines whether it is authorized (the
checkAccess operation in the Right class). If so, the access proceeds.

Other related use cases (not shown) include ‘Assign a right to a process’
and ‘Remove a right from a process’.

Figure 7.3: Sequence diagram for the use case ‘Access a resource’

Implementation
The process descriptor is typically called a process control block (PCB), or
task control block (TCB), and includes references (pointers) to its code
section, its stack and other required information. There are different ways of
implementing data structures: records (structs in C) are typically used for
the process descriptor. The process descriptors of the processes in the same
state are usually linked in a double-linked list. The hardware may include
registers for some of the attributes of the process descriptor; for example,
the Intel X86 Series includes registers for typical attributes. There are
various ways of associating a virtual address space to a process, described
in Chapter 9. There are also various ways to associate rights with a new
process; see the CONTROLLED-PROCESS CREATOR pattern (page 126).
The hardware architecture normally implements the virtual address space,
and restricts access to the sections (segments) allocated to each process
using appropriate mechanisms.

The patterns as shown describe models where subjects have rights
described by an access matrix or according to ROLE-BASED ACCESS
CONTROL (page 78). Some operating systems use multilevel (typically

mandatory) models in which the access of a process is determined by its
level with respect to the resource being accessed [Sch06b]. In the latter
case, the process, instead of being given a right, has a tag or label that
indicates its level. Resources have similar tags and the reference monitor
compares both tags.

Example Resolved
Company X solved its problem by adding rights to a process representation.
Now each process is constrained to access only those resources for which it
has rights. This protects processes from each other, as well as the
confidentiality and integrity of shared data and other resources. While other
security problems may still persist, the general security of the operating
system increased significantly.

Consequences
The SECURE PROCESS/THREAD pattern offers the following benefits:

 It is possible to give specific rights for resources to each process
which restricts them to access only authorized resources.
 It is possible to apply the least privilege principle for execution.
 The process’ contexts can be protected from other processes, because

they are restricted to access only authorized resources.
 The virtual address space of a process can be protected by the

hardware and its memory manager.
The pattern has the following potential liabilities:

 There is some overhead in using a Reference Monitor to enforce
accesses.
 It may not be clear what rights to assign to each process.
 Having a separate address space implies a slow context switch, which

affects performance. Because of this, kernel processes usually share an
address space.
 There are other security problems not controlled by this pattern, such

as denial of service, users taking control in administrator mode, or virus
propagation. Those problems require complementary security
mechanisms, some of which are described by other patterns [Sch06b].

Known Uses
 Linux uses records for process descriptors. One of the entries defines

the process credentials (rights) that define its access to resources
[Nut03] [Sil05]. Other entries describe its owner (subject) and process
ID. A more elaborated approach using execution domains is used in
Selinux, a secure version of Linux [Sel].
 Windows NT and 2000. Resources are defined as objects (actually, as

classes). The process ID is used to determine access to objects [Sil05].
Each file object has a security descriptor that indicates the owner of the
file, and an access control list that describes the access rights for the
processes to access the file.
 Solaris threads have controlled access to resources defined in the

application, for example when using the POSIX standard [Sil05].
 Operating systems running on Intel architectures can protect thread

stacks, data and code by placing them in special segments of the shared
address space, with hardware-controlled access.

Variant
 Secure Thread. Because of the slow context switching of processes,

most operating systems use threads, which have a smaller context. How
can we make the execution of a thread secure? A secure thread is a
thread with controlled access to resources. Figure 7.4 represents the
addition of the ThreadDescriptor to the secure process. One process
may have multiple threads of execution. Each thread is represented by a
ThreadDescriptor. A unique VirtualAddressSpace is associated with a
process and shared by peer threads. ThreadRights define access rights
to the VirtualAddressSpace.

Figure 7.4: Class diagram for the SECURE THREAD pattern

Thread status typically includes a stack, a program counter and some status
bits. There are various ways of associating threads with a process [Sil05];
typically, several threads are collected into a process. Threads can be
created with special packages, for example PTHREADS in UNIX, or
through the language, as in Java or Ada. Rights can be added explicitly, or
we can use the hardware architecture’s enforcement of the proper use of the
process areas (see Known Uses).

See Also
 CONTROLLED-PROCESS CREATOR (below): at process creation

time, rights are assigned to the process.
 VIRTUAL ADDRESS SPACE ACCESS CONTROL (page 146). A

virtual address space is assigned to each process that can be accessed
according to the rights of the process.
 AUTHORIZATION (page 74), which defines the rights to access

resources.
 The REIFIED REFERENCE MONITOR pattern (page 100), used to

enforced the defined rights.
 Processes run at rebooting are critical for security [Loh10].

7.3 Controlled-Process Creator
The CONTROLLED-PROCESS CREATOR pattern describes how to
define the rights to be given to new processes, by defining the rights as part
of the process’ creation.

Example
The UNIX operating system creates a process with the same rights as its
parent. If a hacker can trick UNIX into creating a child of the supervisor
process, this runs with all the rights of the supervisor.

Context
An operating system in which processes or threads need to be created
according to application needs. Users execute applications composed of
several concurrent processes. Processes are normally created through
system calls to the operating system.

Problem
A computing system uses many processes or threads. Processes need to be
created according to applications’ needs, and the operating system itself is
composed of processes. If processes are not controlled, they can interfere
with each other and access data illegally. Their rights to resources should be
carefully defined according to appropriate policies, for example need to
know.

The solution to this problem must resolve the following forces:
 There should be a convenient way to select a policy to define process’

rights. Defining rights without a policy brings contradictory and
unsystematic access restrictions that can be easily circumvented.
 The child process may need to run with its parent process’ rights for

specific actions, but this should be carefully controlled, otherwise a
compromised child could leak information or destroy data.
 The number of children created by a process must be restricted, or

process spawning could be used to perform denial-of-service attacks.

 There are situations in which a process needs to act with more than its
normal rights, for example to get data from a file to which it doesn’t
normally have access.

Solution
Because new processes are created through system calls or messages to the
operating system, we have a chance to control the rights given to the new
process. Typically, operating systems create a new process as a child
process. There are several policies for granting rights to a child process. For
example:

 The child process can inherit all the rights of its parent, or a subset of
them.
 Allow the parent assign a specific set of rights to its children (more

secure).

Structure
Figure 7.5 shows the class diagram for this pattern. The
ControlledProcessCreator is the part of the operating system in charge of
creating processes. The CreationRequest contains the access rights that the
parent defines for the created child. These access rights must be a subset of
the parent’s access rights.

Figure 7.5: Class diagram for the CONTROLLED-PROCESS CREATOR
pattern

Dynamics
Figure 7.6 shows the dynamics of process creation. A Process requests the
creation of a new Process. The access rights passed in the creation request
are used to create the AccessRights for the new process.

Figure 7.6: Process creation dynamics

Implementation
For each required application of kernel processes or threads, define their
rights according to their intended function.

Example Resolved
There is now no automatic inheritance of rights in the creation of child
processes, so creating a child process confers no advantage for a hacker.

Consequences
The CONTROLLED-PROCESS CREATOR pattern offers the following
benefits:

 It is possible to define rights to use an object according to its
sensitivity.
 Objects allocated from a resource pool can have rights attached

dynamically.
 The operating system can apply ownership policies: for example, the

creator of an object may receive all possible rights for the objects it
creates.

 The created process can receive rights according to predefined
security policies.
 The number of children produced by a process can be controlled. This

is useful to control denial of service attacks.
 The rights may include the parent’s ID, allowing the child to run with

the rights of its parent.
The following potential liability may arise from applying this pattern:

 Explicit rights transfer takes more time than using a default transfer.

Known Uses
In many operating systems, for example UNIX, rights are inherited as a full
set from the parent. Some hardened operating systems, such as Hewlett
Packard’s Virtual Vault, do not allow inheritance, and a new set of rights
must be defined for each child [HP].

See Also
The CONTROLLED EXECUTION DOMAIN pattern (page 151) could use
this pattern to define the execution domain of new processes.

7.4 Controlled-Object Factory
The CONTROLLED-OBJECT FACTORY pattern describes how to specify
the rights of processes with respect to a new object. When a process creates
a new object through a Factory, the request includes the features of the new
object. Among these features it includes a list of rights to access the object.

Example
In many operating systems the creator of an object gets all possible rights to
the object. Other operating systems apply predefined sets of rights: for
example, in UNIX all the members of a file owner’s group may receive
equal rights for a new file. These approaches may result in unnecessary
rights being given to some users, violating the principle of least privilege
(see Chapter 6 and [Fer11d]).

Context
A computing system that needs to control access to the objects it creates
because of their different degrees of sensitivity. Rights for these objects are
defined by authorization rules or policies that should be enforced when a
process attempts to access an object.

Problem
In a computing environment, executing applications need to create objects
for their work. Some objects are created at program initialization, while
others are created dynamically during execution. The access rights of
processes with respect to objects must be defined when these processes are
created, or there may be opportunities for the processes to misuse them.
Applications also need resources such as I/O devices and others that may
come from resource pools: when these resources are allocated, the
application must be given rights to them.

The solution to this problem must resolve the following forces:
 Applications create objects of many different types, but we need to

handle them uniformly with respect to their access rights, otherwise it
would be difficult to apply standard security policies.
 We need to allow objects in a resource pool to be allocated and have

their rights set dynamically; not doing so would be too rigid.
 There may be specific policies that define who can access a new

object, and we need to apply them when creating the rights for an
object. This is a basic aspect of security.

Solution
Whenever a new object is created, define a list of subjects that can access it,
and in what way.

Structure
The class diagram for this pattern is shown in Figure 7.7. When a Process
creates a new object through a Factory, the CreationRequest includes the
features of the new object. Among these features is a list of rights defining

rights for a Subject to access the created Object. This implies that we need
to intercept every access request: this is done by an implementation of the
CONTROLLED-OBJECT MONITOR pattern (page 132).

Figure 7.7: Class diagram for the CONTROLLED-OBJECT FACTORY
pattern

Dynamics
Figure 7.8 shows the dynamics of object creation. A Process creating an
Object through a Factory defines the rights for other subjects with respect to
this object.

Figure 7.8: Object creation dynamics

Implementation
Each object may have an associated access control list (ACL). This will list
the rights each subject (represented by a process) has for the associated

object. Each entry specifies the rights that any other object within the
system can have. In general, each right can be an ‘allow’ or a ‘deny’. These
are known as access control entries (ACE) in the Windows environment
[Har01] [Mic00]. The set of access rules is also known as the access control
list (ACL) in Windows and most other operating systems.

Capabilities are an alternative to an ACL. A capability corresponds to a
row in an access matrix. This is in contrast to the ACL, which is associated
with the object. The capability indicates to the secure object that the subject
does indeed have the right to perform the operation. The capability may
carry some authentication features in order to show that the object can trust
the provided capability information. A global table can contain rows that
represent capabilities for each authenticated user [And08], or the capability
may be implemented as a list for each user which indicates to which object
they have access.

Example Resolved
Our users can now be given only the rights to the created objects that they
need. This prevents them from having too many (possibly unnecessary)
object rights: many misuses occur through processes having too many
rights.

Consequences
The CONTROLLED-OBJECT FACTORY pattern offers the following
benefits:

 There can be no objects that have default access rights because
somebody forgot to define access rights for them.
 It is possible to define access rights for an object based on its

sensitivity.
 Objects allocated from a resource pool can have rights attached to

them dynamically.
 The operating system can apply ownership policies: for example, the

creator of an object may receive all possible rights to the objects it
creates.

The following potential liabilities may arise from applying this pattern:

 There is a process creation overhead.
 It may not be clear what initial rights to define.

Known Uses
The Win32 API allows a process to create objects with various create()
system calls using a structure containing access control information
(DACL) passed as a reference. When the object is created the access control
information is associated with the object by the kernel: the kernel returns a
handle to the caller to be used for access to the object. Other operating
systems apply predefined sets of rights: for example, all the members of the
owner’s group in UNIX may receive equal rights for a new file.

See Also
Builder and other creation patterns [Gam94].

7.5 Controlled-Object Monitor
The CONTROLLED-OBJECT MONITOR pattern allows control of access
by a subject to an object, using a specialized Reference Monitor to intercept
access requests from processes. The Reference Monitor checks whether the
process has the requested type of access to the object.

Example
Our operating system does not check all user requests for access to
resources such as files or areas of memory. A hacker discovered that some
accesses are not checked, and was able to steal customer information from
our files. He also left a program that randomly overwrites memory areas
and creates serious disruption for other users.

Context
A computing system that needs to control access to its created objects
because of their different degrees of sensitivity. Rights for these objects are

defined by authorization rules or policies that should be enforced when a
process attempts to access an object.

Problem
When objects are created we define the rights of processes over them.
These authorization rules or policies must be enforced when a process
attempts to access an object.

The solution to this problem must resolve the following forces:
 There may be many objects with different access restrictions defined

by authorization rules; we need to enforce these restrictions when a
process attempts to access an object.
 We need to control different types of access, or the object may be

misused.

Solution
Use a specialized reference monitor to intercept access requests from
processes. The reference monitor checks whether the process has the
requested type of access to the object according to some access rule.

Structure
Figure 7.9 shows the class diagram for this pattern. This is a more specific
implementation of the Reference Monitor pattern ([Sch06b]). The
modification shows how the system associates the rule to the secure object
in question.

Figure 7.9: Class diagram for the CONTROLLED-OBJECT MONITOR
pattern

Dynamics
Figure 7.10 shows the dynamics of secure subject access to a secure Object.
Here the request is sent to the ReferenceMonitor, where it checks the
AccessRules. If the access is allowed, it is performed and the result
returned to the subject. Note that here, a handle or ticket is returned to the
subject, so that future access to the secure Object can be performed directly,
without additional checking.

Figure 7.10: Sequence diagram for validating an access request

Implementation
A possible implementation would be as follows:

1 A user is authenticated when they log on.
2 Created objects inherit the original user’s ID that is contained within a
token. This token associates with the user process to be used by the
operating system to resolve access rights. Only those authorized may
have the desired access to the secure object.
3 Each object that a user wishes to access may have an associated
access control list (ACL). This will list what right each user has for the
associated object.
4 Each entry specifies what right any other object within the system can
have. In general, each right can be an ‘allow’ or a ‘deny’. These are
also known as access control entries (ACE) in the Windows
environment [Har01] [Mic00]. The set of access rules is also known as
the access control list (ACL) in Windows and most operating systems
(see Chapter 6).

Capabilities are an alternative to the ACL. A capability corresponds to a
row in an access matrix. This is in contrast to the ACL, which is associated
with the object. The capability indicates to the secure object that the subject
does indeed have the right to perform the operation. The capability may
carry some authentication features in order to show that the object can trust
the provided capability information. A global table can contain rows that
represent capabilities for each authenticated user [And08], or the capability
may be implemented as a list corresponding to each user, indicating what
objects the user can access.

Example Resolved
A reference monitor mediates all requests. There are now no unchecked
requests, so a hacker cannot get access to unauthorized files or memory
areas.

Consequences
The CONTROLLED-OBJECT MONITOR pattern offers the following
benefits:

 The access rules can implement an access matrix defining different
types of access for each subject.
 Each access request can be intercepted and accepted or rejected

depending on the authorization rules.
Potential liabilities include:

 The need to protect the authorization rules. However, the same
mechanism that protects resources can also protect the rules.
 The overhead of controlling each access. Some accesses may be

compiled for efficiency.

Known Uses
Windows NT. The Windows NT security subsystem provides security using
the patterns described here. It has the following three components (see
[Har01] [Kel97] [Mic00]):

 Local Security Authority
 Security Account Manager

 Security Reference Monitor
This implementation is described in detail on page 153.

Java 1.2 Security. The Java security subsystem provides security using the
patterns described here. The Java access controller builds access
permissions based on permission and policy. It has a checkPermission
method that determines the codesource object of each calling method and
uses the current policy object to determine the permission objects
associated with it. Note that the checkPermission method will traverse the
call stack to determine the access of all calling methods in the stack. The
java.policy file is used by the security manager and contains the grant
statements for each codesource.

7.6 Protected Entry Points
The PROTECTED ENTRY POINTS pattern describes how to force a call
from one process to another to go through only prespecified entry points
where the correctness of the call is checked and other access restrictions
may be applied.

Example
ChronOS is a company building a new operating system, including a
variety of plug-in services such as media players, browsers and others. In
their design, processes can call each other in unrestricted ways. This makes
process calls fast, which results in generally good performance, and
everybody is satisfied. However, when they test the system, an error
anywhere produces problems, because it propagates to other processes,
corrupting their execution. Also, many security attacks are shown to be
possible. It is clear that when their systems are in use they will acquire a
bad reputation and ChronOS will have problems selling it. They need to
have a system that provides resilient service in the presence of errors, and
which is resistant to attacks.

Context

Executing processes in a computing system. Processes need to call other
processes to ask for services or to collaborate in the computation of an
algorithm, and usually share data and other resources. The environment can
be centralized or distributed. Some processes may be malicious or contain
errors.

Problem
Process communication has an effect on security, because if a process calls
another using entry points without appropriate checks, the calling process
may read or modify data illegally, alter the code of the executing process, or
take over its privilege level. If the checks are applied at specific entry
points, some languages, such as C or C++, let the user manipulate pointers
to bypass those entry points. Process communication also has a major effect
on reliability, because an error in a process may propagate to others and
disrupt their execution.

The solution to this problem must resolve the following forces:
 Executing processes need to call each other to perform their functions.

For example, in operating systems user processes need to call kernel
processes to perform I/O, communications and other system functions.
In all environments, process may collaborate to solve a common
problem, and this collaboration requires communication. All this means
that we cannot use process isolation to solve this problem.
 A call must go to a specified entry point or checks could be bypassed.

Some languages let users alter entry point addresses, allowing input
checks to be bypassed.
 A process typically provides services to other processes, but not all

services are available to all processes. A call to a service not authorized
to a process can be a security threat or allow error propagation.
 In a computing environment we have a variety of processes with

different levels of trust. Some are processes that we normally trust, such
as kernel processes; others may include operating system utilities, user
processes and processes of uncertain origin. Some of these processes
may have errors or be malicious. All calls need to be checked.

 The number, type and size of the passed parameters in a call can be
used to attack a process, for example by producing a buffer overflow.
Incorrect parameters may produce or propagate an error.

Solution
Systems that use explicit message passing have the possibility of checking
each message to see if it complies with system policies. For example, one
security feature that can be applied when calling another process is
protected entry points. A process calling another process can only enter the
called process at predesigned entry points, and only if the signature used is
correct (name, number of parameters, type and size of parameters). This
prevents bypassing entry checks and avoids attacks such a buffer overflows.

Structure
Figure 7.11 shows the class diagram of the solution. CallingProcess and
CalledProcess are roles of processes in general. When a CallingProcess
makes a request for a service to another process, the request is handled by
an EntryPoint. This EntryPoint has a name and a list of parameters with
predefined numbers, types, and size limits that can be used to check the
correctness of the call signature. It can optionally add access control checks
by using a Reference Monitor pattern or other input data tests.

Figure 7.11: Class diagram for the PROTECTED ENTRY POINTS pattern

Dynamics
Figure 7.12 shows a CallingProcess performing a service call. The call
must use a proper signature: that is, if the name of the service (opName) or
the names of the parameters are incorrect, and the type or length of the

parameters is not correct, it is rejected (this is checked by operation
checkParmList).

Figure 7.12 Sequence diagram for a process making a service call

Implementation
Kernels support calls as direct calls or through mailboxes. In the first case,
the called process must check that the call is correct; in the second case, the
mailbox must do the checking.

Entry points must be expressed as references as in Java, and not as
pointers, as in C or C++ (as pointers allow arithmetic operations). In
languages that use pointers, it is necessary to restrict their use in procedure
calls; for example by disallowing pointer arithmetic.

Example Resolved
If the parameters of all calls are validated through protected entry points,
many security and reliability problems can be avoided. Additional checks,
such as access control and data value checks, can also be applied.

Consequences
The PROTECTED ENTRY POINTS pattern offers the following benefits:

 If we can check all the calls of one process to another, we can check
that the calls are for appropriate services and apply checks for security
or reliability purposes.
 Checking the number, type and length of the parameters passed in a

call can prevent a variety of attacks and stop the propagation of some
errors.

 If we know the level of trust of processes, we can adjust the number
of checks; for example, we can apply more checks to suspicious
processes.

Known Uses
 Multics.
 Systems that use ring architectures, for example the Intel Series 86

and Pentium.
 Systems that use capabilities, such as IBM S/6000.
 A specific use can be found in a patent for PC BIOS [Day91].

See Also
 This pattern can be seen as a specific realization of the abstract

principle validate input parameters.
 The PROTECTION RINGS pattern (see below).
 Multilevel Secure Partitions; see [Fer08c].
 The CAPABILITY pattern (page 96).
 Access control and distributed access control (Chapter 6). These

checks can be applied in specific entry points to control access to
resources.

7.7 Protection Rings
The PROTECTION RINGS pattern allows control of how processes call
other processes and how they access data. Crossing of rings is done through
gates that check the rights of the crossing process. A process calling another
process or accessing data in a higher ring must go through a gate.

Example
The ChronOS designers found that for applications that use programs with a
variety of origins, there is a high overhead in applying elaborate checks to
all of them. It would be more efficient to apply the checks selectively,
depending on how much they trust the programs making the calls, but this

is not usually known at execution time. If they could find a way to classify
processes according to trust, they could improve the application of checks.
It is not enough to rely on program features to enforce entering the right
entry points, because applications may come in a variety of languages,
some of which may allow skipping entry points.

Context
Executing processes in a computing system. Processes need to call other
processes to ask for services or to collaborate in the computation of an
algorithm, and usually share data and other resources. Some processes may
be malicious or contain errors that may affect process execution. This
pattern applies only to centralized environments, as opposed to distributed
systems.

Problem
Defining a set of protected entry points is not enough if we cannot enforce
their use. How can we prevent a process from calling another on an entry
point that has no checks? We cannot rely on language features unless we
only use a restricted set of languages, which is not practical in general. If all
processes are alike we also need to apply the same checks to all of them,
which may be overkill.

The solution to this problem must resolve the following forces:
 We want to be able to enforce the application of protected entry

points, at least for some processes. In this way, requests from suspicious
processes can always be controlled.
 We would like to separate processes according to their level of trust,

and check only calls from a low-level to a higher-level process. This
can reduce execution-time overhead considerably.
 In each higher level we can check signature validity, as well as control

access or apply reliability tests. These actions should result in a more
secure execution environment.

Solution

Define a set of hierarchical protection domains, called protection rings
(typically 4 to 32) with different levels of trust. Assign processes to rings
based on their level of trust. Ring crossing is performed through gates that
enforce protected entry points: a process calling a higher-level process or
accessing data at a higher level can only call this process or access data at
predesigned entry points with controlled parameters. Additional checks for
security or reliability can be applied at the entry points.

Structure
Figure 7.13 shows a class diagram for this pattern. The CallingProcess
requests services from a CalledProcess. To do so, it must enter a
CallGate, which applies protected entry points that check the correct use of
signatures. CallRules define the requirements for inter-level calls. The
CallingProcess can access Data according to a set of DataAccess-Rules.

Figure 7.13: Class diagram for the PROTECTION RINGS pattern

Dynamics
Figure 7.14 shows a sequence diagram for a call to a higher-privilege ring.
If the call fails an exception may be raised.

Figure 7.14: Sequence diagram for a successful call to a higher-privilege
ring

Implementation
The call rules and the data access rules are usually implemented in the call
instruction microcode [int99]. Figure 7.15 shows a typical use of rings.
Processes are assigned to rings based on their level of trust; for example, we
could assign four rings in decreasing order of privilege and trust, to
supervisor, utilities, trusted user programs, untrusted user programs.

Figure 7.15: Assignment of protection rings

The program status word of the process indicates its current ring, and data
descriptors also indicate their assigned rings. The values of the calling and
called processes are compared to apply the transfer rules.

The Intel X86 architecture [int99] applies two rules:
 Calls are allowed only in a more privileged direction, with possible

restriction of a minimum calling level.
 Data at level p can be accessed only by a program executing at a more

privileged level (<= p).
Another possibility for improving security is to allow calls only within a

range of rings: in other words, jumping many rings is considered
suspicious. Multics defined a call bracket, where calls are allowed only
within rings in the bracket. More precisely, for a call from procedure i to a
procedure with bracket (n1, n2, n3) the following rules apply:

 If n2<i<=n3, the call is allowed to specific entry points.
 If <n3, the call is not allowed.
 If i < n1, any entry point is valid.

This extension only makes sense for systems that have many rings.

Example Resolved
Now we can preassign processes to levels according to their trust. All calls
to processes of higher privilege are checked. Processes of low trust get
more checks.

Consequences
The PROTECTION RINGS pattern offers the following benefits:

 We can separate processes according to their level of trust.
 Level transfers happen only through gates where we can apply the

PROTECTED ENTRY POINTS pattern; that is, we have enforced
protected entry points for upward calls.
 We can control procedure calls as well as data access across levels.

The pattern also has some potential liabilities:

 Crossing rings take time. Because of this delay, some operating
systems use fewer rings. For example, Windows uses two rings, IBM’s
OS/2 uses three rings [wik2]. Using fewer rings improves performance
at the expense of security.
 Without hardware support the crossing ring overhead is unacceptable,

which means that this approach is only practical for operating systems
and for centralized environments.

Variants
 Rings don’t need to be strictly hierarchical; partial orders are possible

and convenient for some applications. For example, a system that
includes a secure database could assign a level to the database equal to
but separated from system utilities; the highest level is for the kernel,
and the lowest level is for user programs. This was done in a design
involving an IBM 370 [Fer78].
 In some systems, such as the MV8000, rings are associated with

memory locations.
 Multics used the concept of the call bracket, where a call can be made

within a range of rings.

Known Uses
 Multics introduced this concept and used 32 rings, as well as call

brackets [Gra68].
 The Intel Series X86 and Pentium [int99].
 MV8000 [mv] [Wal81].
 Hitachi HITAC.
 ICL 2900, VAX 11 and MARA, described in [Fro85], which also

describes Multics and the Intel series.
 [Shi00] shows a use of rings to protect against malicious mobile code.
 An IBM S/370 was modified to have non-hierarchical rings [Fer78].
 Rings have been used for fault-tolerant applications [Oza88].

See Also

 A combination (process, domain) corresponds to a row of the Access
Matrix [Sch06b].
 Multilevel Secure Partitions [Fer08c] is an alternative for distributed

environments, in which processes are assigned levels based on
multilevel security models.
 PROTECTED ENTRY POINTS (page 136).

CHAPTER 8

Patterns for Secure Execution and File
Management

The severity of the laws prevents their execution.
Charles de Montesquieu

8.1 Introduction
In this chapter we present patterns for the secure execution of processes:

 VIRTUAL ADDRESS SPACE ACCESS CONTROL. How can we
control access by processes to specific areas of their virtual address
space (VAS) according to a set of predefined access types? Divide the
VAS into segments that correspond to logical units in the programs. Use
special words (descriptors) to represent access rights for these
segments.
 EXECUTION DOMAIN. How can we define an execution

environment for processes, indicating explicitly all the resources a
process can use during its execution, as well as the type of access for
the resources? Attach a set of descriptors to the process that represent
the rights of the process.
 CONTROLLED EXECUTION DOMAIN. How can we define an

execution environment for processes? Attach a set of descriptors to
each process that represents the rights of the process. Use the Reference
Monitor pattern to enforce access.
 VIRTUAL ADDRESS SPACE STRUCTURE SELECTION. How can

we select the virtual address space for operating systems that have
special security needs? Some systems emphasize isolation, others
information sharing, yet others good performance. The organization of

each process’ virtual address space (VAS) is defined by the hardware
architecture and has an effect on performance and security. Consider all
the hardware possibilities and select according to need.

Assume here that resources are represented as objects, as it is common in
modern operating systems. Figure 8.1 shows how these patterns are
organized into a pattern language. For example, authentication is needed for
file access and for controlled object access, a subject must be authorized to
access some object in a specific way, and we need to make sure that the
requester is not an imposter. The other three patterns complete the
definition of the controlled execution domain, where the creation and access
to objects are now controlled.

Figure 8.1: Patterns for secure process execution

The first three patterns come from [Fer02], the last one from [Fer05c].

8.2 Virtual Address Space Access
Control
The VIRTUAL ADDRESS SPACE ACCESS CONTROL pattern allows
control of access by processes to specific areas of their virtual address space
(VAS) according to a set of predefined access types.

Context
Multiprogramming systems with a variety of users. Processes executing on
behalf of these users must be able to share memory areas in a controlled
way. Each process runs in its own address space. The total virtual address

space (VAS) at a given moment includes the union of the VASs of the
individual processes, including user and system processes. Typical allowed
accesses are read, write, and execute, although finer access typing is
possible.

Problem
Processes must be controlled when accessing memory, otherwise they could
overwrite each other’s memory areas or gain access to private information.
While relatively small amounts of data can be directly compromised, illegal
access to system areas could allow a process to get a higher execution
privilege level and thus access files and other resources.

The solution to this problem must resolve the following forces:
 There is a need for a variety of access rights for each separate logical

unit (segment) of the VAS. In this way security and controlled sharing
are possible.
 There is a variety of virtual memory address space structures: some

systems use a set of separate address spaces, others a single-level
address space. Further, the VAS may be split between the users and the
operating system. We would like to control access to all of these types
of virtual memory in a uniform manner.
 For any approach to be efficient, hardware support is necessary. This

implies that an implementation of the solution will require a specific
hardware architecture. However, the solution must be hardware-
independent.

Solution
Divide the VAS into segments that correspond to logical units in the
programs. Use special words (descriptors) to indicate access rights as the
starting address of the accessible segment, the limit of the accessible
segment and the type of access permitted (read, write, execute).

Figure 8.2 shows a class diagram of the solution. A Process must have a
Descriptor to access a segment in the VAS.

Figure 8.2: Class diagram for the VIRTUAL ADDRESS SPACE ACCESS
CONTROL pattern

Implementation
Some implementation aspects include:

 The limit check when accessing an address must be done by the
instruction microcode, or the overhead would be unacceptable. This
check is part of an instance of the REIFIED REFERENCE MONITOR
pattern (page 100).
 The same idea applies to purely paging systems, except that the limit

in the descriptor is defined by the page size. In paged systems pages do
not correspond to logical units and cannot perform a fine-granularity
security control.
 There are two basic ways to implement this pattern:

 Proper descriptor systems. The descriptors are loaded at process
creation by the operating system, handled through special registers,
and disappear at the end of execution.
 Capability systems. A special trusted portion of the operating

system distributes capabilities to programs. Programs own these
capabilities: to use them, the operating system loads them into
special registers or memory segments. In both cases, access to files
is derived from their ACLs.

Consequences
The VIRTUAL ADDRESS SPACE ACCESS CONTROL pattern offers the
following benefits:

 The pattern provides the required segment protection, because a
process cannot access a segment without a descriptor for it. Two
processes with descriptors with the same base–limit pair can
conveniently share a segment.

 The pattern applies to any type of virtual address space: single,
segregated or split.
 If all resources are mapped to the virtual address space, the pattern

can control access to any type of resource, including files.
 The solution can be implemented in different ways.

The pattern also has the following potential liabilities:
 Segmentation makes storage allocation inefficient because of external

fragmentation [Sil03]. In most systems segments are paged for
convenient allocation.
 Hardware support is needed, which makes the implementation of this

solution hardware-dependent.
 In systems that use separate address spaces, it is necessary to add an

extra identifier to the descriptor registers to indicate the address space
number.

Known Uses
The Plessey 250 [Ham73], Multics [Gra68], IBM S/38, IBM S/6000, Intel
X86 [Chi84] and Intel Pentium use some type of descriptors for memory
access control. The operating systems in these machines must use this
approach for memory management.

See Also
This pattern is a direct application of the AUTHORIZATION pattern (page
74) to the processes’ address space.

8.3 Execution Domain
The EXECUTION DOMAIN pattern describes how to define an execution
environment for processes, indicating explicitly all the resources a process
can use during its execution, as well as the type of access for the resources.

Context

A process executes on behalf of a user, group or role (a subject). During
execution a process must posses the access rights to resources that were
defined for its subject. The set of access rights given to a process define its
execution domain. At times the process may also need to enter other
domains to perform its work; for example, to access data from a file in
another domain. Frequently, users structure their domains as a tree of nested
domains.

Problem
Restricting a process to a specific set of resources is a basic step to control
malicious behavior. Otherwise, unauthorized processes could destroy or
modify information in files or databases, with obvious results, or could
interfere with the execution of other processes.

The solution to this problem must resolve the following forces:
 There is a need to restrict the actions of a process during its execution,

otherwise it could perform illegal actions.
 Resources typically include memory and I/O devices, but can also be

system data structures and special instructions. Although resources are
heterogeneous, we want to treat them uniformly.
 A process needs the flexibility to create multiple domains and to enter

inner domains for specific purposes.
 There should be no restrictions on how the domain is implemented.

Solution
Attach a set of descriptors to the process that represent the rights of the
process. In Figure 8.3, the class Domain represents domains, and, in
conjunction with the Composite pattern [Gam94], describes nested
domains. Operation enter() in class Domain lets a Process enter a new
Domain. A Domain includes a set of descriptors that define rights for
resources.

Figure 8.3: Class diagram for the EXECUTION DOMAIN pattern

Consequences
The EXECUTION DOMAIN pattern offers the following benefits:

 It lets users apply the principle of least privilege to processes: they
can be given only the rights they need to perform their functions.
 It can be applied to describe access to any type of resource if the

resource is mapped to a specific memory address.
 Processes may have several execution domains, either peer or nested.
 The model does not restrict the implementation of domains. A domain

could be represented in many ways. For example, the Plessey 250, IBM
S/38 and IBM S/6000 use capabilities. The Intel X86 and Pentium
series (and their corresponding operating systems) use descriptors for
memory access control.
 Special domains with predefined rights or types of rights can be

defined. For example, Multics and the Intel X86 series use protection
rings, where each ring is assigned to a type of program: supervisor,
utilities, user programs, and external programs. The rings are
hierarchically structured, based on their level of trust. Descriptors are
used to cross rings in program calls.
 The descriptors refer to VAS segments, which is the most usual

implementation. However, they could indicate resources not mapped to
memory.

This pattern also has the following potential liabilities:

 Extra complexity: special hardware may be needed to accelerate
processing.
 Performance overhead in setting up domains and in entering and

leaving domains. Because of this, some operating systems for Intel
processors use only two rings, improving performance but reducing
security.
 The way to set up the execution domain is implementation-dependent.

In descriptor systems the operating system creates a descriptor segment
with the required descriptors. In capability systems the descriptors are
part of the process code and are enabled during execution.

Known Uses
 The concept of domains comes from Multics [Gra68]. Segments or

pages (as in EROS [Sha02]) are structured as tree directories.
 The Plessey 250 and the IBM S/6000 running AIX [Cam90] are good

examples of the use of this pattern.
 The Java Virtual Machine defines restricted execution environments

in a similar way [Oak01].

8.4 Controlled Execution Domain
The CONTROLLED EXECUTION DOMAIN pattern allows control of
access to all operating system resources by processes, based on user, group
or role authorizations.

Example
When Jim discovered that the customer files had authorizations and could
not be accessed directly, he tried another approach. He realized that
processes were not well controlled and could access memory and other
resources belonging to other users. He systematically searched areas of
memory and I/O devices being used by other processes until he could
scavenge a few credit card numbers that he could use in his illicit activities.

Context
A system in which a process executes on behalf of a user or role (a subject).
A process must have access rights to use these resources during execution.
The set of access rights given to a process define its execution domain.
Processes must be able to share resources in a controlled way. The rights of
the process are derived from the rights of its invoker.

Problem
Even if direct access to files is restricted, users can use ‘tunneling’ to attack
them through a lower level. If the process execution environment is
uncontrolled, processes can scavenge information by searching memory and
accessing disk drives. They might also take control of the operating system
itself, in which case they have access to everything.

The solution to this problem must resolve the following forces:
 We need to constrain the execution of processes and restrict them to

use only resources that have been authorized based on the rights of the
subject that activated the process.
 Subjects can be users, roles or groups. We want to deal with them

uniformly.
 Resources typically include memory and I/O devices, but can also be

files and special instructions. We want to consider them in a uniform
way.
 A subject may need to activate several processes, and a process may

need to create multiple domains. Execution domains may need to be
nested. We want flexibility for our processes.
 Typically, only a subset of a subject’s rights needs to be used in a

specific execution. We need to provide to a process only the rights it
needs during its execution (using the principle of least privilege).
 The solution should put no constraints on implementation.

Solution
Figure 8.4 shows the class diagram of the CONTROLLED EXECUTION
DOMAIN pattern. This model combines the AUTHORIZATION (page 74),

EXECUTION DOMAIN (page 149) and REIFIED REFERENCE
MONITOR (page 100) patterns to let processes operate in an environment
with controlled actions based on the rights of their invoker.

Figure 8.4: Class diagram for the CONTROLLED EXECUTION DOMAIN
pattern

Process execution follows the EXECUTION DOMAIN pattern (page
149): as a process executes it creates one or more Domains. Domains can
be recursively composed. The descriptors used in the process’ domains are
a subset of the Authorizations that the subject has for some
ProtectionObjects (defined by an instance of the AUTHORIZATION
pattern). ProtectionObject is a superclass of the abstract Resource class,
and ConcreteResource defines a specific resource. Process’ requests go
through a ReferenceMonitor that can check the domain descriptors for
compliance.

Figure 8.5 (page 154) shows a sequence diagram showing the use of a
right after entering a domain. Here x denotes a segment requested by the
Process. An instance of the Reference Monitor pattern controls the process
requests. This diagram assumes that the descriptors of the domain have
been previously set up.

Figure 8.5: Sequence diagram for entering a domain and using a right in
that domain

Implementation
Windows NT. The Windows NT security subsystem provides security using
this and others of the patterns described here, including REIFIED
REFERENCE MONITOR (page 100), AUTHENTICATOR (page 52) and
ACCESS CONTROL LIST (page 91). It has the following three
components [Har01] [Kel97] [Mic00]:

 Local Security Authority (LSA)
 Security Account Manager (SAM)
 Security Reference Monitor (SRM)

The LSA and SAM work together to authenticate the user and create the
user’s access token. The security reference monitor runs in kernel mode and
is responsible for the enforcement of access validation. When access to an
object is requested, a comparison is made between the file’s security
descriptor and the secure ID (SID) information stored in the user’s access
token. The security descriptor is made up of access control entries (ACE)
included in the object’s access control list (ACL). When an object has an

ACL, the SRM checks each ACE in the ACL to determine whether access
is to be granted. After the SRM grants access to the object, further access
checks are not needed, as a handle to the object that allows further access is
returned the first time.

Types of object permissions are ‘no access’, ‘read’, ‘change’, ‘full
control’ and ‘special access’. For directory access, the following are added:
‘list’, ‘add’ and ‘read’.

Windows use the concept of a handle for access to protected objects
within the system. Each object has a security descriptor (SD) that contains a
discretionary access control list (DACL) for the object. Each process has a
security token that contains an SID that identifies the process. This is used
by the kernel to determine whether access is allowed. The ACL contains
access control entries (ACEs) that indicate what access is allowed for a
particular process SID. The kernel scans the ACL for the rights
corresponding to the requested access.

A process requests access to an object when it asks for a handle using, for
example, a call to CreateFile(), which is used both to create a new file or
open an existing file. When the file is created, a pointer to an SD is passed
as a parameter. When an existing file is opened, the request parameters, in
addition to the file handle, contain the desired access, such as
GENERIC_READ. If the process has the desired rights for the access, the
request succeeds and an access handle is returned; this allows different
handles to the same object to have different accesses [Har01]. Once the
handle is obtained, additional access to read a file will not require further
authorization. The handle may also be passed to another trusted subject for
further processing.
Java 1.2 Security. The Java security subsystem provides security using the
patterns described here. The Java access controller builds access
permissions based on permission and policy. It has a checkPermission
method that determines the codesource object of each calling method and
uses the current policy object to determine the permission objects
associated with it. Note that the checkPermission method will traverse the
call stack to determine the access of all calling methods in the stack. The
java.policy file is used by the security manager and contains the grant
statements for each codesource.

Example Resolved
A new operating system was installed, with mechanisms to make processes
operate with the rights of their activator. Jim did not have access to
customer files, which made his processes also unable to access these files.
Now he could not scavenge in other users’ areas and his illicit actions were
thwarted.

Consequences
The CONTROLLED EXECUTION DOMAIN pattern offers the following
benefits:

 We can apply the least privilege principle to processes based on the
rights of their activators. This also provides accountability.
 It can be applied with any type of resource.
 Subjects may activate any number of processes, and processes may

have several execution domains.
 The model is abstract and does not restrict possible implementations.
 Execution domains are defined according to the EXECUTION

DOMAIN pattern (page 149) and may include any subset of the
subject’s rights.

This pattern also has the following potential liabilities:
 Some extra complexity and performance overhead.
 Dependence on the hardware architecture.

Known Uses
The IBM S/38, the IBM S/6000 running AIX, the Plessey 250 [Ham73] and
EROS [Sha02] have applied this pattern using capabilities. Proper
descriptor systems such as the Intel architectures may use this approach,
although their operating systems do not always do so. Recent uses of this
pattern include Adobe Reader Protected Mode [Ark 10] and Chromium
Sandbox [Chr].

See Also

This pattern uses the AUTHORIZATION (page 74), EXECUTION
DOMAIN (page 149) and REIFIED REFERENCE MONITOR (page 100)
patterns. The VIRTUAL ADDRESS SPACE ACCESS CONTROL pattern
(page 146) may be used indirectly by the EXECUTION DOMAIN pattern.

8.5 Virtual Address Space
Structure Selection
The VIRTUAL ADDRESS SPACE STRUCTURE SELECTION pattern
describes how to select the virtual address space for operating systems that
have special security needs. Some systems emphasize isolation, others
information sharing, others good performance. The organization of each
process’ virtual address space (VAS) is defined by the hardware architecture
and has an effect on performance and security. The pattern enables all the
hardware possibilities to be considered and selected according to need.

Example
We have a system running applications using images that require large
graphic files. The application also has stringent security requirements,
because some of the images are sensitive and should be only accessed by
authorized users. We need to decide on an appropriate VAS structure.

Context
Virtual memory allows the total size of the memory used by processes to
exceed the size of physical memory. Upon use, the virtual address is
translated by the address translation unit (usually the memory management
unit (MMU) in microprocessors) to obtain a physical address that is used to
access physical memory. To execute a process, the kernel creates a per-
process virtual address space. We have a multiprogramming system with a
variety of users and applications. Processes execute on behalf of users and
at times must be able to share memory areas, at other times must be
isolated, and in all cases we need access control. Performance may also be
an issue.

Problem
We need to select the virtual address space for processes depending on the
majority of the applications we intend to execute, otherwise we can have
mismatches that may result in poor security or performance.

The solution to this problem must resolve the following forces:
 Each process needs to be assigned a relatively large VAS to hold its

data, stack, space for temporary variables, variables to keep the status
of its devices, and other information.
 In multiprogramming environments processes have diverse

requirements; some require isolation, others information sharing, others
good performance.
 Data typing is useful to prevent errors and improve security. Several

attacks occur by executing data and modifying code [Gol06].
 Sharing between address spaces should be convenient, otherwise

performance may suffer.

Solution
Select from four basic approaches that differ in their security features:

 One address space per process (Figure 8.6). The supervisor (kernel
plus utilities) and each user process get their own address spaces. Using
one VAS per process has the following trade-offs:

Figure 8.6: One address space per process

 Good process isolation.
 Some protection against possible illegal actions by a compromised

operating system.
 Simplicity.
 Sharing is complex (special instructions to cross spaces are

needed).
 Two address spaces per process (Figure 8.7). Each process gets a data

and a code (program) virtual address space. Use of two VASs per
process has the following trade-offs:

Figure 8.7: Two address spaces per process

 Good process isolation.
 Some protection against possible illegal actions by a compromised

operating system.
 Data and instructions can be separated for better protection (some

attacks take advantage of execution of data or modification of code).
Data typing is also good for reliability.
 A disadvantage is complex sharing, plus poor address space

utilization.
 One address space per user process, all of them shared with one

address space for the operating system (Figure 8.8). The operating

system (supervisor) can be shared between all processes. This scheme
has the following trade-offs:

Figure 8.8: One address space per user process, all of them shared with
one address space for the operating system

 Good process isolation.
 Good sharing of resources and services.
 Suboptimal with respect to security (the supervisor has complete

access to the user processes, and it must be trusted).
 The address space available to each user process has been halved.

 A single-level address space (Figure 8.9). Everything, including files,
is mapped to one memory space. Use of a single-level address space
has the following trade-offs:

Figure 8.9: A single-level address space

 Good process isolation.
 Logical simplicity.
 Uniform protection (all I/O is mapped to memory).
 Offers the most elegant solution (only one mechanism to protect

memory and files), and is potentially the most secure if capabilities
are also used.
 Hard to implement in hardware due to the large address space

required.

Implementation
The VAS is implemented by the hardware architecture. The operating
system designer can choose one of the architectures based on the
requirements of the applications, according to the trade-offs discussed
above. In a particular case, the choice may be influenced by company
policies, cost, performance and other factors, as well as security.

Consequences
In addition to the specific benefits described as part of the solution (trade-
offs), the VIRTUAL ADDRESS SPACE STRUCTURE SELECTION
pattern has the following general liabilities:

 Without hardware support it is not feasible to separate the virtual
address spaces of the processes. Most processors use register pairs or
descriptors that indicate the base (start) of a memory unit (segment) and
its length or limit [Sil08].

 If the mix of applications is not well-defined, it is hard to select the
best solution. Considerations other than security then become more
important.

Known Uses
 One address space per process. The NS32000, WE32100 and Clipper

microprocessors [Fer85]. Several versions of UNIX were implemented
in these processors.
 Two address spaces per process. Used in the Motorola 68000 series.

The Minix 2 operating system uses this approach [Tan06].
 One address space per user process, all of them shared with one

address space for the operating system. Used in the VAX series and in
Intel processors. Windows runs in this type of address space.
 Single-level address space. Multics, IBM S/38, IBM S/6000 and HP

PA-RISC use this approach. Multics had its own operating system. IBM
AIX ran in S/6000 [Cam90]. The PA-RISC architectures ran a version
of UNIX.

See Also
 SECURE PROCESS/THREAD (page 120). The interaction between

processes depends strongly on the virtual address space configuration,
which can affect security, performance and sharing properties of the
processes.
 VIRTUAL ADDRESS SPACE ACCESS CONTROL (page 146)

[Fer02] [Sch06b]. A VAS is assigned to each process that can be
accessed according to the rights of the process. The VIRTUAL
ADDRESS SPACE STRUCTURE SELECTION pattern is applied first
to select the appropriate structure. Once selected, the VAS is secured
using the Controlled Virtual Address Space pattern.
 The Secure Storage pattern for rebooting is discussed by [Loh10].

CHAPTER 9

Patterns for Secure OS Architecture
and Administration

A great building must begin with the immeasurable, must go through
measurable means when it is being designed, and in the end must be
unmeasured.

Louis Kahn

9.1 Introduction
Operating systems act as an intermediary between the user of a computer
and its hardware. The purpose of an operating system is to provide an
environment in which users can execute programs in convenient and
efficient manner [Sil08]. They control and coordinate the available
resources to present an abstract machine with convenient features to the
user. The architecture of the operating system organizes components to
structure its functional and non-functional aspects. The security of
operating systems is very critical, since they support the execution of all
applications. Most of the reported attacks occur through the operating
system. The security of individual execution-time actions such as process
creation and memory protection is very important, and we presented
patterns for these functions in Chapter 7 and Chapter 8. However, the
general architecture of the operating system is also very important to the
system’s ability to provide a secure execution environment.

Most operating systems use five basic architectures [Sil08] [Tan08]. One,
the monolithic architecture, has little value for security and it is only
mentioned as a possible variant of the modular architecture. We present
here patterns representing these four architectures (Figure 9.1):

Figure 9.1: Pattern diagram of OS architectures, administration and file
systems

 MODULAR OPERATING SYSTEM ARCHITECTURE. Separate the
operating system’s services into modules, each representing a basic
function or component. The basic core kernel only has the required
components to start itself and the ability to load modules. The core is
the one module always in memory. Whenever the services of any
additional modules are required, the module loader loads the
appropriate module. Each module performs a function and may take
parameters.
 LAYERED OPERATING SYSTEM ARCHITECTURE. The overall

features and functionality of the operating system are decomposed and
assigned to hierarchical layers. This provides clearly defined interfaces
between each section of the operating system and between user
applications and the system functions. Layer i uses services of a lower
layer i-1 and does not know of the existence of a higher layer, i+1.
 MICROKERNEL OPERATING SYSTEM ARCHITECTURE. Move as

much of the operating system functionality as possible from the kernel

into specialized servers, coordinated by a microkernel. The microkernel
itself has a very basic set of functions. Operating system components
and services are implemented as external and internal servers.
 VIRTUAL MACHINE OPERATING SYSTEM ARCHITECTURE.

Provide a set of replicas of the hardware architecture (virtual machines)
that can be used to execute multiple and possibly different operating
systems with strong isolation between them.

We also include two other related patterns in this chapter:
 ADMINISTRATOR HIERARCHY. Many attacks come from the

unlimited power of administrators. How can we limit the power of
administrators? Define a hierarchy of system administrators with rights
controlled using a ROLE-BASED ACCESS CONTROL (RBAC, page
78) pattern and assign rights according to their functions.
 FILE ACCESS CONTROL. How can we control access to files in an

operating system? Apply the AUTHORIZATION pattern (page 74) to
describe access to files by subjects. The protection object is now a file
component that may be a directory or a file.

The four secure architectures appeared as patterns in [Fer05c], coauthored
with Tami Sorgente. The Administrator Hierarchy pattern appeared in
[Fer06f], coauthored with Tami Sorgente and Maria M. Larrondo-Petrie.
Finally, the File Access Control pattern appeared in [Fer03b], coauthored
with John Sinibaldi.

9.2 Modular Operating System
Architecture
The MODULAR OPERATING SYSTEM ARCHITECTURE pattern
describes how to separate operating system services into modules, each
representing a basic function or component. The basic core kernel only has
the required components to start itself and the ability to load modules. The
core is the one module always in memory. Whenever the services of any
additional modules are required, the module loader loads the appropriate
module. Each module performs a function and may take parameters.

Example
Our group is building a new operating system that should support various
types of devices requiring dynamic services with a wide variety of security
requirements. We want to dynamically add operating system components,
functions and services, as well as tailor their security aspects according to
the type of application. For example, a media player may require support to
prevent copying of its contents, or a module for which a vulnerability alert
has been issued could be removed.

Context
A variety of applications with diverse requirements that need to execute
together, sharing hardware resources.

Problem
We need to be able to add or remove functions easily so that we can
accommodate applications with a number of security requirements. How
can we structure the operating system functions for this purpose?

The solution to this problem must resolve the following forces:
 Operating systems for PCs and other types of uses require a large

variety of plugins. New plugins appear frequently, and we need the
ability to add and remove them without disrupting normal operation.
 Some of the plugins may contain malware; we need to isolate their

execution so they do not affect other processes.
 We would like to hide security-critical modules from other modules to

avoid possible attacks.
 Modules can call each other, which is a possible source of attacks.

Solution
Define a core module that can load and link modules dynamically as
needed.

Structure

Figure 9.2 shows a class diagram for this pattern. The KernelCore is the
core of the modular operating system. A set of LoadableModules is
associated with the KernelCore, indicating the modules that can be loaded
according to their applications and the functions required. Any
LoadableModule can call any other LoadableModule.

Figure 9.2: Class diagram for the MODULAR OPERATING SYSTEM
ARCHITECTURE pattern

Implementation
1 Separate the functions of the operating system into independent
modules according to whether:

 They are complete functional units.
 They are critical with respect to security.
 They should execute in their own process for security reasons, or

their own thread for performance reasons.
 They should be isolated during execution because they may

contain malware.
2 Define a set of loadable modules. New modules can be added later,
according to the needs of specific applications.
3 Define a communication structure for the resultant modules.
Operations should have well-defined call signatures and all calls should
be checked.
4 Define a preferred order for loading some basic modules. Modules
that are critical for security should be loaded only when needed to
reduce exposure to attacks.

Example Resolved
We structured the functions of our system following the MODULAR
OPERATING SYSTEM ARCHITECTURE pattern. Because each module

could have its own address space, we can isolate its execution. Because
each module can be designed independently, they can have different
security constraints in their structure. This structure gives us flexibility with
a good degree of security.

Consequences
The MODULAR OPERATING SYSTEM ARCHITECTURE pattern offers
the following benefits:

 Flexibility to add and remove functions contributes to security, in that
we can add new versions of modules with better security.
 Each module is separate and communicates with other modules over

known interfaces. We can introduce controls in these interfaces.
 It is possible to partially hide critical modules by loading them only

when needed and removing them after use.
 By giving each executing module its own address space we can

isolate the effects of a rogue module.
This pattern also has the following potential liabilities:

 Any module can ‘see’ all the others and potentially interfere with their
execution.
 Uniformity of call interfaces between modules makes it difficult to

apply stronger security restrictions to critical modules.

Variants
Monolithic Kernel. The operating system is a collection of procedures. Each
procedure has a well-defined interface in terms of parameters and results
and each one is free to call any other [Tan08]. There is no organization
relating the operating system, components, services and user applications:
all the modules are at the same level. The difference between monolithic
and modular operating system architectures is that in the monolithic
approach, all the modules are loaded together at installation time, instead of
on demand. This approach is not very attractive for secure systems.

Known Uses

 The Solaris 10 operating system (Figure 9.3) is designed following
this pattern. Its kernel is dynamic and composed of a core system that is
always resident in memory [Sun04a]. The various types of Solaris 10
loadable modules are shown in Figure 9.3 as loaded by the kernel core:
the diagram does not represent the communication links between
individual modules.

Figure 9.3: The modular design of the Solaris 10 operating system
[Si|08]

 Extreme Ware from Extreme Networks [Ext].
 Some versions of Linux use a combination of modular and monolithic

architectures.

See Also
The CONTROLLED EXECUTION DOMAIN pattern (page 151) can be
used to isolate executing modules.

9.3 Layered Operating System
Architecture
The LAYERED OPERATING SYSTEM ARCHITECTURE pattern allows
the overall features and functionality of the operating system to be

decomposed and assigned to hierarchical layers. This provides clearly
defined interfaces between each section of the operating system and
between user applications and the operating system functions. Layer i uses
the services of a lower layer i-1 and does not know of the existence of a
higher layer, i+1.

Example
Our operating system is very complex and we would like to separate
different aspects in order to handle them in a more systematic way.
Complexity brings vulnerability. We also want to control the calls between
operating system components and services to improve security and
reliability. Finally, we would like to hide critical modules. We tried a
modular architecture, but it did not have enough structure to do all this
systematically.

Context
A variety of applications with diverse requirements that need to execute
together sharing hardware resources.

Problem
Unstructured modules, as in the MODULAR OPERATING SYSTEM
ARCHITECTURE pattern (page 165), have the problem that all modules
can reach all other modules, which facilitates attacks. We need to conceal
the existence of some critical modules.

The solution to this problem must resolve the following forces:
 Interfaces should be stable and well-defined. Going through any

interface could imply authorization checks.
 Parts of the system should be exchangeable or removable without

affecting the rest of the system. For example, we could have modules
that perform more security checks than others.
 Similar responsibilities should be grouped, to help understandability

and maintainability. This contributes indirectly to improved security.
 We should control module visibility to avoid possible attacks from

other modules.

 Complex components need further decomposition. This makes the
design simpler and clearer and also improves security.

Solution
Define a hierarchical set of layers and assign components to each layer.
Each layer presents an abstract machine (a set of operations) to the layer
above it, hiding the implementation details of the lower layers.

Structure
Figure 9.4 shows a class diagram for the LAYERED OPERATING
SYSTEM ARCHITECTURE pattern. LayerN represents the highest level
of abstraction, and Layer1 is the lowest level of abstraction. The main
structural characteristic is that the services of LayerN are used only by
LayerN+1. Each layer may contain complex entities consisting of different
components.

Figure 9.4: Class diagram for LAYERED OPERATING SYSTEM
ARCHITECTURE pattern

Dynamics
Figure 9.5 shows the sequence diagram for the use case ‘Open and read a
disk file’:

Figure 9.5: Sequence diagram for the use case ‘Open and read a disk file’

 A user sends an openFile() request to the OSInterface.
 The OSInterface interprets the openFile() request.
 The openFile() request is sent from the OSInterface to the

FileManager.
 The FileManager sends a readDisk() request to the DiskDriver.

Implementation
1 List all units in the system and define their dependencies.
2 Assign units to levels such that units in higher levels depend only on
units of lower levels.
3 Once the modules in a given level are assigned, define a language (set
of commands) for the level. This language includes the operations that
we want to make visible to the next level above. Add well-defined
operation signatures and security checks in these operations to assure
the proper use of the level.
4 Hide those modules that control critical security functions in lower
levels.

Example Resolved
We structured the functions of our system as in shown in Figure 9.6, and
now we have a way to control interactions and enforce abstraction. For
example, the file system can use the operations of the disk drivers and
enforce similar restrictions in the storage of data.

Figure 9.6: An example of the use of a layered OS architecture

The user of a file cannot take advantage of the implementation details of
the disk driver to attack the system.

Consequences
The LAYERED OPERATING SYSTEM ARCHITECTURE pattern offers
the following benefits:

 Lower levels can be changed without affecting higher layers. We can
add or remove security functions as needed.
 There are clearly defined interfaces between each operating system

layer and the user applications, which improves security.
 Control of information is possible using layer hierarchical rules and

enforcement of security policies between layers.
 The fact that layers hide implementation aspects is useful for security,

in that possible attackers cannot exploit lower-level details.
The pattern also has the following potential liabilities:

 It may not be clear what to put in each layer. In particular, related
modules may be hard to allocate. There may be conflicts between
functional and security needs when allocating modules.
 Performance may decrease due to the indirection of calls through

several layers. If we try to improve performance, we may sacrifice
security.

Known Uses

 The Symbian operating system (Figure 9.7) uses a variation of the
layered approach [Sym01].

Figure 9.7: Symbian operating system layered architecture [Sym01]

 The UNIX operating system (Figure 9.8) is separated into four layers,
with clear interfaces between the system calls to the kernel and between
the kernel and the hardware.

Figure 9.8: UNIX layered architecture [Sil08]

 IBM’s OS/2 also uses this approach [OS2].

Variant
Layer skipping. In this architecture there are special applications that are
able to skip layers for added performance. This structure requires a trade-off
between performance and security. By deviating from the strict hierarchy of
the layered system, there may not be enforcement of security policies
between layers for such applications.

See Also
This pattern is a specialization of the Layers architectural pattern [Bus96].
Security versions of the Layers pattern have appeared in [Fer02] [Sch06b]
[Yod97].

9.4 Microkernel Operating System
Architecture
The MICROKERNEL OPERATING SYSTEM ARCHITECTURE pattern
describes how to move as much of the operating system functionality as
possible from the kernel into specialized servers, coordinated by a
microkernel. The microkernel itself has a very basic set of functions.
Operating system components and services are implemented as external and
internal servers.

Example
We are building an operating system to support a range of applications with
different reliability and security requirements and a variety of plugins. We
would like to provide operating system versions with different types of
modules: some more secure, some less so.

Context
A variety of applications with diverse requirements that need to execute
together sharing hardware resources.

Problem
In general-purpose environments we need to be able to add new
functionality with variation in security and other requirements, as well as
provide alternative implementations of services to accommodate different
application requirements.

The solution to this problem must resolve the following forces:

 The application platform must be able to cope with continuous
hardware and software evolution: these additions may have very
different security or reliability requirements.
 Strong security or reliability requirements indicate the need for

modules with well-defined interfaces.
 We may want to perform different types of security checks in different

modules, depending on their security criticality.
 We would like a minimum of functionality in the kernel, so that we

have a minimum of processes running in supervisor mode. A simple
kernel can be checked for possible vulnerabilities, which is good for
security.

Solution
Separate all functionality into specialized services with well-defined
interfaces, and provide an efficient way to route requests to the appropriate
servers. Each server can be built with different security constraints. The
kernel mainly routes requests to servers and has minimal functionality.

Structure
The Microkernel is the central communication for the operating system.
There is one Microkernel and several InternalServers and ExternalServers,
each providing a set of specialized services (Figure 9.9). In addition to the
servers, an Adapter is used between the Client and the Microkernel or an
external server. The Microkernel controls the internal servers.

Figure 9.9: Class diagram for MICROKERNEL OPERATING SYSTEM
ARCHITECTURE pattern

Dynamics
A client requests a service from an external server using the following
sequence (Figure 9.10):

Figure 9.10: Sequence diagram for an operating system call through the
microkernel

1 The Adapter receives the request from the Client and asks the
Microkernel for a communication link with the ExternalServer.
2 The Microkernel checks for authorization to use the server,
determines the physical address of the ExternalServer and returns it to

the Adapter.
3 The Adapter establishes a direct communication link with the
ExternalServer.
4 The Adapter sends the request to the ExternalServer using a
procedure call or a remote procedure call (RPC). The RPC can be
checked for well-formed commands, correct size and type of
parameters (that is, we can check signatures).
5 The ExternalServer receives the request, unpacks the message and
delegates the task to one of its own methods. All results are sent back to
the Adapter.
6 The Adapter returns to the Client, which in turn continues with its
control flow.

Implementation
1 Identify the core functionality necessary for implementing external
servers and their security constraints. Typically, basic functions of the
operating system should be internal servers; utilities, or user-defined
services should go into external servers. Each server can use the
patterns from [Fer02] and [Fer03b] for their secure construction.
2 Define policies to restrict access to external and internal servers.
Clients may be allowed to call only specific servers.
3 Find a complete set of operations and abstractions for every category
of server identified.
4 Determine strategies for request transmission and retrieval.
5 Structure the microkernel component. The microkernel should be
simple enough to ensure its security properties; for example, it should
be impossible to infect it with malware.
6 Design and implement the internal servers as separate processes or
shared libraries. Add security checks in each server using the
PROTECTED ENTRY POINTS pattern (page 136).
7 Implement the external servers. Add security checks in each service
provided by the servers using AUTHORIZATION (page 74) and
AUTHENTICATOR (page 52).

Example Resolved
By implementing our system using a microkernel, we can have several
versions of each service, each with different degrees of security and
reliability. We can replace servers dynamically if needed. We can also
control access to specific servers and ensure that they are called in the
proper way.

Consequences
The MICROKERNEL OPERATING SYSTEM ARCHITECTURE pattern
offers the following benefits:

 Flexibility and extensibility: if you need an additional function or an
existing function with different security requirements, you only need to
add an external server. Extending the system capabilities or
requirements also only requires addition or extension of internal
servers.
 The microkernel mediates all calls for services and can apply

authorization checks. In fact, the microkernel is in effect a concrete
realization of a reference monitor (page 100).
 The well-defined interfaces between servers allow each server to

check every request for their services.
 It is possible to add even more security by putting fundamental

functions in internal servers.
 Servers usually run in user mode, which further increases security.
 The microkernel is very small and can be verified or checked for

security. The pattern also has the following potential liability:
 Communication overhead, since all messages must go through the

Microkernel.

Known Uses
 The PalmOS Cobalt (Figure 9.11) operating system has a preemptive

multitasking kernel that provides basic task management. Many
applications in PalmOS do not use the microkernel services; they are
handled automatically by the system. The microkernel functionality is

provided for internal use by system software or for certain special-
purpose applications [Pal].

Figure 9.11: PalmOS Microkernel combined with layered OS
architecture [Pal]

 The QNX Microkernel (Figure 9.12) is intended mostly for
communication and process scheduling in real-time systems [QNX]. It
will be used in the new RIM systems, adopting a layered architecture
[Qwi].

Figure 9.12: QNX microkernel architecture [QNX]

 Mach and Windows NT also use some form of microkernels [Sil08].

Variant
Layered Microkernel. The MICROKERNEL OPERATING SYSTEM
ARCHITECTURE pattern can be combined with the LAYERED
OPERATING SYSTEM ARCHITECTURE pattern. In this case, servers
can be assigned to levels and a call is accepted only if it comes from a level
above the server level.

See Also
This pattern is a specialization of the Microkernel pattern [Bus96]. As
indicated, the microkernel itself can be considered as a concrete version of
the REIFIED REFERENCE MONITOR pattern (page 100).

9.5 Virtual Machine Operating
System Architecture
The VIRTUAL MACHINE OPERATING SYSTEM ARCHITECTURE
pattern describes how to provide a set of replicas of the hardware

architecture (virtual machines) that can be used to execute multiple and
possibly different operating systems with strong isolation between them.

Example
A web server is hosting applications for two competing companies. These
companies use different operating systems. We want to ensure that neither
of them can access the other company’s files or launch attacks against the
other system.

Context
Mutually suspicious sets of applications that need to execute in the same
hardware. Each set requires isolation from the other sets.

Problem
Sometimes we need to execute different operating systems on the same
hardware. How can we keep those operating systems isolated in such a way
that their executions don’t interfere with each other?

The solution to this problem must resolve the following forces:
 Each operating system needs to have access to a complete set of

hardware features to support its execution.
 Each operating system has its own set of machine-dependent features,

such as interrupt handlers. In other words, each operating system uses
the hardware in different ways.
 When an operating system crashes or it is penetrated by a hacker, the

effects of this situation should not propagate to other operating systems
running on the same hardware.
 There should be no way for a malicious user in one virtual machine to

get access to the data or functions of another virtual machine.

Solution
Define an architectural layer that is in control of the hardware and
supervises and coordinates the execution of each operating system
environment. This extra layer, usually called a virtual machine monitor

(VMM) or hypervisor, presents to each operating system a replica of the
hardware. The VMM intercepts all system calls and interprets them
according to the operating system from which they came.

Structure
Figure 9.13 shows a class diagram for the VIRTUAL MACHINE
OPERATING SYSTEM ARCHITECTURE (VMOS) pattern. The VMOS
contains one VirtualMachineMonitor (VMM) and multiple virtual machines
(VM). Each VM can run a local operating system (LocalOS). The
VirtualMachineMonitor supports each LocalOS and is able to interpret its
system calls. As a LocalProcess runs on a LocalOS, the VM passes the
operating system calls to the VMM, which executes them in the hardware.

Figure 9.13: Class diagram for the VIRTUAL MACHINE OPERATING
SYSTEM ARCHITECTURE pattern

Dynamics
Figure 9.14 shows the sequence diagram for the use case ‘Perform an OS
call on a virtual machine’. A local process wishing to perform a system
operation uses the following sequence:

Figure 9.14: Sequence diagram for the use case ‘Perform an OS call on
virtual machine’

1 A LocalProcess makes an operating system call to the LocalOS.
2 The LocalOS maps the operating system call to the VMM (by executing
a privileged operation).
3 The VMM interprets the call according to the local operating system
from which it came, and it executes the operation in hardware.
4 The VMM sends return codes to the LocalOS to indicate successful
instruction execution, as well as the results of the instruction execution.
5 The LocalOS sends the return code and data to the LocalProcess.

Implementation
1 Select the hardware that will be virtualized. All of its privileged
instructions must trap when executed in user mode (this is the usual
way to intercept system calls).
2 Define a representation (data structure) for describing operating
system features that map to hardware aspects, such as meaning of
interrupts, disk space distribution, and so on, and build tables for each
operating system to be supported.
3 Enumerate the system calls for each supported operating system and
associate them with specific hardware instructions.

Example Resolved
In the example shown in Figure 9.15, two companies using UNIX and
Linux can execute their applications in different virtual machines. The

VMM provides strong isolation between these two execution environments.

Figure 9.15: Virtual Machine operating system example

Consequences
The VIRTUAL MACHINE OPERATING SYSTEM ARCHITECTURE
pattern offers the following benefits:

 The VMM intercepts and checks all system calls. The VMM is in
effect a reference monitor and provides total mediation for the use of
the hardware. This can provide strong isolation between virtual
machines [Ros05].
 Each environment (virtual machine) does not know about the other

virtual machine(s), this helps prevent cross-VM attacks.
 There is a well-defined interface between the VMM and the virtual

machines.
 The VMM is small and simple and can be checked for security.
 The architecture defined by this pattern is orthogonal to the other

three architectures discussed earlier, and can execute any of them as
local operating systems.

The pattern also has the following potential liabilities:
 All the virtual machines are treated equally. If virtual machines with

different security categories are required, it is necessary to build
specialized versions. This approach is followed in KVM/370 (see
Variants).
 Extra overhead in the use of privileged instructions.
 It is complex to let virtual machines communicate with each other, if

this is needed.

Variants

 The architecture defined by this pattern is orthogonal to the other
three architectures discussed earlier, and can execute any of them as
local operating systems.
 KVM/370 was a secure extension of VM/370 [Gol79]. This system

included a formally verified security kernel, and its virtual machines
executed in different security levels, for example top secret,
confidential, and so on. In addition to the isolation provided by the
VMM, this system also applied the multilevel model described in
Chapter 6.

Known Uses
 IBM VM/370 [Cre81]. This was the first VMOS, and provided virtual

machines for an IBM 370 mainframe.
 VMware [Nie00]. This is a current range of products that provide

virtual machines for Intel X86 hardware.
 Solaris 10 [Sun04a] calls the virtual machines ‘containers’, and one or

more applications execute in each container.
 Connectix [Cona] produces virtual PCs to run Windows and other

operating systems.
 Xen is a VMM for the Intel x86 developed as a project at the

University of Cambridge, UK [Bar00].
 Some smart phone operating systems use virtual machines to separate

users’ private system from their work environment. These include the
L4 Microvisor and RIM’s BlackBerry 10 OS [Qwi].

See Also
 REIFIED REFERENCE MONITOR (page 100). The VMM is a

concrete version of a reference monitor.
 The operating system patterns in [Fer02] and [Fer03b] can be used to

implement the structure of a VMOS architecture.

9.6 Administrator Hierarchy

Many attacks come from the unlimited power of administrators. The
ADMINISTRATOR HIERARCHY pattern allows the power of
administrators to be limited, by defining a hierarchy of system
administrators with rights controlled using a ROLE-BASED ACCESS
CONTROL (RBAC) model, and assigns them rights according to their
functions.

Example
UNIX defines a superuser who has all possible rights. This is expedient: for
example, when somebody forgets a password, but allows hackers to totally
control the system through a variety of implementation flaws. Through
gaining access to the administrator rights, an individual can create new
administrator and user accounts, restrict their privileges and quotas, access
their protected areas, or remove their accounts.

Context
An operating system with a variety of users, connected to the Internet.
There are some commands and data that are used for system administration,
and access to them needs to be protected. This control is usually applied
through special interfaces. There are at least two roles required to properly
manage privileges, Administrator and User.

Problem
Usually, the administrator has rights such as creating accounts and
passwords, installing programs and so on. This creates a series of security
problems. For example, a rogue administrator can perform all the usual
functions, and even erase the log to hide their tracks. A hacker that takes
over administrative power can do similar things. How can we curtail the
excessive power of administrators to control rogue administrators or
hackers?

The solution to this problem must resolve the following forces:
 Administrators need to use commands that permit management of the

system, for example define passwords for files, define quotas for files,
and create user accounts. We cannot eliminate these functions.

 Administrators need to be able to delegate some responsibilities and
privileges to manage large domains. They also need the right to take
back these delegations, otherwise the system is too rigid.
 Administrators should have no control of system logs, or no valid

auditing would be possible.
 Administrators should have no access to the operational data in the

users’ applications. Or, if they do, their accesses should be logged.

Solution
Separate the different administrative rights into several hierarchical roles.
The rights for these roles allow the administrators to perform their
administrative functions and no more. Critical functions may require more
than one administrative role to participate. Use the principle of separation
of duty (Chapter 6), where a user cannot perform critical functions unless in
conjunction with other users.

Structure
Figure 9.16 shows a hierarchy for administration roles. This follows the
Composite pattern [Gam94]; that is, a role can be simple or composed of
other roles, defining a tree hierarchy. The top-level Administrator can add
or remove administrators of any type and initialize the system, but should
have no other functions. Administrators in the second level control different
aspects, for example security, or use of resources. Administrators can
further delegate their functions to lower-level administrators. Some
functions may require two administrators to collaborate.

Figure 9.16: Class diagram for the ADMINISTRATOR HIERARCHY
pattern

Implementation
1 Define a top-level administrative role with only the functions of
setting up and initializing the system. This includes definition of
administrative roles, assignment of rights to roles and assignment of
users to roles.
2 Separate the main administrative functions of the system and define
an administrative role for each one of them. These define the second
level of the hierarchy.
3 Define further levels to accommodate administrative units in large
systems, or for breaking down rights into functional sets.

Figure 9.17 shows a class diagram describing a typical administrator
hierarchy. Here the SystemAdministrator starts the system and does not
perform further actions. The second-level administrators can perform set up
and other functions; the SecurityAdministrator defines security rights.
SecurityDomainAdministrators define security in their domains.

Figure 9.17: A typical administration hierarchy

Example Resolved
Now the superuser only starts the system. During normal operation the
administrators have restricted powers. If a hacker takes over their functions
they can do only limited damage.

Consequences
The ADMINISTRATOR HIERARCHY pattern offers the following
benefits:

 If an administrative role is compromised, the attacker gets only
limited privileges, so the potential damage is limited.
 The reduced rights also reduce the possibility of misuse by the

administrators.
 The hierarchical structure allows taking back control of a

compromised administrative function.
 The advantages of the RBAC model apply: simpler and fewer

authorization rules, flexibility for changes, and so on [Sch06b].
 This structure is useful not only for operating systems, but also for

servers, databases systems or any systems that require administration.
The pattern also has the following potential liabilities:

 Extra complexity for the administrative structure.
 Less expediency: performing some functions may involve more than

one administrator.
 Many attacks are still possible: if someone misuses an administrative

right, this pattern only limits the damage. Logging can help misuse
detection.

Known Uses
 AIX [Cam90] reduces the privileges of the system administrator by

defining five partially-ordered roles: superuser, security administrator,
auditor, resource administrator and operator.
 Windows NT uses four roles for administrative privileges: standard,

administrator, guest and operator. A user manager has procedures for
managing user accounts, groups and authorization rules.
 Trusted Solaris [Sun04a]. This operating system is an extension of

Solaris 8, using the concept of trusted roles with limited powers.
 Argus Pitbull [Arg]. In this operating system, least privilege is applied

to all processes, including the superuser. The superuser is implemented

using three roles: systems security officer, system administrator and
system operator.

See Also
 This pattern applies the principles of least privilege and separation of

duty, which some people consider also to be patterns. Each
administrator role is given only the rights it needs to perform its duties
and some functions may require collaboration.
 Administrative rights are usually organized according to a ROLE-

BASED ACCESS CONTROL model (page 78).

9.7 File Access Control
The FILE ACCESS CONTROL pattern allows control of access to files in
an operating system. Authorized users are the only ones that can use a file
in specific ways.

Example
In a laboratory researchers used to share all their files: they were working
on common projects and they trusted each other. However, the laboratory
grew and inexperienced or unknown colleagues started to work. Now it is
not such a good idea to share everything.

Context
The users of operating systems need to use files to store permanent
information. These files can be accessed by different users from different
workstations, and access to the files must be restricted to authorized users
who can use them in specific ways. Because of the needs of the institution,
some (or all) of the files must be shared by these subjects.

Use cases for a file system include creation and deletion of files, opening
and closing of files, reading and writing files, copying files and so on. A
subject has a home directory for each authorized workstation, but the same
home directory can be shared among several workstations or among several

subjects. The home directory is used to search the files for which a subject
has rights. Files are organized using directories, usually in a tree-like
structure of directories and files. This facilitates the search for specific files.

Problem
How can we control access to files in an operating system and ensure that
only authorized users can use files in specific ways?

The solution to this problem must resolve the following forces:
 There may be different types of subjects, for example users, roles and

groups. The rights for users in groups or roles are derived from the
group or role’s rights (that is, they are implicit rights). Groups of groups
are possible, which makes deducing access even harder. All these
subjects must be handled uniformly.
 Subjects may be authorized to access files or directories, and to

exercise their file access rights from specific workstations. To prevent
illegal actions, we may need ways to apply these two types of
authorization.
 Each operating system implements file systems in a different way. We

need to abstract out implementation details.
 Not all operating systems use workstations, groups or roles. We need

a modular system in which features not used can be removed easily
from the model.

Solution
We apply the AUTHORIZATION pattern (page 74) first to describe access
to files by subjects. Typically, file systems use ACCESS CONTROL LISTs
(page 91) consisting of sets of authorizations. The protection object is now
a file component that may be a directory or a file. To reflect the fact that
files may be accessed only from some workstations, we use the
AUTHORIZATION pattern again, with the same subject and with
workstations as protection objects. The tree structure of files and directories
can be conveniently described by applying the Composite pattern [Gam94].

