


Springer Series in 46
Computational
Mathematics

Editorial Board
R.E. Bank
R.L. Graham
J. Stoer
R.S. Varga
H. Yserentant

For further volumes:
www.springer.com/series/797

http://www.springer.com/series/797


Boško S. Jovanović � Endre Süli
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Preface

Boundary-value problems and initial-boundary-value problems for partial differen-
tial equations of continuum mechanics and mathematical physics that arise in ap-
plications in the physical sciences and engineering frequently contain ‘nonsmooth’
or ‘singular’ data, such as jumps in the coefficients in the equation, caused by dis-
continuities in material properties, or concentrated loads that are modelled as point
sources, or indeed discontinuities in the solution at interfaces in transmission prob-
lems. There is a wealth of such practical examples. The present book, which arose
from series of lectures given by the authors over a number of years at the University
of Belgrade and the University of Oxford, respectively, is devoted to the construction
and the mathematical analysis of numerical methods for the approximate solution
of such problems. More specifically, we focus on the numerical solution of linear
partial differential equations by variously generalized finite difference schemes in
instances when the coefficients, source terms or initial or boundary data belong to
spaces of weakly differentiable functions, e.g. Sobolev, Besov or Bessel-potential
spaces of nonnegative order, or certain spaces of distributions, such as negative-
order Sobolev, Besov or Bessel-potential spaces.

The fundamental mathematical result that underpins the convergence analysis
of discretization methods for linear partial differential equations, and finite differ-
ence methods in particular, is the Lax equivalence theorem (cf. [156], Sect. 3.5),
which, loosely speaking, states that a sequence of numerical solutions, generated
on a family of meshes by means of a consistent finite difference approximation of
a well-posed initial/boundary-value problem for a linear partial differential equa-
tion, converges to the analytical solution of the problem if, and only if, the finite
difference method is stable.

Consistency of a finite difference scheme amounts to the requirement that the
truncation error, defined by inserting the unknown analytical solution to the partial
differential equation into the finite difference approximation of the equation, when
measured in a suitable mesh-dependent norm, converges to zero, possibly at a cer-
tain rate, which is typically a positive power of the maximum mesh-size h, in the
limit of h converging to zero.

v
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The conventional mathematical tool for investigating the consistency of a finite
difference approximation to a partial differential equation is multivariate Taylor se-
ries expansion. The truncation error is expanded to terms of order as high as is
necessary so as to extract the highest possible power of h admitted by the finite dif-
ference scheme; the power of h in question is referred to as the order of accuracy
or order of consistency of the finite difference method. The underlying assumption
in such, frequently tedious, but completely elementary calculations based on Taylor
series expansions is that the solution to the partial differential equation is sufficiently
smooth, to the extent that it admits a Taylor series expansion up to derivatives whose
order is as high as is needed in order to extract the highest possible power of h from
the truncation error.

When confronted with partial differential equations whose solutions are known
not to be differentiable or even continuous, and Taylor series expansion of the ana-
lytical solution, and thereby of the truncation error of the finite difference scheme,
fails to make sense due to lack of regularity in the classical sense, a natural question
is whether there are alternative mathematical tools one can resort to in a systematic
fashion. A second, closely related and even more basic question is, of course, how,
in the first place, should one construct finite difference approximations to partial
differential equations whose coefficients, source terms or initial or boundary data
are so ‘rough’ that sampling them at the points of the computational mesh is, quite
evidently, a meaningless endeavour.

It is the mathematical analysis of these two questions that the present mono-
graph is devoted to. The second question posed above, concerning the construc-
tion of finite difference schemes for partial differential equations with nonsmooth
data, is addressed by mollifying the data through convolution (possibly in the
sense of distributions) with suitable functions with compact support, which are
typically (multivariate) B-splines whose support is commensurate with the mesh-
size h. As for the first question, regarding the analysis of consistency in the ab-
sence of meaningful Taylor series expansions, we resort to a technique that is fa-
miliar in the realm of finite element methods but is seemingly alien to the world
of finite difference schemes: interpreting the truncation error as a linear func-
tional on a suitable function space (typically a certain Sobolev space of nonneg-
ative order), scaling to a canonical ‘element’, which is chosen to be a scaled-
up version of the support of the B-spline used in the definition of the mollifica-
tion, followed by an application of a result known as the Bramble–Hilbert lemma
and, finally, rescaling. The Bramble–Hilbert lemma plays the role of Taylor se-
ries expansion with remainder of the truncation error up to the highest possible
derivative, with the lower-order terms in the Taylor polynomial cancelling: it sim-
ply states that a bounded linear functional on a Sobolev space with the prop-
erty that the linear functional vanishes on polynomials of degree one less than
the (positive) differentiability index of the Sobolev space, can be bounded by the
highest-order Sobolev seminorm of the space. The subsequent rescaling from the
canonical element then relies on the fact that the highest-order Sobolev semi-
norm is a homogeneous function of a certain degree in the mesh-size h (the ho-
mogeneity index of the Sobolev seminorm being dependent on the differentiabil-
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ity and integrability indices of the Sobolev seminorm and the number of dimen-
sions).

Our objective throughout the book is to systematically develop this methodology
based on the combination of mollification of the nonsmooth data on the one hand
and the application of variants of the Bramble–Hilbert lemma in conjunction with
scaling arguments on the other, for a range of linear elliptic, parabolic and hyper-
bolic partial differential equations.

Chapter 1 provides a brief survey of some basic results from linear functional
analysis, the theory of distributions and function spaces, Fourier multipliers and
mollifiers in function spaces, and function space interpolation. Chapter 2 is con-
cerned with the construction and the convergence analysis of finite difference
schemes for elliptic boundary-value problems. One of the key contributions of the
chapter is the derivation of optimal-order bounds on the error between the analytical
solution and its finite difference approximation for elliptic equations with variable
coefficients under minimal regularity hypotheses on the coefficients and the solu-
tion, the minimal regularity hypotheses on the coefficients being expressed in terms
of spaces of multipliers in Sobolev spaces. In Chaps. 3 and 4 of the book we then
pursue an analogous programme for some model linear parabolic and hyperbolic
equations.

We shall consider finite difference methods on both uniform and nonuniform
computational meshes. In order to avoid cluttering the presentation with the inclu-
sion of technical details that are secondary to the central theme of the book, we shall
confine ourselves throughout to boundary-value problems and initial-boundary-
value problems on axiparallel domains. Curved boundaries give rise to additional
complexities, which we do not address. Having said this, the starting point of a
convergence analysis for any finite difference method is a stability result, which is
typically a discrete counterpart of a stability or regularity result for the differential
problem under consideration. For elliptic equations in arbitrary domains discrete
versions of interior regularity results in L2 and, more generally, Lp type norms
were developed by Thomée and Westergren [179] and Shreve [166], respectively.
Discrete versions of interior Schauder estimates were proved by Thomée [175]. For
Lipschitz domains, discrete versions of elliptic regularity results, up to the boundary,
were established by Hackbusch in [66] and [67]. For parabolic problems discrete in-
terior regularity results in arbitrary spatial domains were proved by Brandt [22] and
Bondesson [18, 19]. These, and related results, can be seen as a starting point for
the development of a theoretical framework in arbitrary domains, analogous to the
one considered here on axiparallel domains.

There are of course several excellent books concerned with the mathematical
theory of finite difference schemes for partial differential equations. A classical
source in the field is the influential monograph by R.D. Richtmyer and K.W. Morton:
Difference Methods for Initial-Value Problems [156]; some other significant books
include the following: A.A. Samarskiı̆: The Theory of Difference Schemes [159],
J. Strikwerda: Finite Difference Schemes and Partial Differential Equations [170],
B. Gustafsson, H.-O. Kreiss and J. Oliger: Time Dependent Problems and Difference
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Methods [64], the short monograph by P. Brenner, V. Thomée and L.B. Wahlbin en-
titled Besov Spaces and Applications to Difference Methods for Initial Value Prob-
lems [24], the monograph by A.A. Samarskiı̆, R.D. Lazarov and L. Makarov: Finite
Difference Schemes for Differential Equations with Weak Solutions (in Russian)
[160], and Chap. 4 and Sects. 9.2, 10.2.2 and 11.3 of the book by W. Hackbusch
entitled Elliptic Differential Equations: Theory and Numerical Treatment [68]. In-
stead of replicating the material contained in those and other books on the analysis
of finite difference schemes for partial differential equations, our aim here has been
to focus on ideas that have not been covered elsewhere in the literature previously,
at least not in the form of a book. While we have made every effort to ensure that
the text is reasonably accessible and self-contained, a disclaimer is in order: it is
fair to say that this monograph has been written with a mathematical audience in
mind. Some of the material we have included here has been successfully used in
third- and fourth-year mathematics undergraduate courses on the numerical analysis
of partial differential equations (e.g. Chap. 1, Sects. 1.1–1.4; Chap. 2, Sects. 2.1–
2.4; Chap. 3, Sects. 3.1, 3.2; Chap. 4, Sects. 4.1, 4.2); however, the vast majority
of the theoretical questions we discuss are firmly beyond the scope of the under-
graduate numerical analysis syllabus, and will be of primary interest to graduate
students, researchers and specialists working in the field of numerical analysis of
partial differential equations. Readers will certainly find it helpful to possess prior
knowledge of elements of linear functional analysis, the theory of linear partial dif-
ferential equations, and basic concepts from the theory of distributions and function
spaces. Although we chose to focus on linear problems throughout, it is neverthe-
less hoped that the methodology that is systematically developed here in the case
of linear partial differential equations has some bearing on the mathematical anal-
ysis of finite difference approximations of nonlinear partial differential equations
with nonsmooth solutions, particularly those that arise from continuum mechanics
and the sciences in general. The recent upsurge of interest in numerical algorithms
for atomistic models of crystalline materials, such as quasi-continuum methods,
whose analysis relies on techniques from the theory of finite difference methods
[14, 15, 29, 132, 133, 149, 150, 194], has provided added impetus to this book:
we hope that some of the technical tools developed here will also prove useful to
researchers working in that field.
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Chapter 1
Distributions and Function Spaces

Numerous linear partial differential equations that arise in mathematical models of
physical phenomena possess discontinuous coefficients or nonsmooth forcing terms.
Such lack of smoothness of the data and the resulting loss of regularity of the solu-
tion give rise to conceptual difficulties that are hard to resolve within the classical
theory of partial differential equations. The theory of distributions has been devel-
oped with the aim to overcome these limitations by weakening the notion of differ-
entiability, and to provide a general tool for the study of linear partial differential
equations with nonsmooth solutions. In this chapter we give a brief overview of this
theory and present a collection of results concerning function spaces.

In Sect. 1.1 we review some elementary ideas from linear functional analysis.
Section 1.2 states the definitions of basic function spaces, such as those of contin-
uously differentiable and Lebesgue-integrable functions. Section 1.3 concentrates
on simple tools from the theory of distributions. In Sects. 1.4 and 1.5 we define
Sobolev spaces and review their crucial properties. Section 1.6 is devoted to Besov
spaces, while Sects. 1.7 and 1.8 discuss interpolation properties of Sobolev spaces
and point multipliers (or, simply, multipliers) in Sobolev spaces, respectively. We
conclude, in Sect. 1.9, by considering Fourier multipliers and their application to the
construction of smoothing operators (mollifiers) in Bessel-potential spaces, Sobolev
spaces and Besov spaces. For a detailed account of the theory of distributions we
refer to Gel’fand and Shilov [52], Hörmander [72], Rudin [158], Schwartz [163],
and Vladimirov [184]; for details of the theory of function spaces the reader may
wish to consult Adams [1], Adams and Fournier [2], Kufner, John and Fučik [116],
Maz’ya [136], and Triebel [181, 183], for example.

1.1 Elements of Functional Analysis

Much of numerical analysis is concerned with the approximate solution of equa-
tions. Regardless of the type of equation under consideration, the construction of a
numerical method for its approximate solution is frequently preceded by a mathe-
matical analysis of the problem, with the aim to ascertain useful information about

B.S. Jovanović, E. Süli, Analysis of Finite Difference Schemes,
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2 1 Distributions and Function Spaces

the existence and uniqueness of the solution, and its sensitivity to perturbations of
the data. Functional analysis provides a general framework for studying such ques-
tions in an abstract setting; the purpose of this section is to introduce the basic
concepts of this theory.

1.1.1 A Survey of Abstract Spaces

There is a hierarchy of abstract spaces, ranging from the most general to those with
the most structure. Here we shall concentrate on linear spaces that are particularly
relevant in applications: normed linear spaces, Banach spaces and Hilbert spaces.

1.1.1.1 Normed Linear Spaces

Suppose that U is a linear space over R, the field of real numbers (or the field
C of complex numbers), and let R+ denote the set of nonnegative real numbers.
A function ‖ · ‖ : U→R+, whose value at u is denoted by ‖u‖, is called a norm on
U provided that it satisfies the following axioms:

➊ ‖u‖ = 0 if, and only if, u= 0;
➋ ‖λu‖ = |λ|‖u‖ for all λ ∈R (or λ ∈C), and all u in U ; (homogeneity);
➌ ‖u+ v‖ ≤ ‖u‖ + ‖v‖ for all u and v in U ; (the triangle inequality).

If ‖ · ‖ satisfies the last two axioms only then it is called a seminorm. A linear space
U equipped with a norm is called a normed linear space (over the field R or C, as
the case may be). Let U be a normed linear space, let u0 belong to U and suppose
that r is a positive real number. The set

B(u0, r) :=
{
u ∈ U : ‖u− u0‖< r

}

is called an open ball with centre u0 and radius r . Let ε > 0; for the sake of brevity
we shall write Bε instead of B(0, ε). We define

Aε :=A+Bε = {u+ v : u ∈A,v ∈ Bε},
the ε-neighbourhood of the set A. A subset M of a normed linear space U is said
to be open in U if, for every u0 in M , there exists a real number r = r(u0) > 0 such
that B(u0, r) ⊂M , i.e. B(u0, r) is contained in M . A neighbourhood of a point u
in U is any open set in U that contains u. A subset M of a normed linear space U
is said to be closed in U if Mc := U \M , the complement of M in U , is open in U .
The closure of a set M , denoted by M , in a normed linear space U is defined as
the intersection of all closed sets in U containing M . Suppose that M is a subset
of a normed linear space U ; we say that M is dense in U provided that M = U .
A normed linear space is called separable if it contains a countable, dense subset.
A subset M of a normed linear space is said to be bounded if there exists a positive
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real number r such that B(0, r), the open ball of radius r centred at the zero of the
linear space, contains the set M . A subset M of a normed linear space is said to be
convex if, whenever u and v belong to M also θu+ (1− θ)v belongs to M for all
θ ∈ [0,1]. For example, thanks to the triangle inequality, any open ball in a normed
linear space is a convex set.

Example 1.1 The n-dimensional Euclidean space R
n of all ordered n-tuples of real

numbers is a normed linear space with the norm ‖ · ‖ defined by

‖x‖ :=
(

n∑

i=1

|xi |2
)1/2

, x = (x1, . . . , xn) ∈Rn.

Example 1.2 The linear space C([0,1]) of (real- or complex-valued) functions u

defined and continuous on the closed interval [0,1] of the real line is a normed
linear space with the norm

‖u‖C([0,1]) := max
x∈[0,1]

∣∣u(x)
∣∣, u ∈ C([0,1]).

1.1.1.2 Inner Product Spaces

Let U be a linear space over the field of real (or complex) numbers. A real- (or
complex-) valued function (·, ·) defined on the Cartesian product U ×U is called an
inner product on U provided that it satisfies the following axioms:

➊ (u,u) > 0 for every u in U \ {0};
➋ (λu, v)= λ(u, v) for all λ in R (or C), and all u and v in U ;
➌ (u+ v, z)= (u, z)+ (v, z) for all u, v and z in U ;
➍ (u, v)= (v,u) for all u and v in U .

The overline in the last axiom signifies complex conjugation. The linear space U
with inner product (·, ·) is called an inner product space. If (u, v)= 0 for u and v in
U , we say that u and v are orthogonal. For u in U , we define

‖u‖ := (u,u)1/2.

It is left to the reader to show that, with such a definition of ‖ · ‖, one has
∣∣(u, v)

∣∣≤ ‖u‖‖v‖ ∀u,v ∈ U (the Cauchy–Schwarz inequality),

and the triangle inequality holds; i.e.

‖u+ v‖ ≤ ‖u‖ + ‖v‖ ∀u,v ∈ U .
Consequently ‖ · ‖ is a norm on U , induced by the inner product (·, ·), and U is a
normed linear space. It is easy to show that if U is an inner product space with the
induced norm ‖ · ‖ then the following parallelogram identity holds:

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 ∀u,v ∈ U . (1.1)
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Example 1.3 The n-dimensional Euclidean space Rn is an inner product space with

(x, y) :=
n∑

i=1

xiyi,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are any elements in R
n.

Example 1.4 The linear space C([0,1]) of continuous real-valued functions defined
on the closed real interval [0,1] is an inner product space with

(u, v) :=
∫ 1

0
u(x)v(x)dx, u, v ∈ C([0,1]).

For complex-valued functions u and v, defined and continuous on [0,1], the defini-
tion of the inner product above is modified to

(u, v) :=
∫ 1

0
u(x)v(x)dx, u, v ∈ C([0,1]),

where, as in the fourth axiom of inner product, the overline denotes complex conju-
gation.

1.1.1.3 Convergence and Cauchy Sequences

Let U be a normed linear space with norm ‖ · ‖, and suppose that {un}∞n=1 is a
sequence in U . We say that {un}∞n=1 converges to u in U (and write limn→∞ un = u

in U , or simply un→ u in U ), if

lim
n→∞‖un − u‖ = 0.

In this case, the sequence {un}∞n=1 is said to be convergent in U , and u ∈ U is called
the limit of {un}∞n=1 in U . A sequence {un}∞n=1 in U is called a Cauchy sequence if

lim
n,m→∞‖un − um‖ = 0.

Obviously every convergent sequence in U is a Cauchy sequence in U ; however, as
is indicated by the next example, the converse is not true in general.

Example 1.5 Let C([0,1]) be the linear space of all real-valued functions that are
defined and continuous on the interval [0,1], equipped with the norm

‖u‖1 :=
∫ 1

0

∣∣u(x)
∣∣dx.
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The sequence {un}∞n=1 defined by

un(x) :=
{
(2x)n if 0≤ x < 1/2,
1 if 1/2≤ x ≤ 1,

is a Cauchy sequence in C([0,1]), but it does not converge to any element of
C([0,1]).

1.1.1.4 Completeness, Banach Space, Hilbert Space

A normed linear space U is said to be complete if every Cauchy sequence in U is
convergent in U . A complete normed linear space is called a Banach space. Let U
be an inner product space, with inner product (·, ·). If U is complete with respect to
the norm ‖u‖ := (u,u)1/2 induced by this inner product, then U is called a Hilbert
space. A Hilbert space over the field R (respectively, C) is called a real (respectively,
complex) Hilbert space.

Example 1.6 The set R of real numbers, equipped with the norm | · | (absolute
value), is a Banach space. The set Rn, with the inner product defined in Example 1.3,
is a real Hilbert space; the norm induced by this inner product is the Euclidean norm,
appearing in Example 1.1.

Example 1.7 Let U denote the linear space C([0,1]), equipped with the inner prod-
uct defined in Example 1.4; then, U is not a Hilbert space. This is easily seen by
noting that the sequence {un}∞n=1 from Example 1.5 is a Cauchy sequence in U ; if,
however, it converged in the norm induced by the inner product from Example 1.4,
then by the Cauchy–Schwarz inequality it would also converge in the norm ‖ · ‖1
from Example 1.5, resulting in a contradiction.

1.1.1.5 Compactness

A set U in a normed linear space U is said to be sequentially compact if it is se-
quentially relatively compact (i.e. every sequence in U contains a subsequence that
is convergent in U ) and closed. Henceforth we shall omit the attribute “sequential”,
and will simply write compact and relatively compact instead of sequentially com-
pact and sequentially relatively compact, respectively.

Example 1.8 Let U denote the set of real numbers with norm | · | (absolute value).
Then, the open interval U = (0,1) is a relatively compact set in U , and its closure,
U = [0,1], is compact in U .

It is left as an exercise to show that every relatively compact set in a normed
linear space is bounded, and that a closed subset of a compact set in a normed linear
space is compact.
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U � V will signify that the closure of U is compact and contained in V .
A normed linear space U is said to be locally compact if 0 has a neighbourhood
whose closure is a compact set in U . The following theorem will be useful in the
subsequent discussion (cf. Rudin [158], Theorem 1.22 on p. 17).

Theorem 1.1 A normed linear space U is finite-dimensional if, and only if, it is
locally compact.

The next section is devoted to linear operators in normed linear spaces.

1.1.2 Linear Operators in Normed Linear Spaces

Let U and V be two normed linear spaces with norms ‖ · ‖U and ‖ · ‖V , respectively,
and let U be a set in U . Suppose further that a rule A is given, which to every
element u in U assigns a uniquely determined element in V ; we denote this element
by Au and say that the rule defines an operator A on U . The set U is called the
domain of the operator A and it is denoted by D(A). The set

R(A) := {
v ∈ V : v =Au,u ∈D(A)

}

is called the range of the operator A. The inverse image of a set V ⊂ V is the set

A−1(V ) := {
u : u ∈D(A),Au ∈ V }

.

An operator from U into V is called an injection (or a one-to-one mapping) if
for each v ∈R(A) there exists a unique u ∈D(A) such that Au= v. An operator A
from U into V is called a surjection (or a mapping onto V) if R(A)= V . An operator
A from U into V is called a bijection if it is both an injection and a surjection.

If A is an injection from U into V then every v ∈ R(A) is assigned a uniquely
determined element u in D(A) by the rule Au= v. This is written as u=A−1v and
A−1 is called the inverse operator of A. Clearly we have that D(A−1)= R(A) and
R(A−1)=D(A). If, in addition, A is a bijection from U onto V , then D(A−1)= V .

Let U and V be two normed linear spaces and let A be an operator from U into V ;
A is said to be a continuous operator if whenever un→ u in U then also Aun→Au

in V , for every sequence {un}∞n=1 such that un ∈D(A) and u ∈D(A).
A set U in a normed linear space U is said to be a linear subset of U if αu+βv ∈

U for every u and v in U and every α and β in R (or C). An operator A from a
normed linear space U into a normed linear space V whose domain D(A) is a linear
subset of U is called a linear operator from U into V provided that

A(αu+ βv)= αAu+ βAv ∀u,v ∈D(A), ∀α,β ∈R (or C).

A linear operator A from a normed linear space U into a normed linear space V is
said to be bounded if there exists a positive real number K such that

‖Au‖V ≤K‖u‖U ∀u ∈D(A).
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The norm ‖ · ‖ = ‖ · ‖U→V of a bounded linear operator A : U→ V is defined by

‖A‖ := sup
0	=u∈D(A)

‖Au‖V
‖u‖U . (1.2)

Note that ‖Au‖V ≤ ‖A‖‖u‖U for all u ∈ D(A). It is easily seen that a linear op-
erator is bounded if, and only if, it is continuous. We shall therefore use the terms
bounded linear operator and continuous linear operator interchangeably. The set
of all bounded linear operators A : U→ V will be denoted by L(U ,V).

Let A be a linear operator from a normed linear space U into a normed linear
space V with D(A)= U ; we shall say that A is a compact operator if every bounded
set in U is mapped by A into a relatively compact set in V .

1.1.2.1 Embedding Operators

Let U and V be two normed linear spaces and let U ⊂ V . We define the identity
operator I from U into V , with D(I) = R(I) = U , as the operator that assigns
every element u in U to itself, i.e. Iu= u, regarded as an element of V . Clearly the
identity operator is linear. If it is, in addition, a continuous operator, then we call it
an embedding from U into V . If an embedding from U into V exists, we shall say
that U is embedded in V and will write this as

U ↪→ V .

The continuity of the embedding operator from U into V implies the existence of a
positive constant K such that

‖u‖V ≤K‖u‖U ∀u ∈ U .
If U is embedded in V and the embedding operator is a compact linear operator, we
shall say that U is compactly embedded in V and will write this as U ↪→↪→ V .

1.1.2.2 Continuous Linear Functionals

Let U be a normed linear space and suppose that V =C or V =R; then, any operator
A : U → V is called a functional. Let us denote by U ′ the set of all bounded (or,
equivalently, continuous) linear functionals defined on a normed linear space U .
Clearly U ′ is a linear space provided that we define addition of linear functionals
and multiplication of a linear functional by a scalar (in R or C) in the usual way;
that is,

(f + g)(u) := f (u)+ g(u), f, g ∈ U ′, u ∈ U ,
(λf )(u) := λf (u), f ∈ U ′, λ ∈R (or C), u ∈ U .
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In addition, U ′ can be equipped with a norm ‖ · ‖U ′ defined by

‖f ‖U ′ := sup
0	=u∈U

|f (u)|
‖u‖U .

The resulting normed linear space U ′ is called the dual space of U , and ‖ · ‖U ′ is
usually referred to as the dual norm. It is a simple matter to show that the dual, U ′,
of a normed linear space U is a Banach space with the dual norm.

Example 1.9 Let U denote the linear space of all continuous real-valued functions
on the closed interval [−1,1] of the real line equipped with the norm

‖u‖C([−1,1]) := max
x∈[−1,1]

∣∣u(x)
∣∣.

The functional δ : U→R, defined by

δ(u) := u(0),

is contained in U ′. Indeed, δ is a linear functional on U , and
∣
∣δ(u)

∣
∣= ∣

∣u(0)
∣
∣≤ ‖u‖C([−1,1]) ∀u ∈ C([−1,1]).

Thus δ is a bounded linear functional on U = C([0,1]). Clearly ‖δ‖U ′ = 1.
U ′ = (C([0,1]))′ can be shown to coincide with the linear space rca([0,1]) of

all regular countably additive scalar-valued set functions defined on the σ -algebra
of all Borel subsets of [0,1] (see, Theorem 3 on p. 265 of [36]).

We shall need the following result regarding the extension of a linear functional
defined on a linear subspace M of a linear space U to the entire space.

Theorem 1.2 (Hahn–Banach Theorem) Let U be a real (or complex) linear space,
let M be a linear subspace of U , and p(·) a seminorm on U . Let lM be a linear
functional from M to R (or C) such that |lM(v)| ≤ p(v) for all v ∈ U . Then, there
exists a linear functional l on U such that l(v)= lM(v) for all v in M and |l(v)| ≤
p(v) for all v in U .

For a proof of Theorem 1.2 we refer to Theorem 3.3 on p. 57 of Rudin [158].

Corollary 1.3 Suppose that U is a normed linear space and u ∈ U ; then, there exists
a y∗ ∈ U ′ such that y∗(u)= ‖u‖U and ‖y∗‖U ′ = 1.

Proof If u= 0, then we take y∗ := 0. If u 	= 0, then we apply Theorem 1.2 with M

chosen as the one-dimensional space spanned by u, p(·) := ‖ · ‖U on U , lM(αu) :=
α‖u‖U on M , α ∈R (or C), and we take y∗ := l. �

Let U be a Banach space; then, each u in U defines a linear functional on U ′ by
the correspondence lu(y)= y(u), y ∈ U ′. Clearly, lu is a bounded linear functional



1.1 Elements of Functional Analysis 9

on U ′; thus lu ∈ U ′′, where U ′′ denotes the dual space of U ′. Indeed, ‖lu‖U ′′ ≤
‖u‖U . By Corollary 1.3 there exists a y∗ in U ′ with y∗(u)= ‖u‖U and ‖y∗‖U ′ = 1.
This implies that ‖lu‖U ′′ = ‖u‖U ; hence we have an isometric isomorphism u �→ lu,
defined by lu(y) = y(u), from U onto a closed linear subspace of U ′′. A Banach
space U is called reflexive if the mapping u �→ lu from U into U ′′ is a surjection.

Let U be a normed linear space and {un}∞n=1 a sequence in U . We say that un
converges weakly to u ∈ U if

lim
n→∞f (un)= f (u)

for all f in U ′. In this case, u is called the weak limit of the sequence {un}∞n=1. It is
easy to see that if a sequence {un}∞n=1 converges to u in U (in the norm of U ), then
it also converges weakly to u in U .

1.1.3 Sublinear Functionals

This section is devoted to an abstract result, due to Dražić [32], that is a useful tool
in the error analysis of finite difference methods in various function spaces under
minimum smoothness requirements on the data; the result is stated in Theorem 1.9.
We begin by introducing the necessary concepts and by proving some preliminary
results.

Definition 1.4 Let U be a linear space. A mapping S : U→R+ such that

S(αu+ βv)≤ |α|S(u)+ |β|S(v),
for all α, β in R (or in C) and all u and v in U , is called a sublinear functional.
A sublinear functional S : U → R+ is said to be bounded if there exists a positive
constant C such that

S(u)≤ C‖u‖U ∀u ∈ U .
For a bounded sublinear functional we define

‖S‖ := sup
0	=u∈U

S(u)

‖u‖U .

We note that any norm or seminorm on a linear space U is a sublinear functional
on U in the sense of Definition 1.4.

Lemma 1.5 Let U be a linear space and suppose that S : U → R+ is a sublinear
functional; then, S(0)= 0.

Proof This is easily seen by noting that, for any u in U ,

0≤ S(0)= S(0 · u)≤ |0| · S(u)= 0.

Hence S(0)= 0. �
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Lemma 1.6 Let U be a linear space and suppose that S : U → R+ is a sublinear
functional. Then, the kernel of S, defined by

Ker(S) := {
u ∈ U : S(u)= 0

}
,

is a linear subset of U .

Proof According to the previous lemma the kernel of S is nonempty as 0 ∈Ker(S).
Suppose that u,v ∈Ker(S); then, for any α,β ∈R,

0≤ S(αu+ βv)≤ |α|S(u)+ |β|S(v)= 0.

Hence αu+ βv ∈Ker(S). �

Theorem 1.7 Let U1 be a Banach space that is compactly embedded in a normed
linear space U0, and let Si : Ui→R+, i = 0,1, be two bounded sublinear function-
als such that

‖u‖U1 ≤ S0(u)+ S1(u)

for all u ∈ U1. Then,

P :=Ker(S1)

is a finite-dimensional closed linear subspace of U1.

Proof Lemma 1.6 implies that P is a linear space. The fact that P is closed follows
from the boundedness of S1; indeed, suppose that um ∈ P , m = 1,2, . . . , and let
limm→∞ um = u in U1. Then,

0 ≤ S1(u)= S1(u− um + um)≤ S1(u− um)+ S1(um)

= S1(u− um)

≤ ‖S1‖‖u− um‖U1 .

Since the expression on the right-hand side converges to zero as m→∞, it follows
that S1(u)= 0, and therefore u ∈ P . This implies that P is a closed linear subspace
of U1. It remains to show that P is finite-dimensional; we shall do so by proving
that the linear space P is locally compact in U1. Consider

P̂ := {
u ∈P : ‖u‖U1 ≤ 1

}
.

The set P̂ is bounded and closed in U1; thus, P̂ is a compact subset of U0. Conse-
quently, we can extract a sequence {um}∞m=1 ⊂ P̂ that converges in U0; let u denote

its limit. Because P̂ is closed, it follows that u belongs to P̂ ; in addition, {um}∞m=1
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is a Cauchy sequence in U0. Now,

‖um − un‖U1 ≤ S0(um − un)+ S1(um − un)

= S0(um − un)

≤ ‖S0‖‖um − un‖U0 .

Thus, {um}∞m=1 is a Cauchy sequence in U1 also. Since U1 is a Banach space, it fol-
lows that {um}∞m=1 converges in the norm of U1, and since U1 ⊂ U0, by the unique-

ness of the limit limm→∞ um = u in U1. As u ∈ P̂ , we have thus shown that P̂ is
compact in U1; therefore the closed linear space P is locally compact in U1. By
Theorem 1.1 it then follows that P is finite-dimensional. That completes the proof
of the theorem. �

Theorem 1.8 Under the same hypotheses as in Theorem 1.7, there exists a positive
constant C such that, for all u ∈ U1,

inf
p∈P
‖u− p‖U1 ≤ CS1(u),

where P :=Ker(S1).

Proof Let N := dimP and let fi , 1 ≤ i ≤ N , be a basis in the dual space of P .
Thus, for any p ∈P , we have that

fi(p)= 0 ∀i ∈ {1, . . . ,N} ⇔ p = 0.

By the Hahn–Banach theorem, each fi can be extended from P to a bounded linear
functional, still denoted by fi , on the whole of U1, i = 1, . . . ,N . Let us suppose
for a moment that we have proved the following statement: there exists a constant
C > 0 such that, for all u ∈ U1,

‖u‖U1 ≤ C

(

S1(u)+
N∑

i=1

|fi(u)|
)

. (1.3)

The desired result then easily follows. Indeed, let u ∈ U1 and choose q ∈ P such
that

fi(u− q)= 0 ∀i ∈ {1, . . . ,N}.
We note in passing that there is a unique such q ∈P , which can be found by seeking
q = α1p1 + · · · + αNpN , where {p1, . . . , pN } is a basis of the linear space P , and
solving the system of linear equations α1fi(p1) + · · · + αNfi(pN) = fi(u), i =
1, . . . ,N , for the scalars αj , j = 1, . . . ,N .

Now, by (1.3),

inf
p∈P
‖u− p‖U1 ≤ ‖u− q‖U1



12 1 Distributions and Function Spaces

≤ C

(

S1(u− q)+
N∑

i=1

∣∣fi(u− q)
∣∣
)

= CS1(u− q)≤ CS1(u),

which then completes the proof.
It remains to prove (1.3). Suppose that (1.3) is false; then, there exists a sequence

{um}∞m=1 in U1 such that

‖um‖U1 = 1, m= 1,2, . . . , (1.4)

and

lim
m→∞

(

S1(um)+
N∑

i=1

∣∣fi(um)
∣∣
)

= 0. (1.5)

From (1.4), thanks to the assumed compact embedding of U1 in U0, there exists a
subsequence {umk

}∞k=1 of {um}∞m=1, which converges in U0; let us denote the cor-
responding limit by u. Hence {umk

}∞k=1 is a Cauchy sequence in U0. On the other
hand, by the assumptions of the theorem,

‖umk
− uml

‖U1 ≤ S0(umk
− uml

)+ S1(umk
− uml

)

≤ ‖S0‖‖umk
− uml

‖U0 + S1(umk
)+ S1(uml

).

Thus, thanks to (1.5), {umk
}∞k=1 is a Cauchy sequence in U1. Since, by assumption,

U1 is a Banach space, {umk
}∞k=1 is convergent in U1, and by uniqueness of the limit,

limk→∞ umk
= u in U1. Therefore, by passing to the limit over this subsequence in

(1.4) and (1.5), we have that

‖u‖U1 = 1 and S1(u)+
N∑

i=1

∣∣fi(u)
∣∣= 0.

Consequently,

‖u‖U1 = 1,

u ∈P and fi(u)= 0 ∀i ∈ {1, . . . ,N},
and therefore both ‖u‖U1 = 1 and u= 0, which is a contradiction.

�

Theorem 1.9 (Dražić [32]) Under the assumptions of Theorem 1.7, and assuming
in addition that S : U1→R+ is a bounded sublinear functional such that

Ker(S1)⊂Ker(S),

there exists a constant C1 > 0 such that

S(u)≤ C1S1(u) ∀u ∈ U1.
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Proof We begin by noting that, for any u ∈ U1 and any p ∈ P :=Ker(S1),

S(u) = S(u− p+ p)≤ S(u− p)+ S(p)

= S(u− p)≤ ‖S‖‖u− p‖U1 .

Thus, by Theorem 1.8,

S(u)≤ ‖S‖ inf
p∈P
‖u− p‖U1 ≤ C1S1(u),

with C1 = C‖S‖, where C is as in Theorem 1.8. �

In what follows we shall consider special cases of this abstract result in various
function spaces, such as the Bramble–Hilbert lemma in integer-order and fractional-
order Sobolev spaces, and use these to derive sharp bounds on the error between
analytical solutions to partial differential equations and their numerical approxima-
tions.

1.1.4 Linear Functionals on Hilbert Spaces

This section is devoted to a fundamental result in Hilbert space theory, the Riesz
representation theorem; its proof requires some preliminary results, and establishing
these is our first task. We begin with the following simple lemma.

Lemma 1.10 Let U be a (real or complex) Hilbert space, equipped with the norm
‖ · ‖, and let M be a closed convex subset in U . For u in U , we define the distance
from u to M by

d(u,M) := inf
v∈M ‖u− v‖.

Then, there exists a unique element v∗ in M such that ‖u− v∗‖ = d(u,M).

Proof If u ∈M then the proof is trivial: we simply take v∗ = u. Let us therefore
assume that u does not belong to M . According to the definition of d(u,M), there
exists a sequence {vm}∞m=1 in M such that limm→∞‖u− vm‖ = d(u,M). By recall-
ing the parallelogram identity (1.1), we have that

‖2u− vn − vm‖2 + ‖vn − vm‖2 = 2‖u− vn‖2 + 2‖u− vm‖2.

Thanks to the convexity of the set M , (vn + vm)/2 belongs to M ; thus, the first
term on the left-hand side is ≥ 4[d(u,M)]2. Consequently,

‖vn − vm‖2 ≤ 2‖u− vn‖2 + 2‖u− vm‖2 − 4
[
d(u,M)

]2
.

Since the right-hand side converges to 0 as n,m→∞, we deduce that {vm}∞m=1 is
a Cauchy sequence in U ; let v∗ denote its limit in U . As M is closed, it follows that
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v∗ belongs to M . Moreover, because ‖ · ‖ : U→R is a continuous function (thanks
to the triangle inequality), we deduce from the definition of the sequence {vm}∞m=1
that ‖u− v∗‖ = d(u,M).

It remains to show the uniqueness of such a v∗. Let us suppose that v′∗ is another
element in M with the same property: ‖u− v′∗‖ = d(u,M). Then, by the parallelo-
gram identity,

∥∥∥∥u−
1

2

(
v∗ + v′∗

)
∥∥∥∥

2

= [
d(u,M)

]2 − 1

4

∥∥v∗ − v′∗
∥∥2
.

Since (v∗+v′∗)/2 belongs to M , the left-hand side of this inequality is≥ [d(u,M)]2.
Therefore, by the first axiom of norm, v′∗ = v∗. �

Let S be a closed linear subspace of a Hilbert space U ; we define the orthogonal
complement S⊥ of S by

S⊥ := {
u ∈ U : (u, v)= 0 ∀v ∈ S}

.

With this definition and using the previous lemma we can prove the following
result.

Theorem 1.11 Suppose that S is a closed linear subspace of a (real or complex)
Hilbert space U . Then, U = S ⊕ S⊥; i.e. every element u in U can be written
uniquely as u= f + g, where f ∈ S and g ∈ S⊥.

Proof Since S is a closed convex set, according to Lemma 1.10 f can be defined as
the unique element in S that minimizes d(u,S) for a given u in U . We define g in
U by g := u− f . The rest of the proof is devoted to showing that g ∈ S⊥, and that
f and g are the unique such elements.

Let v be any element of S , and consider the convex linear combination θv+ (1−
θ)f of v and f in S , with θ ∈ (0,1). Then,

[
d(u,S)

]2 ≤ ∥∥u− (
θv+ (1− θ)f

)∥∥2 = ∥∥u− f − θ(v − f )
∥∥2

= ‖u− f ‖2 − 2θ�(u− f, v− f )+ θ2‖v− f ‖2

= [
d(u,S)

]2 − 2θ�(u− f, v− f )+ θ2‖v− f ‖2;
here �z denotes the real part of the complex number z. Hence

�(u− f, v− f )≤ 1

2
θ‖v− f ‖2.

Letting θ→ 0 and recalling the definition of g, it follows that

�(g, v− f )≤ 0 ∀v ∈ S. (1.6)
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Let z be any element in S and let α be a complex number such that α(g, z)= |(g, z)|.
By taking v = f + αz, we deduce from (1.6) that

∣∣(g, z)
∣∣=�∣∣(g, z)∣∣=�(α(g, z))=�(g,αz)=�(g, v − f )≤ 0 ∀z ∈ S.

Consequently (g, z)= 0 for all z in S , which implies that g belongs to S⊥.
The uniqueness of the representation u= f + g is easy to establish: let us sup-

pose that there exist f1 in S and g1 in S⊥ such that also u = f1 + g1. Now since
f − f1 = g1 − g, with f − f1 ∈ S and g1 − g ∈ S⊥, we have that

‖f − f1‖2 = (f − f1, f − f1)= (f − f1, g1 − g)= 0,

and therefore f = f1; hence also g = g1, which proves uniqueness. �

We are now ready to state the main result of this section.

Theorem 1.12 (The Riesz Representation Theorem) Let f be a bounded linear
functional on a (real or complex) Hilbert space U ; then, there exists a unique ele-
ment u in U , called the Riesz representer of f , such that

f (v)= (v,u) ∀v ∈ U .

Proof The uniqueness of the Riesz representer u is obvious, provided that it exists.
Indeed, let us suppose that u′ is another element in U such that f (v)= (v,u′) for all
v ∈ U . Subtracting this equality from f (v)= (v,u), we deduce that (v,u− u′)= 0
for all v in U ; therefore u= u′.

It remains to establish the existence of the Riesz representer. In the trivial case
when f (v)= 0 for all v in U , we take u= 0, so let us suppose that we are dealing
with the nontrivial case when the kernel M of the linear functional f is not the whole
of U ; then, M is a proper closed linear subspace of the Hilbert space U and, by
Theorem 1.11, M⊥ is nontrivial. In fact, M⊥ is a one-dimensional linear subspace
of U . Indeed, if v1 and v2 are any two (nonzero) elements of M⊥, we shall prove
that they are linearly dependent. For this purpose we consider v = v1 − αv2, where
α = f (v1)/f (v2). Then, v belongs to M⊥ and f (v) = 0, and hence also v ∈M .
The only element that belongs to both M and M⊥ is v = 0; hence we deduce that
v1 = αv2. Thus any two elements in M⊥ differ only by a scalar factor.

Let u0 be an arbitrary nonzero element in M⊥ and let v be an element of U .
Then, by Theorem 1.11, there exists a vM in M and a complex number β such that

v = vM + βu0.

Clearly β = f (v)/f (u0), whereby

v = vM + f (v)

f (u0)
u0.
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We define u= αu0, where

α = f (u0)

‖u0‖2
.

Combining these we obtain the desired result:

(v,u)= (vM,u)+ f (v)

f (u0)
(u0, u)= f (v)

f (u0)
α‖u0‖2 = f (v),

and that completes the proof. �

Suppose that U is a real Hilbert space. Given u ∈ U , consider the linear functional
fu ∈ U ′ defined by fu(v) = (v,u), v ∈ U . According to the Riesz representation
theorem, the mapping u �→ fu that takes U into its dual space U ′ is linear, bijective,
and it is an isometry (that is, ‖u‖U = ‖fu‖U ′ ). Thus any Hilbert space is reflexive.

1.1.4.1 Adjoint of a Linear Operator on a Hilbert Space

Suppose that A is a bounded linear operator from a Hilbert space U , with inner
product (·, ·) and induced norm ‖ · ‖, into itself and let D(A) = U . For a fixed
element v in U , consider the linear functional fv defined on U by

fv(u) := (Au,v), u ∈ U .
By the Riesz representation theorem, there exists a unique w in U such that

fv(u)= (u,w)= (Au,v).

The mapping v �→ w is linear and bounded on U . It therefore defines a bounded
linear operator from U into itself, denoted by A∗ and called the adjoint of the linear
operator A; hence, w =A∗v. With this definition, D(A∗)= U and

(Au,v)= (
u,A∗v

) ∀u,v ∈ U .
If A∗u= Au for all u ∈ U , then A is called a selfadjoint (bounded) linear operator
on the Hilbert space U .

In many cases of interest a linear operator A is only partially defined on a Hilbert
space U in the sense that its domain D(A) is a strict subset of U , although D(A)

is dense in U , i.e. the closure of D(A) in the norm of U coincides with U . We then
say that A is densely defined on U . If a linear operator A on a Hilbert space U with
domain D(A)⊂ U is not bounded on U , then we say that A is an unbounded linear
operator on U .

Let A be an unbounded linear operator on a Hilbert space U whose domain D(A)

is dense in U . An element v ∈ U is said to belong to the domain D(A∗) of the adjoint
operator A∗ if there exists a w ∈ U such that

(Au,v)= (u,w) ∀u ∈D(A).
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In this case the adjoint operator A∗ maps the element v into w, i.e. A∗v = w. The
Riesz representation theorem implies that the domain D(A∗) of the adjoint operator
A∗ is equal to the set of all v ∈ U such that |(Au,v)| ≤ Cv‖u‖ for all u ∈ D(A),
where Cv is a positive constant, which may depend on v, but not on u. The adjoint
operator is defined (uniquely) only if the original operator is densely defined, and is
then a linear operator on D(A∗).

A linear operator A on a Hilbert space U with inner product (·, ·) is called sym-
metric if

(Au,v)= (u,Av) ∀u,v ∈D(A).

If A is a densely defined symmetric linear operator on a Hilbert space U , then
D(A) ⊂ D(A∗). If D(A) = D(A∗) and Au = A∗u for all u ∈ D(A), then we say
that the (densely defined) linear operatorA is selfadjoint. A (densely defined) selfad-
joint linear operator is clearly symmetric; the converse of this statement is however
not true in general: a symmetric densely defined linear operator on a Hilbert space
need not be selfadjoint.

In contrast, a symmetric everywhere defined linear operator on a Hilbert space is
selfadjoint. Also, according to the Hellinger–Toeplitz theorem (cf. [154], Sect. III.5,
p. 84), a symmetric everywhere defined linear operator on a Hilbert space is
bounded. In most situations of relevance in the theory of differential equations A
is a densely defined symmetric or selfadjoint linear operator on a Hilbert space U ,
but A is unbounded, and its domain is therefore a strict subset of U .

1.1.4.2 Bilinear Functionals on Real Hilbert Spaces

Let U be a real Hilbert space with norm ‖ · ‖, and let a(·, ·) be a real-valued func-
tional defined on the Cartesian product U × U such that a(·, ·) is:

➊ bilinear, i.e. a(w,v) is linear in w for v fixed, and linear in v for w fixed;
➋ bounded, i.e. there exists a positive real number c1 such that

∣∣a(w,v)
∣∣≤ c1‖w‖‖v‖ ∀w,v ∈ U;

➌ U -coercive, i.e. there exists a positive real number c0 such that

a(v, v)≥ c0‖v‖2 ∀v ∈ U .
A bilinear functional is also called a bilinear form. Variational formulations of

boundary-value problems for differential equations often have the following form:
given a bounded linear functional f on a real Hilbert space U and a U -coercive
bounded bilinear functional a(·, ·) on U × U , find u in U such that

a(u, v)= f (v) ∀v ∈ U .
The next theorem provides a useful device for verifying the existence and unique-

ness of a solution to a problem of this kind.
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Theorem 1.13 (Lax–Milgram Theorem) Let f be a real-valued bounded linear
functional on a real Hilbert space U with norm ‖ · ‖ and let a(·, ·) be a real-valued
U -coercive bounded bilinear functional on U × U . Then, there exists a unique ele-
ment u ∈ U such that

a(u, v)= f (v) ∀v ∈ U . (1.7)

In addition,

‖u‖ ≤ 1

c0
‖f ‖U ′ .

Proof By the Riesz representation theorem, there exists a unique element b in U
such that

f (v)= (v, b) ∀v ∈ U ,
and, for any z in U , there exists a unique element Az in U such that

a(z, v)= (v,Az) ∀v ∈ U .

Thus (1.7) can be rewritten in the equivalent form

Au= b.

Clearly the mapping A : z ∈ U �→ Az ∈ U is a linear operator on U ; furthermore,
‖Az‖ ≤ c1‖z‖ and ‖Az‖ ≥ c0‖z‖ for all z in U . Thus A is an injective bounded
linear operator on U . Next, we show that R(A), the range of A, is closed in U .
Suppose that {Aun}∞n=1 is a sequence in R(A) that converges in U . Then, {Aun}∞n=1
is a Cauchy sequence in U and

‖Aun −Aum‖ =
∥∥A(un − um)

∥∥≥ c0‖un − um‖.

Thus {un}∞n=1 is a Cauchy sequence in U . As U is a Hilbert space, {un}∞n=1 converges
in U . Letting u ∈ U be the limit of this sequence and noting that

‖Aun −Au‖ = ∥∥A(un − u)
∥∥≤ c1‖un − u‖,

it follows that {Aun}∞n=1 converges to Au in U , which implies that the range of A
is closed. Finally we will show that R(A) = U , which will imply that A is also
surjective. Suppose that this is not the case; then, by Theorem 1.11, there exists a
z0 	= 0 in the orthogonal complement R(A)⊥ of the closed linear space R(A). For
such a z0,

0= (z0,Az)= a(z, z0)

for all z in U . In particular, a(z0, z0) = 0, which is a contradiction, since a(·, ·) is
U -coercive and z0 	= 0.
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Thus we have shown that A is bijective and ‖Az‖ ≥ c0‖z‖ for all z in U . There-
fore A is invertible, and A−1 is a bounded linear operator with ‖A−1‖ ≤ 1/c0. Con-
sequently u=A−1b is the unique solution of (1.7), and

‖u‖ ≤ 1

c0
‖b‖ = 1

c0
‖f ‖U ′ ;

that completes the proof. �

In Chap. 2 we shall use the Lax–Milgram theorem to show that, under suitable as-
sumptions, boundary-value problems for elliptic partial differential equations have a
unique solution in appropriate function spaces, which will be introduced in Sect. 1.2.
Before doing so, we shall discuss the abstract idea of Banach space interpolation.

1.1.5 Interpolation of Banach Spaces

By Banach space interpolation we refer to a process, which for two given Banach
spaces constructs a family of ‘intermediate’ spaces. In this section we shall be con-
cerned with one particular method of Banach space interpolation, called the K-
method.

Let A1 and A2 be two Banach spaces, linearly and continuously embedded in a
topological linear space A (i.e. a linear space with a topology that makes the oper-
ations of addition in the linear space and multiplication by a scalar continuous,—
a relevant special case of a topological linear space being a normed linear space).
Two such spaces are called an interpolation pair {A1,A2}. Consider also the space
A1 ∩A2, equipped with the norm

‖a‖A1∩A2 :=max
{‖a‖A1,‖a‖A2

}
,

and the space

A1 +A2 := {a ∈A : a = a1 + a2, aj ∈Aj , j = 1,2},
with the norm

‖a‖A1+A2 := inf
a=a1+a2,aj∈Aj

{‖a1‖A1 + ‖a2‖A2

}
.

Obviously, A1 ∩A2 ⊂Aj ⊂A1 +A2, j = 1,2.
In order to proceed, we require the following basic definition from category the-

ory; see, for example, Definition 1.1 on p. 9 of Jacobsen [77].

Definition 1.14 A category C consists of the following three ingredients:

➊ a class ob(C) of objects (usually denoted by A, B , C, etc.);
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➋ for each ordered pair (A,B) of objects A,B ∈ C a set hom(A,B) whose el-
ements are called morphisms with domain A and range (codomain) B . For
f ∈ hom(A,B), we shall write f : A→ B , and will say that f is a morphism
from A to B;

➌ for every three objects A, B and C contained in C, a binary operation
hom(A,B) × hom(B,C)→ hom(A,C) called composition of morphisms, the
composition of f :A→ B and g : B→ C being denoted by g ◦ f , such that the
following axioms hold:

➀ if (A,B) 	= (C,D), then hom(A,B) and hom(C,D) are disjoint;
➁ (associativity): if f :A→ B , g : B→ C and h : C→D, then

h ◦ (g ◦ f )= (h ◦ g) ◦ f ;
➂ (identity): for every object A, there exists a morphism 1A ∈ hom(A,A) such

that f ◦ 1A = f for every f ∈ hom(A,B) and 1A ◦ g = g for every g ∈
hom(B,A). (The morphism 1A is unique.)

Let us consider the category C1, where the objects A,B,C, . . . are Banach spaces
and the morphisms are bounded linear operators L ∈ L(A,B). Let, also, C2 be a
category where the objects are interpolation pairs {A1,A2}, {B1,B2}, . . . while the
morphisms L belong to the set L({A1,A2}, {B1,B2}) of bounded linear operators
from A1 +A2 into B1 + B2, whose restrictions to Aj belong to the set L(Aj ,Bj ),
j = 1,2.

By an interpolation functor from C2 to C1 we mean a rule, which to every interpo-
lation pair {A1,A2} from C2 assigns an object F({A1,A2}) from C1, with A1∩A2 ⊂
F({A1,A2})⊂A1+A2, and to every morphism L ∈ L({A1,A2}, {B1,B2}) from C2
it assigns a morphism F(L) from C1, which is the restriction of the operator L to
F({A1,A2}).

The corresponding Banach space A = F({A1,A2}) is called an interpolation
space. We note in particular that A1 ∩A2 and A1 +A2 are interpolation spaces.

Suppose that there exist real numbers C ≥ 1 and θ ∈ (0,1) such that

‖L‖F({A1,A2})→F({B1,B2}) ≤ C‖L‖1−θ
A1→B1

‖L‖θA2→B2

is satisfied for all L ∈ L({A1,A2}, {B1,B2}); then, the interpolation functor F is said
to be of type θ ; in particular if C = 1, then we say that the interpolation functor F is
exact, of type θ . Here ‖L‖Aj→Bj

denotes the usual operator norm of L :Aj → Bj ,
with an analogous definition of ‖L‖F({A1,A2})→F({B1,B2}) (cf. (1.2)).

One of the most frequently used interpolation methods is the so-called K-method
(cf. Bergh and Löfström [9], Sect. 3.1; or Triebel [182], Sect. 1.3). Let {A1,A2} be
an interpolation pair, and define the function

K(t, a,A1,A2) := inf
a∈A1+A2,a=a1+a2,aj∈Aj

{‖a1‖A1 + t‖a2‖A2

}
.

Clearly, for any fixed t ∈ (0,∞), a �→K(t, a,A1,A2) is a norm in A1+A2, equiv-
alent to the norm a �→ ‖a‖A1+A2 . For 0 < θ < 1 and 1≤ q ≤∞ we define the space
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(A1,A2)θ,q as the set of all elements a ∈A1 +A2 for which ‖a‖(A1,A2)θ,q is finite,
where

‖a‖(A1,A2)θ,q :=
{∫ ∞

0

[
t−θK(t, a,A1,A2)

]q dt

t

}1/q

if 1≤ q <∞,

‖a‖(A1,A2)θ,∞ := sup
0<t<∞

t−θK(t, a,A1,A2) if q =∞.

The normed linear space (A1,A2)θ,q thus defined is an interpolation space. The
following relations hold:

(A1,A2)θ,q = (A2,A1)1−θ,q ,

(A,A)θ,q = A,

(A1,A2)θ,1 ⊂ (A1,A2)θ,q ⊂ (A1,A2)θ,q̃ ⊂ (A1,A2)θ,∞,

1≤ q ≤ q̃ ≤∞,

(A1,A2)θ,q ⊂ (A1,A2)θ̃,q̃ ,

if A1 ⊂A2, 0 < θ < θ̃ < 1, 1≤ q ≤ q̃ ≤∞,

∃Cθ,q > 0 ∀a ∈A1 ∩A2 ‖a‖(A1,A2)θ,q ≤ Cθ,q‖a‖1−θ
A1
‖a‖θA2

.

The corresponding interpolation functor

F
({A1,A2}

)= (A1,A2)θ,q

is exact, of type θ , i.e. for any L ∈ L({A1,A2}, {B1,B2}),
‖L‖(A1,A2)θ,q→(B1,B2)θ,q ≤ ‖L‖1−θ

A1→B1
‖L‖θA2→B2

. (1.8)

We refer to Theorem 3.4.1 on p. 46 of Bergh and Löfström [9] and Theorem 1.3.3
on p. 25 of the monograph of Triebel [182] for proofs of these statements.

1.2 Basic Function Spaces

In this section, we recall the definitions of some standard function spaces, including
those of continuously differentiable and Lebesgue-integrable functions.

1.2.1 Spaces of Continuous Functions

Let N denote the set of nonnegative integers. An n-tuple α = (α1, . . . , αn) in N
n is

called a multi-index. The nonnegative integer |α| := |α1| + · · · + |αn| is called the
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length of α. We shall write 0 := (0, . . . ,0), and let

α! := α1! · · ·αn!,

∂α := ∂
α1
1 · · · ∂αnn , ∂j := ∂

∂xj
, j = 1, . . . , n.

For x ∈Rn and α ∈Nn, we define

xα := x
α1
1 · · ·xαnn ,

with the convention that 00 := 1. For x, y ∈Rn, we shall write

x ± y := (x1 ± y1, . . . , xn ± yn).

Let Z denote the set of all integers. The set Zn can be partially ordered by lexico-
graphical ordering; that is, for α and β in Z

n,

α ≤ β ⇔ αj ≤ βj , j = 1, . . . , n.

For α,β ∈Nn, such that 0≤ β ≤ α, we define
(
α

β

)
:=

(
α1
β1

)
· · ·

(
αn
βn

)
= α!

β!(α − β)! .

Leibniz’s formula in multi-index notation exemplifies the usefulness of this compact
symbolism: assuming that u and v are two (sufficiently smooth) functions and α is
a multi-index, then

∂α(uv)=
∑

0≤β≤α

(
α

β

)
∂α−βu∂βv. (1.9)

The proof, by induction, is easy and is left to the reader.
Suppose that Ω is an open subset of Rn. For k ∈ N, we denote by Ck(Ω) the

set of all continuous (real- or complex-valued) functions u, defined on Ω , such that
∂αu is continuous on Ω for every multi-index α, |α| ≤ k. Further, we define

C∞(Ω) :=
⋂

k≥0

Ck(Ω).

C0(Ω) is abbreviated to C(Ω). BC(Ω) denotes the set of all bounded continuous
functions defined on Ω , with the norm ‖u‖BC(Ω) := supx∈Ω |u(x)|.

For k ∈ N, we denote by Ck(Ω) the set of all u ∈ Ck(Ω) such that ∂αu can be
continuously extended from Ω onto Ω (the closure of Ω), for every multi-index α,
|α| ≤ k. Further, we define

C∞(Ω) :=
⋂

k≥0

Ck(Ω).
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C0(Ω) is abbreviated to C(Ω).
Assuming that Ω is a bounded open set in R

n and k ∈N, the linear space Ck(Ω)

is a Banach space equipped with the norm

‖u‖Ck(Ω) := max|α|≤k sup
x∈Ω

∣∣∂αu(x)
∣∣.

For k ∈N and 0 < λ≤ 1, we denote by Ck,λ(Ω) the set of all u ∈ Ck(Ω) such that
the quantity

|u|Ck,λ(Ω) := max|α|=k sup
x 	=y, x,y∈Ω

|∂αu(x)− ∂αu(y)|
|x − y|λ

is finite. Ck,λ(Ω) is a Banach space with the norm

‖u‖Ck,λ(Ω) := ‖u‖Ck(Ω) + |u|Ck,λ(Ω).

When u belongs to C0,λ(Ω), 0 < λ < 1, we say that u is Hölder-continuous on Ω

with exponent λ; if λ= 1, the function u is said to be Lipschitz-continuous on Ω .

Example 1.10 Let Ω := B1, the unit ball in R
n centred at the origin, and let

u(x) := |x|λ, x ∈ B1,

where | · | = ‖ · ‖ is the Euclidean norm from Example 1.1. For 0 < λ < 1, the
function u is Hölder-continuous on Ω with exponent λ; when λ= 1, u is Lipschitz-
continuous on Ω .

The support, suppu, of a continuous function u, defined on an open set Ω con-
tained in R

n, is the closure in Ω of the set {x ∈Ω : u(x) 	= 0}; in other words, suppu
is the smallest closed subset of Ω such that u= 0 on Ω \ suppu. If suppu�Ω , we
say that u has compact support in Ω .

For k ∈N∪ {∞}, Ck
0(Ω) denotes the set of all u ∈ Ck(Ω) with compact support

in Ω . In the theory of distributions the elements of C∞0 (Ω) are called test functions.
Our next example demonstrates the existence of test functions.

Example 1.11 Consider the real-valued function ω defined on R
n by

ω(x)=
{
C exp((|x|2 − 1)−1) if |x|< 1,
0 otherwise,

where C is a constant chosen so that
∫
Rn ω(x)dx = 1. For ε > 0 we define

ωε(x) = ε−nω(x/ε). Then, ωε belongs to C∞0 (Rn), suppωε = Bε := B(0, ε), and∫
Rn ωε(x)dx = 1.

The next lemma encapsulates the properties of a special test function, which will
be required in our subsequent arguments.
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Lemma 1.15 For an open set A ⊂ R
n and ε > 0, there exists a function ϕε ∈

C∞0 (Rn), such that

ϕε(x)= 1, x ∈Aε; ϕε(x)= 0, x /∈A3ε;
0≤ ϕε(x)≤ 1,

∣∣∂αϕε(x)
∣∣≤ Cεε

−|α| ∀x ∈Rn,

where Cε is a positive constant, and Aε and A3ε denote, respectively, the ε- and
3ε-neighbourhood of the set A (cf. Sect. 1.1.1.1).

Proof Let ωε be the function defined in Example 1.11. The function

ϕε(x) :=
∫

A2ε
ωε(x − y)dy

then possesses the required properties. �

1.2.2 Spaces of Integrable Functions

For a real number p ≥ 1 and an open set Ω ⊂ R
n, let Lp(Ω) denote the set of

all (real- or complex-valued) Lebesgue-measurable functions u defined on Ω such
that |u|p is integrable on Ω with respect to the Lebesgue measure dx = dx1 · · ·dxn
(see, for example, Bartle [8]); we assume here that any two functions that are equal
almost everywhere (i.e. equal, except perhaps on a set of zero Lebesgue measure)
are identified. With this convention, Lp(Ω) is a Banach space with the norm

‖u‖Lp(Ω) :=
(∫

Ω

∣∣u(x)
∣∣p dx

)1/p

.

In particular when p = 2, L2(Ω) is a Hilbert space with the inner product

(u, v) :=
∫

Ω

u(x)v(x)dx.

L∞(Ω) denotes the set of all Lebesgue-measurable functions u defined on Ω such
that |u| has finite essential supremum; the essential supremum of |u| is defined as
the infimum of the set of all positive real numbers M such that |u| ≤ M almost
everywhere on Ω . Again, any two functions that are equal almost everywhere on Ω
are identified. L∞(Ω) is a Banach space with the norm

‖u‖L∞(Ω) := ess.supx∈Ω
∣∣u(x)

∣∣.

Hölder’s inequality. Let u ∈ Lp(Ω) and v ∈ Lq(Ω), where 1/p + 1/q = 1, 1 ≤
p,q ≤∞. Then, uv ∈ L1(Ω) and

∣∣∣∣

∫

Ω

u(x)v(x)dx

∣∣∣∣≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).
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For p = q = 2, this yields as a special case the Cauchy–Schwarz inequality:

∣∣(u, v)
∣∣≤ ‖u‖L2(Ω)‖v‖L2(Ω).

When u ∈ L1(O) for every set O � Ω , u is said to be locally integrable on Ω .
The set of all locally integrable functions defined on Ω is denoted by L1,loc(Ω).
Clearly, C(Ω) is contained in L1,loc(Ω) but not in L1(Ω).

Example 1.12 The function u(x) = exp |x| is continuous and locally integrable on
R
n, but it does not belong to Lp(R

n) for any p, 1≤ p ≤∞.

Lemma 1.16 (du Bois-Reymond’s Lemma) Let u and v be locally integrable func-
tions on Ω and suppose that

∫

Ω

u(x)ϕ(x)dx =
∫

Ω

v(x)ϕ(x)dx ∀ϕ ∈ C∞0 (Ω);

then, u= v almost everywhere on Ω .

Proof Let us define w := u− v. Then,

∫

Ω

w(x)ϕ(x)dx = 0 ∀ϕ ∈ C∞0 (Ω). (1.10)

Further, as w ∈ L1,loc(Ω), according to a strengthened version of Lebesgue’s dif-
ferentiation theorem (cf. Theorem 7.7 on p. 138 of Rudin [157]),

lim
ε→0

ε−n
∫

|x−y|<ε
∣∣w(x)−w(y)

∣∣dy = 0, (1.11)

for almost every x. By recalling the definition of the function ω from Example 1.11
and assuming that ε is sufficiently small, (1.10) implies that

w(x)= ε−n
∫

|x−y|<ε
(
w(x)−w(y)

)
ω

(
x − y

ε

)
dy, x ∈Ω.

By noting that max|x−y|≤ε |ω((x − y)/ε)| = max|z|≤1 ω(z) = C/e, with C as in
Example 1.11, and then letting ε→ 0 and applying (1.11), we deduce that w(x)= 0
for almost every x ∈Ω . �

Du Bois-Reymond’s lemma is frequently referred to as the fundamental lemma
of the Calculus of Variations.

The support, suppu, of a measurable function u defined on Ω is the smallest
closed subset of Ω such that u= 0 almost everywhere in Ω \ suppu. This definition
is a consistent extension of our earlier definition of the support of a continuous
function in Sect. 1.2.1.
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1.3 Distributions

This section introduces various classes of distributions on an open set Ω ⊆ R
n and

surveys their main properties.

1.3.1 Test Functions and Distributions

To give an informal definition, a distribution is a continuous linear functional on the
space C∞0 (Ω) of infinitely differentiable functions with compact support. In order to
state the precise definition of a distribution, we have to qualify the word continuous.
This is achieved by introducing a topology on C∞0 (Ω), or simply by defining the
concept of convergence in C∞0 (Ω).

Definition 1.17 A sequence {ϕm}∞m=1 ⊂ C∞0 (Ω) is said to converge to ϕ in C∞0 (Ω)

if there exists a set O �Ω such that suppϕm ⊂O for every m, and ∂αϕm converges
to ∂αϕ, uniformly on Ω , as m→∞, for every multi-index α ∈Nn.

When equipped with this definition of convergence the linear space C∞0 (Ω) is
denoted by D(Ω); thus we write ϕm→ ϕ in D(Ω) as m→∞.

Now suppose that u is a linear functional on D(Ω), i.e. to every ϕ in D(Ω), u
assigns a (complex) number denoted by 〈u,ϕ〉 (instead of u(ϕ)), and

〈u,λϕ +μψ〉 = λ〈u,ϕ〉 +μ〈u,ψ〉, λ,μ ∈C, ϕ,ψ ∈D(Ω).

We shall say that u is a continuous linear functional on D(Ω) if 〈u,ϕm〉 → 〈u,ϕ〉
as m→∞, whenever ϕm→ ϕ in D(Ω) as m→∞.

Definition 1.18 A continuous linear functional on D(Ω) is called a distribution
on Ω . The set of all distributions on Ω is denoted by D′(Ω).

The next theorem provides a useful characterization of distributions.

Theorem 1.19 Suppose that u is a linear functional on D(Ω); then, the following
statements are equivalent:

(a) u ∈D′(Ω);
(b) for every open set O �Ω there exists a real number K =K(O) and a nonneg-

ative integer m=m(O) such that
∣∣〈u,ϕ〉∣∣≤K‖ϕ‖

Cm(O)
∀ϕ ∈D(O). (1.12)

Proof It is clear that (b) implies (a). The converse implication is established by
reductio ad absurdum. Let us therefore assume that u ∈D′(Ω) and that (b) is false.
Then, there exists a set O �Ω and a sequence {ϕm}∞m=1 ⊂D(O) such that

∣∣〈u,ϕm〉
∣∣≥m‖ϕm‖Cm(O)

, m= 1,2, . . . .
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Let ψm := ϕm/(m‖ϕm‖Cm(O)
) and note that supx∈O |∂αψm(x)| ≤ 1/m for all

α ∈ Nn such that |α| ≤m. Thus, {ψm}∞m=1 converges to zero in D(Ω) as m→∞,
whereas |〈u,ψm〉| ≥ 1 for all m≥ 1, and therefore u is not a continuous linear func-
tional on D(Ω). This contradicts (a). �

Suppose that u is a distribution on Ω . If the integer m appearing in (1.12) is
independent of the choice of O, we say that u is of finite order; the smallest such
integer m is called the order of the distribution u. If such an integer does not exist,
we say that u is of infinite order.

Example 1.13 The linear functional δ, defined by

〈δ,ϕ〉 := ϕ(0), ϕ ∈D(
R
n
)
,

is a distribution on R
n of order 0; δ is called the Dirac distribution concentrated

at 0.

Example 1.14 The linear functional u, defined by

〈u,ϕ〉 :=
∑

α∈Zn

ϕ(α), ϕ ∈D(
R
n
)
,

is a distribution of infinite order.

Definition 1.20 Two distributions u,v ∈ D′(Ω) are said to be equal on O ⊂Ω if
〈u,ϕ〉 = 〈v,ϕ〉 for every ϕ ∈ D(O). In particular, a distribution u ∈ D′(Ω) is said
to be equal to 0 on O ⊂Ω if 〈u,ϕ〉 = 0 for every ϕ ∈D(O).

We can now define the support of a distribution u ∈ D′(Ω). Let Ωu denote the
union of all open sets O ⊂Ω such that u is equal to 0 on O. Then, Ωu is the largest
open subset of Ω on which u is equal to 0. The complement of Ωu with respect to
Ω is called the support of u and is denoted by suppu. By definition, the support of a
distribution is a closed set, relative to Ω . If suppu�Ω , we say that u has compact
support in Ω . For example, the Dirac distribution concentrated at 0 has compact
support supp δ = {0} in R

n, whereas the distribution considered in Example 1.14
has Zn as its support, which, being an unbounded set in R

n, is not compact in R
n.

Next we show that a distribution whose support is a compact subset of an open
set Ω ⊂ R

n can be extended from C∞0 (Ω) to a continuous linear functional on
C∞(Ω) ⊃ C∞0 (Ω). For this purpose the linear space C∞(Ω) is equipped with a
definition of convergence.

Definition 1.21 A sequence {ϕm}∞m=1 ⊂ C∞(Ω) is said to converge to ϕ in C∞(Ω)

if, for every O �Ω and every multi-index α, ∂αϕm converges to ∂αϕ, uniformly on
O, as m→∞.
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The linear space C∞(Ω) equipped with convergence in this sense will be de-
noted by E(Ω). Clearly E(Ω) ⊃ D(Ω), as a topological inclusion, meaning that a
sequence in D(Ω) that converges to an element of D(Ω) converges to the same
element, when considered as a sequence in E(Ω).

We denote by E ′(Ω) the linear space of continuous linear functionals on E(Ω).
According to the next theorem each element of E ′(Ω) can be identified with a dis-
tribution with compact support.

Theorem 1.22 A distribution u ∈D′(Ω) has compact support in Ω if, and only if,
it admits an extension from D(Ω) to a continuous linear functional on E(Ω).

Proof Suppose that u ∈ D′(Ω) and K = suppu � Ω . Further, let η ∈ D(Ω), with
η(x)= 1 in a neighbourhood of K ; the existence of such a function η is guaranteed
by Lemma 1.15. We define ũ by

〈ũ, ϕ〉 = 〈u,ηϕ〉, ϕ ∈ E(Ω).

This definition is correct in the sense that it is independent of the choice of η in
E(Ω). Clearly ũ is a continuous linear functional on E(Ω), and 〈ũ, ϕ〉 = 〈u,ϕ〉 for
all ϕ ∈D(Ω). Thus ũ is a continuous extension of u to E(Ω).

We note in passing that ũ is the unique continuous extension of u from D(Ω) to
E(Ω). Suppose that ˜̃u ∈ E ′(Ω) is another continuous extension of u from D(Ω)

to E(Ω). We consider a sequence of open sets Ω1 � Ω2 � · · · such that Ω =⋃∞
m=1 Ωm, and a sequence of test functions {ηm}∞m=1 ⊂ D(Ω) such that ηm = 1

on Ωm, and ηm→ 1 in E(Ω) as m→∞. Then, for every ϕ ∈ E(Ω), ηmϕ→ ϕ in
E(Ω) as m→∞. Consequently,

〈ũ, ϕ〉 =
〈
ũ, lim

m→∞ηmϕ
〉
= lim

m→∞〈ũ, ηmϕ〉 = lim
m→∞〈u,ηmϕ〉

= lim
m→∞〈 ˜̃u,ηmϕ〉 =

〈 ˜̃u, lim
m→∞ηmϕ

〉
= 〈 ˜̃u,ϕ〉, ϕ ∈ E(Ω),

and therefore ũ= ˜̃u.
Conversely, suppose that u ∈ D′(Ω) admits an extension to a continuous linear

functional ũ in E ′(Ω) and assume that u does not have compact support in Ω .
Then, we can construct a sequence of sets, Ω1 � Ω2 � · · · , Ω =⋃∞

m=1 Ωm, and
a sequence of test functions {ϕm}∞m=1 ⊂ D(Ω) such that suppϕm ⊂ Ω \Ωm, and
〈u,ϕm〉 = 1. Because for any O �Ω one can choose m0 so large that O ∩ suppϕm
is an empty set for m ≥ m0, it follows that ϕm→ 0 in E(Ω) as m→∞; hence
〈ũ, ϕm〉→ 0, m→∞. On the other hand,

〈ũ, ϕm〉 = 〈u,ϕm〉 = 1, m= 1,2, . . . ,

which is a contradiction. Therefore u must have compact support. �

So far, we have treated functions and distributions as disparate mathematical ob-
jects. We shall now show that every locally integrable function can be identified with
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a distribution in a unique fashion. For f ∈ L1,loc(Ω), consider the linear functional
uf on D(Ω) defined by

〈uf ,ϕ〉 :=
∫

Ω

f (x)ϕ(x)dx, ϕ ∈D(Ω). (1.13)

By applying Theorem 1.19 it is easy to show that uf is a distribution on Ω of order 0.
A distribution uf ∈ D′(Ω) associated with a locally integrable function f ∈

L1,loc(Ω) through (1.13) is called a regular distribution. By Lemma 1.16, (1.13) es-
tablishes a one-to-one correspondence f �→ uf between locally integrable functions
and regular distributions. In particular, the support of a locally integrable function
coincides with the support of the associated regular distribution. In the following,
for the sake of notational simplicity, a locally integrable function will be identified
with the associated regular distribution and the same symbol will be used to signify
both. If a distribution is not regular, it is called singular.

Example 1.15 The Heaviside function H , defined by

H(x) :=
{

1 if x > 0,
0 otherwise,

is associated with a regular distribution (also denoted by H ) through

〈H,ϕ〉 :=
∫ ∞

0
ϕ(x)dx, ϕ ∈D(R).

We have seen above that every regular distribution is of order 0. The next example
shows that the converse statement is false; therefore, regular distributions constitute
a proper subset of the set of distributions of order 0.

Example 1.16 The Dirac distribution δ is a singular distribution of order 0. Indeed,
Lemma 1.16 implies that there is no function f ∈ L1,loc(R

n) such that

ϕ(0)=
∫

Rn

f (x)ϕ(x)dx, ϕ ∈D(
R
n
)
.

For u, v ∈D′(Ω) and λ, μ ∈C, we define the linear combination λu+μv by

〈λu+μv,ϕ〉 := λ〈u,ϕ〉 +μ〈v,ϕ〉, ϕ ∈D(Ω).

By recalling Definition 1.18, it is easily seen that λu+μv belongs to D′(Ω). Thus
we have equipped D′(Ω) with the structure of a linear space. Next we define con-
vergence in D′(Ω).

Definition 1.23 A sequence of distributions {um}∞m=1 ⊂D′(Ω) is said to converge
to a distribution u in D′(Ω) if 〈um,ϕ〉→ 〈u,ϕ〉, m→∞, for every ϕ ∈D(Ω).
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In order to illustrate the difference between convergence in the sense of distribu-
tions and pointwise convergence, we consider two examples.

Example 1.17 (Convergence in D′ by oscillation) Consider the sequence {um}∞m=1
in D′(R), where um(x)= sinmπx, m= 1,2, . . .. Then, for each ϕ ∈D(R),

〈um,ϕ〉 =
∫ ∞

−∞
ϕ(x) sinmπx dx

= 1

mπ

∫ ∞

−∞
ϕ′(x) cosmπx dx→ 0, m→∞.

Hence {um}∞m=1 converges to 0 in D′(R). Note, however, that the sequence of real
numbers {um(x)}∞m=1 does not converge, unless x is an integer.

Example 1.18 (Convergence in D′ by concentration) Suppose that u is a con-
tinuous function with compact support, defined on R, such that suppu = [0,1]
and

∫
R
u(x)dx = 1. Consider the sequence {um}∞m=1, with um(x) := mu(mx),

m= 1,2, . . .. Then, for any ϕ ∈D(R),
∣∣〈um,ϕ〉 − ϕ(0)

∣∣ =
∣∣∣∣

∫ 1

0
u(x)

[
ϕ(x/m)− ϕ(0)

]
dx

∣∣∣∣

≤ sup
0≤x≤1/m

∣∣ϕ(x)− ϕ(0)
∣∣
∫ 1

0

∣∣u(x)
∣∣dx→ 0, m→∞.

Hence, as a sequence of distributions, {um}∞m=1 converges to δ, the Dirac distribution
concentrated at 0. In contrast with this behaviour, the sequence of functions {um}∞m=1
converges pointwise to 0; that is, um(x)→ 0 for each fixed x ∈R as m→∞.

1.3.2 Operations with Distributions

In this section we introduce further operations, including multiplication of a distri-
bution by a smooth function, differentiation, translation, reflection, tensor product
and convolution of distributions.

(A) Multiplication by a Smooth Function Suppose that u ∈ L1,loc(Ω) and a ∈
C∞(Ω); then au is also locally integrable on Ω . By identifying a locally integrable
function with the associated regular distribution we can write

〈au,ϕ〉 =
∫

Ω

a(x)u(x)ϕ(x)dx

=
∫

Ω

u(x)a(x)ϕ(x)dx = 〈u,aϕ〉, ϕ ∈D(Ω).
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This identity motivates the following definition: for u ∈D′(Ω) and a ∈ C∞(Ω),
we define the linear functional au on D(Ω) by

〈au,ϕ〉 := 〈u,aϕ〉, ϕ ∈D(Ω).

By recalling Definition 1.18 (or Theorem 1.19) and the Leibniz formula (1.9) it is
easy to show that au ∈D′(Ω).

For this definition to be meaningful it is necessary that a is in C∞(Ω), and if
this is not the case then the product au is not defined within the present theoretical
framework. Concerning various extensions of the theory of distributions that over-
come this limitation the reader may consult, for example, the monograph [145] or
the survey paper [146].

Example 1.19 Let a(x) = (1+ |x|2)s , where s is a real number. Then, aδ = δ; in-
deed, a ∈ C∞(Rn) and

〈aδ,ϕ〉 = 〈δ, aϕ〉 = (aϕ)(0)= ϕ(0)= 〈δ,ϕ〉, ϕ ∈D(
R
n
)
.

(B) Differentiation Suppose that u ∈ Ck(Ω); then ∂αu is a locally integrable func-
tion on Ω ⊆ R

n for each α ∈ Nn with |α| ≤ k. By identifying a locally integrable
function with the associated regular distribution we have that

〈
∂αu,ϕ

〉 =
∫

Ω

(
∂αu

)
(x)ϕ(x)dx

= (−1)|α|
∫

Ω

u(x)
(
∂αϕ

)
(x)dx = (−1)|α|

〈
u, ∂αϕ

〉
, ϕ ∈D(Ω),

where integration by parts has been performed to transfer the derivatives from u

to ϕ.
Motivated by this identity, we define the (distributional) derivative ∂αu of a dis-

tribution u ∈D′(Ω) by
〈
∂αu,ϕ

〉 := (−1)|α|
〈
u, ∂αϕ

〉
, ϕ ∈D(Ω). (1.14)

By recalling Definition 1.18 it is easy to show that ∂αu ∈ D′(Ω). In addition, be-
cause our test functions are infinitely many times differentiable, it follows from
(1.14) that a distribution admits derivatives of any order.

Example 1.20 Consider the Heaviside function H defined in Example 1.15. Since
H is locally integrable on R, it can be identified with a regular distribution, also
denoted by H . The first (distributional) derivative of H , denoted by H ′, is δ, the
Dirac distribution concentrated at 0. Indeed,

〈
H ′, ϕ

〉=−〈H,ϕ′
〉=−

∫ ∞

0
ϕ′(x)dx = ϕ(0)= 〈δ,ϕ〉, ϕ ∈D(R),

where ϕ′(x)= dϕ(x)
dx . If then follows by Definition 1.20 that H ′ = δ.
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(C) Translation Suppose that a is a fixed element of Rn and u ∈ L1,loc(R
n). The

translation τau of u is defined by

(τau)(x) := u(x − a), x ∈Rn.

Clearly, τau is also locally integrable on R
n. By identifying a locally integrable

function with the associated regular distribution we obtain

〈τau,ϕ〉 =
∫

Rn

u(x − a)ϕ(x)dx

=
∫

Rn

u(x)ϕ(x + a)dx = 〈u, τ−aϕ〉, ϕ ∈D(
R
n
)
.

Motivated by this identity, we define the translation of a distribution u ∈D′(Rn) by

〈τau,ϕ〉 := 〈u, τ−aϕ〉, ϕ ∈D(
R
n
)
.

Thanks to Definition 1.18, τau ∈D′(Rn).

Example 1.21 For a ∈Rn consider the distribution δa defined by

〈δa,ϕ〉 := ϕ(a), ϕ ∈D(
R
n
)
.

δa is called the Dirac distribution concentrated at a. By noting the definition of τa
we can write δa = τaδ0 = τaδ.

(D) Reflection The reflection u− of u ∈ L1,loc(R
n) is defined by u−(x)= u(−x).

Thus, by identifying a locally integrable function with the associated regular distri-
bution, we obtain

〈u−, ϕ〉 =
∫

Rn

u(−x)ϕ(x)dx

=
∫

Rn

u(x)ϕ(−x)dx = 〈u,ϕ−〉, ϕ ∈D(
R
n
)
.

This identity motivates the following definition of the reflection u− of a distribution
u ∈D′(Rn):

〈u−, ϕ〉 := 〈u,ϕ−〉, ϕ ∈D(
R
n
)
.

Example 1.22 The Dirac distribution concentrated at 0 is its own reflection; that is,
δ− = δ. More generally, (δa)− = δ−a for any a in R

n.

(E) Tensor Product Consider two functions, u and v, defined on Ω1 and Ω2,
respectively, where Ω1 and Ω2 are open sets in R

n1 and R
n2 , respectively, and
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u ∈ L1,loc(Ω1) and v ∈ L1,loc(Ω2). The arguments of u and v will be denoted by x

and y, respectively. The tensor product u× v of u and v is defined by

(u× v)(x, y) := u(x)v(y)
(= v(y)u(x)

)
,

and is clearly locally integrable on Ω1 × Ω2. By identifying a locally integrable
function with the associated regular distribution we have that

〈u× v,ϕ〉 =
∫

Ω1×Ω2

u(x)v(y)ϕ(x, y)dx dy

=
∫

Ω1

u(x)

(∫

Ω2

v(y)ϕ(x, y)dy

)
dx

=
∫

Ω2

v(y)

(∫

Ω1

u(x)ϕ(x, y)dx

)
dy

=
∫

Ω1×Ω2

v(y)u(x)ϕ(x, y)dx dy = 〈v × u,ϕ〉

for all ϕ in D(Ω1×Ω2), where Fubini’s theorem has been used to change the order
of integration (cf. Theorem 8.8 in Rudin [157]). Because the functions

x �→
∫

Ω2

v(y)ϕ(x, y)dy = 〈
v,ϕ(x, ·)〉,

y �→
∫

Ω1

u(x)ϕ(x, y)dx = 〈
u,ϕ(·, y)〉

belong to D(Ω1) and D(Ω2), respectively, we can write

〈u× v,ϕ〉 = 〈
u, 〈v,ϕ〉〉, ϕ ∈D(Ω1 ×Ω2), (1.15)

〈v × u,ϕ〉 = 〈
v, 〈u,ϕ〉〉, ϕ ∈D(Ω1 ×Ω2). (1.16)

More generally, if u ∈D′(Ω1) and v ∈D′(Ω2), the functions x �→ 〈v,ϕ(x, ·)〉 and
y �→ 〈u,ϕ(·, y)〉 still belong to D(Ω1) and D(Ω2), respectively. In this case, we
define u× v and v × u by (1.15) and (1.16), respectively. We note that × is a com-
mutative operation, that is u× v = v × u.

The tensor product of m distributions ui ∈ D′(Ωi), i = 1, . . . ,m, where Ωi is
an open subset of Rni , i = 1, . . . ,m, is defined recursively, starting from the case
m= 2 discussed above.

Example 1.23 Let a = (a1, . . . , an), and consider the Dirac functions δa ∈ D′(Rn)

and δaj ∈ D′(R), j = 1, . . . , n, concentrated at the points a and aj , j = 1, . . . , n,
respectively; then,

δa = δa1 × · · · × δan .
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(F) Convolution The convolution u ∗ v of two functions u and v on R
n is defined

by

(u ∗ v)(x) :=
∫

Rn

u(y)v(x − y)dy, x ∈Rn,

whenever the integral exists; below, we describe two instances when this is the case,
and u ∗ v is locally integrable on R

n.

(i) Suppose that u ∈ L1,loc(R
n), v ∈ L1,loc(R

n), suppu⊂ A, suppv ⊂ B , where
A and B are two subsets of Rn such that

TM =
{
(x, y) ∈A×B : |x + y| ≤M

}

is a bounded set in R
2n for every M > 0; in particular, TM is bounded in R

2n if
either A or B is a bounded set in R

n.
We shall prove that, under these hypotheses, u∗ v belongs to L1,loc(R

n). Indeed,
for any M > 0, Fubini’s theorem implies that

∫

|x|≤M
∣∣(u ∗ v)(x)∣∣dx ≤

∫

|x|≤M

∫

Rn

∣∣u(y)
∣∣∣∣v(x − y)

∣∣dy dx

=
∫

TM

∣∣v(ξ)
∣∣∣∣u(y)

∣∣dξ dy <∞.

In particular, u ∗ v ∈ L1,loc(R
n) if either u or v has compact support in R

n.

(ii) Suppose that u ∈ Lp(R
n) and v ∈ Lq(R

n), where 1/p + 1/q ≥ 1. Then,
u ∗ v ∈ Lr(R

n), where 1/r = 1/p+ 1/q − 1.
When r =∞, the claim is a simple consequence of Hölder’s inequality. If 1 ≤

r <∞, we choose α ∈ (0,1], β ∈ (0,1], s > 1, t > 1 such that

1/r + 1/s + 1/t = 1, αr = p = (1− α)s, βr = q = (1− β)t.

Since r ≥max(p, q), such α, β , s and t always exist; we shall adopt the convention
that s =∞ if α = 1 and t =∞ if β = 1.

Hölder’s inequality, Fubini’s theorem and the translation-invariance of the
Lebesgue measure yield the following sequence of estimates:

‖u ∗ v‖rLr (Rn) =
∫

Rn

∣∣∣∣

∫

Rn

u(y)v(x − y)dy

∣∣∣∣

r

dx

≤
∫

Rn

[∫

Rn

∣∣u(y)
∣∣α∣∣v(x − y)

∣∣β ∣∣u(y)
∣∣1−α∣∣v(x − y)

∣∣1−β dy

]r
dx

≤
∫

Rn

∫

Rn

∣
∣u(y)

∣
∣αr

∣
∣v(x − y)

∣
∣βr dy‖u‖r(1−α)

Lp(Rn)

∥
∥v(x − ·)∥∥r(1−β)

Lq(Rn)
dx

= ‖u‖rLp(Rn)‖v‖rLq(Rn).
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This establishes Young’s inequality:

‖u ∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn),

u ∈ Lp

(
R
n
)
, v ∈ Lq

(
R
n
)
, 1/r = 1/p+ 1/q − 1. (1.17)

In each of the two cases considered above u ∗ v is locally integrable on R
n and

gives rise to a regular distribution, still denoted by u ∗ v. Moreover,

〈u ∗ v,ϕ〉 =
∫

Rn

(u ∗ v)(x)ϕ(x)dx

=
∫

Rn

ϕ(x)

∫

Rn

u(y)v(x − y)dy dx

=
∫

Rn

u(y)

∫

Rn

v(x − y)ϕ(x)dx dy

=
∫

Rn

u(y)

∫

Rn

v(ξ)ϕ(y + ξ)dξ dy

=
∫

Rn

∫

Rn

u(x)v(y)ϕ+(x, y)dx dy, ϕ ∈D(
R
n
)
,

where ϕ+ : (x, y) ∈ R
n × R

n �→ ϕ(x + y), and Fubini’s theorem has been used.
Motivated by this identity, we define the convolution u ∗ v of u ∈ D′(Rn) and v ∈
D′(Rn) by

〈u ∗ v,ϕ〉 := 〈u× v,ϕ+〉, ϕ ∈D(
R
n
)
,

whenever the right-hand side makes sense. We note that the hypothesis about the
meaningfulness of the expression on the right-hand side is an essential part of the
definition: for ϕ ∈D(Rn), ϕ+ does not have compact support in R

2n, and therefore
the defining expression may not make sense for certain pairs of distributions u and v.

An important class of ‘convolvable’ distributions is singled out by the next theo-
rem (see Sect. 4.3 of Chap. I in Vladimirov [185]); it is a natural generalization of
case (i) considered above.

Theorem 1.24 Suppose that u ∈ D′(A) and v ∈ D′(B), where A and B are two
open sets in R

n such that

TM =
{
(x, y) ∈A×B : |x + y| ≤M

}

is a bounded set in R
2n for every M > 0. Then, u ∗ v exists as an element of D′(Rn)

and supp (u ∗ v)⊂A+B; furthermore,

〈u ∗ v,ϕ〉 = 〈
u× v, (ψη)ϕ+

〉
, ϕ ∈D(

R
n
)
,

where ψ and η are two functions in C∞(Rn) that are equal to 1 in Aε and Bε

and equal to 0 in the complement of A3ε and B3ε , respectively, for some ε > 0. In
particular u ∗ v exists in D′(A+B) if either u or v has compact support.
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We note that the existence of the functions ψ and η appearing in Theorem 1.24
is guaranteed by Lemma 1.15.

Example 1.24 Let u ∈D′(Rn). Since the Dirac distribution δ has compact support,
u ∗ δ exists in D′(Rn). Moreover, u ∗ δ = u; indeed,

〈u ∗ δ,ϕ〉 = 〈u× δ,ϕ+〉 =
〈
u, 〈δ,ϕ+〉

〉= 〈u,ϕ〉, ϕ ∈D(
R
n
)
.

If the convolution u ∗ v exists then v ∗ u also exists, and because × is a com-
mutative operation so is ∗; that is, u ∗ v = v ∗ u, whenever u ∗ v or v ∗ u exists.
A particularly important property of convolution is that it commutes with differen-
tiation. More precisely, if u ∗ v exists in D′(Rn), then

∂αu ∗ v = ∂α(u ∗ v)= u ∗ ∂αv. (1.18)

Example 1.25 For h > 0 let ψh denote the continuous piecewise linear function
defined on R by

ψh(x) :=
{

1
h
(1− | x

h
|) if |x| ≤ h,

0 otherwise,

and let u ∈ D′(Rn). Since ψh has compact support, u ∗ ψh is correctly defined in
D′(Rn) and (1.18) applies. In particular,

u′′ ∗ψh = u ∗ψ ′′h = u ∗ δ−h − 2δ0 + δh

h2
=

(
τh − 2+ τ−h

h2

)
u,

where u′′ and ψ ′′h denote the second distributional derivative of u and ψh, respec-
tively. The expression on the far right is called the second divided difference of u.

The convolution of several distributions is defined analogously. For example, if
u, v and w are three distributions on R

n and ϕ+ : (x, y, z) ∈ R
n × R

n × R
n �→

ϕ(x + y + z), the convolution u ∗ v ∗w is defined by

〈u ∗ v ∗w,ϕ〉 := 〈u× v×w,ϕ+〉, ϕ ∈D(
R
n
)
,

whenever the right-hand side makes sense. The convolution u ∗ v ∗ w is correctly
defined if at least two of the three distributions u, v, w have compact support.

A further class of ‘convolvable’ distributions, whose properties mimic those de-
scribed in case (ii) above, is discussed in the next section.

1.3.3 Tempered Distributions

In this section we consider a class of distributions with ‘limited growth-rate’, called
tempered distributions. One of their key properties is that they have a well-defined
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Fourier transform, which is of significance in the theory of partial differential equa-
tions. We begin by describing the associated test space of rapidly decreasing func-
tions.

Let S(Rn) denote the set of all functions ϕ ∈ C∞(Rn) such that, loosely speak-
ing, ∂αϕ decays faster than any nonnegative power of |x|−1 as |x| →∞, for every
multi-index α = (α1, . . . , αn) ∈Nn. The elements of the set S(Rn) are called rapidly
decreasing functions. Thus ϕ is rapidly decreasing if

|ϕ|N,α := sup
x∈Rn

|x|N ∣
∣∂αϕ(x)

∣
∣

is finite for every N ≥ 0 and every multi-index α ∈Nn.

Example 1.26 The function ϕ : x ∈Rn �→ xαe−a|x|2 ∈R is an element of S(Rn) for
any multi-index α ∈Nn and any real number a > 0.

The set S(Rn) can be supplied with the structure of a linear space in the usual
way. Next, we introduce the notion of convergence in S(Rn).

Definition 1.25 A sequence {ϕm}∞m=1 ⊂ S(Rn) is said to converge to ϕ in S(Rn) if
|ϕm − ϕ|N,α→ 0 as m→∞, for every N ≥ 0 and every multi-index α ∈Nn.

When equipped with convergence in this sense, the linear space S(Rn) is called
the space of rapidly decreasing functions, or Schwartz class. Clearly D(Rn) ⊂
S(Rn); in fact D(Rn) is dense in S(Rn). This is easily seen by considering, for
any ϕ ∈ S(Rn), the sequence {ϕm}∞m=1 ⊂D(Rn) defined by

ϕm(x) := ω

(
x

m

)
ϕ(x), m= 1,2, . . . ,

where ω ∈D(Rn) with ω(0)= 1, which converges to ϕ in S(Rn) as m→∞.
Given a linear functional u : ϕ ∈ S(Rn) �→ 〈u,ϕ〉 ∈ C, we say that it is con-

tinuous on S(Rn) if, whenever ϕm → ϕ in S(Rn) as m→∞, it follows that
〈u,ϕm〉→ 〈u,ϕ〉 as m→∞.

Definition 1.26 A continuous linear functional on S(Rn) is called a tempered dis-
tribution. The set of all tempered distributions is denoted by S ′(Rn).

Similarly to S(Rn), the set S ′(Rn) can be equipped with the structure of a linear
space in the usual way. Next we define convergence in S ′(Rn).

Definition 1.27 A sequence {um}∞m=1 ⊂ S ′(Rn) is said to converge to u in S ′(Rn)

if 〈um,ϕ〉→ 〈u,ϕ〉 as m→∞ for every ϕ ∈ S(Rn).

When equipped with convergence in this sense, the linear space S ′(Rn) is called
the space of tempered distributions. It is clear from these definitions that if u ∈
S ′(Rn) then its restriction from S(Rn) to D(Rn) belongs to D′(Rn).
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Example 1.27 Suppose that f is a Lebesgue-measurable function on R
n such that

∫

Rn

(
1+ |x|)−m∣∣f (x)

∣∣dx <∞

for some m≥ 0; then, f defines a tempered distribution uf ∈ S ′(Rn) via

〈uf ,ϕ〉 :=
∫

Rn

f (x)ϕ(x)dx, ϕ ∈ S(
R
n
)
.

In the following, any such function f will be identified with the induced tempered
distribution uf . Thus, in particular, by Hölder’s inequality, Lp(R

n) ⊂ S ′(Rn) for
every p, 1≤ p ≤∞.

Loosely speaking, Example 1.27 indicates that any function that has at most
polynomial growth can be identified with a tempered distribution. There are, how-
ever, regular distributions that do not belong to S ′(Rn); a simple example is
f (x)= exp |x|, x ∈Rn.

Example 1.28 Suppose that μ is a positive Borel measure on R
n (cf. Ch. 2 of [157]),

such that
∫
Rn(1+ |x|)−m dμ(x) <∞ for some m≥ 0; then

〈μ,ϕ〉 :=
∫

Rn

ϕ(x)dμ(x), ϕ ∈ S(
R
n
)
,

defines a tempered distribution on R
n.

Example 1.29 If u ∈ E ′(Rn), then its restriction from E(Rn) to S(Rn) is a tempered
distribution. Thus E ′(Rn)⊂ S ′(Rn).

The basic operations on D′(Ω) introduced in Sect. 1.3.2 can be carried across to
the space S ′(Rn) by replacing D(Ω) and D(Rn) in the definitions of those opera-
tions with the Schwartz space S(Rn).

(A) Multiplication by a Smooth Function Suppose that a ∈ C∞M (Rn); that is, a ∈
C∞(Rn) and for every multi-index α ∈Nn there exist nonnegative real numbers Kα

and mα such that
∣∣∂αa(x)

∣∣≤Kα

(
1+ |x|)mα , x ∈Rn.

Then, for u ∈ S ′(Rn), we define au in S ′(Rn) by

〈au,ϕ〉 := 〈u,aϕ〉, ϕ ∈ S(
R
n
)
.

As aϕ belongs to S(Rn), this definition is correct.



1.3 Distributions 39

(B) Differentiation For a multi-index α ∈Nn, the derivative ∂αu of u ∈ S ′(Rn) is
defined by

〈
∂αu,ϕ

〉 := (−1)|α|
〈
u, ∂αϕ

〉
, ϕ ∈ S(

R
n
);

clearly ∂αu is an element of S ′(Rn) for each α ∈Nn.

(C) Translation and reflection The translation τau and the reflection u− of u ∈
S ′(Rn) are defined by

〈τau,ϕ〉 := 〈u, τ−aϕ〉, ϕ ∈ S(
R
n
)
,

and

〈u−, ϕ〉 := 〈u,ϕ−〉, ϕ ∈ S(
R
n
)
,

respectively.

(D) Tensor Product The tensor product u× v of two tempered distributions u ∈
S ′(Rn) and v ∈ S ′(Rm) is defined by

〈u× v,ϕ〉 := 〈
u, 〈v,ϕ〉〉, ϕ ∈ S(

R
n+m)

.

Tensor product is a commutative operation: u× v = v × u ∈ S ′(Rn+m).

(E) Convolution We see from Theorem 1.24 that if u ∈ S ′(Rn) and v ∈ E ′(Rn)

then the convolution u ∗ v exists in D′(Rn) and is given by

〈u ∗ v,ϕ〉 := 〈u× v,ηϕ+〉, ϕ ∈ S(
R
n
)
, (1.19)

where η is an arbitrary function in D(Rn) such that η(x) = 1 on (suppv)ε and
η(x) = 0 in the complement of (suppv)3ε . In fact, since u× v belongs to S ′(Rn)

and the mapping ϕ ∈ S(Rn) �→ ηϕ+ ∈ S(R2n) is linear and continuous, it follows
that the right-hand side of (1.19) defines a continuous linear functional on S(Rn),
and therefore u ∗ v belongs to S ′(Rn).

We have seen in Sect. 1.3.2(F), case (ii), that the convolution of two locally inte-
grable functions may exist when neither has compact support: all that is required is
that they have appropriate rates of decay as |x| →∞. We now consider the gener-
alization of this result to distributions.

If u ∈ S ′(Rn) and v ∈ S(Rn), then the convolution u ∗ v exists in C∞M (Rn) and
is given by

〈u ∗ v,ϕ〉 = 〈u× v,ϕ+〉 =
〈
u, 〈v,ϕ+〉

〉= 〈
u, (v ∗ ϕ)−

〉
, ϕ ∈ S(

R
n
)
.

Using this result it can be shown that S(Rn) is dense in S ′(Rn): if u ∈ S ′(Rn),
then, by recalling the definition of ωε from Example 1.11, the convolution uε = ωε ∗
u belongs to C∞M (Rn) and uε→ u in S ′(Rn) as ε→ 0; in addition if a ∈ C∞M (Rn)

then the function aε defined by

aε(x) := a(x) exp
(−ε|x|2), x ∈Rn,
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belongs to S(Rn) and converges to a in S ′(Rn) as ε→ 0. Consequently the function

x ∈Rn �→ (ωε ∗ u)(x) exp
(−ε|x|2)

belongs to S(Rn) and converges to u in S ′(Rn) as ε→ 0. It is easy to show by a
similar argument that S(Rn) is dense in Lp(R

n) for 1≤ p <∞.
We note however that the closure of S(Rn) in L∞(Rn) is a proper closed linear

subspace of L∞(Rn) consisting of uniformly continuous functions on R
n that tend

to zero at infinity. Therefore S(Rn) is not dense in L∞(Rn).

1.3.4 Fourier Transform of a Tempered Distribution

We begin by considering the Fourier transform of a rapidly decreasing function.
Suppose that ϕ ∈ S(Rn); the Fourier transform Fϕ of ϕ is defined by

(Fϕ)(ξ) :=
∫

Rn

ϕ(x)e−ıx·ξ dx, ξ ∈Rn,

where, for x = (x1, . . . , xn) in R
n and ξ = (ξ1, . . . , ξn) in R

n,

x · ξ := x1ξ1 + · · · + xnξn.

It is clear from this definition that Fϕ is a bounded continuous function on R
n.

Moreover, Fϕ is infinitely many times continuously differentiable on R
n and

∂α(Fϕ)= F
[
(−ıx)αϕ].

Furthermore, integration by parts yields the following identity:

F
(
∂αϕ

)= (ıξ)α(Fϕ).

Consequently Fϕ ∈ S(Rn) whenever ϕ ∈ S(Rn). In fact, F maps S(Rn) onto itself
and any ϕ in S(Rn) can be expressed in terms of its Fourier transform Fϕ in S(Rn)

by means of the Fourier inversion formula

ϕ(x)= 1

(2π)n

∫

Rn

Fϕ(ξ)eıx·ξ dξ.

It follows from this formula that the inverse Fourier transform F−1 is defined on the
whole of S(Rn), ϕ = F−1Fϕ = FF−1ϕ, and F−1 is given by

(
F−1ϕ

)
(x)= 1

(2π)n

∫

Rn

ϕ(ξ)eıx·ξ dξ, ϕ ∈ S(
R
n
)
.
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The Fourier transform on L1(R
n) is defined in the same way as on S(Rn); given

a function u ∈ L1(R
n), we define

(Fu)(ξ) :=
∫

Rn

u(x)e−ıx·ξ dx, ξ ∈Rn.

According to the Riemann–Lebesgue lemma (cf. Theorem 1.2 in Chap. I of Stein
and Weiss [168]) Fu is a bounded and continuous function on R

n. By recalling
Example 1.27 with m > n, we deduce that Fu defines a tempered distribution on
R
n, still denoted by Fu, via

〈Fu,ϕ〉 =
∫

Rn

Fu(ξ)ϕ(ξ)dξ, ϕ ∈ S(
R
n
)
.

By applying Fubini’s theorem we deduce that

∫

Rn

Fu(ξ)ϕ(ξ)dξ =
∫

Rn

[∫

Rn

u(x)e−ıx·ξ dx

]
ϕ(ξ)dξ

=
∫

Rn

u(x)

∫

Rn

ϕ(ξ)e−ıx·ξ dξ dx =
∫

Rn

u(x)Fϕ(x)dx

for every ϕ ∈ S(Rn). Thus

〈Fu,ϕ〉 = 〈u,Fϕ〉, ϕ ∈ S(
R
n
)
. (1.20)

Similarly,
〈
F−1u,ϕ

〉= 〈
u,F−1ϕ

〉
, ϕ ∈ S(

R
n
)
. (1.21)

These identities motivate the definitions of F and F−1 on S ′(Rn): for u ∈ S ′(Rn),
we define Fu and F−1u by (1.20) and (1.21), respectively. Obviously, if u ∈ S ′(Rn)

then Fu and F−1u are also tempered distributions, and u= F−1Fu= FF−1u.
The properties of the Fourier transform on S(Rn) imply the following identities

on S ′(Rn):

(
∂αFϕ

)
(ξ) = F

[
(−ıx)αϕ],

F
(
∂αϕ

)
(ξ) = (ıξ)αFϕ(ξ),

Fδ = 1.

If u ∈ S ′(Rn) and v ∈ S ′(Rm), then

F(u× v)= Fu× Fv;
here the letter F on the left-hand side signifies the Fourier transform on S ′(Rn+m),
whereas F in the first and second factor on the right-hand side denotes the Fourier
transform on S ′(Rn) and S ′(Rm), respectively.
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Since E ′(Rn) is contained in S ′(Rn), a distribution u with compact support has
a well-defined Fourier transform Fu in S ′(Rn). However Fu can be shown to be
more regular: when extended from R

n to C
n, the Fourier transform of a distribution

with compact support is holomorphic on the whole of Cn; in other words, it is an
entire function.

Theorem 1.28 The Fourier transform of a distribution u ∈ E ′(Rn) is the function

Fu : ξ �→ 〈u, e−ξ 〉, (1.22)

where eξ (x) = exp(ıx · ξ). The right-hand side of (1.22) is correctly defined for
every complex vector ξ ∈ C

n and is an entire function of ξ , called the Fourier–
Laplace transform of u.

Proof The theorem is obviously true if u is a regular distribution. To prove it in
general, let us recall the test function ωε from Example 1.11. As u ∗ ωε → u in
S ′(Rn) when ε→ 0, it follows that F(u∗ωε)→ F(u) in S ′(Rn) as ε→ 0. Now, the
Fourier transform of u∗ωε is the holomorphic function ξ ∈Cn �→ 〈u∗ωε, e−ξ 〉 ∈C,
and

〈u ∗ωε, e−ξ 〉 =
〈
u, (ωε)− ∗ e−ξ

〉= (Fω)(εξ)〈u, e−ξ 〉.
Recall that if a sequence of holomorphic functions on an open set Ω ⊂C

n converges
uniformly on compact subsets of Ω , then the limiting function is holomorphic on Ω
(cf. Proposition 5 on p. 7 of Narasimhan [142]). Since (Fω)(εξ)→ (Fω)(0)= 1 as
ε→ 0, uniformly on compact subsets of Cn, and therefore the sequence {ξ ∈Cn �→
〈u ∗ ωε, e−ξ 〉 ∈ C}ε>0 converges uniformly on compact subsets of Cn as ε→ 0, it
follows that 〈u, e−ξ 〉 is an entire function of ξ (whose restriction to R

n is the Fourier
transform of u). �

The next theorem will play an important role later in this chapter when we con-
sider smoothing operators based on convolution with distributions possessing com-
pact support (see Theorem 1.7.6 on p. 21 of Hörmander [72] and Theorem 7.19,
part (c), on p. 179 of Rudin [158]).

Theorem 1.29 Let u ∈ S ′(Rn) and v ∈ E ′(Rn); then, the convolution u ∗ v exists in
S ′(Rn) and its Fourier transform satisfies the identity

F(u ∗ v)= Fu · Fv.

This identity is also valid if u ∈ S ′(Rn) and v ∈ S(Rn).

The next theorem encapsulates the key relationship between analyticity and
growth of the Fourier–Laplace transform of a distribution with compact support.
For a proof, we refer to Theorem 1.7.7 on p. 21 of Hörmander [72].
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Theorem 1.30 (Paley–Wiener Theorem) An entire function U is the Fourier–
Laplace transform of a distribution with support in the closed ball Bρ of radius
ρ if, and only if, for some constants C > 0 and N , we have that

∣∣U(ζ )
∣∣≤ C

(
1+ |ζ |)Neρ|�ζ |, ζ ∈Cn;

here �ζ denotes the imaginary part of the complex vector ζ .

Finally we consider the Fourier transform on L2(R
n). Example 1.27 implies that

any function u ∈ L2(R
n) can be identified with a tempered distribution, and as such

u has a well-defined Fourier transform in S ′(Rn). In fact, according to Plancherel’s
Theorem (cf. Sect. 2 in Chap. I of [168]),

Fu(ξ)= lim
M→∞

∫

|x|<M
u(x)e−ıx·ξ dx, ξ ∈Rn,

where the limit is to be understood with respect to the norm of the space L2(R
n);

moreover, F is a one-to-one mapping of L2(R
n) onto itself, and the following Par-

seval’s identities hold (cf. Sect. 2 in Chap. I of [168]):

(2π)n(u, v) = (Fu,Fv), u, v ∈ L2
(
R
n
)
,

(2π)n‖u‖2
L2(R

n) = ‖Fu‖2
L2(R

n), u ∈ L2
(
R
n
)
,

which will be used in subsequent sections. For u,v ∈ S(Rn) the first identity follows
from (1.20) by taking ϕ = Fv and noting that Fϕ = F((2π)nF−1v)= (2π)nv. For
u,v ∈ L2(R

n) the first identity is then implied by the density of S(Rn) in L2(R
n)

(cf. the penultimate paragraph of (E) in Sect. 1.3.3). The second identity follows
from the first with v = u.

1.4 Sobolev Spaces

Now we introduce a class of function spaces, called Sobolev spaces (after the Rus-
sian mathematician S.L. Sobolev), which play an important role in modern differen-
tial equation theory; see, [1, 2, 116, 162, 181–183]. Suppose that Ω is an open set
in R

n. For a nonnegative integer k and 1≤ p ≤∞, we define

Wk
p(Ω) := {

u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ k
}
.

We equip Wk
p(Ω) with the Sobolev norm defined by

‖u‖Wk
p(Ω) :=

( ∑

|α|≤k

∥∥∂αu
∥∥p
Lp(Ω)

)1/p
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when 1≤ p <∞, and by

‖u‖Wk∞(Ω) := max|α|≤k
∥∥∂αu

∥∥
L∞(Ω)

when p =∞. The associated Sobolev seminorm is defined by

|u|Wk
p(Ω) :=

( ∑

|α|=k

∥∥∂αu
∥∥p
Lp(Ω)

)1/p

when 1≤ p <∞, and by

|u|Wk∞(Ω) := max|α|=k
∥∥∂αu

∥∥
L∞(Ω)

when p =∞. In these definitions the derivatives are to be understood in the sense
of distributions, with the usual convention that locally integrable functions are iden-
tified with regular distributions; it is also understood that any two locally integrable
functions that differ only on a set of zero measure are identified with each other, as
in the case of the Lebesgue spaces Lp(Ω) discussed in Sect. 1.2.2.

The Sobolev space Wk
p(Ω) can be shown to be a Banach space with the norm

‖ · ‖Wk
p(Ω), 1≤ p ≤∞, k ≥ 0. An important special case is when p = 2; the normed

linear space Wk
2 (Ω) is a Hilbert space with the inner product

(u, v)Wk
2 (Ω) :=

∑

|α|≤k

(
∂αu, ∂αv

)
,

where (·, ·) is the inner product in L2(Ω).
When boundary-value problems are considered for partial differential equations

it is convenient to incorporate the boundary condition into the definition of the func-
tion space in which a solution is sought. We consider a class of Sobolev spaces that
are particularly well suited to the study of partial differential equations with Dirich-
let boundary conditions: we define W̊ k

p(Ω) as the closure of C∞0 (Ω) in the norm of

Wk
p(Ω); W̊ k

p(Ω) is a Banach subspace of Wk
p(Ω). In particular, the function space

W̊ k
2 (Ω) is a Hilbert subspace of Wk

2 (Ω). We shall see that when the boundary of
Ω is sufficiently smooth, in a sense that will be made precise in the next two def-
initions, the elements of the function space W̊ k

p(Ω) satisfy appropriate boundary
conditions.

Definition 1.31 Suppose that Ω is a bounded open set in R
n. The boundary ∂Ω

of Ω is said to be Lipschitz-continuous if, for every x ∈ ∂Ω , there is an open set
O ⊂ R

n with x ∈ O and a local orthogonal co-ordinate system with co-ordinate
ζ = (ζ1, . . . , ζn)=: (ζ ′, ζn) and a ∈Rn+, such that

O = {ζ : −aj < ζj < aj , 1≤ j ≤ n},
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and there is a Lipschitz-continuous function ϕ defined on

O′ = {
ζ ′ ∈Rn−1 : −aj < ζj < aj , 1≤ j ≤ n− 1

}
,

with
∣∣ϕ

(
ζ ′
)∣∣≤ an/2 for ζ ′ ∈O′,

Ω ∩O = {
ζ : ζn < ϕ

(
ζ ′
)
, ζ ′ ∈O′} and ∂Ω ∩O = {

ζ : ζn = ϕ
(
ζ ′
)
, ζ ′ ∈O′}.

A bounded open set with a Lipschitz-continuous boundary is referred to as a Lips-
chitz domain.

An important property of a Lipschitz domain Ω is that (as a consequence of
Rademacher’s theorem; Theorem 3.1.6 on p. 216 of [46]) the unit outward normal
to ∂Ω is defined almost everywhere with respect to the (n − 1)-dimensional sur-
face measure on ∂Ω . A simple example of a Lipschitz domain is a bounded convex
polyhedron in R

n, n≥ 2.
Occasionally we shall have to work on domains with smooth boundaries. The

next definition assigns a precise meaning to the word “smooth”.

Definition 1.32 Suppose that Ω is a bounded open set in R
n. We shall say that ∂Ω

is of class Cm, m ≥ 1, if, for every x ∈ ∂Ω , there is an open set O ⊂ R
n with x ∈

O and a local orthogonal co-ordinate system with co-ordinate ζ = (ζ1, . . . , ζn) =:
(ζ ′, ζn) and a ∈Rn, such that

O = {ζ : −aj < ζj < aj , 1≤ j ≤ n},
and there is an m-times continuously differentiable function ϕ defined on

O′ = {
ζ ′ ∈Rn−1 : −aj < ζj < aj , 1≤ j ≤ n− 1

}
,

with
∣∣ϕ

(
ζ ′
)∣∣≤ an/2 for ζ ′ ∈O′,

Ω ∩O = {
ζ : ζn < ϕ

(
ζ ′
)
, ζ ′ ∈O′} and ∂Ω ∩O = {

ζ : ζn = ϕ
(
ζ ′
)
, ζ ′ ∈O′}.

A bounded open set with boundary of class Cm, m≥ 1, will be called a domain of
class Cm.

We note in passing that every (n − 1)-dimensional submanifold of R
n that is

homeomorphic to the (n− 1)-dimensional sphere decomposes Rn into two compo-
nents and is their common boundary. This result is known as the Jordan–Brouwer
theorem (cf. Corollary 6.4 on p. 66 of Massey [135]).

Theorem 1.33 Let Ω ⊂R
n be a Lipschitz domain and 1≤ p <∞. Then,

➊ C∞(Ω) is dense in Wk
p(Ω) for k ≥ 0; and
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➋ (Extension Theorem) If k ≥ 1, then there exists a continuous linear operator E
from Wk

p(Ω) to Wk
p(R

n), called the extension operator, with the property that

(Eu)|Ω = u, u ∈Wk
p(Ω).

For the proofs of the two parts of this theorem we refer to Adams and Fournier
[2] (Theorem 3.22 on p. 68) and Stein [167] (Theorem 5 on p. 181), respectively.
We note that while C∞(Ω) is dense in Wk

p(Ω) for k ≥ 0 and 1 ≤ p <∞ on any
Lipschitz domain Ω , the set C∞0 (Ω) is not dense in Wk

p(Ω) for any positive in-

teger k (although it is dense in Lp(Ω) =W 0
p(Ω), 1 ≤ p <∞). Thus W̊ k

p(Ω) is a
proper subspace of Wk

p(Ω).
In connection with the extension theorem we remark that since the extension

operator E is continuous and linear it is also bounded in the sense that there exists
a positive constant C such that

‖Eu‖Wk
p(R

n) ≤ C‖u‖Wk
p(Ω)

for all u ∈Wk
p(Ω) with k ≥ 1 and 1≤ p <∞.

Earlier in this chapter, in Sect. 1.1.2, we introduced the concept of embedding
of a normed linear space U in another normed linear space V , and we denoted this
by U ↪→ V . Here we present a brief overview of some important embedding results
for Sobolev spaces; the collection of these is generally referred to as the Sobolev
embedding theorem (see Theorem 5.4 on p. 97 of Adams [1] or Theorem 4.12 on
p. 85 in Adams and Fournier [2]).

