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Preface

Boundary-value problems and initial-boundary-value problems for partial differen-
tial equations of continuum mechanics and mathematical physics that arise in ap-
plications in the physical sciences and engineering frequently contain ‘nonsmooth’
or ‘singular’ data, such as jumps in the coefficients in the equation, caused by dis-
continuities in material properties, or concentrated loads that are modelled as point
sources, or indeed discontinuities in the solution at interfaces in transmission prob-
lems. There is a wealth of such practical examples. The present book, which arose
from series of lectures given by the authors over a number of years at the University
of Belgrade and the University of Oxford, respectively, is devoted to the construction
and the mathematical analysis of numerical methods for the approximate solution
of such problems. More specifically, we focus on the numerical solution of linear
partial differential equations by variously generalized finite difference schemes in
instances when the coefficients, source terms or initial or boundary data belong to
spaces of weakly differentiable functions, e.g. Sobolev, Besov or Bessel-potential
spaces of nonnegative order, or certain spaces of distributions, such as negative-
order Sobolev, Besov or Bessel-potential spaces.

The fundamental mathematical result that underpins the convergence analysis
of discretization methods for linear partial differential equations, and finite differ-
ence methods in particular, is the Lax equivalence theorem (cf. [156], Sect. 3.5),
which, loosely speaking, states that a sequence of numerical solutions, generated
on a family of meshes by means of a consistent finite difference approximation of
a well-posed initial/boundary-value problem for a linear partial differential equa-
tion, converges to the analytical solution of the problem if, and only if, the finite
difference method is stable.

Consistency of a finite difference scheme amounts to the requirement that the
truncation error, defined by inserting the unknown analytical solution to the partial
differential equation into the finite difference approximation of the equation, when
measured in a suitable mesh-dependent norm, converges to zero, possibly at a cer-
tain rate, which is typically a positive power of the maximum mesh-size 4, in the
limit of & converging to zero.
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The conventional mathematical tool for investigating the consistency of a finite
difference approximation to a partial differential equation is multivariate Taylor se-
ries expansion. The truncation error is expanded to terms of order as high as is
necessary so as to extract the highest possible power of 4 admitted by the finite dif-
ference scheme; the power of & in question is referred to as the order of accuracy
or order of consistency of the finite difference method. The underlying assumption
in such, frequently tedious, but completely elementary calculations based on Taylor
series expansions is that the solution to the partial differential equation is sufficiently
smooth, to the extent that it admits a Taylor series expansion up to derivatives whose
order is as high as is needed in order to extract the highest possible power of & from
the truncation error.

When confronted with partial differential equations whose solutions are known
not to be differentiable or even continuous, and Taylor series expansion of the ana-
Iytical solution, and thereby of the truncation error of the finite difference scheme,
fails to make sense due to lack of regularity in the classical sense, a natural question
is whether there are alternative mathematical tools one can resort to in a systematic
fashion. A second, closely related and even more basic question is, of course, how,
in the first place, should one construct finite difference approximations to partial
differential equations whose coefficients, source terms or initial or boundary data
are so ‘rough’ that sampling them at the points of the computational mesh is, quite
evidently, a meaningless endeavour.

It is the mathematical analysis of these two questions that the present mono-
graph is devoted to. The second question posed above, concerning the construc-
tion of finite difference schemes for partial differential equations with nonsmooth
data, is addressed by mollifying the data through convolution (possibly in the
sense of distributions) with suitable functions with compact support, which are
typically (multivariate) B-splines whose support is commensurate with the mesh-
size h. As for the first question, regarding the analysis of consistency in the ab-
sence of meaningful Taylor series expansions, we resort to a technique that is fa-
miliar in the realm of finite element methods but is seemingly alien to the world
of finite difference schemes: interpreting the truncation error as a linear func-
tional on a suitable function space (typically a certain Sobolev space of nonneg-
ative order), scaling to a canonical ‘element’, which is chosen to be a scaled-
up version of the support of the B-spline used in the definition of the mollifica-
tion, followed by an application of a result known as the Bramble—Hilbert lemma
and, finally, rescaling. The Bramble-Hilbert lemma plays the role of Taylor se-
ries expansion with remainder of the truncation error up to the highest possible
derivative, with the lower-order terms in the Taylor polynomial cancelling: it sim-
ply states that a bounded linear functional on a Sobolev space with the prop-
erty that the linear functional vanishes on polynomials of degree one less than
the (positive) differentiability index of the Sobolev space, can be bounded by the
highest-order Sobolev seminorm of the space. The subsequent rescaling from the
canonical element then relies on the fact that the highest-order Sobolev semi-
norm is a homogeneous function of a certain degree in the mesh-size A (the ho-
mogeneity index of the Sobolev seminorm being dependent on the differentiabil-
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ity and integrability indices of the Sobolev seminorm and the number of dimen-
sions).

Our objective throughout the book is to systematically develop this methodology
based on the combination of mollification of the nonsmooth data on the one hand
and the application of variants of the Bramble—Hilbert lemma in conjunction with
scaling arguments on the other, for a range of linear elliptic, parabolic and hyper-
bolic partial differential equations.

Chapter 1 provides a brief survey of some basic results from linear functional
analysis, the theory of distributions and function spaces, Fourier multipliers and
mollifiers in function spaces, and function space interpolation. Chapter 2 is con-
cerned with the construction and the convergence analysis of finite difference
schemes for elliptic boundary-value problems. One of the key contributions of the
chapter is the derivation of optimal-order bounds on the error between the analytical
solution and its finite difference approximation for elliptic equations with variable
coefficients under minimal regularity hypotheses on the coefficients and the solu-
tion, the minimal regularity hypotheses on the coefficients being expressed in terms
of spaces of multipliers in Sobolev spaces. In Chaps. 3 and 4 of the book we then
pursue an analogous programme for some model linear parabolic and hyperbolic
equations.

We shall consider finite difference methods on both uniform and nonuniform
computational meshes. In order to avoid cluttering the presentation with the inclu-
sion of technical details that are secondary to the central theme of the book, we shall
confine ourselves throughout to boundary-value problems and initial-boundary-
value problems on axiparallel domains. Curved boundaries give rise to additional
complexities, which we do not address. Having said this, the starting point of a
convergence analysis for any finite difference method is a stability result, which is
typically a discrete counterpart of a stability or regularity result for the differential
problem under consideration. For elliptic equations in arbitrary domains discrete
versions of interior regularity results in L, and, more generally, L, type norms
were developed by Thomée and Westergren [179] and Shreve [166], respectively.
Discrete versions of interior Schauder estimates were proved by Thomée [175]. For
Lipschitz domains, discrete versions of elliptic regularity results, up to the boundary,
were established by Hackbusch in [66] and [67]. For parabolic problems discrete in-
terior regularity results in arbitrary spatial domains were proved by Brandt [22] and
Bondesson [18, 19]. These, and related results, can be seen as a starting point for
the development of a theoretical framework in arbitrary domains, analogous to the
one considered here on axiparallel domains.

There are of course several excellent books concerned with the mathematical
theory of finite difference schemes for partial differential equations. A classical
source in the field is the influential monograph by R.D. Richtmyer and K.W. Morton:
Difference Methods for Initial-Value Problems [156]; some other significant books
include the following: A.A. Samarskii: The Theory of Difference Schemes [159],
J. Strikwerda: Finite Difference Schemes and Partial Differential Equations [170],
B. Gustafsson, H.-O. Kreiss and J. Oliger: Time Dependent Problems and Difference
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Methods [64], the short monograph by P. Brenner, V. Thomée and L.B. Wahlbin en-
titled Besov Spaces and Applications to Difference Methods for Initial Value Prob-
lems [24], the monograph by A.A. Samarskii, R.D. Lazarov and L. Makarov: Finite
Difference Schemes for Differential Equations with Weak Solutions (in Russian)
[160], and Chap. 4 and Sects. 9.2, 10.2.2 and 11.3 of the book by W. Hackbusch
entitled Elliptic Differential Equations: Theory and Numerical Treatment [68]. In-
stead of replicating the material contained in those and other books on the analysis
of finite difference schemes for partial differential equations, our aim here has been
to focus on ideas that have not been covered elsewhere in the literature previously,
at least not in the form of a book. While we have made every effort to ensure that
the text is reasonably accessible and self-contained, a disclaimer is in order: it is
fair to say that this monograph has been written with a mathematical audience in
mind. Some of the material we have included here has been successfully used in
third- and fourth-year mathematics undergraduate courses on the numerical analysis
of partial differential equations (e.g. Chap. 1, Sects. 1.1-1.4; Chap. 2, Sects. 2.1-
2.4; Chap. 3, Sects. 3.1, 3.2; Chap. 4, Sects. 4.1, 4.2); however, the vast majority
of the theoretical questions we discuss are firmly beyond the scope of the under-
graduate numerical analysis syllabus, and will be of primary interest to graduate
students, researchers and specialists working in the field of numerical analysis of
partial differential equations. Readers will certainly find it helpful to possess prior
knowledge of elements of linear functional analysis, the theory of linear partial dif-
ferential equations, and basic concepts from the theory of distributions and function
spaces. Although we chose to focus on linear problems throughout, it is neverthe-
less hoped that the methodology that is systematically developed here in the case
of linear partial differential equations has some bearing on the mathematical anal-
ysis of finite difference approximations of nonlinear partial differential equations
with nonsmooth solutions, particularly those that arise from continuum mechanics
and the sciences in general. The recent upsurge of interest in numerical algorithms
for atomistic models of crystalline materials, such as quasi-continuum methods,
whose analysis relies on techniques from the theory of finite difference methods
[14, 15, 29, 132, 133, 149, 150, 194], has provided added impetus to this book:
we hope that some of the technical tools developed here will also prove useful to
researchers working in that field.
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Chapter 1
Distributions and Function Spaces

Numerous linear partial differential equations that arise in mathematical models of
physical phenomena possess discontinuous coefficients or nonsmooth forcing terms.
Such lack of smoothness of the data and the resulting loss of regularity of the solu-
tion give rise to conceptual difficulties that are hard to resolve within the classical
theory of partial differential equations. The theory of distributions has been devel-
oped with the aim to overcome these limitations by weakening the notion of differ-
entiability, and to provide a general tool for the study of linear partial differential
equations with nonsmooth solutions. In this chapter we give a brief overview of this
theory and present a collection of results concerning function spaces.

In Sect. 1.1 we review some elementary ideas from linear functional analysis.
Section 1.2 states the definitions of basic function spaces, such as those of contin-
uously differentiable and Lebesgue-integrable functions. Section 1.3 concentrates
on simple tools from the theory of distributions. In Sects. 1.4 and 1.5 we define
Sobolev spaces and review their crucial properties. Section 1.6 is devoted to Besov
spaces, while Sects. 1.7 and 1.8 discuss interpolation properties of Sobolev spaces
and point multipliers (or, simply, multipliers) in Sobolev spaces, respectively. We
conclude, in Sect. 1.9, by considering Fourier multipliers and their application to the
construction of smoothing operators (mollifiers) in Bessel-potential spaces, Sobolev
spaces and Besov spaces. For a detailed account of the theory of distributions we
refer to Gel’fand and Shilov [52], Hormander [72], Rudin [158], Schwartz [163],
and Vladimirov [184]; for details of the theory of function spaces the reader may
wish to consult Adams [1], Adams and Fournier [2], Kufner, John and Fucik [116],
Maz’ya [136], and Triebel [181, 183], for example.

1.1 Elements of Functional Analysis

Much of numerical analysis is concerned with the approximate solution of equa-
tions. Regardless of the type of equation under consideration, the construction of a
numerical method for its approximate solution is frequently preceded by a mathe-
matical analysis of the problem, with the aim to ascertain useful information about
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the existence and uniqueness of the solution, and its sensitivity to perturbations of
the data. Functional analysis provides a general framework for studying such ques-
tions in an abstract setting; the purpose of this section is to introduce the basic
concepts of this theory.

1.1.1 A Survey of Abstract Spaces

There is a hierarchy of abstract spaces, ranging from the most general to those with
the most structure. Here we shall concentrate on linear spaces that are particularly
relevant in applications: normed linear spaces, Banach spaces and Hilbert spaces.

1.1.1.1 Normed Linear Spaces

Suppose that I/ is a linear space over R, the field of real numbers (or the field
C of complex numbers), and let R, denote the set of nonnegative real numbers.
A function || - || : i/ — R4, whose value at u is denoted by ||u||, is called a norm on
U provided that it satisfies the following axioms:

O |lu|| =0if, and only if, u = 0;
O | lul = |A|||lu| for all L € R (or A € C), and all u in U; (homogeneity);
O |u+v| <|ul + ||v| for all u and v in U/; (the triangle inequality).

If || - || satisfies the last two axioms only then it is called a seminorm. A linear space
U equipped with a norm is called a normed linear space (over the field R or C, as
the case may be). Let / be a normed linear space, let uo belong to ¢/ and suppose
that r is a positive real number. The set

B(uo,r) := {u el :|lu—ugp <r}

is called an open ball with centre u( and radius r. Let ¢ > 0; for the sake of brevity
we shall write B, instead of B(0, ). We define

A* =A+B.={u+v:ucA,ve B}

the e-neighbourhood of the set A. A subset M of a normed linear space U/ is said
to be open in U if, for every ug in M, there exists a real number r = r (up) > 0 such
that B(ug,r) C M, i.e. B(ug, r) is contained in M. A neighbourhood of a point u
in U is any open set in I/ that contains u. A subset M of a normed linear space U/
is said to be closed in U if M€ :=U \ M, the complement of M in U, is open in U.
The closure of a set M, denoted by ‘M, in a normed linear space U is defined as
the intersection of all closed sets in ¢/ containing M. Suppose that M is a subset
of a normed linear space I/; we say that M is dense in U provided that M = U.
A normed linear space is called separable if it contains a countable, dense subset.
A subset M of a normed linear space is said to be bounded if there exists a positive
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real number r such that B(0, r), the open ball of radius r centred at the zero of the
linear space, contains the set M. A subset M of a normed linear space is said to be
convex if, whenever u and v belong to M also 6u + (1 — 8)v belongs to M for all
6 € [0, 1]. For example, thanks to the triangle inequality, any open ball in a normed
linear space is a convex set.

Example 1.1 The n-dimensional Euclidean space R” of all ordered n-tuples of real
numbers is a normed linear space with the norm || - || defined by

n 172
]l := (Z |x,»|2) . x =1, %) ERY.

i=1

Example 1.2 The linear space C([0, 1]) of (real- or complex-valued) functions u
defined and continuous on the closed interval [0, 1] of the real line is a normed
linear space with the norm

lulleqo. 11y 1=xlél[g?<1]|u(X)|, u € C([0, 1]).

1.1.1.2 Inner Product Spaces

Let U be a linear space over the field of real (or complex) numbers. A real- (or
complex-) valued function (-, -) defined on the Cartesian product U x U is called an
inner product on U provided that it satisfies the following axioms:

O (u,u)>0forevery uinlf \ {0};

O (Au,v) =A(u,v) forall A in R (or C), and all # and v in i;
O® (u+v,z2)=w,z)+ (v,z) forall u, vand z in U,

O (u,v)=(v,u) forall u and vin /.

The overline in the last axiom signifies complex conjugation. The linear space U
with inner product (-, -) is called an inner product space. If (u, v) = 0 for u and v in
U, we say that u and v are orthogonal. For u in U, we define

lael = Gy u) /2.
It is left to the reader to show that, with such a definition of | - ||, one has
|(u,v)| < llullllv]l Vu,velU (the Cauchy-Schwarz inequality),
and the triangle inequality holds; i.e.

llu+vll < llull + llvll Yu,veld.

Consequently || - || is a norm on U/, induced by the inner product (-,-), and / is a
normed linear space. It is easy to show that if ¢/ is an inner product space with the
induced norm || - || then the following parallelogram identity holds:

lu + vl + llu — v|)® =2[ull® + 2||v)|> VYu,vel. (1.1)
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Example 1.3 The n-dimensional Euclidean space R” is an inner product space with

n
(. )=y xiyi,
i=1
where x = (x1,...,x,) and y = (y1, ..., y,) are any elements in R".

Example 1.4 The linear space C ([0, 1]) of continuous real-valued functions defined
on the closed real interval [0, 1] is an inner product space with

1
(u, v) :=/ u(x)v(x)dx, u,veC([0,1]).
0

For complex-valued functions u and v, defined and continuous on [0, 1], the defini-
tion of the inner product above is modified to

1
(u,v)::/ u(x)v(x)dx, u,veC([0,1]),
0

where, as in the fourth axiom of inner product, the overline denotes complex conju-
gation.

1.1.1.3 Convergence and Cauchy Sequences

Let U be a normed linear space with norm || - ||, and suppose that {u,};° is a
sequence in /. We say that {un};'loz] converges to u in U (and write lim, oo U, = u
in U, or simply u, — u in ), if

lim |lu, —u||=0.
n—oo

In this case, the sequence {un},‘iO 1 is said to be convergent in U, and u € U is called

the limit of {u,}3>, inU. A sequence {u,}7° | in U is called a Cauchy sequence if

lim |lu, —up| =0.
n,m— oo

Obviously every convergent sequence in I/ is a Cauchy sequence in U/; however, as
is indicated by the next example, the converse is not true in general.

Example 1.5 Let C([0, 1]) be the linear space of all real-valued functions that are
defined and continuous on the interval [0, 1], equipped with the norm

1
el :=f )| dx.
0
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The sequence {u,,}7° | defined by

@)t ifo<x<1/2,
””(x)'_{l if1/2<x<1,

is a Cauchy sequence in C([0, 1]), but it does not converge to any element of
C([0, 1]).

1.1.1.4 Completeness, Banach Space, Hilbert Space

A normed linear space U is said to be complete if every Cauchy sequence in U is
convergent in U/. A complete normed linear space is called a Banach space. Let U
be an inner product space, with inner product (-, -). If I/ is complete with respect to
the norm |Ju|| := (u, u)'/? induced by this inner product, then I/ is called a Hilbert
space. A Hilbert space over the field R (respectively, C) is called a real (respectively,
complex) Hilbert space.

Example 1.6 The set R of real numbers, equipped with the norm | - | (absolute
value), is a Banach space. The set R”, with the inner product defined in Example 1.3,
is a real Hilbert space; the norm induced by this inner product is the Euclidean norm,
appearing in Example 1.1.

Example 1.7 LetU denote the linear space C ([0, 1]), equipped with the inner prod-
uct defined in Example 1.4; then, I/ is not a Hilbert space. This is easily seen by
noting that the sequence {u,}> , from Example 1.5 is a Cauchy sequence in U} if,
however, it converged in the norm induced by the inner product from Example 1.4,
then by the Cauchy—Schwarz inequality it would also converge in the norm || - ||
from Example 1.5, resulting in a contradiction.

1.1.1.5 Compactness

A set U in a normed linear space U is said to be sequentially compact if it is se-
quentially relatively compact (i.e. every sequence in U contains a subsequence that
is convergent in {/) and closed. Henceforth we shall omit the attribute “sequential”,
and will simply write compact and relatively compact instead of sequentially com-
pact and sequentially relatively compact, respectively.

Example 1.8 Let U denote the set of real numbers with norm | - | (absolute value).
Then, the open interval U = (0, 1) is a relatively compact set in ¢/, and its closure,
U =0, 1], is compact in .

It is left as an exercise to show that every relatively compact set in a normed
linear space is bounded, and that a closed subset of a compact set in a normed linear
space is compact.
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U € V will signify that the closure of U is compact and contained in V.
A normed linear space U is said to be locally compact if 0 has a neighbourhood
whose closure is a compact set in /. The following theorem will be useful in the
subsequent discussion (cf. Rudin [158], Theorem 1.22 on p. 17).

Theorem 1.1 A normed linear space U is finite-dimensional if, and only if, it is
locally compact.

The next section is devoted to linear operators in normed linear spaces.

1.1.2 Linear Operators in Normed Linear Spaces

Let ¢/ and V be two normed linear spaces with norms || - |77 and || - ||y, respectively,
and let U be a set in Y. Suppose further that a rule A is given, which to every
element u in U assigns a uniquely determined element in V; we denote this element
by Au and say that the rule defines an operator A on U. The set U is called the
domain of the operator A and it is denoted by D(A). The set

R(A):={veV:v=Au,uec D)}
is called the range of the operator A. The inverse image of aset V. CV is the set
AT (V) :={u:ue D), AueV}.

An operator from U into V is called an injection (or a one-to-one mapping) if
for each v € R(A) there exists a unique u € D(A) such that Au = v. An operator A
from U into V is called a surjection (or a mapping onto V) if R(A) = V. An operator
A from U into V is called a bijection if it is both an injection and a surjection.

If A is an injection from U into V then every v € R(A) is assigned a uniquely
determined element # in D(A) by the rule Au = v. This is written as u = A~y and
A~ is called the inverse operator of A. Clearly we have that D(A~!) = R(A) and
R(A™Y) = D(A). If, in addition, A is a bijection from U/ onto V), then DA H=V.

Let U/ and V be two normed linear spaces and let A be an operator from I/ into V;
A is said to be a continuous operator if whenever u,, — u in U then also Au,, — Au
in V, for every sequence {u,},° | such that u, € D(A) and u € D(A).

A set U in a normed linear space I/ is said to be a linear subset of U if au + v €
U for every u and v in U and every « and 8 in R (or C). An operator A from a
normed linear space U/ into a normed linear space VV whose domain D(A) is a linear
subset of U is called a linear operator from U into V provided that

A(au + Bv) =aAu+ BAv Vu,v e D(A), Va, B € R (or C).

A linear operator A from a normed linear space U/ into a normed linear space V is
said to be bounded if there exists a positive real number K such that

[Aully < Kllullyy  Yu € D(A).
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The norm || - || = || - |lz7—y of a bounded linear operator A : i/ — V is defined by

[ Aully

Al := .
ozueD(A) lullu

(1.2)

Note that ||Aully < ||Al||lully for all u € D(A). It is easily seen that a linear op-
erator is bounded if, and only if, it is continuous. We shall therefore use the terms
bounded linear operator and continuous linear operator interchangeably. The set
of all bounded linear operators A : U/ — V will be denoted by L(U, V).

Let A be a linear operator from a normed linear space U/ into a normed linear
space V with D(A) = U; we shall say that A is a compact operator if every bounded
set in ¢/ is mapped by A into a relatively compact set in V.

1.1.2.1 Embedding Operators

Let U/ and V be two normed linear spaces and let &/ C V. We define the identity
operator I from U into V, with D(I) = R(I) = U, as the operator that assigns
every element u in U/ to itself, i.e. Ju = u, regarded as an element of V. Clearly the
identity operator is linear. If it is, in addition, a continuous operator, then we call it
an embedding from U into V. If an embedding from I/ into V exists, we shall say
that I/ is embedded in V and will write this as

U—YV.

The continuity of the embedding operator from ¢/ into V implies the existence of a
positive constant K such that

lully < Kllullyy VYueld.

If U is embedded in V and the embedding operator is a compact linear operator, we
shall say that U/ is compactly embedded in V and will write this as U << V.

1.1.2.2 Continuous Linear Functionals

Let U be a normed linear space and suppose that )V = C or V = R; then, any operator
A:U — V is called a functional. Let us denote by U’ the set of all bounded (or,
equivalently, continuous) linear functionals defined on a normed linear space U.
Clearly U’ is a linear space provided that we define addition of linear functionals
and multiplication of a linear functional by a scalar (in R or C) in the usual way;
that is,

(f+W):=fu)+gw), fgeU uel,
AW :=rf@w), feld,reRorC),uecld.
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In addition, ¢’ can be equipped with a norm || - ||z defined by

|f ()]
Il flleer := sup :
0z£ueld llellzs
The resulting normed linear space U’ is called the dual space of U, and || - ||z is

usually referred to as the dual norm. It is a simple matter to show that the dual, I/,
of a normed linear space U is a Banach space with the dual norm.

Example 1.9 Let U denote the linear space of all continuous real-valued functions
on the closed interval [—1, 1] of the real line equipped with the norm

u — = max (ux)i.
lullcq-1,11) xe[—1,1]| ()|

The functional § : i/ — R, defined by
8(u) :=u(0),
is contained in ¢/’. Indeed, § is a linear functional on I/, and
@] =[u©] < llulcq-11y VueC([=1.1]).

Thus & is a bounded linear functional on U = C ([0, 1]). Clearly [|§]lz¢ = 1.

U' = (C([0, 1]))’ can be shown to coincide with the linear space rca([0, 1]) of
all regular countably additive scalar-valued set functions defined on the o -algebra
of all Borel subsets of [0, 1] (see, Theorem 3 on p. 265 of [36]).

We shall need the following result regarding the extension of a linear functional
defined on a linear subspace M of a linear space U to the entire space.

Theorem 1.2 (Hahn-Banach Theorem) Let U be a real (or complex) linear space,
let M be a linear subspace of U, and p(-) a seminorm on U. Let ly; be a linear
functional from M to R (or C) such that |y (v)| < p(v) for all v € U. Then, there
exists a linear functional | on U such that [(v) = Iy (v) for all v in M and |l (v)| <
p) forallvinlU.

For a proof of Theorem 1.2 we refer to Theorem 3.3 on p. 57 of Rudin [158].

Corollary 1.3 Suppose that U is a normed linear space and u € U, then, there exists
a v« €U such that y,(u) = |ully and || y«llyy = 1.

Proof 1If u =0, then we take y, := 0. If u # 0, then we apply Theorem 1.2 with M
chosen as the one-dimensional space spanned by u, p(-) :=|| - |y on U, Iy (u) :=
a|lullyy on M, o € R (or C), and we take y, :=1. O

Let U be a Banach space; then, each u in U defines a linear functional on U’ by
the correspondence I, (y) = y(u), y € U’'. Clearly, [, is a bounded linear functional
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on U'; thus I, € U”, where U” denotes the dual space of U’. Indeed, ||I,|lz7 <
llullzs. By Corollary 1.3 there exists a y, in U’ with y,(u) = ||ully; and ||y« llgr = 1.
This implies that ||, ||lz¢» = ||u]lzs; hence we have an isometric isomorphism u +— 1,
defined by [, (y) = y(u), from U onto a closed linear subspace of 4”. A Banach
space U is called reflexive if the mapping u > [, from U/ into " is a surjection.

Let U be a normed linear space and {u,};2 , a sequence in /. We say that u,
converges weakly to u e U if

Tim () = £

for all f in /. In this case, u is called the weak limit of the sequence {un}o2 . Itis
easy to see that if a sequence {u,};° ; converges to u in ¢ (in the norm of {), then

it also converges weakly to u in .

1.1.3 Sublinear Functionals

This section is devoted to an abstract result, due to Drazi¢ [32], that is a useful tool
in the error analysis of finite difference methods in various function spaces under
minimum smoothness requirements on the data; the result is stated in Theorem 1.9.
We begin by introducing the necessary concepts and by proving some preliminary
results.

Definition 1.4 Let I/ be a linear space. A mapping S : i/ — R such that
S(au + pv) < la|Su) + |BI1S(v),

for all @, B in R (or in C) and all u and v in U, is called a sublinear functional.
A sublinear functional S : U/ — R is said to be bounded if there exists a positive
constant C such that

S@) < Clully Vuel.

For a bounded sublinear functional we define

S(u)
[|S]I:= sup :
ozuetd lulles

We note that any norm or seminorm on a linear space U{ is a sublinear functional
on U in the sense of Definition 1.4.

Lemma 1.5 Let U be a linear space and suppose that S : U — R is a sublinear
functional; then, S(0) = 0.

Proof This is easily seen by noting that, for any u in i,
0<S0)=S0-u)<|0]-Su)=0.

Hence S(0) =0. [l
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Lemma 1.6 Let U be a linear space and suppose that S : U — Ry is a sublinear
functional. Then, the kernel of S, defined by

Ker(S) := {u e U : S(u) =0},
is a linear subset of U.

Proof According to the previous lemma the kernel of S is nonempty as 0 € Ker(S).
Suppose that u#, v € Ker(S); then, for any «, 8 € R,

0 < S(au + pv) <|a|S(u) +[B|S() =0.

Hence au + Bv € Ker(S). O

Theorem 1.7 Let U be a Banach space that is compactly embedded in a normed
linear space Uy, and let S; : U; — R4, i =0, 1, be two bounded sublinear function-
als such that

lulleg, < So(u) + S1(u)
forall u eUy. Then,
P :=Ker(S))
is a finite-dimensional closed linear subspace of U .
Proof Lemma 1.6 implies that P is a linear space. The fact that P is closed follows

from the boundedness of S;; indeed, suppose that u,, € P, m = 1,2, ..., and let
limy;, s 00 Uy, = u in Uj. Then,

0=<81(u) =381t —um+um) <S1(u —um) + S1(Um)
= S1(u —upm)
< IStlllee — wmllyg, -
Since the expression on the right-hand side converges to zero as m — 00, it follows
that S7(u) = 0, and therefore u € P. This implies that P is a closed linear subspace

of U;. It remains to show that P is finite-dimensional; we shall do so by proving
that the linear space P is locally compact in ¢/]. Consider

Pi={ueP:uly, <1}.

The set P is bounded and closed in Uy; thus, Pisa compact subset of Uy. Conse-
quently, we can extract a sequence {up, }o-_; C P that converges in Up; let u denote

its limit. Because P is closed, it follows that u belongs to 75; in addition, {u,,l};'f:1
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is a Cauchy sequence in Up. Now,

ly — up ”U] < So(um — un) + S1(Upm — up)
= So(um — un)
< [ISollllttm — wnllzg,-

Thus, {un},,_, is a Cauchy sequence in U, also. Since U is a Banach space, it fol-

lows that {u,,},>_, converges in the norm of {}, and since U C Uy, by the unique-

ness of the limit lim,, oo tt;, = u In U;. As u € 75, we have thus shown that P is
compact in Uj; therefore the closed linear space P is locally compact in ;. By
Theorem 1.1 it then follows that P is finite-dimensional. That completes the proof

of the theorem. O

Theorem 1.8 Under the same hypotheses as in Theorem 1.7, there exists a positive
constant C such that, for all u € Uy,

inf [lu—plly, <CS1(w),
peP
where P := Ker(S1).

Proof Let N :=dimP and let f;, 1 <i < N, be a basis in the dual space of P.
Thus, for any p € P, we have that

fitpy=0 Vie{l,...,N} & p=0.

By the Hahn—Banach theorem, each f; can be extended from P to a bounded linear
functional, still denoted by f;, on the whole of U/, i =1,..., N. Let us suppose
for a moment that we have proved the following statement: there exists a constant
C > 0 such that, for all u € U,

N
luellzg, < c(sl(u>+2|fi<u>|). (13)

i=1

The desired result then easily follows. Indeed, let u € U] and choose g € P such
that

fiu—q)=0 Viell,...,N}.

We note in passing that there is a unique such g € P, which can be found by seeking
qg=a1p1+---+anpn, where {py, ..., pn} is a basis of the linear space P, and
solving the system of linear equations o1 f;(p1) + --- + an fi(pn) = fi(w), i =
I,...,N,forthe scalars o, j=1,...,N.

Now, by (1.3),

inf [lu— plley, < llu —qliuy,
peP
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N
§C<Sdu—q)+§:Uﬂu—qM)

i=1

=CSi(u—q) <CSi(u),

which then completes the proof.
It remains to prove (1.3). Suppose that (1.3) is false; then, there exists a sequence
{tm};,y_, in U such that

lmlle, =1, m=1,2,..., (1.4)

and

N
mlgmw<s1<um>+2|ﬁ(um>|> =0. (1.5)

i=1
From (1.4), thanks to the assumed compact embedding of U/ in U, there exists a

subsequence {u,, }7o, of {ux},_,, which converges in Uy; let us denote the cor-

responding limit by u. Hence {u,, };2, is a Cauchy sequence in Uy. On the other
hand, by the assumptions of the theorem,

”umk —Um, ”Z/{l = SO(umk - uml) + 51 (umk - um;)
< ISolllltmy — wm; gy + S1(my) + S1(m,)-

Thus, thanks to (1.5), {umk},fi | 18 a Cauchy sequence in U;. Since, by assumption,
U, is a Banach space, {u;, },f‘; | is convergent in U/, and by uniqueness of the limit,
limy_, o0 U, = u in Y. Therefore, by passing to the limit over this subsequence in
(1.4) and (1.5), we have that

N
luley =1 and  Si@)+ Y _|fi@)]=0.

i=1
Consequently,
luller, =1,
ueP and fi(u)=0 Vie{l,...,N},

and therefore both |||z, =1 and u = 0, which is a contradiction.
O

Theorem 1.9 (Drazi¢ [32]) Under the assumptions of Theorem 1.7, and assuming
in addition that S : Uy — Ry is a bounded sublinear functional such that

Ker(S1) C Ker(S),
there exists a constant Cy; > 0 such that

Su) <C1S1(u) Yuel.
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Proof We begin by noting that, for any u € U/; and any p € P :=Ker(S1),

Sw)=Su—-p+p)<Su—p)+Sp)
=S —p)=ISlllu— pl,-
Thus, by Theorem 1.8,

S@) < ISI inf |lu — pllegy = C1S1(w),
peP

with C; = C||S||, where C is as in Theorem 1.8. O

In what follows we shall consider special cases of this abstract result in various
function spaces, such as the Bramble—Hilbert lemma in integer-order and fractional-
order Sobolev spaces, and use these to derive sharp bounds on the error between
analytical solutions to partial differential equations and their numerical approxima-
tions.

1.1.4 Linear Functionals on Hilbert Spaces

This section is devoted to a fundamental result in Hilbert space theory, the Riesz
representation theorem; its proof requires some preliminary results, and establishing
these is our first task. We begin with the following simple lemma.

Lemma 1.10 Ler U be a (real or complex) Hilbert space, equipped with the norm
I - I, and let M be a closed convex subset in U. For u in U, we define the distance
fromu to M by

0(u, M) := inf ||u —v]|.
(u, M) = inf [lu~v]
Then, there exists a unique element vy in M such that |lu — vi| = 0(u, M).

Proof If u € M then the proof is trivial: we simply take v, = u. Let us therefore
assume that u does not belong to M. According to the definition of d(u, M), there
exists a sequence {v, }fnozl in M such that lim,,_, || — vy || = 0(u, M). By recall-

ing the parallelogram identity (1.1), we have that
12 — vy — V1?4 l[0n — v 11> = 201 — v 11> + 20|u — v |12

Thanks to the convexity of the set M, (v, + v,,)/2 belongs to M; thus, the first
term on the left-hand side is > 4[0(u, M )]2. Consequently,

2
lon — v lI* < 20w — valI* + 2l — v 1> — 4[0Cu, M)]".

Since the right-hand side converges to 0 as n, m — oo, we deduce that {v,,};>_, is

a Cauchy sequence in U/; let v, denote its limit in ¢/. As M is closed, it follows that
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v, belongs to M. Moreover, because || - || : &/ — R is a continuous function (thanks
to the triangle inequality), we deduce from the definition of the sequence {v,,}>_,
that |ju — vi| =0(u, M).

It remains to show the uniqueness of such a v,. Let us suppose that v}, is another
element in M with the same property: |[u — v, || = 0(u, M). Then, by the parallelo-
gram identity,

2 2 1 /12
=[0(u,M)] —ZHU*—v*” .

1
u-— E(v*+v;)

Since (v« +v,)/2 belongs to M, the left-hand side of this inequality is > [0 (u, M)A
Therefore, by the first axiom of norm, v; = Vy. O

Let S be a closed linear subspace of a Hilbert space /; we define the orthogonal
complement S+ of S by

St ={ueld:(u,v)=0 VveS}.

With this definition and using the previous lemma we can prove the following
result.

Theorem 1.11 Suppose that S is a closed linear subspace of a (real or complex)
Hilbert space U. Then, U = S @ St:ie. every element u in U can be written
uniquely as u = f + g, where f € S and g € S*.

Proof Since S is a closed convex set, according to Lemma 1.10 f can be defined as
the unique element in S that minimizes d(u, S) for a given u in U. We define g in
U by g :=u — f. The rest of the proof is devoted to showing that g € S+, and that
f and g are the unique such elements.

Let v be any element of S, and consider the convex linear combination 6v + (1 —
0)f of vand f in S, with 6 € (0, 1). Then,

[P, < |u—@v+U0 -0 1) =|u-rf-00-n|
= llu— fI* =200 — f,v— f)+6%|v— fI?
= [0, S)]* = 209%w — f.v — f)+6%v — fI*

here Nz denotes the real part of the complex number z. Hence
, 1 2
R = fov=f)=500v=fI

Letting 6 — 0 and recalling the definition of g, it follows that

R, v—f) <0 VveS. (1.6)
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Let z be any element in S and let & be a complex number such that @ (g, z) = |(g, 2)|.
By taking v = f 4 «az, we deduce from (1.6) that

(g, 2)| = %|(g, )| = N(a(g, 2)) =NR(g,0z) =NR(g,v— ) <0 VzeS.

Consequently (g, z) =0 for all z in S, which implies that g belongs to S-.

The uniqueness of the representation u = f + g is easy to establish: let us sup-
pose that there exist f; in S and g; in ST such that also u = fi + g;. Now since
f—fi=g1—g with f — fi e Sand g; — g € S*, we have that

If = Al = = fi. f =)= = fr.e1—8) =0,

and therefore f = f1; hence also g = g1, which proves uniqueness. U
We are now ready to state the main result of this section.

Theorem 1.12 (The Riesz Representation Theorem) Let f be a bounded linear
functional on a (real or complex) Hilbert space U; then, there exists a unique ele-
ment u in U, called the Riesz representer of f, such that

f()=(,u) VYvel.

Proof The uniqueness of the Riesz representer u is obvious, provided that it exists.
Indeed, let us suppose that u’ is another element in I/ such that f(v) = (v, u”) for all
v € U. Subtracting this equality from f(v) = (v, u), we deduce that (v, u —u’) =0
for all v in U; therefore u = u’'.

It remains to establish the existence of the Riesz representer. In the trivial case
when f(v) =0 for all v in U, we take u = 0, so let us suppose that we are dealing
with the nontrivial case when the kernel M of the linear functional f is not the whole
of U; then, M is a proper closed linear subspace of the Hilbert space U and, by
Theorem 1.11, M~ is nontrivial. In fact, M is a one-dimensional linear subspace
of U. Indeed, if v; and v, are any two (nonzero) elements of M L. we shall prove
that they are linearly dependent. For this purpose we consider v = v — avy, where
a = f(v1)/f(v2). Then, v belongs to M* and f(v) =0, and hence also v € M.
The only element that belongs to both M and M~ is v = 0; hence we deduce that
v; = avy. Thus any two elements in M- differ only by a scalar factor.

Let ug be an arbitrary nonzero element in M+ and let v be an element of U.
Then, by Theorem 1.11, there exists a vy in M and a complex number g such that

v=uvpy + Buo.
Clearly 8 = f(v)/f (up), whereby

J )
uop.
S (uo)

v=uvy +
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We define u = auq, where
S (o)
o= 5
lluol|

Combining these we obtain the desired result:

(v, u) = (vy,u) + M(uo,u) SO

f (o) ~ fuo)
and that completes the proof. O

aluoll® = £ (v),

Suppose that U/ is a real Hilbert space. Given u € U, consider the linear functional
fu €U’ defined by f,(v) = (v,u), v € U. According to the Riesz representation
theorem, the mapping u +> f,, that takes I/ into its dual space U’ is linear, bijective,
and it is an isometry (that is, ||u#|lzs = || fulle)- Thus any Hilbert space is reflexive.

1.1.4.1 Adjoint of a Linear Operator on a Hilbert Space

Suppose that A is a bounded linear operator from a Hilbert space U, with inner
product (-, ) and induced norm || - ||, into itself and let D(A) = U. For a fixed
element v in U, consider the linear functional f, defined on U/ by

fou) :=(Au,v), uecl.
By the Riesz representation theorem, there exists a unique w in ¢ such that

So(u) = (u, w) = (Au, v).

The mapping v — w is linear and bounded on /. It therefore defines a bounded
linear operator from U/ into itself, denoted by A* and called the adjoint of the linear
operator A; hence, w = A*v. With this definition, D(A*) = U and

(Au,v) = (u A*v) Yu,vel.

If A*u = Au for all u € U, then A is called a selfadjoint (bounded) linear operator
on the Hilbert space U.

In many cases of interest a linear operator A is only partially defined on a Hilbert
space U in the sense that its domain D(A) is a strict subset of U/, although D(A)
is dense in U, i.e. the closure of D(A) in the norm of ¢/ coincides with /. We then
say that A is densely defined on U. If a linear operator A on a Hilbert space ¢/ with
domain D(A) C U is not bounded on U/, then we say that A is an unbounded linear
operator on .

Let A be an unbounded linear operator on a Hilbert space &/ whose domain D (A)
isdense in/. An element v € U is said to belong to the domain D (A*) of the adjoint
operator A* if there exists a w € U such that

(Au,v) = (u,w) VYue D(A).
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In this case the adjoint operator A* maps the element v into w, i.e. A*v = w. The
Riesz representation theorem implies that the domain D(A*) of the adjoint operator
A* is equal to the set of all v € U such that [(Au, v)| < Cy|lu| for all u € D(A),
where C, is a positive constant, which may depend on v, but not on u. The adjoint
operator is defined (uniquely) only if the original operator is densely defined, and is
then a linear operator on D(A™).

A linear operator A on a Hilbert space ¢/ with inner product (-, -) is called sym-
metric if

(Au,v) = (u, Av) VYu,v e D(A).

If A is a densely defined symmetric linear operator on a Hilbert space I/, then
D(A) C D(A*). If D(A) = D(A*) and Au = A*u for all u € D(A), then we say
that the (densely defined) linear operator A is selfadjoint. A (densely defined) selfad-
joint linear operator is clearly symmetric; the converse of this statement is however
not true in general: a symmetric densely defined linear operator on a Hilbert space
need not be selfadjoint.

In contrast, a symmetric everywhere defined linear operator on a Hilbert space is
selfadjoint. Also, according to the Hellinger—Toeplitz theorem (cf. [154], Sect. IIL.5,
p. 84), a symmetric everywhere defined linear operator on a Hilbert space is
bounded. In most situations of relevance in the theory of differential equations A
is a densely defined symmetric or selfadjoint linear operator on a Hilbert space U/,
but A is unbounded, and its domain is therefore a strict subset of /.

1.1.4.2 Bilinear Functionals on Real Hilbert Spaces

Let U be a real Hilbert space with norm || - ||, and let a(-, -) be a real-valued func-
tional defined on the Cartesian product ¢/ x U such that a(, -) is:

O bilinear, i.e. a(w, v) is linear in w for v fixed, and linear in v for w fixed;
® bounded, i.e. there exists a positive real number ¢ such that

la(w, v)| <ctllwlllvl Yw,vel;
© U-coercive, i.e. there exists a positive real number cq such that
a(v,v) > collvl|> Vv el.

A bilinear functional is also called a bilinear form. Variational formulations of
boundary-value problems for differential equations often have the following form:
given a bounded linear functional f on a real Hilbert space U/ and a U-coercive
bounded bilinear functional a(-, -) on U x U, find u in U such that

a(u,v)=f(v) Yvel.

The next theorem provides a useful device for verifying the existence and unique-
ness of a solution to a problem of this kind.
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Theorem 1.13 (Lax-Milgram Theorem) Let f be a real-valued bounded linear
functional on a real Hilbert space U with norm || - || and let a(-, -) be a real-valued
U-coercive bounded bilinear functional on U x U. Then, there exists a unique ele-
ment u € U such that

a(u,v)=f(v) Yvel. (1.7)

In addition,

1
lull < —11flle-
€0

Proof By the Riesz representation theorem, there exists a unique element b in U
such that

fw)=(,b) Yvel,

and, for any z in U, there exists a unique element Az in I/ such that
a(z,v) =, Az) VYvel.
Thus (1.7) can be rewritten in the equivalent form
Au=hb.

Clearly the mapping A : z € U — Az € U is a linear operator on /; furthermore,
|Az]l < cillz]l and ||Az|| = collz|| for all z in U. Thus A is an injective bounded
linear operator on /. Next, we show that R(A), the range of A, is closed in .
Suppose that {Au,}7° | is a sequence in R(A) that converges in ¢/. Then, {Au,};° |

is a Cauchy sequence in I/ and
1Aun = Aumll = [ AGtn — ) | = colln — tm.

Thus {u,};2 | is a Cauchy sequence in /. As U is a Hilbert space, {u,};2 ; converges

inU. Letting u € U be the limit of this sequence and noting that
|Aun — Aull = |AGun —w)| < ctllun —ul,

it follows that {Au,}° | converges to Au in U, which implies that the range of A
is closed. Finally we will show that R(A) = U, which will imply that A is also
surjective. Suppose that this is not the case; then, by Theorem 1.11, there exists a
z0 # 0 in the orthogonal complement R(A)" of the closed linear space R(A). For

such a zo,
0= (z0, Az) = a(z, z0)

for all z in Y. In particular, a(zo, zo) = 0, which is a contradiction, since a(-, -) is
U-coercive and zg # 0.
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Thus we have shown that A is bijective and ||Az|| > col|z|| for all z in ¢/. There-
fore A is invertible, and A~! is a bounded linear operator with [|A~!|| < 1/co. Con-
sequently u = A™'b is the unique solution of (1.7), and

1 1
lull < =11l = —IIflleers
o o
that completes the proof. U

In Chap. 2 we shall use the Lax—Milgram theorem to show that, under suitable as-
sumptions, boundary-value problems for elliptic partial differential equations have a
unique solution in appropriate function spaces, which will be introduced in Sect. 1.2.
Before doing so, we shall discuss the abstract idea of Banach space interpolation.

1.1.5 Interpolation of Banach Spaces

By Banach space interpolation we refer to a process, which for two given Banach
spaces constructs a family of ‘intermediate’ spaces. In this section we shall be con-
cerned with one particular method of Banach space interpolation, called the K-
method.

Let A; and A be two Banach spaces, linearly and continuously embedded in a
topological linear space A (i.e. a linear space with a topology that makes the oper-
ations of addition in the linear space and multiplication by a scalar continuous,—
a relevant special case of a topological linear space being a normed linear space).
Two such spaces are called an interpolation pair {A1, A;}. Consider also the space
A1 N A, equipped with the norm

lall ayna, :=max{llalla,, lalla,},
and the space
Ai+Ay={aeA:a=a1+aya;€Aj,j=12},
with the norm

alla,+a, = inf al|la, + llazlla, -
lalaesss=,_, ik el + lalag)

Obviously, AfNA CA; CA1+ Az, j=1,2.
In order to proceed, we require the following basic definition from category the-
ory; see, for example, Definition 1.1 on p. 9 of Jacobsen [77].

Definition 1.14 A category C consists of the following three ingredients:

O aclass ob(C) of objects (usually denoted by A, B, C, etc.);
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® for each ordered pair (A, B) of objects A, B € C a set hom(A, B) whose el-
ements are called morphisms with domain A and range (codomain) B. For
f € hom(A, B), we shall write f : A — B, and will say that f is a morphism
from A to B;

® for every three objects A, B and C contained in C, a binary operation
hom(A, B) x hom(B, C) — hom(A, C) called composition of morphisms, the
composition of f: A — B and g: B — C being denoted by g o f, such that the
following axioms hold:

@® if (A, B) # (C, D), then hom(A, B) and hom(C, D) are disjoint;
@ (associativity):if f:A— B,g: B— Cand h: C — D, then

ho(gof)=(hog)of;

® (identity): for every object A, there exists a morphism 14 € hom(A, A) such
that f o 14 = f for every f € hom(A, B) and 14 o g = g for every g €
hom(B, A). (The morphism 14 is unique.)

Let us consider the category C;, where the objects A, B, C, ... are Banach spaces
and the morphisms are bounded linear operators L € L(A, B). Let, also, C; be a
category where the objects are interpolation pairs {A, A>}, {B1, B2}, ... while the
morphisms L belong to the set L({A1, Az}, {B1, B2}) of bounded linear operators
from Ay + A3 into By + B>, whose restrictions to A; belong to the set L(A;, B;),
j=12.

By an interpolation functor from C; to C; we mean a rule, which to every interpo-
lation pair {A1, A,} from C; assigns an object F({A], Az}) from C, with AN A, C
F({A1, A2}) C A] + Ay, and to every morphism L € L({A1, A2}, {B1, By}) from C,
it assigns a morphism F(L) from C;, which is the restriction of the operator L to
F({A1, A2}).

The corresponding Banach space A = F({A1, A2}) is called an interpolation
space. We note in particular that A; N A, and A| + A are interpolation spaces.

Suppose that there exist real numbers C > 1 and 6 € (0, 1) such that

ILllE(ar Ap—F(Br. B2y < CILI 5 IL1%, - 5,
is satisfied forall L € L({A1, Az}, {B1, B2}); then, the interpolation functor F is said
to be of rype 0; in particular if C = 1, then we say that the interpolation functor IF is
exact, of type 6. Here ||L||o;— p; denotes the usual operator norm of L : Aj — Bj,
with an analogous definition of || L||r((4,,4,)—F((By,B,}) (cf. (1.2)).

One of the most frequently used interpolation methods is the so-called K -method
(cf. Bergh and Lofstrom [9], Sect. 3.1; or Triebel [182], Sect. 1.3). Let {A, A>} be
an interpolation pair, and define the function

K(t,a, A1, Ay) == inf {lailla, +tllazlla, }-

acA|+Az,a=a+as,a;€A;

Clearly, for any fixed ¢ € (0, 00), a+> K(t,a, A1, Ay) isanormin A| + Aj, equiv-
alent to the norm a > |lalla,1+4,. For0 < < 1 and 1 < g < oo we define the space
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(A1, A2)p 4 as the set of all elements a € A; + A for which ”“”(Al,Az)e,q is finite,
where

%} p th 1/q )
||a||(A1,A2)9,q = {/ [t* K(t,a,Al,Az)] 7} ifl <qg <oo,
0

lallcay Ao i= sup t?K(t,a,Aj, A2) ifg=oc.

0<t<oo

The normed linear space (A1, A2)g,4 thus defined is an interpolation space. The
following relations hold:

(A1, A2)0,g = (A2, AD1-0,4;
(A, A)g g =A,

(A1, A2)e,1 C (A1, A2)e,q C (A1, A2)g,g C (A1, A2)0,00,
l<g=g=oo,
(A1, A2)e.q C (A1, A2)j 5
ifAj CAy, 0<f<f<1,1<g<§g<oo,
3Co.q >O0Va € Ay N Ay allayape, < Coglally’llall’,.
The corresponding interpolation functor
F({A1, A2}) = (A1, A2)gq
is exact, of type 0, i.e. for any L € L({A1, A2}, {B1, B2}),
LIy A2 g B1. By < WL 5 L1, 5, (1.8)

We refer to Theorem 3.4.1 on p. 46 of Bergh and Lofstrom [9] and Theorem 1.3.3
on p. 25 of the monograph of Triebel [182] for proofs of these statements.

1.2 Basic Function Spaces

In this section, we recall the definitions of some standard function spaces, including
those of continuously differentiable and Lebesgue-integrable functions.
1.2.1 Spaces of Continuous Functions

Let N denote the set of nonnegative integers. An n-tuple o = («q, ..., ®,) in N" is
called a multi-index. The nonnegative integer |«| := || + - - - + || is called the
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length of o. We shall write 0:= (0, ..., 0), and let

ali=ay! - a,!,

0
9% 1= 9% ... 9% 9ji=—01 , j=1,...,n.
1 E) / ) ) )
n axj
For x € R" and o € N", we define
x“ :=x;¥' R

with the convention that 0° := 1. For x, y € R", we shall write
xty:=@x £y, ..., % £ yn).

Let Z denote the set of all integers. The set Z" can be partially ordered by lexico-
graphical ordering; that is, for « and 8 in Z",

a<fB & «a;=<B;j, j=1,...,n

For o, B € N, such that 0 < 8 < «, we define

() =)~ () = s

Leibniz’s formula in multi-index notation exemplifies the usefulness of this compact
symbolism: assuming that # and v are two (sufficiently smooth) functions and « is
a multi-index, then

o uvy= Y (Z)B“ﬂuaﬂv. (1.9)
0<B=<a

The proof, by induction, is easy and is left to the reader.

Suppose that £2 is an open subset of R”. For k € N, we denote by C¥(£2) the
set of all continuous (real- or complex-valued) functions u, defined on 2, such that
a%u is continuous on £2 for every multi-index «, || < k. Further, we define

C®(R):= ﬂ ck().
k>0

CO(.Q) is abbreviated to C(£2). BC(£2) denotes the set of all bounded continuous
functions defined on £2, with the norm [|u|| pc(2) 1= Sup,co U (x)].

For k € N, we denote by Ck(2) the set of all u € C¥(£2) such that 3%« can be
continuously extended from £2 onto 2 (the closure of £2), for every multi-index o,
|| < k. Further, we define

C®(Q):= ﬂ ck(2).
k>0
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CY(£2) is abbreviated to C(£2). o
Assuming that §2 is a bounded open set in R” and k € N, the linear space C*(£2)
is a Banach space equipped with the norm

llwll x>y := max sup |0%u(x)|.
e \a|skxeg| |

For k e Nand 0 < A < 1, we denote by CX*(£2) the set of all u € C¥(£2) such that
the quantity

| —max  sup 10%u(x) — 0%u(y)|
ki () +—
e lol=k x£y, x,yef2 lx — y|)L

is finite. C**(£2) is a Banach space with the norm

||M||ck.k(§) = ||u||ck(§) + |’4|(;k,k(§)'

When u belongs to C%*($2), 0 < A < 1, we say that u is Holder-continuous on 2
with exponent A; if A = 1, the function u is said to be Lipschitz-continuous on 2.

Example 1.10 Let §2 := By, the unit ball in R” centred at the origin, and let
u(x):=lx|*, xeB,

where | - | = || - || is the Euclidean norm from Example 1.1. For 0 < A < 1, the
function u is Holder-continuous on £2 with exponent A; when A = 1, u is Lipschitz-
continuous on £2.

The support, suppu, of a continuous function u, defined on an open set £2 con-
tained in R", is the closure in £2 of the set {x € £2 : u(x) # 0}; in other words, supp u
is the smallest closed subset of £2 such that u =0 on £2 \ suppu. If suppu € 2, we
say that u has compact support in 2.

For k € NU {oo}, C'g(.Q) denotes the set of all u € C¥(£2) with compact support
in £2. In the theory of distributions the elements of C;°(£2) are called test functions.
Our next example demonstrates the existence of test functions.

Example 1.11 Consider the real-valued function w defined on R" by

Cexp((Jx]> = DN if|x| <1,
0 otherwise,

a)(x):{

where C is a constant chosen so that fRna)(x)dx = 1. For ¢ > 0 we define
we(x) = e "w(x/e). Then, w belongs to C7°(R"), suppw, = B := B(0, ¢), and
Jrn we(x)dx = 1.

The next lemma encapsulates the properties of a special test function, which will
be required in our subsequent arguments.
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Lemma 1.15 For an open set A C R" and ¢ > 0, there exists a function ¢, €
Cg°(R™), such that

p(x) =1, xeA%; e (x) =0, x¢A*;
0<@(x) <1, [8%e(x)| <Cee™™ vxeR",

where Cg is a positive constant, and A® and A3¢ denote, respectively, the &- and
3e-neighbourhood of the set A (cf. Sect. 1.1.1.1).

Proof Let w, be the function defined in Example 1.11. The function

@e(x) :Z/ we(x — y)dy
A2e

then possesses the required properties. g

1.2.2 Spaces of Integrable Functions

For a real number p > 1 and an open set £2 C R", let L,(£2) denote the set of
all (real- or complex-valued) Lebesgue-measurable functions u# defined on £2 such
that |u|? is integrable on £2 with respect to the Lebesgue measure dx = dxy - - - dx,
(see, for example, Bartle [8]); we assume here that any two functions that are equal
almost everywhere (i.e. equal, except perhaps on a set of zero Lebesgue measure)
are identified. With this convention, L ,(§2) is a Banach space with the norm

1/p
lullL, ) = (/{Ju(x)\‘"dx)

In particular when p =2, L,(£2) is a Hilbert space with the inner product
(u,v) ::/ u(x)v(x)dx.
2

Lo (£2) denotes the set of all Lebesgue-measurable functions u defined on £2 such
that |u| has finite essential supremum; the essential supremum of |u| is defined as
the infimum of the set of all positive real numbers M such that |u| < M almost
everywhere on £2. Again, any two functions that are equal almost everywhere on 2
are identified. Lo, (£2) is a Banach space with the norm

lullLo2) = ess.supxeg|u(x)|.
Hoélder’s inequality. Let u € L,(£2) and v € Ly(82), where 1/p+1/g=1,1=<
p,q <o0o.Then, uv € L1(§2) and

<llullz, @ llvliz,2)-

‘/ u(x)v(x)dx
2
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For p = g = 2, this yields as a special case the Cauchy—Schwarz inequality:

[, v)| < NullLy@) 1l Ly (2)-

When u € L1(O) for every set O € §2, u is said to be locally integrable on S2.
The set of all locally integrable functions defined on £2 is denoted by L jo0(2).
Clearly, C(£2) is contained in L1 ;o0 (§2) but not in L (£2).

Example 1.12 The function u(x) = exp |x| is continuous and locally integrable on
R", but it does not belong to L ,(R") for any p, 1 < p <oo.

Lemma 1.16 (du Bois-Reymond’s Lemma) Let u and v be locally integrable func-
tions on §2 and suppose that

/QM(X)tp(x)dX=/9v(X)<p(X)dx Vo € C37(82);

then, u = v almost everywhere on §2.

Proof Let us define w :=u — v. Then,

f wx)px)dx =0 Vo € C(R). (1.10)
2

Further, as w € L1 ,.(§2), according to a strengthened version of Lebesgue’s dif-
ferentiation theorem (cf. Theorem 7.7 on p. 138 of Rudin [157]),

lim s—"/ lw(x) —w(y)|dy =0, (1.11)
x—yl<e

e—0

for almost every x. By recalling the definition of the function @ from Example 1.11
and assuming that ¢ is sufficiently small, (1.10) implies that

w(x) = 8—"f (w(x) — w(y))w()%) dy, xef.
—yl<e

By noting that max|x_y|<¢ |0 ((x — y)/&)| = max|;<1 w(z) = C/e, with C as in
Example 1.11, and then letting ¢ — 0 and applying (1.11), we deduce that w(x) =0
for almost every x € §2. O

Du Bois-Reymond’s lemma is frequently referred to as the fundamental lemma
of the Calculus of Variations.

The support, suppu, of a measurable function u defined on £2 is the smallest
closed subset of 2 such that u = 0 almost everywhere in §2 \ supp u. This definition
is a consistent extension of our earlier definition of the support of a continuous
function in Sect. 1.2.1.
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1.3 Distributions

This section introduces various classes of distributions on an open set 2 C R” and
surveys their main properties.

1.3.1 Test Functions and Distributions

To give an informal definition, a distribution is a continuous linear functional on the
space C;°(£2) of infinitely differentiable functions with compact support. In order to
state the precise definition of a distribution, we have to qualify the word continuous.
This is achieved by introducing a topology on C{°($2), or simply by defining the
concept of convergence in Cg°(§2).

Definition 1.17 A sequence {¢n};,_; C C;°(£2) is said to converge to ¢ in C§°(£2)
if there exists a set O € £2 such that supp ¢, C O for every m, and 9%¢,, converges
to 9%¢, uniformly on 2, as m — oo, for every multi-index o € N".

When equipped with this definition of convergence the linear space C3°(£2) is
denoted by D($2); thus we write ¢, — ¢ in D(£2) as m — o0.

Now suppose that u is a linear functional on D(S2), i.e. to every ¢ in D(£2), u
assigns a (complex) number denoted by (u, ¢) (instead of u(p)), and

(u, b +pfr) =Au, o) + uu, ), A, pneC, ¢, eD(2).

We shall say that u is a continuous linear functional on D(82) if (u, ¢,) — (u, @)
as m — 0o, whenever ¢,, — ¢ in D(£2) as m — o0.

Definition 1.18 A continuous linear functional on D(£2) is called a distribution
on £2. The set of all distributions on §2 is denoted by D'(£2).

The next theorem provides a useful characterization of distributions.

Theorem 1.19 Suppose that u is a linear functional on D(S2); then, the following
statements are equivalent:

(2) u e D'(2);
(b) for every open set O € §2 there exists a real number K = K (O) and a nonneg-
ative integer m = m(Q) such that

[, )| < Kll@llenim, Vo €DO). (1.12)

Proof 1t is clear that (b) implies (a). The converse implication is established by
reductio ad absurdum. Let us therefore assume that u € D’(£2) and that (b) is false.
Then, there exists a set O € §2 and a sequence {gy, }>-_; C D(O) such that

[, om)| = mlgmllon ), m=1.2,....
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Let ¥, := gom/(m||g0m||c,,l(5)) and note that sup, .o 0% ¥, (x)| < 1/m for all
o € N" such that |a| < m. Thus, {,,},"_, converges to zero in D(§2) as m — oo,
whereas |(u, ¥, )| > 1 for all m > 1, and therefore u is not a continuous linear func-

tional on D(£2). This contradicts (a). O

Suppose that u is a distribution on £2. If the integer m appearing in (1.12) is
independent of the choice of O, we say that u is of finite order; the smallest such
integer m is called the order of the distribution u. If such an integer does not exist,
we say that u is of infinite order.

Example 1.13 The linear functional §, defined by
(8,9) :==p(0), ¢eD(R"),

is a distribution on R” of order 0; § is called the Dirac distribution concentrated
at 0.

Example 1.14 The linear functional u, defined by

(,0):= Y ¢(@), ¢eD(R"),

aeZlt

is a distribution of infinite order.

Definition 1.20 Two distributions u, v € D’'(§2) are said to be equal on O C £2 if
{(u, @) = (v, @) for every ¢ € D(O). In particular, a distribution u € D'(£2) is said
to be equal to 0 on O C £2 if (u, ¢) =0 for every ¢ € D(O).

We can now define the support of a distribution u € D'(£2). Let £2,, denote the
union of all open sets O C £2 such that u is equal to 0 on O. Then, £2, is the largest
open subset of £2 on which u is equal to 0. The complement of £2,, with respect to
£2 is called the support of u and is denoted by supp u. By definition, the support of a
distribution is a closed set, relative to §2. If suppu € §2, we say that u has compact
support in §2. For example, the Dirac distribution concentrated at 0 has compact
support suppd = {0} in R”, whereas the distribution considered in Example 1.14
has Z" as its support, which, being an unbounded set in R", is not compact in R”.

Next we show that a distribution whose support is a compact subset of an open
set 2 C R" can be extended from Cgo (£2) to a continuous linear functional on
C>(82) D Cy°(£2). For this purpose the linear space C*°(2) is equipped with a
definition of convergence.

Definition 1.21 A sequence {¢,,};,_; C C*°(£2) is said to converge to ¢ in C*°(£2)

if, for every O € £2 and every multi-index «, 3% ¢, converges to 3% ¢, uniformly on
O, as m — 0.
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The linear space C°°(§2) equipped with convergence in this sense will be de-
noted by £(£2). Clearly £(£2) D D(S2), as a topological inclusion, meaning that a
sequence in D(£2) that converges to an element of D(£2) converges to the same
element, when considered as a sequence in £(§2).

We denote by £'(£2) the linear space of continuous linear functionals on £(§2).
According to the next theorem each element of £'(§2) can be identified with a dis-
tribution with compact support.

Theorem 1.22 A distribution u € D' (§2) has compact support in $2 if, and only if,
it admits an extension from D(82) to a continuous linear functional on £(S2).

Proof Suppose that u € D'(§2) and K = suppu € £2. Further, let n € D(£2), with
n(x) = 1 in a neighbourhood of K; the existence of such a function 7 is guaranteed
by Lemma 1.15. We define & by

(i, ) ={u,np), ¢ecl(L).

This definition is correct in the sense that it is independent of the choice of 5 in
£(£2). Clearly u is a continuous linear functional on £(£2), and (i, ¢) = (u, ) for
all ¢ € D(£2). Thus u is a continuous extension of u to £($2).

We note in passing that i is the unique continuous extension of u from D(£2) to
£(£2). Suppose that ieé& (£2) is another continuous extension of u from D(£2)
to £(£2). We consider a sequence of open sets £21 € §2 € --- such that 2 =
U;’le 2, and a sequence of test functions {n,}>°_; C D(£2) such that n, =1
on 2, and n, — 1 in £(£2) as m — oo. Then, for every ¢ € £(£2), nue — ¢ in
£(£2) as m — oo. Consequently,

(i, @) = (@, lim nag)= lim (@, nn@) = lim (@, nng)
m— 00 m— 00 m— 00

= lim (@, ) = (i, lim_nne) = (i @), ¢ € ),
m—0o0 m— o0
and therefore i = i.

Conversely, suppose that u € D’(£2) admits an extension to a continuous linear
functional & in £'(§2) and assume that u does not have compact support in £2.
Then, we can construct a sequence of sets, 2] € 2, € ---, 2 = Ufnozl £2,,, and
a sequence of test functions {¢,,}°>°_, C D(£2) such that supp g, C £2 \ £2,,, and
(u, om) = 1. Because for any O € §2 one can choose m so large that O N supp ¢,
is an empty set for m > my, it follows that ¢,, — 0 in £(£2) as m — 00; hence
(tt, ;) — 0, m — 0o. On the other hand,

(t, om) =W, om)=1, m=1,2,...,
which is a contradiction. Therefore # must have compact support. U

So far, we have treated functions and distributions as disparate mathematical ob-
jects. We shall now show that every locally integrable function can be identified with
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a distribution in a unique fashion. For f € L1 j,(£2), consider the linear functional
uy on D(£2) defined by

(ur, @) 1=/9f(X)</)(X)dx, ¢ € D(£2). (1.13)

By applying Theorem 1.19 it is easy to show that u is a distribution on £2 of order 0.

A distribution uy € D'(£2) associated with a locally integrable function f €
L1.10c(82) through (1.13) is called a regular distribution. By Lemma 1.16, (1.13) es-
tablishes a one-to-one correspondence f + uy between locally integrable functions
and regular distributions. In particular, the support of a locally integrable function
coincides with the support of the associated regular distribution. In the following,
for the sake of notational simplicity, a locally integrable function will be identified
with the associated regular distribution and the same symbol will be used to signify
both. If a distribution is not regular, it is called singular.

Example 1.15 The Heaviside function H, defined by

1 ifx>0,
0 otherwise,

H((x) = {

is associated with a regular distribution (also denoted by H) through
oo
(H, @)= fo p(x)dx, ¢eDR).

We have seen above that every regular distribution is of order 0. The next example
shows that the converse statement is false; therefore, regular distributions constitute
a proper subset of the set of distributions of order 0.

Example 1.16 The Dirac distribution § is a singular distribution of order 0. Indeed,
Lemma 1.16 implies that there is no function f € L jo-(R") such that

0(0) = fR F@p)dr, ¢ eD(R").

For u, v € D'(£2) and A, u € C, we define the linear combination Au + v by
(Au+ pv, @) :=ru, ) + ul{v, @), ¢ €D(£2).

By recalling Definition 1.18, it is easily seen that Au + pv belongs to D’ (§2). Thus
we have equipped D’(£2) with the structure of a linear space. Next we define con-
vergence in D' (£2).

Definition 1.23 A sequence of distributions {um}fn":1 C D'(£) is said to converge
to a distribution u in D' (82) if (u,,, @) — (u, ), m — oo, for every ¢ € D(£2).
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In order to illustrate the difference between convergence in the sense of distribu-
tions and pointwise convergence, we consider two examples.

Example 1.17 (Convergence in D’ by oscillation) Consider the sequence {u,}°°_,
in D'(R), where u,, (x) = sinmmx, m = 1,2, .... Then, for each ¢ € D(R),

o0
(Um, @) =/ @(x)sinmmx dx

—00
oo

=— ¢’ (x)cosmmxdx — 0, m— oo.
mr J_s

Hence {u,,};_, converges to 0 in D'(R). Note, however, that the sequence of real
numbers {u,, ()c)};'f:1 does not converge, unless x is an integer.

Example 1.18 (Convergence in D’ by concentration) Suppose that u is a con-
tinuous function with compact support, defined on R, such that suppu = [0, 1]
and fRu(x) dx = 1. Consider the sequence {“m}rono:p with u,, (x) := mu(mx),
m=1,2,.... Then, for any ¢ € D(R),

1

(ttm, @) — 9(0)| = ‘ /0 u(x)[@(x/m) — ¢(0)] dx
1

< sup ’(p(x)—(p(O)‘/}u(x)|dx—>(), m — 00.
0<x<1/m 0

Hence, as a sequence of distributions, {u,, }fnozl converges to 4, the Dirac distribution
concentrated at 0. In contrast with this behaviour, the sequence of functions {u,, }>-_,
converges pointwise to 0; that is, u,, (x) — O for each fixed x € R as m — oo.

1.3.2 Operations with Distributions

In this section we introduce further operations, including multiplication of a distri-
bution by a smooth function, differentiation, translation, reflection, tensor product
and convolution of distributions.

(A) Multiplication by a Smooth Function  Suppose that u € L1 j,(§2) and a €

C°°(£2); then au is also locally integrable on £2. By identifying a locally integrable
function with the associated regular distribution we can write

(au, ¢) = /Q a(x)u(x)p(x)dx

= /Q u(x)a(x)p(x)dx = (u,ap), ¢ e€D(82).
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This identity motivates the following definition: for u € D' (§2) and a € C*°(£2),
we define the linear functional au on D(£2) by

(au, @) = (u,ap), ¢ eD().

By recalling Definition 1.18 (or Theorem 1.19) and the Leibniz formula (1.9) it is
easy to show that au € D'(£2).

For this definition to be meaningful it is necessary that a is in C°°(£2), and if
this is not the case then the product au is not defined within the present theoretical
framework. Concerning various extensions of the theory of distributions that over-
come this limitation the reader may consult, for example, the monograph [145] or
the survey paper [146].

Example 1.19 Let a(x) = (1 + |x|?)*, where s is a real number. Then, a8 = §; in-
deed, a € C*°(R") and

(ad, @) = (8, ap) = (ap)(0) = p(0) = (8, 9), ¢ € D(R").

(B) Differentiation  Suppose that u € C¥(£2); then 8%u is a locally integrable func-
tion on £2 C R" for each « € N" with |¢| < k. By identifying a locally integrable
function with the associated regular distribution we have that

(Bo‘u,(p):/ho(a“u)(x)(p(x)dx

=(—1)'”'/Qu(x>(a“w)<x>dx=(—1)'a'(u,a”¢), ¢ € D(R2),

where integration by parts has been performed to transfer the derivatives from u
to ¢.

Motivated by this identity, we define the (distributional) derivative 0*u of a dis-
tribution u € D’ (§2) by

(0%u, @) := (—=D"I(u,8%¢), ¢ e D(£2). (1.14)

By recalling Definition 1.18 it is easy to show that 8%u € D’(£2). In addition, be-
cause our test functions are infinitely many times differentiable, it follows from
(1.14) that a distribution admits derivatives of any order.

Example 1.20 Consider the Heaviside function H defined in Example 1.15. Since
H is locally integrable on R, it can be identified with a regular distribution, also

denoted by H. The first (distributional) derivative of H, denoted by H’, is 8, the
Dirac distribution concentrated at 0. Indeed,

(H'.o)=—(H.¢')=— /0 ¢'(x)dx =9 0)=(8,9), ¢eD®),

where ¢/ (x) = 229 If then follows by Definition 1.20 that H' = 5.
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(C) Translation ~ Suppose that a is a fixed element of R” and u € L . (R"). The
translation t,u of u is defined by

(tau)(x) :=u(x —a), xeR".

Clearly, t,u is also locally integrable on R”. By identifying a locally integrable
function with the associated regular distribution we obtain

(talt, @) =/ u(x —a)p(x)dx
Rll
=/.MM¢@+aNx=WJaM% ¢ € D(R").
Rn

Motivated by this identity, we define the translation of a distribution u € D'(R") by

(Talt, ) := (u, 7—q9), ¢ € D(R").

Thanks to Definition 1.18, t,u € D' (R").

Example 1.21 For a € R" consider the distribution §, defined by

(ba.9) :=p(a). ¢ eD(R").

84 1s called the Dirac distribution concentrated at a. By noting the definition of 7,
we can write 8, = 1,60 = 7,0.

(D) Reflection  The reflection u_ of u € L1 1o-(R") is defined by u_(x) = u(—x).

Thus, by identifying a locally integrable function with the associated regular distri-
bution, we obtain

(u—, @) =/H; u(—x)p(x)dx

:/Ru(x)w(—x)dxz(u,gp_), (pED(R”).

This identity motivates the following definition of the reflection u_ of a distribution
u € D'(R"):

(u_,¢):=(u,9-), ¢eDR").

Example 1.22 The Dirac distribution concentrated at O is its own reflection; that is,
8_ = 4. More generally, (§,)— = §_, for any a in R".

(E) Tensor Product  Consider two functions, # and v, defined on £2; and £2,
respectively, where £2; and 2, are open sets in R"! and R"2, respectively, and
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u € Lyoc($21) and v € L1 jo-(£22). The arguments of # and v will be denoted by x
and y, respectively. The tensor product u x v of # and v is defined by

( x v)(x, y) = u)v(y) (= vux)),

and is clearly locally integrable on £21 x £2,. By identifying a locally integrable
function with the associated regular distribution we have that

(X v, 9) = / U (L)@, y) dr dy
QIX 2

_ / u(x)(/ v(y)go(x,y)dy)dx
2 2

=/ v(y)</ u(X)qo(x,y)dx>dy
2o 1

Z/ v(ux)ex, y)dxdy = (v X u, @)
.QIX.Qz

for all ¢ in D(£2] x §2,), where Fubini’s theorem has been used to change the order
of integration (cf. Theorem 8.8 in Rudin [157]). Because the functions

R / (e, y)dy = (v, 9(x, ),
2,

y+—>/g u()g(x, y)dx = (u, ¢(-, y))
1
belong to D(£21) and D(£2,), respectively, we can write
(uxv,0)=(u (v,9)), ¢eDE2 x22), (1.15)

(wxu,0)=v,(u,0)), ¢eD(E2 x2). (1.16)

More generally, if u € D'(£21) and v € D’'(§2,), the functions x — (v, ¢(x, -)) and
y = (u,@(-,y)) still belong to D(§21) and D(§2;), respectively. In this case, we
define u x v and v x u by (1.15) and (1.16), respectively. We note that x is a com-
mutative operation, thatis u X v =v X u.

The tensor product of m distributions u; € D'(§2;), i =1, ..., m, where £2; is
an open subset of R", i =1,...,m, is defined recursively, starting from the case
m = 2 discussed above.

Example 1.23 Let a = (ay, ..., ay), and consider the Dirac functions §, € D'(R")
and 8aj € D'R), j=1,...,n, concentrated at the points a and aj, j=1,...,n,
respectively; then,

8q =84y X +++ X Bg,.
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(F) Convolution  The convolution u * v of two functions u and v on R” is defined
by

(u*v)(x):=/ u(vx —y)dy, xeR”,
Rn

whenever the integral exists; below, we describe two instances when this is the case,
and u * v is locally integrable on R".

(1) Suppose that u € L1 joc(R"), v € L1 joc(R"), suppu C A, suppv C B, where
A and B are two subsets of R” such that

TM={(x,y)€AxB:|x+y|§M}

is a bounded set in R?" for every M > 0; in particular, Ty is bounded in R if
either A or B is a bounded set in R”.

We shall prove that, under these hypotheses, u * v belongs to L1 ;o (R"). Indeed,
for any M > 0, Fubini’s theorem implies that

/ |(u*v)(x)|dx§/ / |u(y)Hv(x—y)|dydx
|x|<M [x|<M JR"

=fT ()] u ()] d& dy < oo.

In particular, u * v € Ly jo.(R") if either u or v has compact support in R".

(ii) Suppose that u € L,(R") and v € L,;(R"), where 1/p + 1/q > 1. Then,
uxveL.(R"),wherel/r=1/p+1/q—1.

When r = oo, the claim is a simple consequence of Holder’s inequality. If 1 <
r < 00, we choose @ € (0, 1], B8 € (0,1],s > 1, > 1 such that

1/r+1/s+1/t=1, ar=p=(1—a)s, Br=q=1-—p)t.
Since r > max(p, q), such «, B, s and t always exist; we shall adopt the convention
thats =occifa=1landt =ocoif g =1.

Holder’s inequality, Fubini’s theorem and the translation-invariance of the
Lebesgue measure yield the following sequence of estimates:

[lu *v”rL,(Rn) = /R"‘/Rn u(y)v(x —y)dy| dx
= /IR [/R o = )Pl o = | dy] W

< / / )| oo = " dy ey G5
R® JR?

(1-8)
vx — ')”qu(R/i)dx

r r
||”||LP(R")||U||Lq(R”)'
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This establishes Young’s inequality:

lus*vlz, @y < lullz,®ylvie,®),
uelL,(R"), veL,(R"), 1/r=1/p+1/q—1. (1.17)

In each of the two cases considered above u * v is locally integrable on R” and
gives rise to a regular distribution, still denoted by u * v. Moreover,

(u*v,p)= / (u*xv)(x)p(x)dx
Rn

=/ w(x)/ u(y)v(x —y)dydx
R~ Rn

:/ u(y)/ b(x — y)g(x) dx dy
R R

:/ u(y)/ v(&)e(y +£&)dEdy
Ry R

=/n /Rnu(x)v(y)m(x,y)dxdy, ¢ € D(R"),

where ¢4 : (x,y) € R" x R"  ¢(x + y), and Fubini’s theorem has been used.
Motivated by this identity, we define the convolution u * v of u € D'(R") and v €
D'(R") by

(uxv, @) :=(uxv,¢0s), @€ D(R"),

whenever the right-hand side makes sense. We note that the hypothesis about the
meaningfulness of the expression on the right-hand side is an essential part of the
definition: for ¢ € D(R"), ¢, does not have compact support in R?*, and therefore
the defining expression may not make sense for certain pairs of distributions u and v.

An important class of ‘convolvable’ distributions is singled out by the next theo-
rem (see Sect. 4.3 of Chap. I in Vladimirov [185]); it is a natural generalization of
case (i) considered above.

Theorem 1.24 Suppose that u € D'(A) and v € D'(B), where A and B are two
open sets in R" such that

TM={(x,y)€AxB:|x+y|§M}

is a bounded set in R*" for every M > 0. Then, u x v exists as an element of D' (R™)
and supp (u * v) C A + B; furthermore,

(u*v,p)= (u X v, (W’?)‘P+>’ pe D(Rn)’

where Y and n are two functions in C®°(R") that are equal to 1 in A® and B®
and equal to 0 in the complement of A% and B3¢, respectively, for some & > 0. In
particular u x v exists in D'(A + B) if either u or v has compact support.
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We note that the existence of the functions ¥ and n appearing in Theorem 1.24
is guaranteed by Lemma 1.15.

Example 1.24 Let u € D'(R™). Since the Dirac distribution § has compact support,
u * 8 exists in D' (R"™). Moreover, u * § = u; indeed,

(Ux8,0)=(ux8,¢y)=(u, (8 ¢1))=(u,9), ¢eDR").

If the convolution u * v exists then v * u also exists, and because x is a com-
mutative operation so is *; that is, u % v = v % u, whenever u % v or v * u exists.
A particularly important property of convolution is that it commutes with differen-
tiation. More precisely, if u * v exists in D’(R"), then

%uxv=0%u *v) =ux9%. (1.18)
Example 1.25 For h > 0 let ¥, denote the continuous piecewise linear function
defined on R by

if [x| < h,
otherwise,

Lepg g2
Wh(x):z{g(l 5D

and let u € D'(R"). Since ¥, has compact support, u * v, is correctly defined in
D’(R"™) and (1.18) applies. In particular,

S_p — 280+ dn (Th—2+r_h)
* = u
h?2 h?2 ’

u" kY =uxyy =u

where u” and ;" denote the second distributional derivative of u and 1, respec-
tively. The expression on the far right is called the second divided difference of u.

The convolution of several distributions is defined analogously. For example, if
u, v and w are three distributions on R"” and ¢4 : (x,y,2) € R" x R* x R"
¢(x + y + z), the convolution u * v x w is defined by

xvxw, @) :=(uxvxw,ey), ¢eDR"),

whenever the right-hand side makes sense. The convolution u * v % w is correctly
defined if at least two of the three distributions u, v, w have compact support.

A further class of ‘convolvable’ distributions, whose properties mimic those de-
scribed in case (ii) above, is discussed in the next section.

1.3.3 Tempered Distributions

In this section we consider a class of distributions with ‘limited growth-rate’, called
tempered distributions. One of their key properties is that they have a well-defined
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Fourier transform, which is of significance in the theory of partial differential equa-
tions. We begin by describing the associated test space of rapidly decreasing func-
tions.

Let S(R") denote the set of all functions ¢ € C°°(IR") such that, loosely speak-
ing, 8% decays faster than any nonnegative power of |x|~! as |x| — oo, for every
multi-index & = (a1, ..., o) € N*. The elements of the set S(R") are called rapidly
decreasing functions. Thus ¢ is rapidly decreasing if
|N | 80[

|9IN.o := sup |x Q)|

xeR”

is finite for every N > 0 and every multi-index o € N".

Example 1.26 The function ¢ : x € R" > x%e~4*’ ¢ R is an element of S(R") for
any multi-index « € N” and any real number a > 0.

The set S(R") can be supplied with the structure of a linear space in the usual
way. Next, we introduce the notion of convergence in S(R").

Definition 1.25 A sequence {gn},,_; C S(R") is said to converge to ¢ in S(R") if
|om — @|N.a = 0as m — oo, for every N > 0 and every multi-index o € N".

When equipped with convergence in this sense, the linear space S(R") is called
the space of rapidly decreasing functions, or Schwartz class. Clearly D(R") C
S(R™); in fact D(R") is dense in S(R"). This is easily seen by considering, for
any ¢ € S(R"), the sequence {¢,},,_, C D(R") defined by

Om(X) :=w<f><p(x), m=1,2,....
m

where w € D(R") with w(0) = 1, which converges to ¢ in S(R") as m — oo.

Given a linear functional u : ¢ € S(R") — (u, ¢) € C, we say that it is con-
tinuous on S(R") if, whenever ¢,, — ¢ in S(R") as m — oo, it follows that
(u, o) — (u, @) as m — oo.

Definition 1.26 A continuous linear functional on S(IR") is called a tempered dis-
tribution. The set of all tempered distributions is denoted by S’ (R").

Similarly to S(R"), the set S’(R") can be equipped with the structure of a linear
space in the usual way. Next we define convergence in S’ (R").

Definition 1.27 A sequence {u,,},_, C S’(R") is said to converge to u in S’ (R")

if (up, @) — (u, ¢) as m — oo for every ¢ € S(R").

When equipped with convergence in this sense, the linear space S’ (R") is called
the space of tempered distributions. It is clear from these definitions that if u €
S’'(R™) then its restriction from S(R") to D(R") belongs to D' (R").
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Example 1.27 Suppose that f is a Lebesgue-measurable function on R" such that

/Rn(1+|x|)*m|f(x)}dx<oo

for some m > 0; then, f defines a tempered distribution uy € S "(R"™) via

(uy, ) = /R f@edr, g eSER).

In the following, any such function f will be identified with the induced tempered
distribution us. Thus, in particular, by Holder’s inequality, L,(R") C S’"(R") for
every p, 1 < p <oo.

Loosely speaking, Example 1.27 indicates that any function that has at most
polynomial growth can be identified with a tempered distribution. There are, how-
ever, regular distributions that do not belong to S'(R"); a simple example is
f(x)=explx]|, x e R".

Example 1.28 Suppose that u is a positive Borel measure on R” (cf. Ch. 2 of [157]),
such that fRn(l + |x)7™ du(x) < oo for some m > 0; then

(1, @) = /R p(x)du(x), ¢eS(R"),
defines a tempered distribution on R”.

Example 1.29 If u € £'(R"), then its restriction from £(R") to S(R") is a tempered
distribution. Thus &'(R") C S’ (R").

The basic operations on D’(£2) introduced in Sect. 1.3.2 can be carried across to
the space S’(R") by replacing D(£2) and D(R") in the definitions of those opera-
tions with the Schwartz space S(R").

(A) Multiplication by a Smooth Function  Suppose that a € CI?,IO (R™); that is, a €
C°°(R") and for every multi-index o € N" there exist nonnegative real numbers K
and m such that

0% (x)| < Ko (1+ 1)), x eR".
Then, for u € S'(R"), we define au in S’'(R") by
(au, ) := (u,ap), ¢ eS(R").

As ag belongs to S(R"), this definition is correct.
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(B) Differentiation ~ For a multi-index o € N", the derivative 3%u of u € S'(R") is
defined by
(0%, @) = (—1)'“'(14, 3¢), @eSR");

clearly %u is an element of S’(R") for each o € N".

(C) Translation and reflection  The translation t,u and the reflection u_ of u €
S’(R™) are defined by

(tatt, @) == (u, 7—q9), ¢ €S(R"),
and

(U_, @) :=(u,9-), ¢eSR"),

respectively.

(D) Tensor Product  The tensor product u x v of two tempered distributions u €
S'(R™) and v € §'(R™) is defined by

(U x v, @)= (u, (v, (p)), e S(R”+m).
Tensor product is a commutative operation: u X v =v x u € S'(R"™").

(E) Convolution ~We see from Theorem 1.24 that if u € S'(R") and v € £&'(R")
then the convolution u * v exists in D’(R") and is given by

(uxv, )= (uxv,nps), ¢SSR, (1.19)

where 7 is an arbitrary function in D(R") such that n(x) =1 on (suppv)® and
n(x) = 0 in the complement of (supp v)3¢. In fact, since u X v belongs to S’ (R")
and the mapping ¢ € S(R") > ng, € S(R?") is linear and continuous, it follows
that the right-hand side of (1.19) defines a continuous linear functional on S(R"),
and therefore u * v belongs to S’ (R™).

We have seen in Sect. 1.3.2(F), case (ii), that the convolution of two locally inte-
grable functions may exist when neither has compact support: all that is required is
that they have appropriate rates of decay as |x| — co. We now consider the gener-
alization of this result to distributions.

If u e S'(R") and v € S(R"), then the convolution u * v exists in Cj7 (R") and
is given by

(uxv,0) = xv,p1)=u (v,04))={u, Wxp)-), ¢ecSR").

Using this result it can be shown that S(R") is dense in S’ (R"): if u € S'(R"),
then, by recalling the definition of w, from Example 1.11, the convolution u, = w; *
u belongs to C§; (R") and uy — u in S'(R") as ¢ — 0; in addition if a € C§; (R")
then the function a, defined by

as(x) :=a(x)exp(—elx]?), xeR",
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belongs to S(R") and converges to a in S’ (R") as e — 0. Consequently the function
x €R" > (wg % u)(x) exp(—e|x|2)
belongs to S(R") and converges to u in S’(R") as ¢ — 0. It is easy to show by a

similar argument that S(R") is dense in L ,(R") for 1 < p < 0.
We note however that the closure of S(R") in Lo, (R") is a proper closed linear

subspace of Ly (R") consisting of uniformly continuous functions on R” that tend
to zero at infinity. Therefore S(R") is not dense in Lo (R").

1.3.4 Fourier Transform of a Tempered Distribution

We begin by considering the Fourier transform of a rapidly decreasing function.
Suppose that ¢ € S(R"); the Fourier transform F¢ of ¢ is defined by

(Fo)(§) = f p(x)e " Fdx, EeR",
Rﬂ
where, for x = (x1,...,x,) in R" and & = (¢, ...,&,) in R",

x-&=x161 4+ xnén.

It is clear from this definition that F¢ is a bounded continuous function on R”.
Moreover, F¢ is infinitely many times continuously differentiable on R” and

9% (Fg) = F[(—1x)%¢].
Furthermore, integration by parts yields the following identity:
F(3“p) = 0&)*(Fp).

Consequently Fg € S(R") whenever ¢ € S(R"). In fact, F maps S(R") onto itself
and any ¢ in S(R") can be expressed in terms of its Fourier transform F¢ in S(R")
by means of the Fourier inversion formula

1
_ 1x-§
o) =G /R o) ds.

