
I n t r o d u c t I o n t o

Scientific Programming
and Simulation using r

© 2009 by Taylor & Francis Group, LLC

Owen Jones, Robert Maillardet,
 and Andrew Robinson

I n t r o d u c t I o n t o

Scientific Programming
and Simulation using r

© 2009 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-6872-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2009 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

Preface

This book has two principal aims: to teach scientific programming and to
introduce stochastic modelling. Stochastic modelling in particular, and math-
ematical modelling in general, are intimately linked to scientific programming
because the numerical techniques of scientific programming enable the practi-
cal application of mathematical models to real-world problems. In the context
of stochastic modelling, simulation is the numerical technique that enables us
to analyse otherwise intractable models.

Simulation is also the best way we know of developing statistical intuition.

This book assumes that users have completed or are currently undertaking
a first year university level calculus course. The material is suitable for first
and second year science/engineering/commerce students and masters level stu-
dents in applied disciplines. No prior knowledge of programming or probability
is assumed.

It is possible to use the book for a first course on probability, with an empha-
sis on applications facilitated by simulation. Modern applied probability and
statistics are numerically intensive, and we give an approach that integrates
programming and probability right from the start.

We chose the programming language R because of its programming features.
We do not describe statistical techniques as implemented in R (though many
of them are admittedly quite remarkable), but rather show how to turn algo-
rithms into code. Our intended audience is those who want to make tools, not
just use them.

Complementing the book is a package, spuRs, containing most of the code
and data we use. Instructions for installing it are given in the first chapter. In
the back of the book we also provide an index of the programs developed in
the text and a glossary of R commands.

Course structure options

This book has grown out of the notes prepared for a first year course consist-
ing of 36 lectures, 12 one-hour tutorials, and 12 two-hour lab classes. However
it now contains more material than would fit in such a course, which permits

v

© 2009 by Taylor & Francis Group, LLC

vi PREFACE

its use for a variety of course structures, for example to meet prerequisite
requirements for follow-on subjects. We found the lab classes to be particu-
larly important pedagogically, as students learn programming through their
own experimentation. Instructors may straightforwardly compile lab classes
by drawing on the numerous examples and exercises in the text, and these are
supplemented by the programming projects contained in Chapter 22, which
are based on assignments we gave our students.

Core content The following chapters contain our core material for a course
on scientific programming and simulation.

Part I: Core knowledge of R and programming concepts. Chapters 1–6.

Part II: Thinking about mathematics from a numerical point of view: applying
Part I concepts to root finding and numerical integration. Chapters 9–11.

Part III: Essentials of probability, random variables, and expectation required
to understand simulation. Chapters 13–15 plus the uniform distribution.

Part IV: Stochastic modelling and simulation: random number generation,
Monte-Carlo integration, case studies and projects. Chapters 18.1–18.2, 19,
21.1–21.2 and 22.

Additional stochastic material The core outlined above only uses discrete
random variables, and for estimation only uses the concept of a sample average
converging to a mean. Chapters 16 and 17 add continuous random variables,
the Central Limit Theorem and confidence intervals. Chapters 18.3–18.5 and
20 then look at simulating continuous random variables and variance reduc-
tion. With some familiarity of continuous random variables the remaining case
studies, Chapter 21.3–21.4, become accessible.

Note that some of the projects in Chapter 22 use continuous random variables,
but can be easily modified to use discrete random variables instead.

Additional programming and numerical material For the core material ba-
sic plotting of output is sufficient, but for those wanting to produce more
professional graphics we provide Chapter 7. Chapter 8, on further program-
ming, acts as a bridge to more specialised texts, for those who wish to pursue
programming more deeply.

Chapter 12 deals with univariate and multivariate optimisation. Sections 12.3–
12.7 on multivariate optimisation, are harder than the rest of the book, and
require a basic familiarity with vector calculus. This material is self-contained,
with the exception of Example 17.1.2, which uses the optim function. However,
if you are prepared to use optim as a black box, then this example is also quite
accessible without reading the multivariate optimisation sections.

© 2009 by Taylor & Francis Group, LLC

PREFACE vii

Chapter outlines

1: Setting up. Here we describe how to obtain and install R, and the package
spuRs which complements the book.

2: R as a calculating environment. This chapter shows you how to use R to
do arithmetic calculations; create and manipulate variables, vectors, and ma-
trices; work with logical expressions; call and get help on built-in R functions;
and to understand the workspace.

3: Basic programming. This chapter introduces a set of basic programming
structures that are the building blocks of many programs. Some structures are
common to numerous programming languages, for example if, for and while

statements. Others, such as vector-based programming, are more specialised,
but are arguably just as important for efficient R coding.

4: Input and output. This chapter describes some of the infrastructure that R
provides for importing data for subsequent analysis, and for displaying and
saving results of that analysis. More details on the construction of graphics
are available in Chapter 7, and we provide more information about importing
data in Chapter 6.

5: Programming with functions. This chapter extends Chapter 3 to include
user-defined functions. We cover the creation of functions, the rules that they
must follow, and how they relate to the environments from which they are
called. We also present some tips on the construction of efficient functions,
with especial reference to how they are treated in R.

6: Sophisticated data structures. In this chapter we study R’s more sophisti-
cated data structures—lists and dataframes—which simplify data representa-
tion, manipulation, and analysis. The dataframe is like a matrix but extended
to allow for different data modes in different columns, and the list is a general
data storage object that can house pretty much any other kind of R object.
We also introduce the factor, which is used to represent categorical objects.

7: Better graphics. This chapter provides a deeper exposition of the graphical
capabilities of R, building on Chapter 4. We explain the individual pieces that
make up the default plot. We discuss the graphics parameters that are used
to fine-tune individual graphs and multiple graphics on a page. We show how
to save graphical objects in various formats. Finally, we demonstrate some
graphical tools for the presentation of multivariate data (lattice graphs), and
3D-graphics.

8: Further programming. This chapter briefly mentions some more advanced
aspects of programming in R. We introduce the management of and interac-
tion with packages. We present details about how R arranges the objects that
we create within the workspace, and within functions that we are running.
We provide further suggestions for debugging your own functions. Finally, we

© 2009 by Taylor & Francis Group, LLC

viii PREFACE

present some of the infrastructure that R provides for object-oriented program-
ming, and for executing code that has been compiled from another computer
language, for example, C.

9: Numerical accuracy and program efficiency. In this chapter we consider
technical details about how computers operate, and their ramifications for
programming practice, particularly within R. We look at how computers rep-
resent numbers, and the effect that this has on the accuracy of computation
results. We also discuss the time it takes to perform a computation, and pro-
gramming techniques for speeding things up. Finally we consider the effects
of memory limitations on computation efficiency.

10: Root-finding. This chapter presents a suite of different techniques for find-
ing roots. We cover fixed-point iteration, the Newton-Raphson method, the
secant method, and the bisection method.

11: Numerical integration. This chapter introduces numerical integration. The
problem with integration is that often a closed form of the antiderivative is not
available. Under such circumstances we can try to approximate the integral
using computational methods. We cover the trapezoidal rule, Simpson’s rule,
and adaptive quadrature.

12: Optimisation. This chapter covers the problem of finding the maximum
or minimum of a possibly multivariate function. We introduce the Newton
method and the golden-section method in the context of a univariate function,
and steepest ascent/descent and Newton’s method for multivariate functions.
We then provide some further information about the optimisation tools that
are available in R.

13: Probability. In this chapter we introduce mathematical probability, which
allows us to describe and think about uncertainty in a precise fashion. We cover
the probability axioms and conditional probability. We also cover the Law of
Total Probability, which can be used to decompose complicated probabilities
into simpler ones that are easier to compute, and Bayes’ theorem, which is
used to manipulate conditional probabilities in very useful ways.

14: Random variables. In this chapter we introduce the concept of a random
variable. We define discrete and continuous random variables and consider
various ways of describing their distributions, including the distribution func-
tion, probability mass function, and probability density function. We define
expectation, variance, independence, and covariance. We also consider trans-
formations of random variables and derive the Weak Law of Large Numbers.

15: Discrete random variables. In this chapter we study some of the most
important discrete random variables, and summarise the R functions relating
to them. We cover the Bernoulli, binomial, geometric, negative binomial, and
the Poisson distribution.

16: Continuous random variables. This chapter presents the theory, applica-
tions of, and R representations of, a number of continuous random variables.

© 2009 by Taylor & Francis Group, LLC

PREFACE ix

We cover the uniform, exponential, Weibull, gamma, normal, χ2, and t distri-
butions.

17: Parameter estimation. This chapter covers point and interval estimation.
We introduce the Central Limit Theorem, normal approximations, asymptotic
confidence intervals and Monte-Carlo confidence intervals.

18: Simulation. In this chapter we simulate uniformly distributed random vari-
ables and discrete random variables, and describe the inversion and rejection
methods for simulating continuous random variables. We also cover several
techniques for simulating normal random variables.

19: Monte-Carlo integration. This chapter covers simulation-based approaches
to integration. We cover the hit-and-miss method, and the more efficient
Monte-Carlo integration method. We also give some comparative results on
the convergence rate of these two techniques compared with the trapezoid and
Simpson’s rule, which we covered in Chapter 11.

20: Variance reduction. This chapter introduces several sampling-based inno-
vations to the problem of estimation. We cover antithetic sampling, control
variates, and importance sampling. These techniques can vastly increase the
efficiency of simulation exercises when judiciously applied.

21: Case studies. In this chapter we present three case studies, on epidemics,
inventory, and seed dispersal (including an application of object-oriented cod-
ing). These are extended examples intended to demonstrate some of our sim-
ulation techniques.

22: Student projects. This chapter presents a suite of problems that can be
tackled by students. They are less involved than the case studies in the pre-
ceding chapter, but more substantial than the exercises that we have included
in each chapter.

Bibliography/further reading

For those wishing to further their study of scientific programming and simu-
lation, here are some texts that the authors have found useful.

The R language
W.N. Venables and B.D. Ripley, S Programming. Springer, 2000.
W.N. Venables and B.D. Ripley, Modern Applied Statistics with S, Fourth
Edition. Springer, 2002.
J.M. Chambers and T.J. Hastie (Editors), Statistical Models in S.
Brooks/Cole, 1992.
J. Maindonald and J. Braun, Data Analysis and Graphics Using R: An
Example-Based Approach, Second Edition. Cambridge University Press, 2006.

Scientific programming/numerical techniques
W. Cheney and D. Kincaid, Numerical Mathematics And Computing, Sixth

© 2009 by Taylor & Francis Group, LLC

x PREFACE

Edition. Brooks/Cole, 2008.
M.T. Heath, Scientific Computing: An Introductory Survey, Second Edition.
McGraw-Hill, 2002.
W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical
Recipes, 3rd Edition: The Art of Scientific Computing. Cambridge University
Press, 2007.
C.B. Moler, Numerical Computing with Matlab, Society for Industrial Mathe-
matics, 2004.

Stochastic modelling and simulation
A.M. Law and W.D. Kelton, Simulation Modeling and Analysis, Third Edition.
McGraw-Hill, 1999.
M. Pidd, Computer Simulation in Management Science, Fifth Edition. Wiley,
2004.
S.M. Ross, Applied Probability Models with Optimization Applications. Dover,
1992.
D.L. Minh, Applied Probability Models. Brooks/Cole, 2001.

Caveat computator

R is under constant review. The core programmers schedule a major release
and a minor release every year. Releases involve many changes and additions,
most of which are small, but some of which are large. However, there is no
guarantee of total backward compatibility, so new releases can break code that
makes assumptions about how the environment should work.

For example, while we were writing this book, the upgrade from version 2.7.1 to
2.8.0. changed the default behaviour of var, to return an NA where previously
it returned an error, if any of the input were NA. Happily, we had time to
rewrite the material that presumed that an error would be returned.

We conclude that R changes, and we note that this book was written for
version 2.8.0. The spuRs package will include a list of errata.

Thanks

Much of this book is based on a course given by the first two authors at the
University of Melbourne. The course was developed over many years, and we
owe much to previous lecturers for its fundamental structure, in particular
Steve Carnie and Chuck Miller. We are also indebted to our proof readers and
reviewers: Gad Abraham, Paul Blackwell, Steve Carnie, Alan Jones, David
Rolls, and especially Phil Spector. Olga Borovkova helped with some of the
coding, and we thank John Maindonald for drawing our attention to playwith.

We would like to acknowledge the dedication and the phenomenal achievement

© 2009 by Taylor & Francis Group, LLC

PREFACE xi

of the community that has provided the tools that we used to produce this
book. We are especially grateful to R-core, to the LATEX community, the GNU
community, and to Friedrich Leisch for Sweave.

Of course we could not have written the book without the support of our
partners, Charlotte, Deborah, and Grace, or the bewilderment of our offspring,
Indigo, Simone, André, and Felix.

ODJ
RJM
APR

October 2008

© 2009 by Taylor & Francis Group, LLC

Contents

Preface v

I Programming 1

1 Setting up 3

1.1 Installing R 3

1.2 Starting R 3

1.3 Working directory 4

1.4 Writing scripts 5

1.5 Help 5

1.6 Supporting material 5

2 R as a calculating environment 11

2.1 Arithmetic 11

2.2 Variables 12

2.3 Functions 13

2.4 Vectors 15

2.5 Missing data 18

2.6 Expressions and assignments 19

2.7 Logical expressions 20

2.8 Matrices 23

2.9 The workspace 25

2.10 Exercises 25

xiii

© 2009 by Taylor & Francis Group, LLC

xiv CONTENTS

3 Basic programming 29

3.1 Introduction 29

3.2 Branching with if 31

3.3 Looping with for 33

3.4 Looping with while 36

3.5 Vector-based programming 38

3.6 Program flow 39

3.7 Basic debugging 41

3.8 Good programming habits 42

3.9 Exercises 43

4 I/O: Input and Output 49

4.1 Text 49

4.2 Input from a file 51

4.3 Input from the keyboard 53

4.4 Output to a file 55

4.5 Plotting 56

4.6 Exercises 58

5 Programming with functions 63

5.1 Functions 63

5.2 Scope and its consequences 68

5.3 Optional arguments and default values 70

5.4 Vector-based programming using functions 70

5.5 Recursive programming 74

5.6 Debugging functions 76

5.7 Exercises 78

6 Sophisticated data structures 85

6.1 Factors 85

6.2 Dataframes 88

6.3 Lists 94

6.4 The apply family 98

6.5 Exercises 105

© 2009 by Taylor & Francis Group, LLC

CONTENTS xv

7 Better graphics 109

7.1 Introduction 109

7.2 Graphics parameters: par 111

7.3 Graphical augmentation 113

7.4 Mathematical typesetting 114

7.5 Permanence 118

7.6 Grouped graphs: lattice 119

7.7 3D-plots 123

7.8 Exercises 124

8 Pointers to further programming techniques 127

8.1 Packages 127

8.2 Frames and environments 132

8.3 Debugging again 134

8.4 Object-oriented programming: S3 137

8.5 Object-oriented programming: S4 141

8.6 Compiled code 144

8.7 Further reading 146

8.8 Exercises 146

II Numerical techniques 149

9 Numerical accuracy and program efficiency 151

9.1 Machine representation of numbers 151

9.2 Significant digits 154

9.3 Time 156

9.4 Loops versus vectors 158

9.5 Memory 160

9.6 Caveat 161

9.7 Exercises 162

© 2009 by Taylor & Francis Group, LLC

xvi CONTENTS

10 Root-finding 167

10.1 Introduction 167

10.2 Fixed-point iteration 168

10.3 The Newton-Raphson method 173

10.4 The secant method 176

10.5 The bisection method 178

10.6 Exercises 181

11 Numerical integration 187

11.1 Trapezoidal rule 187

11.2 Simpson’s rule 189

11.3 Adaptive quadrature 194

11.4 Exercises 198

12 Optimisation 201

12.1 Newton’s method for optimisation 202

12.2 The golden-section method 204

12.3 Multivariate optimisation 207

12.4 Steepest ascent 209

12.5 Newton’s method in higher dimensions 213

12.6 Optimisation in R and the wider world 218

12.7 A curve fitting example 219

12.8 Exercises 220

III Probability and statistics 225

13 Probability 227

13.1 The probability axioms 227

13.2 Conditional probability 230

13.3 Independence 232

13.4 The Law of Total Probability 233

13.5 Bayes’ theorem 234

13.6 Exercises 235

© 2009 by Taylor & Francis Group, LLC

CONTENTS xvii

14 Random variables 241

14.1 Definition and distribution function 241

14.2 Discrete and continuous random variables 242

14.3 Empirical cdf’s and histograms 245

14.4 Expectation and finite approximations 246

14.5 Transformations 251

14.6 Variance and standard deviation 256

14.7 The Weak Law of Large Numbers 257

14.8 Exercises 261

15 Discrete random variables 267

15.1 Discrete random variables in R 267

15.2 Bernoulli distribution 268

15.3 Binomial distribution 268

15.4 Geometric distribution 270

15.5 Negative binomial distribution 273

15.6 Poisson distribution 274

15.7 Exercises 277

16 Continuous random variables 281

16.1 Continuous random variables in R 281

16.2 Uniform distribution 282

16.3 Lifetime models: exponential and Weibull 282

16.4 The Poisson process and the gamma distribution 287

16.5 Sampling distributions: normal, χ2, and t 292

16.6 Exercises 297

17 Parameter Estimation 303

17.1 Point Estimation 303

17.2 The Central Limit Theorem 309

17.3 Confidence intervals 314

17.4 Monte-Carlo confidence intervals 321

17.5 Exercises 322

© 2009 by Taylor & Francis Group, LLC

xviii CONTENTS

IV Simulation 329

18 Simulation 331

18.1 Simulating iid uniform samples 331

18.2 Simulating discrete random variables 333

18.3 Inversion method for continuous rv 338

18.4 Rejection method for continuous rv 339

18.5 Simulating normals 345

18.6 Exercises 348

19 Monte-Carlo integration 355

19.1 Hit-and-miss method 355

19.2 (Improved) Monte-Carlo integration 358

19.3 Exercises 360

20 Variance reduction 363

20.1 Antithetic sampling 363

20.2 Importance sampling 367

20.3 Control variates 372

20.4 Exercises 374

21 Case studies 377

21.1 Introduction 377

21.2 Epidemics 378

21.3 Inventory 390

21.4 Seed dispersal 405

22 Student projects 421

22.1 The level of a dam 421

22.2 Roulette 425

22.3 Buffon’s needle and cross 428

22.4 Insurance risk 430

22.5 Squash 433

22.6 Stock prices 438

© 2009 by Taylor & Francis Group, LLC

CONTENTS xix

Glossary of R commands 441

Programs and functions developed in the text 447

© 2009 by Taylor & Francis Group, LLC

PART I

Programming

© 2009 by Taylor & Francis Group, LLC

CHAPTER 1

Setting up

In this chapter we show you how to obtain and install R, ensure R can find
your data and program files, choose an editor to help write R scripts, and
access the extensive help resources and manuals available in R. We also tell
you how to install the spuRs package, which complements this book and gives
access to most of the code examples and functions developed in the book.

R is an implementation of a functional programming language called S. It has
been developed and is maintained by a core of statistical programmers, with
the support of a large community of users. Unlike S-plus, the other currently
available implementation of S, R is free. It is most widely used for statistical
computing and graphics, but is a fully functional programming language well
suited to scientific programming in general.

1.1 Installing R

Versions of R are available for a wide variety of computing platforms including
various variants of Unix, Windows, and MacOS.

You can download R from one of the many mirror sites of the Comprehensive R
Archive Network (CRAN), for example http://cran.ms.unimelb.edu.au/.
In the first instance it will be sufficient to obtain the base distribution. Advice
on downloading and installing R is available from the FAQs provided on the
CRAN site.

1.2 Starting R

The Windows R implementation is called Rgui.exe (short for R graphical
user interface). The MacOS R implementation is called R.app. In UNIX you
start an R session simply by entering the command R (we are assuming that
your path includes the R binaries).

When R starts it loads some infrastructure and provides you with a prompt:

>

3

© 2009 by Taylor & Francis Group, LLC

http://cran.ms.unimelb.edu.au

4 SETTING UP

This prompt is the fundamental entry point for communicating with R. We
can type expressions at the prompt; R evaluates the expressions, and returns
output.

> 1 + 1

[1] 2

R is object oriented, meaning that we can create objects that persist within
an R session, and manipulate these objects by name. For example,

> x <- 1 + 1

> x

[1] 2

When you are finished using R, you quit with the command q(). R asks if
you would like to save your workspace, which amounts to all the objects that
you have created. See Section 2.9 for more information about the workspace.

1.3 Working directory

When you run R, it nominates one of the directories on your hard drive as a
working directory, which is where it looks for user-written programs and data
files. You can determine the current working directory using the command
getwd(). The first thing you should do when you start an R session is to
make sure that the working directory is the right one for your needs. You can
do this using the command setwd("dir"), where dir is the directory address.
Alternatively, if you are using Rgui.exe in Windows, then there is a menu
command for changing the working directory.

For example, if you had a USB drive mounted as drive E and you wanted to
save your solutions to the Chapter 2 exercises in the directory E:\spuRs\ch2,
you would type setwd("E:/spuRs/ch2"). Note that R uses the UNIX con-
vention of forward slashes / in directory and file addresses; . refers to the
current directory and .. refers to the parent directory.

> getwd()

[1] "/home/andrewr/0.svn/1.research/spuRs/trunk/manuscript/chapters"

> setwd("../scripts")

> getwd()

[1] "/home/andrewr/0.svn/1.research/spuRs/trunk/manuscript/scripts"

On Windows you can set R to automatically start up in your preferred working
directory by right clicking on the program shortcut, choosing properties, and
completing the ‘Start in’ field. On MacOS you can set the initial working
directory using the Preferences menu.

© 2009 by Taylor & Francis Group, LLC

WRITING SCRIPTS 5

1.4 Writing scripts

Although we can type and evaluate all possible R expressions at the prompt,
it is much more convenient to write scripts, which simply comprise collections
of R expressions that we intend R to evaluate sequentially. We will use the
terms program and code synonymously with script.

To write programs you will need a text editor (as distinguished from a
word processor). The Windows R implementation has a built-in text ed-
itor, but you might also like to try Tinn-R,1 which is available from
http://www.sciviews.org/Tinn-R/. For more advanced users, emacs and
Xemacs also work very well with R, and we particularly recommend the Emacs
Speaks Statistics (ESS) package for these applications.

1.5 Help

This book does not cover all the features of R, and even the features it does
cover are not dealt with in full generality. To find out more about an R com-
mand or function x, you can type help(x) or just ?x. If you cannot remem-
ber the exact name of the command or function you are interested in, then
help.search("x") will search the titles, names, aliases, and keyword entries
of the available help files for the phrase x.

For a useful HTML help interface, type help.start(). This will allow you to
search for help and also provides links to a number of manuals, in particular
the highly recommended ‘An Introduction to R.’

A short glossary of commands is included at the end of the book. For fur-
ther documentation, a good place to start is the CRAN network, which gives
references and links to online resources provided by the R community. Some
references to more advanced material are given in Chapter 8.

Of course reading the help system, R manuals, and this book will start you on
the way to understanding R and its applications. But to properly understand
how things really work, there is no substitute for trying them out for yourself:
learn through play.

1.6 Supporting material

We give examples of R usage and programs throughout the book. So that you
do not have to retype all of these yourself, we have made the longer programs
and all of datasets that we use available in an online archive, distributed
using the same CRAN network that distributes R. In fact, the archive has

1 At the time of writing we recommend Version 1.17.2.4, which is easier to set up than the
latest version.

© 2009 by Taylor & Francis Group, LLC

http://www.sciviews.org

6 SETTING UP

the added functionality of what is called a package. This means that it can
be loaded within R, in which case some of our functions and datasets will be
directly available, in the same way that built-in functions and datasets are
available.

We describe how to obtain, install, and load the archive below. When success-
fully installed, you will have a new directory called spuRs, within which is a
subdirectory resources, which contains the material from the book. You will
see that spuRs contains a number of other subdirectories: these are required to
provide the package functionality and can be safely ignored. The resources

directory contains two subdirectories: scripts, which contains program code;
and data, which contains the datasets.

When the package is installed and then loaded in R, you get direct access to
some of our functions and datasets. To obtain a list of these, type ?spuRs

once the package has been loaded. To use the dataset called x, in addition
to loading the package you need to type data(x), at which point it becomes
available as an object called x. You can also get the code for function f just
by typing f in R.

Within the text, when giving the code for a program prog.r, if it is included
in the archive it will begin with the comment line

spuRs/resources/scripts/prog.r

The code for a function f that is available as part of the package will begin
with the line

loadable spuRs function

Note that the code for f will also be available as the file

spuRs/resources/scripts/f.r

within the spuRs archive.

1.6.1 Installing and loading the package when you have write privileges

In order for the following approaches to succeed, your computer needs access
to the Internet. If your computer is behind a firewall, then further steps may
be required; consult your network manual or local support.