Structure

The class diagram in Figure 9.18 combines two versions of the
AUTHORIZATION pattern with a Composite pattern. File access is an
extension of that pattern by replacing ProtectionObject by FileComponent
and Right by AccessControlListEntry (ACLE), and workstation access is
defined by a similar application of the AUTHORIZATION pattern.

Figure 9.18: Class diagram for the FILE ACCESS CONTROL pattern

Dynamics
The sequence diagram in Figure 9.19 shows the use case ‘Open and write to
a file’. A user actor opens the file, the directory locates it and when found,
opens it. Opening results in the file access permission being set up for
future reference1. When the user later tries to write to the file, their rights to
write the file are checked and the write operation proceeds if authorized.

Figure 9.19: Sequence diagram for the use case ‘Open and write to a file’

Example Resolved
A new operating system is installed that has authorization controls for its
files. Now a need-to-know policy is set up, where only users that need
access to specific files are given such access. This is the end of erroneous or
unauthorized activities.

Consequences
The FILE ACCESS CONTROL pattern offers the following benefits:

 The subjects can be users, roles and groups by proper specialization
of the class Subject. Roles and groups can be structured recursively (see
Chapter 6); for example, role and group hierarchies permit more
flexibility in the assignment of rights.
 The protection objects can be single files, directories, or recursive

structures of directories and files.
 Most operating systems use read/write/execute as access types, but

higher-level types of access are possible. For example, a file
representing students in a university could be accessed with commands
such as list, order alphabetically, and so on.
 Implied authorization is possible; for example, access to a directory

may imply similar type of access to all the files in the directory
[Fer94b]. This approach allows an administrator to write fewer
authorization rules, because some access rights can be deduced from
others.

 Workstation access is also controlled – workstations can be homes for
directories.
 This is a conceptual model that doesn’t restrict implementation

approaches.
 Workstation authorization is separated from file authorization;

systems that do not need workstation authorization can just ignore the
relevant classes.
 In some operating systems, for example Inferno [Rau97], all resources

are represented as files. Other systems represent resources by objects
with access control lists. This means that this pattern could be used to
control all the resources of such operating systems.

The pattern also has the following potential liabilities:
 Implementations of the pattern are not forced to follow the access

matrix model. For example, UNIX uses a pseudo-access matrix that is
not appropriate for applying the need-to-know policy1. However,
constraints can be added to the pattern to force all the instances of the
pattern to conform to an access matrix model.
 Typically, access permissions are implemented as access control lists

(ACLs) [Gol06] [Sil08]. These are data structures associated with a file
in which each entry defines a subject that can access the file and its
permitted access modes. The pattern models the entries of the ACLs,
but not the fact that they are associated with the file components.

Other aspects include:
 Some systems use the concept of owner, who has all rights on the

files they create. The owner in this model corresponds to a special type
of subject. When roles are used, there are no owners, and when groups
are used, ownership is not inherited in subgroups.
 In some systems, files are mapped to the virtual memory address

space. The FILE ACCESS CONTROL pattern still applies to this case,
although a more uniform solution is then possible (see the VIRTUAL
ADDRESS SPACE ACCESS CONTROL pattern, page 146).
 In some systems, a directory is not strictly a tree, because it is

possible to have links between files in different subtrees [Sil08].

Modeling this case would require adding some associations in the
model of Figure 9.18.

Known Uses
This pattern can be found in most current operating systems, such as
Windows, UNIX, Linux. Not all these systems use all the concepts of the
pattern.

See Also
 This pattern uses the AUTHORIZATION pattern (page 74).
 If roles are used, then the ROLE-BASED ACCESS CONTROL

pattern (page 78) is also relevant.
 The file structure uses a Composite pattern [Gam94]. It can use the

CONTROLLED EXECUTION DOMAIN pattern (page 151) for its
implementation.

1 In some systems, opening a file also requires a specific authorization.
Figure 9.19 assumes that this is not the case, although the pattern does
not preclude this possibility.

1 Some versions of UNIX, for example IBM AIX, extend this model to
support a full access matrix.

CHAPTER 10

Security Patterns for Networks

Thus, what is of supreme importance in war is to attack the enemy’s
strategy.

Sun Tzu
As network administrator I can take down the network with one
keystroke. It’s just like being a doctor but without getting gooky stuff on
my paws.

Scott Adams (‘Dogbert’)

10.1 Introduction
The Internet protocol suite, also referred to as TCP/IP, defines a reference
model for networks that includes four layers [Sta03]: Application,
Transport, Internet and Link. One can apply security to any of these layers,
where two secure protocols are commonly used:

 The IPSec protocol, which provides cryptographic functions at the
Internet (IP) layer [For04b] [Sta06].
 The Transport Layer Security (TLS) protocol, which provides similar

functions at the transport (TCP) layer [For04b] [Sta06]. This protocol is
based on the Secure Sockets Layer (SSL) protocol.

Figure 10.1 shows the layers and the security protocols used in each of
the layers. The Application layer has different protocols based on the type
of application. The Transport layer uses TLS as the security protocol, while
the IP layer uses IPSec as the security protocol. Application protocols such
as HTTP, LDAP and SOAP need to use the lower layers to support typical
application tasks such as displaying web pages or running e-mail services;

they use their own version of security protocols such as HTTPS, LDAPS
(Secure LDAP) and WSS (Web Service Security) respectively.

Figure 10.1: Network layers and security protocols

These secure protocols can be used directly in applications, or can be
prepackaged to provide secure channels, in the form of virtual private
networks (VPN).

Figure 10.2 shows a pattern diagram that puts the different types of secure
network protocols into perspective. The ABSTRACT VIRTUAL PRIVATE
NETWORK pattern defines the basic functions and threats of a VPN,
independently of the protocol over which it operates. An abstract pattern
defines only fundamental, implementation-independent functions and
threats [Fer08a]. Concrete patterns add functionalities and threats and take
into account the characteristics of their specific concrete environment. In
this case, the abstract functions are realized by concrete VPNs which
operate according to the rules of specific protocols: IPSec VPN and TLS
VPN.

Figure 10.2: Pattern diagram for network security patterns

We present here patterns for the Abstract VPN, IPSec VPN and TLS
VPN. Figure 10.2 also shows patterns for the TLS and IPSec protocols,

which in turn use patterns for authentication ([Sch06b] and page 52) and
Secure Channel [Bra00] (not shown in the figure).

One can also apply security defenses at the network boundaries, where
networks enter the computational nodes. Two security mechanisms are
normally used at network boundaries:

 Firewalls, which filter input and output traffic according to predefined
rules. We have previously written patterns for firewalls at the IP (packet
filter) and TCP (proxy firewall) layers [Sch06b], as well as the (User)
Application layer [Del04]. See also Chapter 11.
 Intrusion detection systems (IDS), which try to detect attacks in real

time [Bie01]. IDSs can be signature-based or behavior-based.
We present the VPN patterns first, followed by the TLS protocol pattern,

and finally the IDS patterns. These patterns have been coauthored with
Ajoy Kumar and have been published in [Fer05d] [Kum10] [Kum12a]
[Kum12b].

10.2 Abstract Virtual Private
Network
The ABSTRACT VIRTUAL PRIVATE NETWORK pattern describes how
to set up a secure channel between two endpoints using cryptographic
tunneling, with authentication at each endpoint. An endpoint is an interface
exposed by a communicating unit (user site or network).

Example
Our company has employees all over the world. Because of cost, we
decided to use the Internet to communicate. However, we are having
problems because their orders are hacked and the attackers get access to
customers’ credit card numbers and other details. Our staff want to be sure
they are talking to other employees, and must be able to send secure
messages to discuss prices, discounts and so on.

Context

Users scattered in many fixed locations, who need to communicate securely
with each other using the Internet or some other insecure network. In such a
network attackers may intercept messages and try to read, modify or replay
them.

Problem
In today’s world, companies have offices all over the world and a lot of
people work remotely. They need a secure connection to other specific
nodes so that confidential work can be performed securely. Their
communication can be intercepted by attackers, who may get access to
private information and may even modify the messages. How can we
establish a secure channel for the end users of a network so that they can
exchange messages through fixed points using an insecure network?

The solution to this problem must resolve the following forces:
 We need to use the Internet or other insecure networks to reduce cost,

but in turn subjecting our network to numerous threats.
 Only registered users should access the institution’s endpoints.
 We need to make sure that the users with which we are

communicating are the right ones, otherwise confidentiality may be
compromised.
 The number of users remotely connected may be growing: the system

should be scalable.
 Because different users or institutions require different levels of

security, the system should be flexible enough to accommodate
different ways of providing security and different degrees of security.
 In some cases we also need to support authorization to access specific

resources in the endpoints.
 The system should be easy to set up and use, otherwise users and

administrators will not want to use it.
 The system should not impose a heavy performance penalty,

otherwise it will not be used all the time.
 The pattern should be adaptable to the needs and constraints of

different protocol layers.

Solution
Protect communications by establishing a cryptographic tunnel between
endpoints on one of the layers of the communication protocol. Add
authentication functions at each endpoint. Figure 10.3 shows the case in
which site A is talking to site B over the Internet using routers R1 and R2,
respectively. The secure connection is established through one of the
Internet layers.

Figure 10.3: Two sites communicating through the Internet [For04b]

Structure
Figure 10.4 shows the class diagram for the ABSTRACT VIRTUAL
PRIVATE NETWORK pattern, in which a SecureChannel can be
established between a Client and a NetworkEndPoint. EndPoints
communicate with other EndPoints. A user is authenticated by an
AUTHENTICATOR pattern (page 52). AUTHENTICATOR and Secure
Channel [Bra00] are patterns, composed typically of several classes, and are
shown using the UML symbol for package.

Figure 10.4: Class diagram for the ABSTRACT VIRTUAL PRIVATE
NETWORK pattern

Dynamics
The sequence diagram of Figure 10.5 shows a use case in which an end user
tries to access an endpoint in a network, endPoint2, from another endpoint,
endPoint1. The Authenticator at endPoint1 authenticates the user. The
Authenticator creates a Token as proof of authentication, which can be
used to establish a SecureChannel. This channel allows secure access to
endPoint2.

Figure 10.5: Sequence diagram for accessing an endpoint

Implementation
1 First define the endpoints which the VPN will reach. Consider the
architectural layer where the communications should be secured,

according to the needs of the applications.
2 After this decision, use the concrete VPN pattern at the corresponding
level, IP or TCP. See the corresponding patterns (IPSEC VPN, page
200, and TLS VPN, page 202) for help in making this decision. Both
endpoints must share a public key system for authentication and must
have appropriate software packages running on them.

Example Resolved
Now the users can be authenticated at the endpoints, which ensures that
they are communicating with their own employees. User messages are now
protected from external attacks when sent over the secure channel.

Consequences
The ABSTRACT VIRTUAL PRIVATE NETWORK pattern offers the
following benefits:

 We can use the Internet or other insecure networks to reduce cost.
 Cryptography can protect our messages from being read or modified

by attackers.
 Authentication at endpoints ensures that only registered users can

access the secure channel.
 Mutual authentication between end users is possible.
 The system can accommodate new links for new users by just

replicating the access software.
 We can use any cryptographic algorithm to establish the secure

channel, which allows us to make trade-offs between security and cost.
 We can add authorization to access specific resources at each

endpoint.
 We can add a logging system for the users logging in at the endpoints

for use in audits.
 The VPN is transparent to the users, who are authenticated by their

local endpoints.
 The VPN is a client-server architecture that is easy to configure.

 We can have different versions of the pattern that can use the specific
features of each protocol layer.

The pattern also has the following potential liabilities:
 If the VPN connection is compromised, the attacker could get full

access to the internal network. Authorization can restrict this access,
however.
 Because of encryption, VPN traffic is invisible to IDS monitoring. If

the IDS probe is outside the VPN server, as is often the case, then the
IDS cannot see the traffic within the VPN tunnel. Therefore, if a hacker
gains access to the end node of the VPN, they can attack the internal
systems without being detected by the IDS.
 In the case of VPN with a private end user, the remote computer used

by the private user is vulnerable to outside attacks, which in turn can
attack the network to which it is connected.
 There is some overhead in the encryption process.

Variants or Concrete Patterns
Virtual private networks can be established at the application layer (XML or
application VPN); TLS (SSL) VPNs are established at the transport layer.
IPSec VPNs are established at the IP layer. Because of their importance, we
describe the latter two below as separate patterns.

Known Uses
 Citrix provides a site-to-site SSL VPN connection for remote users to

log into the secure network, as well as access applications on the
company (secure) network [Cit].
 Cisco VPN uses an IPSec VPN and provides authorization [Cisb].
 Nokia provides a VPN connection for Nokia mobile users.

See Also
 Firewalls can be added to each endpoint to filter inputs [Sch06b].

They can protect against some types of attacks coming from untrusted
sources.

 IDSs can be added in each of the network layers to detect attacks in
real time [Fer05d].
 The VPN uses the Secure Channel pattern that in turn uses

cryptography to protect its messages [Bra00].
 The Authenticator pattern[Sch06b] can authenticate users and

nodes.
 Access Control/Authorization can be added at each site to control

access to specific resources [Sch06b].

10.3 IPSec VPN
The IPSEC VPN pattern describes how to set up a secure channel between
two endpoints using cryptographic tunneling through the IP layer, with
authentication at each endpoint.

Context
Users scattered in many predefined locations, who need to communicate
securely with each other, using the Internet or another insecure network.

Problem
Assuming that we need to communicate using the IP protocol, how can we
establish a secure channel for the end users of a network so that they can
exchange messages through some fixed points?

The solution to this problem must resolve the following forces:
 The number and required speed of the communications must decide

the type of protection we use. The use of IPSec would provide higher
speed between fixed physical locations [Sta03].
 Communication at the IP level includes the network, servers and

routers. Messages should be protected while going through all of them.

Solution
Implement the cryptographic tunnel at the IP level using the facilities of
IPSec.

Structure
The class diagram for the IPSEC VPN pattern is similar to the one shown in
Figure 10.4 on page 197.

Implementation
Designing the architecture of the IPSec protocol includes appropriate host
placement (for host-to-host architectures) and/or gateway placement (for
host-to-gateway and gateway-to-gateway architectures)[Qu02]. Both sides
must share a public key system for authentication and must have
appropriate software packages running on them.

The packet filter firewall determines which types of traffic should be
permitted and denied, and what protection and compression measures (if
any) should be applied to each type of permitted traffic (for example, ESP
tunnel using AES for encryption and HMACSHA-1 for integrity protection;
LZS for compression). HMAC stands for Hash-based Message
Authentication Code, and SHA-1 is a specific hash algorithm [For04b]
[Sta06]; they are used for protecting message integrity.

Encapsulating Security Payload (ESP) is a sub-protocol of IPSec that
provides confidentiality, data origin authentication, integrity and replay
protection [Sta03]. AES is the Advanced Encryption Standard [For04b].

Consequences
The IPSEC VPN pattern offers the following benefits:

 IPSec is supported by most operating systems.
 The VPN is transparent to clients in gateway-to-gateway

architectures.
 We can use a variety of authentication protocols.

The pattern also has the following potential liabilities:
 It can only protect IP-based communications.
 It requires client software to be configured (and installed on hosts

without a built-in client) for host-to-gateway and host-to-host
architectures.

 It does not protect communications between clients and the IPSec
gateway in gateway-to-gateway architectures.
 IPSec VPNs require large software packages, typically 6–8 MB, and

may be difficult to configure.

Variants
We can add authorization for the end users.

Known Uses
 Cisco has an IPSec VPN and they also provide authorization [Cisb].
 Cyberoam offers an identity-based IPSec VPN [Cyb].
 Check Point’s VPN Software Blade is an IPSec VPN that integrates

access control, authentication and encryption [Che].

See Also
 Firewalls can be added to each endpoint to filter inputs [Sch06b].

They can protect against some types of attacks coming from untrusted
sources.
 IDSs can be added in each of the network layers to detect attacks in

real time [Fer05d].
 The VPN uses the Secure Channel pattern, which in turn uses

cryptography to protect its messages.
 The Authenticator pattern [Sch06b] can authenticate users and

nodes.
 Access Control/Authorization can be added at each site to control

access to specific resources [Sch06b].

10.4 TLS Virtual Private Network
Also known as SSL VPN

The TLS VIRTUAL PRIVATE NETWORK pattern describes how to set up
a secure channel between two endpoints using cryptographic tunneling
through the transport layer, with authentication and authorization at each
endpoint.

Example
Our company has a web-based e-commerce site. We need to assure the
customers that they are interacting with the proper application and that they
can send their financial information securely when buying items.

Context
A large number of users, in many locations, need to communicate securely
with each other, using the Internet or another insecure network. Most of the
interactions occur through web sites.

Problem
How can we establish a secure channel through the transport layer for the
end users of a network so that they can exchange messages through fixed
points?

The solution to this problem must resolve the following forces:
 Messages will go from one process to another process, through

servers and routers. A message should maintain its security during this
communication.
 The performance should be good at both normal and peak loads.

Solution
Use TLS reverse proxy servers (commonly referred to as SSL proxy
servers) to connect remote users. A remote user who needs to access the
organization’s applications uses the main URL for the proxy server in their
web browser, and connects to it through TLS-protected HTTP. The user
then authenticates to the proxy server. Once authenticated, the user can
access designated applications, as specified in the proxy server’s access
controls.

Structure
Figure 10.6 shows the class diagram for the TLS VIRTUAL PRIVATE
NETWORK pattern. A Proxy represents the endpoint and has the functions
of authentication, secure channel and access control (authorization).

Figure 10.6: Class diagram for the TLS VIRTUAL PRIVATE NETWORK
pattern

Implementation
An authentication algorithm is implemented at the server which
authenticates the server to the client [Hey07b]. A secure channel is
established over the public network using a suitable cryptographic
algorithm that allows users to communicate securely with the servers. Some
TLS VPNs provide hardware accelerators. Both the client and the server
must have preloaded VPN software.

Example Resolved
The SSL proxy server can authenticate the server to the user and establishes
a secure channel so that remote users can send their financial information in
encrypted form, thus protecting it from eavesdropping attacks.

Consequences
The TLS VIRTUAL PRIVATE NETWORK pattern offers the following
benefits:

 If access is needed only for web-based applications, the solution is
very convenient for users, and easier to deploy and maintain than
remote access solutions that involve client installation or configuration.
 The proxy server can authenticate users before they can gain any

access to applications, as opposed to allowing users to connect directly
to individual applications’ login screens. This adds another layer of
security by only allowing authenticated users to see what applications
are being served.
 Since the client systems connect above the network layer, they are not

on the same network layer as the IPSec client. This severely reduces
their ability to attack or misuse systems in the organization’s networks.
 The proxy server can authenticate itself to the user by means of a

certificate.
 Logging is now more convenient: it is just another function of the

proxy.
The pattern also has the following potential liabilities:

 Non-web-based applications, and applications that are more
challenging to proxy, (such as those that use multiple dynamic ports)
typically require additional software and services such as terminal
servers and special client software. This makes the solution more
resource-intensive to deploy and less convenient to use.
 Compromise of the proxy server could allow an attacker to intercept

data and authentication credentials for many different applications at
once.
 TLS (SSL) is a complex protocol that has been found to have security

problems in some implementations. This means that the degree of
security achievable with this pattern may not be as high as with the
IPSEC VPN pattern.

Known Uses
 Citrix provides a site-to-site SSL VPN connection for remote users to

log into the secure network and access applications on the company’s
(secure) network [Cit].

 Sonic WALL acquired Aventail and its TLS VPN. This product
includes authentication and network access control [Son 10].
 Cyberoam has an identity-based TLS VPN [Cyb].
 Aventail, Cisco, Juniper, Microsoft and Nokia also provide TLS

VPNs.

See Also
 Firewalls can be added to each endpoint to filter inputs [Sch06b].

They can protect against some types of attacks coming from untrusted
sources.
 IDSs can be added on each of the network layers to detect attacks in

real time [Fer05d].
 The VPN uses the Secure Channel pattern, which in turn uses

cryptography to protect its messages [Bra00].
 The Authenticator pattern [Sch06b] can authenticate users and nodes.
 Authorization can be added in each site to control access to specific

resources [Sch06b].
 Proxy is a pattern in [Gam94]. In this case it intercepts requests going

to the endpoints and performs the required checks.

10.5 Transport Layer Security
The TRANSPORT LAYER SECURITY pattern describes how to provide a
secure channel between a client and a server by which application messages
are communicated over the transport layer of the Internet. The client and the
server are mutually authenticated and the integrity of their data is preserved.

Example
A bank customer may want to check their account balance on line. The
bank uses the transport layer to transfer its confidential data. We need to
protect this communication, as this confidential data is vulnerable to attack.
The customer also has to ensure that the transactions are with the bank and

not with an imposter, while the bank may need to verify that access is by a
legitimate customer.

Context
Users using applications that exchange sensitive information, such as web
browsers for e-commerce or similar activities. The transport layer in
TCP/IP provides end-to-end communication services for applications within
a layered architecture of network components and protocols, and
specifically convenient services such as connection-oriented data stream
support, flow control and multiplexing.

Problem
The messages communicated between applications and servers on the
transport layer are vulnerable to attack by intruders, who may try to read or
modify them. Either the server or the client may be imposters.

The solution to this problem must resolve the following forces:
 Confidentiality and integrity. The data transferred in the transport

layer between the client and the server could be intercepted and read, or
modified illegally.
 Authenticity. Either the server or the client could be an imposter,

which may allow security breaches. A ‘man-in-the-middle’ attack is
also possible, in which an attacker poses both as the client to the server
and as the server to the client.
 Flexibility. Security protocol should be flexible and configurable, to

be able to handle new attacks.
 Transparency. The security measures of the protocol should be

transparent to users.
 Configurability. The protocol should allow users to select different

degrees of security.
 Overhead. The overhead should be minimal, or users will not want to

use the protocol.

Solution

Establish a cryptographic secure channel between the client and the server
using algorithms that can be negotiated between the client and the server.
Provide the means for client and server to authenticate each other. Provide a
way to preserve the integrity of messages.

Structure
Figure 10.7 shows a class diagram for the basic architecture of the
TRANSPORT LAYER SECURITY pattern. A Client requests some
Service from the Server. The TLSProtocol controller conveys this request
using an Authenticator to mutually authenticate the Server and the
Client, and creates a Secure Channel between them. AUTHENTICATOR
and Secure Channel are patterns (see Variants on page 212).

Figure 10.7: Class diagram for the TRANSPORT LAYER SECURITY
pattern

Dynamics
We describe the dynamic aspects of the TRANSPORT LAYER SECURITY
pattern using a sequence diagram for the following use case:

Use Case: Request a Service – Figure 10.8
Figure 10.8: Sequence diagram for the use case ‘Request a service’

Summary A Client requests a service and the TLSProtocol authenticates the request and creates
a secure channel.

Actors Client, Server.
Precondition The security parameters of the secure exchange have been predefined.
Description 1 The Client makes a service request to the Server.
 2 The TLSProtocol authenticates the Server to the Client and the Client to the Server.
 3 The TLSProtocol creates a secure channel between the Server and the Client.
Alternate
Flows

 The authentication can fail.

 The creation of a secure channel can fail.
Postcondition The Server accepts the request and grants the service.

Implementation
One of the protocols that is dominant today for providing security at the
transport layer is Secure Sockets Layer (SSL). The SSL protocol is a
transport layer security protocol that was proposed and developed Netscape
Communications in the 1990s. Transport Layer Security (TLS) is an IETF
version of the SSL protocol, which has become a standard [Yas04]. Much
implementation advice can be found in [Sel 12].

The TLS protocol is partitioned into two main protocol layers, the TLS
Record Protocol and the TLS Handshake Protocol, executing above the
TCP transport layer protocol, as shown in Figure 10.9 [Elg06] [Sta 12].
There are other minor protocols at the handshake protocol layer, such as the
Cipher Change Protocol, Alert Protocol and Application Protocol.

Figure 10.9: TLS layers

 Record Protocol. The TLS Record Protocol provides encryption and
message authentication for each message. A connection is created using
symmetric cryptography data encryption. The keys for this symmetric
encryption are generated uniquely for each connection and are based on
a secret negotiated by another protocol (such as the TLS Handshake
Protocol). Messages include a message integrity check using a keyed
message authentication code (MAC), computed using hash functions
[Sta03].
 Handshake Protocol. A TLS handshake supplies the authentication

and key exchange operations for the TLS protocol. The security state
agreed upon in the handshake is used by the TLS Record Protocol to
provide session security. This protocol allows the server and client to
authenticate each other and to negotiate an encryption algorithm and
cryptographic keys before the application protocol transmits or receives
any data. The TLS Handshake Protocol provides connection security
where the peers’ identities can be authenticated using asymmetric
cryptography. This authentication can be made optional, but is
generally required for at least one of the peers.

A TLS session is an association between a client and a server, created by
the handshake protocol. Sessions define a set of cryptographic security
parameters, which can be shared among multiple connections. Sessions are
used to avoid the expensive negotiation of new security parameters for each
connection.

A session state is defined by the following parameters:
 Session identifier. This is generated by the server to identify a session

with a chosen client.
 Peer certificate. The X.509 certificate of the peer.

 Compression method. A method used to compress data prior to
encryption.
 Algorithm specification or CipherSpec. Specifies the encryption

algorithm that encrypts the data and the hash algorithm used during the
session.
 Master secret. 48-byte data, being a secret shared between the client

and server.
 ‘resumable’. A flag indicating whether the session can be used to

initiate new connections.
The handshake protocol consists of the following four phases:
1 In the first phase, an initial connection is established to start the
negotiation. The client and server exchange ‘hello’ messages that are
used to establish security parameters used in the TLS session, and
settings used during the handshake, such as the key exchange
algorithm.
2 During the second phase, authentication, the server sends a certificate
message to the client: this may include a server certificate when an
RSA key exchange is used, or Diffie-Hellman parameters when a
Diffie-Hellman key exchange is used. The server may also request a
certificate from the client, using the certificateRequest message.
3 During the third phase, the client, if asked, may send its certificate to
the server in a certificate message, along with a certificate Verify
message, so that the server can verify certificate ownership (if the
server requested a client certificate during the second phase). This
phase includes the establishment of the security parameters such as the
encryption key. The client must send either a pre-master secret
encrypted using the server’s public key, or public Diffie-Hellman
parameters in the clientKeyExchange message, so that the client and
server can compute a shared master secret.
4 In the fourth phase, the client and server finish the handshake, which
implies that the client and server are mutually authenticated and have
completed the required key exchange operations.

Structure and Dynamics of the Handshake Protocol

The structure of the handshake protocol is shown in the class diagram in
Figure 10.10. The Client requests a service from the Server at the Transport
layer. The TLSHandshakeProtocolController uses client and server
certificates to mutually authenticate the Client and the Server, then
performs the clientKeyExchange.

Figure 10.10: Class diagram for the TLS handshake protocol.

We describe the dynamic aspects of the TLS handshake using the
sequence diagram shown in Figure 10.11.

Figure 10.11: Sequence diagram for the TLS handshake use case

Summary A TLS handshake supplies the authentication and key exchange operations for the

TLS protocol.
Actors Client, Server.
Precondition The Client has made a request for a service from the host Server and an initial

connection has already been established. The Client and Server need to have a digital
certificate, issued by some Certificate Authority.

Description 1 The Client and Server exchange initial Hello messages.
 2 The ProtocolController requests the certificate from the Server and the Server

sends the certificate.
 3 The server certificate is verified.
 4 The Server requests the certificate from the Client (optional).
 5 If asked, the Client sends the certificate to the Server.
 6 The client certificate is verified.
 7 The Client sends the predefined secret encrypted using the Server’s public key

which is the client key exchange.
 8 The Client and the Server complete mutual handshake and the initial encryption

parameters.
Alternate
Flows

 Authentication of the Server or Client can fail. A certificate can be expired or
outdated.

 The Client could lose the encryption key while exchanging with the Server.
Postcondition Client and Server can start exchanging data at the transport layer.

The other minor protocol layers from Figure 10.9 are discussed below:
 Cipher Change Protocol. This protocol signals transitions in

cipherSpec, which is a session parameter explained above.
 Alert Protocol. This protocol raises alerts for the communication. This

record should normally not be sent during normal handshaking or
application exchanges. However, this message can be sent at any time
during the handshake and up to the closure of a TLS session. If this
record is used to signal a fatal error, the session will be closed
immediately after sending the record. If the alert level is flagged as a
warning, the remote partner can decide whether or not to close the
session.
 Application Protocol. Now the handshake is completed and the

application protocol is enabled. This marks the start of data exchange
between the server and the client.

Example Resolved

When a request is made to the bank’s server by an online client at the
transport layer, the bank’s server is authenticated to the customer, the
customer is authenticated to the server and a secure channel is created
between them. Now the client knows that online bank transactions are
secure.

Consequences
The TRANSPORT LAYER SECURITY pattern offers the following
benefits:

 Confidentiality and integrity. A secure channel is established between
the server and the client, which can provide data confidentiality and
integrity for the messages sent. We could add a logging system for the
client at its endpoint for future audits.
 Authenticity. Both client and server can be mutually authenticated.

Man-in-the-middle attacks can be prevented by mutual authentication.
 Flexibility. We can easily change the algorithms for encryption and

authentication protocols.
 Transparency. The users don’t need to perform any operation to

establish a secure channel.
 Configurability. Users can select algorithms to obtain different

degrees of security. The pattern also has the following potential
liabilities:
 Overhead. As seen from Figure 10.11, the overhead is significant for

short sessions: many messages are needed.
 SSL/TLS is a two-party protocol; it is not designed to handle multiple

parties. However the MTLS variant can handle multiple parties.

Variants
 WTLS. A modified version of TLS, called WTLS (Wireless TLS

protocol) has been used in mobile systems. WTLS is based on TLS and
is similar in some aspects [Bad04]. WTLS has been superseded in the
WAP (Wireless Application Protocol) 2.0 standard by the End-to-End
Transport Layer Security specification.

 MultipleTLS (MTLS). This is an application-level protocol running
over the TLS Record protocol. The MTLS provides application
multiplexing over a single TLS session. Therefore, instead of
associating a TLS session with each application, this protocol allows
several applications to protect their communication over a single TLS
session [Bad09].

Some different versions of TLS are given below.
 TLS 1.0. TLS 1.0 is an upgrade of SSL Version 3.0 and is an IETF

version of SSL. The differences between this protocol and SSL 3.0 are
not large, but they are significant enough that TLS 1.0 and SSL 3.0 do
not interoperate. TLS 1.0 does include a means by which a TLS
implementation can downgrade the connection to SSL 3.0, but this
weakens security.
 TLS 1.1. TLS 1.1 is an update of TLS version 1.0. Significant

differences include:
 Added protection against cipher block chaining (CBC) attacks. In

CBC mode, each block of plaintext is XORed with the previous
cipher text block before being encrypted.
 The implicit Initialization Vector (IV) was replaced with an

explicit IV.
 Change in handling of padding errors.
 Support for registration of parameters.

 TLS 1.2. This is a revision of the TLS 1.1 protocol, which contains
improved flexibility, particularly for negotiation of cryptographic
algorithms. The major changes are:

 The MD5/SHA-1 combination in the pseudorandom function
(PRF) has been replaced with cipher-suite-specified PRFs. All cipher
suites in this document use P_SHA256.
 The MD5/SHA-1 combination in the digitally-signed element has

been replaced with a single hash. Signed elements now include a
field that explicitly specifies the hash algorithm used.
 Substantial cleanup to the client’s and server’s ability to specify

which hash and signature algorithms they will accept.

 Addition of support for authenticated encryption with additional
data modes.
 Tightening up of a number of requirements.
 Verification of data length now depends on the cipher suite (default

is still 12) [wik3].
 EAP-TLS is a wireless authentication protocol for TLS [EAP].

Known Uses
 Mozilla Firefox versions 2 and above support TLS 1.0 [Moz].
 Internet Explorer (IE) 8 in Windows 7 and Windows Server 2008

support TLS 1.2 [MS].
 Presto 2.2, used in Opera 10, supports TLS [Rut].

See Also
 The Authenticator pattern describes how to mutually authenticate a

client and a server [Sch06b].
 The Secure Channel pattern describes a cryptographic channel used to

communicate secure data [Bra00].

10.6 Abstract IDS
The ABSTRACT IDS pattern allows monitoring of all traffic as it passes
through a network, and its analysis it to detect possible attacks and trigger
an appropriate response.

Example
Our company has a firewall to control traffic from the Internet. However we
are still plagued by viruses and other attacks that penetrate the firewall. The
attacks can be existing attacks or new attacks. We need to improve our
defense against such attacks.

Context

Nodes for local systems that need to communicate with each other using the
Internet or another insecure network.

Problem
An attacker may try to infiltrate our system through the Internet and misuse
our information by reading or modifying it. We need to know when an
attack is happening and take appropriate response.

The solution to this problem must resolve the following forces:
 Communication. The system is usually more secure if we have a

closed network. However in today’s world it is better and more realistic
to use the Internet or other insecure network to reduce costs, which may
subject our network to security threats.
 Real time behavior. Attacks should be detected before the attack

completes its purpose, so that we can preserve our assets and save time
and money. It is difficult to detect an attack when it is happening, but
such detection is imperative if we are to react timely and appropriately.
 Incomplete security. Security measures such as encryption,

authentication and so on may not protect all our systems, because they
do not cover all possible attacks.
 Non-suspicious users. Protecting our system through a firewall is

quick and easy. However, request coming from a non-suspicious
address (that is, one permitted by a firewall) could still be harmful and
should be monitored further.
 Flexibility. Hard-coding the type of attack can be done easily. But it

will be hard and time-consuming to adapt to attack patterns that change
constantly.

Solution
Each request to access the network is analyzed to check whether it
conforms to the definition of an attack. If we detect an attack, an alert is
raised and some countermeasures maybe taken.

The ABSTRACT IDS pattern defines the basic features of any intrusion
detection system (IDS). An abstract pattern defines only fundamental,
implementation-independent functions and threats [Fer08a]. Concrete

patterns add functionalities and threats, and take into account the
characteristics of their specific concrete environment. In this case, the
abstract functions are realized by concrete IDSs that operate based on
known attack signatures, or based on abnormal behavior or anomaly in the
network: SIGNATURE-BASED IDS or BEHAVIOR-BASED IDS. We
present here patterns for all these three types of IDS.

Figure 10.12 shows the typical placement of an IDS in a network,
complementing a firewall. The firewall filters requests for services, and the
IDS further checks for suspicious patterns in request sequences. If a
suspicious pattern is detected, the network operator is alerted and the
firewall may block some or all traffic.

Figure 10.12: Possible placement of network IDS to complement a firewall

Structure
Figure 10.13 shows the class diagram for the ABSTRACT IDS pattern. A
Client requests some service from the Server. The IDS intercepts this
request and sends it to an EventProcessor. The EventProcessor processes
the event so that the AttackDetector can analyze the event and implement
some method of detection using information from AttackInformation. When
an attack is detected, a Response is created.

Figure 10.13: Class diagram for the ABSTRACT IDS pattern

Dynamics
We describe the dynamic aspects of the ABSTRACT IDS pattern using a
sequence diagram for the following use case.
Use Case: Detect an Intrusion – Figure 10.14
Summary The Client requests a service from the Host. The IDS intercepts the message and

checks whether the request is an attack or not and raises a response.
Actors Client, Server.
Precondition We have attack information available.
Description 1 A Client makes a service request to the Host.
 2 The IDS send the request event to an EventProcessor.
 3 The EventProcessor processes the event data so that the AttackDetector can

interpret the event.
 4 The AttackDetector tries to detect whether this request is an attack or not by

comparing with the available information in the AttackInformation.
 5 If an attack is detected, a Response is created.
Alternate
Flows

The AttackInformation may not be able to detect an attack (a false negative).

 The AttackInformation may indicate an attack when no attack is present (a false
positive).

Postcondition If an attack is detected, suitable preventive measures may be applied.

Figure 10.14: Sequence diagram for the use case ‘Detect an intrusion’

Implementation
We need to create a database with attack information so that we can check
against this database and decide whether an attack is happening. The
incoming event is compared against the database and a decision is made
whether the incoming event is an attack or not. The concrete versions of
this pattern use different types of information to detect attacks.

The Common Intrusion Detection Framework (CIDF) is a working group
created by DARPA in 1998 that is mainly oriented towards creating a
common framework in the IDS field. CIDF defined a general IDS
architecture based on the consideration of four types of functional modules
as shown in Figure 10.15 [Gar09].

Figure 10.15: General CIDF architecture for IDS systems (from [Gar09])

 E blocks (‘event-boxes’). This block is composed of sensor elements
that monitor the target system, thus acquiring information events to be
analyzed by other blocks.
 D blocks (‘database-boxes’). These are elements intended to store

information from E blocks for subsequent processing by A and R
boxes.
 A blocks (‘analysis-boxes’). Processing modules for analyzing events

and detecting potential hostile behavior.
 R blocks (‘response-boxes’). The main function of this type of block

is the execution, if any intrusion occurs, of a response to thwart the
detected menace.

Consequences
The ABSTRACT IDS pattern offers the following benefits:

 Communication. If we can detect most attacks, we can safely use the
Internet or other insecure networks to access other systems.
 Real time behavior. Attacks can be detected when the attack happens

and the system alerted, which saves the both time and money in
recovery measures, and may prevent misuse of assets. Attacks can be
detected in real time if they have sufficient and appropriate information.
 Incomplete security. The IDS provides be an added layer of security

in addition to encryption, authentication and so on.

 Non-suspicious users. A request coming from a non-suspicious
address (permitted by a firewall) is further inspected and analyzed.
 Flexibility. The detection information can be modified to include new

attacks or new behavior.
The pattern also has the following potential liabilities:

 Some attacks may be so fast that it may be hard to recognize them in
real time.
 Attack patterns are closely tied to a given environment (operating

system, hardware architecture and so on) and cannot be applied easily
to other systems. This means we need to define detection information
tailored to an environment.
 There is some overhead in the addition of IDSs to a system.
 The concrete versions of these systems have additional liabilities.

Variants (Concrete Patterns)
 IDS can be either behavior (rule) based or can be based on anomalies

(abnormal behavior). There are significant differences in the use and
effectiveness of these two approaches. The patterns for both the
SIGNATURE-BASED IDS and BEHAVIOR-BASED IDS are
described next.
 A hybrid model of both the signature based and behavior based IDS

together is now available: a behavior-based IDS detects the anomalies
in traffic and then compares the anomalies with an attack signature in a
signature-based IDS.
 According to the resources they monitor, IDS systems are divided into

two categories: host-based IDS systems and network-based IDS
systems. Host-based IDS systems are installed locally on host machines
and evaluate the activities and access to key servers within the host.
Network-based IDS systems inspect the packets passing through the
network [Ozg05]. This classification is out of the scope of this book
and is not discussed here.

Known Uses

NID is a freely-available hybrid intrusion detection package. It monitors
network traffic and scans for the presence of known attack signatures, as
well as deviations from normal network behavior [Gra00].

See Also
 Firewalls can be added to complement the IDS [Sch06b]. Firewalls

usually deny requests made by unknown addresses. They can protect
against attacks coming from distrusted sources and can block the
addresses from where an attack originates.
 The response class could be implemented as a Strategy pattern

[Gam94].

10.7 Signature-Based IDS
Also known as Rule Based IDS, Knowledge-Based
IDS
The SIGNATURE-BASED IDS pattern describes how to check every
request for access to the network against a set of existing attack signatures,
to detect possible attacks and trigger an appropriate response.

Example
Our company has a firewall to control traffic from the Internet. However we
are still plagued by viruses and other attacks that penetrate the firewall. We
need to improve our defense against such attacks.

Context
Distributed systems executing applications that may provide services to
remote nodes. Access to the network can be from the Internet or from other
external networks.

Problem

Whenever data is accessed from the distrusted networks, there is always a
possibility that this access can be harmful to the local node. We need to
detect possible attacks while they are occurring. Security techniques such as
authentication and firewalls are usually implemented to provide security,
but we need additional defenses to detect whether an access request is a
possible attack or not. The solution to this problem must resolve the
following forces:

 Known attacks. It is easier to protect the system against known
attacks. Many attacks are new instances of known attacks and have a
well-defined attack signature.
 Completeness. If we have a complete collection of known attacks and

their signatures, it is easier to detect an attack exhibiting one of these
signatures.
 Flexibility. Hard-coding the type of attack can be done easily, but it

will be hard and time-consuming to adapt to attack patterns that keep
changing constantly.

Solution
Detect the occurrence of attacks by matching the current attack signature
against the signature of previously known attacks.

Structure
Figure 10.16 shows the class diagram of this pattern. The IDS intercepts an
access request for a service. An EventProcessor processes the information
and feeds this processed information to a AttackDetector, which tries to
match the sequence of requests to the signatures in the
AttackSignatureInformation and decides whether or not the request is an
intrusion. If an attack is detected by getting a match of signatures, some
appropriate Response is raised.

Figure 10.16: Class diagram for the SIGNATURE-BASED IDS pattern

Dynamics
We describe the dynamic aspects of the SIGNATURE-BASED IDS pattern
using a sequence diagram for the following use case.
Use Case: Detect an Intrusion – Figure 10.17
Summary The Client requests a service from the Host. The Signature-Based IDS intercepts the

message and determines whether the signature of the event matches an existing
attack signature. If the request is an attack, appropriate response is raised.

Actors Client, Server.
Precondition Information about attack signatures is available.
Description 1 A Client makes a service request for a service to the Host.
 2 The IDS send the request event to an EventProcessor.
 3 The EventProcessor processes the event as required by the AttackDetector and

passes the processed event data to the AttackDetector.
 4 The AttackDetector tries to detect whether this request is an attack or not by

comparing the signature of the event with the available signatures in the
AttackSignatureInformation.

5 If a match is detected, a Response is created.
Alternate
Flows

The AttackSignatureInformation may not be able to detect an attack (a false
negative).

 The AttackSignatureInformation can match and may indicate an attack when no
attack is present (a false positive).

Postcondition If an attack is detected while it is happening, suitable preventive measures can be
adopted.

Figure 10.17: Sequence diagram for the use case ‘Detect an intrusion’

Implementation
We first need to create a database with a set of all the known or expected
attack patterns. We then select a detection algorithm. Some possible
detection algorithms are:

 Expression matching. The simplest form of misuse detection involves
searching the event stream for known attack pattern expressions
[Ver02].
 State transition analysis. The whole process is a network of states and

transitions. Every observed event is applied to finite state machine
instances (each representing an attack scenario), possibly causing
transitions[Ver02].
 Dedicated languages. Some IDS implementations describe intrusion

signatures using specialized languages varying from compiled
expressions to programming languages such as Java. A signature takes
the form of a specialized program, with raw events as input. Any input

triggering a filtering program, or input that matches internal alert
conditions, is recognized as an attack [Ver02].
 Genetic algorithms. A genetic algorithm is used to search for the

combination of known attacks (expressed as a binary vector, each
element indicating the presence of a particular attack) that best matches
the observed event stream [Ver02].

Example Resolved
We added an intrusion detection system beside the existing firewall to the
system. Now any request authorized by the firewall is checked against
known attack signatures to detect whether the access request is a possible
attack. If we detect an attack, an alert can be raised and the firewall can
block the request.

Consequences
The SIGNATURE-BASED IDS pattern offers the following benefits:

 Known attacks. Detection can be effective against known attacks.
 Completeness. If all known attack signatures are available in the

database, attacks can be detected in real time.
 Flexibility. It is relatively easy to add new attacks to the detection set.

The pattern also has the following potential liabilities:
 It only works for known attacks: a new attack will not be detected.

We have to constantly update the database with new attack signatures.
 Some attacks don’t have well-defined signatures, or the attacker may

disguise the signatures. This may lead to false positives and false
negatives.
 Some attacks may be so fast that it may be hard to recognize them in

real time.
 Attack patterns are closely tied to a given environment (operating

system, hardware architecture, and so on) and cannot be applied easily
to other systems.

Known Uses

 An IDS can be combined with a firewall, as is done in Nokia’s
network systems [Nok01].
 Cisco IDS utilizes detection techniques including stateful pattern

recognition, protocol parsing, heuristic detection and anomaly detection
[Cisb].
 LIDS is a signature-based intrusion detection/defense system for the

Linux kernel [Lid].
 RealSecure [Rs] by Internet Security Systems is an IDS adapted by

IBM for intrusion detection packages. It can monitor TCP, UDP and
ICMP traffic and, if a match is found, countermeasures can be
implemented along with read/write server locking, IP blocking and
other measures. This product is bundled with CheckPoint Software’s
Firewall [Che].

See Also
 This pattern is a special (concrete) case of the Reference Monitor

pattern [Fer01a].
 The patterns for firewalls in [Sch06b] complement this pattern.
 The response class could be implemented as a Strategy pattern

[Gam94].

10.8 Behavior-Based IDS
Also known as Anomaly-Based IDS
The BEHAVIOR-BASED IDS pattern describes how to check every request
for access against patterns of network traffic in order to detect possible
deviations from normal behavior (anomaly) that may indicate an attack and
trigger appropriate responses.

Example
A company uses a public network for its applications. The network is
exposed to security threats, especially a variety of unknown attacks. Their

business could be in jeopardy if their customers realize that their system is
not secure enough.

Context
Any network application where the temporal behavior of network traffic is
repetitive and predictable.

Problem
Whenever data is accessed from the Internet or other external networks,
there is always a possibility that this access can be harmful to the network.
We need to detect possible attacks while they are occurring.

The solution to this problem must resolve the following forces:
 New attacks. In today’s world networks are constantly bombarded

with new attacks that do not have a specific attack signature. We need
to detect these kinds of attacks.
 Real-time. We need to detect attacks in real time while they are

happening, and not after the attack has happened and it is too late to
recover from it.
 Increased vulnerability. Some networks, such as mobile networks, are

more vulnerable to unknown attacks because of their mobile nature.

Solution
Observe the traffic over a network and try to find deviations from normal or
expected behavior. Any deviation from normal behavior is treated as a sign
of intrusion.

Structure
Figure 10.18 shows the class diagram for this pattern. A Client requests
some service from the system. The IDS intercepts this request and sends it
to an EventProcessor. The EventProcessor processes the event data as
needed by the AttackDetector, which involves establishing profiles of
normal behavior that can be compared with the current behavior in

BehaviorProfileInformation, and passes the processed data to the
AttackDetector. When an attack is detected, a Response is created.

Figure 10.18: Class diagram for the BEHAVIOR-BASED IDS pattern

Dynamics
We present the dynamic aspects of the BEHAVIOR-BASED IDS pattern
using sequence diagrams for the following use case.
Use Case: Detect an Intrusion – Figure 10.19
Summary The Client requests a service from the Host. The behavior-based IDS intercepts the

message and determines whether the behavior of the request matches a normal
behavior profile. If it does not, an attack is suspected and a response is raised.

Actors Client, Server.
Precondition A set of normal behavior profiles is available.
Description 1 Client makes a service request to the Host.
 2 The IDS send the request event to an EventProcessor.
 3 The EventProcessor processes the event as required by the AttackDetector and

passes the processed event data to the AttackDetector.
 4 The AttackDetector tries to detect whether this request is an attack or not by

comparing the behavior profile of the request with the available behavior profiles in
the BehaviorProfileInformation.

 5 If a match is detected, a Response is created.
Alternate
Flows

 The BehaviorProfileInformation may not be able to detect an attack (a false
negative).

 The BehaviorProfileInformation can match and may indicate an attack when no
attack is present (a false positive).

Postcondition If an attack is detected while it is happening, suitable preventive measures can be
adopted.

Figure 10.19: Sequence diagram for the use case ‘Detect an intrusion’

Implementation
Examples of techniques used for anomaly detection in practice are:

 Genetic algorithms. In this approach, applications are modeled in
terms of system calls for different conditions, such as normal behavior,
error conditions and attack conditions. A typical genetic algorithm
involves two steps. The first step involves coding the input population
of the algorithm. The second step involves finding a fitness function to
test each individual of the population against some evaluation criteria.
In the learning process each event sequence of node behavior forms a
gene. Fitness is calculated for a collection of genes. If genes with
required fitness cannot be found in the current generation, new sets of
genes are evolved through crossover and mutation. The process of
evolution continues until genes with the required fitness are found. The

detection process involves defining vectors for event data and methods
of testing whether the vector indicates an intrusion or not [Kis 10].
 Protocol verification. The basis for this approach is the fact that most

intruders use irregular or unusual protocol fields, which are not handled
properly by application systems [Ver02].
 Statistical models. These can be either multivariate models or models

based on available statistics such as threshold measures, or mean and
standard deviations of the profile. Clustering analysis where clusters
represent similar activities or user patterns is also sometimes used
[Ver02].

Example Resolved
We added an intrusion detection system to our network. Now all traffic is
checked against a normal behavior profile to see whether the access request
is an anomaly and hence a possible attack. We are now able to detect many
new attacks that do not have a known signature and prevent them.

Consequences
The BEHAVIOR-BASED IDS pattern offers the following benefits:

 New attacks. Detection can be effective against new attacks that could
cause abnormal behavior in the network traffic. For example, we can
identify an attack with a specific behavior, such as when a usually
passive web server tries to connect to a large number of addresses, it
could be the result of a worm attack.
 Real time. This kind of IDS works well with network traffic that

exhibits a normal behavior and where it will be easier to detect an
abnormal behavior pattern for the network.
 Increased vulnerability. This kind of IDS is usually good in wireless

networks, which are more vulnerable due to their mobile nature.
The pattern also has the following potential liabilities:

 It generates a lot of false positives. Many anomalies detected are not
attacks, but could be just unusual behaviors of users.
 It cannot be implemented in networks that do not have a predictable

traffic pattern.

 The technology adopted for one network is not easily portable to
another system, and can be different from system to system in a
network, as normal behavior for one system is usually not the normal
behavior for another system.
 If the attacker carries out an attack by mimicking regular traffic or

normal behavior, the attack may go undetected.

Known Uses
 Cisco IPS 4200 Series utilizes detection techniques including stateful

pattern recognition, protocol parsing, heuristic detection and anomaly
detection [Cisb].
 AirTight’s wireless IPS automatically detects, classifies, blocks and

locates wireless threats using behavior analysis. They use a genetic
algorithm to establish normal behaviors [Air].

Some other uses of anomaly-based IDSs are given in Table 10.1 [Gar09].

Table 10.1 Network-based IDS platforms with anomaly detection
functionalities, according to the manufacturer’s information [Gar09]

The Hybrid column indicates hybrid detection, and the Response column
indicates that some kind of response mechanism is also available.

See Also
 This pattern is used in conjunction with the SIGNATURE-BASED

IDS pattern (page 219).

 Firewalls are usually used together with the IDS in a network: the
patterns for firewalls in [Sch06b] complement this pattern.
 The response class could be implemented as a Strategy pattern

[Gam94].

CHAPTER 11

Patterns for Web Services Security

You are what you do, not what you say you’ll do.
Carl Gustav Jung

11.1 Introduction
Service-oriented architectures (SOAs) and web services are special cases of
distributed systems. Distributed systems are typically heterogeneous
systems that are accessible to a wide variety of institution partners,
customers or mobile employees, and introduce a new variety of security
threats. To protect its assets, an organization needs to define security
policies, which are high-level guidelines that specify the states in which the
system is considered to be secure. These policies need to be enforced by
security mechanisms. In large organizations, the policies may be issued by
different actors, making their management difficult. Moreover, they need to
be enforced for a variety of resources. To make things more difficult, they
may have to follow government or institution regulations. One way to allow
interoperability, apply security, and enforce compliance with regulations is
through the use of standards that define architectures to guarantee that all
participants will follow the same rules in their interactions.

There are many web services security standards, which are rather
complex and sometimes overlap; representing them as patterns makes them
easier to understand and to compare with other patterns. This chapter
presents our work on security patterns for web services and their standards.
Many patterns have been identified in the web services community, at
various level of granularity. For example, [Ben02] and [Zir04] propose
patterns for web services composition, while [Ima03] and [Tat04] identify
security patterns.

However, most of the proposed web services security patterns are low-
level patterns. They are effectively implementation patterns that give
solutions to concrete problems in terms of specific technologies. Erl has
written a whole book on patterns for web services [Erl09]. However, his
patterns are rather abstract, for example Brokered Authentication, and do
not consider any aspects of standards: they are also mostly descriptive. At
present, only our patterns deal with the security of web service standards.
We have also written web service reliability patterns [Buc09b], as well as
misuse patterns for web services [Mun11]. A survey of our work is given in
[Fer12c].

Web services standards tend to be complex and verbose, and it is not easy
for designers and users to understand their key points. Web services
standards are typically long documents: for example, the XACML 3.0 Core
Specification run to 150 pages, and is written to be comprehensive but not
to be easy to understand. It uses a combination of XML, UML and natural
language [Mos05]. By expressing web services security mechanisms and
standards as patterns, we can verify whether an existing product
implementing a given security mechanism supports some specific standard
[Fer06d]. Conversely, a product vendor can use the standards to guide the
development of the product. By expressing standards as patterns, we can
also compare them and understand them better, and discover overlapping
and inconsistent aspects between them. A standard defines a generic
architecture, and this is a basic feature of any pattern; it can then be
confirmed as a best practice by looking at products that implement the
standard (and implicitly the pattern). There are many security standards for
web services [Fer 10b] defined by several committees, including W3C,
OASIS and IETF.

The patterns described here are specialized versions of more fundamental
and more general patterns. For example, XACML [Del05] is a
specialization of the AUTHORIZATION pattern. As such it carries the
general properties of an AUTHORIZATION pattern and adds aspects
specific to XML access control. The new aspects may themselves be
patterns; for example, the Composite pattern [Gam94] appears frequently in
these models to indicate recursive composition. Identifying patterns as part

of a more complex pattern makes it easier to understand the functions of the
complex model.

The pattern diagram shown in Figure 11.1 shows the relationships
between our patterns for web services standards.

Figure 11.1: Pattern diagram for web services standards

 WS-SECURITY (page 330) describes how to send secure and
authenticated messages by leveraging a standard for XML Encryption,
and how to authenticate messages by using the XML Signature standard
[Has09c].
 Authorization to access specific parts of an XML document is defined

by the XACML standard, which is composed of rule definition
(XACML Policy) and rule enforcement (XACML Evaluation) [Del05].
 Authorization and authentication assertions can be conveyed to

different domains by using SAML [Fer06d].
 General policies are described using WS-POLICY, which is used in

turn to define trust among entities (WS-TRUST).

We describe patterns for all these standards except WS-Federation and
WS-Secure Conversation. We also include patterns for application and
XML firewalls [Del04]. All these patterns were written with Nelly Delessy
and Ola Ajaj [Aja 10a][Aja 10b].

11.2 Application Firewall
Also known as Content Firewall
The APPLICATION FIREWALL pattern allows filtering of calls and
responses to/from enterprise applications, based on an institution’s access
control policies.

Example
Consider an application for handling medical records in a hospital. One of
the services it provides is to allow patients to look up their personal medical
records from home. To ensure that only patients can access this service, a
user must first be identified as a patient and must then be authenticated.
Finally, the application must ensure that only the medical records belonging
to the patient are returned (that is, it must match the name in the medical
record with that of the user).

One way to provide this security is to let the application maintain a list of
all valid patients with their authentication credentials, and implement the
code for blocking unauthorized access. This approach has several problems.
In the future, if the hospital decides to give patients the ability to schedule
appointments, it will have to repeat the implementation of the access
control code for the scheduling application as well. Furthermore, if there are
changes in hospital business policies – for example, to allow external
primary care physicians to access the medical records of their own patients
– these applications will have to be rewritten. In this changing scenario, a
new access control list for authorized primary care physicians will have to
be added to the medical record application, and a list of patients will have to
be associated with each physician to indicate the patients belonging to a

specific doctor. Such application modifications are time-consuming,
difficult to manage, expensive and error-prone.

Context
Enterprise applications executing in distributed systems accessed from a
local network, the Internet, or other external networks. These distributed
systems typically include packet filter and/or proxy-based firewalls.

Problem
Enterprise applications in an organization’s internal network are accessed
by a broad spectrum of users that may attempt to abuse its resources
(leakage, modification or destruction of data). These applications can be
numerous, and thus implement access control independently in ad hoc
ways, making the system more complex and thus less secure.

Moreover, traditional network firewalls (application layer firewalls or
packet filters), do not make it possible to define high-level rules (role-based
or individual-based rules) that could make the implementation of security
policies easier and simpler.

How can we control the hostile actions of users who access our
applications? The solution to this problem must resolve the following
forces:

 There may be many subjects that need to access an application in
different ways; the firewall must accommodate this variety.
 There are many ways to filter application inputs. We need to separate

the filtering code from the application code.
 There may be numerous applications that may require different levels

of security. We need to define appropriate policies for each application.
 The security policies are constantly changing and need to be

constantly updated. It should therefore be easy to change the firewall
filtering configuration.
 The number of users and applications may increase significantly.

Adding more users or applications should be done transparently and at
proper cost.

 Network firewalls cannot understand the semantics of applications
and are unable to filter out potentially harmful messages.
 Any type of security policy should be enforceable by the firewall.
 There are many ways to perform authentication. The firewall must

support this variety.

Solution
Interpose a firewall that can analyze incoming requests for application
services and check them for authorization. A client (user, role) can access a
service of an application only if a specific policy authorizes it to do so.
Policies for each application are centralized within the APPLICATION
FIREWALL, and they are accessed by the firewall through a policy
authorization point. Each application is accessed by a client through a
policy enforcement point that enforces access control by looking for a
matching policy in the policy base (the set of policies). This enforcement
may include authenticating the client through its data stored in the identity
base (the database of identities).

Structure
Figure 11.2 shows the class diagram for the APPLICATION FIREWALL
pattern. The classes Client and Service have the usual meaning. A Client
accesses a Service provided by an application. The access requests are
controlled by authorization rules (denoted here as policies to follow the
usual industrial notation), and represented by the Policy class. Policies are
collected in the PolicyBase class. Clients are denoted as subjects in the
authorization rules.

Figure 11.2: Class diagram for the APPLICATION FIREWALL pattern

The firewall consists of a PolicyAuthorizationPoint which centralizes
the definition of the policies and identities throughout the institution, and
several PolicyEnforcementPoints, which are used to check the accesses to
the applications. The data flowing through the firewall is checked by the
ContentInspector.

The enterprise applications are represented by the class Application,
which is made up of Services. A service is identified by a serviceId,
which is usually a URI or a URL.

Dynamics
We describe the dynamic aspects of the APPLICATION FIREWALL
pattern using sequence diagrams for two use cases: ‘Filter a client’s request
with user authentication’, and ‘Add a new policy’.

Use Case: Filter a Client’s Request with User Authentication –
Figure 11.3
Figure 11.3: Sequence diagram for the use case ‘Filter a client’s request
with user authentication’

Summary A Client requests access to a service of an Application to either input or retrieve
information. The access request is made through the PolicyEnforcementPoint,
which accesses the PolicyAuthorizationPoint to determine whether to accept or
deny the request (page 238).

Actors A Client.
Precondition Existing IdentityBase and PolicyBase classes must be in place in the firewall. The

IdentityBase contains the data necessary to authenticate a Client. The PolicyBase
contains specific policies defined by the organization.

Description 1 A Client requests access to an Application.
 2 An ApplicationFirewall, through its PolicyEnforcementPoint, intercepts the

request and accesses the PolicyAuthorizationPoint.
 3 The PolicyAuthorizationPoint authenticates the Client through its

IdentityBase. This step may be avoided for subsequent requests through the use of
a Session class.

 4 Once the Client is identified and authenticated, the PolicyAuthorizationPoint
filters the request according to the PolicyBase. The request is accepted or denied
according to the defined policies.

 5 If the request is accepted, the firewall allows access to the service of the
Application and the access is logged by the ApplicationFirewall.

Alternate
Flows

If the Client is not recognized, or if no policy allows the specific Client to access the
specified service, the firewall rejects the access request to the service.
If the user has already been authenticated, the Client may not be authenticated again
(single sign-on use).

Postcondition The firewall has provided the access of a Client to a service, based on verifying the
identity of the Client and the existence of a matching policy.

Use Case: Add a New Policy – Figure 11.4
Figure 11.4: Sequence diagram for the use case ‘Add a new policy’

Summary The security administrator intends to add a new policy to the set of policies. Before
adding it, the firewall checks that the new policy to be added does not already exist
in the policy set (page 239).

Actors Administrator.
Precondition The Administrator must have authorization to add rules.
Description 1 After having been authenticated, the Administrator initiates the addition of a new

rule.
 2 If the rule does not already exist in the rule set, then it is added.
 3 The firewall acknowledges the addition of the new rule.
Alternate
Flow

The rule is not added because it already exists in the rule set.

Postcondition A new rule is added to the rule set of the firewall.

Implementation
To implement the APPLICATION FIREWALL the designer needs to
understand the semantics of the application. The following tasks need to be
performed:

1 Define subjects. These are the active entities, users or roles, who will
apply operations to some of the classes in the application model.

2 Define subjects’ rights and implement them as policies. Apply a need-
to-know policy and give users only the rights they need to perform their
functions with respect to the application. For example, a manager needs
to have the right to create accounts, but not the right to withdraw money
from the accounts they create.
3 Assign individual users to the roles in the application.
4 Add/remove policies when needed. Users come and go, and their
association with specific roles needs to be kept up to date.
5 Define criteria for logging. Some activities, for example performing
transactions, need to be recorded for future audit.

Two architectural configurations are possible: reverse proxy and multiple
agents.

Reverse Proxy
With the reverse proxy implementation, the input flow is intercepted on a
single point (Figure 11.5). There is only one policy enforcement point, and
all the flow should go through it [Sch06b].

Figure 11.5: Reverse proxy configuration

Multiple Agents
With this implementation, several policy enforcement points are distributed
on the network, close to the different applications that have to be controlled
(Figure 11.6). These enforcement points together intercept every request to
the application. It is also possible to control access for requests coming
from internal networks.

Figure 11.6: Multiple agents configuration

Example Resolved
Application firewalls allow separation of the access control code from the
application code. This allows reuse of the basic access control code in
different applications. For example, in the example discussed at the start of
the pattern description, the bulk of the access control code will be common
to both medical and scheduling applications.

When application firewalls are used, all accesses to applications (medical
or scheduling) have to pass through these firewalls. The application firewall
ensures that the users are properly authenticated, and have privileges to the
service they are accessing based on configurable policies.

Consequences
The APPLICATION FIREWALL pattern offers the following benefits:

 The institution’s policies for controlling access are easily defined and
administered, as the policies have centralized administration. This
makes the whole system less complex, and thus more secure.
 The pattern could be combined with an intrusion detection system to

facilitate the prevention of some attacks.
 The application firewall lends itself to a systematic logging of

incoming and outgoing messages.
 As authentication of clients is performed, users can be held

responsible for their actions.
 Different types of users or types of access just require specific rules.

 Filtering is separated from application functions. Because of their
separation, the application and the filtering policies can evolve
independently.

The pattern also has the following potential liabilities:
 The application firewall could affect the performance of the protected

system, as it is a bottleneck in the network. This can be improved by
considering the firewall a virtual concept and using several physical
devices in the implementation.
 The solution is redundant for existing applications that already

implement their own access control.
 The application itself must be built in a secure way, or normal service

operations could allow attacks through the requests.
 We still need the operating system and the network infrastructure to

be secure.

Known Uses
 This pattern is used in several commercial products, such as Cerebit

InnerGuard [Cer03] and Netegrity SiteMinder [Net03].
 This model is also used as an underlying architecture for the XML

FIREWALL pattern (below).
 There are also products called application security gateways that

incorporate these functions, plus others.

See Also
 The AUTHORIZATION pattern (page 74) defines the security model

for the APPLICATION FIREWALL.
 The ROLE-BASED ACCESS CONTROL pattern (page 78), a

specialization of the AUTHORIZATION pattern, is applicable if the
business policies are defined in terms of roles and rights [San96].
 The APPLICATION FIREWALL pattern is a special case of the

Single Access Point pattern [Yod97].
 The Reverse Proxy pattern [Sch06b] defines a possible architecture

for the use of this pattern.

 The policy enforcement point is a special case of a Reference Monitor
(page 100).

11.3 XML Firewall
The XML FIREWALL pattern allows filtering of XML messages to/from
enterprise applications, based on business access control policies and the
contents of the message.

Context
Enterprise applications executing in distributed systems accessed through a
local network, from the Internet or from external networks. The
applications communicate through XML messages and could be
applications using web services. The messages can contain a remote
procedure call or a document.

Problem
Some enterprise applications use tunneling into authorized flows (HTTP,
SMTP) to communicate with external sites. They use higher-level protocols
such as SOAP and communicate through XML documents or XML-
wrapped remote procedure calls. The XML content of these messages can
contain harmful data and can be used to perform attacks against
applications.

Network firewalls provide infrastructure security, but become useless
when these high-level protocols and formats are used.

The solution to this problem must resolve the following forces:
 Document or remote procedure call formats are subject to change;

some new ones may appear (XML dialects). The firewall must adapt
easily to these changes.
 New types of harmful data may be used by attackers; the firewall

must adapt easily to these new types of attacks.
 There are many ways to filter; we need to separate the filtering code

from the application code.

 There may be numerous applications that may require different levels
of security.
 New applications may be integrated into the system after the firewall

has been put into operation. This integration should not require
significant additional costs.
 Network firewalls cannot understand the contents of XML messages

or application semantics, and do not stop potentially harmful messages.

Solution
Use a firewall that intercepts XML messages and can understand their
contents. A client can access a service of an application only if a specific
policy authorizes it to do so and if the content of the message is considered
safe for the application. Policies for each application are centralized in the
XML FIREWALL and accessed through a policy authorization point. Each
application is accessed by a client through a policy enforcement point that
enforces access control for the applications. The authorization decision may
include authenticating the client through its identity data stored in the
identity base. It also includes looking for a matching policy for the request
in the policy base, and checking the contents of the message. First, its
structure is validated through a list of valid XML schemas, and the data it
conveys is checked through a harmful data detector.

Structure
Figure 11.7 shows the class diagram for this pattern. Some of the classes are
similar to those of Figure 11.2 (page 236). They include an IdentityBase, a
collection of the Client identities registered in the system. A PolicyBase
stores authorization policies that define the rights of those users. A
PolicyAuthorizationPoint collects both identity and authorization
information. A PolicyEnforcementPoint performs access control checks.
The new classes include the ContentInspector, which checks the content
of the XML messages sent from/to the applications.

Figure 11.7: Class diagram for the XML FIREWALL pattern

The ContentInspector consists of a HarmfulDataDetector, an
XMLSchemaValidator, an XMLSigner/Verifier and an
XMLEncryptor/Decryptor. The HarmfulDataDetector perform checks for
harmful data embedded in the content of the message. The
XMLSchemaValidator checks the validity of the XML documents sent to the
application. The XMLSigner/Verifier and XMLEncryptor/Decryptor

respectively sign/verify and encrypt/decrypt XML messages that access the
firewall, in accordance with the XML Digital Signature [W3C08] and XML
Encryption [W3C02] standards proposed by W3C. These mechanisms are
used to guarantee confidentiality, data authenticity and integrity of the XML
documents, as well as non-repudiation.

Dynamics
Figure 11.8 (page 246) illustrates the dynamic aspects of the XML
FIREWALL pattern using a sequence diagram. It corresponds to a use case
in which the XML message is encrypted and signed, and whose user needs

to be authenticated. A more basic use case would be obtained by removing
some of these requests.

Figure 11.8: Sequence diagram for the use case ‘Filtering an encrypted and
signed client’s request with user authentication’

Use Case: Filtering an Encrypted and Signed Client’s Request
with User Authentication – Figure 11.8
Summary A Client requests access to a service of an application to either transfer or retrieve

information via an XML message. First, the content of the message is checked, so
that only harmless messages are given access to the applications. Then, the access
request goes through the PolicyEnforcementPoint, which accesses the
PolicyAuthorizationPoint to determines whether to accept or deny the request.

Actors External Client.
Precondition Existing IdentityBase and PolicyBase classes must be in place in the firewall. The

IdentityDatabase contains the data necessary to authenticate a Client. The
PolicyDatabase contains specific policies defined by the organization.

 An existing XML schema database contains the XML schemas trusted by the
organization.

Description 1 A Client requests access to an Application.
 2 An XMLFirewall, through its ContentInspector, checks the validity of the XML

message and decrypts it.
 3 The PolicyEnforcementPoint intercepts the request and relays it to the

PolicyAuthorizationPoint.
 4 The PolicyAuthorizationPoint authenticates the Client through its

IdentityBase. This step may be avoided for subsequent requests through the use of
a Session class.

 5 Once the Client has been authenticated and identified, the
PolicyAuthorizationPoint filters the request according to the PolicyBase. The
request is accepted or denied according to the defined policies.

 6 The contents of the message is checked. If the message contains harmful data, it is
rejected.

 7 The signature of the XML document is verified.
 8 The firewall allows access to the service of the application and the access is logged

into the XMLFirewall.
Alternate
Flows

If the XML message is invalid, or the XML message contains harmful data, or the
Client is not authenticated, or no policy allows the specific Client to access the
specified service, the firewall rejects the access request.
If the user has already been authenticated, the Client may not be authenticated again
(single sign-on use).
If the signature is not verified, the request may be relayed, depending on the existing
policies.

Postcondition The firewall has filtered the access of a Client to a service, based on the content of
the message, the authentication of the Client, and the existence of a matching policy.

Implementation
The same architectural structures used for the APPLICATION FIREWALL
pattern (page 234) – reverse proxy, multiple agents – can be used to deploy
XML FIREWALLs.

Consequences
TheXML FIREWALL pattern has the same benefits as the APPLICATION
FIREWALL pattern, and the following additional benefit:

 It provides a higher level of security than the APPLICATION
FIREWALL pattern for inputs which are XML documents or requests.

The pattern also has the following potential liabilities:
 The application could affect the performance of the protected system,

as it is a bottleneck in the network, and as the XML content checking
may create a large overhead. This can be alleviated by using a multiple-
agents configuration.
 The solution may be redundant or intrusive for existing applications

that already implement their own access control or their own filtering.
 The application firewall needs to manage the corresponding

cryptographic keys necessary to encrypt/decrypt data or verify digital
signatures.

Known Uses
 This model is used in several commercial products, such as

Reactivity’s XML Firewall [Rea03], Westbridge’s XML Message
Server [Wes03], Netegrity’s Transaction Minder [Net03], DataPower’s
Security Gateway [Dat04], Sarvega’s XML Security Gateway [Sar04],
Xtradyne’s WS-DBC [Xtr04] and Forum Systems Xwall [For04a].
 Web application servers such as IBM’s WebSphere also include

similar devices [WeS].

See Also
 The AUTHORIZATION pattern (page 74) defines the security model

for the XML FIREWALL.

 The ROLE-BASED ACCESS CONTROL pattern (page 78), a
specialization of the authorization pattern, is applicable if the business
policies are defined in terms of roles and rights [San96].
 The XML FIREWALL pattern is a special case of the APPLICATION

FIREWALL pattern (page 234).
 The Reverse Proxy pattern [Sch06b] defines a possible architecture

for the use of this pattern.
 The policy enforcement point is a special case of a Reference Monitor

[Sch06b].

11.4 XACML Authorization
eXtensible Access Control Markup Language (XACML) can be used by an
organization to represent authorization rules in a standard manner.

Example
Consider a company that provides financial services to its customers. Their
computer systems can be accessed by customers who send orders to the
company for buying or selling commodities (stocks, bonds, real estate, art)
by e-mail or through their website. Brokers employed by the company can
carry out the orders of the customers by sending requests to the systems of
various financial markets, or by consulting information from financial news
websites. Also, a government auditor visits periodically to check for
application of laws and regulations.

All these activities are regulated by policies with various granularities
within the company. For example, the billing department can have the rule
‘only registered customers whose account status is ok may send orders’, the
technical department can decide that ‘e-mails with attachments bigger than
x Mb won’t be delivered’, the company security policy can state that ‘only
employees with the ‘broker’ role can access the financial markets’ web
services’ and that ‘only the broker custodian of a customer can access its
transaction information’, whereas the legal department can issue the rule
‘auditors can access all transaction information’, and so on.

All these policies are enforced by different components of the company’s
computer system (e-mail server, file system, web service access control
component, financial application). This approach has several problems: the
policies are described in possibly different syntaxes, and it is difficult to
have a global view of what policies apply to a specific case. Moreover, two
policies can be conflicting, with no way to combine them in a clear way. In
summary, this approach could be error-prone and complex to manage.

Context
A complex environment such as a large enterprise with many partners,
contractors and relations with other enterprises. These various actors access
the organization’s resources, comprising web services, sensitive documents
or system components.

Problem
An organization’s resources are usually of various types (XML documents,
web services, web components, CORBA services). Access to these
resources is controlled by distributed enforcement mechanisms, according
to the security policies of the institution. Since the resources are of different
types, the enforcement mechanisms come in various forms: they can be part
of a web server, an application firewall, and so on. Therefore, policies have
to be implemented in many locations, using different syntaxes. It is
important to define precisely the policies about accessing these resources.

Moreover, security policies in an organization are typically issued by
different actors from its departments (human resources, legal, marketing
departments), and the policies they write may concern a wide and
overlapping set of resources. Defining these policies in such a way that the
correct policies can be applied to each access may be complex, and thus
error-prone.

How can we unify the definition of access policies throughout the
organization, making the whole system simpler and less error-prone? The
solution to this problem must resolve the following forces:

 The policies are issued by a variety of actors and may be stored in
many locations. This means that they may be expressed in different
forms.
 The policies are constantly changing and need to be constantly

updated.
 An active entity accessing a resource can be represented in a variety

of ways, including certificates.
 Some policies can require a set of actions (or obligations) to be

performed in conjunction with policy enforcement (auditing,
notification).
 The environment in which an access is requested can also affect the

access decision. For instance, an access may only be permitted at some
hours of the day.

Solution
Write all policies in a common language using a standard format. This
format is generic enough to implement some common high-level policies or
models (open/closed systems, extended access matrix, RBAC, multilevel).
In addition, define a way to compose policies so that when several policies
apply to one access, it is possible to render one unique decision: the policies
have a combining algorithm.

Structure
Figure 11.9 shows the class diagram of this pattern. A
PolicyAdministrationPoint is a rule repository that centralizes the definition
of policies throughout the organization. The Subject intending the access,
the Resource at which the access is targeted, and the Environment of the
access are described through their attributes. The Environment represents
the characteristics of an access that are independent of the Subject or
Resource. It could include the current date, time or other environmental
properties.

Figure 11.9: Class diagram for the XACML AUTHORIZATION pattern

A Rule is a basic unit of policy and has the usual meaning. In the access
matrix model, it defines a set of Subjects, Resources (protection objects)
and Actions (access types). However, in this pattern, a Rule associates not
only one, but a set of Subjects, with a set of Resources and a set of
Actions. It also includes a set of Environments to which the rule is
intended to apply, a condition and an effect (‘permit’ or ‘deny’ – that is,
positive and negative rules). The condition refines the rule by imposing
constraints on the Subjects, the Resources or the Environment. The
Target of the rule is made up of the sets of Subjects, Resources,

Actions and Environments to which the rule is intended to apply. A Target
is used for identifying the applicable rules in a given context.
Policies are composed of Rules. When evaluating a Policy, Rules are

combined according to the Policy’s ruleCombiningAlgorithm (deny-
overrides, permit-overrides, first-applicable, only-one-applicable or a user-
defined algorithm).

Policies are structured according to a Composite pattern [Gam94],
where a PolicySet is the composite element. Similarly, when evaluating a
PolicySet, Policies are combined according to the PolicySet’s

policyCombiningAlgorithm. (We could use a Strategy pattern [Gam94]
here to have more than one algorithm.) This indicates that policies have a
tree structure. Each PolicyComponent may include an obligation that
defines an operation that should be performed after enforcing the access
decision. For example, an obligation could be an audit operation, or a
notification to an external client.

In addition to its rules’ Targets, each PolicyComponent may be
associated with a Target. A Target at this level is either specified by the
Policy writer, or calculated as the union or the intersection of the Targets
of the Rules comprising this Policy.

Dynamics
We describe the dynamic aspects of the XACML AUTHORIZATION
pattern using a sequence diagram for the use case ‘Create a new policy’.

Use Case: Create a New Policy – Figure 11.10
Figure 11.10: Sequence diagram for the use case ‘Create a new policy’

Summary A PolicyWriter intends to create a new policy component.
Actors PolicyWriter.
Precondition The PolicyWriter must have authorization to create Policies.
Description 1 The PolicyWriter creates as many rules as necessary, specifying the target, the

effect and possibly a condition for each rule.
 2 The rules are added to the set of existing rules.
 3 The PolicyWriter creates a Policy by specifying the rules, optionally some

obligations and targets, and the ruleCombiningAlgorithm.
 4 The PolicyAdministrationPoint acknowledges the creation of the new Policy.
Postcondition The new Policy is added to the Policy set of the PolicyAdministrationPoint.