It follows from this formula that the inverse Fourier transform F~! is defined on the
whole of S(R"), p = F"'Fp = FF~'¢, and F~! is given by

(F o)) =

1x-& n
@) /Rnw("g‘)e dg, (peS(R )
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The Fourier transform on L (R") is defined in the same way as on S(R"); given
a function u € L;(R"), we define

(Fu)(§) :=/ u(x)e ™ Edx, £eR.
Rn

According to the Riemann—Lebesgue lemma (cf. Theorem 1.2 in Chap. I of Stein
and Weiss [168]) Fu is a bounded and continuous function on R”. By recalling
Example 1.27 with m > n, we deduce that Fu defines a tempered distribution on
R", still denoted by Fu, via

(Fuo) = [ Fu@p@de, peSE).

By applying Fubini’s theorem we deduce that

f Fu(®)p(€) ds = / [ f u()e dx}o(s)ds
R~ R» R~
=/ u(x)f (p(g:)e—'xfdsdx=/ u(x)Fo(x)dx
R R? R?
for every ¢ € S(R"). Thus
(Fu,9) = (u, Fp), ¢eS(R"). (1.20)
Similarly,

(F'u,@)=(u, F'¢), ¢eSR"). (1.21)

These identities motivate the definitions of F and F~! on S'(R"): for u € S'(R"),
we define Fu and F~'u by (1.20) and (1.21), respectively. Obviously, if u € S'(R")
then Fu and F~'u are also tempered distributions, and u = FlFu=FF lu.
The properties of the Fourier transform on S(R") imply the following identities

on S’ (R"):

(0%Fg) () = F[(—ix)*¢],

F(0%)(§) = &) Fo(&),

Fs=1.

If u € S’(R") and v € S'(R™), then
F(u xv)=Fu x Fu;

here the letter F on the left-hand side signifies the Fourier transform on S’ (R"*+"),
whereas F' in the first and second factor on the right-hand side denotes the Fourier
transform on &' (R") and S’'(R™), respectively.
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Since &£’ (R") is contained in &’ (R™), a distribution # with compact support has
a well-defined Fourier transform Fu in S&’(R"). However Fu can be shown to be
more regular: when extended from R” to C", the Fourier transform of a distribution
with compact support is holomorphic on the whole of C”; in other words, it is an
entire function.

Theorem 1.28 The Fourier transform of a distribution u € £'(R") is the function
Fu:§— (u,e_g), (1.22)

where eg(x) = exp(ix - §). The right-hand side of (1.22) is correctly defined for
every complex vector & € C" and is an entire function of &, called the Fourier—
Laplace transform of u.

Proof The theorem is obviously true if u is a regular distribution. To prove it in
general, let us recall the test function w, from Example 1.11. As u % w, — u in
S’(R"™) when ¢ — 0, it follows that F (uxw,) — F (1) in S’ (R") as ¢ — 0. Now, the
Fourier transform of u * w, is the holomorphic function§ € C" = (u*w;,e_¢) € C,
and

(*wg,e—g) = (u, () xe_g) = (Fo)(e€)(u, e_g).

Recall that if a sequence of holomorphic functions on an open set £2 C C" converges
uniformly on compact subsets of £2, then the limiting function is holomorphic on £2
(cf. Proposition 5 on p. 7 of Narasimhan [142]). Since (Fw)(¢§) — (Fw)(0) =1 as
¢ — 0, uniformly on compact subsets of C", and therefore the sequence {£ € C"
(u * wg,e_g) € Clgspo converges uniformly on compact subsets of C" as ¢ — 0, it
follows that (u, e_¢) is an entire function of & (whose restriction to R” is the Fourier
transform of u). O

The next theorem will play an important role later in this chapter when we con-
sider smoothing operators based on convolution with distributions possessing com-
pact support (see Theorem 1.7.6 on p. 21 of Hormander [72] and Theorem 7.19,
part (c), on p. 179 of Rudin [158]).

Theorem 1.29 Let u € S'(R") and v € £’ (R"); then, the convolution u * v exists in
S'(R™) and its Fourier transform satisfies the identity

F(u*v)=Fu- Fuv.
This identity is also valid if u € S'(R") and v € S(R").
The next theorem encapsulates the key relationship between analyticity and

growth of the Fourier—Laplace transform of a distribution with compact support.
For a proof, we refer to Theorem 1.7.7 on p. 21 of Hérmander [72].
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Theorem 1.30 (Paley-Wiener Theorem) An entire function U is the Fourier—
Laplace transform of a distribution with support in the closed ball B, of radius
p if, and only if, for some constants C > 0 and N, we have that

@] =ci+ig) e cecn
here I¢ denotes the imaginary part of the complex vector ¢ .

Finally we consider the Fourier transform on L, (R"). Example 1.27 implies that
any function u € Ly (R") can be identified with a tempered distribution, and as such
u has a well-defined Fourier transform in S8’ (R"). In fact, according to Plancherel’s
Theorem (cf. Sect. 2 in Chap. I of [168]),

Fu(¢)= lim ux)e ¥ Edx, £eR",
M—oc0 Ix|<M

where the limit is to be understood with respect to the norm of the space L,(R");
moreover, F is a one-to-one mapping of Ly (IR") onto itself, and the following Par-
seval’s identities hold (cf. Sect. 2 in Chap. I of [168]):

Qm)"(u,v) = (Fu, Fv), u,ve Ly(R"),

Q) |ull7, gy = I Full] ,gny» 4 € La(R"),

which will be used in subsequent sections. For u, v € S(R") the first identity follows
from (1.20) by taking ¢ = Fv and noting that Fo = F((2)" F~'v) = (27)"v. For
u,v € Ly(R™) the first identity is then implied by the density of S(R") in Ly (R")
(cf. the penultimate paragraph of (E) in Sect. 1.3.3). The second identity follows
from the first with v = u.

1.4 Sobolev Spaces

Now we introduce a class of function spaces, called Sobolev spaces (after the Rus-
sian mathematician S.L. Sobolev), which play an important role in modern differen-
tial equation theory; see, [1, 2, 116, 162, 181-183]. Suppose that §2 is an open set
in R". For a nonnegative integer k and 1 < p < oo, we define

Wi(2):={ueL,(): 0% eL,(R),|a| <k}

We equip WII,‘ (£2) with the Sobolev norm defined by

» 1/p
||u||W1’§(Q) = (Z ||3a”||L,,((z)>

|| <k



44 1 Distributions and Function Spaces

when 1 < p < oo, and by

lllyg ) = maxaul )

when p = oco. The associated Sobolev seminorm is defined by

» 1/p
lulw o) = (Z | 8’1””L,,(.Q)>

lor|=k

when 1 < p < 0o, and by
lulyi (@) = max ”3 M”LOO(Q)

when p = oco. In these definitions the derivatives are to be understood in the sense
of distributions, with the usual convention that locally integrable functions are iden-
tified with regular distributions; it is also understood that any two locally integrable
functions that differ only on a set of zero measure are identified with each other, as
in the case of the Lebesgue spaces L, (£2) discussed in Sect. 1.2.2.

The Sobolev space WI]§ (£2) can be shown to be a Banach space with the norm
II - ||W11§(Q), 1 < p <00, k > 0. An important special case is when p = 2; the normed

linear space Wé‘ (£2) is a Hilbert space with the inner product

W, Wy = Y (8%, 8%v),

loe| <k

where (-, -) is the inner product in L, (£2).

When boundary-value problems are considered for partial differential equations
it is convenient to incorporate the boundary condition into the definition of the func-
tion space in which a solution is sought. We consider a class of Sobolev spaces that
are particularly well suited to the study of partial differential equations with Dirich-
let boundary conditions: we define Wllj (§2) as the closure of C3°($2) in the norm of
W;f(s?); Vi/;f(Q) is a Banach subspace of W;f(.Q). In particular, the function space
Wé‘(.Q) is a Hilbert subspace of Wzk(.Q). We shall see that when the boundary of
£2 is sufficiently smooth, in a sense that will be made precise in the next two def-

initions, the elements of the function space W; (£2) satisfy appropriate boundary
conditions.

Definition 1.31 Suppose that £2 is a bounded open set in R”. The boundary 952
of £2 is said to be Lipschitz-continuous if, for every x € 952, there is an open set
O Cc R" with x € O and a local orthogonal co-ordinate system with co-ordinate
=1, ..., &) =: (¢, &) and a € R", such that

O:{{:—aj<§j<aj, 1 <j<n},
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and there is a Lipschitz-continuous function ¢ defined on
O/:{g/eR”_l t—aj<gj<aj, 1<j<n-— 1},

with
lp(¢)| <an/2 fore’ e,

2N0={¢:0<9(t')., '€} and 02N0={¢:t.=09().0 €O}

A bounded open set with a Lipschitz-continuous boundary is referred to as a Lips-
chitz domain.

An important property of a Lipschitz domain 2 is that (as a consequence of
Rademacher’s theorem; Theorem 3.1.6 on p. 216 of [46]) the unit outward normal
to 042 is defined almost everywhere with respect to the (n — 1)-dimensional sur-
face measure on 952. A simple example of a Lipschitz domain is a bounded convex
polyhedron in R"*, n > 2.

Occasionally we shall have to work on domains with smooth boundaries. The
next definition assigns a precise meaning to the word “smooth”.

Definition 1.32 Suppose that £2 is a bounded open set in R”. We shall say that 92
is of class C™, m > 1, if, for every x € 32, there is an open set O C R" with x €
O and a local orthogonal co-ordinate system with co-ordinate { = (¢y, ..., &) =:
(¢’, ;) and a € R", such that

O={{i1—aj<fj<aj 1<j=n},
and there is an m-times continuously differentiable function ¢ defined on
O'={¢eR" i —a; <¢j<aj, 1=j<n—1},
with
lo(¢")| <an/2 for¢' e 0,

2NO={¢:ta<¢(f).' €0} and 32N0O={t:L,=¢(('). ;' €O}

A bounded open set with boundary of class C™, m > 1, will be called a domain of
class C™.

We note in passing that every (n — 1)-dimensional submanifold of R”" that is
homeomorphic to the (n — 1)-dimensional sphere decomposes R" into two compo-
nents and is their common boundary. This result is known as the Jordan—-Brouwer
theorem (cf. Corollary 6.4 on p. 66 of Massey [135]).

Theorem 1.33 Let 2 C R" be a Lipschitz domain and 1 < p < 0o. Then,
O C™(R) is dense in W§(£2) for k = 0; and
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® (Extension Theorem) If k > 1, then there exists a continuous linear operator E
from W{; (£2) to W; (R™), called the extension operator, with the property that

(Ew)lo=u, ueWy(s).

For the proofs of the two parts of this theorem we refer to Adams and Fournier
[2] (Theorem 3.22 on p. 68) and Stein [167] (Theorem 5 on p. 181), respectively.
We note that while C*®°(£2) is dense in W;f(.Q) for k>0 and 1 < p < oo on any
Lipschitz domain £2, the set C(‘)’o(.Q) is not dense in W;(.Q) for any positive in-
teger k (although it is dense in L, (£2) = Wg(fz), 1 < p < 00). Thus W};(fz) is a
proper subspace of W}ﬁ (£2).

In connection with the extension theorem we remark that since the extension
operator E is continuous and linear it is also bounded in the sense that there exists
a positive constant C such that

ny <
||EM||W§(]R< )= C||”||w§(9)

for all u € W§($2) withk > 1 and 1 < p < oo.

Earlier in this chapter, in Sect. 1.1.2, we introduced the concept of embedding
of a normed linear space { in another normed linear space V, and we denoted this
by U — V. Here we present a brief overview of some important embedding results
for Sobolev spaces; the collection of these is generally referred to as the Sobolev
embedding theorem (see Theorem 5.4 on p. 97 of Adams [1] or Theorem 4.12 on
p- 85 in Adams and Fournier [2]).

Theorem 1.34 (The Sobolev Embedding Theorem) Suppose that §2 is a Lipschitz
domain in R". Let j > 0 and m > 1 be integers and let k be an integer, 1 <k <n.
Let 2% denote the intersection of 2 with a k-dimensional hyperplane; in particular,
Q2% = Q2 when k =n. For 1 < p < 00 the following embeddings hold:

O ifmp <n and eithern —mp <k <nor p=1and n —m <k <n, then, for
p<q <kp/(n—mp), Wy (2) = W] (2");

@ ifmp=nmn,then,forl <k<nandp <q < oo, W1{+m([2) — W[{(.Qk);

® ifmp >n> (m—1)p, then W,{*’"(Q) — CI*(R2) for0 <i <m—(n/p). The
embedding also holds forn = (m—1)pand 0 <A < 1l,andforn=m—1,p =1
and 0 < X < 1.

When k < n, the embeddings stated in @ and @ of Theorem 1.34 are to be un-
derstood as follows: by part @ of Theorem 1.33, C*® (£2) is dense in me (82) for
j+m=>0and 1 < p < oo; hence, any u in W;,me (£2) is a limit (in Wfrm (£2))ofa
sequence of functions {u,}>° , contained in C*°(£2); each u, has a well-defined re-
striction to the hyperplane 2% The embedding W[{+m (£2) — ij (£2%) means that

the sequence of restrictions {u,|or}5° | converges in W,; (£2%) to a function, which
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we shall call the frace of u on £2%. Thus, the notion of trace is the generalization
of the concept of restriction of a continuous function defined on £ to a lower-
dimensional hypersurface £2%. The embedding stated in part ® of Theorem 1.34 has
to be understood in the sense that any equivalence class of functions in W,ﬁ +m(.Q)
contains an element with the required number of Holder-continuous (or, if A = 1,
Lipschitz-continuous) derivatives.

In Sect. 1.1.2 we introduced the idea of compact embedding of a normed linear
space U in another normed linear space V, denoted by U/ << V. The next the-
orem, generally known as the Rellich—Kondrashov theorem, is a collection of such
compact embedding results for Sobolev spaces (cf. Theorem 6.2 on p. 144 of Adams
[1] or Theorem 6.3 on p. 168 of Adams and Fournier [2]).

Theorem 1.35 (The Rellich—-Kondrashov Theorem) Suppose that 2 is a Lipschitz
domain in R", let j > 0 and m > 1 be integers, and let k be an integer, 1 <k <n.
For 1 < p < oo the following compact embeddings hold:

O ifmp<nand 0 <n—mp <k <n, then, for 1 < q < kp/(n — mp),
Wit (2) > W] (25);

@ ifmp=n,then,for | <k <nand 1<q < oo, W)™ (2) = W] (2");

© if mp > n, then W1{+m(9) <> CI(2); and ifmp>n>m—1)pand 0 <
h<m—(n/p), then W)™ (2) > CI*(R).

In order to capture finer regularity properties of integrable functions, we consider
fractional-order Sobolev spaces defined in the following way: given a positive real
number s, s ¢ N, let us write s =m + o, where 0 < o < 1 and m = [s] is the integer
part of s. The fractional-order Sobolev space W;(.Q), 1 < p < 00, is the set of all
u € L,(£2) such that

. 0% (x) — 0%u(y)|P tp

la|=m

with the usual modification when p = co. When equipped with the norm

. p p /p
”u”W;(.Q) = (“u”Lp(.Q) + |I/t| ;I(Q)) s if 1 <p <00,

or the norm

lullws, 2) = lullLoo@) + ulws, (2).  if p=o0,

W;(.Q) is a Banach space.

The Sobolev embedding theorem is still valid in the case of fractional-order
Sobolev spaces, and a result completely analogous to that in Theorem 1.34 holds
with the integers m + j > 1 and j > 0 replaced by real numbers m + j > 0 and
J = 0in parts @ and @; in part ® m + j can be taken to be a positive real number
and j a nonnegative integer. Also, Theorem 1.33 holds in fractional-order Sobolev
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spaces, with k£ denoting a nonnegative real number in part @, and a real number
> 1 in part @. The Rellich—Kondrashov theorem, Theorem 1.35, has the following
counterpart when p =¢q and k =n.

Theorem 1.36 Suppose that §2 is a Lipschitz domain in R", and let s and t be two
real numbers, 0 <t < s. Then, W;(.Q) s W]’)(.Q)for 1<p<oo.

It is a straightforward consequence of this theorem that the following norms are
equivalent on W;(SZ), with £2 a Lipschitz domain, s >0 and 1 < p < oo:

’

1
lullwyca = (17 (g + lulfys )"

I/p
ity = (X 10l o)+ le))

loe|<Ls]

where || denotes the largest integer that is strictly smaller than s.

As in the case of integer-order Sobolev spaces, for noninteger s > 0 we define
W;(.Q) as the closure of C3°(£2) in the norm of Wg(.Q); W;(.Q) is a Banach sub-
space of W;,(.Q). By the next theorem, known as the Friedrichs inequality, when

* : : 1S
-1l Ws(2) is considered as a norm on W, (£2), the term

Z ||8a”||€,,(9)

lo]<[s]

can be omitted from the norm (cf. Adams and Fournier, Theorem 6.30 on p. 183 and
Corollary 6.31 on p. 184) in the case of integer s > 0 and Theorem 1.1 in [40] for
I/p<s<l1,1<p<oco.

Theorem 1.37 (Friedrichs Inequality) Let §2 be a Lipschitz domain in R" with di-
ameter d, and suppose that s > 0, s — |s| > 1/p and 1 < p < 00. Then, there exists
a constant ¢, = ¢« (s, p, d) such that

||u||€w) < c,,|u|€vls7(9) Vu e W3($2). (1.23)

The same is true with || - || W3 (22) replaced by || - ||% on the left-hand side.

5(2)

For areal number s > 0 and 1 < p < oo, we consider the linear space of bounded
linear functionals on the Sobolev space W;(Q), denoted by Wq_ *(£2), where q is
the conjugate of p,ie. 1/p + 1/q =1, equipped with the dual norm

lul = sup [{u, )
W*A‘(Q) = —_—.
a peWs(2) lellws2)
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Here (u,¢) denotes the value of the linear functional u at ¢; (-,-) is called
the duality pairing between W, *(£2) and Vi’f,([?) and is sometimes denoted by
(- '>W;‘(Q)xvi/;,(.rz)-

We conclude this section with a brief discussion concerning Sobolev spaces on
the boundary 9£2 of a Lipschitz domain £2. Recall from Definition 1.31 that for
every x on 92 there exists a Lipschitz continuous function ¢ : @' c R""! - R
such that, using the notation introduced in Definition 1.31,

rno={¢=(¢".¢()):t'e0}

Thus, locally, 952 is an (n — 1)-dimensional hypersurface in R"”. We define the
mapping @ by

o(¢):=(9(¢), &e0.

Then, @ ! exists and it is Lipschitz-continuous on @ (O’).

Definition 1.38 Let £2 be a Lipschitz domainin R”. For0 <s <land 1 < p <00
we denote by W[S7 (0£2) the set of all u € L,(3£2) such that the composition u o @
belongs to W, (O'N@~1(32N0O)) for any pair of O and ¢ satisfying the conditions
of Definition 1.31.

In order to equip W;(E)SZ) with a norm, we consider any atlas (O}, @) ]J-:] for
982 suchthat O; and ¢;, j =1, ..., J, satisfy the conditions of Definition 1.31, and
D) =" 9;j¢"), with§" € O}. We define || - [lw;v2) by

7 1/p
L p
lullws @) == (Z luo®; ”Ws O;ne; ! (02N0; ))) '

In fact, for 0 < s < 1 it can be shown that this is equivalent to the following norm
(which, for the sake of simplicity, is denoted by the same symbol):

u(x) — u(y)|? e
lulws oy = (fa |u|f’da+/ /9 4o (x)do(y)> ,

where do denotes the (n — 1)-dimensional surface measure on 952.

Suppose that £2 is a domain of class C™; then, for 0 <s <m and 1 < p < o0,
the Sobolev space W (92) can be defined analogously as for 0 <s < 1.

The notion of trace of a function on a k-dimensional hyperplane intersecting a
Lipschitz domain 2 C R” has already been considered in the discussion following
Theorem 1.34. Now we turn our attention to the concept of trace of a function on
the boundary of £2.

Provided that 92 is sufficiently smooth, statements analogous to @ and @ in
Theorem 1.34 can be made, using a partition of unity argument, with £2* replaced
by 052 and k taken to be equal to n — 1. Thus, for example, a function u € ng (£2),
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1 < p < 00, has a well defined trace, denoted by yp(u) on the boundary 92 of a
Lipschitz domain §2; moreover, y is a bounded linear operator from W;,(.Q) to

w,~P(322). If ¢ belongs to C($2) then

(@) =¢lig. (1.24)

More generally, we have the following result (cf. Theorem 7.53 on p. 216 of Adams
[1] with k = 0).

Theorem 1.39 Let m be a positive integer and suppose that p is a real number,
1 < p < oco. Assume that 2 is a domain of class C™ contained in R". Then, there
exists a bounded trace operator yy from Wl’,” (£2) onto W,',"_(l/p) (0£2).

When [ < m, the Ith partial derivatives of a function u € Wz’(.Q) have traces

in W[',"_l_(l/ P)(3£2). It is standard practice to formulate trace theorems involving
higher derivatives in terms of derivatives in the direction of the unit outward nor-
mal vector v to the boundary 92. Thus, we have the following generalization of
Theorem 1.39 (cf. Theorem 7.53 on p. 216 of Adams [1]).

Theorem 1.40 Let m and [ be positive integers such that m > [, and let p be a real

number such that 1 < p < 0o. Let 2 be a domain of class C™ contained in R".
Then, there exists a continuous trace operator

I
yewr@) - [[wy P o2

k=0
with the property that
) = (#loa. 22 ¢
yl(p_ wag’a]} BQ7~--78U1 20

for every function ¢ in C*®(£2).

We can now describe the space WI’," (£2) in terms of boundary conditions on 952,
expressed as vanishing traces on 9£2.

Theorem 1.41 Let §2 be a domain of class C™, m > 1. Then, the space W;,” (£2),
1 < p < 00, defined as the closure of C3°(£2) in WI’," (£2), can be characterized as
follows:

Wi(2) = {u € WIH($2) : Yim—1(u) = 0}.

Trace theorems analogous to these also hold in fractional-order Sobolev spaces.
The simplest such result, due to Gagliardo [48], is formulated in the next theorem
(see, Theorem 1.5.1.2 on p. 37 of Grisvard [62], and Corollary 1.5.1.6 on p. 39 of
Grisvard [62], with k =0 and [ = 0).
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Theorem 1.42 Suppose that §2 is a Lipschitz domain in R", and let 1 < p < 00. As-
suming that 1/ p < s < 1, the mapping yg defined on C*°(§2) by (1.24) has a unique
continuous extension to a linear operator from W;,(.Q) onto W;,_(l/ P )(B.Q); this

extension will be still denoted by yy. Further, for 1/p < s <1, the space W;(.Q),
defined as the closure of C3°(82) in W3, (£2), can be characterized as follows:

W (2) = {u e W3(2) : yo(u) =0}.

For 1 < p < oo and letting g be the conjugate of p,ie. 1/p+ 1/g =1, the
dual space W, 5(082) of W;(E).Q), s > 0, is defined as the set of all bounded linear
functionals on W;, (0£2), equipped with the dual norm || - || W, (392) defined by

| — w [{u, @)
WS (00R) = —.
o (09 pews02) @llws2)

Here (u, ¢) denotes the value of the linear functional u at ¢. It is clear from this
definition that for s =0 and 1 < p < oo the dual space of WS(E)Q) =L,(08) is

simply W)(392) = L, (312).

1.5 Anisotropic Sobolev Spaces

In this section we consider Sobolev spaces that consist of multivariate functions
with, potentially, different differentiability properties in the different co-ordinate
directions:—hence the attribute anisotropic.

Let Ry be the set of nonnegative real numbers. With a slight abuse of termi-
nology we shall refer to the elements of the set R, as multi-indices. For o =
(a1, ...,0ap) € R, we define

[a]:=(ler). ... [@n]),  lel:=ar+-+ap, o)== (lai)..... o)),

where, for a positive real number x, [x] denotes the integer part of x, and | x| de-
notes the largest integer smaller than x (e.g. [2.5] =2, [3] =3; |2.5] =2, and
13] =2);[0]:=0, |0] :=0.Lete; = (51j,...,0pni), fori =1, ...,n, where

P 1 fori=j,
Y10 fori # j,

is the Kronecker delta.
With these notational conventions we then define the following sets:

2i(x) :=1{h; :x 4+ hje; € 2},
.Q,‘j(x) = {(/’li,hj) 1 x +cihie; +thjej E.Q;Ci,Cj =0, 1},
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n
Q) =, k)t x+ Y cthier € 2 =0, 1k = 1n}
k=1
Let us also introduce the difference operators A, and Alh‘ by
._ k ._ k—1
Apu(x) :=u(x +h) —u(x), Apu(x) == Ah(Ah u(x)).
For 1 < p < 0o, we define the seminorm | - |4, , as follows:

|u|ap —”M”L »(2)° forog=ay=---=0a, =0,

A p
lulgp = / / | hellu(x” dhjdx, forO<o; <l;0,=0,k#i,
Qi) Nhill TP

[Ape; Ap e u(x)|P
uly , = S - dh; dh;j dx,
’ Qi) i1 HPe |y | P

forO <o, <04 =0,k #1, j,

lully = Qe - Ay, WOV ) gy
“P Ja Jay o IRy o TR
forO<oaq,...,0, <1,
|u|g, : |8[‘)‘]u|a (al.p’ if, for some k, oy > 1,

with 8%y understood in the sense of distributions on £2.
When p = oo, the seminorm | - |, is defined analogously, as follows:

[tla,00 := ullLo(s2), forap=---=a,=0,
Ap.eu(x
[t 00 := eSS.Super’hieQi(x)%, forO<o; <1, 0 =0,k #1,
and so on.
A finite set of multi-indices A C R’jr is called regular if 0 := (0, ...,0) € A, and
for any o = (a1, ..., o) € A there exist real numbers By > oy, k =1,...,n, such
that Byer € Afork =1, ..., n. Assuming that A is a regular set of multi-indices, we

define the following norms:

I/p
||u||W]§4(_Q) = (Z |u|5,p) , whenl<p<oo,

aEA

||u||WoA5 = r§1§§|u|am, when p = oo.

The set of all u € Ly 10c(§2) such that ||u||W;(Q) < oo is denoted by W;,"(.Q).
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Example 1.30 Suppose that s1, ..., s, are positive real numbers. Let A := AgU Ay,
where

n n
o
Ag = eN": — <1y, A= |Au,
0 { o E St < } 1 U li
k=1 i=l
with N denoting the set of all nonnegative integers and

n
A= {aeRi:akeNfork;éi;Zﬂzl},
k:lsk

Then, W;,4 (£2) = WI(,‘Y"SZ""“Y”)(Q) is an anisotropic Sobolev space equipped with

the norm || - ||W;}( )» and the natural seminorm
» 1/p
|M|W](751,...,.vn)(9) = (Z |u|a,p> , whenl <p<oo,
€A
and
(| (spomsn) := max |u| ,  when p =o00.
W) (o b a,00 p

Here we have used the attribute natural in order to distinguish the seminorm in
question from other possible seminorms that can be defined on the space Wlf‘ (£2).
When s; =--- =35, =, the space WI’,“(.Q) is the standard (isotropic) Sobolev space
W7 (£2), equipped with a norm that is equivalent to the standard norm of W (£2).

We now consider another class of anisotropic spaces, which we shall make use
of in the analysis of time-dependent problems.

Let U be a Banach space with norm || - ||z4, and let | - |4 be a seminorm on ¢/ such
that |ulzyy < |lullys for all u in U. Suppose that (c, d) is a nonempty open interval
of the real line and 1 < p < co. We consider the set L,((c, d); ) of all functions
u:(c,d) — U such that t — ||u(t)||zs is measurable on (c, d), with

d
u(t) P dt < o0, when 1 < p < o0,
” HL{
c

and
€8S.8UP; ¢ (¢ ) ||u(t) ”M <00, when p=o0.

(As is usual, any two functions that differ from each other only on a subset of zero
measure of the interval (c, d) are identified.) It can be shown (see Theorems 2.20.4
and 2.20.8 on pp. 114 and 116 of Kufner et al. [116]) that L ,((c, d); U) is a Banach
space with the norm

d 1/p
NullL, (c.aytt) == </ ”u(t)“{jldt) , when 1 < p < oo,
c
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and

)l L oo ((cdyith) = €SS-SUPse(c.ay Hu(t) ||u, when p = oo.

The space L ,((c, d); U) has the natural seminorm

d 1/p
|M|Lp((c,d);lxl) = </ |M(l)|£{ dl) S when 1 <p <00,
c

and

[t L oo ((c,d):1A) "= €SS.SUP re(c,d) |u(t)|u, when p = oo.

Suppose that I/ is a Banach space, with norm || - ||z4. Given a nonempty open in-
terval (c, d) of the real line and a nonnegative integer k, we denote by C k ((c,d); U)
the set of all continuous functions

u:te(c,dy»u@)eld

whose derivatives with respect to ¢ of order < k are continuous functions of ¢ on
(c,d). Instead of C%((c, d); U), we shall write C((c, d); U).

For a nonnegative integer k and a bounded, nonempty, open interval (c, d) C R,
we denote by Ck([c, d1; U) the set of all u in C¥((c, d); ) such that all derivatives
of u with respect to ¢ of order < k can be continuously extended from the open
interval (c, d) to the closed interval [c, d]. Instead of C%([c, d]; U), we shall write
C([c,d];U). C([c,d]; U) is a Banach space equipped with the norm || - ||¢((¢,q1:20)
defined by

lullee.aruy = max ||“(’)||u

The same is true of C¥([c, d]; U) for any nonnegative integer k, when equipped with
the norm

lllctgearen = max, sup [u™ O],
where 1™ = d"u /dt".

Assuming that (c,d) is a nonempty open interval of the real line and U/ is a
Banach space, we denote by D’((c, d); U) the linear space of U-valued distributions
on (c, d), defined as the set of all continuous linear operators from D(c, d) into U.
For u € D'((c,d); U) and ¢ € D(c, d) we shall denote the value u(¢p) of u at ¢ by
(u, ¢). By definition, (u, @) €U.

For a positive integer m, the mth distributional derivative ‘g—lm" ofu e D'((c,d);U)
is the continuous linear operator from D(c, d) into U defined by

<dm ,¢>—( 1)’"< dm¢> Vo € D(c.d),

drm drm

understood as an equality in /.
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To each u € Ly 10c((c, d); U) we can assign an element T, € D'((c, d); U) by

d
(T ) = / W(Op()di (€U) Ve D, d).

The mapping u € Lj joc((c,d); U) = T, € D'((¢,d); U) is a continuous linear in-
jection, which allows us to identify u with 7, and consider L joc((c,d);U) as a
subset of D’ ((c, d); U). Thus in particular L p((c,d); U) will be viewed as a subset
of D'((c,d);U) forall p, 1 < p <oco.

Let 1 < p < oo, r >0, and write r in the form r =m + p, 0 < p < 1, where
m = [r] is the integer part of r. We denote by W,’,((c, d); U) the set of all functions
u in L,((c, d); U) whose mth derivative u™ = d"u/d™ on the interval (c,d) in
the sense of {/-valued distributions is an element of L ,((c, d); U) and

d ||u<m><r>—u<’">(r/>||ﬂ NP
rP(M)_<// T dtdr) <00

when p > 0; if p = 0 we define ./\f,,,,(u) = 0. The space W;((c, d); U) is a Banach
space equipped with the norm

lullwr ((c.ay;tt) = (IlullLP((L o T Ju™ 7 oD +Nr,p(u)p)l/p

and the natural seminorm, which is defined for r = m > 0 integer and r > 0 nonin-
teger, respectively, by

lwyeartn = 4" ewno a4 lulwgiean = Nep .

Suppose that §2 is a Lipschitz domain in R” and Q := 2 x (c, d). We define the
anisotropic Sobolev space

W3 (Q) = Ly((c,d); W (£2)) N W, ((c, d); Lp(£2)),
equipped with the norm

. 14 p 1/p
”“”W;’r(Q) = (||”||Lp((c,d);wg(n)) + ”””W;;((c,d);Lp(Q)))

and the natural seminorm
. P P 1/p
lulwyr o) = (|“|L,,((c,d);w;(9)) + |”|w;((c,d);L,,(:2))) :

For 1 < p < oo, the space Wy, (Q) can be viewed as a space of type W;‘(Q);
for example, if s € N, then the corresponding set A is given by

={(a1,...,an,0) :aieN,ot1+~~+ozn§s}
U{(O,...,O,ﬂ):,BGN,,B<r}U{(O,...,O,r)}.
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A particularly relevant anisotropic space, WS s/ 2(Q), s > 0, arises in the theory

of second-order parabolic partial differential equations on the space-time domain
0:=2x(0,T).
We shall also need the space W;’S/z(Q) = Wz(s""’s'x/z)(Q). Clearly,

s ,5/2 5,5/2

(Q) C W, (Q). (1.25)

We conclude this section by stating two results concerning anisotropic Sobolev
spaces.

Theorem 1.43 Suppose that u € Wy (Q), s,r > 0, and let « € N" and k € N be
such that |‘:—‘ + é < 1. Then, 8)‘?8,1‘14 belongs to WZM’V(Q), where % =r=1- (% +
]f), and 0, and 0; are the partial derivatives with respect to x = (x1,...,x,) and t,
respectively.

For a proof, see Theorem 10.2 on p. 143 and Theorem 18.4 on p. 296 in Besov,
II’in and Nikol’skii [13] and Lemma 7.2 in Grisvard [60]. Theorem 1.43 and (1.25)
imply that WS s/ 2(Q) = Y s/ 2(Q) with equivalence of norms.

Theorem 1.44 Suppose that u € W, (Q), s = 0, r > 1/2. Then, for a nonnegative
integer k, k <r — 1/2, the trace

Bku( 0)
~x,
otk

is correctly defined as an element of Wg (£2), where g = 7 (r —k — —)

For a proof of Theorem 1.44, see Theorem 6.7 in Chap. 6 of Nikol’skii [144]. We
shall now introduce another important class of function spaces.

1.6 Besov Spaces

For § > 0 and £2 an open set in R”, we define
25 :={x € 2 : dist(x, 082) > 8}.

Assuming that s > 0, 1 < p < 0o and 1 < g < oo, the Besov space B;,q(Q) is
defined as follows. Let us write s =m 4 o where 0 < ¢ <1 and m is a nonnega-
tive integer. We denote by By, ,(£2) the set of all u in L, (£2) whose distributional
derivatives 9%u of order |a| = m satisfy

00 Y 2 et q dt la
Na, p.g () :={'/0 [t sup “Aha ””L,,(Qz,m)] T} =%

|hl<t
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if 1 <g <oo,and
N, (1) :=su [f" sup | A29%u ] <00
o, p,00 t>g |h|£t || h HLp(-QZ\h\)

if ¢ = co. The norm in By, | (§2) is defined by the expression
1/p
Il 3y, (2) = (nun{p(m + Na,,,,q(u)”> :
lo|=m

The space B, ,(£2) is a Banach space with this norm. If £2 is a Lipschitz domain,
then the following relationships hold between Sobolev and Besov spaces:

W, (2) =B, ,(£2)
for s > 0 noninteger, and for s > 0 integer if p =2. For s integer and p # 2,
W, () # By, ,(£2).

In fact, the following embeddings hold for any s > 0 (see, Eq. (3) of Definition 4.2.1
on p. 310 and Egs. (1), (2) of Theorem 4.6.1 on p. 327 of Triebel [182]):

B, ,(£2) = W3 (2) = B, ,(2) forl<p<2,
B, 5(2) = W,(2) = By, ,(£2) for2=<p <oo.

For s <0 and 1 < p < oo, we define B, , (R") as the dual space of the Besov
space B;,L,(R"), where 1/p+1/p' =1,1/g+1/q' =1.

Example 1.31 Consider the Heaviside function H on the interval £2 = (—1, 1) de-
fined by

(1 ifxeD),
H(x)—{o if x € (—1,0].

A simple calculation shows that H € B,l,{(fo(.Q), p €[l,00). Also, H € W;(.Q) for
all s < 1/p, p €[1,00), but H ¢ W)/'?(0, 1) for any p € [1, 00).

1.7 Interpolation Properties of Sobolev Spaces

For 0 <s1,50 <00, 51 #52,0<6 < 1,1 <qg < o0, we have (cf. Theorem 2.4.2 on
p- 186 and its consequence Eq. (16) on p. 186 in Triebel [182])

(ng (R"), W;,Z (R"))g’q - B;q (R"), s=(1—-0)s; +0s;.
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Thus in particular, for ¢ = p and noninteger s = (1 — 0)s1 + 05>, we obtain that
(W (R"), WpA(R")), , = Wy (R"). s = (1= 0)s1 +Os2.
For p =2 this relation holds without restrictions, i.e.
X X (1-0)s1+0s
(Wa! (R), Wy! (R")), p = W, 2 (R).

Hence, W (R") are interpolation spaces. Analogous interpolation results hold for
Sobolev spaces on a Lipschitz domain §2 C R” (cf. Sect. 4.3.1 on p. 317 of Triebel
[182] for details).

1.8 Multiplier Spaces

In this section we consider point multipliers (or, simply, multipliers), in Sobolev
spaces. These will be extensively used in the remaining chapters to characterize the
minimum admissible smoothness of coefficients in differential equations. For proofs
and a detailed exposition of the theory we refer to the monographs of Maz’ya and
Shaposhnikova [137, 138].

Let £2 be an open set in R” and suppose that V and W are two function spaces
contained in D’ (§2). A function a defined on 2 is called a multiplier from V to W
if, for every v in V, the product av belongs to W. The set of all multipliers from V
to W is denoted by M (V — W). In particular when V = W we write M (V) instead
of M(V — V). The norm in M(V — W) is defined as the norm of the operator of
multiplication:

lallyv—w) := sup{llavlw : [vllv <1}.

In this section we shall be concerned with multipliers in Sobolev spaces, that
is with M(Wl’,(.Q) — W;;(Q)) for p € (1,00) and ¢ > s. Initially, we consider
multipliers in pairs of Sobolev spaces on R". For the sake of brevity, the symbol
W7 (R") will be truncated to W;,. Motivated by the definition of multiplication of

a distribution by a smooth function, for a € M (W;, — W;) and u € WP_S = (WIS,)’,
1/p+1/p’ =1, we define the product au € WI;’ = (W) by
(au, w)wl;,rxwlg = (u,aw)wp—,sxw;, peW,
Here,
(~,~)le/wa and <'v'>WP7SxW;7

denote the duality pairings between the Sobolev spaces W; and W;, and WI;S and
W3, respectively. This definition implies that

M(WI;S — le) =M(W), - W;),
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and therefore, rather than admitting all real numbers s and 7, it suffices to consider
M(W,’, — W;) fort >s >0 and M(W,’, — Wp_s) for t > 0> —s. We list here a
collection of some basic results concerning multipliers.

Lemma 1.45 Suppose that s and t are either two integers or two nonintegers, t >
s>0and pe(1,00).Ifa e M(Wl’7 — W}), then

Qac M(W[’fs — Lp);
o M(WI’]_" — W;_") for 0 <o < s and integer s, t and o,
ae
M(B;TI‘,’ — B;fp”) for 0 < o < s and noninteger s and t;
© 9%ac MW, — Wy ), ja| <5

0 ac MW, 5 L) |l <.

Proof

© The result follows from Lemma 2 on p. 40 of Maz’ya and Shaposhnikova
[138] (or from Lemma 2.3.4 on p. 40 of [137]) for integer s and ¢; and from
Lemma 4.3.4 on p. 147 in [137] for noninteger s and ¢.

® For integer s, ¢ and o, the result follows from Proposition 2.7.1 on p. 58 of
Maz’ya and Shaposhnikova [137]. For noninteger s and ¢, the stated result fol-
lows from inequality (1) on p. 154 of [138] or from Corollary 4.3.2 on p. 148 in
[137].

©® The result follows from the assumption a € M (WI’7 — W) and part @ using
Lemma 1 on p. 39 of Maz’ya and Shaposhnikova [138] (or Lemma 2.3.3 on
p- 39 of [137]) for integer s and ¢; and from Lemma 1 on p. 160 in [138] or from
Lemma 4.3.5 on p. 149 in [137] for noninteger s and 7.

® The result follows from part @ for integer s and ¢ and || = 0; from part © for
integer s and ¢ and |«| = s; and from the assumption a € M (W]’j — W[S,) and
part @ using the inequality (11) on p. 42 of Maz’ya and Shaposhnikova [138]
(or inequality (2.3.13) on p. 42 in [137]) for s and ¢ integer and 0 < |«| < s. For
noninteger s and ¢ the stated result follows from the corollary of Lemma 1 on
p- 160 of [138] or from Corollary 4.3.3 on p. 149 in [137]. O

Lemma 1.46 Suppose that s and t are either two integers or two nonintegers, t >
s >0,and p € (1,00). Then,

M(W, = W) C W, s
where

;,um’f = {u : sup || (rzn)u” ws <00, Vn € D(R”) s.t.n=1o0n By }
zeR” P

Iftp > n, then M(W,’) — WIS,) = W;’um.f. Here, (t,n)(x) :=n(x — 2).
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Proof For integer s and ¢ the inclusion M (WI’, - Wy C W;yum‘ 7 is proved in
Sect. 1.3.3 of Maz’ya and Shaposhnikova [138] in the discussion preceding the The-
orem on p. 45, while the equality M (Wlt, - W)= W;Mm if for integer s and ¢ and
tp > n follows from the Theorem on p. 45 of [138]. For noninteger s and ¢ the result
is implied by Proposition 3.2.8 on p. 166 in [138]. U

Lemma 1.47 Suppose that s and t are either two integers or two nonintegers, t >
s>0,anda=a(xy,...,x,). If a € M(WJ(R") — W5 (R")), then

a e M(W;(R") > w3 (R"*))
and
ae MWy (R" x R) — W2 (R x R)).

Proof The proof of the result is immediate, using the fact that a is a function of
X1, ..., Xp only (cf. Proposition 2.7.2 on p. 58 of [137]). O

Lemma 1.48 Suppose that s > 0 and p € (1, 00); then M(W;,) C L.

Proof For integer s the stated result follows from Proposition 2.7.4 on p. 59 of
Maz’ya and Shaposhnikova [137]. For noninteger s the result follows from the final
inequality stated in part 2 of the proof of Lemma 3.2.2 on p. 159 of [138]. See also
(4.3.28) in Lemma 4.3.4 on p. 147 of [137]. O

Lemma 1.49 Suppose that p € (1, 00), and let s and t be nonnegative integers such
that t > s. Further, let
a= Z 0%ay,

|| <t
where
ag € M(W, = W,)NM(W,, — Ly), 1/p+1/p'=1;
thena € M(WI’, — W,7).
Proof For s = 0 the result follows from © of Lemma 1.45. For s > 0O the result fol-
lows from part (ii) of Theorem 1 on p. 57 in [138], or from part (ii) of Theorem 2.5.1

on p. 54 of [137]. O

Lemma 1.50

O Let p € (1, 00) and assume that s and t are integers,t > s > 0andtp <n.lIfa €

W;i/t,unif’ then a € M(WI’, — W;). The result is also true for t = s, assuming
thata € W* N Leo.

n/s,unif
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O Let p € (1,00) and assume that s and t are nonintegers, t > s > 0. Suppose
that either g € [n/t,00] andtp <n,orq € (p,o0) andtp =n.Ifa € B;’p’um.f,
where

By unif = {u 2 sup || (zzn)u g <00,YneD(R") s.t. n=1o0n B },
zeR" q.pP

then a € M(W;) — W;). Here, (t;1)(x) := n(x — z). The result is also true for
t =s, provided that a € B; ponif (1 Loo-

Proof

O The first statement follows from part (i) of Corollary 1 on p. 50 in Sect. 1.3.4 of
Maz’ya and Shaposhnikova [138], while the second statement comes from part
(ii) of the same result. Alternatively, see part (i) of Corollary 2.3.5 and Proposi-
tion 2.3.2 on p. 48 of [137].

® The two statements follow, respectively, from part (ii) and part (i) of Theo-
rem 3.3.2 on p. 172 of Maz’ya and Shaposhnikova [138]. Alternatively, see The-
orem 4.4.4 on p. 170 of [137]. O

Lemma 1.51 The linear differential operator L defined by

Lu= Z ag(x)0%u, xeR",

| <k

is a bounded linear operator from the Sobolev space W; to W;’k , 8§ >k, provided

that a, € M(W;,_‘m| — Wifk)for every multi-index «, || < k.

Proof The result is a direct consequence of part @ of Lemma 1.45 and the definition
of the multiplier space M (W;f'“l — Ws). O

These results have analogous counterparts in Sobolev spaces on bounded open
subsets of R". This follows by observing that if £2 is a Lipschitz domain in R" and
aeM (WI’7 (£2) —> WIS, (£2)), then by Theorem 1.33 (and its analogue for fractional-
order Sobolev spaces) a can be extended to a function a, defined on the whole of
R”", such that a € M(WI’, — W;;) = M(W[’,(R") — W[S] (R™)); the converse is also
true: the restriction to £2 of a multiplier a € M (Wlt7 R™) — W; (R™)) is an element
of M (W;,(SZ) — W;(.Q)). We note here that for a Lipschitz domain £2 (which is,
by definition, bounded), the ‘uniform’ spaces W;’um. f and B;;’ pounif that appear in
Lemmas 1.46 and 1.50 are replaced by standard Sobolev and Besov spaces, W, (2)
and By ,(£2), respectively.

Lemma 1.52 Let 2 be a Lipschitz domain in R" and suppose that s > 0 and p €
(1,00). Ifa € W(;(.Q) then a € M(Wp(£2)) N Loo(82), where

t=s, qg=p when sp > n,
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t>s, q>p when sp =n,

t>s, qg>n/s whensp <n.
Proof For sp > n, the Sobolev embedding theorem implies that W;(.Q) —
L (£2). By applying the analogue of Lemma 1.46 in a Lipschitz domain, we de-
duce that a € W(;(Q) =W, (2) C M(W,(£2)).

Now suppose that ¢ > s, and either ¢ > p =n/s or g > n/s > p. Letting ¢ =
t — s and applying embedding theorems for Sobolev and Besov spaces,

t _ +
aeWh(@2)=Ww;* (@)= B) ,(2)NW,;, (),
and
ace W;“(.Q) > Loo(£2).

Thanks to the analogue of Lemma 1.50 in a Lipschitz domain £2, we have that
aeM (W;(.Q)). O

Lemma 1.53 Let §2 be a Lipschitz domain in R", and suppose that s > 0 and p €
(1,00). If a € Ly(82), where

q=p whensp>n,
q>p whensp=n,
q>n/s whensp <n,

then a € M(W3(82) — L,(£2)).

Proof First suppose that sp > n, g = p, and let a € L,;(§2). By applying Holder’s
inequality and the Sobolev embedding theorem, we obtain

laullz,@) = laullL, @) < lallL,@llullLo@) = cllalL,@ lluliws @)

and therefore a € M(W;;(.Q) — L,(£2)).
Now assume that either sp =n and g > p, or sp <n and ¢ > n/s (and therefore
q > p). By applying Holder’s inequality and the Sobolev embedding theorem,

laullL,@) < lallL,@llullz pq @) < cllaliL @) lullwy@)-
7-p
Hence a eM(W;(Q)eLP(Q)). O

Lemma 1.54 Let p € (1, 00), and suppose that s and t are two real numbers such
that either 0 <s <n/p <tors=t>n/p. Then, W[’,(.Q) C M(W[S,(.Q)).

Proof When s =t > n/p, the stated result follows from Lemma 1.52.
Suppose that 0 <s <n/p <t; thens <t + s —n/p, and therefore there exits a
real number t such that s <t <t +s —n/p; clearly t > t. Defining ¢ = n/s, we
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deduce thatt —n/p >t —n/q,t > v and g > p. Thus, by the Sobolev embedding
theorem,
t T
W(82) = Wi (8,

and, because T > s, ¢ =n/s and sp < n, Lemma 1.52 implies that qu(Q) —
M (W;,(.Q)). Hence the desired inclusion.
Finally, let us suppose that 0 < s = n/p < t; then, there exists a real number
g € (0,1) such that t > n/(pe). Let us choose t € (t —n/(pe),t) N (s,t); then
0 <t —1t <n/(pe), and therefore
1

I ¢
—>—+—-(t—1)>0.
p p n

We define

Clearly, g > p and

n n n
t——=1——+{-9)t—-1)>71——,
p q q

and therefore by the Sobolev embedding theorem we have that
t T
W, (£2) — W (£2).

Because t > s, ¢ > p, sp = n, Lemma 1.52 implies that qu(.Q) - M(W;(Q)),
whereby W;(.Q) C M(W;(.Q)). O

Our next result is an extension of the familiar Leibniz formula for the differenti-
ation of a product of two smooth functions.

Lemma 1.55 Let p € (1, 00), and suppose that a = (ay,...,a,) and u are two
Sfunctions such thata € [L,(£2)]", u € M(qu (£2)),where 1/p+1/g=1,1<p<
00. Then,

V-(au)=a-Vu+(V-au inW,' (L)
Proof Let w € L,(82); then, identifying w with the associated regular distribution,
(Ojw, ) = —(w, dip) = —(w, ;p), @€ Cgo(.Q), i=1,...,n.
Thus, by Holder’s inequality,

(0w, )| < lwllz, @) 19, @) < ||w||L,,(Q)||(p”vi/q|(_Q)a i=1,...,n,

for every ¢ in C3°(£2). Since C§°(£2) is dense in qu (£2), 1 < g < o0, the linear
functional (d;w, -) : C3°(£2) — R can be extended from C§°($2) to a bounded linear
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functional on the space qu (£2), still denoted by d;w, i =1,...,n. Hence, d;w €
(W) (£2)) =W, 1(£2), and

O, @)yt @) =~ P), 9 €Wg(R), i=1,....n. (1.26)

In particular, 0; is a bounded linear operator from L ,(§2) into Wp’ 1(£2) for each
ie{l,...,n}

lilow sincit u belongs to M (W, (22)) = M(W,(£2) — W} (£2)), it follows from
the analogue of Lemma 1.45, part ©, for a Lipschitz domain £2 that dju €
M(W}(2) > Ly(£2)). Thus also diu € M(W)(2) > Ly(2)) = M(L,(2) —
Wp_1 (£2)). As a;, the ith component of a belongs to L ,(§2), we deduce that a; (9;u)
belongs to W;l (£2).

Next, because u € M(qu (£2)) C qu (£2) N Lo (£2) by the analogues of Lem-
mas 1.46 and 1.48 for a Lipschitz domain §2, we deduce that a;u € L ,(§2). There-
fore, 0; (a;ju) belongs to W;l (£2).

Finally, we show that (9;a;)u also belongs to W; 1 (£2). Indeed, because 0; is a
bounded linear operator from L ,(£2) into the space W, 1(§2) and since

ueM(Wy(2)) C M(W,(2)) = M(W," ().

we deduce that (9;a;)u € W[,—l(:z).
We have thus shown that, under the hypotheses of the lemma, each of the terms
di(aju), a;(0;ju), (d;a;)u belongs to Wp_1 (£2). It remains to verify that

0i (aju) = a; (0;u) + (0;a;)u in Wp_l(.Q), i=1,...,n.

Because a; € L,(£2) and u € M(W,(£2)) C W] (£2) N Loo(£2), we deduce that
aju € L,($2) and a; (d;u) € L1(£2) N WP_I(Q). Hence

(ai @iw), (p)W;I(Q)quI (2)
= (ai(910), @) = (ai. (31)P)
= (ai, 0 (ug) — u(0;9))
= (ai, 0 (@) — (a;, u(0;9))
= (i, ;@) — (aju, ;p)
= —(dia;, M¢>WP_'(Q)><W(}(Q) + (i (aju), 90)W;'(.Q)><qu )’

for all ¢ in C(‘)’O(Q), where, in the last line, we have used (1.26) and the fact that
ug belongs to Vi/ql (£2) for every ¢ in C3°(£2). Finally, since u is an element of
M(W)(£2)) € M(W,)(£2)) = M(W,(£2)), we have that

<ai (aiu)a w)W;|(Q)XW‘} (£2) = (31 (a,-u) - (aiai)ua QD)WEI(.Q)XVOV‘} (2) (127)
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for every ¢ in Cgo (£2). Because Cgo (£2) is dense in qu (£2), (1.27) implies that

0 (aju) = a; (0;u) + (d;a;)u in Wp_l(.Q), i=1,...,n.
After summation through i =1, ..., n, this yields the desired identity. O

The final result of this section provides a sufficient condition for a function to
belong to M (W} (£2) — W, (£2)).

Lemma 1.56 Let $2 be a Lipschitz domain in R" and let

n
a=ap+ Zaiai,
i=1

where ag € M(W}(§2) — L»(82)) and
t 1—s t—1 .
ai € M(W5(2) > W, (@) NM(W; 7 (2) > Lo(R)), i=1,....n,
withO <s <1=<n/2<t,s#1/2;thena € M(W3(2) - W;*(2)).

Proof Consider

n
a=aop+ Z diai,
i=1

where ag € M (W3 (§2) — L2(£2)), and

ai € M(W(2) = W, ()N MW, (2) - Lo(2)), i=1,....n,
and let u € W3(£2),0 <s <1<n/2 <1, where s # 1/2. Then,

apu € Lo(£2),  ai(du) € La(R2),  aue W, (£2), i=1,...,n.
Hence 0; (a;u) € W{S(Q), s # 1/2 (see Remark 12.8 on p. 94 of Lions and Magenes
[127]). Now according to the analogue of Lemma 1.46 in a Lipschitz domain £2 we

have that a; belongs to L,(£2),i =1,...,n, and, by Lemma 1.54, u € WZI(Q) C
M (W21 (£2)); thus we deduce from Lemma 1.55 that

(0;a;)u = 0;(a;ju) — a; (3;u) in WEI(Q)-

Since the right-hand side of this equality belongs to W, (£2) for0 <s < 1,s # 1/2,
the same is true of the left-hand side. Hence

au = agu + Z(&(a,u) — a,'(aiu)) in WZ_S(.Q), s#1/2.
i=1
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In addition,

n
i=1

n
< llaoullzy@) + Y (laiullyis g + lai @), )

i=1

n
< {naonM(WHz) + D14l g g wi sy wi 1) } el
i=1

and therefore au € M(Wé(Q) — W, (£2)), s #1/2. O

1.9 Fourier Multipliers and Mollifiers

In this section we consider multipliers in Fourier transform space. We shall then
make use of this theory to design mollifiers in various function spaces and to analyze
their smoothing properties. The key feature of a mollifier is that it damps the high
frequency or high wave-number content in Fourier transform space of the function
it is applied to: this property will prove useful in the construction of finite difference
schemes for differential equations with data that are nonsmooth with respect to their
temporal or spatial variable.

In Sect. 1.9.1 we define Fourier multipliers on Lebesgue spaces; these will be our
main tool in the subsequent analysis of mollifiers. In Sect. 1.9.2 we introduce a gen-
eral definition of mollifier, and in Sect. 1.9.3, using Fourier multipliers on L ,(R"),
we describe simple sufficient conditions, which ensure that a linear operator is a
mollifier on L, (R"). In Sect. 1.9.4 we expand the domains of definition of the mol-
lifiers considered in Sects. 1.9.2 and 1.9.3 to the space of tempered distributions,
and in particular to Bessel-potential spaces, Besov spaces and Sobolev spaces of
arbitrary real order.

1.9.1 Fourier Multipliers

In this section we outline the main properties of Fourier multipliers. For proofs and
further details we refer to the monographs of Bergh and Lofstrom [9], Grafakos
[59], Hormander [71], Stein [167], and Stein and Weiss [168].

Definition 1.57 Let 1 < p < co. We say that a € S'(R") is a Fourier multiplier in
L ,(R") if there exists a positive constant ¢ such that

|F~"(a Fu) ||LP(R,,) <clullp,@y VueSR");
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the infimum of the set of all such positive constants ¢ is denoted by |lallp,r")-
Equivalently,

lallugy ey = sup{| F~H @ F)|| gy - € S(RY), fullz,@ny < 1}

The linear space of all Fourier multipliers on L ,(IR") is denoted by M, (R") and
is equipped with the norm || - || s, (rn). For the sake of brevity, we shall sometimes
write F~'a Fu instead of F~1(a Fu).

We observe that since u € S(R") and a € S'(R"), Fu belongs to S(R") and
a Fu is a tempered distribution. Thus F~!(a Fu) is correctly defined and it belongs
to S’(R™). In fact, according to Theorem 1.29,

F_l(a Fu) = (F_la) * U,

and therefore, by E) of Sect. 1.3.3, F~YaFu)e CIC",IO(R").
Since S(R") is dense in L,(R"), 1 < p < o0, the linear operator

FlaF: ueSR") — F 'aFu)eLy(R")

can be extended, preserving its norm, to a linear operator from L ,(R") to L ,(R").
This extension will still be denoted by F~!a F.

When p = oo, the space M,(IR") can be described explicitly. To do so, we note
that the operator T = F~'a F commutes with the translation operator on S(R")
in the sense that 7, T = T't,, x € R". Therefore a € M (R") if, and only if, there
exists a positive real number c¢ such that

|(F~'a) *u)(0)| < cllull @, ueS(R"). (1.28)

This inequality implies that a belongs to M. (R") if, and only if, F~'a is an ele-
ment of the dual space of Lo, (R"), that is, if it is a bounded complex Borel measure
on R". Hence My (R") coincides with the set of Fourier transforms of bounded
complex Borel measures, and ||a|| p,,(r#) is equal to the total variation of the mea-
sure F~'a. In view of (1.28) and the Hahn—-Banach theorem, the linear operator
F~'aF :u e S(R") — F~'(a Fu) € Loo(R") can be extended, without increasing
its norm, to a linear operator from L, (R") to Lo (IR"). The extended operator will
still be denoted by F~!aF.

We recall the following important properties of Fourier multipliers (see, for ex-
ample, Theorem 6.1.2 on p. 132 in Bergh and Lofstrom [9], or the monographs by
Grafakos [59], Hormander [71], Stein [167], Stein and Weiss [168]):

My(R") =My (R"), 1<p<oo, I/p+1/p'=1,

Mp(R") € My(R") C M2 (R") = Loo(R"). 1=p=q=2.
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Furthermore, for 1 < pg, py <ocoand 1/p=(1—-0)/po+6/p1,with0 <0 <1,
we have that

lallar, @ < lallyy? o llallyy, @ a € Mp(R") O My, (R).  (1.29)

If a; and a; belong to M, (R"), then their product aja; is also contained in M, (R").
In addition, || - [[a,®n) is submultiplicative in the sense that

larazllm, @y < laillm, @ lazllm,®m

for every ay, ap in M,(R"), 1 < p < oo (cf. Bergh and Lofstrom [9], p. 133).
The next two theorems provide convenient tools for verifying that a function is a
Fourier multiplier.

Theorem 1.58 (Carlson-Beurling Inequality) Let a € Ly(R"). Suppose that m is
a positive integer such that m > n/2 and let 3%a € Lo(R") for every multi-index
a € N, |a| =m; then, a € M,(R") and there exists a constant c, independent of a
and p, such that

1-0 0
Il ey < cllall ) fim @l gy € =n/@m),
forevery p,1 < p <oo.

Proof Suppose that t > 0. Then, by the Cauchy—Schwarz inequality, we have that,
for any multi-index o € N”, with || = m,

/ |F-1a(s>|ds=/ £ g | ae)| de
|E|>t |&]>1

1/2 5 1/2
s(f |s|—2'"ds> (/ 12" | F~ta(®)| ds)
[&]>1 R

2)—
<ct™/? "lalwy @ny,

where in the transition to the last line we have used that F~la = Q7)) " Fa,
whereby |F~'a|? = (27)~2"| Fa|?, together with the identity |£|*" | Fa|? = | F9%a|?

for || = m, Parseval’s identity, and that |E|W2m Ry = |a|W2m (R7)-
Similarly,

f |F~'a®)|dg < et lall,@n).
&<t

Now adding the bounds obtained for |£| > ¢ and |&| < ¢, choosing

(|a|W5"(Rn)>1/m
= _
lall L, m®m



1.9 Fourier Multipliers and Mollifiers 69

and noting the equalities

lallagy ey =l apos ey = /R |F~a(®)| de.

we get

lallaz, @y < lallp@ny = /Rn'F_]“(é)‘dé < cllall Gyl Gy ey

with 6 =n/(2m). For p € (1, 0o) the first inequality here follows from (1.29) with
po=1,py=co0and 8 =1— (1/p); for p =1, oo it holds trivially. O

When 1 < p < oo, a slightly simpler sufficient condition can be given: it is
due to Lizorkin [128] and is stated in the next theorem; see also the monograph
of Nikol’skil [144], p. 59, where a detailed proof is presented.

Theorem 1.59 (Lizorkin’s Multiplier Theorem) Suppose that £€*0%a is a bounded
continuous function on the set

Ri={¢eR":&#0,i=1,...,n},
for each multi-index o € {0, 1}"*; let My be a positive constant such that
|E%9%a(€)| < Mo Ve €{0,1}", V& e R].

Then,a € M,(R"), 1 < p < o0, and there exists a positive constant Cp, depending
only on p, such that ||al| m,rn) < CpMo.

Let £2 be a bounded open set in R". We define the set M, (£2) of local Fourier
multipliers on §2 as the collection of equivalence classes of tempered distributions
that are equal to an element of M,(R") on £2. As is usual, we identify an equiva-
lence class with any of its elements. The norm in M, (£2) is defined by

lalim,2) = iI)}fHX | p, (®nys

where the infimum is taken over all y € M,(IR") such that @ = x on £2.

1.9.2 Definition of Mollifier

In order to motivate the general definition of mollifier that will be stated at the end
of this section, we begin with a simple example. Given a locally integrable function
v defined on R and a positive real number /4, consider the integral average v — Tjv
defined by

| [x+h/2
(Thv)(x) :ZZ/ w2 v(£)ds, xeR,
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and referred to sometimes as Steklov mollifier. In the next chapter we shall assign
a specific meaning to the parameter %: it will denote the mesh-size in a finite dif-
ference scheme; however, for the time being, the precise interpretation of 4 is of no
significance. Clearly, if v is locally integrable on R, the function x — (Tjv)(x) is
continuous on R, and therefore 7}, can be seen as a smoothing operator.

For example, the image of the (discontinuous!) Heaviside function H, defined by

1 whenx >0,
Hx) = {O otherwise,
under the mapping v — Tjv is the (continuous!) piecewise linear function
0 when x < —h/2,
(ThH)(x)={ @x +h)/(2h) when —h/2 <x <h/2,
1 otherwise.

It is worth noting that, for small values of A, the function 7;, H is close to H in the
sense that

pl/p
201+ p)l/r’

The smoothing properties of 7}, are best seen in Fourier transform space and, for this
purpose, Tjv will be rewritten in the form of a convolution. Denoting by 6 the char-
acteristic function of the interval [—1/2, 1/2] and defining 6, (x) := h='0(h~1x),
we can write

IThH — HllL,®) = 1<p<oo.

Thv =06, xv.

It is clear from this representation that 7}, is a translation-invariant linear operator.
Moreover, by Young’s inequality (1.17),

I1Thvlle,® < 10kl @ lviiL,® =101L,@lviL,®, veLR).

Hence, Tj, is a bounded linear operator on L ,(R), uniformly in £; or, in other words,
the family of operators {7}, : & > 0} is uniformly bounded on L ,(R).

In order to clarify the effect of mollification on smooth functions, we note that,
since F6 (&) = FO(h), Tyv can be rewritten in the form

Thv=v+ h2323,‘l°)u,

where
_1 1= FO(h§)
B}(IO)UZZF IT%Q v
and
F@@):M_

§/2
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Here 8 denotes the second derivative with respect to x. Similarly to T}, B}(Lo) isa
translation-invariant linear operator on L, (R).

Now let us suppose that the Fourier transform of v contains ‘low frequencies
(wave-numbers)’ only, i.e. Fv(§) =0 for |h&| > 26 for some constant §, 0 < § <
7 /2; then, according to the Paley—Wiener theorem (Theorem 1.30), v is infinitely
many times continuously differentiable on R. Thanks to Theorem 1.58, the function

1 — FO(he)
T onEr

featuring in the definition of B,(lo)v, is a local Fourier multiplier on L (-4, §). Thus

”82B}(10)v”LP(R) =| BIEO)aZUHL,,(R) = C”82U”L,,(]R)’

and therefore

IThv —vliL, @ = Cthazv”Lp(R)'
In other words, if v is sufficiently smooth (that is, if P2vel p(R)), then Thv ap-
proximates v with O(h?) error as h — 0.

Let us now turn our attention to understanding the effect of mollification on the
‘high frequency (wave number)’ content of a function. By considering the Fourier
transform of Tj,v and applying Theorem 1.29 we obtain

sin(h/2)
F(Tpv)(§) = FO(hg) Fv(§) = ————Fu(§).
Eh/2
This shows that, for any fixed & € (0, 1] and |§| > 1, the magnitude of F (T,v)(§) is
smaller than that of Fv(£), by a factor that is bounded by a multiple of 1/£. A more
detailed picture emerges by writing

Tyv =hDy B\ v,

where Dpw := (w(x + h) — w(x))/h is the first-order divided difference of the
function w on the uniform mesh ~27Z, and

1 h
B;ll)sz_]—exp —ﬁ Fu.
thE 2

Similarly to B,(lo), B,(ll) is a translation-invariant linear operator on L ,(R). Suppose
that the Fourier transform of v is supported on ‘high frequencies (wave-numbers)’

only, i.e. Fv(§) =0 for |h&| < § for some constant 6. Because

1 1hE
(-7
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is a local Fourier multiplier on L ,((—00, §) U (3, 00)), it follows that
1 €]
| DBy, U”LP(R) =B, th“Lp(]R) = ClIDpvliL,®),

and therefore,

IThvllL,®) < ChlDyvllL,®)-

In other words, if v is a ‘nonsmooth’ function in the sense that the only requirement
on the regularity of v is that supy,¢ o 17 1 DrvllL,(r) < Const., then T, v approximates
zero with O(h) error as h — 0. For example, in the case of the function x € R —
v(x):= H(x) — H(x — 1), with compact support [0, 1] and jump discontinuities at
x=0and x =1, sup,¢o,17 | DnvllL,®) = 2, and therefore || T;v]L,®) = O(h) as
h— 0.

Thus, to summarize our findings, 7} is a translation-invariant linear operator,
uniformly bounded on L, (R); further, if v is smooth, in the sense that the Fourier
transform of v has compact support in the interval [—23/h, 25/ h], then Tpv — v
is O(h*) with u =2 in the L,(R) norm, and finally if v is nonsmooth, in the
sense that the Fourier transform of v is supported in the complement of the interval
[—8/h, 8/ hl, then Ty is of size O(h"), with v = 1, in the L ,(R) norm. Motivated
by this example, and following Kreiss, Thomée and Widlund [115] and Thomée and
Wahlbin [178], we adopt the following definition of mollifier.

Definition 1.60 A family of linear translation-invariant operators {75, : 0 < h < hg},
each of which is uniformly bounded on L ,(R"), is called a family of mollifiers of
order (u, v) if, for some real number § with 0 < § < /2, there exist translation-

invariant linear operators B}(Iol)x, || = u, and BV || = v, and positive constants

h,a’

C&O), || = u, and Cé,l), || = v, independent of A, such that:
(i) forevery v e L,(R") with Fv(§) =0 for [h§| > 26,
Thv=v+h" Z B‘XB}(Z(ZU,
loe]l=p
I Bi(l(,)t)xU“L,,(R") <COMwlL, @
(ii) for every v e L,(R") with Fv(§) =0 for || < 4,
Tyw=h" Y DiB,"v,
|ae|=v
|Bavl 1, ny =< €SV 10112, ey
where, for a multi-index « = (a1, ..., ay), Dg denotes the forward divided dif-

ference of order || on the uniform mesh hAZ".

Given a particular £, (i) requires that 7, v approximates v to order O(k*) when-
ever the Fourier transform of v contains low ‘frequencies (wave-numbers)’ only
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(with respect to the given resolution h). Similarly, (ii) requires that 7jv approxi-
mates 0 to order O(h") whenever the Fourier transform of v contains ‘high fre-
quencies (wave-numbers)’ only. The integers u and v will be called the order of
approximation and the order of mollification of Ty, respectively. In the next section
we consider a general class of mollifiers of order (i, v); thereafter, we shall confine
ourselves to mollifiers with u = 2.

1.9.3 An Admissible Class of Mollifiers

We shall generalize our simple example of the Steklov mollifier introduced in the
previous section by considering mollifiers of the form

Thv := 0y % v, O, (x) = "0 (h ™' x), (1.30)

with 6 € L1 (IR"™). The next theorem gives a precise characterization of the admissi-
ble class of 8 in terms of Fourier multipliers (cf. Kreiss, Thomée and Widlund [115]
and Thomée and Wahlbin [178]).

Theorem 1.61 Let p € [1,00), and assume that 0 belongs to L{(R") and its
Fourier transform F6 can be expressed as follows:

FO@E)=1+ Z £b0e), b e M,(Bay), (1.31)
loe|=p
FO(&) = Z (sin %) V&), bl e My(R"\ Bs). (1.32)
la|=v

Then, FO € M), and (1.30) defines a family of mollifiers T;, on L,(R") of order
(u, v) in the sense of Definition 1.60.

Proof Clearly, for each h > 0, the operator 7}, is linear and translation-invariant on
L ,(IR"). Further, thanks to Young’s inequality (1.17),

|F7FO - Fo)| gy =165 Vil 2) < 10012y @n V]2, ey (1.33)
for each v € S(R"), and therefore F60 € M), [[FO|lp, < 10, rn). Since the

L{(R™) norms of 6 and 6, are equal, inequality (1.33) also implies that the family
{T), : h > 0} is uniformly bounded on L ,(R"). In order to verify that T,v =6, *x v

is a mollifier of order (i, v), we define the linear operators B }(logt and B;ll; by
BO y.— 1,1 pO peyF
na? = F 7 (7 by) (hE) F),

Bi(:;v =F! ((21)""‘ exp(—%é .a)bfxl)(hé)Fv).
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Thus, by definition, B}(IO;, || =, and B}(llgt, || = v, are translation-invariant linear

operators on L ,(R"). Moreover,

I B,i(zv “LP(R") = ||b¢(xo) I M, (Bas) IVllL, e

for all v € L, (R") such that Fv(§) =0, |h§| > 25, and

[ B}(:gtv I Ly®n = (1% ’|MP(R"\I_?3) Ivllz, &)

for all v € L, (R") such that Fv(§) =0, |h§| < . Since F6,(§) = (F6)(h§) and
since in Fourier transform space 3% and D} correspond to multiplication by (:)*
and by

h1] j]j[l(elhf.f - 1)% =@ exp(%é : a> (h_l sin %) :

respectively, the required representations of 7jv in terms of B}(l?gl and B}(llgl follow
from (1.31) and (1.32). O

In order to illustrate the significance of this theorem, we construct a family of
mollifiers of order (u, v) in one dimension (n = 1), which generalizes our simple
example of the Steklov mollifier discussed in Sect. 1.9.2. For two integers, u > 1
and v > 1, let p,, , be a polynomial of degree k > v such that

Py (sing) ="+ £ N "¢, "

m=0

where ¢, m =0, 1, ..., are suitable constants and cg # 0, with the infinite series
converging absolutely and uniformly for |£| < 2§ and some § in the interval (0, 27].
Let us consider the function
Pu,v (sin(§/2))
Syv)i=—"—"———, &R
. &/2)
The extension of §), , from the real line to the complex plane is an entire func-
tion U (¢) satisfying the hypotheses of the Paley—Wiener theorem (Theorem 1.30)
with p = k/2; therefore, there exists a distribution 6, ,,, with compact support
supp8,,,, C [—%k, %k], such that

FOu0="S,..

Moreover because S, , € L>(R), Plancherel’s theorem implies that 6, , € L2(R);
further, since 6, , has compact support, it follows by Holder’s inequality that 6, ,, €
L1(R). Thus, the linear operator ThM " defined by

T/ u=0""xu, 6" =h""0,,(h""x), (1.34)
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belongs to the class of mollifiers considered. Now we show that {ThM Vi h >0} s
a family of mollifiers of order (u, v).

Theorem 1.62 The operator Thu’v defined by (1.34) is a mollifier of order (1, v) on
L,(R"),1<p <oo.

Proof We shall apply Theorem 1.61 in tandem with the Carlson—Beurling inequality
stated in Theorem 1.58. Let us define the function 5 by

FO,,(8) -1

PO =

. &1 <26,

Then,

E 1%
F%,v<5)=1+(§) PO &), & <28.

In order to show that b© e M, (B2s), let us observe that since F8, , = S, ., we
have that

o0

bO@) =) ShE" Il <28,
m=0
d 2 (m+ Depg m
d_“g‘b(O)(E) =%T§ . 1E1 <24,

and therefore b©) € C!(Bys). Let ¢ belong to C°(R) and suppose that ¢(£) = 1,
|&] < 2§; the existence of such a function is ensured by Lemma 1.15. By applying
Theorem 1.58 with n =1 and m = 1, we deduce that (pb(o) € M,,. Therefore pO ¢
M, (B>s), and hence we have (1.31).

In order to verify (1.32), we write

£

FO,,(E) =58, = (sin 5) bV &), &=,

where

bV (&) = <§>_VM

2 (sin(§/2))¥
=<§> quv(sin(€/2)), |1 =3,

and gy, is a polynomial of degree k — v. Clearly g, (sin(§/2)) € M. Let ¢ €
C°°(R) be such that ¥ (§) =1, |&] > 8, and ¥ (§) = 0 in the neighbourhood of
& = 0. Then, according to Theorem 1.58, (§/2)"y € M,,. Since the product of two
elements in M), is also contained in M, (see Sect. 1.9.1), it follows that wb“) €EMp;
thus, bV belongs to MyR\ Bs), and hence (1.32). O
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1.9.4 Mollifiers of Tempered Distributions

In the remainder of this section we focus on a family of mollifiers with fixed order
of approximation, y = 2, which will be used extensively throughout the rest of the
book. They arise from the polynomials p> ,(§) =&Y, v > 1. The Taylor series of
p2.v(sin&) in the neighbourhood of £ = 0 has the form

P2u(sing) =&Y + "2 " ",

m=0

where ¢, are suitable constants, cg # 0, and the infinite series converges absolutely
and uniformly for all || < 26, where § € (0, 27 ]. This expansion indicates that the
order of approximation is indeed p = 2. Clearly,

2,0(sin(§/2)) _ (sin(§/2)\"
Spu(6) = L2 OINC2) _ (SOE/DNT
E/2) £/2
In fact, we shall extend the range of values for v by allowing v = 0. In this case,

$2.06) =1

Let 6, denote the inverse Fourier transform of S ,,, v > 0. For v =0, 6y = §, the
Dirac distribution concentrated at zero. When v > 1, a simple calculation reveals
that 6, is a B-spline of degree v — 1 supported on the interval [—v/2, v/2]. For
example,

1 it =172,
O1(x) = 0 otherwise,

_r=xl ifix] =1,
0r(x) = 0 otherwise,

3—4x%/4  if|x| <1/2,
63(x) = 3 3—2[x)?/8 if1/2<|x| <3/2,
0 otherwise.

Letting 0 (x) := h=16,(h~'x) forv>1and 9}? := 0y, we consider the associated
family of linear operators:
T, v:=0) *v.
Forv =0, Th0 : L,(R) — L,(R) is simply the identity operator, whereas for v > 1 it
follows from Theorem 1.62 that 7, h” is a family of mollifiers on L,(R), 1 < p < oo,
of order (2, v).
Our definition of 7)) is easily generalized to the case of n dimensions. Let v =

Wi, ..o,vy),v;>0,i=1,...,n,and let 9,‘1’ € &'(R") denote the tensor product of
the univariate distributions 9;:1 €& R),i=1,...,n. We define

T)v:=0} xv. (1.35)
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This mollifier exhibits different orders of smoothing in the various co-ordinate di-
rections: in the ith direction the order of mollification is v;, with v; = 0 signifying
no mollification in the ith direction. Since 6, is a distribution with compact support,
T'v is correctly defined for any distribution v € D'(R"), and therefore 7,’ can be
seen as a mollifier on D'(R"). When v = (0, ..., 0), 7} is the identity operator in
D’ (R™), which has no smoothing properties.

Next, we shall investigate, for a tempered distribution v, the amount of smooth-
ing required to ensure that 7,’v is a continuous function. To this end, we shall first
establish a set of preliminary results, the first of which characterizes the smooth-
ness of 6, in one dimension (n = 1). For this purpose we require a further class of
function spaces, called Bessel-potential spaces.

Given a real number s and a real number p > 1, we consider the Bessel-potential
space of tempered distributions:

HS(R") ={ueS'[R") : F~'((1+15P7)*Fu) e L,(R")}.

H ; (R™) is a Banach space with the norm

laell a7y ey = | F =" (1 + £1%)"/* Fu) I, @

Concerning the relationship between the Sobolev spaces W, (IR") and Bessel-
potential spaces H ; (R™), for s e R and p € (1, 00), we have that

W5(R") = H3(R") fors=0,+1,+2,....

Before we state and prove the next lemma, which provides a characterization of
the smoothness of 6, in terms of Bessel-potential spaces, we recall the following
embeddings:

O assuming that p € (1,00) and s > n/p,
H3(R") — BC(R"); (1.36)

® assuming that p € (1, 00) and s > 0,

W, (R") = HJ S(R"),  p(e):=

, (1.37)
for integer s > 0, 1 < p < oo and ¢ = 0; for noninteger s > 0, 1 < p <2 and
& = 0; and for noninteger s > 0,2 < p <ocoand 0 <& <n/p.

The first of these continuous embeddings, (1.36), follows from Eq. (16) on
p. 206 of Triebel [181]. When s > 0 is an integer, 1 < p < oo and & = 0, the sec-
ond continuous embedding, (1.37), is an immediate consequence of the equality
W;,(]R”) = H;,(R”). When s > 0 is noninteger, | < p <2 and ¢ =0, (1.37)is a
trivial consequence of the continuous embedding W; (R") = B;’ p(]R”) — H [S, (R™)
(cf. Theorem 5(C) on p. 155 of Stein [167]). Finally, when s > 0 is noninteger and
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2 < p < oo, suppose that 0 < ¢ < n/p; then, (1.37) follows from the continuous
embedding W, (R") = B), ,(R") — H;(;ﬁ(]R”) (cf. (17) on p. 206 of Triebel [181]
witht =5 — e and g = p(e)(> p)).

Lemma 1.63 Suppose thatv € N,o € Rand p € (1, 00) are such that o + (1/p) <
v. Then, 0, € Hy(R), where 1/p + 1I/p=1.

Proof Letv=0. For —o > 1/p, Hp_" (R) is embedded in BC(R) (cf. (1.36) with
n = 1). Therefore 8y = § belongs to (Hp_" R)) = H;, (R).

Let v = 1.Itis easily seen that 0] € Wqr (R) for t < 1/q and every g € (1, 00). We
recall that qu (R) is embedded in qu(;f (R) with g(e) =¢q /(1 —eq) (cf. (1.37) with
n=1),wheres =0ifl <g <2and0<e¢e <1/qif2 <q < o00.Thus,if 1 < p’ <2,
by taking ¢ = p’, T = o and ¢ = 0, we directly deduce that ; € qu ®R) = H;’ R).
If on the other hand 2 < p’ < oo, then we choose ¢ = p’/(1 +ep’) and T =0 + &,
with 0 <e < 1/2—1/p’; hence 2 < g < p’ and t < 1/¢, and so, again, we have
that 6; € Wy (R) — qu(;f R) = HZ/ R).

For v > 2, the proof can be reduced to the case of v = 1 by noting that 6, =
01 %- - -0 (v-fold convolution). Indeed, let us choose o ; and p;., —0<a; < l/p;.,

1<p;.<oo,j=1,...,v,suchthat

1 1 1
o=a1+-+a ad —=—+--+—F—-@-1D.
p P Py

Since

a/2 /2 ay/2

FU(1+ 181777 F6,) = F' (1 + 1E17) " F6y %% F (1 + |£]7) /" Fo,

and 0; € H;x,j (R) for oj < l/p}, j=1,...,v, Young’s inequality (1.17) yields
j

v
[FH (4 18RO, g < TTIET (118 RO, 2.
j=1 !

and therefore 6, € H;, (R). O

In order to extend this result to n dimensions, we need the following lemma.

Lemma 1.64 Fors cRandoj eR, j=1,...,n, consider the function a, defined
by

n

a,€) = (1+1ED) P +63) 72, s=(&.....6) eR".

Jj=1
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Let Py, denote the collection of all nonempty subsets of I, :== {1, ... ,n}. If

s+> 0;=0 YPeP,,
JjEP

then ay is a Fourier multiplier on L,(R"), 1 < p < c0.

Proof The proof is based on Lizorkin’s multiplier theorem (Theorem 1.59). Clearly
ay is a continuous function on RY; in order to show that it is bounded on R’ we note
that every & = (&1, ..., &,) € R" can be written as

&=r(cosyr,...,co8y,), wherer=IE&]|, coszyl +--~+coszyn =1,

and y; € [0,7]. Let Q:={j € I, : 0; <0} and, for each £ e R", let P(§) :={j €
I, \ Q:cos’ vj = 1/n}. If Q =0, then P(§) # ¢ for all £ € R". Therefore P(§) U
Q # ¥ for all £ € R". For o € R shall write (o) := max{o, 0}. Hence, for each
& € R" we have that

1y X _ 1
an(&) <n? T2 (14 182) 72 where so(8) =5 + Y peyuo -

Since s9(§) > 0 for each £ € R", we deduce that a,, is bounded on R”. Thus we have
shown that £*9%a, € BC(R]) for « = (0, ..., 0). We shall prove by induction that
£%3%a, € BC(R") for all € {0, 1}". Let & € {0, 1}" and assume that £#3Pq, €
BC(R}) for all B <. Fix j € I, such that «; = 0 (if there is no such j, the proof
is complete). By the Leibniz formula

£j6%0;0%an (&) =) (;) (E70Pg;(®))(E* P Pan(®)),

B=a
where
g (€)= —se2(1+187) " — 062 (1+£2) ",

As £P3Pg j is a bounded continuous function on R, by recalling the inductive
hypothesis we deduce that £;£%0;0%a, belongs to BC(R}). Hence, by induction,
£%0%a, € BC(RY]) for all @ € {0, 1}". Thanks to Lizorkin’s multiplier theorem a,, is
therefore a Fourier multiplier on L, (R"), 1 < p < oo. O

By applying Lemma 1.64, we obtain the following extension of Lemma 1.63 to
n dimensions.

Lemma 1.65 Suppose that s e R, p € (1,00), v=(vy,...,v,) € N, and assume
that there exist n real numbers o, j =1,...,n, such that
oj+/p)<v; Vjel,, (1.38)
s+Y 0,20 VYPeP, (1.39)

JjEP
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where I, == {1, ...,n} and P, is the collection of all nonempty subsets of I,,. Then,
6, € H;S (R™).

Proof Let us define the partial Fourier transform F; by

o
(Fju)(x1,...,Sj,...,xn):zf u(x)e % dx;,  ueS(R"),

—00

and extend the definition of F; to S’(R") in the usual way. Similarly, we define F j_l .
With these definitions, we can write F' = Fy - - - F,,. Since 6, is the tensor product of
9])]., j=1,...,n, it follows that

Fo,&) = | Fi0,, ).

j=1

By recalling the definition of a,, from Lemma 1.64, we have that

(14167 F6,) = Fla, (HF (14151 )"f‘/szeuj).

Under the hypotheses of the lemma a, is a Fourier multiplier on L, (R") by
Lemma 1.64, and Guj S H;;’ M®R), j=1,...,n, by Lemma 1.63. Hence,

TEEO) L e < lanlla, 1"[||9u,||H | @

10l oy = [ F (1 + 16P°)
j=1

and therefore 6, € H{;S (R™). O

Thus we have characterized the smoothness of the function 6, in terms of Bessel-
potential spaces. Next we show that if 6, € HI;S R" andu € H 15 (R™) then T)'u =
9,7 % 1 is a continuous function on R". In fact, we shall establish a more general
result from which the continuity of 7, u easily follows.

Lemma 1.66 Suppose that u € S'(R"), v € £'(R") and let

U= F (14 16P) P Fu). v = F (14 18P)

Fv).
IfUeL,R"),VeLyR", 1/p+1/p' =1, pe(l,00), then U xV belongs to
L,(R"), 1/r=1/p+1/p' —1,anduxv="U % V. In particular, if 1 /Jp+1/p' =1,
then u x v =U %V is a bounded uniformly continuous function on R".

Proof The fact that U % V belongs to L,(R") is the consequence of Young’s in-
equality. Since u x v = F~Y(Fu - Fv) in 8'(R"), it suffices to show that Fu - Fv =
FU % V) in 8'(R") to deduce that u x v =U % V in S'(R").
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Because Fu € S'(R"), Fv e Cj;(R") and (1 + 1£1%)%/? € Cyf (R"), by recall-
ing the definition of multiplication of a tempered distribution by a function from
Cy7 (R™), we obtain

(Fu- Fv,¢)=(Fu, Fv- @)
= ((1+1€17)*Fu, (1+€])

= ((1+1&2)?Fu- (1+&P)

_s/sz . (p)

“Fv,¢)=(FU - FV, ),

for all p € S(R™). As FV e C3;(R"), it follows that F(pFV) € S(R"), and there-
fore

(FU-FV,9)=(FU,¢-FV)=(U,F(gFV))=(U,V_xFg), ¢eS(R").

Since U is a regular distribution and V_ x Fp = F(pFV) € S(R"), by applying
Fubini’s theorem we obtain

(U, V_ % Fg) = / Ux)(V_ % Fe)(x) dx
Rn

=/ U(X)/ Fo(y)V(y —x)dydx
R" R"

Zf,, (/ U@V —x)dx)F(p(y)dy

= Rn(U * V)(»)Fo(y)dy

=(UxV,Fp)=(FUxV),¢p), ¢ecSR").
Thus Fu-Fv=FU -FV = F(U % V), and therefore u x v=U % V in S'(R").
Finally, if 1/p + 1/p’ =1 then, by Young’s inequality, U % V € Lo (R") and,
since T (U x V) — (U x V)= (r;U — U) %V, also
|ta (U V) =W V)|, gny < 150U = UllL, @)1V L, @n)-

As |[taU = UllL, @ — 0 when || — 0, it follows that U * V' is a bounded uni-
formly continuous function on R”. O

Now we are ready to prove the main result of this section.

Theorem 1.67 Suppose that u € H;(R”), s€eR, pe(l,00),veN", and assume
that there exist n real numbers o, j =1, ...,n, such that inequalities (1.38) and
(1.39) hold. Then, T, u is a bounded uniformly continuous function on R".
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Proof Thanks to Lemma 1.65, 9, € H[;‘Y (R™), 1/p + 1/p’ =1, and therefore also
o) € HI;S (R™). By recalling Lemma 1.66 with

s/2 —s5/2

U=F '(1+1e?) " " FueL,(R") and V=F"'(1+[&%)"""F6} € Ly (R"),
and noting that convolution is commutative, it follows that 7)) u = 0) xu = u %6, =
U * V is bounded and uniformly continuous on R”. 0

Analogous results hold in Besov and Sobolev spaces.

Theorem 1.68 Suppose that u € B;’p(R"), seR, pe(l,00),veN" and assume
that there exist n real numbers o, j =1,...,n, such that (1.38) and (1.39) hold.
Then, T, u is a uniformly continuous function on R".

Proof Let us observe that if (1.38) and (1.39) hold, then (1.39) holds with strict
inequality: indeed, if (1.38) and (1.39) are satisfied for some setof 0, j =1,...,n,
then there is a § > O such thato; < v; — % -4, j=1,...,n. Letting o} =0; +9,
J=1,...,n, we deduce that (1.38) and (1.39) hold with o; replaced by O’]/», and >
replaced by > in (1.39). Now let

clearly, s, > 0.

Let us note the continuous embedding B;’ P(R”) > H;(; R*) fors eR, p e
(1,00),withO <& <n/p and p(e) := ﬁp/n) (cf. (17) on p. 206 of Triebel [181]).
By choosing a sufficiently small ¢ in the interval (0, min(s,, n/p)), we can thus en-
sure that the strict versions of the inequalities (1.38) and (1.39) hold with s and p
replaced by s — ¢ and p(e), respectively, and the stated result follows from Theo-

rem 1.67. O

Theorem 1.69 Suppose that u € W;; R", s eR, pe(l,00),veN and assume
that there exist n real numbers o, j =1, ...,n, such that the inequalities (1.38)
and (1.39) hold. Then, T} u is a bounded uniformly continuous function on R".