Theorem 1.34 (The Sobolev Embedding Theorem) Suppose that Ω is a Lipschitz
domain in R

n. Let j ≥ 0 and m ≥ 1 be integers and let k be an integer, 1 ≤ k ≤ n.
Let Ωk denote the intersection of Ω with a k-dimensional hyperplane; in particular,
Ωk =Ω when k = n. For 1≤ p <∞ the following embeddings hold:

➊ if mp < n and either n − mp < k ≤ n or p = 1 and n − m ≤ k ≤ n, then, for
p ≤ q ≤ kp/(n−mp), Wj+m

p (Ω) ↪→W
j
q (Ω

k);

➋ if mp = n, then, for 1≤ k ≤ n and p ≤ q <∞, Wj+m
p (Ω) ↪→W

j
q (Ω

k);

➌ if mp > n> (m−1)p, then Wj+m
p (Ω) ↪→ Cj,λ(Ω) for 0 < λ≤m− (n/p). The

embedding also holds for n= (m−1)p and 0 < λ< 1, and for n=m−1, p = 1
and 0 < λ≤ 1.

When k < n, the embeddings stated in ➊ and ➋ of Theorem 1.34 are to be un-
derstood as follows: by part ➊ of Theorem 1.33, C∞(Ω) is dense in W

j+m
p (Ω) for

j +m≥ 0 and 1≤ p <∞; hence, any u in Wj+m
p (Ω) is a limit (in Wj+m

p (Ω)) of a
sequence of functions {un}∞n=1 contained in C∞(Ω); each un has a well-defined re-

striction to the hyperplane Ωk . The embedding W
j+m
p (Ω) ↪→W

j
q (Ω

k) means that

the sequence of restrictions {un|Ωk }∞n=1 converges in W
j
q (Ω

k) to a function, which
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we shall call the trace of u on Ωk . Thus, the notion of trace is the generalization
of the concept of restriction of a continuous function defined on Ω to a lower-
dimensional hypersurface Ωk . The embedding stated in part ➌ of Theorem 1.34 has
to be understood in the sense that any equivalence class of functions in W

j+m
p (Ω)

contains an element with the required number of Hölder-continuous (or, if λ = 1,
Lipschitz-continuous) derivatives.

In Sect. 1.1.2 we introduced the idea of compact embedding of a normed linear
space U in another normed linear space V , denoted by U ↪→↪→ V . The next the-
orem, generally known as the Rellich–Kondrashov theorem, is a collection of such
compact embedding results for Sobolev spaces (cf. Theorem 6.2 on p. 144 of Adams
[1] or Theorem 6.3 on p. 168 of Adams and Fournier [2]).

Theorem 1.35 (The Rellich–Kondrashov Theorem) Suppose that Ω is a Lipschitz
domain in R

n, let j ≥ 0 and m ≥ 1 be integers, and let k be an integer, 1 ≤ k ≤ n.
For 1≤ p <∞ the following compact embeddings hold:

➊ if mp < n and 0 < n − mp < k ≤ n, then, for 1 ≤ q < kp/(n − mp),
W

j+m
p (Ω) ↪→↪→W

j
q (Ω

k);

➋ if mp = n, then, for 1≤ k ≤ n and 1≤ q <∞, Wj+m
p (Ω) ↪→↪→W

j
q (Ω

k);

➌ if mp > n, then W
j+m
p (Ω) ↪→↪→ Cj (Ω); and if mp > n ≥ (m− 1)p and 0 <

λ<m− (n/p), then W
j+m
p (Ω) ↪→↪→Cj,λ(Ω).

In order to capture finer regularity properties of integrable functions, we consider
fractional-order Sobolev spaces defined in the following way: given a positive real
number s, s /∈N, let us write s =m+σ , where 0 < σ < 1 and m= [s] is the integer
part of s. The fractional-order Sobolev space Ws

p(Ω), 1 ≤ p <∞, is the set of all
u ∈ Lp(Ω) such that

|u|Ws
p(Ω) :=

{ ∑

|α|=m

∫

Ω

∫

Ω

|∂αu(x)− ∂αu(y)|p
|x − y|n+σp dx dy

}1/p

<∞,

with the usual modification when p =∞. When equipped with the norm

‖u‖Ws
p(Ω) :=

(‖u‖pLp(Ω) + |u|pWs
p(Ω)

)1/p
, if 1≤ p <∞,

or the norm

‖u‖Ws∞(Ω) := ‖u‖L∞(Ω) + |u|Ws∞(Ω), if p =∞,

Ws
p(Ω) is a Banach space.
The Sobolev embedding theorem is still valid in the case of fractional-order

Sobolev spaces, and a result completely analogous to that in Theorem 1.34 holds
with the integers m + j ≥ 1 and j ≥ 0 replaced by real numbers m + j > 0 and
j ≥ 0 in parts ➊ and ➋; in part ➌ m+ j can be taken to be a positive real number
and j a nonnegative integer. Also, Theorem 1.33 holds in fractional-order Sobolev
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spaces, with k denoting a nonnegative real number in part ➊, and a real number
≥ 1 in part ➋. The Rellich–Kondrashov theorem, Theorem 1.35, has the following
counterpart when p = q and k = n.

Theorem 1.36 Suppose that Ω is a Lipschitz domain in R
n, and let s and t be two

real numbers, 0≤ t < s. Then, Ws
p(Ω) ↪→↪→Wt

p(Ω) for 1≤ p <∞.

It is a straightforward consequence of this theorem that the following norms are
equivalent on Ws

p(Ω), with Ω a Lipschitz domain, s > 0 and 1≤ p <∞:

‖u‖Ws
p(Ω) :=

(‖u‖pLp(Ω) + |u|pWs
p(Ω)

)1/p
,

‖u‖∗Ws
p(Ω) :=

( ∑

|α|≤�s�

∥∥∂αu
∥∥p
Lp(Ω)

+ |u|pWs
p(Ω)

)1/p

,

where �s� denotes the largest integer that is strictly smaller than s.
As in the case of integer-order Sobolev spaces, for noninteger s > 0 we define

W̊ s
p(Ω) as the closure of C∞0 (Ω) in the norm of Ws

p(Ω); W̊ s
p(Ω) is a Banach sub-

space of Ws
p(Ω). By the next theorem, known as the Friedrichs inequality, when

‖ · ‖∗
Ws
p(Ω)

is considered as a norm on W̊ s
p(Ω), the term

∑

|α|≤�s�

∥∥∂αu
∥∥p
Lp(Ω)

can be omitted from the norm (cf. Adams and Fournier, Theorem 6.30 on p. 183 and
Corollary 6.31 on p. 184) in the case of integer s > 0 and Theorem 1.1 in [40] for
1/p < s < 1, 1 <p <∞.

Theorem 1.37 (Friedrichs Inequality) Let Ω be a Lipschitz domain in R
n with di-

ameter d , and suppose that s > 0, s−�s�> 1/p and 1≤ p <∞. Then, there exists
a constant c� = c�(s,p, d) such that

‖u‖pWs
p(Ω) ≤ c�|u|pWs

p(Ω) ∀u ∈ W̊ s
p(Ω). (1.23)

The same is true with ‖ · ‖Ws
p(Ω) replaced by ‖ · ‖∗Ws

p(Ω) on the left-hand side.

For a real number s > 0 and 1 <p <∞, we consider the linear space of bounded
linear functionals on the Sobolev space W̊ s

p(Ω), denoted by W−sq (Ω), where q is
the conjugate of p, i.e. 1/p+ 1/q = 1, equipped with the dual norm

‖u‖W−sq (Ω) := sup
ϕ∈W̊ s

p(Ω)

|〈u,ϕ〉|
‖ϕ‖Ws

p(Ω)

.
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Here 〈u,ϕ〉 denotes the value of the linear functional u at ϕ; 〈·, ·〉 is called
the duality pairing between W−sq (Ω) and W̊ s

p(Ω) and is sometimes denoted by
〈·, ·〉

W−sq (Ω)×W̊ s
p(Ω)

.

We conclude this section with a brief discussion concerning Sobolev spaces on
the boundary ∂Ω of a Lipschitz domain Ω . Recall from Definition 1.31 that for
every x on ∂Ω there exists a Lipschitz continuous function ϕ : O′ ⊂ R

n−1 → R

such that, using the notation introduced in Definition 1.31,

Γ ∩O = {
ζ = (

ζ ′, ϕ
(
ζ ′
)) : ζ ′ ∈O′}.

Thus, locally, ∂Ω is an (n − 1)-dimensional hypersurface in R
n. We define the

mapping Φ by

Φ
(
ζ ′
) := (

ζ ′, ϕ
(
ζ ′
))
, ξ ′ ∈O′.

Then, Φ−1 exists and it is Lipschitz-continuous on Φ(O′).

Definition 1.38 Let Ω be a Lipschitz domain in R
n. For 0≤ s ≤ 1 and 1≤ p <∞

we denote by Ws
p(∂Ω) the set of all u ∈ Lp(∂Ω) such that the composition u ◦Φ

belongs to Ws
p(O′ ∩Φ−1(∂Ω∩O)) for any pair of O and ϕ satisfying the conditions

of Definition 1.31.

In order to equip Ws
p(∂Ω) with a norm, we consider any atlas (Oj ,Φj )

J
j=1 for

∂Ω such that Oj and ϕj , j = 1, . . . , J , satisfy the conditions of Definition 1.31, and
Φj(ξ

′) := (ξ ′, ϕj (ξ ′)), with ξ ′ ∈O′j . We define ‖ · ‖Ws
p(∂Ω) by

‖u‖Ws
p(∂Ω) :=

(
J∑

j=1

‖u ◦Φj‖p
Ws
p(O′j∩Φ−1

j (∂Ω∩Oj ))

)1/p

.

In fact, for 0 < s < 1 it can be shown that this is equivalent to the following norm
(which, for the sake of simplicity, is denoted by the same symbol):

‖u‖Ws
p(∂Ω) :=

(∫

∂Ω

|u|p dσ +
∫

∂Ω

∫

∂Ω

|u(x)− u(y)|p
|x − y|n−1+sp dσ(x)dσ(y)

)1/p

,

where dσ denotes the (n− 1)-dimensional surface measure on ∂Ω .
Suppose that Ω is a domain of class Cm; then, for 0 ≤ s ≤ m and 1 ≤ p <∞,

the Sobolev space Ws
p(∂Ω) can be defined analogously as for 0≤ s ≤ 1.

The notion of trace of a function on a k-dimensional hyperplane intersecting a
Lipschitz domain Ω ⊂ R

n has already been considered in the discussion following
Theorem 1.34. Now we turn our attention to the concept of trace of a function on
the boundary of Ω .

Provided that ∂Ω is sufficiently smooth, statements analogous to ➊ and ➋ in
Theorem 1.34 can be made, using a partition of unity argument, with Ωk replaced
by ∂Ω and k taken to be equal to n− 1. Thus, for example, a function u ∈W 1

p(Ω),
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1 < p <∞, has a well defined trace, denoted by γ0(u) on the boundary ∂Ω of a
Lipschitz domain Ω ; moreover, γ0 is a bounded linear operator from W 1

p(Ω) to

W
1−(1/p)
p (∂Ω). If ϕ belongs to C∞(Ω) then

γ0(ϕ)= ϕ|∂Ω. (1.24)

More generally, we have the following result (cf. Theorem 7.53 on p. 216 of Adams
[1] with k = 0).

Theorem 1.39 Let m be a positive integer and suppose that p is a real number,
1 < p <∞. Assume that Ω is a domain of class Cm contained in R

n. Then, there
exists a bounded trace operator γ0 from Wm

p (Ω) onto W
m−(1/p)
p (∂Ω).

When l < m, the lth partial derivatives of a function u ∈ Wm
p (Ω) have traces

in W
m−l−(1/p)
p (∂Ω). It is standard practice to formulate trace theorems involving

higher derivatives in terms of derivatives in the direction of the unit outward nor-
mal vector ν to the boundary ∂Ω . Thus, we have the following generalization of
Theorem 1.39 (cf. Theorem 7.53 on p. 216 of Adams [1]).

Theorem 1.40 Let m and l be positive integers such that m> l, and let p be a real
number such that 1 < p <∞. Let Ω be a domain of class Cm contained in R

n.
Then, there exists a continuous trace operator

γl :Wm
p (Ω)→

l∏

k=0

W
m−k−(1/p)
p (∂Ω)

with the property that

γl(ϕ)=
(
ϕ|∂Ω, ∂ϕ

∂ν

∣
∣∣∣
∂Ω

, . . . ,
∂lϕ

∂νl

∣
∣∣∣
∂Ω

)

for every function ϕ in C∞(Ω).

We can now describe the space W̊m
p (Ω) in terms of boundary conditions on ∂Ω ,

expressed as vanishing traces on ∂Ω .

Theorem 1.41 Let Ω be a domain of class Cm, m ≥ 1. Then, the space W̊m
p (Ω),

1 < p <∞, defined as the closure of C∞0 (Ω) in Wm
p (Ω), can be characterized as

follows:

W̊m
p (Ω)= {

u ∈Wm
p (Ω) : γm−1(u)= 0

}
.

Trace theorems analogous to these also hold in fractional-order Sobolev spaces.
The simplest such result, due to Gagliardo [48], is formulated in the next theorem
(see, Theorem 1.5.1.2 on p. 37 of Grisvard [62], and Corollary 1.5.1.6 on p. 39 of
Grisvard [62], with k = 0 and l = 0).
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Theorem 1.42 Suppose that Ω is a Lipschitz domain in R
n, and let 1 <p <∞. As-

suming that 1/p < s ≤ 1, the mapping γ0 defined on C∞(Ω) by (1.24) has a unique
continuous extension to a linear operator from Ws

p(Ω) onto W
s−(1/p)
p (∂Ω); this

extension will be still denoted by γ0. Further, for 1/p < s ≤ 1, the space W̊ s
p(Ω),

defined as the closure of C∞0 (Ω) in Ws
p(Ω), can be characterized as follows:

W̊ s
p(Ω)= {

u ∈Ws
p(Ω) : γ0(u)= 0

}
.

For 1 < p <∞ and letting q be the conjugate of p, i.e. 1/p + 1/q = 1, the
dual space W−sq (∂Ω) of Ws

p(∂Ω), s ≥ 0, is defined as the set of all bounded linear
functionals on Ws

p(∂Ω), equipped with the dual norm ‖ · ‖W−sq (∂Ω) defined by

‖u‖W−sq (∂Ω) := sup
ϕ∈Ws

p(∂Ω)

|〈u,ϕ〉|
‖ϕ‖Ws

p(∂Ω)

.

Here 〈u,ϕ〉 denotes the value of the linear functional u at ϕ. It is clear from this
definition that for s = 0 and 1 < p <∞ the dual space of W 0

p(∂Ω) = Lp(∂Ω) is

simply W 0
q (∂Ω)= Lq(∂Ω).

1.5 Anisotropic Sobolev Spaces

In this section we consider Sobolev spaces that consist of multivariate functions
with, potentially, different differentiability properties in the different co-ordinate
directions:—hence the attribute anisotropic.

Let R+ be the set of nonnegative real numbers. With a slight abuse of termi-
nology we shall refer to the elements of the set R

n+ as multi-indices. For α =
(α1, . . . , αn) ∈Rn+, we define

[α] := ([α1], . . . , [αn]
)
, |α| := α1 + · · · + αn, �α� := (�α1�, . . . , �αn�

)
,

where, for a positive real number x, [x] denotes the integer part of x, and �x� de-
notes the largest integer smaller than x (e.g. [2.5] = 2, [3] = 3; �2.5� = 2, and
�3� = 2); [0] := 0, �0� := 0. Let ei = (δ1i , . . . , δni), for i = 1, . . . , n, where

δij :=
{

1 for i = j,

0 for i 	= j ,

is the Kronecker delta.
With these notational conventions we then define the following sets:

Ωi(x) := {hi : x + hiei ∈Ω},
Ωij (x) :=

{
(hi, hj ) : x + cihiei + cjhj ej ∈Ω; ci, cj = 0,1

}
,

...
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Ω1...n(x) :=
{

(h1, . . . , hn) : x +
n∑

k=1

ckhkek ∈Ω; ck = 0,1; k = 1, . . . , n

}

.

Let us also introduce the difference operators Δh and Δk
h by

Δhu(x) := u(x + h)− u(x), Δk
hu(x) :=Δh

(
Δk−1
h u(x)

)
.

For 1≤ p <∞, we define the seminorm | · |α,p as follows:

|u|pα,p := ‖u‖pLp(Ω), for α1 = α2 = · · · = αn = 0,

|u|pα,p :=
∫

Ω

∫

Ωi(x)

|Δhiei u(x)|p
|hi |1+pαi dhi dx, for 0 < αi < 1; αk = 0, k 	= i,

|u|pα,p :=
∫

Ω

∫

Ωij (x)

|ΔhieiΔhj ej u(x)|p
|hi |1+pαi |hj |1+pαj

dhi dhj dx,

for 0 < αi,αj < 1; αk = 0, k 	= i, j ,

...

|u|pα,p :=
∫

Ω

∫

Ω1...n(x)

|Δh1e1 . . .Δhnenu(x)|p
|h1|1+pα1 · · · |hn|1+pαn dh1 . . . dhn dx,

for 0 < α1, . . . , αn < 1,

|u|pα,p := |∂ [α]u|pα−[α],p, if, for some k, αk ≥ 1,

with ∂ [α]u understood in the sense of distributions on Ω .
When p =∞, the seminorm | · |α,∞ is defined analogously, as follows:

|u|α,∞ := ‖u‖L∞(Ω), for α1 = · · · = αn = 0,

|u|α,∞ := ess.supx∈Ω,hi∈Ωi(x)

|Δhiei u(x)|
|hi |αi , for 0 < αi < 1, αk = 0, k 	= i,

and so on.
A finite set of multi-indices A⊂R

n+ is called regular if 0 := (0, . . . ,0) ∈A, and
for any α = (α1, . . . , αn) ∈ A there exist real numbers βk ≥ αk , k = 1, . . . , n, such
that βkek ∈A for k = 1, . . . , n. Assuming that A is a regular set of multi-indices, we
define the following norms:

‖u‖WA
p (Ω) :=

(∑

α∈A
|u|pα,p

)1/p

, when 1≤ p <∞,

‖u‖WA∞ := max
α∈A |u|α,∞, when p =∞.

The set of all u ∈ L1,loc(Ω) such that ‖u‖WA
p (Ω) <∞ is denoted by WA

p (Ω).
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Example 1.30 Suppose that s1, . . . , sn are positive real numbers. Let A :=A0 ∪A1,
where

A0 :=
{

α ∈Nn :
n∑

k=1

αk

sk
< 1

}

, A1 :=
n⋃

i=1

A1i ,

with N denoting the set of all nonnegative integers and

A1i :=
{

α ∈Rn+ : αk ∈N for k 	= i;
n∑

k=1

αk

sk
= 1

}

.

Then, WA
p (Ω) = W

(s1,s2,...,sn)
p (Ω) is an anisotropic Sobolev space equipped with

the norm ‖ · ‖WA
p (Ω), and the natural seminorm

|u|
W

(s1,...,sn)
p (Ω)

:=
( ∑

α∈A1

|u|pα,p
)1/p

, when 1≤ p <∞,

and

|u|
W

(s1,...,sn)∞ (Ω)
:= max

α∈A1
|u|α,∞, when p =∞.

Here we have used the attribute natural in order to distinguish the seminorm in
question from other possible seminorms that can be defined on the space WA

p (Ω).
When s1 = · · · = sn = s, the space WA

p (Ω) is the standard (isotropic) Sobolev space
Ws

p(Ω), equipped with a norm that is equivalent to the standard norm of Ws
p(Ω).

We now consider another class of anisotropic spaces, which we shall make use
of in the analysis of time-dependent problems.

Let U be a Banach space with norm ‖ · ‖U , and let | · |U be a seminorm on U such
that |u|U ≤ ‖u‖U for all u in U . Suppose that (c, d) is a nonempty open interval
of the real line and 1 ≤ p ≤∞. We consider the set Lp((c, d);U) of all functions
u : (c, d)→ U such that t �→ ‖u(t)‖U is measurable on (c, d), with

∫ d

c

∥∥u(t)
∥∥p
U dt <∞, when 1≤ p <∞,

and

ess.supt∈(c,d)
∥∥u(t)

∥∥
U <∞, when p =∞.

(As is usual, any two functions that differ from each other only on a subset of zero
measure of the interval (c, d) are identified.) It can be shown (see Theorems 2.20.4
and 2.20.8 on pp. 114 and 116 of Kufner et al. [116]) that Lp((c, d);U) is a Banach
space with the norm

‖u‖Lp((c,d);U) :=
(∫ d

c

∥∥u(t)
∥∥p
U dt

)1/p

, when 1≤ p <∞,



54 1 Distributions and Function Spaces

and

‖u‖L∞((c,d);U) := ess.supt∈(c,d)
∥∥u(t)

∥∥
U , when p =∞.

The space Lp((c, d);U) has the natural seminorm

|u|Lp((c,d);U) :=
(∫ d

c

∣∣u(t)
∣∣p
U dt

)1/p

, when 1≤ p <∞,

and

|u|L∞((c,d);U) := ess.sup t∈(c,d)
∣∣u(t)

∣∣
U , when p =∞.

Suppose that U is a Banach space, with norm ‖ · ‖U . Given a nonempty open in-
terval (c, d) of the real line and a nonnegative integer k, we denote by Ck((c, d);U)
the set of all continuous functions

u : t ∈ (c, d) �→ u(t) ∈ U
whose derivatives with respect to t of order ≤ k are continuous functions of t on
(c, d). Instead of C0((c, d);U), we shall write C((c, d);U).

For a nonnegative integer k and a bounded, nonempty, open interval (c, d)⊂ R,
we denote by Ck([c, d];U) the set of all u in Ck((c, d);U) such that all derivatives
of u with respect to t of order ≤ k can be continuously extended from the open
interval (c, d) to the closed interval [c, d]. Instead of C0([c, d];U), we shall write
C([c, d];U). C([c, d];U) is a Banach space equipped with the norm ‖ · ‖C([c,d];U)
defined by

‖u‖C([c,d];U) := max
t∈[c,d]

∥∥u(t)
∥∥
U .

The same is true of Ck([c, d];U) for any nonnegative integer k, when equipped with
the norm

‖u‖Ck([c,d];U) := max
0≤m≤k

sup
t∈(c,d)

∥∥u(m)(t)
∥∥
U ,

where u(m) = dmu/dtm.
Assuming that (c, d) is a nonempty open interval of the real line and U is a

Banach space, we denote by D′((c, d);U) the linear space of U -valued distributions
on (c, d), defined as the set of all continuous linear operators from D(c, d) into U .
For u ∈D′((c, d);U) and ϕ ∈D(c, d) we shall denote the value u(ϕ) of u at ϕ by
〈u,ϕ〉. By definition, 〈u,ϕ〉 ∈ U .

For a positive integerm, the mth distributional derivative dmu
dtm of u ∈D′((c, d);U)

is the continuous linear operator from D(c, d) into U defined by

〈
dmu

dtm
,ϕ

〉
= (−1)m

〈
u,

dmϕ

dtm

〉
∀ϕ ∈D(c, d),

understood as an equality in U .
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To each u ∈ L1,loc((c, d);U) we can assign an element Tu ∈D′((c, d);U) by

〈Tu,ϕ〉 :=
∫ d

c

u(t)ϕ(t)dt (∈ U) ∀ϕ ∈D(c, d).

The mapping u ∈ L1,loc((c, d);U) �→ Tu ∈ D′((c, d);U) is a continuous linear in-
jection, which allows us to identify u with Tu and consider L1,loc((c, d);U) as a
subset of D′((c, d);U). Thus in particular Lp((c, d);U) will be viewed as a subset
of D′((c, d);U) for all p, 1≤ p ≤∞.

Let 1 ≤ p <∞, r > 0, and write r in the form r = m + ρ, 0 ≤ ρ < 1, where
m= [r] is the integer part of r . We denote by Wr

p((c, d);U) the set of all functions

u in Lp((c, d);U) whose mth derivative u(m) = dmu/dtm on the interval (c, d) in
the sense of U -valued distributions is an element of Lp((c, d);U) and

Nr,p(u) :=
(∫ d

c

∫ d

c

‖u(m)(τ )− u(m)(τ ′)‖pU
|τ − τ ′|1+pρ dτ dτ ′

)1/p

<∞

when ρ > 0; if ρ = 0 we define Nr,p(u)= 0. The space Wr
p((c, d);U) is a Banach

space equipped with the norm

‖u‖Wr
p((c,d);U) :=

(‖u‖p
Lp((c,d);U) +

∥∥u(m)
∥∥p
Lp((c,d);U) +Nr,p(u)

p
)1/p

and the natural seminorm, which is defined for r =m> 0 integer and r > 0 nonin-
teger, respectively, by

|u|Wr
p((c,d);U) :=

∥∥u(m)
∥∥
Lp((c,d);U) and |u|Wr

p((c,d);U) :=Nr,p(u).

Suppose that Ω is a Lipschitz domain in R
n and Q :=Ω × (c, d). We define the

anisotropic Sobolev space

Ws,r
p (Q) := Lp

(
(c, d);Ws

p(Ω)
)∩Wr

p

(
(c, d);Lp(Ω)

)
,

equipped with the norm

‖u‖Ws,r
p (Q) :=

(‖u‖p
Lp((c,d);Ws

p(Ω))
+ ‖u‖p

Wr
p((c,d);Lp(Ω))

)1/p

and the natural seminorm

|u|Ws,r
p (Q) :=

(|u|p
Lp((c,d);Ws

p(Ω))
+ |u|p

Wr
p((c,d);Lp(Ω))

)1/p
.

For 1 ≤ p <∞, the space W
s,r
p (Q) can be viewed as a space of type WA

p (Q);
for example, if s ∈N, then the corresponding set A is given by

A= {
(α1, . . . , αn,0) : αi ∈N, α1 + · · · + αn ≤ s

}

∪ {
(0, . . . ,0, β) : β ∈N, β < r

}∪ {
(0, . . . ,0, r)

}
.
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A particularly relevant anisotropic space, Ws,s/2
2 (Q), s > 0, arises in the theory

of second-order parabolic partial differential equations on the space-time domain
Q :=Ω × (0, T ).

We shall also need the space Ŵ s,s/2
2 (Q) :=W

(s,...,s,s/2)
2 (Q). Clearly,

Ŵ
s,s/2
2 (Q)⊂W

s,s/2
2 (Q). (1.25)

We conclude this section by stating two results concerning anisotropic Sobolev
spaces.

Theorem 1.43 Suppose that u ∈Ws,r
2 (Q), s, r > 0, and let α ∈ N

n and k ∈ N be

such that |α|
s
+ k

r
≤ 1. Then, ∂αx ∂

k
t u belongs to Wμ,ν

2 (Q), where μ
s
= ν

r
= 1− (

|α|
s
+

k
r
), and ∂x and ∂t are the partial derivatives with respect to x = (x1, . . . , xn) and t ,

respectively.

For a proof, see Theorem 10.2 on p. 143 and Theorem 18.4 on p. 296 in Besov,
Il’in and Nikol’skiı̆ [13] and Lemma 7.2 in Grisvard [60]. Theorem 1.43 and (1.25)
imply that Ŵ s,s/2

2 (Q)=W
s,s/2
2 (Q), with equivalence of norms.

Theorem 1.44 Suppose that u ∈Ws,r
2 (Q), s ≥ 0, r > 1/2. Then, for a nonnegative

integer k, k < r − 1/2, the trace

∂ku

∂tk
(x,0)

is correctly defined as an element of Wq

2 (Ω), where q = s
r
(r − k − 1

2 ).

For a proof of Theorem 1.44, see Theorem 6.7 in Chap. 6 of Nikol’skiı̆ [144]. We
shall now introduce another important class of function spaces.

1.6 Besov Spaces

For δ > 0 and Ω an open set in R
n, we define

Ωδ :=
{
x ∈Ω : dist(x, ∂Ω) > δ

}
.

Assuming that s > 0, 1 ≤ p <∞ and 1 ≤ q ≤ ∞, the Besov space Bs
p,q(Ω) is

defined as follows. Let us write s = m+ σ where 0 < σ ≤ 1 and m is a nonnega-
tive integer. We denote by Bs

p,q(Ω) the set of all u in Lp(Ω) whose distributional
derivatives ∂αu of order |α| =m satisfy

Nα,p,q(u) :=
{∫ ∞

0

[
t−σ sup

|h|≤t
∥∥Δ2

h∂
αu

∥∥
Lp(Ω2|h|)

]q dt

t

}1/q

<∞
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if 1≤ q <∞, and

Nα,p,∞(u) := sup
t>0

[
t−σ sup

|h|≤t
∥∥Δ2

h∂
αu

∥∥
Lp(Ω2|h|)

]
<∞

if q =∞. The norm in Bs
p,q(Ω) is defined by the expression

‖u‖Bs
p,q (Ω) :=

(
‖u‖p

Lp(Ω)
+

∑

|α|=m
Nα,p,q(u)

p

)1/p

.

The space Bs
p,q(Ω) is a Banach space with this norm. If Ω is a Lipschitz domain,

then the following relationships hold between Sobolev and Besov spaces:

Ws
p(Ω)= Bs

p,p(Ω)

for s > 0 noninteger, and for s > 0 integer if p = 2. For s integer and p 	= 2,

Ws
p(Ω) 	= Bs

p,p(Ω).

In fact, the following embeddings hold for any s > 0 (see, Eq. (3) of Definition 4.2.1
on p. 310 and Eqs. (1), (2) of Theorem 4.6.1 on p. 327 of Triebel [182]):

Bs
p,p(Ω) ↪→Ws

p(Ω) ↪→ Bs
p,2(Ω) for 1 <p ≤ 2,

Bs
p,2(Ω) ↪→Ws

p(Ω) ↪→ Bs
p,p(Ω) for 2≤ p <∞.

For s < 0 and 1 < p <∞, we define Bs
p,q(R

n) as the dual space of the Besov
space B−s

p′,q ′(R
n), where 1/p+ 1/p′ = 1, 1/q + 1/q ′ = 1.

Example 1.31 Consider the Heaviside function H on the interval Ω = (−1,1) de-
fined by

H(x)=
{

1 if x ∈ (0,1),
0 if x ∈ (−1,0].

A simple calculation shows that H ∈ B1/p
p,∞(Ω), p ∈ [1,∞). Also, H ∈Ws

p(Ω) for

all s < 1/p, p ∈ [1,∞), but H /∈W 1/p
p (0,1) for any p ∈ [1,∞).

1.7 Interpolation Properties of Sobolev Spaces

For 0≤ s1, s2 <∞, s1 	= s2, 0 < θ < 1, 1≤ q ≤∞, we have (cf. Theorem 2.4.2 on
p. 186 and its consequence Eq. (16) on p. 186 in Triebel [182])

(
Ws1

p

(
R
n
)
,Ws2

p

(
R
n
))
θ,q
= Bs

pq

(
R
n
)
, s = (1− θ)s1 + θs2.
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Thus in particular, for q = p and noninteger s = (1− θ)s1 + θs2, we obtain that
(
Ws1

p

(
R
n
)
,Ws2

p

(
R
n
))
θ,p
=Ws

p

(
R
n
)
, s = (1− θ)s1 + θs2.

For p = 2 this relation holds without restrictions, i.e.

(
W

s1
2

(
R
n
)
,W

s2
2

(
R
n
))
θ,2 =W

(1−θ)s1+θs2
2

(
R
n
)
.

Hence, Ws
2 (R

n) are interpolation spaces. Analogous interpolation results hold for
Sobolev spaces on a Lipschitz domain Ω ⊂R

n (cf. Sect. 4.3.1 on p. 317 of Triebel
[182] for details).

1.8 Multiplier Spaces

In this section we consider point multipliers (or, simply, multipliers), in Sobolev
spaces. These will be extensively used in the remaining chapters to characterize the
minimum admissible smoothness of coefficients in differential equations. For proofs
and a detailed exposition of the theory we refer to the monographs of Maz’ya and
Shaposhnikova [137, 138].

Let Ω be an open set in R
n and suppose that V and W are two function spaces

contained in D′(Ω). A function a defined on Ω is called a multiplier from V to W

if, for every v in V , the product av belongs to W . The set of all multipliers from V

to W is denoted by M(V →W). In particular when V =W we write M(V ) instead
of M(V → V ). The norm in M(V →W) is defined as the norm of the operator of
multiplication:

‖a‖M(V→W) := sup
{‖av‖W : ‖v‖V ≤ 1

}
.

In this section we shall be concerned with multipliers in Sobolev spaces, that
is with M(Wt

p(Ω)→ Ws
p(Ω)) for p ∈ (1,∞) and t ≥ s. Initially, we consider

multipliers in pairs of Sobolev spaces on R
n. For the sake of brevity, the symbol

Ws
p(R

n) will be truncated to Ws
p . Motivated by the definition of multiplication of

a distribution by a smooth function, for a ∈M(Wt
p→Ws

p) and u ∈W−s
p′ = (Ws

p)
′,

1/p+ 1/p′ = 1, we define the product au ∈W−t
p′ = (W t

p)
′ by

〈au,ϕ〉W−t
p′ ×Wt

p
:= 〈u,aϕ〉W−s

p′ ×Ws
p
, ϕ ∈Wt

p.

Here,

〈·, ·〉W−t
p′ ×Wt

p
and 〈·, ·〉W−s

p′ ×Ws
p

denote the duality pairings between the Sobolev spaces W−t
p′ and Wt

p , and W−s
p′ and

Ws
p , respectively. This definition implies that

M
(
W−s

p′ →W−t
p′

)=M
(
Wt

p→Ws
p

)
,
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and therefore, rather than admitting all real numbers s and t , it suffices to consider
M(Wt

p→Ws
p) for t ≥ s ≥ 0 and M(Wt

p→W−sp ) for t ≥ 0 ≥ −s. We list here a
collection of some basic results concerning multipliers.

Lemma 1.45 Suppose that s and t are either two integers or two nonintegers, t ≥
s ≥ 0 and p ∈ (1,∞). If a ∈M(Wt

p→Ws
p), then

➊ a ∈M(Wt−s
p → Lp);

➋ a ∈
{
M(Wt−σ

p →Ws−σ
p ) for 0 < σ < s and integer s, t and σ,

M(Bt−σ
p,p → Bs−σ

p,p ) for 0 < σ < s and noninteger s and t;
➌ ∂αa ∈M(Wt

p→W
s−|α|
p ), |α| ≤ s;

➍ ∂αa ∈M(W
t−s+|α|
p → Lp), |α| ≤ s.

Proof

➊ The result follows from Lemma 2 on p. 40 of Maz’ya and Shaposhnikova
[138] (or from Lemma 2.3.4 on p. 40 of [137]) for integer s and t ; and from
Lemma 4.3.4 on p. 147 in [137] for noninteger s and t .

➋ For integer s, t and σ , the result follows from Proposition 2.7.1 on p. 58 of
Maz’ya and Shaposhnikova [137]. For noninteger s and t , the stated result fol-
lows from inequality (1) on p. 154 of [138] or from Corollary 4.3.2 on p. 148 in
[137].

➌ The result follows from the assumption a ∈ M(Wt
p → Ws

p) and part ➊ using
Lemma 1 on p. 39 of Maz’ya and Shaposhnikova [138] (or Lemma 2.3.3 on
p. 39 of [137]) for integer s and t ; and from Lemma 1 on p. 160 in [138] or from
Lemma 4.3.5 on p. 149 in [137] for noninteger s and t .

➍ The result follows from part ➊ for integer s and t and |α| = 0; from part ➌ for
integer s and t and |α| = s; and from the assumption a ∈M(Wt

p → Ws
p) and

part ➊ using the inequality (11) on p. 42 of Maz’ya and Shaposhnikova [138]
(or inequality (2.3.13) on p. 42 in [137]) for s and t integer and 0 < |α|< s. For
noninteger s and t the stated result follows from the corollary of Lemma 1 on
p. 160 of [138] or from Corollary 4.3.3 on p. 149 in [137]. �

Lemma 1.46 Suppose that s and t are either two integers or two nonintegers, t ≥
s ≥ 0, and p ∈ (1,∞). Then,

M
(
Wt

p→Ws
p

)⊂Ws
p,unif ,

where

Ws
p,unif :=

{
u : sup

z∈Rn

∥
∥(τzη)u

∥
∥
Ws
p
<∞,∀η ∈D(

R
n
)

s.t. η= 1 on B1

}
.

If tp > n, then M(Wt
p→Ws

p)=Ws
p,unif . Here, (τzη)(x) := η(x − z).
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Proof For integer s and t the inclusion M(Wt
p → Ws

p) ⊂ Ws
p,unif is proved in

Sect. 1.3.3 of Maz’ya and Shaposhnikova [138] in the discussion preceding the The-
orem on p. 45, while the equality M(Wt

p→Ws
p)=Ws

p,unif for integer s and t and
tp > n follows from the Theorem on p. 45 of [138]. For noninteger s and t the result
is implied by Proposition 3.2.8 on p. 166 in [138]. �

Lemma 1.47 Suppose that s and t are either two integers or two nonintegers, t ≥
s ≥ 0, and a = a(x1, . . . , xn). If a ∈M(Wt

2(R
n)→Ws

2 (R
n)), then

a ∈M(
Wt

2

(
R
n+k)→Ws

2

(
R
n+k))

and

a ∈M(
W

t,t/2
2

(
R
n ×R

)→W
s,s/2
2

(
R
n ×R

))
.

Proof The proof of the result is immediate, using the fact that a is a function of
x1, . . . , xn only (cf. Proposition 2.7.2 on p. 58 of [137]). �

Lemma 1.48 Suppose that s ≥ 0 and p ∈ (1,∞); then M(Ws
p)⊂ L∞.

Proof For integer s the stated result follows from Proposition 2.7.4 on p. 59 of
Maz’ya and Shaposhnikova [137]. For noninteger s the result follows from the final
inequality stated in part 2 of the proof of Lemma 3.2.2 on p. 159 of [138]. See also
(4.3.28) in Lemma 4.3.4 on p. 147 of [137]. �

Lemma 1.49 Suppose that p ∈ (1,∞), and let s and t be nonnegative integers such
that t ≥ s. Further, let

a =
∑

|α|≤t
∂αaα,

where

aα ∈M
(
Wt

p→Wt−s
p

)∩M(
Ws

p′ → Lp′
)
, 1/p+ 1/p′ = 1;

then a ∈M(Wt
p→W−sp ).

Proof For s = 0 the result follows from ➌ of Lemma 1.45. For s > 0 the result fol-
lows from part (ii) of Theorem 1 on p. 57 in [138], or from part (ii) of Theorem 2.5.1
on p. 54 of [137]. �

Lemma 1.50

➊ Let p ∈ (1,∞) and assume that s and t are integers, t > s > 0 and tp < n. If a ∈
Ws

n/t,unif , then a ∈M(Wt
p→Ws

p). The result is also true for t = s, assuming
that a ∈Ws

n/s,unif ∩L∞.
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➋ Let p ∈ (1,∞) and assume that s and t are nonintegers, t > s > 0. Suppose
that either q ∈ [n/t,∞] and tp < n, or q ∈ (p,∞) and tp = n. If a ∈ Bs

q,p,unif ,
where

Bs
q,p,unif :=

{
u : sup

z∈Rn

∥
∥(τzη)u

∥
∥
Bs
q,p

<∞,∀η ∈D(
R
n
)

s.t. η= 1 on B1

}
,

then a ∈M(Wt
p→Ws

p). Here, (τzη)(x) := η(x − z). The result is also true for
t = s, provided that a ∈ Bs

q,p,unif ∩L∞.

Proof

➊ The first statement follows from part (i) of Corollary 1 on p. 50 in Sect. 1.3.4 of
Maz’ya and Shaposhnikova [138], while the second statement comes from part
(ii) of the same result. Alternatively, see part (i) of Corollary 2.3.5 and Proposi-
tion 2.3.2 on p. 48 of [137].

➋ The two statements follow, respectively, from part (ii) and part (i) of Theo-
rem 3.3.2 on p. 172 of Maz’ya and Shaposhnikova [138]. Alternatively, see The-
orem 4.4.4 on p. 170 of [137]. �

Lemma 1.51 The linear differential operator L defined by

Lu=
∑

|α|≤k
aα(x)∂

αu, x ∈Rn,

is a bounded linear operator from the Sobolev space Ws
p to Ws−k

p , s ≥ k, provided

that aα ∈M(W
s−|α|
p →Ws−k

p ) for every multi-index α, |α| ≤ k.

Proof The result is a direct consequence of part ➌ of Lemma 1.45 and the definition
of the multiplier space M(W

s−|α|
p →Ws−k

p ). �

These results have analogous counterparts in Sobolev spaces on bounded open
subsets of Rn. This follows by observing that if Ω is a Lipschitz domain in R

n and
a ∈M(Wt

p(Ω)→Ws
p(Ω)), then by Theorem 1.33 (and its analogue for fractional-

order Sobolev spaces) a can be extended to a function ã, defined on the whole of
R
n, such that ã ∈M(Wt

p→Ws
p) =M(Wt

p(R
n)→Ws

p(R
n)); the converse is also

true: the restriction to Ω of a multiplier a ∈M(Wt
p(R

n)→Ws
p(R

n)) is an element
of M(Wt

p(Ω)→Ws
p(Ω)). We note here that for a Lipschitz domain Ω (which is,

by definition, bounded), the ‘uniform’ spaces Ws
p,unif and Bs

q,p,unif that appear in
Lemmas 1.46 and 1.50 are replaced by standard Sobolev and Besov spaces, Ws

p(Ω)

and Bs
q,p(Ω), respectively.

Lemma 1.52 Let Ω be a Lipschitz domain in R
n and suppose that s > 0 and p ∈

(1,∞). If a ∈Wt
q(Ω) then a ∈M(Ws

p(Ω))∩L∞(Ω), where

t = s, q = p when sp > n,
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t > s, q > p when sp = n,

t > s, q ≥ n/s when sp < n.

Proof For sp > n, the Sobolev embedding theorem implies that Ws
p(Ω) ↪→

L∞(Ω). By applying the analogue of Lemma 1.46 in a Lipschitz domain, we de-
duce that a ∈Wt

q(Ω)=Ws
p(Ω)⊂M(Ws

p(Ω)).
Now suppose that t > s, and either q > p = n/s or q ≥ n/s > p. Letting ε =

t − s and applying embedding theorems for Sobolev and Besov spaces,

a ∈Wt
q(Ω)=Ws+ε

q (Ω) ↪→ Bs
q,p(Ω)∩Ws

n/s(Ω),

and

a ∈Ws+ε
q (Ω) ↪→ L∞(Ω).

Thanks to the analogue of Lemma 1.50 in a Lipschitz domain Ω , we have that
a ∈M(Ws

p(Ω)). �

Lemma 1.53 Let Ω be a Lipschitz domain in R
n, and suppose that s > 0 and p ∈

(1,∞). If a ∈ Lq(Ω), where

q = p when sp > n,

q > p when sp = n,

q ≥ n/s when sp < n,

then a ∈M(Ws
p(Ω)→ Lp(Ω)).

Proof First suppose that sp > n, q = p, and let a ∈ Lq(Ω). By applying Hölder’s
inequality and the Sobolev embedding theorem, we obtain

‖au‖Lp(Ω) = ‖au‖Lq(Ω) ≤ ‖a‖Lq(Ω)‖u‖L∞(Ω) ≤ c‖a‖Lq(Ω)‖u‖Ws
p(Ω),

and therefore a ∈M(Ws
p(Ω)→ Lp(Ω)).

Now assume that either sp = n and q > p, or sp < n and q ≥ n/s (and therefore
q > p). By applying Hölder’s inequality and the Sobolev embedding theorem,

‖au‖Lp(Ω) ≤ ‖a‖Lq(Ω)‖u‖L pq
q−p (Ω) ≤ c‖a‖Lq(Ω)‖u‖Ws

p(Ω).

Hence a ∈M(Ws
p(Ω)→ Lp(Ω)). �

Lemma 1.54 Let p ∈ (1,∞), and suppose that s and t are two real numbers such
that either 0 < s ≤ n/p < t or s = t > n/p. Then, Wt

p(Ω)⊂M(Ws
p(Ω)).

Proof When s = t > n/p, the stated result follows from Lemma 1.52.
Suppose that 0 < s < n/p < t ; then s < t + s − n/p, and therefore there exits a

real number τ such that s < τ < t + s − n/p; clearly t > τ . Defining q = n/s, we
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deduce that t − n/p > τ − n/q , t > τ and q > p. Thus, by the Sobolev embedding
theorem,

Wt
p(Ω) ↪→Wτ

q (Ω),

and, because τ > s, q = n/s and sp < n, Lemma 1.52 implies that Wτ
q (Ω) ↪→

M(Ws
p(Ω)). Hence the desired inclusion.

Finally, let us suppose that 0 < s = n/p < t ; then, there exists a real number
ε ∈ (0,1) such that t > n/(pε). Let us choose τ ∈ (t − n/(pε), t) ∩ (s, t); then
0 < t − τ < n/(pε), and therefore

1

p
>

1

p
+ ε

n
(τ − t) > 0.

We define

q :=
(

1

p
+ ε

n
(τ − t)

)−1

.

Clearly, q > p and

t − n

p
= τ − n

q
+ (1− ε)(t − τ) > τ − n

q
,

and therefore by the Sobolev embedding theorem we have that

Wt
p(Ω) ↪→Wτ

q (Ω).

Because τ > s, q > p, sp = n, Lemma 1.52 implies that Wτ
q (Ω) ⊂M(Ws

p(Ω)),
whereby Wt

p(Ω)⊂M(Ws
p(Ω)). �

Our next result is an extension of the familiar Leibniz formula for the differenti-
ation of a product of two smooth functions.

Lemma 1.55 Let p ∈ (1,∞), and suppose that a = (a1, . . . , an) and u are two
functions such that a ∈ [Lp(Ω)]n, u ∈M(W 1

q (Ω)), where 1/p+ 1/q = 1, 1 <p <

∞. Then,

∇ · (au)= a · ∇u+ (∇ · a)u in W−1
p (Ω).

Proof Let w ∈ Lp(Ω); then, identifying w with the associated regular distribution,

〈∂iw,ϕ〉 = −〈w,∂iϕ〉 = −(w, ∂iϕ), ϕ ∈ C∞0 (Ω), i = 1, . . . , n.

Thus, by Hölder’s inequality,
∣∣〈∂iw,ϕ〉

∣∣≤ ‖w‖Lp(Ω)‖∂iϕ‖Lq(Ω) ≤ ‖w‖Lp(Ω)‖ϕ‖W̊ 1
q (Ω)

, i = 1, . . . , n,

for every ϕ in C∞0 (Ω). Since C∞0 (Ω) is dense in W̊ 1
q (Ω), 1 < q <∞, the linear

functional 〈∂iw, ·〉 : C∞0 (Ω)→R can be extended from C∞0 (Ω) to a bounded linear
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functional on the space W̊ 1
q (Ω), still denoted by ∂iw, i = 1, . . . , n. Hence, ∂iw ∈

(W̊ 1
q (Ω))′ =W−1

p (Ω), and

〈∂iw,ϕ〉W−1
p (Ω)×W̊ 1

q (Ω)
=−(w, ∂iϕ), ϕ ∈ W̊ 1

q (Ω), i = 1, . . . , n. (1.26)

In particular, ∂i is a bounded linear operator from Lp(Ω) into W−1
p (Ω) for each

i ∈ {1, . . . , n}.
Now since u belongs to M(W 1

q (Ω)) =M(W 1
q (Ω)→W 1

q (Ω)), it follows from
the analogue of Lemma 1.45, part ➌, for a Lipschitz domain Ω that ∂iu ∈
M(W 1

q (Ω)→ Lq(Ω)). Thus also ∂iu ∈ M(W̊ 1
q (Ω)→ Lq(Ω)) = M(Lp(Ω)→

W−1
p (Ω)). As ai , the ith component of a belongs to Lp(Ω), we deduce that ai(∂iu)

belongs to W−1
p (Ω).

Next, because u ∈M(W 1
q (Ω)) ⊂W 1

q (Ω) ∩ L∞(Ω) by the analogues of Lem-
mas 1.46 and 1.48 for a Lipschitz domain Ω , we deduce that aiu ∈ Lp(Ω). There-
fore, ∂i(aiu) belongs to W−1

p (Ω).

Finally, we show that (∂iai)u also belongs to W−1
p (Ω). Indeed, because ∂i is a

bounded linear operator from Lp(Ω) into the space W−1
p (Ω) and since

u ∈M(
W 1

q (Ω)
)⊂M

(
W̊ 1

q (Ω)
)=M

(
W−1

p (Ω)
)
,

we deduce that (∂iai)u ∈W−1
p (Ω).

We have thus shown that, under the hypotheses of the lemma, each of the terms
∂i(aiu), ai(∂iu), (∂iai)u belongs to W−1

p (Ω). It remains to verify that

∂i(aiu)= ai(∂iu)+ (∂iai)u in W−1
p (Ω), i = 1, . . . , n.

Because ai ∈ Lp(Ω) and u ∈ M(W 1
q (Ω)) ⊂ W 1

q (Ω) ∩ L∞(Ω), we deduce that

aiu ∈ Lp(Ω) and ai(∂iu) ∈ L1(Ω)∩W−1
p (Ω). Hence

〈
ai(∂iu),ϕ

〉
W−1
p (Ω)×W̊ 1

q (Ω)

= (
ai(∂iu),ϕ

)= (
ai, (∂iu)ϕ

)

= (
ai, ∂i(uϕ)− u(∂iϕ)

)

= (
ai, ∂i(uϕ)

)− (
ai, u(∂iϕ)

)

= (
ai, ∂i(uϕ)

)− (aiu, ∂iϕ)

=−〈∂iai, uϕ〉W−1
p (Ω)×W̊ 1

q (Ω)
+ 〈

∂i(aiu),ϕ
〉
W−1
p (Ω)×W̊ 1

q (Ω)
,

for all ϕ in C∞0 (Ω), where, in the last line, we have used (1.26) and the fact that
uϕ belongs to W̊ 1

q (Ω) for every ϕ in C∞0 (Ω). Finally, since u is an element of

M(W 1
q (Ω))⊂M(W̊ 1

q (Ω))=M(W−1
p (Ω)), we have that

〈
ai(∂iu),ϕ

〉
W−1
p (Ω)×W̊ 1

q (Ω)
= 〈

∂i(aiu)− (∂iai)u,ϕ
〉
W−1
p (Ω)×W̊ 1

q (Ω)
(1.27)
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for every ϕ in C∞0 (Ω). Because C∞0 (Ω) is dense in W̊ 1
q (Ω), (1.27) implies that

∂i(aiu)= ai(∂iu)+ (∂iai)u in W−1
p (Ω), i = 1, . . . , n.

After summation through i = 1, . . . , n, this yields the desired identity. �

The final result of this section provides a sufficient condition for a function to
belong to M(Wt

2(Ω)→W−s2 (Ω)).

Lemma 1.56 Let Ω be a Lipschitz domain in R
n and let

a = a0 +
n∑

i=1

∂iai,

where a0 ∈M(Wt
2(Ω)→ L2(Ω)) and

ai ∈M
(
Wt

2(Ω)→W 1−s
2 (Ω)

)∩M(
Wt−1

2 (Ω)→ L2(Ω)
)
, i = 1, . . . , n,

with 0 < s ≤ 1≤ n/2 < t , s 	= 1/2; then a ∈M(Wt
2(Ω)→W−s2 (Ω)).

Proof Consider

a = a0 +
n∑

i=1

∂iai,

where a0 ∈M(Wt
2(Ω)→ L2(Ω)), and

ai ∈M
(
Wt

2(Ω)→W 1−s
2 (Ω)

)∩M(
Wt−1

2 (Ω)→ L2(Ω)
)
, i = 1, . . . , n,

and let u ∈Wt
2(Ω), 0 < s ≤ 1≤ n/2 < t , where s 	= 1/2. Then,

a0u ∈ L2(Ω), ai(∂iu) ∈ L2(Ω), aiu ∈W 1−s
2 (Ω), i = 1, . . . , n.

Hence ∂i(aiu) ∈W−s2 (Ω), s 	= 1/2 (see Remark 12.8 on p. 94 of Lions and Magenes
[127]). Now according to the analogue of Lemma 1.46 in a Lipschitz domain Ω we
have that ai belongs to L2(Ω), i = 1, . . . , n, and, by Lemma 1.54, u ∈Wt

2(Ω) ⊂
M(W 1

2 (Ω)); thus we deduce from Lemma 1.55 that

(∂iai)u= ∂i(aiu)− ai(∂iu) in W−1
2 (Ω).

Since the right-hand side of this equality belongs to W−s2 (Ω) for 0 < s ≤ 1, s 	= 1/2,
the same is true of the left-hand side. Hence

au= a0u+
n∑

i=1

(
∂i(aiu)− ai(∂iu)

)
in W−s2 (Ω), s 	= 1/2.
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In addition,

‖au‖W−s2 (Ω) ≤ ‖a0u‖W−s2 (Ω) +
n∑

i=1

(∥∥∂i(aiu)
∥∥
W−s2 (Ω)

+ ∥∥ai(∂iu)
∥∥
W−s2 (Ω)

)

≤ ‖a0u‖L2(Ω) +
n∑

i=1

(‖aiu‖W 1−s
2 (Ω)

+ ∥∥ai(∂iu)
∥∥
L2(Ω)

)

≤
{

‖a0‖M(Wt
2→L2)

+
n∑

i=1

‖ai‖M(Wt
2→W 1−s

2 )∩M(Wt−1
2 →L2)

}

‖u‖Wt
2
,

and therefore au ∈M(Wt
2(Ω)→W−s2 (Ω)), s 	= 1/2. �

1.9 Fourier Multipliers and Mollifiers

In this section we consider multipliers in Fourier transform space. We shall then
make use of this theory to design mollifiers in various function spaces and to analyze
their smoothing properties. The key feature of a mollifier is that it damps the high
frequency or high wave-number content in Fourier transform space of the function
it is applied to: this property will prove useful in the construction of finite difference
schemes for differential equations with data that are nonsmooth with respect to their
temporal or spatial variable.

In Sect. 1.9.1 we define Fourier multipliers on Lebesgue spaces; these will be our
main tool in the subsequent analysis of mollifiers. In Sect. 1.9.2 we introduce a gen-
eral definition of mollifier, and in Sect. 1.9.3, using Fourier multipliers on Lp(R

n),
we describe simple sufficient conditions, which ensure that a linear operator is a
mollifier on Lp(R

n). In Sect. 1.9.4 we expand the domains of definition of the mol-
lifiers considered in Sects. 1.9.2 and 1.9.3 to the space of tempered distributions,
and in particular to Bessel-potential spaces, Besov spaces and Sobolev spaces of
arbitrary real order.

1.9.1 Fourier Multipliers

In this section we outline the main properties of Fourier multipliers. For proofs and
further details we refer to the monographs of Bergh and Löfström [9], Grafakos
[59], Hörmander [71], Stein [167], and Stein and Weiss [168].

Definition 1.57 Let 1 ≤ p ≤∞. We say that a ∈ S ′(Rn) is a Fourier multiplier in
Lp(R

n) if there exists a positive constant c such that

∥∥F−1(a Fu)
∥∥
Lp(Rn)

≤ c‖u‖Lp(Rn) ∀u ∈ S
(
R
n
);
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the infimum of the set of all such positive constants c is denoted by ‖a‖Mp(Rn).
Equivalently,

‖a‖Mp(Rn) = sup
{∥∥F−1(a Fu)

∥∥
Lp(Rn)

: u ∈ S(
R
n
)
, ‖u‖Lp(Rn) ≤ 1

}
.

The linear space of all Fourier multipliers on Lp(R
n) is denoted by Mp(R

n) and
is equipped with the norm ‖ · ‖Mp(Rn). For the sake of brevity, we shall sometimes
write F−1a Fu instead of F−1(a Fu).

We observe that since u ∈ S(Rn) and a ∈ S ′(Rn), Fu belongs to S(Rn) and
a Fu is a tempered distribution. Thus F−1(a Fu) is correctly defined and it belongs
to S ′(Rn). In fact, according to Theorem 1.29,

F−1(a Fu)= (
F−1a

) ∗ u,

and therefore, by E) of Sect. 1.3.3, F−1(a Fu) ∈ C∞M (Rn).
Since S(Rn) is dense in Lp(R

n), 1≤ p <∞, the linear operator

F−1a F : u ∈ S(
R
n
) �→ F−1(a Fu) ∈ Lp

(
R
n
)

can be extended, preserving its norm, to a linear operator from Lp(R
n) to Lp(R

n).
This extension will still be denoted by F−1a F .

When p =∞, the space Mp(R
n) can be described explicitly. To do so, we note

that the operator T = F−1a F commutes with the translation operator on S(Rn)

in the sense that τxT = T τx, x ∈ Rn. Therefore a ∈M∞(Rn) if, and only if, there
exists a positive real number c such that

∣
∣((F−1a

) ∗ u)(0)∣∣≤ c‖u‖L∞(Rn), u ∈ S(
R
n
)
. (1.28)

This inequality implies that a belongs to M∞(Rn) if, and only if, F−1a is an ele-
ment of the dual space of L∞(Rn), that is, if it is a bounded complex Borel measure
on R

n. Hence M∞(Rn) coincides with the set of Fourier transforms of bounded
complex Borel measures, and ‖a‖M∞(Rn) is equal to the total variation of the mea-
sure F−1a. In view of (1.28) and the Hahn–Banach theorem, the linear operator
F−1aF : u ∈ S(Rn) �→ F−1(a Fu) ∈ L∞(Rn) can be extended, without increasing
its norm, to a linear operator from L∞(Rn) to L∞(Rn). The extended operator will
still be denoted by F−1aF .

We recall the following important properties of Fourier multipliers (see, for ex-
ample, Theorem 6.1.2 on p. 132 in Bergh and Löfström [9], or the monographs by
Grafakos [59], Hörmander [71], Stein [167], Stein and Weiss [168]):

Mp

(
R
n
)=Mp′

(
R
n
)
, 1≤ p ≤∞, 1/p+ 1/p′ = 1,

Mp

(
R
n
)⊂Mq

(
R
n
)⊂M2

(
R
n
)= L∞

(
R
n
)
, 1≤ p ≤ q ≤ 2.
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Furthermore, for 1 ≤ p0,p1 ≤∞ and 1/p = (1− θ)/p0 + θ/p1, with 0 ≤ θ ≤ 1,
we have that

‖a‖Mp(Rn) ≤ ‖a‖1−θ
Mp0 (R

n)
‖a‖θMp1 (R

n), a ∈Mp0

(
R
n
)∩Mp1

(
R
n
)
. (1.29)

If a1 and a2 belong to Mp(R
n), then their product a1a2 is also contained in Mp(R

n).
In addition, ‖ · ‖Mp(Rn) is submultiplicative in the sense that

‖a1a2‖Mp(Rn) ≤ ‖a1‖Mp(Rn)‖a2‖Mp(Rn)

for every a1, a2 in Mp(R
n), 1≤ p ≤∞ (cf. Bergh and Löfström [9], p. 133).

The next two theorems provide convenient tools for verifying that a function is a
Fourier multiplier.

Theorem 1.58 (Carlson–Beurling Inequality) Let a ∈ L2(R
n). Suppose that m is

a positive integer such that m > n/2 and let ∂αa ∈ L2(R
n) for every multi-index

α ∈ Nn, |α| =m; then, a ∈Mp(R
n) and there exists a constant c, independent of a

and p, such that

‖a‖Mp(Rn) ≤ c‖a‖1−θ
L2(R

n)
|a|θ

Wm
2 (Rn)

, θ = n/(2m),

for every p, 1≤ p ≤∞.

Proof Suppose that t > 0. Then, by the Cauchy–Schwarz inequality, we have that,
for any multi-index α ∈Nn, with |α| =m,

∫

|ξ |>t
∣
∣F−1a(ξ)

∣
∣dξ =

∫

|ξ |>t
|ξ |−m|ξ |m∣

∣F−1a(ξ)
∣
∣dξ

≤
(∫

|ξ |>t
|ξ |−2m dξ

)1/2(∫

Rn

|ξ |2m∣∣F−1a(ξ)
∣∣2 dξ

)1/2

≤ ct(n/2)−m|a|Wm
2 (Rn),

where in the transition to the last line we have used that F−1a = (2π)−nFa,
whereby |F−1a|2 = (2π)−2n|Fa|2, together with the identity |ξ |2m|Fa|2 = |F∂αa|2
for |α| =m, Parseval’s identity, and that |a|Wm

2 (Rn) = |a|Wm
2 (Rn).

Similarly,
∫

|ξ |≤t
∣∣F−1a(ξ)

∣∣dξ ≤ ctn/2‖a‖L2(R
n).

Now adding the bounds obtained for |ξ |> t and |ξ | ≤ t , choosing

t =
( |a|Wm

2 (Rn)

‖a‖L2(R
n)

)1/m
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and noting the equalities

‖a‖M1(R
n) = ‖a‖M∞(Rn) =

∫

Rn

∣∣F−1a(ξ)
∣∣dξ,

we get

‖a‖Mp(Rn) ≤ ‖a‖M1(R
n) =

∫

Rn

∣
∣F−1a(ξ)

∣
∣dξ ≤ c‖a‖1−θ

L2(R
n)
|a|θ

Wm
2 (Rn)

,

with θ = n/(2m). For p ∈ (1,∞) the first inequality here follows from (1.29) with
p0 = 1, p1 =∞ and θ = 1− (1/p); for p = 1,∞ it holds trivially. �

When 1 < p <∞, a slightly simpler sufficient condition can be given: it is
due to Lizorkin [128] and is stated in the next theorem; see also the monograph
of Nikol’skiı̆ [144], p. 59, where a detailed proof is presented.

Theorem 1.59 (Lizorkin’s Multiplier Theorem) Suppose that ξα∂αa is a bounded
continuous function on the set

R
n∗ =

{
ξ ∈Rn : ξi 	= 0, i = 1, . . . , n

}
,

for each multi-index α ∈ {0,1}n; let M0 be a positive constant such that
∣∣ξα∂αa(ξ)

∣∣≤M0 ∀α ∈ {0,1}n, ∀ξ ∈Rn∗.

Then, a ∈Mp(R
n), 1 < p <∞, and there exists a positive constant Cp , depending

only on p, such that ‖a‖Mp(Rn) ≤ CpM0.

Let Ω be a bounded open set in R
n. We define the set Mp(Ω) of local Fourier

multipliers on Ω as the collection of equivalence classes of tempered distributions
that are equal to an element of Mp(R

n) on Ω . As is usual, we identify an equiva-
lence class with any of its elements. The norm in Mp(Ω) is defined by

‖a‖Mp(Ω) = inf
χ
‖χ‖Mp(Rn),

where the infimum is taken over all χ ∈Mp(R
n) such that a = χ on Ω .

1.9.2 Definition of Mollifier

In order to motivate the general definition of mollifier that will be stated at the end
of this section, we begin with a simple example. Given a locally integrable function
v defined on R and a positive real number h, consider the integral average v �→ Thv

defined by

(Thv)(x) := 1

h

∫ x+h/2

x−h/2
v(ξ)dξ, x ∈R,
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and referred to sometimes as Steklov mollifier. In the next chapter we shall assign
a specific meaning to the parameter h: it will denote the mesh-size in a finite dif-
ference scheme; however, for the time being, the precise interpretation of h is of no
significance. Clearly, if v is locally integrable on R, the function x �→ (Thv)(x) is
continuous on R, and therefore Th can be seen as a smoothing operator.

For example, the image of the (discontinuous!) Heaviside function H , defined by

H(x) :=
{

1 when x > 0,
0 otherwise,

under the mapping v �→ Thv is the (continuous!) piecewise linear function

(ThH)(x)=
⎧
⎨

⎩

0 when x <−h/2,
(2x + h)/(2h) when −h/2≤ x ≤ h/2,
1 otherwise.

It is worth noting that, for small values of h, the function ThH is close to H in the
sense that

‖ThH −H‖Lp(R) =
h1/p

2(1+ p)1/p
, 1≤ p <∞.

The smoothing properties of Th are best seen in Fourier transform space and, for this
purpose, Thv will be rewritten in the form of a convolution. Denoting by θ the char-
acteristic function of the interval [−1/2,1/2] and defining θh(x) := h−1θ(h−1x),
we can write

Thv = θh ∗ v.
It is clear from this representation that Th is a translation-invariant linear operator.
Moreover, by Young’s inequality (1.17),

‖Thv‖Lp(R) ≤ ‖θh‖L1(R)‖v‖Lp(R) = ‖θ‖L1(R)‖v‖Lp(R), v ∈ Lp(R).

Hence, Th is a bounded linear operator on Lp(R), uniformly in h; or, in other words,
the family of operators {Th : h > 0} is uniformly bounded on Lp(R).

In order to clarify the effect of mollification on smooth functions, we note that,
since Fθh(ξ)= Fθ(hξ), Thv can be rewritten in the form

Thv = v+ h2∂2B
(0)
h v,

where

B
(0)
h v := F−1 1− Fθ(hξ)

h2ξ2
Fv

and

Fθ(ξ)= sin(ξ/2)

ξ/2
.
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Here ∂2 denotes the second derivative with respect to x. Similarly to Th, B(0)
h is a

translation-invariant linear operator on Lp(R).
Now let us suppose that the Fourier transform of v contains ‘low frequencies

(wave-numbers)’ only, i.e. Fv(ξ) = 0 for |hξ | > 2δ for some constant δ, 0 < δ ≤
π/2; then, according to the Paley–Wiener theorem (Theorem 1.30), v is infinitely
many times continuously differentiable on R. Thanks to Theorem 1.58, the function

1− Fθ(hξ)

h2ξ2
,

featuring in the definition of B(0)
h v, is a local Fourier multiplier on Lp(−δ, δ). Thus

∥∥∂2B
(0)
h v

∥∥
Lp(R)

= ∥∥B(0)
h ∂2v

∥∥
Lp(R)

≤ C
∥∥∂2v

∥∥
Lp(R)

,

and therefore

‖Thv − v‖Lp(R) ≤ Ch2
∥∥∂2v

∥∥
Lp(R)

.

In other words, if v is sufficiently smooth (that is, if ∂2v ∈ Lp(R)), then Thv ap-
proximates v with O(h2) error as h→ 0.

Let us now turn our attention to understanding the effect of mollification on the
‘high frequency (wave number)’ content of a function. By considering the Fourier
transform of Thv and applying Theorem 1.29 we obtain

F(Thv)(ξ)= Fθ(hξ)Fv(ξ)= sin(ξh/2)

ξh/2
Fv(ξ).

This shows that, for any fixed h ∈ (0,1] and |ξ |  1, the magnitude of F(Thv)(ξ) is
smaller than that of Fv(ξ), by a factor that is bounded by a multiple of 1/ξ . A more
detailed picture emerges by writing

Thv = hDhB
(1)
h v,

where Dhw := (w(x + h) − w(x))/h is the first-order divided difference of the
function w on the uniform mesh hZ, and

B
(1)
h v = F−1 1

ıhξ
exp

(
− ıhξ

2

)
Fv.

Similarly to B
(0)
h , B(1)

h is a translation-invariant linear operator on Lp(R). Suppose
that the Fourier transform of v is supported on ‘high frequencies (wave-numbers)’
only, i.e. Fv(ξ)= 0 for |hξ | ≤ δ for some constant δ. Because

1

ıhξ
exp

(
− ıhξ

2

)
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is a local Fourier multiplier on Lp((−∞, δ)∪ (δ,∞)), it follows that

∥∥DhB
(1)
h v

∥∥
Lp(R)

= ∥∥B(1)
h Dhv

∥∥
Lp(R)

≤ C‖Dhv‖Lp(R),

and therefore,

‖Thv‖Lp(R) ≤ Ch‖Dhv‖Lp(R).

In other words, if v is a ‘nonsmooth’ function in the sense that the only requirement
on the regularity of v is that suph∈(0,1] ‖Dhv‖Lp(R) ≤ Const., then Thv approximates
zero with O(h) error as h→ 0. For example, in the case of the function x ∈ R �→
v(x) :=H(x)−H(x − 1), with compact support [0,1] and jump discontinuities at
x = 0 and x = 1, suph∈(0,1] ‖Dhv‖L1(R) = 2, and therefore ‖Thv‖L1(R) = O(h) as
h→ 0.

Thus, to summarize our findings, Th is a translation-invariant linear operator,
uniformly bounded on Lp(R); further, if v is smooth, in the sense that the Fourier
transform of v has compact support in the interval [−2δ/h,2δ/h], then Thv − v

is O(hμ) with μ = 2 in the Lp(R) norm, and finally if v is nonsmooth, in the
sense that the Fourier transform of v is supported in the complement of the interval
[−δ/h, δ/h], then Thv is of size O(hν), with ν = 1, in the Lp(R) norm. Motivated
by this example, and following Kreiss, Thomée and Widlund [115] and Thomée and
Wahlbin [178], we adopt the following definition of mollifier.

Definition 1.60 A family of linear translation-invariant operators {Th : 0 < h≤ h0},
each of which is uniformly bounded on Lp(R

n), is called a family of mollifiers of
order (μ, ν) if, for some real number δ with 0 < δ ≤ π/2, there exist translation-
invariant linear operators B(0)

h,α , |α| = μ, and B
(1)
h,α , |α| = ν, and positive constants

C
(0)
α , |α| = μ, and C

(1)
α , |α| = ν, independent of h, such that:

(i) for every v ∈ Lp(R
n) with Fv(ξ)= 0 for |hξ |> 2δ,

Thv = v+ hμ
∑

|α|=μ
∂αB

(0)
h,αv,

∥
∥B(0)

h,αv
∥
∥
Lp(Rn)

≤ C(0)
α ‖v‖Lp(Rn);

(ii) for every v ∈ Lp(R
n) with Fv(ξ)= 0 for |hξ |< δ,

Thv = hν
∑

|α|=ν
Dα
hB

(1)
h,αv,

∥∥B(1)
h,αv

∥∥
Lp(Rn)

≤ C(1)
α ‖v‖Lp(Rn),

where, for a multi-index α = (α1, . . . , αn), Dα
h denotes the forward divided dif-

ference of order |α| on the uniform mesh hZn.

Given a particular h, (i) requires that Thv approximates v to order O(hμ) when-
ever the Fourier transform of v contains low ‘frequencies (wave-numbers)’ only
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(with respect to the given resolution h). Similarly, (ii) requires that Thv approxi-
mates 0 to order O(hν) whenever the Fourier transform of v contains ‘high fre-
quencies (wave-numbers)’ only. The integers μ and ν will be called the order of
approximation and the order of mollification of Th, respectively. In the next section
we consider a general class of mollifiers of order (μ, ν); thereafter, we shall confine
ourselves to mollifiers with μ= 2.

1.9.3 An Admissible Class of Mollifiers

We shall generalize our simple example of the Steklov mollifier introduced in the
previous section by considering mollifiers of the form

Thv := θh ∗ v, θh(x)= h−nθ
(
h−1x

)
, (1.30)

with θ ∈ L1(R
n). The next theorem gives a precise characterization of the admissi-

ble class of θ in terms of Fourier multipliers (cf. Kreiss, Thomée and Widlund [115]
and Thomée and Wahlbin [178]).

Theorem 1.61 Let p ∈ [1,∞), and assume that θ belongs to L1(R
n) and its

Fourier transform Fθ can be expressed as follows:

Fθ(ξ)= 1+
∑

|α|=μ
ξαb(0)α (ξ), b(0)α ∈Mp(B2δ), (1.31)

Fθ(ξ)=
∑

|α|=ν

(
sin

ξ

2

)α

b(1)α (ξ), b(1)α ∈Mp

(
R
n \ B̄δ

)
. (1.32)

Then, Fθ ∈Mp and (1.30) defines a family of mollifiers Th on Lp(R
n) of order

(μ, ν) in the sense of Definition 1.60.

Proof Clearly, for each h > 0, the operator Th is linear and translation-invariant on
Lp(R

n). Further, thanks to Young’s inequality (1.17),

∥∥F−1(Fθ · Fv)∥∥
Lp(Rn)

= ‖θ ∗ v‖Lp(Ω) ≤ ‖θ‖L1(R
n)‖v‖Lp(Rn) (1.33)

for each v ∈ S(Rn), and therefore Fθ ∈ Mp , ‖Fθ‖Mp ≤ ‖θ‖L1(R
n). Since the

L1(R
n) norms of θ and θh are equal, inequality (1.33) also implies that the family

{Th : h > 0} is uniformly bounded on Lp(R
n). In order to verify that Thv = θh ∗ v

is a mollifier of order (μ, ν), we define the linear operators B(0)
h,α and B

(1)
h,α by

B
(0)
h,αv := F−1(ı−|α|b(0)α (hξ)Fv

)
,

B
(1)
h,αv := F−1

(
(2ı)−|α| exp

(
− ıh

2
ξ · α

)
b(1)α (hξ)Fv

)
.
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Thus, by definition, B(0)
h,α , |α| = μ, and B(1)

h,α , |α| = ν, are translation-invariant linear
operators on Lp(R

n). Moreover,

∥∥B(0)
h,αv

∥∥
Lp(Rn)

≤ ∥∥b(0)α

∥∥
Mp(B2δ)

‖v‖Lp(Rn)

for all v ∈ Lp(R
n) such that Fv(ξ)= 0, |hξ |> 2δ, and

∥∥B(1)
h,αv

∥∥
Lp(Rn)

≤ ∥∥b(1)α

∥∥
Mp(Rn\B̄δ)

‖v‖Lp(Rn)

for all v ∈ Lp(R
n) such that Fv(ξ) = 0, |hξ | < δ. Since Fθh(ξ) = (Fθ)(hξ) and

since in Fourier transform space ∂α and Dα
h correspond to multiplication by (ıξ)α

and by

h−|α|
n∏

j=1

(
eıhξj − 1

)αj = (2ı)|α| exp

(
ıh

2
ξ · α

)(
h−1 sin

hξ

2

)α

,

respectively, the required representations of Thv in terms of B(0)
h,α and B

(1)
h,α follow

from (1.31) and (1.32). �

In order to illustrate the significance of this theorem, we construct a family of
mollifiers of order (μ, ν) in one dimension (n = 1), which generalizes our simple
example of the Steklov mollifier discussed in Sect. 1.9.2. For two integers, μ ≥ 1
and ν ≥ 1, let pμ,ν be a polynomial of degree k ≥ ν such that

pμ,ν(sin ξ)= ξν + ξμ+ν
∞∑

m=0

cmξ
m

where cm, m = 0,1, . . ., are suitable constants and c0 	= 0, with the infinite series
converging absolutely and uniformly for |ξ | ≤ 2δ and some δ in the interval (0,2π].

Let us consider the function

Sμ,ν(ξ) := pμ,ν(sin(ξ/2))

(ξ/2)ν
, ξ ∈R.

The extension of Sμ,ν from the real line to the complex plane is an entire func-
tion U(ζ ) satisfying the hypotheses of the Paley–Wiener theorem (Theorem 1.30)
with ρ = k/2; therefore, there exists a distribution θμ,ν , with compact support
supp θμ,ν ⊂ [− 1

2k,
1
2k], such that

Fθμ,ν = Sμ,ν.

Moreover because Sμ,ν ∈ L2(R), Plancherel’s theorem implies that θμ,ν ∈ L2(R);
further, since θμ,ν has compact support, it follows by Hölder’s inequality that θμ,ν ∈
L1(R). Thus, the linear operator T μ,ν

h defined by

T
μ,ν
h u= θ

μ,ν
h ∗ u, θ

μ,ν
h = h−1θμ,ν

(
h−1x

)
, (1.34)
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belongs to the class of mollifiers considered. Now we show that {T μ,ν
h : h > 0} is

a family of mollifiers of order (μ, ν).

Theorem 1.62 The operator T μ,ν
h defined by (1.34) is a mollifier of order (μ, ν) on

Lp(R
n), 1≤ p <∞.

Proof We shall apply Theorem 1.61 in tandem with the Carlson–Beurling inequality
stated in Theorem 1.58. Let us define the function b(0) by

b(0)(ξ) := Fθμ,ν(ξ)− 1

(ξ/2)μ
, |ξ | ≤ 2δ.

Then,

Fθμ,ν(ξ)= 1+
(
ξ

2

)μ

b(0)(ξ), |ξ | ≤ 2δ.

In order to show that b(0) ∈Mp(B2δ), let us observe that since Fθμ,ν = Sμ,ν , we
have that

b(0)(ξ)=
∞∑

m=0

cm

2m
ξm, |ξ | ≤ 2δ,

d

dξ
b(0)(ξ)=

∞∑

m=0

(m+ 1)cm+1

2m+1
ξm, |ξ | ≤ 2δ,

and therefore b(0) ∈ C1(B2δ). Let ϕ belong to C∞0 (R) and suppose that ϕ(ξ) = 1,
|ξ | ≤ 2δ; the existence of such a function is ensured by Lemma 1.15. By applying
Theorem 1.58 with n= 1 and m= 1, we deduce that ϕb(0) ∈Mp . Therefore b(0) ∈
Mp(B2δ), and hence we have (1.31).

In order to verify (1.32), we write

Fθμ,ν(ξ)= Sμ,ν(ξ)=
(

sin
ξ

2

)ν

b(1)(ξ), |ξ | ≥ δ,

where

b(1)(ξ) =
(
ξ

2

)−ν
pμ,ν(sin(ξ/2))

(sin(ξ/2))ν

=
(
ξ

2

)−ν
qμ,ν

(
sin(ξ/2)

)
, |ξ | ≥ δ,

and qμ,ν is a polynomial of degree k − ν. Clearly qμ,ν(sin(ξ/2)) ∈Mp . Let ψ ∈
C∞(R) be such that ψ(ξ) = 1, |ξ | ≥ δ, and ψ(ξ) = 0 in the neighbourhood of
ξ = 0. Then, according to Theorem 1.58, (ξ/2)−νψ ∈Mp . Since the product of two
elements in Mp is also contained in Mp (see Sect. 1.9.1), it follows that ψb(1) ∈Mp;
thus, b(1) belongs to Mp(R \ B̄δ), and hence (1.32). �
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1.9.4 Mollifiers of Tempered Distributions

In the remainder of this section we focus on a family of mollifiers with fixed order
of approximation, μ= 2, which will be used extensively throughout the rest of the
book. They arise from the polynomials p2,ν(ξ) = ξν , ν ≥ 1. The Taylor series of
p2,ν(sin ξ) in the neighbourhood of ξ = 0 has the form

p2,ν(sin ξ)= ξν + ξν+2
∞∑

m=0

cmξ
m,

where cm are suitable constants, c0 	= 0, and the infinite series converges absolutely
and uniformly for all |ξ |< 2δ, where δ ∈ (0,2π]. This expansion indicates that the
order of approximation is indeed μ= 2. Clearly,

S2,ν(ξ)= p2,ν(sin(ξ/2))

(ξ/2)ν
=

(
sin(ξ/2)

ξ/2

)ν

, ν = 1,2, . . . .

In fact, we shall extend the range of values for ν by allowing ν = 0. In this case,
S2,0(ξ)≡ 1.

Let θν denote the inverse Fourier transform of S2,ν , ν ≥ 0. For ν = 0, θ0 = δ, the
Dirac distribution concentrated at zero. When ν ≥ 1, a simple calculation reveals
that θν is a B-spline of degree ν − 1 supported on the interval [−ν/2, ν/2]. For
example,

θ1(x) =
{

1 if |x| ≤ 1/2,
0 otherwise,

θ2(x) =
{

1− |x| if |x| ≤ 1,
0 otherwise,

θ3(x) =
⎧
⎨

⎩

(3− 4x2)/4 if |x| ≤ 1/2,
(3− 2|x|)2/8 if 1/2 < |x| ≤ 3/2,
0 otherwise.

Letting θνh (x) := h−1θν(h
−1x) for ν ≥ 1 and θ0

h := θ0, we consider the associated
family of linear operators:

T ν
h v := θνh ∗ v.

For ν = 0, T 0
h : Lp(R)→ Lp(R) is simply the identity operator, whereas for ν ≥ 1 it

follows from Theorem 1.62 that T ν
h is a family of mollifiers on Lp(R), 1≤ p <∞,

of order (2, ν).
Our definition of T ν

h is easily generalized to the case of n dimensions. Let ν =
(ν1, . . . , νn), νi ≥ 0, i = 1, . . . , n, and let θνh ∈ E ′(Rn) denote the tensor product of
the univariate distributions θνih ∈ E ′(R), i = 1, . . . , n. We define

T ν
h v := θνh ∗ v. (1.35)
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This mollifier exhibits different orders of smoothing in the various co-ordinate di-
rections: in the ith direction the order of mollification is νi , with νi = 0 signifying
no mollification in the ith direction. Since θνh is a distribution with compact support,
T ν
h v is correctly defined for any distribution v ∈ D′(Rn), and therefore T ν

h can be
seen as a mollifier on D′(Rn). When ν = (0, . . . ,0), T ν

h is the identity operator in
D′(Rn), which has no smoothing properties.

Next, we shall investigate, for a tempered distribution v, the amount of smooth-
ing required to ensure that T ν

h v is a continuous function. To this end, we shall first
establish a set of preliminary results, the first of which characterizes the smooth-
ness of θν in one dimension (n= 1). For this purpose we require a further class of
function spaces, called Bessel-potential spaces.

Given a real number s and a real number p > 1, we consider the Bessel-potential
space of tempered distributions:

Hs
p

(
R
n
)= {

u ∈ S ′(Rn
) : F−1((1+ |ξ |2)s/2

Fu
) ∈ Lp

(
R
n
)}
.

H s
p(R

n) is a Banach space with the norm

‖u‖Hs
p(R

n) =
∥∥F−1((1+ |ξ |2)s/2

Fu
)∥∥

Lp(Rn)
.

Concerning the relationship between the Sobolev spaces Ws
p(R

n) and Bessel-
potential spaces Hs

p(R
n), for s ∈R and p ∈ (1,∞), we have that

Ws
p

(
R
n
)=Hs

p

(
R
n
)

for s = 0,±1,±2, . . . .

Before we state and prove the next lemma, which provides a characterization of
the smoothness of θν in terms of Bessel-potential spaces, we recall the following
embeddings:

➊ assuming that p ∈ (1,∞) and s > n/p,

Hs
p

(
R
n
)
↪→ BC

(
R
n
); (1.36)

➋ assuming that p ∈ (1,∞) and s > 0,

Ws
p

(
R
n
)
↪→Hs−ε

p(ε)

(
R
n
)
, p(ε) := p

1− εp
n

, (1.37)

for integer s > 0, 1 < p <∞ and ε = 0; for noninteger s > 0, 1 < p ≤ 2 and
ε = 0; and for noninteger s > 0, 2 <p <∞ and 0 < ε < n/p.

The first of these continuous embeddings, (1.36), follows from Eq. (16) on
p. 206 of Triebel [181]. When s > 0 is an integer, 1 < p <∞ and ε = 0, the sec-
ond continuous embedding, (1.37), is an immediate consequence of the equality
Ws

p(R
n) = Hs

p(R
n). When s > 0 is noninteger, 1 < p ≤ 2 and ε = 0, (1.37) is a

trivial consequence of the continuous embedding Ws
p(R

n)= Bs
p,p(R

n) ↪→Hs
p(R

n)

(cf. Theorem 5(C) on p. 155 of Stein [167]). Finally, when s > 0 is noninteger and
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2 < p <∞, suppose that 0 < ε < n/p; then, (1.37) follows from the continuous
embedding Ws

p(R
n)= Bs

p,p(R
n) ↪→Hs−ε

p(ε)(R
n) (cf. (17) on p. 206 of Triebel [181]

with t = s − ε and q = p(ε)(> p)).

Lemma 1.63 Suppose that ν ∈N, σ ∈R and p ∈ (1,∞) are such that σ + (1/p) <
ν. Then, θν ∈Hσ

p′(R), where 1/p+ 1/p′ = 1.

Proof Let ν = 0. For −σ > 1/p, H−σp (R) is embedded in BC(R) (cf. (1.36) with
n= 1). Therefore θ0 = δ belongs to (H−σp (R))′ =Hσ

p′(R).
Let ν = 1. It is easily seen that θ1 ∈Wτ

q (R) for τ < 1/q and every q ∈ (1,∞). We
recall that Wτ

q (R) is embedded in Hτ−ε
q(ε) (R) with q(ε)= q/(1− εq) (cf. (1.37) with

n= 1), where ε = 0 if 1 < q ≤ 2 and 0 < ε < 1/q if 2 < q <∞. Thus, if 1 <p′ ≤ 2,
by taking q = p′, τ = σ and ε = 0, we directly deduce that θ1 ∈Hτ

q (R)=Hσ
p′(R).

If on the other hand 2 < p′ <∞, then we choose q = p′/(1+ εp′) and τ = σ + ε,
with 0 < ε < 1/2− 1/p′; hence 2 < q < p′ and τ < 1/q , and so, again, we have
that θ1 ∈Wτ

q (R) ↪→Hτ−ε
q(ε)

(R)=Hσ
p′(R).

For ν ≥ 2, the proof can be reduced to the case of ν = 1 by noting that θν =
θ1∗· · ·∗θ1 (ν-fold convolution). Indeed, let us choose αj and p′j ,−∞< αj < 1/p′j ,
1 <p′j <∞, j = 1, . . . , ν, such that

σ = α1 + · · · + αν and
1

p′
= 1

p′1
+ · · · + 1

p′ν
− (ν − 1).

Since

F−1((1+ |ξ |2)σ/2
Fθν

)= F−1(1+ |ξ |2)α1/2
Fθ1 ∗ · · · ∗ F−1(1+ |ξ |2)αν/2

Fθ1

and θ1 ∈Hαj

p′j
(R) for αj < 1/p′j , j = 1, . . . , ν, Young’s inequality (1.17) yields

∥
∥F−1((1+ |ξ |2)σ/2

Fθν
)∥∥

Lp′ (R)
≤

ν∏

j=1

‖F−1(1+ |ξ |2)αj /2
Fθ1‖Lp′

j
(R),

and therefore θν ∈Hσ
p′(R). �

In order to extend this result to n dimensions, we need the following lemma.

Lemma 1.64 For s ∈R and σj ∈R, j = 1, . . . , n, consider the function an defined
by

an(ξ) :=
(
1+ |ξ |2)−s/2

n∏

j=1

(
1+ ξ2

j

)−σj /2
, ξ = (ξ1, . . . , ξn) ∈Rn.
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Let Pn denote the collection of all nonempty subsets of In := {1, . . . , n}. If

s +
∑

j∈P
σj ≥ 0 ∀P ∈ Pn,

then an is a Fourier multiplier on Lp(R
n), 1 <p <∞.

Proof The proof is based on Lizorkin’s multiplier theorem (Theorem 1.59). Clearly
an is a continuous function on R

n∗; in order to show that it is bounded on R
n∗ we note

that every ξ = (ξ1, . . . , ξn) ∈Rn can be written as

ξ = r(cosγ1, . . . , cosγn), where r = |ξ |, cos2 γ1 + · · · + cos2 γn = 1,

and γi ∈ [0,π]. Let Q := {j ∈ In : σj < 0} and, for each ξ ∈ Rn, let P(ξ) := {j ∈
In \Q : cos2 γj ≥ 1/n}. If Q= ∅, then P(ξ) 	= ∅ for all ξ ∈ Rn. Therefore P(ξ) ∪
Q 	= ∅ for all ξ ∈ R

n. For σ ∈ R shall write (σ )+ := max{σ,0}. Hence, for each
ξ ∈Rn we have that

an(ξ)≤ n
1
2

∑n
j=1(σj )+

(
1+ |ξ |2)− 1

2 s0(ξ), where s0(ξ)= s +∑
j∈P(ξ)∪Q σj .

Since s0(ξ)≥ 0 for each ξ ∈Rn, we deduce that an is bounded on R
n∗ . Thus we have

shown that ξα∂αan ∈ BC(Rn∗) for α = (0, . . . ,0). We shall prove by induction that
ξα∂αan ∈ BC(Rn∗) for all α ∈ {0,1}n. Let α ∈ {0,1}n and assume that ξβ∂βan ∈
BC(Rn∗) for all β ≤ α. Fix j ∈ In such that αj = 0 (if there is no such j , the proof
is complete). By the Leibniz formula

ξj ξ
α∂j ∂

αan(ξ)=
∑

β≤α

(
α

β

)(
ξβ∂βgj (ξ)

)(
ξα−β∂α−βan(ξ)

)
,

where

gj (ξ) := −sξ2
j

(
1+ |ξ |2)−1 − σj ξ

2
j

(
1+ ξ2

j

)−1
.

As ξβ∂βgj is a bounded continuous function on R
n∗ , by recalling the inductive

hypothesis we deduce that ξj ξα∂j ∂αan belongs to BC(Rn∗). Hence, by induction,
ξα∂αan ∈ BC(Rn∗) for all α ∈ {0,1}n. Thanks to Lizorkin’s multiplier theorem an is
therefore a Fourier multiplier on Lp(R

n), 1 <p <∞. �

By applying Lemma 1.64, we obtain the following extension of Lemma 1.63 to
n dimensions.

Lemma 1.65 Suppose that s ∈ R, p ∈ (1,∞), ν = (ν1, . . . , νn) ∈ Nn, and assume
that there exist n real numbers σj , j = 1, . . . , n, such that

σj + (1/p) < νj ∀j ∈ In, (1.38)

s +
∑

j∈P
σj ≥ 0 ∀P ∈ Pn, (1.39)
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where In := {1, . . . , n} and Pn is the collection of all nonempty subsets of In. Then,
θν ∈H−sp′ (R

n).

Proof Let us define the partial Fourier transform Fj by

(Fju)(x1, . . . , ξj , . . . , xn) :=
∫ ∞

−∞
u(x)e−ıxj ξj dxj , u ∈ S(

R
n
)
,

and extend the definition of Fj to S ′(Rn) in the usual way. Similarly, we define F−1
j .

With these definitions, we can write F = F1 · · ·Fn. Since θν is the tensor product of
θνj , j = 1, . . . , n, it follows that

Fθν(ξ)=
n∏

j=1

Fjθνj (ξj ).

By recalling the definition of an from Lemma 1.64, we have that

F−1((1+ |ξ |2)−s/2
Fθν

)= F−1an ∗
(

n∏

j=1

F−1
j

(
1+ |ξj |2

)σj /2
Fjθνj

)

.

Under the hypotheses of the lemma an is a Fourier multiplier on Lp′(Rn) by
Lemma 1.64, and θνj ∈Hσj

p′ (R), j = 1, . . . , n, by Lemma 1.63. Hence,

‖θν‖H−s
p′ (R

n) =
∥∥F−1((1+ |ξ |2)−s/2

Fθν
)∥∥

Lp′ (Rn)
≤ ‖an‖Mp

n∏

j=1

‖θνj ‖Hσj

p′ (R)
,

and therefore θν ∈H−sp′ (R
n). �

Thus we have characterized the smoothness of the function θν in terms of Bessel-
potential spaces. Next we show that if θν ∈H−sp′ (R

n) and u ∈Hs
p(R

n) then T ν
h u=

θνh ∗ u is a continuous function on R
n. In fact, we shall establish a more general

result from which the continuity of T ν
h u easily follows.

Lemma 1.66 Suppose that u ∈ S ′(Rn), v ∈ E ′(Rn) and let

U := F−1((1+ |ξ |2)s/2
Fu

)
,V := F−1((1+ |ξ |2)−s/2

Fv
)
.

If U ∈ Lp(R
n), V ∈ Lp′(Rn), 1/p + 1/p′ ≥ 1, p ∈ (1,∞), then U ∗ V belongs to

Lr(R
n), 1/r = 1/p+1/p′ −1, and u∗v =U ∗V . In particular, if 1/p+1/p′ = 1,

then u ∗ v =U ∗ V is a bounded uniformly continuous function on R
n.

Proof The fact that U ∗ V belongs to Lr(R
n) is the consequence of Young’s in-

equality. Since u ∗ v = F−1(Fu · Fv) in S ′(Rn), it suffices to show that Fu · Fv =
F(U ∗ V ) in S ′(Rn) to deduce that u ∗ v =U ∗ V in S ′(Rn).
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Because Fu ∈ S ′(Rn), Fv ∈ C∞M (Rn) and (1 + |ξ |2)s/2 ∈ C∞M (Rn), by recall-
ing the definition of multiplication of a tempered distribution by a function from
C∞M (Rn), we obtain

〈Fu · Fv,ϕ〉 = 〈Fu,Fv · ϕ〉
= 〈(

1+ |ξ |2)s/2
Fu,

(
1+ |ξ |2)−s/2

Fv · ϕ〉

= 〈(
1+ |ξ |2)s/2

Fu · (1+ |ξ |2)−s/2
Fv,ϕ

〉= 〈FU · FV,ϕ〉,

for all ϕ ∈ S(Rn). As FV ∈ C∞M (Rn), it follows that F(ϕFV ) ∈ S(Rn), and there-
fore

〈FU · FV,ϕ〉 = 〈FU,ϕ · FV 〉 = 〈
U,F(ϕFV )

〉= 〈U,V− ∗ Fϕ〉, ϕ ∈ S(
R
n
)
.

Since U is a regular distribution and V− ∗ Fϕ = F(ϕFV ) ∈ S(Rn), by applying
Fubini’s theorem we obtain

〈U,V− ∗ Fϕ〉 =
∫

Rn

U(x)(V− ∗ Fϕ)(x)dx

=
∫

Rn

U(x)

∫

Rn

Fϕ(y)V (y − x)dy dx

=
∫

Rn

(∫

Rn

U(x)V (y − x)dx

)
Fϕ(y)dy

=
∫

Rn

(U ∗ V )(y)Fϕ(y)dy

= 〈U ∗ V,Fϕ〉 = 〈
F(U ∗ V ),ϕ〉, ϕ ∈ S(

R
n
)
.

Thus Fu · Fv = FU · FV = F(U ∗ V ), and therefore u ∗ v =U ∗ V in S ′(Rn).
Finally, if 1/p + 1/p′ = 1 then, by Young’s inequality, U ∗ V ∈ L∞(Rn) and,

since τh(U ∗ V )− (U ∗ V )= (τhU −U) ∗ V , also

∥∥τh(U ∗ V )− (U ∗ V )∥∥
L∞(Rn)

≤ ‖τhU −U‖Lp(Rn)‖V ‖Lp′ (Rn).

As ‖τhU − U‖Lp(Rn)→ 0 when |h| → 0, it follows that U ∗ V is a bounded uni-
formly continuous function on R

n. �

Now we are ready to prove the main result of this section.

Theorem 1.67 Suppose that u ∈Hs
p(R

n), s ∈ R, p ∈ (1,∞), ν ∈ Nn, and assume
that there exist n real numbers σj , j = 1, . . . , n, such that inequalities (1.38) and
(1.39) hold. Then, T ν

h u is a bounded uniformly continuous function on R
n.
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Proof Thanks to Lemma 1.65, θν ∈H−sp′ (R
n), 1/p + 1/p′ = 1, and therefore also

θνh ∈H−sp′ (R
n). By recalling Lemma 1.66 with

U = F−1(1+|ξ |2)s/2
Fu ∈ Lp

(
R
n
)

and V = F−1(1+|ξ |2)−s/2
Fθνh ∈ Lp′

(
R
n
)
,

and noting that convolution is commutative, it follows that T ν
h u= θνh ∗u= u∗ θνh =

U ∗ V is bounded and uniformly continuous on R
n. �

Analogous results hold in Besov and Sobolev spaces.

Theorem 1.68 Suppose that u ∈ Bs
p,p(R

n), s ∈R, p ∈ (1,∞), ν ∈Nn, and assume
that there exist n real numbers σj , j = 1, . . . , n, such that (1.38) and (1.39) hold.
Then, T ν

h u is a uniformly continuous function on R
n.

Proof Let us observe that if (1.38) and (1.39) hold, then (1.39) holds with strict
inequality: indeed, if (1.38) and (1.39) are satisfied for some set of σj , j = 1, . . . , n,
then there is a δ > 0 such that σj < νj − 1

p
− δ, j = 1, . . . , n. Letting σ ′j = σj + δ,

j = 1, . . . , n, we deduce that (1.38) and (1.39) hold with σj replaced by σ ′j , and ≥
replaced by > in (1.39). Now let

s∗ := s + min
P∈Pn

∑

j∈P
σ ′j ;

clearly, s∗ > 0.
Let us note the continuous embedding Bs

p,p(R
n) ↪→ Hs−ε

p(ε)(R
n) for s ∈ R, p ∈

(1,∞), with 0 < ε < n/p and p(ε) := p
1−(εp/n) (cf. (17) on p. 206 of Triebel [181]).

By choosing a sufficiently small ε in the interval (0,min(s∗, n/p)), we can thus en-
sure that the strict versions of the inequalities (1.38) and (1.39) hold with s and p

replaced by s − ε and p(ε), respectively, and the stated result follows from Theo-
rem 1.67. �

Theorem 1.69 Suppose that u ∈Ws
p(R

n), s ∈ R, p ∈ (1,∞), ν ∈ Nn, and assume
that there exist n real numbers σj , j = 1, . . . , n, such that the inequalities (1.38)
and (1.39) hold. Then, T ν

h u is a bounded uniformly continuous function on R
n.

Proof By noting that, for p ∈ (1,∞),

Ws
p

(
R
n
)=

{
Hs
p(R

n) if s = 0,±1,±2, . . . ,
Bs
p,p(R

n) if s 	= integer,

the result follows from Theorems 1.67 and 1.68. �
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1.9.5 Multipliers and Mollifiers on Periodic Spaces

Many of the results discussed in previous sections have natural counterparts in
spaces of periodic functions. Here we give a brief summary of some simple facts,
which we require in the construction and error analysis of finite difference schemes.

1.9.5.1 Distributions on a Torus

Let Tn denote the n-torus; in the n-dimensional Euclidean space R
n it can be rep-

resented by the cube

T
n := {

x = (x1, . . . , xn) ∈Rn : |xj | ≤ π, j = 1, . . . , n
}
,

where ‘opposite points’ are identified. In other words, x ∈ Tn and y ∈ Tn are iden-
tified whenever x − y = 2kπ for some k = (k1, . . . , kn) ∈ Zn.

We denote by C∞(Tn) the set of all infinitely many times continuously differen-
tiable complex-valued functions defined on T

n. For any ϕ ∈ C∞(Tn), ϕ(x)= ϕ(y)

for all x and y in T
n such that x − y = 2kπ for some k ∈ Zn.

Definition 1.70 A sequence {ϕm}∞m=1 ⊂ C∞(Tn) is said to converge to ϕ in
C∞(Tn) if ∂αϕm converges to ∂αϕ, uniformly on T

n, as m→∞, for every multi-
index α. When equipped with convergence in this sense, the set C∞(Tn) will be
denoted by D(Tn).

Suppose that u is a linear functional on D(Tn), whose value at ϕ ∈ D(Tn) is
denoted by 〈u,ϕ〉. We shall say that u is a continuous linear functional on D(Tn) if
〈u,ϕm〉→ 〈u,ϕ〉 as m→∞, whenever ϕm→ ϕ in D(Tn).

Definition 1.71 A continuous linear functional on D(Tn) is called a distribution
on T

n. The set of all distributions on T
n is denoted by D′(Tn).

We define addition in D′(Tn), multiplication by a complex number, differen-
tiation, tensor product, translation, and multiplication by a function from D(Tn)

analogously as in the case of D′(Ω), Ω ⊂R
n.

Let 1 ≤ p ≤∞; then Lp(T
n) is defined as the set of all Lebesgue-measurable

functions v on T
n such that v(x)= v(y) for a.e. x and y in T

n such that x−y = 2kπ
for some k ∈ Zn, and

‖v‖Lp(Tn) :=
(∫

Tn

∣∣v(x)
∣∣p dx

)1/p

<∞ if 1≤ p <∞, and

‖v‖L∞(Tn) := ess.supx∈Tn

∣∣v(x)
∣∣<∞ if p =∞.
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Any function u in Lp(T
n), 1≤ p ≤∞, can be identified with an element of D′(Tn)

via

〈u,ϕ〉 =
∫

Tn

u(x)ϕ(x)dx.

Thus, D(Tn)⊂ Lp(T
n)⊂D′(Tn). In particular, every trigonometric polynomial

T (x)=
∑

k∈Λ
akeık·x, x ∈ Tn,

where Λ is a finite subset of Zn and the ak are complex numbers, is an element of
D′(Tn).

For u ∈D′(Tn), we define the Fourier coefficients of u by

û(k) := 〈
u, e−ıkx

〉
, k ∈ Zn.

In particular if u ∈ Lp(T
n), 1 ≤ p ≤∞, then by identifying it with an element of

D′(Tn), as indicated above, we have that

û(k)=
∫

Tn

u(x)e−ıx·k dx, k ∈ Zn.

We recall the following results concerning Fourier series (see, for example, Ed-
wards [43], Chap. 12).

(i) Any function ϕ in D(Tn) can be expanded into an infinite series

ϕ(x)= 1

(2π)n
∑

k∈Zn

akeık·x, (1.40)

which converges in D(Tn), where {ak}k∈Zn is a sequence of complex numbers
such that

|ak| ≤ cm(1+ |k|)−m, k ∈ Zn, (1.41)

for all m= 0,1,2, . . . , and where cm are appropriate positive constants. In fact,
ak = ϕ̂(k), k ∈ Zn. The converse of this statement is also true: if {ak}k∈Zn sat-
isfies the condition (1.41) then the series (2π)−n

∑
k∈Zn akeık·x converges in

D(Tn); denoting by ϕ(x) the limiting function, we have that ϕ̂(k) = ak for
k ∈ Z

n. The expansion (1.40) is called the Fourier series of ϕ. A sequence
{ak}k∈Zn satisfying (1.41) is said to be rapidly decreasing. For a rapidly de-
creasing sequence a = {ak}k∈Zn , the function defined by the right-hand side of
(1.40) will be denoted by a∨. Thus,

a∨(x) := 1

(2π)n
∑

k∈Zn

akeık·x,

where the infinite series on the right-hand side converges in D(Tn).
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(ii) Any distribution u ∈D′(Tn) can be represented as an infinite series

u= 1

(2π)n
∑

k∈Zn

akek, with ek(x) := eık·x , (1.42)

which converges in D′(Tn), where {ak}k∈Zn is a sequence of complex numbers
such that

|ak| ≤ cm
(
1+ |k|)m, k ∈ Zn, (1.43)

for some m ∈ N, where cm is an appropriate positive constant. In fact, ak =
ϕ̂(k), k ∈ Z

n. The converse of this statement is also true: if {ak}k∈Zn satisfies
the condition (1.43) then the series (2π)−n

∑
k∈Zn akek converges in D′(Tn);

denoting by u ∈D′(Tn) its limit, we have that û(k)= ak for k ∈ Zn; see Theo-
rem 1.72 and the subsequent discussion for a proof of this result. The expansion
(1.42) is called the Fourier series of u. A sequence {ak}k∈Zn satisfying (1.43) is
said have at most polynomial growth, or that {ak}k∈Zn is a tempered sequence.
For a sequence a = {ak}k∈Zn that has at most polynomial growth, the distribu-
tion defined by the right-hand side of (1.42) will be, again, denoted by a∨.

1.9.5.2 Periodic Distributions

Let us consider the space S ′(Rn) of tempered distributions on R
n. An element u ∈

S ′(Rn) is called a periodic distribution if

u= τ−2kπu (1.44)

holds for all k in Z
n; in other words,

〈u,ϕ〉 = 〈u, τ2kπϕ〉 (1.45)

for all ϕ in S(Rn) and all k ∈ Zn, where 〈·, ·〉 denotes the duality pairing between
S ′(Rn) and S(Rn). The set of all periodic distributions on R

n will be denoted by
S ′π (Rn).

Any complex-valued function u defined on [−π,π)n can be extended 2π peri-
odically to the whole of Rn; the extended function will be denoted by the same sym-
bol. Thus, for example, x ∈Rn �→ ek(x) := eık·x belongs to S ′π (Rn) for all k in Z

n.
Furthermore, if {αk}k∈Zn is a sequence of complex numbers of at most polynomial
growth (i.e. (1.43) holds), then

∑
k∈Zn akek belongs to S ′π (Rn), where convergence

takes place in S ′(Rn). Thus, by (1.43), any distribution on T
n can be thought of as

a periodic distribution on R
n. The next result (cf. Triebel [183], Sect. 9.1.2) shows

that the converse is also true. The proof is simple, and for the sake of completeness
it is included here; we recall that F denotes the Fourier transform on S ′(Rn).
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Theorem 1.72 u ∈ S′(Rn) is a periodic distribution (i.e. u ∈ S′π (Rn)) if, and only
if, there exists a sequence {ak}k∈Zn of at most polynomial growth such that

u= 1

(2π)n
∑

k∈Zn

akek, where ek(x) := eık·x, (1.46)

and the infinite series on the right-hand side converges in S ′(Rn).

Proof Suppose that u ∈ S′π (Rn); then, by applying (1.44) (or (1.45)) we deduce that

〈Fu,ϕ〉 = 〈u,Fϕ〉 = 〈
u, τ−2kπ (Fϕ)

〉= 〈
Fu, eı2πk·xϕ

〉 ∀k ∈ Zn, ∀ϕ ∈ S(Rn
)
.

Therefore,

Fu= eı2πk·x Fu ∀k ∈ Zn.

Now if x belongs to the interior of suppFu it follows from this equality that
eı2πk·x = 1 for all k ∈ Zn, and hence x ∈ Zn. This implies that suppFu⊂ Z

n, and
there exists a sequence of complex numbers {bk}k∈Zn such that

Fu=
∑

k∈Zn

bkδk,

where δk is the Dirac distribution concentrated at k ∈ Zn. Suppose that ϕ ∈ S(Rn)

with ϕ(0)= 1 and suppϕ ⊂ {x ∈Rn : |x| ≤ 1}. Then,

〈Fu, τmϕ〉 =
∑

k∈Zn

bk〈δk, τmϕ〉 =
∑

k∈Zn

bkδkm = bm, m ∈ Zn,

where δkm is the Kronecker delta. As Fu is an element of S ′(Rn), it follows from
this equality that the sequence {bk}k∈Zn is of at most polynomial growth. Now,

u= F−1(Fu)=
∑

k∈Zn

bkF
−1δk = (2π)−n

∑

k∈Zn

bkeık·x,

which implies (1.46) with ak = bk , k ∈ Zn.
The proof of the converse statement is straightforward. �

We note that the mapping u �→ {ak}k∈Zn in this theorem is an injection. This
allows one to identify u ∈ S ′π (Rn) with u ∈ D′(Tn) through (1.42). Consequently,
distributions on the torus Tn and periodic distributions on R

n can be identified.

1.9.5.3 Mollifiers on Function Spaces of Periodic Functions

We consider the following spaces of periodic distributions.
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Periodic Sobolev Spaces Suppose that 1 <p <∞ and m= 1,2, . . . ; then

Wm
p

(
T
n
) :=

{
u ∈ Lp

(
T
n
) : ‖u‖Wm

p (Tn) =
( ∑

|α|≤m

∥∥∂αu
∥∥p
Lp(Tn)

)1/p

<∞
}
.

Further, we put W 0
p(T

n) := Lp(T
n), 1 <p <∞. For noninteger s > 0 and 1 <p <

∞, Ws
p(T

n) is defined analogously (cf. the discussion following Theorem 1.35).
For any positive real number s and 1 <p <∞, W−sp (Tn) denotes the dual space of
Ws

q (T
n), equipped with the associated dual norm:

‖u‖W−sp (Tn) := sup
0	=ϕ∈Ws

q (T
n)

|〈u,ϕ〉|
‖ϕ‖Ws

q (T
n)

, 1/p+ 1/q = 1.

Periodic Bessel-Potential Spaces Suppose that 1 < p <∞ and −∞< s <∞;
then

Hs
p

(
T
n
) := {

u ∈D′(Tn
) : ∥∥((1+ |k|2)s/2

û
)∨∥∥

Lp(Tn)
<∞}

.

Next we consider mollifiers on these function spaces. Assuming that T1 and T2
are trigonometric polynomials, their convolution T1 ∗ T2 is defined by

(T1 ∗ T2)(x)=
∫

Tn

T1(x − y)T2(y)dy.

This definition can be extended to periodic distributions following the same route as
in the nonperiodic case discussed earlier in this chapter.

Let θν(x) denote the B-spline of degree ν − 1, ν ≥ 1 (see Sect. 1.9.4) supported
on the interval [−ν/2, ν/2] of the real line. When ν = 0 we define θ0 as the Dirac
distribution concentrated at 0. For h > 0, let θνh (x) := h−1θ(h−1x) when ν ≥ 1 and
θ0
h := θ0. We shall suppose that h has been chosen small enough to ensure that the

support of θνh , the closed interval [−νh/2, νh/2], is contained in the open interval
(−π,π). Let us assume that θνh has been extended 2π periodically to the whole real
line, and consider the family of mollifiers T ν

h defined by

T ν
h u= θνh ∗ u, u ∈D′(T1).

The multidimensional counterpart of this mollifier is defined in the same way as
in the nonperiodic case: assuming that ν = (ν1, . . . , νn), where νi are nonnegative
integers, let θνh denote the tensor product of the univariate distributions θ

νi
h , i =

1, . . . , n. We define

T ν
h u= θνh ∗ u, u ∈D′(Tn

)
.

The next two results are the ‘periodic analogues’ of Theorems 1.67 and 1.69.

Theorem 1.73 Suppose that u ∈Hs
p(T

n), with s ∈ R, p ∈ (1,∞), let ν ∈ Nn, and
assume that there exist n real numbers σj , j = 1, . . . , n, such that the inequali-
ties (1.38) and (1.39) hold. Then, T ν

h u is a bounded uniformly continuous function
on T

n.



88 1 Distributions and Function Spaces

Theorem 1.74 Suppose that u ∈Ws
p(T

n), with s ∈ R, p ∈ (1,∞), let ν ∈ Nn, and
assume that there exist n real numbers σj , j = 1, . . . , n, such that the inequali-
ties (1.38) and (1.39) hold. Then, T ν

h u is a bounded uniformly continuous function
on T

n.

To prove these results one proceeds in the same way as in the nonperiodic case,
except that Lizorkin’s multiplier theorem is replaced in the proof by a multiplier
theorem, stated in Theorem 1.75 below, due to Marcinkiewicz.

1.9.5.4 Fourier Multipliers on Periodic Spaces

A sequence {a(k)}k∈Zn is called a Fourier multiplier on Lp(T
n), 1 ≤ p ≤ ∞, if

there exists a positive constant Cp such that
∥∥(aû)∨

∥∥
Lp(Tn)

≤ Cp‖u‖Lp(Tn) ∀u ∈ Lp

(
T
n
)
.

The smallest constant Cp for which this inequality holds will be denoted by
‖a‖mp(Tn). The set of all Fourier multipliers on Lp(T

n) will be labelled by mp(T
n).

It can be shown that ‖ · ‖mp(Tn) is a norm on mp(T
n). The next theorem, due to

Marcinkiewicz, provides a characterization of Fourier multipliers on Lp(T
n). Be-

fore stating it, let us introduce some notation.
Assuming that {ak}k∈Zn is a sequence of complex numbers and

ej = (δ1j , . . . , δnj ), j = 1, . . . , n,

where δij is the Kronecker delta, we define the partial undivided difference operator
Δj in the j th co-ordinate direction by

Δja(k)= a(k+ ej )− a(k), j = 1, . . . , n, k ∈ Zn.

We also require the notion of total variation of a sequence a = {ak}k∈Zn , defined by

Var(a) := sup
k∈Zn

max
0	=α∈{0,1}n

∑α

ν

∣∣Δαaν
∣∣;

here Δα :=Δ
α1
1 . . .Δ

αn
n , and, for α ∈ {0,1}n, we have used the multi-index notation

∑α

ν
:=

∑α1

ν1
. . .

∑αn

νn

with
αj∑

νj

:=
{

max
νj=±2|kj |−1

,...,±2|kj |−1
if αj = 0,

∑
νj=±2|kj |−1

,...,±2|kj |−1
if αj = 1.

When kj = 0 for some j , then it is assumed that the corresponding maximization
(when αj = 0) or sum (when αj = 1) is only through νj = 0; the + or the − sign is
chosen in ± depending on whether kj > 0 or kj < 0.
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Theorem 1.75 (Marcinkiewicz Multiplier Theorem) Let a = {ak}k∈Zn be a se-
quence of complex numbers such that the following conditions hold:

sup
k∈Zn

|ak| ≤M0, Var(a)≤M0.

Then, a is a Fourier multiplier on Lp(T
n), 1 < p <∞; that is, there exists a con-

stant Cp , depending only on p, such that ‖a‖mp(Tn) ≤ CpM0.

For a proof of this result, we refer to Zygmund [206], Vol. II, p. 232, in the case of
n= 1, and Nikol’skiı̆ [144], p. 57, in the general case. Quite apart from its relevance
in the analysis of smoothing operators, the Marcinkiewicz multiplier theorem will
be one of our main tools in the error analysis of finite difference schemes in discrete
Lp norms.

When n = 1 it is usually simple to show by direct calculations that a sequence
a = {ak}k∈Zn has bounded total variation; when n > 1, however, because of the
complicated structure of Var(a), this can be a tedious exercise. It is therefore useful
to seek a simpler criterion, under slightly stronger hypotheses on a. The next two
theorems indicate how this can be achieved.

We define the concept of Lebesgue point for a locally integrable function. Sup-
pose that x0 ∈ R

n and f is a function defined and locally integrable in an open
neighbourhood of x0. We say that x0 is a Lebesgue point of f provided that

lim
ε→0

1

|B(x0, ε)|
∫

B(x0,ε)

∣∣f (y)− f (x0)
∣∣dy = 0.

Clearly, each point of continuity of a function f is a Lebesgue point of f . The
following example shows that the converse statement is false.

Example 1.32 Consider the function A defined on R
2 by

A(x,y)=
{

x2

x2+y2 when (x, y) 	= (0,0),
1
2 when (x, y)= (0,0).

Then, A is continuous on R
2 \ {(0,0)}, but not at (0,0); nevertheless, each point

(x, y) ∈R2 is a Lebesgue point of A.

In fact, according to Lebesgue’s differentiation theorem (cf. (1.11)), for any func-
tion f that is defined and locally integrable on an open set Ω in R

n, almost every
x0 ∈Ω is a Lebesgue point of f .

For the proof of the next result we refer to Theorem 3.4.2 and Remark 3.4.4 in
the monograph of Schmeisser and Triebel [162].

Theorem 1.76 Let 1 < p <∞ and let A ∈ L∞(Rn) be an element of Mp(R
n).

Suppose additionally that each point k ∈ Z
n is a Lebesgue point of A. Then, the

sequence a = {ak}k∈Zn , defined by ak = A(k) is a Fourier multiplier in Lp(T
n),

and ‖a‖mp(Tn) ≤ ‖A‖Mp(Rn).
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As an application of this powerful result, we state the following analogue of
Lizorkin’s theorem for Lp(T

n).

Theorem 1.77 Let 1 < p <∞. Suppose that A ∈ L∞(Rn) is such that ξα∂αA(ξ)
is a bounded continuous function of ξ on the set

R
n∗ :=

{
ξ ∈Rn : ξi 	= 0, i = 1, . . . , n

}

for every multi-index α ∈ {0,1}n, and each k ∈ Zn is a Lebesgue point of A. Suppose
further that a = {ak}k∈Zn is a sequence of complex numbers defined by ak :=A(k),
k ∈ Zn. Then, a is a Fourier multiplier on Lp(T

n), and ‖a‖mp(Tn) ≤ ‖A‖Mp(Rn).

Proof The stated result is an immediate consequence of Theorems 1.59 and 1.76. �

Example 1.33 Consider the sequence of real numbers a = {ak}k∈Z2 , with k =
(k1, k2), defined by

ak =
⎧
⎨

⎩

k2
1

k2
1+k2

2
when k 	= (0,0),

1
2 when k = (0,0).

