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Supersampling in Ray Tracing
Ray Tracing:

Rendering the scene:

Generating a 2-dimensional image of a 3-dimensional scene
that amounts to:

e determining the visible object at each pixel on the screen,
e determining how bright the object is.
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Ray Tracing:

Rendering the scene:

Generating a 2-dimensional image of a 3-dimensional scene
that amounts to:

e determining the visible object at each pixel on the screen,
e determining how bright the object is.

Ray tracing:
Determining the visible object at each pixel by shooting a ray
from the view point through each pixel.

Note:
Ray tracing can also determine how bright the object is.



Supersampling in Ray Tracing

Supersampling:

e A pixel is not a point, but a small i
square area. e .

« Shooting a ray through each pixel ) oo
center results in the well-known o o . el
jaggies in the image. e »»

e The solution is to shoot more
than one ray per pixel.




Supersampling in Ray Tracing

Supersampling:

e A pixel is not a point, but a small i
square area. e .

« Shooting a ray through each pixel ) oo
center results in the well-known o o . el
jaggies in the image. o B o

e The solution is to shoot more
than one ray per pixel.

Supersampling:
instead of taking one sample point per pixel, we take many.
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How should we distribute the rays over the pixel :

e Distributing rays regularly isn’t such a good idea. Small
per-pixel error, but regularity in error across rows and
columns. (which triggers the human visual system.)
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Supersampling in Ray Tracing

How should we distribute the rays over the pixel :

e Distributing rays regularly isn’t such a good idea. Small
per-pixel error, but regularity in error across rows and
columns. (which triggers the human visual system.)

e |t's better to choose the sample points in a somewhat
random fashion.

¢ We want the sample points to be distributed in such a way
that the number of hits is closed to the percentage of
covered area.




Supersampling in Ray Tracing

Sample Point Set  Rendered Half-Plane (4x zoom)
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Discrepancy:

Discrepancy of sample set with respect to object:

The difference between the percentage of hits for an object and
the percentage of the pixel area where that object is visible.
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Discrepancy:

Discrepancy of sample set with respect to object:

The difference between the percentage of hits for an object and
the percentage of the pixel area where that object is visible.

Note:
we don’t know in advance which objects will be visible in the

pixel.
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Discrepancy:

Discrepancy of sample set with respect to object:

The difference between the percentage of hits for an object and
the percentage of the pixel area where that object is visible.

Note:
we don’t know in advance which objects will be visible in the

pixel.

Discrepancy of the sample set:
The maximum discrepancy over all possible ways that an object
can be visible inside the pixel.
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How discrepancy can be useful?

Based on the discrepancy of given set of sample points we can
decide if it is good enough: if the discrepancy is low enough we
decide to keep it, and otherwise we generate a new random set.



Supersampling in Ray Tracing

How discrepancy can be useful?

Based on the discrepancy of given set of sample points we can
decide if it is good enough: if the discrepancy is low enough we
decide to keep it, and otherwise we generate a new random set.

e For this we need an algorithm that computes the
discrepancy of a given point set.



Computing the Discrepancy

e Assume that curved
objects are approximated
using polygonal meshes.

e So the 2-dimensional
objects that we must
consider are the
projections of the facet of
polyhedra.




Computing the Discrepancy

e Assume that curved
objects are approximated -
using polygonal meshes. 5

e So the 2-dimensional '
objects that we must
consider are the
projections of the facet of
polyhedra.

e Most likely, a single pixel intersects a single polygon side
which is like intersecting a half-plane.

e Therefore we restrict our attention to half-plane
discrepancy.
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U=10:1] x[0:1]: The unit

square (pixel)

e H = The (infinite) set of all U
possible half-planes (scene)

e S = A set of nsample points in U

e Continuous measure : p(h) =
areaof hnU

e Discrete measure : I
us(h) = card(S N h)/card(S)

e Discrepancy of hwrt S :
As(h) = |u(h) — ps(h)]

e Half-plane discrepancy of S :

AR(S) = suppey As(h)
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o We first identify a finit set of condidate half-planes.
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the continuous measure.