Proof By noting that, for p € (1, 00),

HS@RY)  ifs=0,41,42,...,
s (mnY) _ P
Wp (R ) a { B}, ,(R") if s # integer,

the result follows from Theorems 1.67 and 1.68. O
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1.9.5 Multipliers and Mollifiers on Periodic Spaces

Many of the results discussed in previous sections have natural counterparts in
spaces of periodic functions. Here we give a brief summary of some simple facts,
which we require in the construction and error analysis of finite difference schemes.

1.9.5.1 Distributions on a Torus

Let T denote the n-torus; in the n-dimensional Euclidean space R” it can be rep-
resented by the cube

T .= {x:(xl,...,xn)eR”:|x(,~|§n,j:1,...,n},

where ‘opposite points’ are identified. In other words, x € T" and y € T" are iden-
tified whenever x — y = 2k for some k = (ky, ..., k,) € Z".

We denote by C>°(T") the set of all infinitely many times continuously differen-
tiable complex-valued functions defined on T". For any ¢ € C*°(T"), ¢(x) = ¢(y)
for all x and y in T" such that x — y = 2knz for some k € Z".

Definition 1.70 A sequence {g,} -, C C*°(T") is said to converge to ¢ in
C®(T") if 9%¢y,, converges to %@, uniformly on T", as m — oo, for every multi-
index «. When equipped with convergence in this sense, the set C*°(T") will be
denoted by D(T").

Suppose that u is a linear functional on D(T"), whose value at ¢ € D(T") is
denoted by (u, ¢). We shall say that u is a continuous linear functional on D(T") if
(u, ) — (u, p) as m — oo, whenever ¢,, — ¢ in D(T").

Definition 1.71 A continuous linear functional on D(T") is called a distribution
on T". The set of all distributions on T" is denoted by D’ (T").

We define addition in D’(T"), multiplication by a complex number, differen-
tiation, tensor product, translation, and multiplication by a function from D(T")
analogously as in the case of D'(£2), 2 C R".

Let 1 < p < o0; then L,(T") is defined as the set of all Lebesgue-measurable
functions v on T” such that v(x) = v(y) fora.e. x and y in T” such that x — y = 2kx
for some k € Z", and

1/p
||U||LP(T”) = (/ |U(X)}pdx> <oo ifl<p<oo, and
T)‘l

VIl £ () = €88.5Up e [V(X)| < 00 if p = o0.
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Any function u in L,(T"), 1 < p < 00, can be identified with an element of D’ (T")
via

(u, p) = /1;" u(x)p(x)dx.

Thus, D(T") C L,(T") C D'(T"). In particular, every trigonometric polynomial
T(x)= Zake’k"‘, xeT",
keA
where A is a finite subset of Z" and the a; are complex numbers, is an element of

D'(T™).
For u € D’'(T"), we define the Fourier coefficients of u by

k) == (u,e™), kezZ"

In particular if u € L,(T"), 1 < p < oo, then by identifying it with an element of
D’ (T"), as indicated above, we have that

ﬁ(k):/ ux)e™kdx, kez".

We recall the following results concerning Fourier series (see, for example, Ed-
wards [43], Chap. 12).
(1) Any function ¢ in D(T") can be expanded into an infinite series

> et (1.40)

keZ

1
Q)"

(x) =

which converges in D(T"), where {a }rez» is a sequence of complex numbers
such that

lak] < cm (A + kDT, keZ", (1.41)

forallm =0, 1,2, ..., and where ¢, are appropriate positive constants. In fact,
arp = ¢(k), k € Z". The converse of this statement is also true: if {ay}xezn sat-
isfies the condition (1.41) then the series (277)™" ) ", czm are'®* converges in
D(T™); denoting by ¢(x) the limiting function, we have that ¢ (k) = a; for
k € 7Z"". The expansion (1.40) is called the Fourier series of ¢. A sequence
{ak}rezr satisfying (1.41) is said to be rapidly decreasing. For a rapidly de-
creasing sequence a = {ai}rez», the function defined by the right-hand side of
(1.40) will be denoted by a". Thus,

1

a’ (x):= 3y

Z akezk~x

keZ

where the infinite series on the right-hand side converges in D(T").
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(ii) Any distribution u € D’(T") can be represented as an infinite series

1
Qm)"

Z arer, with eg(x) ;= e'k¥, (1.42)
keZn

which converges in D'(T"), where {ai }rcz» is a sequence of complex numbers
such that

lax| < cm(1+1K)", keZ", (1.43)

for some m € N, where ¢, is an appropriate positive constant. In fact, a; =
¢(k), k € Z"". The converse of this statement is also true: if {ay}reczn satisfies
the condition (1.43) then the series (27)™" ) ", .;» akex converges in D'(T");
denoting by u € D’ (T") its limit, we have that it (k) = ay for k € Z"; see Theo-
rem 1.72 and the subsequent discussion for a proof of this result. The expansion
(1.42) is called the Fourier series of u. A sequence {ay }rez» satisfying (1.43) is
said have at most polynomial growth, or that {ay}rez» is a tempered sequence.
For a sequence a = {ay}rez» that has at most polynomial growth, the distribu-
tion defined by the right-hand side of (1.42) will be, again, denoted by a".

1.9.5.2 Periodic Distributions

Let us consider the space S'(R") of tempered distributions on R”. An element u €
S'(R™) is called a periodic distribution if

U=T_2krlU (1.44)
holds for all £ in Z"; in other words,

(u, 9) = (u, rn @) (1.45)

for all ¢ in S(R") and all k € Z", where (-, -) denotes the duality pairing between
S'(R™) and S(R™). The set of all periodic distributions on R” will be denoted by
S.(RM).

Any complex-valued function u defined on [—m, )" can be extended 27 peri-
odically to the whole of R”; the extended function will be denoted by the same sym-
bol. Thus, for example, x € R” > e (x) := e'** belongs to S, (R™) for all k in Z".
Furthermore, if {o}rez is a sequence of complex numbers of at most polynomial
growth (i.e. (1.43) holds), then Zkezn arey belongs to S, (R"), where convergence
takes place in S’(R™). Thus, by (1.43), any distribution on T” can be thought of as
a periodic distribution on R”. The next result (cf. Triebel [183], Sect. 9.1.2) shows
that the converse is also true. The proof is simple, and for the sake of completeness
it is included here; we recall that F denotes the Fourier transform on S’ (R").
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Theorem 1.72 u € S'(R") is a periodic distribution (i.e. u € S,,(R")) if, and only
if, there exists a sequence {ay}xezn of at most polynomial growth such that

_ 1
C Qo

Z akex, where ep(x) := ek, (1.46)
kezZn

and the infinite series on the right-hand side converges in S'(R").

Proof Suppose that u € S, (R"); then, by applying (1.44) (or (1.45)) we deduce that
(Fu,¢) = (u, F) = (u, T_ox (F9)) = (Fu,e'*™ ) VkeZ", Vp € S(R").

Therefore,

Fu=e2k*py vike7m,

Now if x belongs to the interior of supp Fu it follows from this equality that
e'27kx — 1 for all k € Z", and hence x € Z". This implies that supp Fu C Z", and
there exists a sequence of complex numbers {bg }rcz» such that

Fu= Z bi Sk,

keZ

where 8y, is the Dirac distribution concentrated at k € Z". Suppose that ¢ € S(R")
with ¢(0) = 1 and suppe C {x € R" : |x| < 1}. Then,

(Fit, @) = ) bi(Sk, tnp) = ) bibkm =bm, meZ’,
kezZn kezZ"

where 8, is the Kronecker delta. As Fu is an element of S’(R"), it follows from
this equality that the sequence {by }rcz» is of at most polynomial growth. Now,

u=F"(Fu)y= Y bF '8 =Qm)™" > be'*™,
kezZn kezn
which implies (1.46) with ay = by, k € Z".
The proof of the converse statement is straightforward. O

We note that the mapping u + {a}rezn in this theorem is an injection. This
allows one to identify u € S, (R") with u € D'(T") through (1.42). Consequently,
distributions on the torus T" and periodic distributions on R” can be identified.

1.9.5.3 Mollifiers on Function Spaces of Periodic Functions

We consider the following spaces of periodic distributions.
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Periodic Sobolev Spaces Suppose that 1 < p <ocoandm =1,2,...; then
» 1/p
m ny .__ ny . _ o
W, (T"):= {” €Ly(T"): lleellwe rmy = < Z E u”LP(T")> < OO}'
la|<m

Further, we put Wg(']I‘") :=L,(T"), 1 < p < co. For noninteger s > 0and 1 < p <
00, WIS, (T™) is defined analogously (cf. the discussion following Theorem 1.35).
For any positive real number s and 1 < p < oo, W *(T") denotes the dual space of
W, (T"), equipped with the associated dual norm:

[{u, )|
hellyreony o= sup ol 1/p /g =1
0pew; () ll@llws )

Periodic Bessel-Potential Spaces Suppose that 1 < p < oo and —00 < 5 < 00;
then

Hy (1) = fu e D' (1) = | (L4 1K1)722) ], < 00},
Next we consider mollifiers on these function spaces. Assuming that 77 and 75

are trigonometric polynomials, their convolution 77 * 73 is defined by

(T1 * To)(x) = /T Ti(x — y)Ta(y) dy.

This definition can be extended to periodic distributions following the same route as
in the nonperiodic case discussed earlier in this chapter.

Let 0, (x) denote the B-spline of degree v — 1, v > 1 (see Sect. 1.9.4) supported
on the interval [—v/2, v/2] of the real line. When v = 0 we define 6 as the Dirac
distribution concentrated at 0. For 2 > 0, let 6} (x) := h='9(h~'x) when v > 1 and
9}? := 6p. We shall suppose that & has been chosen small enough to ensure that the
support of §;, the closed interval [—vh /2, vh/2], is contained in the open interval
(=7, 7). Let us assume that 6, has been extended 27 periodically to the whole real
line, and consider the family of mollifiers 7, defined by

TPu=0) xu, u GD’(TI).

The multidimensional counterpart of this mollifier is defined in the same way as
in the nonperiodic case: assuming that v = (vy, ..., v,), where v; are nonnegative
integers, let 6,‘; denote the tensor product of the univariate distributions 49;,}", i =
1,...,n. We define

T u=0) xu, uc D’(T”).
The next two results are the ‘periodic analogues’ of Theorems 1.67 and 1.69.
Theorem 1.73 Suppose that u € Hg(']l‘”), with s €R, p € (1,00), let v e N*, and
assume that there exist n real numbers o, j =1,...,n, such that the inequali-

ties (1.38) and (1.39) hold. Then, T, u is a bounded uniformly continuous function
on T".
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Theorem 1.74 Suppose that u € W;(T”), with s € R, p € (1,00), let v e N, and
assume that there exist n real numbers oj, j =1,...,n, such that the inequali-
ties (1.38) and (1.39) hold. Then, T, u is a bounded uniformly continuous function
on T".

To prove these results one proceeds in the same way as in the nonperiodic case,
except that Lizorkin’s multiplier theorem is replaced in the proof by a multiplier
theorem, stated in Theorem 1.75 below, due to Marcinkiewicz.

1.9.5.4 Fourier Multipliers on Periodic Spaces

A sequence {a(k)}rezn is called a Fourier multiplier on L,(T"), 1 < p < oo, if
there exists a positive constant C), such that

[ @),y < Cpllull,cam Vu e Ly(T").

The smallest constant C,, for which this inequality holds will be denoted by
ll@llm,,(rn)- The set of all Fourier multipliers on L, (T") will be labelled by m , (T").
It can be shown that || - [, (T is @ norm on m,(T"). The next theorem, due to
Marcinkiewicz, provides a characterization of Fourier multipliers on L,(T"). Be-
fore stating it, let us introduce some notation.

Assuming that {aj }rez» is a sequence of complex numbers and

e;=01j,...,8), Jj=1,...,n,

where §;; is the Kronecker delta, we define the partial undivided difference operator
Aj in the jth co-ordinate direction by

Ajak)y=ak +ej)—alk), j=1,....n, keZ".
We also require the notion of fotal variation of a sequence a = {ay }xcz», defined by

o
Var(a) := su max A%
@ pein O%ae(0,1) ZJ b

here A% := A{' ... A", and, for a € {0, 1}", we have used the multi-index notation

o o «,
Zv = Zv: ZU
with

o .
J maxvj=i2\kj|—1 okl ifo; =0,
2= o, — 1.

,,,,,

vj
When k; =0 for some j, then it is assumed that the corresponding maximization

(when aj = 0) or sum (when «; = 1) is only through v; = 0; the + or the — sign is
chosen in &+ depending on whether k; > 0 or k; < 0.
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Theorem 1.75 (Marcinkiewicz Multiplier Theorem) Let a = {ay}rezn be a se-
quence of complex numbers such that the following conditions hold:

sup |ax| < My, Var(a) < M.
kezn

Then, a is a Fourier multiplier on L,(T"), 1 < p < 00; that is, there exists a con-
stant C,, depending only on p, such that ||la ”m,,('IF") <CpMy.

For a proof of this result, we refer to Zygmund [206], Vol. II, p. 232, in the case of
n = 1, and Nikol’skii [144], p. 57, in the general case. Quite apart from its relevance
in the analysis of smoothing operators, the Marcinkiewicz multiplier theorem will
be one of our main tools in the error analysis of finite difference schemes in discrete
L, norms.

When n =1 it is usually simple to show by direct calculations that a sequence
a = {ar}rezn has bounded total variation; when n > 1, however, because of the
complicated structure of Var(a), this can be a tedious exercise. It is therefore useful
to seek a simpler criterion, under slightly stronger hypotheses on a. The next two
theorems indicate how this can be achieved.

We define the concept of Lebesgue point for a locally integrable function. Sup-
pose that xop € R" and f is a function defined and locally integrable in an open
neighbourhood of xg. We say that x is a Lebesgue point of f provided that

lim ———— F ) = fxo)|dy=0.

e=0 | B(xo, €)] B(x0,5)| |

Clearly, each point of continuity of a function f is a Lebesgue point of f. The
following example shows that the converse statement is false.

Example 1.32 Consider the function A defined on R? by

XZ
Alx,y) = )sz)z when (x, y) # (0, 0),
5 when (x, y) = (0, 0).

Then, A is continuous on R? \ {(0, 0)}, but not at (0, 0); nevertheless, each point
(x,y) € R? is a Lebesgue point of A.

In fact, according to Lebesgue’s differentiation theorem (cf. (1.11)), for any func-
tion f that is defined and locally integrable on an open set 2 in R”, almost every
Xxo € £2 is a Lebesgue point of f.

For the proof of the next result we refer to Theorem 3.4.2 and Remark 3.4.4 in
the monograph of Schmeisser and Triebel [162].

Theorem 1.76 Let 1 < p < oo and let A € Loo(R") be an element of M,(R").
Suppose additionally that each point k € 7" is a Lebesgue point of A. Then, the
sequence a = {ay}rezn, defined by ay = A(k) is a Fourier multiplier in L,(T"),
and \|alim, ) < [1Allm,®")-
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As an application of this powerful result, we state the following analogue of
Lizorkin’s theorem for L ,(T").

Theorem 1.77 Let 1 < p < 00. Suppose that A € Loo(R") is such that E¥9% A(&)
is a bounded continuous function of & on the set

Ry :={6eR":&#0,i=1,...,n}

for every multi-index o € {0, 1}, and each k € Z" is a Lebesgue point of A. Suppose
further that a = {a }rezn is a sequence of complex numbers defined by ay := A(k),
k € Z". Then, a is a Fourier multiplier on L ,(T"), and ||a||;m, ) < 1Al M, @) -

Proof The stated result is an immediate consequence of Theorems 1.59 and 1.76. [J

Example 1.33 Consider the sequence of real numbers a = {ai};cz2, With k =
(k1, ko), defined by

K
ap = m when k # (0, O),

: when k = (0, 0).

Then, a is a Fourier multiplier on L p(’IFZ), 1 < p < oo. This follows from The-
orem 1.77 by noting the following: the function A defined in Example 1.32 is a
Fourier multiplier on L p(Rz) thanks to Theorem 1.59; each & € R? is a Lebesgue
point of A, whereby each k € 7% isa Lebesgue point of A; and a = A(k), k € Z".

With all the prerequisites now in place, we are ready to embark on the numerical
approximation of partial differential equations.

The remaining chapters are devoted to the construction and analysis of finite dif-
ference methods for the approximate solution of elliptic, parabolic and hyperbolic
equations. As we have already emphasized in the Introduction, our key concern are
instances when the data and the solution to the problem under the consideration are
not smooth enough to allow the use of conventional tools from the theory of finite
difference methods. In particular, since neither the coefficients in the differential
equations under consideration nor the initial or boundary data will be required to be
continuous functions, sampling the data at the points of a finite difference grid, as
is usual in the classical theory of finite difference methods, in generally infeasible.
We shall therefore mollify the data in the process of constructing various finite dif-
ference schemes, so as to ensure that the mollified data are continuous and can be,
thereby, meaningfully sampled at the points of the finite difference grid.



Chapter 2
Elliptic Boundary-Value Problems

In the first part of this chapter we focus on the question of well-posedness of
boundary-value problems for linear partial differential equations of elliptic type.
The second part is devoted to the construction and the error analysis of finite differ-
ence schemes for these problems. It will be assumed throughout that the coefficients
in the equation, the boundary data and the resulting solution are real-valued func-
tions.

2.1 Existence and Uniqueness of Solutions

Suppose that £2 is a bounded open set in R", k is a positive integer and aqg, 0 <
lal, |B] <k, with «, B € N", are real-valued-functions defined on £2. We consider
the linear partial differential operator P (x, ) of order 2k defined by

P(x,d)u = Z (=D (agp(x)8Pu), x e 5. (2.1)
0<|al,|BI<k

The principal part Py(x, d) of the differential operator P(x, ) is defined by
Po(x, d)u := Z (=D 3% (agp(x)8Pu), xe .
el |B1=k
P(x, d) is said to be an elliptic operator on §2 if, and only if,
D agp(x)E*EP >0 Vx e, VE€R"\{0).
lal,1Bl=k

P(x,0) is called uniformly elliptic on §2 if, and only if, there exists a positive real
number ¢ such that

Y agp(0)E*EP =551 Vx e, VEER" (2.2)
lal,|1Bl=k
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Example 2.1 Consider the second-order partial differential operator, corresponding
to k = 1 above, defined by

29 3
P, ui=—3 g(aij(x)a—;>
J i

i, j=1

+ Z[ (a; (x)u) + b; (x)—:| +c(x)u, (2.3)

Xi

with a;j,i,j=1,...,n;5a;, b;,i =1,...,n; and c being real-valued functions de-
fined on an open set £2 C R", and such that

Yo aj(EEZEY E VxeQ VE=(,.. E)ER, (24
i,j=1 i=1

for a positive real number ¢, independent of x and &; then P (x, d) is a second-order
uniformly elliptic operator on £2.

Example 2.2 Consider the partial differential operator P (x, d), defined by
P(x, d)u = 37 My () + 28192 M3 () + 853 Ma (u),
where 9; := 3/dx; and 87 := 3%/9x? fori = 1,2,
My () := ay (x)d3%u + ao(x)d3u,
My (u) = ao(x)d?u + ax(x)d3u,
M3(u) := a3 (x)0;dxu,

and a;, i =0, 1,2, 3, are four real-valued functions defined on a bounded open set
2 ¢ R? such that there exist positive real numbers c¢; and ¢, for which

ai(x)y>cy, i=1,2,3, al(x)az(x)—ag(x)ZCg Vx € £2.

Under these hypotheses P (x, d) is a fourth-order uniformly elliptic operator on §2.
The same is true if the above inequalities satisfied by the coefficients a; are replaced
by

ai(x)>cy, i=1,2, ai(x)az(x) — (ao(x) +a3()c))2 >c Vxef2.

A partial differential equation on £2 is usually supplemented with boundary con-
ditions on 052. The differential equation in tandem with the boundary conditions
imposed forms a boundary-value problem.

Example 2.3 For the second-order partial differential equation considered in Exam-
ple 2.1 the following boundary conditions are the most common, with g denoting a
given real-valued function defined on the boundary 952 in each case:
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O Dirichlet boundary condition: u = g on 9£2;
® Oblique derivative boundary condition:

1 ou .
Y @y (5v+ Y a@u +o(u=g  ond,
ij=1 ! i=1

where v; is the jth component of the unit outward normal vector v to 952 and o
is a given real-valued function defined on 92 such that

1 n
o+ 3 Z(a,- +b;)v; >0 onads2.

i=1
The differential operator
n au n
[ E a~x—v'+E a;i(x)uv;, x €082,
u = lj( )axi j - i () uv;

is called the co-normal derivative corresponding to the partial differential op-
erator from Example 2.1. A particularly important special case arises when
ajj=46;j,i,j=1,...,n,and q; =0, i =1, ..., n. Then, the oblique derivative
boundary condition becomes:

u+ou=g onoas2,

and is referred to as Robin boundary condition. Here,

9 " 9
9, = — = ;—
v av ;vlaxi

denotes the (outward) normal derivative on 9§2; it is assumed that

1 n
a+§Zbivi >0 onads2.

i=1
In particular, when o = 0 on 042, the resulting boundary condition
du=g onaisf2

is called a Neumann boundary condition.

In many problems that arise in applications boundary conditions of different kind
are enforced on different parts of the boundary; for example, 92 may be the union
of two disjoint subsets 0§21 and d£2,, with Dirichlet boundary condition imposed
on 3£2; and an oblique derivative boundary condition imposed on 9£2;. In most
of what follows we shall, for simplicity, confine ourselves to the study of elliptic
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boundary-value problems subject to homogeneous Dirichlet boundary conditions
(corresponding, in the case of a second-order elliptic equation, to g =0 in Exam-
ple 2.3, part @).

Returning to the general elliptic equation of order 2k, we formulate the classical
homogeneous Dirichlet boundary-value problem.

Definition 2.1 Let £2 C R” be a bounded open set and suppose that f € C(£2) and
agp € C11(R2), |af, |B| < k. A function

ueC*@)ynck1(2)

is a classical solution of the homogeneous Dirichlet problem if

P(x,d)u = Z (=D (agp (x)8Pu) = f(x)

0<lel|,|8I<k
for every x in £2, and

3'u=0 ondf2,forO<m<k—1.

It is assumed here that the differential operator P (x, d), with x € £2, is elliptic or
uniformly elliptic on 2. Frequently, the smoothness requirements on the data stated
in this definition are not satisfied. As is demonstrated by the next example, in such
instances the corresponding homogeneous Dirichlet boundary-value problem has no
classical solution.

Example 2.4 Let 2 = (—1, 1)" C R" and consider Poisson’s equation

" 9%u
—Au=-) —=f in®,

2
v 0x;
subject to the homogeneous Dirichlet boundary condition
u=0 onas2.

Suppose further that f(x) = sgn(% —|x]), x € £2.

Clearly, this problem has no classical solution, u € C 2(2)NC(R2), for otherwise
Au would be a continuous function on 2, which is impossible as sgn(% — |x]) is
not continuous on £2.

In order to overcome the limitations of Definition 2.1 highlighted by this exam-
ple, we generalize the notion of classical solution by weakening the differentiability
requirements on both the data and the corresponding solution.
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Definition 2.2 Let £2 C R" be a bounded open set and suppose that f € L,(§2) and
awp € M(W;*P1(2) > Wi*l(2)), |al, |B] < k. A function

ue Wik(2) N Wi ($2)
is a strong solution of the homogeneous Dirichlet problem if

Px,dyu:= > (=13 (app(x)0Pu) = f(x)

0<lel|,|8|<k

for almost every x in 2.

While for classical solutions both the partial differential equation and the bound-
ary condition are assumed to hold in the pointwise sense, for strong solutions the
partial differential equation is to be understood in terms of equivalence classes con-
sisting of functions that are equal almost everywhere on §2; also, instead of being
imposed explicitly, the boundary condition has been incorporated into the function
space W22k(.{2) N Wf(ﬂ) in which a solution is sought. Unfortunately, it is not easy
to show that the homogeneous Dirichlet problem for the partial differential equation
(2.1) possesses a strong solution; in fact, as is illustrated by Example 2.5 below a
strong solution will not exist unless d£2 and the data are sufficiently smooth. Thus
we shall further relax the differentiability requirements on # and weaken the concept
of solution by converting the boundary-value problem into a variational problem.
The first step in this process is to create a bilinear functional associated with the
differential operator P (x, d) using integration by parts. Suppose that u € Wzk(.Q ),
f €Ly(2),and v € C;°(£2); then

/v(x)f(x)dx:/ vP(x,d)udx
2 2

= Y (—1)'“‘/va“(aaﬁ(x)aﬂu)dx
2

0<|al,1BI<k

= Y /aa/g(x)aﬁuaavdx

O<lal.|B<k

In the transition to the last expression, by partial integration, we made use of the fact
that suppv CC §2. Motivated by this identity we introduce the following notation:

a(u,v) = Z / aalg(x)aﬂuaav dx,

O<lal.|Bl<k

(f,v) 1=/ fx)v(x)dx.
Q
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Clearly a(-, -) is correctly defined for u that is merely in Wé‘ (£2) and for v in the
same space; in fact, a(-, -) is a bilinear functional on the product space Wf (£2) x
Wé‘ (£2); similarly, v — (f, v) is a linear functional on Wé‘(()).

These considerations motivate the following definition.

Definition 2.3 Let £2 C R” be a bounded open set and suppose that f € W, k)
and agg € Loo(£2), ||, |B] < k. A function

ue W5(82)
is a weak solution of the homogeneous Dirichlet problem if

a(u,v) = (f,v)

forevery v € Vi/é‘(.Q), where now (-, -) denotes the duality pairing between W, k (£2)
and Wé‘(Q), i.e. (f, v) signifies the value of the linear functional f € W2_k($’2) =
[WE(2)T at v e W(£2).

Remark 2.1 By applying the Sobolev embedding theorem, it is easily seen that the
bilinear functional a(-, -) is well defined under even weaker regularity hypotheses
on the coefficients aqg. Indeed, it suffices to assume in Definition 2.3 that

aap € M(Wy "' > L, (2))., ol 1Bl <k,

where pg =2 when || =k, pg =2n/(n +2(k — |B])) when 0 < k — |B] < n/2;
ppg > 1 (but arbitrarily close to 1) when k — || =n/2; and pg =1 when k — |B] >
n/2.

Next we show that the homogeneous Dirichlet boundary-value problem has a
unique weak solution. The proof is based on a simple application of the Lax—
Milgram theorem (Theorem 1.13) and the following result.

Theorem 2.4 (Géarding’s Inequality) Suppose that 2 C R" is a Lipschitz domain.
Let P(x,d) be a linear partial differential operator of order 2k of the form (2.1)
such that, for some ¢ > 0, the uniform ellipticity condition (2.2) holds. Suppose also
that

agp € C(2) forla|=|8l=k
and
aap € Loo($2)  for|af, |B] < k.

Then, there exist constants co > 0 and Ay > 0 such that

a (v, v) + Xollv Iy 2) = ollvllye g, forall ve Wy (). (2.5)
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The proof of this results is long and technical, and will not be presented here;
the interested reader is referred to Theorem 9.17 on p. 292 of Renardy and Rogers
[155], for example.

For second-order uniformly elliptic operators of the form (2.3) the proof of Gard-
ing’s inequality is much simpler, and we shall confine ourselves to this case; in fact,
as will be seen below, in the case of a second-order uniformly elliptic operator the
smoothness hypotheses on the coefficients in the principal part of the operator can
be slightly relaxed: they need not be continuous functions, as long as they belong to
L (£2). We note that the bilinear functional corresponding to the operator (2.3) is
given by

a(u,v) = Z/alj(x) " d +Za,(x)u—dx

i,j=1

9 .
+/ bi(x)—uvdx—}—/ cuvdy, u,ve W) ().
Q 0x; Q

Theorem 2.5 Suppose that 2 C R" is a Lipschitz domain. Let P(x,d) be the
second-order linear partial differential operator defined by (2.3) where a;j, a;,
bj € Lo(82), 1, j=1,...,n, and c € Loo(82) are such that, for some ¢ > 0, the
uniform ellipticity condition (2.4) holds. Then, there exist real numbers co > 0 and
Lo = 0 such that

a(,v) + AollvlZ, a2 >co||v||W o) YVE W1 (82).

Proof Thanks to (2.4) and the Cauchy—Schwarz inequality we have that

a(v,v) = Z/a,](x) v d +Z/ al(x)v—

i,j=1

n
dv
+ /b-(x)—vdx—i—/ c(x)v*dx
; (9] ! Bxi Q
n 1/2
zé“f IVvIde—f |:22(a1-2+bi2) |V |v] dx
§2 2L o

- ||c||Lm<g>/ WP dx,
2

where, as usual |Vu| = [ (2~ = 24 ( 33;; )2]1/ *. By applying the elementary in-
equality

1
ab < ca® + —b?
4e
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with ¢ = ¢/2, we obtain

C
a(v.v) > 5/ Vol dy — Clol2, 0,
2

where
L~ 2 2
C=- > (@ +57) +llellLa)-
i=1 Loo(82)
Equivalently,
> C o2 C ¢ 2
a(v, ) = Sl o) = | €+ 5 ) IVIL )

which proves Gérding’s inequality with ¢ = ¢/2 and A9 = C + (¢/2). 0

Remark 2.2 'We note that Theorem 2.5 can be proved under even weaker hypotheses
on a;j, a; and b;. Indeed, it suffices to assume that

aij € M(L2(2) > La(2)), i,j=1,....n,
ai, by € M(W3(2) > L2(22)), i=1,...,n,

ce M(W5(2) = L,(£2)),

where p =2n/(n+2) if n > 2; p > 1 (but arbitrarily close to 1) ifn =2;and p =1
ifn=1.

‘We now state the main result of this section, which concerns the existence of a
weak solution to a homogeneous Dirichlet boundary-value problem.

Theorem 2.6 Let P(x, d) be a linear partial differential operator of order 2k of the
form (2.1), satisfying the conditions of Theorem 2.4 on a Lipschitz domain §2 C R".
Then, there exists a Ly > 0 such that, for any . > Ao and any f € W;k(.Q), the
homogeneous Dirichlet problem for the operator

P(x,9)=P(x,d)+ A
has a unique weak solution u € Wf (82). Furthermore, this solution satisfies
”u”Wé‘(_Q) = C”f”Wz_k(.Q)'

Proof According to Theorem 2.4 there exists a A9 > 0 such that the Garding in-
equality (2.5) holds. For A > 1o we consider the bilinear functional

a(u, v) = a(u,v) +r(u,v), u,veWs(),
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associated with the operator P. We shall prove that a(-, -) satisfies the conditions
of the Lax—Milgram theorem (Theorem 1.13) on Wé‘(.Q) X Wé‘(.Q). Let us take

U= Wé‘(.Q) in Theorem 1.13 and recall that Wé‘(.@) is a real Hilbert space. The
U-coercivity of a(-, -) is a straightforward consequence of (2.5):

a(v,v) =a(,v) +AvlZ, g = collvl} Vo e WE(92).

wk2)

We shall now verify that a(-,-) is bounded on Wé‘(.Q) X Wé‘(.Q). Given v, w €
Wf(.@), using the Cauchy—Schwarz inequality repeatedly we obtain the following

chain of inequalities, which ultimately lead to the conclusion that a(-, -) is a bounded
bilinear functional on Wé‘ (£2) x Wé‘ (£2):

|lav, w)| < |a(, w)|+A|(v, w)|

= [ el ol as-+ 2w

O<lal.|Bl=k

aPul|o%w|dx + A
= 0<la \ |ﬂ|<k I6ap | cot ()<|0;3|<k‘/ ’ UH w‘ " ‘(U w)‘
< cillvliyllwlly.

Thus, by the Lax-Milgram theorem (Theorem 1.13), for each f € W, k(Q) =

there exists a unique weak solution u € Wé‘ (£2) to the homogeneous Dirichlet prob-
lem. g

In the case of second-order elliptic equations we have an analogous result.

Theorem 2.7 Let P(x, d) be a linear second-order partial differential operator of
the form (2.3), satisfying the conditions of Theorem 2.5 on a Lipschitz domain §2 C
R". Then, there exists a Ao > 0 such that, for any A > A9 and any f € Wz_l(.Q), the
homogeneous Dirichlet problem for the operator

P(x,0)=P(x,d)+ A
has a unique weak solution u € W21 (£2), and this solution satisfies
”u”WZI(Q) = C||f||W;1(Q)'

Furthermore, if a;, b; € W;,(.Q), i=1,...,n,where p=n/2whenn>2;p>1
is arbitrary when n =2; and p =1 whenn = 1; and

1 @
LOEEDD g (@) +bi) 20
i=1
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for almost every x € 2, then Ay = 0. In other words, the homogeneous Dirichlet
problem corresponding to the operator P(x,d) has a unique weak solution u €
W21 (82) under these hypotheses.

Proof The first part of the theorem is proved in exactly the same way as the corre-
sponding statement in Theorem 2.6. In order to prove the second part let us observe
that, by the divergence theorem,

. oo e L2 N2 V100
/Q[a,(x)—i—bl(x)]a)Civdx— 2/!28Xi(a,(x)+b,(x))v dx VYveW,(£2);

we note that because a;, b; € WII,(.Q), i=1,...,n,where p is as assumed, Holder’s
inequality, followed by the application of Sobolev’s embedding theorem, implies
that the function appearing as the integrand on the right-hand side is an element of
L1(82). Therefore the right-hand side of this equality is meaningful.

Consequently,

2
dx. (2.6)

n
av
a(v,v)>c¢ / —
ig]: k9 ax,-
By applying the Friedrichs inequality (1.23) with s = 1 and p = 2, the right-hand
side of (2.6) can be further bounded below to obtain

2
a(v’ U) ZCO“U”Wzl(_Q), (27)
where co = ¢/c,, and hence the Wzl (£2)-coercivity of the bilinear functional a(-, -).
The boundedness of a(-, -) on the space Wzl (£2) x Wzl (£2) follows from the bound-
edness of a(-,-) =a(-,-) + A(:, -) by setting A = 0. The required result is now ob-
tained from the Lax—Milgram theorem (Theorem 1.13). O

Remark 2.3 We note that Theorem 2.7 continues to hold when the regularity hy-
potheses of Theorem 2.5 are replaced by the weaker ones from Remark 2.2.

Having developed relatively straightforward sufficient conditions for the exis-
tence of a unique weak solution to an elliptic boundary-value problem, the question
that we now need to address is whether a weak solution might possess additional
regularity to qualify as a strong solution. The answer to this question very much
depends on additional regularity of the data (i.e. the coefficients, the right-hand side
of the partial differential equation, and the boundary d£2). Since a general discus-
sion of regularity properties of weak solutions to elliptic boundary-value problems
is beyond the scope of this book, we shall confine ourselves to Poisson’s equation
subject to a homogeneous Dirichlet boundary condition, which is sufficiently illus-
trative of the key ideas. We begin with a simple example, which shows that a weak
solution to an elliptic boundary-value problem need not be a strong solution to the
problem, and that a strong solution may not even exist.
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Example 2.5 Suppose that 2 = {(x,y) e R? : x> + y> <e~!} and let f(x,y) :=
—A(log|log(x? + y?)|), with log := log. and the differential operator A under-
stood in the sense of distributions on £2. It is easily seen by changing from Cartesian
co-ordinates to polar co-ordinates that the function u : (x, y) > log |log(x* + y?)|
belongs to W21 (£2) and that, therefore, f € W, 1(.Q). Thus, u is the unique weak
solution to the boundary-value problem: —Au = f on §2 (with the equality under-
stood as being between two elements of W, L)), subject to the boundary condi-
tion u = 0 on d52. However, the function u is not a strong solution and, as a matter
of fact, the boundary-value problem has no strong solution, since f ¢ Ly (£2).

In fact, even if f belongs to WZS 72(9), s > 2, it does not automatically follow
that the weak solution to Poisson’s equation —Au = f, with a homogeneous Dirich-
let boundary condition on 32, belongs to W3 (£2) N W2l (£2). Whether or not this is
the case depends on the smoothness of 9£2. In particular if £2 is a bounded polyg-
onal domain in R?, the regularity of the solution is ultimately limited by the size
of the maximum internal angle of §2; the next theorem is a special case of a more
general result, due to Grisvard [61].

Theorem 2.8 Suppose that f € Wzs_z(.Q), 1 <s<3,s#3/2,5/2, with 2 =
(0, 1)2, and consider the homogeneous Dirichlet boundary-value problem for Pois-
son’s equation:

—Au=f onSf2,
u=0 onaf2.

Then, the unique weak solution u in W2l (82) belongs to WZS )N W21 (£2).

The limitation s < 3 on the Sobolev exponent in Theorem 2.8 is sharp in the
sense that the stated regularity result is invalid for s > 3 unless f satisfies certain
compatibility conditions at the four corners of the square. More precisely, # belongs
to the space W3 (£2) N Wzl (£2) for s e N, s > 3, provided that f € W;fz(.Q) and the
following conditions hold at the four corners:

f=0.
07 f =03 f =0,

—2
aF %292 4y (— a2k F =0, withk:[sT}- (2.8)

The proof proceeds similarly to the one in Volkov [193], where an analogous reg-
ularity result was shown for classical solutions. For details we refer to the work of
Hell [70].

Next we formulate a result that concerns the existence of weak solutions to the
homogeneous Dirichlet problem for the fourth-order uniformly elliptic equation
considered in Example 2.2.
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Theorem 2.9 Let 2 C R? be a Lipschitz domain. Consider the partial differential
operator P(x, d), defined by

P(x, d)u 1= 03 M (u) + 28,8 M3 () + 93 M (w),
where

My (u) := a1 (x)d7 () + ag(x)d3u,
My (u) = ap(x)d}u + ax(x)d3u,
M3(u) = az(x)002u,

and a; € Loo(82),1 =0, 1,2,3, are such that there exist positive constants c¢1 and
ca for which

aix)=c, =123 a@ak -aqgx) =c, xe.

Then, for any f € W, 2(2), the homogeneous Dirichlet boundary-value problem
for P(x, d) has a unique weak solution u in sz(ﬂ).

Proof The proof is, again, based on the Lax—Milgram theorem (Theorem 1.13); its
nontrivial part is to verify that the bilinear functional

a(u,v) = (M), 37v) +2(M3(u), 31920) + (Mau), 33v), u,v e W3 (),

is Wg(ﬂ)—coercive. Clearly,

a(v,v>=/ [a1(0) 370 + 2a3(0)[01 202
2
+ar(0)|33v] 4+ 2a0(x)dFvd3v]dx Vo e WE().

As v is real-valued (by the convention stated at the beginning of the chapter), we
have the following identity:

1 5 ap(x) ., 2
a(v,v):E/Qal(x)<81v+ ( )82v> dx

ai(x

—i—l/ ar(x) 82v+a0(x)82v>2dx
2Ja 2w !

2
+1/ (al(x)—ao(x))|8lzv|2dx
2Ja

az(x)
1 a3 (x)
4 5/Q(az(ao = al(x))

‘82211 *dx
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+2f a3(x)]918v>dx Vv € W3(£2).
2

Therefore,

2
a(v,v) > l/ (a](x)— aO(X)>|812v|2dx
2 /)0

az(x)

1 a% (x)
+i&@“”_mu>

+2/ a3 (x)|312v>dx Vv e Wi ().
2

)gﬁm

By noting the assumptions on the coefficients a;, i =0, 1, 2, 3, it follows that there
exists a positive constant ¢ such that

a(v,v) > 5“"%@(9) Yo e W3 ().

Finally, by the Friedrichs inequality (1.23) with s = p=n =2,

2 £,2
Wl S calolyz g, Yo eW3(2),
and hence
2 )
a(v,v) > collv Yv e W5($2),
@.0) = llvlfz g, 3($2)
where cy = ¢/cx. O

Remark 2.4 Suppose that the homogeneous Dirichlet boundary condition
0'u=0 ondR2 for m=0,1,

for the partial differential operator P (x, d) defined in Theorem 2.9 has been replaced
by the following set of boundary conditions:

u=0, Mi(uyv +M3@u)v, =0, M3(u)vy + Mr(u)v, =0 on ds2.
The weak formulation of the corresponding boundary-value problem is: find u €
W3(£2) N W, (£2) such that

a(u,v) =(f,v)

for every v € W22(.Q )N W21 (£2). Again, by using the Lax—Milgram theorem (Theo-
rem 1.13), it is easy to prove that, under the same conditions on a;, i =0, 1, 2, 3, as

in Theorem 2.9, this problem too has a unique weak solution, now in the function
space W3 (£2) N W, (£2).
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Finally, we return to the boundary-value problem considered in Example 2.4,
which has been shown to have no classical solution. By applying Theorem 2.7 with
ajx)=1,i=j,ajx)=0,i#j,1<i,j<n bi(x)=0,clx)=0, f(x) =
sgn(% — |x]), and £2 = (=1, 1)", we see that there is a unique weak solution u €
W21 (£2) to this problem. In fact, it can be shown that this weak solution belongs

to W22(Q) N Wzl (£2) and it is, therefore, a strong solution to the boundary-value
problem (see Grisvard [62, 63]).

Remark 2.5 The existence and uniqueness of a weak solution to a Neumann, Robin,
or oblique derivative boundary-value problem for a second-order uniformly elliptic
equation can be established in a similar fashion, using the Lax—Milgram theorem
(Theorem 1.13).

Remark 2.6 Theorems 2.6 and 2.7 imply that the weak formulation of the Dirichlet
boundary-value problem for the operator P (x,9)=P(x,0)+A, A > Ao >0,is well-
posed in the sense of Hadamard, that is, for each f € W, k(£2), there exists a unique
(weak) solution u € Wé‘ (£2); moreover, “small” changes in f give rise to “small”
changes in the corresponding solution u. The latter property follows by noting that
if u1 and uy are weak solutions in Wé‘(.Q) of the homogeneous Dirichlet problem
for P(x,d) corresponding to right-hand sides f; and f> in W, k), respectively,
then u1 — u is the unique weak solution in Wé‘(.Q) of the homogeneous Dirichlet
boundary-value problem for the operator P (x, d) corresponding to the right-hand
side f1 — f2in W, k (£2). It thus follows from Theorems 2.6 and 2.7 that

lur = u2llyyr gy < Clfi— f2||w;"(:z)’

where C is a positive constant, independent of u1, ua, f1 and f>; this implies the
continuous dependence of the solution to the homogeneous Dirichlet boundary-
value problem on the right-hand side of the equation.

2.2 Approximation of Elliptic Problems

We begin this section by outlining the general approach to the construction of fi-
nite difference schemes for elliptic boundary-value problems; we then introduce
basic results from the theory of finite difference schemes and present some classical
tools for the error analysis of finite difference schemes for partial differential equa-
tions with smooth solutions. The limitations of the classical theory will lead us to
consider finite difference schemes with mollified data, and we shall develop a theo-
retical framework for the error analysis of such nonstandard schemes. We conclude
by considering finite difference approximations of second- and fourth-order elliptic
equations with variable coefficients, and derive sharp error bounds in various mesh-
dependent (discrete) norms, under minimal smoothness requirements on the data
and the associated solution.
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2.2.1 Introduction to the Theory of Finite Difference Schemes

Assuming that £2 is a bounded open set in R”, we consider a boundary-value prob-
lem on 2 of the general form

Lu=f in£2, (2.9)
lu=g onl =082, (2.10)
where L is a linear partial differential operator, and [ is a linear operator that speci-
fies the boundary condition. For example, we may have
n

9 u . du
Lu=—Y —(ajx)— bi (x) — :
u i]z_:l i, (au (x)ax,-> + 2 l(x)ax,' + c(x)u

where the a;;(x), i, j =1, ..., n, satisfy (2.4), with one of the following choices of
the boundary operator / (Dirichlet, Neumann or oblique derivative):

lu:=u,
or
d
lu:= —u,
ov
or

n
du
lu = ijz_laij(X)a—xivj +o(x)u,

where v is the unit outward normal vector to I, v; is the jth component of v,
j=1,...,n,and o is a bounded, nonnegative function defined on I".

The construction of a finite difference scheme for the boundary-value problem
(2.9), (2.10) consists of two basic steps: first, the domain Qs replaced by a finite
set of points, called the mesh or grid, and second, the derivatives in the differential
equation and in the boundary condition are replaced by divided differences. To de-
scribe the first of these two steps more precisely, suppose that we have approximated
2 =R UT by the mesh

o' .=ohurh,

where 2" C 2 is the set of interior mesh-points, and I'* C T is the set of boundary
mesh-points. Typically the mesh consist of a finite set of points obtained by consid-
ering the intersections of n families of parallel hyperplanes, each element of each
family being perpendicular to one of the co-ordinate axes. If the domain §2 is not
axiparallel, adjustments may need to be made to the mesh near the boundary 942,
which may be curved. The parameter & = (h1, ..., h,) measures the spacing of the



106 2 Elliptic Boundary-Value Problems

mesh; in particular, #; > 0 denotes the mesh-size in the ith co-ordinate direction.
Once the mesh has been constructed, we proceed by replacing the derivatives fea-
turing in £ by divided differences, and approximate the boundary condition in a
similar fashion. This yields a finite difference scheme of the form

LiUx) = fu(x), xeh, @2.11)
WU®x) = gn(x), xel™, (2.12)

where L, and [, are linear difference operators, representing discrete counterparts
of £ and [, while f; and gj are suitable approximations of f and g, respectively. In
algebraic terms, (2.11), (2.12) is a system of linear equations involving the values
of the approximate solution U at the mesh-points.

Assuming that (2.11), (2.12) has a unique solution U, when the mesh spacing is
small the sequence of values of the approximate solution at the mesh-points, {U (x) :
X € Eh}, is expected to resemble {u(x) : x € ﬁh}, the set of values of the exact
solution u at the mesh-points. However the closeness of U (x) to u(x) at x € Eh
is by no means obvious, and the proof of such approximation results represents
the central theme of this book. We shall consider a range of problems of the form
(2.9), (2.10), and derive sharp bounds on the error between the analytical solution
u (typically a weak solution) and its finite difference approximation U in terms of
positive powers of the discretization parameter 4. Bounds of this kind imply, in
particular, that the error between the analytical solution u and its finite difference
approximation U converges to zero with a certain rate, in a certain norm, as 4 — 0.

2.2.2 Finite Difference Approximation in One Space Dimension

In this section we shall focus on the finite difference approximation of a two-point
boundary-value problem. We begin by developing some basic results about mesh-
functions (i.e. functions that are defined on the finite difference mesh), finite differ-
ence operators and mesh-dependent (discrete) norms.

2.2.2.1 Meshes, Mesh-Functions and Mesh-Dependent Norms

Meshes Suppose that N is a positive integer, N > 2, let h := 1/N, and consider
the uniform mesh on the unit interval (0, 1) of the real line, defined by

Q" ={xi:x;=ih,i=1,...,N—1}.

‘We further define
2" =eruo, 1.
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Let S denote the linear space of real-valued functions defined on the mesh 5’1,
and let Sg be the linear space of all real-valued functions defined on the mesh o

that are equal to zero on I'" := o \ £2". Any element of the set S" (or of S(’)’) will
be referred to as a mesh-function.

For a mesh-function V € §" we define V; := V(x;) = V (ih). We equip the linear
space Sg with the inner product

N-1
V. W=V, W)p,on = > hVOWE) =Y hViW,, (2.13)
i=1

xenh

which closely resembles the inner product
1
(v, w) = / v(x)w(x)dx,
0

of the Hilbert space L(£2). The inner product (-, -), induces the norm || - || on Sg
defined by

1/2
IVIIn =1Vl yom = (V. V)2 2.14)

Analogously, we equip the linear space S” with the inner product

h
V. Wh= (V. W), o = S [VOWO) + VIOW D] + (V. W),
and the induced norm

1/2

Vir=1VI =[V,V],

Ly(@")
‘We shall also need the meshes

o .=0"ujo, Qb =huy.

On the linear space of real-valued functions defined on the mesh 2" we consider
the inner product

N—-1
[V, Win=(V, W), @nyi= D hVOW@) =D hViW
i=0

xenh

and the associated norm
1/2
Vin =1V @n =V, V),

with an analogous definition of the inner product (V, W], = (V, W) La(2") and the
corresponding norm ||V], = ||V|| Ly@h) on the linear space of real-valued mesh-

functions defined on .Qi
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Finite Difference Operators = The forward, backward and central divided differ-
ence operators D, D and Dg on the mesh £2;, are defined, respectively, by

i, VT-V V-V~

DIV = PR Ve PR .

where we have used the notation
VE=VEQ) = V(x £h).
With these definitions, we have the following discrete Leibniz formulae:
DI (VW)= (D} V)WT +V(DfW)=(DfV)W+V*H(DIWw),
Dy (VW)= (D V)W~ +V(D; W) = (Dy V)W +V~(D; W),
and the summation-by-parts formula:
[DIV. W)y =—(V.D; W], + V(HW (1) = V(O W(0), (2.15)

which immediately yields the following result.

Lemma 2.10 Suppose that V € Sh: then,
N N-1
(=DIDIV.V), =D h[Dy Vil = 3" | DFvil. (2.16)
i=1 i=0

Proof Letus write U; = D V;,i =1,..., N, and note that

(_D:D;Vv V)h = —(DjU, V)h = _[D;U’ V)h = (U’ Dx_V]h = HD;V] i’

thanks to our assumption that V € S(’)’, which implies that Vo = V(0) = 0 and
Vy = V(1) =0, and using the identity (2.15). The second equality in (2.16) fol-
lows simply by noting that D" V; = Dj Vi—1,i=1,..., N, and shifting the index i
in the summation. O

The Discrete Laplace Operator on Sg On the set S(’)’, we define the linear oper-
ator A : Sg — S(})’ by

AVI) —-D}ID;V(x) ifxeRh,
X) = —
ifxerh=a"\ 2"
Since
(AV. W)y = =(Df Dy V. W), = (D; V. Dy W], = (D; W, D; V],

=[DfVv.DIW), =[DIW,D}fV), =AW, V),
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A is a symmetric linear operator on S(’)'. Moreover, thanks to (2.16),
AV, V)= |D; V] =[[DiV]; >0 forall Ves}\ {0},

and therefore A is positive definite on Sé’. Thus A has N — 1 distinct positive eigen-
values, which are easily shown to be (see Samarskii [159], Sect. 2.4.2)

4 kmh
)\k:ﬁsinz%, k=1,2,,N—1, (217)

these eigenvalues satisfy the inequalities

8 <M < k=1,2,...,N—1. (2.18)

ﬁv

The corresponding N — 1 eigenfunctions V¥, k=1,..., N — 1, satisfying AVF =
A Vk, are
VE(x) =sinkzx, xe2', k=1,2,...,N —1.

The set of eigenfunctions {V',..., VN~1} is an orthogonal system in Sé’ with re-
spect to the inner product (-, -); that is,

k y/1 1
(V5 V) =38, kil=12,.. N-1, (2.19)
where &y, is the Kronecker delta; in fact, {V1 ..., VN ’1} forms a basis of the linear

space Sg. Consequently an arbitrary mesh-function V € Sé’ can be expressed as a
linear combination of these eigenfunctions:

N—1
V@)=Y bsinknx, xef', (2.20)
k=1
where
b =2(V,V¥),.

By noting the orthogonality of the eigenfunctions we deduce the following discrete
Parseval identity:

lel
2_ 1 2
VI = 5 ]; b 2.21)

Analogously,

N-1
1
|D; V] = [DF V| = AV, V), = 5 2 kb, (2.22)
k=1
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N—-1

_ 1
| DDV} = AV, AV), = 5 ; AbE. (2.23)
It follows from (2.18) and (2.21)—(2.23) that
| DTV, = 2v2 DoV, =2v2[[DF V], =81V (224

foreach V € Sé’.

Discrete Sobolev Norms on S(’)’ The discrete analogues of Sobolev seminorms
and norms are defined similarly to their ‘continuous’ counterparts introduced in
Chap. 1. In particular, we define

VI =1V lyyan = D5 V], = [DF V]

h!
_ - +n-
Viah = 1VIy2an = | DEDI V], (2.25)
_ L 2 2 1/2
IVl =1V wsan = (VI gy + 1V Byt )

where k = 1,2, with the convention that Wg(.Qh) = Lz(.Qh). The inequalities
(2.24) imply that the seminorms | - |W21 @h and | - |W22 (h) are equivalent to the

norms || - ||W21 2" and || - ||W22(.Qh)’ respectively, on Sg.

Lemma 2.11 (Discrete Friedrichs Inequality) There exists a positive constant c,
such that

2 — 2
IV ny = = 15V (2.26)
forall V e Sg.
Proof The last inequality in (2.24) implies (2.26) with ¢, =9/8. g

Lemma 2.12 (Discrete Sobolev Embedding) Forall V € Sg the following inequal-
ity holds

[
IV lloo,n =f€%§ |V (x)] < §||DX VHLZ(M) (2.27)

Proof Using the Cauchy—Schwarz inequality, we obtain from the identity

i 2 N 2
Vil = —i)|Vi* +ih|Vi|> = (1 — i)Y (D7 Vj)h| +ih| Y (D7 V))h
j=1 j=i+l
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that

|V,~|2§(1—ih)(2i:h> ; (DXVj)2h+ih< i h) i (D7 V,)’h

j=1 / j=1 j=i+1 / j=i+1

N
=ih(1—ih) Y (D;V;)’h.
j=1

The required inequality then follows by taking the maximum over the index i €

{0, 1,..., N} and noting that, for all such i, 0 <ih(l1 —ih) < 1/4. O
The Discrete Laplace Operator on S  We define the linear operator A : §" —
S" by
—2DFV(0)  ifx=0,
(AV)(x):={ =D} D;V(x) ifxe Q"
2DV (1) ifx=1.

. . . —=h .
Assuming that each V € S” is extended outside £2" as an even function, we have
that

AV)(x) = (=D D7 V)(x) forxe$2".

The linear operator A is symmetric with respect to the inner product [-, -];,. The
eigenvalues of A are given by the formﬂla (2.17), but now for k =0,1,2,..., N.
In fact, since Ao = 0 is an eigenvalue, A : S — S" is only nonnegative (positive
semidefinite) rather than positive definite; that is,

[AV,V], >0 forall Ve S"\{0}.
The eigenfunctions of A corresponding to the eigenvalues A, k =0, ..., N, are:

wox) =1, WK(x) =cosknx, k=1,2,...,N;

these form an orthogonal system in the sense that

1 ifk=1=0,N,
(Whow'], =11 ifk=i=12... . N-1,
0 ifk#l

and they span the linear space S”; hence each mesh-function V € S” can be ex-
pressed as

N—-1

1
Vix)= an + ,; aicoskmx + EaN cosNmx, (2.28)
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where
a, =2[V,coskmx],, fork=0,1,...,N.
When V € Sg, the expansions (2.20) and (2.28) coincide at all points of the
mesh ﬁh
By noting the orthogonality of the eigenfunctions WX, k =0, . , it is easily
seen that for any mesh-function V contained in S” the following 1dent1tles hold:

N-1
V1;=<a5+= > ai +<ay.
k=1
N 1
- 1
|D; V], =[AV, V], = ];)Lkak + 4kNaN,

[AV]} = Z}\ ak+ x

Next, we introduce analogous discrete Sobolev norms on the linear space S”,
- . —h
consisting of all real-valued functions defined on the mesh £2.

Discrete Sobolev Norms on S”" Similarly as on S(’)’, we introduce on S” the fol-
lowing discrete analogues of the Sobolev norms || - || wh@)» k=1,2:

Vi =1Vl = (VI3 + |pr v,

W(.Q)

[VI2h = IVl gy = (VI + [ DT V]G + 1AVIE) 2.

Fractional-Order Discrete Sobolev Norms Next we shall define fractional-
order Sobolev norms on Sg and derive an interpolation inequality that relates these
to the integer-order discrete Sobolev norms defined earlier. We shall limit ourselves
to the case when the Sobolev index r is in the range (0, 1) U (1, 2). We define the
seminorm | - [y on) by

172
2 V@) -V .

IV Iy oy = (%, ezt HETRE) a Ho=r=1
282 2 (D} V(D) —Df V()P -

(h Zx)yegﬁ,ﬁgy Kyt ) ifl <r <2,

and we introduce the corresponding fractional-order discrete Sobolev norm

1/2
IV lhwg i@ = (V11 gy + Vg ) 2 0<r<2,r#l

Higher order fractional-order discrete Sobolev norms can be defined similarly.
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Next we state an interpolation inequality that establishes a relationship between
fractional-order discrete Sobolev norms and the integer-order norms defined earlier.

Lemma 2.13 Suppose thatr € (0, 1). Then, there exists a positive real number C (r)
such that, for each mesh-function V € Sg,
O<r<l.

IVillws@n = <COIVI, VI

L (.Qh)I W (£2hy’

Proof Given a mesh-function V € Sh, we decompose it as a finite linear combina-
tion of sine functions, as in (2.20), and define the norm B, (-) on Sé’ in terms of the

corresponding expansion coefficients by, k =1,..., N — 1, by
PNl 1/2
B (V)= (5 > k%,%> .
k=1

It is left to the reader to verify that B, (-) is indeed a norm on Sg. By noting (2.17),
the elementary inequality

. 2
sinx > —x, 0<x<m/2,
T

and Holder’s inequality with exponents p :=1/(1 —r) and p’ := 1/r we obtain

1§:<¥)Z%Tﬂ=2_[ }:#“r)x# }

B.(V) < |:—
2 k=1

N—1 (1-r)/2 11\/_1 r/2
2
2(z5n) (D)

and hence, by the discrete Parseval identities (2.21) and (2.22),

1/2

B.(V) <27 |Vl (2.29)

L (_Qh |V|W (_Qh)

The rest of the proof is devoted to showing that the norm B, (-) is equivalent to
-1l Wy (2h)- For this purpose, we extend the function V € Sg from

={kh:k=0,...,N}
to the mesh
{kh:k=0,%1,42,..., N}

as an odd function; that is, V(—x) := —V (x) for each x in ﬁh. The resulting func-
tion is then further extended to the infinite lattice

Z=1{kh:k=0,+1,42, ..}
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as a 2-periodic function; as before, & :=1/N and N > 2. Let ol = (-1, D) NhZ
and @" :=[—1, 11N hZ. For mesh-functions V defined on @" we consider

* * 1/2
[V(x) = V(x -]
Ny (V)= h2 Z Z |t|1+2’ ’

xea re@” 140

where
h Z W)= h[W(=D+WD]+h Y W) =[W. 1], -
g xewh

By noting the periodicity of the extended function (still denoted by V') and the ex-
pansion (2.20), we obtain

NP =R2Y S Y VW[V =) 2V @)~ V4]

xea re@” 140

=hn? Z Z 11|71~ 2’ijlslnlmc Z4bksm —smknx

xea re@” 140

* *
kmt
bibxh Y sinlwx sinkmxh 712 4sin® ==
Z > > 5
I=1 k=1 xeah tea” 10

—Szbkhzt_l o g 2k7”

= reh

N—-1N

Here we have used the notation
— 1 1
hg@:i W(t):= hg@:h W(t) + EhW(l) =W, Dn+ EhW(l).
After further transformation, we obtain
N (V)? = 16( >2r : NZI Kby C (k. 1),
2 k=1

where

krh = (knt\“'7T . kwt
Ck,r):=—— — sin® —

2 2 2
te.Qi
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It is easily seen that C(k, r) is the Riemann sum for the integral
km /2
/ x 71727 sin% x dx
0

and can be therefore bounded from below and above as follows:

1/2 2’<C(k ) < g2 LY, (2 2
g\z) = =T 2-2 ) T \%) -

Thus we deduce that N, () and B, (-) are equivalent norms on S{)’.
By noting inequality (2.29), the equivalence of the seminorm | - |W21 2" and the

norm || - || W) (2hy ON the linear space S, in conjunction with the obvious inequality
IVIwr@my < Nr(V), we then arrive at the desired inequality. That completes the
proof. g

Remark 2.7 The lemma can also be proved by using the cosine expansion (2.28)
and the norm

172
A,(V)::( Zk” + - N2’ ) )

It can be shown that this norm is equivalent to N, (-), provided that V has been
. .. —h .
extended periodically outside £2° as an even function.

Remark 2.8 A similar argument shows, for r € (1, 2), that there exists a positive
real number C(r) such that

IIVIIWr(Qh)<C1(V)|IVII VI, - l<r<2.

W) ((zh) Wz(Qh)
Remark 2.9 Finally we note that, similarly as on Sg, one can define a fractional-
order discrete Sobolev norm on S” as follows:

IVIE = (IVI?

1/2
@ )

W@ n +|V|Wr(gh) , O<r<2,r#1.

After this brief summary of notational conventions in one dimension, we consider
a simple one-dimensional model problem, construct its finite difference approxima-
tion and derive bounds on the error, in the discrete norms defined above, between

the analytical solution and its finite difference approximation.

2.2.3 Finite Difference Scheme for a Univariate Problem

We give a simple illustration of the general framework of finite difference ap-
proximation by considering the following two-point boundary-value problem for
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a second-order linear (ordinary) differential equation:

—u" +ec(xu=fx), xe(,1), (2.30)
u(0) =0, u(l)=0. (2.31)

We shall assume that ¢ > 0 almost everywhere on (0, 1), ¢ € Ls(0,1) and f €
wy o, D).

The first step in the construction of a finite difference scheme for this boundary-
value problem is to define the mesh. Let N be an integer, N > 2, and let h :=1/N
be the mesh-size; the mesh-points are x; :=ih,i =0, ..., N. We then define

Q" ={x;ii=1,...,N—1},
I'":={xo,xy} and Q" =erurh

Let us suppose that the unique weak solution u € W21 (0, 1) to this boundary-
value problem is sufficiently smooth (e.g. u € C4([O, 1])). Then, by Taylor series
expansion of u about the mesh-point x;, 1 <i < N — 1, we deduce that, as h — 0,

u(xi+1) =u(x; £h)
/ h2 V4 h3 " 4
= u(x) & hu' () + S-u” (x0) & —=u (xi) + O(n*),

so that
Dute) o= "D ) 1 0w,
D u(x;) = M —u'(x;) + Oh),
DOu(xy) = M(xi+1)2_hu(xi71) — () + (’)(hz)
and

DD u(x;) = D7D u(x;)
_u(xigr) — 2u(x;) +ulxi—1)
- 3
=u"(x;)) + O(h?).

Recall that D] and Dy are called the forward and backward divided difference
operator, respectively, Dg is referred to as the central-difference operator, while
DDy is the (symmetric) second divided difference operator. It follows from these
Taylor series expansions that, for a sufficiently smooth function u (e.g. for u €
C([0, 1)), Dj‘u(xl-) and Dju(xi) approximate u’(x;) to O(h) fori =0,...,N—1



2.2 Approximation of Elliptic Problems 117

andi =1, ..., N, respectively, while the central difference approximation Dgu(x,-)
is more accurate: it approximates u’(x;) to O fori=1,...,N—1 (provided that
u € C3([0, 1]). Similarly, the second divided difference D D7 u(x;) is an O(h?) ap-
proximation to u” (x;),i =1,..., N —1, (aslongas u € C*([0, 1]). Thus we replace
the second derivative u” in (2.30) by the second divided difference to obtain

—D;rD;u(xi) +cxpulx) ~ f(x), i=1,...,N—1, (2.32)
u(xp) =0, u(xy)=0. (2.33)

Here we have implicitly assumed that both ¢ and f are continuous functions on the
interval (0, 1); thus, c(x;) and f(x;) are correctly defined foralli =1,..., N — 1.
We shall also suppose that

c(x)>0 Vxe(0,1). (2.34)

Now (2.32) and (2.33) indicate that we should seek our approximation U to u by
solving the system of difference equations:

—DID Ui +c)Ui = f(xi), i=1,...,N—1, (2.35)
Uy=0, Uy=0. (2.36)

Using matrix notation, this can be written as

AU =F,
where
h%+c(x1) h% 0
A= : ) ,
—% S +cbnvo) —%
0 % Z +clxy-1)
U:= (U, Us,...,Uy-D"
and

F = (fx), f(xz),...,f(xN_l))T.

Thus A is a symmetric tridiagonal (N — 1) x (N — 1) matrix, and U and F are
column vectors of size N — 1.

We begin the analysis of the finite difference scheme (2.35), (2.36) by showing
that it has a unique solution; this will be achieved by proving that the matrix A is
nonsingular. For this purpose, we introduce the inner product (2.13). Let Sé’ denote
the set of all real-valued functions V defined at the mesh-points x;, i =0,..., N,
such that Vo = Vy =0.
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We define the linear operator A : Sg — S(’)' by

(AV); :=—D:D;Vi +cx)Vi, i=1,...,N—1,
(AV)o=(AV)y :=0.

Returning to the finite difference scheme (2.35), (2.36) and using Lemma 2.10 and
(2.34), we see that, for V € Sé’,

(AV, V), = (=D} DV +cV, V),
(=DIDIV. V), + (V. V)

N
_ 2 — 2
=D D Vil =DV, . (2.37)
i=1
where the norm || - || Ly2h) has been defined in the previous section. Thus, if AV =

0 for some V, then D V; =0,i =1,..., N; because Vp = Vy =0, this implies
that V; =0,i =0,...,N. Hence AV =0 if, and only if, V = 0. We deduce that
A: S{)’ — S{)‘ is invertible and, consequently, A is a nonsingular matrix; thus (2.35),
(2.36) has a unique solution, U = A~! F. We summarize our findings in the next
theorem.

Theorem 2.14 Suppose that c and f are continuous functions on the interval (0, 1),
and c¢(x) > 0 for x € (0, 1); then, the finite difference scheme (2.35), (2.36) pos-
sesses a unique solution U in Sé’.

We note that by Theorem 2.7, for ¢ € C([0, 1]) satisfying (2.34) and f €
C([0, 1]), the boundary-value problem (2.30), (2.31) has a unique weak solution
ue V(i/21 (0, 1); in fact, by Sobolev’s embedding theorem u belongs to C ([0, 1]) and
therefore u” = f —cu € C([0, 1]). However to derive an error bound between u and
its finite difference approximation U we shall have to assume that u is even more
regular (the precise regularity hypothesis required in the analysis will be stated be-
low). A key ingredient in our error analysis will be the fact that the scheme (2.35),
(2.36) is stable (or discretely well-posed) in the sense that “small” perturbations in
the data result in “small” perturbations in the corresponding finite difference so-
lution. Actually, we shall prove the discrete version of the inequality appearing in
Remark 2.6. For this purpose, we shall consider the discrete Ly norm (2.14) and
the discrete Sobolev norm (2.25). From (2.37) and the discrete Friedrichs inequality
(2.26) we deduce, with co = 1/c, = 8/9, that

(AV, V)i = coll VI - (2.38)

Now the stability of the finite difference scheme (2.35), (2.36) easily follows.
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Theorem 2.15 The scheme (2.35), (2.36) is stable in the sense that

1
10 wjeny = 1 Mo (2.39)
where co = 8/9.
Proof From (2.38) and (2.35) we have that
ol 31 gy = (AU, Ubn = (f, Ui
= Ly @m ULy @m = Wl @m IU ) anys
and hence we deduce (2.39). O

Theorem 2.15 implies that if U; and U, are solutions of the problem (2.35),
(2.36) corresponding to right-hand sides f; and f>, respectively, then

1
|Uy — U2||W2|(Qh) =< C_()”fl _f2||L2(.Qh)'

Therefore, in analogy with the boundary-value problem (2.30), (2.31), the difference
scheme (2.35), (2.36) is well-posed in the sense of Remark 2.6. It is important to
note that the ‘stability constant’ 1/c is independent of the discretization parameter
h: the spacing of the finite difference mesh.

By exploiting this stability result it is easy to derive a bound on the error between
the analytical solution u, and its finite difference approximation U. We define the
global error, e, by

e =ulx;)—U;, i=0,...,N.
Obviously eg =0, ey =0, and
Aei=¢;, i=1,...,N—1, (2.40)
where the mesh-function ¢, defined by
g =Aulxj)— f(x)), i=1,...,N—1,

is called the truncation error of the finite difference scheme. A simple calculation
using (2.30) reveals that

¢i=u"(x;)— DD u(x;), i=1,...,N—1.

Since the global error satisfies (2.40), we can apply (2.39) to deduce that

1
flu — U”Wzl(.Qh) = ”e“Wzl(.Qh) = %HQDHLZ(Q}‘)‘ (241)
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It remains to bound [[¢|| ., -

Assuming now that u € C*([0, 1]), the Taylor series expansions stated at the
beginning of this section imply that

i =u"(x;) — DY Dy u(x;) = O(h);
thus, there exists a positive constant C, independent of /4, such that
lpi| < Ch?.
Consequently,

N-1 1/2
ol 2n = (Z h|¢i|2> <Ch%. (2.42)

i=1

Combining (2.41) and (2.42), it follows that
C
e = Ullyy gy < ghz. (2.43)

In fact, a more careful treatment of the remainder term in the Taylor series expansion
of u reveals that, fori =1,..., N — 1,

B 1
gi =u"(x;) — Dy Du(x;) = —Ehzu””(a), £ € (Xi_1, Xit1):

Thus

"

(2.44)

<—h ma
lpil = 750" max,

and hence

1
C=— max |u""(x)]
12 x€[0,1]
in (2.42). As c¢p = 1/c, and ¢, = 9/8, we deduce that ¢y = 8/9. Substituting the
values of the constants C and ¢ into (2.43), it follows that

h2||u////

”u - U”Wzl(ﬂh ||C([O,l])'

)= 32

Thus we have proved the following result.

Theorem 2.16 Let f € C([0, 1]), c € C([0, 1]), with c(x) > 0 for all x € [0, 1],
and suppose that the corresponding solution of the boundary-value problem (2.30),
(2.31) belongs to C*([0, 11); then,

3
llu — U”Wzl It lD) = 3_2]72””//// (2.45)

“ c(0,1])"
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We note that by the argument following Theorem 2.14 the hypotheses f €
C([0, 1]), c € C ([0, 1]), ¢ = 0 imply that the unique weak solution of the boundary-
value problem (2.30), (2.31) belongs to C 2([0, 17), and it is therefore a classical
solution. Thus, the word solution in this theorem means classical solution.

It follows from (2.37) with V = e, (2.40), the Cauchy—Schwarz inequality, the
last inequality in (2.24), (2.27) and (2.44) that

h2”u////

lu = Ulloo,n = (2.46)

”C([O,l])'

1
48V/2
We thus deduce the following result.

Theorem 2.17 Suppose that the assumptions of Theorem 2.16 are satisfied; then,
the error bound (2.46) holds.

This simple stability and error analysis of the finite difference scheme (2.35),
(2.36) already contains the key ingredients of a general error analysis of finite dif-
ference approximations, and it is instructive to highlight them here.

(1) The first step is to prove the stability of the scheme in an appropriate mesh-
dependent norm (cf. (2.39), for example). A typical stability result for the ab-
stract finite difference scheme (2.11), (2.12) considered at the beginning of the
section is of the form

colllUllgn < Il fullgn + llgnll o (2.47)

where |||-|[lon, || - | on and || - || ;4 are mesh-dependent norms involving mesh-
. —h . . - .
points of £2”* (or 2) and I'", respectively, and ¢y is a positive constant, inde-
pendent of A.
(2) The second step is to estimate the size of the truncation error,
@on i=Lyu— f, in",

orn:=Ilpu—gp on rk.

In the case of the finite difference scheme (2.11), (2.12), ¢+ = 0, and therefore
@i did not appear explicitly in our error analysis. If

leonllor + llerallpn — 0 ash — 0,

for a sufficiently smooth solution u of (2.9), (2.10), we say that the scheme
(2.11), (2.12) is consistent. If p is the largest positive real number such that

||(p_Qh ”_Qh + ”wrh ||1"h < Ch? ash— 0,

(where C is a positive constant independent of #) for all sufficiently smooth u,
then the scheme is said to have order of accuracy p.
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The finite difference scheme (2.11), (2.12) is said to converge to (2.9), (2.10)
(and U is said to converge to u) in the norm |||-||| o, if

llu—Ul|gn — 0 ash— 0.
If g is the largest positive real number such that, for all u sufficiently smooth,
lu—Ul|gn <Ch? ash—0

(where C is a positive constant independent of %), then the scheme is said to have
order of convergence q.
From these definitions we deduce the following fundamental theorem.

Theorem 2.18 Suppose that the finite difference scheme (2.11), (2.12) for problem
(2.9), (2.10) is stable (i.e. (2.47) holds for all fi, and gy, and corresponding solution
U, with cq independent of h) and that the scheme is consistent; then (2.11), (2.12) is
a convergent approximation of (2.9), (2.10) and the order of convergence is not less
than the order of accuracy.

Proof We define the global error e :=u — U ; then,
Lpe=Ly(u—U)=Lpu—L,U=Lpu— fp.
Thus,
Lpe=qgon
and similarly
lhe=q@rn.
By stability,
collu = Ulllgn = colllellon < logrllign + llepnllra,

and hence we arrive at the stated result. O

Paraphrasing Theorem 2.18, stability and consistency of the scheme imply its
convergence. This abstract result is at the heart of the error analysis of finite differ-
ence approximations of differential equations.

2.2.4 The Multi-dimensional Case

Since the two-dimensional case is sufficiently representative, for the sake of nota-
tional simplicity we shall confine our attention to elliptic boundary-value problems
in the plane.
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Meshes and Divided Difference Operators Assuming that N is an integer,
N > 2, we shall use a uniform square mesh £2” with mesh-size & := 1/N over the
unit square 2 := (0, 1)2, defined by

Q" i={x =1, x) = (h, jh) i, j=1,...,N -1},

and the square mesh
2" = {Gih, jh) i, j=0,....N}.
Let I" := 052 be the boundary of §2 and define
r=nz2nr=a"\ 2"
Analogously, let
Iip=xel:xi=k, 0<x3_; <1}, i=1,2, k=0,1,
and define
h=rypnhz?,  Th:=TunhZ?,  TM=T"\ (Ul

Let us also introduce

et=chur}  el,=e"'urk i=1.2,

QY =2"urluriulkn), ki=o0,1.

Let S” be the set of all real-valued functions defined on the mesh ﬁh. ‘We shall
use the notation V;; := V(ih, jh). By Sg we denote the set of all real-valued func-

tions defined on the mesh o that vanish at all points of I"”*. The set Sg is equipped
with the inner product

N-—1
(VW= (V. W), on =h> D" V@WE)=h* Y VW, (248)
xenh i,j=1

and the norm

1/2
IVIE =V I,@m =V, V),

The norms || - ||L2((z.") and || - ”Lz(ﬂfz) are defined analogously to || - [, oh)-

The forward, backward and central divided difference operators on the mesh £2,
are defined analogously as in the one-dimensional case:

DHY vyt _vy va__V—V*i

1
0y . -
M - LV — Dy Vi=5(DgV+DLV),



124 2 Elliptic Boundary-Value Problems

where
VE = VH @) =V the), e :=(@1.82). i=12,
and §; is the Kronecker delta.

Discrete Sobolev Norms  Analogously as in the one-dimensional case, we define
the following discrete Sobolev seminorms on S":

12
WVl an = (| o3, VHLz(Q” + | D, V||L2(9h))/

= (” Dy, V”Lz((zh + H Dx_zv||L2(Qh )1/2’

(2.49)
— + p+
|V|W22(Qh) = (”D X1 V||L2(.Q’l) + ”D D; V||L2(900)
1/2
+ 10505V [ am)
and the corresponding discrete Sobolev norms
1/2
IV llwten = (Vs iy + VIgon) ™ k=12, @50)
with the notational convention Wg(.Qh) = Ly(2M).
Let us also introduce the following inner products
5 h? h?
V. Wh=h 3 VW@ += 3 VOW@ -+ Y VoW,
xenh xermn\rj xelt

h2
V. Whpi=h* 3 VW@ +— ) VW, i=12,
XEQ[-h xeF”\(F’lUI‘,l)

and the associated norms
2
V4 = V1L,@m =V, V1,
V1 = [Vl =1V, V12

In analogy with the one-dimensional case, we define the following discrete
Sobolev seminorms and norms on S”:

2 2\1/2
[V]W‘(m) = (|[Dx+1 V]|1 + |[DX+ZV]|2) / )
Vzan = (VI gy + [DEDEVIE on ) + [A2VIE i)',

1/2
Vawscon = (Vo g + Vg on) ' k=12,
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where
~2ptv if x e Ty,
(A V)(x):=1 DD V(x) ifxe"ury, urf,,,
2pov if x e T,

The Discrete Laplace Operator on S(’)’ ‘We consider the discrete analogue of the
Laplace operator in two space dimensions, defined on hZ? by

AV :=D{ DV +D;D_V.
The mapping A : S(’)’ — S{)’ defined, for V € Sé’, by

—(ARV)(x) ifx e 2",

(AV)&) = {o ifxerh

positive definite operator with respect to the inner product (-, -);. In particular, for
Ve Sg we have that

(AV. V)= (= A5V. V=1V g g 2.51)

Furthermore,

1AV} = | D D,

2
x1v||L2(.Qh)+2||D+D+V”L2(.Qh +||D D, V”L(m

and therefore,
1ARVIG = 1V 2 gy
Similarly,
IARV I = 16(=2,V, V)i = 167V} = 16°I1V I} o)

and

Viwzan = 2f2|V|W21(9,1) > 8V2(| Vil on. V€S (2.52)

Consequently, on the linear space §; the seminorms | - |W21(.Qh) and | - |W22(.Qh) are
ivalen he norms || - nd || - I ively.
equivalent to the norms || ”Wzl(_Qh) and || IIsz(_Qh), espectively

Lemma 2.19 (Discrete Friedrichs Inequality) There exists a positive real number
Cy, independent of h, such that

VB = e (ID5V iy + 1PV o) @59

. oh
Jorall'Vin Sj.



126 2 Elliptic Boundary-Value Problems

Proof Inequality (2.53) with ¢, = 17/16 follows directly from the definition (2.49)
of the seminorm | - |W21 2h and the second inequality in (2.52). O

Fractional-Order Discrete Sobolev Norms We define the fractional-order dis-
crete Sobolev seminorm | - |W2’ (@h) by

Nh (N—=1h

[V(x) — V(tie; + x3-ie3-)]°
3
|V|W’ @h = Zh Z Z lx; — ;|1+2r

;=0 x3_; =h
xl ;/:tl

if 0 <r < 1, and by

2 WNDRNZDR Dty (x) — DEV (i + x3-ie3-1)]2

r(,Qh Zh3 Z Z = |x; _XItl.|1+2(r—1)

X ;=0 x3_;=0

X #ti

V2

N (D D*V(x)—D*V(xlelm ie3 )]

DD DTt

3js13—;=0 Xj=
X3 A3

if 1 <r < 2. We also introduce the associated fractional-order discrete Sobolev
norm by

1/2
1Vilwgi@n = (VI g + 1V g on) s 0<r <2 r#1.

Teh
Similarly as in one dimension, we have the interpolation inequalities

||V||r O<r<l,

Villwg @ = COIVI, 12y

L (_Qh)
(2.54)
Villwg @ = COIVIE,

VI 1<r<2,

W (Qh) WZ(Qh)

which follow directly from their one-dimensional counterparts.

2.2.5 Approximation of a Generalized Poisson Problem

In Sect. 2.2.3 we presented a detailed error analysis for a finite difference approx-
imation of a simple two-point boundary-value problem. Here we shall undertake a
similar study for the generalized Poisson equation in two space dimensions subject
to a homogeneous Dirichlet boundary condition:

—Au+c(x,y)u= f(x,y) in$2, (2.55)
u=0 onl =05, (2.56)
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where 2 := (0, 1) x (0, 1), c is a continuous function on §2 and c(x, y) > 0. For the
sake of notational simplicity we have denoted the two independent variables by x
and y, instead of x| and x,. As far as the smoothness of the function f is concerned,
we shall consider two distinct cases:

(a) First we shall assume that f is continuous on £2. In this case, the error analysis
proceeds along the same lines as in Sect. 2.2.3.

(b) We shall then consider the case when f is in L>(£2) only; then the boundary-
value problem (2.55), (2.56) does not necessarily have a classical solution; nev-
ertheless, a weak solution still exists. This lack of smoothness gives rise to some
technical difficulties both in the formulation of an adequate finite difference
scheme and its error analysis. Since the point values of f need not be mean-
ingful at the mesh-points (after all, f can be changed on a subset of §2 of zero
Lebesgue measure without altering it as an element of L,(£2)), instead of sam-
pling the function f at the mesh-points we shall sample a mollified right-hand
side T}, f. Also, since the analytical solution may not have a Taylor expansion
with the required number of terms, we shall apply a different technique, based
on integral representation theorems, to estimate the size of the truncation error.

We begin by considering the first of these two cases.

(a) (f € C(£2)) The first step in the construction of the finite difference approx-
imation to (2.55), (2.56) is to define the mesh. Let N be an integer, N > 2, and let
h :=1/N; the mesh-points are (x;, y;), i, j =0,..., N, where x; :=ih, y; := jh.
These mesh-points form the mesh

ﬁh ::{(xi,yj) i, =0,...,N}.
Similarly as in Sect. 2.2.2, we consider the set of interior mesh-points
Q" ={i,y) i j=1,...,N—1}
and the set of boundary mesh-points
r=a"\ o"

In analogy with (2.35), (2.36), the finite difference approximation of (2.55), (2.56)
is:

— (DI Dy Uij + D} Dy Uij) + c(xin yp)Uij = f(xinyj).  (xi,yj) € 2", (2.57)
U=0 onI™" (2.58)

In expanded form, this can be written as follows:

h? h?
= f(xi,y;) if (xi,y)) € 2", (2.59)

_(Ui+1,j —2Uij + Ui n Ui j+1 —2Uij + Ui,j—l) Gy Us



128 2 Elliptic Boundary-Value Problems

®
(1,3+1)

® ®
(=15 Gd) | G+1.9)

(,5—1)

Fig. 2.1 The set of interior mesh-points £2”, denoted by e, the set of boundary mesh-points I'",
denoted by x, and a typical five-point difference stencil

Uij=0 if (x;,y;)el™, (2.60)

where the divided difference operators D = fol and D;C = foz have been defined
in Sect. 2.2.2.

Foreachi and j, 1 <i, j < N — 1, the finite difference equation (2.59) involves
five values of the approximate solution U: U; j, U;_1 j, Uiy1,j, Ui j—1, Ui j+1, as
indicated in Fig. 2.1; hence its name: five-point difference scheme. It is possible to
write (2.59), (2.60) as a system of linear equations

AU =F, (2.61)
where
U:=WUi,U1,...,U1Nn=1,U21,Un2,...,Us N—1, ...,
o U Uiny oo Uin—ts oo Uy, Un—12, -, Un— v
F:=Fn Fo,....Fin-1. 21, Fn,....Fon—1, ...,

T
P Fo, o FiNot, o Evo i, Py, o Fyoiv—1)
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Fig. 2.2 The sparsity

structure of the banded matrix K J O O 0O O
A:Kisan(N—1)x (N —1) J K J o0 0O 0
symmetric tzridiagonal matrix, o J K J 0O 0O
J=(=1/h")I, I is the

(N — 1) x (N — 1) identity A=l0 o0 J K 0o o
matrix, and O is the o AR
(N —1) x (N — 1) zero o O 0 O K J
matrix O O 0O O J K

and Aisan (N — )2 x (N — 1)2 sparse, banded matrix.

A typical row of the matrix contains five nonzero entries, corresponding to the
five values of U in the finite difference stencil shown in Fig. 2.1, while the sparsity
structure of .4 is indicated in Fig. 2.2.

Next we show that (2.57), (2.58) has a unique solution. We proceed in the same
way as in the previous section for the finite difference approximation of the two-
point boundary-value problem. For two functions, V and W, defined on 2", we
introduce the discrete L;-inner product (2.48):

N—-1N-1
(VW=D D RV Wij.

i=1 j=1

Again, let S{)‘ denote the set of functions V defined on £2" such that V = 0 on I"".
We define the linear operator

A:Sh— st
at mesh-points of £2” and I'"*, respectively, as follows:

(AV)ij:=—=(Dy Dy Vij+ Dy Dy Vij) +c(xi)Vi, i, j=1,...,N—1,
(AV)io=(AV)in =(AV)o; =(AV)N; =0, i,j=0,...,N.

Returning to the analygs of the finite difference scheme (2.57), (2.58), we note
that, since c(x, y) > 0 on £2, by (2.51) and (2.49) we have that

- - +p-
(AV.V)y = (=Di Dy V =Dy DyV +cV, V),

(=DID;V, V), +(=DI DV, V), +(V, V),

N N-1 N

~1
W05 VP + > 3 h| Dy Vi
i=1 j=1 i=1 j=1

2 (2.62)

v

for any V in S{)’. This implies, just as in the one-dimensional analysis presented in
the previous section, that A is a nonsingular matrix. Indeed if AV = 0, then (2.62)
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yields:
ViV =1,
DyVij=—— =0, . _ N
_ Vij = Vij-1 i=1,...,N—1,
DyV,j—T—O’ j=1,...,N.

Since V =0 on I'", these imply that V =0 on ﬁh. Thus AV = 0 if, and only if,
V =0. Hence A is nonsingular, and U = A~!F is the unique solution of (2.57),
(2.59); the solution may be found by solving the system of linear equations (2.61).

In order to prove the stability of the finite difference scheme (2.57), (2.58), we
consider, similarly as in the one-dimensional case, the discrete L, norm

1/2
IV Iy em = (V, V)2,

and the discrete W21 norm (see (2.50))

)1/2

’

— 2 — 12
||V||W1(9h) = (”V”L 2(27) + ” D, V”Lz(gg) + ”Dy V||L2(Q§z)

where

Q=08 ={(xi,y):i=1,...,N, j=1,...,N—1},

X

Qb= ={(.yp:i=1...N-1,j=1,... N}

The norm || - || wi(@h) is the discrete analogue of the Sobolev norm || - || wi@) defined

by
>1/2
Ly (82)

In terms of this notation the inequality (2.62) has the following form:

[Juell lellZ () + i
u = u
wi2) "= L@ 7|55

L2(2) H dy

(AV, V) = || DY V” Ly T I Dy VHLZ(Q”) (2.63)

The discrete Friedrichs inequality (2.53) and inequality (2.63) imply that

(AV. V)i Z ollV Iy g (2.64)
where co =1/c, =16/17.
Theorem 2.20 The scheme (2.57), (2.58) is stable in the sense that
1
1Ty @ny = %”f”Lz(Qh), (2.65)

where co = 16/17.
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Proof The proof of this stability result is completely analogous to that of its one-
dimensional counterpart (2.39), now using (2.64) and the Cauchy—Schwarz inequal-
ity. g

Having established the stability of the difference scheme (2.57), (2.58), we turn
to the question of its accuracy. We define the global error e by

ejji=u(xj,y;)—Uyj, i,j=0,...,N,
and the truncation error ¢ by
gij = Au(xi, y)) = f(xi,y), i j=1...N-L
Then,
Aeij=g¢ij, i, j=1,...,N—1,
e=0 onI™"

By noting (2.65) we have

flu — U”Wzl(gh) = ||e||W21(_Qh)

IA

1
5||§0||L2(9h). (2.66)

Thus, in order to obtain a bound on the global error, it suffices to estimate the size of
the truncation error in the || - ||L2(Qh) norm. To do so, let us assume that u € C4(.Q);
then, by expanding each term in ¢ in a Taylor series about the point (x;, y;), we
obtain

gij = Au(xi, y;) — (DI Dy u(xi, yj) + D;”D;u(xz‘, yi))
9%u _ 9%u _
= [@(xi, yj) — Df D; u(xi,yj)} + [W(xi, yj) — Dy D; u(xi,yj)}
h? ([ 8%u d%u .
:_E<a?(5lay])+a_y4(xlvn])>s lsjzlv“'vN_lv

where & € (x;—1,Xi11), nj € (¥j—1,Yj+1)-

Thus,
h2
lpij| < —(‘ )
12 c@

and we deduce that the truncation error ¢ satisfies the bound

B ) (2.67)
C(£2)

9%u
ay+

9%u
x4

c(2) ‘

%u
ay4

9%u
x4

h2
lollz,n S—(
202" =19 c@



132 2 Elliptic Boundary-Value Problems

Finally (2.66) and (2.67) yield the following error bound.