Then, a is a Fourier multiplier on Lp(T
2), 1 < p <∞. This follows from The-

orem 1.77 by noting the following: the function A defined in Example 1.32 is a
Fourier multiplier on Lp(R

2) thanks to Theorem 1.59; each ξ ∈ R2 is a Lebesgue
point of A, whereby each k ∈ Z2 is a Lebesgue point of A; and ak =A(k), k ∈ Zn.

With all the prerequisites now in place, we are ready to embark on the numerical
approximation of partial differential equations.

The remaining chapters are devoted to the construction and analysis of finite dif-
ference methods for the approximate solution of elliptic, parabolic and hyperbolic
equations. As we have already emphasized in the Introduction, our key concern are
instances when the data and the solution to the problem under the consideration are
not smooth enough to allow the use of conventional tools from the theory of finite
difference methods. In particular, since neither the coefficients in the differential
equations under consideration nor the initial or boundary data will be required to be
continuous functions, sampling the data at the points of a finite difference grid, as
is usual in the classical theory of finite difference methods, in generally infeasible.
We shall therefore mollify the data in the process of constructing various finite dif-
ference schemes, so as to ensure that the mollified data are continuous and can be,
thereby, meaningfully sampled at the points of the finite difference grid.



Chapter 2
Elliptic Boundary-Value Problems

In the first part of this chapter we focus on the question of well-posedness of
boundary-value problems for linear partial differential equations of elliptic type.
The second part is devoted to the construction and the error analysis of finite differ-
ence schemes for these problems. It will be assumed throughout that the coefficients
in the equation, the boundary data and the resulting solution are real-valued func-
tions.

2.1 Existence and Uniqueness of Solutions

Suppose that Ω is a bounded open set in R
n, k is a positive integer and aαβ , 0 ≤

|α|, |β| ≤ k, with α,β ∈ N
n, are real-valued-functions defined on Ω . We consider

the linear partial differential operator P(x, ∂) of order 2k defined by

P(x, ∂)u :=
∑

0≤|α|,|β|≤k
(−1)|α|∂α

(
aαβ(x)∂

βu
)
, x ∈Ω. (2.1)

The principal part P0(x, ∂) of the differential operator P(x, ∂) is defined by

P0(x, ∂)u :=
∑

|α|,|β|=k
(−1)|α|∂α

(
aαβ(x)∂

βu
)
, x ∈Ω.

P (x, ∂) is said to be an elliptic operator on Ω if, and only if,
∑

|α|,|β|=k
aαβ(x)ξ

αξβ > 0 ∀x ∈Ω, ∀ξ ∈Rn \ {0}.

P (x, ∂) is called uniformly elliptic on Ω if, and only if, there exists a positive real
number c̃ such that

∑

|α|,|β|=k
aαβ(x)ξ

αξβ ≥ c̃|ξ |2k ∀x ∈Ω, ∀ξ ∈Rn. (2.2)

B.S. Jovanović, E. Süli, Analysis of Finite Difference Schemes,
Springer Series in Computational Mathematics 46,
DOI 10.1007/978-1-4471-5460-0_2, © Springer-Verlag London 2014
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Example 2.1 Consider the second-order partial differential operator, corresponding
to k = 1 above, defined by

P(x, ∂)u := −
n∑

i,j=1

∂

∂xj

(
aij (x)

∂u

∂xi

)

+
n∑

i=1

[
− ∂

∂xi

(
ai(x)u

)+ bi(x)
∂u

∂xi

]
+ c(x)u, (2.3)

with aij , i, j = 1, . . . , n; ai , bi , i = 1, . . . , n; and c being real-valued functions de-
fined on an open set Ω ⊂R

n, and such that

n∑

i,j=1

aij (x)ξiξj ≥ c̃

n∑

i=1

ξ2
i ∀x ∈Ω, ∀ξ = (ξ1, . . . , ξn) ∈Rn, (2.4)

for a positive real number c̃, independent of x and ξ ; then P(x, ∂) is a second-order
uniformly elliptic operator on Ω .

Example 2.2 Consider the partial differential operator P(x, ∂), defined by

P(x, ∂)u := ∂2
1M1(u)+ 2∂1∂2M3(u)+ ∂2

2M2(u),

where ∂i := ∂/∂xi and ∂2
i := ∂2/∂x2

i for i = 1,2,

M1(u) := a1(x)∂
2
1u+ a0(x)∂

2
2u,

M2(u) := a0(x)∂
2
1u+ a2(x)∂

2
2u,

M3(u) := a3(x)∂1∂2u,

and ai , i = 0,1,2,3, are four real-valued functions defined on a bounded open set
Ω ⊂R

2 such that there exist positive real numbers c1 and c2 for which

ai(x)≥ c1, i = 1,2,3, a1(x)a2(x)− a2
0(x)≥ c2 ∀x ∈Ω.

Under these hypotheses P(x, ∂) is a fourth-order uniformly elliptic operator on Ω .
The same is true if the above inequalities satisfied by the coefficients ai are replaced
by

ai(x)≥ c1, i = 1,2, a1(x)a2(x)−
(
a0(x)+ a3(x)

)2 ≥ c2 ∀x ∈Ω.

A partial differential equation on Ω is usually supplemented with boundary con-
ditions on ∂Ω . The differential equation in tandem with the boundary conditions
imposed forms a boundary-value problem.

Example 2.3 For the second-order partial differential equation considered in Exam-
ple 2.1 the following boundary conditions are the most common, with g denoting a
given real-valued function defined on the boundary ∂Ω in each case:
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➊ Dirichlet boundary condition: u= g on ∂Ω ;
➋ Oblique derivative boundary condition:

n∑

i,j=1

aij (x)
∂u

∂xi
νj +

n∑

i=1

ai(x)uνi + σ(x)u= g on ∂Ω,

where νj is the j th component of the unit outward normal vector ν to ∂Ω and σ

is a given real-valued function defined on ∂Ω such that

σ + 1

2

n∑

i=1

(ai + bi)νi ≥ 0 on ∂Ω.

The differential operator

u �→
n∑

i,j=1

aij (x)
∂u

∂xi
νj +

n∑

i=1

ai(x)uνi, x ∈ ∂Ω,

is called the co-normal derivative corresponding to the partial differential op-
erator from Example 2.1. A particularly important special case arises when
aij = δij , i, j = 1, . . . , n, and ai = 0, i = 1, . . . , n. Then, the oblique derivative
boundary condition becomes:

∂νu+ σu= g on ∂Ω ,

and is referred to as Robin boundary condition. Here,

∂ν = ∂

∂ν
:=

n∑

i=1

νi
∂

∂xi

denotes the (outward) normal derivative on ∂Ω ; it is assumed that

σ + 1

2

n∑

i=1

biνi ≥ 0 on ∂Ω.

In particular, when σ = 0 on ∂Ω , the resulting boundary condition

∂νu= g on ∂Ω

is called a Neumann boundary condition.

In many problems that arise in applications boundary conditions of different kind
are enforced on different parts of the boundary; for example, ∂Ω may be the union
of two disjoint subsets ∂Ω1 and ∂Ω2, with Dirichlet boundary condition imposed
on ∂Ω1 and an oblique derivative boundary condition imposed on ∂Ω2. In most
of what follows we shall, for simplicity, confine ourselves to the study of elliptic
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boundary-value problems subject to homogeneous Dirichlet boundary conditions
(corresponding, in the case of a second-order elliptic equation, to g ≡ 0 in Exam-
ple 2.3, part ➊).

Returning to the general elliptic equation of order 2k, we formulate the classical
homogeneous Dirichlet boundary-value problem.

Definition 2.1 Let Ω ⊂R
n be a bounded open set and suppose that f ∈ C(Ω) and

aαβ ∈ C|α|(Ω), |α|, |β| ≤ k. A function

u ∈ C2k(Ω)∩Ck−1(Ω)

is a classical solution of the homogeneous Dirichlet problem if

P(x, ∂)u :=
∑

0≤|α|,|β|≤k
(−1)|α|∂α

(
aαβ(x)∂

βu
)= f (x)

for every x in Ω , and

∂mν u= 0 on ∂Ω , for 0≤m≤ k − 1.

It is assumed here that the differential operator P(x, ∂), with x ∈Ω , is elliptic or
uniformly elliptic on Ω . Frequently, the smoothness requirements on the data stated
in this definition are not satisfied. As is demonstrated by the next example, in such
instances the corresponding homogeneous Dirichlet boundary-value problem has no
classical solution.

Example 2.4 Let Ω = (−1,1)n ⊂R
n and consider Poisson’s equation

−Δu := −
n∑

i=1

∂2u

∂x2
i

= f in Ω,

subject to the homogeneous Dirichlet boundary condition

u= 0 on ∂Ω.

Suppose further that f (x)= sgn( 1
2 − |x|), x ∈Ω .

Clearly, this problem has no classical solution, u ∈ C2(Ω)∩C(Ω), for otherwise
Δu would be a continuous function on Ω , which is impossible as sgn( 1

2 − |x|) is
not continuous on Ω .

In order to overcome the limitations of Definition 2.1 highlighted by this exam-
ple, we generalize the notion of classical solution by weakening the differentiability
requirements on both the data and the corresponding solution.
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Definition 2.2 Let Ω ⊂R
n be a bounded open set and suppose that f ∈ L2(Ω) and

aαβ ∈M
(
W

2k−|β|
2 (Ω)→W

|α|
2 (Ω)

)
, |α|, |β| ≤ k. A function

u ∈W 2k
2 (Ω)∩ W̊ k

2 (Ω)

is a strong solution of the homogeneous Dirichlet problem if

P(x, ∂)u :=
∑

0≤|α|,|β|≤k
(−1)|α|∂α

(
aαβ(x)∂

βu
)= f (x)

for almost every x in Ω .

While for classical solutions both the partial differential equation and the bound-
ary condition are assumed to hold in the pointwise sense, for strong solutions the
partial differential equation is to be understood in terms of equivalence classes con-
sisting of functions that are equal almost everywhere on Ω ; also, instead of being
imposed explicitly, the boundary condition has been incorporated into the function
space W 2k

2 (Ω)∩ W̊ k
2 (Ω) in which a solution is sought. Unfortunately, it is not easy

to show that the homogeneous Dirichlet problem for the partial differential equation
(2.1) possesses a strong solution; in fact, as is illustrated by Example 2.5 below a
strong solution will not exist unless ∂Ω and the data are sufficiently smooth. Thus
we shall further relax the differentiability requirements on u and weaken the concept
of solution by converting the boundary-value problem into a variational problem.
The first step in this process is to create a bilinear functional associated with the
differential operator P(x, ∂) using integration by parts. Suppose that u ∈W 2k

2 (Ω),
f ∈ L2(Ω), and v ∈ C∞0 (Ω); then

∫

Ω

v(x)f (x)dx =
∫

Ω

vP (x, ∂)udx

=
∑

0≤|α|,|β|≤k
(−1)|α|

∫

Ω

v∂α
(
aαβ(x)∂

βu
)

dx

=
∑

0≤|α|,|β|≤k

∫

Ω

aαβ(x)∂
βu∂αv dx.

In the transition to the last expression, by partial integration, we made use of the fact
that suppv ⊂⊂Ω . Motivated by this identity we introduce the following notation:

a(u, v) :=
∑

0≤|α|,|β|≤k

∫

Ω

aαβ(x)∂
βu∂αv dx,

(f, v) :=
∫

Ω

f (x)v(x)dx.
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Clearly a(·, ·) is correctly defined for u that is merely in W̊ k
2 (Ω) and for v in the

same space; in fact, a(·, ·) is a bilinear functional on the product space W̊ k
2 (Ω)×

W̊ k
2 (Ω); similarly, v �→ (f, v) is a linear functional on W̊ k

2 (Ω).
These considerations motivate the following definition.

Definition 2.3 Let Ω ⊂ R
n be a bounded open set and suppose that f ∈W−k2 (Ω)

and aαβ ∈ L∞(Ω), |α|, |β| ≤ k. A function

u ∈ W̊ k
2 (Ω)

is a weak solution of the homogeneous Dirichlet problem if

a(u, v)= 〈f, v〉
for every v ∈ W̊ k

2 (Ω), where now 〈·, ·〉 denotes the duality pairing between W−k2 (Ω)

and W̊ k
2 (Ω), i.e. 〈f, v〉 signifies the value of the linear functional f ∈W−k2 (Ω) =

[W̊ k
2 (Ω)]′ at v ∈ W̊ k

2 (Ω).

Remark 2.1 By applying the Sobolev embedding theorem, it is easily seen that the
bilinear functional a(·, ·) is well defined under even weaker regularity hypotheses
on the coefficients aαβ . Indeed, it suffices to assume in Definition 2.3 that

aαβ ∈M
(
W

k−|α|
2 → Lpβ (Ω)

)
, |α|, |β| ≤ k,

where pβ = 2 when |β| = k, pβ = 2n/(n+ 2(k − |β|)) when 0 < k − |β| < n/2;
pβ > 1 (but arbitrarily close to 1) when k − |β| = n/2; and pβ = 1 when k − |β|>
n/2.

Next we show that the homogeneous Dirichlet boundary-value problem has a
unique weak solution. The proof is based on a simple application of the Lax–
Milgram theorem (Theorem 1.13) and the following result.

Theorem 2.4 (Gårding’s Inequality) Suppose that Ω ⊂ R
n is a Lipschitz domain.

Let P(x, ∂) be a linear partial differential operator of order 2k of the form (2.1)
such that, for some c̃ > 0, the uniform ellipticity condition (2.2) holds. Suppose also
that

aαβ ∈ C(Ω) for |α| = |β| = k

and

aαβ ∈ L∞(Ω) for |α|, |β| ≤ k.

Then, there exist constants c0 > 0 and λ0 ≥ 0 such that

a(v, v)+ λ0‖v‖2
L2(Ω) ≥ c0‖v‖2

Wk
2 (Ω)

for all v ∈ W̊ k
2 (Ω). (2.5)
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The proof of this results is long and technical, and will not be presented here;
the interested reader is referred to Theorem 9.17 on p. 292 of Renardy and Rogers
[155], for example.

For second-order uniformly elliptic operators of the form (2.3) the proof of Gård-
ing’s inequality is much simpler, and we shall confine ourselves to this case; in fact,
as will be seen below, in the case of a second-order uniformly elliptic operator the
smoothness hypotheses on the coefficients in the principal part of the operator can
be slightly relaxed: they need not be continuous functions, as long as they belong to
L∞(Ω). We note that the bilinear functional corresponding to the operator (2.3) is
given by

a(u, v) =
n∑

i,j=1

∫

Ω

aij (x)
∂u

∂xi

∂v

∂xj
dx +

n∑

i=1

ai(x)u
∂v

∂xi
dx

+
∫

Ω

bi(x)
∂u

∂xi
v dx +

∫

Ω

c(x)uv dx, u, v ∈ W̊ 1
2 (Ω).

Theorem 2.5 Suppose that Ω ⊂ R
n is a Lipschitz domain. Let P(x, ∂) be the

second-order linear partial differential operator defined by (2.3) where aij , ai ,
bj ∈ L∞(Ω), i, j = 1, . . . , n, and c ∈ L∞(Ω) are such that, for some c̃ > 0, the
uniform ellipticity condition (2.4) holds. Then, there exist real numbers c0 > 0 and
λ0 ≥ 0 such that

a(v, v)+ λ0‖v‖2
L2(Ω) ≥ c0‖v‖2

W 1
2 (Ω)

∀v ∈ W̊ 1
2 (Ω).

Proof Thanks to (2.4) and the Cauchy–Schwarz inequality we have that

a(v, v) =
n∑

i,j=1

∫

Ω

aij (x)
∂v

∂xi

∂v

∂xj
dx +

n∑

i=1

∫

Ω

ai(x)v
∂v

∂xi
dx

+
n∑

i=1

∫

Ω

bi(x)
∂v

∂xi
v dx +

∫

Ω

c(x)v2 dx

≥ c̃

∫

Ω

|∇v|2 dx −
∫

Ω

[

2
n∑

i=1

(
a2
i + b2

i

)
]1/2

|∇v||v|dx

− ‖c‖L∞(Ω)

∫

Ω

|v|2 dx,

where, as usual |∇u| = [
( ∂u
∂x1

)2 + · · · + ( ∂u
∂xn

)2
]1/2. By applying the elementary in-

equality

ab ≤ εa2 + 1

4ε
b2
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with ε = c̃/2, we obtain

a(v, v)≥ c̃

2

∫

Ω

|∇v|2 dx −C‖v‖2
L2(Ω),

where

C = 1

c̃

∥∥∥∥∥

n∑

i=1

(
a2
i + b2

i

)
∥∥∥∥∥
L∞(Ω)

+ ‖c‖L∞(Ω).

Equivalently,

a(v, v)≥ c̃

2
‖v‖2

W 1
2 (Ω)
−

(
C + c̃

2

)
‖v‖2

L2(Ω),

which proves Gårding’s inequality with c0 = c̃/2 and λ0 = C + (c̃/2). �

Remark 2.2 We note that Theorem 2.5 can be proved under even weaker hypotheses
on aij , ai and bi . Indeed, it suffices to assume that

aij ∈M
(
L2(Ω)→ L2(Ω)

)
, i, j = 1, . . . , n,

ai, bi ∈M
(
W 1

2 (Ω)→ L2(Ω)
)
, i = 1, . . . , n,

c ∈M(
W 1

2 (Ω)→ Lp(Ω)
)
,

where p = 2n/(n+2) if n > 2; p > 1 (but arbitrarily close to 1) if n= 2; and p = 1
if n= 1.

We now state the main result of this section, which concerns the existence of a
weak solution to a homogeneous Dirichlet boundary-value problem.

Theorem 2.6 Let P(x, ∂) be a linear partial differential operator of order 2k of the
form (2.1), satisfying the conditions of Theorem 2.4 on a Lipschitz domain Ω ⊂R

n.
Then, there exists a λ0 ≥ 0 such that, for any λ ≥ λ0 and any f ∈ W−k2 (Ω), the
homogeneous Dirichlet problem for the operator

P̃ (x, ∂)= P(x, ∂)+ λ

has a unique weak solution u ∈ W̊ k
2 (Ω). Furthermore, this solution satisfies

‖u‖Wk
2 (Ω) ≤ C‖f ‖

W−k2 (Ω)
.

Proof According to Theorem 2.4 there exists a λ0 ≥ 0 such that the Gårding in-
equality (2.5) holds. For λ≥ λ0 we consider the bilinear functional

ã(u, v)= a(u, v)+ λ(u, v), u, v ∈ W̊ k
2 (Ω),
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associated with the operator P̃ . We shall prove that ã(·, ·) satisfies the conditions
of the Lax–Milgram theorem (Theorem 1.13) on W̊ k

2 (Ω) × W̊ k
2 (Ω). Let us take

U = W̊ k
2 (Ω) in Theorem 1.13 and recall that W̊ k

2 (Ω) is a real Hilbert space. The
U -coercivity of ã(·, ·) is a straightforward consequence of (2.5):

ã(v, v)= a(v, v)+ λ‖v‖2
L2(Ω) ≥ c0‖v‖2

Wk
2 (Ω)

∀v ∈ W̊ k
2 (Ω).

We shall now verify that ã(·, ·) is bounded on W̊ k
2 (Ω) × W̊ k

2 (Ω). Given v, w ∈
W̊ k

2 (Ω), using the Cauchy–Schwarz inequality repeatedly we obtain the following
chain of inequalities, which ultimately lead to the conclusion that ã(·, ·) is a bounded
bilinear functional on W̊ k

2 (Ω)× W̊ k
2 (Ω):

∣∣ã(v,w)
∣∣ ≤ ∣∣a(v,w)

∣∣+ λ
∣∣(v,w)

∣∣

≤
∑

0≤|α|,|β|≤k

∫

Ω

∣∣aαβ(x)
∣∣∣∣∂βv

∣∣∣∣∂αw
∣∣dx + λ

∣∣(v,w)
∣∣

≤ max
0≤|α|,|β|≤k

‖aαβ‖L∞(Ω)

∑

0≤|α|,|β|≤k

∫

Ω

∣∣∂βv
∣∣∣∣∂αw

∣∣dx + λ
∣∣(v,w)

∣∣

≤ c1‖v‖U‖w‖U .

Thus, by the Lax–Milgram theorem (Theorem 1.13), for each f ∈W−k2 (Ω) = U ′,
there exists a unique weak solution u ∈ W̊ k

2 (Ω) to the homogeneous Dirichlet prob-
lem. �

In the case of second-order elliptic equations we have an analogous result.

Theorem 2.7 Let P(x, ∂) be a linear second-order partial differential operator of
the form (2.3), satisfying the conditions of Theorem 2.5 on a Lipschitz domain Ω ⊂
R
n. Then, there exists a λ0 ≥ 0 such that, for any λ≥ λ0 and any f ∈W−1

2 (Ω), the
homogeneous Dirichlet problem for the operator

P̃ (x, ∂)= P(x, ∂)+ λ

has a unique weak solution u ∈ W̊ 1
2 (Ω), and this solution satisfies

‖u‖W 1
2 (Ω) ≤ C‖f ‖

W−1
2 (Ω)

.

Furthermore, if ai , bi ∈W 1
p(Ω), i = 1, . . . , n, where p = n/2 when n > 2; p > 1

is arbitrary when n= 2; and p = 1 when n= 1; and

c(x)− 1

2

n∑

i=1

∂

∂xi

(
ai(x)+ bi(x)

)≥ 0
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for almost every x ∈ Ω , then λ0 = 0. In other words, the homogeneous Dirichlet
problem corresponding to the operator P(x, ∂) has a unique weak solution u ∈
W̊ 1

2 (Ω) under these hypotheses.

Proof The first part of the theorem is proved in exactly the same way as the corre-
sponding statement in Theorem 2.6. In order to prove the second part let us observe
that, by the divergence theorem,
∫

Ω

[
ai(x)+ bi(x)

] ∂v
∂xi

v dx =−1

2

∫

Ω

∂

∂xi

(
ai(x)+ bi(x)

)
v2 dx ∀v ∈ W̊ 1

2 (Ω);

we note that because ai, bi ∈W 1
p(Ω), i = 1, . . . , n, where p is as assumed, Hölder’s

inequality, followed by the application of Sobolev’s embedding theorem, implies
that the function appearing as the integrand on the right-hand side is an element of
L1(Ω). Therefore the right-hand side of this equality is meaningful.

Consequently,

a(v, v)≥ c̃

n∑

i=1

∫

Ω

∣∣∣∣
∂v

∂xi

∣∣∣∣

2

dx. (2.6)

By applying the Friedrichs inequality (1.23) with s = 1 and p = 2, the right-hand
side of (2.6) can be further bounded below to obtain

a(v, v)≥ c0‖v‖2
W 1

2 (Ω)
, (2.7)

where c0 = c̃/c�, and hence the W̊ 1
2 (Ω)-coercivity of the bilinear functional a(·, ·).

The boundedness of a(·, ·) on the space W̊ 1
2 (Ω)× W̊ 1

2 (Ω) follows from the bound-
edness of ã(·, ·) = a(·, ·)+ λ(·, ·) by setting λ = 0. The required result is now ob-
tained from the Lax–Milgram theorem (Theorem 1.13). �

Remark 2.3 We note that Theorem 2.7 continues to hold when the regularity hy-
potheses of Theorem 2.5 are replaced by the weaker ones from Remark 2.2.

Having developed relatively straightforward sufficient conditions for the exis-
tence of a unique weak solution to an elliptic boundary-value problem, the question
that we now need to address is whether a weak solution might possess additional
regularity to qualify as a strong solution. The answer to this question very much
depends on additional regularity of the data (i.e. the coefficients, the right-hand side
of the partial differential equation, and the boundary ∂Ω). Since a general discus-
sion of regularity properties of weak solutions to elliptic boundary-value problems
is beyond the scope of this book, we shall confine ourselves to Poisson’s equation
subject to a homogeneous Dirichlet boundary condition, which is sufficiently illus-
trative of the key ideas. We begin with a simple example, which shows that a weak
solution to an elliptic boundary-value problem need not be a strong solution to the
problem, and that a strong solution may not even exist.
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Example 2.5 Suppose that Ω = {(x, y) ∈ R
2 : x2 + y2 < e−1} and let f (x, y) :=

−Δ(log | log(x2 + y2)|), with log := loge and the differential operator Δ under-
stood in the sense of distributions on Ω . It is easily seen by changing from Cartesian
co-ordinates to polar co-ordinates that the function u : (x, y) �→ log | log(x2 + y2)|
belongs to W̊ 1

2 (Ω) and that, therefore, f ∈W−1
2 (Ω). Thus, u is the unique weak

solution to the boundary-value problem: −Δu= f on Ω (with the equality under-
stood as being between two elements of W−1

2 (Ω)), subject to the boundary condi-
tion u= 0 on ∂Ω . However, the function u is not a strong solution and, as a matter
of fact, the boundary-value problem has no strong solution, since f /∈ L2(Ω).

In fact, even if f belongs to Ws−2
2 (Ω), s ≥ 2, it does not automatically follow

that the weak solution to Poisson’s equation−Δu= f , with a homogeneous Dirich-
let boundary condition on ∂Ω , belongs to Ws

2 (Ω)∩ W̊ 1
2 (Ω). Whether or not this is

the case depends on the smoothness of ∂Ω . In particular if Ω is a bounded polyg-
onal domain in R

2, the regularity of the solution is ultimately limited by the size
of the maximum internal angle of Ω ; the next theorem is a special case of a more
general result, due to Grisvard [61].

Theorem 2.8 Suppose that f ∈ Ws−2
2 (Ω), 1 ≤ s < 3, s 	= 3/2,5/2, with Ω =

(0,1)2, and consider the homogeneous Dirichlet boundary-value problem for Pois-
son’s equation:

−Δu = f on Ω,

u = 0 on ∂Ω.

Then, the unique weak solution u in W̊ 1
2 (Ω) belongs to Ws

2 (Ω)∩ W̊ 1
2 (Ω).

The limitation s < 3 on the Sobolev exponent in Theorem 2.8 is sharp in the
sense that the stated regularity result is invalid for s ≥ 3 unless f satisfies certain
compatibility conditions at the four corners of the square. More precisely, u belongs
to the space Ws

2 (Ω)∩ W̊ 1
2 (Ω) for s ∈N, s ≥ 3, provided that f ∈Ws−2

2 (Ω) and the
following conditions hold at the four corners:

f = 0,

∂2
1f − ∂2

2f = 0,

· · · · · · · · · · · · · · · · · · · · ·
∂2k

1 f − ∂2k−2
1 ∂2

2f + · · · + (−1)k∂2k
2 f = 0, with k =

[
s − 2

2

]
. (2.8)

The proof proceeds similarly to the one in Volkov [193], where an analogous reg-
ularity result was shown for classical solutions. For details we refer to the work of
Hell [70].

Next we formulate a result that concerns the existence of weak solutions to the
homogeneous Dirichlet problem for the fourth-order uniformly elliptic equation
considered in Example 2.2.
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Theorem 2.9 Let Ω ⊂ R
2 be a Lipschitz domain. Consider the partial differential

operator P(x, ∂), defined by

P(x, ∂)u := ∂2
1M1(u)+ 2∂1∂2M3(u)+ ∂2

2M2(u),

where

M1(u) := a1(x)∂
2
1 (u)+ a0(x)∂

2
2u,

M2(u) := a0(x)∂
2
1u+ a2(x)∂

2
2u,

M3(u) := a3(x)∂1∂2u,

and ai ∈ L∞(Ω), i = 0,1,2,3, are such that there exist positive constants c1 and
c2 for which

ai(x)≥ c1, i = 1,2,3, a1(x)a2(x)− a2
0(x)≥ c2, x ∈Ω.

Then, for any f ∈ W−2
2 (Ω), the homogeneous Dirichlet boundary-value problem

for P(x, ∂) has a unique weak solution u in W̊ 2
2 (Ω).

Proof The proof is, again, based on the Lax–Milgram theorem (Theorem 1.13); its
nontrivial part is to verify that the bilinear functional

a(u, v)= (
M1(u), ∂

2
1v

)+ 2
(
M3(u), ∂1∂2v

)+ (
M2(u), ∂

2
2v

)
, u, v ∈ W̊ 2

2 (Ω),

is W̊ 2
2 (Ω)-coercive. Clearly,

a(v, v) =
∫

Ω

[
a1(x)

∣∣∂2
1v

∣∣2 + 2a3(x)|∂1∂2v|2

+ a2(x)
∣∣∂2

2v
∣∣2 + 2a0(x)∂

2
1v∂

2
2v

]
dx ∀v ∈ W̊ 2

2 (Ω).

As v is real-valued (by the convention stated at the beginning of the chapter), we
have the following identity:

a(v, v) = 1

2

∫

Ω

a1(x)

(
∂2

1v+
a0(x)

a1(x)
∂2

2v

)2

dx

+ 1

2

∫

Ω

a2(x)

(
∂2

2v+
a0(x)

a2(x)
∂2

1v

)2

dx

+ 1

2

∫

Ω

(
a1(x)− a2

0(x)

a2(x)

)∣∣∂2
1v

∣∣2 dx

+ 1

2

∫

Ω

(
a2(x)− a2

0(x)

a1(x)

)∣∣∂2
2v

∣∣2 dx
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+ 2
∫

Ω

a3(x)|∂1∂2v|2 dx ∀v ∈ W̊ 2
2 (Ω).

Therefore,

a(v, v) ≥ 1

2

∫

Ω

(
a1(x)− a2

0(x)

a2(x)

)∣∣∂2
1v

∣∣2 dx

+ 1

2

∫

Ω

(
a2(x)− a2

0(x)

a1(x)

)∣∣∂2
2v

∣∣2 dx

+ 2
∫

Ω

a3(x)|∂1∂2v|2 dx ∀v ∈ W̊ 2
2 (Ω).

By noting the assumptions on the coefficients ai , i = 0,1,2,3, it follows that there
exists a positive constant c̃ such that

a(v, v)≥ c̃|v|2
W 2

2 (Ω)
∀v ∈ W̊ 2

2 (Ω).

Finally, by the Friedrichs inequality (1.23) with s = p = n= 2,

‖v‖2
W 2

2 (Ω)
≤ c�|v|2W 2

2 (Ω)
∀v ∈ W̊ 2

2 (Ω),

and hence

a(v, v)≥ c0‖v‖2
W 2

2 (Ω)
∀v ∈ W̊ 2

2 (Ω),

where c0 = c̃/c�. �

Remark 2.4 Suppose that the homogeneous Dirichlet boundary condition

∂mν u= 0 on ∂Ω for m= 0,1,

for the partial differential operator P(x, ∂) defined in Theorem 2.9 has been replaced
by the following set of boundary conditions:

u= 0, M1(u)ν1 +M3(u)ν2 = 0, M3(u)ν1 +M2(u)ν2 = 0 on ∂Ω.

The weak formulation of the corresponding boundary-value problem is: find u ∈
W 2

2 (Ω)∩ W̊ 1
2 (Ω) such that

a(u, v)= 〈f, v〉
for every v ∈W 2

2 (Ω)∩ W̊ 1
2 (Ω). Again, by using the Lax–Milgram theorem (Theo-

rem 1.13), it is easy to prove that, under the same conditions on ai , i = 0,1,2,3, as
in Theorem 2.9, this problem too has a unique weak solution, now in the function
space W 2

2 (Ω)∩ W̊ 1
2 (Ω).
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Finally, we return to the boundary-value problem considered in Example 2.4,
which has been shown to have no classical solution. By applying Theorem 2.7 with
aij (x) ≡ 1, i = j , aij (x) ≡ 0, i 	= j , 1 ≤ i, j ≤ n, bi(x) ≡ 0, c(x) ≡ 0, f (x) =
sgn( 1

2 − |x|), and Ω = (−1,1)n, we see that there is a unique weak solution u ∈
W̊ 1

2 (Ω) to this problem. In fact, it can be shown that this weak solution belongs
to W 2

2 (Ω) ∩ W̊ 1
2 (Ω) and it is, therefore, a strong solution to the boundary-value

problem (see Grisvard [62, 63]).

Remark 2.5 The existence and uniqueness of a weak solution to a Neumann, Robin,
or oblique derivative boundary-value problem for a second-order uniformly elliptic
equation can be established in a similar fashion, using the Lax–Milgram theorem
(Theorem 1.13).

Remark 2.6 Theorems 2.6 and 2.7 imply that the weak formulation of the Dirichlet
boundary-value problem for the operator P̃ (x, ∂)= P(x, ∂)+λ, λ≥ λ0 ≥ 0, is well-
posed in the sense of Hadamard; that is, for each f ∈W−k2 (Ω), there exists a unique
(weak) solution u ∈ W̊ k

2 (Ω); moreover, “small” changes in f give rise to “small”
changes in the corresponding solution u. The latter property follows by noting that
if u1 and u2 are weak solutions in W̊ k

2 (Ω) of the homogeneous Dirichlet problem
for P̃ (x, ∂) corresponding to right-hand sides f1 and f2 in W−k2 (Ω), respectively,
then u1 − u2 is the unique weak solution in W̊ k

2 (Ω) of the homogeneous Dirichlet
boundary-value problem for the operator P̃ (x, ∂) corresponding to the right-hand
side f1 − f2 in W−k2 (Ω). It thus follows from Theorems 2.6 and 2.7 that

‖u1 − u2‖Wk
2 (Ω) ≤ C‖f1 − f2‖W−k2 (Ω)

,

where C is a positive constant, independent of u1, u2, f1 and f2; this implies the
continuous dependence of the solution to the homogeneous Dirichlet boundary-
value problem on the right-hand side of the equation.

2.2 Approximation of Elliptic Problems

We begin this section by outlining the general approach to the construction of fi-
nite difference schemes for elliptic boundary-value problems; we then introduce
basic results from the theory of finite difference schemes and present some classical
tools for the error analysis of finite difference schemes for partial differential equa-
tions with smooth solutions. The limitations of the classical theory will lead us to
consider finite difference schemes with mollified data, and we shall develop a theo-
retical framework for the error analysis of such nonstandard schemes. We conclude
by considering finite difference approximations of second- and fourth-order elliptic
equations with variable coefficients, and derive sharp error bounds in various mesh-
dependent (discrete) norms, under minimal smoothness requirements on the data
and the associated solution.
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2.2.1 Introduction to the Theory of Finite Difference Schemes

Assuming that Ω is a bounded open set in R
n, we consider a boundary-value prob-

lem on Ω of the general form

Lu= f in Ω, (2.9)

lu= g on Γ = ∂Ω, (2.10)

where L is a linear partial differential operator, and l is a linear operator that speci-
fies the boundary condition. For example, we may have

Lu := −
n∑

i,j=1

∂

∂xj

(
aij (x)

∂u

∂xi

)
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u,

where the aij (x), i, j = 1, . . . , n, satisfy (2.4), with one of the following choices of
the boundary operator l (Dirichlet, Neumann or oblique derivative):

lu := u,

or

lu := ∂u

∂ν
,

or

lu :=
n∑

i,j=1

aij (x)
∂u

∂xi
νj + σ(x)u,

where ν is the unit outward normal vector to Γ , νj is the j th component of ν,
j = 1, . . . , n, and σ is a bounded, nonnegative function defined on Γ .

The construction of a finite difference scheme for the boundary-value problem
(2.9), (2.10) consists of two basic steps: first, the domain Ω is replaced by a finite
set of points, called the mesh or grid, and second, the derivatives in the differential
equation and in the boundary condition are replaced by divided differences. To de-
scribe the first of these two steps more precisely, suppose that we have approximated
Ω =Ω ∪ Γ by the mesh

Ω
h :=Ωh ∪ Γ h,

where Ωh ⊂Ω is the set of interior mesh-points, and Γ h ⊂ Γ is the set of boundary
mesh-points. Typically the mesh consist of a finite set of points obtained by consid-
ering the intersections of n families of parallel hyperplanes, each element of each
family being perpendicular to one of the co-ordinate axes. If the domain Ω is not
axiparallel, adjustments may need to be made to the mesh near the boundary ∂Ω ,
which may be curved. The parameter h= (h1, . . . , hn) measures the spacing of the
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mesh; in particular, hi > 0 denotes the mesh-size in the ith co-ordinate direction.
Once the mesh has been constructed, we proceed by replacing the derivatives fea-
turing in L by divided differences, and approximate the boundary condition in a
similar fashion. This yields a finite difference scheme of the form

LhU(x) = fh(x), x ∈Ωh, (2.11)

lhU(x) = gh(x), x ∈ Γ h, (2.12)

where Lh and lh are linear difference operators, representing discrete counterparts
of L and l, while fh and gh are suitable approximations of f and g, respectively. In
algebraic terms, (2.11), (2.12) is a system of linear equations involving the values
of the approximate solution U at the mesh-points.

Assuming that (2.11), (2.12) has a unique solution U , when the mesh spacing is
small the sequence of values of the approximate solution at the mesh-points, {U(x) :
x ∈ Ωh}, is expected to resemble {u(x) : x ∈ Ωh}, the set of values of the exact

solution u at the mesh-points. However the closeness of U(x) to u(x) at x ∈ Ωh

is by no means obvious, and the proof of such approximation results represents
the central theme of this book. We shall consider a range of problems of the form
(2.9), (2.10), and derive sharp bounds on the error between the analytical solution
u (typically a weak solution) and its finite difference approximation U in terms of
positive powers of the discretization parameter h. Bounds of this kind imply, in
particular, that the error between the analytical solution u and its finite difference
approximation U converges to zero with a certain rate, in a certain norm, as h→ 0.

2.2.2 Finite Difference Approximation in One Space Dimension

In this section we shall focus on the finite difference approximation of a two-point
boundary-value problem. We begin by developing some basic results about mesh-
functions (i.e. functions that are defined on the finite difference mesh), finite differ-
ence operators and mesh-dependent (discrete) norms.

2.2.2.1 Meshes, Mesh-Functions and Mesh-Dependent Norms

Meshes Suppose that N is a positive integer, N ≥ 2, let h := 1/N , and consider
the uniform mesh on the unit interval (0,1) of the real line, defined by

Ωh := {xi : xi = ih, i = 1, . . . ,N − 1}.
We further define

Ω
h :=Ωh ∪ {0,1}.
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Let Sh denote the linear space of real-valued functions defined on the mesh Ω
h
,

and let Sh0 be the linear space of all real-valued functions defined on the mesh Ω
h

that are equal to zero on Γ h :=Ω
h \Ωh. Any element of the set Sh (or of Sh0 ) will

be referred to as a mesh-function.
For a mesh-function V ∈ Sh we define Vi := V (xi)= V (ih). We equip the linear

space Sh0 with the inner product

(V ,W)h = (V ,W)L2(Ω
h) :=

∑

x∈Ωh

hV (x)W(x)=
N−1∑

i=1

hViWi, (2.13)

which closely resembles the inner product

(v,w)=
∫ 1

0
v(x)w(x)dx,

of the Hilbert space L2(Ω). The inner product (·, ·)h induces the norm ‖ · ‖h on Sh0
defined by

‖V ‖h = ‖V ‖L2(Ω
h) := (V ,V )

1/2
h . (2.14)

Analogously, we equip the linear space Sh with the inner product

[V,W ]h = (V ,W)
L2(Ω

h
)
:= h

2

[
V (0)W(0)+ V (1)W(1)

]+ (V ,W)h

and the induced norm

|[V ]|h = ‖V ‖L2(Ω
h
)
:= [V,V ]1/2

h .

We shall also need the meshes

Ωh− :=Ωh ∪ {0}, Ωh+ :=Ωh ∪ {1}.
On the linear space of real-valued functions defined on the mesh Ωh−, we consider
the inner product

[V,W)h = (V ,W)L2(Ω
h−) :=

∑

x∈Ωh−

hV (x)W(x)=
N−1∑

i=0

hViWi

and the associated norm

|[V ‖h = ‖V ‖L2(Ω
h−) := [V,V )

1/2
h ,

with an analogous definition of the inner product (V ,W ]h = (V ,W)L2(Ω
h+) and the

corresponding norm ‖V ]|h = ‖V ‖L2(Ω
h+) on the linear space of real-valued mesh-

functions defined on Ωh+.
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Finite Difference Operators The forward, backward and central divided differ-
ence operators D+x , D−x and D0

x on the mesh Ωh are defined, respectively, by

D+x V :=
V + − V

h
, D−x V :=

V − V −

h
, D0

xV :=
1

2

(
D+x V +D−x V

)
,

where we have used the notation

V ± = V ±(x) := V (x ± h).

With these definitions, we have the following discrete Leibniz formulae:

D+x (VW)= (
D+x V

)
W+ + V

(
D+x W

)= (
D+x V

)
W + V +

(
D+x W

)
,

D−x (VW)= (
D−x V

)
W− + V

(
D−x W

)= (
D−x V

)
W + V −

(
D−x W

)
,

and the summation-by-parts formula:
[
D+x V ,W)h =−(V ,D−x W

]
h
+ V (1)W(1)− V (0)W(0), (2.15)

which immediately yields the following result.

Lemma 2.10 Suppose that V ∈ Sh0 ; then,

(−D+x D−x V ,V
)
h
=

N∑

i=1

h
∣∣D−x Vi

∣∣2 =
N−1∑

i=0

h
∣∣D+x Vi

∣∣2. (2.16)

Proof Let us write Ui =D−x Vi , i = 1, . . . ,N , and note that

(−D+x D−x V ,V
)
h
=−(D+x U,V

)
h
=−[D+x U,V

)
h
= (

U,D−x V
]
h
= ∥∥D−x V

]∣∣2
h
,

thanks to our assumption that V ∈ Sh0 , which implies that V0 = V (0) = 0 and
VN = V (1) = 0, and using the identity (2.15). The second equality in (2.16) fol-
lows simply by noting that D−x Vi =D+x Vi−1, i = 1, . . . ,N , and shifting the index i

in the summation. �

The Discrete Laplace Operator on Sh
0 On the set Sh0 , we define the linear oper-

ator Λ : Sh0 → Sh0 by

(ΛV )(x) :=
{
−D+x D−x V (x) if x ∈Ωh,

0 if x ∈ Γ h =Ω
h \Ωh.

Since

(ΛV,W)h = −
(
D+x D−x V ,W

)
h
= (

D−x V ,D−x W
]
h
= (

D−x W,D−x V
]
h

= [
D+x V ,D+x W

)
h
= [

D+x W,D+x V
)
h
= (ΛW,V )h,
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Λ is a symmetric linear operator on Sh0 . Moreover, thanks to (2.16),

(ΛV,V )= ∥∥D−x V
]∣∣2
h
= ∣∣[D+x V

∥∥2
h
> 0 for all V ∈ Sh0 \ {0},

and therefore Λ is positive definite on Sh0 . Thus Λ has N −1 distinct positive eigen-
values, which are easily shown to be (see Samarskiı̆ [159], Sect. 2.4.2)

λk = 4

h2
sin2 kπh

2
, k = 1,2, . . . ,N − 1; (2.17)

these eigenvalues satisfy the inequalities

8 < λk <
4

h2
, k = 1,2, . . . ,N − 1. (2.18)

The corresponding N − 1 eigenfunctions V k , k = 1, . . . ,N − 1, satisfying ΛV k =
λkV

k , are

V k(x)= sin kπx, x ∈Ωh
, k = 1,2, . . . ,N − 1.

The set of eigenfunctions {V 1, . . . , V N−1} is an orthogonal system in Sh0 with re-
spect to the inner product (·, ·)h; that is,

(
V k,V l

)
h
= 1

2
δkl, k, l = 1,2, . . . ,N − 1, (2.19)

where δkl is the Kronecker delta; in fact, {V 1, . . . , V N−1} forms a basis of the linear
space Sh0 . Consequently an arbitrary mesh-function V ∈ Sh0 can be expressed as a
linear combination of these eigenfunctions:

V (x)=
N−1∑

k=1

bk sin kπx, x ∈Ωh
, (2.20)

where

bk = 2
(
V,V k

)
h
.

By noting the orthogonality of the eigenfunctions we deduce the following discrete
Parseval identity:

‖V ‖2
h =

1

2

N−1∑

k=1

b2
k . (2.21)

Analogously,

∥∥D−x V
]∣∣2
h
= ∣∣[D+x V

∥∥2
h
= (ΛV,V )h = 1

2

N−1∑

k=1

λkb
2
k, (2.22)
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∥∥D+x D−x V
∥∥2
h
= (ΛV,ΛV )h = 1

2

N−1∑

k=1

λ2
kb

2
k . (2.23)

It follows from (2.18) and (2.21)–(2.23) that

∥∥D+x D−x V
∥∥
h
≥ 2
√

2
∥∥D−x V

]∣∣
h
= 2
√

2
∣∣[D+x V

∥∥
h
≥ 8‖V ‖h (2.24)

for each V ∈ Sh0 .

Discrete Sobolev Norms on Sh
0 The discrete analogues of Sobolev seminorms

and norms are defined similarly to their ‘continuous’ counterparts introduced in
Chap. 1. In particular, we define

|V |1,h = |V |W 1
2 (Ω

h) :=
∥∥D−x V

]∣∣
h
= ∣∣[D+x V

∥∥
h
,

|V |2,h = |V |W 2
2 (Ω

h) :=
∥∥D+x D−x V

∥∥
h
,

‖V ‖k,h = ‖V ‖Wk
2 (Ω

h) :=
(‖V ‖2

Wk−1
2 (Ωh)

+ |V |2
Wk

2 (Ω
h)

)1/2
,

(2.25)

where k = 1,2, with the convention that W 0
2 (Ω

h) = L2(Ω
h). The inequalities

(2.24) imply that the seminorms | · |W 1
2 (Ω

h) and | · |W 2
2 (Ω

h) are equivalent to the

norms ‖ · ‖W 1
2 (Ω

h) and ‖ · ‖W 2
2 (Ω

h), respectively, on Sh0 .

Lemma 2.11 (Discrete Friedrichs Inequality) There exists a positive constant c�
such that

‖V ‖2
W 1

2 (Ω
h)
≤ c�

∥
∥D−x V

∥
∥2
L2(Ω

h+)
(2.26)

for all V ∈ Sh0 .

Proof The last inequality in (2.24) implies (2.26) with c� = 9/8. �

Lemma 2.12 (Discrete Sobolev Embedding) For all V ∈ Sh0 the following inequal-
ity holds

‖V ‖∞,h := max
x∈Ωh

|V (x)| ≤ 1

2

∥∥D−x V
∥∥
L2(Ω

h+)
(2.27)

Proof Using the Cauchy–Schwarz inequality, we obtain from the identity

|Vi |2 = (1− ih)|Vi |2 + ih|Vi |2 = (1− ih)

∣∣∣∣∣

i∑

j=1

(
D−x Vj

)
h

∣∣∣∣∣

2

+ ih

∣∣∣∣∣

N∑

j=i+1

(
D−x Vj

)
h

∣∣∣∣∣

2
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that

|Vi |2 ≤ (1− ih)

(
i∑

j=1

h

)
i∑

j=1

(
D−x Vj

)2
h+ ih

(
N∑

j=i+1

h

)
N∑

j=i+1

(
D−x Vj

)2
h

= ih(1− ih)

N∑

j=1

(
D−x Vj

)2
h.

The required inequality then follows by taking the maximum over the index i ∈
{0,1, . . . ,N} and noting that, for all such i, 0≤ ih(1− ih)≤ 1/4. �

The Discrete Laplace Operator on Sh We define the linear operator Λ : Sh→
Sh by

(ΛV )(x) :=

⎧
⎪⎨

⎪⎩

− 2
h
D+x V (0) if x = 0,

−D+x D−x V (x) if x ∈Ωh,
2
h
D−x V (1) if x = 1.

Assuming that each V ∈ Sh is extended outside Ω
h

as an even function, we have
that

(ΛV )(x)= (−D+x D−x V
)
(x) for x ∈Ωh

.

The linear operator Λ is symmetric with respect to the inner product [·, ·]h. The
eigenvalues of Λ are given by the formula (2.17), but now for k = 0,1,2, . . . ,N .
In fact, since λ0 = 0 is an eigenvalue, Λ : Sh→ Sh is only nonnegative (positive
semidefinite) rather than positive definite; that is,

[ΛV,V ]h ≥ 0 for all V ∈ Sh \ {0}.
The eigenfunctions of Λ corresponding to the eigenvalues λk , k = 0, . . . ,N , are:

W 0(x)= 1, Wk(x)= coskπx, k = 1,2, . . . ,N;
these form an orthogonal system in the sense that

[
Wk,Wl

]
h
=

⎧
⎨

⎩

1 if k = l = 0,N,
1
2 if k = l = 1,2, . . . ,N − 1,
0 if k 	= l,

and they span the linear space Sh; hence each mesh-function V ∈ Sh can be ex-
pressed as

V (x)= 1

2
a0 +

N−1∑

k=1

ak coskπx + 1

2
aN cosNπx, (2.28)
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where

ak = 2[V, coskπx]h, for k = 0,1, . . . ,N.

When V ∈ Sh0 , the expansions (2.20) and (2.28) coincide at all points of the

mesh Ω
h
.

By noting the orthogonality of the eigenfunctions Wk , k = 0, . . . ,N , it is easily
seen that for any mesh-function V contained in Sh the following identities hold:

|[V ]|2h =
1

4
a2

0 +
1

2

N−1∑

k=1

a2
k +

1

4
a2
N,

∥∥D−x V
]∣∣2
h
= [ΛV,V ]h = 1

2

N−1∑

k=1

λka
2
k +

1

4
λNa

2
N,

|[ΛV ]|2h =
1

2

N−1∑

k=1

λ2
ka

2
k +

1

4
λ2
Na

2
N.

Next, we introduce analogous discrete Sobolev norms on the linear space Sh,

consisting of all real-valued functions defined on the mesh Ω
h
.

Discrete Sobolev Norms on Sh Similarly as on Sh0 , we introduce on Sh the fol-
lowing discrete analogues of the Sobolev norms ‖ · ‖Wk

2 (Ω), k = 1,2:

|[V ]|1,h = ‖V ‖W 1
2 (Ω

h
)
:= (|[V ]|2h +

∥∥D−x V
]∣∣2
h

)1/2
,

|[V ]|2,h = ‖V ‖W 2
2 (Ω

h
)
:= (|[V ]|2h +

∥∥D−x V
]∣∣2
h
+ |[ΛV ]|2h

)1/2
.

Fractional-Order Discrete Sobolev Norms Next we shall define fractional-
order Sobolev norms on Sh0 and derive an interpolation inequality that relates these
to the integer-order discrete Sobolev norms defined earlier. We shall limit ourselves
to the case when the Sobolev index r is in the range (0,1) ∪ (1,2). We define the
seminorm | · |Wr

2 (Ω
h) by

|V |Wr
2 (Ω

h) :=

⎧
⎪⎨

⎪⎩

(
h2 ∑

x,y∈Ωh
,x 	=y

[V (x)−V (y)]2
|x−y|1+2r

)1/2
if 0 < r < 1,

(
h2 ∑

x,y∈Ωh−,x 	=y
[D+x V (x)−D+x V (y)]2

|x−y|1+2r

)1/2
if 1 < r < 2,

and we introduce the corresponding fractional-order discrete Sobolev norm

‖V ‖Wr
2 (Ω

h) :=
(‖V ‖2

W
[r]
2 (Ωh)

+ |V |2
Wr

2 (Ω
h)

)1/2
, 0 < r < 2, r 	= 1.

Higher order fractional-order discrete Sobolev norms can be defined similarly.
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Next we state an interpolation inequality that establishes a relationship between
fractional-order discrete Sobolev norms and the integer-order norms defined earlier.

Lemma 2.13 Suppose that r ∈ (0,1). Then, there exists a positive real number C(r)
such that, for each mesh-function V ∈ Sh0 ,

‖V ‖Wr
2 (Ω

h) ≤ C(r)‖V ‖1−r
L2(Ω

h)
‖V ‖r

W 1
2 (Ω

h)
, 0 < r < 1.

Proof Given a mesh-function V ∈ Sh0 , we decompose it as a finite linear combina-
tion of sine functions, as in (2.20), and define the norm Br(·) on Sh0 in terms of the
corresponding expansion coefficients bk , k = 1, . . . ,N − 1, by

Br(V ) :=
(

1

2

N−1∑

k=1

k2rb2
k

)1/2

.

It is left to the reader to verify that Br(·) is indeed a norm on Sh0 . By noting (2.17),
the elementary inequality

sinx ≥ 2

π
x, 0≤ x ≤ π/2,

and Hölder’s inequality with exponents p := 1/(1− r) and p′ := 1/r we obtain

Br(V ) ≤
[

1

2

N−1∑

k=1

(
λk

4

)r

b2
k

]1/2

= 2−r
[

1

2

N−1∑

k=1

b
2(1−r)
k

(
λkb

2
k

)r
]1/2

≤ 2−r
(

1

2

N−1∑

k=1

b2
k

)(1−r)/2(
1

2

N−1∑

k=1

λkb
2
k

)r/2

,

and hence, by the discrete Parseval identities (2.21) and (2.22),

Br(V )≤ 2−r‖V ‖1−r
L2(Ω

h)
|V |r

W 1
2 (Ω

h)
. (2.29)

The rest of the proof is devoted to showing that the norm Br(·) is equivalent to
‖ · ‖Wr

2 (Ω
h). For this purpose, we extend the function V ∈ Sh0 from

Ω
h = {kh : k = 0, . . . ,N}

to the mesh

{kh : k = 0,±1,±2, . . . ,±N}
as an odd function; that is, V (−x) := −V (x) for each x in Ω

h
. The resulting func-

tion is then further extended to the infinite lattice

hZ= {kh : k = 0,±1,±2, . . .}
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as a 2-periodic function; as before, h := 1/N and N ≥ 2. Let ωh := (−1,1) ∩ hZ
and ωh := [−1,1] ∩ hZ. For mesh-functions V defined on ωh we consider

Nr(V ) :=
{

h2
�∑

x∈ωh

�∑

t∈ωh,t 	=0

[V (x)− V (x − t)]2
|t |1+2r

}1/2

,

where

h

�∑

x∈ωh
W(x) := 1

2
h
[
W(−1)+W(1)

]+ h
∑

x∈ωh
W(x)= [W,1]L2(ω

h).

By noting the periodicity of the extended function (still denoted by V ) and the ex-
pansion (2.20), we obtain

Nr(V )
2 = h2

�∑

x∈ωh

�∑

t∈ωh,t 	=0

|t |−1−2rV (x)
[−V (x − t)+ 2V (x)− V (x + t)

]

= h2
�∑

x∈ωh

�∑

t∈ωh,t 	=0

|t |−1−2r
N−1∑

l=1

bl sin lπx
N−1∑

k=1

4bk sin2 kπt

2
sin kπx

=
N−1∑

l=1

N−1∑

k=1

blbkh

�∑

x∈ωh
sin lπx sin kπxh

�∑

t∈ωh,t 	=0

|t |−1−2r4 sin2 kπt

2

= 8
N−1∑

k=1

b2
kh

��∑

t∈Ωh+

t−1−2r sin2 kπt

2
.

Here we have used the notation

h

��∑

t∈Ωh+

W(t) := h
∑

t∈Ωh

W(t)+ 1

2
hW(1)= (W,1)h + 1

2
hW(1).

After further transformation, we obtain

Nr(V )
2 = 16

(
π

2

)2r 1

2

N−1∑

k=1

k2rb2
kC(k, r),

where

C(k, r) := kπh

2

��∑

t∈Ωh+

(
kπt

2

)−1−2r

sin2 kπt

2
.
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It is easily seen that C(k, r) is the Riemann sum for the integral

∫ kπ/2

0
x−1−2r sin2 x dx

and can be therefore bounded from below and above as follows:

1

8

(
2

π

)2r

≤ C(k, r)≤ π2−2r
(

1+ 1

2− 2r

)
+ 1

2r

(
2

π

)2r

.

Thus we deduce that Nr(·) and Br(·) are equivalent norms on Sh0 .
By noting inequality (2.29), the equivalence of the seminorm | · |W 1

2 (Ω
h) and the

norm ‖ · ‖W 1
2 (Ω

h) on the linear space Sh0 , in conjunction with the obvious inequality
|V |Wr

2 (Ω
h) ≤ Nr(V ), we then arrive at the desired inequality. That completes the

proof. �

Remark 2.7 The lemma can also be proved by using the cosine expansion (2.28)
and the norm

Ar(V ) :=
(

1

2

N−1∑

k=1

k2ra2
k +

1

4
N2ra2

N

)1/2

.

It can be shown that this norm is equivalent to Nr(·), provided that V has been

extended periodically outside Ω
h

as an even function.

Remark 2.8 A similar argument shows, for r ∈ (1,2), that there exists a positive
real number C1(r) such that

‖V ‖Wr
2 (Ω

h) ≤ C1(r)‖V ‖2−r
W 1

2 (Ω
h)
‖V ‖r−1

W 2
2 (Ω

h)
, 1 < r < 2.

Remark 2.9 Finally we note that, similarly as on Sh0 , one can define a fractional-
order discrete Sobolev norm on Sh as follows:

‖V ‖2
Wr

2 (Ω
h
)
:= (‖V ‖2

W
[r]
2 (Ω

h
)
+ |V |2

Wr
2 (Ω

h)

)1/2
, 0 < r < 2, r 	= 1.

After this brief summary of notational conventions in one dimension, we consider
a simple one-dimensional model problem, construct its finite difference approxima-
tion and derive bounds on the error, in the discrete norms defined above, between
the analytical solution and its finite difference approximation.

2.2.3 Finite Difference Scheme for a Univariate Problem

We give a simple illustration of the general framework of finite difference ap-
proximation by considering the following two-point boundary-value problem for
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a second-order linear (ordinary) differential equation:

−u′′ + c(x)u= f (x), x ∈ (0,1), (2.30)

u(0)= 0, u(1)= 0. (2.31)

We shall assume that c ≥ 0 almost everywhere on (0,1), c ∈ L∞(0,1) and f ∈
W−1

2 (0,1).
The first step in the construction of a finite difference scheme for this boundary-

value problem is to define the mesh. Let N be an integer, N ≥ 2, and let h := 1/N
be the mesh-size; the mesh-points are xi := ih, i = 0, . . . ,N . We then define

Ωh := {xi : i = 1, . . . ,N − 1},
Γ h := {x0, xN } and Ω

h :=Ωh ∪ Γ h.

Let us suppose that the unique weak solution u ∈ W̊ 1
2 (0,1) to this boundary-

value problem is sufficiently smooth (e.g. u ∈ C4([0,1])). Then, by Taylor series
expansion of u about the mesh-point xi , 1≤ i ≤N − 1, we deduce that, as h→ 0,

u(xi±1) = u(xi ± h)

= u(xi)± hu′(xi)+ h2

2
u′′(xi)± h3

6
u′′′(xi)+O

(
h4),

so that

D+x u(xi) :=
u(xi+1)− u(xi)

h
= u′(xi)+O(h),

D−x u(xi) :=
u(xi)− u(xi−1)

h
= u′(xi)+O(h),

D0
xu(xi) :=

u(xi+1)− u(xi−1)

2h
= u′(xi)+O

(
h2)

and

D+x D−x u(xi) =D−x D+x u(xi)

= u(xi+1)− 2u(xi)+ u(xi−1)

h2

= u′′(xi)+O
(
h2).

Recall that D+x and D−x are called the forward and backward divided difference
operator, respectively, D0

x is referred to as the central-difference operator, while
D+x D−x is the (symmetric) second divided difference operator. It follows from these
Taylor series expansions that, for a sufficiently smooth function u (e.g. for u ∈
C2([0,1])), D+x u(xi) and D+x u(xi) approximate u′(xi) to O(h) for i = 0, . . . ,N−1
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and i = 1, . . . ,N , respectively, while the central difference approximation D0
xu(xi)

is more accurate: it approximates u′(xi) to O(h2) for i = 1, . . . ,N−1 (provided that
u ∈ C3([0,1]). Similarly, the second divided difference D+x D−x u(xi) is an O(h2) ap-
proximation to u′′(xi), i = 1, . . . ,N−1, (as long as u ∈ C4([0,1]). Thus we replace
the second derivative u′′ in (2.30) by the second divided difference to obtain

−D+x D−x u(xi)+ c(xi)u(xi) ≈ f (xi), i = 1, . . . ,N − 1, (2.32)

u(x0)= 0, u(xN)= 0. (2.33)

Here we have implicitly assumed that both c and f are continuous functions on the
interval (0,1); thus, c(xi) and f (xi) are correctly defined for all i = 1, . . . ,N − 1.
We shall also suppose that

c(x)≥ 0 ∀x ∈ (0,1). (2.34)

Now (2.32) and (2.33) indicate that we should seek our approximation U to u by
solving the system of difference equations:

−D+x D−x Ui + c(xi)Ui = f (xi), i = 1, . . . ,N − 1, (2.35)

U0 = 0, UN = 0. (2.36)

Using matrix notation, this can be written as

AU = F,

where

A :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

2
h2 + c(x1) − 1

h2 0
− 1

h2
2
h2 + c(x2) − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + c(xN−2) − 1

h2

0 − 1
h2

2
h2 + c(xN−1)

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

U := (U1,U2, . . . ,UN−1)
T

and

F := (
f (x1), f (x2), . . . , f (xN−1)

)T
.

Thus A is a symmetric tridiagonal (N − 1) × (N − 1) matrix, and U and F are
column vectors of size N − 1.

We begin the analysis of the finite difference scheme (2.35), (2.36) by showing
that it has a unique solution; this will be achieved by proving that the matrix A is
nonsingular. For this purpose, we introduce the inner product (2.13). Let Sh0 denote
the set of all real-valued functions V defined at the mesh-points xi , i = 0, . . . ,N ,
such that V0 = VN = 0.
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We define the linear operator A : Sh0 → Sh0 by

(AV )i := −D+x D−x Vi + c(xi)Vi, i = 1, . . . ,N − 1,

(AV )0 = (AV )N := 0.

Returning to the finite difference scheme (2.35), (2.36) and using Lemma 2.10 and
(2.34), we see that, for V ∈ Sh0 ,

(AV,V )h =
(−D+x D−x V + cV,V

)
h

= (−D+x D−x V ,V
)
h
+ (cV,V )h

≥
N∑

i=1

h
∣
∣D−x Vi

∣
∣2 = ∥

∥D−x V
∥
∥2
L2(Ω

h+)
, (2.37)

where the norm ‖ · ‖L2(Ω
h+) has been defined in the previous section. Thus, if AV =

0 for some V , then D−x Vi = 0, i = 1, . . . ,N ; because V0 = VN = 0, this implies
that Vi = 0, i = 0, . . . ,N . Hence AV = 0 if, and only if, V = 0. We deduce that
A : Sh0 → Sh0 is invertible and, consequently, A is a nonsingular matrix; thus (2.35),
(2.36) has a unique solution, U = A−1F . We summarize our findings in the next
theorem.

Theorem 2.14 Suppose that c and f are continuous functions on the interval (0,1),
and c(x) ≥ 0 for x ∈ (0,1); then, the finite difference scheme (2.35), (2.36) pos-
sesses a unique solution U in Sh0 .

We note that by Theorem 2.7, for c ∈ C([0,1]) satisfying (2.34) and f ∈
C([0,1]), the boundary-value problem (2.30), (2.31) has a unique weak solution
u ∈ W̊ 1

2 (0,1); in fact, by Sobolev’s embedding theorem u belongs to C([0,1]) and
therefore u′′ = f − cu ∈ C([0,1]). However to derive an error bound between u and
its finite difference approximation U we shall have to assume that u is even more
regular (the precise regularity hypothesis required in the analysis will be stated be-
low). A key ingredient in our error analysis will be the fact that the scheme (2.35),
(2.36) is stable (or discretely well-posed) in the sense that “small” perturbations in
the data result in “small” perturbations in the corresponding finite difference so-
lution. Actually, we shall prove the discrete version of the inequality appearing in
Remark 2.6. For this purpose, we shall consider the discrete L2 norm (2.14) and
the discrete Sobolev norm (2.25). From (2.37) and the discrete Friedrichs inequality
(2.26) we deduce, with c0 = 1/c� = 8/9, that

(AV,V )h ≥ c0‖V ‖2
W 1

2 (Ω
h)
. (2.38)

Now the stability of the finite difference scheme (2.35), (2.36) easily follows.
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Theorem 2.15 The scheme (2.35), (2.36) is stable in the sense that

‖U‖W 1
2 (Ω

h) ≤
1

c0
‖f ‖L2(Ω

h), (2.39)

where c0 = 8/9.

Proof From (2.38) and (2.35) we have that

c0‖U‖2
W 1

2 (Ω
h)
≤ (AU,U)h = (f,U)h

≤ ‖f ‖L2(Ω
h)‖U‖L2(Ω

h) ≤ ‖f ‖L2(Ω
h)‖U‖W 1

2 (Ω
h),

and hence we deduce (2.39). �

Theorem 2.15 implies that if U1 and U2 are solutions of the problem (2.35),
(2.36) corresponding to right-hand sides f1 and f2, respectively, then

‖U1 −U2‖W 1
2 (Ω

h) ≤
1

c0
‖f1 − f2‖L2(Ω

h).

Therefore, in analogy with the boundary-value problem (2.30), (2.31), the difference
scheme (2.35), (2.36) is well-posed in the sense of Remark 2.6. It is important to
note that the ‘stability constant’ 1/c0 is independent of the discretization parameter
h: the spacing of the finite difference mesh.

By exploiting this stability result it is easy to derive a bound on the error between
the analytical solution u, and its finite difference approximation U . We define the
global error, e, by

ei := u(xi)−Ui, i = 0, . . . ,N.

Obviously e0 = 0, eN = 0, and

Aei = ϕi, i = 1, . . . ,N − 1, (2.40)

where the mesh-function ϕ, defined by

ϕi :=Au(xi)− f (xi), i = 1, . . . ,N − 1,

is called the truncation error of the finite difference scheme. A simple calculation
using (2.30) reveals that

ϕi = u′′(xi)−D+x D−x u(xi), i = 1, . . . ,N − 1.

Since the global error satisfies (2.40), we can apply (2.39) to deduce that

‖u−U‖W 1
2 (Ω

h) = ‖e‖W 1
2 (Ω

h) ≤
1

c0
‖ϕ‖L2(Ω

h). (2.41)
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It remains to bound ‖ϕ‖L2(Ω
h).

Assuming now that u ∈ C4([0,1]), the Taylor series expansions stated at the
beginning of this section imply that

ϕi = u′′(xi)−D+x D−x u(xi)=O
(
h2);

thus, there exists a positive constant C, independent of h, such that

|ϕi | ≤ Ch2.

Consequently,

‖ϕ‖L2(Ω
h) =

(
N−1∑

i=1

h|ϕi |2
)1/2

≤ Ch2. (2.42)

Combining (2.41) and (2.42), it follows that

‖u−U‖W 1
2 (Ω

h) ≤
C

c0
h2. (2.43)

In fact, a more careful treatment of the remainder term in the Taylor series expansion
of u reveals that, for i = 1, . . . ,N − 1,

ϕi = u′′(xi)−D+x D−x u(xi)=−
1

12
h2u′′′′(ξi), ξi ∈ (xi−1, xi+1).

Thus

|ϕi | ≤ 1

12
h2 max

x∈[0,1]
∣∣u′′′′(x)

∣∣, (2.44)

and hence

C = 1

12
max
x∈[0,1]

∣∣u′′′′(x)
∣∣

in (2.42). As c0 = 1/c� and c� = 9/8, we deduce that c0 = 8/9. Substituting the
values of the constants C and c0 into (2.43), it follows that

‖u−U‖W 1
2 (Ω

h) ≤
3

32
h2

∥
∥u′′′′

∥
∥
C([0,1]).

Thus we have proved the following result.

Theorem 2.16 Let f ∈ C([0,1]), c ∈ C([0,1]), with c(x) ≥ 0 for all x ∈ [0,1],
and suppose that the corresponding solution of the boundary-value problem (2.30),
(2.31) belongs to C4([0,1]); then,

‖u−U‖W 1
2 (Ω

h) ≤
3

32
h2

∥∥u′′′′
∥∥
C([0,1]). (2.45)
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We note that by the argument following Theorem 2.14 the hypotheses f ∈
C([0,1]), c ∈ C([0,1]), c ≥ 0 imply that the unique weak solution of the boundary-
value problem (2.30), (2.31) belongs to C2([0,1]), and it is therefore a classical
solution. Thus, the word solution in this theorem means classical solution.

It follows from (2.37) with V = e, (2.40), the Cauchy–Schwarz inequality, the
last inequality in (2.24), (2.27) and (2.44) that

‖u−U‖∞,h ≤ 1

48
√

2
h2

∥∥u′′′′
∥∥
C([0,1]). (2.46)

We thus deduce the following result.

Theorem 2.17 Suppose that the assumptions of Theorem 2.16 are satisfied; then,
the error bound (2.46) holds.

This simple stability and error analysis of the finite difference scheme (2.35),
(2.36) already contains the key ingredients of a general error analysis of finite dif-
ference approximations, and it is instructive to highlight them here.

(1) The first step is to prove the stability of the scheme in an appropriate mesh-
dependent norm (cf. (2.39), for example). A typical stability result for the ab-
stract finite difference scheme (2.11), (2.12) considered at the beginning of the
section is of the form

c0 �U�Ωh ≤ ‖fh‖Ωh + ‖gh‖Γ h, (2.47)

where �·�Ωh , ‖ · ‖Ωh and ‖ · ‖Γ h are mesh-dependent norms involving mesh-

points of Ωh (or Ω
h
) and Γ h, respectively, and c0 is a positive constant, inde-

pendent of h.
(2) The second step is to estimate the size of the truncation error,

ϕΩh := Lhu− fh in Ωh,

ϕΓ h := lhu− gh on Γ h.

In the case of the finite difference scheme (2.11), (2.12), ϕΓ h = 0, and therefore
ϕΓ h did not appear explicitly in our error analysis. If

‖ϕΩh‖Ωh + ‖ϕΓ h‖Γ h→ 0 as h→ 0,

for a sufficiently smooth solution u of (2.9), (2.10), we say that the scheme
(2.11), (2.12) is consistent. If p is the largest positive real number such that

‖ϕΩh‖Ωh + ‖ϕΓ h‖Γ h ≤ Chp as h→ 0,

(where C is a positive constant independent of h) for all sufficiently smooth u,
then the scheme is said to have order of accuracy p.
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The finite difference scheme (2.11), (2.12) is said to converge to (2.9), (2.10)
(and U is said to converge to u) in the norm �·�Ωh , if

�u−U�Ωh→ 0 as h→ 0.

If q is the largest positive real number such that, for all u sufficiently smooth,

�u−U�Ωh ≤ Chq as h→ 0

(where C is a positive constant independent of h), then the scheme is said to have
order of convergence q .

From these definitions we deduce the following fundamental theorem.

Theorem 2.18 Suppose that the finite difference scheme (2.11), (2.12) for problem
(2.9), (2.10) is stable (i.e. (2.47) holds for all fh and gh and corresponding solution
U , with c0 independent of h) and that the scheme is consistent; then (2.11), (2.12) is
a convergent approximation of (2.9), (2.10) and the order of convergence is not less
than the order of accuracy.

Proof We define the global error e := u−U ; then,

Lhe= Lh(u−U)= Lhu−LhU = Lhu− fh.

Thus,

Lhe= ϕΩh

and similarly

lhe= ϕΓ h.

By stability,

c0 �u−U�Ωh = c0 �e�Ωh ≤ ‖ϕΩh‖Ωh + ‖ϕΓ h‖Γ h,

and hence we arrive at the stated result. �

Paraphrasing Theorem 2.18, stability and consistency of the scheme imply its
convergence. This abstract result is at the heart of the error analysis of finite differ-
ence approximations of differential equations.

2.2.4 The Multi-dimensional Case

Since the two-dimensional case is sufficiently representative, for the sake of nota-
tional simplicity we shall confine our attention to elliptic boundary-value problems
in the plane.
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Meshes and Divided Difference Operators Assuming that N is an integer,
N ≥ 2, we shall use a uniform square mesh Ωh with mesh-size h := 1/N over the
unit square Ω := (0,1)2, defined by

Ωh := {
x = (x1, x2)= (ih, jh) : i, j = 1, . . . ,N − 1

}
,

and the square mesh

Ω
h := {

(ih, jh) : i, j = 0, . . . ,N
}
.

Let Γ := ∂Ω be the boundary of Ω and define

Γ h := hZ2 ∩ Γ =Ω
h \Ωh.

Analogously, let

Γik := {x ∈ Γ : xi = k, 0 < x3−i < 1}, i = 1,2, k = 0,1,

and define

Γ h
ik := Γik ∩ hZ2, Γ

h

ik := Γ ik ∩ hZ2, Γ h∗ := Γ h \ (∪i,kΓ h
ik

)
.

Let us also introduce

Ωh
i :=Ωh ∪ Γ h

i0, Ωh
i+2 :=Ωh ∪ Γ h

i1, i = 1,2,

Ωh
kl :=Ωh ∪ Γ h

1k ∪ Γ h
2l ∪

{
(k, l)

}
, k, l = 0,1.

Let Sh be the set of all real-valued functions defined on the mesh Ω
h
. We shall

use the notation Vij := V (ih, jh). By Sh0 we denote the set of all real-valued func-

tions defined on the mesh Ω
h

that vanish at all points of Γ h. The set Sh0 is equipped
with the inner product

(V ,W)h = (V ,W)L2(Ω
h) := h2

∑

x∈Ωh

V (x)W(x)= h2
N−1∑

i,j=1

VijWij , (2.48)

and the norm

‖V ‖h = ‖V ‖L2(Ω
h) := (V ,V )

1/2
h .

The norms ‖ · ‖L2(Ω
h
i )

and ‖ · ‖L2(Ω
h
kl)

are defined analogously to ‖ · ‖L2(Ω
h).

The forward, backward and central divided difference operators on the mesh Ωh

are defined analogously as in the one-dimensional case:

D+xi V :=
V +i − V

h
, D−xi V :=

V − V −i

h
, D0

xi
V := 1

2

(
D+xi V +D−xi V

)
,
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where

V ±i := V ±i (x)= V (x ± hei ), ei := (δi1, δi2), i = 1,2,

and δik is the Kronecker delta.

Discrete Sobolev Norms Analogously as in the one-dimensional case, we define
the following discrete Sobolev seminorms on Sh:

|V |W 1
2 (Ω

h) :=
(∥∥D+x1

V
∥∥2
L2(Ω

h
1 )
+ ∥∥D+x2

V
∥∥2
L2(Ω

h
2 )

)1/2

= (∥∥D−x1
V
∥
∥2
L2(Ω

h
3 )
+ ∥

∥D−x2
V
∥
∥2
L2(Ω

h
4 )

)1/2
,

|V |W 2
2 (Ω

h) :=
(∥∥D+x1

D−x1
V
∥∥2
L2(Ω

h)
+ ∥∥D+x1

D+x2
V
∥∥2
L2(Ω

h
00)

+ ∥∥D+x2
D−x2

V
∥∥2
L2(Ω

h)

)1/2

(2.49)

and the corresponding discrete Sobolev norms

‖V ‖Wk
2 (Ω

h) :=
(‖V ‖2

Wk−1
2 (Ωh)

+ |V |2
Wk

2 (Ω
h)

)1/2
, k = 1,2, (2.50)

with the notational convention W 0
2 (Ω

h) := L2(Ω
h).

Let us also introduce the following inner products

[V,W ]h := h2
∑

x∈Ωh

V (x)W(x)+ h2

2

∑

x∈Γ h\Γ h∗

V (x)W(x)+ h2

4

∑

x∈Γ h∗

V (x)W(x),

[V,W ]i,h := h2
∑

x∈Ωh
i

V (x)W(x)+ h2

2

∑

x∈Γ h\(Γ h
i0∪Γ

h
i1)

V (x)W(x), i = 1,2,

and the associated norms

|[V ]|h = |[V ]|L2(Ω
h) := [V,V ]1/2

h ,

|[V ]|i = |[V ]|i,h := [V,V ]1/2
i,h .

In analogy with the one-dimensional case, we define the following discrete
Sobolev seminorms and norms on Sh:

[V ]W 1
2 (Ω

h) :=
(∣∣[D+x1

V
]∣∣2

1 +
∣∣[D+x2

V
]∣∣2

2

)1/2
,

[V ]W 2
2 (Ω

h) :=
(|[Λ1V ]|2L2(Ω

h)
+ ∥∥D+x1

D+x2
V
∥∥2
L2(Ω

h
00)
+ |[Λ2V ]|2L2(Ω

h)

)1/2
,

|[V ]|Wk
2 (Ω

h) :=
(|[V ]|2

Wk−1
2 (Ωh)

+ [V ]2
Wk

2 (Ω
h)

)1/2
, k = 1,2,
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where

(ΛiV )(x) :=

⎧
⎪⎨

⎪⎩

− 2
h
D+xi V if x ∈ Γ h

i0,

−D+xiD−xi V (x) if x ∈Ωh ∪ Γ h
3−i,0 ∪ Γ h

3−i,1,
2
h
D−xi V if x ∈ Γ h

i1.

The Discrete Laplace Operator on Sh
0 We consider the discrete analogue of the

Laplace operator in two space dimensions, defined on hZ2 by

ΔhV :=D+x1
D−x1

V +D+x2
D−x2

V.

The mapping Λ : Sh0 → Sh0 defined, for V ∈ Sh0 , by

(ΛV )(x)=
{−(ΔhV )(x) if x ∈Ωh,

0 if x ∈ Γ h,

positive definite operator with respect to the inner product (·, ·)h. In particular, for
V ∈ Sh0 we have that

(ΛV,V )h = (−ΔhV,V )h = |V |2W 1
2 (Ω

h)
. (2.51)

Furthermore,

‖ΔhV ‖2
h =

∥∥D+x1
D−x1

V
∥∥2
L2(Ω

h)
+ 2

∥∥D+x1
D+x2

V
∥∥2
L2(Ω

h
00)
+ ∥∥D+x2

D−x2
V
∥∥2
L2(Ω

h)
,

and therefore,

‖ΔhV ‖2
h ≥ |V |2W 2

2 (Ω
h)
.

Similarly,

‖ΔhV ‖2
h ≥ 16(−ΔhV,V )h ≥ 162‖V ‖2

h = 162‖V ‖2
L2(Ω

h)

and

|V |W 2
2 (Ω

h) ≥ 2
√

2|V |W 1
2 (Ω

h) ≥ 8
√

2‖V ‖L2(Ω
h), V ∈ Sh0 . (2.52)

Consequently, on the linear space Sh0 the seminorms | · |W 1
2 (Ω

h) and | · |W 2
2 (Ω

h) are
equivalent to the norms ‖ · ‖W 1

2 (Ω
h) and ‖ · ‖W 2

2 (Ω
h), respectively.

Lemma 2.19 (Discrete Friedrichs Inequality) There exists a positive real number
c�, independent of h, such that

‖V ‖2
W 1

2 (Ω
h)
≤ c�

(∥∥D+x1
V
∥∥2
L2(Ω

h
1 )
+ ∥∥D+x2

V
∥∥2
L2(Ω

h
2 )

)
(2.53)

for all V in Sh0 .
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Proof Inequality (2.53) with c� = 17/16 follows directly from the definition (2.49)
of the seminorm | · |W 1

2 (Ω
h) and the second inequality in (2.52). �

Fractional-Order Discrete Sobolev Norms We define the fractional-order dis-
crete Sobolev seminorm | · |Wr

2 (Ω
h) by

|V |2
Wr

2 (Ω
h)
:=

2∑

i=1

h3
Nh∑

xi ,ti=0
xi 	=ti

(N−1)h∑

x3−i=h

[V (x)− V (tiei + x3−ie3−i )]2
|xi − ti |1+2r

if 0 < r < 1, and by

|V |2
Wr

2 (Ω
h)
:=

2∑

i=1

h3
(N−1)h∑

xi ,ti=0
xi 	=ti

(N−1)h∑

x3−i=0

[D+xi V (x)−D+xi V (tiei + x3−ie3−i )]2
|xi − ti |1+2(r−1)

+
2∑

i=1

h3
Nh∑

x3−i ,t3−i=0
x3−i 	=t3−i

(N−1)h∑

xi=0

[D+xi V (x)−D+xi V (xiei + t3−ie3−i )]2
|x3−i − t3−i |1+2(r−1)

if 1 < r < 2. We also introduce the associated fractional-order discrete Sobolev
norm by

‖V ‖Wr
2 (Ω

h) :=
(‖V ‖2

W
[r]
2 (Ωh)

+ |V |2
Wr

2 (Ω
h)

)1/2
, 0 < r < 2, r 	= 1.

Similarly as in one dimension, we have the interpolation inequalities

‖V ‖Wr
2 (Ω

h) ≤ C(r)‖V ‖1−r
L2(Ω

h)
‖V ‖r

W 1
2 (Ω

h)
, 0 < r < 1,

‖V ‖Wr
2 (Ω

h) ≤ C(r)‖V ‖2−r
W 1

2 (Ω
h)
‖V ‖r−1

W 2
2 (Ω

h)
, 1 < r < 2,

(2.54)

which follow directly from their one-dimensional counterparts.

2.2.5 Approximation of a Generalized Poisson Problem

In Sect. 2.2.3 we presented a detailed error analysis for a finite difference approx-
imation of a simple two-point boundary-value problem. Here we shall undertake a
similar study for the generalized Poisson equation in two space dimensions subject
to a homogeneous Dirichlet boundary condition:

−Δu+ c(x, y)u = f (x, y) in Ω, (2.55)

u = 0 on Γ = ∂Ω, (2.56)
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where Ω := (0,1)× (0,1), c is a continuous function on Ω and c(x, y)≥ 0. For the
sake of notational simplicity we have denoted the two independent variables by x

and y, instead of x1 and x2. As far as the smoothness of the function f is concerned,
we shall consider two distinct cases:

(a) First we shall assume that f is continuous on Ω . In this case, the error analysis
proceeds along the same lines as in Sect. 2.2.3.

(b) We shall then consider the case when f is in L2(Ω) only; then the boundary-
value problem (2.55), (2.56) does not necessarily have a classical solution; nev-
ertheless, a weak solution still exists. This lack of smoothness gives rise to some
technical difficulties both in the formulation of an adequate finite difference
scheme and its error analysis. Since the point values of f need not be mean-
ingful at the mesh-points (after all, f can be changed on a subset of Ω of zero
Lebesgue measure without altering it as an element of L2(Ω)), instead of sam-
pling the function f at the mesh-points we shall sample a mollified right-hand
side Thf . Also, since the analytical solution may not have a Taylor expansion
with the required number of terms, we shall apply a different technique, based
on integral representation theorems, to estimate the size of the truncation error.

We begin by considering the first of these two cases.
(a) (f ∈ C(Ω)) The first step in the construction of the finite difference approx-

imation to (2.55), (2.56) is to define the mesh. Let N be an integer, N ≥ 2, and let
h := 1/N ; the mesh-points are (xi, yj ), i, j = 0, . . . ,N , where xi := ih, yj := jh.
These mesh-points form the mesh

Ω
h := {

(xi, yj ) : i, j = 0, . . . ,N
}
.

Similarly as in Sect. 2.2.2, we consider the set of interior mesh-points

Ωh := {
(xi, yj ) : i, j = 1, . . . ,N − 1

}

and the set of boundary mesh-points

Γ h :=Ω
h \Ωh.

In analogy with (2.35), (2.36), the finite difference approximation of (2.55), (2.56)
is:

−(D+x D−x Uij +D+y D−y Uij

)+ c(xi, yj )Uij = f (xi, yj ), (xi, yj ) ∈Ωh, (2.57)

U = 0 on Γ h. (2.58)

In expanded form, this can be written as follows:

−
(
Ui+1,j − 2Uij +Ui−1,j

h2
+ Ui,j+1 − 2Uij +Ui,j−1

h2

)
+ c(xi, yj )Uij

= f (xi, yj ) if (xi, yj ) ∈Ωh, (2.59)
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Fig. 2.1 The set of interior mesh-points Ωh, denoted by •, the set of boundary mesh-points Γ h,
denoted by ×, and a typical five-point difference stencil

Uij = 0 if (xi, yj ) ∈ Γ h, (2.60)

where the divided difference operators D±x =D±x1
and D±y =D±x2

have been defined
in Sect. 2.2.2.

For each i and j , 1≤ i, j ≤N − 1, the finite difference equation (2.59) involves
five values of the approximate solution U : Ui,j , Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1, as
indicated in Fig. 2.1; hence its name: five-point difference scheme. It is possible to
write (2.59), (2.60) as a system of linear equations

AU = F, (2.61)

where

U := (U11,U12, . . . ,U1,N−1,U21,U22, . . . ,U2,N−1, . . . ,

. . . ,Ui1,Ui2, . . . ,Ui,N−1, . . . ,UN−1,1,UN−1,2, . . . ,UN−1,N−1)
T,

F := (F11,F12, . . . ,F1,N−1,F21,F22, . . . ,F2,N−1, . . . ,

. . . ,Fi1,Fi2, . . . ,Fi,N−1, . . . ,FN−1,1,FN−1,2, . . . ,FN−1,N−1)
T,
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Fig. 2.2 The sparsity
structure of the banded matrix
A: K is an (N − 1)× (N − 1)
symmetric tridiagonal matrix,
J = (−1/h2)I , I is the
(N − 1)× (N − 1) identity
matrix, and O is the
(N − 1)× (N − 1) zero
matrix

A=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

K J O O · · · O O

J K J O · · · O O

O J K J · · · O O

O O J K · · · O O

· · · · · · · · · · · · · · · · · · · · ·
O O O O · · · K J

O O O O · · · J K

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and A is an (N − 1)2 × (N − 1)2 sparse, banded matrix.
A typical row of the matrix contains five nonzero entries, corresponding to the

five values of U in the finite difference stencil shown in Fig. 2.1, while the sparsity
structure of A is indicated in Fig. 2.2.

Next we show that (2.57), (2.58) has a unique solution. We proceed in the same
way as in the previous section for the finite difference approximation of the two-
point boundary-value problem. For two functions, V and W , defined on Ωh, we
introduce the discrete L2-inner product (2.48):

(V ,W)h :=
N−1∑

i=1

N−1∑

j=1

h2VijWij .

Again, let Sh0 denote the set of functions V defined on Ω
h

such that V = 0 on Γ h.
We define the linear operator

A : Sh0 → Sh0

at mesh-points of Ωh and Γ h, respectively, as follows:

(AV )ij := −
(
D+x D−x Vij +D+y D−y Vij

)+ c(xi)Vi, i, j = 1, . . . ,N − 1,

(AV )i0 = (AV )iN = (AV )0j = (AV )Nj := 0, i, j = 0, . . . ,N.

Returning to the analysis of the finite difference scheme (2.57), (2.58), we note
that, since c(x, y)≥ 0 on Ω , by (2.51) and (2.49) we have that

(AV,V )h =
(−D+x D−x V −D+y D−y V + cV,V

)
h

= (−D+x D−x V ,V
)
h
+ (−D+y D−y V ,V

)
h
+ (cV,V )h

≥
N∑

i=1

N−1∑

j=1

h2
∣∣D−x Vij

∣∣2 +
N−1∑

i=1

N∑

j=1

h2
∣∣D−y Vij

∣∣2, (2.62)

for any V in Sh0 . This implies, just as in the one-dimensional analysis presented in
the previous section, that A is a nonsingular matrix. Indeed if AV = 0, then (2.62)
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yields:

D−x Vij =
Vij − Vi−1,j

h
= 0,

i = 1, . . . ,N,

j = 1, . . . ,N − 1;

D−y Vij =
Vij − Vi,j−1

h
= 0,

i = 1, . . . ,N − 1,
j = 1, . . . ,N.

Since V = 0 on Γ h, these imply that V = 0 on Ω
h
. Thus AV = 0 if, and only if,

V = 0. Hence A is nonsingular, and U = A−1F is the unique solution of (2.57),
(2.59); the solution may be found by solving the system of linear equations (2.61).

In order to prove the stability of the finite difference scheme (2.57), (2.58), we
consider, similarly as in the one-dimensional case, the discrete L2 norm

‖V ‖L2(Ω
h) := (V ,V )

1/2
h ,

and the discrete W 1
2 norm (see (2.50))

‖V ‖W 1
2 (Ω

h) :=
(‖V ‖2

L2(Ω
h)
+ ∥

∥D−x V
∥
∥2
L2(Ω

h
x )
+ ∥

∥D−y V
∥
∥2
L2(Ω

h
y )

)1/2
,

where

Ωh
x :=Ωh

3 =
{
(xi, yj ) : i = 1, . . . ,N, j = 1, . . . ,N − 1

}
,

Ωh
y :=Ωh

4 =
{
(xi, yj ) : i = 1, . . . ,N − 1, j = 1, . . . ,N

}
.

The norm ‖·‖W 1
2 (Ω

h) is the discrete analogue of the Sobolev norm ‖·‖W 1
2 (Ω) defined

by

‖u‖W 1
2 (Ω) :=

(
‖u‖2

L2(Ω) +
∥∥∥∥
∂u

∂x

∥∥∥∥

2

L2(Ω)

+
∥∥∥∥
∂u

∂y

∥∥∥∥

2

L2(Ω)

)1/2

.

In terms of this notation the inequality (2.62) has the following form:

(AV,V )h ≥
∥∥D−x V

∥∥2
L2(Ω

h
x )
+ ∥∥D−y V

∥∥2
L2(Ω

h
y )
. (2.63)

The discrete Friedrichs inequality (2.53) and inequality (2.63) imply that

(AV,V )h ≥ c0‖V ‖2
W 1

2 (Ω
h)
, (2.64)

where c0 = 1/c� = 16/17.

Theorem 2.20 The scheme (2.57), (2.58) is stable in the sense that

‖U‖W 1
2 (Ω

h) ≤
1

c0
‖f ‖L2(Ω

h), (2.65)

where c0 = 16/17.
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Proof The proof of this stability result is completely analogous to that of its one-
dimensional counterpart (2.39), now using (2.64) and the Cauchy–Schwarz inequal-
ity. �

Having established the stability of the difference scheme (2.57), (2.58), we turn
to the question of its accuracy. We define the global error e by

eij := u(xi, yj )−Uij , i, j = 0, . . . ,N,

and the truncation error ϕ by

ϕij :=Au(xi, yj )− f (xi, yj ), i, j = 1, . . . ,N − 1.

Then,

Aeij = ϕij , i, j = 1, . . . ,N − 1,

e = 0 on Γ h.

By noting (2.65) we have

‖u−U‖W 1
2 (Ω

h) = ‖e‖W 1
2 (Ω

h)

≤ 1

c0
‖ϕ‖L2(Ω

h). (2.66)

Thus, in order to obtain a bound on the global error, it suffices to estimate the size of
the truncation error in the ‖ · ‖L2(Ω

h) norm. To do so, let us assume that u ∈ C4(Ω);
then, by expanding each term in ϕ in a Taylor series about the point (xi, yj ), we
obtain

ϕij = Δu(xi, yj )−
(
D+x D−x u(xi, yj )+D+y D−y u(xi, yj )

)

=
[
∂2u

∂x2
(xi, yj )−D+x D−x u(xi, yj )

]
+

[
∂2u

∂y2
(xi, yj )−D+y D−y u(xi, yj )

]

= −h
2

12

(
∂4u

∂x4
(ξi, yj )+ ∂4u

∂y4
(xi, ηj )

)
, i, j = 1, . . . ,N − 1,

where ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1).
Thus,

|ϕij | ≤ h2

12

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
,

and we deduce that the truncation error ϕ satisfies the bound

‖ϕ‖L2(Ω
h) ≤

h2

12

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
. (2.67)
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Finally (2.66) and (2.67) yield the following error bound.

Theorem 2.21 Let f ∈ C(Ω), c ∈ C(Ω), with c(x, y) ≥ 0, (x, y) ∈ Ω , and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
(2.56) belongs to C4(Ω); then

‖u−U‖W 1
2 (Ω

h) ≤
17h2

192

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
. (2.68)

Proof Recall that 1/c0 = c� = 17/16, and combine (2.66) and (2.67). �

According to this result, the five-point difference scheme (2.57), (2.58) for the
boundary-value problem (2.55), (2.56) is second-order convergent, provided that u
is sufficiently smooth; i.e. u ∈ C4(Ω).

Elliptic regularity theory tells us (see, for example, Ladyzhenskaya and Ural’tseva
[118], Gilbarg and Trudinger [53] or Renardy and Rogers [155]) that if the right-
hand side and the coefficients are “sufficiently smooth”, then the associated classical
solution of the elliptic problem is “as smooth as one would expect” in the interior of
the domain on which the problem is posed; e.g. in the case of a second-order elliptic
boundary-value problem, if f ∈ Ck,α(Ω), k ≥ 0, 0 < α < 1, then u ∈ Ck+2,α(Ω).
Unfortunately, in general, the solution will not be smooth up to the boundary if the
boundary is not of class Ck+2,α , as is the case when Ω is a square. For a simple il-
lustration, we refer to Example 9.52 on p. 325 of Renardy and Rogers [155]; a more
detailed account of regularity theory for elliptic equations in domains with nons-
mooth boundaries is given in Grisvard [62, 63] and Dauge [28]. Thus, in general,
the solution of our simple model problem (2.55), (2.56), will not belong to C4(Ω)

even if f and c are smooth functions, because the boundary Γ = ∂Ω is only of
class C0,1. Consequently, the hypothesis u ∈ C4(Ω) that was made in the statement
of Theorem 2.21 is unrealistic (unless f satisfies suitable compatibility conditions
at the four corners of Ω (cf. (2.8))).

Our analysis has another limitation: it was performed under the assumption that
f ∈ C(Ω), which was necessary in order to ensure that the values of f are mean-
ingfully defined at the mesh-points. However, in applications one often encounters
differential equations where f is a lot less smooth (e.g. f is piecewise continu-
ous, or f ∈ L2(Ω), or f is a Borel measure). When f ∈ L2(Ω), for example, we
know that the homogeneous Dirichlet boundary-value problem for the partial differ-
ential equation −Δu+ cu= f , with c bounded and nonnegative, still has a unique
weak solution in H 1

0 (Ω), so it is natural to ask whether one can construct a second-
order accurate finite difference approximation of the weak solution. This brings us
to case (b), formulated at the beginning of the section.

(b) (f ∈ L2(Ω)). We shall use the same finite difference mesh as in case (a), but
we shall modify the difference scheme (2.57), (2.58) to cater for the fact that f is
not continuous on Ω . The idea is to replace f (xi, yj ) in (2.57) by a cell-average
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Fig. 2.3 The cell Kij

of f :

(
T 11
h f

)
ij
:= 1

h2

∫

Kij

f (x, y)dx dy,

where the ‘cell’ Kij is defined by

Kij :=
(
xi − h

2
, xi + h

2

)
×

(
yj − h

2
, yj + h

2

)
,

with i, j = 1, . . . ,N − 1.
This seemingly ad hoc approach has the following justification. Integrating the

partial differential equation −Δu+ cu = f over the cell Kij and using the diver-
gence theorem we have that

−
∫

∂Kij

∂u

∂ν
ds +

∫

Kij

cudx dy =
∫

Kij

f dx dy, (2.69)

where ∂Kij is the boundary of Kij , and ν is the unit outward normal to ∂Kij .
The normal vectors to ∂Kij point in the co-ordinate directions, so the normal

derivative ∂u/∂ν can be approximated by divided differences using the values of
u at the five mesh-points marked by • in Fig. 2.3, in conjunction with a midpoint
quadrature rule along each edge of Kij to approximate the contour integral featuring
in the first term of (2.69) (cf. Examples 2.6 and 2.7).

Approximating the second integral on the left by a midpoint quadrature rule, now
in two dimensions, on Kij , and dividing both sides by meas(Kij )= h2, we obtain

−(D+x D−x u(xi, yj )+D+y D−y u(xi, yj )
)+ c(xi, yj )u(xi, yj )

≈ 1

h2

∫

Kij

f (x, y)dx dy.
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We note here that (T 11
h f )ij is correctly defined for f ∈ L2(Ω); indeed,

∣∣(T 11
h f

)
ij

∣∣ = 1

h2

∣∣∣∣

∫

Kij

f (x, y)dx dy

∣∣∣∣

≤ 1

h2

(∫

Kij

12 dx dy

)1/2(∫

Kij

∣∣f (x, y)
∣∣2 dx dy

)1/2

= h−1‖f ‖L2(Kij )(<∞). (2.70)

Thus we define our finite difference scheme for (2.55), (2.56) by

−(D+x D−x +D+y D−y
)
Uij + c(xi, yj )Uij =

(
T 11
h f

)
ij
, (xi, yj ) ∈Ωh, (2.71)

U = 0 on Γ h. (2.72)

Remark 2.10 Finite difference schemes that arise from integral formulations of a
differential equation, such as (2.69), are called finite volume methods.

Since we have not changed the difference operator on the left-hand side, the
argument presented in (a) concerning the existence and uniqueness of a solution to
the difference scheme (2.57), (2.58) still applies to (2.71), (2.72); therefore, (2.71),
(2.72) has a unique solution U in Sh0 . Moreover, we have the following stability
result.

Theorem 2.22 The scheme (2.71), (2.72) is stable in the sense that

‖U‖W 1
2 (Ω

h) ≤
1

c0
‖f ‖L2(Ω), (2.73)

where c0 = 16/17.

Proof From (2.64) and (2.70) we have

c0‖U‖2
W 1

2 (Ω
h)
≤ (AU,U)h =

(
T 11
h f,U

)
h

≤ ∥
∥T 11

h f
∥
∥
L2(Ω

h)
‖U‖L2(Ω

h) ≤
∥
∥T 11

h f
∥
∥
L2(Ω

h)
‖U‖W 1

2 (Ω
h)

≤ ‖f ‖L2(Ω)‖U‖W 1
2 (Ω

h),

and hence (2.73). �

Having established the stability of the scheme (2.71), (2.72) we consider the
question of its accuracy. Let us define the global error, e, as before:

eij := u(xi, yj )−Uij , i, j = 0, . . . ,N.
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Clearly, for i, j = 1, . . . ,N − 1 we have

Aeij = Au(xi, yj )−AUij

= Au(xi, yj )−
(
T 11
h f

)
ij

= −(D+x D−x u(xi, yj )+D+y D−y u(xi, yj )
)+ c(xi, yj )u(xi, yj )

+
[
T 11
h

(
∂2u

∂x2

)
(xi, yj )+ T 11

h

(
∂2u

∂y2

)
(xi, yj )− T 11

h (cu)(xi, yj )

]
.

(2.74)

By noting that

T 11
h

(
∂2u

∂x2

)
(xi, yj ) = 1

h

∫ yj+h/2

yj−h/2

∂u
∂x
(xi + h/2, y)− ∂u

∂x
(xi − h/2, y)

h
dy

= 1

h

∫ yj+h/2

yj−h/2
D+x

∂u

∂x
(xi − h/2, y)dy

=D+x
[

1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y)dy

]
,

and that, similarly,

T 11
h

(
∂2u

∂y2

)
(xi, yj )=D+y

[
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2)dx

]
,

equality (2.74) can be rewritten as

Ae=D+x ϕ1 +D+y ϕ2 +ψ,

where

ϕ1(xi, yj ) := 1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y)dy −D−x u(xi, yj ),

ϕ2(xi, yj ) := 1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2)dx −D−y u(xi, yj ),

ψ(xi, yj ) := (cu)(xi, yj )− T 11
h (cu)(xi, yj ).

Thus,

Ae = D+x ϕ1 +D+y ϕ2 +ψ in Ωh, (2.75)

e = 0 on Γ h. (2.76)
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As the stability result (2.73) implies only the crude bound

‖e‖W 1
2 (Ω

h) ≤
1

c0

∥∥D+x ϕ1 +D+y ϕ2 +ψ
∥∥
L2(Ω

h)
,

which does not exploit the special form of the truncation error,

ϕ :=D+x ϕ1 +D+y ϕ2 +ψ,

we shall proceed in a different way. The idea is to sharpen (2.73) by proving a
discrete analogue of the well-posedness result from Theorem 2.7; we recall that this
states that the following bound holds for the boundary-value problem (2.55), (2.56):

‖u‖
W̊ 1

2 (Ω)
≤ 1

c0
‖f ‖

W−1
2 (Ω)

.

In order to obtain a discrete counterpart of this inequality, we consider the discrete
negative Sobolev norm ‖ · ‖

W−1
2 (Ωh)

, defined by

‖V ‖
W−1

2 (Ωh)
:= sup

V∈Sh0 \{0}

|(V ,W)h|
‖W‖W 1

2 (Ω
h)

.

Theorem 2.23 The scheme (2.71), (2.72) is stable in the sense that

‖U‖W 1
2 (Ω

h) ≤
1

c0

∥∥T 11
h f

∥∥
W−1

2 (Ωh)
, (2.77)

where c0 = 16/17.

Proof From (2.64), by noting the definition of the ‖ · ‖
W−1

2 (Ωh)
norm, we have that

c0‖U‖2
W 1

2 (Ω
h)
≤ (AU,U)h =

(
T 11
h f,U

)
h

≤ ∥∥T 11
h f

∥∥
W−1

2 (Ωh)
‖U‖W 1

2 (Ω
h),

and hence (2.77). �

Now we apply Theorem 2.23 to (2.75), (2.76) to deduce that

‖e‖W 1
2 (Ω

h) ≤
1

c0

∥∥D+x ϕ1 +D+y ϕ2 +ψ
∥∥
W−1

2 (Ωh)
. (2.78)

In order to bound the right-hand side of (2.78) let us consider the expression

(
D+x ϕ1 +D+y ϕ2 +ψ,W

)
h
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for W ∈ Sh0 \ {0}. Using summation by parts, we shall pass the difference operators
D+x and D+y from ϕ1 and ϕ2, respectively, onto W . As W = 0 on the set Γ h, we
have that

(
D+x ϕ1,W

)
h
=

N−1∑

j=1

h

(
N−1∑

i=1

h
ϕ1(xi+1, yj )− ϕ1(xi, yj )

h
Wij

)

= −
N−1∑

j=1

h

(
N∑

i=1

hϕ1(xi, yj )
Wij −Wi−1,j

h

)

= −
N−1∑

j=1

h

(
N∑

i=1

hϕ1(xi, yj )D
−
x Wij

)

= −
N∑

i=1

N−1∑

j=1

h2ϕ1(xi, yj )D
−
x Wij

≤
(

N∑

i=1

N−1∑

j=1

h2
∣
∣ϕ1(xi, yj )

∣
∣2
)1/2( N∑

i=1

N−1∑

j=1

h2
∣
∣D−x Wij

∣
∣2
)1/2

.

We thus deduce that
∣∣(D+x ϕ1,W

)
h

∣∣≤ ‖ϕ1‖L2(Ω
h
x )

∥∥D−x W
∥∥
L2(Ω

h
x )
. (2.79)

Similarly,
∣∣(D+y ϕ2,W

)
h

∣∣≤ ‖ϕ2‖L2(Ω
h
y )

∥∥D−y W
∥∥
L2(Ω

h
y )
. (2.80)

By the Cauchy–Schwarz inequality we also have that
∣∣(ψ,W)h

∣∣≤ ‖ψ‖L2(Ω
h)‖W‖L2(Ω

h). (2.81)

Now, by combining (2.79)–(2.81) and noting the elementary inequality

|a1b1 + a2b2 + a3b3| ≤
(
a2

1 + a2
2 + a2

3

)1/2(
b2

1 + b2
2 + b2

3

)1/2
,

we arrive at the bound
∣∣(D+x ϕ1 +D+y ϕ2 +ψ,W

)
h

∣∣

≤ (‖ϕ1‖2
L2(Ω

h
x )
+ ‖ϕ2‖2

L2(Ω
h
y )
+ ‖ψ‖2

L2(Ω
h)

)1/2

× (∥∥D−x W
∥∥2
L2(Ω

h
x )
+ ∥∥D−y W

∥∥2
L2(Ω

h
y )
+ ‖W‖2

L2(Ω
h)

)1/2

= (‖ϕ1‖2
L2(Ω

h
x )
+ ‖ϕ2‖2

L2(Ω
h
y )
+ ‖ψ‖2

L2(Ω
h)

)1/2‖W‖W 1
2 (Ω

h).
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Dividing both sides by ‖W‖W 1
2 (Ω

h) and taking the supremum over all W ∈ Sh0 \ {0}
yields the following inequality:

∥∥D+x ϕ1 +D+y ϕ2 +ψ
∥∥
W−1

2 (Ωh)
≤ (‖ϕ1‖2

L2(Ω
h
x )
+ ‖ϕ2‖2

L2(Ω
h
y )
+ ‖ψ‖2

L2(Ω
h)

)1/2
.

(2.82)
Inserting (2.82) into (2.78) we obtain the following bound on the global error in
terms of the truncation error of the scheme.

Lemma 2.24 The global error, e := u− U , of the finite difference scheme (2.71),
(2.72) satisfies the bound

‖e‖W 1
2 (Ω

h) ≤
1

c0

(‖ϕ1‖2
L2(Ω

h
x )
+ ‖ϕ2‖2

L2(Ω
h
y )
+ ‖ψ‖2

L2(Ω
h)

)1/2
, (2.83)

where c0 = 16/17, and ϕ1, ϕ2 and ψ are defined by

ϕ1(xi, yj ) := 1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y)dy −D−x u(xi, yj ), (2.84)

ϕ2(xi, yj ) := 1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2)dx −D−y u(xi, yj ), (2.85)

ψ(xi, yj ) := (cu)(xi, yj )− 1

h2

∫ xi+h/2

xi−h/2

∫ yj+h/2

yj−h/2
(cu)(x, y)dx dy, (2.86)

with i = 1, . . . ,N and j = 1, . . . ,N − 1 in (2.84); i = 1, . . . ,N − 1 and j =
1, . . . ,N in (2.85); and i, j = 1, . . .N − 1 in (2.86).

To complete the error analysis, it remains to bound ϕ1, ϕ2 and ψ . Using Taylor
series expansions it is easily seen that

∣∣ϕ1(xi, yj )
∣∣≤ h2

24

(∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂x3

∥∥∥∥
C(Ω)

)
, (2.87)

∣∣ϕ2(xi, yj )
∣∣≤ h2

24

(∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂y3

∥∥∥∥
C(Ω)

)
, (2.88)

∣
∣ψ(xi, yj )

∣
∣≤ h2

24

(∥∥
∥∥
∂2(cu)

∂x2

∥∥
∥∥
C(Ω)

+
∥∥
∥∥
∂2(cu)

∂y2

∥∥
∥∥
C(Ω)

)
, (2.89)

which yield the required bounds on ‖ϕ1‖L2(Ω
h
x )

, ‖ϕ2‖L2(Ω
h
y )

and ‖ψ‖L2(Ω
h). We

thus arrive at the following theorem.

Theorem 2.25 Let f ∈ L2(Ω), c ∈ C2(Ω) with c(x, y) ≥ 0, (x, y) ∈Ω , and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
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(2.56) belongs to C3(Ω). Then,

‖u−U‖W 1
2 (Ω

h) ≤
17

384
h2M3, (2.90)

where

M3 =
{(∥∥∥∥

∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂x3

∥∥∥∥
C(Ω)

)2

+
(∥∥∥∥

∂3u

∂x2y

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂y3

∥∥∥∥
C(Ω)

)2

+
(∥∥
∥∥
∂2(cu)

∂x2

∥∥
∥∥
C(Ω)

+
∥∥
∥∥
∂2(cu)

∂y2

∥∥
∥∥
C(Ω)

)2}1/2

.

Proof As 1/c0 = 17/16, by substituting (2.87)–(2.89) into the right-hand side of
(2.83) the estimate (2.90) immediately follows. �

By comparing (2.90) with (2.68) we see that while the smoothness requirement
on the solution has been relaxed from u ∈ C4(Ω) to u ∈ C3(Ω), second-order con-
vergence has been retained.

The hypothesis u ∈ C3(Ω) can be further relaxed by using integral representa-
tions of ϕ1, ϕ2 and ψ instead of Taylor series expansions. We show how this is done
for ϕ1 and ψ ; ϕ2 is handled analogously to ϕ1. The argument is based on repeated
use the Newton–Leibniz formula

w(b)−w(a)=
∫ b

a

w′(x)dx.

In order to simplify the notation, let us write xi±1/2 := xi ± h/2 and yj±1/2 :=
yj ± h/2; we then have that

ϕ1(xi, yj ) = 1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y)− ∂u

∂x
(x, yj )

]
dx dy

= 1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y)− ∂u

∂x
(x, y)

]
dx dy

+ 1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(x, y)− ∂u

∂x
(x, yj )

]
dx dy

= 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

(∫ xi−1/2

x

∂2u

∂x2
(ξ, y)dξ

)
dx

]
dy

+ 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

(∫ y

yj

∂2u

∂x∂y
(x, η)dη

)
dx

]
dy.
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We thus deduce by partial integration that

ϕ1(xi, yj ) = 1

h2

∫ yj+1/2

yj−1/2

[
x

∫ xi−1/2

x

∂2u

∂x2
(ξ, y)dξ

∣∣∣∣

x=xi

x=xi−1

+
∫ xi

xi−1

x
∂2u

∂x2
(x, y)dx

]
dy

+ 1

h2

∫ xi

xi−1

[
y

∫ y

yj

∂2u

∂x∂y
(x, η)dη

∣∣∣∣

y=yj+1/2

y=yj−1/2

−
∫ yj+1/2

yj−1/2

y
∂2u

∂x∂y
(x, y)dy

]
dx

= 1

h2

∫ yj+1/2

yj−1/2

[∫ xi−1/2

xi−1

(x − xi−1)
∂2u

∂x2
(x, y)dx

+
∫ xi

xi−1/2

(x − xi)
∂2u

∂x2
(x, y)dx

]
dy

− 1

h2

∫ xi

xi−1

[∫ yj

yj−1/2

(y − yj−1/2)
∂2u

∂x∂y
(x, y)dy

+
∫ yj+1/2

yj

(y − yj+1/2)
∂2u

∂x∂y
(x, y)dy

]
dx.

We define the piecewise quadratic functions

Ai(x)=
{

1
2 (x − xi−1)

2 if x ∈ [xi−1, xi−1/2],
1
2 (x − xi)

2 if x ∈ [xi−1/2, xi],

Bj (y)=
{

1
2 (y − yj−1/2)

2 if y ∈ [yj−1/2, yj ],
1
2 (y − yj+1/2)

2 if y ∈ [yj , yj+1/2],
and note that Ai and Bj are continuous functions of their respective arguments;
furthermore,

Ai(xi−1)=Ai(xi)= 0 and Bj (yj−1/2)= Bj (yj+1/2)= 0.

Integration by parts then yields

ϕ1(xi, yj ) = 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

A′i (x)
∂2u

∂x2
(x, y)dx

]
dy

− 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

B ′j (y)
∂2u

∂x∂y
(x, y)dy

]
dx
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= − 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

Ai(x)
∂3u

∂x3
(x, y)dx

]
dy

+ 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

Bj (y)
∂3u

∂x∂y2
(x, y)dy

]
dx. (2.91)

Now

∣∣Ai(x)
∣∣≤ 1

8
h2, x ∈ [xi−1, xi] and

∣∣Bj (y)
∣∣≤ 1

8
h2, y ∈ [yj−1/2, yj+1/2],

and therefore,

∣∣ϕ1(xi, yj )
∣∣ ≤ 1

8

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂3u

∂x3
(x, y)

∣∣∣∣dx dy

+ 1

8

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂3u

∂x∂y2
(x, y)

∣∣∣∣dx dy.

Consequently,

‖ϕ1‖2
L2(Ω

h
x )
≤ h4

32

(∥∥∥∥
∂3u

∂x3

∥∥∥∥

2

L2(Ω)

+
∥∥∥∥

∂3u

∂x∂y2

∥∥∥∥

2

L2(Ω)

)
. (2.92)

Analogously,

‖ϕ2‖2
L2(Ω

h
y )
≤ h4

32

(∥∥∥∥
∂3u

∂y3

∥∥∥∥

2

L2(Ω)

+
∥∥∥∥

∂3u

∂x2∂y

∥∥∥∥

2

L2(Ω)

)
. (2.93)

In order to estimate ψ , we note that

ψ(xi, yj ) = 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(∫ xi

x

∂w

∂x
(s, y)ds

+
∫ yj

y

∂w

∂y
(x, t)dt +

∫ xi

x

∫ yj

y

∂2w

∂x∂y
(s, t)ds dt

)
dx dy

= − 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

Ci(x)
∂2w

∂x2
(x, y)dx dy

− 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

Bj (y)
∂2w

∂y2
(x, y)dx dy

+ 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(∫ xi

x

∫ yj

y

∂2w

∂x∂y
(s, t)ds dt

)
dx dy,



142 2 Elliptic Boundary-Value Problems

where w(x,y)= c(x, y)u(x, y) and

Ci(x)=
{

1
2 (x − xi−1/2)

2 if x ∈ [xi−1/2, xi],
1
2 (x − xi+1/2)

2 if x ∈ [xi, xi+1/2].
Hence,

∣
∣ψ(xi, yj )

∣
∣ ≤ 1

8

(∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣
∣∣
∂2w

∂x2
(x, y)

∣∣
∣∣dx dy

+
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂y2
(x, y)

∣∣∣∣dx dy

+ 2
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣
∣∣∣
∂2w

∂x∂y

∣
∣∣∣dx dy

)
,

so that, with w := cu, we have

‖ψ‖2
L2(Ω

h)
≤ 3h4

64

(∥
∥∥∥
∂2w

∂x2

∥
∥∥∥

2

L2(Ω)

+
∥
∥∥∥
∂2w

∂y2

∥
∥∥∥

2

L2(Ω)

+ 4

∥
∥∥∥
∂2w

∂x∂y

∥
∥∥∥

2

L2(Ω)

)
. (2.94)

By substituting (2.92)–(2.94) into the right-hand side of (2.83) and noting that
1/c0 = 16/17, we obtain the following result.

Theorem 2.26 Let f ∈ L2(Ω), c ∈M(W 2
2 (Ω)), with c(x, y) ≥ 0 for all (x, y) in

Ω , and suppose that the corresponding weak solution of the boundary-value prob-
lem (2.55), (2.56) belongs to W 3

2 (Ω)∩ W̊ 1
2 (Ω). Then,

‖u−U‖W 1
2 (Ω

h) ≤ Ch2‖u‖W 3
2 (Ω), (2.95)

where C is a positive constant (computable from (2.83) and (2.92)–(2.94)), inde-
pendent of h and u.

We note that, by the analogue of Lemma 1.46 on a Lipschitz domain, M(W 2
2 (Ω))

⊂W 2
2 (Ω), and therefore, by Sobolev embedding c ∈M(W 2

2 (Ω)) is a continuous
function with well-defined values at the mesh-points.

It can be verified by numerical experiments that the error bound (2.95) is best
possible in the sense that further weakening of the regularity hypothesis on u leads
to a loss of second-order convergence. Error bounds of the type (2.95), where the
highest possible order of convergence is attained under the weakest hypothesis on
the smoothness of the solution, are called optimal or compatible with the smoothness
of the solution. Thus, for example, (2.95) is an optimal error bound for the difference
scheme (2.71), (2.72), but (2.90) is not. At this point it does not concern us whether
the smoothness requirements on the coefficients in the equation are the weakest
possible: that issue will be addressed later, in our discussion of optimal error bounds
under minimal smoothness hypotheses on the coefficients and the source term f .
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We shall now explore the convergence rate of the finite difference scheme in the
norm ‖ · ‖W 1

2 (Ω
h) under even weaker regularity hypotheses on the solution, resulting

in a loss of second-order convergence established above for u ∈W 3
2 (Ω) ∩ W̊ 1

2 (Ω).
Suppose, for example, that u ∈W 2

2 (Ω)∩ W̊ 1
2 (Ω). From (2.91), by noting that

∣∣A′i (x)
∣∣≤ 1

2
h, x ∈ [xi−1, xi] and

∣∣B ′j (y)
∣∣≤ 1

2
h, y ∈ [yj−1/2, yj+1/2],

we have that

∣∣ϕ1(xi, yj )
∣∣ ≤ 1

2h

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2u

∂x2
(x, y)

∣∣∣∣dx dy

+ 1

2h

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2u

∂x∂y
(x, y)

∣∣∣∣dx dy.