Computing the Discrepancy

We first identify a finit set of condidate half-planes.

The half-plane of maximum discrepancy must pass
through at least one sample point.

Let it pass through exactly one point.

The maximum discrepancy must be at a local extremum of
the continuous measure.

There are an infinite number of h through each point p, but
only O(1) of them are local extrema.
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Let:
e p:=(px,py) be apointinS,
e Ip(¢) be the line through p that

makes an angle ¢ with the
positive x-axis for 0 < ¢ < 2,

e hp(¢) be the half-plane initially
lying above Ip(¢).

e We are interested in the local extrema of the function

¢ = p(hp(9))-
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e There is a constant number of local extrema per point
pesS.



Computing the Discrepancy

e There is a constant number of local extrema per point
pesS.

e Thus the total number of condidate half-planes with one
point on their boundary is O(n).



Computing the Discrepancy

e There is a constant number of local extrema per point
pesS.

e Thus the total number of condidate half-planes with one
point on their boundary is O(n).

e Moreover, we can find the extrema and the corresponding
half-planes in O(1) time per point.



Computing the Discrepancy

Lemma 8.1

Let S be a set of n points in the unit square U. A half-plane h
that achieves the maximum discrepancy with respect to S is of
one of the following types:

(/) h contains one point p € S on its boundary,
(if) h contains two or more points of S on its boundary.

The number of type (/) condicates is O(n), and they can be
found in O(n) time.



Computing the Discrepancy

e The number of type (/i) condidates is quadratic.

e Because the number of type (/) condidates is linear, we
treat them in a brute-force way: for each of the O(n)
half-planes we compute their continuous measure in
constant time, and their discrete measure in O(n) time.
This way the muximum of the discrepancies of this
half-planes can be computed in O(n?) time.

e For the type (ii) candidates we need some new techniques.
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Theorem 8.2
The half-plane discrepancy of a set S of n points in the unit
square can be computed in O(n?) time.



Duality

Duality:

e A point in the plane has two parameters: its x-coordinate
and its y-coordinate.

¢ A (non-vertical) line in the plane also has two parameters:
its slope and its intersection with the y-axis.

e Therefore we can map a set of points to a set of lines, and
vice versa, in a one-to-one manner.
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Duality

Duality:

e A point in the plane has two parameters: its x-coordinate
and its y-coordinate.

¢ A (non-vertical) line in the plane also has two parameters:
its slope and its intersection with the y-axis.

e Therefore we can map a set of points to a set of lines, and
vice versa, in a one-to-one manner.

Duality transform:

One-to-one mapping of a set of points to a set of lines such that
certain properties are preserved.

e The image of an object under a duality transform is called
the dual of the object.
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One possible and simple duality tranform:

e point p: (px,py) < line p*:y =pxx —py
e linel:y=mx+b <= point [*: (m,—b)

primal plane dual plane

Py =px—py

o P = (Pzpy) o /¥ =(m,—b)

Cry=ma+b
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One possible and simple duality tranform:
e point p: (px,py) < line p*:y =pxx —py
e linel:y=mx+b <= point [*: (m,—b)

Note:
The duality transform is not defined for vertical lines.

primal plane dual plane

oD = (Pepy) o /¥ =(m,—b)

f:y=mz+b



Duality

Observation 8.3
Let p be a point in the plane and let / be a non-vertical line in
the plane. The duality transform o — o0* has the following
properties.

e ltis incidence preserving: p € [ if and only if I* € p*.