Theorem 2.21 Let f € C(2), c € C(2), with c¢(x,y) > 0, (x,y) € £2, and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
(2.56) belongs to C*(2); then

U] - 17h? ( d%u d*u ) 2.68)
u— o < —|ll=— — . .
Proof Recall that 1/co = ¢, = 17/16, and combine (2.66) and (2.67). Il

According to this result, the five-point difference scheme (2.57), (2.58) for the
boundary-value problem (2.55), (2.56) is second-order convergent, provided that u
is sufficiently smooth; i.e. u € C ().

Elliptic regularity theory tells us (see, for example, Ladyzhenskaya and Ural’tseva
[118], Gilbarg and Trudinger [53] or Renardy and Rogers [155]) that if the right-
hand side and the coefficients are “sufficiently smooth”, then the associated classical
solution of the elliptic problem is “as smooth as one would expect” in the interior of
the domain on which the problem is posed; e.g. in the case of a second-order elliptic
boundary-value problem, if f € Ck"’(s?), k>0,0<a<1,thenu e Ck+2’°‘(.{2).
Unfortunately, in general, the solution will not be smooth up to the boundary if the
boundary is not of class C¥*2% as is the case when 2 is a square. For a simple il-
lustration, we refer to Example 9.52 on p. 325 of Renardy and Rogers [155]; a more
detailed account of regularity theory for elliptic equations in domains with nons-
mooth boundaries is given in Grisvard [62, 63] and Dauge [28]. Thus, in general,
the solution of our simple model problem (2.55), (2.56), will not belong to C 4(2)
even if f and c¢ are smooth functions, because the boundary I" = 942 is only of
class C%!. Consequently, the hypothesis u € C*(£2) that was made in the statement
of Theorem 2.21 is unrealistic (unless f satisfies suitable compatibility conditions
at the four corners of £2 (cf. (2.8))).

Our analysis has another limitation: it was performed under the assumption that
f € C(£2), which was necessary in order to ensure that the values of f are mean-
ingfully defined at the mesh-points. However, in applications one often encounters
differential equations where f is a lot less smooth (e.g. f is piecewise continu-
ous, or f € Ly(£2), or f is a Borel measure). When f € L,(£2), for example, we
know that the homogeneous Dirichlet boundary-value problem for the partial differ-
ential equation —Au + cu = f, with ¢ bounded and nonnegative, still has a unique
weak solution in Hé (£2), so it is natural to ask whether one can construct a second-
order accurate finite difference approximation of the weak solution. This brings us
to case (b), formulated at the beginning of the section.

(b) (f € L2(82)). We shall use the same finite difference mesh as in case (a), but
we shall modify the difference scheme (2.57), (2.58) to cater for the fact that f is
not continuous on £2. The idea is to replace f(x;,y j) in (2.57) by a cell-average
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Fig. 2.3 The cell X;; (i, yj41)

(zi,v5)

(i—1,95) (®iv1,v5)

(i, y5-1)

of f:
1
(1 1)yi= s [ S sy

where the ‘cell’ K;; is defined by

h h h h
Kij = xi—z,xi‘l'z X yj_zd’j‘i‘i ;

withi, j=1,...,N — 1.

This seemingly ad hoc approach has the following justification. Integrating the
partial differential equation —Au + cu = f over the cell K;; and using the diver-
gence theorem we have that

d
—/ —uds+/
aK;; OV K

where 0Kj;; is the boundary of K;;, and v is the unit outward normal to dK;;.

The normal vectors to 0K;; point in the co-ordinate directions, so the normal
derivative du/dv can be approximated by divided differences using the values of
u at the five mesh-points marked by e in Fig. 2.3, in conjunction with a midpoint
quadrature rule along each edge of K;; to approximate the contour integral featuring
in the first term of (2.69) (cf. Examples 2.6 and 2.7).

Approximating the second integral on the left by a midpoint quadrature rule, now
in two dimensions, on K;;, and dividing both sides by meas(K;;) = h2, we obtain

cudxdy =/ fdxdy, (2.69)

ij

—(Dy Dy u(xi, yj) + Dy Dyu(xi, y;)) + c(xi, y)u(xi, ;)

1
zﬁ//(,-j f(x,y)dxdy.
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We note here that (Th11 f)ij is correctly defined for f € L(£2); indeed,

(T 1)y

/ fx. y)dxdy‘

1 1/2 ) 1/2
_hz(/ 1 dxdy) (/K”|f(x,y)| dxdy)

=h™ " fll Lk, (< 00). (2.70)

Thus we define our finite difference scheme for (2.55), (2.56) by
—(DID; + DY DY) Uij + c(xi, y)Uij = (Ty ' )50 (xivyp) € 2", (2.71)
U=0 onI". (2.72)

Remark 2.10 Finite difference schemes that arise from integral formulations of a
differential equation, such as (2.69), are called finite volume methods.

Since we have not changed the difference operator on the left-hand side, the
argument presented in (a) concerning the existence and uniqueness of a solution to
the difference scheme (2.57), (2.58) still applies to (2.71), (2.72); therefore, (2.71),
(2.72) has a unique solution U in Sg. Moreover, we have the following stability
result.

Theorem 2.22 The scheme (2.71), (2.72) is stable in the sense that

1
10y = o1 ey 2.73)
where co = 16/17.

Proof From (2.64) and (2.70) we have

Uy gy < (AU, U= (T, 1,U),
<|7' 7| U, e0m < [T £ U Iy
= h Ly(2M) La(2%) = 11 7h Ly(22M) W, (£27)
= 1l 10wy an)s
and hence (2.73). O

Having established the stability of the scheme (2.71), (2.72) we consider the
question of its accuracy. Let us define the global error, e, as before:

e,-jzzu(xi,yj)—Uij, i,j:O,...,N.
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Clearly, fori, j=1,..., N — 1 we have
Aeij = Au(x;, y;) — AUjj
= Auxi,y) = (Ty ' £),;
=—(DfD;u(xi, yj)+ D;D;u(x,', yi)) 4 c(xi, ypulxi, yj)

8214 821/!
+[Th“ <@)(xi, i)+ 1! (8—)}2)()@’ i) =T (ew) (i y/)]~

(2.74)

By noting that

9%u 1t 88 (i + h/2,y) — 340 — h/2, y)
Thll<m)(xia)’j)= E/y dx dx dy

X

1 [Yith/2 gy
:Dj|: / —(x,-—h/2,y)dy:|,
yj—h/2 0%

1 [yith/2 9
_ / D 2 i — hy2, y)dy
y 0x

and that, similarly,

" 3214 N 1 xi+h/2 ou
T, 8—))2 (xi»}’j)ZDy E )2 @(x,yj—h/Z)dx ,

equality (2.74) can be rewritten as

Ae=Dfoi+Dfpr+,

where
1 [Yith/2 gy _
1(xi, yj) = Z/ 8—(xi —h/2,y)dy — Dy u(xi, yj),
yj—h/2 0X
L [uth/2 gy
e2(xi,yj) = o /X__h/z 5()6, yj —h/2)dx — Dyu(xi, y;),
Y (xi, y;) = (cu)(xi, yj) — Ty eu) (xi, y)).
Thus,

Ae=Dfp +Dfgy+y in2" (2.75)
e=0 onrl™" (2.76)



136 2 Elliptic Boundary-Value Problems

As the stability result (2.73) implies only the crude bound

1
lellwien = o | DY o1 + DY w2 + ||, ons
which does not exploit the special form of the truncation error,
¢:=D}lpi+ Dl + .
we shall proceed in a different way. The idea is to sharpen (2.73) by proving a

discrete analogue of the well-posedness result from Theorem 2.7; we recall that this
states that the following bound holds for the boundary-value problem (2.55), (2.56):

1
. < _ .
||u||W21(Q) = %o ”f”Wz L)

In order to obtain a discrete counterpart of this inequality, we consider the discrete
negative Sobolev norm || - ||W_|(9h), defined by
2

|(V, Wil

VIt on = —_——
2 @D vesiho) Wl (2m)

Theorem 2.23 The scheme (2.71), (2.72) is stable in the sense that

1 11
”U”W21 £h =< 5” Th f” Wz_l(.Qh)’ (277)
where co = 16/17.

Proof From (2.64), by noting the definition of the || - norm, we have that

”Wz_l(.Qh)
<7 e om 1U
=1 Jliw;ten Y lw) @

and hence (2.77). [l

Now we apply Theorem 2.23 to (2.75), (2.76) to deduce that

1
+ +
lellwyan = o IPFo1+ D02 49 1y (2.78)
In order to bound the right-hand side of (2.78) let us consider the expression

(Df o1+ D2+ v, W),
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for W e Sg \ {0}. Using summation by parts, we shall pass the difference operators

D} and D;“ from ¢; and ¢,, respectively, onto W. As W = 0 on the set I'", we
have that

-1 /N-1
(Do W), =3 h(Z L9 <xl+1,y,>h— ¢1(xi. y)) WU)

1 i=1

=

~.
> I

—1

||
T

N
h(zhwl(xl,y, — h’ ’)
i=1

=

-1 N
= h(zh(pl(xlvy/)D Wz/)

1 i=1

.
I

N-1
R @1 (xi, ;) Dy Wi

||
Mz

i=1 j=I
N N-1 172 / N N—1 1/2
2 _ 2
< (Z h2 g1 (xi, v))| ) (Z h*| Dy Wij| ) :
i=1 j=1 i=1 j=I1
‘We thus deduce that
[(DF o1, W), | < (2.79)
Similarly,
+ -
By the Cauchy—Schwarz inequality we also have that
| Wn| < 1y W Ly 2m)- (2.81)

Now, by combining (2.79)—(2.81) and noting the elementary inequality

la1by + azbs + azbs| < (a1 +a;+a )l/z(b% +b3 "‘b%)l/z’

we arrive at the bound

(D} o1+ Do+ v, W), |

1/2
=< (1117, + 1213, + V17, o)

12 — 12 1/2
x (” D, W”Lz(.(z}g) + “Dy W”LZ(Q’!) + ”W”iz(gh)) /

)1/2

(||€01||L2(Qh + ||‘P2||L2(_Qh) + ||1/f||L2(_Qh ”W”W (_Q/l
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Dividing both sides by ||W || wi2h and taking the supremum over all W € Sg \ {0}
yields the following inequality:

[DF o1+ D o2+ [y 1 gny =< (10117, g, + N2l gy + 117 )
(2.82)
Inserting (2.82) into (2.78) we obtain the following bound on the global error in
terms of the truncation error of the scheme.

Lemma 2.24 The global error, e :== u — U, of the finite difference scheme (2.71),
(2.72) satisfies the bound

1 1/2
lellwyin = o (10117, 0n) + 19217, + W1 0m) 2 sy

where co = 16/17, and @1, 92 and  are defined by

1 [Yith/2 gy 3
o1(xi,yj) = — —(x;i —h/2,y)dy — D u(x;, yj), (2.84)
h 0x
yj—h/2

1 xi+h/2 ou
matiyi=g [ TSy b Diuty). (289
h Je—np 0y
xi+h/2 pyjth)2

1
V(xi, yj) = (cu)(xi, yj) — ﬁ/ (cu)(x,y)dxdy, (2.86)
Xi—=h/2 Jyj—h/2

withi=1,...,.Nand j=1,....N—1in 284);i=1,....N—1and j =
I,...,Nin(285);andi, j=1,...N —1in (2.86).

To complete the error analysis, it remains to bound ¢;, ¢» and . Using Taylor
series expansions it is easily seen that

o1 ( )|<h2(‘ Ou ‘83” ) 2.87)
O1(Xi, Yj = S5 Y 5 .
e 24\ [ 0x0y? e 11023 e

h? 3u 33u
P2(xi, y)) s—(‘ +H— ) (2.88)
02t 37) 24 \[ax2oyleq 19 le@)

h2 (| 82(cu) 3% (cu)
ol <5 el ) e
Vi = 352 c@ I 5 le@

which yield the required bounds on ”(m”Lz(-Qi‘)’ ||<p2||L2(Q¢,) and ||¢||L2(m). We
thus arrive at the following theorem. ’

Theorem 2.25 Let f € L1(£2), c € C2($2) with c(x, y) >0, (x,y) € 2, and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
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(2.56) belongs to C3(2). Then,
17 5 )
flu — U“wzl(gh) = ﬁh Ms, (2.90)
where
= { ([l *[5])
3= Y
u u 2
+ 2 9v3
Xy lle@) W le@
9% (cu) 9% (cu) N
+ P + 7 .
GRS Felte) v le@)

Proof As 1/co = 17/16, by substituting (2.87)—(2.89) into the right-hand side of

(2.83) the estimate (2.90) immediately follows.

O

By comparing (2.90) with (2.68) we see that while the smoothness requirement
on the solution has been relaxed from u € C*(2) to u € C3(£2), second-order con-

vergence has been retained.

The hypothesis u € C3($2) can be further relaxed by using integral representa-

tions of @1, ¢» and ¥ instead of Taylor series expansions. We show how this is done
for ¢ and ¥; ¢, is handled analogously to ¢;. The argument is based on repeated
use the Newton—Leibniz formula

b
w(b) — w(a) =/ w’(x)dx.

In order to simplify the notation, let us write x;+1/2 :=x; £ h/2 and yj+1/2 :=
v;j £ h/2; we then have that

1 Xi Yji+1/2 au al/t
o1(x;,yj) = ﬁ/xq /y._1 g(xi—l/L)’) - g(xvyj) dxdy
j=1/2

/ /yj+1/2
Yj-1/2

|:—(xz 1/2, y)——(x y)}dxdy

1 Yj+1/2
sl e
Yj-1/2

1 y/+1/2
= _2

Vi-1/2

N
i) |

xl 12 92y

/ +1/2(
Yj-1/2

8u

o 2(§ y) dS) dX} dy

(x, 1) dn) dX} dy.
xdy

y32
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We thus deduce by partial integration that

1 [Yi+12 Xi-1/2 92y
o1(xi, yj) = ﬁ/ |:x/x E(%‘ay)dg

X=X;

Yji-1/2 X=Xj_1
+/Xi 82“( ydx | d
x—(x, x
- 92 y y
1 Xi y aZu Y=Yj+1/2
+ —/ [y/ (x,m)dn
h* J yj 0xdy Y=Vj-172
yi+l2 92y,
—f i (x,y)dy]dx
Yi—1/2 xoy
1 /}'j+1/2|:/xi—l/2 0%u
= (x —xi—1) 7= (x, y)dx
h? Yj-1/2 Xi—1 dx?
Xi 8214
—|—/ (x —x,-)—z(x,y)dx] dy
Xi—1/2 ox
1/ [/yj ( )2 ey
-5 Yy —=Yj—12) —— X, y)dy
h? Xi—1 LJyj—172 = dxdy

Vj+1/2 9%u
+ -y ,y)dy |dx.
fy, O y]+1/z)3xay(x ) y} X

We define the piecewise quadratic functions

1 2 .

7 —xi—1)” ifx € [xi—1, xi—172],
1 2 .

5 (x —x;) if x € [xi—1/2, xi],

Ai(X)Z{

%(y —yjo1)? ifyelyj—i2, vl

Bj(y) = .
/ Ty —yjr12)? iy ey vl

and note that A; and B; are continuous functions of their respective arguments;
furthermore,

Ai(xi—1)=Ai(x;) =0 and B;(yj-12) = Bj(yj+12) =0.

Integration by parts then yields

1 Yj+1/2 N 92u
‘Pl(xiayj):ﬁ/ [/ A,-(X)—z(x,y)dx}dy
y Xi—1 x

j=1/2 9

1 X ij+1/2 B/( ) azu ( )d q
R . X, X
h? J L)y i xdy e

j=1/2
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1 Yi+1/2 33u
=—ﬁ/ |:/ A(x) 3(x y)dx]dy
Yi-1/2 Xi—1

1 Xi Yj+1/2 33
+h—2/x”[/_ Biy 52 3y 5 (%, y)dy:|dx. (2.91)

Yj-1/2

Now
15 15
|Ai ()] < gh , x€lxi-1,x] and |Bj(y)|=< §h , YELj—172,Yj+172],

and therefore,

Yji+1/2 33
o1, y7)] < / / i1 y)‘dxdy
Xi—1YYj—1/2
1 i yi+12] 83y
+—/ / ——(x,y)|dxdy.
8 Xi—1Jyj-1/2 8x3y2
Consequently,
AN ER Pu |?
I o < ( ‘— ) (2.92)
LZ(Q) 32 Bx L2(2) 8x3y2 Ly(2)
Analogously,
33u Pu ||?
Il o < (‘ ‘— ) (2.93)
La@h =3 L@ 19320y 1,0

In order to estimate i, we note that

Xi+1/2 [Yj+1/2
Ip(xlay])_ h2/ / </ —(S )’)ds
Xi—172 YYyj-12 X
yj YiorYi 92w
+/ (x t)dt+/ / (s,t)dsdt) dxdy
x Jy 0xdy

1 Xit1/2  fYj+1/2 92w
2 ,'(x)ﬁ(x,y)dxdy
Xi—1/2 YYyj-172 X

1 [Xi+12 [Yi+1/2
h2/ / B 2<x ¥ dv dy
Xi—1/2 Yji—-1/2

1 /‘x1+1/2 Yj+1/2 (/ /yj
+3
h Xi—172 YYj-1/2 X

82
(s,t)ds dt) dxdy,
dxdy
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where w(x, y) = c(x, y)u(x, y) and

i) = 3 —ximp)?ifx € xioip, xil,
Yoo —xip1p)? ifx e [xixig 0l

1 Xig12 [Yj+1)2
W] = 5 / /
Xi—12 YYyj-172
/X1+1/2 /‘Y/+1/2
Xi—12 YYj-1)2
Xiv1/2 [Yj+1)2
+2 / /
Xi—12 JYyj-1)2

so that, with w := cu, we have

Hence,

92w
9x2

(x,y)|dxdy

82
—— &,y

82
Y ldxdy),
dxdy

w
dxady

dxdy

32w ||?
ay2

|2 3h4 (H ’ ) (2.94)
L Qh — . .
224 = 6 Lz(-Q) Ly(@)

By substituting (2.92)—(2.94) into the right-hand side of (2.83) and noting that
1/co = 16/17, we obtain the following result.

Ly(£2)

Theorem 2.26 Let f € Ly(82), c € M(WZZ(Q)), with c¢(x,y) > 0 for all (x,y) in
2, and suppose that the corresponding weak solution of the boundary-value prob-
lem (2.55), (2.56) belongs to W23 )N W21 (£2). Then,

it = Ullyy oy < CHlullya o, (2.95)

where C is a positive constant (computable from (2.83) and (2.92)-(2.94)), inde-
pendent of h and u.

We note that, by the analogue of Lemma 1.46 on a Lipschitz domain, M (W22 (£2))
C WZZ(SZ), and therefore, by Sobolev embedding c € M (W%(.Q)) is a continuous
function with well-defined values at the mesh-points.

It can be verified by numerical experiments that the error bound (2.95) is best
possible in the sense that further weakening of the regularity hypothesis on « leads
to a loss of second-order convergence. Error bounds of the type (2.95), where the
highest possible order of convergence is attained under the weakest hypothesis on
the smoothness of the solution, are called optimal or compatible with the smoothness
of the solution. Thus, for example, (2.95) is an optimal error bound for the difference
scheme (2.71), (2.72), but (2.90) is not. At this point it does not concern us whether
the smoothness requirements on the coefficients in the equation are the weakest
possible: that issue will be addressed later, in our discussion of optimal error bounds
under minimal smoothness hypotheses on the coefficients and the source term f.
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We shall now explore the convergence rate of the finite difference scheme in the
norm || - || W) (@h) under even weaker regularity hypotheses on the solution, resulting

in a loss of second-order convergence established above for u € W23 )N ch/Zl (£2).
Suppose, for example, that u € W22(.Q) N W21 (£2). From (2.91), by noting that

1 1
|A§(x)|§§h, x €[xi—1,x;] and |B§-(y)|§§h, yelyj-1/2. yj+1/2].

we have that

Lo fr [y 9%
|<P1(Xi,yj)| =< ﬂ/ﬂ_] /y,,-_l/z @(x,y) dx dy
1[5 yivin] 52y
+E - /;jl/z 8xay(x,y) dxdy.
Consequently,
2 W2 (] 02%u|? 3%u |?
Worlion = 7(‘ 92| 1,0 ‘ dxdy L2<9>>' (296
Analogously,
h2 (| 8%u |? 3%u |?
loet i = 5 (| 55 o | Lm)’ 2.97)

From (2.83), (2.96), (2.97) and (2.94), under the assumptions that c € M(WZZ(Q)),
¢>0on 2 and u € W2(£2) N W) (£2), we deduce that:

llw — U”Wzl(.Qh) = Ch”u”sz(.Q)’ (2.98)
where C is a positive constant, independent of 4 and u.

Application of Function Space Interpolation When u € W5(£2),2 <s <3, an
error bound can be obtained from (2.95) and (2.98) by function space interpolation.
For the sake of simplicity we shall confine ourselves to Poisson’s equation (i.e.
c(x,y) =0). In that case the constant C featuring in (2.95) and (2.98) represents
an absolute constant (i.e. it is independent of c(x, y)). Let us consider the mapping
L :u+> u— U, with U understood as a linear function of f = —Au. Evidently, L
is a linear operator. It follows from (2.95) that the operator L, considered as a linear
mapping L : W5 (2) — W} (22"), is bounded and

2
”L”WS(Q)%WZI(Q/’) <Ch".

In the same way, it follows from (2.98) that the operator L, considered as a linear
mapping L : WZZ(Q) — W21 (£2"), is bounded and

”L”WZZ(Q)HWZI @n = Ch.
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By the results of Sect. 1.1.5, the operator L, considered as a linear mapping
L: (W;(2), W3(2))a,q — (W, (£2M), W) (£2"))g,4, is also bounded and, thanks
to (1.8),

2\1-0 0 2-0
L1 (w3 (), w2 (2904 W (@) Wi (205, = (CR7) 7 (Ch)’ = Ch™™".

Furthermore,
1(oh 1ol 1ol
(W (27), W2 (2"))g,, = W2 (27),
(W3(2), W3 (), , = W, % (2).
Thus we obtain the following error bound:
2-6
”M_U”Wzl(gh)fch ||M||W23—6(_Q), 0<6<1.

By writing 3 — 6 = s here and supplementing the resulting bounds with the ones
corresponding to the limiting cases s =2 and s = 3, we deduce that

e = Ul om < CH " ullws @), 2<s <3,

where C is a positive real number, independent of 4 and u.

In the next section we shall show how the tedious use of integral representa-
tion theorems can be avoided in the error analysis of finite difference methods by
appealing to the Bramble—Hilbert lemma and its variants.

2.3 Convergence Analysis on Uniform Meshes

In the previous section we derived an optimal bound on the global error between the
unique weak solution # to a homogeneous Dirichlet boundary-value problem for the
generalized Poisson equation and its finite difference approximation U, under the
hypothesis that u € W5 (£2) N Wzl (£2), s € [2,3]. We used integral representations
for s = 2, 3 in conjunction with function space interpolation for s € (2, 3). Here we
shall consider the same problem by using a different technique; our main tool will
be the Bramble—Hilbert lemma.

2.3.1 The Bramble—Hilbert Lemma

We begin by stating the Bramble—Hilbert lemma in its simplest form, in the case
of integer-order Sobolev spaces (cf. [20]). We shall then illustrate its use in the
error analysis of simple discretization methods and describe its generalizations to
fractional-order and anisotropic Sobolev spaces. We shall also formulate a multilin-
ear version of the Bramble—Hilbert lemma.
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Theorem 2.27 (Bramble-Hilbert Lemma) Let 2 C R” be a Lipschitz domain and,
for a positive integer m and a real number p € [1, o], let n be a bounded linear
functional on the Sobolev space Wl’," (82) such that

Pm—1 C Ker(n),

where Py,—1 denotes the set of all polynomials of degree m — 1 in n variables. Then,
there exists a positive real number C = C(m, p, n, §2) such that

[n)| < Clinlllvlwn@) Yve W, (£2).

The proof of this result will be presented below in a more general context. First,
however, we consider a series of examples that illustrate the application of Theo-
rem 2.27.

Example 2.6 In this example we apply the Bramble—Hilbert lemma to provide a
bound on the error in the numerical quadrature rule

1
/ v(t)dr ~ 2v(0),
-1

called the midpoint rule. We shall assume that v € W[%(—l, 1), 1 < p <oo. In order
to estimate the error committed, let us consider the linear functional

1
n(v) ::/ v(t)dr — 2v(0)
-1

defined on WI%(—I, 1). Clearly, P; C Ker(n) and
1
In()| 5/1|v(t)|dt+2|v(0)|
1 1 0 1
=/ |v(z)|dt+’/ / u’(s)dsdt+/ v(r)dt
-1 —1Jt -1

1 1
52f |v(t)’dt+2/ |v ()| dt
-1 —1

1—1
<2277 (Ivllz, 1.+ IVllL,1.1)

1—1 -1
<2-4 p||U||W11,(_1,1)52'4 "||U||W;(_1,1)~

From the Bramble—Hilbert lemma we deduce that there exists a positive constant
C = C(p) such that

In()| = CPlwz-1-
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In the next example we consider a similar analysis on the interval [—#, h]. Using
a scaling argument we shall reduce the problem to the one considered in Exam-
ple 2.6.

Example 2.7 Let us suppose that we are required to estimate the size of the error in
the midpoint rule on the interval [—#A, k], for h > O:

h
f u(x) dx ~ 2hu(0).
—h

To do so, we consider the linear functional

h
np(u) == / u(x)dx — 2hu(0),
—h

and introduce the following change of variable, in order to map [—h, k] on the
‘canonical interval’ [—1, 1]:

x=nht, tel[-1,1], v(t) :=u(x).
Then, with 7 as in the previous example,

nn () = hni(v) = hn(v).

Therefore, according to the final inequality in Example 2.6, and returning from the
interval [—1, 1] to [—h, k],

21
|nn(w)| < Chlvlwa1,1y = Ch-h™ P lulyz_p -
In particular, for p =2 we have that
| = ChPlulyz .

Using the error bound for the midpoint rule on the interval [—h, k] established
in this last example by means of the Bramble—Hilbert lemma it is possible to obtain
an optimal-order bound on the global error in a finite difference approximation of a
two-point boundary-value problem. We shall explain how this is done. In the next
section we shall then extend the technique to multiple space dimensions.

Let us consider the two-point boundary-value problem

—u’" = f(x), xe€(0,1),
u(0) =0, u(l) =0.

Given the nonuniform finite difference mesh 0 = xg < x; < --- < xy = 1 with spac-
ing hj :==x; —xj_1,i=1,...,N,wedefine h; := (hj41+h;)/2,i=1,...,N —1,
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and introduce the backward and forward divided difference operators

_ Vi—Vig Vier = V;
D V;:= T D;“Vi:T,

and the following inner products and norms:

N—-1
1/2
VW= > hiViWi, VIipyan = (V. V),
i=1
N
1/2
VoWl =Y hiViWi, IV on = (V. V1,

i=1

where 2" := {x1,...,xy—1}and S?_',’r :={x1,...,xy}. Let us consider the following
finite difference approximation of the two-point boundary-value problem:

-DiD U =T)f;, i=1,....,N—1,
Uy =0, Uy =0,
where Thl f denotes the mollification of f defined by

1 [ri+12
T,}fi:=—/ feode, i=1,...,N—1.
X,

hi i-1/2

In order to derive a bound on the global error e := u — U at the mesh-points, we
note that

—DiDiej=-D}ni, i=1,...,N—1,
eg=0, ey =0,
where

ni = Dyux;) —u'(xi—12)

1 hi 1

= 2_h,-|:/_hi u/<x,~_1/2 + EX) dx —2hiu/(x,'_1/2)j|
! ' +1 =1 N

= —ny. Xi_ —1), i=1,...,N,
2h,-nh’ u i—1/2 >

where 7y, is as in Example 2.7. We thus deduce that
3/2
il < Ch; |y

(xi—1,%;)°

where C is a positive constant, independent of /;. Consequently,

N N
2 B 12 2 131,712
||77||L2(91i)—21:hz|m| =C ;hlhim |W22(Xi—1,Xi)
= 1=
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N
2 4 12 2,4, 12
= A <
¢ th |u|W23(x,'_|,x,-) =C%h |”|W23(o,1)’
i=1

where h = max; h;. We complete the error analysis by showing that the quantity
||Dx_e||L2(Qi) can be bounded in terms of ”'7”Lz(9ﬂ’r)' Indeed, by summation by
parts and using the Cauchy—Schwarz inequality we obtain

” Dx_e”iz(gfr) = (—D;‘D;e, e)h = (_D;’?» e)h

= (1. Dre], < Inll ot Dx_e”Lz(.oﬁ)'

Hence,

[ Dx_e”Lz(.Qb = Il @h),

and therefore
— I p- 2
|u — U|W21(Q”) =Dy (- V)| Ly@hy = Ch |“|W23(0,1)7

where C is a positive constant, independent of # and u. We note that we did not have
to impose any regularity requirements on the nonuniform mesh to prove this error
bound; in the next section, we shall develop a similar analysis in two dimensions.

First, however, we formulate a generalization of the Bramble—Hilbert lemma to
Sobolev spaces of any positive (not necessarily integer) order.

Theorem 2.28 Let 2 C R” be a Lipschitz domain and, for real numbers s > 0 and
p € [1, 00l, let n be a bounded linear functional on the Sobolev space W; (£2) such
that, by writing s = m + o with m a nonnegative integer and 0 <o <1,

P C Ker(n).
Then, there exists a positive real number C = C (s, p, n, §2) such that
[n@)| < Clinlllvlws @) Vv e Wh($).
Proof This result is a simple consequence of Theorem 1.13 with Uy = L ,(£2),
Ur =Wy (82), So(u) = llullL, @), S1(u) = llullws ), S) = [n(u)], by noting that,

according to the Theorem 1.36, W[S,(.Q) is compactly embedded in L ,(§2) for any
s >0. 0

One can apply this result to the midpoint rule to deduce, in the same manner as

in the integer-order case considered earlier, that the linear functional n defined on
Wi (=1,1),1/p <5 <2,1 < p<oo,by

1
n() = / v(t)dr — 2v(0)
-1
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satisfies the bound

[n()] = Clvlws 1.1

for any v in W,S,(.Q), 1/p <s <2,1 < p <oo. Thus in particular, with p =2, we
obtain the following bound on the global error in the finite difference approximation
of the two-point boundary-value problem considered:

/
|l/l — U|W21(.Qh) < Ch&"’t |W2S(0,1)1

where h = max; h;, provided that u € WZSH(O, 1) (whereby u’ € W5(0, 1)), 1/2 <
s < 2. In the next section we extend this result to Poisson’s equation on the unit
square. First we shall however formulate a generalization of the Bramble—Hilbert
lemma to anisotropic Sobolev spaces of the type W[‘;‘ (£2).

Let A C R’} be aregular set of nonnegative real multi-indices (cf. Sect. 1.5). We
denote the convex hull in R” of the set A by «(A). Let dox (A) be the part of the
boundary of k (A) that has empty intersection with the co-ordinate hyperplanes, and
let Ay = AN 3ok (A). Let B be a nonempty subset of Ay such that B U {0} is a
regular set of multi-indices, and define

v(B):={peN} :9xf =0 Va e B}.

Let Pp denote the set of all polynomials in n variables of the form

P(x) = Z pax’.

aev(B)

Theorem 2.29 Suppose that §2 is a Lipschitz domain in R" and let the sets A and
B of real nonnegative multi-indices satisfy the conditions formulated in the previous
paragraph. Then, there exists a positive real number C = C(A, B, p,n, §2) such
that

inf |lv—P <C v Yo e WA(0).
A0 1V =Pl <€ Y ey A(82)

aeB

Moreover, if n is a bounded linear functional on W[‘;\ (82), with norm ||n||, such that

Pp C Ker(n),

then

In@)| < Clnll Y lap Yve WHS2).

aeB

Proof This result is a simple consequence of Theorem 1.13 with Uy = L ,(£2),U; =
W ($2), So(w) = llullz, (@),

S1) = lullL,2) + Y Wlap:

aeB
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and S(u) = |n(u)|, and noting that W[‘;‘ (£2), equipped with the norm Si(-) is com-
pactly embedded in L, (£2). O

As a further generalization, we state the following multilinear version of the
Bramble-Hilbert lemma: this will be used extensively in the bilinear case through-
out the book.

Lemma 2.30 Suppose that Ay, By and $2; satisfy the same conditions in R,
k=1,...,m,as A, B and 2 did in the previous theorem. Let (vy,..., V) >
n(vi, ..., vy) be a bounded multilinear functional on the function space

Wl (1) X - X WHm(2y),

which vanishes whenever one of its entries has the form vy = x%, x € §2x, a € v(By).
Then, there exists a real number

CZC(AlvBls pls Qlanla-"aAm»Bma pmvgmsnm)

such that

m
1o <Cll ] D2 ke

k=1waeBy

for every (vi,...,vy) in W;]l (£2]) x---x W;,;"(Qm).

When m = 2, this result will be referred to as the bilinear version of the Bramble—
Hilbert lemma. In the case of standard, integer-order isotropic Sobolev spaces, the
bilinear version of the Bramble—Hilbert lemma can be found in Ciarlet [26], The-
orem 4.2.5. In the general case the proof is analogous, and is once again a simple
consequence of Theorem 2.29.

2.3.2 Optimal Error Bounds on Uniform Meshes

In this section we shall use the Bramble—Hilbert lemma to derive an optimal bound
on the global error of the finite difference (or, more precisely, finite volume) ap-
proximation (2.71), (2.72) of the homogeneous Dirichlet boundary-value problem
(2.55), (2.56) on a uniform mesh of size /; in the next section we shall extend this
analysis to nonuniform meshes. Thus, we consider the following finite difference
scheme:

(i, yj) e 2", (2.99)

—(Di Dy + DY DY) Uij +c(xi, y)Uij = (Thllf)ij’

U=0 onl™h. (2.100)
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Let e := u — U denote the global error of the scheme; then, according to
Lemma 2.24,

1/2
”e”Wzl (_Qh) — (||901||L2(9h) + ||¢2||L2(Q/’ + ||W||L2(_Qh ) / ’ (2101)

where @1, ¢, and ¢ are defined by

1 [Yit12 9y B
e1(x;, yj) = ;A /y,_l/z a(xi—lﬂ, v dy — Dyu(x;, yj),

1 [Xi+1/2 9y B
watiyi=g [ Se ) = DU ).
xi—ip 9V

Xi41/2 [Yj+1/2
Y (xi, yj) = (cu)(xi, yj) — hz,/ / (cu)(x, y)dxdy,
Xi—1/2 JYyj-1)2
with x;t10 =x; £ h/2and yj110 =y; £ h/2.

We shall use the Bramble—Hilbert lemma to estimate ¢, ¢ and v in terms of
appropriate powers of the discretization parameter 4 and suitable Sobolev semi-
norms of the analytical solution u. We begin by considering ¢;. Let us introduce the
change of variables

. .1 - -
X =xi—1/2 +Xh, SXSE y=y;+yh, <y=

l\)l'—‘

and define (%, §) := h 2% (x, y). Then,

L. .
where
172 1/2
¢1(0) := / / [6(0, 7) — ¥(%, 0)] d¥ d5.
—12J-1)2
Thanks to the trace theorem (Theorem 1.42),

|51@)] < Collbllyy gy 5> 1/2,

~ 11 11
K={—=z)x{—%2)
(33)(=53)

and Cy; = C(s) is a positive constant. Thus ¢; is a bounded linear functional (of the
argument v) on W;(IZ) fors > 1/2.

Moreover, ¢; = 0 when v(X,y) = )?k)?l, k,l € {0,1}. According to Theo-
rem 2.28, there exists a positive constant C = C(s) such that

where

|61@D)| = Clilyyz).  1/2<s52.
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Hence, by defining
Kij = (xi—1/2, Xi+172) X (Vj—1/2, ¥j+1/2)

and returning from X and y to the original variables x and y, we deduce that

3
|61(0)| < ct |2 . 12<s<2,
dx W3 (Kij)
so that
8
o1 (i, yj)| < ch 1|22 L 12<s<2.
3% lws (ki)

By noting that the Sobolev seminorm on the unit square is superadditive on the
family {K;;} of mutually disjoint Lebesgue-measurable subsets K;; of £2, i.e. for
w € W3 (£2) one has

N—1N-1 1/2
2
(Z > |w|W§'(K,«j)> = whys N1 k)

im1 j:] i,j=1
it follows with w = du/dx that

u

, 1/2<s<2, (2.102)
0x

leillz,@m < Ch’*
! Wi

where C is a positive constant, dependent only on s. Analogously,

ou

. 12<s<2. (2.103)
dy

Wy (82)

lp2llz,@n) < CR

To complete the error analysis it remains to estimate v (x;, y;). For this purpose
we shall write w := cu and note that

1 Xi+1/2  [Yj+1/2
w(xi,yj):w(xi,yj)—ﬁ/ w(x,y)dxdy.
X,

i-172 Jyj-12

Let us also consider the following change of variables:
x=x; +xh, -—
and define w(x, y) := w(x, y). Then,

Y (xi,yj) = V@),

where

~ 1/2 1/2
I/f(zb):zw(o,O)—/ / w(x, y)dxdy.

12J-1)2
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By Sobolev’s embedding theorem 1} is a bounded linear functional (of w) on W2s (IZ )
fors > 1, where, as before, K := (—1/2,1/2) x (—1/2, 1/2). Furthermore, ¥ () =
0 whenever & = &% ﬁl with k, [ € {0, 1}. Thus, by the Bramble-Hilbert lemma,

¥ (@) < Cldlyyz), 1<s5=2,

and consequently, after returning from the (x, ¥) co-ordinate system to the original
variables x and y, we obtain the bound

[ iy < CR  Hwlwg k), 1<s<2,
and finally, after squaring and summing overi, j=1,...,N — 1,

¥, @m < Ch lculwy @), 1<s=2. (2.104)

Thus, by assuming that the weak solution u € W5 (£2) N Wzl (£2) and that ¢ €
M(WE(Q)), for 1 < s < 2, after substituting (2.102), (2.103) and (2.104) into
(2.101), we arrive at the following bound on the global error:

ou

0x

u
wi) 19y

= Ullya SChS<

+ llellmows @) ||M||Wg(9)),
W5(2)

where C is a positive constant depending on s, but independent of 4; or, more

crudely, after bounding |8u/8x|W2s(_Q) + |8u/8y|W2s(_Q) by ||u||W§+|(_Q), and writing

s — 1 instead s, we obtain
-1
||M—U||W21(Qh)§ChS “’/‘HWE(Q)v 2<s<3.

This should be compared with the error bound derived in the previous section using
integral representations based on the Newton—Leibniz formula for s =2 and s =3
and by function space interpolation for 2 < s < 3.

2.4 Convergence Analysis on Nonuniform Meshes

Our objective in this section is to develop the error analysis of finite difference (or,
more precisely, finite volume) approximations on nonuniform meshes for the model
Poisson equation with homogeneous Dirichlet boundary condition:

—Au=f 1in$2, (2.105)

u=0 onl =0d%2, (2.106)

where £ :=(0,1) x (0, 1). When f € W, ! (£2), this boundary-value problem has
a unique weak solution u in Wzl (£2); furthermore, if f € W5 (£2) then u belongs to
WZH'Z(.Q), —1<s<1,s#+£1/2 (see, Theorem 2.8).
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As has already been indicated earlier, the key idea behind the construction of a
finite volume method for (2.105), (2.106) is to make use of the divergence form of
the differential operator A = V - V appearing in the equation —Au = f by inte-
grating both sides over mutually disjoint ‘cells’ K;; C £2, and use the divergence
theorem to convert integrals over the cells K;; into contour integrals along their
boundaries, which are then discretized by means of numerical quadrature rules. This
construction gives rise to a finite difference scheme whose right-hand side involves
the integral average of f over individual cells, the particular form of the difference
scheme being dependent on the shapes of the cells and the numerical quadrature
formula used. For example, if £2 has been partitioned by a uniform square mesh of
mesh-size &, then the resulting scheme coincides with (2.71), (2.72) (with ¢ = 0).

2.4.1 Cartesian-Product Nonuniform Meshes

We begin by considering Cartesian-product nonuniform meshes. For the purposes
of the error analysis it is helpful to reformulate the finite volume scheme as a
Petrov—Galerkin finite element method based on bilinear or piecewise linear trial
functions on the underlying mesh and piecewise constant test functions on the dual
‘box mesh’. We shall prove that, as in the case of uniform meshes considered in the
previous section, the scheme is stable in the discrete W21 norm. This stability result
will then, similarly to the arguments in the previous section, lead to an optimal-order
error bound in the discrete W21 norm under minimal smoothness requirements on the
exact solution and without any additional assumptions on the spacing of the mesh.
In particular, the mesh is not required to be quasi-uniform (in a sense that will be
made precise). If quasi-uniformity is assumed, then an additional error bound holds,
in the discrete maximum norm. In the next section similar results will be derived for
a general one-parameter family of schemes.

The problem (2.105), (2.106) is approximated on the nonuniform mesh ﬁh,
which is the Cartesian product of the one-dimensional meshes

{xi, i=0,....M:x0=0, x; —xj—1 =hj, xp =1},
{vj, J=0,...,N:y0=0, yj —yj—1 =kj, yn = 1}.
We then define
@"=en2", rt=rna,
Qh :zﬁhm((o, 11x (0, 1)), ol :zﬁhm((o, 1) x (0, 11),
rl=2"n({0.yx o), rr=2"n(O1x{01).
To each mesh-point (x;, y;) in 2" we assign a cell

Kij = (xi—12, Xi+1/2) X (¥j—1/2, Yj+1/2),
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Fig. 2.4 Section of the
Cartesian-product

(@i, Yj+1)

nonuniform mesh ﬁh s

showing nine mesh-points
and the cell K;; associated
with the mesh-point (x;, ;) (@i_1,9;) (@i, 5) (ir1,9;)

(zi,y5-1)
as shown in Fig. 2.4, where

1
Xi—1/2 = X; — Ehi, Xit1/2 =X + Ehi+1,

1 1
Yim12:=yj = ki V2=t Sk

and we denote the edge-lengths of the cell K;; by

1 1
hy; ::E(hi+hi+l) and ijZE(kj‘f'kj—H)-

A simple calculation based on the definition of the fractional-order Sobolev
norm shows that x;;, the characteristic function of the set (—h;y1/2,h;/2) x
(—=kj+1/2,k;/2), belongs to W7 (R?) for all T < 1/2. Assuming that f belongs
to W5 (£2) for some s > —1/2, and extending f from £2 onto R? by preserving its
Sobolev class, we deduce from Theorem 1.69 that the convolution x;; * f is a con-
tinuous function on R? (whose values on £2” are independent of the particular form
of the extension). Convolution of (2.105) with x;; then yields

1 ou 1
- . —ds = ———(Xij LY 2.107
meas Kj; /BK” a, 5= ——o K, (Xij * f)(xi, yj) ( )

where v denotes the unit outward normal vector to dK;;.
We remark that if f is a locally integrable function on 2 then, similarly as in the
case of uniform meshes considered earlier, the right-hand side of (2.107) is simply

1 Xi+1/2 fYj+1/2

hik; Jx

f(x,y)dxdy.

i-1/2 j—1/2

(Th“f)ij =

Let S” signify the set of all real-valued continuous piecewise bilinear functions
defined on the rectangular partition of £2 induced by §h, and let S(')l be the subset of
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S" consisting of those functions that vanish on I". Motivated by the form of (2.107),
we define the finite volume approximation of u as U € Sé’ satisfying

1 U 1
— —d = — .. i s . f B . Qh. 2.108
h,k, ‘/Q;Kij v S h,k, (le * f)(xl yj) or (x, yj) € ( )

First, we shall prove that this method is stable by proceeding in the same way as in
the case of uniform meshes considered in the previous section. To this end, we shall

rewrite (2.108) as a finite difference scheme on ﬁh by using the averaging operator
WUy defined by

1
wyVij = ﬁ(hivi—l,j +6h; Vij +hiv1Vit1,)) (2.109)
1

and the divided differences

Vij = Vi1,j
hi

Vig1,j — Vij

Dx_vl] = hi ’

and DjV,-j =

with analogous definitions for wy, Dy_ and D;r. With these notational conventions,

U _ _
—/ o ds= —hi%; (DY Dy juy + DY Dy i) Ui (2.110)
3K,‘j

By inserting (2.110) into (2.108), the finite volume method (2.108) can be restated
as the finite difference scheme

—(DF Dy + DY Dy )U =T, f in 2", (2.111)

U=0 onl™", (2.112)

where

1
(T, f); = = O x PGy y))-
i

We begin the analysis of the scheme (2.111), (2.112) by investigating its stability
in the discrete Wz1 norm, || - ||W21(Qh)» defined by

)1/2

’

- 2 2
IV llwsan = (V13 on + Vg

where || - [, (o) s the discrete Ly norm on the linear space of real-valued mesh-
functions defined on £2":

M—-1N-1

1/2
IVilyn = (V20 (VoWoe= D03 ik Vi Wiy,
i=1 j=1
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and | - |W21 @h is the discrete W21 seminorm defined by

— 2 2 1/2
|V|W2‘(Qh) = (HDx V”Lz(gg) + ” Dy VHLz(Qj?)) ! ’

with

=

M N-1
VI, n =V VI (VW=D % hik; Vi Wi,
i=1j

M—1

Mz

V17, = (V. VI, (V. W]y hik Vi; Wij.

._
I
=

i=

J

The associated discrete W, ! norm is then defined by

Vo gni= sup o
RPN — 7
W@ e S0} ”W”W Ll

Lemma 2.31 Suppose that V is a mesh-function defined on $2},.

@ IfV=0onT", then

1
(Vs V1y 2 SIVIZ g (2.113)

(b) If V=0o0n I}, then

1
sV, Ve 2 SIVIE, - (2.114)

Proof We shall only prove inequality (2.113), the proof of (2.114) being analogous.
Let us assume for a moment that j is fixed, 1 < j < N. Then,

M—1 =

D hi(uaVipVig = Y (hiVie1,jVij + 60 Vi3 + hit1 Vig1,;Vij)

i=1 i=1

0

1 M—1 1 M 1M—2
z g(Z ShiVij =32 hiVii =5 2. hi+1V5)
i=1 i=2 i=0
1M—l
> E Z hle%
i=1

We then multiply this by k; and sum through the index j € {1, ..., N} to deduce the
desired inequality. g
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We shall also require the following discrete analogue of the Friedrichs inequality
on Cartesian-product nonuniform meshes.

Lemma 2.32 Suppose that V is a mesh-function defined on 2, such that V.= 0 on
Iy,. Then,

3
V|2 (2.115)

”V”W/(Qh)_'z WG(th

Proof Let V be a mesh-function defined on 2, such that V =0 on I7},. Then, the
expression

M—-1N-1

VI om =D D hik; V]

i=1 j=1
can be bounded as follows:

M IN-1 M IN—-1

VI, @n = Z > hik; ,,+ hik; V2

i=1 j=1 i=1 j=1

I
N1 —
D
b
=t
2
]
31
)
N—
]
:‘
2
>
=
=~
~.
)
N—

IA

+
N =
/—\

E
=

e

F
\P

AN

:

(o

j=1 n=1

IA

Lo 2 o2 1
5(” D V”Lz(gg) +D; V||L2(:2§z)) - §|V|€Vz' @h:

Adding |V |? to both sides completes the proof of the lemma. O

W(Qh

By using this discrete Friedrichs inequality we shall now prove that the finite
difference scheme is stable; the key to the proof is the following result.
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Theorem 2.33 Let L"V := —(D;f Dy puy + Dy Dy (1,)V. Then,
h
IVl @ <3||L v||W2_1(Qh) (2.116)

for any mesh-function V defined on ﬁh and such that V. =0 on I'".

Proof By taking the (-, -), inner product of L"V with V we obtain
(~(D DLV, V), + (<D Dy ) V. V), = (L4V. V),
By performing summations by parts in the two terms on the left-hand side we get
- - - - h
(DyuyV. DV +(Dy V. Dy V] = (L"V, V),

Since D;” commutes with py and D} commutes with ji, we can apply (2.113) and
(2.114) to obtain

1 2 o
E(”Dx VHLZ(Q)’}) + ”Dy V”Lz(-Q;')) = (LhV, V)h'

By recalling (2.115) and the definition of | - we get (2.116). Il

” W;l (oM
Theorem 2.33 now implies the stability of the scheme.

Theorem 2.34 For any f € W5(£2), s > —1/2, the scheme (2.108) (or, equiva-
lently, (2.111), (2.112)) has a unique solution U. Moreover,

1T Ny @ny = 3|7, 7| wyl(@h:

Having proved stability, we are now ready to embark on the error analysis of
the scheme. We shall derive an optimal-order error bound for the finite difference
method (2.111), (2.112), which can also be seen as a superconvergence result for
the finite volume method (2.108) considered as a Petrov—Galerkin finite element
method, on a family of Cartesian-product nonuniform meshes. By superconvergence
we mean that O(h?) convergence of the error between u and its continuous piece-
wise bilinear approximation U is observed in the discrete W21 norm while only O(h)
convergence will be seen if u — U is measured in the norm of the Sobolev space
WZl (£2). The result will be shown to hold without any additional assumptions on the
spacing of the mesh: in particular the mesh is not required to be quasi-uniform (the
definition of quasi-uniform mesh will be given in the statement of Theorem 2.38).

Theorem 2.35 Suppose that u € W' (2) N W) (), 1/2 < s <2. Then,
= Ul ny < CH*lulysei g (2.117)

where h =max; j(h;, k), and C = C(s) is a positive constant independent of u and
the discretization parameters.
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In the proof of Theorem 2.35 we shall make use of anisotropic Sobolev spaces on
rectangular subdomains of R2. For @ = (a, b) x (c,d) and a pair (r, s) of nonneg-
ative real numbers, we denote by W2r’s (w) the anisotropic Sobolev space consisting
of all functions u € L (w) such that

12
|“|W’°(w) (/ lu., y)|Wf<ab)dy) <00,

b ) 1/2
|”|W§*“(a}) = (/a \u(x, ')|W§(c,d) dx) < 00.

The linear space Wzr’s (w) is a Banach space equipped with the norm

)1/2

2
||u||er(w) —(||M||L2(w)+|“| Zr() )+| ul é)v()

For s > 0, Wé” (w) coincides with the standard (isotropic) Sobolev space Wg (w),
and the norm | - ||W§'-5(w) is equivalent to the Sobolev norm || - ||W§(w) (cf. Sect. 18
of Besov, II’in and Nikol’skif [13]).

Proof of Theorem 2.35 Let us define the global error as e := u — U. Then, by apply-
ing the difference operator L" defined in Theorem 2.33 to e and noting the definition
of the finite difference scheme, we deduce that

h 11 0%u I | 9%u
L% T, 8__DXD)('U“}’M + Th 8——DD/1,,C
However,
13 u Yj+1/2
T — —(x:+1/2 y) — —(x, 12, ) |d
dx? ki Jyiip
:D;r<T_1a_u> ,
ox ij
where
1 Yji+1/2
(T_Olw)ij = F/. w(x;_1/2,y)dy.
J JYi-1/2
Consequently,
L"e=D}n +Dfn inQ",
(2.118)
e=0 on Fh,
where

u -~ ou
n = Tf”—x—Dx pytt, M —Tloa—D [l
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and T is defined analogously to T°! above. By applying Theorem 2.33 to the finite
difference equations (2.118) we have that

It remains to bound the right-hand side of this inequality. We observe to this end
that, for any mesh-function V defined on ﬁh and vanishing on rt,

—(DFm + Dfna, V), = (m, Dy V], + (m2, Dy V] .

By noting the definition of the norm | - we thus deduce that

” szl Ie0)
[ D+ DIy ny < Imillycem + Imall e
Hence,

= Ullya oy < 3(ImllLyepy + 120l Lyl (2.119)

It remains to bound the right-hand side of (2.119). We only consider the term in-
volving n1; the norm of 1, is bounded analogously.
To this end, we first define

(yu)(x, y;) = [kjux,yj—1) 4+ 6kjux,y;) +kjrux, yir)].

1
8k
and for fixed x, 0 <x <1, we let I,w(x, -) denote the univariate continuous piece-

L . —h
wise linear interpolant of w(x, -) on the mesh £2. Then,

1 Yj+1/2
wme»:—/ (Lw)(x, y)dy,
y

JJyji-12

and therefore,

Xi a
(uyu»j-—<uyu»444==‘/j ()3, ) dx
xi— 9X

X801 Yj+1/2
=/ o1 (Lyu)(x, y) dx dy
X,

i1 3xk' Yj-1/2
Yi+12 9
=—[ [ e ey
Yji—1/2

)J+1/2
:—/ / < >(x y)dxdy.
Yj—1/2

Thus we find that (n1);; can be expressed as

Yj+1/2 Ju
Mij = hk/ / [—(Xz 172, ) — ( x>(x,y)}dxd%
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By splitting 1 as the sum of 111 and 112, where

Yj+1/2 ou
(’711)1] hk/ / |:_(xl 1/25 y) — (ba)(x,y)}dﬂiy,
Yj
(12)i ( ) — <1 a”)( )| dxd
M2)ij : =Wk / /, l/2|:— Xi1/2,y oy x,y} xdy,

the task of estimating 7 is reduced to bounding 711 and n13.
Let us first consider 711. By introducing the change of variables

X=xi_12+Xh;, — y=yj+ykjy1, 0=<y<I,

and defining v(x, y) := h; g—ﬁ(x, y), we can write

nn(v)

kit
(7)11)1] hk

where
12 p1/2
1 (5) :=/1/2f0 [350, 5) — 3R, 0)(1 — 5) — 5(%, 7] di d5.

Now 7711 can be regarded as a linear functional (with the argument v) defined on
W3 (K*), where s > 1/2 and

K~*'—< ! 1) 0,1)
= —5,2 X(, .

Thanks to the trace theorem (Theorem 1.42),

@] = Clollyy sy s> 1/2,
and therefore |71 (-)| is a bounded sublinear functional on W, (K~ *). Moreover, if
3(%, ) =xk5!, k,1 € {0, 1}, then 711 (¥) = 0. By applying Theorem 1.9 with

Uy =Wy (K*), U= Lr(K*),

5 2 2 1/2
S=nul, Si=(-1 WO (&) +1-1, (K*)) , So= Il &>
and noting that for s > 0 the Sobolev space WS(K *) is compactly embedded in

Lz(lf*), we deduce that

_ 172
in @] = c(io?, 05 (e T |”'5v§-°(1<"*))
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for 1/2 < s <2. By defining Kl.; = (X1, %) X (¥j—1,Y), Ki’_j+1 = (xi_1, x;) X
(yj,¥j+1) and returning from the (X, y)—variables to the original (x,y) co-
ordinates, we thus have that

21,28 2 2(s+1) 2
i@ < c( Mk o i |du
2 i,j+1 2 l/+l
and therefore
2 +1 _
’(7111)"‘2<C< K |ou [ +7h’2s e 9 )
L] — . s _ 2 .
h’kj ax W;" (K i) 7‘éj dx Wy (Klj+])
Analogously,
2;+1 2 2s—17, . 2
}(mz),-,-|2sC( >y 2—” | nl g—” )
bt 19 twsy - Ky 10X Twy 0k

By noting the superadditivity of the Sobolev seminorm on a family of mutually
disjoint Lebesgue-measurable subsets of £2, we thus have that

du |? au|?
Imll% o _Ch2s< — ) (2.120)
La(sze) ax |y 0x |ys0(@)
where h = max; ;(h;, k). Analogously,
au|? au|?
In21, (@i = Chz*( = ) (2.121)
W lwpr@ 19y lwso)

By substituting (2.120) and (2.121) into (2.119) we thus obtain the desired error
bound

lu — U”Wzl(_Qh) < Chs|u|W§“(Q)’ 1/2<s<2.

That completes the proof of the theorem. g

On a quasi-uniform mesh, the finite volume method (2.108) can be shown to be
(almost) optimally accurate in the discrete maximum norm || - || ,;, defined by

IVlloon =" max_[V(x,)].
(x,y)e

We shall say that {ﬁh} is a family of quasi-uniform Cartesian-product meshes
on £2 = [0, 1] x [0, 1] if there exists a positive constant C, such that

h:=max(h;, k;) < C.min(h;, k).
L] L]
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Some auxiliary results are required to prove an error bound in the discrete maxi-
mum norm; these are formulated in the next two lemmas, the first of which states a
version of the inverse inequality (see, for example, Ciarlet [26], Theorem 3.2.6).

Lemma 2.36 Suppose that {§h} is a family of quasi-uniform Cartesian-product
meshes on 2 = [0, 1] x [0, 1], and let S" be the linear space of continuous piece-

wise bilinear polynomials defined on the partition of §2 induced by " Suppose
that 1 < q,r < o0o. Then, there exists a positive constant C = C(C,, q, 1), indepen-
dent of the discretization parameter h, such that

IV, @) < CRMMOCD=CIIN v o) VYV esh

Proof Consider the rectangle Ki; =L x) X (¥j-1,y), 1 <i <M, 1<j<
N, and the mapping (x, ¥) — (x, y) defined by
X =Xi—1+Xh;, y=yj-1+Ykj, (2.122)

which maps the unit square Kt := (0, 1) onto K i Let us define

V(E§) = V(x, ),
where (x, y) is the image of (X, y) under the transformation (2.122). Now
IV, sy = ik IV L k)
and
IVl = kD VIV L o)

Let 1?(12 T) denote the linear space of all bilinear polynomials defined on the
square K T:

P(K*):={(a+b¥)(c+dF):a,b,c,deR, 0<% =<1}

Since P (I% 1) is finite-dimensional (in fact, the dimension of P(I? T) is 4), the

. - . - i ¢+ i -
norms || ||Lq(K+) and || ||L"(K+) are equivalent on P(K ™). Hence, there is a con
stant Co = Cyp(q, r) such that

IV, &+ = Coll VI, g+,
forall V in P(K). Combining this with the two previous equalities yields
”V”Lq(Ki;) < C()(h,'kj)(l/q)—(l/r) ”V”Lr(K,»;)’

_ COCmaX(O, 2/r)—(2/q))

and thus, by defining C , we get

IVl k) = CR O~ v, (2.123)

(K"
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Let us suppose that g = oo; then, there exist ig and jo, 1 <ip <M, 1 < jo <N,
such that

—2/r|

IVl Loo(@) = IV Las(&ij) < CtE IV ki) < C1E 2V L),

which is the required result in the case of ¢ = oo.
Let us suppose now that g < oco. It follows from (2.123) that

1/q
(Z VI, )> < C 0= W”(Z IVIL - )> : (2.124)

where the sums are taken over alli and j, 1 <i <M,1<j <N.

We shall consider three cases. When r < g, by noting that s (Zi’j aisj)l/ $
is monotonic decreasing on [1,00) when 0 < a;; < 1, we have, with a;; =
”V”Lr(K,.;)/”V”Lr(-Q)’ that

1/q 1/r
r
(vaum )= (X))
L]

When g < r < oo, Holder’s inequality for finite sums gives

1/q
(Z ||V||(I{ K- )) < (MN)(I/q) (1/r) (Z ”V”L - )>
i,j

L]

C.\ @D/ i
ol r
(%) (i)

L]

1/r

Finally, when r = oo, we have that

1/q C, 2/q
(Ea) =(8) mpics,

It remains to combine (2.124) with one of the three inequalities corresponding to
r<gq,q <r < oo and r = oo respectively to complete the proof. O

Lemma 2.37 Suppose that {§h} is a family of quasi-uniform Cartesian-product
meshes, and let Sg be the linear space of continuous piecewise bilinear polynomials

L. R —h . .
defined on the partition of 2 induced by §2° that vanish on I'". Then, there exists a
positive constant C, independent of the discretization parameter h, such that,

IVIlLo@) < Clloghl?IVV L2 VYV eSE.
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Proof By Sobolev’s embedding theorem on a Lipschitz domain D C R",

—1 _ o
oy " VPVl ) Vv e WD),

1/n+1/p—1
Ivliz,m) < q(?)

where ¢ =np/(n + p), and w, :=27"/%/I"(n/2) is the surface area of the unit ball
in R" (see inequality (2.3.21) in Maz’ya [136]). Specifically, by taking n = 2 and
D= %2,

2 1/2+1/p—1 3
) 2PVl ) Yve W) (),

q
lvllL, @) < CQ<?

with g =2p/(2 4 p). Also, by the previous lemma,
IVIiLw@) < CR 2P| VI, @)
and, by an analogous argument to that in the proof of the previous lemma,

IVViL, @) < Ch™M 024DV VL, @),

for all V in Sg. Setting p = |logh|(> 1), for sufficiently small /&, and combining
the last three inequalities, we obtain the required result. 0

—h, . . . . .
Theorem 2.38 Suppose that {2} is a family of quasi-uniform Cartesian-product
meshes, i.e. there exists a positive constant C,, such that

h =max(h;, k;) < C,min(h;, k;),
i,] LJ

and letu € Wy (2) N W) (£2),1/2 <5 < 2. Then,
lu = Ulloo.n < Ch*[loghlJul 1 g

where C = C(s) is a positive constant depending on C,, but independent of u and
the discretization parameter h.

Proof Let I" : Wzl([z) NC(R) -~ Sg denote the interpolation projector onto 86’
defined by (I"u)(x;, y;) = u(xi, y;) for all (x;, y;) € $2". Then,
e = Ulloon = |1"u = Ul )y = 1" = U] o

Thanks to Lemma 2.37,

IVilLw@) < Cloghl [V @) YV €S5.
Also, the equivalence of the norms | - ||W21 @) and || - ||W21 (2 ON S,y implies that

IVIiwi@) = ClVIwign YV esh.



2.4 Convergence Analysis on Nonuniform Meshes 167

Hence,
lu = Ulloon < Clloghl'2(lu = Ullyy g
and therefore Theorem 2.35 yields

lu = Ulloo,n < Ch* [oghl'Jutl i1 - 0

In the next section we extend the error analysis developed here to a more general
class of schemes.

2.4.2 An Alternative Scheme

Hitherto it was assumed that the trial space S” in the finite volume method (which
was subsequently rewritten as a finite difference scheme) consisted of continu-
ous piecewise bilinear functions on the rectangular partition of §2 induced by the

Cartesian-product mesh " One can construct an alternative method, based on
continuous piecewise linear trial functions on triangles; to this end, we consider a
triangulation of £2 obtained from the original rectangular partition by subdividing
each rectangle into two triangles by the diagonal of positive slope. Let S” denote
the set of all continuous piecewise linear functions on this triangulation, and let Sé’
be the subset of S” consisting of all those functions that vanish on I".

Similarly to (2.108), we define the finite volume approximation of u as U € Sg
satisfying

1 oU 1
- o = wx, K L yj) for (x oy e’ (2125
ﬁikj /3[(1.1, ov s hik./’ (le * f)(xz y,) or (x; yj) e ( )

This scheme resembles the finite volume method (2.108). Indeed, a simple calcula-
tion reveals that (2.125) can be rewritten as the finite difference scheme

—(DyD; +DfD;)U=T,'f ing" (2.126)
U=0 onl™ (2.127)

In fact, both (2.111), (2.112) and (2.126), (2.127) can be embedded in the following
one-parameter family of finite difference schemes:

—(DF Dy + DDy ) U =T f in 2", (2.128)
U=0 onl™, (2.129)
where 6 € [0, 1], and

1

" [0hiUi—1,j + (1 = 20)A;Uij + 0hiv1 Uiy ).
1

1lU;; =
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with /,Li defined analogously. The scheme (2.111), (2.112) (resp. (2.126), (2.127))
is obtained from (2.128), (2.129) with 6 = 1/8 (resp. 8 = 0). The rest of this section
is devoted to the analysis of the one-parameter family of schemes (2.126), (2.127).

By proceeding similarly as in the proofs of Lemmas 2.31, 2.32 and Theo-
rems 2.33 and 2.34 we arrive at the following set of results, whose proofs have
been omitted for the sake of brevity.

Lemma 2.39 Suppose that V is a mesh-function defined on ﬁh, and let 6 €
[0, 1/4).

(@) IfV=0on Fxh, then
(V. V], = A =40V, g
®) IfV=0on F;‘, then

LSV V], = A =40V, o

Theorem 2.40 Let L"V = —(D;FD;/L(; + D;LD; ,uf)C)V, and suppose that 6 €
[0, 1/4). Then,

3 h
||V||W21(.Qh) = 2(1 — 46) ”L V” Wz_'(.Qh)’
for any mesh-function V defined on Eh and such that V. =0 on I'".

Theorem 2.41 Suppose that 6 € [0, 1/4). For any f € W;(£2),s > —1/2, (2.128),
(2.129) has a unique solution U. Moreover,

3
1wy @ny = m” T, [ wy(2hy

The central result of this section is the following error bound for the finite differ-
ence scheme (2.128), (2.129).

Theorem 2.42 Suppose that u € W23(.Q) N Wzl (82), and let 6 € [0, 1/4). Then,
2
Il — U||W21(Qh) <Ch |M|W23(_Q)7

where h =max; j(h;, k;) and C = C(0) is a positive constant independent of u and
the discretization parameters.

Proof Let us define the global error as e := u — U. We then have that
— (D Dy 1 + DY Dy uf)e = D + D nf  in 2", (2.130)
e=0 onrIh, (2.131)
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where
and

as in the proof of Theorem 2.35, and
(€ij :=h; Dy DY Dy uij,  (Q2)ij :=k; Dy D Dy uj.

By applying Theorem 2.40 to (2.130), (2.131) we then deduce that

3
lellwym = m”DH?ﬁLDW w1 o

Consequently,

3
nw4wwmthTjﬁgmmhm@+Mﬁ@@w

3|1 —86]

Eﬁj@mmm@ﬁwmmmg (2.132)

The first two terms on the right-hand side have already been bounded in the proof
of Theorem 2.35; we showed there that

T <w<” u ) (2.133)
milg oh — .
o 0xlwee) 19X w3
and
ou ou
Im2ll,n <Ch? . P (2.134)
’ Yiwy? @) Ylw}o @)

It therefore remains to bound the norms of {1 and ¢,. We observe in passing that
for 6 = 1/8 the terms involving ¢; and ¢ are absent from (2.132).
To this end, let ¢; (x) (resp. ¥;(y)) denote the standard continuous piecewise

linear finite element basis function on §ﬁ (resp. 5?) such that ¢; (xx) = §;x (resp.
¥ (k) =8k); (£1)ij and (&2);; can then be rewritten as

Yji+1
CDij = ’hk f f wj(y)a oy 2(x y)dxdy,
Yj

1 Xi+1 ’3
(02)ij = ]hk f - ¢z( ) (x7y)dXdy-
Xi—1 Vj
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Clearly,
110 Ly cop < CHY| 22 2.135)
LI, = o .
2( x) ax WSZ(Q)
and
5| 0u
1621l L,y = Ch™| == . (2.136)
: 90y lw2oq)
Inserting (2.133)—(2.136) in (2.132) we obtain the desired error bound. O

On a quasi-uniform mesh the scheme (2.128), (2.129) can be shown to be (al-
most) optimally accurate in the discrete maximum norm | - ||, for any 6 €
[0, 1/4), by proceeding analogously as in the case of 6 = 1/8.

Theorem 2.43 Suppose that {ﬁh} is a family of quasi-uniform meshes, 0 €
[0, 1/4), and let u € W3 (2) N W, (£2). Then,

= Ulloo < C@)R*1ogh|'2July3 ).

The proof of this result is analogous to that of Theorem 2.38.

2.4.3 The Rotated Discrete Laplacian

In the previous section we considered the analysis of a one-parameter family of
finite difference schemes, parametrized by 8. For 8 € [0, 1/4) we showed there that
the scheme is stable and we proved optimal-order error bounds in various norms.
A natural question is: what happens when 0 = 1/4? This section is devoted to the
analysis of the resulting discretization.

Let us consider the finite difference scheme (2.128), (2.129), with § = 1/4. For
the sake of notational simplicity we define

R 1
fxVij = 4_h(hi Vie1,j +2hi Vij + hit1Vigr ),
1
and fi, is defined analogously. In fact, by introducing
1
Ve Vij = E(Vij +Vio1,))
we can write

R 1
MxVij = ﬁ(hivxvij +hi+1VxVi+1,j)~
i
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Analogously, by letting
vy Vij = %(Vij +Viji-1)
we have that
ayVij = %j(kjvyvij +kjrvy Vi ).

In terms of this new notation, for 6§ = 1/4 the finite difference scheme (2.128),
(2.129) can be rewritten as follows:

—(DFD; iy + DY Dy ) U =T, f in 2", (2.137)
U=0 onl™. (2.138)

In particular, on a uniform mesh of size #, the resulting five-point finite difference
operator is given by

1
_W(Ui—l,j—l +Ui-1,j+1 + Uit1,j-1 + Uit1,j+1 — 4Uij)

and is usually referred to as the rotated discrete Laplace operator.

We begin by showing that the scheme (2.137), (2.138) is stable. A preliminary
result in this direction stated in the next lemma concerns the averaging operators
/l.)C7 Vx, lly and Vy~
Lemma 2.44 Suppose that V is a function defined on the mesh 2.

(@ IfVoj =Vmj=0for j=1,..., N, then

M N
(V. VI =Y hikjlve Vil
i=1 j=1

®) If Vio=Viy=0fori=1,..., M, then

M N
(AyV. V1= D hikjlvy Vil

i=1 j=1
Proof We shall prove (a); the proof of (b) is completely analogous. By noting the
definition of [, we have that

M-1 N
R 1
(1 V, V], = 1 Z ij[hi+1Vi+1,j + Vij(hig1 + hi) + ki Vie1,j] Vi

LN M-l M
ZZij|: (hi+l+hi)vi§+zzhivijvi—l,ji|

i=1 i=1
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(M~
=1 DN hikj(Vij + Vicr )
i=1j=1
and that completes the proof of (a). g
Lemma 2.45 Let L'V := —(D}f Dy i, + D} D} i)V . Then,
M N

(L"V. V), =33 hikj(|vy D5 Vi[> + [ D5 Vi )
i=1 j=1

for any mesh-function V defined on o such that V.=0on I'".

Proof This identity is a straightforward consequence of Lemma 2.44 by observing
that

(L"V.V), = (D5 ayV. Dy V] + (D V. Dy V]

y
= (AyDy V. D V], + (xDyV, Dy V],

where the first equality follows by summation by parts and the second by noting that
Dy commutes with fty and D7 commutes with [y . O

We deduce from Lemma 2.45 that

M N
> 2 hiki([oy D Vi |+ [ue D5 Vi [) = (LY. V),
i=1 j=1

for any function V defined on 2" such that V =0 on I'". Therefore, by applying
the Cauchy—Schwarz inequality on the right-hand side, noting that

1
Vij = veVij + Shi D Vij., (2.139)
and letting
Wij :==hiD Vij,
we deduce that, for any such mesh-function V,

M N ) 2
DD hikj(Jvy D Vi |+ v D5 Vi)
i=1 j=1

1
S HLhVHLz(Qh)(”va”LZ(Qh) + §||W||L2(Qh)) (2140)
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Now to complete the stability analysis of the finite difference scheme (2.137),
(2.138) it remains to relate the two norms in the brackets on the right-hand side
of (2.140) to the expression on the left. To do so, we state and prove two lemmas.

—h, . . . . .
Lemma 2.46 Suppose that {$2'} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C, such that

h =max(h;, k;) < C,min(h;, k;).
ij ij
Let V be a function defined on o such that V=0 on I'"; then,
M N 1/2
— 12
v VllLyan < 5 (1 +C )‘”(ZZhikj!vny Vij] ) :
i=1 j=1

Proof Let Z;; = v, V;j; then, because Z;o =0fori =1, ..., M, we have that

|Zij|* = (Z;knpyzm)z
<Xj: )(Zk D} Zin | )<Zk D} Zin|

fori=1,...,M—1and j=1,..., N. Hence,

1j
1Z113,ony < D D hikn| Dy Zin
1 n=1

S

. 1=j=N.

i
Similarly, since Z;y =0fori =1,..., M, we also have that

5 M—-1 N . I,
1ZIIZ om < D Y hikn| Dy Zin

i=1 n=j+1

) OSjSN_l'

By adding the last two inequalities we deduce that
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Since h; < %hi(l + C,) it follows that

2

s

M-1 N
Zhikj|VxD;Vij
i=1 j=1

1
2
”‘)XV”Lz(Qh) S Z(l + C*)

and hence, by increasing the right-hand side of this inequality further by extending
the upper limit of the sum over i from M — 1 to M, we obtain the desired inequal-
ity. U

Our next result is concerned with bounding W;; :=h; D" V;;.

—h, . . . . .
Lemma 2.47 Suppose that {2} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C,. such that

h =max(h;, k;) < C,min(h;, k;).
i,j L]

Let V be a function defined on ﬁh such that V. =0 on I'" and let Wij =hiD_ Vij;
then,

M N ) 1/2
Wl < 2C*<Zzhikj|vny_Vij| ) :
i=1 j=1

Proof By noting that W;o =0 fori =1,..., M, we have that

J
Wij =Y (=T Wiy + Wino1)

n=1
fori=1,...,Mand j=1,..., N. Therefore,

J N
. . _ 2
(Wijl> <4 ) vy Winl> <4 ) vy Dy Via|™.
n=1 n=1
As h? < hh; and h; < Cyuky, for all i € {1,...,M} and all n € {1,..., N}, and
hZ;V:] j%kj < Nh < C,, we deduce that

2

’

M N
IWIL,qny S4CED 0D hikn|vy D Vi

i=1n=1

and hence the desired inequality upon renaming the index n into j. g
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By combining (2.139), (2.140) and Lemmas 2.46 and 2.47, we deduce that

M N ) 5
DD hikj(|vy Dy Vi |" o+ [ve D5 Vi)
i=1 j=1

M N 5 ) 1/2
sc||than(m)(Zzhik,»qunxvi,»r e >) .
i=1 j=1

This yields the inequality

M N 172
(Zzhikj(|vyD;Wj|2 + IVny‘Vijlz)> =CILV ]y 2141)
i=1 j=I

and thereby the difference scheme is stable in the discrete W21 norm defined by the
left-hand side of this inequality.

Remark 2.11 We note that stability has been proved in a weaker sense here, for
6 = 1/4, than in the previous section for 8 € [0, 1/4). Indeed, for 6 € [0, 1/4) we
deduce from Theorem 2.40 the stronger bound

M N 172
[Zzhikj(“)x_ Vi/’|2 + |Dv_ Vi./‘|2)i| = C(9)|| LhV” wyle2hy (2.142)
i=1 j=I

whose left-hand side is an upper bound on the left-hand side of (2.141).

Worse still, the stability of the scheme (2.137), (2.138) is not robust, in the
sense that when the homogeneous Dirichlet boundary condition is replaced by 1-
periodic boundary conditions in the two co-ordinate directions, on a uniform mesh
with spacing h = 1/(2M), M > 1, the resulting difference scheme is ill-posed for
any l-periodic f. To see this, first take f = 0 and note that, in addition to the
trivial constant solution (which is, incidentally, also a solution to the boundary-
value problem), the difference scheme has the oscillatory chequer-board-like solu-
tion Ui*j = (—=1)'*/. Thus if U is a solution of the difference scheme with f # 0
subject to 1-periodic boundary conditions in the two co-ordinate directions, then
U + aU* is also a solution, for any real number «. In other words, the solution is
not unique. In fact, the finite difference scheme (2.137), corresponding to the choice
of 0 = 1/4 in (2.128), with 1-periodic boundary condition, has infinitely many so-
lutions for any f. This is consistent with the fact that, with a 1-periodic boundary
condition, the expression appearing on the left-hand side of (2.142) has a nontriv-
ial kernel in the set of mesh-functions defined on a uniform mesh with spacing
h=1/(2M), M > 1, and is therefore only a seminorm in that case rather than a
norm; and it is also consistent with the fact that, with 6 € [0, 1/4), the stability con-
stant C(0) of the scheme (2.128), (2.129) in the discrete W21 (£2") norm, appearing
in (2.142), tends to +o0 as § — 1/4 — 0.
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2.5 Convergence Analysis in L, Norms

Hitherto, with the exception of various error bounds in the discrete maximum norm,
we have been concerned with the error analysis of finite difference schemes in mesh-
dependent analogues of Hilbertian Sobolev norms, i.e. discrete Sobolev norms that
are induced by inner products.

In this section we develop a framework for the error analysis of finite difference
schemes in mesh-dependent versions of the Sobolev and Bessel-potential norms W,
and H, respectively. For the sake of simplicity, we shall confine ourselves to finite
difference approximations of the homogeneous Dirichlet boundary-value problem
for Poisson’s equation on an open square §2, assuming that the weak solution of
the boundary-value problem belongs to Wg(.Q), 0<s<4,1< p < oo. We shall
make extensive use of the theory of discrete Fourier multipliers to investigate the
stability of the difference schemes considered, in conjunction with the Bramble—
Hilbert lemma in fractional-order Sobolev spaces to derive error bounds of optimal
order. The presentation in this section is based on the following sources: the journal
papers by Mokin [140] and Siili, Jovanovié, Ivanovi¢ [173] and the monograph of
Samarskii, Lazarov and Makarov [160].

2.5.1 Discrete Fourier Multipliers

In previous sections we relied on the use of energy estimates based on Hilbert space
techniques to show the stability of the finite difference schemes considered. In order
to extend these stability results to L, norms, p # 2, we require a new tool — discrete
Fourier multipliers. To this end, we shall state and prove below a discrete counter-
part of the Marcinkiewicz multiplier theorem. First, however, we shall introduce the
notion of discrete Fourier transform.

Suppose that N is a positive integer and 7 = 7/ N. We consider the mesh

Ry =hZ" = {xeR" :x =hk, keZ”}
and the set of all 277 -periodic mesh-functions defined on Rj. We let
I'={-N+1,...,-1,0,..., N}

Then, any 27 -periodic function V defined on R} is completely determined by its
values on the ‘basic cell’

o =hI":= |hk  k eI"}.

h

With each mesh-function V defined on " we associate its discrete Fourier trans-

form FV given by

(FV)(k) :=h" Z V(x)e ™k kel (2.143)

xewh
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In order to distinguish the discrete Fourier transform from its integral counterpart
F defined in Chap. 1 we have used the calligraphic letter F here instead of F.
Clearly, FV is a 2N-periodic function of its variables ki, ..., k;,, and 2N is the
minimum period; thus it suffices to consider FV on the basic cell I”. Hence our
choice of k € I"* in (2.143).

For x € " the following discrete Fourier inversion formula holds:

Z(}'V)(k)e”‘ k (2.144)

kel

Indeed, substituting (2.143) into the right-hand side of (2.144), we have that

Z 1x-k Z th(y)efzvk (21),, Z th(y) Zel(xf}')k.

kel yewh vea)h kel

(271 )"

However, for any x, y € »” we have that

otherwise,

Zel(x y)>k _ {(ZN) ifx:y,

kel

and hence (2.144), by noting that /" 2N)" = (27 )".
We can write (2.144) as V = F~! FV where, for a sequence a = {a(k)}rer, the
inverse discrete Fourier transform F~'a of a is defined by

Z (ke *,  x el

kel?

_1 .
(]: a)(x). (2 T

Assuming that V is a function defined on the mesh w”, we consider the trigono-
metric polynomial Ty given by

Ty(x) = Z(]—"V)(k)e”"k, x € (—m,m]". (2.145)

kel

1
2m)"
According to the discrete Fourier inversion formula,
Ty(x)=V(x) Vxeol;

in other words, Ty interpolates V over the mesh o”.

Next we introduce the space L p(a)h), 1 < p < 00, consisting all mesh-functions
V defined on w” such that, for some constant M, independent of the discretization
parameter 4,

1/p
Wl = (1 L lveol”) < u

xewh
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The following lemma establishes a useful relationship between the L, norm of
a mesh-function V defined on " and the L p norm of the associated trigonometric
interpolant 7y on w =T" := (—m, )".

Lemma 2.48 Suppose that V € Lp(a)h), 1 <p<oo,andlet w= (—m,n)". Then,
IVIIL, @ < A+ 1 TvIIL,@)-

Proof Let us suppose for simplicity that n = 1; for n > 1 the proof follows from the
case of n = 1 by induction over n. We shall first show that there exists a real number
&p in the interval (—#, 0) such that

1/p
1TV, = (h Z |Ty (x + §O)|p) , (2.1406)
xeowh

where now @ = (-, 7) and " = hl.
Indeed,

Xk

- N
||Tv||§p(w)=/ Ty )[Pde=) | Ty (x0)]” dx
- k=—N+1" k=1

N h
= Z /(;|Tv(y+xk—1)|pdy

k=—N+1
h
:/ Z|Ty(xk+y—h)|pdy.
0 er

Now the integrand is a continuous function of y on [0, 2]; therefore, by the integral
mean-value theorem, there exists a & in (0, &) such that

h
[ Ity =l dy = |ttt € -]

kel kel

Letting & := £ — h and noting that k € I if, and only if, x = x; € " = hl, we
deduce (2.146).
Now consider

1/p

1/p
D::‘(hZ|V(x)|p) —<hZ|Tv(x+Eo)|p> ‘

xeoh xeawh
We shall prove that

D <h||Ty, (2.147)

”Lp(w)'
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This follows by noting that V (x) = Ty (x) for x in o", and observing that by the

reverse triangle inequality, the Newton—Leibniz formula and Holder’s inequality we
have that

xewh

1/p
D< <Z h| Ty (x) = Ty (x + &)|” )

pN\ U/p
( Ty (1) dt )
xewh x+$0

P\ 1/p

< < \T(,(z)\dr) )

xe wh

1 x / p e /
<(Zmr [ mola) " =mnl, .,

x—
xeowh

IA

Now using (2.146) and (2.147) we deduce that

1/p
VL, @ = 1VIlL,wh = (h Do lrvix +so)|1’) + 1Tl @)

xewh

<D+ IITvL,w)

<h|Ty ”Lp(w) + 1TV L, (-

We bound the first term on the right-hand side further by applying Bernstein’s in-
equality to the trigonometric polynomial Ty of degree N (see, Nikol’skii [144],
p. 115):

17010 < NITVIL @)

and noting that AN = 7. Hence the required result for n = 1. g

After this brief preparation, we are now ready to discuss a discrete counterpart of
the Marcinkiewicz multiplier theorem, Theorem 1.75, due to Mokin [140] (see also
Samarskii, Lazarov, Makarov [160]), which will be our main tool in the stability
analysis of finite difference schemes in discrete L, norms. In order to state it, we
require the notion of fotal variation. For a 2N -periodic function a defined on Z",
the total variation of a over 1" is defined by

o

var(a) ;= sup Z|A°‘a(v)|.

ke 0;&016{0 1y
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Here A% := A'fl .-+ Ay", as in Theorem 1.75, and, for « € {0, 1}*, we have used the
multi-index notation

o o a,
v v Vn

where now, in contrast with the notational convention in Theorem 1.75,

aj 1 P —
Z ) maX, kit oM such thatvyer 1% =0,
vj vy=£2%7171 225511 such that v el ifa;=1.

In order to distinguish the total variation of a 2/N-periodic function over I" de-
fined here from total variation of a function on Z”" (as in the statement of the
Marcinkiewicz multiplier theorem, Theorem 1.75, stated in the previous chapter),
we have used the symbol ‘var’ here instead of our earlier notation ‘Var’. The set of
k € Z" for which the index set of ) 5 is nonempty is finite. Therefore, ‘sup’ in the
definition of var(a) can be replaced with ‘max’.

Theorem 2.49 (Discrete Marcinkiewicz Multiplier Theorem) Let a be a 2N-
periodic function defined on 7", and suppose that one of the following two con-
ditions holds:

(a) a is a bounded function on I with bounded variation; i.e. there exists a constant
My such that

?%X|a(k)| <My, var(a) =< Mo;
e n

(b) a can be extended to a function, still denoted by a, which is defined and contin-
uous on [—N + 1, NI", with 0%a € C([—N + 1, N]*\ 1") for every multi-index
a € {0, 1}, and such that £0%a (&) is bounded for every o € {0, 1}*; i.e. there
exists a constant My such that

max sup ‘E“8“a(§)| < M.
ae{0,1}" E€[—N+1,N]"\I"

Then, a is a discrete Fourier multiplier on Lp(a)h), 1 < p < o0; that is,

|7 @FV) oy < CIV Iy

forall Vin L p(wh), where C = C, My and C, is a positive constant, independent
ofa,hand V.

A simple sufficient condition for var(a) < My in part (a) of this theorem is that
vary(a) < My, where var,(a) is defined analogously to var(a), except that Z?f,j is
defined as max,,;er when «; =0 and as Zvjeﬂ when oj = 1. As there is then no

dependence on the diadic sets (£ —1),..., £kl — 1)}, the symbol sup; 7
can be omitted from the definition of var,(a).
The proof of the theorem relies on the following result.
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Lemma 2.50 Let w =T" := (—m, 7)".

1. Suppose that a(k) satisfies the hypotheses in part (a) of Theorem 2.49. Then, the
sequence {a(k)}rezn defined by

~ o\ Jak) forkel,
ak) = { 0 otherwise,

is a Fourier multiplier on L ,(w), 1 < p < 00.
2. Consider the sequence {15(k)}kezn defined by E(k) =bky)---b(ky), with

1 ifm=0,
bm) = { oS ifm €T\ {0},
/2 otherwise.

Then, {b(k)}rez» is a Fourier multiplier on L ,(w), 1 < p < 00.
3. The sequence {Zt(k)g(k)}kezn is a Fourier multiplier on L, (w), 1 < p < o0.

Proof The proof of this lemma is straightforward and proceeds as follows.
1. The stated result is obtained by noting that

sup |a (k)| = max|a(k)| < Mo,
keZn kel

and

Var(a) < max{inz]llnx|a(k) ,var(a)} < My=: My(a),

and by applying Theorem 1.75 to the sequence a = {a (k) }xez -
2. The result is proved by noting that

~ T n
sup |b(k)| < <5) :
keZn

and
2

Var(b) < (%) =: Mo(D),

and applying Theorem 1.75 to the sequence b = {b(k)}xezs .
3. The stated result follows by observing that

sup [a(k)B(k)| < (%) max|a(k)| < Mo(@) Mo(b),
keZn kel”

and
Var(ab) < 2" Mo(a)My(b) = 7" Mo(a) =: My(ab),
and applying Theorem 1.75 to the sequence ab = {a(k)b(k)Yrezn. O
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We are now ready to prove Theorem 2.49.

Proof of Theorem 2.49 (a) Let us suppose that u is defined on ", and consider its
piecewise constant extension w to R”, defined as follows:

w(x) o u(y)’ for ||x_y||00<h/27 ye]Ins
" | 2z -periodically extended to R”,
where || - || denotes the norm on R" defined by ||x||o := max|<;<, |x;|. Clearly,
Iwllz, @ = luly, @y, ©=T":= (= m)".

Furthermore, with the same notational conventions as in Sect. 1.9.5.1, w has the
Fourier series expansion

w(x)

ijMEWK x€w,

(271’)" keZl

with Fourier coefficients

oo Z./ wx)e ™ dy = k)" Y u(x)e™,
¢ xeawh
where ¢(k) = c(ky) - - - c(ky) and

o 1 ifm =0,
clm) = i .
2%%2 it meZ\{0}.

By noting from Lemma 2.50, part (2), that ¢(k) = 1/b(k) for k € I and therefore
c(k) = 1/b(k) for k € 1", we have that

1
w(k) =ck)(Fu) (k) = — (Fu)(k) forkel".
b(k)
Now, the trigonometric polynomial of degree N defined by

Ty : x ew—>

1 1x-k n
G Y al)(Fuwyke™,  xe(—m x]",
kel
is the trigonometric interpolant of the mesh-function V := F~!(aFu) defined
on w". Therefore, by Lemma 2.48, we have that

||]:_l(“]:”)”Lp(wh) = +n)

Ly(w)

=1+

1 ~
@y Z a(k)b(k)w (k)e~*

kel

Lp(a))
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=+ > atk)bkyd (ke ™*

kezZ

@m)" Lp@)

~ T ANV
= (14 n)"| @bw) ”Lp(w)'
Here ~ and -¥ denote the Fourier transform of a periodic distribution and its inverse
transform, defined in Sect. 1.9.5. Finally, by recalling from Lemma 2.50, part (3),
that the sequence {a(k)b(k)}xez» is a Fourier multiplier on L ,(w) it follows that
|7 @Fw] oy = (1 +1)"CpMo@b) [wllL, )
= (14+m)"C,Mo(ab) ||Lt||Lp(wh),

where C), is as in Theorem 1.75 and My(ab) = 72" Mo(a), as in the proof of
Lemma 2.50. Thus we have shown that

|77 @l = €Ml

where C; = (1 + )"z %" C, is a positive constant and Mo = Mo(a) is the constant
from the statement of the theorem.

