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0.1 Introduction

Bayesian time series and forecasting is a very broad field and any attempt at
other than a very selective and personal overview of core and recent areas would
be foolhardy. This chapter therefore selectively notes some key models and ideas,
leavened with extracts from a few time series analysis and forecasting examples.
For definitive development of core theory and methodology of Bayesian state-
space models, readers are referred to [74,46] and might usefully read this chap-
ter with one or both of the texts at hand for delving much further and deeper.
The latter parts of the chapter link into and discuss a range of recent develop-
ments on specific modelling and applied topics in exciting and challenging areas
of Bayesian time series analysis.

0.2 Core Model Context: Dynamic Linear Model

0.2.1 Introduction

Much of the theory and methodology of all dynamic modelling for time se-
ries analysis and forecasting builds on the theoretical core of linear, Gaussian
model structures: the class of univariate normal dynamic linear models (DLMs or
NDLMs). Here we extract some key elements, ideas and highlights of the detailed
modelling approach, theory of model structure and specification, methodology
and application.

Over a period of equally-spaced discrete time, a univariate time series y1:n is
a sample from a DLM with p−vector state θt when

yt = xt + νt, xt = F ′tθt, θt = Gtθt−1 + ωt, t = 1, 2, . . . , (0.1)

where: each Ft is a known regression p−vector; each Gt a p× p state transition
matrix; νt is univariate normal with zero mean; ωt is a zero-mean p−vector
representing evolution noise, or innovations; the pre-initial state θ0 has a normal
prior; the sequences νt, ωt are independent and mutually independent, and also
independent of θ0. DLMs are hidden Markov models; the state vector θt is a
latent or hidden state, often containing values of underlying latent processes as
well as time-varying parameters (chapter 4 of [74]).
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0.2.2 Core Example DLMs
Key special cases are distinguished by the choice of elements Ft, Gt. This covers
effectively all relevant dynamic linear models of fundamental theoretical and
practical importance. Some key examples that underlie much of what is applied
in forecasting and time series analysis are as follows.

Random Walk in Noise (chapter 2 of [74]): p = 1, Ft = 1, Gt = 1 gives this first-
order polynomial model in which the state xt ≡ θt1 ≡ θt is the scalar local level
of the time series, varying as a random walk itself.

Local Trend/Polynomial DLMs (chapter 7 of [74]): Ft = Ep = (1, 0, · · · , 0)′ and
Gt = Jp, the p× p matrix with 1s on the diagonal and super-diagonal, and zeros
elsewhere, define “locally smooth trend” DLMs; elements of θt are the local level
of the underlying mean of the series, local gradient and change in gradient etc.,
each undergoing stochastic changes in time as a random walk.

Dynamic Regression (chapter 9 of [74]): WhenGt = Ip, the DLM is a time-varying
regression parameter model in which regression parameters in θt evolve in time
as a random walk.

Seasonal DLMs (chapter 8 of [74]): Ft = E2 and Gt = rH(a) where r ∈ (0, 1)
and

H(a) =

(
cos(a) sin(a)
− sin(a) cos(a)

)
for any angle a ∈ (0, 2π) defines a dynamic damped seasonal, or cyclical, DLM
of period 2π/a, with damping factor r per unit time.

Autoregressive and Time-varying Autoregressive DLMs (chapter 5 of [46]): Here
Ft = Ep and Gt depends on a p−vector φt = (φt1, . . . , φtp)′ as

Gt =


φt1 φt2 φt3 · · · φtp
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . · · ·
...

0 0 · · · 1 0

 ,

with, typically, the evolution noise constrained as ωt = (ωt1, 0, . . . , 0)′. Now
yt = xt + νt where xt ≡ θt1 and xt =

∑
j=1:p φtjxt−j + ωt1, a time-varying

autoregressive process of order p, or TVAR(p). The data arise through additive
noisy observations on this hidden or latent process.

If the φtj are constant over time, xt is a standard AR(p) process; in this sense,
the main class of traditional linear time series models is a special case of the class
of DLMs.

0.2.3 Time Series Model Composition
Fundamental to structuring applied models is the use of building blocks as com-
ponents of an overall model– the principal of composition or superposition (chap-
ter 6 of [74]). DLMs do this naturally by collecting together components: given
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a set of individual DLMs, the larger model is composed by concatenating the
individual component θt vectors into a longer state vector, correspondingly con-
catenating the individual Ft vectors, and building the associated state evolution
matrix as the block diagonal of those of the component models. For example,

F ′ = (1, ft, E
′
2, E

′
2, E

′
2),

G = block diag
{

1, 1, H(a1), H(a2),

(
φ1 φ2
1 0

)}
(0.2)

defines the model for the signal as

xt = θt1 + θt2ft + ρt1 + ρt2 + zt

where:

• θt1 is a local level/random walk intercept varying in time;
• θt2 is a dynamic regression parameter in the regression on the univariate

predictor/independent variable time series ft;
• ρtj is a seasonal/periodic component of wavelength 2π/aj for j = 1, 2,

with time-varying amplitudes and phases– often an overall annual pattern
in weekly or monthly data, for example, can be represented in terms of
a set of harmonics of the fundamental frequency, such as would arise in
the example here with a1 = π/6, a2 = π/3 yielding an annual cycle and a
semi-annual (six month) cycle;

• zt is an AR(2) process– a short-term correlated underlying latent process–
that represents residual structure in the time series signal not already cap-
tured by the other components.