If your computer is appropriately configured, then you may be able to install
the archive in a single step, from within R. The key facility is that you need
to be able to write to the R application directory. That is, you need to be able
to save files in the directory that R was installed in. Start R as usual, then
try:

> install.packages("spuRs")

© 2009 by Taylor & Francis Group, LLC

SUPPORTING MATERIAL 7

If no errors or warnings ensue, then any time you want access to the objects
in the package, type

> library(spuRs)

If installation was successful, then a compressed version of the archive will
have been downloaded to a temporary location. This location is reported in
case you wish to move the compressed version, as otherwise it will be deleted
when R quits. The decompressed archive is saved in the directory spuRs in
the library subdirectory of the R application directory. That is, within the
R application directory, you will find our program code in the subdirectory
library/spuRs/resources/scripts and datasets in the subdirectory li-

brary/spuRs/resources/data.

If the process failed, then either downloading or installation failed. If down-
loading failed, then there may be a problem with the network; try again in a
short time. If it fails again, then consult your local support.

1.6.2 Installing and loading the package with limited write privileges

This section covers the necessary steps to obtain and install the archive even
if the user has limited write access to the computer.

Preparation Create a directory to download the archive to, in a convenient
area of your hard drive. You may elect to delete this directory when you are
done, so its location is not very important. For example, we might create a
directory called:

D:\temporary

Now, create a directory to house the archive, in a convenient area of your hard
drive. You will probably want to keep this directory. For example, we might
create a directory called:

D:\library

Note that our examples assume that we have write access to the D:\ drive. If
we do not have write access, then we would create the directories elsewhere.
Make a note of the locations.

Start R normally, then check that you have created the directories successfully
An easy way to do this is using the list.files function, to list the contents
of the directories.

> list.files("D:/library")

character(0)

> list.files("D:/temporary")

© 2009 by Taylor & Francis Group, LLC

8 SETTING UP

character(0)

These will give a warning if the directory cannot be found. As we have noted
earlier, within R we use the forward slash for addresses, regardless of the
operating system.

Download Having created the directories and verified that R can find them,
we proceed to downloading the archive. This is performed using the down-

load.packages function.

> info <- download.packages("spuRs", destdir = "D:/temporary")

You will be asked to select a CRAN mirror for use in your session. A closer
mirror will be slightly faster. R will provide you information about the URL
and the size of the archive. Notice that the download.packages command
gives output, which we have saved in the object called info.

The compressed archive has been saved to D:\temporary.

Install Next we install the package to get direct access from within R to
many of the functions and datasets. Here is where the info object becomes
useful.

> info

[,1] [,2]

[1,] "spuRs" "D:/temporary/spuRs_1.0.0.zip"

Note that the second element of info is the address of the archive. We can
easily install the archive now via:

> install.packages(info[1,2], repos = NULL, lib = "D:/library")

package 'spuRs' successfully unpacked and MD5 sums checked

updating HTML package descriptions

R will have created a subdirectory spuRs within library, containing the
archive. That is, you will find our program code in the subdirectory li-

brary/spuRs/resources/scripts and datasets in the subdirectory li-

brary/spuRs/resources/data.

At this point we can use the library command to load the spuRs package
to our session. We have to include the directory to which the archive was
installed in the lib.loc argument.

> library(spurs, lib.loc = "D:/library")

It is also useful to add this directory to the R’s list of recognised libraries, so
that the various help tools are aware of it. The second of the following three
expressions is necessary; the others show its effect.

© 2009 by Taylor & Francis Group, LLC

SUPPORTING MATERIAL 9

> .libPaths()

[1] "C:/PROGRA~1/R/R/library"

> .libPaths("D:/library")

> .libPaths()

[1] "D:/library" "C:/PROGRA~1/R/R/library"

Now when we invoke a help search, or use help.start, R knows to look in
the local library D:\library as well as in the usual places.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 2

R as a calculating environment

You can use R as a powerful calculator for a wide range of numerical com-
putations. Using R in this way can be useful in its own right, but can also
help you to create and test code fragments that you wish to build into your
R programs, and help you to learn about new R functions as you meet them.

This chapter shows you how to use R to do arithmetic calculations; create and
manipulate variables, vectors, and matrices; work with logical expressions; call
and get help on inbuilt R functions; and to understand the workspace that
contains all the associated objects R creates along the way.

Throughout this book examples of typed R input will appear in the Slanted

Typewriter font and R output and code in plain Typewriter. The right angle
bracket > is the R input prompt. In R you can separate commands using a
newline/return or a semicolon, though the latter usually leads to a lack of
clarity in programming and is thus discouraged. If you type return before a
command is finished then R displays the + prompt, rather than the usual >,
and waits for you to complete the command.

R provides a very rich computing environment, so to avoid overwhelming the
reader we will introduce different objects and functions as their need arises,
rather than all at once.

2.1 Arithmetic

R uses the usual symbols for addition +, subtraction -, multiplication *, di-
vision /, and exponentiation ^. Parentheses () can be used to specify the
order of operations. R also provides %% for taking the modulus and %/% for
integer division.

> (1 + 1/100)^100

[1] 2.704814

> 17%%5

[1] 2

> 17%/%5

11

© 2009 by Taylor & Francis Group, LLC

12 R AS A CALCULATING ENVIRONMENT

[1] 3

The [1] that prefixes the output indicates (somewhat redundantly) that this
is item 1 in a vector of output. R calculates to a high precision, but by de-
fault only displays 7 significant digits. You can change the display to x digits
using options(digits = x). (Though displaying x digits does not guarantee
accuracy to x digits, as we will see in Chapter 9.)

R has a number of built-in functions, for example sin(x), cos(x), tan(x),
(all in radians), exp(x), log(x), and sqrt(x). Some special constants such
as pi are also predefined.

> exp(1)

[1] 2.718282

> options(digits = 16)

> exp(1)

[1] 2.718281828459045

> pi

[1] 3.141592653589793

> sin(pi/6)

[1] 0.5

The functions floor(x) and ceiling(x) round down and up respectively, to
the nearest integer.

2.2 Variables

A variable is like a folder with a name on the front. You can place something
inside the folder, look at it, replace it with something else, but the name on
the front of the folder stays the same.

To assign a value to a variable we use the assignment command <-. Variables
are created the first time you assign a value to them. You can give a variable
any name made up of letters, numbers, and . or _, provided it starts with a
letter, or . then a letter. Note that names are case sensitive.

To display the value of a variable x on the screen we just type x. This is in
fact shorthand for print(x). Later we will see that in some situations we have
to use the longer format, or its near equivalent show(x), for example when
writing scripts or printing results inside a loop.

> x <- 100

> x

© 2009 by Taylor & Francis Group, LLC

FUNCTIONS 13

[1] 100

> (1 + 1/x)^x

[1] 2.704814

> x <- 200

> (1 + 1/x)^x

[1] 2.711517

We can also show the outcome of an assignment by surrounding it with paren-
theses, as follows.

> (y <- (1 + 1/x)^x)

[1] 2.711517

When assigning a value to a variable, the expression on the right-hand side is
evaluated first, then that value is placed in the variable on the left-hand side.
It is thus possible (and quite common) to have the same variable appearing
on the right- and left-hand sides.

> n <- 1

> n <- n + 1

> n

[1] 2

In common with most programming languages, R allows the use of = for vari-
able assignment, as well as <-. We prefer the latter, because there is no pos-
sibility of confusion with mathematical equality. For example, we understand
the assignment n <- n + 1 by thinking of n as the name of a data location in
the computer memory, whose contents change as the assignment is processed.
Contrast this with the usual mathematical interpretation of n = n+ 1, where
the variable n is thought of as having the same value on both sides (so this
equation has no finite solution).

A good programming practice is to use informative names for your variables
to improve readability.

2.3 Functions

In mathematics a function takes one or more arguments (or inputs) and pro-
duces one or more outputs (or return values). Functions in R work in an
analogous way.

To call or invoke a built-in (or user-defined) function in R you write the name
of the function followed by its argument values enclosed in parentheses and
separated by commas. We illustrate with the seq function, which produces
arithmetic sequences:

© 2009 by Taylor & Francis Group, LLC

14 R AS A CALCULATING ENVIRONMENT

> seq(from = 1, to = 9, by = 2)

[1] 1 3 5 7 9

Some arguments are optional, and have predefined default values, for example,
if we omit by then R uses by = 1:

> seq(from = 1, to = 9)

[1] 1 2 3 4 5 6 7 8 9

To find out about default values and alternative usages of the built-in function
fname, you can access the built-in help by typing help(fname) or ?fname.

Every function has a default order for the arguments. If you provide arguments
in this order, then they do not need to be named, but you can choose to
give the arguments out of order provided you give them names in the format
argument_name = expression.

> seq(1, 9, 2)

[1] 1 3 5 7 9

> seq(to = 9, from = 1)

[1] 1 2 3 4 5 6 7 8 9

> seq(by = -2, 9, 1)

[1] 9 7 5 3 1

Each argument value is given by an expression, which can be a constant,
variable, another function call, or an algebraic combination of these.

> x <- 9

> seq(1, x, x/3)

[1] 1 4 7

In R functions can have a variable number of arguments, including no argu-
ments at all. A function call always needs the parentheses, even if no argu-
ments are required. If you just type the name of the function, then R types
out the function ‘object’, which is simply the program defining the function
itself. Try typing demo and then demo() to see the difference. (Then type
demo(graphics) to see a good demonstration of some of R’s graphics capa-
bilities.)

Generally, when we describe functions, we will only describe the most impor-
tant or commonly used options. For complete definitions you should use the
built-in help facility.

© 2009 by Taylor & Francis Group, LLC

VECTORS 15

2.4 Vectors

A vector is an indexed list of variables. You can think of a vector as a drawer
in a filing cabinet: the drawer has a name on the outside and within it are files
labelled sequentially 1, 2, 3, . . . from the front. Each file is a simple variable
whose name is made up from the name of the vector and the number of the
label/index: the name of the i-th element of vector x is x[i].

Like variables, vectors are created the first time you assign values to them. In
fact, a simple variable is just a vector with length 1 (also called atomic). To
create vectors of length greater than 1, we use functions that produce vector-
valued output. There are many of these, but the three basic functions for
constructing vectors are c(...) (combine); seq(from, to, by) (sequence);
and rep(x, times) (repeat).

> (x <- seq(1, 20, by = 2))

[1] 1 3 5 7 9 11 13 15 17 19

> (y <- rep(3, 4))

[1] 3 3 3 3

> (z <- c(y, x))

[1] 3 3 3 3 1 3 5 7 9 11 13 15 17 19

The functions seq(from, to, by = 1) and seq(from, to, by = -1) are
used all the time and so R provides the shorthand from:to. Note that : takes
precedence over algebraic operators such as + and -, so to get the sequence
from 1 to n+ 1, you need to use 1:(n+1) and not 1:n+1, which produces the
sequence 2, 3, . . . , n, n+ 1.

To refer to element i of vector x, we use x[i]. If i is a vector of positive
integers, then x[i] is the corresponding subvector of x. If the elements of i
are negative, then the corresponding values are omitted.

> (x <- 100:110)

[1] 100 101 102 103 104 105 106 107 108 109 110

> i <- c(1, 3, 2)

> x[i]

[1] 100 102 101

> j <- c(-1, -2, -3)

> x[j]

[1] 103 104 105 106 107 108 109 110

© 2009 by Taylor & Francis Group, LLC

16 R AS A CALCULATING ENVIRONMENT

It is possible to have a vector with no elements. The function length(x) gives
the number of elements of x.

> x <- c()

> length(x)

[1] 0

Algebraic operations on vectors act on each element separately, that is ele-
mentwise.

> x <- c(1, 2, 3)

> y <- c(4, 5, 6)

> x * y

[1] 4 10 18

> x + y

[1] 5 7 9

> y^x

[1] 4 25 216

When you apply an algebraic expression to two vectors of unequal length,
R automatically repeats the shorter vector until it has something the same
length as the longer vector.

> c(1, 2, 3, 4) + c(1, 2)

[1] 2 4 4 6

> (1:10)^c(1, 2)

[1] 1 4 3 16 5 36 7 64 9 100

This happens even when the shorter vector is of length 1, allowing the short-
hand notation:

> 2 + c(1, 2, 3)

[1] 3 4 5

> 2 * c(1, 2, 3)

[1] 2 4 6

> (1:10)^2

[1] 1 4 9 16 25 36 49 64 81 100

© 2009 by Taylor & Francis Group, LLC

VECTORS 17

R will still duplicate the shorter vector even if it cannot match the longer
vector with a whole number of multiples, but in this case it will produce a
warning.

> c(1,2,3) + c(1,2)

[1] 3 4 4

Warning message:

In c(1,2,3) + c(1, 2) :

longer object length is not a multiple of shorter object length

A useful set of functions taking vector arguments are sum(...), prod(...),
max(...), min(...), sqrt(...), sort(x), mean(x), and var(x). Note that
functions applied to a vector may be defined to act elementwise or may act
on the whole vector input to return a result:

> sqrt(1:6)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490

> mean(1:6)

[1] 3.5

> sort(c(5, 1, 3, 4, 2))

[1] 1 2 3 4 5

2.4.1 Example: mean and variance

> x <- c(1.2, 0.9, 0.8, 1, 1.2)

> x.mean <- sum(x)/length(x)

> x.mean - mean(x)

[1] 0

> x.var <- sum((x - x.mean)^2)/(length(x) - 1)

> x.var - var(x)

[1] 0

2.4.2 Example: simple numerical integration

> dt <- 0.005

> t <- seq(0, pi/6, by = dt)

> ft <- cos(t)

> (I <- sum(ft) * dt)

© 2009 by Taylor & Francis Group, LLC

18 R AS A CALCULATING ENVIRONMENT

[1] 0.5015487

> I - sin(pi/6)

[1] 0.001548651

In this example note that t is a vector, so ft is also a vector, where ft[i]

equals cos(t[i]).

To plot one vector against another, we use the function plot(x, y, type).
When using plot, x and y must be vectors of the same length. The optional
argument type is a graphical parameter used to control the appearance of the
plot: "p" for points (the default); "l" for lines; "o" for points over lines; etc.

2.4.3 Example: exponential limit

> x <- seq(10, 200, by = 10)

> y <- (1 + 1/x)^x

> exp(1) - y

[1] 0.124539368 0.064984123 0.043963053 0.033217990 0.026693799

[6] 0.022311689 0.019165457 0.016796888 0.014949367 0.013467999

[11] 0.012253747 0.011240338 0.010381747 0.009645015 0.009005917

[16] 0.008446252 0.007952077 0.007512533 0.007119034 0.006764706

> plot(x, y)

The output is given in Figure 2.1.

2.5 Missing data

In real experiments it is often the case, for one reason or another, that cer-
tain observations are missing. Depending on the statistical analysis involved,
missing data can be ignored or invented (a process called imputation).

R represents missing observations through the data value NA. They can be
mixed in with all other kinds of data. It is easiest to think of NA values as
place holders for data that should have been there, but for some reason, are
not. We can detect missing values using is.na.

> a <- NA # assign NA to variable A

> is.na(a) # is it missing?

[1] TRUE

> a <- c(11,NA,13) # now try a vector

> is.na(a) # is it missing?

© 2009 by Taylor & Francis Group, LLC

EXPRESSIONS AND ASSIGNMENTS 19

50 100 150 200

2
.6

0
2

.6
2

2
.6

4
2

.6
6

2
.6

8
2

.7
0

x

y

Figure 2.1 y = (1 + 1/x)x; output for Example 2.4.3.

[1] FALSE TRUE FALSE

> mean(a) # NAs can propagate

[1] NA

> mean(a, na.rm = TRUE) # NAs can be removed

[1] 12

We also mention the null object, called NULL, which is returned by some func-
tions and expressions. Note that NA and NULL are not equivalent. NA is a place-
holder for something that exists but is missing. NULL stands for something that
never existed at all.

2.6 Expressions and assignments

So far we have been using simple R commands without being very precise
about what is going on. In this section we cover some useful vocabulary.

In R, the term expression is used to denote a phrase of code that can be
executed. The following are examples of expressions.

© 2009 by Taylor & Francis Group, LLC

20 R AS A CALCULATING ENVIRONMENT

> seq(10, 20, by = 3)

[1] 10 13 16 19

> 4

[1] 4

> mean(c(1, 2, 3))

[1] 2

> 1 > 2

[1] FALSE

If the evaluation of an expression is saved, using the <- operator, then the com-
bination is called an assignment. The following are examples of assignments.

> x1 <- seq(10, 20, by = 3)

> x2 <- 4

> x3 <- mean(c(1, 2, 3))

> x4 <- 1 > 2

2.7 Logical expressions

A logical expression is formed using the comparison operators <, >, <=, >=, ==
(equal to), and != (not equal to); and the logical operators & (and), | (or),
and ! (not). The order of operations can be controlled using parentheses ().
Two other comparison operators, && and ||, are introduced in Section 2.7.2.

The value of a logical expression is either TRUE or FALSE. The integers 1 and
0 can also be used to represent TRUE and FALSE, respectively (which is an
example of what is called coercion).

Note that A|B is TRUE if A or B or both are TRUE. If you want exclusive dis-
junction, that is either A or B is TRUE but not both, then use xor(A,B):

> c(0, 0, 1, 1) | c(0, 1, 0, 1)

[1] FALSE TRUE TRUE TRUE

> xor(c(0, 0, 1, 1), c(0, 1, 0, 1))

[1] FALSE TRUE TRUE FALSE

The example above also shows that logical expressions can be applied to vec-
tors to produce vectors of TRUE/FALSE values. This is particularly useful for
selecting a subvector using the indexing operation, x[subset].

© 2009 by Taylor & Francis Group, LLC

LOGICAL EXPRESSIONS 21

One way of extracting a subvector is to provide an subset as a vector of
TRUE/FALSE values, the same length as x. The result of the x[subset] com-
mand is that subvector of x for which the corresponding elements of subset
are TRUE. Importantly, the argument subset can be generated using x.

For example, suppose we wished to find all those integers between 1 and 20
that are divisible by 4.

> x <- 1:20

> x%%4 == 0

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[12] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

> (y <- x[x%%4 == 0])

[1] 4 8 12 16 20

R also provides the subset function, for choosing a subvector of x. The differ-
ence between the function subset and using the index operator is how they
handle missing values (NA). The subset function will ignore the missing index
values, whereas the x[subset] command preserves them, for example:

> x <- c(1, NA, 3, 4)

> x > 2

[1] FALSE NA TRUE TRUE

> x[x > 2]

[1] NA 3 4

> subset(x, subset = x > 2)

[1] 3 4

If you wish to know the index positions of TRUE elements of a logical vector
x, then use which(x).

> x <- c(1, 1, 2, 3, 5, 8, 13)

> which(x%%2 == 0)

[1] 3 6

2.7.1 Example: rounding error

Only integers and fractions whose denominator is a power of 2 can be repre-
sented exactly with the floating point representation used for storing numbers
in digital computers (see Section 9.1 for more detail). All other numbers are
subject to rounding error. This necessary limitation has caused many heart-
aches.

© 2009 by Taylor & Francis Group, LLC

22 R AS A CALCULATING ENVIRONMENT

> 2 * 2 == 4

[1] TRUE

> sqrt(2) * sqrt(2) == 2

[1] FALSE

The problem here is that sqrt(2) has rounding error, which is magnified
when we square it. The solution is to use the function all.equal(x, y),
which returns TRUE if the difference between x and y is smaller than some set
tolerance, based on R’s operational level of accuracy.

> all.equal(sqrt(2) * sqrt(2), 2)

[1] TRUE

We return to the issue of accuracy in Section 9.2.

2.7.2 Sequential && and ||

The logical operators && and || are sequentially evaluated versions of & and
|, respectively.

Suppose that x and y are logical expressions. To evaluate x & y, R first eval-
uates x and y, then returns TRUE if x and y are both TRUE, FALSE otherwise.
To evaluate x && y, R first evaluates x. If x is FALSE then R returns FALSE

without evaluating y. If x is TRUE then R evaluates y and returns TRUE if y is
TRUE, FALSE otherwise.

Similarly, to evaluate x || y, R only evaluates y if it has to, that is, if x is
FALSE.

Sequential evaluation of x and y is useful when y is not always well defined.
For example, suppose we wish to know if x sin(1/x) = 0.

> x <- 0

> x * sin(1/x) == 0

[1] NA

Warning message:

In sin(1/x) : NaNs produced

> (x == 0) | (sin(1/x) == 0)

[1] TRUE

Warning message:

In sin(1/x) : NaNs produced

> (x == 0) || (sin(1/x) == 0)

[1] TRUE

Note that && and || only work on scalars, whereas & and | work on vectors
on an element-by-element basis.

© 2009 by Taylor & Francis Group, LLC

MATRICES 23

2.8 Matrices

A matrix is created from a vector using the function matrix, which has the
form

matrix(data, nrow = 1, ncol = 1, byrow = FALSE).

Here data is a vector of length at most nrow*ncol, nrow and ncol are the
number of rows and columns respectively (with default values of 1), and byrow

can be either TRUE or FALSE (defaults to FALSE) and indicates whether you
would like to fill the matrix up row-by-row or column-by-column, using the
elements of data. If length(data) is less than nrow*ncol (for example, the
length is 1), then data is reused as many times as is needed. This provides a
compact way of making a matrix of zeros or ones.

To create a diagonal matrix we use diag(x). To join matrices with rows of
the same length (stacking vertically) use rbind(...). To join matrices with
columns of the same length (stacking horizontally) use cbind(...).

We refer to the elements of a matrix using two indices.

> (A <- matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> A[1, 3] <- 0

> A[, 2:3]

[,1] [,2]

[1,] 2 0

[2,] 5 6

> (B <- diag(c(1, 2, 3)))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0

[3,] 0 0 3

The usual algebraic operations, including *, act elementwise on matrices. To
perform matrix multiplication we use the operator %*%. We also have a number
of functions for using with matrices, for example nrow(x), ncol(x), det(x)
(the determinant), t(x) (the transpose), and solve(A, B), which returns x

such that A %*% x == B. If A is invertible then solve(A) returns the matrix
inverse of A.

> (A <- matrix(c(3, 5, 2, 3), nrow = 2, ncol = 2))

© 2009 by Taylor & Francis Group, LLC

24 R AS A CALCULATING ENVIRONMENT

[,1] [,2]

[1,] 3 2

[2,] 5 3

> (B <- matrix(c(1, 1, 0, 1), nrow = 2, ncol = 2))

[,1] [,2]

[1,] 1 0

[2,] 1 1

> A %*% B

[,1] [,2]

[1,] 5 2

[2,] 8 3

> A * B

[,1] [,2]

[1,] 3 0

[2,] 5 3

> (A.inv <- solve(A))

[,1] [,2]

[1,] -3 2

[2,] 5 -3

> A %*% A.inv

[,1] [,2]

[1,] 1 -8.881784e-16

[2,] 0 1.000000e+00

> A^(-1)

[,1] [,2]

[1,] 0.3333333 0.5000000

[2,] 0.2000000 0.3333333

Observe the small error in A %*% A.inv. Numerical errors like this are the
result of having to store real numbers in a binary format, with a finite number
of bits, and are often called rounding errors (see Chapter 9).

Note that, in R, a matrix is stored as a vector with an added dimension
attribute, which gives the number of rows and columns. The matrix elements
are stored columnwise in the vector. Therefore it is possible to access the
matrix elements using a single index, as follows.

> A[2]

[1] 5

© 2009 by Taylor & Francis Group, LLC

THE WORKSPACE 25

If you wish to find out if an object is a matrix or vector, then you use
is.matrix(x) and is.vector(x). Of course mathematically speaking, a vec-
tor is equivalent to a matrix with one row or column, but they are treated as
different types of object in R. To create a matrix A with one column from a
vector x, we use A <- as.matrix(x). Note that this does not change x.

To create a vector from the columns of a matrix A we use as.vector(A); this
just strips the dimension attribute from A and leaves the elements as they
are (stored columnwise). This process of changing the object type is called
coercion. In many instances R will implicitly coerce the type of an object in
order to apply the operations or functions you ask it to.

Occasionally it is convenient to arrange objects in arrays of more than two
dimensions. In R this is done with the array(data, dim) command, where
data is a vector containing the elements of the array and dim is a vector whose
length is the number of dimensions and whose elements give the size of the
array along each dimensional axis. To fill the array you need length(data)

equal to prod(dim); see the online help for details of how the elements of data
are indexed within the array.

2.9 The workspace

The objects that you create using R remain in existence until you explicitly
delete them. To list all currently defined objects, use ls() or objects().
To remove object x, use rm(x). To remove all currently defined objects, use
rm(list = ls()).

To save all of your existing objects to a file called fname in the current working
directory, use save.image(file = "fname"). To save specific objects (say x

and y) use save(x, y, file = "fname"). To load a set of saved objects use
load(file = "fname"). When you quit R you will be asked if you wish to
save your workspace image, which will save your existing objects to the file
.RData in the current working directory.

R keeps a record of all the commands you type. To save this history to the file
fname use savehistory(file = "fname") and to load the history file fname

use loadhistory(file = "fname"). If you save your workspace image when
quitting, then your current history will be saved in .Rhistory in the current
working directory.