Implementation
The enterprise must have decided to use XACML to provide security for its
documents and services. This decision is based on the fact that XACML is a

standard and several products support its use. Once this decision is made,
we need to:

1 Define semantics for the subject, the resource and the environment’s
attributes for each intended authorization. These attributes can be from
existing standards (LDAP attributes, SAML and so on) and are
extensible.
2 Translate existing rules into the XACML format.
3 Define new rules and implement them as XACML rules and policies.
4 Add/remove policies when needed.

For example, we can have rules describing authorization for individual
users, roles or any relevant active entity. A complete example of use is
given in [Ver04].

Example Resolved
The use of XACML authorization rules makes it possible for the company
to centralize a wide range of policies and rules. Those can be easily
managed, and the conflicts can be resolved by using algorithms that
combine rights when evaluating an access request.

Consequences
The XACML AUTHORIZATION pattern offers the following benefits:

 The organization’s policies to control access are easily defined using
the constructs of the language. This makes the whole system less
complex, and thus more secure.
 A variety of policy types can be described, as the policy language

includes the resource, the subject and the environment’s attributes.
 Similarly, a variety of subject types can be described.
 Policies and rules can be combined easily.
 A policy writer can specify complex conditions.
 The pattern enables logging or other actions by means of obligations.

The pattern also has the following potential liability:
 The structure of a policy is complex. It is verbose even for simple

rules, and may require increased processing time to evaluate a request.

Known Uses
 This pattern is used in several commercial products, such as

Xtradyne’s WS-DBC (an XML firewall) [Xtr04] and DataPower’s
XS40 XML Security Gateway [Dat04].
 Parthenon Computing produced a suite of policy products based on

XACML (Policy Tester, Policy Engine, Policy Server) [Par05].
 Sun provides an open source implementation written in Java

[Sun04b].

See Also
 The policies are structured according the Composite pattern [Gam94].
 Rules correspond to a specialization of the AUTHORIZATION

pattern (page 74).
 The Resource Reservation Protocol (RSVP) policy control can be

implemented using XACML [Tok04].
 Our patterns for XACML could also represent the RSVP protocol.

11.5 XACML Access Control
Evaluation
The XACML ACCESS CONTROL EVALUATION pattern describes how
to decide whether a request is authorized to access a resource according to
policies defined by the XACML AUTHORIZATION pattern.

Example
Consider the same financial company as was discussed in the XACML
AUTHORIZATION pattern. Its policies and rules are enforced by different
components of its computer system: by the e-mail server, file system, web
service access control component and financial applications. It requires
much time and money to administer access control for those different
systems.

Context
A complex environment such as a large enterprise with many partners,
contractors and relations with other enterprises. These various actors access
the organization’s resources, comprising web services, sensitive documents
or system components. These accesses are controlled at several
enforcement points, according to security policies.

Problem
An organization’s resources are usually of various types. Accesses to these
resources are controlled by distributed enforcement mechanisms, according
to its security policies. Since the resources are of different types, the
enforcement mechanisms come in various forms: they can be a part of a
web server, an application firewall, and so on. Therefore, the organization
has to set up and maintain numerous authorization systems for its networks.

How can we enforce the rules defined in the institution policies? The
solution to this problem must resolve the following forces:

 Enforcement points could be implemented in a variety of systems
(part of a web server, in a WAN and so on).
 Any type of security policy should be enforceable.
 Enforcement may require reading system or environment variables.

Solution
Protect resources by policy enforcement points. All access requests to a
policy enforcement points are evaluated by submitting them to a unique
policy decision point in a common format. This policy decision point
returns the access decision, based on the applicable policy corresponding to
the access context. The policy information point provides attributes from
the subject.

Structure
Figure 11.11 shows the class diagram of the XACML ACCESS CONTROL
EVALUATION pattern. A Subject can access a Resource in the current
environment only if an XACMLAccessResponse authorizes it to do so. The

Subject, Resource and environment are described through their attributes.
The specific aspect of this pattern is that an access is realized through three
entities, the Subject, the Resource and the environment, instead of just the
Subject and the Resource. This enables a full description of the
characteristics of an access to be evaluated.

Figure 11.11: Class diagram for the XACML ACCESS CONTROL
EVALUATION pattern

The PolicyEnforcementPoint requests an access decision from the
PolicyDecisionPoint through a ContextHandler, which is an adapter
between any specific enforcement mechanism and the XACML
PolicyDecisionPoint. The PolicyDecisionPoint is responsible for
deciding whether or not an access should be permitted, by locating the
ApplicablePolicySet, the set of policies that is applicable to the particular

access attempt applying it to the XACMLAccessRequest, and issuing a
corresponding XACMLAccessResponse.

The ContextHandler can also get additional attributes from a
PolicyInformationPoint, which is responsible for obtaining attributes
from the subject.

Dynamics
We describe the dynamic aspects of the XACML ACCESS CONTROL
EVALUATION pattern using a sequence diagram for the use case ‘Control
an access request to a resource’.

Use Case: Control an Access Request to a Resource – Figure
11.12
Figure 11.12: Sequence diagram for the use case ‘Control an access request
to a resource’

Summary A Subject requests access to a Resource. The access request is made through its
PolicyEnforcementPoint, which in turn accesses the PolicyDecisionPoint through
its ContextHanlder, in order to determine whether to accept or deny the request
(page 258).

Actors A Subject.
Precondition An existing PolicyAdministrationPoint must be accessible by the

PolicyDecisionPoint. It contains policies defined by the organization.
Description 1 A Subject sends a request for access to a Resource to its PolicyEnforcementPoint.
 2 The PolicyEnforcementPoint sends the request to the ContextHandler in its

native format.
 3 The ContextHandler sends a corresponding XACML request to the

PolicyDecisionPoint.
 4 The PolicyDecisionPoint retrieves the ApplicablePolicy for this XACML request

from the PolicyAdministrationPoint.
 5 The PolicyDecisionPoint may request additional attributes from the

ContextHandler.
 6 The ContextHandler obtains the attributes from a PolicyInformationPoint and

returns them to the PolicyDecisionPoint.
 7 The PolicyDecisionPoint evaluates the ApplicablePolicy corresponding to the

XACML request and returns an XACML response to the ContextHandler, or sends a
request to the PolicyInforcementPoint if the attributes are insufficient to make a
decision.

 8 The ContextHandler translates the response into the native response format of the
PolicyEnforcementPoint.

 9 The PolicyEnforcementPoint fulfills the obligations contained in the response.
 10 If the access is permitted, the PolicyEnforcementPoint allows the Subject to

access the Resource.
Alternate
Flows

If the XACMLAccessResponse’s decision is ‘deny’, the PolicyEnforcementPoint
denies access to the Resource.
If the XACMLAccessResponse’s decision is ‘indeterminate’ or ‘not applicable’, the
decision has to be made by the PolicyEnforcementPoint.

Postcondition Access control to a resource has been realized, based on the Subject’s attributes, the
Resource’s attributes, the environment’s attributes and an applicable policy.

Appendix A includes pseudo-code for the functions
retrieveApplicablePolicy() and evaluateApplicablePolicy().

Implementation
To implement the XACML ACCESS CONTROL EVALUATION pattern,
the following tasks need to be performed:

1 Implement a ContextHandler for applications that already have a
PolicyEnforcementPoint but which use another access decision
language.
2 Implement an XACML PolicyEnforcementPoint for those
applications that do not implement access control.
3 Add the translated existing authorization rules to the
PolicyAdministrationPoint.
4 Add the new authorization rules to the PolicyAdministrationPoint.

Example Resolved
The use of the XACML ACCESS CONTROL EVALUATION pattern
allows the company to centralize the decisions of accesses to resources in
the company. Consequently, applications no longer not need to care about
access control decisions. Every access request or response is in the
XACML format.

Consequences
The XACML ACCESS CONTROL EVALUATION pattern offers the
following benefits:

 Since access decisions are requested in a standard format, an access
decision becomes independent of its enforcement. A broad variety of
enforcement mechanisms can be supported and can evolve separately
from the policy decision point.
 The pattern can support the access matrix, RBAC or multilevel

models for access control.
The pattern also has the following potential liabilities:

 It is intrusive for existing applications that already have security, since
they require the implementation of a context handler.
 It could affect the performance of the protected system, since XML is

a verbose language.

Known Uses
This pattern is used in the commercial products listed on page 254 for the
XACML AUTHORIZATION pattern.

See Also
 The Reference Monitor pattern ([Sch06b] and page 100) defines the

security model for this pattern. It includes the Metadata-Based Access
Control (MBAC) model [Pri04].
 The Application Firewall pattern [Del04] could be implemented

according to the XACML patterns – XACML AUTHORIZATION
(page 248) and XACML ACCESS CONTROL EVALUATION.
 This pattern uses the MBAC model [Pri04] as a component.

11.6 Web Services Policy Language
The WEB SERVICES POLICY LANGUAGE (WSPL) pattern describes
how to represent access control policies for an organization’s web services
in a standard manner, and to enable a web services consumer to express
their requirements in a standard manner.

Example
Our company has a variety of web services for different purposes.
Applications incorporate them as part of their structure. Application users
pay for the use of these web services. If we want to make any money, we
need to control access to them.

Context

Applications that use web services. Providers have security policies to
control access to their web services, consumers have requirements for a
web service invocation.

Problem
Web services are services that are accessible by means of messages sent
using standard web protocols, notations and naming conventions [Pap03].
In addition, they are self-describing through Web Services Description
Language (WSDL) and can be discovered (perhaps automatically) using
Universal Description, Discovery and Integration (UDDI). Therefore, using
different syntaxes for their policy descriptions would reduce the two
properties of self-description and discoverability.

Moreover, security policies are typically issued by different actors in
different departments, and the policies they write may concern a wide and
overlapping set of web services. Applying the right policies to each access
to a web service may also be complex, and thus error-prone.

How can we describe policies to control web services invocations? The
solution to this problem must resolve the following forces:

 The policies are issued by a variety of actors in an organization and
may be stored in many locations.
 Web services consumers can also issue policies (requirements). For

example, a consumer could require a service to have a certificate from a
well-known certification authority.
 Any type of security policy should be enforceable.
 The policies are constantly changing and need to be constantly

updated.
 We have a variety of subjects (roles).
 The environment in which an access is requested can also affect an

access decision.
 Some policies can require a set of obligations to be performed in

conjunction with policy enforcement (auditing).

Solution

WSPL binds each WSDL web service component to an XACML
component. In addition, define combination rules for such policies.

Structure
Figure 11.13 shows the class diagram for this pattern. Each WSDL web
service component – Endpoint (port), Message and Operation – involves
several Aspects, such as reliable messaging, privacy, authorization, trust,
authentication or cryptographic security.

Figure 11.13: Class diagram for the WEB SERVICES POLICY
LANGUAGE pattern

Each of the web service components respectively corresponds to an
EndpointPolicy, MessagePolicy and OperationPolicy and are described
by XACML PolicySets.

An EndpointPolicy, MessagePolicy or OperationPolicy consists of
Objectives that govern an aspect of the web service components. All
Objectives must be achieved by the service invocation. An Objective is
defined by an XACML Policy.

Each Objective consists of a set of ordered Strategies. At least one
Strategy must be achieved for its Objective to be achieved. This ordering
may enable functions such as policy or trust negotiation. Strategies are
represented by XACML Rules.

An XACML attribute is refined, as an unconstrained attribute can have its
value assigned by the policy user, whereas a constrained attribute cannot.
An authorized attribute must have its value assigned by an authority.

Implementation
A detailed discussion of some implementation aspects can be found in
[And04].

Example Resolved
Using WSPL, we can define precise rules about who can access which
resources and in what way. We can then provide security to our users and
prevent users who have not paid for using our services from accessing
them.

Consequences
In addition to the benefits of the XACML AUTHORIZATION pattern
(page 248), the WEB SERVICES POLICY LANGUAGE pattern presents
the following benefit:

 Consumers’ and providers’ policies can be combined to decide how a
service invocation should occur.

The pattern also has the following potential liabilities:
 It is intrusive for existing web services that already implement

security, since they require the implementation of a context handler.
 It could affect the performance of the protected system, as XML is a

verbose language.

Known Uses
OpenWSPL is an open source Java implementation of the Web Service
Policy Language [WSPL].

See Also
 WSPL defines a type of Adapter [Gam94] between WSDL and

XACML.
 The architecture defined by the XML Firewall pattern [Del04] could

be implemented using this pattern.

11.7 WS-Policy
The WS-POLICY pattern describes how to define a base set of assertions
that can be used and extended by other web services specifications to
describe a broad range of service requirements and capabilities, including
security, reliability and others. This pattern also provides a way to check the
requests made by requesters in order to verify that they satisfy their
assertions and their conditions before interacting with a web service.

Example
Ajiad is a travel agency that intends to provide online services to its
customers. Ajiad now offers many of its everyday operations as a web
services-based system. In the current situation, some of Ajiad’s customers
have been accessing web services they are not allowed to access, as some
outdated and insecure services do not have systematic guidelines to control
their use. Also, some of the services are not available when needed. As a
result, Ajiad is losing money because of its reliability and security
problems.

Context
Distributed applications need to communicate in a collaborative way to
perform work in a web services environment. For this objective, they use
the Internet, which is an unreliable and insecure environment.

Problem
In order to assure reliability, availability and security, web services need to
apply policies. Without them, they will have no means of specifying what
quality factors they enforce and require from their users. This situation
would result in all kinds of problems for the institution and its users.

The solution to this problem must resolve the following forces:
 Data security of web services. Malicious users may try to read or

modify sensitive information stored in a web service. We need to define
appropriate policies to protect this information.
 Guaranteed message exchange. We need to assure the delivery of

messages between partners and give a requester the ability to verify
whether the message was delivered.
 Policy integrity. Malicious users may try to replace or remove policy

assertions for their own benefit. We need to ensure that policy
assertions have not been modified.
 Mutual authentication. Clients and services must be able to mutually

authenticate.
 Denial of service. An attacker could try to use malformed assertions

to produce a non-terminating loop of policy evaluations.

Solution
Policies can be defined for security, reliability or other business constraints.
For example, web services can be protected against unauthorized access by
having policies that provide conditions that must be met for the service to
be accessible. Requesters wishing to use protected web services are
required to comply with these policies. Each policy is defined in terms of
nested assertions that describe the restrictions implied by the policy. When
the policy is attached to a web service, clients wanting to transact with that
web service must comply with its assertions (for example, signing,
encryption, timestamp and username) as specified in the policy.

In general, any entity in a web services-based system may expose a policy
to convey conditions under which it provides service. Satisfying assertions
in the policy usually results in behavior that reflects these conditions. For
example, if two entities – requester and provider – expose their policies, a

requester might use the policy of the provider to decide whether or not to
use the service. A requester may choose either policy – requester or
provider, since each is a valid configuration for interaction with the service
– but only one of them.

Structure
Figure 11.14 shows the class diagram for this pattern. A Policy is a
collection of policy alternatives that has its own name, reference (accessed
from other subjects) and ID. A policy with zero alternatives contains no
choices; a policy with one or more alternatives indicates choice in
requirements or capabilities within the policy. A PolicyAlternative is a
collection of policy assertions. Alternatives and assertions are not
necessarily ordered.

Figure 11.14: Class diagram for the WS-POLICY pattern

A PolicyAssertion represents a capability, a constraint or a requirement
of the behavior of a web service (for example, a guarantee of message
delivery). Or it could be defined as a declaration of facts, such as ‘Jad was
granted update privileges to database X at time Y’. We can alternatively
define a PolicyAssertion to be a set of requirements. For example, a
PolicyAssertion might specify the security token types that are used to
digitally sign or encrypt SOAP messages between the client and web
service.

A PolicyAssertion identifies behaviors that are requirements for an
entity (for example human, computer, message, an endpoint, interaction,
resource). Satisfying assertions in the policy usually results in behavior that
reflects these conditions. A PolicyAssertion has two parameters, used to

define the behavior indicated by the assertion: attributes and children. A
PolicyAssertionType represents a class of policy assertions to indicate
domain-specific semantics (for example security, transactions). A
PolicyAssertion may refer to another policy.

The formal term for a policy is policy expression, and we use it to convey
a policy in an interoperable form. In other words, a PolicyExpression is a
set of one or more policy assertions that, combined together, will perform a
specific task. It could be interpreted also as a form (document) that is either
structured in a normal or a compact form to express a policy.

A PolicyAttachment is a mechanism for associating a policy with one or
more entities, such as web services. It details how policies are attached to
bindings, and is essentially the glue that enforces a web service to adhere to
a policy. A PolicySubject is an entity with which a policy can be
associated, while a PolicyScope is composed of a collection of
PolicySubjects to which a policy applies.

Dynamics
We describe two of the most important use cases, ‘Create a policy for a web
service’ and ‘Request a service’.

Use Case: Create a Policy for a Web Service – Figure 11.15
Figure 11.15: Sequence diagram for the use case ‘Create a policy for a web
service’

Summary A Provider creates a new Policy for an existing web service.
Actors Policy Provider.
Precondition The Provider has already created a WebService.
Description 1 The policy Provider creates the policy by specifying its required alternatives,

assertions and requirements. The Provider creates as many assertions as necessary
to meet the conditions for the WebService.

 2 All the alternatives, assertions and requirements are added to the created Policy.
 3 The Provider sends a request to the PolicyAttachment to associate the Policy

with the end entity (WebService).
 4 The PolicyAttachment attaches the Policy to the WebService, which in turn

updates its content, adds the Policy and acknowledges the PolicyAttachment.
 5 A reply from the PolicyAttachment informs the Provider that the attachment

process is completed.
Postcondition The Provider has attached the policy to its designated WebService.

Use Case: Request a Service – Figure 11.16
Figure 11.16: Sequence diagram for the use case ‘Request a service’

Summary A Requester requests the use of a WebService that has an existing policy.
Actors Requester.
Precondition A Provider had already created a WebService with a policy that controls its services.
Description 1 The Requester sends a request to use the WebService.
 2 The WebService forwards the request to the PolicyAttachment.
 3 The WebService applies its policies for verification of assertions and alternatives.
 4 The WebService shows its PolicyAlternatives to the Requester.
 5 The Requester selects from the alternatives, satisfies the chosen alternative’s

assertions, and sends a request to be verified against the policy.
 6 The WebService checks all possibilities that result and approves or denies.
 7 The PolicyAttachment responds to the WebService, which in turn forward it to the

Requester.
Postcondition The Requester can now use the WebService after satisfying its policy conditions.

Implementation
In order to ensure effective implementation, we need to take in
consideration the following:

 A policy may or may not reference another policy(ies), depending on
the level of authentication that is required.

 A policy alternative may contain multiple assertions of the same type.
Policy assertions within a policy alternative are not ordered. However,
providers can write assertions that control the order in which behaviors
are applied.
 Policy assertions are the main blocks of the policy that specify a

particular behavior. For example, the AsymmetricBinding assertion is
intended to support a specific reliable messaging mechanism, while the
SignedParts assertion is used to indicate message-level security, and the
EncryptedParts assertion is used to indicate the parts of a message that
require confidentiality.
 A policy expression conveys policy in an interoperable form, either in

a normal form, the most straightforward XML representation of the
policy data model, or in an equivalent compact form, used to compactly
express a policy with more description about definitions and outlines.
 A PolicyExpression should not refer to itself directly or indirectly,

because in that case its resolution may be ambiguous.
The example on page 270 defines a policy (starting with a <wsp:Policy>

tag and ending with a </wsp:Policy> tag) for a web service offered by the
Ajiad travel agency. This policy will accept X.509 certificates and Keberos
tokens, with X.509 certificates preferred. The web service also requires the
UTF-8 character encoding, any form of the English language, and specifies
the SOAP version. Finally, the policy suggests using the AES algorithm for
encryption.

Example Resolved
Ajiad’s web-based system has decided to use the WS-POLICY pattern to
convey conditions on the interactions between entities (provider, broker,
requester and so on). This was supported by the fact that WS-POLICY is a
standard and several products support its use.

Ajiad defined systematic rules to specify the way in which its web
services should be accessed, in terms of who, when and in what way, as
well as conditions. Ajiad’s new web-based system now has more control
over its services, by applying prerequisite conditions and security
constraints through policies. So, in order to use any service, all customers

are required to comply with its policy conditions and satisfy its
requirements (for example, by using the required security token types
specified by the policy) and agree with its terms before using the web
service.

<wsp:Policy xml:base=“http://ajiad.com/policies”
wsu:Id=“AJIADPOLICY”>
<!– This web service has the policy of accepting
X.509 certifcates and Kerberos, With X.509
certificates preferred–>
 <wsp:ExactlyOne>
 <wsse:SecurityToken TokenType=“wsse:x509v3”
 wsp:Usage=“wsp:Required” wsp:Preference=“50”>
 </wsse:SecurityToken>

 <wsse:SecurityToken TokenType=“wsse:Kerberosv5TGT”
 wsp:Usage=“wsp:Required” wsp:Preference=“10”>
 </wsse:SecurityToken>
 </wsp:ExactlyOne>

<!– The web service requires the UTF-8 character
encoding, any form of the English language, and SOAP
version 1.1 –>
 <wsp:All>
 <wsp:TextEncoding wsp:Usage=“wsp:Required”
Encoding=“utf-8”/>
 <wsp:Language wsp:Usage=“wsp:Required”
Language=“en”/>
 <wsp:SpecVersion wsp:Usage=“wsp:Required”
URI=“http://www.w3.org/TR/2000/NOTE-SOAP-20000508/”
/>

<!– Using AES algorithm is required –>
 <wsse:Integrity wsp:Usage=“wsp:Required”>
 <wsse:Algorithm Type=“wsse:AlgSignature”
URI=“http://www.w3.org/2000/09/xmlenc#aes” />
 </wsse:Integrity>
 </wsp:All>

</wsp:Policy>

Consequences

http://ajiad.com/policies
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/2000/09/xmlenc#aes

The WS-POLICY pattern offers the following benefits:
 Data security of web services. It is possible to secure the data of web

services, since we can use policies from other web services standards
such as WS-Security [IBM04], XML Digital Signature [W3C08] and
WS-Metadata Exchange [W3C09].
 Policy protection. It is possible to define policies to protect the

policies themselves.
 Guaranteed message exchange. The pattern offers a way to assure

messages exchange between the partners, by giving policy providers the
ability to avoid older or weaker policy alternatives, and by giving the
requester the ability to verify the policy provider.
 Policy integrity. Using the appropriate signing mechanism will protect

the policy assertions from tampering: for example, requesters can
discard a policy that is not signed by the provider, or when not
presented with sufficient credentials.
 Availability. The pattern mitigates the chance of denial of service

threats by forcing the policy implementers to use a model with defaults
for the policy alternatives, the number of assertions in an alternative
and the depth of nested policy expressions.

The pattern also has the following potential liabilities:
 WS-Policy is an immature specification that is still changing.
 The WS-Policy standard is a lengthy document with a lot of detail,

some of which we left out to avoid making the pattern too complex. For
more details, check the WS-Policy Standard web page [W3C07].

Known Uses
 HP SOA Systinet Standard Edition is a platform for SOA

Governance. This SOA architecture tool provides different levels of
governance [HP09].
 The Layer 7 SecureSpan XML Virtual Appliance provides security

and threat protection for internal and cloud-based XML and web
services applications [VMW09].

 Xtradyne’s WS-DBC is an XML/SOAP firewall that claims to be
specifically designed for use in environments that demand performance,
scalability, availability and policy management [Pri05].
 DataPower’s XS40 XML Security Gateway is a network appliance

that operates as an XML proxy. It provides security functions for XML-
based communications [IBM05].

See Also
 [Ars01] describes the structure of business rules as patterns. Policies

are specific types of business rules.
 [Sch06b] discusses three patterns that correspond to the most

common models for security: Authorization, Role-Based Access
Control and multilevel Security. Any of these access control models
could be implemented through policies.
 [Del05] presents three architectural patterns for XACML. The

XACML AUTHORIZATION pattern (page 248) unifies the definition
of authorization rules throughout an organization. WEB SERVICES
POLICY LANGUAGE (page 260), a specialization of XACML
AUTHORIZATION, describes access control rules for web services.
The XACML ACCESS CONTROL EVALUATION pattern (page 254)
defines request/response syntax for access control decisions. XACML
allows the definition of more complex access control policies.
 [Del07a] considers patterns for access control in distributed systems.

The patterns handle different ways of describing how to decide whether
a subject is authorized to access an object, how to implement the access
matrix or RBAC models and how to control access to objects.
 [Aja10a] defines a security token service and a trust engine which are

used by web services to authenticate other web services. Using the
functions defined in WS-TRUST(below), applications can engage in
secure communication after establishing trust.

11.8 WS-Trust

The WS-TRUST pattern describes how to define a security token service
and a trust engine that are used by web services to authenticate other web
services. Using the functions defined in this pattern, applications can
engage in secure communication after establishing trust.

Example
The Ajiad travel agency offers its travel services through several different
business portals to provide travel tickets, hotel and car rental services to its
customers. Ajiad needs to establish trust relationships with its partners
through these portals.

Ajiad supports different business relationships and needs to be able to
determine which travel services to invoke for which customer. Without a
well-defined structure, Ajiad will not be able to know if a partner is trusted
or not, or be able to automate the trust relationships quickly and securely
with its partners, which may lead to missing a key business goal: offering
integrated travel services as a part of the customer’s portal environment.

Context
Distributed applications need to establish secure and trusted relationships
between themselves to perform work in a web-service environment that
may be unreliable and/or insecure, such as the Internet. The concept of
‘trusting A’ mainly means ‘considering true the assertions made by A’,
which does not necessarily correspond to the intuitive idea of trust in its
colloquial use.

Problem
Establishing security relationships is fundamental for the interoperation of
distributed systems. Without applying relevant trust relationships expressed
in the same way between the involved parties, web services have no means
of assuring security and interoperability in their integration. How can we
define a means by which the parties are able to trust each other’s security
credentials?

The solution to this problem must resolve the following forces:

 Knowledge. In human relationships, we are concerned with first
knowing a person before we trust them. That attitude applies also to
web services. We need to have a structure that encapsulates some
knowledge about the unit we intend to trust.
 Policy consideration. The web service policy contains all the required

assertions and conditions that should be met to use that web service.
The trust structure should consider this policy for verification purposes.
 Confidentiality and integrity. Policies may include sensitive

information. Malicious consumers may acquire sensitive information,
fingerprint the service and infer service vulnerabilities. This implies
that the policy itself should be protected.
 Message integrity. The data to be transferred between the partners

through messages may be private data that needs to be protected.
Attackers may try to modify or replace these messages.
 Time validity. For protection purposes, any interactions or means of

communications (including the trust relationships) between the web
services should have a time limit that determines for how long the trust
relationship is valid.

Solution
We define explicitly an artifact (a security token) that implies trust. This
artifact implies the kinds of assertions that are required to make trustworthy
interactions between the web services involved. We should verify the
claims and information sent by the requester in order to obtain the required
security token that becomes a proof that is sufficient to establish a trust
relationship with its target partners.

Structure
Figure 11.17 shows the class diagram for this pattern. A Claim is a
statement made about the attributes of a client, service or other resource (for
example name, identity, key, group, privilege, capability and so on). Claims
are assertions, for example ‘I am Joman’, ‘I am an authenticated user and I
am authorized to print on printer P’. Claims are used to validate the requests
made by a sender and need to be verified. A SecurityToken is a collection

of Claims. It is possible to add signatures to tokens. SecurityToken also is a
generalization of two classes: SignedSecurityToken, which is
cryptographically endorsed by a specific authority (for example an X.509
certificate or a Kerberos ticket), and ProofofPossession (PoP), a token
that contains a secret data parameter that can be used to prove authorized
use of an associated security token, and which provides the function of
adding a digital signature. Usually, the proof-of-possession information is
encrypted with a key known only to the recipient of the PoP token.

Figure 11.17: Class diagram for the WS-TRUST pattern

The SecurityTokenService (STS) is a web service that issues security
tokens. It makes decisions based on evidence that it trusts. The STS is
responsible for:

 Generating security tokens.

 Providing challenges for the requester to ensure message freshness
(the message has not been replayed and is currently valid).
 Verification of authorized use of a security token.
 Establishing, extending and removing trust in a domain of services.

The STS is the heart of WS-TRUST and forms the basis of trust
brokering. The main output of the STS is a trust relationship between the
requester and the receiver, expressed as a security token. This represents the
characteristic that one entity is willing to rely upon a second entity to
execute a set of actions and/or to make set of assertions about a set of
subjects and/or scopes in a secure, reliable and time-relevant manner.

Each STS has a TrustEngine that evaluates the security-related aspects of
a message using security mechanisms, and includes policies to verify the
requester’s assertions. The TrustEngine is responsible for verifying security
tokens and verifying claims against Policies. A Policy is a collection of
policy assertions that have their own name, references and ID. Policies form
the basic conditions for establishing a trust relationship. Verifying the
requester’s claims against policy assertions generates an approval to use the
target service. A Policy may reference another Policy or Policies to check
the tokens sent by the requester or verified by the Receiver.

Dynamics
We describe the dynamic aspects of the WS-TRUST pattern using sequence
diagrams for the use cases ‘Create security token’ and ‘Access a resource
using a token’.

Use Case: Create a Security Token – Figure 11.18
Figure 11.18: Sequence diagram for the use case ‘Create a security token’

Summary STS creates a security token using the claims provided by the Requester.
Actors A Requester.
Precondition The STS has the required policy to verify the Requester’s claims, and the Requester

provides parameters in the form of claims and RequestType signed by a signature.
Description 1 The Requester requests a security token by sending the required claims and

RequestType signed by a signature to the STS. The signature verifies that the request
is legitimate.

 2 The STS contacts the TrustEngine to check the Requester’s claims.
 3 The TrustEngine contacts the web service’s Policy to verify the claims, including

attributes and security token issuers of the requester.
 4 Once approved, the STS creates a SecurityToken containing the requested claims.
 5 The STS sends back its securityTokenResponse with a SecurityToken issued for

the Requester.
Postcondition The Requester has a security token that can be used to access resources in a trusted

unit.

Use Case: Access a Resource using a Token – Figure 11.19
Figure 11.19: Sequence diagram for the use case ‘Access a resource using a
token’

Summary An STS allows the use of resources by establishing trust by verifying ProofofClaims
sent by the Requester.

Actors: A Requester.
Precondition The TrustEngine has the required Policy to verify the Requester’s security token.
Description 1 The Requester asks for a service access by providing the required security token.
 2 The Receiver sends the security token to the STS for verification.
 3 The STS use its TrustEngine to verify the security token claims.
 4 Once approved, the STS notifies the Receiver that the security token is valid and

verified.
 5 The Receiver gives the Requester a token that implies the right to use the service.
Postcondition The Requester has a security token that can be used to access services in a Receiver

web service.

Implementation
In this solution, the concept of trust is realized by obtaining a security token
from the web service (the SecurityTokenService in Figure 11.17 on page
274) and submitting it to the Receiver, which in turn validates the security
token through the same web service. Upon approval, the Receiver

establishes a valid trust relationship with the Requester that lasts as long as
the security token is valid.

In order to assure effective implementation, we need to take in
consideration the following:

 To communicate trust, a service requires proof, such as a signature to
prove knowledge of a security token or set of security tokens. A service
itself can generate tokens, or it can rely on a separate STS to issue a
security token with its own trust statement.
 Although the messages exchanged between the involved entities are

protected by WS-SECURITY (page 330), three issues related to

security tokens are possible: security token format incompatibility,
security token trust and namespace differences. The WS-TRUST
pattern addresses these issues by defining a request/response protocol
(in which the client sends a RequestSecurityToken and receives a
Request-SecurityTokenResponse) and introducing a
SecurityTokenService (STS), which is another web service.
 Based on the credential provided by the Requester, there are different

aspects of requesting a security token, each of which has a unique
format that the requester should follow:

 The issuing process: formed as RequestSecurityToken

(RequestType, Claims). This is our use case ‘Create a security
token’ in the Dynamics section.

 The renewal process: formed as RequestSecurityToken

(RequestType, RenewTarget).
 The cancel process: formed as RequestSecurityToken

(RequestType, CancelTarget). The cancelled token is no longer valid
for authentication and authorization.
 The validate process: formed as RequestSecurityToken

(RequestType, ValidateTarget).
[Bha04] proves security properties of combinations of WS-TRUST and

WS-Secure conversation to implement secure sessions.
The WS-Trust specification was created as part of the Global XML Web

Services Architecture (GXA) framework, which is a protocol framework
designed to provide a consistent model for building infrastructure-level
protocols for web services and applications [Box02]. It was authored by
Microsoft, IBM, Verisign and RSA Security, and was approved by OASIS
as a standard in March 2007.

Example Resolved
Ajiad now has the ability to automate its trust relationships with its partners,
by managing the registration tasks for all its partners and issuing customers
a unique ID. In this case, Ajiad acts as a mediator between the customers
and its participating partners, playing the role of a negotiator and third-party
player who is trying to satisfy both sides.

Ajiad now can offer a security token service for its business partners, who
may find useful ways to take advantage of its credit processing and other
services, giving Ajiad new business opportunities.

Consequences
The WS-TRUST pattern offers the following benefits:

 Security. By extending the WS-SECURITY mechanisms, we can
handle security issues such as security tokens (the possibility of a token
substitution attack), and signing (where all private elements should be
included in the scope of the signature and the signature must include a
timestamp).
 Trust. With this solution, we have the choice of implementing the

WS-Policy framework to support trust partners by expressing and
exchanging their statements of trust. The description of this expected
behavior within the security space can also be expressed as a trust
policy.
 Confidentiality. We can achieve confidentiality of users’ information.

Since policy providers now can use mechanisms provided by other web
services specifications such as WS-SECURITY (page 330) [ibm09b] to
secure access to the policy, XML Digital Signature [W3C08] to
authenticate sensitive information, and WS-Metadata Exchange
[W3C09].
 All the security tokens exchanged between the involved parties are

signed and stamped with unique keys that are known only to the
recipients.
 Time validity. We can specify time constraints in the parameters of a

security token issued by STS. This constraint will specify for how long
that security token is valid. Upon expiring, the security token’s holder
may renew or cancel it.

The pattern also has the following potential liabilities:
 The efficiency of WS-TRUST may suffer from the repeated round-

trips for multiple token requests. We need to make an effort to reduce
the number of messages exchanged.

 The WS-Trust Standard is a lengthy document and several details
were left out to avoid making the pattern too complex. Interested
readers can find more details via the WS-Trust Standard web page
[OAS09].

Known Uses
 DataPower’s XS40 XML Security Gateway [Dat05] is a device for

securing web services that provides web services access control,
message filtering and field-level encryption. It centralizes policy
enforcement, supporting standards such as WS-Security, WS-Trust,
WS-Policy and XACML.

 SecureSpan XML Firewall [lay09] enforces WS* and WS-I standards
to centralize security and access requirements in policies that can be run
as a shared service in front of applications.
 Vordel Security Token Service [Vor09] is used to issue security tokens

and to convert security tokens from one format to another. The security
tokens created by an STS are bound to the messages travelling between
web services.
 PingTrust, a standalone WS-Trust security token server [pin06]

creates and validates security tokens that are bound into SOAP
messages according to the Web Services Security (WSS) standard.

See Also
 The Trust analysis pattern [Fay04] has the objective of providing a

conceptual model that embodies the abstract aspects of trust to make it
applicable to different domains and applications.
 The CREDENTIAL pattern (page 62) addresses the problem of

exchanging data between trust boundaries, and how to resolve the
problem of authenticating and authorizing a principal’s identity over
different systems.
 The CIRCLE OF TRUST pattern (page 34) allows the formation of

trust relationships among service providers in order for their subjects to
access an integrated and more secure environment. The WS-TRUST
pattern could be used to establish trust between providers.

 A set of patterns to establish initial trust, based on secret handshakes,
are presented in [Lau10].

11.9 SAML Assertion
The SAML ASSERTION pattern describes how to provide a way to
communicate security information about a particular subject between
different security domains.

Context
One or several security domains in a distributed system, typically using web
services. A security domain is a set of resources (web services, applications,
CORBA services and so on) in which the administration of security is
performed by a unique entity, which typically stores identity information
about the subjects of the domain. Those subjects can perform actions inside
or outside their security domain.

Problem
A subject may need to access a resource in a domain that does not know
about it because the relevant user is from a different security domain. In
order to apply access control to the target domain’s resources, security
information about the subject should be transmitted between those two
domains.

How can we communicate this information? The solution to this problem
must resolve the following forces:

 The target security domain may implement different levels of security
functionalities (authentication or not, access control or not).
 The identity management unit of the subject’s domain and the target

security domain may be implemented using different platforms. We
need a platform-independent way of communicating identity
information.
 Different domains may express security constraints or apply

authentication in different ways. We need a unifying structure.

Solution
Define an identity management unit in the subject’s domain that issues
assertions about subjects in that domain. A SAML assertion is a collection
of security-related statements about the subject. It is defined in a common
XML format, so that the semantics of the assertions can be extended easily.
The target security domain uses the security-related information contained
in the assertion to make its access control decisions. A trust relationship
must have previously been developed between the identity management
unit of the subject’s domain and the target security domain.

Structure
Figure 11.20 shows a class diagram for this pattern. SAMLAssertions are
issued by the identity management entity of the source domain, the
SAMLAuthority. The TargetSecurityDomains use the security information
in the SAMLAssertions to compute an access decision. The SAMLAssertion
consists of Statements about the subject. A Statement is a basic piece of
security-related information about the subject, such as an attribute, the fact
that they have been authenticated, or a capability. It also comprises the
identity of the SAMLAuthority that issued it, and a possible set of
conditions, advice and an XML digital signature for integrity and
authenticity purposes.

Figure 11.20: Class diagram for the SAML ASSERTION pattern

Dynamics
We describe the dynamic aspects of the SAML ASSERTION pattern using
the sequence diagram for the use case ‘Subject accesses a resource in the
target security domain’.

Use Case: Subject Accesses a Resource in the Target Security
Domain – Figure 11.21
Figure 11.21: Sequence diagram for use case ‘Subject accesses a resource in
the target security domain’

Summary A Subject requests a SAMLAssertion from a SAMLAuthority and forwards it to the
TargetSecurityDomain. The TargetSecurityDomain uses the security information
contained in the SAMLAssertion to compute an access decision.

Actors Subject, SAMLAuthority, TargetSecurityDomain.
Precondition The Subject has been previously registered with the SAMLAuthority. A trust

relationship exists between the SAMLAuthority and the TargetSecurityDomain.
Description 1 A Subject sends a request for a SAMLAssertion to the SAMLAuthority.
 2 The SAMLAuthority creates a SAMLAssertion based on the Subject’s credentials,

inserts in it statements about the Subject, and sends it to the Subject.
 3 The Subject requests access to a Resource and includes the SAMLAssertion.
 4 The TargetSecurityDomain computes an access decision based on the security

information contained in the SAMLAssertion.
 5 If access is granted, the TargetSecurityDomain sends back a response

corresponding to the request, and the Subject accesses the Resource.
Postcondition The access to the TargetSecurityDomain has been controlled based on the security

information contained in the SAMLAssertion.

Consequences
The SAML ASSERTION pattern offers the following benefits:

 Identity information can be exchanged between domains implemented
on different platforms.

 The target application or domain can implement various levels of
security controls.
 The security constraints or authentication methods are expressed

using a common language.
The pattern also has the following potential liabilities:

 A prior trust relationship must exist between the SAML authority and
the target security domain. This relationship will allow the target
security domain to verify the origin and integrity of the assertion.
 Possible identity misuse by the SAML authority.

Variants
This pattern has three variants, depending on the type of statement in the
assertion:

 Attribute-based SAML assertion. Because the subject and the resource
accessed may be from different domains, only a fraction of the identity
of the user may be useful to the target domain. This variant provides a
common format for communicating attribute-based identity
information, such as a role or membership, between different security
domains. The SAML assertion states that a subject is associated with a
set of pairs of attribute names/attribute values. In that case, the target
domain has its own access control functionalities. It should base its
authorization decision on the value of these attributes.
This variant has an additional advantage: the use of attributes provides
a way to represent a broad range of identity-related information types.
 Authentication SAML assertion provides a common format for

communicating authentication information between different security
domains. In this case, the target domain has its own access control
functionalities. The SAML assertion states that a subject was
authenticated by a particular means at a particular time.
 Authorization SAML assertion provides a common format for

communicating authorization information between different security
domains. The target application or target domain may not have its own
access control functionalities. The SAML assertion states that a request
to allow the subject to access the specified resource has been granted or

denied. The target domain just needs to apply the decision contained in
the assertion.
This pattern variant offers an additional advantage: the target
application does not need to implement access control functionalities.
But it has an additional liability: the security of the scheme relies on the
trust granted to the identity manager of the source domain.

Known Uses
 The Liberty Alliance Identity Framework [Libb] uses SAML as a

foundation for protecting the security of identity information.
 Several vendors use SAML in their access management products, for

example IONA Orbix E2A XMLBus [ION], Netegrity SiteMinder
[Net03], IBM Tivoli Federated Identity Manager [IBMc], Sun Java
System Access Manager [SunC] and RSA [Wre04].

See Also
 The Security Assertion Coordinator pattern [Fer04a] allows seamless

exchange of security data in distributed environments while
maintaining role-based access controls to resources in organizations
using SAML assertions.
 The Attribute-Based Access Control (ABAC) pattern [Pri04] grants

accesses to resources based on the attributes possessed by the subject.
 The Attribute-Based SAML Assertion variant allows transmission of

attribute information about a subject.

CHAPTER 12

Patterns for Web Services
Cryptography

He told me that toward 1886 he had devised a new system of
enumeration and that in a very few days he had gone slightly over
twenty-four thousand. He had not written it down, for what he had
thought just once would not be erased. His first stimulus, I believe, had
been his discontent with the fact that ‘thirty-three Uruguayans’ required
two symbols and three words, rather than a single word and a single
symbol. Later he applied his extravagant principle to the other numbers.
In place of seven thousand thirteen, he would say (for example) Máximo
Perez; in place of seven thousand fourteen, The Railway; other numbers
were Luis Melián Lafinur, Olimar, sulphur, Clubs, The Whale, Gas, The
Cauldron, Napoleon, Agustín Vedia. In lieu of five hundred, he would say
nine. Each word had a particular sign, a species of mark; the last were
very complicated…1

Jorge Luis Borges, ‘Funes el memorioso’,
http://www.literatura.us/borges/funes.html

12.1 Introduction
Information can be captured and read during its transmission. A message
can also be modified or replayed. How can we protect this information from
such attacks? Encryption provides message confidentiality by transforming
readable data (plain text) into an unreadable format (cipher text) that can be
understood only by the intended recipient after decryption, the inverse
function that makes the encrypted information readable again. There are
two types of encryption: symmetric and asymmetric. In symmetric

http://www.literatura.us/borges/funes.html

encryption a common key is used for both encryption and decryption. In
asymmetric encryption a public/private key pair is used for
encryption/decryption; the sender encrypts the information using the
receiver’s public key, while the receiver uses their private key to decrypt the
ciphered text.

How can we prove that a message came from a specific user? Digital
signatures use public-key cryptography to provide message authentication
by proving that a message was sent indeed from a specific sender [dig]
[Sta06]. The sender encrypts the message and uses their private key to sign
it. In this case, the signature has at least the same length as the message.
This works, but it wastes bandwidth and time. Thus, we need to reduce the
length of the message before signing it. This can be done by producing a
digest through hashing. When the receiver gets the signed message, they
verify the signature by decrypting it using the sender’s public key, thus
proving that the message was encrypted by the sender.

Digital signatures can also provide message integrity, by verifying
whether a message was modified during its transmission. They can also
protect the integrity of and verify the origin of a digital document, for
example a certificate, or of programs. Digital signatures finally provide
non-repudiation: the sender cannot deny having sent the message they
signed. In several countries, including the US, digital signatures have legal
validity.

Web services that exchange XML messages can be targets of similar
attacks. Some security standards have been developed to correctly apply
encryption functions and thus reduce security risks. XML Encryption is one
of the basic standards in securing web services. It describes how to
encrypt/decrypt an entire XML message, part of an XML message, or an
external object linked to the message, and how to represent the encrypted
content, and information such as the encryption algorithm and key, in XML
format.

The XML Signature standard is a joint effort between the World Wide
Web Consortium (W3C) and the Internet Engineering Task Force (ITEF).
XML Signature describes how to digitally sign an entire XML message,
part of an XML message, or an external object. XML Signature also
includes hashing, but the pattern name follows the name of the standard.

Because XML documents can have the same contents but in different
layouts, we need to convert the documents into a canonical form before we
apply digital signatures. XML Signature solves the same problem as the
DIGITAL SIGNATURE WITH HASHING pattern (page 301), but in a
more specialized context.

WS-Security is an OASIS standard that describes how SOAP messages
can be secured through message integrity, message authentication and
message confidentiality [OAS06b]. WS-Security is a flexible protocol that
supports different formats of security tokens, different encryption
technologies and different signature formats. WS-Security does not define
new security mechanisms, but it leverages existing technologies such as
XML Encryption, XML Signature, and security tokens, for example
Kerberos tickets and X.509 certificates. We describe this standard in the
form of a pattern. It has already been applied in a variety of applications,
such as the travel industry [Nak05].

We present three abstract cryptographic patterns here:
 SYMMETRIC ENCRYPTION protects message confidentiality by

making a message unreadable to those that do not have access to the
key. Symmetric encryption uses the same key for encryption and
decryption.
 ASYMMETRIC ENCRYPTION provides message confidentiality by

keeping information secret in such a way that it can only be understood
by intended recipients who have access to the valid key. In asymmetric
encryption, a public/private key pair is used for encryption and
decryption respectively.
 DIGITAL SIGNATURE WITH HASHING allows a principal to prove

that a message was originated from it. It also provides message integrity
by indicating whether a message was altered during transmission.

We then present patterns for encryption in web services. Figure 12.1
shows how these patterns relate to the patterns of Chapter 11:

Figure 12.1: Pattern diagram for web service security standards and abstract
cryptographic patterns

 XML ENCRYPTION describes a process to apply encryption functions
to XML data, keeping a correct XML syntax.
 XML SIGNATURE provides a means of identifying the source of the

XML message (message authentication), and also provides message
integrity.
 WS-SECURITY describes how to secure SOAP messages, applying

XML security technologies such as XML ENCRYPTION and XML
SIGNATURE. It also describes how to embed different security tokens.
Security tokens provides authentication by proving one’s identity
(certificates or SAML assertions are examples).

Figure 12.1 also shows the abstract patterns that provide the basis for the
more specialized XML patterns.

Symmetric Encryption and XML Encryption come from [Has09b].
Digital Signature with Hashing and XML Signature appeared in [Has09a].
WS-Security appeared in [Has09c]. All these patterns, as well as
Asymmetric Encryption, come from Keiko Hashizume’s MS Thesis.

Patterns for WS-Secure Conversation and WS-Federation were produced
after we had completed this book: see [Aja 13] and [Aja 12].

12.2 Symmetric Encryption
Encryption protects message confidentiality by making a message
unreadable to those that do not have access to the key. Symmetric
encryption uses the same key for encryption and decryption.

Example
Alice in the purchasing department regularly sends purchase orders to Bob
in the distribution office. A purchase order contains sensitive data such as
credit card numbers and other company information, so it is important to
keep it secret. Eve can intercept her messages and may try to read them to
get the confidential information. As part of her work Alice needs to
communicate with only a few employees in the company.

Context
Applications that exchange sensitive information over insecure channels
and where the number of users and applications is not very large.

Problem
Applications that communicate with external applications interchange
sensitive data that may be read by unauthorized users while they are in

transit. Clearly, if we send sensitive information, we are exposing
confidential information and we may be risking the privacy of many
individuals. How can we protect messages from being read by intruders?

The solution to this problem must resolve the following forces:
 Confidentiality. Messages may be captured while they are in transit,

so we need to prevent unauthorized users from reading them by hiding
the information in the message.
 Convenient reception. The hidden information should be revealed

conveniently to the receiver.
 Protocol. We need to apply the solution properly, or it will not be able

to withstand attacks (there are several ways to attack a method of hiding
information).
 Performance. The time to hide and recover the message should be

acceptable.
 Security. In some cases we need to have a very high level of security.

Solution
We can prevent unauthorized users from reading messages by hiding the
information in the message using symmetric cryptographic encryption.
Symmetric encryption transforms a message in such a way that it can only
be understood by the intended receiver after applying the reverse
transformation using a valid key. The transformation process at the sender’s
end is called encryption, while the reverse transformation process at the
receiver’s end is called decryption.

The sender applies an encryption function (E) to the message (M) using a
key (k); the output is the cipher text (C):

When the cipher text (C) is delivered, the receiver applies a decryption
function (D) to the cipher text using the same key (k) and recovers the
message:

Structure

Figure 12.2 shows the class diagram for the SYMMETRIC ENCRYPTION
pattern. A Principal may be a user or an organization that is responsible for
sending or receiving messages. This Principal may have the roles of
Sender or Receiver. A Sender may send a Message and/or an
EncryptedMessage to a Receiver with which it shares a secret Key.

Figure 12.2: Class diagram for SYMMETRIC ENCRYPTION pattern

The Encryptor creates the EncryptedMessage that contain the cipher text
using the shared Key provided by the sender, while the Decryptor deciphers
the encrypted data into its original form using the same Key. Both the
Encryptor and Decryptor use the same Algorithm to encipher and decipher
a message.

Dynamics
We describe the dynamic aspects of the SYMMETRIC ENCRYPTION
pattern using sequence diagrams for the use cases ‘Encrypt a message’ and
‘Decrypt a message’.

Use Case: Encrypt a Message – Figure 12.3
Figure 12.3: Sequence diagram for the use case ‘Encrypt a message’

Summary A Sender wants to encrypt a message.
Actors A Sender.
Precondition Both Sender and Receiver have a shared key and access to a repository of

algorithms. The message has already been created by the Sender.
Description 1 A Sender sends the message, the shared key, and the algorithm identifier to the

Encryptor.
 2 The Encryptor ciphers the message using the algorithm specified by the Sender.
 3 The Encryptor creates the EncryptedMessage that includes the cipher text.
Postcondition The message has been encrypted and is ready to send.

Use Case: Decrypt an Encrypted Message – Figure 12.4
Figure 12.4: Sequence diagram for the use case ‘Decrypt an encrypted
message’

Summary A Receiver wants to decrypt an encrypted message from a Sender.
Actors A Receiver.
Precondition Both the Sender and Receiver have a shared key and access to a repository of

algorithms.
Description 1 A Receiver sends the encrypted message and the shared key to the Decryptor.
 2 The Decryptor deciphers the encrypted message using the shared key.
 3 The Decryptor creates the Message that contains the plain text obtained from the

previous step.
 4 The Decryptor sends the plain text Message to the receiver.
Alternate
Flow

If the key used in step 2 is not the same as the one used for encryption, the
decryption process fails.

Postcondition The encrypted message has been deciphered and delivered to the Receiver.

Implementation
 Use the Strategy pattern [Gam94] to select different encryption

algorithms. Selection could be based on speed, computational
resources, key length or memory constraints. The selection could
happen when instantiating the pattern in an application, or dynamically
according to environmental parameters.
 The designer should choose well-known algorithms such as AES

(Advanced Encryption Standard) [Fed01] and DES (Data Encryption
Standard) [Fed99]. Books such as [Sta06] describe their features and
criteria for selection.
 Encryption can be implemented in different applications, such as in e-

mail communication, distribution of documents over the Internet, or
web services. In these applications we may need to encrypt an entire
document or just its body. However, in web services we may want to
encrypt specific elements of a message.
 Both the sender and the receiver have to previously agree what

cryptographic algorithms they support, and they both must have the
same key. This is the key distribution problem, which can be handled in
several ways.
 A key management strategy is needed, including key generator,

storage and distribution. This strategy should generate keys that are as
random as possible, or an attacker who captures some messages might
be able to deduce the key. The key should be properly protected, or an
attacker who penetrates the operating system might be able to get it.
Timely and secure key distribution is obviously very important.

 A long encryption key should be used (at least 64 bits). Only brute
force is known to work against the DES and AES algorithms, for
example: using a short key would let an attacker generate all possible
keys. Of course, this might change and the repertoire of algorithms may
need to be updated.

Example Resolved
Alice now encrypts the purchase orders she sends to Bob. The purchase
order’s sensitive data is now unreadable by Eve. Eve can try to apply to it
all possible keys, but if the algorithm has been well-chosen and well-
implemented, Eve cannot read the confidential information. Since Alice
only needs to communicate with a few people within the company, key
distribution is rather easy.

Consequences
The SYMMETRIC ENCRYPTION pattern offers the following benefits:

 Only receivers who possess the shared key can decrypt a message,
transforming it into a readable form. A captured message is unreadable
to the attacker. This also makes attacks based on modifying a message
very hard.
 The strength of a cryptosystem is based on the secrecy of a long key

[Sta06]. The cryptographic algorithms are publicly known, so the key
should be kept protected from unauthorized users.

 It is possible to select from several encryption algorithms the one
suitable for the application’s needs.
 Encryption algorithms that take an acceptable time to encrypt

messages exist.
The pattern also has the following potential liabilities:

 The pattern assumes that the shared key is distributed in a secure way.
This may not be easy for large groups of nodes exchanging messages.
Asymmetric cryptography can be used to solve this problem.
 Cryptographic operations are computationally intensive and may

affect the performance of the application. This is particularly important
for mobile devices.
 Encryption does not provide data integrity. The encrypted data can be

modified by an attacker: other means, such as hashing, are needed to
verify that the message was not changed.
 Encryption does not prevent a replay attack, because an encrypted

message can be captured and resent without being decrypted. It is better
to use another security mechanism, such as time stamps or Nonces, to
prevent this attack.

Known Uses
SYMMETRIC ENCRYPTION has been widely used in different products.

 GNuPG [Gnu] is free software that secures data from eavesdroppers.
 OpenSSL [Ope1] is an open source toolkit that encrypts and decrypts

files.
 Java Cryptographic Extension [SunA] provides a framework and

implementations for encryption.
 The .NET framework [Mic07] provides several classes to perform

encryption and decryption using symmetric algorithms.
 XML Encryption [W3C02] is one of the foundation web services

security standards that defines the structure and process of encryption
for XML messages.
 Pretty Good Privacy (PGP), a set of programs used mostly for e-mail

security, includes methods for symmetric encryption and decryption
[PGP].

See Also
 The Secure Channel Communication pattern [Bra00] supports the

encryption/decryption of data. This pattern describes encryption in
more general terms: it does not distinguish between asymmetric and
symmetric encryption. Another version is given in [Sch06b]. An
extension of these patterns is given in [Via05].
 The Strategy pattern [Gam94] describes how to separate the

implementation of related algorithms from the selection of one of them.
This pattern can be used to select an encryption algorithm dynamically.
 ASYMMETRIC ENCRYPTION is commonly used to distribute keys

(see below).
 Patterns for key management are given in [Leh02].

12.3 Asymmetric Encryption
Asymmetric encryption provides message confidentiality by keeping
information secret in such a way that it can only be understood by intended
recipients who have the access to the valid key. In asymmetric encryption, a
public/private key pair is used for encryption and decryption respectively.

Example
Alice wants to send a personal message to Bob. They have not met each
other to agree upon a shared key. Alice wants to keep the message secret,
since it contains personal information. Eve can intercept Alice’s messages,
and may try to obtain the confidential information.

Context
Applications that exchange sensitive information over insecure networks.

Problem
Applications that communicate with external applications interchange
messages that may contain sensitive information. These messages can be

intercepted and read by imposters during transmission. How can we send
sensitive information securely over insecure channels?

The solution to this problem must resolve the following forces:
 Confidentiality. Messages may be captured while they are in transit,

so we need to prevent unauthorized users from reading them by hiding
the information the message contains. Hiding information also makes
replaying of messages by an attacker harder to perform.
 Reception. The hidden information should be revealed conveniently

to the receiver.
 Protocol. We need to apply the solution properly, or it will not be able

to withstand attacks (there are several ways to attack a method of hiding
information).
 Performance. The time to hide and recover the message should be

acceptable.
 Key distribution. Two parties may want to communicate to each other,

but they have not agreed on a shared key: we need a way to send
messages without establishing a common key.

Solution
Apply mathematical functions to a message to make it unreadable to those
that do not have a valid key.

This approach uses a key pair: private and public key. The sender
encrypts (E) the message (M) using the receiver’s public key (PuK), which
is accessible by anyone. The result of this process is cipher text (C):

On the other side, the receiver decrypts (D) the cipher text (C) using their
private key (PrK) to recover the plain message (M):

Structure
Figure 12.5 shows the class diagram for the ASYMMETRIC
ENCRYPTION pattern. A Principal may be a user or an organization that is
responsible for sending or receiving messages. The Principal may have

the roles of Sender or Receiver. A Sender may send a Message and/or an
EncryptedMessage to a Receiver with which it shares a secret key.

Figure 12.5: Class diagram for the ASYMMETRIC ENCRYPTION pattern

A Principal has one or more KeyPairs that are composed of a private
key, kept secret by its owner, and a public key. which is publicly published.
PublicKeyRepository is a repository that contains a list of public keys
where users can register and/or access public keys. These two keys are
mathematically related, so while one encrypts, the other decrypts. However,
it is not feasible to deduce a private key from its corresponding public key.

The Encryptor creates the EncryptedMessage that contain the cipher text
using the public key of the Receiver provided by the sender, while the
Decryptor deciphers the encrypted data into its original form using its
private key. Both the Encryptor and Decryptor use the same Algorithm to
encipher and decipher a message.

Dynamics

We describe the dynamic aspects of the ASYMMETRIC ENCRYPTION
pattern using sequence diagrams for the following use cases: ‘Encrypt a
message’ and ‘Decrypt a message’.

Use Case: Encrypt a Message – Figure 12.6
Figure 12.6: Sequence diagram for the use case ‘Encrypt a message’

Summary A Sender wants to encrypt a message.
Actors A Sender.
Precondition The Sender has access to the Receiver’s public key. Both Sender and Receiver

have access to a repository of algorithms. The message has already been created by
the Sender.

Description 1 A Sender sends the message, the Receiver’s public key, and the algorithm identifier
to the Encryptor.

 2 The Encryptor ciphers the message using the algorithm specified by the Sender.
 3 The Encryptor creates the EncryptedMessage that includes the cipher text.
Postcondition The message has been encrypted and sent to the Sender.

Use Case: Decrypt an Encrypted Message – Figure 12.7
Figure 12.7: Sequence diagram for the use case ‘Decrypt an encrypted
message’

Summary A Receiver wants to decrypt an encrypted message from a Sender.

Actors A Receiver.
Precondition Both the Sender and Receiver have access to a repository of algorithms.
Description 1 A Receiver sends the encrypted message and their private key to the Decryptor.
 2 The Decryptor deciphers the encrypted message using the Receiver’s public key.
 3 The Decryptor creates the Message that contains the plain text obtained from the

previous step.
 4 The Decryptor sends the plain text Message to the receiver.
Alternate
Flow

If the key used in step 2 is not mathematically related to the key used for encryption,
the decryption process fails.

Postcondition The encrypted message has been deciphered and delivered to the Receiver.

Implementation
 Use the Strategy pattern [Gam94] to select different encryption

algorithms.
 The designer should choose well-known algorithms such as RSA

[Riv78].
 Encryption can be implemented in different applications, such as in e-

mail communication, distribution of documents over the Internet, or
web services. In these applications we are able to encrypt an entire
document. However, in web services we can encrypt parts of a
message.
 Both the sender and the receiver have to previously agree what

cryptographic algorithms they support.
 A good key pair generator is very important. It should generate key

pairs for which the private key cannot be deduced from the public key.

Example Resolved
Alice now can look up Bob’s public key and encrypt the message using this
key. Since Bob keeps his private key secret, he is the only one who can
decrypt Alice’s message. Eve cannot understand the encrypted data, since
Eve does not have access to Bob’s private key.

Consequences
The ASYMMETRIC ENCRYPTION pattern offers the following benefits:

 Asymmetric encryption does not require a secret key to be shared
among all the participants. Anyone can look up the public key in the
repository and send messaged to the owner of the public key.
 Only recipients that possess the corresponding private key can make

the encrypted message readable again.
 The strength of a cryptosystem is based on the secrecy of a long key

[Sta06]. The cryptographic algorithms are known to the public, so the
private key should be kept protected from unauthorized users.
 It is possible to select from several encryption algorithms the one

suitable for the application’s needs.
 Encryption algorithms that take an acceptable time to encrypt

messages exist.
The pattern also has the following potential liabilities:

 Cryptography operations are computationally intensive and may
affect the performance of the application. Asymmetric encryption is
slower than symmetric encryption. It is best to use a combination of
both algorithms: asymmetric encryption for key distribution, and
symmetric encryption for message exchange.
 Encryption does not provide data integrity. The encrypted data can be

modified by an attacker: other means, such as hashing, are needed to
verify that a message has not been changed.
 Encryption does not prevent a replay attack, because an encrypted

message can be captured and resent without being decrypted. It is
recommended to use another security mechanism, such as timestamps
or Nonces, to prevent this attack.
 This pattern assumes that a public key belongs to the person who they

claim to be. How can we know that this person is not impersonating
another? To confirm that someone is who they say they are, we can use
certificates issued by a certification authority (CA). If the CA is not
trustworthy, we may lose security.

Known Uses
ASYMMETRIC ENCRYPTION has been widely used in different
products.

 GNuPG [Gnu] is free software that secures data from eavesdroppers.
 Java Cryptographic Extension [SunA] supports a variety of

algorithms, including asymmetric encryption.
 The .NET framework [Mic07] provides several classes to perform

asymmetric encryption and decryption.
 XML Encryption [W3C02] is one of the foundation web services

security standards that defines the structure and process of encryption
for XML messages. This standard supports both types of encryption:
symmetric and asymmetric encryption.
 Pretty Good Privacy (PGP) uses asymmetric encryption and

decryption as one of its process to secure e-mail communication [PGP].

See Also
 The Secure Channel Communication pattern [Bra00] supports the

encryption/decryption of data. This pattern describes encryption in
more general terms: it does not distinguish between asymmetric and
symmetric encryption. Another version is given in [Sch06b].
 The Strategy pattern [Gam94] describes how to separate the

implementation of related algorithms from the selection of one of them.
This pattern can be used to select an encryption algorithm dynamically.
 Predicate-based encryption is a family of public key encryption

schemes; patterns for them are described in [Mui 12].

12.4 Digital Signature with Hashing
The DIGITAL SIGNATURE WITH HASHING pattern allows a principal
to prove that a message was originated from it. It also provides message
integrity, by indicating whether a message was altered during transmission.

Example
Alice in the sales department wants to send a product order to Bob in the
production department. The product order does not contain sensitive data
such as credit card numbers, so it is not important to keep it secret.

However, Bob wants to be certain that the message was created by Alice, so
he can charge the order to her account. Also, because this order includes the
quantity of items to be produced, an unauthorized modification to the order
will make Bob manufacture the wrong quantity of items. Eve is a
disgruntled employee who can intercept the messages and may want to
attempt this kind of modification to hurt the company.

Context
People or systems often need to exchange documents or messages through
insecure networks and need to prove their origin and integrity. Stored legal
documents need to be kept without modification and with indication of their
origin. Software sent by a vendor through the Internet is required to prove
its origin.

We assume that those exchanging documents have access to a public key
system where a principal possesses a key pair: a private key that is secretly
kept by the principal, and a public key that is in a publicly-accessible
repository. We assume that there is a mechanism for the generation of these
key pairs and for the distribution of public keys; that is, a public key
infrastructure (PKI).

Problem
In many applications we need to verify the origin of a message (message
authentication). Since an imposter may assume the identity of a principal,
how can we verify that a message came from a particular principal? Also,
messages that travel through insecure channels can be captured and
modified by attackers. How can we know that the message or document that
we are receiving has not been modified?

The solution to this problem must resolve the following forces:
 For legal or business reasons we need to be able to verify who sent a

particular message. Otherwise, we may not be sure of its origin, and the
sender may deny having sent it (repudiation).
 Messages may be altered during transmission, so we need to verify

that the data is in its original form when it reaches its destination.

 The length of the signed message should not be significantly larger
than the original message, otherwise we would waste time and
bandwidth.
 Producing a signed message should not require large computational

power or take a long time.

Solution
Apply properties of public key cryptographic algorithms to messages in
order to create a signature that will be unique for each sender [Sta06]. The
message is first compressed (hashed) to a smaller size (digest), then
encrypted using the sender’s private key. When the signed message arrives
at its target, the receiver verifies the signature using the sender’s public key
to decrypt the message. If it produces a readable message, it could only
have been sent by this sender. The receiver then generates the hashed digest
of the received message and compares it with the received hashed digest: if
it matches, the message has not been altered.

This approach uses public key cryptography in which one key is used for
encryption and the other for decryption. To produce a digital signature
(SIG), we encrypt (E) the hash value of a message (H(M)) using the
sender’s private key (PrK):

We recover the hash value of the message (H(M)) by applying decryption
function D to the signature (SIG) using the sender’s public key (PuK). If
this produces a legible message, we can be confident that the sender created
the message, because they are the only one who has access to their private
key. Finally, we calculate the hash value of the message as:

If this value is the same as the message digest obtained when the
signature was decrypted, then we know that the message has not been
modified.

It is clear that the sender and receiver should agree to use the same
encryption and hashing algorithms.

Structure

Figure 12.8 shows the class diagram for the DIGITAL SIGNATURE WITH
HASHING pattern. A Principal may be a process, a user or an
organization that is responsible for sending or receiving messages. This
Principal may have the roles of Sender or Receiver. A Sender may send
a plain Message and/or a SignedMessage to a receiver.

Figure 12.8 shows the class diagram for the DIGITAL SIGNATURE WITH
HASHING pattern.

The KeyPair entity contains two keys, public and private, that belong to a
Principal. The public key is registered and accessed through a repository,
while the private key is kept secret by its owner. PublicKeyRepository is a
repository that contains public keys. The PublicKeyRepository may be

located in the same local network as the Principal, or on an external
network.

The Signer creates the SignedMessage that includes the Signature for a
specific message. On the other side, the Verifier checks that the
Signature within the SignedMessage corresponds to that message. The
Signer and Verifier use the DigestAlgorithm and SignatureAlgorithm to
create and verify a signature respectively. The DigestAlgorithm is a hash
function that condenses a message to a fixed length called a hash value, or
message digest. The SignatureAlgorithm encrypts and decrypts messages
using public/private key pairs.

Dynamics
We describe the dynamic aspects of the DIGITAL SIGNATURE WITH
HASHING pattern using sequence diagrams for the use cases ‘Sign a
message’ and ‘Verify a signature’.

Use Case: Sign a Message – Figure 12.9
Figure 12.9: Sequence diagram for the use case ‘Sign a message’

Summary A Sender wants to sign a message before sending it.
Actors A Sender.
Precondition A Sender has a public/private pair key.
Description 1 A Sender sends the message and its private key to the Signer.
 2 The Signer calculates the hash value of the message (digest) and returns it to the

Sender.
 3 The Signer encrypts the hash value using the Sender’s private key with the

SignatureAlgorithm. The output of this calculation is the digital signature value.

 4 The Signer creates the Signature object that contains the digital signature value.
 5 The Signer creates the SignedMessage that contains the original message and the

Signature.
Postcondition A SignedMessage object has been created.

Use Case: Verify a Signature – Figure 12.10
Figure 12.10: Sequence diagram for the use case ‘Verify a signature’

Summary A Receiver wants to verify that the signature corresponds to the received message.
Actors A Receiver.
Precondition None.
Description 1 A Receiver retrieves the Sender’s public key from the PublicKeyRepository.
 2 A Receiver sends the signed message and the Sender’s public key to the Verifier.
 3 The Verifier decrypts the signature using the Sender’s public key with the

SignatureAlgorithm.
 4 The Verifier calculates the digest value of the message.
 5 The Verifier compares the outputs from step 3 and 4.
 6 The Verifier sends an acknowledgement to the Receiver that the signature is

valid.
Alternate
Flow

The outputs from step 3 and 4 are not the same. In this case, the verifier sends an
acknowledgement to the receiver that the signature failed.

Postcondition The signature has been verified.

Implementation
 Use the Strategy pattern [Gam94] to select different hashing and

signature algorithms. The most widely used hashing algorithms are
MD5 and SHA1. These and others are discussed in [Sta06].

 A good hashing algorithm produces digests that are very unlikely to
be produced by other meaningful messages, meaning that it is very hard
for an attacker to create an altered message with the same hash value.
The message digest should be encrypted after being signed to avoid
man-in-the-middle attacks, where someone who captures a message
could reconstruct its hash value.
 Two popular digital signature algorithms are RSA [Riv78] [RSA] and

Digital Signature Algorithm (DSA) [Fed00] [Sta06].
 The designer should choose strong and proven algorithms to prevent

attackers from breaking them. The cryptographic protocol aspects, for
example key generation, are as important as the algorithms used.
 The sender and receiver should have a way of agreeing on the hash

and encryption algorithms used for a specific set of messages. (XML
documents indicate which algorithms they use, and pre-agreements are
not necessary in this case.)
 Access to the sender’s public key should be available from a public

directory or from certificates presented by the signer.
 Digital signatures can be implemented in different applications, such

as in e-mail communication, distribution of documents over the
Internet, or web services. For example, it is possible to sign an e-mail’s
contents, or any other document’s content, such as a PDF. In both cases,
the signature is appended to the e-mail or document. When digital
signatures are applied in web services, they are also embedded within
XML messages. However, these signatures are treated as XML
elements, and they have additional features, such as signing parts of a
message, or external resources, which can be XML or any other data
type.
 When certificates are used to provide the sender’s public key, there

must be a convenient way to verify that the certificate is still valid
[SOA01].
 There should be a way of authenticating the signer software [dig], as

an attacker who gains control of a user’s computer could replace the
signing software with their own software.

Example Resolved
Alice and Bob agree on the use of a digital signature algorithm, and Bob
has access to Alice’s public key. Alice can then send a signed message to
Bob. When the message is received by Bob, he verifies that the signature is
valid using Alice’s public key and the agreed signature algorithm. If the
signature is valid, Bob can be confident that the message was created by
Alice. If the hash value is correct, Bob also knows that Eve has not been
able to modify the message.

Consequences
The DIGITAL SIGNATURE WITH HASHING pattern offers the following
benefits:

 Because a principal’s private key is used to sign the message, the
signature can be validated using its public key, which proves that the
sender created and sent the message.
 When a signature is validated using a principal’s public key, the

sender cannot deny that they created and sent the message (non-
repudiation). If a message is signed using another private key that does
not belong to the sender, the validity of the signature fails.
 If the proper precautions are followed, any change in the original

message will produce a digest value that will be different (with a very
high probability) from the value obtained after decrypting the signature
using the sender’s public key.
 A message is compressed into a fixed length string using the hash

algorithm before it is signed. As a result, the process of signing is
faster, and the signed message is much shorter.
 The available algorithms that can be used for digital signatures do not

require very large amounts of computational power and do not take
large amounts of time.

The pattern also has the following potential liabilities:
 We need a well-established public key infrastructure that can provide

reliable public keys. Certificates issued by a certification authority are
the most common way to obtain this [Sta06].

 Both the sender and the receiver have to previously agree what
signature and hashing algorithms they support. (This is not necessary in
XML documents, because they are self-describing.)
 Cryptographic algorithms create some overhead (time, memory,

computational power), which can be reduced but not eliminated.
 The required storage and computational power may not be available,

for example in mobile devices.
 Users must implement the signature protocol properly.
 There may be attacks against specific algorithms or implementations

[dig]. These are difficult to use against careful implementations of this
pattern.
 This solution only allows one signer for the whole message. A variant

or specialization, such as the XML SIGNATURE pattern (page 317),
allows multiple signers.
 Digital signatures do not provide message authentication, and replay

attacks are possible [SOA01]. Nonces or time stamps could prevent this
type of attack.

Known Uses
Digital signatures have been widely used in different products.

 Adobe Reader and Acrobat [Ado] have an extended security feature
that allows users to digitally sign PDF documents.
 CoSign [Arx] digitally signs different types of documents, files, forms

and other electronic transactions.
 GNuPG [Gnu] digitally signs e-mail messages.
 The Java Cryptographic Architecture [SunB] includes APIs for digital

signature.
 Microsoft .NET [Mic07] includes APIs for asymmetric cryptography

such as digital signature.
 XML Signature [W3C08] is one of the foundation web services

security standards that defines the structure and process of digital
signatures in XML messages.

See Also
 Encryption/decryption using public key cryptography [Bra00].
 Generation and distribution of public keys [Leh02].
 Certificates [Mor06a] are issued by a certificate authority (CA) that

digitally signs them using its private key. A certificate carries a user’s
public key and allows anyone who has access to the CA’s public key to
verify that the certificate was signed by the CA.
 The Strategy pattern [Gam94] describes how to separate the

implementation of related algorithms from the selection of one of them.

12.5 XML Encryption
The XML ENCRYPTION pattern provides confidentiality by hiding
selected sensitive information in a message using cryptography.

Example
Alice in the purchasing department regularly sends purchase orders in the
form of XML documents to Bob, who works in the distribution office. The
purchase order contains sensitive data such as credit card numbers and other
company information, so it is important to keep it secret. Messages may
also contain non-sensitive data. At the receiving end, different people will
handle different parts of the order. Eve can intercept these orders and may
try to read them to access the confidential information.

Context
Users of web services sending and receiving XML messages through
insecure networks such as the Internet.

Problem
In many applications that communicate with external applications users
exchange sensitive data. This data may be read by unauthorized people
while the messages are in transit. How can we prevent this?

The solution to this problem must resolve the following forces:
 Messages may be captured while they are in transit, so we need to

prevent unauthorized users from reading them by hiding the
information the message contains using encryption.
 We need to express encrypted elements in a standardized XML format

to allow encrypted data to be nested within an XML message, otherwise
different applications cannot interoperate.
 Different parts of a message may be intended for different recipients,

and not all the information contained within a message should be
available to all the recipients. Thus, recipients should be able to read
only those parts of the message that are intended for them.
 For flexibility reasons, both symmetric and asymmetric encryption

algorithms should be supported.
 If a secret key is embedded in the message, it should be protected,

otherwise an attacker could read some messages.

Solution
Transform an XML message using some encryption algorithm so that it can
only be understood by legitimate receivers that possess a valid key.

XML Encryption supports both types of encryption: symmetric and
asymmetric. The symmetric encryption algorithm uses a common key for
both encryption and decryption. The asymmetric encryption algorithm uses
a key pair: a public key and a private key. The sender encrypts a message
using the receiver’s public key, and the receiver uses their private key to
decrypt the encrypted message. Thus, in both types of encryption, only

recipients who possess the shared key or the private key that matches the
public key used in the encryption process can read the encrypted message
after decryption. Different parts of the message may be encrypted with
different keys, or not encrypted.

Structure
Figure 12.11 shows the class diagram of the XML ENCRYPTION pattern.
The shaded classes correspond to the classes of the XML ENCRYPTION
pattern, while the unshaded classes describe the structure of the message
and show that encryption can now be applied to specific portions of the
message.

Figure 12.11: Class diagram for the XML ENCRYPTION pattern

A Principal may be a user or an organization that sends and receives
XMLMessages and/or EncryptedXMLMessages. This Principal may have the
roles of Sender and Receiver. Both an XMLMessage and a
EncryptedXMLMessage are composed of XMLElements. Each XMLElement
may have many children, and each child also can be composed of other
XMLElements, and so on. The XMLEncryptor and the XMLDecryptor
encipher a message and decipher an encrypted message respectively.

The EncryptedData contains other subelements, such as the encryption
method, key information, cipher value and encryption properties. The
EncryptionMethod is an optional element that specifies the algorithm used
to encrypt the data. If this element is not specified, the receiver must know
the encryption algorithm. The optional KeyInfo contains the same key
information as that described in the XML Signature standard [W3C08].
However, this standard defines two other subelements: EncryptedKey and
ReferenceList. The EncryptedKey contains similar elements to the
EncryptedData; they are not shown in the class diagram.

The EncryptedKey includes an optional ReferenceList element that
points to data or keys encrypted using this key. The CipherData is a
mandatory element that stores either the cipher value or a pointer (cipher
reference) to where the encrypted data is located. The
EncryptionProperties element holds information such as the time that the
encryption was performed, or the serial number of the hardware used for the
process.

Dynamics
We describe the dynamic aspects of the XML ENCRYPTION pattern using
sequence diagrams for the use cases ‘Encrypt XML elements’ and ‘Decrypt
an encrypted XML message’.

Use Case: Encrypt XML Elements – Figure 12.12
Figure 12.12: Sequence diagram for the use case ‘Encrypt XML elements’

Summary A Sender wants to encrypt different elements of an XML message using a shared
key.