0.2.4 Sequential Learning

Sequential model specification is inherent in time series, and Bayesian learning
naturally proceeds with a sequential perspective (chapter 4 of [46]). Under a
specified normal prior for the latent initial state θ0, the standard normal/linear
sequential updates apply: at each time t−1 a “current” normal posterior evolves
via the evolution equation to a 1-step ahead prior distribution for the next state
θt; observing the data yt then updates that to the time t posterior, and we
progress further in time sequentially. Missing data in the time series is trivially
dealt with: the prior-to-posterior update at any time point where the observation
is missing involves no change. From the early days– in the 1950s– of so-called
Kalman filtering in engineering and early applications of Bayesian forecasting
in commercial settings (chapter 1 of [74]), this framework of closed-form se-
quential updating analysis– or forward filtering of the time series– has been the
centerpiece of the computational machinery. Though far more complex, elabo-
rate, nonlinear and non-normal models are routinely used nowadays based on
advances in simulation-based computational methods, this normal/linear theory
still plays central and critical roles in applied work and as components of more
elaborate computational methods.
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0.2.5 Forecasting

Forecasting follows from the sequential model specification via computation of
predictive distributions. At any time t with the current normal posterior for the
state θt based on data y1:t, and any other information integrated into the anal-
ysis, we simply extrapolate by evolving the state through the state evolution
equation into the future, with implied normal predictive distributions for se-
quences θt+1:t+k, yt+1:t+k into the future any k > 0 steps ahead. Forecasting via
simulation is also key to applied work: simulating the process into the future–
to generate “synthetic realities”– is often a useful adjunct to the theory, as vi-
sual inspection (and perhaps formal statistical summaries) of simulated futures
can often aid in understanding aspects of model fit/misfit as well as formally
elaborating on the predictive expectations defined by the model and fit to his-
torical data; see Figures 0.2 and 0.3 for some aspects of this in the analysis of
the climatological Southern Oscillation Index (SOI) time series discussed later in
Section 0.3.2. The concept is also illustrated in Figure 0.4 in a multivariate DLM
analysis of a financial time series discussed later in Section 0.4.1.

0.2.6 Retrospective Time Series Analysis

Time series analysis– investigating posterior inferences and aspects of model
assessment based on a model fitted to a fixed set of data– relies on the theory of
smoothing or retrospective filtering that overlays the forward-filtering, sequential
analysis. Looking back over time from a current time t, this theory defines the
revised posterior distributions for historical sequences of state vectors θt−1:t−k
for k > 0 that complement the forward analysis (chapter 4 of [74]).

0.2.7 Completing Model Specification: Variance Components

The Bayesian analysis of the DLM for applied work is enabled by extensions
of the normal theory-based sequential analysis to incorporate learning on the
observational variance parameters V (νt) and specification of the evolution vari-
ance matrices V (ωt). For the former, analytic tractability is maintained in mod-
els where V (νt) = ktvt, with known variance multipliers kt, and V (ωt) = vtWt

with two variants: (i) constant, unknown vt = v (section 4.3.2 of [46]) and (ii)
time-varying observational variances in which vt follows a stochastic volatility
model based on variance discounting– a random walk-like model that underlies
many applications where variances are expected be be locally stable but globally
varying (section 4.3.7 of [46]). Genesis and further developments are given in
chapter 10 of [74] and, with recent updates and new extensions, in chapters 4,7
and 10 of [46].

The use of discount factors to structure evolution variance matrices has been
and remains central to many applications (chapter 6 of [74]). In models with
non-trivial state vector dimension p, we must maintain control over specification
of the Wt to avoid exploding the numbers of free parameters. In many cases, we
are using Wt to reflect low levels of stochastic change in elements of the state.
When the model is structured in terms of block components via superposition
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as described above, the Wt matrix is naturally structured in a corresponding
block diagonal form; then the strategy of specifying these blocks in Wt using
the discount factor approach is natural (section 4.3.6 of [46]). This strategy
describes the innovations for each component of the state vector as contributing
a constant stochastic “rate of loss of information” per time point, and these rates
may be chosen as different for different components. In our example above, a
dynamic regression parameter might be expected to vary less rapidly over time
than, perhaps, the underlying local trend.

Central to many applications of Bayesian forecasting, especially in commer-
cial and economic studies, is the role of “open modelling”. That is, a model is
often one of multiple ways of describing a problem, and as such should be open
to modification over time as well as integration with other formal descriptions
of a forecasting problem (chapter 1 of [74]). The role of statistical theory in
guiding changes– interventions to adapt a model at any given time based on
additional information– that maintain consistency with the model is then key.
Formal sequential analysis in a DLM framework can often manage this via ap-
propriate changes in the variance components. For example, treating a single
observation as of poorer quality, or a likely outlier, can be done via an inflated
variance multiplier kt; feeding into the model new/external information that
suggests increased chances of more abrupt change in one or more components
of a state vector can be done via larger values of the corresponding elements
of Wt, typically using a lower discount factor in the specification for just that
time, or times, when larger changes are anticipated. Detailed development of a
range of subjective monitoring and model adaptation methods of these forms,
with examples, are given in chapters 10-12 of [74] and throughout [43]; see
also chapter 4 of [46] and earlier relevant papers [72,62,73].