e |t is order preserving: p lies above I if and only if /* lies

above p*.
primal plane dual plane
¥ ¢ P’ y 7,
Py® P . p2
P4
P2

-

x 7
P1
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Duality can be applied to other objects, e.g. segments:

e Let s:= pg be a line segment

primal plane
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Duality can be applied to other objects, e.g. segments:

e Let s:= pg be a line segment

primal plane

dual plane

e Dual of a segment is a double wedge.
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Duality can be applied to other objects, e.g. parabola:

parabolaf : y = x?/2

point p = (px, py) on U
derivative of I/ at p is py, i.e., p*
has same slope as tangent line

tangent line intersects y-axis at
(07 _p)2(/2)
= p*istangentline at p

if g lies directly above or below p,
then g* is the line parallel to p*




Duality

How duality can be useful?

e If you can solve a problem in the dual plane, you could
solved it in the primal plane as well by mimicking the
solution to the dual problem in the primal problem.

¢ Looking at things on the dual plane provides new
perspectives.
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Back to the discrepancy problem:

To determine our discrete measure, we need to:
{(p.q)

e Determine how many
sample points lie below a . >
given ling(in the primal
plane).



Duality

Back to the discrepancy problem:

To determine our discrete measure, we need to:
)
q
e Determine how many
sample points lie below a P
given ling(in the primal
plane). .

Dualizes to:

\\
e Given a point in the dual
plane we want to

determine how many p
sample lines lie above it. ~
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Arrangements:

Arrangement A(L):

Let L be a set of n lines in the plane. L induces a subdivision of
the plane that consists of vertices,edges, and faces.This is
called the arrangement induced by L, denoted A(L).
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Simple arrangment:

An arrangement is called simple if no three lines pass through
the same point and no two lines are parallel.



Arrangements of Lines

Simple arrangment:

An arrangement is called simple if no three lines pass through
the same point and no two lines are parallel.

Complexity:
The complexity of an arrangement is defined as the total
number of vertices, edges, and faces of the arrangement.



Arrangements of Lines

Theorem 8.4

Let L be a set of n lines in the plane, and let A(L) be the
arrangement induced by L.

(/) The number of vertices of A(L) is at most n(n—1)/2.
(i) The number of edges of A(L) is at most n.
(iii) The number of faces of A(L) is at most n?/2 4+ n/2 4 1.

Equality holds in these three statements if and only if A(L) is
simple.



Arrangements of Lines

Theorem 8.4

Let L be a set of n lines in the plane, and let A(L) be the
arrangement induced by L.

(/) The number of vertices of A(L) is at most n(n—1)/2.
(i) The number of edges of A(L) is at most n.
(iii) The number of faces of A(L) is at most n?/2 4+ n/2 4 1.

Equality holds in these three statements if and only if A(L) is
simple.

o Total complexity of an arrangement is O(n?).



Arrangements of Lines

Constructing Arrangements:

¢ We place a bounding box
B(L) that contains all the
vertices of A(L) in its
interior.

e The subdivision defined by the bounding box plus the part
of the arrangement inside it has bounded edges only and
can be stored in a doubly-connected edge list.
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Constructing Arrangements:

Goal:
Compute A(L) in bounding box in DCEL representation

« A plane sweep algorithm would run in O(n? log n) time.
o faster: Incremental algorithm (O(n?))



Arrangements of Lines

Incremental Algorithm:

o Compute a bounding box B(L)
that contains all vertices of A(L)
in its iterior and initialize the
DCEL.

e Incrementally add each line /; to
A;_1 and update DCEL.

e Find the edge e on B(L) that
contains the leftmost
intersection point of /; and A;

e Split face bounded by e

e Move on to next intersected
face




Outline  Supersampling in Ray Tracing Computing the Discrepancy Duality Arrangements of Lines Levels and Discrepancy

Incremental Algorithm:

e Splitting a face f intersected by /;:

ST\




Arrangements of Lines

Incremental Algorithm:

e Splitting a face f intersected by /;:

Assume that the face intersected by /; to the left of f has
already been split.

Find the edge €’ where J; leaves f and its twin.

Create two new records for new faces f’ and f’ created by
.