Consequently,

‖ϕ1‖2
L2(Ω

h
x )
≤ h2

2

(∥∥∥∥
∂2u

∂x2

∥∥∥∥

2

L2(Ω)

+
∥∥∥∥
∂2u

∂x∂y

∥∥∥∥

2

L2(Ω)

)
. (2.96)

Analogously,

‖ϕ2‖2
L2(Ω

h
y )
≤ h2

2

(∥∥∥∥
∂2u

∂y2

∥∥∥∥

2

L2(Ω)

+
∥∥∥∥
∂2u

∂x∂y

∥∥∥∥

2

L2(Ω)

)
. (2.97)

From (2.83), (2.96), (2.97) and (2.94), under the assumptions that c ∈M(W 2
2 (Ω)),

c ≥ 0 on Ω and u ∈W 2
2 (Ω)∩ W̊ 1

2 (Ω), we deduce that:

‖u−U‖W 1
2 (Ω

h) ≤ Ch‖u‖W 2
2 (Ω), (2.98)

where C is a positive constant, independent of h and u.

Application of Function Space Interpolation When u ∈Ws
2 (Ω), 2 < s < 3, an

error bound can be obtained from (2.95) and (2.98) by function space interpolation.
For the sake of simplicity we shall confine ourselves to Poisson’s equation (i.e.
c(x, y) ≡ 0). In that case the constant C featuring in (2.95) and (2.98) represents
an absolute constant (i.e. it is independent of c(x, y)). Let us consider the mapping
L : u �→ u−U , with U understood as a linear function of f =−Δu. Evidently, L
is a linear operator. It follows from (2.95) that the operator L, considered as a linear
mapping L :W 3

2 (Ω)→W 1
2 (Ω

h), is bounded and

‖L‖W 3
2 (Ω)→W 1

2 (Ω
h) ≤ Ch2.

In the same way, it follows from (2.98) that the operator L, considered as a linear
mapping L :W 2

2 (Ω)→W 1
2 (Ω

h), is bounded and

‖L‖W 2
2 (Ω)→W 1

2 (Ω
h) ≤ Ch.
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By the results of Sect. 1.1.5, the operator L, considered as a linear mapping
L : (W 3

2 (Ω),W 2
2 (Ω))θ,q → (W 1

2 (Ω
h),W 1

2 (Ω
h))θ,q , is also bounded and, thanks

to (1.8),

‖L‖(W 3
2 (Ω),W 2

2 (Ω))θ,q→(W 1
2 (Ω

h),W 1
2 (Ω

h))θ,q
≤ (

Ch2)1−θ
(Ch)θ = Ch2−θ .

Furthermore,
(
W 1

2

(
Ωh

)
,W 1

2

(
Ωh

))
θ,q
=W 1

2

(
Ωh

)
,

(
W 3

2 (Ω),W 2
2 (Ω)

)
θ,q
=W 3−θ

2 (Ω).

Thus we obtain the following error bound:

‖u−U‖W 1
2 (Ω

h) ≤ Ch2−θ‖u‖
W 3−θ

2 (Ω)
, 0 < θ < 1.

By writing 3 − θ = s here and supplementing the resulting bounds with the ones
corresponding to the limiting cases s = 2 and s = 3, we deduce that

‖u−U‖W 1
2 (Ω

h) ≤ Chs−1‖u‖Ws
2 (Ω), 2≤ s ≤ 3,

where C is a positive real number, independent of h and u.
In the next section we shall show how the tedious use of integral representa-

tion theorems can be avoided in the error analysis of finite difference methods by
appealing to the Bramble–Hilbert lemma and its variants.

2.3 Convergence Analysis on Uniform Meshes

In the previous section we derived an optimal bound on the global error between the
unique weak solution u to a homogeneous Dirichlet boundary-value problem for the
generalized Poisson equation and its finite difference approximation U , under the
hypothesis that u ∈Ws

2 (Ω) ∩ W̊ 1
2 (Ω), s ∈ [2,3]. We used integral representations

for s = 2,3 in conjunction with function space interpolation for s ∈ (2,3). Here we
shall consider the same problem by using a different technique; our main tool will
be the Bramble–Hilbert lemma.

2.3.1 The Bramble–Hilbert Lemma

We begin by stating the Bramble–Hilbert lemma in its simplest form, in the case
of integer-order Sobolev spaces (cf. [20]). We shall then illustrate its use in the
error analysis of simple discretization methods and describe its generalizations to
fractional-order and anisotropic Sobolev spaces. We shall also formulate a multilin-
ear version of the Bramble–Hilbert lemma.
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Theorem 2.27 (Bramble–Hilbert Lemma) Let Ω ⊂R
n be a Lipschitz domain and,

for a positive integer m and a real number p ∈ [1,∞], let η be a bounded linear
functional on the Sobolev space Wm

p (Ω) such that

Pm−1 ⊂Ker(η),

where Pm−1 denotes the set of all polynomials of degree m−1 in n variables. Then,
there exists a positive real number C = C(m,p,n,Ω) such that

∣
∣η(v)

∣
∣≤ C‖η‖|v|Wm

p (Ω) ∀v ∈Wm
p (Ω).

The proof of this result will be presented below in a more general context. First,
however, we consider a series of examples that illustrate the application of Theo-
rem 2.27.

Example 2.6 In this example we apply the Bramble–Hilbert lemma to provide a
bound on the error in the numerical quadrature rule

∫ 1

−1
v(t)dt ≈ 2v(0),

called the midpoint rule. We shall assume that v ∈W 2
p(−1,1), 1≤ p ≤∞. In order

to estimate the error committed, let us consider the linear functional

η(v) :=
∫ 1

−1
v(t)dt − 2v(0)

defined on W 2
p(−1,1). Clearly, P1 ⊂Ker(η) and

∣∣η(v)
∣∣ ≤

∫ 1

−1

∣∣v(t)
∣∣dt + 2

∣∣v(0)
∣∣

=
∫ 1

−1

∣∣v(t)
∣∣dt +

∣∣∣∣

∫ 1

−1

∫ 0

t

v′(s)ds dt +
∫ 1

−1
v(t)dt

∣∣∣∣

≤ 2
∫ 1

−1

∣∣v(t)
∣∣dt + 2

∫ 1

−1

∣∣v′(t)
∣∣dt

≤ 2 · 21− 1
p
(‖v‖Lp(−1,1) + ‖v′‖Lp(−1,1)

)

≤ 2 · 41− 1
p ‖v‖W 1

p(−1,1) ≤ 2 · 41− 1
p ‖v‖W 2

p(−1,1).

From the Bramble–Hilbert lemma we deduce that there exists a positive constant
C = C(p) such that

∣∣η(v)
∣∣≤ C|v|W 2

p(−1,1).
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In the next example we consider a similar analysis on the interval [−h,h]. Using
a scaling argument we shall reduce the problem to the one considered in Exam-
ple 2.6.

Example 2.7 Let us suppose that we are required to estimate the size of the error in
the midpoint rule on the interval [−h,h], for h > 0:

∫ h

−h
u(x)dx ≈ 2hu(0).

To do so, we consider the linear functional

ηh(u) :=
∫ h

−h
u(x)dx − 2hu(0),

and introduce the following change of variable, in order to map [−h,h] on the
‘canonical interval’ [−1,1]:

x = ht, t ∈ [−1,1], v(t) := u(x).

Then, with η as in the previous example,

ηh(u)= hη1(v)= hη(v).

Therefore, according to the final inequality in Example 2.6, and returning from the
interval [−1,1] to [−h,h],

∣∣ηh(u)
∣∣≤ Ch|v|W 2

p(−1,1) = Ch · h2− 1
p |u|W 2

p(−h,h).

In particular, for p = 2 we have that

∣∣ηh(u)
∣∣≤ Ch5/2|u|W 2

2 (−h,h).

Using the error bound for the midpoint rule on the interval [−h,h] established
in this last example by means of the Bramble–Hilbert lemma it is possible to obtain
an optimal-order bound on the global error in a finite difference approximation of a
two-point boundary-value problem. We shall explain how this is done. In the next
section we shall then extend the technique to multiple space dimensions.

Let us consider the two-point boundary-value problem

−u′′ = f (x), x ∈ (0,1),

u(0)= 0, u(1)= 0.

Given the nonuniform finite difference mesh 0= x0 < x1 < · · ·< xN = 1 with spac-
ing hi := xi − xi−1, i = 1, . . . ,N , we define �i := (hi+1+ hi)/2, i = 1, . . . ,N − 1,
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and introduce the backward and forward divided difference operators

D−x Vi :=
Vi − Vi−1

hi
, D+x Vi :=

Vi+1 − Vi

�i

,

and the following inner products and norms:

(V ,W)h :=
N−1∑

i=1

�iViWi, ‖V ‖L2(Ω
h) := (V ,V )

1/2
h ,

(V ,W ]h :=
N∑

i=1

hiViWi, ‖V ‖L2(Ω
h+) := (V ,V ]1/2

h ,

where Ωh := {x1, . . . , xN−1} and Ωh+ := {x1, . . . , xN }. Let us consider the following
finite difference approximation of the two-point boundary-value problem:

−D+x D−x Ui = T 1
h fi, i = 1, . . . ,N − 1,

U0 = 0, UN = 0,

where T 1
h f denotes the mollification of f defined by

T 1
h fi :=

1

�i

∫ xi+1/2

xi−1/2

f (x)dx, i = 1, . . . ,N − 1.

In order to derive a bound on the global error e := u−U at the mesh-points, we
note that

−D+x D−x ei =−D+x ηi, i = 1, . . . ,N − 1,

e0 = 0, eN = 0,

where

ηi := D−x u(xi)− u′(xi−1/2)

= 1

2hi

[∫ hi

−hi
u′
(
xi−1/2 + 1

2
x

)
dx − 2hiu

′(xi−1/2)

]

= 1

2hi
ηhi

(
u′
(
xi−1/2 + 1

2
·
))

, i = 1, . . . ,N,

where ηhi is as in Example 2.7. We thus deduce that

|ηi | ≤ Ch
3/2
i |u′|W 2

2 (xi−1,xi )
,

where C is a positive constant, independent of hi . Consequently,

‖η‖2
L2(Ω

h+)
=

N∑

i=1

hi |ηi |2 ≤ C2
N∑

i=1

hih
3
i |u′|2W 2

2 (xi−1,xi )
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= C2
N∑

i=1

h4
i |u|2W 3

2 (xi−1,xi )
≤ C2h4|u|2

W 3
2 (0,1)

,

where h = maxi hi . We complete the error analysis by showing that the quantity
‖D−x e‖L2(Ω

h+) can be bounded in terms of ‖η‖L2(Ω
h+). Indeed, by summation by

parts and using the Cauchy–Schwarz inequality we obtain

∥∥D−x e
∥∥2
L2(Ω

h+)
= (−D+x D−x e, e

)
h
= (−D+x η, e

)
h

= (
η,D−x e

]
h
≤ ‖η‖L2(Ω

h+)
∥∥D−x e

∥∥
L2(Ω

h+)
.

Hence,
∥∥D−x e

∥∥
L2(Ω

h+)
≤ ‖η‖L2(Ω

h+),

and therefore

|u−U |W 1
2 (Ω

h) :=
∥∥D−x (u−U)

∥∥
L2(Ω

h+)
≤ Ch2|u|W 3

2 (0,1)
,

where C is a positive constant, independent of h and u. We note that we did not have
to impose any regularity requirements on the nonuniform mesh to prove this error
bound; in the next section, we shall develop a similar analysis in two dimensions.

First, however, we formulate a generalization of the Bramble–Hilbert lemma to
Sobolev spaces of any positive (not necessarily integer) order.

Theorem 2.28 Let Ω ⊂R
n be a Lipschitz domain and, for real numbers s > 0 and

p ∈ [1,∞], let η be a bounded linear functional on the Sobolev space Ws
p(Ω) such

that, by writing s =m+ α with m a nonnegative integer and 0 < α ≤ 1,

Pm ⊂Ker(η).

Then, there exists a positive real number C = C(s,p,n,Ω) such that
∣∣η(v)

∣∣≤ C‖η‖|v|Ws
p(Ω) ∀v ∈Ws

p(Ω).

Proof This result is a simple consequence of Theorem 1.13 with U0 = Lp(Ω),
U1 =Ws

p(Ω), S0(u)= ‖u‖Lp(Ω), S1(u)= ‖u‖Ws
p(Ω), S(u)= |η(u)|, by noting that,

according to the Theorem 1.36, Ws
p(Ω) is compactly embedded in Lp(Ω) for any

s > 0. �

One can apply this result to the midpoint rule to deduce, in the same manner as
in the integer-order case considered earlier, that the linear functional η defined on
Ws

p(−1,1), 1/p < s ≤ 2, 1≤ p ≤∞, by

η(v)=
∫ 1

−1
v(t)dt − 2v(0)
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satisfies the bound
∣∣η(v)

∣∣≤ C|v|Ws
p(−1,1),

for any v in Ws
p(Ω), 1/p < s ≤ 2, 1 ≤ p ≤∞. Thus in particular, with p = 2, we

obtain the following bound on the global error in the finite difference approximation
of the two-point boundary-value problem considered:

|u−U |W 1
2 (Ω

h) ≤ Chs |u′|Ws
2 (0,1)

,

where h= maxi hi , provided that u ∈Ws+1
2 (0,1) (whereby u′ ∈Ws

2 (0,1)), 1/2 <
s ≤ 2. In the next section we extend this result to Poisson’s equation on the unit
square. First we shall however formulate a generalization of the Bramble–Hilbert
lemma to anisotropic Sobolev spaces of the type WA

p (Ω).
Let A⊂R

n+ be a regular set of nonnegative real multi-indices (cf. Sect. 1.5). We
denote the convex hull in R

n of the set A by κ(A). Let ∂0κ(A) be the part of the
boundary of κ(A) that has empty intersection with the co-ordinate hyperplanes, and
let A∂ = A ∩ ∂0κ(A). Let B be a nonempty subset of A∂ such that B ∪ {0} is a
regular set of multi-indices, and define

ν(B) := {
β ∈Nn+ : ∂�α�xβ ≡ 0 ∀α ∈ B}

.

Let PB denote the set of all polynomials in n variables of the form

P(x)=
∑

α∈ν(B)
pαx

α.

Theorem 2.29 Suppose that Ω is a Lipschitz domain in R
n and let the sets A and

B of real nonnegative multi-indices satisfy the conditions formulated in the previous
paragraph. Then, there exists a positive real number C = C(A,B,p,n,Ω) such
that

inf
P∈PB

‖v− P ‖WA
p (Ω) ≤ C

∑

α∈B
|v|α,p ∀v ∈WA

p (Ω).

Moreover, if η is a bounded linear functional on WA
p (Ω), with norm ‖η‖, such that

PB ⊂Ker(η),

then
∣∣η(v)

∣∣≤ C‖η‖
∑

α∈B
|v|α,p ∀v ∈WA

p (Ω).

Proof This result is a simple consequence of Theorem 1.13 with U0 = Lp(Ω), U1 =
WA

p (Ω), S0(u)= ‖u‖Lp(Ω),

S1(u)= ‖u‖Lp(Ω) +
∑

α∈B
|v|α,p,
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and S(u)= |η(u)|, and noting that WA
p (Ω), equipped with the norm S1(·) is com-

pactly embedded in Lp(Ω). �

As a further generalization, we state the following multilinear version of the
Bramble–Hilbert lemma: this will be used extensively in the bilinear case through-
out the book.

Lemma 2.30 Suppose that Ak , Bk and Ωk satisfy the same conditions in R
nk ,

k = 1, . . . ,m, as A, B and Ω did in the previous theorem. Let (v1, . . . , vm) �→
η(v1, . . . , vm) be a bounded multilinear functional on the function space

WA1
p1
(Ω1)× · · · ×WAm

pm
(Ωm),

which vanishes whenever one of its entries has the form vk = xα , x ∈Ωk , α ∈ ν(Bk).
Then, there exists a real number

C = C(A1,B1,p1,Ω1, n1, . . . ,Am,Bm,pm,Ωm,nm)

such that

∣∣η(v1, . . . , vm)
∣∣≤ C‖η‖

m∏

k=1

∑

α∈Bk

|vk|α,pk

for every (v1, . . . , vm) in W
A1
p1 (Ω1)× · · · ×W

Am
pm (Ωm).

When m= 2, this result will be referred to as the bilinear version of the Bramble–
Hilbert lemma. In the case of standard, integer-order isotropic Sobolev spaces, the
bilinear version of the Bramble–Hilbert lemma can be found in Ciarlet [26], The-
orem 4.2.5. In the general case the proof is analogous, and is once again a simple
consequence of Theorem 2.29.

2.3.2 Optimal Error Bounds on Uniform Meshes

In this section we shall use the Bramble–Hilbert lemma to derive an optimal bound
on the global error of the finite difference (or, more precisely, finite volume) ap-
proximation (2.71), (2.72) of the homogeneous Dirichlet boundary-value problem
(2.55), (2.56) on a uniform mesh of size h; in the next section we shall extend this
analysis to nonuniform meshes. Thus, we consider the following finite difference
scheme:

−(D+x D−x +D+y D−y
)
Uij + c(xi, yj )Uij =

(
T 11
h f

)
ij
, (xi, yj ) ∈Ωh, (2.99)

U = 0 on Γ h. (2.100)
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Let e := u − U denote the global error of the scheme; then, according to
Lemma 2.24,

‖e‖W 1
2 (Ω

h) ≤
1

c0

(‖ϕ1‖2
L2(Ω

h
x )
+ ‖ϕ2‖2

L2(Ω
h
y )
+ ‖ψ‖2

L2(Ω
h)

)1/2
, (2.101)

where ϕ1, ϕ2, and ψ are defined by

ϕ1(xi, yj ) := 1

h

∫ yj+1/2

yj−1/2

∂u

∂x
(xi−1/2, y)dy −D−x u(xi, yj ),

ϕ2(xi, yj ) := 1

h

∫ xi+1/2

xi−1/2

∂u

∂y
(x, yj−1/2)dx −D−y u(xi, yj ),

ψ(xi, yj ) := (cu)(xi, yj )− 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(cu)(x, y)dx dy,

with xi±1/2 = xi ± h/2 and yj±1/2 = yj ± h/2.
We shall use the Bramble–Hilbert lemma to estimate ϕ1, ϕ2 and ψ in terms of

appropriate powers of the discretization parameter h and suitable Sobolev semi-
norms of the analytical solution u. We begin by considering ϕ1. Let us introduce the
change of variables

x = xi−1/2 + x̃h, −1

2
≤ x̃ ≤ 1

2
; y = yj + ỹh, −1

2
≤ ỹ ≤ 1

2
,

and define ṽ(x̃, ỹ) := h∂u
∂x
(x, y). Then,

ϕ1(xi, yj )= 1

h
ϕ̃1(ṽ),

where

ϕ̃1(ṽ) :=
∫ 1/2

−1/2

∫ 1/2

−1/2

[
ṽ(0, ỹ)− ṽ(x̃,0)

]
dx̃ dỹ.

Thanks to the trace theorem (Theorem 1.42),
∣∣ϕ̃1(ṽ)

∣∣≤ Cs‖ṽ‖Ws
2 (K̃)

, s > 1/2,

where

K̃ :=
(
−1

2
,

1

2

)
×

(
−1

2
,

1

2

)
,

and Cs = C(s) is a positive constant. Thus ϕ̃1 is a bounded linear functional (of the
argument ṽ) on Ws

2 (K̃) for s > 1/2.
Moreover, ϕ̃1 = 0 when ṽ(x̃, ỹ) = x̃kỹl , k, l ∈ {0,1}. According to Theo-

rem 2.28, there exists a positive constant C = C(s) such that
∣∣ϕ̃1(ṽ)

∣∣≤ C|ṽ|
Ws

2 (K̃)
, 1/2 < s ≤ 2.
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Hence, by defining

Kij := (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2)

and returning from x̃ and ỹ to the original variables x and y, we deduce that

∣∣ϕ̃1(ṽ)
∣∣≤ Chs

∣
∣∣∣
∂u

∂x

∣
∣∣∣
Ws

2 (Kij )

, 1/2 < s ≤ 2,

so that
∣∣ϕ1(xi, yj )

∣∣≤ Chs−1
∣∣∣∣
∂u

∂x

∣∣∣∣
Ws

2 (Kij )

, 1/2 < s ≤ 2.

By noting that the Sobolev seminorm on the unit square is superadditive on the
family {Kij } of mutually disjoint Lebesgue-measurable subsets Kij of Ω , i.e. for
w ∈Ws

2 (Ω) one has

(
N−1∑

i=1

N−1∑

j=1

|w|2Ws
2 (Kij )

)1/2

≤ |w|
Ws

2 (∪N−1
i,j=1Kij )

,

it follows with w = ∂u/∂x that

‖ϕ1‖L2(Ω
h
x )
≤ Chs

∣∣
∣∣
∂u

∂x

∣∣
∣∣
Ws

2 (Ω)

, 1/2 < s ≤ 2, (2.102)

where C is a positive constant, dependent only on s. Analogously,

‖ϕ2‖L2(Ω
h
y )
≤ Chs

∣∣∣∣
∂u

∂y

∣∣∣∣
Ws

2 (Ω)

, 1/2 < s ≤ 2. (2.103)

To complete the error analysis it remains to estimate ψ(xi, yj ). For this purpose
we shall write w := cu and note that

ψ(xi, yj )=w(xi, yj )− 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

w(x,y)dx dy.

Let us also consider the following change of variables:

x = xi + x̃h, −1

2
≤ x̃ ≤ 1

2
; y = yj + ỹh, −1

2
≤ ỹ ≤ 1

2
,

and define w̃(x̃, ỹ) :=w(x,y). Then,

ψ(xi, yj )= ψ̃(w̃),

where

ψ̃(w̃) := w̃(0,0)−
∫ 1/2

−1/2

∫ 1/2

−1/2
w̃(x̃, ỹ)dx̃ dỹ.
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By Sobolev’s embedding theorem ψ̃ is a bounded linear functional (of w̃) on Ws
2 (K̃)

for s > 1, where, as before, K̃ := (−1/2,1/2)×(−1/2,1/2). Furthermore, ψ̃(w̃)=
0 whenever w̃ = x̃kỹl with k, l ∈ {0,1}. Thus, by the Bramble–Hilbert lemma,

∣∣ψ̃(w̃)
∣∣≤ C|w̃|

Ws
2 (K̃)

, 1 < s ≤ 2,

and consequently, after returning from the (x̃, ỹ) co-ordinate system to the original
variables x and y, we obtain the bound

∣∣ψ(xi, yj )
∣∣≤ Chs−1|w|Ws

2 (Kij ), 1 < s ≤ 2,

and finally, after squaring and summing over i, j = 1, . . . ,N − 1,

‖ψ‖L2(Ω
h) ≤ Chs |cu|Ws

2 (Ω), 1 < s ≤ 2. (2.104)

Thus, by assuming that the weak solution u ∈ Ws
2 (Ω) ∩ W̊ 1

2 (Ω) and that c ∈
M(Ws

2 (Ω)), for 1 < s ≤ 2, after substituting (2.102), (2.103) and (2.104) into
(2.101), we arrive at the following bound on the global error:

‖u−U‖W 1
2 (Ω

h) ≤ Chs
(∣∣∣∣

∂u

∂x

∣∣∣∣
Ws

2 (Ω)

+
∣∣∣∣
∂u

∂y

∣∣∣∣
Ws

2 (Ω)

+ ‖c‖M(Ws
2 (Ω))‖u‖Ws

2 (Ω)

)
,

where C is a positive constant depending on s, but independent of h; or, more
crudely, after bounding |∂u/∂x|Ws

2 (Ω) + |∂u/∂y|Ws
2 (Ω) by ‖u‖

Ws+1
2 (Ω)

, and writing

s − 1 instead s, we obtain

‖u−U‖W 1
2 (Ω

h) ≤ Chs−1‖u‖Ws
2 (Ω), 2 < s ≤ 3.

This should be compared with the error bound derived in the previous section using
integral representations based on the Newton–Leibniz formula for s = 2 and s = 3
and by function space interpolation for 2 < s < 3.

2.4 Convergence Analysis on Nonuniform Meshes

Our objective in this section is to develop the error analysis of finite difference (or,
more precisely, finite volume) approximations on nonuniform meshes for the model
Poisson equation with homogeneous Dirichlet boundary condition:

−Δu = f in Ω , (2.105)

u = 0 on Γ = ∂Ω , (2.106)

where Ω := (0,1)× (0,1). When f ∈W−1
2 (Ω), this boundary-value problem has

a unique weak solution u in W̊ 1
2 (Ω); furthermore, if f ∈Ws

2 (Ω) then u belongs to
Ws+2

2 (Ω), −1≤ s < 1, s 	= ±1/2 (see, Theorem 2.8).
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As has already been indicated earlier, the key idea behind the construction of a
finite volume method for (2.105), (2.106) is to make use of the divergence form of
the differential operator Δ = ∇ · ∇ appearing in the equation −Δu = f by inte-
grating both sides over mutually disjoint ‘cells’ Kij ⊂ Ω , and use the divergence
theorem to convert integrals over the cells Kij into contour integrals along their
boundaries, which are then discretized by means of numerical quadrature rules. This
construction gives rise to a finite difference scheme whose right-hand side involves
the integral average of f over individual cells, the particular form of the difference
scheme being dependent on the shapes of the cells and the numerical quadrature
formula used. For example, if Ω has been partitioned by a uniform square mesh of
mesh-size h, then the resulting scheme coincides with (2.71), (2.72) (with c≡ 0).

2.4.1 Cartesian-Product Nonuniform Meshes

We begin by considering Cartesian-product nonuniform meshes. For the purposes
of the error analysis it is helpful to reformulate the finite volume scheme as a
Petrov–Galerkin finite element method based on bilinear or piecewise linear trial
functions on the underlying mesh and piecewise constant test functions on the dual
‘box mesh’. We shall prove that, as in the case of uniform meshes considered in the
previous section, the scheme is stable in the discrete W 1

2 norm. This stability result
will then, similarly to the arguments in the previous section, lead to an optimal-order
error bound in the discrete W 1

2 norm under minimal smoothness requirements on the
exact solution and without any additional assumptions on the spacing of the mesh.
In particular, the mesh is not required to be quasi-uniform (in a sense that will be
made precise). If quasi-uniformity is assumed, then an additional error bound holds,
in the discrete maximum norm. In the next section similar results will be derived for
a general one-parameter family of schemes.

The problem (2.105), (2.106) is approximated on the nonuniform mesh Ω
h
,

which is the Cartesian product of the one-dimensional meshes

{xi, i = 0, . . . ,M : x0 = 0, xi − xi−1 = hi, xM = 1},
{yj , j = 0, . . . ,N : y0 = 0, yj − yj−1 = kj , yN = 1}.

We then define

Ωh :=Ω ∩Ωh
, Γ h := Γ ∩Ωh

,

Ωh
x :=Ω

h ∩ (
(0,1] × (0,1)

)
, Ωh

y :=Ω
h ∩ (

(0,1)× (0,1]),
Γ h
x :=Ω

h ∩ ({0,1} × (0,1)
)
, Γ h

y :=Ω
h ∩ (

(0,1)× {0,1}).

To each mesh-point (xi, yj ) in Ωh we assign a cell

Kij := (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2),
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Fig. 2.4 Section of the
Cartesian-product

nonuniform mesh Ω
h
,

showing nine mesh-points
and the cell Kij associated
with the mesh-point (xi , yj )

as shown in Fig. 2.4, where

xi−1/2 := xi − 1

2
hi, xi+1/2 := xi + 1

2
hi+1,

yj−1/2 := yj − 1

2
kj , yj+1/2 := yj + 1

2
kj+1,

and we denote the edge-lengths of the cell Kij by

�i := 1

2
(hi + hi+1) and kj := 1

2
(kj + kj+1).

A simple calculation based on the definition of the fractional-order Sobolev
norm shows that χij , the characteristic function of the set (−hi+1/2, hi/2) ×
(−kj+1/2, kj /2), belongs to Wτ

2 (R
2) for all τ < 1/2. Assuming that f belongs

to Ws
2 (Ω) for some s >−1/2, and extending f from Ω onto R

2 by preserving its
Sobolev class, we deduce from Theorem 1.69 that the convolution χij ∗ f is a con-
tinuous function on R

2 (whose values on Ωh are independent of the particular form
of the extension). Convolution of (2.105) with χij then yields

− 1

meas Kij

∫

∂Kij

∂u

∂ν
ds = 1

meas Kij

(χij ∗ f )(xi, yj ), (2.107)

where ν denotes the unit outward normal vector to ∂Kij .
We remark that if f is a locally integrable function on Ω then, similarly as in the

case of uniform meshes considered earlier, the right-hand side of (2.107) is simply

(
T 11
h f

)
ij
= 1

�i kj

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

f (x, y)dx dy.

Let Sh signify the set of all real-valued continuous piecewise bilinear functions

defined on the rectangular partition of Ω induced by Ω
h
, and let Sh

0 be the subset of
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Sh consisting of those functions that vanish on Γ . Motivated by the form of (2.107),
we define the finite volume approximation of u as U ∈ Sh

0 satisfying

− 1

�i kj

∫

∂Kij

∂U

∂ν
ds = 1

�i kj
(χij ∗ f )(xi, yj ) for (xi, yj ) ∈Ωh. (2.108)

First, we shall prove that this method is stable by proceeding in the same way as in
the case of uniform meshes considered in the previous section. To this end, we shall

rewrite (2.108) as a finite difference scheme on Ω
h

by using the averaging operator
μx defined by

μxVij := 1

8�i
(hiVi−1,j + 6�iVij + hi+1Vi+1,j ) (2.109)

and the divided differences

D−x Vij :=
Vij − Vi−1,j

hi
and D+x Vij :=

Vi+1,j − Vij

�i

,

with analogous definitions for μy , D−y and D+y . With these notational conventions,

−
∫

∂Kij

∂U

∂ν
ds =−�i kj

(
D+x D−x μy +D+y D−y μx

)
Uij . (2.110)

By inserting (2.110) into (2.108), the finite volume method (2.108) can be restated
as the finite difference scheme

−(D+x D−x μy +D+y D−y μx

)
U = T 11

h f in Ωh, (2.111)

U = 0 on Γ h, (2.112)

where
(
T 11
h f

)
ij
:= 1

�i kj
(χij ∗ f )(xi, yj ).

We begin the analysis of the scheme (2.111), (2.112) by investigating its stability
in the discrete W 1

2 norm, ‖ · ‖W 1
2 (Ω

h), defined by

‖V ‖W 1
2 (Ω

h) :=
(‖V ‖2

L2(Ω
h)
+ |V |2

W 1
2 (Ω

h)

)1/2
,

where ‖ · ‖L2(Ω
h) is the discrete L2 norm on the linear space of real-valued mesh-

functions defined on Ωh:

‖V ‖L2(Ω
h) := (V ,V )

1/2
h , (V ,W)h :=

M−1∑

i=1

N−1∑

j=1

�i kjVijWij ,
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and | · |W 1
2 (Ω

h) is the discrete W 1
2 seminorm defined by

|V |W 1
2 (Ω

h) :=
(∥∥D−x V

∥∥2
L2(Ω

h
x )
+ ∥∥D−y V

∥∥2
L2(Ω

h
y )

)1/2
,

with

‖V ‖2
L2(Ω

h
x )
:= (V ,V ]2x, (V ,W ]x :=

M∑

i=1

N−1∑

j=1

hikjVijWij ,

‖V ‖2
L2(Ω

h
y )
:= (V ,V ]2y, (V ,W ]y :=

M−1∑

i=1

N∑

j=1

�ikjVijWij .

The associated discrete W−1
2 norm is then defined by

‖V ‖
W−1

2 (Ωh)
:= sup

W∈Sh
0 \{0}

|(V ,W)h|
‖W‖W 1

2 (Ω
h)

.

Lemma 2.31 Suppose that V is a mesh-function defined on Ωh.

(a) If V = 0 on Γ h
x , then

(μxV,V ]y ≥ 1

2
‖V ‖2

L2(Ω
h
y )
. (2.113)

(b) If V = 0 on Γ h
y , then

(μyV,V ]x ≥ 1

2
‖V ‖2

L2(Ω
h
x )
. (2.114)

Proof We shall only prove inequality (2.113), the proof of (2.114) being analogous.
Let us assume for a moment that j is fixed, 1≤ j ≤N . Then,

M−1∑

i=1

�i (μxVij )Vij = 1

8

M−1∑

i=1

(
hiVi−1,j Vij + 6�iV

2
ij + hi+1Vi+1,j Vij

)

≥ 1

8

(
M−1∑

i=1

5�iV
2
ij −

1

2

M∑

i=2

hiV
2
ij −

1

2

M−2∑

i=0

hi+1V
2
ij

)

≥ 1

2

M−1∑

i=1

�iV
2
ij .

We then multiply this by kj and sum through the index j ∈ {1, . . . ,N} to deduce the
desired inequality. �
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We shall also require the following discrete analogue of the Friedrichs inequality
on Cartesian-product nonuniform meshes.

Lemma 2.32 Suppose that V is a mesh-function defined on Ωh such that V = 0 on
Γh. Then,

‖V ‖2
W 1

2 (Ω
h)
≤ 3

2
|V |2

W 1
2 (Ω

h)
. (2.115)

Proof Let V be a mesh-function defined on Ωh such that V = 0 on Γh. Then, the
expression

‖V ‖2
L2(Ω

h)
=

M−1∑

i=1

N−1∑

j=1

�i kjV
2
ij

can be bounded as follows:

‖V ‖2
L2(Ω

h)
= 1

2

M−1∑

i=1

N−1∑

j=1

�i kjV
2
ij +

1

2

M−1∑

i=1

N−1∑

j=1

�i kjV
2
ij

= 1

2

(
M−1∑

i=1

N−1∑

j=1

�i kj

∣∣∣∣∣

i∑

m=1

hmD
−
x Vmj

∣∣∣∣∣

2

+
M−1∑

i=1

N−1∑

j=1

�i kj

∣∣∣∣∣

j∑

n=1

knD
−
y Vin

∣∣∣∣∣

2)

≤ 1

2

M−1∑

i=1

N−1∑

j=1

�i kj

(
i∑

m=1

hm

)(
i∑

m=1

hm
∣∣D−x Vmj

∣∣2
)

+ 1

2

M−1∑

i=1

N−1∑

j=1

�i kj

(
j∑

n=1

kn

)(
j∑

n=1

kn
∣∣D−y Vin

∣∣2
)

≤ 1

2

(
M∑

m=1

N−1∑

j=1

hmkj
∣∣D−x Vmj

∣∣2
)(

M−1∑

i=1

�i

i∑

m=1

hm

)

+ 1

2

(
M−1∑

i=1

N∑

n=1

�ikn
∣∣D−y Vin

∣∣2
)(

N−1∑

j=1

kj

j∑

n=1

kn

)

≤ 1

2

(∥∥D−x V
∥∥2
L2(Ω

h
x )
+ ∥∥D−x V

∥∥2
L2(Ω

h
y )

)= 1

2
|V |2

W 1
2 (Ω

h)
.

Adding |V |2
W 1

2 (Ω
h)

to both sides completes the proof of the lemma. �

By using this discrete Friedrichs inequality we shall now prove that the finite
difference scheme is stable; the key to the proof is the following result.
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Theorem 2.33 Let LhV := −(D+x D−x μy +D+y D−y μx)V . Then,

‖V ‖W 1
2 (Ω

h) ≤ 3
∥∥LhV

∥∥
W−1

2 (Ωh)
(2.116)

for any mesh-function V defined on Ω
h

and such that V = 0 on Γ h.

Proof By taking the (·, ·)h inner product of LhV with V we obtain
(−(D+x D−x μy

)
V,V

)
h
+ (−(D+y D−y μx

)
V,V

)
h
= (

LhV,V
)
h
.

By performing summations by parts in the two terms on the left-hand side we get
(
D−x μyV,D

−
x V

]
x
+ (

D−y μxV,D
−
y V

]
y
= (

LhV,V
)
h
.

Since D−x commutes with μy and D−y commutes with μx , we can apply (2.113) and
(2.114) to obtain

1

2

(∥∥D−x V
∥∥2
L2(Ω

h
x )
+ ∥∥D−y V

∥∥2
L2(Ω

h
y )

)≤ (
LhV,V

)
h
.

By recalling (2.115) and the definition of ‖ · ‖
W−1

2 (Ωh)
we get (2.116). �

Theorem 2.33 now implies the stability of the scheme.

Theorem 2.34 For any f ∈ Ws
2 (Ω), s > −1/2, the scheme (2.108) (or, equiva-

lently, (2.111), (2.112)) has a unique solution U . Moreover,

‖U‖W 1
2 (Ω

h) ≤ 3
∥∥T 11

h f
∥∥
W−1

2 (Ωh)
.

Having proved stability, we are now ready to embark on the error analysis of
the scheme. We shall derive an optimal-order error bound for the finite difference
method (2.111), (2.112), which can also be seen as a superconvergence result for
the finite volume method (2.108) considered as a Petrov–Galerkin finite element
method, on a family of Cartesian-product nonuniform meshes. By superconvergence
we mean that O(h2) convergence of the error between u and its continuous piece-
wise bilinear approximation U is observed in the discrete W 1

2 norm while only O(h)

convergence will be seen if u − U is measured in the norm of the Sobolev space
W 1

2 (Ω). The result will be shown to hold without any additional assumptions on the
spacing of the mesh: in particular the mesh is not required to be quasi-uniform (the
definition of quasi-uniform mesh will be given in the statement of Theorem 2.38).

Theorem 2.35 Suppose that u ∈Ws+1
2 (Ω)∩ W̊ 1

2 (Ω), 1/2 < s ≤ 2. Then,

‖u−U‖W 1
2 (Ω

h) ≤ Chs |u|
Ws+1

2 (Ω)
, (2.117)

where h=maxi,j (hi, kj ), and C = C(s) is a positive constant independent of u and
the discretization parameters.
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In the proof of Theorem 2.35 we shall make use of anisotropic Sobolev spaces on
rectangular subdomains of R2. For ω = (a, b)× (c, d) and a pair (r, s) of nonneg-
ative real numbers, we denote by W

r,s
2 (ω) the anisotropic Sobolev space consisting

of all functions u ∈ L2(ω) such that

|u|
W

r,0
2 (ω)

:=
(∫ d

c

∣∣u(·, y)∣∣2
Wr

2 (a,b)
dy

)1/2

<∞,

|u|
W

0,s
2 (ω)

:=
(∫ b

a

∣∣u(x, ·)∣∣2
Ws

2 (c,d)
dx

)1/2

<∞.

The linear space Wr,s
2 (ω) is a Banach space equipped with the norm

‖u‖Wr,s
2 (ω) :=

(‖u‖2
L2(ω)

+ |u|2
W

r,0
2 (ω)

+ |u|2
W

0,s
2 (ω)

)1/2
.

For s ≥ 0, Ws,s
2 (ω) coincides with the standard (isotropic) Sobolev space Ws

2 (ω),
and the norm ‖ · ‖Ws,s

2 (ω) is equivalent to the Sobolev norm ‖ · ‖Ws
2 (ω)

(cf. Sect. 18
of Besov, Il’in and Nikol’skiı̆ [13]).

Proof of Theorem 2.35 Let us define the global error as e := u−U . Then, by apply-
ing the difference operator Lh defined in Theorem 2.33 to e and noting the definition
of the finite difference scheme, we deduce that

Lhe=
(
T 11
h

∂2u

∂x2
−D+x D−x μyu

)
+

(
T 11
h

∂2u

∂y2
−D+y D−y μxu

)
.

However,
(
T 11
h

∂2u

∂x2

)

ij

= 1

�i kj

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi+1/2, y)− ∂u

∂x
(xi−1/2, y)

]
dy

=D+x
(
T 01−

∂u

∂x

)

ij

,

where
(
T 01− w

)
ij
= 1

kj

∫ yj+1/2

yj−1/2

w(xi−1/2, y)dy.

Consequently,

Lhe=D+x η1 +D+y η2 in Ωh,

e= 0 on Γ h,
(2.118)

where

η1 := T 01−
∂u

∂x
−D−x μyu, η2 := T 10−

∂u

∂y
−D−y μxu,
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and T 10− is defined analogously to T 01− above. By applying Theorem 2.33 to the finite
difference equations (2.118) we have that

‖e‖W 1
2 (Ω

h) ≤ 3
∥∥D+x η1 +D+y η2

∥∥
W−1

2 (Ωh)
.

It remains to bound the right-hand side of this inequality. We observe to this end

that, for any mesh-function V defined on Ω
h

and vanishing on Γ h,

−(D+x η1 +D+y η2,V
)
h
= (

η1,D
−
x V

]
x
+ (

η2,D
−
y V

]
y
.

By noting the definition of the norm ‖ · ‖
W−1

2 (Ωh)
we thus deduce that

∥∥D+x η1 +D+y η2
∥∥
W−1

2 (Ωh)
≤ ‖η1‖L2(Ω

h
x )
+ ‖η2‖L2(Ω

h
y )
.

Hence,

‖u−U‖W 1
2 (Ω

h) ≤ 3
(‖η1‖L2(Ω

h
x )
+ ‖η2‖L2(Ω

h
y )

)
. (2.119)

It remains to bound the right-hand side of (2.119). We only consider the term in-
volving η1; the norm of η2 is bounded analogously.

To this end, we first define

(μyu)(x, yj ) := 1

8kj

[
kju(x, yj−1)+ 6kju(x, yj )+ kj+1u(x, yj+1)

]
,

and for fixed x, 0≤ x ≤ 1, we let Iyw(x, ·) denote the univariate continuous piece-

wise linear interpolant of w(x, ·) on the mesh Ω
h

y . Then,

(μyw)(x, yj )= 1

kj

∫ yj+1/2

yj−1/2

(Iyw)(x, y)dy,

and therefore,

(μyu)ij − (μyu)i−1,j =
∫ xi

xi−1

∂

∂x
(μyu)(x, yj )dx

=
∫ xi

xi−1

∂

∂x

1

kj

∫ yj+1/2

yj−1/2

(Iyu)(x, y)dx dy

= 1

kj

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∂

∂x
(Iyu)(x, y)dx dy

= 1

kj

∫ xi

xi−1

∫ yj+1/2

yj−1/2

Iy

(
∂u

∂x

)
(x, y)dx dy.

Thus we find that (η1)ij can be expressed as

(η1)ij = 1

hikj

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y)−

(
Iy
∂u

∂x

)
(x, y)

]
dx dy.
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By splitting η1 as the sum of η11 and η12, where

(η11)ij := 1

hikj

∫ xi

xi−1

∫ yj+1/2

yj

[
∂u

∂x
(xi−1/2, y)−

(
Iy
∂u

∂x

)
(x, y)

]
dx dy,

(η12)ij := 1

hikj

∫ xi

xi−1

∫ yj

yj−1/2

[
∂u

∂x
(xi−1/2, y)−

(
Iy
∂u

∂x

)
(x, y)

]
dx dy,

the task of estimating η1 is reduced to bounding η11 and η12.
Let us first consider η11. By introducing the change of variables

x = xi−1/2 + x̃hi, −1

2
≤ x̃ ≤ 1

2
; y = yj + ỹkj+1, 0≤ ỹ ≤ 1,

and defining ṽ(x̃, ỹ) := hi
∂u
∂x
(x, y), we can write

(η11)ij = kj+1

hikj
η̃11(ṽ),

where

η̃11(ṽ) :=
∫ 1/2

−1/2

∫ 1/2

0

[
ṽ(0, ỹ)− ṽ(x̃,0)(1− ỹ)− ṽ(x̃,1)ỹ

]
dx̃ dỹ.

Now η̃11 can be regarded as a linear functional (with the argument ṽ) defined on
Ws

2 (K̃
∗), where s > 1/2 and

K̃∗ :=
(
−1

2
,

1

2

)
× (0,1).

Thanks to the trace theorem (Theorem 1.42),

∣∣η̃11(ṽ)
∣∣≤ C‖ṽ‖

Ws
2 (K̃

∗), s > 1/2,

and therefore |η̃11(·)| is a bounded sublinear functional on Ws
2 (K̃

∗). Moreover, if
ṽ(x̃, ỹ)= x̃kỹl , k, l ∈ {0,1}, then η̃11(ṽ)= 0. By applying Theorem 1.9 with

U1 =Ws
2

(
K̃∗

)
, U0 = L2

(
K̃∗

)
,

S = |η̃11|, S1 =
(| · |2

W
0,s
2 (K̃∗) + | · |

2
W

s,0
2 (K̃∗)

)1/2
, S0 = ‖ · ‖L2(K̃

∗),

and noting that for s > 0 the Sobolev space Ws
2 (K̃

∗) is compactly embedded in
L2(K̃∗), we deduce that

∣∣η̃11(ṽ)
∣∣≤ C

(|ṽ|2
W

0,s
2 (K̃∗) + |ṽ|

2
W

s,0
2 (K̃∗)

)1/2
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for 1/2 < s ≤ 2. By defining K−ij := (xi−1, xi)× (yj−1, yj ), K
−
i,j+1 := (xi−1, xi)×

(yj , yj+1) and returning from the (x̃, ỹ)–variables to the original (x, y) co-
ordinates, we thus have that

∣∣η̃11(ṽ)
∣∣2 ≤ C

(
h2
i k

2s
j+1

hikj+1

∣∣∣
∣
∂u

∂x

∣∣∣
∣

2

W
0,s
2 (K−i,j+1)

+ h
2(s+1)
i

hikj+1

∣∣∣
∣
∂u

∂x

∣∣∣
∣

2

W
s,0
2 (K−i,j+1)

)
,

and therefore

∣∣(η11)ij
∣∣2 ≤ C

(
k2s+1
j+1

hik
2
j

∣∣∣∣
∂u

∂x

∣∣∣∣

2

W
0,s
2 (K−i,j+1)

+ h2s−1
i kj+1

k2
j

∣∣∣∣
∂u

∂x

∣∣∣∣

2

W
s,0
2 (K−i,j+1)

)
.

Analogously,

∣∣(η12)ij
∣∣2 ≤ C

(
k2s+1
j

hik
2
j

∣∣∣
∣
∂u

∂x

∣∣∣
∣

2

W
0,s
2 (K−ij )

+ h2s−1
i kj

k2
j

∣∣∣
∣
∂u

∂x

∣∣∣
∣

2

W
s,0
2 (K−ij )

)
.

By noting the superadditivity of the Sobolev seminorm on a family of mutually
disjoint Lebesgue-measurable subsets of Ω , we thus have that

‖η1‖2
L2(Ω

h
x )
≤ Ch2s

(∣∣∣∣
∂u

∂x

∣∣∣∣

2

W
0,s
2 (Ω)

+
∣∣∣∣
∂u

∂x

∣∣∣∣

2

W
s,0
2 (Ω)

)
, (2.120)

where h=maxi,j (hi, kj ). Analogously,

‖η2‖2
L2(Ω

h
y )
≤ Ch2s

(∣∣
∣∣
∂u

∂y

∣∣
∣∣

2

W
0,s
2 (Ω)

+
∣∣
∣∣
∂u

∂y

∣∣
∣∣

2

W
s,0
2 (Ω)

)
. (2.121)

By substituting (2.120) and (2.121) into (2.119) we thus obtain the desired error
bound

‖u−U‖W 1
2 (Ω

h) ≤ Chs |u|
Ws+1

2 (Ω)
, 1/2 < s ≤ 2.

That completes the proof of the theorem. �

On a quasi-uniform mesh, the finite volume method (2.108) can be shown to be
(almost) optimally accurate in the discrete maximum norm ‖ · ‖∞,h defined by

‖V ‖∞,h := max
(x,y)∈Ωh

∣∣V (x, y)
∣∣.

We shall say that {Ωh} is a family of quasi-uniform Cartesian-product meshes
on Ω = [0,1] × [0,1] if there exists a positive constant C� such that

h :=max
i,j

(hi, kj )≤ C� min
i,j

(hi, kj ).
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Some auxiliary results are required to prove an error bound in the discrete maxi-
mum norm; these are formulated in the next two lemmas, the first of which states a
version of the inverse inequality (see, for example, Ciarlet [26], Theorem 3.2.6).

Lemma 2.36 Suppose that {Ωh} is a family of quasi-uniform Cartesian-product
meshes on Ω = [0,1] × [0,1], and let Sh be the linear space of continuous piece-

wise bilinear polynomials defined on the partition of Ω induced by Ω
h
. Suppose

that 1≤ q, r ≤∞. Then, there exists a positive constant C = C(C�, q, r), indepen-
dent of the discretization parameter h, such that

‖V ‖Lq(Ω) ≤ Chmin(0,(2/q)−(2/r))‖V ‖Lr(Ω) ∀V ∈ Sh.

Proof Consider the rectangle K−ij := (xi−1, xi)× (yj−1, yj ), 1 ≤ i ≤M , 1 ≤ j ≤
N , and the mapping (x̃, ỹ) �→ (x, y) defined by

x = xi−1 + x̃hi, y = yj−1 + ỹkj , (2.122)

which maps the unit square K̃+ := (0,1)2 onto K−ij . Let us define

Ṽ (x̃, ỹ) := V (x, y),

where (x, y) is the image of (x̃, ỹ) under the transformation (2.122). Now

‖Ṽ ‖
Lr(K̃+) = (hikj )

−1/r‖V ‖Lr(K
−
ij )
,

and

‖V ‖Lq(K
−
ij )
= (hikj )

1/q‖Ṽ ‖
Lq(K̃+).

Let P(K̃+) denote the linear space of all bilinear polynomials defined on the
square K̃+:

P
(
K̃+

) := {
(a + bx̃)(c+ dỹ) : a, b, c, d ∈R, 0≤ x̃, ỹ ≤ 1

}
.

Since P(K̃+) is finite-dimensional (in fact, the dimension of P(K̃+) is 4), the
norms ‖ · ‖

Lq(K̃+) and ‖ · ‖
Lr(K̃+) are equivalent on P(K̃+). Hence, there is a con-

stant C0 = C0(q, r) such that

‖Ṽ ‖
Lq(K̃+) ≤ C0‖Ṽ ‖Lr(K̃+),

for all Ṽ in P(K̃+). Combining this with the two previous equalities yields

‖V ‖Lq(K
−
ij )
≤ C0(hikj )

(1/q)−(1/r)‖V ‖Lr(K
−
ij )
,

and thus, by defining C1 = C0C
max(0,(2/r)−(2/q))
� , we get

‖V ‖Lq(K
−
ij )
≤ C1h

(2/q)−(2/r)‖V ‖Lr(K
−
ij )
. (2.123)
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Let us suppose that q =∞; then, there exist i0 and j0, 1≤ i0 ≤M , 1≤ j0 ≤N ,
such that

‖V ‖L∞(Ω) = ‖V ‖L∞(Ki0j0 )
≤ C1h

−2/r‖V ‖Lr(Ki0j0 )
≤ C1h

−2/r‖V ‖Lr(Ω),

which is the required result in the case of q =∞.
Let us suppose now that q <∞. It follows from (2.123) that

(∑

i,j

‖V ‖q
Lq(K

−
ij )

)1/q

≤ C1h
(2/q)−(2/r)

(∑

i,j

‖V ‖q
Lr (K

−
ij )

)1/q

, (2.124)

where the sums are taken over all i and j , 1≤ i ≤M , 1≤ j ≤N .
We shall consider three cases. When r ≤ q , by noting that s �→ (

∑
i,j a

s
ij )

1/s

is monotonic decreasing on [1,∞) when 0 < aij ≤ 1, we have, with aij =
‖V ‖Lr(K

−
ij )
/‖V ‖Lr(Ω), that

(∑

i,j

‖V ‖q
Lr (K

−
ij )

)1/q

≤
(∑

i,j

‖V ‖r
Lr (K

−
ij )

)1/r

.

When q < r <∞, Hölder’s inequality for finite sums gives

(∑

i,j

‖V ‖q
Lr (K

−
ij )

)1/q

≤ (MN)(1/q)−(1/r)
(∑

i,j

‖V ‖r
Lr (K

−
ij )

)1/r

≤
(
C�

h

)(2/q)−(2/r)(∑

i,j

‖V ‖r
Lr (K

−
ij )

)1/r

.

Finally, when r =∞, we have that

(∑

i,j

‖V ‖q
L∞(K−ij )

)1/q

≤
(
C�

h

)2/q

max
ij
‖V ‖L∞(K−ij ).

It remains to combine (2.124) with one of the three inequalities corresponding to
r ≤ q , q < r <∞ and r =∞ respectively to complete the proof. �

Lemma 2.37 Suppose that {Ωh} is a family of quasi-uniform Cartesian-product
meshes, and let Sh

0 be the linear space of continuous piecewise bilinear polynomials

defined on the partition of Ω induced by Ω
h

that vanish on Γ . Then, there exists a
positive constant C, independent of the discretization parameter h, such that,

‖V ‖L∞(Ω) ≤ C| logh|1/2‖∇V ‖L2(Ω) ∀V ∈ Sh
0 .
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Proof By Sobolev’s embedding theorem on a Lipschitz domain D ⊂R
n,

‖v‖Lp(D) ≤ q

(
nq

p

)1/n+1/p−1

ω
−1/n
n n−1/p‖∇v‖Lq(D) ∀v ∈ W̊ 1

2 (D),

where q = np/(n+p), and ωn := 2πn/2/Γ (n/2) is the surface area of the unit ball
in R

n (see inequality (2.3.21) in Maz’ya [136]). Specifically, by taking n = 2 and
D =Ω ,

‖v‖Lp(Ω) ≤ Cq

(
2q

p

)1/2+1/p−1

2−1/p‖∇v‖Lq(Ω) ∀v ∈ W̊ 1
2 (Ω),

with q = 2p/(2+ p). Also, by the previous lemma,

‖V ‖L∞(Ω) ≤ Ch−2/p‖V ‖Lp(Ω)

and, by an analogous argument to that in the proof of the previous lemma,

‖∇V ‖Lq(Ω) ≤ Chmin(0,2/q−1)‖∇V ‖L2(Ω),

for all V in Sh
0 . Setting p = | logh|(> 1), for sufficiently small h, and combining

the last three inequalities, we obtain the required result. �

Theorem 2.38 Suppose that {Ωh} is a family of quasi-uniform Cartesian-product
meshes, i.e. there exists a positive constant C� such that

h=max
i,j

(hi, kj )≤ C� min
i,j

(hi, kj ),

and let u ∈Ws+1
2 (Ω)∩ W̊ 1

2 (Ω), 1/2 < s ≤ 2. Then,

‖u−U‖∞,h ≤ Chs | logh|1/2|u|
Ws+1

2 (Ω)
,

where C = C(s) is a positive constant depending on C�, but independent of u and
the discretization parameter h.

Proof Let Ih : W̊ 1
2 (Ω) ∩ C(Ω)→ Sh0 denote the interpolation projector onto Sh

0

defined by (Ihu)(xi, yj )= u(xi, yj ) for all (xi, yj ) ∈Ωh
. Then,

‖u−U‖∞,h =
∥∥Ihu−U

∥∥∞,h
≤ ∥∥Ihu−U

∥∥
L∞(Ω)

.

Thanks to Lemma 2.37,

‖V ‖L∞(Ω) ≤ C| logh|1/2‖V ‖W 1
2 (Ω) ∀V ∈ Sh

0 .

Also, the equivalence of the norms ‖ · ‖W 1
2 (Ω) and ‖ · ‖W 1

2 (Ω
h) on Sh

0 implies that

‖V ‖W 1
2 (Ω) ≤ C‖V ‖W 1

2 (Ω
h) ∀V ∈ Sh

0 .



2.4 Convergence Analysis on Nonuniform Meshes 167

Hence,

‖u−U‖∞,h ≤ C| logh|1/2‖u−U‖W 1
2 (Ω

h),

and therefore Theorem 2.35 yields

‖u−U‖∞,h ≤ Chs | logh|1/2|u|
Ws+1

2 (Ω)
. �

In the next section we extend the error analysis developed here to a more general
class of schemes.

2.4.2 An Alternative Scheme

Hitherto it was assumed that the trial space Sh in the finite volume method (which
was subsequently rewritten as a finite difference scheme) consisted of continu-
ous piecewise bilinear functions on the rectangular partition of Ω induced by the

Cartesian-product mesh Ω
h
. One can construct an alternative method, based on

continuous piecewise linear trial functions on triangles; to this end, we consider a
triangulation of Ω obtained from the original rectangular partition by subdividing
each rectangle into two triangles by the diagonal of positive slope. Let Sh denote
the set of all continuous piecewise linear functions on this triangulation, and let Sh

0
be the subset of Sh consisting of all those functions that vanish on Γ .

Similarly to (2.108), we define the finite volume approximation of u as U ∈ Sh
0

satisfying

− 1

�i kj

∫

∂Kij

∂U

∂ν
ds = 1

�i kj
(χij ∗ f )(xi, yj ) for (xi, yj ) ∈Ωh. (2.125)

This scheme resembles the finite volume method (2.108). Indeed, a simple calcula-
tion reveals that (2.125) can be rewritten as the finite difference scheme

−(D+x D−x +D+y D−y
)
U = T 11

h f in Ωh, (2.126)

U = 0 on Γ h. (2.127)

In fact, both (2.111), (2.112) and (2.126), (2.127) can be embedded in the following
one-parameter family of finite difference schemes:

−(D+x D−x μθ
y +D+y D−y μθ

x

)
U = T 11

h f in Ωh, (2.128)

U = 0 on Γ h, (2.129)

where θ ∈ [0,1], and

μθ
xUij := 1

�i

[
θhiUi−1,j + (1− 2θ)�iUij + θhi+1Ui+1,j

]
,
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with μθ
y defined analogously. The scheme (2.111), (2.112) (resp. (2.126), (2.127))

is obtained from (2.128), (2.129) with θ = 1/8 (resp. θ = 0). The rest of this section
is devoted to the analysis of the one-parameter family of schemes (2.126), (2.127).

By proceeding similarly as in the proofs of Lemmas 2.31, 2.32 and Theo-
rems 2.33 and 2.34 we arrive at the following set of results, whose proofs have
been omitted for the sake of brevity.

Lemma 2.39 Suppose that V is a mesh-function defined on Ω
h
, and let θ ∈

[0,1/4).

(a) If V = 0 on Γ h
x , then

(
μθ
xV,V

]
y
≥ (1− 4θ)‖V ‖2

L2(Ω
h
y )
.

(b) If V = 0 on Γ h
y , then

(
μθ
yV,V

]
x
≥ (1− 4θ)‖V ‖2

L2(Ω
h
x )
.

Theorem 2.40 Let LhV := −(D+x D−x μθ
y + D+y D−y μθ

x)V , and suppose that θ ∈
[0,1/4). Then,

‖V ‖W 1
2 (Ω

h) ≤
3

2(1− 4θ)

∥
∥LhV

∥
∥
W−1

2 (Ωh)
,

for any mesh-function V defined on Ω
h

and such that V = 0 on Γ h.

Theorem 2.41 Suppose that θ ∈ [0,1/4). For any f ∈Ws
2 (Ω), s >−1/2, (2.128),

(2.129) has a unique solution U . Moreover,

‖U‖W 1
2 (Ω

h) ≤
3

2(1− 4θ)

∥∥T 11
h f

∥∥
W−1

2 (Ωh)
.

The central result of this section is the following error bound for the finite differ-
ence scheme (2.128), (2.129).

Theorem 2.42 Suppose that u ∈W 3
2 (Ω)∩ W̊ 1

2 (Ω), and let θ ∈ [0,1/4). Then,

‖u−U‖W 1
2 (Ω

h) ≤ Ch2|u|W 3
2 (Ω),

where h=maxi,j (hi, kj ) and C = C(θ) is a positive constant independent of u and
the discretization parameters.

Proof Let us define the global error as e := u−U . We then have that

−(D+x D−x μθ
y +D+y D−y μθ

x

)
e =D+x ηθ1 +D+y ηθ2 in Ωh, (2.130)

e = 0 on Γ h, (2.131)
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where

ηθ1 := η1 +
(

1

8
− θ

)
ζ1, ηθ2 := η2 +

(
1

8
− θ

)
ζ2,

and

η1 := T 01−
∂u

∂x
−D−x μyu, η2 := T 10−

∂u

∂y
−D−y μxu,

as in the proof of Theorem 2.35, and

(ζ1)ij := h2
i D
−
x D

+
y D

−
y uij , (ζ2)ij := k2

jD
−
y D

+
x D

−
x uij .

By applying Theorem 2.40 to (2.130), (2.131) we then deduce that

‖e‖W 1
2 (Ω

h) ≤
3

2(1− 4θ)

∥∥D+x ηθ1 +D+y ηθ2
∥∥
W−1

2 (Ωh)
.

Consequently,

‖u−U‖W 1
2 (Ω

h) ≤
3

2(1− 4θ)

(‖η1‖L2(Ω
h
x )
+ ‖η2‖L2(Ω

h
y )

)

+ 3|1− 8θ |
16(1− 4θ)

(‖ζ1‖L2(Ω
h
x )
+ ‖ζ2‖L2(Ω

h
y )

)
. (2.132)

The first two terms on the right-hand side have already been bounded in the proof
of Theorem 2.35; we showed there that

‖η1‖L2(Ω
h
x )
≤ Ch2

(∣∣∣∣
∂u

∂x

∣∣∣∣
W

0,2
2 (Ω)

+
∣∣∣∣
∂u

∂x

∣∣∣∣
W

2,0
2 (Ω)

)
(2.133)

and

‖η2‖L2(Ω
h
y )
≤ Ch2

(∣∣∣∣
∂u

∂y

∣∣∣∣
W

0,2
2 (Ω)

+
∣∣∣∣
∂u

∂y

∣∣∣∣
W

2,0
2 (Ω)

)
. (2.134)

It therefore remains to bound the norms of ζ1 and ζ2. We observe in passing that
for θ = 1/8 the terms involving ζ1 and ζ2 are absent from (2.132).

To this end, let φi(x) (resp. ψj(y)) denote the standard continuous piecewise

linear finite element basis function on Ω
h

x (resp. Ω
h

y ) such that φi(xk)= δik (resp.
ψj(yk)= δjk); (ζ1)ij and (ζ2)ij can then be rewritten as

(ζ1)ij = h2
i

1

hikj

∫ xi

xi−1

∫ yj+1

yj−1

ψj (y)
∂3u

∂x∂y2
(x, y)dx dy,

(ζ2)ij = k2
j

1

�ikj

∫ xi+1

xi−1

∫ yj

yj−1

φi(x)
∂3u

∂x2∂y
(x, y)dx dy.
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Clearly,

‖ζ1‖L2(Ω
h
x )
≤ Ch2

∣∣∣∣
∂u

∂x

∣∣∣∣
W

0,2
2 (Ω)

(2.135)

and

‖ζ2‖L2(Ω
h
y )
≤ Ch2

∣∣∣∣
∂u

∂y

∣∣∣∣
W

2,0
2 (Ω)

. (2.136)

Inserting (2.133)–(2.136) in (2.132) we obtain the desired error bound. �

On a quasi-uniform mesh the scheme (2.128), (2.129) can be shown to be (al-
most) optimally accurate in the discrete maximum norm ‖ · ‖∞,h for any θ ∈
[0,1/4), by proceeding analogously as in the case of θ = 1/8.

Theorem 2.43 Suppose that {Ωh} is a family of quasi-uniform meshes, θ ∈
[0,1/4), and let u ∈W 3

2 (Ω)∩ W̊ 1
2 (Ω). Then,

‖u−U‖∞,h ≤ C(θ)h2| logh|1/2|u|W 3
2 (Ω).

The proof of this result is analogous to that of Theorem 2.38.

2.4.3 The Rotated Discrete Laplacian

In the previous section we considered the analysis of a one-parameter family of
finite difference schemes, parametrized by θ . For θ ∈ [0,1/4) we showed there that
the scheme is stable and we proved optimal-order error bounds in various norms.
A natural question is: what happens when θ = 1/4? This section is devoted to the
analysis of the resulting discretization.

Let us consider the finite difference scheme (2.128), (2.129), with θ = 1/4. For
the sake of notational simplicity we define

μ̂xVij := 1

4�i
(hiVi−1,j + 2�iVij + hi+1Vi+1,j ),

and μ̂y is defined analogously. In fact, by introducing

νxVij := 1

2
(Vij + Vi−1,j )

we can write

μ̂xVij = 1

2�i
(hiνxVij + hi+1νxVi+1,j ).
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Analogously, by letting

νyVij := 1

2
(Vij + Vi,j−1)

we have that

μ̂yVij = 1

2kj
(kj νyVij + kj+1νyVi,j+1).

In terms of this new notation, for θ = 1/4 the finite difference scheme (2.128),
(2.129) can be rewritten as follows:

−(D+x D−x μ̂y +D+y D−y μ̂x

)
U = T 11

h f in Ωh, (2.137)

U = 0 on Γ h. (2.138)

In particular, on a uniform mesh of size h, the resulting five-point finite difference
operator is given by

− 1

2h2
(Ui−1,j−1 +Ui−1,j+1 +Ui+1,j−1 +Ui+1,j+1 − 4Uij )

and is usually referred to as the rotated discrete Laplace operator.
We begin by showing that the scheme (2.137), (2.138) is stable. A preliminary

result in this direction stated in the next lemma concerns the averaging operators
μ̂x , νx , μ̂y and νy .

Lemma 2.44 Suppose that V is a function defined on the mesh Ωh.

(a) If V0j = VMj = 0 for j = 1, . . . ,N , then

(μ̂xV ,V ]y =
M∑

i=1

N∑

j=1

hikj |νxVij |2;

(b) If Vi0 = ViM = 0 for i = 1, . . . ,M , then

(μ̂yV ,V ]x =
M∑

i=1

N∑

j=1

hikj |νyVij |2.

Proof We shall prove (a); the proof of (b) is completely analogous. By noting the
definition of μ̂x we have that

(μ̂xV ,V ]y = 1

4

M−1∑

i=1

N∑

j=1

kj
[
hi+1Vi+1,j + Vij (hi+1 + hi)+ hiVi−1,j

]
Vij

= 1

4

N∑

j=1

kj

[
M−1∑

i=1

(hi+1 + hi)V
2
ij + 2

M∑

i=1

hiVijVi−1,j

]
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= 1

4

M∑

i=1

N∑

j=1

hikj (Vij + Vi−1,j )
2,

and that completes the proof of (a). �

Lemma 2.45 Let LhV := −(D+x D−x μ̂y +D+y D−y μ̂x)V . Then,

(
LhV,V

)
h
=

M∑

i=1

N∑

j=1

hikj
(∣∣νyD−x Vij

∣∣2 + ∣∣νxD−y Vij
∣∣2)

for any mesh-function V defined on Ω
h

such that V = 0 on Γ h.

Proof This identity is a straightforward consequence of Lemma 2.44 by observing
that

(
LhV,V

)
h
= (

D−x μ̂yV ,D
−
x V

]
x
+ (

D−y μ̂xV ,D
−
y V

]
y

= (
μ̂yD

−
x V ,D

−
x V

]
x
+ (

μ̂xD
−
y V ,D

−
y V

]
y
,

where the first equality follows by summation by parts and the second by noting that
D−x commutes with μ̂y and D−y commutes with μ̂x . �

We deduce from Lemma 2.45 that

M∑

i=1

N∑

j=1

hikj
(∣∣νyD−x Vij

∣∣2 + ∣∣νxD−y Vij
∣∣2)= (

LhV,V
)
h
,

for any function V defined on Ω
h

such that V = 0 on Γ h. Therefore, by applying
the Cauchy–Schwarz inequality on the right-hand side, noting that

Vij = νxVij + 1

2
hiD

−
x Vij , (2.139)

and letting

Wij := hiD
−
x Vij ,

we deduce that, for any such mesh-function V ,

M∑

i=1

N∑

j=1

hikj
(∣∣νyD−x Vij

∣∣2 + ∣∣νxD−y Vij
∣∣2)

≤ ∥∥LhV
∥∥
L2(Ω

h)

(
‖νxV ‖L2(Ω

h) +
1

2
‖W‖L2(Ω

h)

)
. (2.140)
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Now to complete the stability analysis of the finite difference scheme (2.137),
(2.138) it remains to relate the two norms in the brackets on the right-hand side
of (2.140) to the expression on the left. To do so, we state and prove two lemmas.

Lemma 2.46 Suppose that {Ωh} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C� such that

h=max
i,j

(hi, kj )≤ C� min
i,j

(hi, kj ).

Let V be a function defined on Ω
h

such that V = 0 on Γ h; then,

‖νxV ‖L2(Ω
h) ≤

1

2
(1+C�)

1/2

(
M∑

i=1

N∑

j=1

hikj
∣
∣νxD−y Vij

∣
∣2
)1/2

.

Proof Let Zij = νxVij ; then, because Zi0 = 0 for i = 1, . . . ,M , we have that

|Zij |2 =
(

j∑

n=1

knD
−
y Zin

)2

≤
(

j∑

n=1

kn

)(
j∑

n=1

kn
∣∣D−y Zin

∣∣2
)

≤
j∑

n=1

kn
∣∣D−y Zin

∣∣2

for i = 1, . . . ,M − 1 and j = 1, . . . ,N . Hence,

‖Z‖2
L2(Ω

h)
≤

M−1∑

i=1

j∑

n=1

�ikn
∣∣D−y Zin

∣∣2, 1≤ j ≤N.

Similarly, since ZiN = 0 for i = 1, . . . ,M , we also have that

‖Z‖2
L2(Ω

h)
≤

M−1∑

i=1

N∑

n=j+1

�ikn
∣∣D−y Zin

∣∣2, 0≤ j ≤N − 1.

By adding the last two inequalities we deduce that

‖Z‖2
L2(Ω

h)
≤ 1

2

M−1∑

i=1

N∑

n=1

�ikn
∣∣D−y Zin

∣∣2.

Because νx commutes with D−y this yields

‖νxV ‖2
L2(Ω

h)
≤ 1

2

M−1∑

i=1

N∑

j=1

�ikj
∣∣νxD−y Vij

∣∣2.
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Since �i ≤ 1
2hi(1+C�) it follows that

‖νxV ‖2
L2(Ω

h)
≤ 1

4
(1+C�)

M−1∑

i=1

N∑

j=1

hikj
∣∣νxD−y Vij

∣∣2,

and hence, by increasing the right-hand side of this inequality further by extending
the upper limit of the sum over i from M − 1 to M , we obtain the desired inequal-
ity. �

Our next result is concerned with bounding Wij := hiD
−
x Vij .

Lemma 2.47 Suppose that {Ωh} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C� such that

h=max
i,j

(hi, kj )≤ C� min
i,j

(hi, kj ).

Let V be a function defined on Ω
h

such that V = 0 on Γ h and let Wij = hiD
−
x Vij ;

then,

‖W‖L2(Ω
h) ≤ 2C�

(
M∑

i=1

N∑

j=1

hikj
∣∣νyD−x Vij

∣∣2
)1/2

.

Proof By noting that Wi0 = 0 for i = 1, . . . ,M , we have that

Wij =
j∑

n=1

(−1)j−n(Win +Wi,n−1)

for i = 1, . . . ,M and j = 1, . . . ,N . Therefore,

|Wij |2 ≤ 4j
j∑

n=1

|νyWin|2 ≤ 4j
N∑

n=1

h2
i

∣∣νyD−x Vin
∣∣2.

As h2
i ≤ hhi and �i ≤ C�kn for all i ∈ {1, . . . ,M} and all n ∈ {1, . . . ,N}, and

h
∑N

j=1 jkj ≤Nh≤ C�, we deduce that

‖W‖2
L2(Ω

h)
≤ 4C2

�

M∑

i=1

N∑

n=1

hikn
∣∣νyD−x Vin

∣∣2,

and hence the desired inequality upon renaming the index n into j . �
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By combining (2.139), (2.140) and Lemmas 2.46 and 2.47, we deduce that

M∑

i=1

N∑

j=1

hikj
(∣∣νyD−x Vij

∣
∣2 + ∣

∣νxD−y Vij
∣
∣2)

≤ C
∥∥LhV

∥∥
L2(Ω

h)

(
M∑

i=1

N∑

j=1

hikj
(∣∣νyD−x Vij

∣∣2 + ∣∣νxD−y Vij
∣∣2)

)1/2

.

This yields the inequality

(
M∑

i=1

N∑

j=1

hikj
(∣∣νyD−x Vij

∣∣2 + ∣∣νxD−y Vij
∣∣2)

)1/2

≤ C
∥∥LhV

∥∥
L2(Ω

h)
, (2.141)

and thereby the difference scheme is stable in the discrete W 1
2 norm defined by the

left-hand side of this inequality.

Remark 2.11 We note that stability has been proved in a weaker sense here, for
θ = 1/4, than in the previous section for θ ∈ [0,1/4). Indeed, for θ ∈ [0,1/4) we
deduce from Theorem 2.40 the stronger bound

[
M∑

i=1

N∑

j=1

hikj
(∣∣D−x Vij

∣∣2 + ∣∣D−y Vij
∣∣2)

]1/2

≤ C(θ)
∥∥LhV

∥∥
W−1

2 (Ωh)
, (2.142)

whose left-hand side is an upper bound on the left-hand side of (2.141).
Worse still, the stability of the scheme (2.137), (2.138) is not robust, in the

sense that when the homogeneous Dirichlet boundary condition is replaced by 1-
periodic boundary conditions in the two co-ordinate directions, on a uniform mesh
with spacing h = 1/(2M), M > 1, the resulting difference scheme is ill-posed for
any 1-periodic f . To see this, first take f = 0 and note that, in addition to the
trivial constant solution (which is, incidentally, also a solution to the boundary-
value problem), the difference scheme has the oscillatory chequer-board-like solu-
tion U�

ij = (−1)i+j . Thus if U is a solution of the difference scheme with f 	= 0
subject to 1-periodic boundary conditions in the two co-ordinate directions, then
U + αU� is also a solution, for any real number α. In other words, the solution is
not unique. In fact, the finite difference scheme (2.137), corresponding to the choice
of θ = 1/4 in (2.128), with 1-periodic boundary condition, has infinitely many so-
lutions for any f . This is consistent with the fact that, with a 1-periodic boundary
condition, the expression appearing on the left-hand side of (2.142) has a nontriv-
ial kernel in the set of mesh-functions defined on a uniform mesh with spacing
h = 1/(2M), M > 1, and is therefore only a seminorm in that case rather than a
norm; and it is also consistent with the fact that, with θ ∈ [0,1/4), the stability con-
stant C(θ) of the scheme (2.128), (2.129) in the discrete W 1

2 (Ω
h) norm, appearing

in (2.142), tends to +∞ as θ→ 1/4− 0.
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2.5 Convergence Analysis in Lp Norms

Hitherto, with the exception of various error bounds in the discrete maximum norm,
we have been concerned with the error analysis of finite difference schemes in mesh-
dependent analogues of Hilbertian Sobolev norms, i.e. discrete Sobolev norms that
are induced by inner products.

In this section we develop a framework for the error analysis of finite difference
schemes in mesh-dependent versions of the Sobolev and Bessel-potential norms Ws

p

and Hs
p , respectively. For the sake of simplicity, we shall confine ourselves to finite

difference approximations of the homogeneous Dirichlet boundary-value problem
for Poisson’s equation on an open square Ω , assuming that the weak solution of
the boundary-value problem belongs to Ws

p(Ω), 0 ≤ s ≤ 4, 1 < p <∞. We shall
make extensive use of the theory of discrete Fourier multipliers to investigate the
stability of the difference schemes considered, in conjunction with the Bramble–
Hilbert lemma in fractional-order Sobolev spaces to derive error bounds of optimal
order. The presentation in this section is based on the following sources: the journal
papers by Mokin [140] and Süli, Jovanović, Ivanović [173] and the monograph of
Samarskiı̆, Lazarov and Makarov [160].

2.5.1 Discrete Fourier Multipliers

In previous sections we relied on the use of energy estimates based on Hilbert space
techniques to show the stability of the finite difference schemes considered. In order
to extend these stability results to Lp norms, p 	= 2, we require a new tool – discrete
Fourier multipliers. To this end, we shall state and prove below a discrete counter-
part of the Marcinkiewicz multiplier theorem. First, however, we shall introduce the
notion of discrete Fourier transform.

Suppose that N is a positive integer and h= π/N . We consider the mesh

R
n
h = hZn := {

x ∈Rn : x = hk, k ∈ Zn
}

and the set of all 2π -periodic mesh-functions defined on R
n
h. We let

I := {−N + 1, . . . ,−1,0, . . . ,N}.
Then, any 2π -periodic function V defined on R

n
h is completely determined by its

values on the ‘basic cell’

ωh = hIn := {
hk : k ∈ In}.

With each mesh-function V defined on ωh we associate its discrete Fourier trans-
form FV given by

(FV )(k) := hn
∑

x∈ωh
V (x)e−ıx·k, k ∈ In. (2.143)
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In order to distinguish the discrete Fourier transform from its integral counterpart
F defined in Chap. 1 we have used the calligraphic letter F here instead of F .
Clearly, FV is a 2N -periodic function of its variables k1, . . . , kn, and 2N is the
minimum period; thus it suffices to consider FV on the basic cell In. Hence our
choice of k ∈ In in (2.143).

For x ∈ ωh the following discrete Fourier inversion formula holds:

V (x)= 1

(2π)n
∑

k∈In
(FV )(k)eıx·k. (2.144)

Indeed, substituting (2.143) into the right-hand side of (2.144), we have that

1

(2π)n
∑

k∈In
eıx·k

∑

y∈ωh
hnV (y)e−ıy·k = 1

(2π)n
∑

y∈ωh
hnV (y)

∑

k∈In
eı(x−y)·k.

However, for any x, y ∈ ωh we have that

∑

k∈In
eı(x−y)·k =

{
(2N)n if x = y,
0 otherwise,

and hence (2.144), by noting that hn(2N)n = (2π)n.
We can write (2.144) as V =F−1FV where, for a sequence a = {a(k)}k∈In , the

inverse discrete Fourier transform F−1a of a is defined by

(
F−1a

)
(x) := 1

(2π)n
∑

k∈In
a(k)eıx·k, x ∈ ωh.

Assuming that V is a function defined on the mesh ωh, we consider the trigono-
metric polynomial TV given by

TV (x)= 1

(2π)n
∑

k∈In
(FV )(k)eıx·k, x ∈ (−π,π]n. (2.145)

According to the discrete Fourier inversion formula,

TV (x)= V (x) ∀x ∈ ωh;
in other words, TV interpolates V over the mesh ωh.

Next we introduce the space Lp(ω
h), 1≤ p <∞, consisting all mesh-functions

V defined on ωh such that, for some constant M , independent of the discretization
parameter h,

‖V ‖Lp(ωh)
=

(
hn

∑

x∈ωh

∣∣V (x)
∣∣p

)1/p

≤M.



178 2 Elliptic Boundary-Value Problems

The following lemma establishes a useful relationship between the Lp norm of
a mesh-function V defined on ωh and the Lp norm of the associated trigonometric
interpolant TV on ω= T

n := (−π,π)n.

Lemma 2.48 Suppose that V ∈ Lp(ω
h), 1≤ p <∞, and let ω= (−π,π)n. Then,

‖V ‖Lp(ωh)
≤ (1+ π)n‖TV ‖Lp(ω).

Proof Let us suppose for simplicity that n= 1; for n > 1 the proof follows from the
case of n= 1 by induction over n. We shall first show that there exists a real number
ξ0 in the interval (−h,0) such that

‖TV ‖Lp(ω) =
(
h

∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p

)1/p

, (2.146)

where now ω= (−π,π) and ωh = hI.
Indeed,

‖TV ‖pLp(ω)
=

∫ π

−π
∣
∣TV (x)

∣
∣p dx =

N∑

k=−N+1

∫ xk

xk−1

∣
∣TV (x)

∣
∣p dx

=
N∑

k=−N+1

∫ h

0

∣∣TV (y + xk−1)
∣∣p dy

=
∫ h

0

∑

k∈I

∣∣TV (xk + y − h)
∣∣p dy.

Now the integrand is a continuous function of y on [0, h]; therefore, by the integral
mean-value theorem, there exists a ξ in (0, h) such that

∫ h

0

∑

k∈I

∣∣TV (xk + y − h)
∣∣p dy = h

∑

k∈I

∣∣TV (xk + ξ − h)
∣∣p.

Letting ξ0 := ξ − h and noting that k ∈ I if, and only if, x = xk ∈ ωh = hI, we
deduce (2.146).

Now consider

D :=
∣∣∣∣

(
h

∑

x∈ωh

∣∣V (x)
∣∣p

)1/p

−
(
h

∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p

)1/p∣∣∣∣.

We shall prove that

D ≤ h
∥∥T ′V

∥∥
Lp(ω)

. (2.147)
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This follows by noting that V (x) = TV (x) for x in ωh, and observing that by the
reverse triangle inequality, the Newton–Leibniz formula and Hölder’s inequality we
have that

D ≤
(∑

x∈ωh
h
∣
∣TV (x)− TV (x + ξ0)

∣
∣p

)1/p

=
(∑

x∈ωh
h

∣∣∣∣

∫ x

x+ξ0

T ′V (t)dt

∣∣∣∣

p)1/p

≤
(∑

x∈ωh
h

(∫ x

x−h
∣∣T ′V (t)

∣∣dt

)p)1/p

≤
(∑

x∈ωh
hhp−1

∫ x

x−h
∣∣T ′V (t)

∣∣p dt

)1/p

= h
∥∥T ′V

∥∥
Lp(ω)

.

Now using (2.146) and (2.147) we deduce that

‖V ‖Lp(ωh)
= ‖V ‖Lp(ωh)

−
(
h

∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p

)1/p

+ ‖TV ‖Lp(ω)

≤ D+ ‖TV ‖Lp(ω)

≤ h
∥∥T ′V

∥∥
Lp(ω)

+ ‖TV ‖Lp(ω).

We bound the first term on the right-hand side further by applying Bernstein’s in-
equality to the trigonometric polynomial TV of degree N (see, Nikol’skiı̆ [144],
p. 115):

∥∥T ′V
∥∥
Lp(ω)

≤N‖TV ‖Lp(ω),

and noting that hN = π . Hence the required result for n= 1. �

After this brief preparation, we are now ready to discuss a discrete counterpart of
the Marcinkiewicz multiplier theorem, Theorem 1.75, due to Mokin [140] (see also
Samarskiı̆, Lazarov, Makarov [160]), which will be our main tool in the stability
analysis of finite difference schemes in discrete Lp norms. In order to state it, we
require the notion of total variation. For a 2N -periodic function a defined on Z

n,
the total variation of a over In is defined by

var(a) := sup
k∈Zn

max
0	=α∈{0,1}n

α∑

ν

∣
∣Δαa(ν)

∣
∣.
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Here Δα :=Δ
α1
1 · · ·Δαn

n , as in Theorem 1.75, and, for α ∈ {0,1}n, we have used the
multi-index notation

α∑

ν

:=
α1∑

ν1

· · ·
αn∑

νn

where now, in contrast with the notational convention in Theorem 1.75,

αj∑

νj

:=
{

max
νj=±2|kj |−1

,...,±2|kj |−1 such that νj∈I if αj = 0,
∑

νj=±2|kj |−1
,...,±2|kj |−1 such that νj∈I if αj = 1.

In order to distinguish the total variation of a 2N -periodic function over I
n de-

fined here from total variation of a function on Z
n (as in the statement of the

Marcinkiewicz multiplier theorem, Theorem 1.75, stated in the previous chapter),
we have used the symbol ‘var’ here instead of our earlier notation ‘Var’. The set of
k ∈ Zn for which the index set of

∑α
ν is nonempty is finite. Therefore, ‘sup’ in the

definition of var(a) can be replaced with ‘max’.

Theorem 2.49 (Discrete Marcinkiewicz Multiplier Theorem) Let a be a 2N -
periodic function defined on Z

n, and suppose that one of the following two con-
ditions holds:

(a) a is a bounded function on I
n with bounded variation; i.e. there exists a constant

M0 such that

max
k∈In

∣∣a(k)
∣∣≤M0, var(a)≤M0;

(b) a can be extended to a function, still denoted by a, which is defined and contin-
uous on [−N + 1,N]n, with ∂αa ∈ C([−N + 1,N]n \ In) for every multi-index
α ∈ {0,1}n, and such that ξα∂αa(ξ) is bounded for every α ∈ {0,1}n; i.e. there
exists a constant M0 such that

max
α∈{0,1}n

sup
ξ∈[−N+1,N ]n\In

∣∣ξα∂αa(ξ)
∣∣≤M0.

Then, a is a discrete Fourier multiplier on Lp(ω
h), 1 <p <∞; that is,

∥
∥F−1(aFV )

∥
∥
Lp(ωh)

≤ C‖V ‖Lp(ωh)
,

for all V in Lp(ω
h), where C = CpM0 and Cp is a positive constant, independent

of a, h and V .

A simple sufficient condition for var(a) ≤M0 in part (a) of this theorem is that
var∗(a) ≤M0, where var∗(a) is defined analogously to var(a), except that

∑αj
νj is

defined as maxνj∈I when αj = 0 and as
∑

νj∈I when αj = 1. As there is then no

dependence on the diadic sets {±(2|kj | − 1), . . . ,±(2|kj | − 1)}, the symbol supk∈Zn

can be omitted from the definition of var∗(a).
The proof of the theorem relies on the following result.
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Lemma 2.50 Let ω= T
n := (−π,π)n.

1. Suppose that a(k) satisfies the hypotheses in part (a) of Theorem 2.49. Then, the
sequence {ã(k)}k∈Zn defined by

ã(k)=
{
a(k) for k ∈ In,
0 otherwise,

is a Fourier multiplier on Lp(ω), 1 <p <∞.
2. Consider the sequence {b̃(k)}k∈Zn defined by b̃(k)= b(k1) · · ·b(kn), with

b(m)=
⎧
⎨

⎩

1 if m= 0,
mh/2

sin(mh/2) if m ∈ I \ {0},
π/2 otherwise.

Then, {b̃(k)}k∈Zn is a Fourier multiplier on Lp(ω), 1 <p <∞.
3. The sequence {ã(k)b̃(k)}k∈Zn is a Fourier multiplier on Lp(ω), 1 <p <∞.

Proof The proof of this lemma is straightforward and proceeds as follows.
1. The stated result is obtained by noting that

sup
k∈Zn

∣∣ã(k)
∣∣=max

k∈In
∣∣a(k)

∣∣≤M0,

and

Var(ã)≤max
{

max
k∈In

∣∣a(k)
∣∣,var(a)

}
≤M0 =:M0(a),

and by applying Theorem 1.75 to the sequence ã = {ã(k)}k∈Zn .
2. The result is proved by noting that

sup
k∈Zn

∣∣b̃(k)
∣∣≤

(
π

2

)n

,

and

Var(b̃)≤
(
π2

2

)n

=:M0(b),

and applying Theorem 1.75 to the sequence b̃= {b̃(k)}k∈Zn .
3. The stated result follows by observing that

sup
k∈Zn

∣∣ã(k)b̃(k)
∣∣≤

(
π

2

)n

max
k∈In

∣∣a(k)
∣∣≤M0(a)M0(b),

and

Var(ãb̃)≤ 2nM0(a)M0(b)= π2nM0(a)=:M0(ab),

and applying Theorem 1.75 to the sequence ãb̃= {ã(k)b̃(k)}k∈Zn . �
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We are now ready to prove Theorem 2.49.

Proof of Theorem 2.49 (a) Let us suppose that u is defined on ωh, and consider its
piecewise constant extension w to R

n, defined as follows:

w(x) :=
{
u(y), for ‖x − y‖∞ < h/2, y ∈ In,
2π-periodically extended to R

n,

where ‖ · ‖∞ denotes the norm on R
n defined by ‖x‖∞ :=max1≤j≤n |xj |. Clearly,

‖w‖Lp(ω) = ‖u‖Lp(ωh)
, ω= T

n := (−π,π)n.
Furthermore, with the same notational conventions as in Sect. 1.9.5.1, w has the
Fourier series expansion

w(x)= 1

(2π)n
∑

k∈Zn

ŵ(k)eıx·k, x ∈ ω,

with Fourier coefficients

ŵ(k)=
∫

ω

w(x)e−ıx·k dx = c̃(k)hn
∑

x∈ωh
u(x)e−ıx·k,

where c̃(k)= c(k1) · · · c(kn) and

c(m)=
{

1 if m= 0,
sin(mh/2)
mh/2 if m ∈ Z \ {0}.

By noting from Lemma 2.50, part (2), that c(k) = 1/b(k) for k ∈ I and therefore
c̃(k)= 1/b̃(k) for k ∈ In, we have that

ŵ(k)= c̃(k)(Fu)(k)= 1

b̃(k)
(Fu)(k) for k ∈ In.

Now, the trigonometric polynomial of degree N defined by

TV : x ∈ ω �→ 1

(2π)n
∑

k∈In
a(k)(Fu)(k)eıx·k, x ∈ (−π,π]n,

is the trigonometric interpolant of the mesh-function V := F−1(aFu) defined
on ωh. Therefore, by Lemma 2.48, we have that

∥∥F−1(aFu)
∥∥
Lp(ωh)

≤ (1+ π)n
∥∥∥∥

1

(2π)n
∑

k∈In
a(k)(Fu)(k)eıx·k

∥∥∥∥
Lp(ω)

= (1+ π)n
∥∥∥∥

1

(2π)n
∑

k∈In
a(k)b̃(k)ŵ(k)eıx·k

∥∥∥∥
Lp(ω)
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= (1+ π)n
∥∥∥∥

1

(2π)n
∑

k∈Zn

ã(k)b̃(k)ŵ(k)eıx·k
∥∥∥∥
Lp(ω)

= (1+ π)n
∥∥(ãb̃ŵ)∨

∥∥
Lp(ω)

.

Here ·̂ and ·∨ denote the Fourier transform of a periodic distribution and its inverse
transform, defined in Sect. 1.9.5. Finally, by recalling from Lemma 2.50, part (3),
that the sequence {ã(k)b̃(k)}k∈Zn is a Fourier multiplier on Lp(ω) it follows that

∥∥F−1(aFu)
∥∥
Lp(ωh)

≤ (1+ π)nCpM0(ab)‖w‖Lp(ω)

= (1+ π)nCpM0(ab)‖u‖Lp(ωh)
,

where Cp is as in Theorem 1.75 and M0(ab) = π2nM0(a), as in the proof of
Lemma 2.50. Thus we have shown that

∥∥F−1(aFu)
∥∥
Lp(ωh)

≤ C1M0‖u‖Lp(ωh)
,

where C1 = (1+ π)nπ2nCp is a positive constant and M0 =M0(a) is the constant
from the statement of the theorem.

(b) This is a direct consequence of part (a), using the mean-value theorem in
those variables xj for which αj = 1 for a certain α ∈ {0,1}n. �

We shall now prove the converse of the inequality stated in Lemma 2.48, which
will be required in our subsequent considerations.

Lemma 2.51 Suppose that V is a mesh-function defined on ωh, and let TV be its
trigonometric interpolant defined by (2.145). Then, for 1 < p <∞, there exists a
positive constant Cp , independent of h and V , such that

‖TV ‖Lp(ω) ≤ Cp‖V ‖Lp(ωh)
.

Proof We shall prove this result in one dimension (n = 1); the case of n > 1 is
dealt with by induction over n, starting from n= 1. In the proof of Lemma 2.48 we
showed that there exists a ξ0 in the interval (−h0,0) such that

‖TV ‖Lp(ω) =
(
h

∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p

)1/p

= ∥∥TV (· + ξ0)
∥∥
Lp(ωh)

=
∥∥∥∥
∑

k∈I
(FV )(k)eıxkeıξ0k

∥∥∥∥
Lp(ωh)

. (2.148)
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Next we shall prove that the sequence {λ(k)}k∈I, with λ(k) := eıξ0k , is a discrete
Fourier multiplier on Lp(ω

h). First, note that |eıξ0k| = 1; furthermore,

N∑

k=−N+1

∣∣eıξ0k − eıξ0(k−1)
∣∣ =

N∑

k=−N+1

∣∣1− e−ıξ0
∣∣

≤ 2N |ξ0| ≤ 2Nh= 2π.

Hence, var(λ)≤ 2π and, by Theorem 2.49, {λ(k)}k∈I is a discrete Fourier multiplier
on Lp(ω

h). Thanks to (2.148) we then have that

‖TV ‖Lp(ω) =
∥∥F−1(λFV )

∥∥
Lp(ωh)

≤ 2πCp‖V ‖Lp(ωh)
,

where Cp is a positive constant, and hence the required result (with the constant
2πCp relabelled as Cp). �

After this interlude on discrete Fourier multipliers, we are ready to embark on
the error analysis of finite difference approximations to our elliptic model problem
in discrete Lp spaces.

2.5.2 The Model Problem and Its Approximation

Suppose that Ω = (0,π)2. For f ∈W−1
2 (Ω), we consider the homogeneous Dirich-

let boundary-value problem

−Δu = f in Ω , (2.149)

u = 0 on Γ = ∂Ω. (2.150)

Throughout the section we shall suppose that the unique weak solution u ∈ W̊ 1
2 (Ω)

of (2.149), (2.150) belongs to Ws
p(Ω) for some s ≥ 0 and p ∈ (1,∞) (other than

s = 1 and p = 2, of course).
For a nonnegative integer N ≥ 2 let h := π/N , and define the meshes:

Ωh := {
(xi, yj ) : xi = ih, yj = jh, 1≤ i, j ≤N − 1

}
,

Ω
h := {

(xi, yj ) : xi = ih, yj = jh, 0≤ i, j ≤N
}
,

Γ h :=Ω
h \Ωh.

In addition to these, we shall also require the following meshes:

Γ h
x := Γ h ∩ ({0,π} × (0,π)

)
,

Γ h
y := Γ h ∩ (

(0,π)× {0,π}),



2.5 Convergence Analysis in Lp Norms 185

Γ h+ := Γ h ∩ ({π} × (0,π)∪ (0,π)× {π}),
Ωh+ :=Ωh ∪ Γ h+,

Ωh
x :=Ωh ∪ (

Γ h+ ∩ Γ h
x

)
,

Ωh
y :=Ωh ∪ (

Γ h+ ∩ Γ h
y

)
.

As before, we approximate the Laplace operator Δ= ∂2

∂x2 + ∂2

∂y2 by

D+x D−x +D+y D−y .

Since f has not been assumed to be a continuous function on Ω , we shall mollify
it before sampling it at the mesh-points. To do so, we shall use the mollifier T ν =
T ν
h with ν = (ν1, ν2) and h = π/N , defined in (1.35); for the sake of notational

simplicity, we shall write T ν1ν2
h , or simply T ν1ν2 , instead of the more cumbersome

symbol T (ν1,ν2)
h .

First we shall suppose that the weak solution of the boundary-value problem
(2.149), (2.150) belongs to Ws

p(Ω), s > 2/p, 1 < p <∞; then, by Sobolev’s em-

bedding theorem, u is almost everywhere on Ω equal to a continuous function on
Ω , and

(
T 20
h

∂2u

∂x2

)
(x, y)=D+x D−x u(x, y), (x, y) ∈Ωh,

(
T 02
h

∂2u

∂y2

)
(x, y)=D+y D−y u(x, y), (x, y) ∈Ωh.

Therefore,

−(D+x D−x T 02
h +D+y D−y T 20

h

)
u = T 22

h f on Ωh, (2.151)

u = 0 on Γ h. (2.152)

This identity motivates us to consider the difference scheme

−(D+x D−x +D+y D−y
)
U = T 22

h f on Ωh, (2.153)

U = 0 on Γ h. (2.154)

The rest of this section is devoted to the error analysis of the finite difference scheme
(2.153), (2.154). First we introduce the natural discrete analogues of the Lp spaces
on Ωh.

A function V defined on Ωh (or on Ω
h

and equal to zero on Γ h) is said to belong
to Lp(Ω

h), 1 <p <∞, if there exists a positive constant M , independent of h, such
that

‖V ‖Lp(Ωh) :=
(
h2

∑

(x,y)∈Ωh

∣∣V (x, y)
∣∣p

)1/p

≤M.
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If V is defined on Ωh+ (or on Ω
h

and equal to zero on Γ h \Γ h+), the norm ‖ ·‖Lp(Ωh)

is replaced by

‖V ‖Lp(Ω
h+) :=

(
h2

∑

(x,y)∈Ωh+

∣∣V (x, y)
∣∣p

)1/p

.

For mesh-functions defined on Ωh
x and Ωh

y the norms ‖ · ‖Lp(Ωh
x )

and ‖ · ‖Lp(Ωh
y )

are
defined analogously.

The discrete analogues of the Sobolev norms W 1
p(Ω) and W 2

p(Ω) are defined,
respectively, by

‖V ‖W 1
p(Ω

h) :=
(‖V ‖p

Lp(Ωh)
+ |V |p

W 1
p(Ω

h)

)1/p
,

where

|V |W 1
p(Ω

h) :=
(∥∥D−x V

∥∥p
Lp(Ωh

x )
+ ∥∥D−y V

∥∥p
Lp(Ωh

y )

)1/p;
and

‖V ‖W 2
p(Ω

h) :=
(‖V ‖p

W 1
p(Ω

h)
+ |V |p

W 2
p(Ω

h)

)1/p
,

where

|V |W 2
p(Ω

h) :=
(∥∥D+x D−x V

∥
∥p
Lp(Ωh)

+ ∥
∥D−x D−y V

∥
∥p
Lp(Ω

h+)

+ ∥∥D+y D−y V
∥∥p
Lp(Ωh)

)1/p
.

Let us recall the notion of discrete Fourier transform from the previous section.
However, as we are now working on (0,π)2 rather than (−π,π)2 and the functions
we shall be dealing with will satisfy a homogeneous Dirichlet boundary condition
rather then a periodic boundary condition, some adjustments have to be made before
the techniques developed in the previous section can be applied.

Suppose that V is defined on Ωh (or on Ω
h

and equal to zero on Γ h). We shall
consider the odd extension Ṽ of the mesh-function V to the mesh

ωh = hI2 = {
(xi, yj ) : xi = ih, yj = jh, i, j =−N + 1, . . . ,N

}

contained in (−π,π]2. Thus

Ṽ (−x, y)=−Ṽ (x, y) and Ṽ (x,−y)=−Ṽ (x, y) for all (x, y) in Ωh.

After such an extension, Ṽ is further extended 2π -periodically in each co-ordinate
direction to the whole of hZ2. Let us note that

‖Ṽ ‖Lp(ωh)
= 41/p‖V ‖Lp(Ωh). (2.155)
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Lemma 2.52 Let us suppose that V is defined on Ωh (or on Ω
h

and equal to zero
on Γ h), and consider its odd extension Ṽ . The discrete Fourier transform F Ṽ has
the following properties:

1. For any k = (k1, k2) ∈ I2,

F Ṽ (k1, k2)=−4h2
N−1∑

i=1

N−1∑

j=1

V (xi, yj ) sin(k1xi) sin(k2yj );

2. F Ṽ is an odd function on I
2; that is,

F Ṽ (−k1, k2)=−F Ṽ (k1, k2) and F Ṽ (k1,−k2)=−F Ṽ (k1, k2)

for all k = (k1, k2) ∈ I2. Also, F Ṽ (0, k2)=F Ṽ (k1,0)=F Ṽ (0,0)= 0;
3. For 1≤ i, j ≤N − 1,

V (xi, yj )=− 1

π2

N−1∑

k1=1

N−1∑

k2=1

F Ṽ (k1, k2) sin(k1xi) sin(k2yj ).

The proof of this result is elementary and is left to the reader.
Lemma 2.52 implies that the values of F Ṽ on I

2 are completely determined
by the values of V on Ωh; conversely, V can be completely characterized on Ωh

(and Ṽ on ωh) by the values F Ṽ (k1, k2), k1, k2 = 1, . . . ,N − 1. Consequently, it is
meaningful to consider the discrete Fourier sine-transform FσV of a mesh-function

V defined on Ωh (or on Ω
h

and equal to zero on Γ h). Indeed, we let

FσV := −1

4
F Ṽ ,

and, for a functionW defined on the set {(i, j) : 1≤ i, j ≤N−1}with odd extension
W̃ to I

2, we put

F−1
σ W := −4F−1W̃ .

Thus,

FσV (k1, k2)= h2
N−1∑

i=1

N−1∑

j=1

V (xi, yj ) sin(k1xi) sin(k2yj )

and

F−1
σ W(x, y)=

(
2

π

)2 N−1∑

k1=1

N−1∑

k2=1

W(k1, k2) sin(k1x) sin(k2y).

In order to derive error bounds for the finite difference scheme under considera-
tion we shall need the following stability result.
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Lemma 2.53 Suppose that η1 and η2 are two functions defined on Ω
h

that vanish
on Γ h. Further, let e be the solution to the problem

−(D+x D−x +D+y D−y
)
e =D+x D−x η1 +D+y D−y η2 in Ωh, (2.156)

e = 0 on Γ h. (2.157)

Then, for any p ∈ (1,∞),

‖e‖Lp(Ωh) ≤ Cp

(‖η1‖Lp(Ωh) + ‖η2‖Lp(Ωh)

)
, (2.158)

|e|W 1
p(Ω

h) ≤ Cp

(∥∥D−x η1
∥∥
Lp(Ωh

x )
+ ∥∥D−y η2

∥∥
Lp(Ωh

y )

)
, (2.159)

|e|W 2
p(Ω

h) ≤ Cp

(∥∥D+x D−x η1
∥∥
Lp(Ωh)

+ ∥∥D+y D−y η2
∥∥
Lp(Ωh)

)
, (2.160)

where Cp is a positive constant, independent of h, e, η1 and η2.

Proof (1) Let us first prove (2.158). As

Fσ

(
D+x D−x e

)=−λ2
1Fσ e and Fσ

(
D+y D−y e

)=−λ2
2Fσ e,

where

λ1 = λ1(k1) := 2

h
sin

k1h

2
and λ2 = λ1(k2) := 2

h
sin

k2h

2
,

with k := (k1, k2), 1≤ k1, k2 ≤N − 1, it follows that

e=F−1
σ (a1Fσ η1)+F−1

σ (a2Fσ η2),

where

al(k1, k2) := λ2
l (kl)

λ2
1(k1)+ λ2

2(k2)
, 1≤ k1, k2 ≤N − 1, l = 1,2.

We note that a1(k1, k2) and a2(k1, k2) can be defined for all k ∈ I2 \ {0} by letting

al(−k1, k2) := al(k1, k2),

al(k1,−k2) := al(k1, k2),

al(−k1,−k2) := al(k1, k2),

for all k = (k1, k2), 1≤ k1, k2 ≤N − 1, l = 1,2.
Let ẽ, η̃1 and η̃2 denote the odd extensions of the mesh-functions e, η1 and η2,

respectively, from Ωh to ωh. Then,

ẽ=F−1(a1F η̃1)+F−1(a2F η̃2).
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The fact that a1 and a2 are not defined at (0,0) is of no significance, since

(F η̃l)(0,0)= h2
N∑

i=−N+1

N∑

j=−N+1

η̃i (xi, yj )= 0, l = 1,2,

which follows from our assumption that ηl , l = 1,2, vanish on Γ h, by noting that
η̃l is the odd extension of ηl .

Hence, by the triangle inequality,

‖ẽ‖Lp(ωh)
≤ ∥∥F−1(a1F η̃1)

∥∥
Lp(ωh)

+ ∥∥F−1(a2F η̃2)
∥∥
Lp(ωh)

.

Next we show that a1 and a2 are discrete Fourier multipliers on Lp(ω
h).

Clearly 0≤ a1 ≤ 1 on I
2. Further, as a1 + a2 = 1,

x
∂a1

∂x
= 2a1(1− a1)

xh

2
cot

xh

2
.

Thus, noting that |t cot t | ≤ 1 for |t | ≤ π/2, we have that
∣
∣∣∣x
∂a1

∂x
(x, y)

∣
∣∣∣≤

1

2
for (x, y) ∈ I2.

Similarly, noting again that a1 + a2 = 1,

y
∂a1

∂y
=−2a1(1− a1)

yh

2
cot

yh

2
.

Therefore,
∣
∣∣∣y
∂a1

∂y
(x, y)

∣
∣∣∣≤

1

2
for (x, y) ∈ I2.

Finally,

xy
∂2a1

∂x∂y
= 4

(
y
∂a1

∂y

)
xh

2
cot

xh

2
,

and so,
∣∣∣∣xy

∂2a1

∂x∂y
(x, y)

∣∣∣∣≤ 2 for (x, y) ∈ I2.

Hence, by Theorem 2.49, a1 is a discrete Fourier multiplier on Lp(ω
h). By symme-

try, the same is true of a2.
Therefore,

‖ẽ‖Lp(ωh)
≤ Cp

(‖η̃1‖Lp(ωh)
+ ‖η̃2‖Lp(ωh)

)
,

from which (2.158) immediately follows by noting (2.155).
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(2) As we have seen in part (1),

F ẽ= a1F η̃1 + a2F η̃2.

Multiplying this identity by (1− exp(−ık1h))/h we deduce that

D−x ẽ=F−1(a1F
(
D−x η̃1

))+F−1(b2F
(
D−y η̃2

))
,

where

b2(k1, k2) := a2(k1, k2)
1− e−ık1h

1− e−ık2h
.

We have already shown in part (1) that a1 and a2 are discrete Fourier multipliers
on Lp(ω

h). Similarly, using Theorem 2.49 we deduce that the same is true of (1−
e−ık1h)/(1− e−ık2h), and therefore of b2. Hence,

∥∥D−x ẽ
∥∥
Lp(ωh)

≤ Cp

(∥∥D−x η̃1
∥∥
Lp(ωh)

+ ∥∥D−y η̃2
∥∥
Lp(ωh)

)
,

which yields
∥∥D−x e

∥∥
Lp(Ωh

x )
≤ Cp

(∥∥D−x η1
∥∥
Lp(Ωh

x )
+ ∥∥D−y η2

∥∥
Lp(Ωh

y )

)
.

An identical bound holds for ‖D−y e‖Lp(Ωh
y )

, which, when added to the last inequal-
ity, yields (2.159).

(3) To prove (2.160), we note, by recalling the definitions of a1 and a2 from
part (1) of the proof, that

−λ2
1F ẽ= λ2

1

λ2
1 + λ2

2

(−λ2
1F η̃1

)+ λ2
1

λ2
1 + λ2

2

(−λ2
2F η̃2

)
.

Thus,

F
(
D+x D−x ẽ

)= λ2
1

λ2
1 + λ2

2

F
(
D+x D−x η̃1

)+ λ2
1

λ2
1 + λ2

2

F
(
D+y D−y η̃2

)
.

Equivalently,

D+x D−x ẽ=F−1
(

λ2
1

λ2
1 + λ2

2

F
(
D+x D−x η̃1

))+F−1
(

λ2
1

λ2
1 + λ2

2

F
(
D+y D−y η̃2

))
.

As λ2
l /(λ

2
1+λ2

2), l = 1,2, are discrete Fourier multipliers on Lp(ω
h), it follows that

∥
∥D+x D−x ẽ

∥
∥
Lp(ωh)

≤ Cp

(∥∥D+x D−x η̃1
∥
∥
Lp(ωh)

+ ∥
∥D+y D−y η̃2

∥
∥
Lp(ωh)

)
,

which gives
∥∥D+x D−x e

∥∥
Lp(Ωh)

≤ Cp

(∥∥D+x D−x η1
∥∥
Lp(Ωh)

+ ∥∥D+y D−y η2
∥∥
Lp(Ωh)

)
.
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Identical bounds hold for ‖D+y D−y e‖Lp(Ωh) and ‖D−x D−y e‖Lp(Ω
h+), which, when

added to the last inequality, yield (2.160). �

It is possible to derive bounds analogous to (2.159) and (2.160), but with e mea-
sured in a norm rather than a seminorm. To see this, we need the following prelim-
inary result that relates discrete Sobolev seminorms to the corresponding discrete
Sobolev norms.

Lemma 2.54 Suppose that V is a function defined on the mesh Ω
h

such that V = 0
on Γ h. Then, the following bounds hold:

(a) Assuming that 1 <p <∞,

‖V ‖Lp(Ωh) ≤ 2−1/pπ |V |W 1
p(Ω

h);
(b) There exists a constant Cp , independent of V and h, such that

|V |W 1
p(Ω

h) ≤ Cp|V |W 2
p(Ω

h), 1 <p <∞;
(c) Assuming that 1 <p <∞,

‖V ‖W 1
p(Ω

h) ≤
(

1+ 1

2
πp

)1/p

|V |W 1
p(Ω

h);

(d) With Cp denoting the constant from part (b),

‖V ‖W 2
p(Ω

h) ≤
(

1+
(

1+ 1

2
πp

)
C
p
p

)1/p

|V |W 2
p(Ω

h), 1 <p <∞.

Proof Part (c) is a direct consequence of (a), while (d) follows by combining (c)
and (b). We note that (c) is a discrete Friedrichs inequality, which generalizes
Lemma 2.19. It remains to prove (a) and (b).

(a) As V = 0 on Γ h, we can write

Vij =
i∑

k=1

hD−x Vkj .

By Hölder’s inequality for finite sums,

|Vij |p ≤ (ih)p/q
i∑

k=1

h|D−x Vkj |p, where
1

p
+ 1

q
= 1.

Multiplying by h2, increasing the upper limit in the sum on the right to N , and
summing through i, j = 1, . . . ,N − 1, we get that

‖V ‖p
Lp(Ωh)

≤ hp

(
N−1∑

i=1

ip/q

)
∥∥D−x V

∥∥p
Lp(Ωh

x )
.
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Now

N−1∑

i=1

ip/q ≤ 1+
∫ N−1

1
xp/q dx = 1+ (N − 1)(p/q)+1 − 1

(p/q)+ 1
≤N(p/q)+1 =Np,

and therefore, since Nh= π , we deduce that

‖V ‖p
Lp(Ωh)

≤ πp
∥∥D−x V

∥∥p
Lp(Ωh

x )
.

Analogously,

‖V ‖p
Lp(Ωh)

≤ πp
∥∥D−y V

∥∥p
Lp(Ωh

y )
.

By adding the last two inequalities we deduce (a).
(b) Let W := −(D+x D−x + D+y D−y )V . Using the same technique and the same

notation as in the proof of Lemma 2.53, and observing that

(
1− e−ık1x

h

)(
1

λ2
1(k1, k2)+ λ2

2(k1, k2)

)

and
(

1− e−ık2y

h

)(
1

λ2
1(k1, k2)+ λ2

2(k1, k2)

)

are discrete Fourier multipliers on Lp(ω
h), we deduce from Theorem 2.49 that

∥∥D−x V
∥∥
Lp(Ωh

x )
≤ Cp‖W‖Lp(Ωh),

and
∥∥D−y V

∥∥
Lp(Ωh

y )
≤ Cp‖W‖Lp(Ωh).

Hence

|V |W 1
p(Ω

h) ≤ 21/pCp‖W‖Lp(Ωh),

and therefore, by the triangle inequality,

|V |W 1
p(Ω

h) ≤ 21/pCp

(∥∥D+x D−x V
∥∥
Lp(Ωh)

+ ∥∥D+y D−y V
∥∥
Lp(Ωh)

)
.

Thus, by noting the inequality a + b ≤ 21−(1/p)(ap + bp)1/p for a, b ≥ 0,

|V |W 1
p(Ω

h) ≤ 2Cp|V |W 2
p(Ω

h).

Renaming the constant 2Cp into Cp then yields the stated inequality. �

Combining the last two lemmas, we arrive at the following result.
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Lemma 2.55 Suppose that η1 and η2 are two functions defined on Ω
h

that vanish
on Γ h. Let further e denote the solution of the problem

−(D+x D−x +D+y D−y
)
e =D+x D−x η1 +D+y D−y η2 in Ωh, (2.161)

e = 0 on Γ h. (2.162)

Then, there exists a positive constant Cp , independent of h, such that

‖e‖Lp(Ωh) ≤ Cp

(‖η1‖Lp(Ωh) + ‖η2‖Lp(Ωh)

)
, (2.163)

‖e‖W 1
p(Ω

h) ≤ Cp

(∥∥D−x η1
∥∥
Lp(Ωh

x )
+ ∥∥D−y η2

∥∥
Lp(Ωh

y )

)
, (2.164)

‖e‖W 2
p(Ω

h) ≤ Cp

(∥∥D+x D−x η1
∥∥
Lp(Ωh)

+ ∥∥D+y D−y η2
∥∥
Lp(Ωh)

)
. (2.165)

Now we are ready to state the main result of this section.

Theorem 2.56 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m ∈ {0,1,2}. Assuming that u belongs to Ws

p(Ω), with m≤ s, 2/p <

s ≤m+ 2, 1 <p <∞, the following error bound holds:

‖u−U‖Wm
p (Ωh) ≤ Chs−m|u|Ws

p(Ω),

with a positive constant C = C(p,m, s), independent of h.

Proof (a) Let us first suppose that m = 2 and s ≥ 2. We define the global error e

on Ω
h

by eij := u(xi, yj ) − Uij . It follows from (2.151)–(2.154) that e satisfies
(2.161), (2.162) with

η1 = u− T 02
h u and η2 = u− T 20

h u.

Now η1 (resp. η2) is defined on the mesh Ωh ∪ Γ h
x (resp. Ωh ∪ Γ h

y ) and equal to
zero on Γ h

x (resp. Γ h
y ). According to (2.165), in order to obtain the desired error

bound for m= 2, it suffices to estimate ‖D+x D−x η1‖Lp(Ωh) and ‖D+y D−y η2‖Lp(Ωh).
To do so, we define the squares

K0
ij := (xi−1, xi+1)× (yj−1, yj+1),

K̃0 := (−1,1)× (−1,1),

and consider the affine mapping (x, y) ∈K0
ij �→ (x̃, ỹ) ∈ K̃0, where

x = x(x̃) := (i + x̃)h, y = y(ỹ) := (j + ỹ)h.

Let ũ(x̃, ỹ)= u(x(x̃), y(ỹ)). We then have the following equalities:
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(
D+x D−x η1

)
ij

= u(xi+1, yj )− 2u(xi, yj )+ u(xi−1, yj )

h2

−
∫ 1

−1
θ2(ỹ)

u(xi+1, yj + ỹh)− 2u(xi, yj + ỹh)+ u(xi−1, yj + ỹh)

h2
dỹ

= 1

h2

{
ũ(1,0)− 2ũ(0,0)+ ũ(−1,0)

−
∫ 1

−1
θ2(ỹ)

[
ũ(1, ỹ)− 2ũ(0, ỹ)+ ũ(−1, ỹ)

]
dỹ

}
,

where θ2(ỹ)= 1− |ỹ|, ỹ ∈ (−1,1).
Now (D+x D−x η1)ij is a bounded linear functional on Ws

p(K̃
0), s > 2/p, whose

kernel contains P3(K̃
0). According to the Bramble–Hilbert lemma,

∣∣(D+x D−x η1
)
ij

∣∣≤ Ch−2|ũ|
Ws
p(K̃

0)

for 2/p < s ≤ 4. Thus, by changing from the (x̃, ỹ) to the (x, y) co-ordinate system,
we have that

∣
∣(D+x D−x η1

)
ij

∣
∣≤ Ch−2hs−2/p|u|Ws

p(K
0
ij )

for 2/p < s ≤ 4. Hence,
∥∥D+x D−x η1

∥∥
Lp(Ωh)

≤ Chs−2|u|Ws
p(Ω), 2/p < s ≤ 4.

Likewise,
∥∥D+y D−y η2

∥∥
Lp(Ωh)

≤ Chs−2|u|Ws
p(Ω), 2/p < s ≤ 4,

which, after insertion into (2.165), completes the proof for the case m= 2.
(b) Let m = 1 and s ≥ 1. By (2.164) it suffices to bound ‖D−x η1‖Lp(Ωh

x )
and

‖D−y η2‖Lp(Ωh
y )

. We proceed in the same way as in part (a) to deduce that

(
D−x η1

)
ij
= 1

h

{
ũ(1,0)− ũ(0,0)−

∫ 1

−1
θ2(ỹ)

[
ũ(1, ỹ)− ũ(0, ỹ)

]
dỹ

}

is a bounded linear functional on Ws
p(K̃

0), s > 2/p, whose kernel contains P2(K̃
0).