0.2.8 Time Series Decomposition

Complementing the strategy of model construction by superposition of compo-
nent DLMs is the theory and methodology of model decomposition that is far-
reaching in its utility for retrospective time series analysis (chapter 9 of [74]).
Originally derived for the class of time series DLMs in which Ft = F,Gt = G are
constant for all time [66–70], the theory of decompositions applies also to time-
varying models [45, 44, 47]. The context of DLM AR(p) and TVAR(p) models–
alone or as components of a larger model– is key in terms of the interest in
applications in engineering and the sciences, in particular (chapter 5 of [46]).

Consider a DLM where one model component zt follows a TVAR(p) model.
The main idea comes from the central theoretical results that a DLM implies a
decomposition of the form

zt =
∑

j=1:C

zctj +
∑

j=1:R

zrtj

where each z∗tj is an underlying latent process: each zrtj is a TVAR(1) process
and each zctj is a quasi-cyclical time-varying process whose characteristics are
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effectively those of a TVAR(2) overlaid with low levels of additive noise, and that
exhibits time-varying periodicities with stochastically varying amplitude, phase
and period. In the special case of constant AR parameters, the periods of these
quasi-cyclical zctj processes are also constant.

This DLM decomposition theory underlies the use of these models– state-
space models/DLMs with AR and TVAR components– for problems in which
we are interested in a potentially very complicated and dynamic autocorrela-
tion structure, and aim to explore underlying contributions to the overall signal
that may exhibit periodicities of a time-varying nature. Many examples appear
in [74, 46] and references there as well as the core papers referenced above.
Figures 0.1, 0.2 and 0.3 exemplify some aspects of this in the analysis of the
climatological Southern Oscillation Index (SOI) time series of Section 0.3.2.

0.3 Computation and Model Enrichment

0.3.1 Parameter Learning and Batch Analysis via MCMC

Over the last couple of decades, methodology and applications of Bayesian time
series analysis have massively expanded in non-Gaussian, nonlinear and more
intricate conditionally linear models. The modelling concepts and features dis-
cussed above are all central to this increasingly rich field, while much has been
driven by enabling computational methods.

Consider the example DLM of equation (0.2) and now suppose that V (νt) =
ktv with known weights kt but uncertain v to be estimated, and the evolution
variance matrix is

Wt ≡W = block diag
{
τ1, τ2, τ3I2, τ4I2,

(
w 0
0 0

)}
. (0.3)

Also, write φ = (φ1, φ2)′ for the AR parameters of the latent AR(2) model com-
ponent. The DLM can be fitted using standard theory assuming the full set of
model parameters µ = {v, φ, w, τ1:4} to be known. Given these parameters, the
forward-filtering and smoothing based on normal/linear theory applies.

Markov chain Monte Carlo methods naturally open the path to a complete
Bayesian analysis under any specified prior p(µ); see chapter 15 of [74] and sec-
tion 4.5 of [46] for full details and copious references, as well as challenging
applications in chapter 7 of [46]. Given an observed data sequence y1:n, MCMC
iteratively re-simulates parameters and states from appropriate conditional dis-
tributions. This involves conditional simulations of elements of µ conditioning
on current values of other parameters and a current set of states θ0:n that often
break down into tractable parallel simulators. The example above is a case in
point under independent priors on φ and the variances v, τj , w, for example.

Central to application is the forward filtering, backward sampling (FFBS–
[6,18]) algorithm that arises naturally from the normal/linear theory of the DLM
conditional on parameters µ. This builds on the sequential, forward filtering the-
ory to run through the data, updating posterior distributions for states over time,
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and then steps back in time: at each point t = n, t = n−1, . . . , t = 1, t = 0 in turn,
the retrospective distributional theory of this conditionally linear, normal model
provides normal distributions for the states that are simulated. This builds up
a sequence {θn, θn−1, . . . , θ1, θ0} that represents a draw– sampled via composi-
tion backwards in time– from the relevant conditional posterior p(θ0:n|µ, y1:n).
The use of MCMC methods also naturally deals with missing data in a time se-
ries; missing values are, by definition, latent variables that can be simulated via
appropriate conditional posteriors each step of the MCMC.

0.3.2 Example: SOI Time Series

FIG. 0.1. Left frame: Approximate posterior 95% credible intervals for the moduli of the 12 latent

AR roots in the AR component of the model fitted to the SOI time series. Right frame: Approxi-

mate posterior for the wavelength of the latent process component zctj with largest wavelength,

indicating a dominant quasi-periodicity in the range of 40-70 months.

Figures 0.1, 0.2 and 0.3 show aspects of an analysis of the climatological
Southern Oscillation Index (SOI) time series. This is a series of 540 monthly
observations computed as the “difference of the departure from the long-term
monthly mean sea level pressures” at Tahiti in the South Pacific and Darwin in
Northern Australia. The index is one measure of the so-called “El Nino-Southern
Oscillation”– an event of critical importance and interest in climatological studies
in recent decades and that is generally understood to vary periodically with a
very noisy 3-6 year period of quasi-cyclic pattern. As discussed in [24]– which
also details the history of the data and prior analyses– one of several applied
interests in this data is in improved understanding of these quasi-periodicities
and also potential non-stationary trends, in the context of substantial levels of
observational noise.