Create a new vertex record for vertex v/ where /; intersects
e (hné).

Create two new records for half-edges created by v'.

o Create half-edge record for the edge /i N f.
e Delete records for ¢ and f.

» Move to face bounded by twin(¢).
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Incremental Algorithm:

Algorithm CONSTRUCTARRANGEMENT(L)

Input. A set L of n lines in the plane.

Output. The doubly-connected edge list for the subdivision induced by B(L)
and the part of A(L) inside B(L), where B(L) is a bounding box containing
all vertices of A(L) in its interior.

1. Compute a bounding box B(L) that contains all vertices of A(L) in its

interior.

2. Construct the doubly-connected edge list for the subdivision induced by
B(L).

3 fori—1ton

4. do Find the edge ¢ on B(L) that contains the leftmost intersection point

of €,‘ and A,‘.
3. f — the bounded face incident to e
6. while £ is not the unbounded face, that is, the face outside B(L)

74 do Split f, and set [ to be the next intersected face.



Arrangements of Lines

Running time analysis:

Step 1, computing B(L), can be done in O(r?) time.
Step 2, constructing DCEL for B(L), takes only constant
time.

Step 4, Finding the first face split by /; takes O(n) time.
We now bound the time it takes to split the faces
intersected by /; (step 7).

The edges we encounter are on the boundary of faces
whose closure is intersected by /;. This leads us to the
concept of zones.



Zones:
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Zone of a line /'in an arrangement:

The zone of a line / in an arrangement A(L) is the set of faces
of A(L) whose closure intersects /.




Arrangements of Lines

Zones:

Complexity:

The complexity of a zone is defined as the total complexity of all
the faces it consists of, i.e. the sum of the number of edges and
vertices of these faces.



Arrangements of Lines

Zones:

Complexity:

The complexity of a zone is defined as the total complexity of all
the faces it consists of, i.e. the sum of the number of edges and
vertices of these faces.

e The time we need to insert line /; is linear in the complexity
of the zone of [;in A(h, ..., /).
e The Zone Theorem tells us that his quantity is linear.
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Zone Theorem:

Theorem 8.5 (Zone Theorem)

The complexity of the zone of a line in an arrangement of m
lines in the plane is O(m).



Arrangements of Lines

Proof of Zone Theorem:

Given an arrangement of m lines, A(L), and a line /.

Without loss of generality we assume that / coincides with
the x-axis.

An edge is a left bounding edge for the face lying to the
right of it and a right bounding edge for the face lying to the
left of it.

Claim: the number of left bounding edges of the faces in
the zone of / is at most 5m.(Same for number of right
bounding edges)



Arrangements of Lines

Proof of Zone Theorem:

(/) Assume first that no line of L is horizontal.

Claim: the number of left bounding edges of the faces in the

zone of / is at most 5m.(Same for number of right bounding
edges)

e By induction on m.
e For m = 1: Trivial.

(1 left bounding edge < 5)
e Form>1:



Arrangements of Lines

Proof of Zone Theorem:

(1) Let / be the rightmost line intersecting / (assume it's
unique).

e The zone of /in A(L\ /)
has at most 5(m — 1) left
bounding edges.




Arrangements of Lines

Proof of Zone Theorem:

(1) Let / be the rightmost line intersecting / (assume it's
unique).

e The zone of /in A(L\ /)
has at most 5(m — 1) left
bounding edges.

e When adding f, the
number of such edges
increases:




Arrangements of Lines

Proof of Zone Theorem:

(1) Let / be the rightmost line intersecting / (assume it's
unique).

e The zone of /in A(L\ /)
has at most 5(m — 1) left
bounding edges.

e When adding f, the
number of such edges
increases:

e One new left bounding
edge on /.




Arrangements of Lines

Proof of Zone Theorem:

(1) Let / be the rightmost line intersecting / (assume it's
unique).

e The zone of /in A(L\ /)
has at most 5(m — 1) left
bounding edges.

e When adding f, the
number of such edges
increases:

e One new left bounding
edge on /.

e Two old left bounding
edges split by /.