2.10 Exercises

1. Give R assignment statements that set the variable z to

(a). xab

(b). (xa)b

© 2009 by Taylor & Francis Group, LLC

26 R AS A CALCULATING ENVIRONMENT

(c). 3x3 +2x2 +6x+1 (try to minimise the number of operations required)

(d). the digit in the second decimal place of x (hint: use floor(x) and/or
%%)

(e). z + 1

2. Give R expressions that return the following matrices and vectors

(a). (1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1)

(b). (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5)

(c).

0 1 1
1 0 1
1 1 0

(d).

0 2 3
0 5 0
7 0 0

3. Suppose vec is a vector of length 2. Interpreting vec as the coordinates of
a point in R

2, use R to express it in polar coordinates. You will need (at
least one of) the inverse trigonometric functions: acos(x), asin(x), and
atan(x).

4. Use R to produce a vector containing all integers from 1 to 100 that are
not divisible by 2, 3, or 7.

5. Suppose that queue <- c("Steve", "Russell", "Alison", "Liam")

and that queue represents a supermarket queue with Steve first in line.
Using R expressions update the supermarket queue as successively:

(a). Barry arrives;

(b). Steve is served;

(c). Pam talks her way to the front with one item;

(d). Barry gets impatient and leaves;

(e). Alison gets impatient and leaves.

For the last case you should not assume that you know where in the queue
Alison is standing.

Finally, using the function which(x), find the position of Russell in the
queue.

Note that when assigning a text string to a variable, it needs to be in quotes.
We formally introduce text in Section 4.1.

6. Which of the following assignments will be successful? What will the vectors
x, y, and z look like at each stage?

rm(list = ls())

x <- 1

x[3] <- 3

y <- c()

y[2] <- 2

© 2009 by Taylor & Francis Group, LLC

EXERCISES 27

y[3] <- y[1]

y[2] <- y[4]

z[1] <- 0

© 2009 by Taylor & Francis Group, LLC

CHAPTER 3

Basic programming

3.1 Introduction

This chapter introduces a set of basic programming constructs, which are the
building blocks of most programs. Some of these tools are used by practically
all programming languages, for example, conditional execution by if state-
ments, and looped execution by for and while statements. Other tools, such
as vector-based programming, are more specialised, but are just as important
for efficient R coding. An implication is that code that seems to be efficient
in another language may not be efficient in R.

A program or script is just a list of commands, which are executed one after
the other. Typically a program has three parts: input, computations, output.
Some would add a fourth part: documentation. When writing a program we
generally do not enter each command one at a time using the R command
line; instead we write the list of commands in a separate file, which we can
save. However, while developing a program, you may find it very useful to
type individual commands into the console to test their effect immediately.

Suppose we have a program saved as prog.r in the working directory. There
are two main ways to run or execute the program: either we use the command
source("prog.r") or we can just copy and paste the whole program into R.
(A third way to execute a program in R is by typing the command R CMD

BATCH prog.r into a shell.)

Commands involving input from the keyboard or output to the screen behave
more predictably when we use source. This is because when you use source, R
does not have to decide whether you are typing a command or typing input to
a program. Also, sourcewill stop processing if an error occurs, whereas pasted
code will continue to run. Continuing to run may be harmless, or it may waste
time, or compromise existing objects. Directory information can be prefixed
to the file name if necessary. For example source("../scripts/prog.r")

will go up one level, down into the scripts directory, then look for the file
prog.r. An absolute (as opposed to relative) address will work whatever the
current working directory is, for example source("C:/Documents and Set-

tings/odj/My Documents/spuRs/resources/scripts/prog.r").

There are three reasons that we choose to save our programs in a file and

29

© 2009 by Taylor & Francis Group, LLC

30 BASIC PROGRAMMING

execute them this way: first, it allows us to easily modify the program code,
to extend or correct it; second, it allows us to re-run the program with different
inputs; and third, it makes sharing code straightforward.

Because R programs are run in an environment where there may already be
user-defined variables, it is good programming practice to clear the workspace
before running a program, to ensure the same starting point each time. Accord-
ingly we will (try to) begin every program with the command rm(list=ls()),
which removes all objects in the workspace.

On a notational note, in keeping with usual practice, from here on we will
refer to simple variables, vectors, matrices, and arrays generically as variables:
something whose name is fixed but whose value(s) varies. More generally, the
term object includes variables and also user-defined functions, which we meet
later.

3.1.1 Example: roots of a quadratic 1 quad1.r

Here is a simple example of a program for calculating the real roots of a
quadratic equation. Note the use of # for commenting the code. Also note
that when using the source command, the shorthand x for show(x) no longer
works.

program: spuRs/resources/scripts/quad1.r

find the zeros of a2*x^2 + a1*x + a0 = 0

clear the workspace

rm(list=ls())

input

a2 <- 1

a1 <- 4

a0 <- 2

calculation

root1 <- (-a1 + sqrt(a1^2 - 4*a2*a0))/(2*a2)

root2 <- (-a1 - sqrt(a1^2 - 4*a2*a0))/(2*a2)

output

show(c(root1, root2))

Executing this code (running the program) produces the following output

> source("../scripts/quad1.r")

[1] -0.5857864 -3.4142136

In order to write programs that implement mathematical algorithms, we need
to be able to make choices and repeat operations. These tasks are achieved
using the if command and the for and while commands.

© 2009 by Taylor & Francis Group, LLC

BRANCHING WITH IF 31

3.2 Branching with if

It is often useful to force the execution of some or other part of a program to
depend on a condition. The if function has the form

if (logical_expression) {

expression_1

...

}

A natural extension of the if command includes an else part:

if (logical_expression) {

expression_1

...

} else {

expression_2

...

}

Braces { } are used to group together one or more expressions. If there is only
one expression then the braces are optional.

When an if expression is evaluated, if logical_expression is TRUE then
the first group of expressions is executed and the second group of expressions
is not executed. Conversely if logical_expression is FALSE then only the
second group of expressions is executed. if statements can be nested to create
elaborate pathways through a program.

Warning: because the else part of an if statement is optional, if you type

if (logical_expression) {

expression_1

...}

else {

expression_2

...}

then you get an error. This is because R believes the if statement is finished
before it sees the else part, which appears on a separate line. That is, R
treats the else as the start of a new command, but there is no command that
starts with an else, so R generates an error.

Other useful functions for conditional execution are ifelse, which we cover
in Section 3.5, and switch, which allows for multiple branches.

3.2.1 Example: roots of a quadratic 2 quad2.r

Here is an improved version of our program for finding the roots of a quadratic.
Try it with some different values of a2, a1, and a0.

© 2009 by Taylor & Francis Group, LLC

32 BASIC PROGRAMMING

program spuRs/resources/scripts/quad2.r

find the zeros of a2*x^2 + a1*x + a0 = 0

clear the workspace

rm(list=ls())

input

a2 <- 1

a1 <- 4

a0 <- 5

calculate the discriminant

discrim <- a1^2 - 4*a2*a0

calculate the roots depending on the value of the discriminant

if (discrim > 0) {

roots <- c((-a1 + sqrt(a1^2 - 4*a2*a0))/(2*a2),

(-a1 - sqrt(a1^2 - 4*a2*a0))/(2*a2))

} else {

if (discrim == 0) {

roots <- -a1/(2*a2)

} else {

roots <- c()

}

}

output

show(roots)

As an exercise the reader should try using additional if statements to rewrite
program quad2.r so that it can deal with the case a2 = 0 (Exercise 8).

Expressions that are grouped using braces { } are viewed by R as a single
expression. Similarly an if command is viewed as a single expression. Thus
the code

if (logical_expression_1) {

expression_1

...

} else {

if (logical_expression_2) {

expression_2

...

} else {

expression_3

...

}

}

can be written equivalently (and more clearly) as

© 2009 by Taylor & Francis Group, LLC

LOOPING WITH FOR 33

if (logical_expression_1) {

expression_1

...

} else if (logical_expression_2) {

expression_2

...

} else {

expression_3

...

}

3.3 Looping with for

The for command has the following form, where x is a simple variable and
vector is a vector.

for (x in vector) {

expression_1

...

}

When executed, the for command executes the group of expressions within
the braces { }, once for each element of vector. The grouped expressions can
use x, which takes on each of the values of the elements of vector as the loop
is repeated.

3.3.1 Example: summing a vector

The following example uses a loop to sum the elements of a vector. Note that
we use the function cat (for concatenate) to display the values of certain
variables. The advantage of cat over show is that it allows us to combine text
and variables together. The combination of characters \n (backslash-n) is used
to ‘print’ a new line.

Also note that to sum the elements of a vector, it is more accurate and much
easier (but less instructive) to use the built-in function sum.

> (x_list <- seq(1, 9, by = 2))

[1] 1 3 5 7 9

> sum_x <- 0

> for (x in x_list) {

+ sum_x <- sum_x + x

+ cat("The current loop element is", x, "\n")

+ cat("The cumulative total is", sum_x, "\n")

+ }

© 2009 by Taylor & Francis Group, LLC

34 BASIC PROGRAMMING

The current loop element is 1

The cumulative total is 1

The current loop element is 3

The cumulative total is 4

The current loop element is 5

The cumulative total is 9

The current loop element is 7

The cumulative total is 16

The current loop element is 9

The cumulative total is 25

> sum(x_list)

[1] 25

3.3.2 Example: n factorial 1 nfact1.r

The following program calculates n!.

program: spuRs/resources/scripts/nfact1.r

Calculate n factorial

clear the workspace

rm(list=ls())

Input

n <- 6

Calculation

n_factorial <- 1

for (i in 1:n) {

n_factorial <- n_factorial * i

}

Output

show(n_factorial)

Here is the output

> source("../scripts/nfact1.r")

[1] 720

Note that we can also compute the factorial easily using prod(1:n).

3.3.3 Example: pension value pension.r

Here is an example for calculating the value of a pension fund under com-
pounding interest. It uses the function floor(x), whose value is the largest
integer smaller than x.

© 2009 by Taylor & Francis Group, LLC

LOOPING WITH FOR 35

program: spuRs/resources/scripts/pension.r

Forecast pension growth under compound interest

clear the workspace

rm(list=ls())

Inputs

r <- 0.11 # Annual interest rate

term <- 10 # Forecast duration (in years)

period <- 1/12 # Time between payments (in years)

payments <- 100 # Amount deposited each period

Calculations

n <- floor(term/period) # Number of payments

pension <- 0

for (i in 1:n) {

pension[i+1] <- pension[i]*(1 + r*period) + payments

}

time <- (0:n)*period

Output

plot(time, pension)

Executing the command source("pension.r") produces the output given in
Figure 3.1.

The next example highlights an inefficiency in pension.r.

3.3.4 Example: redimensioning an array

Here is an observation that you may be able to use to make some of your
programs run faster. The following two programs produce the same result,
but the first is faster.

Program 1

n <- 1000000

x <- rep(0, n)

for (i in 1:n) {

x[i] <- i

}

Program 2

n <- 1000000

x <- 1

for (i in 2:n) {

x[i] <- i

}

© 2009 by Taylor & Francis Group, LLC

36 BASIC PROGRAMMING

0 2 4 6 8 10

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

time

p
e
n
s
io

n

Figure 3.1 Value of a pension fund: output from Exercise 3.3.3.

The reason for the difference is a technical one, namely changing the size of a
vector takes just about as long as creating a new vector does. In the second
program, each statement x[i] <- i changes the length of x from i - 1 to i,
and this is what makes it slower than the first program.

The process of changing the size of a vector is known as redimensioning an
array, while creating it ‘fully-grown’ is called preallocation. See Section 9.3 for
more detail.

3.4 Looping with while

Often we do not know beforehand how many times we need to go around a
loop. That is, each time we go around the loop, we check some condition to
see if we are done yet. In this situation we use a while loop, which has the
form

while (logical_expression) {

expression_1

...

}

© 2009 by Taylor & Francis Group, LLC

LOOPING WITH WHILE 37

When a while command is executed, logical_expression is evaluated first.
If it is TRUE then the group of expressions in braces { } is executed. Control is
then passed back to the start of the command: if logical_expression is still
TRUE then the grouped expressions are executed again, and so on. Clearly, for
the loop to stop eventually, logical_expression must eventually be FALSE.
To achieve this logical_expression usually depends on a variable that is
altered within the grouped expressions.

The while loop is more fundamental than the for loop, as we can always
rewrite a for loop as a while loop.

3.4.1 Example: Fibonacci numbers fibonacci.r

Consider the Fibonacci numbers F1, F2, . . ., which are defined inductively us-
ing the rules F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Suppose that
you wished to know the first Fibonacci number larger than 100. We can find
this using a while loop as follows:

program: spuRs/resources/scripts/fibonacci.r

calculate the first Fibonacci number greater than 100

clear the workspace

rm(list=ls())

initialise variables

F <- c(1, 1) # list of Fibonacci numbers

n <- 2 # length of F

iteratively calculate new Fibonacci numbers

while (F[n] <= 100) {

cat("n =", n, " F[n] =", F[n], "\n")

n <- n + 1

F[n] <- F[n-1] + F[n-2]

}

output

cat("The first Fibonacci number > 100 is F(", n, ") =", F[n], "\n")

> source("../scripts/fibonacci.r")

The first Fibonacci number > 100 is F(12) = 144

> F

[1] 1 1 2 3 5 8 13 21 34 55 89 144

© 2009 by Taylor & Francis Group, LLC

38 BASIC PROGRAMMING

3.4.2 Example: compound interest compound.r

In this example we use a while loop to work out how long it will take to pay
off a loan.

program: spuRs/resources/scripts/compound.r

Duration of a loan under compound interest

clear the workspace

rm(list=ls())

Inputs

r <- 0.11 # Annual interest rate

period <- 1/12 # Time between repayments (in years)

debt_initial <- 1000 # Amount borrowed

repayments <- 12 # Amount repaid each period

Calculations

time <- 0

debt <- debt_initial

while (debt > 0) {

time <- time + period

debt <- debt*(1 + r*period) - repayments

}

Output

cat('Loan will be repaid in', time, 'years\n')

> source("../scripts/compound.r")

Loan will be repaid in 13.25 years

3.5 Vector-based programming

It is often necessary to perform an operation upon each of the elements of
a vector. R is set up so that such programming tasks can be accomplished
using vector operations rather than looping. Using vector operations is more
efficient computationally, as well as more concise literally.

For example, we could find the sum of the first n squares using a loop as
follows:

> n <- 100

> S <- 0

> for (i in 1:n) {

+ S <- S + i^2

+ }

> S

© 2009 by Taylor & Francis Group, LLC

PROGRAM FLOW 39

[1] 338350

Alternatively, using vector operations we have:

> sum((1:n)^2)

[1] 338350

Of course, for the above example we can also use the formula n(n+1)(2n+1)/6,
assuming we remember it.

The ifelse function performs elementwise conditional evaluation upon a vec-
tor. ifelse(test, A, B) takes three vector arguments: a logical expression
test, and two expressions A and B. The function returns a vector that is a
combination of the evaluated expressions A and B: the elements of A that cor-
respond to the elements of test that are TRUE, and the elements of B that
correspond to the elements of test that are FALSE. As before, if the vectors
have differing lengths then R will repeat the shorter vector(s) to match the
longer, if possible. An example follows.

> x <- c(-2, -1, 1, 2)

> ifelse(x > 0, "Positive", "Negative")

[1] "Negative" "Negative" "Positive" "Positive"

There are some niceties about the mode of the outcome. See ?ifelse for more
details.

Two other useful functions are pmin and pmax, which provide vectorised ver-
sions of the minimum and maximum. For example,

> pmin(c(1, 2, 3), c(3, 2, 1), c(2, 2, 2))

[1] 1 2 1

3.6 Program flow

The term flow is used to describe how control of a program moves from one
line to another, and is determined by if statements, for loops and while

loops (and functions, as we will see later). Given a program, we can chart its
flow by numbering each line, making sure we have a single command per line,
then systematically working out the order in which each line is visited. To do
this we need to keep a list of all the variables in use and their values, as they
can affect the flow.

Consider the following example; line numbers are given on the left

© 2009 by Taylor & Francis Group, LLC

40 BASIC PROGRAMMING

program: spuRs/resources/scripts/threexplus1.r

1 x <- 3

2 for (i in 1:3) {

3 show(x)

4 if (x %% 2 == 0) {

5 x <- x/2

6 } else {

7 x <- 3*x + 1

8 }

9 }

10 show(x)

Charting the flow through this program, we get the output presented in Ta-
ble 3.1.

Table 3.1 Charting the flow for program threexplus1.r

line x i comments

1 3 i not defined yet
2 3 1 i is set to 1
3 3 1 3 written to screen
4 3 1 (x %% 2 == 0) is FALSE so go to line 7
7 10 1 x is set to 10
8 10 1 end of else part
9 10 1 end of for loop, not finished so back to line 2
2 10 2 i is set to 2
3 10 2 10 written to screen
4 10 2 (x %% 2 == 0) is TRUE so go to line 5
5 5 2 x is set to 5
6 5 2 end of if part, go to line 9
9 5 2 end of for loop, not finished so back to line 2
2 5 3 i is set to 3
3 5 3 5 written to screen
4 5 3 (x %% 2 == 0) is FALSE so go to line 7
7 16 3 x is set to 16
8 16 3 end of else part
9 16 3 end of for loop, finished so continue to line 10

10 16 3 16 written to screen

This is exactly what the computer does when it executes a program: it keeps
track of its current position in the program and maintains a list of variables and
their values. Whatever line you are currently at, if you know all the variables
then you always know which line to go to next.

© 2009 by Taylor & Francis Group, LLC

BASIC DEBUGGING 41

3.6.1 Pseudo-code

Pseudo-code is used to describe shorthand and/or informally written pro-
grams. Pseudo-code does not conform to the strict syntax (grammatical rules)
of any particular programming language, but it does use variables, arrays, if
statements and loops. That is, it contains enough information to work out
how control will flow through the program.

As you learn other high-level programming languages, you will see that the
fundamental programming structures—such as variables, arrays, if statements,
and loops—are common to all of them. Pseudo-code pays attention to these
fundamentals but ignores the details. It is a useful way of describing algorithms
without worrying about all the bookkeeping required of a full program. Case
study 21.3 (on inventory) gives a lengthy example of a program, explained at
different levels of detail using pseudo-code.

3.7 Basic debugging

You will spend a lot of time correcting errors in your programs. To find an
error or bug, you need to be able to see how your variables change as you
move through the branches and loops of your code. An effective and simple
way of doing this is to include statements like cat("var =", var, "\n")

throughout the program, to display the values of variables such as var as the
program executes. Once you have the program working you can delete these
or just comment them so they are not executed.

For example, if we wanted to see how the variable i changed in the program
above, we could add a line as follows:

program: spuRs/resources/scripts/threexplus1.r

x <- 3

for (i in 1:3) {

show(x)

cat("i = ", i, "\n")

if (x %% 2 == 0) {

x <- x/2

} else {

x <- 3*x + 1

}

}

show(x)

Running the program gives the following output

> source("../scripts/threexplus1.r")

[1] 3

i = 1

© 2009 by Taylor & Francis Group, LLC

42 BASIC PROGRAMMING

[1] 10

i = 2

[1] 5

i = 3

[1] 16

It is good programming style to solve the simplest possible version of the prob-
lem at hand, and then add complexity only as it becomes necessary. Although
such an organic approach seems slow at first blush, it provides considerable
protection against the complexities that inevitably accrue as the full exercise
takes shape.

It is also very helpful to make dry runs of your code, using simple starting
conditions for which you know what the answer should be. These dry runs
should ideally use short and simple versions of the final program, so that
analysis of the output can be kept as simple as possible. Graphs and summary
statistics of intermediate outcomes can be very revealing, and the code to
create them is easily commented out for production runs.

Careful use of indentation will improve the readability of your code consider-
ably. Indentation can be used to reinforce the overall structure of the code,
for example, where do loops and conditional statements begin and end? Some
text editors, for example, the Emacs family, provide syntactically aware in-
dentation, which facilitates writing such code.

3.8 Good programming habits

Good programming is clear rather than clever. Being clever is good, but given
a choice, being clear is preferable. The reason for this is that in practice much
more time is spent correcting and modifying programs than is ever spent
writing them, and if you are to be successful in either correcting or modifying
a program, you will need it to be clear.

You will find that even programs you write yourself can be very difficult to
understand after only a few weeks have passed.

We find the following to be useful guidelines: start each program with some
comments giving the name of the program, the author, the date it was written,
and what the program does. A description of what a program does should
explain what all the inputs and outputs are.

Variable names should be descriptive, that is, they should give a clue as to
what the value of the variable represents. Avoid using reserved names or func-
tion names as variable names (in particular t, c, and q are all function names
in R). You can find out whether or not your preferred name for an object is
already in use by the exists function.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 43

Use blank lines to separate sections of code into related parts, and use in-
denting to distinguish the inside part of an if statement or a for or while

loop.

Document the programs that you use in detail, ideally with citations for spe-
cific algorithms. There is no worse feeling than returning to undocumented
code that had been written several years earlier to try to find and then ex-
plain an anomaly.

3.9 Exercises

1. Consider the function y = f(x) defined by

x ≤ 0 ∈ (0, 1] > 1

f(x) −x3 x2
√
x

Supposing that you are given x, write an R expression for y using if state-
ments.

Add your expression for y to the following program, then run it to plot the
function f .

input

x.values <- seq(-2, 2, by = 0.1)

for each x calculate y

n <- length(x.values)

y.values <- rep(0, n)

for (i in 1:n) {

x <- x.values[i]

your expression for y goes here

y.values[i] <- y

}

output

plot(x.values, y.values, type = "l")

Your plot should look like Figure 3.2. Do you think f has a derivative at
1? What about at 0?

We remark that it is possible to vectorise the program above, using the
ifelse function.

2. Let h(x, n) = 1 + x + x2 + · · · + xn =
∑n

i=0 x
i. Write an R program to

calculate h(x, n) using a for loop.

3. The function h(x, n) from Exercise 2 is the finite sum of a geometric se-
quence. It has the following explicit formula, for x 6= 1,

h(x, n) =
1− xn+1

1− x .

© 2009 by Taylor & Francis Group, LLC

44 BASIC PROGRAMMING

−2 −1 0 1 2

0
2

4
6

8

x.values

y
.v

a
lu

e
s

Figure 3.2 The graph produced by Exercise 1.

Test your program from Exercise 2 against this formula using the following
values

x n h(x, n)

0.3 55 1.428571
6.6 8 4243335.538178

You should use the computer to calculate the formula rather than doing it
yourself.

4. First write a program that achieves the same result as in Exercise 2 but
using a while loop. Then write a program that does this using vector
operations (and no loops).

If it doesn’t already, make sure your program works for the case x = 1.

5. To rotate a vector (x, y)T anticlockwise by θ radians, you premultiply it by
the matrix

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Write a program in R that does this for you.

6. Given a vector x, calculate its geometric mean using both a for loop and

vector operations. (The geometric mean of x1, . . . , xn is (
∏n

i=1 xi)
1/n

.)

© 2009 by Taylor & Francis Group, LLC

EXERCISES 45

You might also like to have a go at calculating the harmonic mean,

(
∑n

i=1 1/xi)
−1

, and then check that if the xi are all positive, the harmonic
mean is always less than or equal to the geometric mean, which is always
less than or equal to the arithmetic mean.

7. How would you find the sum of every third element of a vector x?

8. How does program quad2.r (Exercise 3.2.1) behave if a2 is 0 and/or a1 is
0? Using if statements, modify quad2.r so that it gives sensible answers
for all possible (numerical) inputs.

9. Chart the flow through the following two programs.

(a). The first program is a modification of the example from Section 3.6,
where x is now an array. You will need to keep track of the value of
each element of x, namely x[1], x[2], etc.

threexplus1array.r

x <- 3

for (i in 1:3) {

show(x)

if (x[i] %% 2 == 0) {

x[i+1] <- x[i]/2

} else {

x[i+1] <- 3*x[i] + 1

}

}

show(x)

(b). The second program implements the Lotka-Volterra model for a
‘predator-prey’ system. We suppose that x(t) is the number of prey
animals at the start of a year t (rabbits) and y(t) is the number of
predators (foxes), then the Lotka-Volterra model is:

x(t+ 1) = x(t) + br · x(t)− dr · x(t) · y(t);
y(t+ 1) = y(t) + bf · dr · x(t) · y(t)− df · y(t);

where the parameters are defined by:

br is the natural birth rate of rabbits in the absence of predation;
dr is the death rate per encounter of rabbits due to predation;
df is the natural death rate of foxes in the absence of food (rabbits);
bf is the efficiency of turning predated rabbits into foxes.

program spuRs/resources/scripts/predprey.r

Lotka-Volterra predator-prey equations

br <- 0.04 # growth rate of rabbits

dr <- 0.0005 # death rate of rabbits due to predation

df <- 0.2 # death rate of foxes

bf <- 0.1 # efficiency of turning predated rabbits into foxes

x <- 4000

y <- 100

while (x > 3900) {

© 2009 by Taylor & Francis Group, LLC

46 BASIC PROGRAMMING

cat("x =", x, " y =", y, "\n")

x.new <- (1+br)*x - dr*x*y

y.new <- (1-df)*y + bf*dr*x*y

x <- x.new

y <- y.new

}

Note that you do not actually need to know anything about the pro-
gram to be able to chart its flow.