The DLM chosen here is yt = θt1+zt+νt where θt1 is a first-order polynomial
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local level/trend and zt is an AR(12) process. The data is monthly data over the
year, so the AR component provides opportunities to identify even quite subtle
longer term (multi-year) periodicities that may show quite high levels of stochas-
tic variation over time in amplitude and phase. Extensions to TVAR components
would allow the associated periods to also vary as discussed and referenced
above. Here the model parameters include the 12-dimensional AR parameter φ
that can be converted to autoregressive roots (section 9.5 of [74]) to explore
whether the AR component appears to be consistent with an underlying station-
ary process or not as well as to make inferences on the periods/wavelengths of
any identified quasi-periodic components. The analysis also defines posterior in-
ferences for the time trajectories of all latent components zrtj and zctj by applying
the decomposition theory to each of the posterior simulation samples of the state
vector sequence θ0:n.

FIG. 0.2. Upper frame: Scatter plot of the monthly SOI index time series superimposed on the

trajectories of the posterior mean and a few posterior samples of the underlying trend. Lower
frame: SOI time series followed by a single synthetic future– a sample from the posterior pre-

dictive distribution over the three or fours years following the end of the data in 1995; the

corresponding sample of the predicted underlying trend is also shown.
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FIG. 0.3. Aspects of decomposition analysis of the SOI series. Upper frame: Posterior means of

(from the bottom up) the latent AR(12) component zt (labelled as “data”), followed by the three

extracted component zctj for j = 1, 2, 3, ordered in terms of decreasing estimated periods; all

are plotted on the same vertical scale, and the AR(12) process is the direct sum of these three

and subsidiary components. Lower frame: A few posterior samples (in grey) of the latent AR(12)

process underlying the SOI series, with the approximate posterior mean superimposed.

Figures 0.1 shows approximate posteriors for the moduli of the 12 latent AR
roots, all very likely positive and almost surely less than 1, indicating station-
arity of zt in this model description. The figure also shows the corresponding
posterior for the wavelength of the latent process component zctj having highest
wavelength, indicating a dominant quasi-periodicity in the data with wavelength
between 40-70 months– a noisy “4-year” phenomenon, consistent with expecta-
tions and prior studies. Figure 0.2 shows a few posterior samples of the time
trajectory of the latent trend θt1 together with its approximate posterior mean,
superimposed on the data. The inference is that of very limited change over time
in the trend in the context of other model components. This figure also shows the
data plotted together with a “synthetic future” over the next three years: that is,
a single draw from the posterior predictive distribution into the future. From the
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viewpoint of model fit, exploring such synthetic futures via repeat simulations
studied by eye in comparison with the data can be most informative; they also
feed into formal predictive evaluations for excursions away from (above/below)
the mean, for example [24].

Additional aspects of the decomposition analysis are represented by Fig-
ures 0.3. The first frame shows the posterior mean of the fitted AR(12) compo-
nent plotted over time (labelled as “data” in the upper figure), together with the
corresponding posterior mean trajectories of the three latent quasi-cyclical com-
ponents having largest inferred periods, all plotted on the same vertical scale.
Evidently, the dominant period component explains much of the structure in
the AR(12) process, the second contributing much of the additional variation at
a lower wavelength (a few months). The remaining components contribute to
partitioning the noise in the series and have much lower amplitudes. The figure
also shows several posterior draws for the zt processes to give some indication
of the levels of uncertainty about its form over the years.

0.3.3 Mixture Model Enrichment of DLMs

Mixture models have been widely used in dynamic modelling and remain a
central theme in analyses of structural change, approaches to modelling non-
Gaussian distributions via discrete mixture approximations, dealing with outly-
ing observations, and others. Chapter 12 of [74] develops extensive theory and
methodology of two classes of dynamic mixture models, building on seminal
work by P.J. Harrison and others [23]. The first class relates to model uncertainty
and learning model structure that has its roots in both commercial forecasting
and engineering control systems applications of DLMs from the 1960s. Here a
set of DLMs are analysed sequentially in parallel, being regarded as compet-
ing models, and sequentially updated “model probabilities” track the data-based
evidence for each relative to the others in what is nowadays a familiar model
comparison and Bayesian model-averaging framework.

The second framework– adaptive multi-process models– entertains multiple
possible models at each time point and aims to adaptively reweight sequentially
over time; key examples are modelling outliers and change-points in subsets of
the state vector as in applications in medical monitoring, for example [56,55]. In
the DLM of equation (0.2) with a “standard” model having V (νt) = v and evolu-
tion variance matrix as in equation (0.3), a multi-process extension for outlier ac-
commodation would consider a mixture prior induced by V (νt) = ktv where, at
each time t, kt may take the value 1 or, say, 100, with some probability. Similarly,
allowing for a larger stochastic change in the underlying latent AR(2) component
zt of the model would involve an extension so that the innovations variance w
in equation (0.3) is replaced by htw, where now ht may take the value 1 or
100, with some probability. These multi-process models clearly lead to a combi-
natorial explosion of the numbers of possible “model states” as time progresses,
and much attention has historically been placed on approximating the implied
unwieldy sequential analysis. In the context of MCMC methods and batch anal-
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ysis, this is resolved with simulation-based numerical approximations where the
introduction of indicators of mixture component membership naturally and triv-
ially opens the path to computation: models are reduced to conditionally linear,
normal DLMs for conditional posterior simulations of states and parameters, and
then the mixture component indicators are themselves re-simulated each step of
the MCMC. Many more elaborate developments and applications appear in, and
are referenced by, [19] and chapter 7 of [46].