Actors A Sender.
Precondition Both Sender and Receiver have a shared key and a list of encryption algorithms.
Description 1 A Sender requests the Encryptor to encrypt a list of XML elements. This list is

represented by an asterisk (*) in the sequence diagram.
 2 The Encryptor creates the EncryptedXMLMessage.
 3 The Encryptor encrypts the XML elements using the shared key and the encryption

method provided by the Sender and produces an encrypted value.
 4 The Encryptor creates the EncryptionData element, including the

encryptionMethod that holds the encryption algorithm used to encrypt the data, the
KeyInfo that contains information about the key and the CipherData obtained from
step 3.

 5 The Encryptor replaces the XML element with the encrypted data.
 6 The Encryptor repeats steps 3 to 5 for each XML element to encrypt.
 7 The Encryptor sends the EncryptedXMLMessage to the sender.
Postcondition The encrypted XML message has been created.

Use Case: Decrypt an Encrypted XML Message – Figure 12.13
Figure 12.13: Sequence diagram for the use case ‘Decrypt an encrypted
XML message’

Summary A Receiver wants to decrypt an encrypted XML message.
Actors A Receiver.
Precondition Both Sender and Receiver have a shared key and a list of encryption algorithms.
Description 1 A Receiver requests the Decryptor to decrypt an encrypted XML message.
 2 The Decryptor creates the XMLMessage that contains a copy of the

EncryptedXMLMessage.
 3 The Decryptor obtains the elements within the EncryptedData element such as the

encryptionMethod, KeyInfo, and the cipher-Value.
 4 The Decryptor decrypts the cipher value using the encryption method and the

shared key.
 5 The Decryptor replaces the encrypted data with the plain text obtained from the

previous step.
 6 The Decryptor repeats steps 3 to 5 for each XML element to decrypt.
 7 The Decryptor sends the decrypted XMLMessage to the Receiver.
Alternate
Flows

If the key used in step 4 is not the same as the one used in the encryption, then the
decryption process fails.

Postcondition The message has been decrypted.

Implementation
 The designer should choose strong encryption algorithms to prevent

attackers from breaking them, such as AES (Advanced Encryption
Standard) or DES (Data Encryption Standard) for symmetric
encryption, and RSA for asymmetric encryption [RSA].

 Asymmetric encryption or public-key encryption is more
computationally intensive than symmetric encryption. However,
symmetric encryption requires that both sender and receiver share a
common key. A better practice is to use asymmetric encryption in
combination with symmetric encryption: use symmetric encryption for
the message and asymmetric encryption for secure key distribution.
 XML ENCRYPTION supports both symmetric and asymmetric

encryption. This provides application flexibility; for example, a session
can use symmetric encryption and key distribution can use asymmetric
encryption.
 Encryption does not require creation of a new document, as shown in

the solution, but could be done in place, replacing the message by an
encrypted message.
 Data is usually serialized before encryption. The serialization process

converts the data into octets. This serialized data is then encrypted
using the chosen algorithm and the encryption key. The cipher data and
the information of the encryption (algorithm, key and other properties)
are represented in XML format.
 The following example illustrates how an encrypted part is embedded

within an XML message.
Suppose you want to send a purchase order to the distribution office.
This document contains details of the order, such as what item to buy,
quantity and credit card information for payment. We want to keep the
XML document simple by just focusing on the encryption part.

<Order>
<Item> Item X </Item>
<Quantity> 24 </Quantity>
<Payment Info>
<Credit Card>
<Number>1234566 </Number>
<Expiration Date> 12/12/2010</Expiration Date>
</Credit Card>
</Payment Info>
</Order>

Because Payment Info contains sensitive information, we want to encrypt
only this element, so it can only be understood by the intended receiver.

<Order>
<Item> Item X </Item>
<Quantity> 24 </Quantity>
<Encrypted Data>
<Encryption Method Algorithm=‘AlgorithmX’/>
<Cipher Data>
<Cipher Value>ijutfrewsvbnmlkk</Cipher Value>
</Cipher Data>
<Key Info>
<Key Name> KeyA </KeyName>
</Key Info>
</Encrypted Data>
</Order>

The Payment Info element is replaced by the Encrypted Data element that
includes all the information needed by the receiver. The Encryption
Method element includes the algorithm used for the encryption. The Cipher
Value element contains the actual encrypted data. For this example, the
KeyInfo element includes the name that identifies the key.

Example Resolved
Alice now encrypts the purchase orders she sends to Bob, using different
keys for the parts that should be read by different people. The purchase
order’s sensitive data is now unreadable by Eve. Eve can try to apply to it
all possible keys, but if the algorithm has been well-chosen and well-
implemented, Eve cannot read the confidential information. Nonsensitive
information is not encrypted, which saves time and bandwidth.

Consequences
The XML ENCRYPTION pattern offers the following benefits:

 Only users that know the key can decrypt and read the message. Each
recipient can only decrypt parts of a message that are intended for them,
but are unable to decrypt the remainder of the message.
 The Encrypted Data is an XML element that replaces the data to be

encrypted. The EncryptedData, as well as the EncryptedKey, are
composed of other subelements such as encryption method, key
information and cipher value.
 The entire XML message, or only some parts of it, can be encrypted.
 If both the sender and the receiver have not exchanged the keys

previously, the key can be sent in the message, encrypted using a public
key system.

The pattern also has the following potential liabilities:
 The general liabilities of symmetric and asymmetric encryption still

apply.
 The structure is rather complex and users may be confused.
 Unencrypted portions of the message may help a possible attacker.

This might be improved by superencryption of the whole message at a
lower level, such as using TLS.

Known Uses
Several vendors have developed tools that support XML ENCRYPTION:

 Xtradyne’s Web Services Domain Boundary Controller (WS-DBC)
[Xtr]. The WS-DBC is an XML firewall that provides protection
against malformed messages and malicious content, XML encryption,
XML signature, and authentication, authorization and audit.
 IBM DataPower XML Security Gateway XS40 [IBM05] parses,

filters, validates schema, decrypts, verifies signatures, signs, and
encrypts XML message flows.
 Forum Sentry SOA Gateway [For] conforms to XML Digital

Signature, XML Encryption, WS-Trust, WS-Policy and other standards.
 Microsoft .NET [Mic07] includes APIs that support the encryption

and decryption of XML data.

See Also
 This pattern includes a specialization of the SYMMETRIC

ENCRYPTION pattern (page 288).
 The WS-SECURITY pattern (page 330) is a standard for securing

XML messages using XML SIGNATURE, XML ENCRYPTION and
security tokens.
 The Strategy pattern [Gam94] describes how to separate the

implementation of related algorithms from the selection of one of them.
 The XML Key Management Specification (XKMS) [W3C01]

specifies the distribution and registration of public keys, and works
together with XML ENCRYPTION.
 The WS-Security Policy [Aja 10b] standard describes how to express

security policies, such as what algorithms are supported by a web
service or what parts of an incoming message need to be signed or
encrypted.

12.6 XML Signature

The XML SIGNATURE pattern allows a principal to prove that a message
was originated from it. It also provides message integrity by detecting
whether a message was altered during transmission. The XML Signature
standard [W3C08] describes the syntax and the process of generating and
validating digital signatures for authenticating XML documents. XML
Signature also provides message integrity, and requires canonicalization
before hashing and signing.

Example
Alice in the sales department wants to send product orders to Bob in the
production department. The product orders are XML documents and do not
contain sensitive data such as credit card numbers, so it is not important to
keep them secret. Each order must be signed by Alice’s supervisor Susie to
indicate approval. Bob wants to be certain that the message was created by
Alice so he can charge the order to her account, and also needs to know that
the orders are approved. Because the orders include the quantity of items to
be produced, an unauthorized modification to an order will make Bob
manufacture the wrong quantity of items. Eve can intercept the messages
and may want to make this kind of modification.

Context
Users of web services send and receive SOAP messages through insecure
networks such as the Internet and need to prove their origin and integrity.
During their transmission these messages can be subject to a variety of
attacks.

We assume that a principal possesses a key pair: a private key that is
secretly kept by the principal, and a public key that is in a publicly-
accessible repository. We assume that there is a mechanism for the
generation of these key pairs and for the distribution of public keys.

Problem
In many applications we need to verify the origin of a message (message
authentication). Since an imposter may assume the identity of a principal,
how can we verify that a message came from a particular principal? Also,

messages that travel through insecure channels can be captured and
modified by attackers. How do we know that the message or document that
we are receiving has not been modified?

The solution to this problem must resolve the following forces:
 For legal or business reasons we need to be able to verify who sent a

particular message, otherwise we may not be sure of its origin, and the
sender may deny having sent it (repudiation). We assume the sender has
signed the message to prove they are its author.
 Messages may be altered during transmission, so we need to verify

that the data is in its original form when it reaches its destination.
 The length of the signed message should not be significantly greater

than the original message, otherwise we would waste time and
bandwidth.
 Producing a signed message should not require a lot of computational

power or take a long time.
 We need to express a digital signature in a standardized XML format,

so interoperability can be ensured between applications.
 There may be situations in which we want to ensure proper origin or

integrity in specific parts of a message. For example, an XML message
can travel through many intermediaries that add or subtract information,
so if we sign the entire message, the signature would have no meaning.
We need to be able to sign portions of a message.

Solution
Apply cryptographic algorithms to messages to create a signature that will
be unique for each message. First, the data to be signed may need to be
transformed before applying any digest algorithm. The series of XML
elements (that includes other subelements) is canonicalized before applying
a signature algorithm. Canonicalization is a type of transformational
algorithm that converts data into a standard format, to remove differences
due to layout formatting. This process is required because XML is a flexible
language in which a document can be represented in different ways that are
semantically equal. Thus, after calculating the canonical form, both the
sender and the receiver will sign and verify the same XML data

respectively. After applying a canonicalization algorithm, the result value is
digested and then encrypted using the sender’s private key. Finally, the
signature, in XML form, is embedded in the message.

At the other end, the receiver verifies the signature appended to the
signed message. The verification process has two parts: reference
verification and signature verification. In the reference verification, the
verifier recalculates the digest value of the original data. This value is
compared with the digest value included in the signature. If there is any
mismatch, the verification fails. In the signature verification, the verifier
calculates the canonical form of the signed XML element, then applies the
digest algorithm. This digest value is compared against the decrypted value
of the signature. The decryption is done using the sender’s public key.

There are three types of XML Signature: enveloped, enveloping and
detached signature. In an enveloped signature, the signature is a child
element of the signed data. For example, when you sign the entire XML
message, the signature is embedded within the message. An enveloping
signature is a signature where the signed data is a child of the signature.
You can sign elements of a signature, such as the <Object> or <KeyInfo>
element. A detached signature is calculated over external network resources
or over elements within the message. In the latter case, the signature is
neither an enveloped nor an enveloping signature.

Structure
Figure 12.14 shows the class diagram of the XML SIGNATURE pattern.
Note that the upper part of this figure is almost the same as Figure 12.8
(page 303). The main difference is that Figure 12.14 adds more details
about the structure of the elements of the message so that signatures can be
applied more finely.

Figure 12.14: Class diagram for the XML SIGNATURE pattern

A Principal may be a process, a system, a user, or an organization that
sends and receives XMLMessages and/or SignedXMLMessages. This Principal
may have the roles of Sender and Receiver. Both an XMLMessage and a
SignedXMLMessage are composed of XMLElements, but this is only shown in
the SignedXMLMessage. Each XMLElement may be a SingleElement that
does not have any children, or be a Composite element which is composed
by other XMLElements.

The XMLSigner and the XMLVerifier create and verify a signature
respectively. They can select signature and digest algorithms. An
XMLSignature element is an XMLElement that has two required children,
SignedInfo and SignatureValue, and two optional children, KeyInfo and
Object. The SignedInfo element is the one that is actually signed. It
contains one or more Reference elements, the canonicalization algorithm
identifier, and the signature algorithm identifier. The canonicalization
algorithm is used to convert the SignedInfo element into a standard form
before it is signed or verified. The signature algorithm also includes a digest
algorithm that is applied after calculating the canonical form of the
SignedInfo in both process creation and verification of XML signatures.

Each Reference element includes a URI, a hash value (digestValue), the
digest algorithm identifier (digestMethod) and an optional list of
Transform elements. The URI is a pointer that identifies the data to be
signed. It can point to an element inside an XML message, an element
inside the signature element such as Objector KeyInfo, or resources located
on the Internet. The digestValue contains a hash value created after
applying the digest algorithm to the data pointed to by its URI. If the
Transform element exists, it includes an ordered list of transform algorithms

that are applied to the data before the digest is created. The
SignatureValue element includes the value of the digital signature.

If the KeyInfo element is present, it indicates the information about the
sender’s public key that will be used to verify the signature. This flexible
element may contain certificates, key names and other public keys forms.
Additional information about this element can be found in [W3C08]. The
optional Object element may contain SignatureProperties and/or a
Manifest. The SignatureProperty identifies properties of the signature
itself, such as the date/time when the signature was created. The Manifest
element includes one or more Reference elements, as for the Reference
element within the SignedInfo element. They are semantically equal;
however, each Reference in the SignedInfo has to be validated in order for
the XMLSignature to be considered a valid signature. On the other hand, the
list of Reference elements within the Manifest is validated.

The Sender and Receiver must use the same hash, signature and
canonicalization algorithms. XML documents are self-descriptive and
indicate this information, so the sender only needs to find the corresponding
algorithms.

Dynamics
We describe the dynamic aspects of the XML SIGNATURE pattern using
sequence diagrams for the use cases ‘Sign different XML elements of an
XML message’ and ‘Verify an XML signature with multiple references’.

Use Case: Sign Different XML Elements of an XML Message –
Figure 12.15
Figure 12.15: Sequence diagram for the use case ‘Sign different XML
elements of an XML meassage’

Summary A Sender wants to sign specified XML elements of an XML message.
Actors A Sender.
Precondition The Sender has a private/public key pair.
Description 1 A Sender requests the Signer to sign different XML elements of a message.

 2 The Signer calculates the digest value over the XML element.
 3 The Signer creates the <Reference> element, including the digest value, and using

the digest algorithm.
 4 The Signer repeats steps 2 and 3 for each XML element to be signed.
 5 The Signer creates the <SignedInfo> element that includes the <Reference>

elements, the canonicalization algorithm identifier, and the signature algorithm
identifier.

 6 The Signer applies the canonicalization algorithm to the <SignedInfo> element.
 7 The Signer signs the output from step 6. First, it applies the digest algorithm, then

it encrypts the digest using the Sender’s public key. The output is the signature value.
 8 The Signer creates the <SignatureValue> element that includes the signature

value.
 9 The Signer creates the <KeyInfo> element that holds the sender’s public key,

which will be used to verify the signature.
 10 The Signer creates the <Signature> element that includes the <SignedInfo>, the

<SignatureValue> and the <KeyInfo> elements.
 11 The Signer creates the SignedXMLMessage that includes the Signature and the

XMLMessage.
Postcondition The specified elements of the document have been signed.

Use Case: Verify an XML Signature with Multiple References –
Figure 12.16
Figure 12.16: Sequence diagram for the use case ‘Verify an XML signature
with multiple references’

Summary A Receiver wants to verify the signature of a received document.
Actors A Receiver.
Precondition None.
Description 1 A Receiver requests verification of the signature that is included in the

SignedXMLMessage.
 2 The Verifier obtains the signature elements, such as <SignedInfo>, which includes

the <Reference> elements, the <SignatureValue> and the <KeyInfo> elements.
 3 The Verifier calculates the digest value over the XML element that is pointed to

by the URI in the <Reference> element, using the digest algorithm specified in the
<Reference> element as well.

 4 The Verifier compares the output from step 3 against the digest value specified
in the Reference element.

 5 The Verifier repeats step 3 and 4 for each <Reference> element included in the
<SignedInfo> element.

 6 The Verifier canonicalizes the <SignedInfo> element using the canonicalization
method specified in the <SignedInfo> element.

 7 The Verifier digests the output from step 6 using the digest algorithm specified
in the signature algorithm.

 8 The Verifier decrypts the signature value using the sender’s public key
(<KeyInfo>).

 9 The Verifier compares the outputs from step 6 and 8.
 10 The Verifier sends an acknowledgement to the Receiver that the signature is

valid.

Alternate
Flows

If the values compared in step 4 are not the same, then the signature is invalid.

If the outputs in step 9 are not the same, then the validation fails.
Postcondition: The signature is validated.

Implementation
 Identifiers of algorithms used to create a signature are attached along

with the signature, so they also should be protected from being
modified by attackers.
 XML documents may be parsed by different processors; XML allows

some flexibility without changing the semantics of the message. Thus,
we need to convert the data to be signed to a standard format.
 All the signers of a given document should have the same level of

trust, to avoid misleading the receivers about the trust level of the
whole message. Allowing untrusted signers might give them a better
chance of attacking the message.
 Use the Strategy pattern [Gam94] to select different hashing and

signature algorithms. The most widely used hashing algorithms are
MD5 and SHA1. Two popular digital signature algorithms are RSA
[RSA] and the Digital Signature Algorithm (DSA) [Fed00].
 The data to be signed may need to be transformed before producing a

digest. For instance, if the object to be signed is an image, it needs to be
converted into text.
 The use of certificates issued by a certification authority that are

trusted by the sender and the receiver is recommended.

Example Resolved
Alice and Susie sign each production order sent to Bob. Bob has access to
Alice’s and Susie’s public keys. When the message is received by Bob, he
verifies whether the signatures are valid using Alice’s and Susie’s public
keys and the signature algorithm specified in the order. If the signature are
valid, Bob can be confident that the message was created by Alice and
approved by Susie. If the hash value is correct, Bob also knows that Eve has
not been able to modify the message.

Consequences
The XML SIGNATURE pattern offers the following benefits:

 A principal’s private key is used to sign the message. The signature is
validated using its public key, which proves that the principal created
and sent the message.
 When a signature is validated using a principal’s public key, the

principal (sender) cannot deny that they created and sent the message. If
a message is signed using another private key that does not belong to
the sender, the validity of the signature fails.
 Any change in the original message will produce a digest value that

will be different from the value obtained after decrypting the signature
using the sender’s public key.
 Before applying any signature algorithm, the data is compressed to a

short fixed-length string. In XML SIGNATURE, digest algorithms are
used twice: one is used to digest data to be signed indirectly, and the
other digest algorithm is used to digest the canonical form of the
SignedInfo element.
 Any change in the data that was indirectly signed will produce

another digest that will invalidate the signature.
 The available algorithms that can be used for digital signatures do not

require a lot of computational power and do not take large amounts of
time.
 We can sign different parts of a message with different signatures.

This allows a set of principals to write portions of one document and
sign them individually.
 An XML signature is an XML element that is embedded in the

message. The XML signature is composed of several XML elements
that include information such as the value of the signature, the key that
will be used to verify the signature, and algorithms used to compute the
signature. This standard format helps XML parsers to better understand
signature elements during the validation process.

 This pattern also supports message authentication codes (MAC). Both
signatures and MACs are syntactically identical: the difference between
them is that signatures use public key cryptography, while MACs uses a
shared common key.
 The data being signed is pointed by its URI, so elements within XML

messages and external network resources can be located using their
identifiers.
 SignedInfo is the element that is actually signed. It includes the

references that point the data being signed, along with their digest
values and algorithm identifiers. Thus the XML signature also protects
the algorithm identifiers from modification.
 XML SIGNATURE uses canonicalization algorithms to ensure that

different representations of XML are transformed into a standard
format before applying any signature algorithm.
 XML documents are self-describing; the sender and receiver don’t

need to agree in advance on the algorithms to be used.
The pattern also has the following potential liabilities:

 We need a well-established public key infrastructure that can provide
reliable public keys. Certificates issued by a certification authority are
the usual way to obtain this [Sta06]. There is a public key standard for
XML that should be used.
 Users must properly implement the signature protocol.
 There may be attacks against specific algorithms or implementations

[dig]. These are difficult to use against careful implementations of this
pattern.
 Even using efficient algorithms, signing and verifying XML messages

may create a significant overhead.
The pattern does not describe the complete standard. For example, details

of transforms and key values have been left out for simplicity [W3C08].

Known Uses
Several vendors have developed tools that support XML SIGNATURE:

 IBM DataPower XS40 XML Security Gateway [IBM05] parses,
filters, validates schema, decrypts, verifies signatures, signs and
encrypts XML message flows.
 Xtradyne’s WS-DBC [Xtr]. The Web Services Domain Boundary

Controller is an XML firewall that provides protection against
malformed messages and malicious content, XML encryption, XML
signature, as well as authentication, authorization and audit.
 Forum Sentry SOA Gateway [For] conforms to XML Digital

Signature, XML Encryption, WS-Trust, WS-Policy and other standards.
 Microsoft .NET [Mic07] includes APIs that support the creation and

verification of XML digital signatures.
 Java XML Digital Signature API [Mul07] allows XML signatures to

be generated and validated.

See Also
 This pattern is a specialization of the DIGITAL SIGNATURE WITH

HASHING pattern (page 301).
 The WS-SECURITY pattern (below) is a standard for securing XML

messages using XML SIGNATURE, XML ENCRYPTION and security
tokens.

The following specifications are related to XML SIGNATURE, but they
have not been expressed as patterns:

 The XML Key Management Specification (XKMS) [W3C01]
specifies the distribution and registration of public keys, which works
together with XML SIGNATURE.
 The WS-Security Policy [OAS07] standard describes how to express

security policies, such as what algorithms are supported by a web
service, or what parts of an incoming message need to be signed or
encrypted.

12.7 WS-Security

The WS-Security standard [OAS07]describes how to embed existing
security mechanisms such as XML Encryption [W3C02], XML Digital
Signature [W3C08] and security tokens into SOAP messages in order to
provide message confidentiality, integrity, authentication and non-
repudiation.

Context
Users of web services sending and receiving SOAP messages through
insecure channels such as the Internet.

Problem
Sending messages through insecure channels exposes the messages to a
variety of attacks, including illegal reading, modification or replay, and the
sender can deny having sent a specific message [Sta06]. We have
cryptographic solutions for these problems; however, there are many
algorithms and protocols and we need to make a selection self-descriptive.

The solution to this problem must resolve the following forces:
 Interoperability. We need a common format in SOAP messages in

order to add security features, so both senders and receivers can process
messages that contain security features without the need for previous
agreements.
 Fine degree of protection. SOAP messages may travel through many

intermediaries in a network environment, and different users may need
access to different parts of them. We may need to protect different parts
of a message in different ways.

Solution
Define areas in the message format with parameters that specify security
mechanisms such as encryption, digital signatures and security tokens.

A SOAP message is composed of a body and an optional header. Three
major elements can be embedded within the header of a message: XML
encryption, XML signature and security tokens. If an element within the
message is signed, the header can include information about the signature,
such as the algorithm, the key and the value of the signature. For XML

encryption, the security header can enclose a list of references that point to
the parts of the message that have been encrypted, and describe how they
were encrypted.

Structure
Figure 12.17 shows the class diagram for this pattern. A Principal may be
a system, a user or an organization that sends and receives XMLMessages.
This principal may have the roles of Sender and Receiver. The
SenderEngine includes a Sender and an Encryptor, while the
ReceiverEngine includes a Verifier and a Decryptor1. SecurityTokens
such as username/password, X.509 certificates and Kerberos tickets are
used for authentication and authorization purposes.

Figure 12.17: Class diagram for the WS-SECURITY pattern

XMLMessages are composed of a Body and an optional Header. A Header
may contain a SecurityBlock, which may enclose Timestamp,

EncryptedKey, ReferenceList, SignedElement and SecurityToken

elements. Timestamps provide the time of creation and expiration of a
message. EncryptedKey element represents the key used to encrypt parts or
the entire message, and this key is encrypted according to the XML
encryption standard. The ReferenceList element points to the parts of the
message that are encrypted with XML encryption. The SignedElement2
holds information about the signatures generated according to XML

Signature standard. The Body is a collection of XMLElements, some of which
are EncryptedData elements. Elements can be structured into Composite
pattern hierarchies [Gam94].

Dynamics
We describe the dynamic aspects of the WS-Security standard using
sequence diagrams for the use cases ‘Encrypt an element using an
encrypted key’ and ‘Sign an element using a security token’.

Use Case: Encrypt an Element using an Encrypted Key – Figure
12.19
Figure 12.18: Sequence diagram for the use case ‘Sign an element using a
security token’

Figure 12.19: Sequence diagram for the use case ‘Encrypt an element using
an encrypted key’

Summary A Sender encrypts an element using a symmetric key that is itself encrypted using a
security token.

Actors A Sender.
Precondition The Sender has a symmetric key for this communication.
Description 1 A Sender requests the EncryptorEngine to encrypt an XML element.
 2 The Encryptor encrypts the XML element using the symmetric key and the

encryption method provided by the Sender.
 3 The Encryptor creates the SecureXMLMessage that will contain the encrypted

element.
 4 The Encryptor replaces the plain XML element with the output from step 2.
 5 The Encryptor sends the SecuredXMLMessage to the Sender, which can now sent it

to some receiver.
Postcondition The encrypted element is attached to the message.

Use Case: Sign an Element using a Security Token – Figure
12.18
Summary A Sender signs an element in a message.
Actors A Sender.
Precondition The Sender has a private key in some PKI system.
Description 1 A Sender requests the Signer to sign an XML element.
 2 The Signer signs the XML element using the Sender’s private key and the signature

algorithm provided by the Sender.
 3 The Signer creates the SecuredXMLMessage that will contain the digital signature.
 4 The Signer attaches the signature to the SecurityBlock.
 5 The Signer sends the SecureXMLMessage to the Sender.
Postcondition The signature has been attached to the header of the message.

Implementation
To implement the WS-Security standard, the following aspects are required:

 Clients need to have knowledge of cryptographic algorithms, such as
security token formats, signature formats and encryption technologies.
 A message can have multiple headers if they are targeted for different

recipients. In other words, message security information targeted to
different recipients must be in different headers.

Consequences
The WS-SECURITY pattern offers the following benefits:

 Using the header of a SOAP message, we can specify the security
features of a message, such as XML encryption, XML signatures and
security tokens.
 We can specify different parts of a message with different types of

encryption, different keys or different signatures.
The pattern also has the following potential liabilities:

 The pattern does not describe details of encryption, digital signatures
or security tokens: these require separate standards.
 WS-Security does not tell you whether you should sign or encrypt a

whole message, a part of it, or only the header. It is up to the designer to
define these aspects.
 WS-Security is an immature specification that is still changing.

Known Uses
Several vendors have developed products that support WS-SECURITY:

 Xtradyne’s Web Service Domain Boundary Controller (WS-DBC)
[Xtr] is an XML firewall that supports the WS-Security standard and
other standards.
 IONA’s Artix iSF Security Framework [ION] implements most of the

web services standards, including WS-Security.
 Forum Sentry SOA Gateway [For] conforms to XML Digital

Signature, XML Encryption, WS-Trust, WS-Policy and other standards.

See Also
 The DIGITAL SIGNATURE WITH HASHING (page 301) and XML

ENCRYPTION patterns (page 309) provide message security for the
WS-Security standard.
 Secure Channel is a way to transport messages providing message

authentication, message confidentiality and message integrity [Bra00],
and is the generalization of WS-SECURITY.
 WS-SECURITY uses WS-POLICY (page 263) for policy

specification.

 As shown in Figure 12.1 (page 287), WS-Federation, WS-TRUST
and WS-Secure Conversation use WS-SECURITY for secure token
transport.
 SAML uses WS-SECURITY for security assertion transport.

1 My improvements on the translation in http://evans-
experientialism.freewebspace.com/borges.htm

1 These classes are not shown in Figure 12.17.

2 Not shown in Figure 12.17.

http://evans-experientialism.freewebspace.com/borges.htm

CHAPTER 13

Patterns for Secure Middleware

Medio tutissimus ibis. (You will be safest in the middle.)
Ovid

The most perfect political community is one in which the middle class is
in control, and outnumbers both of the other classes.

Aristotle

13.1 Introduction
Middleware typically includes a set of functions that provide services to
applications, including distributed aspects such as brokering, as well as
specific services such as blackboards, pipes and filters, adapters and others.
Middleware may also include global services such as authentication,
authorization and other services. These services can support development of
applications or their execution. There is a great deal of pattern-oriented
advice on how to build distributed systems, for example [Bus96] [Bus07]
[Cra95], [Kir04] [Sch00b]. There is also a great deal of experience with
securing distributed systems, for example [And08] [Dem04] [Kau02].
However, much of the experience gained in securing distributed systems
has not worked its way back into design patterns. In [Fer07b] we showed
how to add security to middleware patterns; we describe here specific
patterns obtained using this approach.

Figure 13.1 shows the patterns discussed in this chapter. The SECURE
THREE-TIER ARCHITECTURE pattern typically organizes the structure
of middleware systems. Three-tier systems frequently implement a
SECURE MODEL-VIEW-CONTROLLER pattern. Distribution is
organized using a SECURE BROKER, which is implemented as part of a

SECURE ENTERPRISE SERVICE BUS (ESB), and may also use a
SECURE DISTRIBUTED PUBLISH/SUBSCRIBE pattern. Other
frequently used middleware patterns include SECURE BLACKBOARD,
SECURE PIPES AND FILTERS and SECURE ADAPTER. The objectives
of these patterns are:

Figure 13.1: Secure middleware patterns

 SECURE BROKER [Mor06b] extends the Broker pattern [Bus96] to
provide secure interactions between distributed components.
 SECURE PIPES AND FILTERS [Fer09a] provides secure handling of

data streams. Each processing step applies some data transformation or
filtering. The rights to apply specific transformations to the data can be
controlled. The communication of data between stages can be also
protected, and the operations applied can be logged.
 SECURE BLACKBOARD [Ort08] provides secure handling of data

when its blackboard is accessed by a set of knowledge sources. Each
knowledge source reads data from the blackboard, applies some
processing or data transformation, and updates the blackboard. To
prevent violations of integrity and confidentiality, the rights to reading
and updating data are controlled according to their predefined rights,
and their actions are logged. The sources are authenticated before being
allowed to access the blackboard.

 SECURE ADAPTER [Fer09b] converts the interface of an existing
class into a more convenient interface. Both adapter and adaptee are
secured.
 SECURE THREE-TIER ARCHITECTURE [Fer08d] extends the

Three-Tier Architecture pattern by enforcing a global view of security
for all three layers. In the presentation part of the system, security
aspects dealing with user interaction are enforced; in the business logic,
global security constraints are applied; the data storage applies policies
to constrain access of users to data.
 SECURE ENTERPRISE SERVICE BUS [Fer11b] provides a

convenient infrastructure to integrate a variety of distributed services
and related components in a simple and secure way.
 SECURE DISTRIBUTED PUBLISH/SUBSCRIBE [Fer12e] decouples

the publishers of events from those interested in the events
(subscribers). Subscription and publishing are performed securely.
 SECURE MODEL-VIEW-CONTROLLER [Del12] adds security to the

interactions of users with systems configured using the MVC (Model-
View-Controller) pattern.

13.2 Secure Broker
The SECURE BROKER pattern extends the Broker pattern to provide
secure interactions between distributed components.

Example
An organization uses an electronic messaging system such as conferencing
software, chat or instant messaging. A group within the organization wants
to arrange for private communications within the group. Members of the
group should be able to exchange messages with each other that are not
made known to the organization at large. Members have a variety of devices
(laptops, smart phones) that run the organization’s messaging client.

Context

Distributed computing systems, homogeneous or heterogeneous, with
independent cooperating components that must be secured.

The Broker architectural pattern can be used to structure distributed
software systems with decoupled components that interact by remote
service invocations. A broker component is responsible for coordinating
communication, such as forwarding requests, as well as for transmitting
results and exceptions [Bus96].

Proxies insulate their callers, client and server, from the implementation
details of communications. The Bridge class implements a similar concept
for communications between brokers. There are two basic use cases for
Broker, illustrating its role in structuring transparent communications
between clients and servers: server registration and client requests service;
see [Bus96] for details.

Problem
In addition to the liabilities of the broker [Bus96], security threats add a
new set of problems. How can we secure the broker’s activities?
The threats affecting the pattern include:

 Illegal access. Clients’ access to servers may need to be restricted,
and servers’ access to clients may need to be restricted, for compliance
and application semantics purposes.
 Message interception or replaying. An attacker may intercept the

messages from client to server and read or modify them. Message
replaying is another possibility.
 Spoofing (forgery). If a rogue server can portray itself as valid to the

broker, it can appear to service client requests while also compromising
client data, or perform a wide variety of other attacks on unsuspecting
clients. Likewise, if a rogue broker can portray itself as valid to servers
and clients, it can do harm by recording traffic between clients and
servers, substituting other clients and servers for valid ones, and so on.
And if a client can forge its identity to a broker, it can access services
for which it does not have rights. There are a wide variety of attacks
based on forgery: redirection of traffic from official sites to forged sites;
spamming while masking the source’s destination; cache poisoning, in
which invalid entries are stored in the broker’s repository; and routing

attacks, in which traffic intended for one destination is sent to another
[NTC01].
 Denial of service. Valid entries in the repository could be removed,

and they will not be accessible. And with access to the broker’s server
repository, DoS attacks can be launched against member servers. By
limiting the server’s abilities to respond to requests, clients can be
disabled [Kau02].

Solution
In addition to the Broker pattern’s role in decoupling communications from
applications, a secure broker must introduce mutual authentication between
servers and clients. It must also provide authorization and a reference
monitor to control access to resources, and cryptographic controls to
prevent message attacks.

Structure
Figure 13.2 shows the class diagram for the SECURE BROKER pattern.
Subject is a role that can be taken by the Broker, Client(a principal), and
Server. Its function is to provide identity to components participating in
communication, and to allow components to authenticate each other.
Identity management and creation is beyond the scope of this description,
but it must be sufficient to uniquely identify components in the universe of
possible interactions.

Figure 13.2: Class diagram for the SECURE BROKER pattern

The ReferenceMonitor authorizes participant requests. It is responsible
for allowing and denying service requests based on the identity of the
requester and the prevailing set of rights. Rights structure and configuration
are discussed in Chapter 6.
SecureChannel is responsible for encrypting traffic between components

that may travel over secure links that are not limited to trusted components.

Dynamics
A secure broker implements or supports the use cases ‘Subject creation’,
‘Registration’ and ‘Secure service request’. Each client and server wishing
to participate in secured communications must be assigned identity and
rights.

 Subject creation. In contrast to the Broker pattern, where it is assumed
that the broker can be trusted, servers, clients and brokers, in their roles
as principals, must be assigned identities and credentials in order to
safeguard access. Therefore, we need a preliminary use case for each
principal (subject), ‘Subject creation’, incorporating identity and rights
assignment. This use case is straightforward and requires a security

administrator to assign rights to a new subject according to predefined
policies (see Chapter 6).
 Secure registration. Registration is similar to the standard sequences

in [Bus96], except that mutual authentication must be done before
registration.

Use Case: Secure Service Request – Figure 13.3
Figure 13.3: Sequence diagram for the use case ‘Secure service request’

Given that the participating Client, Server and Broker have been
previously authenticated and assigned credentials, service requests flow as
indicated in the sequence diagram of Figure 13.3.

A Client makes a request indicating its ID and its rights. The Client-
SideProxy marshals and forwards the request to the Broker. The Broker
checks the rights of the Client to perform this operation on the servant
object1, finds the Server, and routes the request to the Server-SideProxy.
The proxy unpacks the data, may check rights (in addition or instead of the
Broker) and performs the service. The response is sent as in a standard
Broker implementation. (The figure does not show the encryption
operations.)

Implementation

CORBA
In order to show a specific set of defenses, we choose an example Broker
implementation, the Common Object Request Broker (CORBA), to see how
transactions are secured. To do this requires some introduction to CORBA’s
security architecture.

CORBA security explicitly defines the threats it is designed to address:
Threat
1

An authorized user of the system gaining access to information that should be hidden from
them.

Threat
2

A user masquerading as someone else, directly or through delegation.

Threat
3

Security controls being bypassed.

Threat
4

Eavesdropping on a communication line.

Threat
5

Tampering with communication.

Threat
6

Lack of accountability, due, for example, to inadequate identification of users [NTC01].

This architecture can be mapped to Broker’s defenses in the following
way:

 Threats 1, 2, 3. Protect clients from illegitimate servers and brokers.
 Threats 1, 2, 3. Protect servers from illegitimate clients and brokers.

 Threats 1, 2, 3. Protect brokers from illegitimate clients and servers.
 Threats 4 and 5. Allow for securing communications between clients

and servers.
CORBA, in its Security Service, approaches securing transactions by

treating clients, servers and Brokers as principals, which are ‘a human user
or system entity that is registered in and authenticated to the system’
[NTC01]. The distinguishing characteristic of a principal is its identity.
There are several consequences of identity: it makes the principal
accountable for its actions; it identifies the originator of a message; it
identifies whom to charge for use of a system; and it allows access
control/rights management to be defined. Principals may be granted
security attributes (rights). These attributes are used to determine access
control for objects within the system. An object’s collection of security
attributes is known as its credentials (see Chapter 5). Authorization is
implemented between principals and objects through security context
objects, which carry the identity and credential information necessary to
determine the calling principal’s rights for the called object.

The principal authenticator interface provides facilities for generating
sets of credentials and for generating security contexts, given a principal, an
object and an access request. An object implementing the principal
authenticator (called ‘vault’ in the CORBA architecture) accepts a
principal’s identity as an argument and authenticates that principal,
returning its set of credentials (Figure 13.4). Access decision objects are
responsible for binary (yes/no) access decisions, based on the applicable
principal, object and security context. When a client makes a request of a
server, both client and server proxies submit the request for evaluation
according to security policies through these access decision objects (Figure
13.5). Note that no checking is done by the CORBA Broker; CORBA
assumes that the proxies can be trusted.

Figure 13.4: Subject authentication in CORBA

Figure 13.5: Secure object invocation in CORBA

.NET Remoting

.NET Remoting implements HTTP and TCP transport mechanisms
(‘channels’). The .NET Remoting security architecture does not enumerate
specific threats; rather, it provides a generic set of tools for authentication,
authorization and confidentiality that must be adapted in an application’s
context. These tools, implemented through the GSS-API, include
credentials to identify clients and servers, contexts in which these
credentials are valid, and provisions for encrypted transport [MS04A].

Microsoft has illustrated how to use .NET Remoting to implement the
Broker pattern [MS03A]. In considering .NET Remoting security, and how
to apply it to the SECURE BROKER pattern, we look to the GSS-API
[RFC2743] for guidance.

Follow the steps for Broker [Bus96], but amend them in the following
ways:

1 Include identity and rights in the object model. Ensure that all
participants are assigned identity, that they are authenticated in order to

participate, and that rights are checked before requests are granted.
2 Implement a reference monitor to check authorization.
3 Implement the Secure Channel pattern [Bra00] to protect message
traffic.

Therefore, in addition to the broker role in decoupling communications
from applications, a SECURE BROKER must:

 Protect clients from illegitimate servers and brokers.
 Protect servers from illegitimate clients and brokers.
 Protect brokers from illegitimate clients and servers.
 Allow for securing communications between its clients and servers.

Example Resolved
In the messaging example, each group member participating in the
conversation is issued an identity for the system, together with rights to chat
with other members of the group. The messaging server is also assigned an
identity, together with rights permitting each member of the group to send
messages to other members of the group. As client proxies send messages
to the server, each message is checked by the server’s reference monitor
(and possibly the server-proxy’s reference monitor, depending on the
configuration and security requirements). Eligible messages from
authenticated participants are relayed. As some of the group members
communicate over public lines, Secure Channel [Bra00] is set in operation
for these links, to ensure message confidentiality.

Consequences
The SECURE BROKER pattern offers the following benefits:

 Illegal access. Based on authentication, access control can be
implemented, enabling restrictions on the use of privileged information
and functionality.
 Message interception. Encryption can handle all these problems (see

Chapter 12).
 Forgery. By requiring authentication of each broker, client and server,

trust can be established between transaction participants.

 Denial of service. Authentication and access control prevent removal
of valid entries. With control of access to the broker’s server repository,
DoS attacks cannot be launched against member servers.

The pattern also has the following potential liabilities:
 Extra overhead.
 Added complexity.

Known Uses
The CORBA Security Service, Microsoft .NET Remoting and the World
Wide Web implement at least some aspects of the pattern described here.

See Also
 [Bus96] defined the Broker pattern. [Fer01a] provides a language that

addresses the relationship between authentication and rights
management. [Fer03c] shows authentication and rights management in
a distributed context.
 AUTHENTICATOR (page 52), AUTHORIZATION (page 74).
 A revised version of Broker, Broker Revisited, is described in

[Kir04]. Our security extensions apply also to this pattern.
 The Secure Channel pattern provides cryptographically-protected

communications [Bra00].

13.3 Secure Pipes and Filters
The SECURE PIPES AND FILTERS pattern describes how to provide
secure handling of data streams. Each processing step applies some data
transformation or filtering. The rights to apply specific transformations to
the data can be controlled. The communication of data between stages can
be also protected. The operations applied can be logged.

Example
ArtisticRenderings is a company that prepares brochures and reports for
marketing real estate, stocks and all kind of products. To prepare each

brochure needs a product specialist, a graphic designer and an artist. To
insert information from databases, for example sales statistics, we need
some IT people. The whole process is under the control of a supervisor.
Each person has their own interface, and once they complete their jobs,
their inputs will be applied in sequence to the stream of documents.
However, some documents are sensitive and we need to control who makes
the changes, or a disgruntled employee might introduce incorrect contents.

Context
Consider Pipes and Filters software or other processing systems which are
used to process data streams. Some of them may be parallel, attempting to
improve the process performance. The execution platform for this kind of
system is frequently a distributed one, whose components may require a
certain level of security for processing the stream of data. Parallel here
means that several components (whether human or automatic) act
simultaneously. Even a human Pipes and Filters pattern aims to improve
performance. In this case we don’t have significant performance
improvements, but this architecture may be valuable for flexibility reasons,
or to have a systematic, well-structured process.

Problem
The essence of the Pipes and Filters pattern is that every time data reaches a
different stage, different functions are applied on it, and in a secure version
these actions should be controlled. In this kind of system, we may also need
the flexibility to reorder the steps of the process or change the processing
steps. In the example above, a new person may be assigned to the workflow
to perform additional functions on the documents, which may require
adding an extra step. How can we control the actions to be performed in a
data pipeline and provide security for the pipeline activities? Additionally,
the data may be moved along the pipeline using insecure channels, and the
users defining the data transformations may be remote.

The solution to this problem must resolve the following forces:
 Stage control. The system may need to control, at each stage of

processing, who can do what (what operations can be applied) with the
data in the pipeline. This may be necessary in both automatic and

interactive pipelines, otherwise employees might introduce illegal
content or filter out wanted information.
 Authenticity. We might require the data or the message carrying it to

be authenticated before it is accepted by the next or the previous stage,
otherwise an imposter might send data to be processed.
 Message protection. Before sending data in the pipes we may need to

hide it to prevent eavesdropping. We may also need to verify the
authenticity of messages.
 Reconfiguration control. Due to regulatory constraints, work changes,

or efficiency, some documents may need extra stages, or to skip stages.
We need to be able to reconfigure the number or order of the steps. This
reconfiguration should be controlled, or a user might skip necessary
stages or add unintended stages.
 Recording. We should keep track of any actions applied to the data in

cases where legal documents or regulatory compliance is involved.
 Transparency. The security controls should be transparent to the users

of the pipeline.
 Overhead. The security controls should not affect performance

significantly.

Solution
The SECURE PIPES AND FILTERS pattern provides a secure way to
process data in different stages or steps, by adding basic security
mechanisms (as instances of security patterns) to each of them to provide
authentication, authorization, information hiding and logging. Because the
functions to be performed at each stage depend on people doing specific
tasks, we use a Role-Based Access Control (RBAC) model [Fer01a] to
describe their required rights. An RBAC model assigns rights to roles to
access data or resources in specific ways. Individual users may belong to
one or more roles.

Structure
We apply an RBAC pattern to control access to stages. In this model, users
are members of Roles and Rights are assigned to roles. A Right defines

the access type that can be applied by a Role to a protection object. Pattern
instances corresponding to security mechanisms have been added to the
Pipes and Filters pattern in Figure 13.6. Since we are considering a set of
stages the pattern is made clearer by showing an object diagram (describing
three typical stages) rather than a class diagram. The subsystems named
Authenticator are instances of the AUTHENTICATOR pattern, and allow
each Filter to authenticate the sender of the data it is receiving. Log
indicates instances of the SECURITY LOGGER AND AUDITOR pattern,
used to keep track of any accesses to the data.

Figure 13.6: Object diagram for the SECURE PIPES AND FILTERS
pattern

Objects with the stereotype <<role>> and Right are instances of the
ROLE-BASED ACCESS CONTROL pattern. For example, Role1 has the
right to apply operations op1 and op2 to the data in Filter i. The
ReferenceMonitor subsystem indicates the enforcement of the
authorization rights defined by the RBAC instances. We show the
ReferenceMonitor as a shared resource and the Authenticators as
individual for each stage; their actual distribution depends on the
distribution architecture of the complete system. In order to control the
reconfiguration of the stages, the ROLE-BASED ACCESS CONTROL

pattern is also applied to the pipeline structure, so that only someone with
an administrator role (Role3) can perform any changes to it.

Dynamics
Figure 13.7 shows the use case in which a subject with a specific role tries
to execute an operation, op3, on a document. The ReferenceMonitor
checks whether its role allows the operation, and if true, reads data from the
input pipe, Pipe i, to the filter where op3 is applied. After the operation the
data is moved to the next pipe, Pipe j.

Figure 13.7: Sequence diagram for the use case ‘Apply an operation on a
data stream’

Implementation
We follow the steps suggested in [Bus96] and indicate where security is
needed:

1 Divide the application into a sequence of stages. Who should have
access to which operations or results from each stage should be defined
in the conceptual model. When the application is divided into stages we
need to define how the rights in the complete model are reflected in
each stage.
2 Define the data format to be passed along each pipe. This aspect has
no effect on security.
3 Perform threat enumeration (see Chapter 3) and risk analysis. This is
necessary to decide about what security mechanisms to add in each
stage.

4 Decide how to implement each pipe connection. Aspects such as
active or passive components, or push or pull movement of data are
defined at this point. We have to decide whether to use authentication
between filters, and if we do, what type of authentication. For
communications within the same physical building, filter authentication
may not be required, although user authentication to the system is
always needed.
5 Design and implement the filters. Each filter enforces the rights
defined in the first implementation step, and must have a reference
monitor and a means to access the authorization rules. In distributed
systems one needs to decide where these rules should be stored. Filters
also implement logging, as well as encryption and decryption.
6 Design error handling. From the security side this implies handling
security violations. This handling is application-dependent and no
general policy is possible.
7 Set up the processing pipeline. The initial configuration, as well as
changes to the configuration, must be restricted only to administrators.

We can apply the principle of defense in depth, defining a coherent set of
security mechanisms that provide a secure core for this application. In some
cases, specific mechanisms can be left out, being careful about security
consistency; for example, authorization requires authentication. In other
cases, more security controls may be needed to prevent, for example,
conflicts of interest.

The ROLE-BASED ACCESS CONTROL pattern (page 78) provides the
option of abstracting different roles within the data flow. It may be that we
need to work with individual subjects instead of roles; in this case
implementing the AUTHORIZATION pattern (page 74) should be a better
approach. The link between stages could be subject to attacks, and optional
operations of encryption and decryption could be implemented in each
filter, as well as digital signatures in each data message (not shown in
Figure 13.6).

Example Resolved
We implemented the ROLE-BASED ACCESS CONTROL pattern in the
pipes and filters of the example. Now people making changes to documents

need to be authorized before they can do so. The operations they can apply
depend on their roles with respect to the application. Logging protects the
company in case they need to show that they comply with regulations, and
they can track who made a specific change to a given document.
Authentication is needed to apply authorization, and maybe also between
stages if necessary.

Consequences
The SECURE PIPES AND FILTERS pattern offers the following benefits:

 Access control. We can assign privileges according to the functions
needed at each stage of processing and the roles of those performing the
functions. The use of operations over the data can be restricted
according to the rules of either role-based access control or access
matrix models.
 Authenticity. Each filter stage can authenticate its users before they

are authorized to perform specific functions, and can authenticate the
filter sending data to it. Authentication is necessary if we apply
authorization at each filter.
 Message protection. The use of encryption between stages is possible,

adding the possibilities of secure messages (preventing eavesdropping)
and digital signatures (to confirm the origin of a message).
 Controlled reconfiguration. The administrator role can control the

reconfiguration of stages to accommodate changes in the process.
 Recording. Logging can be performed at each stage to keep track of

any accesses and changes to the data. This allows us to prove that we
have followed any regulations: we can prosecute illegal actions, and we
can improve the system if it failed to prevent an attack.
 Transparency. The security restrictions are transparent to the users

provided that they do not attempt illegal actions.
The pattern also has the following potential liabilities:

 The general performance of the system worsens due to the overhead
of the security checks. With careful implementations of these functions,
the loss in performance should be small. For example,
encryption/decryption takes time and should be used only when needed;
access control to the filters happens only when a new type of data is
being analyzed. In parallel pipelines the performance loss can be further
reduced by performing some security functions in parallel with normal
functions.
 The system is more complex, due to the extra services that have been

added.

Known Uses
 Microsoft’s BizTalk Server 2004 [Biz04] can implement the Pipes and

Filters pattern. In addition to security features that are provided by the
transport, such as encryption when using HTTPS, BizTalk Server 2004
provides security at the message level. It can receive decrypted
messages and validate digital signatures that are attached to these
messages. Similarly, it can encrypt messages and attach digital
signatures to messages before sending them.
 Apache Cocoon [Coc07] is a web development framework using

components. It can be used to build XML pipelines in which security
restrictions can be added.
 The tax offices of some countries implement a human pipeline to

process tax returns. Workers may check different aspects of a tax return
either manually or using computers, and need to be authorized to do
this.
 [Ten05] discusses the use of XML pipelines for document

preparation, including stages for adding content, formatting and
personalization. What is done at each stage can be controlled.
 Pipelines are common for data reduction when large volumes of data

must be handled. [Sco05] discusses a data reduction pipeline for
spectroscopic data, in which different transformations by different
researchers are applied at each stage. What is done at each stage is
controlled according to the functions of the researchers.

 A cloud-based secure pipeline for document processing and
management is discussed in [Joo11].

See Also
 [Bus96] and [Mica] present the basic Pipes and Filters pattern,

without security controls.
 The AUTHORIZATION (page 74), ROLE-BASED ACCESS

CONTROL (page 78) and AUTHENTICATOR (page 52) patterns can
be used to secure the stages.
 The Secure Channel pattern can be used to secure the

communications channels ([Bra00] and Chapter 12).
 The SECURITY LOGGER AND AUDITOR pattern is described on

page 111.

13.4 Secure Blackboard
The SECURE BLACKBOARD pattern describes how to provide secure
handling of data when its blackboard is accessed by knowledge sources.
Each knowledge source reads data from the blackboard, applies some
processing or data transformation, and updates the blackboard. In order to
prevent violations of integrity and confidentiality, the rights to reading and
updating data are controlled according to their predefined rights, and their
actions are logged. The sources are authenticated before being allowed to
access the blackboard.

Example
Suppose we are developing an application for a law firm [Fer07c]. The
conduction of a case requires inputs from many data sources: lawyers,
witnesses, defendants and so on. Court appearances are scheduled
according to court and lawyer availability. All this makes the sequence of
actions unpredictable. A blackboard is used to conduct a case, where
immediate results of court appearances and case strategy are kept for
analysis and updating by lawyers. The data handled is very sensitive and
access to it needs to be controlled. If we are not careful, we might end up

with invalid data, or data will leak to our opponent, which will damage our
chances of winning the case.

Context
A blackboard system is used to receive and modify information about a
problem in progress from several data sources. The execution platform for
this kind of system is normally distributed, with knowledge sources
possibly remote. The data is exchanged between blackboard and knowledge
sources in a client/server fashion.

This pattern useful for problems for which no deterministic solution is
known. In the Blackboard pattern several specialized subsystems assemble
their knowledge to build a possibly partial or approximate solution [Bus96].

The organization of this process has been well defined and converted into
patterns: the Blackboard pattern (Figure 13.8), and its parallel counterpart,
the Shared Resource pattern [Ort03]. The descriptions provided for these
patterns take into consideration only functional properties, such as their
potential for improving performance. These patterns have been proposed
assuming that all components (blackboard, control, and knowledge sources)
‘implicitly trust’ each other, and there is no concern about unwanted
activity among them. However, many distributed applications (such as
those mentioned earlier) require taking security into consideration, since
data sources may handle sensitive or valuable data such as personal or
business information.

Figure 13.8: Object diagram of the Blackboard pattern

Problem

Usually we want a variety of knowledge sources to solve a difficult problem
or conduct a process. Nevertheless, how can we control the actions to be
performed in the blackboard so that we provide the required level of
security for the system?

The solution to this problem must resolve the following forces:
 Nondeterminism. The sequence of activities or operations over data is

usually unpredictable. Also, the number of knowledge sources might be
hard to predict.
 Access control. Blackboard data should only be read or modified by

authorized knowledge sources, otherwise users may see or override
important information.
 Authenticity. It might be necessary to verify that the knowledge

sources are authentic, otherwise we might receive false information, or
our information could be leaked outside our system. The channels they
use must be secure.
 Controlled reconfiguration. Due to regulatory constraints, work

changes or efficiency, we need to be able to reconfigure the number of
knowledge sources or their order of operation. This reconfiguration
must be controlled. A faulty reconfiguration could lead to incorrect
conclusions, or to the inclusion of inconsistent or erroneous
information.
 Records. For billing and security purposes, logging the actions at each

update of the blackboard may be necessary. This information can be
audited later.
 Transparency. The security controls should be transparent to the users

of the system, or they might not use them.
 Overhead. The security controls should not impose a significant

overhead on the functions of the system.

Solution
Add security mechanisms to control the threats. The SECURE
BLACKBOARD pattern provides a way to access blackboard data from a
variety of knowledge sources in a secure way, by adding some basic
security mechanisms to the control component (as instances of security

patterns), providing authentication (AUTHENTICATOR, page 52),
authorization (ROLE-BASED ACCESS CONTROL, page 78) and logging
(SECURITY LOGGER AND AUDITOR, page 111) in each access
operation.

Structure
Figure 13.9 shows a class diagram of the SECURE BLACKBOARD
pattern, in which security pattern instances have been added to the
components of the original Blackboard pattern. SecurityLogger indicates an
instance of the SECURITY LOGGER AND AUDITOR pattern [Fer11d].
The Reference Monitor associated with the control indicates the
enforcement of authorization (page 100). KnowledgeSources can be
humans, not just software components. Nevertheless, either automated or
human knowledge sources require that their access is authenticated by the
Authenticator (page 52) to verify their origin. The sources belong to
Roles, according to their functions, and their Rights depend on these
Roles.

Figure 13.9: Class diagram for the SECURE BLACKBOARD pattern

Dynamics
Figure 13.10 shows a sequence diagram in which a KnowledgeSource (with
a specific role) requests an operation on the Blackboard. The Control
receives the request and invokes the Authenticator to validate that it
originates from a legitimate source. After source validation, the
ReferenceMonitor checks whether its role is allowed to use the operation

and, if true, it performs the operation on the Blackboard. A
SecurityLogger record is created after the operation is performed.

Figure 13.10: Sequence diagram for the use case ‘Apply an operation to the
Blackboard’

Implementation
[Bus96] list several general implementation aspects. From a security point
of view we need to consider the following points:

 The authentication system should be appropriate to the value of the
information handled; passwords are enough for most cases.
 Instead of Role-Base Access Control, we could use an access matrix

(page 74) or even a multilevel access control model [Gol06], depending
on the environment.
 Since the repository and its control are centralized, applying the

proposed security functions is relatively simple. Knowledge sources
could be remote, and they could require digital signatures in addition to
device authentication.

Example Resolved
The law firm now uses a SECURE BLACKBOARD structure to conduct its
cases. The case blackboard receives changes for the case documents, which
are stored in specific classes. The blackboard can be protected from
unauthorized access.

Consequences
The SECURE BLACKBOARD pattern shares the same general benefits of
the original Blackboard pattern [Bus96], but adds the following:

 Nondeterminism. Knowledge sources can be added or removed
dynamically.
 Access control. We can define precise role rights; for example, an

expert can only add to the information, not change it; a lawyer can
decide on the next step, bring new witnesses, but cannot change
depositions, and so on. The access control mechanism in the blackboard
enforces controlled access to the information.
 Authenticity. Authentication services can validate the fact that the data

sources are legitimate. The channels can be encrypted.
 Controlled reconfiguration. We can control who can reconfigure the

knowledge sources
 Records. We can log accesses to the blackboard for future auditing.
 Transparency. The specific security controls used are transparent to

the users of the system.
 Overhead. The security controls should not impose a significant

overhead on the functions of the system. Blackboard systems are not
real-time systems, so the added overhead is easy to accept.

The SECURE BLACKBOARD pattern shares the same liabilities as the
original Blackboard pattern [Bus96], and also:

 Even though the implementation of the Blackboard pattern normally
requires developing the blackboard, the control and the knowledge
sources as simple, loosely connected components, when adding security
capabilities a more complex implementation is required. Several
software components, such as the reference monitor, the authenticator,
the logger, and authorization components should be taken into
consideration in order to build the correct functionality.
 The three security mechanisms incorporated in this pattern are not

enough to control all possible security threats, and must be
complemented with additional mechanisms according to the needs of
the application.

Known Uses
 The software system used by many news agencies (such as AP, AFP

or Reuters) has a structure similar to the SECURE BLACKBOARD
pattern. All information retrieved by reporters and correspondents
(articles, editorials, notes, photographs and so on) is gathered into a
single blackboard, which at the same time is read by many other news
and media enterprises (newspapers, television, radio and so on), who
distribute the information. Nevertheless, all the information written to
or read from the blackboard should be secure. This means that nobody
should be allowed to modify or read the blackboard unless
authentication and authorization are applied.
 A Wiki web is also an example of the use of the SECURE

BLACKBOARD pattern. In this case the knowledge sources are
humans, whose role within the Wiki could be ‘reader’, ‘editor’,
‘administrator’ and so on. The Wiki should function like a blackboard,
whose secure use requires that users are always authenticated, and
access is controlled according to their roles within the Wiki system.
 Designs for applications that may use this pattern include a travel

booking system [Tem], a law firm [Fer07c] and a Java-based
knowledge processing and agent programming software framework
[Tar02].
 The Reflective Blackboard pattern [Sil02] includes security services.

See Also
 The Blackboard pattern [Bus96] is the basis for this pattern.
 Assignment of knowledge sources can use the Resource Assignment

pattern [Fer05h].
 The rights structure can follow an RBAC pattern [Sch06b].
 Authentication is performed by means of instances of the

AUTHENTICATOR pattern (page 52).
 Logging can be done using a SECURITY LOGGER AND AUDITOR

(page 111) [Fer11d].

13.5 Secure Adapter
Also known as Secure Wrapper
The SECURE ADAPTER pattern describes how to convert the interface of
an existing class into a more convenient interface, while preserving the
security of the adapted entity.

Example
We have a text message system that sends, receives and manipulates text
messages. We want to convert our text messages into XML messages so
that we can handle more complex transactions. We purchased an off-the-
shelf tool, XmlMessage, which manipulates XML messages. The problem
is that these two interfaces are incompatible: XmlMessage expects an XML
message, while our text message system does not know how to create an
XML message. Our messages are sensitive and we don’t want unauthorized
people to read or change the adapted data.

Context
A computational environment in which users or processes need to use a
class that has an interface that is incompatible with the current class. The
old class may have sensitive data.

Problem
The Adapter converts the interface of an existing class into a more
convenient interface, but its original description does not take in
consideration security issues.

To illustrate and identify some possible attacks, consider the following
example: we have an interface, RequestServices, which is used to request
services from various servers. We want to be able to send requests to a
JDBC API; however, our interface is incompatible with the JDBC API. We
create a RequestServicesAdapter that adapts requests to JDBC. For
example, a client sends a request for a database connection. The

RequestServicesAdapter converts the request to a JDBC request, which in
turn returns a response containing the requested data items.

We can identify the following threats in this case:
Threat
1

The database accessed through the JDBC interface could be an imposter, and we could be
sending or receiving data from a malicious database.

Threat
2

The client may be an imposter, trying to access the data of an authorized user.

Threat
3

The client making the request may not have permission to send such a request; that is, the
client may try to access data to which it is not authorized.

Threat
4

If the client is remote, the data sent and received may be intercepted by intruders.

Solution
After we identify the possible threats to the adapter, we need to define
policies and their corresponding mechanisms to stop them:
Threat 1 Authenticate the database.
Threat 2 Authenticate the client.
Threat 3 Control access to the adaptee functions through the adapter.
Threat 4 Add a secure channel between the client and the adapter.

Structure
Figure 13.11 shows a class diagram for the SECURE ADAPTER pattern.
We add role-based access control for the clients and a corresponding set of
authorization rules. Requests made to the Adapter have to be authorized,
ensuring that the client has permission to send such requests. The Adapter
also checks responses returned by the Adaptee. For example, when a client
requests a database connection, the Adapter authenticates the database
identity returned in the response from the Adaptee. (The secure channel is
not shown in the figure.)

Figure 13.11: Class diagram of the SECURE ADAPTER pattern

Dynamics
Figure 13.12 shows a sequence diagram for the use case ‘Request data via
the secure adapter’. The client sends a request to the Target. The request is
captured by the Adapter, which is responsible for authorizing the Client.
Once the Client’s permission is verified, the Adapter converts the request to
a specific request. The Adaptee fulfills the request and sends a response
back to the Adapter. At this point the Adapter needs to make sure that the
identity of the subject in the response is not an imposter. After
authenticating the response subject, the Adapter sends the response to the
Client.

Figure 13.12: Sequence diagram for the use case ‘Request data via the
Secure Adapter’

Example Resolved
We can create an adapter class, Message, which receives all requests to
create XML messages and returns XML messages. The text message is

structured in a certain format; for example, sender’s ID, location, name,
message and so forth. We use this format to create the XML message.

Consequences
We can stop the threats identified on page 359 as follows:

 Threat 1. The database can be authenticated.
 Threat 2. The client can be authenticated.
 Threat 3. We can apply authorization to user requests.
 Threat 4. We can use cryptography to avoid attacks to the messages

used in these interactions.

Known Uses
 CORBA-based systems use adaptors to adapt a remote request to the

servant object [Sch00b]. The adaptor also applies authorization
constraints.
 Microkernels use adaptors to adapt process requests that might have

different formats [Bus96]. This makes the microkernel more reusable.
In some implementations the adaptor applies authorization restrictions.

See Also
 ROLE-BASED ACCESS CONTROL (page 78). This pattern assigns

rights to people based on their functions or tasks by assigning people to
roles and giving rights to these roles.
 AUTHENTICATOR (page 52). This pattern allows us to verify that a

subject is who they say they are, by using a single point of access to
receive the interactions of a subject with the system and applying a
protocol to verify the identity of the subject.
 SECURITY LOGGER AND AUDITOR (page 111). This pattern

allows us to capture application-specific events and exceptions in a
secure and reliable manner, to support security auditing.
 Secure Channel [Bra00]. This pattern defines a secure communication

channel between two remote processes.

 Microkernel [Bus96]. Microkernels use adapters to adapt to different
types of client requests.

13.6 Secure Three-Tier
Architecture
The Three-Tier Architecture pattern provides a means of structuring and
decomposing applications into tiers or layers in which each tier provides a
different level of responsibility. One tier deals with the presentation part of
the system (user and system interfaces), another handles the business logic
– the core of the system – and the last tier handles the data storage.

The SECURE THREE-TIER ARCHITECTURE pattern extends the
Three-tier Architecture pattern by enforcing a global view of security for all
three layers. In the presentation part of the system, security aspects dealing
with user interaction are enforced; in the business logic, global security
constraints are applied, while the data storage applies policies to constrain
access of users to data.

Context
The SECURE THREE-TIER ARCHITECTURE pattern is applicable to
distributed systems and systems executing complex and heterogeneous
applications, involving databases, with data and documents that contain
sensitive information.

Problem
Systems that contain sensitive and valuable data will attract attackers. How
can we provide security in the presence of internal and external threats?

The solution to this problem must resolve the following forces:
 Completeness. We need to secure all the tiers of the system. Leaving

any layer unprotected will allow some attacks to succeed.
 Threats. Attacks may come from legitimate users, using the resources

available to them, while other attacks may come from external users
through Internet vulnerabilities. Possible misuses of the system include

illegal reading or modification of information. These actions may have
serious negative effects on the institution that owns the information,
and so cannot be tolerated. We need to stop or mitigate these attacks.
 Availability and recovery. We need to provide availability through

service continuity and robust recovery in case of disaster, otherwise
economic losses might result.
 Transparency. The security system should be mostly transparent to

the users. If the users need to perform special actions for security, they
may just skip them.
 Accountability. A user may deny having carried out some action. We

need to be able to show that they actually performed the action.
 Policies. We should be able to apply institution policies to control the

use of the information.

Solution
Apply appropriate security services to each layer. The presentation layer
requires authentication and authorization of users. Secure the
communication channel between the users and the system and enforce
encryption of the data sent between the user and the system. The business
tier defines a unified access control model for the complete system, while
the presentation layer shows subsets of this model to the users and controls
their interactions. The storage layer may have additional constraints based
on the sensitivity of the data; for example, some parts may be encrypted.

Structure
The main architectural view of the SECURE THREE-TIER
ARCHITECTURE pattern is shown in Figure 13.13. The PresentationTier
includes user and system interfaces; the PresentationSecurityServices
include authentication and authorization. The BusinessTier includes a
unified model of the enterprise data and provides global authorization rules
and their reference monitor. Its BusinessSecurityServices include global
authorization rules, and must be coordinated with a SECURE BROKER
(not shown), which may introduce additional restrictions. The DataTier
defines authorization to access stored data items and mechanisms for

encryption. The specific services used depend on the application, but to
support a variety of applications we need a complete set of services.

Figure 13.13: Class diagram for the SECURE THREE-TIER
ARCHITECTURE pattern

Dynamics
The dynamic behavior of the SECURE THREE-TIER ARCHITECTURE
pattern is illustrated by the sequence diagram of Figure 13.14, which shows
the use case ‘Process a database request’.

Figure 13.14: Sequence diagram for the use case ‘Process a database
request’

A request is issued by a Client, which goes to the Presentation layer
for processing. This layer cannot satisfy the request by itself, so it calls the
next layer, the Business (logical) layer, for more support with the request.
As with the Presentation layer, part of the request can be handled here,
but there are some parts which need support from the Data layer, so this is
finally called. Here, at the last level, the subtask specific to this layer is
performed and the results are sent back to the Business layer, which
aggregates its results with what was received and returns them to the
Presentation layer. The Presentation, Business and the Data layers may
apply access and authorization constraints.

The Business layer will typically include a global enterprise model and
will centralize authorization rules, but these may be applied at other layers.
Each layer protects the layer below. For example, the Presentation layer
may protect the Business layers from a denial of service attack.
Communication between Clients and the Presentation layer may require
authentication, as part of the first phase shown in Figure 13.14. Processing
in the Data layer may require authorization from the requesting business
component, or directly from the client – that is, through an authorization
granted on the Presentation layer.

Implementation
The following steps are needed to implement this pattern:

1 Define a global authorization model for the enterprise, unifying the
possible variety of authorization models used by the databases.
Typically, ROLE-BASED ACCESS CONTROL (page 78) is used.
2 Select authentication approaches based on the needs of the
applications. For example, remote user interfaces may need to be
authenticated. The type of authentication depends on the sensitivity of
the data.
3 Select an approach for encrypting messages and for digital signatures.
Languages such as Java and C# include cryptographic libraries with
different algorithms.

Consequences

The SECURE THREE-TIER ARCHITECTURE pattern offers the
following benefits:

 Centralized security. Authorization constraints, authentication
information and logging repositories can be associated with the
Business layer.
 Coverage. All layers may apply security restrictions, tailored to the

needs of the applications.
 Unified security. The pattern achieves this by the use of a global

business model with its corresponding authorization structure. We can
enforce any semantic constraints on access.
 Transparency. The application of security controls is transparent to

the users.
 Availability. Because this is a distributed architecture, we can

introduce some redundancy and improve availability.
 Non-repudiation. The user interfaces can apply digital signatures for

specific interactions.
The pattern also has the following potential liabilities:

 Security overhead. Security actions imply some overhead.
 Extra complexity. The addition of security functions makes the system

more complex; for example, it may not be clear where to apply specific
security constraints.

Known Uses
 A three-tier security dashboard for cloud computing is presented in

[Joo11].
 Sun One Application Server offers services to clients [SunD],

protected using certificates, SSL/TLS encryption, authentication and
auditing.
 IBM WebSphere’s architecture can be mapped into three-tier

architecture, and users can enable security by making use of the LTPA
mechanism [IBMd]. Security mechanisms such as authentication,
certificates, SSL, and PKI can be configured to provide security.

 The BEA Web Logic Server architecture is built using three layers
[BEA]. Certificates and different encryption mechanisms can be used to
provide security.

See Also
 AUTHORIZATION (page 74)) and ROLE-BASED ACCESS

CONTROL (page 78) patterns define the models used in the unified
security model of the business tier.
 AUTHENTICATOR (page 52) defines an abstract authentication

process.
 Several papers have presented patterns for three-tier architectures

[Aar96] [Jos01] [Mah] [Ren]. They are important to the study of other
aspects of this architecture.
 The Business layer requires a Broker [Bus96] or web services for

distribution.
 [Bou11] use security patterns for component-based design that could

be used to implement the business tier.
 Patterns to build components for the business layer can be found in

[Voe02].

13.7 Secure Enterprise Service Bus
The SECURE ENTERPRISE SERVICE BUS pattern describes how to
provide a convenient infrastructure to integrate a variety of distributed
services and related components in a simple and secure way.

Example
A travel agency interacts with many services to make flight reservations,
check hotel availability, check customer credit and others. This interaction
is currently done by direct interaction, which results in many ad hoc
interfaces and requires many format conversions. The system is not scalable
and it is hard to support standards. It is also insecure.

Context
Distributed applications using web services, as well as related services such
as directories, databases, security and monitoring, or other types of
components (J2EE, .NET). There may be different standards applying to
specific components, as well as components that do not follow any
standards.

Problem
When an organization has many scattered services, how can we aggregate
them so they can be used together to assemble applications, at the same
time keeping the architectural structure as simple as possible, and apply
uniform standards?

The solution to this problem must resolve the following forces:
 Interoperability. It is fundamental for a business unit in an institution

to be able to interact with a variety of services, internal or external.
 Simplicity of structure. We want a simple way to interconnect

services; this simplifies the work of the integrators.
 Scalability. We need to have the ability to expand the number of

interconnected services without making changes to the basic
architecture.
 Message flexibility. We need to provide a variety of message

invocation styles (synchronous and asynchronous) and formatting. We
can thus accommodate all service needs.
 Simplicity of management. We need to monitor and manage many

services, performing load balancing, logging, routing, format
conversion and filtering.
 Flexibility. New types of services should be accommodated easily.
 Transparency. We should be able to find services without needing to

know their locations.
 Quality of service. We may need to provide different degrees of

security, reliability, availability or performance.
 Use of policies. We need a policy-based configuration and

management. This allows convenient governance and systematic

changes. Policies are high-level guidelines about architectural or
institutional aspects, and are important in any system that supports
systematic governance, as well as security and compliance [Sch06b].
 Standard interfaces. We need explicit and formal interface contracts.
 Recording. We need to record sensitive transactions.
 Security. We can enumerate threats and add defenses.

Solution
Introduce a common bus structure that provides basic brokerage functions
as well as a set of other appropriate services. Figure 13.15 shows a typical
structure. One can think of this bus as an intermediate layer of processing
that can include services to handle problems associated with reliability,
scalability, security and communications disparity. An ESB is typically part
of a Service-Oriented Architecture (SOA) implementation framework,
which includes the infrastructure needed to implement a SOA system. This
infrastructure may also include support for stateful services.

Figure 13.15: An Enterprise Service Bus (from [Zdu06])

Structure
Figure 13.16 shows the class diagram of the SECURE ENTERPRISE
SERVICE BUS pattern. The ESB connects business services with each
other, providing support for the needs of these services through a service
that can be made up of Business Application Services (BASs), which in

turn use Internal Services to perform their functions. BASs are accessed
through Service Interfaces (SIs).

Figure 13.16: Class diagram for the SECURE ENTERPRISE SERVICE
BUS pattern

Dynamics
Figure 13.17 shows the sequence diagram for the use case ‘Access a
service’. A Client sends a request for a BAS through the ESB, which finds
the corresponding service interface.

Figure 13.17: Sequence diagram for the use case ‘Access a service’

Implementation
The SECURE ENTERPRISE SERVICE BUS itself is an example of a SOA
architecture, since it performs its functions using internal services.

An important implementation decision is whether stateful services should
be supported or not. Stateless services are easier to design and manage, but
there are some applications that require stateful execution.

Consequences
The SECURE ENTERPRISE SERVICE BUS pattern offers the following
benefits:

 Interoperability. The SESB, through its architecture and use of
adapters, provides a way to interact with a variety of services, internal
or external.
 Simplicity of structure. The pattern is much simpler – has fewer

interconnections – than point-to-point or any other interconnection
structure.
 Scalability. The number of interconnected services can be increased

easily.
 Message flexibility. We can provide a variety of message invocation

styles (synchronous and asynchronous) by using different message
patterns.
 Flexibility. New types of services can be accommodated easily, since

they only need to conform to the interface standards.
 Simplicity of management. We can centralize the functions of

monitoring and management of services, as well as any other required
functions.
 Transparency. We can find services conveniently by providing lookup

services.
 Quality of service. By using appropriate associated services we can

provide different degrees of security, reliability, availability or
performance.
 Use of policies. We can use institution policies for configuration and

management. This allows convenient governance and systematic
changes. Security policies can define rights for the users with respect to
the services.
 Standard interfaces. We can define explicit and formal interface

contracts that must be followed by all aggregated functions.
 Recording. We can add a SECURITY LOGGER AND AUDITOR

(page 111) to record sensitive transactions.

 Security. We can enumerate threats and add defenses. Specifically, we
could add a SECURE BROKER (page 339), SECURE ADAPTERs
(page 358), SECURE MODEL-VIEW-CONTROLLER (page 375) and
others.

The pattern also has the following potential liabilities:
 Extra overhead compared to point-to-point, because of the indirection

involved and the overhead of the ESB itself.
 The bus is a single point of failure, but this can be overcome using

redundancy.
 A common interface standard may not be the most convenient for

some services. Some applications may need more functions or
parameters to interact than those defined in the common interfaces.
Designing such a common interface may not be easy either.
 The bus may hide component dependencies.

Variants
 According to [Fer], the ESB will evolve into an Internet bus.
 The Secure Broker pattern has access control for web services, secure

channels and logging [Mor06b].

Known Uses
 BEA AquaLogic Service Bus, now Oracle Service Bus, has

operational service-management. It allows interaction between services,
routing relationships, transformations and policies [BEA] [BEA11].
 WebSphere Application Server [Sph]. IBM’s Business Integration

Reference Architecture consists of products from the WebSphere
family.
 The Service Provider Delivery Environment (SPDE) architecture is an

implementation of this reference architecture for the
Telecommunications industry [WSE].
 Microsoft BizTalk Server [Biz09] also uses ESBs and SESBs.

 Mule ESB Enterprise is a supported version of the open source
product Mule ESB [Mul]. [Swa08] shows its use to integrate web
services written in Java and Ada using SOAP and REST protocols with
an Ada web server.

See Also
 The ESB is a type of Message Channel and is closely related to the

Message Bus pattern, both described in [Hop04]. Because of its role as
a communicator, the ESB is related to a variety of patterns that provide
communication or adaptation. The ESB can be seen also as a
microkernel, in that it forwards client requests to a set of services
[Bus96].
 The Enterprise Service Bus can be considered a composite pattern

comprised of the following patterns [Erl09]:
 The (Service) Broker pattern, which itself is a composite pattern that

consists of a set of integration-centric patterns used to translate between
incompatible data models, data formats and communication protocols
[Bus96].
 The Asynchronous Queuing pattern, which establishes an

intermediate queuing mechanism that enables asynchronous message
exchanges and increases the reliability of message transmissions when
service availability is uncertain [Sch00b].
 The Intermediate Routing pattern, which provides intelligent agent-

based routing options to facilitate various runtime conditions [IRP].
 Adapters are necessary to connect some services to the bus, because

their interfaces may not follow the standard interface defined in the bus
architecture. Database systems will typically need an Adapter [Gam94]
or SECURE ADAPTER (page 358).
 A repository for web services and objects is usually attached to and

used by the ESB [Gar10].
 Microflows and macroflows can be realized using a Process Manager

[Hop04].
 A Lookup pattern may be used to find a specific service, or a service

of some given type [Kir04].