(b) This is a direct consequence of part (a), using the mean-value theorem in
those variables x; for which «; = 1 for a certain « € {0, 1}". O

We shall now prove the converse of the inequality stated in Lemma 2.48, which
will be required in our subsequent considerations.

Lemma 2.51 Suppose that V is a mesh-function defined on ", and let Ty be its
trigonometric interpolant defined by (2.145). Then, for 1 < p < 0o, there exists a
positive constant C, independent of h and V , such that

ITvIIL, @ < CpllVIIL, @h)-
Proof We shall prove this result in one dimension (n = 1); the case of n > 1 is

dealt with by induction over n, starting from n = 1. In the proof of Lemma 2.48 we
showed that there exists a &y in the interval (—hg, 0) such that

1/p
”TV”L,,(a)) = <h Z |Tv(x + $0)|p> = ” Ty (- + &) HLp(wh)

xewh

Z(Iv)(k)elkaZSOk

kel

. (2.148)
L, ()
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Next we shall prove that the sequence {A(k)}xer, with A(k) := e'50k s a discrete
Fourier multiplier on L p(a)h). First, note that |e'50X| = 1; furthermore,

N N
Z |elfok _ eléo(k*1)| — Z |1 . efzéo|
k=—N-+1 k=—N-+1

<2N|&| <2Nh =2m.

Hence, var(A) < 2m and, by Theorem 2.49, {1 (k)}kr is a discrete Fourier multiplier
on L ,(w"). Thanks to (2.148) we then have that

—1
1TVl = | F T CFVI iy = 27ClIV Il oy

where C), is a positive constant, and hence the required result (with the constant
27 C), relabelled as C),). U

After this interlude on discrete Fourier multipliers, we are ready to embark on
the error analysis of finite difference approximations to our elliptic model problem
in discrete L, spaces.

2.5.2 The Model Problem and Its Approximation

Suppose that £2 = (0, 7)2. For few, ! (£2), we consider the homogeneous Dirich-
let boundary-value problem

—Au=f in$2, (2.149)

u=0 onl =0%2. (2.150)

Throughout the section we shall suppose that the unique weak solution u € Wzl (£2)
of (2.149), (2.150) belongs to W;(.Q) for some s > 0 and p € (1, oo) (other than
s =1and p =2, of course).

For a nonnegative integer N > 2 let h := /N, and define the meshes:

= {(i yj):xi=ih, yj=jh, 1 <i, j <N -1},
o= {Gi,yj)ixi=ih, yj=jh, 0<i, j <N},
r=ao"\ "
In addition to these, we shall also require the following meshes:
r=rrn({o,z} x 0, 7)),
r=r"n(©.m7) x {0, }),
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r'=rhn(in) x 0,7)U (0, 7) x {7}),
Qh.=e"urp,

el.=ehu(rinrp,
Ql="u(rinrp).

As before, we approximate the Laplace operator A = 8‘1—22 + % by

DI D; + D} D;.

Since f has not been assumed to be a continuous function on £2, we shall mollify
it before sampling it at the mesh-points. To do so, we shall use the mollifier T¥ =
Th” with v = (v, v2) and h = /N, defined in (1.35); for the sake of notational
simplicity, we shall write ThU] "2, or simply T2, instead of the more cumbersome
(vi,12)

symbol T},
First we shall suppose that the weak solution of the boundary-value problem
(2.149), (2.150) belongs to W[S,(.Q), s >2/p, 1 < p < oo; then, by Sobolev’s em-

bedding theorem, u is almost everywhere on £2 equal to a continuous function on
2, and

0’u -
<Thzoﬁ)(x, V) =D{Diulx,y), (x,yea"

92u _
(rhwg)(x, Y)=DIDju(x.y). (x,y)e"

Therefore,
— 702 — 720 22

—(DIDI T+ DDy T )u =T on 2", (2.151)
u=0 onl™" (2.152)

This identity motivates us to consider the difference scheme

- - 22

—(DID; + Dy D) U =T f on Q" (2.153)
U=0 onl™. (2.154)

The rest of this section is devoted to the error analysis of the finite difference scheme
(2.153), (2.154). First we introduce the natural discrete analogues of the L, spaces
on 2"

A function V defined on £2” (or on 2" and equal to zero on I'"") is said to belong
to L, (.Qh), 1 < p < 00, if there exists a positive constant M, independent of &, such
that

1/p
||V||Lp(9h);=<h2 > |V(x,y)|”) <M.

(x,y)efh
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If V is defined on .Q_’f_ (or on §h and equal to zero on "\ Ff_‘), the norm || - ||Lp(9h)
is replaced by

1/p
||V||L],(Q¢):=<h2 > |V(x,y)|">

h
(@.y)e2h

. h h
For mesh-functions defined on £2;! and Qy the norms || - ”LP(QQ) and || - ||Lp(9§,) are

defined analogously.
The discrete analogues of the Sobolev norms Wlﬁ (£2) and WI%(.Q) are defined,
respectively, by

IVilwcn = (VI H(2h) +|V|W'(9"))l/p’
where
Viwyen = (|27 V] (m)+HD V”Lp(szh))l/p;
and
IVilwzcen = (”V”w'(m) |V|W2(9"))l/p’
where

Viwaen = (1D DI VI @iy + IDX DV on)

+ 1/p

+[ D7DV o)
Let us recall the notion of discrete Fourier transform from the previous section.
However, as we are now working on (0, 7)? rather than (—, )2 and the functions
we shall be dealing with will satisfy a homogeneous Dirichlet boundary condition

rather then a periodic boundary condition, some adjustments have to be made before
the techniques developed in the previous section can be applied.

Suppose that V' is defined on 2" (or on 2" and equal to zero on I'"). We shall
consider the odd extension V of the mesh-function V' to the mesh

" =h? ={(x;, ;) :xi =ih,y; = jh, i, j==N+1,...,N}
contained in (—, 7]%. Thus
V(—x,y):—f/(x,y) and V(x,—y):—f/(x,y) for all (x, y) in £2".

After such an extension, V is further extended 27 -periodically in each co-ordinate
direction to the whole of 2Z2. Let us note that

VL, @y =421V L, (2.155)



2.5 Convergence Analysis in L, Norms 187

Lemma 2.52 Let us suppose that V is defined on 2" (or on o" and equal to zero
on Fh), and consider its odd extension V. The discrete Fourier transform FV has
the following properties:

1. Forany k = (k1, ko) € I,

N—-1N-1

FV (ki ko) = —4h> Y >~ V(xi, yj) sin(kixi) sin(kay,);
i=1 j=1

2. FVisan odd function on 12; that is,
FV(—ki, ko) =—FV(ki, ko) and FV(ki,—kz) =—FV(ki, ko)

forall k = (ky, ko) € I2. Also, FV(0, ky) = FV (k,0) = FV(0,0) =0;
3. For1 <i,j<N -1,

N=1N-1
1 -~ . .
V(xi,Yj)Z—;E E FV (ki, ko) sin(kix;) sin(kay;).
ki=1ky=1

The proof of this result is elementary and is left to the reader.

Lemma 2.52 implies that the values of FV on I2? are completely determined
by the values of V on £2”; conversely, V can be completely characterized on £2”
(and V on a)h) by the values .7-"\7(k1, k2), ki, ko =1,..., N — 1. Consequently, it is
meaningful to consider the discrete Fourier sine-transform F5V of a mesh-function
V defined on £2" (or on §h and equal to zero on I'"). Indeed, we let

1 ~
ngZ:—Z.FV,

a~nd, for a function W defined on the set {(i, j) : 1 <i, j < N — 1} with odd extension
W to 12, we put

Fo W= —4Fw.

(e

Thus,
N—1N-1
FoViki ko) =h> Y "> " V(xi, yj)sin(kix;) sin(kay,))
i=1 j=1
and
) 2 N—1 N-1
FoWx,y) = <;> kzlkzl W (k1, ka) sin(k; x) sin(k2y).
1=lky=

In order to derive error bounds for the finite difference scheme under considera-
tion we shall need the following stability result.
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Lemma 2.53 Suppose that n1 and 1y are two functions defined on " that vanish
on I'". Further, let e be the solution to the problem

—(DiD; +DyDy)e=DIDym + DDy in 2", (2.156)
e=0 onl™". (2.157)
Then, for any p € (1, 00),
lellz,@m =< Cp(lm Iz, c2m + ||T)2||Lp(gh)), (2.158)
|@|WP1(:2") = Cp(” Dy m ”Lp(.og) + H D;’UHLP(Q;?))v (2.159)

|e|W,2,(!2h) = CP(” DY Dy H L2 + ” D;Dy_”z ”Lp(m))’ (2.160)
where C), is a positive constant, independent of h, e, n1 and 1.

Proof (1) Let us first prove (2.158). As
Fo (D;D;e) = —)\%]—"ae and F, (D;D;e) — —X%}}e,

where

2 . kih 2 . koh
)»1=)»1(k1)1=z51117 and )»2=)»1(k2)2=ESIHT,

with k := (k1, kp), 1 <ky, ko <N — 1, it follows that
e=F, N a1Fom) + F, aaFom),

where

A2 (kp)

-, 1<ki,kh<N-1,1=12
A2(k1) + A3 (k2)

aj(ky, ko) ==

We note that a;(k1, kp) and a(k1, ko) can be defined for all k € 12 \ {0} by letting
ai(—ki, k2) :=a;(k1, k2),
aj(ky, —kz) := ay(ky, k),
aj(—ki, —k2) = a;(ky, k),

forall k = (k1,kp), | <k, kp <N —-1,1=1,2.
Let e, 71 and 72 denote the odd extensions of the mesh-functions e, 51 and 12,
respectively, from 2, to »”. Then,

¢=F @ Fin) + F @Fip).
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The fact that a; and a, are not defined at (0, 0) is of no significance, since

N N
Fin©.00=h> > > dilxi.y) =0 =12,
i=—N+1 j=—N+1

which follows from our assumption that 1;, [ = 1, 2, vanish on I" h, by noting that
7; is the odd extension of ;.
Hence, by the triangle inequality,

~ _1 ~ _1 ~
”e”LP(wh) = ||~F ((11.;7’]1) ||Lp((/_)h) + ”JT'. (aZ-Fr/Z) ||Lp((/_)h)'
Next we show that a; and a; are discrete Fourier multipliers on L p(a)h).
Clearly 0 <a; <1on 2. Further, as ar+a=1,

daj Qa1 )xh txh
— = —ap)— cot —.
oy T TAU e

Thus, noting that |7 cot?| < 1 for |t| < /2, we have that

1
(x, y)’ =5 for(r,ye I2.

8a1

x—t
0x

Similarly, noting again that a; +a; =1,

0 h h
v a1 —ap Lt cot 22
ay 2 2
Therefore,
0 1
oL, y)| <= for (x,y) €,
ay 2
Finally,
9%a; daj \ xh xh
Xy =4(y— )—cot—,
0xdy ay ) 2 2
and so,
82
Xy a (x,y)| <2 for(x,y)e 2.
0xdy

Hence, by Theorem 2.49, a; is a discrete Fourier multiplier on L (w"). By symme-
try, the same is true of a;.
Therefore,

lellz, @wh < Cp (7 Iz, @ + ||ﬁ2||Lp(wh)),
from which (2.158) immediately follows by noting (2.155).



190 2 Elliptic Boundary-Value Problems

(2) As we have seen in part (1),
Fe=aiFm +axFn.
Multiplying this identity by (1 — exp(—tk1h))/h we deduce that
D;é=F a1 F(D; i)+ F ' (b2 F (D5 iia)).
where

1 _ e—lk]h

by(ki, kp) :=az(ky, kz)m'

We have already shown in part (1) that a; and ay are discrete Fourier multipliers
on L E(a)h). Similarly, using Theorem 2.49 we deduce that the same is true of (1 —
e~tkihy /(1 — e~*k2!) and therefore of b>. Hence,

I D;e“Lp(wh) =Cp(| D5 ”Lp(a)") + Dy 2 HLp(wh))’
which yields
I D;eHL,,mg) < Cp(| Dy m ”Lp(.Q)’(') +| Dy ||L,,(.rz;3))~

An identical bound holds for ||Dy_ e|l Ly@h) which, when added to the last inequal-
ity, yields (2.159). “

(3) To prove (2.160), we note, by recalling the definitions of a; and a> from
part (1) of the proof, that

2 2

e = G () + ()
Thus,
+ -z M +p—7 M D7
F(DfDre) = /\%H%F(Dx D i) + /\%H%f(Dy Dy ip2)-
Equivalently,
D+Dé:]-"1</\7%]-"(D+Dﬁ1)> +f1( N f(D*Dﬁz))-
x P Ma3T Mty

As Alz / (A% + A%), I =1, 2, are discrete Fourier multipliers on L (a)h), it follows that
” DrD)c_e||Lp(wh) = Cl’(” D;_Dx_f“ ”Lp(a)h) + ” D;_Dy_f]z ”Lp(a)h))’
which gives

“D;—Dx_e”Lp(Qh) < Cp(| D D m ”L,,(.rzh) +[ D Dy “Lp(m))-
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Identical bounds hold for ||D;_D;€||Lp<gh) and ||D;Dy_e||Lp(_Qi), which, when
added to the last inequality, yield (2.160). g

It is possible to derive bounds analogous to (2.159) and (2.160), but with e mea-
sured in a norm rather than a seminorm. To see this, we need the following prelim-
inary result that relates discrete Sobolev seminorms to the corresponding discrete
Sobolev norms.

Lemma 2.54 Suppose that V is a function defined on the mesh ﬁh such that V =0
on I'". Then, the following bounds hold:

(a) Assuming that 1 < p < o0,
-1 .
IVl @n <27 P71V Iy ony:
(b) There exists a constant C,, independent of V and h, such that

(c) Assuming that 1 < p < o0,

1 1/p

(d) With C,, denoting the constant from part (b),

1 1/p

Proof Part (c) is a direct consequence of (a), while (d) follows by combining (c)
and (b). We note that (c) is a discrete Friedrichs inequality, which generalizes
Lemma 2.19. It remains to prove (a) and (b).

(@) As V. =0on I'", we can write

i
Vij =Y hD; V.
k=1
By Holder’s inequality for finite sums,

i
11
Vij|? < ih)P4> "h|Dy Vij|P.  where > + e 1.
k=1

Multiplying by 42, increasing the upper limit in the sum on the right to N, and
summing through i, j =1,..., N — 1, we get that

N—-1

VI o <hp(zzm)n0 VI

i=1
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Now
N-1 N—-1 _Np/p+l _
Zip/q<1+/ Wl gy =1 4 NV L N+t 2y,
= 1 (r/o)+1  —
and therefore, since Nh = r, we deduce that
p —P
”VHLp(Qh) =< 7Tp|| Dx V”LP(Q;!)‘
Analogously,
p —lP
VI ny 71D VL, iy

By adding the last two inequalities we deduce (a).
(b) Let W := —(D; Dy 4+ D} D;)V. Using the same technique and the same
notation as in the proof of Lemma 2.53, and observing that

(=) )
h A (ki ko) + A3 (k1. ka)

(=) )
h A (ki ko) + A3 (k1. ka)

are discrete Fourier multipliers on L, (@"), we deduce from Theorem 2.49 that

and

”D;V“L,,(.Q;') = CplWliL,an)
and

I D;VHLP(Q?) < CplWliL,2n)-
Hence

Viwien = Zl/pcp”W”Lp(.Qh)’
and therefore, by the triangle inequality,

1 +- +p-

|V|W,}(Q") <2 /pCP(”Dx D, V”L,,(Qh) + ”Dy Dy V”LP(Q"))'

Thus, by noting the inequality a + b < 21_(1/1’)(611’ + bl’)l/l’ fora,b >0,
Viwien =2CpIVIwz@n-

Renaming the constant 2C), into C, then yields the stated inequality. 0

Combining the last two lemmas, we arrive at the following result.
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Lemma 2.55 Suppose that n1 and 1y are two functions defined on " that vanish
on I'". Let further e denote the solution of the problem

—(D}D; + DI D))e=DD;m+D Dy inR2",  (2.161)
e=0 onl™". (2.162)
Then, there exists a positive constant C,, independent of h, such that
lellz,2m < Cp(lnillL,@m +lIm2llL,@n) (2.163)
lellw@n = Cp(|DTm ||Lp(.(2§?) + ||Dy_’72 ”Lp(.(z;?))’ (2.164)

+p- +p-
”e”W,%(!?h) < Cp(|DFDym ”Lp(.Qh) +| DyDym ”LP(Qh))' (2.165)
Now we are ready to state the main result of this section.

Theorem 2.56 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m € {0, 1, 2}. Assuming that u belongs to W,(£2), withm <s,2/p <
s<m+2,1< p < oo, the following error bound holds:

_ s—m ;
lu = Ullwm(@ny = Ch* " lulwy @),
with a positive constant C = C(p,m, s), independent of h.

Proof (a) Let us first suppose that m =2 and s > 2. We define the global error e
on ﬁh by e;j :=u(x;,y;) — Ujj. It follows from (2.151)=(2.154) that e satisfies
(2.161), (2.162) with

771=u—Th02u and nzzu—Thmu.

Now 7 (resp. 1) is defined on the mesh 2" U Fxh (resp. 2" U Fyh) and equal to
Zero on Fxh (resp. Fyh). According to (2.165), in order to obtain the desired error
bound for m = 2, it suffices to estimate || D} D n I, (en and ||D;FD;172||LP(Q;,).
To do so, we define the squares

K?j = (X1, Xi+1) X (}’jfl’yj“)’

K':=(-1,1) x (=1,1),
and consider the affine mapping (x, y) € Kl.oj — (X,Yy) € KO, where
x =x(X):= (i +X)h, y=y@) =0 +Mh.

Let i(x, y) = u(x(X), y(3)). We then have the following equalities:
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(Dij_m)ij
w1, ) = 2ulxi, yj) +ulxi-1, y;)
- e

b u(Xip1,yj +5h) = 2u(xi, y; + $h) + u(xi—1,yj + yh)
- 92(}’) /’l2
-1

dy
= %{ﬁ(l,O) —2i1(0,0) +i(—1,0)

1
—/192@[&(1,9)—2&(0,9>+a<—1,9>]d9},

where 6,(y) =1—[y|, y € (=1, 1). }
Now (Dij_m)ij is a bounded linear functional on W;(KO), s > 2/p, whose

kernel contains P3(K?). According to the Bramble—Hilbert lemma,
‘(D;Dx_nl)ij‘ = Ch_2|ﬁ|wl§(1€0)

for2/p < s < 4. Thus, by changing from the (x, y) to the (x, y) co-ordinate system,
we have that

+ - 2,52
|(Dx Dy 771),-]-| =Ch"h’ /p|M|Wf,(KI-Oj)
for2/p < s <4. Hence,
| DY DT m ||Lp(gh) <CIPlulwy@), 2/p<s<4
Likewise,
I D;Dy_nz ||Lp(9h) < Chs_zlulwg(g), 2/p<s =4,

which, after insertion into (2.165), completes the proof for the case m = 2.
(b) Let m =1 and s > 1. By (2.164) it suffices to bound || D n; ”Lp(f?i’) and

| Dy_ n2|| Ly(s2h)- We proceed in the same way as in part (a) to deduce that

1 1
(D;m)ij = Z{ﬁ(l’ 0) —u(0,0) — / 1 62(M[ua(1, 3) — (0, y)] dy}

is a bounded linear functional on W; (K9, s>2 / p, whose kernel contains P2 (K9).
Therefore,
| DT, on = CP° ulwy), 2/p <s <3,

and, similarly,

I Dy ||Lp(_q¢) < Chs_llulw;(sz), 2/p<s<3.
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Inserting these into (2.164) we obtain the desired error bound for m = 1.
(c) Letm =0and s > 0. We need to estimate |11l ,(er) and [[n2ll ,(on)- Since

1
()i =ﬁ<o,0>—f]ez<&)zz<o, %) d5

is a bounded linear functional on W;, (k 0), s > 2/ p, whose kernel contains P (I% 0),
it follows that

Iz, @m < Ch lulws2), 2/p<s=<2,

and, likewise,

Im2llp,@n < Ch lulwy @), 2/p<s=<2.

Substituting these into (2.163) we obtain the desired error bound for m = 0. That
completes the proof of the theorem. g

In the remainder of this section we shall discuss the rate of convergence of the
finite difference scheme (2.153), (2.154) in the case when 0 <s < 1+ 1/p, which
also covers the case 0 <s < 2/p. Let us define the function space W;(.Q), l<p<
00, by

p C HwriweW,(2),w=00onT}, 1/p<s<l1+1/p.

We observe that if u, the weak solution of the boundary-value problem (2.149),
(2.150) belongs W;,(.Q) then u € W;,(.Q). Let 2* := (—m,2m) x (—m, 27w); the
extension of u# by 0 is a continuous linear operator from W; (£2) into WIS, (£2%),
O0<s<14+1/p,s#1/p, 1 < p < oo (cf. Triebel [182], Sect. 2.10.2, Lemma and
Remark 1 on p. 227 and Theorem 1 on p. 228). Hence

u — u* = odd extension of u

is a continuous mapping from W;(Q) into W;(SZ*), O0<s<1+1/p,s#1/p,
1 < p < 00. Moreover, (Th“u*)(x, y) =0 for (x, y) e I'".

Theorem 2.57 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m € {0, 1}. Assuming that u belongs to W;(.Q) withm <s,0<s <
14+1/p,s#1/pand 1 < p < 00, the following error bound holds:

|7 u

-U| w2y = Ch* " lulws (),

with a positive constant C = C(p,m, s), independent of h.
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Proof The proof is completely analogous to that of Theorem 2.56, except that we
now define the global error e on 2" by

eij = (T 7! u®)(xi, yj) — Uij.

Clearly ¢;; = 0 for (x;,y;) € I'*, and e;; = (T,''u)(x;, y;) — Uij when (x;, ;) €
2" In addition, it follows from (2.151)—(2.154) that e satisfies (2.156), (2.157) with

Again, 71 (resp. 12) is defined on the mesh £2” U Fxh (resp. 2" U Fyh) and is equal

to zero on [ xh (resp. F;‘). The rest of the proof is the same as in the case of Theo-
rem 2.56, except thatnow s € [0, 1/p)U (1/p, 1 + 1/p). g

2.5.3 Convergence in Discrete Bessel-Potential Norms

This section is devoted to error estimation in discrete Bessel-potential norms.
A function v defined on 2" C (0, 7)? (or on 2" c [0, 7r]? and equal to zero on I"")
is said to belong to the discrete Bessel-potential space H [5, (22", with —oo < s < o0,
1 < p < o0, if there exists a function V € L,,(.Qh) such that

v= LoV = F (1 KR) P E V) = F (1 + )™

FV),

where V is the odd extension of V from 2" to o = K12, defined to be zero on I'”,
and further extended 27 -periodically to the whole of #Z?. We then define (compare
with the definition in Sect. 1.9.5.3)

. -1 (7
10l 2y = 1V I, 2m = 472UV L wh):

where the last equality is a consequence of (2.155).

First we shall prove equivalence of the discrete Sobolev norm || - || Wi (2h) and the
norm || - || Hyp (2 for integer m; then, the error bounds in discrete Bessel-potential
norms of integer order will follow from the error bounds derived in Theorems 2.56
and 2.57. Error bounds in fractional-order discrete Bessel-potential norms will be
derived from these by function space interpolation. We need the following prelimi-
nary result in the univariate case.

Lemma 2.58 Let W be a mesh-function defined on " = hl, where 1 = {—~N +
1,..., N}, and let Ty be the trigonometric interpolant of W on (—m, ] given by
(2.145), with n = 1. Then, there exists a constant C p» independent of h and W, such
that the following inequalities hold, with w = (—m, 7):

@ 1Dy WliL, @ = 1Ty, = CpllDy Wiz, why3



2.5 Convergence Analysis in L, Norms 197
() 1D Dy Wilp, oy < 1Tl @) < CpllDF Dy Wil (-

Proof (a) Since W and Tw coincide at the mesh-points,
1 [~
D W(x;)=D_Tw(x;) = E/ Ty (x) dx.
Xi—1
Thus,
Xi
h| Dy W (x;)|” 5/

Xi—

| Ty, (0)]” dx.
1
Summing over all x; in o', we deduce that

125 Wi wm =< 1T, -

To deduce the second inequality, let us note that

1
Ty (x) = o > ) FW ke,

kel
and
1— e—zkh
F(Dy W) (k) = T]-"W(k).
Therefore,
1 1kh _ .
Ty () = — > T T (Dx W)™,

kel

Since Ty, is a trigonometric polynomial of degree N, it follows from (2.146) that
there is a & in (—h, 0) such that

1T, 0 = 1T C 801 o

Letting

tkh

and
(k) := A(kh)e' o,

the last equality can be rewritten as follows:
“ Ty “Lp(w) = ”}-_l(“}—(Dx_W))”Lp(wh)'

A simple calculation shows that both A and var()) are bounded by a constant, in-
dependent of 4. It remains to apply part (a) of Theorem 2.49 to deduce that A is a
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discrete Fourier multiplier on L p(a)h), and therefore the same is true of . Hence
the upper bound in part (a).
(b) Let us define Z = D W. Then, D} D; W = D; Z and by part (a) of this
lemma we have that
+ —_ _ —
”Dx D, W”Lp(wh) - “Dx Z”Lp(wh) = ” Té ”Lp(w)'
Since
elkh

FZ(k)y=F(DfW)k) = FW(k),

it follows that

1
Tz(0) = o > Fzke*
kel

1 etkh _

2 kel h

FW(k) = D] Tw(x).

By noting that Ty (x) is a 2 -periodic function of x we deduce that

I721%

T
LN@=HDIWWL@fﬂfﬂ[JﬂMx+m—J@@ﬂﬁn

b4 x+h p 1 T x+h
=h_1’/ / T‘ﬁl’,(S)dé‘ dxf—f / | Ty (0)|” dt dx
—7JT X h —TT JX

Y Mipor( a)a= [ mpora= )
_h -7 v t—h B - v - v Lyt

Hence we obtain the first inequality in (b). The second inequality is proved in the
same way as in part (a), by observing that

g (1tkh)?
Ty (x) = 2T kZ: (etkh — 1)(1 — e—tkh)

el

F(Df Dy W) (k)e'*.

Thus, by noting that with &y € (—h, 0] as in part (a) the function @ defined on I by

kb N\ 2
(1kh)? elkgoz( 2 )ezkgo

k) =
M= @i e sin &

is bounded by 7/2 and var(u;) is bounded by a constant, independent of #, it
follows from part (a) of Theorem 2.49 that p; is a discrete Fourier multiplier on
L p(a)h), and hence the upper bound stated in part (b). O

Lemma 2.58 has the following extension to two space dimensions.
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Lemma 2.59 Let W be a mesh-function defined on o" = h1?, where I = {—N +
1,..., N}, and let Ty be the trigonometric interpolant of W on (—m, 1% given by
(2.145), with n = 2. There is a constant C), > 0, independent of h and W, such that
the following inequalities hold, with w = (—, n)2:

(a)
1 _ 0 _
l—l——n”Dx W“Lp(wh) = aTW L@ =Gy D; W“Lp(wh)
and
1 _ 3 _ .
T 12 Whiyon = 5] S ColID Wl
(b)
1 o 32 o
H——n”Dx D, W”Lp(wh) = QTW Ly@) =Cp ”Dx D, W“Ll,(wh)’
L e L L s
and
1 o 92 e
1+—n” DIDIW |, iy < a2 W L = Cp| DY Dy W L -

Proof The proof of this result is a straightforward consequence of Lemma 2.58,
and Lemmas 2.48 and 2.51 with n = 1; Lemma 2.58 is applied in the co-ordinate
direction in which differentiation has taken place, and Lemmas 2.48 and 2.51 in the
other direction. O

Lemma 2.60 The norms || - ||W;;r(gh) and || - ||H]r;r(gh) are equivalent, uniformly in
h,form=0,1,2 and 1 < p < o0; i.e. there exist two constants C1 and C3, inde-

pendent of h, such that for all functions V defined on 2" (or on 2" and equal to
zero of '),

CillVilwm@n = IVl @n = C2AIV lwn -

Proof The statement is obviously true for m = 0 with C; = C, = 1. Now for m =
1, 2 we shall proceed as follows. Let V denote the odd extension of V to " = hl?,
where [ = {—N +1, ..., N}. Further, let Tj; denote the trigonometric interpolant of
V defined by (2.145) with n = 2. By applying Lemma 2.59 with W = V, we deduce
the existence of two positive constants C; and C,, independent of V and k, (with
C> = C2(p) and C independent of p), such that

CillVIiwien = 1Tplwi < C2llVilwien
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and
Ci ||V||W§(Qh) = ||T\7||W’§(w) = C2||V||W;(Qh)-
For p € (1,00) and a nonnegative integer m the Sobolev norm || - lwn (@) on
w="T2, is equivalent to the periodic Bessel-potential norm || - || HI (o) defined by

Il = [ ((1+1KR)"28) "],

(see, Schmeiser and Triebel [162]), where ~ and -V denote the Fourier transform of
a periodic distribution and its inverse, defined in Sect. 1.9.5; therefore,

CUlVlwgn = [((1+KP)"2T5) 0 = CallVIlgpean, m=1,2.

Finally, since ((1 + [kI*)"/?Ty)Y = T 1 (22 ry) ON @, e have by Lem-
mas 2.48 and 2.51 that

m/2

CtllVlwpan < [F A+ KE)" “FV) oy < CollVIwpan. m=1.2,

from which the result follows by noting that
— 2 5 — 2
[F71 (O P) PFON oy = 47N E (6P Fa V) oy

=4Vl ony, m=1.2. 0

We shall now use function space interpolation to obtain scales of error bounds in
fractional-order discrete Bessel-potential norms. We start with a generalization of
an interpolation inequality of Mokin (cf. Theorem 5 in [141]).

Lemma 2.61 Ler o and B be two nonnegative real numbers such that « < B and
suppose that 1 < p < 0o. There exists a positive constant C, independent of h, such
that for any real numberr,a <r < 3,

B(h
IVlligcan < CIV gian IV o YV € HE(21),

where u = (r —a)/(B — ).
Proof Let us first prove the result for « = 0. We define W :=1_,.;, V; then
IV 2m = IWIL, @ =4_1/p||W||Lp(wh)
<4 PA+ 2N Ly =47 A+ 021 Tg )
Also,

) =C/BY /B
”Tqu;(w) < C”TV”Lp(w) ”TV“Hg(w)’
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(see, Nikol’skii [144], p. 310) where C = C(p, r, s) is a positive constant, and by
Lemma 2.51 we have that

afrev|

1Ty, @ <4YPCIVIL, @ and 1Tyl <4 HE @by

Combining the last four inequalities, we deduce the statement of the lemma in the
case of « =0.
For o > 0, let us define W := I_, 5, V. Then,

IWll ey = 1V g gn, and IWllgrogn = IV Ly on:

moreover, as 0 <r — o < 8 — «, it follows from the case of « = 0 above that

Wl g-e oty < CUW I iy IV

and hence the desired inequality. U

Lemma 2.61 will play a key role in the proof of the next theorem, concerned with
optimal error bounds in fractional-order discrete Bessel-potential norms.

Theorem 2.62 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154). If u
belongs to W;(.Q),Z/p <s<2and0<r<2o0r2/p<s<3andl <r <2, with
1 < p <ooandr <s, then we have that

S—r
lu = Ull gy @ny = Ch* lulws (@),
with a positive constant C, dependent on p, r and s, but independent of h.

Proof Let us suppose that u belongs to W,(£2), 2/p <s <2, 1 < p < o0 and
0 <r <2. We apply Lemma 2.61 with « =0, 8 =2 and Theorem 2.56 to obtain
the error bound.

Similarly, if # belongs to W;(.Q), 2/p<s<3,l<p<ooand 1 <r <2, then
we take @« = 1 and 8 = 2 in Lemma 2.61 in combination with Theorem 2.56 to
deduce the error bound. O

By invoking Lemma 2.61 with « = 0 and 8 = 1, we obtain from Theorem 2.57,
using function space interpolation, the following scale of error bounds in fractional-
order discrete Bessel-potential norms.

Theorem 2.63 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.151), (2.152). If u
belongs to W]S,(.Q),Ogs<l+l/p,s¢1/p, l<p<oo,0<r<landr<s,
then

|7 u U] Hy(2h) = Ch* ™ ulws (2,

with a positive constant C, dependent on p, r and s, but independent of h.
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The error bounds stated in Theorems 2.56, 2.57, 2.62, and 2.63 cover the range
of possible Sobolev indices, s € [0, 4], for which the solution U of the difference
scheme (2.151), (2.152) converges to the weak solution u (or its mollification Th1 L)
of the boundary-value problem (2.149), (2.150), provided that u € W[S, (£2). To con-
clude, we note that to derive these results it is not essential that u is weak solution:
indeed, if we assume that u € W;(.Q) with s > 1/p is a solution of the boundary-
value problem in the sense of distributions and that it satisfies a homogeneous
Dirichlet boundary condition in the sense of the trace theorem, the error bounds
obtained above still hold.

2.6 Approximation of Second-Order Elliptic Equations with
Variable Coefficients

Hitherto we have been concerned with the construction and error analysis of fi-
nite difference schemes for second-order linear elliptic equations of the form
—Au+c(x, y)u = f(x,y). Inparticular, we derived optimal-order error bounds un-
der minimal smoothness requirements on the solution. Here we shall extend these
results to elliptic equations with variable coefficients in the principal part of the
differential operator, under minimal regularity hypotheses on the solution and the
coefficients.

In Sect. 2.6.1 we consider the Dirichlet problem for a second-order elliptic equa-
tion with variable coefficients in the principal part of the operator. The finite differ-
ence approximation of this problem is shown to be convergent, with optimal order,
in the discrete W2] norm. In Sects. 2.6.2 and 2.6.3 similar results are proved in the
discrete sz norm and in the discrete L, norm; then, using function space inter-
polation, these bounds are extended to fractional-order discrete WZ’ norms, with
r € [0, 2], in Sect. 2.6.4. In Sect. 2.6.5 we focus on elliptic equations with separated
variables and derive optimal bounds in the discrete L, norm, which are compatible
with our hypotheses on the smoothness of the data.

2.6.1 Convergence in the Discrete Wzl Norm

As a model problem, we shall consider the following homogeneous Dirichlet
boundary-value problem for a second-order linear elliptic equation with variable
coefficients on the open unit square £2 = (0, 1)%:

2
Lu:=— Z 0i(ajjoju) +au= f in$2,
i j=1

u=0 onl =0952.

(2.166)
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For the sake of notational simplicity, we have denoted the two independent variables
here by x| and x; instead of x and y.

We shall suppose that (2.166) has a solution in W3 (§2), which satisfies the par-
tial differential equation in the sense of distributions and the boundary condition
in the sense of the trace theorem, with the right-hand side f being an element of
W;fz(.Q). In order for the solution of this problem to have a well-defined trace
on d§2 it is necessary to assume that s > 1/2. It is then natural to require that the
coefficients a;; and a belong to appropriate spaces of multipliers; that is,

aij e M(W~H(2)), aeM(W5(2)— W5 2(2)).

According to the results in Sect. 1.8 the following conditions are sufficient in order
to ensure that this is the case:

(a) if [s — 1] > 1, then
ls—1] ls—1]—1 .
ajj €W, (£2), ace W, (£2);

(b) if0<|s — 1| <1, then

2
aij € W}f‘”“(ﬂl a=ap+ Z d;a;,
i=1

ao € Ly (2),  a e Wi~ (02),

where ¢ > 0;and 6 >0, p>2/[s—1|forO<|s—1| < 1;6 =0, p > 2 for
s=0;6=0, p=oowhens=1.

In addition to these assumptions on the smoothness of the data, we shall adopt the
following structural hypotheses on the coefficients g;; and a:

e there exists a ¢g > 0 such that

2

2
Y a(0EE =0y & VxeR2, VE= (£, &) eRY

i,j=1 i=1
o the matrix (a;;) € R2%2 js symmetric, i.e.
ajj=aj, I,j=12;
e the coefficient a is nonnegative in the sense of distributions; i.e.
(ap,9)pxp >0 Vo eD(2).

We shall construct a finite difference approximation of this boundary-value prob-

lem on the uniform mesh ﬁh = 2" U ' of mesh-size h := 1/N, with N > 2,
defined in Sect. 2.2.4.
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When s < 3, our hypotheses on the smoothness of the data do not guarantee that
the forcing function f and the coefficient a are continuous on £2: it is therefore
necessary to mollify them so as to ensure that they have well-defined values at the
mesh-points.

These observations lead us to consider the following finite difference approxima-
tion of the boundary-value problem:

LyU=THPf on2"
(2.167)
U=0 on Fh,

with

2
1 _ _
LpU = _5 z : [D;(aiij/- U) + Dxi (aij;';_U)] + (Thzza)U,
Q=1

where Dxil_V, i = 1,2, are the divided difference operators in the x; co-ordinate
direction defined in Sect. 2.2.4, and Th22 is the mollifier with mesh-size 4 defined in
Sect. 1.9.2.

It is helpful to note that the two-dimensional mollifier Th22 can be expressed in
terms of the one-dimensional mollifiers 77 = T, and 7> = T» j, acting in the x|
and x; co-ordinate direction, respectively, as

T2 = T272.

For a locally integrable function w defined on £2,

1 [xi+h/2
Tiw(xy, x2) ::E/ \ w(&, xp) déq,
x1—h/2

) 1 x1+h
Tiw(xy, x2) = —/ (1 —
h x1—h

T>w and T22w can be represented analogously. When w is a distribution, 7; and Ti2
are defined as convolutions of w with the scaled univariate B-splines 9}: and 9}%,
respectively, as explained in Sect. 1.9.

We note that (2.167) is the standard symmetric seven-point difference scheme
with mollified right-hand side and mollified coefficient a.

With the notations from Sect. 2.2.4, we consider the discrete L, inner product
(V, W), (see (2.48)) in the linear space Sg of real-valued mesh-functions defined on

x1—§&

>w(§1,X2)d§1;

—h . . . .
2" that vanish on I'”, the associated discrete L> norm || V|| L,(2h)> and the discrete
Sobolev norms ||V||W21 2h) and ||V||W22(Qh).

The error bounds stated in the next theorem are compatible with the smoothness
hypotheses (a) and (b) formulated above, for the coefficients appearing in the partial
differential equation.
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Theorem 2.64 The difference scheme (2.167) satisfies the following error bounds
in the W21 (£2") norm:
lu — U||W2| D) =< Chs_l <Il;1’2}X “aij ”W;*] (2) + lla ||W£72(Q)) ”u”WZS(Q)v
for2 <s <3, (2.168)

and

s—1 . .
llu — U||W21 (£2h <Ch (Hll’E;X ”al] ”W;,_H'S(Q) + miax lla; ”W;—H"S(Q)

+ ||610||L2+£(9)>||M||W2S(.Q), forl <s <2, (2.169)

where p, § and ¢ are as in condition (b) above, and C is a positive constant, inde-
pendent of h.

Before embarking on the proofs of these error bounds we shall make some pre-
liminary observations. Let u# denote the solution of the boundary-value problem
(2.166) and let U be the solution of the finite difference scheme (2.167). When
s > 1, as in Theorem 2.64, the function u is continuous on §2 and therefore the

global error e := u — U 1is correctly defined on the uniform mesh ﬁh. In addition,
it is easily seen that

2
Lye= Y Dymij+n ong",
e (2.170)
e=0 oth,

where

1 . ;
. 2 - .
nij = T,'+T3_i(aij3j”) — E(aijD;u +alT;’DX./_u+’), i=1,2,
and
n:= (Tt T5a)u — TETS (au).

Here, for a locally integrable function w defined on §2, we have used the asym-
metric mollifiers Tl.iw, defined at x = (x1, x3) by

1
(TFw)(x) :=(Tiw)<x + Ehei>, with e; := (i1, 8;2), i = 1,2.

By taking the (-, -); inner product of Lye with e and performing summations
by parts in the leading terms on the left- and right-hand sides, in exactly the same
manner as in the argument that led to the estimate (2.83) stated in Lemma 2.24, we
arrive at the following result.
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Lemma 2.65 The difference scheme (2.170) is stable, in the sense that
2
el n < C< D il qn + ||n||L2<m)), 2.171)
i,j=1
where C is a positive constant, independent of h.
The error analysis of the finite difference scheme (2.167) is thereby reduced to
estimating the right-hand side in the inequality (2.171). To this end, we decompose

nij as follows:

Nij =Nij1 + Nij2 +Nij3 + Nija,

where
mij1 =T T3 i) — (T T3 ai) (T T3 9ju),
1 ‘
) 72 + 2
Nij2 = |:Ti I3_;aij — 5(“!’/’ +aijt)i|(Ti i ;0ju),
. 1 +i +72 1 + — i
Nij3 1= 5(a,-j +a )| T T3 8u — E(iju +Dgu')
and
1 " L
Nij4 = _Z(aij - al./.’)(D;rju — iju+’).

We shall also perform a decomposition of 7, but the form of this decomposition will
depend on whether 1 <s <2or2 <s <3.
When 1 < s <2, we shall write

n=mno+m-+mn,
where
no := (T12T22a0)u — T12T22(a0u)
and
ni = (TETsdai)u — TETE (udiap), i=1,2.
Whereas if 2 < s < 3, we shall use the decomposition
n=mn3+n4,
where

n3 = (7 T3 a)(u — T{ T3 u)
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and
N4 = (T12T22a) (T12T22u) — T2 T} (au).
Proof of Theorem 2.64 We introduce the ‘elementary rectangles’
K'=K'() :={y= 1y lyj—xjl <h,j=1,2}
and
K= Ki(x) = {y X <yi <xi+h,|y3—i —x3-i] <h}, i=1,2.

The linear transformation y = x + hx defines a bijective mapping of the ‘canonical
rectangles’

KO:={i=F.5):1%<1,j=12]
and
Ki={F:0<% <153 <1}, i=1,2,

onto K9 and K, respectively. Further, we define
ajj (%) :=a;j(x + hX), (%) = u(x + h¥),

and so on. The value of ;1 at a mesh-point x € .th can be expressed as

1 - . 0 -
ni () = z[/@(l — i) () dF

J

2
—/~,(1 — | %3-i])a;j (%) dx x /(1 - |i3—i|)a—~udf]-
Ki )Cj

i

Hence we deduce that ;;1(x) is a bounded bilinear functional of the argument
~ o~ A pi w i
(aij, u) e W, (K’) X qu/(q—z)(Kl)v

where A > 0, u > 1 and ¢ > 2. Furthermore, 7;;1 = 0 whenever g;; is a constant
function or u is a polynomial of degree 1. By applying the bilinear version of the
Bramble-Hilbert lemma (cf. Lemma 2.30 with m = 2), we deduce that

C . -
‘nijl(x)| = ﬁlaij|W;‘(1€i)|u|wgl/(q,2)(1€i)’ O0<Ai=l,1=pu=2
Returning from the canonical variables (X1, X2) to the original variables (x1, x2) we
obtain

hA—Z

|al]|W‘?([€1)= /q|aij|W(;“(K")
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and

— hu—(q—Z)/Q|u|Wﬂ

u .
el 20/q-» K"

20/-2 K"

Therefore,

miji0)] < Ch’\+“—2|“i-/|W3(K'>|”|Wﬁf,/(q,2)(1<i)’ O<i=<l,1=<spu=<2.

By summing through the mesh-points in .th and applying Holder’s inequality
we then deduce, for 0 <X <1and 1 < u <2, the bound

) < Ch)\-Hl.—

1
i1l 2 laijlwpulwse ) @) (2.172)

Let us choose A =s — 1, w =1 and g = p. Thanks to the Sobolev embedding
theorem (cf. Theorem 1.34),

Wy (@) > WiTl (@) and W3 (2) = Wy, 0, ) (R2), 1<s<2.
Thus, (2.172) yields
Inijillyny < C " Hlaijllys-1es g lullws @), 1<s<2. (2173)

Analogous bounds hold for 1;;2, 1;j4, 71 and 2. Now suppose that ¢ > 2; then, the
following Sobolev embeddings hold:

W, N @) > WHR) forpu>2-2/q
and

A
W, (2) Wi 10— (2) fori>2/q.

Setting A + p = s in (2.172) yields
Imij1ll o < CH ™ laijllysm1 gy lullws @), 2<s <3 (2174)

The functional 7;;4 is bounded in a similar fashion.
For s > 2, n;;2 is a bilinear functional of the argument

(@ij,u) e W3 (K') x Wh(K)

and n;j2 = 0 whenever a;; is a polynomial of degree 1 or if u is a constant func-
tion. By applying Lemma 2.65 and the embedding W (£2) — WL (£2) we obtain a
bound on 7; 2, which is of the form (2.174).

By a similar argument, 7;;3(x) is a bounded bilinear functional of the argument

(ajj,u) € C(fl) X Wf(Ki)
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for s > 1 and it vanishes whenever u is a polynomial of degree 2. By noting the
embeddings
Wi (@2) > C(R2) forl<s<2
and
Wy (2) > C(2) fors>2,

we obtain bounds of the form (2.173) and (2.174) for n;;3.
Let2<qg <2/(3—s). When 2 <s <3, n3(x) is a bounded bilinear functional
of the argument

(a,u) € Ly(K°) x Wi 1.5 (KP).

Moreover, n3 = 0 when u is a polynomial of degree 1. By noting the Bramble—
Hilbert lemma and the Sobolev embeddings

Wy2(Q) = Lg(R) and W5 (2) = W31 5 (82)

we obtain
ImslLyn < Ch* " lallyy 2 g lullwgi@y 2<s<3. (2175
When 2 < s < 3, 54 is a bounded bilinear functional of
(a,u) e szfz(l(o) X Wolo(KO)

and n4 = 0 whenever a or u is a constant function. Using the same technique as
before, together with the embedding

W3 (2) = WL (%),

we obtain a bound of the form (2.175) for 74.
Finally, let 2 < g < min{2 + ¢€,2/(2 — 5)}. Then, for 1 <s <2, no(x) is a
bounded bilinear functional of the argument

(o, u) € Lg(K®) x W3t (K°)

and it vanishes when u is a constant function. By noting the embeddings

Lae(2) > Ly(R) and  W3(2) = W3, [ (82)

we obtain
In0ll,cony < Ch*~! laollLoye ) Nullws 2y, 1 <s=<2. (2.176)

Finally, by combining (2.171) with (2.172)-(2.176) we deduce the desired bounds
on the global error. g
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2.6.2 Convergence in the Discrete Wz2 Norm

In this section we consider the error analysis of the scheme (2.167) in the discrete
W3 norm (2.50).

From the error bound (2.168) in the W2l (£2") norm derived in the previous sec-
tion for the difference scheme (2.167) and the inverse inequality

V6 )
|V|sz(9h) < 7|V|W21(m) YV esy,, (2.177)
we immediately deduce, with V = e, the following error bound in the W22(Q ) norm

I = Ulyzgny = CH > (max laij -1 gy +allyg-2g) )l
for2 <s <3. (2.178)

In order to derive an analogous error bound when 3 < s <4 it is necessary to
establish the discrete counterpart of the elliptic regularity result

I0llw2e) < CllLollLy@) Yo e WH(R) N Wy (),

called the second fundamental inequality, following the terminology of Lady-
zhenskaya and Ural’tseva [118]. A result of this kind was proved for the finite dif-
ference operator £, by D’yakonov [39]; it states that

VIwaon < CILaVlLy@n YV €Sg, (2.179)
where

-2
C:=C(a, an, an.a) = Co(1 + |TPa HLq(m))(l + max llaij ||%V/1(L(Igh;>,
s q

with2 < g < oo; here || - ”Lq(gh) and || - IIWq] (2 are mesh-dependent norms defined,
for g < oo, by

1/q
IV, @n = <h2 > |V(x>|‘f) :

xeh

2 1/q
IV lhwjam = (”V”Zm +21o V”Zm) ’
i=1

where || - ”Lq(:zﬁ) is defined in the same way as || - ”Lq(gh), except that the sum is

taken over mesh-points in th instead of £2". When ¢ = oo,

’

VL, 2my =1Vileon:= max‘V(x)
xenh
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with an analogous definition of ||V || Wl (2h)-
By applying the Bramble—Hilbert lemma it is easily shown that

272
laijliwy@n < Cillaijlwy ) and  [TiT al, o < CallalL, @),
where C1 and C; are independent of 4. Thus we can assume in (2.179) that

C = C(an,ann,axn,a)

q/(q—=2)

=G+ IIOIIIL‘,(Q))(1 +HilE;X ||aij||qu(_Q) ) 2<q=o0.

Following the terminology of Ladyzhenskaya and Ural’tseva again, we note that
the discrete version of the first fundamental inequality is

colV s gn) = LrV, VI YV € Sp. (2.180)
For the difference operator £;, appearing in (2.167) the first fundamental inequality
is easily shown using summation by parts, in the same way as in the case of the
result stated in Lemma 2.65.

Now we are ready to consider the error analysis of the difference scheme (2.167)
in the norm sz(s?h) foru € Wj(£2) when 3 <5 <4.

It follows from (2.170) and (2.177) that

2
”e”sz(.Qh) < C(Z H Dx_,-nij HLz(Q,vn) + ||77||L2(_Qh)>, (2.181)
i,j=1

where C is a positive constant, independent of /. By bounding D, n;; and 7 analo-
gously as in the previous section, we obtain the error bound (2.178) for 3 < s < 4.
Thus we deduce that (2.178) holds for 2 < s < 4 (see also Berikelashvili [10]).

2.6.3 Convergence in the Discrete L, Norm

The derivation of an optimal error bound in the Lz(.Qh) norm is based on a tech-
nique that is usually referred to as a duality argument: it uses the adjoint of the
difference operator £; and the second fundamental inequality for the adjoint of the
difference operator £j,. Since in our case the difference operator £, is symmetric
and, more specifically, selfadjoint on the finite-dimensional space S(})' of real-valued

mesh-functions defined on o that vanish on I'*, equipped with the inner prod-
uct of L,(£2"), the second fundamental inequality for the adjoint of Ly, is, in fact,
identical to the second fundamental inequality for £, stated in (2.179).
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For the sake of simplicity, we shall restrict ourselves to the case when a(x) = 0;
the boundary-value problem (2.166) then becomes

2
— Y diadu)=f ing, u=0 onl =3%, (2.182)
ij=1

and the corresponding finite difference scheme is

2
=2 Y [0 (@D U) + D5 @ DEV) = T2F in 2"
,ChU = ) A [Dxi (al/ ij U) + DXi (a’/ ij U)] - Th f n ,(2183)

U=0 onrl".

The error analysis of this scheme in the L>(£2") norm is based on the observation
that the global error e :=u — U 1is the solution of the difference scheme

2
Lye= Y Dymyj inR2"  e=0 onI™, (2.184)
i,j=1

where the 7;; are the same as in (2.170). The right-hand side can be rewritten as
follows:

2 2 2

> Dx_,-nij=Z<Lii§ii+lciXi+ZDx_iUij>, (2.185)
i,j=1 i=1 j=1

where

LiiV:=—Dg [(TFT{ai;)D} V],  KiV:=Dg[(TTi ;ai3-i)D}, V]

1

and

1
._ - ot + o
&ij i=u~— E(T3—iT3—ju + T3 Ty ju),

1 e
Xi =0i — E(&'J—i +§,-Jf31’,i(3 l)),
(5 - - — \H—(G-D)
o= 4100 T = T )~ (1 1= 1))

. 2 2 2
vij =T, T3 (aijdju) — (T T i) (T T3 9 u)

1 5 L S
+ [T ) (D + Dyu™) = ay Dfu = af Du™].
Here we have assumed that the solution u € Wg )N W21 (£2),0 <s <2, has been
extended, preserving its Sobolev class, to the square (—hg, 1 + ho)? where h is a
fixed positive constant such that & < hy.
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Lemma 2.66 Suppose that a;; € qu (£2), g > 2. The solution of the finite difference
scheme (2.184) then satisfies the bound

2
lellL,@m =€ ;(”éﬁ”Lz(Qh) +1&i3-ill, omy
i=

2
+lleillyn o+ D v ||L2(9,_h)), (2.186)
Jj=1

where C is a positive constant, independent of h.

Proof The proof is based on a duality argument. Let us consider the auxiliary func-
tion W, defined as the solution of the finite difference scheme

L,W=¢ in ", W=0 onl™"

We note in passing that in general one would have written (L)*, the adjoint of Lp,
on the left-hand side instead of £j; however, in our case L, is selfadjoint. Thus,
crucially, (e, L W), = (Lpe, W)y, It then follows from (2.184) and (2.185) that

lell? @y = (e LaW)i = (Lne, Wy,

Il
-M"’

2
|:(/3ii§ii, Wi+ (Kixi. Win+ Y _ (D5 vij. W)h:|

i=1 j=1

Il
-M"’

2
|:("§ii’ LiiWon+ (xi- KW,y 5y = D (vig, D3, W)i,h]

1 j=1

=

.

%
<||§ii L @m I Li Wl Lyon + 1 xi ||L2(Qi1"71.27i) ”’Ci WH L@, )
1

2
+ D Iijlyen [DEW Lzmb)’
j=1

where
KW =Dy, [(T7 T3 ai5-i) DE W]

The second fundamental inequality (2.179) implies that

1L Wi, 2m H’CTW” Ly 5 ) ” D;;WHLZ(Qf’)

are all bounded by
CILIWlLy2m = Clell @),
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and hence, after substitution of the defining expression for y;, we deduce the in-
equality (2.186). O

We observe that for the second fundamental inequality to hold it is necessary that
ajj € qu (£2), g > 2; thus we can only expect a sharp error bound when s = 2. Let
us assume that this is indeed the case, and we proceed to estimate the terms that
appear on the right-hand side of the inequality (2.186).

We begin by noting that &;; and o; are bounded linear functionals on W22 (£2) that
vanish on all polynomials of degree 1. By the Bramble—Hilbert lemma,

ilacenys 83—l leilygr ) < CHlullyzgy:  (2187)

Arguing in the same way as in the previous section, v;; is decomposed into three
terms that are bounded by means of the Bramble—Hilbert lemma to obtain:

2
1031l o) < CH2(laij o Nl wagey + i lwz @ ey ). (2188)

From (2.186)—(2.188) we deduce the following error bound for the difference
scheme (2.183):

I = Ully o = O max laij g o el - (2.189)

While the power of & in the error bound (2.189) is optimal in the sense that it
is compatible with the smoothness of u, the bound is not entirely satisfactory as
the coefficients g;; are required to belong to WOZO(.Q), which, in the light of the hy-
potheses (a) and (b) from the beginning of Sect. 2.6.1, can be seen as an excessively
strong assumption on the regularity of the coefficients a;;. The requirement for the
additional smoothness of the coefficients a;; can be attributed to our crude bound
on D vjj in (2.186).

An improved estimate can be obtained by considering an alternative scheme
where the coefficients a;; have been mollified:

2
LyU:=) LyU=T2f inQ"
et (2.190)

U=0 onl™h,

where

1 -
LijU == DL [(T T3 jaij) DY (U + U ).

l
For this scheme the global error e := u — U satisfies

2 2
Ehe:z<[’ii$l‘i+’CiXi+ZD;’,mj1> in 2", z=0 onT"h,

i=1 j=1
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where &;;, x; and n;;1 are as before. Assuming that g;; € qu (£2), g > 2, and pro-
ceeding in the same manner as in the case of our previous scheme where the coeffi-
cients a;; were not mollified, we obtain the bound

2

lellyam < C Z(usﬁnLZ(m) + 1803l gty Fleillyen
i=1

2
+) ||m~,-1||L2(9;1)).
j=l1

Using the estimates (2.187) and (2.172) derived earlier and slightly strengthening
the smoothness requirements on the g;; by demanding that g;; € Wolo(Q), we arrive
at the error bound

flu — U”LZ(Qh) = Ch? Hilﬁ}x ||aij||wgo(g)||’4||wz2(g)y (2.191)

which is now almost compatible with the smoothness of the data in the sense that
we assumed a;; € WOIO(Q) instead of the minimal smoothness requirement a;; €
W (82),q>2.

Let us now discuss the case when u belongs to the fractional-order Sobolev space
W5(£2), 1 <s <2. Allowing some incompatibility between the smoothness of the
coefficients and the corresponding solution by assuming instead of our initial hy-
pothesis

ueWs(2), a;eWwh @), 1<s<2,
that
ueWs(R), l<s<2  a;eWl(2)
and arguing as above, instead of (2.191) we arrive at the error bound

I = Ul Ly g < O max il el g, 1 <5 <2
This error bound is again incompatible with the smoothness of the data, except in
the case of s = 2 when it coincides with (2.191).
2.6.4 Convergence in Discrete Fractional-Order Norms

By noting our error bounds in integer-order discrete Sobolev norms and the inter-
polation inequalities (2.54) we can obtain new bounds in fractional-order discrete
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Sobolev norms. Thus, for example, for the scheme (2.167) from (2.168) and (2.178),
we have that

S—=r
i = Ul ) < Ch (%X 1451 ) + 1l ys2(o) ) lllws .
forl<r<2<s<3.

From (2.169), (2.177) and (2.54) we deduce that
lu — U||W2r(_(2h <Ch™ (IIIIE}X ||a,-j||W;71+a(_Q) +miax ||a,-||W;;71+a(Q)

ol ) Iullwycy, for1 <7 <s<2

Similarly, from (2.191), (2.54), the inverse inequality

232

Viwsan = 51V ll@n YV €S

with V = e and (2.177) we obtain the following error bound for the difference
scheme (2.190):

2—
lu = Ullwy@nm < Ch™" max laijllwy, ) lullwz@)y,  0<r=2.

In the next section we shall further sharpen these error bounds in the special
case of an equation where the off-diagonal entries in the coefficient matrix (a;;) are
identically zero.

2.6.5 Convergence in the Discrete L, Norm: Separated Variables

In Sect. 2.6.3 we saw that the derivation of optimal error bounds in the L(£2")
norm under minimal smoothness requirements on the coefficients g;; is associated
with technical difficulties. The error bounds that we obtained are satisfactory in this
respect only when s = 2, while for s < 2 they are incompatible with the natural
minimal regularity requirements on the coefficients. These results can be improved
in the case of a differential equation that separates the two variables; that is, when

2
= Oi(aidu)=f ing2,
i=1 (2.192)

u=0 onl =052,
where

ai=a;(x;), i=1,2,
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are such that there exist positive constants cp and ¢ with
O<co<ai(xj) <cy forallx; €(0,1),i=1,2.

In order to ensure that the a; belong to the function space of multipliers
M(W; ~1(£2)), we shall suppose that

a; € Wll,sillﬂs(o’ D),
where the real numbers s, p and § are assumed to satisfy the following conditions:

p=2, =0 when|s—1|>1/2,
p>2, §>0 whens=1/2ors=3/2,
p=1/|s—1|, 6>0 whenO<|s—1]<1/2,

(2.193)

p =00, §=0 whens=1.

Let us introduce the following univariate mollifiers:

1 xi+h
(8i f)(x) := g/ ki (O f (x4 —xp)e;)dr, i=1,2,
xi—h
where

t

ki () _{ ha,(r) ha(r)’ t€(xi —h,xi),

i h o
X+ ald(rr) x+ drr i IE(xi,x,-+h).

These operators satisfy the identity
S; (3,' (aiaiu)) = Dx_,- (&,D;:u),

where a; is the harmonic average of a;, defined by

aj(x;) =\ — , 1=1,2.
o hily @i

In particular when a; (x;) = 1, we have that

S =T2=T,T,.
We approximate the boundary-value problem (2.192) by the following finite dif-
ference scheme:

—Zbg, (a;DFU) =818, f in 2", (2.194)

U=0 onl™", (2.195)
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where b; := S;(1), i = 1, 2. We define the global error by

Th”u, if0<s <1,

e=u—U, whereu::{u, if1<s<2.

Then, e is easily seen to be a solution of the following finite difference scheme on
the mesh 2"

2

2
—Y b3iDy(a;Dfe)=> D (a; D) in 2",
i=1 i=1

e=0 onrl",

where V; = S3—;(u) — b3_;ju,i =1,2. It is easy to show by a duality argument (cf.
the proof of Lemma 2.66) that

lellz,em < CIV1 L @m + 12l L, @n)- (2.196)

The task of deriving an error bound for the difference scheme (2.194) has thus been
reduced to estimating the expression on the right-hand side of (2.196). We shall
discuss the cases 1/2 <s <1 and 1 < s <2 separately.

First suppose that 1/2 < s < 1. Clearly, the value of ¥; at a node x € 2" is a
bounded linear functional of u € Wi‘ (K9, s>1 /2, where

K'=K%x) = {y:(yl,yz) Hyj—xjl<h, j= 1,2}.

Moreover, ¥; = 0 when u is a constant function. By applying the Bramble—Hilbert
lemma we deduce that

|1//i|50h~?—‘|u|wg(,(o), 1/2<s<1.
Summing over the nodes of the mesh 2" we obtain, fori =1, 2, that
Wil y2n < Ch lulwy2), 1/2<s=<1. (2.197)

Now let us consider the case 1 < s < 2. The key difficulty in obtaining an error
bound is that v3_; represents a nonlinear functional of a;, i = 1, 2; nevertheless
¥3—_i, i = 1,2, may be conveniently decomposed and, thereby, the nonlinear terms
can be directly estimated. Let us write

Vi = Y31+ 32+ V33,

where

1 x;—ht do
Y3—i1 ::/ [u(x+h1:e,~) —2u(x)+u(x—hrei)](/ )
0 X,

—n ai(0)
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Yoodo \ 7!
X (/ ) dr,
xi—h @i (0)

1 xi+h do Xi do -1
Y3-i2 :=/0 [u(x+hre,)—u(x)](/ )

a;(o) Xi —n ai(0)

xi+h xi+h _
x (/ ) —‘/ f @) =ailt) 4 g,
xi+ht Gi (o) xi—h Jx; a;(t)a; (t')

1 %ioodo 7!
V3-i3 32/0 [utx + hrep) — u(x)](/x,-—h ai(z))
Xi— —ht xl+h —_ /
< h™ 1(1_1') 1/ f ai(t) — ait )dtdl‘/df.

i+ht Qi ®)ai ()

The value of ¥3_; 1 atx € 2" is a bounded linear functional of u € W5 (K 0y, s >1,
which vanishes whenever u is a polynomial of degree 1. Using the Bramble—Hilbert
lemma we obtain

1¥3—i1llp,0n) < Ch'lulwy @), 1<s=<2. (2.198)
For 3/2 <s <2, v3_; 2 is a bounded linear functional of u € WZS(KO):
¥3-i2l < CH* 2 (™l Ly o) + lulys ko)
+/’ls_l|M|W25(Ko))|ai|W2)L(Io), >0,
where 10 = Io(x,-) = (x; — h, x; + h). Moreover, ¥3_; 2 =0 when u is a constant
function, and therefore the term 21 ||u/| L,(k©) on the right-hand side can be elim-

inated by applying the Bramble—Hilbert lemma. Summing over the nodes in the
mesh 2" yields

W3-l ycom < CHH 2 (max lulyy g, + 1 ulwg ) il 0.1y
where
.Qh’,' =.Qh,,‘(x) = {y ERzi xi—h<yi<xi+h O<ys_; < 1}.

Choosing A = s — 1 and invoking the boundary-layer estimate (see Oganesyan and
Rukhovets [148], Chap. I, §8)

Ivllz,0.6) < CF@lvlwg0,1), O0<e<1, 0<s<I, (2.199)
where
&’s 0<s<1/2,
F(e):={&'"?|loge| s=1/2,

gl/2 1/2<s<1,
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which implies that
lulyi @, < Ch' P lullws @), s >3/2,
we thus obtain the bound
1¥3-i2llL, 00 < Chlaillys—1 g lullwy @), 3/2<s<2. (2.200)
Similarly,
13—i2llz,m < Ch* laillys-reo gy lullwy @), 1<s=3/2, (2.201)

with p as in (2.193). An analogous bound holds for yr3_; 3. Combining (2.196) with
(2.197), (2.198), (2.200) and (2.201) we thus obtain the following result.

Theorem 2.67 Suppose that u € W3 (2) and a; € WS ™'\(2),i = 1,2, with 1/2 <
s <2 and p as in (2.193). Then, the finite difference scheme (2.194) satisfies the
error bound

S
lu = Ullp,on < Ch max ||ai||W1\7sf1\+6(0’1)||u||W§(Q)s (2.202)
where C is a positive constant, independent of h.

Unlike our earlier optimal error bounds in the L>(£2") norm, (2.202) is now also
compatible with the smoothness of the coefficients.

We note that for 0 < s < 1/2 the function S5 f, with f € WZS_Z(.Q), is not nec-
essarily continuous on £2; in this case the right-hand side of the difference scheme
(2.194) is not defined at the mesh-points. A more fundamental difficulty is that
ue Wzs (£2) does not have a trace on I" = 952 when s < 1/2, and it makes no sense,
therefore, to demand that it satisfies a homogeneous Dirichlet boundary condition
onl'.

2.7 Fourth-Order Elliptic Equations

This section is devoted to boundary-value problems for fourth-order elliptic equa-
tions with variable coefficients of the form

Lu = 07My () + 2010, M3(u) + 3 Ma(u) = f(x), x€2, (2.203)
where 2 = (0, 1)2 and

Mi(u) :=ay 81214 + aoazzu,

M (u) := a0812u + a2822u,
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M3(u) := azoou.
‘We shall assume that
a;>co>0, i=1,2,3, a1ag—a%ch>O, x €S2,
(2.204)
ueWs(), fews @), 2<s<4.

In order for (2.204) to hold it is necessary that the coefficients a; belong to the
multiplier space M (WZS 72((2)). According to the results in Sect. 1.8, the following
conditions are sufficient for that to be the case:

aj € W;_2+5(.{2), i=0,1,2,3, (2.205)
where
p =2, =0 when3 <s <4,
p>2, e=0 whens =23,
p=>2/(s—2), e>0 when2<s <3.

We begin by considering the partial differential equation (2.203) subject to the
boundary conditions

u=0 onl =082;
(2.206)
Pu=0 onljpUTl,i=1,2,
where

lig:i={xel:xi=k,0<x3_; <1}, i,k=0,1.

By adopting the same notation as in Sects. 2.2.4 and 2.7 we approximate the
boundary-value problem (2.203), (2.206) by the finite difference scheme

LyU=TZf ongh (2.207)
U=0, onl™",
(2.208)
DID U=0, onljurlt i=12,
where Flﬁ’( =T N Fh,
LyU := D D m(U) +2D; D m3(U) + D} D my(U),
and
my(U) :=a; D D, U +ao Dy, Dy, U,

my(U) 1= aoD; DU+ azD;; DU,
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m3(U) == a3 D} DI U,

X1

with
7 (x):= —lh —lh
az(x) :=az| x1 + , X2 + .
3 I\ 2 2 2

Let us note that the difference scheme also involves mesh-points in 2Z> that are
contained in [—A, 1 + h]z. Thus we shall suppose that the solution u and the coeffi-
cients a; have been extended onto the larger square (—hg, 1 + hg)? preserving their
Sobolev class; here A is a positive constant, ig > h.

Next we develop the error analysis of this finite difference scheme. The global
error e ;== u — U 1is easily seen to satisfy the following difference scheme:

Lne=D} Dy 1 +2D; D g3+ Di DL g, xeh, (2209

e=0, xth,
(2.210)
DD e=DiD u, xerjury i=12,

where
gi=mi) = To M), =12 g3=ms@)—T] T, Msu).
Thus (2.206), (2.208) and (2.210) imply that
mi(e)=¢;, xelhurh i=1,2.

By taking the inner product of (2.209) with e, performing summations by parts and
applying the Cauchy—Schwarz inequality we get

2 2 2 2
i3y < CAIOAIT, g + 19213, gy + 9l g ). (221D
Theorem 2.68 Assuming that the data and the corresponding solution of the

boundary-value problem (2.203), (2.206) obey the conditions (2.204) and (2.205),
the difference scheme (2.207), (2.208) satisfies the error bound

le = Ully2gn) < Ch*~? max lai llyys—2+e () lullws (), 5/2<s<4. (2212)

Proof In order to prove the error bound (2.212) it suffices to bound the terms on the
right-hand side of the inequality (2.211). Let us begin by representing ¢; as the sum

8
Y11= Zwl,j,
j=1
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where
Y1k = a2—k(D)_c:Dx_ku — T12T228,3u),
912 = (a2 — TP Taz ) (TE T3 5u),
Prita = (T7 T3 ar—i) (TP T3 0¢u) — TET; (ar-—idu),
Olk+6 1= T12T22(a2,k8,%u) — Tzz(asz(')/?u), k=1,2,
with an analogous representation of ¢,. Further, let
Y3 =31+ @32,
where
@31 := (a3 — ;" T,"a3) D} D} u,
@32 = (T Ty a3) D} D} u — T T, (a30105u).

When s > 2, the value of ¢ 1 at a mesh-point x € 2" is a bounded linear functional
of u € W3 (K9):

9111 < COllarll o lllwg ko)

Moreover, ¢1,1 = 0 when u is a polynomial of degree 3. By the Bramble-Hilbert
lemma,

o1l < CH* P llatll e lulws ko), 2<s <4

By noting the Sobolev embedding W,S,_z“'s (K% — C (F), s > 2, and summing
over the mesh-points in £2” we thus obtain

11 lyen < CH 2 larl g ulws (@), 255 <4 (2213)

The term ¢ > is bounded in the same way. Next ¢ 3(x), x € £2" is a bounded
bilinear functional of (a;, u) € WQ(KO) X qu(KO), with Ap > 2; ¢ = oo when p =
2;and g =2p/(p — 2) when p > 2. Moreover, ¢1 3 = 0 when either a; or u is a
polynomial of degree 1. From the bilinear version of the Bramble—Hilbert lemma
(cf. Lemma 2.30 with m = 2) we deduce that

o131 < CH*Hlarllwy oy lulwz oy 2/p <h <2,
and thereby

o131y < Ch* latllwio) lullwz@)-
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By choosing A = s — 2 + ¢ and noting the Sobolev embeddings
W5(2) = Wi(2), s>3,
and
W5 (R2) > W3,/ 2($2), 2<s<3,
we obtain
l0130Lyem < CH 2 latll oo llwy @y 2<s <4 (2214)

The terms ¢; 4 and @3 1 are bounded in the same way.

For . >0, u > 2 and g > 2 the value of ¢; 5(x) at x € 2" is a bounded bilinear
functional of (a,u) € W,;‘ (KO) X Wz‘;/(q_z)(Ko). Furthermore, ¢; 5 = 0 when a;
is a constant function or when u is a polynomial of degree 2. By the bilinear version
of the Bramble—Hilbert lemma,

n < Ch* T2 ||a A U || e ,
o150, @n < l 1||Wq @l ”qu/(qu)(g)

where 0 <X <1and2 < u <3.Now let A + u =s. When A + u > 3, there exists
ag=gq(A,u)suchthat A >2/g >3 — u; then,

A

Wi (2) = Wy (2) > W)

and
Ws(2) =Wt (@) — Wh (=2 ($2).

Analogously, when 2 < A + u < 3, there exists a real number g such that A > 2/q >
2/p — (i — 2). In this case,

W;;—2+8(Q) _ WI})»+M—2+8(Q) s W;(Q)
and
A
W3(2) =W, (@) > Wh ().
It follows from these embeddings that
l01.50Lym < CH 2 latll g llwy @y 2<s <4 (2215

The terms ¢; ¢ and @3 2 are bounded in the same way.

When A > 1/2, the value of ¢ 7(x) atx € 2" is a bounded linear functional of
aj 812u € WZ}‘(K 0, which vanishes on all polynomials of degree 1. By the Bramble—
Hilbert lemma, we have that

o171l Ly@n) < CHMardfulys o), 1/2 <1 <2.
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By choosing A = s — 2, the inequality
’“1312“|w2*(9) < Cllas ”W},“(Q) ” 312“H W} (2)
implies that
lo17 0Ly < Ch 2 latll s llwg i@y, 5/2<s <4 (2216)

The term ¢ g is bounded in the same way. Finally (2.213)—(2.216) and (2.211) yield
the desired error bound (2.212). O

We note that for 2 < s < 5/2 the function T, hzz f is not necessarily continuous on
£2 and therefore the right-hand side in the difference equation (2.207) is not defined
for this range of values of the Sobolev index s. In fact, for s < 5/2, the second-
normal derivative of u € W3 (£2) does not have a trace on I}o U I} and therefore
the boundary-value problem (2.203)—(2.206) is not meaningful as stated for this
range of s.

Now let us consider the partial differential equation (2.203) subject to the homo-
geneous Dirichlet boundary conditions

u=0 onl,
2.217)
ju=0 onrl;pUIl;,i=1,2.

With the notational conventions from Sects. 2.2.4 and 2.7 equation (2.203) is again
approximated by (2.207), and the boundary conditions (2.217) are discretized as
follows:

U=0 onrl",
(2.218)
DU=0 onlhurf i=1.2.
The error e := u — U satisfies (2.209) and the boundary conditions
e=0 onl",
(2.219)

Dye=Dyu onTHurh i=1.2.
Defining ¢; = ¢;(x) by
g = (Ddu—du)/h, i=1.2,
the derivative boundary condition in (2.219) can be rewritten as

Dgie:hgi, xe]"/(l)UFh

il

i=1,2.

Theorem 2.69 The following bound holds on the global error e :=u — U between
the analytical solution u and its finite difference approximation U :
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”u _ U ” W22(_Qh) S Chmin{s—2,3/2} | logh|1—|sgn(s—7/2)\

X max ||a; ||W;}72+g(9) ||u||W5(9), 5/2 <s <4. (2.220)
1

Proof We begin by noting that
2 2 2 2
< + +
”e”“rZZ(Qh) = C(”‘Pl ”LZ(Q{‘uFl"]) ||¢2||L2(Q£1U1—~2h]) ||(P3||L2(ng)

2
+Y Ry ;,.Z(x)). (2.221)

=l xergur

The first three terms on the right-hand side of (2.221) are bounded in the same
way as in the case of the boundary-value problem (2.203), (2.204) considered ear-
lier. The only new ingredient in the analysis is the estimation of the last term in
(2.221), which we discuss below.

When s > 2, ¢; represents a bounded linear functional of u € WZS (K9), which
vanishes on all polynomials of degree 2. By applying the Bramble—Hilbert lemma
we obtain

172
<h2 > ;}(x)) <CR Plulws(2g, 2<5<3, (2.222)

xerjs
where
i0=82p;0):={x:—-h<x;<h, 0<x3_; <1}

By noting the boundary-layer estimate (2.199), we deduce from (2.222) that

172 .
<l’l2 Z €12> S Chmln{572,3/2}|logh|17‘sgl’l@'77/2)|”u”WZS(Q)’ 2 <s S 4
xer

(2.223)

For x € Fl’{ the terms ¢;, i = 1, 2, are bounded analogously. From (2.221), (2.223)
and our earlier bounds on ¢1, ¢» and ¢3 we obtain the desired error bound (2.220)
for the difference scheme (2.207), (2.218).

For s < 7/2 the solution of (2.203), (2.217) has an even extension (i.e. an exten-
sion as an even function) across I” that preserves the Sobolev class W;. With such
an even extension of u, {; = 0 on Fl}(’) U Fl}i , and (2.220) is then a direct consequence
of (2.207)—(2.216) and (2.221). O
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Finally, we consider the partial differential equation (2.203) subject to the natural
boundary conditions

Mi(w)=0 and 0;M;(u)+233_;M3u)=0 on Ul i=12
(2.224)
M3w)=0 on Iy =1{(0,0),(0,1),(1,0),(1, D}

The solution of problem (2.203), (2.224) is unique, up to the addition of a polyno-
mial of degree 1. In order to ensure that we have a unique solution, we shall assume
that, in addition to (2.224), the values of u at three vertices of §2 have been fixed;
that is,

1 (0, 0) = coo, u(0, 1) = cor, u(1,0) =cyo. (2.225)

With the notational conventions from Sects. 2.2.4 and 2.7, the conditions (2.224),
(2.225) are approximated by

mi(U)=0, DYm;(U)+ Dy, [m3(U)+m3U)"]=0,
onThUT T, i=12; (2.226)

m3(U) +m3U) " +m3U) 2 +m3(U)"""2=0 onl};
U (0, 0) = cqo, U(@,1) =co1, U(1,0) =cio,

(2.227)

where F?k := Tz N I'"". Let us observe that the difference scheme also involves
points exterior to 2 that are at a distance < 24 from I'; therefore (2.203), (2.226),
(2.227) has fewer equations than unknowns. In order to account for the missing
equations, we also discretize the partial differential equation at the boundary mesh-
points. Let us introduce the asymmetric mollifiers

1
Tfif:=2/0 (1—1)f(x £rhep)dr, i=1,2,

and the additional equations

Ti§+ T% f for x € F"%
cu={1 TS forx € I7, (2.228)
T f for x = (0, 0),

and analogously for x = (0, 1), (1,0), (1, 1).

Theorem 2.70 The difference scheme (2.203), (2.226), (2.228) satisfies the error
bound

|[M _ U]| WZ(Qh) S Chmin{s—2,3/2} | logh| l—|sgn(s—7/2)\
2

Xm?lX||ai||W;’—2+s(9)||u||W2S(Q), 3<s<4,
i

where C is a positive constant, independent of h.
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Proof The global error e := u — U satisfies the inequality
2 2 2 2
|[€]|W22(.Qh) S C(|[§01 ]|L2(Qh) + |[¢2]|L2(Qh) + ”¢3”L2(Q{)’0)

2 2
+ |[¢1]|L2(Q”) + l[¢2]|Lz(.Qh))’ (2.229)
where, fori =1, 2,
—h
TZ M;(u) — T3 M;(u) on Tio-
$i =\ T2 .M;(u) — T{;M;(u) onT,
0 at the remaining mesh-points.
The terms @1, ¢2 and ¢3 are estimated in the same way as before. Finally, ¢; is a
bounded linear functional of M;(u) € Wz’\(.Q), A > 1/2, which vanishes on all con-
stant functions. Using the Bramble—Hilbert lemma and the boundary-layer estimate
(2.199) we obtain

|[¢i]lL2(Qh) S Chmin{s—2,3/2} | logh|l—|sgn(s—7/2)|

x max lajllys2e g lullwge). 3 <s<4.  (2.230)

The desired error bound follows from (2.229), (2.230) and our earlier bounds on the
terms ¢1, ¢2 and @3. U

2.8 An Elliptic Interface Problem

The technique of convergence analysis introduced in earlier sections of this chapter
can be extended to finite difference schemes for more general boundary-value prob-
lems. As an example, we consider here a model partial differential equation with a
singular coefficient. Problems of the kind discussed here are usually referred to as
interface problems or transmission problems. For further details we refer the reader
to Jovanovi¢ and Vulkov [101].

Let 2 = (0,1)? and I = 8£2. A typical point in £2 will be denoted by x =
(x1, x2). Let further X' be the intersection of the line segment x; =&, 0 <& < 1,
with 2. We consider the Dirichlet boundary-value problem

Lu~+k(x)sz(x)u= f(x) inS2, u=0 onlT, (2.231)

where 8y (x) = §(xp — &) is the Dirac distribution concentrated on X, k(x) = k(x1)
and L is the symmetric elliptic operator introduced in (2.166); i.e.

2
Lu=— Z 0;(a;joju) + au.
i, j=1

The Dirac distribution § 5 belongs to the Sobolev space W, *(£2), with A > 1/2.
Equation (2.231) must be therefore understood in a weak sense: we seek u € W21 (£2)
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such that
(Lu,v) + (k8x)(mv) = (f,v) Vve W (), (2.232)

where (f, v) denotes the duality pairing between the spaces W, ! (£2) and W21 (£2),
and

Az, we W} (),
P

(kéx)(w) ::/ kw

p)

where w|y € L1(X) denotes the trace of w € Wl1 (£2)on X, and k € Lo (X).

Alternatively, problem (2.232) can be restated as follows: find u € W21 (£2) such
that

a(u,v) = (f,v) Vve W} (), (2.233)
where

dx. (2.234)
P

2
a(u,v):/ (Z aijajuaiv—i—auv) dx—}—/ k(uv)
Q z

ij=1

Thus, (2.233) can be seen as the weak formulation of the boundary-value problem
(2.231). A relevant point in this respect is that for the domain £2 = (0, D)2 c R?
the product uv of u, v € W21 (£2) belongs to W; (£2) for all p €[1,2) and thus by
Theorem 1.42 (see also Theorem 1.5.1.3 on p. 38 of Grisvard [62] for p € (1, 2)
and Theorem 2.10 on p. 37 of Giusti [54] for p = 1), the boundary integral term in
(2.234) is meaningful. The following assertion concerning the existence of a unique
weak solution is an immediate consequence of the Lax—Milgram theorem and the
trace theorem for Wz1 (£2).

Lemma 2.71 Suppose that

FeW; (), aj.aele(R), ke€Ln(X), aj=aj. a=0, k=0,

2 2
Jeo>O0VE= (£, 6) eR?VxeR: Y a(0)&EE > coy &
i=1

i,j=1

Then, there exists a unique weak solution u € W21 (£2) to the boundary-value prob-
lem (2.233), (2.234), and

||u||W21(Q) = C||f||W{1(Q)'

Let us now assume that the coefficients a;;, ii =1, 2, and a of the differen-
tial operator £ belong to the Holder space C**(£2), with A > |0] and 0] < 1/2.
The bilinear functional a(-,-) can then be continuously extended to Wz1 79(9) X
Wzl +0(82). The following assertion can be proved by applying Theorem 3.3 in Necas
[143].
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Lemma 2.72 Suppose that

fewd ' @), 181<1/2, aj,aeC™ (@), r>10], keL(X),

ajj=aji, a>0, k>0,

2 2
Joo>0VE=(E1,6) eR?VxeQ2: Y aj(x)&EE > co ) &
i=1

ij=1

Then, there exists a unique solution u € W21 () 1o the boundary-value problem
(2.233), (2.234).

In the case when f does not contain a concentrated singularity on X, such as
8y, problem (2.233), (2.234) can be shown to be the weak formulation of the fol-
lowing boundary-value problem with transmission (conjugation) conditions on the
interface X':

Lu=f inR2 URT, u=0 onTr,

2
[u]ls =0, [ZHZjaju] =ku|yz,
j=1

X

(2.235)

where 27 :=(0,1) x (0,&), 27 :=(0,1) x (£, 1), and
[u]lg :==ulx1,§ +0) —u(x;,§ —0).

In this sense, the boundary-value problems (2.231) and (2.235) are equivalent.
Higher regularity of the solution can be proved under additional assumptions on
the data. For s > 2 we define the subspace W5 (£2) of W21 (£2), consisting of all

u € W, (£2) such that
duely2), i=0,1,...,s,
N hueLry(2), i=12,..,s,
0 ueLy(27)NLa(2F), i=j 1.5 j=23,..,s,

with the norm | - ||Wé(_(2) defined by

S )
. - 2
||M||2AZS(Q) = E ||8i“||L2(g) +§ :Hai 182”||L2(Q)
i=0 i=1

N s

+ Z Z(” 8i7j3{” ||iz(9,) +| aiijagu “iz(.m))'
j=2i=j

Obviously,

Ws(2) C W5 (2) := W) (@) nws(27)nws (2.
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Lemma 2.73 Suppose that in addition to the assumptions of Lemma 2.71 we have
that

felyR), ajeWh(2), kewl(®);
then, u € WZZ(.Q). If, in addition,
A f € Ly(82), hfel(2F),  ajeWi(),
aeWh), kewi(®)

and
f=ap=01a11=0 forx;=0andx =1,

then u € W5(£2).

Proof For x € 2~ U £27F (2.235) can be written as
2
2 2. .9
a1107u + 2a120102u + apdyu = — Z 0;ja;joju+au — f. (2.236)
ij=1

Multiplying (2.236) by 81214, integrating over £2 and performing partial integration
we obtain

/ [an(afu)z+2a12312u8132u+a22(8182u)2]dx+/ k(du)?| dx
2 z z
=1L+ Db+,
where
2
I = —/ (Z 0;a;j0ju —au +f>812udx,
2\; =1
b= / (32a2282u812M — 81a2282u8182u) dx,
Q
Iz = —/ KududX.
=
Further,

/ [an1 (97u) + 2412071 02u + ar (31 924)*] dx +f k(d1u)*dx
2 )

> co(|[ofu ||iz(.o) + 101 82””%2(9))'
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The integrals I, I and I3 can be bounded by applying the Cauchy—Schwarz in-
equality with ¢ € (0, 1) as follows:

C
il < 8||312”||iz(9) + Z(”“”%V;(Q) T lz)

Similarly,

1121 = ([0 g + N2l ) + < 020l

21 = 8T Ly () T 10128 Ly (2)) T 71928 Ly (2)
and

C
2 2
|I3] < 8||81u||L2(2) + ;”””Lz(z)

2

C
= C18(||312u “iz(KZ) + ”8132"{”%2(9)) + ;”unwzl(g)

Hence, by selecting a sufficiently small ¢ > 0, we obtain the bound
2112 2 2
|07l 7 ) + 181026017, 2) = CIFIT 0
From (2.236) we immediately have that
[05ul Ly 0s) < CU187] 1y ) + 191826l a2y + Tl + 1 f 2acs2)
QU Lyt = 1%L, 02) 1 La(82) W, (£2) Ly($2))>

which proves the first part of the lemma.
When the assumptions of the second part of the lemma are satisfied, we deduce
from (2.231) that

du=0 onl.
By differentiating (2.231) one obtains
LOTu+k(x)8x(x)dtu= fi(x), xe,
where
2
f1:= 812f + Z 0; (281a1j818ju + 81261,','8,'14)
i,j=1
—201adu — dfau — 2k'8xdu — k"'Sxu € Wy ' (£2).

By applying Lemma 2.71 we then deduce the regularity result stated in the second
part of the lemma. g

For further details regarding the analysis of elliptic boundary-value problems in
domains with corners we refer to Grisvard [62] and Dauge [28].
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2.8.1 Finite Difference Approximation

In the sequel we shall assume that the weak solution of the boundary-value problem
(2.231) belongs to W3 (£2), s > 2, and that the coefficients of the equation satisfy
the following regularity hypotheses:

ajews N @)nwy i (@N)ne®@),  aews A (L27)nwyA(e2T)
and
kews (D).
We define
gy = (Il gy + Nulyg ey + Nl )
In particular, for s =0 we set

1/2
Il o) = Nl = (103 i) + Nl )

For the sake of simplicity we shall also assume that £ is a rational number. Let

5’1 be a uniform square mesh on 2 with mesh-size i := 1 /N, where N is an integer
such that £ N is also an integer. We shall use the notations from Sect. 2.2 and define

She=02"nx and X" :=3"U{©,8)).

Let us approximate the boundary-value problem (2.231) on the mesh o by the
following finite difference scheme with mollified right-hand side:

LU +kSsnU =TETEf  in 20, U=0 onrl™", (2.237)
where
1 2
LU =—3 -ZI[D; (aij Dy, U) + Dy, (ai; DL U) | + (TP TS a)U
1,j=
and

0 for x € 2"\ 2",

Sxn(x) =8 (x2 — &) :={1/h for x € X"

is the discrete Dirac delta-function.
Further, we define the asymmetric mollifiers TZZ* and Tz2+ by

2 [* Xy —x
T f(x1,x2) i= —/ 14222 f (1, x5) dx),
n) h

2—h
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2 x3+h x! — X
T f(x1,x0) o=~ 1- =2 £ (x1, x5) das.
h h

2

In addition to the discrete inner products and norms defined in Sect. 2.6.1 we intro-
duce

U V)gni=h 3 U@V, (Ul = U0,

xeXxh
U —va\”
5 —
Uy gy - (h > X W)
xexh x'exh x'#x ! 1
The following lemma holds.