10. Write a program that uses a loop to find the minimum of a vector x, without
using any predefined functions like min(...) or sort(...).

You will need to define a variable, x.min say, in which to keep the small-
est value you have yet seen. Start by assigning x.min <- x[1] then use
a for loop to compare x.min with x[2], x[3], etc. If/when you find
x[i] < x.min, update the value of x.min accordingly.

11. Write a program to merge two sorted vectors into a single sorted vector.

Do not use the sort(x) function, and try to make your program as efficient
as possible. That is, try to minimise the number of operations required to
merge the vectors.

12. The game of craps is played as follows. First, you roll two six-sided dice; let
x be the sum of the dice on the first roll. If x = 7 or 11 you win, otherwise
you keep rolling until either you get x again, in which case you also win, or
until you get a 7 or 11, in which case you lose.

Write a program to simulate a game of craps. You can use the following
snippet of code to simulate the roll of two (fair) dice:

x <- sum(ceiling(6*runif(2)))

13. Suppose that (x(t), y(t)) has polar coordinates (
√
t, 2πt). Plot (x(t), y(t))

for t ∈ [0, 10]. Your plot should look like Figure 3.3.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 47

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

y

Figure 3.3 The output from Exercise 13.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 4

I/O: Input and Output

This chapter describes some of the infrastructure that R provides for importing
data for subsequent analysis, and for saving and displaying the results of
that analysis. A further discussion of data input appears in Chapter 6, in
the context of dataframes, and in Chapter 7 we give more details on the
construction of graphical output.

Computer programs excel at processing large amounts of data. To facilitate
data processing we need to be able to read input directly from a file. It is
sometimes useful to be able to write output to a file too. This chapter covers
writing to and reading from plain text files, and creating graphics.

Another important aspect of input and output (I/O) is dealing with alphanu-
meric characters, so that we can read and write text as well as numbers.
Accordingly we will distinguish between different modes of objects, such as
character, numeric, and logical. We can determine the mode of an object by
using the mode function.

4.1 Text

So far we have seen objects of numeric mode and logical mode
(TRUE/FALSE). A string of characters is said to be of mode character.

Character strings are denoted using either double quotes " " or single quotes
' '. Strings can be arranged into vectors and matrices just like numbers. We
can also paste strings together using paste(..., sep). Here sep is an op-
tional input (with default " ") that determines which padding character is to
be placed between the strings (which are input where ... appears).

> x <- "Citroen SM"

> y <- "Jaguar XK150"

> z <- "Ford Falcon GT-HO"

> (wish.list <- paste(x, y, z, sep = ", "))

[1] "Citroen SM, Jaguar XK150, Ford Falcon GT-HO"

Special characters can be included in strings using the escape character \. Use
\" for "; \n for a newline; \t for a tab; \b for a backspace; and \\ for \.

49

© 2009 by Taylor & Francis Group, LLC

50 I/O: INPUT AND OUTPUT

If a character string can be understood as a number, then as.numeric(x)

coerces it to be that number. Use as.character(x) to coerce a number into
a character string, though note that R will often do this for you as required. A
generally more useful method of converting a number to a character string is
to use the function format(x, digits, nsmall, width). digits, nsmall,
and width are all optional: nsmall suggests how many decimal places to use;
digits suggests how many significant digits to include; and width suggests
how long the total character string should be. Note that R will quite happily
override your suggested values for digits, nsmall, and width. This can be
avoided by using the function round(x, k) to round x to k digits before you
use format.

As we have already seen, the command cat displays concatenated character
strings.

The following example shows how to use formatted output to print a table of
numbers. The program writes out the first n powers of the number x.

program spuRs/resources/scripts/powers.r

display powers 1 to n of x

input

x <- 7

n <- 5

display powers

cat("Powers of", x, "\n")

cat("exponent result\n\n")

result <- 1

for (i in 1:n) {

result <- result * x

cat(format(i, width = 8),

format(result, width = 10),

"\n", sep = "")

}

It produces the following output:

> source("../scripts/powers.r")

Powers of 7

exponent result

1 7

2 49

3 343

4 2401

5 16807

© 2009 by Taylor & Francis Group, LLC

INPUT FROM A FILE 51

Functions format and paste also take vector input. Thus the program above
could be vectorised as follows:

> cat(paste(format(1:n, width = 8), format(x^(1:n), width = 10),

+ "\n"), sep = "")

1 7

2 49

3 343

4 2401

5 16807

Greater control is available for expressing numbers as character strings, using
the sprintf and formatC functions. See the built-in help for details.

4.2 Input from a file

R provides a number of ways to read data from a file, the most flexible of
which is the scan function. We use scan to read a vector of values from a file.
scan has a large number of options, of which we only need a few at this point.
It has the form

scan(file = "", what = 0, n = -1, sep = "", skip = 0, quiet = FALSE)

scan returns a vector. All the parameters are optional; the defaults are indi-
cated above.

file gives the file to read from. The default "" indicates read from the key-
board (see Section 4.3).

what gives an example of the mode of data to be read, with a default of 0 for
numeric data. Use " " for character data.

n gives the number of elements to read. If n = -1 then scan keeps reading
until the end of the file.

sep allows you to specify the character that is used to separate values, such
as ",". The default "" has the special meaning of allowing any amount of
white space (including tabs) to separate values. Note that a newline/return
always separates values.

skip is the number of lines to skip before you start reading, default of 0. This
is useful if your file includes some lines of description before the data starts.

quiet controls whether or not scan reports how many values it has read,
default FALSE.

If you try to read more items than are left in the file, by specifying n, then
scan returns a vector of reduced length, possibly of length 0.

To find out what files are in directory dir.name, use dir(path =

"dir.name"), or equivalently list.files(path = "dir.name"). The direc-
tory address can be relative to the current working directory or an absolute

© 2009 by Taylor & Francis Group, LLC

52 I/O: INPUT AND OUTPUT

address. path has the default value ".", denoting the current working direc-
tory.

It is common for data to be arranged in tables, with columns corresponding
to variables and rows corresponding to separate observations. Tabular data is
conveniently stored in a text file, with each line corresponding to a row, and
values separated by a specific character, such as a comma. R provides specific
functions to conveniently read such files, in particular read.table. We will
discuss these in Section 6.2.

4.2.1 Example: file input quartiles1.r

The following program reads a vector of numbers from a file then calculates
their median, 1st quartile and 3rd quartile. The 100p-th percentage point of
a sample is defined to be the smallest sample point x such that at least a
fraction p of the sample is less than or equal to x. The first quartile is the
25% point of a sample, the third quartile the 75% point, and the median is
the 50% point. (Note that some definitions of the quartiles and median vary
slightly from these.)

For this example the file data1.txtwas created beforehand using a text editor,
and is stored in the directory ../data, which is a sibling to the working
directory (that is, it has the same parent directory as the working directory).

program: spuRs/resources/scripts/quartiles1.r

Calculate median and quartiles.

Clear the workspace

rm(list=ls())

Input

We assume that the file file_name consists of numeric values

separated by spaces and/or newlines

file_name = "../data/data1.txt"

Read from file

data <- scan(file = file_name)

Calculations

n <- length(data)

data.sort <- sort(data)

data.1qrt <- data.sort[ceiling(n/4)]

data.med <- data.sort[ceiling(n/2)]

data.3qrt <- data.sort[ceiling(3*n/4)]

Output

cat("1st Quartile:", data.1qrt, "\n")

© 2009 by Taylor & Francis Group, LLC

INPUT FROM THE KEYBOARD 53

cat("Median: ", data.med, "\n")

cat("3rd Quartile:", data.3qrt, "\n")

Suppose that the file data1.txt has the following single line

8 9 3 1 2 0 7 4 5 6

Running the program then produces the following output:

> source("../scripts/quartiles1.r")

1st Quartile: 2

Median: 4

3rd Quartile: 7

As for many statistical operations, R has a built-in function for calculating
quartiles, though using a different definition to the one above. Here is a solu-
tion to the problem above using the built-in function quantile. We leave it to
the reader to find a definition of the input arguments, using the help function.

> quantile(scan("../data/data1.txt"), (0:4)/4)

0% 25% 50% 75% 100%

0.00 2.25 4.50 6.75 9.00

4.3 Input from the keyboard

scan can be used to read from the keyboard if the input file is given the value
"" (the default). Use an empty line to denote the end of the input. Keyboard
input only works if scan is invoked interactively, or executed using source (or
within a function: see Chapter 5). If you copy and paste commands containing
scan(file = ""), then R will interpret the lines following scan(file = "")

as input rather than as commands.

To read a single line of text from the keyboard R provides the command
readline(prompt), which takes the optional character input prompt (default
""). Like scan, readline also only works properly if executed using source

(or within a function).

4.3.1 Example: roots of a quadratic 2b quad2b.r

Here is yet another version of our program for finding the roots of a quadratic,
where we now take the input from the keyboard, using readline.

program spuRs/resources/scripts/quad2b.r

find the zeros of a2*x^2 + a1*x + a0 = 0

© 2009 by Taylor & Francis Group, LLC

54 I/O: INPUT AND OUTPUT

clear the workspace

rm(list=ls())

input

cat("find the zeros of a2*x^2 + a1*x + a0 = 0\n")

a2 <- as.numeric(readline("a2 = "))

a1 <- as.numeric(readline("a1 = "))

a0 <- as.numeric(readline("a0 = "))

calculate the discriminant

discrim <- a1^2 - 4*a2*a0

calculate the roots depending on the value of the discriminant

if (discrim > 0) {

roots <- (-a1 + c(1,-1) * sqrt(a1^2 - 4*a2*a0))/(2*a2)

} else {

if (discrim == 0) {

roots <- -a1/(2*a2)

} else {

roots <- c()

}

}

output

if (length(roots) == 0) {

cat("no roots\n")

} else if (length(roots) == 1) {

cat("single root at", roots, "\n")

} else {

cat("roots at", roots[1], "and", roots[2], "\n")

}

Here it is in action

> source("quad2b.r")

find the zeros of a2*x^2 + a1*x + a0 = 0

a2 = 2

a1 = 2

a0 = 0

roots at 0 and -1

> source("quad2b.r")

find the zeros of a2*x^2 + a1*x + a0 = 0

a2 = 2

a1 = 0

a0 = 2

no roots

© 2009 by Taylor & Francis Group, LLC

OUTPUT TO A FILE 55

4.4 Output to a file

R provides a number of commands for writing output to a file. We will gener-
ally use write or write.table for writing numeric values and cat for writing
text, or a combination of numeric and character values.

The command write has the form

write(x, file = "data", ncolumns = if(is.character(x)) 1 else 5,

append = FALSE)

Here x is the vector to be written. If x is a matrix or array then it is converted
to a vector (column by column) before being written. The other parameters
are optional.

file gives the file to write or append to, as a character string. The default
"data" writes to a file called data in the current working directory. To
write to the screen use file = "".

ncolumns gives the number of columns in which to write the vector x. The
default is 5 for numbers and 1 for characters. Note that the vector is written
row by row.

append indicates whether to append to or overwrite the file. The default is
FALSE.

Because write converts matrices to vectors before writing them, using it to
write a matrix to a file can cause unexpected results. Since R stores its matrices
by column, you should pass the transpose of the matrix to write if you want
the output to reflect the matrix structure.

> (x <- matrix(1:24, nrow = 4, ncol = 6))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 5 9 13 17 21

[2,] 2 6 10 14 18 22

[3,] 3 7 11 15 19 23

[4,] 4 8 12 16 20 24

> write(t(x), file = "../results/out.txt", ncolumns = 6)

Here is what the file out.txt looks like:

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

A more flexible command for writing to a file is cat, which has the form

cat(..., file = "", sep = " ", append = FALSE)

© 2009 by Taylor & Francis Group, LLC

56 I/O: INPUT AND OUTPUT

... is a list of expressions (separated by commas) that are coerced into char-
acter strings, concatenated, and then written.

file gives the file to write or append to, as a character string. The default
"" writes to the screen.

sep is a character string that is inserted between the written objects, with
default value " ".

append indicates whether to append to or overwrite the file, with default
FALSE.

Note that cat does not automatically write a newline after the expressions
.... If you want a newline you must explicitly include the string "\n".

R also provides functions to write objects in specific formats, for example
write.table for writing data in a table (see Section 6.2 for details). There is
also the very useful dump, which creates a text representation of almost any R
object that can subsequently be read by source. For example

> x <- matrix(rep(1:5, 1:5), nrow = 3, ncol = 5)

> dump("x", file = "../results/x.txt")

> rm(x)

> source("../results/x.txt")

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 4 4 5

[2,] 2 3 4 5 5

[3,] 2 3 4 5 5

4.5 Plotting

We have already seen plot(x, y, type) used to plot one vector against an-
other, with the x values on the x-axis and the y values on the y-axis. In fact
the input y is optional, and if omitted then x is plotted against 1:length(x)
(so you get the x values on the y-axis and 1:length(x) on the x-axis). Some
other useful optional parameters are xlab, ylab, and main, which all take
character strings and are used to label the x-axis, y-axis and the whole plot
respectively.

To add points (x[1], y[1]), (x[2], y[2]), ... to the current plot, use
points(x, y). To add lines instead use lines(x, y). Vertical or horizontal
lines can be drawn using abline(v = xpos) and abline(h = ypos). Both
points and lines take the optional input col, which determines the colour
("red", "blue", etc.). The complete list of available colours can be obtained
by the colours function (or colors). To add the text labels[i] at the point
(x[i], y[i]), use text(x, y, labels). The optional input pos is used to
indicate where to position the labels in relation to the points. (Use help(text)

© 2009 by Taylor & Francis Group, LLC

PLOTTING 57

to see the possible values of pos.) If the current plot does not have a title,
then title(main) will provide one (here main is a character string).

As an example we plot part of the parabola y2 = 4x, as well as its focus and
directrix. We make use of the surprisingly useful input type = "n", which
results in the graph dimensions being established, and the axes being drawn,
but nothing else.

> x <- seq(0, 5, by = 0.01)

> y.upper <- 2 * sqrt(x)

> y.lower <- -2 * sqrt(x)

> y.max <- max(y.upper)

> y.min <- min(y.lower)

> plot(c(-2, 5), c(y.min, y.max), type = "n", xlab = "x",

+ ylab = "y")

> lines(x, y.upper)

> lines(x, y.lower)

> abline(v = -1)

> points(1, 0)

> text(1, 0, "focus (1, 0)", pos = 4)

> text(-1, y.min, "directrix x = -1", pos = 4)

> title("The parabola y^2 = 4*x")

The output is given in Figure 4.1

One way of having more than one plot visible is to open additional graph-
ics devices. In a Windows environment this is done by using the command
windows() before each additional plot. In Unix use the command X11(), and
for MacOS quartz(), instead. See ?dev.new and ?dev.control for more in-
formation.

Alternatively you can create a grid of plots in a single graphics window us-
ing the commands par(mfrow = c(nr, nc)) or par(mfcol = c(nr, nc)).
The command par is used to set many different parameters that control how
graphics are produced. Setting mfrow = c(nr, nc) creates a grid of plots
with nr rows and nc columns, which is filled row by row. mfcol is similar but
fills the plots column by column.

The following example illustrates mfrow and the function curve, which is used
to plot the function x sin(x) over different ranges.

> par(mfrow = c(2, 2))

> curve(x * sin(x), from = 0, to = 100, n = 1001)

> curve(x * sin(x), from = 0, to = 10, n = 1001)

> curve(x * sin(x), from = 0, to = 1, n = 1001)

> curve(x * sin(x), from = 0, to = 0.1, n = 1001)

> par(mfrow = c(1, 1))

The output is given in Figure 4.2.

We return to the subject of plotting in Chapter 7.

© 2009 by Taylor & Francis Group, LLC

58 I/O: INPUT AND OUTPUT

−2 −1 0 1 2 3 4 5

−
4

−
2

0
2

4

x

y focus (1, 0)

directrix x = −1

The parabola y^2 = 4*x

Figure 4.1 A plot built up in stages. Refer to Section 4.5 for the code to produce this
diagram.

4.6 Exercises

1. Here are the first few lines of the files age.txt and teeth.txt, taken from
the database of a statistically minded dentist:

ID Age

1 18

2 19

3 17

. .

. .

. .

ID Num Teeth

1 28

2 27

3 32

. .

. .

. .

Write a program in R to read each file, and then write an amalgamated list
to the file age_teeth.txt, of the following form:

© 2009 by Taylor & Francis Group, LLC

EXERCISES 59

0 20 40 60 80 100

−
1
0
0

0
5
0

1
0
0

x

x
 *

 s
in

(x
)

0 2 4 6 8 10

−
4

0
2

4
6

8

x

x
 *

 s
in

(x
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

x
 *

 s
in

(x
)

0.00 0.04 0.08

0
.0

0
0

0
.0

0
4

0
.0

0
8

x

x
 *

 s
in

(x
)

Figure 4.2 An array of plots. Refer to Section 4.5 for the code to produce this dia-
gram.

ID Age Num Teeth

1 18 28

2 19 27

3 17 32

. . .

. . .

. . .

2. The function order(x) returns a permutation of 1:length(x) giving the
order of the elements of x. For example

> x <- c(1.1, 0.7, 0.8, 1.4)

> (y <- order(x))

[1] 2 3 1 4

> x[y]

[1] 0.7 0.8 1.1 1.4

Using order or otherwise, modify your program from Exercise 1 so that
the output file is ordered by its second column.

3. Devise a program that outputs a table of squares and cubes of the numbers
1 to n. For n <- 7 the output should be as follows:

© 2009 by Taylor & Francis Group, LLC

60 I/O: INPUT AND OUTPUT

> source("../scripts/square_cube.r")

number square cube

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

4. Write an R program that prints out the standard multiplication table:

> source("../scripts/mult_table.r")

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 2 3 4 5 6 7 8 9

[2,] 2 4 6 8 10 12 14 16 18

[3,] 3 6 9 12 15 18 21 24 27

[4,] 4 8 12 16 20 24 28 32 36

[5,] 5 10 15 20 25 30 35 40 45

[6,] 6 12 18 24 30 36 42 48 54

[7,] 7 14 21 28 35 42 49 56 63

[8,] 8 16 24 32 40 48 56 64 72

[9,] 9 18 27 36 45 54 63 72 81

Hint: generate a matrix mtable that contains the table, then use
show(mtable).

5. Use R to plot the hyperbola x2 − y2/3 = 1, as in Figure 4.3.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 61

−4 −2 0 2 4

−
5

0
5

x

y

asymptote y = sqrt(3)*x

focus (2, 0)

The hyperbola x^2 − y^2/3 = 1

Figure 4.3 The hyperbola x2 − y2/3 = 1; see Exercise 5.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 5

Programming with functions

In this chapter we cover the creation of functions, the rules that they must
follow, and how they relate to and communicate with the environments from
which they are called. We also present some tips on the construction of efficient
functions, with especial reference to how functions are treated in R.

Functions are one of the main building blocks for large programs: they are an
essential tool for structuring complex algorithms. In some other programming
languages procedures and subroutines play the same role as functions in R.

5.1 Functions

A function has the form

name <- function(argument_1, argument_2, ...) {

expression_1

expression_2

...

return(output)

}

Here argument_1, argument_2, etc., are the names of variables and
expression_1, expression_2, and output are all regular R expressions. name
is the name of the function. Note that some functions have no arguments, and
that the braces are only necessary if the function comprises more than one
expression.

To call or run the function we type

name(x1, x2, ...)

The value of this expression is the value of the expression output. To calculate
the value of output the function first copies the value of x1 to argument_1, x2
to argument_2, and so on.1 The arguments then act as variables within the
function. We say that the arguments have been passed to the function. Next

1 If fact, to save time R only makes a new copy of an argument if its value is changed
within the function. However, to understand how a function works it suffices to think
that all the arguments are copied when the function is called.

63

© 2009 by Taylor & Francis Group, LLC

64 PROGRAMMING WITH FUNCTIONS

the function evaluates the grouped expressions contained in the braces { };
the value of the expression output is returned as the value of the function.

A function may have more than one return statement, in which case it
stops after executing the first one it reaches. If there is no statement
return(output) then the value returned by the function is the value of the
last expression in the braces (as long as it is not assigned to a variable).

A function always returns a value. For some functions the value returned is
unimportant, for example if the function has written its output to a file then
there may be no need to return a value as well. In such cases one usually omits
the return statement, or returns NULL.

If, when called, the value returned by a function (or any expression) is not
assigned to a variable, then it is printed. The expression invisible(x) has
the same value as x, but its value is not printed.

5.1.1 Example: roots of a quadratic 3 quad3.r

As an example we write our program for finding the roots of a quadratic as a
function. The command rm(list=ls()) has no effect on the main workspace
if executed inside a function, so we have moved it outside. (The reason behind
this should become clear in Section 5.2.)

Note that the name of the function does not have to match the name of
the program file, but when a program consists of a single function this is
conventional.

program spuRs/resources/scripts/quad3.r

quad3 <- function(a0, a1, a2) {

find the zeros of a2*x^2 + a1*x + a0 = 0

if (a2 == 0 && a1 == 0 && a0 == 0) {

roots <- NA

} else if (a2 == 0 && a1 == 0) {

roots <- NULL

} else if (a2 == 0) {

roots <- -a0/a1

} else {

calculate the discriminant

discrim <- a1^2 - 4*a2*a0

calculate the roots depending on the value of the discriminant

if (discrim > 0) {

roots <- (-a1 + c(1,-1) * sqrt(a1^2 - 4*a2*a0))/(2*a2)

} else if (discrim == 0) {

roots <- -a1/(2*a2)

} else {

roots <- NULL

© 2009 by Taylor & Francis Group, LLC

FUNCTIONS 65

}

}

return(roots)

}

To use the function we first load it (using source or by copying and pasting
into R), then call it, supplying suitable arguments.

> rm(list = ls())

> source("../scripts/quad3.r")

> quad3(1, 0, -1)

[1] -1 1

> quad3(1, -2, 1)

[1] 1

> quad3(1, 1, 1)

NULL

The most important advantage of using a function is that once it is loaded, it
can be used again and again without having to reload it. User-defined functions
can be used in the same way as predefined functions are used in R. In particular
they can be used within other functions.

The second most important use of functions is to break down a programming
task into smaller logical units. Large programs are typically made up of a
number of smaller functions, each of which does a simple well-defined task.

5.1.2 Example: n choose r n_choose_r.r

The number of ways that you can choose r things from a set of n, ignoring
the order in which you choose them, is n choose r, which we write as

(

n
r

)

.

As is well known,
(

n
r

)

= n!
r!(n−r)! . One way to write a function for calculating

(

n
r

)

, is to first write a function to calculate n!, and then use it within our

function for
(

n
r

)

.

program spuRs/resources/scripts/n_choose_r.r

n_factorial <- function(n) {

Calculate n factorial

n_fact <- prod(1:n)

return(n_fact)

}

n_choose_r <- function(n, r) {

© 2009 by Taylor & Francis Group, LLC

66 PROGRAMMING WITH FUNCTIONS

Calculate n choose r

n_ch_r <- n_factorial(n)/n_factorial(r)/n_factorial(n-r)

return(n_ch_r)

}

Here it is in action.

> rm(list = ls())

> source("../scripts/n_choose_r.r")

> n_choose_r(4, 2)

[1] 6

> n_choose_r(6, 4)

[1] 15

As an aside we note that
(

n
r

)

can be defined for any real value of n and non-

negative integer value of r, using the definition
(

n
r

)

= n(n − 1) · · · (n − r +
1)/r!. This generalisation is useful for defining certain probability distributions
(amongst other things).

Finally, note that more efficient functions that achieve the same goal are avail-
able in R; specifically, choose and factorial.

5.1.3 Example: Winsorised mean wmean.r

Let x = {x1, x2, . . . , xn} be a sample of real numbers and let x(1) ≤ x(2) ≤
· · · ≤ x(n) be the ordered sample. The k-th trimmed mean of x is defined as

x̄k =
x(k+1) + · · ·+ x(n−k)

n− 2k
.

That is, we discard the k smallest and k largest values then take the average.
The trimmed mean is less susceptible to outliers than the untrimmed mean.

The k-th Winsorised mean is defined as

wk =
(k + 1)x(k+1) + x(k+2) + · · ·+ x(n−k−1) + (k + 1)x(n−k)

n
.

That is, instead of discarding the k-th largest and k-th smallest values, we
replace them by x(n−k) and x(k+1), respectively. The Winsorised mean can be
used when you think that your sample may contain occasional extraordinary
values, either because of errors or because you are not measuring what you
think you are measuring (this would be a conceptual rather than a measure-
ment error).

Here is a function for calculating the k-th Winsorised mean.