 The Mediator pattern encapsulates how a set of objects interacts
[Gam94].
 The SECURITY LOGGER AND AUDITOR pattern (page 111) is

intended to keep track of security-sensitive actions [Fer11d].
 [Chat04] considers several channel patterns, including point–to-point,

but not bus channels.
 [Erl09] considers Asynchronous Queuing, Event-Driven Messaging

and other patterns.
 The Publish/Subscribe pattern can perform its communication

functions using an ESB. Conversely, the SECURE DISTRIBUTED
PUBLISH/SUBSCRIBE pattern (below) adds a way for the ESB to
communicate events to its services.
Figure 13.18 shows how some of these patterns are related.

Figure 13.18: Some of the related patterns of the ESB

 A use of an ESB to provide Security as a Service is described in
[Hut05].

13.8 Secure Distributed
Publish/Subscribe
The SECURE DISTRIBUTED PUBLISH/SUBSCRIBE pattern describes
how to decouple the publishers of events from those interested in the events
(subscribers) in a distributed system. Subscription and publishing are
performed securely.

Context
Distributed applications using web services, as well as related services such
as directories, databases, security and monitoring. There may be also other
types of components (J2EE, .NET). Different standards may apply to
specific components, and there may be components that do not follow any
standards.

Problem
Subscribers register and receive messages in which they are interested. How
can we organize publishers and subscribers such that their interactions are
secure?

We relate threats to use cases as goals of the attacker [Fer06b]:
 Subscription

 S1: An imposter subscribes to receive information.
 S2: The publisher is an imposter and collects information (and

maybe money) from potential subscribers.
 S3: The subscription messages are intercepted and read or

modified by an attacker.
 Unsubscription

 U1: An imposter removes a subscriber.
 Publish

 P1: An imposter receives information illegally.
 P2: An imposter publishes illegal information.
 P3: An attacker reads or modifies intercepted information.

Solution
Use a secure event channel by which publishers send their events and
interested subscribers can receive the events. Subscribers register for the
events in which they are interested.

Defenses
 S1, S2, U1, P1: Mutual authentication

 S3, P3: Message encryption
 P2: Digital signature
 P4: Authorization

Structure
Figure 13.19 shows the class diagram for this pattern. Subscribers can
register to receive specific events. Their conditions are described in the
class Subscription. The Channel represents different ways of publishing
events.

Figure 13.19: Class diagram for the SECURE DISTRIBUTED
PPUBLISH/SUBSCRIBE pattern

Dynamics
Figure 13.20 shows a sequence diagram for the use case ‘Publish event’.
Other use cases include ‘Register subscriber’ and ‘Remove subscriber’.

Figure 13.20: Sequence diagram for the use case ‘Publish event’

Consequences
The SECURE DISTRIBUTED PUBLISH/SUBSCRIBE pattern offers the
following benefits:

 Loose coupling. Publishers can work without knowledge of their
subscriber details, and vice versa. This fact protects the subscribers if
the publisher is compromised.
 Location transparency. Neither subscribers nor publishers need to

know each other’s locations; a lookup service can find their locations.
This aspect protects both publishers and subscribers.
 Threats. If events are sensitive we can encrypt the event channel. We

can also use digital signatures for authenticity.
The pattern also has the following potential liabilities:

 Overhead. There is some overhead in the event structure; tight
coupling of subscribers to their publishers would have better
performance at the cost of flexibility.
 Excessive interoperability. Because of its decoupling effect, this

pattern allows the interaction of any type of publishers and subscribers,
and hence is liable to attackers gaining easier access (the extended
version of the pattern in the Variants section can mitigate this).
 A distributed system may also suffer denial of service attacks which

cannot be controlled at the middleware level (a network problem).

Variants
 The Secure Distributed Publish/Subscribe with Access Control

pattern extends the basic pattern presented here by adding authorization
and a reference monitor (see the Secure Facade pattern, [Fer12e]) to
control the publish and subscribe functions.
 An example that uses an instance of this variant can be found in

[Bac08], which describes a Hermes-based secure publish/subscribe
middleware using role-based access control for controlling access.
 Other authorization patterns such as Attribute-Based Access Control

(ABAC) [Pri04] could be useful to determine whether subscription is
allowed based on subject attributes.

Known Uses
 [Won08] describes an architecture for secure content-based

publish/subscribe networks.

 [Sse10] describes an e-commerce network using secure
publish/subscribe units.
 [Sri05] presents a security architecture of a publish/subscribe system

(including a consideration of possible attacks) based on event guards.

See Also
 A Broker can be used as the distribution channel. It typically includes

a look-up service and can distribute events to subscribers in a
transparent way. A broker may include further security services; see
SECURE BROKER (page 339).
 The Secure Channel pattern [Bra00] supports the

encryption/decryption of data. This pattern describes encryption in
general terms.
 In publish/subscribe middleware communication may be based on

group broadcast, which would require secure group communication
protocols. There are currently no security patterns for this.
 An Enterprise Service Bus (ESB) includes all the services needed for

the publish/subscribe functions and uses the publish/subscribe functions
for its own functions. An ESB may include its own security services;
see SECURE ENTERPRISE SERVICE BUS (page 366).
 AUTHENTICATOR (page 52).
 DIGITAL SIGNATURE WITH HASHING (page 301).
 Although clearly different, this pattern is sometimes confused with

the Observer pattern [Gam94].

13.9 Secure Model-View-Controller
The SECURE MODEL-VIEW-CONTROLLER pattern describes how to
add security to the interactions of users with systems configured using the
Model-View-Controller pattern.

Example

eLeague is a company that provides tournament management applications
to a variety of sport leagues. The company develops service-based mobile
applications allowing sport administrators, athletes and coaches to view
and/or maintain their teams, schedules and scores from any location. The
user interface of the application is susceptible to frequent change, as it has
to adapt to new generations of mobile devices, whereas the structure of a
tournament’s information changes less often. In addition, tournament
information is sensitive and should be modified only by authorized users.

Context
The Model-View-Controller (MVC) pattern [Bus96] provides a way to add
modularity to an application by separating its functionalities into three
loosely-coupled components, the Model, the View and the Controller, thus
rendering the entire application more maintainable. This pattern has long
been applied to both standalone applications and distributed systems. The
MVC pattern is now widely used in web applications, ranging from service-
based applications to mobile web applications. Figure 13.21 shows the class
diagram of the structure of the MVC pattern.

Figure 13.21: Class diagram of the structure of the MVC pattern (adapted
from [Bus96])

Systems applying the MVC pattern are typically multi-user systems, and
their model should be accessible and/or modifiable only by certain
categories of users. At the same time, the use of the web as a transport layer
has brought some new threats that must be mitigated: eavesdropping,
impersonation via session hijacking, unauthorized modification via such
attacks as SQL injection, or cross-site scripting.

Problem
How can we maintain an acceptable level of security between the model,
the view and the controller in the presence of possible attacks?

The solution to this problem must resolve the following forces:
 Authenticity. We need to be sure that users who interact with our

system are legitimate. Remote users will want to be sure that our
system is authentic.
 Confidentiality. We may need to restrict access to the model’s

information to some users or roles. Also some portions of the data in
transit from the model to the view must be protected against
eavesdropping.
 Integrity. We may want to allow only some users or roles to make

changes to the model, and only authorized changes.
 Records. The model may contain sensitive information and we want

to have a record of all accesses to it.

Solution
The SECURE MODEL-VIEW-CONTROLLER pattern allows users to
securely access and/or modify sensitive information located in the Model
component. Basic security patterns are applied to provide authentication,
authorization, secure communications and logging. In addition, it might be
necessary to sanitize incoming and/or outgoing data, to prevent malicious
payload attacks such as SQL injection or cross-site scripting attacks.

Access control can be added at the Model level and/or at the Controller
and View levels. Adding access control at the Controller and View levels is
less intrusive for the model; however, it is coarse-grained. Access control at
the Model level can be finer-grained and could be based on specific
attributes of the Model.

Structure
Security is added to the MVC pattern by applying several security patterns
(Figure 13.22). An Authenticator identifies and authenticates the User
requesting access to the Model and/or to the Controller through the View.

We apply the ROLE-BASED ACCESS CONTROL (RBAC) pattern to the
MVC pattern. Users are members of Roles, and Rights are assigned to
Roles. A Right defines the access type that can be applied by a Role to the
Model, to the Controller or to the View. A ReferenceMonitor enforces the
access control rights defined in the RBAC pattern. A SecureChannel is
responsible for securing traffic between the elements of the MVC pattern. A
SecureLogger records all security-sensitive actions on the model. Finally,
incoming data and outgoing data must be filtered by an DataSanitizer to
prevent malicious payloads embedded into otherwise authorized requests
from accessing the model.

Figure 13.22: Structure of the SECURE MODEL-VIEW-CONTROLLER
pattern

Dynamics
Figure 13.23 (page 380) shows a sequence diagram in which an
authenticated user enters some input through the currently displayed View.
The data embedded in the request sent to the Controller is first inspected
by the DataSanitizer, then the request is intercepted by the

ReferenceMonitor, and if a Right exists for the requested operation on the
Controller, it can accept the user input.

Figure 13.23: Sequence diagram for the use case ‘Propagation of a change
to the model’

The Controller handles a user event by updating the Model and selecting
another View. The request for updating the Model can also be intercepted by
the ReferenceMonitor for finer access control. The access control decision
is recorded by the SecurityLogger. Finally the selected View gets data from
the Model. The request is again intercepted by the ReferenceMonitor.

Implementation
In order for the View to obtain data updates from the Model, it is possible to
use a push or pull strategy. In an asymmetric context such as the web, the
View has no choice but to constantly poll the Model. In [Str11], a method
called long poll is used. In standalone applications, the Observer pattern can
be applied [Gam94].

[Gal10] indicates how to avoid open redirection attacks in ASP MVC. An
open redirection attack is performed by a tampered-with web application
that redirects a request to a URL to an external, malicious URL.

Example Resolved
eLeague can apply the SECURE MODEL-VIEW-CONTROLLER pattern.
The following roles are defined: administrator, coach, athlete. Each
individual user is asked to register with the system so that they can be
authenticated whenever they need to access it. Each operation of the
controller can be mapped to a set of authorized roles; for accessing sensitive
data, it can be modified to use a secure transport protocol.

Consequences
The SECURE MODEL-VIEW-CONTROLLER pattern offers the following
benefits:

 Authenticity. An authentication system may confirm to the users that
they are talking to the right model. Conversely, authentication indicates
that the users accessing the model are legitimate.
 Confidentiality and integrity. An authorization system can enforce

confidentiality and integrity. A secure communication protocol ensures
that data in transit remains confidential. The integrity of the system is
also guaranteed by the data sanitizer, which eliminates attacks from
malicious embedded payloads.
 Records. A security logger (page 111) can record all security-sensitive

actions. The pattern also has the following potential liabilities:
 The security controls introduce some overhead.
 The security controls add complexity to the architecture.

Known Uses
 The ASP .NET MVC framework [Mic11] provides authentication and

authorization functionalities at the Controller’s method level. In
addition, AntiXSSLibrary and HtmlSanitizationLibrary are two
libraries that can be used for protecting against XSS (cross-site
scripting) attacks as well as CSRF or XSRF (cross-site request forgery)
attacks.
 The Struts web framework [The12] provides a validation framework,

which is the primary method of validating a Struts-based application.
Output sanitization is the process of ensuring that your output does not
contain HTML- or XML-specific characters. In addition, roles can be
mapped to action mapping objects, a Controller component, and
authentication attributes can be specified. The framework supports
multiple authentication schemes, such as password authentication,
FORM-based authentication, authentication using encrypted passwords,
and authentication using client-side digital certificates. SSL can be
enabled as a secure transport layer.

 The Spring Web MVC framework [Spr12] offers similar security
features.

See Also
 Authorization is enforced by a REIFIED REFERENCE MONITOR

(page 100).
 The rights structure can follow a ROLE-BASED ACCESS

CONTROL (page 78) model.
 Authentication is performed by means of the AUTHENTICATOR

pattern (page 52).
 Logging can be done using a SECURITY LOGGER AND AUDITOR

(page 111).
 The Secure Channel pattern is used to secure the communications

channels [Bra00]. It supports the encryption/decryption of data.
Another version is given in [Sch06b].
 The relationship between Views and the Model can use the SECURE

DISTRIBUTED PUBLISH/SUBSCRIBE pattern (page 372). Views
could subscribe to updates from the Model.
 The MVC pattern can be structure according to the SECURE

THREE-TIER ARCHITECTURE (page 362).
 The Input Validator pattern sanitizes inputs to a system [Net06].

1 The object within the Server that provides the specific service
requested.

CHAPTER 14

Misuse Patterns

That some good can be derived from every event is a better proposition
than that everything happens for the best, which it assuredly does not.

James Kern Feibleman, philosopher and psychiatrist (1904–1987)
The study of error is not only in the highest degree prophylactic, but it
serves as a stimulating introduction to the study of truth.

Walter Lippmann, journalist (1889–1974)

14.1 Introduction
To design a secure system, we first need to understand the possible threats
to the system. We have proposed a systematic approach to threat
identification, starting from the analysis of the activities in the use cases of
the system, and postulating possible threats [Fer06a]. This method identifies
high-level threats such as ‘the customer can be an imposter’, but once the
system is designed we need to see how the chosen components could be
used by the attacker to reach their objectives. A misuse is an unauthorized
use (read, modify, deny use) of information, and our emphasis is in how the
misuse is performed. A misuse pattern describes, from the point of view of
the attacker, how a type of attack is performed (what units it uses and how),
analyzes the ways of stopping the attack by enumerating possible security
patterns that can be applied for this purpose, and describes how to trace the
attack once it has happened by appropriate collection and observation of
forensics data. It also describes precisely the context in which the attack
may occur.

Figure 14.1 presents a UML model that describes the sections of a misuse
pattern [Fer09d]. The components of the pattern correspond to sections of

the template used to describe it in words. Below, we describe each section
in detail.

Figure 14.1: UML class model for misuse patterns

An important value of the proposed approach is that the misuse, described
dynamically in a sequence or collaboration diagram, makes direct reference
to the components of the system, described in turn by the class diagram of
the system. The sequence or collaboration diagram uses objects from
classes in the class diagram, and we can then relate messages to the
components where they are sent (classes represent the components of the
system). The parameters in these messages consist of data that can be found
in the corresponding component. In other words, the combination of
sequence and class diagrams tells us what information we can find in a
component after an attack.

Figure 14.2 (a composition of three UML diagrams) shows a global view
of a misuse pattern. Objects O1 and O2 are communicating with object O3,
as shown in the deployment part of the diagram. Dotted lines show their
correspondence with system classes; for example, O1 and O2 belong to A.
The collaboration part of the diagram in Figure 14.2 indicates the sequence
of messages needed for an attack and the patterns sp1, sp2, sp3 show
security patterns that can stop or mitigate the attack. This diagram
emphasizes the fact that to stop specific attacks more than one pattern may
be needed.

Figure 14.2: A misuse pattern

In [Was09] we introduced the concept of a dimension graph to classify
patterns. However, the dimensions needed to classify misuse patterns are
different from those used to classify security patterns. Misuse patterns
describe specific attacks in a particular environment, such as VoIP, web
services and so on. This means that the two main dimensions are the type of
generic attack or misuse – for example, denial of service – and the
environment where the attack is possible. An additional dimension is the set
of attack actions or patterns that are necessary to perform the misuse (An
attack pattern is an action leading to a misuse, for example a buffer
overflow).

Finally, a solution dimension includes the security patterns needed to stop
or mitigate the misuse. As an example, Figure 14.3 shows a pattern for a
denial of service attack in VoIP [Pel09]. This pattern describes a generic
denial of service attack, and its environment is VoIP networks. To perform
it, a hacker first needs to install their malware in unprotected systems
(zombies), followed by activation of these systems to make them flood the
target with requests. To mitigate this attack we need to filter traffic from
specific address ranges using Packet Filter Firewall and Proxy Firewall
patterns [Sch06b] and an IDS to detect the attack (see Chapter 10).

Figure 14.3: Classifying the DENIAL-OF-SERVICE IN VOIP misuse
pattern

We now enumerate each section of the template of Figure 14.1 and
characterize them using graph representations.

Name
The name of the pattern should correspond to the generic name given to the
specific type of misuse in standard attack/misuse repositories such as CERT
[Cer06] or Symantec [Sym].

Thumbnail Description
A short description of the intended purpose of the pattern (which problem it
solves for an attacker).

Context
The context describes the generic environment, including the conditions
under which the misuse may occur. This may include minimal defenses
present in the system, as well as typical vulnerabilities of the system. The
context is specified using a deployment diagram of the relevant portions of
the system, as well as sequence or collaboration diagrams that show the
normal use of the system. Figure 14.2 shows an example, where two client
objects communicate with a server. A class diagram may show the relevant
system structure.

We can list specific preconditions for an attack to happen, as well as other
patterns necessary to apply this pattern, such as preparatory actions. The
context of the misuse pattern may be defined by a partial dimension graph,
describing the classification of the pattern according to the dimensions
above except for the solution section. (In the complete pattern description
we show the complete dimension graph.)

Pattern hierarchies are important to precisely characterize the
architectural environment. For example, Figure 14.4 shows a hierarchy for
VoIP misuses. Misuses that apply to distributed or real-time systems may
also apply to VoIP systems, because they belong to these two categories. On
the other hand, the misuse can only apply to environments that use the SIP
protocol.

Figure 14.4: A hierarchy of architectural contexts

Problem
From a hacker’s perspective, the problem is how to find a way to attack the
system. An additional problem occurs whenever a system is protected by
defense mechanisms. The forces indicate what factors may be required in
order to accomplish the attack and in what way; for example, which
vulnerabilities can be exploited. They also include which factors may
obstruct or delay accomplishing the attack.

Solution
This section describes the solution of the hacker’s problem – that is, how
the misuse can be accomplished and the expected results of the attack.
UML class diagrams show the system under attack. Sequence or
collaboration diagrams show the exchange of messages needed to
accomplish the attack. State or activity diagrams may add further detail.
Attack patterns that are necessary for the misuse are also listed here. For
example, to perform DoS in VoIp, we need to infect zombies (Figure 14.3).

The UML class model should not be a comprehensive representation of
all components and relationships involved in an attack. Rather, the pattern
solution should represent all components that are important to perform or

prevent the attack and are essential to the forensics examination. This can
be represented by a class diagram that is a subset or superset of the
architectural class diagram of the context.

In cases in which primary sources of forensic data (firewalls, IDSs and
network forensic analysis tools) don’t contain enough evidence,
investigators need to look for secondary sources. The most obvious and
common secondary sources of data are terminal devices, servers and
network storage devices. Many wireless devices may also contain forensic
data. This may require refining the class diagrams to show more details of
the system structure.

The section may include a diagram with only the selected classes and
associations relevant to the forensic examination (Figure 14.5). Forensic
information can be collected into forensic objects, f1 to f4 in the diagram.
All forensic objects that collect information from different objects of the
same class are collected into forensic classes; f2, f3, and f4 are part of
forensic class forB. A collaboration diagram shows which objects interact
during the misuse; this can be obtained directly from the sequence diagram
of the misuse.

Figure 14.5: Forensic objects and classes

Consequences
This section discusses the benefits and drawbacks of a misuse pattern from
the attacker’s viewpoint. Is the effort and cost of the attack commensurate
with the results obtained? This is an evaluation that must be made by the

attacker when deciding to perform the attack; the designers should evaluate
their assets using some risk analysis approach. The enumeration includes
good and bad aspects and should match the forces, but there may be
consequences that do not correspond to any forces.

Countermeasures and Forensics
This section describes the security measures necessary to stop, mitigate or
trace this type of attack. This implies an enumeration of which security
patterns are effective against the attack. From a forensic viewpoint, it
describes what information can be obtained at each stage of tracing back the
attack and what can be deduced from this data in order to identify this
specific attack. Finally, it may indicate what additional information should
be collected at the system components through which the attack was
propagated to improve forensic analysis, using the model of Figure 14.5 as
a reference. Each pattern may also carry information about the time it takes
to apply its solution [Yos04].

Known Uses
This section describes specific incidents when the attack has been used. For
new vulnerabilities, where an attack has not yet occurred, specific contexts
where the potential attack may occur are enough.

See Also
This section discusses other misuse patterns with different objectives but
performed in a similar way, or with similar objectives but performed in a
different way. It also considers patterns of complementary misuses or
patterns of attacks that support the misuse. These patterns can be related
using a misuse pattern diagram, analogous to the pattern diagrams used in
[Bus96] and many pattern papers.

We have applied this approach to the construction of a small catalog of
the most typical attack patterns in VoIP [Pel09]. We are also integrating this
method with our methodologies to build secure systems [Fer06b]. We need
to expand this catalog to make it of more practical value. Note that as usual,
patterns provide only guidelines, not plug-in solutions; that is, for each new

application, the patterns provide guidelines about what to expect, where to
look and how to start, but their solutions must be tailored to the specific
environment.

A catalog of misuse patterns can be organized using contexts as the main
classification dimension; for example, misuse patterns for VoIP, for
client/server architectures, for component structures and so on. More
detailed patterns are possible depending on finer architectural aspects, for
example DoS in VoIP in a SIP environment. While security patterns have
been used in many practical projects, there is no practical experience with
misuse patterns; we will have to wait until they are used to get a realistic
appraisal of their value.

The misuse patterns described above are used to describe attacks against
an existing system. Misuse patterns can also be defined in the analysis stage
of a new system. As we have shown in [Fer06c], we can enumerate threats
from activity diagrams for use cases or sequences of use cases. Using the
classes in the conceptual model, we can describe misuse patterns as part of
the lifecycle of systems under development.

We show here three misuse patterns:
 A WORM pattern [Fer10c]. Malicious software propagates itself to as

many places as possible (or to specific systems), usually indicating its
presence, and maybe performing some damage.
 DENIAL-OF-SERVICE IN VOIP [Pel09]. A VoIP DoS attack

overwhelms limited resources in order to disrupt VoIP operations,
typically through a flood of messages. This leads to degradation of
response time, preventing subscribers from effectively using the
service.
 SPOOFING WEB SERVICES [Mun11]. A web service spoofing

misuse tries to impersonate the identity of a user by stealing their
credentials, and then makes requests in their name with these
credentials, with the intention of accessing a victim’s web service.

More VoIP misuse patterns can be found in [Pel09]. A misuse pattern for
stealing data through SQL injection is shown in [Fer12f]. Failure patterns,
their counterpart for dependability, were defined in [Buc12].

14.2 Worm
The WORM pattern describes how a worm can propagate itself to as many
places as possible (or to specific systems), usually indicating its presence,
and maybe performing some damage.

Context
Sites connected through the Internet or another type of network. The
Internet provides a variety of services such as e-mail, file transfer and web
services. Any of these services can be used for propagation. Both fixed and
wireless networks can be used by a worm. Portable storage devices such as
memory sticks can also propagate worms.

Problem
A worm tries to take advantage of any input to invade a system. Users
might open attachments carrying worms and some ports of a system may be
unprotected or have vulnerabilities; all of these give the worm a chance to
invade. Mail systems and file transfer systems for example, include lists of
addresses that can be used by the worm to find places to which to
propagate. Many systems do not control access to their system directories
and do not restrict Internet traffic, which facilitates a worm invasion.

The solution to this problem must resolve the following forces:
 Objectives. A worm’s objectives may be political, monetary or

vandalism. A political or terrorist worm typically tries to produce
damage to an antagonist; a monetary worm tries to reach many places
to collect information or drop spyware; a vandal worm tries to destroy
or damage information.
 Reach. To try to reach as many places as possible or to specific sites.

For most worms, reaching many places is a basic objective.
 Presence manifestation. To try to show its presence in the system, so

that victims know about it. Exceptions to this are cases in which the
objective is to drop spyware.
 Credit. To embed an identification or mark so that the worm’s creator

can take credit for it.

 Misuse. Perform some destruction and/or other misuses
(confidentiality, integrity, or availability). The misuse may be delayed
(time bomb).
 Obfuscation. To try to hide its structure to make its detection and

removal harder.
 Collateral damage. In addition to specific misuses, the worm may

require costly operations for its removal, stopping or disrupting
business activities. Its propagation may affect the normal traffic in the
network.
 Latency. A worm’s propagation must be as fast as possible to avoid

detection and countermeasures.
 Activation. This can be done by enticing offers which may tempt

users to open e-mail attachments or download procedures (social
engineering). Other possibilities are invading through unprotected ports
or taking advantage of vulnerabilities.

Solution
Attach a core portion of the worm to e-mail messages or to files. When the
user opens the message attachments or executes the file, the core of the
worm starts executing. Alternatively, invade through an unprotected or
flawed port. Download remaining portions from complementary network
sites. Use some procedure to hide the structure of the worm. Perform its
mission and propagate. Figure 14.6 shows the propagation of a typical
worm; speed comes from a tree-like propagation.

Figure 14.6: Worm propagation

Structure
Figure 14.7 shows a class diagram of the units involved. Node represents
any node in the network, defined by its address (URL on the Internet). Any
node can be the origin of a worm and any node can be its target (and be
invaded). Some nodes are complementary sites from which commands or
other parts of the worm may be retrieved. The class Worm represents the
worm itself, including procedures for initial setup, to bring complementary
parts, to hide the worm, to perform its mission and to propagate.

Figure 14.7: Class diagram for the WORM pattern

Dynamics
Use cases for a worm may include ‘Create a worm’, ‘Remove a worm’, and
‘Activate a worm’. Create and remove are specific to the type of worm (see
Variants). We describe the use case ‘Activate a worm’ here because it is the
most important for defenders. Its scenario (Figure 14.8) includes:

Figure 14.8: Sequence diagram for the use case ‘Activate a worm’

 Triggering. After the attacker (Hacker) sends a message, a Target
(user) may activate an executable procedure with a core part of the
worm.
 Assembly. The core of the worm downloads its remaining parts via the

Internet (optional).
 Obfuscation. The worm uses some procedure to hide parts of itself,

for example encryption or dispersion.
 Address search. The worm finds destination addresses as new targets

for propagation. Addresses may also be generated randomly.
 Manifestation. The worm displays some messages (optional).
 Propagation. The worm sends its core via the connection to another

node in the address list. This operation is repeated for all the addresses
found or generated.

Implementation
We show a typical implementation of the Bagle worm. It follows the
sequence diagram of Figure 14.8 very closely. A typical scenario in a
Microsoft environment would follow this sequence:

1 A user invokes executable code by opening an infected Microsoft
Word file, which starts execution of a VBA macro.
2 The VBA macro downloads its remaining parts from a web server via
the Internet.
3 The worm finds target addresses in the Microsoft Office address book
using VBA code and an SMTP server name extracted from Outlook
settings.
4 The worm displays some messages using a VBA function.
5 The worm opens an SMTP connection to mail its core to the next
target. This operation is repeated for all addresses found.

Active worms take advantage of vulnerabilities such as buffer overflows
and can get in through port 80, or through other, unprotected ports. In the
case of worms such as Code Red the core of the worm was sent to the input
buffer of port 80 in Microsoft’s IIS server [Ber01]. A virus or worm may
send a web address link as an instant message to all the contacts of the
invaded site, and if the recipients answer, they bring the virus to their sites.

Consequences
The WORM pattern offers the following benefits for the attacker:

 Objectives. Its economic objectives can be achieved if the worm has a
long ‘reach’ and clever social engineering. Its political objectives can
be achieved if the worm reaches its intended audience and manifests its
presence and reasons. Its vandalism objectives can be achieved if the
worm does considerable damage.
 Reach. If the system has easily accessible address lists, the worm can

find many new targets. Random address generation is not so effective.
 Manifestation of its presence. A good procedure for display can make

its presence well noticed. This may intimidate its victims, which brings
satisfaction to the attacker.
 Credit. The worm may include a distinctive tag or icon which should

not identify the attacker. The creator can get recognition for their
efforts.
 Misuse. A worm can perform destruction and/or other misuses

(confidentiality, integrity, denial of service, dropping spyware or spam).

 Obfuscation. Encryption and dispersion can make its detection and
removal harder. Some worms mutate, that is, they change their structure
when they propagate.
 Side effects. A fast-propagating worm can produce a lot of traffic and,

if it is hard to detect, its cost increases.
 Latency. A fast-propagating worm can do much damage before being

stopped.
 Activation. Good ways to activate the worm are necessary, since all its

objectives depend on this step.
A worm can also have some liabilities for the attacker:

 A worm can be used to detect infected nodes or to destroy viruses or
other worms.

Countermeasures
The following policies and their corresponding mechanisms (realized as
patterns), can stop or mitigate the worm:

 Policy about attachments. Users should be trained to recognize
trustable attachments and should be forbidden from opening unknown
or suspicious attachments.
 Need-to-know policy. This should be established to define access by

system processes to resources. For example, address lists should use
authorization to control access to their contents.
 Control of network communications. Connections should be

established only with trusted addresses (control through the firewalls).
This policy may avoid downloads from complementary sites.
 Intrusion detection. An intrusion detection system can detect some

attacks in real time and alert the firewall to stop them.
 Use of antivirus software. This can help detect and clean worms after

an attack.
 Backups. Checkpointing files and keeping backup images of them is a

fundamental precaution against data destruction or unauthorized
modification.
 Specialized hardware. Process communication controls in the

operating system can be enforced through specialized hardware

[Shi00]. It is possible to define partitions in the operating system that
can be enforced by hardware that will prevent a worm from performing
its actions.

Forensics
The pieces of the worm may be scattered across different components
within a site. The specific places to look for worm components depend on
the specific variant or type of worm. The places where worms normally
penetrate include e-mail attachments, files and unprotected ports, and these
must be inspected. One should also look for the specific parts of the worm,
such as core procedure, obfuscation procedure and so on.

Web logs can help in finding worm parts that might have been
downloaded. GUIs may have log records of the use of procedures to display
the worm’s announcements. Units that contain addresses may contain
indications of search.

Variants
 A passive worm requires a user to activate an executable program,

and usually propagates through e-mail. Melissa, ILOVEYOU, Anna
Kournikova, and Bagle are examples of this type of worm.
 An active worm takes advantage of some system flaw to provoke a

buffer overflow or another attack to get access to a system through
some port. It may scan ports looking for unprotected ones. Code Red is
an active worm; Storm can be active or passive [Smi08].
 A virus attaches itself to a program (infects an executable file) and,

when the user executes the program, is activated. Jerusalem, Christmas
and Chernobyl are examples of viruses.
 Some worms have several versions with different purposes; for

example, Storm has variants that perform different types of misuses,
including targeted spam and DDoS (distributed denial-of-service)
attacks [Smi08].
 Some worms are multimode (multivector) worms, which can use a

variety of methods to invade their targets; for example, Storm infects
computers using multiple payloads [Smi08].

Known Uses
Typical examples of worms include:

 ILOVEYOU [ILO] [wor09]. An e-mail attachment worm that
appeared in 2000. It relied on social engineering to entice users to open
the attachment. It also used specific weaknesses of Microsoft Windows.
It propagated using the addresses in the address book of the e-mail
system.
 Bagle. A mass-mailing worm written in assembly language [bag] and

affecting all versions of Windows. After activation, it copied itself to
the Windows system directory and downloaded an SMTP engine to e-
mail its core to other nodes as an attachment (see the Implementation
section for its typical behavior).
 Code Red [Ber01]. This worm appeared in July 2001. It propagated

through port 80, indicated its presence by defacing web pages,
propagated using a random IP address generator, and later activated a
denial of service attack from infected sites.
 Nimda [Nima]. Nimda is a multivector worm that can use several

methods to propagate: e-mail, visiting an infected site, seeking out
vulnerable servers to upload files, or through the network.
 Slapper [Arc03]. This worm can launch denial of service attacks. It

propagates by finding addresses in files. The nodes invaded by the
worm communicate using a P2P protocol to collaborate in their
misuses.
 Conficker [Conb] [wor09]. This is a multivector worm with an auto-

update facility (signed updates) and encrypted communications. It
downloads parts of itself from some Internet sites.

These worms are really worm types, from which many variants can be
derived. It is possible to define separate patterns for each type of the generic
WORM pattern. For example, the Slapper worm and the Apache Scalper
operate in a similar way, while Conficker is really a series of worms
[wor09].

See Also

 Authorization and Reference Monitor. These patterns together can
prevent access to address lists, stopping the worm propagation
[Sch06b].
 Firewall. A firewall can filter attempts to download further pieces of

the worm [Sch06b].
 Intrusion detection. An intrusion detection system can detect a worm

invasion in real time and collaborate with the firewall to block its traffic
[Fer05d].

14.3 Denial-of-Service in VoIP
A VoIP DoS attack overwhelms limited resources in order to disrupt VoIP
operations, typically through a flood of messages. This leads to degradation
of response time, preventing subscribers from effectively using the service.

Context
There are two targets for DoS attacks: those in which end systems are
targets, and those that target gateways or gatekeepers. In the former,
subscribers try to establish a call over a VoIP channel (VoIP services should
be available to subscribers when requested). In the latter, some VoIP
systems use control protocols (for example MGCP and Megaco/H.248) and
security mechanisms to manage the Media gateways deployed across the
infrastructure. In general, the VoIP system should have adequate capacity
(bandwidth) to meet the peak communication load. The system may have a
minimum set of perimeter defenses, such as firewalls. More complex VoIP
implementations may have an intrusion detection system (IDS) and firewall
on the phone itself to check the media packet flow, or perform
authentication. All Internet building blocks – and thus VoIP – are vulnerable
to DoS attacks, which have not previously been a security issue with
circuit-switched telephony systems because of their inherent bandwidth
limitations. In particular, this pattern assumes the use of the H.323 protocol.

Problem

How can we trigger a DoS attack on a VoIP system? IP telephony
subscribers need to be blocked from using VoIP services. The attack can be
carried out by taking advantage of the following conditions:

 VoIP security is in an incipient phase at the moment: there is lack of
expertise and security standards. Users might inadvertently expose the
system. While some basic countermeasures exist, such as IDSs and
firewalls, administrators may not configure them appropriately due to a
lack of training and time.
 Until now VoIP has been developed and deployed focusing on

functionality with less thought for security [Wie06b]. That means that
the defenses that are in place are not very advanced. For example,
strong authentication is not common in VoIP.
 With the rush to implement new VoIP systems, features and standards,

implementation flaws are common. IP PBXs include many layers of
software that may contain vulnerabilities. Programming mistakes, such
as not properly checking the size of the parameters of a protocol
request, when exploited, can result in the following issues:

 Remote access. An attacker obtaining remote (often administrator
level) access.
 Malformed request DoS. A carefully crafted protocol request (a

packet) exploiting a vulnerability that results in a partial or complete
loss of function (in this case a single malformed packet may lead to
a DoS).
 Load-based DoS. A flood of legitimate requests overwhelming a

system [Col04].
 As with any network-based service, enterprise VoIP must

communicate with other components on a LAN and possibly over an
untrusted network such as the Internet, where packets are easy to
intercept.
 Because RTP (real-time transport protocol) carries media that must be

delivered in real time to be usable for an acceptable conversation, VoIP
is vulnerable to DoS attacks that impact the quality delivery of audio,
such as those that affect jitter and delay.

 VoIP traffic can offer very good cover for DoS attacks, because VoIP
runs continuous media over IP packets [CRN06].

Solution
One method to launch a DoS attack is to flood a VoIP server (for example
Gatekeeper) with repeated requests for legitimate service in an attempt to
overload it. This may cause severe degradation or complete unavailability
of the voice service. A flooding attack can also be launched against IP
phones, Gateways or any VoIP network components that accept signaling.
With this form of DoS attack, the target system is so busy processing
packets from the attack that it will be unable to process legitimate packets,
which will either be ignored or processed so slowly that the VoIP service is
unusable. Attackers can also use the TCP SYN flood attack (also known as
resource starvation attack) to obtain similar results. This attack floods the
port with synchronization packets, which are normally used to start a
connection.

In a distributed denial-of-service (DDoS) attack, multiple systems are
used to generate a massive flood of packets. To launch a massive DDoS
attack, the hacker previously installs malicious software on compromised
terminal devices (infected with a Trojan) that can be triggered at a later time
(‘zombies’) to send fake traffic to targeted VoIP components. Targeted DoS
attacks are also possible, in which the attacker disrupts specific
connections.

The class diagram of Figure 14.9 shows the structure for a DDoS attack in
an H.323 architecture where any VoIP component can be a target for DoS.
Classes AttackControlMechanism and Zombie represent the software
introduced by the attacker. Note that the zombie is just a terminal device in
a different role.

Figure 14.9 Class diagram for DoS attacks in H323

The sequence diagram of Figure 14.10 shows the sequence of steps
necessary to perform an instance of an end-system DoS attack. An attacker
(internal or remote), with knowledge of a valid user name on a VoIP system
could generate enough call requests to overwhelm the IP-PBX server. An
attacker may disrupt a subscriber’s call attempt by sending specially crafted
messages to their ISP server or IP PBX component, causing it to over-
allocate resources, so that the caller receives a ‘service not available’ (busy
tone) message. This is an example of a targeted attack.

Figure 14.10 Sequence diagram for DoS attacks in H323

Similarly, out-of-sequence voice packets (such as receiving media packets
before a session is accepted) or a very large phone number could open the

way to application layer attacks (aka ‘attacks against network services’).
Buffer overflow attacks might paralyze a VoIP number using repeated
calling. For example, an attacker intermittently sends garbage (that is, both
the header and the payload are filled with random bytes, corrupting the
callee’s jitter buffer voice packets) to the callee’s phone between those of
the caller’s voice packets. The callee’s phone is then so busy trying to
process the increased packet flow that the jitter (delay variation) causes any
conversation to be incomprehensible [Anw06].

DoS attacks against gateways are analyzed from the supporting
Megaco/H.248 protocol viewpoint. Figure 14.11 shows the class diagram of
the media gateway control protocol structure. Megaco/H.248 is a master-
slave, transaction-oriented protocol in which media gateway controllers
(MGC) control the operation of MediaGateways (MG) [Ell03]. VoIP media
gateways are vulnerable to DoS attack because they accept signaling
messages.

Figure 14.11 Class diagram for a Megaco/H.248 environment

In this setting, a DoS attack would occur at an MGC when the attacker
sends a large volume of UDP packets to the protocol’s default port 2944 or
2945, which keeps the MGC busy handling illegal messages, and finally
blocks the normal service. An attacker can keep sending ‘service change’ or
‘audit capabilities’ commands to an MG, and thereby bring down the
MediaGateway [Vuo04]. Therefore, VoIP gateways will not be able to
initiate calls or maintain a voice call during a DoS attack. The audio quality
will be affected as well. An alternative way to launch DoS attacks happens
when an attacker redirects media sessions to a media gateway: the attack
will overwhelm this voice component and prevent it from processing
legitimate requests.

Signaling DoS attacks on media gateways can consume all available
TDM channels, preventing other outbound and inbound calls and affecting
other sites that use TDM. On the other hand, since VoIP media sessions are
very sensitive to latency and jitter, DoS on media is a serious problem. VoIP
media, which is normally carried with RTP, is vulnerable to any attack that
congests the network or slows the ability of an end device (phone or
gateway) to process the packets in real time. An attacker with access to the
portion of the network where media is present simply needs to inject large
numbers of either RTP packets or high QoS packets, which will contend
with the legitimate RTP packets [Col04].

Consequences
The DENIAL-OF-SERVICE IN VOIP misuse pattern has the following
benefits for the attacker:

 DoS can be especially damaging if key resources are targeted (for
example media gateways), which may lead to cascading effects if a
server is impacted.
 Flooding of the firewall can prevent it from properly managing ports

for legitimate calls.
 VoIP QoS can be degraded by jitter and delay and may become totally

unusable.
 The zombies in the targeted network can also be used as DoS

launching points to perform attacks on another network.
It can also have some liabilities for the attacker:

 Some defenses can stop this attack – see the next section.

Countermeasures and Forensics
The attack can be stopped or mitigated by the following countermeasures:

 DoS is mitigated by disabling and removing unnecessary network
services, reinforcing the operating system, and using host-based
intrusion detection systems (the IDS pattern [Fer05d]). This makes it
harder to introduce Trojan horses that may make terminal devices
become zombies.

 IDSs and firewalls can ensure that packets with very large sequence
numbers and garbage packets are discarded. Again, the IDS pattern is
relevant, as well as the Firewall patterns [Sch06b].
 Use of Proxy and Stateful Firewalls [Sch06b], which can look inside

the voice packet and analyze its contents, as well as the headers, to
decide if the information is safe or not.
 Use of the Authenticated Call pattern [Fer07a], which performs both

device and user authentication before allowing access to VoIP services.
Although this takes longer, it can protect against targeted attacks from
devices that do not possess authentication tokens.

Likewise, the following network forensics mechanisms can be used to
collect evidence of the attack:

 Logs in the terminal devices not only provide VoIP-specific details
(for example, start/end times and dates of each call), but they can also
reveal the presence of malware. As we indicated, some attacks come
from compromised devices that become zombies.
 Network analysis procedures such as the examination of router logs

(for example denied connection attempts, connectionless packets) and
firewall logs, provide information about the location (that is, where the
attack entered the network) and the way that attackers performed their
exploits.
 Selective use of events sent to the ISP or IP PBX has been shown to

produce another range of attacks. Those could be traced through logs on
these devices.
 Network forensic analysis techniques such as IP traceback and packet

marking are useful for attack attribution. During a denial of service
attack the victim will receive sufficient traceback packets to reconstruct
the attack path [Sha03]. Locating attackers with IP traceback
technology is also a potential security mechanism to counter DoS
attacks. The deployment of a traceback mechanism on a single router
would provide minimal benefit: this process requires the cooperation of
all network operators along the attack path in order to trace it back to
the source. IP traceback works even when criminals conceal their
geographic locations by spoofing source addresses.

 Comparing traffic patterns against predefined signatures (as is done
by some IDSs) is an effective method of detecting DDoS attacks. Such
a method can produce an alert, helping network examiners to detect
malicious traffic (for example observing congestion in a router’s buffer)
from entering or leaving their networks.
 Event logging allows network administrators to collect important

information (for example date, time and result of each action) during
the set up and execution of the attack. For example, logs may identify
the type of DDoS attack used against a targeted system.
 The use of ‘honeypots’ placed on selected VoIP components (see

Figure 14.9) and other network forensics tools can help in the event of a
successful attack. Honey-pots can attract attackers and provide
investigators with useful information about new types of intrusions.
 In VoIP, the attack pattern technique may be complemented with the

use of a network forensics analysis tool to offer a better view
(interpretation) of the collected voice packets.

Where to Look for Evidence
Based on Figure 14.2 (page 385), the following may be considered
secondary sources of forensic information in a VoIP environment:

 Terminal devices (softphones, hardphones and wireless VoIP phones)
 Gatekeepers
 Gateways
 IP-PBXs

Known Uses
DoS attacks are performed on different systems in the Internet every day on
all protocol layers. Some of those attacks affect VoIP systems.

See Also
Several security patterns for defending against these (and related) attacks
are listed in [Anw06] [Fer07a]. Some general security patterns such as
firewalls [Sch06b], IDSs [Fer05d] and authentication [Sch06b] can be used

to control these attacks, as discussed earlier. A misuse pattern can be
developed to describe similar attacks on SIP networks.

14.4 Spoofing Web Services
Also known as Principal Spoofing in Web Services
A web service spoofing misuse tries to impersonate the identity of a user by
stealing their credentials, then makes requests in their name with these
credentials with the intention of accessing a victim’s web service.

Context
Enterprises can exchange data through the use of web services. In order to
let other entities access the web service, they publish a WSDL (Web
Services Description Language) file with functionalities and security
policies.

The client must create a request which should adapt its methods and
policies to those of the web service provider. Security can be implemented
at the level of messages: each user is given credentials to access services
and the responsibility of protecting their messages from other users. The
web service can be protected using standards such as WS-Security [Aja10a]
to protect messages and WS-Policy [Bar07] to verify the security
requirements of the web service.

Problem
How we can effectively perform a principal spoofing attack against web
services so that we can access the information of another user?

The attack can take advantage of the following vulnerabilities:
 Currently there is no method of verifying identity unequivocally.
 When a WSDL file is published, the interfaces of the web service are

exposed, and thus its entry points.
 The source address of the request can be altered.

 There is a tendency to trust presented credentials without a more
thorough check.
 Once the authentication stage is passed, other attacks can be generated

more easily: for example, DDoS attacks
 Maybe the interchanged data items are not encrypted, and it may be

possible to steal the credentials using special software.
 The resulting damage depends on the privileges of the credentials

submitted.

Solution
Security standards such as WS-SECURITY (page 330) use the credentials
of the user to protect communication between web services by signing and
encrypting messages. If an attacker manages to obtain valid credentials,
they can communicate with other web services. This type of vulnerability is
mentioned in [Mor06a] and is termed principal spoofing. In this attack, the
user does not know that their credentials have been stolen until the damage
is done (such as alteration of information, access to their resources,
alteration of privilege, even attaching malicious code that could be harmful
to the server).

When the attacker has the credentials, they can use the WSDL file to
discover the security policies of the web services and create a valid
message. This situation is conditional on the attacker obtaining a user’s
credentials, the valid user not knowing of the theft and not having reported
the theft.

The attack can be carried out by taking advantage of the following
vulnerabilities:

 If communications between web services are not protected, sniffer
software such as WireShark or WebScarab could intercept packages
while they travel in the network and obtain the credentials carried in the
messages.
 Using social engineering to obtain the credentials of the user.
 Inadequate security policies used by the system; it is possible to cheat

the system in this way.
 The system not verifying the origin of the request.

The class diagram of Figure 14.12 shows the typical relationships
between web services. The WS-User has Credentials to communicate with
other web services. The WS-Requester can be a WS-User on another kind of
web service. The WS-Provider has several WS-Policies, stored in the
WSDL-File. In this way, a WS-Requester can be created based on the WS-
Policies shown in the WSDL-File. When the WS-Requester tries to
communicate with the WS-Provider, the WS-Provider checks the request
with its TrustEngine, which checks the requester’s credentials.

Figure 14.12: Class diagram for the SPOOFING WEB SERVICES pattern

To make this attack possible, the user must have the user’s credentials, as
shown in Figure 14.13. This diagram shows the structure of a principal
spoofing attack, the classes WS-Attacker and Attacker being the new
elements introduced by the attacker.

Figure 14.13: Misuse pattern: principal spoofing

The sequence diagram of Figure 14.14 shows the sequence of steps to
perform a principal spoofing attack. An Attacker can obtain credentials of
a valid User. When the attacker has the credentials, they can access the
WSDL-File of the WS-Provider, where the WS-Policies and methods to
access the web service are published. The WSDL-File can be found through
the UDDI service, or it can be accessed through techniques such as
‘crawling’. With the information obtained from the WSDL-File and the
credentials of the User, the Attacker can create a web service.

Figure 14.14 Sequence diagram for principal spoofing

When the Attacker has the web service, they can make a request to the
WS-Provider using the credentials of the user. The WS-Provider receives
the request and checks the message against the policies of the web service.
If the message is correct, the WS-Provider sends the credentials to the
TrustEngine to check the identity of the user. Because the credentials are
valid, the request will be authenticated. When security policies are known,
the Attacker will be able to develop another web service with a different
behavior, according to their intentions. User credentials will be used as
identification to access the system’s functionality.

Consequences
The SPOOFING WEB SERVICES misuse pattern has the following
benefits for the attacker:

 The attacker can access the sensitive information from a valid user.
 Malicious code can be attached to the messages to make further

attacks on the user or their associates.
 The attacker can read or modify information or make transactions in

the name of the valid user.
It can also have some liabilities for the attacker:

 Knowing the attacker’s behavior, forensics proofs could be shown in
order to verify that the attack was carried out, and by whom.

 If an attacker does not know about the forensics evidence that they
would generate, they might be identified.
 Some defences, described below, can stop this attack.

Affected Components
When the attack is over several components will be affected:

 WSDL-File. This file will no longer be trustable, because it was used
by the attacker, and the file may contain vulnerabilities that would
allow further attacks to the web service.
 User credentials. The user’s credentials are compromised, so they are

no longer useful and should be revoked.
 User trust. The user’s trust in the authentication method will be

compromised.
 WS-Requester. When the attack is over, the requests from the

authorized web service should be viewed with suspicion.

Countermeasures and Forensics
Human behavior cannot be controlled, so we cannot prevent people from be
deceived into releasing their credentials. Also, a victim could be robbed of
their credentials.

This attack can be mitigated through the following countermeasures:
 Encrypting communications between web services. Encryption can be

performed by following security standards such as XML Encryption
and WS-Security.
 For each of the web services that are developed:

 Generating an internal credential, which can be an ID or some kind
of token. This credential will be embedded in the code.
 The web service provider publishing a policy about credential

requests for each transaction.

 If the communication is done using a PKI infrastructure, the
credential being sent encrypted using the public key provided by the
web services provider. With this countermeasure the attacker will not
be able to access the content of the message even if the message is
intercepted by sniffer software.

The following forensic evidences are possible:
 We can identify which user was affected and the actions performed

using logs from the web service provider.
 We can check the origin from the attack (IP address) – although the

attacker can spoof its IP address.

Known Uses
 Scenario I. Hole [Hol06] describes some online banking security

issues identified over a period of two years. During this period, several
attacks were identified against a bank system by combining simple
brute-force attacks with distributed-denial-of-service (DDoS) attacks
that exploited the bank’s login procedure. In the bank, the
authentication procedure was based on a web service, which was the
only point for access to users’ information at which requests were
authenticated.
A web service could be deployed in the bank or externally. This web
service was attacked using IP spoofing and became a victim of a DDoS
attack because it was not well configured; all the requests that it
received were sent to the main server, skipping authentication in the
web service from the bank. With this attack, the bandwidth and the
resources of the bank were affected; in the worst case, the system could
go down. This could be achieved if the attacker had the credentials of a
user from the bank.
 Scenario II. In this case a web service from an information service

provided information only to authorized personnel. Every user had
credentials to use the web service, which were needed because of the
sensitive information being handled. The attacker obtained credentials
from users and built another web service to try to access the
information.

The attacker was also able to make several requests to the web service
target, using the credentials from a valid user, the requests being
generated from several parts of the network. The attacker used
techniques from IP spoofing to hide their position. The web service
target could first verify the identity from the sender of the message, or
check the structure of the message, and finally check the identity of the
requester. With this scenario, several attacks could be realized [Jen07].
All of these were DDoS attacks.
 Scenario III. In October 2010 a Firefox plugin, ‘Firesheep’, was

delivered. Through this plugin, an attacker without much technical
knowledge could access the information of other users on the same
wireless network. In this way, the attacker could see the information
exchanged by other sites in their browser, such as Facebook, Twitter or
Google. With a small modification to this plugin, it is possible to build
a sniffer. When a session was captured, the credentials of the users
could be captured without their knowledge.

The first of these attacks uses resource exhaustion. This type of attack
attempts to compromise a web service’s availability by exhausting the
resources of the service’s host system, such as memory, processing
resources or network bandwidth. The attack can be performed using a large
SOAP message document, a technique called oversize payload.

Another attack type, attack obfuscation, is made using the WS-Security
standard. By providing confidentiality to sensitive data, XML encryption
can hide the contents of messages. The encrypted message can contain an
intended attack, such as oversize payload or XML injection. The advantage
of this method is that the defender must decrypt the message to be able to
analyze it.

The attacks described above are based on the trust that the system may
have for its users, because an important step in the attack is the verification
of the identity of the requester.

See Also
 WS-TRUST. This pattern helps to establish the relationships that

should arise between web services in order to share their credentials
(page 272 and [Aja10a]).

CHAPTER 15

Patterns for Cloud Computing
Architecture

There are no rules of architecture for a castle in the clouds.
G K Chesterton

15.1 Introduction
Cloud computing is a new paradigm that improves the utilization of
resources and decreases the power consumption of hardware. Cloud
computing allows users to have access to resources, software and
information using any device that has access to the Internet. The users
consume these resources and pay only for the resources they use.

A cloud model provides three types of services: infrastructure-as-a-
service (IaaS), platform-as-a-service (PaaS), and software-as-a-service
(SaaS). IaaS provides processing, storage, networks and other fundamental
computing resources on which the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications.
PaaS offers platform layer resources, including operating system support
and software development frameworks to build, deploy and deliver
applications into the cloud. SaaS provides end-user applications that are
running on a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a web browser
(for example web-based e-mail).

We present here patterns for the three service levels of clouds:
 Infrastructure-as-a-service [Has12a] describes the infrastructure to

allow the sharing of distributed virtualized computational resources,
such as servers, storage and networks.

 Platform-as-a-service [Has12a] provides virtual environments for
developing, deploying, monitoring and managing applications online
without the cost of buying and managing the corresponding software
tools or hardware.
 Software-as-a-service [Has12d] provides a set of software

applications available in a cloud system that can be accessed by client
devices through the Internet.

These are not strictly speaking security patterns, although they include
security aspects in their definition. Our view is that to understand the
security issues of clouds we need to look at their complete architecture. A
fair amount of work has been done on specific aspects of the security of
clouds, but we know of no effort to define a holistic view of their security.
In a conceptual architecture we can apply the methodology we saw in
Chapter 3 and which is illustrated with several examples in Chapter 16. We
have not done this here, leaving it as an exercise for the reader, our point
being that it should be fairly easy to apply this (or another) methodology to
protect the cloud system.

Our methodology requires a systematic enumeration of threats, which we
have already done [Has12c]. The next step is to consider each use cases and
analyze the threats to its activities [Has12e]. We have also defined misuse
patterns that describe how an attack (misuse of information) is performed
from the point of view of the attacker ([Has12b], Chapter 14). This
approach represents a variation of the methodology of Chapter 3 in that,
instead of building a specific application, for example a financial
application, we are building a distributed platform on which applications
may execute. The security level of this platform contributes to the security
level of the application, so an evaluation of the security of the platform
must be combined with a security evaluation of the application.

Using the Patterns for Securing Clouds
Chapter 14 showed some misuse patterns. By defining precisely the units of
a cloud architecture, we can observe the progression of an attack through
them and define ways to stop its advance. We have started building a
catalog of cloud misuse patterns; with a complete catalog we can apply
them systematically and use a reference architecture [Has13] to find where

we should add corresponding security patterns to stop them. This work also
implies developing some new security patterns for this purpose.

The reference architecture should also support the standards that apply to
each service level. There are still no accepted standards for clouds, but
NIST is leading some work in this direction [Hog11]. Some of the cloud
services are XML web services and they should follow their security
standards (Chapter 11 and Chapter 12). The increasing use of
representational state transfer (REST) services, for which there is no
security standard, implies that they will be handled in a mostly ad hoc
fashion [Rod08]. The reference architecture and its security patterns should
be valuable in providing designers with a systematic approach to handling
both XML and REST-based types of web service.

Another use of the architecture is to provide a reference for security
certification of services. Knowing the misuse patterns that affect a
particular service, a provider can show that their service can handle the
corresponding threats by incorporating appropriate security patterns, which
would increase customer trust in their use.

Finally, patterns provide a way to evaluate the security of complete
systems, by finding a matching security pattern to defend against each
threat [Fer10a]. We can apply them to evaluate the security of cloud
systems.

15.2 Infrastructure-as-a-Service
The INFRASTRUCTURE-AS-A-SERVICE pattern describes the
infrastructure to allow the sharing of distributed virtualized computational
resources, such as servers, storage and networks.

Context
Distributed systems in which we want to improve the utilization of
resources and provide convenient access to all users.

Problem

Some organizations do not have the resources to invest in the infrastructure,
middleware or applications that are needed to run their businesses. Also,
they may not be able to handle increases in demand, or cannot afford to
maintain and store unused resources. How can we provide these users with
quality access to computational resources?

The solution to this problem must resolve the following forces:
 Transparency. The underlying architecture should be transparent to its

users. Users should be able to use the provider’s services without
understanding its infrastructure.
 Flexibility. Different infrastructure configurations and resource

volumes can be demanded by users.
 Elasticity. Users should be able to expand or reduce resources in order

to meet the different needs of their applications.
 Pay-per-use. Users should only pay for the resources they consume.
 On-demand-service. Services should be provided on demand.
 Manageability. In order to manage a large volume of service requests,

cloud resources must be easy to deploy and manage.
 Accessibility. Users should be able to access resources from anywhere

at any time.
 Testability. We intend to develop system programs in this environment

and we need to test them conveniently.
 Shared resources. Many users should be able to share resources in

order to increase the volume of resource utilization and thus reduce
costs.
 Isolation. Different user execution instances should be isolated from

each other.
 Shared non-functional requirements provision (NFRs). Sharing of the

costs of providing NFRs is necessary to allow providers to offer a
higher level of NFRs.
 Security. The IaaS level is the basis for execution of the complete

cloud system and its degree of security will affect all the applications
running on it. We should provide a convenient and measurable structure
to define security requirements.

Solution
The solution to this problem is a structure that is composed of many
servers, storage and a network, which can be shared by multiple users and is
accessible through the Internet. These resources are provided to the users in
the form of infrastructure-as-a-service (IaaS). IaaS is based on virtualization
technology, which creates unified resources that can be shared by different
applications. This foundation layer – IaaS – can be used as a reference for
non-functional requirements.

Structure
Figure 15.1 shows a class diagram for the cloud-based
INFRASTRUCTURE-AS-A-SERVICE pattern. The CloudController is
the main component, which processes requests from a Party. A Party can
be an institution or a user (customers and administrators). A Party can have
one or more Accounts. The CloudController coordinates a collection of
services such as virtual machine (VM) scheduling, authentication, VM
monitoring and management. When a CloudController receives a request
from the Party to create a VM, it requests its corresponding
ClusterControllers to provide a list of their free resources. With this
information, the CloudController can choose which cluster will host the
requested VM.

Figure 15.1: Class diagram for a cloud-based INFRASTRUCTURE-AS-A-
SERVICE pattern

A ClusterController is composed of a collection of NodeControllers,
which consist of a pool of Servers that host VM instances. The
ClusterController handles the state information of its NodeControllers,
and schedules incoming requests to run instances.

A NodeController controls the execution, monitoring, and termination of
the VMs through a virtual machine monitor (VMM), which is responsible for
running VM instances. The CloudController retrieves and stores user data
and VMImages. The VMImageRepository contains a collection of VMImages
that are used to instantiate a VM. The DHCP server assigns a MAC/IP (media
access control/internet protocol) pair address for each VM through the
CloudController, and requests the DNS server to translate domain names
into IP addresses in order to locate cloud resources.

Dynamics
Use cases include [Nis]:

 Open/close an account (actor: user)
 Copy data objects into/out of a cloud (actor: administrator)
 Erase data objects in a cloud (actor: administrator)
 Store/remove virtual machine images (actors: administrator, user)
 Create a virtual machine (actor: user)
 Migrate a virtual machine (actors: administrator, user)

We show two use cases below, ‘Create a virtual machine’ and ‘Migrate a
virtual machine’.

Use Case: Create a Virtual Machine – Figure 15.2
Figure 15.2: Sequence diagram for the use case ‘Create a virtual machine’

Summary Create a virtual machine for a party, assign to it the required resources and assign it
to a server.

Actor Party.
Precondition The Party has a valid account.
Description 1 A Party requests a VM with some computational resources from the

CloudController.
 2 The CloudController verifies whether the requester has a valid account.
 3 The CloudController requests the available resources from the

ClusterController closest to the location of the Party. In turn, the
ClusterController queries its NodeControllers about their available resources. (In
the sequence diagram, there is only one ClusterController and one
NodeController to keep the diagram simple, but there can be more cluster and node
controllers.)

 4 The NodeController sends the list of its available resources to the
ClusterController, and the ClusterController sends it back to the
CloudController.

 5 The CloudController chooses the first ClusterController that can support the
computational resource requirements.

 6 The CloudController requests a MAC/IP pair address from the DHCP server for the
new VM.

 7 The CloudController retrieves a VM image from the VMRepository.
 8 The CloudController sends a request to the ClusterController to instantiate a

VM.
 9 The ClusterController forwards the request to the NodeController, which

forwards it to the VMM (virtual machine monitor).
 10 The VMM creates a VM with the requested resources.
 11 The VMM assigns the VM to one of the servers.
Postcondition A virtual machine is created and assigned to an account and a server.

Use Case: Migrate a Virtual Machine – Figure 15.3
Figure 15.3: Sequence diagram for the use case ‘Migrate a virtual machine’

The administrator can migrate a VM to a specific node controller that can
be located in the same or in a different cluster controller. The administrator
can also migrate a VM to a specific location, or to the first node that has the
available resources. For the scenario below, we assume that the
administrator will move a VM to the first available node controller within
the same cluster controller. However, the migration process can be
automatic, for example due to load balancing.
Summary A virtual machine is migrated from one node controller to another.
Actor Administrator.
Precondition A VM resides on some NodeController.
Description 1 The Administrator requests the CloudController to migrate a VM.
 2 The CloudController sends a request to the ClusterController to start the

migration of the VM.
 3 The ClusterController requests the NodeControllerSource to stop the VM. The

NodeControllerSource forwards this request to the VMMSource.
 4 The VMMSource stops the VM and copies the content of the VM.
 5 All the steps of the use case Create a Virtual Machine – Figure 15.2 are carried out.
 6 The VMMSource sends the content of the VM to the VMMDestination.
 7 The VMMDestination copies the content into the new VM.
Postcondition The virtual machine has migrated to another host.

Implementation

As an example, we show the implementation of one of the known uses of
this pattern. There are many ways to implement our conceptual models; this
is just one possible way to do it. Eucalyptus [Euc] is open source software
that allows IaaS to be implemented in order to run and control virtual
machine instances via Xen and KVM. Eucalyptus consists of five main
components that are described in Figure 15.4 [Bau09].

Figure 15.4: Eucalyptus’ main components

The two higher-level components are the Cloud Controller and Walrus.
The Cloud Controller is a Java program that offers EC2-compatible [Ama]
SOAP and web interfaces. Walrus is a data storage system where users can
store and access virtual machine images and their data. Walrus can be
accessed through S3-compatible SOAP and REST interfaces. Top-level
components can aggregate resources from several clusters.

Each cluster needs a Cluster Controller, which is typically deployed on
the head node of a cluster. Each node will also need a Node Controller for
controlling the VMM. Cluster Controller and Node Controllers are
deployed as web services, and communications between them takes place
over SOAP with WS-Security [Has09c].

A cloud can be set up as a single cluster in which the Cloud Controller
and the Cluster Controller are located on the same machine, which are
referred to as ‘front-end’. All other machines running the Node Controllers
are referred to as ‘back-end’. However, a more advanced configuration is
possible, comprising several Cluster Controller or Walrus’ deployed on
different machines.

A typical configuration around 2012 includes [Ubu]:
 One cloud controller (CPU 1GHz, memory 512MB, disk 5400rpm

IDE, disk space 40GB)
 One Walrus controller (CPU 1GHz, memory 512MB, disk 5400rpm

IDE, disk space 40GB)
 One cluster controller plus storage Controller (CPU 1GHz, memory

512MB, disk-5400rpm IDE, disk space 40GB)
 Nodes (virtualization technology extensions, memory 1GB, disk

5400rpm IDE, disk space 40GB)

Consequences
The INFRASTRUCTURE-AS-A-SERVICE pattern offers the following
benefits:

 Transparency. Cloud users are usually not aware of where their
virtual machines are running or where their data is stored. However, in
some cases users can request a general location zone for virtual
machines or data.
 Flexibility. Cloud users can request different types of computational

and storage resources. For instance, Amazon’s EC2 [Ama] provides a
variety of instance types and operating systems.
 Elasticity. Resources provided to users can be scaled up or down

depending on their needs. Multiple virtual machines can be initiated
and stopped to handle increased or decreased workloads.
 Pay-per-use. Cloud users can save on hardware investment because

they do not need to purchase more servers; they just need to pay for the
services that they use. Cloud services are usually charged using a fee-
for-service billing model [Cen10]. For example, users might pay for the
storage, bandwidth or computing resources they consume per month.
 On-demand-services. IaaS providers deliver computational resources,

storage and network as services at users’ request.
 Manageability. Users place their requests with the cloud

administrator, who allocates, migrates and monitors VMs.
 Accessibility. Cloud services are delivered using user-centric

interfaces via the Internet [Wan08] from anywhere and at any time.

 Testability. Having an environment isolated in a virtual machine
allows the testing of system programs without affecting the execution
of other virtual machines.
 Shared resources. Virtualization enables sharing a pool of resources

such as processing capacity, storage and networks to be shared, so that a
higher utilization rate can be achieved [Amr].
 Isolation. A VMM provides strong isolation between different virtual

machines, whose guest operating systems are then protected from one
another [Kar08].
 Shared non-functional requirements (NFRs) provision. Some IaaS

providers offer security features such as authentication and
authorization to customers, which can be added as part of the service.
Sharing allows the provider to offer a higher degree of NFRs at a
reasonable cost.
 Security. Security defenses can be defined with respect to the

architecture. For example, connection of users to the cloud controller
may be mutually authenticated to avoid imposters from either side.

The pattern also has the following potential liabilities:
 Cloud computing is dependent on network connections. While using

cloud services, users must be connected to the Internet, although a
limited amount of work can be done offline.
 The cloud may bring security risks associated with privacy and

confidentiality, since users do not have control of the underlying
infrastructure.
 The isolation between VMs may not be strong [Has12a].
 Virtualization introduces some performance overhead.

Known Uses
 Eucalyptus [Euc] is an open source framework used for hybrid and

private cloud computing.
 OpenNebula [Ope2] is an open source toolkit for building clouds.
 Nimbus [Nimb] is an open source set of tools that offers IaaS

capabilities to the scientific community.

 Amazon’s EC2 [Ama] provides computing capacity though web
services.
 HP Cloud Services [Hp] is a public cloud solution that provides

scalable virtual servers on demand.
 IBM SmartCloud Foundation [IBMa] offers servers, storage and

virtualization components for building private, public and hybrid
clouds.

See Also
 The VIRTUAL MACHINE OPERATING SYSTEM

ARCHITECTURE pattern ([Fer05c] and page 179) describes the VMM
and its created VMs from the point of view of an operating system
architecture.
 The Grid architectural pattern [Cam06] allows the sharing of

distributed and heterogeneous computational resources such as CPU,
memory and disk storage for a grid environment.
 Misuse patterns in [Has12a] describe possible attacks to cloud

infrastructures.
 The PLATFORM-AS-A-SERVICE (PaaS) pattern (page 423)

describes development platforms that provide virtual environments for
developing applications in the cloud.
 The Party pattern [Fow97] indicates that users can be individuals or

institutions.
 Several of the patterns shown earlier in this book can be used to

protect different aspects of the cloud system.

15.3 Platform-as-a-Service
The PLATFORM-AS-A-SERVICE pattern describes how to provide virtual
environments for developing, deploying, monitoring and managing
applications online without the cost of buying and managing the
corresponding software tools or hardware.

Context
PaaS services are built on top of the cloud’s infrastructure-as-a-service
(IaaS) features, which provides the underlying infrastructure.

Problem
Organizations may want to develop their own custom applications without
buying and maintaining the developing tools, databases, operating systems
and infrastructure underlying them. Also, when a team is spread across
several locations, it is necessary to have a convenient way to coordinate
their work. How can we provide secure PaaS functions?

The solution to this problem must resolve the following forces:
 Collaboration. Sometimes teams of developers are located in different

geographic locations. When working on a project, they all should have
access to the development tools, code and data.
 Coordination. When many developers work on a complex project,

they need to coordinate their work.
 Elasticity. There should be a way to increase or decrease resources for

more compute-intense development and deployment tasks.
 Pay-per-use. Parties should only pay for the resources that they use.
 Transparency. Developers should not have to be concerned about the

underlying infrastructure, including hardware and operating systems,
and its configuration for development and deployment.
 On-demand services. Developers should be able to request an

application tool and start using it.
 Accessibility. Developers should be able to access tools via standard

networks, from anywhere at any time.
 Testability. We intend to develop application programs in this

environment and we need to test them conveniently.
 Versatility. The platform should be able to be used to build

applications for any domain or type of application. Different options for
developing tools should be offered to the users.
 Simplification. Developers should be able to build applications

without installing any tool or specialized software on their computers.

 Security. The platform should offer facilities for developing secure
programs, and should itself be protected from attacks.

Solution
PaaS offers virtual execution environments with shared tools and libraries
for application development and deployment into the cloud. PaaS uses IaaS
as a foundation layer (servers, storage and network), and hides the
complexity of managing the infrastructure underneath.

Structure
Figure 15.5 shows a class diagram for a cloud-based platform-as-a-service.
The PaaSProvider processes requests from Parties. A Party can be an
institution or a user (developers, administrators). The Party will choose the
development tools from the SoftwareRepository, which contains a list of
available tools. The PaaSProvider offers VirtualEnvironments such as
DevelopmentEnvironment and DeploymentEnvironment. The
DevelopmentEnvironment is composed of DevelopmentTools, Libraries,
Databases. The VirtualEnvironments are built on the IaaS features, which
provide the underlying hardware. The same PaaSProvider can manage the
IaaS, or it can be managed by a third-party service provider.

Figure 15.5: Class diagram for the PLATFORM-AS-A-SERVICE pattern

Dynamics
Use cases include the following [Dod10]:

 Open/close an account
 Request a virtual environment
 Use a virtual environment
 Install development software
 Deploy an application
 Undo deploying an application
 Consume development software – Figure 15.6, below

Figure 15.6: Sequence diagram for the use case ‘Consume development
software’

Use Case: Consume Development Software – Figure 15.6
Summary A party requests to the use of a development application for the first time.
Actor Party.
Precondition The Party has an account.
Description 1 The Party requests the use of specific development software.
 2 The PaaSProvider checks whether the Party has a valid account.
 3 The Party downloads the client applications onto its machine.
Postcondition The client application is downloaded on the party’s machine.

Use Case: Deploy an Application – Figure 15.7
Figure 15.7: Sequence diagram for the use case ‘Deploy an application’

Summary A party requests deployment of an application into the cloud, so that the application
can be accessed by end-users from anywhere at any time.

Actor Party (developer).
Precondition The Party has an account.
Description 1 A Party asks to deploy their application into the cloud.
 2 The PaaSProvider checks whether the Party has a valid account.
 3 The PaaSProvider calculates the computational resources needed for the

deployment, such as the number of virtual machines.
 4 The PaaSProvider asks the IaaS to create a set of virtual machines (VEs).
 5 The PaaSProvider installs and runs the code.
Postcondition The application is running and ready to be accessed by the end users.

Implementation
As an example of the implementation of a typical PaaS approach, we
describe the approach used by Force.com [Sal]. Force.com is a cloud
platform-as-a-service system from Salesforce.com. Force.com’s platform
provides PaaS services as a stack of technologies and services covering
infrastructure, database as a service, integration as a service, logic as a
service, user interface as a service, development as a service, and
AppExchange [Sal2], to enable the creation of business applications.
Figure 15.8 shows the stack of Force.com’s technologies and services,
which includes:

Figure 15.8: The Force.com stack and services (from [Sal2])

 Infrastructure. The foundation of the Force.com platform is the
infrastructure that supports the other layers. Force.com uses three
geographically dispersed data centers and a production-class
development laboratory which use replication to mirror the data at each
location.
 Database as a service. Customers can create customized data objects,

such as relational tables, and use metadata to describes those objects.
Force.com provides data security by offering features such as user

http://force.com/
http://force.com/
http://salesforce.com/
http://force.xn--coms-x96a/
http://force.xn--coms-x96a/
http://force.com/
http://force.com/
http://force.com/
http://force.com/

authentication, administrative permissions, object-level permissions and
field-level permissions.
 Integration as a service. Force.com provides integration technologies

that are compliant with open web services and service-oriented
architecture (SOA) standards, including SOAP, WSDL and WS-I Basic
Profile [Fer10b]. Force.com offers different prepackaged integration
solutions, such as Web Services API, Web Services Apex, callouts and
mashups, and outbound messaging.
 Logic as a service. Force.com provides three options for

implementing an application’s business processing logic: declarative
logic (unique fields, audit history tracking, history tracking and
approval processes), formula-based logic (formula fields, data
validation rules, workflow rules and approval processes), and
procedural logic (Apex triggers and classes).
 User interface as a service. Force.com provides two types of tools for

creating the user interface of applications built on the platform
applications: Force.com’s Builder and Visualforce. Builder creates
metadata, which Force.com uses to generate a default user interface for
each database object, with its corresponding methods such as create,
edit and delete. With Visualforce, developers can use standard web
development technologies such as HTML, Ajax and Adobe Flex to
create user interfaces for their cloud applications.
 Development as a service. Force.com offers some features to create

cloud applications: Metadata API, Integrated Development
Environment (IDE), Force.com Sandbox and Code Share. Metadata
API allows modification of the XML files that control an organization’s
metadata. The IDE provides a code editor for adding, modifying and
testing Apex applications. Apex is the Force.com proprietary
programming language. Multiple developers can share a code source
repository using the synchronization features of the IDE. Force.com
Sandbox provides a separate cloud-based application environment for
development, quality assurance and training. Force.com Code Share
allows developers from different organizations to collaborate on the
development, testing and deployment of cloud applications.

http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://force.xn--coms-x96a/
http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://force.com/

Force.com IDE [Sal3] is a client application for creating, modifying,
and deploying applications. Once the user downloads the IDE to their
local machine, they can start coding. The IDE is in communication with
the Force.com platform servers. There are two types of operations:
online and offline. For example, in the online mode, when a class is
saved, the IDE sends the class to the Force.com servers that compile the
class and return any result (error message). In the offline mode, all
changes are performed on a local machine, and once connected to
Force.com gain, the changes are submitted and committed. Force.com
provides built-in support for automated testing. Once an application is
developed in the development environment, it may be migrated to
another environment, such as testing, or production.
 Application exchange. AppExchange is a cloud application

marketplace where users can find applications that are delivered by
partners or third-party developers.
Force.com offers environments [Sal4] where users can start developing,
testing and deploying cloud computing applications. There are different
types of environments, such as production, development and test
environments. The production environment stores live data, while the
development environment stores test data and is used for developing
and testing applications. The development environment has two types:
Developer Edition and Sandbox. Sandbox is a copy of the production
environment that can include data, configurations, or both. A Developer
Edition environment [Sal5] includes the following developer
technologies: Apex programming language, Visualforce for building
custom user interface and controllers, the Integration APIs, and more.
Figure 15.9 shows the platform for the Developer Edition environment.
The Force.com’s virtual environments run on Salesforce’s
infrastructure.

Figure 15.9: Class diagram of Force.com’s PaaS architecture

http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://force.xn--coms-x96a/
http://force.xn--coms-x96a/

Force.com uses various security techniques to defend its platform from
different types of threats [Sal6]:

 User authentication: most users are authenticated on the login page,
but there are also other forms of user authentication, such as delegated
authentication and Security Assertion Markup Language (SAML).
 An authenticated session needs to be established before accessing the

Force.com SOAP API and Metadata API.
 Force.com secures its network using various mechanisms, such as

stateful packet inspection (SPI), bastion hosts, two-factor authentication
processes and end-to-end TLS/SSL cryptographic protocols.
 For sensitive data such as customer passwords, Force.com applies an

MD5 one-way cryptographic hash function, and supports encryption of
field data.
 At an infrastructure and network level, Salesforce.com applies

rigorous security standards, such as SysTrust SAS 70 Type II.
 Salesforce.com implements industry best practices to harden the host

computers. For example, all hosts use Linux or Solaris distribution with
non-default configurations and minimal processes, user accounts and
network protocols.

http://force.com/
http://force.com/
http://force.com/
http://force.com/
http://salesforce.com/
http://salesforce.com/

Consequences
The PLATFORM-AS-A-SERVICE pattern offers the following benefits:

 Collaboration. Geographically dispersed developers can collaborate
on the same project because the code is managed online [Law08].
 Coordination. A project can be conveniently administered from a

central point.
 Elasticity. The resources (storage, networking resources and servers)

needed to develop and deploy an application can grow or shrink to
accommodate varying workload volumes. Scaling application
deployments horizontally by replicating application components such
as application servers and data stores is also possible.
 Pay-per-use. Users only pay for the services they consume, and do

not need to buy any development tools or full year licenses.
 Transparency. The PaaS provider manages upgrades, patches and

other maintenance, as well as the infrastructure. Users do not need to
worry about compatibility issues between the server configurations and
the development software.
 On-demand services. PaaS providers offer software development

tools that can be used by developers when needed.
 Accessibility. PaaS services are accessed through the Internet via web

browsers from anywhere at any time.
 Testability. The variety of tools available makes testing application

programs more convenient in this environment.
 Versatility. PaaS offers various programming languages and

databases. For example, with Microsoft Azure you can build
applications using .NET, Java, PHP and others.
 Simplification. Developers do not need to buy or install any

development tools, or to keep the servers updated. The development
tools are managed and maintained by the PaaS providers.
 Security. The development tools offered should include tools to

develop, test and deploy secure applications, supporting some secure
methodology [Uzu12c]. The platform itself should have protection
against its identified threats.

The pattern also has the following potential liabilities:
 PaaS providers usually offer their own proprietary development

software, which makes it hard to migrate an application from one PaaS
vendor to another. Also, APIs from different providers vary, which
raises portability issues.
 The availability of the PaaS products depends mostly on the Internet.

