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Preface

This book is a result of teaching stochastic processes to junior and senior undergrad-
uates and beginning graduate students over many years. In teaching such a course,
we have realized a need to furnish students with material that gives a mathematical
presentation while at the same time providing proper foundations to allow students
to build an intuitive feel for probabilistic reasoning. We have tried to maintain a bal-
ance in presenting advanced but understandable material that sparks an interest and
challenges students, without the discouragement that often comes as a consequence
of not understanding the material. Our intent in this text is to develop stochastic pro-
cesses in an elementary but mathematically precise style and to provide sufficient
examples and homework exercises that will permit students to understand the range
of application areas for stochastic processes.

We also practice active learning in the classroom. In other words, we believe that
the traditional practice of lecturing continuously for 50 to 75 minutes is not a very
effective method for teaching. Students should somehow engage in the subject mat-
ter during the teaching session. One effective method for active learning is, after at
most 20 minutes of lecture, to assign a small example problem for the students to
work and one important tool that the instructor can utilize is the computer. Some-
times we are fortunate to lecture students in a classroom containing computers with
a spreadsheet program, usually Microsoft’s Excel. For a course dealing with random
variables, Excel is an ideal tool that can be used both within the classroom and for
homework to demonstrate probabilistic concepts. In order to take full advantage of
this, we have moved the chapter on simulation to the second chapter in the book. It
is not necessary to cover all the sections of the simulation chapter, but we suggest
covering at least Sects. 2.1 and 2.3 so that simulation can then be easily used with
Excel throughout the course to demonstrate random processes and used during the
lecture to actively engage the students in the lecture material.

The only prerequisites for an undergraduate course using this textbook is a pre-
vious course covering calculus-based probability and statistics and familiarity with
basic matrix operations. Included at the end of most chapters is an appendix cover-
ing the use of Excel for the problems of the chapter; thus, a familiarity with Excel
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would be helpful but not necessary. For students needing a review of matrices, some
of the basic operations are given in Appendix A at the end of the book.

This book could also be used for an introductory course to stochastic processes at
the graduate level, in which case an additional prerequisite of linear programming
should be required if the chapter on Markov decision theory is to be covered. It
would also be helpful to expect graduate students to be competent programmers in
some scientific programming language. There are two chapters covering advanced
topics that would be skipped in an undergraduate course: Chap. 12 — Markov De-
cision Theory — and Chap. 13 — Advanced Queueing Theory. Knowledge of lin-
ear programming is necessary for Chap. 12, and a programming language or VBA
would be very helpful in implementing the concepts in Chap. 13.

The book is organized as follows: The first three chapters are background mate-
rial to be used throughout the book. The first chapter is a review of probability. It is
intended simply as a review; the material is too terse if students have not previously
been exposed to probability. However, our experience is that most students do not
learn probability until two or three exposures to it, so this chapter should serve as
an excellent summary and review for most students. The second chapter is an in-
troduction to simulation so that it can be used to demonstrate concepts covered in
future chapters. Included in this chapter is material covering random number gener-
ation (Sect. 2.2) which we sometimes skip when teaching our undergraduate course
in stochastic processes since Excel has its own generator. The third chapter is a re-
view of statistics which is only presented because some statistical concepts will be
covered in later chapters, but this in not central to the text. We expect students to
have already been exposed to this material and we generally skip this chapter for
our undergraduate course and refer to it as needed.

The fourth chapter begins the introduction to random processes and covers the
basic concepts of Poisson processes. The fifth chapter covers Markov chains in some
detail. The approach in this chapter and in Chap. 6 is similar to the approach taken by
Çinlar (Introduction to Stochastic Processes, Prentice-Hall, 1975). The homework
problems cover a wide variety of modeling situations as an attempt is made to begin
the development of “modelers”. Chapter 6 is an introduction to continuous time
Markov processes. The major purpose of the chapter is to give the tools necessary
for the development of queueing models; therefore, the emphasis in the chapter is on
steady-state analyses. The final section of Chapter 6 is a brief treatment of the time-
dependent probabilities for Markov processes. This final section can be skipped for
most undergraduate classes. Queueing theory is covered in Chaps. 7 and 8, where
Chap. 7 deals with the basics of single queues and Chap. 8 introduces queueing
networks. As in the Markov chain chapter, an attempt has been made to develop a
wide variety of modeling situations through the homework problems.

Chapter 9 has two sections: the first deals with the specifics of event-driven simu-
lations while the second introduces some of the statistical issues for output analysis.
If the mechanical details of simulation (like future events lists) are not of interest to
the instructor, the first section of Chap. 9 can be skipped with no loss of continuity.
Chapter 2 together with the second section of Chap. 9 should yield an excellent in-
troduction to simulation. No programming language is assumed since our purpose
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is not to produce experts in simulation, but simply to introduce the concepts and
develop student interest in simulation. If simulation is covered adequately by other
courses, Chap. 9 can be easily skipped.

Chapters 10 and 11 introduce a change in tactics and present two chapters deal-
ing with specific problem domains: the first is inventory and the second is replace-
ment. Applied probability can be taught as a collection of techniques useful for a
wide variety of applications, or it can be taught as various application areas for
which randomness plays an important role. The first nine chapters focus on par-
ticular techniques with some applications being emphasized through examples and
the homework problems. The next two chapters focus on two problem domains that
have been historically important in applied probability and stochastic processes. It
was difficult to decide on the proper location for these two chapters. There is some

Chapters 12 and 13 are only included for advanced students. Chapter 12 covers
Markov decision processes, and Chap. 13 is a presentation of phase-type distribu-
tions and the matrix geometric approach to queueing systems adopted from the work
of Neuts (Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins Univer-
sity Press, 1981).

We are indebted to many of our colleagues for their invaluable assistance and
professional support. For this second edition, we especially thank Guy L. Curry and
Don T. Phillips for their contributions and encouragement. We are also grateful to
Brett Peters, the department head of Industrial and Systems Engineering at Texas
A&M University, and to Robert L. Sielken of Sielken & Associates Consulting for
their continuous support. Section 1.6 and parts of Chap. 8 come from Guy Curry
and can also be found in the text by Curry and Feldman, Manufacturing Systems
Modeling and Analysis, Springer-Verlag, 2009. Finally, we acknowledge our thanks
through the words of the psalmist, “Give thanks to the Lord, for He is good; His
love endures forever.” (Psalms 107:1, NIV)

College Station, Texas Richard M. Feldman
December 2009 Ciriaco Valdez-Flores

Markov chain references in the last section of the inventory chapter; therefore, it
is best to start with Chaps. 1, 2, 4, and 5 for most courses. After covering Markov
chains, it would be appropriate and easily understood if the next chapter taught was
either Markov processes (Chap. 6), inventory theory (Chap. 10), or replacement the-
ory (Chap. 11). It simply depends on the inclination of the instructor.
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Chapter 1
Basic Probability Review

The background material needed for this textbook is a general understanding of
probability and the properties of various distributions; thus, before discussing the
modeling of the various manufacturing and production systems, it is important to
review the fundamental concepts of basic probability. This material is not intended
to teach probability theory, but it is used for review and to establish a common
ground for the notation and definitions used throughout the book. For those already
familiar with probability, this chapter can easily be skipped.

1.1 Basic Definitions

To understand probability , it is best to envision an experiment for which the out-
come (result) is unknown. All possible outcomes must be defined and the collection
of these outcomes is called the sample space. Probabilities are assigned to subsets of
the sample space, called events. We shall give the rigorous definition for probability.
However, the reader should not be discouraged if an intuitive understanding is not
immediately acquired. This takes time and the best way to understand probability is
by working problems.

Definition 1.1. An element of a sample space is an outcome. A set of outcomes, or
equivalently a subset of the sample space, is called an event. ��

Definition 1.2. A probability space is a three-tuple (Ω ,F ,Pr) where Ω is a sample
space, F is a collection of events from the sample space, and Pr is a probability
measure that assigns a number to each event contained in F . Furthermore, Pr must
satisfy the following conditions, for each event A,B within F :

• Pr(Ω) = 1,
• Pr(A) ≥ 0,
• Pr(A∪B) = Pr(A)+Pr(B) if A∩B = φ , where φ denotes the empty set,
• Pr(Ac) = 1−Pr(A), where Ac is the complement of A. ��

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 1
DOI 10.1007/978-3-642-05158-6 1, c© Springer-Verlag Berlin Heidelberg 2010
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It should be noted that the collection of events, F , in the definition of a probabil-
ity space must satisfy some technical mathematical conditions that are not discussed
in this text. If the sample space contains a finite number of elements, then F usu-
ally consists of all the possible subsets of the sample space. The four conditions on
the probability measure Pr should appeal to one’s intuitive concept of probability.
The first condition indicates that something from the sample space must happen, the
second condition indicates that negative probabilities are illegal, the third condition
indicates that the probability of the union of two disjoint (or mutually exclusive)
events is the sum of their individual probabilities and the fourth condition indicates
that the probability of an event is equal to one minus the probability of its comple-
ment (all other events). The fourth condition is actually redundant but it is listed in
the definitions because of its usefulness.

A probability space is the full description of an experiment; however, it is not
always necessary to work with the entire space. One possible reason for working
within a restricted space is because certain facts about the experiment are already
known. For example, suppose a dispatcher at a refinery has just sent a barge con-
taining jet fuel to a terminal 800 miles down river. Personnel at the terminal would
like a prediction on when the fuel will arrive. The experiment consists of all possi-
ble weather, river, and barge conditions that would affect the travel time down river.
However, when the dispatcher looks outside it is raining. Thus, the original prob-
ability space can be restricted to include only rainy conditions. Probabilities thus
restricted are called conditional probabilities according to the following definition.

Definition 1.3. Let (Ω ,F ,Pr) be a probability space where A and B are events in
F with Pr(B) > 0. The conditional probability of A given B, denoted Pr(A|B), is

Pr(A|B) =
Pr(A∩B)

Pr(B)
.

��

Venn diagrams are sometimes used to illustrate relationships among sets. In the
diagram of Fig. 1.1, assume that the probability of a set is proportional to its area.
Then the value of Pr(A|B) is the proportion of the area of set B that is occupied by
the set A∩B.

Example 1.1. A telephone manufacturing company makes radio phones and plain
phones and ships them in boxes of two (same type in a box). Periodically, a quality
control technician randomly selects a shipping box, records the type of phone in the
box (radio or plain), and then tests the phones and records the number that were
defective. The sample space is

Ω = {(r,0),(r,1),(r,2),(p,0),(p,1),(p,2)} ,

where each outcome is an ordered pair; the first component indicates whether the
phones in the box are the radio type or plain type and the second component gives
the number of defective phones. The set F is the set of all subsets, namely,
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Fig. 1.1 Venn diagram illus-
trating events A, B, and A∩B

F = {φ ,{(r,0)},{(r,1)},{(r,0),(r,1)}, · · · ,Ω} .

There are many legitimate probability laws that could be associated with this space.
One possibility is

Pr{(r,0)} = 0.45 , Pr{(p,0)} = 0.37 ,

Pr{(r,1)} = 0.07 , Pr{(p,1)} = 0.08 ,

Pr{(r,2)} = 0.01 , Pr{(p,2)} = 0.02 .

By using the third property in Definition 1.2, the probability measure can be ex-
tended to all events; for example, the probability that a box is selected that contains
radio phones and at most one phone is defective is given by

Pr{(r,0),(r,1)} = 0.52 .

Now let us assume that a box has been selected and opened. We observe that the two
phones within the box are radio phones, but no test has yet been made on whether
or not the phones are defective. To determine the probability that at most one phone
is defective in the box containing radio phones, define the event A to be the set
{(r,0),(r,1),(p,0),(p,1)} and the event B to be {(r,0),(r,1),(r,2)}. In other words,
A is the event of having at most one defective phone, and B is the event of having a
box of radio phones. The probability statement can now be written as

Pr{A|B} =
Pr(A∩B)

Pr(B)
=

Pr{(r,0),(r,1)}
Pr{(r,0),(r,1),(r,2)} =

0.52
0.53

= 0.991 .

��

• Suggestion: Do Problems 1.1–1.2 and 1.19.
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Fig. 1.2 A random variable
is a mapping from the sample
space to the real numbers

Ω

ℜ

1.2 Random Variables and Distribution Functions

It is often cumbersome to work with the outcomes directly in mathematical terms.
Random variables are defined to facilitate the use of mathematical expressions and
to focus only on the outcomes of interest.

Definition 1.4. A random variable is a function that assigns a real number to each
outcome in the sample space. ��

Figure 1.2 presents a schematic illustrating a random variable. The name “ran-
dom variable” is actually a misnomer, since it is not random and is not a variable.
As illustrated in the figure, the random variable simply maps each point (outcome)
in the sample space to a number on the real line1.

Revisiting Example 1.1, let us assume that management is primarily interested
in whether or not at least one defective phone is in a shipping box. In such a case
a random variable D might be defined such that it is equal to zero if all the phones
within a box are good and equal to 1 otherwise; that is,

D(r,0) = 0 , D(p,0) = 0 ,

D(r,1) = 1 , D(p,1) = 1 ,

D(r,2) = 1 , D(p,2) = 1 .

The set {D = 0} refers to the set of all outcomes for which D = 0 and a legitimate
probability statement would be

Pr{D = 0} = Pr{(r,0),(p,0)} = 0.82 .

To aid in the recognition of random variables, the notational convention of using
only capital Roman letters (or possibly Greek letters) for random variables is fol-
lowed. Thus, if you see a lower case Roman letter, you know immediately that it can
not be a random variable.

1 Technically, the space into which the random variable maps the sample space may be more
general than the real number line, but for our purposes, the real numbers will be sufficient.
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Random variables are either discrete or continuous depending on their possible
values. If the possible values can be counted, the random variable is called discrete;
otherwise, it is called continuous. The random variable D defined in the previous
example is discrete. To give an example of a continuous random variable, define T
to be a random variable that represents the length of time that it takes to test the
phones within a shipping box. The range of possible values for T is the set of all
positive real numbers, and thus T is a continuous random variable.

A cumulative distribution function (CDF) is often used to describe the probabil-
ity measure underlying the random variable. The cumulative distribution function
(usually denoted by a capital Roman letter or a Greek letter) gives the probability
accumulated up to and including the point at which it is evaluated.

Definition 1.5. The function F is the cumulative distribution function for the ran-
dom variable X if

F(a) = Pr{X ≤ a}
for all real numbers a. ��

The CDF for the random variable D defined above is

F(a) =

⎧
⎨

⎩

0 for a < 0
0.82 for 0 ≤ a < 1
1.0 for a ≥ 1 .

(1.1)

Figure 1.3 gives the graphical representation for F . The random variable T defined
to represent the testing time for phones within a randomly chosen box is continuous
and there are many possibilities for its probability measure since we have not yet
defined its probability space. As an example, the function G (see Fig. 1.10) is the
cumulative distribution function describing the randomness that might be associated
with T :

G(a) =
{

0 for a < 0
1− e−2a for a ≥ 0 .

(1.2)

Property 1.1. A cumulative distribution function F has the following proper-
ties:

• lima→−∞ F(a) = 0,
• lima→+∞ F(a) = 1,
• F(a) ≤ F(b) if a < b,
• lima→b+ F(a) = F(b).

The first and second properties indicate that the graph of the cumulative distribu-
tion function always begins on the left at zero and limits to one on the right. The third
property indicates that the function is nondecreasing. The fourth property indicates
that the cumulative distribution function is right-continuous. Since the distribution
function is monotone increasing, at each discontinuity the function value is defined
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Fig. 1.3 Cumulative distribu-
tion function for Eq. (1.1) for
the discrete random variable
D

�

�

)

)0.82
1.0

0 1-1

by the larger of two limits: the limit value approaching the point from the left and
the limit value approaching the point from the right.

It is possible to describe the random nature of a discrete random variable by
indicating the size of jumps in its cumulative distribution function. Such a function
is called a probability mass function (denoted by a lower case letter) and gives the
probability of a particular value occurring.

Definition 1.6. The function f is the probability mass function (pmf) of the discrete
random variable X if

f (k) = Pr{X = k}
for every k in the range of X . ��

If the pmf is known, then the cumulative distribution function is easily found by

Pr{X ≤ a} = F(a) = ∑
k≤a

f (k) . (1.3)

The situation for a continuous random variable is not quite as easy because the
probability that any single given point occurs must be zero. Thus, we talk about
the probability of an interval occurring. With this in mind, it is clear that a mass
function is inappropriate for continuous random variables; instead, a probability
density function (denoted by a lower case letter) is used.

Definition 1.7. The function g is called the probability density function (pdf) of the
continuous random variable Y if

∫ b

a
g(u)du = Pr{a ≤ Y ≤ b}

for all a,b in the range of Y . ��

From Definition 1.7 it should be seen that the pdf is the derivative of the cumu-
lative distribution function and

G(a) =
∫ a

−∞
g(u)du . (1.4)

The cumulative distribution functions for the example random variables D and T
are defined in Eqs. (1.1 and 1.2). We complete that example by giving the pmf for
D and the pdf for T as follows:
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1
4

0 1 2 3 4 5 6 7 8 9 10 11 · · ·
Fig. 1.4 The Poisson probability mass function of Example 1.2

f (k) =
{

0.82 for k = 0
0.18 for k = 1 .

(1.5)

and

g(a) =
{

2e−2a for a ≥ 0
0 otherwise .

(1.6)

Example 1.2. Discrete random variables need not have finite ranges. A classical ex-
ample of a discrete random variable with an infinite range is due to Rutherford,
Chadwick, and Ellis from 1920 [10, pp. 209–210]. An experiment was performed to
determine the number of α-particles emitted by a radioactive substance in 7.5 sec-
onds. The radioactive substance was chosen to have a long half-life so that the emis-
sion rate would be constant. After 2608 experiments, it was found that the number of
emissions in 7.5 seconds was a random variable, N, whose pmf could be described
by

Pr{N = k} =
(3.87)ke−3.87

k!
for k = 0,1, · · · .

It is seen that the discrete random variable N has a countably infinite range and
the infinite sum of its pmf equals one. In fact, this distribution is fairly important
and will be discussed later under the heading of the Poisson distribution. Figure 1.4
shows its pmf graphically. ��

The notion of independence is very important when dealing with more than one
random variable. Although we shall postpone the discussion on multivariate distri-
bution functions until Sect. 1.5, we introduce the concept of independence at this
point.

Definition 1.8. The random variables X1, · · · ,Xn are independent if

Pr{X1 ≤ x1, · · · ,Xn ≤ xn} = Pr{X1 ≤ x1}× · · ·×Pr{Xn ≤ xn}

for all possible values of x1, · · · ,xn. ��

Conceptually, random variables are independent if knowledge of one (or more)
random variable does not “help” in making probability statements about the other
random variables. Thus, an alternative definition of independence could be made
using conditional probabilities (see Definition 1.3) where the random variables X1
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and X2 are called independent if Pr{X1 ≤ x1|X2 ≤ x2} = Pr{X1 ≤ x1} for all values
of x1 and x2.

For example, suppose that T is a random variable denoting the length of time
it takes for a barge to travel from a refinery to a terminal 800 miles down river,
and R is a random variable equal to 1 if the river condition is smooth when the barge
leaves and 0 if the river condition is not smooth. After collecting data to estimate the
probability laws governing T and R, we would not expect the two random variables
to be independent since knowledge of the river conditions would help in determining
the length of travel time.

One advantage of independence is that it is easier to obtain the distribution for
sums of random variables when they are independent than when they are not inde-
pendent. When the random variables are continuous, the pdf of the sum involves an
integral called a convolution.

Property 1.2. Let X1 and X2 be independent continuous random variables
with pdf’s given by f1(·) and f2(·). Let Y = X1 + X2, and let h(·) be the pdf
for Y . The pdf for Y can be written, for all y, as

h(y) =
∫ ∞

−∞
f1(y− x) f2(x)dx .

Furthermore, if X1 and X2 are both nonnegative random variables, then

h(y) =
∫ y

0
f1(y− x) f2(x)dx .

Example 1.3. Our electronic equipment is highly sensitive to voltage fluctuations in
the power supply so we have collected data to estimate when these fluctuations oc-
cur. After much study, it has been determined that the time between voltage spikes is
a random variable with pdf given by (1.6), where the unit of time is hours. Further-
more, it has been determined that the random variables describing the time between
two successive voltage spikes are independent. We have just turned the equipment
on and would like to know the probability that within the next 30 minutes at least
two spikes will occur.

Let X1 denote the time interval from when the equipment is turned on until the
first voltage spike occurs, and let X2 denote the time interval from when the first
spike occurs until the second occurs. The question of interest is to find Pr{Y ≤ 0.5},
where Y = X1 +X2. Let the pdf for Y be denoted by h(·). Property 1.2 yields

h(y) =
∫ y

0
4e−2(y−x)e−2xdx

= 4e−2y
∫ y

0
dx = 4ye−2y ,

for y ≥ 0. The pdf of Y is now used to answer our question, namely,
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0 X1 ≈ x y

� �y− x

Fig. 1.5 Time line illustrating the convolution

Pr{Y ≤ 0.5} =
∫ 0.5

0
h(y)dy =

∫ 0.5

0
4ye−2ydy = 0.264 .

��

It is also interesting to note that the convolution can be used to give the cumu-
lative distribution function if the first pdf in the above property is replaced by the
CDF; in other words, for nonnegative random variables we have

H(y) =
∫ y

0
F1(y− x) f2(x)dx . (1.7)

Applying (1.7) to our voltage fluctuation question yields

Pr{Y ≤ 0.5} ≡ H(0.5) =
∫ 0.5

0
(1− e−2(0.5−x))2e−2xdx = 0.264 .

We rewrite the convolution of Eq. (1.7) slightly to help in obtaining an intuitive
understanding of why the convolution is used for sums. Again, assume that X1 and
X2 are independent, nonnegative random variables with pdf’s f1 and f2, then

Pr{X1 +X2 ≤ y} =
∫ y

0
F2(y− x) f1(x)dx .

The interpretation of f1(x)dx is that it represents the probability that the random
variable X1 falls in the interval (x,x +dx) or, equivalently, that X1 is approximately
x. Now consider the time line in Fig. 1.5. For the sum to be less than y, two events
must occur: first, X1 must be some value (call it x) that is less than y; second, X2

must be less than the remaining time that is y− x. The probability of the first event
is approximately f1(x)dx, and the probability of the second event is F2(y−x). Since
the two events are independent, they are multiplied together; and since the value of
x can be any number between 0 and y, the integral is from 0 to y.

• Suggestion: Do Problems 1.3–1.6.
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1.3 Mean and Variance

Many random variables have complicated distribution functions and it is therefore
difficult to obtain an intuitive understanding of the behavior of the random variable
by simply knowing the distribution function. Two measures, the mean and variance,
are defined to aid in describing the randomness of a random variable. The mean
equals the arithmetic average of infinitely many observations of the random vari-
able and the variance is an indication of the variability of the random variable. To
illustrate this concept we use the square root of the variance which is called the
standard deviation. In the 19th century, the Russian mathematician P. L. Chebyshev
showed that for any given distribution, at least 75% of the time the observed value
of a random variable will be within two standard deviations of its mean and at least
93.75% of the time the observed value will be within four standard deviations of
the mean. These are general statements, and specific distributions will give much
tighter bounds. (For example, a commonly used distribution is the normal “bell
shaped” distribution. With the normal distribution, there is a 95.44% probability of
being within two standard deviations of the mean.) Both the mean and variance are
defined in terms of the expected value operator, that we now define.

Definition 1.9. Let h be a function defined on the real numbers and let X be a ran-
dom variable. The expected value of h(X) is given, for X discrete, by

E[h(X)] = ∑
k

h(k) f (k)

where f is its pmf, and for X continuous, by

E[h(X)] =
∫ ∞

−∞
h(s) f (s)ds

where f is its pdf. ��

Example 1.4. A supplier sells eggs by the carton containing 144 eggs. There is a
small probability that some eggs will be broken and he refunds money based on
broken eggs. We let B be a random variable indicating the number of broken eggs
per carton with a pmf given by

k f (k)
0 0.779
1 0.195
2 0.024
3 0.002

.

A carton sells for $4.00, but a refund of 5 cents is made for each broken egg. To
determine the expected income per carton, we define the function h as follows
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k h(k)
0 4.00
1 3.95
2 3.90
3 3.85

.

Thus, h(k) is the net revenue obtained when a carton is sold containing k broken
eggs. Since it is not known ahead of time how many eggs are broken, we are inter-
ested in determining the expected net revenue for a carton of eggs. Definition 1.9
yields

E[h(B)] = 4.00×0.779+3.95×0.195

+3.90×0.024+3.85×0.002 = 3.98755 .

��

The expected value operator is a linear operator, and it is not difficult to show the
following property.

Property 1.3. Let X and Y be two random variables with c being a constant,
then

• E[c] = c,
• E[cX ] = cE[X ],
• E[X +Y ] = E[X ]+E[Y ].

In the egg example since the cost per broken egg is a constant (c = 0.05), the
expected revenue per carton could be computed as

E[4.0−0.05B] = 4.0−0.05E[B]
= 4.0−0.05 ( 0×0.779+1×0.195+2×0.024+3×0.002 )
= 3.98755 .

The expected value operator provides us with the procedure to determine the
mean and variance.

Definition 1.10. The mean, μ or E[X ], and variance,σ2 or V [X ], of a random vari-
able X are defined as

μ = E[X ], σ2 = E[(X −μ)2] ,

respectively. The standard deviation, σ , is the square root of the variance. ��
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Property 1.4. The following are often helpful as computational aids:

• V [X ] = σ2 = E[X2]−μ2

• V [cX ] = c2V [X ]
• If X ≥ 0, E[X ] =

∫ ∞
0 [1−F(s)]ds where F(x) = Pr{X ≤ x}

• If X ≥ 0, then E[X2] = 2
∫ ∞

0 s[1−F(s)]ds where F(x) = Pr{X ≤ x}.

Example 1.5. The mean and variance calculations for a discrete random variable can
be easily illustrated by defining the random variable N to be the number of defective
phones within a randomly chosen box from Example 1.1. In other words, N has the
pmf given by

Pr{N = k} =

⎧
⎨

⎩

0.82 for k = 0
0.15 for k = 1
0.03 for k = 2 .

The mean and variance is, therefore, given by

E[N] = 0×0.82+1×0.15+2×0.03

= 0.21,

V [N] = (0−0.21)2 ×0.82+(1−0.21)2 ×0.15+(2−0.21)2 ×0.03

= 0.2259 .

Or, an easier calculation for the variance (Property 1.4) is

E[N2] = 02 ×0.82+12 ×0.15+22 ×0.03

= 0.27

V [N] = 0.27−0.212

= 0.2259 .

��

Example 1.6. The mean and variance calculations for a continuous random variable
can be illustrated with the random variable T whose pdf was given by Eq. 1.6. The
mean and variance is therefore given by

E[T ] =
∫ ∞

0
2se−2sds = 0.5 ,

V [T ] =
∫ ∞

0
2(s−0.5)2e−2sds = 0.25 .

Or, an easier calculation for the variance (Property 1.4) is
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E[T 2] =
∫ ∞

0
2s2e−2sds = 0.5 ,

V [T ] = 0.5−0.52 = 0.25 .

��
The final definition in this section is used often as a descriptive statistic to give

an intuitive feel for the variability of processes.

Definition 1.11. The squared coefficient of variation, C2, of a nonnegative random
variable T is the ratio of the the variance to the mean squared; that is,

C2[T ] =
V [T ]
E[T ]2

.

��
• Suggestion: Do Problems 1.7–1.14.

1.4 Important Distributions

There are many distribution functions that are used so frequently that they have
become known by special names. In this section, some of the major distribution
functions are given. The student will find it helpful in years to come if these dis-
tributions are committed to memory. There are several textbooks (for example, see
[9, chap. 6] for an excellent summary and [6], [7], [8] for in-depth descriptions)
that give more complete descriptions of distributions, and we recommend gaining
a familiarity with a variety of distribution functions before any serious modeling is
attempted.

Uniform-Discrete: The random variable N has a discrete uniform distribution if
there are two integers a and b such that the pmf of N can be written as

f (k) =
1

b−a+1
for k = a,a+1, · · · ,b . (1.8)

Then,

E[N] =
a+b

2
; V [N] =

(b−a+1)2 −1
12

.

Example 1.7. Consider rolling a fair die. Figure 1.6 shows the uniform pmf for the
“number of dots” random variable. Notice in the figure that, as the name “uniform”
implies, all the probabilities are the same. ��

Bernoulli: (Named after Jacob Bernoulli, 1654-1705.) The random variable N
has a Bernoulli distribution if there is a number 0 < p < 1 such that the pmf of N
can be written as
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Fig. 1.6 A discrete uniform
probability mass function 1
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Fig. 1.7 Two binomial probability mass functions

f (k) =
{

1− p for k = 0
p for k = 1 .

(1.9)

Then,

E[N] = p; V [N] = p(1− p); C2[N] =
1− p

p
.

Binomial: (From Jacob Bernoulli and published posthumously in 1713 by his
nephew.) The random variable N has a binomial distribution if there is a number
0 < p < 1 and a positive integer n such that the pmf of N can be written as

f (k) =
n!

k!(n− k)!
pk(1− p)n−k for k = 0,1, · · · ,n . (1.10)

Then,

E[N] = np; V [N] = np(1− p); C2[N] =
1− p

np
.

The number p is often though of as the probability of a success. The binomial pmf
evaluated at k thus gives the probability of k successes occurring out of n trials. The
binomial random variable with parameters p and n is the sum of n (independent)
Bernoulli random variables each with parameter p.

Example 1.8. We are monitoring calls at a switchboard in a large manufacturing firm
and have determined that one third of the calls are long distance and two thirds of
the calls are local. We have decided to pick four calls at random and would like to
know how many calls in the group of four are long distance. In other words, let N be
a random variable indicating the number of long distance calls in the group of four.
Thus, N is binomial with n = 4 and p = 1/3. It also happens that in this company,
half of the individuals placing calls are women and half are men. We would also
like to know how many of the group of four were calls placed by men. Let M denote
the number of men placing calls; thus, M is binomial with n = 4 and p = 1/2. The
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Fig. 1.8 A geometric proba-
bility mass function
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pmf’s for these two random variables are shown in Fig. 1.7. Notice that for p = 0.5,
the pmf is symmetric, and as p varies from 0.5, the graph becomes skewed. ��

Geometric: The random variable N has a geometric distribution if there is a
number 0 < p < 1 such that the pmf of N can be written as

f (k) = p(1− p)k−1 for k = 1,2, · · · . (1.11)

Then,

E[N] =
1
p

; V [N] =
1− p

p2 ; C2[N] = 1− p.

The idea behind the geometric random variable is that it represents the number of
trials until the first success occurs. In other words, p is thought of as the probability
of success for a single trial, and we continually perform the trials until a success
occurs. The random variable N is then set equal to the number of trial that we had
to perform. Note that although the geometric random variable is discrete, its range
is infinite.

Example 1.9. A car saleswoman has made a statistical analysis of her previous sales
history and determined that each day there is a 50% chance that she will sell a luxury
car. After careful further analysis, it is also clear that a luxury car sale on one day
is independent of the sale (or lack of it) on another day. On New Year’s Day (a
holiday in which the dealership was closed) the saleswoman is contemplating when
she will sell her first luxury car of the year. If N is the random variable indicating
the day of the first luxury car sale (N = 1 implies the sale was on January 2), then
N is distributed according to the geometric distribution with p = 0.5, and its pmf
is shown in Fig. 1.8. Notice that theoretically the random variable has an infinite
range, but for all practical purposes the probability of the random variable being
larger than seven is negligible. ��

Poisson: (By Simeon Denis Poisson, 1781-1840; published in 1837.) The ran-
dom variable N has a Poisson distribution if there is a number λ > 0 such that the
pmf of N can be written as

f (k) =
λ ke−λ

k!
for k = 0,1, · · · . (1.12)

Then,
E[N] = λ ; V [N] = λ ; C2[N] = 1/λ .

The Poisson distribution is the most important discrete distribution in stochastic
modeling. It arises in many different circumstances. One use is as an approximation
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to the binomial distribution. For n large and p small, the binomial is approximated
by the Poisson by setting λ = np. For example, suppose we have a box of 144
eggs and there is a 1% probability that any one egg will break. Assuming that the
breakage of eggs is independent of other eggs breaking, the probability that exactly 3
eggs will be broken out of the 144 can be determined using the binomial distribution
with n = 144, p = 0.01, and k = 3; thus

144!
141!3!

(0.01)3(0.99)141 = 0.1181 ,

or by the Poisson approximation with λ = 1.44 that yields

(1.44)3e−1.44

3!
= 0.1179 .

In 1898, L. V. Bortkiewicz [10, p. 206] reported that the number of deaths due
to horse-kicks in the Prussian army was a Poisson random variable. Although this
seems like a silly example, it is very instructive. The reason that the Poisson distri-
bution holds in this case is due to the binomial approximation feature of the Poisson.
Consider the situation: there would be a small chance of death by horse-kick for any
one person (i.e., p small) but a large number of individuals in the army (i.e., n large).
There are many analogous situations in modeling that deal with large populations
and a small chance of occurrence for any one individual within the population. In
particular, arrival processes (like arrivals to a bus station in a large city) can often be
viewed in this fashion and thus described by a Poisson distribution. Another com-
mon use of the Poisson distribution is in population studies. The population size of
a randomly growing organism often can be described by a Poisson random variable.
W. S. Gosset (1876–1937), using the pseudonym of Student, showed in 1907 that
the number of yeast cells in 400 squares of haemocytometer followed a Poisson dis-
tribution. The number of radioactive emissions during a fixed interval of time is also
Poisson as indicated in Example 1.2. (Fig. 1.4 also shows the Poisson pmf.)

Uniform-Continuous: The random variable X has a continuous uniform distri-
bution if there are two numbers a and b with a < b such that the pdf of X can be
written as

f (s) =
{ 1

b−a for a ≤ s ≤ b
0 otherwise .

(1.13)

Then its cumulative probability distribution is given by

F(s) =

⎧
⎨

⎩

0 for s < a
s−a
b−a for a ≤ s < b
1 for s ≥ b ,

and

E[X ] =
a+b

2
; V [X ] =

(b−a)2

12
; C2[X ] =

(b−a)2

3(a+b)2 .
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Fig. 1.9 The probability density function and cumulative distribution function for a continuous
uniform distribution between 1 and 3

Fig. 1.10 Exponential CDF
(solid line) and pdf (dashed
line) with a mean of 1/2
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The graphs for the pdf and CDF of the continuous uniform random variables are
the simplest of the continuous distributions. As shown in Fig. 1.9, the pdf is a rect-
angle and the CDF is a “ramp” function.

Exponential: The random variable X has an exponential distribution if there is a
number λ > 0 such that the pdf of X can be written as

f (s) =
{

λe−λ s for s ≥ 0
0 otherwise .

(1.14)

Then its cumulative probability distribution is given by

F(s) =
{

0 for s < 0,

1− e−λ s for s ≥ 0;

and

E[X ] =
1
λ

; V [X ] =
1

λ 2 ; C2[X ] = 1 .

The exponential distribution is an extremely common distribution in probabilis-
tic modeling. One very important feature is that the exponential distribution is the
only continuous distribution that contains no memory. Specifically, an exponential
random variable X is said to be memoryless if

Pr{X > t + s|X > t} = Pr{X > s} . (1.15)

That is if, for example, a machine’s failure time is due to purely random events
(like voltage surges through a power line), then the exponential random variable
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Fig. 1.11 Two Erlang proba-
bility density functions with
mean 1 and shape parameters
k = 2 (solid line) and k = 10
(dashed line)
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would properly describe the failure time. However, if failure is due to the wear out
of machine parts, then the exponential distribution would not be suitable (see Prob-
lem 1.23).

Erlang: (Named after the Danish mathematician A. K. Erlang, 1878–1929, for
his extensive use of it and his pioneering work in queueing theory in the early 1900’s
while working for the Copenhagen Telephone Company.) The nonnegative random
variable X has an Erlang distribution if there is a positive integer k and a positive
number β such that the pdf of X can be written as

f (s) =
k(ks)k−1e−(k/β )s

β k (k−1)!
for s ≥ 0 . (1.16)

Then,

E[X ] = β ; V [X ] =
β 2

k
; C2[X ] =

1
k

.

Note that the constant β is often called the scale factor because changing its value is
equivalent to either stretching or compressing the x-axis, and the constant k is often
called the shape parameter because changing its value changes the shape of the pdf.

The usefulness of the Erlang is due to the fact that an Erlang random variable
with parameters k and β is the sum of k (independent) exponential random vari-
ables each with mean β/k. In modeling process times, the exponential distribution
is often inappropriate because the standard deviation is as large as the mean. Engi-
neers usually try to design systems that yield a standard deviation of process times
significantly smaller than their mean. Notice that for the Erlang distribution, the
standard deviation decreases as the square root of the parameter k increases so that
processing times with a small standard deviation can often be approximated by an
Erlang random variable.

Figure 1.11 illustrates the effect of the parameter k by graphing the pdf for a
type-2 Erlang and a type-10 Erlang. (The parameter k establishes the “type” for the
Erlang distribution.) Notice that a type-1 Erlang is an exponential random variable
so its pdf would have the form shown in Fig. 1.10.
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Gamma: The Erlang distribution is part of a larger class of nonnegative ran-
dom variables called gamma random variables. It is a common distribution used to
describe process times and has two parameters: a shape parameter, α , and a scale
parameter, β . A shape parameter is so named because varying its value results in
different shapes for the pdf. Varying the scale parameter does not change the shape
of the distribution, but it tends to “stretch” or “compress” the x-axis. Before giving
the density function for the gamma, we must define the gamma function because it
is used in the definition of the gamma distribution. The gamma function is defined,
for x > 0, as

Γ (x) =
∫ ∞

0
sx−1e−sds . (1.17)

One useful property of the gamma function is the relationship Γ (x + 1) = xΓ (x),
for x ≥ 1. Thus, if x is a positive integer, Γ (x) = (x−1)!. (For some computational
issues, see the appendix to this chapter.) The density function for a gamma random
variable is given by

f (s) =
sα−1e−s/β

β α Γ (α)
for s ≥ 0 . (1.18)

Then,

E[X ] = βα; V [X ] = β 2α; C2[X ] =
1
α

.

Notice that if it is desired to determine the shape and scale parameters for a gamma
distribution with a known mean and variance, the inverse relationships are

α =
E[X ]2

V [X ]
and β =

E[X ]
α

.

Weibull: In 1939, W. Weibull [2, p. 73] (a Swedish engineer who lived from 1887
to 1979) developed a distribution for describing the breaking strength of various ma-
terials. Since that time, many statisticians have shown that the Weibull distribution
can often be used to describe failure times for many different types of systems. The
Weibull distribution has two parameters: a scale parameter, β , and a shape parame-
ter, α . Its cumulative distribution function is given by

F(s) =
{

0 for s < 0
1− e−(s/β )α

for s ≥ 0 .
(1.19)

Both scale and shape parameters can be any positive number. As with the gamma
distribution, the shape parameter determines the general shape of the pdf (see
Fig. 1.12) and the scale parameter either expands or contracts the pdf. The mo-
ments of the Weibull are a little difficult to express because they involve the gamma
function (1.17). Specifically, the moments for the Weibull distribution are

E[X ] = βΓ (1+
1
α

); E[X2] = β 2Γ (1+
2
α

); E[X3] = β 3Γ (1+
3
α

) . (1.20)
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Fig. 1.12 Two Weibull prob-
ability density functions with
mean 1 and shape parameters
α = 0.5 (solid line) and α = 2
(dashed line)
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It is more difficult to determine the shape and scale parameters for a Weibull dis-
tribution with a known mean and variance, than it is for the gamma distribution
because the gamma function must be evaluated to determine the moments of a
Weibull. Some computational issues for obtaining the shape and scale parameters
of a Weibull are discussed in the appendix to this chapter.

When the shape parameter is greater than 1, the shape of the Weibull pdf is uni-
modal similar to the Erlang with its type parameter greater than 1. When the shape
parameter equals 1, the Weibull pdf is an exponential pdf. When the shape parameter
is less than 1, the pdf is similar to the exponential except that the graph is asymp-
totic to the y-axis instead of hitting the y-axis. Figure 1.12 provides an illustration
of the effect that the shape parameter has on the Weibull distribution. Because the
mean values were held constant for the two pdf’s shown in the figure, the value for
β varied. The pdf plotted with a solid line in the figure has β = 0.5 that, together
with α = 0.5, yields a mean of 1 and a standard deviation of 2.236; the dashed line
is pdf that has β = 1.128 that, together with α = 2, yields a mean of 1 and a standard
deviation 0.523.

Normal: (Discovered by A. de Moivre, 1667-1754, but usually attributed to Karl
Gauss, 1777-1855.) The random variable X has a normal distribution if there are
two numbers μ and σ with σ > 0 such that the pdf of X can be written as

f (s) =
1

σ
√

2π
e−(s−μ)2/(2σ2) for −∞ < s < ∞ . (1.21)

Then,

E[X ] = μ ; V [X ] = σ2; C2[X ] =
σ2

μ2 .

The normal distribution is the most common distribution recognized by most
people by its “bell shaped” curve. Its pdf and CDF are shown below in Fig. 1.13 for
a normally distributed random variable with mean zero and standard deviation one.

Although the normal distribution is not widely used in stochastic modeling, it
is, without question, the most important distribution in statistics. The normal dis-
tribution can be used to approximate both the binomial and Poisson distributions.
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Fig. 1.13 Standard normal
pdf (solid line) and CDF
(dashed line)
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A common rule-of-thumb is to approximate the binomial whenever n (the number
of trials) is larger than 30. If np < 5, then use the Poisson for the approximation
with λ = np. If np ≥ 5, then use the normal for the approximation with μ = np and
σ2 = np(1− p). Furthermore, the normal can be used to approximate the Poisson
whenever λ > 30. When using a continuous distribution (like the normal) to approx-
imate a discrete distribution (like the Poisson or binomial), the interval between the
discrete values is usually split halfway. For example, if we desire to approximate
the probability that a Poisson random variable will take on the values 29, 30, or
31 with a continuous distribution, then we would determine the probability that the
continuous random variable is between 28.5 and 31.5.

Example 1.10. A software company has received complaints regarding their respon-
siveness for customer service. They have decided to analyze the arrival pattern of
phone calls to customer service and have determined that the arrival of complaints
in any one hour is a Poisson random variable with a mean of 120. The company
would like to know the probability that in any one hour 140 or more calls arrive.
To determine that probability, let N be a Poisson random variable with λ = 120,
let X be a random variable with μ = σ2 = 120 and let Z be a standard normal ran-
dom variable (i.e., Z is normal with mean 0 and variance 1). The above question is
answered as follows:

Pr{N ≥ 140} ≈ Pr{X > 139.5}
= Pr{Z > (139.5−120)/10.95}
= Pr{Z > 1.78} = 1−0.9625 = 0.0375 .

��

The importance of the normal distribution is due to its property that sample
means from almost any practical distribution will limit to the normal; this prop-
erty is called the Central Limit Theorem. We state this property now even though it
needs the concept of statistical independence that is not yet defined. However, be-
cause the idea should be somewhat intuitive, we state the property at this point since
it is so central to the use of the normal distribution.
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Property 1.5. Central Limit Theorem. Let {X1,X2, · · · ,Xn } be a sequence
of n independent random variables each having the same distribution with
mean μ and (finite) variance σ2, and define

X =
X1 +X2 + · · ·+Xn

n
.

Then, the distribution of the random variable Z defined by

Z =
X −μ
σ/

√
n

approaches a normal distribution with zero mean and standard deviation of
one as n gets large.

Log Normal: The final distribution that we briefly mention is based on the nor-
mal distribution. Specifically, if X is a normal random variable with mean μN and
variance σ2

N , the random variable Y = eX is called a log-normal random variable
with mean μL and variance σ2

L . (Notice that the name arrises because the random
variable defined by the natural log of Y ; namely ln(Y ), is normally distributed.) This
distribution is always non-negative and can have a relatively large right-hand tail.
It is often used for modeling repair times and also for modeling many biological
characteristics. It is not difficult to obtain the mean and variance of the log-normal
distribution from the characteristics of the normal:

μL = eμN+ 1
2 σ2

N , and σ2
L = μ2

L × (eσ2
N −1) . (1.22)

Because the distribution is skewed to the right (long right-hand tail), the mean is
to the right of the mode which is given by eμN−σ2

N . If the mean and variance of the
log-normal distribution is known, it is straight forward to obtain the characteristics
of the normal random variable that generates the log-normal, specifically

σ2
N = ln(c2

L +1) , and μN = ln(μL )− 1
2

σ2
N , (1.23)

where the squared coefficient of variation is given by c2
L = σ2

L/μ2
L .

Example 1.11. The height of trees within a stand of Loblolly pine trees is highly
variable and is distributed according to a log-normal distribution with mean 21.2 m
and standard deviation of 52.1 m. Notice that the squared coefficient of variation is
5.983. (A squared coefficient of variation greater 1.0 implies a significant amount
of variability.) Let H denote a random variable representing the height of the trees.
Then there must be another random variable, call it X , such that H = eX where
E[X ] = 2.087 and its standard deviation is 1.394. ��

Skewness: Before moving to the discussion of more than one random variable,
we mention an additional descriptor of distributions. The first moment gives the
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central tendency for random variables, and the second moment is used to measure
variability. The third moment, that was not discussed previously, is useful as a mea-
sure of skewness (i.e., non-symmetry). Specifically, the coefficient of skewness, ν ,
for a random variable T with mean μ and standard deviation σ is defined by

ν =
E[(T −μ)3]

σ3 , (1.24)

and the relation to the other moments is

E[(T −μ)3] = E[T 3]−3μE[T 2]+2μ3 .

A symmetric distribution has ν = 0; if the mean is to the left of the mode, ν < 0
and the left-hand side of the distribution will have the longer tail; if the mean is to
the right of the mode, ν > 0 and the right-hand side of the distribution will have the
longer tail. For example, ν = 0 for the normal distribution, ν = 2 for the exponential
distribution, ν = 2/

√
k for a type-k Erlang distribution, and for a gamma distribu-

tion, we have ν = 2/
√

α . The log normal distribution can have a relatively large

positive skew and its skewness coefficient is given as ν = (eσ2
N +2)

√

eσ2
N −1. The

Weibull distribution can have both positive and negative skewness coefficients. The
pdf’s shown in Fig. 1.12 have skewness coefficients of 3.9 and 0.63, respectively, for
the solid line figure and dashed line graphs. Thus, the value of ν can help complete
the intuitive understanding of a particular distribution.

• Suggestion: Do Problems 1.15–1.18.

1.5 Multivariate Distributions

The analysis of physical phenomena usually involves many distinct random vari-
ables. In this section we discuss the concepts involved when two random variables
are defined. The extension to more than two is left to the imagination of the reader
and the numerous textbooks that have been written on the subject.

Definition 1.12. The function F is called the joint cumulative distribution function
for X1 and X2 if

F(a,b) = Pr{X1 ≤ a,X2 ≤ b}
for a and b any two real numbers. ��

In a probability statement as in the right-hand-side of the above equation, the
comma means intersection of events and is read as “The probability that X1 is less
than or equal to a and X2 is less than or equal to b”. The initial understanding of
joint probabilities is easiest with discrete random variables.

Definition 1.13. The function f is a joint pmf for the discrete random variables X1

and X2 if
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Fig. 1.14 Probability mass
function for the two discrete
random variables from Exam-
ple 1.12
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f (a,b) = Pr{X1 = a,X2 = b}
for each (a,b) in the range of (X1,X2). ��

For the single-variable pmf, the height of the pmf at a specific value gives the
probability that the random variable will equal that value. It is the same for the
joint pmf except that the graph is in three-dimensions. Thus, the height of the pmf
evaluated at a specified ordered pair gives the probability that the random variables
will equal those specified values (Fig. 1.14).

It is sometimes necessary to obtain from the joint pmf the probability of one
random variable without regard to the value of the second random variable.

Definition 1.14. The marginal pmf for X1 and X2, denoted by f1 and f2, respec-
tively, are

f1(a) = Pr{X1 = a} = ∑
k

f (a,k)

for a in the range of X1, and

f2(b) = Pr{X2 = b} = ∑
k

f (k,b)

for b in the range of X2. ��

Example 1.12. We return again to Example 1.1 to illustrate these concepts. The ran-
dom variable R will indicate whether a randomly chosen box contains radio phones
or plain phones; namely, if the box contains radio phones then we set R = 1 and
if plain phones then R = 0. Also the random variable N will denote the number of
defective phones in the box. Thus, according to the probabilities defined in Exam-
ple 1.1, the joint pmf,

f (a,b) = Pr{R = a,N = b} ,

has the probabilities as listed in in the main portion of Table 1.1. By summing in
the “margins”, we obtain the marginal pmf for R and N separately as shown in the



1.5 Multivariate Distributions 25

Table 1.1 Joint and marginal probability mass functions of Example 1.12

N = 0 N = 1 N = 2 f1(·)
R = 0 0.37 0.08 0.02 0.47
R = 1 0.45 0.07 0.01 0.53
f2(·) 0.82 0.15 0.03

margins of Table 1.1. Thus we see, for example, that the probability of choosing a
box with radio phones (i.e., Pr{R = 1}) is 53%, the probability of choosing a box
of radio phones that has one defective phone (i.e., Pr{R = 1,N = 1}) is 7%, and
the probability that both phones in a randomly chosen box (i.e., Pr{N = 2}) are
defective is 3%. ��

Continuous random variables are treated in an analogous manner to the discrete
case. The major difference in moving from one continuous random variable to two
is that probabilities are given in terms of a volume under a surface instead of an area
under a curve (see Fig. 1.15 for representation of a joint pdf).

Definition 1.15. The functions g, g1, and g2 are the joint pdf for X1 and X2, the
marginal pdf for X1, and the marginal pdf for X2, respectively, as the following
hold:

Pr{a1 ≤ X1 ≤ b1,a2 ≤ X2 ≤ b2} =
∫ b2

a2

∫ b1

a1

g(s1,s2)ds1ds2

g1(a) =
∫ ∞

−∞
g(a,s)ds

g2(b) =
∫ ∞

−∞
g(s,b)ds ,

where

Pr{a ≤ X1 ≤ b} =
∫ b

a
g1(s)ds

Pr{a ≤ X2 ≤ b} =
∫ b

a
g2(s)ds .

��

We return now to the concept of conditional probabilities (Definition 1.3). The
situation often arises in which the experimentalist has knowledge regarding one
random variable and would like to use that knowledge in predicting the value of the
other (unknown) random variable. Such predictions are possible through conditional
probability functions

Definition 1.16. Let f be a joint pmf for the discrete random variables X1 and X2

with f2 the marginal pmf for X2. Then the conditional pmf for X1 given that X2 = b
is defined, if Pr{X2 = b} �= 0, to be
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Fig. 1.15 Probability density
function for the two contin-
uous random variables from
Example 1.13
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f1|b(a) =
f (a,b)
f2(b)

,

where
Pr{X1 = a|X2 = b} = f1|b(a) .

��

Definition 1.17. Let g be a joint pdf for continuous random variables X1 and X2

with g2 the marginal pdf for X2. Then the conditional pdf for X1 given that X2 = b
is defined to be

g1|b(a) =
g(a,b)
g2(b)

,

where

Pr{a1 ≤ X1 ≤ a2|X2 = b} =
∫ a2

a1

g1|b(s)ds .

��

The conditional statements for X2 given a value for X1 are made similarly to
Definitions 1.16 and 1.17 with the subscripts reversed. These conditional statements
can be illustrated by using Example 1.12. It has already been determined that the
probability of having a box full of defective phones is 3%; however, let us assume
that it is already known that we have picked a box of radio phones. Now, given a
box of radio phones, the probability of both phones being defective is

f2|a=1(2) =
f (1,2)
f1(1)

=
0.01
0.53

= 0.0189 ;

thus, knowledge that the box consisted of radio phones enabled a more accurate
prediction of the probabilities that both phones were defective. Or to consider a
different situation, assume that we know the box has both phones defective. The
probability that the box contains plain phones is
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f1|b=2(0) =
f (0,2)
f2(2)

=
0.02
0.03

= 0.6667 .

Example 1.13. Let X and Y be two continuous random variables with joint pdf given
by

f (x,y) =
4
3
(x3 + y) for 0 ≤ x ≤ 1,0 ≤ y ≤ 1 .

Utilizing Definition 1.15, we obtain

f1(x) =
4
3
(x3 +0.5) for 0 ≤ x ≤ 1

f2(y) =
4
3
(y+0.25) for 0 ≤ y ≤ 1 .

To find the probability that Y is less than or equal to 0.5, we perform the following
steps:

Pr{Y ≤ 0.5} =
∫ 0.5

0
f2(y)dy

=
4
3

∫ 0.5

0
(y+0.25)dy =

1
3

.

To find the probability that Y is less than or equal to 0.5 given we know that X = 0.1,
we perform

Pr{Y ≤ 0.5|X = 0.1} =
∫ 0.5

0
f2|0.1(y)dy

=
∫ 0.5

0

0.13 + y
0.13 +0.5

dy

=
0.1255
0.501

≈ 1
4

.

��

Example 1.14. Let U and V be two continuous random variables with joint pdf given
by

g(u,v) = 8u3v for 0 ≤ u ≤ 1,0 ≤ v ≤ 1 .

The marginal pdf’s are

g1(u) = 4u3 for 0 ≤ u ≤ 1
g2(v) = 2v for 0 ≤ v ≤ 1 .

The following two statements are easily verified.

Pr{0.1 ≤V ≤ 0.5} =
∫ 0.5

0.1
2vdv = 0.24
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Pr{0.1 ≤V ≤ 0.5|U = 0.1} = 0.24 .

��

The above example illustrates independence. Notice in the example that knowl-
edge of the value of U did not change the probabilities regarding the probability
statement of V .

Definition 1.18. Let f be the joint probability distribution (pmf if discrete and pdf
if continuous) of two random variables X1 and X2. Furthermore, let f1 and f2 be the
marginals for X1 and X2, respectively. If

f (a,b) = f1(a) f2(b)

for all a and b, then X1 and X2 are called independent. ��

Independent random variables are much easier to work with because of their
separability. However, in the use of the above definition, it is important to test the
property for all values of a and b. It would be easy to make a mistake by stopping
after the equality was shown to hold for only one particular pair of a,b values. Once
independence has been shown, the following property is very useful.

Property 1.6. Let X1 and X2 be independent random variables. Then

E[X1X2] = E[X1]E[X2]

and
V [X1 +X2] = V [X1]+V [X2] .

Example 1.15. Consider again the random variables R and N defined in Example
1.12. We see from the marginal pmf’s given in that example that E[R] = 0.53 and
E[N] = 0.21. We also have

E[R ·N] = 0×0×0.37+0×1×0.08+0×2×0.02

+1×0×0.45+1×1×0.07+1×2×0.01 = 0.09 .

Thus, it is possible to say that the random variables R and N are not independent
since 0.53 × 0.21 �= 0.09. If, however, the expected value of the product of two
random variables equals the product of the two individual expected values, the claim
of independence is not proven. ��

We close this section by giving two final measures that are used to express the
relationship between two dependent random variables. The first measure is called
the covariance and the second measure is called the correlation coefficient.
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Definition 1.19. The covariance of two random variables, X1 and X2, is defined by

cov(X1,X2) = E[ (X1 −E[X1])(X2 −E[X2]) ] .

��

Property 1.7. The following is often helpful as a computational aid:

cov(X1,X2) = E[X1X2]−μ1μ2 ,

where μ1 and μ2 are the means for X1 and X2, respectively.

Comparing Property 1.6 to Property 1.7, it should be clear that random variables
that are independent have zero covariance. However, it is possible to obtain random
variables with zero covariance that are not independent. (See Example 1.17 below.)
The covariance is also important when determining the variance of the sum of two
random variables that are not independent so that Property 1.6 cannot be used.

Property 1.8. Let X1 and X2 be two random variables, then

V [X1 +X2] = V [X1]+V [X2]− cov(X1,X2) .

A principle use of the covariance is in the definition of the correlation coefficient,
that is a measure of the linear relationship between two random variables.

Definition 1.20. Let X1 be a random variable with mean μ1 and variance σ2
1 . Let X2

be a random variable with mean μ2 and variance σ2
2 . The correlation coefficient ,

denoted by ρ , of X1 and X2 is defined by

ρ =
cov(X1,X2)
√

V (X1)V (X1)
=

E[X1X2]−μ1μ2

σ1σ2
.

��

The correlation coefficient is always between negative one and positive one. A
negative correlation coefficient indicates that if one random variable happens to be
large, the other random variable is likely to be small. A positive correlation coef-
ficient indicates that if one random variable happens to be large, the other random
variable is also likely to be large. The following examples illustrate this concept.

Example 1.16. Let X1 and X2 denote two discrete random variables, where X1 ranges
from 1 to 3 and X2 ranges from 10 to 30. Their joint and marginal pmf’s are given
in Table 1.2.
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Fig. 1.16 Graphical rep-
resentation for conditional
probabilities of X2 given X1
from Example 1.16, where
the correlation coefficient is
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Table 1.2 Marginal probability mass functions of Example 1.16

X2 = 10 X2 = 20 X2 = 30 f1(·)
X1 = 1 0.28 0.08 0.04 0.4
X1 = 2 0.04 0.12 0.04 0.2
X1 = 3 0.04 0.08 0.28 0.4

f2(·) 0.36 0.28 0.36

The following facts should not be difficult to verify: μ1 = 2.0, σ2
1 = 0.8, μ2 =

20.0, σ2
2 = 72.0, and E[X1X2] = 44.8. Therefore the correlation coefficient of X1 and

X2 is given by

ρ =
44.8−2×20√

0.8×72
= 0.632 .

The conditional probabilities will help verify the intuitive concept of a positive cor-
relation coefficient. Figure 1.16 contains a graph illustrating the conditional prob-
abilities of X2 given various values of X1; the area of each circle in the figure is
proportional to the conditional probability. Thus, the figure gives a visual represen-
tation that as X1 increases, it is likely (but not necessary) that X2 will increase. For
example, the top right-hand circle represents Pr{X2 = 30|X1 = 3} = 0.7, and the
middle right-hand circle represents Pr{X2 = 20|X1 = 3} = 0.2.

As a final example, we switch the top and middle right-hand circles in Fig. 1.16
so that the appearance is not so clearly linear. (That is, let Pr{X1 = 3,X2 = 20} =
0.28, Pr{X1 = 3,X2 = 30} = 0.08, and all other probabilities the same.) With this
change, μ1 and σ2

1 remain unchanged, μ2 = 18, σ2
2 = 48.0, cov(X1,X2) = 2.8 and

the correlation coefficient is ρ = 0.452. Thus, as the linear relationship between X1

and X2 weakens, the value of ρ becomes smaller. ��
If the random variables X and Y have a linear relationship (however “fuzzy”),

their correlation coefficient will be non-zero. Intuitively, the square of the corre-
lation coefficient, ρ2, indicates that amount of variability that is due to that linear
relationship. For example, suppose that the correlation between X and Y is 0.8 so
that ρ2 = 0.64. Then 64% of the variability in Y is due the variability of X through
their linear relationship.

Example 1.17. Let X1 and X2 denote two discrete random variables, where X1 ranges
from 1 to 3 and X2 ranges from 10 to 30. Their joint and marginal pmf’s are given
in Table 1.3.
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Fig. 1.17 Graphical rep-
resentation for conditional
probabilities of X2 given X1
from Example 1.17, where the
correlation coefficient is zero
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Table 1.3 Marginal probability mass functions of Example 1.17

X2 = 10 X2 = 20 X2 = 30 f1(·)
X1 = 1 0.28 0.08 0.04 0.4
X1 = 2 0.00 0.02 0.18 0.2
X1 = 3 0.28 0.08 0.04 0.4

f2(·) 0.56 0.18 0.26

Again, we give the various measures and allow the reader to verify their accuracy:
μ1 = 2, μ2 = 17, and E[X1X2] = 34. Therefore the correlation coefficient of X1 and
X2 is zero so there is no linear relation between X1 and X2; however, the two random
variables are clearly dependent. If X1 is either one or three, then the most likely value
of X2 is 10; whereas, if X1 is 2, then it is impossible for X2 to have the value of 10;
thus, the random variables must be dependent. If you observe the representation of
the conditional probabilities in Fig. 1.17, then the lack of a linear relationship is
obvious. ��

• Suggestion: Do Problems 1.20–1.25.

1.6 Combinations of Random Variables

This probability review is concluded with a discussion of a problem type that will be
frequently encountered in the next several chapters; namely, combinations of ran-
dom variables. The properties of the sum of a fixed number of random variables is
a straightforward generalization of previous material; however when the sum has
a random number of terms, an additional variability factor must be taken into ac-
count. The final combination discussed in this section is called a mixture of random
variables. An example of a mixture is the situation where the random processing
time at a machine will be from different probability distributions based on the (ran-
dom) product type being processed. Each of these three combinations of random
variables are considered in turn. The material in this section is taken from [3], and
is especially useful in the queueing chapters.
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1.6.1 Fixed Sum of Random Variables

Consider a collection of n random variables, X1,X2, · · · ,Xn and let their sum be
denoted by S; namely,

S =
n

∑
i=1

Xi . (1.25)

By a generalization of Property 1.3, we have

E[S] = E[X1 +X2 + · · ·+Xn]
= E[X1]+E[X2]+ · · ·+E[Xn] . (1.26)

Note that (1.26) is valid even if the random variables are not independent.
The variance of the random variable S is obtained in a similar manner to the

expected value

V [S] = E[(S−E[S])2]
= E[S2]−E[S]2

= E[(X1 +X2 + · · ·+Xn)2]− (E[X1]+E[X2]+ · · ·+E[Xn])2

=
n

∑
i=1

E[X2
i ]+2

n

∑
i=1

n

∑
j>i

E[XiXj]− (E[X1]+E[X2]+ · · ·+E[Xn])2

=
n

∑
i=1

(
E[X2

i ]−E[Xi]2
)
+2

n

∑
i=1

n

∑
j>i

(E[XiXj]−E[Xi]E[Xj])

=
n

∑
i=1

V [Xi]+2
n

∑
i=1

n

∑
j>i

cov[Xi,Xj] . (1.27)

Notice that when the random variables are pair-wise independent, i.e., Xi and Xj are
independent for all i and j, then E[XiXj] = E[Xi]E[Xj] and Property 1.6 is general-
ized indicating that the variance of the sum of n independent random variables is the
sum of the individual variances. In addition, when X1, · · · ,Xn are independent and
identically distributed (called i.i.d.), we have that

E[S] = nE[X1] (1.28)

V [S] = nV [X1] .

1.6.2 Random Sum of Random Variables

Before discussing the random sum of random variables, we need a property of con-
ditional expectations. For this discussion we follow the development in [4] in which
these properties are developed assuming discrete random variables because the dis-
crete case is more intuitive than the continuous case. (Although the development
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below only considers the discrete case, our main result — given as Property 1.9 —
is true for both discrete and continuous random variables.)

Let Y and X be two random variables. The conditional probability that the ran-
dom variable Y takes on a value b given that the random variable X takes the value
a is written as

Pr{Y = b|X = a} =
Pr{Y = b,X = a}

Pr{X = a} , if Pr{X = a} �= 0

(see Definition 1.16). Thus, the conditional expectation of Y given that X = a
changes as the value a changes so it is a function, call it g, of a; namely,

E[Y |X = a] = ∑
b

bPr{Y = b|X = a} = g(a) .

Hence, the conditional expectation of Y given X is a random variable since it de-
pends on the value of X , expressed as

E[Y |X ] = g(X) . (1.29)

Taking the expectation on both sides of (1.29), yields the (unconditional) expecta-
tion of Y and gives the following important property.

Property 1.9. Let Y and X be any two random variables with finite expec-
tation. The conditional expectation of Y given X is a random variable with
expectation given by

E [E[Y |X ] ] = E[Y ] .

Property 1.9 can now be used to obtain the properties of a random sum of random
variables. Let S be defined by

S =
N

∑
i=1

Xi ,

where X1,X2, · · · is a sequence of i.i.d. random variables, and N is a nonnegative
discrete random variable independent of each Xi. (When N = 0, the random sum is
interpreted to be zero.) For a fixed n, Eq. (1.28) yields

E

[
N

∑
i=1

Xi|N = n

]

= nE[X1] , thus

E

[
N

∑
i=1

Xi|N
]

= NE[X1] .

The expected value of the random sum can be derived from the above result using
Property 1.9 regarding conditional expectations as follows:
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E[S] = E

[

E

[
N

∑
i=1

Xi|N
]]

= E[NE[X1] ]
= E[N]E[X1] .

Note that the final equality in the above arises using Property 1.6 regarding inde-
pendence and the fact that each random variable in an i.i.d. sequence has the same
mean.

We obtain the variance of the random variable S in a similar fashion, using V [S] =
E[S2]−E[S]2 but we shall leave its derivation for homework with some hints (see
Problem 1.28). Thus, we have the following property:

Property 1.10. Let X1,X2, · · · be a sequence of i.i.d. random variables where
for each i, E[Xi] = μ and V [Xi] = σ2. Let N be a nonnegative discrete random
variable independent of the i.i.d. sequence, and let S = ∑N

i=1 Xi. Then

E[S] = μE[N]
V [S] = σ2E[N]+ μ2V [N] .

Notice that the squared coefficient of variation of the random sum can also be easily
written as

C2[S] = C2[N]+
C2[X ]
E[N]

, where C2[X ] =
σ2

μ2 .

1.6.3 Mixtures of Random Variables

The final type of random variable combination that we consider is a mixture of ran-
dom variables. For example, consider two products processed on the same machine,
where the two product types have different processing characteristics. Specifically,
let X1 and X2 denote the random processing times for types 1 and 2, respectively, and
then let T denote the processing time for an arbitrarily chosen part. The processing
sequence will be assumed to be random with p1 and p2 being the probability that
type 1 and type 2, respectively, are to be processed. In other words, T will equal X1

with probability p1 and T will equal X2 with probability p2. Intuitively, we have the
following relationship.

T =
{

X1 with probability p1,
X2 with probability 1− p1 .

Thus, T is said to be a mixture of X1 and X2. In generalizing this concept, we have
the following definition.
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Definition 1.21. Let X1, · · · ,Xn be a sequence of independent random variables and
let I be a positive discrete random variable with range 1, · · · ,n independent of the
X1, · · · ,Xn sequence. The random variable T is called a mixture of random variables
with index I if it can be written as

T = XI .

��
Making use of Property 1.9, it should not be too difficult to show the following
property.

Property 1.11. Let T be a mixture of X1, · · · ,Xn where the mean of Xi is μi

and variance of Xi is σ2
i . Then

E[T ] =
n

∑
i=1

piμi

E[T 2] =
n

∑
i=1

pi
(
σ2

i + μ2
i

)
,

where Pr{I = i} = pi are the probabilities associated with the index.

Notice that the above property gives the first and second moment, not the variance
directly. If the variance is desired, the equation V [T ] = E[T 2]−E[T ]2 must be used.

• Suggestion: Do Problems 1.26–1.28.

Appendix

In this appendix, two numerical problems are discussed: the computation of the
gamma function (Eq. 1.17) and the determination of the shape and scale parameters
for the Weibull distribution. We give suggestions for those using Microsoft Excel
and those who are interested in doing the computations within a programming en-
vironment.

The gamma function: For Microsoft Excel users, the gamma function is eval-
uated by first obtaining the natural log of the function since Excel provides an
automatic function for the log of the gamma instead of the gamma function it-
self. For example, to obtain the gamma function evaluated at 1.7, use the formula
=EXP(GAMMALN(1.7)). This yields a value of 0.908639.

For programmers who need the gamma function, there are some good approxi-
mations available. A polynomial approximation taken from [5, p. 155] is

Γ (1+ x) ≈ 1+a1x+a2x2 + · · ·+a5x5 for 0 ≤ x ≤ 1, (1.30)
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where the constants are a1 =−0.5748646, a2 = 0.9512363, a3 =−0.6998588, a4 =
0.4245549, and a5 =−0.1010678. (Or if you need additional accuracy, an eight term
approximation is also available in [5] or [1, p. 257].) If it is necessary to evaluate
Γ (x) for x < 1 then use the relationship

Γ (x) =
1
x

Γ (1+ x) . (1.31)

If it is necessary to evaluate Γ (n+x) for n > 1 and 0 ≤ x ≤ 1, then use the relation-
ship:

Γ (n+ x) = (n−1+ x)(n−2+ x) · · ·(1+ x)Γ (1+ x) . (1.32)

Example 1.18. Suppose we wish to compute Γ (0.7). The approximation given
by (1.30), yields a result of Γ (1.7) = 0.9086. Applying (1.31) yields Γ (0.7) =
0.9086/0.7 = 1.298. Now suppose that we wish to obtain the gamma function eval-
uated at 5.7. From (1.32), we have Γ (5.7) = 4.7×3.7×2.7×1.7×0.9086 = 72.52.

��

Weibull parameters: The context for this section is that we know the first two
moments of a Weibull distribution (1.20) and would like to determine the shape and
scale parameters. Notice that the squared coefficient of variation can be written as
C2[X ] = E[X2]/(E[X ])2−1; thus, the shape parameter is the value of α that satisfies

C2[X ]+1 =
Γ (1+2/α)

(Γ (1+1/α))2 , (1.33)

and the scale parameter is then determined by

β =
E[X ]

Γ (1+1/α)
(1.34)

Example 1.19. Suppose we would like to find the parameters of the Weibull random
variable with mean 100 and standard deviation 25. We first note that C2[X ] + 1 =
1.0625. We then fill in a spreadsheet with the following values and formulas.

A B
1 alpha-guess 1
2 first moment term =EXP(GAMMALN(1+1/B1))
3 second moment term =EXP(GAMMALN(1+2/B1))
4 ratio = B3/(B2*B2)
5 mean 100
6 beta-value =B5/B2

The GoalSeek tool (found under the “Tools” menu in Excel 2003 and under the
“What-If” button on the Data Tab for Excel 2007) is ideal for solving (1.33). When
GoalSeek is clicked, a dialog box appears with three parameters. For the above
spreadsheet, the “Set cell” parameter is set to B4, the “To value” parameter is set to
1.0625 (i.e., the value of the C2[X ]+ 1), and the “By changing cell” parameter is



Problems 37

set to B1. The results should be that the B1 cell is changed to 4.519 and the B6 cell
is changed to 109.55. ��

Problems

1.1. A manufacturing company ships (by truckload) its product to three different
distribution centers on a weekly basis. Demands vary from week to week ranging
over 0, 1, and 2 truckloads needed at each distribution center. Conceptualize an
experiment where a week is selected and then the number of truckloads demanded
at each of the three centers are recorded.
(a) Describe the sample space, i.e., list all outcomes.
(b) How many possible different events are there?
(c) Write the event that represents a total of three truckloads are needed for the week.
(d) If each event containing a single outcome has the same probability, what is the
probability that a total demand for three truckloads will occur?

1.2. A library has classified its books into fiction and nonfiction. Furthermore, all
books can also be described as hardback and paperback. As an experiment, we shall
pick a book at random and record whether it is fiction or nonfiction and whether it
is paperback or hardback.
(a) Describe the sample space, i.e., list all outcomes.
(b) Describe the event space, i.e., list all events.
(c) Define a probability measure such that the probability of picking a nonfiction
paperback is 0.15, the probability of picking a nonfiction book is 0.30, and the prob-
ability of picking a fiction hardback is 0.65.
(d) Using the probabilities from part (c), find the probability of picking a fiction
book given that the book chosen is known to be a paperback.

1.3. Let N be a random variable describing the number of defective items in a box
from Example 1.1. Draw the graph for the cumulative distribution function of N and
give its pmf.

1.4. Let X be a random variable with cumulative distribution function given by

G(a) =

⎧
⎨

⎩

0 for a < 0,
a2 for 0 ≤ a < 1,
1 for a ≥ 1.

.

(a) Give the pdf for X .
(b) Find Pr{X ≥ 0.5}.
(c) Find Pr{0.5 < X ≤ 0.75}.
(d) Let X1 and X2 be independent random variables with their CDF given by G(·).
Find Pr{X1 +X2 ≤ 1}.

1.5. Let T be a random variable with pdf given by
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f (t) =
{

0 for t < 0.5,

ke−2(t−0.5) for t ≥ 0.5.
.

(a) Find k.
(b) Find Pr{0.25 ≤ T ≤ 1}.
(c) Find Pr{T ≤ 1.5}.
(d) Give the cumulative distribution function for T .
(e) Let the independent random variables T1 and T2 have their pdf given by f (·).
Find Pr{1 ≤ T1 +T2 ≤ 2}.
(f) Let Y = X + T , where X is independent of T and is defined by the previous
problem. Give the pdf for Y .

1.6. Let U be a random variable with pdf given by

h(u) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for u < 0,
u for 0 ≤ u < 1,

2−u for 1 ≤ u < 2,
0 for u ≥ 2.

.

(a) Find Pr{0.5 < U < 1.5}.
(b) Find Pr{0.5 ≤U ≤ 1.5}.
(c) Find Pr{0 ≤ U ≤ 1.5, 0.5 ≤ U ≤ 2}. (A comma acts as an intersection and is
read as an “and”.)
(d) Give the cumulative distribution function for U and calculate Pr{U ≤ 1.5}−
Pr{U ≤ 0.5}.

1.7. An independent roofing contractor has determined that the number of jobs ob-
tained for the month of September varies. From previous experience, the probabil-
ities of obtaining 0, 1, 2, or 3 jobs have been determined to be 0.1, 0.35, 0.30, and
0.25, respectively. The profit obtained from each job is $300. What is the expected
profit for September?

1.8. There are three investment plans for your consideration. Each plan calls for
an investment of $25,000 and the return will be one year later. Plan A will return
$27,500. Plan B will return $27,000 or $28,000 with probabilities 0.4 and 0.6, re-
spectively. Plan C will return $24,000, $27,000, or $33,000 with probabilities 0.2,
0.5, and 0.3, respectively. If your objective is to maximize the expected return, which
plan should you choose? Are there considerations that might be relevant other than
simply the expected values?

1.9. Let the random variables A,B,C denote the returns from investment plans A,
B, and C, respectively, from the previous problem. What are the mean and standard
deviations of the three random variables?

1.10. Let N be a random variable with cumulative distribution function given by
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F(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x < 1,
0.2 for 1 ≤ x < 2,
0.5 for 2 ≤ x < 3,
0.8 for 3 ≤ x < 4,
1 for x ≥ 4.

Find the mean and standard deviation of N.

1.11. Prove that the E[(X − μ)2] = E[X2]− μ2 for any random variable X whose
mean is μ .

1.12. Find the mean and standard deviation for X as defined in Problem 1.4.

1.13. Show using integration by parts that

E[X ] =
∫ b

0
[1−F(x)]dx, for 0 ≤ a ≤ x ≤ b ,

where F is the CDF of a random variable with support on the interval [a,b] with
a ≥ 0. Note that the lower integration limit is 0 not a. (A random variable is zero
outside its interval of support.)

1.14. Find the mean and standard deviation for U as defined in Problem 1.6. Also,
find the mean and standard deviation using the last two properties mentioned in
Property 1.4.

Use the appropriate distribution from Sect. 1.4 to answer the questions in Prob-
lems 1.15–1.18.

1.15. A manufacturing company produces parts, 97% of which are within specifi-
cations and 3% are defective (outside specifications). There is apparently no pattern
to the production of defective parts; thus, we assume that whether or not a part is
defective is independent of other parts.
(a) What is the probability that there will be no defective parts in a box of 5?
(b) What is the probability that there will be exactly 2 defective parts in a box of 5?
(c) What is the probability that there will be 2 or more defective parts in a box of 5?
(d) Use the Poisson distribution to approximate the probability that there will be 4
or more defective parts in a box of 40.
(e) Use the normal distribution to approximate the probability that there will be 20
or more defective parts in a box of 400.

1.16. A store sells two types of tables: plain and deluxe. When an order for a table
arrives, there is an 80% chance that the plain table will be desired.
(a) Out of 5 orders, what is the probability that no deluxe tables will be desired?
(b) Assume that each day 5 orders arrive and that today (Monday) an order came
for a deluxe table. What is the probability that the first day in which one or more
deluxe tables are again ordered will be in three more days (Thursday)? What is the
expected number of days until a deluxe table is desired?
(c) Actually, the number of orders each day is a Poisson random variable with a
mean of 5. What is the probability that exactly 5 orders will arrive on a given day?
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1.17. A vision system is designed to measure the angle at which the arm of a robot
deviates from the vertical; however, the vision system is not totally accurate. The
results from observations is a continuous random variable with a uniform distribu-
tion. If the measurement indicates that the range of the angle is between 9.7 and
10.5 degrees, what is the probability that the actual angle is between 9.9 and 10.1
degrees?

1.18. In an automated soldering operation, the location at which the solder is placed
is very important. The deviation from the center of the board is a normally dis-
tributed random variable with a mean of 0 inches and a standard deviation of 0.01
inches. (A positive deviation indicates a deviation to the right of the center and a
negative deviation indicates a deviation to the left of the center.)
(a) What is the probability that on a given board the actual location of the solder
deviated by less than 0.005 inches (in absolute value) from the center?
(b) What is the probability that on a given board the actual location of the solder
deviated by more than 0.02 inches (in absolute value) from the center?

1.19. The purpose of this problem is to illustrate the dangers of statistics, espe-
cially with respect to categorical data and the use of conditional probabilities. In
this example, the data may be used to support contradicting claims, depending on
the inclinations of the person doing the reporting! The population in which we are
interested is made up of males and females, those who are sick and not sick, and
those who received treatment prior to becoming sick and who did not receive prior
treatment. (In the questions below, assume that the treatment has no adverse side
effects.) The population numbers are as follows.

Males
sick not sick

treated 200 300
not treated 50 50

.

Females
sick not sick

treated 50 100
not treated 200 370

.

(a) What is the conditional probability of being sick given that the treatment was
received and the patient is a male?
(b) Considering only the population of males, should the treatment be recom-
mended?
(c) Considering only the population of females, should the treatment be recom-
mended?
(d) Considering the entire population, should the treatment be recommended?

1.20. Let X and Y be two discrete random variables where their joint pm f

f (a,b) = Pr{X = a,Y = b}
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is defined by
0 1 2

10 0.01 0.06 0.03
11 0.02 0.12 0.06
12 0.02 0.18 0.10
13 0.07 0.24 0.09

with the possible values for X being 10 through 13 and the possible values for Y
being 0 through 2.
(a) Find the marginal pmf’s for X and Y and then find the Pr{X = 11} and E[X ].
(b) Find the conditional pmf for X given that Y = 1 and then find the Pr{X = 11|Y =
1} and find the E[X |Y = 1].
(c) Are X and Y independent? Why or why not?
(d) Find Pr{X = 13,Y = 2}, Pr{X = 13}, and Pr{Y = 2}. (Now make sure your
answer to part (c) was correct.)

1.21. Let S and T be two continuous random variables with joint pdf given by

f (s, t) = kst2 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 ,

and zero elsewhere.
(a) Find the value of k.
(b) Find the marginal pdf’s for S and T and then find the Pr{S ≤ 0.5} and E[S].
(c) Find the conditional pdf for S given that T = 0.1 and then find the Pr{S≤ 0.5|T =
0.1} and find the E[S|T = 0.1].
(d) Are S and T independent? Why or why not?

1.22. Let U and V be two continuous random variables with joint pdf given by

g(u,v) = e−u−v for u ≥ 0, v ≥ 0 ,

and zero elsewhere.
(a) Find the marginal pdf’s for U and V and then find the Pr{U ≤ 0.5} and E[U ].
(b) Find the conditional pdf for U given that V = 0.1 and then find the Pr{U ≤
0.5|V = 0.1} and find the E[U |V = 0.1].
(c) Are U and V independent? Why or why not?

1.23. This problem is to consider the importance of keeping track of history when
discussing the reliability of a machine and to emphasize the meaning of Eq. (1.15).
Let T be a random variable that indicates the time until failure for the machine.
Assume that T has a uniform distribution from zero to two years and answer the
question, “What is the probability that the machine will continue to work for at least
three more months?”
(a) Assume the machine is new.
(b) Assume the machine is one year old and has not yet failed.
(c) Now assume that T has an exponential distribution with mean one year, and
answer parts (a) and (b) again.
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(d) Is it important to know how old the machine is in order to answer the question,
“What is the probability that the machine will continue to work for at least three
more months?”

1.24. Determine the correlation coefficient for the random variables X and Y from
Example 1.13.

1.25. A shipment containing 1,000 steel rods has just arrived. Two measurements
are of interest: the cross-sectional area and the force that each rod can support. We
conceptualize two random variables: A and B. The random variable A is the cross-
sectional area, in square centimeters, of the chosen rod, and B is the force, in kilo-
Newtons, that causes the rod to break. Both random variables can be approximated
by a normal distribution. (A generalization of the normal distribution to two random
variables is called a bivariate normal distribution.) The random variable A has a
mean of 6.05 cm2 and a standard deviation of 0.1 cm2. The random variable B has a
mean of 132 kN and a standard deviation of 10 kN. The correlation coefficient for A
and B is 0.8.

To answer the questions below use the fact that if X1 and X2 are bivariate normal
random variables with means μ1 and μ2, respectively, variances σ1 and σ2, respec-
tively, and a correlation coefficient ρ , the following hold:

• The marginal distribution of X1 is normal.
• The conditional distribution of X2 given X1 is normal.
• The conditional expectation is given by

E[X2|X1 = x] = μ2 +ρ
σ2

σ1
(x−μ1) .

• the conditional variance is given by

V [X2|X1 = x] = σ2
2 (1−ρ2) .

(a) Specifications call for the rods to have a cross-sectional area of between 5.9 cm2

and 6.1 cm2. What is the expected number of rods that will have to be discarded
because of size problems?
(b) The rods must support a force of 31 kN, and the engineer in charge has decided to
use a safety factor of 4; therefore, design specifications call for each rod to support
a force of at least 124 kN. What is the expected number of rods that will have to be
discarded because of strength problems?
(c) A rod has been selected, and its cross-sectional area measures 5.94 cm2. What is
the probability that it will not support the force required in the specifications?
(d) A rod has been selected, and its cross-sectional area measures 6.08 cm2. What is
the probability that it will not support the force required in the specifications?

1.26. Using Property 1.9, show the following relationship holds for two dependent
random variables, X and Y :

V [Y ] = E[V [Y |X ] ] + V [E[Y |X ] ] .
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1.27. Let X1 and X2 be two independent Bernoulli random variables with E[X1] =
0.8 and E[X2] = 0.6. Let S = X1 +X2.
(a) Give the joint pmf for S and X1.
(b) Give the marginal pmf for S.
(c) Give the correlation coefficient for S and X1.
(d) Give the conditional pmf for S given X1 = 0 and X1 = 1.
(e) Demonstrate that Property 1.9 is true where Y = S and X = X1.
(f) Demonstrate that the property given in Problem 1.26 is true where Y = S and
X = X1.

1.28. Derive the expression for the variance in Property 1.10. For this proof, you
will need to use the following two equations:

E[S2] = E

⎡

⎣E

⎡

⎣
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∑
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⎤
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4. Çinlar, E. (1975). Introduction to Stochastic Processes, Prentice-Hall, Inc., Englewood
Cliffs, NJ.

5. Hastings, Jr., C. (1955). Approximations for Digital Computers, Princeton University Press,
Princeton, NJ.

6. Johnson, N.L., Kemp, A.W., and Kotz, S. (2005). Univariate Discrete Distributions, 3rd ed.,
John Wiley Sons, New York.

7. Johnson, N.L., Kotz, S, and Balakrishnan, N. (1994). Continuous Univariate Distributions,
Volume 1, 2nd ed., John Wiley Sons, New York.

8. Johnson, N.L., Kotz, S, and Balakrishnan, N. (1995). Continuous Univariate Distributions,
Volume 2, 2nd ed., John Wiley Sons, New York.

9. Law, A.M. (2007). Simulation Modeling and Analysis, 4th ed., McGraw Hill, Boston.
10. Rahman, N.A. (1968). A Course in Theoretical Statistics, Hafner Publishing Co., New York.



Chapter 2
Basics of Monte Carlo Simulation

Simulation is one of the most widely used probabilistic modeling tools in industry. It
is used for the analysis of existing systems and for the selection of hypothetical sys-
tems. For example, suppose a bank has been receiving complaints from customers
regarding the length of time that customers are spending in line waiting at the drive-
in window. Management has decided to add some extra windows; they now need
to decide how many to add. Simulation models can be used to help management in
determining the number of windows to add. Even though the main focus of this text-
book is towards building analytical (as opposed to simulation) models, there will be
times when the physical system is too complicated for analytical modeling; in such
a case, simulation would be an appropriate tool. The idea behind simulation, applied
to this banking problem, is that a computer program would be written to generate
randomly arriving customers, and then process each customer through the drive-in
facility. In such a manner, the effect of having different numbers of windows could
be determined before the expense of building them is incurred. Or, to continue this
example, it may be possible (after covering Chap. 7) to build an analytical model of
the banking problem; however, the analyst may want to furnish additional evidence
for the validity of the analytical model. (When a model is to be used for decision
making that involves large capital expenditures, validation efforts are always time
consuming and essential.) A simulation could be built to model the same system
as the analytical model describes. Then, if the two models agree, the analyst would
have confidence in their use.

A final reason for simulation is that it can be used to increase understanding of the
process being modeled. In fact, this is the reason that this introduction to simulation
is the second chapter. As we introduce various aspects of random processes, simula-
tion will be used to help the intuitive understanding of the dynamics of the process.
It is impossible to build a simulation of something not understood, so just the pro-
cess of developing a simulation of a specific process will force an understanding of
that process.

The term “Monte Carlo” is usually applied to a simulation that does not involve
the passage of time; thus, this introductory chapter gives the basics of simulation
mainly being concerned with the generation of random numbers and random vari-

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 45
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ates. Because of the prevalence of random number generators within many different
types of software, the sections on random numbers can be skipped. The section deal-
ing with generating random variates should not be skipped since it will be used in
later chapters to illustrate non-uniform distributions using Excel. A more detailed
treatment of simulation is postponed until Chap. 9. In particular, the use of future
event lists and the statistical analyses of simulation output are discussed in the sec-
ond simulation chapter.

One important topic that will not be discussed in this book is the use of a special
simulation language. To facilitate the building of simulations, many special purpose
simulation languages have been developed. Some of these languages are very easy
to learn, and we recommend that students interested in simulation investigate the
various simulation languages. For our use, Excel will be sufficient for demonstrating
these concepts.

2.1 Simulation by Hand

In this section, we introduce the basic concepts of simulation through two simple ex-
amples. The examples use simulation to determine properties of simple probabilistic
events. Although the examples can be solved using analytical equations, they should
serve to illustrate the concept of simulation.

Example 2.1. Consider a microwave oven salesperson who works in a busy retail
store. Often people come into the department merely to browse, while others are
interested in purchasing an oven. Of all the people who take up the salesperson’s
time, 50 percent end up buying one of the three models available and 50 percent
do not make a purchase. Of those customers who actually buy an oven, 25 percent
purchase the plain model, 50 percent purchase the standard model, and 25 percent
purchase the deluxe model. The plain model yields a profit of $30, the standard
model yields a profit of $60, and the deluxe model yields a profit of $75.

The salesperson wishes to determine the average profit per customer. (We as-
sume that the salesperson does not have a mathematical background and therefore
is unable to calculate the exact expected profit per customer. Hence, an alternative to
a mathematical computation for estimating the profit must be used.) One approach
for estimating the average profit would be to keep records of all the customers who
talk to the salesperson and, based on the data, calculate an estimate for the expected
profit per customer. However, there is an easier and less time-consuming method:
the process can be simulated.

The basic concept in simulation is to generate random outcomes (for example, we
might toss a coin or roll dice to generate outcomes) and then associate appropriate
physical behavior with the resultant (random) outcomes. To simulate the microwave
oven buying decision, a (fair) coin is tossed with a head representing a customer
and a tail representing a browser; thus, there is a 50–50 chance that an individual
entering the department is a customer. To simulate the type of microwave that is
bought by an interested customer, two fair coins are tossed. Two tails (which occur



2.1 Simulation by Hand 47

25 percent of the time) represent buying the plain model, a head and a tail (which
occur 50 percent of the time) represent buying the standard model, and two heads
(which occur 25 percent of the time) represent buying the deluxe model. Table 2.1
summarizes the relationship between the random coin tossing results and the phys-
ical outcomes being modeled. Table 2.2 shows the results of repeating this process
20 times to simulate 20 customers and their buying decisions.

Table 2.1 Probability laws for Example 2.1

Random value Simulated outcome
Head Customer
Tail Browser

Tail-tail Buy plain
Tail-head Buy standard
Head-tail Buy standard

Head-head Buy deluxe

Table 2.2 Simulated behavior of 20 customers for Example 2.1

Customer Coin Interested? Two-coin Profit Cumulative Average
number toss toss profit profit

1 T no – 0 0 0.00
2 H yes TH 60 60 30.00
3 H yes HH 75 135 45.00
4 H yes TH 60 195 48.75
5 T no – 0 195 39.00
6 T no – 0 195 32.50
7 H yes TT 30 225 32.14
8 T no – 0 225 28.13
9 H yes HT 60 285 31.67
10 H yes HH 75 360 36.00
11 H yes TT 30 390 35.45
12 H yes TT 30 420 35.00
13 T no – 0 420 32.31
14 T no – 0 420 30.00
15 T no – 0 420 28.00
16 H yes TH 60 480 30.00
17 H yes HT 60 540 31.76
18 T no – 0 540 30.00
19 H yes HH 75 615 32.37
20 H yes HH 75 690 34.50

If we take the final cumulative profit and divide it by the number of customers,
the estimate for the expected profit per customer is calculated to be $34.50. Two
facts are immediately obvious. First, the number of interested customers was 12 out
of 20, but because there is a 50-50 chance that any given customer will be interested,
we expect only 10 out of 20. Furthermore, utilizing some basic probability rules, a
person knowledgeable in probability would determine that the theoretical expected
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profit per customer is only $28.125. Thus, it is seen that the simulation does not
provide the exact theoretical values sought but will provide reasonable estimates if
enough random numbers are used. ��

The simulation is, in fact, just a statistical experiment. This point cannot be over-
emphasized. The results of a simulation involving random numbers must be inter-
preted statistically. In the next chapter, a summary of the basic statistical concepts
needed for analyzing simulations as well as some stochastic processes will be given.
Chapter 9 gives the specific application of statistics to the analysis of simulation
output. For now it is important to realize that the simulation is simply a statistical
experiment performed so that the expense and time needed to perform and/or to ob-
serve the actual process can be avoided. For instance, this experimental evaluation
might require less than an hour to accomplish, whereas obtaining an estimate of the
theoretical profit by observing the actual process for 20 customers might take days.

Example 2.2. Let us consider a game taken from a popular television game show.
The contestant is shown three doors, labeled A, B, and C, and told that behind one
of the three doors is a pot of gold worth $120,000; there is nothing behind the other
two doors. The contestant is to pick a door. After the door is selected, the host will
pick from the other two doors one with an empty room. The contestant will then be
given the choice of switching doors or keeping the originally selected door. After the
contestant decides whether or not to switch, the game is over and the contestant gets
whatever is behind the door finally chosen. The question of interest is “should the
contestant switch when given the option?” We simulate here the “no-switch” option
and refer to the homework Problem 2.2 for the “switch” option. (It is interesting to
note that in the column “Ask Marilyn” appearing in Parade magazine’s September
9, 1990, issue, the columnist, Marilyn vos Savant, indicated that it is always better
to switch when given the choice. Her assertion to switch generated an estimated
10,000 responses and 92% of those responding (including many PhDs) wrote to
say that Marilyn was wrong! After your simulation, you will be able to make an
informed decision as to Marilyn’s assertion. See [7, pp. 42–45] for an excellent and
entertaining discussion of this game based on TV’s “Let’s Make a Deal”.)

To simulate the “no-switch” policy, it is necessary to simulate the random event
of placing the gold behind a door, and simulate the event of selecting a door. Both
events will be simulated by rolling a single die and interpreting the outcome accord-
ing to Table 2.3. Since a switch is never made, it is not necessary to simulate the
host selecting a door after the initial selection.