Therefore,
∥
∥D−x η1

∥
∥
Lp(Ωh

x )
≤ Chs−1|u|Ws

p(Ω), 2/p < s ≤ 3,

and, similarly,
∥∥D−y η2

∥∥
Lp(Ωh

y )
≤ Chs−1|u|Ws

p(Ω), 2/p < s ≤ 3.
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Inserting these into (2.164) we obtain the desired error bound for m= 1.
(c) Let m= 0 and s ≥ 0. We need to estimate ‖η1‖Lp(Ωh) and ‖η2‖Lp(Ωh). Since

(η1)ij = ũ(0,0)−
∫ 1

−1
θ2(ỹ)ũ(0, ỹ)dỹ

is a bounded linear functional on Ws
p(K̃

0), s > 2/p, whose kernel contains P1(K̃
0),

it follows that

‖η1‖Lp(Ωh) ≤ Chs |u|Ws
p(Ω), 2/p < s ≤ 2,

and, likewise,

‖η2‖Lp(Ωh) ≤ Chs |u|Ws
p(Ω), 2/p < s ≤ 2.

Substituting these into (2.163) we obtain the desired error bound for m = 0. That
completes the proof of the theorem. �

In the remainder of this section we shall discuss the rate of convergence of the
finite difference scheme (2.153), (2.154) in the case when 0 ≤ s < 1+ 1/p, which
also covers the case 0≤ s ≤ 2/p. Let us define the function space W̃ s

p(Ω), 1 <p <

∞, by

W̃ s
p(Ω)=

{
Ws

p(Ω), 0≤ s ≤ 1/p,
{w :w ∈Ws

p(Ω),w = 0 on Γ }, 1/p < s < 1+ 1/p.

We observe that if u, the weak solution of the boundary-value problem (2.149),
(2.150) belongs Ws

p(Ω) then u ∈ W̃ s
p(Ω). Let Ω∗ := (−π,2π) × (−π,2π); the

extension of u by 0 is a continuous linear operator from W̃ s
p(Ω) into Ws

p(Ω
∗),

0≤ s < 1+ 1/p, s 	= 1/p, 1 < p <∞ (cf. Triebel [182], Sect. 2.10.2, Lemma and
Remark 1 on p. 227 and Theorem 1 on p. 228). Hence

u �→ u∗ = odd extension of u

is a continuous mapping from W̃ s
p(Ω) into Ws

p(Ω
∗), 0 ≤ s < 1 + 1/p, s 	= 1/p,

1 <p <∞. Moreover, (T 11
h u∗)(x, y)= 0 for (x, y) ∈ Γ h.

Theorem 2.57 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m ∈ {0,1}. Assuming that u belongs to Ws

p(Ω) with m ≤ s, 0 ≤ s <

1+ 1/p, s 	= 1/p and 1 <p <∞, the following error bound holds:

∥∥T 11
h u−U

∥∥
Wm
p (Ωh)

≤ Chs−m|u|Ws
p(Ω),

with a positive constant C = C(p,m, s), independent of h.
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Proof The proof is completely analogous to that of Theorem 2.56, except that we

now define the global error e on Ω
h

by

eij =
(
T 11
h u∗

)
(xi, yj )−Uij .

Clearly eij = 0 for (xi, yj ) ∈ Γ h, and eij = (T 11
h u)(xi, yj )− Uij when (xi, yj ) ∈

Ωh. In addition, it follows from (2.151)–(2.154) that e satisfies (2.156), (2.157) with

η1 = T 11
h u∗ − T 02

h u∗ and η2 = T 11
h u∗ − T 20

h u∗.

Again, η1 (resp. η2) is defined on the mesh Ωh ∪ Γ h
x (resp. Ωh ∪ Γ h

y ) and is equal
to zero on Γ h

x (resp. Γ h
y ). The rest of the proof is the same as in the case of Theo-

rem 2.56, except that now s ∈ [0,1/p)∪ (1/p,1+ 1/p). �

2.5.3 Convergence in Discrete Bessel-Potential Norms

This section is devoted to error estimation in discrete Bessel-potential norms.

A function v defined on Ωh ⊂ (0,π)2 (or on Ω
h ⊂ [0,π]2 and equal to zero on Γ h)

is said to belong to the discrete Bessel-potential space Hs
p(Ω

h), with−∞< s <∞,
1 <p <∞, if there exists a function V ∈ Lp(Ω

h) such that

v = Is,hV :=F−1
σ

((
1+ |k|2)−s/2FσV

)=F−1((1+ |k|2)−s/2F Ṽ
)
,

where Ṽ is the odd extension of V from Ωh to ωh = hI2, defined to be zero on Γ h,
and further extended 2π -periodically to the whole of hZ2. We then define (compare
with the definition in Sect. 1.9.5.3)

‖v‖Hs
p(Ω

h) := ‖V ‖Lp(Ωh) = 4−1/p‖Ṽ ‖Lp(ωh)
,

where the last equality is a consequence of (2.155).
First we shall prove equivalence of the discrete Sobolev norm ‖ ·‖Wm

p (Ωh) and the
norm ‖ · ‖Hm

p (Ωh) for integer m; then, the error bounds in discrete Bessel-potential
norms of integer order will follow from the error bounds derived in Theorems 2.56
and 2.57. Error bounds in fractional-order discrete Bessel-potential norms will be
derived from these by function space interpolation. We need the following prelimi-
nary result in the univariate case.

Lemma 2.58 Let W be a mesh-function defined on ωh = hI, where I = {−N +
1, . . . ,N}, and let TW be the trigonometric interpolant of W on (−π,π] given by
(2.145), with n= 1. Then, there exists a constant Cp , independent of h and W , such
that the following inequalities hold, with ω= (−π,π):
(a) ‖D−x W‖Lp(ωh)

≤ ‖T ′W‖Lp(ω) ≤ Cp‖D−x W‖Lp(ωh)
;
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(b) ‖D+x D−x W‖Lp(ωh)
≤ ‖T ′′W‖Lp(ω) ≤ Cp‖D+x D−x W‖Lp(ωh)

.

Proof (a) Since W and TW coincide at the mesh-points,

D−x W(xi)=D−x TW (xi)= 1

h

∫ xi

xi−1

T ′W(x)dx.

Thus,

h
∣∣D−x W(xi)

∣∣p ≤
∫ xi

xi−1

∣∣T ′W(x)
∣∣p dx.

Summing over all xi in ωh, we deduce that
∥∥D−x W

∥∥
Lp(ωh)

≤ ∥∥T ′W
∥∥
Lp(ω)

.

To deduce the second inequality, let us note that

T ′W(x)= 1

2π

∑

k∈I
(ık)FW(k)eıxk,

and

F
(
D−x W

)
(k)= 1− e−ıkh

h
FW(k).

Therefore,

T ′W(x)= 1

2π

∑

k∈I

ıkh

1− e−ıkh
F
(
D−x W

)
(k)eıxk.

Since T ′W is a trigonometric polynomial of degree N , it follows from (2.146) that
there is a ξ0 in (−h,0) such that

∥∥T ′W
∥∥
Lp(ω)

= ∥∥T ′W(· + ξ0)
∥∥
Lp(ωh)

.

Letting

λ(kh) := ıkh

1− e−ıkh

and

μ(k) := λ(kh)eıkξ0 ,

the last equality can be rewritten as follows:
∥∥T ′W

∥∥
Lp(ω)

= ∥∥F−1(μF
(
D−x W

))∥∥
Lp(ωh)

.

A simple calculation shows that both λ and var(λ) are bounded by a constant, in-
dependent of h. It remains to apply part (a) of Theorem 2.49 to deduce that λ is a
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discrete Fourier multiplier on Lp(ω
h), and therefore the same is true of μ. Hence

the upper bound in part (a).
(b) Let us define Z = D+x W . Then, D+x D−x W = D−x Z and by part (a) of this

lemma we have that

∥∥D+x D−x W
∥∥
Lp(ωh)

= ∥∥D−x Z
∥∥
Lp(ωh)

≤ ∥∥T ′Z
∥∥
Lp(ω)

.

Since

FZ(k)=F
(
D+x W

)
(k)= eıkh − 1

h
FW(k),

it follows that

TZ(x) = 1

2π

∑

k∈I
FZ(k)eıxk

= 1

2π

∑

k∈I

eıkh − 1

h
FW(k)=D+x TW (x).

By noting that TW (x) is a 2π -periodic function of x we deduce that

∥∥T ′Z
∥∥p
Lp(ω)

= ∥∥D+x T ′W
∥∥p
Lp(ω)

= h−p
∫ π

−π
∣∣T ′W(x + h)− T ′W(x)

∣∣p dx

= h−p
∫ π

−π

∣∣∣∣

∫ x+h

x

T ′′W(ξ)dξ

∣∣∣∣

p

dx ≤ 1

h

∫ π

−π

∫ x+h

x

∣∣T ′′W(t)
∣∣p dt dx

= 1

h

∫ π

−π
∣∣T ′′W(t)

∣∣p
(∫ t

t−h
dx

)
dt =

∫ π

−π
∣∣T ′′W(t)

∣∣p dt = ∥∥T ′′W
∥∥p
Lp(ω)

.

Hence we obtain the first inequality in (b). The second inequality is proved in the
same way as in part (a), by observing that

T ′′W(x)= 1

2π

∑

k∈I

(ıkh)2

(eıkh − 1)(1− e−ıkh)
F
(
D+x D−x W

)
(k)eıxk.

Thus, by noting that with ξ0 ∈ (−h,0] as in part (a) the function μ1 defined on I by

μ1(k) := (ıkh)2

(eıkh − 1)(1− e−ıkh)
eıkξ0 =

( kh
2

sin kh
2

)2

eıkξ0

is bounded by π/2 and var(μ1) is bounded by a constant, independent of h, it
follows from part (a) of Theorem 2.49 that μ1 is a discrete Fourier multiplier on
Lp(ω

h), and hence the upper bound stated in part (b). �

Lemma 2.58 has the following extension to two space dimensions.
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Lemma 2.59 Let W be a mesh-function defined on ωh = hI2, where I = {−N +
1, . . . ,N}, and let TW be the trigonometric interpolant of W on (−π,π]2 given by
(2.145), with n= 2. There is a constant Cp > 0, independent of h and W , such that
the following inequalities hold, with ω= (−π,π)2:

(a)

1

1+ π

∥∥D−x W
∥∥
Lp(ωh)

≤
∥∥∥∥
∂

∂x
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D−x W
∥∥
Lp(ωh)

and

1

1+ π

∥∥D−y W
∥∥
Lp(ωh)

≤
∥∥∥∥
∂

∂y
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D−y W
∥∥
Lp(ωh)

;

(b)

1

1+ π

∥∥D+x D−x W
∥∥
Lp(ωh)

≤
∥∥∥∥
∂2

∂x2
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D+x D−x W
∥∥
Lp(ωh)

,

∥∥D−x D−y W
∥∥
Lp(ωh)

≤
∥∥∥∥

∂2

∂x∂y
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D−x D−y W
∥∥
Lp(ωh)

and

1

1+ π

∥∥D+y D−y W
∥∥
Lp(ωh)

≤
∥∥∥∥
∂2

∂y2
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D+y D−y W
∥∥
Lp(ωh)

.

Proof The proof of this result is a straightforward consequence of Lemma 2.58,
and Lemmas 2.48 and 2.51 with n = 1; Lemma 2.58 is applied in the co-ordinate
direction in which differentiation has taken place, and Lemmas 2.48 and 2.51 in the
other direction. �

Lemma 2.60 The norms ‖ · ‖Wm
p (Ωh) and ‖ · ‖Hm

p (Ωh) are equivalent, uniformly in
h, for m = 0,1,2 and 1 < p <∞; i.e. there exist two constants C1 and C2, inde-

pendent of h, such that for all functions V defined on Ωh (or on Ω
h

and equal to
zero of Γ h),

C1‖V ‖Wm
p (Ωh) ≤ ‖V ‖Hm

p (Ωh) ≤ C2‖V ‖Wm
p (Ωh).

Proof The statement is obviously true for m= 0 with C1 = C2 = 1. Now for m=
1,2 we shall proceed as follows. Let Ṽ denote the odd extension of V to ωh = hI2,
where I= {−N + 1, . . . ,N}. Further, let T

Ṽ
denote the trigonometric interpolant of

Ṽ defined by (2.145) with n= 2. By applying Lemma 2.59 with W = Ṽ , we deduce
the existence of two positive constants C1 and C2, independent of V and h, (with
C2 = C2(p) and C1 independent of p), such that

C1‖V ‖W 1
p(Ω

h) ≤ ‖TṼ ‖W 1
p(ω)
≤ C2‖V ‖W 1

p(Ω
h)
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and

C1‖V ‖W 2
p(Ω

h) ≤ ‖TṼ ‖W 2
p(ω)
≤ C2‖V ‖W 2

p(Ω
h).

For p ∈ (1,∞) and a nonnegative integer m the Sobolev norm ‖ · ‖Wm
p (ω) on

ω= T
2, is equivalent to the periodic Bessel-potential norm ‖ · ‖Hm

p (ω) defined by

‖v‖Hm
p (ω) :=

∥∥((1+ |k|2)m/2
v̂
)∨∥∥

Lp(ω)

(see, Schmeiser and Triebel [162]), where ·̂ and ·∨ denote the Fourier transform of
a periodic distribution and its inverse, defined in Sect. 1.9.5; therefore,

C1‖V ‖Wm
p (Ωh) ≤

∥∥((1+ |k|2)m/2
T̂
Ṽ

)∨∥∥
Lp(ω)

≤ C2‖V ‖Wm
p (Ωh), m= 1,2.

Finally, since ((1 + |k|2)m/2T̂
Ṽ
)∨ = TF−1((1+|k|2)m/2F Ṽ )

on ω, we have by Lem-
mas 2.48 and 2.51 that

C1‖V ‖Wm
p (Ωh) ≤

∥∥F−1((1+ |k|2)m/2F Ṽ
)∥∥

Lp(ωh)
≤ C2‖V ‖Wm

p (Ωh), m= 1,2,

from which the result follows by noting that

∥∥F−1((1+ |k|2)m/2F Ṽ
)∥∥

Lp(ωh)
= 41/p

∥∥F−1
σ

((
1+ |k|2)m/2FσV

)∥∥
Lp(Ωh)

= 41/p‖V ‖Hm
p (Ωh), m= 1,2. �

We shall now use function space interpolation to obtain scales of error bounds in
fractional-order discrete Bessel-potential norms. We start with a generalization of
an interpolation inequality of Mokin (cf. Theorem 5 in [141]).

Lemma 2.61 Let α and β be two nonnegative real numbers such that α < β and
suppose that 1 <p <∞. There exists a positive constant C, independent of h, such
that for any real number r , α ≤ r ≤ β ,

‖V ‖Hr
p(Ω

h) ≤ C‖V ‖1−μ
Hα
p (Ω

h)
‖V ‖μ

H
β
p (Ω

h)
∀V ∈Hβ

p

(
Ωh

)
,

where μ= (r − α)/(β − α).

Proof Let us first prove the result for α = 0. We define W := I−r,hV ; then

‖V ‖Hr
p(Ω

h) = ‖W‖Lp(Ωh) = 4−1/p‖W̃‖Lp(ωh)

≤ 4−1/p(1+ π)2‖T
W̃
‖Lp(ω) = 4−1/p(1+ π)2‖T

Ṽ
‖Hr

p(ω)
.

Also,

‖T
Ṽ
‖Hr

p(ω)
≤ C‖T

Ṽ
‖1−(r/β)
Lp(ω)

‖T
Ṽ
‖r/β
H

β
p (ω)

,
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(see, Nikol’skiı̆ [144], p. 310) where C = C(p, r, s) is a positive constant, and by
Lemma 2.51 we have that

‖T
Ṽ
‖Lp(ω) ≤ 41/pC‖V ‖Lp(Ωh) and ‖T

Ṽ
‖
H

β
p (ω)
≤ 41/pC‖V ‖

H
β
p (Ω

h)
.

Combining the last four inequalities, we deduce the statement of the lemma in the
case of α = 0.

For α > 0, let us define W := I−α,hV . Then,

‖W‖
H

β−α
p (Ωh)

= ‖V ‖
H

β
p (Ω

h)
and ‖W‖Hr−α

p (Ωh) = ‖V ‖Hr
p(Ω

h);
moreover, as 0≤ r − α ≤ β − α, it follows from the case of α = 0 above that

‖W‖Hr−α
p (Ωh) ≤ C‖W‖1−μ

Lp(Ωh)
‖W‖μ

H
β−α
p (Ωh)

,

and hence the desired inequality. �

Lemma 2.61 will play a key role in the proof of the next theorem, concerned with
optimal error bounds in fractional-order discrete Bessel-potential norms.

Theorem 2.62 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154). If u
belongs to Ws

p(Ω), 2/p < s ≤ 2 and 0≤ r ≤ 2, or 2/p < s ≤ 3 and 1≤ r ≤ 2, with
1 <p <∞ and r ≤ s, then we have that

‖u−U‖Hr
p(Ω

h) ≤ Chs−r |u|Ws
p(Ω),

with a positive constant C, dependent on p, r and s, but independent of h.

Proof Let us suppose that u belongs to Ws
p(Ω), 2/p < s ≤ 2, 1 < p <∞ and

0 ≤ r ≤ 2. We apply Lemma 2.61 with α = 0, β = 2 and Theorem 2.56 to obtain
the error bound.

Similarly, if u belongs to Ws
p(Ω), 2/p < s ≤ 3, 1 < p <∞ and 1≤ r ≤ 2, then

we take α = 1 and β = 2 in Lemma 2.61 in combination with Theorem 2.56 to
deduce the error bound. �

By invoking Lemma 2.61 with α = 0 and β = 1, we obtain from Theorem 2.57,
using function space interpolation, the following scale of error bounds in fractional-
order discrete Bessel-potential norms.

Theorem 2.63 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.151), (2.152). If u
belongs to Ws

p(Ω), 0 ≤ s < 1+ 1/p, s 	= 1/p, 1 < p <∞, 0 ≤ r ≤ 1 and r ≤ s,
then

∥∥T 11
h u−U

∥∥
Hr
p(Ω

h)
≤ Chs−r |u|Ws

p(Ω),

with a positive constant C, dependent on p, r and s, but independent of h.



202 2 Elliptic Boundary-Value Problems

The error bounds stated in Theorems 2.56, 2.57, 2.62, and 2.63 cover the range
of possible Sobolev indices, s ∈ [0,4], for which the solution U of the difference
scheme (2.151), (2.152) converges to the weak solution u (or its mollification T 11

h u)
of the boundary-value problem (2.149), (2.150), provided that u ∈Ws

p(Ω). To con-
clude, we note that to derive these results it is not essential that u is weak solution:
indeed, if we assume that u ∈Ws

p(Ω) with s > 1/p is a solution of the boundary-
value problem in the sense of distributions and that it satisfies a homogeneous
Dirichlet boundary condition in the sense of the trace theorem, the error bounds
obtained above still hold.

2.6 Approximation of Second-Order Elliptic Equations with
Variable Coefficients

Hitherto we have been concerned with the construction and error analysis of fi-
nite difference schemes for second-order linear elliptic equations of the form
−Δu+c(x, y)u= f (x, y). In particular, we derived optimal-order error bounds un-
der minimal smoothness requirements on the solution. Here we shall extend these
results to elliptic equations with variable coefficients in the principal part of the
differential operator, under minimal regularity hypotheses on the solution and the
coefficients.

In Sect. 2.6.1 we consider the Dirichlet problem for a second-order elliptic equa-
tion with variable coefficients in the principal part of the operator. The finite differ-
ence approximation of this problem is shown to be convergent, with optimal order,
in the discrete W 1

2 norm. In Sects. 2.6.2 and 2.6.3 similar results are proved in the
discrete W 2

2 norm and in the discrete L2 norm; then, using function space inter-
polation, these bounds are extended to fractional-order discrete Wr

2 norms, with
r ∈ [0,2], in Sect. 2.6.4. In Sect. 2.6.5 we focus on elliptic equations with separated
variables and derive optimal bounds in the discrete L2 norm, which are compatible
with our hypotheses on the smoothness of the data.

2.6.1 Convergence in the Discrete W 1
2 Norm

As a model problem, we shall consider the following homogeneous Dirichlet
boundary-value problem for a second-order linear elliptic equation with variable
coefficients on the open unit square Ω = (0,1)2:

Lu := −
2∑

i,j=1

∂i(aij ∂ju)+ au= f in Ω,

u= 0 on Γ = ∂Ω.

(2.166)
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For the sake of notational simplicity, we have denoted the two independent variables
here by x1 and x2 instead of x and y.

We shall suppose that (2.166) has a solution in Ws
2 (Ω), which satisfies the par-

tial differential equation in the sense of distributions and the boundary condition
in the sense of the trace theorem, with the right-hand side f being an element of
Ws−2

2 (Ω). In order for the solution of this problem to have a well-defined trace
on ∂Ω it is necessary to assume that s > 1/2. It is then natural to require that the
coefficients aij and a belong to appropriate spaces of multipliers; that is,

aij ∈M
(
Ws−1

2 (Ω)
)
, a ∈M(

Ws
2 (Ω)→Ws−2

2 (Ω)
)
.

According to the results in Sect. 1.8 the following conditions are sufficient in order
to ensure that this is the case:

(a) if |s − 1|> 1, then

aij ∈W |s−1|
2 (Ω), a ∈W |s−1|−1

2 (Ω);
(b) if 0≤ |s − 1| ≤ 1, then

aij ∈W |s−1|+δ
p (Ω), a = a0 +

2∑

i=1

∂iai,

a0 ∈ L2+ε(Ω), ai ∈W |s−1|+δ
p (Ω),

where ε > 0; and δ > 0, p ≥ 2/|s − 1| for 0 < |s − 1| < 1; δ = 0, p > 2 for
s = 0; δ = 0, p =∞ when s = 1.

In addition to these assumptions on the smoothness of the data, we shall adopt the
following structural hypotheses on the coefficients aij and a:

• there exists a c0 > 0 such that

2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i ∀x ∈Ω, ∀ξ = (ξ1, ξ2) ∈R2;

• the matrix (aij ) ∈R2×2 is symmetric, i.e.

aij = aji, i, j = 1,2;
• the coefficient a is nonnegative in the sense of distributions; i.e.

〈aϕ,ϕ〉D′×D ≥ 0 ∀ϕ ∈D(Ω).

We shall construct a finite difference approximation of this boundary-value prob-

lem on the uniform mesh Ω
h := Ωh ∪ Γ h of mesh-size h := 1/N , with N ≥ 2,

defined in Sect. 2.2.4.
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When s ≤ 3, our hypotheses on the smoothness of the data do not guarantee that
the forcing function f and the coefficient a are continuous on Ω : it is therefore
necessary to mollify them so as to ensure that they have well-defined values at the
mesh-points.

These observations lead us to consider the following finite difference approxima-
tion of the boundary-value problem:

LhU = T 22
h f on Ωh,

U = 0 on Γ h,
(2.167)

with

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]+ (

T 22
h a

)
U,

where D±xi V , i = 1,2, are the divided difference operators in the xi co-ordinate
direction defined in Sect. 2.2.4, and T 22

h is the mollifier with mesh-size h defined in
Sect. 1.9.2.

It is helpful to note that the two-dimensional mollifier T 22
h can be expressed in

terms of the one-dimensional mollifiers T1 = T1,h and T2 = T2,h, acting in the x1
and x2 co-ordinate direction, respectively, as

T 22
h = T 2

1 T
2
2 .

For a locally integrable function w defined on Ω ,

T1w(x1, x2) := 1

h

∫ x1+h/2

x1−h/2
w(ξ1, x2)dξ1,

T 2
1 w(x1, x2) := 1

h

∫ x1+h

x1−h

(
1−

∣∣∣∣
x1 − ξ1

h

∣∣∣∣

)
w(ξ1, x2)dξ1;

T2w and T 2
2 w can be represented analogously. When w is a distribution, Ti and T 2

i

are defined as convolutions of w with the scaled univariate B-splines θ1
h and θ2

h ,
respectively, as explained in Sect. 1.9.

We note that (2.167) is the standard symmetric seven-point difference scheme
with mollified right-hand side and mollified coefficient a.

With the notations from Sect. 2.2.4, we consider the discrete L2 inner product
(V ,W)h (see (2.48)) in the linear space Sh0 of real-valued mesh-functions defined on

Ω
h

that vanish on Γ h, the associated discrete L2 norm ‖V ‖L2(Ω
h), and the discrete

Sobolev norms ‖V ‖W 1
2 (Ω

h) and ‖V ‖W 2
2 (Ω

h).
The error bounds stated in the next theorem are compatible with the smoothness

hypotheses (a) and (b) formulated above, for the coefficients appearing in the partial
differential equation.
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Theorem 2.64 The difference scheme (2.167) satisfies the following error bounds
in the W 1

2 (Ω
h) norm:

‖u−U‖W 1
2 (Ω

h) ≤ Chs−1
(

max
i,j
‖aij‖Ws−1

2 (Ω)
+ ‖a‖

Ws−2
2 (Ω)

)
‖u‖Ws

2 (Ω),

for 2 < s ≤ 3, (2.168)

and

‖u−U‖W 1
2 (Ω

h) ≤ Chs−1
(

max
i,j
‖aij‖Ws−1+δ

p (Ω)
+max

i
‖ai‖Ws−1+δ

p (Ω)

+ ‖a0‖L2+ε(Ω)

)
‖u‖Ws

2 (Ω), for 1 < s ≤ 2, (2.169)

where p, δ and ε are as in condition (b) above, and C is a positive constant, inde-
pendent of h.

Before embarking on the proofs of these error bounds we shall make some pre-
liminary observations. Let u denote the solution of the boundary-value problem
(2.166) and let U be the solution of the finite difference scheme (2.167). When
s > 1, as in Theorem 2.64, the function u is continuous on Ω and therefore the
global error e := u−U is correctly defined on the uniform mesh Ω

h
. In addition,

it is easily seen that

Lhe=
2∑

i,j=1

D−xi ηij + η on Ωh,

e= 0 on Γ h,

(2.170)

where

ηij := T +i T 2
3−i (aij ∂ju)−

1

2

(
aijD

+
xj
u+ a+iij D

−
xj
u+i

)
, i = 1,2,

and

η := (
T 2

1 T
2

2 a
)
u− T 2

1 T
2
2 (au).

Here, for a locally integrable function w defined on Ω , we have used the asym-
metric mollifiers T ±i w, defined at x = (x1, x2) by

(
T ±i w

)
(x) := (Tiw)

(
x ± 1

2
hei

)
, with ei := (δi1, δi2), i = 1,2.

By taking the (·, ·)h inner product of Lhe with e and performing summations
by parts in the leading terms on the left- and right-hand sides, in exactly the same
manner as in the argument that led to the estimate (2.83) stated in Lemma 2.24, we
arrive at the following result.
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Lemma 2.65 The difference scheme (2.170) is stable, in the sense that

‖e‖W 1
2 (Ω

h) ≤ C

(
2∑

i,j=1

‖ηij‖L2(Ω
h
i )
+ ‖η‖L2(Ω

h)

)

, (2.171)

where C is a positive constant, independent of h.

The error analysis of the finite difference scheme (2.167) is thereby reduced to
estimating the right-hand side in the inequality (2.171). To this end, we decompose
ηij as follows:

ηij = ηij1 + ηij2 + ηij3 + ηij4,

where

ηij1 := T +i T 2
3−i (aij ∂ju)−

(
T +i T 2

3−iaij
)(
T +i T 2

3−i∂j u
)
,

ηij2 :=
[
T +i T 2

3−iaij −
1

2

(
aij + a+iij

)](
T +i T 2

3−i∂j u
)
,

ηij3 := 1

2

(
aij + a+iij

)[
T +i T 2

3−i∂j u−
1

2

(
D+xj u+D−xj u

+i)
]

and

ηij4 := −1

4

(
aij − a+iij

)(
D+xj u−D−xj u

+i).

We shall also perform a decomposition of η, but the form of this decomposition will
depend on whether 1 < s ≤ 2 or 2 < s ≤ 3.

When 1 < s ≤ 2, we shall write

η= η0 + η1 + η2,

where

η0 :=
(
T 2

1 T
2
2 a0

)
u− T 2

1 T
2
2 (a0u)

and

ηi :=
(
T 2

1 T
2
2 ∂iai

)
u− T 2

1 T
2
2 (u∂iai), i = 1,2.

Whereas if 2 < s ≤ 3, we shall use the decomposition

η= η3 + η4,

where

η3 :=
(
T 2

1 T
2
2 a

)(
u− T 2

1 T
2
2 u

)
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and

η4 :=
(
T 2

1 T
2
2 a

)(
T 2

1 T
2
2 u

)− T 2
1 T

2
2 (au).

Proof of Theorem 2.64 We introduce the ‘elementary rectangles’

K0 =K0(x) := {
y = (y1, y2) : |yj − xj |< h,j = 1,2

}

and

Ki =Ki(x) := {
y : xi < yi < xi + h, |y3−i − x3−i |< h

}
, i = 1,2.

The linear transformation y = x + hx̃ defines a bijective mapping of the ‘canonical
rectangles’

K̃0 := {
x̃ = (x̃1, x̃2) : |x̃j |< 1, j = 1,2

}

and

K̃i := {x̃ : 0 < x̃i < 1, |x̃3−i |< 1}, i = 1,2,

onto K0 and Ki , respectively. Further, we define

ãij (x̃) := aij (x + hx̃), ũ(x̃) := u(x + hx̃),

and so on. The value of ηij1 at a mesh-point x ∈Ωh
i can be expressed as

ηij1(x) = 1

h

[∫

K̃i

(
1− |x̃3−i |

)
ãij (x̃)

∂ũ

∂x̃j
dx̃

−
∫

K̃i

(
1− |x̃3−i |

)
ãij (x̃)dx̃ ×

∫

K̃i

(
1− |x̃3−i |

) ∂ũ
∂x̃j

dx̃

]
.

Hence we deduce that ηij1(x) is a bounded bilinear functional of the argument

(ãij , ũ) ∈Wλ
q

(
K̃i

)×W
μ

2q/(q−2)

(
K̃i

)
,

where λ ≥ 0, μ ≥ 1 and q > 2. Furthermore, ηij1 = 0 whenever ãij is a constant
function or ũ is a polynomial of degree 1. By applying the bilinear version of the
Bramble–Hilbert lemma (cf. Lemma 2.30 with m= 2), we deduce that

∣∣ηij1(x)
∣∣≤ C

h
|ãij |Wλ

q (K̃
i )
|ũ|

W
μ
2q/(q−2)(K̃

i )
, 0≤ λ≤ 1, 1≤ μ≤ 2.

Returning from the canonical variables (x̃1, x̃2) to the original variables (x1, x2) we
obtain

|ãij |Wλ
q (K̃

i )
= hλ−2/q |aij |Wλ

q (K
i)



208 2 Elliptic Boundary-Value Problems

and

|ũ|
W

μ
2q/(q−2)(K̃

i )
= hμ−(q−2)/q |u|Wμ

2q/(q−2)(K
i).

Therefore,
∣∣ηij1(x)

∣∣≤ Chλ+μ−2|aij |Wλ
q (K

i)|u|Wμ
2q/(q−2)(K

i), 0≤ λ≤ 1,1≤ μ≤ 2.

By summing through the mesh-points in Ωh
i and applying Hölder’s inequality

we then deduce, for 0≤ λ≤ 1 and 1≤ μ≤ 2, the bound

‖ηij1‖L2(Ω
h
i )
≤ Chλ+μ−1|aij |Wλ

q (Ω)|u|Wμ
2q/(q−2)(Ω). (2.172)

Let us choose λ = s − 1, μ = 1 and q = p. Thanks to the Sobolev embedding
theorem (cf. Theorem 1.34),

Ws−1+δ
p (Ω) ↪→Ws−1

p (Ω) and Ws
2 (Ω) ↪→W 1

2p/(p−2)(Ω), 1 < s ≤ 2.

Thus, (2.172) yields

‖ηij1‖L2(Ω
h
i )
≤ Chs−1‖aij‖Ws−1+δ

p (Ω)
‖u‖Ws

2 (Ω), 1 < s ≤ 2. (2.173)

Analogous bounds hold for ηij2, ηij4, η1 and η2. Now suppose that q > 2; then, the
following Sobolev embeddings hold:

W
λ+μ−1
2 (Ω) ↪→Wλ

q (Ω) for μ> 2− 2/q

and

W
λ+μ
2 (Ω) ↪→W

μ

2q/(q−2)(Ω) for λ > 2/q.

Setting λ+μ= s in (2.172) yields

‖ηij1‖L2(Ω
h
i )
≤ Chs−1‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Ω), 2 < s ≤ 3. (2.174)

The functional ηij4 is bounded in a similar fashion.
For s > 2, ηij2 is a bilinear functional of the argument

(aij , u) ∈Ws−1
2

(
Ki

)×W 1∞
(
Ki

)

and ηij2 = 0 whenever aij is a polynomial of degree 1 or if u is a constant func-
tion. By applying Lemma 2.65 and the embedding Ws

2 (Ω) ↪→W 1∞(Ω) we obtain a
bound on ηij2, which is of the form (2.174).

By a similar argument, ηij3(x) is a bounded bilinear functional of the argument

(aij , u) ∈ C
(
K

i)×Ws
2

(
Ki

)
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for s > 1 and it vanishes whenever u is a polynomial of degree 2. By noting the
embeddings

Ws−1+δ
p (Ω) ↪→C(Ω) for 1 < s ≤ 2

and

Ws−1
2 (Ω) ↪→ C(Ω) for s > 2,

we obtain bounds of the form (2.173) and (2.174) for ηij3.
Let 2 < q < 2/(3− s). When 2 < s ≤ 3, η3(x) is a bounded bilinear functional

of the argument

(a,u) ∈ Lq

(
K0)×Ws−1

2q/(q−2)

(
K0).

Moreover, η3 = 0 when u is a polynomial of degree 1. By noting the Bramble–
Hilbert lemma and the Sobolev embeddings

Ws−2
2 (Ω) ↪→ Lq(Ω) and Ws

2 (Ω) ↪→Ws−1
2q/(q−2)(Ω)

we obtain

‖η3‖L2(Ω
h) ≤ Chs−1‖a‖

Ws−2
2 (Ω)

‖u‖Ws
2 (Ω), 2 < s ≤ 3. (2.175)

When 2 < s ≤ 3, η4 is a bounded bilinear functional of

(a,u) ∈Ws−2
2

(
K0)×W 1∞

(
K0)

and η4 = 0 whenever a or u is a constant function. Using the same technique as
before, together with the embedding

Ws
2 (Ω) ↪→W 1∞(Ω),

we obtain a bound of the form (2.175) for η4.
Finally, let 2 < q < min{2 + ε,2/(2 − s)}. Then, for 1 < s ≤ 2, η0(x) is a

bounded bilinear functional of the argument

(a0, u) ∈ Lq

(
K0)×Ws−1

2q/(q−2)

(
K0)

and it vanishes when u is a constant function. By noting the embeddings

L2+ε(Ω) ↪→ Lq(Ω) and Ws
2 (Ω) ↪→Ws−1

2q/(q−2)(Ω)

we obtain

‖η0‖L2(Ω
h) ≤ Chs−1‖a0‖L2+ε(Ω)‖u‖Ws

2 (Ω), 1 < s ≤ 2. (2.176)

Finally, by combining (2.171) with (2.172)–(2.176) we deduce the desired bounds
on the global error. �



210 2 Elliptic Boundary-Value Problems

2.6.2 Convergence in the Discrete W 2
2 Norm

In this section we consider the error analysis of the scheme (2.167) in the discrete
W 2

2 norm (2.50).
From the error bound (2.168) in the W 1

2 (Ω
h) norm derived in the previous sec-

tion for the difference scheme (2.167) and the inverse inequality

|V |W 2
2 (Ω

h) ≤
√

6

h
|V |W 1

2 (Ω
h) ∀V ∈ Sh0 , (2.177)

we immediately deduce, with V = e, the following error bound in the W 2
2 (Ω

h) norm

‖u−U‖W 2
2 (Ω

h) ≤ Chs−2
(

max
i,j
‖aij‖Ws−1

2 (Ω)
+ ‖a‖

Ws−2
2 (Ω)

)
‖u‖Ws

2 (Ω)

for 2 < s ≤ 3. (2.178)

In order to derive an analogous error bound when 3 < s ≤ 4 it is necessary to
establish the discrete counterpart of the elliptic regularity result

‖v‖W 2
2 (Ω) ≤ C‖Lv‖L2(Ω) ∀v ∈W 2

2 (Ω)∩ W̊ 1
2 (Ω),

called the second fundamental inequality, following the terminology of Lady-
zhenskaya and Ural’tseva [118]. A result of this kind was proved for the finite dif-
ference operator Lh by D’yakonov [39]; it states that

|V |W 2
2 (Ω

h) ≤ C‖LhV ‖L2(Ω
h) ∀V ∈ Sh0 , (2.179)

where

C := C(a11, a12, a22, a)= C0
(
1+ ∥∥T 22

h a
∥∥
Lq(Ωh)

)(
1+max

i,j
‖aij‖q/(q−2)

W 1
q (Ω

h)

)
,

with 2 < q ≤∞; here ‖·‖Lq(Ωh) and ‖·‖W 1
q (Ω

h) are mesh-dependent norms defined,
for q <∞, by

‖V ‖Lq(Ωh) :=
(
h2

∑

x∈Ωh

∣∣V (x)
∣∣q
)1/q

,

‖V ‖W 1
q (Ω

h) :=
(

‖V ‖q
Lq(Ωh)

+
2∑

i=1

∥∥D+xi V
∥∥q
Lq(Ω

h
i )

)1/q

,

where ‖ · ‖Lq(Ω
h
i )

is defined in the same way as ‖ · ‖Lq(Ωh), except that the sum is

taken over mesh-points in Ωh
i instead of Ωh. When q =∞,

‖V ‖L∞(Ωh) = ‖V ‖∞,h := max
x∈Ωh

∣∣V (x)
∣∣,
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with an analogous definition of ‖V ‖W 1∞(Ωh).
By applying the Bramble–Hilbert lemma it is easily shown that

‖aij‖W 1
q (Ω

h) ≤ C1‖aij‖W 1
q (Ω) and

∥
∥T 2

1 T
2
2 a

∥
∥
Lq(Ωh)

≤ C2‖a‖Lq(Ω),

where C1 and C2 are independent of h. Thus we can assume in (2.179) that

C = C(a11, a12, a22, a)

:= C3(1+ ‖a‖Lq(Ω))
(

1+max
i,j
‖aij‖q/(q−2)

W 1
q (Ω)

)
, 2 < q ≤∞.

Following the terminology of Ladyzhenskaya and Ural’tseva again, we note that
the discrete version of the first fundamental inequality is

c0|V |2W 1
2 (Ω

h)
≤ (LhV,V )h ∀V ∈ Sh0 . (2.180)

For the difference operator Lh appearing in (2.167) the first fundamental inequality
is easily shown using summation by parts, in the same way as in the case of the
result stated in Lemma 2.65.

Now we are ready to consider the error analysis of the difference scheme (2.167)
in the norm W 2

2 (Ω
h) for u ∈Ws

2 (Ω) when 3 < s ≤ 4.
It follows from (2.170) and (2.177) that

‖e‖W 2
2 (Ω

h) ≤ C

(
2∑

i,j=1

∥∥D−xi ηij
∥∥
L2(Ω

h
i )
+ ‖η‖L2(Ω

h)

)

, (2.181)

where C is a positive constant, independent of h. By bounding D−xi ηij and η analo-
gously as in the previous section, we obtain the error bound (2.178) for 3 < s ≤ 4.
Thus we deduce that (2.178) holds for 2 < s ≤ 4 (see also Berikelashvili [10]).

2.6.3 Convergence in the Discrete L2 Norm

The derivation of an optimal error bound in the L2(Ω
h) norm is based on a tech-

nique that is usually referred to as a duality argument: it uses the adjoint of the
difference operator Lh and the second fundamental inequality for the adjoint of the
difference operator Lh. Since in our case the difference operator Lh is symmetric
and, more specifically, selfadjoint on the finite-dimensional space Sh0 of real-valued

mesh-functions defined on Ω
h

that vanish on Γ h, equipped with the inner prod-
uct of L2(Ω

h), the second fundamental inequality for the adjoint of Lh is, in fact,
identical to the second fundamental inequality for Lh, stated in (2.179).
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For the sake of simplicity, we shall restrict ourselves to the case when a(x)≡ 0;
the boundary-value problem (2.166) then becomes

−
2∑

i,j=1

∂i(aij ∂ju)= f in Ω, u= 0 on Γ = ∂Ω , (2.182)

and the corresponding finite difference scheme is

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]= T 22

h f in Ωh,

U = 0 on Γ h.

(2.183)

The error analysis of this scheme in the L2(Ω
h) norm is based on the observation

that the global error e := u−U is the solution of the difference scheme

Lhe=
2∑

i,j=1

D−xi ηij in Ωh, e= 0 on Γ h, (2.184)

where the ηij are the same as in (2.170). The right-hand side can be rewritten as
follows:

2∑

i,j=1

D−xi ηij =
2∑

i=1

(

Liiξii +Kiχi +
2∑

j=1

D−xi υij

)

, (2.185)

where

LiiV := −D−xi
[(
T +i T 2

3−iaii
)
D+xi V

]
, KiV :=D−xi

[(
T +i T 2

3−iai,3−i
)
D+x3−i V

]
,

and

ξij := u− 1

2

(
T −3−iT

+
3−j u+ T +3−iT

−
3−j u

)
,

χi :=  i − 1

2

(
ξi,3−i + ξ

+i,−(3−i)
i,3−i

)
,

 i := 1

4

[(
T −3−iT

+
i u− T +3−iT

−
i u

)− (
T −3−iT

+
i u− T +3−iT

−
i u

)+i,−(3−i)]
,

υij := T +i T 2
3−i (aij ∂ju)−

(
T +i T 2

3−iaij
)(
T +i T 2

3−i∂j u
)

+ 1

2

[(
T +i T 2

3−iaij
)(
D+xj u+D−xj u

+i)− aijD
+
xj
u− a+iij D

−
xj
u+i

]
.

Here we have assumed that the solution u ∈Ws
2 (Ω) ∩ W̊ 1

2 (Ω), 0≤ s ≤ 2, has been
extended, preserving its Sobolev class, to the square (−h0,1+ h0)

2 where h0 is a
fixed positive constant such that h < h0.
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Lemma 2.66 Suppose that aij ∈W 1
q (Ω), q > 2. The solution of the finite difference

scheme (2.184) then satisfies the bound

‖e‖L2(Ω
h) ≤ C

2∑

i=1

(

‖ξii‖L2(Ω
h) + ‖ξi,3−i‖L2(Ω

h
)

+ ‖ i‖L2(Ω
h
i−1,2−i )

+
2∑

j=1

‖υij‖L2(Ω
h
i )

)

, (2.186)

where C is a positive constant, independent of h.

Proof The proof is based on a duality argument. Let us consider the auxiliary func-
tion W , defined as the solution of the finite difference scheme

LhW = e in Ωh, W = 0 on Γ h.

We note in passing that in general one would have written (Lh)
∗, the adjoint of Lh,

on the left-hand side instead of Lh; however, in our case Lh is selfadjoint. Thus,
crucially, (e,LhW)h = (Lhe,W)h. It then follows from (2.184) and (2.185) that

‖e‖2
L2(Ω

h)
= (e,LhW)h = (Lhe,W)h

=
2∑

i=1

[

(Liiξii ,W)h + (Kiχi,W)h +
2∑

j=1

(
D−xi υij ,W

)
h

]

=
2∑

i=1

[

(ξii ,LiiW)h +
(
χi,K∗i W

)
i−1,2−i,h −

2∑

j=1

(
υij ,D

+
xi
W

)
i,h

]

≤
2∑

i=1

(

‖ξii‖L2(Ω
h)‖LiiW‖L2(Ω

h) + ‖χi‖L2(Ω
h
i−1,2−i )

∥∥K∗i W
∥∥
L2(Ω

h
i−1,2−i )

+
2∑

j=1

‖υij‖L2(Ω
h
i )

∥∥D+xiW
∥∥
L2(Ω

h
i )

)

,

where

K∗i W =D−x3−i
[(
T +i T 2

3−iai,3−i
)
D+xiW

]
.

The second fundamental inequality (2.179) implies that

‖LiiW‖L2(Ω
h),

∥
∥K∗i W

∥
∥
L2(Ω

h
i−1,2−i )

,
∥
∥D+xiW

∥
∥
L2(Ω

h
i )

are all bounded by

C‖LhW‖L2(Ω
h) = C‖e‖L2(Ω

h),
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and hence, after substitution of the defining expression for χi , we deduce the in-
equality (2.186). �

We observe that for the second fundamental inequality to hold it is necessary that
aij ∈W 1

q (Ω), q > 2; thus we can only expect a sharp error bound when s = 2. Let
us assume that this is indeed the case, and we proceed to estimate the terms that
appear on the right-hand side of the inequality (2.186).

We begin by noting that ξij and  i are bounded linear functionals on W 2
2 (Ω) that

vanish on all polynomials of degree 1. By the Bramble–Hilbert lemma,

‖ξii‖L2(Ω
h), ‖ξi,3−i‖L2(Ω

h
)
, ‖ i‖L2(Ω

h
i−1,2−i )

≤ Ch2‖u‖W 2
2 (Ω). (2.187)

Arguing in the same way as in the previous section, υij is decomposed into three
terms that are bounded by means of the Bramble–Hilbert lemma to obtain:

‖υij‖L2(Ω
h
i )
≤ Ch2(‖aij‖W 1∞(Ω)‖u‖W 2

2 (Ω) + ‖aij‖W 2∞(Ω)‖u‖W 1
2 (Ω)

)
. (2.188)

From (2.186)–(2.188) we deduce the following error bound for the difference
scheme (2.183):

‖u−U‖L2(Ω
h) ≤ Ch2 max

i,j
‖aij‖W 2∞(Ω)‖u‖W 2

2 (Ω). (2.189)

While the power of h in the error bound (2.189) is optimal in the sense that it
is compatible with the smoothness of u, the bound is not entirely satisfactory as
the coefficients aij are required to belong to W 2∞(Ω), which, in the light of the hy-
potheses (a) and (b) from the beginning of Sect. 2.6.1, can be seen as an excessively
strong assumption on the regularity of the coefficients aij . The requirement for the
additional smoothness of the coefficients aij can be attributed to our crude bound
on D−xi υij in (2.186).

An improved estimate can be obtained by considering an alternative scheme
where the coefficients aij have been mollified:

L̂hU :=
2∑

i,j=1

LijU = T 22
h f in Ωh,

U = 0 on Γ h,

(2.190)

where

LijU := −1

2
D−xi

[(
T +i T 2

3−iaij
)
D+xj

(
U +U+i,−j

)]
.

For this scheme the global error e := u−U satisfies

L̂he=
2∑

i=1

(

Liiξii +Kiχi +
2∑

j=1

D−xi ηij1

)

in Ωh, z= 0 on Γ h,
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where ξii , χi and ηij1 are as before. Assuming that aij ∈W 1
q (Ω), q > 2, and pro-

ceeding in the same manner as in the case of our previous scheme where the coeffi-
cients aij were not mollified, we obtain the bound

‖e‖L2(Ω
h) ≤ C

2∑

i=1

(

‖ξii‖L2(Ω
h) + ‖ξi,3−i‖L2(Ω

h
)
+ ‖ i‖L2(Ω

h
i−1,2−i )

+
2∑

j=1

‖ηij1‖L2(Ω
h
i )

)

.

Using the estimates (2.187) and (2.172) derived earlier and slightly strengthening
the smoothness requirements on the aij by demanding that aij ∈W 1∞(Ω), we arrive
at the error bound

‖u−U‖L2(Ω
h) ≤ Ch2 max

i,j
‖aij‖W 1∞(Ω)‖u‖W 2

2 (Ω), (2.191)

which is now almost compatible with the smoothness of the data in the sense that
we assumed aij ∈ W 1∞(Ω) instead of the minimal smoothness requirement aij ∈
W 1

q (Ω), q > 2.
Let us now discuss the case when u belongs to the fractional-order Sobolev space

Ws
2 (Ω), 1 < s ≤ 2. Allowing some incompatibility between the smoothness of the

coefficients and the corresponding solution by assuming instead of our initial hy-
pothesis

u ∈Ws
2 (Ω), aij ∈W |s−1|+δ

p (Ω), 1 < s ≤ 2,

that

u ∈Ws
2 (Ω), 1 < s ≤ 2; aij ∈W 1∞(Ω)

and arguing as above, instead of (2.191) we arrive at the error bound

‖u−U‖L2(Ω
h) ≤ Chs max

i,j
‖aij‖W 1∞(Ω)‖u‖Ws

2 (Ω),1 < s ≤ 2.

This error bound is again incompatible with the smoothness of the data, except in
the case of s = 2 when it coincides with (2.191).

2.6.4 Convergence in Discrete Fractional-Order Norms

By noting our error bounds in integer-order discrete Sobolev norms and the inter-
polation inequalities (2.54) we can obtain new bounds in fractional-order discrete
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Sobolev norms. Thus, for example, for the scheme (2.167) from (2.168) and (2.178),
we have that

‖u−U‖Wr
2 (Ω

h) ≤ Chs−r
(

max
i,j
‖aij‖Ws−1

2 (Ω)
+ ‖a‖

Ws−2
2 (Ω)

)
‖u‖Ws

2 (Ω),

for 1≤ r ≤ 2 < s ≤ 3.

From (2.169), (2.177) and (2.54) we deduce that

‖u−U‖Wr
2 (Ω

h) ≤ Chs−r
(

max
i,j
‖aij‖Ws−1+δ

p (Ω)
+max

i
‖ai‖Ws−1+δ

p (Ω)

+ ‖a0‖L2+ε(Ω)

)
‖u‖Ws

2 (Ω), for 1≤ r < s ≤ 2.

Similarly, from (2.191), (2.54), the inverse inequality

|V |W 1
2 (Ω

h) ≤
2
√

2

h
‖V ‖L2(Ω

h) ∀V ∈ Sh0
with V = e and (2.177) we obtain the following error bound for the difference
scheme (2.190):

‖u−U‖Wr
2 (Ω

h) ≤ Ch2−r max
i,j
‖aij‖W 1∞(Ω)‖u‖W 2

2 (Ω), 0≤ r ≤ 2.

In the next section we shall further sharpen these error bounds in the special
case of an equation where the off-diagonal entries in the coefficient matrix (aij ) are
identically zero.

2.6.5 Convergence in the Discrete L2 Norm: Separated Variables

In Sect. 2.6.3 we saw that the derivation of optimal error bounds in the L2(Ω
h)

norm under minimal smoothness requirements on the coefficients aij is associated
with technical difficulties. The error bounds that we obtained are satisfactory in this
respect only when s = 2, while for s < 2 they are incompatible with the natural
minimal regularity requirements on the coefficients. These results can be improved
in the case of a differential equation that separates the two variables; that is, when

−
2∑

i=1

∂i(ai∂iu)= f in Ω ,

u= 0 on Γ = ∂Ω ,

(2.192)

where

ai = ai(xi), i = 1,2,
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are such that there exist positive constants c0 and c1 with

0 < c0 ≤ ai(xi)≤ c1 for all xi ∈ (0,1), i = 1,2.

In order to ensure that the ai belong to the function space of multipliers
M(Ws−1

2 (Ω)), we shall suppose that

ai ∈W |s−1|+δ
p (0,1),

where the real numbers s, p and δ are assumed to satisfy the following conditions:

p = 2, δ = 0 when |s − 1|> 1/2,

p > 2, δ > 0 when s = 1/2 or s = 3/2,

p ≥ 1/|s − 1|, δ > 0 when 0 < |s − 1|< 1/2,

p =∞, δ = 0 when s = 1.

(2.193)

Let us introduce the following univariate mollifiers:

(Sif )(x) := 1

h

∫ xi+h

xi−h
κi(t)f

(
x + (t − xi)ei

)
dt, i = 1,2,

where

κi(t) :=
{∫ t

xi−h
dτ

ai (τ )

/ ∫ xi
xi−h

dτ
ai (τ )

, t ∈ (xi − h,xi),
∫ xi+h
t

dτ
ai (τ )

/ ∫ xi+h
xi

dτ
ai (τ )

, t ∈ (xi, xi + h).

These operators satisfy the identity

Si
(
∂i(ai∂iu)

)=D−xi
(
âiD

+
xi
u
)
,

where âi is the harmonic average of ai , defined by

âi (xi) :=
(

1

h

∫ xi+h

xi

dτ

ai(τ )

)−1

, i = 1,2.

In particular when ai(xi)≡ 1, we have that

Si = T 2
i = T +i T −i .

We approximate the boundary-value problem (2.192) by the following finite dif-
ference scheme:

−
2∑

i=1

b3−iD−xi
(
âiD

+
xi
U
) = S1S2f in Ωh, (2.194)

U = 0 on Γ h, (2.195)
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where bi := Si(1), i = 1,2. We define the global error by

e := u−U, where u :=
{
T 11
h u, if 0 < s ≤ 1,
u, if 1 < s ≤ 2.

Then, e is easily seen to be a solution of the following finite difference scheme on

the mesh Ω
h
:

−
2∑

i=1

b3−iD−xi
(
âiD

+
xi
e
) =

2∑

i=1

D−xi
(
âiD

+
xi
ψi

)
in Ωh,

e = 0 on Γ h,

where ψi = S3−i (u)− b3−iu, i = 1,2. It is easy to show by a duality argument (cf.
the proof of Lemma 2.66) that

‖e‖L2(Ω
h) ≤ C

(‖ψ1‖L2(Ω
h) + ‖ψ2‖L2(Ω

h)

)
. (2.196)

The task of deriving an error bound for the difference scheme (2.194) has thus been
reduced to estimating the expression on the right-hand side of (2.196). We shall
discuss the cases 1/2 < s ≤ 1 and 1 < s ≤ 2 separately.

First suppose that 1/2 < s ≤ 1. Clearly, the value of ψi at a node x ∈ Ωh is a
bounded linear functional of u ∈Ws

2 (K
0), s > 1/2, where

K0 =K0(x)= {
y = (y1, y2) : |yj − xj |< h, j = 1,2

}
.

Moreover, ψi = 0 when u is a constant function. By applying the Bramble–Hilbert
lemma we deduce that

|ψi | ≤ Chs−1|u|Ws
2 (K

0), 1/2 < s ≤ 1.

Summing over the nodes of the mesh Ωh we obtain, for i = 1,2, that

‖ψi‖L2(Ω
h) ≤ Chs |u|Ws

2 (Ω), 1/2 < s ≤ 1. (2.197)

Now let us consider the case 1 < s ≤ 2. The key difficulty in obtaining an error
bound is that ψ3−i represents a nonlinear functional of ai , i = 1,2; nevertheless
ψ3−i , i = 1,2, may be conveniently decomposed and, thereby, the nonlinear terms
can be directly estimated. Let us write

ψ3−i = ψ3−i,1 +ψ3−i,2 +ψ3−i,3,

where

ψ3−i,1 :=
∫ 1

0

[
u(x + hτei )− 2u(x)+ u(x − hτei )

](∫ xi−hτ

xi−h
dσ

ai(σ )

)
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×
(∫ xi

xi−h
dσ

ai(σ )

)−1

dτ,

ψ3−i,2 :=
∫ 1

0

[
u(x + hτei )− u(x)

](∫ xi+h

xi

dσ

ai(σ )

∫ xi

xi−h
dσ

ai(σ )

)−1

×
(∫ xi+h

xi+hτ
dσ

ai(σ )

)
h−1

∫ xi

xi−h

∫ xi+h

xi

ai(t)− ai(t
′)

ai(t)ai(t ′)
dt dt ′ dτ,

ψ3−i,3 :=
∫ 1

0

[
u(x + hτei )− u(x)

](∫ xi

xi−h
dσ

ai(σ )

)−1

× h−1(1− τ)−1
∫ xi−hτ

xi−h

∫ xi+h

xi+hτ
ai(t)− ai(t

′)
ai(t)ai(t ′)

dt dt ′ dτ.

The value of ψ3−i,1 at x ∈Ωh is a bounded linear functional of u ∈Ws
2 (K

0), s > 1,
which vanishes whenever u is a polynomial of degree 1. Using the Bramble–Hilbert
lemma we obtain

‖ψ3−i,1‖L2(Ω
h) ≤ Chs |u|Ws

2 (Ω), 1 < s ≤ 2. (2.198)

For 3/2 < s ≤ 2,ψ3−i,2 is a bounded linear functional of u ∈Ws
2 (K

0):

|ψ3−i,2| ≤ Chλ−1/2(h−1‖u‖L2(K
0) + |u|W 1

2 (K
0)

+ hs−1|u|Ws
2 (K

0)

)|ai |Wλ
2 (I

0), λ > 0,

where I 0 = I 0(xi) := (xi − h,xi + h). Moreover, ψ3−i,2 = 0 when u is a constant
function, and therefore the term h−1‖u‖L2(K

0) on the right-hand side can be elim-
inated by applying the Bramble–Hilbert lemma. Summing over the nodes in the
mesh Ωh yields

‖ψ3−i,2‖L2(Ω
h) ≤ Chλ+1/2

(
max
xi
|u|W 1

2 (Ωh,i )
+ hs−1|u|Ws

2 (Ω)

)
|ai |Wλ

2 (0,1)
,

where

Ωh,i =Ωh,i(x) :=
{
y ∈R2 : xi − h < yi < xi + h, 0 < y3−i < 1

}
.

Choosing λ= s − 1 and invoking the boundary-layer estimate (see Oganesyan and
Rukhovets [148], Chap. I, §8)

‖v‖L2(0,ε) ≤ CF(ε)‖v‖Ws
2 (0,1)

, 0 < ε < 1, 0≤ s ≤ 1, (2.199)

where

F(ε) :=
⎧
⎨

⎩

εs 0≤ s < 1/2,
ε1/2| log ε| s = 1/2,
ε1/2 1/2 < s ≤ 1,
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which implies that

|u|W 1
2 (Ωh,i )

≤ Ch1/2‖u‖Ws
2 (Ω), s > 3/2,

we thus obtain the bound

‖ψ3−i,2‖L2(Ω
h) ≤ Chs‖ai‖Ws−1

2 (0,1)‖u‖Ws
2 (Ω), 3/2 < s ≤ 2. (2.200)

Similarly,

‖ψ3−i,2‖L2(Ω
h) ≤ Chs‖ai‖Ws−1+δ

p (0,1)‖u‖Ws
2 (Ω), 1 < s ≤ 3/2, (2.201)

with p as in (2.193). An analogous bound holds for ψ3−i,3. Combining (2.196) with
(2.197), (2.198), (2.200) and (2.201) we thus obtain the following result.

Theorem 2.67 Suppose that u ∈Ws
2 (Ω) and ai ∈W |s−1|

p (Ω), i = 1,2, with 1/2 <
s ≤ 2 and p as in (2.193). Then, the finite difference scheme (2.194) satisfies the
error bound

‖u−U‖L2(Ω
h) ≤ Chs max

i
‖ai‖W |s−1|+δ

p (0,1)
‖u‖Ws

2 (Ω), (2.202)

where C is a positive constant, independent of h.

Unlike our earlier optimal error bounds in the L2(Ω
h) norm, (2.202) is now also

compatible with the smoothness of the coefficients.
We note that for 0 < s ≤ 1/2 the function S1S2f , with f ∈Ws−2

2 (Ω), is not nec-
essarily continuous on Ω ; in this case the right-hand side of the difference scheme
(2.194) is not defined at the mesh-points. A more fundamental difficulty is that
u ∈Ws

2 (Ω) does not have a trace on Γ = ∂Ω when s ≤ 1/2, and it makes no sense,
therefore, to demand that it satisfies a homogeneous Dirichlet boundary condition
on Γ .

2.7 Fourth-Order Elliptic Equations

This section is devoted to boundary-value problems for fourth-order elliptic equa-
tions with variable coefficients of the form

Lu := ∂2
1M1(u)+ 2∂1∂2M3(u)+ ∂2

2M2(u)= f (x), x ∈Ω, (2.203)

where Ω = (0,1)2 and

M1(u) := a1∂
2
1u+ a0∂

2
2u,

M2(u) := a0∂
2
1u+ a2∂

2
2u,
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M3(u) := a3∂1∂2u.

We shall assume that

ai ≥ c0 > 0, i = 1,2,3, a1a2 − a2
0 ≥ c1 > 0, x ∈Ω,

u ∈Ws
2 (Ω), f ∈Ws−4

2 (Ω), 2 < s ≤ 4.
(2.204)

In order for (2.204) to hold it is necessary that the coefficients ai belong to the
multiplier space M(Ws−2

2 (Ω)). According to the results in Sect. 1.8, the following
conditions are sufficient for that to be the case:

ai ∈Ws−2+ε
p (Ω), i = 0,1,2,3, (2.205)

where

p = 2, ε = 0 when 3 < s ≤ 4,

p > 2, ε = 0 when s = 3,

p ≥ 2/(s − 2), ε > 0 when 2 < s < 3.

We begin by considering the partial differential equation (2.203) subject to the
boundary conditions

u= 0 on Γ = ∂Ω;
∂2
i u= 0 on Γi0 ∪ Γi1, i = 1,2,

(2.206)

where

Γik := {x ∈ Γ : xi = k,0 < x3−i < 1}, i, k = 0,1.

By adopting the same notation as in Sects. 2.2.4 and 2.7 we approximate the
boundary-value problem (2.203), (2.206) by the finite difference scheme

LhU = T 22
h f, on Ωh, (2.207)

U = 0, on Γ h,

D+xiD
−
xi
U = 0, on Γ h

i0 ∪ Γ h
i1, i = 1,2,

(2.208)

where Γ h
ik = Γik ∩ Γ h,

LhU :=D+x1
D−x1

m1(U)+ 2D−x1
D−x2

m3(U)+D+x2
D−x2

m2(U),

and

m1(U) := a1D
+
x1
D−x1

U + a0D
+
x2
D−x2

U,

m2(U) := a0D
+
x1
D−x1

U + a2D
+
x2
D−x2

U,
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m3(U) := â3D
+
x1
D+x2

U,

with

â3(x) := a3

(
x1 + 1

2
h,x2 + 1

2
h

)
.

Let us note that the difference scheme also involves mesh-points in hZ2 that are
contained in [−h,1+ h]2. Thus we shall suppose that the solution u and the coeffi-
cients ai have been extended onto the larger square (−h0,1+ h0)

2 preserving their
Sobolev class; here h0 is a positive constant, h0 > h.

Next we develop the error analysis of this finite difference scheme. The global
error e := u−U is easily seen to satisfy the following difference scheme:

Lhe=D+x1
D−x1

ϕ1 + 2D−x1
D−x2

ϕ3 +D+x2
D−x2

ϕ2, x ∈Ωh, (2.209)

e= 0, x ∈ Γ h,

D+xiD
−
xi
e=D+xiD

−
xi
u, x ∈ Γ h

i0 ∪ Γ h
i1, i = 1,2,

(2.210)

where

ϕi :=mi(u)− T 2
3−iMi(u), i = 1,2; ϕ3 :=m3(u)− T +1 T +2 M3(u).

Thus (2.206), (2.208) and (2.210) imply that

mi(e)= ϕi, x ∈ Γ h
i0 ∪ Γ h

i1, i = 1,2.

By taking the inner product of (2.209) with e, performing summations by parts and
applying the Cauchy–Schwarz inequality we get

‖e‖2
W 2

2 (Ω
h)
≤ C

(‖ϕ1‖2
L2(Ω

h)
+ ‖ϕ2‖2

L2(Ω
h)
+ ‖ϕ3‖2

L2(Ω
h
00)

)
. (2.211)

Theorem 2.68 Assuming that the data and the corresponding solution of the
boundary-value problem (2.203), (2.206) obey the conditions (2.204) and (2.205),
the difference scheme (2.207), (2.208) satisfies the error bound

‖u−U‖W 2
2 (Ω

h) ≤ Chs−2 max
i
‖ai‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 5/2 < s ≤ 4. (2.212)

Proof In order to prove the error bound (2.212) it suffices to bound the terms on the
right-hand side of the inequality (2.211). Let us begin by representing ϕ1 as the sum

ϕ1 =
8∑

j=1

ϕ1,j ,
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where

ϕ1,k := a2−k
(
D+xkD

−
xk
u− T 2

1 T
2
2 ∂

2
k u

)
,

ϕ1,k+2 :=
(
a2−k − T 2

1 T
2
2 a2−k

)(
T 2

1 T
2
2 ∂

2
k u

)
,

ϕ1,k+4 :=
(
T 2

1 T
2
2 a2−k

)(
T 2

1 T
2
2 ∂

2
k u

)− T 2
1 T

2
2

(
a2−k∂2

k u
)
,

ϕ1,k+6 := T 2
1 T

2
2

(
a2−k∂2

k u
)− T 2

2

(
a2−k∂2

k u
)
, k = 1,2,

with an analogous representation of ϕ2. Further, let

ϕ3 = ϕ3,1 + ϕ3,2,

where

ϕ3,1 :=
(
â3 − T +1 T +2 a3

)
D+x1

D+x2
u,

ϕ3,2 :=
(
T +1 T +2 a3

)
D+x1

D+x2
u− T +1 T +2 (a3∂1∂2u).

When s ≥ 2, the value of ϕ1,1 at a mesh-point x ∈Ωh is a bounded linear functional
of u ∈Ws

2 (K
0):

|ϕ1,1| ≤ C(h)‖a1‖C(Ω)‖u‖Ws
2 (K

0).

Moreover, ϕ1,1 = 0 when u is a polynomial of degree 3. By the Bramble–Hilbert
lemma,

|ϕ1,1| ≤ Chs−3‖a1‖C(Ω)|u|Ws
2 (K

0), 2≤ s ≤ 4.

By noting the Sobolev embedding Ws−2+ε
p (K0) ↪→ C(K0), s > 2, and summing

over the mesh-points in Ωh we thus obtain

‖ϕ1,1‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
|u|Ws

2 (Ω), 2≤ s ≤ 4. (2.213)

The term ϕ1,2 is bounded in the same way. Next ϕ1,3(x), x ∈ Ωh, is a bounded
bilinear functional of (a1, u) ∈Wλ

p(K
0)×W 2

q (K
0), with λp > 2;q =∞ when p =

2; and q = 2p/(p − 2) when p > 2. Moreover, ϕ1,3 = 0 when either a1 or u is a
polynomial of degree 1. From the bilinear version of the Bramble–Hilbert lemma
(cf. Lemma 2.30 with m= 2) we deduce that

|ϕ1,3| ≤ Chλ−1‖a1‖Wλ
p(K

0)|u|W 2
q (K

0), 2/p < λ≤ 2,

and thereby

‖ϕ1,3‖L2(Ω
h) ≤ Chλ‖a1‖Wλ

p(Ω)‖u‖W 2
q (Ω).
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By choosing λ= s − 2+ ε and noting the Sobolev embeddings

Ws
2 (Ω) ↪→W 2∞(Ω), s > 3,

and

Ws
2 (Ω) ↪→W 2

2p/(p−2)(Ω), 2 < s ≤ 3,

we obtain

‖ϕ1,3‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 2 < s ≤ 4. (2.214)

The terms ϕ1,4 and ϕ3,1 are bounded in the same way.
For λ≥ 0, μ≥ 2 and q > 2 the value of ϕ1,5(x) at x ∈Ωh is a bounded bilinear

functional of (a1, u) ∈Wλ
q (K

0)×W
μ

2q/(q−2)(K
0). Furthermore, ϕ1,5 = 0 when a1

is a constant function or when u is a polynomial of degree 2. By the bilinear version
of the Bramble–Hilbert lemma,

‖ϕ1,5‖L2(Ω
h) ≤ Chλ+μ−2‖a1‖Wλ

q (Ω)‖u‖Wμ
2q/(q−2)(Ω),

where 0≤ λ≤ 1 and 2≤ μ≤ 3. Now let λ+ μ= s. When λ+ μ > 3, there exists
a q = q(λ,μ) such that λ≥ 2/q ≥ 3−μ; then,

Ws−2+ε
p (Ω)=W

λ+μ−2+ε
2 (Ω) ↪→Wλ

q (Ω)

and

Ws
2 (Ω)=W

λ+μ
2 (Ω) ↪→W

μ

2q/(q−2)(Ω).

Analogously, when 2 < λ+μ≤ 3, there exists a real number q such that λ≥ 2/q ≥
2/p− (μ− 2). In this case,

Ws−2+ε
p (Ω)=Wλ+μ−2+ε

p (Ω) ↪→Wλ
q (Ω)

and

Ws
2 (Ω)=W

λ+μ
2 (Ω) ↪→W

μ

2q/(q−2)(Ω).

It follows from these embeddings that

‖ϕ1,5‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 2 < s ≤ 4. (2.215)

The terms ϕ1,6 and ϕ3,2 are bounded in the same way.
When λ > 1/2, the value of ϕ1,7(x) at x ∈Ωh is a bounded linear functional of

a1∂
2
1u ∈Wλ

2 (K
0), which vanishes on all polynomials of degree 1. By the Bramble–

Hilbert lemma, we have that

‖ϕ1,7‖L2(Ω
h) ≤ Chλ|a1∂

2
1u|Wλ

2 (Ω), 1/2 < λ≤ 2.
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By choosing λ= s − 2, the inequality
∣∣a1∂

2
1u

∣∣
Wλ

2 (Ω)
≤ C‖a1‖Wλ+ε

p (Ω)

∥∥∂2
1u

∥∥
Wλ

2 (Ω)

implies that

‖ϕ1,7‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 5/2 < s ≤ 4. (2.216)

The term ϕ1,8 is bounded in the same way. Finally (2.213)–(2.216) and (2.211) yield
the desired error bound (2.212). �

We note that for 2 < s ≤ 5/2 the function T 22
h f is not necessarily continuous on

Ω and therefore the right-hand side in the difference equation (2.207) is not defined
for this range of values of the Sobolev index s. In fact, for s ≤ 5/2, the second-
normal derivative of u ∈Ws

2 (Ω) does not have a trace on Γi0 ∪ Γi1 and therefore
the boundary-value problem (2.203)–(2.206) is not meaningful as stated for this
range of s.

Now let us consider the partial differential equation (2.203) subject to the homo-
geneous Dirichlet boundary conditions

u= 0 on Γ ,

∂iu= 0 on Γi0 ∪ Γi1, i = 1,2.
(2.217)

With the notational conventions from Sects. 2.2.4 and 2.7 equation (2.203) is again
approximated by (2.207), and the boundary conditions (2.217) are discretized as
follows:

U = 0 on Γ h,

D0
xi
U = 0 on Γ h

i0 ∪ Γ h
i1, i = 1,2.

(2.218)

The error e := u−U satisfies (2.209) and the boundary conditions

e= 0 on Γ h,

D0
xi
e=D0

xi
u on Γ h

i0 ∪ Γ h
i1, i = 1,2.

(2.219)

Defining ζi = ζi(x) by

ζi :=
(
D0
xi
u− ∂iu

)
/h, i = 1,2,

the derivative boundary condition in (2.219) can be rewritten as

D0
xi
e= hζi, x ∈ Γ h

i0 ∪ Γ h
i1, i = 1,2.

Theorem 2.69 The following bound holds on the global error e := u−U between
the analytical solution u and its finite difference approximation U :
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‖u−U‖W 2
2 (Ω

h) ≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|

×max
i
‖ai‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 5/2 < s < 4. (2.220)

Proof We begin by noting that

‖e‖2
W 2

2 (Ω
h)
≤ C

(

‖ϕ1‖2
L2(Ω

h
1∪Γ h

11)
+ ‖ϕ2‖2

L2(Ω
h
2∪Γ h

21)
+ ‖ϕ3‖2

L2(Ω
h
00)

+
2∑

i=1

h2
∑

x∈Γ h
i0∪Γ h

i1

ζ 2
i (x)

)

. (2.221)

The first three terms on the right-hand side of (2.221) are bounded in the same
way as in the case of the boundary-value problem (2.203), (2.204) considered ear-
lier. The only new ingredient in the analysis is the estimation of the last term in
(2.221), which we discuss below.

When s > 2, ζi represents a bounded linear functional of u ∈ Ws
2 (K

0), which
vanishes on all polynomials of degree 2. By applying the Bramble–Hilbert lemma
we obtain

(
h2

∑

x∈Γ h
i0

ζ 2
i (x)

)1/2

≤ Chs−2|u|Ws
2 (Ωi0), 2 < s ≤ 3, (2.222)

where

Ωi0 =Ωhi(0) := {x : −h < xi < h, 0 < x3−i < 1}.
By noting the boundary-layer estimate (2.199), we deduce from (2.222) that

(
h2

∑

x∈Γ h
i0

ζ 2
i

)1/2

≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|‖u‖Ws
2 (Ω), 2 < s ≤ 4.

(2.223)

For x ∈ Γ h
i1 the terms ζi , i = 1,2, are bounded analogously. From (2.221), (2.223)

and our earlier bounds on ϕ1, ϕ2 and ϕ3 we obtain the desired error bound (2.220)
for the difference scheme (2.207), (2.218).

For s < 7/2 the solution of (2.203), (2.217) has an even extension (i.e. an exten-
sion as an even function) across Γ that preserves the Sobolev class Ws

2 . With such
an even extension of u, ζi = 0 on Γ h

i0∪Γ h
i1, and (2.220) is then a direct consequence

of (2.207)–(2.216) and (2.221). �
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Finally, we consider the partial differential equation (2.203) subject to the natural
boundary conditions

Mi(u)= 0 and ∂iMi(u)+ 2∂3−iM3(u)= 0 on Γi0 ∪ Γi1, i = 1,2;

M3(u)= 0 on Γ∗ =
{
(0,0), (0,1), (1,0), (1,1)

}
.

(2.224)

The solution of problem (2.203), (2.224) is unique, up to the addition of a polyno-
mial of degree 1. In order to ensure that we have a unique solution, we shall assume
that, in addition to (2.224), the values of u at three vertices of Ω have been fixed;
that is,

u(0,0)= c00, u(0,1)= c01, u(1,0)= c10. (2.225)

With the notational conventions from Sects. 2.2.4 and 2.7, the conditions (2.224),
(2.225) are approximated by

mi(U)= 0, D0
xi
mi(U)+D−x3−i

[
m3(U)+m3(U)

−i]= 0,

on Γ
h

i0 ∪ Γ h

i1, i = 1,2; (2.226)

m3(U)+m3(U)
−1 +m3(U)

−2 +m3(U)
−1,−2 = 0 onΓ∗;

U(0,0)= c00, U(0,1)= c01, U(1,0)= c10,
(2.227)

where Γ
h

ik := Γ ik ∩ Γ h. Let us observe that the difference scheme also involves
points exterior to Ω that are at a distance ≤ 2h from Γ ; therefore (2.203), (2.226),
(2.227) has fewer equations than unknowns. In order to account for the missing
equations, we also discretize the partial differential equation at the boundary mesh-
points. Let us introduce the asymmetric mollifiers

T 2±
i f := 2

∫ 1

0
(1− t)f (x ± thei )dt, i = 1,2,

and the additional equations

LhU =

⎧
⎪⎪⎨

⎪⎪⎩

T 2+
i T 2

3−if for x ∈ Γ h
i0

T 2−
i T 2

3−if for x ∈ Γ h
i1,

T 2+
1 T 2+

2 f for x = (0,0),
and analogously for x = (0,1), (1,0), (1,1).

(2.228)

Theorem 2.70 The difference scheme (2.203), (2.226), (2.228) satisfies the error
bound

|[u−U ]|W 2
2 (Ω

h) ≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|

×max
i
‖ai‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 3 < s ≤ 4,

where C is a positive constant, independent of h.
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Proof The global error e := u−U satisfies the inequality

|[e]|2
W 2

2 (Ω
h)
≤ C

(|[ϕ1]|2L2(Ω
h)
+ |[ϕ2]|2L2(Ω

h)
+ ‖ϕ3‖2

L2(Ω
h
00)

+ |[φ1]|2L2(Ω
h)
+ |[φ2]|2L2(Ω

h)

)
, (2.229)

where, for i = 1,2,

φi :=

⎧
⎪⎨

⎪⎩

T 2
3−iMi(u)− T 2+

3−iMi(u) on Γ
h

i0,

T 2
3−iMi(u)− T 2−

3−iMi(u) on Γ
h

i1,
0 at the remaining mesh-points.

The terms ϕ1, ϕ2 and ϕ3 are estimated in the same way as before. Finally, φi is a
bounded linear functional of Mi(u) ∈Wλ

2 (Ω),λ > 1/2, which vanishes on all con-
stant functions. Using the Bramble–Hilbert lemma and the boundary-layer estimate
(2.199) we obtain

|[φi]|L2(Ω
h) ≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|

×max
j
‖aj‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 3 < s ≤ 4. (2.230)

The desired error bound follows from (2.229), (2.230) and our earlier bounds on the
terms ϕ1, ϕ2 and ϕ3. �

2.8 An Elliptic Interface Problem

The technique of convergence analysis introduced in earlier sections of this chapter
can be extended to finite difference schemes for more general boundary-value prob-
lems. As an example, we consider here a model partial differential equation with a
singular coefficient. Problems of the kind discussed here are usually referred to as
interface problems or transmission problems. For further details we refer the reader
to Jovanović and Vulkov [101].

Let Ω = (0,1)2 and Γ = ∂Ω . A typical point in Ω will be denoted by x =
(x1, x2). Let further Σ be the intersection of the line segment x2 = ξ , 0 < ξ < 1,
with Ω . We consider the Dirichlet boundary-value problem

Lu+ k(x)δΣ(x)u= f (x) in Ω, u= 0 on Γ, (2.231)

where δΣ(x)= δ(x2− ξ) is the Dirac distribution concentrated on Σ , k(x)= k(x1)

and L is the symmetric elliptic operator introduced in (2.166); i.e.

Lu := −
2∑

i,j=1

∂i(aij ∂ju)+ au.

The Dirac distribution δΣ belongs to the Sobolev space W−λ2 (Ω), with λ > 1/2.
Equation (2.231) must be therefore understood in a weak sense: we seek u ∈ W̊ 1

2 (Ω)
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such that

〈Lu,v〉 + (kδΣ)(uv)= 〈f, v〉 ∀v ∈ W̊ 1
2 (Ω), (2.232)

where 〈f, v〉 denotes the duality pairing between the spaces W−1
2 (Ω) and W̊ 1

2 (Ω),
and

(kδΣ)(w) :=
∫

Σ

kw

∣∣∣∣
Σ

dΣ, w ∈W 1
1 (Ω),

where w|Σ ∈ L1(Σ) denotes the trace of w ∈W 1
1 (Ω) on Σ , and k ∈ L∞(Σ).

Alternatively, problem (2.232) can be restated as follows: find u ∈ W̊ 1
2 (Ω) such

that

a(u, v)= 〈f, v〉 ∀v ∈ W̊ 1
2 (Ω), (2.233)

where

a(u, v)=
∫

Ω

(
2∑

i,j=1

aij ∂ju∂iv+ auv

)

dx +
∫

Σ

k(uv)

∣∣∣∣
Σ

dΣ. (2.234)

Thus, (2.233) can be seen as the weak formulation of the boundary-value problem
(2.231). A relevant point in this respect is that for the domain Ω = (0,1)2 ⊂ R

2

the product uv of u,v ∈ W̊ 1
2 (Ω) belongs to W̊ 1

p(Ω) for all p ∈ [1,2) and thus by
Theorem 1.42 (see also Theorem 1.5.1.3 on p. 38 of Grisvard [62] for p ∈ (1,2)
and Theorem 2.10 on p. 37 of Giusti [54] for p = 1), the boundary integral term in
(2.234) is meaningful. The following assertion concerning the existence of a unique
weak solution is an immediate consequence of the Lax–Milgram theorem and the
trace theorem for W 1

2 (Ω).

Lemma 2.71 Suppose that

f ∈W−1
2 (Ω), aij , a ∈ L∞(Ω), k ∈ L∞(Σ), aij = aji, a ≥ 0, k ≥ 0,

∃c0 > 0 ∀ξ = (ξ1, ξ2) ∈R2 ∀x ∈Ω :
2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i .

Then, there exists a unique weak solution u ∈ W̊ 1
2 (Ω) to the boundary-value prob-

lem (2.233), (2.234), and

‖u‖W 1
2 (Ω) ≤ C‖f ‖

W−1
2 (Ω)

.

Let us now assume that the coefficients aij , i, j = 1,2, and a of the differen-
tial operator L belong to the Hölder space C0,λ(Ω), with λ > |θ | and |θ | < 1/2.
The bilinear functional a(·, ·) can then be continuously extended to W̊ 1−θ

2 (Ω) ×
W̊ 1+θ

2 (Ω). The following assertion can be proved by applying Theorem 3.3 in Nečas
[143].
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Lemma 2.72 Suppose that

f ∈Wθ−1
2 (Ω), |θ |< 1/2, aij , a ∈ C0,λ(Ω), λ > |θ |, k ∈ L∞(Σ),

aij = aji, a ≥ 0, k ≥ 0,

∃c0 > 0 ∀ξ = (ξ1, ξ2) ∈R2 ∀x ∈Ω :
2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i .

Then, there exists a unique solution u ∈ W̊ 1+θ
2 (Ω) to the boundary-value problem

(2.233), (2.234).

In the case when f does not contain a concentrated singularity on Σ , such as
δΣ , problem (2.233), (2.234) can be shown to be the weak formulation of the fol-
lowing boundary-value problem with transmission (conjugation) conditions on the
interface Σ :

Lu= f in Ω− ∪Ω+, u= 0 on Γ,

[u]Σ = 0,

[
2∑

j=1

a2j ∂ju

]

Σ

= ku|Σ,
(2.235)

where Ω− := (0,1)× (0, ξ), Ω+ := (0,1)× (ξ,1), and

[u]Σ := u(x1, ξ + 0)− u(x1, ξ − 0).

In this sense, the boundary-value problems (2.231) and (2.235) are equivalent.
Higher regularity of the solution can be proved under additional assumptions on

the data. For s ≥ 2 we define the subspace Ŵ s
2 (Ω) of W̊ 1

2 (Ω), consisting of all
u ∈ W̊ 1

2 (Ω) such that

∂i1u ∈ L2(Ω), i = 0,1, . . . , s,

∂i−1
1 ∂2u ∈ L2(Ω), i = 1,2, . . . , s,

∂
i−j
1 ∂

j

2u ∈ L2
(
Ω−

)∩L2
(
Ω+

)
, i = j, j + 1, . . . , s, j = 2,3, . . . , s,

with the norm ‖ · ‖Ŵ s
2 (Ω) defined by

‖u‖2
Ŵ s

2 (Ω)
:=

s∑

i=0

∥∥∂i1u
∥∥2
L2(Ω)

+
s∑

i=1

∥∥∂i−1
1 ∂2u

∥∥2
L2(Ω)

+
s∑

j=2

s∑

i=j

(∥∥∂i−j1 ∂
j

2u
∥∥2
L2(Ω

−) +
∥∥∂i−j1 ∂

j

2u
∥∥2
L2(Ω

+)
)
.

Obviously,

Ŵ s
2 (Ω)⊂ W̃ s

2 (Ω) := W̊ 1
2 (Ω)∩Ws

2

(
Ω−

)∩Ws
2

(
Ω+

)
.
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Lemma 2.73 Suppose that in addition to the assumptions of Lemma 2.71 we have
that

f ∈ L2(Ω), aij ∈W 1∞(Ω), k ∈W 1∞(Σ);
then, u ∈ Ŵ 2

2 (Ω). If, in addition,

∂1f ∈ L2(Ω), ∂2f ∈ L2
(
Ω±

)
, aij ∈W 2∞(Ω),

a ∈W 1∞(Ω), k ∈W 2∞(Σ)

and

f = a12 = ∂1a11 = 0 for x1 = 0 and x1 = 1,

then u ∈ Ŵ 3
2 (Ω).

Proof For x ∈Ω− ∪Ω+ (2.235) can be written as

a11∂
2
1u+ 2a12∂1∂2u+ a22∂

2
2u=−

2∑

i,j=1

∂iaij ∂ju+ au− f. (2.236)

Multiplying (2.236) by ∂2
1u, integrating over Ω and performing partial integration

we obtain
∫

Ω

[
a11

(
∂2

1u
)2 + 2a12∂

2
1u∂1∂2u+ a22(∂1∂2u)

2]dx +
∫

Σ

k(∂1u)
2
∣∣∣∣
Σ

dΣ

= I1 + I2 + I3,

where

I1 := −
∫

Ω

(
2∑

i,j=1

∂iaij ∂ju− au+ f

)

∂2
1udx,

I2 :=
∫

Ω

(
∂2a22∂2u∂

2
1u− ∂1a22∂2u∂1∂2u

)
dx,

I3 := −
∫

Σ

k′u∂1udΣ.

Further,

∫

Ω

[
a11

(
∂2

1u
)2 + 2a12∂

2
1u∂1∂2u+ a22(∂1∂2u)

2]dx +
∫

Σ

k(∂1u)
2 dΣ

≥ c0
(∥∥∂2

1u
∥∥2
L2(Ω)

+ ‖∂1∂2u‖2
L2(Ω)

)
.
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The integrals I1, I2 and I3 can be bounded by applying the Cauchy–Schwarz in-
equality with ε ∈ (0,1) as follows:

|I1| ≤ ε
∥∥∂2

1u
∥∥2
L2(Ω)

+ C

ε

(‖u‖2
W 1

2 (Ω)
+ ‖f ‖2

L2(Ω)

)
.

Similarly,

|I2| ≤ ε
(∥∥∂2

1u
∥∥2
L2(Ω)

+ ‖∂1∂2u‖2
L2(Ω)

)+ C

ε
‖∂2u‖2

L2(Ω)

and

|I3| ≤ ε‖∂1u‖2
L2(Σ) +

C

ε
‖u‖2

L2(Σ)

≤ C1ε
(∥∥∂2

1u
∥
∥2
L2(Ω)

+ ‖∂1∂2u‖2
L2(Ω)

)+ C

ε
‖u‖2

W 1
2 (Ω)

.

Hence, by selecting a sufficiently small ε > 0, we obtain the bound

∥∥∂2
1u

∥∥2
L2(Ω)

+ ‖∂1∂2u‖2
L2(Ω) ≤ C‖f ‖2

L2(Ω).

From (2.236) we immediately have that

∥∥∂2
2u

∥∥
L2(Ω

±) ≤ C
(∥∥∂2

1u
∥∥
L2(Ω)

+ ‖∂1∂2u‖L2(Ω) + ‖u‖W 1
2 (Ω) + ‖f ‖L2(Ω)

)
,

which proves the first part of the lemma.
When the assumptions of the second part of the lemma are satisfied, we deduce

from (2.231) that

∂2
1u= 0 on Γ .

By differentiating (2.231) one obtains

L∂2
1u+ k(x)δΣ(x)∂

2
1u= f1(x), x ∈Ω,

where

f1 := ∂2
1f +

2∑

i,j=1

∂i
(
2∂1aij ∂1∂ju+ ∂2

1aij ∂ju
)

− 2∂1a∂1u− ∂2
1au− 2k′δΣ∂1u− k′′δΣu ∈W−1

2 (Ω).

By applying Lemma 2.71 we then deduce the regularity result stated in the second
part of the lemma. �

For further details regarding the analysis of elliptic boundary-value problems in
domains with corners we refer to Grisvard [62] and Dauge [28].
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2.8.1 Finite Difference Approximation

In the sequel we shall assume that the weak solution of the boundary-value problem
(2.231) belongs to W̃ s

2 (Ω), s > 2, and that the coefficients of the equation satisfy
the following regularity hypotheses:

aij ∈Ws−1
2

(
Ω−

)∩Ws−1
2

(
Ω+

)∩C(Ω), a ∈Ws−2
2

(
Ω−

)∩Ws−2
2

(
Ω+

)

and

k ∈Ws−1
2 (Σ).

We define

‖u‖W̃ s
2 (Ω) :=

(‖u‖2
W 1

2 (Ω)
+ ‖u‖2

Ws
2 (Ω

−) + ‖u‖2
Ws

2 (Ω
+)
)1/2

.

In particular, for s = 0 we set

‖u‖W̃ 0
2 (Ω) = ‖u‖L̃2(Ω) :=

(‖u‖2
L2(Ω) + ‖u‖2

L2(Σ)

)1/2
.

For the sake of simplicity we shall also assume that ξ is a rational number. Let

Ω
h

be a uniform square mesh on Ω with mesh-size h := 1/N , where N is an integer
such that ξN is also an integer. We shall use the notations from Sect. 2.2 and define

Σh :=Ωh ∩Σ and Σh− :=Σh ∪ {(0, ξ)}.

Let us approximate the boundary-value problem (2.231) on the mesh Ω
h

by the
following finite difference scheme with mollified right-hand side:

LhU + kδΣhU = T 2
1 T

2
2 f in Ωh, U = 0 on Γ h, (2.237)

where

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]+ (

T 2
1 T

2
2 a

)
U

and

δΣh(x)= δh(x2 − ξ) :=
{

0 for x ∈Ωh \Σh,

1/h for x ∈Σh

is the discrete Dirac delta-function.
Further, we define the asymmetric mollifiers T 2−

2 and T 2+
2 by

T 2−
2 f (x1, x2) := 2

h

∫ x2

x2−h

(
1+ x′2 − x2

h

)
f
(
x1, x

′
2

)
dx′2,
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T 2+
2 f (x1, x2) := 2

h

∫ x2+h

x2

(
1− x′2 − x2

h

)
f
(
x1, x

′
2

)
dx′2.

In addition to the discrete inner products and norms defined in Sect. 2.6.1 we intro-
duce

(U,V )Σh := h
∑

x∈Σh

U(x)V (x), ‖U‖L2(Σ
h) := (U,U)

1/2
Σh ,

|U |
W

1/2
2 (Σh)

:=
(

h2
∑

x∈Σh−

∑

x′∈Σh−,x′ 	=x

|U(x)−U(x′)|2
|x1 − x′1|2

)1/2

.

The following lemma holds.

Lemma 2.74 Let U ∈ Sh0 and let V be a mesh-function defined on Σh−. Then,
∣∣(D−x1

V,U
)
Σh

∣∣≤ C‖U‖W 1
2 (Ω

h)|V |W 1/2
2 (Σh)

.

Proof Similarly as in the proof of Lemma 2 in Jovanović and Popović [92], we
expand U and V in the following Fourier sums:

U(x1, x2)=
N−1∑

k=1

N−1∑

l=1

bkl sin kπx1 sin lπx2 =
N−1∑

k=1

Bk(x2) sin kπx1, (2.238)

V (x1)=
N−1∑

k=1

ak coskπ

(
x1 + h

2

)
. (2.239)

Hence we have that

D−x1
V (x1)=−

N−1∑

k=1

√
λkak sin kπx1, where λk := 4

h2
sin2 kπh

2
.

Using the orthogonality of sine functions, we deduce that

(
D−x1

V,U
)
Σh = −1

2

N−1∑

k=1

√
λkakBk(x2)

≤
(

1

2

N−1∑

k=1

√
λka

2
k

)1/2(
1

2

N−1∑

k=1

√
λkB

2
k (x2)

)1/2

. (2.240)

Let us consider the following sum (over mesh-points):

N2(V ) := h2
1−h∑

x1,t1=−1,t1 	=0

(
V (x1)− V (x1 − t1)

t

)2

, (2.241)



2.8 An Elliptic Interface Problem 235

where the mesh-function V has been extended outside Σh− by (2.239). Using the
periodicity and orthogonality of cosine functions, we then deduce that

N2(V )= h2
1−h∑

x1=−1

1−h∑

0	=t1=−1

−V (x1 + t1)+ 2V (x1)− V (x1 − t1)

t21

V (x1)

= 4
N−1∑

k=1

√
λka

2
k Ik,

where

Ik :=
kπh

2

sin kπh
2

Jk, Jk := kπh

2

1−h∑

t1=h

(
sin kπt1

2
kπt1

2

)2

.

We note that

1≤
kπh

2

sin kπh
2

≤ π

2

and that Jk is a Riemann sum for
∫ kπ/2

0

( sin τ
τ

)2dτ , which therefore satisfies the fol-
lowing two-sided bound:

1

π
≤ Jk ≤ π

2
+ 2

π
.

Hence,

4

π

N−1∑

k=1

√
λka

2
k ≤N2(V )≤ (

π2 + 4
)N−1∑

k=1

√
λka

2
k .

From (2.241), using the periodicity of the cosine function, we also have that

N2(V )= h2
1−h∑

x1,x
′
1=−1,x1 	=x′1

(
V (x1)− V (x′1)

x1 − x′1

)2

≤ 4|V |2
W

1/2
2 (Σh)

,

whereby

N−1∑

k=1

√
λka

2
k ≤ π |V |2

W
1/2
2 (Σh)

. (2.242)

On the other hand, since Bk(0)= 0, we obtain

B2
k (x2)= h

x2−h∑

x′2=0

D+x2

(
B2
k

(
x′2

))= h

x2−h∑

x′2=0

(
D+x2

Bk

(
x′2

))(
Bk

(
x′2 + h

)+Bk

(
x′2

))
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≤ εkh

1−h∑

x′2=h
B2
k

(
x′2

)+ 1

εk
h

1−h∑

x′2=0

(
D+x2

Bk

(
x′2

))2
,

with εk > 0, k = 1, . . . ,N − 1, to be chosen.
Selecting εk =√λk for k = 1, . . . ,N − 1, and using the discrete Parseval identi-

ties (2.21) and (2.22), we have that

1

2

N−1∑

k=1

√
λkB

2
k (x2)≤

∥∥D+x1
U
∥∥2
L2(Ω

h
1 )
+ ∥∥D+x2

U
∥∥2
L2(Ω

h
2 )
≤ ‖U‖2

W 1
2 (Ω

h)
. (2.243)

Finally, the assertion follows from the inequalities (2.240), (2.242) and (2.243)
with C =√π/2. That completes the proof. �

2.8.2 Convergence in the Discrete W 1
2 Norm

Let u be the solution of the boundary-value problem (2.231) and let U denote the
solution of the finite difference scheme (2.237). The global error e := u− U then
satisfies the finite difference scheme

Lhe+ kδΣhe= ϕ in Ωh, e= 0 on Γ h, (2.244)

where

ϕ :=
2∑

i,j=1

D−xi ηij + η+ δΣhμ,

ηij := T +i T 2
3−i (aij ∂ju)−

1

2

(
aijD

+
xj
u+ a+iij D

−
xj
u+i

)
,

η := (
T 2

1 T
2
2 a

)
u− T 2

1 T
2
2 (au),

μ := ku− T 2
1 (ku).

Let us decompose η1j and η as follows:

η1j = η̃1j + δΣhη̂1j and η= η̃+ δΣhη̂,

where

η̂11 := h2

6
T +1

([a11∂1∂2u+ ∂2a11∂1u]Σ
)
,

η̂12 := h2

6
T +1

([
a12∂

2
2u+ ∂2a12∂2u

]
Σ

)− h2

4
T +1

([
∂1(a12∂2u)

]
Σ

)
,
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η̂ := −h
2

6

[(
T 2

1 a
)(
T 2

1 ∂2u
)]
Σ
.

By performing summations by parts and applying Lemma 2.74 we deduce the
following bound:

‖z‖W 1
2 (Ω

h) ≤ C

[
2∑

j=1

(‖η2j‖L2(Ω
h
2 )
+ ‖η̃1j‖L2(Ω

h
1 )
+ |η̂1j |W 1/2

2 (Σh)

)

+ ‖η̃‖L2(Ω
h) + ‖η̂‖L2(Σ

h) + ‖μ‖L2(Σ
h)

]

. (2.245)

Hence, in order to estimate the convergence rate of the finite difference scheme
(2.244), it suffices to bound the terms on the right-hand side of (2.245).

The terms η2j , j = 1,2, have been bounded in Sect. 2.6.1. After summation over
the mesh Ωh

2 we obtain

‖η2j‖L2(Ω
h
2 )
≤ Chs−1(‖a2j‖Ws−1

2 (Ω−)‖u‖Ws
2 (Ω

−)

+ ‖a2j‖Ws−1
2 (Ω+)‖u‖Ws

2 (Ω
+)
)
, 2 < s ≤ 3. (2.246)

The terms η̃1j for x ∈Ωh
1 \Σh− can be bounded in the same way. For x ∈Σh− we

set

η̃11 :=
3∑

k=1

(
η−11,k + η+11,k

)
,

η̃12 :=
4∑

k=1

(
η−12,k + η+12,k

)
,

where

η±11,1 :=
1

2
T +1 T 2±

2 (a11∂1u)− 1

2

(
T +1 T 2±

2 a11
)(
T +1 T 2±

2 ∂1u
)

± h

6

(
T +1 ∂2a11

)[(
T +1 T 2±

2 ∂1u
)− (

T +1 ∂1u
)]

± h

6

[
a11 + a+1

11

2

(
T +1 ∂1∂2u

)− T +1 (a11∂1∂2u)

]

± h

6

[(
T +1 ∂2a11

)(
T +1 ∂1u

)− T +1 (∂2a11∂1u)
]∣∣
x2=ξ±0,

η±11,2 :=
1

2

[(
T +1 T 2±

2 a11
)− a11 + a+1

11

2
∓ h

3

(
T +1 ∂2a11

)](
T +1 T 2±

2 ∂1u
)∣∣
x2=ξ±0,
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η±11,3 :=
a11 + a+1

11

4

[(
T +1 T 2±

2 ∂1u
)− ux1 ∓

h

3

(
T +1 ∂1∂2u

)]
∣∣∣∣
x2=ξ±0

,

η±12,1 :=
1

2
T +1 T 2±

2 (a12∂2u)− 1

2

(
T +1 T 2±

2 a12
)(
T +1 T 2±

2 ∂2u
)

± h

6

(
T +1 ∂2a12

)[(
T +1 T 2±

2 ∂2u
)− (

T +1 ∂2u
)]

± h

6

[
a12 + a+1

12

2

(
T +1 ∂2

2u
)− T +1

(
a12∂

2
2u

)]

± h

6

[(
T +1 ∂2a12

)(
T +1 ∂2u

)− T +1 (∂2a12∂2u)
]

± h

4
T +1

(
∂1a12

(
T ±2 ∂2u− ∂2u

))∣∣
x2=ξ±0,

η±12,2 :=
1

2

[
(
T +1 T 2±

2 a12
)− a12 + a+1

12

2
∓ h

3

(
T +1 ∂2a12

)
]
(
T +1 T 2±

2 ∂2u
)∣∣
x2=ξ±0,

η+12,3 :=
a12 + a+1

12

4

[(
T +1 T 2+

2 ∂2u
)− D+x2

u+D+x2
u+1

2
− h

3

(
T +1 ∂2

2u
)]

+ h

4
T +1

(
a12

(
T +2 ∂1∂2u− ∂1∂2u

))∣∣
x2=ξ+0,

η−12,3 :=
a12 + a+1

12

4

[(
T +1 T 2−

2 ∂2u
)− D+x2

u+D+x2
u+1

2
− h

3

(
T +1 ∂2

2u
)]

+ h

4
T +1

(
a12

(
T −2 ∂1∂2u− ∂1∂2u

))∣∣
x2=ξ−0,

η+12,4 := −
1

8

(
a+1

12 − a12
)(
D+x2

u+1 − ux2

)∣∣
x2=ξ+0,

η−12,4 := −
1

8

(
a+1

12 − a12
)(
D−x2

u+1 − ux̄2

)∣∣
x2=ξ−0.

The terms η±1j,k can be bounded analogously to the corresponding terms η1j,k con-
sidered in Sect. 2.6.1. Thus we obtain:

‖η̃1j‖L2(Ω
h
1 )
≤ Chs−1(‖a1j‖Ws−1

2 (Ω−)‖u‖Ws
2 (Ω

−)

+ ‖a1j‖Ws−1
2 (Ω+)‖u‖Ws

2 (Ω
+)
)
, 2.5 < s ≤ 3. (2.247)

For x ∈Ωh \Σh, the term η̃ can be bounded in the same way as the correspond-
ing term η in Sect. 2.6.1. For x ∈Σh we use the following decomposition:

η̃= η+(1) + η−(1) + η+(2) + η−(2),
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where

η±(1) :=
1

2

(
T 2

1 T
2±
2 a

)
[
u− (

T 2
1 T

2±
2 u

)± h

3

(
T 2

1 ∂2u
)
]∣∣∣∣

x2=ξ±0
,

η±(2) :=
1

2

[(
T 2

1 T
2±
2 a

)(
T 2

1 T
2±
2 u

)− T 2
1 T

2±
2 (au)

± h

6

((
T 2

1 a
)− (

T 2
1 T

2±
2 a

))(
T 2

1 ∂2u
)]

∣∣∣∣
x2=ξ±0

.

These terms can be bounded analogously to the terms η3 and η4 discussed in
Sect. 2.6.1. Hence we deduce that

‖η̃‖L2(Ω
h) ≤ Chs−1(‖a‖

Ws−2
2 (Ω−)‖u‖Ws

2 (Ω
−)

+ ‖a‖
Ws−2

2 (Ω+)‖u‖Ws
2 (Ω

+)
)
, 2 < s ≤ 3. (2.248)

The value of μ at the node (x1, ξ) ∈ Σh is a bounded linear functional of
ku ∈ Ws−1

2 (ı), ı = (x1 − h,x1 + h) × {ξ}, s > 3/2, which vanishes on all linear
polynomials. Using the Bramble–Hilbert lemma one then obtains that

‖μ‖L2(Σ
h) ≤ Chs−1‖ku‖

Ws−1
2 (Σ)

≤ Chs−1‖k‖
Ws−1

2 (Σ)

(‖u‖Ws
2 (Ω

−) + ‖u‖Ws
2 (Ω

+)
)
, 1.5 < s ≤ 3.

(2.249)

The term η̂ can be bounded directly:

‖η̂‖L2(Σ
h) ≤ Ch2(‖a‖L2(Σ

+)‖∂2u‖C(Ω+) + ‖a‖L2(Σ
−)‖∂2u‖C(Ω−)

)

≤ Ch2(‖a‖
Ws−2

2 (Ω+)‖u‖Ws
2 (Ω

+) + ‖a‖Ws−2
2 (Ω−)‖u‖Ws

2 (Ω
−)
)
, s > 2.5,

(2.250)

where we have used the following notation:

‖a‖L2(Σ
±) :=

∥∥a(·, ξ ± 0)
∥∥
L2(0,1)

.

For a function ϕ ∈Wλ
2 (Σ), 0 < λ ≤ 1/2, the seminorm |T +1 ϕ|

W
1/2
2 (Σh)

can be

estimated directly:

∣∣T +1 ϕ
∣∣
W

1/2
2 (Σh)

≤ 2λ+1/2hλ−1/2|ϕ|Wλ
2 (Σ) ≤ Chλ−1/2‖ϕ‖

W
λ+1/2
2 (Ω±).

We thus deduce that
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|η̂11|W 1/2
2 (Σh)

≤ Chs−1(‖a11∂1∂2u‖Ws−2
2 (Ω+) + ‖a11∂1∂2u‖Ws−2

2 (Ω−)

+ ‖∂2a11∂1u‖Ws−2
2 (Ω+) + ‖∂2a11∂1u‖Ws−2

2 (Ω−)
)

≤ Chs−1(‖a11‖Ws−1
2 (Ω+)‖u‖Ws

2 (Ω
+) + ‖a11‖Ws−1

2 (Ω−)‖u‖Ws
2 (Ω

−)
)
,

(2.251)

for 2.5 < s ≤ 3, and analogously

|η̂12|W 1/2
2 (Σh)

≤ Chs−1(‖a12‖Ws−1
2 (Ω+)‖u‖Ws

2 (Ω
+)

+ ‖a12‖Ws−1
2 (Ω−)‖u‖Ws

2 (Ω
−)
)
, for 2.5 < s ≤ 3. (2.252)

Hence, from (2.245)–(2.252) we obtain the main result of this section.

Theorem 2.75 Suppose that the solution of the boundary-value problem (2.231) be-
longs to the function space W̃ s

2 (Ω), and that the coefficients of the equation (2.231)
satisfy the following regularity hypotheses:

aij ∈Ws−1
2

(
Ω+

)∩Ws−1
2

(
Ω−

)∩C(Ω),

a ∈Ws−2
2

(
Ω+

)∩Ws−2
2

(
Ω−

)
, k ∈Ws−1

2 (Σ).

Then, the finite difference scheme (2.244) converges and the following error bound
holds:

‖u−U‖W 1
2 (Ω

h)

≤ Chs−1
(

max
i,j
‖aij‖Ws−1

2 (Ω+) +max
i,j
‖aij‖Ws−1

2 (Ω−)

+ ‖a‖
Ws−2

2 (Ω+) + ‖a‖Ws−2
2 (Ω−) + ‖k‖Ws−1

2 (Σ)

)
‖u‖W̃ s

2 (Ω), 2.5 < s ≤ 3,

where C = C(s) is a positive constant, independent of h.

2.9 Bibliographical Notes

The principal purpose of this chapter has been to develop a technique for the deriva-
tion of error bounds, which are compatible with the smoothness of the data, for finite
difference approximations of boundary-value problems for second- and fourth-order
linear elliptic partial differential equations. The technique is based on the Bramble–
Hilbert lemma and its generalizations (see Bramble and Hilbert [20, 21], Dupont
and Scott [37], Dražić [32], Jovanović [79]).

According to the definition of Lazarov, Makarov and Samarskiı̆ [125], an error
bound of the form

‖u−U‖Wr
2 (Ω

h) ≤ Chs−r‖u‖Ws
2 (Ω), s > r, (2.253)
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is said to be compatible with the smoothness of the solution to the boundary–value
problem. Similar error bounds, in ‘continuous’ norms, of the form

‖u− uh‖Wr
2 (Ω) ≤ Chs−r‖u‖Ws

2 (Ω), 0≤ r ≤ 1 < s ≤ p+ 1,

are typical for finite elements methods (see e.g. Strang and Fix [169], Ciarlet [26],
Brenner and Scott [23]) and are usually referred to as optimal; here uh denotes the
finite element approximation of the analytical solution u using continuous piecewise
polynomials of degree p.

In the case of equations with variable coefficients the constant C in the error
bound (2.253) depends on norms of the coefficients. One of our main objectives in
this chapter has therefore been to understand this dependence in the case of various
second-order and fourth-order linear elliptic model problems with variable coeffi-
cients. Specifically, we proved error bounds that are of the typical form

‖u−U‖Wr
2 (Ω

h) ≤ Chs−r
(

max
i,j
‖aij‖Ws−1

p (Ω)
+ ‖a‖

Ws−2
p (Ω)

)
‖u‖Ws

2 (Ω).

To the best of our knowledge, error bounds of the form (2.253) were first derived
by Weinelt [195], for r = 1 and s = 2,3, in case of Poisson’s equation. Subse-
quently, bounds of the form (2.253) were obtained by Lazarov, Makarov, Samarskiı̆,
Weinelt, Jovanović, Ivanović, Süli, Gavrilyuk, Voı̆tsekhovskiı̆, Berikelashvili and
others, by systematic use of the Bramble–Hilbert lemma.

For example, families of finite difference schemes for Poisson’s equation and
the generalized Poisson equation with mollified right-hand sides were introduced
by Jovanović [111] and Ivanović, Jovanović and Süli [75, 106], and scales of error
bounds of the form (2.253) were established in the case of both integer and fractional
values of s.

A procedure for determining the constant in the Bramble–Hilbert lemma, using
the mapping of elementary rectangles on a canonical rectangle, was proposed by
Lazarov [119]; see also [37] and [38] for related issues.

In the papers of Lazarov [119], Lazarov and Makarov [123] and Makarov and
Ryzhenko [130, 131], the convergence of various difference schemes was exam-
ined for Poisson’s equation in cylindrical, polar and spherical coordinates, and error
bounds of the form (2.253) were derived under the assumption that the analytical
solutions to these problems belong to appropriate weighted Sobolev spaces. Finite
difference approximations of Poisson’s equation by special classes of finite volume
and finite difference schemes on nonuniform meshes were studied by Süli [171]
and Jovanović and Matus [73]. In particular, the results in Sects. 2.4 and 2.4.2 are
based on the paper [171]. The analysis presented in Sect. 2.4.3 was stimulated by
discussions with Professor Rupert Klein, Free University Berlin. For related work,
we refer to the paper of Oevermann and Klein [147].

A finite difference scheme with enhanced accuracy for second-order elliptic
equations with constant coefficients was derived by Jovanović, Süli and Ivanović
[108], and similar results were obtained later by Voı̆tsekhovskiı̆ and Novichenko
[188].
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Difference schemes for the biharmonic equation with a nonsmooth source
term were considered by Lazarov [120], Gavrilyuk, Lazarov, Makarov and Pir-
nazarov [50], Ivanović, Jovanović and Süli [76], and for systems of partial differ-
ential equations in linear elasticity theory by Kalinin and Makarov [114, 129] and
Voı̆tsekhovskiı̆ and Kalinin [187].

The convergence of the so-called exact difference schemes was investigated by
Lazarov, Makarov and Samarskiı̆ [125].

The error analysis of finite difference schemes for linear partial differential equa-
tions with variable coefficients was developed later. The first attempts in this direc-
tion were focused on finite difference schemes for the generalized Poisson equation
with a variable coefficient in the lowest-order term (Lazarov, Makarov and Weinelt
[126, 196], Voı̆tsekhovskiı̆, Makarov and Shabliı̆ [189]); subsequently, problems
with variable coefficients in the principal part of the partial differential operator were
considered (Godev and Lazarov [58], Jovanović, Ivanović and Süli [110], Jovanović
[83]). Partial differential equations where the coefficient of the lowest-order term
belongs to a negative Sobolev space were considered by Voı̆tsekhovskiı̆, Makarov
and Rybak [192], and Jovanović [83]. Zlotnik [203, 205] obtained different error
estimates for discretizations of elliptic problems with variable coefficients.

Fourth-order equations with variable coefficients were studied by Gavrilyuk,
Prikazchikov and Khimich [51], and Jovanović [84]. Quasilinear equations in ar-
bitrary domains, solved by a combination of finite difference and fictitious do-
main methods, were studied by Voı̆tsekhovskiı̆ and Gavrilyuk [186], Voı̆tsekhovskiı̆,
Gavrilyuk and Makarov [191] and Jovanović [80, 81].

The technique described above was also used for the solution of eigenvalue prob-
lems (Prikazchikov and Khimich [151]), variational inequalities (Voı̆tsekhovskiı̆,
Gavrilyuk and Sazhenyuk [190], Gavrilyuk and Sazhenyuk [49]) and in the analy-
sis of supraconvergence on nonuniform meshes (Marletta [134]). Berikeshvili sys-
tematically used the same technique for the numerical approximation of a general
class of elliptic problems, including equations of higher order, systems of ellip-
tic equations, problems with nonlocal boundary conditions, etc.; for further details,
we refer to the survey paper [11], which also contains an extensive bibliography.
Berikeshvili, Gupta and Mirianashvili [12] investigated the convergence of fourth-
order compact difference schemes for three-dimensional convection-diffusion equa-
tions. Jovanović and Vulkov [101] studied the finite difference approximation of
elliptic interface problems with variable coefficients.

Recently, a group of mathematicians (Barbeiro, Ferreira, Emmrich, Grigorieff
et al.) exploited the techniques discussed in this chapter for the analysis of super-
and supraconvergence effects in finite-difference and finite-element schemes (see
Barbeiro [5], Barbeiro, Ferreira and Grigorieff [6], Emmrich [44], Emmrich and
Grigorieff [45] and Ferreira and Grigorieff [47]).

There has also been work on the convergence analysis of finite difference
schemes in discrete Wk

p norms, for p 	= 2; see, for example, Lazarov and Mokin
[124], Lazarov [121], Godev and Lazarov [57], Drenska [33, 34], Süli, Jovanović
and Ivanović [173, 174]. In this case, the derivation of a priori estimates is tech-
nically more complex—the theory of discrete Fourier multipliers, developed by
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Mokin [140], is used instead of standard discrete energy estimates. Error bounds for
the difference schemes under consideration are then obtained by combining these a
priori estimates with the use of the Bramble–Hilbert lemma, as we have described
in this chapter.

An alternative technique for the derivation of error bounds of the form (2.253)
in fractional-order norms is based on function space interpolation, and was used by
Jovanović [89].

Our goal in the rest of the book is to extend the methodology developed in the
present chapter to time-dependent problems. In Chap. 3 we shall be concerned with
parabolic partial differential equations, while in Chap. 4 we focus on hyperbolic
equations.



Chapter 3
Finite Difference Approximation of Parabolic
Problems

In Chap. 2 we considered finite difference methods for the approximate solution of
elliptic equations. The present chapter is devoted to the analysis of finite difference
schemes for parabolic equations.

In Sect. 3.1 we discuss the question of well-posedness of initial-boundary-value
problems for second-order parabolic equations. In Sect. 3.2 we review some clas-
sical results concerning standard finite difference schemes for the heat equation.
Section 3.3 is devoted to the convergence analysis of difference schemes for the
heat equation with nonsmooth data. In Sect. 3.4 we extend these ideas to a linear
second-order parabolic equation with variable coefficients and derive error bounds
in the mesh-dependent anisotropic Sobolev norm W

1,1/2
2 that are compatible with

the smoothness of the data. In Sects. 3.5 and 3.6 we shall be concerned with the finite
difference approximation of interface and transmission problems for second-order
linear parabolic equations. We conclude with some comments on the literature.

3.1 Parabolic Equations

We begin with a brief account of the theory of existence and uniqueness of solutions
to evolution equations of the general form

∂u

∂t
+A(t)u= f (x, t), (x, t) ∈Ω × (0, T ],

subject to an initial condition

u(x,0)= u0(x), x ∈Ω,

with f and u0 specified, and suitable boundary conditions for u on ∂Ω , where u is
a function of x ∈Ω and t ∈ [0, T ], with T > 0, and Ω is a Lipschitz domain in R

n;
A(t) will denote a linear elliptic partial differential operator. We shall suppose that
[0, T ] is a bounded interval, that is T <∞. An alternative viewpoint to considering

B.S. Jovanović, E. Süli, Analysis of Finite Difference Schemes,
Springer Series in Computational Mathematics 46,
DOI 10.1007/978-1-4471-5460-0_3, © Springer-Verlag London 2014
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u as a function of x and t is to consider the mapping t ∈ [0, T ] �→ u(·, t) with
values in a Banach space or, more specifically, a Hilbert space, which is typically a
Sobolev space of functions defined on Ω . The partial differential equation can then
be viewed as an ordinary differential equation in a Banach or Hilbert space. The
technical details of this alternative viewpoint are discussed in the next section.

3.1.1 Abstract Parabolic Initial-Value Problems

Suppose that H is a separable real Hilbert space with inner product (·, ·) and asso-
ciated norm ‖ · ‖ = ‖ · ‖H, and let V be another separable real Hilbert space with
inner product (·, ·)V and norm ‖ · ‖V , which is continuously and densely embedded
in H. By the Riesz representation theorem H can be identified with its dual space
H′. The dual space of V is denoted by V ′. Thus we have

V ↪→H≡H′ ↪→ V ′

with continuous and dense embeddings. Such a triple of spaces V , H, V ′, regardless
of whether the spaces are separable or not, is called a Gelfand triple (or rigged
Hilbert space). The duality pairing between V ′ and V will be denoted by 〈·, ·〉. For
t ∈ [0, T ] we consider the bilinear functional a(t; ·, ·) : V × V→ R, such that the
following hypotheses hold:

(a) The function t �→ a(t;w,v) is measurable on [0, T ], for any fixed w,v ∈ V ;
(b) There exists a real number c1 > 0 such that

∣∣a(t;w,v)∣∣≤ c1‖w‖V‖v‖V for all t ∈ [0, T ] and w, v ∈ V ;

(c) There exist real numbers λ≥ 0, c0 > 0 such that

a(t;v, v)+ λ‖v‖2
H ≥ c0‖v‖2

V for all t ∈ [0, T ] and v ∈ V .

As in the case of elliptic problems considered in the previous chapter, condition (c)
is referred to as Gårding’s inequality.

Thanks to condition (b), for any t ∈ [0, T ] and w ∈ V fixed, the mapping "t,w :
v ∈ V �→ a(t;w,v) ∈ R is a bounded linear functional on V . Thus, "t,w ∈ V ′. As
a(t; ·, v) is a bounded linear functional on V , it follows that for each t ∈ [0, T ] the
mapping A(t) :w ∈ V �→ "t,w =A(t)w ∈ V ′ is a bounded linear operator on V with
a(t;w,v) = 〈A(t)w,v〉, t ∈ [0, T ], w,v ∈ V . However, under our assumptions a
more precise statement can be made.