Thus, the services are available only as long there are network
connections.
 A PaaS provider can either own or subcontract the underlying

infrastructure from an IaaS provider. In either case, the security or
availability of PaaS services may not be assured.
 Unscheduled upgrades of cloud-based software can be disruptive.

Known Uses
 Google App Engine [Goo2] provides an environment for building and

hosting web applications on Google’s infrastructure. Google App
Engine supports two application environments: Java and Python.
 Microsoft Azure [Micb] provides a platform to build, deploy and

manage applications. It provides various programming languages, such
as .NET, Java, PHP and others, to build applications.
 Salesforce [Sal] offers a development platform for building custom

applications. (See the Implementation section above)
 IBM SmartCloud Applications Services [Dod10] delivers a

collaborative environment that supports the full lifecycle for software
development, deployment and delivery.

See Also
 The INFRASTRUCTURE-AS-A-SERVICE pattern (page 413)

describes the infrastructure to allow sharing of distributed virtualized
computational resources.
 Misuse Patterns in [Has12a] describe possible attacks to cloud

environments, which may affect the security of PaaS.
 The Cloud Computing: Platform as a Service (PaaS) pattern [Nex10]

describes execution environments for PaaS applications.

 The Party pattern [Fow97] indicates that users can be individuals or
institutions.
 Several of the patterns presented earlier can be used to protect the

platform. The catalog of patterns in Chapter 17 can be used to provide
guidance about what to include in a development tool.

15.4 Software-as-a-Service
The SOFTWARE-AS-A-SERVICE pattern describes how to provide a set
of software applications available in a cloud system that can be accessed by
client devices through the Internet.

Example
Bob has a small business that sells services. Currently, he has three
salespeople who are offering the services and meeting potential customers.
He is thinking of expanding his company and hiring more salespeople,
which will make it more difficult to track the sales and potential customer’s
information.

Context
SaaS applications are hosted by a provider and accessed through the
Internet via user interfaces or APIs.

Problem
Customers may need to use software products that do not require local
installation and maintenance of the software. How can software be
delivered over the network?

The solution to this problem must resolve the following forces:
 Pay-per-use. Customers should be charged on a per-use basis, like

utility services.
 Transparency. Customers should not be concerned about maintenance

or updates to the software.

 On-demand services. Customers should have the ability to start using
an application when they need to.
 Accessibility. Customers should be able to access the software

applications at any time and anywhere.
 Flexibility. Customers should be able to configure the software

application to their needs, such as currency or date formats.
 Elasticity. Applications should be able to scale down or up depending

on the customers’ needs [Ju10]. For example, it should be possible to
increase or decrease the number of users using the application.
 Simplification. Customers should not need to install any special

software on their local machine.
 Security. The software offered to users must be secure: it should be

built following a secure methodology [Uzu12c].

Solution
SaaS applications are delivered as a service to users typically thorough the
Internet via web browsers or APIs. SaaS based in the cloud enables users to
access applications on demand, in which both computation and storage are
hosted in the cloud without installing any software on their local machines.
SaaS can be developed and deployed using underlying platform-as-a-
service (PaaS) or infrastructure-as-a-service (IaaS) offerings.

Structure
Figure 15.10 shows the class diagram for software-as-a-service. A
SaaSProvider processes requests from Parties. A Party can be either a
User or a group of users (an Institution). A Party can have one or more
Accounts. A SaaSProvider offers a set of SaaSApplications. The
SaaSCatalog contains the list of SaaSApplications that are offered to the
users. There can be a single AppInstance of the application that is shared by
different users, or a single instance per user. The SaaSApplications resides
on a Platform. SaaSApplications can be deployed using underlying
platform-as-a-service or infrastructure-as-a-service offerings. The platform
can be owned or rented to a third-party provider.

Figure 15.10: Class diagram for the SOFTWARE-AS-A-SERVICE pattern

Dynamics
The set of use cases includes the following [Spe09]:

 Open/close an account (actor: party)
 Set up an application (actor: SaaS provider)
 Meter usage (actor: SaaS provider)
 Subscribe to an application (actor: SaaS provider)
 Consume an application (actor: party)

We show the last two of these use cases in detail below.

Use Case: Subscribe to an Application – Figure 15.11
Figure 15.11: Sequence diagram for the use case ‘Subscribe to an
application’

Summary A user asks to buy a subscription in order to access an application from the SaaS
provider

Actor User.
Precondition The User has a valid account.
Description 1 A User asks to subscribe to an application.
 2 The SaaSProvider checks whether the User has a valid account.
 3 The SaaSProvider creates an instance of the software application. In this case we

assume that each application instance serves one party.
 4 The SaaSProvider acknowledges the User that his subscription to the application is

complete.
Postcondition The user can start using the application.

Use Case: Consume an Application – Figure 15.12
Figure 15.12: Sequence diagram for the use case ‘Consume an application’

Summary A user asks to use an application for which they are already subscribed.
Actor User.
Precondition The User has an account and they have subscribed to the application.
Description 1 A User asks to consume an application to which they are subscribed.
 2 The SaaSProvider checks whether the user has a valid account.
 3 The User starts consuming the application.
 4 The User asks for their data to be saved.
Postcondition The User’s data is stored in the cloud.

Implementation
SaaS can be categorized into four distinct levels [Per10]. The first-level
services are ad hoc/custom, in which each customer has their own
customized version of the hosted application. For the second-level services,
configurable, the SaaS provider’s servers host a separate instance of the
application for each customer, similarly to the previous level. However, the
instances are not customized for each customer, but provide some
configuration options.

The third-level services are configurable, multi-tenant efficient, in which
a single instance of the software serves all customers, with configurable
metadata. At the fourth level, scalable, configurable, multi-tenant-efficient,
multiple identical instances are controlled by the load balancer.

In order to manage multi-tenant data, there are three approaches for
databases [Liu10]. The simplest approach is to store data in different
databases for each customer. For the second approach, the same database
hosts multiple customers’ data, where each customer has their own tables
and schema. In the third approach, customers’ data is stored in the same
database and set of tables.

In Salesforce’s model, a single instance of an application is shared among
many customers, and customers’ data is stored in a shared database. For
customization purpose, metadata can be used to configure the way in which
an application appears and behaves, such as appearance of the screen and
data fields.

Example Resolved
Bob has two options:

 Bob has to make an initial investment in infrastructure, such as the
hardware, middleware and software needed for an application that can
track sales, customer’s information, potential customers and reports. He
has also to be in charge of the maintenance of the equipment and the
necessary software to run the application. The problem with this option
is that if demand decreases, there are still operational costs for unused
resources. The benefit of this option is that he can have control over the
underlying infrastructure as well as his data.

 Bob can subscribe to SaaS application hosted by a cloud provider.
The cloud provider takes control of the software application. The SaaS
provider may rent the infrastructure to a third-party provider, which
makes the process of compliance more complicated. The location where
the data is processed or stored may be uncertain, which may raise data
privacy issues. Since SaaS solutions are web-hosted, they have to be
accessed by an Internet connection, which can be insecure. Sensitive
data has to be stored online on provider’s servers. If the provider goes
into bankruptcy, lock-in can be a possible issue.

Consequences
The SOFTWARE-AS-A-SERVICE pattern offers the following benefits:

 Pay-per-use. SaaS providers often charge for their applications based
on some parameters such as number of users. For example, Salesforce’s
Enterprise CRM costs $125 per user per month. Google Apps for
business costs $5 per user per month, but it is free for individuals and
small teams.
 Transparency. SaaS applications are deployed, supported, maintained

and upgraded by the provider. Due to the fact that SaaS applications are
hosted in the cloud, updates and upgrades are available immediately to
the users [Ju10]. Users typically do not need to install or set up any
application on their local machines. Also, SaaS applications can be used
from any operating system.
 On-demand services. SaaS applications can be used as soon as they

are needed. For example, to get access to Google Gmail, a user just
opens a browser, logs into their account, and starts using the
application.
 Accessibility. SaaS applications can be accessed across the Internet by

a user at any time.
 Flexibility. SaaS applications can be customized to some degree,

depending on how they were designed. Not all providers offer
customization. For example, a customer may be able to modify a page
layout.

 Elasticity. SaaS applications are hosted in the cloud, so users do not
need to install them on their local machines.
 Simplification. Typically SaaS applications are accessed through web

browsers or APIs, which do not require specific software on the client.
 Security. It is possible to deploy secure applications if they have been

built using a secure development methodology [Uzu12c].
The pattern also has the following potential liabilities:

 There are some applications that demand high user interaction; in
such cases the SaaS model may not be suitable because of the network
latency.
 Since customers’ data is stored on the vendor’s servers, or even on a

third-party’s servers, data security becomes an issue.
 The network used to accessed SaaS applications, such as the Internet,

can be insecure. This can raise security issues such as integrity and
confidentiality.
 SaaS applications typically are unique to each provider, which makes

it harder for users to switch to a different vendor.
 SaaS applications may be updated frequently by their providers,

which may make it difficult for users to manage the integration of SaaS
applications with their business processes.
 Unplanned upgrades can be a disadvantage, especially if they impose

an unscheduled training requirement on the customer.
 Cloud applications may introduce compliance issues because the

users’ data is stored and managed by the provider.
 If the provider goes into bankruptcy, lock-in can be a possible issue.

Known Uses
 Salesforce.com’s CRM (Customer Relationship Management) [Sal] is

online web-based software that records, tracks, manages and analyzes
sales data.
 Google applications such as Gmail, Google Calendar and Google

Docs [Goo1] are web-based applications that can be accessed through
different thin clients with Internet connection.

http://salesforce.xn--coms-x96a/

 Freshbooks.com [Freb] is an online invoicing service intended mainly
to serve small businesses.
 IBM SmartCloud Solutions [IBMa] provides a set of software and

business processes delivered by IBM as a service, including Business
Analytics and Optimization, Social Business, Smarter Commerce and
Smarter Cities.

See Also
 The INFRASTRUCTURE-AS-A-SERVICE pattern (page 413)

describes the infrastructure to allow sharing of distributed virtualized
computational resources [Has12a].
 The PLATFORM-AS-A-SERVICE pattern (page 423) describes

virtual environments for developing, deploying, testing, and managing
applications online [Has12a].
 The Misuse patterns in [Has12b] describe possible attacks to cloud

environments.
 The Party pattern [Fow97] indicates that users can be individuals or

institutions.
 The patterns in this book and our secure methodology (Chapter 3) can

offer an effective way to make SaaS secure.

http://freshbooks.com/

Part III

Use of the Patterns

CHAPTER 16

Building Secure Architectures

Design in art, is a recognition of the relation between various things,
various elements in the creative flux. You can’t invent a design. You
recognize it, in the fourth dimension. That is, with your blood and your
bones, as well as with your eyes.

D H Lawrence
We present now some examples of how the patterns we have described in
this book can be used to build secure architectures. We use the methodology
we presented in Chapter 3, although other methodologies are also possible.
It is even possible not to use any methodology, but in this case the
application of the patterns depends entirely on the experience and
knowledge of the designer. We first expand some aspects of our
methodology, then show four examples taken from different types of
applications, from financial [Bra08a], control [Fer10d], legal [Fer07c] and
medical domains[Fer05g] [Fer12b] [Sor04] [Sor05].

The examples show the use of the patterns in the following stages of the
application lifecycle:

 Requirements stage. Use cases define the required interactions with
the system. We study each action within a use case and see which
attacks are possible. We then determine which policies would stop these
attacks. From the use cases we can also determine the required rights
for each actor, and thus apply a need-to-know policy.
 Analysis stage. Analysis patterns, and in particular semantic analysis

patterns, are used to build conceptual application models. Security
patterns are superimposed to apply security mechanisms. We build a
conceptual model in which repeated applications of a security pattern
realizes the rights determined from use cases.

 Design stage. We map the abstract security patterns identified in the
analysis stage to design artifacts: interfaces, components, distribution
and networking. Design mechanisms are selected to stop these attacks.
User interfaces should correspond to use cases and may be used to
enforce the authorizations defined in the analysis stage. Components
can be secured by using authorization rules.
 Implementation stage. This stage requires reflecting the security rules

defined at the design stage in the code. Because these rules are
expressed as classes, associations and constraints, they can be
implemented as classes in object-oriented languages. At this stage we
can also select specific security packages or COTS components.

We do not show examples of the deployment and maintenance stages.

16.1 Enumerating Threats
An important aspect of security requirements is a systematic and accurate
listing of the potential attacks (threats) to the system. With this listing we
can decide what specific defense mechanisms to use. There have been
several attempts to consider attacks to define the system security
requirements, for example [Hal08b]. In our approach we consider each
action in each use case and see how it can be subverted by an internal or
external attacker [Bra08a] [Fer06c]. For those actions which use
(read/write) or produce data, we can see how this data can be misused by
the attacker, which results in a very complete (and possibly exhaustive) list
of threats. From this list we can deduce what policies are necessary to
prevent or mitigate the attacks. The idea is that all the use cases of an
application define all the possible interactions of actors with the application.
It is in these interactions where attackers could try to misuse the system.

Other approaches to enumerating threats based on attack trees are shown
in [Sch99b] and [Ste02].

Use cases are not atomic, but imply a set of actions [Lar05]. For example,
in a use case of borrowing a book from the library, one must check whether
the user has a valid account, they are not overdue and so on. Consider a
financial company that provides investment services to its customers.

Customers hold accounts and send orders to the company for buying or
selling commodities (stocks, bonds, real estate, art). Each customer account
is in the charge of a custodian (a broker), who carries out the orders of the
customer. Customers send orders to their brokers by e-mail or by phone.
Brokers advise their customers about investments. A government auditor
visits periodically to check for application of laws and regulations.

Figure 16.1 shows the use case diagram for this institution. Figure 16.2
shows the activity diagram for the use case ‘Open an account’. Potentially
each action (activity) is susceptible to attack, although not necessarily
through the computer system. For each potential attack (threat) we can
attach a possible goal. For this use case we could have the following
potential threats:

Figure 16.1: Use cases for a financial institution

Figure 16.2: Activity diagram for the use case ‘Open an account’

Threat
1

The customer is an imposter and opens a spurious account to transfer money at a later
time.

Threat
2

The customer provides false information and opens an account with this false information.

Threat
3

The manager is an imposter and collects user information.

Threat
4

The (legitimate) manager collects customer information to sell or use illegally.

Threat
5

The manager creates a spurious account with the customer’s information.

Threat
6

The manager creates a spurious bank card to access the account.

Threat
7

An attacker prevents the customers from accessing their accounts.

Threat
8

An attacker tries to move money from an account to their own (legitimate) account.

Relating threats to use cases provides a systematic and relatively
complete list of possible threats. Each threat identified can be analyzed to
see how it can be accomplished in the specific environment. The list can

then be used to guide the design and to select security products. It can also
be used to evaluate the final design by analyzing whether the system’s
defenses can stop all these attacks. Since use cases define all the
interactions with the system, we can find from them the rights needed by
these roles to perform their work (the need-to-know principle).

In the activity diagram in Figure 16.2 the threats are shown as misuse
actions. Undesired consequences in the form of additional or alternative
artifacts created have also been added. With these annotations, the attacks
and vulnerabilities presented by the use case become part of our
understanding of the use case and are explicit in its analysis.

From our analysis we can now find out what policies are needed to stop
these attacks. For this we can select from the typical policies used in secure
systems [Fer13]. This should result in a minimum set of mechanisms,
instead of an approach in which mechanisms are piled up because they
might be useful. For example, to avoid imposters we can have a policy of
identification and authentication (I&A) for every subject participating in a
use case.

To stop the threats in the example on page 443, we need the following
policies:

 Threat 1, 3. Mutual authentication. Every interaction across system
nodes is authenticated.
 Threat 2. Verify source of information.
 Threat 4. Logging. Since the manager is using his legitimate rights,

we can only log his actions for auditing at a later time.
 Threats 5, 6. Separation of administration from the use of data. For

example, a manager can create accounts, but should have no rights to
withdraw from or deposit in the account.
 Threat 7. Protection against denial of service. We need some

redundancy in the system to increase its availability.
 Threat 8. Authorization. If the user is not explicitly authorized, they

should not be able to move money from any account.
We made this approach more systematic in [Bra08a]. We believe that this

approach can produce all the attacks that can be defined at the application
level. There is a trade-off between cost, usability and acceptable level of

risk. Finding the right mix for your application involves a risk analysis. In
our use case approach, we identify risks as an integral part of the use case’s
definitions. Vulnerabilities are combined with specific actors and their
motivations. In the analysis phase we match security breaches with defense
strategies using patterns. Because the vulnerabilities, and corresponding
defenses, are an integral part of both structural and functional views, the
consequences of specific security failures can be analyzed in the
appropriate context. Risk analysis is better supported than in methodologies
that lacks these views.

16.2 The Analysis Stage
We proposed a new type of analysis pattern, called a semantic analysis
pattern (SAP) [Fer00]. A semantic analysis pattern is a pattern that
describes a small set of coherent use cases that together describe a basic
generic application. The use cases are selected in such a way that the
application can fit a variety of situations. Using SAPs we developed a
methodology to build the conceptual model systematically. To use the
methodology, it is necessary to first have a collection of patterns, such as
those in this book. We have developed several analysis patterns, for
example [Fer99a] [Sor04] [Sor05] [Yua03], and others exist in the
literature, for example [Fow97] [Ham04].

We can use SAPs as part of our secure system development methodology.
We extend the SAP to consider possible attacks to the fundamental use
cases that define it, and we define policies to prevent the attacks. This is the
application of an idea proposed in [Fer06c] which emphasizes that the
secure design of a system should be based on its expected types of attacks.
Since the SAPs are used to build the conceptual model of an application, we
have now a portion of a conceptual model in which functional and security
aspects are integrated from the start. We call this a secure semantic analysis
pattern (SSAP). As an example, Section 16.4 (page 451) describes a SSAP
to handle legal cases. SSAPs follow the current tendency in security
research of integrating business functions with security aspects from the
beginning of the development lifecycle [Nag05] [Sch06a].

It is possible to superimpose in the SAPs the authorizations that are
required to apply a least privilege policy. The use cases define all the ways
to use the system, and we need to give the actors involved the rights they
need to perform their interactions [Fer97]. We will illustrate these concepts
using a medical application (another medical application is described later
in this chapter).

Figure 16.3 shows a sequence diagram that implements the use case
‘Admit a new patient’ when a medical center gets a new patient. The
‘Admit a new patient’ use case is an interaction with a medical system in
the PATIENT TREATMENT RECORDS pattern described on page 468. An
administrative clerk needs rights to define a guardian and to create a patient
record, patient information, a medical history and a treatment instance. We
can add authorization rules to perform these functions to the PATIENT
TREATMENT RECORDS pattern by adding instances of some security
policy.

Figure 16.3: Sequence diagram for the use case ‘Admit a new patient’

One of the most basic security policies is that defined by the ROLE-
BASED ACCESS CONTROL (RBAC) pattern (page 78). In this model
users join roles according to their tasks or jobs, and rights are assigned to
the roles. In this way a need-to-know policy can be applied, in which roles
get only the rights they need to perform their tasks (see Chapter 6).

As an example of our approach, we add RBAC constraints to the SAP
mentioned earlier. The PATIENT TREATMENT RECORDS pattern
describes the treatment or stay instance of a patient in a hospital [Sor04].
The hospital may be a member of a medical group. Each patient has a
primary physician, an employee of the hospital. Upon admission the patient
record is created, or information is updated from previous visit(s).
Inpatients are assigned a location, nurse team and consulting doctors. This
pattern realizes use cases ‘Admit a new patient’, ‘Discharge patient’,
‘Assign assets to an inpatient’, and ‘Assign nurse to a location’. Assets of
the medical group are assigned to a patient through associations. Figure
16.4 shows associations between the classes Doctor, Nurse and Location
and the class Patient, which describe the corresponding assignments. In
particular, all patients are assigned a primary doctor, while inpatients may
also be assigned consulting doctors. Locations include the room assigned to
an inpatient, or other places for specific treatments.

Figure 16.4: Class diagram for the PATIENT TREATMENT RECORDS
pattern

The assets of the medical group are organized in a hierarchical
arrangement that describes their physical or administrative structure.
Specifically, MedicalGroup includes some Hospitals, and in turn each

Hospital includes some Buildings (we assume that hospitals do not share
buildings). Each treatment Location is part of a Building. The class
Employee classifies the types of personnel that are assigned to patients.
Figure 16.5 superimposes RBAC rights on some of the classes of Figure
16.4, indicating rights for several roles. We have now an SSAP that, in
addition to being a unit for building a conceptual model, also indicates the
typical roles that would perform its use cases, and their rights.

Figure 16.5: PATIENT TREATMENT RECORDS pattern with RBAC
authorizations

16.3 The Design Stage
We can now carry over the security architecture of the analysis stage to the
design stage. One approach to enforcing security constraints is to use a
Model-View-Controller (MVC) pattern [Bus96]. Each View corresponds to

an interface for a use case, and we can enforce role rights at these
interfaces. Figure 16.6 (page 450) implements the use case ‘Admit a new
patient’ and shows the AdministrativeClerk role to be the only role with
the ability to admit patients and perform the required actions.

Figure 16.6: Adding security enforcement through interfaces

A design model can be made more specific by specializing it for a
particular language. For example, it could be tailored for Java and J2EE
components by using the classes Observable (instead of Model), Observer
and Controller from the Java libraries. It is also possible to define rights in
J2EE components. This security is specified in the deployment descriptor
that is written in XML [Kov01]. Security in J2EE is based on roles and
matches the model we are using well. For example, if the Patient class is
implemented as a component, its descriptor may specify that
TreatmentInstance can only be modified by doctors. This rule is at a lower
level than interface rules and could not be overridden – that is, no rule in
the AdmitPatientView can give somebody who is not a doctor the right to
modify patient treatment instances. This approach adds a second line of
defense against administrator errors (the defense in depth principle).
Similarly, components can access persistent data in relational databases

using JDBC. These relations could include further authorizations to provide
another line of defense. When we do this, it is necessary to make sure that
the rights defined in the views, components and database items do not
conflict with each other. To determine possible conflicts, we need to map
security constraints across architectural levels [Fer99b].

Distribution provides another place to perform access control and it needs
again to be coordinated with the other authorizations. Distribution is usually
performed through three basic approaches:

 Distribution of objects using an Object Request Broker, such as
CORBA, DCOM or .NET Remoting. We can add security rules to the
Broker pattern to control access to remote objects.
 Distribution of component and interfaces, for example web services.

We can control access to web services using an access control standard
such as WSPL (page 260) and enforce it using an XML FIREWALL
(page 242) [Del04].
 Cloud computing. Services are provided by the three major layers of a

cloud system [Zha10].
Experience has shown that a good way to build dependable systems is to

structure them into a set of hierarchical layers. Some important issues for
hierarchies are what functions to include in each layer, and how much
security is needed in each layer to accomplish an intended level of security
for the whole system. Not all layers need be equally secure; the lower levels
are more critical and need stronger protection. Security and other non-
functional requirements affect all the architectural levels of a system. The
Layers architectural pattern [Bus96] [Fer02] is therefore a good starting
point to apply these requirements. Using layers we can define patterns at all
levels that together implement a secure or reliable system. The main idea of
the Layers pattern is the decomposition of a system into hierarchical layers
of abstraction, in which the higher levels use the services of the lower
levels. Earlier we discussed why all these levels must be coordinated to
assure security [Fer99b] and how the definition of non-functional
specifications should be done at a specific level [Fer95].

The conceptual enterprise models, both static and dynamic, are defined at
the application level. It is here where the security (and other types of)
policies of the institution should be applied. At this level the semantics of

the application are well understood and roles can be used to apply the need-
to-know policy; that is, we can define the required rights according to the
functions of each role. Other non-functional aspects are also specified here,
such as the required degree of reliability. The lower levels enforce the
restrictions defined at the higher levels. Each level has its own security
mechanism and should participate in enforcing the security constraints. For
example, a DBMS enforces the authorizations in the application by
restricting access to database items; this restriction is propagated down to
control access to the files where the data resides.

16.4 Secure Handling of Legal
Cases
This is an example of an SSAP which shows an application of the patterns
in building a secure semantic unit that includes a set of basic functions from
the same application domain. The SSAP describes the handling of legal
cases in which a client is either suing another party (a plaintiff) or is being
defended from a suit (a defendant) using a legal firm. The pattern includes
the necessary policies (in the form of security patterns) to stop or mitigate
attacks.

Example
The SueThem law firm is having trouble staying in business. It keeps some
documents in electronic form and others on paper. Documents are hard to
find and can easily be accessed by unauthorized people. It is hard for the
company to keep track of their clients and to know how much it should
charge them. The conduction of cases is disorganized, which leads to lost
cases because of lack of preparation.

Context
A legal firm sues parties (people, organizations or groups) on behalf of their
clients; it can also defend their clients when they are sued. We call a legal
case the sequence of actions (process) needed to pursue a suit until its

completion. The standard legal system of most countries allows parties to
sue other parties. There are different types of lawsuits, but they are not of
interest here. Interactions between the people involved can be in person, by
telephone, by regular mail or by e-mail. Law firms are commercial entities
and must compete with other law firms for clients.

Problem
A law suit or defense implies a sequence of actions and generates many
documents, of several types. If the firm doesn’t organize these actions and
the corresponding documents properly, it will have problems in conducting
the suit or defense, which will result in unnecessary expenses and a higher
possibility of losing the case. Because the information handed in a case is
very sensitive, there is motivation to misuse it.

We need to consider possible attacks and take measures to avoid them.
We consider here the main use cases in this process: ‘Handle legal case’
(for a plaintiff), ‘Handle legal case (for a defendant)’, and its auxiliary use
cases ‘Keep track of costs’, ‘Research case’, and ‘Bill Client’. Figure 16.7
shows the actors involved in these use cases. ‘Other’ here represents people
involved in the case, such as witnesses or experts. There are other related
use cases, such as the writing of Wills, or divorce cases, which are left out
for simplicity and to make the pattern more reusable.

Figure 16.7: Use cases for handling legal cases

How can we model this system to consider all these factors in a balanced
way? The solution to this problem must resolve the following forces:

 Unpredictability of activities. The sequence of activities in a case is
usually unpredictable. Depositions, witness court appearances and
lawyers’ briefs to the court might be required in any sequence,
depending on the course of the case.
 Unpredictability of people. Complex cases may require several

lawyers with the assistance of some secretaries. The actual number of
these people might be hard to predict. In addition to the defendant and
the plaintiff (and their respective opponents), we may need witnesses,
experts and others. Who they are and when they are needed depends on
the case.
 Logistics. The total effort and duration of a case is variable, and we

need to keep track of expenses, time used, supplies and so on, so that
we can bill our clients.
 Precedent searching. Handling cases requires searching for

precedents (similar cases). To do research for cases, lawyers and
secretaries make use of libraries and the Internet and may download
many documents.
 Access control to information. The information about customers,

billing, assignment of lawyers and other aspects related to a current

case must be accessible only to authorized people.
 Control of documents. Legal documents can only be created by

authorized people, and their use (reading or modification) should also
be controlled.
 Confidentiality. Communications between lawyers and clients must

be confidential.
 Auditability. Government regulations apply to law firms and their

information must be easily auditable.

Possible Attacks
Figure 16.8 shows an activity diagram of the sequence for handling a case,
followed by billing, tracking of costs and related case research. Following
the approach of [Fer06c], in order to analyze the possible attacks (threats)
we consider each activity in the activity diagram and see how it can be
subverted by the attacker. In this diagram External People indicates either
the opponent or other people involved in the case. The possible threats are
then:

Figure 16.8: Activity diagram of case handling

Threat
1

In the ‘Start Case’ activity, the client or the responsible lawyer might be imposters.

Threat
2

A lawyer might create a false contract.

Threat
3

The client or the external people might give a false deposition.

Threat
4

A lawyer might change a deposition.

Threat
5

A lawyer or a secretary might produce intentionally incorrect precedents, briefs or costs.

Threat
6

A secretary might produce an increased or decreased bill.

Threat
7

A lawyer might change some aspects of the outcome to collect a higher fee.

Threat
8

A lawyer can disseminate client or case information for monetary gain.

Threat
9

An external attacker might read/change case information or access client/lawyer
communications.

Solution
Because the handling of cases is unpredictable and we use a variety of
knowledge experts in its handling, this problem can be conveniently
modeled as a Blackboard pattern [Bus96]. The case itself becomes a
blackboard and the experts providing knowledge to the case are the
lawyers, witnesses or experts. The control is based on the status of the case
and is embodied in the scheduling of activities.

Structure
Figure 16.9 shows a class diagram of the conceptual model for the
functional aspects of this pattern. The class Case represent the case itself (in
the role of blackboard), and includes as components the classes Cost
(describes accrued costs), CaseDoc, Outcome (the result of the case) and
Scheduling (the control role of the blackboard). A Client is responsible for a
case, and with each case there are some associated ExternalPeople
(opponents, witnesses, experts). A CaseDoc can be a Contract, a
Precedent, a Brief or a Deposition. Lawyers and Secretaries are
Employees of the LawFirm and can be assigned to Cases (we assume this
assignment has been done beforehand). A Secretary in the Case keeps
track of Costs. A Lawyer in the case is responsible for the general
conduction of the case, including Scheduling.

Figure 16.9: Class diagram for the SECURE HANDLING OF LEGAL
CASES (without security)

Dynamics
Figure 16.10 shows a sequence diagram describing some typical steps for
the use cases ‘Handle legal case (for a plaintiff) and ‘Handle legal case (for
a defendant)’. The Client starts the case with the responsibleLawyer. This
lawyer creates an instance of a Case and later does some research for it. He
assigns an assistant lawyer (lawyer2) to prepare a Brief for the court and
schedules the client to make a Deposition.

Figure 16.10: Sequence diagram for the use case ‘Handle case (etc.)’

The other use cases are simpler and are not shown for conciseness.

Secure Structure
The threats identified on page 453 mean that we need the following policies
to avoid or mitigate them:
Threat
1

Mutual authentication, to avoid imposters.

Threat
2

Authorization to restrict lawyers to the creation of contracts, and logging to record possible
illegal actions by a lawyer.

Threat
3

Logging, to keep records for future auditing that could detect false depositions.

Threat
4

Authorization and document protection against change.

Threat
5

Authorization and logging, to restrict who can perform these actions, and to keep records for
future auditing.

Threat
6

Logging, to record suspicious actions by a secretary.

Threat
7

Separation of duty: two lawyers must concur on the fees to be charged.

Threat
8

Logging, to record possible illegal actions by lawyers.

Threat
9

Authorization and access control, to stop external attacks, and cryptography, to protect
communications.

From these policies we can define abstract security mechanisms to stop or
mitigate the identified attack threats. Figure 16.11 shows the relevant part
of the conceptual model of Figure 16.9, with the addition of instances of
authentication, authorization and logging patterns to realize the identified
policies. We assume that the authorization policies follow an RBAC model
(see page 78) and the diagram defines the rights for each role. Both the
responsible lawyer (who interacts with the client), and the client must have
information to authenticate each other, requiring two instances of the
AUTHENTICATOR pattern (page 52). The CaseLog (an instance of the
SECURITY LOGGER AND AUDITOR pattern, page 111) records
accesses to the case data. We also need an instance of the REIFIED
REFERENCE MONITOR (page 100), not shown here for simplicity.

Figure 16.11: Security additions to the class diagram

Example Resolved
The SueThem law firm now has a systematic structure to conduct its cases.
All its documents are reflected in the conceptual model and can be easily
retrieved and audited. The company can now keep track of the costs
associated with a case. Documents and other case information can be
protected from illegal access.

Consequences
The SECURE HANDLING OF LEGAL CASES pattern offers the
following benefits:

 The Blackboard structure accommodates unpredictable sequences of
activities well.
 We can assign lawyers and secretaries dynamically, depending on the

course taken by the case.
 The model includes knowledge sources that can be the client, the

opponent, witnesses, expert witnesses and other people.
 It is possible to track the current costs of the case.

 Applying legal regulations to the company is easy, because all
documents are described by classes with controlled access, and we keep
a log of accesses.
 Searching for precedents (similar cases) can be done as part of case

handling. We can store this information for future use, and we can
associate it with the different stages of the case.

The pattern also has the following potential liabilities:
 The order in which some activities are performed has an effect in the

outcome, but the lawyers must decide on the scheduling: the pattern
does not help here.
 We might not be able to predict all possible attacks, which could

allow some attacks to still happen.
 The pattern’s implementation might allow new types of attacks. For

example, code flaws might allow an attacker to get control of the
operating system, and thus to the case data.

Application of this pattern has the following effects on security:
 We can define precise role rights. For example, an expert can only

add to case information, not change it, a lawyer can decide on the next
step, bring new witnesses, but cannot change depositions, and so on.
 A designer building a system of this type can produce software that

performs its functions and is at the same time reasonably secure, in that
it can control all predicted threats.
 The ROLE-BASED ACCESS CONTROL structure (page 78)

enforces authorized access to the information, and employees can make
sure that they are communicating with the person they intend to.
 Cryptographic methods such as hashing [Gol06] can be added to

prevent document modification.

Known Uses
Many large law firms follow a similar structure for their case handling.

See Also
 The SECURE BLACKBOARD pattern (page 353) is the basis for the

central function of the case.

 The client and external people can be described by a Party pattern to
indicate that they can be individuals or organizations [Fow97].
 Assignment of lawyers and secretaries uses the Resource Assignment

pattern [Fer05h].
 The rights structure follows an ROLE-BASED ACCESS CONTROL

pattern (page 78).
 Authentication is performed by means of instances of the

AUTHENTICATOR pattern (page 52).

16.5 SCADA Systems
Infrastructure systems are needed to sustain civilized life. These include
transportation, finance and banking, government, chemical, energy, oil and
gas production and distribution, health services, information management,
water (for drinking and irrigation), emergency services (fire, police),
garbage collection and others. All these infrastructure functions are
controlled by systems that are complex and becoming increasingly
interdependent: each system typically depends on one or more other
systems. Some are mutually dependent; for example, electric power
generation may require oil, and oil production will require electricity.

Modern industrial facilities such as water supply systems, electric power
generation plants and oil refineries often involve components that are
geographically distributed. To continuously monitor and control the
different sections of the plant in order to ensure its appropriate operation
leads to the use of Supervisory Control and Data Acquisition (SCADA)
systems. These systems were designed to meet the basic requirements of
process-control systems for which security issues were not a concern.
However, the growing demands for increased connectivity between a
SCADA system and other network components, such as the corporate
network and the Internet, expose the critical parts of a SCADA system to
the public, so security issues can no longer be ignored. In fact, some attacks
have already been detected [Bra08b] [Byr04]. Here we consider the use of
security patterns to define, in a systematic way, the defenses that we need in
order to secure such a system. While many approaches to secure SCADA

systems exist, for example [Bra08b] [Goe05] [Igu06] [Mil05] [Nae07],
none of them make use of security patterns.

Basically, a SCADA system consists of field units, a central controller,
and communication networks that connect these components. A field unit
consists of field devices and a local programmable logic controller (PLC).
Field devices, such as actuators and sensors, are monitored and controlled
by a local PLC. The central controller is generally geographically separated
from these field units and typically has advanced computation facilities. A
typical central controller may be equipped with data servers, human-
machine interface (HMI) stations, and other servers with advanced
computation capabilities to aid the operators in managing the entire plant.

Figure 16.12 is a class diagram for a basic SCADA architecture. The
functions of the central controller include sending settings and commands
to field units and receiving status information from them. The functions of
the field units include monitoring the environment, taking actions on the
environment and sending status information and/or alarms to the central
controller if necessary. The functions of the communication networks
include forwarding data and commands in both directions.

Figure 16.12: Class diagram for a generic SCADA system

Modern SCADA systems are normally connected to the corporate
networks and/or the Internet through specialized gateways. The gateway is
used to provide protocol conversion between two different networks when
they use different protocols. The MODBUS protocol is currently one of the
most popular and widely-used protocols with SCADA systems [Goe05], but
other protocols are used for specialized applications. Since SCADA
systems have a standard structure, we devised a specific pattern to define
and model them. Figure 16.12 describes the static structure of this pattern.

Securing a SCADA System
We propose a method to analyze, build and evaluate secure SCADA
systems using security patterns. Intuitively, we use security patterns to stop
and/or prevent attacks, and we list these attacks first. The result of our
solution is a security pattern itself (an SSAP) the SECURE SCADA pattern,
which can be used as a guideline for building secure SCADA systems. All
the required patterns were described in Chapter 5, Chapter 6 and Chapter
10.

Attacks Against SCADA Systems
Until recently SCADA systems were electronically isolated from all other
networks, and hence not likely to be accessible by outside attackers
[Bra08b]. As a result, the security issues of a SCADA system focused on
physical security, such as physical access control. However, the growing
demands of the industry for increased connectivity between SCADA system
and the corporate network (and/or the Internet) has resulted in an increase
in security threats and vulnerabilities that are not limited to physical attacks
[Gor09]. A recent study shows that prior to 2000, almost 70% of the
reported incidents with SCADA systems were either due to accidents or to
disgruntled employees acting maliciously. Since 2001, apart from an
increase in the total number of reported incidents, almost 70% of the
incidents have been due to attacks originating from outside [Byr04].

We can systematically enumerate the threats against a system by
considering its use cases and activities, and analyzing possible ways of
subverting them. A simplified version of our approach is to look at possible
attacks against each unit of the system, providing that its platform structure
is predefined. This is a preliminary enumeration of threats, which can be
expanded at a later stage of design. Note that these threats include external
and internal attacks.

Recalling Figure 16.12, a generic SCADA system is mainly composed of
a central controller, communication networks and field units, so we can
categorize threats corresponding to these three components. Attacks
against/through the central controller include:
Threat 1 Physical attacks.

Threat 2 Malicious settings of the field units.
Threat 3 Wrong commands sent to the field units.
Threat 4 Malicious alteration of the runtime parameters of the central controller.
Threat 5 Denial of service attacks.

Attacks against/through the field units include:
Threat 6 Physical attacks.
Threat 7 Malicious alteration of the runtime parameters of the field units.
Threat 8 Incorrect commands sent to the field units.
Threat 9 Malicious alarms sent to the central controller.
Threat 10 Denial of service.

Attacks against/through the communication networks include:
Threat 11 Sniffing.
Threat 12 Spoofing.
Threat 13 Denial of service.

Attacks against the central controller and the network are more harmful,
since they may disable the whole system, whereas attacks against field units
only affect specific units. For simplicity we are leaving out attacks due to
malware, which can be handled using conventional approaches.

Countermeasures
Central Controller

 To stop Threat 1, we use security patterns for physical access control
such as the ROLE-BASED ACCESS CONTROL pattern (page 78)
combined with the AUTHENTICATOR pattern (page 52) and the
SECURITY LOGGER AND AUDITOR pattern (page 111).
 To stop Threats 2, 3 and 4, we use the AUTHORIZATION pattern

(page 74) together with the AUTHENTICATOR pattern and the
SECURITY LOGGER AND AUDITOR pattern. The
AUTHENTICATOR restricts access to the system to registered
employees, while the AUTHORIZATION pattern controls the actions
that the employees can perform on the controller. The SECURITY
LOGGER AND AUDITOR pattern is useful for those cases in which a
legitimate employee is trying to perform sabotage (we cannot stop the
attack, but we have a record of who did it).

 To stop Threat 5, we use the Firewall pattern [Sch06b] together with
an Intrusion Detection System (IDS) pattern (Chapter 10). The IDS
detects the attack and instructs the firewall to block traffic from the
attacking addresses. Note that the Firewall and the IDS patterns can be
deployed at different layers of a system (for example the application
layer and the network layers). Figure 16.13 shows the class diagram for
the secure central controller after the necessary security patterns have
been applied. Note that the users’ actions are controlled at the HMI,
which acts as a Concrete Reference Monitor [Sch06b] for user
interactions: it can apply authorization controls based on user roles.

Figure 16.13: Secure central controller where security patterns are applied

Field Units
 To stop Threat 6, we use the ROLE-BASED ACCESS CONTROL

pattern (page 78) combined with the AUTHENTICATOR pattern (page
52) and the SECURITY LOGGER AND AUDITOR pattern (page 111).
 We use the AUTHORIZATION pattern (page 74) together with the

AUTHENTICATOR pattern and the SECURITY LOGGER AND
AUDITOR pattern to stop Threats 7, 8 and 9.

 By applying the Firewall pattern together with the IDS pattern, we
can stop Threat 10.
Figure 16.14 shows the class diagram for the secure field unit after
necessary security patterns have been applied.

Figure 16.14: Secure field unit after security patterns have been applied

Communication Networks
 To stop Threat 11, we use cryptography-based methods such as secure

channels [Bra00].
 To stop Threat 12, we use the AUTHENTICATOR pattern (page 52)

to prove the origin of a message. In practice, we can implement the
above mechanisms using virtual private networks (VPN).
 Stopping Threat 13 is out of the scope of this pattern: see Chapter 10.

Figure 16.15 shows the class diagram for the secure communication
networks where necessary security patterns are used.

Figure 16.15: Secure communication networks after security patterns have
been applied

Secure SCADA
Note that the structure of the class diagram in Figure 16.13 is similar to that
in Figure 16.14. This is due to the fact that the central controller and the
field units are exposed to similar attacks. As a result, we can produce the
SECURE SCADA pattern, which combines these figures, as shown in
Figure 16.16.

Figure 16.16: Class diagram for the SECURE SCADA pattern

An important aspect in the protection of SCADA systems is controlling
access to their physical structures, for example the transformer yard in an
electric plant. The recently increased need to protect against terrorism has
brought added interest in control of access to buildings and other physical
structures. The need to protect assets in buildings and to control access to
restricted areas such as airports, naval ports, government agencies and
nuclear plants has created a great business opportunity for the physical
access control industry, and much interest in the research community. One
of the results of this interest has been the recognition that access control to
information and access control to physical locations have many common
aspects.

The most basic model of access control uses a tuple: subject, object and
access type (Chapter 6), or ‘S’, ‘O’ and ‘T’. If we interpret S as a person
(instead of a subject), O as a physical structure (instead of a computational
resource), and T as a physical access type (instead of resource access), we
can make an analogy where we can apply known results or approaches from
information access control. One way to achieve this unification is to use a
conceptual abstraction for the definition of security requirements. We have
combined analysis and security patterns for this purpose [Fer05g].
Standards and products that deal with physical units use a set of common
concepts that may appear different due to a different notation; patterns make
this commonality apparent. Examining existing systems, industry standards
and government regulations, we have described, in the form of patterns, the
relationship and definition of a core set of features that a physical access
control system should have [Fer07f].

16.6 Medical Applications
The Internet, wireless systems and RFID sensors are opening a new era in
medical care. Most activities in medical care can be integrated and
performed remotely and pervasively. This change promises to improve
medical care and reduce costs. However, if these systems are not secure,
users will lose confidence in them and some of their advances will not be
realized. We discuss here some relevant issues, and emphasize again that to
have secure systems we must consider security from the beginning, in all
phases, and in the whole system. (Another medical application using
patterns is shown in [Paz04].)

The so-called telehealth applications include assisted living, pervasive
healthcare, patient monitoring, distance surgery, remote diagnosis,
ambulance and others; they all typically rely on wireless networks. Because
of their need to be established over long distances and to often operate
without supervision, these networks are exposed to a variety of attacks. We
look at some medical applications and the corresponding network security
issues. In particular, we consider here aspects of mHealth (also written as
m-health, or sometimes mobile health), a recent term for medical and public
health practice supported by mobile devices such as cellular phones, patient

monitoring devices, PDAs and other wireless devices [Jur08]. Applications
of mHealth include the use of mobile devices for collecting clinical data,
delivery of healthcare information to practitioners, researchers, and patients,
real-time monitoring of patients’ vital signs and direct provision of care (via
telehealth). We consider mHealth not to be a set of independent systems,
but merely a complementary part of the complete medical system.

Most discussions of the security of wireless networks for health
applications consider only the communication aspects of the networks, for
example [Gia08] [Zen08]. However, a health network is part of a complete
health application, and we need to relate its communication aspects to its
medical aspects. We need to understand first what information is needed for
medical purposes and how this information is used. Once we define what
information we need, we present a pattern for patient records management.
Then we show a case study, ambient assisted living, followed by an analysis
of the threats and defenses in a wireless network such as the ones used in
medical applications.

Medical Records and their Regulations
The electronic healthcare record (EHR) is a lifetime record of an individual
that has the purpose of supporting continuity of care and related education
and research. It typically includes information about encounters (visits), lab
tests, diagnostics, observations, medications, imaging reports, treatments,
allergies and therapies, as well as patient-identifying information and legal
permissions [Eic05].

Medical information is very sensitive and must be protected. Most
countries have severe restrictions in the use of this information. There are
several regulations in the US about the handling of health information, the
best known being the Health Insurance Portability and Accountability Act
(HIPAA) [HIP] [Hip]. Title II of the HIPAA, known as the Administrative
Simplification (AS) provisions, requires the establishment of national
standards for electronic health care transactions and national identifiers for
providers, health insurance plans and employers. The AS provisions also
address the security and privacy of health data. The standards are meant to
improve the efficiency and effectiveness of the nation’s health care system
by encouraging the widespread use of electronic data interchange.

Five rules define Administrative Simplification:
 The Privacy Rule regulates the use and disclosure of specific

information held by covered entities (healthcare providers, health care
clearing-houses, employer sponsored health plans and health insurers)
and their business associates (lawyers, accountants, IT consultants). It
establishes regulations for the use and disclosure of protected health
information (PHI).
 The Transactions and Code Sets Rule defines specific transaction

types. For example, the EDI Health Care Claim Transaction set (837) is
used to submit health care claim billing information, encounter
information, or both (except for retail pharmacy claims). It can be sent
from providers of health care services to payers, either directly or via
intermediary billers and claims clearing-houses.
 The Security Rule complements the Privacy Rule. While the Privacy

Rule pertains to all PHI, including paper and electronic media, the
Security Rule deals specifically with electronic protected health
information (EPHI). It lays out three types of security safeguards
required for compliance: administrative, physical and technical.
 The Unique Identifiers Rule establishes that providers must use only

the National Provider Identifier (NPI) to identify themselves in standard
transactions. The NPI is a unique 10-digit identification number
provided by the US Government.
 The Enforcement Rule sets civil financial penalties for violating

HIPAA rules and establishes procedures for investigations and hearings
for violations. It seems to be rarely applied, however.

Privacy is the right of individuals or groups to keep their personal
information away from public knowledge, or their ability to control
personal information flow. In the electronic or the real world, people seek
privacy, so they can perform their actions without others monitoring them.
Individuals should be able to live without being disturbed, and users
interact with the web navigate without being identified. People providing
information to medical institutions or storing their personal records with
commercial companies should know what to expect about the privacy of
their information. This right is recognized by all civilized societies and is
considered a fundamental human right. The first national privacy protection

law was the Swedish Data Act of 1973. This was followed by the US
Privacy Act of 1974. The intent of this act was to protect individuals against
invasion of privacy by the Federal Government. This law is complemented
by the Computer Security Act of 1987, which defines requirements for
federal agencies concerning the security of their information. In general,
privacy laws are more developed in Europe than in the US.

Patient Treatment Records
We present a pattern to describe some of the basic functions involved in
maintaining and using patient records in a hospital, the Patient Treatment
Records pattern [Sor04]. A medical record can be thought of as a series of
dated treatment instances, or encounters. Each patient encounter is
documented on a patient chart and contains dated notes written by
physicians, as well as laboratory reports and letters from consulting
physicians. In addition, a patient chart will have vital sign documentation
from nurses, imaging reports, specific treatment plans, treatments
performed, medications given, assessments of patient condition and so on.

The PATIENT TREATMENT RECORDS pattern focuses on the private
and sensitive nature of medical information and the need for maintaining
accurate and organized records. A patient is admitted to a healthcare
facility, where all pertinent information is recorded. A physician and other
facility assets are assigned to the patient. Following treatment the patient is
discharged. This pattern describes only some of the aspects of patient
treatment, which include the creation and maintenance of the patient record
and the assignment of the assets for use by the patient. This pattern
describes a general non-emergency treatment situation and does not
consider the details of patient diagnosis and treatment.

The pattern describes the handling of records during the treatment or stay
instance of a patient in a hospital. The hospital may be a member of a
medical group. Each patient has a primary physician, an employee of the
hospital. Upon admission the patient record is created or information is
updated from previous visit(s). Inpatients are assigned a location, nurse
team and consulting doctors.

The PATIENT TREATMENT RECORDS pattern is another example of a
semantic analysis pattern (SAP). In the next section we describe one of its

two component patterns, the PATIENT RECORD. The other two
component patterns can be found in [Sor04], and a more detailed model for
medical records in [Sor05]. Figure 16.17 shows a use case diagram that
corresponds to some of the typical needs of patient treatment which define
the structure of the PATIENT TREATMENT RECORDS pattern. There are
other use cases, such as ‘Diagnose’, ‘Perform patient treatment’, and
‘Billing’, which have been omitted for simplicity.

Figure 16.17: Diagram of the use case ‘Patient treatment’

Patient Record
Describes the structure of patient records and the process of creating and
maintaining them for a stay or treatment in a hospital.

Problem
Maintaining accurate records is crucial for patient treatment. A poor record
may result in erroneous treatments, loss of insurance or other problems for
the patient or the hospital. How can we keep an accurate picture of what
happens during the stay of a patient in a hospital?

The solution to this problem must resolve the following forces:

 Patient characteristics, for example age, gender, occupation, ethnic or
racial origin, weight and others, may have an effect on the diagnosis
and treatment of the patient, and it is important to keep this information
accurate.
 We need a detailed record of what has been done to a patient during a

specific stay at the hospital. This is necessary for medical, billing and
legal reasons.
 Patients may return to the hospital, so we need to be able to relate

new treatments to past treatments.
 We may need to classify different types of patients, otherwise the

patients or the hospital might incur unnecessary expenses.
 Patients might not be responsible for their decisions or their expenses,

so we may need somebody responsible for the patient.
 The information is sensitive and we need to add security measures.

Solution
Maintain a medical history for each patient. This medical history typically
contains insurance information and a record of all treatments within the
medical group. If the patient is new to the medical group a patient record
and medical history will be created upon admission. If the patient has been
treated in any facility within the medical group there will be an existing
patient record and a medical history, which may need to be updated. A
treatment instance is created for all patients admitted and updated
throughout the patient’s stay. The treatment instance will subsequently be
added to the patient’s medical record upon discharge. A person or guardian
is responsible for each patient. We classify patients into inpatients and
outpatients. Use cases realized by this pattern include ‘Assign a guardian’,
‘Modify medical history’ and ‘Admit a new patient’ (Figure 16.3, page
446).

Figure 16.18 shows the class diagram for this pattern. A unique stay or
TreatmentInstance for every Patient is created upon admission to the
hospital. The Patient may be admitted to the hospital as an Inpatient to
stay in the hospital, or they may be admitted as an Outpatient, in which
case they will receive treatment but will not stay at the hospital. The

treatment instances are collected into the MedicalHistory. A Guardian is
responsible for each patient. The Guardian can be seen as a role, in that a
Patient may be their own guardian. Additional relevant patient information
is recorded into PatientInfo.

Figure 16.18: Class diagram for the PATIENT RECORD pattern

We can model other aspects of patient treatment similarly. The remainder
of this pattern and the two companion patterns can be found in [Sor04].
These use cases don’t specify design aspects: some of them, for example,
‘Discharge patient’, could be performed from wireless devices. Security can
be added similarly, as shown in the next section for ambient assisted living.

Ambient Assisted Living
Ambient assisted living (AAL) defines architectures for home environments
which have devices such as sensors and cameras to support and monitor
people with impaired functions or disabilities. Assisted living requires a
secure infrastructure of services to be in place at the patient’s home or place
of care. Many of these services are also valuable for family living and the
corresponding architectures differ mostly in the specific types of services
they provide [Suo08].

An assisted living system has the following requirements [Wan06]:
 Dependability. Critical services should be delivered in spite of failure

of useful but non-critical services. Moreover, the system as a whole
should have high availability and robustness.
 Low cost and flexibility. The general infrastructure should be open

with well-defined interfaces, machine-checkable QoS assumptions, and

support the use of low-cost third-party devices.
 Security and privacy. Medical and personal data should be protected

with different rights for different roles (health care providers, medical
team, relatives and assisted people). The complete network architecture
must be secure.
 Quality-of-service provisioning. Quality of service (QoS) should be

provided at different levels, depending on the level’s criticality
requirements.
 Open standards. Any brand or type of device should be able to

interoperate with any devices and operating systems.
 Lightweight, easy-to-use HCIs. The user interfaces should be easy to

use, safe, tolerant of user mistakes, and provide different control levels
of information disclosure.
 Flexibility. Hardware architectures and software should be adaptable

and extensible.
 Interoperability. Compatibility with electronic healthcare records

(EHR) is needed, so that the same concepts appear in the information
stored and propagated by the devices.

Some possible use cases are listed below [Wan06]. We are converting
these into patterns, and we show some UML models for them.

Use Case: Remind of Activity – Figure 16.19, Figure 16.20
Figure 16.19: Class diagram for the AMBIENT ASSISTED LIVING
pattern

Figure 16.20: Activity diagram for the use case ‘Remind of activity’

The health provider obtains updated prescription and appointment records
of the assisted person (AP) from a dedicated server (to which health care
providers have access) through secure channels. When it is time for the AP
to carry out their time-driven routines, such as taking medicine or
monitoring vital signs, the health provider locates active wireless-enabled
devices (for example televisions, cellphones, wearable headsets or active
badges) within range, and sends reminder messages to one or more devices
that are in the proximity of the AP. (The AP can also prioritize the order in
which devices will be used.)

For example, if the AP is watching television at the time when the
reminder message is scheduled, the TV will be switched to an information
channel (with the use of infrared remote control) and a reminder message
will be displayed. In this manner, the AP can be reminded of their time-
driven routines. Whether or not these routines are followed as advised is
detected in a non-intrusive manner by exploiting sensor localization
technologies such as RFID: prescription bottles can have RFID tags with

unique barcodes, and one or more RFID readers in the environment can be
activated (by the health provider) to track location changes (if any) of these
bottles. Each RFID tag costs approximately 40 cents today, and the cost is
expected to further decrease in the future.

Figure 16.19 shows a class diagram for this pattern, while Figure 16.20
shows a corresponding activity diagram.

Use Case: Vital Sign Measurement
In the current practice of glucose monitoring for diabetic patients, a patient
measures their glucose level on a daily basis and brings the measuring
device to their monthly clinic visits, where the measurements are retrieved
and interpreted by health care providers.

With the proposed environment in place, vital signs can be measured and
transmitted by Bluetooth-enabled meters to the server. In this fashion,
healthcare providers can monitor various vital signs at a convenient time
granularity. Should the readings suggest any abnormal health situations,
medical instructions can be given before the situation deteriorates.

Use Case: Personal Belonging Localization
Personal belongings such as eyeglasses, hearing aids and key chains can be
attached with tags and located through the use of RFID readers. When
someone cannot find their belongings (because of forgetfulness), they can
issue a simple vocal command (through, for example, a lightweight
Bluetooth-enabled headset) to the health provider, which then schedules the
RFID readers to scan the environment and help locate the object.

Use Case: Personal Behavior Profiling
With the same set of sensor localization techniques, the assisted living
environment can profile the movement of APs in a privacy-preserving
manner (for example without the use of surveillance cameras) and detect
early warning signs of depression (no longer taking medicine regularly,
giving up routine activities, or staying in bed for long periods of time)
and/or other chronic diseases such as Parkinson’s and Alzheimer’s. The AP
wears an RFID tag or an active badge, which can be disguised as an item of
clothing or jewelry.

Use Case: Emergency Detection
In case of the need for emergency attention (for example, dangerously high
or low blood pressure or blood sugar levels), or the AP has been detected
via localization techniques to be immobile on the floor for an unreasonably
long time, real-time communication channels can be established to notify
on-site caregivers (in the case of assisted living), health care providers (in
the case of clinical use), or designated relatives, and facilitate transmission
of electrocardiogram (EKG) data and other measures in real time.

All these approaches require networks, so we next discuss some aspects
of network security. Later we’ll discuss the security of sensor networks.
These systems are also cyber-physical systems and we should study them as
such.

Wireless Network Security
We consider some aspects of the security of the wireless networks that
support these health applications.

Wireless Devices
When compared to wired networks, there are four generic limitations of all
wireless devices:

 Limited power
 Limited communications bandwidth
 Limited processing power
 Relatively unreliable network connection

The bandwidth available to wireless systems is usually an order of
magnitude (or even more) less than that available to a wired device. Their
processing power is limited, due to limits to space and cost in the case of
fixed wireless devices typically used for wi-fi networks, and is further
limited due to power constraints in other wireless devices. In general,
wireless networks are not very reliable. Protocols have been designed to
take this lack of reliability into account and to try to improve it. However,
in designing these protocols choices have to be made about the size of the
packets and frames to be used. Such decisions can have a profound impact
on the effectiveness and efficiency of cryptographic protocols.

To this we must add that security needs for wireless devices are greater
than those of regular wired-network devices. This is due to the very nature
of their use; they are mobile, they are on the edge of the network, their
connections are unreliable, and they tend to get destroyed accidentally or
maliciously. They can also be stolen, lost or forgotten. Thus, we need more
security processing, but security processing can easily overwhelm the
processors in wireless devices. This challenge, which is unique to wireless
devices, is sometimes referred to as the ‘security-processing gap’. Non-
fixed wireless devices such as cellular handsets and ad hoc network devices
such as sensors are also severely handicapped due to their very low battery
power. Even though significant advances are expected in computation and
communication speed over the next decade, it is still expected that they will
lag behind the power available to fixed computers, due to the need for
miniaturization.

To make things worse, battery power is only expected to make modest
improvements. The battery limitation in mobile wireless devices is
sometimes called the ‘battery gap’, and refers to the growing disparity
between increasing energy requirements for high-end operations needed on
such devices and slow improvements in battery technology. To this we add
the fact that there is a large variety of devices using different architectures,
several operating systems and diverse functionality. With increase in
functions, the typical problems of larger systems are also appearing in
portable devices.

Threats to Wireless Devices
The analysis of secure systems should start from their possible threats. We
can apply our methodology to enumerate the threats to the activities shown
in Figure 16.20. We show the threats for two activities; other activities can
be analyzed similarly. We then identify policies to stop or mitigate the
threats.

These policies can be realized by security patterns, which define the
system security requirements and can then be converted into design
artifacts, such as secure interfaces. Here the threats appear as attacker goals.
When the details of the design start emerging, we can convert these abstract
threats into specific threats to the implementation of the components of the

system, such as threats to the user interfaces or to the wireless network.
This may require adding more security patterns to stop the emergent threats.
(A similar analysis is given in [EVI10].)
Activity 1: Remind
of activity/task

Activity 2: Do
activity

T11: Control site or
patient site is an
imposter

T21: Unauthorized
reading of activity
log

T12: Unauthorized
reading of schedule

T13: Unauthorized
writing of schedule

T22: Unauthorized
writing of activity
log

T14: Denial of
service

Policies to stop
these threats
include:

P11: Mutual
authentication

P21:
Authorization/access
control

P12:
Authorization/access
control

P22:
Authorization/access
control

P12:
Authorization/access
control

P12: Cell phone
backup

General Wi-Fi Threats
The attacks described above and for other applications can be realized
through other parts of the application, but the wireless network is a source
for many of them.

 Attacks related to access points (APs)
 Detection of access points. This is really attack preparation. Tools

exist for this purpose, such as Netstumbler. These tools can detect,
for each, AP, its MAC address, its location, the transmission
channels it uses and the type of encryption it uses.

 Unauthorized (rogue) APs. An attacker sets up their own AP
(malicious association). Once the thief has gained access, they can
steal passwords, launch attacks on the wired network or plant
malware. Fraudulent APs can easily advertise the same network
name (SSID) as a legitimate AP, causing nearby wi-fi clients to
connect to them. One type of man-in-the-middle attack is a de-
authentication attack. This attack forces AP-connected computers to
drop their connections and reconnect to the fake AP.
 Accidental association. When a user connects to a wireless access

point from a neighboring company’s overlapping network, it is a
security breach, in that proprietary company information may be
exposed, allowing a possible link from one company to the other.
 Direct endpoint attacks. These take advantage of flaws in wi-fi

drivers, using buffer overflows to escalate privilege.
 Denial of service. This is a common attack in wireless networks

because of their frequency sharing with other networks, and can be
accidental. A reason for performing an intentional DoS attack is to
observe the recovery of the wireless network, during which all of the
initial authentication information is resent by all devices, providing an
opportunity for the attacker to collect this information.
 Network injection. The attacker may inject network configuration

commands that affect routers and switches.
 Cryptographic attacks based on message interception. Data sent over

wi-fi networks, including wireless printer traffic, can be easily captured
by eavesdroppers. Weaknesses in encryption protocols such as WEP
can let an attacker read messages.
 Operating system attacks through the network. Operating systems for

wireless devices are becoming more and more complex and attackers
can exploit code flaws in them to access their files.

General Wi-Fi Defenses
We have discussed earlier how to stop attacks such as the ones enumerated
for the ambient assisted living application above. We consider here general

approaches to stop attacks on wireless networks. First, a few security
principles that also apply to wireless networks:

 For new systems, use a global-level design, starting from
requirements. Define policies, analyze threats and select defense
mechanisms. A methodology like ours is appropriate. Threats can be
enumerated. Security must be applied throughout the whole lifecycle
and on all architectural levels of the system.
 Medical records should be integrated with other parts of the hospital,

such as lab, pharmacy and so on. A global conceptual model should
include all entities relevant to patient care.
 Due to the sensitivity of data, the system should be a closed system,

in which everything is forbidden unless explicitly authorized.
 System-critical and life-critical functions must have backups.
 Every access to resources, coming from fixed or mobile devices,

should be mediated and checked for validity. There should be no direct
access to any data or other resource.
 For existing systems, perform security auditing.

In particular, for the wireless network, we should apply these principles:
 The wireless network should be an integrated unit of the whole

medical system, not separate units designed or bought independently.
All the policies and models that apply to medical records and related
information should also apply to the data handled by the wireless
network and its devices.
 The models of all wireless devices should be integrated in a system-

wide structure. There should be no outsiders (people, systems) that can
access health data.
 Wireless device usage policies must be consistent with the total

system policies.
Specific policies for wireless access should at least include:

 List those devices authorized to access the wireless network.
 List the personnel that can access the network.
 Define rules for setting up wireless routers or APs.
 Define rules for the use of wi-fi APs, or about connecting to home

networks with company devices.

 Mechanisms such as network access control can be useful to enforce
all of the above.
 Track AP vulnerabilities. It is important to track wi-fi endpoint

vulnerabilities and keep the wi-fi drivers up to date.

16.7 Conclusions
We can build patterns for sets of related use cases and add security patterns
to them to define a secure unit that can be used by an inexperienced
developer to build secure applications. To define the security architecture of
the network, we need an analysis of the possible threats; security patterns
can then be introduced to stop or mitigate them. In this way we can build,
for example, secure health systems in an integrated way, including health
records, pharmacy records, and other related information, not just isolated
wireless networks; the same is true for financial, SCADA, or other types of
applications. We have also designed secure architectures for electronic
voting [Fer12d] and for homes.

CHAPTER 17

Summary and the Future of Security
Patterns

The part can never be well unless the whole is well.
Plato

We complete our book with tables of patterns, a list of research directions,
some principles for security and a look at the future.

17.1 Summary of Patterns
This section offers a table that summarizes all the patterns in this book. For
each pattern we have listed its classification using four of the dimensions
described in Chapter 2. The Intent indicates what problem is solved by the
pattern, the concern is its basic type of intended function, the context
describes the environment where it can be applied or the prerequisites for
its use, and lifecycle indicates in what stage of the development lifecycle the
pattern is useful. Other dimensions could be added, but they would clutter
this table. Ideally, a complete description of each pattern should be
implemented in a tool that could present the designer with the relevant
patterns according to the step of the design.

We first list the security patterns presented in this book, then (page 489)
the misuse patterns in the book. We have written several other security
patterns, described on page 490. Finally, we security patterns under
development (page 493).

Security Patterns Described in this Book

Misuse Patterns Described in this Book

Security Patterns Described Elsewhere

Security Patterns under Development

17.2 Future Research Directions for
Security Patterns
This list is not complete, but indicates some interesting possibilities for
future work.

 More security patterns. Important areas without patterns include
database systems. Database views and query intersection are good
candidates. Patterns that map OO models to relational databases could
also be extended to map the security constraints defined in the OO
model to the corresponding relational tables.
Patterns for administration is another area missing in patterns; we only
showed one of this type, ADMINISTRATOR HIERARCHY (page
184). Also, we have only shown prevention patterns, but we need
patterns for recovery from attacks, security planning and so on. Some
planning patterns were presented in [Sch06b], but more are needed.
 Catalog of misuse patterns. We have written only a few misuse

patterns (Chapter 14). We need more of them before they can be useful
to evaluate systems (see Chapter 2). An appropriate classification of
threats is an initial start in this direction [Uzu12d]. An enumeration of
threats, for example for cloud systems, can identify required misuse
patterns for this specific environment [Has12b].
 Improvements and extensions to the methodology. Secure

methodologies usually don’t pay attention to process aspects; other

work studies software processes, but does not consider security. We
need to build flexible processes for secure systems development
[Uzu12b].
 Security evaluation. As discussed in Chapter 3, we have proposed an

evaluation method based on enumeration of threats. Methods based on
formal models can prove specific parts of a system to be secure, and
can be combined with other methods. Argument-based evaluation of
systems is another possibility. We believe that a combination of these
methods is very promising.
 Tools. The general guidance provided to the designer by a

methodology can be complemented by tools. For example, in the
analysis stage we could only show to the designer security patterns that
apply to that stage. Pattern diagrams can help selection between similar
patterns. A design assistant is needed. In fact, we see the lack of tools
for building complete secure systems as a problem: most (all?) of the
tools we know of only consider one part of the system. For example,
the Samoa tools help in the design of secure web services in a
Microsoft environment [MSR08]. Apparently one of them, the WSE
Policy Advisor, uses security patterns. Other partial tools include
support for pattern builders [Sch03] and support for threat enumeration
[Bra09]. Another tool tries to help with the selection of patterns
[Shi10].
 Analysis of the effect of changes. It is important to study the effect of

changes in a system after it is built and put into operation. Changes
occur for several reasons: new or changed requirements, performance
improvement, expansion of the system to accommodate more users,
technological advances in the platform devices and others. Often, the
changes are not reflected in the original architecture model. From the
architecture point of view, this is called ‘architecture erosion’. From a
security point of view, we need to evaluate the effect of changes; very
little work has been done on this aspect [Fer94b] [Oku11].
 Traceability. This is a necessary complement to the previous item; we

need to know what components in the architecture are affected when a
change is made. Tactics have been used for this purpose, but we believe
that patterns are more suitable [Fer12d].

 Specialized applications. Some applications have unique
requirements, and building them using a general approach may not
result in the most secure system. Typical applications that require their
own models include financial, medical, transportation and smart grid
applications.
 Specialized environments. Some types of environments have a large

effect on the applications running on them, and methodologies must be
modified to consider that effect. Typical cases are systems built using
web services [Fer12b], or cloud systems. Specialized patterns for those
environments are also needed.
 Reliability, availability and safety requirements. We need to develop a

process in which security and other nonfunctional aspects can be
developed concurrently. These are areas that complement security, and
we often need to define trade-offs between them and security.
Sometimes we want to combine them with security, as we did in
[Buc11], where we describe a fault-tolerant security pattern and a
secure fault-tolerance pattern.
 Mapping across levels. Security constraints must be defined at the

highest levels, where their semantics are clear. They must then be
mapped to lower levels, where they are enforced by corresponding
concrete mechanisms. We need precise ways to perform this mapping
by taking advantage of the fact that the same type of patterns can be
used at all levels [Fer99b].
 Integration of mobile systems into IT systems. ‘Bring your own

device’ (BYOD) is the latest paradigm used in many institutions. The
approach implies handling a variety of heterogeneous devices, with
different capabilities, using different operating systems, different
protocols and with their own variety of security systems. We discussed
some of this in Chapter 16. We believe that patterns allow a convenient
unification and integration of mobile devices with the rest of the
information structure.
 Compliance with a variety of standards and regulations. Systems

handling medical, financial or government records must comply with
appropriate regulations. In addition, institutions have their own policies,
which must be followed by all of their applications. It is possible to

build patterns to satisfy any regulation or policy, and if we instantiate
them in domain models, all applications derived from the domain
model will automatically comply with the regulations [Fer11c]. We
need patterns to express the policies of diverse regulations.

In summary, there are many possibilities for work on security patterns.

17.3 Security Principles
Building secure systems requires careful application of some principles. In
my opinion, the most important principles are:

 Holistic approach. Cover all architectural levels and all units: we
cannot have secure systems that are built piece-wise.
 Highest level. Security constraints must be defined where their

semantics are clear, and propagated down the architectural levels of the
system.
 Full mediation. Every request for resources must be evaluated and

fulfilled only if authorized.
 Defense in depth. We need to have more than one line of defense.
 Closed system. Everything is forbidden unless explicitly authorized.
 Need-to-know. Assign only the necessary rights to perform functions.

Well-built patterns implicitly apply some of these principles, and our
methodology helps in this respect.

17.4 The Future
Security patterns are still not as used as they should be. Once people know
more about their effectiveness in building secure applications, they will be
more used. To increase their use we need to:

 Improve the training of software developers. While large companies
do some patterns training, smaller companies do not. To be able to
apply security patterns, a designer first needs to be acquainted with
patterns; in turn, to be proficient in the use of patterns, a designer needs

to understand OO design and UML. We must convince them that they
need to consider security as a fundamental design objective.
 Increase the technical level of security developers. Software

development is still a pseudo-profession, in which people who do not
have the proper background are assigned to the construction of critical
software. The technical papers (white papers, development notes) of
most companies in the US, and in some other countries, are written in a
colloquial style, avoiding any formalism. Even UML diagrams are
rarely shown, the idea being that only words and code are
understandable to developers.

We believe that through the use of security patterns it is possible to write
applications which are considerably more secure than current applications
without experiencing serious development delays. Patterns emphasize
holistic thinking, which is fundamental to producing secure systems. The
current emphasis in industry in building fast and dirty code has resulted in a
paradise for hackers; most of the attacks that have happened recently could
have been avoided with a minimum set of defenses.

An interesting approach to producing secure architectures is the use of the
‘clean slate’ approach, which does not try to be compatible with existing
architectures. Groups of researchers, sponsored by DARPA, are building
this type of architecture. While we see our patterns of most value in
designing and evaluating current systems, the collection of security ideas
and principles embodied by these patterns can certainly be of value for this
project.

Peter Neumann talks of cherry-picking the best ideas for building the
systems of the future [Mar12]. A good collection of patterns can provide the
ideas that have worked in the past.

APPENDIX A

Pseudocode for XACML Access Control
Evaluation

A.1 Pseudocode for
retrieveApplicablePolicy()

retrieveApplicablePolicy(XACMLAccessRequest){
FOR EACH PolicyComponent Π PolicyAdministrationPoint
 evaluateTarget(XACMLAccessRequest,
PolicyComponent)
 IF targetMatches
 THEN add PolicyComponent to ApplicablePolicy
}
evaluateTarget(XACMLAccessRequest, PolicyComponent){
 IF SubjectsMatch() AND
 ResourcesMatch() AND
 ActionsMatch() AND
 EnvironmentMatch()
 THEN
 targetMatches
}

SubjectsMatch(XACMLAccessRequest, PolicyComponent)
{//at least one
 //subject matches
 FOR EACH SubjectDescriptor Π
PolicyComponent.Target.SubjectDescriptors
 IF SubjectMatches() RETURN true
 RETURN false
}
SubjectMatches(XACMLAccessRequest, PolicyComponent)
{//all qualifiers
 //match
 FOR EACH SubjectAttributeQualifier Π
SubjectDescriptor
 IF !
SubjectAttributeQualifier.operator(SubjectAttributeQu
alifier.value,
XACMLAccessRequest.SubjectAttributeValue)
 RETURN false
 RETURN true
}

A.2 Pseudocode for
evaluateApplicablePolicy()

evaluateApplicablePolicy(ApplicablePolicy,
XACMLAccessRequest){
 FOR EACH PolicyComponent p Π ApplicablePolicy
 DepthFirstSearch(p)
RETURN PolicyDecisionPoint.policyCombiningAlgorithm()
}
depthFirstSearch(PolicyComponent p){
 FOR EACH PolicyComponent or Rule x Π p
 IF x is a Rule
 evaluateRule(x)
 ELSE
 depthFirstSearch(x)
 p.result = p.combiningAlgorithm()
}
evaluateRule(Rule x){
 IF evaluate(Rule.condition)
 RETURN x.result = x.effect
 ELSE RETURN x.result = NotDeterminate
}

Glossary
A & A
Authorization and access control. Authorization defines permitted access to
resources depending on the accessor (user, executing process), the resource
being accessed and the intended use of the resource. Access control defines
a mechanism to enforce authorization.
AAL
Ambient assisted living. Architectures for home environments which have
devices such as sensors and cameras to support and monitor people with
impaired functions or disabilities.
Access matrix
An authorization model which indicates, for each active entity (a subject)
which resources it can access (objects or protection objects), and how
(access type).
ACL
Access control list. Associated with an object to indicate which subjects can
access it and in what way.
Analysis stage
The stage of the software lifecycle at which requirements are made precise.
Antipattern
A pattern that illustrates practices that should be avoided.
API
Application programming interface. Defines a protocol that processes
should use to access services or to communicate with each other.
Authentication
Proof to the system that the subject intending to access the system is who or
what it says it is. See I&A.
Authorization
See A&A.
Bastion host

A special-purpose computer on a network point of access designed to
withstand attacks.
Brief
A formal document that sets forth the main contentions with supporting
statements or evidence.
Class diagram
A type of UML diagram that shows static relationships between entities
(represented by classes).
Clearance
A level in a hierarchy that allows individual access to some type of
information.
Cloud computing
‘A model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks, servers, storage,
applications and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction’. (NIST
definition)
Collaboration diagram
A diagram that illustrates messages being sent between classes and objects
(instances). Complements or replaces sequence diagrams.
Compartment
Divisions of the hierarchies in a multilevel security model.
Confidentiality
Prevention of unauthorized data disclosure. Also called secrecy.
Contract
A binding, legally enforceable agreement between two or more parties.
Credential
A document that can be used to prove identity, and which may describe
some attributes of the authenticated entity.
CSA
Cloud Security Alliance. A nonprofit organization that promotes research
into best practices for securing cloud computing.

Cyberphysical system
A system in which some of its physical properties can be controlled through
information.
DDoS
Distributed denial of service. Usually performed by sending a flood of
messages to a web site.
Defendant
A person required to make answer in a legal action or suit.
Deployment diagram (UML)
A diagram that shows the distribution of software components into the
physical units of the system.
Deposition
A testimony taken down in writing under oath.
Descriptor
Words that typically indicate the location and mode of access of the parts of
the virtual access space (VAS) of a process.
Diagram
A representation of some model or view of a system.
Digital signature
A cryptographic proof that a message or document comes from a specific
user.
Domain
An area of knowledge, a space for the execution of a process (execution
domain), an area of control for an administrative entity (administration
domain).
DoS
Denial of Service. An attack on the availability of a system, in which users
or other systems may prevent the legitimate users from using their system.
EHR
Electronic healthcare record. A lifetime record of an individual with the
purpose of supporting continuity of care and related education and research.
ESB

Enterprise service bus. A common bus structure that provides basic
brokerage functions as well as a set of other appropriate services in a web
services environment.
Execution domain
The set of rights that a process can use during its execution. Also called
execution context and sandbox.
Expert
A person having or displaying special skill or knowledge derived from
training or experience.
Federation
A set of autonomous administrative domains which agree on recognizing
identities or sharing rights.
Firewall
A security mechanism to filter traffic according to some criteria.
Gatekeeper
A component of the H323 VoIP protocol used for admission control and
other functions.
Gateway
A network node that interfaces with other networks that may use different
protocols.
HIPAA
Health Insurance Portability and Accountability Act. In the US, defines
privacy and security rules for the handling of patient information.
Hypervisor
A layer of software or firmware in direct contact with the hardware which
creates and manages virtual machines that can share the hardware.
I&A
Identification and Authentication. Identification implies a user or system
providing an identity to access a system. Authentication implies providing
some proof that a user or system is the one they or it claims to be.
IAM
Identity and access management. Used by some vendors to indicate the
combination of identity management and system access control.