Table 2.3 Random events for the “pot-of-gold” game

Random value of die Simulated outcome
1 or 2 Choose Door A
3 or 4 Choose Door B
5 or 6 Choose Door C
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Table 2.4 Simulated results from the “pot-of-gold” game using a no-switch policy

Game Die Door Die Door Yield Cumulative Average
number toss for gold toss chosen

1 5 C 2 A 0 0 0
2 3 B 5 C 0 0 0
3 5 C 4 B 0 0 0
4 3 B 2 A 0 0 0
5 2 A 1 A $120,000 $120,000 $24,000
6 1 A 6 C 0 $120,000 $20,000
7 6 C 4 B 0 $120,000 $17,143
8 4 B 4 B $120,000 $240,000 $30,000
9 5 C 5 C $120,000 $360,000 $40,000
10 5 C 3 B 0 $360,000 $36,000
11 4 B 2 A 0 $360,000 $32,727
12 3 B 4 B $120,000 $480,000 $40,000
13 2 A 4 B 0 $480,000 $36,923
14 1 A 3 B 0 $480,000 $34,286
15 1 A 3 B 0 $480,000 $32,000
16 4 B 6 C 0 $480,000 $30,000
17 5 C 6 C $120,000 $600,000 $35,294
18 4 B 4 B $120,000 $720,000 $40,000
19 1 A 6 C 0 $720,000 $37,895
20 2 A 4 B 0 $720,000 $36,000

The results from twenty simulated games are shown in Table 2.4. Based on these
simulated results of the game, the estimate for the expected yield is $36,000 per
game. (Of course, it is easy to calculate that the actual expected yield is $40,000 per
game, which illustrates that simulations only yield statistical estimates.) ��

As can be seen from these two examples, a difficulty in simulation is deciding
what information to maintain, and then keeping track of that information. Once the
decision is made as to what information is relevant, the simulation itself is straight-
forward although it can be time consuming to run.
• Suggestion: Do Problems 2.1 and 2.2.

2.2 Generation of Random Numbers

System simulation depends heavily on random number generation to model the
stochastic nature of the systems being studied. The examples in the previous section
simulated random outcomes by having the modeler physically toss a coin or a die.
A computer, by contrast, must simulate random outcomes by generating numbers
to give the appearance of randomness. This section deals with techniques for gener-
ating random numbers which are uniformly distributed between 0 and 1. The next
section deals with methods for using random numbers to produce values according
to general probability laws (i.e., randomness not restricted to uniform). Future chap-
ters will use simulation to illustrate various random processes by taking advantage
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of the random number generator of Excel. Since Excel has its own random number
generator, this section may be skipped, although the next section dealing with the
more general random variates would be worthwhile to read.

Most mathematical table books contain several pages of random numbers. Such
random numbers have three properties: (1) the numbers are between zero and one,
(2) the probability of selecting a number in the interval (a,b) is equal to (b− a),
where 0 ≤ a < b ≤ 1, and (3) the numbers are statistically independent. The con-
cept of statistical independence simply means that if several numbers are chosen,
knowledge of the value of one number does not provide information that will help in
predicting the value of another number. Independence, therefore, rules out the possi-
bility of trends or cyclic patterns occurring within a sequence of random numbers. In
terms of probability, these random numbers are thus realizations from a sequence of
independent, identically distributed random variables having a continuous uniform
distribution between zero and one. If random variable from a distribution other than
uniform between 0 and 1 is needed, the numbers are called random variates which
are covered in the next section.

Because a computer can follow only very specific steps, random numbers gen-
erated by a computer are not truly random but are more properly called “pseudo-
random numbers” (although the “pseudo” prefix is usually dropped). Numbers gen-
erated by a computer program or subprogram are, therefore, called “random” if
statistical tests cannot determine the difference between computer-generated num-
bers and truly random sequences of numbers (see the next chapter for some such
statistical tests).

All methods of random number generation in computers begin with an initial
value called the initial random number seed. Each time a random number is de-
sired, the random number seed is used to produce the next random number and
the seed is transformed into another number that becomes the new seed. Thus, the
random number seed is continually changed as the random numbers are generated.
A simulation program must always furnish an initial random number seed. If the
same initial random number seed is used whenever the simulation program is run,
the exact same stream of random numbers will be generated. If a different stream
of random numbers is desired, then a different initial random number seed must be
furnished. In the following, three methods that have been used for random number
generation are presented.

2.2.1 Multiplicative Linear Congruential Generators

One of the most popular methods of generating random numbers until 10 to 15
years ago was the multiplicative linear congruential generator method (abbreviated
MLCG). To define this method, a multiplier (call it a) and a modulus (call it m) must
be given. The random number seed will always be positive and less than the modulus
and the random number associated with the seed is the value of the seed divided by
the modulus. To obtain the new seed, the old seed is multiplied by multiplier. The
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resulting integer might then be larger than the modulus, and if it is too large, it is
divided by the modulus and the remainder is the new seed. The following property
expresses the multiplicative linear congruential method mathematically.

Property 2.1. The MLCG for Random Numbers: Let S0 be an initial ran-
dom number seed with a fixed multiplier denoted by a and fixed modulus m.
Both the initial random number seed and the multiplier must be less than the
modulus. The stream of random number seeds is given by

Sk+1 = (aSk) mod m for k = 0,1, · · · ,

and the associated stream of random numbers is

Rk+1 =
Sk+1

m
for k = 0,1, · · · .

Example 2.3. This first example is clearly absurd, but it should serve to illustrate the
mechanics of an MLCG. Consider a generator with multiplier a = 2 and modulus
m = 7. This multiplier will generate the following stream of “random” numbers
using an initial random number seed of S0 = 3:

S1 = (2×3) mod 7 = 6; and R1 = 6/7 = 0.8571

S2 = (2×6) mod 7 = 5; and R2 = 5/7 = 0.7143

S3 = (2×5) mod 7 = 3; and R3 = 3/7 = 0.4286

S4 = (2×3) mod 7 = 6; and R4 = 6/7 = 0.8571 .

��

There are a few problems with this stream of random numbers. First, the numbers
are not very dense. With a modulus of only 7, at most we can generate the number
1/7, 2/7, etc, so that there is a significant amount of “space” between two close
random numbers. To fix this problems, we simply increase the modulus. A second
problem is that the numbers start repeating themselves after just three values. You
should be able to verify that the next random number that will be generated will
equal 0.7143; in other words, no new numbers will be generated after the first three.
This property is called the period of the generator.

Definition 2.1. The period of a random number generator is the number of seeds
that can be produced before the exact sequence of seeds repeat themselves. ��

You should be able to verify that if the multiplier had been 3, the period would be
6 which is the maximum possible period for an MLCG with modulus of 7. Finally,
for a generator to be reasonable, a stream of these numbers need to be able to “fool”
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a statistician into thinking that the number are from a uniform distribution and in-
dependent. The stream of random numbers generated in the above example would
obviously fool no one!

The modulus for an MLCG should always be a prime number, in which case
it is possible to find a multiplier for which the period of the generator equals the
modulus minus one, called a full period generator. A popular generator for 32-bit
machines used for many years was based on an algorithm by Schrage [9] that gave
a portable code for the MLCG using a modulus of m = 2,147,483,647 and a multi-
plier of a = 16,807. The modulus is 231 −1 which equals the largest signed integer
that can be stored in a 32-bit machine and it is prime. Another multiplier that may
provide better statistical properties for the resulting stream of random numbers is
a = 630,360,016. Notice that the period of these generators is slightly more than
2.1× 109 which seems large; however, with large simulations, especially within a
multi-processor environment, it would be nice to have longer periods.

2.2.2 A Multiple Recursive Generator

It is now well recognized that linear congruential generators for large streams of
random numbers have some weaknesses in their statistical properties, especially as
it relates to the independence of successive numbers in three or more dimensions.
The multiple recursive generators (abbreviated MRG) is an extension of the MLCG
in that instead of the next seed depending only on the previous seed, the next seed
depends on two or more of the previous seeds. The simplest of the fast MRGs sug-
gested by Deng and Lin [2] is the following.

Property 2.2. A simplified MRG for Random Numbers: Let S−1 and S0 be
two initial random number seeds with a fixed multiplier denoted by a and fixed
modulus m. Both the initial random number seed and the multiplier must be
less than the modulus. The stream of random number seeds is given by the
recursion

Sk+1 = (aSk−1 − Sk) mod m for k = 0,1, · · · ,

and the associated stream of random numbers is

Rk+1 =
Sk+1

m
for k = 0,1, · · · .

The advantages of MRGs are that they have better statistical properties than the
MLCGs and they can have much longer periods. Notice that the recursion uses the
difference of two positive numbers so that it is possible to have a negative number
before using the mod operator. When this happens, the modulus is added to the
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number so that a positive number results. (In other words, (−3) mod 7 = 4 and
(−13) mod 7 = 1.)

Example 2.4. Form the MRG from Proposition 2.2 by setting the modulus equal to
7 and the multiplier equal to 4. The first four random numbers using S−1 = 2 and
S0 = 6 are obtained by

S1 = (4×2−6) mod 7 = 2; and R1 = 2/7 = 0.2857

S2 = (4×6−2) mod 7 = 1; and R2 = 1/7 = 0.1429

S3 = (4×2−1) mod 7 = 0; and R3 = 0/7 = 0

S4 = (4×1−0) mod 7 = 4; and R4 = 4/7 = 0.5714 .

��

Notice that it is possible to have zero for a random number with MRGs. If the
stream were continued, you would observe that R6 = 0.8571 as well as R7 = 0.8571.
It is impossible to have two identical consecutive seeds when using an MLCG;
whereas, it is possible for the MRG. The largest possible period for an MLCG with
m = 7 is 6. The period of the generator of Example 2.4 is 48.

When the MRG of Property 2.2 is used on a 32-bit machine, the modulus should
be m = 2,147,483,647. Five multipliers that work well with this modulus, as found
in [2], are 26,403, 33,236, 36,673, 40,851, or 43,693. These values will yield a
period of slightly more than 2.6×1018. In today’s environment where 48 and 64-bit
integer sizes are possible, this MRG should be easy to program.

2.2.3 Composite Generators

The final type of generator to be discussed is a composite generator that essential
combines two other generators. For example, suppose a random number generator
is desired for an 8-bit machine. Since one bit is to be saved to designate the sign
of the number, all integers must be less than 27. If a multiplicate generator is used,
the modulus should be m = 127 since 27 − 1 is a prime1 number. With the proper
choice of the multiplier (there are actually 36 possible choices), a random number
generator can be defined to have a period of 126.

Example 2.5. Now consider two multiplicative generators with a slightly shorter pe-
riod for our 8-bit machine. The first generator has modulus m1 = 113 and multiplier
a1 = 59. Once an initial seed, S0 is defined, the stream of seeds produced will be de-
noted by S1,S2, · · · . The second has modulus m2 = 107 and multiplier a2 = 17. The
initial seed for the second generator will be denoted by T0, with the steam of seeds
given by T1,T2, · · · . These two generators can be combined by taking the difference
of the two seeds to form a new composite seed given by

1 As a point of interest, 127 is called a Mersenne Prime because it is of the form 2n −1. Due to the
prevalence of 32-bit machines, another important Mersenne prime is 231 −1.
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Uk = (Sk −Tk) mod max{m1,m2} .

(For the mod operation on the negative number, see p. 52.) If the first initial seed
is given as S0 = 75 and the second seed is given as T0 = 19, the composite genera-
tor will have a period of 5,936 and the first few random numbers generated are as
follows.

Table 2.5 Results from the composite generator of Example 2.5

k Sk Tk Uk RN
0 75 19
1 18 2 16 0.1416
2 45 34 11 0.0973
3 56 43 13 0.1150
4 27 89 51 0.4513
5 11 15 109 0.9646
6 84 41 43 0.3805

��

A random number generator, due to L’Ecuyer [4, 6], with excellent statistical
properties and with a period of about 3.1× 1057 is a combination of two MRGs,
each with a different multiplier and a different modulus. Each of the two MRGs
use a recursion based on the previous three seeds so that each MRG requires three
initial random number seeds and thus the composite generator requires six initial
seeds. The specifics of this composite generator are:

Property 2.3. The L’Ecuyer Composite MRG: Let S−2, S−1, and S0 be three
initial random number seeds, and let a second set of three initial random
number seeds be given by T−2, T−1, and T0. Whenever a random number is
desired, new random number seeds plus the composite seed are obtained from
the sequences according to the following

Sk+1 = (1,403,580Sk−1 −810,728Sk−2) mod 4,294,967,087

Tk+1 = (527,612Tk −1,370,589Tk−2) mod 4,294,944,443

Uk+1 = (Sk+1 −Tk+1) mod 4,294,967,087 .

The random number is then given by

Rk+1 =
Uk+1

4,294,967,087
.

Notice that the S-random seed stream does not use the most recent seed in its
recursion, and the T -random seed stream does not use the second most recent seed;
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however, both recursions use the third most recent seed. It should be noted that the
modulus for the S-random seed stream equals 232 − 209 and the modulus for the
T -random seed stream equals 232 −22,853. An excellent discussion on L’Ecuyer’s
composite generator as well as random number generation in general is found in
Law [3]. He also gives an implementation of the composite generator for 32-bit ma-
chines. Table 2.6 gives some suggestions as found in [3] for initial random number
seeds.

Table 2.6 Ten sets of initial random number seeds for L’Ecuyer’s composite MRG (numbers
copied with permission from p. 419 of the textbook Simulation Modeling & Analysis by Aver-
ill M. Law, copyright c© 2007 by The McGraw-Hill Companies, Inc.)

S−2 S−1 S0 T−2 T−1 T0

1772212344 1374954571 2377447708 540628578 1843308759 549575061
2602294560 1764491502 3872775590 4089362440 2683806282 437563332
376810349 1545165407 3443838735 3650079346 1898051052 2606578666
1847817841 3038743716 2014183350 2883836363 3242147124 1955620878
1075987441 3468627582 2694529948 368150488 2026479331 2067041056
134547324 4246812979 1700384422 2358888058 83616724 3045736624
2816844169 885735878 1824365395 2629582008 3405363962 1835381773
675808621 434584068 4021752986 3831444678 4193349505 2833414845
2876117643 1466108979 163986545 1530526354 68578399 1111539974
411040508 544377427 2887694751 702892456 758163486 2462939166

• Suggestion: Do Problems 2.3 and 2.7.

2.3 Generation of Random Variates

Realistic simulations obviously involve many different types of probability distri-
butions so it is important to be able to simulate non-uniform random values, called
random variates. Fortunately, once random numbers have been obtained, it is pos-
sible (at least theoretically) to transform the random numbers into random variates
that follow any distribution.

2.3.1 Discrete Random Variates

Let us assume that we want to write a computer simulation model of the microwave
salesperson of Example 2.1. The first random variable represents the decision as
to whether or not a customer will end up buying a microwave. Mathematically, we
can denote the customer’s interest by the random variable C and give its probability
mass function as

P{C = 0} = 0.5 and P{C = 1} = 0.5 ,
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Fig. 2.1 Transformation us-
ing the cumulative distribu-
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where the random variable being zero (C = 0) represents a customer who is not
interested in purchasing a microwave, and the random variable being one (C = 1)
represents the customer who purchases a microwave.

The cumulative probability distribution function (whose values are between zero
and one) permits an easy transformation of a random number into a random vari-
ate arising from another probability law. The transformation is obtained simply by
letting the random number occur along the ordinate (y-axis) and using the cumula-
tive function to form the inverse mapping back to the abscissa (x-axis) as shown in
Fig. 2.1 for one possible value of the random number. For the “customer interest”
random variable C, the following rule is obtained: If the random number is less than
or equal to 0.5, then C = 0, i.e., the customer is not interested in a purchase; oth-
erwise, if the random number is greater than 0.5, then C = 1, i.e., the customer is
interested.

The second random variable that must be simulated in the microwave salesperson
example is the profit resulting from the sale of a microwave. Let the “model” random
variable be denoted by M with probability mass function

P{M = 30} = 0.25

P{M = 60} = 0.50

P{M = 75} = 0.25 .

In this case, M = 30 is the profit from the sale of a basic model, M = 60 the profit
from a standard model, and M = 75 the profit from a deluxe model. Again, it is
easiest to simulate this random variable if its cumulative probability distribution
function is first determined. The jump points of the cumulative function are

P{M ≤ 30} = 0.25

P{M ≤ 60} = 0.75

P{M ≤ 75} = 1.0 .
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Fig. 2.2 Transformation us-
ing the cumulative distribu-
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The inverse mapping that gives the transformation from the random number to
the random variate representing the profit obtained from the sale of a microwave is
illustrated in Fig. 2.2. The results are: If the random number is less than or equal to
0.25, the plain model is sold; if it is greater than 0.25 and less than or equal to 0.75,
the standard model is sold; and if it is greater than 0.75, the deluxe model is sold.

The rather intuitive approach for obtaining the random variates C and M as shown
in Figs. 2.1 and 2.2 needs to be formalized for use with continuous random variables.
Specifically, Figs. 2.1 and 2.2 indicate that the random variates were generated by
using the inverse of the cumulative probability distribution function. A mathematical
justification for this is now given.

The following property (proven in most introductory mathematical probability
and statistics books) leads to the so-called inverse mapping method of generating
arbitrarily distributed random variates.

Property 2.4. Let F be an arbitrary cumulative distribution function, and let
U be a random variable with a continuous uniform distribution between zero
and one. If the inverse of the function F exists, denote it by F−1; otherwise, let
F−1(y) = min{t|F(t)≥ y} for 0 ≤ y ≤ 1. Then the random variable X defined
by

X = F−1(U),

has a CDF given by F; that is, P{X ≤ x} = F(x) for all x.

From the above property, it is seen that the function that relates the continuous
uniform zero-one random variable with another random variable is simply the in-
verse of the cumulative probability distribution function. We utilize this property
in the next section. But first, we give some examples simulating discrete random
variables.

Example 2.6. A manufacturing process produces items with a defect rate of 15%;
in other words, the probability of an individual item being defective is 0.15 and the
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probability that any one item is defective is independent of whether or not any other
item is defective. The items are packaged in boxes of four. An inspector tests each
box by randomly selecting one item in that box. If the selected item is good, the box
is passed; if the item is defective, the box is rejected. The inspector has just started
for the day. What is the expected number of boxes that the inspector will look at
before the first rejection?

Let the random variable M denote the number of defective items per box. The
distribution for M is binomial (Eq. 1.10); therefore, its pmf is given by

Pr{M = 0} = 0.5220

Pr{M = 1} = 0.3685

Pr{M = 2} = 0.0975

Pr{M = 3} = 0.0115

Pr{M = 4} = 0.0005

The transformation from random numbers to random variates is based on the CDF,
so the above probabilities are summed to obtain Table 2.7. (For more efficient tech-
niques than the one demonstrated here for generating some of the common random
variates see [3]. Our purpose here is to demonstrate the concept of simulation and
not derive the most efficient procedures for large scale programs.) Notice the ranges
for the random numbers contained in the table are open on the left and closed on the
right. That choice is arbitrary; it is only important to be consistent. In other words,
if the random number were equal to 0.8905, the random variate representing the
number of defective items in the box would equal 1.

Table 2.7 Mapping to determine the number of defective items per box for Example 2.6

Random number number of
range defective items

(0.0000, 0.5220] 0
(0.5220, 0.8905] 1
(0.8905, 0.9880] 2
(0.9880, 0.9995] 3
(0.9995, 1.0000] 4

The simulation will proceed as follows: First, a box containing a random num-
ber of defective items will be generated according to the binomial distribution (Ta-
ble 2.7). Then, an item will be selected using a Bernoulli random variable, where
the probability of selecting a defective item equals the number of defective items
divided by four (i.e., the total number of items in a box). To generate random num-
bers, we can either use a calculator or spreadsheet program. Most calculators have a
button labeled “RND” or “Random”. Each time such a button is pressed, a (suppos-
edly) random number is generated. If you use Excel, enter =RAND() in a cell and a
random number will be generated.



2.3 Generation of Random Variates 59

Table 2.8 shows the results of the simulation. Notice that Column 4 contains a
critical number, which equals the number of defective items divided by four. If the
next random number generated is less than or equal to the critical number, the box
is rejected; otherwise, the box is accepted. If the critical number is 0, no random
number is generated since the box will always be accepted no matter which item the
inspector chooses. The simulation is over when the first box containing defective
items is selected. Since the question is “how many boxes will be accepted?”, it is
necessary to make several simulation runs. The final estimate would then be the
average length of the runs.

Table 2.8 Three simulation runs for Example 2.6

Box Random Number Critical Random Box
number number of defects number number accepted?

Trial # 1
1 0.2358 0 0 – yes
2 0.5907 1 0.25 0.3483 yes
3 0.6489 1 0.25 0.9204 yes
4 0.6083 1 0.25 0.2709 yes
5 0.7610 1 0.25 0.5374 yes
6 0.1730 0 0 – yes
7 0.5044 0 0 – yes
8 0.6206 1 0.25 0.0474 no

Trial # 2
1 0.8403 1 0.25 0.9076 yes
2 0.3143 0 0 – yes
3 0.0383 0 0 – yes
4 0.0513 0 0 – yes
5 0.9537 2 0.50 0.6614 yes
6 0.1637 0 0 – yes
7 0.4939 0 0 – yes
8 0.6086 1 0.25 0.1542 no

Trial # 3
1 0.2330 0 0 – yes
2 0.8310 1 0.25 0.8647 yes
3 0.2143 0 0 – yes
4 0.5414 1 0.25 0.0214 no

Obviously, three trials is not enough to draw any reasonable conclusion, but the
idea should be sufficiently illustrated. Based on the results of Table 2.8, we would
estimate that the inspector samples an average of 6.67 boxes until finding a box to
be rejected. ��

Before leaving discrete random variables, a word should be said about generating
bivariate random variables. One procedure is to use conditional distributions. For
example, if the two dependent random variables, X and Y , are to be generated, we
first generate X according to its marginal distribution, then generate Y according to
its conditional distribution given the value of X .
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Table 2.9 Transformations for determining the contents of phone boxes in Example 2.7

Type of Phone
Random number Type

range phone
(0.00, 0.47] plain
(0.47, 1.0] radio

For Plain Phones
RN Number

range defectives
(0.000, 0.787] 0
(0.787, 0.957] 1

(0.957, 1.0] 2

For Radio Phones
RN Number

range defectives
(0.000, 0.849] 0
(0.849, 0.981] 1
(0.981, 1.0] 2

Example 2.7. Bivariate Discrete Random Variates. Consider the boxes of phones
discussed in Chap. 1. Each box contains two phones, both phones being radio
phones or plain phones. The joint pmf describing the probabilities of the phone type
and the number of defective phones is given in Example 1.12. Our goal is to esti-
mate, through simulation, the expected number of defective phones per box. (Again,
the question we are trying to answer is trivial, but we need to simulate easy systems
before attempting complex systems.) Although we could use the joint pmf to gener-
ate the bivariate random variables directly, it is often easier to use conditional prob-
abilities when dealing with more complex probability laws. We shall first determine
whether the box contains plain or radio phones, and then determine the number of
defective phones in the box. Table 2.9 shows the transformations needed to obtain
the boxes of phones; namely, the first transformation is from the CDF of the random
variable indicating phone type, and the second two transformations come from the
conditional CDF’s for the number of defective phones in a box given the type of
phone. For example, the conditional probability that there are no defective phones
given that the box contains plain phones is 0.37/0.47 = 0.787 (see Example 1.12);
thus, if a box contains plain phones, a random number in the interval (0,0.787] will
result in no defective phones for that box.

The results obtained after simulating ten boxes is contained in Table 2.10. The
random numbers are generated from a calculator. The second random number used
for each box (Column 4 of Table 2.10) must be interpreted based on the result of
the first random number (Column 3 of Table 2.10). In particular, notice the results
for Box 4. The first random number was 0.1454 yielding a box of plain phones. The
second random number was 0.9683 yielding two defective phones. However, if the
box had been radio phones, the random number of 0.9683 would have yielded only
one defective phone. Based on the results of Table 2.10, the expected number of
defective phones per box is estimated to be 0.5.

��

• Suggestion: Do Problems 2.8–2.10.
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Table 2.10 Simulation for boxes of phones in Example 2.7

Box Random Phone Random Number Cumulative
number number type number defectives defectives

1 0.6594 radio 0.7259 0 0
2 0.6301 radio 0.1797 0 0
3 0.3775 plain 0.5157 0 0
4 0.1454 plain 0.9683 2 2
5 0.7156 radio 0.5140 0 2
6 0.9734 radio 0.9375 1 3
7 0.7269 radio 0.2228 0 3
8 0.1020 plain 0.9991 2 5
9 0.9537 radio 0.6292 0 5
10 0.4340 plain 0.2416 0 5

2.3.2 Continuous Random Variates

Although many physical systems can be modeled using discrete random variables,
there are many systems that are more appropriately modeled using continuous ran-
dom variables. For example, the times between arrivals of customers to a teller win-
dow in a bank would be best described by a continuous value instead of a discrete
value.

Property 2.4 is used to obtain random variates for any distribution for which the
inverse of the cumulative distribution function can be obtained either analytically or
numerically. The following example demonstrates the use of the inverse transfor-
mation method for one of the most commonly used continuous distributions used in
stochastic modeling.

Example 2.8. The time between incoming calls to the emergency room between the
hours of 10PM and 4AM is according to an exponential distribution with mean of
8 minutes. To simulate the arrival of calls to this emergency room, we first derive
a general expression for generating exponential random variates. Let T be an expo-
nentially distributed random variable so that its CDF is given by

F(t) = 1− e−t/θ for t ≥ 0,

where θ is a positive scalar with E[T ] = θ . To obtain the inverse, we replace the
functional value with the random number U , replace the parameter t with the random
variate T , and then solve for the random variate (see Fig. 2.3). Thus,

U = 1− e−T/θ

e−T/θ = 1−U

ln(e−T/θ ) = ln(1−U)

−T
θ

= ln(1−U)

T = −θ ln(1−U).
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Fig. 2.3 Inverse transformation for an exponentially distributed random variable

One final simplification can be made by observing that if U is uniformly distributed
between 0 and 1, then (1−U) must also be uniformly distributed between 0 and 1.
Thus, U and (1−U) are equal in distribution which yields

T = −E[T ] ln(U) . (2.1)

To apply Eq. 2.1 to our emergency room call center, suppose we use the “RND” key
on our calculator and obtain the following three random numbers: 0.163, 0.742, and
0.448. These three random numbers lead to the following three random variates (i.e.,
the inter-arrival times): 14.5, 2.4, and 6.4 minutes. If we assume that the simulation
starts at 10:00 PM, the arrival times of the first three simulated calls are 10:14.5,
10:16.9, and 10:23.3. ��

Since the Erlang distribution (Eq. 1.16) is the sum of exponentials, the above
transformation is easily extended for Erlang random variates. Specifically, if X is an
Erlang random variate with parameters k and β , then it is the sum of k exponentials,
each with mean β/k; thus

X = −β
k

k

∑
i=1

ln(Ui) = −β
k

ln

(
k

∏
i=1

Ui

)

, (2.2)

where Ui are independent random numbers.
The exponential distribution is convenient to use because the expression for its

cumulative distribution function is easy to invert. However, many distributions are
not so well behaved. A normally distributed random variable (its probability density
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function has the familiar bell-shaped curve) is an example of a distribution whose
cumulative probability distribution function cannot be written in closed form (see
Eq. 1.21), much less inverted. Leemis and Park [5] suggest using an approximation
for the inverse of the standard normal distribution, and although it may be tedious
to use by hand, there should be no problem letting the computer approximate the
inverse. The following property, with the constants taken from [8], permits the gen-
eration of standard normal random variates that in turn can be used to generate
normal random variates with any mean and standard deviation.

Property 2.5. Let Φ(·) denote the CDF for a standard normal random vari-
able (i.e., mean 0, standard deviation 1), and let Φ−1(u) for 0 ≤ u ≤ 1 denote
its inverse. Let t be a variable that depends on u as

t =
{√

−2 ln(u) for u < 0.5√
−2 ln(1−u) for u ≥ 0.5 .

Then Φ−1 can be expressed as the ratio of two polynomials in t as

Φ−1(u) =

⎧
⎨

⎩

−t + p(t)
q(t) for u < 0.5

t − p(t)
q(t) for u ≥ 0.5 ,

where, for all t,

p(t) = 0.322232431088+ t +0.342242088547 t2 +0.0204231210245 t3

+0.0000453642210148 t4

q(t) = 0.099348462606+0.588581570495 t +0.531103462366 t2

+0.1035377528 t3 +0.0038560700634 t4

Example 2.9. A manufacturing process produces steel rods. The process is variable
and produces rods with a cross sectional area that is distributed according to a nor-
mal distribution with a mean of 6.05 cm2 and standard deviation of 0.1 cm2. We
would like to simulate these rods and, in particular, simulate the cross sectional area
of the rod. We note first that if X is normal with mean μ and standard deviation σ ,
then the random variable

Z =
X −μ

σ
(2.3)

is a standard normal random variable so it can be simulated using Property 2.5.
Assume that the “RND” function on the calculator produced 0.372 for a random
number. From Property 2.5, we get the following: t = 1.4063, p(t) = 2.4624, q(t) =
2.2805, and finally, Φ−1(U) = Z = −0.3265. Thus, the cross sectional area of our
first simulated rod is
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X = μ +σ Z (2.4)

= 6.05+0.1× (−0.3265) = 6.0173cm2 .

��

Example 2.10. In order to simulate the spread of an insect infestation within a forest,
a stand of Loblolly pines must be simulated. The height of the trees is distributed
according to a log-normal distribution with mean 21.3 m and standard deviation
52.1 m. Since the distribution is log-normal, it can be generated using a normal
random variable with mean 2.087 and standard deviation 1.394 (see Example 1.11).
Using a calculator to obtain random numbers, the calculations necessary for the first
three tree heights are contained in Table 2.11. ��

Table 2.11 Simulation for tree heights in Example 2.10

Random Z-value X-value Random Height
Number (Property 2.5) (Eq. 2.4) eX

0.760 0.7063 3.0716 21.576
0.486 -0.03510 2.0381 7.676
0.614 0.2898 2.4909 12.072

There are several other techniques for generating nonuniform random variates
when the inverse of the cumulative distribution function cannot be obtained in closed
form. However, we will not study these techniques, since either the advanced tech-
niques are buried in the simulation language being used (and thus are transparent to
the user) or else an approximation method can be used quite adequately.
• Suggestion: Do Problems 2.11–2.14.

2.3.3 Bivariate Continuous Random Variates

As with the discrete bivariate case, a reasonable approach to simulating bivariate
continuous random variables is through their conditional probability functions. The
disadvantage is that it is often very difficult to obtain the conditional probabilities.
One key exception is for bivariate normal random variables, because the conditional
distribution is easily obtained from knowledge of the means, variances, and the cor-
relation coefficient. Using the properties given in Problem 1.25, it is not too difficult
to obtain an algorithm for generating two bivariate normally distributed random
variates. Using the notation from Property 2.5, if we let U be a random number
(uniform 0–1), then the standard normal random variate is X = Φ−1(U).
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Property 2.6. Let U1 and U2 denote two independent random numbers and
let Φ be the standard normal CDF. Then X1 and X2 defined by the following
equations will be bivariate normal random variates with means μ1 and μ2,
variances σ2

1 and σ2
2 , and correlation coefficient equal to ρ:

X1 = μ1 +σ1 ×Φ−1(U1)

X2 = μ2 +ρ
σ2

σ1
(X1 −μ1)+σ2

√

1−ρ2 ×Φ−1(U2) .

Notice that this property can be simplified if correlated standard normals are
desired. Specifically, we again let U1 and U2 be two independent random numbers
and Φ be the standard normal CDF, then Z1 and Z2 will be standard normals with
correlation coefficient ρ by the following:

Z1 = Φ−1(U1) (2.5)

Z2 = ρ Z1 +
√

1−ρ2 ×Φ−1(U2) .

Obtaining random variates for two random variables with known marginal dis-
tributions and a given correlation coefficient is more difficult when the marginals
are not normal distributions. For some marginals (like the gamma and log-normal)
special algorithms have been developed and are given in Law [3]. For purpose of
this review chapter, we present a general procedure that can be used to random vari-
ates with arbitrary marginal distributions and with a dependence relationship given
by a correlation coefficient. The procedure is to first generate bivariate normals,
and then transform these into uniforms, and finally transform the uniforms into the
general random variates. We first use Property 2.4 to obtain the uniforms by taking
advantage of the distribution Φ and then use Property 2.4 again to obtain the general
random variates. The term NORTA (Normal-to-Anything) was coined by Cario and
Nelson [1] for this procedure and is given in the following property.

Property 2.7. Let Z1 and Z2 as determined from Eq. (2.5) be two bivariate
standard normal random variates with correlation coefficient equal to ρ . Then
X1 and X2 given by the following equations will be correlated random variates
with marginal distributions given by F1 and F2.

X1 = F−1
1 (Φ(Z1))

X2 = F−1
2 (Φ(Z2))) ,

where Φ is the standard normal CDF.
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Fig. 2.4 Mapping used to
generate a random variate
from a distribution based on
experimental data
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The main difficulty in implementing Property 2.7 is that it does not specify the
correlation of the random variables X1 and X2. Under many conditions, the corre-
lation of X1 and X2 is close to Z1 and Z2; however, the exact relationship must be
tested empirically. Because this is not difficult to implement in Excel, we give an
example illustrating this property in the appendix after discussing the use of several
common Excel functions.

2.3.4 Random Variates from Empirical Distributions

Sometimes data are available to approximate a distribution function and so a form
of an empirical function is needed. For example, suppose we need to reproduce a
continuous random variable we know is always between 1 and 4. Furthermore some
data have been collected, and we know that 25% of the data are between 1 and
1.5, 50% of the data are between 1.5 and 3.5, and 25% are between 3.5 and 4. In
such a situation we use a piecewise linear function containing three segments to
approximate the (unknown) cumulative distribution function. The application of the
inverse transformation method is illustrated in Fig. 2.4. Notice from the figure that
the cumulative distribution function is graphed, then a random number is created
on the y-axis, and finally the random variate of interest is obtained by an inverse
mapping from the y-axis to the x-axis.

Example 2.11. Suppose we need to simulate a continuous random variable and all
we have are the following ten data points: 5.39, 1.9, 4.62, 2.71, 4.25, 1.11, 2.92,
2.83, 1.88, 2.93. All we know other than the 10 points is that the random variable
has some (unknown) upper and lower limits that are positive. Our procedure will
be the same as illustrated in the previous example; that is, a cumulative distribution
function will be drawn using a piecewise linear approximation and then the inverse
transformation method will be used to go from a random number to the random
variate. The distribution function should have the property that 10% of the generated
points are centered around 5.39, 10% of the generated points are centered around
1.9, etc. To accomplish this, the first step is to order the data, and then calculate the
midpoints between adjacent values as shown in Table 2.12.

Since there were 10 data points, there are 10 “cells” with each cell having as its
midpoint one of the data points. The major difficulty is the size of the first and last
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Table 2.12 Midpoints for Example 2.11

Data point Midpoint
1.11
1.88 1.495
1.90 1.890
2.71 2.305
2.83 2.770
2.92 2.875
2.93 2.925
4.25 3.590
4.62 4.435
5.39 5.005

cell; that is, establishing the upper and lower limits. The best way to establish these
limits would be through an understanding of the physical limits of whatever it is that
is being simulated; however, if the physical limits are not known, one procedure is
to assume the lower and upper data points (i.e., 1.11 and 5.39, respectively) are the
midpoints of their cells. In other words, the lower and upper limits are established
to make this true. Thus, the lower limit is 0.725, and the upper limit is 5.775. (Note
that 1.11 = (0.725+1.495)/2 and 5.39 = (5.005+5.775)/2.)

The empirically based distribution function increases 1/10 over each cell be-
cause there were ten points. In general, if a distribution function is built with n
data points, then it would increase 1/n over each data cell. Once the continuous dis-
tribution function has been determined, then the inverse mapping technique (similar
to Fig. 2.4 except with the function arising from Table 2.12) can be used to obtain
the random variate. ��

• Suggestion: Do Problems 2.11–2.14.

Appendix

As mentioned previously, the Excel function RAND() generates random numbers.
To generate uniform discrete random variates, use the Excel function

RANDBETWEEN( a, b )

where a and b are parameters that the user supplies. For example, RANDBETWEEN(20,30)
will generate discrete uniform random variates between 20 and 30, inclusive. (If
you use the 2003 version of Excel, this function is found in the “Data Analysis” tool
pack.) For other discrete random variates, the random number should be given in one
column and then a nested If-ELSE statement used together with the cumulative
probabilities of the discrete distribution.
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Example 2.12. The discrete random variable N has a probability function given by
Pr{N = 2} = 0.5, Pr{N = 3} = 0.3, and Pr{N = 4} = 0.2. In Excel, type the first
two rows as

A B
1 random number random variate
2 =RAND() =IF(A2<0.5,2, IF(A2<0.8,3,4) )

Highlight Cells A2:B10001 and “copy down” (i.e., after highlighting the cells,
type Ctrl-D). This will give 10,000 replications of the random variate. To deter-
mine how well the simulation performed, type 2 in Cell D1, type 3 in Cell E1, and
type 4 in Cell F1. Finally, type

=COUNTIF($B$2:$B$10001, "=" & D1)/10000

in Cell D2, and then highlight Cells D2:F2 and “copy right” (i.e., type Ctrl-R).
The values in Cells D2:F2 give the simulated probabilities for the values 2 through
4. Notice that the RAND() function is recalculated whenever another cell is changed.
If you would like to see the results of a “new” simulation, hit the F9 key to recalcu-
late all random numbers again. ��

For continuous random variates, Excel has several inverse distributions as built-
in functions; thus, Property 2.5 can be used to generate the various distributions
mentioned in Chap. 1. Table 2.13 lists the associated Excel function that is used for
generating random variates from the listed distributions. Some of the listed Excel
functions have parameters that must be supplied with numerical values. These pa-
rameters are listed using the notation from the corresponding equation as shown in
the table.

Table 2.13 Excel functions for some continuous random variates
Distribution Equation # Excel Function

Uniform (1.13) a + (b-a)*RAND()
Exponential (1.14) −(1/λ )*LN( RAND() )

Gamma (1.18) GAMMAINV( RAND(), α, β )
Weibull (1.19) β*(-LN( RAND() ))ˆ(1/α)

Standard Normal (2.3) NORMSINV( RAND() )
Normal (1.21) NORMINV( RAND(), μ, σ )

Log Normal (1.23) LOGINV( RAND(), μN, σN )

When using any of these functions within a cell, do not forget to type the equal
sign before the function. It might also be noted that in the authors’ experience, the
random variate for the gamma distribution with shape parameter (α) less than one
does not appear to be very accurate with respect to goodness of fit tests.

Example 2.13. Correlated Random Variables. Jobs must be processed sequen-
tially through two machines. The processing times for the first machine are dis-
tributed according to a gamma distribution with shape parameter 4 and scale param-
eter 10 minutes. The processing times for jobs on the second machine are distributed
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according to a continuous uniform distribution from 5 to 25 minutes. After analyz-
ing the times on the two machines for the same job, it is determined that they are not
independent and have a correlation coefficient of 0.8. Our goal is to generate pairs of
random variates to represent the sequential processing times on the two machines.

We begin the spreadsheet with the constants that are needed to generate the ran-
dom variates; namely, ρ and

√
1−ρ2. Type the following in the Cells A1:B2.

A B
1 rho 0.8
2 adjusted rho =SQRT(1-B1*B1)

We shall leave a column to separate the calculations from the random variates and
type the following:

D E
1 Z1 Z2
2 =NORMSINV(RAND()) =$B$1*D2+$B$2*NORMSINV(RAND())

F G
1 X1 X2
2 =GAMMAINV(NORMSDIST(D2),4,10) =5+20*NORMSDIST(E2)

Now highlight the Cells D2:D30000 and hit the <Ctrl>+D keys to copy the
formulas in Row 2 down through Row 30,000, thus producing a large random sam-
ple of ordered pairs. In Cell B3 type =CORREL(F2:F30000,G2:G30000). The
idea is to change the value in Cell B1 until the value in Cell B3 equals 0.8 (i.e., the
time-honored approach of trial and error). Of course, because this is a simulation
(i.e., statistical experiment), we cannot claim to have the exact number that will pro-
duce our desired value of 0.8. In our experiment, we found that ρ = 0.842 yielded
a correlation coefficient between the two processing times of 0.8. We also suggest
adding some extra data and checking that the mean and standard deviation of the
random variates are as expected. ��

Problems

2.1. A door-to-door salesman sells pots and pans. He only gets in 50 percent of the
houses that he visits. Of the houses that he enters, 1/6 of the householders are still
not interested in purchasing anything, 1/2 of them end up placing a $60 order, and
1/3 of them end up placing a $100 order. Estimate the average sales receipts per
house visit by simulating 25 house visits using a die. Calculate the theoretical value
and compare it with the estimate obtained from your simulation.

2.2. Simulate playing the game of Example 2.2, where the contestant uses the
“switch” policy.
(a) Which policy would you recommend?
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(b) Can you demonstrate mathematically that your suggested policy is the best pol-
icy?

2.3. Determine a full-period multiplicative linear congruential generator suitable for
a 6-bit computer (i.e., there are 6 bits available to store signed integers). Notice that
since one bit is reserved for the sign, the largest integer possible on this machine
is 31. Since 31 is a prime number, let m = 31 and find a so that the period of the
generator is 30.

2.4. Assume that you have a 10-bit computer (i.e., there are 10 bits available to store
signed integers). Determine constants a and m for a multiplicative linear congruen-
tial generator with the largest possible period on this 10-bit machine. Note that since
signed integers are stored in 10-bits and one bit is saved for the sign, all constants
must be less than 29. (Hint: Use Excel. Make sure the m is a prime and then use trial
and error to find a.)

2.5. Use the values of a and m as suggested by Schrage (see p. 52) with an ini-
tial random number seed of S0 = 101 and produce the first three random numbers
that will be generated with his multiplicative generator. Notice that the seed is first
changed and then a random number is produced; in other words, the first random
number is derived from S1, not S0.

2.6. Assume that you have a 10-bit computer (i.e., there are 10 bits available to store
signed integers). Determine constants (multiplier and modulus) less than 29, for a
simplified multiple recursive generator with a period greater than 29. For the con-
stants that you choose, give the period of the generator and the first three numbers
generated by your generator.

2.7. Use the third row of Table 2.6 for the initial random number seeds for L’Ecuyer’s
random number generator and produce the first three random numbers.

2.8. Given the sequence of three uniform random numbers, 0.15, 0.74, 0.57, gener-
ate the corresponding sequences of random variates
(a) from a discrete uniform distribution varying between 1 and 4,
(b) for a discrete random variable, with the probability that it is equal to 1, 2, 3, 4
being 0.3, 0.2, 0.1, 0.4, respectively.

2.9. A manufacturing process has a defect rate of 20% and items are placed in boxes
of five. An inspector samples two items from each box. If one or both of the selected
items are bad, the box is rejected. Simulate this process to answer the following
question: If a customer orders 10 boxes, what is the expected number of defective
items the customer will receive?

2.10. A binomial random variate with parameters n and p can be obtained by
adding n Bernoulli random variates with parameter p (i.e., Pr{X = 0} = 1− p and
Pr{X = 1} = p).
(a) Using this fact, use Excel to generate 1,000 binomial random variates with pa-
rameters n = 4 and p = 0.35 and estimate the probabilities for the binomial random
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variable. Compare these estimated probabilities to the theoretical values.
(b) Extend the spreadsheet so that 10,000 binomial random variates are created and
compare your probability estimates to those obtained in Part (a).

2.11. Given the sequence of four uniform random numbers, 0.23, 0.74, 0.57, 0.07,
generate the corresponding sequences of random variates
(a) from an exponential distribution with a mean of 4,
(b) from a Weibull distribution with scale parameter 0.25 and shape parameter 2.5,
(c) from a normal distribution with a mean of 4 and variance of 4, (d) from a con-
tinuous random variable designed to reproduce the randomness
observed by the following data: 4.5, 12.6, 13.8. 6.8, 10.3, 12.5, 8.3, 9.2, 15.3, 11.9,
9.3, 8.1, 16.3, 14.0, 7.3, 6.9, 10.5, 12.3, 9.9, 13.6.

2.12. Using Excel, generate 1,000 continuous uniform random variates between 3
and 8.
(a) Estimate the mean and variance from these numbers and compare the estimates
to the theoretical values. (b) Repeat Part (a) using 10,000 values.

2.13. Using Excel produce random variates according to a Weibull distribution
where the mean and standard deviation are input constants. Generate 1000 random
variates and compare the sample mean and standard deviation of the generated data
with the input values. Hint: you will need GoalSeek to determine the shape and scale
parameters (as in the Appendix of Chap. 1).

2.14. Using Excel, generate 100 steel rods from the shipment of rods described in
Problem 1.25. How many rods from your randomly selected sample are outside of
the specifications?

2.15. The failure and repair characteristics of a machine are being studied, it has
been determined that the mean and standard deviation of time to failure are 80 hours
and 50 hours, respectively, and the mean and standard deviation for repair times are
150 minutes and 54 minutes respectively. However, the repair time is not indepen-
dent of the time to failure and it is estimated that the correlation coefficient of the
two is 0.7. We desire to simulate the time to failure using a Weibull distribution and
the repair time using a log-normal distribution.
(a) What are the shape (α) and scale (β ) parameters for the Weibull distribution that
describes the time to failure?
(b) What are the mean (μN) and standard deviation (σN) for the normally distributed
random variable that is associated with the log-normal of the failure times? (See
Eq. 1.23.)
(c) What is the (approximate) value of ρ from Property 2.7 that will yield a correla-
tion coefficient of 0.7 for the failure and repair times?
(d) Simulate a few thousands cycles and estimate the fraction of time that the ma-
chine is available. Compare this with the theoretical value which is the ratio of the
mean time to failure with the sum of the mean time to failure plus the time to repair.
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Chapter 3
Basic Statistical Review

Statistical analyses are necessary whenever decisions are to be made on the basis of
probabilistic data. The conceptual framework for statistics is the assumed existence
of an underlying probability space and knowledge is desired regarding the unknown
probability law. Furthermore, estimates regarding the probability law are to be made
on the basis of the outcome(s) of some random variable(s). This chapter is divided
into several major topics. Each topic should be a chapter in itself but the intention
is to simply review the material assuming a previous exposure to statistics. The
introduction to those statistical techniques that are commonly used in simulation
but not necessarily covered in an introductory statistics course will be postponed
until the chapter on simulation analysis (Chap. 9) instead of discussed here.

3.1 Collection of Data

It should prove beneficial to briefly comment on some standard notational conven-
tions. Random variables will always be denoted by capital letters (or Greek letters
with a “hat” like θ̂ ); scalars or known numbers will use lower case letters. Since
we are going to be dealing with both random variables and observations of random
variables, the potential to confuse the two is always present. To illustrate, let Xn be
a random variable that denotes whether or not a process is “in control” on the nth
day. For example, we might write Xn = 1 to denote the process being in control
and Xn = 0 to denote the process being out of control (i.e., needing operator inter-
vention). Just before day n starts, we do not know the value of Xn. After the day
gets going, we go to the control room and observe whether or not the process is in
control. After our observation, we have the realization of the random variable and
might write that x1 = 1 if, for example, the process was in control on the first day.
The lower case letter emphasizes the fact that the value 1 is now a known, observed
value. Although this might seem like a purely technical detail, you will find your
understanding of statistics easier if you remember the distinction.

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 73
DOI 10.1007/978-3-642-05158-6 3, c© Springer-Verlag Berlin Heidelberg 2010
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3.1.1 Preliminary Definitions

In statistics there is usually a collection of random variables from which we make an
observation and then do something with the observation. The most common situa-
tion is when the collection of random variables of interest are mutually independent
and with the same distribution. Such a collection is called a random sample.

Definition 3.1. The collection of random variables X1,X2, · · · ,Xn is called a random
sample of size n if they are independent and identically distributed. ��

Once we have a random sample, we often want to make some estimate based on a
function of the random sample. For example, assume that the underlying distribution
function is a normal distribution but the mean and variance are unknown. Suppose
we take a random sample of size 2 and then consider an averaging function of those
two random variables. In other words, consider the function

X1 +X2

2
.

Such a function could be used to estimate the mean of the underlying distribution
after an observation is made of the random variables. However, consider the function

(X1 −μ)2 +(X2 −μ)2

2

where μ is the actual and unknown mean of the underlying distribution. Such a func-
tion could not be used to estimate anything because even after the random sample is
observed the value of μ is still unknown so it would be impossible to obtain a value
for the function. A function for which a numerical value can be obtained after the
realization of the random sample is called a statistic.

Definition 3.2. A statistic is a function of a random sample that does not contain
any unknown parameters. ��

The two most common statistics are the sample mean and sample variance. They
are the most frequently used measures in describing a random sample. Notice that
the definition of the sample variance uses the sample mean instead of μ , the actual
mean. Thus the sample variance is a statistic since it can be calculated after an
observation has been made of the random sample. The sample standard deviation is
the square root of the sample variance.

Definition 3.3. The sample mean of a random sample of size n is

Xn =
X1 +X2 + · · ·+Xn

n

and the sample variance is

S2
n =

(X1 −Xn)2 + · · ·+(Xn −Xn)2

n−1
=

(X2
1 + · · ·+X2

n )−nX
2
n

n−1
.
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Fig. 3.1 A histogram obtained from rolling a die 60 times
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Before we discuss the proper statistical procedures for estimating unknown pa-
rameters, we need to discuss some of the common ways in which data are repre-
sented. (By data we refer to the observations of the random sample.)

3.1.2 Graphical Representations

To reinforce the idea of randomness and the statistical variation of experiments, the
reader should consider the results of taking a die and rolling it 60 times. Such an
experiment was done with the results (i.e., the number of dots on the upward face)
being recorded in Table 3.1. Assuming the die was fair, we would expect each of the

Table 3.1 Experimental results from rolling a die 60 times

Dots on up face one two three four five six
Number of occurrences 7 11 9 14 10 9

six faces to occur 10 times; however that did not happen in the experiment.
Although the list of numbers in Table 3.1 describes the experiment, it is often

convenient to present a visual representation of the experimental results (Fig. 3.1).
This visual representation is called a histogram, and is similar to a bar chart. In
the histogram, there is a bar above each number ranging from one to six, where
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Fig. 3.2 Dial to be used for
Example 3.1

��

��
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the height of the bar represents the number of occurences as observed from the
experiment.

Histograms serve two functions. They provide a quick visual representation of
the experimental results and they represent an estimate of the probability law gov-
erning the experiment when the probabilities of the various outcomes are not known
ahead of time. Suppose for the moment that we did not know that the die was fair.
Then, by dividing each of the number of observations by the total number of trials,
we obtain estimates for the probabilities of the various numbers occurring. In the
above example, the probability of a one occurring is estimated to be 7/60, the prob-
ability of a two occurring is estimated to be 11/60, etc. In this fashion, the histogram
of Fig. 3.1 gives the graph for an empirical probability mass function of the die. The
notion of randomness is further illustrated by performing the experiment again with
the same die and observing that different probability estimates are obtained. Fur-
thermore, if we take more time with the experiment (such as using 600 rolls instead
of 60), the probability estimates are better. In other words, for a fair die, the number
of observations divided by the total number of rolls becomes closer, on the average,
to 1/6 as the number of rolls gets larger.

Example 3.1. To further illustrate histograms, we perform one more experiment.
Consider a free spinning pointer on a dial that is marked zero to one as in Fig. 3.2.
The experiment is to (randomly) spin the dial 20 times and record the number to
two decimals to which the arrow points each time (assuming the circumference is
continuously labeled). Table 3.2 contains the results of this experiment. To draw

Table 3.2 Experimental data from 20 spins of the dial

0.10 0.22 0.24 0.42 0.37
0.06 0.72 0.91 0.14 0.36
0.88 0.48 0.52 0.87 0.71
0.51 0.60 0.94 0.58 0.09

a histogram from this experiment, the interval [0,1) is divided into subintervals or
“classes”. Specifically, we divide the interval [0,1) into four equal size classes which
yields the histogram in Fig. 3.3. ��

Another graphical representation of data that is easy and descriptive is a box plot.
Before drawing a box plot, the definitions for the median and quartiles of a data set
must be given. The median of a distribution is the value such that there is a 50%
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Fig. 3.3 Histogram obtained from the spinning the dial experiment of Example 3.1

probability that a random variable will be less than that value. The quartiles are
defined so that there is a 25% probability of the random variable being less than the
lower quartile point and a 75% probability of the random variable being less than
the upper quartile value. The first step in obtaining the median and quartiles for a
random sample is to order the data so that the first data point is the smallest and
the last data point is the largest. Indices for the re-ordered data set will be written
as subscripts with parentheses. Thus, X(1) denotes the minimum value, X(2) denotes
the second lowest value, etc. until X(n) denotes the maximum value. The median
value is the midpoint. If there is not a single midpoint, then the average of two
midpoints is used. To obtain the quartiles, the data set is divided in half without
including the median, and then the quartiles are the medians of each half. Using the
ordered random variables, the median and quartile values for a data set are defined
as follows:

Definition 3.4. The median, Xmed , of a random sample of size n is

Xmed =

⎧
⎨

⎩

X( n+1
2 ) if n is odd

0.5
(

X( n
2 ) +X( n

2 +1)

)
if n is even ,

and the median index is defined to be m = (n + 1)/2� where the notation a� de-
notes the truncation of a. The lower quartile, Xquar, and upper quartile, XQuar, of a
random sample of size n are defined as
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Fig. 3.4 Box plot obtained
from the data of Example 3.2
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Xquar =

⎧
⎨

⎩

X( m+1
2 ) if m is odd

0.5
(

X( m
2 ) +X( m

2 +1)

)
if m is even

XQuar =

⎧
⎨

⎩

X(n+1−m+1
2 ) if m is odd

0.5
(

X(n−m
2 ) +X(n+1−m

2 )

)
if m is even ,

where m is the median index. ��

A box plot uses a line to represent the range of data value and a box to represent
the data values between the lower and upper quartiles; thus, the box plot gives a
quick visual summary of the distribution of the data points. Note that the box repre-
sents the middle 50% of the data values. We should also point out that there are no
universally accepted estimators for the upper and lower quartiles. The ones above
are suggested because they are are intuitive and easy to compute; however, there are
alternate methods also used for determining the quartiles as discussed briefly in the
appendix of this chapter.

Example 3.2. The median value from the 20 data points in Table 3.2 is the average
of the tenth and eleventh values of the ordered data; thus, Xmed = 0.495. Likewise,
Xquar = 0.23 and XQuar = 0.715. A box plot of this in in Fig. 3.4. ��

• Suggestion: Do Problems 3.1–3.3.

3.2 Parameter Estimation

The purpose of obtaining data is often to estimate the value of one or more parame-
ters associated with the underlying distribution. For example, we may wish to know
the average length of time that a job spends within a job shop. In this case, obser-
vations of a random sample would be taken and used to estimate the mean value of
the underlying distribution.

An estimator is a statistic (therefore a random variable) that is used to estimate an
unknown parameter. There are two very important properties of estimators (namely,
unbiased and efficient) that we illustrate here by way of example. Assume we have
a random sample of size 3 from a normal distribution with unknown mean μ and
variance σ2. Consider the following (not necessarily good) estimators for the mean:
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μ̂1 =
X1 +X2 +X3

3
,

μ̂2 =
X1 +X2 +X3

4
,

μ̂3 =
X1 +2X2 +X3

4
.

(Note that an estimator of a parameter is usually denoted by placing a “hat” over the
parameter.)

The questions that need to be asked are “Are these all ‘good’ estimators?” and
“Which of these estimators is the best?” Before answering these questions, let us
look at some basic facts regarding the estimators themselves. Since they are random
variables, they each have a mean and variance. You should be able to show the
following:

E[μ̂1] = μ , V [μ̂1] = 1
3 σ2,

E[μ̂2] = 0.75μ , V [μ̂2] = 3
16 σ2,

E[μ̂3] = μ , V [μ̂3] = 3
8 σ2 ,

where μ and σ2 are the true (although unknown) mean and variance.
When an observation is made using a particular estimator, the resulting value may

or may not be close to the true value of the parameter depending on the character-
istics of the estimator. For example, consider the second estimator, μ̂2, and assume
several observations are made using this estimator. Some of the observations may
result in an estimate larger than μ and some may result in an estimate smaller than
μ ; however, in the long-run, the values of the estimates will tend to center around a
value equal to 75% of the correct value. Thus, we say that μ̂2 is biased on the small
side (assuming that μ is not zero). Therefore it seems foolish to use μ̂2. (Note that in
this case, the biased estimator is obviously not very good; however, there are other
cases in which a biased estimator may, in some sense, be better than an unbiased
estimator. It may be interesting to note that the reason that the sample variance of
Definition 3.3 has n−1 in its denominator instead of n is so that it will be an unbi-
ased estimator for the variance.) If we used μ̂1 or μ̂3, our estimates would have in the
long-run center around the correct value; thus, we say that μ̂1 and μ̂3 are unbiased
estimators.

Definition 3.5. An estimator θ̂ for the parameter θ is unbiased if

E[θ̂ ] = θ .

��
We now have two potentially good estimators; namely, μ̂1 and μ̂3 since these

are both unbiased for estimating μ . Which one is better? We would want to use
the estimator that, over the long run, gets closer to the actual value. Therefore, the
question is answered by considering the variability of the two estimators. Since the
variance of μ̂1 is less than the variance of μ̂3, it follows that μ̂1 will, in general, be
closer to the actual value than μ̂3.
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Definition 3.6. If we have two unbiased estimators, θ̂1 and θ̂2 for the parameter θ ,
we say that θ̂1 is more efficient than θ̂2 if the variance of θ̂1 is less than the variance
of θ̂2. ��

It is important to note that the variance of estimators can only be compared if both
estimators are unbiased. For example, the variance of μ̂2 is less than the variance of
μ̂1 but we still used μ̂1 because it is an unbiased estimator. As mentioned above, a
biased estimator may be preferred over an unbiased one. One possible scenario in
which a biased estimator may be better than an unbiased one is when the biased es-
timator is closer in the long-run to the actual parameter than the unbiased estimator,
and one measure of “closeness” is the mean squared error of the estimator.

Definition 3.7. Let θ̂ be an estimator of the parameter θ . The mean square error of
the estimator is

MSE(θ̂) = E[(θ̂ −θ)2] .

��

If we let the bias of an estimator be denoted by bias(θ̂) = E[θ̂ ]− θ , the mean
square error can be calculated as

MSE(θ̂) = V [θ̂ ]+bias(θ̂)2 , (3.1)

The most common methods for obtaining estimators is by the method of match-
ing moments, by the maximum likelihood method, and by a least squares proce-
dure. A complete discussion regarding these procedures is beyond the scope of this
review; however, we will mention the basic idea behind the first two of these proce-
dures in the next subsections.
• Suggestion: Do Problems 3.4–3.5.

3.2.1 Method of Moments

A relatively easy method for obtaining parameter estimators is to express the un-
known parameters as functions of the moments and then form equalities based on
Definition 3.3. If there is one unknown parameter, one equation involving the sam-
ple mean is necessary. If there are two unknown parameters, both the sample mean
and sample variance would be necessary.

Example 3.3. A random sample of size n is to be collected from a binomial distri-
bution. The binomial distribution has two parameters: m and p, where m is known
but p needs to be estimated from the random sample. It should also be remembered
that the mean for a binomial distribution is given by μ = mp. Since one parameter
is unknown, we form the equation

Xn = mp .
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Solving this equation for the unknown parameter yields the estimator as

p̂ =
Xn

m
.

��

Example 3.4. A random sample of size n is to be collected from a gamma distri-
bution. The gamma distribution (Eq. 1.18) has two positive parameters: a shape
parameter, α , and a scale parameter, β , where

E[T ] = αβ and V [T ] = αβ 2 .

For this example, both parameters are unknown so two equations must be formed;
namely,

Xn = αβ
S2

n = αβ 2 .

These equations are solved simultaneously to obtain

α̂ = (Xn/Sn)2

β̂ = Xn/α̂ .

��

• Suggestion: Do Problems 3.8–3.9.

3.2.2 Maximum Likelihood Estimation

Although the Method of Moments is fairly easy to implement, it is sometimes pos-
sible to obtain more efficient estimators using a procedure called the Maximum
Likelihood Method. It is beyond the scope of this chapter to give the details of the
procedure, and we refer the interested reader to Tables 6.3 and 6.4 of Law [3] for an
excellent summary of the maximum likelihood estimators for many commonly used
distributions.

The conceptual approach of the Maximum Likelihood Method is to form a like-
lihood function with the independent variables being the estimators. Intuitively, the
function equals that “likelihood” of the observed data set being a result of a distribu-
tion having parameters equal to the estimators. The Maximum Likelihood Method
then produces estimators based on maximizing the likelihood function. For exam-
ple, if the underlying distribution was a normal distribution, the maximum likeli-
hood method yields estimators equal to the equations of Definition 3.3 except that
the formula for the variance has n in the denominator instead of n− 1. Maximum
likelihood estimators have some very appealing properties; however, in general they



82 3 Basic Statistical Review

are not unbiased, although they are unbiased in the limit. For example, the Maxi-
mum likelihood Estimator for the variance of the normal distribution is as follows.

Definition 3.8. The MLE for the variance of a random sample of size n from the
normal distribution is

σ̂2
n =

(X1 −Xn)2 + · · ·+(Xn −Xn)2

n
=

(X2
1 + · · ·+X2

n )−nX
2
n

n
.

��

The difference between the sample variance (Definition 3.3) and the MLE for the
variance is the denominator. The sample variance is unbiased whereas the MLE is
not; however, the MLE for the variance has a smaller mean square error (Defini-
tion 3.7) than the sample variance.
• Suggestion: Do Problems 3.11–3.12.

3.3 Confidence Intervals

The normal distribution plays a key role in statistics, primarily because of the Cen-
tral Limit Theorem. Therefore, before we start our discussion of confidence inter-
vals, some basic facts regarding the normal distribution are reviewed. For notational
ease, when X is normally distributed with mean μ and variance σ2, we write that X
is N(μ ,σ2). The first property deals with the relationship between the normal and
chi-square distributions.

Property 3.1. If Z is N(0,1) (i.e., a standard normal random variable), then
Z2 has a chi-square distribution with one degree of freedom.

The second property deals with the additive nature of the normal distribution.

Property 3.2. If X1 and X2 are N(μ1,σ2
1 ) and N(μ2,σ2

2 ), respectively, and are
independent, then

Y = aX1 +bX2

is N(aμ1 +bμ2, a2σ2
1 +b2σ2

2 ).

The above properties lead to the following important distributions associated with
the sample mean and variance.
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Fig. 3.5 Histogram from 30 ingots giving quantity of trace element present in ppm

Property 3.3. Let Xn and S2
n be the sample mean and variance, respectively,

from a random sample of size n where the underlying distribution is N(μ ,σ2).
Then Xn is N(μ ,σ2/n) which is equivalent to saying that

Z =
Xn −μ
σ/

√
n

is N(0,1). Furthermore

V1 =
(n−1)S2

n

σ2

has a chi-square distribution with n−1 degrees of freedom.

The chi-square distribution is a special case of a gamma distribution (Eq. 1.18).
Specifically, a chi-square distribution with n degrees of freedom is a gamma dis-
tribution with shape parameter n/2 and scale parameter 2; thus, its mean is n and
variance is 2n.

3.3.1 Means

Suppose that we produce ingots of a metal and are concerned about the presence of
a certain trace element within the ingots. The quantity of trace element in parts per
million (ppm) within each ingot is random and distributed by the normal distribution
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whose mean is unknown, but temporarily, assume that we know the variance is 49.
We would like to collect some data (i.e., take observations of a random sample) and
estimate the mean of the underlying distribution. Table 3.3 contains the observations

Table 3.3 Data giving quantity of trace element present in 30 ingots in ppm

125 110 112 116 131 108
114 121 107 106 121 106
107 113 110 113 100 121
112 109 113 113 116 109
114 123 104 112 108 113

of a random sample of size 30. The value of the sample mean from those 30 data
points is x30 = 112.9 ppm. Since the sample mean is the best unbiased estimator
for the mean of a normal distribution, we can say that our best estimate for the
mean of the underlying distribution is 112.9. The trouble with reporting the single
number is we must answer the question, “How good is the estimate?” or “How
much confidence do we have in the estimate?” The reason for the question is the
understanding that if we took another random sample of 30 points and calculated a
new sample mean, its realization would likely be different from 112.9. Because of
this variability, we need some way to describe the size of the expected variation in
the sample mean.

Therefore, instead of a single value for an estimate, it is more appropriate to
give a confidence interval. For example, a 95% confidence interval for the mean
quantity of the trace element in an ingot is an interval for which we can say with
95% confidence that the interval contains the true mean; that is, we expect to be
correct 19 out of 20 times. (The choice of using 95% confidence instead of 97.2%
or 88.3% is, for the most part, one of historical precedence.)

The building of confidence intervals for the mean of a normal distribution with
known variance makes use of the fact that Z, as defined in Property 3.3, is N(0,1).
From the N(0,1) probability law, we need the constant, called zα , that yields a
“right-hand error” of α; that is, zα is defined to be that value such that

P{Z > zα} = α .

For example, using a table of critical values for the standard normal distribution (see
the Normal Distribution Table in the back of the book), we have z0.05 = 1.645.

Under the assumption of normally distributed data and known variance, σ2, the
1−α confidence interval for the mean is given by

(

xn − zα/2
σ√

n
, xn + zα/2

σ√
n

)

(3.2)

where n is the number of data points, xn is the sample mean using the n data points,
and zα/2 is a critical value based on the standard normal probability distribution.
The α in the subscript refers to the amount of error we are willing to risk; thus, a
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95% confidence implies a 5% error and we would set α = 0.05. To understand why
the 1−α confidence interval uses a critical value associated with an error of α/2,
consider a 95% confidence interval. Such a confidence interval has an associated
risk of 5% error. Since the error is divided evenly on both sides of the interval, there
is a 2.5% chance of error to the left of the interval and a 2.5% chance of error to
the right. Statistical table books usually list critical values for statistics associated
with only a right-hand error; therefore, for a 5% overall risk, we look up the value
associated with a 2.5% “right-hand” risk.

Example 3.5. To illustrate the building of confidence intervals, the data in Table 3.3
is used with the histogram of the data being in Fig. 3.5. (It might appear that it is
redundant to plot the histogram since the table of the data gives the information;
however, it is recommended that you make a practice of plotting your data in some
fashion because quantitative information cannot replace the visual impression for
producing an intuitive feel of the data.) The sample mean for the data obtained from
the 30 data values is x30 = 112.9, and the critical z-value for a 95% confidence
interval is z0.025 = 1.96. Equation 3.2 thus yields

112.9±1.96× 7.0√
30

= (110.4,115.4) , (3.3)

that is, we are 95% confident that the interval (110.4,115.4) includes the true mean
of trace element found in a randomly selected ingot. ��

We need to consider again the two assumptions (i.e., independence and normal-
ity) under which Eq. (3.2) theoretically holds. The assumption of normality is not
critical because of the Central Limit Theorem (Property 1.5). The assumption of
independence is very important and special techniques must be developed if the
independence assumption is not meet. In particular, simulation data often do not
satisfy the independence assumption, therefore, we postpone discussion of what to
do in the absence of independence until Chap. 9.

Equation (3.2) assumes that the value of the true variance is known; however, it
is much more likely that the variance will not be known and must be estimated. The
importance of the variance is in the determination of the variability of the sample
mean. Therefore, when an estimate for the variance instead of the variance’s actual
value is used, an additional degree of variability is introduced. This additional vari-
ability increases the size of the confidence interval. Technically, the calculation of
the confidence interval (Eq. 3.2) is based on the use of the normal distribution from
Property 3.3. Since σ is unknown, we cannot use the standard normal distribution,
instead a new distribution called the Student-t distribution is used. Specifically, we
have the following.

Property 3.4. Let Xn and S2
n be the sample mean and variance, respectively,

from a random sample of size n where the underlying distribution is N(μ ,σ2).
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The random variable Tn−1 defined by

Tn−1 =
Xn −μ
Sn/

√
n

is said to have a Student-t with n−1 degrees of freedom.

The Student-t distribution is similar to the normal distribution except that it has
a slightly larger variance; that is, its pd f is a symmetric bell-shaped curve that is
slightly wider than the normal. This increase in variance results in larger confidence
intervals. However, as the degrees of freedom increase, the Student-t limits to the
normal; thus, for large samples the confidence interval will be the same using the
Student-t or the normal. To build confidence intervals we need the critical values
associated with the Student-t distribution and these are defined in the same way as
the z-values were defined. Namely, tn,α is the constant defined such that yields a
right-hand-error of α; that is,

Pr{Tn > tn,α} = α .

Under the assumption of normally distributed data and unknown variance, the
1−α confidence interval for the mean is given by

(xn − tn−1,α/2
sn√

n
, xn + tn−1,α/2

sn√
n
) (3.4)

where n is the number of data points, xn and sn are the sample mean and standard
deviation using the n data points and tn−1,α/2 is a critical value based on the Student-
t distribution. (In the “old” days when tables were commonly used to obtain critical
values, zα values (standard normal) were used in place of the tn,α values whenever
n > 30; however, with the use of spreadsheets, there is no need to make this substi-
tution since it is just as easy to obtain a t-statistic with 92 degrees of freedom as it is
to obtain the z-statistic.) Statistical tests are usually better as the degrees-of-freedom
increases. A statistical test usually loses a degree-of-freedom whenever a parameter
must be estimated by the data set; thus, the t-test has only n−1 degrees-of-freedom
instead of n because we use the data to estimate the variance.

Example 3.6. We return to the data in Table 3.3 and assume the data come from
a normal distribution of unknown mean and variance. To calculate the confidence
interval, we first note that sample mean and standard deviation are xn = 112.9 and
sn = 6.7, respectively. The critical t-value for a 95% confidence interval with 29
degrees-of-freedom is 2.045. Equation (3.4) thus yields

112.9±2.045× 6.7√
30

= (110.4,115.4) . (3.5)
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This confidence interval is slightly larger than the the confidence interval of (3.3),
which is what we expected since the estimation of the σ by sn introduced an addi-
tional source of variability (and thus uncertainty). ��

3.3.2 Proportions

The second type of confidence interval that we discuss is for proportions. For exam-
ple, we might be interested in the proportion of items produced by a manufacturing
process that falls within specifications, or we might be interested in the proportion of
industrial accidents caused by unsafe conditions. The random sample X1,X2, · · · ,Xn

are now Bernoulli random variables with parameter p, where p is the probability of
success; that is Xi is 1 if the specific event of interest occured and is 0 if the spe-
cific event of interest did not occur on the ith trial. For ease of discussion, we say
there is a “success” when the event occurs; thus the sample mean now represents
the proportion of successes out of n trials. If the sample size is large, the confidence
interval for proportions is the same for means (Eq. 3.2) where the standard deviation
is estimated by

√
xn(1− xn). In other words, our estimate for p, denoted p̂n, is given

by xn with a 1−α confidence interval given by
(

p̂n − zα/2

√
p̂n (1− p̂n)

n
, p̂n + zα/2

√
p̂n (1− p̂n)

n

)

(3.6)

where n is the number of data points, xn is number of successes divided by the
number of data points, and zα/2 is a critical value based on the standard normal
probability distribution.

Example 3.7. Suppose in 4,000 firings of a certain kind of rocket, there were 15
instances in which a rocket exploded upon ignition. We desire to construct a 99%
confidence interval for the probability that such a rocket will explode upon ignition.
We first note that x4000 = 15/4000 = 0.00375 and z0.005 = 2.576; thus the 99%
confidence interval for the true probability is

0.00375±2.576×
√

0.00375×0.99625
4000

= (0.00126,0.00624) .

��

3.3.3 Variances

It is sometimes desirable to build a confidence interval for the variance of the under-
lying distribution. Confidence intervals for variances are built using the Chi-squared
distribution (Property 3.3). The critical values from a Chi-squared distribution with
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n degrees of freedom and a right-hand error of α is denoted by χ2
n,α ; that is,

Pr{Vn > χ2
n,α} = α ,

where Vn is a Chi-square random variable with n degrees-of-freedom.
Under the assumption of normally distributed data, the 1−α confidence interval

for the variance is given by
(

(n−1)s2
n

χ2
n−1,α/2

,
(n−1)s2

n

χ2
n−1,1−α/2

)

(3.7)

where n is the number of data points, s2
n is the sample variance, and χ2

n−1,α/2 and

χ2
n−1,1−α/2 are critical values based on the Chi-square distribution. (Note that again

a degree-of-freedom is lost because one parameter, namely the mean, is estimated
in order to obtain the sample variance.) It might also be noted that most table books
do not contain chi-squared values for degrees of freedom greater than 30. In such
cases, the following can be used as an approximation:

χ2
n,α = n

(

1− 2
9n

+ zα

√
2
9n

)3

for n > 30 ,

although with the easy availability of spreadsheet programs, such approximations
are not as necessary as they once were.

If we cannot justify the normality assumption of the underlying distribution, we
can again use an approximation for large sample sizes. As a rule-of-thumb, when-
ever the sample size is larger than 30, we can build a confidence interval for the
standard deviation by noting that the sample standard deviation is approximately
N(σ ,σ2/(2n)) where σ2 is the true (but unknown) variance. This approximation
yields the following confidence interval for the standard deviation for large samples

(
sn

1+ zα/2/
√

2n
,

sn

1− zα/2/
√

2n

)

. (3.8)

Example 3.8. Using the data of Table 3.3 for an example, we have s30 = 6.7,
χ2

29,0.975 = 16.047 and χ2
29,0.025 = 45.722. Thus, the 95% confidence interval for

the variance of the population producing the observations seen in Table 3.3 is

(
29×6.72

45.722
,

29×6.72

16.047

)

= (28.47,81.12) .

If we stretch the meaning of “large” a little, and use the large sample size approxima-
tion to obtain a 95% confidence interval for the standard deviation, the calculations
are: s30 = 6.7 and z0.025 = 1.96 which yields
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(
6.7

1+1.96/
√

60
,

6.7

1−1.96/
√

60

)

= (5.347,8.970) .

(Note that the first interval is for the variance and the second interval is for the
standard deviation. The equivalent interval for the variance is (28.59,80.46) which
is tighter because of the normality assumption.) ��

3.3.4 Correlation Coefficient

When two random variables X and Y are involved, we sometimes wish to estimate
their correlation coefficient. Assume that the mean and variance of these random
variables are give by μx, μy, σ2

x , and σ2
y , the correlation coefficient is defined by

ρ =
E[X Y ] − μx μy

σx σy
. (3.9)

An estimator for ρ is given by

r = ∑xi yi − nxy
(n−1)sx sy

, (3.10)

where the random sample is a collection of n ordered pairs (x1,y1), · · · ,(xn,yn).
(This estimator is often called the Pearson correlation coefficient.) The confidence
interval is not straight forward due to the fact that r is not normally distributed
even when X and Y come from a bivariate normal distribution. However, Fisher has
shown that the r value can be transformed into a z∗ value that is normally distributed
with variance 1/(n−3). The process is to first make the z∗ transformation by

z∗ = 0.5ln

(
1+ r
1− r

)

, (3.11)

where r is the Pearson correlation coefficient from Eq. (3.10). (Equation 3.11 is
called the Fisher transformation.) The 1−α confidence interval for z∗ is now given
by (

z∗ −
zα/2√
n−3

, z∗ +
zα/2√
n−3

)

. (3.12)

The 1−α confidence interval for the correlation coefficient is obtained by using
the inverse z∗ transformation on the right-hand and left-hand limits of confidence
interval given in (3.12). The inverse transformation is

r =
e2z∗ −1
e2z∗ +1

. (3.13)
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Example 3.9. Suppose we have estimated the correlation coefficient based on 100
observations to be r = 0.62. The transformation of (3.11) yields

z∗ = 0.5 ln

(
1.62
0.38

)

= 0.725 .

If we desire a 95% confidence interval, the half-width of the interval is 1.96/
√

97 =
0.199 yielding a z∗ confidence interval of (0.526,0.924). Using the inverse trans-
form of Eq. (3.13) on 0.526 and 0.924 yields the 95% confidence interval for the
correlation coefficient of

(
e2×0.526 −1
e2×0.526 +1

,
e2×0.924 −1
e2×0.924 +1

)

= (0.482,0.728) .

��

• Suggestion: Do Problems 3.6–3.7 and 3.10.

3.4 Fitting Distributions

It is often necessary to estimate not only the mean and variance of a data set, but
also the underlying distribution function from which the data set was generated. For
example, suppose we wish to model the arrival stream to a drive-in window facility
at a bank. In order to develop a model, the modeler must know the distribution of
inter-arrival times; therefore, one approach is to assume that the inter-arrival times
are independent and are from some specified distribution, like for example, an ex-
ponential distribution. We would then estimate the mean of the exponential from
the data set and then perform a statistical hypothesis test to determine if the data
are such that the exponential assumption cannot be supported. Such a statistical hy-
pothesis test is always susceptible to two different types of errors, called Type I and
Type II errors. A Type I error occurs when the hypothesis is rejected when in fact it
is true. A Type II error occurs when the hypothesis is not rejected when in fact it is
false. The probability of a Type I error (i.e., the probability of rejecting the hypoth-
esis given that it is true) is usually denoted by α . The probability of a Type I error is
usually not difficult to establish; however, the probability of a Type II error (in the
context of testing distributions) is almost impossible to establish. The reason for the
difficulty with the Type II error is that to determine its probability, it is necessary to
know the true condition about which the hypothesis is being made; however, if the
hypothesis is not true, then the range of possible alternatives is extremely large.

For example, suppose we roll a die and record the number of dots on the face
that is up for the purpose of determining if the die is “fair”. In other words, we
hypothesize that the distribution for the die is a discrete uniform distribution from
one to six. Mathematically, the hypothesis is written as
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H0 : f (k) =
{

1
6 for k = 1, · · · ,6,
0 otherwise .

The stated hypothesis of interest is called the null hypothesis and is denoted by
H0. If we end up rejecting H0, then α (which is usually set to be five percent or ten
percent) denotes the probability of an error. If we end up not rejecting H0, then the
probability of error depends on the true underlying distribution function. The Type
II error is a complicated function, depending on all possible alternative distributions.
For our purposes, it is not important to understand any quantitative descriptions of
the Type II error except to know that its maximum value is equal to 1−α . Since we
normally make the probability of a Type I error small, the maximum probability of
a Type II error is large. When the hypothesis is not rejected, we do not have much
statistical assurance that a correct decision is made, but we assume it is true for
lack of anything better. (As the amount of data increases in a random sample, the
Type II error decreases; thus, the size of the data sample is often chosen to satisfy
requirements of a Type II acceptable error.)

Statistical hypothesis tests are usually based on some established statistic (like
the sample mean) that is calculated from the data (called the test statistic) and then
compared with some value (called the critical value) usually obtained from some
statistical tables. The general procedure for most hypothesis tests is as follows:

1. State the null hypothesis explicitly.
2. Decide on which statistic to use (discussed in the paragraphs below).
3. Decide on the desired value for α , called the significance level of the test, and

then determine the critical value for the test (usually by looking it up in a table
book).

4. Collect the data.
5. Calculate the test statistic.
6. Reject or fail to reject the null hypothesis after comparing the test statistic with

the critical value of the statistic.

There are two common statistical tests for hypotheses involving equality of dis-
tributions: the chi-square goodness-of-fit test and the Kolmogorov-Smirnov test.

3.4.1 The Chi-Square Test

The chi-square test is performed on aggregated data. In other words, the range for
the random variable is divided into k intervals, and the data consist of the number
of observations that fall within each interval. Thus, the data are the same as results
from a histogram. The test compares the actual number of observations within each
interval with the (theoretically) expected number of observations, and if the differ-
ence is “too” large, the hypothesis is rejected.

To state the test more precisely, let oi denote the observed number of data points
that fall within the ith interval and let ei denote the expected number of data points
that should fall within the ith interval. The test statistic is then given by
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χ2
test =

k

∑
i=1

(oi − ei)2

ei

=
k

∑
i=1

(oi −npi)2

npi
, (3.14)

where k is the number of intervals, n is the number of data points, and pi is the
probability of interval i occuring (from one trial). The intervals do not have to be
of equal length or of equal probability, but they should be large enough so that the
expected number of data points in each interval is at least 5; that is, ei = npi ≥ 5 for
i = 1, · · · ,k.

The chi-square random variable has one parameter, its degrees of freedom. Most
introductory text books in statistics will contain a table of probabilities associated
with chi-square random variables of various degrees of freedom. For the goodness-
of-fit test involving a distribution whose parameters are assumed known, the degrees
of freedom are equal to the number of intervals minus one. (If there are unknown
parameters, one degree of freedom is lost for each unknown parameter. An exam-
ple of this involving the normal distribution is given at the end of this subsection.)
Typically, the value for α (i.e., the probability of an error when the null hypothesis
is rejected) is taken to be five percent or ten percent. The critical value for χ2

k−1 is
found by looking in the appropriate table under k − 1 degrees of freedom for the
specified α . (Sometimes, tables do not list the statistic under α but instead list it un-
der the cumulative probability, which equals 1−α . In other words, if the table is for
the distribution function F of random variable X , usually the table will give x where
α = P{X > x} = 1−F(x).) If the test statistic is greater than or equal to the critical
value, the null hypothesis is rejected (because the large test statistic showed that the
process had more variation than would be expected under the null hypothesis). If
the test statistic is less than the critical value, the conclusion of the test is that there
is not enough statistical variation within the data set to reject the null hypothesis.

Example 3.10. Again, the data of Table 3.1 are used to illustrate the chi-square
goodness-of-fit test. The null hypothesis is the one stated above—that a fair die was
used in obtaining the data. Using a significance level of five percent (i.e., α = 0.05)
along with the six intervals (i.e., 5 degrees of freedom) yields a critical value of
χ2

critical = 11.1. The calculations for the test statistic are

χ2
test =

(7−10)2

10
+

(11−10)2

10
+

(9−10)2

10

+
(14−10)2

10
+

(10−10)2

10
+

(9−10)2

10
= 2.8 .

Since 2.8 < 11.1, we cannot reject the hypothesis that the die was fair. ��

Example 3.11. The use of the chi-square test for a continuous distribution is illus-
trated using the “spinning dial” experiment along with the data contained in his-
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Table 3.4 Experimental data, possibly from a normal distribution

99 93 82 95 89
114 77 94 91 99

98 78 93 108 97
85 100 92 104 84
96 92 121 106 107
95 124 122 102 102

togram of Fig. 3.3. The hypothesis is that the pointer produces a uniformly dis-
tributed random variable. Recognizing that the cumulative distribution for a contin-
uous uniform zero-one random variable is a simple linear function from zero to one,
the null hypothesis is written as

H0 : F(s) =

⎧
⎨

⎩

0 for s < 0,
s for 0 ≤ s < 1,
1 for s ≥ 1 .

(3.15)

In our experiment, there were 20 data points, so if four equal sized intervals are used,
each interval would be expected to contain 5 data points. Since the test requires the
expected number to be at least 5, it is permissible to use the four intervals shown
in the histogram. Using a significance level of five percent along with four intervals
yields a critical value of χ2

critical = 7.815. The calculations for the test statistic are

χ2
test =

(6−5)2

5
+

(4−5)2

5
+

(6−5)2

5
+

(4−5)2

5
= 0.8 .

Because χ2
test = 0.8 < 7.815, we cannot reject the hypothesis. ��

We often want to hypothesize a distribution, but the relevant parameters (e.g.,
mean, variance, etc.) are not known. For example, suppose we wish to test whether
or not the data in Table 3.4 are from a normal distribution. Our assumption now
needs to be verified statistically, so the null hypothesis is formed as

H0 : f (·) is a normal probability density function .

Before intervals can be decided, the parameters for the normal distribution need
to be estimated. The same data used for the chi-square statistic are used to estimate
all unknown parameters, but each parameter estimated causes a loss of one degree
of freedom in the test statistic. In other words, the chi-square statistic is calculated
just as above once the parameters have been estimated; however, the degrees of
freedom equal one less than the number of intervals minus the number of parameters
estimated from the data.

Example 3.12. The data from Table 3.4 yield a mean of 97.97 and a standard devi-
ation of 11.9 (from the equations in Definition 3.3). We will start with six intervals
by adding and subtracting 10 from the mean. Thus, our initial intervals are set at
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(−∞, 77.97], (77.97, 87.97], (87.97, 97.97], (97.97, 107.97], (107.97, 117.97], and
(117.97, ∞). Using a standard normal table, we find the probabilities associated with
these intervals are

P{X < 77.97} = 0.0456 = p1

P{77.97 ≤ X < 87.97} = 0.1549 = p2

P{87.97 ≤ X < 97.97} = 0.2995 = p3

P{97.97 ≤ X < 107.97} = 0.2995 = p4

P{107.97 ≤ X < 117.97} = 0.1549 = p5

P{X ≥ 117.97} = 0.0456 = p6 .

To obtain the expected number of occurences in each interval, the above numbers
are multiplied by the sample size yielding e1 = 1.368, e2 = 4.647, e3 = 8.985, e4 =
8.995, e5 = 4.647, e6 = 1.368. Since not all intervals have an expected number
of occurences greater than or equal to 5, some of the intervals must be combined;
therefore, before doing the test, we combine the first two intervals into one interval
and the last two intervals into one interval. Thus, our chi-squared test will end up
with the following four intervals: (−∞, 87.97], (87.97, 97.97], (97.97, 107.97], and
(107.97, ∞).

This grouping meets the criterion of at least 5 expected observations per interval.
(The determination of the intervals is arbitrary as long as it meets the criterion, and
as long as it is done without reference to the data so it is not influenced by the data.)
Thus, the critical value using only one degree of freedom for the test at a five percent
significance level is χ2

critical = 3.841 and the test statistic is

χ2
test =

(5−6.015)2

6.015
+

(11−8.985)2

8.985
+

(9−8.985)2

8.985
+

(5−6.015)2

6.015
= 0.794 .

The hypothesis that the data are normally distributed is not rejected since χ2
test <

3.841. However, again we emphasize that such a test does not “prove” the hypothesis
is true; it indicates only that with the available data there is not sufficient evidence
to reject the hypothesis. ��

The test for normality in the above example used only one degree of freedom.
This is bothersome because the greater the degrees of freedom the “more powerful”
the test. (A test is said to be more powerful than another if the Type II error for the
first test is less than the Type II error for the second.) However, there is a trade-off in
the chi-square test because it is an approximate test, with the condition ei ≥ 5 being
the limit of its approximation. The test is more accurate if the intervals are large
enough so that the expected number of observations is larger than the minimum
of five. However, a chi-square goodness-of-fit test with few degrees of freedom is
somewhat weak, and the user should not put much confidence in the test results if
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the null hypothesis was not rejected. If these statements seem more qualitative than
quantitative, you are right. At times, statistics is closer to art than to mathematics!

Another measure of how well the empirical data fit the hypothesized distribution
is to measure the “plausibility” that the data set arose from the given distribution.
The measure of “plausibility” is called the p-value and is defined, for the Chi-Square
Goodness-of-Fit test as

p-value = Pr{Vn > χ2
test} , (3.16)

where Vn is a chi-square random variable with n degrees, and where n is equal
to the number of degrees for freedom needed to determine the chi-square critical
value (i.e., n is the size of the data set minus one minus the number of parameters
estimated). Thus, the higher the p-value, the higher the plausibility that the data
actually came from the hypothesized distribution. Technically, if the p-value is larger
than the critical value, the test is not rejected; otherwise, it is not. It is also common
(see [2]) to not reject the hypothesis if the p-value is larger than 10%, reject the
hypothesis if the p-value is less than 1%, and when the p-value is between 1% and
10% to indicate that the test results make it unclear whether to reject or not reject
the hypothesis.

The Goodness-of-Fit Test yielded a p-value of 0.7308 in Example 3.10, a p-value
of 0.8495 in Example 3.11, and a p-value of 0.3729 in Example 3.12. Thus, it is
plausible to assume that all data sets come from the hypothesized distributions. (See
the appendix of this chapter for using Excel to obtain the p-value.)

3.4.2 The Kolmogorov-Smirnov Test

Two disadvantages of the chi-square test is that it cannot be used with small data
samples because of the minimum number of expected observations required per in-
terval and a decision must be made regarding how to structure the intervals. For
continuous random variables, the Kolmogorov-Smirnov (K-S) test is an alternative
approach that can be used with small data sets as well as with large ones. The statis-
tic is based on a comparison between the hypothesized cumulative probability dis-
tribution function and the empirical cumulative probability distribution function.

The empirical distribution function is a CDF that arises directly from the data; in
other words, it is a step function that increases at each data point proportional to the
number of observations at the data value. In other words, the empirical distribution
is a step function the increases by an amount equal to 1/n at each data point where
n is the sample size. For example, assume we have the following 5 data values: 2.4,
5.2, 3.4, 2.4, 1.5. The first step is to order the data and then plot F̂5 so that it increases
by 1/5 at every data value. Note that the step size for F̂5(x) at x = 2.4 is 2/5 since
there were two data points equal to 2.4. (See Fig. 3.6 for the graph from this data
set.)

We now give a more precise statement of the K-S test. Let F0 denote the hypoth-
esized cumulative probability distribution function, and let F̂n denote the empirical
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Fig. 3.6 An empirical dis-
tribution function for 5 data
points, with two data values
occuring at 2.4
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cumulative probability distribution function based on a sample size of n. Then let Dn

be a random variable denoting the maximum difference in absolute value between
the two distributions; that is,

Dn = sup
x
|F0(x)− F̂n(x)| . (3.17)

(The supremum or “sup” of a set is the same as the maximum of the set with the
addition of limiting values.) The operational procedure for determining the value
of Dn is to represent the random sample in its ordered form, so that X(i) is the ith

smallest value, which then yields

Dn = max{| i
n
−F0(X(i))| , |F0(X(i))−

i−1
n

| : i = 1, · · · ,n} (3.18)

where n is the sample size. Note that the value of Dn is the maximum of the dif-
ference in absolute value between the empirical distribution and hypothesized dis-
tribution evaluated at both the left-hand limit and the right-hand limit of the data
points. Assuming that all parameters are known or hypothesized (i.e., no parameter
estimation is made using the data set), then the test statistic is defined by

Dtest =
(√

n+0.12+
0.11√

n

)

Dn for n ≥ 2 . (3.19)

Thus, the hypothesis is rejected if Dtest > Dα . Some of these critical values, taken
from [3], are D0.10 = 1.224, D0.05 = 1.358, and D0.01 = 1.628.

Example 3.13. Returning once again to the spinning dial experiment, we hypothe-
size that the continuous uniform zero-one distribution is appropriate for that data set
(Eq. 3.15). Both the empirical CDF and the hypothesized CDF are shown in Fig. 3.7
and it is seen that the largest difference between the two functions is D20 = 0.10
which yields a test statistic of Dtest = 0.4616 which is less that the 5% critical value
of 1.358; therefore, we conclude that there is not any statistical evidence to reject
the null hypothesis. ��
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Fig. 3.7 The determination
of the K-S statistic for the
spinning dial experiment; the
straight line is the hypothe-
sized distribution, F0, and the
step function is the empirical
distribution, F̂20, based on the
20 data points in Table 3.2
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A major disadvantage of the K-S test in its original design is that it requires
all parameters of the hypothesized distribution to be known, i.e., not determined
from the data set. It is difficult to apply the K-S test to a general distribution when
some of the parameters are unknown; however, for a few special distributions, easily
implemented procedures have been developed that incorporate parameter estimation
into the statistical test.

Exponential Distribution.

If it is believed that a data set comes from an exponential distribution with an un-
known parameter, both the test statistic and the critical values have simple adjust-
ments. First, the sample mean of Definition 3.3 is used to estimate the mean of the
distribution. Second, the test statistic is calculated as

Dtest =
(√

n+0.26+
0.5√

n

)(

Dn −
0.2
n

)

for n ≥ 2 . (3.20)

Finally, the hypothesis is rejected if Dtest > Dα , where some of these critical values,
taken from [3], are D0.10 = 0.990, D0.05 = 1.094, and D0.01 = 1.308.

Normal Distribution: If it is believed that a data set comes from a normal dis-
tribution with unknown parameters, we again have simple adjustments to the test
statistic and the critical values. The sample mean (Definition 3.3) and MLE for the
variance (Definition 3.8) are used to obtain estimates for the unknown parameters,
and the test statistic is calculated as

Dtest =
(√

n−0.01+
0.85√

n

)

Dn for n ≥ 2 . (3.21)
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Finally, the hypothesis is rejected if Dtest > Dα , where some of these critical values,
taken from [3], are D0.10 = 0.819, D0.05 = 0.895, and D0.01 = 1.035.

Weibull Distribution: If it is believed that a data set comes from a Weibull dis-
tribution with unknown parameters, the Maximum Likelihood Estimators are used.
(We have found an excellent summary of distributions and MLE procedures in [3,
Table 6.3].) The test statistic is give by Dtest =

√
nDn, and the critical value is de-

pendent on the sample size. Table 3.5 gives some of the critical value for an error of
5% and 10%; additional values can be found in [3].