Arrangements of Lines

Proof of Zone Theorem:

(1) Let / be the rightmost line intersecting / (assume it's
unique).

e The zone of /in A(L\ /)
has at most 5(m — 1) left
bounding edges.

e When adding f, the

number of such edges
increases:

e One new left bounding
edge on /.
e Two old left bounding
edges split by /.
e Hence, the total number of
left bounding edged in this
case is at most




Arrangements of Lines

Proof of Zone Theorem:

(2) If exactly two lines intersect / in the rightmost intersection
point:

e Denote these lines by 1 ,b.

e The zone of /in A(L\ /)
has at most 5(m-1) left
bounding edges.

e [ has two left bounding
edges

e I is split into two left
bounding edges

e /; splits two other left
bounding edges

e Hence, the new zone
~ramnlavityvy ie 2t mAcet



Arrangements of Lines

Proof of Zone Theorem:

(3) If several lines (> 2) intersect / in the rightmost intersection
point:

e Pick /; randomly out of
these lines.

e The zone of /in A(L\ h)
has at most 5(m — 1) left
bounding edges.

e When adding /, the
number of such edges
increases: 2

e Two new edges on /;. |
e Two old edges split by /;. ré

e Hence, the new zone

complexity is at most

Cf vmA 4\ A  C oA




Arrangements of Lines

Proof of Zone Theorem:
(if) And what if there are horizontal lines?

e A horizontal line that
does’nt coincide with /,

introduces less complexity
into A(L) than a

non-horizontal line.
e If L contains a line /; that W

coincide with /, the addition
of /;to A(L\ /) increases
the number of left
bounding edges by at most

4dm -2
e This concludes the proof of
the Zone Theorem.



Arrangements of Lines

Theorem 8.6
A doubly-connected edge list for the arrangement induced by a
set of n lines in the plane can be constructed in O(n?) time.
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Run time analysis:

1. 0(n?)
2. constant

3. Y1 0(i) = 0(n?)

in total O(n?)

Algorithm CONSTRUCTARRANGE-
MENT(L)

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).

1. Compute bounding box B(L).

2. Construct DCEL for subdivision

induced by B(L).

fori«1ton

4. do insert /;.

o



Levels and Discrepancy

Back to Discrepancy (Again):

e For every line between two sample points, we want to
determine how many sample points lie below that line.

e For every vertex in the dual plane, we want to determine
how many sample lines lie above it.

e We build the arrangement A(S*) and use that to
determine, for each vertex, how many lines lie above it.
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Levels and Discrepancy:

level of a point:

The level of a point in an arrangement of lines is the number of
lines strictly above it.
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Levels and Discrepancy:

level of a point:

The level of a point in an arrangement of lines is the number of
lines strictly above it.

levels of vertices
in an arrangement
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Computing the Levels:

e For each line /in S*:

e Compute the level of the
leftmost vertex. O(n)

e Walk along / from left to
right to visit the other
vertices on /, using the
DCEL. The level only
changes at a vertex, and
the change can be
computed by inspecting
the edges incident to the
vertex that is
encountered.O(1)




Levels and Discrepancy

Computing the Levels:

e For each line /in S*:

e Compute the level of the
leftmost vertex. O(n)

e Walk along / from left to
right to visit the other
vertices on /, using the
DCEL. The level only
changes at a vertex, and
the change can be
computed by inspecting
the edges incident to the
vertex that is
encountered.O(1)

e The levels of all vertices of

A(S*) can be computed in
O(r?) time.




Levels and Discrepancy

Summary:

Problem regarding points S in ray-tracing

Dualize to a problem of lines L.

Compute arrangement of lines A(L).

Compute level of each vertex in A(L).

Use this to compute discrete measures in primal space.

We can determine how good a distribution of sample
points is in O(n?) time.
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