© 2009 by Taylor & Francis Group, LLC

FUNCTIONS 67

program spuRs/resources/scripts/wmean.r

wmean <- function(x, k) {

calculate the k-th Windsorised mean of the vector x

x <- sort(x)

n <- length(x)

x[1:k] <- x[k+1]

x[(n-k+1):n] <- x[n-k]

return(mean(x))

}

Here it is in practice.

> source("../scripts/wmean.r")

> x <- c(8.244, 51.421, 39.020, 90.574, 44.697,

+ 83.600, 73.760, 81.106, 38.811, 68.517)

> mean(x)

[1] 57.975

> wmean(x, 2)

[1] 59.8773

> x.err <- x

> x.err[1] <- 1000

> mean(x.err)

[1] 157.1506

> wmean(x.err, 2)

[1] 65.9695

5.1.4 Program flow using functions

When a function is executed the computer sets aside space for the function
variables, makes a copy of the function code, then transfers control to the
function. When the function is finished the output of the function is passed
back to the main program, then the copy of the function and all its variables
are deleted. We illustrate this using the program below. Note that we have
numbered the lines of the function swap separately from the main program.
The flow of the program is charted in Table 5.1.

swap.r

f1 swap <- function(x) {

swap values of x[1] and x[2]

f2 y <- x[2]

f3 x[2] <- x[1]

© 2009 by Taylor & Francis Group, LLC

68 PROGRAMMING WITH FUNCTIONS

Table 5.1 Control flow for the program swap.r

main function function
program swap swap

(1st) (2nd)

line x x y x y comments

p1 (7, 8, 9)
f1 (7, 8, 9) (7, 8) control transferred to

swap from p2
f2 (7, 8, 9) (7, 8) 8
f3 (7, 8, 9) (7, 7) 8
f4 (7, 8, 9) (8, 7) 8
f5 (7, 8, 9) (8, 7) 8 swap returns (8, 7); con-

trol returned to line p2,
function variables deleted

p2 (8, 7, 9)
f1 (8, 7, 9) (7, 9) control transferred to

swap from p3
f2 (8, 7, 9) (7, 9) 9
f3 (8, 7, 9) (7, 7) 9
f4 (8, 7, 9) (9, 7) 9
f5 (8, 7, 9) (9, 7) 8 swap returns (9, 7); con-

trol returned to line p3,
function variables deleted

p3 (8, 9, 7)

f4 x[1] <- y

f5 return(x)

f6 }

p1 x <- c(7, 8, 9)

p2 x[1:2] <- swap(x[1:2])

p3 x[2:3] <- swap(x[2:3])

5.2 Scope and its consequences

Arguments and variables defined within a function exist only within that func-
tion. That is, if you define and use a variable x inside a function, it does not
exist outside the function. If variables with the same name exist inside and
outside a function, then they are separate and do not interact at all. You
can think of a function as a separate environment that communicates with
the outside world only through the values of its arguments and its output

© 2009 by Taylor & Francis Group, LLC

SCOPE AND ITS CONSEQUENCES 69

expression.2 For example if you execute the command rm(list=ls()) inside
a function (which is only rarely a good idea), you only delete those objects
that are defined inside the function.

> test <- function(x) {

+ y <- x + 1

+ return(y)

+ }

> test(1)

[1] 2

> x

Error: Object "x" not found

> y

Error: Object "y" not found

> y <- 10

> test(1)

[1] 2

> y

[1] 10

That part of a program in which a variable is defined is called its scope.
Restricting the scope of variables within a function provides an assurance that
calling the function will not modify variables outside the function, except by
assigning the returned value.

Beware however, the scope of a variable is not symmetric. That is, variables
defined inside a function cannot be seen outside, but variables defined outside
the function can be seen inside the function (provided there is not a variable
with the same name defined inside). This arrangement allows for elegant pro-
gramming in certain situations (in particular when programming recursively,
see Section 5.5), but it also makes it possible to write a function whose be-
haviour depends on the context within which it is run. Consider the following
example:

> test2 <- function(x) {

+ y <- x + z

+ return(y)

+ }

> z <- 1

> test2(1)

2 This statement is not entirely accurate, but provides a useful model.

© 2009 by Taylor & Francis Group, LLC

70 PROGRAMMING WITH FUNCTIONS

[1] 2

> z <- 2

> test2(1)

[1] 3

The moral of this example is that it is advisable to ensure that the variables
you use in a function either are arguments, or have been defined in the func-
tion. Exercise 4 gives a subtle example of what can go wrong. Conversely, an
example where we deliberately make use of this aspect of scoping, to simplify
our coding, is given in Section 12.4.1.

5.3 Optional arguments and default values

To give the argument argument_1 the default value x1 we use
argument_1 = x1 within the function definition. If an argument has a de-
fault value then it may be omitted when calling the function, in which case
the default is used.

If you omit an argument then there is possible ambiguity regarding which
arguments are assigned to which variables. To avoid this R assigns arguments
to variables from the left, unless an argument is named.

> test3 <- function(x = 1, y = 1, z = 1) {

+ return(x * 100 + y * 10 + z)

+ }

> test3(2, 2)

[1] 221

> test3(y = 2, z = 2)

[1] 122

5.4 Vector-based programming using functions

We have mentioned that many R functions are vectorised, meaning that given
vector input the function acts on each element separately, and a vector output
is returned. This is a very powerful aspect of R that allows for compact,
efficient, and readable code.

To further facilitate vector-based programming, R provides a family of pow-
erful and flexible functions that enable the vectorisation of user-defined func-
tions: apply, sapply, lapply, tapply, and mapply.

The effect of sapply(X, FUN) is to apply function FUN to every element

© 2009 by Taylor & Francis Group, LLC

VECTOR-BASED PROGRAMMING USING FUNCTIONS 71

of vector X. That is, sapply(X, FUN) returns a vector whose i-th element
is the value of the expression FUN(X[i]). If FUN has arguments other than
X[i], then they can be included using sapply(X, FUN, ...), which returns
FUN(X[i], ...) as the i-th element. That is, the arguments ... are passed
directly from sapply to FUN, thus allowing you to use a function with more
than one argument, though note that the values of the arguments ... are the
same each time. To vectorise over more than one argument, use mapply.

If you wish to apply a function that takes a vector argument to each of the
rows (or columns) of a matrix, then use the function apply, which is a more
flexible but more complex version of sapply.

We cover tapply in Section 6.4.1, and provide more detail about sapply and
lapply in Section 6.4.2. See also help(apply).

5.4.1 Example: density of primes primedensity.r

Here we give an example of sapply in action. The idea is to write a function
prime that tests if a given integer is prime. We then use sapply to apply
prime to the vector 2:n, so that we know all the primes less than or equal to
n.

Let ρ(n) be the number of primes less than or equal to n. Both Legendre and
Gauss famously asserted that

lim
n→∞

ρ(n) log(n)

n
→ 1.

The result was eventually proved some time later by Hadamard and de la
Vallée Poussin in 1896. The proof is hard, but we can easily check the re-
sult numerically. Our program uses the function cumsum(x), which returns
the cumulative sums of x as a vector. We apply it to a logical vector of
TRUE/FALSE values, which R coerces into a 1/0 vector before computing
the cumulative sum.

spuRs/resources/scripts/primedensity.r

estimate the density of primes (using a very inefficient algorithm)

clear the workspace

rm(list=ls())

prime <- function(n) {

returns TRUE if n is prime

assumes n is a positive integer

if (n == 1) {

is.prime <- FALSE

} else if (n == 2) {

is.prime <- TRUE

} else {

© 2009 by Taylor & Francis Group, LLC

72 PROGRAMMING WITH FUNCTIONS

is.prime <- TRUE

for (m in 2:(n/2)) {

if (n %% m == 0) is.prime <- FALSE

}

}

return(is.prime)

}

input

we consider primes <= n

n <- 1000

calculate the number of primes <= m for m in 2:n

num.primes[i] == number of primes <= i+1

m.vec <- 2:n

primes <- sapply(m.vec, prime)

num.primes <- cumsum(primes)

output

plot the actual prime density against the theoretical limit

par(mfrow = c(1, 2))

plot(m.vec, num.primes/m.vec, type = "l",

main = "prime density", xlab = "n", ylab = "")

lines(m.vec, 1/log(m.vec), col = "red")

plot(m.vec, num.primes/m.vec*log(m.vec), type = "l",

main = "prime density * log(n)", xlab = "n", ylab = "")

par(mfrow = c(1, 1))

Executing the command source("primedensity.r") gives the output of Fig-
ure 5.1.

We see that at the point n = 1000 the prime density ρ(n)/n is not particu-
larly close to 1/ log(n), though the rate of decay looks correct. To see better
convergence you will need to take much larger n, however this will take a long
time as it takes longer and longer to check each number to see if it is prime.

It does not help that the algorithm we used is inefficient. The function prime

can be made more efficient in two ways. First, we need only check for factors up
to
√
n, since if n = ab then at least one of a and b is less than or equal to

√
n.

Second, once we find one factor we don’t need to keep checking. Incorporating
these two refinements we get the following:

program spuRs/resources/scripts/prime.r

prime <- function(n) {

returns TRUE if n is prime

assumes n is a positive integer

if (n == 1) {

is.prime <- FALSE

© 2009 by Taylor & Francis Group, LLC

VECTOR-BASED PROGRAMMING USING FUNCTIONS 73

0 200 400 600 800

0
.2

0
.3

0
.4

0
.5

0
.6

prime density

n

0 200 400 600 800

0
.4

0
.6

0
.8

1
.0

1
.2

prime density * log(n)

n

Figure 5.1 The density of primes. Output from Example 5.4.1.

} else if (n == 2) {

is.prime <- TRUE

} else {

is.prime <- TRUE

m <- 2

m.max <- sqrt(n) # only want to calculate this once

while (is.prime && m <= m.max) {

if (n %% m == 0) is.prime <- FALSE

m <- m + 1

}

}

return(is.prime)

}

However, if what you really want to do is not just check that n is prime, but
rather find all the primes less than or equal to n, then a much more efficient
algorithm is the ‘Sieve of Eratosthenes’ (ca. 240 BC). An implementation of
Eratosthenes’ algorithm is given in Section 5.5.

© 2009 by Taylor & Francis Group, LLC

74 PROGRAMMING WITH FUNCTIONS

5.5 Recursive programming

Recursive programming is a powerful programming technique, made possible
by functions. A recursive program is simply one that calls itself. This is useful
because many algorithms are recursive in nature.

5.5.1 Example: n factorial 2 nfact2.r

We can write n! as n∗((n−1)!). We implement this recursive definition below.
Note that the program uses cat statements to provide some feedback, and we
have numbered the lines for the purpose of charting the program flow.

function nfact2.r

1 nfact2 <- function(n) {

calculate n factorial

2 if (n == 1) {

3 cat("called nfact2(1)\n")

4 return(1)

5 } else {

6 cat("called nfact2(", n, ")\n", sep = "")

7 return(n*nfact2(n-1))

8 }

9 }

> source("../scripts/nfact2.r")

> nfact2(6)

called nfact2(6)

called nfact2(5)

called nfact2(4)

called nfact2(3)

called nfact2(2)

called nfact2(1)

[1] 720

When you chart the flow through a recursive function, it is important to
remember that when a function is called, a new copy of the function is created
with a new set of function variables. For example, calling nfact2(3) gives the
program flow shown in Table 5.2. We write i.j to indicate line j within the
i-th nested function call.

5.5.2 Example: Sieve of Eratosthenes primesieve.r

The Sieve of Eratosthenes is an algorithm for finding all of the primes less
than or equal to a given number n. It works as follows:

© 2009 by Taylor & Francis Group, LLC

RECURSIVE PROGRAMMING 75

Table 5.2 Control flow through the function nfact2

nfactorial nfactorial nfactorial
(1st call) (2nd call) (3rd call)

line n n n comments

1.1 3
1.2 3 n 6= 1 so go to line 6
1.6 3 print ‘called nfactorial(3)’
2.1 3 2 nfactorial(2) called on line

1.7
2.2 3 2 n 6= 1 so go to line 6
2.6 3 2 print ‘called nfactorial(2)’
3.1 3 2 1 nfactorial(1) called on line

2.7
3.2 3 2 1 n = 1 so go to line 3
3.3 3 2 1 print ‘called nfactorial(1)’
3.4 3 2 1 return 1, delete variables,

return control to line 2.7
2.7 3 2 return 2, delete variables,

return control to line 1.7
1.7 3 return 6, delete variables,

return control to calling
line

1. Start with the list 2, 3, . . . , n and largest known prime p = 2.

2. Remove from the list all elements that are multiples of p (but keep p itself).

3. Increase p to the smallest element of the remaining list that is larger than
the current p.

4. If p is larger than
√
n then stop, otherwise go back to step 2.

Here is a recursive implementation of the algorithm. You may find that it
takes you some time to understand how it works.

program spuRs/resources/scripts/primesieve.r

loadable spuRs function

primesieve <- function(sieved, unsieved) {

finds primes using the Sieve of Eratosthenes

sieved: sorted vector of sieved numbers

unsieved: sorted vector of unsieved numbers

cat("sieved", sieved, "\n")

cat("unsieved", unsieved, "\n")

p <- unsieved[1]

© 2009 by Taylor & Francis Group, LLC

76 PROGRAMMING WITH FUNCTIONS

n <- unsieved[length(unsieved)]

if (p^2 > n) {

return(c(sieved, unsieved))

} else {

unsieved <- unsieved[unsieved %% p != 0]

sieved <- c(sieved, p)

return(primesieve(sieved, unsieved))

}

}

Here it is in action:

> rm(list = ls())

> source("../scripts/primesieve.r")

> primesieve(c(), 2:200)

[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

[17] 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131

[33] 137 139 149 151 157 163 167 173 179 181 191 193 197 199

It can be shown that the Sieve of Eratosthenes uses O(n(log n)(log logn))
operations to find all the primes less than or equal to n. (The notation g(x) =
O(f(x)) means there exists a constant c such that limx→∞ g(x)/f(x) ≤ c. In
other words g(x) grows no faster than a constant times f(x).) You should
try to calculate how many operations are used by the algorithm given in
Example 5.4.1. You will see that it is much less efficient.

5.6 Debugging functions

Often code will be used in circumstances under which you cannot control the
type of input (numeric, character, logical, etc.). Unexpected input can lead
to undesirable consequences, for example, the function could fail to work and
the user may not know why. Worse still, the function could seem to work
but return plausible nonsense, and the user may be none the wiser. It can be
worth performing simple checks on the input to be sure that it conforms to
your expectations. (Useful considerations here are: what will your function do
if the input is the wrong type, or the right type but incomplete?) The stop

function is useful in these circumstances: stop("Your message here.") will
cease processing and print the message to the user.

The browser function is very useful to invoke inside your own functions. The
command browser() will temporarily stop the program, and allow you to in-
spect its objects. You can also step through the code, executing one expression
at a time.

When in the browser environment, R commands can be entered and evalu-
ated as normally, but some commands have specific new interpretations. The
important ones are:

© 2009 by Taylor & Francis Group, LLC

DEBUGGING FUNCTIONS 77

n enters the step-through debugger. In step-through mode,

• n evaluates the current step and prints the next step to be evaluated.
The return key has the same effect.

• c continues evaluation from the next expression to the end of the cur-
rent set of expressions, whether that be the end of the current loop or
the end of the function (cont has the same effect).

• Q stops evaluation and exits the browser, returning the user to the
top-level prompt.

c stops the browser and continues evaluation, starting at the next statement
(the return key and cont both have the same effect).

A commented example of its application follows. my_fun attempts to multiply
its input by the (undefined) variable z

> my_fun <- function(x) {

+ browser()

+ y <- x * z

+ return(y)

+ }

> my_fun(c(1,2,3))

Called from: my_fun(c(1,2,3))

Browse[1]>

browser catches the execution and presents us with a prompt. Using n, we
will step through the function one line at a time. At each point, R shows us
the next line to be evaluated. We signify our input using curly braces; thus:
{ Enter }.

Browse[1]> n

debug: y <- x * z

Browse[1]>

Browse[1]> { Enter }

Error in my_fun(c(1, 2, 3)) : object "z" not found

The result makes it clear to us that the problem in our function is in the
line y <- x * z. Here, the problem is obvious: the code calls for an object z,
which does not exist. In any case, we can run the function again, return to
that point in the proceedings, and take a look around.

> my_fun(c(1,2,3))

Called from: my_fun(c(1,2,3))

Browse[1]>

© 2009 by Taylor & Francis Group, LLC

78 PROGRAMMING WITH FUNCTIONS

Browse[1]> n

debug: y <- x * z

Browse[1]>

We know that there is a problem here. We identify and examine the objects
to locate the problem.

Browse[1]> ls()

[1] "x"

Browse[1]>

Browse[1]> Q

>

It is clear that something is missing in the environment.

See ?browser and ?debug for more information, and note that we provide
more advice on debugging in Section 8.3.

5.7 Exercises

1. The (Euclidean) length of a vector v = (a0, . . . , ak) is the square root of the
sum of squares of its coordinates, that is

√

a2
0 + · · ·+ a2

k. Write a function
that returns the length of a vector.

2. In Exercise 3.9.2 you wrote a program to calculate h(x, n), the sum of a
finite geometric series. Turn this program into a function that takes two
arguments, x and n, and returns h(x, n).

Make sure you deal with the case x = 1.

3. In this question we simulate the rolling of a die. To do this we use the func-
tion runif(1), which returns a ‘random’ number in the range (0,1). To get a
random integer in the range {1, 2, 3, 4, 5, 6}, we use ceiling(6*runif(1)),
or if you prefer, sample(1:6,size=1) will do the same job.

(a). Suppose that you are playing the gambling game of the Chevalier de
Méré. That is, you are betting that you get at least one six in 4 throws
of a die. Write a program that simulates one round of this game and
prints out whether you win or lose.

Check that your program can produce a different result each time you
run it.

(b). Turn the program that you wrote in part (a) into a function sixes,
which returns TRUE if you obtain at least one six in n rolls of a fair die,
and returns FALSE otherwise. That is, the argument is the number of
rolls n, and the value returned is TRUE if you get at least one six and
FALSE otherwise.

How would you give n the default value of 4?

© 2009 by Taylor & Francis Group, LLC

EXERCISES 79

(c). Now write a program that uses your function sixes from part (b), to
simulate N plays of the game (each time you bet that you get at least
1 six in n rolls of a fair die). Your program should then determine the
proportion of times you win the bet. This proportion is an estimate of
the probability of getting at least one 6 in n rolls of a fair die.

Run the program for n = 4 and N = 100, 1000, and 10000, conducting
several runs for each N value. How does the variability of your results
depend on N?

The probability of getting no 6’s in n rolls of a fair die is (5/6)n, so the
probability of getting at least one is 1− (5/6)n. Modify your program
so that it calculates the theoretical probability as well as the simulation
estimate and prints the difference between them. How does the accuracy
of your results depend on N?

You may find the replicate function useful here.

(d). In part (c), instead of processing the simulated runs as we go, suppose
we first store the results of every game in a file, then later postprocess
the results.

Write a program to write the result of all N runs to a textfile
sixes_sim.txt, with the result of each run on a separate line. For
example, the first few lines of the textfile could look like

TRUE

FALSE

FALSE

TRUE

FALSE

.

.

Now write another program to read the textfile sixes_sim.txt and
again determine the proportion of bets won.

This method of saving simulation results to a file is particularly im-
portant when each simulation takes a very long time (hours or days),
in which case it is good to have a record of your results in case of a
system crash.

4. Consider the following program and its output

Program spuRs/resources/scripts/err.r

clear the workspace

rm(list=ls())

random.sum <- function(n) {

sum of n random numbers

x[1:n] <- ceiling(10*runif(n))

cat("x:", x[1:n], "\n")

return(sum(x))

© 2009 by Taylor & Francis Group, LLC

80 PROGRAMMING WITH FUNCTIONS

}

x <- rep(100, 10)

show(random.sum(10))

show(random.sum(5))

> source("../scripts/err.r")

x: 8 5 4 2 10 6 8 9 3 2

[1] 57

x: 2 2 3 5 9

[1] 521

Explain what is going wrong and how you would fix it.

5. For r ∈ [0, 4], the logistic map of [0, 1] into [0, 1] is defined as f(x) =
rx(1 − x).
Given a point x1 ∈ [0, 1] the sequence {xn}∞n=1 given by xn+1 = f(xn) is
called the discrete dynamical system defined by f .

Write a function that takes as parameters x1, r, and n, generates the first
n terms of the discrete dynamical system above, and then plots them.

The logistic map is a simple model for population growth subject to resource
constraints: if xn is the population size at year n, then xn+1 is the size at
year n+1. Type up your code, then see how the system evolves for different
starting values x1 and different values of r.

Figure 5.2 gives some typical output.

6. The Game of Life is a cellular automaton and was devised by the mathe-
matician J.H. Conway in 1970. It is played on a grid of cells, each of which is
either alive or dead. The grid of cells evolves in time and each cell interacts
with its eight neighbours, which are the cells directly adjacent horizontally,
vertically, and diagonally.

At each time step cells change as follows:

• A live cell with fewer than two neighbours dies of loneliness.

• A live cell with more than three neighbours dies of overcrowding.

• A live cell with two or three neighbours lives on to the next generation.

• A dead cell with exactly three neighbours comes to life.

The initial pattern constitutes the first generation of the system. The second
generation is created by applying the above rules simultaneously to every
cell in the first generation: births and deaths all happen simultaneously.
The rules continue to be applied repeatedly to create further generations.

Theoretically the Game of Life is played on an infinite grid, but in practice
we use a finite grid arranged as a torus. That is, if you are in the left-most
column of the grid then your left-hand neighbours are in the right-most
column, and if you are in the top row then your neighbours above are in
the bottom row.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 81

0 20 60 100

0.35

0.40

0.45

0.50

0.55

0.60

r = 1.5

n

x
[n

]

0 20 60 100

0.60

0.65

0.70

r = 2.9

n

x
[n

]

0 20 60 100

0.55

0.60

0.65

0.70

0.75

r = 3.1

n

x
[n

]

0 20 60 100

0.4

0.5

0.6

0.7

0.8

r = 3.5

n

x
[n

]

0 20 60 100

0.4

0.5

0.6

0.7

0.8

0.9

r = 3.56

n

x
[n

]

0 200 400

0.4

0.5

0.6

0.7

0.8

0.9

r = 3.57

n

x
[n

]

0 200 400

0.4

0.5

0.6

0.7

0.8

0.9

r = 3.58

n

x
[n

]

0 200 400

0.2

0.4

0.6

0.8

r = 3.8

n

x
[n

]

0 200 400

0.0

0.2

0.4

0.6

0.8

1.0

r = 4

n

x
[n

]

Figure 5.2 The logistic map described in Exercise 5.

Here is an implementation of the Game of Life in R. The grid of cells is
stored in a matrix A, where A[i,j] is 1 if cell (i, j) is alive and 0 otherwise.

program spuRs/resources/scripts/life.r

neighbours <- function(A, i, j, n) {

A is an n*n 0-1 matrix

calculate number of neighbours of A[i,j]

.

.

.

}

grid size

n <- 50

initialise lattice

A <- matrix(round(runif(n^2)), n, n)

finished <- FALSE

while (!finished) {

plot

© 2009 by Taylor & Francis Group, LLC

82 PROGRAMMING WITH FUNCTIONS

plot(c(1,n), c(1,n), type = "n", xlab = "", ylab = "")

for (i in 1:n) {

for (j in 1:n) {

if (A[i,j] == 1) {

points(i, j)

}

}

}

update

B <- A

for (i in 1:n) {

for (j in 1:n) {

nbrs <- neighbours(A, i, j, n)

if (A[i,j] == 1) {

if ((nbrs == 2) | (nbrs == 3)) {

B[i,j] <- 1

} else {

B[i,j] <- 0

}

} else {

if (nbrs == 3) {

B[i,j] <- 1

} else {

B[i,j] <- 0

}

}

}

}

A <- B

continue?

#input <- readline("stop? ")

#if (input == "y") finished <- TRUE

}

Note that this program contains an infinite loop! To stop it you will need
to use the escape or stop button (Windows or Mac) or control-C (Unix).
Alternatively, uncomment the last two lines. To get the program to run you
will need to complete the function neighbours(A, i, j, n), which calcu-
lates the number of neighbours of cell (i, j). (The program forest_fire.r

in Section 21.2.3 uses a similar function of the same name, which you may
find helpful.)

Once you get the program running, you might like to initialise it using the
glider gun, shown in Figure 5.3 (see glidergun.r in the spuRs package).
Many other interesting patterns have been discovered in the Game of Life.3

7. The number of ways you can choose r things from a set of n, ignoring the

3 M. Gardner, Wheels, Life, and Other Mathematical Amusements. Freeman, 1985.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 83

2 6 10 14 18 22 26 30 34 38 42 46 50

2
6

1
0

1
4

1
8

2
2

2
6

3
0

3
4

3
8

4
2

4
6

5
0

Figure 5.3 The glider gun, from Exercise 6.

order in which they are chosen, is
(

n
r

)

= n!/(r!(n − r)!). Let x be the first
element of the set of n things. We can partition the collection of possible
size r subsets into those that contain x and those that don’t: there must be
(

n−1
r−1

)

subsets of the first type and
(

n−1
r

)

subsets of the second type. Thus
(

n

r

)

=

(

n− 1

r − 1

)

+

(

n− 1

r

)

.