Table 3.5 Critical value for the Weibull distribution
Sample Size

α 10 20 50 ∞
5% 0.819 0.843 0.856 0.874
10% 0.760 0.779 0.790 0.803

Gamma Distribution: If it is believed that a data set comes from a Gamma
distribution with unknown parameters, a much more complicated test is required.
This test uses a squared difference between empirical CDF and the hypothesized
CDF. The Gamma distribution has two parameters: a shape parameter, a, and a scale
parameter, β . As with the previous distributions, we use the Maximum Likelihood
Method to estimate both unknown parameters and again refer the reader to [3, Table
6.3] for a description of MLE procedures. The test statistic, denoted by U2 is given
by

U2
test =

1
12n

+
n

∑
i=1

(

F(X(i))−
2i−1√

2n

)2

−n

((
1
n

n

∑
i=1

F(X(i))

)

−0.5

)2

. (3.22)

If the test statistic is larger than the critical value, the null hypothesis is rejected.
The critical values, taken from [4], depend on the shape parameter, a, according
to the Table 3.6. The difficulty with the Gamma distribution is that the test statis-

Table 3.6 Critical values for the gamma distribution

Sample Size
α 1 2 3 4 5 10 ∞
5% 0.119 0.118 0.118 0.117 0.117 0.117 0.117
10% 0.098 0.097 0.097 0.097 0.097 0.096 0.096

tic (Eq. 3.22) is more complicated than the other test statistics that arise from the
empirical CDF and the table of critical values are for the asymptotic results only.
However, it is reported in [4, p. 156] that results are still quite good for small n.
• Suggestion: Do Problems 3.13–3.14.
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3.5 Fitting Models

Oftentimes data collected from random samples need to be characterized in response
to more specific questions regarding the relationship of the random sample to an-
other variable that may not be random. We have already seen some of those in
Sect. 3.3.4 where the correlation coefficient is used to measure the degree of linear
relation between variables collected as pairs. Suppose, however, that the interest is
not only about how the two variables behave as a pair, but also how a variable can
be used to predict the value for the other variable. For example, the efficiency of an
additive to gasoline has been evaluated by adding different amounts of the additive
to the gasoline and counting the number of times that clogged injectors have failed
to pass performance criteria. Airplane engines have been found to work more effi-
ciently (i.e., fly more miles per gallon) with higher concentrations of the additive.
Twenty airplanes of the same type and model are used for two years to test the ad-
ditive at each of five concentrations of the additive in the gasoline. At the end of
the experiment, all the airplanes that needed maintenance to replace clogged injec-
tors caused by the additive were recorded. The following table shows the number
of airplanes that needed new injectors at each of the different concentrations of the
additive in the gasoline.

Table 3.7 Experimental results regarding risk from gasoline additives

Concentration (ml/l) of additive 0 5 10 50 100
Number Airplanes Tested 20 20 20 20 20
Number Injectors Failed 2 3 5 6 8

The first step in model fitting is to determine an appropriate model for the system
under consideration. Determining the best model to fit is a very important decision
and should be driven by knowledge of the phenomenon being modeled. Here, we
restrict our attention to linear one-variable models; in other words, the relationship
between the fraction of fuel injectors that fail and the concentration levels will be
assumed to be linear. The variable for the outcomes of the experiment (i.e., the frac-
tion of injectors that fail) is called the dependent variable and is usually denoted by
the random variable Y while the variable representing the known values (i.e., the
concentration level) is called the independent variable and is denoted by x. Mathe-
matically, this linear relationship can be expressed as follows,

Yi = α +β xi + εi , (3.23)

where xi is the ith value of the independent variable, Yi is the ith value of the de-
pendent variable, εi is the random error of Yi, α is the intercept of the line (i.e., the
expected value of Yi when the value of xi is zero), and β is the slope of the line
(i.e., the rate of change of the dependent variable Y per each unit of change of the
independent variable x). Note that if Y and x were linearly related and there were
no error (randomness) in the values of Y then the problem would be trivial and one
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would only need the values of x and Y at two different points to define the straight
line. The randomness of the Y values is what makes the task of finding the linear
relationship between x and Y a more interesting problem.

Once the type of model to be used to fit observed data has been determined, an-
other important consideration is to select the best method to fit the model to the
data. This decision is largely based on the statistical characteristics of the data and
the desired statistical behavior of the fitted model. Here, we are going to review
two methods to fit a model to the data. Each of the methods has different statistical
properties and each is more appropriate to use than others in specific circumstances.
The estimation method simply finds the best value for the intercept and slope of
Eq. (3.23) that satisfy known statistical properties. These statistical properties de-
pend on what is assumed about the distribution of the unknown error term; namely,
the assumption regarding εi in Eq. (3.23).

There are several important aspects of regression models that will not be covered
in this brief review. Almost all introductory books in mathematical probability and
statistics will cover these topics, and we leave it to the reader to pursue further study
in this area as needed.

3.5.1 Ordinary Least Squares Regression

For this section, we make three assumptions: (1) the collection of random variables,
{Yi ; i = 1, · · · ,n} are pairwise uncorrelated; (2) each random variable within the
collection has the same variance, denoted by σ2; and, (3) E[Yi] = α +β xi, for some
constants α and β . (Pairwise uncorrelated means that E[Yi Yj] = E[Yi]E[Yj] for i �= j.)

Definition 3.9. The least-squares estimators of α and β of the linear relationship
given by Eq. (3.23) between n pairs of observations (yi,xi), i = 1,2, · · · ,n is given
by the α and β values that minimize the following sum of squares

SSQ(α,β ) =
n

∑
i=1

(α +β xi −Yi)2 .

��

The least-squares estimators of α and β can be obtained using a closed-form so-
lution of the least-squares equation given in Definition 3.9. There are no statistical
assumptions about the distribution or properties of the unknown error term to obtain
ordinary least squares estimates of the parameters. The estimates of the parameters
are obtained by taking the partial derivative of the sum of squares equation in Def-
inition 3.9 with respect to α and β , setting the equations equal to zero, and solving
for the unknown values of α and β . That is, the solution to the following equations
is the least-squares estimates of the parameters
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∂ SSQ(α,β )
∂α

=
n

∑
i=1

2(α +β xi −Yi) = 0 (3.24)

∂ SSQ(α,β )
∂β

=
n

∑
i=1

2xi (α +β xi −Yi) = 0 .

Property 3.5. The least-squares estimators for α and β of the linear relation-
ship given by Eq. (3.23) solve the system of equations of (3.24) and are given
by

β̂ = ∑n
i=1(xi − x)(yi − y)

∑n
i=1(xi − x)2 = ∑n

i=1 xiyi −nxy

∑n
i=1 x2

i −nx2

α̂ = y−β x ,

where x = (∑n
i=1 xi)/n and y = (∑n

i=1 yi)/n.

Notice that a lower case letter (yi) is used within the definition of the least-squares
estimators because the estimators are based on observed values of the random vari-
able.

Example 3.14. Our goal is to predict the risk associated with using the gasoline ad-
ditive in airplanes. Taking the data of Table 3.7, we first calculate the estimated
probability of failure of the fuel injectors for each concentration level yielding Ta-
ble 3.8.

Table 3.8 Values used to estimate parameters for the linear model of Example 3.14

Concentration (ml/l): x-values 0 5 10 50 100
Fraction failed: y-values 0.10 0.15 0.25 0.30 0.40

Using the data of Table 3.8, we obtain the model parameters by

β̂ =
58.25−5×33×0.24

12625−5×332 = 0.002597

α̂ = 0.24−0.002597×33 = 0.1543 .

Figure 3.8 shows a graph with the estimated probability of injector failures for dif-
ferent concentrations of the gasoline additive. The straight line on the graph is that
line that minimizes the sum of squared errors; that is, sum of squared differences be-
tween the estimated line and the observed values of Y (i.e., the difference between
yi and ŷi, where ŷi = α̂ + β̂ xi). In other words, there is no other straight line with a
smaller sum of squares errors. ��

The assumption of this section is that each random variable Yi for i = 1, · · · ,n
has the same variance denoted by σ2. Based on Eq. (3.23), each error term εi must
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Fig. 3.8 Least squares fit to the probability of injector failure vs. concentration of additive

also have the same variance equal to σ2. Since the estimates for α and β depend
on observations of Yi, the estimators α̂ and β̂ must be random as well. In particular
if the distribution of the errors is assumed to be normal, then the distributions of
the estimates are also normal. Even though the ordinary least squares parameter
estimators are random, they are unbiased. That is, the mean of the distribution of the
parameter estimators equals the true coefficients of Eq. (3.23).

The first step in determining the accuracy of the least-squares estimates given by
Property 3.5, is to estimate the value of the variance term σ2 which is given in the
following property.

Property 3.6. Assume that each εi for i = 1, · · · ,n in Eq. (3.23) is normally
distributed with mean 0 and variance σ2. The following estimator for σ2 is
unbiased

s2 =
SSE
n−2

= ∑n
i=1(yi − ŷi)2

n−2
.

Notice that the sum of squared errors (SSE) is divided by n− 2 to account for the
two degrees of freedom lost because of the two parameters being estimated. The
SSE can be computed by

SSE =
n

∑
i=1

(yi − ŷi)2 =
n

∑
i=1

y2
i − α̂

n

∑
i=1

yi − β̂
n

∑
i=1

xi yi . (3.25)
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Having an estimate of the variance of the error, we are now in a position of
fully characterizing the distribution of the parameter estimators. Let σ2

α denote the
variance of α̂ and let σ2

β denote the variance of β̂ . The variance of the two least
squares estimators are given by

σ2
α =

σ2 ∑n
i=1 x2

i

n ∑n
i=1(xi − x)2 (3.26)

σ2
β =

σ2

∑n
i=1(xi − x)2 ,

where σ2 is the variance of the error term. In order to form a statistic that will allow
for building confidence intervals, we need to estimate these variances which is a
straight forward substitution of Property 3.6 into (3.26). Thus, the estimate for the
variance of α̂ and β̂ , denoted by s2

α and s2
β , respectively, are given by

s2
α =

s2 ∑n
i=1 x2

i

n ∑n
i=1(xi − x)2 (3.27)

s2
β =

s2

∑n
i=1(xi − x)2 ,

where s2 is the variance estimator from Property 3.6. The variance statistics of
Eqs. (3.27) allow for the construction of Student-t random variables that can be used
for hypothesis testing and building confidence intervals for the parameter estimators
as showing in the following property.

Property 3.7. Assume that each εi for i = 1, · · · ,n in Eq. (3.23) is normally
distributed with mean 0 and variance σ2. Let α̂ and β̂ be the least squares
estimators as determined by Property 3.5 with their variance estimators given
by Eqs. (3.27). Then

Tα =
α̂ −α

sα
and

Tβ =
β̂ −β

sβ
.

have Student-t distributions with n−2 degrees of freedom.

Notice that the degrees of freedom equal the sample size minus two for the two
parameters estimated (i.e., α and β ).

The t-distribution allows us to easily build confidence intervals for the parame-
ter estimators. Under the assumptions given in Property 3.7, the 1− a confidence
interval for the intercept estimator of Eq. (3.23) is given by
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( α̂ − tn−2,a/2 × sα , α̂ + tn−2,a/2 × sα ) , (3.28)

and the 1−a confidence interval for the slope estimator of Eq. (3.23) is

( β̂ − tn−2,a/2 × sβ , β̂ + tn−2,a/2 × sβ ) . (3.29)

Notice that we use a for the amount of error allowed in the confidence interval
instead of α so that there is no confusion between the error allowed and the intercept
parameter. (These confidence intervals are very similar to the confidence intervals
for the mean. It would be worthwhile to compare Property 3.7 with Property 3.4 and
to compare Eqs. (3.28) and (3.29) with Eq. (3.4).)

Example 3.15. In Example 3.14, we found that the least-squares estimate for the
intercept and slope were α̂ = 0.1543 and β̂ = 0.002597. We are now able to deter-
mine the accuracy of these estimates and indicate whether or not the estimates are
statistically different from zero. Using the above equations, the following values are
obtained:

s2 =
0.008557

3
= 0.002852

s2
β =

0.002852
7180

= 3.973×10−7

s2
α =

0.002852×12625
5×7180

= 0.001003 .

The t-statistic with a 5% (two-tailed) error and with three degrees of freedom equals
3.1824; therefore, with 95% confidence, we have that

0.0535 < α < 0.2551 and 0.000592 < β < 0.004603 .

Because the value of zero is not within the 95% confidence intervals, we can say
that both parameters are significantly different than 0.0. Thus, it is safe to claim that
the risk of injector failure depends in the concentration level of the additive, and
even without any additive, there is a (statistically) significant probability of injector
failure. ��

We close this section by giving the prediction interval around the regression line.
In other words, if several additional experiments were to be conducted with the
independent variable set at the value of x = x∗, a 95% prediction interval would be
an interval for which approximately 95% of the individual observations fall within
the interval. Note that this interval gives the occurences of the individual data points,
not just the sample mean. Such a prediction interval is given by

α̂ + β̂ x∗ ± s

√

n+1
n

+
s2

β (x∗ − x)2

s2 (3.30)

where s2 is from Property 3.6 and s2
β is from Eq. (3.27).
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3.5.2 Maximum Likelihood Estimates for Linear Models

A application of the Maximum Likelihood Method for linear models is conceptually
the same as briefly discussed in Sect. 3.2.2. Again, we leave the explicit details to
other authors and simply give some general results here.

To determine the Maximum Likelihood Estimators (MLE), a likelihood function
is obtained which represents the “likelihood” that a specific sample will be observed.
The parameter estimates are then the values that maximize the likelihood of the
sample being observed. It should be recalled that the Method of Moments and the
Maximum Likelihood method often yield identical estimates for means of normally
distributed random variables but yield different variance estimators. The same is
true for linear models.

Property 3.8. Assume that each εi for i = 1, · · · ,n in Eq. (3.23) is normally
distributed with mean 0 and variance σ2. The MLE for the intercept, α , and
slope, β , parameters are identical to the least squares estimators of Prop-
erty 3.5. The MLE for the variance, σ2, is given by

σ̂2 =
SSE

n
= ∑n

i=1(yi − ŷi)2

n
.

The MLE for the variance of α̂ and β̂ are the same as given in Eqs. (3.27) except
that s is replaced by σ̂ . In other words, the MLE for the variance of α̂ and β̂ , denoted
by σ̂2

α and σ̂2
β , respectively, are given by

σ̂2
α =

σ̂2 ∑n
i=1 x2

i

n ∑n
i=1(xi − x)2 (3.31)

σ̂2
β =

σ̂2

∑n
i=1(xi − x)2 ,

where σ̂2 is the variance estimator from Property 3.8.

Appendix

Spreadsheet programs have made statistical analyses much easier and there no
longer needs to be a dependence on statistical tables. In this appendix, we show
some uses of Excel in statistics and present an algorithm for calculating sample
standard deviations that avoids some potential numerical problems with taking the
differences of squares.
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Excel Functions: The common Excel functions given by AVERAGE(range)
and STDEV(range) yield the sample mean and sample standard deviation (Def-
inition 3.3) of the data given within range. The MLE for the standard deviation
(Definition 3.8) is given by STDEVP(range). The Excel estimator for the correla-
tion coefficient, namely CORREL(range1, range2), is the Pearson correlation coef-
ficient (Eq. 3.10) and is equivalent to the Excel covariance estimator divided by the
two MLE’s for the standard deviations.

The critical values for many statistical tests are also available from Excel. The
only problem is remembering which functions are based on right-hand tails and
which functions are based on left-hand tails. For example, the Excel function
NORMSINV(prob) is based on the left-hand probability. In other words, the func-
tion returns a value such that the probability that a standard normal random variable
is to the left of the returned value is equal to the input parameter prob. However,
the function CHIINV(prob, df) is based on right-hand tails. In other words, this
second function returns a value such that the probability that a chi-square random
variable with df degrees of freedom is to the right of the returned value is equal to
the input parameter prob. To insure maximum confusion, the Excel function for the
t-statistic TINV(prob, df) is based on two tails so that this function returns a value
such that a Student-t random variable with df degrees of freedom is to the right of
the returned value is equal to one half of the value of the input parameter prob (the
other half of the probability is in the left-hand tail). Table 3.9 contains a summary of
Excel functions that give the inverse of the distribution functions. (Actually, these
functions are the inverse of the distribution function when the probability param-
eter refers to the left-hand tail, and they are the inverse of the complement of the
distribution function when the probability parameter refers to the right-hand tail.)

Table 3.9 Excel functions for some common critical statistical values
Excel Function Distribution Tails Equation References

NORMSINV(prob) Standard Normal Left-hand (3.2), (3.6), (3.8)
TINV(prob, df) Student-t Two-tailed (3.4)
CHIINV(prob, df) Chi-square Right-hand (3.7)
FINV(prob, df1, df2) F Right-hand (9.12)

For a 5% error with the Student-t statistic as in Eq. (3.4), the value of 0.05 is
used for the prob parameter; thus, the function TINV(0.05, df) would be used.
However, if the z statistic were needed with a 5% error as in Eq. (3.6), the Excel
function would be NORMSINV(0.975). The difference in the values of the prob
parameter illustrates the difference between a left-hand tail function and a two-tailed
function.

Example 3.16. The use of Excel in calculating confidence limits and the meaning of
a confidence interval will be demonstrated in this example. (Note that when using
Excel, we follow the practice of never having data without either a header or a cell
to the left of the data with a description of the data.) In Cells A1 and A2, type the
following:
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A
1 Data
2 =NORMINV(RAND(),100,20)

Notice that Cell A2 contains a random variate that is normally distributed with
mean 100 and standard deviation 20 (see Property 2.4). Highlight Cells A2:A101
and hit the <Ctrl>-D keys to copy the formula in Cell A2 down through Cell
A101. While Cells A2:A101 are still highlighted, type DataRng in the Name Box
(i.e., the box in that appears in the upper left portion of the worksheet just above the
A and B columns) and then hit the Enter key. Now a random sample of size 100 is
contained within the range of cells that have been named DataRng. Now in Cells
D1:E5, type the following:

D E
1 Mean =AVERAGE(DataRng)
2 StDev =STDEV(DataRng)
3 t-stat =TINV(0.05,COUNT(DataRng)-1)
4 Lower Limit =E1-E2*E3/SQRT(COUNT(DataRng))
5 Upper Limit =E1+E2*E3/SQRT(COUNT(DataRng)

The 95% confidence interval is given in Cells E4:E5. It is a “good” confidence
interval if the value of 100 is between the lower and upper limits. Notice that by hit-
ting the F9 key, a new realization of the random sample is obtained. On a separate
sheet of paper, record whether or not the confidence interval is “good”. Hit the F9
key and record again whether or not the confidence interval is “good”. Repeat this
several times, and count the number of “good” intervals and the number of “bad” in-
tervals. Since a 95% confidence interval was formed, there should be approximately
19 “good” intervals for every 20 different realizations of the random sample. ��

As mentioned when quartiles were introduced, there is not a universally recog-
nized definition for quartiles. Excel uses a different definition than the common one
that we used in Definition 3.4. The Excel function QUARTILE(data array, quar-
tile number) will yield the minimum, lower quartile, median, upper quartile, and
maximum value as the quartile number varies from 0 through 4. The Excel function
defines the lower quartile by the index given as (n + 3)/4 where if the index is not
an integer, a weighted average of the ordered data values associated with the two
indices that bracket the value (n + 3)/4. The upper quartile is defined by the index
given as (3n+1)/4 where again if the index is not an integer, a weighted average of
the ordered data values associated the two indices that bracket (3n + 1)/4. In other
words, if n = 50, the index defining the lower quartile would be 53/4 = 13.25; thus,
the lower quartile would be given by x(13) +0.25× (x(14)− x(13)).

Two other functions that are helpful are the FISHER() and FISHERINV()
functions. These are needed for confidence intervals dealing with the correlation
coefficient and are the functions of Eqs. (3.11) and (3.13). (Problem 3.7 uses these
functions to redo Example 3.9.)
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Example 3.17. Our final example of this appendix demonstrates using Excel for ob-
taining the least-squares estimates for a simple linear regression. There are actually
two methods that can be used. The first method that we demonstrate is to obtain
the slope and intercept individually. The second method is to obtain the slope and
intercept plus additional statistical values with one function. For demonstration pur-
poses, we return to Example 3.15 and reproduce those results with Excel. To setup
the example, type the following in Cells A1:D6 using word warp in the first line to
make it readable.

A B
Prob.

1 Concentration Failure
2 0 0.10
3 5 0.15
4 10 0.25
5 50 0.30
6 100 0.40

The slope and intercept values can be obtained directly by the Excel functions
with same names as follows.

A B
8 alpha =INTERCEPT(B2:B6,A2:A6)
9 beta =SLOPE(B2:B6,A2:A6)

Notice that in both functions, the y values are listed first followed by the x values.
There is also an Excel function, called LINEST, that not only yields the slope and
intercept estimates, but also obtains additional statistical information. This function
does more that we covered in Sect. 3.5 so we do not explain the entire function but
only use what was covered in Example 3.15. To obtain the estimates β̂ and α̂ as
well as their standard error terms, sβ and sα , setup the spreadsheet as follows.

F G H
1 Slope Intercept
2 Estimator
3 St. Error
4 rˆ2 & s

Now highlight the 3×2 group of cells G2:H3 and type the following

=LINEST(B2:B6,A2:A6,TRUE,TRUE)

and while holding down the <shift> and <ctrl> keys hit the <enter> key.
The least-squares estimators for the slope and intercept values are contained in Cells
G2:H2 and the square root of their associated variances defined by Eq. (3.27) are
contained within Cells G3:H3. The value in Cell G4 gives the so-called coefficient of
determination, or r2. The r2 value gives the fraction of the variation that is accounted
for in the regression line. In this case r2 = 0.8499 which implies that approximately
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85% of the variation of the fuel injector failures was due to the variation in the
concentration levels. Finally, the value that is contained in Cell H4 is the value of s
which is the square root of the variance estimator defined by Property 3.6.

Notice that there were two additional parameters that were set equal to TRUE
in the above example of the LINEST function. The third parameter indicates that
α̂ is desired and the fourth parameter indicates that the additional statistical terms
are desired. If the third parameter were set to FALSE, the best least-squares line
that passes through the origin would be obtained, and if the fourth parameter were
FALSE, only the estimators for β̂ and α̂ would be obtained.

A one pass algorithm: There are two equivalent formulas for calculating the
sample variance (Definition 3.3). Because the first formula requires the sample mean
to be known ahead of time, it is the second formula that is most commonly used.
The difficulty with the second formula is that if the data values are large with a rela-
tively small variance, the second formula can produce round-off errors. A One-Pass
Algorithm for Variances (Welford [5]) has been developed that allows the calcula-
tion of the sample variance by squaring the difference between each data value and
the current estimation of the mean thus reducing the potential for round-off error.
Assume we have data value x1, · · · ,xn. Let xk and ssqk be the mean estimate and the
sum of squares value after considering k data points. The One-Pass Algorithm for
the variance is

1. Set x0 = 0, ssq0 = 0, and k = 1,
2. Δ = xk − xk−1,
3. xk = xk−1 +Δ/k,
4. ssqk = ssqk−1 +Δ × (xk − xk)2.
5. If k = n stop; otherwise, increment k and return to Step 2.

After the algorithm is finished, the sample variance is s2
n = ssqn/(n−1).

Problems

3.1. The output of a simulation of a queuing system indicates that the waiting times
of five customers at a bank teller were 5.7, 16.3, 3.0, 4.5, 1.2 minutes. Using these
waiting times, estimate:
(a) The sample mean.
(b) The sample standard deviation.
(c) The probability of the waiting time being longer than 10 minutes.
(d) Assume that the true distribution is a normal distribution with the true mean
equal to the sample mean and the true standard deviation equal to the sample stan-
dard deviation, give the probability of the waiting time being longer than 10 minutes.
(e) Assume that the true distribution is an exponential distribution with the true mean
equal to the sample mean, give the probability of the waiting time being longer than
10 minutes.
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3.2. The following 25 values were collected from a process believed to follow a
normal distribution. Construct a histogram using the following sample:

2.47 4.87 2.85 7.12 2.25
2.17 2.56 0.83 2.03 0.29
4.63 1.28 4.96 1.32 0.48
4.65 -1.52 1.13 2.81 0.48
5.44 0.90 0.32 3.89 5.86

3.3. Using the sample data in the previous exercise,
(a) Calculate the sample median.
(b) Calculate the lower and upper quartiles.
(c) Construct a box plot.

3.4. Several different estimators have been proposed to estimate the mean of a dis-
tribution based on a random sample of size three. For each of the estimators listed
below, determine their expected value, E[μ̂], and variance, V [μ̂], as a function of the
true mean, μ , and true variance, σ2.
(a) μ̂ = (3X1 +X2 +2X3)/6.
(b) μ̂ = (3X1 −X2 +4X3)/6.
(c) μ̂ = (X1 +X3)/2.
(d) μ̂ = (X1 +X2 +X3)/3.
(e) μ̂ = (X1 +X2 +X3)/10.

3.5. Of the estimators for the mean in the previous exercise,
(a) Which estimator(s) are unbiased?
(b) Which estimator has the smallest variance?
(c) Which estimator(s) would you suggest using and why?

3.6. A company that makes hard drives, wishes to determine the reliability of its
manufacturing process. The hard drives produced in a plant are inspected for 20
consecutive days. The plant makes exactly 100 hard drives every day with the daily
number of defective drives given in the following table. (Assuming the manufactur-
ing process of every hard drive is independent of the manufacturing process of other
hard drives.)

1 0 3 5 4
2 4 3 8 1
5 6 1 0 3
7 1 4 2 5

(a) Give an estimate for the probability that a given part will be defective?
(b) Give the 95% confidence interval for your estimate?
(c) Estimate the probability that on any given day, there will be fewer than 3 de-
fective drives produced? (There are actually two different methods to obtain this
estimate. Can you identify both methods and suggest which may be best?)

3.7. Confirm the calculations for Example 3.9 using the Excel functions for the
Fisher transformation.
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3.8. Using the method of moments obtain an expression for estimating the values of
a and b for a uniform distribution whose lower and upper limits are given by a and
b, respectively.
(a) Do you see any practical difficulties with implementing these estimators?
(b) Generate a random sample of size 20 from a continuous uniform distribution
that is between 10 and 15. Demonstrate your estimators with your generated random
sample. Are the values of your estimators believable?

3.9. The following is a sample from a gamma distribution. Estimate the parameters
of the gamma distribution using the method of moments.

8.9 1.9 1.9 1.6 5.2
2.7 8.3 2.9 6.8 7.4
1.8 4.4 2.5 4.3 0.9
4.5 11.1 5.8 5.4 9.4

3.10. The following sample was taken from a normal distribution with unknown
mean and unknown standard deviation.

9.20 7.16 9.57 10.30 11.20 12.23
11.23 9.11 10.50 8.58 14.38 8.22
11.18 7.19 9.52 10.90 5.52 10.08
8.15 8.67 10.77 9.52 10.96 13.13

(a) Compute a 95% confidence interval for the mean.
(b) Compute a 95% confidence interval for the variance.
(c) Compute a 95% confidence interval for the probability that random variable from
this distribution will be greater than 14.0.
(d) The data above give the length of fabric ribbons measured in inches. Any ribbon
that is within 1.5 inches of the target value of 10 inches is considered acceptable.
Calculate a confidence interval for the proportion of acceptable ribbons.

3.11. Using Excel (see Example 3.16), generate a random sample of size 30 from a
normal distribution with mean 500 and standard deviation 25. Let the random sam-
ple be contained in the second row of a worksheet, i.e., A2:AD2. (The first row can
be used for a header.) In Cell AF2, calculate the sample variance (i.e., denominator
of 29); in Cell AG2, calculate the MLE of the variance (i.e., denominator of 30);
in Cell AH2, calculate an estimate for the variance using a denominator of 31; and
in Cell AI2, calculate an estimate for the variance using a denominator of 32. Copy
the second row down (with formulas) for a 1000 or more rows. Based on your set of
1000 or more random samples, each of size 30, do you think that any of the variance
estimators are unbiased? Which estimator appears to have the smallest mean square
error?

3.12. Repeat Problem 3.11 except determine four estimators for the standard devi-
ation instead of the variance. Based on your set of 1000 or more random samples,
each of size 30, do you think that any of the standard deviation estimators are unbi-
ased? Which estimator appears to have the smallest mean square error?
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3.13. The number of customers arriving to a drive-thru bank teller in an hour is
randomly sampled from 190 hours. The distribution of the number of customers
arriving per hour is as follows:

Number of Observed
Customers/hr Frequency

0 1
1 7
2 15
3 29
4 35
5 33
6 27
7 22
8 14
9 4

10 2
11 1

(a) What is the average number of costumers per hour arriving to the bank teller?
(b) Using a chi-squared test with a Type I error of 5%, test the hypothesis that the
number of costumers per hour arriving to the bank teller is distributed according to
the Poisson distribution.
(c) Using a chi-squared test with a Type I error of 5%, test the hypothesis that the
number of costumers per hour arriving to the bank teller is distributed according to
the normal distribution.
(d) Which of the two distributions tested above seems more reasonable for modeling
the data collected at the drive-thru bank teller? Why?

3.14. A bank teller recorded the length of time to serve 15 customers. The following
were the 15 service times in minutes

4.8 0.9 16.1 2.9 28.4
0.6 14.2 7.4 8.6 9.9
11.1 5.8 1.9 22.6 3.3

For the following use an α error of 5%.
(a) Test the hypothesis that the service times are normally distributed with mean 10
and standard deviation 10 using the K-S test.
(b) Test the hypothesis that the service times are exponentially distributed with mean
10 using the K-S test.
(c) Test the hypothesis that the service times are normally distributed with a mean
and standard deviation estimated from the data using the K-S test.
(d) Test the hypothesis that the service times are exponentially distributed with a
mean estimated from the data using the K-S test.

3.15. The board of directors of the airplane company in Example 3.14 has decided
that the maximum acceptable increase in the probability of failure is 0.05 over the
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estimated probability of failure when no additive is in the gasoline. They want to
know what is the maximum concentration of the additive that can be in the gasoline
that increases by 0.05 the expected probability of failure?

3.16. The ordinary least squares estimates of the linear model are given by Prop-
erty 3.5.
(a) Show that the solution given in the property actually solve Eqs. 3.24.
(b) Show that the solution given in the property also maximize the likelihood func-
tion given by

L(α,β ) =
n

∏
i=1

exp{−(yi −α −β xi)2/(2σ2)}√
2π σ

.

Note that maximizing L is the same as maximizing the ln(L).
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Chapter 4
Poisson Processes

The introduction to stochastic processes begins with a relatively simply type of pro-
cess called a Poisson process that is essentially a type of counting process. For ex-
ample as mentioned in Chap. 1, Bortkiewicz found 1898 that the number of deaths
due to horse kicks in the Prussian army could be described by a Poisson random
variable. A model depicting the cumulative number of deaths over time in the Prus-
sian army would thus be described as a Poisson process. This chapter gives the
formal description of such processes and includes some common extensions.

4.1 Basic Definitions

As stated in the first chapter, a random variable is simply a function that assigns a
real number to each possible outcome in the sample space. However, we are usually
interested in more than just a single random variable. For example, the daily de-
mand for a particular product during a year would form a sequence of 365 random
variables, all of which may influence a single decision. For this reason we usually
consider sequences of random variables and their properties.

Definition 4.1. A stochastic process is a sequence of random variables. ��

It is possible for a stochastic process to consist of a countable number of ran-
dom variables, like the sequence of daily temperatures, in which case it is called a
discrete parameter process. It is also possible that a stochastic process consists of
an uncountable number of random variables in which case it is called a continuous
parameter process. An example of a continuous parameter process is the continuous
monitoring of the working condition of a machine. That is, at every point in time
during the day a random variable is defined which designates the machine’s working
condition by setting the random variable equal to one if the machine is working and
equal to zero if the machine is not working. For example, if the machine was work-
ing 55.78 minutes after the day had started, then X55.78 = 1. Thus, this stochastic
process would be represented using a continuous parameter as {Xt ; t ≥ 0}.

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 115
DOI 10.1007/978-3-642-05158-6 4, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 4.1 Typical realiza-
tion for a Poisson pro-
cess, {Nt ; t ≥ 0}, with
Tn, n = 1, · · · , denoting ar-
rival times
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Definition 4.2. The set of real numbers containing the ranges of all the random vari-
ables in a stochastic process is called the state space of the stochastic process. ��

The state space of a process may be either discrete or continuous. The continu-
ous parameter stochastic process mentioned above that represented the continuous
monitoring of a machine had a discrete state space of E = {0,1}.

Example 4.1. We are interested in the dynamics of the arrival of telephone calls to a
call center. To describe these arriving calls, consider a collection of random variables
{Nt ; t ≥ 0}, where each random variable Nt , for a fixed t, denotes the cumulative
number of calls coming into the center by time t. Since these calls record a count, the
state space is the set of whole numbers E = {0,1,2, · · ·}. In other words, the arrival
of telephone calls can be modeled as a continuous parameter stochastic process with
a countable state space. ��

The arrival process described in the above example is typical of the type of pro-
cesses introduced in this chapter, namely Poisson processes (see Fig. 4.1). As these
are discussed, the terminology of an arrival process will be used generically. For
example, a Poisson process may be used to describe the occurrence of errors during
the transmission of an electronic message and when an error occurs, it would be
described as an “arrival” to the process.

Definition 4.3. Let the continuous parameter stochastic process {Nt ; t ≥ 0} with
N0 = 0 have a state space equal to the nonnegative integers. It is called a Poisson
process with rate λ if

(a) Pr{Nt = k} = e−λ t (λ t)k/k! for all nonnegative k and t ≥ 0.
(b) The event {Ns+u −Ns = i} is independent of the event {Nt = j} if t < s.
(c) The probability Pr{Ns+u −Ns = i} only depends on the value of u.

��

Condition (a) of Definition 4.3 is the defining characteristic of the Poisson pro-
cess and is the reason for the name of the process. The characteristic specified in
Condition (b) indicates that a Poisson process has independent increments. In other
words, if you consider two non-overlapping intervals, what happens in one interval
does not effect what happens in the second interval. The characteristic of Condition
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(c) indicates that a Poisson process has stationary increments. In other words, the
probability that a specified number of arrivals occurs within an interval only depends
on the size of the interval not the location of interval.

For example, if the process of Example 4.1 has independent increments, then
knowledge of the number of calls that arrived before 11:00AM will not help in
predicting the number of calls to arrive between 11:00AM and noon. Likewise, if
the process has stationary increments, then the probability that k calls arrive between
10:00AM and 10:15AM will be equal to the probability that k calls arrive between
4:00PM and 4:15PM because the size of both intervals is the same. It turns out
that an arrival process with independent and stationary increments in which arrivals
can only occur one-at-a-time must be a Poisson process (see [1]) so in that sense
Condition (a) is redundant; however, because it is the characteristic that gives the
process its name, it seems more descriptive to include it.

Using the definition of a Poisson random variable (Eq. 1.12), it is clear that

E[Nt ] = λ t . (4.1)

In other words, λ gives the mean arrival rate per unit time for an arrival process that
is described by a Poisson process with rate λ . Also, because a Poisson process has
independent and stationary increments, we also have, for nonnegative k

Pr{Ns+u −Ns = k} =
e−λu (λu)k

k!
for u ≥ 0 . (4.2)

Example 4.2. Assume that the arrivals to the call center described in Example 4.1
can be modeled according to a Poisson process with rate 25/hr. The number of calls
that are expected within an eight-hour shift is E[Nt=8] = 25×8 = 200. Assume we
had 20 calls that arrived from 8AM through 9AM. What is the probability that there
will be no calls that arrive from 9:00AM through 9:06AM? Because of independent
increments, the information regarding the 20 calls is irrelevant. Because of station-
ary increments, we only need to know that the length of the interval is 6 minutes (or
0.1 hours), note that it starts at 9AM; thus, the answer is given as

Pr{N0.1 = 0} =
e−25×0.1 (25×0.1)0

0!
= e−2.5 = 0.08208 .

We are also interested in the probability that more than 225 calls arrive during the
eight-hour shift. To answer this question, observe that the normal is a good approxi-
mation for a Poisson random variable with a large mean. For the approximation, we
let X be a normally distributed random variable with the same mean and variance as
the Poisson random variable; thus,

Pr{N8 > 225} ≈ Pr{X > 225.5}
= Pr{Z > (225.5−200)/

√
200}

= Pr{Z > 1.80} = 1−0.9641 = 0.0359 .
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(For review, see the discussion regarding the use of a continuous distribution to
approximate a discrete random variable on p. 21 and Example 1.10.) ��

• Suggestion: Do Problem 4.1.

4.2 Properties and Computations

Because of the independent and stationary increment property of a Poisson process,
the distribution of inter-arrival times can be easily determined. Consider an interval
of length t. The probability that no arrival occurs within that interval is given by

Pr{Nt = 0} = e−λ t .

Let T denote the time that the first arrival occurs. The event {T > t} is equivalent to
the event {Nt = 0}; therefore,

Pr{T ≤ 0} = 1−Pr{T > 0} = 1− e−λ t for t ≥ 0

which is the CDF for the exponential distribution. Extending this by taking advan-
tage of independent and stationary increments, it is not too difficult to show that a
Poisson process always has exponential times between arrivals. As mentioned in the
first chapter, the exponential distribution has no memory (see Problem 1.23). Using
this fact, it is possible to show that a process that has exponential times between
arrivals will have independent and stationary increments and thus form a Poisson
process.

Property 4.1. A Poisson process with rate λ has exponentially distributed
inter-arrival times with the mean time between arrivals being 1/λ . The con-
verse is also true; namely, an arrival process with exponentially distributed
inter-arrival times is a Poisson process.

Example 4.3. Concern has been expressed regarding the occurrence of accidents at
a relatively busy intersection. The time between accidents has been analyzed and it
has been determined that this time is random and follows the exponential distribu-
tion with a mean time of five days between accidents. It is now noon on Monday
and an accident has just occured and we would like to know the probability that the
next accident will occur within the next 48 hours. This is given by

Pr{T1 ≤ 2} = 1− e−2/5 = 0.3297 .

Let us say that it is now noon on Wednesday and no accident happened since Mon-
day and we would like to know what is the probability that the next accident will
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occur within the next 48 hours. Due to the lack of memory of the exponential, the
calculations are exactly the same as above.

Our final calculation for this example is to determine the probability that there
will be at least four accidents next week. To determine this, we first observe that
the occurrence of accidents form a Poisson process with rate λ = 0.2 days since
the inter-accident times were exponential. (Note that mean rates and mean times are
reciprocals of each other.) Since a week is seven days, we have that λ t = 1.4 so the
solution is given by

Pr{N7 ≥ 4} = 1−Pr{N7 ≤ 3}

= 1−
(

e1.4 +1.4e1.4 +
(1.4)2 e1.4

2
+

(1.4)3 e1.4

3!

)

= 1− (0.2466+0.3452+0.2417+0.1128) = 0.0537 .

��

Consider a Poisson arrival process with rate λ and denote the successive arrival
times by T1,T2, · · · . Based on Property 4.1, the time of the nth arrival is composed of
n exponential inter-arrival times which implies that the nth arrival time is an Erlang
Type-n distribution. Since each inter-arrival time has a mean of 1/λ , the nth arrival
time has a mean of n/λ . Using this with Eq. (1.16) gives the following property.

Property 4.2. Let Tn denote the nth arrival time for a Poisson process with
rate λ . The random variable Tn has an Erlang distribution with pdf given by

f (t) =
λ (λ t)k−1e−λ t

(k−1)!
for t ≥ 0 .

Assume that we are interested in whether or not Tn has occured; in other words,
we would like to evaluate Pr{Tn ≤ t} for some fixed value of n and t. In general,
to answer a probability questions of a continuous random variable, the pdf must be
integrated; however, in this case, it may be easier to sum over a range of discrete
probabilities. Note that the event {Tn ≤ t} is equivalent to the event {Nt ≥ n}; in
other words, the nth arrival occurs before time t if and only if there were n or more
arrivals that occured in the time interval [0, t]. With the equivalence of these events,
we can switch from a probability statement dealing with a continuous random vari-
able to a probability statement dealing with a discrete random variable; thus

Pr{Tn ≤ t} = Pr{Nt ≥ n} = 1−
n−1

∑
k=0

e−λ t(λ t)k

k!
, (4.3)
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Fig. 4.2 If streams passing
Points A and B are Poisson,
then the merged stream pass-
ing Point C is Poisson as in
Example 4.4
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where Tn is the nth arrival for a Poisson process with rate λ . For example, the calcu-
lations shown in Example 4.3 was to determine Pr{N7 ≥ 4}. The same calculations
also could be used to find Pr{T4 ≤ 7}.

Before leaving the basics of Poisson processes, we mention two other properties
that are convenient for modeling purposes; namely Poisson processes maintain their
Poisson nature under both superposition and decomposition.

Property 4.3. Superposition of Poisson Processes: Let {Nt ; t ≥ 0} and
{Mt ; t ≥ 0} be two independent Poisson processes with rates λ1 and λ2. Form
a third process by Yt = Nt + Mt for each t ≥ 0. The process {Yt ; t ≥ 0} is a
Poisson process with rate λ1 +λ2.

Example 4.4. Consider the diagram in Fig. 4.2 representing a limited access high-
way. Assume that the times in which cars pass Point A form a Poisson process
with rate λ1 = 8/min and cars passing Point B form a Poisson process with rate
λ2 = 2/min. After these two streams of cars merge, the times at which cars pass
Point C form a Poisson process with mean rate 10/min. ��

Property 4.4. Decomposition of a Poisson Processes: Let N = {Nt ; t ≥ 0} be
a Poisson processes with rate λ and let {X1,X2, · · ·} denote an i.i.d. sequence
of Bernoulli random variables (Eq. 1.9) independent of the Poisson process
such that Pr{Xn = 1} = p. Let M = {Mt ; t ≥ 0} be a new process formed as
follows: for each positive n, consider the nth arrival to the N process to also
be an arrival to the M process if Xn = 1; otherwise, the nth arrival to the N
process is not part of the M process. The resulting M process is a Poisson
process with rate λ p.

Example 4.5. Consider traffic coming to a fork in the road, and assume that the
arrival times of cars to the fork form a Poisson process with mean rate 2 per minute.
In addition, there is a 30% chance that cars will turn left and a 70% chance that
cars will turn right. Under the assumption that all cars act independently, the arrival
stream on the left-hand fork form a Poisson process with rate 0.6/min and the stream
on the right-hand fork form a Poisson process with rate 1.4/min. ��
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Fig. 4.3 Typical realization
for a compound Poisson
process, {Yt ; t ≥ 0}, with
Tn, n = 1, · · · , denoting arrival
times and Xn, n = 1, · · · , batch
sizes
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• Suggestion: Do Problems 4.2–4.5.

4.3 Extensions of a Poisson Process

There are two common extensions to the Poisson process that are used for modeling
purposes. The first extension is to allow more than one arrival at a specific point in
time, and the second is to allow the rate to vary with respect to time.

4.3.1 Compound Poisson Processes

Implicit in Condition (a) of Definition 4.3 for Poisson processes is that arrivals occur
one-at-a-time; however, there are many processes for which this assumption needs
to be relaxed. Towards this end, consider a Poisson arrival process in which the
arrivals are batches of items and the batch sizes form a sequence of independent and
identically distributed (i.i.d.) positive random variables. The arrival of individual
items then form a compound Poisson process as illustrated in Fig. 4.3.

Definition 4.4. Let N = {Nt ; t ≥ 0} be Poisson process and let {X1,X2, · · ·} be an
i.i.d. sequence of random variables independent of N denoting the batch sizes of
arrival. Define the process {Yt ; t ≥ 0} by

Yt =

{
0 if Nt = 0

∑Nt
k=0 Xk if Nt = 1,2, · · · .

The process {Yt ; t ≥ 0} is called a compound Poisson process. ��

Even though the random variables Xn for n = 1, · · · , are described as the batch
sizes of the arriving batches, the values of Xn need not be integer and, in fact, may
even be negative. For example batch sizes could refer to the amount of water added
to a reservoir or removed (a negative quantity) from the reservoir. We can take ad-
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vantage of the discussion in Chap. 1 on random sums of random variables (Prop-
erty 1.10) to obtain the moments for a compound Poisson process.

Property 4.5. Let {Yt ; t ≥ 0} be a compound Poisson process with λ being
the rate of the underlying Poisson process. The mean and variance for Yt ,
t ≥ 0, are given as

E[Yt ] = μλ t

V [Yt ] =
(
σ2 + μ2) λ t ,

where μ and σ2 are the mean and variance of the batch size, respectively.

Example 4.6. Consider the arrival of passengers to a train station and assume that
the individuals come to the train station by car and that cars arrive to the train station
according to a Poisson process of 5 per hour. The number of passengers within the
nth car to arrive is denoted by the random variable Xn, where Pr{Xn = 1} = 0.5,
Pr{Xn = 2} = 0.3, and Pr{Xn = 3} = 0.2 for all positive n; thus, the batch size has
mean and variance equal to 1.7 and 0.61, respectively. If the numbers of passengers
within the arriving cars form independent random variables, then the arrival process
of individual passengers is a compound Poisson process. The mean and standard
deviation for the number of individuals that arrive to the station over an eight-hour
period is 1.7×40 = 68 and

√
(0.61+2.89)×40 = 11.83. ��

Example 4.7. A monitoring device has been placed on a highway to record the num-
ber of vehicles using the highway. Actually, what is recorded are axles, and we
would like to model the number of axles passing a particular point in the highway.
The time between vehicle arrivals at the monitoring device is exponentially dis-
tributed with a mean of 1.2 minutes between vehicles. The probability that a given
vehicle has 2, 3, 4, or 5 axles is 0.75, 0.10, 0.07, or 0.08, respectively. We would
like to estimate the probability that 150 or more axles will pass the counting point
in any given hour interval.

The mean and variance for the number of axles per vehicle are 2.48 and 0.8696;
therefore the mean and variance for the number of axles passing over the counter
within a given hour interval is 124 and 351. Let Y1 denote the (random) number of
axles passing the counter during an hour interval, and let X denote a normal random
variable with mean 124 and standard deviation 18.735, then

Pr{Y1 ≥ 150} ≈ Pr{X > 149.5}
= Pr{Z > (149.5−124)/18.735} = 0.0867 .

��

This example of a compound Poisson process is, strictly speaking, not a com-
pound Poisson process since the axles do not arrive at exactly the same instant of
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time; however, this example also illustrates that for modeling purposes, it is okay
to make some assumptions that are not exactly true. If traffic conditions are not too
heavy, it is clearly reasonable to assume that the time between “axle” arrivals for a
single vehicle is insignificant compared to the time between vehicle arrivals.

4.3.2 Non-stationary Poisson Process

Many physical processes that appear at first glance to be a candidate for modeling as
a Poisson process fail because of the stationary assumption. For example, consider a
traffic process and we are interested in modeling the arrival times of cars to a specific
intersection. (Of course, the length of the car prohibits a true Poisson process since
inter-arrival times cannot truly approach zero; however, if traffic is not too heavy,
the exponential may be an acceptable approximation.) In most places, it is unlikely
that the mean arrival rate of cars at 2PM is the same as at 2AM, which means that
the process is not stationary and thus the stationary assumption required of Poisson
processes would not be true. Therefore, it is convenient to re-consider Definition 4.3
without the stationary assumption of Condition (c).

Definition 4.5. Let the continuous parameter stochastic process N = {Nt ; t ≥ 0}
with N0 = 0 have a state space equal to the nonnegative integers. Assume that a
non-negative rate function, λ (·), has been given and a mean value function, m(·) is
defined by

m(t) =
∫ t

0
λ (s)ds for t ≥ 0 .

The N process is called a non-stationary Poisson process if

(a) Pr{Nt = k} = e−m(t) (m(t))k/k! for all nonnegative k and t ≥ 0,
(b) The event {Ns+u −Ns = i} is independent of the event {Nt = j} if t < s.

The process is also called a non-homogenous Poisson process. ��

Notice that in the above definition, if the rate function were a constant, Condition
(a) in both Definition 4.3 and 4.5 would be the same. The mean value function gives
the expected number of arrivals during a time interval, and by using the independent
increments property of Condition (b), we have the following property.

Property 4.6. Let N = {Nt ; t ≥ 0} be a non-stationary Poisson processes
with rate function λ (·) and let Tn denote the arrival time of the nth arrival.
The mean number of arrivals during an interval of time is given by

E[Nt+s −Ns] =
∫ t+s

s
λ (u)du = m(t + s)−m(s) for t,s ≥ 0 .
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Example 4.8. A bank has decided to increase its drive-in window capacity, and
therefore desires to model the facility. A first step in modeling the drive-in bank
facility is to model the arrival process. The drive-in windows open at 7:30AM dur-
ing the week. It has been determined that the arrival process is a non-stationary
Poisson process in which the mean arrival rate slowly increases linearly from 10
per hour to 12 per hour during the first 60 minutes. Thus, we have a rate function
defined, for t ≤ 1, by

λ (t) = 10+2t ,

where the time units is hours. The mean value function is given as

m(t) =
∫ t

0
(10+2s)ds = 10t + t2 for t ≤ 1 .

The expected number of arrivals from 8:00AM through 8:30AM is given by

E[N1 −N0.5] = m(1)−m(0.5) = 5.75 .

��

• Suggestion: Do Problems 4.7 and 4.8.

4.4 Poisson Regression

Ordinary least squares regression (Sect. 3.5.1) of normally distributed random vari-
ables is widely used in several areas of study because the observations often have
an approximate normal distribution. There are instances, however, that observations
can be better described by distributions other than the normal distribution. Such is
the case with count data; that is, observations that count the number of events. In this
section, we present two examples of Poisson regression: the first is relatively sim-
ple involving one independent variable; the second is more realistic (and complex)
involving several independent variables.

4.4.1 Poisson Regression with One Independent Variable

To put Poisson regression in the context of risk assessment, assume that failures
can be modeled as a Poisson process dependent on some independent variable. That
is, for a given value of the independent variable, x, let {Nt(x); t ≥ 0} be a Poisson
process with a mean rate given by λ (x) which is defined to have the form

λ (x) = α (1+β x) , (4.4)
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where α is the expected number of failures per unit time when x = 0 and β is the
change in the failure rate per unit increase in x. Notice that the basic model for the
regression is again a linear function similar to but not quite identical to the linear
model of Eq. (3.23).

Example 4.9. Consider the risk model of Example 3.14 in which fuel injectors are
subject to failure, possibly as a function of the concentration of additive within the
gasoline. After some additional study, it has been determined that a reasonable as-
sumption would be that the time to failure of the fuel injector is exponentially dis-
tributed and that all of the injector failure times within a specific additive concen-
tration are independent and have the same exponential failure time distribution. Our
experiment consists of observing each airplane for 100 hours of flight or until fail-
ure, whichever occurs first. Thus, if none of the injectors fail, there would be 2,000
hours of flight for each of the concentration levels of the gasoline additive. How-
ever, if some fuel injectors fail before the 200 hours elapses, the number of hours of
observation will be less than 2,000. Table 4.1 shows the data for this experiment.

Table 4.1 Experimental results regarding risk from gasoline additives for Example 4.9

Concentration (ml/l) of additive 0 5 10 50 100
Number Airplanes Tested 20 20 20 20 20
Number Injectors Failed 2 3 5 6 8
Total Hours for Observations 1,985 1,955 1,925 1,940 1,910

Within the context of injector failures, the parameters of the model of Eq. (4.4)
have the following meaning: α is the mean failure rate per unit time of the fuel
injectors in the absence of any gasoline additive and β is the increase in mean failure
rate per unit time for each additional ml/l of concentration of the additive. ��

A maximum likelihood approach is taken to determine the parameters for the
Poisson regression (see Problem 4.11). The resulting log-likelihood function and the
estimators α̂ and β̂ for the function describing the mean failure rate as a function of
the independent variables are given in the following property.

Property 4.7. Assume there are m groups of observations for which a Poisson
regression is desired. Observation i includes the number of failures, ni, over a
time span of ti, with the independent variable set at a level of xi. The MLEs for
Eq. (4.4) are those values of α and β that maximize the following function:

LL(α,β ) =

(
m

∑
i=1

ni ln{α (1+β xi) ti}
)

−
(

m

∑
i=1

α (1+β xi) ti

)

.
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Notice that the regression models of Sect. 3.5.1 involved a sample of size n and
observations denoted by (xi,yi) for i = 1, · · · ,n. In this section, we are dealing pri-
marily with the number of events and their timing, so our notation will change
slightly. Here we have a sample size of m and observations denoted by (xi, ti,ni)
for i = 1, · · · ,m.

There are now two approaches that can be taken to find α̂ and β̂ . A two-
dimensional search routine for maximizing the LL(·, ·) function of Property 4.7
could be used. For example, the Solver of Excel works for a problem of this type,
although an initial solution that leads to an appropriate solution (i.e., positive value
for α̂) used for the search may have to be found by trial and error. A second ap-
proach is to solve the system of equations obtained by taking the partial derivatives
of LL(·, ·) and setting these partials equal to zero. Because there are only two vari-
able involved, a substitution can be made to reduce the problem to a single-variable
search for which GoalSeek (see the appendix of Chap. 1) can be used. The results of
finding the partials and setting them to zero are as shown in the following property.

Property 4.8. For the Poisson regression problem of Property 4.7, the MLE β̂
is the value of β such that

(
m

∑
i=1

ni xi

1+β xi

)
m

∑
i=1

(1+β xi) ti =

(
m

∑
i=1

ni

)
m

∑
i=1

xi ti .

The MLE α̂ is then

α̂ = ∑m
i=1 ni

∑m
i=1

(
1+ β̂ xi

)
ti

.

Anytime we have estimators, it is helpful to have some idea of their variability.
For maximum likelihood estimators, the standard error can be obtained through the
Hessian matrix of the log-likelihood function and then taking the negative of its
inverse. As before, the maximum likelihood theory is beyond the scope of this text-
book, but we do give the results so that confidence intervals can be written (at least
as approximations) if so desired. Consider the following matrix

H′ =

⎡

⎣

(

∑m
i=1

(
1+ β̂ xi

)
ti
)

/α̂ ∑m
i=1 xi ti

∑m
i=1 xi ti ∑m

i=1

(
α̂ ti x2

i

)
/
(

1+ β̂ xi

)

⎤

⎦ . (4.5)

It turns out that the inverse has the following form:

H′−1 =

[
σ̂2

α cov(α̂, β̂ )
cov(α̂, β̂ ) σ̂2

β

]

. (4.6)
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In other words, the inverse of the matrix from Eq. (4.5) yields the standard errors
necessary to form confidence intervals using the z-statistic as given in the following
property. (Note that the Hessian matrix is actually a function, whereas the matrix
in which we are interested is the negative of the Hessian evaluated at the maximum
likelihood estimators. We denote this matrix by H′.)

Property 4.9. Consider a Poisson regression model in which α̂ and β̂ have
been determined according to Property 4.8 for a large sample size, and with
H′ determined according to Eq. (4.5). Then

Zα =
α̂ −α

σ̂α
and

Zβ =
β̂ −β

σ̂β
.

have an approximate standard normal distribution (i.e., mean zero and vari-
ance one) where σ̂α is the square root of the upper left element of H′−1 and
σ̂β is the square root of the lower right element of H′−1.

Example 4.10. Returning to the previous example and Table 4.1, we observe that
∑m

i=1 ni = 24 and ∑m
i=1 xi ti = 317,025. Using GoalSeek, the value of β that satisfies

the first equation of Property 4.8 is β̂ = 0.0195. Since ∑m
i=1

(
1+ β̂ xi

)
ti = 15894.93

we have that α̂ = 0.00151. The negative of the Hessian matrix becomes

H′ =
[

10,527,031 317,025
317,025 13,797.2

]

which yields an inverse of

H′−1 =
[

3.084×10−7 −7.086×10−6

−7.086×10−6 2.353×10−4

]

.

Thus, the standard error of the two parameter estimators are

σ̂α =
√

3.084×10−7 = 0.000555 and σ̂β =
√

2.353×10−4 = 0.0153 .

Although this sample size is too small to build confidence intervals, we do the cal-
culations to demonstrate Property 4.9. Using a z statistic value of 1.96, the 95%
confidence interval for α̂ is 0.00151±0.00109 and for β̂ is 0.0195±0.0301. ��

Maximizing the log-likelihood function as it has been defined may present some
difficulties that we have ignored; namely, Eq. (4.4) would make no sense if it turned
out that α̂ was negative. To insure that this does not happen, it would have been
better to define the key regression equation as
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λ (x) = eα (1+β x) . (4.7)

We chose not to take this approach so that the introduction to Poisson regression
would stay simple; however, using eα instead of α adds no extra difficulty to the so-
lution procedure. With the parameters defined as Eq. (4.7), the log-likelihood func-
tion of Property 4.7 is re-written as

LL(α,β ) =

(
m

∑
i=1

ni [α + ln{(1+β xi) ti}
)

−
(

m

∑
i=1

eα (1+β xi) ti

)

. (4.8)

4.4.2 Poisson Regression with Several Independent Variables

Poisson regression modeling can be used in a variety of situations where the oc-
currence of events is rare. Such is the case in the risk assessment associated with
occupational cancer studies where rare events occur over extended periods of obser-
vation time. Occupational studies usually include workers employed in a particular
industry exposed to a carcinogen and their vital status (whether alive or deceased)
and causes of death (if deceased) are known at the end of an observation period. At
the end of the observation period workers have been observed for different lengths of
time, have different ages, have worked different periods of time, have been exposed
to different concentrations of the carcinogen, etc. Poisson regression has been useful
in modeling this type of survival data to estimate the relationship between cancer
and exposure to the carcinogen after adjusting for factors that also have an effect
on the specific cancer mortality. We demonstrate these concepts with a extended
example investigating arsenic as a carcinogen.

Example 4.11. A Montana smelter study was to investigate the role of arsenic in res-
piratory cancer. Motivating factors of the study were that workers were exposed to
high concentrations of arsenic and they showed a higher than expected occurrence
of respiratory cancer deaths. There are several publications (for example [3, 4])
discussing this particular group of workers. The study included 8,045 workers em-
ployed before 1957 for a period of at least 12 months. Company records for each
worker included the birth date and the date and duration of each job within the com-
pany. The company also had an exposure matrix that matched dates and jobs with
arsenic concentrations. Using this matrix, an exposure history for each worker was
constructed. The records also included the last date each worker was known alive
and the date of death for the decedent along with their cause of death. The data used
here included observations up to 1977.

In order to investigate the role of arsenic exposures in respiratory cancers there
are several modeling questions that have to be answered. In this example, as it is
the case with most survival analyses, age is a well-known factor in the occurrence
of respiratory cancer (that is, respiratory cancer rates are higher at older ages than
at younger ages). Similarly, in this particular study, the calendar years in which
exposures occurred are factors that seem to have affected the respiratory cancer
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rates. Thus, although the main purpose is to find the relationship between exposure
to arsenic and respiratory cancer mortality, there are other factors (age and year of
exposure) affecting the observed respiratory cancer mortality rate that should be
factored out.

One usual dose measure used in occupational studies is cumulative exposure.
Cumulative exposure is defined in terms of concentration-years and is the result of
summing the product of durations of exposure and concentrations at different jobs
that occurred throughout the work history of each worker. Thus, an exposure to 8
mg/m3 for one-half a year, or 4 mg/m3 for one year, or 2 mg/m3 for two years are
all identical cumulative exposures; namely, each is equivalent to 4 mg/m3-yr.

Instead of age being a continuous variable, four age groups were formed. The
four age groups were less than 50, 50 to 59, 60 to 69, and 70 or greater; thus,
for example, age group 1 refers to any person-year whose age is less than 50. For
purposes of this example, there is some evidence that environmental factors may
have been different before 1960 than 1960 and after; therefore, to test whether or
not this is a factor for the risk of respiratory cancer, a year indicator will be defined
that is either 1 or 2. A year indicator equal to 1 indicates before 1960 and a year
indicator of 2 indicates 1960 or after. Likewise, the cumulative exposure to arsenic
will be formed into four groups: Group 1 refers to any person-year with a cumulative
exposure of less than 1 mg/m3-yr, Group 2 is between 1 and 5 mg/m3-yr, Group 3 is
between 5 and 15 mg/m3-yr, and Group 4 is 15 mg/m3-yr or more. These definitions
are summarized in Table 4.2.

Table 4.2 Group definitions associated with the data from the Montana occupational study

Group Definition Group #1 Group #2 Group #3 Group #4
Age < 50 50–59 60–69 ≥ 70
Calendar Year < 1960 ≥ 1960 — —
Cumulative Exposure (mg/m3-yr) < 1 1–5 5–15 ≥ 15
Avg. Exposure within group 0.5 3.0 8.0 21.0

The data from the occupational exposure is divided into the person-years (time at
risk) and those person-years are apportioned to different age groups, calendar year
groups and exposure groups. Each worker, thus, may contribute person-years at risk
to different age groups, different calendar years and different cumulative exposure
groups. A worker that dies with respiratory cancer contributes this cancer death to
the age interval, calendar year interval and cumulative exposure interval where his
last contribution of person years belongs. The data can then be summarized as in
Table 4.3.

For example, there were 6 deaths that occurred before 1960 of individuals who
were less than 50 years of age and had a cumulative exposure of less than 1 mg/m3-
yr. In addition, the total person-years of exposure summed over all individuals aged
49 or less before 1960 who were exposed to less than 1 mg/m3-yr was 18,734.3. ��

In the above example, as is often the case in dose-response modeling, the interest
is on the relationship between cumulative exposure to arsenic and the hazard rate
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Table 4.3 Data from the Montana occupational study showing the number of deaths and person-
years at risk within each category (adapted from Appendix V of Breslow and Day [2])

Age Year Cumulative Exposure Group
Group Group 1 2 3 4

1 1 6 : 18,734.3 3 : 3,033.2 1 : 1,703.9 0 : 694.8
1 2 8 : 19,602.3 3 : 3,853.6 0 : 1,288.2 0 : 452.4
2 1 14 : 12,582.7 9 : 1,872.8 3 : 1,122.3 9 : 1,066.6
2 2 24 : 18,436.3 11 : 3,958.0 6 : 1,717.9 4 : 1,054.6
3 1 16 : 6,365.0 3 : 694.0 3 : 691.3 16 : 1,151.3
3 2 42 : 11,130.7 20 : 2,101.7 11 : 1,304.2 6 : 955.4
4 1 10 : 2,279.4 1 : 207.5 2 : 315.1 3 : 556.1
4 2 31 : 4,563.0 5 : 655.1 2 : 397.5 4 : 449.7

of respiratory cancer. However, because age and calendar year are thought to have
an impact on the rate of respiratory cancer, the dose-response model includes these
variables in order to adjust for their effect on respiratory cancer. The time variable
for the Poisson process that describes the event of a death due to the cancer now
becomes person-years at risk and the main independent variable is the cumulative
exposure, although we will have additional variables indicating the effect of age and
calendar year.

In addition to the necessary assumption of exponential times between events, the
standard Poisson regression makes the following assumptions: (1) the effects of dif-
ferent factors are independent and multiplicative, (2) the mean rate is constant within
each combination of effect intervals, and (3) the observations are independent.

We extend the Poisson regression model of the previous section to include the
age and year effects. In particular, we begin with Eq. (4.7) to insure that the extra
variables do not yield a negative mean rate. Thus, our basic model is a Poisson
process denoted by {Nt(i, j,x); t ≥ 0} where i denotes the age group, j denotes the
calendar year group, x denotes the cumulative exposure in mg/m3-yr units, and t
represents the person-years at risk.

Previously, we had two parameters, α and β associated with the independent
variable x. We continue with those two variables being associated with the key in-
dependent variable, and also include extra factors that will allow for the possible
adjustments due to age and calendar year. Specifically, the parameter ai will be as-
sociated with age group i and the parameter c j will be associated with calendar
group j. These adjustments are relative, so the factors associated with the first age
group and the first calendar year group will be set to one.

The mean rate per person-year for our Poisson process is given by

λ (i, j,x) = eα eai ec j (1+β x) , (4.9)

where eα is the rate of respiratory cancers per person-year in the absence of exposure
to arsenic for the first age group and the first calendar year group, eai is the relative
effect of age group i (with a1 = 0 and thus ea1 = 1), ec j is the relative effect of
calendar year group j (with c1 = 0 and thus ec1 = 1), and β is the increase in death
rate due to respiratory cancers per increase in mg/m3-yr cumulative exposure. (You
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may notice that a large negative β could give rise to negative mean rates, but the
chance of this seems too small to complicate the model further.) Thus, this problem
has six unknowns that need to be determined; namely, α,β ,a2,a3,a4, and c2. To
help simplify the model, the variable x will be set equal to the average cumulative
exposure within each of those groups. For example, the first cumulative exposure
group would set x = 0.5mg/m3-yr as shown by the final row in Table 4.2.

In Sect. 4.4.1, m observations of the form (xi, ti,ni) for i = 1, · · · ,m, were used
to estimate the regression parameters of Eq. (4.4). For the problem of this section,
the observations have a different structure; namely, the observations are associated
with specific cells, were a cell refers to a specific combination of age group, cal-
ender year group, and cumulative exposure group. To denote the sample size, let
ma be the number of age groups, let mc be the number of calender year groups,
and let mx be the number of cumulative exposure groups. The sample size is thus
the product of the three terms ma, mc, and mx. A specific observation includes ni jk

(representing the number of deaths in age group i, calender year j, and cumulative
exposure group k), ti jk (representing the number of total person-years of exposure
of all individual within age group i, calender year j, and cumulative exposure group
k), and xk (representing the average cumulative exposure within cumulative expo-
sure group k). Using the maximum likelihood approach again yields a function in
terms of the unknown parameters that is essentially an extension of Eq. (4.8) for the
several-variable problem.

Property 4.10. Assume there are m = ma ×mc ×mx observations for which
a Poisson regression is desired. An observation takes the form (xi jk, ti jk,ni jk)
referring to the cumulative exposure, total person-years, and number of deaths
within age group i, calender year j, and cumulative exposure group k. The
MLEs for Eq. (4.9) are those values of α,β ,ai, for i = 2, · · · ,ma, and c j for
j = 2, · · · ,mc that maximize the following function:

LL =

(
ma

∑
i=1

mc

∑
j=1

mx

∑
k=1

ni jk [α +ai + c j + ln{(1+β xi jk) ti jk} ]

)

−
(

ma

∑
i=1

mc

∑
j=1

mx

∑
k=1

eα eai ec j (1+β xi jk) ti jk

)

,

where xi jk = xk, a1 = 0, and c1 = 0.

Example 4.12. The application of Property 4.10 to Example 4.11 is not difficult with
the use of Excel’s Solver. (Solver works better if β is restricted to be greater than
zero.) The results of the maximization problem are α̂ = −8.01575, β̂ = 0.09757,
â2 = 1.43746, â3 = 2.29390, â4 = 2.52084, and ĉ2 = 0.17610.

These results mean that the estimated background respiratory cancer mortality
rate per person-year for the age group of less than 50 years before the year 1960
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is 0.00033 (i.e., e−8.01575) or approximately a 3.3% chance in a 100-year lifetime.
The rate of respiratory cancer in the age group 70 years and older is 12.44 (i.e.,
e2.52084) times greater than the rate of respiratory cancer in the age group of less
than 50 years. Similarly, the rate of respiratory cancer after 1959 was 1.19 (i.e.,
e0.17610) times greater than the respiratory cancer before 1960. More importantly,
the respiratory cancer rate per person-year increases 9.757% per mg/m3-year of
cumulative exposure to arsenic. The estimated number of respiratory cancer deaths
using the parameters obtained from the maximization of the log-likelihood function
of Property 4.10 in the cohort for each combination of age group, calendar year
group, and cumulative arsenic exposure group is given in Table 4.4.

Table 4.4 Predicted number of deaths in each cell using Eq. (4.9) with the parameter estimators
of α̂ = −8.01575, β̂ = 0.09757, â2 = 1.43746, â3 = 2.29390, â4 = 2.52084, and ĉ2 = 0.17610

Age Year Cumulative Exposure Group
Group Group 1 2 3 4

1 1 6.49 1.29 1.00 0.70
1 2 8.10 1.96 0.90 0.54
2 1 18.35 3.37 2.78 4.52
2 2 32.09 8.49 5.08 5.34
3 1 21.85 2.94 4.03 11.49
3 2 45.62 10.62 9.07 11.38
4 1 9.82 1.10 2.30 6.97
4 2 23.46 4.15 3.47 6.72

Several observations can be made from Table 4.4. First, the overall sum of ex-
pected number of deaths due to respiratory cancer is equal to the total observed
number (i.e., 276). Second, within each age group the sum of the expected number
is equal to the observed number (i.e., 21, 80, 117 and 58 for age groups less than
50, 50–59, 60–69, and 70+, respectively). Third, within each calendar year group
the sum of the expected number is again equal to the observed number of deaths
from respiratory cancers (i.e., 99 and 177 for first and second calender year groups,
respectively). It turns out that these are, in fact, conditions that have to be satisfied
by the maximum likelihood estimates.

Using the MLE of the slope (namely, β̂ = 0.09757) for the linear dose-response
relationship between cumulative exposure to arsenic and the hazard rate of respira-
tory cancer mortality, the estimated risk of respiratory cancer in the U.S. population
exposed to a concentration c of arsenic in the air (mg/m3) can be estimated by mul-
tiplying the U.S. age-dependent population’s background rate of respiratory cancer
by the linear function (1+0.09757x), where x is the age-dependent cumulative ex-
posure to arsenic (mg/m3-yr). To illustrate, assume (1) the rate of respiratory cancer
per year in the U.S. population is 0.0001 per year for ages less than 50 years and is
0.0002 after 50 years, (2) there are no other causes of death before age 100 years, (3)
the U.S population is exposed to an average of 0.001 mg/m3 of arsenic. Then, the
additional risk of respiratory cancer death due to exposure to arsenic in a 100-year
lifetime is approximately given by,
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Δrisk = Pr{Respiratory Cancer |c = 0.001mg/m3}
−Pr{Respiratory Cancer |c = 0mg/m3},

where

Pr{Respiratory Cancer |c = 0.001mg/m3}

=
50

∑
i=1

0.0001× (1+0.09757×0.001 i)

+
100

∑
i=51

0.0002× (1+0.09757×0.001 i) = 0.015086

and

Pr{Respiratory Cancer |c = 0mg/m3} =
50

∑
i=1

0.0001+
100

∑
i=51

0.0002 = 0.015 .

Thus, the additional risk is Δrisk = 0.015086− 0.015 = 0.000086, or equivalently,
an average of 8.6 deaths due to exposure of arsenic in 100,000 people living to age
100 years. ��

There are several simplifying assumptions usually made in the above calcula-
tions; namely, the dose-response relationship derived from the occupational study
holds for the general population, the cumulative exposure for the population is con-
stant during a year of age, and the probability is equal to the cumulative rate of
respiratory cancer.

The Poisson regression examples given in this section illustrate how Poisson pro-
cesses appear in different areas of research. Simplifying assumptions were made
here in an effort to help clarify the presentation. Real applications of Poisson regres-
sion models to estimate cancer risk for the U.S. population usually entail including
the fact that people die before the age of interest due to causes other than respiratory
cancer and that background rates of respiratory cancer in the U.S. vary with age,
race, gender, etc. Poisson regression has been successfully used by regulatory agen-
cies whenever there are sufficient occupational data to apply this methodology. A
more in-depth discussion of Poisson regression applied to cancer risk can be found
in [2].
• Suggestion: Do Problems 4.10 and 4.11.

Appendix

In this appendix, two simulations are presented using Excel: one for a compound
Poisson process and the other for a non-stationary Poisson process. The intent of
the examples is to emphasize both the concept of simulation and the dynamic of
the two different type of processes. We close the appendix illustrating the use of
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Solver in obtaining the maximum likelihood estimates for the Poisson regression of
Example 4.9.

Simulation of a Compound Poisson Process: We return to Example 4.7 and
simulate that arrival of axles to a monitoring device. As you recall, cars arrive ac-
cording to a Poisson process with a mean time between arrivals of 1.2 minutes, and
the probability that a given vehicle has 2, 3, 4, or 5 axles is 0.75, 0.10, 0.07, or 0.08,
respectively. There are two sources of randomness: (1) the inter-arrival times and
(2) the number of axles per vehicle. For both of these, random numbers will need to
be generated. The first three rows of the Excel spreadsheet would look as follows:

A B C
Inter-arrive Arrival Random

1 Time Time Number
2 =-1.2*LN(RAND()) =A2 =RAND()
3 =-1.2*LN(RAND()) =B2+A3 =RAND()

D
Number of

1 Axles
2 =IF(C2<0.75,2,IF(C2<0.85,3,IF(C2<0.92,4,5)))
3 =IF(C3<0.75,2,IF(C3<0.85,3,IF(C3<0.92,4,5)))

E
Cumulative

1 Number
2 =D2
3 =E2+D3

Column A is based on the transformation given by

T = −1.2ln(U)

where U is a random number and T is the random variate for an inter-arrival time.
Column D is based on the cumulative probabilities for the number of axles per ve-
hicle. The simulation is completed by copying Cells A3:E3 down for a thousand or
more rows. An estimate for the number of axles per hour is obtained by dividing the
number in the final row of Column E by the number in the final row of B and the
multiplying by 60 to convert from per minute to per hour. Notice that each time the
F9 is hit, a new realization of the simulation will be obtained. The key dynamics
that make this a compound Poisson process are (1) exponential inter-arrival times
generated to produce the timing of the arrivals in Column A and (2) independent
random numbers were generated to simulate the batch sizes at each arrival time.

Simulation of a Non-stationary Poisson Process: Simulating a non-stationary
Poisson process is a little more difficult to simulate than the compound Poisson
process. The reason is the simulation of the next arrival time. The simple generation
of an exponentially distributed inter-arrival time is not correct because its rate is
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only instantaneously known. Even if the rate is constant for an interval of time, if
the inter-arrival places the next arrival time outside the constant rate interval, its
rate would not be correct. One procedure that will produce a non-stationary Poisson
process is to generate arrivals at the maximum rate and then “thin” the process by
removing some of the arrivals. In particular, let λ ∗ denote the maximum arrival
rate. If an arrival (generated using λ ∗) occurs at time t, then it is accepted with a
probability equal to λ (t)/λ ∗ and rejected with a probability equal to 1−λ (t)/λ ∗.
When an arrival is rejected, the time is accumulated; however, no event is recorded
at the rejected arrival time.

Consider again Example 4.8 that had a rate function defined, for t ≤ 1, by

λ (t) = 10+2t ,

where the time units were in hours.
The Excel setup below is to generate several replicates of the first hour. Note

that the maximum rate is λ ∗ = 12/hr which is equivalent to an average of 5 minutes
between arrivals. The first three rows of the Excel spreadsheet would be as follows:

A B C
Inter-arrive Arrival Ratio of

1 Time Time Rates
2 =-5*LN(RAND()) =A2 =(10+2*(MOD(B2,60)/60))/12
3 =-5*LN(RAND()) =B2+A3 =(10+2*(MOD(B3,60)/60))/12

D E
Accept Cumulative

1 Arrival? Number
2 =IF(RAND()<C2,1,0) =D2
3 =IF(RAND()<C3,1,0) =E2+D3

Notice that the unit of time in the simulation is minutes. Column C uses the MOD
operator so that the function starts over again at the beginning of each hour. The
simulation is completed by copying Cells A3:E3 down for a thousand or more rows.
An estimate for the number of arrivals occurring per hour is obtained by dividing
the number in the final row of Column E by the number in the final row of B and
the multiplying by 60 to convert from per minute to per hour. Notice that each time
the F9 is hit, a new realization of the simulation will be obtained.

Maximum Likelihood Estimators for a Poisson Regression: Obtaining the
maximum likelihood estimators from Property 4.7 is possible through the use of
Excel’s Solver which we illustrate through Example 4.9. The first step is to enter the
data in Excel as shown below.

A B C D E F
1 x 0 5 10 50 100
2 n 2 3 5 6 8
3 t 1985 1955 1925 1940 1910
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Initial guesses for α̂ and β̂ are needed to start the optimization. Since α is the
failure rate in the absence of the additive, let the initial guess be the number failed
divided by the hours of observation for the case in which there was no additive, in
other words, 2/1985 ≈ 0.001. For β̂ , we will start with zero. We enter these initial
estimates to the right of the data as follows.

H I
1 Alpha Beta
2 0.001 0

There are two terms on the left-hand side of the log-likelihood function of Prop-
erty 4.7 which we shall refer to as the “left term” and the “right term”. To obtain
these expressions, use the following Excel statements.

A B
5 right term =$H$2*(1+$I$2*B1)*B3
6 left term =B2*LN(B5)
7 Log-like =SUM(B6:F6) − SUM(B5:F5)

Highlight the cells B5:F6 and fill to the right (use the <ctrl>-R keys). The spread-
sheet is now setup to use Solver. Sometimes, Excel does not install the Solver auto-
matically; however, it is one of the add-ins that comes with Excel. For Excel 2007,
Solver will appear on the right-hand part of the Data tab. The older versions of Ex-
cel will have Solver as part of the “Tools” menu. When you open Solver, a dialog
box will appear. Type B7 for the “Set Target Cell:” blank and type H2:I2 for the
“By Changing Cells:” blank. Make sure that the “Max” option button is checked
and click “Solve” in the upper-right corner of the dialog box.

Problems

4.1. Arrivals to a repair shop occur according to a Poisson process with rate 8 per
hour.
(a) What is the probability that there will be 4 or less arrivals during the first 30
minutes?
(b) What is the probability that there will be 6 or more arrivals during the first hour?
(c) Estimate the probability that there will be 70 or more arrivals during an 8-hour
day.

4.2. The dispatcher at a central fire station has observed that the time between calls
is an exponential random variable with a mean of 32 minutes.
(a) A call has just arrived. What is the probability that the next call will arrive within
the next half hour.
(b) It is now noon and the most recent call came in at 11:35AM. What is the proba-
bility that the next call will arrive before 12:30PM?
(c) What is the probability that there will be exactly two calls during the next hour?
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4.3. A security consultant has observed that the attempts to breach the security of
the company’s computer system occurs according to a Poisson process with a mean
rate of 2.2 attempts per day. (The system is on 24 hours per day.)
(a) What is the probability that there will be 4 breach attempts tomorrow?
(b) What is the probability that there will be no breach attempts during the evening
(eight-hour) shift?
(c) It is now midnight and the most recent attempt occured at 10:30PM. What is the
probability that the next attempt will occur before 5:30AM?

4.4. Consider again the computer security system from Problem 4.3. Approximately
10% of the attempts to illegally access the computer make it past the first security
level.
(a) What is the probability that there will be exactly three attempted illegal entries
that successfully make it past the first security level during the next week?
(b) It is now 6AM Monday morning. The most recent security attempt that success-
fully made it past the first security level occurred at midnight last night. What is
the probability that no illegal attempts make it past the first security level during the
time period from now (6AM Monday morning) through 6PM Friday?

4.5. There are two common types of failure to a critical electronic element of some
machinery: either component A or component B may fail. If either component fails,
the machinery goes down. Component A fails according to a Poisson process with
mean rate 1.1 failures per shift. (The company operates 24/7 using eight-hour shifts.)
Component B fails according to a Poisson process with a mean rate of 1.2 failures
per day.
(a) What is the probability that there will be exactly five failures of the machine
within a given day?
(b) What is the probability that there will be no more than one failure of the machine
during the next shift?
(c) It is now noon and the most recent failure occurred four hours earlier. What the
is the probability that the next machine failure will occur before 6PM?

4.6. Using Excel, simulate the machine failures of Problem 4.5 and show within
the simulation, which component fails. The assumption is that after a repair, the
machine is identical probabilistically to the machine before its failure.
(a) Assume that the time to repair the machine is negligible relative to the failure
time.
(b) Assume that the time to repair the machine is uniformly distributed between 5
minutes and 60 minutes.

4.7. Customers arrive to a store according to a Poisson process with mean rate 5 per
hour. The probability that the customer leaves without spending anything is 0.20.
If the customer spends something, the amount can be approximated by a gamma
distribution with scale parameter $100 and shape parameter 2.5.
(a) Give the mean and standard deviation of the revenue generated by customers
within any given hour.
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(b) Give the mean and standard deviation of the revenue generated by customers
within any given 10-hour day.

4.8. Consider again the computer security system from Problem 4.3. Further study
of the attempts to breach the security of the computer system has determined that
it is a non-stationary Poisson process. To approximate the process, each 24-hour
period is been divided into four intervals: 6AM–8PM, 8PM–midnight, midnight–
4AM, and 4AM–6AM. Each interval is assumed to have a constant arrival rate for
the attempted illegal entries. The mean number of attempts during the time span
of each interval is 0.3, 0.6, 1, and 0.3, respectively. Answer the questions of Prob-
lem 4.3 where the evening shift is from 3PM until 11PM.

4.9. A mail-order service is open 24 hours per day. Operators receive telephone calls
according to a Poisson process. Simulate the process and determine the expected
volume (in terms of dollars) of sales during the 15-minute interval from 12:00 noon
until 12:15PM under four different assumptions as given below. (Assume each day
is probabilistically similar to all other days.)
(a) The Poisson arrival process is stationary with a mean rate of 50 calls per hour.
Furthermore, half of the calls do not result in a sale, 30% of the calls result in a sale
of $100, and 20% of the calls results in a sale of $200.
(b) Since more people tend to call on their lunch break, the mean arrival rate slowly
increases at the start of the noon hour. For the five-minute interval from 12 noon un-
til 12:05 PM, the mean arrival rate is 40 calls per hour; from 12:05 PM until 12:10
PM, the rate is 45 calls per hour, and from 12:10 PM until 12:50 PM, the rate is 50
calls per hour. The probabilities and amounts of a sale are the same as in Part (a).
(c) The arrival rate of calls is approximated by a linear function that equals 40 calls
per hour at noon and equals 50 calls per hour at 12:15 PM. The rate is then constant
for the next 30 minutes. The probabilities and amounts of a sale are the same as
above.
(d) The arrival process is homogenous with a mean rate of 50 calls per hour; how-
ever, instead of exponential, the inter-arrival times have Erlang type-three distribu-
tion. The probabilities and amounts of a sale are the same as above.

4.10. Obtain the maximum likelihood estimators for α and β of Example 4.10 using
Property 4.8

4.11. In a Poisson regression, the likelihood of observing ni failures at a concentra-
tion level of xi over the time span given by ti, is

P{Nti(xi) = ni} = e−λ (xi) ti (λ (xi) ti)ni /ni!

= e−[α (1+β xi)] ti ([α (1+β xi)] ti)ni /ni!

where i denotes the ith observation. The likelihood function is the product of the
individual likelihoods for the entire sample. Use this fact to obtain the results of
Properties 4.7 and 4.8.
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4.12. The purpose of this problem is to obtain confidence intervals for the estimators
of Example 4.12.
(a) The Hessian matrix of a function, H, is the square matrix formed by all the
second partial derivatives of the function. In other words, if f is a function of xi for
i = 1, · · · ,n, then

H(i, j) =

⎧
⎨

⎩

∂ 2 f
∂x2

i
if i = j

∂ 2 f
∂xi ∂x j

if i �= j

for i, j = 1, · · · ,n. Form the Hessian matrix of the log-likelihood function given in
Property 4.10.
(b) Determine the values of H′, where H′ is defined to be the negative of the Hessian
matrix evaluated at the maximum likelihood estimates.
(c) Give the variance of each estimator where the variance is the associated diagonal
element of H′−1.
(d) Give the 95% confidence interval under the assumption that the estimators are
unbiased and are normally distributed with a variance given in Part (c).
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Chapter 5
Markov Chains

Many decisions must be made within the context of randomness. Random failures
of equipment, fluctuating production rates, and unknown demands are all part of
normal decision making processes. In an effort to quantify, understand, and predict
the effects of randomness, the mathematical theory of probability and stochastic
processes has been developed, and in this chapter, one special type of stochastic
process called a Markov chain is introduced. In particular, a Markov chain has the
property that the future is independent of the past given the present. These processes
are named after the probabilist A. A. Markov who published a series of papers start-
ing in 1907 which laid the theoretical foundations for finite state Markov chains.

An interesting example from the second half of the 19th century is the so-called
Galton-Watson process [1]. (Of course, since this was before Markov’s time, Galton
and Watson did not use Markov chains in their analyses, but the process they studied
is a Markov chain and serves as an interesting example.) Galton, a British scientist
and first cousin of Charles Darwin, and Watson, a clergyman and mathematician,
were interested in answering the question of when and with what probability would
a given family name become extinct. In the 19th century, the propagation or extinc-
tion of aristocratic family names was important, since land and titles stayed with
the name. The process they investigated was as follows: At generation zero, the
process starts with a single ancestor. Generation one consists of all the sons of the
ancestor (sons were modeled since it was the male that carried the family name).
The next generation consists of all the sons of each son from the first generation
(i.e., grandsons to the ancestor), generations continuing ad infinitum or until extinc-
tion. The assumption is that for each individual in a generation, the probability of
having zero, one, two, etc. sons is given by some specified (and unchanging) prob-
ability mass function, and that mass function is identical for all individuals at any
generation. Such a process might continue to expand or it might become extinct,
and Galton and Watson were able to address the questions of whether or not ex-
tinction occurred and, if extinction did occur, how many generations would it take.
The distinction that makes a Galton-Watson process a Markov chain is the fact that
at any generation, the number of individuals in the next generation is completely
independent of the number of individuals in previous generations, as long as the
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number of individuals in the current generation are known. It is processes with this
feature (the future being independent of the past given the present) that will be stud-
ied next. They are interesting, not only because of their mathematical elegance, but
also because of their practical utilization in probabilistic modeling.

5.1 Basic Definitions

In this chapter we study a special type of discrete parameter stochastic process that
is one step more complicated than a sequence of i.i.d. random variables; namely,
Markov chains. Intuitively, a Markov chain is a discrete parameter process in which
the future is independent of the past given the present. For example, suppose that we
decided to play a game with a fair, unbiased coin. We each start with five pennies
and repeatedly toss the coin. If it turns up heads, then you give me a penny; if tails, I
give you a penny. We continue until one of us has none and the other has ten pennies.
The sequence of heads and tails from the successive tosses of the coin would form
an i.i.d. stochastic process; the sequence representing the total number of pennies
that you hold would be a Markov chain. To see this, assume that after several tosses,
you currently have three pennies. The probability that after the next toss you will
have four pennies is 0.5 and knowledge of the past (i.e., how many pennies you had
one or two tosses ago) does not help in calculating the probability of 0.5. Thus, the
future (how many pennies you will have after the next toss) is independent of the
past (how many pennies you had several tosses ago) given the present (you currently
have three pennies).

Another example of the Markov property comes from Mendelian genetics.
Mendel in 1865 demonstrated that the seed color of peas was a genetically con-
trolled trait. Thus, knowledge about the gene pool of the current generation of peas
is sufficient information to predict the seed color for the next generation. In fact,
if full information about the current generation’s genes are known, then knowing
about previous generations does not help in predicting the future; thus, we would
say that the future is independent of the past given the present.

Definition 5.1. The stochastic process X = {Xn;n = 0,1, · · ·} with discrete state
space E is a Markov chain if the following holds for each j ∈ E and n = 0,1, · · ·

Pr{Xn+1 = j|X0 = i0,X1 = i1, · · · ,Xn = in} = Pr{Xn+1 = j|Xn = in} ,

for any set of states i0, · · · , in in the state space. Furthermore, the Markov chain is
said to have stationary transition probabilities if

Pr{X1 = j|X0 = i} = Pr{Xn+1 = j|Xn = i} .

��

The first equation in Definition 5.1 is a mathematical statement of the Markov
property. To interpret the equation, think of time n as the present. The left-hand-side



5.1 Basic Definitions 143

Fig. 5.1 State diagram for the
Markov chain of Example 5.1
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is the probability of going to state j next, given the history of all past states. The
right-hand-side is the probability of going to state j next, given only the present
state. Because they are equal, we have that the past history of states provides no
additional information helpful in predicting the future if the present state is known.
The second equation (i.e., the stationary property) simply indicates that the proba-
bility of a one-step transition does not change as time increases (in other words, the
probabilities are the same in the winter and the summer).

In this chapter it is always assumed that we are working with stationary transition
probabilities. Because the probabilities are stationary, the only information needed
to describe the process are the initial conditions (a probability mass function for X0)
and the one-step transition probabilities. A square matrix is used for the transition
probabilities and is often denoted by the capital letter P, where

P(i, j) = Pr{X1 = j|X0 = i} . (5.1)

Since the matrix P contains probabilities, it is always nonnegative (a matrix is non-
negative if every element of it is nonnegative) and the sum of the elements within
each row equals one. In fact, any nonnegative matrix with row sums equal to one is
called a Markov matrix.

Example 5.1. Consider a farmer using an old tractor. The tractor is often in the repair
shop but it always takes only one day to get it running again. The first day out of the
shop it always works but on any given day thereafter, independent of its previous
history, there is a 10% chance of it not working and thus being sent back to the
shop. Let X0,X1, · · · be random variables denoting the daily condition of the tractor,
where a one denotes the working condition and a zero denotes the failed condition.
In other words, Xn = 1 denotes that the tractor is working on day n and Xn = 0
denotes it being in the repair shop on day n. Thus, X0,X1, · · · is a Markov chain
with state space E = {0,1} and with Markov matrix

P =
0
1

[
0 1

0.1 0.9

]

.

(Notice that the state space is sometimes written to the left of the matrix to help in
keeping track of which row refers to which state.) ��

In order to develop a mental image of the Markov chain, it is very helpful to
draw a state diagram (Fig. 5.1) of the Markov matrix. In the diagram, each state is
represented by a circle and the transitions with positive probabilities are represented
by an arrow. Until the student is very familiar with Markov chains, we recommend
that state diagrams be drawn for any chain that being discussed.
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Fig. 5.2 State diagram for the
Markov chain of Example 5.2
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Example 5.2. A salesman lives in town ‘a’ and is responsible for towns ‘a’, ‘b’, and
‘c’. Each week he is required to visit a different town. When he is in his home town,
it makes no difference which town he visits next so he flips a coin and if it is heads
he goes to ‘b’ and if tails he goes to ‘c’. However, after spending a week away from
home he has a slight preference for going home so when he is in either towns ‘b’ or
‘c’ he flips two coins. If two heads occur, then he goes to the other town; otherwise
he goes to ‘a’. The successive towns that he visits form a Markov chain with state
space E = {a,b,c} where the random variable Xn equals a, b, or c according to his
location during week n. The state diagram for this system is given in Fig. 5.2 and
the associated Markov matrix is

P =
a
b
c

⎡

⎣
0 0.50 0.50

0.75 0 0.25
0.75 0.25 0

⎤

⎦ .

��

Example 5.3. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with state space E =
{1,2,3,4} and transition probabilities given by

P =

1
2
3
4

⎡

⎢
⎢
⎣

1 0 0 0
0 0.3 0.7 0
0 0.5 0.5 0

0.2 0 0.1 0.7

⎤

⎥
⎥
⎦ .

The chain in this example is structurally different than the other two examples in that
you might start in State 4, then go to State 3, and never get to State 1; or you might
start in State 4 and go to State 1 and stay there forever. The other two examples,
however, involved transitions in which it was always possible to eventually reach
every state from every other state. ��

Example 5.4. The final example in this section is taken from Parzen [3, p. 191] and
illustrates that the parameter n need not refer to time. (It is often true that the “steps”
of a Markov chain refer to days, weeks, or months, but that need not be the case.)
Consider a page of text and represent vowels by zeros and consonants by ones.
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Fig. 5.3 State diagram for the
Markov chain of Example 5.3
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Thus the page becomes a string of zeros and ones. It has been indicated that the
sequence of vowels and consonants in the Samoan language forms a Markov chain,
where a vowel always follows a consonant and a vowel follows another vowel with
a probability of 0.51 [2]. Thus, the sequence of ones and zeros on a page of Samoan
text would evolve according to the Markov matrix

P =
0
1

[
0.51 0.49

1 0

]

.

��

After a Markov chain has been formulated, there are many questions that might
be of interest. For example: In what state will the Markov chain be five steps from
now? What percent of time is spent in a given state? Starting from one state, will
the chain ever reach another fixed state? If a profit is realized for each visit to a
particular state, what is the long run average profit per unit of time? The remainder
of this chapter is devoted to answering questions of this nature.
• Suggestion: Do Part (a) of Problems 5.1–5.3 and 5.6–5.9.