Another use of mixtures in DLMs is to define direct approximations to non-
normal distributions, so enabling MCMC analysis based on conditionally nor-
mal models they imply. One key example is the univariate stochastic volatility
model pioneered pioneered by [53, 26] and that is nowadays in routine use to
define components of more elaborate dynamic models for multivariate stochastic
volatility time series approaches [1,41,2,12,36,37]; see also chapter 7 of [46].

0.3.4 Sequential Simulation Methods of Analysis

A further related use of mixtures is as numerical approximations to the sequen-
tially updated posterior distributions for states in non-linear dynamic models
when the conditionally linear strategy is not available. This use of mixtures of
DLMs to define adaptive sequential approximations to the filtering analysis by
“mixing Kalman filters” [3, 11] has multiple forms, recently revisited with some
recent extensions in [38]. Mixture models as direct posterior approximations,
and as sequences of sequentially updated importance sampling distributions for
non-linear dynamic models were pioneered in [63,65,64] and some of the recent
developments build on this.

The adaptive, sequential importance sampling methods of [65] represented
an approach to sequential simulation-based analysis developed at the same time
as the approach that became known as particle filtering [21]. Bayesian se-
quential analysis in state-space models using “clouds of particles” in states and
model parameters, evolving the particles through evolution equations that may
be highly non-linear and non-Gaussian, and appropriately updating weights as-
sociated with particles to define approximate posteriors, has defined a funda-
mental change in numerical methodology for time series. Particle filtering and
related methods of sequential Monte Carlo (SMC) [14, 7], including problems
of parameter learning combined with filtering on dynamic states [31], are re-
viewed in this book: see the chapter by H.F. Lopes and C.M. Carvalho, on Online
Bayesian learning ....

Recent methods have used variants and extensions of the so-called technique
of approximate Bayesian computation [34,54]. Combined with other SMC meth-
ods, this seems likely to emerge in coming years as a central approach to compu-
tational approximation for sequential analysis in increasingly complex dynamic
models; some recent studies in dynamic modelling in systems biology [35,4,58]
provide some initial examples using such approaches.
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0.4 Multivariate Time Series

The basic DLM framework generalizes to multivariate time series in a number
of ways, including multivariate non-Gaussian models for time series of counts,
for example [5], as well as a range of model classes based on multi- and matrix-
variate normal models (chapter 10 of [46]). Financial and econometric appli-
cations have been key motivating areas, as touched on below, while multivari-
ate DLMs are applied in many other fields– as diverse as experimental neuro-
science [1,27,28,47], computer model emulation in engineering [30] and traffic
flow forecasting [57]. Some specific model classes that are in mainstream appli-
cation and underlie recent and current developments– especially to increasingly
high-dimensional times series– are keyed out here.

0.4.1 Multivariate Normal DLMs: Exchangeable Time Series

In modelling and forecasting a q× 1 vector times series, a so-called exchangeable
time series DLM has the form

y′t = F ′tΘt + ν′t, νt ∼ N(0,Σt)
Θt = GtΘt−1 + Ωt, Ωt ∼ N(0,Wt,Σt)

(0.4)

where N(·, ·, ·) denotes a matrix normal distribution (section 10.6 of [46]). Here
the row vector y′t follows a DLM with a matrix state Θt. The q × q time-varying
variance matrix Σt determines patterns of co-changes in observation and the
latent matrix state over time. These models are building blocks of larger (factor,
hierarchical) models of increasing use in financial time series and econometrics;
see, for example, [49,48], chapter 16 of [74] and chapter 10 of [46].

Modelling multivariate stochastic volatility– the evolution over time of the
variance matrix series Σt– is central to these multivariate extensions of DLMs.
The first multivariate stochastic volatility models based on variance matrix dis-
count learning [50, 51], later developed via matrix-beta evolution models [59,
60], remain central to many implementations of Bayesian forecasting in finance.
Here Σt evolves over one time interval via a non-linear stochastic process model
involving a matrix beta random innovation inducing priors and posteriors of
conditional inverse Wishart forms. The conditionally conjugate structure of the
exchangeable model form for {Θt,Σt}, coupled with discount factor-based spec-
ification of the Wt evolution variance matrices, leads to a direct extension of the
closed form sequential learning and retrospective sampling analysis of the uni-
variate case (chapter 10 of [46]). In multiple studies, these models have proven
their value in adapting to short-term stochastic volatility fluctuations and leading
to improved portfolio decisions as a result [48].

An example analysis of a time series of q = 12 daily closing prices (FX data)
of international currencies relative to the US dollar, previously analyzed us-
ing different models (chapter 10 of [46]), generates some summaries including
those in Figures 0.4 and 0.5. The model used here incorporates time-varying vec-
tor autoregressive (TV-VAR) models into the exchangeable time series structure.
With yt the logged values of the 12−vector of currency prices at time t, we take
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FIG. 0.4. Daily prices of the Japanese Yen in US dollars over several years in the 1980s-1990s,

followed by plots of forecasts from the multivariate TV-TVAR model with stochastic volatility

fitted to a 12-dimensional FX time series of which the Yen is one element. The shaded forecast

region is made up of 75 sets of 3-day ahead forecasts based on the sequential analysis: on each

day, the “current” posterior for model states and volatility matrices is simulated to generate

forecasts over the next 3 days.