Lemma 2.74 Let U € Sg and let V be a mesh-function defined on X" . Then,

(D5, V. U) 5 |<C”U||W(Qh)|v| 12 (shy-

Proof Similarly as in the proof of Lemma 2 in Jovanovi¢ and Popovi¢ [92], we
expand U and V in the following Fourier sums:

N—1N-1 N—1
U(xy, x3) = Z Z by sinkmx; sinlmx, = Z Bi(xo) sinkzwx;,  (2.238)
k=1 [=1 k=1
N-—1 h
Vi(x)) = k —). 2.239
(x1) ];ak cos n<x1 + 2) ( )

Hence we have that

— 4
D;l V(x)=— Z VAragsinkmxy, where A := o sin —
k=1

Using the orthogonality of sine functions, we deduce that

N—-1
_ 1
(Dx, Vv, U)Eh =-5 /; vV Arag By (x2)
Nl 1/2 Nl 172
< (E > w/xkag) (E > w/ka,f(xz)) . (2.240)
k=1 k=1
Let us consider the following sum (over mesh-points):

1-h 2
N2(V) = Z <V(X1) —V(x; — tl)) ’ (2.241)

t
x1,t1=—1,117#0




2.8 An Elliptic Interface Problem 235

where the mesh-function V has been extended outside X" by (2.239). Using the
periodicity and orthogonality of cosine functions, we then deduce that

1-h 1-h
-V t 2V \%
N2(V) 2 Z Z (x1+1)+2V(x) —Vx — )V(xl)
X|——10;ét]——l tl

N-1
_iY VR
k=1

where
kzh krh = /sin kTN 2
Ik R 2 Jk Jk — § 2
: sin kmh ’ : 2 kit :
2 l‘1=h 2

We note that

krh
2

1<
nknh

b3
< —
si 2

and that Jy is a Riemann sum for [; ko 2(““’) dt, which therefore satisfies the fol-
lowing two-sided bound:

g e

oS
EREN)

1
b4

Hence,

=

—1

ENEN

N-—1
Varap < N*(V) < (72 +4) > Vuag.

1 k=1

>-
Il

From (2.241), using the periodicity of the cosine function, we also have that

1-h I
Vixp) — V)
N (Vy=hr* ) — <4 V2,
V) < x| — X} | | 2 (zhy’
X1 xp=—1x17x]

whereby

Z Vara} < n|V| Py (2.242)

On the other hand, since By (0) = 0, we obtain

Xxo—h xo—h
B(xx)=h Y D} (BE(x3)) =h Y _ (D Bi(x}))(Bi(x5 +h) + Bi(x3))
.Xz—

x2_0
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1-h
<eh Y B(x)) —h Z (DF B(x3))",
xy=h x5=0

withe, >0,k=1,..., N — 1, to be chosen.
Selecting e = /Ay fork=1,..., N — 1, and using the discrete Parseval identi-
ties (2.21) and (2.22), we have that

_Z\/_Bk(x2)<||D U||L2(Qh + | D} U||L2(Qh)_||U||W(m) (2.243)

Finally, the assertion follows from the inequalities (2.240), (2.242) and (2.243)
with C = /mr /2. That completes the proof. g

2.8.2 Convergence in the Discrete W21 Norm

Let u be the solution of the boundary-value problem (2.231) and let U denote the
solution of the finite difference scheme (2.237). The global error e¢ :=u — U then
satisfies the finite difference scheme

Lre+kSgne=¢in 2", e=0onTI", (2.244)
where
2
= Z Dy nij+n+éznu,
i,j=1
1
nij _T T3 ;(ajjoju) — (a,JD u+a+’D Ju )
= (T{Ta)u — T{ T3 (aw),
=ku T1 (ku).
Let us decompose 71 and 7 as follows:
mj =1 +38snin; and n=1n+3xn,

where

h2
ni:= FT1+([6!113132M + 0ha1191ulx),

h? h?
a2 =T " ([a1283u + Branndou] ) — ZT1+([81(‘11232“)]2)’
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2

= (1) (o).

By performing summations by parts and applying Lemma 2.74 we deduce the
following bound:

2
12l (ny < C[Z(unzjnh(gg) s LIV PREIE LIV
j=1
177 Ly gy + 181y ) + ||u||L2@h>}. (2.245)

Hence, in order to estimate the convergence rate of the finite difference scheme
(2.244), it suffices to bound the terms on the right-hand side of (2.245).

The terms 12, j = 1, 2, have been bounded in Sect. 2.6.1. After summation over
the mesh .Qé’ we obtain

211ty < ™ (a2 llyys—1 o Il ws )

102l st o lellwg@n). 2<s 3. (2.246)

The terms 71; for x € .Q]h \ X" can be bounded in the same way. For x € " we
set

3
ni = Z(ﬁﬂ,k + 17 4)-
k=1
4
UIPRES Z(m—z,k +150)-
k=1

where

1 1
+ g2t + 24 + 24
'711,1~—§ ' I (C‘llal”)_E(Tl T, all)(Tl T, 81”)

H_

(T1+82a11) [(T1+ Tzzialu) - (T1+31”)]

H

a +a+l
[M(Tﬁalazu) = Tﬁ(allalazu)}

| ol ol

H_

[(T7"02a11) (T, 81u) — T} (B2a1191u) ] ixZ:SiO’

an+al' n
”ﬁ,z = (T1+T22iall) - % + §(T1+82“11):|(T1+T22i81“)‘xz:sio’

N =
| B
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s = % [(T1+T22i81u) — Uy, F E(T1+8182u)j| "
X2 =
1 1
77?[2,1 = §T1+T22i(01232u) - §(T1+T22ia12)(Tl+T22i82u)
b+ o2k "
+ g(Tl 82"12)[(T1 T; 82”) - (Tl 32”)]
hla +a1+21 +2 n )
= g|: 2 (Tl 82”) - Tl (a12321/l)j|
h
+ g[(T1+32a12)(T1+82“) — T7H (dra1200u) |
h

+ ZT1+(816112(T2i32“ - 32”)) |x2:$i0’

’ﬁz,z = %[(T1+T22i"12) - % + g(T1+32“12)] (T1+T22i82u)|x2=$:t0’
= O (1) - P DT g |
+ ZT1+("12(T2+3132” = 01dau))| g o
M3 = % (T1+T22782”) - w - g(T1+3§“):|
+ %T1+(a12(T2_3182u - 8182u))|x2:§_0,
=g ) (DR =) o
aai=—g el —an) (Dot — )|

The terms nfj « can be bounded analogously to the corresponding terms 7y ,x con-
sidered in Sect. 2.6.1. Thus we obtain:

~ —1
||771] ”Lz(glh) < Ch’ (”alj ||W2r71(9—) ”u”Wé(.Q*)

+ llarjllys—1 onllullws @), 25<s<3. (2247
2 ( ) 2

For x € 2"\ X", the term 7] can be bounded in the same way as the correspond-
ing term 7 in Sect. 2.6.1. For x € X" we use the following decomposition:

n=T"q + Ny + M) + Ny
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where

s

xo=£+0

h
Uﬁ) = (T12T22ia) |:” - (T12T22i”) E g(T1232”)}

N =

TET%a) (TET u) — T2T5 (au)

1
+
o) '—5[
Lk
£5

((770) - (77 Tﬁa»(rfazu)} .
xp=£40
These terms can be bounded analogously to the terms 73 and n4 discussed in

Sect. 2.6.1. Hence we deduce that

- s—1
170l 2ny < CH* (llallwgfz(_qf)||M||W5‘(9*)

Fllallys2 g+ lullwy@+), 2<s<3. (2.248)

The value of u at the node (x1,£) € X" is a bounded linear functional of
ku € W“l(z) 1= (x1 —h,x1 + h) x {£}, s > 3/2, which vanishes on all linear

polynomials. Using the Bramble—Hilbert lemma one then obtains that

-1
”/‘L”Lz()_fh SChS ”ku”WZFI(Z')
1.5<s<3.

< Ch* ™ Kl g1y (el ws - + lullwg o).
(2.249)

The term 7 can be bounded directly:

~ 2
il aceny < CH(lall Ly 1024l g, + @l Lz 1320l o )

= Chz(”a”WZY*z(_QJr)||u||W§(.Q+) + ”a”WZT*z(_Qf)”u”WZS(.Q )) s> 2.5,
(2.250)
where we have used the following notation:
lallz,s+) = (. & £0) ”Lz(O,l)'
Wi (sh) can be

For a function ¢ € W2 (X), 0 < A <1/2, the seminorm |

estimated directly:

T lynsny < 2207 M0l ) < CH 120N i g

We thus deduce that
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A s—1
N1 |W21/2(Eh) <Ch (”allalaZMHW;*Z(_Q-%—) + ”allala2u”WZS*2(Q—)
+ ||32a1181u||W25—z(9+) + ||3201131MIIW5—2(97))

= Chxil(”6111||W§—I(Q+)||M||W§(Q+) + ”all”WZS—l(_Q—)”u”Wg(Q*))»
(2.251)

for 2.5 < s <3, and analogously
2ty 12 gy = CR 7 (lanallyg g lullws @)
+ ||6112||W§—1(Q,)||M||W25(Qf)), for 2.5 <s <3. (2.252)
Hence, from (2.245)—(2.252) we obtain the main result of this section.

Theorem 2.75 Suppose that the solution of the boundary-value problem (2.231) be-
longs to the function space W (§2), and that the coefficients of the equation (2.231)
satisfy the following regularity hypotheses:

aij e Wi (@M nws T (27)nC(R),
aeWs 2 @N)nwy2(27), kewy '(D).
Then, the finite difference scheme (2.244) converges and the following error bound
holds:

flu — U||W21(_Qh)

< s—1 .. B L. o
< ! (maxlais -1 g4y + max s lyg-1 g

+ ”a”WZS*Z(Q+) + ||a||W2s—2(_Qf) + ||k||W25*1(2))”u”W2Y(_Q)7 25<s<3,

where C = C(s) is a positive constant, independent of h.

2.9 Bibliographical Notes

The principal purpose of this chapter has been to develop a technique for the deriva-
tion of error bounds, which are compatible with the smoothness of the data, for finite
difference approximations of boundary-value problems for second- and fourth-order
linear elliptic partial differential equations. The technique is based on the Bramble—
Hilbert lemma and its generalizations (see Bramble and Hilbert [20, 21], Dupont
and Scott [37], Drazi¢ [32], Jovanovi¢ [79]).

According to the definition of Lazarov, Makarov and Samarskii [125], an error
bound of the form

e = Ullws on < Ch* " ullws2), s>r (2.253)
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is said to be compatible with the smoothness of the solution to the boundary—value
problem. Similar error bounds, in ‘continuous’ norms, of the form

e —u"llwy @) < CH* " llullws2), 0<r<l<s<p+l,

are typical for finite elements methods (see e.g. Strang and Fix [169], Ciarlet [26],
Brenner and Scott [23]) and are usually referred to as optimal; here u" denotes the
finite element approximation of the analytical solution « using continuous piecewise
polynomials of degree p.

In the case of equations with variable coefficients the constant C in the error
bound (2.253) depends on norms of the coefficients. One of our main objectives in
this chapter has therefore been to understand this dependence in the case of various
second-order and fourth-order linear elliptic model problems with variable coeffi-
cients. Specifically, we proved error bounds that are of the typical form

s—r . s
I = Ulwgiany < O (mas il + a2 ) ellwg o

To the best of our knowledge, error bounds of the form (2.253) were first derived
by Weinelt [195], for r = 1 and s = 2,3, in case of Poisson’s equation. Subse-
quently, bounds of the form (2.253) were obtained by Lazarov, Makarov, Samarskii,
Weinelt, Jovanovi¢, Ivanovi¢, Siili, Gavrilyuk, Voitsekhovskii, Berikelashvili and
others, by systematic use of the Bramble—Hilbert lemma.

For example, families of finite difference schemes for Poisson’s equation and
the generalized Poisson equation with mollified right-hand sides were introduced
by Jovanovi¢ [111] and Ivanovié, Jovanovi¢ and Siili [75, 106], and scales of error
bounds of the form (2.253) were established in the case of both integer and fractional
values of s.

A procedure for determining the constant in the Bramble—Hilbert lemma, using
the mapping of elementary rectangles on a canonical rectangle, was proposed by
Lazarov [119]; see also [37] and [38] for related issues.

In the papers of Lazarov [119], Lazarov and Makarov [123] and Makarov and
Ryzhenko [130, 131], the convergence of various difference schemes was exam-
ined for Poisson’s equation in cylindrical, polar and spherical coordinates, and error
bounds of the form (2.253) were derived under the assumption that the analytical
solutions to these problems belong to appropriate weighted Sobolev spaces. Finite
difference approximations of Poisson’s equation by special classes of finite volume
and finite difference schemes on nonuniform meshes were studied by Siili [171]
and Jovanovi¢ and Matus [73]. In particular, the results in Sects. 2.4 and 2.4.2 are
based on the paper [171]. The analysis presented in Sect. 2.4.3 was stimulated by
discussions with Professor Rupert Klein, Free University Berlin. For related work,
we refer to the paper of Oevermann and Klein [147].

A finite difference scheme with enhanced accuracy for second-order elliptic
equations with constant coefficients was derived by Jovanovié, Siili and Ivanovic¢
[108], and similar results were obtained later by Voitsekhovskii and Novichenko
[188].
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Difference schemes for the biharmonic equation with a nonsmooth source
term were considered by Lazarov [120], Gavrilyuk, Lazarov, Makarov and Pir-
nazarov [50], Ivanovi¢, Jovanovi¢ and Siili [76], and for systems of partial differ-
ential equations in linear elasticity theory by Kalinin and Makarov [114, 129] and
Voitsekhovskii and Kalinin [187].

The convergence of the so-called exact difference schemes was investigated by
Lazarov, Makarov and Samarskii [125].

The error analysis of finite difference schemes for linear partial differential equa-
tions with variable coefficients was developed later. The first attempts in this direc-
tion were focused on finite difference schemes for the generalized Poisson equation
with a variable coefficient in the lowest-order term (Lazarov, Makarov and Weinelt
[126, 196], Voitsekhovskii, Makarov and Shablii [189]); subsequently, problems
with variable coefficients in the principal part of the partial differential operator were
considered (Godev and Lazarov [58], Jovanovié, Ivanovi¢ and Siili [110], Jovanovié¢
[83]). Partial differential equations where the coefficient of the lowest-order term
belongs to a negative Sobolev space were considered by Voitsekhovskii, Makarov
and Rybak [192], and Jovanovi¢ [83]. Zlotnik [203, 205] obtained different error
estimates for discretizations of elliptic problems with variable coefficients.

Fourth-order equations with variable coefficients were studied by Gavrilyuk,
Prikazchikov and Khimich [51], and Jovanovi¢ [84]. Quasilinear equations in ar-
bitrary domains, solved by a combination of finite difference and fictitious do-
main methods, were studied by Voitsekhovskii and Gavrilyuk [186], Voitsekhovskii,
Gavrilyuk and Makarov [191] and Jovanovi¢ [80, 81].

The technique described above was also used for the solution of eigenvalue prob-
lems (Prikazchikov and Khimich [151]), variational inequalities (Voitsekhovskii,
Gavrilyuk and Sazhenyuk [190], Gavrilyuk and Sazhenyuk [49]) and in the analy-
sis of supraconvergence on nonuniform meshes (Marletta [134]). Berikeshvili sys-
tematically used the same technique for the numerical approximation of a general
class of elliptic problems, including equations of higher order, systems of ellip-
tic equations, problems with nonlocal boundary conditions, etc.; for further details,
we refer to the survey paper [11], which also contains an extensive bibliography.
Berikeshvili, Gupta and Mirianashvili [12] investigated the convergence of fourth-
order compact difference schemes for three-dimensional convection-diffusion equa-
tions. Jovanovi¢ and Vulkov [101] studied the finite difference approximation of
elliptic interface problems with variable coefficients.

Recently, a group of mathematicians (Barbeiro, Ferreira, Emmrich, Grigorieff
et al.) exploited the techniques discussed in this chapter for the analysis of super-
and supraconvergence effects in finite-difference and finite-element schemes (see
Barbeiro [5], Barbeiro, Ferreira and Grigorieff [6], Emmrich [44], Emmrich and
Grigorieff [45] and Ferreira and Grigorieff [47]).

There has also been work on the convergence analysis of finite difference
schemes in discrete W}g norms, for p # 2; see, for example, Lazarov and Mokin
[124], Lazarov [121], Godev and Lazarov [57], Drenska [33, 34], Siili, Jovanovié
and Ivanovi¢ [173, 174]. In this case, the derivation of a priori estimates is tech-
nically more complex—the theory of discrete Fourier multipliers, developed by
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Mokin [140], is used instead of standard discrete energy estimates. Error bounds for
the difference schemes under consideration are then obtained by combining these a
priori estimates with the use of the Bramble—Hilbert lemma, as we have described
in this chapter.

An alternative technique for the derivation of error bounds of the form (2.253)
in fractional-order norms is based on function space interpolation, and was used by
Jovanovic [89].

Our goal in the rest of the book is to extend the methodology developed in the
present chapter to time-dependent problems. In Chap. 3 we shall be concerned with
parabolic partial differential equations, while in Chap. 4 we focus on hyperbolic
equations.



Chapter 3
Finite Difference Approximation of Parabolic
Problems

In Chap. 2 we considered finite difference methods for the approximate solution of
elliptic equations. The present chapter is devoted to the analysis of finite difference
schemes for parabolic equations.

In Sect. 3.1 we discuss the question of well-posedness of initial-boundary-value
problems for second-order parabolic equations. In Sect. 3.2 we review some clas-
sical results concerning standard finite difference schemes for the heat equation.
Section 3.3 is devoted to the convergence analysis of difference schemes for the
heat equation with nonsmooth data. In Sect. 3.4 we extend these ideas to a linear
second-order parabolic equation with variable coefficients and derive error bounds
in the mesh-dependent anisotropic Sobolev norm Wzl’l/ ? that are compatible with
the smoothness of the data. In Sects. 3.5 and 3.6 we shall be concerned with the finite
difference approximation of interface and transmission problems for second-order
linear parabolic equations. We conclude with some comments on the literature.

3.1 Parabolic Equations

We begin with a brief account of the theory of existence and uniqueness of solutions
to evolution equations of the general form

ou

o7 +Au= f(x,t), (x,t)eR2x(0,T],

subject to an initial condition
u(x,0)=uo(x), xe€§2,

with f and u specified, and suitable boundary conditions for # on 952, where u is
a function of x € £2 and r € [0, T'], with T > 0, and §2 is a Lipschitz domain in R";
A(t) will denote a linear elliptic partial differential operator. We shall suppose that
[0, T'] is a bounded interval, that is 7 < co. An alternative viewpoint to considering
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u as a function of x and ¢ is to consider the mapping ¢ € [0, T] — u(-,t) with
values in a Banach space or, more specifically, a Hilbert space, which is typically a
Sobolev space of functions defined on 2. The partial differential equation can then
be viewed as an ordinary differential equation in a Banach or Hilbert space. The
technical details of this alternative viewpoint are discussed in the next section.

3.1.1 Abstract Parabolic Initial-Value Problems

Suppose that H is a separable real Hilbert space with inner product (-, -) and asso-
ciated norm || - || = || - ||, and let V be another separable real Hilbert space with
inner product (-, -)y and norm || - ||y, which is continuously and densely embedded
in ‘H. By the Riesz representation theorem # can be identified with its dual space
‘H'. The dual space of V is denoted by V. Thus we have

Vs H=H <V

with continuous and dense embeddings. Such a triple of spaces V, H, V', regardless
of whether the spaces are separable or not, is called a Gelfand triple (or rigged
Hilbert space). The duality pairing between V' and V will be denoted by (-, -). For
t € [0, T] we consider the bilinear functional a(z; -, -) : V x ¥V — R, such that the
following hypotheses hold:

(a) The function ¢ — a(t; w, v) is measurable on [0, T'], for any fixed w, v € V;
(b) There exists a real number ¢; > 0 such that

la(t; w,v)| <cillwllyllvlly forallze[0,T]and w, v € V;
(c) There exist real numbers A > 0, ¢y > 0 such that
a(t; v,v) +Alvll3, = collvll}, forallze[0,T]andve V.

As in the case of elliptic problems considered in the previous chapter, condition (c)
is referred to as Gdrding’s inequality.

Thanks to condition (b), for any ¢ € [0, T] and w € V fixed, the mapping ¢; ,, :
v € V> a(t; w,v) € R is a bounded linear functional on V. Thus, ¢; ,, € V. As
a(t; -, v) is a bounded linear functional on V, it follows that for each ¢ € [0, T'] the
mapping A(t) :w € V> €, = A(f)w € V' is a bounded linear operator on V with
a(t;w,v) = (A(H)w,v), t € [0, T], w,v € V. However, under our assumptions a
more precise statement can be made.

Lemma 3.1 Suppose that hypotheses (a) and (b) hold; then, the operator A(t) as-
sociated with the bilinear functional a(t; -, -) is bounded and linear as a map

A:L((0,T); V) — La((0,T); V).

Here, for g € L2((0, T); V), A(g) denotes the function t — A(t)(g(t)) € V.
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Proof 1t follows from (a) and (b) that the functions ¢t — A(#)(g(¢)) and ¢ — A(¢)
are measurable on [0, T']. The proof of this statement is based on results from mea-
sure theory and is beyond the scope of the discussion here; the interested reader is
referred to Wloka [199], Lemma 26.1 on p. 395. As A(r)g(¢) € V' forall r € [0, T,
we have that

(A)g(),v

B )
EIOHOINE S v <cile®],

for all ¢ € [0, T], where the definition of A(¢) and hypothesis (b) have been used.
Thus

T T
fo [A0g®|3 dr <3 fo le@]2dr,

which implies that the linear operator A : Ly((0,T); V) — L2((0,T); V) is
bounded and therefore also continuous. O

Let us define the space
d
W, T) := {v ‘v e Ly((0,T); V), d—’; e Ly((0, T); v/)},

equipped with the inner product

_ T Trdu@) dw(r)
(v, Wy _/é (v(t)’w(t))vdl+/0 ( dt °  dt )V/dt7

where (-, -)y» is the inner product of V'. It is a straightforward matter to show that
W is complete under the norm induced by this inner product, and therefore W is
a Hilbert space. Moreover, W(0, T) — C([0, T]; H), and for any u € W(0, T') the
following equality holds in the sense of distributions on the interval (0, T):

d du
5(||u||%{)=2<5,u> 3.1)

(see Theorems 25.4 and 25.5, pp. 392-395 in Wloka [199]).
Let us now consider the following problem (P): Let f € L>((0, T); V') and ug €
H; find

ueW(,T)
such that u(0) = ug, and

d
T HAQU=£() inLa(0.T): V),

that is,

du
<E, v> +{ACu, v)=(f(),v) VYveV.
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as an equality in L>(0,T).

Thanks to the embedding W(0, T) — C ([0, T']; H), the initial condition u(0) =
uo with ug € H is meaningful.

We state the following existence and uniqueness result for problem (P) (see
Wiloka [199], Theorem 26.1 on p. 397).

Theorem 3.2 Suppose that hypotheses (a), (b) and (c) hold, and assume that
T < oo. Then, problem (P) has a unique solution u € W(0, T) satisfying the ini-
tial condition u(0) = ug, and u depends continuously on the data f and u; that is,
the map

(f,uo) —> u, where u is the solution of (P),

is continuous from L((0, T); V') x H into W(0, T).

3.1.2 Some a Priori Estimates

In the previous section we treated A = A(t) as a bounded linear operator from the
Hilbert space Ly ((0, T); V) into its dual space Ly(0, T, V’). Here we shall discuss
an alternative perspective, in the special case when A = A(t) is independent of 7.
Instead of viewing A as a bounded linear operator from V into V', we shall con-
sider A as an unbounded densely defined linear operator on a real Hilbert space H
with inner product (-, -)3y = (-,-) and norm || - ||y = || - || (i.e. the domain D(A)
of A is assumed to be dense in ). We shall confine ourselves to the special
case when A is a selfadjoint and positive definite operator; the latter means that
infyep(an (o) (Av, v)/||v]|* > 0.

The bilinear functional (w, v) € D(A) X D(A) — (w,v)4 := (Aw,v), w,v €
D(A), satisfies the axioms of inner product. The completion of the inner product
space D(A) in the induced norm |jv]|4 := (v, v)i\/ 2 is a real Hilbert space referred
to as the energy space of A, denoted by H 4, which is continuously and densely
embedded in H. By spectral decomposition of the selfadjoint, positive definite,
densely defined linear operator A one can then define the power A% of A for any
real number «. In particular, D(A'/?) = H4 and (w, v)4 = (A ?w, A/?v) for all
w,v € D(A).

Similarly, by completion in the norm [|v]| 4-1 = (v, U)L/_zl induced by the inner
product (w, v) 4-1 = (A~ w, v), w, v e D(A™"), we obtain the energy space H 4-1.
Then, H = H' is continuously and densely embedded in (H4) = H 4-1. The spaces
Ha, H and H -1 form a Gelfand triple: Hy — H < H 4-1. The inner product
(-, -) can be continuously extended to a duality pairing (-, -) on H 4-1 X H4 and the
operator A : D(A) C Ha — H can be extended to a bounded linear operator (still
denoted by A) from H4 into H 4-1.

We consider the bilinear functional a(¢; w, v) = a(w, v) := (A/?w, A/2v) for
w,v €V = D(AY?). The assumptions (a), (b) and (c) from Sect. 3.1.1 are then
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satisfied with cg = ¢; = 1 and A = 0. Problem (P) amounts to finding u € W(0, T')
such that

L au=F0. uO=u, ©2)

with ug € H and f € L2((0, T); H 4-1). The unique solution u € W(0, T') satisfies
the following Hadamard inequality (cf. Wloka [199], p. 403):

[ (1ol + | 442

Indeed, it follows from (3.2) that

T
)dr < [luol* + fo lro)} o d. 33

1£11% Wl du
= u = || —
A ! dl A—l

+llul’ +2 du u
—1 A de’

By integrating this equality with respect to ¢ from 0 to 7" and using the relation (3.1)
we obtain (3.3).

In the rest of this section we shall develop, in a nonrigorous manner, a collection
of energy inequalities satisfied by the solution of problem (P). The purpose of the
discussion that follows is merely to motivate our subsequent derivation of discrete
counterparts of these estimates, on finite-dimensional Hilbert spaces, which can be
proved, in a completely rigorous fashion, by mimicking the nonrigorous arguments
here. Those discrete energy inequalities will then form the basis of our error analysis
of finite difference approximations to parabolic problems.

By applying to (3.2) the operator A'/2, resp. A™1/2, and noting the inequality
(3.3), we (formally) obtain the following a priori estimates:

[ (awor+
and

T d 2 T
/0(\}u(r)uﬁHA-l%’)drs||uo||il+/o A @) . (35)

dt

du(t)
dr

T
‘ )drs ||uo||i+/0 | £ de (3.4)

assuming that the right-hand sides of these inequalities are finite.
Let us now turn our attention to initial-value problems of the form

d
B+ Au=f®). u(0)=uo. (3.6)
where B and A = Ap + A1, Ap, A1 are unbounded, densely defined linear opera-
tors on a real separable Hilbert space . Let us further suppose that Ag and B are
selfadjoint and assume that there exist positive constants m; > 0, i = 1,2, 3, such
that

(Bu,u) > m1||u||2 Yu € D(B), (Aou,u) > mo(Bu,u) Yue D(Ag)ND(B),
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and that, for all u € D(Ag) N D(A1) and all v € D(Ay),
2
(Aru, v)* < m3ullllullagllvIV] 40 (3.7

By applying the operator B~!/? to (3.6) we have that

i | 2o g0 o _a
E-i_ M—f(t), M( )—M(),

where we have used the notations
i:=B"?u, iio := B ?uy, A:=B12AB71/2, f:=B"127.

Let us further define A,- = B_l/zAiB_l/Z, i =0,1. We observe that the linear
operator A is selfadjoint and positive definite on H, i.e.

(Agv,v) = (B~ AgB™"?v,v) = (AgB™*v, B~'/v)

> my(BB~?v, B™'20) =ma|v]|* Vv e D(Ap).
Further, we have that

(Ajv,w)? = (A1 B~ "2y, B7!/2 )

szllli?‘”zv||||19‘”2 IIB‘1/2w||||B‘”2w||AO

U”Ao

B 1B Pl = =i iy, G)

“m

for all v € D(Ag) N D(A1) and w € D(Ag); and, for all v € D(Ag) N D(A1),

oo = v B2 520, = [ ol 5,

ms3 2
,/ |Iv||||v||A0 —||v|| 2m1”U”' (3.9)

Thus, by taking V :="H Ao and a(t;v,w) ;= (Av w) we deduce that the condi-

tions (b) and (c) above hold with ¢c; =1 + m1 mz ,co=1/2 and A = , while
condition (a) holds trivially. Returning to the original notation, we thus deduce that
if ug € Hp and f € Lo((0,7); H 1) then problem (3.6) has a unique solution
u € Ly((0, T); Ha,) with BY € L2((O T): Hyon).

We now turn to the (formal) derivation of a priori bounds on the solution of
problem (3.6). Denoting by (-, -) the duality pairing between (Ha,) = H A5 and
Ha,, we have from (3.6) that
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d 2 2
E”””B +2lully, =2(fsu) —2(Aru, u)

1
< 2ullaghfll 50 + 2\/m3||“||A0\/7—1“u”B

m
= lull3, +21F 5 +2C Il Cr=1= (310

We multiply this inequality by the nonnegative function ¢ — 2e~2¢1* to deduce that

d
-2C 2 -2C 2 -2C 2
(€M lull) +e M Nlully, <2 IFI
de 0 A

which, after integration over ¢ € (0, T') and noting that e 20T < ¢=2C1t < | for all
t €10, T], yields

T T
‘A]Wawj¢h52&QTQmm@4:£\UﬁﬂﬁJdﬁ. 3.11)

Now, (3.6) directly implies that

5

= Il = Ao = Aput+ flL g1 < Jullag + NArull oo+ £l

—1
A()

Using (3.7) we deduce that

Il = (A5 v, Ar)” < msulllellag [ Ag ! Av] [ AG" Ava]
ms 1 -1 2
SW”M“AOW”AO Alu”AO
_ M3 2 2
= s G Al (3.12)

which implies that

Al o1 < == ]
1Uufl -1 = UllAg-
Ao miymy 0

From (3.11) and the subsequent inequalities we deduce the following analogue of
the a priori estimate (3.3):

T 2 du(?)
[ (ol + | 8%

where C is a computable constant, which depends on T':

2
C§2e2C'T+[1+«/§<1+ /ﬂ>eC1T} < 20T,
mimy

2

T
l)mgc@M%+A|Umﬁ?m> (3.13)

4o
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We shall now derive a similar bound on the Sobolev seminorm of order 1/2 with
respect to the variable ¢. To this end, we shall use the Fourier series expansions

o0 . o0 .
t t
u(t):a?()—l—;ajcos%; u(t)ngjsin%, te(0,7),
ofu e Lr((0,T); H), where
2 T
aj:aj[u]z?/o u(r’)
2 (T
bj:bj[u]z?[) u(l)

and the integrals are to be understood in the sense of Bochner (see, Wloka [199],
p- 384). Direct calculations show that

[P a= 3 (0 Sl ) = T Sl 1o
j=1

An analogous result holds if the H norm || - || is replaced by an energy norm.
Let us multiply (3.6) by sinkm¢/T and (formally) integrate the resulting equality
over t € [0, T]. Using the expansion

d”(t) ZaJ [u]— sinJTm

and the orthogonality of the sine functions in the above expansion over the interval
(0, T), we deduce that

k
T”Bak[u] = Aobilu] — bl f1+ A1by[ul.

By taking the inner product in H of the resulting equality with a[«] and summing
over k we get

%Zkuak[u]ui = [(Aobxlul, axlul) — (bl f1, alu]) + (A1bilul, axlul)]
k=1 k=1

< ety fawtud |, + et o, [oeL A1

k=1

m3
pp— |betul | 4, axlul]

1 & m3 2 2
=3 2| (14 g )1, + sl
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T Jatal |, + il f1 ||§,O_l}.

Using (3.14), we deduce that

> 1
> dlataly <1 [](
k=1 s T

Let us consider the expression

T —u(t —
7 _/ / l[u(?) —ult S)IIBd ar,
Is|?

assuming that 7 — u(¢) has been extended as an even function outside the interval
[0, T]:

|-z )||u(t)||Ao y f(t)||A_1] a. (3.15)

u(t) fort € [0, T],
u(—t) fort e [-T,0],

“O=1,0Tr —1) fortel[T,2T].
and so on.

Using the periodicity of # — u(¢) and an expansion in cosines, we deduce that
T T ds
JI:/ [/ (u(t),—u(t—i—s)—l—Zu(t)—u(t—s))Bdt]—2
—TLJ=T N
T T
15,40
=/;T/_T<a0£u]+2a][u cos Zak[u ( w

kmt km(t — d
+ZCOS% — cos y))}gdt—;

N

rrr k t d
:/_T/_T<a0£u] —i—Za [u] cos Z4ak[u]sm S ; )Bdts_;

ks ds
_4TZ||ak u]uB/ sin® 272

Furthermore,
T T kit /2 @in2
kms d kms d k 0
/ sin2 s ds _2/ gin2 T8 s ds __71/ sm2 40
-T 2T S 0 2T S T 0 0
km [ sin?6 kn?
< —

=Tl e YT
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which implies that

(0.¢]
N <2702 k|alul |3 (3.16)
k=1

By noting (3.15), (3.16) and the obvious inequality

T —
/ f llu(r) u(f)IIB drdr’ <;J

ST

we get that

nen [ (5 L o I, + 7ol o
2_77/0 [( +m3+m>||u() 4, TIF@ A01:|

Hence, by (3.11), we obtain

T _ T
/ / ||u(r|)t_btt(|t2)||3dtdt<C<”u0”%+/0 ||f(t)||12401dt). (3.17)

Now, (3.11) and (3.17) imply that

T _
/”u(t)HA dt+// ”M(t|)t_1:(|t2)||3ddt

< c(nuon% +/0 ||f(t)||ial dt). (3.18)

When f(¢) = dg(t)/dt, we obtain, in a similar way,

T _
/ Ju]3, dt+/ / ”“(tl)t_l:(;)”Bd rdt’

T —
<C[IIM0|I3 / [ lg ) — g5 Nlg @ = 8@y v (3.19)

It —1'|?

[ (G el o]
, \7 T )IsWlp -

If, instead of (3.7), the following condition is assumed to hold:
Imz > 0Vu € D(Ag) N D(A1) N D(A})  max([|Arul?, |ATull®) < m3(Aou, u),

where AT is the adjoint of the linear operator A, then one can derive similar bounds
in both stronger and weaker norms. For example,

d T
/ (“Aou(t)”B +H Lé(t) )dt§c<”uongo+ / || f(t>||;1dz>, (3.20)
0 B 0
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T ) o du(n) |?
[, (ol 45852 ar

T
sC(HBuonjol + fo ||A0—1f<t)|}§dt) (3.21)

and

T T
/O || dr < C(”Buo —2(0) ||ia] +/O le® |3 dt). (3.22)

In all of these bounds C is a computable constant such that C < C3e*¢17

In particular, when the operator A is positive definite, we can take Ay = A,
A; =0 and m3 = C; =0, and the constants C in the inequalities (3.11)—(3.13),
and (3.17)—(3.22) are then independent of 7', the length of the time interval [0, T'].

3.1.3 Application to Parabolic Partial Differential Equations

As an application of the abstract results discussed in the previous sections of
this chapter, we consider the existence and uniqueness of solutions to an initial-
boundary-value problem for the partial differential equation

d
8—’: +P(x,t,)u=f(x,1) in2x (0,711, (3.23)
with
Px,t,Du:= Y (=199 (aap(x, 9 u), (3.24)
0=<|al,|B|=<k

subject to the boundary conditions
'u=0 ond2x(0,T],for0O<m=<k—1, (3.25)
and the initial condition
ulx,0)=uplx), xes2, (3.26)

where £2 is a Lipschitz domain in R”. We shall suppose that the partial differential
operator P(x,t,d) satisfies the uniform ellipticity condition (2.2) with a positive
constant ¢ > 0, for all x € £2 and ¢ € [0, T]. Under these conditions, the partial
differential operator

0

— + P(x,t,0

PPl (x,1,9)
is called uniformly parabolic. Suppose further that

aop(-,1) € C(£2) for | =Bl =k
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foreach ¢t € [0, T'], and
aageLoo(.Q x (0, T)) for ||, |B| < k.
Then, by Theorem 2.4, there exist constants cg > 0 and A > 0 such that
. 2 2 27k
at;v,v) +Alvlz, ) ECOIIUIIW(Q) Yve Wy(£2), t€[0,T]. (3.27)

Furthermore, a straightforward application of the Cauchy—Schwarz inequality im-
plies the existence of a constant ¢; > 0 such that

a(t; w,v) <ctwlys vy, Yw.veWs(€2), 1€[0,T].

Thus, by Theorem 3.2 with V = Wé‘(.Q) and H = L,(£2), the parabolic initial-
boundary-value problem (3.23), (3.25), (3.26) has a unique solution

o d
ue (0. T WE®). T e La((0.7): W5 ().

provided that f € L2((0, T); Wz_k(.Q)) and ug € L2(82).
For a second-order uniformly parabolic differential operator of the form

M D du
—_— - P ’t RE—
U Z ij< ij (x )8x,-)
i,j=1
n

+;[

the bilinear functional a(¢; -, -) is given, for ¢ € [0, T], by

J ou
—ac (ai (x, Hu) + b (x, I)T] +c(x, Hu

i Xi

n n
ow dv dv
alt: w, v) = ijz_lffzaij(x,t)a_mgjdx+;ai(x,t)wa—mdx

9 .
+/ bi(x,t)—wvdx+/ cx.Hwudy,  w,ve W) ().
Q ax; Q

1

In this case, Garding’s inequality can be proved under relaxed smoothness hypothe-
ses on the coefficients in the principal part: the a;; need not be continuous functions
of x on §2; it suffices to assume that a;; € Loo(£2 x (0, 7)) fori, j=1,...,n. To
be more precise, suppose that 2 C R” is a Lipschitz domain, and let P(x,, d) be
the second-order linear partial differential operator defined by (2.3) where a;;, a;,
bj € Loo(£2 x(0,T)),i, j=1,...,n,and ¢ € Lo(£2 x (0, T)) are such that, for
some ¢ > 0, the uniform ellipticity condition (2.4) holds. Then, according to Theo-
rem 2.5, there exist constants ¢y > 0 and A > O such that

a(t; v,v) + Alvll7, @) = co||v||%vzl(9) forae.re[0,T]and all v e WJ (£2).
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Thus we deduce the existence of a unique solution u to the corresponding second-
order parabolic initial-boundary-value problem, with

. d
ue Ly((0,T): W), ?'; € Ly((0, T): W5 '(2)).

whenever f € L>((0, T); Wz_l(.Q)) and ug € L2(£2).
In fact, by Remark 2.2 this statement holds under even weaker hypotheses on a;;,
a; and b;. In particular, it suffices to assume that

aij € Loo((0,T); M(L2(2) > L2(£2))), i,j=1,....n,
ai,bi € Loo((0, T); M(W5(2) - La(2))), i=1,...,n,
¢ € Loo((0, T); M(W,(2) — L,(£2))),
where p =2n/(n+2) if n > 2; p > 1 (but arbitrarily close to 1) if n =2;and p =1
! nV\Te 1c.onclude this section with a brief comment on the physical implications of

Garding’s inequality (3.27). Assuming that (3.27) holds for some constants cg > 0
and A > 0, it follows that the solution u to problem (P) satisfies the inequality

1d 2 2 2

55””("t)||L2(9)+CO||”("’)” wk($2) (FC0.uC D)+ uc. 0], g (3.28)
Bounding the first term on the right-hand side by

1 2 €0 2
(FC0.u0)| < E“f("t)HWZ’k(Q) + j“”('f ol wk(s2)’
it follows that
d 1
E”“('J)Hiz(g) + cou(, t)”%vg(m = anf(" t)||€V{k(Q) +2)‘”“("t)”iz(m'

Now we multiply both sides of this inequality by e~2*'; thus,

d, _ 2 _ 2 1 _ 2
E(e w””("t)”Lz(:z)) +coe M ””("t)“vv;(m = ae 2 ||f("t)||W;k(Q)’
and thereby,

t
o0l o [ €7 ) g o 0

| 2
< 62).[ ||M0||%2(Q) + 5 / 62)»(1 s) H f(’ S) H Wz_k(Q) ds (329)
0

for all ¢ € (0, T'], which expresses the continuous dependence of the solution u# on
the data ug € L2(£2) and f € L2((0, T); Wz_k(.Q)). Now suppose that, instead of
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co > 0, the slightly stronger hypothesis ¢y > 2A > 0 is assumed to hold for the
constants co and A in Garding’s inequality. Then, bounding from below in (3.28) the
Wé‘ (£2) norm of u by its L,(£2) norm and following the same route as above, we
deduce that

1 t
Juc, z)||iz(9) <e " Muol}, o) + g/o S Fi e S)”;/;k(:z)ds’

where K := %co — A. In particular when f = 0, which physically corresponds to
considering the evolution of the solution from the initial state u¢ in the absence of
external forces (or heat sources, in the case of a second-order parabolic equation
modelling the diffusion of heat in £2), we have that

luC. D7, 0 =X luoll} ). £20. (3.30)

In other words, the “energy” 5|lu(:, t)||%2(9) is dissipated exponentially fast, and

the rate of dissipation depends on the (positive) difference %co — A
In the next section we consider a class of two-level operator-difference schemes
for the numerical solution of parabolic equations.

3.1.4 Abstract Two-Level Operator-Difference Schemes

Let H" be a finite-dimensional Hilbert space over the field of real numbers,
equipped with the inner product (-, -); and induced norm || - || := || - [l3y». Sup-
pose further that [0, 7] is a bounded nonempty closed interval of the real line,
and let Q' = {tw :=mt :m =0,1,..., M} be a uniform mesh on the interval
[0, T] with mesh-size t := T /M, where M is a positive integer. Let us define
RT:=02"N(0,T), 2% := 27 U {0} and Q7 := 27 U{T}. The forward and back-
ward divided differences of a function U : 2° — H" are defined by

DfU:=U -U)/t, D;U:=U-U)/x,

respectively, where we have used the notation U := U (¢), U:=U (t+1), U:=
U (t — t). We shall also write: U™ :=U (t,,) = U(@mt),m=0,1,..., M.

In this section we shall consider the following family of two-level operator-
difference schemes:

By(DfU)+ AyU=F, ter; U@©0)=U°. (3.31)

Here, F : 27 — H" and Uy € H" are given functions, U - 2" — H" is the un-
known function, and A, and Bj, are selfadjoint linear operators that are positive
definite, uniformly with respect to h, on H"; i.e. there exist positive constants c,
and cp, independent of 4, such that (A,V, V), > ca||V||% for all V € #" and
(ByV, V)i > cpllV||? forall V e H".
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Since H" is a finite-dimensional Hilbert space, it is understood that all linear
operators under consideration are defined on the entire space .

The purpose of this section is to investigate the stability of this class of schemes
by mimicking the formal arguments developed in the previous section for the partial
differential equation. To this end, we take the inner product of (3.31) with 2t Df U=
2(0 — U) and use the identity

1 . |-
U:E(U+U)— E‘L’Dt U (3.32)
to obtain
1 N N A A
2t B, — E‘EAh DU, DU h—i—(AhU, U)n
— (ApU,U), =2t(F. D U),. (3.33)

Similarly, by taking the inner product of (3.31) with 2¢U and using the identity
(3.32) and that

~ 1 o4 1
we obtain
A A 1 ~ N
(B U, U)y, — (BRU, U)y + Er(Ah(U +0).U+U),
1 .
+ z2<(3h - 5zAh)DjU, DjU) =2t(F,U)y. (3.34)
h
Thus, in particular, when F = 0 and
1
By — ErAh >0, (3.35)

we obtain from (3.33) and (3.34) that

1Ulay = U 4 IUlIB, < IUIlB,»

where ||U]l4, and ||U]||, denote the energy norms ||U |4, = (AU, U)}ll/2 and

Ul g, = (ByU,U ),{l/ 2, respectively. Hence we deduce by induction that
[0, <10 NU™ [, <1U°1s,. (3.36)

The inequalities (3.36) imply the stability of the homogeneous operator-difference
scheme

By(DU)+ AU =0, teR; U©0)=U", (3.37)
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with respect to perturbations of the initial condition, in the energy norms || - || 4, and
- Il B, the condition (3.35) being both necessary and sufficient for the stability of the
operator-difference scheme (3.37) (see, Samarskii [159], Sect. 6.2). More precisely,
the following statement holds (see Samarskil [159], p. 404).

Lemma 3.3 Suppose, as above, that Ay, and By, are linear selfadjoint positive def-
inite operators, uniformly with respect to h, on the real Hilbert space H". Suppose
further that A, and By, commute, i.e. Ay By, = By Ay. Then, the condition (3.35)
is both necessary and sufficient for the stability of the operator-difference scheme
(3.31) in the norm || - || p,, where Dy, is an arbitrary linear selfadjoint positive def-
inite operator, uniformly with respect to h, on H" that commutes with both Ay,
and By,.

The scheme (3.31) can be interpreted as a numerical approximation of the ab-
stract parabolic problem (3.6). Let us express (3.31) in the form

By(D7U)+ AU =F, tef%; U©)=U°, (3.38)

where By, := Bj, — TAj,. Assuming that the operator By, is positive definite on H”,
uniformly with respect to &, we have that

171 = | Bu(D7U) + AU

= | Bu(Dr U)o + VI, +2(Ba(D; U). V),

2(By(D;U). U), = Dy (1U13,) + 7| DU .

we arrive at the following discrete analogue of Hadamard’s inequality (3.3):

e Y (ol + 150 ve) o) < [0, 7 X [Fol . 639

T T
teR2} tef2t

From (3.39), proceeding in the same way as in the ‘continuous’ case in the previous
section, we deduce that

© > ([4v o5+ D7 uo5) < U5, +7 Y IFOG 340
te2} te”
and

3 (lwwl, + 145 By(0r v )3,

T
teRy

< [BiU[- 4+ 3 4 O, (3.41)

teR’t
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The requirement that Ay, is selfadjoint and positive definite, uniformly with re-
spect to /1, can be weakened in the same way as in the ‘continuous’ case. Suppose
that in (3.38) By, is a selfadjoint linear operator that is positive definite, uniformly
with respect to &, on H: suppose further that A; = Aoy, + A1y, Where Ay is a
selfadjoint positive definite linear operator, uniformly with respect to 4, on H", and
that

(ByU, U)p = mi||U|3, (AonU, U)p > ma(BrU, Uy, (3.42)
(A1pU, V) <m3|U U agp IV IR IV [ agys  mi > 0,0 =1,2,3.

By taking the inner product of equation (3.38) with 2U we have that
- — 2
Dy (IUI3,) + [ D7 U5, +21U1%,,
=2(U, F)p = 2(AinU, Uy
. 1
= 20U Naqu 1 Fll oot +2/m3 Ul ag, —— Ul 3,

Jmi
< U3, +2||F||j&1 +2C1UNG . Ci=m3/my.

Let us suppose that T < 1/(2Cy), and multiply the inequality above by ¢(t — 1),
where

@) :=(1=2C7)"'".

After simple rearrangements we thus obtain for ¢ > 7 that
_ 2 2 2
D (¢0|UO[3) +ea = DU, <200 =D Ft =D}
Summing over the points of the mesh £27 and noting that

(1-2C1)""=p(T) <p(t) <p(0)=1 for0<t=<T,

we obtain

Y Juvo);, <a —2clf)—r/f(|| U035, +2t Y. ||F(r)||j%]>. (3.43)

T T
teR2} tef2t

Now, (3.38) and (3.42) imply that

|B0(Dr V) | = |- AU = AU + F]

s<1+,/ a >||U||A0h+||1?“nAl,
mimy Oh
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which, on noting (3.43), implies that

r 2 (0ol + 1307 v)] )

T
teR}

<c(1W°l, ++ ZIFoly). )

te”

where C is a computable constant that depends on 7" and is defined by C := C(1 —
2C17) T/ < Cpe©T .

By using Fourier series, as in Sect. 3.1.2, we obtain the following analogue of
the inequality (3.17):

luvn -va];
2 By
T Z Z |t —t/|2

e Ve V£t

<c(1v’);

2 2
b Tl0, +e DIFol)

ref2t
Combining this with (3.44), we deduce that

U@ - U,

T Z HU(I)”iOh + o’ Z Z |t — t/|2

tegy 1€Q" 1eQ 11+t
<c(Joy, +elv 'l e DlFoly ). 6o
tef2t

Similarly, in the case of F(t) = D,+ G we obtain

U@ = U,

DI T INED DD Dl

1e2] (€2 1eR" 4t

0112 012 5 IIG(t)—G(z’)uB_]
c[HU I3, +7l0°h, +22 > Y —

teR Ve’ £t

+T Z( + —)HGmHB ] (3.46)

tef2’

Under our assumptions on the linear operator A, = Aoy, + A1s, the a priori esti-
mates (3.45) and (3.46) also hold for the difference scheme (3.31), provided that we
take By, := Bj, — T Agy. If the original linear operator By, is selfadjoint and positive
definite on H", uniformly with respect to 4, i.e. there exists an m4 > 0, independent
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of h, such that (B,U,U);, > m4|IU||% for all U € H", then the same is true of By,
provided that T < mg4/||Aon|l, where ||Aonll := supyeyn 1AonUlln /11U || denotes
the usual operator norm of Agy.

If, instead of (3.42), the following stronger condition is assumed:

Imz >0VU € H"  max(|AinUlln, 1A, Ulln) < m3(AonU, Uy,

then, similarly as in the ‘continuous’ case, the following a priori estimates can be
shown to hold:

2 (AU @[5 + D7 Uo],)

ref2}
5C<UU°Uim+f 2 |\F<f>H%,g>, (3.47)
tef2t
© 3 (ol + 146 B (D U 0)][5)
te2}
_ o2 ~ )
< c(|| B U° lai+7 > lAg F@ ||Bh> (3.48)

teft

and

Y vl §C<||BhUO—G(O)||iahl Ty ||G(t)||f§h_1>. (3.49)

T T
teR2} ref2l

In the a priori estimates (3.45)—(3.49), C signifies a generic computable positive
constant of the form C4(1 — 2C} t)_T/’ < (4637,

In the next section we shall consider some simple finite difference schemes for
the numerical solution of parabolic initial-boundary-value problems. In order to sim-
plify the presentation we shall begin by discussing the simplest parabolic equation,

du  9%u

E—w=f(x7f),

the heat equation in one space dimension. We shall then consider multidimensional
parabolic equations with nonsmooth coefficients.

3.2 Classical Difference Schemes for the Heat Equation

This section surveys some classical results concerning standard finite difference ap-
proximations of the heat equation in one space dimension. We shall assume for the
time being that the solution to the initial-boundary-value problem under considera-
tion possesses a sufficient number of continuous and bounded partial derivatives on
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the space-time domain (0, 1) x (0, T']. In Sect. 3.3 we shall then relax the excessive

regularity requirements on the solution, and in Sect. 3.4 we shall extend these results
to second-order parabolic equations with variable coefficients.

3.2.1 Explicit and Implicit Schemes

Our first model problem concerns the heat equation in one space dimension. Let
0= x(0,T], where 2 =(0,1), T > 0: find u = u(x, t) such that

a”—82”+f( 1, x€(,1), 1€(,T]
81‘ - axz xa £ X £ E) E) £
u©,0=0, u(l,H=0, re(,T], (3.50)

u(x,0)=up(x), xel0,1].

Physically u(x,t) represents the temperature of a rod of unit length at the point
x at time ¢, which has temperature ug(x) at time 0; it is kept at zero temperate
at its endpoints, x = 0 and x = 1, and is subject to external heat sources whose
distribution in space and time is described by the function f.

We shall discuss two simple schemes for the numerical solution of (3.50).
Both schemes involve the same discretization of 32u / 9x2; however, while the first
scheme (called the explicit scheme) includes a forward difference in ¢ to approxi-
mate du/dt, the second (called the implicit scheme) uses a backward difference in 7.
It will be assumed that u( is compatible with the homogeneous Dirichlet boundary
conditions at x =0 and x = 1, i.e. ug(0) = 0 and uy(1) =0.

3.2.1.1 The Explicit Scheme

We begin by constructing a mesh on the rectangle Q = [0, 1] x [0, T]. Leth := 1/N
be the mesh-size in the x-direction and 7 := T'/M the mesh-size in the 7-direction;
here N _and M [ are two integers, N > 2, M > 1. We define the uniform ‘space-time
mesh’ Q; on Q by

0, =2" x2" ={(j 1) 0<j<N: 0<m <M},

where the ‘temporal mesh’
Q2 ={ty=mr:0<m<M}=Q7U{0, T}

has been introduced in Sect. 3.1.4, and the ‘spatial mesh’

2" ={xj=jh:0<j<N}="U0, 1)
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(@5, tm+1)

(Tj—1,tm) (z5,tm) (Tj41,tm)

Fig. 3.1 Four-point stencil of the explicit scheme

has been defined in Sect. 2.2.1. On @Z we approximate (3.50) by the following finite
difference scheme: find U}", j=0,...,N,m=0,..., M, such that

DfU}?’:D;D;U;?’Jrf(xj,rm),
j=1,...,.N—1, m=0,...,M—1,

(3.51)
Upr=0, Ur=0, m=1,...,M,

U} =uo(xj), j=0,....N,

where U ;" represents the numerical approximation of u(x;, #,,), the value of the
analytical solution u at the mesh-point (x;, #;,), D,+ U ]m is the forward divided dif-
ference in the #-direction and Dj D U'" is the second divided (central) difference
in the x-direction. Clearly, (3.51) is a four-point difference scheme involving the
values of U at the mesh-points

('x]—latm)5 (-x]’tm)a ('xj-'r]’tm)’ (-xjatm-"-])’

shown in Fig. 3.1. The scheme (3.51) is applied as follows. First we set m = 0. Since
U;)_l, U?, U;’H are specified by the initial condition U;-) =uo(x;), j=0,...,N,
the values U}, j=0,..., N, can be computed from (3.51):

1 0, % (170 0 0 .
Uj=Uj+ﬁ(Uj+l—2Uj+Uj_l)+zf(xj,to), j=1,...,N—1,

Uj=0, Up=0.
Suppose that we have already calculated U ]'.”, j=0,..., N, the values of U at

the time level ¢,, = mt. The values of U on the next time level ¢,,..1 = (m + 1)7 can
be obtained from (3.51) by rewriting it as

T
urtt=ur+ h—z(U.;"+1 =207+ UT)) +of (x), tm),

j=1,...,N—1,
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uprtt=0,  upt'=o,

foranym,0<m <M — 1.
Clearly, the values of U at t = 1,41 can be calculated explicitly from those of
U™ := Ul;=;, and the data; hence the name explicit scheme.

3.2.1.2 The Implicit Scheme

Alternatively, one can approximate the time derivative by a backward difference,
which gives rise to the following implicit scheme: find U ]'-”, j=0,...,N, m=
0,..., M, such that

DU =DIDIUT + f(xjs twi),

j=1....N—1,m=0,....M—1,
1 | (3.52)
uytt=0,  uyt'=0, m=0,....M-1,

U?:uo(xj), j=0,...,N,

where U 7’ represents the approximation of u(x;, t,,), the value of u at the mesh-
point (x;, t,). Unlike the explicit scheme in which the data and the values of the
approximate solution U at the previous time level provide an explicit expression for
the values of U at the next time level, the implicit scheme necessitates the solution
of a system of linear equations on each time level to determine the values of U
at the mesh-points on that time level. More precisely, (3.52) can be rewritten as
follows:

T 2T T
——ymt 4 (h—2 + 1>U}"+] — EU;";‘ =Uj" +1f(xj, tmt1),

i=1,....N—1 (3.53)

urtt=o0, uptt=o,

form=0,...,. M —1.
This is, again, a four-point finite difference scheme, but it now involves the values
of U at the mesh-points

(-xj—lvtm+l)1 (-xjvtm-‘rl)s (-xj+latm+l)v (-xjstm)s

shown in Fig. 3.2. The implicit scheme (3.53) is implemented as follows. First we set
m = 0; then, (3.53) is a system of linear equations with a tridiagonal matrix, and the
right-hand side of the linear system can be computed from the initial datum U? =
uo(x;) and the source term f(x;, t1). Suppose that we have already computed U }”,
j=1,...,N — 1, the values of U on the mth time level, 0 < m < M. The values
U]'.”H, j=0,...,N, of U on the next, (m + 1)st, time level are then obtained by
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(Tj—1,tm+1) (x5, tm+1) (@41, tm+1)

(xjvtm)

Fig. 3.2 Four-point stencil of the implicit scheme

solving the system of linear equations (3.53), which can be accomplished efficiently,
in O(N) operations, using a simplified form of Gaussian elimination, called the
Thomas algorithm (see, for example, Siili and Mayers, Sect. 3.3).

3.2.2 Stability of Explicit and Implicit Schemes

We shall explore the stability of the schemes (3.51) and (3.52) simultaneously,
by embedding them into the following one-parameter family of finite difference
schemes, called the 6-scheme: find U;”, j=0,...,N,m=0,..., M, such that

DU = DI DI[OUNT + (1 =) U]+ [ (X tmro).
j=1,...,N—1,m=0,...,M—1,

(3.54)
Uur=0, Upr=0, m=0,...,M,

U =uo(xj), j=0,....N,

where 0 <6 <1 and t,,49 =t,,, + 0T = (m + 6)7. The most relevant special cases
of this are 6 = 0 (the explicit scheme, also called the explicit Euler scheme), 6 = 1
(the implicit scheme, also called the implicit Euler scheme), and 6 = 1/2, referred
to as the Crank—Nicolson scheme.

Let us consider the inner product

N—-1
(V. Wy =Y _ hV;W;
j=1

and the associated norm

1/2
IVIn =, V),
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By taking the inner product of (3.54) with

Ut i=oUumt + (1-0)U",
we get

Um+1 —_ym
(—— :

. ; Um+9>h _ (DjD;Um+9, Um+9)h — (fm+0’ Um+0)

where f;"+9 = fm+o (xj) = f(xj,tmrg). Let, as in Sect. 2.2.2.1,
N-1 1/2
Vil = (Z h|V,,~|2> :
j=0
By noting that U6”+0 =0,U 1'\,”+9 =0, it is easily seen using summation by parts that

~(Dy DUt U, = [Drum .

Thus,
gmtl—um e o ma6 |2 N —
m m m m
(=0 e prune = (e e,
Since
1 Um+1 _ym Um—H um
Ut =1 (0 - —) + L
2 T 2

it follows that

2 12 2
o™ = 1U™ iy

h 2t

1 Um+l —_ym
(0-3)]
2 T

DU = (50 ), 355

Suppose that 6 € [1/2, 1]; then

0—=->0, (3.56)

and therefore

12 2
o™, = v,
2T

+ ‘[Dijw Hi < (fm-‘r@’ Um+0)h

= [ o,
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According to the discrete Friedrichs inequality (2.24),
m+6 2 1 +rrm46 2
[z < g [DrUm 2

and therefore

12 2
U™, — 1U™ Il

e A ot Ve PR IR B
so that
Jom+ 15 < o i + gl i
Summing the last inequality through m =0, ..., k — 1 yields
k—1
[04]5 < HUOH%%ZOIIf’"*@Ii, (357

forallk,1 <k <M.
The inequality (3.57) can be seen as the discrete version of (3.29), when A = 0.
If follows from (3.57) that

M—1
2 2 T 2
s |0 <+ 5

m=

and therefore
- . 12
ool = (10 D) L s
m=

which expresses the stability of the finite difference scheme (3.54): the continuous
dependence of the solution of the scheme on the initial datum and the right-hand
side, uniformly in the discretization parameters 4 and t.

Thus we have proved that for 6 € [1/2, 1] the scheme (3.54) is stable without
any limitations on the time step t in terms of 4. In other words, the scheme (3.54)
is unconditionally stable for 6 € [1/2, 1].

Let us now consider the case 6 € [0, 1/2). First suppose that f = 0. Then, ac-
cording to (3.55),

12 2 2
1o =11 iy

+rm+o 2 _ l_
I orumep=o (3 -0)

By (3.54) and our assumption that f = 0, it follows that

Um+l —_ygm
H _— (3.59)
T

h

Um+1 _ygm

=DfD; U,
T
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Moreover, a simple calculation based on the inequality (a — b)? < 2a® + 2b> shows
that

4
| Dy U2 < [ U (.60

Thus, (3.59) implies that

12 2
o™, — 1um;
2T

S C e (R [

and therefore

Um+12_ Um2 27(1 =26
l ||;ér l ||h+[1_ T(h2 )i||[D;—Um+9||i§0.

Let us assume that

2

then
ot = Um0, 1,
and hence,

max || Uk

0
max [04], = U

I

Thus we have shown that for 6 € [0, 1/2) the scheme (3.54) is stable, provided that
(3.61) holds; in other words, for € € [0, 1/2) the scheme is conditionally stable, the
condition being (3.61) (when f = 0).

We shall suppose again that 6 € [0, 1/2), but will now consider the case when f
is not identically zero. We shall prove that the finite difference scheme (3.54) is still
only conditionally stable, and, in particular, that the explicit scheme, corresponding
to 8 =0, is conditionally stable.

According to (3.55), we have that

lum+hz —jum)2
2t

28 A et P e A

Um-‘rl um
()|,

(3.62)

h

By (3.54), for any ¢ € (0, 1),

1 2
|2 < porrun s e

T

h
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= (|py DU |, + 1m0,
< (40| D DU [+ (167 £
4 _
< (1+8)h_2|[Dij+0”i_|_(l+g 1)||fm+9”2’

where (3.60) was used in the last line. Substituting this into (3.62), we deduce that

||Um+1||% _ ||Um”/2 1 4(1 + 8) + 4012
7 1—|— 1—-1 5—9 h2 H:DxUm ”h

1
<[, o, + r(i - 9)(1 e Vi e (3.63)

By applying the discrete Friedrichs inequality (2.24) according to which

2 1 2
Jom*, = o u™*1,

we have that
1
A P e P PR i
1
<l e pivm L G

By inserting (3.64) into (3.63) we then deduce that

umth 2 — jum ) 2(1 —20)(1
[ 5 — 1 Ilh+[1_f ( (A+e)

= e |irum;

1 2 1 _ 2
< Sl e (3 -0) 0

Let us suppose that

2
TS5y (178 0E0.1/2, e, (3.65)

where ¢ is a fixed real number. Then,

21-20)(1+e) 5

1—1 w2

207

and therefore

T _
[ < Mo+ ez 1 1+ 2 =200 (147 5
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By letting ¢, := 1/(1682) +T(1 —20)(1 + &), after summation through m this
implies that
2 2 = 2
s [0 < 00 e Y e
m=0
We take the square root of both sides to deduce that for 6 € [0, 1/2) the scheme
(3.54) is conditionally stable in the sense that

5 M-1 5 172
= (10 e S e) e

provided that the condition (3.65) is satisfied.

To summarize, when 6 € [1/2, 1], the difference scheme (3.54) is uncondition-
ally stable. In particular the implicit Euler scheme corresponding to 6 = 1 and the
Crank—Nicolson scheme corresponding to 8 = 1/2 are both unconditionally sta-
ble, and (3.58) holds. When 6 € [0, 1/2), the scheme (3.54) is conditionally stable,
subject to the time step limitation (3.65). In particular the explicit Euler scheme
corresponding to 6 = 0 is only conditionally stable.

We close this section with a brief discussion about the connection between the
“abstract” stability condition (3.35), the condition (3.56) (which in the case of the
pure initial-value problem % =Au, u(0) =1, A <0, guarantees the A-stability of
the 6-scheme; cf. Siili and Mayers [172], for example,) and the requirement (3.61),
which guarantees the conditional stability of the 8-scheme for the one-dimensional
heat equation in the case of f = 0. The scheme (3.54) can be rewritten in the canon-
ical form (3.31), where H" = Sé’ is the set of all mesh-functions defined on ﬁh and
equal to 0 on ﬁh \ .Qh,

{ —-D}D;V forxe ",
ApV = AV = —n L
0 forx e 2\ 22",

and

1
By, =1+ (9 — E)IA,

where I, is the identity operator on Sg. The operator A is linear, selfadjoint and

positive definite on S h uniformly with respect to 4, and (cf. (2.18), (2.22)) we have
that

, 4
8IVIZ < (AV, V)< = |IVI2, ie. 81h§A<ﬁIh.

4
ﬁl
Thus, when 6 > 1/2 the condition (3.35) is trivially satisfied. When 6 < 1/2, we

have that
Lafo—Neasl1-(L-0)¥ =0
—=|tA>|1-(=-6])= ,
h ) ) h2 h =

provided that the condition (3.61) holds.
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3.2.3 Error Analysis of Difference Schemes for the Heat Equation

In this section we investigate the accuracy of the finite difference scheme (3.54) for
the numerical solution of the initial-boundary-value problem (3.50).
We define the truncation error of the scheme (3.54) by

(p;"+0 := D u(x;j, tm)
— DI DL [0u(x), tmyr) + (1 —Oulxj, tw)] — f(xj, tmro),

forj=1,...,N—1,m=0,..., M — 1, and the global error of the scheme by

6’;’ = u('xja Im) — U}'n»

for j=0,...,N,m=0,..., M. It is easily seen that e;f' satisfies the following

finite difference scheme:

j=1,...,N—1,

+ +n— +1 _ m+o
D e} = Dy D [0ef™ + (1 = 0)ef] = ™", {m:O,...,M—l.

j x “x
eq =0, en=0, m=0,....M,
0 __ s
ej_O, j=0,...,N.
Thanks to the stability results proved in the previous section,

. M—1 ) 1/2
max_[lu™ — U™, < (E ];0 |*te Hh> , Oell/2,11,  (3.67)

1<m<M

by (3.58). Also, by (3.66),

M—1 1/2
2
é?naé‘M”“m -um|, = (w kg (P ||h) , 0€l0,1/2), (3.68)

provided that (3.65) holds. In either case we have to estimate ||¢” ||, in or-
der to complete the error analysis. By recalling the differential equation du /ot =
8%u /x> + f satisfied by u, we deduce that (p’}”e can be written as

0 u(xj, tye1) —u(xj, ty)  Ou
;’H_ =|: z ! _a(xjytm-ﬁ-@)
3214 + ~N—
+ ﬁ(xj’ tmt0) — DI DT (Ou(x;j, tyg1) + (1 — Oulxj, tw)) |-
(3.69)

In order to estimate the size of the truncation error, <p;?1+9, we expand it in a Taylor
series about the point (x;, #;,41/2), assuming that u is sufficiently smooth. To this
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end, we begin by noting that

1 Llu 1T 232u+1 T 383u+ mtl/2
i+l _ Y O Y (0 A ,
“i YT T2\2) a2 Te\2) .

J

" 1w 1(c 0% 1t 383u+ m+1/2

u. =\u—-17— —| = _— ] - _ .
J 2 9t 2\2) a2 6\2) a3 ;

By subtracting the second of these expansions from the first we obtain

M(Xj,lm+1)r—u(xj‘,tm) _ |:8u " it233_u N ”.:|m+1/2

24 o3 (3-70)

J
Also, since

T % Sl il 2 A IO
ax2 12 3x4+6! 8x6+

’

_ Pu 1 9% 2 ,0% m+1
DID uxj, twy1) = [ ? N }

J

by expanding the right-hand side about the point (x;, ;,+1,2) yields that

22 1 9% 2 9% m+1/2
. . _|9u L ,q0u “q47 "
DI D; u(xj,tm+1)—[ax2+ 12h 3x4+6zh ax6 L
1/2
P[P L e Y
2 9x20r 12 9x*ar j

1/T\2T 9% m+1/2
+E<E> |:8x28t2+“.:|j '
There is a similar expansion for Dy Dy u(x;, t,,). Combining these gives

DD [0u(xj, tmy1) + (1 — O)u(x, tm)]
|:82u 1 ,0% 2 ,0% ]’"“/2

s 2l fal
ax2 12 3x4+6! 8x6+

J

1 Pu 1, du m+1/2
6 — - ~h
+< Z)T[szat TR e T }

J

1 ) 341,{ m+1/2
+37 |:8x28t2 +} . (3.71)
J
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We also require the following Taylor expansions:

au( o) 8u+ 9 1 tazu
M _ | _ 1) ou
ar o ot 2] 92

1\272 83u m+1/2
+<9__> __3+...] , (3.72)
2) 2 ;
82u( o) 32u+ o 1 33u
_ s = —_— — = |1 T—
gx2 im0 =150 2 ) orax2
1\222 9% m+1/2
+<9_5> TWWL...]. . (3.73)

J

Substituting (3.70)—(3.73) into (3.69) yields that

o _[(1 ) a0
i =T \2 o2 T 12ox?

J

L (! 83”+(92 ) A
2 6/ a3 9129x2

J

th? (1 Sy |V g by L2
— (-0 ) —— -
BT (2 >8t8x4 i 360 0x0 |
Hence,
L VA Yy HOT., 0. 3.74
|<Pj \_E 4x+ﬁ( 3t +3May2) + H.O.T,, =3 (3.74)
|¢’."+9|<EM4 T ™™y +H.O.T 97&1 (3.75)
A VR p) T 2’ '
with
8k+l
Myrr = ——u(x, 1),
xlt (E?:E kg VD)

My := Mixor, Mj; := Moy, and we assume that My, M3;, Myy; and My, are
finite. H.O.T. signifies terms of higher order than 4> and 72, and 4? and 7, respec-
tively. Substituting (3.74) into (3.67) and (3.75) into (3.67) or (3.68), and absorbing
terms of higher order into lower order terms and altering the constants if necessary,
we obtain the following error bounds:

lgla;M”um —U"|, =Ci(R*+71%), o= > (3.76)
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where C is a positive constant, independent of 4 and 7;

max [u™ —U™|, <Ca(h*+71), 6€(1/2,1], (3.77)

1<m<M

where Cj is a positive constant, independent of # and t. Moreover,

max [u" —U™|, <C3(h*+1), 6€[0,1/2), (3.78)

l<m<M

where C3 = (c¢)'/?C,, provided that the condition (3.65) is fulfilled. Thus we de-
duce that the Crank—Nicolson scheme (6 = 1/2) converges in the norm || - ||, un-
conditionally, with a global error of size O(h% + ). For 6 € (1/2, 1] the scheme
converges unconditionally, with a global error of size O(h?> + 7). For 6 € [0, 1/2)
the difference scheme converges with a global error of size O(h? + 7), but only
conditionally. These error bounds have been derived under quite restrictive require-
ments on the smoothness of the solution. In the next section we shall be concerned
with the error analysis of the difference schemes described above when the solution
is less regular.

3.3 The Heat Equation with Nonsmooth Data

It is frequently the case in physical applications that the initial datum ug = ug(x)
and the source term f = f(x,t) in the heat equation are nonsmooth functions. In
such instances the error analysis described in the previous section no longer ap-
plies, as the solution u(x, t) may not have sufficiently many derivatives bounded
and continuous on [0, 1] x [0, T]. In this section, we address this issue in the case
of the implicit Euler scheme corresponding to & = 1 in the one-parameter family of
schemes considered in Sect. 3.2.

3.3.1 The Initial-Boundary-Value Problem and Its Discretization

We consider the initial-boundary-value problem (3.50) in the space-time domain
0 :=(0,1) x (0, T]. The mesh @Z is defined in the same way as in Sect. 3.2. We
shall also retain the other notations introduced in Sect. 3.2.

We begin with a general discussion concerning the construction of finite differ-
ence approximations to our model problem. As we shall be concerned with nons-
mooth data and, more specifically, with f € L2((0, T); L2(52)) and ug € L2(2),
we mollify these functions so that the resulting mollified functions are continuous
and have, therefore, well-defined values at the mesh-points. For this purpose we
consider, for any function v that is defined and sufficiently smooth on Q,

1 x+h
szv(x, 1) = —/ (1 — )v(x’, t) dx’,
h x—h

x—x'
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and
1 t
T, v(x,t):= —f v(x, 1) dt' =T v(x, 1 — 7).
T Ji—t

If v is a distribution on Q, sz and 7,7 should be interpreted as convolutions (cf.
Sect. 1.9.4). The mollifiers sz and 7, have the following properties:

5 (8% . _(dv -
T Pyl =D!D v and T, m =D, v.

Suppose that u, the weak solution of the initial-boundary-value problem (3.50), be-
longs to the anisotropic Sobolev space WZS’S/ 2(Q), s > 1. Then, szu and 7, u are
continuous functions on Q, and by applying T = szTf =T, sz to the heat equa-
tion in (3.50) we thus obtain

D; (T7u)} = DEDL (1,7 u) + (12T, £)"

This identity motivates our definition of the finite difference approximation of prob-
lem (3.50): find a real-valued function U defined on the mesh QZ such that

D U =DiD;UY + (T2 f), j=1...N-lLm=1...M,
(3.79)
Uy' =0, Uy=0, m=1,....M,
and subject to one of the following initial conditions:
U)=uo(xj), j=1,....N—1, (3.80)
or

U)=Tluo(x)), j=1,....N—1, (3.81)

the choice being dependent on the smoothness of the initial datum. It will be clear
from the error bounds that will be derived below which of the two initial conditions
is appropriate in each particular instance.

3.3.2 Error Analysis

Let us define the global error of the scheme in the usual way:

ejm =u(xj, ty) — U]’-".
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It is easily seen that in the case of the scheme (3.79), (3.80) the global error thus
defined satisfies

Dy el — DjD;e';' =D,y - D;D;n;’.’,

j=L...N—1,m=1,...,M,

(3.82)
eq =0, =0 m=1,....M,
=0, j=1,....N—1,
where we have used the notations
Vi=u—Tu, ni=u—1T,u.
Similarly, in the case of the scheme (3.79), (3.81) the global error satisfies
Dy e} — Dy Dief =Dy} — DDy,
j=1,...,.N—1, m=1,..., M,
(3.83)

eq =0, en=0 m=1,....M,
0_ 0 . _
i=v;, j=L...N-L
Let us define the following mesh-dependent anisotropic Sobolev norms:

VIR, on =7 2 Vel

T
teR}

VI e, =7 3 (IVCDIG+ [DFVE0])
tef2]

2

2 VGt =VE Ol

+r Z Z |t—t/|2 ’
1€ Ve, I'#t

V2, =7 2 (IVC0 G+ [DEVE 0]

T
ey

+|DF DIV + | DT VED];).

The scheme (3.82) can be rewritten as an operator-difference scheme (3.31),
where H" = Sé’, Ap=Aand F = D; ¢ — D} D n. Thus we deduce from (3.40)
that

© 3 (| i Dy e+ | DreC. 0]}

T
teR
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- - 2

<7 Y |Dry .0 = DI DIuC. 0],

tef2}
Hence, by applying the discrete Friedrichs inequality (2.24) we have that
2 +p- 2 - 2
etz gr) < Cré (IDf D nC. o)} + | Drve o). (3:84)
Salas

where C =2(1 + 1/8 + 1/64) = 73/32. Similarly, (3.31), (3.44) and (3.46) imply
that

le(-, 1) — e, 12
T Z ||e(-,t)||i1 + 12 Z Z PRI h

reQl 12" Ve, 't
G0 =y )2
sc[e Eheol+ey ¥ Mozt
ref2t reR 1eR’, '#t
1 1 2
ey (Se g weok]
ref2t

Thus, by noting (2.22) and (2.24), we deduce that

. Iy 0=y Ol
”e”ivé’”z(QZ) = C[T do[pincol,+72 > > It —1']? :

1eQl 1€Q" 1'eR’, '#t
1 1
+r )y (— + —) lwe, r>||ﬁ}. (3.85)
t T —t
tef2®
Similarly, in the case of (3.83), using (3.41) and (3.49) we have that
lelZ,or) <€ Y- (InC.of, + [0l (3.86)
teR2}

Now, to derive error bounds for the finite difference scheme (3.79), (3.80) in the
mesh-dependent W22 1 and W2l 172 norms, and for the finite difference scheme
(3.79), (3.81) in the mesh-dependent L, norm, it suffices to bound the norms of
n and ¢ appearing in the expressions on the right-hand sides of the inequalities
(3.84), (3.85) and (3.86), respectively.

Suppose that (x;, ,,) is an arbitrary node of the mesh Q; and consider the asso-
ciated ‘elementary rectangle’ GZ’ = (xj_1,Xj41) X (tm—1, tm). By using the linear
transformation

x=xj+hx, t=ty+1f, —1<i<l, —1<£<0,

G? is bijectively mapped onto the canonical rectangle G:=(—1,1) x (—1,0). By
defining it (%, 7) := u(x; + hX, t,, + tf) we have that
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+p—,,m L[, ~ ~
Dy D =3 i(—1,0) —2i(0,0) +i(1,0)

0
— / [a(=1,7) —2a(0,7) +a(1,)] df}.
-1
Using the Sobolev embedding theorem, we deduce that

+p—,m 8 C .
DD} | < sl = 5l ysang), s> 3/2

Thus we have shown that D+D_n’" is a bounded linear functional of i €
W, $12(G) for s > 3/2. It can be directly verified that Dy D1y} vanishes on all
monomlals of the form ii = ¥%7#, where « and f are nonnegative integers such that
o + 28 < 4. The Bramble—Hilbert lemma thus yields that

|Df D7 3/2<s<4. (3.87)

"< h2|M| WSl Gy

Returning to the original variables x and ¢ we deduce that

+ 2 5/2
|DY Din'f| < 2J_(h +)  lulygongny: 3/2<s <4,
One can show in the same way that
|D; Y| < ¢ (hz—l—r)v/ |u 3/2<s<4
AN Wyt @y =

Summing over the nodes of the mesh Q; gives

v 3 (IpEDinC ol + 107w .0l

T
teR]

2 s 1
Sc(h +T) <F | | ss/2(Q)

If the mesh-sizes / and t satisfy the condition t =< h2ie.
cih* <t <ch?,  ¢1, ¢ =Const. > 0, (3.88)
we further have that

v 3 (I DenC.olp+ [y w e nl;) = Ch®Hul;

3 J/Z(Q)
tef2}

From this inequality and (3.84), limiting ourselves to the values s € (2, 4], we obtain
the following bound on the global error of the finite difference scheme (3.79), (3.80):

lu = Ully21 0 < Ch'™ 2wl W2y 2<s<4. (3.89)
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Similarly, D} 7} is a bounded linear functional of u € % S/2

281

(G ',), with

G'J”Jr = (Xj,xj+1) X (ty—1, tm), for s > 3/2, which vanishes on all monomlals of
the form u = x%t8, o + 28 < 3. Assuming that the condition (3.88) holds, using the

Bramble—Hilbert lemma we have that

| DI < CR° = ul w2 3/2<s<3,

(Gm ) ’

whence, by summing over the nodes of the mesh, we deduce that

r > |[Dfnc. t)” < Ch¥~ 2|u|2H/2(Q) 3/2 <s <3. (3.90)
tef2]
Further,
2
2 G0 =y O
ey y oo
teR Ve, I'#t
M m—1N—1 |, m k2
[ —
—ohe? ROAERSLE
m=1k=0 j=1 '™
M m—1N-1 m — .2 M m—1N-1 —..m +.1.k (2
Y =T,y |7y =T,y
< 6ht? — 4 6ht? J !
- Z |tm_tk|2 ZZ ‘ |tm_tk|2
m=1 k=0 j=1 m=1 k=0 j=1
M m—1N—1 |7+ k k2
Ty — ¥jl
e DB D ik Ly A

|tm lk|2

M m—-1N-1 |,(p _ Tl—wm|2 7[2 M N-1 )
_ J J el m __ g— g m
h=6hy 3y s e Y e -1yl
m=1 k=0 j=I m=1 j=I

It is easily seen that the expression w;” - T, w;” is a bounded linear functional of

ue Wx s/z(G;f’), s > 3/2, which vanishes on all monomials of the form u = x%h,

o+ 2,3 < 4. Similarly as in the previous cases we deduce that

W =Ty < CR ), a2 3/2 <s <4,

(DN

and then, by summing over the nodes of the mesh, we arrive at the bound

J1 < Ch*72|u |2”,2 3/2<s <4

)’

(3.91)
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An identical bound holds for J3. Let us now bound J;:

M m—1N-1 6ht fet 5

— Y /
3P ) e E Y A AR ORI
m=1 k=0 j
M m—1N-1 ) ¢ D
6ht k+1 w(x]’ t) — 1/f(xj,l )] /
Yy Y
1 k=0 i |tm tk| t|
m= j= 1

X

tm Tkt1
{/ / — "2 ar dt} A > 0.
t

By choosing A € (0, 1/2] we then have that

M m—1N-1

tm 1 N2
T < 6ht?h 1222] fm [‘”(xf’t) rﬁ(;”t)] dar' dr

m=1 k=0 j=1"m=11

2
S [

Hence, by noting the integral representation

1 [Yi+1 % x’ — i\ 82
W(x/,t):_/ / / <1_ |x xl')—i(x”,t)dx”dx/dx
’ h Xj—1 x Xj h 0x

and the condition (3.88), we arrive at the bound

T, < Ch2* |2

W1 ) 0<Ai=<1/2 (3.92)

Similarly, by using the integral representation

AL I\ du ’
Yo =& / /( J>£(x,t)dxdx,

we deduce that

4) 2
Jo SCh™ ul? 1101040

, 0<a<l1/2. 3.93
wiezie g O<A=1/ (3.93)

From (3.92) and (3.93), taking in the first case s =2 + 2A and in the second case
s =1+ 2A, we have that

Ja < Ch¥2u)? W50 l<s<3. (3.94)

Suppose that t =1,, € 227 is fixed, and let us consider u(-, #,,,) as a function of the
variable x. The expression ¢;" =u(xj, ty) — T u(xj, ty) is a bounded linear func-
tional of u(-,t,) € WZ’ (xj—1,xj4+1), r > 1/2, Wthh vanishes on all polynomials
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(in x) of degree < 2. Thanks to the Bramble—Hilbert lemma we thus have that

W] < CH 12 uC )]y, 1/2<r<2.

(j—1,%j41)°
Summing over the nodes of the mesh £2” and applying the trace theorem, we obtain
the following bound:

1/2<r<2.

” Y “h < Ch”u(-, fm)|W2r(0,1) <Ch" ||u”W2r+l,(r+l)/2(Q),

Finally, by writing » + 1 = s and summing over the mesh £27 we obtain that

rZ( +—>||1/f( D} < ch®- 2log a2 gy (399

tef2"

where 3/2 <5 <3.
From (3.85), (3.88), (3.90), (3.91), (3.94) and (3.95) we have the following bound
on the global error of the finite difference scheme (3.79), (3.80):

lu—=U]| 11/2(Q)§Chs 1\/log(l/h)Hu||Ws<.v/2(Q), 3/2<s<3. (3.96)
2

The bound (3.96) is ‘almost’ compatible with the smoothness of the solution,
the slight shortfall from full compatibility being due to the presence of the term
J1og(1/h), h € (0, 1/2], which increases, albeit very slowly, as h — 0.

Let us finally bound the global error of the finite difference scheme (3.79), (3.81)
in the mesh-dependent L, norm. The expressions 1//;.” and n;” are bounded linear

ss/2(

functionals of u € W. G;”), s > 3/2, which vanish on monomials of the form

u = x“tP, where o and g are nonnegative integers and o + 2 < 2. By applying the
Bramble-Hilbert lemma, under the condition (3.88), we get that

v,

| < Chs—3/2|u|W2s,s/z 3/2<s<2.

(Glj)l) 9
Hence, by summing over the nodes of the mesh, we deduce that

Y (lveoli+ neol; )<Ch25|u|2m/2(g) 3/2<s<2.
tef2]

By noting the inequality (3.86), we obtain the following bound on the global error
of the finite difference scheme (3.79), (3.81):

lu = UllLacop) = Ch*llll a2 3/2<s<2. (3.97)

Q)
Here, and in each of the previous error bounds C = C(s) is a positive constant,
independent of /4 and 7.

The error bounds (3.96) and (3.97) have been derived under the regularity hy-
pothesis that the solution u to the initial-boundary-value problem (3.50) belongs
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to the function space WZS’S/ 2(Q) for s > 3/2. This restriction is natural since for
s < 3/2 the solution need not be a continuous function, and therefore the definition
of the global error as e?’ =ulxj, ty)—U j’” is then not meaningful. In that case, one
can instead define the global error of the scheme as (for example) the difference of
the mollified analytical solution and its finite difference approximation:

&= T2T, u(xj, ty) — Uy

In fact, for small values of the regularity index s one may need to use even stronger
mollification of the analytical solution « in the definition of the global error as well
as of the initial datum u( and the source term f.

3.3.3 The Case of Independent Mesh-Sizes

The error bounds (3.89), (3.96) and (3.97) above have been derived under the as-
sumption (3.88), which links the temporal mesh-size 7 to the spatial mesh-size 4 in
our error analysis, despite the fact that stability of the scheme is unconditional, and
therefore from the point of view of stability at least there should be no limitation
on the choice of t in terms of . We shall show here that in certain cases by care-
ful study of the functionals n and i one can avoid linking the mesh-sizes 7 and h.
Let us suppose, for example, that s = 4. From (3.87), by expanding the seminorm

|u] WA2(G) and returning to the original variables x and 7, we have that
2
c ¥u |?
|DF D < <h8 —
x Zx lj W2 ht 9x4 Lz(G’]’-’)
93 2 524 |12 1/2
e P +of 2 ) NERE)
ax at LZ(G)/{I) 31‘ LZ(G.T)
Similarly, we obtain that
C 84 2
orv71= - (]2
tvht X"l Ly6m)
53 2 52, 112 1/2
+ | S gl ) . (399
dx40t LZ(G';-I) Jt Lz(G;")

Thus we observe that the need to link the mesh-sizes 4 and t arises because of the
presence of the norm of 3%u/dr> on the right-hand side of (3.98) and the norm of
9%u/dx* on the right-hand side of (3.99).
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On the other hand, it is easily seen that in the case of u € W; ’2(Q) the following
integral representations hold:

Xj+1 lx" — x| u
DDy = — ")t dr’ dy,
Y 77] / [m 1 / ( >8x28t (x )
— 1 /t /-x,+1 / / |x’ _-xj| u ( . )d " dx" dx' dr’,
= — X
L /% 2 P 9x29t

j—1

and we then directly deduce that

Bu |?

x20t

o > (|DFDrnC.o; + D7 v o)) < c(i* +12)

T
teR}

L2(Q)

By applying the inequality (3.84) we arrive at the error bound

93u

2
C(h*+71) %1

= Ully2

< C(h? + 1)l s

) = )

La2(Q)

without having had to link 7 to h. We thus see that the need to link the mesh-
sizes h and t in our original argument based on the use of the Bramble—Hilbert
lemma arises because the Bramble—Hilbert lemma invokes a larger number of partial
derivatives than is necessary.

3.4 Parabolic Problems with Variable Coefficients

3.4.1 Formulation of the Problem

As our model problem we now consider, in Q := £ x (0, T]1= (0, 1)?> x (0, T, the
following initial-boundary-value problem for a symmetric second-order parabolic
equation with variable coefficients:

ad
3_l:+£l/l=f’ (_X,l‘):(X],xZ,t)er
u=0, (x,0)el x(0,T]=382 x (0, T], (3.100)

u(x,0) =uop(x), xe$,

where

- Z di(aijoju) +au, 9 :=—.
i,j=1
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We shall suppose that the solution of problem (3.100) belongs to the anisotropic

Sobolev space Wy’ $/2(0), 1 < s < 3, that the source term f lies in Wy~ —25/271 )
and that the coefﬁ(:lents ajj = a;j(x) and a = a(x) satisfy the same COHdlthHS as in
the elliptic case considered in Chap. 2; i.e.

(a) if s > 2, then
aij e W3N(R2), aeWs (),
(b) if 1 <s <2, then

aij €W, @), a=ap+ ) b,

ao € Late(2),  ai € Wy '),
where ¢ > 0,
6=0, p>2, fors=2, and
§>0, p=2/(s—1), forl<s<2.

These conditions ensure that the coefficients a;; and a belong to appropriate spaces
of multipliers:

s—1, (s—1)/2

Q).
(0) - Wy >C22(0)).

aij € M(W,

CZEM( YS‘/Z

‘We shall also assume that
ajj =daji for i, ] = 1,2,

Jco > 0 Vx € 2 VE € R? Z aij (O)EE; zcoZa,

i,j=1
a(x) >0 in the sense of distributions on §2,
ie. {ap,0)pxp =0 VoeD(2),

as well as appropriate compatibility conditions between the initial and the boundary
conditions, and that u € WY g/z(Q).