5.2 Multistep Transitions

The Markov matrix provides direct information about one-step transition probabili-
ties and it can also be used in the calculation of probabilities for transitions involving
more than one step. Consider the salesman of Example 5.2 starting in town b. The
Markov matrix indicates that the probability of being in State a after one step (in one
week) is 0.75, but what is the probability that he will be in State a after two steps?
Figure 5.4 illustrates the paths that go from b to a in two steps (some of the paths
shown have probability zero). Thus, to compute the probability, we need to sum over
all possible routes. In other words we would have the following calculations:

Pr{X2 = a|X0 = b} = Pr{X1 = a|X0 = b}×Pr{X2 = a|X1 = a}
+Pr{X1 = b|X0 = b}×Pr{X2 = a|X1 = b}
+Pr{X1 = c|X0 = b}×Pr{X2 = a|X1 = c}

= P(b,a)P(a,a)+P(b,b)P(b,a)+P(b,c)P(c,a) .

The final equation should be recognized as the definition of matrix multiplication;
thus,
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Fig. 5.4 Possible paths of a
two-step transition from State
b to State a for a three-state
Markov chain
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Pr{X2 = a|X0 = b} = P2(b,a) .

This result is easily generalized into the following property:

Property 5.1. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with state space
E and Markov matrix P, then for i, j ∈ E and n = 1,2, · · ·

Pr{Xn = j|X0 = i} = Pn(i, j) ,

where the right-hand side represents the i− j element of the matrix Pn.

Property 5.1 indicates that Pn(i, j) is interpreted to be the probability of going
from state i to state j in n steps. It is important to remember that the notation Pn(i, j)
means that the matrix is first raised to the nth power and then the i− j element of
the resulting matrix is taken for the answer.

Returning to Example 5.2, the squared matrix is

P2 =

⎡

⎣
0.75 0.125 0.125

0.1875 0.4375 0.375
0.1875 0.375 0.4375

⎤

⎦ .

The b−a element of P2 is 0.1875 and thus there is a 0.1875 probability of being in
town a two weeks after being in town b.

Markov chains are often used to analyze the cost or profit of an operation and thus
we need to consider a cost or profit function imposed on the process. For example,
suppose in Example 5.2 that every week spent in town a resulted in a profit of $1000,
every week spent in town b resulted in a profit of $1200, and every week spent in
town c resulted in a profit of $1250. We then might ask what would be the expected
profit after the first week if the initial town was town a? Or, more generally, what
would be the expected profit of the nth week if the initial town was a? It should
not be too difficult to convince yourself that the following calculation would be
appropriate:
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E[Profit for week n] = Pn(a,a)×1000+Pn(a,b)×1200+Pn(a,c)×1250 .

We thus have the following property.

Property 5.2. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with state space
E, Markov matrix P, and profit function f (i.e., each time the chain visits state
i, a profit of f (i) is obtained). The expected profit at the nth step is given by

E[ f (Xn)|X0 = i] = Pnf(i) .

Note again that in the right-hand side of the equation, the matrix Pn is multiplied
by the vector f first and then the ith component of the resulting vector is taken as the
answer. Thus, in Example 5.2, we have that the expected profit during the second
week given that the initial town was a is

E[ f (X2)|X0 = a] = 0.75×1000+0.125×1200+0.125×1250

= 1056.25.

Up until now we have always assumed that the initial state was known. However,
that is not always the situation. The manager of the traveling salesman might not
know for sure the location of the salesman; instead, all that is known is a probability
mass function describing his initial location. Again, using Example 5.2, suppose
that we do not know for sure the salesman’s initial location but know that there is a
50% chance he is in town a, a 30% chance he is in town b, and a 20% chance he is
in town c. We now ask, what is the probability that the salesman will be in town a
next week? The calculations for that are

Pr{X1 = a} = 0.50×0+0.30×0.75+0.20×0.75 = 0.375 .

These calculations generalize to the following.

Property 5.3. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with state space
E, Markov matrix P, and initial probability vector μμμ (i.e., μ(i) = Pr{X0 = i}).
Then

Prμ{Xn = j} = μμμPn( j) .

It should be noticed that μ is a subscript to the probability statement on the left-
hand side of the equation. The purpose for the subscript is to insure that there is no
confusion over the given conditions. And again when interpreting the right-hand-
side of the equation, the vector μμμ is multiplied by the matrix Pn first and then the jth

element is taken from the resulting vector.
The last two properties can be combined, when necessary, into one statement.
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Property 5.4. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with state space
E, Markov matrix P, initial probability vector μμμ , and profit function f. The
expected profit at the nth step is given by

Eμ [ f (Xn)] = μμμPnf .

Returning to Example 5.2 and using the initial probabilities and profit function
given above, we have that the expected profit in the second week is calculated to be

μμμP2f = (0.50,0.30,0.20)

⎡

⎣
0.75 0.125 0.125

0.1875 0.4375 0.375
0.1875 0.375 0.4375

⎤

⎦

⎛

⎝
1000
1200
1250

⎞

⎠

= 1119.375 .

Example 5.5. A market analysis concerning consumer behavior in auto purchases
has been conducted. Body styles traded-in and purchased have been recorded by a
particular dealer with the following results:

Number of Customers Trade
275 sedan for sedan
180 sedan for station wagon
45 sedan for convertible
80 station wagon for sedan

120 station wagon for station wagon
150 convertible for sedan
50 convertible for convertible

These data are believed to be representative of average consumer behavior, and it is
assumed that the Markov assumptions are appropriate.

We shall develop a Markov chain to describe the changing body styles over the
life of a customer. (Notice, for purposes of instruction, we are simplifying the pro-
cess by assuming that the age of the customer does not affect the customer’s choice
of a body style.) We define the Markov chain to be the body-style of the automo-
bile that the customer has immediately after a trade-in, where the state space is
E = {s,w,c} with s for the sedan, w for the wagon, and c for the convertible. Of
500 customers who have a sedan, 275 will stay with the sedan during the next trade;
therefore, the s-s element of the transition probability matrix will be 275/500. Thus,
the Markov matrix for the “body style” Markov chain is

P =

s

w

c

⎡

⎢
⎣

275/500 180/500 45/500

80/200 120/200 0

150/200 0 50/200

⎤

⎥
⎦ =

⎡

⎢
⎣

0.55 0.36 0.09

0.40 0.60 0.0

0.75 0.0 0.25

⎤

⎥
⎦ .
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Let us assume we have a customer whose behavior is described by this model.
Furthermore, the customer always buys a new car in January of every year. It is now
January 1997, and the customer enters the dealership with a sedan (i.e., X1996 = s).
From the above matrix, Pr{X1997 = s|X1996 = s} = 0.55, or the probability that the
customer will leave with another sedan is 55%. We would now like to predict what
body-style the customer will have for trade-in during January 2000. Notice that the
question involves three transitions of the Markov chain; therefore, the cubed matrix
must be determined, which is

P3 =

⎡

⎣
0.5023 0.4334 0.0643
0.4816 0.4680 0.0504
0.5355 0.3780 0.0865

⎤

⎦ .

Thus, there is approximately a 50% chance the customer will enter in the year 2000
with a sedan, a 43% chance with a station wagon, and almost a 7% chance of having
a convertible. The probability that the customer will leave this year (1997) with
a convertible and then leave next year (1998) with a sedan is given by P(s,c)×
P(c,s) = 0.09× 0.75 = 0.0675. Now determine the probability that the customer
who enters the dealership now (1997) with a sedan will leave with a sedan and also
leave with a sedan in the year 2000. The mathematical statement is

Pr{X1997 = s,X2000 = s|X1996 = s} = P(s,s)×P3(s,s) ≈ 0.28 .

Notice in the above probability statement, that no mention is made of the body style
for the intervening years; thus, the customer may or may not switch in the years
1998 and 1999.

Now to illustrate profits. Assume that a sedan yields a profit of $1200, a sta-
tion wagon yields $1500, and a convertible yields $2500. The expected profit this
year from the customer entering with a sedan is $1425, and the expected profit in
the year 1999 from a customer who enters the dealership with a sedan in 1997 is
approximately $1414. Or, to state this mathematically,

E[ f (X1999)|X1996 = s] ≈ 1414 ,

where f = (1200,1500,2500)T . ��

• Suggestion: Do Problems 5.10a–c, 5.11a–f, and 5.12.

5.3 Classification of States

There are two types of states possible in a Markov chain, and before most questions
can be answered, the individual states for a particular chain must be classified into
one of these two types. As we begin the Markov chain study, it is important to cover
a significant amount of new notation. The student will discover that the time spent
in learning the new terminology will be rewarded with a fuller understanding of
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Markov chains. Furthermore, a good understanding of the dynamics involved for
Markov chains will greatly aid in the understanding of the entire area of stochastic
processes.

Two random variables that will be extremely important denote “first passage
times” and “number of visits to a fixed state”. To describe these random variables,
consider a fixed state, call it State j, in the state space for a Markov chain. The first
passage time is a random variable, denoted by T j, that equals the time (i.e., number
of steps) it takes to reach the fixed state for the first time. Mathematically, the first
passage time random variable is defined by

T j = min{n ≥ 1 : Xn = j} , (5.2)

where the minimum of the empty set is taken to be +∞. For example, in Exam-
ple 5.3, if X0 = 1 then T 2 = ∞, i.e., if the chain starts in State 1 then it will never
reach State 2.

The number of visits to a state is a random variable, denoted by N j, that equals
the total number of visits (including time zero) that the Markov chain makes to the
fixed state throughout the life of the chain. Mathematically, the “number of visits”
random variable is defined by

N j =
∞

∑
n=0

I(Xn, j) , (5.3)

where I is the identity matrix. The identity matrix is used simply as a “counter”.
Because the identity has ones on the diagonal and zeroes off the diagonal, it follows
that I(Xn, j) = 1 if Xn = j; otherwise, it is zero. It should be noted that the summation
in (5.3) starts at n = 0; thus, if X0 = j then N j must be at least one.

Example 5.6. Let us consider a realization for the Markov chain of Example 5.3. (By
realization, we mean conceptually that an experiment is conducted and we record
the random outcomes of the chain.) Assume that the first part of the realization
(Fig. 5.5) is X0 = 4,X1 = 4,X2 = 4,X3 = 3,X4 = 2,X5 = 3,X6 = 2, · · · . The first
passage random variables for this realization are T 1 = ∞,T 2 = 4,T 3 = 3,and T 4 =
1. To see why T 1 = ∞, it is easiest to refer to the state diagram describing the Markov
chain (Fig. 5.3). By inspecting the diagram it becomes obvious that once the chain
is in either States 2 or 3 that it will never get to State 1 and thus T 1 = ∞.

Using the same realization, the number of visits random variables are N1 =
0,N2 = ∞,N3 = ∞, and N4 = 3. Again, the values for N1,N2, and N3 are obtained
by inspecting the state diagram and observing that if the chain ever gets to States 2
or 3 it will stay in those two states forever and thus will visit them an infinite number
of times.

Let us perform the experiment one more time. Assume that our second realization
results in the values X0 = 4,X1 = 4,X2 = 1,X3 = 1,X4 = 1, · · · . The new outcomes
for the first passage random variables for this second realization are T 1 = 2,T 2 =
∞,T 3 = ∞,and T 4 = 1. Furthermore, N1 = ∞,N2 = 0,N3 = 0,and N4 = 2. Thus, you
should understand from this example that we may not be able to say what the value
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Fig. 5.5 One Possible Realization for the Markov chain of Example5.1

of T j will be before an experiment, but we should be able to describe its probability
mass function. ��

The primary quantity of interest regarding the first passage times are the so-
called first passage probabilities. The major question of interest is whether or not
it is possible to reach a particular state from a given initial state. To answer this
question, we determine the first passage probability, denoted by F(i, j), which is the
probability of eventually reaching State j at least once given that the initial state was
i. The probability F(i, j) (“F” for first passage) is defined by

F(i, j) = Pr{T j < ∞|X0 = i} . (5.4)

By inspecting the state diagram in Fig. 5.3, it should be obvious that the first passage
probabilities for the chain of Example 5.3 are given by

F =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 1 1 0

< 1 < 1 < 1 < 1

⎤

⎥
⎥
⎦ .

The primary quantity of interest for the number of visits random variable is its
expected value. The expected number of visits to State j given the initial state was i
is denoted by R(i, j) (“R” for returns) and is defined by

R(i, j) = E[N j|X0 = i] . (5.5)

Again the state diagram of Fig. 5.3 allows the determination of some of the values
of R as follows:

R =

⎡

⎢
⎢
⎣

∞ 0 0 0
0 ∞ ∞ 0
0 ∞ ∞ 0
∞ ∞ ∞ < ∞

⎤

⎥
⎥
⎦ .

The above matrix may appear unusual because of the occurrence of ∞ for ele-
ments of the matrix. In Sect. 5.5, numerical methods will be given to calculate the
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values of the R and F matrices; however, the values of ∞ are obtained by an under-
standing of the structures of the Markov chain and not through specific formulas.
For now, our goal is to develop an intuitive understanding of these processes; there-
fore, the major concern for the F matrix is whether an element is zero or one, and
the concern for the R matrix is whether an element is zero or infinity. As might
be expected, there is a close relation between R(i, j) and F(i, j) as is shown in the
following property.

Property 5.5. Let R(i, j) and F(i, j) be as defined in (5.5) and (5.4), respec-
tively. Then

R(i, j) =

⎧
⎪⎨

⎪⎩

1
1−F( j, j) for i = j,

F(i, j)
1−F( j, j) for i �= j;

,

where the convention 0/0 = 0 is used.

The above discussion utilizing Example 5.3 should help to point out that there is a
basic difference between States 1, 2 or 3 and State 4 of the example. Consider that if
the chain ever gets to State 1 or to State 2 or to State 3 then that state will continually
reoccur. However, even if the chain starts in State 4, it will only stay there a finite
number of times and will eventually leave State 4 never to return. These ideas give
rise to the terminology of recurrent and transient states. Intuitively, a state is called
recurrent if, starting in that state, it will continuously reoccur; and a state is called
transient if, starting in that state, it will eventually leave that state never to return.
Or equivalently, a state is recurrent if, starting in that state, the chain must (i.e., with
probability one) eventually return to the state at least once; and a state is transient
if, starting in that state, there is a chance (i.e., with probability greater than zero)
that the chain will leave the state and never return. The mathematical definitions are
based on these notions developed above.

Definition 5.2. A state j is called transient if F( j, j) < 1. Equivalently, state j is
transient if R( j, j) < ∞. ��

Definition 5.3. A state j is called recurrent if F( j, j) = 1. Equivalently, state j is
recurrent if R( j, j) = ∞. ��

From the above two definitions, a state must either be transient or recurrent. A
dictionary1 definition for the word transient is “passing esp. quickly into and out
of existence”. Thus, the use of the word is justified since transient states will only
occur for a finite period of time. For a transient state, there will be a time after which
the transient state will never again be visited. A dictionary1 definition for recurrent
is “returning or happening time after time”. So again the mathematical concept of a

1 Webster’s Ninth New Collegiate Dictionary, (Springfield, MA: Merriam-Webster, Inc., 1989)
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Fig. 5.6 State diagram for the
Markov chain of Example 5.7
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recurrent state parallels the common English usage: recurrent states are recognized
by those states which are continually revisited.

Recurrent states might also be periodic, as with the Markov matrix

P =
[

0 1
1 0

]

but discussions regarding periodic chains will be left to other texts.
By drawing the state diagrams for the Markov chains of Examples 5.1 and 5.2,

it should become clear that all states in those two cases are recurrent. The only
transient state so far illustrated is State 4 of Example 5.3.

Example 5.7. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with state space E =
{1,2,3,4} and transition probabilities given by

P =

1
2
3
4

⎡

⎢
⎢
⎣

1 0 0 0
0.01 0.29 0.7 0

0 0.5 0.5 0
0.2 0 0.1 0.7

⎤

⎥
⎥
⎦ .

Notice the similarity between this Markov chain and the chain in Example 5.3. Al-
though the numerical difference between the two Markov matrices is slight, there
is a radical difference between the structures of the two chains. (The difference be-
tween a zero term and a nonzero term, no matter how small, can be very significant.)
The chain of this example has one recurrent state and three transient states.

By inspecting the state diagram for this Markov chain (Fig. 5.6) the following
matrices are obtained (through observation, not through calculation):

F =

⎡

⎢
⎢
⎣

1 0 0 0
1 < 1 < 1 0
1 1 < 1 0
1 < 1 < 1 < 1

⎤

⎥
⎥
⎦ .

R =

⎡

⎢
⎢
⎣

∞ 0 0 0
∞ < ∞ < ∞ 0
∞ < ∞ < ∞ 0
∞ < ∞ < ∞ < ∞

⎤

⎥
⎥
⎦ .

It should be observed that F(3,2) = 1 even though both State 2 and State 3 are
transient. It is only the diagonal elements of the F and R matrices that determine
whether a state is transient or recurrent. ��
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Fig. 5.7 Two step manufacturing process of Example 5.8

Example 5.8. A manufacturing process consists of two processing steps in sequence.
After step 1, 20% of the parts must be reworked, 10% of the parts are scrapped, and
70% proceed to the next step. After step 2, 5% of the parts must be returned to the
first step, 10% must be reworked and 5% are scrapped; the remainder are sold. The
diagram of Fig. 5.7 illustrates the dynamics of the manufacturing process.

The Markov matrix associated with this manufacturing process is given by

P =

1
2
s
g

⎡

⎢
⎢
⎣

0.2 0.7 0.1 0.0
0.05 0.1 0.05 0.8
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

⎤

⎥
⎥
⎦ . (5.6)

Consider the dynamics of the chain. A part to be manufactured will begin the
process by entering State 1. After possibly cycling for awhile, the part will end the
process by entering either the “g” state or the “s” state. Therefore, States 1 and 2 are
transient, and States g and s are recurrent. ��

Along with classifying states, we also need to be able to classify sets of states.
We will first define a closed set which is a set that once the Markov chain has entered
the set, it cannot leave the set.

Definition 5.4. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with Markov matrix
P and let C be a set of states contained in its state space. Then C is closed if

∑
j∈C

P(i, j) = 1 for all i ∈C .

��

To illustrate the concept of closed sets, refer again to Example 5.3. The sets
{2,3,4}, {2}, and {3,4} are not closed sets. The set {1,2,3,4} is obviously closed,
but it can be reduced to a smaller closed set. The set {1,2,3} is also closed, but again
it can be further reduced. Both sets {1} and {2,3} are closed and cannot be reduced
further. This idea of taking a closed set and trying to reduce it is extremely important
and leads to the definition of an irreducible set.
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Fig. 5.8 State diagram for the
Markov chain of Example 5.9
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Definition 5.5. A closed set of states that contains no proper subset which is also
closed is called irreducible. A state that forms an irreducible set by itself is called
an absorbing state. ��

The Markov chain of Example 5.3 has two irreducible sets: the set {1} and the
set {2,3}. Since the first irreducible set contains only one state, that state is an
absorbing state.

Example 5.9. Let X be a Markov chain with state space E = {a, · · · ,g} and Markov
matrix

P =

a
b
c
d
e
f
g

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.7 0 0 0 0 0
0.5 0.5 0 0 0 0 0
0 0.2 0.4 0.4 0 0 0
0 0 0.5 0.5 0 0 0
0 0 0 0.8 0.1 0.1 0
0 0 0 0 0.7 0.3 0
0 0 0 0 0 0.4 0.6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By drawing a state diagram (Fig. 5.8), you should observe that states a and b are
recurrent and all others are transient. (If that is not obvious, notice that once the
chain reaches either a or b, it will stay in those two states, there are no paths lead-
ing away from the set {a,b}; furthermore, all states will eventually reach State b).
Obviously, the entire state space is closed. Since no state goes to g, we can exclude
g and still have a closed set; namely, the set {a,b,c,d,e, f} is closed. However, the
set {a,b,c,d,e, f} can be reduced to a smaller closed set so it is not irreducible.
Because there is a path going from e to f , the set {a,b,c,d,e} is not closed. By ex-
cluding the state e, a closed set is again obtained; namely, {a,b,c,d} is also closed
since there are no paths out of the set {a,b,c,d} to another state. Again, however, it
can also be reduced so the set {a,b,c,d} is not irreducible. Finally, consider the set
{a,b}. This two-state set is closed and cannot be further reduced to a smaller closed
set; therefore, the set {a,b} is an irreducible set. ��

The reason that Definitions 5.4 and 5.5 are important is the following property.

Property 5.6. All states within an irreducible set are of the same classifica-
tion.
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Fig. 5.9 State diagram for the
Markov chain of Eq. 5.7
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The significance of the above property is that if you can identify one state within
an irreducible set as being transient, then all states within the set are transient, and
if one state is recurrent, then all states within the set are recurrent. We are helped
even more by recognizing that it is impossible to have an irreducible set of transient
states if the set contains only a finite number of states; thus we have the following
property.

Property 5.7. Let C be an irreducible set of states such that the number of
states within C is finite. Then each state within C is recurrent.

There is one final concept that will help in identifying irreducible sets; namely,
communication between states. Communication between states is like communica-
tion between people; there is communication only if messages can go both ways. In
other words, two states, i and j, communicate if and only if it is possible to eventu-
ally reach j from i and it is possible to eventually reach i from j. In Example 5.3,
States 2 and 3 communicate, but States 4 and 2 do not communicate. Although
State 2 can be reached from 4, it does not go both ways because State 4 cannot be
reached from 2. The communication must be both ways but it does not have to be
in one step. For example, in the Markov chain with state space {a,b,c,d} and with
Markov matrix

P =

⎡

⎢
⎢
⎣

0.5 0.5 0 0
0.2 0.4 0.4 0
0 0.1 0.8 0.1
0 0 0.3 0.7

⎤

⎥
⎥
⎦ , (5.7)

all states communicate with every other state. And, in particular, State a commu-
nicates with State d even though they can not reach each other in one step (see
Fig. 5.9).

The notion of communication is often the concept used to identify irreducible
sets as is given in the following property.

Property 5.8. The closed set of states C is irreducible if and only if every
state within C communicates with every other state within C.
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Fig. 5.10 State diagram for
the Markov chain of Exam-
ple 5.3
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The procedure for identifying irreducible sets of states for a Markov chain with
a finite state space is to first draw the state diagram, then pick a state and identify all
states that communicate with it. If the set made up of all those states that communi-
cate with it is closed, then the set is an irreducible, recurrent set of states. If it is not
closed, then the originally chosen state and all the states that communicate with it
are transient states.

Example 5.10. Let X be a Markov chain with state space E = {a, · · · ,g} and Markov
matrix

P =

a
b
c
d
e
f
g

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.1 0.2 0.2 0.1 0.1 0
0 0.5 0 0 0 0 0.5
0 0 0.4 0.6 0 0 0
0 0 0.3 0.2 0 0.5 0
0 0 0.2 0.3 0.4 0.1 0
0 0 1 0 0 0 0
0 0.8 0 0 0 0 0.2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By drawing a state diagram (Fig. 5.10), it is seen that there are two irreducible
recurrent sets of states which are {b,g} and {c,d, f}. States a and e are transient.

��
• Suggestion: Do Problems 5.13a–c and 5.14a–d.

5.4 Steady-State Behavior

The reason that so much effort has been spent in classifying states and sets of states
is that the analysis of the limiting behavior of a chain is dependent on the type of
state under consideration. To illustrate long-run behavior, we again return to Exam-
ple 5.2 and focus attention on State a. Figure 5.11 shows a graph which gives the
probabilities of being in State a at time n given that at time zero the chain was in
State a. (In other words, the graph gives the values of Pn(a,a) as a function of n.)
Although the graph varies dramatically for small n, it reaches an essentially constant
value as n becomes large. It is seen from the graph that

lim
n→∞

Pr{Xn = a|X0 = a} = 0.42857 .
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Fig. 5.11 Probabilities from Example 5.2 of being in State a as a function of time

In fact, if you spent the time to graph the probabilities of being in State a starting
from State b instead of State a, you would discover the same limiting value, namely,

lim
n→∞

Pr{Xn = a|X0 = b} = 0.42857 .

When discussing steady-state (or limiting) conditions, this is what is meant, not that
the chain stops changing — it is dynamic by definition — but that enough time has
elapsed so that the probabilities do not change with respect to time. It is often stated
that steady-state results are independent of initial conditions, and this is true for the
chain in Example 5.2; however it is not always true. In Example 5.3, it is clear that
the steady-state conditions are radically different when the chain starts in State 1 as
compared to starting in State 2.

If the entire state space of a Markov chain forms an irreducible recurrent set,
the Markov chain is called an irreducible recurrent Markov chain. In this case the
steady-state probabilities are independent of the initial state and are not difficult to
compute as is seen in the following property.

Property 5.9. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with finite state
space E and Markov matrix P. Furthermore, assume that the entire state space
forms an irreducible, recurrent set, and let

π( j) = lim
n→∞

Pr{Xn = j|X0 = i} .

The vector πππ is the solution to the following system

πππP = πππ,

∑
i∈E

π(i) = 1 .
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To illustrate the determination of πππ , observe that the Markov chain of Exam-
ple 5.2 is irreducible, recurrent. Applying Property 5.9, we obtain

0.75πb + 0.75πc = πa

0.5πa + 0.25πc = πb

0.5πa + 0.25πb = πc

πa + πb + πc = 1 .

There are four equations and only three variables, so normally there would not be a
unique solution; however, for an irreducible Markov matrix there is always exactly
one redundant equation from the system formed by πππP =πππ . Thus, to solve the above
system, arbitrarily choose one of the first three equations to discard and solve the
remaining 3 by 3 system (never discard the final or norming equation) which yields

πa =
3
7
, πb =

2
7
, πc =

2
7

.

Property 5.9 cannot be directly applied to the chain of Example 5.3 because the
state space is not irreducible. All irreducible, recurrent sets must be identified and
grouped together and then the Markov matrix is rearranged so that the irreducible
sets are together and transient states are last. In such a manner, the Markov matrix
for a chain can always be rewritten in the form

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P1

P2

P3
. . .

B1 B2 B3 · · · Q

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.8)

After a chain is in this form, each submatrix Pi is a Markov matrix and can be
considered as an independent Markov chain for which Property 5.9 is applied.

The Markov matrix of Example 5.3 is already in the form of (5.8). Since State 1 is
absorbing (i.e., an irreducible set of one state), its associated steady-state probability
is easy; namely, π1 = 1. States 2 and 3 form an irreducible set so Property 5.9 can
be applied to the submatrix from those states resulting in the following system:

0.3π2 + 0.5π3 = π2

0.7π2 + 0.5π3 = π3

π2 + π3 = 1

which yields (after discarding one of the first two equations)

π2 =
5

12
and π3 =

7
12

.

The values π2 and π3 are interpreted to mean that if a snapshot of the chain is
taken a long time after it started and if it started in States 2 or 3, then there is a 5/12
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probability that the picture will show the chain in State 2 and a 7/12 probability that
it will be in State 3. Another interpretation of the steady-state probabilities is that
if we recorded the time spent in States 2 and 3, then over the long run the fraction
of time spent in State 2 would equal 5/12 and the fraction of time spent in State
3 would equal 7/12. These steady-state results are summarized in the following
property.

Property 5.10. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with finite state
space with k distinct irreducible sets. Let the �th irreducible set be denoted by
C�, and let P� be the Markov matrix restricted to the �th irreducible set (as in
Eq. 5.8). Finally, let F be the matrix of first passage probabilities.

• If State j is transient,

lim
n→∞

Pr{Xn = j|X0 = i} = 0 .

• If State i and j both belong to the �th irreducible set,

lim
n→∞

Pr{Xn = j|X0 = i} = π( j)

where

πππP� = πππ and

∑
i∈C�

π(i) = 1 .

• If State j is recurrent and i is not in its irreducible set,

lim
n→∞

Pr{Xn = j|X0 = i} = F(i, j)π( j) ,

where πππ is determined as above.
• If State j is recurrent and X0 is in the same irreducible set as j,

lim
n→∞

1
n

n−1

∑
m=0

I(Xm, j) = π( j) ,

where I is the identity matrix.
• If State j is recurrent,

E[T j|X0 = j] =
1

π( j)
.

The intuitive idea of the second to last item in the above property is obtained
by considering the role that the identity matrix plays in the left-hand-side of the
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equation. As mentioned previously, the identity matrix acts as a counter so that the
summation on the left-hand-side of the equation is the total number of visits that the
chain makes to state j. Thus, the equality indicates that the fraction of time spent
in State j is equal to the steady-state probability of being in State j. This property
is called the Ergodic Property. The last property indicates that the reciprocal of
the long-run probabilities equals the expected number of steps to return to the state.
Intuitively, this is as one would expect it, since the higher the probability, the quicker
the return.

Example 5.11. We consider again the Markov chain of Example 5.10. In order to
determine its steady-state behavior, the first step is to rearrange the matrix as in
Eq. (5.8). The irreducible sets were identified in Example 5.10 and on that basis we
order the state space as b,g,c,d, f ,a,e. The Markov matrix thus becomes

P =

b
g
c
d
f
a
e

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 0.5
0.8 0.2

0.4 0.6 0
0.3 0.2 0.5
1 0 0

0.1 0 0.2 0.2 0.1 0.3 0.1
0 0 0.2 0.3 0.1 0 0.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(Blank blocks in a matrix are always interpreted to be zeroes.) The steady-state
probabilities of being in States b or g are found by solving

0.5πb + 0.8πg = πb

0.5πb + 0.2πg = πg

πb + πg = 1 .

Thus, after deleting one of the first two equations, we solve the two-by-two system
and obtain πb = 8/13 and πg = 5/13. Of course if the chain starts in State c,d, or
f the long-run probability of being in State b or g is zero, because it is impossible
to reach the irreducible set {b,g} from any state in the irreducible set {c,d, f}. The
steady-state probabilities of being in State c,d, or f starting in that set is given by
the solution to

0.4πc + 0.3πd + π f = πc

0.6πc + 0.2πd = πd

0.5πd = π f

πc + πd + π f = 1

which yields πc = 8/17, πd = 6/17, and π f = 3/17. (It might be noticed that the
reasonable person would delete the first equation before solving the above system.)
As a final point, assume the chain is in State c, and we wish to know the expected
number of steps until the chain returns to State c. Since πc = 8/17, it follows that
the expected number of steps until the first return is 17/8. ��
Example 5.12. The market analysis discussed in Example 5.5 gave switching proba-
bilities for body styles and associated profits with each body style. The long behav-
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ior for a customer can be estimated by calculating the long-run probabilities. The
following system of equations

0.36πs + 0.60πw = πw

0.09πs + 0.25πc = πc

πs + πw + πc = 1

is solved to obtain π = (0.495,0.446,0.059). Therefore, the long-run expected profit
per customer trade-in is

0.495×1200+0.446×1500+0.059×2500 = $1,410.5 .

��

• Suggestion: Do Problems 5.10d, 5.11g–i, and 5.15.

5.5 Computations

The determination of R (Eq. 5.5) is straightforward for recurrent states. If States
i and j are in the same irreducible set, then R(i, j) = ∞. If i is recurrent and j is
either transient or in a different irreducible set than i, then R(i, j) = F(i, j) = 0. For
i transient and j recurrent, then R(i, j) = ∞ if F(i, j) > 0 and R(i, j) = 0 if F(i, j)= 0.
In the case where i and j are transient, we have to do a little work as is given in the
following property.

Property 5.11. Let X = {Xn;n = 0,1, · · ·} be a Markov chain and let A de-
note the (finite) set of all transient states. Let Q be the matrix of transition
probabilities restricted to the set A, then, for i, j ∈ A

R(i, j) = (I−Q)−1(i, j) .

Continuing with Example 5.11, we first note that Q is

Q =
[

0.3 0.1
0 0.4

]

and evaluating (I−Q)−1 we have

(I−Q)−1 =
[

10/7 10/42
0 10/6

]

which yields
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R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∞ ∞ 0 0 0 0 0
∞ ∞ 0 0 0 0 0
0 0 ∞ ∞ ∞ 0 0
0 0 ∞ ∞ ∞ 0 0
0 0 ∞ ∞ ∞ 0 0
∞ ∞ ∞ ∞ ∞ 10/7 10/42
0 0 ∞ ∞ ∞ 0 10/6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The calculations for the matrix F are slightly more complicated than for R. The
matrix P must be rewritten so that each irreducible, recurrent set is treated as a
single “super” state. Once the Markov chain gets into an irreducible, recurrent set,
it will remain in that set forever and all states within the set will be visited infinitely
often. Therefore, in determining the probability of reaching a recurrent state from a
transient state, it is only necessary to find the probability of reaching the appropriate
irreducible set. The transition matrix in which each irreducible set is treated as a
single state is denoted by P̂. The matrix P̂ has the form

P̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
1

1
. . .

b1 b2 b3 · · · Q

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.9)

where b� is a vector giving the one-step probability of going from transient state i
to irreducible set �, that is,

b�(i) = ∑
j∈C�

P(i, j)

for i transient and C� denoting the �th irreducible set.

Property 5.12. Let {Xn;n = 0,1, · · ·} be a Markov chain with a finite state
space ordered so that its Markov matrix can be reduced to the form in
Eq. (5.9). Then for a transient State i and a recurrent State j, we have

F(i, j) = ((I−Q)−1b�)(i)

for each State j in the �th irreducible set.

We again return to Example 5.11 to illustrate the calculations for F. We will
also take advantage of Property 5.5 to determine the values in the lower right-hand
portion F. Note that for i and j both transient, Property 5.5 can be rewritten as

F(i, j) =

⎧
⎪⎨

⎪⎩

1− 1
R( j, j) for i = j,

R(i, j)
R( j, j) for i �= j .

(5.10)



164 5 Markov Chains

Using Property 5.12, the following holds:

P̂ =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0

0.1 0.5 0.3 0.1
0 0.6 0 0.4

⎤

⎥
⎥
⎦ ,

(I−Q)−1b1 =

⎡

⎣
1/7

0

⎤

⎦ ,

(I−Q)−1b2 =

⎡

⎣
6/7

1

⎤

⎦ ;

thus using Property 5.12 and Eq. (5.10), we have

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

1/7 1/7 6/7 6/7 6/7 3/10 1/7

0 0 1 1 1 0 4/10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can now use Property 5.10 and the previously computed steady-state probabili-
ties to finish the limiting probability matrix for this example; namely,

lim
n→∞

Pn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8/13 5/13 0 0 0 0 0

8/13 5/13 0 0 0 0 0

0 0 8/17 6/17 3/17 0 0

0 0 8/17 6/17 3/17 0 0

0 0 8/17 6/17 3/17 0 0

8/91 5/91 48/119 36/119 18/119 0 0

0 0 8/17 6/17 3/17 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The goal of many modeling projects is the determination of revenues or costs.
The ergodic property (the last item in Property 5.10) of an irreducible recurrent
Markov chain gives an easy formula for the long run average return for the process.
In Example 5.1, assume that each day the tractor is running, a profit of $100 is
realized; however, each day it is in the repair shop, a cost of $25 is incurred. The
Markov matrix of Example 5.1 yields steady-state results of π0 = 1/11 and π1 =
10/11; thus, the daily average return in the long run is
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−25× 1
11

+100× 10
11

= 88.64 .

This intuitive result is given in the following property.

Property 5.13. Let X = {Xn;n = 0,1, · · ·} be an irreducible Markov chain
with finite state space E and with steady-state probabilities given by the vector
πππ . Let the vector f be a profit function (i.e., f (i) is the profit received for each
visit to State i). Then (with probability one) the long-run average profit per
unit of time is

lim
n→∞

1
n

n−1

∑
k=0

f (Xk) = ∑
j∈E

π( j) f ( j) .

Example 5.13. We return to the simplified manufacturing system of Example 5.8.
Refer again to the diagram in Fig. 5.7 and the Markov matrix of Eq. 5.6. The cost
structure for the process is as follows: The cost of the raw material going into Step
1 is $150; each time a part is processed through Step 1 a cost of $200 is incurred;
and every time a part is processed through Step 2 a cost of $300 is incurred. (Thus
if a part is sold that was reworked once in Step 1 but was not reworked in Step 2,
that part would have $850 of costs associated with it.) Because the raw material is
toxic, there is also a disposal cost of $50 per part sent to scrap.

Each day, we start with enough raw material to make 100 parts so that at the end
of each day, 100 parts are finished: some good, some scraped. In order to establish
a reasonable strategy for setting the price of the parts to be sold, we first must deter-
mine the cost that should be attributed to the parts. In order to answer the relevant
questions, we will first need the F and R matrices, which are

F =

1
2
s
g

⎡

⎢
⎢
⎣

0.239 0.875 0.183 0.817
0.056 0.144 0.066 0.934

0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

⎤

⎥
⎥
⎦

R =

1
2
s
g

⎡

⎢
⎢
⎣

1.31 1.02 ∞ ∞
0.07 1.17 ∞ ∞
0.0 0.0 ∞ 0.0
0.0 0.0 0.0 ∞

⎤

⎥
⎥
⎦ .

An underlying assumption for this model is that each part that begins the manufac-
turing process is an independent entity, so that the actual number of finished “good”
parts is a random variable following a binomial distribution. As you recall, the bi-
nomial distribution needs two parameters, the number of trials and the probability
of success. The number of trials is given in the problem statement as 100; the prob-
ability of a success is the probability that a part which starts in State 1 ends in State
g. Therefore, the expected number of good parts at the end of the day is
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100×F(1,g) = 81.7 .

The cost per part started is given by

150+200×R(1,1)+300×R(1,2)+50×F(1,s) = 727.15 .

Therefore, the cost which should be associated to each part sold is

(100×727.15)/81.7 = $890/part sold .

A rush order for 100 parts from a very important customer has just been received,
and there are no parts in inventory. Therefore, we wish to start tomorrow’s produc-
tion with enough raw material to be 95% confident that there will be at least 100
good parts at the end of the day. How many parts should we plan on starting tomor-
row morning? Let the random variable Nn denote the number of finished parts that
are good given that the day started with enough raw material for n parts. From the
above discussion, the random variable Nn has a binomial distribution where n is the
number of trials and F(1,g) is the probability of success. Therefore, the question of
interest is to find n such that Pr{Nn ≥ 100} = 0.95. Hopefully, you also recall that
the binomial distribution can be approximated by the normal distribution; therefore,
define X to be a normally distributed random variable with mean nF(1,g) and vari-
ance nF(1,g)F(1,s). We now have the following equation:

Pr{Nn ≥ 100} ≈ Pr{X > 99.5}
= Pr{Z > (99.5−0.817n)/

√
0.1495n} = 0.95

where Z is normally distributed with mean zero and variance one. Thus, using either
standard statistical tables or the Excel function =NORMSINV(0.05), we have that

99.5−0.817n√
0.1495n

= −1.645 .

The above equation is solved for n. Since it becomes a quadratic equation, there are
two roots: n1 = 113.5 and n2 = 130.7. We must take the second root (why?), and
we round up; thus, the day must start with enough raw material for 131 parts. ��

Example 5.14. A missile is launched and, as it is tracked, a sequence of course cor-
rection signals are sent to it. Suppose that the system has four states that are labeled
as follows.

State 0: on-course, no further correction necessary
State 1: minor deviation
State 2: major deviation
State 3: abort, off-course so badly a self-destruct signal is sent

Let Xn represent the state of the system after the nth course correction and assume
that the behavior of X can be modeled by a Markov chain with the following prob-
ability transition matrix:
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P =

0
1
2
3

⎡

⎢
⎢
⎣

1.0 0.0 0.0 0.0
0.5 0.25 0.25 0.0
0.0 0.5 0.25 0.25
0.0 0.0 0.0 1.0

⎤

⎥
⎥
⎦ .

As always, the first step is to classify the states. Therefore observe that states 0 and
3 are absorbing, and states 1 and 2 are transient. After a little work, you should be
able to obtain the following matrices:

F =

0
1
2
3

⎡

⎢
⎢
⎣

1.0 0.0 0.0 0.0
0.857 0.417 0.333 0.143
0.571 0.667 0.417 0.429

0.0 0.0 0.0 1.0

⎤

⎥
⎥
⎦

R =

0
1
2
3

⎡

⎢
⎢
⎣

∞ 0.0 0.0 0.0
∞ 1.714 0.571 ∞
∞ 1.143 1.714 ∞

0.0 0.0 0.0 ∞

⎤

⎥
⎥
⎦ .

Suppose that upon launch, the missile starts in State 2. The probability that it will
eventually get on-course is 57.1% (namely, F(2,0)); whereas, the probability that it
will eventually have to be destroyed is 42.9%. When a missile is launched, 50,000
pounds of fuel are used. Every time a minor correction is made, 1,000 pounds of
fuel are used; and every time a major correction is made, 5,000 pounds of fuel are
used. Assume that the missile started in State 2, we wish to determine the expected
fuel usage for the mission. This calculation is

50000+1000×R(2,1)+5000×R(2,2) = 59713 .

��

The decision maker sometimes uses a discounted cost criterion instead of average
costs over an infinite planning horizon. To determine the expected total discounted
return for a Markov chain, we have the following.

Property 5.14. Let X = {Xn;n = 0,1, · · ·} be a Markov chain with Markov
matrix P. Let f be a return function and let α (0 < α < 1) be a discount
factor. Then the expected total discounted cost is given by

E

[
∞

∑
n=0

αn f (Xn)|X0 = i

]

= ((I−αP)−1f)(i) .

We finish Example 5.11 by considering a profit function associated with it. Let
the state space for the example be E = {1,2,3,4,5,6,7}; that is, State 1 is State b,
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State 2 is State g, etc. Let f be the profit function with f = (500,450,400,350,300,
350,200); that is, each visit to State 1 produces $500, each visit to State 2 produces
$450, etc. If the chain starts in States 1 or 2, then the long-run average profit per
period is

500× 8
13

+450× 5
13

= $480.77 .

If the chain starts in States 3, 4, or 5, then the long-run average profit per period is

400× 8
17

+350× 6
17

+300× 3
17

= $364.71 .

If the chain starts in State 6, then the expected value of the long-run average would
be a weighted average of the two ergodic results, namely,

480.77× 1
7

+364.71× 6
7

= $381.29 ,

and starting in State 7 gives the same long-run result as starting in States 3, 4, or 5.
Now assume that a discount factor should be used. In other words, our criterion

is total discounted profit instead of long-run average profit per period. Let the mon-
etary rate of return be 20% per period which gives α = 1/1.20 = 5/6. (In other
words, one dollar one period in the future is equivalent to 5/6 dollar, or 83.33 cents,
now.) Then

(I−αP)−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.0 2.0 0 0 0 0 0
3.2 2.8 0 0 0 0 0
0 0 3.24 1.95 0.81 0 0
0 0 2.32 2.59 1.08 0 0
0 0 2.70 1.62 1.68 0 0

0.44 0.22 1.76 1.37 0.70 1.33 0.17
0 0 2.02 1.66 0.82 0 1.50

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Denote the total discounted return when the chain starts in state i by h(i). Then,
multiplying the above matrix by the profit function f yields

hT = (2900,2860,2221.5,2158.5,2151,2079,1935) .

Thus, if the chain started in State 1, the present worth of all future profits would
be $2,900. If the initial state is unknown and a distribution of probabilities for the
starting state is given by μμμ , the total discounted profit is given by μμμh.
• Suggestion: Do Problems 5.13d–f, 5.14e–g, and finish 5.1–5.9.
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Appendix

We close the chapter with a brief look at the use of Excel for analyzing Markov
chains. We will consider both the matrix operations involved in the computations of
Section 5.5 and the use of random numbers for simulating Markov chains.

Matrix Operations in Excel. The application of Property 5.11 to the Markov
chain of Example 5.11 requires the determination of (I−Q)−1 as shown on p. 162.
There is more than one way to calculate this in Excel, but they all involve the use
of the function MINVERSE(array). In Excel, whenever the output of a function
is an array it is important to follow Excel’s special instructions for array results:
(1) highlight the cells in which you want the array to appear, (2) type in the equal
sign (=) followed by the formula, and (3) hold down the <shift> and <ctrl>
keys while hitting the <enter> key. To demonstrate this, type the following on a
spreadsheet:

A B C D E
1 Q matrix Identity
2 0.3 0.1 1 0
3 0.0 0.4 0 1

(Notice that as a matter of personal preference, parameters are usually labeled and
blank columns or rows are placed between separate quantities.) Now to obtain the
inverse of (I−Q), first, highlight the cells A5:B6; second, type

=MINVERSE(D2:E3 - A2:B3)

(note that although the range A5:B6 was highlighted, the above formula should
occur in Cell A5); finally, while holding down the <shift> and <ctrl> keys
hit the <enter> key. After hitting the <enter> key, the (I−Q)−1 matrix should
appear in the A5:B6 range. To try an alternate method, highlight the cells A8:B9,
type

=MINVERSE({1,0;0,1} - A2:B3), and

while holding down the <shift> and <ctrl> keys hit the <enter> key. The
obvious advantage of the second method is that the identity matrix need not be
explicitly entered on the spreadsheet.

Steady-state probabilities for an irreducible, recurrent Markov chain can also be
easily obtained through Excel, but first we re-write the equation πππP = πππ as πππ(I−
P) = 0. Recall from Property 5.9, that the norming equation must be used and one
of the equations from the system πππ(I−P) = 0 must be dropped, which is equivalent
to deleting one of the columns of (I−P) and replacing it with a column of all ones.
As we do this in Excel, it is the last column that will be dropped.

Example 5.15. Consider a four-state Markov chain with Markov matrix defined by
Eq. (5.7). Since it has a finite state space and all states communicate with all other
states, it is an irreducible, recurrent Markov chain so that steady-state probabilities
can be computed using Property 5.9. Type the following in a spreadsheet:
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A B C D
1 P matrix
2 0.5 0.5 0 0
3 0.2 0.4 0.4 0
4 0 0.1 0.8 0.1
5 0 0 0.3 0.7
6
7 Modified I-P matrix

Next, we need the matrix (I−P) with the last column replaced by all ones to appear
in Cells A8:D11. To accomplish this, highlight Cells A8:C11, type

={1,0,0;0,1,0;0,0,1;0,0,0}-A2:C5
(again note that although a block of 12 cells were highlighted, the typing occurs
in Cell A8), and while holding down the <shift> and <ctrl> keys hit the
<enter> key. Finally, place ones in Cells D8:D11.

With the modified (I−P) matrix, we simply pre-multiply the right-hand side
vector by its inverse, where the right-hand side is a vector of all zeros except the last
element which equals one (from the norming equation). Center the words "Steady
state probabilities" across Cells A13:D13 in order to label the quantities
to be computed, highlight Cells A14:D14, type

=MMULT({0,0,0,1},MINVERSE(A8:D11))
(although a block of 4 cells were highlighted, the typing occurs in Cell A14), and
while holding down the <shift> and <ctrl> keys hit the <enter> key. Thus,
the steady-state probabilities appear in highlighted cells. ��

Simulation of a Markov Chain. We close this appendix with an Excel simula-
tion of a Markov chain. The key to simulating a Markov chain is to use the tech-
niques of Sect. 2.3.1 together with conditional probabilities given in the Markov
matrix. The Excel implementation of this was illustrated in Example 2.12.

Example 5.16. Consider a Markov chain with state space {a,b,c} and with the fol-
lowing transition matrix:

P =

⎡

⎣
0.8 0.1 0.1
0.4 0.6 0.0
0.0 0.0 1.0

⎤

⎦ .

We know that the expected number of steps taken until the chain is absorbed into
State c given that it starts in State a is R(a,a)+ R(a,b) = 12.5 (Eq. 5.5). However,
let us assume that as a new student of Markov chains, our confidence level is low in
asserting that the mean absorption time starting from State a is 12.5 (or equivalently,
E[T c|X0 = a] = 12.5). One of the uses of simulation is as a confidence builder;
therefore, we wish to simulate this process to help give some evidence that our
calculations are correct. In other words, our goal is to simulate this Markov chain
starting from State a and recording the number of steps taken until reaching State c.

Prepare a spreadsheet so that the first two rows are as follows:
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A B C D
Time Current Random Number

1 Step State Number of Steps
2 0 a =RAND() =MATCH("c",B3:B200, 0)

For Cell A3, type =A2+1; for Cell B3, type

=IF(B2="a",IF(C2<0.8,"a",IF(C2<0.9,"b","c")),
IF(B2="b",IF(C2<0.4,"a","b"),"c"))

and for Cell C3, type =RAND(). Now copy Cells A3:C3 down through row 200.
Notice that each time the F9 key is pressed, a new value appears in Cell D2.

These values represent independent realizations of the random variable T c given
that X0 = a. Obviously, to obtain an estimate for E[T c|X0 = a], an average of several
realizations are necessary. ��

The above example can be modified slightly so that one column produces a
random sample containing many realizations of E[T c|X0 = a]. Change Cell A3 to
read =IF(B2="c",0,A2+1) (note that Cell A3 makes reference to B2, not B3),
change the last entry in the IF statement of Cell B3 to be "a" instead of "c",
change Cell D3 to be =IF(B3="c", A3,"--"), and then copy Cells A3:D3
down through row 30000. The numerical values contained in Column D represent
various realizations of the random variable T c so we now change the formula in D2
to be =AVERAGE(D3:D30000) and thus the sample mean becomes the estimator
for E[T c|X0 = a].

Problems

The exercises listed below are to help in your understanding of Markov chains and
to indicate some of the potential uses for Markov chain analysis. All numbers are
fictitious.

5.1. Joe and Pete each have two cents in their pockets. They have decided to match
pennies; that is, they will each take one of their own pennies and flip them. If the
pennies match (two heads or two tails), Joe gets Pete’s penny; if the pennies do not
match, Pete gets Joe’s penny. They will keep repeating the game until one of them
has four cents, and the other one is broke. Although they do not realize it, all four
pennies are biased. The probability of tossing a head is 0.6, and the probability of a
tail is 0.4. Let X be a Markov chain where Xn denotes the amount that Joe has after
the nth play of the game.
(a) Give the Markov matrix for X .
(b) What is the probability that Joe will have four pennies after the second toss?
(c) What is the probability that Pete will be broke after three tosses?
(d) What is the probability that the game will be over before the third toss?
(e) What is the expected amount of money Pete will have after two tosses?
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(f) What is the probability that Pete will end up broke?
(g) What is the expected number of tosses until the game is over?

5.2. At the start of each week, the condition of a machine is determined by measur-
ing the amount of electrical current it uses. According to its amperage reading, the
machine is categorized as being in one of the following four states: low, medium,
high, failed. A machine in the low state has a probability of 0.05, 0.03, and 0.02 of
being in the medium, high, or failed state, respectively, at the start of the next week.
A machine in the medium state has a probability of 0.09 and 0.06 of being in the
high or failed state, respectively, at the start of the next week (it cannot, by itself, go
to the low state). And, a machine in the high state has a probability of 0.1 of being
in the failed state at the start of the next week (it cannot, by itself, go to the low
or medium state). If a machine is in the failed state at the start of a week, repair is
immediately begun on the machine so that it will (with probability 1) be in the low
state at the start of the following week. Let X be a Markov chain where Xn is the
state of the machine at the start of week n.
(a) Give the Markov matrix for X .
(b) A new machine always starts in the low state. What is the probability that the
machine is in the failed state three weeks after it is new?
(c) What is the probability that a machine has at least one failure three weeks after
it is new?
(d) On the average, how many weeks per year is the machine working?
(e) Each week that the machine is in the low state, a profit of $1,000 is realized;
each week that the machine is in the medium state, a profit of $500 is realized; each
week that the machine is in the high state, a profit of $400 is realized; and the week
in which a failure is fixed, a cost of $700 is incurred. What is the long-run average
profit per week realized by the machine?
(f) A suggestion has been made to change the maintenance policy for the machine.
If at the start of a week the machine is in the high state, the machine will be taken
out of service and repaired so that at the start of the next week it will again be in the
low state. When a repair is made due to the machine being in the high state instead
of a failed state, a cost of $600 is incurred. Is this new policy worthwhile?

5.3. We are interested in the movement of patients within a hospital. For purposes
of our analysis, we shall consider the hospital to have three different types of rooms:
general care, special care, and intensive care. Based on past data, 60% of arriving
patients are initially admitted into the general care category, 30% in the special care
category, and 10% in intensive care. A “general care” patient has a 55% chance of
being released healthy the following day, a 30% of remaining in the general care
room, and a 15% of being moved to the special care facility. A “special care” pa-
tient has a 10% chance of being released the following day, a 20% chance of being
moved to general care, a 10% chance of being upgraded to intensive care, and a
5% chance of dying during the day. An “intensive care” patient is never released
from the hospital directly from the intensive care unit (ICU), but is always moved
to another facility first. The probabilities that the patient is moved to general care,
special care, or remains in intensive care are 5%, 30%, or 55%, respectively. Let X
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be a Markov chain where X0 is the type of room that an admitted patient initially
uses, and Xn is the room category of that patient at the end of day n.
(a) Give the Markov matrix for X .
(b) What is the probability that a patient admitted into the intensive care room even-
tually leaves the hospital healthy?
(c) What is the expected number of days that a patient, admitted into intensive care,
will spend in the ICU?
(d) What is the expected length of stay for a patient admitted into the hospital as a
general care patient?
(e) During a typical day, 100 patients are admitted into the hospital. What is the
average number of patients in the ICU?

5.4. Consider again the manufacturing process of Example 5.8. New production
plans call for an expected production level of 2000 good parts per month. (In other
words, enough raw material must be used so that the expected number of good parts
produced each month is 2000.) For a capital investment and an increase in operating
costs, all rework and scrap can be eliminated. The sum of the capital investment and
operating cost increase is equivalent to an annual cost of $5 million. Is it worthwhile
to increase the annual cost by $5 million in order to eliminate the scrap and rework?

5.5. Assume the description of the manufacturing process of Example 5.8 is for the
process at Branch A of the manufacturing company. Branch B of the same company
has been closed. Branch B had an identical process and they had 1000 items in stock
that had been through Step 1 of the process when they were shut down. Because the
process was identical, these items can be fed into Branch A’s process at the start
of Step 2. (However, since the process was identical there is still a 5% chance that
after finishing Step 2 the item will have to be reworked at Step 1, a 10% chance the
item will have to be reworked at Step 2, and a 5% chance that the item will have
to be scrapped.) Branch A purchases these (partially completed) items for a total
of $300,000, and they will start processing at Step 2 of Branch A’s system. After
Branch A finishes processing this batch of items, they must determine the cost of
these items so they will know how much to charge customers in order to recover
the cost. (They may want to give a discount.) Your task is to determine the cost that
would be attributed to each item shipped.

5.6. The manufacture of a certain type of electronic board consists of four steps:
tinning, forming, insertion, and solder. After the forming step, 5% of the parts must
be retinned; after the insertion step, 20% of the parts are bad and must be scrapped;
and after the solder step, 30% of the parts must be returned to insertion and 10%
must be scrapped. (We assume that when a part is returned to a processing step, it is
treated like any other part entering that step.) Figure 5.12 gives a schematic showing
the flow of a job through the manufacturing steps.
(a) Model this process using Markov chains and give its Markov matrix.
(b) If a batch of 100 boards begins this manufacturing process, what is the expected
number that will end up scraped?
(c) How many boards should we start with if the goal is to have the expected number
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of boards that finish in the good category equal to 100?
(d) How many boards should we start with if we want to be 90% sure that we end up
with a batch of 100 boards? (Hint: the final status of each board can be considered a
Bernoulli random variable, the sum of independent Bernoullis is binomial, and the
binomial can be approximated by a normal.)
(e) Each time a board goes through a processing step, direct labor and material
costs are $10 for tinning, $15 for forming, $25 for insertion, and $20 for solder.
The raw material costs $8, and a scrapped board returns $2. The average overhead
rate is $1,000,000 per year, which includes values for capital recovery. The average
processing rate is 5,000 board starts per week. We would like to set a price per board
so that expected revenues are 25% higher than expected costs. At what value would
you set the price per board?

5.7. The government has done a study of the flow of money among three types
of financial institutions: banks, savings associations, and credit unions. We shall
assume that the Markov assumptions are valid and model the monthly movement of
money among the various institutions. Some recent data are:

June Units in billions of dollars June
amounts May totals

bank savings credit other
bank 10.0 4.5 1.5 3.6 19.6
savings 4.0 6.0 0.5 1.2 11.7
credit 2.0 3.0 6.0 2.4 13.4
other 4.0 1.5 2.0 4.8 12.3
May totals 20 15 10 12 57

For example, of the 20 billion dollars in banks during the month of May, half of it
remained in banks for the month of June, and 2 out of the 20 billion left banks to be
invested in credit unions during June.
(a) Use the above data to estimate a Markov matrix. What would be the problems
with such a model? (That is, be critical of the Markov assumption of the model.)
(b) In the long-run, how much money would you expect to be in credit unions during
any given month?
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(c) How much money would you expect to be in banks during August of the same
year that the above data were collected?

5.8. Within a certain market area, there are two brands of soap that most people
use: “super soap” and “cheap soap”, with the current market split evenly between
the two brands. A company is considering introducing a third brand called “extra
clean soap”, and they have done some initial studies of market conditions. Their
estimates of weekly shopping patterns are as follows: If a customer buys super soap
this week, there is a 75% chance that next week the super soap will be used again, a
10% chance that extra clean will be used and a 15% chance that the cheap soap will
be used. If a customer buys the extra clean this week, there is a fifty-fifty chance the
customer will switch, and if a switch is made it will always be to super soap. If a
customer buys cheap soap this week, it is equally likely that next week the customer
will buy any of the three brands.
(a) Assuming that the Markov assumptions are good, use the above data to estimate
a Markov matrix. What would be the problems with such a model?
(b) What is the long-run market share for the new soap?
(c) What will be the market share of the new soap two weeks after it is introduced?
(d) The market consists of approximately one million customers each week. Each
purchase of super soap yields a profit of 15 cents; a purchase of cheap soap yields
a profit of 10 cents; and a purchase of extra clean will yield a profit of 25 cents.
Assume that the market was at steady-state with the even split between the two
products. The initial advertising campaign to introduce the new brand was $100,000.
How many weeks will it be until the $100,000 is recovered from the added revenue
of the new product?
(e) The company feels that with these three brands, an advertising campaign of
$30,000 per week will increase the weekly total market by a quarter of a million
customers? Is the campaign worthwhile? (Use a long-term average criterion.)

5.9. A small company sells high quality laser printers and they use a simple periodic
inventory ordering policy. If there are two or fewer printers in inventory at the end
of the day on Friday, the company will order enough printers so that there will be
five printers in stock at the start of Monday. (It only takes the weekend for printers
to be delivered from the wholesaler.) If there are more than two printers at the end
of the week, no order is placed. Weekly demand data has been analyzed yielding the
probability mass function for weekly demand as Pr{D = 0} = 0.05, Pr{D = 1} =
0.1, Pr{D = 2} = 0.2, Pr{D = 3} = 0.4, Pr{D = 4} = 0.1, Pr{D = 5} = 0.1, and
Pr{D = 6} = 0.05. Let X be a Markov chain where Xn is the inventory at the end of
week n. (Note: backorders are not accepted.)
(a) Give the Markov matrix for X .
(b) If at the end of week 1 there were five items in inventory, what is the probability
that there will be five items in inventory at the end of week 2?
(c) If at the end of week 1 there were five items in inventory, what is the probability
that there will be five items in inventory at the end of week 3?
(d) What is the expected number of times each year that an order is placed?
(e) Each printer sells for $1,800. Each time an order is placed, it costs $500 plus
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$1,000 times the number of items ordered. At the end of each week, each unsold
printer costs $25 (in terms of keeping them clean, money tied up, and other such
inventory type expenses). Whenever a customer wants a printer not in stock, the
company buys it retail and sends it by airfreight to the customer; thus the customer
spends the $1,800 sales price but it costs the company $1,900. In order reduce the
lost sales, the company is considering raising the reorder point to three, but still
keeping the order up to quantity at five. Would you recommend the change in the
reorder point?

5.10. Let X be a Markov chain with state space {a,b,c} and transition probabilities
given by

P =

⎡

⎣
0.3 0.4 0.3
1.0 0.0 0.0
0.0 0.3 0.7

⎤

⎦ .

(a) What is Pr{X2 = a|X1 = b}?
(b) What is Pr{X2 = a|X1 = b,X0 = c}?
(c) What is Pr{X35 = a|X33 = a}?
(d) What is Pr{X200 = a|X0 = b}? (Use steady-state probability to answer this.)

5.11. Let X be a Markov chain with state space {a,b,c} and transition probabilities
given by

P =

⎡

⎣
0.3 0.7 0.0
0.0 0.6 0.4
0.4 0.1 0.5

⎤

⎦ .

Let the initial probabilities be given by the vector (0.1,0.3,0.6) with a profit func-
tion given by (10,20,30). (That means, for example each visit to state a yields a
profit of $10.) Find the following:
(a) Pr{X2 = b|X1 = c}.
(b) Pr{X3 = b|X1 = c}.
(c) Pr{X3 = b|X1 = c,X0 = c}.
(d) Pr{X2 = b}.
(e) Pr{X1 = b,X2 = c|X0 = c}.
(f) E[ f (X2)|X1 = c].
(g) limn→∞ Pr{Xn = a|X0 = a}.
(h) limn→∞ Pr{Xn = b|X10 = c}.
(i) limn→∞ E[ f (Xn)|X0 = c].

5.12. Let X be a Markov chain with state space {a,b,c,d} and transition probabili-
ties given by

P =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.5 0.0 0.0 0.5
0.0 1.0 0.0 0.0

⎤

⎥
⎥
⎦ .

Each time the chain is in state a, a profit of $20 is made; each visit to state b yields
a $5 profit; each visit to state c yields $15 profit; and each visit to state d costs $10.
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Find the following:
(a) E[ f (X5)|X3 = c,X4 = d].
(b) E[ f (X1)|X0 = b].
(c) E[ f (X1)2|X0 = b].
(d) V [ f (X1)|X0 = b].
(e) V [ f (X1)] with an initial probability vector of μμμ = (0.2,0.4,0.3,0.1).

5.13. Consider the following Markov matrix representing a Markov chain with state
space {a,b,c,d,e}.

P =

⎡

⎢
⎢
⎢
⎢
⎣

0.3 0.0 0.0 0.7 0.0
0.0 1.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.5 0.0
0.0 0.2 0.4 0.0 0.4

⎤

⎥
⎥
⎥
⎥
⎦

.

(a) Draw the state diagram.
(b) List the transient states.
(c) List the irreducible set(s).
(d) Let F(i, j) denote the first passage probabilities of reaching (or returning to)
State j given that X0 = i. Calculate the F matrix.
(e) Let R(i, j) denote the expected number of visits to State j given that X0 = i.
Calculate the R matrix.
(f) Calculate the limn→∞ Pn matrix.

5.14. Let X be a Markov chain with state space {a,b,c,d,e, f} and transition prob-
abilities given by

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.5 0.0 0.0 0.0 0.2
0.0 0.5 0.0 0.5 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.3 0.0 0.0 0.0 0.7
0.1 0.0 0.1 0.0 0.8 0.0
0.0 1.0 0.0 0.0 0.0 0.0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(a) Draw the state diagram.
(b) List the recurrent states.
(c) List the irreducible set(s).
(d) List the transient states.
(e) Calculate the F matrix.
(f) Calculate the R matrix.
(g) Calculate the limn→∞ Pn matrix.

5.15. Let X be a Markov chain with state space {a,b,c,d} and transition probabili-
ties given by



178 5 Markov Chains

P =

⎡

⎢
⎢
⎣

0.3 0.7 0.0 0.0
0.5 0.5 0.0 0.0
0.0 0.0 1.0 0.0
0.1 0.1 0.2 0.6

⎤

⎥
⎥
⎦ .

(a) Find limn→∞ Pr{Xn = a|X0 = a}.
(b) Find limn→∞ Pr{Xn = a|X0 = b}.
(c) Find limn→∞ Pr{Xn = a|X0 = c}.
(d) Find limn→∞ Pr{Xn = a|X0 = d}.

5.16. Consider a Markov chain with state space {a,b,c} and with the following
transition matrix:

P =

⎡

⎣
0.35 0.27 0.38
0.82 0.00 0.18
1.00 0.00 0.00

⎤

⎦ .

(a) Given that the Markov chain starts in State b, estimate through simulation the
expected number of steps until the first return to State b.
(b) The expected return time to a state should equal the reciprocal of the long-
run probability of being in that state. Estimate through simulation and analytically
the steady-state probability and compare it to your answer to Part (a). Explain any
differences.

5.17. Consider a Markov chain with state space {a,b,c} and with the following
transition matrix:

P =

⎡

⎣
0.3 0.5 0.2
0.1 0.2 0.7
0.8 0.0 0.2

⎤

⎦ .

Each visit to State a results in a profit of $5, each visit to State b results in a profit
of $10, and each visit to State c results in a profit of $12. Write a computer program
that will simulate the Markov chain so that an estimate of the expected profit per
step can be made. Assume that the chain always starts in State a. The simulation
should involve accumulating the profit from each step; then the estimate per simu-
lation run is the cumulative profit divided by the number of steps in the run.
(a) Let the estimate be based on 10 replications, where each replication has 25 steps.
The estimate is the average value over the 10 replicates. Record both the overall av-
erage and the range of the averages.
(b) Let the estimate be based on 10 replications, where each replication has 1000
steps. Compare the estimates and ranges for parts (a) and (b) and explain any differ-
ences.

References

1. Galton, F., and Watson, H.W. (1875). On the Probability of the Extinction of Families, J. An-
thropol. Soc. London, 4:138–144.



References 179

2. Miller, G.A. (1952). Finite Markov Processes in Psychology, Psychometrika 17:149–167.
3. Parzen, E. (1962). Stochastic Processes, Holden-Day, Inc., Oakland, CA.



Chapter 6
Markov Processes

The key Markov property introduced with Markov chains is that the future is inde-
pendent of the past given the present. A Markov process is simply the continuous
analog to a chain, namely, the Markov property is maintained and time is measured
continuously. For example, suppose we are keeping track of patients within a large
hospital, and the state of our process is the specific department housing the patient.
If we record the patient’s location every day, the resulting process will be a Markov
chain assuming that the Markov property holds. If, however, we record the patient’s
location continuously throughout the day, then the resulting process will be called
a Markov process. Thus, instead of transitions only occurring at times 1, 2, 3, etc.,
transitions may occur at times 2.54 or 7.0193.

Our major reason for covering Markov processes is that they play a key role in
queueing theory, and queueing theory has applications in many areas. (In particular,
any system in which there may be a build up of waiting lines is a candidate for a
queueing model.) Therefore, in this chapter, we give a cursory treatment of Markov
processes in preparation for the next chapter dealing with queues.

6.1 Basic Definitions

The definition for Markov processes is similar to that for Markov chains except that
the Markov property must be shown to hold for all future times.

Definition 6.1. The process Y = {Yt ; t ≥ 0} with finite state space E is a Markov
process if the following holds for all j ∈ E and t,s ≥ 0

Pr{Yt+s = j|Yu;u ≤ t} = Pr{Yt+s = j|Yt} .

Furthermore, the Markov process is said to be stationary if

Pr{Yt+s = j|Yt = i} = Pr{Ys = j|Y0 = i} .
��
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182 6 Markov Processes

These equations are completely analogous to those in Definition (5.1) except that
for a Markov chain it is sufficient to show that the Markov property holds just for the
next step; whereas, for Markov processes, we must show that the Markov property
holds for all future times. To understand this definition, think of the present time as
being time t. The left-hand side of the first equation in Definition (6.1) indicates that
a prediction of the future s time units from now is desired given all the past history
up to and including the current time t. The right-hand side of the equation indicates
that the prediction is the same if the only information available is the state of the
system at the present time. (Note that the implications of this definition is that it is
a waste of resources to keep historical records of a process if it is Markovian.) The
second equation of the definition is the time homogenous condition which indicates
that the probability law governing the process does not change during the life of the
process.

Example 6.1. A salesman lives in town ‘a’ and is responsible for towns ‘a’, ‘b’, and
‘c’. The amount of time he spends in each town is random. After some study it
has been determined that the amount of consecutive time spent in any one town
follows an exponentially distributed random variable (see Eq. 1.14) with the mean
time depending on the town. In his hometown, a mean time of two weeks is spent,
in town ‘b’ a mean time of one week is spent, and in town ‘c’ a mean time of one
and a half weeks is spent. When he leaves town ‘a’, he flips a coin to determine to
which town he goes next; when he leaves either town ‘b’ or ‘c’, he flips two coins
so that there is a 75% chance of returning to ‘a’ and a 25% chance of going to the
other town. Let Yt be a random variable denoting the town that the salesman is in at
time t. The process Y = {Yt ; t ≥ 0} is a Markov process due to the lack of memory
inherent in the exponential distribution (see Exercise 1.23). ��

The construction of the Markov process in Example 6.1 is instructive in that it
contains the major characterizations for any finite state Markov process. A Markov
process remains in each state for an exponential length of time and then when it
jumps, it jumps according to a Markov chain (see Fig. 6.1). To describe this char-
acterization mathematically, we introduce some additional notation that should be
familiar due to its similarity to the previous chapter. We first let T0 = 0 and X0 = Y0.
Then, we denote the successive jump times of the process by T1,T2, · · · and de-
note the state of the process immediately after the jumps as X1,X2, · · · . To be more
explicit, for n = 1,2, · · · ,

Tn+1 = min{t > Tn : Yt �= YTn} ,and

Xn = YTn .

The time between jumps (namely, Tn+1 − Tn) is called the sojourn time. The
Markov property implies that the only information needed for predicting the sojourn
time is the current state. Or, to say it mathematically,

Pr{Tn+1 −Tn ≤ t|X0, · · · ,Xn,T0, · · · ,Tn} = Pr{Tn+1 −Tn ≤ t|Xn}.
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T0 T1 T2 T3 T4 t

Yt
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�X4

state
space

time

Fig. 6.1 Typical realization for a Markov process

The Markov property also implies that if we focus our attention only on the process
X0,X1, · · · then we would see a Markov chain. This Markov chain is called the
imbedded Markov chain.

Definition 6.2. Let Y = {Yt ; t ≥ 0} be a Markov process with finite state space E
and with jump times denoted by T0,T1, · · · and the imbedded process at the jump
times denoted by X0,X1, · · · . Then there is a collection of scalars, λ (i) for i ∈ E,
called the mean sojourn rates, and a Markov matrix, P, called the imbedded Markov
matrix, that satisfy the following:

Pr{Tn+1 −Tn ≤ t|Xn = i} = 1− e−λ (i)t ,

Pr{Xn+1 = j|Xn = i} = P(i, j),

where each λ (i) is nonnegative and the diagonal elements of P are zero. ��
Example 6.2. Consider again Example 6.1. The imbedded Markov chain described
by the above definition is

P =
a
b
c

⎡

⎣
0 0.50 0.50

0.75 0 0.25
0.75 0.25 0

⎤

⎦ ,

and the mean sojourn rates are λ (a) = 1/2,λ (b) = 1,and λ (c) = 2/3. (It should be
noted that mean rates are always the reciprocal of mean times.) ��

To avoid pathological cases, we shall adopt the policy in this chapter that the
mean time spent in each state be finite and nonzero. The notions of state classifica-
tion can now be carried over from the previous chapter.

Definition 6.3. Let Y = {Yt ; t ≥ 0} be a Markov process with finite state space E
such that 0 < λ (i) < ∞ for all i∈E. A state is called recurrent or transient according
as it is recurrent or transient in the imbedded Markov chain of the process. A set of
states is irreducible for the process if it is irreducible for the imbedded chain. ��
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6.2 Steady-State Properties

There is a close relationship between the steady-state probabilities for the Markov
process and the steady-state probabilities of the imbedded chain. Specifically, the
Markov process probabilities are obtained by the weighted average of the imbedded
Markov chain probabilities according to each state’s sojourn times. To show the
relationship mathematically, consider Y = {Yt ; t ≥ 0} to be a Markov process with
an irreducible, recurrent state space. Let X = {Xn;n = 0,1, · · · } be the imbedded
Markov chain with π its steady-state probabilities; namely,

π( j) = lim
n→∞

Pr{Xn = j|X0 = i} .

(In other words, πππP = πππ , where P is the Markov matrix of the imbedded chain.) The
steady-state probabilities for the Markov process are denoted by the vector p where

p( j) = lim
t→∞

Pr{Yt = j|Y0 = i} . (6.1)

Note that the limiting values are independent of the initial state since the state space
is assumed irreducible, recurrent. The relationship between the vectors π and p is
given by

p( j) =
π( j)/λ ( j)

∑k∈E π(k)/λ (k)
(6.2)

where E is the state space and λ ( j) is the mean sojourn rate for State j.
The use of Eq. (6.2) is easily illustrated with Example 6.2 since the steady-

state probabilities π where calculated in Chap. 5. Using these previous results
(p. 159), we have that the imbedded chain has steady-state probabilities given by
π = (3/7,2/7,2/7). Combining these with the mean sojourn rates in Example 6.2
and with Eq. (6.2) yields

p(a) =
6

11
, p(b) =

2
11

,and p(c) =
3

11
.

The salesman of the example thus spends 54.55% of his time in town ‘a’, 18.18%
of his time in town ‘b’, and 27.27% of his time in town ‘c’.

The information contained in the imbedded Markov matrix and the mean sojourn
rates can be combined into one matrix which is called the generator matrix of the
Markov process.

Definition 6.4. Let Y = {Yt ; t ≥ 0} be a Markov process with an imbedded Markov
matrix P and a mean sojourn rate of λ (i) for each state i in the state space. The
generator matrix, G, for the Markov process is given by

G(i, j) =

{
−λ (i) for i = j,

λ (i)P(i, j) for i �= j.

��
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Fig. 6.2 State diagram for
the Markov process of Exam-
ple 6.3
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Generator matrices are extremely important in the application of Markov pro-
cesses. A generator matrix for a Markov process has two properties: (1) each row
sum is zero and (2) the off-diagonal elements are nonnegative. These properties can
be seen from Definition (6.4) by remembering that the imbedded Markov matrix is
nonnegative with row sums of one and has zeroes on the diagonals. The physical
interpretation of G is that G(i, j) is the rate at which the process goes from State i
to State j.

Example 6.3. We again return to our initial example to illustrate the generator ma-
trix. Using the imbedded Markov chain and sojourn times given in Example 6.2, the
generator matrix for that Markov process is

G =

a

b

c

⎡

⎢
⎢
⎣

− 1
2

1
4

1
4

3
4 −1 1

4

1
2

1
6 − 2

3

⎤

⎥
⎥
⎦ .

Thus, Definition 6.4 indicates that if the transition matrix for the imbedded Markov
chain and the mean sojourn rates are known, the generator matrix can be computed.
State diagrams for Markov process are very similar to diagrams for Markov chains,
except that the arrows representing transition probabilities represent transition rates
(see Fig. 6.2). ��

It should also be clear that not only can the transition rate matrix be obtained
from the imbedded Markov matrix and mean sojourn rates, but also the reverse is
true. From the generator matrix, the absolute value of the diagonal elements give the
mean sojourn rates. The transition matrix for the imbedded chain is then obtained
by dividing the off-diagonals element by the absolute value of that row’s diagonal
element. The diagonal elements of the transition matrix for the imbedded Markov
chain are zero. For example, suppose a Markov process with state space {a,b,c}
has a generator matrix given by

G =

a

b

c

⎡

⎢
⎢
⎣

−2 2 0

2 −4 2

1 4 −5

⎤

⎥
⎥
⎦ .
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The mean sojourn rates are thus λa = 2, λb = 4, and λc = 5, and the transition matrix
for the imbedded Markov chain is given by

P =

a

b

c

⎡

⎢
⎢
⎣

0 1 0

0.5 0 0.5

0.2 0.8 0

⎤

⎥
⎥
⎦ .

• Suggestion: Do Problems 6.1–6.2a.

It is customary when describing a Markov process to obtain the generator matrix
directly and never specifically look at the imbedded Markov matrix. The usual tech-
nique is to obtain the off-diagonal elements first and then let the diagonal element
equal the negative of the sum of the off-diagonal elements on the row. The generator
is used to obtain the steady-state probabilities directly as follows.

Property 6.1. Let Y = {Yt ; t ≥ 0} be a Markov process with an irreducible,
recurrent state space E and with generator matrix G. Furthermore, let p be a
vector of steady-state probabilities defined by Eq. (6.1). Then p is the solution
to

pG = 0

∑
j∈E

p( j) = 1 .

Obviously, this equation is very similar to the analogous equation in Property
(5.9). The difference is in the right-hand side of the first equation. The easy way to
remember which equation to use is that the multiplier for the right-hand side is the
same as the row sums. Since Markov matrices have row sums of one, the right-hand
side is one times π; since the generator matrix has row sums of zero, the right-hand
side is zero times p.

Example 6.4. A small garage operates a tractor repair service in a busy farming
community. Because the garage is small, only two tractors can be kept there at any
one time and the owner is the only repairman. If one tractor is being repaired and one
is waiting, then any further customers who request service are turned away. The time
between the arrival of customers is an exponential random variable and an average
of four customers arrive each day. Repair time varies considerably and it also is
an exponential random variable. Based on previous records, the owner repairs an
average of five tractors per day if kept busy. The arrival and repair of tractors can be
described as a Markov process with state space {0, 1, 2} where a state represents the
number of tractors in the garage. Instead of determining the Markov matrix for the
imbedded chain, the generator matrix can be calculated directly. As in Markov chain
problems, drawing a state diagram is helpful. State diagrams for Markov processes
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Fig. 6.3 State diagram for
the Markov process of Exam-
ple 6.4 �0 �1 �2

� �
� �

4/day 4/day

5/day 5/day

show transition rates instead of transition probabilities. Fig. (6.3) shows the diagram
with the transition rates. The rate of going from State 0 to State 1 and from State
1 to State 2 is four per day since that is the arrival rate of customers to the system.
The rate of going from State 2 to State 1 and from State 1 to State 0 is five per day
because that is the repair rate. Transition rates are only to adjacent states because
both repairs and arrivals only occur one at a time. From the diagram, the generator
is obtained as

G =
1
2
3

⎡

⎣
−4 4 0

5 −9 4
0 5 −5

⎤

⎦ .

The steady-state probabilities are thus obtained by solving

−4p0 + 5p1 = 0
4p0 − 9p1 + 5p2 = 0

4p1 − 5p2 = 0
p0 + p1 + p2 = 1 ,

which yields (after deleting one of the first three equations) p0 = 25/61, p1 = 20/61,
and p2 = 16/61. As with Markov chains, there will always be one redundant equa-
tion. The steady-state equations can be interpreted to indicate that the owner is idle
41% of the time and 26% of the time the shop is full. ��

An assumption was made in the above example regarding exponential random
variables. The length of time that the process is in State 1 is a function of two expo-
nentially distributed random variables. In effect, the sojourn time in State 1 depends
on a “race” between the next arrival and the completion of the repair. The assump-
tion is that the minimum of two exponential random variables is also exponentially
distributed. Actually, that is not too difficult to prove, so we leave it as an exercise.

Example 6.5. Poisson Process. We are interested in counting the number of vehi-
cles that go through a toll booth where the arriving vehicles form a Poisson process
(Chap. 4) with a mean rate of 120 cars per hour. Since a Poisson process has expo-
nential inter-arrival times, a Poisson process is also a Markov process with a state
space equal to the nonnegative integers (review Fig. 4.1). The generator matrix is
infinite dimensioned given by

G =

0
1
2
...

⎡

⎢
⎢
⎢
⎣

−120 120 0 0 · · ·
0 −120 120 0 · · ·
0 0 −120 120 · · ·
...

. . .

⎤

⎥
⎥
⎥
⎦

.
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We are primarily interested in the cumulative amount of tolls collected. The toll
is a function of the type of vehicle going through the toll booth. Fifty percent of
the vehicles pay 25 cents, one third of the vehicles pay 75 cents, and one sixth of
the vehicles pay $1. If we let the state space be the cumulative number of quarters
collected, the process of interest is a compound Poisson process (Sect. 4.3.1) which
is also a Markov process. The generator for the cumulative number of quarters col-
lected becomes

G =

0
1
2
...

⎡

⎢
⎢
⎢
⎣

−120 60 0 40 20 0 0 · · ·
0 −120 60 0 40 20 0 · · ·
0 0 −120 60 0 40 20 · · ·
...

. . .

⎤

⎥
⎥
⎥
⎦

.

��
• Suggestion: Do Problems 6.2b, 6.3, 6.6, 6.7, 6.9, and 6.14.

6.3 Revenues and Costs

Markov processes often represent revenue producing situations and so the steady-
state probabilities are used to determine long-run average return. Suppose that
whenever the Markov process is in State i, a profit is produced at a rate of f (i).
Thus, f is a vector of profit rates. The long run profit per unit time is then simply the
(vector) product of the steady-state probabilities times f.

Property 6.2. Let Y = {Yt ; t ≥ 0} be a Markov process with an irreducible,
recurrent state space E and a profit rate vector denoted by f (i.e., f (i) is the
rate that profit is accumulated whenever the process is in State i). Further-
more, let p denote the steady-state probabilities as defined by Eq. (6.1). Then,
the long run profit per unit time is given by

lim
t→∞

1
t

E

[∫ t

0
f (Ys)ds

]

= ∑
j∈E

p( j) f ( j)

independent of the initial state.

• Suggestion: Do Problems 6.2c–6.4a.

The left-hand side of the above equation is simply the mathematical way of writ-
ing the long-run average accumulated profit. It is sometimes important to include
revenue produced at transition times so that the total profit is the sum of the accu-
mulation of profit resulting from the sojourn times and the jumps. In other words,
we would not only have the profit rate vector f but also a matrix that indicates a
profit obtained at each jump.
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Property 6.3. Let Y = {Yt ; t ≥ 0} be a Markov process with an irreducible,
recurrent state space E, a profit rate vector denoted by f, and a matrix of
jump profits denoted by h (i.e., h(i, j) is the profit obtained whenever the pro-
cess jumps from State i to State j). Furthermore, let p denote the steady-state
probabilities as defined by Eq. (6.1). Then, the long run profit per unit time is
given by

lim
t→∞

1
t

E

[
∫ t

0
f (Ys)ds+ ∑

s≤t
h(Ys−,Ys)

]

=

∑
i∈E

p(i)

[

f (i)+ ∑
k∈E

G(i,k)h(i,k)

]

where h(i, i) = 0 and G is the generator matrix of the process.

The summation on the left-hand side of the above equation may appear different
from what you may be used to seeing. The notation Ys− indicates the left-hand limit
of the process; that is, Ys− = limt→s− Yt where t approaches s from the left, i.e.,
t < s. Since Markov processes are always right-continuous, the only times for which
Ys− �= Ys is when s is a jump time. (When we say that the Markov process is right-
continuous, we mean that Ys = limt→s+ Yt where the limit is such that t approaches
s from the right, i.e., t > s.) Because the diagonal elements of h are zero, the only
times that the summation includes nonzero terms are at jump times.

Example 6.6. Returning to Example 6.1 for illustration, assume that the revenue
possible from each town varies. Whenever the salesman is working town ‘a’, his
profit comes in at a rate of $80 per day. In town ‘b’, his profit is $100 per day. In
town ‘c’, his profit is $125 per day. There is also a cost associated with changing
towns. This cost is estimated at 25 cents per mile and it is 50 miles from a to b, 65
miles from a to c, and 80 miles from b to c. The functions (using five day weeks)
are

f = (400,500,625)T

h =

⎡

⎣
0 −12.50 −16.25

−12.50 0 −20.00
−16.25 −20.00 0

⎤

⎦ .

Therefore, using

G =

⎡

⎢
⎢
⎣

− 1
2

1
4

1
4

3
4 −1 1

4

1
2

1
6 − 2

3

⎤

⎥
⎥
⎦

and

p(a) =
6

11
, p(b) =

2
11

, p(c) =
3

11
,
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the long-run weekly average profit is

6
11

× (400−7.19)+
2

11
× (500−14.38)+

3
11

× (625−11.46) = 469.88 .

��

• Suggestion: Do Problems 6.5–6.8.

It is sometimes important to consider the time-value of the profit (or cost). In
the discrete case, a discount factor of α was used. We often think in terms of a
rate-of-return or an interest rate. If i were the rate of return, then the discount factor
used for Markov chains is related to i according to the formula α = 1/(1+ i); thus,
the present value of one dollar obtained one period from the present is equal to α .
For a continuous-time problem, we let β denote the discount rate, which in this
case would be the same as the (nominal) rate-of-return except that we assume that
compounding occurs continuously. Thus, the present value of one dollar obtained
one period from the present equals e−β . When the time-value of money is important,
it is difficult to include the jump time profits but the function f is easily utilized
according to the following property.

Property 6.4. Let Y = {Yt ; t ≥ 0} be a Markov process with a generator ma-
trix G, a profit rate vector f, and a discount factor of β . Then, the present
value of the total discounted profit (over an infinite planning horizon) is given
by

E

[∫ ∞

0
e−β s f (Ys)ds|Y0 = i

]

= ((β I−G)−1f)(i) .

Example 6.7. Assume that the salesman of Example 6.1 wants to determine the
present value of the total revenue using a discount rate of 5%, where the revenue
rate function is given by f = (400,500,625)T . The present value of all future rev-
enue is thus given by

⎡

⎢
⎢
⎣

11
20 − 1

4 − 1
4

− 3
4

21
20 − 1

4

− 1
2 − 1

6
43
60

⎤

⎥
⎥
⎦

−1
⎡

⎣
400
500
625

⎤

⎦=

⎡

⎢
⎢
⎣

11.31 3.51 5.17

10.54 4.28 5.17

10.34 3.45 6.21

⎤

⎥
⎥
⎦

⎡

⎣
400
500
625

⎤

⎦=

⎡

⎣
9515
9592
9741

⎤

⎦ .

Note that the total discounted revenue depends on the initial state. Thus, if at time
0 the salesman is in city a, then the present value of his total revenue is $9515;
whereas, if he started in city c, the present value of his total revenue would be
$9741. ��

• Suggestion: Do Problem 6.4b,c.



6.4 Time-Dependent Probabilities 191

6.4 Time-Dependent Probabilities

A thorough treatment of the time-dependent probabilities for Markov processes is
beyond the scope of this book; however, we do present a brief summary in this
section for those students who may want to continue studying random processes and
would like to know something of what the future might hold. For other students, this
section may be skipped with no loss in continuity.

As before, the Markov process will be represented by {Yt ; t ≥ 0} with finite
state space E and generator matrix G. The basic relationship that probabilities for
a Markov process must satisfy are analogous to the relationship that the transition
probabilities of a Markov chain satisfy. As you recall from Sect. 5.2, the following
holds for Markov chains:

P{Xn+m = j|X0 = i}
= ∑

k∈E

Pr{Xn = k|X0 = i}×Pr{Xn+m = j|Xn = k}

= ∑
k∈E

Pr{Xn = k|X0 = i}×Pr{Xm = j|X0 = k} .

The second equality is a result of the stationary property for Markov chains and
is called the Chapman-Kolmogorov equation for Markov chains. The Chapman-
Kolmogorov equation for Markov processes can be expressed similarly as

P{Yt+s = j|Y0 = i}
= ∑

k∈E

Pr{Yt = k|Y0 = i}×Pr{Yt+s = j|Yt = k}

= ∑
k∈E

Pr{Yt = k|Y0 = i}×Pr{Ys = j|Y0 = k} ,

for t,s≥ 0 and i, j ∈E. In other words, the Chapman-Kolmogorov property indicates
that the probability of going from State i to State j in t + s time units is the sum of
the product of probabilities of going from State i to an arbitrary State k in t time
units and going from State k to State j in s time units (see Fig. 6.4).

Before giving a closed-form expression for the time-dependent probabilities, it is
necessary to first discuss the exponentiation of a matrix. Recall that for scalars, the
following power series holds for all values of a

ea =
∞

∑
n=0

an

n!
.

This same relationship holds for matrices and becomes the definition of the expo-
nentiation of a matrix; namely,

eA =
∞

∑
n=0

An

n!
. (6.3)
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Fig. 6.4 Graphical representation for the Chapman-Kolmogorov equations for a three-state
Markov process

Note that eA(i, j) refers to the i − j element of the matrix eA; thus, in general,
eA(i, j) �= eA(i, j).

Using the above definition and the Chapman-Kolmogorov equation, it is possible
to derive the following property:

Property 6.5. Let Y = {Yt ; t ≥ 0} be a Markov process with state space E
and generator matrix G, then for i, j ∈ E and t ≥ 0

P{Yt = j|Y0 = i} = eG t(i, j) ,

where G t is the matrix formed by multiplying each element of the generator
matrix by the scalar t.

Example 6.8. We are interested in an electronic device that is either “on-standby”
or “in-use”. The on-standby periods are exponentially distributed with a mean of
20 seconds, and the in-use periods are exponentially distributed with a mean of 12
seconds. Since the exponential assumption is satisfied, a Markov process {Yt ; t ≥ 0}
with state space E = {0,1} can be used to model the electronic device as it alternates
between on-standby and in-use. State 0 denotes on-standby, and State 1 denotes in-
use. The generator matrix is given by

G =
0
1

[
−3 3

5 −5

]

,

where the time unit is minutes. Using Property 6.1, it is easy to show that the
long-run probability of being in use is 3/8. However, we are interested in the time-
dependent probabilities. If the generator can be written in diagonal form, then it is
not difficult to apply Property 6.5. In other words, if it is possible to find a matrix Q
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0.0

1.0

0.375

Time

Pr{ Yt = 1 | Y0 = 1}

Fig. 6.5 Time-dependent probabilities for Example 6.8

such that
G = QDQ−1

where D is a diagonal matrix, then the following holds

eG t = QeDt Q−1 .

Furthermore, eD t is a diagonal matrix whenever D is diagonal, in which case
eD t(i, i) = et D(i,i). For the above generator we have

[
−3 3

5 −5

]

=
[

1 3
1 −5

]

·
[

0 0
0 −8

]

·
[

0.625 0.375
0.125 −0.125

]

;

therefore,

eGt =
[

1 3
1 −5

]

·
[

1 0
0 e−8t

]

·
[

0.625 0.375
0.125 −0.125

]

=
[

0.625+0.375e−8t 0.375−0.375e−8t

0.625−0.625e−8t 0.375+0.625e−8t

]

.

The probability that the electronic device is in use at time t given that it started in
use at time 0 is thus given by

Pr{Yt = 1|Y0 = 1} = 0.375+0.625e−8t .

(See Fig. 6.5 for a graphical representation of the time-dependent probabilities.)
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We would like to know the expected amount of time that the electronic device
is in use during its first one minute of operation given that it was in use at time 0.
Mathematically, the quantity to be calculated is given by

E[
∫ 1

0
Ys ds|Y0 = 1 ] =

∫ 1

0
P{Ys = 1|Y0 = 1}ds .

Because Ys is 1 if the device is in use at time s and zero otherwise, the left-hand-
side of the above expression is the expected length of time that the process is in
use during its first minute of operation. The equality holds because the expected
value of a Bernoulli random variable equals the probability that the random variable
equals 1. (We ignore the technical details involved in interchanging the expectation
operator and the integral.) Combining the above two equations, we have

E[
∫ 1

0
Ysds|Y0 = 1 ] =

∫ 1

0
Pr{Ys = 1|Y0 = 1}ds

=
∫ 1

0
0.375+0.625e−8sds

= 0.375+
0.625

8
(1− e−8) = 0.453minutes .

It is often useful to determine the total cost (or profit) of an operation modeled
by a Markov process. In order to express the expected cost over a time interval, let
C(0,t) be a random variable denoting the total cost incurred by the Markov process
over the interval (0, t). Then, for i ∈ E,

E[C(0,t)|Y0 = i] = ∑
k∈E

f (k)
∫ t

0
Pr{Ys = k|Y0 = i}ds ,

where f (k) is the cost rate incurred by the process while in State k.
For example, suppose that the electronic device costs the company 5 cents every

minute it is on standby and it costs 35 cents every minute the device is in use. We are
interested in estimating the total cost of operation for the first 2 minutes of utilizing
the device given that the device was on standby when the process started; thus

E[C(0,2)|Y0 = 0] = 0.05
∫ 2

0
Pr{Ys = 0|Y0 = 0}ds

+0.35
∫ 2

0
Pr{Ys = 1|Y0 = 0}ds

= 0.05× (0.625×2+
0.375

8
(1− e−8×2))

+0.35× (0.375×2− 0.375
8

(1− e−8×2)) = 0.798 .

��

• Suggestion: Do Problems 6.10–6.13.



Appendix 195

Appendix

We re-visit the previous example to demonstrate an Excel simulation of a Markov
process. Because the process of the example only has two states, the simulation is
easier than for a process with a larger state space, which we leave to the reader as
homework problem 6.14.