Identity
Representation of a set of claims made by a digital subject about itself or
another digital subject.
Identity base
Database containing the set of identities used for authentication.
IDS
Intrusion detection system. A subsystem that alerts the system in real time
when an intruder is trying to attack it.
Information hiding
To hide information in order to protect it. Usually performed by the use of
cryptography, but steganography is another option.
Integrity
Prevention of unauthorized data modification or destruction.
IP
Internet protocol, used as one layer of network communications.
IPSec
A protocol which provides cryptographic functions at the IP layer.
ITG
IT governance is the processes that ensure the effective and efficient use of
IT in enabling an organization to achieve its goals.
Layer
Separation of organization as defined by the three-tier model. Also denoted
as tier.
Liberty Alliance Identity Federation
A standard allowing services to federate into identity federations.
Logging and auditing
Functions that keep records (log) of actions that may be relevant for
security or other purposes, for later analysis (auditing).
MAC
Message authentication code. A part of a message that provides integrity
assurance. Also…
MAC

A sublayer of the data link layer (layer 2). Provides addressing and channel
access control.
MDD or MDE
Model-driven development or Model-driven engineering. A software
development approach that, starting from a domain model, produces
conceptual application models that are transformed during the lifecycle
stages.
Metamodel
Sets of related concepts that form a prototype to instantiate models as part
of a methodology or procedure for designing a system.
Microkernel
An operating system model that puts all or a large part of the OS
functionality in specialized servers and coordinates access to them.
Model
Represents some conceptual entity, behavior or structure. A diagram is part
of a model or a pattern and represents some aspect of it.
NAS
Network-attached storage. Data storage attached to a network, acting as a
file server.
NIST
(US) National Institute of Standards and Technology.
Non-repudiation
The principle that dictates that users should be responsible for their actions
and should not be able to deny what they have done.
Nonce
An arbitrary number used only once in a cryptographic communication.
Opponent
A person who takes an opposite position (as in a debate, contest, or
conflict).
OWASP
Open Web Application Security Project. An organization focused on
improving the security of software.

PAP
Policy administration point. The storage of authorization and authentication
rules in a system.
PBX
Private branch exchange, a private telephone network used within an
institution.
PCI DSS
Payment Card Industry Data Security Standard.
PDP
Policy decision point. The point in a system at which access decisions are
made.
PEP
Policy enforcement point. The point in a system at which access requests
are intercepted and enforced. Realized through some type of Reference
Monitor.
Plaintiff
A person who brings a legal action.
Policy
A high-level institution guideline; more specifically, a rule about
authorization, authentication or access constraints.
Policy base
Set of policies (authorization rules or other type of rules).
Precedent
Something done or said that may serve as an example or rule to authorize or
justify a subsequent act of the same or an analogous kind.
Principal
A subject responsible for an action in a system.
Process
A program in execution; a secure process is also a unit of execution
isolation as well as a holder of rights to access resources.
Protected entry point

Prespecified entry points in a program where the correctness of the calls is
checked and where other access restrictions may be applied.
Protection ring
A structure to control how processes call other processes and how they
access data.
Pull mode
A communication mode in which processes are notified and they must get
the new data.
Push mode
A communication mode in which new data is sent to processes without their
needing to request it.
RBAC
Role-based access control. A model in which access rights are assigned to
roles and roles are assigned to users.
Reference architecture
A high-level software architecture that defines fundamental components of
a system and the interaction among these units.
Refinement
The addition of more detail to a design.
Reify
To convert an event into an object in order to manipulate it.
Replay attack
An attack that can happen when somebody captures a message and then
resends it.
REST
Representational state transfer, a style of software architecture for
distributed hypermedia.
RFID
Radio frequency identifier, used to transfer data from a tag attached to an
object.
RTP

Real-time transport protocol defines a standardized packet format for
delivering audio and video over the IP layer.
SaaS
Software as a service, a set of software applications available in a cloud
system that can be accessed by client devices through the Internet.
Sandbox
See execution domain.
SAP
Semantic analysis pattern. A pattern that describes a small set of coherent
use cases that together describe a basic generic application.
SCADA
Supervisory control and data acquisition system, the architecture of process
control systems.
Secrecy
A synonym of confidentiality.
Sensor
A device that measures a physical quantity and converts it into an electric
signal.
Separation of duty
A security policy in which some action can only be performed if two
subjects agree.
Sequence diagram
A type of UML diagram that describes the interactions between objects
over time.
Service provider
Some institution or company that provides web-based services, usually for a
fee.
SIEM
Security information and event management. Provides real-time analysis of
security alerts generated by network hardware and applications.
Signature

The name and parameters needed for a procedure call or a remote procedure
call.
SIP
Session initiation protocol, an IETF signaling protocol used for controlling
voice and video calls over IP.
SOA
Service-oriented architecture, an architectural style in which clients request
services from providers according to some protocol.
SOX
The Sarbanes–Oxley Act of 2002 is a US federal law that regulates public
companies, management and public accounting firms.
Spoofing attack
A situation in which one person or program masquerades as another by
falsifying some information. Also known as forgery.
SSO
Single sign on, implies the use of only one item of authentication
information, for example passwords, to gain access to a variety of related
systems.
Subject
An active system component able to request resources.
Suit
An action or process in a court for the recovery of a right or claim.
Superencryption
Encrypting information that has already been encrypted.
TDM
Time-division multiplexing, a type of digital multiplexing in which two or
more signals share a channel along time.
Thread
A lightweight process.
Threat enumeration
Systematic listing of system threats based on some methodology
Threat modeling

Synonym for threat enumeration.
Tier
Synonym for layer.
TLS
Transport layer security, a cryptographic protocol based on SSL (Secure
Sockets Layer).
VAS
Virtual address space, the address (memory) space of a program, variables,
and data used by a process.
VE
Virtual environment, the virtualization structure available for developing
programs in cloud computing.
Virtual machine
A unit of virtual execution, including appropriate resources.
Virtual machine monitor
Synonym for hypervisor.
VoIP
Voice over IP, the delivery of voice and multimedia over the IP protocol.
VPN
Virtual private network. A network model that protects communications by
establishing a cryptographic tunnel between endpoints at one of the layers
of the communication protocol.
Vulnerability
A flaw in a system that allows a security attack.
Web service
A type of XML-based component that is available on the web and can be
incorporated in applications or used as a standalone service
Wi-Fi
Wireless protocol defined by the Wi-Fi Alliance.
Witness
A person who testifies in a cause or before a judicial tribunal.
WS-Federation

A proposed standard allowing web services to federate their identities.
WSDL
An XML format for describing web services as a set of endpoints operating
on messages containing either document-oriented or procedure-oriented
information.
X.509
A standard for a public-key infrastructure (PKI) and privilege management
infrastructure (PMI). Defines formats for certificates and other functions.
XACML
eXtensible Access Control Markup Language. The standard defines a
declarative access control policy language implemented in XML, and a
processing model describing how to evaluate authorization requests
according to the rules defined in policies.
XML
Extensible modeling language. Defines a set of rules for encoding
documents in a format readable by humans and machines.

References

I have always imagined that Paradise will be a kind of library.
Jorge Luis Borges

[Aar96] A. Aarsten, D. Brugali, G. Menga, K. Brown and R. Hirschfeld,
‘Patterns of three-tier client server architectures’, Proceedings of the 1996
Pattern Languages of Programs (PLoP) Conference, Monticello, IL,
September 1996,
http://members.aol.com/kgb1001001/Articles/threetier/threetier.htm
[ACS] ActivCard Synchronous Authentication
http://www.activcard.com/activ/services/library/synchronous_authenticatio
n.pdf
[Ado] Adobe System Incorporated, Digital Signatures,
http://www.adobe.com/security/digsig.html
[Air] Airtight Networks: WLAN Intrusion Prevention,
http://www.airtightnetworks.com/
home/solutions/wireless-intrusion-prevention.html
[aix10] AIX System Security Auditing, http://www.aixmind.com/?p=1019
[Aja10a] O. Ajaj and E. B. Fernandez, ‘A pattern for the WS-Trust
standard of Web Services’, Proceedings of the 1st Asian Conference on
Pattern Languages of Programs (AsianPLoP 2010), Tokyo, Japan, March
16–17, 2010, http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/
[Aja10b] O. Ajaj and E. B. Fernandez, ‘A pattern for the WS-Policy
standard’. In Proceedings of the 8th Latin American Conference on Pattern
Languages of Programs (SugarLoafPLoP 2010), Salvador, Bahia, Brazil,
Sept 23–26, 2010
[Aja12] O. Ajaj and E. B. Fernandez, ‘A pattern for the WS-
SecureConversation standard for web services’, 19th International
Conference on Pattern Languages of Programs (PLoP2012)
[Aja13] O. Ajaj and E. B. Fernandez, ‘A pattern for the WS-Federation
standard for web services’, in preparation

http://members.aol.com/kgb1001001/Articles/threetier/threetier.htm
http://www.activcard.com/activ/services/library/synchronous_authentication.pdf
http://www.adobe.com/security/digsig.html
http://www.airtightnetworks.com/home/solutions/wireless-intrusion-prevention.html
http://www.aixmind.com/?p=1019
http://patterns-wg.fuka.info.waseda.ac.jp/asianplop

[Ama] Amazon Web Services LLC, ‘Amazon Elastic Compute Cloud
(Amazon EC2), http://aws.amazon.com/ec2/
[Amo96] Amoeba Operating System, www.cs.vu.nl/pub/amoeba/
(accessed 27 Oct 2012)
[Amr] D. Amrheim, ‘Forget Defining Cloud Computing’, http://soa.sys-
con.com/node/1018801
[And01] R. Anderson, ‘CORBA Security Service Specification’, OMG
2001. http://www.omg.org/docs/formal/02-03-11.pdf
[And04] Anne H. Anderson, ‘An Introduction to the Web Services Policy
Language (WSPL)’, 5th IEEE International Workshop on Policies for
Distributed Systems and Networks, Yorktown Heights, New York, 7–9 June
2004. http://labs.oracle.com/projects/
xacml/Policy2004.pdf (accessed 9 Nov 2012)
[And08] R. Anderson, Security Engineering (2nd edition), John Wiley &
Sons, Inc., 2008
[Anw06] Z. Anwar, W. Yurcik, R. Johnson, M. Hafiz and R. Campbell,
‘Multiple design patterns for Voice over IP (VoIP) security’, Proceedings of
the IEEE Workshop on Information Assurance (WIA 2006), Phoenix, AZ,
April 2006
[Arc03] I. Arce and E. Levy, ‘An analysis of the Slapper worm’, IEEE
Security and Privacy, Jan./Feb. 2003. 82–87
[Arg] Argus Systems Group, ‘Trusted OS security: Principles and
Practice’, http://www.argus-systems.com/Products/products.html (accessed
27 Oct 2012)
[Ark10] B. Arkin, ‘Introducing Adobe Reader Protected Mode’,
http://blogs.adobe.com/asset/2010/07/
introducing-adobe-reader-protected-mode.html (accessed 27 October 2012)
[Ars01] A. Arsanjani, ‘Rule Object 2001: A Pattern Language for
Adaptive and Scalable Business Rule Construction’, 39th International
Conference and Exhibition on Technology of Object-Oriented Languages
and Systems (TOOLS39), Santa Barbara,, California, July 29-August 03,
2001 http://www.computer.org/portal/web/csdl/proceedings/t#4

http://aws.amazon.com/ec2
http://www.cs.vu.nl/pub/amoeba/
http://soa.sys-con.com/node/1018801
http://www.omg.org/docs/formal/02-03-11.pdf
http://labs.oracle.com/projects/xacml/Policy2004.pdf
http://www.argus-systems.com/Products/products.html
http://blogs.adobe.com/asset/2010/07/introducing-adobe-reader-protected-mode.html
http://www.computer.org/portal/web/csdl/proceedings/t#4

[Arx] Arx, Digital Signature Solution (Standard Electronic Signatures),
http://www.arx.com/products/
cosign-digital-signatures.php
[Avg05] P. Avgeriou and U. Zdun, ‘Architectural patterns revisited: A
pattern language’, Proceedings EuroPLoP 2005, 1–39
[Bac08] J. Bacon, D. M. Eyers, J. Singh, P. R. Pietzuch, ‘Access control
in publish/subscribe systems’, Proceedings Second International
Conference on Distributed Event-Based Systems (DEBS), 2008, 23–34,
ACM
[Bad04] M. Badra, A. Serhrouchni and P. Urien, ‘A lightweight identity
authentication protocol for wireless networks’, Computer Communications
Volume 27, Issue 17, 1 November 2004
[Bad09] M. Badra and I. Hajjeh, Internet-Draft, (D)TLS Multiplexing,
April 2009 http://tools.ietf.org/html/draft-badra-hajjeh-mtls-05
[bag] Bagle (computer worm),
http://en.wikipedia.org/wiki/Bagle_(computer_worm)
[Bar99] J. Barkley, K. Beznosov and J. Uppal, ‘Supporting Relationships
in Access Control using Role Based Access Control’, in Proceedings of
ACM Role-Based Access Control Workshop, RBAC’99, Fairfax, Virginia,
US, 1999, 55–65
[Bar00] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt and A. Warfield, ‘Xen and the Art of Virtualization’,
Proceedings of the ACM Symposium on Operating System Principles,
SOSP’ 03
[Bar07] A. Barbir, C. Hobbs, E. Bertino, F. Hirsch and L. Martino,
‘Challenges of Testing Web Services and Security in SOA
Implementations’, in Test Analysis of Web Services. SpringerLink, Sep.
2007, 395–440
[Bas06] D. A. Basin, J. Doser, T. Lodderstedt, ‘Model Driven Security:
From UML Models to Access Control Infrastructures’, ACM Transactions
on Software Engineering and Methodology, vol 15, No 1, 2006, 39–91
[Bau09] C. Baun, M. Kunze, ‘Building a private cloud with Eucalyptus’,
Proceedings of 5th IEEE International Conference on E-Science

http://www.arx.com/products/cosign-digital-signatures.php
http://tools.ietf.org/html/draft-badra-hajjeh-mtls-05
http://en.wikipedia.org/wiki/Bagle_(computer_worm)

Workshops, 2009, 33–38
[BEA11] BEA Aqualogic Service Bus,
http://en.wikipedia.org/wiki/AquaLogic (accessed June 27, 2011)
[BEA]
http://www.bea.com/content/news_events/white_papers/BEA_Itanium_Win
dows.pdf, page 3
[Bec96] K. Beck et al., ‘Industrial Experience with Design Patterns’,
Proceedings of ICSE-18, 1996, 103–114
[Ben02] B. Benatallah, M. Dumas, M.-C. Fauvet, F. A. Rabhi and Q. Z.
Sheng, ‘Overview of Some Patterns for Architecting and Managing
Composite Web Services’, ACM SIGecom Exchanges, vol 3, No. 3, August
2002, 9–16
[Ber01] H. Berghel, ‘The Code Red worm’, Communications of the ACM,
vol 44, No 12, December 2001, 15–19
[Bha04] K. Bhargavan, R. Corin, C. Fournet and A. D. Gordon, ‘Secure
Sessions for Web Services’, ACM Workshop on Secure Web Services, 56–
66, 2004
[Bha05] A. Bhargav-Spantzel, A. C. Squicciarini, E. Bertino, ‘New basic
technologies for DIM: Establishing and protecting digital identity in
federation systems’, Proceedings of the 2005 Workshop on Digital Identity
Management, ACM Press, 11–19
[Bie01] E. Biermann, E. Cloete and L. M. Venter, ‘A Comparison of
Intrusion Detection Systems’, Computers & Security, Volume 20, Issue 8, 1
December 2001, 676–683
[Biz04] Implementing Pipes and Filters with BizTalk Server 2004
http://msdn2.microsoftwarecom/
enus/library/ms978668.aspx#implpipesandfilters_securityconsiderations
[Biz09] SOA Patterns with BizTalk Server 2009, http://www.packtpub.com/
soa-patterns-with-biztalkserver-2009/book (retrieved on July 13, 2011)
[Bla04] B. Blakeley, C. Heath and Members of the Open Group Security
Forum: Technical Guide: Security Design Patterns, 2004,
http://www.opengroup.org/bookstore/catalog/g031.htm

http://en.wikipedia.org/wiki/AquaLogic
http://www.bea.com/content/news_events/white_papers/BEA_Itanium_Windows.pdf
http://msdn2.microsoftwarecom/enus/library/ms978668.aspx#implpipesandfilters_securityconsiderations
http://www.packtpub.com/soa-patterns-with-biztalkserver-2009/book
http://www.opengroup.org/bookstore/catalog/g031.htm

[Bon12] I. N. Bonilla and E. B. Fernandez, ‘Whitelist Firewall pattern’, in
preparation
[Bou11] R. Bouaziz, B. Hamid, N. Desnos, ‘Towards a Better Integration
of Patterns in Secure Component-Based Systems Design’, Proceedings of
ICCSA’2011, Springer
[Box02] D. Box, Understanding GXA, Microsoft Corporation,
http://msdn.microsoftwarecom/
enus/library/aa479664.aspx (accessed 15 Dec 2009)
[Bra00] A. Braga, C. Rubira and R. Dahab, ‘Tropyc: A pattern language
for cryptographic object-oriented software’, Chapter 16 in Pattern
Languages of Program Design 4 (N. Harrison, B. Foote and H. Rohnert,
Eds.). Also in Proceedings of PLoP’98,
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/
[Bra08a] F. Braz, E. B. Fernandez and M. VanHilst, ‘Eliciting Security
Requirements through Misuse Activities’, Proceedings of the 2nd
International Workshop on Secure Systems Methodologies using Patterns
(SPattern’07). In conjunction with the 4th International Conference on
Trust, Privacy & Security in Digital Business (TrustBus’07), Turin, Italy,
September 1–5, 2008, 328–333
[Bra08b] M. Braendle and M. Naedele, ‘Security for process control
systems: An overview’, IEEE Security & Privacy, vol 6, No 6, Nov.-Dec.
2008, 24–29
[Bra09] F. Braz, Instrumentalizacao da Analise e Projeto de Software
Seguro Baseadaem Ameacas e Padroes. PhD Thesis, Department of
Electrical Engineering, University of Brasilia, Brazil, 2009.
[Bra10] E. J. Braude, Software Engineering: Modern approaches (2nd
edition), John Wiley & Sons, Inc., 2010
[Bre08] R. Breu, F. Innerhofer-Oberperfler and A. Yautsiukhin,
‘Quantitative Assessment of Enterprise Security Patterns’, Proceedings of
Third International Conference on Availability, Reliability and Security
(ARES 2008), 921–928
[Bro99] F. L. Brown and E. B. Fernandez, ‘The Authenticator Pattern’,
Proceedings of the Conference on Pattern Language of Programs
(PloP’99), http://hillside.net/plop/plop99/proceedings/

http://msdn.microsoftwarecom/enus/library/aa479664.aspx
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/
http://hillside.net/plop/plop99/proceedings/

[Bro05] K. Brown, The .NET Developer’s Guide to Windows Security,
Addison-Wesley, 2005
[BSI] Building Security in Maturity Model, http://bsimm.com
[Buc09a] I. A. Buckley and E. B. Fernandez, ‘Three patterns for fault
tolerance’, Proceedings of the OOPSLA MiniPLoP, October 26, 2009
http://www.refactory.com/miniploppapers/FT_Patts.pdf
[Buc09b] I. Buckley, E. B. Fernandez, G. Rossi and M. Sadjadi, ‘Web
Services Reliability Patterns’, Proceedings of the 21st International
Conference on Software Engineering and Knowledge Engineering
(SEKE’2009), Boston, July 1–3; Boston, 2009
[Buc11] I. Buckley, E. B. Fernandez and M. M. Larrondo-Petrie, ‘Patterns
Combining Reliability and Security’, Proceedings of PATTERNS 2011:The
Third International Conferences on Pervasive Patterns and Applications,
September 25–30, 2011, Rome, Italy
http://www.iaria.org/conferences2011/SubmitPATTERNS11.html
[Buc12] I. Buckley and E. B. Fernandez, ‘Failure patterns: A new way to
analyze failures’, First International Symposium on Software Architecture
and Patterns, in conjunction with the 10th Latin American and Caribbean
Conference for Engineering and Technology, July 23–27, 2012, Panama
City, Panama
[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M.
Stal, Pattern-Oriented Software Architecture: A System of Patterns, Volume
1. John Wiley & Sons, Inc., 1996
[Bus07] F. Buschmann, K. Henney and D. C. Schmidt, Pattern-Oriented
Software Architecture, vol 4: ‘A Pattern Language for Distributed
Computing, John Wiley & Sons, Inc., 2007
[Byr04] E. Byres and J. Lowe, ‘The myths and facts behind cyber security
risks for industrial control systems’, in Proceeedings of VDE Congress,
2004
[Cam90] N. A. Camillone, D. H. Steves and K. C. Witte, ‘AIX operating
system: a trustworthy computing system’, in IBM RISC S/6000 Technology,
SA23-2619, 1990, 168–172

http://bsimm.com/
http://www.refactory.com/miniploppapers/FT_Patts.pdf
http://www.iaria.org/conferences2011/SubmitPATTERNS11.html

[Cam06] R. Camargo, A. Goldchleger, M. Carneiro and F. Kon, ‘The Grid
Architectural Pattern: Leveraging Distributed Processing Capabilities’,
Proceedings of the International Conference on Pattern Languages of
Program Design 5, 2006, 337–356
[Car12] C. Carroll and E. B. Fernandez, ‘Security Aspects of Software
Defined Networking’, in preparation.
[cc] Common Criteria Portal, http://www.commoncriteriaportal.org/
[Cen10] Centre for the Protection of National Infrastructure, ‘Information
Security Briefing 01/2010 Cloud Computing’, March 2010.
http://www.cpni.gov.uk/
Documents/Publications/2010/2010007-ISB_cloud_computing.pdf
[Cer03] Cerebit, Inc., ‘Safeguarding the Enterprise from the Inside Out’,
http://www.cerebit.com/download/Cerebit-
EnterpriseApplicationSecurity.pdf
[Cer06] CERT Coordination Center, Carnegie Mellon University,
http://www.cert.org/, (accessed 15 January 2011)
[Cha01] R. Chandramouli, ‘A Framework for Multiple Authorization
Types in a Healthcare Application System’, in Proceedings of the 17th
Annual Computer Security Applications Conference (ACSAC), New
Orleans, LA, Dec. 11–14 2001, 137–148
[Chat04] S. Chatterjee, ‘Messaging Patterns in Service-Oriented
Architectures’, http://msdn.microsoftwarecom/en-us/library/aa480027.aspx
[Che03] ‘Using Security Patterns to Model and Analyze Security
Requirements’ (with S. Konrad, L. Campbell and R. Wassermann), IEEE
Workshop on Requirements for High Assurance Systems, (RHAS03),
September 2003, Monterey, California
[Che] Checkpoint Software Technologies, Inc.
http://www.checkpoint.com/
products/softwareblades/ipsec-virtual-private-network.html (accessed 20
July 2010)
[Chi84] R. E. Childs Jr., J. Crawford, D. L. House and R. N. Noyce, ‘A
Processor Family for Personal Computers’, Proceedings of the IEEE, vol
72, No 3, March 1984, 363–376

http://www.commoncriteriaportal.org/
http://www.cpni.gov.uk/Documents/Publications/2010/2010007-ISB_cloud_computing.pdf
http://www.cerebit.com/download/Cerebit-EnterpriseApplicationSecurity.pdf
http://www.cert.org/
http://msdn.microsoftwarecom/en-us/library/aa480027.aspx
http://www.checkpoint.com/products/softwareblades/ipsec-virtual-private-network.html

[Chr] The Chromium Projects: Sandbox,
http://dev.chromium.org/developers/
design-documents/sandbox (accessed 30 October 2012)
[Cisa] Cisco IOS Software, http://www.cisco.com/en/US/
products/sw/iosswrel/products_ios_cisco_ios_software_category_h
ome.html (accessed 26 June 2007)
[Cisb] Cisco Systems: Products and Technologies > Cisco Intrusion
Detection, http://www.cisco.com/warp/
public/cc/pd/sqsw/sqidsz/
[Cit] http://www.citrix.com/English/ps2/products/product.asp?
contentID=15005 (accessed 21 June 2010)
[Coc07] The Apache Cocoon Project, http://cocoon.apache.org
[Col04] M. Collier, ‘The Value of VoIP Security’, July 2004,
http://www.callcentermagazine.com/shared/printableArticle.jhtml?
articleID=22103933 (accessed 10 June 2007)
[Cona] Connectix Corporation, ‘The Technology of Virtual Machines’,
white paper, San Mateo, CA, http://www.connectix.com
[Conb] ‘Conficker’, http://en.wikipedia.org/
wiki/Conficker
[Cra95] S. Crane, J. Mageeand N. Pryce, ‘Design patterns for binding in
distributed systems’, OOPSLA’95 Workshop on Design Patterns for
Concurrent, Parallel and Distributed Object-Oriented Systems, Austin, TX,
October 1995
[Cre81] R. J. Creasy, ‘The Origin of the VM/370 Time-Sharing System’,
IBM Journal of Research and Dev., vol 25, No 5, 1981, 483–490
[CRN06] The Communications Research Network (CRN), ‘VoIP
loophole aids service deniers?’ February 2006
[CTR96] ‘Security: Resellers getting the advantage of growth’, Computing
Technology Review, February 1996, 14–17
[Cyb] Cyberoam, http://www.cyberoam.com/vpn.html (accessed 20 July
2010)
[Dam09] E. Damiani, C. A. Ardagna, N. El Ioini, Open source systems
security certification. Springer, New York, NY, US, 2009

http://dev.chromium.org/developers/design-documents/sandbox
http://www.cisco.com/en/US/products/sw/iosswrel/products_ios_cisco_ios_software_category_h%20ome.html
http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/
http://www.citrix.com/English/ps2/products/product.asp?contentID=15005
http://cocoon.apache.org/
http://www.callcentermagazine.com/shared/printableArticle.jhtml?articleID=22103933
http://www.connectix.com/
http://en.wikipedia.org/wiki/Conficker
http://www.cyberoam.com/vpn.html

[Das98] F. Das Neves and A. Garrido, ‘Bodyguard’, Chapter 13 in
Pattern Languages of Program Design 3, Addison-Wesley 1998
[Dat04] DataPower, http:///www.datapower.com
[Dat05] IBM Corporation, WebSphere DataPower XML Security
Gateway XS40, http://www-
01.ibm.com/software/integration/datapower/xs40/ (accessed 25 Nov 2009)
[Day91] R. A. Dayan et al, Signaling attempted transfer to protected
entry point BIOS routine, United States IBM (US) Patent 5063496, 1991,
http://www.freepatentsonline.com/5063496.html
[DeC02] S. De Capitani di Vimercati, S. Paraboschi and P. Samarati,
‘Access conTrol : Principles and Solutions’, Software – Practice and
Experience, vol 33, No. 5 (April 2003), 397–421
[DeC05] S. De Capitani di Vimercati, P. Samarati and S. Jajodia,
‘Policies, models and languages for access control’, in Databases in
Networked Information Systems, Proceedings of the 4th International
Workshop, DNIS 2005, Aizu-Wakamatsu, Japan, March 28–30, 2005,
LNCS 3433, Spriger, Berlin/Heidelberg, 2005, 225–237
[Del04] N. Delessy, E. B. Fernandez, S. Rajput and M. Larrondo-Petrie,
‘Patterns for application firewalls’, Proceedings of the Pattern Languages
of Programs Conference, September 2004, http://hillside.net/plop/2004/
[Del05] N. Delessy and E. B. Fernandez, ‘Patterns for the eXtensible
Access Control Markup Language’, in Proceedings of the 12th Pattern
Languages of Programs Conference (PLoP2005), Monticello, Illinois, US,
7–10 September 2005,
http://hillside.net/plop/2005/proceedings/PLoP2005_ndelessyandebfernand
ez0_1.pdf (accessed 18 Sept 2011)
[Del06] N. Delessy, E. B. Fernandez and M. M. Larrondo-Petrie, ‘A
pattern language for identity management’, Proceedings of the 2nd IEEE
International Multiconference on Computing in the Global Information
Technology (ICCGI 2007), March 4–9, Guadeloupe, French Caribbean,
http://www.computer.org/portal/web/csdl/doi/10.1109/ICCGI.2007.5
[Del07a] N. Delessy, E. B. Fernandez, M. M. Larrondo-Petrie and J. Wu,
‘Patterns for Access Control in Distributed Systems’, Proceedings of the
14th Pattern Languages of Programs Conference (PLoP2007), Monticello,

http://www.datapower.com/
http://www-01.ibm.com/software/integration/datapower/xs40/
http://www.freepatentsonline.com/5063496.html
http://hillside.net/plop/2004/
http://hillside.net/plop/2005/proceedings/PLoP2005_ndelessyandebfernandez0_1.pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/ICCGI.2007.5

Illinois, US, September 5–8, 2007, http://hillside.net/plop/2007/index.php?
nav=program
[Del07b] N. Delessy, E. B. Fernandez and M. M. Larrondo-Petrie, ‘A
Pattern Language for Identity Management’, Proceedings of the 2nd IEEE
International Multiconference on Computing in the Global Information
Technology (ICCGI 2007), March 4–9, Guadeloupe, French Caribbean
[Del07c] N. Delessy and E. B. Fernandez, ‘Adapting web services
security standards for mobile and wireless environments’, in Advances in
Web and Network Technologies and Information Management, K. Chen-
Chuan Chang, W. Wang, L. Chen, C. A. Ellis, C-H Hsu, A. C. Tsoi and H.
Wang (Eds.), Springer LNCS 4537, 624–633 Proceedings of the 2007
International Workshop on Application and Security service in Web and
pervAsive eNvironments (ASWAN 2007), June 16–18, 2007, HuangShan
(Yellow Mountain), China
[Del08] N. Delessy and E. B. Fernandez, ‘A Pattern-Driven Security
Process for SOA Applications’, Proceedings of the 3rd International
Conference on Availability, Reliability and Security (ARES 2008).
Barcelona, Spain, March 4–7, 2008, 416–421
[Del12] N. Delessy and E. B. Fernandez, ‘The Secure MVC Pattern’,
First International Symposium on Software Architecture and Patterns, in
conjunction with the 10th Latin American and Caribbean Conference for
Engineering and Technology, July 23–27, 2012, Panama City, Panama
[Dem04] S. Demurjian, K. Bessette, T. Doan and C. Phillips, ‘Concepts
and Capabilities of Middleware Security’, Chapter 9 of Middleware for
Communications, Q. H. Mahmoud, ed., John Wiley & Sons, Inc., 2004,
211–236
[DeW09] B. DeWin, R. Scandariato, K. Buyens, J. Grgoire and W.
Joosen, ‘On the secure software development process: CLASP, SDL and
Touchpoints compared’, Information and Software Technology, vol 51,
2009, 1152–1171
[dig] Digital signature, http://en.wikipedia.org/wiki/Digital_signature
[Dod10] M. Dodani, ‘On “Cloud Nine” Through Architecture’, The
Journal of Object Technology, vol 9, no. 3, 2010

http://hillside.net/plop/2007/index.php?nav=program
http://en.wikipedia.org/wiki/Digital_signature

[DoD83] US Department of Defense, Trusted Computer System
Evaluation Criteria, 1983
[Don76] J. E. Donnelley, ‘A Distributed Capability Computing System’,
(DCCS) Proceedings of the 3rd International Conference on Computer
Communication, Toronto, Canada, August 3–6, 432–440
[Dou09] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, K. Togashi,
Secure Design Patterns, Technical Report CMU/SEI-2009-TR-010, March
2009; updated October 2009
[Dri03] F. Dridi, M. Fischer and G. Pernul, ‘CSAP – An Adaptable
Security Module for The e-Government System Webocrat’, Proceeedings of
the 18th IFIP International Information Security Conference (SEC 2003),
Athens, Greece, 26–28 May 2003
[Dri05] S. Dritsas, L. Gymnopoulos, M. Karyda, T. Balopoulos, S.
Kokolakis, C. Lambrinoudakis, S. Gritzalis, ‘Employing Ontologies for the
Development of Security Critical Applications’ I3E 2005, 187–201
[EAP] EAP-TLS,
http://en.wikipedia.org/wiki/Extensible_Authentication_Protocol (accessed
6 Nov 2012)
[Eic05] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac and G. B. Laleci,
‘A Survey and Analysis of Electronic Healthcare Record Standards’, ACM
Comp. Surveys, vol 37, No 4, Dec. 2005, 277–315
[Ela11] G. Elahi, E. Yu, T. Li and L. Liu, ‘Security requirements
engineering in the wild: A survey of common practices’, Proceedings 35th
IEEE Annual Comp. Software and Applications Conference, 2011, 314–319
[Elg06] A. Elgohary, T. S. Sobh, M. Zaki, ‘Design of an Enhancement for
SSL/TLS Protocols’, Computers & Security Volume 25, Issue 4, June 2006
[ElK09] P. El Khoury, P. Busnel, S. Giroux and K. Li, ‘Enforcing Security
in Smart Homes using Security Patterns’, International Journal of Smart
Home, vol 3, No 2, April 2009, 57–70
[Ell03] J. Ellis, ‘Voice, Video and Data Network’ Academic Press,
Amsterdam, 2003
[Elm03] R. Elmasri and S. Navathe, Fundamentals of Database Systems
(4th edition), Addison-Wesley 2003

http://en.wikipedia.org/wiki/Extensible_Authentication_Protocol

[emp] Empower Identity Manager, http://www.identitymanagement.com/
?_kk=identity%20management&_kt=d37d8c67-315a4919-
abfc-41011051bd9e&gclid=CNrgw7ylnq8CFcNa7Aod90Shaw
[Erl09] T. Erl, SOA Design Patterns, Prentice Hall PTR; 1st edition, 2009
[Ess97] W. Essmayr, G. Pernul and A. M. Tjoa, ‘Access controls by
object-oriented concepts’, Proceeedings of 11th IFIP WG 11.3 Working
Conference on Database Security, August 1997
[Euc] Eucalyptus Systems, Inc, http://www.eucalyptus.com/
[EVI10] Evidian, ‘Proteger la confidentialite: le controle d’acces en
hopital’, White paper, 2010, http://www.evidian.com
[Ext] Extreme Networks, http://www.extremenetworks.com/products/OS/
[Fay04] M. E. Fayad and H. Hamza, ‘The Trust Analysis Pattern’, in
Proceedings of the Fourth Latin American Conference on Pattern
Languages of Programming (SugarLoafPLoP 2004), Porto Das Dunas,
Ceara, Brazil, August 10–13, 2004, http://sugarloafplop2004.ufc.br/
acceptedPapers/ww/WW_1.pdf (accessed 15 Dec 2009)
[Fed99] Federal Information Processing Standards Publication. 1999.
Data Encryption Data (DES), http://csrc.nist.gov/publications/fips/fips46-
3/fips46-3.pdf
[Fed00] Federal Information Processing Standard, ‘Digital Signature
Standard’, 27 January 2000, http://csrc.nist.gov/publications/
fips/fips186-2/fips186-2-change1.pdf
[Fed01] Federal Information Processing Standards Publication, 2001,
Advanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[Fen06] L. Fenster, Effective use of Microsoft Enterprise Library,
Microsoft .NET Development Series, Addison-Wesley, 2006
[Fer75] E. B. Fernandez, R. C. Summers and C. B. Coleman, ‘An
Authorization Model for a Shared Data Base’, Proceeedings of the 1975
SIGMOD International Conference, ACM, New York, 23–31, 1975
[Fer78] E. B. Fernandez, R. Summers, T. Lang and C. Coleman,
‘Architectural Support for System Protection and Database Security’, IEEE
Transactions on Computers, vol C-27, No. 8, 767–771, August 1978

http://www.identitymanagement.com/?_kk=identity%20management&_kt=d37d8c67-315a4919-abfc-41011051bd9e&gclid=CNrgw7ylnq8CFcNa7Aod90Shaw
http://www.eucalyptus.com/
http://www.evidian.com/
http://www.extremenetworks.com/products/OS/
http://sugarloafplop2004.ufc.br/acceptedPapers/ww/WW_1.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[Fer81] E. B. Fernandez, R. C. Summers, C. Wood, Database Security
and Integrity, Addison-Wesley, Reading, Massachusetts, Systems
Programming Series, February 1981
[Fer85] E. B. Fernandez, ‘Microprocessor architecture: The 32-bit
generation’, VLSI Systems Design, October 1985, 34–44
[Fer93a] E. B. Fernandez, M. M. Larrondo-Petrie and E. Gudes, ‘A
method-based authorization model for object-oriented databases’,
Proceeedings of the OOPSLA 1993 Workshop on Security in Object-
oriented Systems, 70–79
[Fer93b] E. B. Fernandez, E. Gudes and H. Song, ‘A model for evaluation
and administration of security in object-oriented databases’, IEEE
Transactions on Knowledge and Database Engineering, vol 6, no. 2, April
1994, 275–292
[Fer94a] E. B. Fernandez, J. Wu and M. H. Fernandez, ‘User group
structures in object-oriented databases’, Proceeedings of the 8th Annual
IFIP W.G.11.3 Working Conference on Database Security, Bad
Salzdetfurth, Germany, August 1994
[Fer94b] E. B. Fernandez, E. Gudes and H. Song, ‘A model for evaluation
and administration of security in object-oriented databases’, IEEE
Transactions on Knowledge and Database Engineering, vol 6, no. 2, April
1994, 275–292
[Fer95] E. B. Fernandez and R. B. France, ‘Formal specification of real-
time dependable systems’, Proceedings of 1st IEEE International
Conference on Engineering of Complex Computer Systems, Fort
Lauderdale, FL, 1995, 342–348
[Fer97] E. B. Fernandez and J. C. Hawkins, ‘Determining Role Rights
from Use Cases’, Proceedings of 2nd ACM Workshop on Role-Based
Access Control, ACM, 1997, 121–125,
http://www.cse.fau.edu/~ed/RBAC.pdf
[Fer99a] E. B. Fernandez and X. Yuan, ‘An analysis pattern for
reservation and use of entities’, Proceedings of PLoP99, http://st-
www.cs.uiuc.edu/~plop/plop99
[Fer99b] E. B. Fernandez, ‘Coordination of security levels for Internet
architectures’, Proceedings of 10th International Workshop on Database

http://www.cse.fau.edu/~ed/RBAC.pdf
http://st-www.cs.uiuc.edu/~plop/plop99

and Expert Systems Applications, 837–841,
http://www.cse.fau.edu/~ed/Coordinationsecurity4.pdf
[Fer00] E. B. Fernandez and X. Yuan, ‘Semantic analysis patterns’,
Proceedings of the 19th International Conference on Conceptual Modeling,
ER2000, 183–195 Also http://www.cse.fau.edu/~ed/SAPpaper2.pdf
[Fer01a] E. B. Fernandez and R. Pan, ‘A Pattern Language for Security
Models’, Proceedings of the 8th Annual Conference on Pattern Languages
of Programs (PLoP 2001), 11–15 September 2001, Allerton Park
Monticello, Illinois, US, 2001 http://hillside.net/plop/
plop2001/accepted_submissions/accepted-papers.html
http://www.hillside.net/plop/plop2001/accepted_submissions/PLoP2001/ebf
ernandezandrpan0/P LoP2001_ebfernandezandrpan0_1.pdf (accessed 18
Sept 2011)
[Fer01b] D. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn and R.
Chandramouli, ‘Proposed NIST standard for Role-Based Access Control’,
ACM Transactions on Information and System Security, vol 4, No 3, August
2001, 224–274
[Fer02] E. B. Fernandez, ‘Patterns for operating systems access control’,
Proceedings of PLoP 2002, http://jerry.cs.uiuc.edu/~plop/plop2002/
proceedings.html
[Fer03a] E. B. Fernandez, M. L. Petrie, N. Seliya, N. Delessy and A.
Herzberg, ‘A Pattern Language for Firewalls’, Proceedings of the PLoP
Conference, 2003. http://www.hillside.net/plop/plop2003/
[Fer03b] E. B. Fernandez and J. C. Sinibaldi, ‘More patterns for operating
system access control’, Proceeedings of the 8th European conference on
Pattern Languages of Programs, EuroPLoP 2003,
http://hillside.net/europlop, 381–398
[Fer03c] E. B. Fernandez and R. Warrier, ‘Remote
Authenticator/Authorizer’, Proceedings of PLoP 2003,
http://hillside.net/patterns/
[Fer04a] E. B. Fernandez, ‘Two patterns for web services security’,
Proceedingsof the 2004 International Symposium on Web Services and
Applications (ISWS’04), Las Vegas, NV, June 21–24, 2004

http://www.cse.fau.edu/~ed/Coordinationsecurity4.pdf
http://www.cse.fau.edu/~ed/SAPpaper2.pdf
http://hillside.net/plop/plop2001/accepted_submissions/accepted-papers.html
http://www.hillside.net/plop/plop2001/accepted_submissions/PLoP2001/ebfernandezandrpan0/P%20LoP2001_ebfernandezandrpan0_1.pdf
http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html
http://www.hillside.net/plop/plop2003/
http://hillside.net/europlop
http://hillside.net/patterns/

[Fer04b] E. B. Fernandez, ‘A methodology for secure software design’,
2004 International Conference on Software Engineering Research and
Practice (SERP’04), Las Vegas, NV, June 21–24, 2004
[Fer05a] E. B. Fernandez and M. M. Larrondo-Petrie, ‘Teaching a course
on data and network security using UML and patterns’, Proceedings of the
Educators Symposium of MoDELS/UML 2005, Montego Bay, Jamaica,
October 2–7, 2005
[Fer05b] E. B. Fernandez and D. L. la Red Martinez, ‘Using patterns to
develop, evaluate and teach secure operating systems’, Proceedings of the
Congreso Internacional de Auditoría y Seguridad de la Información (CIASI
2005), Madrid, Spain, 125–130
[Fer05c] E. B. Fernandez and T. Sorgente, ‘A pattern language for secure
operating system architectures’, Proceedings of the 5th Latin American
Conference on Pattern Languages of Programs, Campos do Jordao, Brazil,
August 16–19, 2005
[Fer05d] E. B. Fernandez and A. Kumar, ‘A security pattern for rule-
based intrusion detection’, Proceedings of the Nordic Conference on
Pattern Languages of Programs, Viking PLoP 2005, Otaniemi, Finland,
23–25 September 2005
[Fer05g] E. B. Fernandez, T. Sorgente, M. M. Larrondo-Petrie, ‘A UML-
based methodology for secure systems: The design stage’, Proceedings of
the 3rd International Workshop on Security in Information Systems
(WOSIS-2005), Miami, May 24–25 2005
[Fer05h] E. B. Fernandez, T. Sorgente and M. VanHilst, ‘Constrained
Resource Assignment Description Pattern’, Proceedings of the Nordic
Conference on Pattern Languages of Programs, Viking PLoP 2005,
Otaniemi, Finland, 23–25 September 2005
[Fer06a] E. B. Fernandez and N. Delessy, ‘Using patterns to understand
and compare web services security products and standards’, Proceedings of
the International Conference on Web Applications and Services (ICIW’06),
Guadeloupe, February 2006, IEEE Comp Society, 2006
[Fer06b] E. B. Fernandez, M. M. Larrondo-Petrie, T. Sorgente and M.
VanHilst, ‘A methodology to develop secure systems using patterns’,
Chapter 5 in Integrating security and software engineering: Advances and

future vision, H. Mouratidis and P. Giorgini (eds.), IDEA Press, 2006, 107–
126
[Fer06c] E. B. Fernandez, M. VanHilst, M. M. Larrondo Petrie, S. Huang,
‘Defining Security Requirements through Misuse Actions’, in Advanced
Software Engineering: Expanding the Frontiers of Software Technology, S.
F. Ochoa and G.-C. Roman (Eds.), International Federation for Information
Processing, Springer, 2006, 123–137
[Fer06d] E. B. Fernandez, N. A. Delessy and M. M. Larrondo-Petrie,
‘Patterns for web services security’, in ‘Best Practices and Methodologies
in Service-Oriented Architectures’, L. A. Skar and A. A. Bjerkestrand
(Eds.), 29–39, part of OOPSLA 2006, 21st International Conference on
Object-Oriented Programming, Systems, Languages and Applications,
Portland, OR, ACM, October 22–26
[Fer06e] E. B. Fernandez and G. Pernul, ‘Patterns for Session-Based
Access Control’, in Proceedings of the Conference on Pattern Languages of
Programs, PLoP 2006, Portland, OR, October 2006,
http://hillside.net/plop/2006/
[Fer06f] E. B. Fernandez, T. Sorgente and M. M. Larrondo-Petrie, ‘Even
more patterns for secure operating systems’, Proceedings of the Conference
on Pattern Languages of Programs, PLoP 2006, OR, October 2006,
http://hillside.net/plop/2006/
[Fer07a] E. B. Fernandez, J. C. Pelaez and M. M. Larrondo-Petrie,
‘Attack patterns: A new forensic and design tool’, Proceedings of the 3rd
Annual IFIP WG 11.9 International Conference on Digital Forensics,
Orlando, FL, Jan. 29–31, 2007 Chapter 24 in Advances in Digital Forensics
III, P. Craiger and S. Shenoi (Eds.), Springer/IFIP, 2007, 345–357
[Fer07b] E. B. Fernandez and M. M. Larrondo Petrie, ‘Securing design
patterns for distributed systems’, Chapter 3 in ‘Security in Distributed, Grid
and Pervasive Computing’, Y. Xiao (ed.), Auerbach Publications, Taylor &
Francis Group, LLC, 2007, 53–66
[Fer07c] E. B. Fernandez, D. L. laRed M., J. Forneron, V. E. Uribe and G.
Rodriguez, ‘A secure analysis pattern for handling legal cases’, Proceedings
of the 6th Latin American Conference on Pattern Languages of
Programming (SugarLoafPLoP’2007), 178–187.

http://hillside.net/plop/2006/
http://hillside.net/plop/2006/

http://sugarloafplop.dsc.upe.br/
AnaisSugar2007_WEB.pdf
[Fer07d] E. B. Fernandez, J. C. Pelaez and M. M. Larrondo-Petrie,
‘Security patterns for voice over IP networks’, Journal of Software, vol 2,
No 2, August 2007, 19–29 http://www.academypublisher.com/jsw
[Fer07e] E. B. Fernandez, P. Cholmondeley and O. Zimmermann,
‘Extending a secure system development methodology to SOA’,
Proceedings of the 1st International Workshop on Secure Systems
Methodologies Using Patterns (SPattern’07). in conjunction with the 4th
International Conference on Trust, Privacy & Security in Digital Business
(TrustBus’07), Regensburg, Germany, September 03–07, 2007, 749–754.
[Fer07f] E. B. Fernandez, J. Ballesteros, A. C. Desouza-Doucet and M.
M. Larrondo-Petrie, ‘Security Patterns for Physical Access Control
Systems’, in S. Barker and G. J. Ahn (Eds.), Data and Applications Security
XXI, LNCS 4602, 259–274, Springer 2007 Proceedings of the 21st Annual
IFIP WG 11.3 Working Conference on Data and Applications Security,
Redondo Beach, California, US, July 8–11, 2007
[Fer08a] E. B. Fernandez, H. Washizaki and N. Yoshioka, ‘Abstract
security patterns’, position paper in Proceedings of the 2nd Workshop on
Software Patterns and Quality (SPAQu’08), in conjuction with the 15th
Conference on Pattern Languages of Programs (PLoP 2008), October 18–
20, Nashville, TN http://patterns-wg.fuka.info.waseda.ac.jp/
SPAQU/index.html or http://hillside.net/
plop/2008/papers/ACMVersions/spaqu/fernandez.pdf
[Fer08b] E. B. Fernandez, H. Washizaki and N. Yoshioka, A. Kubo and Y.
Fukazawa, ‘Classifying security patterns’, Proceedings of the 10th Asia-
Pacific Web Conference (APWEB’08), Springer LNCS 4976, 2008, 342–
347
[Fer08c] E. B. Fernandez and D. LaRed M., ‘Patterns for the secure and
reliable execution of processes’, Proceedings of the 15th
InternationalConference on Pattern Languages of Programs (PLoP 2008),
colocated with OOPSLA, Nashville, TN, Oct. 2008
[Fer08d] E. B. Fernandez, M. Fonoage, M. VanHilst and M. Marta, ‘The
secure three-tier architecture’, Proceedings of the Second Workshop on

http://sugarloafplop.dsc.upe.br/AnaisSugar2007_WEB.pdf
http://www.academypublisher.com/jsw
http://patterns-wg.fuka.info.waseda.ac.jp/SPAQU/index.html
http://hillside.net/plop/2008/papers/ACMVersions/spaqu/fernandez.pdf

Engineering Complex Distributed Systems (ECDS 2008), Barcelona, Spain,
March 4–7, 2008. 555–560
[Fer08e] E. B. Fernandez and M. VanHilst, ‘An overview of WiMax
security’, Chapter 10 in the Handbook of WiMax security and QoS, S.
Ahson and M. Ilyas (eds.), CRC Press, Taylor and Francis Group, Boca
Raton, FL, 2008, 197–204
[Fer09a] E. B. Fernandez and J. L. Ortega-Arjona, ‘The Secure Pipes and
Filters Pattern’, Proceedingsof the 3rd International Workshop on Secure
System Methodologies using Patterns (SPattern 2009)
http://www.matematicas.unam.mx/
jloa/publicaciones/PipesFiltersMay22-09.pdf
[Fer09b] E. B. Fernandez and J. L. Ortega-Arjona, ‘Securing the Adapter
pattern’, Proceedings of the OOPSLA MiniPLoP, October 26, 2009
[Fer09c] E. B. Fernandez, M. VanHilst, D. laRed M. and S. Mujica, ‘An
extended reference monitor for security and safety’, Proceedings of the 5th
Iberoamerican Conference on Information Security (CIBSI 2009).
Montevideo, Uruguay, November 2009
[Fer09d] E. B. Fernandez, N. Yoshioka and H. Washizaki, ‘Modeling
misuse patterns’, Proceedings of the 4th International Workshop on
Dependability Aspects of Data Warehousing and Mining Applications
(DAWAM 2009), in conjunction with the 4th International Conference on
Availability, Reliability and Security (ARES 2009), March 16–19, 2009,
Fukuoka, Japan, 566–571.
[Fer10a] E. B. Fernandez, N. Yoshioka, H. Washizaki and M. VanHilst,
‘Measuring the level of security introduced by security patterns’,
Proceedings of the 4th workshop on Secure systems methodologies using
patterns (SPattern 2010), in conjunction with ARES 2010, Krakow, Poland,
February 2010
[Fer10b] E. B. Fernandez, K. Hashizume, I. Buckley, M. M. Larrondo-
Petrie and M. VanHilst, ‘Web services security: Standards and products’,
Chapter 8 in Web Services Security Development and Architecture:
Theoretical and Practical Issues, Carlos A. Gutierrez, Eduardo Fernandez-
Medina and Mario Piattini (Eds.), IGI Global Group 2010. 152–177

http://www.matematicas.unam.mx/jloa/publicaciones/PipesFiltersMay22-09.pdf

[Fer10c] E. B. Fernandez, N. Yoshioka and H. Washizaki, ‘A Worm
misuse pattern’, Proceedings of the 1st Asian Conference on Pattern
Languages of Programs(AsianPLoP 2010), Tokyo, Japan, March 16– 17,
2010, http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/
[Fer10d] E. B. Fernandez and M. M. Larrondo-Petrie, ‘Designing secure
SCADA systems using security patterns’, Proceedings of the 43rd Hawaii
Conference on Systems Science, Honolulu, HI, Jan.2010, 1–8,
http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=5428672
[Fer10e] E. B. Fernandez, Carolina Marin and Maria M. Larrondo Petrie,
‘Security requirements for social networks in Web 2.0’, in the Handbook of
Social Networks: Technologies and Applications, B. Furht (Editor),
Springer 2010
[Fer11a] E. B. Fernandez, N. Yoshioka, H. Washizaki and M. VanHilst,
‘An approach to model-based development of secure and reliable systems’,
Proceedings of the 6th International Conference on Availability, Reliability
and Security (ARES 2011), August 22–26, Vienna, Austria
[Fer11b] E. B. Fernandez, N. Yoshioka and H. Washizaki, ‘Two patterns
for distributed systems: Enterprise Service Bus (ESB) and Distributed
Publish/Subscribe’, 18th Conference on Pattern Languages of Programs
(PLoP 2011)
[Fer11c] E. B. Fernandez and S. Mujica, ‘Model-based development of
security requirements’, CLEI (Latin-American Center for Informatics
Studies) Journal, vol 14, No 3, paper 2, December 2011 Special issue of
best papers presented at SCCC 2010, Antofagasta, Chile
[Fer11d] E. B. Fernandez, S. Mujica and F. Valenzuela, ‘Two security
patterns: Least Privilege and Secure Logger/Auditor’, Proceedingsof Asian
PLoP 2011.
[Fer11e] E. B. Fernandez and S. Mujica, ‘Model-based development of
security requirements’, CLEI (Latin-American Center for Informatics
Studies) Journal, vol 14, No 3, paper 2, December 2011 Special issue of
best papers presented at SCCC 2010, Antofagasta, Chile
[Fer12a] E. B. Fernandez and H. Astudillo, ‘Should we use tactics or
patterns to build secure systems?’, First International Symposium on

http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5428672

Software Architecture and Patterns, in conjunction with the 10th Latin
American and Caribbean Conference for Engineering and Technology, July
23–27, 2012, Panama City, Panama
[Fer12b] E. B. Fernandez, ‘Wireless network security for health
applications’, Chapter 15 in Pervasive Communication Handbook, S. Shah,
M. Ilyas, H. T. Mouftah (eds.), CRC Press 2012
[Fer12c] E. B. Fernandez, O. Ajaj, I. Buckley, N. Delessy-Gassant, K.
Hashizume, M. M. Larrondo-Petrie, ‘A Survey of Patterns for Web Services
Security and Reliability Standards’. Future Internet 2012, 4, 430–450,
http://www.mdpi.com/1999-5903/4/2/430/
[Fer12d] E. B. Fernandez, David La Red Martinez and J. I. Pelaez, ‘A
conceptual approach to voting based on patterns’, Government Information
Quarterly. 30, 2013, 64–73
[Fer12e] E. B. Fernandez and A. V. Uzunov, ‘Secure middleware
patterns’, accepted for the 4th International Symposium on Cyberspace
Safety and Security (CSS 2012), Melbourne, Australia, Dec. 12–13, 2012
[Fer12f] E B. Fernandez, E. Alder, R. Bagley and S. Paghdar, ‘A Misuse
Pattern for Retrieving Data from a Database Using SQL Injection’,
RISE’12, Workshop on Redefining and Integrating Security Engineering,
part of the ASE International Conference on Cyber Security, Washington,
DC, December 12–14
[Fer13] E. B. Fernandez, E. Gudes and M. Olivier, Secure Software
Systems, Addison-Wesley (to appear)
[Fer] D. F. Ferguson, D. Pilarinos and J. Shewchuck, ‘The Internet
Service Bus’, The Architecture Journal 13,
http://www.architecturejournal.net
[Fla99] R. Flanders, E. B. Fernandez, ‘Data Filter Architecture Pattern’,
Proceedings of PLoP’99, 1999
[For04a] Forum Systems Inc., http://www.forumsys.com/
[For04b] B. A Forouzan, Data Communication and Networking. McGraw
Hill, 2004
[For] Forum Systems. Sentry: Messaging, Identity and Security
http://www.forumsys.com/products/soagateway.php

http://www.mdpi.com/1999-5903/4/2/430/
http://www.architecturejournal.net/
http://www.forumsys.com/
http://www.forumsys.com/products/soagateway.php

[Fow97] M. Fowler, Analysis patterns – Reusable object models,
Addison- Wesley, 1997
[Fow] M. Fowler, ‘Audit Log’,
http://martinfowler.com/ap2/auditLog.html
[Frea] http://www.freeradius.org/mod_auth_radius/
[Freb] FreshBooks, ‘Say Hello to Cloud Accounting’,
http://www.freshbooks.com/ (accessed 30 Sep 2012)
[Fro85] G. Frosini and B. Lazzerini, ‘Ring-protection mechanisms:
general properties and significant implementations’, IEE Proceeedings, vol
132, Pt. E, No 4, July 1985, 203–210
[Ful07] Mei Fullerton and E. B. Fernandez, ‘An analysis pattern for
Customer Relationship Management (CRM)’, Proceedings of the 6th Latin
American Conference on Pattern Languages of Programming
(SugarLoafPLoP’2007), May 27–30, 2007, Porto de Galinhas, Pernambuco,
Brazil, 80–90
[Gal09] B. Gallego,-Nicasio, A. Munoz, A. Maña and D. Serrano,
‘Security Patterns, Towards a Further Level’, Proceedings of SECRYPT
2009, 349–356
[Gal10] J. Galloway, ‘Preventing-open-redirection-attacks’,
http://www.asp.net/mvc/
tutorials/security/preventing-open-redirection-attacks
[Gam94] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Boston,
Mass., US 1994
[Gar02] S. Garfinkel, Web Security, Privacy & Commerce, 2nd edition,
O’Reilly 2002
[Gar09] P. García-Teodoro, J. D’az-Verdejo, G. Maciá-Fern‡ndez and E.
Vázquez ‘Anomaly-based network intrusion detection: Techniques, systems
and Challenges’, Computers & Security Volume 28, Issues 1–2,
February/March 2009, 18–28
[Gar10] J. P. Garcia-Gonzalez, V. Gacitua and C. Pahl, ‘Service Registry :
a key piece for enhancing reuse in SOA service oriented architecture’, The
Architecture Journal:21, Microsoft, 2010. 29–36

http://martinfowler.com/ap2/auditLog.html
http://www.freeradius.org/mod_auth_radius/
http://www.freshbooks.com/
http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks

[Gia08] A. Giani, T. Roosta, S. Sastry, ‘Integrity checker for wireless
sensor networks in health care applications’, Proceedings of the 2nd
International Conference on Pervasive Computing Technologies for
Healthcare, 2008
[Gnu] GnuPG, The GNU Privacy Guard, http://www.gnupg.org/
[Goe05] D. Goeke and H. Nguyen, SCADA system security, 2005
http://islab.oregonstate.edu/koc/ece478/05Report/Goeke-Nguyen.pdf
[Gol79] B. D. Gold, R. R. Linde, R. J. Peeler, M. Schaefer, J. F. Scheid
and P. D. Ward, ‘A security retrofit of VM/370’, Proceedings of the
National Computer Conference (NCC 1979), 335–344
[Gol06] D. Gollmann, Computer Security (2nd edition), John Wiley &
Sons, Inc., 2006
[Goo1] Google, ‘Welcome to Google Enterprise’,
http://www.google.com/enterprise/apps/ (accessed 29 Sep 2012)
[Goo2] Google Inc., https://developers.google.com/appengine/
[Gor09] S. Gorman, ‘Electricity grid in US penetrated by spies’, in The
Wall Street Journal Online, April 8, 2009, http://online.wsj.com/
article/SB123914805204099085.html?mod=goog
[Gra00] C. Grace, IT Journalist PC Network Advisor – Tutorial,
‘Understanding Intrusion Detection Systems’,
http://www.techsupportalert.com/pdf/t1523.pdf
[Gra68] R. M. Graham, ‘Protection in an information processing utility’,
Communications of the ACM, vol 11, No 5, May 1968, 365–369
[Gru03] A. Grünbacher ‘POSIX Access Control Lists on Linux’,
http://www.suse.de/~agruen/acl/linuxacls/online/ (accessed 25 Sept 2011)
[Haf06] M. Hafiz, M. Adamczyk and R. E. Johnson, ‘Organizing Security
Patterns’, IEEE Software, vol 24 No 4, 52–60
[Haf08] M. Hafiz and R. Johnson, ‘Evolution of the MTA Architecture:
An Impact of Security’. Software – Practice and Experience, 38(15):1569–
1599, Dec 2008
[Haf11] M. Hafiz, P. Adamczyk and R. E. Johnson, ‘Growing a pattern
language (for security)’. Proceedings of the 18th Conference on Pattern
Languages of Programs (PLoP), 2011

http://www.gnupg.org/
http://islab.oregonstate.edu/koc/ece478/05Report/Goeke-Nguyen.pdf
http://www.google.com/enterprise/apps/
https://developers.google.com/appengine/
http://online.wsj.com/article/SB123914805204099085.html?mod=goog
http://www.techsupportalert.com/pdf/t1523.pdf
http://www.suse.de/~agruen/acl/linuxacls/online/

[Hal06] S. T. Halkidis, A. Chatzigeorgiu and G. Stephanides, ‘A
qualitative analysis of software security patterns’, Computers & Security,
vol 25, 2006, 379–392
[Hal08a] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiu and G.
Stephanides, ‘Architectural risk analysis of software systems based on
security patterns’, IEEE Transactions on Dependable and Sec. Computing,
vol 5, No3, July-September 2008, 129–142
[Hal08b] C. Haley, R. Laney, J. Moffett and B. Nuseibeh, ‘Security
requirements engineering: A framework for representation and analysis’,
IEEE Transactions Softw. Engineering, 34(1):133–153, 2008
[Ham73] K. J. Hammer Hodges, ‘A fault-tolerant multiprocessor design
for real-time control’, Computer Design, December 1973, 75–81
[Ham04] H. S. Hamza and M. E. Fayad, ‘The Negotiation Analysis
Pattern’, Proceedings of the Pattern Languages of Programs Conference
(PLoP2004), http://hillside.net/plop/2004/
[Har01] J. M. Hart, Win32 System Programming (2nd edition), Addison
Wesley 2001
[Har76] M. Harrison, W. Ruzzo, J. Ullman, ‘Protection in Operating
Systems’, Communications of the ACM, vol 19, No 8, August 1976
[Has02] J. Hassell, RADIUS, O’Reilly, 2002.
[Has09a] K. Hashizume, E. B. Fernandez and S. Huang, ‘Digital
Signature with Hashing and XML Signature patterns’, Proceedings of the
14th European Conference on Pattern Languages of Programs (EuroPLoP
2009)
[Has09b] K. Hashizume and E. B. Fernandez, ‘Symmetric Encryption and
XML Encryption Patterns’, Proceedings of the 16th Conference on Pattern
Languages of Programs (PLoP 2009) http://portal.acm.org/citation.cfm?
doid=1943226.1943243 (accessed 10 Nov 2012)
[Has09c] K. Hashizume, E. B. Fernandez and S. Huang, ‘The WS-
Security Pattern’, 1st IEEE International Workshop on Security
Engineering Environments, Dec. 17–19, 2009, Shanghai, China
[Has12a] K. Hashizume, E. B. Fernandez, M. M. Larrondo-Petrie, ‘Cloud
Service Model Patterns’, 19th International Conference on Pattern

http://hillside.net/plop/2004/
http://portal.acm.org/citation.cfm?doid=1943226.1943243

Languages of Programs (PLoP2012)
[Has12b] K. Hashizume, N. Yoshioka and E. B. Fernandez, ‘Three
Misuse Patterns for Cloud Computing’, in Security Engineering for Cloud
Computing: Approaches and Tools, D. G. Rosado, D. Mellado, E.
Fernandez-Medina and M. Piattini, Eds. IGI Global, 2012
[Has12c] K. Hashizume, D. G. Rosado, E. Fernández-Medina, E. B.
Fernandez ‘An Analysis of Security Issues for Cloud Computing’, in
revision for the Journal of Internet Computing
[Has12d] K. Hashizume, E. B. Fernandez and Maria M. Larrondo-Petrie,
‘A Pattern for Software-as-a-Service in Clouds’, accepted for Workshop on
Redefining and Integrating Security Engineering (RISE’12), part of the
ASE International Conference on Cyber Security, Washington, DC, Dec.
2012
[Has12e] K. Hashizume, E. B. Fernandez and M. M. Larrondo-Petrie,
‘Cloud Computing Reference Architecture’, in preparation
[Has13] K. Hashizume, E. B. Fernandezand M. M. Larrondo-Petrie ‘A
Reference Architecture for Cloud Computing’, submitted for publication
[Hat07] D. Hatebur, M. Heisel and H. Schmidt, ‘A pattern system for
security requirements engineering’, Proceedings of ARES 2007, 356–365
[Hay00] V. Hays, M. Loutrel, E. B. Fernandez, ‘The Object Filter and
Access Control Framework’, Proceedings of PLoP 2000,
http://www.hillside.net/plop/plop2k/proceedings/proceedings.html
[Hea06] C. Heath, Symbian OS: Platform Security, John Wiley & Sons,
Inc., 2006
[Hey07a] T. Heyman, K. Yskout, R. Scandariato and W. Joosen, ‘An
analysis of the security patterns landscape’, 29th International Conference
on Software Engineering Workshops (ICSEW’07), IEEE 2007
[Hey07b] K. Heyman, ‘A new virtual private network for today’s mobile
world’, Computer, IEEE, December 2007, 17–19
[Hil] J. Hill, ‘An Analysis of the RADIUS Authentication Protocol’,
InfoGard Laboratories, http://www.untruth.org/~josh/security/radius
[HIP] HIPAA, http://www.hipaa.org/

http://www.hillside.net/plop/plop2k/proceedings/proceedings.html
http://www.untruth.org/~josh/security/radius
http://www.hipaa.org/

[Hip] Health Insurance Portability and Accountability Act,
http://en.wikipedia.org/
wiki/Health_Insurance_Portability_and_Accountability_Act
[Hog04] G. Hogland and G. McGraw, Exploiting Software: How to Break
Code, Addison-Wesley 2004
[Hog11] M. Hogan, F. Liu, A Sokol and J. Tong, NIST Cloud Computing
Standards Roadmap, Special Publication 500–291, July 2011
[Hol06] K. J. Hole, V. Moen, T. Tjostheim, ‘Case study: online banking
security’, Security & Privacy, IEEE, vol4, no.2, 14–20, March-April 2006
[Hop04] G. Hoppe and B. Woolf, Enterprise integration patterns:
Designing, building and deploying message solutions, Addison-Wesley
2004
[How03] M. Howard and D. Leblanc, Writing Secure Code (2nd edition),
Microsoft Press, 2003
[How06] M. Howard and R. Lipner, The Security Development Lifecycle,
Microsoft Press, 2006
[HP09] Hewlett-Packard, HP SOA Systinet, 2009
https://h10078.www1.hp.com/cda/hpms/display/
main/hpms_content.jsp?zn=bto&cp=1-11-
13027%5E1461_4000_100__&jumpid=reg_R1002_USEN (accessed 15
Dec 2009)
[HP] Hewlett Packard Corporation, Virtual Vault,
http://www.hp.com/security/products/virtualvault
[Hp] HP Cloud Service, http://hpcloud.com/
[Hug05] J. Hughes, E. Maler, ‘Security Assertion Markup Language
(SAML) 2.0 Technical Overview’, http://xml.coverpages.org/
SAML-TechOverview20v03-11511.pdf
[Hut05] B. Hutchison, H. Hinton, M. Hondo, ‘Security Patterns Within a
Service-Oriented Architecture’, Dec. 2005,
http://www.ebizq.net/topics/woa/features/6535.html?page=6 (accessed 19
Nov 2012)
[IBM04] IBM Corporation, Web Services Security 2004,
http://www.ibm.com/developerworks/library/specification/ws-secure/

http://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-13027%5E1461_4000_100__&jumpid=reg_R1002_USEN
http://www.hp.com/security/products/virtualvault
http://hpcloud.com/
http://xml.coverpages.org/SAML-TechOverview20v03-11511.pdf
http://www.ebizq.net/topics/woa/features/6535.html?page=6
http://www.ibm.com/developerworks/library/specification/ws-secure/

(accessed 15 Dec 2009)
[IBM05] IBM Corporation, WebSphere DataPower XML Security
Gateway XS40, 2005 http://www-
01.ibm.com/software/integration/datapower/xs40/ (accessed 15 Dec 2009)
[ibm09a] Security in a Web Services World: A Proposed Architecture and
Roadmap,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-
secmap.pdf (accessed 3 Dec 2009)
[ibm09be] IBM Corporation, Web Services Security 2004,
http://www.ibm.com/
developerworks/library/specification/ws-secure/ (accessed 7 Dec 2009)
[IBMa] IBM Cloud Computing: SaaS, http://www.ibm.com/cloud-
computing/us/en/saas.html. (accessed 9 Nov 2012)
[IBMb] IBM Corporation, ‘Introduction to Business Security Patterns’,
white paper http://www-03.ibm.com/Security/patterns/intro.shtml
[IBMc] IBM Tivoli Federated Identity Manager, http://www-
306.ibm.com/software/tivoli/products/federated-identity-mgr/
[IBMd] http://www.redbooks.ibm.com/redbooks/pdfs/sg246963.pdf, page
29
[Igu06] V. M. Igure, S. A. Laughter and R. D. Williams, ‘Security issues
in SCADA Networks’, Computers & Security, 25(7):498–506, 2006.
[ILO] ‘ILOVEYOU’, http://en.wikipedia.org/wiki/ILOVEYOU
[Ima03] T. Imamura and M. Tatsubori, ‘Patterns for Securing Web
Services Messaging’, Proceedings Of OOPSLA Workshop on Web Services
and Service Oriented Architecture Best Practice and Patterns, 2003
[int99] Intel Corporation, Intel Architecture Software Developer’s
Manual, vol 3: System Programming
[ION] IONA Technologies, ‘Artix and Security’.
http://www.iona.com/info/aboutus/collateral/Artix%20and%20Security.pdf
[IRP] Intermediate Routing (Little, Rischbeck, Simon),
http://soapatterns.org/design_patterns/intermediate_routing
[jav] Sun Developer Network, http://java.sun.com/blueprints/patterns/

http://www-01.ibm.com/software/integration/datapower/xs40/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://www.ibm.com/cloud-computing/us/en/saas.html
http://www-03.ibm.com/Security/patterns/intro.shtml
http://www-306.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246963.pdf
http://en.wikipedia.org/wiki/ILOVEYOU
http://www.iona.com/info/aboutus/collateral/Artix%20and%20Security.pdf
http://soapatterns.org/design_patterns/intermediate_routing
http://java.sun.com/blueprints/patterns/

[Jen07] M. Jensen, N. Gruschka, R. Herkenhoner, N. Luttenberger, ‘SOA
and Web Services: New Technologies, New Standards – New Attacks’,
Web Services, 2007. ECOWS ‘07. Fifth European Conference on Web
Services, 35–44, 26–28 Nov. 2007
[Joh85] H. L. Johnson, J. F. Koegel, R. M. Koegel, ‘A secure distributed
capability based system’, Proceedings of the 1985 ACM Annual Conference
on the Range of Computing: Mid-80’s Perspective, 392 – 402.
[Joo11] W. Joosen, B. Lagaisse and E. Truyen, ‘Towards application
driven security dashboards in future middleware’, J. Internet Services and
Applications, November 2011, DOI 10.1007/s13174-0110047-6
[Jos01] N. Josuttis, ‘Designing a 3-Tier-Architecture’
http://www.posa3.org/
workshops/ThreeTierPatterns/submissions/
NicolaiJosuttis.pdf#search=%
22layer%203tier%20architecture%20pattern%20example%22
[Jos05] A. Jøsang, J. Fabre, B. Hay, J. Dalzieland S. Pope, ‘Trust
Requirements in Identity Management’, Proceedings of the 2005
Australasian Workshop on Grid Computing and e-research, ACM Press,
99–108
[Ju10] J. Ju, Y. Wang, J. Fu, J. Wu and Z. Lin, ‘Research on Key
Technology in SaaS’, in 2010 International Conference on Intelligent
Computing and Cognitive Informatics (ICICCI), 2010, 384–387
[Jue04] J. Juerjens, Secure systems development with UML, Springer-
Verlag, 2004
[Jur08] A. D. Jurik and A. Weaver, ‘Remote medical monitoring’,
Computer, April 2008, 96–100
[Kai12] K. Kaighovadi and E. B. Fernandez, ‘A Pattern for the Secure
Shell Protocol’, First International Symposium on Software Architecture
and Patterns, in conjunction with the 10th Latin American and Caribbean
Conference for Engineering and Technology, July 23–27, 2012, Panama
City, Panama
[Kar08] P. Karger and D. Safford, ‘I/O for Virtual Machine Monitors:
Security and Performance Issues’, IEEE Security & Privacy, Sep/Oct 2008,
16–23

http://www.posa3.org/workshops/ThreeTierPatterns/submissions/NicolaiJosuttis.pdf#search=%22layer%203tier%20architecture%20pattern%20example%22

[Kau02] C. Kaufman, R. Perlman and M. Speciner, Network Security (2nd
edition), Prentice-Hall 2002
[Kel97] M. Kelley, Windows NT Network Security, A Manager’s Guide,
Lawrence Livermore National Laboratory, 1997
[Kie02] D. M. Kienzle, M. C. Elder, D. Tyree, J. Edwards-Hewitt,
Security Patterns Repository, version 1.0, 2002,
http://www.scrypt.net/~celer/securitypatterns/repository.pdf (accessed 3
March 2013)
[Kim06] D. K. Kim, P. Mehta and P. Gokhale, ‘Describing Access
Control Models as Design Patterns Using Roles’, Proceedings of PLoP
2006, http://www.hillside.net/plop/2006/Papers/ACM_Version/ (accessed
18 Sept 2011)
[Kin01] C. King et al, Security Architecture, Osborne McGraw Hill 2001
[Kir04] M. Kircher and P. Jain, Pattern-Oriented Software Architecture:
Volume 3, Patterns for Resource Management, John Wiley & Sons, Inc.,
2004
[Kis02] M. Kis, ‘Information Security Antipatterns in Software
Requirements Engineering’, Proceedings of the 9th Pattern Languages of
Programs Conference (PLoP2002) http://jerry.cs.uiuc.edu/%7Eplop/
plop2002/final/mkis_plop_2002.pdf
[Kis10] P. C. Kishore Raja, M. Suganthi and M. R. Sunder, ‘Wireless
node behavior based intrusion detection using genetic algorithm’,
Ubiquitous Computing and Communication Journal,
http://www.ubicc.org/files/pdf/PCKISHORERAJA_88.pdf
[Kod01] S. R. Kodituwakku, P. Bertok and L. Zhao, ‘APLRAC: A pattern
language for designing and implementing role-based access control’,
Proceedings of EuroPLoP 2001
[Kov01] L. Koved, A. Nadalin, N. Nagarathan, M. Pistoia and T.
Schrader, ‘Security Challenges for Enterprise Java in an e-business
Environment’, IBM Systems Journal, 40(1), 130–152, 2001
[Kum10] A. Kumar and E. B. Fernandez, ‘Security pAtterns for Virtual
Private Networks’, Proceedings of the 8th Latin American Conference on

http://www.scrypt.net/~celer/securitypatterns/repository.pdf
http://www.hillside.net/plop/2006/Papers/ACM_Version/
http://jerry.cs.uiuc.edu/~plop/plop2002/final/mkis_plop_2002.pdf
http://www.ubicc.org/files/pdf/PCKISHORERAJA_88.pdf

Pattern Languages of Programs (SugarLoafPLoP 2010), Salvador, Bahia,
Brazil, Sept 23–26, 2010
[Kum12a] A. Kumar and E. B. Fernandez, ‘Security Patterns for Intrusion
Detection Systems’, First International Symposium on Software
Architecture and Patterns, in conjunction with the 10th Latin American and
Caribbean Conference for Engineering and Technology, July 23–27, 2012,
Panama City, Panama, http://www.laccei.org/LACCEI2012-
Panama/TechnicalPapers/TP010.pdf
[Kum12b] A. Kumar and E. B. Fernandez, ‘A Security Pattern for the
Transport Layer Security (TLS) Protocol’, 19th International Conference
on Pattern Languages of Programs (PLoP2012)
[Lar05] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development, 3rd
edition. Prentice-Hall, 2005
[Lau10] A. Laube, A. Sorniotti, P. El Khoury, L. Gomez and A. Cuevas,
‘Security Patterns for Untraceable Secret Handshakes with Optional
Revocations’, International Journal of Advances in Security, vol 3, No
1&2, IARIA, 2010, 68–79
[Law08] G. Lawton, ‘Developing Software Online With Platform-as-a-
Service Technology’, Computer, vol 41, no 6, 13–15, IEEE, June 2008
[lay09] Layer 7 Technologies, The SecureSpan XML Firewall,
http://www.layer7tech.com/main/products/xml-firewall.html (accessed 9
Dec 2009)
[Leh02] S. Lehtonen and J. Parssinen, ‘Pattern Language for
Cryptographic Key Management’, Proceedings of EuroPlop 2002,
http://www.hillside.net/patterns/EuroPLoP2002/papers.html
[Liba] Liberty Alliance Project, http://www.projectliberty.org/
[Libb] Liberty Alliance Identity Framework,
http://www.projectliberty.org/resources/specifications.php
[Lid] Linux Intrusion Detection System, http://www.lids.org/
[Lip05] S. Lipner and M. Howard, The Trustworthy Computing
Development Lifecycle, 2005 http://msdn2.microsoftwarecom/en-
us/library/ms995349.aspx

http://www.laccei.org/LACCEI2012-Panama/TechnicalPapers/TP010.pdf
http://www.layer7tech.com/main/products/xml-firewall.html
http://www.hillside.net/patterns/EuroPLoP2002/papers.html
http://www.projectliberty.org/
http://www.projectliberty.org/resources/specifications.php
http://www.lids.org/
http://msdn2.microsoftwarecom/en-us/library/ms995349.aspx