Using this and the fact that
(

n
n

)

=
(

n
0

)

= 1, write a recursive function to

calculate
(

n
r

)

.

8. A classic puzzle called the Towers of Hanoi uses a stack of rings of different
sizes, stacked on one of 3 poles, from the largest on the bottom to the
smallest on top (so that no larger ring is on top of a smaller ring). The
object is to move the stack of rings from one pole to another by moving
one ring at a time so that larger rings are never on top of smaller rings.

Here is a recursive algorithm to accomplish this task. If there is only one
ring, simply move it. To move n rings from the pole frompole to the pole
topole, first move the top n − 1 rings from frompole to the remaining
sparepole, then move the last and largest from frompole to the empty
topole, then move the n− 1 rings on sparepole to topole (on top of the
largest).

© 2009 by Taylor & Francis Group, LLC

84 PROGRAMMING WITH FUNCTIONS

The following program implements this algorithm. For example, if there
are initially 8 rings, we then move them from pole 1 to pole 3 by calling
moverings(8,1,3).

Program spuRs/resources/scripts/moverings.r

Tower of Hanoi

moverings <- function(numrings, frompole, topole) {

if (numrings == 1) {

cat("move ring 1 from pole", frompole,

"to pole", topole, "\n")

} else {

sparepole <- 6 - frompole - topole # clever

moverings(numrings - 1, frompole, sparepole)

cat("move ring", numrings, "from pole", frompole,

"to pole", topole, "\n")

moverings(numrings - 1, sparepole, topole)

}

return(invisible(NULL))

}

Check that the algorithm works for the cases moverings(3, 1, 3) and
moverings(4, 1, 3), then satisfy yourself that you understand why it
works.

Use mathematical induction to show that, using this algorithm, moving a
stack of n rings will require exactly 2n − 1 individual movements.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 6

Sophisticated data structures

As a programming language that has its roots in statistical analysis, it is nat-
ural that R will have provided sophisticated structures for the storage and
manipulation of data. In Chapter 2, we presented some primitive object types
that R uses to represent data. In this chapter we study R’s more sophisticated
data structures—lists and dataframes—that simplify data representation, ma-
nipulation, and analysis. The dataframe is like a matrix but extended to allow
for different object modes in different columns, and the list is a general data
storage object that can house pretty much any other kind of R object. We
also introduce the factor, which is a special kind of variable that is used to
represent categorical objects.

6.1 Factors

Statisticians typically recognise three basic types of variable: numeric, ordi-
nal, and categorical. Both ordinal and categorical variables take values from
some finite set, but the set is ordered for ordinal variables. For example in an
experiment one might grade the level of physical activity as low, medium, or
high, giving an ordinal measurement. An example of a categorical variable is
hair colour. In R the data type for ordinal and categorical vectors is factor.
The possible values of a factor are referred to as its levels.

There are two reasons for using factors. The first is that the behaviour of
many statistical models depend on the type of input and output variables, so
we need some way of distinguishing numeric, ordinal, and categorical variables.
The second is that factors can be stored very efficiently.

In practice, a factor is not terribly different from a character vector, except
that the elements of a factor can take only a limited number of values (which
R keeps a record of), and in statistical routines R is able to treat a factor
differently than a character vector. To create a factor we apply the function
factor to some vector x. By default the distinct values of x become the levels,
or we can specify them using the optional levels argument. The latter allows
us to have more levels than just those in x, which is useful if we wish to change
some of the values later. We check whether or not an object x is a factor using
is.factor(x), and list its levels using levels(x).

85

© 2009 by Taylor & Francis Group, LLC

86 SOPHISTICATED DATA STRUCTURES

> hair <- c("blond", "black", "brown", "brown", "black", "gray",

+ "none")

> is.character(hair)

[1] TRUE

> is.factor(hair)

[1] FALSE

> hair <- factor(hair)

> levels(hair)

[1] "black" "blond" "brown" "gray" "none"

> hair <- factor(hair, levels = c("black", "gray", "brown",

+ "blond", "white", "none"))

> table(hair)

hair

black gray brown blond white none

2 1 2 1 0 1

Note the use of the function table to calculate the number of times each
level of the factor appears. table can be applied to other modes of vectors as
well as factors. The output of the table function is a one-dimensional array
(as opposed to a vector). If more than one vector is passed to table, then it
produces a multidimensional array.

By default R arranges the levels of a factor alphabetically. If you specify
the levels yourself, then R uses the ordering that you provide. Beware that,
alphabetically speaking, the string 10 is less than the string 2, which can lead
to unexpected results if your levels start with numbers.

To create an ordered factor we just include the option ordered = TRUE in
the factor command. In this case it is usual to specify the levels of the factor
yourself, as that determines the ordering.

> phys.act <- c("L", "H", "H", "L", "M", "M")

> phys.act <- factor(phys.act, levels = c("L", "M", "H"),

+ ordered = TRUE)

> is.ordered(phys.act)

[1] TRUE

> phys.act[2] > phys.act[1]

[1] TRUE

Often abbreviations or numerical codes are used to represent the levels of a
factor. You can change the names of the levels using the labels argument.
If you do this then it is good practice to specify the levels too, so you know
which label goes with which level.

© 2009 by Taylor & Francis Group, LLC

FACTORS 87

> phys.act <- factor(phys.act, levels = c("L", "M", "H"),

+ labels = c("Low", "Medium", "High"), ordered = TRUE)

> table(phys.act)

phys.act

Low Medium High

2 2 2

> which(phys.act == "High")

[1] 2 3

Even though R usefully reports the results of operations upon factors by the
levels that we assign to them, R represents factors internally as integers. This
can cause considerable heartache if you treat factors carelessly, since R can
coerce the factor into a numeric vector without telling you.

> hair

[1] blond black brown brown black gray none

Levels: black gray brown blond white none

> as.vector(hair)

[1] "blond" "black" "brown" "brown" "black" "gray" "none"

> as.numeric(hair)

[1] 4 1 3 3 1 2 6

> c(hair, 5)

[1] 4 1 3 3 1 2 6 5

> x <- factor(c(0.8, 1.1, 0.7, 1.4, 1.4, 0.9))

> as.numeric(x) # does not recover x

[1] 2 4 1 5 5 3

> as.numeric(levels(x))[x] # does recover x

[1] 0.8 1.1 0.7 1.4 1.4 0.9

> as.numeric(as.character(x)) # does recover x

[1] 0.8 1.1 0.7 1.4 1.4 0.9

A final point to be aware of is that if you take a subset of a factor, you may
end up with missing levels, which can cause problems with some statistical
procedures. One solution is to define the factor again using the factor func-
tion, to force the recalculation of the levels. Alternatively you can pass the
drop = TRUE argument to the subscripting operator.

> table(hair[hair == "gray" | hair == "none"])

© 2009 by Taylor & Francis Group, LLC

88 SOPHISTICATED DATA STRUCTURES

black gray brown blond white none

0 1 0 0 0 1

> table(hair[hair == "gray" | hair == "none", drop = TRUE])

gray none

1 1

6.2 Dataframes

We have already seen how to work in R with numbers, strings, and logical
values. We have also worked with homogeneous collections of such objects,
grouped into numeric, character, or logical vectors. The defining characteristic
of the vector data structure in R is that all components must be of the same
mode. Obviously to work with datasets from real experiments we need a way
to group data of differing modes. Imagine for example a forestry experiment
in which we randomly selected a number of plots and then from each plot
selected a number of trees. For each tree we measured its height and diameter
(which are numeric), and also the species of tree (which is a character string).

Plot Tree Species Diameter (cm) Height (m)

2 1 DF 39 20.5
2 2 WL 48 33.0
3 2 GF 52 30.0
3 5 WC 36 20.7
3 8 WC 38 22.5
...

...
...

...
...

As experimental data collated in a table looks like an array, you may be
tempted to represent it in R as a matrix. But in R matrices cannot contain
heterogeneous data (data of different modes). Lists and dataframes are able
to store much more complicated data structures than matrices.

A dataframe is a list that is tailored to meet the practical needs of representing
multivariate datasets. It is a list of vectors restricted to be of equal length.
Each vector—or column—corresponds to a variable in an experiment, and each
row corresponds to a single observation or experimental unit. Each vector can
be of any of the basic modes of object.

Large dataframes are usually read into R from a file, using the function
read.table, which has the form:

read.table(file, header = FALSE, sep = "")

read.table returns a dataframe. There are many more optional arguments,
we have given the two most important. As always, use the built-in help for
more details: ?read.table.

© 2009 by Taylor & Francis Group, LLC

DATAFRAMES 89

file is the name of the file to be read from. The name can be relative to the
current working directory or absolute.

It is assumed that each row of the file corresponds to the observations of
a single trial. Thus there must be the same number of values in each row.
They may be of different modes, but the pattern of modes must be the
same in each row.

header indicates whether or not the first line of the file is a line of text giving
the variable names.

sep gives the character used to separate values in each row. The default ""

has the special interpretation that a variable amount of white space (spaces,
tabs, or returns) can separate values.

There are two commonly used variants of read.table. read.csv(file) is
for comma-separated data and is equivalent to read.table(file, header

= TRUE, sep = ","). read.delim(file) is for tab-delimitated data and is
equivalent to read.table(file, header = TRUE, sep = "\t").

If a header is present, it is used to name the columns of the dataframe. You can
assign your own column names after reading the dataframe (using the names

function, see below) or when you read it in, using the col.names argument,
which should be assigned a character vector the same length as the number of
columns. If there is no header and no col.names argument, then R uses the
names "V1", "V2", etc.

The experiment described at the start of this section was conducted at Upper
Flat Creek, part of the University of Idaho Experimental Forest. The results
are given in the file ufc.csv, the first few lines of which are given below. Note
that dbh stands for diameter at breast height.

"plot","tree","species","dbh.cm","height.m"

2,1,"DF",39,20.5

2,2,"WL",48,33

3,2,"GF",52,30

3,5,"WC",36,20.7

3,8,"WC",38,22.5

We note that the values are comma-separated and there is a header line. Thus
we read in the data using

> ufc <- read.csv("../data/ufc.csv")

We use the head and tail functions to examine the object

> head(ufc)

plot tree species dbh.cm height.m

1 2 1 DF 39 20.5

2 2 2 WL 48 33.0

3 3 2 GF 52 30.0

© 2009 by Taylor & Francis Group, LLC

90 SOPHISTICATED DATA STRUCTURES

4 3 5 WC 36 20.7

5 3 8 WC 38 22.5

6 4 1 WC 46 18.0

> tail(ufc)

plot tree species dbh.cm height.m

331 143 1 GF 28.0 21.0

332 143 2 GF 33.0 20.5

333 143 7 WC 47.8 20.5

334 144 1 GF 10.2 16.0

335 144 2 DF 31.5 22.0

336 144 4 WL 26.5 25.0

Each column, or variable, in a dataframe has a unique name. We can extract
that variable by means of the dataframe name, the column name, and a dollar
sign, viz:

> x <- ufc$height.m

> x[1:5]

[1] 20.5 33.0 30.0 20.7 22.5

We can also use the notation [[?]] to extract columns. For example
ufc$height.m, ufc[[5]], and ufc[["height.m"]] are all equivalent.

You can extract the elements of a dataframe directly using matrix indexing:

> ufc[1:5, 5]

[1] 20.5 33.0 30.0 20.7 22.5

To select more than one of the variables in a dataframe, in other words to
subset the dataframe, we use the notation [?]. We can also use names in this
situation: ufc[4:5] is equivalent to ufc[c("dbh.cm", "height.m")].

> diam.height <- ufc[4:5]

> diam.height[1:5,]

dbh.cm height.m

1 39 20.5

2 48 33.0

3 52 30.0

4 36 20.7

5 38 22.5

> is.data.frame(diam.height)

[1] TRUE

The result of selecting columns using [?] is another dataframe. This can
sometimes cause confusion when you select only one variable.

© 2009 by Taylor & Francis Group, LLC

DATAFRAMES 91

> x <- ufc[5]

> x[1:5]

Error in `[.data.frame`(x, 1:5) : undefined columns selected

When extracting variables using [[?]], we can only do so one at a time.
Selecting a column using [[?]] preserves the mode of the object that is being
extracted, whereas [?] keeps the mode of the object from which the extraction
is being made.

> mode(ufc)

[1] "list"

> mode(ufc[5])

[1] "list"

> mode(ufc[[5]])

[1] "numeric"

As well as reading in a dataframe from a file, we can construct one from a col-
lection of vectors and/or existing dataframes using the function data.frame,
which has the form:

data.frame(col1 = x1, col2 = x2, ..., df1, df2, ...)

Here col1, col2, etc., are the column names (given as character strings with-
out quotes) and x1, x2, etc., are vectors of equal length. df1, df2, etc., are
dataframes, whose columns must be the same length as the vectors x1, x2,
etc. Column names may be omitted, in which case R will choose a name for
you.

We can also create a new variable within a dataframe, by naming it and
assigning it a value. For example, for many tree species, the shape of a mature
trunk can be modelled as an elliptic paraboloid, which gives a volume of height
times cross-sectional area at breast height divided by two. That is, exactly half
the volume of a cylinder of the same height and diameter. We can calculate
this and add it to the ufc dataframe as follows:

> ufc$volume.m3 <- pi * (ufc$dbh.cm/200)^2 * ufc$height/2

> mean(ufc$volume.m3)

[1] 1.93294

Equivalently one could assign to ufc[6] or ufc["volume.m3"] or ufc[[6]]

or ufc[["volume.m3"]].

The command names(df) will return the names of the dataframe df as a
vector of character strings. To change the names of df you pass a vector of
character strings to names(df). For example:

© 2009 by Taylor & Francis Group, LLC

92 SOPHISTICATED DATA STRUCTURES

> (ufc.names <- names(ufc))

[1] "plot" "tree" "species" "dbh.cm" "height.m"

[6] "volume.m3"

> names(ufc) <- c("P", "T", "S", "D", "H", "V")

> names(ufc)

[1] "P" "T" "S" "D" "H" "V"

> names(ufc) <- ufc.names

Note that if df is a dataframe then names(df) is not a variable, even though we
can assign a value to it. Technically speaking names(df) is called an attribute.
In general the values an attribute can take are determined by the mode of
object it is attached to. In our case we must have exactly one name for each
column of the dataframe, and they must all be different.

Another example of an attribute is the dim (dimension) of a matrix. Provided
the total number of elements remains the same, we can change the shape of
a matrix just by changing the dim attribute; R will reassign values from the
old matrix to the new one column by column. However you should beware
that even though dim(df) will return the number of rows and columns of a
dataframe, dim(df) <- c(x, y) will just generate errors. The reason is that
dim is not an attribute of a dataframe; the function dim has been extended to
dataframes purely for convenience. We say more about attributes in general
in Section 8.4.

In addition to column or variable names, a dataframe also has row names.
By default the rows are named "1", "2", "3", etc., when the dataframe is
created, however both read.table and data.frame take the optional argu-
ment row.names, which you can use to specify the row names. The command
row.names(df)will return the row names of dataframe df as a character vec-
tor. Like names, row.names is an attribute of a dataframe, so you can change
the row names of df by making an assignment to row.names(df).

As with column names, if you delete a row then the names of the remaining
rows are unchanged.

The function subset is a convenient tool for selecting the rows of a dataframe,
especially when combined with the operator %in%. For example, suppose we
are only interested in the height of trees of species DF (Douglas Fir) or GF
(Grand Fir):

> fir.height <- subset(ufc, subset = species %in% c("DF", "GF"),

+ select = c(plot, tree, height.m))

> head(fir.height)

plot tree height.m

1 2 1 20.5

© 2009 by Taylor & Francis Group, LLC

DATAFRAMES 93

3 3 2 30.0

7 4 2 17.0

8 5 2 29.3

9 5 4 29.0

10 6 1 26.0

For vectors x and y (of the same mode), the expression x %in% y returns a
logical vector the same length as x, whose i-th element is TRUE if and only if
x[i] is an element of y. We say that the %in% operator is performing many-to-
many matching. The subset argument takes a logical vector and determines
which rows are selected. The select argument takes a vector of columns,
which are those selected. Note that the vector is of columns, not column
names. Also note that the expressions assigning values to subset and select

can directly use the columns of the target dataframe, which is given as the
first argument.

To write a dataframe to a file we use

write.table(x, file = "", append = FALSE, sep = " ",

row.names = TRUE, col.names = TRUE)

Details of the arguments follow. For a complete list type ?write.table.

x is the dataframe to be written.

file is the (name and) address of the file to write to. It will be created if it
does not exist. The default is to write to the screen.

append indicates whether or not to append to or overwrite the file.

sep is the character used to separate values within a row. Rows are separated
by new lines.

row.names either a logical value indicating whether or not to include the
existing row names as the first column, or a character vector of row names.

col.names either a logical value indicating whether or not to include the
existing column names as the first row, or a character vector of column
names.

We can identify the complete rows from a two-dimensional object such as a
dataframe (that is, rows that have no missing values) via the complete.cases
command. We can easily remove rows with missing values using the na.omit

function.

6.2.1 Attaching

For your convenience, R allows you to attach a dataframe to the workspace.
When attached, the variables in the dataframe can be referred to without
being prefixed by the name of the dataframe.

© 2009 by Taylor & Francis Group, LLC

94 SOPHISTICATED DATA STRUCTURES

> attach(ufc)

> max(height.m[species == "GF"])

[1] 47

To detach the dataframe df use the command detach(df). When you attach
a dataframe R actually makes a copy of each variable, which is deleted when
the dataframe is detached. Thus, if you change an attached variable you do
not change the dataframe.

> height.m <- 0 #vandalism

> max(height.m)

[1] 0

> max(ufc$height.m)

[1] 47

> detach(ufc)

> max(ufc$height.m)

[1] 47

6.3 Lists

We have seen that a vector is an indexed set of objects. All the elements of a
vector have to be of the same type—numeric, character, or logical—which is
called the mode of the vector. Like a vector, a list is an indexed set of objects
(and so has a length), but unlike a vector the elements of a list can be of
different types, including other lists! The mode of a list is list.

A list is just a generic container for other objects and the power and utility
of lists comes from this generality. A list might contain an individual mea-
surement, a vector of observations on a single response variable, a dataframe,
or even a list of dataframes containing the results of several experiments. In
R lists are often used for collecting and storing complicated function output.
Lists become invaluable devices as we become more comfortable with R, and
start to think of different ways to solve our problems. Dataframes are special
kinds of lists.

A list is created using the list(...) command, with comma-separated ar-
guments. Single square brackets are used to select a sublist; double square
brackets are used to extract a single element.

> my.list <- list("one", TRUE, 3, c("f", "o", "u", "r"))

> my.list[[2]]

[1] TRUE

© 2009 by Taylor & Francis Group, LLC

LISTS 95

> mode(my.list[[2]])

[1] "logical"

> my.list[2]

[[1]]

[1] TRUE

> mode(my.list[2])

[1] "list"

> my.list[[4]][1]

[1] "f"

> my.list[4][1]

[[1]]

[1] "f" "o" "u" "r"

When displaying a list, R uses double square brackets [[1]], [[2]], etc., to
indicate list elements, then single square brackets [1], [2], etc., to indicate
vector elements.

The elements of a list can be named when the list is created, using arguments
of the form name1 = x1, name2 = x2, etc., or they can be named later by
assigning a value to the names attribute. Unlike a dataframe, the elements
of a list do not have to be named. Names can be used (within quotes) when
indexing with single or double square brackets, or they can be used (with or
without quotes) after a dollar sign to extract a list element.

> my.list <- list(first = "one", second = TRUE, third = 3,

+ fourth = c("f", "o", "u", "r"))

> names(my.list)

[1] "first" "second" "third" "fourth"

> my.list$second

[1] TRUE

> names(my.list) <- c("First element", "Second element",

+ "Third element", "Fourth element")

> my.list$"Second element"

[1] TRUE

> x <- "Second element"

> my.list[[x]]

[1] TRUE

© 2009 by Taylor & Francis Group, LLC

96 SOPHISTICATED DATA STRUCTURES

Note the deployment of double quotes to extract the nominated element of
the list, even though the name includes spaces. Single quotes and backticks
will serve the same purpose.

To flatten a list x, that is convert it to a vector, we use unlist(x).

> x <- list(1, c(2, 3), c(4, 5, 6))

> unlist(x)

[1] 1 2 3 4 5 6

If the list object itself comprises lists, then these lists are also flattened, unless
the argument recursive = FALSE is set.

Many functions produce list objects as their output. For example, when we
fit a least squares regression, the regression object itself is a list, and can be
manipulated using list operations. Least squares regression fits a straight line
y = ax + b to a set of observations {(xi, yi)}ni=1. In R this can be achieved
using the lm function,

> lm.xy <- lm(y ~ x, data = data.frame(x = 1:5, y = 1:5))

> mode(lm.xy)

[1] "list"

> names(lm.xy)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

At this point we are not interested in how the straight line is fitted, but
we observe that lm returns a list: the first element (called coefficients) is
a vector giving a and b; the second element (called residuals) is a vector
giving yi − axi − b for all i; the third element (called fitted.values) is a
vector giving axi + b; and so on.

6.3.1 Example: Australian rules football

The Victorian Football League (VFL) was founded in 1897, then in 1990
became the Australian Football League (AFL). Teams that have played in the
VFL and AFL, and the years in which they won the premiership, are presented
in Table 6.1.

We can store this data as a list, where each element is a vector of dates, named
according to the name of the team.

© 2009 by Taylor & Francis Group, LLC

LISTS 97

Table 6.1 VFL/AFL teams and the years in which they have won the premiership

Adelaide 1997, 1998
Carlton 1906, 1907, 1908, 1914, 1915, 1938, 1945, 1947,

1968, 1970, 1972, 1979, 1981, 1982, 1987, 1995
Collingwood 1902, 1903, 1910, 1917, 1919, 1927, 1928, 1929,

1930, 1935, 1936, 1953, 1958, 1990
Essendon 1897, 1901, 1911, 1912, 1923, 1924, 1942, 1946,

1949, 1950, 1962, 1965, 1984, 1985, 1993, 2000
Fitzroy/Brisbane Lions 1898, 1899, 1904, 1905, 1913, 1916, 1922, 1944,

2001, 2002, 2003
Footscray/Western Bulldogs 1954
Fremantle
Geelong 1925, 1931, 1937, 1951, 1952, 1963, 2007
Hawthorn 1961, 1971, 1976, 1978, 1983, 1986, 1988, 1989,

1991, 2008
Melbourne 1900, 1926, 1939, 1940, 1941, 1948, 1955, 1956,

1957, 1959, 1960, 1964
North Melbourne/Kangaroos 1975, 1977, 1996, 1999
Port Adelaide 2004
Richmond 1920, 1921, 1932, 1934, 1943, 1967, 1969, 1973,

1974, 1980
Saint Kilda 1966
South Melbourne/Sydney 1909, 1918, 1933, 2005
West Coast 1992, 1994, 2006

> premierships <- list(

+ Adelaide = c(1997, 1998),

+ Carlton = c(1906, 1907, 1908, 1914, 1915, 1938, 1945, 1947,

+ 1968, 1970, 1972, 1979, 1981, 1982, 1987, 1995),

+ Collingwood = c(1902, 1903, 1910, 1917, 1919, 1927, 1928, 1929,

+ 1930, 1935, 1936, 1953, 1958, 1990),

+ Essendon = c(1897, 1901, 1911, 1912, 1923, 1924, 1942, 1946,

+ 1949, 1950, 1962, 1965, 1984, 1985, 1993, 2000),

+ Fitzroy_Brisbane = c(1898, 1899, 1904, 1905, 1913, 1916, 1922, 1944,

+ 2001, 2002, 2003),

+ Footscray_W.B. = c(1954),

+ Fremantle = c(),

+ Geelong = c(1925, 1931, 1937, 1951, 1952, 1963, 2007),

+ Hawthorn = c(1961, 1971, 1976, 1978, 1983, 1986, 1988, 1989, 1991, 2008),

+ Melbourne = c(1900, 1926, 1939, 1940, 1941, 1948, 1955, 1956,

+ 1957, 1959, 1960, 1964),

+ N.Melb_Kangaroos = c(1975, 1977, 1996, 1999),

+ PortAdelaide = c(2004),

+ Richmond = c(1920, 1921, 1932, 1934, 1943, 1967, 1969, 1973,

+ 1974, 1980),

+ StKilda = c(1966),

+ S.Melb_Sydney = c(1909, 1918, 1933, 2005),

© 2009 by Taylor & Francis Group, LLC

98 SOPHISTICATED DATA STRUCTURES

+ WestCoast = c(1992, 1994, 2006)

+)

To summarise the structure of a list (or dataframe), use str()

> str(premierships)

List of 16

$ Adelaide : num [1:2] 1997 1998

$ Carlton : num [1:16] 1906 1907 1908 1914 1915 ...