Example 6.9. Consider the Markov process of Example 6.8. We prepare the spread-
sheet by writing down the generator matrix and give the steady-state probabilities
as follows:

A B C
1 State G matrix
2 standby -3 3
3 in-use 5 -5
4
5 Steady-state
6 =C3/(B2+C3) =B2/(B2+C3)

(Verify for yourself that the formulas used in Cells B6:C6 satisfy Property 6.1.) To
setup the simulation, type the following:

A B C D
Current Random Interarrive

8 Time State Number Time
9 0 in-use =RAND() =LN(C9)/$C$3

For Cell A10, type =A9+D9; for Cell B10, type

=IF(B9="standby","in-use","standby")

for Cell C10, type =RAND(); and for Cell D10, type

=IF(B10="standby",LN(C10)/$B$2,LN(C10)/$C$3)

where a formula like =LN(C9)/$C$3 yields an exponential random variate, see
Table 2.13. Now copy Cells A10:D10 down through row 30000 to complete the
simulation.

An estimate of the steady-state probability of the system being in the “in-use”
state is obtained by dividing the total time the process spends in that state by the
total time that the process operates. Thus, in Cell F8, type Estimatation and in
Cell F9 type

=SUMIF(B:B,"in-use",D:D)/MAX(A:A).

Notice that the SUMIF function can use different columns for the search criterion
and for the summation values. Since Column A contains increasing values, the max-
imum value in the column will be the total time for the simulation. By using only the
column designation in the SUMIF and MAX functions, the estimate does not depend
on knowing ahead of time how many rows are being copied down; however, the
final inter-arrive time should be deleted since it is not reflected in the total time. ��
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Because the process of Example 6.9 had only two states, the state transition were
relatively simple. If there were more states, then a second column of random num-
bers would be required, and a more complicated IF statement would be needed as
used at the end of Example 5.16. As a general rule, two random numbers are needed
for each time step of a Markov process: one random number to determine the size
of the time step and another random number for the state transition.

Problems

6.1. The following matrix is a generator for a Markov process. Complete its entries.

G =

⎡

⎢
⎢
⎣

3 0 7
5 −12 4
1 −6 5
3 2 9

⎤

⎥
⎥
⎦

6.2. Let Y be a Markov process with state space {a,b,c,d} and an imbedded Markov
chain having a Markov matrix given by

P =

⎡

⎢
⎢
⎣

0.0 0.1 0.2 0.7
0.0 0.0 0.4 0.6
0.8 0.1 0.0 0.1
1.0 0.0 0.0 0.0

⎤

⎥
⎥
⎦ .

The mean sojourn times in states a,b,c, and d are 2, 5, 0.5, and 1, respectively.
(a) Give the generator matrix for this Markov process.
(b) What is limt→∞ Pr{Yt = a} ?
(c) Let r = (10,25,30,50)T be a reward vector and determine limt→∞ E[

∫ t
0 r(Ys)ds]/t.

6.3. Let T and S be exponentially distributed random variables with means 1/a and
1/b, respectively. Define the random variable U = min{T , S}. Justify the relation-
ship P{U > u} = P{T > u}×P{S > u} and derive the CDF for U .

6.4. A revenue producing system can be in one of four states: high income, medium
income, low income, costs. The movement of the system among the states is ac-
cording to a Markov process, Y , with state space E = {h,m, l,c} and with generator
matrix given by

G =

h
m
l
c

⎡

⎢
⎢
⎣

−0.2 0.1 0.1 0.0
0.0 −0.4 0.3 0.1
0.0 0.0 −0.5 0.5
1.5 0.0 0.0 −1.5

⎤

⎥
⎥
⎦ .

While the system is in state h,m, l, or c it produces a profit at a rate of $500, $250,
$100, or –$600 per time unit. The company would like to reduce the time spent in
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the fourth state and has determined that by doubling the cost (i.e., from $600 to
$1,200) incurred while in that state the mean time spent in the state can be cut in
half. Is the additional expense worthwhile?
(a) Use the long-run average profit for the criterion.
(b) Use a total discounted-cost criterion assuming a discount rate of 10%.
(c) Use a total discounted-cost criterion assuming the company uses a 25% annual
rate-of-return, and the time step for this problem is assumed to be in weeks.

6.5. Let Y be a Markov process with state space {a,b,c,d} and generator matrix
given by

G =

⎡

⎢
⎢
⎣

−5 4 0 1
6 −10 4 0
0 0 −1 1
2 0 0 −2

⎤

⎥
⎥
⎦ .

Costs are incurred at a rate of $100, $300, $500, and $1,000 per time unit while
the process is in states a,b,c, and d, respectively. Furthermore, each time a jump
is made from state d to state a an additional cost of $5,000 is incurred. (All other
jumps do not incur additional costs.) For a maintenance cost of $400 per time unit,
all cost rates can be cut in half and the “jump” cost can be eliminated. Based on
long-run averages, is the maintenance cost worthwhile?

6.6. A small gas station has one pump and room for a total of three cars (one at the
pump and two waiting). The time between car arrivals to the station is an exponential
random variable with the average arrival rate of 10 cars per hour. The time each car
spends in front of the pump is an exponential random variable with a mean of five
minutes (i.e., a mean rate of 12 per hour). If there are three cars in the station and
another car arrives, the newly arrived car keeps going and never enters the station.
(a) Model the gas station as a Markov process, Y , where Yt denotes the number of
cars in the station at time t. Give its generator matrix.
(b) What is the long-run probability that the station is empty?
(c) What is the long-run expected number of cars in the station?

6.7. A small convenience store has a room for only 5 people inside. Cars arrive to
the store randomly, with the inter-arrival times between cars being an exponential
random variable with a mean of 10 cars arriving each hour. The number of people
within each car is a random variable, N, where P{N = 1} = 0.1, P{N = 2} = 0.7,
and P{N = 3} = 0.2. People from the cars come into the store and stay in the store
an exponential length of time. The mean length of stay in the store is 10 minutes and
each person acts independent of all other people, leaving the store singly and waiting
in their cars for the others. If a car arrives and the store is too full for everyone in the
car to enter the store, the car will leave and nobody from that car will enter the store.
Model the store as a Markov process, Y , where Yt denotes the number of individuals
in the store at time t. Give its generator matrix.

6.8. A certain piece of electronic equipment has two components. The time until
failure for component A is described by an exponential distribution function with
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a mean time of 100 hours. Component B has a mean life until failure of 200 hours
and is also described by an exponential distribution. When one component fails, the
equipment is turned off and maintenance is performed. The time to fix the compo-
nent is exponentially distributed with a mean time of 5 hours if it was A that failed
and 4 hours if it was B that failed. Let Y be a Markov process with state space
E = {w,a,b}, where State w denotes that the equipment is working, a denotes that
component A has failed, and b denotes that component B has failed.
(a) Give the generator for Y .
(b) What is the long-run probability that the equipment is working?
(c) An outside contractor does the repair work on the components when a failure oc-
curs and charges $100 per hour for time plus travel expenses, which is an additional
$500 for each visit. The company has determined that they can hire and train their
own repair person. If they have their own employee for the repair work, it will cost
the company $40 per hour while the machine is running as well as when it is down.
Ignoring the initial training cost and the possibility that an employee who is hired
for repair work can do other things while the machine is running, is it economically
worthwhile to hire and train their own person?

6.9. An electronic component works as follows: Electric impulses arrive to the com-
ponent with exponentially distributed inter-arrival times such that the mean arrival
rate of impulses is 90 per hour. An impulse is “stored” until the third impulse ar-
rives, then the component “fires” and enters a “recovery” phase. If an impulse arrives
while the component is in the recovery phase, it is ignored. The length of time that
the component remains in the recovery phase is an exponential random variable with
a mean time of one minute. After the recovery phase is over, the cycle is repeated;
that is, the third arriving impulse will instantaneously fire the component.
(a) Give the generator matrix for a Markov process model of the dynamics of this
electronic component.
(b) What is the long-run probability that the component is in the recovery phase?
(c) How many times would you expect the component to fire each hour?

6.10. Consider the electronic device that is either in the “on standby” or “in use”
state as described in Example 6.8. Find the following quantities.
(a) The expected cost incurred during the time interval between the third and fourth
minutes, given that at time zero the device was “in use”.
(b) The expected cost incurred during the time interval between the third and fourth
minutes, given that at time zero the device was “in use” with probability 0.8 and “on
standby” with probability 0.2.

6.11. Consider a Markov process with state space E = {a,b} and with initial con-
ditions given by the vector μμμ . Let the mean rates for states a and b be denoted
by λa and λb, and let Λ = λa + λb. Develop an expression for the time dependent
probability of being in state a. Hints: The generator matrix is always diagonalizable
using

D =
[

0 0
0 −Λ

]

,
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and the inverse of a 2×2 matrix is given by

[
a b
c d

]−1

=
1

ad −bc

[
d −b
−c a

]

.

6.12. Let μ be a vector of initial probabilities for a Markov process Y , and let f de-
note a cost rate vector associated with Y . Write a general expression for the expected
cost per unit time incurred by the Markov process during the time interval (t, t + s).

6.13. Let f denote a profit rate vector associated with a Markov process Y , and let
β denote a discount rate. Write a general expression for the total profit returned by
the process during the interval (t, t + s) given that the process was in state i at time
0. (See Property 4.8).

6.14. Simulate the Markov process defined by the following generator matrix:

G =
a
b
c

⎡

⎣
−1.0 0.3 0.7
0.1 −0.2 0.1
0.3 0.2 −0.5

⎤

⎦ .

(a) Estimate the steady-state probabilities.
(b) Estimate the probability that the process will be in State b at time 10 given that
the process started in State a.



Chapter 7
Queueing Processes

Many phenomena for which mathematical descriptions are desired involve waiting
lines either of people or material. A queue is a waiting line, and queueing processes
are those stochastic processes arising from waiting line phenomena. For example,
the modeling of the arrival process of grain trucks to an elevator, the utilization of
data processing services at a computer center, and the flow of jobs at a job shop
facility all involve waiting lines. Although queues are ubiquitous, they are usually
ignored when deterministic models are developed to describe systems. Furthermore,
the random fluctuations inherent in queueing processes often cause systems to act
in a counter intuitive fashion. Therefore, the study of queues is extremely important
for the development of system models and an understanding of system behavior.

In this chapter we present modeling techniques employed for queueing systems
governed by the exponential process. The final section of the chapter deals with
some approximation techniques useful for implementing these models within com-
plex systems when the exponential assumptions are not satisfied. The next chapter
deals with processes that arise when several queueing system operate within one
system; that is, Chap. 8 deals with queueing networks. The final chapter (Chap. 13)
in the textbook presents some advanced analytical techniques useful for modeling
non-exponential queueing systems.

7.1 Basic Definitions and Notation

A queueing process involves the arrival of customers to a service facility and the
servicing of those customers. All customers that have arrived but are not yet being
served are said to be in the queue. The queueing system includes all customers in
the queue and all customers in service (see Fig. 7.1).

Several useful conventions have evolved over the last 20-40 years that help in
specifying the assumptions used in a particular analysis. D.G. Kendall [3] is usually
given credit for initiating the basic notation of today, and it was standardized in 1971
(Queueing Standardization Conference Report, May 11, 1971). Kendall’s notation is

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 201
DOI 10.1007/978-3-642-05158-6 7, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 7.1 Representation of
a queueing system with a
mean arrival rate of λ , and
mean service rate of μ , four
customers in the system, and
three in the queue

serverqueue

system
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a shorthand to indicate quickly the assumptions used in a particular queueing model.
For example, a formula developed for a G/D/1/∞/FIFO queue would be a formula
that could be used for any general arrival process, only a deterministic service time,
one server, an unlimited system capacity, and a discipline that serves on a “first-in
first-out” basis. The general notation has the following form.

(
arrival
process

/
service
process

/
number

of servers

/maximum
possible

in system

/
queue

discipline

)

Table (7.1) gives the common abbreviations used with this notation. Whenever
an infinite capacity and FIFO discipline are used, the last two descriptors can be left
off; thus, an M/M/1 queue would refer to exponential inter-arrival and service times,
one server, unlimited capacity, and a FIFO discipline.

Table 7.1 Queueing symbols used with Kendall’s notation

Symbols Explanation
M Exponential (Markovian) inter-arrival or service time
D Deterministic inter-arrival or service time
Ek Erlang type k inter-arrival or service time
G General inter-arrival or service time

1,2, · · · ,∞ Number of parallel servers or capacity
FIFO First in, first out queue discipline
LIFO Last in, first out queue discipline
SIRO Service in random order
PRI Priority queue discipline
GD General queue discipline

Our purpose in this chapter is to give an introduction to queueing processes
and introduce the types of problems commonly encountered while studying queues.
To maintain the introductory level of this material, arrival processes to the queue-
ing systems will be assumed to be Poisson processes (see Chap. 4), and service
times will be exponential. Thus, this chapter is mainly concerned with investigating
M/M/c/K systems for various values of c and K. The last section of the chapter will
present a simple approximation that can be used for simple systems.
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7.2 Single Server Systems

The simplest queueing systems to analyze are those involving a Poisson arrival pro-
cess and a single exponential server. Such systems are not only relatively easy to
study, but they will serve to demonstrate some general queueing analysis techniques
that can be extended to more complicated system. We shall start by considering a
system that has unlimited space for arriving customers and then move to systems
with limited space.

7.2.1 Infinite Capacity Single-Server Systems

We begin with an M/M/1 system, or equivalently, an M/M/1∞/FIFO system. The
M/M/1 system assumes customers arrive according to a Poisson process with mean
rate λ and are served by a single server whose time for service is random with an ex-
ponential distribution of mean 1/μ . If the server is idle and a customer arrives, then
that customer enters the server immediately. If the server is busy and a customer ar-
rives, then the arriving customer enters the queue which has infinite capacity. When
service for a customer is completed, the customer leaves and the customer that had
been in the queue the longest instantaneously enters the service facility and service
begins again. Thus, the flow of customers through the system is a Markov process
with state space {0,1, · · · }. The Markov process is denoted by {Nt ; t ≥ 0} where Nt

denotes the number of customers in the system at time t. The steady-state probabil-
ities are

pn = lim
t→∞

Pr{Nt = n} .

We let N be a random variable with probability mass function {p0, p1, · · · }. The
random variable N thus represents the number of customers in the system at steady-
state, and pn represents the long-run probability that there are n customers in the
system. (You might also note that another way to view pn is as the long-run fraction
of time that the system contains n customers.) Sometimes we will be interested in the
number of customers that are in the queue and thus waiting for service; therefore, let
the random variable Nq denote the steady-state number in the queue. In other words,
if the system is idle, Nq = N; when the system is busy, Nq = N −1.

Our immediate goal is to derive an expression for pn,n = 0,1, · · · , in terms of
the mean arrival and service rates. This derivation usually involves two steps: (1)
obtain a system of equations defining the probabilities and (2) solve the system
of equations. After some experience, you should find Step (1) relatively easy; it is
usually Step (2) that is difficult. In other words, the system of equations defining pn

is not hard to obtain, but it is sometimes hard to solve.
An intuitive approach for obtaining the system of equations is to draw a state

diagram and then use a rate balance approach, which is a system of equations formed
by setting “rate in” equal to “rate out” for each node or state of the queueing system.
Figure 7.2 shows the state diagram for the M/M/1 system. Referring to this figure,
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Fig. 7.2 State diagram for
an M/M/1 queueing system
illustrating the rate balance
approach
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it is seen that the rate into the box around Node 0 is μ p1; the rate out of the box
around Node 0 is λ p0; thus, “rate in” = “rate out” yields

μ p1 = λ p0 .

The rate into the box around Node 1 is λ p0 + μ p2; the rate out of the box around
Node 1 is (μ +λ )p1; thus

λ p0 + μ p2 = (μ +λ )p1 .

Continuing in a similar fashion and rearranging, we obtain the system

p1 =
λ
μ

p0 and (7.1)

pn+1 =
λ + μ

μ
pn −

λ
μ

pn−1 for n = 1,2, · · · .

A more rigorous approach for obtaining the system of Eqs. (7.1) is to first give
the generator matrix (from Chap. 6) for the M/M/1 system. Since the inter-arrival
and service times are exponential, the queueing system is a Markov process and
thus Property 6.1 can be used. The rate at which the process goes from State n to
State n+1 is λ , and the rate of going from State n to State n−1 is μ ; therefore, the
generator is the infinite dimensioned matrix given as

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−λ λ
μ −(μ +λ ) λ

μ −(μ +λ ) λ
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (7.2)

The system of equations formed by pG = 0 then yields Eqs. (7.1) again.
The system of Eqs. (7.1) can be solved by successively forward substitut-

ing solutions and expressing all variables in terms of p0. Since we already have
p1 = (λ/μ) p0, we look at p2 and then p3:

p2 =
λ + μ

μ
p1 −

λ
μ

p0 (7.3)

=
λ + μ

μ
(

λ
μ

p0)−
λ
μ

μ
μ

p0 =
λ 2

μ2 p0 ,
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p3 =
λ + μ

μ
p2 −

λ
μ

p1

=
λ + μ

μ
(

λ 2

μ2 p0)−
λ
μ

μ
μ

(
λ
μ

p0) =
λ 3

μ3 p0 .

At this point, a pattern begins to emerge and we can assert that

pn =
λ n

μn p0 for n ≥ 0 . (7.4)

The assertion is proven by mathematical induction; that is, using the induction hy-
pothesis together with the general equation in Eq. (7.1) yields

pn+1 =
λ + μ

μ
(

λ n

μn p0)−
λ
μ

μ
μ

(
λ n−1

μn−1 p0)

=
λ n+1

μn+1 p0 ,

and thus Eq. (7.4) is shown to hold. The ratio λ/μ is called the traffic intensity for
the queueing system and is denoted by ρ for the M/M/1 system. (More generally, ρ
is usually defined as the arrival rate divided by the maximum system service rate.)

We now have pn for all n in terms of p0 so the long-run probabilities become
known as soon as p0 can be obtained. If you review the material on Markov pro-
cesses, you should see that we have taken advantage of Property 6.1, except we have
not yet used the second equation given in the property. Thus, an expression for p0

can be determined by using the norming equation, namely

1 =
∞

∑
n=0

pn = p0

∞

∑
n=0

λ n

μn = p0

∞

∑
n=0

ρn (7.5)

=
p0

1−ρ
.

The equality in the above expression made use of the geometric progression1 so it
is only valid for ρ < 1. If ρ ≥ 1, the average number of customers and time spent
in the system increase without bound and the system becomes unstable. In some
respects this is a surprising result. Based on deterministic intuitive, a person might
be tempted to design a system such that the service rate is equal to the arrival rate,
thus creating a “balanced” system. This is false logic for random interarrival or
service times since in that case the system will never reach steady-state.

The above value for p0 can be combined with Eq. (7.4) to obtain for the M/M/1
system

pn = (1−ρ)ρn for n = 0,1, · · · , (7.6)

where ρ = λ/μ and ρ < 1.

1 The geometric progression is ∑∞
n=0 rn = 1/(1− r) for |r| < 1 .
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The steps followed in deriving Eq. (7.6) are the pattern for many other Markov
queueing systems. Once the derivation of the M/M/1 system is known, all other
queueing system derivations in this text will be easy. It is, therefore, good to review
these steps so that they become familiar.

1. Form the Markov generator matrix, G (Eq. 7.2).
2. Obtain a system of equations by solving pG = 0 (Eq. 7.1).
3. Solve the system of equations in terms of p0 by successive forward substitution

and induction if possible (Eq. 7.4).
4. Use the norming equation to find p0 (Eq. 7.5).

Once the procedure becomes familiar, the only difficult step will be the third step. It
is not always possible to find a closed-form solution to the system of equations, and
often techniques other than successive forward substitution must be used. However,
these techniques are beyond the scope of this text and will not be presented.

Example 7.1. An operator of a small grain elevator has a single unloading dock.
Arrivals of trucks during the busy season form a Poisson process with a mean arrival
rate of four per hour. Because of varying loads (and desire of the drivers to talk) the
length of time each truck spends in front of the unloading dock is approximated
by an exponential random variable with a mean time of 14 minutes. Assuming that
the parking spaces are unlimited, the M/M/1 queueing system describes the waiting
lines that form. Accordingly, we have

λ = 4/hr, μ =
60
14

/hr, ρ = 0.9333 .

The probability of the unloading dock being idle is

p0 = 1−ρ = 0.0667 .

The probability that there are exactly three trucks waiting is

Pr{Nq = 3} = Pr{N = 4} = p4 = 0.93334 ×0.0667 = 0.05 .

Finally, the probability that four or more trucks are in the system is

Pr{N ≥ 4} =
∞

∑
n=4

pn = (1−ρ)
∞

∑
n=4

ρn = ρ4 = 0.759 .

(In the above expression, the second equality is obtained by using Eq. (7.6) to substi-
tute out pn. The third equality comes by observing that ρ4 is a multiplicative factor
in each term of the series so that it can be “moved” outside the summation sign,
making the resulting summation a geometric progression.) ��

Several measures of effectiveness are useful as descriptors of queueing systems.
The most common measures are the expected number of customers in the system,
denoted by L, and the expected number in the queue, denoted by Lq. These expected
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values are obtained by utilizing Eq. (7.6) and the derivative of the geometric pro-
gression2, yielding an expression for the expected number in an M/M/1 system as:

L = E[N] =
∞

∑
n=0

npn (7.7)

=
∞

∑
n=1

npn =
∞

∑
n=1

nρn(1−ρ)

= (1−ρ)ρ
∞

∑
n=1

nρn−1 =
ρ

1−ρ
.

The expected number of customers waiting within an M/M/1 queueing system is
obtained similarly:

Lq = 0× (p0 + p1)+
∞

∑
n=1

npn+1 (7.8)

=
∞

∑
n=1

nρn+1(1−ρ)

= (1−ρ)ρ2
∞

∑
n=1

nρn−1 =
ρ2

1−ρ
.

When describing a random variable, it is always dangerous to simply use its mean
value as the descriptor. For this reason, we also give the variance of the number in
the system and queue:

V [N] =
ρ

(1−ρ)2 , (7.9)

V [Nq] =
ρ2(1+ρ −ρ2)

(1−ρ)2 . (7.10)

Waiting times are another important measure of a queueing system. Fortunately
for our computational effort, there is an easy relationship between the mean number
waiting and average length of time a customer waits. Little [4] showed in 1961 that
for almost all steady-state queueing systems there is a simple relationship between
the mean number in the system, the mean waiting times, and the arrival rates.

Property 7.1. Little’s Law. Consider a queueing system for which steady-
state occurs. Let L = E[N] denote the mean long-run number in the system,
W = E[T ] denote the mean long-run waiting time within the system, and λe the
mean arrival rate of jobs into the system. Also let Lq = E[Nq] and Wq = E[Tq]
denote the analogous quantities restricted to the queue. Then

2 Taking the derivative of both sides of the geometric progression yields ∑∞
n=1 nrn−1 = 1/(1− r)2

for |r| < 1.
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L = λeW

Lq = λeWq .

Notice that λe refers to the effective mean arrival rate into the system; whereas,
λ refers to the mean arrival rate to the system. In other words, λ includes those
customers who come to the system but for some reason, like a finite capacity system
that is full, they do not enter; λe only counts those customers who make it to the
server. For the M/M/1 system, the effective arrival rate is the same as the arrival rate
(i.e., λe = λ ); thus

W = E[T ] =
1

μ −λ
, (7.11)

Wq = E[Tq] =
ρ

μ −λ
,

where T is the random variable denoting the time a customer (in steady-state) spends
in the system and Tq is the random variable for the time spent in the queue.

When the arrival process is Poisson, there is a generalization of Little’s formula
that holds for variances.

Property 7.2. Consider a queueing system for which steady-state occurs and
with a Poisson arrival stream of customers entering the system. Let N denote
the number in the system, T denote the customer waiting time within the sys-
tem, and λe the mean arrival rate of jobs into the system. Also let Nq and Tq

denote the analogous quantities restricted to the queue. Then the following
hold:

V [N]−E[N] = λ 2
e V [T ]

V [Nq]−E[Nq] = λ 2
e V [Tq] .

Little’s Law (Property 7.1) is a very powerful result because of its generality.
The version applied to variances (Property 7.2) is not quite as powerful since it is
restricted to Poisson arrivals. Applying Property 7.2 to the M/M/1 system we obtain

V [T ] =
1

(μ −λ )2 =
1

μ2(1−ρ)2 (7.12)

V [Tq] =
2ρ −ρ2

(μ −λ )2 =
ρ(2−ρ)

μ2(1−ρ)2 .

In Example 7.1, the mean number of trucks in the system is 14 (Eq. 7.7) with
a standard deviation of 14.5 (Eq. 7.9), the mean number of trucks in the queue is
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approximately 13.1 (Eq. 7.8) with standard deviation of 14.4 (Eq. 7.10), the mean
time each truck spends in the system is 3.5 hours (Eq. 7.11) with a standard deviation
of 3.5 hours (Eq. 7.12), and the mean time each truck waits in line until his turn at
the dock is 3 hours and 16 minutes (Eq. 7.11) with a standard deviation of 3 hours
and 29 minutes (Eq. 7.12).

Another easy and obvious relationship for queueing systems due to the definition
of the system and the queue is that the mean waiting time in the system must equal
the mean time in the queue plus the mean service time; thus, we have the following.

Property 7.3. Consider a queueing system for which steady-state occurs. Let
W denote the mean long-run waiting time within the system, Wq the mean
long-run waiting time in the queue, and μ the mean service rate; then

W = Wq +
1
μ

.

Notice that this property is general like Little’s Law; namely, it holds for non-
exponential and multi-server systems as well as for finite and infinite capacity sys-
tems.

Example 7.2. A large car dealer has a policy of providing cars for its customers
that have car problems. When a customer brings the car in for repair, that customer
has use of a dealer’s car. The dealer estimates that the dealer cost for providing the
service is $10 per day for as long as the customer’s car is in the shop. (Thus, if the
customer’s car was in the shop for 1.5 days, the dealer’s cost would be $15.) Arrivals
to the shop of customers with car problems form a Poisson process with a mean rate
of one every other day. There is one mechanic dedicated to those customer’s cars.
The time that the mechanic spends on a car can be described by an exponential
random variable with a mean of 1.6 days. We would like to know the expected cost
per day of this policy to the car dealer. Assuming infinite capacity, we have the
assumptions of the M/M/1 queueing system satisfied, with λ = 0.5/day and μ =
0.625/day, yielding a ρ = 0.8. (Note the mean rate is the reciprocal of the mean
time.) Using the M/M/1 equations, we have L = 4 and W = 8 days. Thus, whenever
a customer comes in with car problems, it will cost the dealer $80. Since a customer
comes in every other day (on the average) the total cost to the dealer for this policy
is $40 per day. In other words, cost is equal to $10×W ×λ . But by Little’s formula,
this is equivalent to $10× L. The cost structure illustrated with this example is a
very common occurrence for queueing systems. In other words if c is the cost per
item per time unit that the item spends in the system, the expected system cost per
time unit is cL. ��

• Suggestion: Do Problems 7.1–7.4.
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Fig. 7.3 Representation of a
full M/M/1/5 queueing system
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7.2.2 Finite Capacity Single Server Systems

The assumption of infinite capacity is often not suitable. When a finite system ca-
pacity is necessary, the state probabilities and measures of effectiveness presented
in Eqs. (7.6–7.12) are inappropriate to use; thus, new probabilities and measures of
effectiveness must be developed for the M/M/1/K system (see Fig. 7.3).

As will be seen, the equations for the state probabilities are identical except for
the norming equation. If K is the maximum number of customers possible in the
system, the generator matrix is of dimension (K +1)× (K +1) and has the form

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λ
μ −(λ + μ) λ

. . .
. . .

. . .

μ −(λ + μ) λ
μ −μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The system pG = 0 yields

μ p1 = λ p0 (7.13)

μ pn+1 = (λ + μ)pn −λ pn−1 for n = 1, · · · ,K −1

μ pK = λ pK−1 .

Using successive substitution, we again have

pn = ρn p0 for n = 0,1, · · · ,K ,

where ρ = λ/μ . The last equation in (7.13) is ignored since there is always a redun-
dant equation in a finite irreducible Markov system. The norming equation is now
used to obtain p0 as follows:

1 =
K

∑
n=0

pn = p0

K

∑
n=0

ρn =

⎧
⎨

⎩

p0
1−ρK+1

1−ρ for ρ �= 1,

p0 (K +1) for ρ = 1 .



7.2 Single Server Systems 211

Since the above sum is finite, we used the finite geometric progression3 so that ρ
may be larger than one. Therefore, for an M/M/1/K system,

pn =

⎧
⎨

⎩

ρn 1−ρ
1−ρK+1 for ρ �= 1,

1
K+1 for ρ = 1 ,

(7.14)

for n = 0,1, · · · ,K.
The mean for the number in the system and queue are

L =
K

∑
n=0

npn =
K

∑
n=1

npn = p0ρ
K

∑
n=1

nρn−1 (7.15)

=

⎧
⎨

⎩

ρ 1+KρK+1−(K+1)ρK

(1−ρ)(1−ρK+1) for ρ �= 1

K
2 for ρ = 1

Lq =
K−1

∑
n=1

npn+1 = p0ρ2
K−1

∑
n=1

nρn−1 (7.16)

=

⎧
⎪⎨

⎪⎩

L− ρ(1−ρK)
1−ρK+1 for ρ �= 1

K(K−1)
2(K+1) for ρ = 1 .

The variances for these quantities for the M/M/1/K system are

V [N] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ρ/(1−ρK+1)(1−ρ)2]
× [1+ρ − (K +1)2ρK

+(2K2 +2K −1)ρK+1 −K2ρK+2] − L2 for ρ �= 1 ,

K(K +2)/12 for ρ = 1 .

V [Nq] = V [N]− p0(L+Lq) (7.17)

The probability that an arriving customer enters the system is the probability that
the system is not full. Therefore, to utilize Little’s formula, we set λe = λ (1− pK)
for the effective arrival rate to obtain the waiting time equations as follows:

W =
L

λ (1− pK)
,

3 The finite geometric progression is ∑k−1
n=0 rn = (1− rk)/(1− r) if r �= 1.
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Wq = W − 1
μ

.

Notice that the expression for Wq is simply a restatement of Property 7.3.
The temptation is to use the formulas given by Property 7.2 to obtain expressions

for the variances of the waiting times. However, the “Little-like” relationships for
variances are based on the assumption that the system sees Poisson arrivals. The
finite capacity limitation prohibits Poisson arrivals into the system so the variance
generalization of Little’s Law cannot be used.

Example 7.3. A corporation must maintain a large fleet of tractors. They have one
repairman that works on the tractors as they break down on a first-come first-serve
basis. The arrival of tractors to the shop needing repair work is approximated by a
Poisson distribution with a mean rate of three per week. The length of time needed
for repair varies according to an exponential distribution with a mean repair time
of 1/2 week per tractor. The current corporate policy is to utilize an outside repair
shop whenever more than two tractors are in the company shop so that, at most,
one tractor is allowed to wait. Each week that a tractor spends in the shop costs
the company $100. To utilize the outside shop costs $500 per tractor. (The $500
includes lost time.) We wish to review corporate policy and determine the optimum
cutoff point for the outside shop; that is, we shall determine the maximum number
allowed in the company shop before sending tractors to the outside repair facility.
The total operating costs per week are

Cost = 100L+500λ pK .

For the current policy, which is an M/M/1/2 system, we have L = 1.26 and p2 =
0.474; thus, the cost is

CostK=2 = 100×1.26+500×3×0.474 = $837/wk .

If the company allows three in the system, then L = 1.98 and p3 = 0.415 which
yields

CostK=3 = 100×1.98+500×3×0.415 = $820/wk .

If a maximum of four are allowed in the shop, then

CostK=4 = 100×2.76+500×3×0.384 = $852/wk .

Therefore, the recommendation is to send a tractor to an outside shop only when
more than three are in the system. ��

• Suggestion: Do Problems 7.6 and 7.7.



7.3 Multiple Server Queues 213

Fig. 7.4 State diagram for a
birth-death process
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7.3 Multiple Server Queues

A birth-death process is a special type of Markov process which is applicable to
many types of Markov queueing systems. The birth-death process is a process in
which changes of state are only to adjacent states (Fig. 7.4). The generator matrix
for a general birth-death process is given by

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−λ0 λ0

μ1 −(μ1 +λ1) λ1

μ2 −(μ2 +λ2) λ2
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where λn and μn are the birth rate (arrival rate) and death rate (service rate), respec-
tively, when the process is in state n.

As before, the long-run probabilities are obtained by first forming the system
of equations defined by pG = 0. (Or, equivalently, the system of equations may be
obtained using the rate-balance approach applied to the state diagram of Fig. 7.4.)
The resulting system is

λ0 p0 = μ1 p1

(λ1 + μ1)p1 = λ0 p0 + μ2 p2

(λ2 + μ2)p2 = λ1 p1 + μ3 p3 .

...

This system is solved in terms of p0 by successive substitution, and we have

p1 = p0
λ0

μ1
(7.18)

p2 = p0
λ0λ1
μ1μ2

...

pn = p0
λ0 ×·· · ×λn−1

μ1 ×·· · ×μn

...
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Fig. 7.5 Representation of
an M/M/2 queueing system
where the transfer from queue
to server is instantaneous
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where

p0 =

[

1+
∞

∑
n=1

n−1

∏
k=0

λk

μk+1

]−1

.

The birth-death process can be used for many types of queueing systems. Equa-
tion (7.6), for the M/M/1 system, arises from Eq. (7.18) by letting the birth rates be
the constant λ and the death rates be the constant μ . The M/M/1/K system equations
can be obtained by letting λn = 0 for all n > K.

The M/M/c queueing system is a birth-death process (see Fig. 7.5) with the fol-
lowing values for the birth rates and death rates:

λn = λ for n = 0,1, · · · , (7.19)

μn =
{

nμ for n = 1, · · · ,c−1
cμ for n = c,c+1, · · · .

The reason that μn = nμ for n = 1, · · · ,c− 1 is that when there are less than c
customers in the system, each customer in the system is being served and thus the
service rate would be equal to the number of customers since unoccupied servers
remain idle (i.e., free servers do not help busy servers). If there are more than c
customers in the system, then exactly c servers are busy and thus the service rate
must be cμ . Substituting Eq. (7.19) into Eqs. (7.18) for the M/M/c system, yields

pn =

{
p0rn/n! for n = 0,1, · · · ,c−1

p0rn/(cn−cc!) for n = c,c+1, · · · ,
(7.20)

p0 =

[
crc

c!(c− r)
+

c−1

∑
n=0

rn

n!

]−1

,

where r = λ/μ and ρ = r/c < 1.
The measures of effectiveness for the M/M/c queueing system involve slightly

more manipulations, but it can be shown that

Lq =
∞

∑
n=c

(n− c)pn

=
p0rcρ

c!(1−ρ)2 .
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Little’s formula is then applied to obtain

Wq =
Lq

λ
,

and by Property 7.3

W = Wq +
1
μ

,

and finally applying Little’s formula again

L = Lq + r .

The reason that we let r = λ/μ is because most textbooks and technical papers
usually reserve ρ to be the arrival rate divided by the maximum service rate, namely,
ρ = λ/(c μ). It can then be shown that ρ gives the server utilization; that is, ρ is the
fraction of time that an arbitrarily chosen server is busy.

For completeness, we also give the formula needed to obtain the variances for
the M/M/c system as

E[(Nq(Nq −1)] =
2p0rcρ2

c!(1−ρ)3 (7.21)

E[T 2
q ] =

2p0rc

μ2c2c!(1−ρ)3 (7.22)

V [T ] = V [Tq]+
1

μ2 (7.23)

V [N] = λ 2V [T ]+L . (7.24)

Example 7.4. The corporation from the previous example has implemented the pol-
icy of never allowing more than three tractors in their repair shop. For $600 per
week, they can hire a second repairman. Is it worthwhile to do so if the expected
cost is used as the criterion? To answer this question, the old cost for the M/M/1/3
system (refer back to page 212) is compared to the proposed cost for an M/M/2/3
system. The birth-death equations (7.18) are used with

λn =
{

λ for n = 0,1,2
0 for n = 3,4, · · ·

μn =
{

μ for n = 1
2μ for n = 2 and 3 ,

where λ = 3/week and μ = 2/week. This gives
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p1 = 1.5p0

p2 = 1.125p0

p3 = 0.84375p0

p0 =
1

1+1.5+1.125+0.84375
= 0.224 .

The expected number in the system is

L = 0.224× (1×1.5+2×1.125+3×0.84375)
= 1.407 .

The cost of the proposed system is

Costc=2 = 100×1.407+500×3×0.189+600

= $824.20/week .

Therefore, it is not worthwhile to hire a second man since this cost is greater than
the $820 calculated in the previous example. ��

This section is closed with a common example that illustrates the versatility of
the birth-death equation. Arrivals to a system usually come from an infinite (or very
large) population so that an individual arrival does not affect the overall arrival rate.
However, in some circumstances the arrivals come from a finite population, and
thus, the arrival rate cannot be assumed constant.

Example 7.5. A small corporation has three old machines that continually break-
down. Each machine breaks down on the average of once a week. The corporation
has one repairman that takes, on the average, one half of a week to repair a machine.
(See Fig. 7.6 for a schematic of this “machine-repair” queueing system.) Assuming
breakdowns and repairs are exponential random variables, the birth-death equations
can be used as follows:

λn =
{

(3−n)λ for n = 0,1,2
0 for n = 3, · · ·

μn = μ for n = 1,2,3

with λ = 1 per week and μ = 2 per week. This yields

p1 = 1.5p0

p2 = 1.5p0

p3 = 0.75p0

p0 =
1

1+1.5+1.5+0.75
= 0.21 and

L = 0.21× (1×1.5+2×1.5+3×0.75) = 1.42 .
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Fig. 7.6 Representation of
the machine-repair queueing
system of Example 7.5 	
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Let us further assume that for every hour that a machine is tied up in the repair shop,
the corporation losses $25. The cost of this system per hour due to the unavailability
of the machines is calculated as

Cost = 25×L = 25×1.42

= $35.50/ hr .

��

• Suggestion: Do Problems 7.5 and 7.8–7.14.

7.4 Approximations

The models developed in the previous sections depended strongly on the use of the
exponential distribution. Unfortunately, the exponential assumption is not appropri-
ate for many practical systems for which queueing models are desired. However,
without the exponential assumption, exact results are much more difficult. In re-
sponse to the need for numerical results for nonexponential queueing systems, there
has been a significant amount of research dealing with approximations in queueing
theory. In this section we report on some of these approximations. We recommend
that the interested student read the survey paper by Ward Whitt [6] for a thorough
review.

Assume that we are interested in modeling a G/G/c queueing system. An ap-
proximation obtained from a diffusion approximation developed by Kingman (see
[1, Chap. 3]) uses the squared coefficient of variation; therefore, we define c2

a to be
the variance of the interarrival times divided by the square of the mean of the inter-
arrival times and c2

s to be the variance of the service times divided by the square of
the mean of the service times.

To obtain an approximation for the mean waiting time, W , spent in a G/G/c sys-
tem, we first determine the mean time spent in the queue and then add the mean
service time to the queue time; namely, we use the fact that W = Wq + 1/μ . The
value for Wq can be obtained according to the following property.
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Property 7.4. Let λ and μ be the mean arrival rate and mean service rate,
respectively, for a G/G/c queueing system. In addition, let c2

a and c2
s be the

squared coefficient of variation for the inter-arrival times and service times,
respectively. Let Wq,M/M/c denote the mean waiting time for a M/M/c queue
with the same mean arrival and service rates. When λ < cμ , the time spent in
the queue for the G/G/c system is approximated by

Wq ≈
(

c2
a + c2

s

2

)

Wq,M/M/c . (7.25)

Notice that the equation holds as an equality if the interarrival and service times
are indeed exponential, since the exponential has a squared coefficient of variation
equal to one. Equation (7.25) is also exact for an M/G/1 queueing system, and it
is known to be an excellent approximation for the M/G/c system. In general, the
approximation works best for ca ≥ 1 with ca and cs being close to the same value.

Example 7.6. Suppose we wish to model the unloading dock at a manufacturing
facility. At the dock, there is only one crew who does the unloading. The questions
of interest are the average waiting time for arriving trucks and the average number of
trucks at the dock at any point in time. Unfortunately, we do not know the underlying
probability laws governing the arrivals of trucks or the service times; therefore, data
are collected over a representative time period to obtain the necessary statistical
estimates. The data yield a mean of 31.3 minutes and a standard deviation of 35.7
minutes for the interarrival times. For the service times, the results of the data give
20.4 minutes for the mean and 10.2 minutes for the standard deviation. Thus, λ =
1.917 per hour, c2

a = 1.30, μ = 2.941 per hour, and c2
s = 0.24 with a traffic intensity

of ρ = 0.652. (It would be appropriate to collect more data and perform a statistical
“goodness-of-fit” test to help determine whether or not these data may come from an
exponential distribution. Assuming a reasonable number of data points, it becomes
intuitively clear that at least the service times are not exponentially distributed since
an exponential distribution has the property that its mean is equal to its standard
deviation.)

In order to obtain W , we first determine Wq. From Eq. (7.11), we get that
Wq,M/M/1 = 0.652/(2.941− 1.917) hr = 40 min. Now using Eq. (7.25), the queue
time for the trucks is Wq ≈ 40×(1.30+0.24)/2 = 30.8 min, yielding a waiting time
in the system of

W ≈ 30.8+60/2.941 = 51.2 min .

(Notice that since the mean service rate is 2.941 per hour, the reciprocal is the mean
service time which must be multiplied by 60 to convert it to minutes.) It now follows
from Little’s Law (Property 7.1) that the mean number in the system is L ≈ 1.636.
(Notice, before using Little’s formula, care must be taken to insure that the units are
consistent, i.e., the quantity W must be expressed in terms of hours, because λ is in
terms of hours.) ��
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A simple adjustment to Eq. 7.25 to account for multiple servers has been pro-
posed by Sakasegawa [5] and used by others (e.g., [2] and [1]) as an extension to
Property 7.4.

Property 7.5. Let λ and μ be the mean arrival rate and mean service rate,
respectively, for a G/G/c queueing system. In addition, let c2

a and c2
s be the

squared coefficient of variation for the inter-arrival times and service times,
respectively. Then the time spent in the queue for the G/G/c system is approx-
imated by

Wq ≈
(

c2
a + c2

s

2

)
ρ
√

2c+2−1

c(1−ρ)
1
μ

,

for ρ < 1 where ρ = λ/(c μ).

• Suggestion: Do Problem 7.15.

Appendix

The simulation of a single-server queueing system is relatively easy; however, it is
not easily extended to multiple-server systems. For multiple-servers, it is best to use
a event driven simulation as discussed in Chap. 9. The following material is taken
from Curry and Feldman [1] to illustrate single-server simulations.

Consider a G/G/1 queueing system in which each job is numbered sequentially
as it arrives. Let the service time of the nth job be denoted by the random variable Sn,
the delay time (time spent in the queue) by the random variable Dn, and the inter-
arrival time between the n-1st and nth job by the random variable An. The delay time
of the nth job must equal the delay time of the previous job, plus the previous job’s
service time, minus the inter-arrival time; however, if inter-arrival time is larger than
the previous job’s delay time plus service time, then the queueing delay will be zero.
In other words, the following must hold

Dn = max{0, Dn−1 +Sn−1 −An } . (7.26)

Thus, to simulate the G/G/1 system, we need only to generate random variates for
An and Sn for n = 1, · · · ,nmax.

We shall simulate a G/G/1 queueing system with a mean arrival rate of 4 cus-
tomers per hour and a mean service rate of 5 per hour. The inter-arrival times has a
large variation having a squared coefficient of variation equal to c2

a = 4. The service
times are less variable having service times distributed according to an Erlang Type-
4 distribution. We shall use the gamma distribution (Eq. 1.18) to model the interar-
rival times. It has been the authors experience that the gamma distributed random
variates with shape parameters less than one are not always reliable; however, they
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are fairly easy to simulate. (Can you give a good reason why normal random vari-
ates are not used for the inter-arrival times?) Since the Erlang is a special case of the
gamma distribution (see p. 19), we shall also use the gamma for services. To begin
the simulation, type the following in the first three rows of an Excel spreadsheet. If
you do not remember how to generate the gamma random variates, see Table 2.13.)

A B C
1 InterArrive Service Delay
2 0 =GAMMAINV(RAND(),4,3) 0
3 =GAMMAINV(RAND(),0.25,60) =GAMMAINV(RAND(),4,3) =MAX(0,C2+B2-A3)

Notice that the references in the C3 cell are relative references and that two of the
references are to the previous row, but the third reference is to the same row. Now
copy the third row down for 30,000 rows and obtain an average of the values in the
C column. This average is an estimate for the mean cycle time. Hitting the F9 key
will give some idea of the variability of this estimate.
• Suggestion: Do Problem 7.16.

Problems

7.1. Cars arrive to a toll booth 24 hours per day according to a Poisson process with
a mean rate of 15 per hour.
(a) What is the expected number of cars that will arrive to the booth between 1:00
p.m. and 1:30 p.m.?
(b) What is the expected length of time between two consecutively arriving cars?
(c) It is now 1:12 p.m. and a car has just arrived. What is the expected number of
cars that will arrive between now and 1:30 p.m.?
(d) It is now 1:12 p.m. and a car has just arrived. What is the probability that two
more cars will arrive between now and 1:30 p.m.?
(e) It is now 1:12 p.m. and the last car to arrive came at 1:05 p.m. What is the
probability that no additional cars will arrive before 1:30 p.m.?
(f) It is now 1:12 p.m. and the last car to arrive came at 1:05 p.m. What is the
expected length of time between the last car to arrive and the next car to arrive?

7.2. A large hotel has placed a single fax machine in an office for customer services.
The arrival of customers needing to use the fax follows a Poisson process with a
mean rate of eight per hour. The time each person spends using the fax is highly
variable and is approximated by an exponential distribution with a mean time of 5
minutes.
(a) What is the probability that the fax office will be empty?
(b) What is the probability that nobody will be waiting to use the fax?
(c) What is the average time that a customer must wait in line to use the fax?
(d) What is the probability that an arriving customer will see two people waiting in
line?
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7.3. A drill press in a job shop has parts arriving to be drilled according to a Poisson
process with mean rate 15 per hour. The average length of time it takes to complete
each part is a random variable with an exponential distribution function whose mean
is 3 minutes.
(a) What is the probability that the drill press is busy?
(b) What is the average number of parts waiting to be drilled?
(c) What is the probability that at least one part is waiting to be drilled?
(d) What is the average length of time that a part spends in the drill press room?
(e) It costs the company 8 cents for each minute that each part spends in the drilling
room? For an additional expenditure of $10 per hour, the company can decrease
the average length of time for the drilling operation to 2 minutes. Is the additional
expenditure worthwhile?

7.4. Derive results for the M/M/2 system using the methodology developed in
Sect. 7.2 (i.e., ignore the general birth-death derivations of Sect. 7.3). Denote the
mean arrival rate by λ and the mean service rate for each server by μ .
(a) Give the generator matrix for the system.
(b) Solve the system of equations given by pG = 0 by using successive substitution
to obtain pn = 2ρn p0 for n = 1,2, · · · , and p0 = (1−ρ)/(1+ρ), where ρ = λ/(2μ).
(c) Show that L = 2ρ/(1−ρ2) and Lq = 2ρ3/(1−ρ2).

7.5. Derive results for the M/M/3 system using the birth-death equations in Sect. 7.3.
Denote the mean arrival rate by λ , the mean service rate for each server by μ , and
the traffic intensity by ρ = λ/(3μ)
(a) Show that p1 = 3ρ p0, pn = 4.5ρn p0 for n = 2,3, · · · , and p0 = (1− ρ)/(1 +
2ρ +1.5ρ2).
(b) Show that Lq = 9ρ4/((1−ρ)(2+4ρ +3ρ2)).

7.6. A small gasoline service station next to an interstate highway is open 24 hours
per day and has one pump and room for two other cars. Furthermore, we assume
that the conditions for an M/M/1/3 queueing system are satisfied. The mean arrival
rate of cars is 8 per hour and the mean service time at the pump is 6 minutes. The
expected profit received from each car is $5.00. For an extra $60 per day, the owner
of the station can increase the capacity for waiting cars by one (thus, becoming an
M/M/1/4 system). Is the extra $60 worthwhile?

7.7. A repair center within a manufacturing plant is open 24 hours a day and there
is always one person present. The arrival of items needing to be fixed at the repair
center is according to a Poisson process with a mean rate of 6 per day. The length
of time it takes for the items to be repaired is highly variable and follows an expo-
nential distribution with a mean time of 5 hours. The current management policy is
to allow a maximum of three jobs in the repair center. If three jobs are in the center
and a fourth job arrives, then the job is sent to an outside contractor who will return
the job 24 hours later. For each day that an item is in the repair center, it costs the
company $30. When an item is sent to the outside contractor, it costs the company
$30 for the lost time, plus $75 for the repair.
(a) It has been suggested that management change the policy to allow four jobs in
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the center; thus jobs would be sent to the outside contractor only when four are
present. Is this a better policy?
(b) What would be the optimum cut-off policy? In other words, at what level would
it be best to send the overflow jobs to the outside contractor?
(c) In order to staff and maintain the repair center 24-hours per day, it costs $400
per day. Is that a wise economic policy or would it be better to shut down the repair
center and use only the outside contractor?
(d) We assume the above questions were answered using a minimum long-run ex-
pected cost criterion. Discuss the appropriateness of other considerations besides
the long-run expected cost.

7.8. A small computer store has two clerks to help customers (but infinite capacity
to hold customers). Customers arrive to the store according to a Poisson process
with a mean rate of 5 per hour. Fifty percent of the arrivals want to buy hardware
and 50% want to buy software. The current policy of the store is that one clerk is
designated to handle only software customers, and one clerk is designated to handle
only hardware customers; thus, the store actually acts as two independent M/M/1
systems. Whether the customer wants hardware or software, the time spent with one
of the store’s clerks is exponentially distributed with a mean of 20 minutes. The
owner of the store is considering changing the operating policy of the store and
having the clerks help with both software and hardware; thus, there would never be
a clerk idle when two or more customers are in the store. The disadvantage is that
the clerks would be less efficient since they would have to deal with some things
they were unfamiliar with. It is estimated that the change would increase the mean
service time to 21 minutes.
(a) If the goal is to minimize the expected waiting time of a customer, which policy
is best?
(b) If the goal is to minimize the expected number of customers in the store, which
policy is best?

7.9. In a certain manufacturing plant, the final operation is a painting operation.
The painting center is always staffed by two workers operating in parallel, although
because of the physical setup they cannot help each other. Thus the painting center
acts as an M/M/2 system where arrivals occur according to a Poisson process with
a mean arrival rate of 100 per day. Each worker takes an average of 27 minutes to
paint each item. There has been recent concern about excess work in process so
management is considering two alternatives to reduce the average inventory in the
painting center. The first alternative is to expand the painting center and hire a third
worker. (The assumption is that the third worker, after a training period, will also
average 27 minutes per part.) The second alternative is to install a robot that can
paint automatically. However, because of the variability of the parts to be painted,
the painting time would still be exponentially distributed, but with the robot the
mean time would be 10 minutes per part.
(a) Which alternative reduces the inventory the most?
(b) The cost of inventory (including the part that is being worked on) is estimated to
be $0.50 per part per hour. The cost per worker (salary and overhead) is estimated to
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be $40,000 per year, and the cost of installing and maintaining a robot is estimated
to be $100,000 per year. Which alternative, if any, is justifiable using a long-term
expected cost criterion?

7.10. In the gasoline service station of Problem 6.6, consider the alternative of
adding an extra pump for $90 per day. In other words, is it worthwhile to convert
the M/M/1/3 system to an M/M/2/3 system?

7.11. A parking facility for a shopping center is large enough so that we can con-
sider its capacity infinite. Cars arrive to the parking facility according to a Poisson
process with a mean arrival rate of λ . Each car stays in the facility an exponentially
distributed length of time, independent from all other cars, with a mean time of 1/μ .
Thus, the parking facility can be viewed as an M/M/∞ queueing system.
(a) What is the probability that the facility contains n cars?
(b) What is the long-run expected number of cars in the facility?
(c) What is the long-run variance of the number of cars in the facility?
(d) What is the long-run expected queue length for the M/M/∞ system?
(e) What is the mean expected time spent in the system?

7.12. A company offers a correspondence course for students not passing high
school algebra. People sign up to take the course according to a Poisson process
with a mean of two per week. Students taking the course progress at their own rate,
independent of how many other students are also taking the correspondence course.
The actual length of time that a student remains in the course is an exponential ran-
dom variable with a mean of 15 weeks. What is the long-run expected number of
students in the course at an arbitrary point in time?

7.13. A company has assigned one worker to be responsible for the repair of a group
of five machines. The machines break down independent of each other according to
an exponential random variable. The mean length of working time for a machine is
4 days. The time it takes the worker to repair a machine is exponentially distributed
with a mean of two days.
(a) What is the probability that none of the machines are working?
(b) What is the expected number of machines working?
(c) When a machine fails, what is the expected length of time until it will be working
again?

7.14. A power plant operating 24 hours each day has four turbine-generators it
uses to generate power. All turbines are identical and are capable of generating 3
megawatts of power. The company needs 6 megawatts of power, so that when all
turbines are in a working condition, it keeps one turbine on “warm-standby”, one
turbine on “cold-standby”, and two turbines operating. If one turbine is down, then
two are operating and one is on “warm-standby”. If two turbines are down, both
working turbines are operating. If only one turbine is working, then the company
must purchase 3 megawatts of power from another source. And, if all turbines are
down, the company must purchase 6 megawatts. If a turbine is in the operating
mode, its time until failure is 3 weeks. If a turbine is in “warm-standby”, its time
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until failure is 9 weeks. And, if a turbine is in “cold-standby”, it cannot fail. (We
assume all switch-overs from warm standby to working or cold standby to warm
standby are instantaneous.) The company has two workers that can serve to repair
a failed turbine and it takes a worker one half a week, on the average, to repair a
failed turbine. Assuming all times are exponentially distributed, determine the ex-
pected megawatt hours that must be purchased each year.

7.15. A store manager with training in queueing theory wants to take quick action
on the first day at work. One of the biggest complaints that have been heard is the
length of the waiting time and the length of the line. The manager asked one of
the employees to record arrival times of customers to the cashier arriving roughly
between 8:00 AM and noon. The following arrival times were collected: 8:05, 8:07,
8:17, 8:18, 8:19, 8:25, 8:27, 8:32, 8:35, 8:40, 8:45, 8:47, 8:48, 8:48, 9:00, 9:02,
9:14, 9:15, 9:17, 9:23, 9:27, 9:29, 9:35, 9:37, 9:45, 9:55, 10:01, 10:12, 10:15, 10:30,
10:32, 10:39, 10:47, 10:50, 11:05, 10:07, 11:25, 11:27, 11:31, 11:33, 11:43, 11:49,
12:05.

Another employee measured the service times of the cashier. The service times
had a mean of 3.5 minutes and a standard deviation of 5.0 minutes. There is only
one cashier that services the customers.
(a) Estimate the expected length of time that a customer has to wait before service
and the expected number of customers in front of the cashier using Property 7.4
or 7.5.
(b) Suppose that the manager’s knowledge of queueing theory was marginal and
that an M/M/1 queueing model was wrongly used assuming that the arrival rate was
Poisson with the mean estimated from the data and that the service times were ex-
ponential with mean 3.5 minutes. Determine the approximate difference between
the estimates obtained in part (a) and the estimates that would be obtained using the
(incorrect) Markovian assumptions.
(c) The store manager has two alternatives to reduce the waiting time at the cashier.
One alternative is to buy a bar reader machine that would reduce the standard de-
viation of the service time to 1.7 minutes and pay a monthly service fee of $200.
The other alternative is to hire a second cashier to work with a currently available
cashier machine. The new cashier would work at the same rate as the other and will
cost the store $350 per month. Assuming that it costs $0.25 per minute per customer
waiting to pay, the manager wants to know what is the best strategy. (Assume this is
a problem only four hours per day, five days a week. Furthermore, assume that the
steady-state solution is a good approximation to the queueing behavior that occurs
during those four hours.)

7.16. Continue the simulation of the appendix for several years. For each year, cal-
culate the average time spent in the queue per customer and the number of customers
who arrive during the year. Give 95% confidence intervals for mean waiting time per
customer and the annual arrivals. Each data point in the random sample used for the
estimates is composed of the annual data; thus, if the simulation is run for 25 years,
there will be 25 data points for each estimate. Compare the simulated results with
analytical estimates for Wq and the number of arrival per year.
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Chapter 8
Queueing Networks

The application of queueing theory often involves several queueing processes con-
nected to one another as departures from one process become arrivals to another
process. For example, if a bank were to be modeled, some customers from the “New
Accounts” desk might go next to a teller line or to the safety deposit room. Or if the
Panama Canal were to be simulated, each of the three locks would have to be mod-
eled as a queueing process with customers (i.e., ships) flowing from one lock to
another or from the entrance of the canal to a lock. Many manufacturing systems
and supply chains can be modeled as a complex queueing network in which output
from one process flows to other queueing processes, sometimes with probabilistic
routing and sometimes with deterministic routing.

In this chapter, we present an introduction to queueing networks and some ap-
proximations useful for their analyses. We present both open networks and closed
networks and discuss some of the computational issues involved. In the previous
chapter, the term “customers” was used to describe the generic entities that entered
a queue. In this chapter, the term for the entities that flow through a network will
be called “jobs”. Thus, if we were to model a bank, the term “job” would refer to
customers; in the modeling of the Panama Canal, the term “job” may refer to ships;
and in the modeling of supply chains, the term “job” may refer to goods.

8.1 Jackson Networks

Modeling some network systems may be relatively easy if the network has some
special structure. In particular, if the system has Poisson arrivals, and each queue
within the network has unlimited capacity and exponential servers, the system is
called a Jackson network, and some of its measures of effectiveness can be com-
puted using the methodology developed in the previous chapter. In particular, the
following formally defines those networks that are most easily analyzed.

Definition 8.1. A network of queues is called a Jackson network if the following
conditions are satisfied:
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Fig. 8.1 Representation of the queueing network of Example 8.1

1. All outside arrivals to each queueing system in the network must be according to
a Poisson process.

2. All service times must be exponentially distributed.
3. All queues must have unlimited capacity.
4. When a job leaves one queueing system, the probability that it will go to another

queueing system is independent of that job’s past history and is independent of
the location of any other job.

��

The effect of these conditions is that the M/M/c formulas, developed in the previous
chapter, can be used for the analysis of networks. As can be seen, the first three
conditions are from the standard M/M/c assumptions. The fourth condition is not
quite as straight forward, but it can be viewed as a Markov assumption; that is,
its effect is that the movement of jobs through the network can be described as a
Markov chain.

It is possible to have either an open Jackson network or a closed Jackson network.
An open network will have jobs arriving from the “outside” according to Poisson
processes and eventually jobs leaving the network. A closed network will have no
arrivals and no departures. The machine-repair problem of Example 7.5 can be re-
structured to be a closed queueing network. The first node would be the queueing
system containing working machines. When a machine breaks down, it departs from
this first queueing system and arrives into the second system which consists of all
machines needing repair. When a machine is repaired, it returns to the first system.

8.1.1 Open Jackson Networks

We begin this section with an example of an open Jackson network and then discuss
how to analyze the network. It turns out that the analysis is a two-step process: (1)
the net inflow rates are determined and (2) each node is analyzed separately as if the
nodes were independent.
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Example 8.1. Jobs arrive to a job shop according to a Poisson process with a mean
rate of 8 jobs per hour. Upon arrival, the jobs first go through a drill press, then
75% of them go to the paint shop, and then go to a final packaging step. Those jobs
that do not go to the paint shop, go directly to the final packaging step. There is
one drill press, two painters, and one packer. The mean time spent on the drill press
is 6 minutes, the mean time spent during the painting operation is 15 minutes, and
the mean time for packaging is 5 minutes; all times are exponentially distributed.
(See Fig. 8.1 for a schematic representation of the network.) Thus, this is a Jackson
network, and the movement of jobs within the network can be described by the
sub-Markov matrix (called the routing matrix):

P =

⎡

⎣
0 0.75 0.25
0 0 1
0 0 0

⎤

⎦ ,

where the drill press is Node 1, the paint shop is Node 2, and packaging is Node
3. ��

The basic idea for the analysis of Jackson networks is that a net arrival rate is
determined for each node, and then each queueing system (node) is treated as if it
were an independent system. To illustrate, we return to the above job shop example,
and let λi denote the arrival rate into Node i; thus λ1 = 8, λ2 = 0.75× 8 = 6, and
λ3 = 0.25×8+6 = 8. The other data of the example indicate that μ1 = 10, μ2 = 4,
and μ3 = 12; thus, the traffic intensities are ρ1 = 0.8, ρ2 = 0.75 (note that Node 2
has two servers), and ρ3 = 0.667. With these parameters, we apply the previously
developed M/M/1 (Eqs. 7.6 and 7.7) and M/M/2 (see Problem 7.4) formulas. The
average number of jobs at each node is now easily calculated as L1 = 4, L2 = 3.43,
and L3 = 2, and the probabilities that there are no jobs in the various nodes are given
as p1

0 = 0.2, p2
0 = 0.143, and p3

0 = 0.333.
The only potentially difficult part of the analysis is determining the input rate to

each queueing node. As in the above example, we let λi denote the total input to
Node i. First, observe that for a steady-state system, the input must equal the output,
so the total output from Node i also equals λi. Secondly, observe that the input to
Node i must equal the input from the outside, plus any output from other nodes that
are routed to Node i. Thus, we have the general relation

λi = γi +∑
k

λkP(k, i) , (8.1)

where γi is the arrival rate to Node i from outside the network, and P(k, i) is the
probability that output from Node k is routed to Node i. There is one such equation
for each node in the network, and the resulting system of equations can be solved to
determine the net input rates. In general, the following property holds.
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Property 8.1. Let the routing matrix P describe the flow of jobs within a Jack-
son network, and let γi denote the mean arrival rate of jobs going directly into
Node i from outside the network with γγγ being the vector of these rates. Then

λλλ = γγγ(I−P)−1

where the components of the vector λλλ give the arrival rates into the various
nodes; i.e., λi is the net rate into Node i.

After the net rate into each node is known, the network can be decomposed and
each node treated as if it were a set of independent queueing systems with Poisson
input. (If there is any feedback within the queueing network, the input streams to
the nodes will not only be dependent on each other, but also there will be input
processes that are not Poisson. The ingenious contribution of Jackson [3] was to
prove that if the analyst ignores that fact that some of the internal arrival streams are
not Poisson, the correct state probabilities will be obtained.)

Property 8.2. Consider a Jackson network containing m nodes with Node i
having ci (exponential) servers. Let Ni denote a random variable indicating
the number of jobs at Node i (the number in the queue plus the number in the
server(s)). Then,

Pr{N1 = n1, · · · ,Nm = nm} = Pr{N1 = n1}× · · ·×Pr{Nm = nm} ,

and the probabilities Pr{Ni = ni} for ni = 0,1, · · · can be calculated using the
appropriate M/M/ci formula (or the birth-death equations of 7.20).

Example 8.2. Now let us change the previous example slightly. Assume that after
the painting operation, 10% of the jobs are discovered to be defective and must be
returned to the drill press operation, and after the packaging operation, 5% of the
jobs are discovered to be defective and must also be returned to the beginning of the
drill press operation (see Fig. 8.2). Now the routing matrix describing the movement
of jobs within the network is

P =

⎡

⎣
0 0.75 0.25

0.10 0 0.90
0.05 0 0

⎤

⎦ .

The equations defining the net arrival rates are

λ1 = 8+0.1λ2 +0.05λ3

λ2 = 0.75λ1

λ3 = 0.25λ1 +0.9λ2 .
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Fig. 8.2 Representation of the queueing network of Example 8.2

The vector γγγ is (8,0,0) and solving the above system yields λ1 = 9.104, λ2 = 6.828,
and λ3 = 8.421, which implies traffic intensities of ρ1 = 0.9104, ρ2 = 0.8535, and
ρ3 = 0.702. Again we use the M/M/1 and M/M/2 formulas and obtain the average
number in the network to be 18.8. Thus, the inspection and resulting feedback dou-
bles the mean number of jobs in the system. (Note that the number of jobs in the
system is the sum of the number of jobs at the individual nodes.) The probability
that there are no jobs in the system is 0.002. (Note that the probability that there are
no jobs in the system equals the product of the probabilities that there are no jobs at
each of the individual nodes.) ��

Three measures that are often of interest in a network analysis are (1) mean sys-
tem throughput, (2) mean number of jobs within the system (sometimes called work-
in-process or system WIP), and (3) mean time an arbitrary job spends in the system
(sometimes called system cycle time). Because we are only considering steady-state
conditions, the mean system throughput equals the mean arrival rate to the system
(i.e., the sum of the individual γi terms). The mean system size is obtained by sum-
ming the mean number at each node, and then the cycle time is obtained through the
application of Little’s Law. These are summarized in the following property under
the assumption that each node is operating under steady-state conditions.

Property 8.3. Consider a Jackson network containing m nodes. Denote by
Nnet the total number of jobs within the network, Tnet the time that a job spends
in the network, and γγγ the vector of external arrival rates. Thus we have that

E[Nnet] =
m

∑
i=1

Li , and

E[Tnet] =
E[Nnet]

∑m
i=1 γ(i)

,

where the individual Li terms are given by the appropriate M/M/c formula.
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Note that cycle time cannot be calculated by summing the individual node waiting
times because some jobs might visit a given node more than once.

Example 8.3. We return to Example 8.2 to illustrate these properties. The values for
number at each node are given as L1 = 10.161, L2 = 6.286, and L3 = 2.356. (Note,
Eq. (7.7) was used for the first and third nodes, and Problem 7.4 was used for the
second node.) The total input rate (and thus the throughput rate) is 8 per hour so the
mean time spent in network is (10.161+6.286+2.356)/8 = 2.35 hr. ��

• Suggestion: Do Problems 8.1–8.4.

8.1.2 Closed Jackson Networks

A common production control strategy is called a CONWIP strategy. This is a “pull”
strategy in which a constant WIP level is maintained within the production facility.
The idea is that a new job is not started until a finished job leaves; thus, the job
that leaves the system “pulls” the next job into the system. Such a system can be
modeled using a closed queueing network as illustrated in the following example.

Example 8.4. Consider a manufacturing facility in which all jobs start in the ma-
chine room. The machine room has one machine that has an exponential process-
ing time with a mean time of 80 minutes. After finishing on the machine, the job
leaves the machine room and 70% of the jobs go to the electrical components room
with the other 30% going directly to the finishing room. There is one machine in-
stalling electrical components and the time of this installation process is random
taking an exponentially distributed length of time with a mean of 111.4 minutes.
Defects are often discovered during the electrical component installation and ap-
proximately 20% of the jobs are returned to the machine room where the processing
must be reworked. (The distribution of processing time in the machine room and
electrical components room is the same whether a job is new or is being reworked.)
After the electrical components have been successfully installed, the jobs proceed
to the finishing room. There is one finisher who takes an exponentially distributed
time to complete the job and ready it for shipment. The average finishing time is 64
minutes.

Company policy is to maintain a WIP level of 5 units so that a new job is started
as soon as a job leaves the finishing center. The movement of jobs described above
is illustrated in Fig. 8.3 and yield a routing matrix of

P =

⎡

⎣
0 0.7 0.3

0.2 0 0.8
1 0 0

⎤

⎦ .

Note that we model this process as if a job travels from the third state to the first
state even though physically it is a new job that enters the first state whenever a job
leaves the third state. ��
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Fig. 8.3 Representation of the closed queueing network of Example 8.4

The analysis of the system of Example 8.4 starts with determining arrival rates;
however, there are two difficulties with the use of Property 8.1: (1) the matrix (I−P)
is singular (i.e., it has no inverse) and (2) since there no external arrivals, the vector
γγγ is all zeros. It is only possible to obtain relative arrival rates. To differentiate
between the relative arrival rates and the actual arrival rates, the relative rates will
be denoted by the vector r.

To determine the relative arrival rates, we arbitrarily set the first rate to 1.0 and
then the remaining rates are obtained using equations of the form rk = ∑i ri pi,k for
each k. These equations are the same as in Eq. (8.1) with each γi term equal to zero.
This results in the following property.

Property 8.4. Let P denote the routing matrix associated with a closed queue-
ing network containing m nodes. Form the matrix Q by setting it equal to P
after deleting the first row and first column; that is, qi, j = pi+1, j+1 for i, j =
1, · · · ,m−1. Then the vector of relative arrival rates, r, is given by

(r2, · · · ,rm) = (p1,2, · · · , p1,m) (I−Q)−1

and r1 = 1.

Notice that the row vector to the left of the (I−Q)−1 matrix is the first row of the
routing matrix minus the first element.

The application of Property 8.4 to Example 8.4 results in

(r2, r3) = (0.7, 0.3)
[

1 −0.8
0 1

]−1

= (0.7, 0.86) ; (8.2)

thus, r = (1, 0.7, 0.86).
Property 8.2 giving the probabilities of the number of jobs at each node holds for

both open and closed networks; however, the probabilities that are obtained are rel-
ative and must be normed. There are several queueing books (for example, [2]) that
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cover these mechanics; however, one major reason for obtaining these probabilities
is to obtain the mean waiting times and queue length. For the closed network, the
mean waiting times can be obtained directly through an iterative procedure, so the
state probabilities are unnecessary for this purpose.

Given the service rates, the actual input rate to a workstation depend on the WIP
level of the closed queueing network. To denote this, let λk(w) denote the arrival rate
into Node k given the WIP level is set to w (i.e., there are w jobs in the network), and
let Wk(w) denote the mean time that a job spends in Node k (queue time plus service
time) given a WIP level of w. Little’s Law can now be used to develop the so-called
Mean Value Algorithm used to determine the cycle time of a closed network. Details
of its derivation can be found in Curry and Feldman [1].

Property 8.5. Mean Value Analysis. Consider a closed network with m nodes
containing wmax jobs. Each node has a single exponential server with mean
service rate 1/μi, for i = 1, · · · ,m, and relative arrival rates given by the m-
dimensioned vector r determined from Property 8.4. The following algorithm
can be used to obtain the mean waiting times for each node.

1. Set Wk(1) = 1/μk for k = 1, · · · ,m and set w = 2.
2. Determine Wk(w) for k = 1, · · · ,m by

Wk(w) =
1
μk

[

1 +
(w−1)rk Wk(w−1)
∑m

j=1 r j Wj(w−1)

]

.

3. If w = wmax, stop; otherwise, increment w by 1 and return to Step 2.

Once the mean waiting times are derived, the mean arrival rate into each node is
obtained by

λk(w) =
wrk

∑n
j=1 r j Wj(w)

. (8.3)

Example 8.5. We continue Example 8.4 and determine waiting times and system
throughput. The relative arrival rates are r = (1, 0.7, 0.86) from Eq. (8.2). These
rates allow the use of Property 8.5 from which the values of Table 8.1 are derived.

Table 8.1 Mean cycle time results (in min.) for Example 8.5

Iteration W1(w) W2(w) W3(w) ∑r j Wj(w)
w = 1 80.0 111.4 64.0 213.0
w = 2 110.0 152.2 80.5 285.8
w = 3 141.6 194.4 95.0 359.4
w = 4 174.6 238.0 107.7 433.7
w = 5 208.8 282.5 118.6 508.6
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Once the mean waiting time for each node is obtained, the arrival rate can be de-
rived through Eq. (8.3). Then with the waiting time and arrival rate determined, the
number of jobs at each node can be determined using Little’s Law (Property 7.1).
The traffic intensity, ρk = λk/μk, (or server utilization) at each node is also an im-
portant measure commonly used to help with identifying bottlenecks. These factors
are presented in Table 8.2. In calculating these quantities, it is important to take care
that the time units of the various quantities are consistent (i.e., be careful not to mix
minutes and hours within the same equation).

Table 8.2 Workstation characteristics for Example 8.5 at a CONWIP level of 5

Measure Node 1 Node 2 Node 3
Wk(5) 208.8 min 282.5 min 118.6 min
λk(5) 0.59/hr 0.41/hr 0.51/hr
Lk(5) 2.1 1.9 1
ρk(5) 0.786 0.767 0.541

��

The Mean Value Analysis Algorithm is relatively easy to implement in Excel
and this is discussed in the Appendix. The algorithm can also be extended to more
general situations like multi-server exponential nodes and non-exponential servers.
The interested reader should refer to Chap. 8 of [1].
• Suggestion: Do Problem 8.5.

8.2 Network Approximations

Many systems that involve networks are not Jackson networks but can be modeled
through approximations. A very common scenario is that instead of each job being
routed through the network according to a Markov chain, there are classes of jobs
where each job within a class has a fixed route. For example, consider a job shop
with two machines. Further suppose that jobs arrive at a rate of 10 per hour, where
arriving jobs always start on machine one, proceed to machine two, then return
to machine one for a final processing step (see the left-hand schematic in Fig. 8.4).
Such a route is deterministic, and thus does not satisfy the Markov assumption (Con-
dition 4) of the Jackson network definition. However, a Jackson network can be used
to approximate a network with deterministic routing by fixing the routing probabili-
ties so that the mean flow rates in the Jackson network are identical to the flow rates
in the network with deterministic routes. In this job shop example, we could assume
that all jobs start at machine one, then there is a 50% probability that a job leaving
machine one exits the system or proceeds to machine two; thus we have the routing
matrix

P =
[

0 0.5
1 0

]

,
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Fig. 8.4 Comparison between a network with deterministic routing and with stochastic routing

governing the flow of jobs within the two-node network (see the right-hand schematic
in Fig. 8.4). Notice that in both networks, an input rate of γ = 10/hr results in a net
flow of 20 per hour into Node 1 and 10 per hour into Node 2. The difficulty with the
Jackson network approximation is that the variances of the two networks will not be
the same.

A Jackson network model will always produce a high variability in flow times;
thus, if flow times are deterministic as in the above example, a Jackson network
model would be inappropriate. However, consider a network system with several
distinct classes. Even if each class has deterministic flow times, the actual flow times
through the network would be random because of the variability in classes. Thus,
when a system contains several different classes, it may be reasonable to model the
aggregate as a Jackson network.

8.2.1 Deterministic Routing with Poisson Input

The purpose of this subsection is to show how to model a network in which there
are several different classes of jobs, where all jobs within one class have a fixed
route through the network. We shall continue to assume an unlimited capacity at
each node. In addition, we assume that the input stream to each node is Poisson.
This is clearly an approximation because as soon as a server is non-exponential, the
departure stream from that server cannot be Poisson even if the input were Pois-
son. However, in this subsection, we shall assume that there are several classes of
jobs so that the input stream to each node is the superposition of several individual
streams yielding a net stream with Poisson characteristics. (It has been shown that
when many independent arrival processes are added together, the resultant arrival
process tends to be Poisson even if the individual processes are not. Poisson streams
also arise in systems with a large number of feedback loops as in semiconductor
manufacturing.) The two main issues we need to deal with are how to obtain each
node’s arrival rate and how to obtain the mean service times.
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Fig. 8.5 Routings within a queueing network containing three classes for Example 8.6

Calculating the Arrival Rate to a Node. We assume that an m-node queueing
network has k classes of jobs. Each class of jobs has associated with it an arrival
rate, γk, and a “routing” vector, (nk,1,nk,2, · · · ,nk,nk), where nk is the total number
of steps within that route. For example, assume that the routing vector for the first
class is (1,2,1). In this case, n1 = 3 and first class jobs start at Node 1, then go to
Node 2, and then back to Node 1 for final processing.

Example 8.6. Consider the network illustrated in Fig. 8.5. It is a queueing network
with three classes of jobs, each class having its own deterministic route. Class 1 jobs
have the routing vector (1,2,3,2) with n1 = 4; Class 2 jobs have the routing vector
(2,3) with n2 = 2; and, Class 3 jobs have the routing vector (1,2,1,3) with n3 = 4.
With deterministic routes it is also easy to determine the total flows through each
node: λ1 = γ1 +2γ3, λ2 = 2γ1 + γ2 + γ3, and λ3 = γ1 + γ2 + γ3. ��

From the example, it is seen that the net arrival rate is obtained primarily by
counting the number of times a path goes through the node. To state this explicitly,
let γk be the arrival rate of class k jobs to the network, and let those jobs have a route
defined by (nk,1,nk,2, · · · ,nk,nk). Let ηk,i be the number of times that route k passes
through Node i; that is,

ηk,i =
nk

∑
�=1

I(i,nk,�) , (8.4)

where I is the identity matrix so that I(i,n) = 1 if and only if i = n. The net arrival
rate to Node i in the network is then

λi =
k

∑
k=1

γk ηk,i , (8.5)

or in matrix notation λλλ = γγγ ηηη .

Calculating the Service Rate at a Node. After the net arrival rate has been deter-
mined, each node in the network can be considered as a separate queueing system.
Although the arrival process is not Poisson, it is assumed to be Poisson based on
the assumption that all arrival streams are composed of a superposition of several
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different arrival streams. Each class of jobs typically has its own distribution for ser-
vice times. Therefore, we need to determine the probability that a given job within
the node is from a particular class. Let qk,i denote the probability that a randomly
chosen job at Node i is from class k; then

qk,i =
γk ηk,i

λi
, (8.6)

where the ηk,i values are determined from Eq. (8.4).

Example 8.7. We return to the network of Example 8.6 and Fig. 8.5. The matrix that
contains the values for ηk,i is given by

node

job 1 2 3

ηηη =
1
2
3

⎡

⎣
1 2 1
0 1 1
2 1 1

⎤

⎦ .

(Note that, in general, the ηηη matrix need not be square.) Assume that γ1 = 10/shift,
γ2 = 20/shift, and γ3 = 50/shift. The application of Eq. (8.5) yields input rates to each
node of λ1 = 110/shift, λ2 = 90/shift, and λ3 = 80/shift. The matrix of probabilities
containing the terms qk,i is given by

q =

⎡

⎣
0.091 0.222 0.125

0 0.222 0.250
0.909 0.556 0.625

⎤

⎦

according to Eq. (8.6). ��

The service time distribution is a mixture of the service times so that the mean
and variance can be determined from Property 1.11 (p. 35) as follows.

Property 8.6. Assume that the mean and variance of the service times at
Node i for jobs of Class k are given by 1/μk,i and σ2

k,i, respectively. Let Si be
a random variable denoting the service time at Node i of a randomly selected
job. Then

E[Si] =
k

∑
k=1

qk,i
1

μk,i

E[S2
i ] =

k

∑
k=1

qk,i (σ2
k,i +(1/μk,i)2) ,

where the qk,i values are determined by Eq. (8.6).
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Flow Time Through a Network. We can now combine Property 8.6 with the
approximation of Property 7.4 to obtain an estimate for the mean flow time of a
job through a non-Jackson network. The two major assumptions are that there is no
queue capacity limitation and there are several classes of jobs arriving to each node
so that arrivals can be approximated by a Poisson process.

Property 8.7. Consider a network containing m nodes and k distinct classes
of jobs. Let Tnet,k be a random variable denoting the time that a k-class job
spends in the network. Define Wq,i,M/M/c to be the mean waiting time in an
M/M/c queue using an arrival rate of λi (Eq. 8.5), a service rate of 1/E[Si]
(from Property 8.6), and a value of c equal to the number of servers at Node
i. Then, the mean cycle time through the network for a job of class k is given
by

E[Tnet,k] ≈
m

∑
i=1

(
1

μk,i
+

E[S2
i ]

2E[Si]2
Wq,i,M/M/c

)

ηk,i ,

where the ηk,i values are determined from Eq. (8.4).

Example 8.8. We illustrate the use of Property 8.7 with a production center consist-
ing of four departments responsible for the following operations: turret lathe (T),
milling machine (M), drill press (D), and inspection (I). There are five different
types of jobs with the routing plan given in Table 8.3 and illustrated in Fig. 8.6.

Table 8.3 Routing plan for Example 8.8

Product Route Production Rate
A T – M – D – I 65 units per 8-hour shift
B M – T – M – D – T – I 45 units per 8-hour shift
C T – M – I 30 units per 8-hour shift
D M – D – T – D – I 75 units per 8-hour shift
E T – M – D – T – I 120 units per 8-hour shift

Each department has only one machine except that there are two inspectors. The
mean and standard deviation of the processing times are as in Table 8.4.

Table 8.4 Service time characteristics (in minutes) for Example 8.8

T M D I
Product Mean StdDev Mean StdDev Mean StdDev Mean StdDev

A 1.3 0.2 1.1 0.3 0.9 0.2 2.1 1.4
B 0.5 0.1 0.6 0.4 1.1 0.3 3.1 2.5
C 1.2 0.5 1.5 0.4 0.0 0.0 1.9 1.1
D 1.1 0.8 1.2 0.4 1.5 0.8 2.8 1.9
E 0.8 0.3 1.0 1.0 1.0 0.5 2.7 2.0
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Fig. 8.6 Individual routes for the queueing network of Example 8.8

We present most of the calculations needed to obtain the mean flow times through
the network by way of several tables. First, the mean production rates for the dif-
ferent classes are converted to a mean hourly arrival rate and these are shown in the
right-hand column of Table 8.5. The numbers of visits to each node are also given in
Table 8.5 using Eq. (8.4) and finally, the net arrival rates to each node are calculated
by Eq. (8.5) and displayed in the final row of the table.

Table 8.5 Values for ηk,i (in main body of table), λi, and γk

Classes Nodes γk (/hr)
T M D I

A 1 1 1 1 8.125
B 2 2 1 1 5.625
C 1 1 0 1 3.750
D 1 1 2 1 9.375
E 2 1 1 1 15.000

λi (/hr) 62.5 47.5 47.5 41.875

Table 8.6 shows the results of using Eq. (8.6) to determine the the probabili-
ties needed to define the first and second moments of the service time. Although
not needed, the squared coefficients of variation of service times are also given for
an intuitive understanding of variability. (Remember that exponential service times
have c2

s = 1 so that knowledge of the squared coefficients of variation should give a
good understanding of variability.)
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Table 8.6 Values for qk,i and the service times moments

Classes Nodes
T M D I

A 0.13 0.171 0.171 0.194
B 0.18 0.237 0.118 0.134
C 0.06 0.079 0 0.090
D 0.15 0.197 0.395 0.224
E 0.48 0.316 0.316 0.358

E[Si] 0.880 1.001 1.192 2.588
E[S2

i ] 1.001 1.483 1.835 10.401
c2

s (i) 0.293 0.480 0.291 0.553

With the mixture probabilities for the service times (i.e., the qk,i values), the
main measures of effectiveness at each node can be calculated. The main quantities
associated with the nodes are in Table 8.7.

Table 8.7 Waiting time in the queue at each node

Nodes
T M D I

arrival rate/hr 62.5 47.5 47.5 41.875
service rate/hr 68.2 59.9 50.3 23.2
number servers 1 1 1 2
Wq,i,M/M/c (min) 9.65 3.84 20.24 11.353
Wq,i (min) 6.24 2.84 13.07 8.82

The final step in the calculation of waiting times are shown in Table 8.8.

Table 8.8 Values for the node waiting times and network flow times

Classes Nodes Tnet,k
T M D I

A 7.54 3.94 13.97 10.92 36.37
B 6.74 3.44 14.17 11.92 46.45
C 7.44 4.34 0 10.72 22.50
D 7.34 4.04 14.57 11.62 52.14
E 7.04 3.84 14.07 11.52 43.51

Notice that the formula for total waiting time within the network of Property 8.7
can be broken into individual waiting times at each node. The formula arises by
determining the waiting time in the queue for an arbitrary job and then adding the
service time for the specific class type. Thus, the time spent by a job of Class k in
each pass through Node i is given by

E[Tk,i] ≈
1

μk,i
+

E[S2
i ]

2E[Si]2
Wq,i,M/M/c . (8.7)



242 8 Queueing Networks

Table 8.8 is constructed using Eq. (8.7) with the final row of Table 8.7. These values
are then multiplied by the values in Table 8.5 to obtain the mean flow time through
the network for each class of jobs (right-hand column of Table 8.8). ��

• Suggestion: Do Problem 8.6.

8.2.2 Deterministic Routing with non-Poisson Input

To obtain some measure of the accuracy of the approximation given in Property 8.7,
a simulation was written of the network contained in Example 8.8. Based on 25
replications of the simulation, the a analytical approximation appears to over es-
timate the waiting times an average of 8-9% per job class. One difficulty is with
the Poisson assumption for the arrival streams. When the Poisson assumption is not
good due to the limited number of feedback routes and a low number of different job
classes, procedures are needed to approximate the squared coefficient of the arrival
streams.

The basic concept for approximating the arrival stream process is a relationship
between the arrival stream to a node, the service characteristics of the node, and the
departure stream from the node. This is given in the following property.

Property 8.8. The squared coefficient of variation of the inter-departure times
for a queueing system with c servers can be approximated by

c2
d ≈ (1−ρ2)c2

a +ρ2 c2
s +

√
c−1√
c

,

where ρ is the traffic intensity for the queueing system.

Because the departure process for an upstream node becomes the arrival process
for the downstream node, Property 8.8 allows modeling the arrival processes as long
as there is some procedure for combining streams and splitting streams.

Splitting Streams. Assume that the squared coefficient of variation is know for
the arrival stream into Node k, and that there are some jobs that leave Node k to next
enter Node j. The (known) squared coefficient of variation for this arrival stream
will be denoted by c2

a,k. Let pk j denote that probability that a randomly chosen job

at Node k will go next to Node j and let c2
d,k, j be a squared coefficient of variation

of the inter-departures along that stream. Then

c2
d,k, j ≈ pk j

[

(1−ρ2)c2
a,k +ρ2

c2
s,k +

√
ck −1

√
ck

]

+1− pk j , (8.8)
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Fig. 8.7 Routings within a queueing network containing three classes for Example 8.9

where c2
s,k is determined by the moments obtained through Property 8.6.

Merging Streams. Assume that ik is the total number of nodes that feed directly
into Node k. From Eq. (8.8), it should be possible to determine the squared coeffi-
cient of variation along the stream from Node i to Node k, namely, c2

d,i,k. In addition,
based on the raw data, it should also be possible to determine the mean rate of depar-
tures along that stream which we denote by λi,k. The squared coefficient of variation
for the net arrival stream to Node k is the weighted average of the individual squared
coefficients of variation. In other words,

c2
a,k ≈

ik

∑
i=1

λi,k c2
d,i,k

λk
(8.9)

where λk is the mean rate of arrivals to Node k (Eq. 8.5).

Example 8.9. Consider the network shown in Fig. 8.7 for a manufacturing firm that
operates 24 hours per day. Each node refers to a different workstation that acts as a
single-server queueing system with characteristics as shown in Table 8.9.

Table 8.9 Arrival rates (/day) and service time characteristics (hr) for Example 8.9

Node 1 Node 2 Node 3
Product γk Mean StdDev Mean StdDev Mean StdDev
Class 1 9 1.25 0.4 0.8 0.3 1.2 0.5
Class 2 8 – – 0.75 0.4 1.25 0.3
Class 3 10 1.0 0.5 0.6 0.4 – –

Using the same operations as in Example 8.8, it is not difficult to obtain the work-
station characteristics as shown in Table 8.10. After the service time characteristics
for each node have been calculated, the arrival stream characteristics must be de-
termined using Property 8.8 and Eqs. (8.8) and (8.9). Due to the structure of this
network, it is possible to do this node by node; however, the technique we use here
would be unworkable if there were any feedback loops in the network.
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Table 8.10 Characteristics for each node of Example 8.9

Node 1 Node 2 Node 3
λi 19/day 27/day 17/day

E[Si] 1.1184 hr 0.7111 hr 1.2235 hr
ρi 0.8854 0.8000 0.8667

E[S2
i ] 1.4738 hr2 0.65 hr2 1.6724 hr2

c2
s,i 0.1782 0.2854 0.1171

Since Node 1 has only Poisson arrival streams, it follows that c2
a,1 = 1; however,

because the service times are not exponential, the departures from Node 1 will not
be Poisson. The application of Property 8.8 yields

c2
d,1 = (1−0.88542)×1 + 0.88542 ×0.1782 = 0.3558 .

The input stream to Node 2 is a merging of the departures from Node 1 having
a squared coefficient of variation of 0.3558 and an external Poisson arrival process
with squared coefficient of variation of 1.0. Taking a weighted average based on the
arrival rates, the application of Eq. (8.9) and Property 8.8 yields the following for
Node 2:

c2
a,2 =

19
27

0.3558 +
8

27
1.0 = 0.5467

c2
d,2 = (1−0.82)×0.5467 + 0.82 ×0.2854 = 0.3795 .

There is a branch at the output side of Node 2, since some of the departures
(specifically, 10/27 of the departures) branch to the outside, and some (namely,
17/27 of the departures) go to Node 3. Thus, the arrivals to Node 3 have a squared
coefficient of variation, derived from Eq. (8.8), of

c2
a,3 =

17
27

0.3795 + 1− 17
27

= 0.6093 .

The approximation of Property 7.4 can now be applied to each node. The form
useful for a single server queue is

Wq,G/G/1 ≈
c2

a + c2
s

2
ρ

1−ρ
E[S] . (8.10)

The results of using Eq. (8.10) in order to obtain the waiting times per class of
jobs are in Table 8.11. The final column of the table gives the cycle time within the
network. Notice that Little’s Law can be applied to determine that the average WIP
of Class 1 jobs in the network is 4.655, it is 2.024 for Class 2 jobs, and 3.281 for
Class 3 jobs. Thus the average number of jobs within the network is 9.96. ��

For a network that contains feedback loops, the approach of Example 8.9 will not
work because of the circular dependencies. In such a case, the squared coefficients
of variations for all nodes must be obtained simultaneously through the solution of
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Table 8.11 Waiting times (in hours) for Example 8.9

Node 1 Node 2 Node 3 Network
Wq,G/G/1 5.0914 1.1834 2.8886

W -Class 1 6.3414 1.9834 4.0886 12.4134
W -Class 2 0 1.9334 4.1386 6.0720
W -Class 3 6.0914 1.7834 0 7.8748

a system of equations. Such procedures are beyond the scope of this textbook but
are found in detail in Curry and Feldman [1, Chaps. 5 and 6].

Appendix

Excel is an excellent tool to use for the Mean Value Analysis. The first step is to
calculate the relative arrival rates which requires a matrix inverse (see the Appendix
of Chap. 5), and the second step is the implementation of the algorithm given in
Property 8.5.

To illustrate the use of Excel, we return to Example 8.5 and place the given data
(together with an identity matrix) onto the worksheet according to the following.

A B C D E F G
1 Node 1 Node 2 Node 3
2 Routing Matrix Identity
3 Node 1 0.0 0.7 0.3 1 0
4 Node 2 0.2 0.0 0.8 0 1
5 Node 3 1.0 0.0 0.0
6 Mean Service Times
7 80 111.4 64

For determining the relative arrival rates according to Property 8.4, type and cen-
ter Relative Arrival Rates across Cells B8:D8; type 1 in Cell B9; high-
light Cells C9:D9; type

=MMULT(C3:D3, MINVERSE(F3:G4 - C4:D5))

and hit <enter> while holding down the <shift> and <ctrl> keys. The vector
r appears in Cells B9:D9.

The Mean Value Analysis Algorithm is obtained as follows.

A B C D
10 WIP Level Mean Value Algorithm
11 1 =B7 =C7 =D7

It is important to be careful of the location of the dollar signs ($) in the following
instructions: in Cell E10, type Sum; in Cell E11, type

=SUMPRODUCT($B$9:$D$9, B11:D11)
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Fig. 8.8 M/M/1 queueing
system with Bernoulli feed-
back
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Fig. 8.9 Two-node queueing system with one feedback loop

in Cell A12, type =A11+1; and finally in Cell B12, type

=B$7*(1 + $A11*B$9*B11/$E11) .

Highlight Cells E11:E12 and do a “fill down” (namely, use <ctrl>+d) and high-
light Cells B12:D12 and do a “fill right” (namely, use <ctrl>+r). (In case you are
interested in such things, instead of doing the “fill down” to place the proper for-
mula in Cell E12, it is also obtained using a simple “copy-paste” step or by placing
the cursor in Cell E12 in hitting the <ctrl>+<shift>+<"> keys.) The correct
formulas for the Mean Value Analysis Algorithm are now in Cells A12:E12, so the
mean waiting times can easily be obtained for whatever CONWIP level is desired by
copying the formulas down for the proper number of rows. Since Example 8.5 was
for a CONWIP level of 5, the algorithm is completed by highlighting Cells A12:E15
and doing a “fill down”.

Problems

8.1. The simplest type of queueing network is an M/M/1 queueing system with
Bernoulli feedback. Model the queueing system illustrated in Fig. 8.8 and answer
the following questions.
(a) What is the probability that the system is empty?
(b) What is the expected number of customers in the system?
(c) What is the expected amount of time that a customer will spend in the system?
(d) What is the probability that a customer will pass through the server exactly
twice?
(e) What is the expected number of times that a customer will pass through the
server?