3.4.2 The Finite Difference Scheme

Let NNMeN,N>2, M>1,h:=1/N and t := T /M. We consider the uniform
spatial mesh £2” with mesh-size 4 on §2 and the uniform temporal mesh £2° with
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mesh-size t on (0, 7). Using the notational conventions introduced in Sects. 2.6 and
3.1.4 we define the space-time meshes

0 =" x 27, 0iF =0Q"x 2L and Q, =" <2

It will be assumed that tIE mesh-sizes 4 and t satisfy the condition (3.88). For
a function V defined on Q:l, we shall define the divided differences Dxi‘,V as in

Sect. 2.6 and DtiV as in Sect. 3.1.4. Finally, we consider the Steklov mollifiers T;,
TiJr and 7, in the x;-direction, i =1, 2, (see Sect. 2.6) and the mollifiers Tﬁ, T,
in the ¢-direction (see Sect. 3.3).

The initial-boundary-value problem (3.100) will be approximated on @Z by the
finite difference scheme

Dy U+ LyU =TETZT, f, on QfF,
U=0 onI"x 2", (3.101)
U= Puy onR"x {0},

where
12
Ly =~ > [Dd (D, U) + Dy, (i DY U)] + (TP T7a) U,
ij=1
and
Pu':{u when2 <s <3,
T12T22u when 1 < s <2.

The scheme (3.101) is a standard symmetric implicit finite difference scheme (see
Samarskii [159]) with a mollified right-hand side and lowest coefficient. When u €
ws.s/ 2(Q) with s <4, a scheme of this kind cannot be used without mollification
of the source term f = f(x,t), because f is not necessarily continuous and it then
makes no sense to sample it at the mesh-points. Similarly, the coefficient a = a(x)
need not be continuous when s < 3. As we are interested in approximating solutions
u with low regularity, i.e. ones with Sobolev index s € (1, 3], we have mollified both
a and f in our definition of the finite difference scheme (3.101).

3.4.3 Error Analysis

Let u be the solution of the initial-boundary-value problem (3.100) and let U de-
note the solution of the difference scheme (3.101). For 1 < s < 2 the solution
u € W5S/2(Q) is not necessarily a continuous function, although it still possesses
an integrable trace on £2 x {t} for each fixed ¢ € [0, T']. In what follows we shall
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assume that, for 1 < s < 2, the solution u € WZS’S/Z(Q), with u]32x 0,77 = 0, has
been extended outside Q as an odd function in x; and x,. (For the values of s un-
der consideration such an extension preserves the class WZS s/ 2; cf. (4.49)-(4.54) in
Haroske and Triebel [69] for s = 2). Let us define the global error by

e:=Pu—-U,
with P as in Sect. 3.4.2. The global error, thus defined, satisfies:
2
D; e+ Lye= Z Donij+n+D; ¢ inQ;F,
ij=1
e=0 onI"xQI, (3.102)
e=0 on$2" x {0},
where

1 . .
) 2 _ _ + .o
nij =T T{ T, (a;jdju) — E[aijD;:;(Pu) +a;’ (Dx_l,(Pu)) N =12,
n:= (IfTia)(Pu) — TP T T, (au), and
¥ = Pu— T} Tiu.

Analogously as in Sect. 3.3 we introduce the mesh-dependent anisotropic
Sobolev norms

VIR0 = VIR =7 2 IVEnlh VI =7 2 Vel
ref2} ref2}
VI iz g, =7 2 (VD + [DEVED]T, + [DEVED]S,)
2 h ref2}
IV =Vl
+r22_; _Z P h
te2 t'ef2 '#t
with || - || and || - ||;,n, { = 1, 2, denoting the norms defined in Sect. 2.6.

Defining £,V =0on I h the finite difference scheme (3.102) can be rewritten as
an operator-difference scheme (3.31), where HI = Sg is the set of mesh-functions

defined on " that vanish on I'"*, equipped with the inner product

(V. Wi :=h> Y V)W ().

xeh

From (3.44) and (3.46), using the relations

V1%, = V. VI z o[ DIV}, + 105 V5.
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. o= R r—
e e I,
Vi DfW i h
< sup IV 1Ll lli PIViin

wesg \/CO(”D Wi, + 1D5, W”Q},)

and the discrete Friedrichs inequality (2.53), we obtain the following a priori esti-
mate for the finite difference scheme (3.102):

1) — ',t/ 2
lle|? g, S [122 3 I ( @_;/jlg )i

te2 Ve2’, t'#t

’ Z < —)”I/f( I)Hh 2 ||nlj||lhr+||7]||hr:|
tef2r izl
(3.103)

The task of deriving an error bound for (3.101) is thus reduced to estimating the
terms on the right-hand side of (3.103).

Theorem 3.4 Suppose that the solution u of the initial-boundary-value problem

(3.100) belongs to WS S/Z(Q) l<s<3 fe WS 2.8/2= l(Q) and let the co-
efficients a;j and a satlsfy the assumptions from Sect. 3.4.1. Suppose also that

c1h? < v < cah?. Then, the global error of the finite difference scheme (3.101) is

1,1/2

bounded in the mesh-dependent W," '~ norm as follows:

—-U 11/2 < Ch* ! max ||a;; || s
lu—=Ully, a laijll -1 (@)

9 —
1
+|Ia||WJ 2o T log [lue]| W20y when2 < s <3,

(3.104)

and
22 y—1
” T Tyu— U“ qu/z(QZ) < Ch?’ (nllﬂx ”aij”Wf,"M(.Q) + ||aO||L2+g(.Q)

+ max |a; ||W;)71+3(9)> Il oy When1<s <2,
(3.105)

where C = C(s) is a positive constant, independent of h and t.
Proof First of all, we decompose 7;; as follows:

Nij = Nij1 + Nij2 +nij3 + Nija +0ijs,



290 3 Finite Difference Approximation of Parabolic Problems

where, for i, j =1, 2,

miji =T, T3 (@i T, 0ju) — (T T3 ai) (T T3, 1, 0,u),
1 . _
nij2 = |:Ti+T32—iaij — 5 (aij + %7)} (T 15,1, 0ju),

1 : 1 i
(s + )72 10y S05 -+ (05, Pu) ).

mijs = 5
1 - _ i
ija = =5 (aij = ai ) [ DY (T;7u) = (D5 (T,71) '],
1 . _ _ _ .
mijs = =7 (@i — &' ) [ Dy, (Pu = T;u) = (Dy, (Pu =T, u)) ™.

For 1 <s <2 weletn=mno+ni + n2 + n3 + n4 + ns, where
no = (T T3 a0) (TETS T, u) = TP T3 (ao T, u)),
m = (TP T7a0) TET3 (u — Ty ),
= (T T3 0ia; ) (TETE T, u) — TETE[(T, u)diai], i=1,2,
=

TET79:a))TPTH (u— T, ), i=1,2.

n2i
M2i+1
For 2 < s <3 we define n = ng 4+ 17 + ng + n9, where
ne = (TP T5a) (T, u = TP T3 T, ),
n7 = (T3 T3a) (T3 T u — TETE T, u),
ns = (TET5a) (u — TETu — T, u + TETS T, u),
no = (T T7a) (TP T, u) = TET3 (aT;u).
Let us introduce the elementary rectangles

K'=K°0):={y:ly; —x;jl <h,j=1,2},

K'=K'(x)={y:xi <yi<xi+h,|ysi —xs_i| <h}, i=12,

and the parallelepipeds
G’ =G, 1) =K x (t — 1,1),
G =G x,1)=K' x@t—1,1), i=12.
For 2 <5 <3, n;j1,1, j =1, 2, satisfy the conditions under which an estimate of

the form (2.174) holds:

e t)”i,h <Ch'™! laij -1 @) |17 uc, 0 Wiy 2<S=3
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Thus, summing over the nodes of the mesh .Q_f_ we get
T s=1y.
71 lli,ne < Ch*™ laij IIW;—I(Q)IIMIIW;s/z(Q), 2<s<3. (3.106)
Analogously, for 1 < s <2, (2.173) implies that
T s=1y...
Imijlline < CR ™ laijllys-1ss g lllygon g 1 <s <2 (3.107)

Similarly, using the estimates (2.174) and (2.173) for ;> and ;4 we obtain bounds
of the form (3.106), (3.107).

When s > 1, n;;3(x,t) is a bounded bilinear functional of (a;;,u) € C(fi) X

W, /2(G), which vanishes whenever u is a polynomial of degree two in x| and x;

and of arbitrary degree in ¢ with constant coefficients. Invoking the Bramble—Hilbert
lemma we deduce that

Inij3x, )] < C* 3 layj | l<s<3.

c®) w2 iy
Summing through the nodes of the mesh Q;Jr gives
Imijalline < CH*Haijll oyl g, 1<s <3,
By noting the embeddings
Wy H(2)— C(2) for2<s<3
and
Wi (2) > C(R2) forl<s<2,
we obtain bounds of the form (3.106) and (3.107). The same argument applies to
mjél;he term 7o satisfies the conditions under which a bound of the form (2.176)
holds:
[n0C. 0, = CHMaol oy [ T7uC D] o) 1<s5=2.
Summing over the nodes of 2] we thus get

Imollae < Ch*HaollLs. @l s gy 1 <5 <2 (3.108)

Analogously, using (2.173), for n, and n4 we obtain bounds of the form (3.107),
while using (2.175) yields the following bounds on ne and 79:

Im6llac. msllie < Ch* " lallyg2 gl yporz gy 2<s <3, (3.109)



292 3 Finite Difference Approximation of Parabolic Problems

For s > 1 and ¢ > 1, ni(x,¢t) is a bounded bilinear functional of (a,u) €
L, (K% x W)*/>(GY), which vanishes if u is a polynomial of degree one in x|
and X7 (with constant coefficients). The Bramble—Hilbert lemma gives

(G 1<s<2.

5—2-2/q
|7]1()C,[)| SCh ||a()||Lq(KO)|I/t|W§,x/2
By bounding the right-hand side from above further we deduce that

[m e, 0] < Ch =22 lag 1y @) lul s l<s<2.

(G’
Summing through the nodes of the mesh thus yields
s—2/q
Iniline = Ch laollzy @ lul sz gy 1 <s=<2,
and setting ¢ = 2 + ¢ then gives the desired bound:
s—1
Inllae < Ch* laoll ooyl yyssrz ) l<s=<2 (3.110)

For s > 1, mjiy1(x,1), i = 1,2, are bounded bilinear functionals of (a;,u) €

Loo(K9) x Wv Y/Z(GO), which vanish when « is a polynomial of degree one in x
and x, with constant coefficients. Similarly as before, we arrive at

[m2it1] < Chs73||aiIILOO(Q)IMIW;x/z(Go), 1 <s<2,
and
m2it1llae < CRF laill oo el sz ) 1 <s 2.
Using the embedding W;_H‘S (£2) = Lo (£2) then yields
s—1
Im2i+1llne < Ch* ||ai||W;—1+8(9)||u||W2:,s/2(Q), l<s<2  (3.111)

For A > 1/2, n7(x, t) is a bounded bilinear functional of (a, T12T22u) €Ly (K9 x
Wzk(t — 1,t), which vanishes if T12T22u is a constant function. By applying the
Bramble-Hilbert lemma we obtain

[ (x, )] < Ch’ﬂ—l—ﬂ‘l||a||Lq(Ko)|T12T22u|wZA 12<xr<1.

(t—1,t)°

For1/2 <A<,

|T2T2M( t)_TZTZu( f//)|2 s 1/2
|Tl T2u|W)‘(t 1) (/t f[ . l//|l+2)“ dr’dr

flee (-, f)—M( "2 1/2
<cn / / LKD) qrar)
t—t Jt—t —¢|1+2%
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Setting r =2q/(q — 2) with g > 2 yields

t luCo ) =G tDIT - ko) 2
202 72
[m7(x, )| < Ch ||a||Lq(K0>(f / — dt/dt”) :
t—tJi—1 [t — "]

Summing through the nodes of the mesh and using Holder’s inequality gives

/ "2
T T lu(,t") —u(,t )”L_Zq_(ﬂ)

12
2\ q—2 ! 1.0
In7llne < Ch IIaIILq(9)< A TargE=s dt’ dr ) )

Let us choose g such that:
W™2(2) = Ly(2) and W) (2) <> Lag/q—2)(82).

For 2 < s < 3 this can be achieved by selecting g such that2 < g <2/(3 —s). We
then obtain the following bound on ||77|;7:

T o1 UGt —uC e 12
21 W) |, .,
Imrlee < CH¥lalys 20 ( [ [ — 2 ara )

2<s<3,1/2<r<1.

21
< Ch**||a|| ys— u|| 52541, ,
= I ”WzY 2(9)” ”W;M—IH—I/Z(Q)

The same result holds for A = 1; then,

de’ de” , _ o
—— 5 isreplaced in the argument above by dr’,
t—1 tr|l/_t”|+)\ -7

and
du(, 1)

ar’
Setting s = 24 + 1 we finally obtain the following bound on n7:

u(-, 1"y —u(-,1") is replaced by

”777”/11 < Chs*l ||a||W£72(9)|Iu||W£T/Z(Q)’ 2<s < 3. (31 12)

When a € L,(£2) and s > 2, we have that ng(x, t) is a bounded linear functional
of u e WS s/ Z(GO), which vanishes on all polynomials of degree two in x; and
x7 and on all polynomials of degree one in ¢ (with constant coefficients). By the
Bramble—-Hilbert lemma,

s=311,,.
Ing|l < Ch° " ||ai ”Lz(KO)'ulvT/;“‘/z(GO)

< Ch*7la; a0 ll ysesr2 2<s=3.

(GO’
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Summing through the nodes of QZ"' and noting the embedding WS_Z(Q) —
Lo(£2), s > 2, yields

s—1
In8llne < CH lallyy-2g) Ml sz gy 2 <5 <3. (3.113)
Now let us consider the terms in (3.103) containing ¢ :=u — T12 T22u. Obviously,

Y=0 forl<s<2. (3.114)

When 2 < s < 3, analogously as in Sect. 3.3, we have that

10—y Ol
12 Z Z |t—[’|2 :

e Ve, I'#t

M m—1 m k
.2 ™ — ||h
lekZO |l‘m_tk|2
M m—1 m m M m—1 m + ..k 2
2 ||1/f -y ||h 2 7 10 - I v"l;,
) ph e RS o) U A
m=1 k=0

m=1 k=0

M m-1, -+ k k
T,
+62ZZ" VoV ks

2
m=1 k=0 4

We shall bound each of the terms Jp, J» and J3. Similarly as in Sect. 3.3 we have

M m—1 m —.myp2 2 M
™ =T, y"ll, = m e mi2
XZ:ZO (m_tk)2 ’ STTmX::]”I// Ty |

h’

and hence, by estimating ¥ — 7, ¢"* using the Bramble-Hilbert lemma and sum-
ming over the nodes of the mesh, we obtain

Ji < Ch= 2 |u? 2<s<4. (3.115)
w.

ss/Z(Q)a

An identical bound holds for J3.
Further, analogously as in Sect. 3.3 we have that

N2
T < 6h2p 21 Z/ / W0 =y OF 40,

PREPTTES)Y
xeQh | L

where 0 < A < 1/2. Using the integral representation

Yx, 1) =ulx,t) — TET u(x, 1)

)



3.4 Parabolic Problems with Variable Coefficients 295

3u
x —— (x{, x5, 1) dx} dx{ dx} dx}
0x10x2

_p2 /h f"i /"1+X1 /x2+h< )(1 _Ix —le)
0 Jo x1—x{ Jx h

82 " / " i /
X ?(xl ,x2, )d)czd)cl dx; dx;

L)

32
X xl; (x7, x5, 1) dx}’ dx} dx) dx}
2
and the Cauchy—Schwarz inequality then yields

244, 2
J, < Ch*t X|M|W22+2)“‘1+)"(Q)’ 0<Aa<1/2.

By writing s =2 4 2A we thus obtain the following bound:

Jo < Ch*72||u|? Wi ) 2<s<3. (3.116)

Using the Bramble—Hilbert lemma and the trace theorem (Theorem 1.44), we have
that

e (Il

et
< Ch*~ TZ( +—>|u( t)|W3 ‘@)
tef2?
< Ch*~ 210g—||u|| Wi ) when 2 <5 <3. (3.117)

Finally, the desired error bound follows by combining (3.103) with (3.106)—
(3.117). O

Remark 3.1 The error bounds (3.104) and (3.105) have been proved under the as-
sumption T =< h?. As we have noted in Sect. 3.3.3, this condition is of technical
nature and may be avoided by a more careful analysis of the truncation error.

Remark 3.2 Similar results hold when the coefficients a;; and a depend on ¢ (see
Samarskii [159] for error bounds in the case of classical solutions).

Remark 3.3 Error bounds in the discrete W22 1 and L, norms can be established
analogously as in the elliptic case, provided that the discrete ‘second fundamental
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inequality’ (2.179) holds. Error bounds in discrete C* and C*¢ norms follow di-
rectly from our error bounds in discrete Wéﬂ /2 horms by invoking discrete coun-

terparts of embedding and trace theorems.

3.4.4 Factorized Scheme

The finite difference scheme (3.101) involves the solution of a system of linear al-
gebraic equations at each time level. The linear system has a sparse, banded matrix,
a typical row of which contains at most seven nonzero entries. In the special case
when ajp» = az; =0, a typical row of the matrix contains five nonzero entries. Ei-
ther way, the computational cost of solving such a linear system is higher than in
the one-dimensional case. Indeed, the matrix of the linear system that arises from
the implicit finite difference approximation of the one-dimensional heat equation
considered in Sect. 3.2.1 is much simpler: it is tridiagonal. Our objective here is to
replace (3.101), without loss of accuracy, by a more economical scheme, which at
each time level involves the solution of systems of linear algebraic equations with
tridiagonal matrices only. To this end, we consider the following factorized finite
difference scheme:

(I + 0t ANy +0TA) DU + LyU = TETET, f, (3.118)
with the same initial and boundary conditions as in (3.101). Here o is a positive real

parameter, A;U = —D . D;U ,i=1,2, and I, is the identity operator. According
to (3.35) the finite difference scheme (3.118) is stable if the operator

1
(Ip+otADNUp+0TA2) — Efﬁh

is positive definite, uniformly with respect to the discretization parameters. This
condition is satisfied if, for example,

0 = max ”aij ||C(§)a
LJ

and the mesh-size / is sufficiently small, i.e.
h<3(ellalLy2) ™. when2<s <3,

or

1 __r_
h < E[Cz(llaollL2+€(Q) +llaillL,@) + a2l )] 772, whenl<s<2,

with the same assumptions on ¢ and p as in Sect. 3.4.1.

In contrast with (3.101), the factorized scheme (3.118) is economical in the sense
that the linear operators (I, + ot A;), i =1, 2, that need to be inverted at each time
level are represented by tridiagonal matrices.
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The global error e := Pu — U satisfies the following finite difference scheme:
2
(n+otANUn+0TA)D e+ Lyé= Y Donii+n'+ Dy in Qf7,
i,j=1
e=0 onI"x QF and 2" x {0},

where

1 _ i (e +i
iy sy + 5707 [y DY (Pu) + a7 (D7, () ]

— %o’f(sith_ [D; (Pu) + (Dx_, (PM))+i]

1 _ _
+ Eozrz(l - (Sij)D;:_ Dy, D} D/ (Pu),

1

n' :=n—t(T}T3a)D; (Pu),

with P as defined in Sect. 3.4.2, and §;; is the Kronecker delta. The a priori estimate
(3.103) still holds if n;; and 5 are replaced by 7/ ; and n’. Using the techniques de-
veloped above it is easy to show that the factorized scheme (3.118) satisfies the error
bounds (3.104) and (3.105); in other words, no accuracy has been lost compared to
the implicit finite difference scheme considered in the previous section.

3.5 A Parabolic Interface Problem

Let 2 = (0, 1)2,_F = 042, and let X' be the intersection of the line segment x; = &,
0 <& <1, and §2. We consider the following parabolic interface problem:
du .
¢! +k52)5 + Lu= f(x,t) in Q:=8 x(0,T],
u=0 onlI x(0,T], (3.119)
u(x,0) =ug(x) onSs2,

where §x (x) := 8(xo — &) is the Dirac distribution concentrated on X, k(x) = k(x1)
and L is the same symmetric elliptic operator as in (2.166) and (3.100):

2
Lu:=— Z 8[((11‘]'3]') +au.
i j=1



298 3 Finite Difference Approximation of Parabolic Problems

Clearly, (3.119) is a parabolic initial-boundary-value problem with a ‘concentrated
capacity’ involved in the coefficient of the time derivative. In one space-dimension,
similar problems were considered by Jovanovi¢ and Vulkov [94, 95]. Following
[94], the solution of the initial-boundary-value problem (3.119) will be sought in
the function space W"*/(Q) := Lo ((0, T); W3 (2))NW;'2((0, T): L2(2)), where
W2 (£2) and Lz(.Q) are the same as in Sect. 2.8.

When the source term f = f(x, t) is sufficiently regular in the sense that it does
not contain a ‘concentrated load’ such as §x (x), it is easily verified that (3.119) is
equivalent to the following initial-boundary-value problem with transmission (con-
jugation) conditions on the interface X:

2—1:+£u=f(x,t) inQ~uUQT,

u=0 onl x(0,T],
u(x,0) =ugp(x) on$2, (3.120)

2

ou

[uls =0, [Z‘Iazjaju} _kg
/:

where Q% := 2% x (0,T], 27 :=(0,1) x (0,&), 2% :=(0,1) x (£,1), and
[uly =u(x1,E4+0,1) —u(x;, £ —0,1).

Lemma 3.5 Let the coefficients a;j, a and k satisfy the assumptions of Lemma 2.71
and suppose that

feLa(0,T); Wy (2)) and ug € La(£2).

Then, there exists a unique solution u € W1 1/ 2(Q) to the initial-boundary-value

problem (3.120), and there is a positive constant C such that the following a priori
estimate holds:

T
2 2 2
lu ||~H/2(Q) <||u0||L2(9)+IIMolle(;)Jr /O Hf(-,t)HWzl(mdr)

The proof is analogous to that of Theorem 26.1 in Wloka [199].

3.5.1 Finite Difference Approximation

Using the same notational conventions as in Sects. 2.8.1 and 3.4 we approximate the
initial-boundary-value problem (3.119) on the mesh QZ by the following implicit
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finite difference scheme:
(1 +k8sn)D; U + LU =TETST, f in OFF
U=0 onl"x", (3.121)
U(x,0) =up(x) on Qh,
where the operator L, is defined in the same way as in Sects. 2.8.1 and 3.4; i.e.

2
1 _ _
LU==3 ﬁl[DxT- (aij D3, U) + Dy, (ai; D, U) ] + (TP T3 a) U,
i,j=

and

for x € 2\ £",

Sxn(x) =08p(x2 — 5)—{1/}, forx e X",

is the discrete Dirac delta-function concentrated on X" . For the sake of simplicity,
we shall assume that £ is a rational number and £/ / is an integer.

Besides the norms defined in Sects. 2.8.1 and 3.4, we shall also consider the
following mesh-dependent norms and seminorms:

2
U7, sheory =T 2 NUCD]L sn,

te2}
2 o N
| |L2(.QT;W21/2(2,')) =T Z ‘U( ) t)|W21/2(2h)7
te2}
|U| —722 Z o, 0)—-Uc, t)IIL 2h)
(@7, Ly(2") It —1t'|2 ’
e e’ 't
U 5 WU, 0)—=UC, l)llL (zh)
=T )
U W, 2 (27 Ly (Zh) Z Z [t —t'|?

e e’ 't

7712 1
”U” 2@rL (_Qh)) =|U| 1/2(QT L (_Qh))+ Z( +—T )”U( t)”Lz(.Qh)’
te

1
2 — N
||U”W21/2(S2T;L2(2h)) = |U| I/Z(QT L (Eh)) + Z ( + )”U( t)HLQ(Eh)’

2
U1~ 11/2(Q) = %;”U( t)”W(.Q" +|U| 2(@7;Ly(£21)
+|U| 1/2

(R7;Ly(Zh)
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Let u be the solution of the initial-boundary-value problem (3.120) and let U
denote the solution of the finite difference scheme (3.121). Then, the global error
e :=u — U satisfies the finite difference scheme

(1+k8sn)D; e+ Lye=¢ inQT,
e=0 onl"x,, (3.122)
e(x,0)=0 on .Qh,

where
2
¢:= > Donij+n+D; ¥ +8zD; .
ij=1
1 . )
T2 - +i y—
mij =T T T (aijdju) — 5 (i Dyu + agg Dy u™),

n = (T12T22a)u — T12T22Tt_(au),

v i=u— T TS u,

= ku — T2 (ku).

We consider the decompositions

mj =i +8gufj,  n=0+38gmi, Y=Y+,
where

nij=mj—dgnij, n:=n—38zgn, V=1 =z,

and

A

1
ni = -

6h2T1+T,_([61113132M + dandiuls),

R 1 _ 1 _
N2 = ghszLT, ([a12322u + 82a1232u]);) - Zh2T1+T’ ([81(a1282u)]2),

A 1 -
= =W [(17a) (177, 00) ] .

By applying (3.18) and (3.19) we obtain the a priori estimate
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2
IIEIIWZH/Z(QZ) < C[;(Ilrmllz,hz + 71 ll1,0e + Iﬁllez(Qr;Wzl/z(Eh)))
=

+ ”ﬁ”Lz(QZ) + ||n||L2(2thf) + ”W”Wzlﬂ(_QT;LZ(Qh))

+ ||w||W2]/2(QT;L2(Z‘h)) + ||M||W21/2(QT;L2(Eh)):|' (3123)

Thus, in order to estimate the rate of convergence of the finite difference scheme
(3.121) it suffices to bound the terms appearing on the right-hand side of (3.123).
We shall suppose for the sake of simplicity that 7 < 2.

Theorem 3.6 Let the solution u of the initial-boundary-value problem (3.120)
belong to WZS’S/Z(Q), a;jj € Wg_l(Qi), and suppose that a € Wg_l(.Qi) and
k e Wﬁ:_l(Z'), 5/2 < s < 3. Then, assuming that T < h?, the global error of the
finite difference scheme (3.121) satisfies the following error bound:

u—U|~ <Ch“1<max aiillvs— max ||a;; || yrs—1, o
” ”WZII/Z(Q;) = i ” l]||W2Y 1(Q+)+ i ” l]”WzY I(Q )

+ ||6l||W§—2(Q+) + ||a||Wév—2(_Q,) + ”k”W;_l(Z)
1 .
+\flog 3 )lull o2 g,
for5/2 <s <3, where C = C(s) is a positive constant, independent of h and t.

Proof The terms n3;, j =1, 2, were bounded in Sect. 3.4.3. After summation over
the mesh we obtain

s—1
In2jll2,ne < Ch (IIazjIIW;—I(_Qf)IIMIIW?r/z(Qf)
+ ||a2j||W5—1(_Q+)||M||W§,x/2(Q+)), 2<s<3. (3124

The terms 71;, j = 1,2, and 7 for x ¢ > were bounded in Sect. 3.4.3; for
x € X" they can be handled analogously. Hence,

~ s—1 .
”’71] ” 1,ht < Ch (”al] “WQS*I(Q—) ”M ”W;’X/Z(Q_)
+ ”alj||W25_1(_Q+)||u||W;vS/2(Q+))7 5/2<s<3, (3.125)
and
ot s—1
171l Ly(0pe) < Ch (||a||W5—2(97)||M||W;.x/2(Q7)

+ ||a||W2H(Q+)||u||W§,5/2(Q+)), 2<s=<3. (3120
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It follows from (2.251) and (2.252) that

[ ¢, t)|wz,‘/2(2h) = Chs_l(||"1j||w;1(9—)||T,_M(n Dllws 2

Fllarjllys-1 o+ |77 uc. 0 W;(Qﬂ)’ 3/2<s=3,

and therefore

A s—1 .
|T’1j |L2(QT§W21/2(Eh)) S Ch (”Cll] ”Wg_l(gf) ”u”WZTY/z(Q—)
+ ||a1‘]||W571(Q+)||u||W§’A/2(Q+))7 5/2<S 53. (3.127)

The term 7 can be bounded directly as follows:

N 2
Il oy < Ch(lallyy-2 g Il -

+llallys2 gy lellygor i) $>5/2. (3.128)

The term 1/, for x ¢ X", was bounded in Sect. 3.4.3. For x € X" we consider the
decomposition v := ¥ 4 ¥, where

1

h
yhi= 5 <u — T u + 5T1232u>

(x1,6+0)

L
x1—h h

Xy pxy
/ / 8114 xi”,x2 dx{" dx{ dx} dx}

xl%/Hh( |x1—x1|)(1 xé‘é)
X1 h h

et
x1—h h

)C
2
/// " " / /
/ / 82 xl,xz dx2d2dx2dxl,

and v~ is defined analogously. By bounding v* in the same way as v for x ¢ X"
and combining the bounds, we get:
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s—1 / 1
“wnwzl/z(gr;l‘z(gh)) =< Ch log E(”u” W;’S/Z(Q_)
lulypngn) S/2<s=3. (3.129)

Analogously, one obtains

< ChS71

1
1l 172 ey sty < log - 1kll g1 (5 1l 372 5 0y 3-130)

for 2 < s <3, while I//} can be bounded directly, yielding

< Ch?

”1/[”‘/.1.721/2(97;[,2(2h)) — (3131)

1
log 7 ”u”sz'l(Ex(O,T))'

The assertion then follows from (3.123)—(3.131). O

3.5.2 Factorized Scheme

Analogously as in Sect. 3.4.4, we shall construct here a factorized, unconditionally
stable version of the finite difference approximation (3.121) of the initial-boundary-
value problem (3.119). For the sake of simplicity we shall suppose that k = Const. >
0 and consider the following finite difference scheme (with the same definitions of
the meshes, mesh-functions and finite difference operators as in Sect. 3.5.1):

(In + 60T A (B +0TA) DU + LU = TETIT f in 2],
U=0 onI"x 2", (3.132)
U(x,0) =up(x) on ",
where
AU :=—D}ID_ U,
ByU := (1 +k85n)U,

I, is the identity operator and 6 is a real parameter. Obviously, when the values of
U for some fixed t =t € 27 are known, the values of U on the next time level
t =1’ 4+ T can be computed by inverting the operators I, + 0t A and By, + 01 A».
Since these operators can be represented by tridiagonal matrices, the solution of
(3.132) can be computed very efficiently by successively solving systems of linear
algebraic equations, each having a tridiagonal matrix. We note that the operator
(In + 0t A1)(Bp + 6t Ap) is symmetric and when s > 2 and t = h? the operator-
inequality

(In+60tA)(By +0tAy) —tLy >cBy, withO<c<l,
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holds for sufficiently large positive 6 and sufficiently small 4 (independent of the
size of the time step 7).

Let u be the solution of the initial-boundary-value problem (3.120) and let U
denote the solution of the finite difference scheme (3.132). The global error e :=
u — U satisfies the finite difference scheme

(I + 0T A By +0tA2)Dfe+ Lye=F in 2],
e=0 onI"xQ", (3.133)
e(x,00=0 on 2",

where
2
@=Y W5 +0+DY+55 D/,
i,j=1

Wiy =TT T (aijdju) — %(a,-ijju +af Dy ut),

7= (T T5a)u — TETS T,  (au),

¥ :=u— T T u — 0t (D} Dy u+ DY, D u) + 6>t D} D, D} Dy u,
= k(u - leu - t9rDX+1 Dy, u)

=

Let us consider the decompositions

'71,=ﬁ1,+52hﬁ1p N=7+8gu, V=9 -+,
where
ﬁl] _ﬁlj thﬁlja ﬁ Zﬁ_az‘hﬁv W:ZW_(SE"E’
and
~ 1
My = 6h2T1+T;+([61113132M + daydyulx),

~ 1 1
N = 6h2T1+T,+([a12822u + 82a1232u]);) - Zh2T1+T,+([31(111232M)]2),

A 1
o= — 2 (72) (12000

A

1
V= (6h2 —~ 9:) [T (0u)] ..

By applying (3.18) and (3.19) to (3.133), we obtain the following a priori estimate,
which represents the starting point for the error analysis of the finite difference
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scheme (3.132):
2
(727 W2+ 1701w+ 1011 e w2 )

lell a2 gr) = C[
1

J

+ ||ﬁ||L2(QZ) + ||ﬁ||L2(EhXQT) + ”w”WZI/Z(QI;Lz(Q/’))
+ ||w||W21/2(Qr;L2(Eh)) + ”ﬁ”WZI/Z(.QI;Lz(Eh))}' (3134)

For 7;; and 7 the same bounds hold as for n;; and 7, while 4 and [ can be
bounded analogously to ¥ and w. Thus we obtain the following result.

Theorem 3.7 Let k = Const. > 0; then, under the same assumptions as in the state-
ment of Theorem 3.6, the global error of the finite difference scheme (3.132) satisfies
the following error bound:

lu = Ulig11igr

<Chs71<max aiillys—1 4+ max ||a;; || ys—1, o
= ij ” ’JHW; (_Q+) i ” lj”WZY £227)

+llallyg 2 gy + Nallyg2gey + /0 )l gyon gy 5/2<5 <3,

where C = C(s) is a positive constant, independent of h and t.

3.6 A Parabolic Transmission Problem

In this section we focus our attention on transmission problems whose solutions
are defined in two (or more) disconnected domains. Such a situation may occur
when the solution in the intermediate region is known, or can be determined from a
simpler equation. The effect of the intermediate region can be modelled by means
of nonlocal jump conditions across the intermediate region (see, Tikhonov [180],
Kacur et al. [113], Datta [27], Givoli [55, 56], Qatanani et al. [152], Druet [35],
Jovanovi¢ and Vulkov [102, 104]).

As a model example, we consider the following initial-boundary-value problem:
find two functions, u(x, y, t) and us(x, y, t), that satisfy the system of parabolic
equations

ar —Aur = filx,y,1), (x,y)€82:=(a1,by)x(c1,dy), t €(0,T], (3.135)

ou
a—tz—Au2=f2(x,y,t), (x,y) € $22:=(az,b2) x (c2,d2), t €(0,T], (3.136)



306 3 Finite Difference Approximation of Parabolic Problems

where —00 < a; < by <ay < by <+00, and, e. g., ¢2 < ¢] < dj < d», the internal
transmission conditions of nonlocal Robin—Dirichlet type

ouy
a(bl,y,t) +ar(Yui(di, y, 1)

1)
=/ Bi(y.y)uz(az, y',1)dy’, ye(er,di), 1€(0,T], (3.137)
C

2

duy
g(@’ v, 1) +ax(yuz(az, y,t)

d
=f By y)ur(br ¥ 1)dy,  ye(eadn), 1€(0,T], (3.138)

c]
the simplest external Dirichlet boundary conditions for ¢ € (0, T']:

ui(x,cr,t)=ui(x,d;, 1) =0, x¢€(ar,br),
ur(x,c2,t) =uz(x,dr,1) =0, xe€(az, by), (3.139)
ui(ar,y, 1) =0, ye(ca,d); uz(ba, y, 1) =0, ye(c,d),

and the initial conditions

ui(x,y,0)=upplx,y), (x,y) €2,

3.140
ur(x. v, 0) =un(r, y),  (x,y) € 2n. (3.140)

Note that for a special choice of «; and f; such an initial-boundary-value problem
models linearized radiative heat transfer in a system of absolutely black bodies (see
Amosov [3]).

In the sequel we shall assume that the data satisfy the regularity conditions

@; € Loo(ci, di), Bi € Loo((cidi) X (c3—i,d3—)), i=1,2.  (3.14])
In physical problems (see Amosov [3]) we also often have that

o >0, Bi>0, i=1,2.

3.6.1 Weak Solutions and Function Spaces

We introduce the product space
L:=Ly(821) x L2(§22) = {v = (v1, v2) : v; € L2(2))},

equipped with the inner product and the associated norm

1/2
(u,v)r = U1, v1) @) + U2, V) L2y,  vle = (v, v)L/ ,
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where u = (u1, uz) and v = (v1, v2). We also define the spaces
Wy i={v= (v, m) v eWs(2)}, k=12,...
equipped with the inner products and norms
(1, V) 3= (1, VD k) + @2, )ty Mllyg = 0
In particular, we let
W21 = {v:(vl,vz) S W21 v, =0o0n 13}, :1,2},
where

Iy =021\ {(b1,y):y € (c1.d},
Dy =020\ {(a2,y) 1 y € (2, o) }.

Finally, with u = (u1, u2) and v = (v1, v2) we define the bilinear functional:

duy 0 duy 0
a(u,v)::/ <ﬂﬂ+ﬂﬂ>dxdy
2, \ dx 0dx dy dy
ous 0 ous 0
+/ (££+££>dxdy
2, \ 0x Jx dy dy
d
+ / a1 (Vur (b1, y)vi (b1, y) dy
cl

dp
+/ az(y)uz(az, y)va(az, y)dy

2

dy d;
—/ / Bi(y. Y )uz(az, y')vi (b1, y)dydy’
[o) c1

dy pdy
- / / Ba(y', y)ui(br, y)va(az, y')dydy’.  (3.142)
) cl
The following coercivity result holds (cf. Jovanovi¢ and Vulkov [102]).

Lemma 3.8 Under the conditions (3.141) the bilinear functional a, defined by
(3.142), is bounded on W21 X W21 and satisfies the following Garding inequality

on Wzl: there exist positive constants m and k such that

2 2 171
a(u,u) +ilully =mllully, YueW,.
2

Proof The boundedness of the bilinear functional a follows from (3.141) and the
trace theorem, according to which

luillLa00) = Clluillwy ). i=1.2.
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From the Friedrichs inequality (1.23) we immediately obtain that

() () ooz

where ¢ is a positive constant, which depends on £21 and £2;. The remaining terms
in a(u, u) can be bounded by ¢|ju || + < = llu 1% 7 ; indeed, using the trace inequality

(cf. Theorem A.2 on p. 122 in [139]) 1t follows that:

C .
luillLyos2) < ellVuilly 2 + ;””i”Lz(Q;)» £>0,i=1,2.
The stated result then follows for a sufficiently small & > 0. U

Let W, - (Wzl)* be the dual space of W1, and let (-, -} denote the associated
duality pairing. The spaces W21 , L and W, ! form a Gelfand triple: i.e. W21 — L—
2% !, with continuous and dense embeddings. We also introduce the space

° du —1
W, T):=qu:ueL(0,T),W,), 5 € Lo((0,T), Wy ')

with inner product

r du dv
@, VIwo,1) ::/ |:(u U)W1 + <d ) ]dt.
0 t Wz—l

The weak formulation of problem (3.135)—(3.139) is then:
du 1
E,U +a,v)=(f,v) YveW,. (3.143)

The problem (3.143) fits into the general theory of parabolic differential operators in
Hilbert spaces (see Wloka [199]). By applying Theorem 3.2 (cf. also Theorem 26.1
from Wloka [199]) to (3.143) we obtain the following assertion.

Theorem 3.9 Let the assumptions (3.141) hold and suppose that ug = (u19, u20) €
L, f =(f1,f2) € L2((0,T), W{l). Then, for 0 < T < +o00, the initial-boundary-
value problem (3.135)—(3.140) has a unique weak solution u € W(0, T); moreover
u depends continuously on f and ug.

Because the norm || - ||, -1 is not computable, following Lions and Magenes [127]
2

we shall, instead, consider the initial-boundary-value problem (3.135)—(3.140) with
right-hand sides f;, i = 1, 2, of the form:



3.6 A Parabolic Transmission Problem 309

a(Qi(-x)fil(-xv Y, t)) + afiZ(-x’ Y, t)

fitx,y,0) = fiolx,y,0) +

dax dy
T / /
| 5 1t7t — Ji N ,t,t
+/ fiz e,y |t) t]ff(xy Var'. =12, (3.144)

where fio, fi1, fio € L2((0,T), L2(£2;)) = L2(Qi), Qi = §2; x (0,T), fi3 €
Ly((0, T)?, La(£2:)) = Lo(Ry), Ri = 2; x (0, T)?, 0; € C([a;, b;]) and

yi(b1 —x) <01(x) <Ci1(b1 —x), x€(ai,b1), C1=y >0,
(x —a) <02(x) < Ca(x —az), xe€(az, b)), C2>y2>0.

‘We shall also consider the case

dgi(x, 1
filx, ) = %) i=1.2, (3.145)
where g; € W,/2((0, T), L»(£2;)), i = 1,2. The norm in W,’*(0, T) is defined by

T
1 1
_ 2 - 2
||(/)|| 1/2(0 s = g| 1/2(0 T)‘l‘/ (t + T_;)‘P (t)dz.

We also define the space Wzl’l/ =L,((0,7), W )N Wl/z((O, T),L).
The next two theorems follow from the results of Sect. 3.1.2, and in particular
from (3.18) and (3.19).

Theorem 3.10 Suppose that the hypotheses (3.141) hold and let u;o € L2(82;),
fios fi1 fiz € L2(Qy), fiz € La(R;), i = 1,2. Then, the initial-boundary-value prob-
lem (3.135)—(3.140), (3.144) has a unique weak solution u = (u1,us) € W1 172 and
the following a priori estimate holds:

2
2 2
]| i = Z (luioll3 () + I fiollZ 0

1 fitll] 0 + 1 f2ll T 00 + 13l yR)-  (3.146)

Theorem311 Let the hypotheses (3.141) hold and let ujy € Ly(82;), gi €
1/2((0 T), L2(82;)), i = 1, 2. Then, the initial-boundary- value problem (3.135)—

(3.140), (3.145) has a unique weak solution u = (uy, uz) € W,’ 1172
a priori estimate holds:

and the following

||14|| 11/2§C(||uo||L+||g|| 1/2 (3.147)

0,7), L))

In both cases C is a computable constant depending on 7.
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3.6.2 Finite Difference Approximation

Let ﬁ?i be a uniform mesh on [g;, b;] with mesh-size h; := (b; —a;)/N;, i =1,2.
We consider

QN =2 N, by, QM =eMula),  QMi=Qlu), i=12

Analogously, we consider the uniform mesh Efi on [c;, d;] with mesh-size k; :=
(di — ¢i)/M; and its submeshes

Q=2 N d),  QF=efule),  ef=efu), i=12

We shall assume that & < hy < k| < kr and define h := max{hy, ho, ki, k»}. Fi-
nally, we introduce a uniform mesh 2" on [0, T] with the step size T :=T/M,
M > 1, and its submeshes £27 and §2} (see Sect. 3.1.4). We shall consider vector-
functions of the form V = (Vi, V») where V; is a mesh-function defined on

o« 55-” x 27, i =1, 2. We define the difference quotients:

1

‘/i(x+hiay7t)_‘/i(xayﬂt)
hi

D};Vi= =D Vilx +hiy.0), i=12,

with D;Jfl. V; and D,iVl- defined analogously. We shall use the notations
DIV =(Dy,Vi,D;,V2), DYV =(D;,Vi,Dy,Va),
DV = (DfVvy, DFV,).

Further, we define the Steklov mollifiers in the usual way:

1 x+h,-/2

1 .
Tx,ifi(x,y,t)=Txfiﬁ<x:|:5hi,y,t> :=h—/ filx oy 0)dx!, i=1,2,
i Jx—hi2

with Ty ;, Tyii, T; and T,jE defined analogously. For x = by and x = a» we also
require the following asymmetric mollifiers:

_ 2 [ by —x’'
T fib1,y,0) 2=—/ (1— )fl(x’,y,t)dx/,
' hi Jp,—n, hy
ax+hy x/_a2
1—
< h

2
sz,—;f2(a2, Vv, )= _/
a

" )fg(x’,y,t) dx’.

2

With the notational conventions h; := h;, x € .th‘ i=1,2, hy(by) :=h1/2,
hp(az) := hy /2, we introduce the discrete inner products

V. WL, =kt Y > ViWihi+k Y Y VaWah,

hy ky hy ko
XEQH YES2 XER,” yeS2,
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V., W)L, = hiki Z Z ViWi + haks Z Z VaWa,

XER, i 1 YER) k1 X€2, 2 1 YES2, k2
VWL, =k Y Y ViWihi+k Y Y Wk
xeﬂﬁ ye.Qlklr xe.Q;E yeﬂzki

and the associated mesh-dependent norms
IVIZ, =V, Ve, WVIE, =V, Ve, VI, =, V)L,

We also define the following mesh-dependent norms:

2 . 2 2 . 2 2
WVill,on =7 2 Vis Wi =k Y Vithk Y V5,
12l yesR yeﬂgz
IVIZ,@em =1 D IVC.DIg,  where H := Ly, Ly, Ly Lo(2%),
teR}
as well as
VI, e, rZ( +—>||V( DIz,
tef2’
IVt =VE O3
2 2 Ly
Vhege ) =T Z Z it —1'? ’
te2 t'ef2 '#t
and
2 _ 2
Viginge 1 =1V angr IV [P

- - - 2
”V”WZIhI‘{z T ”Dx V”Lz(Qi,Lh/) + ”Dy V”Lz(.Qj_,Lh//)

FIVIE e 1V B

We shall assume in what follows that u; belongs to Wy’ S12000), i = 1,2, with

s <3, while o; € Wy~ !(ci, dy) and B; € Wy~ ((ei, di) X (c3-i,d3-)), i = 1,2,
s < 3. Consequently, f; € W;fz’(“z)/z(Qi), i=1,2, s <3, need not be con-
tinuous functions. We therefore approximate the initial-boundary-value problem
(3.135)—(3.140) with the following implicit finite difference scheme with mollified

data:
DUy =D, D} Ui =D DI\ Ui = fi,

xe@l, ye!' teQl, (3.148)
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2 _
D Ui(by, y, 1) + h_l|:Dx,1Ul(b1’ y.0) Far(Ui(by, y, 1)

— k2 Z ﬂl(%y/)Uz(az,y/,l)]—Dy,lDIIUl(bl,y,l)

ky
Ve,

= fitbr,y,1), yeRN teqr, (3.149)
1 +

— - pt - pt 3
Dt Uy — Dx’sz’zUz — Dy’sz’zUz = f7,
xe2l yeol e, (3.150)

_ 2
Dy Uz(az, y,1) = o= [D;TZUz(az, ¥, 1) —aa(y»)Uz(az, y, 1)
2

+k1 Z ﬂZ(Yay/)Ul(bl,y/at)]—D;QD;QUZ(GL)’J)
)7/€Qicl

= frlaz, y,1), yeRy, 1efl, (3.151)
subject to the boundary conditions
Ui(x,e1, ) =Uj(x,dy,0) =0, xe$2)', 1€,

Us(x, e, 1) = Up(x,do, 1) =0, xe S22, tef, (3.152)
Uila,y,0)=0, ye2{';  Usba,y,0)=0, yei,

and the initial conditions
Ui(x,y,0) =uio(x,y), xeQ, yel i=1,2, (3.153)
where

File,y, 1) :=THTHT fitx,y,1), xeRM, yeRh, 1eQl,i=1,2,

x0Ty,

A1y ) =THTHT fibr.y.t),  falaz,y.0) =TS THT, frlaz.y.1).

The finite difference scheme (3.148)—(3.153) fits into the general framework
(3.38), where H" is the space of mesh-functions U = (Uj, U,), with U; defined

onthemeshﬁfixﬁfﬂi:l,Z,where
U =0 forx=b;y and U; =0 forx =an,

and

By =1, Ap=Aon + A, AopU = (Ao1nUr, AnUz),
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with
— Nt — Nt h k
Aol i | TP Pl =Dy Dy Ur, - X 2y, ye 2y,
=) 2 - -t _ k
2D, \Ui—D;,D{ \Ui.  x=by. ye2l,

and Ay, U> is defined analogously. Hence,

(AU, U, = |D7U[;, + Dy UL, = CslUIE,. C3>0.

thanks to the discrete Friedrichs inequality; and, by the Cauchy—Schwarz inequality,

(AU, Vi, =k Y ar()Ui b1, y)Vi(bi, y)
ye.Qfl

+thk Y aa(n)Ua(az, y)Va(az, y)
ye!)ﬁz
—kiky Y Y Bi(y.¥)Ua(a2, Y) Vi, y)

k k
yEQll y/E.sz

—kikz Z Z B2y’ y)Ur(b1, y) Va(az, y')

ki ook
YER, Yes2,

12
§C4<k1 Y UML) +ka Y U%(az,y))

yE.Q;Cl yeﬂgz

1/2

x <k1 > Vi) kY V§(az,y)> :
yeo)! yel?

Further, we have that

ki ) Ut y)y=kili Y Y Dy (Uix,y)

yeﬂfl yeﬂfl xe.Q]hi
=khi Y Y Dy (Uix. y)[Ui(x.y) + Ur(x =y, y)]
ytek] xeﬂﬂ
5 12 12
<2(n ¥ X 0p0)) (0 XX vin)
yeﬂf‘ xeﬂfl}r ye.Qfl xeﬂ{l}r

with analogous bounds for the other summands. Thus,
(AU T, <2C3NU L, [P U, VI D5V,

<2CNU L U a1V 12y 1V 1L gy
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Hence, the finite difference scheme (3.148)—(3.153) is unconditionally stable and
satisfies an a priori estimate of the form (3.45).

Let u = (u1, up) be the solution of the initial-boundary-value problem (3.135)—
(3.140) and let U = (Uy, U,) be the solution of the finite difference scheme (3.148)—
(3.153). We define ¢; :=u; — U, fori = 1,2,and e := (e1, e3). Then, the global error
e = u — U satisfies the following finite difference scheme:

D; ey —D; D} e; - D;ID;lel =D; Y1+ D m + D;lgl,

xe@l yeol reQl, (3.154)

201
D;el(bl’ )’J)‘i‘ h_l[Dx’lel(bl, y,t)-i-otl(}’)el(bl: y’t)

— k2 Z ,31(y7y/)€2(a2,y',l)} _D;lD;jlel(bl,y’t)

}'/6952
_ N 2
=D[ l/fl(bl:y,t)+D),1§1(b17y7f)—h_lﬁl(bl,)’,f)

2
+omi . ye el (3.155)
1

D; ey — D;20;2e2 — D;QD;zez =D; Yo+ D)jznz + D;fzgz,
xeQl yeol e, (3.156)

_ 2
D exaz,y.0) = - [Dj,zez(az, ¥, 1) —aa(y)ez(az, y, 1)

+k Z Ba(y. y')e1(br, ', t)} - D;zDLEz(az, v, 1)
}'/G.Qfl

_ 2
= D; VYn(az, y,t) + D;tzfz(az, v, 1)+ h—nz(az +ha,y,t)
2

2 k> T
+h_/“l’2(y7t)7 }’692 7t€9+7 (3157)
2
with

eix, e =ei(r,d;, =0, xe2)', 1eq,
er(x,cp,t)=ex(x,dy,t) =0, x eﬁgz, teﬁr, (3.158)
ei(ar,y,)=0, yeQl;  eby,y,1)=0, yeQP,

and the initial conditions

ei(x,y,00=0, xeRl ye@l i=12, (3.159)
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where
Vi=u — T2 T2, xeQl yeli 1e2',i=1.2,
Vi =uy —TxZ,TTyZ,lul - %T;I%’ x=by, yeQ' 1eQ",
Yo ::uz—Tx%gTy%2u2+% }%22—?, X =a, ye.ng, te2',
and
ni = Txfin,,-Tz(% D u, xeRl, yeRi 1l i=12,

il . N hi ki .
gi= sz,iTy,iTt <3—> —D,ui, xe&, yef, reQl,i=1,.2,

duq _ hy _ (0u
_D‘lu] __T'th a_ A b x=b]’
. 3 axdy

— h2 _ _ azuz
_ D),12M2 + ?Ty,ZTt m , X =a,

R S
a =TT, T,

(o5}
(o3

<
%‘N \<‘

S, S
0 =T5T,,T,

together with
w1 (y, 1) = [ar(Muibr, y, 1) = T} T, (1 (Dui (b, y, 1)) ]

~lle 3 sl ety
y’e.szz

d
- [ G ety ) ay |

2
o (1 P0)]
N B 4 1 1t ,
6”7 dx ot y 1\ %y 050y ) 1,10

ki .
yeQR, tef],

a(y. 1) = [ea(uz(az, y, 1) = T}, T, (aa(nua(az, y.1))]

_[kl > By y)ur(bry'1)
y/egi{l
d
_/ T)%ZE_(IBZ(y’y/)Ml(bl,y/,t))dy/i|
c

32 32
- _2[Ty2’2T’_£ _Derrz(Tytsz_i)} ,
6 dx0t ) dxdy (@)

ko p
yegzﬁteg_i_.



316 3 Finite Difference Approximation of Parabolic Problems

The relevant a priori estimate for the solution of the finite difference scheme
(3.154)—(3.159) is given by the following lemma, whose proof follows directly from
(3.45) and (3.46).

Lemma 3.12 Suppose that the coefficients of the finite difference scheme (3.154)—
(3.159) are well-defined at the mesh-points. Then, the global error e, which is the
solution of the finite difference scheme (3.154)—(3.159), satisfies the a priori esti-
mate

”e”WI 12 = C(”T//” 1/2(_(2 I3 >+ ||77||L2(_Q L)

2,ht

+ ”é—"Lz(QLLhH) + ”M”Lz(ﬂi,Lz(Qk)))’ (3.160)
where C is a positive constant depending on T , but independent of h and t.

Thus, in order to derive an error bound for the finite difference scheme (3.148)—
(3.153), it suffices to bound the terms appearing on the right-hand side of (3.160).
For simplicity, we shall assume in what follows that 7 < h2.

Theorem 3.13 Suppose that the solution of the initial-boundary-value prob-
lem (3.135)~(3.140) belongs to Wy*'?, 5/2 <'s <3, a; € W3~ (ci,dy), Bi €
WZF1 ((ci,d;) x (c3—i,d3—¢)),i = 1, 2, and let T =< h2. Then, the solution U of the
finite difference scheme (3.148)—(3.153) converges to the solution u of the initial-
boundary-value problem (3.135)—(3.140), and the following error bound holds:

s—1 1 ,
lu = Ully11n < Ch ( log 3 + max [leillyye-1(,, 4,)
552, 9)2 <3,
Yullysons 5/2<s
(3.161)

max [1Billys=1 (6. x 3 i.ts-)

where C = C(s) is a positive constant, independent of h.

Proof The term 1, for x € .Q{” , can be bounded in the same way as the analogous

term v in Sect. 3.4.3. The same is true of ¥y (by, y, 1) if u; € Wy*/?(21), s > 5/2;
we note that for smaller values of s this term is not necessarily well-defined. Hence,
from (3.115)—(3.117), we immediately obtain the bounds

1 (x, y, 1) = i (x, y, 1))
Z hiky Z TZZ Z Lot |t_t/|12x .

h k T T
erll y€911 te2 t'ef2 t'#t

< Ch* D Juy |2 W,y H2<s=3,
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and

Y ik X v > (547 vicn

X€82, 1 eQ res2r
< Ch26- l)log Ny ||? e 5/2 <s <3.
o’
Analogous results hold for yr,, whereby
Wl < Ch "\ log 4 lutllon, 5/2 <523, (3.162)
where we have used the notation
”M” 2??/2 ||M1|| YY/Z(Q)+|| 2” YY/Z(Q)

When s > 2, n1(x, y,t) is a bounded linear functional of u; € W3 3/2(G), where

G is the elementary cell (x —h1,x) X (y — k1, y+ k1) x (t —1,1), which vanishes
on the monomials 1, x, y, 1, x2, xy and y2. Invoking the Bramble—Hilbert lemma
and summing over the nodes of the mesh we obtain

hikit Z >0 i@y < Ch* “nuln%/z(g) 2<s<3.

k
xE.Ql YER, 11€2}

An analogous inequality holds for 1, and hence

17l za@3. 2, < CH g, 2 <5 <3, (3.163)

Furthermore, an analogous result holds for ¢, assuming that s > 5/2; again we note
that for smaller values of s the expressions ¢1(b1, y, t) and ¢{3(az, v, t) are not nec-
essarily well-defined. Hence,

16 lza@t ) < CH o, 5/2<5 <3, (3.164)
The term 141 can be decomposed as
M1 = 11+ 12 + @13+ g+ p1s + (e,
where
pin =i (b, y, 0) = T4 T, (@ (Mui (b, y, 1),

pii=ky Y via(y.y.n,
y/EQ;‘Z
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piz=ky Y vis(y,y,0),

)’/EQ;(Z
w4 i=ky Z via(y, ¥, 1),
y’EQ;Z
2 uy
== h T — b1, y,t
s = ¢ A e ( 1Y 1),

lh pf (1, r- e (b1, v.1)
H16 6 t Ix a 1,¥,1),

with
Vg = [Tyzlﬂl(y, Y) = Bi(y.y)]ua(az. y'. 1),

viz =171 B1 (v, ) [T ua(az, ¥ 1) = ua(az. y', 1)),

1
via =Ty o[T5181(3, )T wa(aa, ', )] = S (171 B1 (v, )T w2 (a2, ¥, 1)]

[ T2, 81 (v, ¥ — k)T, uz(az, y' — ko, 1)].

When s > 5/2, pu11(y,t) is a bounded linear functional of vy := aju; €
WZS_I’(S_I)/Z(Ml), where M! is the elementary cell (y — ki, y + k1) x (t — 7,1),
which vanishes if vi =1 and v; = y. By applying the Bramble—Hilbert lemma,

Lemmas 1.47 and 1.54 and the trace theorem we obtain

ki Z Z IU“]l(yv )<Ch2(s 1)”Ul” v L(s—1)/2

((c1,d1)x(0,T))
kyrel

YESR,

2(s—1)
<Ch ||Ol1||WA e d)" 1” s L(s— l>/2(F1><(O,T))

< Ch*S Va2 5/2<s<3.

Ws l d)”’/‘l” SI/Z(Q)

When u; € C(Q5), vi2 is a bounded linear functional of B € szfl (K), s > 2,
where K is the elementary cell (y —ky, y+k1) x (y) —kz, ¥’ +kz), which vanishes if
B1(y,y") is a polynomial of degree 1. Invoking, again, the Bramble-Hilbert lemma
and the Sobolev embedding theorem, we obtain

2(s—1)
kT D0 D0 MR = CRCTVIBIR o a2,

yegkl 1e2]

< CR*S7D|y )2 2<s5<3.

ws™ Y(er.d)x(ca, dz))” 2” is/Z(Q)

If 81 € C([c1,d1] X [c2,d>]), vi3 is a bounded linear functional of us(ay, -, -) €
WS L~ 1)/2(M2), s > 5/2, where M? is the elementary cell (¥ — k2, y' + k2) x
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(t — 7, 1), which vanishes if u» = 1 and u; = y’. By applying the Bramble-Hilbert
lemma, the embedding theorem and the trace theorem, we obtain

kit Y D (.0

k T
yegi‘] tef2]

2 1
< CR " VB1IE qey.dyixieraop 142117 | o

W, % (Ihx(0,T))

< Ch*C D)8y lluall? w2 5/2<s<3.

W3~ ((c1.d1) x (c2,d2)) (02)

Next, vi4 is a bounded linear functional of v(y") = T)%lﬂl 0, YT us(az, y', 1) €

WZS_I(EZ), s > 3/2, where E? is the elementary interval (y — k3, ¥’ + k»), which
vanishes if v = 1 and v = y’. By applying the Bramble-Hilbert lemma, Lemma 1.52
and the trace theorem, we obtain

kit Y i)

T
},EQ;‘I reRl

< Dke 30 3 B (17 w2) gty

yegfl tef)}r

<Ch k3 TRA st ™ 20 1T w1y

yegfl [EQ:_
2(s—1)
<Ch I B1 ||WJ (erady) % (ca, dz))” 2|| Wi L6221 0.7))
2(s—1)
< R IBIR s aeienam WMz g 3/2<5 3

The term 115 may be estimated directly, yielding

kit Y Y uis.0) <Ch?

kyre2}
Y€ -Ql

Ml
axat

bl

Lo (I x(0,7))

and thus, by noting the transmission condition (3.137), the Sobolev embedding the-
orem and the trace theorem, it follows that

kit Y Y uis(0)

k T
yEQ 1 tE.Q+

< R (o g g 11 s

+ 18113 5/2 <s<3.

Wi (v candan 1" ually wi*2(0, >)
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The term 1116 is a bounded linear functional of v(y) =T, gxi’;; € WA 2(E1), s >2,

where E! is the elementary interval (y — k1, y + k1), which vanishes if v = 1 and
v = y. By applying the Bramble—Hilbert lemma we obtain

kit Y Y uiev ) <CRPTVT YT,

ki el teRl
e,

2<s<3,

t
8x8y W32 (er, d1)

and hence, by noting the transmission condition (3.137), Lemma 1.52, the Sobolev
embedding theorem and the trace theorem, it follows that

kit Y Y i)

yEle tEQi
2(s—1
<Ch (s— )(”(XIHWV 1 ” 1” ss/Z(Q)
+|Iﬁ1IIW; L(erdn)x . dz))ll sl W30, )) 5/2<s<3.

By collecting the bounds above and noting that analogous bounds hold for u,, we
have that

145 ooty < CHT 1)(max”o“”vw er,dy)

||M|| J.S/Zy 5/2<S§3
(3.165)

+ max I B1 “Wj Y((er,dy) % (ca, d2))>

Finally, from (3.160)—(3.165) we obtain (3.161), with C = C(s) signifying a posi-
tive constant, independent of 4. O

In the next section we briefly consider a factorized version of the implicit finite
difference scheme (3.148)—(3.153).

3.6.3 Factorized Scheme

The implicit finite difference scheme (3.148)—(3.153) is not economical, because on
each time level it requires the solution of a two-dimensional elliptic difference prob-
lem. To overcome this practical shortfall, we consider here the following factorized
counterpart of the finite difference scheme (3.148)—(3.153):

(In+otAn)Up+0tApR)DU, — D;ID;1U1 - D;ID;1U1

=fi, xe@!" ye@! reqt, (3.166)
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2 _
(In+otAn)Uy+0tAwR)DU (b, y, 1) + h_l[Dx,lUl(blvy’t)

+ar (MU by, ) —ky Y ﬂl(y,y’)Uz(az,y’,t)}
)
Ve,
— D\ DI Uiy, ) = fibr,y.0), yeQ', teQt,  (3.167)
(I +0tA2)Un +0TAn) D Us — Dy, D}, Ur — D 1D}, Un

A

=fH, xeQl yeol reqr, (3.168)

2
(In+0tAn)Ip +0T1Ap) D Us(az, y, 1) — I [DzzUz(az, Y1)

— (W22, y.0+ki Y By, Y)Ui (bl,y’,t)}
}'/EQ{(I

— D} ,D},Us(az, y, 1) = falaz, y, ), yeEQY 1et,  (3.169)

subject to the initial and boundary conditions (3.152)—(3.153), where we have used
thenotatlonﬁ , 1) = fi(-,-,t+1),and

AiUi:==D; ;DI Ui, AnUi=—D_ D} Ui, xe yegf,
AnUi(by, - ) = %D;1U1 (b1,-,-), AnUs(az, -, ) = —h—zzDIQUz(az, )
Let us define
ByU := (B1nU1, BypUz) and AU := (Ao1n Ui, Ao2nU),
where
Bin:=Upn+otAi)Upn+0tAin) and  Agip = Ajr + Aj.
Then,
(BhU,U)r, = ((By — TA)U. U)

=UI3, + (e = DT|UI,,

+0r22hk Z Z (D;.:D;, U,

X€82; by veQ

Hence, Bh is positive definite for o > 1, uniformly with respect to the discretization
parameters. Assuming that 7 < h?, we also have that

U5, = 1U1,-
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In contrast with (3.148)—(3.153), the finite difference scheme (3.166)—(3.169),
(3.152), (3.153) is computationally efficient, since on each time level the set of un-
knowns may be computed by solving systems of linear algebraic equations that have
tridiagonal matrices.

Let u = (u1, uz) be the solution of the initial-boundary-value problem (3.135)—
(3.140) and let U = (Uy, U,) be the solution of the difference scheme (3.166)—
(3.169), (3.152), (3.153). We define ¢; :=u; — U; fori = 1,2, and e := (eq, €2).
Then, the global error e = u — U satisfies the following finite difference scheme:

(In+otAn)Up+0tApR)Der — D;leflel - D;ID;lel

=D Y1+ D i+ D55, xeR', ye2{ teR’, (3.170)

2 _
(h+ot AUy +otA)Dfer(br, y, 1) + i [Dx’lel(bl,y, 1)

+amwmwhyn—kz}:xnuJOQ@LyJﬂ
ky
yeR,
—D_ D] ei(br,y, 1)

= D1 (b1, y,0) + D} [ &i(b1, v, 1)

2. 2 ki T

—h—m(bl,y,t)+h—lm(y,t), yefl, teR, (3.171)
1

(In+ ot Ax)(Ip + 0t Ap)Dfes — D;zD;2e2 - D;zD;rlez

=D+ D)+ Dyl xe2? ye2y. te2, (3172

2
(n +o0tA2) Uy + 0T Ap) D ex(az, y, t) — " [Dizez(az, v, 1)
2
—a(Vear.y. ) +ki Y Ba(y.y)er(br.y, t)]
’ kq
e,
— D;ZD;’lez(az, vy, 1)
= D" Yn(ar, y, 1) + D;zfz(az, v, 1)

2 2 .
+Fm@+mmn+;m@ﬁ,ye@%m93 (3.173)
2 2

with the boundary and initial conditions (3.158)—(3.159), where, fori =1, 2,

I/;i('s y t) = I/fl'('s 's t)v

i, 1) = [ + (L =0)e Dy, Dy ui + 00D, DY, DL Dy ]| s
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GG 0)i=[¢+ 1 =0)TD] Dywi| iy

i (1) = (m +thsi Y ﬂiDruz_i)‘ :
k3_; (.1+7)
y 693 )

From (3.45) and (3.46) we deduce an a priori estimate analogous to (3.160), with
¥, n, ¢ and pu replaced by W, 7, and fi [, respectively.

When 7 =< h? it is easily seen that W, 7, ¢ and i satisfy the same bounds as the
corresponding terms v, n, ¢ and w. Hence, the factorized finite difference scheme
(3.166)—(3.169), (3.152), (3.153) also satisfies the error bound (3.161).

3.7 Bibliographical Notes

In this chapter we have derived error bounds for finite difference approximations of
some model initial-boundary-value problems for second-order linear parabolic par-
tial differential equations. The procedure was based on the Bramble—Hilbert lemma
and its generalizations, and can be seen as a further development of the methodology
presented in Chap. 2.

As we have already mentioned, in the case of second-order linear parabolic par-
tial differential equations a complete theory of existence and uniqueness of weak
solutions to initial-boundary-value problems has been developed in the anisotropic
Sobolev spaces Wzs’s/ 2(Q). We therefore chose to use analogous mesh-dependent
norms in our analysis of finite difference approximations of the various initial-
boundary-value problems considered.

Similarly to the elliptic case discussed in Chap. 2, for a finite difference approx-
imation of a second-order parabolic partial differential equation an error bound of
the form

_ s—r ]
lu U”WZr,r/Z(QZ) <Ch+ /1) ||u||W;,s/2<Q), r<s, (3.174)

is said to be optimal, or compatible with the smoothness of the solution of the initial-
boundary-value problem. Here usually 0 <r <1 < s. If the mesh-sizes 4 and t sat-
isfy the relation 7 < h?ie. c1h2 <t< czhz, then the error bound (3.174) reduces
to

lu—Ul Wi <Ch*™"|ul Wyl (3.175)

Q) — (9h

In the case of linear parabolic equations with variable coefficients, the constant C
depends on norms of the coefficients. For example, if the coefficients are indepen-
dent of ¢, then one obtains an error bound of the form

U Chs~" . ) ) -
||u ”Wzm‘/z(QZ) = ( i,jx ”alj ||W;,1(Q) + ||a||“,;,2(9)) ”u”“';A/Z(Q)'
(3.1 76)
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For parabolic equations with constant coefficients, error bounds of the form
(3.174) were obtained by Lazarov [122] for r =0 and s = 2. A similar error bound
in a discrete L, norm (for s = 2) was derived in the work of Godev and Lazarov
[58].

The case of fractional values of s was studied by Ivanovi¢, Jovanovi¢ and Siili
[74, 105]. Estimates of the form (3.175) were obtained for 2 <s <4, r =0, 2. For
r = 1 the estimate was derived in the discrete W21’0 norm rather than in the, more
natural, discrete W2] 172 norm.

Drazi¢ [32] obtained error bounds of the form (3.174) and (3.175); he also stated
certain conditions under which the step sizes 4 and T appearing in the error bounds
may be chosen independently of each other.

In the papers by Scott and Seward [164] and Seward, Kasibhatla and Fairweather
[165] the influence of mollifying the initial datum on the convergence rate of the
difference scheme was investigated.

In each of those publications the Bramble—Hilbert lemma was used in the deriva-
tion of the error bounds. We note that some error bounds for finite difference ap-
proximations of parabolic problems with weak solutions were obtained much earlier
using different, more classical, techniques based on Fourier series (see e.g. Juncosa
and Young [112]). We also highlight here the more recent work of Carter and Giles
[25], where sharp estimates of the error arising from explicit and implicit approx-
imations of the constant-coefficient one-dimensional convection-diffusion equation
with Dirac initial datum were derived. The study of this particular model problem
was motivated by applications in computational finance and the desire to prove con-
vergence of approximations to adjoint partial differential equations. The error anal-
ysis in [25] was based on Fourier analysis and asymptotic approximation of the
integrals resulting from the application of an inverse Fourier transform.

For early developments concerning the use of Besov space theory and techniques
from harmonic analysis in the stability and convergence analysis of finite difference
approximations of pure initial-value problems for parabolic equations with nons-
mooth initial data, we refer to the monograph of Brenner, Thomée and Wahlbin
[24], and the references cited therein.

Finite difference approximations of parabolic equations with variable coefficients
were considered by Weinelt, Lazarov and Streit [197], and Kuzik and Makarov
[117]—for integer values of s, and by Jovanovi¢ [82, 85]—for fractional values
of s.

Finite difference schemes for various nonstandard parabolic problems with inter-
faces and/or dynamic boundary conditions were studied by Jovanovi¢ and Vulkov
[94, 95, 97-99] and Bojovi¢ and Jovanovi¢ [17]. Parabolic transmission problems
in disjoint domains were investigated by Jovanovi¢ and Vulkov [102, 104]. Second-
order convergence in the mesh-dependent Wz1 norm for non-Fickian diffusion mod-
els was proved by Barbeiro, Ferreira and Pinto [7].

Finite-difference schemes on time-adaptive grids for parabolic equations with
generalized solutions were studied by Samarskifi et al. [161].
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The application of function space interpolation theory was considered by Bojovic¢
and Jovanovié [16] for the derivation of error bounds for finite difference approxi-
mations of parabolic problems.

Variational-difference schemes also satisfy error bounds of the form (3.174)—
(3.176) (see Jovanovi¢ [78]). However, for those schemes, error bounds involving
the ‘continuous’ rather than the discrete Wzr’r/ ? norm on the left-hand side are more
common. See, for example, Zlotnik [201, 202], Hackbusch [65], Amosov and Zlot-
nik [4]). A similar comment applies to finite element methods for parabolic prob-
lems (see, for example, the monograph of Thomée [177]).

Besides the error bounds described above, for parabolic problems one can also
derive error bounds in the norms of the function spaces

Loo((0,7),L2(22)) and Loo((0, T), W5 (£2));

see, for example, Douglas and Dupont [30], Douglas, Dupont and Wheeler [31],
Rannacher [153], Thomée and Wahlbin [178], Wheeler [198], Zlamal [200]; for
error estimates in negative norms, we refer to Thomée [176, 177].



Chapter 4
Finite Difference Approximation of Hyperbolic
Problems

This chapter is devoted to finite difference methods for time-dependent problems
governed by linear second-order hyperbolic equations. In the next section we dis-
cuss the question of well-posedness of initial-boundary-value problems for linear
second-order hyperbolic partial differential equations. In Sect. 4.2 we review some
classical results concerning standard finite difference approximations of the wave
equation. Section 4.3 is devoted to finite difference schemes for the wave equation
with nonsmooth initial data and source term. In Sect. 4.4 we extend the analysis to a
linear second-order hyperbolic equation with variable coefficients: error bounds are
derived in the discrete W, ((0, T); L2(£2)) N Loo((0, T); W, (£2)) norm denoted

by || - 5% In Sects. 4.5 and 4.6 we shall be concerned with the finite difference
approximation of interface problems and transmission problems for second-order

linear hyperbolic equations. The chapter closes with bibliographical notes.

4.1 Hyperbolic Equations

Similarly as in the case of second-order parabolic equations, we shall begin our con-
siderations with a brief discussion concerning the existence and uniqueness of so-
lutions to initial-boundary-value problems for linear second-order hyperbolic equa-
tions. More specifically, we shall consider the equation

d%u

2 TAOu=F0). 1©.T] 4.1)

subject to the initial conditions
du
u(0) = uo, 5(0) =ui, (4.2)

where u is a function of the independent variables x € £2 and r € [0, T], with T > 0,
and £2 and the operator A(t) satisfy the same conditions as in the previous chapter
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328 4 Finite Difference Approximation of Hyperbolic Problems

(cf. Sect. 3.1). Problem (4.1), (4.2) can be viewed as a second-order ordinary dif-
ferential equation in a Hilbert space. The technical details of this viewpoint will be
discussed in the next section.

4.1.1 Abstract Hyperbolic Initial-Value Problems

Let us consider the Gelfand triple
VoH=H <V

with continuous and dense embeddings, where V and ‘H are separable real Hilbert
spaces, H is identified with its dual space H' via the Riesz representation theorem,
and V' denotes the dual space of V. We shall denote by (-,-) and || - || = || - |l
the inner product and norm of the Hilbert space #; the norms in V and V' will be
denoted by || - ||y and || - ||y, respectively, and (-, -) will signify the duality pairing
between V' and V. For t € [0, T] we consider the bilinear functional (v, w) € V x
Vi a(t; v, w) € R, which satisfies the conditions (a), (b) and (¢) from Sect. 3.1.1.
In addition, a(t; -, -) will be assumed to be symmetric for each t € [0, T'], i.e.

a(t;v,w)=a(t;w,v) Yv,weV, Viel0,T], 4.3)

continuously differentiable with respect to ¢ € [0, T'], and such that

=cllvllwlly VYv,weV, Vrel0,T], (4.4)

d
’Ea(t; v, w)

where the constant ¢ > 0 is independent of ¢ € [0, T']. In the present setting, by
viewing A(¢) : V — V' as abounded linear operator on V), we have that a(t; v, w) =
(A(t)v, w) forallv,weVandt €[0,T].

We consider the following problem (H): given that f € L>((0,T); H), ug € V
and uy € H, find

.. du d’u ,
ueLx((0,T);V) with EGLZ((O, T); H), WeLz((o, 7); V'),

which satisfies equation (4.1) in V', that is

d’u
< >+(A(t)u,v)=<f(t),v> VveV,

a2’

in the sense of distributions on (0, T), and the initial conditions (4.2).
We state the following existence and uniqueness result for problem (H) (see
Wioka [199], Theorem 29.1 on p. 397).
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Theorem 4.1 Suppose that (4.3), (4.4) and hypotheses (a), (b) and (c) from
Sect. 3.1.1 hold. Then, problem (H) has a unique solution, and the map

du d%u

dr’ dr?

is continuous and linear from Ly((0,T);H) x V x H into L>((0,T);V) X
Ly((0,T); H) x La((0, T); V).

{fiuo,u1} > {u

4.1.2 Some a Priori Estimates

We shall now embark on the derivation of energy estimates for problem (H). Our
arguments in this section, performed in infinite-dimensional Hilbert spaces, will be
largely formal, their main purpose being to motivate their counterparts in finite-
dimensional Hilbert spaces, which we shall rigorously prove in the next section.
The discrete energy inequalities established there will then play a crucial role in the
error analysis of finite difference schemes for problem (H).

We shall focus our attention on the special case when the operator A = A(f) is
independent of ¢. In contrast with the previous section where A was viewed as a
bounded linear operator from the real separable Hilbert space V into its dual space
V', here we shall suppose that A is an unbounded selfadjoint positive definite linear
operator in the real separable Hilbert space H, whose domain of definition D(A) is
dense in H. Analogously as in Sect. 3.1.2, we introduce the energy spaces V = H4
and V' = H 1. Then, the bilinear functional a(t; -, -) = a(-, ) = (-, ) 4, defined on
V x V by extending (A-, -) from D(A) x D(A), satisfies the conditions (a), (b) and
(c) from Sect. 3.1.2 with ¢co = ¢y =1 and A =0, as well as conditions (4.3) and
4.4).

Assuming that ug € V, uy € H, f € L2((0,T); H), Theorem 4.1 implies the
existence of a unique solution u to problem (H), with u € L,((0,T); V), ‘é—’; €

Lo2((0,T); H) and % € Ly((0,T); V). Let us assume for the sake of simplicity

that ‘3127? (t) and Au(t) both belong to # for a.e. t € [0, T']. By taking the inner prod-
uct of (4.1) with 2 ?j—’;, we then obtain

d*u du du du
2l —, — 2 Au, — | =2 1), —|.
(dt2 dt)Jr ( . dt> (f() dt)

As the operator A has been assumed to be independent of ¢, by noting that

du du\ d 2 du) d
2l —. =) == 2 Au, — ) = — 2
(dt2’ dt) dt(’ ) ( “ dt) dt(”uHA)’

and applying the Cauchy—Schwarz inequality, we deduce that

d
dt

du
dr

du

2 172
2
” +IIMIIA) .

P ) du du
+ ||u||A) =2fro] HEH =20l (HE
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By writing [|du/dt||*> + [[ul|} = [(du/dt||*> + [[u]|3)!/?1* on the left-hand side, dif-
ferentiating with respect to ¢, simplifying and then integrating the resulting inequal-
ity between 0 and ¢ and using the initial conditions (4.2) we obtain

du
5o

fora.e. r € [0, T]. Hence,

2 212 1/2 !
+uu<r>uA] < (a2 + Jol2) 2 + /Oufmuds, “5)

2 2 172 1/2
- ||u(r)||A] < (et + ol Z) "+ 1 £ 11z, 0.1 70)-

du o
€ss.8u —
Prefo, 7] dr
Under the additional assumptions Aug € H, u; € V and f € L1((0,T); V), and

by applying to (4.1) the operator A!/? and noting (4.5), we (formally) obtain, for
ae. tel0,T],

du
U'a(”

Hence, by noting the obvious inequality

2 1/2 t
o] = (o + 1)+ [ o] g
A

2

‘du

oz | = I+l Aul,

we deduce that, fora.e. t € [0, T],

d%u 2 du 2 2 172
Hﬁ(t) +Ha(t) A+”Au(t)|| }
t
<2(llur 3 + IIAu0||2)1/2+2/0 17| ds+ | £@)]- (4.6)

Similarly, by applying to (4.1) the operator A~!/2, noting (4.5) and omitting the

term ||du/d¢|| ,—1 we (formally) obtain, for a.e. ¢ € [0, T'],

t
lu)| < (lur 13 + luol?) +/0 | ()] o ds. @.7)

Analogously as in Sect. 3.1.2, we shall also consider the more general equation

de—u+A =f@), te(0,T] 4.8)
) u=f(@), €(0,T], .

subject to the initial conditions (4.2), where B and A are unbounded selfadjoint
densely defined linear operators on H. Let us suppose that A = Ag + A, where A
and A, are densely defined selfadjoint linear operators on H, and there exist positive
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constants m; > 0,1 =1, 2,3, such that
(Bu,u) = mi ||ul®>, ueD(B);
(Aou,u) >my (Bu,u), ucD(Ap)ND(B); 4.9

(A1, v)? <ms |ull llullallvll Ivllag, € D(Ag) N D(A), v e D(Ay).

By applying B~!/? to (4.8), we obtain

— +Aii=f@), te(0,T],

where we have used the notations
i =By, A:=B 12AB71/2, f:: B_l/zf.

Let us fu{ther define A~,- = B’1/2A,-B’1/2, i =0, 1. We observe that the linear
operator A is positive definite on ; indeed,

(Agv,v) = (B™12A0B™"?v,v) = (AgB~"/?v, B~"/?v)
> mz(BB_l/2v, B_l/zv) = m2||v||2, v e D(/{o).
We shall therefore take V = "H,/;O and a(t; v, w) = (Av, w), v e D(A), weH. In
addition, for any v € D(Ag) N D(A1), w € D(Ay),
(Av, w)? = (A1B~ 12y, p=1/2 )

SmsHB‘WvHHB‘”2 |87 2wl |87 w],

UHAO

12, 12,
< IO g |5

_m3 2 2
||A0— 2IIUIIAOIIWIIA

and

(Ao = | B 2|87, < [T 1] B 0]

m3 2
,/ |Iv||||v|| —||v|I — vl
2m1

which, after continuously extending a(¢; -, -) to V x V, imply that conditions (b)
and (c) from Sect. 3.1.2 hold with ¢y =1+ ,co=1/2and A = 52, and that
condition (a) is trivially satisfied. Returning to our original notation, we deduce that
in the case of ug € Ha,, u1 € Hp and f € L2((0, T); Hp-1) problem (4.8), (4 2)
has a unique solution u € Ly((0, T'); Ha,), with d” € Ly((0,T); Hp) and B zZ €
L>((0,T); HAal ).

mlmz
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Let us rewrite (4.8) as
d%u - ms
B@—FAu:?u—}—f(t), te(0,T], (4.10)
where we have used the notation A := A + %I , with I signifying the identity
operator on 7. It can be directly verified that the linear operator A is selfadjoint,
densely defined and positive definite on #, and that

1 - ms3 ms3
~(Aou,u) < (Au,u) < |1+ | —— +
2 mim 2mmy

)(Aou w). A.11)

By taking (once again, formally) the inner product of (4.10) with 2‘5‘; , similarly as

previously, we deduce that
d (|| dul?
de \ | dt

2
+||u||/;) < m3llullg
B

dr |

Ll |
B ar |

m3

< — [ —|lull
= m2” Iz

=o([&

m;mz + 1. Multiplying the resulting inequality by e

d
+2||f||BIHd—f

dr || 5 B

+|Iu||2)+|IfIIB N

—Ct

where Cy := — yields

d —Ct
al=(l&o

which after integration and an obvious majorization gives

+ ||u(t)”A>} <e*CI’||f(t)||B -

2 t
+um]|; < ecl’(nul I + luoll3 +f0 |75 ds).
B

Finally, using (4.11) we deduce that, for a.e. t € [0, T],

o
dr

o

t
w2, < <||u1||%+||u0||3;0+ /0 uf<s>ui;_lds), “.12)

where C = C»e€!" is a computable constant, which depends on .

By taking the inner product of (4.10) with 2A~!B ‘é’; , a similar argument implies
the existence of a constant C = C(T') > 0, such that, for a.e. t € [0, T],

1t
|lu)|? < C(nBul ||jal + lluollg +/0 Hf(s)Hial ds>. (4.13)



4.1 Hyperbolic Equations 333

4.1.3 Abstract Three-Level Operator-Difference Schemes

Suppose that H” is a finite-dimensional real Hilbert space with inner product (-, -),
and norm || - || :=|| - [l and 2" is a uniform mesh with step size T :=T/M,
M > 2, on the interval [0, T]. With the notations from Sect. 3.1.4, we consider the
family of three-level operator difference schemes

By(D D U) + Dy(DYU) + AWU=F, 17,
(4.14)
U©)=0°, U(r)=U".

Here, the function F : 27 — H" is given, as are UlcH"and U e " U Q2 =
H" is the unknown function,

1 A
DU = E(D,+U +D;U)=U-U)/2t
is the symmetric first difference quotient, A;, and By, are linear selfadjoint positive
definite operators on ", uniformly with respect to /, and Dy, is a linear selfadjoint

nonnegative operator on . L
We take the inner product of (4.14) with 2t D?U = U — U. Noting that

L AL Ji—
U= (0+20+0)~ ;7*Df D U.

U—U=t(DU+D;U)=(U+U)— (U +7),

we obtain
72 R 72 SN
B, ——A, |D;/ U, DU ) — B, ——A, |D;U,D/U
4 h 4 h
27| DU | O+u)t _Ju+o) =2¢(F, DU 4.15
+ TH t ”Dh+ 2 Ah_ 2 Ah_ T( > Mt )h‘ (4.15)
Thus, if F =0 and
_ 1
Dy,>0,  By:= Bh—ZrzAhzO, (4.16)
we deduce from (4.15) that
»  |U+U|? »  |u+U)?
+ - - -
ool +| 52| =1orvl |57
Summing over 7 € 27 we have that
2 lumttyum P oz, |U+U°|?
A P R R R e
Ap Ap
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This inequality expresses stability of the homogeneous operator-difference scheme
(4.14) with respect to perturbations of the initial data, under the (sufficient) condi-
tions (4.16); (cf. Samarskii [159], Sect. 6.3).

When F # 0, we shall suppose instead of (4.16) that the following, slightly
stronger, condition holds:

D,>0,  By:=B,— iszh > 0. (4.17)
Then,
2t(F,DU), =7 (F, DU + D; U),
<t Fllg ([ DU g, + 1D U] 5,) < Tl Fllga (T + D),
where we have used the notation

U+U
2

J=J@):= (|| DfU|3 + H

2 \1/2 5
) . J=J0—1).
h

Thus we deduce from (4.15) that

JE—Jr< t||F||B;1(J+JV).

Hence, after dividing both sides by J + J and summing over the points of the mesh
27, we obtain

m
J"< JO—i—‘EZ”FkHBh—I;

k=1
that is,
2 Um+1+Um 2 ]/2
(I, + |54
,  Jut+u )P\ &
< (HD,*UOHBh - HTHA ) +IZHF"HB;1. (4.18)
h k=1

The inequality (4.18) can be seen as the discrete analogue of the a priori estimate
(4'i7)\7.hen Dy, =0, similarly as above, by taking the inner product of (4.14) with
ZtBh*lAh(D?U) we obtain

2\ 172

Bh‘>

Um+1 + um

A
h 2

(Ipru" i3, +
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2 12 mo .-
) e lE L,
Bh k=1

2 ]1/2
n—1
Bh

U+ 0°

< (||D;U0||jh n HAh :

Hence, using (4.14) we deduce that

Um-‘rl + um

(107 Drum s, + 1070, + [

1 052 N 1/2
<2(Jor o, + 2| )
B!
n -
+2r ) || By FE ], + I F (4.19)

k=1

Under the same hypothesis (D, = 0) as above, by taking the inner product of (4.14)
with 27 A;l By, (D?U ), an analogous argument yields that

2\ 1/2 m
BREEN[P
By, k=1
(4.20)

The inequalities (4.19) and (4.20) are discrete analogues of the a priori estimates
(4.6) and (4.7).

Let us finally consider the case when the operator Ay, is not positive definite.
Suppose that A, By, and Dy, are still selfadjoint linear operators on " and let us
assume that the following conditions hold:

U'+0°

Um+l + um
2

2

= (1Boron i +|

Dy >0, Ap = Aon + Aip, Afy=Ap, 1=0,1,
(ByU, Uy =my||U|7, (AonU, U)j = ma(BrU, Uy,
(AU, V)2 <m3|UnllU | ag, IV IRV 1l gy -

Equation (4.14) can be rewritten in the form
_ 1- A v
By (DD U) + Dy (DPU) + 7AnU+2U+0)

1 A .
:§m3(U+2U+U)+F, “4.21)
where we have used the notations

2
_ T — m
Bj, := B, — ZAh’ Ap = Ay + 731h, I, is the identity operator on Hh.

It is then shown, analogously as in the ‘continuous’ case, that

1 - ms3 ms
(AU, U)p = (AU, U)p <\ 14+, —— + (AonU, U)p,
2 mimy  2mimy




336 4 Finite Difference Approximation of Hyperbolic Problems

which implies the positive definiteness of Ay, uniformly in /4. Let us suppose that
the operator By, is positive definite, uniformly with respect to /; i.e. that

(ByU,U)p = ma||U|7, mg>0,

where the constant m4 is independent of /. Since

2
_ T
(BnU,U)p = (BpU,U)p — Z(AhU, Uy

_T_z 1 ms A 2
z |m= Aol {IU1I7,,
mimy

the positive definiteness of By, uniformly in &, will be ensured with m4 < m| once
we have taken t sufficiently small so that

2 < 4(my —m4).
_71+ —

mima

By taking the inner product of (4.21) with 2t D?U =U-U, similarly as before,
we get that

U+U 2

2

2 HU+U

DU}, - o7l +2e|pful, +] .