Ft to be the 37−dimensional vector having a leading 1 followed by the lagged
values of all currencies over the last three days. The dynamic autoregression nat-
urally anticipates the lag-1 prices to be the prime predictors of next time prices,
while considering 3 day lags leads to the opportunity to integrate “market mo-
mentum”. Figure 0.4 selects one currency, the Japanese Yen, and plots the data
together with forecasts over the last several years. As the sequential updating
analysis proceeds, forecasts on day t for day t+ 1 are made by direct simulation
of the 1-step ahead predictive distribution; each forecast vector yt+1 is then used
in the model in order to use the same simulation strategy to sample the future
at time t + 2 from the current day t, and this is repeated to simulate day t + 3.
Thus we predict via the strategy of generating synthetic realities, and the figure
shows a few sets of these 3−day ahead forecasts made every day over three or
four years, giving some indication of forecast uncertainty as well as accuracy.

Figure 0.5 displays some aspects of multivariate volatility over time as in-
ferred by the analysis. Four images of the posterior mean of the precision matrix
Σ−1t at 4 selected time points capture some flavour of time variation, while the
percent of the total variation in the posterior mean of Σt explained by the first
three dominant principal components at each t captures additional aspects.

0.4.2 Multivariate Normal DLMs: Dynamic Latent Factor and TV-VAR Models

Time-varying vector autoregressive (TV-VAR) models define a rich and flexible
approach to modelling multivariate structure that allows the predictive relation-
ships among individual scalar elements of the time series to evolve over time.
The above section already described the use of such a model within the ex-
changeable time series framework. Another way in which TV-VAR models are
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FIG. 0.5. Upper frames: Images of posterior estimates of the 12 × 12 precision matrices Σ−1
t in

the analysis of the multivariate currency prices time series. The differences in patterns visually

evident reflect the extent and nature of changes in the volatility structure across time as rep-

resented by the four selected time points spaced apart by a few hundred days. Lower frame:
Percent variation explained by the first three dominant principal components of the posterior

mean of Σt for each time t = 1 : n over the FX time series, illustrating the nature of variation in

the contribution of the main underlying “common components” of volatility in the 12 currency

price series over the ten year period.

used is to represent the dynamic evolution of a vector of latent factors underly-
ing structure in a higher-dimensional data series. One set of such dynamic latent
factor TV-VAR models has the form

yt = Ftθt +Btxt + νt, νt ∼ N(0,Ψ),
xt =

∑
i=1:pAtixt−i + ωt, ωt ∼ N(0,Σt).

(0.5)

Here xt is a latent k−vector state process following a TV-VAR(p) model with, typ-
ically, k << q so that the common structure among the elements of yt is heavily
driven by a far lower-dimensional dynamic state. The set of p, q × q autore-
gressive coefficient matrices Ati are often time-varying with elements modelled
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via, for example, sets of univariate AR(1) processes or random walks. The fac-
tor loadings matrix Bt maps factors to data; in some models, including prior
Bayesian factor analysis approaches [2], this will be taken as constant. The k×k
dynamic covariance matrix Σt drives the innovations of the state evolution, and
allowing for stochastic volatility here defines an enrichment of the TV-VAR struc-
ture. The additional component Ftθt superimposed may include dynamic re-
gression and other terms, with relevant state evolution equations for θt. Such
models are receiving increasing use in natural science and engineering appli-
cations [45, 75, 15, 16, 20, 46] as well as in econometrics and finance [36, 37].
Chapters 8 and 9 of [46] describe aspects of the theory and methodology of vec-
tor AR and TVAR models, connections with latent factor modelling in studies of
multiple time series in the neurosciences, and discussion of multiple other cre-
ative applications of specialized variants of this rich class of models. The model
contains traditional DLMs, VAR models, latent factor models as previously de-
veloped as well as the more elaborate TV-VAR factor forms.

0.5 Some Recent and Current Developments

Among a large number of recent and currently active research areas in Bayesian
time series analysis and forecasting, a few specific modelling innovations that re-
late directly to the goals of addressing analysis of increasingly high-dimensional
time series and non-linear models are keyed out.

0.5.1 Dynamic Graphical and Matrix Models

A focus on inducing parsimony in increasingly high-dimensional, time-varying
variance matrices in dynamic models led to the integration of Bayesian graph-
ical modelling ideas into exchangeable time series DLMs [10, 9]. The standard
theory of Gaussian graphical models using hyper-inverse Wishart distributions–
the conjugate priors for variance matrices whose inverses Σ−1t have some off-
diagonal elements at zero corresponding to an underlying conditional indepen-
dence graph [29]– rather surprisingly extends directly to the time-varying case.
The multivariate volatility model based on variance matrix discounting gener-
alizes to define sequential analysis in which the posterior distributions for the
{Θt,Σt} sequences are updated in closed multivariate normal, hyper-inverse
Wishart forms. These theoretical innovations led to the development of dynamic
graphical models, coupled with learning about graphical model structures based
on existing model search methods [13, 25]. Applications in financial time se-
ries for predictive portfolio analysis show improvements in portfolio outcomes
that illustrate the practical benefits of the parsimony induced via appropriate
graphical model structuring in multivariate dynamic modelling [10,9].