8.2. Consider the queueing network illustrated in Fig. 8.9. The first node of the net-
work is an M/M/1 system and the second node of the network is an M/M/2 system.
Answer the following questions.
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(a) What is the probability that Node 1 is empty?
(b) What is the probability that the entire network is empty?
(c) What is the probability that there is exactly one job in Node 1’s queue?
(d) What is the probability that there is exactly one job within the network?
(e) What is the expected number of jobs within the network?
(f) What is the expected amount of time that an arbitrarily selected job will spend in
the system?
(f) There is a cost of $100 per hour that each job spends within the system. A pro-
posal has been made that a third node could be added to the system. The third node
would be an M/M/c system, and with the addition of this node, there would be no
feedback. Each server added to the third node operates at a rate of 20 per hour and
costs $200 per hour. Is the third node worthwhile? And if so, how many servers
should the third node use?

8.3. Customers arrive to a bank according to a Poisson process with a mean rate of
24 customers per hour. Customers go to the receptionist 20% of the time to describe
the type of transaction they want to make, 60% of the customers go directly to a
teller for common bank transactions, and the rest go directly to see a bank counselor
for service. After talking to the receptionist, 75% of the customers are sent to a
teller, 20% to a counselor and 5% leave the bank. After completing service at a
teller, 90% of the customers leave the bank while the rest go to see a bank counselor.
A counselor can handle all the requests for their customers, so that when a customer
is finished with a counselor, the customer leaves the bank.

There is one receptionist who takes an exponential amount of time with each
customer averaging 5 minutes per customer. There are three tellers, each with an
exponential service time with mean 6 minutes. There are two bank counselors that
serve customers with an exponential service time with an average 12 minutes each.
Assume that the Jackson network assumptions are appropriate and respond to the
following.
(a) Draw a block diagram to represent the network of the bank service.
(b) Write the routing matrix for the Jackson network.
(c) For a customer who desires a teller, what is the mean amount of time spent in
line waiting for the teller?
(d) What is the average number of customers in the bank?
(e) Compute the mean flow time through the network; that is, compute the average
time that a customer spends inside the bank.
(f) Bank counselors often have to make telephone calls to potential customers. The
bank president wants to know, on the average, the amount of time per hour that at
least one counselor is available to make telephone calls.
(g) Answer parts (a) through (d) again with one change in the customer flow dynam-
ics. Assume that after spending time with a counselor, 15% of the customers go to
a teller, and 85% leave the bank. (Thus, for example, a small fraction of customers
go to a teller, then talk to a counselor, and then return to a teller.)

8.4. A switchboard receptionist receives a number of requests in a day to ask trained
personnel questions about different areas of computer software. Clients explain their
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problem to the receptionist who routes the calls to whomever is the most knowl-
edgeable consultant in that area. There are four consultants with different areas of
expertise. Two of the consultants (A) can handle questions regarding problems on
how to operate the software, one consultant (B) can answer questions related to
interaction conflicts with other software packages, and the other consultant (C) can
help with software-hardware questions. The receptionist tries to route the calls to the
correct person, but the question sometimes cannot be answered and the consultant
may suggest another consultant. When a switch is made from one consultant to an-
other, there is a equal probability that the consultant will suggest either of the other
two consultants. Calls arrive to the switchboard according to a Poisson distribution
with mean of 10 calls per hour. It takes the receptionist an exponential amount of
time with mean of 1.5 minutes to process a call. The receptionist routes 50% of
the calls to consultants A, 25% to consultant B, 15% to consultant C, and 10% of
the calls cannot be helped by a consultant. It takes each consultant an exponential
amount of time to process a call. The average service time for each consultant A
is 15 minutes, 18 minutes for consultant B, and 22 minutes for consultant C. Of
the customers routed to each consultant 15% are sent to another consultant, 5% are
sent back to the receptionist, and the rest get their answer and go out of the system.
Assume that the telephone lines can hold an unlimited number of callers, and that
the receptionist treats each call as if it were a new call.
(a) Compute the expected length of time that a customer has to wait before his/her
call is answered by the receptionist.
(b) Compute the average number of phone calls in the system.
(c) Compute the expected time a caller spends in the network.

8.5. Consider the manufacturing facility of Example 8.4. In order to reduce the feed-
back from the installation of electrical components to the machine room, the engi-
neering department has suggested a preparation step. In other words, the proposed
system has all jobs starting in a preparation room where a single worker prepares
each job for machining. The time needed for preparation is exponentially distributed
with a mean of 15 minutes. After preparation, the job goes to the machine room.
After the machine room, 70% go to the electrical components room and 30% go to
finishing. With this change, only 5% (instead of 20%) of the jobs are returned to the
machine room from the electrical components room. Is this extra step worthwhile?

8.6. Consider the problem given in Example 8.8. The manager of the production
center has told a consultant that Product D could also be made by eliminating the
first drilling operation. However, the manager estimates that if this is the case about
3% of the production will be lost to defective production. The cost of scrapping a
unit of product D is $50, but the work-in-process (WIP) costs are $1/hr, $1.15/hr,
$1.25/hr, $5/hr and $1/hr for products A, B, C, D and E, respectively. (For example,
if we were to follow one item of part C through the manufacturing system and
discover that it took 5 hours, then that part would incur a WIP carrying cost of
$6.25.)
(a) In the old system (using both drilling operations for product D), what is the size
of the WIP by part type?
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(b) How will the proposed change to the process of Product D affect the length of
the production time for the other products?
(c) Is it profitable to modify the process for Product D?
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Chapter 9
Event-Driven Simulation and Output Analyses

The versatility and popularity of discrete simulation makes simulation modeling a
very powerful and, sometimes, dangerous tool. Discrete simulation is powerful be-
cause it can be used to model a wide diversity of situations, and it may be dangerous
because its relative simplicity may lead to misuse and misinterpretation of results.
However, with good training in the use of simulation and careful statistical analysis,
discrete simulation can be used for great benefit.

In this chapter, we build upon the basics that were introduced in Chap. 2. A key
feature that was postponed in Chap. 2 is the requirement to deal with the timing of
various concurrent activities. We introduce the major concepts through the use of
simple examples that can be generated by hand.

9.1 Event-Driven Simulations

When the timing of activities is a component of a system being simulated, a method
is needed to maintain and increment time in a dynamic fashion. For example, sup-
pose we wish to simulate a queueing system with five servers. The five-server sys-
tem, when all servers are full, would have six different activities (five service com-
pletions and one arrival) to maintain. In order to correctly and efficiently handle the
many activities in a complex system, a simulation clock is maintained and updated
as events occur. In other words, if we are simulating what happens within a manu-
facturing plant during a 10-hour day, the simulation study might take one second of
real time to execute, but the simulation clock will show an elapsed time of 10 hours.

The movement of the simulation clock is extremely critical, and there are two
common methods for updating time: (1) the simulation clock could be updated a
fixed amount at each increment or (2) the clock could be updated whenever some-
thing happened to change the status of the system. The advantage of the first method
is that it is conceptually simple; the disadvantage is that if the increment is too small
then there are inefficiencies in “wasted” calculations, and if the increment is too
large then there are mathematical difficulties in representing everything that happens

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 251
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Fig. 9.1 Schematic of the
manufacturing process for
Example 9.1
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during the increment. Therefore, most simulation procedures are based on the sec-
ond method of time management, called event-driven simulations. In other words,
the simulation clock is updated whenever an event occurs that might change the
system. As we illustrate this concept with the following examples, observe that the
simulation-by-hand is simply building tables of information. If our purpose were to
develop a technique for simulation-by-hand, the following procedure would contain
some clearly redundant steps; however, our purpose is to illustrate some of the ba-
sic steps that are necessary for simulating complex systems. Therefore, we suggest
that you follow the basic steps that are outlined below even though shortcuts can be
easily identified.

Example 9.1. Consider a simplified manufacturing process (illustrated in Fig. 9.1)
where widgets are processed through a production center. One widget arrives at the
facility every 12 minutes; however, because of poor quality control, 25% of these
widgets are defective and must be scrapped. The remaining 75% of the widgets are
sent to a work station where they are processed one at a time through a single ma-
chine. The chemical composition of the widgets varies; thus, the processing time re-
quired on the machine varies. Twenty-five percent of the widgets require 17 minutes
of machining time, 50% of the widgets require 16 minutes, 12.5% of the widgets re-
quire 15 minutes, and 12.5% require 14 minutes. While a widget is on the machine,
other widgets that arrive at the work station are placed in a special holding area un-
til the widget being processed is completed and removed. The next widget in line is
then placed on the machine and the process is repeated. Widgets in the holding area
are said to be in a queue (waiting line) waiting for the machine to become available.
To characterize this process in traditional queueing terminology, we would say that
we are dealing with a single server queueing system (the machining process oper-
ates on widgets one at a time) having a deterministic arrival process, random service
times, and utilizing a first-in first-out selection scheme (FIFO queueing discipline).

We wish to simulate this production center in order to answer the question, “What
is the long-run average number of widgets in the facility?” For this system, two ran-
dom variables must be simulated (see Table 9.1). The status of arriving widgets (de-
fective or not defective) will be decided by tossing two fair coins: two tails indicate
scrap (25% of the outcomes) and any other combination indicates a good widget.
(In Chap. 2, we discussed reproducing randomness with computer generated ran-
dom variates; however, for purposes of the examples in this chapter, we return to
simulation-by-hand.) The second random variable, namely the machining time, will
be decided by tossing three fair coins: three tails (with a chance of 1 in 8 or 12.5%)
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Table 9.1 Mapping of random value to simulated outcome in Example 9.1

Random Simulated Random Simulated
Value Outcome Value Outcome
T-T Scrap T-T-T 14 min
T-H Good H-H-H 15 min
H-T Good T-H-T 16 min
H-H Good T-T-H 16 min

H-T-T 16 min
T-H-H 16 min
H-H-T 17 min
H-T-H 17 min

will indicate 14 minutes, three heads (again, 1 chance in 8) will indicate 15 minutes,
the combinations THT, TTH, HTT, THH (with a chance of 4 in 8 or 50%) will in-
dicate 16 minutes, and HHT, HTH (with a chance of 2 in 8 or 25%) will indicate 17
minutes of machining time.

Our simulation is actually a description of the processing of widgets within the
manufacturing system. The term “entity” is used in simulations to denote the generic
objects that “move” through a system and are operated upon by the system. Hence,
a widget is an example of an entity. If a simulation was designed for the movement
of people within a bank, the people would be called entities. If a simulation was
designed to model packets of bits moving within a communication network, the
packets would be called entities. Thus, a simulation deals with entities and events
(events are things that happen that change the state of the system). In the widget
example, there are two types of events: arrivals and service completions. (Departures
from the system are also events, but in our example, departures need not be identified
separately because they occur at the same time as service completions.) Events are
important because it is events that move the simulation clock. As the simulation
progresses, at least two tables must be maintained: a table describing the state of
the manufacturing process at each point in time and a table keeping track of all
scheduled future events. It is the table of future events (called the “Future Events
List”) that will drive the simulation.

A simulation of a large system involves many different types of lists. In this
chapter, our goal is to illustrate only a few of the basic types of lists. For example,
an understanding of the basic mechanics of the Future Events List is essential for
a well-designed simulation model. In the next example, some additional lists and
concepts will be discussed.

A simulation begins by initializing the Future Events List. For this problem, we
assume that an entity (i.e., widget) arrives to the system at time 0, so the Future
Events List is initialized as shown in Table 9.2. The first column in the Future Events
List indicates the time that the entity is to be removed from the list and added to the
system, thus moving the simulation clock to the indicated time. (In this case, we
move the clock from no time to time zero.) The second column gives the entity
number (entities are numbered sequentially as they are created), and the third col-
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Table 9.2 Future Events List: initialization
Future Events List

time entity no. type
0 1 a

umn indicates the type of event that is the cause for the clock update. In the widget
example, there are two types of events: arrivals (a) and service completions (s).

With the initialization of the Future Events List, we are ready to begin the simu-
lation. Conceptually, we remove the entity from the Future Events List and update
the simulation clock accordingly. The table describing the state of the system is then
updated as shown in Table 9.3. Column 1 designates the clock time as determined

Table 9.3 State of the system after time 0

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Time Two Good Number Three Time Sum of
time of next coin or bad in coin service time ×

event arrival toss item system toss complete number
0 a 12 TT bad 0 – – 0

from the Future Events List. If the event causing the advance of the simulation clock
is an arrival, the first “order of business” is to determine the next arrival time. As
soon as this next arrival time is determined, the entity that is scheduled to arrive at
that time is placed in the Future Events List. In this example, there are no calcula-
tions for determining the next arrival time, but the general principle is important:
as soon as an arrival occurs, the next arrival time is immediately determined and a
new entity is placed on the Future Events List. After determining the next arrival,
we return to describing everything that happens at the current time. Two coins are
tossed to determine if the arriving widget will be scrapped or processed. Since the
coin toss results in two tails, the widget is bad and is not accepted for processing
(Columns 4 through 6). Since the entity does not stay in the system, the description
of the system at time 0 is as depicted in Table 9.3; thus, we are ready to update the
clock. We look to the Future Events List Table 9.4 in order to increment the clock.
(A description of Columns 8 and 9 will be delayed until more data are generated so
that the explanation will be easier.)

Table 9.4 Future Events List: after time 0
Future Events List

time entity no. type
0 1 a

12 2 a

Notice that the first item on the Future Events List (as of time 0) is crossed off
indicating that the entity was removed (to start the simulation). We now remove the
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next entity from the list in order to update (i.e., advance the simulation clock) the
table (Table 9.5) giving the state of the system. The entity is added to Table 9.5
representing an arriving widget. As always, as soon as an arrival occurs, the next

Table 9.5 State of the system after time 12

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Time Two Good Number Three Time Sum of
time of next coin or bad in coin service time ×

event arrival toss item system toss complete number
0 a 12 TT bad 0 – – 0
12 a 24 TH good 1 THT 28 0

arrival time is determined (Row 2, Column 3) and the new entity is placed on the
Future Events List (Entity 3 in Table 9.6). Next, we toss two coins to determine

Table 9.6 Future Events List: after time 12
Future Events List

time entity no. type
0 1 a

12 2 a
24 3 a
28 2 s

the acceptability of the arriving entity. Since a tail-head occurred and the widget
is considered good, it enters the production facility (Row 2, Column 6) and the
machining process begins. It is now necessary to determine how long the widget
will be on the machine. The result of tossing three coins (Row 2, Column 7), is
a 16-minute machining process. Since the current clock is 12, the 16 minutes are
added to the current time and the widget is scheduled to finish the machining process
and leave the facility at time 12+16=28. Since this is a future event (with respect to
a clock time of 12), it is placed on the Future Events List (Table 9.6). All of the
activities that occur at time 12 have been completed so it is time to return to the
Future Events List (Table 9.6) to increment the simulation clock. Note that during
time 12, two events were placed on the Future Events List: the arrival to occur at
time 24 and the service completion that will occur at time 28.

The next (future) event within the Future Events List, as the list stands after
time 12, is the arrival of Entity 3 that occurs at time 24; thus, Entity 3 is removed
from the Future Events List and placed in the table giving the current state of the
system (Table 9.7). Before processing Entity 3, the next arrival event is scheduled
yielding Entity 4 which is immediately placed on the Future Events List (Table 9.8).
Returning to Entity 3, we see that it is considered acceptable for machining after the
two coin toss; however, this time the machine is busy so the widget (Entity 3) must
wait until the processing of Entity 2 is finished. Note that the number in the system
(Row 3, Column 6, Table 9.7) is updated to 2, but a service time is not determined
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Table 9.7 State of the system after time 24

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Time Two Good Number Three Time Sum of
time of next coin or bad in coin depart time ×

event arrival toss item system toss system number
0 a 12 TT bad 0 – – 0
12 a 24 TH good 1 THT 28 0
24 a 36 HH good 2 – – 12

until the widget is actually placed on the machine. In other words, although Entity 3
is waiting in a queue for the server to become available, we do not yet know when
the entity will leave the system, so it is not yet placed on the Future Events List
(Table 9.8).

Table 9.8 Future Events List: after time 24
Future Events List

time entity no. type
0 1 a

12 2 a
24 3 a
28 2 s
36 4 a

The last column in the table used to describe the state of the system (as in Ta-
ble 9.7) is used to keep track of the (time-weighted) average number of widgets in
the system. The time-averaged number of widgets is determined by summing the
number of widgets within the facility multiplied by the length of time each widget
spends in the facility and then dividing by the total length of time. At time 24, one
item has been in the system for 12 minutes so the last column of Table 9.7 contains
a 12. To help understand this averaging process, consider Fig. 9.2. It represents a
graph of the number in the system versus time for the first 106 minutes. An estimate
for the average number of entities in the system is calculated by taking the area un-
der that graph and dividing it by the total time of the graph. Therefore, if we wish to
determine the average number in the system, the main quantity that must be main-
tained is the area under the graph. Each time the clock advances, a new rectangle of
area is added to the total area, and the accumulation of the area of these rectangles is
maintained in the last column. Note that the accumulation of area is accomplished
by looking backwards. Thus, the 12 in Row 3, Column 9 is the area under the curve
in Fig. 9.2 from time 0 through time 24 (or equivalently, the area of rectangle A in
the figure).

To continue the simulation, we again look for the time that the next change in
the system will occur (Table 9.8). Thus, the clock is advanced to time 28. The event
causing the advance of the clock is a service completion, and thus the widget being
processed leaves the system and the widget in the queue (Entity 3) is placed on the
machine. Three coins are tossed to determine the processing time, and since they



9.1 Event-Driven Simulations 257

A B

12 24 36 48 60 72 84 9628 43 57 73 90 106
time

number of
widgets

Fig. 9.2 Plot of the data from Table 9.11 to illustrate that the average number of entities in the
system equals the area under the curve divided by the length (time) of the curve

come up head-head-head, we assign 15 minutes of machining time to this widget.
The 15 minutes of machining time is added to the current clock time of 28 minutes,
and we record in Column 8 (and in the Future Events List) that the widget will leave
the facility at time 43. To obtain the number in the last column (Row 4, Column
9, Table 9.9), we need to multiply the time increment by the number in the system

Table 9.9 State of the system after time 28

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Time Two Good Number Three Time Sum of
time of next coin or bad in coin service time ×

event arrival toss item system toss complete number
0 a 12 TT bad 0 – – 0
12 a 24 TH good 1 THT 28 0
24 a 36 HH good 2 – – 12
28 s – – – 1 HHH 43 20

(4×2) and add it to the previous total. Or equivalently, we calculate the area of the
rectangle B in Fig. 9.2 and add it to the previous area yielding a current total area of
20. The Future Events List at this point is shown in Table 9.10.

Table 9.10 Future Events List: after time 28
Future Events List

time entity no. type
0 1 a

12 2 a
24 3 a
28 2 s
36 4 a
43 3 s

As a summary, Table 9.11 shows the updating of the state of the system for the
first 106 minutes. As illustrated above, the process is to completely describe the
state of the system at a particular time. During that description, one or more future
events will become known, and those will be placed on the Future Events List. After
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completely describing the state of the system, the next event on the Future Events
List is removed and the simulation clock is updated accordingly.

Table 9.11 Simulated production process for 106 minutes

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Time Two Good Number Three Time Sum of
time of next coin or bad in coin service time ×

event arrival toss item system toss complete number
0 a 12 TT bad 0 – – 0
12 a 24 TH good 1 THT 28 0
24 a 36 HH good 2 – – 12
28 s – – – 1 HHH 43 20
36 a 48 HT good 2 – – 28
43 s – – – 1 TTT 57 42
48 a 60 HH good 2 – – 47
57 s – – – 1 THH 73 65
60 a 72 TT bad 1 – – 68
72 a 84 HT good 2 – – 80
73 s – – – 1 HTH 90 82
84 a 96 TH good 2 – – 93
90 s – – – 1 HTT 106 105
96 a 108 TT bad 1 – – 111

106 s – – – 0 – – 121

The final sum in the last column equals 121, so the estimate for the average num-
ber of widgets in the facility is 121/106 = 1.14. To understand this average, assume
that the system is observed at 100 random points in time. Each time that the system
is observed, the number of entities in the system is recorded. After the 100 observa-
tions are finished, we take the average of the resulting 100 numbers. This average
should be close to the 1.14. (Actually, the 1.14 will have very little significance be-
cause the simulation must be run for a long time before the estimate is good.) Such
an estimate is highly variable unless it involves a large number of entities. This again
emphasizes the fact that a simulation is a statistical experiment, and the final num-
bers are only estimates of the desired information, not actual values. ��

Example 9.2. Consider a bank, illustrated in Fig. 9.3, having two drive-in windows
with one queue. (That is, waiting cars form one line, and the car at the head of the
line will proceed to whichever window first becomes available.) There are two types
of customers who come to the bank: customers with personal accounts and cus-
tomers with commercial accounts. The time between personal-account customers
coming to the bank for drive-in window service is 3 minutes with probability 0.5
or 5 minutes with probability 0.5. The length of time each car spends in front of
the drive-in window varies and is 7 or 9 minutes with a 0.50 probability for each
possibility. The time between arrivals of commercial-account customers is 8 min-
utes with probability 0.5 and 11 minutes with probability 0.5. The length of time
that a commercial customer spends in front of the drive-in window is either 10 or
12 minutes with a 0.50 probability for each possibility. We would like to simulate
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this process with the purpose of determining the average length of time that a cus-
tomer spends in the system. We shall again use a coin toss to reproduce the relevant
random events letting a tail represent the smaller number and a head represent the
larger number.

There are two complications in simulating this system as compared to the pre-
vious example. First, there are two arrival processes: one arrival stream of entities
representing personal-account customers, and the other arrival stream of entities
representing commercial-account customers. Second, in order to collect data on the
time each entity spends in the system, we need to mark on the entity the time at
which that entity enters the system. When the entity leaves the system, we will sub-
tract the entry time stored on the entity from the current clock time, thus obtaining
the total time the entity spent in the system.

As before, we start by initializing the Future Events List; that is, each arrival
stream generates its first arriving entity and places the entity on the list (Table 9.12).
In this example, lower-case letters represent personal-account customers, and upper-
case letters represent commercial customers.

Table 9.12 Future Events List: initialization
Future Events List

time entity no. type
0 1 a
0 2 A

The simulation begins by taking the first entity off the Future Events List and
recording the state of the system at the indicated time. In case of a tie (two or more
events which are scheduled to come off the Future Events List at the same time), it
does not matter which entity is chosen.

Table 9.13 State of the system after first entity processed

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Coin Time Number Coin Time Sum of Sum of
time of toss next in toss service number times in

event arrival system complete departs system
0 a1 T 3 1 H 9 0 0
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In the table describing the state of the system (Table 9.13), Column 2 not only
contains the type of event causing the increment to the simulation clock, but also
contains the entity number as a subscript to help keep track of the entities. After
recording that the entity has entered the system (Column 5), the (simulation clock)
time at which the entity entered the system is recorded in an attribute.

The concept of an attribute is very important for simulations. An attribute is a lo-
cal variable unique to each entity. For example, in some circumstance, we may want
entities to represent people and record a random weight and height for each entity.
In such a case, we would define two attributes in which the values of the weight and
height random variables would be stored. In our drive-in window banking example,
we want to record the time of entry for each entity. To do this, we define an attribute
and as soon as the entity enters the system, we record the value of the simulation
clock in that attribute. Now, in addition to the two previously defined lists, we add
a third one called an Entities List to hold the value of the attribute for each entity.
The Entities List (Table 9.14) and Future Events List (Table 9.15) are shown as they
would appear after processing the first entity.

Table 9.14 Entities List: after first entity processed

Entities List
entity value of

number attribute
1 0

Table 9.15 Future Events List: after first entity processed

Future Events List
time entity no. type

0 1 a
0 2 A
3 3 a
9 1 s

We continue the simulation by processing entities one-at-a-time in a similar man-
ner as in the previous section. The following tables are written after simulating the
arriving and processing of customers for 16 minutes. As you look at Tables 9.16–
9.18, there are several important observations to make. In the processing of the first
two entities (Rows 1 and 2, Table 9.16), random service times are generated because
there are two drive-in windows so both arriving entities immediately proceed to the
window. However, there is no service time generated in the third row because that
entity enters a queue; thus its service will not be known until after a service comple-
tion occurs. At time 9 Entity 1 departs, and the queued entity enters the server (i.e.,
gets in front of the drive-in window). Thus, a service time is generated in Row 5.
The next service completion occurs at time 12. The departing entity (i.e., Entity 2)
represents a commercial-account customer, but the random service time generated
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Table 9.16 State of the system after time 16

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Clock Type Coin Time Number Coin Time Sum of Sum of
time of toss next in toss service number times in

event arrival system complete departs system
0 a1 T 3 1 H 9 0 0
0 A2 H 11 2 H 12 0 0
3 a3 H 8 3 – – 0 0
8 a5 T 11 4 – – 0 0
9 s1 – – 3 T 16 1 9
11 A4 H 22 4 – – 1 9
11 a6 H 16 5 – – 1 9
12 S2 – – 4 H 21 2 21
16 s3 – – 3 T 26 3 34
16 a8 H 21 4 – – 3 34

while the clock is at time 12 is for a personal-account customer because it is Entity 5
that is next in line. Thus, it is important to keep track of which entity came first to
a queue. If there are several different types of entities within a simulation, it can
become complicated keeping track of which type of entity will next perform a par-
ticular action. This is an advantage of special simulation languages (as compared to
a language like C or Java); the languages designed specifically for simulation take
care of much of the bookkeeping automatically.

Table 9.17 Entities List: after time 16
Entities List

entity value of
number attribute

1 0
2 0
3 3
4 11
5 8
6 11
8 16

At time 9, when Entity 1 departs, we look at its attribute (in the Entities List
Table) to determine when it arrived so that the total waiting time can be determined.
This also occurs at time 12 and time 16. For example, consider time 16. It is Entity 3
that is departing, so when it departs we observe from Table 9.17 that Entity 3 arrived
at time 3, and since the current time is 16, the total time in the system is 13. The
value of 13 is added (Column 9) to the previous sum of 21 yielding a new total of
34. If the simulation were to end after time 16, our estimate for the average time in
the system would be the ratio of Column 9 to Column 8, or 34/3 = 11.333 minutes.

Notice that the Future Events List, in Table 9.18, is arranged in the order in which
the events were generated. To determine which event to chose next, we search all the
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Table 9.18 Future Events List: after time 16
Future Events List

time entity no. type
0 1 a
0 2 A
3 3 a
9 1 s

11 4 A
8 5 a

11 6 a
12 2 S
16 3 s
22 7 A
16 8 a
21 5 s
26 4 S
21 7 a

future events and select the one with the minimum time. In a computer, the computer
automatically deletes those entities that we have crossed out, and whenever an entity
is placed in the list, the list is sorted so that the first entity always has the minimum
time. ��

• Suggestion: Do Problems 9.1–9.6.

9.2 Statistical Analysis of Output

Simulation modeling is a very powerful tool for analysis that can be learned by
most technically inclined individuals and, thus, its use has become widespread. The
typical approach is to learn the basic simulation concepts and a simulation lan-
guage, but pay very little attention to the proper analysis of the output. The result
is that many simulation studies are performed improperly. Simulation programs do
not serve much purpose without a proper interpretation of the output. In fact, an
improper understanding of the results of a simulation can be detrimental in that the
analysis could lead to an incorrect decision. Therefore, now that the basic concepts
of simulation have been introduced, it is necessary that the analysis of the output be
discussed.

The reason that the output analysis of simulation is often given only a cursory re-
view is that output analysis is more difficult than simple programming. Furthermore,
there remain unanswered questions in the area of output analysis. In this section, we
discuss enough of the concepts to equip the analyst with the minimum set of tools.
We caution that there is much more to this area than we are able to cover at the level
of this introductory text. Many of the concepts presented here are based on the text
by Law [1] which we recommend for further reading.
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Simulation output can be divided into two categories: terminating simulations
and steady-state simulations. A terminating simulation is one in which there is a
fixed time reference of interest. For example, assume we would like to simulate
customer traffic within a bank that is open from 9:00 AM until 3:00 PM five days a
week. Because the time frame if fixed and each day starts as a new day, this would
be called a terminating simulation. Steady-state simulations do not have a fixed
length of time; they deal with questions of long-run behavior. If we assume that the
widgets from the Example 9.1 are produced 24 hours a day seven days a week, then
questions dealing with the long-run behavior of the process would be of interest.
A less obvious example is a manufacturing facility that is open 8 hours per day;
however, if each day begins as the previous day ends, this would be an example of a
steady-state simulation. Output analyses of terminating and steady-state simulations
are considered separately.

9.2.1 Terminating Simulations

Consider a small service station with only one gasoline pump located along a major
road leading into a large metropolitan area. It is open from 6:00 AM to 10:00 PM
every day, with a rush hour occurring from 4:00 PM to 6:00 PM. (Access to the
station is difficult for people going into the city; therefore, a morning rush hour does
not cause congestion at the gasoline pump.) Because of space limitations, there is
room for only four customers in the station; in other words, if one customer is at
the pump, a maximum of three vehicles can be waiting. The owner of the station
is concerned that too many customers are lost because people find the station full;
therefore, a simulation study is desired to determine how many customers are lost
due to the limited capacity. If the number lost is significant, the owner will consider
purchasing a second pump. All interarrival times are observed to be exponentially
distributed random variables, with an average of 6 arrivals per hour from 6:00 AM
to 4:00 PM, 20 per hour from 4:00 PM to 6:00 PM, and 6 per hour from 6:00 PM to
10:00 PM. The time each customer spends in front of the pump is also exponentially
distributed, with an average time of 4 minutes. (In other words, we are interested in
an M/M/1/4 system, except that the input is a nonhomogenous Poisson process,
and we are interested in transient results instead of steady-state results. However,
it is possible to use the material from the previous chapter to obtain a “quick and
dirty” estimate for the mean number turned away. The M/M/1/4 model with λ = 20
and μ = 15 yields an overflow rate of 6.6 customers per hour. The difficulty is that
steady-state is never reached, but as an estimate, this would yield an overflow of
13.2 customers per day.)

This service station example illustrates a situation suitable for a terminating sim-
ulation study. (A steady-state analysis does not make sense since the process is
constantly being “restarted” every morning.) The first step in determining the fea-
sibility of obtaining a second pump is to simulate the above situation to estimate
the expected number of daily customers lost under the current configuration of one
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Fig. 9.4 Histogram from 30 simulations of the one pump service station for Example 9.3

pump. To illustrate this we simulated the service station and executed the program
yielding the number of lost customers in a day as 25, 10, and 12, respectively, for
three different runs. With variations of this magnitude, it is clear that care must be
taken in estimating the mean number of customers lost. Furthermore, after an esti-
mate is made, it is important to know the degree of confidence that we can place in
the estimate. Therefore, instead of using a single value for an estimate, it is more
appropriate to give a confidence interval (Sect. 3.3). For example, a 95% confidence
interval for the expected number of customers lost each day is an interval which
we can say with 95% confidence contains the true mean. That is, we expect to be
wrong only 5% of the time. (The choice of using 95% confidence instead of 97.2%
or 88.3% confidence is, for the most part, one of historical precedence.)

Example 9.3. To illustrate the building of confidence intervals, the simulation of the
one pump service station was executed 30 times and the daily total number of lost
customers was recorded in Table 9.19. The histogram of the results is in Fig. 9.4. (It

Table 9.19 Results from 30 simulations of the one pump service station

25 10 12 16 31 8
14 21 7 6 21 6
7 13 10 13 0 21

12 9 13 13 16 9
14 23 4 12 8 13

might appear that it is redundant to plot the histogram since the table gives all the
information; however, we recommend that you make a practice of plotting your data
in some fashion because quantitative information cannot replace a visual impression
for producing an intuitive feel for the simulated process.)
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The sample mean and standard deviation (Definition 3.3) for the results obtained
from the 30 simulations are x = 12.9 and s = 6.7, respectively. (Notice the use of
the lower-case letters. The upper-case letters indicate a random variable; after an
observation is made, a lower-case letter must be used indicating a particular value.)
The critical t-value for a 95% confidence interval with 29 degrees of freedom is
2.045 (Excel function TINV(0.05,29)). Equation (3.4, p. 86) thus yields

12.9±2.045× 6.702√
30

= (10.4,15.4)

as the 95% confidence interval for the mean. That is, we are 95% confident that the
actual expected number of customers lost each day is between 10.4 and 15.4.

The sample variance was s2 = 44.89 and the two critical values (Excel functions
CHIINV(0.975,29) and CHIINV(0.025,29)) are χ2

(29,0.975) = 16.05 and

χ2
(29,0.025) = 45.72. Equation (3.7, p. 88) thus yields

(
29×44.92

45.72
,

29×44.92
16.05

)

= (28.49,81.16)

as the 95% confidence interval for the variance. Many practitioners will use “large
sample size” statistics for samples of size 25 or more; therefore, we can use the
data of Table 9.19 to illustrate confidence intervals for standard deviations (Eq. 3.8,
p. 88). The critical z value (Excel function NORMSINV(0.975)) is 1.960, which
yields a 95% confidence interval of

(
6.702

1+ 1.960√
60

,
6.702

1− 1.960√
60

)

= (5.35,8.97)

for the standard deviation which is very close to the square root of the confidence
interval obtained for the variance. ��

We need to consider the two assumptions under which the confidence interval
for the mean theoretically holds. The assumption of independent observations is
adequately satisfied as long as each replicate execution of the simulation program
begins with a different initial random number seed (see Sect. 2.2). The normality
assumption is troublesome and can cause errors in the confidence interval. This is
especially true for the service station example since the histogram of Fig. 9.4 does
not give the appearance of a symmetric bell-shaped curve. However, regardless of
the actual underlying distribution (assuming a finite mean and variance), we can
take advantage of the central limit theorem (Property 1.5) and assume normally dis-
tributed random variables when the sample size is large. The central limit theorem
states that sample means, when properly normed, become normally distributed as
the sample size increases. A commonly used rule-of-thumb is to have a sample size
of at least 25 to 30 individual observations.

It is sometimes important to obtain information about the tails of the distribution.
For example, the average number of customers turned away may not be as impor-
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tant as knowing the probability that 20 or more customers per day will be turned
away. (In other words, we might want to minimize the probability of “bad” things
happening, instead of concentrating on expected values.) A major problem with tail
probabilities is that the sample size must be larger to estimate tail probabilities than
the sample size needed to estimate means. A rule-of-thumb is to have at least 25 data
points and at least 5 occurrences of the event for which the probability statement is
being made. Thus, the 30 simulations contained in Table 9.19 are not enough to es-
timate the probability that 25 or more customers per day are turned away, but it is
okay for estimating the tail probability of 20 or more customers.

Example 9.4. We continue with the data of Example 9.3 to estimate the probability
that 20 or more customers will be turned away on any given day from the service
station. The data of Table 9.19 indicate that 6 out of 30 runs resulted in 20 or more
customers being turned away; therefore, our estimate for the probability is p̂ = 0.2
and thus the 95% confidence interval (Eq. 3.6, p. 87) is

0.2±1.960×
√

0.16
30

= (0.06,0.34) .

��

• Suggestion: Do Problems 9.7 and 9.9.

9.2.2 Steady-State Simulations

A large manufacturing company has hundreds of a certain type of machine that it
uses in its manufacturing process. These machines are critical to the manufacturing
process, so the company maintains a repair center that is open 24 hours a day, seven
days a week. At any time, day or night, there is one technician who takes care of
fixing machines. Each machine that is in the repair center costs the company $75 per
hour in lost production due to its unavailability. It has been determined that the ar-
rival of failed machines to the repair center can be approximated by a Poisson arrival
process with a mean rate of 4 per day, i.e., independent and exponentially distributed
interarrival times with a mean of 1/4 day between arrivals. (We have assumed that
the company has such a large number of these machines in use that the failure of a
few of the machines does not significantly affect the arrival rate resulting from the
failure of any of the remaining machines.) The time it takes to repair a machine is
highly variable due to the many different things that can go wrong, and, in fact, the
repair times are also described by an exponentially distributed random variable with
a mean time of 4 hours. The repair center thus operates as a single server, infinite
capacity, FIFO queueing system. The company would like to determine if it would
be economically advantageous, in the long run, to add another technician per shift
so that two machines could be under repair at the same time when the need arises.
Each technician costs the company $30 per hour, including salary and overhead.
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Fig. 9.5 Daily costs versus time for three runs of the machine repair problem simulation

A program was written to simulate the costs incurred with this repair facility
using only one technician. The high degree of variability in daily costs is illustrated
in Fig. 9.5, in which daily costs for three simulations are shown. Figure 9.6 shows
the plot of the running averages of those costs. The variability between simulations
for this repair facility is illustrated by comparing the three curves in Fig. 9.6.

In our example, we are interested in a long-range policy, and it is the long-run
average cost per day on which the decision will be based. Consequently, we need to
look at the behavior of this quantity over time. (The first question that actually needs
to be asked when a steady-state analysis is contemplated is “Do steady-state values
exist?” It is easy to construct situations in which no steady-state exists. For exam-
ple, if a slow server is trying to handle fast arrivals, the backlog might continually
increase and never reach steady-state. A rigorous answer to the “existence” question
is beyond the scope of this textbook. We shall simply assume throughout this sec-
tion that the processes under consideration do reach steady-state behavior.) Notice
that the graphs of the average costs in Fig. 9.6 initially increase rapidly, and then
they approach the straight line drawn on the graph. Extrapolating beyond the shown
graph, the plot of the average costs would eventually cease to change. Its limiting
value with respect to time is called its steady-state value. The straight dotted line in
the figure is the theoretical steady-state value, which in this case is the cost per day
incurred by the machines being in the repair room.

One of the primary purposes of a steady-state simulation is to estimate the long-
run values of performance measures, including means, variances, and in some cases,
probabilities. But, because values from simulations are statistical estimates, we also
would like to determine the accuracy (i.e., confidence limits) of the estimates. While
both obtaining an estimate and determining its accuracy present challenges, it is usu-
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Fig. 9.6 Running average of cost versus time for three runs of the machine-repair simulation

ally easier to derive the estimates than it is to determine their confidence limits. If
a steady-state value exists, the time-averaged value from any single simulation will
limit to the steady-state value as the run length increases to infinity. The obvious
practical difficulty is to know when to stop the simulation. Since the above simula-
tion was stopped short of infinity, we do not expect the simulation’s final average
cost to be exactly equal to the true long-run value; therefore, it is necessary to de-
termine how much confidence we have in the estimate. To illustrate the problem,
assume that the simulations illustrated in Fig. 9.6 were stopped after 52 days. Tak-
ing any one of the simulations in the figure, the analyst would possibly conclude
that the simulation is reasonably close to steady-state because the graphs indicate
that the major fluctuations have ceased; however, none of the three examples has yet
reached the asymptotic value. Of course, this particular example was chosen because
we could easily determine the theoretically correct value, and with this knowledge
we have the ability to measure the accuracy of our estimators. Without the theoreti-
cal values (we would not normally simulate if the theoretic values were known), we
must turn to statistical methods which usually involve confidence limits.

Before discussing specific procedures for obtaining confidence intervals, let us
consider some of the underlying concepts. For illustrative purposes, our context will
be the determination of an estimate for mean cost. It should be remembered that
constructing a confidence interval for a parameter requires an estimator and the
variance of the estimator.

Let μcost denote the long-run mean, and let σ2
cost be the long-run variance of the

daily cost. Further, let C1,C2, · · · be the sequence of daily costs obtained by the
simulation on days 1,2, · · · , respectively. Suppose n such observations have been
obtained by a run of the simulation, and let
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C(n) =
1
n

n

∑
i=1

Ci ; (9.1)

thus, C(n) is the average of the first n data values. Figure 9.6 plots C(n) versus n for
three different realizations, where n is the number of days. In theory,

lim
n→∞

C(n) = μcost , (9.2)

which means that if we let n grow indefinitely, the estimate (9.1) converges to the
true value of μcost . The intuitive meaning of Eq. 9.2 is that we can take a single
simulation, run it a long time, then use the time-averaged value for an estimate of
the long-run expected value1. In similar fashion, the long-run sample variance,

S2(n) =
(∑n

i=1 C2
i )−n(C(n))2

n−1
, (9.3)

converges to σ2
cost as n limits to ∞. Consequently, we can control the quality of our

estimates of the population mean and variance by the run lengths of the simulation.
The quality of the estimator C(n) of μcost is measured by the variance of C(n).

(Actually, we need its distribution too, but as we shall see, difficulties will arise
with just its variance.) You might recall that if we assume C1, · · · ,Cn are indepen-
dent and identically distributed, an unbiased estimator for the variance of C(n) is
S2(n)/n. However, in a simulation study, the sequential random variables C1, · · · ,Cn

are often highly dependent, which introduces a (possibly large) bias into S2(n)/n as
an estimator for the variance of C(n). Therefore, the sample variance (Eq. 9.3) of
the sequentially generated data should not be used to build a confidence interval for
μcost using the standard methods (i.e., Eq. 3.4). These facts should be stressed: when
n is large, C(n) is a valid estimator for μcost , S2(n) is a valid estimator for σ2

cost , but
S2(n)/n is not a valid estimator for the variance of C(n).

9.2.2.1 Replicates

The most straightforward method (and our recommended approach) of obtaining
confidence intervals is to use several replicates of the simulation run (using differ-
ent initial random number seeds), just as was done for the terminating simulation
analyses. What this does is provide a way to create truly random samples by se-
quential estimation. To illustrate, consider the steady-state simulation repair center
mentioned earlier in this section. We might decide that a “long time” is 52 days and
make 30 different simulations of 52 days each to obtain a random sample, where the
30 individual data points are the 52-day averaged daily cost values. (The end-points
on the graph in Fig. 9.6 yield three such data points.) A major difficulty with the
replicate approach is that the results are highly dependent on the decision as to what

1 When a process has the property that the limiting time-averaged value and the value averaged
over the state space are the same, the process is said to have the ergodic property.
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constitutes a long time. In theory, the steady-state results of a simulation are not
dependent on the initial conditions; however, if a run is too short, the steady-state
estimator will be biased due to the initial conditions.

For example, we ran the simulation program of the repair center thirty times.
If we use (ridiculously short) runs of two days and use the standard equation for
confidence intervals of the mean (Eq. 3.4) to estimate the daily cost due to ma-
chine failure, it would be $2,276 per day with a 95% confidence interval of ($1,822,
$2,730). The true theoretical steady-state value for this problem is $4,320, so it is ap-
parent that this estimate is too low. Using a run length of 52 days yields an estimate
of $4,335 per day with a 95% confidence interval of ($3,897, $4,773). From these
results, it is tempting to say that 52 days is long enough to be at steady-state. How-
ever, the property given by Eq. 9.2 indicates that if the simulation is at steady-state,
there should be very little variation between runs. In other words, the maximum er-
ror represented by a confidence interval based on several simulations at steady-state
should be close to zero. But the maximum error of the above interval based on 52
days is 438 or 10.1% of the mean value — not at all negligible. If we use 2,002 days
to simulate a long time, 30 runs would yield a 95% confidence interval of ($4,236,
$4,462), which has a maximum error of under three percent of the mean.

9.2.2.2 Start-up Time

A common approach taken to eliminate the bias of the simulation due to its initial
conditions is to establish a “start-up” period and only calculate statistics after the
start-up period is finished. For example, we might take 2 days for the start-up period
and then calculate the average daily costs based on the costs from day 3 through day
52. Again, the difficulty with this approach is the accurate determination of the best
values for the start-up time and the overall run length. If the start-up period is too
short, the estimate will be biased by the initial period. If the start-up period is too
long, the estimate will have more inherent variability, producing a larger confidence
interval than would be expected from the length of the run. We should also mention
that practical considerations do enter the picture. A large number of repetitions of
long simulations may take a great deal of time. When time is at a premium, another
method may be worthwhile. With these considerations in mind, we investigate an
alternative method for obtaining confidence intervals for mean values.

9.2.2.3 Batch Means

Let us review again the context of our estimation problem. We make a long
simulation run (preferably containing a start-up period) obtaining m data points,
C1, · · · ,Cm. We desire to estimate μcost , which is the long-run mean value; that is,

μcost = E[Cm] ,
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where m is assumed large. The most common estimator for μcost is the sample mean
(Definition 3.3). However, in most simulations Ci and Ci+1 are highly dependent
random variables, which is the reason that estimating the standard deviation of the
estimator for μcost is difficult.

As mentioned previously, steady-state results are independent of the initial con-
ditions2. This fact implies that if two costs are sufficiently far apart in time, they are
essentially independent; that is, Ci and Ci+k can be considered independent if k is
large enough. This leads to one of the most popular forms of obtaining confidence
intervals: the method of batch means. The concept is that the data will be grouped
into batches, and then the mean of each batch will be used for the estimators. If the
batches are large enough, the batch means can be considered independent because,
intuitively, they are far apart. Since the batch means are considered independent,
they can be used to estimate not only the overall mean, but also the standard devia-
tion. Specifically, let us take the m data points and group them into n batches, each
batch containing � = m/n data points, and let C j denote the mean of the jth batch;
namely,

C1 =
C1 + · · ·+C�

�
(9.4)

C2 =
C�+1 + · · ·+C�+�

�
...

Cn =
C(n−1)�+1 + · · ·+Cn�

�

where m = n�. (Figure 9.7 illustrates this concept using a simulation of the repair
center example. In the figure, an initial period of two observations is ignored, then
five batches of seven each are formed. Notice that the figure is for illustration pur-
poses only; usually a single batch includes hundreds or thousands of observations.)
As � gets large, C j and C j+1 become independent. Using the definitions for the
sample mean and variance, we have the following:

Xbatch =
C1 + · · ·+Cn

n
=

C1 + · · ·+Cm

m
, (9.5)

S2
batch =

C
2
1 + · · ·+C

2
n −nX

2
batch

n−1
.

The confidence interval is, thus, given by

(Xbatch − tn−1,α/2
Sbatch√

n
, Xbatch + tn−1,α/2

Sbatch√
n

) (9.6)

2 To be technically correct in this paragraph, we need to discuss concepts and assumptions related
to the ergodic property, but this is beyond the scope of this textbook. Here we only intend to give
an intuitive feel for these principles.
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Fig. 9.7 Batch means from a simulation of the repair center example

where tn−1,α/2 has the same meaning as it does in Eq. (3.4).
The two major assumptions made in the development of the confidence interval

of Eq. (9.6) are: (1) the random variables C1, · · · ,Cn are distributed according to a
normal distribution, and (2) the random variables are independent. As long as the
batch size is large, the central limit theorem again permits the assumption of nor-
mality (a rule of thumb for using the central limit theorem is to have a batch sample
size of at least 30). The independence assumption is more difficult to verify. One test
for independence of the sequence is to estimate the correlation coefficient (Defini-
tion 1.20) for adjacent values, namely, the correlation between Ci and Ci+1, called
the lag-1 correlation coefficient. (A zero correlation between adjacent values does
not guarantee independence, but a nonzero value guarantees lack of independence.)

The most common estimator for the lag-1 correlation coefficient for the sequence
C1, · · · ,Cn is given by

r =
∑n−1

i=1 [(Ci −Xbatch)(Ci+1 −Xbatch)]

∑n
i=1[(Ci −Xbatch)2]

, (9.7)

where Xbatch is defined in Eq. (9.5). A slightly easier formula (again using Eq. 9.5)
for computing this estimator is

r =
∑n−1

i=1 CiCi+1 −nX
2
batch +Xbatch(C1 +Cn −Xbatch)
(n−1)S2

batch

. (9.8)

(It would be worthwhile to compare this estimate for the lag-1 auto-correlation co-
efficient with the estimator used for the correlation coefficient between two random
samples given in Eq. (3.10).)

An hypothesis test can be easily constructed to test the assumption that the cor-
relation coefficient is zero. The estimator for the correlation coefficient of two inde-
pendent normally distributed random samples can be transformed into a Student-t
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distribution using the equation

Tn−2 = ρ̂

√
n−2

1− ρ̂2 .

To obtain the p-value associated with testing if the correlation coefficient is zero
(see discussion of p-value on p. 95), first calculate the test statistic using the above
equation as

ttest = r

√
n−2
1− r2 (9.9)

and then the p-value for the test that the ρ = 0 is given by

p-value = Pr{Tn−2 > ttest} .

(As you recall, one approach for using the p-value is that if the p-value is larger
than 10%, the hypothesis is not rejected; if the p-value is less than 1%, the hypoth-
esis is rejected; when it is between 1% and 10%, the evidence may be considered
inconclusive.)

Another approach which eliminates the “uncertainty region” between 1% and
10% is to obtain the critical value for r. For this, the inverse function to Eq. (9.9) is
obtained as

rcritical =
tn−2,α/2

√
n−2+ t2

n−2,α/2

. (9.10)

If the absolute value of the r statistic (Eq. 9.8) is greater than rcritical, the hypoth-
esis that the batches are independent can be rejected. If the absolute value of the r
statistic is less than rcritical, it is still hard to accept with confidence that the lag-1
correlation coefficient is zero because of the high variability of the estimator.

A rule of thumb that is sometimes used is for the absolute value of the lag-1
correlation coefficient to be less than 0.05. For example, the repair center example
was simulated for 2,002 days using a start-up period of 2 days. Using the last 2,000
days, the method of batch means was used to estimate a confidence interval where
the size of each batch was 50 days. To determine the appropriateness of the method,
the lag-1 correlation coefficient was estimated as r = −0.04. If the –0.04 number is
an accurate estimate for ρ , then the one simulation run is all that is needed for the
confidence interval. Therefore, to determine the accuracy of the r =−0.04 estimate,
the simulation was run five more times, each time being a run of 2,002 days. The
five values for r were 0.21, 0.25, –0.04, –0.13, and 0.07. The conclusion from this
example is that the estimator for ρ is too variable to be reliable when only 40 batches
are used; thus, more batches are needed in order to have a reliable estimator.

The difficulty with choosing a batch size is that if the batch size is large enough
to obtain a small lag-1 correlation coefficient, then the number of batches will be
too small to produce a reliable estimate; however, if the number of batches is large
enough to produce a reliable estimate, then the batch size will be too small to main-
tain independence between batch means.
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When the modeler has the freedom to choose the run length based on values
dynamically determined within the simulation, he or she may use the textbook by
Law and Kelton (mentioned at the beginning of this chapter) that contains a sug-
gested approach for confidence intervals. The authors’ procedure is to extend the
run length until the absolute value of the lag-1 correlation coefficient determined
from 400 batches is less than 0.4. In other words, for a given run length, the batch
size necessary to produce 400 batches is used, and the lag-1 correlation coefficient
is calculated based on those 400 batches. If the absolute value of the coefficient is
greater than 0.4, one can infer that the batches are too small, and the run length is
increased. Once the absolute value of the coefficient is less than 0.4, the run length
is fixed and the batch size is increased by a factor of ten. The resulting 40 batches
are then used to obtain the confidence interval. The justification for this approach is
that when 400 batches produce a coefficient of less than 0.4 and then the batches are
made 10 times larger, the resulting 40 batches should produce a coefficient of less
than 0.05.

More commonly, the run length of the simulation cannot be dynamically deter-
mined, but must be fixed at the start of the simulation. A good “quick and dirty”
estimate of confidence intervals may be made using a short start-up period, dividing
the remaining run length into five to ten batches, and then using those batches to
estimate the confidence interval. (A minimum of five batches is suggested in [2] and
at least ten batches is suggested in [3].) The idea of using a small number of batches
is flawed since it is difficult to justify using the Central Limit Theorem; in practice,
however, it does seem to perform adequately.

Example 9.5. Table 9.20 (and Fig. 9.7) contains simulation output to be used in a
numerical example. (We use a run length that is too small for accuracy, but it is

Table 9.20 Individual data points from a simulation run of length 37 days from the machine repair
example

Daily costs means
week 0 2929 1441 —
week 1 2558 3958 1772 6996 3451 1094 1296 3017.9
week 2 6338 11105 7774 3710 1062 1931 5406 5332.3
week 3 2270 2182 4365 3065 7111 7570 11107 5381.4
week 4 4276 4024 2340 2345 1665 4042 3346 3148.3
week 5 1728 2379 3050 1476 1490 1201 2303 1946.7

better for illustrating the computations. Do not infer from this example that estimates
should be made based on such short runs.) This example uses an initialization period
of two days and a batch size of seven days that yields five batches. We calculate
the average for each row in Table 9.20, which gives the five batch means as: c1 =
3,017.9, c2 = 5,332.3, c3 = 5,381.4, c4 = 3,148.3, and c5 = 1,946.7. The sum
of the five values is 18,826.6, and the sum of their squares is 80,202,043.44. The
confidence interval calculations are



9.2 Statistical Analysis of Output 275

xbatch =
18,826.6

5
= 3,765.32

s2
batch =

80,202,043.44−5×3,765.322

4
= 2,328,467.5

which yields a 95% confidence interval of

(3765.3−2.776× 1525.9√
5

, 3765.3+2.776× 1525.9√
5

) = (1870.9, 5659.7) .

Thus, we see that a run of this small size yields an estimate with a large degree of
variability. With 95% confidence, we would say that the maximum error is 1,894.4.
Let us consider what would have happened if we had improperly used the individual
35 daily values (i.e., a batch size of one) to obtain the confidence interval. In that
case, we would have estimated the maximum error to be 878.5, which greatly un-
derstates the inherent variation of the 3,765.3 estimated value of the average daily
cost. ��

As a final comment, the authors feel that the use of batch means is somewhat
outdated. The main advantage of batch means over using replicates is that the user
does not have to delete a warm-up period for each replicate, thus saving run time.
When simulations involved expensive computer time, it was important to have pro-
cedures that minimized simulation run lengths; however, today many simulation are
run on desktop computers or laptops and time is not as important. Therefore, it is our
recommendation to base estimates on several replicates thus insuring independent
samples and not be concerned with building batch means. The main reason to in-
clude this section is for historical reasons and because many commercial simulation
packages automatically calculate estimates based on batch means.
• Suggestion: Do Problems 9.10–9.15.

9.2.3 Comparing Systems

Not only are simulations used to analyze existing or proposed systems, but also
they are used as a decision tool in comparing two or more systems. In this section,
we briefly discuss analyzing simulation results when the goal is to compare two
systems. For example, management may be considering adding a new workstation
at a bottleneck point within a manufacturing facility. To help with that decision, a
simulation of the facility with and without the new workstation could be run with
the intent of comparing the throughput rate of the two options.

It is also quite common to compare several systems or to compare systems with
their parameters set at multiple levels. The comparison of more than two systems
should involve a careful design of the statistical experiments before any simulation
runs are carried out. In the analysis of the simulations, a procedure called “analysis
of variance” is used for comparing several systems. Such statistical issues are be-
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yond the scope of this textbook; however, there are numerous textbooks that cover
the statistical design and analysis for comparing multiple systems.

The context for this section is that two random samples have been obtained from
a series of simulations describing two systems under consideration. If the study in-
volves terminating simulations, the random samples come from replications. If the
study involves steady-state simulations, the random sample may arise from a combi-
nation of replications and batching. The first random sample is assumed to describe
system 1 and involves n1 data points with their mean and variance being X1 and S2

1,
respectively. The second random sample (independent from the first) is assumed to
describe system 2 and involves n2 data points with their mean and variance being
X2 and S2

2.

Confidence Intervals for Comparing Means. When mean values are of interest,
we generally would like to know the difference between the mean for System 1 and
the mean for System 2. As usual we must assume that the random samples are
normally distributed (at least for small sample size). If the two random samples are
the same size, it should be possible to pair the data and use the confidence interval
of Eq. (3.4). In other words, if n1 = n2, let Yi = X1,i −X2,i and form a confidence
interval from the random sample Y1, · · · ,Yn, where n = n1. The advantage of this
procedure is that X1,i and X2,i need not be independent.

Example 9.6. We wish to compare two queueing systems that operate 24 hours per
day. Arrivals occur to both systems according to a Poisson process with a mean
rate of 50 arrivals per day. The first system is an M/M/2 system with each server
having a mean service time of 48 minutes. The second system is an M/M/1 system
with its server having a mean service time of 24 minutes. Based on queueing theory,
we know that the second system is better in terms of mean waiting times for the
customers (for equal traffic intensities, the few number of servers is always the better
system); however, we would like to build our confidence in the theoretical results
with simulated results.

A simulation was written for an M/M/2 queueing system and an M/M/1 queueing
system, except that the same (random) arrival stream was used for both systems.
Thus, the system are not independent, but one source of variability between the
systems was eliminated. Five replications were made. Each replication had a run
length of 1000 days with a two-day warmup period. The results are in Table 9.21.

Table 9.21 Waiting time data for Example 9.6

Replicate M/M/2 M/M/1
Number Cycle Time Cycle Time Difference

1 2.4918 2.3396 0.1522
2 2.7489 2.3406 0.4083
3 2.7174 2.5840 0.1334
4 2.8237 2.4463 0.3774
5 2.6509 2.2341 0.4168
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The sample mean and standard deviation of the differences (fourth column) are
0.2976 and 0.1422, respectively, yielding a 95% confidence interval of

(0.1210,0.4742) .

Because zero is not within the interval, we can say that there is a statistically signif-
icant difference between the two mean waiting times. ��

For large sample sizes, a confidence interval for the difference can be obtained by
taking advantage of the fact that the difference in sample means can be approximated
by a normal distribution. The variance for the difference is calculated by “pooling”
the variations from the two samples; in other words, the estimate for the variance of
the differences is given by

S2
pooled =

(n1 −1)S2
1 +(n2 −1)S2

2

n1 +n2 −2
.

A confidence interval can now be obtained by using the standard deviation as
estimated from the combined data sets. In particular, the 1−α confidence inter-
val for the difference in the mean values between system 1 and system 2 can be
approximated by

(X1 −X2) ± t(n1+n2−2, α
2 )Spooled

√
1
n1

+
1
n2

. (9.11)

If the confidence interval does not include zero, we can say that we are at least
1−α confident that the means from system 1 and system 2 are different.

Example 9.7. Table 9.20 contains simulation results from a simulation run of 37
days using one technician for the repairs. We run the simulation of the repair center
again, except we use two technicians for repairs. The daily cost values include the
cost of both technicians and the cost incurred due to machines being in the repair
center. For the run involving two technicians, we use a start-up period of 2 days and
a batch size of 7 days and run the simulation for 401 days; thus, we have 57 batches.
These 57 data points yield a mean of $2,500 and a standard deviation of $1,200.
Our goal is to use these data to determine whether the average cost of using two
technicians is different from the average cost of using one technician. The estimate
for the difference in the average cost of using one technician versus two technicians
is $1,265. The pooled variance estimate is

S2
pooled =

4×2328467+56×1440000
60

= 1,499,231 .

For a 95% confidence interval, we use a t-value of 2.0 (see Table C.3); therefore, the
confidence interval is

1265±2×1224.4
√

0.2+0.0175 = (123,2407) .
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Because zero is not contained in the confidence interval, we can say that there is
a statistical difference between the two systems, and that having two technicians
will reduce the daily cost of the repair center. Similarly, we can be 95% confident
that the reduction in daily costs resulting from having two technicians on duty is
between $123 and $2,407. (If this range in the estimate seems too large, then more
simulations runs must be made.) ��

As a general rule, it is usually best to use the paired test (as in Example 9.6) if
the simulation can developed so that the same random number stream is used for
those processes that are common to both systems. Such reduction in variability is
extremely helpful in identifying significant differences.

Confidence Intervals for Comparing Variances. Changes for systems are
sometimes designed with the intent of decreasing variances. Comparisons involving
the variances for two systems are based on the ratio of the variances. For example,
if system 2 involves a proposed design change that claims to decrease the variance
from system 1, then we would hope that the entire confidence interval centered
around the ratio S2

1/S2
2 would be greater than one. The confidence interval involves

critical values from the F-distribution, and the F-distribution has two parameters re-
ferred to as the degrees of freedom. Thus, the 1−α confidence interval for the ratio
of S2

1 to S2
2 is given by

(
S2

1

S2
2

1
F(n1,n2,α/2)

,
S2

1

S2
2

F(n2,n1,α/2)

)

. (9.12)

If the confidence interval does not include 1, we can say that (with 1−α confi-
dence) there is a statistical difference between the variances of system 1 and system
2. To illustrate this concept, we use the numbers from Example 9.7. The critical
F-values are taken from a book of statistical tables and are F(5,57,0.025) ≈ 6.12 and
F(57,5,0.025) ≈ 2.79; therefore an approximate 95% confidence interval for the ratio
of the variances is

(1.617
1

6.12
,1.617×2.79) = (0.26,4.51) .

Because one is included in the confidence interval for the ratio of the variances,
we can only say that there is no statistical difference between the variances for the
two systems. The variances that are being compared are the variances of mean daily
costs averaged over a week. (Note that this is different than the variance for daily
costs.) As with other examples based on this repair center system, the start-up peri-
ods and batch sizes should be much larger if actual estimates were to be made.

Confidence Intervals for Comparing Proportions. Sometimes design changes
are considered because of their potential effect on tail probabilities. For example, af-
ter receiving complaints regarding long customer waiting times, management may
try to institute changes to decrease the probability that queue times are longer than
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some specified level. Thus, we may want to develop a confidence interval for the
difference between the tail probability for system 1 and the tail probability for sys-
tem 2; denote these probabilities by P̂1 and P̂2, respectively. As long as n1 and n2 are
large, the following can be used for the 1−α confidence interval for the difference

(P̂1 − P̂2) ± zα/2

√

P̂1(1− P̂1)
n1

+
P̂2(1− P̂2)

n2
. (9.13)

We again use the numbers from Example 9.7 to illustrate the use of the confi-
dence intervals for proportions. (As before, the value of n1 is too small to appro-
priately use Eq. (9.13); however, the numerical values below should be sufficient to
illustrate the proper calculations.) We are concerned with a average daily cost for
any given week being larger than $4,500. So our goal is to determine the amount of
reduction in the probability that a week’s average daily cost would be greater than
$4,500. From the first simulation run involving one technician (Table 9.20), there
were 2 out of 5 weeks with daily averages greater than $4,500. In the second run,
there were 6 out of 57 weeks with a daily average greater than $4,500. Thus, the
95% confidence interval is given by

0.4−0.105±1.96×
√

0.4×0.6
5

+
0.105×0.895

57
= (−0.14,0.73) .

Thus, there is again too much statistical variation to draw any conclusions regarding
a reduction in the probability that a week’s average daily cost is greater than $4,500.
• Suggestion: Do Problems 9.8 and 9.16–9.19.

Problems

9.1. Using three coins, simulate the production process of Example 9.1. Stop the
simulation as soon as the simulated clock is greater than or equal to 100 and esti-
mate the average number of widgets in the system. Compare your estimate with the
estimate from Table 9.11.

9.2. Simulate the production process of Example 9.1, but assume that there are sev-
eral machines available for the machining process. In other words, if a widget is
acceptable (not destined for the scrap pile) and goes to the facility for machining,
there are enough machines available so that the widget never has to wait to be ma-
chined. Thus, any number of widgets can be machined at the same time. Estimate
the average number of widgets in the facility over a 100-minute period.

9.3. Simulate the production process of Example 9.1, but assume that arrivals are
random. Specifically, the time between arriving widgets will equal 12 minutes half
the time, 11 minutes one third of the time, and 10 minutes one sixth of the time. Use
a die along with the coins to simulate this system. Estimate the number of widgets
in the facility over a 100-minute period.
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9.4. The manager of a service station next to a busy highway is concerned about
congestion. The service station has two gas pumps and plenty of room for customers
to wait if the pumps are busy. Data indicate that a car arrives every 3 minutes. Of
the customers that arrive, 25% of them take 5 minutes 45 seconds in front of the
pump and spend $10, 50% of them take 5 minutes 50 seconds in front of the pump
and spend $10.50, and 25% of them take 5 minutes 55 seconds in front of the pump
and spend $11. Simulate the arriving and servicing of cars and estimate the average
receipts per hour and the average number of customers in the service station.

9.5. Consider the service station of Problem 9.4 except that the time between ar-
rivals is not fixed. Assume that the time between arriving cars is 2 1

2 minutes with
probability 0.25, 3 minutes with probability 0.50, and 3 1

2 minutes with probabil-
ity 0.25. Using simulation, estimate the average receipts per hour and the average
number of customers in the service station.

9.6. A computer store sells two types of computers: the MicroSpecial and MicroSu-
perSpecial. People arrive at the computer store randomly throughout the day, such
that the time between arriving customers is exponentially distributed with a mean
time of 40 minutes. The store is small and there is only one clerk who helps in se-
lection. (The clerk handles customers one at a time in a FIFO manner.) Twenty-five
percent of the customers who enter the store end up buying nothing and using ex-
actly 15 minutes of the clerk’s time. Fifty percent of the customers who enter the
store end up buying a MicroSpecial (yielding a profit of $225) and taking a random
amount of the clerk’s time, which is approximated by a continuous uniform distri-
bution between 30 and 40 minutes. Twenty-five percent of the customers who enter
the store end up buying a MicroSuperSpecial (yielding a profit of $700) and taking a
random amount of the clerk’s time, which is approximated by a continuous uniform
distribution between 50 and 60 minutes. The store is open only 4 hours on Saturday.
The policy is to close the door after the 4 hours but continue to serve whoever is in
the store when the doors close. Simulate the activities for a Saturday and answer the
following questions.
(a) The store opens at 10:00 A.M. and closes the door at 2:00 P.M. Based upon your
simulation experiment, at what time is the clerk free to go home?
(b) What is your estimate for the total profit on Saturday?
(c) Simulate the process a second time, and determine how much your answers
change.

9.7. Consider the simulation used to estimate the average sales receipts per house
from Problem 2.1. Since each house was independent from all other houses, the
25 data points formed a random sample. Use those 25 values to obtain a confidence
interval for the mean receipts per house. Calculate the theoretical value and compare
it with your confidence interval.

9.8. Consider the selling of microwaves in Problem 2.1. In that example, one half
of the customers who entered the store did not purchase anything. The store’s man-
agement feels that by making certain changes in the store’s appearance and by some
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additional training of the sales staff, the percent of customers who enter the store
and do not purchase anything can be decreased to 40%. Furthermore, it has been es-
timated that the cost of these changes is equivalent to $1 per customer entering the
store. Using simulation to justify your decision, do you feel that the extra expense
of $1 per customer is worth the increase in purchases?

9.9. Write a computer simulation of a non-stationary Poisson process (see the ap-
pendix of Chap. 4) with a mean rate function defined, for t ≥ 0, by

λ (t) = 2+ sin(2πt) ,

where the argument of the sin function is radians. Obtain 95% confidence intervals
for the following based on 25 replications.
(a) The mean number of arrivals during the interval (0,2).
(b) The standard deviation for the number of arrivals during the interval (0,2).
(c) The probability that there will be no arrivals during the interval (0,2).

9.10. The following 100 numbers are correlated data: 52.0, 27.3, 46.5, 43.0, 41.3,
44.2, 47.5, 56.8, 77.0, 50.9, 28.3, 30.9, 67.1, 50.3, 58.8, 60.0, 35.1, 40.5, 36.0, 41.1,
47.6, 63.6, 78.6, 59.6, 47.6, 44.5, 59.3, 61.0, 53.1, 26.7, 56.9, 52.4, 70.4, 58.0, 72.6,
58.1, 47.6, 37.7, 36.1, 59.3, 51.5, 40.2, 58.0, 77.9, 54.5, 57.5, 58.9, 44.6, 60.5, 57.5,
51.1, 60.2, 39.9, 37.5, 67.2, 61.5, 58.9, 58.3, 56.6, 44.9, 43.4, 44.5, 31.6, 20.1, 47.0,
58.0, 58.8, 54.6, 48.9, 58.9, 62.3, 62.8, 22.6, 66.3, 48.3, 56.8, 73.3, 47.5, 43.3, 42.5,
40.0, 54.2, 44.7, 51.7, 56.3, 59.7, 29.6, 49.0, 43.5, 33.2, 61.1, 80.1, 55.1, 76.8, 47.5,
56.5, 66.7, 65.8, 73.6, 62.6.
(a) Obtain the sample mean and sample variance of this data. (For comparison pur-
poses, note that the true mean and variance of the underlying distribution are 50 and
200, respectively.)
(b) Estimate the lag-1 correlation coefficient and its 95% confidence interval. (For
comparison purposes, note that the true lag-1 correlation coefficient is 0.2.)
(c) Using a batch size of 20, give a confidence interval for the mean.

9.11. Correlated interarrival times can be generated using a Markov chain together
with two interarrival distributions. Let ϕa and ϕb be two distributions, with means
and variances given by θa, σ2

a , θb, and σ2
b , respectively. Furthermore, let X0,X1, · · ·

be a Markov chain with state space E = {a,b} and with transition matrix given by
[

p 1− p
1− p p

]

,

where 0 < p < 1. The idea is that the Markov chain will be simulated with each time
step of the chain corresponding to a new interarrival time. When the chain is in state
i, interarrival times will be generated according to ϕi.

To start the simulation, we first generate a random number; if the random number
is less that 0.5, set X0 = a, otherwise set X0 = b. The sequence of interarrival times
can now be generated according to the following scheme:

1. Set n = 0.
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2. If Xn = a, then generate Tn according to ϕa.
3. If Xn = b, then generate Tn according to ϕb.
4. Generate a random number. If the random number is less than p, let Xn+1 = Xn;

otherwise, set Xn+1 to be the other state.
5. Increment n by one and return to step 2.

In this fashion, a sequence T0,T1, · · · of interarrival times are generated. These times
are identically distributed, but not independent.
(a) Show that E[T0] = 0.5(θa +θb).
(b) Show that var(T0) = 0.5(σ2

a +σ2
b +0.5(θa −θb)2).

(c) Show that the lag-1 correlation coefficient is given by

ρ =
0.5(2p−1)(θa −θb)2

σ2
a +σ2

b +0.5(θa −θb)2
.

9.12. Generate 100 correlated interarrival times according to the scheme described
in the preceding problem. Let ϕa be exponential with mean 10, ϕb be exponential
with mean 1, p = 0.85. Based on your sample of size 100, estimate mean, standard
deviation, and lag-1 correlation coefficient. Compare your estimates with the actual
values.

9.13. Generate 100 interarrival times such that the distribution of the times are nor-
mally distributed with mean 200, standard deviation 25, and lag-1 correlation 0.8.
Based on your sample of size 100, estimate the mean, standard deviation, and lag-1
correlation coefficient. (Hint, refer back to Problem 1.25 and Example 2.7.)

9.14. Write a computer simulation of an M/M/5/10 queueing system using the struc-
ture of the future events list. Set the mean arrival rate to be 14 per hour and the mean
service time per machine to be 25 minutes. Use your simulation to build a confi-
dence interval for the long-run overflow rate. Is the theoretical value within your
confidence interval?

9.15. Write a computer simulation, using the structure of the future events list, of
the manufacturing facility described in Example 8.8. The purpose of Example 8.8
was to illustrate an analytical approximation technique. Based on your simulation,
was the approximation technique good?

9.16. A small service station next to an interstate highway has one pump and room
for two other cars. Furthermore, we assume that the assumptions for an M/G/1/3
queueing system are appropriate. The mean arrival rate of cars is 8 per hour and the
service time distribution is approximated by a continuous uniform distribution vary-
ing from 3 to 10 minutes. The expected profit received from each car is $10.00. For
an extra $75 per day, the owner of the station can increase the capacity for waiting
cars by one (thus, becoming an M/G/1/4 system). Is the extra $75 worthwhile? To
answer this question, write a computer simulation with or without the future events
list concept.
(a) Assume that the station is open 10 hours per day.
(b) Assume that the station is open 24 hours per day.
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9.17. A 12-trial test of vehicles A and B for fuel efficiency shows that vehicle A
travels an average of 22.3 city miles per gallon of gasoline (mpg) with a sample
standard deviation of 1.3 mpg while vehicle B uses an average of 23.5 mpg with a
sample standard deviation of 1.6 mpg.
(a) Construct a 95% confidence interval on the difference of the means.
(b) Based on the results given above, is there enough evidence to conclude, at the 5%
significance level, that the average mpg are different in the two vehicles? Explain?
(c) Construct a 95% confidence interval on the ratio of the variances?
(d) Are the variances statistically different at the 5% significance level?

9.18. Vehicles C and D were tested to compare the consumption of gasoline per
mile traveled. The testing was performed at the same time under a set of similar
conditions for both vehicles. At the end of each test, the miles traveled and the
gallons of gas consumed were recorded. The following table lists the ten conditions
and results.

Miles Gallons Gallons
Test Road Conditions Traveled Vehicle C Vehicle D

1 Flat Surface 120 5.3 5.9
2 10% Hilly, Rainy, Summer 85 4.1 4.5
3 30% Hilly, Dry, Summer 100 4.8 4.7
4 60% Hilly, Humid, Fall 75 3.9 4.7
5 Flat Surface, Curves, Dry, Fall 80 4.5 4.4
6 15% Hilly, Dry, Winter 115 5.2 5.5
7 40% Hilly, Rainy, Winter 90 4.3 4.1
8 20% Dirt Road, Dry, Summer 110 5.9 6.3
9 Sea Level, Humid, Summer 80 4.1 4.5
10 High Mountains, Winter 95 5.1 5.6

(a) Construct a 95% confidence interval on the (paired) difference on the miles per
gallon efficiency.
(b) Construct a 95% confidence interval on the average difference ignoring the pair-
ing of the tests.
(c) Which of the above confidence intervals is better for the experiment and why?
(d) Is there a significant difference in the gasoline usage of the two vehicles?

9.19. Fifteen out of the last 100 flights departing from the city airport have been
delayed due to different reasons, but mainly due to security checks. The security
checks include detailed checks to randomly selected passengers. A new system that
allows passengers to move ahead in the line if the expected waiting time for detailed
checks exceeds the time before departure is being tested at the expense of adding
another inspector that checks departure schedules and waiting times. After using the
new system while monitoring 110 flights, only 5 flights were delayed.
(a) Find a 95% confidence interval on the difference of the fraction of delayed flights
before and after the new security check system.
(b) Is there statistical evidence to suggest that the new system helps in reducing the
flight delays?
(c) In the sample of 110 flights, what is the maximum number of flights that could
be delayed for the new system to be considered statistically significantly better than
the current security check system?
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9.20. Simulate an M/M/1/3 queueing system with a mean arrival rate and service
rate of four per hour. How many customers are turned away during the first two
hours of operation? (Assume the system starts empty.)

9.21. Simulate a G/G/1/3 queueing system for two hours. Let the interarrival times
and service times have a continuous uniform distribution between 0 and 30 min-
utes. How many customers are turned away during the first two hours of operation?
(Assume the system starts empty.) Compare the answer to this problem with the
previous problem.
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Chapter 10
Inventory Theory

Applied probability can be taught as a collection of techniques useful for a wide
variety of applications, or it can be taught as various application areas for which
randomness plays an important role. The previous chapters have focused on par-
ticular techniques with some applications being emphasized through examples and
the homework problems. We now change tactics and present two chapters dealing
with specific problem domains: the first will be inventory and the second will be
replacement. Inventory theory is a useful stochastic concept that deals with the un-
certainties associated with demand and supply of goods and services. It may seem
advantageous from a production stand point to have an infinite supply of raw ma-
terial, but it may not be the most economical way of managing. Because storage
rooms are limited, supply is limited, demand is stochastic, handling and storage of
items have a cost, ordering often has a cost, being out of an item has a cost, and
items may be perishable, the determination of an inventory policy that optimizes a
cost or performance criterion is often needed. Given an objective to optimize, inven-
tory theory uses probability principles to develop models that can answer questions
such as, how much to order? Or, how often to order?

It is important to mention one caveat with respect to these inventory models.
The techniques and probabilistic reasoning used to solve the problems are more im-
portant than the problems themselves. The assumptions made in developing each
inventory model tend to be restrictive so that the range of possible applications is
thus restricted. However, the general approach to formulating and solving the mod-
els is quite common. In actual application, approximations must often be employed
to obtain solutions, and with an initial understanding of the basic modeling approach
it becomes easier to develop good heuristics.

As a “fringe benefit”, this chapter also contains a discussion on the optimization
of discrete functions. Students of this text are familiar with the use of derivatives
for optimizing continuous functions; however, the use of differences for optimiz-
ing discrete functions is often overlooked in most mathematics courses taken by
engineering students; thus, a discussion of the difference operator for optimization
purposes is covered in the following sections.

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 285
DOI 10.1007/978-3-642-05158-6 10, c© Springer-Verlag Berlin Heidelberg 2010
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10.1 The News-Vendor Problem

We begin with a classical example that is simplistic, yet illustrates some of the basic
reasoning used in many inventory modeling situations. Since one of the main pur-
poses of the chapter is to help develop the modeling process, we shall motivate each
new type of model by a specific example. Then, a general model will be developed
that can be used for the problem type motivated by the example.

Example 10.1. A news vendor buys newspapers at the start of every day to sell on
the street corner. Each newspaper costs $0.15 and is sold for $0.25. Any unsold
newspapers will be bought back by the supplier for $0.10. After observing demand
for a few months, the news vendor has determined that daily demand follows a
uniform distribution between 21 and 40 newspapers. Thus, the question of interest
is, “how much inventory to purchase at the start of each day in order to maximize the
expected profits?” The decision involves balancing the risk of having extra papers
at the end of the day, with having too few papers and being unable to take advantage
of potential sales. We shall first show how to solve the problem in general, and then
apply the above numbers to illustrate with a specific example. ��

The problem is to determine the inventory quantity to order, q, at the beginning of
each day. The reason for the difficulty is that the daily demand, D, is not fixed and is
known only through its cumulative distribution function, F (or equivalently, through
its probability mass function, f ). In the order quantity decision there is a trade-off
between two “bad” possibilities: (1) the initial inventory order quantity may be too
small (with probability P{D > q}) which results in some lost sales and (2) the initial
inventory order quantity may be too large (with probability P{D < q}) resulting in
having unused inventory.

Since demand is random, the actual daily receipts will vary; thus, we represent
the daily profit (or loss) by a random variable Cq which depends on the initial or-
der quantity. In other words, the news vendor problem is to find the optimum q
that maximizes E[Cq]. The relevant cost figures per newspaper are the wholesale
purchase cost cw, the retail purchase price cr, and the salvage value cs. For every
newspaper that is sold, a profit of c1 = cr − cw is realized; for every newspaper ini-
tially purchased but not sold, a loss of c2 = cw − cs is incurred. If demand on a
particular day is k and k is less than or equal to q, then k papers will be sold and
q− k papers will be returned. If k is greater than q, then q papers will be sold and
none returned. Thus, the expected profit per day is

E[Cq] =
q

∑
k=0

[kc1 − (q− k)c2] fk +qc1

∞

∑
k=q+1

fk . (10.1)

Because Eq. (10.1) is not continuous, we cannot maximize it by taking the deriva-
tive; therefore, if we are to use something other than brute force (determining the
value of (10.1) for each possible q), we must discuss optimization procedures for
discrete functions. The analogous expression for the derivative of continuous func-
tions is the difference operator, denoted by Δ , for discrete functions (see Fig. 10.1).
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Fig. 10.1 The expected profit
function versus order quantity
for Eq. (10.1)
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In other words, if g is a discrete function, then its difference operator is defined by
Δg(k) = g(k + 1)− g(k). Assume that g is a unimodal function with its maximum
at k0; that is, for k < k0 the function g is increasing, and for k > k0 the function is
decreasing. Or to say the same thing using the Δ operator, Δg(k) > 0 for k < k0, and
Δg(k) < 0 for k ≥ k0; thus,

k0 = min{k : Δg(k) ≤ 0} .

The difficult part of the above equation is obtaining an expression for Δg(k). It
is not truly difficult, simply tedious. For our problem, we have the following:

ΔE[Cq] = E[Cq+1]−E[Cq]

=
q+1

∑
k=0

[kc1 − (q+1− k)c2] fk +(q+1)c1

∞

∑
k=q+2

fk

−
q

∑
k=0

[kc1 − (q− k)c2] fk −qc1

∞

∑
k=q+1

fk

=
q

∑
k=0

[kc1 − (q+1− k)c2] fk +(q+1)c1 fq+1

+(q+1)c1

∞

∑
k=q+1

fk − (q+1)c1 fq+1

−
q

∑
k=0

[kc1 − (q− k)c2] fk −qc1

∞

∑
k=q+1

fk

= −
q

∑
k=0

c2 fk + c1

∞

∑
k=q+1

fk

= −c2F(q)+ c1(1−F(q))
= c1 − (c1 + c2)F(q) .

In the above expression, the first term is Eq. (10.1), the third equality is a result of
changing the limits of the first two summation terms so that they have the same limits
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as the last two summations, the fourth equality is a result of simplifying the terms
of the third equality, the fifth equality is obtained by applying the definition of the
cumulative distribution (see Eq. 1.3), and the final equality results from rearranging
a couple of terms from the preceding equality.

The minimum of the discrete function E[Cq] is found by searching for the min-
imum value such that ΔE[Cq] ≤ 0. Thus, we have that the optimum order quantity,
q∗, is the minimum q such that

ΔE[Cq] = c1 − (c1 + c2)F(q) ≤ 0 ,

which is equivalent to

F(q) ≥ c1

c1 + c2
. (10.2)

We return to the numbers given at the start of this section and observe that the
profit on each paper sold is c1 = $0.10 and the loss on each paper not sold is c2 =
$0.05. Thus, we need to find the smallest q such that F(q) ≥ 0.667. Since F is
discrete-uniform between 21 and 40, we have that F(33) = 0.65 and F(34) = 0.70,
which implies that q∗ = 34; therefore, at the start of each day, 34 newspapers should
be ordered.

The news vendor problem can also be solved if demand is continuous. (Of course,
continuous demand hardly fits this particular example, but it may easily fit other
examples.) Let us suppose that the demand random variable is continuous, so that
the objective function (analogous to Eq. 10.1) becomes

E[Cq] =
∫ q

s=0
(sc1 − (q− s)c2 ) f (s)ds+qc1

∫ ∞

s=q
f (s)ds . (10.3)

To minimize this expression with respect to the order quantity, we simply take
the derivative of (10.3) with respect to q and set it equal to zero. This derivative
turns out to be a little tricky since the independent variable is part of the limit of the
integral so we must take advantage of Leibnitz’s Rule1 that was hopefully covered
in a previous calculus course.

Property 10.1. Leibnitz’s Rule. Define the function G by

G(y) =
∫ p(y)

q(y)
g(x,y)dx for −∞ < y < ∞

where q and p are functions of y and g is a function of x and y. The derivative
of G is given by

1 Gottfried Leibnitz (1646–1716) is considered the co-inventor of calculus along with Sir Isaac
Newton (1643–1727). Although there was considerable controversy at the time, Leibnitz and New-
ton are thought to have acted independent of each other.
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G′(y) = p′(y)g(p(y),y)−q′(y)g(q(y),y)+
∫ p(y)

q(y)

∂g(x,y)
∂y

dx .

Now using Leibnitz’s Rule, the derivative of the expected cost function is given
as

d
dq

E[Cq] = qc1 f (q)−
∫ q

s=0
c2 f (s)ds−qc1 f (q)+ c1

∫ ∞

s=q
f (s)ds

= −c2F(q)+ c1(1−F(q)) .

Thus, the optimum order quantity, q∗, is given as that value that solves the following
equation

F(q∗) =
c1

c1 + c2
.

• Suggestion: Do Problems 10.1–10.4.

10.2 Single-Period Inventory

The classical single-period inventory problem is very similar to the news vendor
problem. In the news vendor problem, any inventory at the end of the period was
returned to the supplier. In the single-period inventory problem, the ending inventory
will be held for the next period and a cost will be incurred based on the amount of
inventory held over. The modeling for this is carried out in two stages: first we solve
the problem when there is no setup charge for placing the order, then it is solved
with the inclusion of a setup charge. Based on the chapter regarding Markov chains,
we should recognize that the inventory process can be modeled as a Markov chain.
In this section, however, we first consider a myopic2 optimum; that is, an optimum
that only considers one period at a time without regard to future periods.

10.2.1 No Setup Costs

The trade-off in the single-period inventory model with no setup cost will be an
inventory carrying cost versus a shortage cost. Again, we motivate the problem with
a hypothetical example involving a discrete random variable for demand. After the
discrete model has been formulated and solved, we shall then develop the model

2 Myopic is a synonym for what is commonly called nearsightedness. Thus, a myopic policy is one
that “sees” what is close, but not what is far.



290 10 Inventory Theory

for the case when demand is continuous (or, at least, can be approximated by a
continuous random variable).

Example 10.2. A camera store specializes in a particularly popular and fancy cam-
era. They guarantee that if they are out of stock, they will special order the camera
and promise delivery the next day. In fact, what the store does is purchase the camera
retail from out-of-state and have it delivered through an express service. Thus, when
the store is out of stock, they actually lose the sales price of the camera and the ship-
ping charge, but they maintain their good reputation. The retail price of the camera
is $680 and the special delivery charge adds another $25 to the cost. At the end of
each month, there is an inventory holding cost of $20 for each camera in stock. The
problem for the store is to know how many cameras to order at the beginning of each
month so that costs will be minimized. Wholesale cost for the store to purchase the
cameras is $400 each. (Assume that orders are delivered instantaneously, but only
at the beginning of the month.) Demand follows a Poisson distribution with a mean
of 7 cameras sold per month. ��

To begin formulating the inventory problem, we define three costs: ch is the cost
per item held in inventory at the end of the period, cp is the penalty cost charged
for each item short (i.e., for each item for which there is demand but no stock-on-
hand to satisfy it), and cw is the wholesale cost for each item. Let x be the inventory
level at the beginning of the month immediately before an order is placed, let q
be the order quantity, let y be the inventory level immediately after ordering (i.e.,
y = x+q), and let Cx,y be the monthly cost. The decision variable has been changed
from the order quantity (q) to the order up-to quantity (y). Thus, y is the decision
variable, and the cost equation3 (see Fig. 10.2) to be minimized is

E[Cx,y] = cw(y− x)+
y

∑
k=0

ch(y− k) fk +
∞

∑
k=y+1

cp(k− y) fk .

It is customary to separate the above equation into two parts: an ordering cost and
a “loss function”. The loss function, L(y), is a function of the order up-to quantity,
y, and represents the cost of carrying inventory or being short. In other words, the
loss function is defined, for y ≥ 0, as

L(y) =
y

∑
k=0

ch(y− k) fk +
∞

∑
k=y+1

cp(k− y) fk , (10.4)

which yields an objective function of

E[Cx,y] = cw(y− x)+L(y) . (10.5)

Since the inventory involves a discrete random variable for demand, we proceed
as in the previous section by working with differences instead of derivatives; namely,

3 For a profit formulation of this problem, work Problem 10.7.
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Fig. 10.2 The Expected cost
function versus order up-to
quantity for Eq. (10.5)
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ΔyE[Cx,y] = E[Cx,y+1]−E[Cx,y]

= cw(y+1− x)+
y+1

∑
k=0

ch(y+1− k) fk +
∞

∑
k=y+2

cp(k− y−1) fk

− cw(y− x)−
y

∑
k=0

ch(y− k) fk −
∞

∑
k=y+1

cp(k− y) fk

= cw + chF(y)− cp(1−F(y)) .

Notice that several steps are missing between the second to last equality and the last
equality; however, the steps are very similar to the analogous derivation for the news
vendor problem.

Since we want to minimize cost, it follows that y∗ is the smallest y such that
ΔyE[Cx,y] ≥ 0. This is equivalent to finding the smallest y such that

F(y) ≥ cp − cw

cp + ch
. (10.6)

Notice Eq. (10.6) does not depend upon the initial inventory level, x. (Of course, the
reason that it does not depend upon x is because we are only interested in myopic
policies.) Thus, at the end of each period, the policy is to order enough inventory to
bring the stock level up to y∗.

We now return to the example that opened this section to illustrate the use of the
inventory policy. The cost constants are cp = 705, cw = 400, and ch = 20. Thus we
need to find the value y such that

y

∑
k=0

7ke−7

k!
≥ 0.4207

which implies that y∗ = 6; that is, at the end of each month, order enough cameras
so that the beginning inventory at the start of the following month will be 6 cameras.

If demand for the cameras was in the hundreds or thousands, we might choose to
approximate the Poisson random variable with a normally distributed random vari-
able; thus, necessitating model development assuming a continuous random vari-
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able. This will cause the loss function (Eq. 10.4) to be redefined, for y ≥ 0, as

L(y) =
∫ y

s=0
ch(y− s) f (s)ds+

∫ ∞

s=y
cp(s− y) f (s)ds . (10.7)

We now take the derivative of Eq. (10.5) using the above continuous loss function
to obtain:

∂
∂y

E[Cx,y] = cw +
∫ y

s=0
ch f (s)ds−

∫ ∞

s=y
cp f (s)ds

= cw + chF(y)− cp(1−F(y)) .

The derivative is set to zero which yields an inventory policy of always ordering
enough material at the end of each period to bring the inventory level at the start of
the next period up to the level y∗, where y∗ is defined to be that value such that

F(y∗) =
cp − cw

cp + ch
. (10.8)

There are at least two questions that should always be asked in the context of
an optimization problem: (1) “does an optimum exist?” and (2) “if it exists, is it
unique?” For this particular problem, we know a unique optimum can always be
found because the cost expression, E[Cx,y] treated as a function of y is convex.
• Suggestion: Do Problems 10.5–10.8.

10.2.2 Setup Costs

The assumption of the previous chapter is that ordering ten items for inventory is
simply ten times the cost of ordering one item for inventory; however, in many
circumstances, there is a setup cost incurred whenever an order is placed.

Example 10.3. Consider a manufacturing company that assembles an electronic in-
strument which includes a power supply. The power supply is the most expensive
part of the assembly, so we are interested in the control of the inventory for the
power supply unit. Orders are placed at the end of the week and delivery is made at
the start of the following week. The number of units needed each week is random
and can be approximated by a continuous uniform random variable which varies
between 100 and 300. The cost of purchasing q power supply units is $500+5q. In
other words, there is a $500 setup cost and a $5 variable cost to purchase the power
supplies when they are purchased in bulk (e.g., the purchase of 100 power supply
units costs $1,000). Further assume that there is a $0.50 cost incurred for each item
remaining in inventory at the end of the week, and there is a $25 cost for each item
short during the week. (In other words, it costs $25 for each unit special ordered
during the week.) ��
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The cost model for this problem is identical to the previous problem except for
the addition of a setup cost. We denote the setup cost by K; thus the cost model is

E[Cx,y] =
{

L(y) for y = x ,
K + cw(y− x)+L(y) for y > x .

(10.9)

An optimal policy based on Eq. (10.9) will lead to what is called an (s,S) in-
ventory policy; that is, an order is placed if the ending period’s inventory level is
less than s, and enough inventory is ordered to bring the inventory level up to S. To
understand how this model yields an (s,S) policy, consider the graphs illustrated in
Fig. 10.3.

The lower graph in Fig. 10.3 is the cost function ignoring the setup cost; the upper
graph is the cost including the setup cost. In other words, the lower graph gives the
values of cw(y−x)+L(y) as a function of y and the upper graph is simply the same
values added to the constant K. If an order up to S is placed, the top graph is relevant;
therefore, the optimum order up-to quantity, denoted by S, is the minimum of the
graph. If no order is placed, the lower graph is relevant. Consider an initial inventory
level, (say x = 200 as in Fig. 10.3), that is between the two values s and S . If no
order is placed, the relevant cost is the point on the lower graph (a in Fig. 10.3) that
is above x; if an order up to S is placed, the relevant cost is the point on the upper
graph (c in Fig. 10.3) that is above S. It is thus seen that the optimum policy will
be to not order since the point (representing the expected cost) on the lower graph
at x is less than the point (expected cost) on the upper graph at S. Now consider the
value that is less than s (say x = 125 in Fig. 10.3). If no order is placed, the relevant
cost is the point on the lower graph (b in Fig. 10.3) that is above the initial inventory
x which again must be compared to the point (c in Fig. 10.3) on the upper graph that
is above the order up-to quantity S. It is thus seen that the optimum policy will be
to place an order since the point on the lower graph at x is greater than the point on
the upper graph at S.

Since S is the minimum point on both the lower graph and the upper graph, we
can find it by solving the “no setup cost” problem from the previous section. Thus,
S = y∗ which is the solution from Eq. (10.9). The reorder point, s, is the value for
which the no setup cost function equals the optimum set-up cost function evaluated
at the order up-to quantity S. That is, the value of s is defined to be that value such
that

cws+L(s) = K + cwS +L(S) . (10.10)

To illustrate the mechanics, consider the cost values given in the example at the
start of this section. The value of S satisfies

F(S) =
cp − cw

cp + ch
=

25−5
25+0.5

= 0.7843 .