Lemma 3.1 Suppose that hypotheses (a) and (b) hold; then, the operator A(t) as-
sociated with the bilinear functional a(t; ·, ·) is bounded and linear as a map

A : L2
(
(0, T );V)→ L2

(
(0, T );V ′).

Here, for g ∈ L2((0, T );V), A(g) denotes the function t �→A(t)(g(t)) ∈ V ′.
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Proof It follows from (a) and (b) that the functions t �→ A(t)(g(t)) and t �→ A(t)

are measurable on [0, T ]. The proof of this statement is based on results from mea-
sure theory and is beyond the scope of the discussion here; the interested reader is
referred to Wloka [199], Lemma 26.1 on p. 395. As A(t)g(t) ∈ V ′ for all t ∈ [0, T ],
we have that

∥∥A(t)g(t)
∥∥
V ′ = sup

0	=v∈V
〈A(t)g(t), v〉
‖v‖V ≤ c1

∥∥g(t)
∥∥
V

for all t ∈ [0, T ], where the definition of A(t) and hypothesis (b) have been used.
Thus

∫ T

0

∥∥A(t)g(t)
∥∥2
V ′ dt ≤ c2

1

∫ T

0

∥∥g(t)
∥∥2
V dt,

which implies that the linear operator A : L2((0, T );V) → L2((0, T );V ′) is
bounded and therefore also continuous. �

Let us define the space

W(0, T ) :=
{
v : v ∈ L2

(
(0, T );V)

,
dv

dt
∈ L2

(
(0, T );V ′)

}
,

equipped with the inner product

(v,w)W :=
∫ T

0

(
v(t),w(t)

)
V dt +

∫ T

0

(
dv(t)

dt
,

dw(t)

dt

)

V ′
dt,

where (·, ·)V ′ is the inner product of V ′. It is a straightforward matter to show that
W is complete under the norm induced by this inner product, and therefore W is
a Hilbert space. Moreover, W(0, T ) ↪→ C([0, T ];H), and for any u ∈W(0, T ) the
following equality holds in the sense of distributions on the interval (0, T ):

d

dt

(‖u‖2
H
)= 2

〈
du

dt
, u

〉
(3.1)

(see Theorems 25.4 and 25.5, pp. 392–395 in Wloka [199]).
Let us now consider the following problem (P): Let f ∈ L2((0, T );V ′) and u0 ∈

H; find

u ∈W(0, T )

such that u(0)= u0, and

du

dt
+A(·)u= f (·) in L2

(
(0, T );V ′),

that is,
〈

du

dt
, v

〉
+ 〈

A(·)u, v〉= 〈
f (·), v〉 ∀v ∈ V .
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as an equality in L2(0, T ).
Thanks to the embedding W(0, T ) ↪→ C([0, T ];H), the initial condition u(0)=

u0 with u0 ∈H is meaningful.
We state the following existence and uniqueness result for problem (P) (see

Wloka [199], Theorem 26.1 on p. 397).

Theorem 3.2 Suppose that hypotheses (a), (b) and (c) hold, and assume that
T <∞. Then, problem (P) has a unique solution u ∈W(0, T ) satisfying the ini-
tial condition u(0)= u0, and u depends continuously on the data f and u0; that is,
the map

(f,u0) �→ u, where u is the solution of (P),

is continuous from L2((0, T );V ′)×H into W(0, T ).

3.1.2 Some a Priori Estimates

In the previous section we treated A= A(t) as a bounded linear operator from the
Hilbert space L2((0, T );V) into its dual space L2(0, T ,V ′). Here we shall discuss
an alternative perspective, in the special case when A = A(t) is independent of t .
Instead of viewing A as a bounded linear operator from V into V ′, we shall con-
sider A as an unbounded densely defined linear operator on a real Hilbert space H
with inner product (·, ·)H = (·, ·) and norm ‖ · ‖H = ‖ · ‖ (i.e. the domain D(A)

of A is assumed to be dense in H). We shall confine ourselves to the special
case when A is a selfadjoint and positive definite operator; the latter means that
infv∈D(A)\{0}(Av, v)/‖v‖2 > 0.

The bilinear functional (w,v) ∈ D(A) × D(A) �→ (w,v)A := (Aw,v), w,v ∈
D(A), satisfies the axioms of inner product. The completion of the inner product
space D(A) in the induced norm ‖v‖A := (v, v)

1/2
A is a real Hilbert space referred

to as the energy space of A, denoted by HA, which is continuously and densely
embedded in H. By spectral decomposition of the selfadjoint, positive definite,
densely defined linear operator A one can then define the power Aα of A for any
real number α. In particular, D(A1/2)=HA and (w,v)A = (A1/2w,A1/2v) for all
w,v ∈D(A).

Similarly, by completion in the norm ‖v‖A−1 = (v, v)
1/2
A−1 induced by the inner

product (w,v)A−1 = (A−1w,v), w,v ∈D(A−1), we obtain the energy space HA−1 .
Then, H≡H′ is continuously and densely embedded in (HA)

′ =HA−1 . The spaces
HA, H and HA−1 form a Gelfand triple: HA ↪→ H ↪→ HA−1 . The inner product
(·, ·) can be continuously extended to a duality pairing 〈·, ·〉 on HA−1 ×HA and the
operator A :D(A) ⊂HA→H can be extended to a bounded linear operator (still
denoted by A) from HA into HA−1 .

We consider the bilinear functional a(t;w,v)= a(w,v) := (A1/2w,A1/2v) for
w,v ∈ V := D(A1/2). The assumptions (a), (b) and (c) from Sect. 3.1.1 are then
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satisfied with c0 = c1 = 1 and λ= 0. Problem (P) amounts to finding u ∈W(0, T )
such that

du

dt
+Au= f (t), u(0)= u0, (3.2)

with u0 ∈H and f ∈ L2((0, T );HA−1). The unique solution u ∈W(0, T ) satisfies
the following Hadamard inequality (cf. Wloka [199], p. 403):

∫ T

0

(∥
∥u(t)

∥
∥2
A
+

∥∥
∥∥

du(t)

dt

∥∥
∥∥

2

A−1

)
dt ≤ ‖u0‖2 +

∫ T

0

∥
∥f (t)

∥
∥2
A−1 dt. (3.3)

Indeed, it follows from (3.2) that

‖f ‖2
A−1 =

∥
∥∥∥

du

dt
+Au

∥
∥∥∥

2

A−1
=

∥
∥∥∥

du

dt

∥
∥∥∥

2

A−1
+ ‖u‖2

A + 2

〈
du

dt
, u

〉
.

By integrating this equality with respect to t from 0 to T and using the relation (3.1)
we obtain (3.3).

In the rest of this section we shall develop, in a nonrigorous manner, a collection
of energy inequalities satisfied by the solution of problem (P). The purpose of the
discussion that follows is merely to motivate our subsequent derivation of discrete
counterparts of these estimates, on finite-dimensional Hilbert spaces, which can be
proved, in a completely rigorous fashion, by mimicking the nonrigorous arguments
here. Those discrete energy inequalities will then form the basis of our error analysis
of finite difference approximations to parabolic problems.

By applying to (3.2) the operator A1/2, resp. A−1/2, and noting the inequality
(3.3), we (formally) obtain the following a priori estimates:

∫ T

0

(∥∥Au(t)
∥∥2 +

∥∥∥∥
du(t)

dt

∥∥∥∥

2)
dt ≤ ‖u0‖2

A +
∫ T

0

∥∥f (t)
∥∥2 dt (3.4)

and
∫ T

0

(∥∥u(t)
∥∥2 +

∥∥∥∥A
−1 du(t)

dt

∥∥∥∥

2)
dt ≤ ‖u0‖2

A−1 +
∫ T

0

∥∥A−1f (t)
∥∥2 dt, (3.5)

assuming that the right-hand sides of these inequalities are finite.
Let us now turn our attention to initial-value problems of the form

B
du

dt
+Au= f (t), u(0)= u0, (3.6)

where B and A = A0 + A1, A0, A1 are unbounded, densely defined linear opera-
tors on a real separable Hilbert space H. Let us further suppose that A0 and B are
selfadjoint and assume that there exist positive constants mi > 0, i = 1,2,3, such
that

(Bu,u)≥m1‖u‖2 ∀u ∈D(B), (A0u,u)≥m2(Bu,u) ∀u ∈D(A0)∩D(B),
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and that, for all u ∈D(A0)∩D(A1) and all v ∈D(A0),

(A1u,v)
2 ≤m3‖u‖‖u‖A0‖v‖‖v‖A0 . (3.7)

By applying the operator B−1/2 to (3.6) we have that

dũ

dt
+ Ãũ= f̃ (t), ũ(0)= ũ0,

where we have used the notations

ũ := B1/2u, ũ0 := B1/2u0, Ã := B−1/2AB−1/2, f̃ := B−1/2f.

Let us further define Ãi := B−1/2AiB
−1/2, i = 0,1. We observe that the linear

operator Ã0 is selfadjoint and positive definite on H, i.e.

(Ã0v, v) =
(
B−1/2A0B

−1/2v, v
)= (

A0B
−1/2v,B−1/2v

)

≥ m2
(
BB−1/2v,B−1/2v

)=m2‖v‖2 ∀v ∈D(Ã0).

Further, we have that

(Ã1v,w)
2 = (

A1B
−1/2v,B−1/2w

)2

≤ m3
∥∥B−1/2v

∥∥∥∥B−1/2v
∥∥
A0

∥∥B−1/2w
∥∥∥∥B−1/2w

∥∥
A0

≤ m3

m1m2

∥∥B−1/2v
∥∥2
A0

∥∥B−1/2w
∥∥2
A0
= m3

m1m2
‖v‖2

Ã0
‖w‖2

Ã0
(3.8)

for all v ∈D(Ã0)∩D(Ã1) and w ∈D(Ã0); and, for all v ∈D(Ã0)∩D(Ã1),

∣∣(Ã1v, v)
∣∣ ≤ √m3

∥∥B−1/2v
∥∥∥∥B−1/2v

∥∥
A0
≤

√
m3

m1
‖v‖∥∥B−1/2v

∥∥
A0

=
√
m3

m1
‖v‖‖v‖

Ã0
≤ 1

2
‖v‖2

Ã0
+ m3

2m1
‖v‖2. (3.9)

Thus, by taking V := H
Ã0

and a(t;v,w) := (Ãv,w) we deduce that the condi-

tions (b) and (c) above hold with c1 = 1 +
√

m3
m1m2

, c0 = 1/2 and λ = m3
2m1

, while

condition (a) holds trivially. Returning to the original notation, we thus deduce that
if u0 ∈ HB and f ∈ L2((0, T );HA−1

0
) then problem (3.6) has a unique solution

u ∈ L2((0, T );HA0) with B du
dt ∈ L2((0, T );HA−1

0
).

We now turn to the (formal) derivation of a priori bounds on the solution of
problem (3.6). Denoting by 〈·, ·〉 the duality pairing between (HA0)

′ =H
A−1

0
and

HA0 , we have from (3.6) that
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d

dt
‖u‖2

B + 2‖u‖2
A0
= 2〈f,u〉 − 2(A1u,u)

≤ 2‖u‖A0‖f ‖A−1
0
+ 2
√
m3‖u‖A0

1√
m1
‖u‖B

≤ ‖u‖2
A0
+ 2‖f ‖2

A−1
0
+ 2C1‖u‖2

B, C1 = m3

m1
. (3.10)

We multiply this inequality by the nonnegative function t �→ 2e−2C1t to deduce that

d

dt

(
e−2C1t‖u‖2

B

)+ e−2C1t‖u‖2
A0
≤ 2e−2C1t‖f ‖2

A−1
0
,

which, after integration over t ∈ (0, T ) and noting that e−2C1T ≤ e−2C1t ≤ 1 for all
t ∈ [0, T ], yields

∫ T

0

∥∥u(t)
∥∥2
A0

dt ≤ 2e2C1T

(
‖u0‖2

B +
∫ T

0

∥∥f (t)
∥∥2
A−1

0
dt

)
. (3.11)

Now, (3.6) directly implies that
∥∥∥∥B

du

dt

∥∥∥∥
A−1

0

= ‖−A0u−A1u+ f ‖
A−1

0
≤ ‖u‖A0 + ‖A1u‖A−1

0
+ ‖f ‖

A−1
0
.

Using (3.7) we deduce that

‖A1u‖4
A−1

0
= (

A−1
0 A1u,A1u

)2 ≤m3‖u‖‖u‖A0

∥∥A−1
0 A1u

∥∥∥∥A−1
0 A1u

∥∥
A0

≤ m3√
m1m2

‖u‖2
A0

1√
m1m2

∥∥A−1
0 A1u

∥∥2
A0

= m3

m1m2
‖u‖2

A0
‖A1u‖2

A−1
0
, (3.12)

which implies that

‖A1u‖A−1
0
≤

√
m3

m1m2
‖u‖A0 .

From (3.11) and the subsequent inequalities we deduce the following analogue of
the a priori estimate (3.3):

∫ T

0

(∥
∥u(t)

∥
∥2
A0
+

∥∥
∥∥B

du(t)

dt

∥∥
∥∥

2

A−1
0

)
dt ≤ C

(
‖u0‖2

B +
∫ T

0

∥
∥f (t)

∥
∥2
A−1

0
dt

)
, (3.13)

where C is a computable constant, which depends on T :

C ≤ 2e2C1T +
[

1+√2

(
1+

√
m3

m1m2

)
eC1T

]2

≤ C2e2C1T .
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We shall now derive a similar bound on the Sobolev seminorm of order 1/2 with
respect to the variable t . To this end, we shall use the Fourier series expansions

u(t)= a0

2
+
∞∑

j=1

aj cos
jπt

T
; u(t)=

∞∑

j=1

bj sin
jπt

T
, t ∈ (0, T ),

of u ∈ L2((0, T );H), where

aj = aj [u] = 2

T

∫ T

0
u
(
t ′
)

cos
jπt ′

T
dt ′ ∈H,

bj = bj [u] = 2

T

∫ T

0
u
(
t ′
)

sin
jπt ′

T
dt ′ ∈H,

and the integrals are to be understood in the sense of Bochner (see, Wloka [199],
p. 384). Direct calculations show that

∫ T

0

∥∥u(t)
∥∥2 dt = T

2

(
‖a0[u]‖2

2
+
∞∑

j=1

∥∥aj [u]
∥∥2

)

= T

2

∞∑

j=1

∥∥bj [u]
∥∥2
. (3.14)

An analogous result holds if the H norm ‖ · ‖ is replaced by an energy norm.
Let us multiply (3.6) by sin kπt/T and (formally) integrate the resulting equality

over t ∈ [0, T ]. Using the expansion

du(t)

dt
=−

∞∑

j=1

aj [u]jπ
T

sin
jπt

T

and the orthogonality of the sine functions in the above expansion over the interval
(0, T ), we deduce that

kπ

T
Bak[u] =A0bk[u] − bk[f ] +A1bk[u].

By taking the inner product in H of the resulting equality with ak[u] and summing
over k we get

π

T

∞∑

k=1

k
∥∥ak[u]

∥∥2
B
=
∞∑

k=1

[(
A0bk[u], ak[u]

)− (
bk[f ], ak[u]

)+ (
A1bk[u], ak[u]

)]

≤
∞∑

k=1

∥
∥bk[u]

∥
∥
A0

∥
∥ak[u]

∥
∥
A0
+ ∥

∥ak[u]
∥
∥
A0

∥
∥bk[f ]

∥
∥2
A−1

0

+
√

m3

m1m2

∥
∥bk[u]

∥
∥
A0

∥
∥ak[u]

∥
∥
A0

≤ 1

2

∞∑

k=1

[(
1+

√
m3

m1m2

)(∥∥bk[u]
∥∥2
A0
+ ∥∥ak[u]

∥∥2
A0

)
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+ ∥∥ak[u]
∥∥2
A0
+ ∥∥bk[f ]

∥∥2
A−1

0

]
.

Using (3.14), we deduce that

∞∑

k=1

k
∥∥ak[u]

∥∥2
B
≤ 1

π

∫ T

0

[(
3+ 2

√
m3

m1m2

)∥∥u(t)
∥∥2
A0
+ ∥∥f (t)

∥∥2
A−1

0

]
dt. (3.15)

Let us consider the expression

J1 :=
∫ T

−T

∫ T

−T
‖u(t)− u(t − s)‖2

B

|s|2 ds dt,

assuming that t �→ u(t) has been extended as an even function outside the interval
[0, T ]:

u(t)=

⎧
⎪⎪⎨

⎪⎪⎩

u(t) for t ∈ [0, T ],
u(−t) for t ∈ [−T ,0],
u(2T − t) for t ∈ [T ,2T ],
and so on.

Using the periodicity of t �→ u(t) and an expansion in cosines, we deduce that

J1 =
∫ T

−T

[∫ T

−T
(
u(t),−u(t + s)+ 2u(t)− u(t − s)

)
B

dt

]
ds

s2

=
∫ T

−T

∫ T

−T

(
a0[u]

2
+
∞∑

j=1

aj [u] cos
jπt

T
,

∞∑

k=1

ak[u]
(
− cos

kπ(t + s)

T

+ 2 cos
kπt

T
− cos

kπ(t − s)

T

))

B

dt
ds

s2

=
∫ T

−T

∫ T

−T

(
a0[u]

2
+
∞∑

j=1

aj [u] cos
jπt

T
,

∞∑

k=1

4ak[u] sin2 kπs

2T
cos

kπt

T

)

B

dt
ds

s2

= 4T
∞∑

k=1

∥∥ak[u]
∥∥2
B

∫ T

−T
sin2 kπs

2T

ds

s2
.

Furthermore,

∫ T

−T
sin2 kπs

2T

ds

s2
= 2

∫ T

0
sin2 kπs

2T

ds

s2
= kπ

T

∫ kπ/2

0

sin2 θ

θ2
dθ

≤ kπ

T

∫ ∞

0

sin2 θ

θ2
dθ = kπ2

2T
,
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which implies that

J1 ≤ 2π2
∞∑

k=1

k
∥∥ak[u]

∥∥2
B
. (3.16)

By noting (3.15), (3.16) and the obvious inequality

J2 :=
∫ T

0

∫ T

0

‖u(t)− u(t ′)‖2
B

|t − t ′|2 dt dt ′ ≤ 1

2
J1,

we get that

J2 ≤ π

∫ T

0

[(
3+m3 + 1

m1m2

)∥∥u(t)
∥∥2
A0
+ ∥∥f (t)

∥∥2
A−1

0

]
dt.

Hence, by (3.11), we obtain

∫ T

0

∫ T

0

‖u(t)− u(t ′)‖2
B

|t − t ′|2 dt dt ′ ≤ C

(
‖u0‖2

B +
∫ T

0

∥∥f (t)
∥∥2
A−1

0
dt

)
. (3.17)

Now, (3.11) and (3.17) imply that

∫ T

0

∥∥u(t)
∥∥2
A0

dt +
∫ T

0

∫ T

0

‖u(t)− u(t ′)‖2
B

|t − t ′|2 dt dt ′

≤ C

(
‖u0‖2

B +
∫ T

0

∥∥f (t)
∥∥2
A−1

0
dt

)
. (3.18)

When f (t)= dg(t)/dt , we obtain, in a similar way,

∫ T

0

∥∥u(t)
∥∥2
A0

dt +
∫ T

0

∫ T

0

‖u(t)− u(t ′)‖2
B

|t − t ′|2 dt dt ′

≤ C

[
‖u0‖2

B +
∫ T

0

∫ T

0

‖g(t)− g(t ′)‖2
B−1

|t − t ′|2 dt dt ′ (3.19)

+
∫ T

0

(
1

t
+ 1

T − t

)∥
∥g(t)

∥
∥2
B−1 dt

]
.

If, instead of (3.7), the following condition is assumed to hold:

∃m3 > 0 ∀u ∈D(A0)∩D(A1)∩D
(
A∗1

)
max

(‖A1u‖2,‖A∗1u‖2)≤m3(A0u,u),

where A∗1 is the adjoint of the linear operator A1, then one can derive similar bounds
in both stronger and weaker norms. For example,

∫ T

0

(∥∥A0u(t)
∥∥2
B−1 +

∥∥∥∥
du(t)

dt

∥∥∥∥

2

B

)
dt ≤ C

(
‖u0‖2

A0
+

∫ T

0

∥∥f (t)
∥∥2
B−1 dt

)
, (3.20)
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∫ T

0

(∥∥u(t)
∥∥2
B
+

∥∥∥∥A
−1
0 B

du(t)

dt

∥∥∥∥

2

B

)
dt

≤ C

(
‖Bu0‖2

A−1
0
+

∫ T

0

∥∥A−1
0 f (t)

∥∥2
B

dt

)
(3.21)

and
∫ T

0

∥∥u(t)
∥∥2
B

dt ≤ C

(∥∥Bu0 − g(0)
∥∥2
A−1

0
+

∫ T

0

∥∥g(t)
∥∥2
B−1 dt

)
. (3.22)

In all of these bounds C is a computable constant such that C ≤ C3e2C1T .
In particular, when the operator A is positive definite, we can take A0 = A,

A1 = 0 and m3 = C1 = 0, and the constants C in the inequalities (3.11)–(3.13),
and (3.17)–(3.22) are then independent of T , the length of the time interval [0, T ].

3.1.3 Application to Parabolic Partial Differential Equations

As an application of the abstract results discussed in the previous sections of
this chapter, we consider the existence and uniqueness of solutions to an initial-
boundary-value problem for the partial differential equation

∂u

∂t
+ P(x, t, ∂)u= f (x, t) in Ω × (0, T ], (3.23)

with

P(x, t, ∂)u :=
∑

0≤|α|,|β|≤k
(−1)|α|∂α

(
aαβ(x, t)∂

βu
)
, (3.24)

subject to the boundary conditions

∂mν u= 0 on ∂Ω × (0, T ], for 0≤m≤ k − 1, (3.25)

and the initial condition

u(x,0)= u0(x), x ∈Ω, (3.26)

where Ω is a Lipschitz domain in R
n. We shall suppose that the partial differential

operator P(x, t, ∂) satisfies the uniform ellipticity condition (2.2) with a positive
constant c̃ > 0, for all x ∈ Ω and t ∈ [0, T ]. Under these conditions, the partial
differential operator

∂

∂t
+ P(x, t, ∂)

is called uniformly parabolic. Suppose further that

aαβ(·, t) ∈ C(Ω) for |α| = |β| = k
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for each t ∈ [0, T ], and

aαβ ∈ L∞
(
Ω × (0, T )

)
for |α|, |β| ≤ k.

Then, by Theorem 2.4, there exist constants c0 > 0 and λ≥ 0 such that

a(t;v, v)+ λ‖v‖2
L2(Ω) ≥ c0‖v‖2

Wk
2 (Ω)

∀v ∈ W̊ k
2 (Ω), t ∈ [0, T ]. (3.27)

Furthermore, a straightforward application of the Cauchy–Schwarz inequality im-
plies the existence of a constant c1 > 0 such that

a(t;w,v)≤ c1‖w‖Wk
2 (Ω)‖v‖Wk

2 (Ω) ∀w,v ∈ W̊ k
2 (Ω), t ∈ [0, T ].

Thus, by Theorem 3.2 with V = W̊ k
2 (Ω) and H = L2(Ω), the parabolic initial-

boundary-value problem (3.23), (3.25), (3.26) has a unique solution

u ∈ L2
(
(0, T ); W̊ k

2 (Ω)
)
,

du

dt
∈ L2

(
(0, T );W−k2 (Ω)

)
,

provided that f ∈ L2((0, T );W−k2 (Ω)) and u0 ∈ L2(Ω).
For a second-order uniformly parabolic differential operator of the form

u �→ ∂u

∂t
−

n∑

i,j=1

∂

∂xj

(
aij (x, t)

∂u

∂xi

)

+
n∑

i=1

[
− ∂

∂xi

(
ai(x, t)u

)+ bi(x, t)
∂u

∂xi

]
+ c(x, t)u

the bilinear functional a(t; ·, ·) is given, for t ∈ [0, T ], by

a(t;w,v) :=
n∑

i,j=1

∫

Ω

aij (x, t)
∂w

∂xi

∂v

∂xj
dx +

n∑

i=1

ai(x, t)w
∂v

∂xi
dx

+
∫

Ω

bi(x, t)
∂w

∂xi
v dx +

∫

Ω

c(x, t)wv dx, w,v ∈ W̊ 1
2 (Ω).

In this case, Gårding’s inequality can be proved under relaxed smoothness hypothe-
ses on the coefficients in the principal part: the aij need not be continuous functions
of x on Ω ; it suffices to assume that aij ∈ L∞(Ω × (0, T )) for i, j = 1, . . . , n. To
be more precise, suppose that Ω ⊂ R

n is a Lipschitz domain, and let P(x, t, ∂) be
the second-order linear partial differential operator defined by (2.3) where aij , ai ,
bj ∈ L∞(Ω × (0, T )), i, j = 1, . . . , n, and c ∈ L∞(Ω × (0, T )) are such that, for
some c̃ > 0, the uniform ellipticity condition (2.4) holds. Then, according to Theo-
rem 2.5, there exist constants c0 > 0 and λ≥ 0 such that

a(t;v, v)+ λ‖v‖2
L2(Ω) ≥ c0‖v‖2

W 1
2 (Ω)

for a.e. t ∈ [0, T ] and all v ∈ W̊ 1
2 (Ω).
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Thus we deduce the existence of a unique solution u to the corresponding second-
order parabolic initial-boundary-value problem, with

u ∈ L2
(
(0, T ); W̊ 1

2 (Ω)
)
,

du

dt
∈ L2

(
(0, T );W−1

2 (Ω)
)
,

whenever f ∈ L2((0, T );W−1
2 (Ω)) and u0 ∈ L2(Ω).

In fact, by Remark 2.2 this statement holds under even weaker hypotheses on aij ,
ai and bi . In particular, it suffices to assume that

aij ∈ L∞
(
(0, T );M(

L2(Ω)→ L2(Ω)
))
, i, j = 1, . . . , n,

ai, bi ∈ L∞
(
(0, T );M(

W 1
2 (Ω)→ L2(Ω)

))
, i = 1, . . . , n,

c ∈ L∞
(
(0, T );M(

W 1
2 (Ω)→ Lp(Ω)

))
,

where p = 2n/(n+2) if n > 2; p > 1 (but arbitrarily close to 1) if n= 2; and p = 1
if n= 1.

We conclude this section with a brief comment on the physical implications of
Gårding’s inequality (3.27). Assuming that (3.27) holds for some constants c0 > 0
and λ≥ 0, it follows that the solution u to problem (P) satisfies the inequality

1

2

d

dt

∥∥u(·, t)∥∥2
L2(Ω)

+c0
∥∥u(·, t)∥∥2

Wk
2 (Ω)
≤ 〈

f (·, t), u(·, t)〉+λ∥∥u(·, t)∥∥2
L2(Ω)

. (3.28)

Bounding the first term on the right-hand side by

∣∣〈f (·, t), u(·, t)〉∣∣≤ 1

2c0

∥∥f (·, t)∥∥2
W−k2 (Ω)

+ c0

2

∥∥u(·, t)∥∥2
Wk

2 (Ω)
,

it follows that

d

dt

∥∥u(·, t)∥∥2
L2(Ω)

+ c0
∥∥u(·, t)∥∥2

Wk
2 (Ω)
≤ 1

c0

∥∥f (·, t)∥∥2
W−k2 (Ω)

+ 2λ
∥∥u(·, t)∥∥2

L2(Ω)
.

Now we multiply both sides of this inequality by e−2λt ; thus,

d

dt

(
e−2λt

∥∥u(·, t)∥∥2
L2(Ω)

)+ c0e−2λt
∥∥u(·, t)∥∥2

Wk
2 (Ω)
≤ 1

c0
e−2λt

∥∥f (·, t)∥∥2
W−k2 (Ω)

,

and thereby,

∥∥u(·, t)∥∥2
L2(Ω)

+ c0

∫ t

0
e2λ(t−s)∥∥u(·, s)∥∥2

Wk
2 (Ω)

ds

≤ e2λt‖u0‖2
L2(Ω) +

1

c0

∫ t

0
e2λ(t−s)∥∥f (·, s)∥∥2

W−k2 (Ω)
ds (3.29)

for all t ∈ (0, T ], which expresses the continuous dependence of the solution u on
the data u0 ∈ L2(Ω) and f ∈ L2((0, T );W−k2 (Ω)). Now suppose that, instead of
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c0 > 0, the slightly stronger hypothesis c0 > 2λ ≥ 0 is assumed to hold for the
constants c0 and λ in Gårding’s inequality. Then, bounding from below in (3.28) the
Wk

2 (Ω) norm of u by its L2(Ω) norm and following the same route as above, we
deduce that

∥
∥u(·, t)∥∥2

L2(Ω)
≤ e−2Kt‖u0‖2

L2(Ω) +
1

c0

∫ t

0
e−2K(t−s)∥∥f (·, s)∥∥2

W−k2 (Ω)
ds,

where K := 1
2c0 − λ. In particular when f = 0, which physically corresponds to

considering the evolution of the solution from the initial state u0 in the absence of
external forces (or heat sources, in the case of a second-order parabolic equation
modelling the diffusion of heat in Ω), we have that

∥∥u(·, t)∥∥2
L2(Ω)

≤ e−2Kt‖u0‖2
L2(Ω), t ≥ 0. (3.30)

In other words, the “energy” 1
2‖u(·, t)‖2

L2(Ω) is dissipated exponentially fast, and

the rate of dissipation depends on the (positive) difference 1
2c0 − λ.

In the next section we consider a class of two-level operator-difference schemes
for the numerical solution of parabolic equations.

3.1.4 Abstract Two-Level Operator-Difference Schemes

Let Hh be a finite-dimensional Hilbert space over the field of real numbers,
equipped with the inner product (·, ·)h and induced norm ‖ · ‖h := ‖ · ‖Hh . Sup-
pose further that [0, T ] is a bounded nonempty closed interval of the real line,
and let Ω

τ := {tm := mτ : m = 0,1, . . . ,M} be a uniform mesh on the interval
[0, T ] with mesh-size τ := T/M , where M is a positive integer. Let us define
Ωτ :=Ω

τ ∩ (0, T ), Ωτ− :=Ωτ ∪ {0} and Ωτ+ :=Ωτ ∪ {T }. The forward and back-
ward divided differences of a function U :Ωτ →Hh are defined by

D+t U := (Û −U)/τ, D−t U := (U − Ǔ)/τ,

respectively, where we have used the notation U := U(t), Û := U(t + τ), Ǔ :=
U(t − τ). We shall also write: Um :=U(tm)=U(mτ), m= 0,1, . . . ,M .

In this section we shall consider the following family of two-level operator-
difference schemes:

Bh

(
D+t U

)+AhU = F, t ∈Ωτ−; U(0)=U0. (3.31)

Here, F : Ωτ− → Hh and U0 ∈ Hh are given functions, U : Ωτ → Hh is the un-
known function, and Ah and Bh are selfadjoint linear operators that are positive
definite, uniformly with respect to h, on Hh; i.e. there exist positive constants ca
and cb , independent of h, such that (AhV,V )h ≥ ca‖V ‖2

h for all V ∈ Hh and
(BhV,V )h ≥ cb‖V ‖2

h for all V ∈Hh.
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Since Hh is a finite-dimensional Hilbert space, it is understood that all linear
operators under consideration are defined on the entire space Hh.

The purpose of this section is to investigate the stability of this class of schemes
by mimicking the formal arguments developed in the previous section for the partial
differential equation. To this end, we take the inner product of (3.31) with 2τD+t U =
2(Û −U) and use the identity

U = 1

2
(Û +U)− 1

2
τD+t U (3.32)

to obtain

2τ

((
Bh − 1

2
τAh

)
D+t U,D+t U

)

h

+ (AhÛ, Û)h

− (AhU,U)h = 2τ
(
F,D+t U

)
h
. (3.33)

Similarly, by taking the inner product of (3.31) with 2τ Û and using the identity
(3.32) and that

Û = 1

2
(Û +U)+ 1

2
τD+t U,

we obtain

(BhÛ, Û)h − (BhU,U)h + 1

2
τ
(
Ah(Û +U), Û +U

)
h

+ τ 2
((

Bh − 1

2
τAh

)
D+t U,D+t U

)

h

= 2τ(F, Û)h. (3.34)

Thus, in particular, when F = 0 and

Bh − 1

2
τAh ≥ 0, (3.35)

we obtain from (3.33) and (3.34) that

‖Û‖Ah
≤ ‖U‖Ah

, ‖Û‖Bh
≤ ‖U‖Bh

,

where ‖U‖Ah
and ‖U‖Bh

denote the energy norms ‖U‖Ah
:= (AhU,U)

1/2
h and

‖U‖Bh
:= (BhU,U)

1/2
h , respectively. Hence we deduce by induction that

∥∥Um
∥∥
Ah
≤ ∥∥U0

∥∥
Ah
,

∥∥Um
∥∥
Bh
≤ ‖U0‖Bh

. (3.36)

The inequalities (3.36) imply the stability of the homogeneous operator-difference
scheme

Bh

(
D+t U

)+AhU = 0, t ∈Ωτ−; U(0)=U0, (3.37)
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with respect to perturbations of the initial condition, in the energy norms ‖ · ‖Ah
and

‖·‖Bh
, the condition (3.35) being both necessary and sufficient for the stability of the

operator-difference scheme (3.37) (see, Samarskiı̆ [159], Sect. 6.2). More precisely,
the following statement holds (see Samarskiı̆ [159], p. 404).

Lemma 3.3 Suppose, as above, that Ah and Bh are linear selfadjoint positive def-
inite operators, uniformly with respect to h, on the real Hilbert space Hh. Suppose
further that Ah and Bh commute, i.e. AhBh = BhAh. Then, the condition (3.35)
is both necessary and sufficient for the stability of the operator-difference scheme
(3.31) in the norm ‖ · ‖Dh

, where Dh is an arbitrary linear selfadjoint positive def-
inite operator, uniformly with respect to h, on Hh that commutes with both Ah

and Bh.

The scheme (3.31) can be interpreted as a numerical approximation of the ab-
stract parabolic problem (3.6). Let us express (3.31) in the form

B̄h

(
D−t U

)+AhU = F̌ , t ∈Ωτ+; U(0)=U0, (3.38)

where B̄h := Bh − τAh. Assuming that the operator B̄h is positive definite on Hh,
uniformly with respect to h, we have that

‖F̌‖2
A−1
h

= ∥∥B̄h

(
D−t U

)+AhU
∥∥2
A−1
h

= ∥∥B̄h

(
D−t U

)∥∥2
A−1
h
+ ‖U‖2

Ah
+ 2

(
B̄h

(
D−t U

)
,U

)
h
.

As

2
(
B̄h

(
D−t U

)
,U

)
h
=D−t

(‖U‖2
Bh

)+ τ
∥∥D−t U

∥∥2
B̄h
,

we arrive at the following discrete analogue of Hadamard’s inequality (3.3):

τ
∑

t∈Ωτ+

(∥∥U(t)
∥∥2
Ah
+ ∥∥B̄h

(
D−t U(t)

)∥∥2
A−1
h

)≤ ∥∥U0
∥∥2
B̄h
+ τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
A−1
h
. (3.39)

From (3.39), proceeding in the same way as in the ‘continuous’ case in the previous
section, we deduce that

τ
∑

t∈Ωτ+

(∥∥AhU(t)
∥∥2
B̄−1
h
+ ∥∥D−t U(t)

∥∥2
B̄h

)≤ ∥∥U0
∥∥2
Ah
+ τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
B̄−1
h

(3.40)

and

τ
∑

t∈Ωτ+

(∥∥U(t)
∥∥2
B̄h
+ ∥∥A−1

h B̄h

(
D−t U(t)

)∥∥2
B̄h

)

≤ ∥∥B̄hU
0
∥∥2
A−1
h
+ τ

∑

t∈Ωτ−

∥∥A−1
h F (t)

∥∥2
B̄h
. (3.41)
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The requirement that Ah is selfadjoint and positive definite, uniformly with re-
spect to h, can be weakened in the same way as in the ‘continuous’ case. Suppose
that in (3.38) B̄h is a selfadjoint linear operator that is positive definite, uniformly
with respect to h, on Hh; suppose further that Ah = A0h + A1h, where A0h is a
selfadjoint positive definite linear operator, uniformly with respect to h, on Hh, and
that

(B̄hU,U)h ≥m1‖U‖2
h, (A0hU,U)h ≥m2(B̄hU,U)h,

(A1hU,V )
2
h ≤m3‖U‖h‖U‖A0h‖V ‖h‖V ‖A0h, mi > 0, i = 1,2,3.

(3.42)

By taking the inner product of equation (3.38) with 2U we have that

D−t
(‖U‖2

B̄h

)+ τ
∥∥D−t U

∥∥2
B̄h
+ 2‖U‖2

A0h

= 2(U, F̌ )h − 2(A1hU,U)h

≤ 2‖U‖A0h‖F̌‖A−1
0h
+ 2
√
m3‖U‖A0h

1√
m1
‖U‖B̄h

≤ ‖U‖2
A0h
+ 2‖F̌‖2

A−1
0h
+ 2C1‖U‖2

B̄h
, C1 =m3/m1.

Let us suppose that τ < 1/(2C1), and multiply the inequality above by ϕ(t − τ),
where

ϕ(t) := (1− 2C1τ)
t/τ .

After simple rearrangements we thus obtain for t ≥ τ that

D−t
(
ϕ(t)

∥∥U(t)
∥∥2
B̄h

)+ ϕ(t − τ)
∥∥U(t)

∥∥2
A0h
≤ 2ϕ(t − τ)

∥∥F(t − τ)
∥∥2
A−1

0h
.

Summing over the points of the mesh Ωτ+ and noting that

(1− 2C1τ)
T/τ = ϕ(T )≤ ϕ(t)≤ ϕ(0)= 1 for 0≤ t ≤ T ,

we obtain

τ
∑

t∈Ωτ+

∥∥U(t)
∥∥2
A0h
≤ (1− 2C1τ)

−T/τ
(∥∥U0

∥∥2
B̄h
+ 2τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
A−1

0h

)
. (3.43)

Now, (3.38) and (3.42) imply that

∥∥B̄h

(
D−t U

)∥∥
A−1

0h
= ∥∥−A0hU −A1hU + F̌

∥∥
A−1

0h

≤
(

1+
√

m3

m1m2

)
‖U‖A0h + ‖F̌‖A−1

0h
,
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which, on noting (3.43), implies that

τ
∑

t∈Ωτ+

(∥∥U(t)
∥∥2
A0h
+ ∥∥B̄h

(
D−t U

)∥∥
A−1

0h

)

≤ C

(∥∥U0
∥∥2
B̄h
+ τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
A−1

0h

)
, (3.44)

where C is a computable constant that depends on T and is defined by C := C2(1−
2C1τ)

−T/τ < C2eC3T .
By using Fourier series, as in Sect. 3.1.2, we obtain the following analogue of

the inequality (3.17):

τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

∥∥U(t)−U(t ′)
∥∥2
B̄h

|t − t ′|2

≤ C

(∥∥U0
∥∥2
B̄h
+ τ

∥∥U0
∥∥2
A0h
+ τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
A−1

0h

)
.

Combining this with (3.44), we deduce that

τ
∑

t∈Ωτ+

∥∥U(t)
∥∥2
A0h
+ τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖U(t)−U(t ′)‖2
B̄h

|t − t ′|2

≤ C

(∥∥U0
∥∥2
B̄h
+ τ

∥∥U0
∥∥2
A0h
+ τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
A−1

0h

)
. (3.45)

Similarly, in the case of F(t)=D+t G we obtain

τ
∑

t∈Ωτ+

∥∥U(t)
∥∥2
A0h
+ τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖U(t)−U(t ′)‖2
B̄h

|t − t ′|2

≤ C

[∥∥U0
∥∥2
B̄h
+ τ

∥∥U0
∥∥2
A0h
+ τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖G(t)−G(t ′)‖2
B̄−1
h

|t − t ′|2

+ τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥∥G(t)
∥∥2
B̄−1
h

]
. (3.46)

Under our assumptions on the linear operator Ah =A0h +A1h, the a priori esti-
mates (3.45) and (3.46) also hold for the difference scheme (3.31), provided that we
take B̄h := Bh − τA0h. If the original linear operator Bh is selfadjoint and positive
definite on Hh, uniformly with respect to h, i.e. there exists an m4 > 0, independent
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of h, such that (BhU,U)h ≥m4‖U‖2
h for all U ∈Hh, then the same is true of B̄h,

provided that τ < m4/‖A0h‖, where ‖A0h‖ := supU∈Hh ‖A0hU‖h/‖U‖h denotes
the usual operator norm of A0h.

If, instead of (3.42), the following stronger condition is assumed:

∃m3 > 0 ∀U ∈Hh max
(‖A1hU‖h,‖A∗1hU‖h

)≤m3(A0hU,U)h,

then, similarly as in the ‘continuous’ case, the following a priori estimates can be
shown to hold:

τ
∑

t∈Ωτ+

(∥∥A0hU(t)
∥∥2
B̄−1
h
+ ∥∥D−t U(t)

∥∥2
B̄h

)

≤ C

(∥∥U0
∥∥2
A0h
+ τ

∑

t∈Ωτ−

∥∥F(t)
∥∥2
B̄−1
h

)
, (3.47)

τ
∑

t∈Ωτ+

(∥∥U(t)
∥∥2
B̄h
+ ∥∥A−1

0h B̄h

(
D−t U(t)

)∥∥2
B̄h

)

≤ C

(∥∥B̄hU
0
∥∥2
A−1

0h
+ τ

∑

t∈Ωτ−

∥∥A−1
0h F (t)

∥∥2
B̄h

)
(3.48)

and

τ
∑

t∈Ωτ+

∥∥U(t)
∥∥2
B̄h
≤ C

(∥∥B̄hU
0 −G(0)

∥∥2
A−1

0h
+ τ

∑

t∈Ωτ+

∥∥G(t)
∥∥2
B̄−1
h

)
. (3.49)

In the a priori estimates (3.45)–(3.49), C signifies a generic computable positive
constant of the form C4(1− 2C1τ)

−T/τ < C4eC3T .
In the next section we shall consider some simple finite difference schemes for

the numerical solution of parabolic initial-boundary-value problems. In order to sim-
plify the presentation we shall begin by discussing the simplest parabolic equation,

∂u

∂t
− ∂2u

∂x2
= f (x, t),

the heat equation in one space dimension. We shall then consider multidimensional
parabolic equations with nonsmooth coefficients.

3.2 Classical Difference Schemes for the Heat Equation

This section surveys some classical results concerning standard finite difference ap-
proximations of the heat equation in one space dimension. We shall assume for the
time being that the solution to the initial-boundary-value problem under considera-
tion possesses a sufficient number of continuous and bounded partial derivatives on
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the space-time domain (0,1)× (0, T ]. In Sect. 3.3 we shall then relax the excessive
regularity requirements on the solution, and in Sect. 3.4 we shall extend these results
to second-order parabolic equations with variable coefficients.

3.2.1 Explicit and Implicit Schemes

Our first model problem concerns the heat equation in one space dimension. Let
Q=Ω × (0, T ], where Ω = (0,1), T > 0: find u= u(x, t) such that

∂u

∂t
= ∂2u

∂x2
+ f (x, t), x ∈ (0,1), t ∈ (0, T ],

u(0, t)= 0, u(1, t)= 0, t ∈ (0, T ], (3.50)

u(x,0)= u0(x), x ∈ [0,1].
Physically u(x, t) represents the temperature of a rod of unit length at the point
x at time t , which has temperature u0(x) at time 0; it is kept at zero temperate
at its endpoints, x = 0 and x = 1, and is subject to external heat sources whose
distribution in space and time is described by the function f .

We shall discuss two simple schemes for the numerical solution of (3.50).
Both schemes involve the same discretization of ∂2u/∂x2; however, while the first
scheme (called the explicit scheme) includes a forward difference in t to approxi-
mate ∂u/∂t , the second (called the implicit scheme) uses a backward difference in t .
It will be assumed that u0 is compatible with the homogeneous Dirichlet boundary
conditions at x = 0 and x = 1, i.e. u0(0)= 0 and u0(1)= 0.

3.2.1.1 The Explicit Scheme

We begin by constructing a mesh on the rectangle Q= [0,1]×[0, T ]. Let h := 1/N
be the mesh-size in the x-direction and τ := T/M the mesh-size in the t-direction;
here N and M are two integers, N ≥ 2, M ≥ 1. We define the uniform ‘space-time
mesh’ Q

τ

h on Q by

Q
τ

h :=Ω
h ×Ω

τ = {
(xj , tm) : 0≤ j ≤N; 0≤m≤M

}
,

where the ‘temporal mesh’

Ω
τ := {tm :=mτ : 0≤m≤M} =Ωτ ∪ {0, T }

has been introduced in Sect. 3.1.4, and the ‘spatial mesh’

Ω
h := {xj := jh : 0≤ j ≤N} =Ωh ∪ {0,1}
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Fig. 3.1 Four-point stencil of the explicit scheme

has been defined in Sect. 2.2.1. On Q
τ

h we approximate (3.50) by the following finite
difference scheme: find Um

j , j = 0, . . . ,N , m= 0, . . . ,M , such that

D+t Um
j =D+x D−x Um

j + f (xj , tm),

j = 1, . . . ,N − 1, m= 0, . . . ,M − 1,

Um
0 = 0, Um

N = 0, m= 1, . . . ,M,

U0
j = u0(xj ), j = 0, . . . ,N,

(3.51)

where Um
j represents the numerical approximation of u(xj , tm), the value of the

analytical solution u at the mesh-point (xj , tm), D
+
t U

m
j is the forward divided dif-

ference in the t-direction and D+x D−x Um
j is the second divided (central) difference

in the x-direction. Clearly, (3.51) is a four-point difference scheme involving the
values of U at the mesh-points

(xj−1, tm), (xj , tm), (xj+1, tm), (xj , tm+1),

shown in Fig. 3.1. The scheme (3.51) is applied as follows. First we set m= 0. Since
U0
j−1, U0

j , U0
j+1 are specified by the initial condition U0

j = u0(xj ), j = 0, . . . ,N ,

the values U1
j , j = 0, . . . ,N , can be computed from (3.51):

U1
j = U0

j +
τ

h2

(
U0
j+1 − 2U0

j +U0
j−1

)+ τf (xj , t0), j = 1, . . . ,N − 1,

U1
0 = 0, U1

N = 0.

Suppose that we have already calculated Um
j , j = 0, . . . ,N , the values of U at

the time level tm =mτ . The values of U on the next time level tm+1 = (m+1)τ can
be obtained from (3.51) by rewriting it as

Um+1
j =Um

j +
τ

h2

(
Um
j+1 − 2Um

j +Um
j−1

)+ τf (xj , tm),

j = 1, . . . ,N − 1,



266 3 Finite Difference Approximation of Parabolic Problems

Um+1
0 = 0, Um+1

N = 0,

for any m, 0≤m≤M − 1.
Clearly, the values of U at t = tm+1 can be calculated explicitly from those of

Um :=U |t=tm and the data; hence the name explicit scheme.

3.2.1.2 The Implicit Scheme

Alternatively, one can approximate the time derivative by a backward difference,
which gives rise to the following implicit scheme: find Um

j , j = 0, . . . ,N , m =
0, . . . ,M , such that

D−t Um+1
j =D+x D−x Um+1

j + f (xj , tm+1),

j = 1, . . . ,N − 1, m= 0, . . . ,M − 1,

Um+1
0 = 0, Um+1

N = 0, m= 0, . . . ,M − 1,

U0
j = u0(xj ), j = 0, . . . ,N,

(3.52)

where Um
j represents the approximation of u(xj , tm), the value of u at the mesh-

point (xj , tm). Unlike the explicit scheme in which the data and the values of the
approximate solution U at the previous time level provide an explicit expression for
the values of U at the next time level, the implicit scheme necessitates the solution
of a system of linear equations on each time level to determine the values of U
at the mesh-points on that time level. More precisely, (3.52) can be rewritten as
follows:

− τ

h2
Um+1
j+1 +

(
2τ

h2
+ 1

)
Um+1
j − τ

h2
Um+1
j−1 =Um

j + τf (xj , tm+1),

j = 1, . . . ,N − 1,

Um+1
0 = 0, Um+1

N = 0,

(3.53)

for m= 0, . . . ,M − 1.
This is, again, a four-point finite difference scheme, but it now involves the values

of U at the mesh-points

(xj−1, tm+1), (xj , tm+1), (xj+1, tm+1), (xj , tm),

shown in Fig. 3.2. The implicit scheme (3.53) is implemented as follows. First we set
m= 0; then, (3.53) is a system of linear equations with a tridiagonal matrix, and the
right-hand side of the linear system can be computed from the initial datum U0

j =
u0(xj ) and the source term f (xj , t1). Suppose that we have already computed Um

j ,
j = 1, . . . ,N − 1, the values of U on the mth time level, 0 ≤ m <M . The values
Um+1
j , j = 0, . . . ,N , of U on the next, (m+ 1)st, time level are then obtained by
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Fig. 3.2 Four-point stencil of the implicit scheme

solving the system of linear equations (3.53), which can be accomplished efficiently,
in O(N) operations, using a simplified form of Gaussian elimination, called the
Thomas algorithm (see, for example, Süli and Mayers, Sect. 3.3).

3.2.2 Stability of Explicit and Implicit Schemes

We shall explore the stability of the schemes (3.51) and (3.52) simultaneously,
by embedding them into the following one-parameter family of finite difference
schemes, called the θ -scheme: find Um

j , j = 0, . . . ,N , m= 0, . . . ,M , such that

D+t Um
j =D+x D−x

[
θUm+1

j + (1− θ)Um
j

]+ f (xj , tm+θ ),

j = 1, . . . ,N − 1, m= 0, . . . ,M − 1,

Um
0 = 0, Um

N = 0, m= 0, . . . ,M,

U0
j = u0(xj ), j = 0, . . . ,N,

(3.54)

where 0≤ θ ≤ 1 and tm+θ = tm + θτ = (m+ θ)τ . The most relevant special cases
of this are θ = 0 (the explicit scheme, also called the explicit Euler scheme), θ = 1
(the implicit scheme, also called the implicit Euler scheme), and θ = 1/2, referred
to as the Crank–Nicolson scheme.

Let us consider the inner product

(V ,W)h :=
N−1∑

j=1

hVjWj

and the associated norm

‖V ‖h := (V ,V )
1/2
h .
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By taking the inner product of (3.54) with

Um+θ := θUm+1 + (1− θ)Um,

we get

(
Um+1 −Um

τ
,Um+θ

)

h

− (
D+x D−x Um+θ ,Um+θ )

h
= (

f m+θ ,Um+θ )
h
,

where f m+θ
j = f m+θ (xj )= f (xj , tm+θ ). Let, as in Sect. 2.2.2.1,

|[V ‖h :=
(
N−1∑

j=0

h|Vj |2
)1/2

.

By noting that Um+θ
0 = 0, Um+θ

N = 0, it is easily seen using summation by parts that

−(D+x D−x Um+θ ,Um+θ )
h
= ∣

∣[D+x Um+θ∥∥2
h
.

Thus,

(
Um+1 −Um

τ
,Um+θ

)

h

+ ∣∣[D+x Um+θ∥∥2
h
= (

f m+θ ,Um+θ )
h
.

Since

Um+θ = τ

(
θ − 1

2

)
Um+1 −Um

τ
+ Um+1 +Um

2
,

it follows that

τ

(
θ − 1

2

)∥∥∥∥
Um+1 −Um

τ

∥∥∥∥

2

h

+ ‖U
m+1‖2

h − ‖Um‖2
h

2τ

+ ∣∣[D+x Um+θ∥∥2
h
= (

fm+θ ,Um+θ )
h
. (3.55)

Suppose that θ ∈ [1/2,1]; then

θ − 1

2
≥ 0, (3.56)

and therefore

‖Um+1‖2
h − ‖Um‖2

h

2τ
+ ∣

∣[D+x Um+θ∥∥2
h
≤ (

f m+θ ,Um+θ )
h

≤ ∥∥f m+θ∥∥
h

∥∥Um+θ∥∥
h
.
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According to the discrete Friedrichs inequality (2.24),

∥∥Um+θ∥∥2
h
≤ 1

8

∣∣[D+x Um+θ∥∥2
h
,

and therefore

‖Um+1‖2
h − ‖Um‖2

h

2τ
+ 8

∥∥Um+θ∥∥2
h
≤ 1

32

∥∥f m+θ∥∥2
h
+ 8

∥∥Um+θ∥∥2
h
,

so that
∥∥Um+1

∥∥2
h
≤ ∥∥Um

∥∥2
h
+ τ

16

∥∥f m+θ∥∥2
h
.

Summing the last inequality through m= 0, . . . , k− 1 yields

∥∥Uk
∥∥2
h
≤ ∥∥U0

∥∥2
h
+ τ

16

k−1∑

m=0

∥∥f m+θ∥∥2
h
, (3.57)

for all k, 1≤ k ≤M .
The inequality (3.57) can be seen as the discrete version of (3.29), when λ= 0.

If follows from (3.57) that

max
1≤k≤M

∥∥Uk
∥∥2
h
≤ ∥∥U0

∥∥2
h
+ τ

16

M−1∑

m=0

∥∥f m+θ∥∥2
h
,

and therefore

max
1≤k≤M

∥∥Uk
∥∥
h
≤

(
∥∥U0

∥∥2
h
+ τ

16

M−1∑

m=0

∥∥f m+θ∥∥2
h

)1/2

, (3.58)

which expresses the stability of the finite difference scheme (3.54): the continuous
dependence of the solution of the scheme on the initial datum and the right-hand
side, uniformly in the discretization parameters h and τ .

Thus we have proved that for θ ∈ [1/2,1] the scheme (3.54) is stable without
any limitations on the time step τ in terms of h. In other words, the scheme (3.54)
is unconditionally stable for θ ∈ [1/2,1].

Let us now consider the case θ ∈ [0,1/2). First suppose that f = 0. Then, ac-
cording to (3.55),

‖Um+1‖2
h − ‖Um‖2

h

2τ
+ ∣∣[D+x Um+θ∥∥2

h
= τ

(
1

2
− θ

)∥∥∥∥
Um+1 −Um

τ

∥∥∥∥

2

h

. (3.59)

By (3.54) and our assumption that f = 0, it follows that

Um+1 −Um

τ
=D+x D−x Um+θ .



270 3 Finite Difference Approximation of Parabolic Problems

Moreover, a simple calculation based on the inequality (a− b)2 ≤ 2a2+ 2b2 shows
that

∥
∥D+x D−x Um+θ∥∥2

h
≤ 4

h2

∣
∣[D+x Um+θ∥∥2

h
. (3.60)

Thus, (3.59) implies that

‖Um+1‖2
h − ‖Um‖2

h

2τ
+ ∣

∣[D+x Um+θ∥∥2
h
≤ 4τ

h2

(
1

2
− θ

)∣
∣[D+x Um+θ∥∥2

h
,

and therefore

‖Um+1‖2
h − ‖Um‖2

h

2τ
+

[
1− 2τ(1− 2θ)

h2

]∣∣[D+x Um+θ∥∥2
h
≤ 0.

Let us assume that

τ ≤ h2

2(1− 2θ)
, θ ∈ [0,1/2); (3.61)

then
∥∥Um+1

∥∥2
h
≤ ∥∥Um

∥∥2
h
, m= 0, . . . ,M − 1,

and hence,

max
1≤k≤M

∥∥Uk
∥∥
h
≤ ∥∥U0

∥∥
h
.

Thus we have shown that for θ ∈ [0,1/2) the scheme (3.54) is stable, provided that
(3.61) holds; in other words, for θ ∈ [0,1/2) the scheme is conditionally stable, the
condition being (3.61) (when f = 0).

We shall suppose again that θ ∈ [0,1/2), but will now consider the case when f

is not identically zero. We shall prove that the finite difference scheme (3.54) is still
only conditionally stable, and, in particular, that the explicit scheme, corresponding
to θ = 0, is conditionally stable.

According to (3.55), we have that

‖Um+1‖2
h − ‖Um‖2

h

2τ
+ ∣∣[D+x Um+θ∥∥2

h
≤ ∥∥f m+θ∥∥

h

∥∥Um+θ∥∥
h

+ τ

(
1

2
− θ

)∥∥∥∥
Um+1 −Um

τ

∥∥∥∥

2

h

. (3.62)

By (3.54), for any ε ∈ (0,1),

∥
∥∥∥
Um+1 −Um

τ

∥
∥∥∥

2

h

= ∥∥D+x D−x Um+θ + f m+θ∥∥2
h
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≤ (∥∥D+x D−x Um+θ∥∥
h
+ ∥∥f m+θ∥∥

h

)2

≤ (1+ ε)
∥
∥D+x D−x Um+θ∥∥2

h
+ (

1+ ε−1)∥∥f m+θ∥∥2
h

≤ (1+ ε)
4

h2

∣∣[D+x Um+θ∥∥2
h
+ (

1+ ε−1)∥∥fm+θ∥∥2
h
,

where (3.60) was used in the last line. Substituting this into (3.62), we deduce that

‖Um+1‖2
h − ‖Um‖2

h

2τ
+

[
1− τ

(
1

2
− θ

)
4(1+ ε)

h2

]∣
∣[D+x Um+θ∥∥2

h

≤ ∥∥f m+θ∥∥
h

∥∥Um+θ∥∥
h
+ τ

(
1

2
− θ

)(
1+ ε−1)∥∥f m+θ∥∥2

h
. (3.63)

By applying the discrete Friedrichs inequality (2.24) according to which

∥∥Um+θ∥∥2
h
≤ 1

8

∣∣[D+x Um+θ∥∥2
h
,

we have that

∥
∥fm+θ∥∥

h

∥
∥Um+θ∥∥

h
≤ 1

32ε2

∥
∥f m+θ∥∥2

h
+ 8ε2

∥
∥Um+θ∥∥2

h

≤ 1

32ε2

∥∥f m+θ∥∥2
h
+ ε2

∣∣[D+x Um+θ∥∥2
h
. (3.64)

By inserting (3.64) into (3.63) we then deduce that

‖Um+1‖2
h − ‖Um‖2

h

2τ
+

[
1− τ

2(1− 2θ)(1+ ε)

h2
− ε2

]∣
∣[D+x Um+θ∥∥2

h

≤ 1

32ε2

∥∥fm+θ∥∥2
h
+ τ

(
1

2
− θ

)(
1+ ε−1)∥∥f m+θ∥∥2

h
.

Let us suppose that

τ ≤ h2

2(1− 2θ)
(1− ε), θ ∈ [0,1/2), ε ∈ (0,1), (3.65)

where ε is a fixed real number. Then,

1− τ
2(1− 2θ)(1+ ε)

h2
− ε2 ≥ 0,

and therefore

∥∥Um+1
∥∥2
h
≤ ∥∥Um

∥∥2
h
+ τ

16ε2

∥∥fm+θ∥∥2
h
+ τ 2(1− 2θ)

(
1+ ε−1)∥∥fm+θ∥∥2

h
.
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By letting cε := 1/(16ε2)+ T (1− 2θ)(1+ ε−1), after summation through m this
implies that

max
1≤k≤M

∥∥Uk
∥∥2
h
≤ ∥∥U0

∥∥2
h
+ cε

M−1∑

m=0

τ
∥∥f m+θ∥∥2

h
.

We take the square root of both sides to deduce that for θ ∈ [0,1/2) the scheme
(3.54) is conditionally stable in the sense that

max
1≤k≤M

∥∥Uk
∥∥
h
≤

(
∥∥U0

∥∥2
h
+ cε

M−1∑

m=0

τ
∥∥f m+θ∥∥2

h

)1/2

, (3.66)

provided that the condition (3.65) is satisfied.
To summarize, when θ ∈ [1/2,1], the difference scheme (3.54) is uncondition-

ally stable. In particular the implicit Euler scheme corresponding to θ = 1 and the
Crank–Nicolson scheme corresponding to θ = 1/2 are both unconditionally sta-
ble, and (3.58) holds. When θ ∈ [0,1/2), the scheme (3.54) is conditionally stable,
subject to the time step limitation (3.65). In particular the explicit Euler scheme
corresponding to θ = 0 is only conditionally stable.

We close this section with a brief discussion about the connection between the
“abstract” stability condition (3.35), the condition (3.56) (which in the case of the
pure initial-value problem du

dt = λu, u(0)= 1, λ < 0, guarantees the A-stability of
the θ -scheme; cf. Süli and Mayers [172], for example,) and the requirement (3.61),
which guarantees the conditional stability of the θ -scheme for the one-dimensional
heat equation in the case of f = 0. The scheme (3.54) can be rewritten in the canon-

ical form (3.31), where Hh = Sh
0 is the set of all mesh-functions defined on Ω

h
and

equal to 0 on Ω
h \Ωh,

AhV :=ΛV =
{
−D+x D−x V for x ∈Ωh,

0 for x ∈Ωh \Ωh,

and

Bh := Ih +
(
θ − 1

2

)
τΛ,

where Ih is the identity operator on Sh
0 . The operator Λ is linear, selfadjoint and

positive definite on Sh
0 , uniformly with respect to h, and (cf. (2.18), (2.22)) we have

that

8‖V ‖2
h ≤ (ΛV,V )h <

4

h2
‖V ‖2

h, i.e. 8Ih ≤Λ<
4

h2
Ih.

Thus, when θ ≥ 1/2 the condition (3.35) is trivially satisfied. When θ < 1/2, we
have that

Ih +
(
θ − 1

2

)
τΛ>

[
1−

(
1

2
− θ

)
4τ

h2

]
Ih ≥ 0,

provided that the condition (3.61) holds.
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3.2.3 Error Analysis of Difference Schemes for the Heat Equation

In this section we investigate the accuracy of the finite difference scheme (3.54) for
the numerical solution of the initial-boundary-value problem (3.50).

We define the truncation error of the scheme (3.54) by

ϕm+θj := D+t u(xj , tm)

−D+x D−x
[
θu(xj , tm+1)+ (1− θ)u(xj , tm)

]− f (xj , tm+θ ),

for j = 1, . . . ,N − 1, m= 0, . . . ,M − 1, and the global error of the scheme by

emj := u(xj , tm)−Um
j ,

for j = 0, . . . ,N , m = 0, . . . ,M . It is easily seen that emj satisfies the following
finite difference scheme:

D+t emj −D+x D−x
[
θem+1

j + (1− θ)emj
]= ϕm+θj ,

{
j = 1, . . . ,N − 1,
m= 0, . . . ,M − 1.

em0 = 0, emN = 0, m= 0, . . . ,M,

e0
j = 0, j = 0, . . . ,N.

Thanks to the stability results proved in the previous section,

max
1≤m≤M

∥∥um −Um
∥∥
h
≤

(
τ

16

M−1∑

k=0

∥∥ϕk+θ
∥∥2
h

)1/2

, θ ∈ [1/2,1], (3.67)

by (3.58). Also, by (3.66),

max
1≤m≤M

∥∥um −Um
∥∥
h
≤

(

cετ

M−1∑

k=0

∥∥ϕk+θ
∥∥2
h

)1/2

, θ ∈ [0,1/2), (3.68)

provided that (3.65) holds. In either case we have to estimate ‖ϕm+θ‖h in or-
der to complete the error analysis. By recalling the differential equation ∂u/∂t =
∂2u/∂x2 + f satisfied by u, we deduce that ϕm+θj can be written as

ϕm+θj =
[
u(xj , tm+1)− u(xj , tm)

τ
− ∂u

∂t
(xj , tm+θ )

]

+
[
∂2u

∂x2
(xj , tm+θ )−D+x D−x

(
θu(xj , tm+1)+ (1− θ)u(xj , tm)

)]
.

(3.69)

In order to estimate the size of the truncation error, ϕm+θj , we expand it in a Taylor
series about the point (xj , tm+1/2), assuming that u is sufficiently smooth. To this
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end, we begin by noting that

um+1
j =

[
u+ 1

2
τ
∂u

∂t
+ 1

2

(
τ

2

)2
∂2u

∂t2
+ 1

6

(
τ

2

)3
∂3u

∂t3
+ · · ·

]m+1/2

j

,

umj =
[
u− 1

2
τ
∂u

∂t
+ 1

2

(
τ

2

)2
∂2u

∂t2
− 1

6

(
τ

2

)3
∂3u

∂t3
+ · · ·

]m+1/2

j

.

By subtracting the second of these expansions from the first we obtain

u(xj , tm+1)− u(xj , tm)

τ
=

[
∂u

∂t
+ 1

24
τ 2 ∂

3u

∂t3
+ · · ·

]m+1/2

j

. (3.70)

Also, since

D+x D−x u(xj , tm+1)=
[
∂2u

∂x2
+ 1

12
h2 ∂

4u

∂x4
+ 2

6!h
4 ∂

6u

∂x6
+ · · ·

]m+1

j

,

by expanding the right-hand side about the point (xj , tm+1/2) yields that

D+x D−x u(xj , tm+1) =
[
∂2u

∂x2
+ 1

12
h2 ∂

4u

∂x4
+ 2

6!h
4 ∂

6u

∂x6
+ · · ·

]m+1/2

j

+ τ

2

[
∂3u

∂x2∂t
+ 1

12
h2 ∂5u

∂x4∂t
+ · · ·

]m+1/2

j

+ 1

2

(
τ

2

)2[
∂4u

∂x2∂t2
+ · · ·

]m+1/2

j

.

There is a similar expansion for D+x D−x u(xj , tm). Combining these gives

D+x D−x
[
θu(xj , tm+1)+ (1− θ)u(xj , tm)

]

=
[
∂2u

∂x2
+ 1

12
h2 ∂

4u

∂x4
+ 2

6!h
4 ∂

6u

∂x6
+ · · ·

]m+1/2

j

+
(
θ − 1

2

)
τ

[
∂3u

∂x2∂t
+ 1

12
h2 ∂5u

∂x4∂t
+ · · ·

]m+1/2

j

+ 1

8
τ 2

[
∂4u

∂x2∂t2
+ · · ·

]m+1/2

j

. (3.71)
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We also require the following Taylor expansions:

∂u

∂t
(xj , tm+θ ) =

[
∂u

∂t
+

(
θ − 1

2

)
τ
∂2u

∂t2

+
(
θ − 1

2

)2
τ 2

2

∂3u

∂t3
+ · · ·

]m+1/2

j

, (3.72)

∂2u

∂x2
(xj , tm+θ ) =

[
∂2u

∂x2
+

(
θ − 1

2

)
τ

∂3u

∂t∂x2

+
(
θ − 1

2

)2
τ 2

2

∂4u

∂t2∂x2
+ · · ·

]m+1/2

j

. (3.73)

Substituting (3.70)–(3.73) into (3.69) yields that

ϕm+θj =
[(

1

2
− θ

)
τ
∂2u

∂t2
− h2

12

∂4u

∂x4

]m+1/2

j

+ τ 2

2

[(
−θ2 + θ − 1

6

)
∂3u

∂t3
+ (

θ2 − θ
) ∂4u

∂t2∂x2

]m+1/2

j

+ τh2

12

(
1

2
− θ

)
∂5u

∂t∂x4

∣∣∣∣

m+1/2

j

− h4

360

∂6u

∂x6

∣∣∣∣

m+1/2

j

+ · · · .

Hence,

∣∣ϕm+θj

∣∣ ≤ h2

12
M4x + τ 2

24
(M3t + 3M2x2t )+H.O.T., θ = 1

2
, (3.74)

∣∣ϕm+θj

∣∣ ≤ h2

12
M4x +

∣∣∣∣
1

2
− θ

∣∣∣∣τM2t +H.O.T., θ 	= 1

2
, (3.75)

with

Mkxlt := max
(x,t)∈Q

∣∣
∣∣
∂k+l

∂xk∂t l
u(x, t)

∣∣
∣∣,

Mkx :=Mkx0t , Mlt :=M0xlt , and we assume that M4x , M3t , M2x2t and M2t are
finite. H.O.T. signifies terms of higher order than h2 and τ 2, and h2 and τ , respec-
tively. Substituting (3.74) into (3.67) and (3.75) into (3.67) or (3.68), and absorbing
terms of higher order into lower order terms and altering the constants if necessary,
we obtain the following error bounds:

max
1≤m≤M

∥
∥um −Um

∥
∥
h
≤ C1

(
h2 + τ 2), θ = 1

2
, (3.76)
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where C1 is a positive constant, independent of h and τ ;

max
1≤m≤M

∥∥um −Um
∥∥
h
≤ C2

(
h2 + τ

)
, θ ∈ (1/2,1], (3.77)

where C2 is a positive constant, independent of h and τ . Moreover,

max
1≤m≤M

∥∥um −Um
∥∥
h
≤ C3

(
h2 + τ

)
, θ ∈ [0,1/2), (3.78)

where C3 = (cε)
1/2C2, provided that the condition (3.65) is fulfilled. Thus we de-

duce that the Crank–Nicolson scheme (θ = 1/2) converges in the norm ‖ · ‖h un-
conditionally, with a global error of size O(h2 + τ 2). For θ ∈ (1/2,1] the scheme
converges unconditionally, with a global error of size O(h2 + τ). For θ ∈ [0,1/2)
the difference scheme converges with a global error of size O(h2 + τ), but only
conditionally. These error bounds have been derived under quite restrictive require-
ments on the smoothness of the solution. In the next section we shall be concerned
with the error analysis of the difference schemes described above when the solution
is less regular.

3.3 The Heat Equation with Nonsmooth Data

It is frequently the case in physical applications that the initial datum u0 = u0(x)

and the source term f = f (x, t) in the heat equation are nonsmooth functions. In
such instances the error analysis described in the previous section no longer ap-
plies, as the solution u(x, t) may not have sufficiently many derivatives bounded
and continuous on [0,1] × [0, T ]. In this section, we address this issue in the case
of the implicit Euler scheme corresponding to θ = 1 in the one-parameter family of
schemes considered in Sect. 3.2.

3.3.1 The Initial-Boundary-Value Problem and Its Discretization

We consider the initial-boundary-value problem (3.50) in the space-time domain
Q := (0,1)× (0, T ]. The mesh Q

τ

h is defined in the same way as in Sect. 3.2. We
shall also retain the other notations introduced in Sect. 3.2.

We begin with a general discussion concerning the construction of finite differ-
ence approximations to our model problem. As we shall be concerned with nons-
mooth data and, more specifically, with f ∈ L2((0, T );L2(Ω)) and u0 ∈ L2(Ω),
we mollify these functions so that the resulting mollified functions are continuous
and have, therefore, well-defined values at the mesh-points. For this purpose we
consider, for any function v that is defined and sufficiently smooth on Q,

T 2
x v(x, t) :=

1

h

∫ x+h

x−h

(
1−

∣∣∣∣
x − x′

h

∣∣∣∣

)
v
(
x′, t

)
dx′,
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and

T −t v(x, t) := 1

τ

∫ t

t−τ
v
(
x, t ′

)
dt ′ = T +t v(x, t − τ).

If v is a distribution on Q, T 2
x and T ∓t should be interpreted as convolutions (cf.

Sect. 1.9.4). The mollifiers T 2
x and T −t have the following properties:

T 2
x

(
∂2v

∂x2

)
=D+x D−x v and T −t

(
∂v

∂t

)
=D−t v.

Suppose that u, the weak solution of the initial-boundary-value problem (3.50), be-
longs to the anisotropic Sobolev space W

s,s/2
2 (Q), s > 1. Then, T 2

x u and T −t u are
continuous functions on Q, and by applying T = T 2

x T
−
t = T −t T 2

x to the heat equa-
tion in (3.50) we thus obtain

D−t
(
T 2
x u

)m
j
=D+x D−x

(
T −t u

)m
j
+ (

T 2
x T
−
t f

)m
j
.

This identity motivates our definition of the finite difference approximation of prob-
lem (3.50): find a real-valued function U defined on the mesh Q

τ

h such that

D−t Um
j =D+x D−x Um

j +
(
T 2
x T
−
t f

)m
j
, j = 1, . . . ,N − 1, m= 1, . . . ,M,

Um
0 = 0, Um

N = 0, m= 1, . . . ,M,
(3.79)

and subject to one of the following initial conditions:

U0
j = u0(xj ), j = 1, . . . ,N − 1, (3.80)

or

U0
j = T 2

x u0(xj ), j = 1, . . . ,N − 1, (3.81)

the choice being dependent on the smoothness of the initial datum. It will be clear
from the error bounds that will be derived below which of the two initial conditions
is appropriate in each particular instance.

3.3.2 Error Analysis

Let us define the global error of the scheme in the usual way:

emj := u(xj , tm)−Um
j .
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It is easily seen that in the case of the scheme (3.79), (3.80) the global error thus
defined satisfies

D−t emj −D+x D−x emj =D−t ψm
j −D+x D−x ηmj ,

j = 1, . . . ,N − 1, m= 1, . . . ,M,

em0 = 0, emN = 0, m= 1, . . . ,M,

e0
j = 0, j = 1, . . . ,N − 1,

(3.82)

where we have used the notations

ψ := u− T 2
x u, η := u− T −t u.

Similarly, in the case of the scheme (3.79), (3.81) the global error satisfies

D−t emj −D+x D−x emj =D−t ψm
j −D+x D−x ηmj ,

j = 1, . . . ,N − 1, m= 1, . . . ,M,

em0 = 0, emN = 0, m= 1, . . . ,M,

e0
j =ψ0

j , j = 1, . . . ,N − 1.

(3.83)

Let us define the following mesh-dependent anisotropic Sobolev norms:

‖V ‖2
L2(Q

τ
h)
:= τ

∑

t∈Ωτ+

∥∥V (·, t)∥∥2
h
,

‖V ‖2
W

1,1/2
2 (Qτ

h)
:= τ

∑

t∈Ωτ+

(∥∥V (·, t)∥∥2
h
+ ∣

∣[D+x V (·, t)
∥
∥2
h

)

+ τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖V (·, t)− V (·, t ′)‖2
h

|t − t ′|2 ,

‖V ‖2
W

2,1
2 (Qτ

h)
:= τ

∑

t∈Ωτ+

(∥∥V (·, t)∥∥2
h
+ ∣∣[D+x V (·, t)

∥∥2
h

+ ∥∥D+x D−x V (·, t)
∥∥2
h
+ ∥∥D−t V (·, t)

∥∥2
h

)
.

The scheme (3.82) can be rewritten as an operator-difference scheme (3.31),
where Hh = Sh

0 , Ah =Λ and F =D−t ψ −D+x D−x η. Thus we deduce from (3.40)
that

τ
∑

t∈Ωτ+

(∥∥D+x D−x e(·, t)
∥∥2
h
+ ∥∥D−t e(·, t)

∥∥2
h

)
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≤ τ
∑

t∈Ωτ+

∥∥D−t ψ(·, t)−D+x D−x η(·, t)
∥∥2
h
.

Hence, by applying the discrete Friedrichs inequality (2.24) we have that

‖e‖2
W

2,1
2 (Qτ

h)
≤ Cτ

∑

t∈Ωτ+

(∥∥D+x D−x η(·, t)
∥∥2
h
+ ∥∥D−t ψ(·, t)

∥∥2
h

)
, (3.84)

where C = 2(1+ 1/8+ 1/64)= 73/32. Similarly, (3.31), (3.44) and (3.46) imply
that

τ
∑

t∈Ωτ+

∥∥e(·, t)∥∥2
Λ
+ τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖e(·, t)− e(·, t ′)‖2
h

|t − t ′|2

≤ C

[
τ

∑

t∈Ωτ+

∥∥η(·, t)∥∥2
Λ
+ τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖ψ(·, t)−ψ(·, t ′)‖2
h

|t − t ′|2

+ τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥∥ψ(·, t)∥∥2
h

]
.

Thus, by noting (2.22) and (2.24), we deduce that

‖e‖2
W

1,1/2
2 (Qτ

h)
≤ C

[
τ

∑

t∈Ωτ+

∣∣[D+x η(·, t)
∥∥2
h
+ τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖ψ(·, t)−ψ(·, t ′)‖2
h

|t − t ′|2

+ τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥∥ψ(·, t)∥∥2
h

]
. (3.85)

Similarly, in the case of (3.83), using (3.41) and (3.49) we have that

‖e‖2
L2(Q

τ
h)
≤ Cτ

∑

t∈Ωτ+

(∥∥η(·, t)∥∥2
h
+ ∥∥ψ(·, t)∥∥2

h

)
. (3.86)

Now, to derive error bounds for the finite difference scheme (3.79), (3.80) in the
mesh-dependent W

2,1
2 and W

1,1/2
2 norms, and for the finite difference scheme

(3.79), (3.81) in the mesh-dependent L2 norm, it suffices to bound the norms of
η and ψ appearing in the expressions on the right-hand sides of the inequalities
(3.84), (3.85) and (3.86), respectively.

Suppose that (xj , tm) is an arbitrary node of the mesh Qτ
h and consider the asso-

ciated ‘elementary rectangle’ Gm
j = (xj−1, xj+1)× (tm−1, tm). By using the linear

transformation

x = xj + hx̃, t = tm + τ t̃, −1 < x̃ < 1, −1 < t̃ < 0,

Gm
j is bijectively mapped onto the canonical rectangle G̃ := (−1,1)× (−1,0). By

defining ũ(x̃, t̃ ) := u(xj + hx̃, tm + τ t̃) we have that
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D+x D−x ηmj =
1

h2

{
ũ(−1,0)− 2ũ(0,0)+ ũ(1,0)

−
∫ 0

−1

[
ũ(−1, t̃)− 2ũ(0, t̃)+ ũ(1, t̃)

]
dt̃

}
.

Using the Sobolev embedding theorem, we deduce that

∣∣D+x D−x ηmj
∣∣≤ 8

h2
‖ũ‖

C(G̃)
≤ C

h2
‖ũ‖

W
s,s/2
2 (G̃)

, s > 3/2.

Thus we have shown that D+x D−x ηmj is a bounded linear functional of ũ ∈
W

s,s/2
2 (G̃) for s > 3/2. It can be directly verified that D+x D−x ηmj vanishes on all

monomials of the form ũ= x̃α t̃β , where α and β are nonnegative integers such that
α + 2β < 4. The Bramble–Hilbert lemma thus yields that

∣∣D+x D−x ηmj
∣∣≤ C

h2
|ũ|

W
s,s/2
2 (G̃)

, 3/2 < s ≤ 4. (3.87)

Returning to the original variables x and t we deduce that

∣∣D+x D−x ηmj
∣∣≤ C

h2
√
hτ

(
h2 + τ

)s/2|u|
W

s,s/2
2 (Gm

j )
, 3/2 < s ≤ 4.

One can show in the same way that

∣∣D−t ψm
j

∣∣≤ C

τ
√
hτ

(
h2 + τ

)s/2|u|
W

s,s/2
2 (Gm

j )
, 3/2 < s ≤ 4.

Summing over the nodes of the mesh Qτ
h gives

τ
∑

t∈Ωτ+

(∥∥D+x D−x η(·, t)
∥∥2
h
+ ∥∥D−t ψ(·, t)

∥∥2
h

)

≤ C
(
h2 + τ

)s
(

1

h4
+ 1

τ 2

)
|u|2

W
s,s/2
2 (Q)

.

If the mesh-sizes h and τ satisfy the condition τ ) h2, i.e.

c1h
2 ≤ τ ≤ c2h

2, c1, c2 = Const. > 0, (3.88)

we further have that

τ
∑

t∈Ωτ+

(∥∥D+x D−x η(·, t)
∥∥2
h
+ ∥∥D−t ψ(·, t)

∥∥2
h

)≤ Ch2s−4|u|2
W

s,s/2
2 (Q)

.

From this inequality and (3.84), limiting ourselves to the values s ∈ (2,4], we obtain
the following bound on the global error of the finite difference scheme (3.79), (3.80):

‖u−U‖
W

2,1
2 (Qτ

h)
≤ Chs−2‖u‖

W
s,s/2
2 (Q)

, 2 < s ≤ 4. (3.89)
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Similarly, D+x ηmj is a bounded linear functional of u ∈ W
s,s/2
2 (Gm

j+), with
Gm
j+ := (xj , xj+1)× (tm−1, tm), for s > 3/2, which vanishes on all monomials of

the form u= xαtβ , α+ 2β < 3. Assuming that the condition (3.88) holds, using the
Bramble–Hilbert lemma we have that

∣∣D+x ηmj
∣∣≤ Chs−5/2|u|

W
s,s/2
2 (Gm

j+)
, 3/2 < s ≤ 3,

whence, by summing over the nodes of the mesh, we deduce that

τ
∑

t∈Ωτ+

∣∣[D+x η(·, t)
∥∥2
h
≤ Ch2s−2|u|2

W
s,s/2
2 (Q)

, 3/2 < s ≤ 3. (3.90)

Further,

τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖ψ(·, t)−ψ(·, t ′)‖2
h

|t − t ′|2

= 2hτ 2
M∑

m=1

m−1∑

k=0

N−1∑

j=1

|ψm
j −ψk

j |2
|tm − tk|2

≤ 6hτ 2
M∑

m=1

m−1∑

k=0

N−1∑

j=1

|ψm
j − T −t ψm

j |2
|tm − tk|2 + 6hτ 2

M∑

m=1

m−1∑

k=0

N−1∑

j=1

|T −t ψm
j − T +t ψk

j |2
|tm − tk|2

+ 6hτ 2
M∑

m=1

m−1∑

k=0

N−1∑

j=1

|T +t ψk
j −ψk

j |2
|tm − tk|2 =: J1 + J2 + J3.

Let us estimate separately each of J1, J2 and J3. Clearly,

J1 = 6h
M∑

m=1

m−1∑

k=0

N−1∑

j=1

|ψm
j − T −t ψm

j |2
|m− k|2 ≤ π2

τ
hτ

M∑

m=1

N−1∑

j=1

∣∣ψm
j − T −t ψm

j

∣∣2.

It is easily seen that the expression ψm
j − T −t ψm

j is a bounded linear functional of

u ∈Ws,s/2
2 (Gm

j ), s > 3/2, which vanishes on all monomials of the form u= xαtβ ,
α + 2β < 4. Similarly as in the previous cases we deduce that

∣∣ψm
j − T −t ψm

j

∣∣≤ Chs−3/2|u|
W

s,s/2
2 (Gm

j )
, 3/2 < s ≤ 4,

and then, by summing over the nodes of the mesh, we arrive at the bound

J1 ≤ Ch2s−2|u|2
W

s,s/2
2 (Q)

, 3/2 < s ≤ 4. (3.91)
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An identical bound holds for J3. Let us now bound J2:

J2 =
M∑

m=1

m−1∑

k=0

N−1∑

j=1

6hτ 2

|tm − tk|2
{

1

τ 2

∫ tm

tm−1

∫ tk+1

tk

[
ψ(xj , t)−ψ

(
xj , t

′)]dt ′ dt
}2

≤
M∑

m=1

m−1∑

k=0

N−1∑

j=1

6hτ−2

|tm − tk|2
{∫ tm

tm−1

∫ tk+1

tk

[ψ(xj , t)−ψ(xj , t
′)]2

|t − t ′|1+2λ
dt ′ dt

}

×
{∫ tm

tm−1

∫ tk+1

tk

|t − t ′|1+2λ dt ′ dt
}
, λ > 0.

By choosing λ ∈ (0,1/2] we then have that

J2 ≤ 6hτ 2λ−1
M∑

m=1

m−1∑

k=0

N−1∑

j=1

∫ tm

tm−1

∫ tk+1

tk

[ψ(xj , t)−ψ(xj , t
′)]2

|t − t ′|1+2λ
dt ′ dt

≤ 6hτ 2λ−1
N−1∑

j=1

∫ T

0

∫ T

0

[ψ(xj , t)−ψ(xj , t
′)]2

|t − t ′|1+2λ
dt ′ dt.

Hence, by noting the integral representation

ψ(xj , t)= 1

h

∫ xj+1

xj−1

∫ xj

x

∫ x′

xj

(
1− |x − xj |

h

)
∂2u

∂x2

(
x′′, t

)
dx′′ dx′ dx

and the condition (3.88), we arrive at the bound

J2 ≤ Ch2+4λ|u|2
W

2+2λ,1+λ
2 (Q)

, 0 < λ≤ 1/2. (3.92)

Similarly, by using the integral representation

ψ(xj , t)= 1

h

∫ xj+1

xj−1

∫ xj

x

(
1− |x − xj |

h

)
∂u

∂x

(
x′, t

)
dx′ dx,

we deduce that

J2 ≤ Ch4λ|u|2
W

1+2λ,1/2+λ
2 (Q)

, 0 < λ≤ 1/2. (3.93)

From (3.92) and (3.93), taking in the first case s = 2+ 2λ and in the second case
s = 1+ 2λ, we have that

J2 ≤ Ch2s−2|u|2
W

s,s/2
2 (Q)

, 1 < s ≤ 3. (3.94)

Suppose that t = tm ∈Ωτ+ is fixed, and let us consider u(·, tm) as a function of the
variable x. The expression ψm

j = u(xj , tm)− T 2
x u(xj , tm) is a bounded linear func-

tional of u(·, tm) ∈ Wr
2 (xj−1, xj+1), r > 1/2, which vanishes on all polynomials
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(in x) of degree ≤ 2. Thanks to the Bramble–Hilbert lemma we thus have that
∣
∣ψm

j

∣
∣≤ Chr−1/2

∣
∣u(·, tm)

∣
∣
Wr

2 (xj−1,xj+1)
, 1/2 < r ≤ 2.

Summing over the nodes of the mesh Ωh and applying the trace theorem, we obtain
the following bound:

∥∥ψm
∥∥
h
≤ Chr

∣∣u(·, tm)
∣∣
Wr

2 (0,1)
≤ Chr‖u‖

W
r+1,(r+1)/2
2 (Q)

, 1/2 < r ≤ 2.

Finally, by writing r + 1= s and summing over the mesh Ωτ we obtain that

τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥∥ψ(·, t)∥∥2
h
≤ Ch2s−2 log

1

τ
‖u‖2

W
s,s/2
2 (Q)

, (3.95)

where 3/2 < s ≤ 3.
From (3.85), (3.88), (3.90), (3.91), (3.94) and (3.95) we have the following bound

on the global error of the finite difference scheme (3.79), (3.80):

‖u−U‖
W

1,1/2
2 (Qτ

h)
≤ Chs−1

√
log(1/h)‖u‖

W
s,s/2
2 (Q)

, 3/2 < s ≤ 3. (3.96)

The bound (3.96) is ‘almost’ compatible with the smoothness of the solution,
the slight shortfall from full compatibility being due to the presence of the term√

log(1/h), h ∈ (0,1/2], which increases, albeit very slowly, as h→ 0+.
Let us finally bound the global error of the finite difference scheme (3.79), (3.81)

in the mesh-dependent L2 norm. The expressions ψm
j and ηmj are bounded linear

functionals of u ∈Ws,s/2
2 (Gm

j ), s > 3/2, which vanish on monomials of the form

u= xαtβ , where α and β are nonnegative integers and α+ 2β < 2. By applying the
Bramble–Hilbert lemma, under the condition (3.88), we get that

∣∣ψm
j

∣∣,
∣∣ηmj

∣∣≤ Chs−3/2|u|
W

s,s/2
2 (Gm

j )
, 3/2 < s ≤ 2.

Hence, by summing over the nodes of the mesh, we deduce that

τ
∑

t∈Ωτ+

(∥∥ψ(·, t)∥∥2
h
+ ∥

∥η(·, t)∥∥2
h

)≤ Ch2s |u|2
W

s,s/2
2 (Q)

, 3/2 < s ≤ 2.

By noting the inequality (3.86), we obtain the following bound on the global error
of the finite difference scheme (3.79), (3.81):

‖u−U‖L2(Q
τ
h)
≤ Chs‖u‖

W
s,s/2
2 (Q)

, 3/2 < s ≤ 2. (3.97)

Here, and in each of the previous error bounds C = C(s) is a positive constant,
independent of h and τ .

The error bounds (3.96) and (3.97) have been derived under the regularity hy-
pothesis that the solution u to the initial-boundary-value problem (3.50) belongs
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to the function space W
s,s/2
2 (Q) for s > 3/2. This restriction is natural since for

s ≤ 3/2 the solution need not be a continuous function, and therefore the definition
of the global error as emj := u(xj , tm)−Um

j is then not meaningful. In that case, one
can instead define the global error of the scheme as (for example) the difference of
the mollified analytical solution and its finite difference approximation:

ẽmj := T 2
x T
−
t u(xj , tm)−Um

j .

In fact, for small values of the regularity index s one may need to use even stronger
mollification of the analytical solution u in the definition of the global error as well
as of the initial datum u0 and the source term f .

3.3.3 The Case of Independent Mesh-Sizes

The error bounds (3.89), (3.96) and (3.97) above have been derived under the as-
sumption (3.88), which links the temporal mesh-size τ to the spatial mesh-size h in
our error analysis, despite the fact that stability of the scheme is unconditional, and
therefore from the point of view of stability at least there should be no limitation
on the choice of τ in terms of h. We shall show here that in certain cases by care-
ful study of the functionals η and ψ one can avoid linking the mesh-sizes τ and h.
Let us suppose, for example, that s = 4. From (3.87), by expanding the seminorm
|ũ|

W
4,2
2 (G̃)

and returning to the original variables x and t , we have that

∣∣D+x D−x ηmj
∣∣ ≤ C

h2
√
hτ

(
h8

∥∥∥∥
∂4u

∂x4

∥∥∥∥

2

L2(G
m
j )

+ h4τ 2
∥∥∥∥

∂3u

∂x2∂t

∥∥∥∥

2

L2(G
m
j )

+ τ 4
∥∥∥∥
∂2u

∂t2

∥∥∥∥

2

L2(G
m
j )

)1/2

. (3.98)

Similarly, we obtain that

∣∣D−t ψm
j

∣∣ ≤ C

τ
√
hτ

(
h8

∥∥∥∥
∂4u

∂x4

∥∥∥∥

2

L2(G
m
j )

+ h4τ 2
∥
∥∥∥

∂3u

∂x2∂t

∥
∥∥∥

2

L2(G
m
j )

+ τ 4
∥
∥∥∥
∂2u

∂t2

∥
∥∥∥

2

L2(G
m
j )

)1/2

. (3.99)

Thus we observe that the need to link the mesh-sizes h and τ arises because of the
presence of the norm of ∂2u/∂t2 on the right-hand side of (3.98) and the norm of
∂4u/∂x4 on the right-hand side of (3.99).
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On the other hand, it is easily seen that in the case of u ∈W 4,2
2 (Q) the following

integral representations hold:

D+x D−x ηmj =
1

hτ

∫ xj+1

xj−1

∫ tm

tm−1

∫ tm

t ′

(
1− |x

′ − xj |
h

)
∂3u

∂x2∂t

(
x′, t ′′

)
dt ′′ dt ′ dx′,

D−t ψm
j =

1

hτ

∫ tm

tm−1

∫ xj+1

xj−1

∫ xj

x′

∫ x′′

xj

(
1− |x

′ − xj |
h

)
∂3u

∂x2∂t

(
x′′′, t ′

)
dx′′′ dx′′ dx′ dt ′,

and we then directly deduce that

τ
∑

t∈Ωτ+

(∥∥D+x D−x η(·, t)
∥∥2
h
+ ∥∥D−t ψ(·, t)

∥∥2
h

)≤ C
(
h4 + τ 2)

∥∥∥∥
∂3u

∂x2∂t

∥∥∥∥

2

L2(Q)

.

By applying the inequality (3.84) we arrive at the error bound

‖u−U‖
W

2,1
2 (Qτ

h)
≤ C

(
h2 + τ

)
∥∥
∥∥

∂3u

∂x2∂t

∥∥
∥∥
L2(Q)

≤ C
(
h2 + τ

)‖u‖
W

4,2
2 (Q)

,

without having had to link τ to h. We thus see that the need to link the mesh-
sizes h and τ in our original argument based on the use of the Bramble–Hilbert
lemma arises because the Bramble–Hilbert lemma invokes a larger number of partial
derivatives than is necessary.

3.4 Parabolic Problems with Variable Coefficients

3.4.1 Formulation of the Problem

As our model problem we now consider, in Q :=Ω × (0, T ] = (0,1)2× (0, T ], the
following initial-boundary-value problem for a symmetric second-order parabolic
equation with variable coefficients:

∂u

∂t
+Lu = f, (x, t)= (x1, x2, t) ∈Q,

u = 0, (x, t) ∈ Γ × (0, T ] = ∂Ω × (0, T ], (3.100)

u(x,0) = u0(x), x ∈Ω,

where

Lu := −
2∑

i,j=1

∂i(aij ∂ju)+ au, ∂i := ∂

∂xi
.
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We shall suppose that the solution of problem (3.100) belongs to the anisotropic
Sobolev space Ws,s/2

2 (Q), 1 < s ≤ 3, that the source term f lies in W
s−2, s/2−1
2 (Q)

and that the coefficients aij = aij (x) and a = a(x) satisfy the same conditions as in
the elliptic case considered in Chap. 2; i.e.

(a) if s > 2, then

aij ∈Ws−1
2 (Ω), a ∈Ws−2

2 (Ω),

(b) if 1 < s ≤ 2, then

aij ∈Ws−1+δ
p (Ω), a = a0 +

2∑

i=1

∂iai,

a0 ∈ L2+ε(Ω), ai ∈Ws−1+δ
p (Ω),

where ε > 0,

δ = 0, p > 2, for s = 2, and

δ > 0, p ≥ 2/(s − 1), for 1 < s < 2.

These conditions ensure that the coefficients aij and a belong to appropriate spaces
of multipliers:

aij ∈M
(
W

s−1, (s−1)/2
2 (Q)

)
,

a ∈M(
W

s,s/2
2 (Q)→W

s−2, (s−2)/2
2 (Q)

)
.

We shall also assume that

aij = aji for i, j = 1,2,

∃c0 > 0 ∀x ∈Ω ∀ξ ∈R2
2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i ,

a(x)≥ 0 in the sense of distributions on Ω,

i.e. 〈aϕ,ϕ〉D′×D ≥ 0 ∀ϕ ∈D(Ω),

as well as appropriate compatibility conditions between the initial and the boundary
conditions, and that u ∈Ws,s/2

2 (Q).

3.4.2 The Finite Difference Scheme

Let N,M ∈ N, N ≥ 2, M ≥ 1, h := 1/N and τ := T/M . We consider the uniform
spatial mesh Ωh with mesh-size h on Ω and the uniform temporal mesh Ωτ with
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mesh-size τ on (0, T ). Using the notational conventions introduced in Sects. 2.6 and
3.1.4 we define the space-time meshes

Qτ
h :=Ωh ×Ωτ , Qτ±

h :=Ωh ×Ωτ± and Q
τ

h :=Ω
h ×Ω

τ
.

It will be assumed that the mesh-sizes h and τ satisfy the condition (3.88). For
a function V defined on Q

τ

h, we shall define the divided differences D±xi V as in
Sect. 2.6 and D±t V as in Sect. 3.1.4. Finally, we consider the Steklov mollifiers Ti ,
T +i and T −i in the xi -direction, i = 1,2, (see Sect. 2.6) and the mollifiers T +t , T −t
in the t-direction (see Sect. 3.3).

The initial-boundary-value problem (3.100) will be approximated on Q
τ

h by the
finite difference scheme

D−t U +LhU = T 2
1 T

2
2 T
−
t f, on Qτ+

h ,

U = 0 on Γ h ×Ω
τ
, (3.101)

U = Pu0 on Ωh × {0},
where

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]+ (

T 2
1 T

2
2 a

)
U,

and

Pu :=
{
u when 2 < s ≤ 3,
T 2

1 T
2
2 u when 1 < s ≤ 2.

The scheme (3.101) is a standard symmetric implicit finite difference scheme (see
Samarskiı̆ [159]) with a mollified right-hand side and lowest coefficient. When u ∈
Ws,s/2(Q) with s ≤ 4, a scheme of this kind cannot be used without mollification
of the source term f = f (x, t), because f is not necessarily continuous and it then
makes no sense to sample it at the mesh-points. Similarly, the coefficient a = a(x)

need not be continuous when s ≤ 3. As we are interested in approximating solutions
u with low regularity, i.e. ones with Sobolev index s ∈ (1,3], we have mollified both
a and f in our definition of the finite difference scheme (3.101).

3.4.3 Error Analysis

Let u be the solution of the initial-boundary-value problem (3.100) and let U de-
note the solution of the difference scheme (3.101). For 1 < s ≤ 2 the solution
u ∈Ws,s/2(Q) is not necessarily a continuous function, although it still possesses
an integrable trace on Ω × {t} for each fixed t ∈ [0, T ]. In what follows we shall
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assume that, for 1 < s ≤ 2, the solution u ∈Ws,s/2
2 (Q), with u|∂Ω×(0,T ] = 0, has

been extended outside Q as an odd function in x1 and x2. (For the values of s un-
der consideration such an extension preserves the class Ws,s/2

2 ; cf. (4.49)–(4.54) in
Haroske and Triebel [69] for s = 2). Let us define the global error by

e := Pu−U,

with P as in Sect. 3.4.2. The global error, thus defined, satisfies:

D−t e+Lhe =
2∑

i,j=1

D−xi ηij + η+D−t ψ in Qτ+
h ,

e = 0 on Γ h ×Ωτ+, (3.102)

e = 0 on Ω
h × {0},

where

ηij := T +i T 2
3−iT −t (aij ∂ju)− 1

2

[
aijD

+
xj
(Pu)+ a+iij

(
D−xj (Pu)

)+i]
, i, j = 1,2,

η := (
T 2

1 T
2
2 a

)
(Pu)− T 2

1 T
2
2 T
−
t (au), and

ψ := Pu− T 2
1 T

2
2 u.

Analogously as in Sect. 3.3 we introduce the mesh-dependent anisotropic
Sobolev norms

‖V ‖2
L2(Q

τ
h)
= ‖V ‖2

hτ := τ
∑

t∈Ωτ+

∥∥V (·, t)∥∥2
h
, ‖V ‖2

i,hτ := τ
∑

t∈Ωτ+

∥∥V (·, t)∥∥2
i,h
,

‖V ‖2
W

1,1/2
2 (Qτ

h)
:= τ

∑

t∈Ωτ+

(∥∥V (·, t)∥∥2
h
+ ∥∥D+x1

V (·, t)∥∥2
1,h +

∥∥D+x2
V (·, t)∥∥2

2,h

)

+ τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖V (·, t)− V (·, t ′)‖2
h

|t − t ′|2 ,

with ‖ · ‖h and ‖ · ‖i,h, i = 1,2, denoting the norms defined in Sect. 2.6.
Defining LhV = 0 on Γ h the finite difference scheme (3.102) can be rewritten as

an operator-difference scheme (3.31), where Hh = Sh
0 is the set of mesh-functions

defined on Ω
h

that vanish on Γ h, equipped with the inner product

(V ,W)h := h2
∑

x∈Ωh

V (x)W(x).

From (3.44) and (3.46), using the relations

‖V ‖2
Lh
:= (LhV,V )h ≥ c0

(∥∥D+x1
V
∥∥2

1,h +
∥∥D+x2

V
∥∥2

2,h

)
,
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∥∥D−xi V
∥∥
L−1
h
:= sup

W∈Sh
0

|(D−xi V ,W)h|
‖W‖Lh

≤ sup
W∈Sh

0

‖V ‖i,h‖D+xiW‖i,h√
c0(‖D+x1W‖2

1,h + ‖D+x2W‖2
2,h)

≤ c
−1/2
0 ‖V ‖i,h

and the discrete Friedrichs inequality (2.53), we obtain the following a priori esti-
mate for the finite difference scheme (3.102):

‖e‖2
W

1,1/2
2 (Qτ

h)
≤ C

[

τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖ψ(·, t)−ψ(·, t ′)‖2
h

|t − t ′|2

+ τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥
∥ψ(·, t)∥∥2

h
+

2∑

i=1

‖ηij‖2
i,hτ + ‖η‖2

hτ

]

.

(3.103)

The task of deriving an error bound for (3.101) is thus reduced to estimating the
terms on the right-hand side of (3.103).

Theorem 3.4 Suppose that the solution u of the initial-boundary-value problem
(3.100) belongs to W

s,s/2
2 (Q), 1 < s ≤ 3, f ∈ W

s−2, s/2−1
2 (Q) and let the co-

efficients aij and a satisfy the assumptions from Sect. 3.4.1. Suppose also that
c1h

2 ≤ τ ≤ c2h
2. Then, the global error of the finite difference scheme (3.101) is

bounded in the mesh-dependent W 1,1/2
2 norm as follows:

‖u−U‖
W

1,1/2
2 (Qτ

h)
≤ Chs−1

(
max
i,j
‖aij‖Ws−1

2 (Ω)

+ ‖a‖
Ws−2

2 (Ω)
+

√

log
1

h

)
‖u‖

W
s,s/2
2 (Q)

, when 2 < s ≤ 3,

(3.104)

and
∥∥T 2

1 T
2
2 u−U

∥∥
W

1,1/2
2 (Qτ

h)
≤ Chs−1

(
max
i,j
‖aij‖Ws−1+δ

p (Ω)
+ ‖a0‖L2+ε(Ω)

+max
i
‖ai‖Ws−1+δ

p (Ω)

)
‖u‖

W
s,s/2
2 (Q)

, when 1 < s ≤ 2,

(3.105)

where C = C(s) is a positive constant, independent of h and τ .

Proof First of all, we decompose ηij as follows:

ηij = ηij1 + ηij2 + ηij3 + ηij4 + ηij5,
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where, for i, j = 1,2,

ηij1 := T +i T 2
3−i

(
aijT

−
t ∂j u

)− (
T +i T 2

3−iaij
)(
T +i T 2

3−iT −t ∂j u
)
,

ηij2 :=
[
T +i T 2

3−iaij −
1

2

(
aij + a+iij

)](
T +i T 2

3−iT −t ∂j u
)
,

ηij3 := 1

2

(
aij + a+iij

){
T +i T 2

3−iT −t ∂j u− 1

2

[
D+xj (Pu)+

(
D−xj (Pu)

)+i]
}
,

ηij4 := −1

4

(
aij − a+iij

)[
D+xj

(
T −t u

)− (
D−xj

(
T −t u

))+i]
,

ηij5 := −1

4

(
aij − a+iij

)[
D+xj

(
Pu− T −t u

)− (
D−xj

(
Pu− T −t u

))+i]
.

For 1 < s ≤ 2 we let η= η0 + η1 + η2 + η3 + η4 + η5, where

η0 :=
(
T 2

1 T
2
2 a0

)(
T 2

1 T
2
2 T
−
t u

)− T 2
1 T

2
2

(
a0T

−
t u

)
,

η1 :=
(
T 2

1 T
2
2 a0

)
T 2

1 T
2
2

(
u− T −t u

)
,

η2i :=
(
T 2

1 T
2
2 ∂iai

)(
T 2

1 T
2
2 T
−
t u

)− T 2
1 T

2
2

[(
T −t u

)
∂iai

]
, i = 1,2,

η2i+1 :=
(
T 2

1 T
2
2 ∂iai

)
T 2

1 T
2
2

(
u− T −t u

)
, i = 1,2.

For 2 < s ≤ 3 we define η= η6 + η7 + η8 + η9, where

η6 :=
(
T 2

1 T
2
2 a

)(
T −t u− T 2

1 T
2
2 T
−
t u

)
,

η7 :=
(
T 2

1 T
2
2 a

)(
T 2

1 T
2
2 u− T 2

1 T
2
2 T
−
t u

)
,

η8 :=
(
T 2

1 T
2
2 a

)(
u− T 2

1 T
2
2 u− T −t u+ T 2

1 T
2
2 T
−
t u

)
,

η9 :=
(
T 2

1 T
2
2 a

)(
T 2

1 T
2
2 T
−
t u

)− T 2
1 T

2
2

(
aT −t u

)
.

Let us introduce the elementary rectangles

K0 =K0(x) := {
y : |yj − xj |< h,j = 1,2

}
,

Ki =Ki(x) := {
y : xi < yi < xi + h, |y3−i − x3−i |< h

}
, i = 1,2,

and the parallelepipeds

G0 =G0(x, t) :=K0 × (t − τ, t),

Gi =Gi(x, t) :=Ki × (t − τ, t), i = 1,2.

For 2 < s ≤ 3, ηij1, i, j = 1,2, satisfy the conditions under which an estimate of
the form (2.174) holds:

∥∥ηij1(·, t)
∥∥
i,h
≤ Chs−1‖aij‖Ws−1

2 (Ω)

∥∥T −t u(·, t)∥∥
Ws

2 (Ω)
, 2 < s ≤ 3.
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Thus, summing over the nodes of the mesh Ωτ+ we get

‖ηij1‖i,hτ ≤ Chs−1‖aij‖Ws−1
2 (Ω)

‖u‖
W

s,s/2
2 (Q)

, 2 < s ≤ 3. (3.106)

Analogously, for 1 < s ≤ 2, (2.173) implies that

‖ηij1‖i,hτ ≤ Chs−1‖aij‖Ws−1+δ
p (Ω)

‖u‖
W

s,s/2
2 (Q)

, 1 < s ≤ 2. (3.107)

Similarly, using the estimates (2.174) and (2.173) for ηij2 and ηij4 we obtain bounds
of the form (3.106), (3.107).

When s > 1, ηij3(x, t) is a bounded bilinear functional of (aij , u) ∈ C(Ki
) ×

W
s,s/2
2 (Gi), which vanishes whenever u is a polynomial of degree two in x1 and x2

and of arbitrary degree in t with constant coefficients. Invoking the Bramble–Hilbert
lemma we deduce that

∣
∣ηij3(x, t)

∣
∣≤ Chs−3‖aij‖C(Ki

)
|u|

Ŵ
s,s/2
2 (Gi)

, 1 < s ≤ 3.

Summing through the nodes of the mesh Qτ+
h gives

‖ηij3‖i,hτ ≤ Chs−1‖aij‖C(Ω)‖u‖Ws,s/2
2 (Q)

, 1 < s ≤ 3.

By noting the embeddings

Ws−1
2 (Ω) ↪→ C(Ω) for 2 < s ≤ 3

and

Ws−1+δ
p (Ω) ↪→ C(Ω) for 1 < s ≤ 2,

we obtain bounds of the form (3.106) and (3.107). The same argument applies to
ηij5.

The term η0 satisfies the conditions under which a bound of the form (2.176)
holds:

∥∥η0(·, t)
∥∥
h
≤ Chs−1‖a0‖L2+ε(Ω)

∥∥T −t u(·, t)∥∥
Ws

2 (Ω)
, 1 < s ≤ 2.

Summing over the nodes of Ωτ+ we thus get

‖η0‖hτ ≤ Chs−1‖a0‖L2+ε(Ω)‖u‖Ws,s/2
2 (Q)

, 1 < s ≤ 2. (3.108)

Analogously, using (2.173), for η2 and η4 we obtain bounds of the form (3.107),
while using (2.175) yields the following bounds on η6 and η9:

‖η6‖hτ ,‖η9‖hτ ≤ Chs−1‖a‖
Ws−2

2 (Ω)
‖u‖

W
s,s/2
2 (Q)

, 2 < s ≤ 3. (3.109)
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For s > 1 and q ≥ 1, η1(x, t) is a bounded bilinear functional of (a,u) ∈
Lq(K

0) × W
s,s/2
2 (G0), which vanishes if u is a polynomial of degree one in x1

and x2 (with constant coefficients). The Bramble–Hilbert lemma gives
∣∣η1(x, t)

∣∣≤ Chs−2−2/q‖a0‖Lq(K0)|u|Ws,s/2
2 (G0)

, 1 < s ≤ 2.

By bounding the right-hand side from above further we deduce that
∣∣η1(x, t)

∣∣≤ Chs−2−2/q‖a0‖Lq(Ω)|u|Ws,s/2
2 (G0)

, 1 < s ≤ 2.

Summing through the nodes of the mesh thus yields

‖η1‖hτ ≤ Chs−2/q‖a0‖Lq(Ω)|u|Ws,s/2
2 (Q)

, 1 < s ≤ 2,

and setting q = 2+ ε then gives the desired bound:

‖η1‖hτ ≤ Chs−1‖a0‖L2+ε(Ω)‖u‖Ws,s/2
2 (Q)

, 1 < s ≤ 2. (3.110)

For s > 1, η2i+1(x, t), i = 1,2, are bounded bilinear functionals of (ai, u) ∈
L∞(K0)×W

s,s/2
2 (G0), which vanish when u is a polynomial of degree one in x1

and x2 with constant coefficients. Similarly as before, we arrive at

|η2i+1| ≤ Chs−3‖ai‖L∞(Ω)|u|Ws,s/2
2 (G0)

, 1 < s ≤ 2,

and

‖η2i+1‖hτ ≤ Chs−1‖ai‖L∞(Ω)‖u‖Ws,s/2
2 (Q)

, 1 < s ≤ 2.

Using the embedding Ws−1+δ
p (Ω) ↪→ L∞(Ω) then yields

‖η2i+1‖hτ ≤ Chs−1‖ai‖Ws−1+δ
p (Ω)

‖u‖
W

s,s/2
2 (Q)

, 1 < s ≤ 2. (3.111)

For λ > 1/2, η7(x, t) is a bounded bilinear functional of (a, T 2
1 T

2
2 u) ∈ Lq(K

0)×
Wλ

2 (t − τ, t), which vanishes if T 2
1 T

2
2 u is a constant function. By applying the

Bramble–Hilbert lemma we obtain
∣∣η7(x, t)

∣∣≤ Ch2λ−1−2/q‖a‖Lq(K0)

∣∣T 2
1 T

2
2 u

∣∣
Wλ

2 (t−τ,t), 1/2 < λ≤ 1.

For 1/2 < λ< 1,

∣∣T 2
1 T

2
2 u

∣∣
Wλ

2 (t−τ,t) =
(∫ t

t−τ

∫ t

t−τ
|T 2

1 T
2
2 u(·, t ′)− T 2

1 T
2
2 u(·, t ′′)|2

|t ′ − t ′′|1+2λ
dt ′ dt ′′

)1/2

≤ Ch−2/r
(∫ t

t−τ

∫ t

t−τ

‖u(·, t ′)− u(·, t ′′)‖2
Lr(K0)

|t ′ − t ′′|1+2λ
dt ′ dt ′′

)1/2

.
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Setting r = 2q/(q − 2) with q > 2 yields

∣∣η7(x, t)
∣∣≤ Ch2λ−2‖a‖Lq(K0)

(∫ t

t−τ

∫ t

t−τ

‖u(·, t ′)− u(·, t ′′)‖2
L 2q
q−2

(K0)

|t ′ − t ′′|1+2λ
dt ′ dt ′′

)1/2

.

Summing through the nodes of the mesh and using Hölder’s inequality gives

‖η7‖hτ ≤ Ch2λ‖a‖Lq(Ω)

(∫ T

0

∫ T

0

‖u(·, t ′)− u(·, t ′′)‖2
L 2q
q−2

(Ω)

|t ′ − t ′′|1+2λ
dt ′ dt ′′

)1/2

.

Let us choose q such that:

Ws−2
2 (Ω) ↪→ Lq(Ω) and W 1

2 (Ω) ↪→ L2q/(q−2)(Ω).

For 2 < s ≤ 3 this can be achieved by selecting q such that 2 < q < 2/(3− s). We
then obtain the following bound on ‖η7‖hτ :

‖η7‖hτ ≤ Ch2λ‖a‖
Ws−2

2 (Ω)

(∫ T

0

∫ T

0

‖u(·, t ′)− u(·, t ′′)‖2
W 1

2 (Ω)

|t ′ − t ′′|1+2λ
dt ′ dt ′′

)1/2

≤ Ch2λ‖a‖
Ws−2

2 (Ω)
‖u‖

Ŵ
2λ+1,λ+1/2
2 (Q)

, 2 < s ≤ 3, 1/2 < λ< 1.

The same result holds for λ= 1; then,

∫ t

t−τ

∫ t

t−τ
dt ′ dt ′′

|t ′ − t ′′|1+2λ
is replaced in the argument above by

∫ t

t−τ
dt ′,

and

u
(·, t ′)− u

(·, t ′′) is replaced by
∂u(·, t ′)
∂t ′

.

Setting s = 2λ+ 1 we finally obtain the following bound on η7:

‖η7‖hτ ≤ Chs−1‖a‖
Ws−2

2 (Ω)
‖u‖

W
s,s/2
2 (Q)

, 2 < s ≤ 3. (3.112)

When a ∈ L2(Ω) and s > 2, we have that η8(x, t) is a bounded linear functional
of u ∈ Ws,s/2

2 (G0), which vanishes on all polynomials of degree two in x1 and
x2 and on all polynomials of degree one in t (with constant coefficients). By the
Bramble–Hilbert lemma,

|η8| ≤ Chs−3‖ai‖L2(K
0)|u|Ŵ s,s/2

2 (G0)

≤ Chs−3‖ai‖L2(Ω)|u|Ŵ s,s/2
2 (G0)

, 2 < s ≤ 3.
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Summing through the nodes of Qτ+
h and noting the embedding Ws−2

2 (Ω) ↪→
L2(Ω), s > 2, yields

‖η8‖hτ ≤ Chs−1‖a‖
Ws−2

2 (Ω)
‖u‖

W
s,s/2
2 (Q)

, 2 < s ≤ 3. (3.113)

Now let us consider the terms in (3.103) containing ψ := u−T 2
1 T

2
2 u. Obviously,

ψ = 0 for 1 < s ≤ 2. (3.114)

When 2 < s ≤ 3, analogously as in Sect. 3.3, we have that

τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
, t ′ 	=t

‖ψ(·, t)−ψ(·, t ′)‖2
h

|t − t ′|2

= 2τ 2
M∑

m=1

m−1∑

k=0

‖ψm −ψk‖2
h

|tm − tk|2

≤ 6τ 2
M∑

m=1

m−1∑

k=0

‖ψm − T −t ψm‖2
h

|tm − tk|2 + 6τ 2
M∑

m=1

m−1∑

k=0

‖T −t ψm − T +t ψk‖2
h

|tm − tk|2

+ 6τ 2
M∑

m=1

m−1∑

k=0

‖T +t ψk −ψk‖2
h

|tm − tk|2 =: J1 + J2 + J3.

We shall bound each of the terms J1, J2 and J3. Similarly as in Sect. 3.3 we have

J1 = 6
M∑

m=1

m−1∑

k=0

‖ψm − T −t ψm‖2
h

(m− k)2
≤ π2

τ
τ

M∑

m=1

∥∥ψm − T −t ψm
∥∥2
h
,

and hence, by estimating ψm− T −t ψm using the Bramble–Hilbert lemma and sum-
ming over the nodes of the mesh, we obtain

J1 ≤ Ch2s−2‖u‖2
W

s,s/2
2 (Q)

, 2 < s ≤ 4. (3.115)

An identical bound holds for J3.
Further, analogously as in Sect. 3.3 we have that

J2 ≤ 6h2τ 2λ−1
∑

x∈Ωh

∫ T

0

∫ T

0

[ψ(x, t)−ψ(x, t ′)]2
|t − t ′|1+2λ

dt ′ dt,

where 0 < λ≤ 1/2. Using the integral representation

ψ(x, t) = u(x, t)− T 2
1 T

2
2 u(x, t)

= h−2
∫ x1+h

x1−h

∫ x2+h

x2−h

∫ x1

x′1

∫ x2

x′2

(
1− |x

′
1 − x1|
h

)(
1− |x

′
2 − x2|
h

)
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× ∂2u

∂x1∂x2

(
x′′1 , x′′2 , t

)
dx′′2 dx′′1 dx′2 dx′1

− h−2
∫ h

0

∫ x′1

0

∫ x1+x′′1
x1−x′′1

∫ x2+h

x2−h

(
1− x′1

h

)(
1− |x

′
2 − x2|
h

)

× ∂2u

∂x2
1

(
x′′′1 , x

′
2, t

)
dx′2 dx′′′1 dx′′1 dx′1

− h−2
∫ x1+h

x1−h

∫ h

0

∫ x′2

0

∫ x2+x′′2
x2−x′′2

(
1− |x

′
1 − x1|
h

)(
1− x′2

h

)

× ∂2u

∂x2
2

(
x′1, x′′′2 , t

)
dx′′′2 dx′′2 dx′2 dx′1

and the Cauchy–Schwarz inequality then yields

J2 ≤ Ch2+4λ|u|2
Ŵ

2+2λ,1+λ
2 (Q)

, 0 < λ≤ 1/2.