These developments have extended to contexts of matrix time series [61]
for applications in econometrics and related areas. Building on Bayesian anal-
yses of matrix-variate normal distributions, conditional independence graphical
structuring of the characterizing variance matrix parameters of such distribu-
tions again opens the path to parsimonious structuring of models for increas-
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ingly high-dimensional problems. This is complemented by the development of
a broad class of dynamic models for matrix-variate time series within which
stochastic elements defining time series errors and structural changes over time
are subject to graphical model structuring.

0.5.2 Dynamic Matrix Models for Stochastic Volatility
A number of recent innovations have aimed to define more highly structured,
predictive stochastic process models for multivariate volatility matrices Σt, aim-
ing to go beyond the neutral, random walk-like model that underlies the dis-
counting approach. Among such approaches are multivariate extensions of the
univariate construction method inspired by MCMC [42]; the first such extension
yields a class of stationary AR(1) stochastic process models for Σt that are re-
versible in time and in which the transition distributions give conditional means
of the attractive form E(Σt|Σt−1) = S + a(Σt−1 − S) where a ∈ (0, 1) is scalar
and S an underlying mean variance matrix. This construction is, however, in-
herently limited in that there is no notion of multiple AR coefficients for flex-
ible autocorrelation structures and the models do not allow time irreversibilty.
Related approaches directly build transition distributions p(Σt|Σt−1) as inverse-
Wisharts [40,39] or define more empirical models representing Σt as an explicit
function of sample covariance matrices of latent vector AR processes [22]. These
are very interesting approaches but are somewhat difficult to work with theoret-
ically and model fitting is a challenge.

Recently, [32] used linear, normal AR(1) models for off-diagonal elements of
the Cholesky of Σt and for the log-diagonal elements. This is a natural parallel
of Bayesian factor models for multivariate volatility and defines an approach to
building highly structured stochastic process models for time series of dynamic
variance matrices with short-term predictive potential.

A related approach builds on theoretical properties of the family of inverse
Wishart distributions to define new classes of stationary, inverse Wishart autore-
gressive (IW-AR) models for the series of q × q volatility matrices Σt [17]. One
motivating goal is to maintain a defined inverse Wishart marginal distribution
for the process for interpretation. Restricting discussion to the (practically most
interesting) special case of a first-order model, the basic idea is to define an IW-
AR(1) Markov process directly via transition densities p(Σt|Σt−1) that are the
conditionals of a joint inverse Wishart on an augmented 2q× 2q variance matrix
and whose block diagonals are Σt−1 and Σt. This yields

Σt = Ψt + ΥtΣt−1Υ′t

where the q×q random innovations matrices Υt and Ψt have joint matrix normal,
inverse Wishart distributions independently over time. Conditional means have
the form

E(Σt|Σt−1) = S +R(Σt−1 − S)R′ + Ct(Σt−1)

where S is the mean variance matrix parameter of the stationary process, R is
a q × q autoregressive parameter matrix and Ct(·) is a matrix naturally related
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to the skewness of the inverse Wishart model. This model has the potential to
embody multiple aspects of conditional dependence through R as well as defin-
ing both reversible and irreversible special cases [17]. Some initial studies have
explored use of special cases as models for volatility matrices of the innovations
process driving a TV-TVAR model for multiple EEG time series from studies in
experimental neuroscience. One small extract from an analysis of multi-channel
EEG data [27] appears in Figure 0.6, showing aspects of the estimated time
trajectories of volatility for one channel along with those of time-varying corre-
lations from Σt across multiple channels. As with other models above, compu-

FIG. 0.6. Aspects of results of approximate fitting a q× q dimensional IW-AR(1) model to q = 10

EEG series from [27,47]; here Σt is the volatility matrix of innovations driving a TV-VAR model

for the potential fluctuations the EEG signals represent. Upper frame: Estimated innovations

time series for one EEG series/channel, labeled chan-14. Centre frame: Several posterior sample

trajectories (grey) and approximate mean (black) for the standard deviation of channel 14.

Lower frame: Corresponding estimates of time-varying correlations of chan-14 with the other

channels. Part of the applied interest is in patterns of change over time in these measures as the

EEG channels are related spatially on the scalp of the test individual.
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tational issues for model filtering, smoothing and posterior simulation analysis
require customized MCMC and SMC methods, and represent some of the key
current research challenges. The potential is clear, however, for these approaches
to define improved representations of multivariate volatility processes of benefit
when integrated into time series state space analysis.