In the example, the demand density is defined to be f (t) = 1/200 for 100 < t < 300,
or equivalently, the distribution is defined to be F(t) = (t −100)/200 for 100 < t <
300. Therefore, we need to solve the equation (S−100)/200 = 0.7843 which yields
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Fig. 10.3 Cost functions used for the single period inventory model with a setup cost

S = 100+0.7843×200 ≈ 257. To obtain s, we first determine the loss function:

L(y) = 0.5
∫ y

100

y− s
200

ds+25
∫ 300

y

s− y
200

ds

=
51

800
y2 −37.75y+5637.5 .

The cost to order up to S is thus given as

K + cwS +L(S) = 500+5×257+L(257)
= 1785+0.06375×2572 −37.75×257+5637.5

= 1931.37 .

The reorder point, s, is that value for which the inventory cost of not ordering is
equal to the optimum ordering cost (Eq. 10.10). Thus, s is that value that satisfies
the following

1931.37 = cws+L(s)

= 5s+
51

800
s2 −37.75s+5637.5

= 0.06375s2 −32.75s+5637.5 .

The above quadratic equation yields two solutions: one larger and another smaller
than S (see Fig. 10.3). We want the smaller solution, which is s = 168.3. Therefore,
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the optimal inventory policy is to place an order whenever the ending inventory is
equal to or less than 168, and when an order is placed, order enough to bring the
next month’s beginning inventory up to 257.
• Suggestion: Do Problems 10.9–10.11.

10.3 Multi-Period Inventory

It would be unusual circumstances for which a single-period inventory model is
truly appropriate. However, the previous section is worthwhile not only for its ped-
agogical value, but also because the problem formulation and solution structure is
the beginning step in the multi-period model. In this section, we discuss inventory
when the demand is a discrete random variable and the planning horizon involves
several (but finite) periods.

Similar to the previous sections, the probability mass function giving the amount
of demand during each period is denoted by f (·), and we assume a planning horizon
containing nmax periods. For notational purposes, let the demand for period n be
the random variable Dn; thus, P{Dn = k} = f (k). The ending inventory for period
n is denoted by the random variable Xn. After the inventory level is observed, a
decision is made regarding an order; if an order is placed, the new inventory arrives
immediately so the beginning period’s inventory is equal to the previous period’s
ending inventory plus the order quantity. If q items are ordered, there is an order
cost given by co(q). The inventory holding cost and shortage cost are given by ch

and cp, respectively, and there are no backorders. Once an inventory ordering policy
has been determined, the stochastic process {X0,X1, · · · ,Xnmax} is a Markov chain.

The solution methodology we use is stochastic dynamic programming. Bellman
is often considered the father of dynamic programming and he defined in [1] a con-
cept called the “principle of optimality”. Bellman’s principle of optimality essen-
tially means that an optimal policy must have the property that, at any point in time,
future decisions are optimal independent of the decisions previous to the current
point in time. This is fundamentally a Markov property; therefore, stochastic dy-
namic programming is an ideal tool for identifying optimal decisions for processes
satisfying the Markov property.

At the end of a period, the ending inventory is observed and a decision is made
as to what the order up-to quantity should be for the next period. Thus, the optimum
decision and the cost associated with the optimum decision made at the start of
period n depend on the inventory at the end of period n− 1. Denote the optimum
decision made at the beginning of period n by yn(x) and total future cost (or value) of
that decision by vn(x), where x is the ending inventory level of the previous period.

Dynamic programming is usually solved by a backwards recursion. Thus, the
first step towards a solution is to optimize the decision made in the final period; that
is, we first determine ynmax and vnmax . In other words, the first step is to solve the
single-period problem:
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vnmax(x) = min
y≥x

co(y− x)+L(y) , (10.11)

and ynmax is the value of y that minimizes the expression in the right-hand-side of
the above equation. The question may arise as to how we solve Eq. (10.11) if we do
not know the value of the ending inventory for nmax −1. The answer is simple: find
the optimal order up-to quantity for every reasonable value of the ending inventory
xmax−1. (Note that if co involves a setup cost plus a linear variable cost, then the
term being minimized is E[Cx,yn ] from Eq. 10.9.) Once vnmax is known, the remaining
values of vn can be calculated based on the typical dynamic programming recursive
relationship:

vn−1(x) = min
y≥x

{co(y− x)+L(y)+Ey[vn(Xn−1)]} . (10.12)

Notice that the expected value operator in Eq. (10.12) is written with y as a subscript.
This is to indicate that the expected value depends on the decision made for y, which
is the beginning inventory level for period n. We illustrate these calculations through
the following example.

Example 10.4. A manufacturing company needs widgets in their manufacturing pro-
cess; however the exact number needed during the day is random and varies from
zero to three with equal probability (i.e., f is discrete uniform). At the end of each
day, an order is placed for widgets to be used during the next day, and delivery is
made overnight. If not enough widgets are on hand for the day, there is a $92 cost
for each one short. If widgets must be stored for the next day, there is a $8 storage
cost due to the need to refrigerate them overnight. Because of space restrictions, the
most that can be kept overnight is 5 widgets. If an order for q widgets is placed, it
costs $50 + 20q (i.e., a $50 setup cost and a $20 variable cost). It is now Tuesday
evening, and one widget is on hand for tomorrow. We would like to determine the
optimal ordering policy for the next three days. ��

We shall use the above example to illustrate the steps involved in using Eqs. (10.11)
and (10.12). As is normal with dynamic programming problems, the amount of com-
putations becomes tedious, but those calculations would be quick for a computer to
handle as long as there is only a single state variable (there is only one state variable
in this case—namely, the ending period’s inventory).

We begin by calculating the single-period inventory costs. It should be clear that
we would never order up to a number larger than 3 on Thursday night, because
we need at most three widgets on Friday and the inventory costs beyond Friday do
not affect the three-day planning horizon; however, it is not clear that we should be
limited to just 3 items for either Wednesday or Thursday; therefore, we calculate the
inventory ordering costs allowing for the possibility of ordering up to five widgets.
The loss function calculation is according to Eq. (10.4); thus,

L(0) = 0×0.25+92×0.25+184×0.25+276×0.25 = 138

L(1) = 8×0.25+0×0.25+92×0.25+184×0.25 = 71
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L(2) = 16×0.25+8×0.25+0×0.25+92×0.25 = 29

L(3) = 24×0.25+16×0.25+8×0.25+0×0.25 = 12

L(4) = 32×0.25+24×0.25+16×0.25+8×0.25 = 20

L(5) = 40×0.25+32×0.25+24×0.25+16×0.25 = 28 .

We add the inventory ordering costs to the above loss function values and obtain
the values the single-period inventory costs as shown in Table 10.1. (Since the order

Table 10.1 Values for E[Cx,y] Used in Eq. (10.11)

Order Up-To Quantity for Friday
x y = 0 y = 1 y = 2 y = 3 y = 4 y = 5
0 0 + 138 70+71 90+29 110 + 12 130+20 150+28
1 0+71 70+29 90+12 110+20 130+28
2 0+29 70+12 90+20 110+28
3 0+12 70+20 90+28
4 0+20 70+28
5 0+28

up-to quantity, y, must be at least as large as the previous day’s ending inventory, x,
the above table contains no values in the lower portion.)

Our problem is to decide the beginning inventory levels for Wednesday through
Friday. Friday’s decision (actually the decision made Thursday evening) is given
by Eq. (10.11), which is equivalent to taking the minimum value for each row of
Table 10.1. These values are given in Table 10.2.

Table 10.2 Optimum values for Thursday evening’s decision

x 0 1 2 3 4 5
v3 119 71 29 12 20 28
y3 2 1 2 3 4 5

Note that in dynamic programming, it is necessary to determine the optimum
decision for each state that might occur at the beginning of the period. The decision
to be made Wednesday evening (i.e., for Thursday’s beginning inventory level) is
determined through the following restatement of Eq. (10.12):

v2(x) = min
y≥x

{E[Cx,y]+Ey[v3(X2)]} .

The values for E[Cx,y] are given in Table 10.1, but the values for Ey[v3(X2)] must be
calculated using Table 10.2 as follows:

E0[v3(X2)] = 119

E1[v3(X2)] = 71×0.25+119×0.75 = 107
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E2[v3(X2)] = 29×0.25+71×0.25+119×0.50 = 84.5

E3[v3(X2)] = 12×0.25+29×0.25+71×0.25+119×0.25 = 57.75

E4[v3(X2)] = 20×0.25+12×0.25+29×0.25+71×0.25 = 33

E5[v3(X2)] = 28×0.25+20×0.25+12×0.25+29×0.25 = 22.25 .

To understand the above equations, remember that an expected value is simply
the sum over all possibilities times the probability that the possibility will occur.
Consider E0[v3(X2)]. The “0” subscript indicates that Thursday begins with no in-
ventory. If there is no inventory for Thursday, then with probability one, there will be
no inventory Thursday evening. If Thursday ends with no inventory, Friday’s opti-
mum cost (namely, v3(0) from Table 10.2) is 119. Consider E1[v3(X2)]. If Thursday
morning begins with an inventory level of 1, there is a 25% chance that Thursday
evening will also have an inventory level of 1 (i.e., no demand for Thursday) in
which case Friday’s optimum cost (v3(1) from Table 10.2) is 71. Also, if Thursday
morning begins with 1, there is a a 75% chance of no inventory being available
Thursday evening in which case the optimum cost for Friday is 119. Thus, the ex-
pected value of those two cost values equals 107.

The values for Thursday’s costs (Table 10.1) are added to the expected future
costs (i.e., Ey[v3(X2)]) to obtain the necessary values for Eq. (10.12) as follows:

Table 10.3 Values for E[Cx,y]+Ey[v3(X2)]

Order Up-To Quantity for Thursday
x y = 0 y = 1 y = 2 y = 3 y = 4 y = 5
0 138+119 141+107 119+84.5 122+57.75 150+33 178+22.25
1 71+107 99+84.5 102+57.75 130+33 158+22.25
2 29+84.5 82+57.75 110+33 138+22.25
3 12+57.75 90+33 118+22.25
4 20+33 98+22.25
5 28+22.25

Wednesday evening’s decision is now made by again minimizing each row within
Table 10.3. These results are in Table 10.4.

Table 10.4 Optimum values for Wednesday evening’s decision

x 0 1 2 3 4 5
v2 179.75 159.75 113.5 69.75 53 50.25
y2 3 3 2 3 4 5

The final decision to be made is for Tuesday evening. Since we already know
Tuesday’s ending inventory, we only have to compute one value; namely, we need
to determine

v1(1) = min
y≥1

{E[C1,y]+Ey[v2(X1)]} .
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The future costs (future from Wednesday’s point of view) are calculated as

E0[v2(X1)] = 179.75

E1[v2(X1)] = 159.75×0.25+179.75×0.75 = 174.75

E2[v2(X1)] = 113.5×0.25+159.75×0.25+179.75×0.50 = 158.1875

E3[v2(X1)] = 69.75×0.25+113.5×0.25+159.75×0.25+179.75×0.25

= 130.6875

E4[v2(X1)] = 53×0.25+69.75×0.25+113.5×0.25+159.75×0.25 = 99

E5[v2(X1)] = 50.25×0.25+53×0.25+69.75×0.25+113.5×0.25 = 71.625 .

Thus, the relevant costs for determining Tuesday evening’s decision are as follows:

Table 10.5 Values for E[Cx,y]+Ey[v2(X1)]

Order Up-To Quantity for Wednesday
x y = 0 y = 1 y = 2 y = 3 y = 4 y = 5
1 — 71+174.75 99+158.1875 102+130.6875 130+99 158+71.625

Minimizing over the row gives v1(1) = 229 and y1(1) = 4. In other words, we or-
der 3 additional widgets for Wednesday morning. The decision to be made Wednes-
day night depends on Wednesday’s demand. If Wednesday evening ends with 2 or
more widgets, no order is placed; if Wednesday evening ends with 0 or 1 widget,
an order is placed to bring Thursday’s beginning inventory up to 3 widgets. For
Thursday evening, if no widgets are present, we order 2 widgets to begin Friday’s
schedule; however, if any widgets remain Thursday evening, no additional widgets
are ordered.
• Suggestion: Do Problems 10.12–10.17.

Problems

10.1. The following functions are defined only on the positive integers. Use the
difference operator to solve the following.
(a) min g(n) = 2n2 −9n.
(b) max g(n) = 1/(3n−11)2.
(c) max g(n) = ne−0.3n.

10.2. Let f (·) be a probability mass function defined on the nonnegative integers,
with F(·) its CDF and μ its mean. Define the function g(n), for n = 0,1, · · · , by

g(n) = n
∞

∑
i=n

(i−n) f (i) .
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(a) Using the difference operator, show that g(·) is maximized at the smallest integer,
n, such that

(2n+1)(1−F(n))+
n

∑
i=0

i f (i) ≥ μ .

(b) Use the answer in part (a) to obtain the optimum n when f (·) is the mass function
for a Poisson random variable with mean 2.5.

10.3. A computer store is getting ready to order a batch of computers to sell during
the coming summer. The wholesaler is giving the store a good price on the comput-
ers because they are being phased out and will not be available after the summer.
Each computer will cost the store $550 to purchase, and they will sell it for $995.
The wholesaler has also offered to buy back any unsold equipment for $200. The
manager of the computer store estimates that demand for the computer over the
summer is a Poisson random variable. How many computers should be purchased
by the store in preparation for the summer?
(a) The mean demand for the summer is 5.
(b) The mean demand for the summer is 50. (Note that the Normal distribution is a
good approximation for the Poisson.)

10.4. Consider the news-vendor problem of Example 10.1. The newspaper company
has established an incentive program. The company has grouped all news vendors in
groups of 10, and at the end of each day, one person out of the ten will be randomly
selected. The news vendor thus selected will receive a full refund of $0.15 for the
unsold newspapers.
(a) Give the expression for the expected profit per day analogous to Eq. (10.1).
(b) Use difference equations to find an expression analogous to Eq. (10.2) that can
be used to obtain the optimum order quantity.
(c) Find the optimum order quantity.
(d) Write a computer program to simulate this process. Based on the simulation, do
you believe your answer to parts (b) and (c)? (Note: the simulations suggested in
these exercises can be written without using a future events list.)

10.5. Using the single-period model, determine the optimum reorder point for the
camera store in Example 10.2, except assume that the demand is Poisson with a
mean of 70.

10.6. A manufacturing company uses widgets for part of its manufacturing process.
Widgets cost $50 each and there is a 50 cent charge for each item held in inventory
at the end of each month. If there is a shortage of widgets, the production process is
seriously disrupted at a cost of $150 per widget short. What is the optimum ordering
policy for the following scenarios?
(a) The monthly demand is governed by the discrete uniform distribution varying
between 3 and 7 widgets (inclusive).
(b) The monthly demand is governed by the continuous uniform distribution varying
between 300 and 700 widgets.
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(c) The cost structure as stated in the problem description is over simplified. The
penalty for being short is divided into two pieces. There is a shortage cost due to a
disruption to the manufacturing process of $1,000 independent to how many widgets
are short. In addition, there is a $60 cost per widget short. Derive a formula for the
optimal ordering policy assuming that the monthly demand is a continuous uniform
distribution.
(d) Apply the answer to part (c) assuming that demand varies between 300 and 700
widgets.
(e) Write a computer program or Excel macro to simulate this process. Based on the
simulation, do you believe your answer to parts (c) and (d)?

10.7. The single-period inventory model without setup costs can be formulated so
as to maximize profits instead of minimizing costs as was done in Eq. (10.5). Show
that the two formulations are equivalent.

10.8. The loss function for a single-period inventory is given by Eq. (10.7). The
loss function includes a holding cost and a penalty cost. Assume that the goods are
perishable and that any goods on hand at the beginning of the period must be sold
during that period or they spoil and must be discarded at a cost of cs per item. (That
is, items can be held over for one period, but not for two periods.) Assume that all
unsold goods (even those to be discarded) add to the inventory cost. How would
Eq. (10.7) change?
(a) Use a FIFO policy; that is, assume that all items in inventory at the beginning of
the period are sold first.
(b) Use a LIFO policy; that is, assume that all items in inventory at the beginning of
the period are sold last so that customers get fresh goods if they are available.

10.9. Assume that there is a $170 handling cost each time that an order is placed
from the camera store of Example 10.2. Using a Poisson demand process with a
mean of 70, determine the store’s optimal ordering policy.

10.10. For the manufacturing problem described in Problem 10.6, assume that there
is an ordering cost of $750 incurred whenever an order is placed. Determine the
optimal ordering policy when demand is according to a continuous uniform distri-
bution between 300 and 700.
(a) Assume that the penalty cost is $150 per widget short.
(b) Assume that the penalty cost is $60 per widget short plus an additional $1,000
due to the process interruption.

10.11. In Example 10.3, the wholesaler of the power supplies has decided to offer a
discount when large quantities are ordered. The current unit cost, excluding set-up,
is $5. The wholesaler has decided that orders of 100 or more will yield a reduction
of cost to $4.50 per unit. Determine if the availability of the discount changes the
optimal ordering policy.

10.12. The optimal ordering policy for Example 10.4 was obtained for a planning
horizon of three days. Determine the optimal ordering policy for a planning horizon
of four days.
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10.13. A small company produces printers on a weekly basis which are sold for
$1,700 each. If no printers are produced, there are no costs incurred. If one printer
is produced, it costs $1,400. If two printers are produced, it costs $2,000. If three
printers are produced, it costs $2,500. The normal maximum production capacity
for the company is three printers; however, by paying overtime, it is possible to pro-
duce one extra printer for an additional $750. For each printer in inventory at the
end of the week, there is a cost of $15. Weekly demand can be approximated by
a binomial random variable with n = 4 and p = 0.4. Any demand not meet from
existing inventory or from the week’s production is lost. The current policy is to
never inventory more than four units at the end of any week. It is now Friday, and
one printer remains unsold for the week.
(a) What should be next week’s production if a planning period of three weeks is
used.
(b) What would be the cost savings, if any, if the current policy of allowing a maxi-
mum of four units stored at the end of the week was changed to five units?
(c) Part (a) can be solved using stochastic dynamic programming as discussed in
Sect. 10.3. Assume that you do not know dynamic programming and answer Part
(a) through a simulation analysis. Compare the amount of work required by the two
approaches. After reaching a conclusion with dynamic programming and simula-
tion, comment on your level of confidence in the two answers.

10.14. Derive a decision rule for a two-period, no setup cost, inventory model. The
basic cost structure should be the same as in Sect. 10.2.1 with continuous demand.
Let the decision variables be y1 and y2, referring to the order up-to quantities and
periods one and two respectively.
(a) Show that y1 can be obtained by minimizing the following:

E[Cx,y1 ] = cw(y1 − x)+
∫ y1

s=0
(ch − cw)(y1 − s) f (s)ds

+
∫ ∞

s=y1

cp(s− y1) f (s)ds+ cwy∗2 +L(y∗2) ,

where y∗2 is the optimum order up-to quantity for period 2.
(b) Obtain expressions that can be used to find y∗1 and y∗2.
(c) Find the optimum values for the order up-to quantities using the data from Ex-
ample 10.2, except with a mean demand of 70.
(d) Write a simulation for the situation of Example 10.2, and implement a two-
period decision rule. Using your simulation, answer the following question: “How
much difference is there between using a two-period rule and a single-period rule?”

10.15. The multi-period inventory problem can be modeled as a Markov chain. Con-
sider an inventory policy with an order up-to quantity given by y, where backorders
are not allowed, and with a demand per period being given by the pmf f (·). Fur-
thermore, let the costs cw, ch, and cp be the wholesale, holding, and shortage costs,
respectively. Define a Markov chain with state space E = {0,1, · · · ,y}, where Xn de-
notes the on-hand inventory at the end of each period, immediately before an order
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for additional inventory is placed. Finally, assume that orders are delivered instan-
taneously.
(a) Give the Markov matrix for the Markov chain.
(b) Give the Markov matrix using the numbers from Example 10.2 (including y = 6).
(c) Determine the steady-state probabilities for the Markov chain and its associated
long-run cost.
(d) What is the optimal ordering policy?

10.16. Develop a Markov chain formulation for the multi-period inventory problem
with set-up costs.
(a) Give the Markov matrix for the Markov chain.
(b) Give the Markov matrix using the numbers from Example 10.2 with the addition
of a $30 ordering cost. Use s = 2 and S = 7.
(c) Determine the steady-state probabilities for the Markov chain and its associated
long-run cost.
(d) What is the optimal ordering policy?

10.17. A manufacturer of specialty items has the following inventory policy. Three
items are kept in inventory if there are no orders being processed. Whenever an order
is received, the company immediately sends a request to begin the manufacturing
of another item. If there is an item in inventory, the customer is shipped the item
in inventory. If no items are in inventory, the customer’s request is backordered and
a discount of $600 is applied to the purchase price. The time to manufacture one
item is exponentially distributed with a mean of two weeks. The items cost $12,000
to manufacture, and any item in inventory at the end of a week costs the company
$75. The company averages 24 orders per year, and the arrival of orders appears
to be according to a Poisson process. The purpose of this exercise is to formulate
the inventory problem as a queueing process. For this purpose view the ordering
process as an M/M/∞ system. In which case, notice that p0 for the queueing system
is equivalent to the company having an inventory level of three.
(a) What is the value of r = λ/μ for the M/M/∞ system?
(b) What is the expected number of items being manufactured within the facility?
(Notice that this is L for the queueing system.)
(c) What is the probability that when an order is received, it must be backordered?
(d) Derive an expression for the long-run average weekly cost for this inventory
problem.
(e) The current inventory policy is to maintain three items in stock when there are
no outstanding orders. Is this optimum?

References

1. Bellman, R. (1957). Dynamic Programming, Princeton University Press, Princeton, NJ.



Chapter 11
Replacement Theory

Almost all systems deteriorate with age or usage, unless some corrective action
is taken to maintain them. Repair and replacement policies are often implemented
to reduce system deterioration and failure risk. Increasingly complex systems have
generated interest in the research of replacement theory. Originally most of the mod-
els were developed for many industrial and military systems; however, more recent
applications of these models have extended to areas such as health, ecology, and the
environment.

Determining repair and replacement policies for stochastically deteriorating sys-
tems involves a problem of decision-making under uncertainty, because it is im-
possible to predict with certainty the timing and extent of the deterioration process.
In repair and replacement models, these uncertainties are usually assumed to have
known probability distribution functions so that the deterioration process is stochas-
tically predictable. In this chapter we present some of the basic models dealing
with replacement and maintenance issues. The concern is with the trade-off between
maximizing the life of the equipment and minimizing increased costs due to early
replacements and unforeseen failures.

In Sect. 11.1, we present the classical age-replacement maintenance policy, and
in Sect. 11.2 an extension of the age replacement policy that includes repairs that
do not change the failure distribution is developed. Finally in Sect. 11.3, the block
replacement maintenance policy is presented.

11.1 Age Replacement

An age replacement policy is one in which the equipment is replaced as soon as
it fails or when it reaches a prespecified age, whichever occurs first. As with the
inventory chapter, we shall consider both a discrete case and a continuous case. The
basic concept for these models is the consideration for two types of actions that
may be taken at any point in time: (1) replace the equipment with (probabilistically)
identical equipment, or (2) leave the equipment alone.

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 305
DOI 10.1007/978-3-642-05158-6 11, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 11.1 Schematic rep-
resentation for an age-
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11.1.1 Discrete Life Times

We begin by assuming that the random variable describing the time until failure for
the equipment is a discrete random variable. We also assume that the equipment
being replaced is only one component. In order to provide a proper framework for
the replacement problem, an example is used for motivation.

Example 11.1. Consider a specially designed switch used to initiate production pro-
cessing each day. At the start of each day, the switch is used to begin processing;
however, it is not fully reliable, and it periodically must be replaced. Experience
indicates that the switch will fail somewhere between the 20th day and the 30th day
according to the following probability mass function:

day 20 21 22 23 24 25 26 27 28 29 30
prob. 0.02 0.03 0.05 0.1 0.3 0.2 0.15 0.08 0.04 0.025 0.005

.

The switch costs $300 to replace; however, an additional cost of $200 in lost pro-
duction is incurred if the switch is replaced during the morning at failure time. Since
production only occurs during the day, it may be worthwhile to replace the switch as
a preventative measure during some evening before it fails. The disadvantage of the
preventative action is that we do not get full utilization out of the switch. Thus our
problem is to determine a replacement strategy that optimally makes the trade-off
between avoiding the additional replacement cost and fully utilizing the life of the
switch. ��

A typical replacement strategy is to determine a replacement age, call it t0, such
that if the switch fails before t0, it is replaced; if the switch works on day t0, replace
it that evening. (A schematic of this replacement policy is given in Fig. 11.1.) With
this strategy, we can now formulate the optimization problem with an objective of
minimizing the expected long-run average daily cost. To state the problem generally,
let T denote the random variable representing the failure time with its CDF being
F(t). Furthermore, let cr denote the cost of replacement, c f represent the additional
cost associated with failure, and z(t0) denote the long-run average daily cost asso-
ciated with the replacement age of t0. Since some switches will fail and some will
be replaced before failure, different switches will have different replacement costs.
Let Ct0 be the random variable indicating the replacement costs for a switch while
using a replacement age of t0. With this notation, the objective function is given as
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z(t0) =
E[Ct0 ]

E[min(T, t0)]
.

To obtain the numerator, we make two observations. First, the replacement cost, cr,
is always incurred, and second, the failure cost, c f , is incurred only when the switch
fails on or before the replacement day, t0. Thus,

E[Ct0 ] = cr + c f Pr{T ≤ t0} .

To obtain the denominator, let the random variable S denote the actual replacement
time; that is S = min(T, t0). The CDF of the random variable S is thus

G(s) = P{S ≤ s} =
{

F(s) if s < t0
1 if s ≥ t0

,

where P{T ≤ s} = F(s), i.e., F is the CDF of T . (See Fig. 11.2 for a representation
of G.) We now use the third statement of Property (1.11) to obtain the denominator;
namely,

E[min(T, t0)] = E[S] =
∫ ∞

0
[1−G(s)]ds =

∫ t0

0
[1−F(s)]ds .

Therefore, the expected long-run average cost associated with a particular replace-
ment policy can be written as

z(t0) =
cr + c f F(t0)
∫ t0

0 [1−F(s)]ds
. (11.1)

Since our problem deals with a discrete random variable, we introduce some ad-
ditional notation so that the computation of Eq. (11.1) will be more straight forward.
Specifically, let Fk = F(k) = Pr{T ≤ k}; that is, Fk is the probability that the switch
fails on or before day k. Also, let Fk = 1−F(k); that is Fk is the probability that the
switch fails after day k. The optimal replacement time is given as t∗0 , where t∗0 is the
k that solves the following

min
k

z(k) =
cr + c f Fk

∑k−1
i=0 Fi

, (11.2)

where F0 = 1. It should also be observed that if replacement occurs on day t0, then
the sum in the denominator begins at zero and goes until t0 −1.

Unfortunately, Eq. (11.2) does not yield itself to a nice single equation from
which the optimum can be determined; thus, we find the optimum by “brute force”.
The easiest way to do this is to make a table and continually evaluate the long-run
average cost, z(k) for successive values of k until the first optimum is obtained. The
following table illustrates these computations:

The above computations are stopped when the first local minimum is identified,
and we therefore set the optimum replacement time as t∗0 = 22. In doing this, some
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Fig. 11.2 The CDF G(·) of S derived from the CDF F(·) of T

Table 11.1 Computations for evaluating Eq. (11.2) applied to Example 11.1

k fk Fk cr + c f Fk Fk ∑k−1
i=0 Fi z(k)

19 0.00 0.00 300 1.00 19.00 15.79
20 0.02 0.02 304 0.98 20.00 15.20
21 0.03 0.05 310 0.95 20.98 14.78
22 0.05 0.10 320 0.90 21.93 14.59
23 0.10 0.20 340 0.80 22.83 14.89

assumptions have been made about the shape of the long-run average cost function;
namely, that the first local minimum is the global minimum. It is not appropriate
at the level of this textbook to go into all the details about such an assumption;
however, one concept that is useful to know when hoping to make such an assump-
tion has to do with the hazard rate function. An important characteristic of random
variables that relate to failure times is its hazard rate.

Definition 11.1. The function h(·) defined, for t ≥ 0, by

h(t) =
f (t)

1−F(t)

is called the hazard rate function, where F is a CDF1 and f is either a pdf or pmf
depending on whether the random variable of interest is discrete or continuous. ��

1 It is also possible to obtain the distribution from the hazard rate through the relationship F(t) =
1− exp

{
−
∫ t

0 h(s)ds
}

.
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Intuitively, the hazard rate evaluated at t gives the rate of failure at time t given
that the item has not yet failed at t. A random variable is said to have an increasing
failure rate (IFR) distribution if its hazard rate is increasing for all t ≥ 0. Thus, a
random variable that has an IFR distribution refers to an item that in some sense
“gets worse” as it ages. As a general rule, replacement problems that deal with
IFR distributions have costs that increase with age. Thus, cost functions associated
with IFR distributions are usually well behaved, and Eq. (11.1) taken as a function
of t0 will have a unique minimum. Since the above example problem has an IFR
distribution, we know that the local minimum is a global minimum, and the optimal
policy is to replace the switch at the end of day 22 if failure does not occur during
the first 22 days of operation.
• Suggestion: Do Problems 11.1–11.4.

11.1.2 Continuous Life Times

When the lifetime of the system being considered for a replacement policy can
be described by a continuous random variable, it is possible to obtain a closed
form expression for the optimum replacement time. The basic optimization equa-
tion (Eq. 11.1) is the same for both the continuous and discrete case. Therefore, we
begin by taking the derivative of (11.1) with respect to t0. It is not difficult to show
that

dz(t0)
dt0

= 0

yields the equation

c f f (t0)
∫ t0

0
(1−F(s))ds = (cr + c f F(t0))(1−F(t0)) . (11.3)

Before continuing with the derivative, we return to Definition 11.1. The hazard
rate function for a distribution is an important descriptor and is often given instead
of the distribution function to describe a random variable. In general, replacement
policies are usually developed for systems that have IFR distributions, so we shall
assume an increasing hazard rate function and convert the above equation into an
expression using its hazard rate. We divide both sides of Eq. (11.3) by c f and the
factor 1−F(t0) to obtain

(1−F(t0))+h(t0)
∫ t0

0
(1−F(s))ds = 1+

cr

c f
. (11.4)

Before we can make definite statements regarding a solution to the above equa-
tion, we need to know how many solutions it has. We first observe that the right-
hand-side is a constant; therefore, if the left-hand-side is increasing, then there can
be at most one solution. The derivative of the left-hand-side with respect to t0 yields
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Fig. 11.3 A Graphical Solution of Eq. (11.4) for Example 11.2

− f (t0)+(1−F(t0))h(t0)+
dh(t0)

dt0

∫ t0

0
(1−F(s))ds

which can be simplified to

dh(t0)
dt0

∫ t0

0
(1−F(s))ds .

Since h(·) was assumed to be increasing, the above expression is positive for all t0 ≥
0, which implies that the left-hand-side of Eq. (11.4) is increasing. Therefore, we
know that there is at most one solution to (11.4). (Figure 11.3 presents an example
graph of the left-hand-side of Eq. (11.4) as a function of the replacement age.)

The optimal age-replacement policy can now be stated as follows: Let t0 satisfy
Eq. (11.4). If a failure occurs before t0, replace at the failure time, if no failure occurs
before t0, replace at t0.

Example 11.2. A smelting process involves steel pots that are lined with a ceramic
lining. The ceramic lining is used because the electrolytic solution within the pots is
corrosive; however, with age the lining will develop cracks which allows the elec-
trolytic solution within the pot to find a path to the steel shell. If the lining fails (i.e.,
develops cracks) while the operation is in process, the solution will eat through the
steel pot and spill on the floor which involves extra cleanup costs and extra repair
time for the steel shells. Upon failure, or at a scheduled replacement, the steel shell
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is repaired and a new ceramic lining is placed in the shell. The lifetime of the lin-
ing is described by a Weibull distribution with scale parameter β = 25.489 months
and shape parameter α = 16.5 (see p. 19). Thus the expected lifetime of the lining
is 24.685 months with a standard deviation of 1.84 months. Replacement cost is
$30,000 with an additional $20,000 incurred if a failure occurs2; thus cr/c f = 1.5.
The hazard rate function for the Weibull distribution is h(t) = (α/β )(t/β )α−1 so
that the Weibull has an IFR if α > 1. Therefore, we need to find the value of t such
that

e−(t/β )α
+(α/β )(t/β )α−1

∫ t

0
e−(s/β )α

ds = 2.5 .

The above equation cannot be solved analytically, but it can be evaluated numeri-
cally. Evaluating the above numerically yields t0 = 22.13; therefore, any failure of
a pot with an age less than 22.13 months will be immediately replaced, and any pot
still working with an age of 22.13 months will be replaced even though no problems
with the lining had yet become evident. The expected long-run cost for this policy
is obtained by substituting the value of t0 back into Eq. (11.1) to yield $1,447.24 per
month. ��

Example 11.3. Simulation. To insure a good understanding of the replacement pro-
cess, we simulate the failure of steel pots for Example 11.2. Since the Weibull dis-
tribution governs failure time, our first step is to obtain the inverse of the Weibull
CDF. Using the inverse mapping method, the transformation from a random number
to a Weibull random variate with scale and shape parameters β and α , respectively,
is

T = β (− ln(R))1/α .

For the simulation, we generate a random number and obtain a failure time. If the
failure time is before the replacement time, t0, then a failure cost is incurred; if
the random failure time is larger than the replacement time, the failure cost is not
incurred. After replacement (either at the failure time or replacement time), a new
machine is instantaneously placed in service. We maintain the cumulative cost and
the cumulative time. Table 11.2 shows the results of 10 replacements using an age-
replacement policy of t0 = 22.13. Based on this simulation, the estimated average
cost for the replacement policy is $1,453 per month.

For comparison, Table 11.3 shows the results of 10 replacements if a replacement
policy of t0 = 24.7 (i.e., the average life) had been used. The simulation would
then yield an estimated average of $1,488 per month. Of course, no conclusions
can be drawn from these simulations, except that you now (hopefully) understand
the dynamics of the process. Several replicates of longer runs need to be made if
conclusions were to be drawn as to the preference of one policy over the other. This
also emphasizes a weakness of simulation: a single calculation from the analytical
approach is needed to obtain the optimal policy; whereas, many simulation runs
must be made simply to obtain an estimate of the optimum. ��

2 These numbers are not very realistic, but they are given for an easy comparison with the discrete
case of Example 11.1. Note that the means and standard deviations of the two examples are similar.
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Table 11.2 Simulation of Example 11.2 with t0 = 22.13

Time new Random Failure Replacement Cost Cumulative
machine number time time cost

starts
0 0.7400 23.710 22.13 30,000 30,000

22.13 0.4135 25.318 22.13 30,000 60,000
44.26 0.1927 26.298 22.13 30,000 90,000
66.39 0.6486 24.241 22.13 30,000 120,000
88.52 0.0130 27.900 22.13 30,000 150,000
110.65 0.2967 25.815 22.13 30,000 180,000
132.78 0.0997 26.843 22.13 30,000 210,000
154.91 0.9583 21.044 21.04 50,000 260,000
175.91 0.0827 26.971 22.13 30,000 290,000
198.08 0.2605 25.976 22.13 30,000 320,000
220.21

Table 11.3 Simulation of Example 11.2 with t0 = 24.7

Time new Random Failure Replacement Cost Cumulative
machine number time time cost

starts
0 0.7400 23.710 23.71 50,000 50,000

23.71 0.4135 25.318 24.70 30,000 80,000
48.41 0.1927 26.298 24.70 30,000 110,000
73.11 0.6486 24.241 24.24 50,000 160,000
97.35 0.0130 27.900 24.70 30,000 190,000
122.05 0.2967 25.815 24.70 30,000 220,000
146.75 0.0997 26.843 24.70 30,000 250,000
171.45 0.9583 21.044 21.04 50,000 300,000
192.49 0.0827 26.971 24.70 30,000 330,000
217.19 0.2605 25.976 24.70 30,000 360,000
241.89

• Suggestion: Do Problems 11.5, 11.6, and 11.8.

11.2 Minimal Repair

Some types of failure do not always require replacement; it is sometimes possible
to repair the failed equipment instead of completely replacing it. If a repair sim-
ply returns the equipment to service without any truly corrective work, it is called
minimal repair; that is, a minimal repair is a repair that returns the equipment to a
working condition with the remaining life of the equipment being the same as if it
had never failed. For example, suppose you have a car and the tire has just blown
out. You could buy a new car or you could replace the tire. If you choose the later
approach and buy a new tire, the life of the car remains unaffected by the repair;
such a repair is called a minimal repair. An example of a non-minimal repair would
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be a blown engine. If you overhaul the engine, that would most likely affect the life
of the car and is not a minimal repair.

There are many variations possible when minimal repair is considered. In this
section we consider two different scenarios. The two cases are presented to illustrate
the modeling methodology and should not be viewed as the models to use whenever
minimal repair is appropriate. In most situations, a new model would need to be
developed that is designed uniquely for the given problem.

11.2.1 Minimal Repairs without Early Replacements

We again consider an age-replacement policy except that now whenever a failure
occurs before the replacement age, a minimal repair is performed. Let t0 designate
the age limit at which point a working system will be replaced, let cm designate
the cost incurred for each minimal repair, and let cr designate the replacement cost.
Similar to the previous section, our first task is to determine the expected cost per
system and the expected age per system. The objective function for the optimal
policy is then the ratio of the two expected values.

The expected cost per system is the replacement cost, cr, plus the expected cost
for minimal repairs, cm, times the expected number of failures before time t0. It can
be shown that the expected number of minimal repairs during the interval (0, t] is
equal to

∫ t
0 h(s)ds, where h(·) is the hazard rate for the system. Since replacement

occurs only at the replacement time, the age of the system is t0. Thus, the value of
the age-limit for replacement is given by

min
t0

z(t0) =
cr + cm

∫ t0
0 h(s)ds

t0
. (11.5)

To find the value of t0 for which the above function is minimized, we take the
derivative of the right-hand-side of Eq. (11.5). Setting the derivative equal to zero
yields the equation

t0h(t0)−
∫ t0

0
h(s)ds =

cr

cm
. (11.6)

Again the question must be asked as to how many solutions might exist for
Eq. (11.6). And, as before, as long as the model deals with a system having an IFR
distribution, there will be at most one solution. The optimal minimal repair policy
is, therefore, to determine the value of t0 that satisfies Eq. (11.6), minimally repair
any failures that occur before t0 and replace at t0.

Example 11.4. We return to Example 11.2 and assume that a procedure has been
developed that can patch the cracks in the lining that caused the pot to fail. When
a failure occurs, there is still the $20,000 failure cost incurred, but the patch costs
an additional $4,000; thus, cm = $24,000. The integrals of Eqs. (11.5) and (11.6)
involve the hazard rate function which is easily integrated for the Weibull distribu-
tion; in particular,

∫ t
0 h(s)ds = (t/β )α . Therefore, the average long-run cost for the
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minimal repair model using a Weibull distribution is

z(t0) =
cr + cm(t0/β )α

t0
,

and Eq. (11.6) becomes

t∗0 = β
(

cr

(α −1)cm

)1/α
.

Since β = 25.489 and α = 16.5, the optimum replacement time is t∗0 = 21.88
months, and the expected long-run average cost is $1,459.45 per month. ��

11.2.2 Minimal Repairs with Early Replacements

Another scenario when minimal repairs are a reasonable option is to establish two
age-control points, t1 and t2. (See the schematic in Fig. 11.4.) Any failure before
age t1 is corrected by a minimal repair; a replacement is made for a system that fails
between the ages of t1 and t2; and a preventative replacement is made at the age of
t2 if the system is still operating. There are three relevant costs: cm is the cost for
each minimal repair, cr is the cost to replace the system, and c f is an additional cost
that must be added to cr for a replacement due to a failure.

The expected cost per system is given by

cr + cm

∫ t1

0
h(s)ds+ c f

F(t2)−F(t1)
1−F(t1)

.

The first term is simply the cost of replacement which must always be incurred; the
second term is the cost of a minimal repair times the expected number of minimal
repairs during the interval (0, t1], and the third term is the cost of failure times the
probability that the system fails in the interval (t1, t2]. Notice that the probability
of failure is a conditional probability because we know that the system must be
working at time t1.

To obtain the expected life length of the system, let T be the random variable
denoting the age at which the system is replaced, and as before, let F(·) denote the
system’s failure distribution. Then,
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Fig. 11.5 Illustration of the replacement time distribution from Eq. (11.7)

Pr{T > t} =

⎧
⎪⎨

⎪⎩

1 if t < t1 ,

1−F(t)
1−F(t1) if t1 ≤ t < t2 ,

0 if t ≥ t2 .

(11.7)

The expected life of the system is thus given by

t1 +
1

1−F(t1)

∫ t2

t1
(1−F(s))ds .

(See the graph of the distribution functions in Fig. 11.5.)
The optimization problem for the (t1, t2) policy is again the expected cost per

system divided by the expected life length per system. This yields a two-dimensional
optimization problem as

min
t1,t2

z(t1, t2) = (11.8)

cr + cm
∫ t1

0 h(s)ds+ c f (F(t2)−F(t1))/(1−F(t1))
t1 +

∫ t2
t1

(1−F(s))/(1−F(t1))ds
.

As a two-dimensional unconstrained optimization problem, we need to take the par-
tial derivative of the right-hand-side of Eq. (11.8) with respect to t1 and t2. (The
partials are not difficult, just tedious.) One of the standard nonlinear search tech-
niques can then be used to find the optimum (t1, t2) policy.
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Example 11.5. So that we might compare the three different age-control policies
mentioned in this chapter, we return to Example 11.4, and calculate the optimum
values for t1 and t2. The function to be minimized (namely, Eq. 11.8), becomes

z(t1, t2) =
50000+24000(t1/25.489)16.5 −20000e(t1/25.489)16.5

e−(t2/25.489)16.5

t1 + e(t1/25.489)16.5 ∫ t2
t1

e−(s/25.489)16.5ds
.

Using a nonlinear search routine, the optimum values are approximately t∗1 = 19.50
months and t∗2 = 22.14 months, yielding an expected long-run average cost of
$1,446.39. It is interesting to compare these numbers with those of Examples 11.2
and 11.4. The optimal age-replacement problem without minimal repairs (Exam-
ple 11.2) is equivalent to the problem in Eq. (11.8) where t1 is restricted to be zero,
and the minimal repair problem without early replacement (Example 11.4) is equiva-
lent to Eq. (11.8) where t2 is restricted to be infinity. There is an almost insignificant
difference between the optimal no minimal repair policy (Example 11.2) and the
optimal (t1, t2) policy, but that does not imply minimal repair is never worthwhile.
Since the optimal t∗1 = 19.5, the probability that a minimal repair is performed equals
0.012; thus, the expected cost savings is small. However, given the occurrence of an
early failure, the actual cost savings may be significant. ��

• Suggestion: Do Problems 11.7 and 11.10.

11.3 Block Replacement

One disadvantage of an age-replacement policy is that such a policy demands good
record keeping. In a situation in which there are many items subject to failure, it may
be advantageous to use a block replacement policy; that is, a replacement policy that
replaces all items at fixed intervals of time independent of the age of the individual
items (see Fig. 11.6 for a schematic representing a block replacement policy). We
will further assume that the cost of the items is relatively low compared to a set-up
cost needed for the replacement. Consider, for example, a city that must maintain its
street lights. The major cost for replacement is the sending out of the crew. There is
little difference in replacing one or two lights.

For modeling purposes, we shall return to the discrete period case and let fm,
for m = 1,2, · · · , denote the failure probability mass function for an item (the items’
failure times are assumed to be probabilistically identical), let cr be the individual
replacement costs, and let K be the set up cost. The policy under consideration is to
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establish a block replacement time, tb; that is, at time 0 all items are assumed new,
when an item fails it must be immediately replaced with a new part, then at time tb
all items are replaced, even those that had recently been replaced. Finally, we shall
let z(tb) denote the expected long-run average cost for a replacement policy using a
replacement time of tb.

The difficult aspect of obtaining an expression for z(tb) is the determination of
the number of individual replacements made. We will not be able to obtain a closed
form expression for that number, but it can be easily obtained recursively. Let n0

denote the number of items in the system, and let nk denote the expected number of
items replaced during period k. These can be determined by the following recursive
scheme:

n1 = f1n0 (11.9)

n2 = f2n0 + f1n1

n3 = f3n0 + f2n1 + f1n2

...

nm = fmn0 + fm−1n1 + · · ·+ f1nm−1 .

Notice that, for example, n2 involves the factor f1n1 since those items that were new
in time period one may fail in the following time period.

Utilizing the above definition, the expected long-run average cost associated with
a block replacement time of tb is given by

z(tb) =
(K +n0cr)+(K + cr)∑tb

m=1 nm

tb
.

The first expression in the numerator on the right-hand-side of the above equation
(namely, K + n0cr) reflects the cost incurred during each block replacement time,
and the second term reflects the costs of all the individual replacements made. In
the development of the second term, we assumed that as soon as a failure occurs,
it is replaced immediately; thus, if three failures occur within a single period, the
three failures would occur at separate times and would call for three individual re-
placements. Likewise, if failures occur in the last period (between times tb −1 and
tb), the failed items are replaced at their failure time and then again when all items
are replaced at time tb.

Therefore, the optimal block replacement time is given as t∗b , where t∗b is the i
that solves the following

min
i

z(i) =
1
i

(

K +n0cr +(K + cr)
i

∑
m=1

nm

)

. (11.10)

Sometimes it is possible for the costs to be such that it is never optimum to re-
place any items before failure. Therefore, it is important to always compare the min-
imal cost of the block replacement policy (i.e., the cost at the first local minimum)
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against the policy that never replaces ahead of time (i.e., the policy that replaces an
item when it fails and never replaces working items). Such a policy has an average
cost given by

z(∞) =
n0(K + cr)

E[T ]
, (11.11)

where E[T ] = ∑∞
m=0 m f (m) = ∑∞

m=0 Fm.

Example 11.6. A manufacturing firm produces aluminum powder. One of the uses
of the powder is as an explosive, so care is taken during a major portion of the
manufacturing process to insure that the powder is produced in an oxygen-free en-
vironment. Therefore, the firm has installed 50 sensors at various locations to record
the presence of oxygen. As soon as a sensor stops working, it must be immediately
replaced; however, the process must be shut down to replace a sensor costing ap-
proximately $300 just for the shut-down and start-up period. The variable cost to
replace a sensor is $40, which includes the sensor itself as well as labor costs and
a slight additional cost of lost production. The probability mass function describing
the failure time of the sensors is as follows:

week 2 3 4 5 6 7 8 9 10 11 12
prob. 0.02 0.03 0.05 0.1 0.3 0.2 0.15 0.08 0.04 0.025 0.005

Thus, we have the following calculations:

For i = 1

n0 = 50

n1 = 50×0 = 0

z(i) = (300+50×40) = 2,300

For i = 2

n2 = 50×0.02+0×0 = 1

z(i) =
1
2
(300+50×40+340×1) = 1,320

For i = 3

n3 = 50×0.03+0×0.02+1×0 = 1.5

z(i) =
1
3
(300+50×40+340× (1+1.5)) = 1,050

For i = 4

n4 = 50×0.05+0×0.03+1×0.02+1.5×0 = 2.52

z(i) =
1
4
(300+50×40+340× (1+1.5+2.52)) = 1,002

For i = 5

n5 = 50×0.1+0×0.05+1×0.03+1.5×0.02+2.52×0 = 5.06

z(i) =
1
5
(300+50×40+340× (1+1.5+2.52+5.06)) = 1,145 .
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Thus, the optimal block replacement time is at the end of the fourth week. We
need to now compare this to the cost of only individual replacement (Eq. 11.11),
which yields a weekly cost of $2,543. Therefore, the optimal block replacement
cost of $1,002 is the best policy. ��
• Suggestion: Do Problems 11.9 and 11.11.

Problems

11.1. This problem3 is to consider the importance of keeping track of history when
discussing the reliability of a machine. Let T be a random variable that indicates the
time until failure for the machine. Assume that T has a uniform distribution from
zero to two years and answer the question, “What is the probability that the machine
will continue to work for at least three more months?”
(a) Assume the machine is new.
(b) Assume the machine is one year old and has not yet failed.
(c) Now assume that T has an exponential distribution with mean one year, and
answer parts (a) and (b) again.
(d) Is it important to know how old the machine is in order to answer the question,
“What is the probability that the machine will continue to work for at least three
more months?”

11.2. An old factory uses a conveyor belt in its production process that seems to be
always in need of repair. It costs $500 to have a repair crew “fix” the belt; however
after it is fixed it still remains as unreliable as it was immediately after the last time it
was fixed. After the belt is fixed, the probability that it will work for exactly k days is
0.7×0.3k−1. When the belt fails, it costs an additional $600 due to the interruption
to the production process. If the belt works during the day, the repair crew can be
called in during the evening off-shift and make adjustments to the belt so that the
probability law governing the next failure is the same as if the belt had failed during
the day and the repair crew had fixed it that day. (When the repair-crew fixes the belt
during the evenings, the $600 process interruption cost is saved.) Can you explain
why the optimum replacement policy for this belt is to never replace before failure?

11.3. A specialized battery is a necessary component to a production machine. Pur-
chase and installation of the battery costs $4,000. Although the battery is advertised
as an “18-month” battery, the actual probability mass function governing its life
length is

month prob. month prob. month prob. month prob. month prob.
1 0.05 5 0.00 9 0.00 13 0.10 17 0.08
2 0.03 6 0.00 10 0.02 14 0.15 18 0.04
3 0.02 7 0.00 11 0.03 15 0.25 19 0.025
4 0.00 8 0.00 12 0.05 16 0.15 20 0.005

3 This problem is from the first chapter and is included here in case it was skipped.
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For purposes of this problem, assume that failure always occurs just before the end
of the month. Replacement can be made at the end of a month without any disrup-
tion to the production schedule; however, if the battery fails before replacement, an
additional cost of $1,000 is incurred. (Notice that the above distribution is not IFR
because of the initial probability of failure. This is quite common as initial failures
are usually due to manufacturing defects. After the “break-in” period, the distribu-
tion is IFR.)
(a) What is the optimal replacement time?
(b) Assume that the cost of record keeping is $10 per month. In other words, in order
to follow the replacement policy, records need to be maintained regarding the life of
the battery. A policy that ignores the life of the battery and simply replaces at failure
has no monthly “record-keeping” costs. What is the optimal replacement policy?

11.4. The purpose of this problem is to consider warranties and to give you some
practice in model development. You will need to adjust the numerator in Eq. (11.2)
slightly in order to answer the questions. We continue with the above problem deal-
ing with the specialized battery; that is, you should use the data from the previous
problem assuming that there are no record-keeping costs.
(a) The battery comes with a six-month warranty; that is, if the battery fails in the
first six months, a new one is installed free of charge. Does this change the optimal
policy? (Assume that if battery failure occurs in the first six months, the warranty
is renewed when the new battery is installed. Of course, the failure cost of $1000 is
still incurred.)
(b) For an additional $450 in the purchase price of the battery, the six-month war-
ranty can be extended to a 12-month warranty. Is it worthwhile? (Assume that if
battery failure occurs in the first 12 months, a new 12-month warranty free of charge
comes with the new battery.)

11.5. Simulate the situation described in Exercise 8.4 (a). Does your simulation
agree with your analytical results?

11.6. Simulate the process described in Example 11.5. The theoretical optimum av-
erage value is approximately $1446. Is this within a 95% confidence interval derived
from your simulation runs?

11.7. Show that a solution to Eq. (11.6) yields the unique minimum for Eq. (11.5)
when the system has an increasing failure rate distribution.

11.8. The temperature control in an oven used within a manufacturing process must
be periodically reset. Once the control has been reset, it will be accurate for a random
length of time, which is described by the Weibull distribution with scale parameter
β = 100 days and shape parameter α = 2. To reset the control, the process must be
stopped at a cost of $750. If the control is not reset, defective parts will be produced
after the control loses its accuracy. As soon as the defective parts are identified, the
process will be stopped and the control reset. The expected cost incurred due to
the production of the defective parts is $550. What is the optimal age-replacement
policy for the resetting of the control?
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11.9. Part of the manufacturing process for powdered aluminum must be carried out
in an oxygen free environment. There are 25 sensors that are used to insure that
the environment stays free of oxygen. To replace one or more sensors, the process
must be shut down at a cost of $900 (including lost production). In addition, the
sensors themselves cost $75 to replace (including labor). The life of the sensors can
be approximated by a Poisson distribution with a mean of 10 months. What is the
optimum block-replacement policy?

11.10. Consider an alternative minimal-repair policy defined by the age t1. Any fail-
ure before age t1 is corrected by a minimal repair. A replacement is made at the
first failure that occurs after t1, i.e., no early replacement. Let cm be the cost for each
minimal repair, cr the cost of replacement, and F(·) the system’s failure distribution.
Derive the long-run expected cost per unit time.

11.11. Equation (11.10) gives the optimum block replacement time, but to use it
directly (as in Example 11.6) requires repetitive calculations. Show that a recursive
approach can be taken where the long-run average costs are given by

z(1) = K(1+n1)+ cr(n0 +n1)

z(i) = z(i−1)
i−1

i
+

(K + cr)ni

i
for i = 2,3, · · · ,

where ni is given by Eq. (11.9).



Chapter 12
Markov Decision Processes1

Markov chains provide a useful modeling tool for determining expected profits or
costs associated with certain types of systems. The key characteristic that allows for
a Markov model is a probability law in which the future behavior of the system is
independent of the past behavior given the present condition of the system. When
this Markov property is present, the dynamics of the process can be described by a
matrix containing the one-step transition probabilities and a vector of initial condi-
tions. In some circumstances, the transition probabilities may depend on decisions
made just before the transition time. Furthermore, not only the transition probabili-
ties, but also associated costs or profits per transition may depend on decisions made
at the transition times. For example, consider a slight variation of the first homework
problem from Chap. 5. This problem had Joe and Pete playing a game of matching
pennies (the pennies were biased), and the Markov model for the game used a state
space representing the number of pennies in Joe’s pocket. We shall generalize the
previous homework problem by having two rules for the game instead of one: Rule
1 states that Joe wins when the coins match and Pete wins when coins do not match;
Rule 2 is the opposite, namely Pete wins when the coins match and Joe wins when
they do not match. Now, before each play of the game, the previous winner gets
to decide which rule is to be used. The dynamics of this game can no longer be
modeled as a simple Markov chain because we need to know how Joe and Pete will
make their decisions before transition probabilities can be determined.

Processes that involve decisions which affect the transition probabilities often
yield models in which optimization questions naturally arise. When the basic struc-
ture of Markov chains is combined with decision processes and optimization ques-
tions, a new model called Markov decision processes is formed. In Markov decision
processes, in contrast to Markov chains, the future depends not only on the current
state but also on the decisions made. The purpose of this chapter is to present some
of the basic concepts and techniques of Markov decision theory and indicate the
types of problems that are amenable to modeling as such processes.

1 This chapter would normally be skipped in a one-semester undergraduate course.

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 323
DOI 10.1007/978-3-642-05158-6 12, c© Springer-Verlag Berlin Heidelberg 2010
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12.1 Basic Definitions

The basic structure and dynamics of a Markov decision process will be introduced
by way of an example. In this example, we introduce the basic elements of a Markov
decision process; namely, a stochastic process with a state space denoted by E and
a decision process with an action space denoted by A.

Example 12.1. Let X = {X0,X1, · · ·} be a stochastic process with a four-state state
space E = {a,b,c,d}. This process will represent a machine that can be in one of
four operating conditions denoted by the states a through d indicating increasing
levels of deterioration. As the machine deteriorates, not only is it more expensive to
operate, but also production is lost. Standard maintenance activities are always car-
ried out in states b through d so that the machine may improve due to maintenance;
however, improvement is not guaranteed. In addition to the state space, there is an
action space which gives the decisions possible at each step. (We sometimes use the
words “decisions” and “actions” interchangeably referring to the elements of the ac-
tion space.) In this example, we shall assume the action space is A = {1,2}; that is,
at each step there are two possible actions: use an inexperienced operator (Action 1)
or use an experienced operator (Action 2). To complete the description of a Markov
decision problem, we need a cost vector and a transition matrix for each possible
action in the action space. For our example, define the two cost vectors2 and two
Markov matrices as

f1 = (100,125,150,500)T ,

f2 = (300,325,350,600)T ,

P1 =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.0 0.1 0.2 0.7
0.8 0.1 0.0 0.1

⎤

⎥
⎥
⎦ ,

P2 =

⎡

⎢
⎢
⎣

0.6 0.3 0.1 0.0
0.75 0.1 0.1 0.05
0.8 0.2 0.0 0.0
0.9 0.1 0.0 0.0

⎤

⎥
⎥
⎦ .

The dynamics of the process are illustrated in Fig. 12.1 and are as follows: if,
at time n, the process is in state i and the decision k is made, then a cost of fk(i)
is incurred and the probability that the next state will be j is given by Pk(i, j). To
illustrate, if Xn = a and decision 1 is made, then a cost of $100 is incurred (rep-
resenting the operator cost, lost production cost, and machine operation cost) and
Pr{Xn+1 = a} = 0.1; or, if Xn = d and decision 2 is made, then a cost of $600 is in-
curred (representing the operator cost, machine operation cost, major maintenance
cost, and lost-production cost) and Pr{Xn+1 = a} = 0.9. ��

2 A superscript T denotes transpose.
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Observe state
Xn = i �Take action

Dn = k � Incur cost
fk(i)

�Transition to next state
Pk(i, j)

Fig. 12.1 Sequence of events in a Markov decision process

In general, the decision made at a given point in time is a random variable, which
we shall denote by Dn; thus, there are two stochastic processes defined: the system
description process, X = {X0,X1, · · ·}, and the decision process, D = {D0,D1, · · ·}.
We can now give explicitly the form for the processes considered in this chapter.

Definition 12.1. Let X be a system description process with state space E and let D
be a decision process with action space A. The process (X ,D) is a Markov Decision
Process if, for j ∈ E, and n = 0,1, · · · , the following holds

Pr{Xn+1 = j|X0,D0, · · · ,Xn,Dn} = Pr{Xn+1 = j|Xn,Dn} .

Furthermore, for each k ∈ A, let fk be a cost vector and Pk be a Markov matrix. Then

Pr{Xn+1 = j|Xn = i,Dn = k} = Pk(i, j)

and the cost fk(i) is incurred whenever Xn = i and Dn = k. ��

An obvious question is, “How can decisions be made as to minimize costs?”
A secondary question is, “What do you mean by minimize?” We first discuss the
different ways decisions can be made.

Definition 12.2. A policy is any rule, using current information, past information,
and/or randomization that specifies which action to take at each point in time. The
set of all (decision) policies is denoted by D . ��

The following are some legitimate policies for the above problem:

Policy 1. Always chose action 1, independent of the state for X , i.e., let Dn ≡ 1
for all n.

Policy 2. If Xn is in state a or b, let Dn = 1; if Xn is in state c or d, let Dn = 2.
Policy 3. If Xn is in state a or b, let Dn = 1; if Xn is in state c, toss a (fair) coin and

let Dn = 1 if the toss results in a head and let Dn = 2 if the toss results in a tail; if
Xn is in state d, let Dn = 2.

Policy 4. Let Dn ≡ 1 for n = 0 and 1. For n ≥ 2, if Xn > Xn−1 and Xn−2 = a, let
Dn = 1; if Xn > Xn−1, Xn−2 = b, and Dn−1 = 2 let Dn = 1; otherwise, let Dn = 2.

As you look over these different example policies, observe the wide range of
possibilities: Policy 3 involves a randomization rule, and Policy 4 uses history. Once
a policy is selected, the probability law governing the evolution of the process is
determined. However, for an arbitrary policy, the Markov decision process is not
necessarily a Markov chain, because we allow decisions to depend upon history.
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For example, if Policy 4 is used, the decision maker needs Xn,Xn−1, and Xn−2 in
order to know which decision is to be made.

We are now ready to answer the question regarding the meaning of the term
minimize. There are two common criteria used: (1) expected total discounted cost
and (2) average long-run cost.

12.1.1 Expected Total Discounted Cost Criterion

The expected total discounted cost problem is equivalent to using a present worth
calculation for the basis of decision making. Specifically, let α be a discount factor
such that one dollar obtained at time n = 1 has a present value of α at time n = 0. (In
traditional economic terms, if r is a rate of return (interest rate) specified by the man-
agement of a particular company, then α = 1/(1+r).) The expected total discounted
cost for a particular Markov decision process is thus given by E[∑∞

n=0 αn fDn
(Xn)].

For example, assume that in the above example, Policy 1 is chosen (i.e., the inex-
perienced operator is always used), and a discount factor of α = 0.95 (equivalent
to a rate of return of approximately 5.3% per period) is used. In that case, the ex-
ample reduces to the computation of the total discounted cost of a standard Markov
chain as was discussed in Chap. 5. The expected total discounted cost is calculated
according to Property 5.14 and is given by (I−αP1)−1f1 which yields the vector
v = (4502,4591,4676,4815)T . In other words, if the process starts in state a, the
expected present value of all future costs is 4502. (It should be observed that when
using a discount factor, the expected total discounted cost depends on the initial
state.)

This example illustrates the fact that a specific policy needs to be selected before
expectations can be taken. To designate this dependence on the policy, a subscript
will be used with the expectation operator. Thus, Ed [·] denotes an expectation under
the probability law specified by the policy d ∈ D . The total discounted value of a
Markov decision process under a discount factor of α using the policy d ∈ D will
be denoted by vα

d ; that is,

vα
d (i) = Ed

[
∞

∑
n=0

αn fDn
(Xn)|X0 = i

]

for i ∈ E and 0 < α < 1. Thus, the discounted cost optimization problem can be
stated as: Find dα ∈ D such that vα

dα (i) = vα(i) where the vector vα is defined, for
i ∈ E, by

vα(i) = min
d∈D

vα
d (i) . (12.1)

It should be pointed out that the question of the existence of an optimal policy can
be a difficult question when the state space is infinite; however, for the purposes
of this text, we shall only consider problems in which its existence is assured by
assuming that both the state space and action space are finite.
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12.1.2 Average Long-Run Cost Criterion

Using an infinite horizon planning period, the total (undiscounted) cost may be infi-
nite for all possible decisions so that total cost cannot be used to distinguish between
alternative policies. However, if cost per transition is compared, then alternatives
may be evaluated. Thus a commonly used criterion is limm→∞

1
m ∑m−1

n=0 fDn
(Xn). For

example, we again assume that Policy 1 is used; thus, Action 1 is always chosen. Us-
ing the Markov chain results from the previous chapter, the long-run cost can be cal-
culated according to Property 5.13. In other words, we first calculate the steady-state
probabilities using the matrix P1, which yields πππ = (0.253,0.167,0.295,0.285);
then, the vector πππ is multiplied by the vector f1 yielding a long-run average cost
of 232.925.

For a fixed policy d ∈ D , the average long-run cost for the Markov decision
process will be denoted by ϕd ; in other words,

ϕd = lim
m→∞

fD0
(X0)+ · · ·+ fDm−1

(Xm−1)

m
.

Thus, the optimization problem can be stated as: Find d∗ ∈ D such that ϕd∗ = ϕ∗,
where ϕ∗ is defined by

ϕ∗ = min
d∈D

ϕd . (12.2)

As before, the existence question can be a difficult one for infinite state spaces. We
leave such questions to the advanced textbooks.

12.2 Stationary Policies

The Markov decision problem as stated in Definitions 12.1 and 12.2 appears difficult
because of the generality permitted by the policies. However, it turns out that under
fairly general conditions, the optimum policy always has a very nice structure so
that the search for an optimum can be limited to a much smaller set of policies. In
particular, policies of the type exemplified by Policy 3 and Policy 4 above can be
excluded in the search for an optimum. Consider the following two definitions.

Definition 12.3. An action function is a vector which maps the state space into the
action space, i.e., an action function assigns an action to each state. ��

In other words, if a is an action function, then a(i) ∈ A for each i ∈ E. In the
example policies given immediately after Definition 12.2, Policy 2 is equivalent to
the action function a = (1,1,2,2), where the action space is A = {1,2}.

Definition 12.4. A stationary policy is a policy that can be defined by an action
function. The stationary policy defined by the function a takes action a(i) at time n
if Xn = i, independent of previous states, previous actions, and time n. ��
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The key idea of a stationary policy is that it is independent of time and is a
non-randomized policy that only depends on the current state of the process and,
therefore, ignores history. Computationally, a stationary policy is nice in that the
Markov decision process under a stationary policy is always a Markov chain. To see
this, let the transition matrix Pa be defined, for i, j ∈ E, by

Pa(i, j) = Pa(i)(i, j) (12.3)

and let the cost vector fa be defined, for i ∈ E, by

f a(i) = fa(i)(i) . (12.4)

Using the example from the previous section, we define the policy that uses the
inexperienced operator whenever the machine is in state a or b and uses the ex-
perienced operator whenever the machine is in state c or d. The Markov decision
process thus forms a chain with the Markov matrix

Pa =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.8 0.2 0.0 0.0
0.9 0.1 0.0 0.0

⎤

⎥
⎥
⎦ ,

and cost vector given by

fa = (100,125,350,600)T .

Any stationary policy can be evaluated by forming the Markov matrix and cost
vector associated with it according to Eqs. (12.3) and (12.4). The reason that this is
important is that the search for the optimum can always be restricted to stationary
policies as is given in the following property.

Property 12.1. If the state space E is finite, there exists a stationary policy
that solves the problem given in Eq. (12.1). Furthermore, if every stationary
policy yields an irreducible Markov chain, there exists a stationary policy that
solves the problem given in Eq. (12.2). (The optimum policy may depend on
the discount factor and may be different for Eqs. (12.1) and (12.2).)

For those familiar with linear programming, this property is analogous to the
result that permits the Simplex Algorithm to be useful. Linear programming starts
with an uncountably infinite set of feasible solutions, then by taking advantage of
convexity, the property is established that allows the analyst to focus only on a
finite set of solutions, namely the set of extreme points. The Simplex Algorithm
is a procedure that starts at an easily defined extreme point and moves in a logical
fashion to another extreme point in such a way that the solution is always improved.
When no more improvement is possible, the optimum has been found. In Markov
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decision theory, we start with an extremely large class of possible policies, many of
which produce processes that are not Markovian. Property 12.1 allows the analyst
to focus on a much smaller set of policies, each one of which produces a Markov
chain. In the remaining sections, algorithms will be developed that start with an
easily defined stationary policy and moves to another stationary policy in such a
way as to always improve until no more improvement is possible, in which case an
optimum has been found.

12.3 Discounted Cost Algorithms

Three different procedures will be presented in this section for finding the optimal
policy under an expected total discounted cost criterion. These procedures are based
on a fixed-point property that holds for the optimal value function. In this section,
we first discuss this key property.

In mathematics, a function is called invariant with respect to an operation if the
operation does not vary the function. For example, the steady-state vector, πππ , is also
called the invariant vector for the Markov matrix P since the operation πππP does
not vary the vector πππ . For Markov decision processes the operation will be more
complicated than simple matrix multiplication, but the basic idea of an invariant
function will still hold. If the invariant function is unique, then it is called a fixed-
point for the operation.

For those familiar with dynamic programming, the invariant property as applied
to Markov decision processes will be recognized as the standard dynamic program-
ming recursive relationship. The operation involves minimizing current costs plus
all future costs, where the future costs must be discounted to the present in order to
produce a total present value.

Property 12.2. Fixed-Point Theorem for Markov Decision Processes. Let vα

be the optimal value function as defined by Eq. (12.1) with 0 < α < 1. The
function vα satisfies, for each i ∈ E, the following

vα(i) = min
k∈A

{ fk(i)+α ∑
j∈E

Pk(i, j)vα( j)} . (12.5)

Furthermore, it is the only function satisfying this property.

Property 12.2 provides a means to determine if a given function happens to be
the optimal function. If we were given a function that turned out to be the optimal
value function, it is easy to obtain the optimal policy through the next property3.

3 The term argmin used in the property refers to the argument that yields the minimum value.
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Property 12.3. Let vα be the optimal value function as defined by Eq. (12.1)
with 0 < α < 1. Define an action function, for each i ∈ E, as follows:

a(i) = argmink∈A{ fk(i)+α ∑
j∈E

Pk(i, j)vα( j)} .

The stationary policy defined by the action function a is an optimal policy.

At the moment, we do not know how to obtain vα , but Property 12.3 tells
how to obtain the optimal policy once vα is known. To illustrate, let us assert
that the optimal value function for the machine problem given in Example 12.1 is
vα = (4287,4382,4441,4613) for α = 0.95. Our first task is to verify the assertion
through the Fixed-Point Theorem for Markov Decision Processes. The calculations
needed to verify that the given vector is the optimal value function are as follows.
(Note that the calculations are needed for each state in the state space.)

vα(a) = min{100+0.95 (0.1,0.3,0.6,0.0)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ ;

300+0.95 (0.6,0.3,0.1,0.0)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ } = 4287 .

vα(b) = min{125+0.95 (0.0,0.2,0.5,0.3)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ ;

325+0.95 (0.75,0.1,0.1,0.05)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ } = 4382 .

vα(c) = min{150+0.95 (0.0,0.1,0.2,0.7)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ ;

350+0.95 (0.8,0.2,0.0,0.0)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ } = 4441 .
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vα(d) = min{500+0.95 (0.8,0.1,0.0,0.1)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ ;

600+0.95 (0.9,0.1,0.0,0.0)

⎛

⎜
⎜
⎝

4287
4382
4441
4613

⎞

⎟
⎟
⎠ } = 4613 .

Since, for each i ∈ E, the minimum of the two values yielded the asserted value of
vα(i), we know that it is optimum by Property 12.2. Looking back over the above
calculations, we can also pick out the argument (i.e., action) that resulted in the
minimum value. For State i = a, the first action yielded the minimum; for i = b, the
first action yielded the minimum; for i = c, the second action yielded the minimum;
and for i = d, the first action yielded the minimum. Therefore, from Property 12.3,
the stationary optimal policy is defined by the action function a = (1,1,2,1).

12.3.1 Value Improvement for Discounted Costs

The Fixed-Point Theorem for Markov Decision Processes (Property 12.2) allows
for an easy iteration procedure that will limit to the optimal value function. The
procedure starts with a guess for the optimal value function. That guess is then used
as the value for vα in the right-hand-side of Eq. (12.5) and another value for vα

is obtained. If the second value obtained is the same as the initial guess, we have
an optimum; otherwise, the second value for vα is used in the right-hand-side of
(12.5) to obtain a third, etc. The concept of a fixed-point is that by repeating such a
successive substitution scheme, the fixed-point will be obtained.

Property 12.4. Value Improvement Algorithm. The following iteration pro-
cedure will yield an approximation to the optimal value function as defined by
Eq. (12.1).

Step 1. Make sure that α < 1, choose a small positive value for ε , set n = 0,
and let v0(i) = 0 for each i ∈ E. (We set v0 = 0 for convenience; any initial
solution is sufficient.)

Step 2. For each i ∈ E, define vn+1(i) by

vn+1(i) = min
k∈A

{ fk(i)+α ∑
j∈E

Pk(i, j)vn( j)} .

Step 3. Define δ by
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δ = max
i∈E

{|vn+1(i)− vn(i)|} .

Step 4. If δ < ε , let vα = vn+1 and stop; otherwise, increment n by one and
return to Step 2.

There are two major problems with the value improvement algorithm: (1) it can
be slow to converge and (2) there is no simple rule for establishing a convergence
criterion (i.e., setting a value for ε). In theory, it is true that as the number of it-
erations approaches infinity, the value function becomes the optimum; however, in
practice we need to stop short of infinity and therefore the rule that says to stop
when the change in the value function becomes negligible is commonly used. Ex-
actly what is negligible is a judgment call that is sometimes difficult to make.

Another aspect of the value improvement algorithm is that the intermediate val-
ues produced by the algorithm do not give any indication of what the optimal policy
is; in other words, the values for vn are not helpful for determining the optimal
(long-run) policy unless the algorithm has converged. (However, vn does represent
the optimal value associated with a finite horizon problem when v0 = 0; that is, vn

gives the minimal discounted cost assuming there are n transitions remaining in the
life of the process.) The optimal long-run policy is obtained by taking the final value
function from the algorithm and using Property 12.3. The major advantage of the
Value Improvement Algorithm is its computational simplicity.

When the Value Improvement Algorithm is applied to the example machine prob-
lem defined in the previous section (using α = 0.95), the following sequence of
values are obtained:

v0 = (0,0,0,0)
v1 = (100,125,150,500)
v2 = (230.62,362.50,449.75,635.38)
v3 = (481.58,588.59,594.15,770.07)

...

12.3.2 Policy Improvement for Discounted Costs

The algorithm of the previous section focused on the value function. In this section,
we present an algorithm that focuses on the policy and then calculates the value
associated with that particular policy. The result is that convergence is significantly
faster, but there are more calculations for each iteration. Specifically, the Policy
Improvement Algorithm involves an inverse routine (see Step 3 below) which can
be time consuming for large problems and subject to round-off errors. However, if
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the problem is such that an accurate inverse is possible, then Policy Improvement is
preferred over Value Improvement.

Property 12.5. Policy Improvement Algorithm. The following iteration pro-
cedure will yield the optimal value function as defined by Eq. (12.1) and its
associated optimal stationary policy.

Step 1. Make sure that α < 1, set n = 0, and define the action function a0

by
a0(i) = argmink∈A fk(i)

for each i ∈ E.
Step 2. Define the matrix P and the vector f by

f (i) = fan(i)(i)
P(i, j) = Pan(i)(i, j)

for each i, j ∈ E.
Step 3. Define the value function v by

v = (I−αP)−1f .

Step 4. Define the action function an+1 by

an+1(i) = argmink∈A{ fk(i)+α ∑
j∈E

Pk(i, j)v( j)}

for each i ∈ E.
Step 5. If an+1 = an, let vα = v, aα = an, and stop; otherwise, increment n

by one and return to Step 2.

The basic concept for the Policy Improvement Algorithm is to take a stationary
policy, calculate the cost vector and transition matrix associated with that policy
(Step 2, see Eqs. 12.3 and 12.4), then determine the expected total discounted cost
associated with that cost vector and transition matrix (Step 3, see Property 5.14). If
that policy was an optimal policy, then we would get that policy again through the
use of Property 12.3 and the value function just calculated (Step 4). The reason this
algorithm works is that if the policy was not the optimum, we are guaranteed that
the policy formed in Step 4 will have a value associated with it that is better (not
worse) than the previous one. To illustrate this algorithm we shall outline the results
obtained from applying the algorithm to our example problem:

Iteration I. Step 1.
a0 = (1,1,1,1)
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Step 2.

f = (100,125,150,500)T

P =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.0 0.1 0.2 0.7
0.8 0.1 0.0 0.1

⎤

⎥
⎥
⎦

Step 3.
v = (4502,4591,4676,4815)T

Step 4.

a1(a) = argmin{100+0.95 (0.1,0.3,0.6,0.0)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ ;

300+0.95 (0.6,0.3,0.1,0.0)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ } = 1 .

a1(b) = argmin{125+0.95 (0.0,0.2,0.5,0.3)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ ;

325+0.95 (0.75,0.1,0.1,0.05)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ } = 1 .

a1(c) = argmin{150+0.95 (0.0,0.1,0.2,0.7)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ ;

350+0.95 (0.8,0.2,0.0,0.0)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ } = 2 .
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a1(d) = argmin{500+0.95 (0.8,0.1,0.0,0.1)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ ;

600+0.95 (0.9,0.1,0.0,0.0)

⎛

⎜
⎜
⎝

4502
4591
4676
4815

⎞

⎟
⎟
⎠ } = 1 .

Thus, a1 = (1,1,2,1).

Step 5. Since a1 �= a0, repeat the above Steps 2 through 5 using the stationary
policy defined by a1.

Iteration II.

Step 2.

f = (100,125,350,500)T

P =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.8 0.2 0.0 0.0
0.8 0.1 0.0 0.1

⎤

⎥
⎥
⎦

Step 3.
v = (4287,4382,4441,4613)T

Step 4. The calculations for Step 4 will be a repeat of those calculations imme-
diately following Property 12.3 since the value function is the same. There-
fore, the result will be

a2 = (1,1,2,1) .

Step 5. The algorithm is finished since a2 = a1; therefore, the results from the
most recent Steps 3 and 4 are optimum.

As a final computational note, it should be pointed out that there are more effi-
cient numerical routines for obtaining the value of v than through the inverse as it
is written in Step 3. Numerical procedures for solving a system of linear equations
are usually written without finding the inverse; thus, if the Policy Improvement Al-
gorithm is written into a computer program, a numerical routine to solve

(I−αP)v = f

as a linear system of equations should be used.
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12.3.3 Linear Programming for Discounted Costs

It is possible to solve Markov decision processes using linear programming, al-
though it is more limited than the other approaches. For ease of presentation, we
restricted ourselves to finite states and action spaces; however, the other two algo-
rithms work for infinite state spaces, whereas linear programming can only be used
for finite dimensional problems. The key to the linear programming formulation is
the following property.

Property 12.6. Lemma for Linear Programming. Let vα be the optimal
value function as defined by Eq. (12.1) with 0 < α < 1, and let u be another
real-valued function on the (finite) state space E. If u is such that

u(i) ≤ min
k∈A

{ fk(i)+α ∑
j∈E

Pk(i, j)u( j)}

for all i ∈ E, then u ≤ vα .

Consider a set made up of all functions that satisfy the inequality of Prop-
erty 12.6, then from Eq. (12.5) we know that the optimal value function, vα , would
be included in that set. The force of this lemma for linear programming is that the
largest of all functions in that set is vα (see Property 12.2). In other words, vα is
the solution to the following mathematical programming problem (stated in matrix
notation):

max u
subject to:

u ≤ mink∈A{fk +αPku} .

The maximization in the above problem is a component by component operation;
therefore, max u is equivalent to max ∑i∈E u(i). Furthermore, the inequality being
true for the minimum over all k ∈ A is equivalent to it holding for each k ∈ A.
Therefore, we have the following:

Property 12.7. Linear Programming for Discounted Costs. The optimal so-
lution to the following linear program gives the minimum value function, vα ,
with 0 < α < 1, for the problem defined by Eq. (12.1).

max ∑i∈E u(i)

subject to:
u(i) ≤ fk(i)+α ∑ j∈E Pk(i, j)u( j) for each i ∈ E

and k ∈ A.
The optimal policy is to choose an action k for state i such that si,k = 0, where
si,k is the slack variable associated with the equation corresponding to state i
and action k.
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Notice that the variables in the linear programming formulation are unrestricted
as to sign. Many of the software packages available for linear programming assume
that all variables are restricted to be nonnegative; however, this is easy to remedy
without doubling the size of the problem by the standard technique of letting unre-
stricted variables be the difference of two nonnegative variables. If fk(i) ≥ 0 for all
k ∈ A and i ∈ E, the optimal solution will be nonnegative so that nothing will be lost
by a nonnegative restriction. If some of the fk components are negative, then let δ
be the absolute value of the most negative and add δ to all values of fk. Then the
linear program using the new values for fk with the variables restricted will yield
the proper optimum, and the value of the objective function will be too high by the
amount δ/(1−α).

To illustrate the linear programming formulation, we again use the machine prob-
lem from the previous section yielding

max z = ua +ub +uc +ud

subject to:
ua ≤ 100 +0.095ua +0.285ub +0.57uc

ua ≤ 300 +0.57ua +0.285ub +0.095uc

ub ≤ 125 +0.19ub +0.475uc +0.285ud

ub ≤ 325 +0.7125ua+0.095ub +0.095uc +0.0475ud

uc ≤ 150 +0.095ub +0.19uc +0.665ud

uc ≤ 350 +0.76ua +0.19ub

ud ≤ 500 +0.76ua +0.095ub +0.095ud

ud ≤ 600 +0.855ua +0.095ub

Before solving this system, we moved the variables on the right-hand-side to the left
and added slack variables. Then, the solution to this problem yields ua = 4287,ub =
4382,uc = 4441,ud = 4613 and the slacks associated with the first, third, sixth, and
seventh equations are zero.

The linear programming algorithm used a maximizing objective function for the
minimum cost problem; it would use a minimizing objective function for the max-
imum profit problem, and in addition, the inequalities in the constraints must be
reversed. In other words, the programming formulation for a discounted maximum
profit problem would be to minimize u subject to u ≥ fk + αPku for each k ∈ A.
Again, the decision variables are unrestricted as to sign.

12.4 Average Cost Algorithms

The average cost criterion problem is slightly more difficult than the discounted cost
criterion problem because it was the discount factor that produced a fixed-point.
However, there is a recursive equation that is analogous to Property 12.2 as follows:
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Property 12.8. Assume that every stationary policy yields a Markov chain
with only one irreducible set. There exists a scalar ϕ∗ and a vector h such
that, for all i ∈ E,

ϕ∗ +h(i) = min
k∈A

{ fk(i)+ ∑
j∈E

Pk(i, j)h( j)} . (12.6)

The scalar ϕ∗ is the optimal cost as defined by Eq. (12.2), and the optimal
action function is defined by

a(i) = argmink∈A{ fk(i)+ ∑
j∈E

Pk(i, j)h( j)} .

The vector h is unique up to an additive constant.

Let us use this property to determine if the optimal policy previously determined
for a discount factor of 0.95 is also the optimal policy under the average cost crite-
rion. In other words, we would like to determine if the stationary policy defined by
a = (1,1,2,1) is optimal using the long-run average cost criterion. The first step is to
solve the following system of equations:

ϕ∗ +ha = 100 +0.1ha +0.3hb +0.6hc

ϕ∗ +hb = 125 +0.2hb +0.5hc +0.3hd

ϕ∗ +hc = 350 +0.8ha +0.2hb

ϕ∗ +hd = 500 +0.8ha +0.1hb +0.1hd .

An immediate difficulty in the above system might be seen in that there are four
equations and five unknowns; however, this was expected since the h vector is not
unique. This will be discussed in more detail later; for now simply set ha = 0 and
solve for the remaining four unknowns. The solution should yield ϕ∗ = 219.24 and
h = (0.0, 97.10, 150.18, 322.75)T . In other words, these values have been deter-
mined so that for each k = a(i), the following equality holds:

ϕ∗ +h(i) = fk(i)+Pkh(i) .

Now, to determine optimality, we must verify that for each k �= a(i) the following
inequality holds:

ϕ∗ +h(i) ≤ fk(i)+Pkh(i),

that is, the following must hold for optimality to be true:

ϕ∗ +ha ≤ 300 +0.6ha +0.3hb +0.1hc

ϕ∗ +hb ≤ 325 +0.75ha+0.1hb +0.1hc +0.05hd

ϕ∗ +hc ≤ 150 +0.1hb +0.2hc +0.7hd

ϕ∗ +hd ≤ 600 +0.9ha +0.1hb .

Since the above holds, we have optimality.
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It should also be observed that once the optimal policy is known, the value for
ϕ∗ can be obtained using Property 5.13. First, obtain the long-run probabilities as-
sociated with the Markov matrix given by

Pa =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.8 0.2 0.0 0.0
0.8 0.1 0.0 0.1

⎤

⎥
⎥
⎦ .

These probabilities are πππ = (0.3630, 0.2287, 0.3321, 0.0762). Secondly, multiply
those probabilities by the cost ga = (100, 125, 350, 500), which yields ϕ∗ = 219.24.

There is a close connection between the discounted cost problem and the long-
run average cost problem. To see some of these relationships, we present the follow-
ing table containing some information derived from the value function associated
with the optimal policy for α = 0.95,α = 0.99,and α = 0.999.

Table 12.1 Comparison of the discounted cost and long-run average cost problems

discount vector i = a i = b i = c i = d
vα 4287 4382 4441 4613

α = 0.95 (1−α)vα 214.35 219.10 222.05 230.65
vα − vα (a) 0 94 154 326

vα 21827 21923 21978 22150
α = 0.99 (1−α)vα 218.27 219.23 219.78 221.50

vα − vα (a) 0 97 151 323
vα 219136 219233 219286 219459

α = 0.999 (1−α)vα 219.13 219.23 219.28 219.45
vα − vα (a) 0 97 150 323

The value for each component in the vector (1−α)vα approaches ϕ∗ as the
discount factor approaches one. To understand this, remember that the geometric
series is ∑∞

n=0 αn = 1/(1−α); thus, if a cost of c is incurred every period with a
discount factor of α , its total value would be v = c/(1−α). Or conversely, a total
cost of v is equivalent to an average per period cost of c = (1−α)v. This gives the
intuitive justification behind the following property.

Property 12.9. Let vα be the optimal value function defined by Eq. (12.1), let
ϕ∗ be the optimal cost defined by Eq. (12.2), and assume that every stationary
policy yields a Markov chain with only one irreducible set. Then

lim
α→1

(1−α)vα(i) = ϕ∗

for any i ∈ E.
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Referring back to the above table, the third row under each discount factor gives
the relative difference in total cost for starting in the different states. In other words,
there is a $97 advantage in starting in state a instead of b under a discount factor of
α = 0.99; thus, it follows that h(b) = 97 because the h vector gives these relative
differences. Namely, if h(a) = 0, then h(i) for i ∈ E gives the additional cost of
starting in state i instead of state a. When we initially solved the above system of
equations to determine the values for ϕ∗ and h, we set h(a) = 0. If we had started
by setting h(b) = 0, we would have obtained h(a) = −97.10,h(c) = 53.08, and
h(d) = 225.65. This is stated explicitly in the following:

Property 12.10. Let vα be the optimal value function defined by Eq. (12.1),
let ϕ∗ be the optimal cost defined by Eq. (12.2), and let h be the vector defined
by Property 12.8. Then

lim
α→1

vα(i)− vα( j) = h(i)−h( j)

for i, j ∈ E.

This property is the justification for arbitrarily setting h(a) = 0 when we solve for
ϕ∗ and h. In fact, it is legitimate to pick any single state and set its h value equal to
any given number.

12.4.1 Policy Improvement for Average Costs

Property 12.8 enables the design of an algorithm similar to the algorithm of Prop-
erty 12.5. The procedure begins with an arbitrary policy, determines the ϕ∗ and h
values associated with it, and then either establishes that the policy is optimal or
produces a better policy. The specifics are as follows:

Property 12.11. Policy Improvement Algorithm. The following iteration pro-
cedure will yield the optimal value function as defined by Eq. (12.2) and its
associated optimal stationary policy.

Step 1. Set n = 0, let the first state in the state space be denoted by the
number 1, and define the action function a0 by

a0(i) = argmink∈A fk(i)

for each i ∈ E.
Step 2. Define the matrix P and the vector f by
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f (i) = fan(i)(i)
P(i, j) = Pan(i)(i, j)

for each i, j ∈ E.
Step 3. Determine values for ϕ and h by solving the system of equations

given by
ϕ +h = f+Ph ,

where h(1) = 0.
Step 4. Define the action function an+1 by

an+1(i) = argmink∈A{ fk(i)+ ∑
j∈E

Pk(i, j)h( j)}

for each i ∈ E.
Step 5. If an+1 = an, let ϕ∗ = ϕ,a∗ = an, and stop; otherwise, increment n

by one and return to Step 2.

To illustrate this algorithm we shall outline the results obtained from applying
the algorithm to our example problem:

Iteration I. Step 1.
a0 = (1,1,1,1)

Step 2.

f = (100,125,150,500)T

P =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.0 0.1 0.2 0.7
0.8 0.1 0.0 0.1

⎤

⎥
⎥
⎦

Step 3. Solve the following (where ha has been set to zero):

ϕ = 100 +0.3hb +0.6hc

ϕ +hb = 125 +0.2hb +0.5hc +0.3hd

ϕ +hc = 150 +0.1hb +0.2hc +0.7hd

ϕ +hd = 500 +0.1hb +0.1hd

to obtain ϕ = 232.86 and h = (0,90.40,176.23,306.87)T .
Step 4.

a1(a) = argmin{100+(0.1,0.3,0.6,0.0)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ ;
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300+(0.6,0.3,0.1,0.0)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ } = 1 .

a1(b) = argmin{125+(0.0,0.2,0.5,0.3)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ ;

325+(0.75,0.1,0.1,0.05)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ } = 1 .

a1(c) = argmin{150+(0.0,0.1,0.2,0.7)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ ;

350+(0.8,0.2,0.0,0.0)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ } = 2 .

a1(d) = argmin{500+(0.8,0.1,0.0,0.1)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ ;

600+(0.9,0.1,0.0,0.0)

⎛

⎜
⎜
⎝

0
90.40

176.23
306.87

⎞

⎟
⎟
⎠ } = 1 .

Thus, a1 = (1,1,2,1).

Step 5. Since a1 �= a0, repeat the above using the policy defined by a1.

Iteration II. Step 2.

f = (100,125,350,500)T
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P =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.8 0.2 0.0 0.0
0.8 0.1 0.0 0.1

⎤

⎥
⎥
⎦

Step 3. Solve the system of equations on page 338 by first setting h(a) = 0 to
obtain ϕ = 219.24 and h = (0.0,97.10,150.18,322.75)T .

Step 4.

a2(a) = argmin{100+(0.1,0.3,0.6,0.0)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ ;

300+(0.6,0.3,0.1,0.0)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ } = 1 .

a2(b) = argmin{125+(0.0,0.2,0.5,0.3)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ ;

325+(0.75,0.1,0.1,0.05)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ } = 1 .

a2(c) = argmin{150+(0.0,0.1,0.2,0.7)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ ;

350+(0.8,0.2,0.0,0.0)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ } = 2 .

a2(d) = argmin{500+(0.8,0.1,0.0,0.1)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ ;
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600+(0.9,0.1,0.0,0.0)

⎛

⎜
⎜
⎝

0
97.10

150.18
322.75

⎞

⎟
⎟
⎠ } = 1 .

Thus, a2 = (1,1,2,1).
Step 5. The algorithm is finished since a2 = a1; therefore, the results from the

most recent Steps 3 and 4 are optimum.

As a final computational note, a matrix form for the equations to be solved in
Step 3 can be given. Let S be a matrix equal to I−P except that the first column is
all ones; that is

S(i, j) =

⎧
⎨

⎩

1 if j = 1,
1−P(i, j) if i = j and j �= 1,
−P(i, j) if i �= j and j �= 1,

where we have identified the first state in the state space as State 1. As mentioned at
the end of Sect. 12.3.2, numerical procedures that specifically solve linear systems
of equations are more efficient than first determining the inverse and then multiply-
ing the inverse times the right-hand-side vector. The system that must be solved for
the average cost criterion problem is

Sx = f .

The values for the quantities needed in the algorithm are then obtained as h(1) =
0,ϕ∗ = x(1), and h(i) = x(i) for i > 1.

12.4.2 Linear Programming for Average Costs

The linear programming formulation for the long-run average cost problem takes
a completely different approach than the formulation for the discounted cost prob-
lem, because there is no analogous property to Property 12.6 for average costs. The
decision variables for the discounted cost linear program are components of the
value function with a maximizing objective function. The decision variables for the
long-run average cost linear program are components of the policy function with a
minimizing objective function.

In order for the feasible set of possible policies to be convex, the linear program
for the long-run average cost problem will consider not only stationary policies but
also randomized policies. A randomized policy (see the example Policy 3 on page
325) is a policy that assigns a probability mass function over the action space for
each state in the state space. Specifically, let νi(k) for k ∈ A be a probability mass
function for each i ∈ E; that is,

νi(k) = Pr{Dn = k|Xn = i} .
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Of course, a stationary policy defined by the action function a is a subset of these
randomized policies, where νi(k) = 1 if k = a(i) and zero otherwise.

Each randomized policy will yield a steady-state probability vector, πππ . Multi-
plying the steady-state probabilities with the randomized policy produces a joint
probability mass function of the state and action taken in the long-run, which we
shall denote as x(i,k) for i ∈ E and k ∈ A; that is,

x(i,k) = νi(k)π(i) = lim
n→∞

Pr{Xn = i,Dn = k} . (12.7)

For a fixed i ∈ E, the function ννν i is a probability mass function so that it sums to
one; therefore

∑
k∈A

x(i,k) = ∑
k∈A

νi(k)π(i) = π(i) . (12.8)

The decision variables for the linear program will be the joint probabilities des-
ignated by x(i,k) for i ∈ E and k ∈ A. For a fixed sequence of the joint probabilities,
the expected value of the average cost for the associated randomized policy is

ϕ = ∑
i∈E

∑
k∈A

x(i,k) fk(i) ,

and the three conditions that must be fulfilled are:

1. As a mass function, the probabilities must sum to one.
2. As a mass function, the probabilities must be nonnegative.
3. As steady-state probabilities, the equation πππP = πππ must hold.