By writing s = 2+ 2λ we thus obtain the following bound:

J2 ≤ Ch2s−2‖u‖2
W

s,s/2
2 (Q)

, 2 < s ≤ 3. (3.116)

Using the Bramble–Hilbert lemma and the trace theorem (Theorem 1.44), we have
that

τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥∥ψ(·, t)∥∥2
h

≤ Ch2s−2τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)∣∣u(·, t)∣∣2
Ws−1

2 (Ω)

≤ Ch2s−2 log
1

h
‖u‖2

W
s,s/2
2 (Q)

, when 2 < s ≤ 3. (3.117)

Finally, the desired error bound follows by combining (3.103) with (3.106)–
(3.117). �

Remark 3.1 The error bounds (3.104) and (3.105) have been proved under the as-
sumption τ ) h2. As we have noted in Sect. 3.3.3, this condition is of technical
nature and may be avoided by a more careful analysis of the truncation error.

Remark 3.2 Similar results hold when the coefficients aij and a depend on t (see
Samarskiı̆ [159] for error bounds in the case of classical solutions).

Remark 3.3 Error bounds in the discrete W
2,1
2 and L2 norms can be established

analogously as in the elliptic case, provided that the discrete ‘second fundamental
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inequality’ (2.179) holds. Error bounds in discrete Ck and Ck,α norms follow di-
rectly from our error bounds in discrete Wm,m/2

2 norms by invoking discrete coun-
terparts of embedding and trace theorems.

3.4.4 Factorized Scheme

The finite difference scheme (3.101) involves the solution of a system of linear al-
gebraic equations at each time level. The linear system has a sparse, banded matrix,
a typical row of which contains at most seven nonzero entries. In the special case
when a12 = a21 = 0, a typical row of the matrix contains five nonzero entries. Ei-
ther way, the computational cost of solving such a linear system is higher than in
the one-dimensional case. Indeed, the matrix of the linear system that arises from
the implicit finite difference approximation of the one-dimensional heat equation
considered in Sect. 3.2.1 is much simpler: it is tridiagonal. Our objective here is to
replace (3.101), without loss of accuracy, by a more economical scheme, which at
each time level involves the solution of systems of linear algebraic equations with
tridiagonal matrices only. To this end, we consider the following factorized finite
difference scheme:

(Ih + στΛ1)(Ih + στΛ2)D
−
t U +LhǓ = T 2

1 T
2
2 T
−
t f, (3.118)

with the same initial and boundary conditions as in (3.101). Here σ is a positive real
parameter, ΛiU =−D−xiD+xiU , i = 1,2, and Ih is the identity operator. According
to (3.35) the finite difference scheme (3.118) is stable if the operator

(Ih + στΛ1)(Ih + στΛ2)− 1

2
τLh

is positive definite, uniformly with respect to the discretization parameters. This
condition is satisfied if, for example,

σ ≥max
i,j
‖aij‖C(Ω),

and the mesh-size h is sufficiently small, i.e.

h < 3(c2‖a‖L2(Ω))
−1, when 2 < s ≤ 3,

or

h <
1

2

[
c2

(‖a0‖L2+ε(Ω) + ‖a1‖Lp(Ω) + ‖a2‖Lp(Ω)

)]− p
p−2 , when 1 < s ≤ 2,

with the same assumptions on ε and p as in Sect. 3.4.1.
In contrast with (3.101), the factorized scheme (3.118) is economical in the sense

that the linear operators (Ih + στΛi), i = 1,2, that need to be inverted at each time
level are represented by tridiagonal matrices.
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The global error e := Pu−U satisfies the following finite difference scheme:

(Ih + στΛ1)(Ih + στΛ2)D
−
t e+Lhě =

2∑

i,j=1

D−xi η
′
ij + η′ +D−t ψ in Qτ+

h ,

e = 0 on Γ h ×Ωτ+ and Ω
h × {0},

where

η′ij := ηij + 1

2
τD−t

[
aijD

+
xj
(Pu)+ a+iij

(
D−xj (Pu)

)+i]

− 1

2
στδijD

−
t

[
D+xj (Pu)+

(
D−xj (Pu)

)+i]

+ 1

2
σ 2τ 2(1− δij )D

+
xj
D−xjD

+
xi
D−t (Pu),

η′ := η− τ
(
T 2

1 T
2
2 a

)
D−t (Pu),

with P as defined in Sect. 3.4.2, and δij is the Kronecker delta. The a priori estimate
(3.103) still holds if ηij and η are replaced by η′ij and η′. Using the techniques de-
veloped above it is easy to show that the factorized scheme (3.118) satisfies the error
bounds (3.104) and (3.105); in other words, no accuracy has been lost compared to
the implicit finite difference scheme considered in the previous section.

3.5 A Parabolic Interface Problem

Let Ω = (0,1)2, Γ = ∂Ω , and let Σ be the intersection of the line segment x2 = ξ ,
0 < ξ < 1, and Ω . We consider the following parabolic interface problem:

(1+ kδΣ)
∂u

∂t
+Lu = f (x, t) in Q :=Ω × (0, T ],

u = 0 on Γ × (0, T ], (3.119)

u(x,0) = u0(x) on Ω,

where δΣ(x) := δ(x2− ξ) is the Dirac distribution concentrated on Σ , k(x)= k(x1)

and L is the same symmetric elliptic operator as in (2.166) and (3.100):

Lu := −
2∑

i,j=1

∂i(aij ∂j )+ au.
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Clearly, (3.119) is a parabolic initial-boundary-value problem with a ‘concentrated
capacity’ involved in the coefficient of the time derivative. In one space-dimension,
similar problems were considered by Jovanović and Vulkov [94, 95]. Following
[94], the solution of the initial-boundary-value problem (3.119) will be sought in
the function space W̃ s,s/2

2 (Q) := L2((0, T ); W̃ s
2 (Ω))∩Ws/2

2 ((0, T ); L̃2(Ω)), where
W̃ s

2 (Ω) and L̃2(Ω) are the same as in Sect. 2.8.
When the source term f = f (x, t) is sufficiently regular in the sense that it does

not contain a ‘concentrated load’ such as δΣ(x), it is easily verified that (3.119) is
equivalent to the following initial-boundary-value problem with transmission (con-
jugation) conditions on the interface Σ :

∂u

∂t
+Lu= f (x, t) in Q− ∪Q+,

u= 0 on Γ × (0, T ],
u(x,0)= u0(x) on Ω,

[u]Σ = 0,

[
2∑

j=1

a2j ∂ju

]

Σ

= k
∂u

∂t

∣∣∣∣
Σ

,

(3.120)

where Q± := Ω± × (0, T ], Ω− := (0,1) × (0, ξ), Ω+ := (0,1) × (ξ,1), and
[u]Σ := u(x1, ξ + 0, t)− u(x1, ξ − 0, t).

Lemma 3.5 Let the coefficients aij , a and k satisfy the assumptions of Lemma 2.71
and suppose that

f ∈ L2
(
(0, T );W−1

2 (Ω)
)

and u0 ∈ L̃2(Ω).

Then, there exists a unique solution u ∈ W̃ 1,1/2
2 (Q) to the initial-boundary-value

problem (3.120), and there is a positive constant C such that the following a priori
estimate holds:

‖u‖2
W̃

1,1/2
2 (Q)

≤ C

(
‖u0‖2

L2(Ω) + ‖u0‖2
L2(Σ) +

∫ T

0

∥∥f (·, t)∥∥2
W−1

2 (Ω)
dt

)
.

The proof is analogous to that of Theorem 26.1 in Wloka [199].

3.5.1 Finite Difference Approximation

Using the same notational conventions as in Sects. 2.8.1 and 3.4 we approximate the
initial-boundary-value problem (3.119) on the mesh Q

τ

h by the following implicit
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finite difference scheme:

(1+ kδΣh)D
−
t U +LhU = T 2

1 T
2
2 T
−
t f in Qτ+

h ,

U = 0 on Γ h ×Ω
τ
,

U(x,0)= u0(x) on Ωh,

(3.121)

where the operator Lh is defined in the same way as in Sects. 2.8.1 and 3.4; i.e.

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]+ (

T 2
1 T

2
2 a

)
U,

and

δΣh(x)= δh(x2 − ξ) :=
{

0 for x ∈Ωh \Σh,
1/h for x ∈Σh,

is the discrete Dirac delta-function concentrated on Σh. For the sake of simplicity,
we shall assume that ξ is a rational number and ξ/h is an integer.

Besides the norms defined in Sects. 2.8.1 and 3.4, we shall also consider the
following mesh-dependent norms and seminorms:

‖U‖2
L2(Σ

h×Ωτ )
:= τ

∑

t∈Ωτ+

∥∥U(·, t)∥∥2
L2(Σ

h)
,

|U |2
L2(Ω

τ ;W 1/2
2 (Σh))

:= τ
∑

t∈Ωτ+

∣∣U(·, t)∣∣2
W

1/2
2 (Σh)

,

|U |2
W

1/2
2 (Ωτ ;L2(Ω

h))
:= τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖U(·, t)−U(·, t ′)‖2
L2(Ω

h)

|t − t ′|2 ,

|U |2
W

1/2
2 (Ωτ ;L2(Σ

h))
:= τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖U(·, t)−U(·, t ′)‖2
L2(Σ

h)

|t − t ′|2 ,

‖U‖2
Ẅ

1/2
2 (Ωτ ;L2(Ω

h))
:= |U |2

W
1/2
2 (Ωτ ;L2(Ω

h))
+ τ

∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥∥U(·, t)∥∥2
L2(Ω

h)
,

‖U‖2
Ẅ

1/2
2 (Ωτ ;L2(Σ

h))
:= |U |2

W
1/2
2 (Ωτ ;L2(Σ

h))
+ τ

∑

t∈Ωτ

(
1

t
+ 1

T − t

)∥
∥U(·, t)∥∥2

L2(Σ
h)
,

‖U‖2
W̃

1,1/2
2 (Qτ

h)
:= τ

∑

t∈Ωτ+

∥∥U(·, t)∥∥2
W 1

2 (Ω
h)
+ |U |2

W
1/2
2 (Ωτ ;L2(Ω

h))

+ |U |2
W

1/2
2 (Ωτ ;L2(Σ

h))
.
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Let u be the solution of the initial-boundary-value problem (3.120) and let U
denote the solution of the finite difference scheme (3.121). Then, the global error
e := u−U satisfies the finite difference scheme

(1+ kδΣh)D−t e+Lhe = ϕ in Ωτ+
h ,

e = 0 on Γ h ×Ωτ , (3.122)

e(x,0) = 0 on Ωh,

where

ϕ :=
2∑

i,j=1

D−xi ηij + η+D−t ψ + δΣhD
−
t μ,

ηij := T +i T 2
3−iT −t (aij ∂ju)− 1

2

(
aijD

+
xj
u+ a+iij D

−
xj
u+i

)
,

η := (
T 2

1 T
2
2 a

)
u− T 2

1 T
2
2 T
−
t (au),

ψ := u− T 2
1 T

2
2 u,

μ := ku− T 2
1 (ku).

We consider the decompositions

η1j := η̃1j + δΣhη̂1j , η := η̃+ δΣhη̂, ψ := ψ̃ + δΣhψ̂,

where

η̃1j := η1j − δΣhη̂1j , η̃ := η− δΣhη̂, ψ̃ :=ψ − δΣhψ̂,

and

η̂11 := 1

6
h2T +1 T −t

([a11∂1∂2u+ ∂2a11∂1u]Σ
)
,

η̂12 := 1

6
h2T +1 T −t

([
a12∂

2
2u+ ∂2a12∂2u

]
Σ

)− 1

4
h2T +1 T −t

([
∂1(a12∂2u)

]
Σ

)
,

η̂ := −1

6
h2[(T 2

1 a
)(
T 2

1 T
−
t ∂2u

)]
Σ
,

ψ̂ := 1

6
h2[T 2

1 ∂2u
]
Σ
.

By applying (3.18) and (3.19) we obtain the a priori estimate
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‖e‖
W̃

1,1/2
2 (Qτ

h)
≤ C

[
2∑

j=1

(‖η2j‖2,hτ + ‖η̃1j‖1,hτ + |η̂1j |L2(Ω
τ ;W 1/2

2 (Σh))

)

+ ‖η̃‖L2(Q
τ
h)
+ ‖η̂‖L2(Σ

h×Ωτ ) + ‖ψ̃‖Ẅ 1/2
2 (Ωτ ;L2(Ω

h))

+ ‖ψ̂‖
Ẅ

1/2
2 (Ωτ ;L2(Σ

h))
+ ‖μ‖

Ẅ
1/2
2 (Ωτ ;L2(Σ

h))

]

. (3.123)

Thus, in order to estimate the rate of convergence of the finite difference scheme
(3.121) it suffices to bound the terms appearing on the right-hand side of (3.123).
We shall suppose for the sake of simplicity that τ ) h2.

Theorem 3.6 Let the solution u of the initial-boundary-value problem (3.120)
belong to W̃

s,s/2
2 (Q), aij ∈ Ws−1

2 (Ω±), and suppose that a ∈ Ws−1
2 (Ω±) and

k ∈ Ws−1
2 (Σ), 5/2 < s ≤ 3. Then, assuming that τ ) h2, the global error of the

finite difference scheme (3.121) satisfies the following error bound:

‖u−U‖
W̃

1,1/2
2 (Qτ

h)
≤ Chs−1

(
max
i,j
‖aij‖Ws−1

2 (Ω+) +max
i,j
‖aij‖Ws−1

2 (Ω−)

+ ‖a‖
Ws−2

2 (Ω+) + ‖a‖Ws−2
2 (Ω−) + ‖k‖Ws−1

2 (Σ)

+
√

log 1
h

)
‖u‖

W̃
s,s/2
2 (Q)

,

for 5/2 < s ≤ 3, where C = C(s) is a positive constant, independent of h and τ .

Proof The terms η2j , j = 1,2, were bounded in Sect. 3.4.3. After summation over
the mesh we obtain

‖η2j‖2,hτ ≤ Chs−1(‖a2j‖Ws−1
2 (Ω−)‖u‖Ws,s/2

2 (Q−)

+ ‖a2j‖Ws−1
2 (Ω+)‖u‖Ws,s/2

2 (Q+)
)
, 2 < s ≤ 3. (3.124)

The terms η̃1j , j = 1,2, and η̃ for x /∈ Σh were bounded in Sect. 3.4.3; for
x ∈Σh they can be handled analogously. Hence,

‖η̃1j‖1,hτ ≤ Chs−1(‖a1j‖Ws−1
2 (Ω−)‖u‖Ws,s/2

2 (Q−)

+ ‖a1j‖Ws−1
2 (Ω+)‖u‖Ws,s/2

2 (Q+)
)
, 5/2 < s ≤ 3, (3.125)

and

‖η̃‖L2(Qhτ ) ≤ Chs−1(‖a‖
Ws−2

2 (Ω−)‖u‖Ws,s/2
2 (Q−)

+ ‖a‖
Ws−2

2 (Ω+)‖u‖Ws,s/2
2 (Q+)

)
, 2 < s ≤ 3. (3.126)
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It follows from (2.251) and (2.252) that

∣∣η̂1j (·, t)
∣∣
W

1/2
2 (Σh)

≤ Chs−1(‖a1j‖Ws−1
2 (Ω−)‖T −t u(·, t)‖Ws

2 (Ω
−)

+ ‖a1j‖Ws−1
2 (Ω+)

∥∥T −t u(·, t)∥∥
Ws

2 (Ω
+)
)
, 5/2 < s ≤ 3,

and therefore

|η̂1j |L2(Ω
τ ;W 1/2

2 (Σh))
≤ Chs−1(‖a1j‖Ws−1

2 (Ω−)‖u‖Ws,s/2
2 (Q−)

+ ‖a1j‖Ws−1
2 (Ω+)‖u‖Ws,s/2

2 (Q+)
)
, 5/2 < s ≤ 3. (3.127)

The term η̂ can be bounded directly as follows:

‖η̂‖L2(Σ
h×Ωτ ) ≤ Ch2(‖a‖

Ws−2
2 (Ω−)‖u‖Ws,s/2

2 (Q−)

+ ‖a‖
Ws−2

2 (Ω+)‖u‖Ws,s/2
2 (Q+)

)
, s > 5/2. (3.128)

The term ψ̃ , for x /∈Σh, was bounded in Sect. 3.4.3. For x ∈Σh we consider the
decomposition ψ̃ :=ψ+ +ψ−, where

ψ+ := 1

2

(
u− T 2

1 T
2+
2 u+ h

3
T 2

1 ∂2u

)∣∣∣∣
(x1,ξ+0)

= − 1

h2

∫ x1+h

x1−h

∫ ξ+h

ξ

(
1− |x1 − x′1|

h

)(
1− x′2 − ξ

h

)

×
∫ x′1

x1

∫ x′′1

x1

∂2
1u

(
x′′′1 , x

′
2

)
dx′′′1 dx′′1 dx′2 dx′1

+ 1

h2

∫ x1+h

x1−h

∫ ξ+h

ξ

(
1− |x1 − x′1|

h

)(
1− x′2 − ξ

h

)

×
∫ x′2

ξ

∫ x′1

x1

∂1∂2u
(
x′′1 , x′′2

)
dx′′1 dx′′2 dx′2 dx′1

− 1

h2

∫ x1+h

x1−h

∫ ξ+h

ξ

(
1− |x1 − x′1|

h

)(
1− x′2 − ξ

h

)

×
∫ x′2

ξ

∫ x′′2

ξ

∂2
2u

(
x′1, x′′′2

)
dx′′′2 dx′′2 dx′2 dx′1,

and ψ− is defined analogously. By bounding ψ± in the same way as ψ̃ for x /∈Σh

and combining the bounds, we get:
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‖ψ̃‖
Ẅ

1/2
2 (Ωτ ;L2(Ω

h))
≤ Chs−1

√
log 1

h

(‖u‖
W

s,s/2
2 (Q−)

+ ‖u‖
W

s,s/2
2 (Q+)

)
, 5/2 < s ≤ 3. (3.129)

Analogously, one obtains

‖μ‖
Ẅ

1/2
2 (Ωτ ;L2(Σ

h))
≤ Chs−1

√

log
1

h
‖k‖

Ws−1
2 (Σ)

‖u‖
W

s,s/2
2 (Σ×(0,T )), (3.130)

for 2 < s ≤ 3, while ψ̂ can be bounded directly, yielding

‖ψ̂‖
Ẅ

1/2
2 (Ωτ ;L2(Σ

h))
≤ Ch2

√

log
1

h
‖u‖

W
2,1
2 (Σ×(0,T )). (3.131)

The assertion then follows from (3.123)–(3.131). �

3.5.2 Factorized Scheme

Analogously as in Sect. 3.4.4, we shall construct here a factorized, unconditionally
stable version of the finite difference approximation (3.121) of the initial-boundary-
value problem (3.119). For the sake of simplicity we shall suppose that k = Const. >
0 and consider the following finite difference scheme (with the same definitions of
the meshes, mesh-functions and finite difference operators as in Sect. 3.5.1):

(Ih + θτΛ1)(Bh + θτΛ2)D
+
t U +LhU = T 2

1 T
2
2 T
+
t f in Ωτ−

h ,

U = 0 on Γ h ×Ω
τ
, (3.132)

U(x,0) = u0(x) on Ωh,

where

ΛiU := −D+xiD−xiU,
BhU := (1+ kδΣh)U,

Ih is the identity operator and θ is a real parameter. Obviously, when the values of
U for some fixed t = t ′ ∈ Ωτ are known, the values of U on the next time level
t = t ′ + τ can be computed by inverting the operators Ih + θτΛ1 and Bh + θτΛ2.
Since these operators can be represented by tridiagonal matrices, the solution of
(3.132) can be computed very efficiently by successively solving systems of linear
algebraic equations, each having a tridiagonal matrix. We note that the operator
(Ih + θτΛ1)(Bh + θτΛ2) is symmetric and when s > 2 and τ ) h2 the operator-
inequality

(Ih + θτΛ1)(Bh + θτΛ2)− τLh ≥ cBh, with 0 < c < 1,
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holds for sufficiently large positive θ and sufficiently small h (independent of the
size of the time step τ ).

Let u be the solution of the initial-boundary-value problem (3.120) and let U
denote the solution of the finite difference scheme (3.132). The global error e :=
u−U satisfies the finite difference scheme

(Ih + θτΛ1)(Bh + θτΛ2)D
+
t e+Lhe = ϕ in Ωτ−

h ,

e = 0 on Γ h ×Ω
τ
, (3.133)

e(x,0) = 0 on Ωh,

where

ϕ :=
2∑

i,j=1

ηij,x̄i + η+D+t ψ + δΣhD+t μ,

ηij := T +i T 2
3−iT +t (aij ∂ju)− 1

2

(
aijD

+
xj
u+ a+iij D

−
xj
u+i

)
,

η := (
T 2

1 T
2
2 a

)
u− T 2

1 T
2
2 T
+
t (au),

ψ := u− T 2
1 T

2
2 u− θτ

(
D+x1

D−x1
u+D+x2

D−x2
u
)+ θ2τ 2D+x1

D−x1
D+x2

D−x2
u,

μ := k
(
u− T 2

1 u− θτD+x1
D−x1

u
)
.

Let us consider the decompositions

η1j = η̃1j + δΣhη̂1j , η= η̃+ δΣhη̂, ψ = ψ̃ + δΣhψ̂,

where

η̃1j := η1j − δΣhη̂1j , η̃ := η− δΣhη̂, ψ̃ :=ψ − δΣhψ̂,

and

η̂11 :=
1

6
h2T +1 T +t

([a11∂1∂2u+ ∂2a11∂1u]Σ
)
,

η̂12 :=
1

6
h2T +1 T +t

([
a12∂

2
2u+ ∂2a12∂2u

]
Σ

)− 1

4
h2T +1 T +t

([
∂1(a12∂2u)

]
Σ

)
,

η̂ := −1

3
h2[(T 2

1 a
)(
T 2

1 T
−
t ∂2u

)]
Σ
,

ψ̂ :=
(

1

6
h2 − θτ

)[
T 2

1 (∂2u)
]
Σ
.

By applying (3.18) and (3.19) to (3.133), we obtain the following a priori estimate,
which represents the starting point for the error analysis of the finite difference
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scheme (3.132):

‖e‖
W̃

1,1/2
2 (Qτ

h)
≤ C

[
2∑

j=1

(‖η2j‖2,hτ + ‖η̃1j‖1,hτ + |η̂1j |L2(Ω
τ ;W 1/2

2 (Σh))

)

+ ‖η̃‖L2(Q
τ
h)
+ ‖η̂‖L2(Σ

h×Ωτ ) + ‖ψ̃‖Ẅ 1/2
2 (Ωτ ;L2(Ω

h))

+ ‖ψ̂‖
Ẅ

1/2
2 (Ωτ ;L2(Σ

h))
+ ‖μ‖

Ẅ
1/2
2 (Ωτ ;L2(Σ

h))

]

. (3.134)

For ηij and η the same bounds hold as for ηij and η, while ψ and μ can be
bounded analogously to ψ and μ. Thus we obtain the following result.

Theorem 3.7 Let k = Const. > 0; then, under the same assumptions as in the state-
ment of Theorem 3.6, the global error of the finite difference scheme (3.132) satisfies
the following error bound:

‖u−U‖
W̃

1,1/2
2 (Qτ

h)

≤ Chs−1
(

max
i,j
‖aij‖Ws−1

2 (Ω+) +max
i,j
‖aij‖Ws−1

2 (Ω−)

+ ‖a‖
Ws−2

2 (Ω+) + ‖a‖Ws−2
2 (Ω−) +

√
log 1

h

)
‖u‖

W̃
s,s/2
2 (Q)

, 5/2 < s ≤ 3,

where C = C(s) is a positive constant, independent of h and τ .

3.6 A Parabolic Transmission Problem

In this section we focus our attention on transmission problems whose solutions
are defined in two (or more) disconnected domains. Such a situation may occur
when the solution in the intermediate region is known, or can be determined from a
simpler equation. The effect of the intermediate region can be modelled by means
of nonlocal jump conditions across the intermediate region (see, Tikhonov [180],
Kačur et al. [113], Datta [27], Givoli [55, 56], Qatanani et al. [152], Druet [35],
Jovanović and Vulkov [102, 104]).

As a model example, we consider the following initial-boundary-value problem:
find two functions, u1(x, y, t) and u2(x, y, t), that satisfy the system of parabolic
equations

∂u1

∂t
−Δu1 = f1(x, y, t), (x, y) ∈Ω1 := (a1, b1)×(c1, d1), t ∈ (0, T ], (3.135)

∂u2

∂t
−Δu2 = f2(x, y, t), (x, y) ∈Ω2 := (a2, b2)×(c2, d2), t ∈ (0, T ], (3.136)
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where −∞< a1 < b1 < a2 < b2 <+∞, and, e. g., c2 < c1 < d1 < d2, the internal
transmission conditions of nonlocal Robin–Dirichlet type

∂u1

∂x
(b1, y, t)+ α1(y)u1(b1, y, t)

=
∫ d2

c2

β1
(
y, y′

)
u2

(
a2, y

′, t
)
dy′, y ∈ (c1, d1), t ∈ (0, T ], (3.137)

∂u2

∂x
(a2, y, t)+ α2(y)u2(a2, y, t)

=
∫ d1

c1

β2
(
y, y′

)
u1

(
b1, y

′, t
)
dy′, y ∈ (c2, d2), t ∈ (0, T ], (3.138)

the simplest external Dirichlet boundary conditions for t ∈ (0, T ]:
u1(x, c1, t)= u1(x, d1, t)= 0, x ∈ (a1, b1),

u2(x, c2, t)= u2(x, d2, t)= 0, x ∈ (a2, b2),

u1(a1, y, t)= 0, y ∈ (c1, d1); u2(b2, y, t)= 0, y ∈ (c2, d2),

(3.139)

and the initial conditions

u1(x, y,0)= u10(x, y), (x, y) ∈Ω1,

u2(x, y,0)= u20(x, y), (x, y) ∈Ω2.
(3.140)

Note that for a special choice of αi and βi such an initial-boundary-value problem
models linearized radiative heat transfer in a system of absolutely black bodies (see
Amosov [3]).

In the sequel we shall assume that the data satisfy the regularity conditions

αi ∈ L∞(ci, di), βi ∈ L∞
(
(ci, di)× (c3−i , d3−i )

)
, i = 1,2. (3.141)

In physical problems (see Amosov [3]) we also often have that

αi > 0, βi > 0, i = 1,2.

3.6.1 Weak Solutions and Function Spaces

We introduce the product space

L := L2(Ω1)×L2(Ω2)=
{
v = (v1, v2) : vi ∈ L2(Ωi)

}
,

equipped with the inner product and the associated norm

(u, v)L := (u1, v1)L2(Ω1) + (u2, v2)L2(Ω2), ‖v‖L = (v, v)
1/2
L ,
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where u= (u1, u2) and v = (v1, v2). We also define the spaces

Wk
2 :=

{
v = (v1, v2) : vi ∈Wk

2 (Ωi)
}
, k = 1,2, . . .

equipped with the inner products and norms

(u, v)Wk
2
:= (u1, v1)Wk

2 (Ω1)
+ (u2, v2)Wk

2 (Ω2)
, ‖v‖Wk

2
= (v, v)

1/2
Wk

2
.

In particular, we let

W̊ 1
2 :=

{
v = (v1, v2) ∈W 1

2 : vi = 0 on Γi, i = 1,2
}
,

where

Γ1 := ∂Ω1 \
{
(b1, y) : y ∈ (c1, d1)

}
,

Γ2 := ∂Ω2 \
{
(a2, y) : y ∈ (c2, d2)

}
.

Finally, with u= (u1, u2) and v = (v1, v2) we define the bilinear functional:

a(u, v) :=
∫

Ω1

(
∂u1

∂x

∂v1

∂x
+ ∂u1

∂y

∂v1

∂y

)
dx dy

+
∫

Ω2

(
∂u2

∂x

∂v2

∂x
+ ∂u2

∂y

∂v2

∂y

)
dx dy

+
∫ d1

c1

α1(y)u1(b1, y)v1(b1, y)dy

+
∫ d2

c2

α2(y)u2(a2, y)v2(a2, y)dy

−
∫ d2

c2

∫ d1

c1

β1
(
y, y′

)
u2

(
a2, y

′)v1(b1, y)dy dy′

−
∫ d2

c2

∫ d1

c1

β2
(
y′, y

)
u1(b1, y)v2

(
a2, y

′)dy dy′. (3.142)

The following coercivity result holds (cf. Jovanović and Vulkov [102]).

Lemma 3.8 Under the conditions (3.141) the bilinear functional a, defined by
(3.142), is bounded on W 1

2 × W 1
2 and satisfies the following Gårding inequality

on W̊ 1
2 : there exist positive constants m and κ such that

a(u,u)+ κ‖u‖2
L ≥m‖u‖2

W 1
2
∀u ∈ W̊ 1

2 .

Proof The boundedness of the bilinear functional a follows from (3.141) and the
trace theorem, according to which

‖ui‖L2(∂Ωi) ≤ C‖ui‖W 1
2 (Ωi)

, i = 1,2.
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From the Friedrichs inequality (1.23) we immediately obtain that

2∑

i=1

∫

Ωi

[(
∂ui

∂x

)2

+
(
∂ui

∂y

)2]
dx dy ≥ c0‖u‖2

W 1
2
,

where c0 is a positive constant, which depends on Ω1 and Ω2. The remaining terms
in a(u,u) can be bounded by ε‖u‖2

W 1
2
+ C

ε
‖u‖2

L; indeed, using the trace inequality

(cf. Theorem A.2 on p. 122 in [139]) it follows that:

‖ui‖L2(∂Ωi) ≤ ε‖∇ui‖L2(Ωi) +
C

ε
‖ui‖L2(Ωi), ε > 0, i = 1,2.

The stated result then follows for a sufficiently small ε > 0. �

Let W−1
2 = (W̊ 1

2 )
∗ be the dual space of W̊ 1

2 , and let 〈·, ·〉 denote the associated
duality pairing. The spaces W̊ 1

2 , L and W−1
2 form a Gelfand triple: i.e. W̊ 1

2 ↪→ L ↪→
W−1

2 , with continuous and dense embeddings. We also introduce the space

W(0, T ) :=
{
u : u ∈ L2

(
(0, T ), W̊ 1

2

)
,

du

dt
∈ L2

(
(0, T ),W−1

2

)}

with inner product

(u, v)W(0,T ) :=
∫ T

0

[
(u, v)W 1

2
+

(
du

dt
,

dv

dt

)

W−1
2

]
dt.

The weak formulation of problem (3.135)–(3.139) is then:

〈
du

dt
, v

〉
+ a(u, v)= 〈f, v〉 ∀v ∈W 1

2 . (3.143)

The problem (3.143) fits into the general theory of parabolic differential operators in
Hilbert spaces (see Wloka [199]). By applying Theorem 3.2 (cf. also Theorem 26.1
from Wloka [199]) to (3.143) we obtain the following assertion.

Theorem 3.9 Let the assumptions (3.141) hold and suppose that u0 = (u10, u20) ∈
L, f = (f1, f2) ∈ L2((0, T ),W

−1
2 ). Then, for 0 < T <+∞, the initial-boundary-

value problem (3.135)–(3.140) has a unique weak solution u ∈W(0, T ); moreover
u depends continuously on f and u0.

Because the norm ‖·‖
W−1

2
is not computable, following Lions and Magenes [127]

we shall, instead, consider the initial-boundary-value problem (3.135)–(3.140) with
right-hand sides fi , i = 1,2, of the form:
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fi(x, y, t)= fi0(x, y, t)+ ∂( i(x)fi1(x, y, t))

∂x
+ ∂fi2(x, y, t)

∂y

+
∫ T

0

fi3(x, y, t, t
′)− fi3(x, y, t

′, t)
|t − t ′| dt ′, i = 1,2, (3.144)

where fi0, fi1, fi2 ∈ L2((0, T ),L2(Ωi)) = L2(Qi), Qi = Ωi × (0, T ), fi3 ∈
L2((0, T )2,L2(Ωi))= L2(Ri), Ri =Ωi × (0, T )2,  i ∈ C([ai, bi]) and

γ1(b1 − x)≤  1(x)≤ C1(b1 − x), x ∈ (a1, b1), C1 ≥ γ1 > 0,

γ2(x − a2)≤  2(x)≤ C2(x − a2), x ∈ (a2, b2), C2 ≥ γ2 > 0.

We shall also consider the case

fi(x, t)= ∂gi(x, t)

∂t
, i = 1,2, (3.145)

where gi ∈ Ẅ 1/2
2 ((0, T ),L2(Ωi)), i = 1,2. The norm in Ẅ

1/2
2 (0, T ) is defined by

‖ϕ‖2
Ẅ

1/2
2 (0,T )

:= |ϕ|2
W

1/2
2 (0,T )

+
∫ T

0

(
1

t
+ 1

T − t

)
ϕ2(t)dt.

We also define the space W 1,1/2
2 := L2((0, T ),W 1

2 )∩W 1/2
2 ((0, T ),L).

The next two theorems follow from the results of Sect. 3.1.2, and in particular
from (3.18) and (3.19).

Theorem 3.10 Suppose that the hypotheses (3.141) hold and let ui0 ∈ L2(Ωi),
fi0, fi1fi2 ∈ L2(Qi), fi3 ∈ L2(Ri), i = 1,2. Then, the initial-boundary-value prob-
lem (3.135)–(3.140), (3.144) has a unique weak solution u= (u1, u2) ∈W 1,1/2

2 and
the following a priori estimate holds:

‖u‖2
W

1,1/2
2

≤ C

2∑

i=1

(‖ui0‖2
L2(Ωi)

+ ‖fi0‖2
L2(Qi)

+ ‖fi1‖2
L2(Qi)

+ ‖fi2‖2
L2(Qi)

+ ‖fi3‖2
L2(Ri)

)
. (3.146)

Theorem 3.11 Let the hypotheses (3.141) hold and let ui0 ∈ L2(Ωi), gi ∈
Ẅ

1/2
2 ((0, T ),L2(Ωi)), i = 1,2. Then, the initial-boundary-value problem (3.135)–

(3.140), (3.145) has a unique weak solution u= (u1, u2) ∈W 1,1/2
2 and the following

a priori estimate holds:

‖u‖2
W

1,1/2
2

≤ C
(‖u0‖2

L + ‖g‖2
Ẅ

1/2
2 ((0,T ),L)

)
. (3.147)

In both cases C is a computable constant depending on T .
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3.6.2 Finite Difference Approximation

Let Ω
hi
i be a uniform mesh on [ai, bi] with mesh-size hi := (bi − ai)/Ni , i = 1,2.

We consider

Ω
hi
i :=Ω

hi
i ∩ (ai, bi), Ω

hi
i− :=Ω

hi
i ∪ {ai}, Ω

hi
i+ :=Ω

hi
i ∪ {bi}, i = 1,2.

Analogously, we consider the uniform mesh Ω
ki
i on [ci, di] with mesh-size ki :=

(di − ci)/Mi and its submeshes

Ω
ki
i :=Ω

ki
i ∩ (ci, di), Ω

ki
i− :=Ω

ki
i ∪ {ci}, Ω

ki
i+ :=Ω

ki
i ∪ {di}, i = 1,2.

We shall assume that h1 ) h2 ) k1 ) k2 and define h := max{h1, h2, k1, k2}. Fi-
nally, we introduce a uniform mesh Ω

τ
on [0, T ] with the step size τ := T/M ,

M ≥ 1, and its submeshes Ωτ and Ωτ± (see Sect. 3.1.4). We shall consider vector-
functions of the form V = (V1,V2) where Vi is a mesh-function defined on
Ω

hi
i ×Ω

ki
i ×Ω

τ
, i = 1,2. We define the difference quotients:

D+x,iVi :=
Vi(x + hi, y, t)− Vi(x, y, t)

hi
=:D−x,iVi(x + hi, y, t), i = 1,2,

with D±y,iVi and D±t Vi defined analogously. We shall use the notations

D±x V =
(
D±x,1V1,D

±
x,2V2

)
, D±y V =

(
D±y,1V1,D

±
y,2V2

)
,

D±t V =
(
D±t V1,D

±
t V2

)
.

Further, we define the Steklov mollifiers in the usual way:

Tx,ifi(x, y, t)= T ∓x,ifi
(
x ± 1

2
hi, y, t

)
:= 1

hi

∫ x+hi/2

x−hi/2
fi

(
x′, y, t

)
dx′, i = 1,2,

with Ty,i , T
±
y,i , Tt and T ±t defined analogously. For x = b1 and x = a2 we also

require the following asymmetric mollifiers:

T 2−
x,1f1(b1, y, t) := 2

h1

∫ b1

b1−h1

(
1− b1 − x′

h1

)
f1

(
x′, y, t

)
dx′,

T 2+
x,2f2(a2, y, t) := 2

h2

∫ a2+h2

a2

(
1− x′ − a2

h2

)
f2

(
x′, y, t

)
dx′.

With the notational conventions �i := hi , x ∈ Ωhi
i , i = 1,2, �1(b1) := h1/2,

�2(a2) := h2/2, we introduce the discrete inner products

(V ,W)Lh
:= k1

∑

x∈Ωh1
1+

∑

y∈Ωk1
1

V1W1�1 + k2

∑

x∈Ωh2
2−

∑

y∈Ωk2
2

V2W2�2,
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(V ,W)Lh′ := h1k1

∑

x∈Ωh1
1+

∑

y∈Ωk1
1

V1W1 + h2k2

∑

x∈Ωh2
2+

∑

y∈Ωk2
2

V2W2,

(V ,W)Lh′′ := k1

∑

x∈Ωh1
1+

∑

y∈Ωk1
1+

V1W1�1 + k2

∑

x∈Ωh2
2−

∑

y∈Ωk2
2+

V2W2�2

and the associated mesh-dependent norms

‖V ‖2
Lh
:= (V ,V )Lh

, ‖V ‖2
Lh′ := (V ,V )Lh′ , ‖V ‖2

Lh′′ := (V ,V )Lh′′ .

We also define the following mesh-dependent norms:

‖Vi‖2
L2(Ω

τ±) := τ
∑

t∈Ωτ±

V 2
i , ‖V ‖2

L2(Ω
k)
:= k1

∑

y∈Ωk1
1

V 2
1 + k2

∑

y∈Ωk2
2

V 2
2 ,

‖V ‖2
L2(Ω

τ±,H) := τ
∑

t∈Ωτ±

‖V (·, t)‖2
H , where H := Lh,Lh′ ,Lh′′ ,L2

(
Ωk

)
,

as well as

‖V ‖2
L̃2(Ω

τ ,Lh)
:= τ

∑

t∈Ωτ

(
1

t
+ 1

T − t

)
‖V (·, t)‖2

Lh
,

|V |2
W

1/2
2 (Ω

τ
,Lh)
:= τ 2

∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

‖V (·, t)− V (·, t ′)‖2
Lh

|t − t ′|2 ,

and

‖V ‖2
Ẅ

1/2
2 (Ω

τ
,Lh)
:= |V |2

W
1/2
2 (Ω

τ
,Lh)
+ ‖V ‖2

L̃2(Ω
τ ,Lh)

,

‖V ‖2
W

1,1/2
2,hτ

:= ‖D−x V ‖2
L2(Ω

τ+,Lh′ ) + ‖D
−
y V ‖2

L2(Ω
τ+,Lh′′ )

+ ‖V ‖2
L2(Ω

τ+,Lh)
+ |V |2

W
1/2
2 (Ω

τ
,Lh)

.

We shall assume in what follows that ui belongs to W
s,s/2
2 (Qi), i = 1,2, with

s ≤ 3, while αi ∈ Ws−1
2 (ci, di) and βi ∈ Ws−1

2 ((ci, di) × (c3−i , d3−i )), i = 1,2,

s ≤ 3. Consequently, fi ∈ W
s−2,(s−2)/2
2 (Qi), i = 1,2, s ≤ 3, need not be con-

tinuous functions. We therefore approximate the initial-boundary-value problem
(3.135)–(3.140) with the following implicit finite difference scheme with mollified
data:

D−t U1 −D−x,1D
+
x,1U1 −D−y,1D

+
y,1U1 = f̄1,

x ∈Ωh1
1 , y ∈Ωk1

1 , t ∈Ωτ+, (3.148)
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D−t U1(b1, y, t)+ 2

h1

[
D−x,1U1(b1, y, t)+ α1(y)U1(b1, y, t)

− k2

∑

y′∈Ωk2
2

β1
(
y, y′

)
U2

(
a2, y

′, t
)]−D−y,1D

+
y,1U1(b1, y, t)

= f̄1(b1, y, t), y ∈Ωk1
1 , t ∈Ωτ+, (3.149)

D−t U2 −D−x,2D
+
x,2U2 −D−y,2D

+
y,2U2 = f̄2,

x ∈Ωh2
2 , y ∈Ωk2

2 , t ∈Ωτ+, (3.150)

D−t U2(a2, y, t)− 2

h2

[
D+x,2U2(a2, y, t)− α2(y)U2(a2, y, t)

+ k1

∑

y′∈Ωk1
1

β2
(
y, y′

)
U1

(
b1, y

′, t
)
]
−D−y,2D

+
y,2U2(a2, y, t)

= f̄2(a2, y, t), y ∈Ωk2
2 , t ∈Ωτ+, (3.151)

subject to the boundary conditions

U1(x, c1, t)=U1(x, d1, t)= 0, x ∈Ωh1
1 , t ∈Ωτ

,

U2(x, c2, t)=U2(x, d2, t)= 0, x ∈Ωh2
2 , t ∈Ωτ

,

U1(a1, y, t)= 0, y ∈Ωk1
1 ; U2(b2, y, t)= 0, y ∈Ωk2

2 ,

(3.152)

and the initial conditions

Ui(x, y,0)= ui0(x, y), x ∈Ωhi
i±, y ∈Ωki

i , i = 1,2, (3.153)

where

f̄i (x, y, t) := T 2
x,iT

2
y,iT

−
t fi(x, y, t), x ∈Ωhi

i , y ∈Ωki
i , t ∈Ωτ+, i = 1,2,

f̄1(b1, y, t) := T 2−
x,1T

2
y,1T

−
t f1(b1, y, t), f̄2(a2, y, t) := T 2+

x,2T
2
y,2T

−
t f2(a2, y, t).

The finite difference scheme (3.148)–(3.153) fits into the general framework
(3.38), where Hh is the space of mesh-functions U = (U1,U2), with Ui defined

on the mesh Ω
hi
i ×Ω

ki
i , i = 1,2, where

U1 = 0 for x = b1 and U2 = 0 for x = a2,

and

B̄h = Ih, Ah =A0h +A1h, A0hU = (A01hU1,A02hU2),
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with

A01hU1 :=
{
−D−x,1D+x,1U1 −D−y,1D

+
y,1U1, x ∈Ωh1

1 , y ∈Ωk1
1 ,

2
h1
D−x,1U1 −D−y,1D

+
y,1U1, x = b1, y ∈Ωk1

1 ,

and A02hU2 is defined analogously. Hence,

(A0hU,U)Lh
= ∥∥D−x U

∥∥2
Lh′
+ ∥∥D−y U

∥∥2
Lh′′
≥ C3‖U‖2

Lh
, C3 > 0,

thanks to the discrete Friedrichs inequality; and, by the Cauchy–Schwarz inequality,

(A1hU,V )Lh
= k1

∑

y∈Ωk1
1

α1(y)U1(b1, y)V1(b1, y)

+ k2

∑

y∈Ωk2
2

α2(y)U2(a2, y)V2(a2, y)

− k1k2

∑

y∈Ωk1
1

∑

y′∈Ωk2
2

β1
(
y, y′

)
U2

(
a2, y

′)V1(b1, y)

− k1k2

∑

y∈Ωk1
1

∑

y′∈Ωk2
2

β2
(
y′, y

)
U1(b1, y)V2

(
a2, y

′)

≤ C4

(
k1

∑

y∈Ωk1
1

U2
1 (b1, y)+ k2

∑

y∈Ωk2
2

U2
2 (a2, y)

)1/2

×
(
k1

∑

y∈Ωk1
1

V 2
1 (b1, y)+ k2

∑

y∈Ωk2
2

V 2
2 (a2, y)

)1/2

.

Further, we have that

k1

∑

y∈Ωk1
1

U2
1 (b1, y)= k1h1

∑

y∈Ωk1
1

∑

x∈Ωh1
1+

D−x,1
(
U2

1 (x, y)
)

= k1h1

∑

y∈Ωk1
1

∑

x∈Ωh1
1+

D−x,1
(
U1(x, y)

)[
U1(x, y)+U1(x − h1, y)

]

≤ 2

(
k1h1

∑

y∈Ωk1
1

∑

x∈Ωh1
1+

(
D−x,1U1

)2
)1/2(

k1

∑

y∈Ωk1
1

∑

x∈Ωh1
1+

U2
1�1

)1/2

,

with analogous bounds for the other summands. Thus,

(A1hU,V )
2
Lh
≤ 2C2

4‖U‖Lh

∥∥D−x U
∥∥
Lh′
‖V ‖Lh

∥∥D−x V
∥∥
Lh′

≤ 2C2
4‖U‖Lh

‖U‖A0h‖V ‖Lh
‖V ‖A0h .
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Hence, the finite difference scheme (3.148)–(3.153) is unconditionally stable and
satisfies an a priori estimate of the form (3.45).

Let u= (u1, u2) be the solution of the initial-boundary-value problem (3.135)–
(3.140) and let U = (U1,U2) be the solution of the finite difference scheme (3.148)–
(3.153). We define ei := ui−Ui for i = 1,2, and e := (e1, e2). Then, the global error
e= u−U satisfies the following finite difference scheme:

D−t e1 −D−x,1D
+
x,1e1 −D−y,1D

+
y,1e1 =D−t ψ1 +D+x,1η1 +D+y,1ζ1,

x ∈Ωh1
1 , y ∈Ωk1

1 , t ∈Ωτ+, (3.154)

D−t e1(b1, y, t)+ 2

h1

[
D−x,1e1(b1, y, t)+ α1(y)e1(b1, y, t)

− k2

∑

y′∈Ωk2
2

β1
(
y, y′

)
e2

(
a2, y

′, t
)]−D−y,1D

+
y,1e1(b1, y, t)

=D−t ψ1(b1, y, t)+D+y,1ζ1(b1, y, t)− 2

h1
η1(b1, y, t)

+ 2

h1
μ1(y, t), y ∈Ωk1

1 , t ∈Ωτ+, (3.155)

D−t e2 −D−x,2D
+
x,2e2 −D−y,2D

+
y,2e2 =D−t ψ2 +D+x,2η2 +D+y,2ζ2,

x ∈Ωh2
2 , y ∈Ωk2

2 , t ∈Ωτ+, (3.156)

D−t e2(a2, y, t)− 2

h2

[
D+x,2e2(a2, y, t)− α2(y)e2(a2, y, t)

+ k1

∑

y′∈Ωk1
1

β2
(
y, y′

)
e1

(
b1, y

′, t
)]−D−y,2D

+
y,2e2(a2, y, t)

=D−t ψ2(a2, y, t)+D+y,2ζ2(a2, y, t)+ 2

h2
η2(a2 + h2, y, t)

+ 2

h2
μ2(y, t), y ∈Ωk2

2 , t ∈Ωτ+, (3.157)

with

e1(x, c1, t)= e1(x, d1, t)= 0, x ∈Ωh1
1 , t ∈Ωτ

,

e2(x, c2, t)= e2(x, d2, t)= 0, x ∈Ωh2
2 , t ∈Ωτ

,

e1(a1, y, t)= 0, y ∈Ωk1
1 ; e2(b2, y, t)= 0, y ∈Ωk2

2 ,

(3.158)

and the initial conditions

ei(x, y,0)= 0, x ∈Ωhi
i±, y ∈Ωki

i , i = 1,2, (3.159)
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where

ψi := ui − T 2
x,iT

2
y,iui, x ∈Ωhi

i , y ∈Ωki
i , t ∈Ωτ

, i = 1,2,

ψ1 := u1 − T 2−
x,1T

2
y,1u1 − h1

3
T 2
y,1

∂u1

∂x
, x = b1, y ∈Ωk1

1 , t ∈Ωτ
,

ψ2 := u2 − T 2+
x,2T

2
y,2u2 + h2

3
T 2
y,2

∂u2

∂x
, x = a2, y ∈Ωk2

2 , t ∈Ωτ
,

and

ηi := T −x,iT
2
y,iT

−
t

(
∂ui

∂x

)
−D−x,iui, x ∈Ωhi

i+, y ∈Ωki
i , t ∈Ωτ+, i = 1,2,

ζi := T 2
x,iT

−
y,iT

−
t

(
∂ui

∂y

)
−D−y,iui, x ∈Ωhi

i , y ∈Ωki
i+, t ∈Ωτ+, i = 1,2,

ζ1 := T 2−
x,1T

−
y,1T

−
t

(
∂u1

∂y

)
−D−y,1u1 − h1

3
T −y,1T

−
t

(
∂2u1

∂x∂y

)
, x = b1,

ζ2 := T 2+
x,2T

−
y,2T

−
t

(
∂u2

∂y

)
−D−y,2u2 + h2

3
T −y,2T

−
t

(
∂2u2

∂x∂y

)
, x = a2,

together with

μ1(y, t) :=
[
α1(y)u1(b1, y, t)− T 2

y,1T
−
t

(
α1(y)u1(b1, y, t)

)]

−
[
k2

∑

y′∈Ωk2
2

β1
(
y, y′

)
u2

(
a2, y

′, t
)

−
∫ d

c

T 2
y,1T

−
t

(
β1

(
y, y′

)
u2

(
a2, y

′, t
))

dy′
]

+ h2
1

6

[
T 2
y,1T

−
t

∂2u1

∂x∂t
+D+y,1

(
T −y,1T

−
t

∂2u1

∂x∂y

)]

(b1,y,t)

,

y ∈Ωk1
1 , t ∈Ωτ+,

μ2(y, t) :=
[
α2(y)u2(a2, y, t)− T 2

y,2T
−
t

(
α2(y)u2(a2, y, t)

)]

−
[
k1

∑

y′∈Ωk1
1

β2
(
y, y′

)
u1

(
b1, y

′, t
)

−
∫ d

c

T 2
y,2T

−
t

(
β2

(
y, y′

)
u1

(
b1, y

′, t
))

dy′
]

− h2
2

6

[
T 2
y,2T

−
t

∂2u2

∂x∂t
−D+y,2

(
T −y,2T

−
t

∂2u2

∂x∂y

)]

(a2,y,t)

,

y ∈Ωk2
2 , t ∈Ωτ+.
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The relevant a priori estimate for the solution of the finite difference scheme
(3.154)–(3.159) is given by the following lemma, whose proof follows directly from
(3.45) and (3.46).

Lemma 3.12 Suppose that the coefficients of the finite difference scheme (3.154)–
(3.159) are well-defined at the mesh-points. Then, the global error e, which is the
solution of the finite difference scheme (3.154)–(3.159), satisfies the a priori esti-
mate

‖e‖2
W

1,1/2
2,hτ

≤ C
(‖ψ‖2

Ẅ
1/2
2 (Ω

τ
,Lh)
+ ‖η‖2

L2(Ω
τ+,Lh′ )

+ ‖ζ‖2
L2(Ω

τ+,Lh′′ ) + ‖μ‖
2
L2(Ω

τ+,L2(Ω
k))

)
, (3.160)

where C is a positive constant depending on T , but independent of h and τ .

Thus, in order to derive an error bound for the finite difference scheme (3.148)–
(3.153), it suffices to bound the terms appearing on the right-hand side of (3.160).
For simplicity, we shall assume in what follows that τ ) h2.

Theorem 3.13 Suppose that the solution of the initial-boundary-value prob-
lem (3.135)–(3.140) belongs to W

s,s/2
2 , 5/2 < s ≤ 3, αi ∈ Ws−1

2 (ci, di), βi ∈
Ws−1

2 ((ci , di)× (c3−i , d3−i )), i = 1,2, and let τ ) h2. Then, the solution U of the
finite difference scheme (3.148)–(3.153) converges to the solution u of the initial-
boundary-value problem (3.135)–(3.140), and the following error bound holds:

‖u−U‖
W

1,1/2
2,hτ
≤ Chs−1

(√
log 1

h
+max

i
‖αi‖Ws−1

2 (ci ,di )

+max
i
‖βi‖Ws−1

2 ((ci ,di )×(c3−i ,d3−i ))

)
‖u‖

W
s,s/2
2

, 5/2 < s ≤ 3,

(3.161)

where C = C(s) is a positive constant, independent of h.

Proof The term ψ1, for x ∈Ωh1
1 , can be bounded in the same way as the analogous

term ψ in Sect. 3.4.3. The same is true of ψ1(b1, y, t) if u1 ∈Ws,s/2
2 (Ω1), s > 5/2;

we note that for smaller values of s this term is not necessarily well-defined. Hence,
from (3.115)–(3.117), we immediately obtain the bounds

∑

x∈Ωh1
1+

�1k1

∑

y∈Ωk1
1

τ 2
∑

t∈Ωτ

∑

t ′∈Ωτ
,t ′ 	=t

|ψ1(x, y, t)−ψ1(x, y, t
′)|2

|t − t ′|2

≤ Ch2(s−1)‖u1‖2
W

s,s/2
2 (Q1)

, 5/2 < s ≤ 3,
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and

∑

x∈Ωh1
1+

�1k1

∑

y∈Ωk1
1

τ
∑

t∈Ωτ

(
1

t
+ 1

T − t

)
ψ2

1 (x, y, t)

≤ Ch2(s−1) log
1

h
‖u1‖2

W
s,s/2
2 (Q1)

, 5/2 < s ≤ 3.

Analogous results hold for ψ2, whereby

‖ψ‖
Ẅ

1/2
2 (Ω

τ
,Lh)
≤ Chs−1

√

log
1

h
‖u1‖Ws,s/2

2
, 5/2 < s ≤ 3, (3.162)

where we have used the notation

‖u‖2
W

s,s/2
2

:= ‖u1‖2
W

s,s/2
2 (Q1)

+ ‖u2‖2
W

s,s/2
2 (Q2)

.

When s > 2, η1(x, y, t) is a bounded linear functional of u1 ∈Ws,s/2
2 (G), where

G is the elementary cell (x − h1, x)× (y − k1, y + k1)× (t − τ, t), which vanishes
on the monomials 1, x, y, t, x2, xy and y2. Invoking the Bramble–Hilbert lemma
and summing over the nodes of the mesh we obtain

h1k1τ
∑

x∈Ωh1
1+

∑

y∈Ωk1
1

∑

t∈Ωτ+

η2
1(x, y, t)≤ Ch2(s−1)‖u1‖2

W
s,s/2
2 (Q1)

, 2 < s ≤ 3.

An analogous inequality holds for η2, and hence

‖η‖L2(Ω
τ+,Lh′ ) ≤ Chs−1‖u‖

W
s,s/2
2

, 2 < s ≤ 3. (3.163)

Furthermore, an analogous result holds for ζ , assuming that s > 5/2; again we note
that for smaller values of s the expressions ζ1(b1, y, t) and ζ2(a2, y, t) are not nec-
essarily well-defined. Hence,

‖ζ‖L2(Ω
τ+,Lh′ ) ≤ Chs−1‖u‖

W
s,s/2
2

, 5/2 < s ≤ 3. (3.164)

The term μ1 can be decomposed as

μ1 = μ11 +μ12 +μ13 +μ14 +μ15 +μ16,

where

μ11 := α1(y)u1(b1, y, t)− T 2
y,1T

−
t

(
α1(y)u1(b1, y, t)

)
,

μ12 := k2

∑

y′∈Ωk2
2

ν12(y, y
′, t),
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μ13 := k2

∑

y′∈Ωk2
2

ν13(y, y
′, t),

μ14 := k2

∑

y′∈Ωk2
2

ν14(y, y
′, t),

μ15 := 1

6
h2

1T
2
y,1T

−
t

∂2u1

∂x∂t
(b1, y, t),

μ16 := 1

6
h2

1D
+
y,1

(
T −y,1T

−
t

∂2u1

∂x∂y

)
(b1, y, t),

with

ν12 :=
[
T 2
y,1β1

(
y, y′

)− β1
(
y, y′

)]
u2

(
a2, y

′, t
)
,

ν13 := T 2
y,1β1

(
y, y′

)[
T −t u2

(
a2, y

′, t
)− u2

(
a2, y

′, t
)]
,

ν14 := T −
y′,2

[
T 2
y,1β1

(
y, y′

)
T −t u2

(
a2, y

′, t
)]− 1

2

[
T 2
y,1β1

(
y, y′

)
T −t u2

(
a2, y

′, t
)]

− 1

2

[
T 2
y,1β1

(
y, y′ − k2

)
T −t u2

(
a2, y

′ − k2, t
)]
.

When s > 5/2, μ11(y, t) is a bounded linear functional of v1 := α1u1 ∈
W

s−1,(s−1)/2
2 (M1), where M1 is the elementary cell (y − k1, y + k1)× (t − τ, t),

which vanishes if v1 = 1 and v1 = y. By applying the Bramble–Hilbert lemma,
Lemmas 1.47 and 1.54 and the trace theorem we obtain

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
11(y, t)≤ Ch2(s−1)‖v1‖2

W
s−1,(s−1)/2
2 ((c1,d1)×(0,T ))

≤ Ch2(s−1)‖α1‖2
Ws−1

2 (c1,d1)
‖u1‖2

W
s−1,(s−1)/2
2 (Γ1×(0,T ))

≤ Ch2(s−1)‖α1‖2
Ws−1

2 (c1,d1)
‖u1‖2

W
s,s/2
2 (Q1)

, 5/2 < s ≤ 3.

When u2 ∈ C(Q2), ν12 is a bounded linear functional of β1 ∈ Ws−1
2 (K), s > 2,

where K is the elementary cell (y−k1, y+k1)×(y′ −k2, y
′ +k2), which vanishes if

β1(y, y
′) is a polynomial of degree 1. Invoking, again, the Bramble–Hilbert lemma

and the Sobolev embedding theorem, we obtain

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
12(y, t)≤ Ch2(s−1)‖β1‖2

Ws−1
2 ((c1,d1)×(c2,d2))

‖u2‖2
C(Q2)

≤ Ch2(s−1)‖β1‖2
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖2

W
s,s/2
2 (Q2)

, 2 < s ≤ 3.

If β1 ∈ C([c1, d1] × [c2, d2]), ν13 is a bounded linear functional of u2(a2, ·, ·) ∈
W

s−1,(s−1)/2
2 (M2), s > 5/2, where M2 is the elementary cell (y′ − k2, y

′ + k2)×
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(t − τ, t), which vanishes if u2 = 1 and u2 = y′. By applying the Bramble–Hilbert
lemma, the embedding theorem and the trace theorem, we obtain

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
13(y, t)

≤ Ch2(s−1)‖β1‖2
C([c1,d1]×[c2,d2])‖u2‖2

W
s−1, s−1

2
2 (Γ2×(0,T ))

≤ Ch2(s−1)‖β1‖2
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖2

W
s,s/2
2 (Q2)

, 5/2 < s ≤ 3.

Next, ν14 is a bounded linear functional of v(y′) = T 2
y,1β1(y, y

′)T −t u2(a2, y
′, t) ∈

Ws−1
2 (E2), s > 3/2, where E2 is the elementary interval (y′ − k2, y

′ + k2), which
vanishes if v = 1 and v = y′. By applying the Bramble–Hilbert lemma, Lemma 1.52
and the trace theorem, we obtain

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
14(y, t)

≤ Ch2(s−1)k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

∥∥(T 2
y,1β1

)(
T −t u2

)∥∥2
Ws−1

2 (c2,d2)

≤ Ch2(s−1)k1

∑

y∈Ωk1
1

∥∥T 2
y1β1

∥∥2
Ws−1

2 (c2,d2)
τ

∑

t∈Ωτ+

∥∥T −t u2
∥∥2
Ws−1

2 (c2,d2)

≤ Ch2(s−1)‖β1‖2
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖2

W
s−1,(s−1)/2
2 (Γ2×(0,T ))

≤ Ch2(s−1)‖β1‖2
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖2

W
s,s/2
2 (Q2)

, 3/2 < s ≤ 3.

The term μ15 may be estimated directly, yielding

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
15(y, t)≤ Ch4

∥∥∥
∥
∂2u1

∂x∂t

∥∥∥
∥

2

L2(Γ1×(0,T ))
,

and thus, by noting the transmission condition (3.137), the Sobolev embedding the-
orem and the trace theorem, it follows that

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
15(y, t)

≤ Ch4(‖α1‖2
Ws−1

2 (c1,d1)
‖u1‖2

W
s,s/2
2 (Q1)

+ ‖β1‖2
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖2

W
s,s/2
2 (Q2)

)
, 5/2 < s ≤ 3.
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The term μ16 is a bounded linear functional of v(y)= T −t ∂2u1
∂x∂y
∈Ws−2

2 (E1), s ≥ 2,

where E1 is the elementary interval (y − k1, y + k1), which vanishes if v = 1 and
v = y. By applying the Bramble–Hilbert lemma we obtain

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
16(y, t)≤ Ch2(s−1)τ

∑

t∈Ωτ+

∥∥∥∥T
−
t

∂2u1

∂x∂y

∥∥∥∥

2

Ws−2
2 (c1,d1)

, 2≤ s ≤ 3,

and hence, by noting the transmission condition (3.137), Lemma 1.52, the Sobolev
embedding theorem and the trace theorem, it follows that

k1τ
∑

y∈Ωk1
1

∑

t∈Ωτ+

μ2
16(y, t)

≤ Ch2(s−1)(‖α1‖2
Ws−1

2 (c1,d1)
‖u1‖2

W
s,s/2
2 (Q1)

+ ‖β1‖2
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖2

W
s,s/2
2 (Q2)

)
, 5/2 < s ≤ 3.

By collecting the bounds above and noting that analogous bounds hold for μ2, we
have that

‖μ‖2
L2(Ω

τ+,L2(Ω
k))
≤ Ch2(s−1)

(
max
i
‖α1‖2

Ws−1
2 (c1,d1)

+max
i
‖β1‖2

Ws−1
2 ((c1,d1)×(c2,d2))

)
‖u‖2

W
s,s/2
2

, 5/2 < s ≤ 3.

(3.165)

Finally, from (3.160)–(3.165) we obtain (3.161), with C = C(s) signifying a posi-
tive constant, independent of h. �

In the next section we briefly consider a factorized version of the implicit finite
difference scheme (3.148)–(3.153).

3.6.3 Factorized Scheme

The implicit finite difference scheme (3.148)–(3.153) is not economical, because on
each time level it requires the solution of a two-dimensional elliptic difference prob-
lem. To overcome this practical shortfall, we consider here the following factorized
counterpart of the finite difference scheme (3.148)–(3.153):

(Ih + στΛ11)(Ih + στΛ12)D
+
t U1 −D−x,1D

+
x,1U1 −D−y,1D

+
y,1U1

= f̂1, x ∈Ωh1
1 , y ∈Ωk1

1 , t ∈Ωτ−, (3.166)
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(Ih + στΛ11)(Ih + στΛ12)D
+
t U1(b1, y, t)+ 2

h1

[
D−x,1U1(b1, y, t)

+ α1(y)U1(b1, y, t)− k2

∑

y′∈Ωk2
2

β1
(
y, y′

)
U2

(
a2, y

′, t
)]

−D−y,1D
+
y,1U1(b1, y, t)= f̂1(b1, y, t), y ∈Ωk1

1 , t ∈Ωτ−, (3.167)

(Ih + στΛ21)(Ih + στΛ22)D
+
t U2 −D−x,2D

+
x,2U2 −D−y,2D

+
y,2U2

= f̂2, x ∈Ωh2
2 , y ∈Ωk2

2 , t ∈Ωτ−, (3.168)

(Ih + στΛ21)(Ih + στΛ22)D
+
t U2(a2, y, t)− 2

h2

[
D+x,2U2(a2, y, t)

− α2(y)U2(a2, y, t)+ k1

∑

y′∈Ωk1
1

β2
(
y, y′

)
U1

(
b1, y

′, t
)]

−D−y,2D
+
y,2U2(a2, y, t)= f̂2(a2, y, t), y ∈Ωk2

2 , t ∈Ωτ−, (3.169)

subject to the initial and boundary conditions (3.152)–(3.153), where we have used
the notation f̂i (·, ·, t) := f̄i (·, ·, t + τ), and

Λi2Ui := −D−y,iD+y,iUi, Λi1Ui := −D−x,iD+x,iUi, x ∈Ωhi
i , y ∈Ωki

i ,

Λ11U1(b1, ·, ·)= 2

h1
D−x,1U1(b1, ·, ·), Λ21U2(a2, ·, ·)=− 2

h2
D+x,2U2(a2, ·, ·).

Let us define

BhU := (B1hU1,B2hU2) and A0hU := (A01hU1,A02hU2),

where

Bih := (Ih + στΛi1)(Ih + στΛi2) and A0ih :=Λi1 +Λi2.

Then,

(B̄hU,U)Lh
= (

(Bh − τA0h)U,U
)
Lh

= ‖U‖2
Lh
+ (σ − 1)τ‖U‖2

A0h

+ σ 2τ 2
2∑

i=1

hiki
∑

x∈Ωhi
i+

∑

y∈Ωki
i+

(
D−x,iD

−
y,iUi

)2
.

Hence, B̄h is positive definite for σ ≥ 1, uniformly with respect to the discretization
parameters. Assuming that τ ) h2, we also have that

‖U‖B̄h
) ‖U‖Lh

.
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In contrast with (3.148)–(3.153), the finite difference scheme (3.166)–(3.169),
(3.152), (3.153) is computationally efficient, since on each time level the set of un-
knowns may be computed by solving systems of linear algebraic equations that have
tridiagonal matrices.

Let u= (u1, u2) be the solution of the initial-boundary-value problem (3.135)–
(3.140) and let U = (U1,U2) be the solution of the difference scheme (3.166)–
(3.169), (3.152), (3.153). We define ei := ui − Ui for i = 1,2, and e := (e1, e2).
Then, the global error e= u−U satisfies the following finite difference scheme:

(Ih + στΛ11)(Ih + στΛ12)D
+
t e1 −D−x,1D

+
x,1e1 −D−y,1D

+
y,1e1

=D+t ψ̃1 +D+x,1η̃1 +D+y,1ζ̃1, x ∈Ωh1
1 , y ∈Ωk1

1 , t ∈Ωτ−, (3.170)

(Ih + στΛ11)(Ih + στΛ12)D
+
t e1(b1, y, t)+ 2

h1

[
D−x,1e1(b1, y, t)

+ α1(y)e1(b1, y, t)− k2

∑

y′∈Ωk2
2

β1
(
y, y′

)
e2

(
a2, y

′, t
)]

−D−y,1D
+
y,1e1(b1, y, t)

=D+t ψ̃1(b1, y, t)+D+y,1ζ̃1(b1, y, t)

− 2

h1
η̃1(b1, y, t)+ 2

h1
μ̃1(y, t), y ∈Ωk1

1 , t ∈Ωτ−, (3.171)

(Ih + στΛ21)(Ih + στΛ22)D
+
t e2 −D−x,2D

+
x,2e2 −D−y,2D

+
y,2e2

=D+t ψ̃2 +D+x,2η̃2 +D+y,2ζ̃2, x ∈Ωh2
2 , y ∈Ωk2

2 , t ∈Ωτ−, (3.172)

(Ih + στΛ21)(Ih + στΛ22)D
+
t e2(a2, y, t)− 2

h2

[
D+x,2e2(a2, y, t)

− α2(y)e2(a2, y, t)+ k1

∑

y′∈Ωk1
1

β2
(
y, y′

)
e1

(
b1, y

′, t
)]

−D−y,2D
+
y,2e2(a2, y, t)

=D+t ψ̃2(a2, y, t)+D+y,2ζ̃2(a2, y, t)

+ 2

h2
η̃2(a2 + h2, y, t)+ 2

h2
μ̃2(y, t), y ∈Ωk2

2 , t ∈Ωτ−, (3.173)

with the boundary and initial conditions (3.158)–(3.159), where, for i = 1,2,

ψ̃i(·, ·, t) := ψi(·, ·, t),
η̃i(·, ·, t) :=

[
ηi + (1− σ)τD−x,iD

−
t ui + σ 2τ 2D−x,iD

+
y,iD

−
y,iD

−
t ui

]∣∣
(·,·,t+τ),
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ζ̃i (·, ·, t) :=
[
ζi + (1− σ)τD−y,iD

−
t ui

]∣∣
(·,·,t+τ),

μ̃i(·, t) :=
(
μi + τk3−i

∑

y′∈Ωk3−i
3−i

βiD
−
t u3−i

)∣∣∣∣
(·,t+τ)

.

From (3.45) and (3.46) we deduce an a priori estimate analogous to (3.160), with
ψ , η, ζ and μ replaced by ψ̃ , η̃, ζ̃ and μ̃, respectively.

When τ ) h2 it is easily seen that ψ̃ , η̃, ζ̃ and μ̃ satisfy the same bounds as the
corresponding terms ψ , η, ζ and μ. Hence, the factorized finite difference scheme
(3.166)–(3.169), (3.152), (3.153) also satisfies the error bound (3.161).

3.7 Bibliographical Notes

In this chapter we have derived error bounds for finite difference approximations of
some model initial-boundary-value problems for second-order linear parabolic par-
tial differential equations. The procedure was based on the Bramble–Hilbert lemma
and its generalizations, and can be seen as a further development of the methodology
presented in Chap. 2.

As we have already mentioned, in the case of second-order linear parabolic par-
tial differential equations a complete theory of existence and uniqueness of weak
solutions to initial-boundary-value problems has been developed in the anisotropic
Sobolev spaces Ws,s/2

2 (Q). We therefore chose to use analogous mesh-dependent
norms in our analysis of finite difference approximations of the various initial-
boundary-value problems considered.

Similarly to the elliptic case discussed in Chap. 2, for a finite difference approx-
imation of a second-order parabolic partial differential equation an error bound of
the form

‖u−U‖
W

r,r/2
2 (Qτ

h)
≤ C(h+√τ)s−r‖u‖

W
s,s/2
2 (Q)

, r < s, (3.174)

is said to be optimal, or compatible with the smoothness of the solution of the initial-
boundary-value problem. Here usually 0≤ r ≤ 1 < s. If the mesh-sizes h and τ sat-
isfy the relation τ ) h2, i.e. c1h

2 ≤ τ ≤ c2h
2, then the error bound (3.174) reduces

to

‖u−U‖
W

r,r/2
2 (Qτ

h)
≤ Chs−r‖u‖

W
s,s/2
2 (Q)

. (3.175)

In the case of linear parabolic equations with variable coefficients, the constant C
depends on norms of the coefficients. For example, if the coefficients are indepen-
dent of t , then one obtains an error bound of the form

‖u−U‖
W

r,r/2
2 (Qτ

h)
≤ Chs−r

(
max
i,j
‖aij‖Ws−1

p (Ω)
+ ‖a‖

Ws−2
p (Ω)

)
‖u‖

W
s,s/2
2 (Q)

.

(3.176)
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For parabolic equations with constant coefficients, error bounds of the form
(3.174) were obtained by Lazarov [122] for r = 0 and s = 2. A similar error bound
in a discrete Lp norm (for s = 2) was derived in the work of Godev and Lazarov
[58].

The case of fractional values of s was studied by Ivanović, Jovanović and Süli
[74, 105]. Estimates of the form (3.175) were obtained for 2≤ s ≤ 4, r = 0,2. For
r = 1 the estimate was derived in the discrete W

1,0
2 norm rather than in the, more

natural, discrete W 1,1/2
2 norm.

Dražić [32] obtained error bounds of the form (3.174) and (3.175); he also stated
certain conditions under which the step sizes h and τ appearing in the error bounds
may be chosen independently of each other.

In the papers by Scott and Seward [164] and Seward, Kasibhatla and Fairweather
[165] the influence of mollifying the initial datum on the convergence rate of the
difference scheme was investigated.

In each of those publications the Bramble–Hilbert lemma was used in the deriva-
tion of the error bounds. We note that some error bounds for finite difference ap-
proximations of parabolic problems with weak solutions were obtained much earlier
using different, more classical, techniques based on Fourier series (see e.g. Juncosa
and Young [112]). We also highlight here the more recent work of Carter and Giles
[25], where sharp estimates of the error arising from explicit and implicit approx-
imations of the constant-coefficient one-dimensional convection-diffusion equation
with Dirac initial datum were derived. The study of this particular model problem
was motivated by applications in computational finance and the desire to prove con-
vergence of approximations to adjoint partial differential equations. The error anal-
ysis in [25] was based on Fourier analysis and asymptotic approximation of the
integrals resulting from the application of an inverse Fourier transform.

For early developments concerning the use of Besov space theory and techniques
from harmonic analysis in the stability and convergence analysis of finite difference
approximations of pure initial-value problems for parabolic equations with nons-
mooth initial data, we refer to the monograph of Brenner, Thomée and Wahlbin
[24], and the references cited therein.

Finite difference approximations of parabolic equations with variable coefficients
were considered by Weinelt, Lazarov and Streit [197], and Kuzik and Makarov
[117]—for integer values of s, and by Jovanović [82, 85]—for fractional values
of s.

Finite difference schemes for various nonstandard parabolic problems with inter-
faces and/or dynamic boundary conditions were studied by Jovanović and Vulkov
[94, 95, 97–99] and Bojović and Jovanović [17]. Parabolic transmission problems
in disjoint domains were investigated by Jovanović and Vulkov [102, 104]. Second-
order convergence in the mesh-dependent W 1

2 norm for non-Fickian diffusion mod-
els was proved by Barbeiro, Ferreira and Pinto [7].

Finite-difference schemes on time-adaptive grids for parabolic equations with
generalized solutions were studied by Samarskiı̆ et al. [161].
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The application of function space interpolation theory was considered by Bojović
and Jovanović [16] for the derivation of error bounds for finite difference approxi-
mations of parabolic problems.

Variational-difference schemes also satisfy error bounds of the form (3.174)–
(3.176) (see Jovanović [78]). However, for those schemes, error bounds involving
the ‘continuous’ rather than the discrete Wr,r/2

2 norm on the left-hand side are more
common. See, for example, Zlotnik [201, 202], Hackbusch [65], Amosov and Zlot-
nik [4]). A similar comment applies to finite element methods for parabolic prob-
lems (see, for example, the monograph of Thomée [177]).

Besides the error bounds described above, for parabolic problems one can also
derive error bounds in the norms of the function spaces

L∞
(
(0, T ),L2(Ω)

)
and L∞

(
(0, T ),W 1

2 (Ω)
);

see, for example, Douglas and Dupont [30], Douglas, Dupont and Wheeler [31],
Rannacher [153], Thomée and Wahlbin [178], Wheeler [198], Zlamal [200]; for
error estimates in negative norms, we refer to Thomée [176, 177].



Chapter 4
Finite Difference Approximation of Hyperbolic
Problems

This chapter is devoted to finite difference methods for time-dependent problems
governed by linear second-order hyperbolic equations. In the next section we dis-
cuss the question of well-posedness of initial-boundary-value problems for linear
second-order hyperbolic partial differential equations. In Sect. 4.2 we review some
classical results concerning standard finite difference approximations of the wave
equation. Section 4.3 is devoted to finite difference schemes for the wave equation
with nonsmooth initial data and source term. In Sect. 4.4 we extend the analysis to a
linear second-order hyperbolic equation with variable coefficients: error bounds are
derived in the discrete W 1∞((0, T );L2(Ω)) ∩ L∞((0, T );W 1

2 (Ω)) norm denoted

by ‖ · ‖(1)2,∞. In Sects. 4.5 and 4.6 we shall be concerned with the finite difference
approximation of interface problems and transmission problems for second-order
linear hyperbolic equations. The chapter closes with bibliographical notes.

4.1 Hyperbolic Equations

Similarly as in the case of second-order parabolic equations, we shall begin our con-
siderations with a brief discussion concerning the existence and uniqueness of so-
lutions to initial-boundary-value problems for linear second-order hyperbolic equa-
tions. More specifically, we shall consider the equation

d2u

dt2
+A(t)u= f (t), t ∈ (0, T ], (4.1)

subject to the initial conditions

u(0)= u0,
du

dt
(0)= u1, (4.2)

where u is a function of the independent variables x ∈Ω and t ∈ [0, T ], with T > 0,
and Ω and the operator A(t) satisfy the same conditions as in the previous chapter
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DOI 10.1007/978-1-4471-5460-0_4, © Springer-Verlag London 2014
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(cf. Sect. 3.1). Problem (4.1), (4.2) can be viewed as a second-order ordinary dif-
ferential equation in a Hilbert space. The technical details of this viewpoint will be
discussed in the next section.

4.1.1 Abstract Hyperbolic Initial-Value Problems

Let us consider the Gelfand triple

V ↪→H≡H′ ↪→ V ′

with continuous and dense embeddings, where V and H are separable real Hilbert
spaces, H is identified with its dual space H′ via the Riesz representation theorem,
and V ′ denotes the dual space of V . We shall denote by (·, ·) and ‖ · ‖ = ‖ · ‖H
the inner product and norm of the Hilbert space H; the norms in V and V ′ will be
denoted by ‖ · ‖V and ‖ · ‖V ′ , respectively, and 〈·, ·〉 will signify the duality pairing
between V ′ and V . For t ∈ [0, T ] we consider the bilinear functional (v,w) ∈ V ×
V �→ a(t;v,w) ∈R, which satisfies the conditions (a), (b) and (c) from Sect. 3.1.1.
In addition, a(t; ·, ·) will be assumed to be symmetric for each t ∈ [0, T ], i.e.

a(t;v,w)= a(t;w,v) ∀v,w ∈ V, ∀t ∈ [0, T ], (4.3)

continuously differentiable with respect to t ∈ [0, T ], and such that

∣∣∣∣
d

dt
a(t;v,w)

∣∣∣∣≤ c‖v‖V‖w‖V ∀v,w ∈ V, ∀t ∈ [0, T ], (4.4)

where the constant c > 0 is independent of t ∈ [0, T ]. In the present setting, by
viewing A(t) : V→ V ′ as a bounded linear operator on V , we have that a(t;v,w)=
〈A(t)v,w〉 for all v,w ∈ V and t ∈ [0, T ].

We consider the following problem (H): given that f ∈ L2((0, T );H), u0 ∈ V
and u1 ∈H, find

u ∈ L2
(
(0, T );V)

with
du

dt
∈ L2

(
(0, T );H)

,
d2u

dt2
∈ L2

(
(0, T );V ′),

which satisfies equation (4.1) in V ′, that is

〈
d2u

dt2
, v

〉
+ 〈

A(t)u, v
〉= 〈

f (t), v
〉 ∀v ∈ V,

in the sense of distributions on (0, T ), and the initial conditions (4.2).
We state the following existence and uniqueness result for problem (H) (see

Wloka [199], Theorem 29.1 on p. 397).
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Theorem 4.1 Suppose that (4.3), (4.4) and hypotheses (a), (b) and (c) from
Sect. 3.1.1 hold. Then, problem (H) has a unique solution, and the map

{f,u0, u1} �→
{
u,

du

dt
,

d2u

dt2

}

is continuous and linear from L2((0, T );H) × V × H into L2((0, T );V) ×
L2((0, T );H)×L2((0, T );V ′).

4.1.2 Some a Priori Estimates

We shall now embark on the derivation of energy estimates for problem (H). Our
arguments in this section, performed in infinite-dimensional Hilbert spaces, will be
largely formal, their main purpose being to motivate their counterparts in finite-
dimensional Hilbert spaces, which we shall rigorously prove in the next section.
The discrete energy inequalities established there will then play a crucial role in the
error analysis of finite difference schemes for problem (H).

We shall focus our attention on the special case when the operator A = A(t) is
independent of t . In contrast with the previous section where A was viewed as a
bounded linear operator from the real separable Hilbert space V into its dual space
V ′, here we shall suppose that A is an unbounded selfadjoint positive definite linear
operator in the real separable Hilbert space H, whose domain of definition D(A) is
dense in H. Analogously as in Sect. 3.1.2, we introduce the energy spaces V =HA

and V ′ =HA−1 . Then, the bilinear functional a(t; ·, ·)= a(·, ·)= (·, ·)A, defined on
V × V by extending (A·, ·) from D(A)×D(A), satisfies the conditions (a), (b) and
(c) from Sect. 3.1.2 with c0 = c1 = 1 and λ = 0, as well as conditions (4.3) and
(4.4).

Assuming that u0 ∈ V , u1 ∈ H, f ∈ L2((0, T );H), Theorem 4.1 implies the
existence of a unique solution u to problem (H), with u ∈ L2((0, T );V), du

dt ∈
L2((0, T );H) and d2u

dt2
∈ L2((0, T );V ′). Let us assume for the sake of simplicity

that d2u

dt2
(t) and Au(t) both belong to H for a.e. t ∈ [0, T ]. By taking the inner prod-

uct of (4.1) with 2 du
dt , we then obtain

2

(
d2u

dt2
,

du

dt

)
+ 2

(
Au,

du

dt

)
= 2

(
f (t),

du

dt

)
.

As the operator A has been assumed to be independent of t , by noting that

2

(
d2u

dt2
,

du

dt

)
= d

dt

(∥∥∥∥
du

dt

∥∥∥∥

2)
, 2

(
Au,

du

dt

)
= d

dt

(‖u‖2
A

)
,

and applying the Cauchy–Schwarz inequality, we deduce that

d

dt

(∥∥∥∥
du

dt

∥∥∥∥

2

+ ‖u‖2
A

)
≤ 2

∥∥f (t)
∥∥
∥∥∥∥

du

dt

∥∥∥∥≤ 2
∥∥f (t)

∥∥
(∥∥∥∥

du

dt

∥∥∥∥

2

+ ‖u‖2
A

)1/2

.
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By writing ‖du/dt‖2+‖u‖2
A = [(‖du/dt‖2+‖u‖2

A)
1/2]2 on the left-hand side, dif-

ferentiating with respect to t , simplifying and then integrating the resulting inequal-
ity between 0 and t and using the initial conditions (4.2) we obtain

[∥∥∥∥
du

dt
(t)

∥∥∥∥

2

+ ∥∥u(t)
∥∥2
A

]1/2

≤ (‖u1‖2 + ‖u0‖2
A

)1/2 +
∫ t

0

∥∥f (s)
∥∥ds, (4.5)

for a.e. t ∈ [0, T ]. Hence,

ess.supt∈[0,T ]
[∥∥∥∥

du

dt
(t)

∥∥∥∥

2

+ ∥∥u(t)
∥∥2
A

]1/2

≤ (‖u1‖2 + ‖u0‖2
A

)1/2 + ‖f ‖L1((0,T );H).

Under the additional assumptions Au0 ∈H, u1 ∈ V and f ∈ L1((0, T );V), and
by applying to (4.1) the operator A1/2 and noting (4.5), we (formally) obtain, for
a.e. t ∈ [0, T ],

[∥∥∥∥
du

dt
(t)

∥∥∥∥

2

A

+ ∥∥Au(t)
∥∥2

]1/2

≤ (‖u1‖2
A + ‖Au0‖2)1/2 +

∫ t

0

∥∥f (s)
∥∥
A

ds.

Hence, by noting the obvious inequality

∥∥∥∥
d2u

dt2

∥∥∥∥≤ ‖f ‖ + ‖Au‖,

we deduce that, for a.e. t ∈ [0, T ],
[∥∥∥∥

d2u

dt2
(t)

∥
∥∥∥

2

+
∥
∥∥∥

du

dt
(t)

∥
∥∥∥

2

A

+ ∥∥Au(t)
∥∥2

]1/2

≤ 2
(‖u1‖2

A + ‖Au0‖2)1/2 + 2
∫ t

0

∥∥f (s)
∥∥
A

ds + ∥∥f (t)
∥∥. (4.6)

Similarly, by applying to (4.1) the operator A−1/2, noting (4.5) and omitting the
term ‖du/dt‖A−1 we (formally) obtain, for a.e. t ∈ [0, T ],

∥∥u(t)
∥∥≤ (‖u1‖2

A−1 + ‖u0‖2)1/2 +
∫ t

0

∥∥f (s)
∥∥
A−1 ds. (4.7)

Analogously as in Sect. 3.1.2, we shall also consider the more general equation

B
d2u

dt2
+Au= f (t), t ∈ (0, T ], (4.8)

subject to the initial conditions (4.2), where B and A are unbounded selfadjoint
densely defined linear operators on H. Let us suppose that A=A0 +A1, where A1

and A2 are densely defined selfadjoint linear operators on H, and there exist positive
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constants mi > 0, i = 1,2,3, such that

(Bu,u)≥m1 ‖u‖2, u ∈D(B);
(A0u,u)≥m2 (Bu,u), u ∈D(A0)∩D(B);
(A1u,v)

2 ≤m3 ‖u‖‖u‖A0‖v‖‖v‖A0, u ∈D(A0)∩D(A1), v ∈D(A0).

(4.9)

By applying B−1/2 to (4.8), we obtain

d2ũ

dt2
+ Ãũ= f̃ (t), t ∈ (0, T ],

where we have used the notations

ũ := B1/2u, Ã := B−1/2AB−1/2, f̃ := B−1/2f.

Let us further define Ãi := B−1/2AiB
−1/2, i = 0,1. We observe that the linear

operator Ã0 is positive definite on H; indeed,

(Ã0v, v)=
(
B−1/2A0B

−1/2v, v
)= (

A0B
−1/2v,B−1/2v

)

≥m2
(
BB−1/2v,B−1/2v

)=m2‖v‖2, v ∈D(Ã0).

We shall therefore take V =H
Ã0

and a(t;v,w) = (Ãv,w), v ∈ D(Ã), w ∈H. In

addition, for any v ∈D(Ã0)∩D(Ã1), w ∈D(Ã0),

(Ã1v,w)
2 = (

A1B
−1/2v,B−1/2w

)2

≤ m3
∥
∥B−1/2v

∥
∥
∥
∥B−1/2v

∥
∥
A0

∥
∥B−1/2w

∥
∥
∥
∥B−1/2w

∥
∥
A0

≤ m3

m1m2

∥∥B−1/2v
∥∥2
A0

∥∥B−1/2w
∥∥2
A0
= m3

m1m2
‖v‖2

Ã0
‖w‖2

Ã0

and

∣∣(Ã1v, v)
∣∣ ≤ √m3

∥∥B−1/2v
∥∥∥∥B−1/2v

∥∥
A0
≤

√
m3

m1
‖v‖∥∥B−1/2v

∥∥
A0

=
√
m3

m1
‖v‖‖v‖

Ã0
≤ 1

2
‖v‖2

Ã0
+ m3

2m1
‖v‖2,

which, after continuously extending a(t; ·, ·) to V × V , imply that conditions (b)

and (c) from Sect. 3.1.2 hold with c1 = 1+
√

m3
m1m2

, c0 = 1/2 and λ= m3
2m1

, and that

condition (a) is trivially satisfied. Returning to our original notation, we deduce that
in the case of u0 ∈HA0 , u1 ∈HB and f ∈ L2((0, T );HB−1) problem (4.8), (4.2)

has a unique solution u ∈ L2((0, T );HA0), with du
dt ∈ L2((0, T );HB) and B d2u

dt2
∈

L2((0, T );HA−1
0
).
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Let us rewrite (4.8) as

B
d2u

dt2
+ Āu= m3

2
u+ f (t), t ∈ (0, T ], (4.10)

where we have used the notation Ā := A + m3
2 I , with I signifying the identity

operator on H. It can be directly verified that the linear operator Ā is selfadjoint,
densely defined and positive definite on H, and that

1

2
(A0u,u)≤ (Āu,u)≤

(
1+

√
m3

m1m2
+ m3

2m1m2

)
(A0u,u). (4.11)

By taking (once again, formally) the inner product of (4.10) with 2 du
dt , similarly as

previously, we deduce that

d

dt

(∥∥∥∥
du

dt

∥∥∥∥

2

B

+ ‖u‖2
Ā

)
≤ m3‖u‖B−1

∥∥∥∥
du

dt

∥∥∥∥
B

+ 2‖f ‖B−1

∥∥∥∥
du

dt

∥∥∥∥
B

≤ m3

m1

√
2

m2
‖u‖Ā

∥∥∥∥
du

dt

∥∥∥∥
B

+ 2‖f ‖B−1

∥∥∥∥
du

dt

∥∥∥∥
B

≤ C1

(∥∥∥
∥

du

dt

∥∥∥
∥

2

B

+ ‖u‖2
Ā

)
+ ‖f ‖2

B−1 ,

where C1 := m3
m1
√

2m2
+ 1. Multiplying the resulting inequality by e−C1t yields

d

dt

[
e−C1t

(∥∥∥∥
du

dt
(t)

∥∥∥∥

2

B

+ ∥∥u(t)
∥∥2
Ā

)]
≤ e−C1t

∥∥f (t)
∥∥2
B−1 ,

which after integration and an obvious majorization gives

∥∥∥∥
du

dt
(t)

∥∥∥∥

2

B

+ ∥∥u(t)
∥∥2
Ā
≤ eC1t

(
‖u1‖2

B + ‖u0‖2
Ā
+

∫ t

0

∥∥f (s)
∥∥2
B−1 ds

)
.

Finally, using (4.11) we deduce that, for a.e. t ∈ [0, T ],
∥∥∥∥

du

dt
(t)

∥∥∥∥

2

B

+ ∥∥u(t)
∥∥2
A0
≤ C

(
‖u1‖2

B + ‖u0‖2
A0
+

∫ t

0

∥∥f (s)
∥∥2
B−1 ds

)
, (4.12)

where C = C2eC1t is a computable constant, which depends on t .
By taking the inner product of (4.10) with 2Ā−1B du

dt , a similar argument implies
the existence of a constant C = C(T ) > 0, such that, for a.e. t ∈ [0, T ],

∥∥u(t)
∥∥2
B
≤ C

(
‖Bu1‖2

A−1
0
+ ‖u0‖2

B +
∫ t

0

∥∥f (s)
∥∥2
A−1

0
ds

)
. (4.13)
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4.1.3 Abstract Three-Level Operator-Difference Schemes

Suppose that Hh is a finite-dimensional real Hilbert space with inner product (·, ·)h
and norm ‖ · ‖h := ‖ · ‖Hh and Ω

τ
is a uniform mesh with step size τ := T/M ,

M ≥ 2, on the interval [0, T ]. With the notations from Sect. 3.1.4, we consider the
family of three-level operator difference schemes

Bh

(
D+t D−t U

)+Dh

(
D0
t U

)+AhU = F, t ∈Ωτ ,

U(0)=U0, U(τ)=U1.
(4.14)

Here, the function F :Ωτ →Hh is given, as are U0 ∈Hh and U1 ∈Hh; U :Ωτ →
Hh is the unknown function,

D0
t U :=

1

2

(
D+t U +D−t U

)= (Û − Ǔ )/2τ

is the symmetric first difference quotient, Ah and Bh are linear selfadjoint positive
definite operators on Hh, uniformly with respect to h, and Dh is a linear selfadjoint
nonnegative operator on Hh.

We take the inner product of (4.14) with 2τD0
t U = Û − Ǔ . Noting that

U = 1

4
(Û + 2U + Ǔ )− 1

4
τ 2D+t D−t U,

Û − Ǔ = τ
(
D+t U +D−t U

)= (Û +U)− (U + Ǔ ),

we obtain
((

Bh − τ 2

4
Ah

)
D+t U,D+t U

)

h

−
((

Bh − τ 2

4
Ah

)
D−t U,D−t U

)

h

+ 2τ
∥∥D0

t U
∥∥2
Dh
+

∥∥∥∥
Û +U

2

∥∥∥∥

2

Ah

−
∥∥∥∥
U + Ǔ

2

∥∥∥∥

2

Ah

= 2τ
(
F,D0

t U
)
h
. (4.15)

Thus, if F = 0 and

Dh ≥ 0, B̄h := Bh − 1

4
τ 2Ah ≥ 0, (4.16)

we deduce from (4.15) that

∥∥D+t U
∥∥2
B̄h
+

∥∥∥∥
Û +U

2

∥∥∥∥

2

Ah

≤ ∥∥D−t U
∥∥2
B̄h
+

∥∥∥∥
U + Ǔ

2

∥∥∥∥

2

Ah

.

Summing over t ∈Ωτ we have that

∥∥D+t Um
∥∥2
B̄h
+

∥∥∥∥
Um+1 +Um

2

∥∥∥∥

2

Ah

≤ ∥∥D+t U0
∥∥2
B̄h
+

∥∥∥∥
U1 +U0

2

∥∥∥∥

2

Ah

.
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This inequality expresses stability of the homogeneous operator-difference scheme
(4.14) with respect to perturbations of the initial data, under the (sufficient) condi-
tions (4.16); (cf. Samarskiı̆ [159], Sect. 6.3).

When F 	= 0, we shall suppose instead of (4.16) that the following, slightly
stronger, condition holds:

Dh ≥ 0, B̄h := Bh − 1

4
τ 2Ah > 0. (4.17)

Then,

2τ
(
F,D0

t U
)
h
= τ

(
F,D+t U +D−t U

)
h

≤ τ‖F‖
B̄−1
h

(∥∥D+t U
∥∥
B̄h
+ ∥∥D−t U

∥∥
B̄h

)≤ τ‖F‖
B̄−1
h
(J + J̌ ),

where we have used the notation

J = J (t) :=
(∥∥D+t U

∥∥2
B̄h
+

∥∥∥∥
Û +U

2

∥∥∥∥

2

Ah

)1/2

, J̌ := J (t − τ).

Thus we deduce from (4.15) that

J 2 − J̌ 2 ≤ τ‖F‖
B̄−1
h
(J + J̌ ).

Hence, after dividing both sides by J + J̌ and summing over the points of the mesh
Ωτ , we obtain

Jm ≤ J 0 + τ

m∑

k=1

∥∥Fk
∥∥
B̄−1
h
;

that is,

(∥∥D+t Um
∥∥2
B̄h
+

∥∥∥∥
Um+1 +Um

2

∥∥∥∥

2

Ah

)1/2

≤
(∥∥D+t U0

∥∥2
B̄h
+

∥∥∥∥
U1 +U0

2

∥∥∥∥

2

Ah

)1/2

+ τ

m∑

k=1

∥∥Fk
∥∥
B̄−1
h
. (4.18)

The inequality (4.18) can be seen as the discrete analogue of the a priori estimate
(4.5).

When Dh = 0, similarly as above, by taking the inner product of (4.14) with
2τ B̄−1

h Ah(D
0
t U) we obtain

(∥∥D+t Um
∥∥2
Ah
+

∥∥∥∥Ah

Um+1 +Um

2

∥∥∥∥

2

B̄−1
h

)1/2
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≤
(∥∥D+t U0

∥∥2
Ah
+

∥∥∥∥Ah

U1 +U0

2

∥∥∥∥

2

B̄−1
h

)1/2

+ τ

m∑

k=1

∥∥B̄−1
h F k

∥∥
Ah
.

Hence, using (4.14) we deduce that

[∥∥D+t D−t Um
∥∥2
B̄h
+ ∥∥D+t Um

∥∥2
Ah
+

∥∥∥∥Ah

Um+1 +Um

2

∥∥∥∥

2

B̄−1
h

]1/2

≤ 2

(∥∥D+t U0
∥∥2
Ah
+

∥∥∥∥Ah

U1 +U0

2

∥∥∥∥

2

B̄−1
h

)1/2

+ 2τ
m∑

k=1

∥∥B̄−1
h F k

∥∥
Ah
+ ∥∥Fm

∥∥
B̄−1
h
. (4.19)

Under the same hypothesis (Dh = 0) as above, by taking the inner product of (4.14)
with 2τA−1

h B̄h(D
0
t U), an analogous argument yields that

∥∥∥∥
Um+1 +Um

2

∥∥∥∥
B̄h

≤
(∥∥B̄h

(
D+t U0)∥∥2

A−1
h
+

∥∥∥∥
U1 +U0

2

∥∥∥∥

2

B̄h

)1/2

+ τ

m∑

k=1

∥∥Fk
∥∥
A−1
h
.

(4.20)
The inequalities (4.19) and (4.20) are discrete analogues of the a priori estimates
(4.6) and (4.7).

Let us finally consider the case when the operator Ah is not positive definite.
Suppose that Ah, Bh and Dh are still selfadjoint linear operators on Hh and let us
assume that the following conditions hold:

Dh ≥ 0, Ah =A0h +A1h, A∗ih =Aih, i = 0,1,

(BhU,U)h ≥m1‖U‖2
h, (A0hU,U)h ≥m2(BhU,U)h,

(A1hU,V )
2
h ≤m3‖U‖h‖U‖A0h‖V ‖h‖V ‖A0h .

Equation (4.14) can be rewritten in the form

B̄h

(
D+t D−t U

)+Dh

(
D0
t U

)+ 1

4
Āh(Û + 2U + Ǔ )

= 1

8
m3(Û + 2U + Ǔ )+ F, (4.21)

where we have used the notations

B̄h := Bh − τ 2

4
Ah, Āh :=Ah + m3

2
Ih, Ih is the identity operator on Hh.

It is then shown, analogously as in the ‘continuous’ case, that

1

2
(A0hU,U)h ≤ (ĀhU,U)h ≤

(
1+

√
m3

m1m2
+ m3

2m1m2

)
(A0hU,U)h,
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which implies the positive definiteness of Āh, uniformly in h. Let us suppose that
the operator B̄h is positive definite, uniformly with respect to h; i.e. that

(B̄hU,U)h ≥m4‖U‖2
h, m4 > 0,

where the constant m4 is independent of h. Since

(B̄hU,U)h = (BhU,U)h − τ 2

4
(AhU,U)h

≥
[
m1 − τ 2

4

(
1+

√
m3

m1m2

)
‖A0h‖

]
‖U‖2

h,

the positive definiteness of B̄h, uniformly in h, will be ensured with m4 <m1 once
we have taken τ sufficiently small so that

τ 2 ≤ 4(m1 −m4)

1+
√

m3
m1m2

.

By taking the inner product of (4.21) with 2τD0
t U = Û − Ǔ , similarly as before,

we get that

∥∥D+t U
∥∥2
B̄h
− ∥∥D−t U

∥∥2
B̄h
+ 2τ

∥∥D0
t U

∥∥2
Dh
+

∥∥∥∥
Û +U

2

∥∥∥∥

2

Āh

−
∥∥∥∥
U + Ǔ

2

∥∥∥∥

2

Āh

= m3

4
τ

(
Û +U

2
+ U + Ǔ

2
,D+t U +D−t U

)

h

+ τ
(
F,D+t U +D−t U

)
h

≤ m3

4
τ

(∥∥∥∥
Û +U

2

∥∥∥∥
B̄−1
h

+
∥∥∥∥
U + Ǔ

2

∥∥∥∥
B̄−1
h

)(∥∥D+t U
∥∥
B̄h
+ ∥∥D−t U

∥∥
B̄h

)

+ τ‖F‖
B̄−1
h

(∥∥D+t U
∥∥
B̄h
+ ∥∥D−t U

∥∥
B̄h

)
.

Using the inequality

‖U‖
B̄−1
h
≤

√
2

m1m2m4
‖U‖Āh

in conjunction with the Cauchy–Schwarz inequality, after some obvious majoriza-
tions we obtain

J̄ − ˇ̄J ≤ C1τ

2
(J̄ + ˇ̄J )+ τ‖F‖2

B̄−1
h

,

where we have used the notations

J̄ := ∥∥D+t U
∥∥2
B̄h
+

∥∥∥∥
Û +U

2

∥∥∥∥

2

Āh

, C1 := m3√
2m1m2m4

.



4.2 Classical Difference Schemes for the Wave Equation 337

For τ < 2/C1,

J̄ ≤ 1+ C1τ
2

1− C1τ
2

ˇ̄J + τ

1− C1τ
2

‖F‖2
B̄−1
h

,

and therefore, by induction,

J̄ m ≤
(

1+ C1τ
2

1− C1τ
2

)m
J̄ 0 + τ

1− C1τ
2

m∑

k=1

(
1+ C1τ

2

1− C1τ
2

)m−k
∥
∥Fk

∥
∥2
B̄−1
h

≤
(

1+ C1τ
2

1− C1τ
2

)m(

J̄ 0 + τ

m∑

k=1

∥∥Fk
∥∥2
B̄−1
h

)

, m= 1, . . . ,M − 1.

By bounding from above further, we deduce that, for all m= 1, . . . ,M − 1,

∥∥D+t Um
∥∥2
B̄h
+

∥∥∥
∥
Um+1 +Um

2

∥∥∥
∥

2

Āh

≤ C2eC1T

(
∥∥D+t U0

∥∥2
B̄h
+

∥∥∥∥
U1 +U0

2

∥∥∥∥

2

Āh

+ τ

M∑

k=1

∥∥Fk
∥∥2
B̄−1
h

)

. (4.22)

If Dh = 0, by taking the inner product of (4.21) with 2τ Ā−1
h B̄h(D

0
t U), a similar

argument yields the a priori bound

∥∥∥∥
Um+1 +Um

2

∥∥∥∥

2

B̄h

≤ C2eC1T

(
∥∥B̄h

(
D+t U0)∥∥2

Ā−1
h

+
∥
∥∥∥
U1 +U0

2

∥
∥∥∥

2

B̄h

+ τ

M∑

k=1

∥∥Fk
∥∥2
Ā−1
h

)

. (4.23)

The inequalities (4.22) and (4.23) are discrete analogues of (4.12) and (4.13).

4.2 Classical Difference Schemes for the Wave Equation

This section is devoted to a summary of some well-known results concerning stan-
dard finite difference approximations of the wave equation; we shall assume here
that the solution possesses a sufficient number of continuous partial derivatives.
Later on, in Sects. 4.3 and 4.4, we shall relax the regularity requirements on the so-
lution and we shall extend these results to second-order hyperbolic equations with
variable coefficients.
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4.2.1 Explicit and Weighted Schemes

Our first model problem is the wave equation in the domain Q=Ω × (0, T ], where
Ω = (0,1), T > 0:

find u(x, t) such that

∂2u

∂t2
= ∂2u

∂x2
+ f (x, t), x ∈ (0,1), t ∈ (0, T ],

u(0, t)= 0, u(1, t)= 0, t ∈ (0, T ],

u(x,0)= u0(x),
∂u

∂t
(x,0)= u1(x), x ∈ [0,1].

(4.24)

Physically, u(x, t) represents the displacement at a point x and time t of an elastic
string of unit length, subject to the initial displacement u0(x), the initial velocity
u1(x), and body forces whose density, in space and time, is described by the func-
tion f . We shall assume for the moment that f is a smooth function of (x, t) ∈Q
and that u0 and u1 are smooth functions of x ∈Ω , compatible with the boundary
conditions at x = 0 and x = 1; i.e. u0(0)= 0, u0(1)= 0, u1(0)= 0, u1(1)= 0.

4.2.1.1 The Explicit Scheme

Similarly as in Sect. 3.2, we consider the uniform mesh

Q
τ

h =Ω
h ×Ω

τ = {
(xj , tm) : 0≤ j ≤N;0≤m≤M

}
,

with mesh-sizes h := 1/N and τ := T/M , N,M ≥ 2, in the region Q = [0,1] ×
[0, T ]. On Q

τ

h we approximate (4.24) by the following finite difference scheme:

find Um
j , j = 0, . . . ,N, m= 0, . . . ,M, such that

D+t D−t Um
j =D+x D−x Um

j + f (xj , tm),

j = 1, . . . ,N − 1, m= 1, . . . ,M − 1,

Um
0 = 0, Um

N = 0, m= 2, . . . ,M,

U0
j = u0(xj ), U1

j = u0(xj )+ τu1(xj )+ 1

2
τ 2[u′′0(xj )+ f (xj ,0)

]
,

j = 0, . . . ,N,

(4.25)

where Um
j represents the approximation of u(xj , tm), the value of the analytical

solution u at the mesh-point (xj , tm), D
+
t D

−
t U

m
j is the second divided (central) dif-

ference in the t-direction and D+x D−x Um
j is the second divided (central) difference
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Fig. 4.1 Five-point stencil for the explicit scheme

in the x-direction. Clearly, (4.25) is a five-point difference scheme involving the
values of U at the mesh-points

(xj , tm−1), (xj−1, tm), (xj , tm), (xj+1, tm), (xj , tm+1),

shown in Fig. 4.1. The scheme (4.25) is applied as follows. First we set m= 1. Since
U0
j , U1

j−1, U1
j , U1

j+1 are given by the initial conditions, the values U2
j , j = 0, . . . ,N ,

can be computed from (4.25):

U2
j = 2U1

j −U0
j +

τ 2

h2

(
U1
j+1 − 2U1

j +U1
j−1

)+ τ 2f (xj , t2),

j = 1, . . . ,N − 1,

U2
0 = 0, U2

N = 0.

Suppose that we have already calculated Uk
j , j = 0, . . . ,N , the values of U on

time level tk = kτ for all k ≤ m. The values of U on the next time level tm+1 =
(m+ 1)τ can then be obtained from (4.25) by rewriting it as

Um+1
j = 2Um

j −Um−1
j + τ 2

h2

(
Um
j+1 − 2Um

j +Um
j−1

)+ τ 2f (xj , tm),

j = 1, . . . ,N − 1,

Um+1
0 = 0, Um+1

N = 0,

for any m, 1≤m≤M − 1.
The values of U at t = tm+1 can be calculated explicitly from those of Um,

Um−1 and the data; hence the name explicit scheme. In fact, (4.25) is just a special
case of a two-parameter family of three-level finite difference schemes for the wave
equation. The two parameters are frequently referred to as the weights in the scheme,
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and hence the name weighted scheme. The analysis of the weighted scheme is the
subject of the next section.

4.2.1.2 Weighted Scheme

The explicit scheme for the wave equation can be embedded in the following two-
parameter family of finite difference schemes:

find Um
j , j = 0, . . . ,N,m= 0, . . . ,M, such that

D+t D−t Um
j =D+x D−x

[
θ1U

m+1
j + (1− θ1 − θ2)U

m
j + θ2U

m−1
j

]+ f (xj , tm),

j = 1, . . . ,N − 1, m= 1, . . . ,M − 1,

Um
0 = 0, Um

N = 0, m= 2, . . . ,M,

U0
j = u0(xj ), U1

j = u0(xj )+ τu1(xj )+ 1

2
τ 2[u′′0(xj )+ f (xj ,0)

]
,

j = 0, . . . ,N,

(4.26)

where θ1 and θ2 are nonnegative ‘weights’. The explicit scheme considered in the
previous subsection corresponds to the choice θ1 = θ2 = 0. In general, the weighted
scheme is a nine-point finite difference scheme, involving the values of U at the
mesh-points

(xj−1, tm−1), (xj , tm−1), (xj+1, tm−1), (xj−1, tm), (xj , tm), (xj+1, tm),

(xj−1, tm+1), (xj , tm+1), (xj+1, tm+1),

shown in Fig. 4.2. Unlike the explicit scheme in which the data and the values of the
approximate solution U at two previous time levels provide an explicit expression
for the values of U on the next time level, the difference scheme (4.26) necessitates
the solution of a system of linear equations on each time level to determine the
values of U at the mesh-points on that time level. More precisely, (4.26) can be
rewritten as follows:

−θ1τ
2

h2
Um+1
j−1 +

(
1+ 2θ1τ

2

h2

)
Um+1
j − θ1τ

2

h2
Um+1
j+1

= 2Um
j −Um−1

j + (1− θ1 − θ2)
τ 2

h2

(
Um
j−1 − 2Um

j +Um
j+1

)

+θ2τ
2

h2

(
Um−1
j−1 − 2Um−1

j +Um−1
j+1

)+ τ 2f (xj , tm),

j = 1, . . . ,N − 1,

Um+1
0 = 0, Um+1

N = 0.
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Fig. 4.2 Nine-point stencil for the weighted scheme

Thus, when θ1 	= 0, starting from the values U0
j and U1

j , j = 0, . . . ,N , on the first

two time levels, which are specified by the initial conditions, the values Um+1
j ,

j = 0, . . . ,N , on each subsequent time level t = tm+1, m = 1, . . . ,M − 1, can be
computed by solving a system of linear algebraic equations with a tridiagonal matrix
of size (N − 1)× (N − 1).

4.2.2 Stability of the Weighted Difference Scheme

Let, as before, Sh
0 denote the linear space of real-valued mesh-functions defined on

the mesh Ω
h
, which vanish on Ω

h \Ωh. We shall equip Sh
0 with the inner product

(V ,W)h :=
N−1∑

j=1

hVjWj

and the corresponding induced norm

‖V ‖h := (V ,V )
1/2
h .

Let us also consider the norm

|[V ‖h :=
(
N−1∑

j=0

h|Vj |2
)1/2

.

Using the identity

θ1U
m+1 + (1− θ1 − θ2)U

m + θ2U
m−1
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=Um + τ 2

2
(θ1 + θ2)D

+
t D

−
t U

m + τ(θ1 − θ2)D
0
t U

m,

the weighted scheme (4.26) can be reformulated as an operator difference scheme
of the form (4.14) in the linear space Hh = Sh

0 , where

AhU =ΛU :=
{
−D+x D−x U for x ∈Ωh,

0 for x ∈Ωh \Ωh,

Dh := (θ1 − θ2)τΛ, Bh := Ih + τ 2

2
(θ1 + θ2)Λ,

and Ih is the identity operator on Sh
0 . The operator Λ is positive definite on Sh

0 ,
uniformly with respect to h, and (cf. (2.18), (2.22)) we have that

8‖V ‖2
h ≤ (ΛV,V )h <

4

h2
‖V ‖2

h, i.e. 8Ih ≤Λ<
4

h2
Ih. (4.27)

We shall consider two distinct ranges of the parameters θ1 and θ2.

➊ When

θ1 ≥ θ2 and θ1 + θ2 ≥ 1

2
, (4.28)

the conditions (4.17) are trivially satisfied. The inequality (4.18) reduces to

(∥∥D+t Um
∥∥2
Ih+ 1

2 (θ1+θ2− 1
2 )τ

2Λ
+

∥∥∥∥
Um+1 +Um

2

∥∥∥∥

2

Λ

)1/2

≤
(∥∥D+t U0

∥∥2
Ih+ 1

2 (θ1+θ2− 1
2 )τ

2Λ
+

∥∥∥∥
U1 +U0

2

∥∥∥∥

2

Λ

)1/2

+ τ

m∑

k=1

∥∥Fk
∥∥
(Ih+ 1

2 (θ1+θ2− 1
2 )τ

2Λ)−1 . (4.29)

Further, by Lemma 2.10, we have that

‖U‖Λ =
∣∣[D+x U

∥∥
h
. (4.30)

Using the relations

‖U‖2
Ih+ 1

2 (θ1+θ2− 1
2 )τ

2Λ
= ‖U‖2

h +
1

2

(
θ1 + θ2 − 1

2

)
τ 2‖U‖2

Λ ≥ ‖U‖2
h,

‖U‖
(Ih+ 1

2 (θ1+θ2− 1
2 )τ

2Λ)−1 = sup
V∈Sh

0

|(U,V )h|
‖V ‖

Ih+ 1
2 (θ1+θ2− 1

2 )τ
2Λ

≤ ‖U‖h,
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we deduce from (4.29) that

(∥∥D+t Um
∥∥2
h
+

∣∣∣∣

[
D+x

Um+1 +Um

2

∥∥∥∥

2

h

)1/2

≤
[∥∥D+t U0

∥∥2
h
+

∣
∣∣∣

[
D+x

U1 +U0

2

∥
∥∥∥

2

h

+ 1

2

(
θ1 + θ2 − 1

2

)
τ 2

∣∣[D+t D+x U0
∥∥2
h

]1/2

+ τ

m∑

k=1

∥∥Fk
∥∥
h
. (4.31)

The inequality (4.31) expresses the unconditional stability of the finite difference
scheme (4.26).

➋ When

θ1 ≥ θ2 and θ1 + θ2 <
1

2
, (4.32)

we shall suppose that the mesh-sizes h and τ satisfy the additional condition

τ ≤ h

√
1− ε

1− 2(θ1 + θ2)
, 0 < ε < 1. (4.33)

Using (4.27), we then have that

Ih + 1

2

(
θ1 + θ2 − 1

2

)
τ 2Λ≥

[
1− 1

2

(
1

2
− θ1 − θ2

)
4τ 2

h2

]
Ih ≥ εIh;

i.e. the conditions (4.17) are again satisfied. Furthermore,

ε‖U‖2
h ≤ ‖U‖2

Ih+ 1
2 (θ1+θ2− 1

2 )τ
2Λ
≤ ‖U‖2

h,

and

‖U‖2
h ≤ ‖U‖2

(Ih+ 1
2 (θ1+θ2− 1

2 )τ
2Λ)−1 ≤

1

ε
‖U‖2

h,

and hence we deduce from (4.29) that

(∥∥D+t Um
∥∥2
h
+

∣∣∣∣

[
D+x

Um+1 +Um

2

∥∥∥∥

2

h

)1/2

≤ Cε

[(∥∥D+t U0
∥∥2
h
+

∣∣∣∣

[
D+x

U1 +U0

2

∥∥∥∥

2

h

)1/2

+ τ

m∑

k=1

∥∥Fk
∥∥
h

]

, (4.34)

where Cε is a computable constant, which depends on ε. The inequality (4.34) ex-
presses the conditional stability of the finite difference scheme (4.26) under the hy-
pothesis that the mesh-sizes h and τ satisfy (4.33). Note that (4.33) is less restrictive
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than the corresponding condition (3.65) for the conditional stability of the explicit
finite difference scheme for the heat equation.

4.2.3 Error Analysis of Difference Schemes for the Wave Equation

In this section we investigate the accuracy of the finite difference scheme (4.26) for
the numerical solution of the initial-boundary-value problem (4.24). We begin our
considerations by defining the truncation error of the weighted scheme (4.26) as
follows:

ϕmj := D+t D−t u(xj , tm)−D+x D−x
[
θ1u(xj , tm+1)

+ (1− θ1 − θ2)u(xj , tm)+ θ2u(xj , tm−1)
]− f (xj , tm),

for j = 1, . . . ,N − 1, m= 1, . . . ,M − 1. The global error is defined by

emj := u(xj , tm)−Um
j ,

for j = 0, . . . ,N , m = 0, . . . ,M . It is easily seen that emj satisfies the following
finite difference scheme:

D+t D−t emj −D+x D−x
[
θ1e

m+1
j + (1− θ1 − θ2)e

m
j + θ2e

m−1
j

]= ϕmj ,

1≤ j ≤N − 1,1≤m≤M − 1,

em0 = 0, emN = 0, 0≤m≤M,

e0
j = 0, 1≤ j ≤N − 1,

e1
j = ηj , 1≤ j ≤N − 1,

where

ηj := u(xj , τ )− u0(xj )− τu1(xj )− 1

2
τ 2[u′′0(xj )+ f (xj ,0)

]
.

Thanks to the stability result (4.31) established in the previous section,

max
0≤m≤M−1

(∥∥D+t em
∥∥2
h
+

∣∣∣∣

[
D+x

em+1 + em

2

∥∥∥∥

2

h

)1/2

≤
[

1

τ 2
‖η‖2

h +
1

2
(θ1 + θ2)

∣∣[D+x η
∥∥2
h

]1/2

+ τ

M−1∑

k=1

∥∥ϕk
∥∥
h
, (4.35)

provided that (4.28) holds; if on the other hand (4.32) holds, then, by (4.34), we
have that

max
0≤m≤M−1

(∥∥D+t em
∥∥2
h
+

∣
∣∣∣

[
D+x

em+1 + em

2

∥
∥∥∥

2

h

)1/2
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≤ Cε

[(
1

τ 2
‖η‖2

h +
1

4

∣∣[D+x η
∥∥2
h

)1/2

+ τ

M−1∑

k=1

∥∥ϕk
∥∥
h

]

, (4.36)

provided that (4.32) and (4.33) hold. In each case we have to bound ‖η‖h, |[D+x η‖h
and ‖ϕk‖h to complete the error analysis. Using the differential equation, ϕkj (with
k replaced by m) can be rewritten as

ϕmj =D+t D−t u(xj , tm)−D+x D−x
[
θ1u(xj , tm+1)

+ (1− θ1 − θ2)u(xj , tm)+ θ2u(xj , tm−1)
]− ∂2u

∂t2
(xj , tm)+ ∂2u

∂x2
(xj , tm)

=
(
D+t D−t u(xj , tm)−

∂2u

∂t2
(xj , tm)

)

+
(
∂2u

∂x2
(xj , tm)−D+x D−x u(xj , tm)

)

− θ1 + θ2

2
τ 2D+t D−t D+x D−x u(xj , tm)− (θ1 − θ2)τD

0
t D
+
x D

−
x u(xj , tm).