Ap

Ap

ms (0+U U+U
=—7

4 >, T3
U+U

m3
<—7
— 4 ( B! H 2

+ el Pl (D7 U] 5, + 107U 5,).

2
Ulg-1 <, —IUIllz
1151 = m1mzm4” 4,

in conjunction with the Cauchy—Schwarz inequality, after some obvious majoriza-
tions we obtain

,D,+U+D;U) +1(F. DU+ D;U),

h

U+U
2

)Upiuls,+ 12 Ul5)

h

Using the inequality

1T

J+ ) +z|F|>

J__ S -1
Bh

1<
SIS

where we have used the notations

2

ms3
Ci:=

A 2mimomy

U+U
2

7=|pul}, +|
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Fort <2/Cy,
- l—i—céf v 2

and therefore, by induction,

_ 14+ Gz\" _ O+ 9n\" 2
ng(il_i> JO+1_C]T Z<1_i> ”Fk”Bh_l
2

2 k=1 2
1+ Cit _ m 5

< (1—70—”> <J0+TZ|’Fk”Bh1>, m=1,...,M—1.

2 k=1
By bounding from above further, we deduce that, forallm=1,..., M — 1,

o2 Um—H +um 2

Iorom, +| |

U U
sczeclT<||D,+uo||§h T H% Z”F"”B_.). (4.22)

If D, = 0, by taking the inner product of (4.21) with ZTA_;1 By (D?U), a similar
argument yields the a priori bound

Um+1+Um 2
=

_s@J”Umwﬂwmf
By '

HU +U°
+ -

Z|| F¥| A_1> (4.23)

The inequalities (4.22) and (4.23) are discrete analogues of (4.12) and (4.13).

h

4.2 Classical Difference Schemes for the Wave Equation

This section is devoted to a summary of some well-known results concerning stan-
dard finite difference approximations of the wave equation; we shall assume here
that the solution possesses a sufficient number of continuous partial derivatives.
Later on, in Sects. 4.3 and 4.4, we shall relax the regularity requirements on the so-
Iution and we shall extend these results to second-order hyperbolic equations with
variable coefficients.
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4.2.1 Explicit and Weighted Schemes

Our first model problem is the wave equation in the domain Q = £2 x (0, T'], where
2=0,1),T >0:

find u(x,t) such that

2u  9%u
ﬁ:ﬁ—i_f(x’t)’ xe(0,1), te(0,T],

u(©0,6)=0,  u(l,1)=0, te(0,T],

(4.24)

u(x,0) =up(x), 2—1:(x,0)=u1(x), x €0, 1].

Physically, u(x, t) represents the displacement at a point x and time ¢ of an elastic
string of unit length, subject to the initial displacement ug(x), the initial velocity
u1(x), and body forces whose density, in space and time, is described by the func-
tion f. We shall assume for the moment that f is a smooth function of (x,¢) € 0
and that uo and u; are smooth functions of x € £2, compatible with the boundary
conditions at x =0 and x = 1;i.e. ug(0) =0, ug(1) =0, u;(0) =0, u; (1) =0.

4.2.1.1 The Explicit Scheme
Similarly as in Sect. 3.2, we consider the uniform mesh
0, =0"x2 ={(xj,tw):0< j <N;0<m <M},

with mesh-sizes /i := 1/N and t :=T/M, N, M > 2, in the region 0 =1[0,1] x
[0, T]. On Q,r2 we approximate (4.24) by the following finite difference scheme:

ﬁndU}",j:O,...,N, m=0,...,M, such that
DDy UT =DIDIUT + f(xj,tm),
j=1,....N—1,m=1,....M—1,

Ur=0,  UN=0, m=2....M, (4.25)

Uo—u(') Ul = . . 12 e 0
7 =uo(x)), j = o)) + T (x)) + 5T [ug(xj) + f(xj, 0],
ji=0,...,N,

where U ;" represents the approximation of u(x;, #,,), the value of the analytical
solution u at the mesh-point (x;, #,), D;r DU ;” is the second divided (central) dif-
ference in the ¢-direction and D} D; U 7' is the second divided (central) difference
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(T, tm+1)

(xj—lvtm) (xﬂvtm) (1’j+1,tm)

(Ijvt’m—l)

Fig. 4.1 Five-point stencil for the explicit scheme

in the x-direction. Clearly, (4.25) is a five-point difference scheme involving the
values of U at the mesh-points

(xjvtmfl)a (xjflvtm)a (xjvtm)ﬂ (xj+17tm)7 (xjatm+1)a

shown in Fig. 4.1. The scheme (4.25) is applied as follows. First we set m = 1. Since
U 0 U 1 U, I y! 141 are given by the initial conditions, the values U 2 ,j=0,...,N,
can be computed from (4.25):

2

Ui =2U; U+ hz(Ul —2U} 4+ Uj_)) + 17 f(x). 1),

j=1,...,N—1,
Ui=0, U} =0.

Suppose that we have already calculated U f ,j=0,..., N, the values of U on
time level #; = kt for all k < m. The values of U on the next time level t,,;1 =
(m + 1)t can then be obtained from (4.25) by rewriting it as

2

Ut =20t — Ut 1+h2( T = 2UT U ) A T (x5 ),

j=1,... . N—1,
U(I)’Il+1 =O, U]I\’I/H—l =O,

foranym, 1l <m <M — 1.

The values of U at t = 1,11 can be calculated explicitly from those of U™,
U™ and the data; hence the name explicit scheme. In fact, (4.25) is just a special
case of a two-parameter family of three-level finite difference schemes for the wave
equation. The two parameters are frequently referred to as the weights in the scheme,
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and hence the name weighted scheme. The analysis of the weighted scheme is the
subject of the next section.

4.2.1.2 Weighted Scheme

The explicit scheme for the wave equation can be embedded in the following two-
parameter family of finite difference schemes:

find U;”,j:O,...,N,mzo,...,M, such that
DDy U} = DDLU + (1 =61 —0)UT +6:U7 ]+ f(x), 1),
j=1,...,N—-1, m=1,....M —1,

Ur =0, UL=0, m=2,...M, (4.26)

UY=uo(xj), U —Mo(x])-i-fm(x])-i- lugCe) + £ (xj, 0)],
j=0,....N,

where 0; and 6 are nonnegative ‘weights’. The explicit scheme considered in the
previous subsection corresponds to the choice 81 = 6, = 0. In general, the weighted
scheme is a nine-point finite difference scheme, involving the values of U at the
mesh-points

(xjflvtmfl), (xjvt}’nfl)5 (x‘]+17tm71)7 ('xjflat}n)’ (xj,tm)’ (x]+17tm)5

1 tmr), (X tma1), (X1, tmt1),

shown in Fig. 4.2. Unlike the explicit scheme in which the data and the values of the
approximate solution U at two previous time levels provide an explicit expression
for the values of U on the next time level, the difference scheme (4.26) necessitates
the solution of a system of linear equations on each time level to determine the
values of U at the mesh-points on that time level. More precisely, (4.26) can be
rewritten as follows:

91‘[2 m+1 291772 m+1l '91‘5 m+1
——U + {1+ Uj ——U

p2 il h2 p2 It
2
=2U] - U~ LG P 3 (UL =207 + U7
bt m—1 _ yym—1 m—1 2
F(UH —2UTT U )+ T f (x ),

j=1,...,N—1,

uptt=o0,  upt'=o.
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(@j—1,tm+1) (x5, tm+1) (@541, tm+1)
(xjflvtm) (ij,tm) (xj+17tm)
(zj-1,tm-1) (Tj,tm-1) (zj41,tm—1)

Fig. 4.2 Nine-point stencil for the weighted scheme

Thus, when 6; # 0, starting from the values UJQ and U}, j=0,...,N, on the first
two time levels, which are specified by the initial conditions, the values U mtl
j=0,..., N, on each subsequent time level t =t,,41, m=1,...,M — 1, can be
computed by solving a system of linear algebraic equations with a tridiagonal matrix

of size (N — 1) x (N —1).

4.2.2 Stability of the Weighted Difference Scheme

Let, as before, 85‘ denote the linear space of real-valued mesh-functions defined on
the mesh ﬁh, which vanish on 2" \ 22". We shall equip S(})’ with the inner product

N—1
(V. Wn:= Y hV;W;
j=1
and the corresponding induced norm
1/2
IV = (v, v,

Let us also consider the norm
N—1 1/2
[Viin = (Z h|vj|2> :
j=0
Using the identity

O U™ + (1 =6, — ) U™ +6,U™!
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2
s S soap

the weighted scheme (4.26) can be reformulated as an operator difference scheme
of the form (4.14) in the linear space H" = Sé’, where

—DfD;U forxe 2",
0 forx e 2"\ 2,

2
T
Dy =01 —6)TtA, By, = Ih+?(91+92)A,

ApU =AU :={

and Ij, is the identity operator on Sé’. The operator A is positive definite on S/,
uniformly with respect to &, and (cf. (2.18), (2.22)) we have that

4 . 4
8||V||% <(AV,V), < ﬁHVHi, ie. 8l <A< ﬁlh. (4.27)
We shall consider two distinct ranges of the parameters 6 and 6;.
O When
1
0p>60, and 0| +6,> E, (4.28)

the conditions (4.17) are trivially satisfied. The inequality (4.18) reduces to

2\ 12
||D+Um ||2 N Um+l+Um /
t In+ 50146, 5)72 A 2,
1y 702 1/2
++,0)2 U +U
< (1070 s ysanpeea+ | |
m
k
+Ty |F ||(Ih+%((91+02—%)r2A)*1' (4.29)
k=1
Further, by Lemma 2.10, we have that
lUlla=|[DfU|, (4.30)
Using the relations
o U+~ (61460 — 2 )P0 = U2
L+t @+6—-H2a — hTH\V1T72 75 AZ o
U _ [(U, V)il “ U
Il ||(1h+%(91+92—%)T2A)71 = sup <0\,

vest IVl +10+6,-1e2a
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we deduce from (4.29) that

ym+l o pgm |2\ 1/2
(1ot + | or = )
2 h
Ul UO 2
< [Iorve; + [ or 5
h

1 U\ 21+ 702 v S k
+5<91+92—5)z [D; DU ||h} +r];||F I, @30

The inequality (4.31) expresses the unconditional stability of the finite difference
scheme (4.26).

® When
1
01>6, and 6,+6; < x (4.32)
we shall suppose that the mesh-sizes & and t satisfy the additional condition

1_
r<h|——%  0<e<l. (4.33)
1—2(01+6)

Using (4.27), we then have that

1+19+9 12A>1119 94121>1
= — = —=|l=z—01 - — elp;
ht s\t =3 =z A GG I K

i.e. the conditions (4.17) are again satisfied. Furthermore,

2 2 2
< <
eNUIE < NUIG |y vy 1ye2a SN0
and
Ul < IU|”? <1||U||2
h = I+ O1+0- D21 = ¢ h

and hence we deduce from (4.29) that
ymEl Lgm 2\ 12

(1prwm i+ [ o 52 )

h

Ul UO 2\ 1/2 m
scg[<||D,+U°|}i+ “:Dj——i_ h) —l—rZHFth], (4.34)
k=1

2
where C, is a computable constant, which depends on ¢. The inequality (4.34) ex-
presses the conditional stability of the finite difference scheme (4.26) under the hy-
pothesis that the mesh-sizes 4 and t satisfy (4.33). Note that (4.33) is less restrictive
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than the corresponding condition (3.65) for the conditional stability of the explicit
finite difference scheme for the heat equation.

4.2.3 Error Analysis of Difference Schemes for the Wave Equation

In this section we investigate the accuracy of the finite difference scheme (4.26) for
the numerical solution of the initial-boundary-value problem (4.24). We begin our
considerations by defining the truncation error of the weighted scheme (4.26) as
follows:

o = D} Dy u(xj, tm) — DY DL [01u(x;, tmg1)
+ (1 =61 — 0)u(xj, tw) + 62u(xj, tm—1)] = f(xj, tm),
forj=1,...,N—1,m=1,..., M — 1. The global error is defined by
el =uxj, tm) — U},

for j=0,...,N,m=0,..., M. It is easily seen that e;?’ satisfies the following
finite difference scheme:

DD e — D;D;[ele’;ﬁ“ + (1= 01— Op)e] +92e7*‘] = ¢,
I<j<N-1L1<m=<M-1,
=0, en=0, 0<m<M,

J

where
1
nji=u(xj, 1) = uo(xj) = Tur(x)) = S [ug(x)) + £ (6, 0]

Thanks to the stability result (4.31) established in the previous section,

5 em+l+€m 2\ 1/2
o (107t [ ] )
1,01 A=
< [ﬁ“ﬂ”h‘i‘z(@l +92)\[D;*th] +7 2 et @3
k=1

provided that (4.28) holds; if on the other hand (4.32) holds, then, by (4.34), we

have that
m+l+em 2>1/2
h

max (HD,Jre’" 12+ ‘[D;e .

0<m<M-1
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Lo Lo\
<Cel (Il + 208l )+ X 0ol | @30
k=1

provided that (4.32) and (4.33) hold. In each case we have to bound ||7]|x, [ D3 nllx
and ||¢¥||; to complete the error analysis. Using the differential equation, gof (with
k replaced by m) can be rewritten as

¢ = D D] u(x}, tn) — Dy Dy [01u(x;, tm11)
2 2

0u 0“u
+ (1 =61 — 0)ulxj, tm) + Oou(x;j, ty—1)| — W(xj, tm) + m(xjvtm)

b 9%u
= Dt Dt M(x]',l‘m)—m(xj,tm)

821/{ + =
+ W(xjytm) _Dx Dx u(xjvtm)
B )
2

In order to estimate the truncation error (p;”, we shall expand the various terms
involved in it into Taylor series with remainder terms. By noting that

2D} Dy DY Dy ux;j, ty) — (01 — 02)T DY DY D u(x;, t).

ou 2 92
M(xjytmil) =M(xjatm)ifa(xj,tm)+ Tm(xj’tm)

3 33%u ™ 0%u

!/
+ gm(xj,tm)‘l‘ ﬁw(xj’ti)’
where t' € (ty—1,tn) and t/, € (t, tm+1), we deduce that

2 2 8%u

0
D DUk t) — o (o b)) = —= —= (x;, 1),
UL ar2 12 9r4 V'

where 1’ € (t;;—1, tin+1). Similarly, we obtain that

8%u h? 3%u

m(xj,tm) - Dij_M(Xj, tm) = —Ew(xl,tm),

where x’ € (x;_1, xj4+1). Further,

9*u
+ = h— ) _ "on
DD DD u(xj,ty)= 22072 (x Jt )

where x” € (xj_1,xj41) and t” € (ty,—_1, tmy1), and

_ u
D?D;Dx u(xj, ty) = PYCER (XW, z‘///)’
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where x” € (xj_1,xj41) and 1" € (t;,—1, tiu11). It follows from these expansions
that

2 h2

T
|| <161 — 6alt Moy1s + E[Mm +6(01 + 02) Moy | + T Max, (437)
where we have used the notation
8k+l
My = max |———— D,
kxlIt ma ok orl u(x,t)

with My, := Moy and My, := Mi0:. Now, (4.24) and (4.26) imply that

ou 2 9%u 3 33u ~
nj=u(x;,7) —u(x;,0) — TE(X,;',O) - Tﬁ(xj,o) = gﬁ(xj’ 1),
where 7 € (0, 7). Thus we deduce that
3 a4
Din=" G, Febj xj)
=g xars A
The last two equalities then imply that
3 3
T n T
|71j|§EM3ta ’Dx nj SFMlet- (4.38)

Finally, (4.37), (4.38) and the a priori estimates (4.35) and (4.36) yield the desired
bound on the global error of the finite difference scheme (4.26):

5 e+l +em 2\ 1/2
o (1pren+ | 5] )
<Ci(R*+71),  6=06, (4.39)
) em+1 +em 2\ 1/2
s (I [ or =5 )
<C(h*+7),  61>06,. (4.40)

The constants C| and C; featuring in these error bounds depend on Moy1,, My,
Moo, May, M3;, M1x3; (Which we have assumed to be finite) and T, but they are
independent of & and 7. If 61 and 6, satisfy (4.32), then the bounds (4.39) and (4.40)
hold under the condition (4.33), and the constants C and C; then also depend on ¢.

The error bounds (4.39) and (4.40) have been derived under very restrictive as-
sumptions on the smoothness of the solution. In the next section we shall be con-
cerned with the error analysis of difference schemes for the wave equation under
less demanding hypotheses on the regularity of the data and of the corresponding
solution of the initial-boundary-value problem.
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4.3 The Wave Equation with Nonsmooth Data

4.3.1 The Initial-Boundary-Value Problem and Its Discretization

We consider the initial-boundary-value problem (4.24) in the space-time domain
0 :=(0,1) x (0, T]. The mesh @Z is defined in the same way as in Sect. 4.2. We
shall also retain the various other pieces of notation that were introduced in Sect. 4.2.

The initial-boundary-value problem (4.24) will be approximated by the symmet-
ric weighted finite difference scheme, with weights 61 = 6, = %, and with a molli-
fied source term:

find Uj’-", j=0,...,N, m=0,...,M, suchthat
- 1 - 1 ~1
DD U} = 1Dy Dy (U™ + 207 + UP™) + Tl f (x5 ),
j=1,....N—1l,m=1,....,M—1,
Ur =0, UP=0, m=0,....M, (4.41)
U = uo(x;),
1 _ -
Uj =uox)) + e Teur (x)) + ST [DF DTuo () + T T £ (x, 0],
j=1,...,N—1,
where the mollifiers T, 7; and Tli are defined by
x+h)2 t+1/2
Tev(x,t) = —f v(x, 1) dx’, Tv(x,t) = —/ v(x, 1) dr’,
hJx_np T Ji—t/2
and

. . t+1/2 , , . . 2 t , ,
T v(x, 1) .:; v(x,t)dt, T v(x,1) .:? v(x,t)dt .
t t—1/2

If v is a distribution on Q, then Ty, T; and f‘,i should be interpreted as convolutions
with suitable piecewise constant functions. According to the stability results that
were proved in the previous section the finite difference scheme (4.41) is uncondi-
tionally stable.

4.3.2 Error Analysis

It is easily seen that the global error

e;" =uxj, ty) — U}"
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of the finite difference scheme (4.41) satisfies the following equalities
_ 1
DDy e} — 2 DIDL (et 4 2ef + ) =,

=0, €f=0, 0<m<M, (4.42)

e, =¢j, 1<j<N-1,
where
_ 9%u _ ?u 1?2 _ _
¢ :=D;}D u— v DD u+ LT = ZDij D} D/ u,
T [XTh/2 gy
C=ulx,7)—ulx,0)—— / (x O)dx ——D+D u(x,0)
hJ._ h/2 at 2

£ [xHh2 T2 2u 1,

Let us define the following seminorm and norm, respectively:

Vi t+1)+ V(1)

©)
\% '= max s
IV 152 e = max : h
21172
1 2 Vi t+)+ V(D)
st . = max{ | D Ve + ’[Dj( .
s 1e2t 2 h

The finite difference scheme (4.42) can be restated as a three-level operator-
difference scheme (4.14), where H"* = Sé‘, Ap=A,D,=0and B, =1, + %12/\.
It follows from (4.18), (4.30) and the initial conditions (4.42) that the following a
priori estimate holds:

M-1

lelyene <7 ISR+ |[D+c||h+r AR (4.43)
k=1

()

In order to complete the error analysis of the scheme in the seminorm || - |5 1,

we require two auxiliary lemmas, which we now state and prove.

Lemma 4.2 The solution of the finite difference scheme

1
DDV — ZDjD;(V}"H +2vi+ vl = DrEy,

1<j<N-1,1<m<M-1,



4.3 The Wave Equation with Nonsmooth Data 349

subject to homogeneous Dirichlet boundary conditions at j =0 and j = N, and
with VO and V! specified, satisfies the a priori estimate

vigyo =
I | P e R
k=1

Proof The inequality follows directly from (4.20), (4.30) and the relation

- +
”DX_SHAA = sup |(Dx Saz)hl < |[$”h|[D Z”h

< =€l (444)
zest  1Zla zest  IDEZIn

O

Lemma 4.3 The solution of the finite difference scheme

1
DDy W — ZD;D;(Wj’."“ +2Wr 4+ W) =Dy,
I<j<N-1,1<m<M-—1,

subject to homogeneous Dirichlet boundary conditions at j =0 and j = N, and
with WO and W' given, satisfies the a priori estimate

ik o k=1
+
IW I3 = [1DF WO =] 5y B

2oohr—

H wl+wo

k=1 h
Proof By applying the operator A~! to the difference scheme and taking the inner
product of the resulting difference equation with W”+1 — w1 yields

2

1w

Wer] wm
|+ |5

(D[ n , Wm+l Wmfl)

wm + Wm71
-

h

Further, we have that
( . 77 , Wm+1 Wm_l)A—l — (nm _ nm—l’ D;I—Wm +D;+Wm_l)A—l

— 2(nm’ Dme)A—l _ z(nmfl’ Dmeil)A—l

_ T(nm + nm—l, Dt-l-Dt—Wm)A_

Using again the difference equation from the statement of the lemma satisfied by
the mesh-function W, we obtain
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_-L—(nm + nm—l , Dt-‘rDt— ‘4/}’}1)/171
1 e
=—t(n"+0""". D ")

1
+ r(n’" +9" ! A—l(W’"Jrl +2W" + W’"—l)>
h

2 —12
= "1+ I

rlm + nm—l Wm+l + wm wm + Wm—l
+T , + .
2 2 2 N

These relations imply that

9

" 2_ Mo\ nm+nm—l Wm+1+Wn1 Wm+Wm—1
(J)(J)_r<2, )

where we have used the notation

Wm+1+wm 2
()7 i DW= 260, D WY+ 4 |
h
2 Wm+1+wm 2
= ||D;'_Wm _nm||A71 + Hf h_
Hence,
m m—1
(1) = (1Y < r’ "4
2 h
Wm+1 + W Wm_i_Wmfl
) < 2 h - 2 h)
m m—1
ST‘ PN ey,
2 h

which, after dividing both sides by J” + J”~! and summing over m, yields the
desired inequality. g

The right-hand side ¢ of the finite difference scheme (4.42) can be represented
as

¢=D &+ D,
where
m du + LA
&' = Tio— () + /2. t) = D uCxj ) = — DY Df DI uCxj i),

ou
7}’}1 = Dfu(xj,tm) - Txa(xjvtm +1/2).
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By applying Lemmas 4.2 and 4.3 and the initial conditions we obtain

el e ne < l6/7 =1 5= .+||c/2nh+rZ|s ly+7 ZHn e

k=1

Further, ¢/t —n° = D7 x, where

_ /2 Ju T+
Xj = A a(xj+h/2,t)dt—EDxu(xJnO),

and therefore, by using the relation (4.44), we finally obtain the following a priori
estimate:

M—1 M—1
el e < X lln + —||§||h + Z [0, += X In* ], (4.45)
k=0

Thus, in order to complete the convergence analysis of the finite difference

scheme (4.41) in the mesh-dependent norm || - ||§12>o . and the seminorm || - ||§0()X} heo

it suffices to bound the right-hand sides of the inequalities (4.43) and (4.45). We
shall suppose to this end that the mesh-sizes 4 and t are linked by the condition
Tx<h,lie.

cth <t <ch, c1,cp=Const.>0. (4.46)

It is easily seen that go}" is a bounded linear functional of u € W, (G’j’?), s> 2, G’j?l =
(xj—1,Xj+1) X (tm—1, tms-1), Which vanishes on all cubic polynomials. By applying
the Bramble—Hilbert lemma we obtain

-3
|07 < CH* P lulwyomy.  2<s <4,
which, after summation over the mesh-points, yields that

M—1 M—1 ) 1/2 N—1M—1 ) 1/2
rZ||w||,,sﬁ(rZ||w||h) =ﬁ(hr22|w7|)

m=1 m=1 j=1 m=1
< Chs_2||u||W2v(Q), 2<s <4 (4.47)
Analogously, ¢; is a bounded linear functional of u € W, (GO+) s>3/2, GOt =

(xj—1,xj+1) x (0, ), which vanishes on all quadratic polynomlals and therefore
by the Bramble—Hilbert lemma we have that

[¢j] < Ch 3/2<s<3.

s—1
|M | W2‘ (G?+) )
Thus, summing over j we deduce that

Iglln < CH° =P lulws o, 3/2<s<3, (4.48)
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where Q; := (0,1) x (0, t). From (4.48), with s = 3 and using the inequality
(2.199), we further have that

”;- ”h < Ch5/2+min(s’—3,l/2) | loghll—\ sgn(s’'=7/2)| ”Li ” (449)

w3’ (o)’

where 3 < s’ < 4. Hence, by further majorization, (4.48) and (4.49) yield the bound
1 -2
;”C“h <Ch  Nullwyg), 2<s=4 (4.50)

Also,

2
[Dfel, = 2 0ehn;
thus, from (4.46) and (4.50) it immediately follows that
[Dfe]l, < Chs_2||u||W2x(Q), 2<s <4 4.51)

Finally, from (4.43), (4.47), (4.50) and (4.51) we obtain the following error bound
(1

for the finite difference scheme (4.41) in the norm | - [|5 o ,,:

e = U5 e < CH 2 ullws ) 2<s <4, (4.52)

2,00,ht —

where C = C(s) is a positive constant, independent of /.

Let us now turn our attention to the case when 3/2 < s < 3. We begin
by noting that éj’.” is a bounded linear functional of u € W;(G;’{Q, s > 3/2,
G;ﬂr = (xj,Xxj11) X (tm—1,tm+1), which vanishes on all quadratic polynomials.
The Bramble—Hilbert lemma therefore implies that

-2
67" < Ch*lulws g,y 3/2<s <3,

which, after summation over the mesh-points, yields

S

-1
T |[€m“h <cn! ||u||W2S(Q), 3/2<s<3. (4.53)

m=1

The quantity n;’.’ is a bounded linear functional of u € Wj‘ (G;’{:‘), s> 2, G;ff =
(xj —h/2,x; + h/2) x (tm, tmy1), which vanishes on all quadratic polynomials.
Similarly as in the previous case we obtain that

M—1
e 3, < M ullwsg) 3/2<s <3 (4.54)
m=0

Further, x; is a bounded linear functional of u € W;(G?j), s > 3/2, with
G(J)i = (xj,xj4+1) x (0, /2), which vanishes on all linear polynomials. Thus, by
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the Bramble—Hilbert lemma and summation over the mesh-points,

Lxlln < Ch‘y_l/2|u|W5(QT), 3/2<s<2.
By taking s = 2 and using the inequality (2.199), we further deduce that

[xllp < Ch3/2HminG'=21/2)) jog jy| 1 =lsen(s=5/2)] lullyyy gy 2<s"<3.
2

After further majorization the last two inequalities imply that
xlln < CH " ullwy gy, 3/2<s<3. (4.55)

Finally, from (4.45), (4.53), (4.54), (4.55) and (4.48) we obtain the following

bound on the global error of the finite difference scheme (4.41) in the seminorm
(0)
-l

2.00.17 - there exists a positive constant C = C(s), independent of &, such that

I = US4 < CHMullws o). 3/2<s <3. (4.56)

Two remarks are in order. First, we note that the error bound (4.56) has been
shown to hold for all s in the range 3/2 < s < 3, but not for 1 < s < 3/2. The
reason for this is that the right-hand side 7 T; f of the finite difference scheme (4.41)
need not be a continuous function when s < 3/2, and therefore the scheme is not
meaningful as stated for s < 3/2. For this latter range of s a stronger mollification
of f is necessary (e.g. TX2T,2f).

Our second remark is concerned with the requirement that the mesh-sizes 4 and
7 be linked by the condition (4.46). Since the difference scheme under consideration
is unconditionally stable (cf. the last sentence of Sect. 4.3.1), linking 7 to 4 in the
convergence analysis of the scheme, as was done above, is unnatural. Although,
admittedly, (4.46) is less demanding than the corresponding condition (3.88) in the
parabolic case, we shall show that by careful estimation of the various functionals
that are responsible for the emergence of the condition (4.46) in the convergence
analysis, (4.46) can be completely avoided, at least in some cases. Suppose, for
example, that s = 4. It is easily seen that (,o’j’.1 can be represented as follows:

(pm X/‘l’h/z/ / /t))l+]< |t _[m|>
/ h/2

9%u
X ax2or

/x]+h/2/t/n+l f’m+r/2/ / ( |t _tm|)
hf xj—h/2 tm tm—7/2

(x/, t////) dt//// dt/// dt// dt/ dx/

( " /) dt dx/// dx// dx/

8t4
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N
th—1/2 tm

9%u
X ax2or

tm+r/2/x,+1 /-x]+h/2/~ / < |x _x]|>
2t tm—7/2 Xi—h)2

a u( //// )d " dx/// dx// d.x d[
8x

Xj+1 /lm+1( |x’ —x]|><l |t/—tm|)
Xj—1 Im T

x', t’) dr’ dx’.

(x/,¢")dx'dr" de” dr’

x 8x28t2(

Thus we directly have that

C(h* +1?)
o7l = = Mwiap
and
M—1
T Wﬂ|<c#+rmWW@)
m=1

The integral representation

¢ = /x]+h/2/ / / X" )dt dx’” dx” dx’
J xj—h/2 0 8X23l
/Xj+1 / / |x _x]| O u (x/ t//) dt” dt’ dx’
. h ox2at
xj+h/2 pT et 33
/ / / (r— t’)—g(x’, t")de" dt’ dx’
xj—hs2 Jo Jo ot
. [xith/2 pr)2
—/ / f ")de" dr’ dx’
h xj—h/2 3l3
xj+h/2 T/2 83 , S
—5—(x", 1) dr' dx" dx
xj—h/2 ax-ot

., 8x28t ’
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yields that
151 < C(h2 + rz)\/r/h|u|wé~,(c?+).

Hence, using the inequality (2.199) we obtain

C(h®*+1?) o
Twwa@ y<C(h*+1 )||u||W£;(Q).

Similarly, by noting the integral representation

- xj+h/2 pxj px" px"+h
;‘ /' / / / / ////’ t/ dt/ dx//// dx/// dx// dx'
J = h2 X —h)2 ¥ xj X" 0 8X38t )
Xj+1 /x +h/ / (1_ |x _XJ|>8 ;;t( ”,t”)dt”dt’dx”dx/
X
1 pxiHh/2 px'+h 34
€ / / f / - ”3( 7 ¢")de" dr’ dx” dx’
T [rith/2 +h pt/2
i / / / / () A A de
h 2 0 0 3)63[
X2 X T2 gty
LT v
iy 0x Bt

L0

4y
8x38t

1
—lln <
T

( /// )dt dx/// dx// dx

we have that
|DF ¢l < C(h® + fz)m|”|w§(09+u6f}1])
and
[Di ], = C(H +22)Velulyso,) < C(H +27)lullys o)

From these bounds and the a priori estimate (4.43) we obtain the following error
bound in which the mesh-sizes 4 and 7 are not linked:

@ 2, 2
lu—Ull <C(h +7 )”M”W;(Q)-

2,00,ht —

We close this section with an interesting error bound, which is derived using
function space interpolation (see Zlotnik [204], Jovanovi¢ [87, 88]). For the sake of
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simplicity we consider the initial-boundary-value problem (4.24) with f = 0 and
= 0. Suppose that ug € 235(0, 1), 1 <s <4, where

i ; 2s — 1
2550, 1) := {v ews0.1) : u® ) =u (1) =0,for0<i < = } (4.57)
For s = 1 and s =4 in particular this assumption enables us to extend ug as an odd
function outside the interval (0, 1) by preserving its Sobolev class, Wg . From (4.5)
we directly have the following a priori estimate:

2 2 172
u
S S K I
[GOT] 8[ L>(0,1) 3)6 Ly(0,1)
2 172
(H—( 0) 0 ) = lubll 00 458
Lo 10X L5(0.1) .
By differentiating the equation
8%u _ 8%u
32 ax?

with respect to x and ¢ and by applying (4.58) we obtain that

o*u

oxiar= 1

< [ug”| L(0.1)’ (4.59)
Ly(©0.1)

max
tel0,T]

where 1 <k <[s],and 0 <i < k. In the case of s = 4 we have from (4.59) on noting
(4.57) that

”””WQ‘(Q) = C””O”wé(()’l), up € mg(ov D). (4.60)

Let B} := C(£27, Wzl (£2")) denote the linear space of all real-valued mesh-
functions defined on @Z that vanish at x = 0 and x = 1, with the seminorm

Vm—H 4 ym

”V”C(.Q’,Wzl(ﬂh)) (= max 3

0<m<M-1

W, (2h)
where we have used the notation

IWI2,1 o = IWI2 + [DF W2

_Qh)

Let us suppose that the mesh-sizes & and t satisfy the condition (4.46). We have
from (4.52), (4.60) and the discrete Friedrichs inequality (2.26) that

It = Ulleige wigany < O luollys,ny #0 € W3O, 1. (4.61)
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Next we shall derive a similar bound under the assumption ug € QII% (0,1) and
will then interpolate between that bound and (4.61). Obviously,

m—+1 m m+1 m Um+1 ym
[ (=), = [ (=), + [ (=)
2 N 2 N 2

Further, we have that

w4y 1
[o:(5™7)| =il + [0t

h

and

2
u(xj+l» Im) — M()Cj, Im)

h
2 /lau
<
=)o |9

1 [Yi+! Qu
— —(x, ty,) dx —(x, t
n /x ax (x,tm) N (x, tm)

J

N—1
[Dfuy=nY"
j=0

N-—1
:hz
j=0

2
dx.

By noting (4.58), we then have from the last inequality that
+
[D5u™], < ””6”@(0,1) = lluollw o.1y-

An analogous inequality holds for D} u™*!, and hence we obtain

m+1 m
(U +u
[0 (5, s

The solution of the finite difference scheme (4.41) (in the case of f =0 and u; =0)
satisfies the a priori estimate (4.18), which implies that
ym+l +um U! +U0
[or (5525 <o), + [ (S55)

h h

1 1
= e|DF Dy, + ‘[Dj (uo i ZtZD;D;u())

h
+
= C|[Dx “OHh = CHl'té)”Lz(O,l) = C”“0||W2‘(0,1)'
We thus deduce by applying a triangle inequality that
1
flu — U”C(Qr’Wzl(Qh)) = C”uOHWZI(O,l)’ up € QHZ(O, D). (4.62)

We are now ready to interpolate between (4.61) and (4.62). The linear space
255(0, 1), equipped with the norm of W; (0, 1), is a Banach space. Let us consider
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the mapping A} : uo +— u — U. Clearly, Aj is linear, and (4.61) implies that the
operator AZ : QU% 0,1 — Bﬁ is bounded, with

”AZ ||Qﬁ‘2‘(0,1)—>8,§ = cn,

Similarly, by (4.62), the linear operator A} : Qﬁé (0, 1) — By, is bounded, with

<C.

”AZ ||gn§(0,1)—>6,5 =

By function space interpolation (cf. Sect. 1.1.5) we deduce that the linear operator
A (QU;(O, 1), QU;‘(O, 1))g,2 — B is also bounded, with

|| A;l “(Qﬂé(o,])’mg(o’l))e‘z_ﬂg’r’ = Chzg, 0<6< 1,

which, by taking s = 36 + 1, yields the error bound

2
2s-1)
lu = Ullegor wiamy = €3 uollquyo.n.avd0. ) pe 403

for 1 <s <4, where C = C(s) is a positive constant, independent of 4.

The inequality (4.63) guarantees convergence of the scheme under a less restric-
tive assumption on uq than (4.52) (i.e. even for 1 < s <2, whereas in (4.52) s > 2
was needed; we refer to the notes at the end of this chapter for further comments on
the error bound (4.63)).

4.4 Hyperbolic Problems with Variable Coefficients

4.4.1 Formulation of the Problem

Let us consider, in Q := £2 x (0, T] = (0, 1)2 x (0, T, the initial-boundary-value
problem for a symmetric second-order hyperbolic equation with variable coeffi-
cients:

9%u
W+Eu=f, (x, 1) =(x1,x2,1) € Q,

u=0, (x,t)eI’' x (0, T]=08 x (0, T], (4.64)
u(x,0) =ugpx), %(x,O):ul(x), x €S2,

where

2
0
Luz=—Y" 4(aijd; R
! ij=1 146179, + an "o
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We shall suppose that the solution of (4.64) belongs to the Sobolev space W;(Q),
2 < s <4, and the coefficients a;; = a;j(x) and a = a(x) satisfy the conditions

s—1
aij €Wy (£2), aij=aj;,

2 2
dcg >0 Vx e 2 V%’GRZZ Za,‘j(x)éi%'jZC()Z%'iz,
i,j=1 i=1
aeW; %(2), a(x)>0 ae.in 2.
These conditions ensure that the coefficients of the scheme belong to appropriate
spaces of multipliers; that is,

aije M(Ws™H(Q)), aeM(W;(Q)— W52(0)).

4.4.2 The Finite Difference Scheme

Let N MeN,N,M>2,h:=1/N and t := T /M. We introduce the uniform mesh
2" with mesh-size 4 in £2 and the uniform mesh 27 with mesh-size = on (0, T).
Using the notations from Sects. 2.6, 3.1.4 and 3.4, we define er; = 0" x 27 and

0 := 2" x 2. It will be assumed that the mesh-sizes / and 7 are linked by the
condition (4.46):

cth <t <cyh, c1,cp=Const.>0.

For a function V defined on @; we consider the divided differences Dxil_V (see

Sect. 2.6) and DtiV (see Sect. 3.1.4), the Steklov mollifier 7; in the x; direction
(see Sect. 2.6), and the mollifiers Ty, T,i in the ¢ direction (see Sect. 4.3).

The initial-boundary-value problem (4.64) will be approximated on EZ by the
finite difference scheme

1. - .
D,*D;U+Zﬁh(U+2U+U)=T1T2T,f in O,
U=0 onrI"x ﬁr, (4.65)
U=ug onR"x{0},

with
A ‘[2 ~
U :=uo+tT1Tou; + ?(—ﬁhuo + N1, f)  on 2" x {0},

where

2
1 _ _
LyUi=—3 > [D}(aij Dy U) + D5, (ai; DI U) ] + (T T2a)U.
ij=1
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The scheme (4.65) is a standard symmetric finite difference scheme with weights
01 = 6, = 1/4 (see Samarskii [159]) and mollified right-hand side and lowest coef-

ficient. According to the results obtained in Sect. 4.1.3, the finite difference scheme
(4.65) is unconditionally stable.

4.4.3 Convergence of the Finite Difference Scheme

Let u be the solution of the initial-boundary-value problem (4.64) and let U denote
the solution of the difference scheme (4.65). The global error e := u — U satisfies
the following finite difference scheme:

1
D;“Dfe—i-zﬁh(é—l—Ze—i—é):(p in OF,
e=0 onI"xQ", (4.66)
_ A 1 2~ h
e=0, e_ru+2r<p in 2" x {0},

where

2
ORES Z Nij +n+¢+ X,
ij=1

n

1
ij .= T1T7T;0;(a;j0ju) — E[Dx_i(aijD;;u) + D;(aiij_ju)],

n:= (TiTayu — T ;T (au),

¢:=D D u—T T2T,82—u
a2’
‘1:2
X = ZLhDth u,
+ T ~ 2u
U= (Dt u—"TT),— 3 11> T; W) t_o,

A}
Il
T
=t
~.
_I_
F»l

- ~ I _ _
nij =11 Tth+3,' (ajjoju) — E[Dxi (ai./D;;u) + D;; (a,'ijj u)]}

t=0
i :=[(T1Thayu — LT (aw)]|,_,.
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) 12
ih

Let us define the norm

D+<V(-,t+t)+V(-,t))
Xi 2

2
Wi =m0 v+ 3

i=1

We deduce from (4.18) and (4.66), using the relations
IVIiZ, =@V Vo zeo(|DE VT, + D5V ],).
C
IVIZ, < Co(|DE VT, +1DEV 5, +IVIE) < S5 IVIE,

that
lelyaone <Cl( =+ )0l +7 2 let.0l, |
te2®
Hence, by recalling the condition (4.46), we obtain the a priori bound
1 ~
lell$') e < c(nvnh +hlgln+1 ) et z>||h). (4.67)
te2t

Thus the problem of error estimation is reduced to bounding the right-hand side
of (4.67); we shall accomplish this in the proof of the next theorem.

Theorem 4.4 Let the solution u of (4.64) belong to the Sobolev space W5(Q), 2 <
s <4, and suppose that a;j € Wiv_](.Q) and a € W‘;_z(.Q). Let also cith <t <
coh, where ¢y > ¢1 > 0. Then, the finite difference scheme (4.65) converges in the
mesh-dependent norm || - ||§12>o > and the global error of the scheme is bounded as
follows: there exists a positive constant C = C(s), independent of h, such that
(1 -2
I = U2 e = €2 (max g gt ) + g2 ) el o
for2 <s <4. (4.68)

Proof First of all, we decompose 7;; as follows:

Nij = Nij1 + Nij2 +nij3 + Nija + nijs + nije + Nij7,
nij1 = T1T2Ti(a;ij0;0ju) — (T1 Taa;;)(T1 T2 T;0;0ju),

| + -
nij2 .= (T Taaij) T1T2Tz3i3ju—E(Dx,-ij“‘*‘Dx,-ij“) )

1 _ _
nij3 = E(T1 Trajj — aij) (D5, Dj_l_u + D;iju),

nija = T11aT;(0;a;;0ju) — (T1120;a;;)(T1 12T, 0ju),
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1, _
nijs == | TiT20;a;j — E(Dxiaij + Dy aij) (T T2 T;0u),

_ 1 P
(DFaij + Dxl,aij)|:T1T2T18ju - E(D;ju "+ iju+’)i|,

1
nije = 5

1 . .
nij7 = Z(D;;aij - Dx_iaij)(D;;.M_l - Dx_ju'“),

Let us also define
2
x=>_ (j+xj2)+xo and n:=mn+n,
i,j=1

where
Xij1 = —%rz(a;iD; D} D} Dy u+af D} D D} Dy u),
Xij2 = —étz[(D;ia,-j)D;; D Dy u+ (D} aij) Dy, D} Dy u],
X0 = %rz(n Tra)D;} D, u,

n = (T Ta)(u — T1 T2 Tu),
02 = (1 Tha)(T1 T2 Tiu) — T To T (au).

Analogously, for t =0 we set
Nij = Nij1 + Nij2 + N0ij3 + Nija + Nijs + Nije + Nij7 - and 7 =11 + 02,
where
fij1 o= T1 T Tt (aij0i9u) — (T Taaij) (T T T, 0 9ju),
ija = (Tq Tzaij)[T] T 8;0ju — %(D;,D;ju + D;:Dx_ju)i|,
ija =TT, (9010 u) — (T T2d;ai)) (T1 T2 1 0 ju),

- 1 _ -
Mij5 = |:T1 Trd;a;j — E(D;taij + Dx,-aij)}(Tl T, ju),

. 1 - 5 1 o
Nij6 == E(D;’;aij + Dxiaij)|:T1T27}+8ju — E(D;‘tu iy iju+z)i|’
Niji ==mniji;, [=3and7,

n = (T Tza)(u -1 TQT["u),

= (Th Tza)(Tl Tzi}+u) —T Tgff(au).
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The values of 7;;1, 7ij3, nije and n;;7 at the mesh -point (x,t) € Qh are bounded
bilinear functionals of (a;;, u) € WA(KO) x W. q/(q 2)(G) where K0 = KO(x) :=
(x1 —h,x1+h) x (x2—h,x2+h)and G = G(x,1) == K° x (t — 7,1 + 7). For
nij1 we have A >0, u > 2 and g > 2, while for nij3» Nije and n;j7 we have that
A>2/q,u>3/2—3/q and q > 2. Furthermore 7,1 and ;¢ vanish whenever a;;
is a constant or if u is a quadratic polynomial; #;;3 and n;;7 vanish if a;; and u are
linear polynomials. By applying the bilinear version of the Bramble—Hilbert lemma
we obtain the bound

|nij1(x, 0] < CMlaijlwp oy lulwg, ) 6)»

where C(h) = CH*#+1/4=7/2 0 <1 <1 and 2 < u < 3. Summing through the
points of the mesh Qj} yields

v 2 i ol = 2 aill ) g,

tef2T
0<a<l1, 2<u<3i. (4.69)
The following embeddings hold
Wy @) > WH2) for n=2-2/q, (4.70)
and
Wit Q) — Wi /(—2(Q) for i >3/q. 4.71)

Setting A + p = s, (4.69)—(4.71) imply, for ¢ > 3, that

7 ) Inipn G, = Cr 2 laijllyg o) lullws -
tef27

for243/qg <s <4. 4.72)

The bound (4.72) holds for any ¢ > 3; thus, letting ¢ — oo we deduce that it holds
for2 <s <4.

In the same way, n; ;¢ satisfies a bound of the form (4.69) for 2/g < A <1 and
3/2 —3/q < < 3. By setting A + u = s and noting the embeddings (4.70) and
(4.71) we obtain

T Z [mijsC, t)Hh <Ch'? |aij||W;*1(Q)”u”W§(Q)a
1ef2T

for2+1/g <s=<4. (4.73)

In fact, because ¢ is arbitrary, (4.73) holds for 2 < s < 4. The term ;;> is bounded
in the same way.
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The terms 7;;3 and n;;7 satisfy bounds of the form (4.69) for 2/¢q < A <2 and
3/2 —3/q < p < 2. Thus, in the same way as in the previous cases,

T Z ([nijzC. 0], + [mijrC.0],) < Chs_2||aij||ws-—1(g)||M||W;(Q)» (4.74)

tef2t

for2+1/q <s <4, and thus for 2 < s <4 as well.

When a;; € Loo(K9), nij2(x, 1) is a bounded linear functional of u € W5(G),
s > 2, which vanishes whenever u is a cubic polynomial. Using the Bramble—Hilbert
lemma we obtain

[nija(x, )] < Chs_7/2”aij||LOO(K0)|M|W§(G)a 2<s<4
Summing over the points of the mesh Q; yields
7Y 2G|, < CH P laij ) lullwg ). 25 <4.
e’

Finally, by noting the embedding
WSTH(2) = Loo(2) fors >2,

we obtain the desired bound on #; j>:

© ) [0l = O 2laijllyg 1 o) lulwy@  2<s<4. (475)

tef2"

The term ;1 is estimated in the same way.

Further, n;4(x, t) and »;;5(x, t) are bounded bilinear functionals of (a;;, T;u) €
W(;‘(KO) X Wzﬂq/(q_z)(KO), for A > 1, u > 1, g = 2. Moreover, 1;;4 vanishes when
a;j or Tyu is a linear polynomial; n;;s vanishes if a;; is a quadratic polynomial, or
if Tyu is a constant. By applying the bilinear version of the Bramble—Hilbert lemma
we get

. Ap=3) ..
|’7114(x,[)| SC]’l W |al]|W;‘(K0)|Tlu('vt)|w£;/(q72)(K0)s 1 S)‘fv Mizs
and summing through the mesh-points then yields that
-2
[mija .0y = CHF 2 aijlwg o) | T Dy o)
1<, n<2. (4.76)
By noting the embedding
2
Wy (2) > Wh ) (2) forh=2/q 4.77)

and setting A + u = s, from (4.76), (4.70) and (4.77) we obtain

|}77ij4(', t)”/’t < Chs_2||a[j||wir—l(9) || T[l/l(', t)” Wi(_(z)v 3- 2/q =s= 4. (478)
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Letting ¢ — 2 + 0 we deduce that (4.78) holds for 2 < s < 4. Since
) 1/2
1/2
g ZQ |0y oy =T <r ZQ ||T,u<',t)|}wg(m) < Cllullwy o).
e’ tef2’

summation of the inequality (4.78) through ¢ € £27 yields that

© ) mijaC. 0l = O 2 laijllygr g lulwy@).  2<s<4. (479)
tef2"

Similarly, by the Bramble—Hilbert lemma, we obtain a bound on 7;;5 of the form
(4.76) for £ =1 and 1 < X <3. Setting ¢ =2, . =s — | and using the embedding

W5(2) < WL(@) fors>2,
we obtain the bound
-2
[mijsC. O < CR 2 aij s o) [T D gy 2 <5 =4,
and further

v ) misCo], < Cr P aijllyg 1 g lullwg ) 2<s <4 (4.80)
tef2"

The terms xo(x,t) and n;(x,t) are bounded bilinear functionals of (a,u) €
Lq(KO) X quq/(q—Z)(G)’ for w > 3/2 —3/q, g > 2, which vanish when u is a
linear polynomial. By applying the Bramble—Hilbert lemma,

u+1/q-=3/2 —
[0l 1] = Ch lal,olulws G 3/2=3/a<pn=2

Thus, by summing through the points of the mesh Q;, we get

v 2 (IxoC. 0l + [me.0l,) < ChllaliLy@llullyg o)
tef2"

3/2—-3/g <un=<2.
By choosing u = s — 2 and noting the embeddings

W3(Q) > W3 % 5 (Q) forg>2 and W3 2(2) < Ly(£2),

where 2 <g <2/(3—s) for2 <s < 3,2 <g < oo for s =3, and q is arbitrary for
s > 3, we obtain the bound

e Y (b0t 0, + I 0l,) < O lallys s 0 lelwgcor

tef2t

7/2—-3/qg <s <4. (4.81)
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Since g > 2 is arbitrary, letting ¢ — 2+0, we deduce that (4.81) holds for 2 < s <4.

Next, n2(x,t) is a bounded bilinear functional of (a,u) € W(;‘ (K9 x
WZ]/(q_2)(G) for A >0, u >0, g > 2, which vanishes if a or u is a constant
function. Similarly as in the previous case we have that

[na(x, )] < CprFrtl/a=3/2

||a||Lq(K0)|M|W“ (G’ 0<A, n=l,

2q9/(q
and
T Z [m2(-. t)Hh = ChHM”a”Wq*(-Q)||”||WZ/<q—z>(Q)’ O<i, p=1
tef2’
Letting A + 1 = s — 2 and using the embeddings
Wy (2) > WH$2) forpu=>1-2/q (4.82)
and
2
Wy Q) > WhL 5 (0), (4.83)

we get the bound

3 [0, = O lall 2 g Il wcor
tef2®

3-2/g=s=4 (4.84)

Letting ¢ — 2 + 0, we deduce that (4.84) holds for 2 < s < 4.

The term ¢ (x, t) is a bounded linear functional of u € W5 (G) for s > 2. More-
over, ¢{ vanishes on cubic polynomials. By applying the Bramble—Hilbert lemma
and summing through the mesh-points, we get the bound

T Z lec o, = Chs_z”“”wg(g), 2<s<4. (4.85)

tef2’

Analogously, v(x) is a bounded linear functional of u € W3 (G°"), where G** =
G (x):=K 0 x (0, 7), for s > 2. Moreover, v(x) vanishes on quadratic polynomi-
als. By applying the Bramble—Hilbert lemma we get

ol < €~ lulwy g, 2<s <3,

where Q; := £2 x (0, 7). Setting s = 3 and using the inequality (2.199) we deduce
that

lvlls < CH¥2lulys g,

S Ch3/2+min(s/—3,l/2)|logh|1—|sgl’l(3‘/—7/2)‘”u” 3 < S/ S 4

ws'(0)’



4.4 Hyperbolic Problems with Variable Coefficients 367

By combining the bounds above on ||v||; we then have that
lolln < C° Plulws g,y 2<s<4. (4.86)

The terms #;;; (I =1,3,4,5,6,7) have analogous properties to 7;;; in the do-
main G%t, and are bounded in the same way. Thus, for example, 7;;1(x) is a
bounded bilinear functional of (a;;,u) € Wq)“(KO) X Wéf]/(q_z)(G(H‘), for A >0,
n > 2, q > 2, which vanishes whenever a;; is a constant or if u is a quadratic poly-
nomial. By applying the bilinear version of the Bramble—Hilbert lemma we obtain
the bound

= Atu+1/g—1/2
|77ij1(x)| < cptett/a=T |aij|qu(1(0)|M|Wzi;/(q_2)((;0+)-
Summation over the mesh-points then yields
5. Aut1/q=3/2y ...
<
hlliijilln < Ch laiilwz ey ) o0y

Ap—=2y,..
<Ch ”azj”W(;\(Q)”u”vvz/(qib(gy
Thus, by setting A + p = s and using the embeddings (4.70) and (4.71), we obtain
Bl < O 2lai o1 o) lullws o) 255 <4, (4.87)

The terms 7;;, with I =3, ..., 7, are bounded in the same way.

When q;; € Loo(KY), nij2(x) is a bounded linear functional of u € W3 (GO,
s > 2, which vanishes whenever u is a quadratic polynomial. Using the Bramble—
Hilbert lemma we obtain

nij2(x0)] < Chs_7/2||aij”LOO(KO)lu'WZS(GOJr)v 2<s<3.
Summing over the points of the mesh £2” yields that
hlnijaC 0, < CE 7P llaij | Lo lulws o), 2<s <3.

Hence, by noting the embedding

W3 (2) <> Loo(£2) fors >2

and the inequality (2.199), in the same way as in the estimation of ||v||;,, we obtain
that

hnij2C 0|, < CF 2 llaijliLa@ lullws o), 2<s <4. (4.88)
The term 71 (x) is bounded directly. If a € L,(£2) and u € C (@), then

10| < Ch M all, ko) llell e ).
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which implies that
hlinille = Chllally@2) lullc -
Hence, by using the embeddings
W3 2(2) = La(R2), W3(Q) = C(Q), s>2,
we get, after further majorization, that

Bl < Ch* 2 allys ) lullwyoys 2 < <3. (4.89)

Similarly, if a € L>(£2) and u € C'(Q), then
’f]](x)’ = Cllallp,xoy llullc1 gy

which further yields that

Rl ln < CPllall Ly lull e ig)-
Hence, by the previous embeddings, together with

W3(Q) = C'(Q), >3,
we obtain, after further majorization, that
Wl ln < Ch 2 llallys—2 g lullws @) 3 <5 <4. (4.90)

Finally, 72(x) is a bounded bilinear functional of (a,u) € WqA(KO) X

Wétz/(qu)(G(H) for A >0, u >0, g > 2, which vanishes if a or u is a constant

function. By applying the Bramble—Hilbert lemma we obtain

|7~]2(X)| < Ch)»+ﬂ+1/q—3/2

”a”L,,(KO)|”|Wé‘q/(q_2)(00+)’ 0<A, n=l,
and

hllialln < CH VI R allys o lullwy g,y 0<h m<l.

Setting A 4+ u = s — 2, using the embeddings (4.82) and (4.83) and letting g — 2+0,
we get the bound

Blialln = CF° llally2 g lullwyo)  2<5 <4 (4.91)

By combining (4.67), (4.72)—(4.75), (4.79)—(4.81) and (4.84)—(4.91) we then ar-
rive at the error bound (4.68). O

Remark 4.1 Similar error bounds can be derived when the coefficients a;; and a
depend on ¢t. However, the proof of an a priori bound of the form (4.67) is then more
complicated (see Samarskif [159]).
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4.4.4 Factorized Scheme

As in the parabolic case (see Sect. 3.4.4) the finite difference scheme (4.65) can be
replaced by a, more economical, factorized scheme, which is in this case

(In + o) (In + 0T 42)D Dy U + LU =Ti T, f  in O, (4.92)

with the same initial and boundary conditions as in (4.65). Here o is a positive real
parameter, A;U = _Dx_,- D;U ,i=1,2, and I is the identity operator. According
to (4.17), the finite difference scheme (4.92) is stable if the operator

(In —i—arzAl)(Ih +ar2A2) - %rzﬁh

is positive definite, uniformly with respect to the discretization parameters. This
condition holds, for example, if

1
o> -—max ||a;i|| &
= 5 ma lai ez
and

-2 —1
h <432 llall ) o)

In contrast with (4.65), the factorized scheme (4.92) is economical in the sense
that only systems of linear algebraic equations with tridiagonal matrices have to
be solved on each time level, corresponding to the operators (I, + o12A)), i =
1,2.

The global error e := u — U satisfies the following equalities:

(In +0t*A1)(In + 07 A2) D D] e + Lye = ¢’ on QF,
e=0 inlxQ°,

1
e=0, é:tv—}—itng on.th{O},
where
2
¢ =Y mj+n+i+x
i,j=1
and

x':=—ot*(D} D, D} D u+ D}, Dy, D" D[ u)

2_4 - - _
+0°t*D} Dy, Dy, D, D" D[ u.
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The a priori estimate (4.67) holds if ¢ is replaced by ¢’. It is easy to show that

T Y X ln < CH P lullws o) 2 <5 <4,
tef2®

which implies that the factorized scheme (4.92) satisfies the error bound (4.68).

4.5 Hyperbolic Interface Problem

Using the notations from Sect. 4.4, we shall consider the following hyperbolic in-
terface problem:

9%u
(1 +k82)ﬁ +Lu=f, (x,t)=(x1,x2,1) €0,
u=0, (x,1)el’x(0,T]=082 x[0,T], (4.93)
ou
u(x,0) =ug(x), E(X,0)=M1(X), X € $2,

where, as in the parabolic case_(cf. Sect. 3.5), X' is the intersection of the line seg-
ment x =&,0< & < 1,and £2, dx(x) :=6(xp — &) is the Dirac distribution con-
centrated on X, k(x) = k(x1), and L is the symmetric elliptic operator

2
Lu:=— Z 0i(a;joju) + au,
i,j=1

satisfying the usual ellipticity and regularity properties (see Sect. 4.4.1).

Problem (4.93) is a hyperbolic initial-boundary-value problem with “concen-
trated mass” in the coefficient of the time derivative. In the one-dimensional case,
analogous problems were considered by Jovanovi¢ and Vulkov [93, 96].

When f = f(x, t) does not include in its definition a Dirac function concentrated
on X', (4.93) reduces to

8%u

o +Lu=f(x,1) inQ UQT,

where 0F = 2% x (0,T], 2~ =(0,1) x (0,&), 2T =(0,1) x (&, 1), with the
following transmission (conjugation) conditions on the interface X'

8%u

2
[M]Z‘ :=u(x1,§+0,t)—u(x1,%'—0, t) =07 [;azfafu}z :km

. (4.94)
X

We shall now construct a finite difference approximation of this problem.
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4.5.1 Finite Difference Approximation

The initial-boundary-value problem (4.93) will be approximated on E; by the finite
difference scheme
(1 +k85)D;F DU + i,ch(f/ +2U +U)=T1Tf in Q},
U=0 onT"xQ",
U=uy on"x{0}, (4.95)
(14+k8sn) DU =T To[(1 + kdx)ui ]

1 -
+ Et(—ﬁhuo + N1, f) on 2" x {0},

where the operator £, is defined as in Sect. 4.4.2; i.e.

2
1
LyU=—3 Y [Di(aij D5, U) + Dy, (ai; DY U) | + (T Tha) U
i,j=1

and
0 when x € 2\ £",
82/1(.x)=8h(-x2_€) :Z{l/h Whenxezh\

is the discrete Dirac delta-function concentrated on X", For the sake of simplicity,
we assume that & is a rational number and &/ is an integer.

The finite difference scheme (4.95) fits into the canonical form (4.14), with A;, =
Ly, Dy =0 and

1
ByU =(1+k85i)U + ZrzﬁhU.

Hence, the conditions (4.17) are satisfied and the difference scheme (4.95) is there-
fore unconditionally stable.

Let u be the solution of the initial-boundary-value problem (4.93) and let U
denote the solution of the difference scheme (4.95). The global error e :=u — U is
then a solution of the following finite difference scheme:

1
(1—i—k(SEh)D;"Dt_e-}-Zﬁh(é—l-Ze—i-é):(p—l—,uSEh in 0,
e=0 othxﬁr, (4.96)

1
e=0, (1+k8sn)Dfe=v+08sn+ 5Té in 2" < {0},



372 4 Finite Difference Approximation of Hyperbolic Problems

where
2
¢ = Z nij+n+&+Xx,
ij=1
1. _
nij ;= T1T2T;0;(a;j0ju) — E[Dxi (ai‘/D;u) + D;l'_(aiijju)],
n:=(NiTayu — T1 ;T (au),
e ptp— 0%u
; = Dl D[ u— TlTQT[ﬁ,
T2 2
X = Zﬁth*D,_u = > xij + Xo.
ij=1
o +pt + +
Xij = _§[Dx,‘(aijDXth Dl M) + Dxi(aijDXth Dl‘ Lt)],

72
X0 = Z(Tl Ta)u,

82
wi=kD}D u—TT; <k—”>

912
du 9%u
v:=|Du —T]Tz— — —T1T2T+ ,
ar 2 32 )|,
9 32
o= [kDFu— T (k22) - Iy (k2L ,
ot 2 32 ) 1],

A
I
e
=
N
+
Fl

nij =

M ——
=
S
=
oM
~
Q
<
(o5
<
<
N

= [(Ta)u — T T (aw)]|,_,

Let us define the norm

1) ”iz(zh)

5, 172
ih

VIS pe = trgg)g[” D VCD|;+|Dive
2

2

i=1

D+<V(-,t+r)+V(-,t))
Xi 2
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where the norm || V||, sy has been introduced in Sect. 2.8.1. The a priori estimate
(4.18) yields that

1 -
||€||§’lo,h, < C<||U||L2(.rzh\>:h) +hl@ll L, 2m st

+7 Y el m sm + RVl cn + 101,
tef2’

+ 120Gl Ly +hT D Il +T Y ||u||L2<zh)), (4.97)
tef2’ tef2"

where we have used the notation

VI, @mem =0 D V.
xeh\xh

Thus, in order to derive an error bound for the finite difference scheme (4.96) it
suffices to bound the terms on the right-hand side of (4.97). As in the previous
section, we shall assume for the sake of simplicity that t < h.

Theorem 4.5 Suppose that the solution u of (4.93) belongs to the Sobolev space
W3(0%),7/2 <s <4,a;; € Wy 1 (2%),a € Wy™2(2%) and k € W}(2). Let also
cith <1t <coh, where ¢ > c¢; > 0. They, the finite difference scheme (4.95) con-
verges in the mesh-dependent norm || - ||gc)>o, e and the following error bound holds
for 7/2 < s < 4: there exists a positive constant C = C(s), independent of h, such

that
lu — U

2,00,ht

s—2 . )
= O 72 (max a1y + a2 ) K wzcm) s o
+ (max oy oy + Nallyg-2 gy + KNz ) llhwgion) |- @498)

Proof The terms v, ¢ and ¢ for x ¢ X" have been bounded in Sect. 4.4. After
summation over the mesh-points we obtain

lvllp,@m sty + IOl L, @mnsn +T Z ol L, m =hy
te2"

< 72 (max lais gt g + Nl g2 )l o

+ (max aisllyg-1 gy +lallyg2g-) ) lullwgion | 2<s<4. (499)
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The term v for x € X" can be represented as

X _ 1 ou -, Ou 1 au ~_ou
v=v'4+v =T, —TT, +o\ i —-TT, — ,
2 at 0t Jli=epp 2 at 0t Ji=e2
where the mollifiers Tzi are defined analogously to T,i:
- 2 [x2th/2 . .
T,"u(x, 1) ::Z/ v(xl,xz,t)dxz,
X2
— 2 2 / /
T, v(x,1):= —/ v(xl,xz, t) dx,.
hJe—np
The above representation implies that
|vi| < Ch||u||c2(Q )= Ch||u||W sy, §$>17/2,
whereby
h”U”Lz(Z‘h) <C]’l (||M||WZS(Q+)+||M||WZS(Q7)), S>7/2. (4100)

The term U can be represented as

O(xy,&,1) = L/T /X1+h/2|:'/ / ( 3) xl,é t’”)dtwdl‘”
ht Jo Jx—n2 LJe2Jepp\ 0t
192/ 0
f / : ( ”)( " E, t)dxi”dxi'i| dx/ dr’.
xl

Summing over X" and using the inequality (2.199) we obtain
3 (0
92 (L ou
ax?\ ot

By expressing 2 o 57 |5 from (4.94) and using the trace theorem for Sobolev spaces
we finally obtain

- 33u
11l (s sChz[”k— ]
W3 ((0,T),L2(%))

W1 ((0.T),L2(X)) ’

~ 2
19055ty = [ (WKl +mas s gt o w0y

+ (IKlwz s, + max a1 o) lelwgony |- s >7/2
(4.101)
The term ¢ can be estimated directly:

ol = maxfaijllcr g el oty + lallc @) lulle gy
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+ max ||a;; — ||u — +al|l ~=- Ul ~ 5.

Hence, by using the Sobolev embedding theorem, we have that

191550y = €[ (maxlaisll st g + allyg-2 g ) g o

+ (1’1;13)( ||aij ”Wé*l(g_) + ”a”W572(Q—)) ||u||W£(Q7)i|’ s > 7/2

(4.102)

For x € X" we define

1 2

— + =t e
§0-—§|:Z(nij+flij+x,~j +Xl-j)+fl++'7 T+ + X +X()j|a
i =1
where
- 1. _
r]ii_l =T T2+Tt81(a1181u) - E[Dx] (anD;}u) + D)—:—] (alle]u)],
nh =T T2+Tt31(a1232u) - Dy (QIZD)-:;M),

=TTy Tidx(an du) — D, (a21 Dy, ),

axn(x1,8) +axn(x,§+h)
=TT, Tidp(azdou) — h[ > Diu
—T1T;(axdu) }
xp=£+0
77+ = (T1 T2+a)u - T f’z""T;(au),
~ 9%u
+. + - +
{ ':Dt Dtu—Tsz Ttm,
+ o +p+p- o +p+p-
Xqp = _E(a“Dth D[ u) + E(auDﬂD, D/ u) .
(x1—h,&,1)
- )+ I )
X2 = —— a12D D D;u)+ a12D D D, u ,
2 tz

o ::—;—h(aﬂD D Dy u) ar Dy D} D} u),

(x1,6+h,t) 4h

2

X = —E[azz(m £) +an(x1. £ +hm)|(D;, D D u),
2

xd = Z(TlTJF a)u,
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with ’7; n,¢o, Xi; and x, being defined analogously.
The terms niﬂ; can be bounded analogously to »;; for x € "\ " To this end
we decompose nﬁ as follows:

+ _ o+ + + + + + +
My =Mt M+ 003 T 00 05015 + 116 14175
where
T];'_“ =T T2+T,(a11812u) — (T] f;an)(Tl f;T,Slzu),
+ . 4 = a2 -
M = (0T, an) (N T, Ti9tu — Dy, D u),
+ . =4 -
s o= (T T, aij _aij)DxlD;”’

N = T1f2+Tt(31611131M) - (T1T2+31a11)(T1T2+Tt31u),

~ 1 _ -
7]?_15 = I:T1T2+31a11 — E(D;a“ + Dx’_a“):|(T1T2+7}31u),
+ Lo - % Lo+ -
Mis = 5 (Dxa11 + Dyan)| i Tidyu — S (Dyu+ Dyu) |,

1 _ _
n?_l7 = Z(D:_]a“ - Dma]])(D:_]u _Dx1“)'

Then, for k € {1, 3,4,6,7},
+
il = Chllanll 1 g+ lull 2 gt

Thus, by summing over the mesh X" x 227 and using the Sobolev embedding the-
orem we obtain

e Y il yeon < G lanllysr g lullwgon. s >7/2. (4.103)
tef2’

Inequality (4.103) holds also for ’7?_12 and r/ﬁs. Here we have made use of the
Bramble-Hilbert lemma to bound

- _ ~ 1 _
T T2+T,812u - DXID;I/! and T T2+81a11 - E(D;all + DX[a11),

and after summation over the mesh-points in X" x £27 we applied the inequality
(2.199).

The remaining terms nﬁ and Xl.jjc can be estimated in the same manner, resulting
in the bounds

e Y Ly < CHlaijllys1 g lullws o). 5> 7/2. (4.104)
tef2r
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+ 2
ht Y| X |, czm < Ch laij st sy Nllwg o) s >7/2. (4.105)
tef2?

The terms ¢* can be bounded analogously to ’ﬁlz’ using the Bramble—Hilbert
lemma and the inequality (2.199):

e S oo < P lullwgosy s > 7/2. (4.106)
tef2r

The bounds on n* and )(0jE directly follow from the Sobolev embedding theorem:
he Y 0= L, en < CPPllall s, lull o g
tef2®
< CWlallyy2gu lullwg sy s>3. (4.107)
+ 3
e Y16 | yen = O lall gt lull g,
tef2®
< Ch3||a||W§—2(Qi)||M||W£(Qi), s>3.  (4.108)
By applying the Bramble—Hilbert lemma we obtain
8%u

T E el p,(smy SChZHk_z
ot
tef2T

W§(2>'

Thus, using the transmission condition (4.94) and the trace theorem for Sobolev
spaces, we deduce that

2
ht ng Il sy < Ch (rr;e;x||ai,-||W;1(m)||u||wzz(g+)
tef2t

+ni1a}x||al~,-||W;71(Q_)||u||W22(Q_)), §>7/2. (4.109)

Combining (4.97)—(4.109) then yields (4.98). O

4.5.2 Factorized Scheme

Analogously as in the parabolic case (see Sect. 3.5) we shall now consider a fac-
torized scheme, which has the following form for the hyperbolic interface problem
considered in the previous section:

(In + 672 A1) (By +0T° A2) D DU + L,U =T\ T, f  in Qf,  (4.110)
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with the same initial and boundary conditions as in (4.95). Here
AU :=—-DID_U, BpU := (1 +k85n)U,

I, is the identity operator and 0 is a real parameter. For the sake of simplicity we
shall assume that £ = Const. > 0. In this case, the operator (I, +0t A1) (B +601 A2)
is selfadjoint and the operator inequality

(Ih +9‘[2A1)(Bh +9‘[2A2) — %‘L’zﬁh >B,>1,>0

holds for s > 3 and sufficiently large 6.

Let u be the solution of the initial-boundary-value problem (4.93) and let U
denote the solution of the finite difference scheme (4.110). The global error e :=
u — U satisfies the finite difference scheme

(In +07* A1) (By + 01> A2) D Dy e + Lpe = ¢ + /85 in QF,

e=0 on]"hxﬁr, (4111)
1
e=0, (14+k8sn)De=v + 085n + Eup in 2" x {0},

where

2
¢ =Y mj+n+i+x.
i,j=1
x':==—01’D} D_ D} D;u—61>D} D_ D} D/ u
+6*t*D} D D DL D D[ u,

82
W ::k|:Dt+Dtu — Tth(a_tZ> —QIZD;FIDXID;FDIM}.

The a priori estimate (4.97) holds for (4.111) if ¢ and u are replaced by ¢’ and u’.
Under the assumption that T =< h the terms x’ and ' satisfy analogous bounds to
x and p, which implies that the factorized scheme (4.110) satisfies the error bound
(4.98) for 7/2 < s <4.

4.6 Hyperbolic Transmission Problem

In this section we shall investigate the finite difference approximation of a hyper-
bolic transmission problem in two disconnected domains. The problem is the hyper-
bolic counterpart of the parabolic transmission problem considered in Sect. 3.6.
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As a model problem, we consider the following initial-boundary-value problem:
find two functions, u1(x, y,¢) and us(x, y, t), that satisfy the system of hyperbolic
equations

82u1

W - Aul = fl(-x3 yst)3 (xs )’) € Ql = (alsbl) X (Clsdl)v re (07 T],
(4.112)

82u2

57 Aupy = fo(x,y,1), (x,y) € 822:=(az,b2) x (c2,d2), t € (0, T],

4.113)
where —0co0 <ay < by <ar» < by <400 and ¢» < ¢ < dy < da, the internal trans-
mission conditions of nonlocal Robin—Dirichlet type

oup
g(blvyvf)+051()’)u1(b1,y7t)

1)
:f Bi(y. Y )uz(az,y' . 1)dy’,  ye(er.d), 1€(0,T], (4.114)
C

2

ouy
W(az, v, 1) +ax(y)uz(az, y,t)

d
=/ B2(y, ¥ )ur(br,y',1)dy’, ye€(ca,da), t€(0,T], (4.115)
c

1

the simplest external Dirichlet boundary conditions for ¢ € (0, T']:

ui(x,cr,t)=ui(x,d;, 1) =0, x¢€(ay,br),
ur(x,c2,t) =uz(x,d2,t)=0, x€(az, by), (4.116)
ui(ay,y,t) =0, ye(c,d); uz(b2,y,1) =0, ye(c,d),

and the initial conditions

8u1
Ml(x’y,o):'llo(x»}’)v ?(xm)}’o)zbtll(xvy)v (x»)’)egl,
“4.117)

uz(x,y,0) =u(x, y), %(x, y,0) =uz(x,y), (x,y)€ 2.
We shall assume in what follows that the data satisfy the following conditions:
Bi(y.¥)=B(Y.y)=B(y.y) V(.y)e€(c1.d1) x (c2,dn), (4.118)
fi € L2((0, T); Lo (£2;)) fori =1, 2, and
ai € Loo(ci,di), i=1,2; B € Loo((c1,d1) x (c2,d)). (4.119)

Using the notations from Sect. 3.6, we deduce that under the condition (4.118)
the bilinear functional (3.142) is symmetric and defines a symmetric bounded linear
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operator A : W21 - Wy ! by the formula
(Au,v) :==a(u,v), u,ve Wzl,

where (-, -) is the duality pairing between W, Uand Wzl.
The weak form of (4.112)—(4.116) is

d? )
<—d,;tvv>+a(u(vf), v)=(fC.0,v), YveW,, (4.120)
or, in operator form,
d?u ) .
gz TAu=/ inW, 4.121)

The problem (4.120) fits into the general framework of hyperbolic differential
operators in Hilbert spaces. By applying Theorem 4.1 to (4.120) we obtain the fol-
lowing result.

Theorem 4.6 Suppose that (4.118) and (4.119) hold and assume that u =
(10, u20) € Wy, u' = (i1, uz1) € L, f = (fi, f2) € L2((0, T), L). Then, for
0 < T < 400, the initial-boundary-value problem (4.112)—(4.117) has a unique
weak solution u € L,((0,T), Wzl) N W21 (0, T), L), which depends continuously on
£, u® and u'. The solution u satisfies the a priori estimate

du ||
ok <) ([ + ' [+ 1B om0

llull? 1
Loa((0.1). W2) Loo((0.T).L)

where C(T) = C2e€1T is a computable constant depending on T .
In the sequel we shall adopt the following notational conventions:
Qi =82;x(0,T], i=12,
W5(Q) :=W;(Q1) x W5(Q2),

2 2 2
”u”Wéf(Q) = ”ul”Wéﬁ(Ql) + ”L‘ZHWQY(QZ)'

4.6.1 Finite Difference Approximation

With the notations from Sect. 3.6.2, we approximate the initial-boundary-value
problem (4.112)—(4.118) by the following explicit three-level finite difference
scheme:

D; DUy - Dy D} Ui — D, D} Ui = fi,

xeQ yeQl rer, (4.122)
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. 27
D D, U1(b1,y,t)+h—l D Ui(br,y, 1) +ar(MUi (b1, y, 1)
—ke Y B(r.y)Ua(a2, r)] — Dy D Ui(br, y, 1)
/ ky
y'eR,
= fib1,y,1), ye@', 1eq, (4.123)
Dy Df Uy — Dy ,Df U — Dy, D}, U = fa,

xe2 yeoPl e, (4.124)

- 2
D; D Uy(az, y, 1) — h—z[D;foz(az, y, 1) —ea(y)Uz(az, y, 1)

B0 - DpaDl e )
y/eﬂfl

= folaz, y,1), ye Ry, 1€Q7, (4.125)
Ur(xr.cl, ) =Up(x,di,1) =0, xe$2.', res,

Ux(x,c2,t) =Ux(x,dr, 1) =0, xeﬁgz,teﬁr, (4.126)
Uilar.y.0)=0, ye2{'s  Ubay.n=0, yey,

Ui(x,y,0) =ujolx,y),

Urte, v, 0 = wio(x, 1)+ i (0 + 300 Auio + e, v, O, (4127)

xeQh, ye2l, i=1,2

We shall assume in what follows that & < hy < ki < kp, and define h =
max{h1 , /’lz, k] , kz}.

The finite difference scheme (4.122)—(4.127) fits into the general framework
(4.14), where H" is the space of mesh-functions U = (Uy, Us), U; is defined on

themeshﬁ?i X 5{-([, i=1,2,U; =0forx =b1, Uy=0"for x =an,
B =1, Dy :=0, and Aj:=Aop+ A,

and the operators A;;, i = 1,2, have been defined in Sect. 3.6.2. If the time step T
is sufficiently small,

© < Comin{hy, hy, ki, ka}, (4.128)

where Cy is a computable constant depending on
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leillcqe,any,  Nlo2llcqer,sn  and N Bllcer,dixles,dal)»

the finite difference scheme (4.122)—(4.127) is conditionally stable and satisfies an
a priori estimate of the form (4.22).

Let u = (u1, up) be the solution of the initial-boundary-value problem (4.112)—
(4.117) and let U = (Uy, Uy) denote the solution of the finite difference scheme
(4.122)—(4.127). Then, the global error e := u — U satisfies the following finite
difference scheme:

- - p+ - p+
D; Dfer— D, D/ e1 =Dy Dy e1 =i,
xe@h, yeah reqr, (4.129)

2 _
D;D?_e](bl,y, )+ h—1|:Dx,le1(b1, v, 1) +ai(yei(by, y,t)

_k2 Z ,31(}’»)’/)6’2(0% y/vt)i| - D;’ID;_’]el(blv y7t)

y/egé‘Z
—@i1(b1,y, 1), ye 2}, teQ", (4.130)
- - - pt
D, Dt+32 - Dx,zD;_,zeZ — Dy,sz,ze2 =2,

xeQl yeQl reqr, (4.131)

— 2
D; Dffex(az, y, 1) — h—z[D;r,z@z(az, y.1) —aa(y)ez(az, y, 1)

+ ki Z ,BZ(yvy/)el(blsy/vt)}_D;QD;_)262(a27yvt)
y/E.Qfl

=po(az, y,1), yeERY, 1€, (4.132)
ei(x,c1,t)=ei(x,dy, t) =0, xeﬁ?l,teﬁr,
er(x,c0,t) =ex(x,dr, 1) =0, xeﬁ’;a te’, (4.133)
er(a,y.n=0, ye2{s  ebrny.n=0, yey

ei(x,y,00=0, e,y T)=x, xR ye@l i=12 (4134
where

pi =& +n+¢&, =12,
2

07u; . A
§ =Dy D ui — =, xeQl, yeRi et i=1,2,
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82ul~ _ + T -
ni == 3x2_Dx,li,iui’ xe.Q ,ye.Q rteR',i=1,2,
2uy 2 (du / / /
)21t
—kzzﬂyy uz(az, y', ] x_bl,ye.Ql,te.Qf
y6922
82142 8u2 ’ ’ ’
mi=| o +— - xzuz + B(y. Y )ui(br,y' 1) dy
Z,Byy Ui b],y t] x—az,ye.Qz,IG.QT
ye.Ql1
. 32u, — hi k,‘ T
gi= 2—D D Ui xe.Qii,ye.Qi,te.Q,l:l,Z,

82141 ¢ 32ui "3,
Xi: / / I:atz X, ya )_W(xayvo)]dt dta
xe.Ql-i, ye.Ql.", i=1,2.

The following a priori estimate for the solution of the finite difference scheme
(4.129)—(4.134) follows immediately from (4.22):

1

1

lell" e < C(T) Xty + =1z,
T

+ W& Ly27, L) + Inll a7, L) + ||§||L2(.QT,L,,))~ (4.135)
Here we have used the notations
2 . Ip-vI? -vI?
VI, =0V, +IDs vz,
and

Vi, t+1)+V(,1)
2

5 1/2
Wzlj

In order to derive an error bound for the finite difference scheme (4.122)—(4.127)
it therefore suffices to bound the terms appearing on the right-hand side of the in-
equality (4.135). For simplicity we shall assume in what follows that 7 < h.

V5.5 e = max [II DV, + H

Theorem 4.7 Ler o; € W3~ (¢c;,di), i = 1,2, B € WS~ ((c1,d1) x (c2.dn)), u €
Wg (Q), and let the assumptions (4.128) and t < h hold. Then, the solution U of the
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finite difference scheme (4.122)—(4.127) converges to the solution u of the initial-
boundary-value problem (4.112)—(4.118) and the following error bound holds for
s > 7/2: there exists a positive constant C = C(s), independent of h, such that

) 3/2
flu — U||2 00,hT <Ch / (1 + ”'3||W§71((Cl,d1)x(c2,dz)))||u|IW5(Q)‘ (4.136)

Proof The value of &; at the mesh-point (x, y, ) € .th I x .Ql.k" x §27 is a bounded
linear functional of u; € W3 (G"), where

G :=(x—hi,x+h)x(—ki,y+k)x({t—1,1+7)

and s > 7/2, which vanishes on polynomials of degree < 3. Using the Bramble—
Hilbert lemma we deduce that

|6 (x, v, 0| < CWluilwyiy,  T/2<s5<4,

where C(h) = Ch* f7/ 2, Analogous results hold for x = b1 and x = a», with suitable
modifications of G'. By summation over the mesh we obtain the bound

1E N Lo,y < C° P lullwyg),  7/2 <5 <4. (4.137)

Analogously, one deduces that

Igly@2m.Li) < CH Pllullws o), 7/2<s <4, (4.138)
and
172
(Zh Z Z an> <C P lullwsg), T/2<s<4 (4.139)
xe.Q’ er refr

For x = b1 we decompose the term 11 as follows:

N1 =n11 +ni2+ ms,

where

u; 2 duy _b- 71, 82u1 2 duy _p-
= u — up )|,
i dx2 Bx ! x2 Bx x *
T, 82141 2 (du D
ma = 9x2 h1 0x

ns:= h2 <k2 Z B(y, Yy )uz(az.y'.t) — /C

ye.Q

dy

B(y. ¥ )uz(az. y' 1) dy’).

2
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The value of 11 at a mesh-point is a bounded linear functional of u; € WZS ,8>17/2,
which vanishes on polynomials of degree < 3. By using the Bramble—Hilbert lemma
we deduce that

1/2
(m/q Yoy n%1<b1,y,r>) < CR|lutllws,) 7/2<s 4. (4.140)

ki tef2t
yes2,

The value of 11, at a mesh-point is a bounded linear functional of u; € Wg ,8>15/2,
which vanishes on polynomials of degree < 2. By invoking the Bramble—Hilbert
lemma and the inequality (2.199), we deduce that

12
2
(hlkl RS nlz(bl’yf”) = Chllutlly3 by -y by)yxer.d) x0.7)
yE.Q{(I et

< CRPlutllwsoyy  §>7/2. (4.141)
By applying the error bound for the trapezium rule, we obtain

1/2
(hlkl D n%3<b1,y,r))

ye@ll 1e2”

32
< cn/ ||ﬂ||W;*'((cl,dl)x(cz,dz)>””2”W§(Q2)’ s>17/2. (4.142)

Thanks to (4.139), (4.140)—(4.142) and analogous bounds on > (as, -, -) we arrive
at the following inequality:

3/2
9l 11> < CP2 (U 1B i1 ety el 5> 7/2 (4143
In order to bound the term x we consider the decomposition

Xi = Xil + Xi2,
where

. hi ki

xiti=TTyxi, x€82,', ye’,

=~ k
xi1 =T Tyx1, x=by, ye,

~ k

X21 = T;’T;Xz, X=a, Y€ 922.

The value of x1; at a mesh-point is a bounded linear functional of u; € Wj‘ , Where
s > 5/2, which vanishes on polynomials of degree < 2. Using the Bramble—Hilbert
lemma and the inequality (2.199) we obtain

1/2
(Z ki Y xﬁ) < O lutlly3 o, x 0.0y < CF Nutllws o

hy ky
xX€82, YESR,



386 4 Finite Difference Approximation of Hyperbolic Problems

for s > 7/2. Similarly, the value of x12 = x1 — x11 at a mesh-point is a bounded
linear functional of u; € W3, where s > 7/2, which vanishes on polynomials of
degree < 3. Using the Bramble—Hilbert lemma we obtain

1/2
(Z hiky Yy xfz) < urllws (@, x 0.0 < CRlur lws oy

xEQ:ll ye(lfl
for 7/2 < s < 4. Analogous inequalities hold for x2; and x»», whereby
Ix1z, SCh3||M||W5(Q), 7/2<s <4 (4.144)

We also note the obvious inequality

1
lellwzlh <=lxlz,- (4.145)

Finally, from (4.135), (4.137), (4.138), (4.143), (4.144) and (4.145) we deduce
the error bound (4.136). O

Remark 4.2 The error bound (4.136) exhibits a loss of half an order from the ex-
pected second order of convergence. This loss can be avoided by using a more ac-
curate approximation of the equations at the mesh-points of the inner boundary.
For the analysis of the finite difference approximation of the corresponding one-
dimensional problem, see Jovanovi¢ and Vulkov [100] and Jovanovié¢ [90]. Second-

) (see

order convergence can also be shown to hold in the weaker norm || - [, ;;

Jovanovi¢ and Vulkov [103]).

4.7 Bibliographical Notes

In this chapter we derived error bounds for finite difference approximations of cer-
tain model initial-boundary-value problems for second-order linear hyperbolic par-
tial differential equations. The procedure was based on the Bramble—Hilbert lemma
and its generalizations, in conjunction with discrete energy estimates. In the deriva-
tion of the relevant energy estimates, discrete analogues of the norms

ou
Nl Lo 0,7y W5 (2)) + H m , (4.146)
Ul L. 1w~ (2))
o"u
Nl Lo, 7y w5 (2)) + ’ o (4.147)
Il Lo (0.7); L2 (2))

were used.



4.7 Bibliographical Notes 387

For finite difference approximations of the first initial-boundary-value problem
for second-order linear hyperbolic partial differential equations with constant coef-
ficients, when T < h, i.e. c;h < Tt < c¢ph, error bounds of the form

lu = UNS oo pe < Ol o) (4.148)
were derived by Jovanovi¢ and Ivanovié [91] and Jovanovi¢, Ivanovi¢ and Siili [107]
forr=0,1,2andr+ 1 <s <r -+ 3. Here || - ||g:2>o,hr is the discrete counterpart of
the norm (4.146). We note that, in contrast with elliptic and parabolic problems, the
error bound (4.148) is not compatible with the smoothness of the data. Indeed, in the
transition from the function u € W5 (Q) to its trace on ¢ = Const. one looses half an
order of Sobolev regularity, in the estimates (4.148); this gives rise to the observed
loss of compatibility.

Error bounds in discrete norms of the form (4.147) for r = —1 and r =1, and
for —1 < r < 1 by function space interpolation, were derived by Dzhuraev and
Moskal’kov [41].

Equations with variable coefficients a;; € W;o_l (£2),ae Wgo—2(9) were studied
by Jovanovi¢, Ivanovi¢ and Siili [109], and an error bound of the form (4.148) was
derived for r = 1 and 2 < s < 4. The constant C in those error bounds depends on
norms of the coefficients. Analogous results, under weaker assumptions on the co-
efficients, were subsequently obtained by Jovanovi¢ [86]. Dzhuraev, Kolesnik and
Makarov [42] also considered hyperbolic equations with variable coefficients, how-
ever a method of lines was used as their numerical approximation. An estimate of
the form (4.148) was obtained for r = 0 and a fixed integer value: s = 2.

Jovanovi¢ and Vulkov extended these results to hyperbolic interface problems
and transmission problems (see [93, 96] and [90, 100, 103]).

In certain cases function space interpolation techniques give sharper error
bounds; for results in this direction we refer to the extensive paper by Zlotnik [204]
and the papers of Jovanovié [87, 88]. In this respect, we make one final observation
on our error bound (4.63). Had we used, instead of the K-method of interpolation
with interpolation functor (-, )g,4, 0 <6 < 1, 1 < g < 00, the complex method of
interpolation with interpolation functor [+, -]g, 0 < 6 < 1, (see, for example, Chap. 4
in Bergh and J. Lofstrom [9]; Chap. 1, Sect. 2.1 in Lions and Magenes [123]; or
Chap. 1, Sect. 1.9 in Triebel [182]) we would have arrived at an error bound anal-
ogous to (4.63), for 1 < s < 4, with the norm ””0”(935(0,1),%3( replaced

] : 0,1)(s—1)/3,2
by the norm ||ug ”[m};(o,l),m}‘z‘(o,1)]@_.)/3 on the right-hand side.
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