Conditions 1 and 2 are straightforward, but the third condition needs some discus-
sion. Specifically, we need to obtain the vector πππ and the matrix P from the given
joint probabilities. It should not be difficult to show (see the homework problems)
that the appropriate matrix for a fixed randomized policy is given by

P(i, j) = ∑
k∈A

νi(k)Pk(i, j)

for i ∈ E and k ∈ A. Therefore, the equation πππP = πππ becomes

π( j) = ∑
i∈E

π(i) ∑
k∈A

νi(k)Pk(i, j)

for j ∈ E. We can now combine Eqs. (12.7) and (12.8) with the above equation to
write πππP = πππ in terms of the joint probabilities:

∑
k∈A

x( j,k) = ∑
i∈E

∑
k∈A

x(i,k)Pk(i, j) . (12.9)

With the above background, these relationships can be structured as the following
linear program, the solution of which yields the optimal policy for the long-run
average cost criterion problem.
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Property 12.12. Linear Programming for Average Costs. The optimal solu-
tion to the following linear program gives the minimum value for the problem
defined by Eq. (12.2).

min ϕ = ∑i∈E ∑k∈A x(i,k) fk(i)

subject to:
∑k∈A x( j,k) = ∑i∈E ∑k∈A x(i,k)Pk(i, j) for each j ∈ E

∑i∈E ∑k∈A x(i,k) = 1

x(i,k) ≥ 0 for each i ∈ E and k ∈ A,
where the first equation in the constraint set is redundant and may be deleted.
The optimal policy is to choose an action k for state i such that x(i,k) > 0.

Because we know that a (nonrandomized) stationary policy is optimal, there will
only be one positive value of x(i,k) for each i ∈ E; therefore, the optimal action
function is to let a(i) be the value of k for which x(i,k) > 0. It should also be
observed that the steady-state probabilities under the optimal policy are given as
π(i) = x(i,a(i)) for i ∈ E.

To illustrate the linear programming formulation, we again return to our machine
problem example (here we use xik for x(i,k) to aid in the readability of the equa-
tions):

min ϕ = 100xa1 +125xb1 +150xc1 +500xd1

+300xa2 +325xb2 +350xc2 +600xd2

subject to:
xa1 + xa2 = 0.1xa1 +0.6xa2 +0.75xb2 +0.8xc2 +0.8xd1 +0.9xd2

xb1 + xb2 = 0.3xa1 +0.3xa2 +0.2xb1 +0.1xb2 +0.1xc1 +0.2xc2

+0.1xd1 +0.1xd2

xc1 + xc2 = 0.6xa1 +0.1xa2 +0.5xb1 +0.1xb2 +0.2xc1

xd1 + xd2 = 0.3xb1 +0.05xb2 +0.7xc1 +0.1xd1

xa1 + xb1 + xc1 + xd1 + xa2 + xb2 + xc2 + xd2 = 1
xik ≥ 0 for all i and k.

The solution to the linear program yields an objective function value of 219.24 with
the decision variables being xa1 = 0.363,xb1 = 0.229,xc2 = 0.332,xd1 = 0.076 and
all other variables zero. Thus, the optimal action function is a = (1,1,2,1); its average
per period cost is ϕ∗ = 219.24; and the steady-state probabilities for the resulting
Markov chain are πππ = (0.363, 0.229, 0.332, 0.076).

12.5 The Optimal Stopping Problem

The final section of this chapter is a special case of the previous material; however,
because of its special structure it is more efficient to solve the problem using its
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own formulation. The context for the optimal stopping problem is that we have a
Markov chain X0,X1, · · · , with state space E, Markov matrix P, and profit function
f. Instead of a profit occurring at each visit, the profit will only be realized once,
when the process is stopped. The process works as follows: (1) The Markov chain
starts in an initial state. (2) The decision-maker considers the state of the process and
decides whether to continue the process or to stop. (3) If the decision to continue
is made, no cost or profit is made and a transition of the chain occurs according to
the Markov matrix P and again the decision-maker decides whether to continue or
to stop after the new state is observed. (4) If the decision is made to stop, a profit is
made according to the profit function f and the process terminates.

In order to state the problem mathematically, we first define a type of stopping
rule. Let S be a subset of the state space E, and define the random variable NS by

NS = min{n ≥ 0 : Xn ∈ S} . (12.10)

The random variable NS is thus the first time the Markov chain enters the set of
states designated by S, and we shall call the set S a stopping set. Once a stopping set
has been identified, its associated stopping rule random variable is defined (through
Eq. 12.10), and the stopping problem using that particular stopping rule has a value
given by

wS(i) = E[ f (XNS)|X0 = i] .

In other words, wS(i) is the expected profit made if the process starts in state i and it
is continued until the first time that the process reaches a state in the set S. Thus the
optimal stopping problem is to find the set S∗ ⊆ E such that w

S∗ (i) = w(i) where the
vector w is defined, for i ∈ E, by

w(i) = max
S⊆E

wS(i) . (12.11)

Example 12.2. As an example, consider the Markov chain (Fig. 12.2) with state
space E = {a,b,c,d,e}, Markov matrix

P =

⎡

⎢
⎢
⎢
⎢
⎣

1.0 0.0 0.0 0.0 0.0
0.5 0.0 0.3 0.2 0.0
0.0 0.2 0.6 0.2 0.0
0.0 0.1 0.5 0.2 0.2
0.0 0.0 0.0 0.0 1.0

⎤

⎥
⎥
⎥
⎥
⎦

,

and profit function
f = (1,2,5,8,10)T .

First, observe the structure for this matrix and corresponding state diagram given
in Fig. 12.2: States a and e are absorbing, and States b, c, and d are transient. If
a stopping set does not contain states a and e, there is a positive probability the
process would never stop, thus yielding a profit of zero; therefore, we would only
consider stopping sets containing the absorbing states. However, the inclusion of
states b,c, and d in the stopping set forms the crux of the optimal stopping problem.
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Fig. 12.2 State diagram for
the Markov chain of Exam-
ple 12.2
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Consider the stopping set S = {a,c,d,e}. If the process starts in any of the states
within S, it stops immediately; therefore w(a) = 1,w(c) = 5,w(d) = 8, and w(e) =
10. Before calculating w(b), observe that at the next transition for the Markov chain,
the stopping rule designated by S will force the chain to stop; therefore we simply
need to take the expected value over the possible paths of this chain to determine
w(b); thus, w(b) = 0.5w(a) + 0.3w(c) + 0.2w(d) = 3.6. (Of course, in general it
is harder to determine the values for w, but this example should serve to illustrate
the dynamics of the optimal stopping problem.) Note that although w(b) = 3.6,
sometimes the process will actually yield a profit of 1, sometimes it will yield a profit
of 5, and sometimes it will yield a profit of 8 under the assumption that X0 = b. In
general, wS(i) represents the expected profit if the Markov chain starts in state i and
is stopped on the first visit to the set S. If the Markov chain starts in an irreducible
set, the maximum profit that could be made is equal to the maximum profit in the
irreducible set; thus, absorbing states always belong to optimal stopping sets. ��

It is also easy to incorporate a discount factor into the optimal stopping problem
by discounting the final profit back to a present value. Thus we can state the dis-
counted problem similarly as finding the set S∗ ⊆ E such that wα

S∗
(i) = wα(i) where

the vector wα is defined, for i ∈ E, by

wα(i) = max
S⊆E

E[αNS f (XNS)|X0 = i] , (12.12)

for 0 < α ≤ 1.
The basis for the linear programming formulation for the discounted cost Markov

decision process was the lemma given in Property 12.6. A similar lemma allows the
formulation of the optimal stopping problem as a linear program.

Property 12.13. Lemma for Linear Programming. Let wα be the optimal
value function as defined by Eq. (12.12) with 0 < α ≤ 1, and let u be another
real-valued function on the (finite) state space E. If u is such that u ≥ f and

u(i) ≥ α ∑
j∈E

P(i, j)u( j)

for all i ∈ E, then u ≥ wα .
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It can also be shown that the optimum function wα has the properties listed in
the lemma; therefore, wα is the minimum such function. In order for wα(i) to be
optimal, the expected profit for state i (namely, wα(i)) must also be no smaller than
the payoff, f (i), if the process stops on state i. This results in the algorithm given in
the following property.

Property 12.14. Linear Programming for Optimal Stopping. The optimal
solution to the following linear program gives the maximal value function,
wα , with 0 < α ≤ 1, for the problem defined by Eq. (12.12).

min ∑i∈E u(i)

subject to:
u(i) ≥ α ∑ j∈E P(i, j)u( j) for each i ∈ E

u(i) ≥ f (i) for each i ∈ E

The optimal stopping set is given by S∗ = {i ∈ E : wα(i) = f (i)}.

Taking advantage of this algorithm to solve the (undiscounted or α = 1) example
problem of this section yields the following (here we use ui for u(i) to aid in the
readability of the equations):

min z = ua +ub +uc +ud +ue

subject to:
ub ≥ 0.5ua +0.3uc +0.2ud

uc ≥ +0.2ub+0.6uc +0.2ud

ud ≥ +0.1ub+0.5uc +0.2ud +0.2ue

ua ≥ 1, ub ≥ 2, uc ≥ 5, ud ≥ 8, ue ≥ 10 ,

where the trivial restrictions ua ≥ ua and ue ≥ ue have been excluded.
The solution to the above linear program yields w(a) = 1.0,w(b) = 3.882,w(c) =

5.941,w(d) = 8.0,w(e) = 10.0, which gives the optimal stopping set as S∗ =
{a,d,e}.

Problems

12.1. Using the maintenance problem given in Example 12.1 (p. 324), we wish to
maximize profits. Profits are determined by revenue minus costs, where revenue
is a function of the state but not of the decision and is given by the function r =
(900,400,450,750)T . The costs and transition probabilities are as presented in the
example.
(a) Compute the profit function g1 associated with the stationary policy that uses



350 12 Markov Decision Processes

action 1 in every state.
(b) Using a discount factor α = 0.95, verify that the vector

vα = (8651.88,8199.73,8233.37,8402.65)T

is the optimal value that maximizes the total discounted profit. (You need to use
Property 12.2 with a minor modification since this is a maximizing problem.)
(c) Using a discount factor of α = 0.7, use the value iteration algorithm to find the
optimal value function that maximizes the total discounted profit.
(d) Using the policy improvement algorithm, find the policy that maximizes the total
discounted profit if the discount factor is such that $1 today is worth $1.12 after one
time period.
(e) Setup the linear programming formulation that solves the problem in part (d).

12.2. Use the data from Problem 12.1 to answer the following questions:
(a) Find the average (undiscounted) profit per transition for the policy a = (2,1,2,1).
(b) Show that the policy a = (2,1,2,1) is not the policy that maximizes the profit
per transition. (Use Property 12.8 after replacing the “min” operator with the “max”
operator.)
(c) Using the policy improvement algorithm, find the policy that maximizes the
average profit per transition.
(d) Find the policy that maximizes the average profit per transition using the linear
programming formulation.

12.3. Joe recently graduated with a degree in operations research emphasizing
stochastic processes. He wants to use his knowledge to advise people about pres-
idential candidates. Joe has collected data on the past presidents according to their
party (the two major parties4 are the Labor Party and the Worker’s Choice Party)
and has determined that if the economy is good, fair, or bad, the selection of a pres-
ident from a specific party will have varying effects on the economy after his/her
term. The data collected shows that if the state of the economy is good and a can-
didate is elected as president from the Labor Party, 3.2 million new jobs are created
and a total of 4.5 trillion dollars are spent during the presidential term, whereas a
Worker’s Choice candidate only creates 3.0 million jobs and spends 4 trillion dol-
lars. However, a candidate from the Labor Party that receives the country in good
economic conditions will leave the country after his/her term in good, fair, or bad
economic condition with probability of 0.75, 0.20 and 0.05, respectively, whereas
the Worker’s Choice counterpart will leave the country in those conditions with
probabilities 0.80, 0.15 and 0.05, respectively.

If the initial state of the economy is fair a Labor Party president creates 2 mil-
lion jobs, spends $3.5 trillion and the probabilities of leaving a good, fair, or bad
economy are 0.3, 0.5, and 0.2, respectively. A Worker’s Choice president creates

4 We use fictitious party names to emphasize that this problem is for illustrative purposes only. We
do not mean to imply that such decisions should be made on purely short-term economic issues
removed from moral issues.
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2.3 million jobs, spends $4.5 trillion and the probabilities of leaving a good, fair, or
bad economy are 0.2, 0.6, and 0.2, respectively.

If the initial state of the economy is bad a Labor president creates 1 million jobs,
spends $2.5 trillion and the probabilities of leaving a good, fair, or bad economy are
0.2, 0.2, and 0.6, respectively. A Worker’s Choice president creates 1.2 million jobs,
spends $3 trillion and the probabilities of leaving a good, fair, or bad economy are
0.1, 0.3, and 0.6, respectively.

When the state of the economy is bad, independent candidates try to capitalize
on the bad economy and run for president. If an independent candidate is elected
president 1.5 million jobs are created, $3.3 trillion are spent and the economy is left
in good, fair and poor condition with probabilities 0.05, 0.40, and 0.55, respectively.
(a) Use Markov decision processes to determine the optimal voting strategy for pres-
idential elections if the average number of new jobs per presidential term are to be
maximized.
(b) Use Markov decision processes to determine how to vote if the objective is to
minimize the total discounted spending if the discount factor is α = 0.9 per year.
(c) Find the policy that minimizes the total discounted spending per job created if
the discount factor is α = 0.9 per year.

12.4. Consider a gambling machine that has five light bulbs labeled “a” through
“e”. When a person starts the game one of the five bulbs will light up. At this point,
the player has two options: (1) the game can be continued or (2) the game can
be stopped. If the game is continued, then another bulb will be lit according to the
Markov matrix below. When the game is stopped, a payoff is received corresponding
to the current bulb that is lit.

Let reward function (in pennies) and one-step transition probabilities of the
Markov chain with state space E = {a,b,c,d,e} be given by,

f = (35,5,10,20,25)T ,

P =

⎡

⎢
⎢
⎢
⎢
⎣

0.3 0 0 0.7 0
0 1 0 0 0
0.2 0.5 0.3 0 0
0.2 0 0 0.8 0
0.1 0.3 0.2 0.1 0.3

⎤

⎥
⎥
⎥
⎥
⎦

.

(a) Determine the optimal strategy.
(b) Formulate the problem as a Markov decision process specifying the state space
E, action space A, the Pk(i, j) for each i, j ∈ E and k ∈ A, and the reward functions,
fk.
(c) Now assume that the game is started by inserting some nickels, and, as long as
the game is continued, no additional coins are needed. After the coins are inserted,
the first bulb is lit according to a uniform distribution. What is the minimum amount
that should be charged per game if the machine is to make a profit in the long run.
(For simplicity assume that operating and maintenance costs are negligible.)
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12.5. Formulate the optimal stopping time problem as a Markov decision process
using linear programming and show that the formulation reduces to the linear pro-
gramming problem formulation of the optimal stopping time problem.

12.6. Consider the following optimal stopping time problem with payoff function f,
transition probabilities P, state space E = {a,b,c,d,e}, and discount factor α = 0.5,
where

f = (50,40,10,20,30)T ,

P =

⎡

⎢
⎢
⎢
⎢
⎣

0.3 0 0 0.7 0
0 1 0 0 0
0.5 0.2 0.3 0 0
0.6 0 0 0.4 0
0.2 0.1 0.1 0.3 0.3

⎤

⎥
⎥
⎥
⎥
⎦

.

Besides the payoff, there is a continuation fee given by the vector

h = (1,1,2,2,3)T .

In other words, if the Markov chain is in state i at time n and the decision to continue
is made, than a fee of h(i) is paid, regardless of the time n.
(a) Use a Markov decision process to find the optimal strategy that a gambler should
follow to maximize his profit. That is, find the set of states where his decision should
be to stop.
(b) Show that the linear programming formulation of this problem can be reduced
to an optimal stopping time problem.

12.7. The custodian of an inventory system for a store counts the number of items
on hand and the end of each week and places an order for additional items. Orders
can only be made Friday night and arrive early the following Monday morning. (The
store is closed during the weekends.)

The ordering cost for j additional units is given by

c( j) =
{

0 if j = 0
100+500 j if j > 0 .

The demand is 0,1,2,3,4 or 5 items per week, with probabilities 0.05, 0.15, 0.22,
0.22, 0.18 and 0.18, respectively. Items are sold for $750 each. If a customer asks
for an item after all the inventory has been sold, then the manager of the store will
buy the item from a competitor for a cost of $800 and sell it to the customer thus
taking a loss but maintaining good will. The company’s cost of inventory is affected
by a discount factor of 0.90.
(a) Set up the problem as a Markov Decision Process. (Let the action space be
A = {0,1,2,3,4,5}, where k ∈ A refers to an order up-to quantity of size k, so that
if the inventory level is i and i < k, then the quantity ordered is k− i.)
(b) Find the optimal number of items that should be ordered at the end of the week
to minimize the total discounted cost.
(c) Assume that there is an additional holding cost of $10 per item remaining at the



Problems 353

end of the week. Find the optimal number of items that should be ordered at the end
of the week to minimize the total discounted cost.
(d) Assume that instead of buying the item from a competitor, the store manager
gives the customer a 10% reduction in the purchase price and places the item on
backorder (i.e., promises to deliver it to the customer the following Monday). What
is the optimum ordering policy now? (Assume the $10 holding cost from part (c) is
still relevant.)
(e) How does the above answer change using an average cost criterion (i.e., no
discount factor)?

12.8. Consider the following discrete time queueing system. One, two, or three cus-
tomers arrive to the system at the beginning of each day with probabilities 0.25,
0.60, or 0.15, respectively. The system can hold at most five customers, so any cus-
tomers in excess of five leave the system, never to return. (In other words, if at the
start of the day, the system contains four customers and two customers arrive, then
only one will join the system and the other one will disappear.) At the start of the
day, after the arrival of the day’s customers, a decision must be made as to whether
one or two workers will be used for the day. If one worker is used, there is a 50%
chance that only one customer will be server during the day and a 50% chance that
two customers will be served during the day. If two workers are used, there is a 60%
chance that two customers will be served, a 30% chance that three customers will
be served, and a 10% chance that four customers will be served. (If there are only
two customers present when two workers are used, then obviously there is a 100%
chance that two customers will be served. A similar adjustment in the percentages
needs to be made when three customers are present.) Each worker used costs $75
per day. At the end of the day, any customers that must wait until the next day will
cost the system $30. Using Markov decision theory with the average cost criterion,
determine how many workers should be used at the start of each day.

12.9. A machine produces items that are always inspected. The inspection is perfect
in that the inspector always makes a correct determination as to whether the item is
good or bad. The machine can be in one of two states: good or bad. If the machine
is in the good state, it will produce a good item with a probability of 95%; if the
machine is in the bad state, it will always produce bad items. If the machine is in
the good state, there is a 2% probability that it will transition to the bad state for
the next produced item. If the machine is in the bad state, it will stay in the bad
state. The raw material and production costs are $500 per item and they are sold
for $1,000 per item if good, and scrapped with a salvage value of $25 per item if
bad. It costs $2,500 to overhaul the machine (i.e., instantaneously change it from
the bad state to the good state). The state of the machine is not known directly, only
through the inspection of the produced items. Each time a part is produced, that part
is inspected and a decision is made to continue with the machine as is or to overhaul
the machine.
(a) Consider the Markov chain X = {X0,X1, · · ·} which represents the state of the
machine. Since the state of X is not observable, we must work with the Markov
chain Z = {Z0,Z1, · · ·} where Z is the probability that the machine is bad after the
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item is inspected; that is, Zn = P{Xn = “bad”}, which has the state space given
by the continuous interval [0,1]. The process Z depends on the inspection process
I = {I0, I1, · · ·} where In = 0 if the nth part was inspected and found to be bad and
In = 1 if the nth part was inspected and found to be good. (Thus the dynamics is as
follows: a decision is made based on Zn and In, the X process makes a transition, an
observation is made, and the cycle repeats.) If Zn = p, what is the probability that
In+1 = 0?
(b) If Zn = p, what is the probability that In+1 = 1?
(c) If Zn = p, what are the possible values of Zn+1?
(d) The goal of this problem is to determine when to fix the machine. Formulate this
as a Markov Decision Process with state space [0,1] and with a discount factor of
0.9. In other words, write out the relationship (Eq. 12.5) that the optimal function
must satisfy.
(e) The optimal policy can be expressed as a control limit policy. That is, there exists
a value p∗ such that if Zn = p < p∗, the decision is to leave the machine alone; if
p ≥ p∗, the decision is to fix the machine. Using this fact and your expression from
part (d), write a computer code that finds the optimal policy.



Chapter 13
Advanced Queues1

The previous chapter introduced the concept of modeling processes using queueing
theory and indicated the wide variety of applications possible through the use of
queues. However, a major drawback to the application of the queueing theory dis-
cussed so far is its dependence on the Poisson and exponential assumptions regard-
ing the probability laws for the arrival and service processes. One of the properties
of the exponential distribution is that its mean equals its standard deviation, which
indicates a considerable amount of variation; therefore, for many service processes,
the exponential distribution is not a good approximation. However, the memoryless-
ness property of the exponential distribution is the key to building mathematically
tractable models. Without the memorylessness property, the Markovian property is
lost and the ability to build tractable models is significantly reduced.

There are two separate (although related) problems for the analyst who is using
queueing processes for modeling: (1) to develop a model that adequately approxi-
mates the physical system being studied and (2) to analyze the model and obtain the
desired measures of effectiveness.

The first part of this chapter introduces methods for analyzing queueing systems
more complicated than the simple systems discussed so far. Over the past twenty
or twenty-five years, there has been an increasing emphasis on practical queueing
models and the development of computationally tractable methods for these mod-
els; much of this emphasis has been due to extensive work by M. F. Neuts (we
recommend [1] as a starting point). The main feature of these models is that matrix
methods, which are easily written into computer routines, are used in the queueing
analysis. This should be contrasted with the old way of queueing analysis which
was through transform techniques which are not easily written into computer code.

After introducing these matrix geometric techniques, we shall present a class
of distributions called phase-type distributions which will allow the modeling of
nonexponential processes while at the same time maintaining a Markovian structure.
Methods to compute measures of effectiveness for queueing models with phase-type
distributions are also presented.

1 This chapter would normally be skipped in a one-semester undergraduate course.

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 355
DOI 10.1007/978-3-642-05158-6 13, c© Springer-Verlag Berlin Heidelberg 2010
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13.1 Difference Equations

Before presenting the matrix geometric technique for solving queueing models, we
return once again to the simple M/M/1 queue. We shall present an alternative method
for obtaining the steady-state probabilities, and then expand on that method to ob-
tain a matrix geometric procedure. As you recall, the M/M/1 model yields the sys-
tem of equations given by Eq. (7.1) that must be solved to obtain the steady-state
probabilities. The solution method used in Chap. 7 to solve that system of equations
was a successive substitution procedure. In this section, we study the characteris-
tic equation method for linear difference equations. For further reading, almost any
introductory textbook on numerical analysis will contain these procedures.

We first present the general theory for solving difference equations of order two
and then apply this knowledge to our queueing problem. Suppose we wish to find
expressions for x0,x1, · · · that satisfy the following system of difference equations:

a0x0 +a1x1 +a2x2 = 0

a0x1 +a1x2 +a2x3 = 0
...

a0xn−1 +a1xn +a2xn+1 = 0
...

where a0,a1,a2 are constants. The first step in obtaining an expression for xn is to
form the characteristic function defined by

f (z) = a0 +a1z+a2z2 .

As long as a0 �= 0, a2 �= 0, and the roots of f (·) are real, the solutions to the system
of difference equations are easy to represent. Suppose the characteristic function has
two distinct roots2, called z1 and z2. Then

xn = c1zn
1 + c2zn

2 ,

is a solution to the system of difference equations, where c1 and c2 are constants to
be determined from some other conditions (boundary conditions) that fully specify
the system of equations. Suppose the characteristic function has a single root (of
multiplicity 2), called z. Then

xn = c1zn + c2nzn−1 ,

is a solution to the system of difference equations.
One of the issues that is sometimes confusing is being able to determine the lim-

its on the index when the general expression is written. If the recursive equation is

2 The value z is a root if f (z) = 0.
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xn+1 = xn + xn−1 for n = n0,n0 + 1, · · · , then the general expression must be true
for all xn with n starting at n0 − 1 because that is the first term that appears in the
recursive equations.

Example 13.1. Fibonacci Sequence. We wish to find values of xn that satisfy the
following:

x2 = x0 + x1

x3 = x1 + x2

x4 = x2 + x3

...

The characteristic function is f (z) = z2 − z−1, and the quadratic equation gives the
roots as z = (1±

√
5)/2; therefore a general solution for these difference equations is

xn = c1((1+
√

5)/2)n +c2((1−
√

5)/2)n. The Fibonacci numbers are those numbers
that satisfy the recursion xn+1 = xn + xn−1 for n = 1,2, · · · with x0 = 0 and x1 = 1.
These boundary conditions are the information needed to obtain specific values for
the constants; namely, c1 and c2 are found by rewriting the boundary conditions
using the general form of xn:

c1

(
1+

√
5

2

)0

+ c2

(
1−

√
5

2

)0

= 0

c1

(
1+

√
5

2

)1

+ c2

(
1−

√
5

2

)1

= 1 .

This yields

c1 + c2 = 0

c1(1+
√

5)+ c2(1−
√

5) = 2 ;

thus, c1 = −c2 = 1/
√

5 and the general expression for the Fibonacci numbers is

xn =
1√
5

[(
1+

√
5

2

)n

−
(

1−
√

5
2

)n]

,

for n = 0,1, · · · . The fact that these are integers for all values of n is surprising, but
if you check out some of these values, the sequence 0,1,1,2,3,5,8,13 · · · should be
obtained. ��
Example 13.2. The M/M/1 Queue. The M/M/1 queue produces a difference equa-
tion (from Eq. 7.1) of the form

λ pn−1 − (λ + μ)pn + μ pn+1 = 0



358 13 Advanced Queues

for n = 1,2, · · · ; thus the characteristic function for the M/M/1 queue is f (z) =
λ − (λ + μ)z+ μz2. From the quadratic equation we easily get that the roots3 of the
characteristic function are z1 = ρ and z2 = 1, where ρ = λ/μ ; therefore the general
form of the solution is

pn = c1ρn + c2

for n = 0,1, · · · . To obtain specific values for c1 and c2 we next look at the norming
equation; namely, ∑∞

n=0 pn = 1. The first observation from the norming equation is
that c2 must be set equal to zero; otherwise, the infinite sum would always diverge.
Once c2 = 0 is fixed, the steps for finding c1 are identical to Eq. (7.5) where c1 takes
the place of p0 yielding c1 = 1−ρ , as long as λ < μ . ��

13.2 Batch Arrivals

We begin the discussion of the matrix geometric approach by investigating a queue-
ing system in which batches of customers arrive together; we designate such a sys-

tem as an M
[X ]

/M/1 queueing system. For example, customers might arrive to the
queueing system in cars, and the number of people in each car is a random variable
denoted by X . Or, in a manufacturing setting, items might arrive to a processing
center on a pallet, but then the items must be processed individually; this would also
lead to a batch arrival queueing system. As usual, we let the mean arrival rate for the
Poisson process (i.e., arrival rate of batches) be λ , then the rate at which the process
makes a transition from state n to n+ i is

λi = λ Pr{X = i} ,

where X denotes the size of a batch. Finally, we assume that the server treats cus-
tomers individually with a mean (exponential) service rate of μ .

To illustrate the structure of this process, we use the M
[X ]

/M/1 queueing system
assuming a maximum batch size of two as an example. Thus, λ = λ1 + λ2 and the
generator matrix, Q, is given by

0 1 2 3 4 5 6 · · ·
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λ1 λ2

μ −(λ + μ) λ1 λ2 0
0 μ −(λ + μ) λ1 λ2

0 μ −(λ + μ) λ1 λ2 0
0 0 μ −(λ + μ) λ1 λ2

0 μ −(λ + μ) λ1 · · ·
0 0 μ −(λ + μ) · · ·

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3 Note that (λ + μ)2 −4λ μ = (λ −μ)2.
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where blanks within the matrix are interpreted as zeros and the row above the matrix
indicates the states as they are associated with the individual columns of the matrix.

The M
[X ]

/M/1 generator matrix can also be represented using submatrices for
the elements within the various partitions. The advantage of doing so is that the
generator Q can then be easily written for a general system with a maximum batch
size of m customers. This gives

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λλλ
μμμ A ΛΛΛ 0

M A ΛΛΛ 0

M A ΛΛΛ 0

M A · · ·
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (13.1)

where λλλ is the row vector (λ1,λ2, · · ·); μμμ is the column vector (μ ,0,0, · · ·)T ; M is
a matrix of zeros except for the top right element which is μ ; A is a matrix with
−(λ + μ) on the diagonal, μ on the subdiagonal, and λk on the kth superdiagonal;
and ΛΛΛ 0 is a matrix made up of zeroes and the λk terms. (If the largest possible batch
has m customers, then the kth column of ΛΛΛ 0 has k−1 zeros and then m−k+1 values
of λi starting with λm and ending with λk.)

Our goal is to find the values for the steady-state probabilities denoted by p =
(p0|p1, p2|p3, p4| · · ·) = (p0,p1,p2, · · ·), where pn = (p2n−1, p2n) for n = 1,2, · · · .
In other words, the vector p is partitioned in the same fashion as Q. Combining
Eq. (13.1) with the equation pQ = 0 yields the following system of equations written
using the submatrices from our partitioning:

− p0λ +p1μμμ = 0 (13.2)

p0λλλ +p1A+p2M = 0

p1ΛΛΛ 0 +p2A+p3M = 0

p2ΛΛΛ 0 +p3A+p4M = 0
...

The above system of equations can be solved using the matrix geometric tech-
nique, which is simply the matrix analogue to the solution procedures of Sect. 13.1.
The recursive section from the equations listed in (13.2) reduces to the following
problem: find the vectors p1,p2, · · · such that

pn−1ΛΛΛ 0 +pnA+pn+1M = 0

for n = 2,3, · · · . The first step in the solution procedure is to form the matrix char-
acteristic function and find its root. That is, we must find the matrix R such that

ΛΛΛ 0 +RA+R2M = 0 . (13.3)
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Once the characteristic root matrix R is found4, it follows that

pn = cRn , (13.4)

for n = 1,2, · · · , where c is a vector of constants which must be determined from the
boundary conditions, i.e., the first two equations from Eq. (13.2).

13.2.1 Quasi-Birth-Death Processes

The characteristic function of Eq. (13.3) represents the main work of the matrix ge-
ometric method so we pause momentarily from our discussion of the batch arrival
queue and discuss the general solution method for this type of matrix geometric
problem. You should notice that the generator matrix in Eq. (13.1) is a tridiagonal
block matrix. That is, the generator Q has submatrices along the diagonal, the sub-
diagonal, the superdiagonal, and zeros everywhere else. Thus the general form for
the matrix is

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B00 B01

B10 B11 A0

A2 A1 A0

A2 A1 A0

A2 A1 · · ·
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13.5)

Any queueing system that gives rise to a generator of this form is called a quasi-
birth-death process. In finding the steady-state probabilities for a quasi-birth-death
process, the characteristic function given by

A0 +RA1 +R2A2 = 0 (13.6)

will arise, where R is the unknown matrix and must be obtained. In some systems,
the matrices A0, A1, and A2 have simple structures so that R can be obtained an-
alytically; however, in many systems, an expression for R is impossible. However,
what makes the matrix geometric approach attractive is that numerical methods to
compute R are readily available. To present one approach, let us rearrange the terms
in Eq. (13.6) to obtain

R = −
(
A0 +R2A2

)
A−1

1 . (13.7)

Equation (13.7) leads to a successive substitution scheme where a guess is made for
R, that guess is used in the right-hand-side of the equation to produce a new esti-
mate for R; this new estimate is used again in the right-hand-side to obtain another
estimate of R; and so on. Specifically, we have the following algorithm.

4 There are actually two matrices satisfying Eq. (13.3), but Neuts [1] showed that exactly one
matrix exists that will satisfy the boundary (norming) conditions.
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Property 13.1. Successive Substitution Algorithm. Let A0, A1, and A2

be submatrices from the generator Q as defined by Eq. (13.5), and let As

= A0 + A1 + A2. Define the vector ννν such that νννAs = 0 and ννν1 = 1, and
define the traffic intensity as ρ =νννA01/νννA21. If ρ < 1, the following iteration
procedure will yield an approximation to the matrix R that satisfies Eq. (13.6).

Step 1. Check that the steady-state conditions hold, i.e., check that ρ < 1.
Step 2. Let R0 = 0 (i.e., a matrix of all zeros), let n = 0, and fix ε to be a

small positive real value.
Step 3. Define the matrix Rn+1 by

Rn+1 = −
(
A0 +R2

nA2
)

A−1
1 .

Step 4. Define δ by

δ = max
i, j

{|Rn+1(i, j)−Rn(i, j)|} .

Step 5. If δ < ε , let R = Rn+1 and stop; otherwise, increment n by one and
return to Step 3.

The Successive Substitution Algorithm is often slow to converge, especially if the
traffic intensity, ρ , is close to one; however, the algorithm is very easy to build into
a computer code so that it becomes a convenient method for obtaining the matrix R.
Once the matrix R is determined, Eq. (13.4) gives an expression for the probability
vectors pn for n ≥ 1. To obtain the values for the constant c and the probability
vector p0, the norming equation and the boundary conditions must be used.

The boundary conditions are taken from the first columns of submatrices from
the generator in Eq. (13.5). These equations are

p0B00 +p1B10 = 0 (13.8)

p0B01 +p1B11 +p2A2 = 0 .

The norming equation is

∞

∑
n=0

∑
k

pnk =
∞

∑
n=0

pn1 = 1 .

A closed form expression for this equation is obtained by taking advantage of the
geometric progression result for matrices5 together with the matrix geometric form
for the probabilities (Eq. 13.4). Thus, we have

5 ∑∞
n=0 Rn = (I−R)−1 if the absolute value of all eigenvalues for R is less than one.
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1 = p01+
∞

∑
n=1

pn1 (13.9)

= p01+
∞

∑
n=1

cRn1

= p01+ cR

(
∞

∑
n=1

Rn−1

)

1

= p01+p1(I−R)−11 .

In conclusion, the long-run probabilities for quasi-birth-death processes are
found by first finding the matrix R, possibly using the Successive Substitution Al-
gorithm (Property 13.1), and then finding the values for p0 and p1 by solving the
system of equations

p0B00 +p1B10 = 0 (13.10)

p0B01 +p1B11 +p1RA2 = 0

p01+p1(I−R)−11 = 1 .

Notice that the system of equations (13.10) is simply a combination of the Eqs. (13.8)
and (13.9) together with the substitution6 p2 = p1R. As is common with all irre-
ducible recurrent systems, one of the equations in the system (13.10) will be redun-
dant.

13.2.2 Batch Arrivals (continued)

Before proceeding with the batch arrival queueing system, we should check the
steady-state conditions; namely, check that the traffic intensity is less than one
(Step 1 from Property 13.1). For our example with a maximum batch size of two,
the matrix As is

As =
[
−(λ1 + μ) λ1 + μ

λ1 + μ −(λ1 + μ)

]

and thus the distribution from As is ν1 = 0.5 and ν2 = 0.5. Therefore, the traffic
intensity is given by

ρ =
νννΛΛΛ 01
νννM1

=
0.5λ2 +0.5λ

0.5μ
=

λ1 +2λ2

μ
=

λE[X ]
μ

,

where E[X ] is the mean batch size.
For purposes of a numerical example, let μ = 5 per hour, λ1 = 2 per hour and

λ2 = 1 per hour. This yields ρ = 0.8 so that it makes sense to find the steady-state
probabilities. The matrix R is the solution to the equation

6 If the substitution is not obvious, observe that Eq. (13.4) implies that pn+1 = pnR.
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R2
[

0 5
0 0

]

+ R
[

−8 2
5 −8

]

+
[

1 0
2 1

]

= 0 ,

and the Successive Substitution Algorithm yields the following sequence

R0 =
[

0 0
0 0

]

R1 =
[

0.148 0.037
0.389 0.222

]

R2 =
[

0.165 0.064
0.456 0.329

]

...

R =
[

0.2 0.12
0.6 0.56

]

.

With the determination of R, there are three unknowns that need to be obtained in
order to fully define the steady-state probabilities; specifically, p0 and the constant
vector c from Eq. (13.4). Alternatively, we could say there are three unknowns,
p0, p1, and p2, and these must be determined through the boundary conditions given
by the system of equations (13.2) and the norming equation (13.9). (Remember that
p1 = (p1, p2) is a vector. Also, the vector p0 given in the general quasi-birth-death
system equates to the scalar p0 in the batch arrival system.)

The norming equation can be combined with the second equation from (13.2) to
obtain a system defining the constant vector c; thus,

1−p1(I−R)−11 = p0

p0λλλ +p1A+p1RM = 0 .

The above system is sufficient to determine the unknown probabilities; however,
it can be simplified somewhat using a result based on Little’s formula. All single-
server systems that process customers one-at-a-time have the same form for the
probability that the system is empty; p0 is always 1−λe/μ where λe is the mean
arrival rate of customers into the system and μ is the mean service rate. Therefore,

p0 = 1− λE[X ]
μ

p1 = −p0λλλ (A+RM)−1 ,

where X is the random variable indicating the size of each batch.
Returning again to the numerical example for the batch arrival process, we have

A+RM =
[
−8.0 3.0
5.0 −5.0

]
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yielding p1 = (0.12,0.112).
Before going to another example of the use of the matrix geometric approach,

we present some background in phase-type distributions. These distributions will
allow for a significant amount of generality over the exponential distribution while
taking advantage of the computational tractability afforded by the matrix geometric
approach.

13.3 Phase-Type Distributions

The Erlang distribution defined in Chap. 1 (page 18) is an example of a phase-type
distribution, because it is the sum of independent exponential distributions. That
is, an Erlang random variable could be thought of as the length of time required
to go through a sequence of phases or steps where the time to go through each
phase requires an exponentially distributed length of time. For example, suppose
we wish to model a single server queueing system with a Poisson arrival process,
but all we know about its service distribution is that it has a mean service time
of 10 minutes and a standard deviation of 5 minutes. The temptation might be to
use an exponential distribution with parameter μ = 0.1 for service times. Such an
assumption would clearly be wrong because the standard deviation would be twice
too big even though the mean would be correct. A much better modeling distribution
would be the Erlang distribution (see Eq. 1.16) with parameters k = 4 and β = 10;
such a distribution yields a mean of 10 and a standard deviation of 5. This Erlang
distribution is the sum of four exponentials, each exponential having a mean of 2.5;
thus, a schematic diagram for the Erlang is contained in the figure below.

In other words, instead of modeling the Erlang server as a single system, we
model it as a four-phase process (see Fig. 13.1). To describe the dynamics of this
phase-type model, assume there is a queue outside the server, and the server has
just completed a service. Immediately, the customer at the head of the queue enters
the phase 1 box. After an exponentially distributed length of time, the customer
leaves phase 1 and enters phase 2 and remains in that box for another exponentially
distributed length of time. This is repeated until the customer passes through all
four boxes, and as long as the customer is in any of the four boxes, no additional
customer may enter the server. As soon as the customer leaves phase 4, the next
customer in the queue enters phase 1. Thus, we are able to model the server using the
exponential distribution even though the server itself does not have an exponential
but has an Erlang distribution with a standard deviation half of its mean. In modeling
such a system, we emphasize that the phases are fictitious. Whether or not customers
actually enter individual physical phases is not relevant; the important question is
whether or not the resultant distribution of the server adequately mimics the real
process.

The exponential nature imbedded within the Erlang distribution allows for a
Markov process to be used for its distribution. To demonstrate, let {Yt ; t ≥ 0} be
a Markov process with state space E = {1,2,3,4,Δ}, generator matrix
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Fig. 13.1 Schematic for the Erlang distribution

G =

⎡

⎢
⎢
⎢
⎢
⎣

−0.4 0.4 0.0 0.0 0.0
0.0 −0.4 0.4 0.0 0.0
0.0 0.0 −0.4 0.4 0.0
0.0 0.0 0.0 −0.4 0.4
0.0 0.0 0.0 0.0 0.0

⎤

⎥
⎥
⎥
⎥
⎦

and initial probability vector ααα = (1,0,0,0,0). In other words, Y always starts in state
1 and sequentially passes through all the states until being absorbed in the final state,
Δ . Mathematically, this can be expressed by defining the random variable T as the
first passage time to state Δ , that is,

T = min{t ≥ 0 : Yt = Δ} . (13.11)

The distribution of T is the sum of four independent exponential distributions, each
with mean 2.5; therefore, T has a four-phase Erlang distribution with mean 10.
This example is an illustration of the property that any Erlang distribution can be
represented as the first passage time for a Markov process.

A k-phase Erlang has the property that the mean divided by the standard deviation
equals the square root of k. If we have a non-exponential server, one approach for
finding an appropriate distribution for it is to take the “best” Erlang distribution
based on the mean and standard deviation; in other words, if we square the ratio
of the mean over the standard deviation and obtain something close to an integer,
that would give the appropriate number of phases for the Erlang. For example, if
the mean were 10 and standard deviation were 5.77, we would use a 3-phase Erlang
model (because (10/5.77)2 = 3.004). Or, as another example, consider a server
that has a mean service time of 10 and standard deviation of 5.48 (observe that
(10/5.48)2 = 3.33). We now have a dilemma since the number of phases for the
Erlang must be an integer. However, if you look again at Fig. 13.1, you should
realize that the assumptions for the Erlang are unnecessarily (from a modeling point
of view) restrictive. If the purpose of using the Erlang is to reduce everything to
exponentials, we must ask the question, “Why do the means of each phase need to
be the same?” The answer is, “They do not!” If in Fig. 13.1, the first phase was
exponential with mean 1, the second phase was exponential with mean 2, the third
phase was exponential with mean 3, and the fourth phase was exponential with
mean 4, then the overall mean would be 10 and the standard deviation would be
5.48 (review Property 1.6 for verifying the standard deviation).
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Fig. 13.2 Schematic for a general phase-type distribution

The idea of phase-type distributions is to generalize the Erlang concept to al-
low non-equal means for the phases and to allow more general paths than simply
a “straight-through” path. For example, consider the phase-type distribution illus-
trated in Fig. 13.2. The distribution of the service time illustrated in that figure can
again be represented by a Markov process. Let {Yt ; t ≥ 0} be a Markov process with
state space E = {1,2,3,4,Δ}, generator matrix

G =

⎡

⎢
⎢
⎢
⎢
⎣

−1.0 0.9 0.0 0.0 0.1
0.0 −0.5 0.5 0.0 0.0
0.0 0.1 −0.3333 0.2 0.0333
0.0 0.0 0.0 −0.25 0.25
0.0 0.0 0.0 0.0 0.0

⎤

⎥
⎥
⎥
⎥
⎦

, (13.12)

and initial probability vector ααα = (0.8,0,0.2,0,0). Consider a customer, who upon en-
tering the server, begins in phase 1 with probability 0.8 and begins in phase 3 with
probability 0.2. After entering a phase, the customer spends an exponential length
of time in that phase and then moves according to a Markov chain as illustrated in
Fig. 13.2. In other words, the length of time that the customer spends in the server
as illustrated in the figure is equivalent to the first passage time to state Δ for the
Markov process defined by the generator of Eq. (13.12). This furnishes the motiva-
tion for phase-type distributions: namely, any distribution that can be represented by
a first passage time of a Markov process will be called a phase-type distribution.

The generator matrix of Eq. (13.12) can be partitioned into four key submatrices
as

G =

⎡

⎢
⎢
⎢
⎢
⎣

−1.0 0.9 0.0 0.0 0.1
0.0 −0.5 0.5 0.0 0.0
0.0 0.1 −0.3333 0.2 0.0333
0.0 0.0 0.0 −0.25 0.25
0.0 0.0 0.0 0.0 0.0

⎤

⎥
⎥
⎥
⎥
⎦

=
[

G∗ GΔ
0 0

]

,

and the initial probability vector can be partitioned as
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ααα = (0.8,0.0,0.2,0.0 | 0.0) = (ααα∗| 0.0) .

Such partitioning is always possible for Markov processes that are to be used in
defining phase-type distributions. The matrix G∗ and the vector ααα∗ are sufficient to
define a phase-type distribution as is specified in the following:

Definition 13.1. A random variable has a phase-type distribution with parame-
ters m, G∗, and ααα∗ if it can be expressed as a first-passage time random variable
(Eq. 13.11) for a Markov process with state space E = {1, · · · ,m,Δ}, generator

G =
[

G∗ GΔ
0 0

]

,

and initial probability vector ααα = (ααα∗|0). ��

First-passage time random variables have well known properties that can be eas-
ily described mathematically, but not necessarily easy to compute. These properties
are:

Property 13.2. Let T be a random variable with a phase-type distribution
from Definition 13.1. Its cumulative distribution function and first two mo-
ments are given by

F(t) = 1−ααα∗ exp{tG∗}1 for t ≥ 0,

E[T ] = −ααα∗G−1
∗ 1 ,

E[T 2] = 2ααα∗G−2
∗ 1 ,

where G∗−2 indicates the square of the inverse and 1 is a vector of ones.

Property 13.2 gives an easy-to-calculate formula for determining the mean and
variance; however, the distribution is somewhat harder. You should be familiar with
a scalar times a matrix; namely, the matrix tG∗ is the matrix G∗ with all components
multiplied by t. However, a matrix in the exponent may be unfamiliar. Specifically,
the matrix eA is defined by the power series7

eA =
∞

∑
n=0

An

n!
.

Most linear algebra textbooks will discuss matrices of the form eA; therefore, we
will not discuss its computational difficulties here. For the purposes of this text, we
will only use the moment formulas from Property 13.2.

7 Remember, for scalars, the exponential power series is ea = ∑∞
n=0 an/n! .
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One caveat worth mentioning is that our example has focused only on the mean
and standard deviation as if those two properties adequately described the random-
ness inherent in the server. This, of course, is an oversimplification, although at
times it may be all the analyst has to work with. It is obviously best to try to fit the
entire distribution to empirical data; however, goodness-of-fit tests require consid-
erable data which are not always available. When data are not available to give a
good estimate for the full distribution function, then moments are often used. The
first moment gives the central tendency, and the second moment is used to measure
variability. The third moment is useful as a measure of skewness (see p. 22). For
phase-type distributions, the nth moment is given as

E[T n] = (−1)nn!ααα∗G∗
−n1 .

As a final comment regarding the choice of distributions for modeling purposes, we
note that it is often the tails of distributions that are the key to behavioral charac-
teristics of queueing systems. Therefore, fitting the tail percentiles is an additional
task that is worthwhile for the analyst in obtaining a proper distribution function for
modeling purposes.

13.4 Systems with Phase-Type Service

The service distribution often describes a process designed and controlled by people
who view variability as being bad; therefore, the exponential assumption for ser-
vice times is too limiting because of its large variability. In this section we discuss
generalizing the service time distribution. With single-server systems, using phase-
type distributions presents little difficulty. With multiple-server systems, tractability
becomes an important issue and places limitations on the usability of the matrix
geometric methods.

13.4.1 The M/Ph/1 Queueing System

We begin our discussion by looking at a specific example of an M/Ph/1 system.
Our example will use Poisson arrivals and a single server with a phase-type service
distribution having two phases. The state space will have to be two-dimensional
because not only do we need to know the number of customers in the system, but
also the phase number of the customer being served; therefore, let

E = {0,(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2), · · ·} .

If the queueing system is in state (n,k), there are n customers in the system with
n− 1 customers being in the queue, and the customer that is being served is in the
kth phase. The mean arrival rate is denoted by λ , and the phase-type distribution has



13.4 Systems with Phase-Type Service 369

��

	


0

��

	


1,1

��

	


1,2

��

	


2,1

��

	


2,2

��

	


3,1

��

	


3,2

� � ��

� � �

� � �

λ

λ λ

λ λ

%%%%%%%&

'''''''(
�
���

�
���

�
��)

�
��*

�
��*

�
��)

�

�

�
��)

�
��*

�
��*

�
��)

�

�

�

�

��)

��*

� � �

� � �

GΔ (1)

GΔ (2)

α∗(1)
α∗(2)

GΔ (1)

GΔ (2)

α∗(1)

α∗(2)

GΔ (1)

GΔ (2)

α∗(1)

α∗(2)

Fig. 13.3 State diagram for an M/Ph/1 system; rates associated with vertical arrows are G∗(1,2)
going down and G∗(2,1) going up

parameters m = 2, ααα∗ and G∗. Thus, for k, j = 1,2, we have the following interpre-
tations: α∗(k) is the probability a customer who enters the server will begin in phase
k, G∗(k, j) is the rate at which the customer in service moves from phase k to phase
j, and GΔ (k) is the rate at which a customer who is in phase k leaves the server. The
state diagram for this system is given in Fig. 13.3.

Thus, for an M/Ph/1 queueing system, an empty system will make a transition
to a system containing one customer with a mean rate of λ ; however, there are
two states representing a system with one customer. When a customer enters the
server, there is a probability of α∗(1) that the customer will begin in phase 1 and a
probability of α∗(2) that the customer will begin in phase 2. Therefore, the rate of
a transition from state 0 to state (1,1) is λα∗(1), and the rate of a transition from
state 0 to state (1,2) is λα∗(2). If the process is in state (n,k), an arriving customer
joins the queue so that the rate of transition from (n,k) to (n + 1,k) is λ . If there
are two or more customers in the system, then a service completion occurs with rate
GΔ (k) if the customer who is in service is occupying phase k. Immediately after
departure, the customer at the head of the queue will enter service and join phase k
with probability α∗(k); therefore, the rate of transition from state (n,k) to (n−1, j)
is GΔ (k)α∗( j). With this description (and with the help of Fig. 13.3), the generator
matrix for the M/Ph/1 queueing model can be formed; we shall call it Q to keep it
distinct from the generator G which is associated with the description of the Markov
process representing the server. Thus, Q is defined by

0 (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) · · ·

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λα1 λα2

GΔ (1) g11 −λ g12 λ 0
GΔ (2) g21 g22 −λ 0 λ

GΔ (1)α1 GΔ (1)α2 g11 −λ g12 λ 0
GΔ (2)α1 GΔ (2)α2 g21 g22 −λ 0 λ

GΔ (1)α1 GΔ (1)α2 g11 −λ g12 · · ·
GΔ (2)α1 GΔ (2)α2 g21 g22 −λ · · ·

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where blanks within the matrix are interpreted as zeros and the row above the matrix
indicates the states as they are associated with the individual columns of the matrix.
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(We have taken some notational liberties because of the large size of the matrix. The
terms α1 and α2 are the components of ααα∗ and gi j are components of G∗.)

The M/Ph/1 generator can also be represented using submatrices for the elements
within the various partitions. The advantage of doing so is that the matrix Q for the
M/Ph/1 queue can be easily written for a general server with m phases. This gives

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λααα∗
GΔ G∗ −ΛΛΛ ΛΛΛ

GΔααα∗ G∗ −ΛΛΛ ΛΛΛ
GΔααα∗ G∗ −ΛΛΛ ΛΛΛ

GΔααα∗ G∗ −ΛΛΛ · · ·
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (13.13)

where ΛΛΛ = λ I (i.e., a matrix with λ ’s on the diagonal and zeros elsewhere). It
should also be noted that GΔ is a column vector and ααα∗ is a row vector; there-
fore, the matrix product of GΔααα∗ is an m by m matrix, the i- j element of which is
the product GΔ (i)α∗( j). Our goal is to find the values for the steady-state proba-
bilities denoted by p = (p0|p11, p12, · · · |p21, p22, · · · | · · ·) = (p0,p1,p2, · · ·), where
pn = (pn1, pn2, · · ·) for n = 1,2, · · · . In other words, the vector p is partitioned in
the same fashion as the matrix Q. Combining Eq. (13.13) with the equation pQ = 0
yields the following system of equations written using the submatrices from the
partitioning of Eq. (13.13):

−λ p0 +p1GΔ = 0 (13.14)

λααα∗p0 +p1(G∗ −ΛΛΛ)+p2GΔααα∗ = 0

p1ΛΛΛ +p2(G∗ −ΛΛΛ)+p3GΔααα∗ = 0

p2ΛΛΛ +p3(G∗ −ΛΛΛ)+p4GΔααα∗ = 0
...

The matrix in Eq. (13.13) is from a quasi-birth-death process, so we know the
solution to the system given in (13.14) involves the characteristic matrix equation
given by

ΛΛΛ +R(G∗ −ΛΛΛ)+R2GΔααα∗ = 0 . (13.15)

Once the characteristic root matrix R is found, we can again take advantage of the
matrix geometric form for the probabilities as we repeat Eq. (13.4); namely, we have

pn = cRn , (13.16)

for n = 1,2, · · · , where c is a vector of constants.
Since this is a single-server system, traffic intensity is always given by ρ = λ/μ ,

where 1/μ is the mean service time. Thus, from Property 13.2, the traffic intensity
is ρ = −λααα∗G∗−11. Assuming that ρ is less than one, it makes sense to find the
matrix R that satisfies Eq. (13.15). It turns out that for this M/Ph/1 characteristic
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function, it is possible [1, p. 84] to find a closed form expression to the equation and
obtain

R = λ (ΛΛΛ −λ1ααα∗ −G∗)−1 , (13.17)

where 1 is a column vector of ones so that the product 1ααα∗ is a matrix, each row of
which is the vector ααα∗.

It can also be shown that the constant vector c from Eq. (13.16) is given by the
vector p0ααα∗ with p0 = 1−ρ , where ρ = λ/μ . (To see this, we rewrite the second
equation from the system of equations (13.14) using Eq. (13.17) as a substitute for
p1 and p2 and observe that λααα∗ = ααα∗ΛΛΛ . This yields

λααα∗p0 +p1(G∗ −ΛΛΛ)+p2GΔααα∗

= ααα∗ΛΛΛ p0 + p0ααα∗R(G∗ −ΛΛΛ)+ p0ααα∗R2GΔααα∗

= ααα∗p0
[
ΛΛΛ +R(G∗ −ΛΛΛ)+R2GΔααα∗

]
= 0

where the final equality is obtained by recognizing that the quantity in the square
brackets is the same as Eq. (13.15).) Thus, the M/Ph/1 queueing system with a mean
arrival rate of λ and a service distribution defined by parameters m, ααα∗, and G∗ has
steady-state probabilities given, for ρ < 1, by

pn,k =
{

1−ρ for n = 0,
(1−ρ)(ααα∗Rn)(k) for n = 1,2, · · · ,and k = 1, · · · ,m ,

where ρ = −λααα∗G−1
∗ 1, and R is defined by Eq. (13.17). It also follows that the

expected number of customers in the system and in the queue are given by

L = (1−ρ)ααα∗R(I−R)−21 (13.18)

Lq = (1−ρ)ααα∗R2(I−R)−21

(13.19)

Example 13.3. Let us consider an M/Ph/1 queueing system such that the arrival rate
is λ = 0.079 and the distribution function governing the service time random vari-
able is the one illustrated in Fig. 13.2 with generator matrix given by Eq. (13.12).
Thus, the mean and standard deviation of the service time is 10.126 and 7.365, re-
spectively. Thus the queueing system has a traffic intensity of 0.8 which implies that
a steady-state analysis is possible. The matrix that must be inverted (Eq. 13.17) to
obtain R is

ΛΛΛ −λ1ααα∗ −G∗ =

⎡

⎢
⎢
⎣

1.0158 −0.9000 −0.0158 0.0000
−0.0632 0.5790 −0.5158 0.0000
−0.0632 0.1000 0.3965 −0.2000
−0.0632 0.0000 −0.0158 0.3290

⎤

⎥
⎥
⎦ ,

thus, the matrix R is



372 13 Advanced Queues

R =

⎡

⎢
⎢
⎣

0.1298 0.2633 0.3563 0.2166
0.0579 0.2946 0.3951 0.2402
0.0490 0.1453 0.3999 0.2431
0.0273 0.0576 0.0876 0.2934

⎤

⎥
⎥
⎦ .

The probability that the system is empty is 0.2; the probability that there is exactly
one customer in the system is 0.188. The expected number in the system and the
expected number in the queue are 3.24 and 2.44, respectively. As a practice in the
use of Little’s formula, we can also derive Lq knowing only that L = 3.24. With
Little’s formula we have that W = 3.24/0.079 = 41.013. Since the system only has
one server, it follows that W = Wq +10.126 or Wq = 30.887. Using Little’s formula
one more time yields Lq = λWq = 0.079×30.887 = 2.44. ��

Example 13.4. Simulation. In order to provide as much help as possible in under-
standing the dynamics of a phase-type queueing system, we step through a simula-
tion of Example 13.3. There will be three types of events denoted as follows: “a”
signifies an arrival, “p” signifies the completion of a sojourn time within a phase,
“q” signifies the movement of a queued entity into the server. (The example simula-
tions of Chap. 9 did not have a separate event for the transfer from the queue to the
server, but because of the extra complication of the movement within the server, it is
easier to distinguish between the “p” event and the “q” event.) The transformation
from the random number, R, in Column 3 of Table 13.1 to the arrival time in Column
4 is

Clock Time− ln(R)/0.079 .

An arriving entity goes into Phase 1 if the random number in Column 5 is less than
or equal to 0.8; otherwise, the entity goes into Phase 3. An entity that is leaving
Phase 1 will enter Phase 2 if the random number in Column 5 is less than or equal
to 0.9 (as at clock time 13.04 and 28.45 in the table); otherwise, the entity will leave
the system (as at clock time 0.03, 6.52, etc.). An entity that is leaving Phase 2 will
always proceed into Phase 3. An entity that is leaving Phase 3 will enter Phase 4 if
the random number is less than or equal to 0.6; it will enter Phase 2 if the random
number is greater than 0.6 and less than or equal to 0.9; otherwise it will leave the
system. An entity leaving Phase 4 will always leave the system. The random number
in Column 7 is used to determine the random variate representing the sojourn time
within a phase; therefore, its transformation depends on the phase in which the entity
resides. The simulation results contained in Table 13.1 should contain enough of the
dynamics of the system to illustrate these concepts. ��

13.4.2 The M/Ph/c Queueing System

There are two approaches for modeling the multiple-server phase-type system: (1)
let the state space contain information regarding the current phase number for each
customer in each server or (2) let the state space contain information regarding the
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Table 13.1 Simulation of an M/Ph/1 queueing system

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Clock Type RN Time RN Into RN Within Time No.
time next which phase leave in

arrival phase time phase sys.
0 a 0.7156 4.24 0.5140 1 0.9734 0.03 0.03 1

0.03 p — — 0.9375 out — — — 0
4.24 a 0.7269 8.28 0.2228 1 0.1020 2.28 6.52 1
6.52 p — — 0.9991 out — — — 0
8.28 a 0.9537 8.88 0.6292 1 0.4340 0.83 9.11 1
8.88 a 0.2416 26.86 queued — — — — 2
9.11 p — — 0.9946 out — — — 1
9.11 q — — 0.6799 1 0.0197 3.93 13.04 1
13.04 p — — 0.3988 2 0.4703 1.51 14.55 1
14.55 p — — — 3 0.8872 0.36 14.91 1
14.91 p — — 0.5035 4 0.2335 5.82 20.73 1
20.73 p — — — out — — — 0
26.86 a 0.6576 32.17 0.5989 1 0.2047 1.59 28.45 1
28.45 p — — 0.4328 2 0.2419 2.84 31.29 1
31.29 p — — — 3 0.1215 6.32 37.61 1
32.17 a 0.6602 37.43 queued — — — — 2
37.43 a 0.7957 40.32 queued — — — — 3
37.61 p — — 0.9518 out — — — 2
37.61 q — — 0.1589 1 0.5695 0.56 38.17 1

number of customers in each phase. Consider an M/Ph/3 system with a phase-type
distribution containing two phases. If we model this system using the first approach,
the vector pn would be defined by

pn = (pn111 , pn112 , pn121 , pn122 , pn211 , pn212 , pn221 , pn222) ,

for n≥ 3. In this case, the state ni jk refers to n customers in the system, the customer
in the first server being in phase i, the customer in the second server being in phase
j, and the customer in the third server being in phase k. If we model the three-server
system with a two-phase service distribution using the second approach, the vector
pn would be defined by

pn = (pn30 , pn21 , pn12 , pn03) ,

for n ≥ 3. In this second case, the state ni j refers to there being n customers in the
system, i customers being in their first phase, and j customers being in their second
phase. For a system of c servers and a phase-type distribution of m phases, the first
approach yields submatrices containing mc rows and columns, and the second ap-
proach yields submatrices containing (c+m−1)!/(c!(m−1)!) rows and columns.
Thus, the advantage of the second approach is that it can yield significantly smaller
submatrices, especially when the number of phases is small. However, the first ap-
proach can be used to model a system that contains servers with different service
time distributions.
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Fig. 13.4 Schematic for the Erlang arrival process showing two customers in the queueing system

13.5 Systems with Phase-Type Arrivals

Another example of a queueing system for which the matrix geometric procedure
permits computational results for a problem otherwise difficult is a system with
exponential service and phase-type arrivals.

For the phase-type arrival process, there is always a customer in an “arrival”
phase. Consider first an Erlang-type 2 system (see Fig. 13.4). A customer (not yet in
the queueing system) starts in phase one of the arrival system. After an exponential
length of time, the customer moves to phase two. After an additional exponential
length of time, the customer leaves phase two of the arrival system and enters the
queueing system. As soon as the first customer enters the queueing system, the next
customer instantaneously begins phase one in the arrival system.

We now generalize from Erlang distributions to phase-type distributions. Assume
for illustrative purposes that the distribution governing interarrival times is a phase-
type distribution with parameters m = 2, ααα∗, and G∗. Also let the mean service time
be 1/μ . As soon as a customer leaves the arrival system and enters the queueing
system, the next customer begins in phase k of the arrival system with probability
α∗(k). The customer moves around the phases according to the rate matrix G∗ and
then enters the queueing system upon leaving the arrival system. Such a system
gives rise to the following generator matrix:

(1,0) (2,0) (1,1) (2,1) (1,2) (2,2) · · ·

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g11 g12 GΔ (1)α1 GΔ (1)α2
g21 g22 GΔ (2)α1 GΔ (2)α2

μ 0 g11 −μ g12 GΔ (1)α1 GΔ (1)α2
0 μ g21 g22 −μ GΔ (2)α1 GΔ (2)α2

μ 0 g11 −μ g12 · · ·
0 μ g21 g22 −μ · · ·

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The above representation of the Ph/M/1 system for a two-phase distribution pro-
vides the pattern to generalize the generator for the general phase-type distribution.
In this case, the state (k,n) indicates that there are n customers in the system, and
the customer in the arrival system is in phase k. In matrix notation, we have

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G∗ GΔααα∗
μI G∗ −μI GΔααα∗

μI G∗ −μI GΔααα∗
μI G∗ −μI GΔααα∗

μI G∗ −μI · · ·
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13.20)

(We remind you again that the vector product GΔααα∗ yields a square matrix whose
i- j element is GΔ (i)α∗( j).)

The phase-type arrival system does not yield itself to a closed form solution to
the characteristic function; therefore, the matrix R must be obtained numerically.
That is, the algorithm of Property 13.1 can be used to find the R that satisfies the
equation

μR2 +R(G∗ −μI)+GΔααα∗ = 0 . (13.21)

After R is found, the vector p0 can be found by solving the system of equations
given by

p0(G∗ + μR) = 0 (13.22)

p0(I−R)−11 = 1 .

This chapter has briefly touched on a rich topic for numerically analyzing queue-
ing systems. There are many further examples of queueing systems that can be
profitably analyzed through matrix geometric procedures. There are also many as-
pects of the matrix geometric method that we have not discussed and interested
students should find pursuing this topic rewarding. To help the student gain experi-
ence in modeling with these techniques, several further queueing systems are given
as homework for which matrix geometric models must be specified.

Problems

To obtain the maximum benefit from these homework problems, it would be best
to have a computer available. As a good starting point, you should write a program
implementing the Successive Substitution Algorithm. The only difficult part is the
matrix inversion procedure. If you do not have a subroutine available that inverts a
matrix, the appendix at the end of the book contains a description of an algorithm
for matrix inversion.
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13.1. Consider the sequence of numbers: 0, 1, 2, 5, 12, 29, · · · .
(a) What is the next number in the series?
(b) What is the characteristic function that defines the general expression for the
numbers in the series?
(c) Without writing out the next several numbers, give the tenth number in the series.

13.2. Consider a batch arrival queueing system. The batches arrive according to a
Poisson process with mean rate of one per hour, and every batch contains exactly
two customers. Service is one-at-a-time according to an exponential distribution
with a mean of 16 minutes. The purpose of this problem is to practice the use of
(scalar) difference equations, so you should analyze this queueing system without
using the matrix geometric concepts.
(a) Form the generator matrix and write out the characteristic function that must be
solved to obtain a general expression for pn. (Note that the characteristic function is
a cubic with one root equal to 1.)
(b) Show that

pn = c1

(
2
3

)n

+ c2

(

−2
5

)n

for n = 0,1, · · · .
(c) Show that the probability that there are more than three in the system is 17.6%.
(d) What is the expected number in the system?

13.3. Consider a batch service system where the arrival process is Poisson (i.e., one-
at-a-time) with a mean arrival rate of one per hour . The service mechanism is an
oven which can hold two items at once and service never starts unless two items are
ready for service; in other words, if only one item is in the system, that item will
wait in the queue until the second item arrives. The service time is exponentially
distributed with a mean batch service rate 0.8284 per hour. Again, this problem is to
emphasize the use of the difference equation methodology, so you should analyze
this system without using the matrix geometric technique.
(a) Form the generator matrix and write out the characteristic function that must be
solved to obtain a general expression for pn. (Note that the characteristic function is
a cubic with one root equal to 1.)
(b) Show that

pn = p1(0.7071)n−1

for n = 1,2, · · · .
(c) Show that the probability that there are more than three in the system is approx-
imately 30.2%.
(d) What is the expected number in the system?

13.4. Consider an M
[X ]

/M/1 queueing system with a mean arrival rate of 3 batches
per hour and a mean service time of 7.5 minutes. The probability that the batch size
is one, two, or three is 0.3, 0.5, or 0.2, respectively.
(a) What is the matrix characteristic equation for this system?
(b) Using the algorithm of Property 13.1, determine the matrix R.
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(c) What is the probability that the queue is empty?
(d) What is the value of L?

13.5. Consider an M
[X ]

/M/2 queueing system with a mean arrival rate for batches
of λ and a mean service rate of μ . Assume the maximum batch size is two and
show how this system can be analyzed using the matrix geometric methodology. In
other words, give the relevant matrices for the matrix characteristic equation and the
necessary boundary equations.

13.6. Consider the following batch service system. Arrivals occur one-at-a-time
with mean rate λ = 1. The service mechanism is an oven, and after service is started,
it cannot be interrupted. If only one item is in the system, that item is placed in the
oven, and service is immediately started. If two or more are in the system and the
oven is empty, two items are placed in the oven and service is started. The length of
time that the oven takes to complete its operation is an exponential random variable
with mean rate μ = 0.8284 whether one or two items are in the oven.
(a) Write the generator matrix using a two-dimensional state space where the state
(n,k) denotes n items in the queue and k items in the oven. Also, give the (cubic)
matrix characteristic equation.
(b) Solve for R analytically, i.e., without using the Successive Substitution Algo-
rithm. (Hint: observe that since all the matrices in the characteristic equation are
upper triangular, the matrix R will be upper triangular; thus

R3 =

[
r3

11 r(3)
21

0 r3
22

]

,

where r(3)
21 can be written in terms of the elements of R, and r3

ii is the cube of the rii

term.)
(c) What is the probability that the system is empty?

13.7. A two-channel communication node can take two types of calls: data calls and
voice calls. Data calls arrive according to a Poisson process with mean rate λd and
the length of time a data call uses a channel is exponentially distributed with a mean
time of 1/μd . If both channels are busy, there is a buffer that can hold the data calls
until a channel is free. The buffer has an unlimited capacity. Voice calls arrive ac-
cording to a Poisson process with mean rate λv and the length of time a voice call
uses a channel is exponentially distributed with a mean time of 1/μv. However, if
both channels are busy when a voice call arrives, the call is lost.
(a) This system can be modeled as a quasi-birth-death process. Give the matrix
characteristic equation that must be solved to find R, and write out the boundary
equations.
(b) Data calls come in at a rate of one per minute and the average service time is one
minute. Voice calls come in at a rate of 4 per hour and last an average of 12 minutes.
Assume that voice calls are non-preemptive. Find the numerical values for the ma-
trix R analytically instead of with the successive substitution algorithm. (Hint: since
the matrices A0,A1, and A2 are triangular, the matrix R will also be triangular; thus,
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the diagonal elements of R2 are the square of the diagonal elements of R.)
(c) What is the expected number of data calls in the system?
(d) What is the probability that both channels are occupied by voice calls?
(e) Given that both channels are occupied by voice calls, what is the expected num-
ber of data calls in the system?

13.8. Answer the question of the previous problem assuming that the voice call have
preemptive priority. In other words, if a voice call arrived and both channels were
busy with at least one channel being occupied by a data call, then that data call
would be placed back in the buffer and the voice call would take over the channel;
if both channels were occupied by voice calls, the newly arrived voice call would be
lost. (For part b, use the algorithm of Property 13.1 to find the matrix R.)

13.9. Consider an M/M/1 system with a mean arrival rate of 10 per hour and a mean
service time of 5 minutes. A cost is incurred for each item that is in the system at a
rate of $50 per hour, and an operating cost of $100 per hour is incurred whenever the
server is busy. Through partial automation, the variability of the service time can be
reduced, although the mean will be unaffected by the automation. The engineering
department claims that they will be able to cut the standard deviation of the service
time in half. What are the potential savings due to this reduction?

13.10. Develop a model for an M/E2/2 queueing system.

13.11. Consider the E2/M/1 model with a mean arrival rate of 10 per hour and a
mean service time of 5 minutes.
(a) Solve for the matrix R analytically using the fact that the first row of R is zero.
(b) What is the probability that a queue is present?
(c) What is the expected number in the system?

13.12. Derive the formula L = p0R(I − R)−21 for the Ph/M/1 queueing system.
What is the formula for Lq?

13.13. Consider a Ph/M/2 queueing system with a mean arrival rate of λ and a mean
service rate of μ . Show how this system can be analyzed using the matrix geometric
methodology. In other words, give the relevant matrices for the matrix characteristic
equation and the necessary boundary equations.

13.14. Let X = {Xt ; t ≥ 0} denote a Markov process with state space E = {�,m,h}
and generator matrix

G =

⎡

⎣
−0.5 0.5 0

1 −2 1
0 1 −1

⎤

⎦ .

The process X is called the environmental process and the three states will refer to
low traffic conditions, medium traffic conditions, and high traffic conditions.

Let N = {Nt ; t ≥ 0} denote a single server queueing system. The arrivals to the
system form a Poisson process whose mean arrival rate is dependent on the state
of the environmental process. The mean arrival rate at time t is 2 per hour during
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periods of low traffic, 5 per hour during periods of medium traffic, and 10 per hour
during heavy traffic conditions. (In other words, at time t the mean arrival rate is 2,
5, or 10 per hour depending on Xt being �,m, or h, respectively.) The mean service
time is 10 minutes, independent of the state of the environment.
(a) Give the generator matrix for this system, where a state (n,k) denotes that there
are n customers in the system and the environmental process is in state k.
(b) Give the matrix characteristic equation and the boundary equations for this sys-
tem.
(c) Show that this system satisfies the steady-state conditions.
(d) Derive an expression for L, the mean number in the system.
(e) Derive an expression for Lk, the conditional mean number in the system given
that the environment is in state k.
(f) Use the algorithm of Property 13.1 to obtain numerical values for L and Lk.

13.15. Write a spreadsheet simulation that generates 1,000 random variates of the
phase-type distribution used for service times in Example 13.3. Treating the 1,000
random variates as a random sample, obtain a 95% confidence interval for the mean
and standard deviation. Compare these intervals with the true values.
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Appendix A
Matrix Review

Within the body of the textbook, we assumed that students were familiar with ma-
trices and their basic operations. This appendix has been written for those students
for whom a review would be helpful.

Definition A.1. An m×n matrix is an array of numbers in m rows and n columns as
follows:

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎦

.

��

Notice that the row index is always mentioned first, so that the ai j element refers to
the element in row i1 and column j. A matrix that consists of only one row is called
a row vector. Similarly, a matrix that consists of only one column is called a column
vector.

Definition A.2. If m = n, the matrix is a square matrix of order n. ��

Definition A.3. The identity matrix is a square matrix with ones on the diagonal and
zeros elsewhere. That is,

I =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤

⎥
⎥
⎥
⎦

.

��

The following sections present several useful properties of matrices. The final
section of the appendix deals with derivatives of matrices. We include it because

1 If you have trouble remembering that the row is always indexed first and then the column, repeat
the phrase “Rabbits eat Carrots” indicating that R (row) is before C (column).

R.M. Feldman, C. Valdez-Flores, Applied Probability and Stochastic Processes, 2nd ed., 381
DOI 10.1007/978-3-642-05158-6, c© Springer-Verlag Berlin Heidelberg 2010
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the topic is not often included in introductory matrix courses; however, we have
found it useful for some optimization problems. There are obviously many topics
that could be covered that we have chosen to ignore. In particular, some of the
numerical analysis topics related to inverses, eigenvectors, and computing matrices
of the form exp{A} would be helpful but are beyond the scope of this text.

A.1 Matrix Addition and Subtraction

Two matrices can be added or subtracted if the number of rows and columns are
the same for both matrices. The resulting matrix has the same number of rows and
columns as the matrices being added or subtracted.

Definition A.4. The sum (difference) of two m× n matrices A and B is an m× n
matrix C with elements ci j = ai j +bi j (ci j = ai j −bi j). Thus to obtain A+B (A−B)
we add (subtract) corresponding elements. Thus,

A+B = C =

⎡

⎢
⎢
⎢
⎣

a11 +b11 a12 +b12 · · · a1n +b1n

a21 +b21 a22 +b22 · · · a2n +b2n
...

...
...

am1 +bm1 am2 +bm2 · · · amn +bmn

⎤

⎥
⎥
⎥
⎦

and

A−B = C =

⎡

⎢
⎢
⎢
⎣

a11 −b11 a12 −b12 · · · a1n −b1n

a21 −b21 a22 −b22 · · · a2n −b2n
...

...
...

am1 −bm1 am2 −bm2 · · · amn −bmn

⎤

⎥
⎥
⎥
⎦

.

��

A.2 Matrix Multiplication

Two matrices can be multiplied if the number of columns of the first matrix is equal
to the number of rows of the second matrix. The resulting matrix then has the same
number of rows as the first matrix and the same number of columns as the second
matrix.

Definition A.5. The product AB of an m×n matrix A and an n× � matrix B results
in an m× � matrix C with elements defined by

ci j =
n

∑
k=1

aikbk j = ai1b1 j +ai2b2 j + · · ·+ainbn j

for i = 1,2, · · · ,m and j = 1,2, · · · , �. ��
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Note that if m �= �, then even though AB is possible, the product BA makes no sense
and is undefined. Even for square matrices of the same order, the product AB is not
necessarily equal to BA.

To illustrate, consider a row vector ννν with three components (i.e., a 1×3 matrix)
multiplied with a 3×2 matrix P; namely,

υυυ = νννP = [5 10 20]

⎡

⎣
1 12
3 13
7 17

⎤

⎦ .

The resulting matrix is a row vector with two elements given by

υυυ = [5×1+10×3+20×7 , 5×12+10×13+20×17]
= [175 , 530] .

However, the product of Pννν is not possible because the number of columns of P is
different from the number of rows of ννν . As a further example, let the column vector
f denote the first column of P. The product νννf is a 1×1 matrix, usually written as a
scalar as

νννf = 175 ,

and fννν is a 3×3 matrix given by

fννν =

⎡

⎣
5 10 20

15 30 60
35 70 140

⎤

⎦ .

A.3 Determinants

The determinant is a scalar associated with every square matrix. Determinants play a
role in obtaining the inverse of a matrix and in solving systems of linear equations.
We give a theoretical definition of the determinant of a matrix in this section and
give a more computationally oriented definition in the next section.

Before presenting the definition of determinants, it is important to understand
permutations. Take, for example, the integers 1 through 6; their natural order is
(1,2,3,4,5,6). Any rearrangement of this natural order is called a permutation; thus,
(1,5,3,4,6,2) is a permutation. For the natural order, each number is smaller than any
number to its right; however, in permutations, there will be some numbers that are
larger than other numbers to their right. Whenever a number is larger than another
one to its right, it is called an inversion. For example, in the permutation (1,5,3,4,6,2)
there are 4 inversions; namely, (5,3), (5,4), (5,2), and (6,2). A permutation is called
even if it has an even number of inversions; it is called odd if it has an odd number
of inversions.

Definition A.6. The determinant of a square matrix A of order n is given by
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|A| = ∑(±)a1 j1a2 j2 · · ·an jn ,

where the summation is over all possible permutations j1 j2 · · · jn of the set {1,2, · · · ,n}.
The sign is positive (+) if the permutation j1 j2 · · · jn is even and negative (−) if the
permutation is odd. ��

A permutation j1 j2 · · · jn contains exactly one element from each row and each col-
umn. Thus, a square matrix of order n has n! permutations. For example, the matrix

A =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ .

has 3! or 6 permutations and the determinant is given by:

|A| = a11a22a33 −a11a23a32 +a12a23a31 −a12a21a33 +a13a21a32 −a13a22a31

where, for example, a13a22a31 has a negative sign because the sequence of the sec-
ond subscripts (3,2,1) is a permutation with three inversions; namely, (3,2), (3,1),
and (2,1). Similarly, the determinant of a square matrix A of order 2 is:

|A| =
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣= a11a22 −a12a21 .

(In the next section, this 2× 2 determinant will form the basic building block on
which the determinant for a general n×n matrix is obtained.)

The main properties of determinants can be summarized as follows:

1. If A is a square matrix, then |A| = |AT |, where AT is the transpose matrix of A.
The transpose matrix AT has elements aT

i j = a ji.
2. If any two rows (or columns) of a square matrix A are interchanged, resulting in

a matrix B, then |B| = −|A|.
3. If any two rows or columns of a square matrix A are identical, then |A| = 0.
4. If any row (column) of a square matrix A can be written as a linear combination

of the other rows (columns), then |A| = 0.
5. If any row or column of a square matrix A has all zeros, then |A| = 0.
6. If any row or column of a square matrix A is multiplied by a constant k, resulting

in a matrix B, then |B| = k|A|.
7. If matrix B results from replacing the uth row (column) of a square matrix A by

that uth row (column) plus a constant times the vth (v �= u) row (column), then
|B| = |A|.

8. If A and B are two n×n matrices, then |AB| = |A||B|.
9. If a square matrix A of order n is upper or lower triangular, then its determinant

is the product of its diagonal elements; in other words, |A| = a11a22, · · · ,ann.
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A.4 Determinants by Cofactor Expansion

Evaluating the determinant using Definition A.6 is difficult for medium or large
sized matrices. A systematic way of finding the determinant of a matrix is given by
the cofactor expansion method. This method evaluates the determinant of a square
matrix of order n by reducing the problem to the evaluation of determinants of
square matrices of order (n− 1). The procedure is then repeated by reducing the
square matrices of order (n− 1) to finding determinants of square matrices of or-
der (n− 2). This continues until determinants for square matrices of order 2 are
evaluated.

Definition A.7. The minor of ai j (element of the square matrix A of order n) is the
square matrix Mi j of order n− 1 resulting from deleting the ith row and the jth
column from matrix A. ��

Definition A.8. The cofactor ci j of ai j is defined as ci j = (−1)i+ j|Mi j|. ��

To illustrate, consider the following 3×3 matrix A

A =

⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦ .

The minor of a21 is given by

M21 =
[

2 3
8 9

]

,

and the cofactor of a21 is given by

c21 = (−1)2+1 |M21| = −(2×9−3×8) = 6 .

Property A.1. Let A be a square matrix of order n with elements ai j. Then the
determinant of matrix A can be obtained by expanding the determinant about
the ith row

|A| =
n

∑
j=1

ai jci j ,

or by expanding the determinant about the jth column

|A| =
n

∑
i=1

ai jci j .
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For example, to evaluate the determinant of a square matrix of order 3, the fol-
lowing expansion of the first row could be considered:

|A| = (−1)1+1a11

∣
∣
∣
∣

a22 a23

a32 a33

∣
∣
∣
∣+(−1)1+2a12

∣
∣
∣
∣

a21 a23

a31 a33

∣
∣
∣
∣

+(−1)1+3a13

∣
∣
∣
∣

a21 a22

a31 a32

∣
∣
∣
∣ (A.1)

= a11(a22a33 −a23a32)−a12(a21a33 −a23a31)
+a13(a21a32 −a22a31) .

Notice that the determinant is the same if an expansion by any other row or column
is used.

The cofactor expansion method can be used recursively so that the original n×n
determinant problem is reduced to computing determinants of 2× 2 matrices. For
example, a square matrix of order 4 could be calculated by

|A| = a11|M11|−a12|M12|+a13|M13|−a14|M14| .

Since each of the determinants above involves a 3×3 matrix, Eq. (A.1) can then be
used to evaluate each |Mi j| using determinants of 2×2 matrices.

A.5 Nonsingular Matrices

Another important concept in the algebra of matrices is that of singularity. Square
matrices can be classified as singular or nonsingular. Nonsingular matrices represent
a set of linearly independent equations, while singular matrices represent a set where
at least one row (column) can be expressed as a linear combination of other rows
(columns).

Definition A.9. A square matrix A of order n that has a multiplicative inverse is
called a nonsingular matrix. In other words, if A is nonsingular, there exists a square
matrix, denoted by A−1, of order n such that AA−1 = A−1A = I. If no inverse exists,
the matrix is called singular. For a nonsingular matrix, the matrix A−1 is called the
inverse of A. ��

Property A.2. If A is nonsingular, the matrix A−1 is unique, and the determi-
nants of A and A−1 are nonzero. Furthermore, |A−1| = 1/|A|.

From the above property, it is easy to see that a matrix is nonsingular if and
only if the determinant of the matrix is nonzero. For example, the following Markov
matrix is singular
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P =

⎡

⎢
⎢
⎣

0.1 0.3 0.6 0.0
0.0 0.2 0.5 0.3
0.0 0.1 0.2 0.7
0.1 0.3 0.6 0.0

⎤

⎥
⎥
⎦ ,

because the determinant of P is zero. (Use the fourth property of determinants listed
on p. 384.)

A.6 Inversion-in-Place

When a square matrix is nonsingular and the elements of the matrix are all numeric,
there are several algorithms that have been developed to find its inverse. The best
known method for numerical inversion is the Gauss-Jordan elimination procedure.
Conceptually, the Gauss-Jordan algorithm appends an identity matrix to the original
matrix. Then, through a series of elementary row operations, the original matrix is
transformed to an identity matrix. When the original matrix is transformed to an
identity, the appended identity matrix is transformed to the inverse. This method
has the advantage that it is intuitive, but has the disadvantage that the procedure is
wasteful of computer space when it is implemented.

Methods that use memory more efficiently are those that use a procedure called
inversion-in-place. The operations to perform inversion-in-place are identical to
Gauss-Jordan elimination but savings in storage requirements are accomplished by
not keeping an identity matrix in memory. The inversion-in-place requires a vector
with the same dimension as the matrix to keep track of the row changes in the oper-
ations. This is necessary because the identity matrix is not saved in memory and row
interchanges for the inversion procedure need to be reflected as column changes in
the implicitly appended identity matrix.

We shall first give an overview of the mathematical transformation required for
the inversion-in-place procedure and then give the specific steps of the algorithm.
The algorithm uses a pivot element on the diagonal, denoted as akk, and transforms
the original matrix using the elements on the pivot row and pivot column. Let ai j

denote an element in the original matrix, and let bi j denote an element in the trans-
formed matrix. The equations describing the transformation are:

pivot element
bkk = 1/akk

pivot row
bk j = ak j/akk for j = 1,2, · · · ,k−1,k +1, · · · ,n

pivot column
bik = −aik/akk for i = 1,2, · · · ,k−1,k +1, · · · ,n

general transformation

bi j = ai j −ak jaik/akk for

{
i = 1,2, · · · ,k−1,k +1, · · · ,n
j = 1,2, · · · ,k−1,k +1, · · · ,n
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The above equations are applied iteratively to the matrix for each k = 1, · · · ,n. Af-
ter finishing the transformation using pivot element akk, the matrix (ai j) is replaced
by the matrix (bi j) and the value of k is incremented by one. Notice, however, that
the iteration could be done in place. That is, the equations presented above could
be written with ai j’s instead of bi j’s, as long as the operations are performed in the
correct sequence.

The only additional problem that may arise is when the pivot element, akk, is
zero. In such a case, the equations cannot be applied since the pivot element is in
the denominator. To solve this problem, the pivot row is interchanged with a row
that has not yet been pivoted. (If a suitable row for the pivot cannot be found for an
interchange, the matrix is singular.) The interchange must be recorded so that when
the iterations are finished, the inverted matrix can be reordered.

To diminish round-off error, pivots are selected as large as possible. Thus,
the inversion-in-place algorithm interchanges rows whenever the current candidate
pivot is smaller in absolute value than other candidate pivots. In the description of
the inversion-in-place algorithm, the following conventions will be followed: the
matrix A is a square matrix of order n; the index k indicates the current row; the
index irow indicates the row containing the maximum pivot element; the vector
newpos is of dimension n, where newpos(k) is the row used for the kth pivot; piv is
the reciprocal of the pivot element; and temp is a temporarily held value. It should
also be emphasized that because this is an inversion-in-place algorithm, as soon as a
value of the matrix ai j is changed, the next step in the algorithm will use the changed
value.

Step 1. For each k = 1, · · · ,n do Steps 2 through 6.
Step 2. Let irow be the index in the set {k,k+1, · · · ,n} that gives the row that has

the largest element, in absolute value, of column k; that is,

irow = argmax{|aik| : i = k, · · · ,n} .

(Remember, k is fixed.)
Step 3. If the largest element, in absolute value, on the kth column of rows k,k +

1, · · · ,n is zero, the matrix is singular, and the program should stop. In other
words, if |airow,k| = 0, stop, no inverse exits.

Step 4. Update the vector that keeps track of row interchanges by setting newpos(k)=
irow.

Step 5. If the pivot row, irow, is not equal to the current row, k, interchange rows
k and irow of the matrix.

Step 6. Apply the operations for inversion-in-place using the following sequence:

Operation A. Set piv = 1/akk, and then set akk = 1.
Operation B. For each j = 1, · · · ,n do

ak j = ak j × piv

Operation C. For each i = 1,2, · · · ,k−1,k +1, · · · ,n do
Operation C.i. Set temp = aik, and then set aik = 0.
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Operation C.ii. For j = 1, · · · ,n do

ai j = ai j −ak j × temp .

Step 7. For each j = n,n− 1, · · · ,1 check to determine if j �= newpos( j). If j �=
newpos( j), then interchange column j with column newpos( j).

Step 3 of the algorithm is to determine if the original matrix is nonsingular or
singular. When implementing the algorithm on a computer, some error tolerance
needs to be specified. For example, set ε = 0.0001 and stop the algorithm if the
absolute value of the pivot element is less than ε . (It is much better to check for a
value that is “too” small than to check for exact equality to zero.) The inverse of the
matrix is obtained after Steps 2 through 6 of the algorithm are completed for each k,
but the columns may not be in the correct order. Step 7 is a reordering of the matrix
using the information in the vector newpos. Notice that the reordering must be done
in reverse order to “undo” the row changes made in Step 5.

If a matrix is upper or lower triangular, the inversion-in-place algorithm can be
made much more efficient. (An upper triangular matrix is one in which all elements
below the diagonal are zero; that is ai j = 0 if i > j. A lower triangular matrix has ze-
ros above the diagonal.) For a triangular matrix, make the following modifications
to the inversion-in-place algorithm.

1. Check for any zeros on the diagonal. If there are any zeros on the diagonal, stop
because the matrix is singular. If there are no zeros on the diagonal, the matrix is
nonsingular (Use the ninth property of determinants listed on p. 384.)

2. The vector newpos is not needed and steps 2 through 5 can be skipped.
3. For an upper triangular matrix, the instruction for Operation B should be “For

each j = k,k + 1, · · · ,n do”. For a lower triangular matrix, the instruction for
Operation B should be “For each j = 1, · · · ,k do”.

4. For an upper triangular matrix, the instruction for Operation C should be “For
each i = 1, · · · ,k−1 do”; for k = 1, Operation C is skipped. For a lower triangular
matrix, the instruction for Operation C should be “For each i = k +1, · · · ,n do”;
for k = n, Operation C is skipped.

Consider the following example where the inverse of a square matrix of order 3
is to be obtained using the inversion-in-place algorithm.

⎡

⎣
2.0 4.0 4.0
1.0 2.0 3.0
2.0 3.0 2.0

⎤

⎦

We begin by looking at row 1. Because the first element of the first row is the largest
element in the first column, there is no need to do row interchanges. (In other words,
newpos(1) = 1.) The new matrix after performing Operations A through C is:

⎡

⎣
0.5 2.0 2.0

−0.5 0.0 1.0
−1.0 −1.0 −2.0

⎤

⎦
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We next look at the elements in column 2 starting at row 2, and we observe that
the largest element, in absolute value, among the candidate values is the a32 ele-
ment. (Note that |a12| > |a32| but because a pivot operation has already been per-
formed on row 1, the element in row 1 is not a candidate value.) Thus, irow = 3 and
newpos(2) = 3 which indicates that row 2 and row 3 must be interchanged before
any transformation can be performed. This interchange results in:

⎡

⎣
0.5 2.0 2.0

−1.0 −1.0 −2.0
−0.5 0.0 1.0

⎤

⎦ .

After performing Operations A through C in the matrix above we have:
⎡

⎣
−1.5 2.0 −2.0

1.0 −1.0 2.0
−0.5 0.0 1.0

⎤

⎦ .

The final pivot element is a33. The resulting, matrix after performing Operations A
through C, is: ⎡

⎣
−2.5 2.0 2.0

2.0 −1.0 −2.0
−0.5 0.0 1.0

⎤

⎦ .

The matrix has been inverted. However, the second and third rows were inter-
changed during the inversion process; thus the columns in the above matrix can-
not be in the correct order. The inverse of the original matrix is thus obtained by
“undoing” the row interchanges by changing the corresponding columns on the last
matrix. (Or, to be more pedantic, we first observe that newpos(3) = 3 so no change
is necessary to start with; newpos(2) = 3 so columns 2 and 3 must be interchanged;
finally, newpos(1) = 1 so no change is necessary for the last step.) The inverse to
the original matrix is thus given by:

⎡

⎣
−2.5 2.0 2.0

2.0 −2.0 −1.0
−0.5 1.0 0.0

⎤

⎦ .

A.7 Derivatives

Matrix equations will sometimes occur in optimization problems so that it may be
necessary to take derivatives of expressions involving matrices. To illustrate, sup-
pose that the elements of a matrix Q have been written as a function of some param-
eter, for example:

Q =
[

1−θ θ
0 1−θ 2

]

. (A.2)
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The derivative of a matrix is taken to mean the term-by-term evaluation of the ma-
trix:

dQ
dθ

=
[
−1 1
0 −2θ

]

.

The difficulty comes when the inverse of a matrix is part of an objective function.
For example a common matrix expression when dealing with Markov chains is the
matrix R whose (i, j) term gives the expected number of visits to State j starting
from State i. Assume that for the matrix of Eq. (A.2), θ < 1 and the matrix represents
the transition probabilities associated with the transient states of a Markov chain.
Then the matrix giving the expected number of visits to the two states is

R =
([

1 0
0 1

]

−
[

1−θ θ
0 1−θ 2

])−1

=
1

θ 2

[
θ 1
0 1

]

.

As long as R can be written analytically, it is usually not difficult to give its
derivative. In this case it would be

dR
dθ

= − 1
θ 3

[
θ 2
0 2

]

.

However, when the matrix is larger than a 2× 2, it may be impossible to express
R analytically; therefore, we give the following property from [1] by which the
derivative can be calculated for the more general case.

Property A.3. Let Q be a matrix that is a function of the parameter θ and
assume the potential of Q, defined by

R = (I−Q)−1 ,

exists. Then the derivative of R with respect to the parameter is given by

dR
dθ

= R
dQ
dθ

R .

It is interesting to observe that the matrix result is similar to the scalar result: let
f (t) = (1− x(t))−1, then d f

dt = f dx
dt f .
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