$ Collingwood : num [1:14] 1902 1903 1910 1917 1919 ...

$ Essendon : num [1:16] 1897 1901 1911 1912 1923 ...

$ Fitzroy_Brisbane: num [1:11] 1898 1899 1904 1905 1913 ...

$ Footscray_W.B. : num 1954

$ Fremantle : NULL

$ Geelong : num [1:7] 1925 1931 1937 1951 1952 ...

$ Hawthorn : num [1:10] 1961 1971 1976 1978 1983 ...

$ Melbourne : num [1:12] 1900 1926 1939 1940 1941 ...

$ N.Melb_Kangaroos: num [1:4] 1975 1977 1996 1999

$ PortAdelaide : num 2004

$ Richmond : num [1:10] 1920 1921 1932 1934 1943 ...

$ StKilda : num 1966

$ S.Melb_Sydney : num [1:4] 1909 1918 1933 2005

$ WestCoast : num [1:3] 1992 1994 2006

A natural question to ask is who won the premiership on a given year.

> year <- 1967

> for (i in 1:length(premierships)) {

+ if (year %in% premierships[[i]]) {

+ winner <- names(premierships)[i]

+ }

+ }

> winner

[1] "Richmond"

In the next section we see how to vectorise this example.

6.4 The apply family

R provides many techniques for manipulating lists and dataframes. In partic-
ular R has several functions that allow you to easily apply a function to all or
selected elements of a list or dataframe.

© 2009 by Taylor & Francis Group, LLC

THE APPLY FAMILY 99

6.4.1 tapply

tapply is a lovely function that allows us to vectorise the application of a
function to subsets of data. In conjunction with factors, this can make for
some exceptionally efficient code. It has the form

tapply(X, INDEX, FUN, ...),

where the additional arguments are as follows:

X is the target vector to which the function will be applied;

INDEX is a factor, the same length as X, which is used to group the elements
of X (Note that INDEX will be automatically coerced to a factor if it is not
one already);

FUN is the function to be applied. It is applied to subvectors of X corresponding
to a single level of INDEX.

tapply returns a one-dimensional array the same length as levels(INDEX),
whose i-th element is the result of applying FUN to X[INDEX ==

levels(INDEX)[i]] (plus any additional arguments given by ...).

As an example, consider again the Upper Flat Creek data. Using tapply we
obtain average height by species as follows:

> tapply(ufc$height.m, ufc$species, mean)

DF GF WC WL

25.30000 24.34322 23.48777 25.47273

We can reduce the noise as follows:

> round(tapply(ufc$height.m, ufc$species, mean), digits = 1)

DF GF WC WL

25.3 24.3 23.5 25.5

To find out how many examples we have of each species we could use table,
or equivalently:

> tapply(ufc$species, ufc$species, length)

DF GF WC WL

57 118 139 22

The argument INDEX can also be a list of factors, in which case the output
is an array with dimensions given by the length of each factor, with each
element given by applying FUN to a subset of X indexed by a specific factor
combination. For example, we can average height by species and plot:

© 2009 by Taylor & Francis Group, LLC

100 SOPHISTICATED DATA STRUCTURES

> ht.ps <- tapply(ufc$height.m, ufc[c("plot", "species")], mean)

> round(ht.ps[1:5,], digits=1)

species

plot DF GF WC WL

2 20.5 NA NA 33

3 NA 30 21.6 NA

4 17.0 NA 18.0 NA

5 29.3 29 NA NA

6 26.0 NA 28.2 NA

Note from the missing values that most plots contain only a couple of different
species.

6.4.2 Applying functions to lists lapply and sapply

We have used the sapply and apply commands to apply a function to a vector
or an array, for example to calculate the row and column totals for a matrix.
To apply a function to a list we use either sapply or lapply.

The lapply(X, FUN, ...) function applies the function FUN to each element
of the list X and returns a list. The sapply(X, FUN, ...) function applies
the function FUN to each element of X, which can be a list or a vector, and
by default will try to return the results in a vector or a matrix, if this makes
sense, otherwise in a list. Extra parameters can be passed to FUN by way of
the

For example, to obtain the mean diameter, height, and volume of trees in the
Upper Flat Creek dataset:

> lapply(ufc[4:6], mean)

$dbh.cm

[1] 37.41369

$height.m

[1] 24.22560

$volume.m3

[1] 1.93294

> sapply(ufc[4:6], mean)

dbh.cm height.m volume.m3

37.41369 24.22560 1.93294

Note that the output of the command sapply(ufc[4:6], mean) is a vector
with a names attribute.

Using the VFL/AFL premiership data, here is a vectorized way to find who
won in 1967.

© 2009 by Taylor & Francis Group, LLC

THE APPLY FAMILY 101

> in.1967 <- function(x) return(1967 %in% x)

> names(premierships)[sapply(premierships, in.1967)]

[1] "Richmond"

Again using sapply we can easily calculate the number of premierships won
by each team

> sort(sapply(premierships, length))

Fremantle Footscray_W.B. PortAdelaide StKilda

0 1 1 1

Adelaide WestCoast N.Melb_Kangaroos S.Melb_Sydney

2 3 4 4

Geelong Hawthorn Richmond Fitzroy_Brisbane

7 10 10 11

Melbourne Collingwood Carlton Essendon

12 14 16 16

To restrict the list of premierships to the post-1990 AFL era, we can use
lapply

> AFL <- function(x) x[x >= 1990]

> premierships.AFL <- lapply(premierships, AFL)

> str(premierships.AFL)

List of 16

$ Adelaide : num [1:2] 1997 1998

$ Carlton : num 1995

$ Collingwood : num 1990

$ Essendon : num [1:2] 1993 2000

$ Fitzroy_Brisbane: num [1:3] 2001 2002 2003

$ Footscray_W.B. : num(0)

$ Fremantle : NULL

$ Geelong : num 2007

$ Hawthorn : num [1:2] 1991 2008

$ Melbourne : num(0)

$ N.Melb_Kangaroos: num [1:2] 1996 1999

$ PortAdelaide : num 2004

$ Richmond : num(0)

$ StKilda : num(0)

$ S.Melb_Sydney : num 2005

$ WestCoast : num [1:3] 1992 1994 2006

To restrict the list to premierships between the years 1970 and 1979 we can
do the following:

> between.years <- function(x, a, b) x[a <= x & x <= b]

> premierships.1970s <- lapply(premierships, between.years,

+ 1970, 1979)

© 2009 by Taylor & Francis Group, LLC

102 SOPHISTICATED DATA STRUCTURES

6.4.3 Example: tree growth

A sample of 66 Grand Fir trees (Abies grandis) was selected from national
forests around northern and central Idaho. The trees were selected to be dom-
inant in their environment, with no visible evidence of crown damage, forks,
broken tops, etc. For each tree the habitat type and the national forest from
which it came were recorded. We have data from nine national forests and six
different habitat types.1

For each tree the height, diameter, and age were measured (age was measured
using tree rings), then the tree was split lengthways to determine the height
and diameter of the tree at any age. In this instance height and diameter were
recorded for the age the tree was felled and then at ten-year periods going
back in time. The diameter of the tree was measured at a height of 1.37 m
(4′6′′), which is called breast height in forestry. The height refers to the height
of the main trunk only.

The data are provided in the comma-separated file treegrowth.csv, with
each row giving diameter at breast height (dbh) in inches and height in feet,
for a single tree at a given age. This dataset is provided in the package that
accompanies this book.

For example, here are the rows relevant to the first two trees:

> treeg <- read.csv("../data/treegrowth.csv")

> treeg[1:15,]

tree.ID forest habitat dbh.in height.ft age

1 1 4 5 14.6 71.4 55

2 1 4 5 12.4 61.4 45

3 1 4 5 8.8 40.1 35

4 1 4 5 7.0 28.6 25

5 1 4 5 4.0 19.6 15

6 2 4 5 20.0 103.4 107

7 2 4 5 18.8 92.2 97

8 2 4 5 17.0 80.8 87

9 2 4 5 15.9 76.2 77

10 2 4 5 14.0 70.7 67

11 2 4 5 11.7 56.6 57

12 2 4 5 10.6 43.0 47

13 2 4 5 8.0 35.6 37

14 2 4 5 6.2 29.3 27

15 2 4 5 3.4 16.2 17

An alternative way of structuring the data is to collect the measurements for
each tree together in a single variable. We will use a list whose elements are

1 A.R. Stage, 1963. A mathematical approach to polymorphic site index curves for grand
fir. Forest Science 9, 167–180.

© 2009 by Taylor & Francis Group, LLC

THE APPLY FAMILY 103

the tree ID number; forest code; habitat code; and three vectors giving age,
dbh, and height measurements. Each tree record will then be a single element
of a larger list called trees.

> trees <- list() #list of trees

> n <- 0 #number of trees in the list of trees

> #start collecting information on current tree

> current.ID <- treeg$tree.ID[1]

> current.age <- treeg$age[1]

> current.dbh <- treeg$dbh.in[1]

> current.height <- treeg$height.ft[1]

> for (i in 2:dim(treeg)[1]) {

+ if (treeg$tree.ID[i] == current.ID) {

+ #continue collecting information on current tree

+ current.age <- c(treeg$age[i], current.age)

+ current.dbh <- c(treeg$dbh.in[i], current.dbh)

+ current.height <- c(treeg$height.ft[i], current.height)

+ } else {

+ #add previous tree to list of trees

+ n <- n + 1

+ trees[[n]] <- list(tree.ID = current.ID,

+ forest = treeg$forest[i-1],

+ habitat = treeg$habitat[i-1],

+ age = current.age,

+ dbh.in = current.dbh,

+ height.ft = current.height)

+ #start collecting information on current tree

+ current.ID <- treeg$tree.ID[i]

+ current.age <- treeg$age[i]

+ current.dbh <- treeg$dbh.in[i]

+ current.height <- treeg$height.ft[i]

+ }

+ }

> #add final tree to list of trees

> n <- n + 1

> trees[[n]] <- list(tree.ID = current.ID,

+ forest = treeg$forest[i],

+ habitat = treeg$habitat[i],

+ age = current.age,

+ dbh.in = current.dbh,

+ height.ft = current.height)

Let’s see how the data on the first two trees is now structured.

> str(trees[1:2])

List of 2

$:List of 6

..$ tree.ID : int 1

..$ forest : int 4

© 2009 by Taylor & Francis Group, LLC

104 SOPHISTICATED DATA STRUCTURES

..$ habitat : int 5

..$ age : int [1:5] 15 25 35 45 55

..$ dbh.in : num [1:5] 4 7 8.8 12.4 14.6

..$ height.ft: num [1:5] 19.6 28.6 40.1 61.4 71.4

$:List of 6

..$ tree.ID : int 2

..$ forest : int 4

..$ habitat : int 5

..$ age : int [1:10] 17 27 37 47 57 67 77 87 97 107

..$ dbh.in : num [1:10] 3.4 6.2 8 10.6 11.7 14 15.9 17 18.8 20

..$ height.ft: num [1:10] 16.2 29.3 35.6 43 56.6 ...

Here we used loops to split the data up. Phil Spector suggested a more compact
solution that we provide below, with an interesting twist.

> getit <- function(name, x) {

+ if (all(x[[name]] == x[[name]][1])) {

+ x[[name]][1]

+ }

+ else {

+ x[[name]]

+ }

+ }

> repts <- function(x) {

+ res <- lapply(names(x), getit, x)

+ names(res) <- names(x)

+ res

+ }

> trees.ps <- lapply(split(treeg, treeg$tree.ID), repts)

> str(trees.ps[1:2])

List of 2

$ 1:List of 6

..$ tree.ID : int 1

..$ forest : int 4

..$ habitat : int 5

..$ dbh.in : num [1:5] 14.6 12.4 8.8 7 4

..$ height.ft: num [1:5] 71.4 61.4 40.1 28.6 19.6

..$ age : int [1:5] 55 45 35 25 15

$ 2:List of 6

..$ tree.ID : int 2

..$ forest : int 4

..$ habitat : int 5

..$ dbh.in : num [1:10] 20 18.8 17 15.9 14 11.7 10.6 8 6.2 3.4

..$ height.ft: num [1:10] 103.4 92.2 80.8 76.2 70.7 ...

..$ age : int [1:10] 107 97 87 77 67 57 47 37 27 17

Suppose now that we would like to plot a curve of height versus age for each
tree. First we need to know the maximum age and height so that we can set
up the plot region.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 105

> max.age <- 0

> max.height <- 0

> for (i in 1:length(trees)) {

+ if (max(trees[[i]]$age) > max.age)

+ max.age <- max(trees[[i]]$age)

+ if (max(trees[[i]]$height.ft) > max.height)

+ max.height <- max(trees[[i]]$height.ft)

+ }

Alternatively, here is a more concise way of calculating max.age and
max.height, using sapply.

> my.max <- function(x, i) max(x[[i]]) #max of element i of list x

> max.age <- max(sapply(trees, my.max, "age"))

> max.height <- max(sapply(trees, my.max, "height.ft"))

The plotting is now straightforward. See Figure 6.1 for the output.

> plot(c(0, max.age), c(0, max.height), type = "n", xlab = "age (years)",

+ ylab = "height (feet)")

> for (i in 1:length(trees)) lines(trees[[i]]$age, trees[[i]]$height.ft)

In the next chapter we will present functions that can create graphics like that
presented in Figure 6.1 directly from the dataframe.

6.5 Exercises

1. From the spuRs package you can obtain the dataset ufc.csv, with forest
inventory observations from the University of Idaho Experimental Forest.
Try to answer the following questions:

(a). What are the species of the three tallest trees? Of the five fattest trees?
(Use the order command.)

(b). What are the mean diameters by species?

(c). What are the two species that have the largest third quartile diameters?

(d). What are the two species with the largest median slenderness
(height/diameter) ratios? How about the two species with the smallest
median slenderness ratios?

(e). What is the identity of the tallest tree of the species that was the fattest
on average?

2. Create a list in R containing the following information:

• your full name,

• gender,

• age,

• a list of your 3 favourite movies,

© 2009 by Taylor & Francis Group, LLC

106 SOPHISTICATED DATA STRUCTURES

0 50 100 150

0
5

0
1

0
0

1
5

0
2

0
0

age (years)

h
e
ig

h
t
(f

e
e
t)

Figure 6.1 Height against age for all 66 trees in the tree growth dataset. See Exam-
ple 6.4.3.

• the answer to the question ‘Do you support the United Nations?’, and

• a list of the birth day and month of your immediate family members
including you (identified by first name).

Do the same for three close friends, then write a program to check if there
are any shared birthdays or names in the four lists.

Produce a table of birthdays by birth month and a table of the mean number
of immediate family members by gender.

3. Using the tree growth data (Section 6.4.3, available from the spuRs pack-
age), plot tree age versus height for each tree, broken down by habitat
type. That is, create a grid of 5 plots, each showing the trees from a single
habitat.

For the curious, the habitats corresponding to codes 1 through 5 are:
Ts/Pach, Ts/Op, Th/Pach, AG/Pach, and PA/Pach. These codes refer
respectively to the climax tree species, which is the most shade-tolerant
species that can grow on the site, and the dominant understorey plant.
Ts refers to Thuja plicata and Tsuga heterophylla, Th refers to just Thuja
plicata, AG is Abies grandis, PA is Picea engelmanii and Abies lasiocarpa,
Pach is Pachistima myrsinites, and Op is the nasty Oplopanaz horridurn.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 107

Abies grandis is considered a major climax species for AG/Pach, a ma-
jor seral species for Th/Pach and PA/Pach, and a minor seral species for
Ts/Pach and Ts/Op. Loosely speaking, a community is seral if there is
evidence that at least some of the species are temporary, and climax if the
community is self-regenerating.2

4. Pascal’s triangle.

Suppose we represent Pascal’s triangle as a list, where item n is row n of
the triangle. For example, Pascal’s triangle to depth four would be given
by

list(c(1), c(1, 1), c(1, 2, 1), c(1, 3, 3, 1))

The n-th row can be obtained from row n− 1 by adding all adjacent pairs
of numbers, then prefixing and suffixing a 1.

Write a function that, given Pascal’s triangle to depth n, returns Pascal’s
triangle to depth n + 1. Verify that the eleventh row gives the binomial
coefficients

(

10
i

)

for i = 0, 1, . . . , 10.

5. Horse racing.

The following is an excerpt from the file racing.txt (available in the spuRs
archive), which has details of nine horse races run in the U.K. in July 1998.

1 0 54044 4.5 53481 4 53526 4 53526 3.5 53635 3 53792

1 1 54044 1.375 53481 1.5 53635 1.5 53635 1.375 53928 1.25 54026

1 0 54044 1.75 53481 1.625 53792 1.625 53792 1.75 53936

1 0 54044 14 53481 20 53635 20 53635 16 53868 20 54026

1 0 54044 20 53481 25 53635 25 53635

1 0 54044 33 53481 50 53635 50 53635 66 53929

1 0 54044 20 53481 25 53635 25 53635 33 53792 50 54045

2 1 55854 6 55709 7 56157 7 56157

2 0 55854 6 55138 6.5 55397 6.5 55397 7 55825 7 56157

...

In each row, the first number gives the race number. There is one line for
each horse in each race. The next number is 0 or 1 depending on whether the
horse lost or won the race. Numbers then come in pairs (ti, pi), i = 1, 2, . . .,
where ti is a time and pi a price. That is, the odds on the horse at time ti
were pi : 1.

Import this data into an object with the following structure:

• A list with one element per race.

• Each race is a list with one element per horse.

• Each horse is a list with three elements: a logical variable indicating
win/loss, a vector of times, and a vector of prices.

2 R. Daubenmire, 1952. Forest Vegetation of Northern Idaho and Adjacent Washington,
and Its Bearing on Concepts of Vegetation Classification, Ecological Monographs 22,
301–330.

© 2009 by Taylor & Francis Group, LLC

108 SOPHISTICATED DATA STRUCTURES

Write a function that, given a single race, plots log price against time for
each horse, on the same graph. Highlight the winning horse in a different
colour.

6. Here is a recursive program that prints all the possible ways that an amount
x (in cents) can be made up using Australian coins (which come in 5, 10,
20, 50, 100, and 200 cent denominations). To avoid repetition, each possible
decomposition is ordered.

Program spuRs/resources/scripts/change.r

change <- function(x, y.vec = c()) {

finds possible ways of making up amount x using Australian coins

x is given in cents and we assume it is divisible by 5

y.vec are coins already used (so total amount is x + sum(y.vec))

if (x == 0) {

cat(y.vec, "\n")

} else {

coins <- c(200, 100, 50, 20, 10, 5)

new.x <- x - coins

new.x <- new.x[new.x >= 0]

for (z in new.x) {

y.tmp <- c(y.vec, x - z)

if (identical(y.tmp, sort(y.tmp))) {

change(z, y.tmp)

}

}

}

return(invisible(NULL))

}

Rewrite this program so that instead of writing its output to the screen
it returns it as a list, where each element is a vector giving a possible
decomposition of x.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 7

Better graphics

7.1 Introduction

One major selling point for R is that it has better graphics capabilities than
many of the commercial alternatives. Whether you want quick graphs that help
you understand the structure of your data, or publication-quality graphics that
accurately communicate your message to your readers, R will suffice. You can
get an initial overview of R’s graphic capabilities by typing demo(graphics).

This chapter provides a deeper exposition of the graphical capabilities of R,
building on the modest offering in Chapter 4. We cover the construction of
simple graphics, in terms of the individual pieces that make up the default
plot. We discuss the graphics parameters that are used to fine-tune individual
graphs and the relationships between multiple graphics on a page. We show
how to save graphical objects in various formats (pdf, postscript, etc.). Finally,
we present some specific R graphical tools for the presentation of multivariate
data (lattice graphs, which simplify the construction of conditioning plots)
and some 3D-graphic construction tools.

This chapter will demonstrate some of R’s graphical capacity using a forest
inventory dataset, taken from the Upper Flat Creek stand of the University
of Idaho Experimental Forest. We read the data, then print a summary of its
structure using str:

> ufc <- read.csv("../data/ufc.csv")

> str(ufc)

'data.frame': 336 obs. of 5 variables:

$ plot : int 2 2 3 3 3 4 4 5 5 6 ...

$ tree : int 1 2 2 5 8 1 2 2 4 1 ...

$ species : Factor w/ 4 levels "DF","GF","WC",..: 1 4 2 3 3 3 1 1 2 1 ...

$ dbh.cm : num 39 48 52 36 38 46 25 54.9 51.8 40.9 ...

$ height.m: num 20.5 33 30 20.7 22.5 18 17 29.3 29 26 ...

The variables height.m and dbh.cm are tree height in metres, and the tree
bole diameter in centimetres, measured at 1.37 metres from the ground, re-

109

© 2009 by Taylor & Francis Group, LLC

110 BETTER GRAPHICS

spectively. The latter is called ‘diameter at breast height’ in forestry in the
USA, hence the acronym dbh.1

The graphics start at a very simple level, for example

> plot(ufc$dbh.cm, ufc$height.m)

will open a graphical window and draw a scatterplot of dbh against height
for the Upper Flat Creek data, labelling the axes appropriately. A modest
addition will provide more informative axis labels (Figure 7.1).

> plot(ufc$dbh.cm, ufc$height.m, xlab = "Diameter (cm)",

+ ylab = "Height (m)")

20 40 60 80 100

1
0

2
0

3
0

4
0

Diameter (cm)

H
e

ig
h

t
(m

)

Figure 7.1 Diameter/Height plot for all species of Upper Flat Creek inventory data.
Each point represents a tree.

The plot command offers a wide variety of options for customising the
graphic. Each of the following arguments can be used within the plot state-
ment, singly or together, separated by commas.

type = "?" determines the type of plot, with options:

"p" for points (the default);

"l" for lines;

"b" for both, with gaps in the lines for the points;

1 ‘Breast height’ for forestry in most other countries is 1.3 metres. Presumably, US foresters
are taller.

© 2009 by Taylor & Francis Group, LLC

GRAPHICS PARAMETERS: PAR 111

"c" for the lines part alone of "b", which is useful if you want to combine
lines with other kinds of symbols;

"o" for both lines and points ‘overplotted’, that is, without gaps in the
lines;

"h" for vertical lines, giving a ‘histogram’ like plot;

"s" for a step function, going across then up;

"S" for a step function, going up then across;

"n" for no plotting.

xlim = c(a,b) will set the lower and upper limits of the x-axis to be a and
b, respectively. Note that we have to know a and b to make this work!

ylim = c(a,b) will set the lower and upper limits of the y-axis to be a and
b, respectively.

xlab = "X axis label goes in here" provides the label for the x-axis.

ylab = "Y axis label goes in here" provides the label for the y-axis.

main = "Plot title goes in here" provides the plot title.

pch = k determines the shape of points, with k taking a value from 1 to 25.

lwd = ? line width, default 1.

col = "?" colour for lines and points. R knows about many colours, such
as "tomato", "deepskyblue", and "slategray"; type colours() or col-
ors() for a list. When overlaying plots it is useful to be able to use different
colours (and shapes).

7.2 Graphics parameters: par

In order to describe the effects of changing different graphics parameters,
we need to distinguish between graphics devices and plots. We can think of a
graphics device as being a platform upon which the plot is created. If we create
a plot, then a default graphics device is automatically opened for the plot to
appear upon. To create a graphics device without a plot, we call the function
that is specific to our operating system (that is, windows for Windows, quartz
for Mac, and X11 for Unix).

R keeps a list of graphics parameters, which control how graphics devices
appear. To get a complete list with their current values, type par(). pch, lwd
and col are all examples of graphics parameters. To get the value of a specific
parameter, for example pch, type par("pch"). Some graphics parameters can
apply to one or more plots, and others only make sense when applied to
graphics devices. For example, to change the symbol for a single plot, we
could include the argument pch = 2 in the call to the plot function. However,
we could also make this change for the device.

To change a graphics parameter for the graphics device, we use the par com-
mand. Here are some useful examples.

© 2009 by Taylor & Francis Group, LLC

112 BETTER GRAPHICS

par(mfrow = c(a,b)) where a and b are integers, will create a matrix of
plots on one page, with a rows and b columns. These will be filled by rows;
use mfcol if you wish to fill them by columns.

par(mar = c(bottom, left, top, right)) will create space around each
plot, in which to write axis labels and titles. Measurements are in units of
character widths.

par(oma = c(bottom, left, top, right)) will create space around the
matrix of plots (an outer margin). Measurements are in units of charac-
ter widths.

par(las = 1) rotates labels on the y-axis to be horizontal rather than verti-
cal.

par(pty = "s") forces the plot shape to be square. The alternative is that
the plot shape is mutable, which is the default, and corresponds to pty =

"m".

par(new = TRUE) when inserted between plots will plot the next one in the
same place as the previous, effecting an overlay. It will not match the axes
unless forced to do so. Increasing the mar parameters for the second plot
sufficiently will force it to be printed inside the first plot.

par(cex = x) magnifies all plotted symbols and text by a factor x. Also,
finer-grained control is available from cex.axis for the axis annotations,
cex.lab for the x and y labels, cex.main for the title, and cex.sub for the
subtitle text.

par(bty = "?") determines the type of box that is drawn about plots. Op-
tions are "o", "l", "7", "c", "u", "]", or "n" for nothing.