In order to estimate the truncation error ϕmj , we shall expand the various terms
involved in it into Taylor series with remainder terms. By noting that

u(xj , tm±1) = u(xj , tm)± τ
∂u

∂t
(xj , tm)+ τ 2

2

∂2u

∂t2
(xj , tm)

± τ 3

6

∂3u

∂t3
(xj , tm)+ τ 4

24

∂4u

∂t4

(
xj , t

′±
)
,

where t ′− ∈ (tm−1, tm) and t ′+ ∈ (tm, tm+1), we deduce that

D+t D−t u(xj , tm)−
∂2u

∂t2
(xj , tm)= τ 2

12

∂4u

∂t4

(
xj , t

′),

where t ′ ∈ (tm−1, tm+1). Similarly, we obtain that

∂2u

∂x2
(xj , tm)−D+x D−x u(xj , tm)=−

h2

12

∂4u

∂x4

(
x′, tm

)
,

where x′ ∈ (xj−1, xj+1). Further,

D+t D−t D+x D−x u(xj , tm)=
∂4u

∂x2∂t2

(
x′′, t ′′

)
,

where x′′ ∈ (xj−1, xj+1) and t ′′ ∈ (tm−1, tm+1), and

D0
t D
+
x D

−
x u(xj , tm)=

∂3u

∂x2∂t

(
x′′′, t ′′′

)
,
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where x′′′ ∈ (xj−1, xj+1) and t ′′′ ∈ (tm−1, tm+1). It follows from these expansions
that

∣∣ϕmj
∣∣≤ |θ1 − θ2|τM2x1t + τ 2

12

[
M4t + 6(θ1 + θ2)M2x2t

]+ h2

12
M4x, (4.37)

where we have used the notation

Mkxlt := max
(x,t)∈Q

∣∣∣∣
∂k+l

∂xk∂t l
u(x, t)

∣∣∣∣,

with Mlt :=M0xlt and Mkx :=Mkx0t . Now, (4.24) and (4.26) imply that

ηj = u(xj , τ )− u(xj ,0)− τ
∂u

∂t
(xj ,0)− τ 2

2

∂2u

∂t2
(xj ,0)= τ 3

6

∂3u

∂t3
(xj , t̃),

where t̃ ∈ (0, τ ). Thus we deduce that

D+x ηj =
τ 3

6

∂4u

∂x∂t3
(x̃, t̃ ), x̃ ∈ (xj , xj+1).

The last two equalities then imply that

|ηj | ≤ τ 3

6
M3t ,

∣∣D+x ηj
∣∣≤ τ 3

6
M1x3t . (4.38)

Finally, (4.37), (4.38) and the a priori estimates (4.35) and (4.36) yield the desired
bound on the global error of the finite difference scheme (4.26):

max
0≤m≤M−1

(∥∥D+t em
∥∥2
h
+

∣∣∣∣

[
D+x

em+1 + em

2

∥∥∥∥

2

h

)1/2

≤ C1
(
h2 + τ 2), θ1 = θ2, (4.39)

max
0≤m≤M−1

(∥∥D+t em
∥∥2
h
+

∣∣∣
∣

[
D+x

em+1 + em

2

∥∥∥
∥

2

h

)1/2

≤ C2
(
h2 + τ

)
, θ1 > θ2. (4.40)

The constants C1 and C2 featuring in these error bounds depend on M2x1t , M4t ,
M2x2t , M4x , M3t , M1x3t (which we have assumed to be finite) and T , but they are
independent of h and τ . If θ1 and θ2 satisfy (4.32), then the bounds (4.39) and (4.40)
hold under the condition (4.33), and the constants C1 and C2 then also depend on ε.

The error bounds (4.39) and (4.40) have been derived under very restrictive as-
sumptions on the smoothness of the solution. In the next section we shall be con-
cerned with the error analysis of difference schemes for the wave equation under
less demanding hypotheses on the regularity of the data and of the corresponding
solution of the initial-boundary-value problem.
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4.3 The Wave Equation with Nonsmooth Data

4.3.1 The Initial-Boundary-Value Problem and Its Discretization

We consider the initial-boundary-value problem (4.24) in the space-time domain
Q := (0,1)× (0, T ]. The mesh Q

τ

h is defined in the same way as in Sect. 4.2. We
shall also retain the various other pieces of notation that were introduced in Sect. 4.2.

The initial-boundary-value problem (4.24) will be approximated by the symmet-
ric weighted finite difference scheme, with weights θ1 = θ2 = 1

4 , and with a molli-
fied source term:

find Um
j , j = 0, . . . ,N, m= 0, . . . ,M, such that

D+t D−t Um
j =

1

4
D+x D−x

(
Um+1
j + 2Um

j +Um−1
j

)+ TxTtf (xj , tm),

j = 1, . . . ,N − 1, m= 1, . . . ,M − 1,

Um
0 = 0, Um

N = 0, m= 0, . . . ,M,

U0
j = u0(xj ),

U1
j = u0(xj )+ τTxu1(xj )+ 1

2
τ 2[D+x D−x u0(xj )+ TxT̃

+
t f (xj ,0)

]
,

j = 1, . . . ,N − 1,

(4.41)

where the mollifiers Tx , Tt and T̃ ±t are defined by

Txv(x, t) := 1

h

∫ x+h/2

x−h/2
v
(
x′, t

)
dx′, Ttv(x, t) := 1

τ

∫ t+τ/2

t−τ/2
v
(
x, t ′

)
dt ′,

and

T̃ +t v(x, t) := 2

τ

∫ t+τ/2

t

v
(
x, t ′

)
dt ′, T̃ −t v(x, t) := 2

τ

∫ t

t−τ/2
v
(
x, t ′

)
dt ′.

If v is a distribution on Q, then Tx , Tt and T̃ ±t should be interpreted as convolutions
with suitable piecewise constant functions. According to the stability results that
were proved in the previous section the finite difference scheme (4.41) is uncondi-
tionally stable.

4.3.2 Error Analysis

It is easily seen that the global error

emj := u(xj , tm)−Um
j
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of the finite difference scheme (4.41) satisfies the following equalities

D+t D−t emj −
1

4
D+x D−x

(
em+1
j + 2emj + em−1

j

)= ϕmj ,

1≤ j ≤N − 1, 1≤m≤M − 1,

em0 = 0, emN = 0, 0≤m≤M,

e0
j = 0, 1≤ j ≤N − 1,

e1
j = ζj , 1≤ j ≤N − 1,

(4.42)

where

ϕ := D+t D−t u− TxTt
∂2u

∂t2
−D+x D−x u+ TxTt

∂2u

∂x2
− τ 2

4
D+x D−x D+t D−t u,

ζ := u(x, τ )− u(x,0)− τ

h

∫ x+h/2

x−h/2

∂u

∂t

(
x′,0

)
dx′ − τ 2

2
D+x D−x u(x,0)

− τ

h

∫ x+h/2

x−h/2

∫ τ/2

0

[
∂2u

∂t2

(
x′, t ′

)− ∂2u

∂x2

(
x′, t ′

)]
dt ′ dx′.

Let us define the following seminorm and norm, respectively:

‖V ‖(0)2,∞,hτ := max
t∈Ωτ−

∥∥∥∥
V (·, t + τ)+ V (·, t)

2

∥∥∥∥
h

,

‖V ‖(1)2,∞,hτ := max
t∈Ωτ−

{∥∥D+t V (·, t)
∥∥2
h
+

∣∣∣∣

[
D+x

(
V (·, t + τ)+ V (·, t)

2

)∥∥∥∥

2

h

}1/2

.

The finite difference scheme (4.42) can be restated as a three-level operator-
difference scheme (4.14), where Hh = Sh

0 , Ah =Λ, Dh = 0 and Bh = Ih + 1
4τ

2Λ.
It follows from (4.18), (4.30) and the initial conditions (4.42) that the following a
priori estimate holds:

‖e‖(1)2,∞,hτ ≤ τ−1‖ζ‖h + 1

2

∣
∣[D+x ζ

∥
∥
h
+ τ

M−1∑

k=1

∥
∥ϕk

∥
∥
h
. (4.43)

In order to complete the error analysis of the scheme in the seminorm ‖ · ‖(0)2,∞,hτ

we require two auxiliary lemmas, which we now state and prove.

Lemma 4.2 The solution of the finite difference scheme

D+t D−t V m
j −

1

4
D+x D−x

(
Vm+1
j + 2Vm

j + Vm−1
j

)=D−x ξmj ,

1≤ j ≤N − 1, 1≤m≤M − 1,
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subject to homogeneous Dirichlet boundary conditions at j = 0 and j = N , and
with V 0 and V 1 specified, satisfies the a priori estimate

‖V ‖(0)2,∞,hτ ≤
∥∥D+t V 0

∥∥
Λ−1 +

∥∥∥∥
V 1 + V 0

2

∥∥∥∥
h

+ τ

M−1∑

k=1

∣∣[ξk
∥∥
h
.

Proof The inequality follows directly from (4.20), (4.30) and the relation

∥∥D−x ξ
∥∥
Λ−1 = sup

Z∈Sh
0

|(D−x ξ,Z)h|
‖Z‖Λ ≤ sup

Z∈Sh
0

|[ξ‖h|[D+x Z‖h
|[D+x Z‖h

= |[ξ‖h. (4.44)

�

Lemma 4.3 The solution of the finite difference scheme

D+t D−t Wm
j −

1

4
D+x D−x

(
Wm+1

j + 2Wm
j +Wm−1

j

)=D−t ηmj ,

1≤ j ≤N − 1, 1≤m≤M − 1,

subject to homogeneous Dirichlet boundary conditions at j = 0 and j = N , and
with W 0 and W 1 given, satisfies the a priori estimate

‖W‖(0)2,∞,hτ ≤
∥∥D+t W 0 − η0

∥∥
Λ−1 +

∥∥∥∥
W 1 +W 0

2

∥∥∥∥
h

+ τ

M−1∑

k=1

∥∥∥∥
ηk + ηk−1

2

∥∥∥∥
h

.

Proof By applying the operator Λ−1 to the difference scheme and taking the inner
product of the resulting difference equation with Wm+1 −Wm−1 yields

∥∥D+t Wm
∥∥2
Λ−1 +

∥∥∥∥
Wm+1 +Wm

2

∥∥∥∥

2

h

− ∥∥D+t Wm−1
∥∥2
Λ−1

−
∥∥∥∥
Wm +Wm−1

2

∥∥∥∥

2

h

= (
D−t ηm,Wm+1 −Wm−1)

Λ−1 .

Further, we have that

(
D−t ηm,Wm+1 −Wm−1)

Λ−1 =
(
ηm − ηm−1,D+t Wm +D+t Wm−1)

Λ−1

= 2
(
ηm,D+t Wm

)
Λ−1 − 2

(
ηm−1,D+t Wm−1)

Λ−1

− τ
(
ηm + ηm−1,D+t D−t Wm

)
Λ−1 .

Using again the difference equation from the statement of the lemma satisfied by
the mesh-function W , we obtain
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−τ(ηm + ηm−1,D+t D−t Wm
)
Λ−1

=−τ(ηm + ηm−1,D−t ηm
)
Λ−1

+ τ

(
ηm + ηm−1,

1

4

(
Wm+1 + 2Wm +Wm−1)

)

h

=−‖ηm‖2
Λ−1 + ‖ηm−1‖2

Λ−1

+ τ

(
ηm + ηm−1

2
,
Wm+1 +Wm

2
+ Wm +Wm−1

2

)

h

.

These relations imply that

(
Jm

)2 − (
Jm−1)2 = τ

(
ηm + ηm−1

2
,
Wm+1 +Wm

2
+ Wm +Wm−1

2

)

h

,

where we have used the notation

(
Jm

)2 := ∥∥D+t Wm
∥∥2
Λ−1 − 2

(
ηm,D+t Wm

)2
Λ−1 +

∥∥ηm
∥∥2
Λ−1 +

∥∥∥∥
Wm+1 +Wm

2

∥∥∥∥

2

h

= ∥∥D+t Wm − ηm
∥∥2
Λ−1 +

∥∥∥∥
Wm+1 +Wm

2

∥∥∥∥

2

h

.

Hence,

(
Jm

)2 − (
Jm−1)2 ≤ τ

∥∥∥∥
ηm + ηm−1

2

∥∥∥∥
h

×
(∥∥∥∥

Wm+1 +Wm

2

∥∥∥∥
h

+
∥∥∥∥
Wm +Wm−1

2

∥∥∥∥
h

)

≤ τ

∥
∥∥∥
ηm + ηm−1

2

∥
∥∥∥
h

(
Jm + Jm−1),

which, after dividing both sides by Jm + Jm−1 and summing over m, yields the
desired inequality. �

The right-hand side ϕ of the finite difference scheme (4.42) can be represented
as

ϕ =D−x ξ +D−t η,

where

ξmj := Tt
∂u

∂x
(xj + h/2, tm)−D+x u(xj , tm)−

τ 2

4
D+x D+t D−t u(xj , tm),

ηmj := D+t u(xj , tm)− Tx
∂u

∂t
(xj , tm + τ/2).
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By applying Lemmas 4.2 and 4.3 and the initial conditions we obtain

‖e‖(0)2,∞,hτ ≤
∥∥ζ/τ − η0

∥∥
Λ−1 + ‖ζ/2‖h + τ

M−1∑

k=1

∣∣[ξk
∥∥
h
+ τ

M−1∑

k=0

∥∥ηk
∥∥
h
.

Further, ζ/τ − η0 =D−x χ , where

χj :=
∫ τ/2

0

∂u

∂x
(xj + h/2, t)dt − τ

2
D+x u(xj ,0),

and therefore, by using the relation (4.44), we finally obtain the following a priori
estimate:

‖e‖(0)2,∞,hτ ≤ |[χ‖h +
1

2
‖ζ‖h + τ

M−1∑

k=1

∣∣[ξk
∥∥
h
+ τ

M−1∑

k=0

∥∥ηk
∥∥
h
. (4.45)

Thus, in order to complete the convergence analysis of the finite difference
scheme (4.41) in the mesh-dependent norm ‖ ·‖(1)2,∞,hτ and the seminorm ‖ ·‖(0)2,∞,hτ ,
it suffices to bound the right-hand sides of the inequalities (4.43) and (4.45). We
shall suppose to this end that the mesh-sizes h and τ are linked by the condition
τ ) h, i.e.

c1h≤ τ ≤ c2h, c1, c2 = Const. > 0. (4.46)

It is easily seen that ϕmj is a bounded linear functional of u ∈Ws
2 (G

m
j ), s > 2, Gm

j =
(xj−1, xj+1)× (tm−1, tm+1), which vanishes on all cubic polynomials. By applying
the Bramble–Hilbert lemma we obtain

∣∣ϕmj
∣∣≤ Chs−3|u|Ws

2 (G
m
j )
, 2 < s ≤ 4,

which, after summation over the mesh-points, yields that

τ

M−1∑

m=1

∥∥ϕm
∥∥
h
≤√T

(

τ

M−1∑

m=1

∥∥ϕm
∥∥2
h

)1/2

=√T
(

hτ

N−1∑

j=1

M−1∑

m=1

∣∣ϕmj
∣∣2
)1/2

≤ Chs−2‖u‖Ws
2 (Q), 2 < s ≤ 4. (4.47)

Analogously, ζj is a bounded linear functional of u ∈Ws
2 (G

0+
j ), s > 3/2, G0+

j =
(xj−1, xj+1) × (0, τ ), which vanishes on all quadratic polynomials, and therefore
by the Bramble–Hilbert lemma we have that

|ζj | ≤ Chs−1|u|
Ws

2 (G
0+
j )

, 3/2 < s ≤ 3.

Thus, summing over j we deduce that

‖ζ‖h ≤ Chs−1/2|u|Ws
2 (Qτ ), 3/2 < s ≤ 3, (4.48)



352 4 Finite Difference Approximation of Hyperbolic Problems

where Qτ := (0,1) × (0, τ ). From (4.48), with s = 3 and using the inequality
(2.199), we further have that

‖ζ‖h ≤ Ch5/2+min(s′−3,1/2)| logh|1−| sgn(s′−7/2)|‖u‖
Ws′

2 (Q)
, (4.49)

where 3 < s′ ≤ 4. Hence, by further majorization, (4.48) and (4.49) yield the bound

1

τ
‖ζ‖h ≤ Chs−2‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.50)

Also,

∣∣[D+x ζ
∥∥
h
≤ 2

h
‖ζ‖h;

thus, from (4.46) and (4.50) it immediately follows that
∣∣[D+x ζ

∥∥
h
≤ Chs−2‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.51)

Finally, from (4.43), (4.47), (4.50) and (4.51) we obtain the following error bound
for the finite difference scheme (4.41) in the norm ‖ · ‖(1)2,∞,hτ :

‖u−U‖(1)2,∞,hτ ≤ Chs−2‖u‖Ws
2 (Q), 2 < s ≤ 4, (4.52)

where C = C(s) is a positive constant, independent of h.
Let us now turn our attention to the case when 3/2 < s ≤ 3. We begin

by noting that ξmj is a bounded linear functional of u ∈ Ws
2 (G

m
j+), s > 3/2,

Gm
j+ := (xj , xj+1) × (tm−1, tm+1), which vanishes on all quadratic polynomials.

The Bramble–Hilbert lemma therefore implies that
∣∣ξmj

∣∣≤ Chs−2|u|Ws
2 (G

m
j+), 3/2 < s ≤ 3,

which, after summation over the mesh-points, yields

τ

M−1∑

m=1

∣∣[ξm
∥∥
h
≤ Chs−1‖u‖Ws

2 (Q), 3/2 < s < 3. (4.53)

The quantity ηmj is a bounded linear functional of u ∈Ws
2 (G

m+
j∗ ), s > 2, Gm+

j∗ :=
(xj − h/2, xj + h/2) × (tm, tm+1), which vanishes on all quadratic polynomials.
Similarly as in the previous case we obtain that

τ

M−1∑

m=0

∥∥ηm
∥∥
h
≤ Chs−1‖u‖Ws

2 (Q), 3/2 < s < 3. (4.54)

Further, χj is a bounded linear functional of u ∈ Ws
2 (G

0∗
j+), s > 3/2, with

G0∗
j+ := (xj , xj+1)× (0, τ/2), which vanishes on all linear polynomials. Thus, by
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the Bramble–Hilbert lemma and summation over the mesh-points,

|[χ‖h ≤ Chs−1/2|u|Ws
2 (Qτ ), 3/2 < s < 2.

By taking s = 2 and using the inequality (2.199), we further deduce that

|[χ‖h ≤ Ch3/2+min(s′−2,1/2)| logh|1−|sgn(s′−5/2)|‖u‖
Ws′

2 (Q)
, 2 < s′ ≤ 3.

After further majorization the last two inequalities imply that

|[χ‖h ≤ Chs−1‖u‖Ws
2 (Q), 3/2 < s < 3. (4.55)

Finally, from (4.45), (4.53), (4.54), (4.55) and (4.48) we obtain the following
bound on the global error of the finite difference scheme (4.41) in the seminorm
‖ · ‖(0)2,∞,hτ : there exists a positive constant C = C(s), independent of h, such that

‖u−U‖(0)2,∞,hτ ≤ Chs−1‖u‖Ws
2 (Q), 3/2 < s ≤ 3. (4.56)

Two remarks are in order. First, we note that the error bound (4.56) has been
shown to hold for all s in the range 3/2 < s ≤ 3, but not for 1 < s ≤ 3/2. The
reason for this is that the right-hand side TxTtf of the finite difference scheme (4.41)
need not be a continuous function when s ≤ 3/2, and therefore the scheme is not
meaningful as stated for s ≤ 3/2. For this latter range of s a stronger mollification
of f is necessary (e.g. T 2

x T
2
t f ).

Our second remark is concerned with the requirement that the mesh-sizes h and
τ be linked by the condition (4.46). Since the difference scheme under consideration
is unconditionally stable (cf. the last sentence of Sect. 4.3.1), linking τ to h in the
convergence analysis of the scheme, as was done above, is unnatural. Although,
admittedly, (4.46) is less demanding than the corresponding condition (3.88) in the
parabolic case, we shall show that by careful estimation of the various functionals
that are responsible for the emergence of the condition (4.46) in the convergence
analysis, (4.46) can be completely avoided, at least in some cases. Suppose, for
example, that s = 4. It is easily seen that ϕmj can be represented as follows:

ϕmj =
1

hτ

∫ xj+h/2

xj−h/2

∫ xj

x′

∫ x′′

xj

∫ tm+1

tm−1

(
1− |t

′ − tm|
τ

)

× ∂4u

∂x2∂t2

(
x′′′, t ′

)
dt ′ dx′′′ dx′′ dx′

+ 1

hτ 2

∫ xj+h/2

xj−h/2

∫ tm+1

tm−1

∫ tm+τ/2

tm−τ/2

∫ t ′

t ′′

∫ t ′′′

tm

(
1− |t

′ − tm|
τ

)

× ∂4u

∂t4

(
x′, t ′′′′

)
dt ′′′′ dt ′′′ dt ′′ dt ′ dx′
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− 1

hτ

∫ tm+τ/2

tm−τ/2

∫ tm

t ′

∫ t ′′

tm

∫ xj+1

xj−1

(
1− |x

′ − xj |
h

)

× ∂4u

∂x2∂t2

(
x′, t ′′′

)
dx′ dt ′′′ dt ′′ dt ′

− 1

h2τ

∫ tm+τ/2

tm−τ/2

∫ xj+1

xj−1

∫ xj+h/2

xj−h/2

∫ x′

x′′

∫ x′′′

xj

(
1− |x

′ − xj |
h

)

× ∂4u

∂x4

(
x′′′′, t ′

)
dx′′′′ dx′′′ dx′′ dx′ dt ′

− τ

4h

∫ xj+1

xj−1

∫ tm+1

tm−1

(
1− |x

′ − xj |
h

)(
1− |t

′ − tm|
τ

)

× ∂4u

∂x2∂t2

(
x′, t ′

)
dt ′ dx′.

Thus we directly have that

∣∣ϕmj
∣∣≤ C(h2 + τ 2)√

hτ
|u|W 4

2 (G
m
j )

and

τ

M−1∑

m=1

∥∥ϕm
∥∥
h
≤ C

(
h2 + τ 2)‖u‖W 4

2 (Q).

The integral representation

ζj = 1

h

∫ xj+h/2

xj−h/2

∫ xj

x′

∫ x′′

xj

∫ τ

0

∂3u

∂x2∂t

(
x′′′, t ′

)
dt ′ dx′′′ dx′′ dx′

+ τ

h

∫ xj+1

xj−1

∫ τ

0

∫ t ′

0

(
1− |x

′ − xj |
h

)
∂3u

∂x2∂t

(
x′, t ′′

)
dt ′′ dt ′ dx′

+ 1

h

∫ xj+h/2

xj−h/2

∫ τ

0

∫ t ′

0

(
τ − t ′

)∂3u

∂t3

(
x′, t ′′

)
dt ′′ dt ′ dx′

− τ

h

∫ xj+h/2

xj−h/2

∫ τ/2

0

∫ t ′

0

∂3u

∂t3

(
x′, t ′′

)
dt ′′ dt ′ dx′

+ τ

h

∫ xj+h/2

xj−h/2

∫ x′

xj

∫ τ/2

0

∂3u

∂x2∂t

(
x′′, t ′

)
dt ′ dx′′ dx′

− τ

h

∫ xj+1

xj−1

∫ x′

xj

∫ τ/2

0

(
1− |x

′ − xj |
h

)
∂3u

∂x2∂t

(
x′′, t ′

)
dt ′ dx′′ dx′
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yields that

|ζj | ≤ C
(
h2 + τ 2)√τ/h|u|

W 3
2 (G

0+
j )

.

Hence, using the inequality (2.199) we obtain

1

τ
‖ζ‖h ≤ C(h2 + τ 2)√

τ
|u|W 3

2 (Qτ )
≤ C

(
h2 + τ 2)‖u‖W 4

2 (Q).

Similarly, by noting the integral representation

D+x ζj =
1

h2

∫ xj+h/2

xj−h/2

∫ xj

x′

∫ x′′

xj

∫ x′′′+h

x′′′

∫ τ

0

∂4u

∂x3∂t

(
x′′′′, t ′

)
dt ′ dx′′′′ dx′′′ dx′′ dx′

+ τ

h2

∫ xj+1

xj−1

∫ x′+h

x′

∫ τ

0

∫ t ′

0

(
1− |x

′ − xj |
h

)
∂4u

∂x3∂t

(
x′′, t ′′

)
dt ′′ dt ′ dx′′ dx′

+ 1

h2

∫ xj+h/2

xj−h/2

∫ x′+h

x′

∫ τ

0

∫ t ′

0

(
τ − t ′

) ∂4u

∂x∂t3

(
x′′, t ′′

)
dt ′′ dt ′ dx′′ dx′

− τ

h2

∫ xj+h/2

xj−h/2

∫ x′+h

x′

∫ τ/2

0

∫ t ′

0

∂4u

∂x∂t3

(
x′′, t ′′

)
dt ′′ dt ′ dx′′ dx′

+ τ

h2

∫ xj+h/2

xj−h/2

∫ x′

xj

∫ x′′+h

x′′

∫ τ/2

0

∂4u

∂x3∂t

(
x′′′, t ′

)
dt ′ dx′′′ dx′′ dx′

− τ

h2

∫ xj+1

xj−1

∫ x′

xj

∫ x′′+h

x′′

∫ τ/2

0

(
1− |x

′ − xj |
h

)

× ∂4u

∂x3∂t

(
x′′′, t ′

)
dt ′ dx′′′ dx′′ dx′,

we have that
∣∣D+x ζj

∣∣≤ C
(
h2 + τ 2)√τ/h|u|

W 4
2 (G

0+
j ∪G0+

j+1)

and
∣∣[D+x ζ

∥∥
h
≤ C

(
h2 + τ 2)√τ |u|W 4

2 (Qτ )
≤ C

(
h2 + τ 2)‖u‖W 4

2 (Q).

From these bounds and the a priori estimate (4.43) we obtain the following error
bound in which the mesh-sizes h and τ are not linked:

‖u−U‖(1)2,∞,hτ ≤ C
(
h2 + τ 2)‖u‖W 4

2 (Q).

We close this section with an interesting error bound, which is derived using
function space interpolation (see Zlotnik [204], Jovanović [87, 88]). For the sake of
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simplicity we consider the initial-boundary-value problem (4.24) with f = 0 and
u1 = 0. Suppose that u0 ∈Ws

2(0,1), 1≤ s ≤ 4, where

W
s
2(0,1) :=

{
v ∈Ws

2 (0,1) : u(2i)0 (0)= u
(2i)
0 (1)= 0, for 0≤ i <

2s − 1

4

}
. (4.57)

For s = 1 and s = 4 in particular this assumption enables us to extend u0 as an odd
function outside the interval (0,1) by preserving its Sobolev class, Ws

2 . From (4.5)
we directly have the following a priori estimate:

max
t∈[0,T ]

(∥∥∥∥
∂u

∂t
(·, t)

∥∥∥∥

2

L2(0,1)
+

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥

2

L2(0,1)

)1/2

≤
(∥∥∥∥

∂u

∂t
(·,0)

∥∥∥∥

2

L2(0,1)
+

∥∥∥∥
∂u

∂x
(·,0)

∥∥∥∥

2

L2(0,1)

)1/2

= ∥∥u′0
∥∥
L2(0,1)

. (4.58)

By differentiating the equation

∂2u

∂t2
= ∂2u

∂x2

with respect to x and t and by applying (4.58) we obtain that

max
t∈[0,T ]

∥∥∥
∥

∂ku

∂xi∂tk−i
(·, t)

∥∥∥
∥
L2(0,1)

≤ ∥∥u(k)0

∥∥
L2(0,1)

, (4.59)

where 1≤ k ≤ [s], and 0≤ i ≤ k. In the case of s = 4 we have from (4.59) on noting
(4.57) that

‖u‖W 4
2 (Q) ≤ C‖u0‖W 4

2 (0,1)
, u0 ∈W4

2(0,1). (4.60)

Let Bτ
h := C(Ωτ ,W 1

2 (Ω
h)) denote the linear space of all real-valued mesh-

functions defined on Q
τ

h that vanish at x = 0 and x = 1, with the seminorm

‖V ‖C(Ωτ ,W 1
2 (Ω

h)) := max
0≤m≤M−1

∥∥∥∥
Vm+1 + Vm

2

∥∥∥∥
W 1

2 (Ω
h)

,

where we have used the notation

‖W‖2
W 1

2 (Ω
h)
:= ‖W‖2

h +
∣∣[D+x W

∥∥2
h
.

Let us suppose that the mesh-sizes h and τ satisfy the condition (4.46). We have
from (4.52), (4.60) and the discrete Friedrichs inequality (2.26) that

‖u−U‖C(Ωτ ,W 1
2 (Ω

h)) ≤ Ch2‖u0‖W 4
2 (0,1)

, u0 ∈W4
2(0,1). (4.61)
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Next we shall derive a similar bound under the assumption u0 ∈W1
2(0,1) and

will then interpolate between that bound and (4.61). Obviously,

∣∣
∣∣

[
D+x

(
em+1 + em

2

)∥∥
∥∥
h

≤
∣∣
∣∣

[
D+x

(
um+1 + um

2

)∥∥
∥∥
h

+
∣∣
∣∣

[
D+x

(
Um+1 +Um

2

)∥∥
∥∥
h

.

Further, we have that

∣∣∣∣

[
D+x

(
um+1 + um

2

)∥∥∥∥
h

≤ 1

2

(∣∣[D+x um+1
∥∥
h
+ ∣∣[D+x um

∥∥
h

)
,

and

∣∣[D+x um
∥∥2
h
= h

N−1∑

j=0

∣∣∣∣
u(xj+1, tm)− u(xj , tm)

h

∣∣∣∣

2

= h

N−1∑

j=0

∣∣∣∣
1

h

∫ xj+1

xj

∂u

∂x
(x, tm)dx

∣∣∣∣

2

≤
∫ 1

0

∣∣∣∣
∂u

∂x
(x, tm)

∣∣∣∣

2

dx.

By noting (4.58), we then have from the last inequality that

∣∣[D+x um
∥∥
h
≤ ∥∥u′0

∥∥
L2(0,1)

≤ ‖u0‖W 1
2 (0,1)

.

An analogous inequality holds for D+x um+1, and hence we obtain

∣∣∣∣

[
D+x

(
um+1 + um

2

)∥∥∥∥
h

≤ ‖u0‖W 1
2 (0,1)

.

The solution of the finite difference scheme (4.41) (in the case of f = 0 and u1 = 0)
satisfies the a priori estimate (4.18), which implies that

∣∣∣∣

[
D+x

(
Um+1 +Um

2

)∥∥∥∥
h

≤ ∥∥D+t U0
∥∥
h
+

∣∣∣∣

[
D+x

(
U1 +U0

2

)∥∥∥∥
h

= 1

2
τ
∥∥D+x D−x u0

∥∥
h
+

∣∣∣∣

[
D+x

(
u0 + 1

4
τ 2D+x D−x u0

)∥∥∥∥
h

≤ C
∣∣[D+x u0

∥∥
h
≤ C

∥∥u′0
∥∥
L2(0,1)

≤ C‖u0‖W 1
2 (0,1)

.

We thus deduce by applying a triangle inequality that

‖u−U‖C(Ωτ ,W 1
2 (Ω

h)) ≤ C‖u0‖W 1
2 (0,1)

, u0 ∈W1
2(0,1). (4.62)

We are now ready to interpolate between (4.61) and (4.62). The linear space
Ws

2(0,1), equipped with the norm of Ws
2 (0,1), is a Banach space. Let us consider
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the mapping Aτ
h : u0 �→ u − U . Clearly, Aτ

h is linear, and (4.61) implies that the
operator Aτ

h :W4
2(0,1)→ Bτ

h is bounded, with

∥∥Aτ
h

∥∥
W4

2(0,1)→Bτ
h
≤ Ch2.

Similarly, by (4.62), the linear operator Aτ
h :W1

2(0,1)→ Bτ
h is bounded, with

∥
∥Aτ

h

∥
∥
W1

2(0,1)→Bτ
h
≤ C.

By function space interpolation (cf. Sect. 1.1.5) we deduce that the linear operator
Aτ
h : (W1

2(0,1),W4
2(0,1))θ,2→ Bτ

h is also bounded, with

∥∥Aτ
h

∥∥
(W1

2(0,1),W
4
2(0,1))θ,2→Bτ

h
≤ Ch2θ , 0 < θ < 1,

which, by taking s = 3θ + 1, yields the error bound

‖u−U‖C(Ωτ ,W 1
2 (Ω

h)) ≤ Ch
2
3 (s−1)‖u0‖(W1

2(0,1),W
4
2(0,1))(s−1)/3,2

(4.63)

for 1 < s < 4, where C = C(s) is a positive constant, independent of h.
The inequality (4.63) guarantees convergence of the scheme under a less restric-

tive assumption on u0 than (4.52) (i.e. even for 1 < s ≤ 2, whereas in (4.52) s > 2
was needed; we refer to the notes at the end of this chapter for further comments on
the error bound (4.63)).

4.4 Hyperbolic Problems with Variable Coefficients

4.4.1 Formulation of the Problem

Let us consider, in Q :=Ω × (0, T ] = (0,1)2 × (0, T ], the initial-boundary-value
problem for a symmetric second-order hyperbolic equation with variable coeffi-
cients:

∂2u

∂t2
+Lu= f, (x, t)= (x1, x2, t) ∈Q,

u= 0, (x, t) ∈ Γ × (0, T ] = ∂Ω × (0, T ],

u(x,0)= u0(x),
∂u

∂t
(x,0)= u1(x), x ∈Ω,

(4.64)

where

Lu := −
2∑

i,j=1

∂i(aij ∂ju)+ au, ∂i = ∂

∂xi
.
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We shall suppose that the solution of (4.64) belongs to the Sobolev space Ws
2 (Q),

2 < s ≤ 4, and the coefficients aij = aij (x) and a = a(x) satisfy the conditions

aij ∈Ws−1
2 (Ω), aij = aji,

∃c0 > 0 ∀x ∈Ω ∀ξ ∈R2 :
2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i ,

a ∈Ws−2
2 (Ω), a(x)≥ 0 a.e. in Ω .

These conditions ensure that the coefficients of the scheme belong to appropriate
spaces of multipliers; that is,

aij ∈M
(
Ws−1

2 (Q)
)
, a ∈M(

Ws
2 (Q)→Ws−2

2 (Q)
)
.

4.4.2 The Finite Difference Scheme

Let N,M ∈N, N,M ≥ 2, h := 1/N and τ := T/M . We introduce the uniform mesh
Ωh with mesh-size h in Ω and the uniform mesh Ωτ with mesh-size τ on (0, T ).
Using the notations from Sects. 2.6, 3.1.4 and 3.4, we define Qτ

h :=Ωh ×Ωτ and

Q
τ

h :=Ω
h ×Ω

τ
. It will be assumed that the mesh-sizes h and τ are linked by the

condition (4.46):

c1h≤ τ ≤ c2h, c1, c2 = Const. > 0.

For a function V defined on Q
τ

h we consider the divided differences D±xi V (see
Sect. 2.6) and D±t V (see Sect. 3.1.4), the Steklov mollifier Ti in the xi direction
(see Sect. 2.6), and the mollifiers Tt , T̃

±
t in the t direction (see Sect. 4.3).

The initial-boundary-value problem (4.64) will be approximated on Q
τ

h by the
finite difference scheme

D+t D−t U +
1

4
Lh(Û + 2U + Ǔ )= T1T2Ttf in Qτ

h,

U = 0 on Γ h ×Ω
τ
,

U = u0 on Ωh × {0},

(4.65)

with

Û := u0 + τT1T2u1 + τ 2

2

(−Lhu0 + T1T2T̃
+
t f

)
on Ωh × {0},

where

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]+ (T1T2a)U.
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The scheme (4.65) is a standard symmetric finite difference scheme with weights
θ1 = θ2 = 1/4 (see Samarskiı̆ [159]) and mollified right-hand side and lowest coef-
ficient. According to the results obtained in Sect. 4.1.3, the finite difference scheme
(4.65) is unconditionally stable.

4.4.3 Convergence of the Finite Difference Scheme

Let u be the solution of the initial-boundary-value problem (4.64) and let U denote
the solution of the difference scheme (4.65). The global error e := u− U satisfies
the following finite difference scheme:

D+t D−t e+
1

4
Lh(ê+ 2e+ ě)= ϕ in Qτ

h,

e= 0 on Γ h ×Ω
τ
,

e= 0, ê= τυ + 1

2
τ 2ϕ̃ in Ωh × {0},

(4.66)

where

ϕ :=
2∑

i,j=1

ηij + η+ ζ + χ,

ηij := T1T2Tt∂i(aij ∂ju)− 1

2

[
D−xi

(
aijD

+
xj
u
)+D+xi

(
aijD

−
xj
u
)]
,

η := (T1T2a)u− T1T2Tt (au),

ζ := D+t D−t u− T1T2Tt
∂2u

∂t2
,

χ := τ 2

4
LhD

+
t D

−
t u,

υ :=
(
D+t u− T1T2

∂u

∂t
− τ

2
T1T2T̃

+
t

∂2u

∂t2

)∣∣∣∣
t=0

,

ϕ̃ :=
2∑

i,j=1

η̃ij + η̃,

η̃ij :=
{
T1T2T̃

+
t ∂i(aij ∂ju)− 1

2

[
D−xi

(
aijD

+
xj
u
)+D+xi

(
aijD

−
xj
u
)]}

∣∣∣∣
t=0

,

η̃ := [
(T1T2a)u− T1T2T̃

+
t (au)

]∣∣
t=0.
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Let us define the norm

‖V ‖(1)2,∞,hτ := max
t∈Ωτ−

{
∥∥D+t V (·, t)

∥∥2
h
+

2∑

i=1

∥∥∥∥D
+
xi

(
V (·, t + τ)+ V (·, t)

2

)∥∥∥∥

2

i,h

}1/2

.

We deduce from (4.18) and (4.66), using the relations

‖V ‖2
Lh
= (LhV,V )h ≥ c0

(∥∥D+x1
V
∥∥2

1,h +
∥∥D+x2

V
∥∥2

2,h

)
,

‖V ‖2
Lh
≤ C0

(∥∥D+x1
V
∥∥2

1,h +
∥∥D+x2

V
∥∥2

2,h + ‖V ‖2
h

)≤ C1

h2
‖V ‖2

h,

that

‖e‖(1)2,∞,hτ ≤ C

[(
1

τ
+ 1

h

)∥
∥e(·, τ )∥∥

h
+ τ

∑

t∈Ωτ

∥
∥ϕ(·, t)∥∥

h

]
.

Hence, by recalling the condition (4.46), we obtain the a priori bound

‖e‖(1)2,∞,hτ ≤ C

(
‖υ‖h + h‖ϕ̃‖h + τ

∑

t∈Ωτ

∥∥ϕ(·, t)∥∥
h

)
. (4.67)

Thus the problem of error estimation is reduced to bounding the right-hand side
of (4.67); we shall accomplish this in the proof of the next theorem.

Theorem 4.4 Let the solution u of (4.64) belong to the Sobolev space Ws
2 (Q), 2 <

s ≤ 4, and suppose that aij ∈ Ws−1
2 (Ω) and a ∈ Ws−2

2 (Ω). Let also c1h ≤ τ ≤
c2h, where c2 ≥ c1 > 0. Then, the finite difference scheme (4.65) converges in the
mesh-dependent norm ‖ · ‖(1)2,∞,hτ , and the global error of the scheme is bounded as
follows: there exists a positive constant C = C(s), independent of h, such that

‖u−U‖(1)2,∞,hτ ≤ Chs−2
(

max
i,j
‖aij‖Ws−1

2 (Ω)
+ ‖a‖

Ws−2
2 (Ω)

)
‖u‖Ws

2 (Q),

for 2 < s ≤ 4. (4.68)

Proof First of all, we decompose ηij as follows:

ηij = ηij1 + ηij2 + ηij3 + ηij4 + ηij5 + ηij6 + ηij7,

ηij1 := T1T2Tt (aij ∂i∂ju)− (T1T2aij )(T1T2Tt∂i∂ju),

ηij2 := (T1T2aij )

[
T1T2Tt∂i∂ju− 1

2

(
D−xiD

+
xj
u+D+xiD

−
xj
u
)]
,

ηij3 := 1

2
(T1T2aij − aij )

(
D−xiD

+
xj
u+D+xiD

−
xj
u
)
,

ηij4 := T1T2Tt (∂iaij ∂ju)− (T1T2∂iaij )(T1T2Tt∂ju),
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ηij5 :=
[
T1T2∂iaij − 1

2

(
D+xi aij +D−xi aij

)]
(T1T2Tt∂ju),

ηij6 := 1

2

(
D+xi aij +D−xi aij

)[
T1T2Tt∂ju− 1

2

(
D+xj u

−i +D−xj u
+i)

]
,

ηij7 := 1

4

(
D+xi aij −D−xi aij

)(
D+xj u

−i −D−xj u
+i).

Let us also define

χ :=
2∑

i,j=1

(χij1 + χij2)+ χ0 and η := η1 + η2,

where

χij1 := −1

8
τ 2(a−iij D

−
xi
D+xjD

+
t D

−
t u+ a+iij D

+
xi
D−xjD

+
t D

−
t u

)
,

χij2 := −1

8
τ 2[(D−xi aij

)
D+xjD

+
t D

−
t u+

(
D+xi aij

)
D−xjD

+
t D

−
t u

]
,

χ0 := 1

4
τ 2(T1T2a)D

+
t D

−
t u,

η1 := (T1T2a)(u− T1T2Ttu),

η2 := (T1T2a)(T1T2Ttu)− T1T2Tt (au).

Analogously, for t = 0 we set

η̃ij := η̃ij1 + η̃ij2 + η̃ij3 + η̃ij4 + η̃ij5 + η̃ij6 + η̃ij7 and η̃ := η̃1 + η̃2,

where

η̃ij1 := T1T2T̃
+
t (aij ∂i∂ju)− (T1T2aij )

(
T1T2T̃

+
t ∂i∂j u

)
,

η̃ij2 := (T1T2aij )

[
T1T2T̃

+
t ∂i∂ju− 1

2

(
D−xiD

+
xj
u+D+xiD

−
xj
u
)]
,

η̃ij4 := T1T2T̃
+
t (∂iaij ∂ju)− (T1T2∂iaij )

(
T1T2T̃

+
t ∂j u

)
,

η̃ij5 :=
[
T1T2∂iaij − 1

2

(
D+xi aij +D−xi aij

)](
T1T2T̃

+
t ∂j u

)
,

η̃ij6 := 1

2

(
D+xi aij +D−xi aij

)[
T1T2T̃

+
t ∂j u− 1

2

(
D+xj u

−i +D−xj u
+i)

]
,

η̃ij l := ηijl, l = 3 and 7,

η̃1 := (T1T2a)
(
u− T1T2T̃

+
t u

)
,

η̃2 := (T1T2a)
(
T1T2T̃

+
t u

)− T1T2T̃
+
t (au).
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The values of ηij1, ηij3, ηij6 and ηij7 at the mesh-point (x, t) ∈Qτ
h are bounded

bilinear functionals of (aij , u) ∈Wλ
q (K

0)×W
μ

2q/(q−2)(G), where K0 =K0(x) :=
(x1 − h,x1 + h)× (x2 − h,x2 + h) and G = G(x, t) := K0 × (t − τ, t + τ). For
ηij1 we have λ ≥ 0, μ ≥ 2 and q ≥ 2, while for ηij3, ηij6 and ηij7 we have that
λ > 2/q , μ> 3/2− 3/q and q ≥ 2. Furthermore ηij1 and ηij6 vanish whenever aij
is a constant or if u is a quadratic polynomial; ηij3 and ηij7 vanish if aij and u are
linear polynomials. By applying the bilinear version of the Bramble–Hilbert lemma
we obtain the bound

∣∣ηij1(x, t)
∣∣≤ C(h)|aij |Wλ

q (K
0)|u|Wμ

2q/(q−2)(G)
,

where C(h) = Chλ+μ+1/q−7/2, 0 ≤ λ ≤ 1 and 2 ≤ μ ≤ 3. Summing through the
points of the mesh Qτ

h yields

τ
∑

t∈Ωτ

∥∥ηij1(·, t)
∥∥
h
≤ Chλ+μ−2‖aij‖Wλ

q (Ω)‖u‖Wμ
2q/(q−2)(Q),

0≤ λ≤ 1, 2≤ μ≤ 3. (4.69)

The following embeddings hold

W
λ+μ−1
2 (Ω) ↪→Wλ

q (Ω) for μ≥ 2− 2/q, (4.70)

and

W
λ+μ
2 (Q) ↪→W

μ

2q/(q−2)(Q) for λ≥ 3/q. (4.71)

Setting λ+μ= s, (4.69)–(4.71) imply, for q > 3, that

τ
∑

t∈Ωτ

∥∥ηij1(·, t)
∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Q),

for 2+ 3/q ≤ s ≤ 4. (4.72)

The bound (4.72) holds for any q > 3; thus, letting q→∞ we deduce that it holds
for 2 < s ≤ 4.

In the same way, ηij6 satisfies a bound of the form (4.69) for 2/q < λ ≤ 1 and
3/2 − 3/q < μ ≤ 3. By setting λ + μ = s and noting the embeddings (4.70) and
(4.71) we obtain

τ
∑

t∈Ωτ

∥∥ηij6(·, t)
∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Q),

for 2+ 1/q ≤ s ≤ 4. (4.73)

In fact, because q is arbitrary, (4.73) holds for 2 < s ≤ 4. The term χij2 is bounded
in the same way.
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The terms ηij3 and ηij7 satisfy bounds of the form (4.69) for 2/q < λ ≤ 2 and
3/2− 3/q < μ≤ 2. Thus, in the same way as in the previous cases,

τ
∑

t∈Ωτ

(∥∥ηij3(·, t)
∥∥
h
+ ∥∥ηij7(·, t)

∥∥
h

)≤ Chs−2‖aij‖Ws−1
2 (Ω)

‖u‖Ws
2 (Q), (4.74)

for 2+ 1/q ≤ s ≤ 4, and thus for 2 < s ≤ 4 as well.
When aij ∈ L∞(K0), ηij2(x, t) is a bounded linear functional of u ∈ Ws

2 (G),
s ≥ 2, which vanishes whenever u is a cubic polynomial. Using the Bramble–Hilbert
lemma we obtain

∣∣ηij2(x, t)
∣∣≤ Chs−7/2‖aij‖L∞(K0)|u|Ws

2 (G)
, 2≤ s ≤ 4.

Summing over the points of the mesh Qτ
h yields

τ
∑

t∈Ωτ

∥∥ηij2(·, t)
∥∥
h
≤ Chs−2‖aij‖L∞(Ω)‖u‖Ws

2 (Q), 2≤ s ≤ 4.

Finally, by noting the embedding

Ws−1
2 (Ω) ↪→ L∞(Ω) for s > 2,

we obtain the desired bound on ηij2:

τ
∑

t∈Ωτ

∥∥ηij2(·, t)
∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.75)

The term χij1 is estimated in the same way.
Further, ηij4(x, t) and ηij5(x, t) are bounded bilinear functionals of (aij , Ttu) ∈

Wλ
q (K

0)×W
μ

2q/(q−2)(K
0), for λ≥ 1, μ≥ 1, q ≥ 2. Moreover, ηij4 vanishes when

aij or Ttu is a linear polynomial; ηij5 vanishes if aij is a quadratic polynomial, or
if Ttu is a constant. By applying the bilinear version of the Bramble–Hilbert lemma
we get

∣∣ηij4(x, t)
∣∣≤ Chλ+μ−3|aij |Wλ

q (K
0)

∣∣Ttu(·, t)
∣∣
W

μ
2q/(q−2)(K

0)
, 1≤ λ, μ≤ 2,

and summing through the mesh-points then yields that
∥∥ηij4(·, t)

∥∥
h
≤ Chλ+μ−2‖aij‖Wλ

q (Ω)

∥∥Ttu(·, t)
∥∥
W

μ
2q/(q−2)(Ω)

,

1≤ λ, μ≤ 2. (4.76)

By noting the embedding

W
λ+μ
2 (Ω) ↪→W

μ

2q/(q−2)(Ω) for λ≥ 2/q (4.77)

and setting λ+μ= s, from (4.76), (4.70) and (4.77) we obtain
∥∥ηij4(·, t)

∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)

∥∥Ttu(·, t)
∥∥
Ws

2 (Ω)
, 3− 2/q ≤ s ≤ 4. (4.78)
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Letting q→ 2+ 0 we deduce that (4.78) holds for 2 < s ≤ 4. Since

τ
∑

t∈Ωτ

∥∥Ttu(·, t)
∥∥
Ws

2 (Ω)
≤ T 1/2

(
τ

∑

t∈Ωτ

∥∥Ttu(·, t)
∥∥2
Ws

2 (Ω)

)1/2

≤ C‖u‖Ws
2 (Q),

summation of the inequality (4.78) through t ∈Ωτ yields that

τ
∑

t∈Ωτ

∥∥ηij4(·, t)
∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.79)

Similarly, by the Bramble–Hilbert lemma, we obtain a bound on ηij5 of the form
(4.76) for μ= 1 and 1≤ λ≤ 3. Setting q = 2, λ= s − 1 and using the embedding

Ws
2 (Ω) ↪→W 1∞(Ω) for s > 2,

we obtain the bound
∥∥ηij5(·, t)

∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)

∥∥Ttu(·, t)
∥∥
Ws

2 (Ω)
, 2 < s ≤ 4,

and further

τ
∑

t∈Ωτ

∥∥ηij5(·, t)
∥∥
h
≤ Chs−2‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.80)

The terms χ0(x, t) and η1(x, t) are bounded bilinear functionals of (a,u) ∈
Lq(K

0) × W
μ

2q/(q−2)(G), for μ > 3/2 − 3/q , q ≥ 2, which vanish when u is a
linear polynomial. By applying the Bramble–Hilbert lemma,

|χ0|, |η1| ≤ Chμ+1/q−3/2‖a‖Lq(K0)|u|Wμ
2q/(q−2)(G)

, 3/2− 3/q < μ≤ 2.

Thus, by summing through the points of the mesh Qτ
h, we get

τ
∑

t∈Ωτ

(∥∥χ0(·, t)
∥∥
h
+ ∥∥η1(·, t)

∥∥
h

)≤ Chμ‖a‖Lq(Ω)‖u‖Wμ
2q/(q−2)(Q),

3/2− 3/q < μ≤ 2.

By choosing μ= s − 2 and noting the embeddings

Ws
2 (Q) ↪→Ws−2

2q/(q−2)(Q) for q > 2 and Ws−2
2 (Ω) ↪→ Lq(Ω),

where 2≤ q < 2/(3− s) for 2 < s < 3, 2≤ q <∞ for s = 3, and q is arbitrary for
s > 3, we obtain the bound

τ
∑

t∈Ωτ

(∥∥χ0(·, t)
∥∥
h
+ ∥∥η1(·, t)

∥∥
h

)≤ Chs−2‖a‖
Ws−2

2 (Ω)
‖u‖Ws

2 (Q),

7/2− 3/q < s ≤ 4. (4.81)
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Since q > 2 is arbitrary, letting q→ 2+0, we deduce that (4.81) holds for 2 < s ≤ 4.
Next, η2(x, t) is a bounded bilinear functional of (a,u) ∈ Wλ

q (K
0) ×

W
μ

2q/(q−2)(G) for λ ≥ 0, μ ≥ 0, q ≥ 2, which vanishes if a or u is a constant
function. Similarly as in the previous case we have that

∣∣η2(x, t)
∣∣≤ Chλ+μ+1/q−3/2‖a‖Lq(K0)|u|Wμ

2q/(q−2)(G)
, 0≤ λ, μ≤ 1,

and

τ
∑

t∈Ωτ

∥∥η2(·, t)
∥∥
h
≤ Chλ+μ‖a‖Wλ

q (Ω)‖u‖Wμ
2q/(q−2)(Q), 0≤ λ, μ≤ 1.

Letting λ+μ= s − 2 and using the embeddings

W
λ+μ
2 (Ω) ↪→Wλ

q (Ω) for μ≥ 1− 2/q (4.82)

and

W
λ+μ+2
2 (Q) ↪→W

μ

2q/(q−2)(Q), (4.83)

we get the bound

τ
∑

t∈Ωτ

∥∥η2(·, t)
∥∥
h
≤ Chs−2‖a‖

Ws−2
2 (Ω)

‖u‖Ws
2 (Q),

3− 2/q ≤ s ≤ 4. (4.84)

Letting q→ 2+ 0, we deduce that (4.84) holds for 2 < s ≤ 4.
The term ζ(x, t) is a bounded linear functional of u ∈Ws

2 (G) for s > 2. More-
over, ζ vanishes on cubic polynomials. By applying the Bramble–Hilbert lemma
and summing through the mesh-points, we get the bound

τ
∑

t∈Ωτ

∥∥ζ(·, t)∥∥
h
≤ Chs−2‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.85)

Analogously, υ(x) is a bounded linear functional of u ∈Ws
2 (G

0+), where G0+ =
G0+(x) :=K0× (0, τ ), for s > 2. Moreover, υ(x) vanishes on quadratic polynomi-
als. By applying the Bramble–Hilbert lemma we get

‖υ‖h ≤ Chs−3/2|u|Ws
2 (Qτ ), 2 < s ≤ 3,

where Qτ :=Ω × (0, τ ). Setting s = 3 and using the inequality (2.199) we deduce
that

‖υ‖h ≤ Ch3/2|u|W 3
2 (Qτ )

≤ Ch3/2+min(s′−3,1/2)| logh|1−|sgn(s′−7/2)|‖u‖
Ws′

2 (Q)
, 3 < s′ ≤ 4.
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By combining the bounds above on ‖υ‖h we then have that

‖υ‖h ≤ Chs−2|u|Ws
2 (Qτ ), 2 < s ≤ 4. (4.86)

The terms η̃ij l (l = 1,3,4,5,6,7) have analogous properties to ηijl in the do-
main G0+, and are bounded in the same way. Thus, for example, η̃ij1(x) is a
bounded bilinear functional of (aij , u) ∈ Wλ

q (K
0) × W

μ

2q/(q−2)(G
0+), for λ ≥ 0,

μ≥ 2, q ≥ 2, which vanishes whenever aij is a constant or if u is a quadratic poly-
nomial. By applying the bilinear version of the Bramble–Hilbert lemma we obtain
the bound

∣∣η̃ij1(x)
∣∣≤ Chλ+μ+1/q−7/2|aij |Wλ

q (K
0)|u|Wμ

2q/(q−2)(G
0+).

Summation over the mesh-points then yields

h‖η̃ij1‖h ≤ Chλ+μ+1/q−3/2‖aij‖Wλ
q (Ω)‖u‖Wμ

2q/(q−2)(Qτ )

≤ Chλ+μ−2‖aij‖Wλ
q (Ω)‖u‖Wμ

2q/(q−2)(Q).

Thus, by setting λ+μ= s and using the embeddings (4.70) and (4.71), we obtain

h‖η̃ij1‖h ≤ Chs−2‖aij‖Ws−1
2 (Ω)

‖u‖Ws
2 (Q), 2≤ s ≤ 4. (4.87)

The terms η̃ij l , with l = 3, . . . ,7, are bounded in the same way.
When aij ∈ L∞(K0), η̃ij2(x) is a bounded linear functional of u ∈Ws

2 (G
0+),

s ≥ 2, which vanishes whenever u is a quadratic polynomial. Using the Bramble–
Hilbert lemma we obtain

∣∣ηij2(x)
∣∣≤ Chs−7/2‖aij‖L∞(K0)|u|Ws

2 (G
0+), 2≤ s ≤ 3.

Summing over the points of the mesh Ωh yields that

h
∥
∥ηij2(·, t)

∥
∥
h
≤ Chs−3/2‖aij‖L∞(Ω)|u|Ws

2 (Qτ ), 2≤ s ≤ 3.

Hence, by noting the embedding

Ws−1
2 (Ω) ↪→ L∞(Ω) for s > 2

and the inequality (2.199), in the same way as in the estimation of ‖υ‖h, we obtain
that

h
∥∥ηij2(·, t)

∥∥
h
≤ Chs−2‖aij‖L∞(Ω)‖u‖Ws

2 (Q), 2≤ s ≤ 4. (4.88)

The term η̃1(x) is bounded directly. If a ∈ L2(Ω) and u ∈ C(Q), then
∣∣η̃1(x)

∣∣≤ Ch−1‖a‖L2(K
0)‖u‖C(Q),
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which implies that

h‖η̃1‖h ≤ Ch‖a‖L2(Ω)‖u‖C(Q).

Hence, by using the embeddings

Ws−2
2 (Ω) ↪→ L2(Ω), Ws

2 (Q) ↪→ C(Q), s > 2,

we get, after further majorization, that

h‖η̃1‖h ≤ Chs−2‖a‖
Ws−2

2 (Ω)
‖u‖Ws

2 (Q), 2 < s ≤ 3. (4.89)

Similarly, if a ∈ L2(Ω) and u ∈ C1(Q), then
∣∣η̃1(x)

∣∣≤ C‖a‖L2(K
0)‖u‖C1(Q),

which further yields that

h‖η̃1‖h ≤ Ch2‖a‖L2(Ω)‖u‖C1(Q).

Hence, by the previous embeddings, together with

Ws
2 (Q) ↪→ C1(Q), s > 3,

we obtain, after further majorization, that

h‖η̃1‖h ≤ Chs−2‖a‖
Ws−2

2 (Ω)
‖u‖Ws

2 (Q), 3 < s ≤ 4. (4.90)

Finally, η̃2(x) is a bounded bilinear functional of (a,u) ∈ Wλ
q (K

0) ×
W

μ

2q/(q−2)(G
0+) for λ ≥ 0, μ ≥ 0, q ≥ 2, which vanishes if a or u is a constant

function. By applying the Bramble–Hilbert lemma we obtain
∣∣η̃2(x)

∣∣≤ Chλ+μ+1/q−3/2‖a‖Lq(K0)|u|Wμ
2q/(q−2)(G

0+), 0≤ λ, μ≤ 1,

and

h‖η̃2‖h ≤ Chλ+μ+1/q+1/2‖a‖Wλ
q (Ω)‖u‖Wμ

2q/(q−2)(Qτ )
, 0≤ λ, μ≤ 1.

Setting λ+μ= s−2, using the embeddings (4.82) and (4.83) and letting q→ 2+0,
we get the bound

h‖η̃2‖h ≤ Chs−2‖a‖
Ws−2

2 (Ω)
‖u‖Ws

2 (Q), 2 < s ≤ 4. (4.91)

By combining (4.67), (4.72)–(4.75), (4.79)–(4.81) and (4.84)–(4.91) we then ar-
rive at the error bound (4.68). �

Remark 4.1 Similar error bounds can be derived when the coefficients aij and a

depend on t . However, the proof of an a priori bound of the form (4.67) is then more
complicated (see Samarskiı̆ [159]).
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4.4.4 Factorized Scheme

As in the parabolic case (see Sect. 3.4.4) the finite difference scheme (4.65) can be
replaced by a, more economical, factorized scheme, which is in this case

(
Ih + στ 2Λ1

)(
Ih + στ 2Λ2

)
D+t D−t U +LhU = T1T2Ttf in Qτ

h, (4.92)

with the same initial and boundary conditions as in (4.65). Here σ is a positive real
parameter, ΛiU =−D−xiD+xiU , i = 1,2, and Ih is the identity operator. According
to (4.17), the finite difference scheme (4.92) is stable if the operator

(
Ih + στ 2Λ1

)(
Ih + στ 2Λ2

)− 1

4
τ 2Lh

is positive definite, uniformly with respect to the discretization parameters. This
condition holds, for example, if

σ ≥ 1

2
max
i,j
‖aij‖C(Ω)

and

h < 4c−2
2 ‖a‖−1

L2(Ω).

In contrast with (4.65), the factorized scheme (4.92) is economical in the sense
that only systems of linear algebraic equations with tridiagonal matrices have to
be solved on each time level, corresponding to the operators (Ih + στ 2Λi), i =
1,2.

The global error e := u−U satisfies the following equalities:

(
Ih + στ 2Λ1

)(
Ih + στ 2Λ2

)
D+t D−t e+Lhe= ϕ′ on Qτ

h,

e= 0 in Γ h ×Ω
τ
,

e= 0, ê= τυ + 1

2
τ 2ϕ̃ on Ωh × {0},

where

ϕ′ :=
2∑

i,j=1

ηij + η+ ζ + χ ′,

and

χ ′ := −στ 2(D+x1
D−x1

D+t D−t u+D+x2
D−x2

D+t D−t u
)

+ σ 2τ 4D+x1
D−x1

D+x2
D−x2

D+t D−t u.
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The a priori estimate (4.67) holds if ϕ is replaced by ϕ′. It is easy to show that

τ
∑

t∈Ωτ

‖χ ′‖h ≤ Chs−2‖u‖Ws
2 (Q), 2 < s ≤ 4,

which implies that the factorized scheme (4.92) satisfies the error bound (4.68).

4.5 Hyperbolic Interface Problem

Using the notations from Sect. 4.4, we shall consider the following hyperbolic in-
terface problem:

(1+ kδΣ)
∂2u

∂t2
+Lu= f, (x, t)= (x1, x2, t) ∈Q,

u= 0, (x, t) ∈ Γ × (0, T ] = ∂Ω × [0, T ],

u(x,0)= u0(x),
∂u

∂t
(x,0)= u1(x), x ∈Ω,

(4.93)

where, as in the parabolic case (cf. Sect. 3.5), Σ is the intersection of the line seg-
ment x2 = ξ , 0 < ξ < 1, and Ω , δΣ(x) := δ(x2 − ξ) is the Dirac distribution con-
centrated on Σ , k(x)= k(x1), and L is the symmetric elliptic operator

Lu := −
2∑

i,j=1

∂i(aij ∂ju)+ au,

satisfying the usual ellipticity and regularity properties (see Sect. 4.4.1).
Problem (4.93) is a hyperbolic initial-boundary-value problem with “concen-

trated mass” in the coefficient of the time derivative. In the one-dimensional case,
analogous problems were considered by Jovanović and Vulkov [93, 96].

When f = f (x, t) does not include in its definition a Dirac function concentrated
on Σ , (4.93) reduces to

∂2u

∂t2
+Lu= f (x, t) in Q− ∪Q+,

where Q± = Ω± × (0, T ], Ω− = (0,1) × (0, ξ), Ω+ = (0,1) × (ξ,1), with the
following transmission (conjugation) conditions on the interface Σ :

[u]Σ := u(x1, ξ+0, t)−u(x1, ξ−0, t)= 0,

[
2∑

j=1

a2j ∂ju

]

Σ

= k
∂2u

∂t2

∣
∣∣∣
Σ

. (4.94)

We shall now construct a finite difference approximation of this problem.
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4.5.1 Finite Difference Approximation

The initial-boundary-value problem (4.93) will be approximated on Q
τ

h by the finite
difference scheme

(1+ kδΣh)D
+
t D

−
t U +

1

4
Lh(Û + 2U + Ǔ )= T1T2Ttf in Qτ

h,

U = 0 on Γ h ×Ω
τ
,

U = u0 on Ωh × {0},
(1+ kδΣh)D

+
t U = T1T2

[
(1+ kδΣ)u1

]

+ 1

2
τ
(−Lhu0 + T1T2T̃

+
t f

)
on Ωh × {0},

(4.95)

where the operator Lh is defined as in Sect. 4.4.2; i.e.

LhU := −1

2

2∑

i,j=1

[
D+xi

(
aijD

−
xj
U
)+D−xi

(
aijD

+
xj
U
)]+ (T1T2a)U ;

and

δΣh(x)= δh(x2 − ξ) :=
{

0 when x ∈Ωh \Σh,

1/h when x ∈Σh,

is the discrete Dirac delta-function concentrated on Σh. For the sake of simplicity,
we assume that ξ is a rational number and ξ/h is an integer.

The finite difference scheme (4.95) fits into the canonical form (4.14), with Ah =
Lh, Dh = 0 and

BhU = (1+ kδΣh)U + 1

4
τ 2LhU.

Hence, the conditions (4.17) are satisfied and the difference scheme (4.95) is there-
fore unconditionally stable.

Let u be the solution of the initial-boundary-value problem (4.93) and let U
denote the solution of the difference scheme (4.95). The global error e := u−U is
then a solution of the following finite difference scheme:

(1+ kδΣh)D+t D−t e+
1

4
Lh(ê+ 2e+ ě)= ϕ +μδΣh in Qτ

h,

e= 0 on Γ h ×Ω
τ
,

e= 0, (1+ kδΣh)D+t e= υ + υ̃δΣh + 1

2
τ ϕ̃ in Ωh × {0},

(4.96)
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where

ϕ :=
2∑

i,j=1

ηij + η+ ζ + χ,

ηij := T1T2Tt∂i(aij ∂ju)− 1

2

[
D−xi

(
aijD

+
xj
u
)+D+xi

(
aijD

−
xj
u
)]
,

η := (T1T2a)u− T1T2Tt (au),

ζ := D+t D−t u− T1T2Tt
∂2u

∂t2
,

χ := τ 2

4
LhD

+
t D

−
t u=

2∑

i,j=1

χij + χ0,

χij := −τ
2

8

[
D−xi

(
aijD

+
xj
D+t D−t u

)+D+xi
(
aijD

−
xj
D+t D−t u

)]
,

χ0 := τ 2

4
(T1T2a)u,

μ := kD+t D−t u− T1Tt

(
k
∂2u

∂t2

)

υ :=
(
D+t u− T1T2

∂u

∂t
− τ

2
T1T2T̃

+
t

∂2u

∂t2

)∣∣∣∣
t=0

,

υ̃ :=
[
kD+t u− T1

(
k
∂u

∂t

)
− τ

2
T1T̃

+
t

(
k
∂2u

∂t2

)]∣∣∣∣
t=0

,

ϕ̃ :=
2∑

i,j=1

η̃ij + η̃,

η̃ij :=
{
T1T2T̃

+
t ∂i(aij ∂ju)− 1

2

[
D−xi

(
aijD

+
xj
u
)+D+xi

(
aijD

−
xj
u
)]}

∣∣
∣∣
t=0

,

η̃ := [
(T1T2a)u− T1T2T̃

+
t (au)

]∣∣
t=0.

Let us define the norm

‖V ‖(1̃)2,∞,hτ := max
t∈Ωτ−

[
∥∥D+t V (·, t)

∥∥2
h
+ ∥∥D+t V (·, t)

∥∥2
L2(Σ

h)

+
2∑

i=1

∥∥∥∥D
+
xi

(
V (·, t + τ)+ V (·, t)

2

)∥∥∥∥

2

i,h

]1/2

,
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where the norm ‖V ‖L2(Σ
h) has been introduced in Sect. 2.8.1. The a priori estimate

(4.18) yields that

‖e‖(1̃)2,∞,hτ ≤ C

(
‖υ‖L2(Ω

h\Σh) + h‖ϕ̃‖L2(Ω
h\Σh)

+ τ
∑

t∈Ωτ

‖ϕ‖L2(Ω
h\Σh) + h‖υ‖L2(Σ

h) + ‖υ̃‖L2(Σ
h)

+ h2‖ϕ̃‖L2(Σ
h) + hτ

∑

t∈Ωτ

‖ϕ‖L2(Σ
h) + τ

∑

t∈Ωτ

‖μ‖L2(Σ
h)

)
, (4.97)

where we have used the notation

‖V ‖2
L2(Ω

h\Σh)
:= h2

∑

x∈Ωh\Σh

V 2(x).

Thus, in order to derive an error bound for the finite difference scheme (4.96) it
suffices to bound the terms on the right-hand side of (4.97). As in the previous
section, we shall assume for the sake of simplicity that τ ) h.

Theorem 4.5 Suppose that the solution u of (4.93) belongs to the Sobolev space
Ws

2 (Q
±), 7/2 < s ≤ 4, aij ∈Ws−1

2 (Ω±), a ∈Ws−2
2 (Ω±) and k ∈W 2

2 (Σ). Let also
c1h ≤ τ ≤ c2h, where c2 ≥ c1 > 0. Then, the finite difference scheme (4.95) con-

verges in the mesh-dependent norm ‖ · ‖(1̃)2,∞,hτ , and the following error bound holds
for 7/2 < s ≤ 4: there exists a positive constant C = C(s), independent of h, such
that

‖u−U‖(1̃)2,∞,hτ

≤ Chs−2
[(

max
i,j
‖aij‖Ws−1

2 (Ω+) + ‖a‖Ws−2
2 (Ω+) + ‖k‖W 2

2 (Σ)

)
‖u‖Ws

2 (Q
+)

+
(

max
i,j
‖aij‖Ws−1

2 (Ω−) + ‖a‖Ws−2
2 (Ω−) + ‖k‖W 2

2 (Σ)

)
‖u‖Ws

2 (Q
−)
]
. (4.98)

Proof The terms υ , ϕ̃ and ϕ for x /∈ Σh have been bounded in Sect. 4.4. After
summation over the mesh-points we obtain

‖υ‖L2(Ω
h\Σh) + h‖ϕ̃‖L2(Ω

h\Σh) + τ
∑

t∈Ωτ

‖ϕ‖L2(Ω
h\Σh)

≤ Chs−2
[(

max
i,j
‖aij‖Ws−1

2 (Ω+) + ‖a‖Ws−2
2 (Ω+)

)
‖u‖Ws

2 (Q
+)

+
(

max
i,j
‖aij‖Ws−1

2 (Ω−) + ‖a‖Ws−2
2 (Ω−)

)
‖u‖Ws

2 (Q
−)
]
, 2 < s ≤ 4. (4.99)
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The term υ for x ∈Σh can be represented as

υ = υ+ + υ− =: 1

2

(
Tt
∂u

∂t
− T1T̃

+
2
∂u

∂t

)∣∣∣∣
t=τ/2

+ 1

2

(
Tt
∂u

∂t
− T1T̃

−
2
∂u

∂t

)∣∣∣∣
t=τ/2

,

where the mollifiers T̃ ±2 are defined analogously to T̃ ±t :

T̃ +2 v(x, t) := 2

h

∫ x2+h/2

x2

v
(
x1, x

′
2, t

)
dx′2,

T̃ −2 v(x, t) := 2

h

∫ x2

x2−h/2
v
(
x1, x

′
2, t

)
dx′2.

The above representation implies that
∣∣υ±

∣∣≤ Ch‖u‖
C2(Q

±
)
≤ Ch‖u‖Ws

2 (Q
±), s > 7/2,

whereby

h‖υ‖L2(Σ
h) ≤ Ch2(‖u‖Ws

2 (Q
+) + ‖u‖Ws

2 (Q
−)
)
, s > 7/2. (4.100)

The term υ̃ can be represented as

υ̃(x1, ξ, t) = 1

hτ

∫ τ

0

∫ x1+h/2

x1−h/2

[∫ t ′

τ/2

∫ t ′′

τ/2

(
k
∂3u

∂t3

)(
x′1, ξ, t ′′′

)
dt ′′′ dt ′′

−
∫ x′1

x1

∫ x′′1

x1

∂2

∂x2
1

(
k
∂u

∂t

)(
x′′′1 , ξ, t

′)dx′′′1 dx′′1
]

dx′1 dt ′.

Summing over Σh and using the inequality (2.199) we obtain

‖υ̃‖L2(Σ
h) ≤ Ch2

[∥∥
∥∥k

∂3u

∂t3

∥∥
∥∥
W 1

2 ((0,T ),L2(Σ))

+
∥∥
∥∥
∂2

∂x2
1

(
k
∂u

∂t

)∥∥
∥∥
W 1

2 ((0,T ),L2(Σ))

]

.

By expressing k ∂
2u

∂t2

∣∣
Σ

from (4.94) and using the trace theorem for Sobolev spaces
we finally obtain

‖υ̃‖L2(Σ
h) ≤ Ch2

[(
‖k‖W 2

2 (Σ) +max
i,j
‖aij‖Ws−1

2 (Ω+)

)
‖u‖Ws

2 (Q
+)

+
(
‖k‖W 2

2 (Σ) +max
i,j
‖aij‖Ws−1

2 (Ω−)

)
‖u‖Ws

2 (Q
−)
]
, s > 7/2.

(4.101)

The term ϕ̃ can be estimated directly:

|ϕ̃| ≤max
i,j
‖aij‖C1(Ω

+
)
‖u‖

C2(Q
+
)
+ ‖a‖

C(Ω
+
)
‖u‖

C(Q
+
)
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+max
i,j
‖aij‖C1(Ω

−
)
‖u‖

C2(Q
−
)
+ ‖a‖

C(Ω
−
)
‖u‖

C(Q
−
)
.

Hence, by using the Sobolev embedding theorem, we have that

‖ϕ̃‖L2(Σ
h) ≤ C

[(
max
i,j
‖aij‖Ws−1

2 (Ω+) + ‖a‖Ws−2
2 (Ω+)

)
‖u‖Ws

2 (Q
+)

+
(

max
i,j
‖aij‖Ws−1

2 (Ω−) + ‖a‖Ws−2
2 (Ω−)

)
‖u‖Ws

2 (Q
−)
]
, s > 7/2.

(4.102)

For x ∈Σh we define

ϕ := 1

2

[
2∑

i,j=1

(
η+ij + η−ij + χ+ij + χ−ij

)+ η+ + η− + ζ+ + ζ− + χ+0 + χ−0

]

,

where

η+11 := T1T̃
+
2 Tt∂1(a11∂1u)− 1

2

[
D−x1

(
a11D

+
x1
u
)+D+x1

(
a11D

−
x1
u
)]
,

η+12 := T1T̃
+
2 Tt∂1(a12∂2u)−D−x1

(
a12D

+
x2
u
)
,

η+21 := T1T̃
+
2 Tt∂2(a21∂1u)−D+x2

(
a21D

−
x1
u
)
,

η+22 := T1T̃
+
2 Tt∂2(a22∂2u)− 2

h

[
a22(x1, ξ)+ a22(x1, ξ + h)

2
D+x2

u

−T1Tt (a22∂2u)

∣∣∣∣
x2=ξ+0

]
,

η+ := (
T1T̃

+
2 a

)
u− T1T̃

+
2 Tt (au),

ζ+ :=D+t D−t u− T1T̃
+
2 Tt

∂2u

∂t2
,

χ+11 := −
τ 2

4h

(
a11D

+
x1
D+t D−t u

)+ τ 2

4h

(
a11D

+
x1
D+t D−t u

)
∣∣∣∣
(x1−h,ξ,t)

,

χ+12 := −
τ 2

4h

(
a12D

+
x2
D+t D−t u

)+ τ 2

4h

(
a12D

+
x2
D+t D−t u

)
∣∣∣∣
(x1−h,ξ,t)

,

χ+21 := −
τ 2

4h

(
a21D

−
x1
D+t D−t u

)
∣∣∣∣
(x1,ξ+h,t)

+ τ 2

4h

(
a21D

−
x1
D+t D−t u

)
,

χ+22 := −
τ 2

4h

[
a22(x1, ξ)+ a22(x1, ξ + h)

](
D+x2

D+t D−t u
)
,

χ+0 :=
τ 2

4

(
T1T̃

+
2 a

)
u,
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with η−ij , η−, ζ−, χ−ij and χ−0 being defined analogously.

The terms η±ij can be bounded analogously to ηij for x ∈Ωh \Σh. To this end

we decompose η+11 as follows:

η+11 = η+111 + η+112 + η+113 + η+114 + η+115 + η+116 + η+117,

where

η+111 := T1T̃
+
2 Tt

(
a11∂

2
1u

)− (
T1T̃

+
2 a11

)(
T1T̃

+
2 Tt∂

2
1u

)
,

η+112 :=
(
T1T̃

+
2 a11

)(
T1T̃

+
2 Tt∂

2
1u−D−x1

D+x1
u
)
,

η+113 :=
(
T1T̃

+
2 aij − aij

)
D−x1

D+x1
u,

η+114 := T1T̃
+
2 Tt (∂1a11∂1u)−

(
T1T̃

+
2 ∂1a11

)(
T1T̃

+
2 Tt∂1u

)
,

η+115 :=
[
T1T̃

+
2 ∂1a11 − 1

2

(
D+x1

a11 +D−xi a11
)](

T1T̃
+
2 Tt∂1u

)
,

η+116 :=
1

2

(
D+x1

a11 +D−x1
a11

)[
T1T̃

+
2 Tt∂1u− 1

2

(
D+x1

u+D−x1
u
)]
,

η+117 :=
1

4

(
D+x1

a11 −D−x1
a11

)(
D+x1

u−D−x1
u
)
.

Then, for k ∈ {1,3,4,6,7},
∣∣η+11k

∣∣≤ Ch‖a11‖C1(Ω
+
)
‖u‖

C2(Q
+
)
.

Thus, by summing over the mesh Σh ×Ωτ and using the Sobolev embedding the-
orem we obtain

hτ
∑

t∈Ωτ

∥∥η+11k

∥∥
L2(Σ

h)
≤ Ch2‖a11‖Ws−1

2 (Ω+)‖u‖Ws
2 (Q

+), s > 7/2. (4.103)

Inequality (4.103) holds also for η+112 and η+115. Here we have made use of the
Bramble–Hilbert lemma to bound

T1T̃
+
2 Tt∂

2
1u−D−x1

D+x1
u and T1T̃

+
2 ∂1a11 − 1

2

(
D+x1

a11 +D−xi a11
)
,

and after summation over the mesh-points in Σh ×Ωτ we applied the inequality
(2.199).

The remaining terms η±ij and χ±ij can be estimated in the same manner, resulting
in the bounds

hτ
∑

t∈Ωτ

∥
∥η±ij

∥
∥
L2(Σ

h)
≤ Ch2‖aij‖Ws−1

2 (Ω±)‖u‖Ws
2 (Q

±), s > 7/2, (4.104)
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hτ
∑

t∈Ωτ

∥∥χ±ij
∥∥
L2(Σ

h)
≤ Ch2‖aij‖Ws−1

2 (Ω±)‖u‖Ws
2 (Q

±), s > 7/2. (4.105)

The terms ζ± can be bounded analogously to η+112, using the Bramble–Hilbert
lemma and the inequality (2.199):

hτ
∑

t∈Ωτ

∥∥ζ±
∥∥
L2(Σ

h)
≤ Ch2‖u‖Ws

2 (Q
±), s > 7/2. (4.106)

The bounds on η± and χ±0 directly follow from the Sobolev embedding theorem:

hτ
∑

t∈Ωτ

∥∥η±
∥∥
L2(Σ

h)
≤ Ch2‖a‖

C(Ω
±
)
‖u‖

C1(Q
±
)

≤ Ch2‖a‖
Ws−2

2 (Ω±)‖u‖Ws
2 (Q

±), s > 3, (4.107)

hτ
∑

t∈Ωτ

∥
∥χ±0

∥
∥
L2(Σ

h)
≤ Ch3‖a‖

C(Ω
±
)
‖u‖

C(Q
±
)

≤ Ch3‖a‖
Ws−2

2 (Ω±)‖u‖Ws
2 (Q

±), s > 3. (4.108)

By applying the Bramble–Hilbert lemma we obtain

τ
∑

t∈Ωτ

‖μ‖L2(Σ
h) ≤ Ch2

∥∥∥∥k
∂2u

∂t2

∥∥∥∥
W 2

2 (Σ)

.

Thus, using the transmission condition (4.94) and the trace theorem for Sobolev
spaces, we deduce that

hτ
∑

t∈Ωτ

‖μ‖L2(Σ
h) ≤ Ch2

(
max
i,j
‖aij‖Ws−1

2 (Ω+)‖u‖W 2
2 (Q

+)

+max
i,j
‖aij‖Ws−1

2 (Ω−)‖u‖W 2
2 (Q

−)

)
, s > 7/2. (4.109)

Combining (4.97)–(4.109) then yields (4.98). �

4.5.2 Factorized Scheme

Analogously as in the parabolic case (see Sect. 3.5) we shall now consider a fac-
torized scheme, which has the following form for the hyperbolic interface problem
considered in the previous section:

(
Ih + θτ 2Λ1

)(
Bh + θτ 2Λ2

)
D+t D−t U +LhU = T1T2Ttf in Qτ

h, (4.110)
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with the same initial and boundary conditions as in (4.95). Here

ΛiU := −D+xiD−xiU, BhU := (1+ kδΣh)U,

Ih is the identity operator and θ is a real parameter. For the sake of simplicity we
shall assume that k = Const. > 0. In this case, the operator (Ih+θτΛ1)(Bh+θτΛ2)

is selfadjoint and the operator inequality

(
Ih + θτ 2Λ1

)(
Bh + θτ 2Λ2

)− 1

4
τ 2Lh ≥ Bh ≥ Ih > 0

holds for s > 3 and sufficiently large θ .
Let u be the solution of the initial-boundary-value problem (4.93) and let U

denote the solution of the finite difference scheme (4.110). The global error e :=
u−U satisfies the finite difference scheme

(
Ih + θτ 2Λ1

)(
Bh + θτ 2Λ2

)
D+t D−t e+Lhe= ϕ′ +μ′δΣh in Qτ

h,

e= 0 on Γ h ×Ω
τ
,

e= 0, (1+ kδΣh)D
+
t e= υ + υ̃δΣh + 1

2
τ ϕ̃ in Ωh × {0},

(4.111)

where

ϕ′ :=
2∑

i,j=1

ηij + η+ ζ + χ ′,

χ ′ := −θτ 2D+x1
D−x1

D+t D−t u− θτ 2D+x2
D−x2

D+t D−t u

+ θ2τ 4D+x1
D−x1

D+x2
D−x2

D+t D−t u,

μ′ := k

[
D+t D−t u− T1Tt

(
∂2u

∂t2

)
− θτ 2D+x1

D−x1
D+t D−t u

]
.

The a priori estimate (4.97) holds for (4.111) if ϕ and μ are replaced by ϕ′ and μ′.
Under the assumption that τ ) h the terms χ ′ and μ′ satisfy analogous bounds to
χ and μ, which implies that the factorized scheme (4.110) satisfies the error bound
(4.98) for 7/2 < s ≤ 4.

4.6 Hyperbolic Transmission Problem

In this section we shall investigate the finite difference approximation of a hyper-
bolic transmission problem in two disconnected domains. The problem is the hyper-
bolic counterpart of the parabolic transmission problem considered in Sect. 3.6.
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As a model problem, we consider the following initial-boundary-value problem:
find two functions, u1(x, y, t) and u2(x, y, t), that satisfy the system of hyperbolic
equations

∂2u1

∂t2
−Δu1 = f1(x, y, t), (x, y) ∈Ω1 := (a1, b1)× (c1, d1), t ∈ (0, T ],

(4.112)

∂2u2

∂t2
−Δu2 = f2(x, y, t), (x, y) ∈Ω2 := (a2, b2)× (c2, d2), t ∈ (0, T ],

(4.113)
where −∞< a1 < b1 < a2 < b2 <+∞ and c2 < c1 < d1 < d2, the internal trans-
mission conditions of nonlocal Robin–Dirichlet type

∂u1

∂x
(b1, y, t)+ α1(y)u1(b1, y, t)

=
∫ d2

c2

β1
(
y, y′

)
u2

(
a2, y

′, t
)
dy′, y ∈ (c1, d1), t ∈ (0, T ], (4.114)

∂u2

∂x
(a2, y, t)+ α2(y)u2(a2, y, t)

=
∫ d1

c1

β2
(
y, y′

)
u1

(
b1, y

′, t
)
dy′, y ∈ (c2, d2), t ∈ (0, T ], (4.115)

the simplest external Dirichlet boundary conditions for t ∈ (0, T ]:
u1(x, c1, t)= u1(x, d1, t)= 0, x ∈ (a1, b1),

u2(x, c2, t)= u2(x, d2, t)= 0, x ∈ (a2, b2),

u1(a1, y, t)= 0, y ∈ (c1, d1); u2(b2, y, t)= 0, y ∈ (c2, d2),

(4.116)

and the initial conditions

u1(x, y,0)= u10(x, y),
∂u1

∂t
(x, y,0)= u11(x, y), (x, y) ∈Ω1,

u2(x, y,0)= u20(x, y),
∂u2

∂t
(x, y,0)= u21(x, y), (x, y) ∈Ω2.

(4.117)

We shall assume in what follows that the data satisfy the following conditions:

β1
(
y, y′

)= β2
(
y′, y

)= β
(
y, y′

) ∀(y, y′) ∈ (c1, d1)× (c2, d2), (4.118)

fi ∈ L2((0, T );L2(Ωi)) for i = 1,2, and

αi ∈ L∞(ci, di), i = 1,2; β ∈ L∞
(
(c1, d1)× (c2, d2)

)
. (4.119)

Using the notations from Sect. 3.6, we deduce that under the condition (4.118)
the bilinear functional (3.142) is symmetric and defines a symmetric bounded linear
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operator A : W̊ 1
2 →W−1

2 by the formula

〈Au,v〉 := a(u, v), u, v ∈ W̊ 1
2 ,

where 〈·, ·〉 is the duality pairing between W−1
2 and W 1

2 .
The weak form of (4.112)–(4.116) is

〈
d2u

dt2
, v

〉
+ a

(
u(·, t), v)= (

f (·, t), v)
L
∀v ∈ W̊ 1

2 , (4.120)

or, in operator form,

d2u

dt2
+Au= f in W−1

2 . (4.121)

The problem (4.120) fits into the general framework of hyperbolic differential
operators in Hilbert spaces. By applying Theorem 4.1 to (4.120) we obtain the fol-
lowing result.

Theorem 4.6 Suppose that (4.118) and (4.119) hold and assume that u0 =
(u10, u20) ∈ W̊ 1

2 , u1 = (u11, u21) ∈ L, f = (f1, f2) ∈ L2((0, T ),L). Then, for
0 < T < +∞, the initial-boundary-value problem (4.112)–(4.117) has a unique
weak solution u ∈ L2((0, T ), W̊ 1

2 )∩W 1
2 ((0, T ),L), which depends continuously on

f , u0 and u1. The solution u satisfies the a priori estimate

‖u‖2
L∞((0,T ),W 1

2 )
+

∥
∥∥∥

du

dt

∥
∥∥∥

2

L∞((0,T ),L)
≤ C(T )

(∥∥u0
∥∥2
W 1

2
+ ∥∥u1

∥∥2
L
+ ‖f ‖2

L2((0,T ),L)

)
,

where C(T )= C2eC1T is a computable constant depending on T .

In the sequel we shall adopt the following notational conventions:

Qi :=Ωi × (0, T ], i = 1,2,

Ws
2 (Q) :=Ws

2 (Q1)×Ws
2 (Q2),

‖u‖2
Ws

2 (Q) := ‖u1‖2
Ws

2 (Q1)
+ ‖u2‖2

Ws
2 (Q2)

.

4.6.1 Finite Difference Approximation

With the notations from Sect. 3.6.2, we approximate the initial-boundary-value
problem (4.112)–(4.118) by the following explicit three-level finite difference
scheme:

D−t D+t U1 −D−x,1D
+
x,1U1 −D−y,1D

+
y,1U1 = f1,

x ∈Ωh1
1 , y ∈Ωk1

1 , t ∈Ωτ , (4.122)
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D−t D+t U1(b1, y, t)+ 2

h1

[
D−x,1U1(b1, y, t)+ α1(y)U1(b1, y, t)

− k2

∑

y′∈Ωk2
2

β
(
y, y′

)
U2

(
a2, y

′, t
)]−D−y,1D

+
y,1U1(b1, y, t)

= f1(b1, y, t), y ∈Ωk1
1 , t ∈Ωτ , (4.123)

D−t D+t U2 −D−x,2D
+
x,2U2 −D−y,2D

+
y,2U2 = f2,

x ∈Ωh2
2 , y ∈Ωk2

2 , t ∈Ωτ , (4.124)

D−t D+t U2(a2, y, t)− 2

h2

[
D+x,2U2(a2, y, t)− α2(y)U2(a2, y, t)

+ k1

∑

y′∈Ωk1
1

β
(
y′, y

)
U1

(
b1, y

′, t
)
]
−D−y,2D

+
y,2U2(a2, y, t)

= f2(a2, y, t), y ∈Ωk2
2 , t ∈Ωτ , (4.125)

U1(x, c1, t)=U1(x, d1, t)= 0, x ∈Ωh1
1 , t ∈Ωτ

,

U2(x, c2, t)=U2(x, d2, t)= 0, x ∈Ωh2
2 , t ∈Ωτ

,

U1(a1, y, t)= 0, y ∈Ωk1
1 ; U2(b2, y, t)= 0, y ∈Ωk2

2 ,

(4.126)

Ui(x, y,0)= ui0(x, y),

Ui(x, y, τ )= ui0(x, y)+ τui1(x, y)+ 1

2
τ 2[Δui0 + fi(x, y,0)],

x ∈Ωhi
i±, y ∈Ωki

i , i = 1,2.

(4.127)

We shall assume in what follows that h1 ) h2 ) k1 ) k2, and define h :=
max{h1, h2, k1, k2}.

The finite difference scheme (4.122)–(4.127) fits into the general framework
(4.14), where Hh is the space of mesh-functions U = (U1,U2), Ui is defined on

the mesh Ω
hi
i ×Ω

ki
i , i = 1,2, U1 = 0 for x = b1, U2 = 0 for x = a2,

Bh := Ih, Dh := 0, and Ah :=A0h +A1h,

and the operators Aih, i = 1,2, have been defined in Sect. 3.6.2. If the time step τ

is sufficiently small,

τ ≤ C0 min{h1, h2, k1, k2}, (4.128)

where C0 is a computable constant depending on
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‖α1‖C([c1,d1]), ‖α2‖C([c2,d2]) and ‖β‖C([c1,d1]×[c2,d2]),

the finite difference scheme (4.122)–(4.127) is conditionally stable and satisfies an
a priori estimate of the form (4.22).

Let u= (u1, u2) be the solution of the initial-boundary-value problem (4.112)–
(4.117) and let U = (U1,U2) denote the solution of the finite difference scheme
(4.122)–(4.127). Then, the global error e := u − U satisfies the following finite
difference scheme:

D−t D+t e1 −D−x,1D
+
x,1e1 −D−y,1D

+
y,1e1 = ϕ1,

x ∈Ωh1
1 , y ∈Ωk1

1 , t ∈Ωτ , (4.129)

D−t D+t e1(b1, y, t)+ 2

h1

[
D−x,1e1(b1, y, t)+ α1(y)e1(b1, y, t)

− k2

∑

y′∈Ωk2
2

β1
(
y, y′

)
e2

(
a2, y

′, t
)]−D−y,1D

+
y,1e1(b1, y, t)

= ϕ1(b1, y, t), y ∈Ωk1
1 , t ∈Ωτ , (4.130)

D−t D+t e2 −D−x,2D
+
x,2e2 −D−y,2D

+
y,2e2 = ϕ2,

x ∈Ωh2
2 , y ∈Ωk2

2 , t ∈Ωτ , (4.131)

D−t D+t e2(a2, y, t)− 2

h2

[
D+x,2e2(a2, y, t)− α2(y)e2(a2, y, t)

+ k1

∑

y′∈Ωk1
1

β2
(
y, y′

)
e1

(
b1, y

′, t
)]−D−y,2D

+
y,2e2(a2, y, t)

= ϕ2(a2, y, t), y ∈Ωk2
2 , t ∈Ωτ , (4.132)

e1(x, c1, t)= e1(x, d1, t)= 0, x ∈Ωh1
1 , t ∈Ωτ

,

e2(x, c2, t)= e2(x, d2, t)= 0, x ∈Ωh2
2 , t ∈Ωτ

,

e1(a1, y, t)= 0, y ∈Ωk1
1 ; e2(b2, y, t)= 0, y ∈Ωk2

2 ,

(4.133)

ei(x, y,0)= 0, ei(x, y, τ )= χi, x ∈Ωhi
i±, y ∈Ωki

i , i = 1,2, (4.134)

where

ϕi := ξi + ηi + ζi, i = 1,2,

ξi :=D−t D+t ui −
∂2ui

∂t2
, x ∈Ωhi

i±, y ∈Ωki
i , t ∈Ωτ , i = 1,2,
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ηi := ∂2ui

∂x2
−D−x,iD

+
x,iui, x ∈Ωhi

i , y ∈Ωki
i , t ∈Ωτ , i = 1,2,

η1 :=
[
∂2u1

∂x2
− 2

h1

(
∂u1

∂x
−D−x,1u1

)]
− 2

h1

[∫ d2

c2

β
(
y, y′

)
u2

(
a2, y

′, t
)
dy′

− k2

∑

y′∈Ωk2
2

β
(
y, y′

)
u2

(
a2, y

′, t
)
]
, x = b1, y ∈Ωk1

1 , t ∈Ωτ ,

η2 :=
[
∂2u2

∂x2
+ 2

h2

(
∂u2

∂x
−D+x,2u2

)]
+ 2

h2

[∫ d1

c1

β
(
y, y′

)
u1

(
b1, y

′, t
)

dy′

− k1

∑

y′∈Ωk1
1

β
(
y, y′

)
u1

(
b1, y

′, t
)]
, x = a2, y ∈Ωk2

2 , t ∈Ωτ ,

ζi := ∂2ui

∂y2
−D−y,iD

+
y,iui, x ∈Ωhi

i±, y ∈Ωki
i , t ∈Ωτ , i = 1,2,

χi :=
∫ τ

0

∫ t ′

0

[
∂2ui

∂t2

(
x, y, t ′′

)− ∂2ui

∂t2
(x, y,0)

]
dt ′′dt ′,

x ∈Ωhi
i±, y ∈Ωki

i , i = 1,2.

The following a priori estimate for the solution of the finite difference scheme
(4.129)–(4.134) follows immediately from (4.22):

‖e‖(1)2,∞,hτ ≤ C(T )

(
‖χ‖W 1

2,h
+ 1

τ
‖χ‖Lh

+ ‖ξ‖L2(Ω
τ ,Lh) + ‖η‖L2(Ω

τ ,Lh) + ‖ζ‖L2(Ω
τ ,Lh)

)
. (4.135)

Here we have used the notations

‖V ‖2
W 1

2,h
:= ∥

∥D−x V
∥
∥2
Lh′
+ ∥

∥D−y V
∥
∥2
Lh′′

and

‖V ‖(1)2,∞,hτ := max
t∈Ωτ−

[
∥∥D+t V (·, t)

∥∥2
Lh
+

∥∥∥∥
V (·, t + τ)+ V (·, t)

2

∥∥∥∥

2

W 1
2,h

]1/2

.

In order to derive an error bound for the finite difference scheme (4.122)–(4.127)
it therefore suffices to bound the terms appearing on the right-hand side of the in-
equality (4.135). For simplicity we shall assume in what follows that τ ) h.

Theorem 4.7 Let αi ∈Ws−1
2 (ci, di), i = 1,2, β ∈Ws−1

2 ((c1, d1) × (c2, d2)), u ∈
Ws

2 (Q), and let the assumptions (4.128) and τ ) h hold. Then, the solution U of the
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finite difference scheme (4.122)–(4.127) converges to the solution u of the initial-
boundary-value problem (4.112)–(4.118) and the following error bound holds for
s > 7/2: there exists a positive constant C = C(s), independent of h, such that

‖u−U‖(1)2,∞,hτ ≤ Ch3/2(1+ ‖β‖
Ws−1

2 ((c1,d1)×(c2,d2))

)‖u‖Ws
2 (Q). (4.136)

Proof The value of ξi at the mesh-point (x, y, t) ∈Ωhi
i ×Ω

ki
i ×Ωτ is a bounded

linear functional of ui ∈Ws
2 (G

i), where

Gi := (x − hi, x + hi)× (y − ki, y + ki)× (t − τ, t + τ)

and s > 7/2, which vanishes on polynomials of degree ≤ 3. Using the Bramble–
Hilbert lemma we deduce that

∣
∣ξi(x, y, t)

∣
∣≤ C(h)|ui |Ws

2 (G
i), 7/2 < s ≤ 4,

where C(h)= Chs−7/2. Analogous results hold for x = b1 and x = a2, with suitable
modifications of Gi . By summation over the mesh we obtain the bound

‖ξ‖L2(Ω
τ ,Lh) ≤ Chs−2‖u‖Ws

2 (Q), 7/2 < s ≤ 4. (4.137)

Analogously, one deduces that

‖ζ‖L2(Ω
τ ,Lh) ≤ Chs−2‖u‖Ws

2 (Q), 7/2 < s ≤ 4, (4.138)

and

(
2∑

i=1

hi
∑

x∈Ωhi
i

ki
∑

y∈Ωki
i

τ
∑

t∈Ωτ

η2
i

)1/2

≤ Chs−2‖u‖Ws
2 (Q), 7/2 < s ≤ 4. (4.139)

For x = b1 we decompose the term η1 as follows:

η1 = η11 + η12 + η13,

where

η11 := ∂2u1

∂x2
− 2

h1

(
∂u1

∂x
−D−x u1

)
− TxTy

[
∂2u1

∂x2
− 2

h1

(
∂u1

∂x
−D−x u1

)]
,

η12 := TxTy

[
∂2u1

∂x2
− 2

h1

(
∂u1

∂x
−D−x u1

)]
,

η13 := 2

h1

(
k2

∑

y′∈Ωk2
2

β
(
y, y′

)
u2

(
a2, y

′, t
)−

∫ d2

c2

β
(
y, y′

)
u2

(
a2, y

′, t
)

dy′
)
.
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The value of η11 at a mesh-point is a bounded linear functional of ui ∈Ws
2 , s > 7/2,

which vanishes on polynomials of degree≤ 3. By using the Bramble–Hilbert lemma
we deduce that

(
�1k1

∑

y∈Ωk1
1

τ
∑

t∈Ωτ

η2
11(b1, y, t)

)1/2

≤ Chs−2‖u1‖Ws
2 (Q1),7/2 < s ≤ 4. (4.140)

The value of η12 at a mesh-point is a bounded linear functional of ui ∈Ws
2 , s > 5/2,

which vanishes on polynomials of degree ≤ 2. By invoking the Bramble–Hilbert
lemma and the inequality (2.199), we deduce that

(
�1k1

∑

y∈Ωk1
1

τ
∑

t∈Ωτ

η2
12(b1, y, t)

)1/2

≤ Ch‖u1‖W 3
2 ((b1−h1,b1)×(c1,d1)×(0,T ))

≤ Ch3/2‖u1‖Ws
2 (Q1), s > 7/2. (4.141)

By applying the error bound for the trapezium rule, we obtain

(
�1k1

∑

y∈Ωk1
1

τ
∑

t∈Ωτ

η2
13(b1, y, t)

)1/2

≤ Ch3/2‖β‖
Ws−1

2 ((c1,d1)×(c2,d2))
‖u2‖Ws

2 (Q2), s > 7/2. (4.142)

Thanks to (4.139), (4.140)–(4.142) and analogous bounds on η2(a2, ·, ·) we arrive
at the following inequality:

‖η‖L2(Ω
τ ,Lh) ≤ Ch3/2(1+ ‖β‖

Ws−1
2 ((c1,d1)×(c2,d2))

)‖u‖Ws
2
, s > 7/2. (4.143)

In order to bound the term χ we consider the decomposition

χi = χi1 + χi2,

where

χi1 := TxTyχi, x ∈Ωhi
i , y ∈Ωki

i ,

χ11 := T̃ −x Tyχ1, x = b1, y ∈Ωk1
1 ,

χ21 := T̃ +x Tyχ2, x = a2, y ∈Ωk2
2 .

The value of χ11 at a mesh-point is a bounded linear functional of ui ∈Ws
2 , where

s > 5/2, which vanishes on polynomials of degree ≤ 2. Using the Bramble–Hilbert
lemma and the inequality (2.199) we obtain

( ∑

x∈Ωh1
1

�1k1

∑

y∈Ωk1
1

χ2
11

)1/2

≤ Ch5/2‖u1‖W 3
2 (Ω1×(0,τ )) ≤ Ch3‖u1‖Ws

2 (Q1),
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for s > 7/2. Similarly, the value of χ12 = χ1 − χ11 at a mesh-point is a bounded
linear functional of ui ∈ Ws

2 , where s > 7/2, which vanishes on polynomials of
degree ≤ 3. Using the Bramble–Hilbert lemma we obtain

( ∑

x∈Ωh1
1

�1k1

∑

y∈Ωk1
1

χ2
12

)1/2

≤ Chs−1/2‖u1‖Ws
2 (Ω1×(0,τ )) ≤ Ch3‖u1‖Ws

2 (Q1),

for 7/2 < s ≤ 4. Analogous inequalities hold for χ21 and χ22, whereby

‖χ‖Lh
≤ Ch3‖u‖Ws

2 (Q), 7/2 < s ≤ 4. (4.144)

We also note the obvious inequality

‖χ‖W 1
2,h
≤ 1

h
‖χ‖Lh

. (4.145)

Finally, from (4.135), (4.137), (4.138), (4.143), (4.144) and (4.145) we deduce
the error bound (4.136). �

Remark 4.2 The error bound (4.136) exhibits a loss of half an order from the ex-
pected second order of convergence. This loss can be avoided by using a more ac-
curate approximation of the equations at the mesh-points of the inner boundary.
For the analysis of the finite difference approximation of the corresponding one-
dimensional problem, see Jovanović and Vulkov [100] and Jovanović [90]. Second-
order convergence can also be shown to hold in the weaker norm ‖ · ‖(0)2,∞,hτ (see
Jovanović and Vulkov [103]).

4.7 Bibliographical Notes

In this chapter we derived error bounds for finite difference approximations of cer-
tain model initial-boundary-value problems for second-order linear hyperbolic par-
tial differential equations. The procedure was based on the Bramble–Hilbert lemma
and its generalizations, in conjunction with discrete energy estimates. In the deriva-
tion of the relevant energy estimates, discrete analogues of the norms

‖u‖L∞((0,T );Wr
2 (Ω)) +

∥∥∥∥
∂u

∂t

∥∥∥∥
L∞((0,T );Wr−1

2 (Ω))

, (4.146)

‖u‖L∞((0,T );Wr
2 (Ω)) +

∥∥∥∥
∂ru

∂tr

∥∥∥∥
L∞((0,T );L2(Ω))

(4.147)

were used.
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For finite difference approximations of the first initial-boundary-value problem
for second-order linear hyperbolic partial differential equations with constant coef-
ficients, when τ ) h, i.e. c1h≤ τ ≤ c2h, error bounds of the form

‖u−U‖(r)2,∞,hτ ≤ Chs−r−1‖u‖Ws
2 (Q) (4.148)

were derived by Jovanović and Ivanović [91] and Jovanović, Ivanović and Süli [107]
for r = 0,1,2 and r + 1 < s ≤ r + 3. Here ‖ · ‖(r)2,∞,hτ is the discrete counterpart of
the norm (4.146). We note that, in contrast with elliptic and parabolic problems, the
error bound (4.148) is not compatible with the smoothness of the data. Indeed, in the
transition from the function u ∈Ws

2 (Q) to its trace on t = Const. one looses half an
order of Sobolev regularity, in the estimates (4.148); this gives rise to the observed
loss of compatibility.

Error bounds in discrete norms of the form (4.147) for r = −1 and r = 1, and
for −1 < r < 1 by function space interpolation, were derived by Dzhuraev and
Moskal’kov [41].

Equations with variable coefficients aij ∈Ws−1∞ (Ω), a ∈Ws−2∞ (Ω) were studied
by Jovanović, Ivanović and Süli [109], and an error bound of the form (4.148) was
derived for r = 1 and 2 < s ≤ 4. The constant C in those error bounds depends on
norms of the coefficients. Analogous results, under weaker assumptions on the co-
efficients, were subsequently obtained by Jovanović [86]. Dzhuraev, Kolesnik and
Makarov [42] also considered hyperbolic equations with variable coefficients, how-
ever a method of lines was used as their numerical approximation. An estimate of
the form (4.148) was obtained for r = 0 and a fixed integer value: s = 2.

Jovanović and Vulkov extended these results to hyperbolic interface problems
and transmission problems (see [93, 96] and [90, 100, 103]).

In certain cases function space interpolation techniques give sharper error
bounds; for results in this direction we refer to the extensive paper by Zlotnik [204]
and the papers of Jovanović [87, 88]. In this respect, we make one final observation
on our error bound (4.63). Had we used, instead of the K-method of interpolation
with interpolation functor (·, ·)θ,q , 0 < θ < 1, 1 ≤ q ≤∞, the complex method of
interpolation with interpolation functor [·, ·]θ , 0 < θ < 1, (see, for example, Chap. 4
in Bergh and J. Löfström [9]; Chap. 1, Sect. 2.1 in Lions and Magenes [123]; or
Chap. 1, Sect. 1.9 in Triebel [182]) we would have arrived at an error bound anal-
ogous to (4.63), for 1 < s < 4, with the norm ‖u0‖(W1

2(0,1),W
4
2(0,1))(s−1)/3,2

replaced
by the norm ‖u0‖[W1

2(0,1),W
4
2(0,1)](s−1)/3

on the right-hand side.
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86. Jovanović, B.S.: Convergence of finite-difference schemes for hyperbolic equations with
variable coefficients. Z. Angew. Math. Mech. 72, 493–496 (1992)
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discrete Dirac delta-function, 233
Discretization, 106
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discretization parameter, 106
Dissipation, 258

rate of dissipation, 258
Distribution, 26

Banach-space-valued, 54
Dirac, 27
order of, 27
periodic, 85
regular, 29
singular, 29
tempered, 36

Divided difference, 36
backward, 108
central, 108, 116
forward, 108
second, 116

Domain, 6
Lipschitz, 45
of an operator, 6
with finite width, 48

Duality, 49
argument, 211, 218
pairing, 49

E
Ellipticity, 91

uniform, 91
Embedding, 7
Energy, 176

energy norm, 248
energy space, 248

Equation
elliptic equation, 94
evolution equation, 245
generalized Poisson equation, 126
heat equation, 263
hyperbolic equation, 327
parabolic equation, 245
partial differential equation, 1
Poisson equation, 153
wave equation, 337

Error
error analysis, 9
error bound, 13
global error, 119
truncation error, 119

Essential supremum, 24
Euler scheme

explicit, 267, 272
implicit, 267, 272

Extension
extension of a distribution, 28
extension of a function, 182
extension of a functional, 8

odd extension, 186
periodic extension, 182

F
Finite difference operators, 108

backward difference, 108
central difference, 108
forward difference, 108

Finite difference scheme, 105
consistent, 121
explicit, 264
factorized, 296, 303, 369, 377
five-point scheme, 128
implicit, 264
operator-difference scheme, 258, 333
seven-point scheme, 204
three-level scheme, 333
two-level scheme, 258

Finite element method, 154
Petrov–Galerkin method, 154

Finite volume method, 134
Formula

Fourier inversion formula, 40
discrete Fourier inversion formula, 177

Leibniz’s formula, 22
Newton–Leibniz formula, 139

Fourier series, 84
Fourier series expansion, 182

Fourier transform, 40
discrete Fourier transform, 176
inverse discrete Fourier transform, 177
inverse Fourier transform, 40

Fourier–Laplace transform, 42
Function

characteristic function, 70
entire function, 42
function space, 21
Heaviside function, 29
holomorphic function, 42
integrable function, 1

Lebesgue-integrable function, 1
locally integrable function, 25

mesh-function, 106
rapidly decreasing function, 37
test function, 23

Functional, 7
bilinear, 17
bounded, 17
coercive, 17
continuous, 7
real-valued, 17
sublinear, 9

Functor, 20
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G
Gelfand triple, 246, 248
Grid, 105

H
Hyperbolic

hyperbolic equation, 327
hyperbolic problem, 327

Hyperplane, 46

I
Identity

parallelogram identity, 3
Parseval identity, 43, 109

Image, 6
inverse image, 6

Inequality
Bernstein’s inequality, 179
Carlson–Beurling inequality, 68
Cauchy–Schwarz inequality, 3
first fundamental inequality, 211
Friedrichs inequality, 48

discrete Friedrichs inequality, 110, 269
Gårding’s inequality, 246
Hadamard inequality, 249
Hölder’s inequality, 179
inverse inequality, 164, 210, 216
second fundamental inequality, 210
triangle inequality, 2
Young’s inequality, 35

Initial condition, 245
Initial-boundary-value problem, 245
Injection, 6
Inner product, 3
Interface, 228

interface problem, 228
Interpolant, 161

trigonometric interpolant, 178
Interpolation, 19

complex method of interpolation, 387
interpolation functor, 20
interpolation of Banach spaces, 19
interpolation pair, 19
interpolation space, 20
K-method of interpolation, 19

Isometry, 9

K
Kernel, 10
Kronecker delta, 51

L
Laplace operator, 125

discrete, 108

Laplacian, 170
discrete Laplacian, 170

Lebesgue
differentiation theorem, 89
integrable function, 24
measurable function, 24
point, 89

Lemma
Bramble–Hilbert lemma, 144, 148–150
du Bois-Reymond’s lemma, 25

Limit, 4
weak limit, 9

Linear
linear combination, 14
linear functional, 1
linear operator, 6
linear space, 2
linear subset, 6

M
Matrix, 117

banded matrix, 129
matrix notation, 117
sparse matrix, 129
tridiagonal, 117

Measure, 24
Borel measure, 38
Lebesgue measure, 24

Mesh, 105
boundary mesh-points, 105
interior mesh-points, 105
mesh-dependent norm, 104
mesh-function, 106
nonuniform mesh, 153
quasi-uniform mesh, 159
uniform mesh, 71, 106

Midpoint rule, 133, 145, 146, 148
Mollifier, 66

family of order (μ, ν), 72
order of smoothing, 73
order or approximation, 73
Steklov mollifier, 70, 287, 310, 359

Morphism, 20
Multi-index, 21

length of, 22
Multiplier, 58, 66

discrete Fourier multiplier, 176, 180
Fourier multiplier, 66

N
Neighbourhood, 2
Norm

discrete, 104
discrete Bessel-potential norm, 196
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Norm (cont.)
discrete Sobolev norm, 110
dual norm, 8
energy norm, 248
mesh-dependent norm, 104
Sobolev norm, 43

O
Object, 20
Operator, 6

adjoint operator, 16
averaging operator, 156
bounded operator, 6
compact operator, 7
continuous operator, 6
densely defined, 16
differential operator, 61

principal part, 91
domain of an operator, 6
elliptic operator, 91

uniformly elliptic operator, 91
embedding operator, 7
extension operator, 46
identity operator, 7
inverse operator, 6
linear operator, 6
nonnegative, 111
parabolic operator, 256

uniformly parabolic operator, 256
positive definite, 109, 248

uniformly, 258
range of an operator, 6
rotated discrete Laplace, 171
selfadjoint operator, 16
smoothing operator, 42
symmetric, 17
unbounded, 16
uniformly bounded family, 70

Order
order of accuracy, 121
order of approximation, 73
order of convergence, 122
order of mollification, 73, 77

Ordering, 22
lexicographical ordering, 22

Orthogonal
orthogonal co-ordinate system, 44
orthogonal complement, 14
orthogonal vectors, 3

P
Parabolic

parabolic equation, 245
parabolic problem, 246

Partial undivided difference, 88
Partition

partition of unity, 49
Piecewise linear basis, 169
Poisson’s equation, 94

generalized Poisson’s equation, 126
Polynomial, 38

bilinear polynomial, 164
polynomial growth, 38
trigonometric polynomial, 84

R
Reflection, 32
Riemann sum, 115

S
Schwartz class, 37
Seminorm, 2
Sequence, 4

Cauchy sequence, 4
of at most polynomial growth, 85

Set
bounded set, 2
closed set, 2
compact set, 5
convex set, 3
countable set, 2
dense set, 2
open set, 2
relatively compact set, 5

Sobolev, 43
discrete Sobolev norm, 110
Sobolev embedding theorem, 46
Sobolev norm, 43
Sobolev seminorm, 44
Sobolev space, 43

anisotropic Sobolev space, 51
fractional-order Sobolev space, 47

Solution
classical solution, 94
strong solution, 95
weak solution, 96

Space
Banach space, 5
Besov space, 56
Bessel-potential space, 77
complete space, 5
dual space, 8
energy space, 248, 329
Euclidean space, 3
function space, 21
Hilbert space, 5
inner product space, 3
Lebesgue space, 44
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Space (cont.)
locally compact space, 6
multiplier space, 58
normed linear space, 2
reflexive space, 9
rigged Hilbert space, 246
separable space, 2
Sobolev space, 43
space of continuous functions, 3
subspace, 8

Spline, 76
B-spline, 76

Stability, 122
conditional, 270
unconditional, 269

Stencil, 128
Superadditivity, 152
Superconvergence, 159
Support, 23

compact support, 23
support of a continuous function, 23
support of a distribution, 27

Surjection, 6

T
Taylor series, 76

expansion, 116
Tensor product, 32
Theorem

discrete Marcinkiewicz multiplier theorem,
180

discrete Sobolev embedding, 110
divergence theorem, 154
extension theorem, 46

Fubini’s theorem, 33
Hahn–Banach theorem, 8
Hellinger–Toeplitz theorem, 17
Jordan–Brouwer theorem, 45
Lax–Milgram theorem, 18
Lebesgue’s differentiation theorem, 25, 89
Lizorkin’s multiplier theorem, 69
Marcinkiewicz multiplier theorem, 89
Paley–Wiener theorem, 43
Plancherel’s theorem, 43
Rademacher’s theorem, 45
Rellich–Kondrashov theorem, 47
Riesz representation theorem, 15
Sobolev embedding theorem, 46
trace theorem, 50

Thomas algorithm, 267
Torus, 83
Total variation, 88
Trace, 47

trace operator, 50
trace theorem, 50

Translation, 32
Transmission

transmission conditions, 230, 298
transmission problem, 228

V
Variation, 67

total variation, 67

W
Wave-number, 66
Well-posedness, 136

in the sense of Hadamard, 104
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B.S. Jovanović, E. Süli, Analysis of Finite Difference Schemes,
Springer Series in Computational Mathematics 46,
DOI 10.1007/978-1-4471-5460-0, © Springer-Verlag London 2014

405

http://dx.doi.org/10.1007/978-1-4471-5460-0


406 List of Symbols

Function Spaces and Spaces
of Distributions
(A1, A2)θ, q , 21
Ck(Ω), 22
C(Ω), 22
BC(Ω), 22
Ck(Ω), 22
Ck,λ(Ω), 23
Ck

0 (Ω), 23
C∞0 (Ω), 23
Lp(Ω), 24
L1,loc(Ω), 25
D(Ω), 26
D′(Ω), 26
E(Ω), 28
E ′(Ω), 28
S(Rn), 37
S ′(Rn), 37
Ws

p(Ω), 43, 47, 48

W̊ s
p(Ω), 48

WA
p (Ω), 52

Lp((c, d);U), 53
Ck((c, d);U), 54
Ck([c, d];U), 54
Wr

p((c, d);U), 55

W
s,r
p (Q), 55

W
s,s/2
2 (Q), 56

Ŵ
s,s/2
2 (Q), 56

Bs
p,q(Ω), 56

M(V →W), 58
Ws

p,unif , 59

Bs
q,p,unif , 61

Mp(R
n), 67

Mp(Ω), 69
Hs
p(R

n), 77
D(Tn), 83
D′(Tn), 83
Lp(T

n), 83
Wm

p (T
n), 87

Hs
p(T

n), 87
mp(T

n), 88
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