0.5.3 Time-Varying Sparsity Modelling

As time series dimension increases, the dimension of latent factor processes,
time-varying parameter processes and volatility matrix processes in realistic dy-
namic models– such as special cases or variants of models of equation (0.5)– evi-
dently increase very substantially. Much current interest then rests on modelling
ideas that engender parsimonious structure and, in particular, on approaches to
inducing data-informed sparsity via full shrinkage to zero of (many) parameters.
Bayesian sparsity modelling ideas are well-developed in “static” models, such
as sparse latent factor and regression models [71, 8], but mapping over to time
series raises new challenges of defining general approaches to dynamic sparsity.
For example, with a dynamic latent factor component Btft of equation (0.5), a
zero element Bt,(i,j) in the factor loadings matrix Bt reflects lack of association
of the ith series in yt with the jth latent factor in ft. The overall sparsity pattern
of Bt– with potentially many zeros– reflects a model context in which each of
the individual, univariate factor processes impacts on a subset of the output time
series, but not all, and allows for complex patterns of cross-talk. The concept of
dynamic sparsity is that these sparsity patterns will typically vary over time, so
models are needed to allow time-variation in the values of elements of Bt that
can dynamically shrink completely to zero for some epochs, then reappear and
evolve according to a specific stochastic model at others. A general approach has
been introduced by [36,37], referred to as latent threshold modelling (LTM).

The basic idea of LTM for time series is to embed traditional time series
model components into a larger model that thresholds the time trajectories,
setting their realized values strictly to zero when they appear “small”. For ex-
ample, take one scalar coefficient process βt, such as one element of the factor
loadings matrix or a single dynamic regression parameter, and begin with a tra-
ditional evolution model of the AR(1) form βt = µ+ ρ(βt−1 − µ) + εt. The LTM
approach replaces the sequence β1:n with the thresholded version b1:n where
bt = βtI(|βt| < τ) for each t and based on some threshold τ. The concept is sim-
ple: the coefficient process is relevant, taking non-zero values, only when it beats
the threshold, otherwise it is deemed insignificant and shrunk to zero. Extend-
ing MCMC analyses of multivariate DLMs to integrate the implied hierarchical
model components, now embedding mutliple latent processes underlying the
actual thresholded parameter processes, states and factors, requires substantial
computational development, as detailed in [36]. The payoffs can be meaning-
ful, as demonstrated in a series of financial time series and portfolio decision
making examples in [37] where improved fit and parsimony feeds through to
improvements in short-term forecasting and realized portfolio returns.
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FIG. 0.7. Examples of latent thresholding from an analysis of a 3-dimensional economic time se-

ries using a TV-VAR(2) model (data from [36]). Upper four frames: Trajectories of approximate

posterior means of 4 of the (18) latent time-varying autoregressive coefficients; the grey shading

indicates estimated time-varying posterior probabilities of zero coefficients from the LTM con-

struction. Lower four images: Images showing estimates of posterior probabilities (white = high,

black = low) of non-zero entries in dynamic precision matrices Σ−1
t modelled using an LTM

extension of the Cholesky AR(1) model [32]. The data are time series on q = 12 daily interna-

tional exchange rates (data from [46]) and the images show posterior sparsity probabilities for

the 12×12 matrices at four selected time points, indicating both the ability of the LTM to identify

zeros as well as how the sparsity pattern changes over time based on latent thresholding.

Figure 0.7 gives some flavour of the approach in extracts from two time series
analyses: a TV-VAR(2) model of a q = 3-dimensional economic time series, and
a multivariate stochastic volatility model analysis of a q = 12-dimensional finan-
cial time series. One key attraction of the LTM approach is its generality. Some
of the model contexts addressed via LTM ideas in [36] include the following: (i)
dynamic latent factor models; (ii) TV-VAR models, where the dynamic sparsity
arises in collections of TV-VAR coefficient matrices Ati of equation (0.5); (iii) dy-
namic regressions, where the approach can be regarded as a model for dynamic
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variable selection as well as a parsimony inducing strategy; and (iv) dynamic
volatility modelling using extensions of the Cholesky volatility models of [32].

0.5.4 Nonlinear Dynamical Systems

The recent advances in Bayesian computational methods for dynamic models
have come at a time when biotechnology and computing are also promoting
significant advances in formal modelling in systems biology at molecular and
cellular levels. In models of temporal development of components of gene net-
works and in studies of systems of cells evolving over time (and space, e.g. [33]),
increasingly complex, multivariate non-linear mechanistic models are being ex-
panded and explored; these come from both the inherently stochastic biochemi-
cal modelling perspective and from the applied mathematical side using systems
of coupled (ordinary or stochastic) differential equations [76,38,77,78].

Statistical model development naturally involves discrete-time representa-
tions with components that realistically reflect stochastic noise and measurement
error and inherently involve multiple underlying latent processes representing
unobserved states that influence the network or cellular system. A specific class
of models has a multivariate time series y∗ modelled as

yj = xtj + νj p(yj |xtj ,Θ)
xt+h = xt +Gh(xt,Θ)xt + gh(Θ) + ωt,h p(xt+h|xt,Θ)

where the jth observation comes at real-time tj and the spacings between con-
secutive observations are typically far greater than the fine time step h. Here xt
represents the underlying state vector of the systems (levels of gene or protein
expression, numbers of cells, etc.), Θ all model parameters, ν∗ measurement er-
ror and ω∗ state evolution noise. The density forms to the right indicate more
general model forms in which errors and noise may not be additive, when only
partial observation is made on the state, and so forth.

The forefront research challenges in this area include development of effi-
cient and effective computations for posterior inference and model comparison.
Increasingly, SMC methods including SMC/importance sampling and ABC-SMC
are being explored and evaluated, with models of increasing dimension and com-
plexity [35, 52, 58, 4, 77]. In coming years, complex, multivariate dynamical
systems studies in biology are sure to define a major growth area for Bayesian
dynamic models and time series analysis.
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