[Liu10] G. Liu, ‘Research on independent SaaS platform’, in Proceedings
of the 2nd IEEE International Conference on Information Management and
Engineering (ICIME), 2010, 110 –113
[Lob09] L. L. Lobato and E. B. Fernandez, ‘Patterns to Support the
Development of Privacy Policies’, Proceedings of the First International
Wokshop on Organizational Security Aspects (OSA 2009), in conjuction
with ARES 2009. March 16–19, 2009, Fukuoka, Japan.
[Loc] H. Lockhart, et al., ‘Web Services Federation Language (WS-
Federation)’ Version 1.1. http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws-fed/
WS-Federation-V11B.pdf?S_TACT=105AGX04&S_CMP=LP
[Loh10] H. Löhr, A.-R. Sadeghi, M. Winandy ‘Patterns for Secure Boot
and Secure Storage in Computing Systems’, 4th International Workshop on
Secure Systems Methodologies Using Patterns (SPattern 2010),
Proceedings of ARES 2010: International Conference on Availability,
Reliability and Security., 569–573, IEEE Computer Society, 2010
[Lop04] J. Lopez, R. Oppliger and G. Pernul, ‘Authentication and
Authorization Infrastructures (Aais): a Comparative Survey’, Computers &
Security, vol 23, 2004, 578–590
[Mad05] P. Madsen, Y. Koga, K. Takahashi, ‘DIM frameworks: Federated
Identity Management for Protecting Users from ID Theft’, Proceedings of
the 2005 Workshop on Digital Identity Management, ACM Press, 77–83
[Mah] R. Mahmoodi, ‘Three-Tier Architecture in C#’, 2005
http://www.codeproject.com/
Articles/11128/3-tier-architecture-in-C
[MAJ] Microsoft Architecture Journal, ‘Identity and Access’, Journal 16
[Mar11] C. Marin, E. B. Fernandez and M. M. Larrondo-Petrie, ‘Secure
Location-Based Service for Social Networks’, 9th Latin American and
Caribbean Conference (LACCEI’2011)
[Mar12] J. Markoff, ‘Killing the computer to save it: Peter G. Neumann’,
The New York Times, October 30, 2012
[McG06] G. McGraw, Software Security: Building Security In, Addison-
Wesley 2006

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-Federation-V11B.pdf?S_TACT=105AGX04&S_CMP=LP
http://www.codeproject.com/Articles/11128/3-tier-architecture-in-C

[Mic00] Microsoft, Windows 2000 Security, Technical Reference, 2000
[Mic07] Microsoft Corporation, .NET Framework Class Library,
November 2007 http://msdn.microsoftwarecom/en-
us/library/ms229335.aspx
[Mic11] Microsoft Corporation, The ASP .NET MVC framework, 2011
http://www.asp.net/mvc/mvc3 (accessed 6 March 2012)
[Mica] Microsoft, ‘Pipes and Filters’, http://msdn2.microsoftwarecom/en-
us/library/ms978599.aspx
[Micb] Microsoft, Windows Azure, http://www.windowsazure.com/en-us/
[Mil05] A. Miller, ‘Trends in Process Control Systems security’, IEEE
Security and Privacy, 3(5):57–60, 2005
[Mor06a] P. Morrison and E. B. Fernandez, ‘The Credentials Pattern’, in
Proceedings of the 2006 Conference on Pattern Languages of Programs
(PLoP 2006), Portland, OR, US. October 21–23, 2006
http://hillside.net/plop/2006/Papers/Library/PLoP2006_Credential.pdf
[Mor06b] P. Morrison and E. B. Fernandez, ‘Securing the Broker Pattern’,
Proceedings of the 11th European Conference on Pattern Languages of
Programs (EuroPLoP 2006) http://www.hillside.net/europlop/
[Mor12] S. Moral-Garcia, S. Moral-Rubio, E. B. Fernandez, E.
Fernandez-Medina, ‘Enterprise Security Pattern: A New Type of Security
Pattern’, submitted for publication
[Mos05] T. Moses, ‘eXtensible access control markup language
(XACML)’ version 2.0, OASIS, 2005, http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf (accessed 3
March 2013)
[Mou06] H. Mouratidis, M. Weiss and P. Georgini, ‘Modelling Secure
Systems using an Agent-Oriented Approach and Security Patterns’,
International Journal of Software Engineering and Knowledge
Engineering, vol, 16, no 3, 2006, 471–498
[Moz] Mozilla Newsgroup: mozilla.dev.tech.crypto
http://www.mozilla.org/projects/security/pki/nss/ssl/
[MS03A] Enterprise Solution Patterns Using Microsoft .NET: Broker
Pattern http://msdn.microsoftwarecom/library/default.asp?

http://msdn.microsoftwarecom/en-us/library/ms229335.aspx
http://www.asp.net/mvc/mvc3
http://msdn2.microsoftwarecom/en-us/library/ms978599.aspx
http://www.windowsazure.com/en-us/
http://hillside.net/plop/2006/Papers/Library/PLoP2006_Credential.pdf
http://www.hillside.net/europlop/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.mozilla.org/projects/security/pki/nss/ssl/
http://msdn.microsoftwarecom/library/default.asp?url=/library/enus/dnpatterns/html/DesBroker.asp

url=/library/enus/dnpatterns/html/DesBroker.asp
[MS04A] .NET Remoting Authentication and Authorization Sample
http://msdn.microsoftwarecom/library/default.asp?url=/library/en-
us/dndotnet/html/remsspi.asp
[msd] Microsoft Patterns and Practices Development Center,
http://msdn.microsoftwarecom/practices/topics/patterns/
[MSR08] Microsoft Research, Cambridge, UK, Samoa: Formal Tools for
Securing Web Services, http://research.microsoftwarecom/en-
us/projects/samoa/ (accessed 22 Nov 2012)
[MS] Microsoft Forums: What is TLS/SSL
http://technet.microsoftwarecom/en-us/library/cc784450(v=WS.10).aspx
[Mui12] J. de Muijnck-Hughes and I. Duncan, ‘Thinking Towards a
Pattern Language for Predicate Based Encryption Crypto-Systems’, to
appear in the Student Doctoral Track of the 6th International Conference on
Security and Reliability, SERE (SSIRI) 2012. DOI: 10.1109/SERE-
C.2012.34
[Mul07] S. Mullan, Programming with the Java XML Digital Signature
API, Sun Microsystems March 2007, http://java.sun.com/developer/
technicalArticles/xml/dig_signature_api/
[Mul] MuleSoft, Mule Enterprise Service Bus,
http://www.mulesoftwarecom/mule-esb-open-source-esb
[Mun09] J. Muñoz-Arteaga, R. Mendoza, M. Vargas, J. Vanderdonckt, F.
Alvarez, ‘A Methodology for Designing Information Security Feedback
Based on User Interface Patterns’, Advances in Engineering Software, vol
40, No 12, 2009, 1231–1241
[Mun11] J. Muñoz-Arteaga, E. B. Fernandez and H. Caudel, ‘Misuse
Pattern: Spoofing Web Services’, Proceedings of Asian PLoP 2011
[mv] MV8000 principles of operation http://cid-
e17ca7e5bcaa1096.skydrive.live.com/
self.aspx/P%c3%bablico/
01400648_MV8000_PrincOps_Apr80.pdf
[Nae07] M. Naedele, ‘Addressing IT security for critical control systems’,
in Proceedings of the 40th Hawaii International Conference on Systems

http://msdn.microsoftwarecom/library/default.asp?url=/library/enus/dnpatterns/html/DesBroker.asp
http://msdn.microsoftwarecom/library/default.asp?url=/library/en-us/dndotnet/html/remsspi.asp
http://msdn.microsoftwarecom/practices/topics/patterns/
http://research.microsoftwarecom/en-us/projects/samoa/
http://technet.microsoftwarecom/en-us/library/cc784450(v=WS.10).aspx
http://java.sun.com/developer/technicalArticles/xml/dig_signature_api/
http://www.mulesoftwarecom/mule-esb-open-source-esb
http://cid-e17ca7e5bcaa1096.skydrive.live.com/self.aspx/P%c3%bablico/01400648_MV8000_PrincOps_Apr80.pdf

Science (HICSS-40), January 2007
[Nag05] N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh and P.
Austel, ‘Business-driven application security: From modeling to managing
secure applications’, IBM Systems Journal, vol 44, No 4, 2005, 847–867
[Nak05] K. Nakayama, T. Ishizaki and M. Oba, ‘Application of Web
Services Security using Travel Industry Model’, Proceedings of the 2005
Symposium on Applications and the Internet Workshops (SAINT-W’05),
IEEE 2005
[Net03] Netegrity, Inc., (now part of Computer Associates), ‘A Reference
Architecture’ http://www.slidefinder.net/a/agenda/32855788 (accessed 12
Nov 2012)
[Net06] L.-H. Netland, Y. Espelid and K. Mughal, ‘Security pattern for
input validation’, Proceedings of VikingPLoP 2006, Helsingør, Denmark
[Neu04] P. G. Neumann, ‘Principled assuredly trustworthy composable
architectures,’ Final SRI report to DARPA, December 28, 2004
[Nex10] Nexof, ‘Cloud Computing: Platform as a Service (PaaS),
http://www.nexof- ra.eu/?q=node/669
[Nic04] D. M. Nicol, W. H. Sanders and K. S. Trivedi, ‘Model-based
evaluation: From dependability to security’, IEEE Transactions on
Dependable and Secure Computing, vol 1, No 1, 2004, 48–65
[Nie00] ‘Examining VMware’, Dr. Dobbs Journal, August 2000, 70–76
[Nima] ‘F-Secure Virus-descriptions: Nimda’, http://www.f-secure.com/v-
descs/nimda.shmtl
[Nimb] Nimbus, http://www.nimbusproject.org/about/
[Nis] The National Institute of Standards and Technology (NIST), ‘Cloud
Computing Use Cases’ http://www.nist.gov/itl/cloud/use-cases.cfm
[Niza10] H. A. Nizamani and E. T., ‘Patterns of Federated Identity
Management Systems as Architectural Reconfigurations’, Proceedings of
the Second International Workshop on Visual Formalisms for Patterns
(VFfP 2010), Electronic Communications of the EASST, vol 31, 2010
http://venturebeat.com/2012/05/24/
paypal-partners-with-verifone-equinox-to-accept-mobilepayments-in-store/

http://www.slidefinder.net/a/agenda/32855788
http://www.nexof-%20ra.eu/?q=node/669
http://www.f-secure.com/v-descs/nimda.shmtl
http://www.nimbusproject.org/about/
http://www.nist.gov/itl/cloud/use-cases.cfm
http://venturebeat.com/2012/05/24/paypal-partners-with-verifone-equinox-to-accept-mobilepayments-in-store/

[Nok01] Nokia Inc. copyright, White Paper: ‘Combining Network Intrusion
Detection with Firewalls for Maximum Perimeter Protection’, April 2001
http://www.itu.dk/courses/DSK/F2003/Combining_IDS_with_Firewall.pdf
[NTC01] CORBA Security Service Specification, OMG 2001
http://www.ntcip.org/library/documents/pdf/1105v0102a.pdf
[Nut03] G. Nutt, Operating Systems (3rd edition), Addison-Wesley, 2003
[Oak01] S. Oaks, Java Security (2nd edition), O’Reilly, 2001
[OAS06a] OASIS, Web Services Security: (WS-Security 2004)
http://www.oasis-open.org/committees/
download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
(accessed 15 Dec 2009)
[OAS06b] OASIS, Web Services Security: SOAP Message Security 1.1
(WS-Security 2004), 1 February 2006, http://www.oasis-
open.org/committees/
download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
[OAS07] OASIS, WS-SecurityPolicy 1.2, 1 July 2007 http://docs.oasis-
open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
[OAS09] OASIS Standard, WS-Trust 1.4 http://docs.oasis-open.org/ws-
sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf (accessed 7 Dec 2009)
[Oku11] T. Okubo, H. Kaiya and N. Yoshioka, ‘Effective Security Impact
Analysis with Patterns for Software Enhancement’, Proceedings of Sixth
International Conference on Availability, Reliability and Security (ARES
2011), 527–534
[Ope1] The OpenSSL Project, OpenSSL, http://www.openssl.org/
[Ope2] OpenNebula Project Leads, http://opennebula.org/
[Ort03] J. L. Ortega-Arjona, ‘The Shared Resource Pattern: An Activity
Parallelism Architectural Pattern for Parallel Programming’, Proceedings of
the Conference on Pattern Languages of Programs (PLoP 2003)
[Ort08] J. L. Ortega-Arjona and E. B. Fernandez, ‘The Secure Blackboard
Pattern’, Proceedings of the 15th InternationalConference on Pattern
Languages of Programs (PLoP 2008)
[OS2] http://www-306.ibm.com/software/os/warp/

http://www.itu.dk/courses/DSK/F2003/Combining_IDS_with_Firewall.pdf
http://www.ntcip.org/library/documents/pdf/1105v0102a.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
http://www.openssl.org/
http://opennebula.org/
http://www-306.ibm.com/software/os/warp/

[OWAa] OWASP, Comprehensive Lightweight Application Security
Process https://www.owasp.org/index.php/CLASP (accessed August 24,
2012)
[OWAb] Security Analysis of Core J2EE Patterns Project,
https://www.owasp.org/index.php/Category:OWASP_Security_Analysis_of
_Core_J2EE_Design_Patterns_Project
[Oza88] B. M. Ozaki, E. B. Fernandez and E. Gudes, ‘Software Fault
Tolerance in Architectures with Hierarchical Protection Levels’, IEEE
MICRO, vol 8, No. 4, August 1988, 30–43
[Ozg05] O. Depren, M. Topallar, E. Anarim and M. K. Ciliz, ‘An
Intelligent Intrusion Detection System (IDS) for Anomaly and Misuse
Detection in Computer Networks’, Expert Systems with Applications, vol
29, Issue 4, November 2005, 713–722
[Pal] http://www.palmos.com/dev/tech/overview.html
[Pap03] M. P. Papazoglou and D. Georgakopoulos, ‘Service-Oriented
Computing: Introduction’, Communications of the ACM, vol46, 24–28,
2003
[Par05] Parthenon Computing, UK (ceased trading 2007)
[Pay] http://venturebeat.com/2012/05/24/paypal-partners-with-verifone-
equinox-to-accept-mobilepayments-in-store/
[Paz04] A. Pazin, R. Penteado, P. Masiero, ‘SiGCli: A Pattern Language
for Rehabilitation Clinics Management’, Proceedings of SugarLoafPLoP
2004 http://sugarloafplop2004.ufc.br/acceptedPapers/index.html
[Pei12] N. Peiravan and E. B. Fernandez, ‘XSS Misuse Pattern’, in
preparation
[Pel09] J. Pelaez, E. B. Fernandez and M. M. Larrondo-Petrie, ‘Misuse
Patterns in VoIP’, Security and Communication Networks Journal. John
Wiley & Sons, Inc., vol 2, No 2, 635–653, published online 15 April 2009,
http://www3.interscience.wiley.com/journal/117905275/issue
[Pel10] J; C. Pelaez and E. B. Fernandez, ‘Network Forensics Models for
Converged Architectures’, International Journal on Advances in Security,
IARIA, 2010, vol 3 no. 1 & 2, 2010.
http://www.iariajournals.org/security/tocv3n12.html

https://www.owasp.org/index.php/CLASP
https://www.owasp.org/index.php/Category:OWASP_Security_Analysis_of_Core_J2EE_Design_Patterns_Project
http://www.palmos.com/dev/tech/overview.html
http://venturebeat.com/2012/05/24/paypal-partners-with-verifone-equinox-to-accept-mobilepayments-in-store/
http://sugarloafplop2004.ufc.br/acceptedPapers/index.html
http://www3.interscience.wiley.com/journal/117905275/issue
http://www.iariajournals.org/security/tocv3n12.html

[Per10] Z. Pervez, S. Lee and Y.-K. Lee, ‘Multi-Tenant, Secure, Load
Disseminated SaaS Architecture’, in Proceedings of the 12th International
Conference on Advanced Communication Technology, Piscataway, NJ, US,
2010, 214–219
[PGP] http://en.wikipedia.org/wiki/Pretty_Good_Privacy
[pin06] Ping Identity Corporation, PingTrust, a standalone Security Token
Server, http://www.pingidentity.com/about-us/news-press.cfm?
customel_datapageid_1173=1404 (accessed 15 Dec 2009)
[POSA2] D. Schmidt, M. Stal, H. Rohnert and F. Buschmann, Pattern-
Oriented Software Architecture: Volume 2, Patterns for Concurrent and
Networked Objects, John Wiley & Sons, Inc., 2000
[Pri04] T. Priebe, E. B. Fernandez, J. I. Mehlau and G. Pernul, ‘A Pattern
System for Access Control ‘, in Research Directions in Data and
Applications Security XVIII, C. Farkas and P. Samarati (Eds.), Proceedings
of the 18th. Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Sitges, Spain, July 25–28, 2004, 235–249
[Pri05] PrismTech Corporation, Xtradyne’s WS-DBC – the XML/SOAP
Firewall for Enterprises, 2005 http://www.xtradyne.com/products/ws-
dbc/ws-dbc.htm (accessed 15 Dec 2009)
[Pry00] N. Pryce, ‘Abstract Session: An Object Structural Pattern’,
Chapter 7 in Pattern Languages of Program Design 4 (N. Harrison, B.
Foote and H. Rohnert, eds.). Also in Proceedings of PLoP’97
[QNX] QNX Software Systems, http://www.qnx.com
[Qu02] Q. W. Qu and S. Srinivas, ‘IPSec-Based Secure Wireless Virtual
Private Network’, Milcom 2002 Proceedings, vol 2, 1107–1112
[Qwi] QNX, Wikipedia, http://en.wikipedia.org/wiki/QNX
[Rad04] S. Radhakrishnan, ‘Web App Security using Struts, Servlet
Filters and Custom Taglibs’
http://www.ibm.com/developerworks/web/library/wa-appsec/ (accessed 29
October 2012)
[Rau97] L. Rau, ‘Inferno: One Hot OS’, Byte, June 1997, 53–54
[Ray04] I. Ray, R. B. France, N. Li and G. Georg, ‘An Aspect-Based
Approach to Model Access Control Concerns’, Journal of Information and

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://www.pingidentity.com/about-us/news-press.cfm?customel_datapageid_1173=1404
http://www.xtradyne.com/products/ws-dbc/ws-dbc.htm
http://www.qnx.com/
http://en.wikipedia.org/wiki/QNX
http://www.ibm.com/developerworks/web/library/wa-appsec/

Software Technology, 46(9), 575–587
[Rea03] Reactivity, http://www.reactivity.com
[Ren] K. Renzel and W. Keller, ‘Three Layer Architecture’, In Software
Architectures and Design Patterns in Business Applications
http://www4.informatik.tu-muenchen.de/proj/arcus /TUM-I9746.html
[RFC2743] IETF, ‘Generic Security Service Application Program
Interface Version 2’, update 1 http://www.ietf.org/rfc/rfc2743.txt (accessed
20 Nov 2012)
[Rig00] C. Rigney, S. Willens, A. Rubens, W. Simpson, ‘Remote
Authentication Dial In User Service (RADIUS)’, June 2000.
http://www.ietf.org/rfc/rfc2865.txt
[Riv78] R. L. Rivest, A. Shamir, L. M. Adleman, ‘A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems’, Commun.
ACM 21(2): 120–126, 1978
[Rod07] A. Rodríguez, E. Fernández-Medina, M. Piattini, ‘M-BPSec: A
Method for Security Requirement Elicitation from a UML 2.0 Business
Process Specification’, ER Workshops 2007, 106–115
http://link.springer.com/chapter/10.1007/978-3-540-76292-8_13?
LI=true#page-1
[Rod08] A. Rodriguez, ‘RESTful web services: the basics’, IBM
Developer Works, 2008
http://www.ibm.com/developerworks/webservices/library/ws-restful/
[Rod] J. Rodriguez and J. Klug, ‘Federated Identity Patterns in a Service-
Oriented World’, Microsoft Architecture Journal, 16, 6–11
[Ros05] M. Rosenblum and T. Garfinkel, ‘Virtual Machine Monitors:
Current Technology and Future Trends’, Computer, IEEE May 2005, 39–47
[RSA] RSA Security, PKCS #1: RSA Cryptography Standard
http://www.rsa.com/rsalabs/node.asp?id=2125
[Rs] IBM: Real Secure Intrusion Detection Systems by IBM,
http://publib.boulder.ibm.com/infocenter/sprotect/v2r8m0/index.jsp
[Rut] Wikipedia: GNU Free Documentation License, 2009
http://mjrutherford.org/files/
2009-Spring-COMP-4704-TLS-Wikipedia.pdf\

http://www.reactivity.com/
http://www4.informatik.tu-muenchen.de/proj/arcus%20/TUM-I9746.html
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2865.txt
http://link.springer.com/chapter/10.1007/978-3-540-76292-8_13?LI=true#page-1
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.rsa.com/rsalabs/node.asp?id=2125
http://publib.boulder.ibm.com/infocenter/sprotect/v2r8m0/index.jsp
http://mjrutherford.org/files/2009-Spring-COMP-4704-TLS-Wikipedia.pdf/

[Sad05] M. Sadicoff, M. M. Larrondo-Petrie and E. B. Fernandez,
‘Privacy-Aware Network Client Pattern’, in Proceedings of the 12th Pattern
Languages of Programs Conference (PLoP2005), Monticello, Illinois, US,
7–10 September 2005,
http://hillside.net/plop/2005/proceedings/PLoP2005_msadicoff0_0.pdf
[Sal] Salesforce, ‘Salesforce Product Overview’, Salesforce.com
http://www.salesforce.com/products/ (accessed 28 Sep 2012)
[Sal2] Salesfore, ‘Force.com: A Comprehensive Look at the World’s
Premier Cloud- Computing Platform’
http://www.developerforce.com/media/
Forcedotcom_Whitepaper/WP_Forcedotcom- InDepth_040709_WEB.pdf
[Sal3] Salesforce, ‘An Introduction to the Force.com IDE’
http://wiki.developerforce.com/page/An_Introduction_to_Force_IDE
[Sal4] Salesforce, ‘An Introduction to Environments’
http://wiki.developerforce.com/page/An_Introduction_to_Environments
[Sal5] Salesforce, ‘About the Force.com Developer Edition
Environments’ http://wiki.developerforce.com/page/Developer_Edition
[Sal6] Salesforce, ‘Secure, Private and Trustworthy: Enterprise Cloud
Computing with Force.com’
http://www.salesforce.com/assets/pdf/misc/WP_Forcedotcom-Security.pdf
[San96] R. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman.,
‘Role-based access control models’, Computer, vol 29, No2, February
1996, 38–47
[SAP09] webMethods Audit Logging Guide, Software AG 2009
http://documentation.softwareag.com/
webmethods/wmsuites/wmsuite8_ga/
Cross_Product/8-0SP1_Audit_Logging_Guide.pdf
[SAP] SAP Netweaver Identity Manager
http://www.sap.com/platform/netweaver/components/idm/index.epx
[Sar04] Sarvega, http://www.sarvega.com/
[sau] http://en.wikipedia.org/wiki/
Information_technology_security_audit

http://hillside.net/plop/2005/proceedings/PLoP2005_msadicoff0_0.pdf
http://salesforce.com/
http://www.salesforce.com/products/
http://force.com/
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-%20InDepth_040709_WEB.pdf
http://force.com/
http://wiki.developerforce.com/page/An_Introduction_to_Force_IDE
http://wiki.developerforce.com/page/An_Introduction_to_Environments
http://force.com/
http://wiki.developerforce.com/page/Developer_Edition
http://force.com/
http://www.salesforce.com/assets/pdf/misc/WP_Forcedotcom-Security.pdf
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8_ga/Cross_Product/8-0SP1_Audit_Logging_Guide.pdf
http://www.sap.com/platform/netweaver/components/idm/index.epx
http://www.sarvega.com/
http://en.wikipedia.org/wiki/Information_technology_security_audit

[Sch95] D. Schmidt, ‘Experience Using Design Patterns to Develop
Reusable Object-Oriented Communication Software’, Communications of
the ACM (Special issue on Object-Oriented Experiences), October 1995,
65–74
[Sch99a] D. C. Schmidt and C. Cleeland, ‘Applying Patterns to Develop
Extensible ORB Middleware’, IEEE Communications Magazine, 37(4),
April 1999, 54–63
[Sch99b] B. Schneier, ‘Attack Trees’, Dr. Dobb’s Journal, December
1999, 21–29
[Sch00a] M. Schumacher, R. Ackermann and R. Steinmetz, ‘Towards
Security at all Stages of a System’s Lifecycle’, Proceedings of International
Conference on Software, Telecommunications and Computer Networks
(Softcom), 2000, 11–19, http://www.ito.tu-darmstadt.de/publs
[Sch00b] D. C. Schmidt., M. Stal, H. Rohnert and F. Buschmann, Pattern-
Oriented Software Architecture, John Wiley & Sons, Inc., 2000
[Sch01] M. Schumacher and U. Roedig, ‘Security Engineering with
Patterns, PLoP 2001
[Sch03] M. Schumacher, Security Engineering with Patterns, Springer,
Lecture Notes in Computer Science, Volume 2754, 2003, DOI:
10.1007/b11930
[Sch06a] A. Schaad, ‘Security in Enterprise Resource Planning Systems
and Service-Oriented Architectures’, Proceedings of SACMAT’06, ACM,
June 2006, 69–70
[Sch06b] M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering. John Wiley & Sons, Inc., 2006
[Sco05] M. Scodeggio et al., ‘The VVDS Data-Reduction Pipeline:
Introducing VIPGI, the VIMOS Interactive Pipeline and Graphical
Interface’, Publications of the Astronomical Society of the Pacific, vol 117,
November 2005, 1284–1295.
[sec] The Security Patterns page, maintained by M. Schumacher,
http://www.securitypatterns.org

http://www.ito.tu-darmstadt.de/publs
http://www.securitypatterns.org/

[Sel12] L. Seltzer, ‘Best Practices and Applications of TLS/SSL’, white
paper, Symantec Corporation, 2012
[Sel] Security Enhanced Linux, http://www.nsa.gov/selinux
[SER] Serenity Project, http://www.serenity-project.org
[SeT] Secure Tropos, http://www.securetropos.org/
[Sha02] J. S. Shapiro and N. Hardy, ‘EROS: A Principle-Driven
Operating System from the Ground Up’, IEEE Software, Jan./Feb. 2002,
26–33. See also: http://www.eros-os.org
[Sha03] K. Shanmugasundaram, ‘ForNet: A Distributed Forensics
Network’. Department of Computer and Information Science. Polytechnic
University, Brooklyn, NY. 2003
[Shi00] T. Shinagawa, K. Kono, T. Masuda, ‘Exploiting Segmentation
Mechanism for Protecting Against Malicious Mobile Code’, Technical
Report 00–02, Dept. of Information Science, University of Tokyo, May
2000
[Shi10] Y. Shiroma, H. Washizaki, Y. Fukazawa, A. Kubo, N. Yoshioka,
E. B. Fernandez, ‘Model-Driven Application and Validation of Security
Patterns’, 17th Conference on Pattern Languages of Programs, PLoP 2010
[Shi] Shibboleth Project, http://shibboleth.internet2.edu/
[Sid07] B. Siddiqui, ‘Securing Java Applications with Acegi, Part 1:
Architectural overvIew and Security Filters’,
http://www.ibm.com/developerworks/java/library/j-acegi1/index.html
(accessed October 29, 2012)
[Sil02] O. R. da Silva, A. F. Garcia and C. J. P. de Lucena, ‘The
Reflective Blackboard Architectural Pattern’, Rept. PUC-Rio Inf.
MCC24/02, Sept. 2002
[Sil03] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts
(6th edition), John Wiley & Sons, Inc., 2003
[Sil05] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts
(7th edition), John Wiley & Sons, Inc., 2005
[Sil08] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts
(8th edition), John Wiley & Sons, Inc., 2008

http://www.nsa.gov/selinux
http://www.serenity-project.org/
http://www.securetropos.org/
http://www.eros-os.org/
http://shibboleth.internet2.edu/
http://www.ibm.com/developerworks/java/library/j-acegi1/index.html

[Slo02] M. Sloman and E. Lupu, ‘Security and Management Policy
Specification’, IEEE Network, March/April 2002, 10–19
[Smi04] R. F. Smith, ‘Auditing Users and Groups with the Windows
Security Log’ http://www.windowsecurity.com/articles/
auditing-users-groups-windows-security-log.html
[Smi08] B. Smith, ‘A Storm (Worm) is Brewing’, Computer, IEEE
February 2008, 20–22
[SOA01] W3C, SOAP Security Extensions: Digital Signature, W3C
NOTE 06, February 2001 http://www.w3.org/TR/SOAP-dsig/
[Son10] Sonic Wall VPN Products
http://www.sonicwall.com/us/products/472.html (accessed 19 July 2010)
[Sor04] T. Sorgente and E. B. Fernandez, ‘Analysis Patterns for Patient
Treatment’, Proceedings of PLoP 2004,
http://jerry.cs.uiuc.edu/~plop/plop2004/
accepted_submissions
[Sor05] T. Sorgente, E. B. Fernandez and M. M. Larrondo-Petrie, ‘The
SOAP Pattern for Medical Charts’, in Proceedings of the 12th Pattern
Languages of Programs Conference (PLoP2005), Monticello, Illinois, 7–10
September 2005
http://hillside.net/plop/2005/proceedings/PLoP2005_tsorgente0_1.pdf
[Spa09] G. Spanoudakis, A. Maña, S. Kokolakis, eds. Security and
Dependability for Ambient Intelligence, Springer, 2009
[Spe09] C. Spence, J. Devoys and S. Chahal, ‘Architecting Software as a
Service for the Enterprise’. Oct 2009
[Sph] Patterns: SOA with an Enterprise Service Bus in WebSphere
Application Server V6
http://www.redbooks.ibm.com/redpieces/abstracts/sg246494.html
[Spr12] Springsource Community, ‘The Spring Web MVC Framework’,
2012 http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html/mvc.html (accessed 6 March 2012)
[Sri05] J. Srivatsa, L. Liu, ‘Securing Publish-Subscribe Overlay Services
with EventGuard’. Proceedings 12th ACM Conference on Computer and
Communications Security (CCS), 289–298, ACM, 2005

http://www.windowsecurity.com/articles/auditing-users-groups-windows-security-log.html
http://www.w3.org/TR/SOAP-dsig/
http://www.sonicwall.com/us/products/472.html
http://jerry.cs.uiuc.edu/~plop/plop2004/accepted_submissions
http://hillside.net/plop/2005/proceedings/PLoP2005_tsorgente0_1.pdf
http://www.redbooks.ibm.com/redpieces/abstracts/sg246494.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html

[Sse10] R. Ssekibuule, ‘Secure Publish-Subscribe Mediated Virtual
Organizations’, Proceedings of ISSA, 2010,
http://icsa.cs.up.ac.za/issa/2010/Proceedings/Full/18_Paper.pdf
[Sta03] W. Stallings, Cryptography and Network Security: Principles and
Practice (3rd edition), Prentice-Hall, 2003
[Sta06] W. Stallings, Cryptography and Network Security (4th edition),
Pearson Prentice Hall, 2006
[Sta12] W. Stallings and L. Brown, Computer Security: Principles and
Practice (2nd edition) Prentice Hall, 2012
[Ste02] J. Steffan and M. Schumacher, ‘Collaborative Attack Modeling’,
Proceedings of SAC 2002, Madrid, Spain http://www.ito.tu-
darmstadt.de/publs/pdf/sac2002.pdf
[Ste05] C. Steel, R. Nagappan and R. Lai, Core Security Patterns: Best
Strategies for J2EE, Web Services and Identity Management, Prentice Hall,
Upper Saddle River, New Jersey, 2005
[Ste06] C. Steel, R. Nagappan, R. Lai, Chapter 9 in Securing the Web
Tier: Design Strategies and Best Practices, Sun, 2006
[Str11] E. Stratmann, J. Ousterhout and S. Madan, ‘Integrating Long
Polling with an MVC Framework, in Proceedings of the 2nd USENIX
Conference on Web Application Development (WebApps’11), USENIX
Association, Berkeley, CA, US, 10–10
[Sum97] R. C. Summers, Secure Computing: Threats and Safeguards,
McGraw-Hill, 1997
[Sun04a] Trusted Solaris Operating System,
http://www.sun.com/software/solaris/trustedsolaris/
[Sun04b] http://sunxacml.sourceforge.net/
[SunA] Sun Microsystems Inc. Java Cryptography Extension (JCE)
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
[SunB] Sun Microsystems Inc., Java SE Security,
http://java.sun.com/javase/technologies/security/
[SunC] Sun Java System Access Manager,
http://www.sun.com/software/products/access_mgr/

http://icsa.cs.up.ac.za/issa/2010/Proceedings/Full/18_Paper.pdf
http://www.ito.tu-darmstadt.de/publs/pdf/sac2002.pdf
http://www.sun.com/software/solaris/trustedsolaris/
http://sunxacml.sourceforge.net/
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/javase/technologies/security/
http://www.sun.com/software/products/access_mgr/

[SunD] Sun Microsystems, http://www.sun.com/software/
whitepapers/webservices/wp-getstarted.pdf, http://www.sun.com/software/
whitepapers/webservices/wp-implement.pdf
[Suo08] J. Suomalainen, S. Moloney, J. Kolvisto and K. Keinanen, ‘Open
House: a Secure Platform for Distributed Home Services’, 6th Annual
Conference on Privacy, Security and Trust, 2008, IEEE 2008
[Swa08] R. E. Sward, K. J. Whitacre; ‘A Multi-Language Service-
Oriented Architecture using an Enterprise Service Bus’, Proceedings of the
2008 ACM Annual International Conference on SIGAda, October 26–30,
2008, Portland, Oregon, US
[Sym01] http://www.symbian.com/developer/
[Sym] Symantec Antivirus Research Center,
http://www.symantec.com/avcenter/index.html
[Tan06] A. S. Tannenbaum, J. N. Herder and H. Bos, ‘Can we Make
Operating Systems Reliable and Secure?’, Computer, IEEE, May 2006, 44–
51
[Tan08] A. Tanenbaum, Modern Operating Systems (3rd edition), Prentice
Hall, 2008
[Tar02] P. Tarau, ‘Object Oriented Logic Programming as an Agent
Building Infrastructure’, Oct. 2002,
http://logic.csci.unt.edu/tarau/research/slides/oolpAgents.ppt
[Tat04] M. Tatsubori, T. Imamura and Y. Nakamura, ‘Best-Practice
Patterns and Tool Support for Configuring Secure Web Services
Messaging’, Proceedings of the IEEE International Conference on Web
Services (ICWS’04)
[Tay10] R. N. Taylor, N. Medvidovic and E. M. Dushofy, ‘Software
architecture: Foundations, theory and practice’, John Wiley & Sons, Inc.,
2010
[Tec11] techPDF, ‘Architecture and Components of Cloud Computing’
http://techpdf.co.cc/blog/architecture-and-components-of-cloud-
computing/, June 15 2011
[Tem] E. Tempero, Notes for SOFTENG 325: Software Architecture,
Lecture 11 http://www.se.auckland.ac.nz

http://www.sun.com/software/whitepapers/webservices/wp-getstarted.pdf
http://www.sun.com/software/whitepapers/webservices/wp-implement.pdf
http://www.symbian.com/developer/
http://www.symantec.com/avcenter/index.html
http://logic.csci.unt.edu/tarau/research/slides/oolpAgents.ppt
http://techpdf.co.cc/blog/architecture-and-components-of-cloud-computing/
http://www.se.auckland.ac.nz/

[Ten05] J. Tennison, ‘Managing Complex Document Generation through
Pipelining’ http://idealliance.org/proceedings/xtech05/papers/04-03-01/
[The12] The Apache Software Foundation. The Struts Web Framework,
2012 http://struts.apache.org/, 03/06/12. (accessed 19 Nov 2012)
[Tho97] R. K. Thomas, ‘Team-Based Access Control (TMAC): A
primitive for Applying Role-Based Access Controls in Collaborative
Environments’, in Proceedings of the 2nd ACM Workshop on Role-based
Access Control (RBAC 97), Fairfax, Virginia, US, 6–7 November 1997, 13–
19
[Tho98] D. Thomsen, R. C. O’Brien, J. Bogle, ‘Role Based Access
Control Framework for Network Enterprises’, in Proceedings of the 14th
Annual Computer Security Applications Conference, December 1998, 50–
58
[Tok04] E. Toktar, E. Jamhour and C. Maziero,‘RSVP Policy Control
using XACML’, Proceedings of the 5th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2004), 7–9 June
2004, Yorktown Heights, NY, US.
[Ubu] Ubuntu, ‘UEC Package Install Separate’
https://help.ubuntu.com/community/UEC/PackageInstallSeparate#Overvie
w
[Uzu12a] A. V. Uzunov, E. B. Fernandez and K. Falkner, ‘Securing
Distributed Systems using Patterns: A Survey’, Computers & Security,
31(5), 2012, 681–703, doi:10.1016/j.cose.2012.04.005
[Uzu12b] A. Uzunov, K. Falkner and E. B. Fernandez, ‘A Comprehensive
Pattern-Oriented Approach to Engineering Security Methodologies’,
submitted for publication
[Uzu12c] A. V. Uzunov, E. B. Fernandez and K. Falkner, ‘Engineering
Security into Distributed Systems: A Survey of Methodologies’, accepted
for the Journal of Universal Computer Science
[Uzu12d] A. Uzunov and E. B. Fernandez, ‘An Extensible Pattern-Based
Library and Taxonomy of Security Threats for Distributed Systems’,
accepted for the Special Issue on Security in Information Systems of the
Journal of Computer Standards & Interfaces

http://idealliance.org/proceedings/xtech05/papers/04-03-01/
http://struts.apache.org/
https://help.ubuntu.com/community/UEC/PackageInstallSeparate#Overview

[Van09] M. VanHilst, E. B. Fernandez and F. Braz, ‘A Multidimensional
Classification for Users of Security Patterns’, Journal of Research and
Practice in Information Technology, vol 41, No 2, May 2009, 87–97
[Ver02] T. Verwoerd and R. Hunt, ‘Intrusion Detection Techniques and
Approaches’, Computer Communications, Volume 25, Issue 15, 15
September 2002, 1356–1365
[Ver04] M. Verma, ‘XML Security: Control Information Access with
XACML’ http://www.ibm.com/developerworks/xml/library/x-xacml/
[Via05] W. Viana, J. B. Filho, R. A., ‘Secrecy with Session Key: Um
Padrão de Criptografia para Evitar Ataques de Criptoanãlise por Textos
Cifrados Conhecidos’ (in Portuguese), Proceedings of SugarLoaf PLoP
2005, http://sugarloafplop2005.icmc.usp.br/papers/9700.pdf
[VMW09] VMware, Inc., SecureSpan XML Virtual Appliance, 2012
http://www.vmware.com/appliances/directory/249773 (accessed 15 Dec
2009)
[Voe02] M. Voelter, A. Schmid and E. Wolff, Server Component Patterns
: Component Infrastructures Illustrated with EJB, John Wiley & Sons, Inc.,
1996
[Vor09] Vordel Limited, Vordel STS,
http://www.vordel.com/solutions/security_token_services.html (accessed 15
Dec 2009)
[Vuo04] S. Vuong and Y. Bai, ‘A Survey of VoIP Intrusions and Intrusion
Detection Systems’, Proceedings of the 6th International Conference on
Advanced Communication Technology, August 2004
[W3C01] W3C, XML Key Management Specification, March 2001,
http://www.w3.org/TR/xkms/
[W3C02] W3C, XML Encryption Syntax and Processing, 10 December
2002 http://www.w3.org/TR/xmlenc-core/
[W3C07] W3C, Web Services Policy 1.5 – Framework, 4 September
2007, http://www.w3.org/TR/ws-policy/ (accessed 15 Dec 2009)
[W3C08] W3C Working Group, XML Signature Syntax and Processing
(2nd edition) 2008 http://www.w3.org/TR/xmldsig-core

http://www.ibm.com/developerworks/xml/library/x-xacml/
http://sugarloafplop2005.icmc.usp.br/papers/9700.pdf
http://www.vmware.com/appliances/directory/249773
http://www.vordel.com/solutions/security_token_services.html
http://www.w3.org/TR/xkms/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/xmldsig-core

[W3C09] W3C Working Draft, Web Services Metadata Exchange, 2009,
http://www.w3.org/TR/ws-gloss/ (accessed 15 Dec 2009)
[Wal81] S. Wallach and C. Holland, ‘32-bit Minicomputer Achieves Full
16-bit Compatibility’, Computer Design, Jan. 1981, 111–120
[Wan06] Q. Wang, W. Shin, X. Liu, Z. Zeng, C. Oh, B. K. AlShebli, M.
Caccamo, C. A. Gunter, E. Gunter, J. Hou, K. Karahalios and L. Sha, ‘I-
Living: An Open System Architecture for Assisted Living’, IEEE
Transactions on Systems, Man and Cybernetics, (SMC), Taipei, Taiwan,
4268–4275, October 2006
[Wan08] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramerand W.
Karl, ‘Scientific Cloud Computing: Early Definition and Experience’, in
10th IEEE International Conference on High Performance Computing and
Communications, HPCC ‘08, 2008, 825–830
[War03a] J. Warmer and A. Kleppe, The Object Constraint Language
(2nd edition), Addison-Wesley, 2003
[War03b] R. Warrier and E. B. Fernandez, ‘Remote
Authenticator/Authorizer’, Pattern Languages of Programs Conference
(PLoP), 2003
[Was09] H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo and N.
Yoshioka, ‘Improving the Classification of Security Patterns’, Proceedings
of the 3rd International Workshop on Secure System Methodologies using
Patterns (SPattern 2009)
[Wei06a] M. Weiss, ‘Credential Delegation: Towards Grid Security
Patterns’, Nordic Pattern Languages of Programs Conference
(VikingPLoP), 2006
[Wie06b] C. Wieser, J. Roning and A. Takanen, ‘Security Analysis and
Experiments for Voice Over IP RTP Media Streams’, Proceedings of the 8th
International Symposium on System and Information Security (SSI’2006)
[Wei08] M. Weiss, ‘Patterns and their Impacts on System Concerns’,
Proceedings PLoP 2008
[Wes03] Westbridge Technology, http://www.westbridgetech.com
[WeS] IBM WebSphere V5.0 Security,
http://www.redbooks.ibm.com/abstracts/sg246573.html (accessed 9 Nov

http://www.w3.org/TR/ws-gloss/
http://www.westbridgetech.com/
http://www.redbooks.ibm.com/abstracts/sg246573.html

2012)
[Whi01] J. A. Whitaker and H. H. Thompson, How to Break Software
Security, Addison-Wesley 2001
[wik1] Wikipedia, ‘Scheduler Pattern’,
http://en.wikipedia.org/wiki/Scheduler_pattern (accessed June 21, 2012).
[wik2] Wikipedia, ‘Ring (computer security)’
http://en.wikipedia.org/wiki/Supervisor_mode#Supervisor_mode
[wik3] Proposed Standard: The Transport Layer Security (TLS) Protocol
Version 1.2 http://wiki.tools.ietf.org/html/rfc5246
[wik4] Wikipedia, ‘Publish/Subscribe’,
http://en.wikipedia.org/wiki/Publish/subscribe
[Won08] W. Wong, F. Verdi, M. Magalhaes, ‘A Security Plane for
Publish/Subscribe Based Content Oriented Networks’. Proceedings ACM
CoNEXT, 2008
[wor09] ‘Worm Evolution’, May 2009, http://www.digitalthreat.net/?p=17
[Wre04] Review: RSA ClearTrust 5.5 Secure Federated Identity
Management System http://searchsecurity.techtarget.com/Secure-SSO-
Single-sign-on-security-for-Web-services-with-RSA-ClearTrust-55
[WSE] Solution Design in WebSphere Process Server and WebSphere
ESB
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_c
lark/0908_clark.html
[WSO] WSO2, Identity Server, http://wso2.com/products/identity-server
[WSPL] http://sourceforge.net/projects/openwspl/
[Xtr04] Xtradyne Technologies, http://www.xtradyne.com/
[Xtr] Xtradyne Technologies, ‘Xtradyne’s WS-DBC, the XML/SOAP
Firewall for Enterprises’, http://www.xtradyne.de/products/ws-dbc/ws-
dbc.htm
[Yas04] A. Yasinsac and J. Childs, ‘Formal Analysis of Modern Security
Protocols’ Information Sciences Volume 171, Issues 1–3, 4 March 2005
[Yod97] J. Yoder and J. Barcalow, ‘Architectural Patterns for Enabling
Application Security’, Proceedings PLOP’97,

http://en.wikipedia.org/wiki/Scheduler_pattern
http://en.wikipedia.org/wiki/Supervisor_mode#Supervisor_mode
http://wiki.tools.ietf.org/html/rfc5246
http://en.wikipedia.org/wiki/Publish/subscribe
http://www.digitalthreat.net/?p=17
http://searchsecurity.techtarget.com/Secure-SSO-Single-sign-on-security-for-Web-services-with-RSA-ClearTrust-55
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_clark/0908_clark.html
http://wso2.com/products/identity-server
http://sourceforge.net/projects/openwspl/
http://www.xtradyne.com/
http://www.xtradyne.de/products/ws-dbc/ws-dbc.htm

http://jerry.cs.uiuc.edu/~plop/plop97 Also Chapter 15 in Pattern Languages
of Program Design, vol 4 (N. Harrison, B. Foote and H. Rohnert, eds.),
Addison-Wesley, 2000
[Yos04] N. Yoshioka, S. Honiden and A. Finkelstein, ‘Security Patterns:
A Method for Constructing Secure and Efficient Inter-Company
Coordination Systems’, Proceedings of the 8th International IEEE
Enterprise Distributed Object Computing Conference, 2004
[Yos08] N. Yoshioka, H. Washizaki and K. Maruyama, ‘A Survey on
Security Patterns’, Progress in Informatics, No 5, 2008, 35–47
[Ysk06] K. Yskout, T. Heyman, R. Scandariato and W. Joosen, ‘A System
of Security Patterns’, Rept. CW469, Dec. 2006, Dept. of Computer Science,
Katholieke Universiteit Leuven, Belgium
[Ysk08] K. Yskout, R. Scandariato, B. DeWin and W. Joosen,
‘Transforming Security Requirements into Architecture’, Proceedings of
Third International Conference on Availability, Reliability and Security
(ARES 2008), 1421–1428
[Ysk12] K. Yskout, R. Scandariato and W. Joosen, ‘Does Organizing
Security Patterns Focus Architectural Choices?’, ICSE 2012, Zurich, 617–
627
[Yua03] X. Yuan and E. B. Fernandez, ‘An Analysis Pattern for Course
Management’, Proceedings of EuroPLoP 2003, http://hillside.net/europlop
[Yua11] X. Yuan and E. B. Fernandez, ‘Patterns for Business-to-
Consumer E-Commerce Applications’, International Journal of Software
Engineering & Applications (IJSEA), vol 2 No 3, July 2011, 1– 20,
http://airccse.org/journal/ijsea/papers/0711ijsea01.pdf
[Zdu06] U. Zdun, C. Hentrich and W. M. P. van der Aalst, ‘A Survey of
Patterns for Service-Oriented Architectures’, International Journal of
Internet Protocol Technology, Vol 1, No 3, 132 – 143, 2006
[Zen08] Z. Zeng, S. Yu, W. Shin and J. C. Hou, ‘PAS: A Wireless-
Enabled, Cell-Phone-Incorporated Personal Assistant System for
Independent and Assisted Living’, Proceedings of 28th International
Conference on Distr. Comp. Systems, IEEE 2008, 233–242

http://jerry.cs.uiuc.edu/~plop/plop97
http://hillside.net/europlop
http://airccse.org/journal/ijsea/papers/0711ijsea01.pdf

[Zha02] L. Zhang, G. J. Ahn and B. T. Chu, ‘A Role-Based Delegation
Framework for Healthcare Systems’, Proceedings of the 8th ACM
Symposium on Access Control Models and Technologies (SACMAT’02), 02–
03 June 2003, Como, Italy, 125–134
[Zha10] Q. Zhang, L. Cheng, R. Boutaba, ‘Cloud Computing: State-of-
the-Art and Research Challenges’, Journal of Internet Services and
Applications, vol 1, 2010, 7–18
[Zho02] Y. Zhou, Q. Zhao and M. Perry, ‘Policy Enforcement Pattern’,
Proceedings of PLoP 2002
[Zir04] C. Zirpins, W. Lamersdorf and T. Baier, ‘Flexible Coordination of
Service Interaction Patterns’, Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC’04), November 15–19,
2004, New York, New York, US

Index of Patterns
Entries in lowercase refer to external citations of patterns.
Entries in uppercase refer to citations of patterns described in this book.
Abstract Factory
ABSTRACT IDS
Abstract Session
ABSTRACT VIRTUAL PRIVATE NETWORK
Access Control List
ACCESS CONTROL LIST
Access Control/Authorization
Access Matrix
Access Session
Adapter
Administrator Hierarchy
ADMINISTRATOR HIERARCHY
AMBIENT ASSISTED LIVING
Application Controller
Application Firewall
APPLICATION FIREWALL
Asset Valuation
ASYMMETRIC ENCRYPTION
Asynchronous Queuing
Attribute Based Access Control
Attribute-Based Access Control
Attribute-Based SAML Assertion
Audit Log
Audit Trail
Authenticated Call
Authentication
Authentication SAML assertion

Authenticator
AUTHENTICATOR
Authorization
AUTHORIZATION
Authorization SAML assertion

BEHAVIOR-BASED IDS
Blackboard
Broker
Broker Revisited
(Service) Broker
Brokered Authentication
Builder

Call Hijacking in VoIP
Call Interception in VoIP
Capability
CAPABILITY
Check Point
CIRCLE OF TRUST
Composite
Concrete Reference Monitor
Content Firewall
Controlled Access Session
CONTROLLED ACCESS SESSION
CONTROLLED EXECUTION DOMAIN
Controlled-Object Factory
CONTROLLED-OBJECT FACTORY
Controlled-Object Monitor
CONTROLLED-OBJECT MONITOR
Controlled-Process Creator
CONTROLLED-PROCESS CREATOR
CREDENTIAL
Credential Tokenizer

Data Filter Architecture
Data Filtering
Demilitarized Zone
DENIAL-OF-SERVICE IN VOIP
DIGITAL SIGNATURE WITH HASHING
Distributed Authenticator

e-commerce secure patterns
Enterprise Security Patterns
Event-Driven Messaging
EXECUTION DOMAIN

File Access Control
FILE ACCESS CONTROL
Firewall

Grid

IDENTITY FEDERATION
Identity Provider
IDENTITY PROVIDER
INFRASTRUCTURE-AS-A-SERVICE
Input Validator
Intercepting Filter
Intermediate Routing
IPSEC VPN

Knowledge-Based IDS

Layered Microkernel
LAYERED OPERATING SYSTEM ARCHITECTURE
Layers
Least Privilege
LIBERTY ALLIANCE IDENTITY FEDERATION
Lookup

Malicious Virtual Machine Creation

Malicious Virtual Machine Migration
Mediator
Message Bus
Message Channel
Metadata-Based Access Control
Microkernel
MICROKERNEL OPERATING SYSTEM ARCHITECTURE
Misuse pattern
Model-View-Controller
MODULAR OPERATING SYSTEM ARCHITECTURE
Monolithic Kernel
Multilevel Secure Partitions
MULTILEVEL SECURITY
Multiple Agents

Network Segmentation

Object Filter and Access Control Framework
Observer

Packet Filter Firewall
Party
PATIENT RECORD
Patient Treatment Records
PATIENT TREATMENT RECORDS
Patterns for Physical Access Control Systems
Pipes and Filters
PLATFORM-AS-A-SERVICE
Policy
Policy Enforcement
POLICY-BASED ACCESS CONTROL
Policy-Based Authorization
Principal Spoofing in Web Services
Privacy Policies
Privacy-Aware Network Client

Protected Entry Points
PROTECTED ENTRY POINTS
PROTECTION RINGS
Proxy
Proxy Firewall
Proxy-Based Firewall
Publish/Subscribe

RBAC, see ROLE-BASED ACCESS CONTROL
Reference Monitor
Reflective Blackboard
Reified Reference Monitor
REIFIED REFERENCE MONITOR
Reliable Security
REMOTE AUTHENTICATOR/AUTHORIZER
Resource Assignment
Retrieving Data from a Database using SQL Injection
Reverse Proxy
Role Rights Definition
Role-Based Access Control
ROLE-BASED ACCESS CONTROL
Rule Based IDS

SAML ASSERTION
Secure Adapter
SECURE ADAPTER
Secure Blackboard
SECURE BLACKBOARD
Secure Broker
SECURE BROKER
Secure Channel
Secure Channel Communication
Secure Distributed Publish/Subscribe
SECURE DISTRIBUTED PUBLISH/SUBSCRIBE

Secure Distributed Publish/Subscribe with Access Control
Secure Enterprise Service Bus
SECURE ENTERPRISE SERVICE BUS
Secure Facade
SECURE HANDLING OF LEGAL CASES
Secure Location-Based Service for Social Networks
Secure Logger
SECURE MODEL-VIEW-CONTROLLER
Secure MVC
Secure Operating System Shell
Secure Pipes and Filters
SECURE PIPES AND FILTERS
Secure Process/Thread
SECURE PROCESS/THREAD
Secure Reliability
SECURE SCADA
Secure Storage
Secure Thread
Secure Three-Tier Architecture
SECURE THREE-TIER ARCHITECTURE
Secure VoIP Call
Secure Wrapper
Security Assertion Coordinator
SECURITY LOGGER AND AUDITOR
Security Logger/Auditor
Security Needs Identification
Security Session
Session
Session Access
Session Object
Session-Based Attribute-Based Authorization
SESSION-BASED ROLE-BASED ACCESS CONTROL
Shared Resource

SIGNATURE-BASED IDS
Signed Authenticated Call
Single Access Point
Single Sign On
Social networks security
Software Defined Networking (SDN) Security
SOFTWARE-AS-A-SERVICE
SPOOFING WEB SERVICES
SSL VPN
Stateful Firewall
Stateful Inspection Firewall
Strategy
SYMMETRIC ENCRYPTION

The Liberty Alliance PAOS Identity Service
Theft of Service
Threat Assessment
Three-Tier Architecture
TLS VIRTUAL PRIVATE NETWORK
Traffic Monitoring Inference in Cloud Computing
TRANSPORT LAYER SECURITY
Trust

Usability of Security

VIRTUAL ADDRESS SPACE ACCESS CONTROL
VIRTUAL ADDRESS SPACE STRUCTURE SELECTION
VIRTUAL MACHINE OPERATING SYSTEM ARCHITECTURE
VoIP Evidence Analyzer
VoIP Evidence Collector

WEB SERVICES POLICY LANGUAGE
Whitelisting Firewall
WiMax
WORM

WS-Federation
WS-POLICY
WS-Secure Conversation
WS-SECURITY
WS-Trust
WS-TRUST

XACML ACCESS CONTROL EVALUATION
XACML AUTHORIZATION
XACML patterns
XML Encryption
XML ENCRYPTION
XML Firewall
XML FIREWALL
XML SIGNATURE
XSS (Cross-Site Scripting)

Index
.NET
.NET Passport
.NET Remoting
A&A, see Authorization and access control
AAL
Access control
Access control entries
Access control list
discretionary
Access control model
Access matrix
Accessibility
Accidental association
Accountability
ACE, see Access control entries
Acegi
Acknowledgements
ACL, see Access control list
Activation, worm
Ada
Adobe Acrobat
Adobe Flex
Adobe Reader

protected mode
Advanced Encryption Standard
Advanced Research Guard for Experimentation
AES, see Advanced Encryption Standard
AirDefense Guard
AirTight

AIX
Ajaj, Ola xxi
Alert Protocol
Amazon
Ambient assisted living
Amoeba
Analysis pattern

see also Semantic analysis pattern
Analysis stage
Anna Kournikova
Antipattern
Antivirus software
Apache Scalper
API
Application exchange
Application Protocol
Application security gateway
Architecture, monolithic
Argus Pitbull
Artix iSF Security Framework
Assembly, worm
Attack

detection
direct endpoint
forensics
obfuscation
pattern
see also Forensics

Attribute-based access control
Auditability
Auditing
Authentication

mutual

Authenticity
Authorization
Authorization and access control
Authorizer
Availability
Aventail

Bagle
Basic definitions
Bastion host
BEA AquaLogic Service Bus
BEA Web Logic Server
BIOS
BizTalk Server
BlackBerry
Book structure
Braga, Rosana
Braz, Fabricio
BreachGate WebDefend
Brief
Bro
Building Security in Maturity Model
Business Application Services

CA, see Certificate authority
Call bracket
Capability system
Centralized security
Cerebit InnerGuard
Certificate
Certificate authority
Chernobyl
Christmas
Chromium Sandbox

Cipher Change Protocol
Cisco
Cisco IOS
Citrix
Class diagram
Clearance
Clipper
Closed system
Closed system, principle
Cloud computing

architecture
Infrastructure-as-a-service
Platform-as-a-service
Software-as-a-service

Cloud Security Alliance
Cloud services
Cloud, securing
Cocoon
Code Red
Collaboration
Collaboration diagram
Collateral damage, worm
Common Intrusion Detection Framework
Common Object Request Broker
Communication
Compartment, definition
Completeness
Components Framework for Policy-Based Admission Control
Computer Security Act
Conceptual model
Conficker
Confidentiality

and integrity

Configurability
Connectix
Context switch
Contract
Controlled Execution Domain
Controlled reconfiguration
CONTROLLED VIRTUAL ADDRESS SPACE
Convenient reception
Coordination
CORBA, see Common Object Request Broker
CoSign
Countermeasure
Coverage
Credential
CRM, see Customer Relationship Management
Cryptographic attack
Cryptography
CSA
Customer Relationship Management
Cyberoam
Cyberphysical system

Data Encryption Standard
Data security of web services
Data stream security
Database-as-a-service
DB2
DDoS
De-authentication attack
Dedicated language
Defendant
Defense in depth

principle

Definitions
Degree of protection
Delessy, Nelly
Denial of service
Dependability
Deployment and maintenance stage
Deployment descriptor
Deployment diagram
Deposition
DES, see Data Encryption Standard
Descriptor

deployment
Design model
Design stage
Development-as-a-service
Diffie-Hellman
Digital signature
Digital signature algorithm
Dimension graph
Direct endpoint attack
Distributed Filtering and Access Control framework
Domain analysis stage
DoS, see Denial of service
DSA, see Digital Signature Algorithm

EAP-TLS
eBay
EC2
EHR, see Electronic healthcare record
Elasticity
Electronic healthcare record
Empower Identity Manager
Encryption, types of

Enterprise Service Bus
Enumerating threats
Equinox
EROS
Error propagation
ESB, see Enterprise Service Bus
Eucalyptus
Event and message distribution
Excessive interoperability
Execution domain
Expression matching
ExtremeWare

Failure pattern
Fault tolerance

pattern
Federated Identity Access Manager Federation
Federated Identity Manager
Federation, definition
File management
Filtering
Firewall, definition
Flexibility
Forensic

analysis
class
data
examination
mechanism
network analysis
object
proof
tools

Forensics
Forgery
Fowler, Martin
FreeRADIUS
Freshbooks
Full mediation, principle
Future research directions

Gabriel, Richard
Gatekeeper
Gateway
Genetic algorithm
Gmail
GNuPG
Google App Engine
Google Calendar
Google Docs
Guaranteed message exchange

Handshake protocol
structure and dynamics for TLS

Harmful data detector
Hash value
Hash-based message authentication code
Hashing
Hashizume, Keiko
Health Insurance Portability and Accountability Act
Heath, Craig xxi
Hiding information
Highest level, principle
HIPAA, see Health Insurance Portability and Accountability Act
HITAC
Holistic approach, principle
Host-based IDS

HP PA-RISC
Hypervisor

I&A, see Identification and authentication
I/O management
IaaS, see Infrastructure-as-a-service
IAM, see Identity and access management
IBM
IBM
IBM 6000
IBM S/370
IBM S/38
IBM S/6000
ICL 2900
Identification
Identification and authentication
Identity and access management
Identity base
Identity federation
Identity management
Identity, definition
IDS

host-based
network-based
see also Intrusion detection system

IDS Softblade
IDS, commercial products
Illegal access
ILOVEYOU
Impersonation
Implementation stage
Incomplete security
Increased vulnerability

Information hiding
Information, adding to patterns
Informix
Infrastructure-as-a-service
Insecure channel
Integration-as-a-service
Integrity
Intel Pentium
Intel X86
Internet bus
Internet Explorer
Internet protocol

definition
Interoperability
Intrusion detection
Intrusion detection system
IP spoofing
IP, see Internet protocol
IPS 4200
IPSec
IT governance
ITG, see IT governance

J2EE
Java
Java
Java Cryptographic Architecture
Java Cryptographic Extension
Java Security Manager
Java System Access Manager
Java Virtual Machine
JDK
Jerusalem

Johnson, Ralph
Juniper

Key distribution
key distribution problem
Key exchange
Known attacks
Kon, Fabio
Kumar, Ajoy
KVM
KVM/370

L4 Microvisor
LaRed, David
Larrondo-Petrie, Maria M.
Latency, worm
Layer skipping
Layer, definition
Least privilege
Liberty Alliance
Liberty Alliance Identity Federation
Liberty Alliance Identity Framework
LIDS
Lifecycle-based methodology
Linux
Linux Firewall
Local Security Authority, Windows
Location transparency
Logging and auditing
Logic-as-a-service
Long poll
Loose coupling

MAC, see Message authentication code
Mach

Malicious association
Maña, Antonio
Manageability
Management, simplicity
Manifestation, worm
MARA
MDD, see Model-driven development
MDE, see Model-driven engineering
Medical application
Medical records, regulations
Melissa
Memory management
Message
authentication

authentication code
digest
flexibility
integrity
interception
protection
replay
security

Metamodel
Methodology

lifecycle
pattern-based
secure systems development

mHealth
Microkernel

architecture
Microsoft

Account
Azure

Office
Passport
Wallet
Word

Minix
Misuse pattern

pattern diagrams
structure

Mobile health
Model

access control
checking
conceptual
design
multilevel
security
statistical

Model-driven development
Model-driven engineering

using with security patterns
Monolithic architecture
Morrison, Patrick
Motorola 68000
Mozilla Firefox
Mule ESB Enterprise
Multics
Multilevel model
MultipleTLS
Muñoz, Jaime
Mutual authentication
MV8000

NAS, see Network-attached storage

National Institute of Standards and Technology
NavisRadius
Need-to-know

principle
NetWare
NetWeaver Identity Management
Network

attack
forensic analysis
forensics mechanism
injection

Network-attached storage
Network-based IDS
Neumann, Peter
New attacks
NFR, see Non-functional requirement
NID
Nimbus
Nimda
NIST, see National Institute of Standards and Technology
Nokia
Nonce
Nondeterminism
Non-functional requirement
Non-repudiation
Non-suspicious users
NS32000

Obfuscation, worm
Object Constraint Language
Object Request Broker
Objective, worm
OCL, see Object Constraint Language

On-demand service
Open Web Application Security Project
OpenBSD Packet Filtering Firewall
OpenNebula
OpenSSL
OpenVMS
OpenWSPL
Opera
Operating system attack
Opponent
Oracle
Oracle Service Bus
Orbix
OS/2
Overhead
Oversize payload
OWASP, see Open Web Application Security Project

PaaS, see Platform-as-a-service
PalmOS
PAP, see Policy administration point
Pattern

adding information
catalog
description
diagram
failure
fault tolerance
mining
misuse
privacy
semantic analysis

Payment Card Industry Data Security Standard

PayPal
Pay-per-use
PBX, see Private branch exchange
PCB, see Process control block
PDP, see Policy decision point
Peer certificate
PEP, see Policy enforcement point
Performance
Pernul, Günther
PGP, see Pretty Good Privacy
PingTrust
Plaintiff
Platform-as-a-service
Plessey
Policy administration point
Policy base
Policy consideration
Policy decision point
Policy enforcement point
Policy integrity
Policy protection
Policy, definition
POSIX
Precedent

searching
Presence manifestation, worm
Presto
Pretty Good Privacy
Principal

authentication
authenticator
authorization
spoofing

Principles of security
Privacy
Privacy pattern
Private branch exchange
Problem frame
Process

context
control block
definition
descriptor
isolation
management
manager
spawning

Propagation error
identity information
virus
worm

Proper descriptor system
Protected entry point
Protection ring
Protection system
Protocol verification
Pseudocode, for XACML access control
PTHREADS
Pull mode
Push mode
Python

QNX
QoS, see Quality of service
Quality of service

Radio frequency identifier

RADIUS
Rational Unified Process
Reach, worm
Real time behavior
RealSecure
Real-time Transport Protocol
Reconfiguration control
Record Protocol
Recovery
Reference architecture
Replay attack
Representational state transfer
Requirements stage
Resource exhaustion
Resource management
Resource Reservation protocol
REST, see Representational state transfer
RFID, see Radio frequency identifier
Rights assignment
Role-based access control
RSA

key exchange

Security
RTP, see Real-time Transport Protocol
SaaS, see Software-as-a-service
Salesforce
SAML, see Security Assertion Markup Language
Sandbox, see Execution domain
SAP, see Semantic analysis pattern
Sarbanes-Oxley Act
SCADA system

attacks against

securing
see also Supervisory Control and Data Acquisition

Scalability
Schachter, Lior
Schumacher, Markus
Secrecy, definition
Secure access to remote objects
Secure architecture
Secure channel
Secure communication
Secure middleware
Secure OS architecture and administration
Secure process execution
Secure process management
Secure registration
Secure SCADA
Secure semantic analysis pattern
Secure Sockets Layer
Secure system development methodology
Secure system, other approaches
Secure systems integration
Secure Tropos
Security

incomplete
Security Account Manager, Windows
Security administration
Security Assertion Markup Language
Security attribute
Security context
Security Development Lifecycle
Security Gateway
Security Information and Event Management
Security model

Security overhead
Security pattern

’see also’ section
adding information
anatomy
and patterns
classification
cloud computing architecture
consequences
context
definition
deployment - analysis stage
deployment - design stage
dynamics
effect on security
evaluation
example
example resolution
example use case
file management
for access control
for authentication
for identity management
for networks
for secure process management
future research directions
history
implementation
in secure architectures
known uses
medical application
mining
misuse

misuse pattern
motivation
nature of
pattern diagrams
problem statement
secure middleware
secure OS architecture and administration
secure process execution
securing clouds
solution
structure
summary
the future
use in industry
use with SCADA
uses
using
using in design
web services cryptography
web services security
why needed

Security principles
Security Reference Monitor, Windows
Security token service
Semantic analysis pattern
Sensor
Sentry SOA Gateway
Separation of duty
Sequence diagram
Service Provider Delivery Environment
Service provider, definition
Service-oriented architecture
Session initiation protocol

Shared non-functional requirements provision
Shibboleth
Side effect, worm
SIEM, see Security Information and Event Management
Signature, definition
Simplification
Single sign on
Sinibaldi, John
SIP, see Session initiation protocol
SiteMinder
Slapper
Smalltalk
SmartCloud Applications Services
SmartCloud Foundation
SmartCloud Solutions
SOA, see Service-oriented architecture
SOAP
Software-as-a-service
Solaris
Sommerlad, Peter
SonicWALL
Sorgente, Tami
SOX, see Sarbanes-Oxley Act
Spoofing
Spring Web MVC framework
SQL

injection
SSAP, see Secure semantic analysis pattern
SSL proxy server
SSL, see Secure Sockets Layer
SSO, see Single sign on
Stage control
State transition analysis

Statistical model
Steel-Belted Radius
Storm
Structure, simplicity
Struts
Subject creation
Subject, definition
Suit
Sun One Application Server
Sun One Identity Server
Superencryption
Supervisory Control and Data Acquisition
Symbian
Systems security
Systinet

Telehealth application
Testability
Thread, definition
Threat enumeration
Threat modeling
Tier, see Layer
Time validity
Time-division multiplexing
Tivoli
TLS Handshake Protocol
TLS Record Protocol
TLS, see Transport Layer Security
Traffic filtering
Transaction Minder
Transparency
Transport Layer Security
Triggering, worm

Trojan Horse
Trust
Trusted role
Trusted Solaris

UDDI, see Universal Description, Discovery and Integration
Unified security
Universal Description, Discovery and Integration
UNIX
Unknown attacks
Use case

Access a resource using a token
Add a new policy
Apply an operation on a data stream
Consume an application
Consume development software
Control an access request to a resource
Create a new policy
Create a policy for a web service
Create a security token
create a virtual machine
Decrypt an encrypted message
Decrypt an encrypted XML message
Deploy an application
Detect an intrusion
Emergency detection
Encrypt a message
Encrypt an element using an encrypted key
Encrypt XML elements
Federate two local identities
Filter a client’s request with user authentication
Filtering an encrypted and signed client’s request, with user
authentication
Issue credential

Log user access
Migrate a virtual machine
Personal behavior profiling
Personal belonging localization
Principal authentication
Query log database
Remind of activity
Request a service
Revoke credential
Secure service request
Sign a message
Sign an element using a security token
Sign different XML elements of an XML message
Single sign on
Subject accesses a resource in the target security domain
Subscribe to an application

Verify a signature
Verify an XML signature with multiple references
Vital sign measurement

User authentication
User credentials
User interface
User trust
User-interface-as-a-service
Uzunov, Anton
Validate input parameters
Van Hilst, Mike
VAS, see Virtual address space
VAX
VE, see Virtual environment
Verifone
Verisign

Versatility
Virtual address space
VIRTUAL ADDRESS SPACE ACCESS CONTROL
Virtual environment
Virtual machine
Virtual private network
Virtual Vault
Virus

Chernobyl
Christmas
Jerusalem
propagation

VM/370
VMM (virtual machine monitor), see Hypervisor
VMware
Voice over IP
VoIP, see Voice over IP
VPN Software Blade
VPN, see Virtual private network
Vulnerability

increased

Walrus
WAP, see Wireless Application Protocol
Warrier, Reghu
Washizaki, Hironori
WE32100
Web Service Policy Language
Web services

cryptography
definition
security

Web Services Description Language

Web Services Domain Boundary Controller
Webocracy project
Webocrat
WebSphere
WebSphere Application Server
Wi-Fi

defenses
threats

Wiki
Win32 API
Windows
Windows 2000
Windows
Windows Live ID
Windows NT
Windows Server
Wireless Application Protocol
Wireless device

forensics
limitations
threats

Wireless network security, in medical applications
Wireless TLS protocol
Witness
Worm

activation
active
Anna Kournikova
Apache Scalper
assembly
attack
Bagle
Code Red

collateral damage
Conficker
ILOVEYOU
latency
manifestation
Melissa
Nimda
obfuscation
objective
passive
presence manifestation
propagation
reach
side effects
Slapper
Storm
triggering

WS-DBC, see Web Services Domain Boundary Controller
WSDL, see Web Services Description Language
WSDL-File
WSE Policy Advisor
WS-Federation
WS-Metadata Exchange
WS-Policy
WS-Requester
WS-Security
WS-Security Policy
WS-Trust

X
XACML
XACML access control, pseudocode
Xen

XKMS, see XML Key Management Specification
XML Digital Signature
XML Encryption
XML Firewall
XML Key Management Specification
XML Message Server
XML Security Gateway
XML Signature
XML Virtual Appliance
XML, definition
XMLBus
XS40
Xwall

Yoder, Joe
Yoshioka, Nobukazu

	Half Title page
	Title page
	Copyright page
	Dedication
	About the Author
	About the Foreword Author
	Foreword
	Preface
	Part I: Introduction
	Chapter 1: Motivation and Objectives
	1.1 Why Do We Need Security Patterns?
	1.2 Some Basic Definitions
	1.3 The History of Security Patterns
	1.4 Industrial Use of Security Patterns
	1.5 Other Approaches to Building Secure Systems

	Chapter 2: Patterns and Security Patterns
	2.1 What is a Security Pattern?
	2.2 The Nature of Security Patterns
	2.3 Pattern Descriptions and Catalogs
	2.4 The Anatomy of a Security Pattern
	2.5 Pattern Diagrams
	2.6 How Can We Classify Security Patterns?
	2.7 Pattern Mining
	2.8 Uses for Security Patterns
	2.9 How to Evaluate Security Patterns and their Effect on Security
	2.10 Threat Modeling and Misuse Patterns
	2.11 Fault Tolerance Patterns

	Chapter 3: A Secure Systems Development Methodology
	3.1 Adding Information to Patterns
	3.2 A Lifecyle-Based Methodology
	3.3 Using Model-Driven Engineering

	Part II: Patterns
	Chapter 4: Patterns for Identity Management
	4.1 Introduction
	4.2 Circle of Trust
	4.3 Identity Provider
	4.4 Identity Federation
	4.5 Liberty Alliance Identity Federation

	Chapter 5: Patterns for Authentication
	5.1 Introduction
	5.2 Authenticator
	5.3 Remote Authenticator/Authorizer
	5.4 Credential

	Chapter 6: Patterns for Access Control
	6.1 Introduction
	6.2 Authorization
	6.3 Role-Based Access Control
	6.4 Multilevel Security
	6.5 Policy-Based Access Control
	6.6 Access Control List
	6.7 Capability
	6.8 Reified Reference Monitor
	6.9 Controlled Access Session
	6.10 Session-Based Role-Based Access Control
	6.11 Security Logger and Auditor

	Chapter 7: Patterns for Secure Process Management
	7.1 Introduction
	7.2 Secure Process/Thread
	7.3 Controlled-Process Creator
	7.4 Controlled-Object Factory
	7.5 Controlled-Object Monitor
	7.6 Protected Entry Points
	7.7 Protection Rings

	Chapter 8: Patterns for Secure Execution and File Management
	8.1 Introduction
	8.2 Virtual Address Space Access Control
	8.3 Execution Domain
	8.4 Controlled Execution Domain
	8.5 Virtual Address Space Structure Selection

	Chapter 9: Patterns for Secure OS Architecture and Administration
	9.1 Introduction
	9.2 Modular Operating System Architecture
	9.3 Layered Operating System Architecture
	9.4 Microkernel Operating System Architecture
	9.5 Virtual Machine Operating System Architecture
	9.6 Administrator Hierarchy
	9.7 File Access Control

	Chapter 10: Security Patterns for Networks
	10.1 Introduction
	10.2 Abstract Virtual Private Network
	10.3 IPSec VPN
	10.4 TLS Virtual Private Network
	10.5 Transport Layer Security
	10.6 Abstract IDS
	10.7 Signature-Based IDS
	10.8 Behavior-Based IDS

	Chapter 11: Patterns for Web Services Security
	11.1 Introduction
	11.2 Application Firewall
	11.3 XML Firewall
	11.4 XACML Authorization
	11.5 XACML Access Control Evaluation
	11.6 Web Services Policy Language
	11.7 WS-Policy
	11.8 WS-Trust
	11.9 SAML Assertion

	Chapter 12: Patterns for Web Services Cryptography
	12.1 Introduction
	12.2 Symmetric Encryption
	12.3 Asymmetric Encryption
	12.4 Digital Signature with Hashing
	12.5 XML Encryption
	12.6 XML Signature
	12.7 WS-Security

	Chapter 13: Patterns for Secure Middleware
	13.1 Introduction
	13.2 Secure Broker
	13.3 Secure Pipes and Filters
	13.4 Secure Blackboard
	13.5 Secure Adapter
	13.6 Secure Three-Tier Architecture
	13.7 Secure Enterprise Service Bus
	13.8 Secure Distributed Publish/Subscribe
	13.9 Secure Model-View-Controller

	Chapter 14: Misuse Patterns
	14.1 Introduction
	14.2 Worm
	14.3 Denial-of-Service in VoIP
	14.4 Spoofing Web Services

	Chapter 15: Patterns for Cloud Computing Architecture
	15.1 Introduction
	15.2 Infrastructure-as-a-Service
	15.3 Platform-as-a-Service
	15.4 Software-as-a-Service

	Part III: Use of the Patterns
	Chapter 16: Building Secure Architectures
	16.1 Enumerating Threats
	16.2 The Analysis Stage
	16.3 The Design Stage
	16.4 Secure Handling of Legal Cases
	16.5 SCADA Systems
	16.6 Medical Applications
	16.7 Conclusions

	Chapter 17: Summary and the Future of Security Patterns
	17.1 Summary of Patterns
	17.2 Future Research Directions for Security Patterns
	17.3 Security Principles
	17.4 The Future

	Appendix A: Pseudocode for XACML Access Control Evaluation
	A.1 Pseudocode for retrieveApplicablePolicy()
	A.2 Pseudocode for evaluateApplicablePolicy()

	Glossary
	References
	Index of Patterns
	Index