Note that the par function can accept multiple arguments in a call. For ex-
ample, to arrange plots in a 3 by 2 grid, with a 4-character margin at the left
and bottom of each plot, and a 1-character margin to the top and right of
each plot, and with horizontal labels on the y-axis, we would use

> par(mfrow = c(3,2), mar = c(4,4,1,1), las = 1)

When used to change the value of a graphics parameter, the par command
returns a list of the old values invisibly, that is, without printing them. This
allows us to customise the graphics parameters, create a graph, then restore
the original state, by means of the following simple commands:

> opar <- par({comma separated par instructions go here})

> plot({plot instructions go here})

> par(opar)

For example,

> opar <- par(mfrow = c(3,2), mar = c(4,4,1,1), las = 1)

> plot({plot instructions go here})

© 2009 by Taylor & Francis Group, LLC

GRAPHICAL AUGMENTATION 113

The content of opar looks like this:

> opar

$mfrow

[1] 1 1

$mar

[1] 5.1 4.1 4.1 2.1

$las

[1] 0

We then return the graphics parameters to their original state via:

> par(opar)

7.3 Graphical augmentation

A traditional plot can be augmented using any of a number of different tools
after its creation.

The infrastructure of the plot can be altered. For example, axes may be omit-
ted in the initial plot call, using the axes = FALSE argument, and added
afterwards using the axis function, which provides greater control and flexi-
bility over the locations and format of the tickmarks, and locations, format,
and content of the axis labels. The plot frame can be added using the box

function. Text can be located in the margins of the plot, to label certain areas
or to augment tick labels, using the mtext function. Text can be placed in
the plot using the text function. A legend can be added using the legend

function, which includes a very useful legend location argument, as shown be-
low. Additions can also be made to the content of the plot, using the points,
lines, and abline functions, among others. A number of these different steps
are detailed below, and the development is shown in Figure 7.2.

1. Start by creating the plot object, which sets up the dimensions of the space,
but omit any plot objects for the moment.

> opar1 <- par(las = 1, mar = c(4, 4, 3, 2))

> plot(ufc$dbh.cm, ufc$height.m, axes = FALSE, xlab = "",

+ ylab = "", type = "n")

2. Next, we add the points. Here we use different colours and symbols for dif-
ferent heights of trees: those that are realistic, and those that are not, which
may reflect measurement errors. We use the vectorised ifelse function.

> points(ufc$dbh.cm, ufc$height.m,

+ col = ifelse(ufc$height.m > 4.9, "darkseagreen4", "red"),

+ pch = ifelse(ufc$height.m > 4.9, 1, 3))

© 2009 by Taylor & Francis Group, LLC

114 BETTER GRAPHICS

3. Then we add axes. The following are the simplest possible calls, we have
much greater flexibility than shown here. We can also control the locations
of the tickmarks, and their labels, we can overlay different axes, change
colour, and so on. As usual, ?axis provides the details.

> axis(1)

> axis(2)

4. We can next add axis labels using margin text (switching back to vertical
direction for the y-axis text).

> opar2 <- par(las = 0)

> mtext("Diameter (cm)", side = 1, line = 3)

> mtext("Height (m)", side = 2, line = 3)

5. Wrap the plot in the traditional frame. As before, we can opt to use different
line types and different colours.

> box()

6. Finally, we add a legend.

> legend(x = 60, y = 15,

+ c("Normal trees", "A weird tree"),

+ col=c("darkseagreen3", "red"),

+ pch=c(1, 3),

+ bty="n")

Note the first two arguments: the location of the legend can also be ex-
pressed relative to the graph components, for example, by "bottomright".
legend has other useful options, see the help file for more details.

7. If we wish, we can return the graphics environment to its previous state.

> par(opar1)

Finally, we mention the playwith package, which provides interaction with
graphical objects at a level unattainable in base R.

7.4 Mathematical typesetting

It is often useful to provide more sophisticated axis labels and plot titles. R
permits the use of mathematical typesetting anywhere that you can add text
to a graph, through a straightforward interface. In a call to plot, the argu-
ments for main, sub, and xlab and ylab can be character strings or expres-
sions (or names, or calls, see ?title for more details). When expressions are
used for these arguments, they are interpreted as mathematical expressions,
and the output is formatted according to some specific rules. See ?plotmath

for the syntax, rules, and examples of the mathematical markup language

© 2009 by Taylor & Francis Group, LLC

MATHEMATICAL TYPESETTING 115

20 40 60 80 100

10

20

30

40

20 40 60 80 100

10

20

30

40

Diameter (cm)

H
e
ig

h
t
(m

)

20 40 60 80 100

10

20

30

40

Diameter (cm)

H
e
ig

h
t
(m

)

20 40 60 80 100

10

20

30

40

Diameter (cm)

H
e
ig

h
t
(m

)

Normal trees
A weird tree

Figure 7.2 Building a plot up by components.

© 2009 by Taylor & Francis Group, LLC

116 BETTER GRAPHICS

(MML). Also, run demo(plotmath) and examine the code and graphical out-
put demonstrated therein.

Figure 7.3 shows some examples, including Greek lettering, mathematical
typesetting, and printing the values of variables. In this example we also
make use of the curve function, for plotting the graph of a function, and
the par(usr) command, to change the co-ordinates of the existing plot. We
change co-ordinates to simplify the placement of text within the plot.

Constructing the labels is complicated by the fact that they comprise up to
three different types of objects: strings that we wish R to preserve and print,
expressions that we wish R to interpret as a mathematical markup language
(MML), and expressions that we wish R to evaluate at the time of execution,
and then print the outcome. Various combinations of these objects can be
constructed via paste. However, we need a way to distinguish these three
different modes in the label; we will use the functions expression and bquote.
It is important to note that the expression function is playing a different
role when constructing labels than when it is used outside the context of plot
functions. Here it is being used solely to alert R that the enclosed text should
be interpreted as an MML expression.

> curve(100*(x^3-x^2)+15, from=0, to=1,

+ xlab = expression(alpha),

+ ylab = expression(100 %*% (alpha^3 - alpha^2) + 15),

+ main = expression(paste("Function : ",

+ f(alpha) == 100 %*% (alpha^3 - alpha^2) + 15)))

> myMu <- 0.5

> mySigma <- 0.25

> par(usr = c(0, 1, 0, 1)) # Change coordinates within plot

> text(0.1, 0.1, bquote(sigma[alpha] == .(mySigma)), cex=1.25)

> text(0.6, 0.6, paste("(The mean is ", myMu, ")", sep=""), cex=1.25)

> text(0.5, 0.9,

+ bquote(paste("sigma^2 = ", sigma^2 == .(format(mySigma^2, 2)))))

Thus,

xlab = expression(alpha)

tells R to interpret alpha in the context of the MML, producing an α as
the label for the x-axis. The MML will interpret more complicated strings of
instructions, for example:

ylab = expression(100 %*% (alpha^3 - alpha^2) + 15)

produces the label on the y-axis.

When necessary, we mix mathematical expressions and character strings into
a single expression by using the paste function. Thus,

main = expression(paste("Function : ",

f(alpha) == 100 %*% (alpha^3 - alpha^2) + 15)))

© 2009 by Taylor & Francis Group, LLC

MATHEMATICAL TYPESETTING 117

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

Function : f(α) = 100 × (α
3

− α
2) + 15

α

1
0

0
×

(α
3

−
α

2
)

+
1

5

σα = 0.25

(The mean is 0.5)

sigma^2 = σ
2

= 0.0625

Figure 7.3 An example of mathematical typesetting.

will interleave the "Function : " string with the f(alpha) == 100 %*%

(alpha^3 - alpha^2) + 15 expression using paste, and then interpret the
whole as an expression.

A further complication is that sometimes we wish to first evaluate some por-
tions of the expression; for example, we may wish to annotate a graph using
an expression that contains a variable whose value is only known at the time
of execution.

In order to allow for evaluation of only parts of the expression, we use bquote.
The bquote function can be called with a single argument, which should be
a language object, for example an expression. bquote finds all of the terms
in the argument that are wrapped in .(), that is, parentheses preceded by a
period, and evaluates those terms. It then returns the argument with those
wrapped terms replaced by their output. For example, in Figure 7.3, we ask
for

bquote(sigma[alpha] == .(mySigma))

which performs the following steps.

1. Search“sigma[alpha] == .(mySigma)”for .(), finding mySigma. Evaluate
mySigma and replace it with its output.

2. Return sigma[alpha] == 0.25, which is of mode call. The text function
accepts objects of mode call.

A call is a specific kind of unevaluated function. See ?call for more details.

Our example is trivial, but of course bquote can evaluate any (evaluable)
expression. A slightly more complicated example blends all three kinds of

© 2009 by Taylor & Francis Group, LLC

118 BETTER GRAPHICS

elements together: strings, MML expressions, and expressions for evaluation.
We blend these elements together using bquote and paste as follows:

bquote(paste("sigma^2 = ", sigma^2 == .(format(mySigma^2, 2))))

See ?bquote for more information, specifically referring to evalauting the ex-
pression in other environments, about which we say more in Section 8.2.

7.5 Permanence

Producing more permanent graphics is very simple. We merely need to wrap
the plotting commands in code that opens and closes the relevant graphics
device, specifying the name and address of the file to be created. For example,
to create a graphic as a pdf file, which can be imported into various documents
and is well accepted on the Internet, we do the following:

> pdf(file = "graphic.pdf", width = 4, height = 3)

> plot(ufc$dbh.cm, ufc$height.m, main = "UFC trees",

+ xlab = "Dbh (cm)", ylab = "Height (m)")

> dev.off()

Note that to close a graphics device, we call the dev.off function. This call is
essential in order to be able to use the constructed graphic in other applica-
tions. If the dev.off call is omitted, then the operating system will not allow
any interaction with the pdf.

All plotting between the pdf command and the dev.off command will appear
in the pdf file graphic.pdf in the current working directory. The height and
width arguments are in units of inches. Multiple plots will appear by default
as separate pages in the saved pdf document. That is, if we include more
than one plot statement between the pdf and dev.off, then the resulting
pdf will have more than one page. This facility simplifies the task of storing
graphical output from an operation that is embedded in a loop. If unique files
are required for each plot, then we supply onefile = FALSE.

Using the commands postscript, jpeg, png, or bmp, we can also produce
graphics in the formats that correspond to these names. The jpeg, png, and
bmp graphics are all raster-style graphics, which may translate poorly when in-
cluded in a document. In contrast, the pdf, postscript, and windows metafile
(win.metafile, available on Windows) formats allow for vector-style graph-
ics, which are scaleable, and better suited to integration in documents.

On Windows, we can use the win.metafile function to create Windows
metafile graphics. You can also copy directly from the plot window to the
clipboard as either a metafile or a bmp (bitmap) image, by right-clicking the
window and selecting Copy as metafile or Copy as bitmap. Either can then
be pasted directly into a Word document, for example.

© 2009 by Taylor & Francis Group, LLC

GROUPED GRAPHS: LATTICE 119

7.6 Grouped graphs: lattice

Trellis graphics are a data visualisation framework developed at the Bell Labs,2

which have been implemented in R as the lattice package.3 Trellis graph-
ics are a set of techniques for displaying multidimensional data. They allow
great flexibility for producing conditioning plots; that is, plots obtained by
conditioning on the value of one of the variables.

We load the lattice package by means of the library function, which is
explained in greater detail in Section 8.1.

> library(lattice)

In a conditioning plot the observations are divided into collections according
to the value of a conditioning variable, and each collection is plotted in its
own panel in the graph. In the material that follows, we shall use panel to
describe a portion of the plot that contains its own, possibly unique, axes,
and a portion of the observations as determined by the conditioning variable.
The nature of the graphics that are produced in each panel depends on which
lattice function is being used to create the graphic.

In Figure 7.4 we illustrate the use of the lattice package using the ufc data.
We illustrate how dbh (diameter at breast height) and height vary by species.
That is, our plots are conditioned on the value of the variable species.

Top left graphic: A density plot

> densityplot(~ dbh.cm | species, data = ufc)

Top right graphic: Box and whiskers plot

> bwplot(~ dbh.cm | species, data = ufc)

Bottom left graphic: Histogram

> histogram(~ dbh.cm | species, data = ufc)

Bottom right graphic: Scatterplot

> xyplot(height.m ~ dbh.cm | species, data = ufc)

All four commands require a model, which is described using ~ and |. If a
dataframe is passed to the function, using the argument data, then the column
names of the dataframe can be used for describing the model. We interpret
y ~ x | a as saying we want y as a function of x, divided up by the different
levels of a. If a is not a factor then a factor will be created by coercion. If we
are just interested in x we still include the ~ symbol, so that R knows that we
are specifying a model. If we wish to provide within-panel conditioning on a
second variable, then we use the group argument.

2 W.S. Cleveland, Visualizing Data. Hobart Press, 1993.
3 Principally authored by Deepayan Sarkar.

© 2009 by Taylor & Francis Group, LLC

120 BETTER GRAPHICS

dbh.cm

D
e
n
s
it
y

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 50 100

DF GF

WC

0 50 100

0.000

0.005

0.010

0.015

0.020

0.025

0.030

WL

dbh.cm

20 40 60 80 100

DF GF

WC

20 40 60 80 100

WL

dbh.cm

P
e
rc

e
n
t
o

f
T

o
ta

l

0

10

20

30

40

20 40 60 80 100

DF GF

WC

20 40 60 80 100

0

10

20

30

40

WL

dbh.cm

h
e
ig

h
t.
m

10

20

30

40

20 40 60 80 100

DF GF

WC

20 40 60 80 100

10

20

30

40

WL

Figure 7.4 Example lattice plots, showing diameter information conditioned on
species. The top left graphic shows the empirical density curves of the diameters,
the top right graphic shows box plots, the bottom left shows histograms, and the bot-
tom right shows a scatterplot of tree height against diameter.

The first three plots, created using densityplot, bwplot (box and whiskers
plot), and histogram, all attempt to display the same information, namely
the distribution of values taken on by the variable dbh, divided up according
to the value of the variable species. Thus, all three plots use the same formula.
In the fourth plot we plot height as a function of dbh. For a description of the
types of plots available through the lattice package, type ?lattice.

In order to display numerous lattice objects on a graphics device, we call the
print function with the split and more arguments.

split takes a vector of four integers: the first pair denote the location of
the lattice object, and the second pair provide the intended dimensions of

© 2009 by Taylor & Francis Group, LLC

GROUPED GRAPHS: LATTICE 121

the graphics device, analogously to mfrow in the par function, but with
columns first.

more is logical, and tells the device whether to expect more lattice objects
(TRUE) or not (FALSE).

Thus, to place a lattice object (called my.lat, for example) in the top-right
corner of a 3-row, 2-column graphics device, and allow for more objects, we
would write:

> print(my.lat, split = c(2,1,2,3), more = TRUE)

Don’t forget to use more = FALSE in the last object for the device!

We can also fine-tune the relative location of the objects using the position

argument. See ?print.trellis for further details.

Graphics produced by lattice are highly customisable. For example, suppose
we wish to plot the diameter against the height for species WC (Western Red
Cedar) and GF (Grand Fir), and add a regression line to each graph, then we
could do it by using a custom panel function, as follows (the output is given
in Figure 7.5):

> xyplot(height.m ~ dbh.cm | species,

+ data = ufc,

+ subset = species %in% list("WC", "GF"),

+ panel = function(x, y, ...) {

+ panel.xyplot(x, y, ...)

+ panel.abline(lm(y~x), ...)

+ },

+ xlab = "Diameter (cm)",

+ ylab = "Height (m)"

+)

In the lattice function xyplot we have used four new arguments. The applica-
tion of xlab and ylab should be clear. The other two require some explanation.
The subset argument is a logical expression or a vector of integers, and is used
to restrict the data that are plotted. We can also change the order of the panels
using the index.cond argument (see ?xyplot for more details). The panels
are plotted bottom left to top right by default, or top left to bottom right if
the argument as.table = TRUE is supplied.

The panel argument accepts a function, the purpose of which is to control
the appearance of the plot in each panel. The panel function should have
one input argument for each variable in the model, not including the con-
ditioning variable. The function should have x as the first argument and y

as the second. Here our model uses two variables, height.m and dbh.cm, so
the panel function has two inputs. To produce a plot the panel function uses
particular functions, denoted by the panel. prefix, where the inputs for the

© 2009 by Taylor & Francis Group, LLC

122 BETTER GRAPHICS

Diameter (cm)

H
e

ig
h

t
(m

)

10

20

30

40

20 40 60 80 100

GF

20 40 60 80 100

WC

Figure 7.5 A lattice plot of diameter at breast height against height for the species
Grand Fir (GF) and Western Red Cedar (WC). Each plot includes a linear regression
line.

function panel.ftn are the same as the inputs for the function ftn (where
ftn stands for some function or other). In addition to panel.xyplot and
panel.abline, you can use panel.points, panel.lines, panel.text, and
many others. In particular, the many and various types of plot provided by
the lattice package all have panel.ftn versions. Very often you will find
that the panel function is defined on the fly (as here) and uses the panel.?

function corresponding to the lattice function we are using, as here. Greater
complications ensue when the groups argument has been invoked to create
conditioning within each panel. See ?xyplot for more details.

To see what sort of commands we might add to a panel function, ?xyplot is
very helpful, providing very detailed information about the various options,
and some attractive examples that you can adapt to your own uses.

Note the inclusion of the . . . argument for the panel function and the calls to
panel.xyplot and panel.abline. This inclusion allows the calling functions
to pass any other relevant but unspecified arguments to the functions being
called. It is not always necessary, but it prevents the occasional misunderstand-
ing. We also remark that this particular graphic could also be produced by
using the type argument to xyplot. In this case, we would omit the panel ar-
gument altogether, but include type = c("p","r"), representing points and
regression line. Other useful options to pass to type are l for lines and smooth

for a loess smooth curve.

A common problem that new users have is in creating a pdf with lattice

© 2009 by Taylor & Francis Group, LLC

3D-PLOTS 123

graphics. We need to use the print function in order to have the lattice
objects appear in the pdf. Also, note that lattice and traditional graphical
objects control the graphics devices differently, and are immiscible unless care
is taken. In general we would recommend using just one system for any given
graphics device.

The creator of the lattice package, Deepayan Sarkar, has written a very useful
book on the use of lattice for graphical representation (D. Sarkar, Lattice:
Multivariate Data Visualization with R. Springer, 2008).

7.7 3D-plots

R provides considerable functionality for constructing 3D-graphics, using ei-
ther the base graphics engine or the lattice package. We recommend using
the lattice package, because the data can be supplied to the lattice func-
tions in a familiar structure: observations in rows and variables in columns,
unlike that required by the base 3D-graphics engine. The base graphics engine
assumes the observations are on a grid, then requires variables x and y, which
are the x and y co-ordinate of each observation, and a variable z, which is a
matrix containing the values to be plotted.

We demonstrate some 3D lattice graphics using the Upper Flat Creek forest
data. The tree measurements were collected on a systematic grid of measure-
ment plots within the forest stand.4 We have estimated the volume of the tree
boles (trunks), in cubic metres per hectare, for each plot. We have assigned
those volumes to the plot locations. The outcome is stored in the dataset
ufc-plots.csv.

> ufc.plots <- read.csv("../data/ufc-plots.csv")

> str(ufc.plots)

'data.frame': 144 obs. of 6 variables:

$ plot : int 1 2 3 4 5 6 7 8 9 10 ...

$ north.n : int 12 11 10 9 8 7 6 5 4 3 ...

$ east.n : int 1 1 1 1 1 1 1 1 1 1 ...

$ north : num 1542 1408 1274 1140 1006 ...

$ east : num 83.8 83.8 83.8 83.8 83.8 ...

$ vol.m3.ha: num 0 63.4 195.3 281.7 300.1 ...

> library(lattice)

In this dataset, the volume at each location is vol.m3.ha, and the plot location
is stored in metres in the east and north variables. The plot location on the
grid is reported by the east.n and north.n variables. We use the information
about plot locations to provide spatial summaries of the variable of interest
(Figure 7.6).

4 For those interested, the measurement plots were variable-radius plots with basal area
factor 7 m2ha−1.

© 2009 by Taylor & Francis Group, LLC

124 BETTER GRAPHICS

> contourplot(vol.m3.ha ~ east * north,

+ main = expression(paste("Volume (", m^3, ha^{-1}, ")", sep = "")),

+ xlab = "East (m)", ylab = "North (m)",

+ region = TRUE,

+ aspect = "iso",

+ col.regions = gray((11:1)/11),

+ data = ufc.plots)

> wireframe(vol.m3.ha ~ east * north,

+ main = expression(paste("Volume (", m^3, ha^{-1}, ")", sep = "")),

+ xlab = "East (m)", ylab = "North (m)",

+ data = ufc.plots)

Volume (m
3
ha

−1
)

East (m)

N
o
rt

h
 (

m
)

500

1000

1500

500 1000 1500

100

100

100

100

200

200

200

200

2
0
0

200

−100

0

100

200

300

400

500

Volume (m
3
ha

−1
)

East (m)
North (m)

vol.m3.ha

Figure 7.6 Example 3D lattice plots, showing volume information conditioned on plot
location. The left panel shows a contour-plot, the right panel shows a wireframe.

To learn more about base-graphics 3D-plots, run the demonstrations
demo(persp) and demo(image) and look at the examples presented.

7.8 Exercises

1. The slenderness of a tree is defined as the ratio of its height over its di-
ameter, both in metres.5 Slenderness is a useful metric of a tree’s growing
history, and indicates the susceptibility of the tree to being knocked over
in high winds. Although every case must be considered on its own merits,
assume that a slenderness of 100 or above indicates a high-risk tree for
these data. Construct a boxplot, a histogram, and a density plot of the
slenderness ratios by species for the Upper Flat Creek data. Briefly discuss
the advantages and disadvantages of each graphic.

5 For example, Y. Wang, S. Titus, and V. LeMay. 1998. Relationships between tree slender-
ness coefficients and tree or stand characteristics for major species in boreal mixedwood
forests. Canadian Journal of Forest Research 28, 1171–1183.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 125

2. Among the data accompanying this book, there is another inventory
dataset, called ehc.csv. This dataset is also from the University of Idaho
Experimental Forest, but covers the East Hatter Creek stand. The inven-
tory was again a systematic grid of plots. Your challenge is to produce and
interpret Figure 7.4 using the East Hatter Creek data.

3. Regression to the mean.

Consider the following very simple genetic model. A population consists of
equal numbers of two sexes: male and female. At each generation men and
women are paired at random, and each pair produces exactly two offspring,
one male and one female. We are interested in the distribution of height
from one generation to the next. Suppose that the height of both children
is just the average of the height of their parents, how will the distribution
of height change across generations?

Represent the heights of the current generation as a dataframe with two
variables, m and f, for the two sexes. The command rnorm(100, 160, 20)

will generate a vector of length 100, according to the normal distribution
with mean 160 and standard deviation 20 (see Section 16.5.1). We use it to
randomly generate the population at generation 1:

pop <- data.frame(m = rnorm(100, 160, 20), f = rnorm(100, 160, 20))

The command sample(x, size = length(x)) will return a random sam-
ple of size size taken from the vector x (without replacement). (It will also
sample with replacement, if the optional argument replace is set to TRUE.)
The following function takes the dataframe pop and randomly permutes the
ordering of the men. Men and women are then paired according to rows,
and heights for the next generation are calculated by taking the mean of
each row. The function returns a dataframe with the same structure, giving
the heights of the next generation.

next.gen <- function(pop) {

pop$m <- sample(pop$m)

pop$m <- apply(pop, 1, mean)

pop$f <- pop$m

return(pop)

}

Use the function next.gen to generate nine generations, then use the lat-
tice function histogram to plot the distribution of male heights in each
generation, as in Figure 7.7. The phenomenon you see is called regression
to the mean.

Hint: construct a dataframe with variables height and generation, where
each row represents a single man.

4. Reproduce Figure 6.1 using lattice graphics.

© 2009 by Taylor & Francis Group, LLC

126 BETTER GRAPHICS

Distribution of male height by generation

ht

P
e

rc
e

n
t

o
f

T
o

ta
l

0

20

40

60

80

gen

120 140 160 180 200

gen gen

gen gen

0

20

40

60

80

gen

0

20

40

60

80

120 140 160 180 200

gen gen

120 140 160 180 200

gen

Figure 7.7 Regression to the mean: male heights across nine generations. See Exer-
cise 3.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 8

Pointers to further programming
techniques

This chapter briefly mentions some more advanced aspects of programming
in R. We introduce the management of and interaction with packages. We
present details about how R arranges the objects that are created within the
workspace, and within functions that we are running (frames and environ-
ments). We provide further suggestions for debugging your own functions,
and we present some of the infrastructure that R provides for object-oriented
programming. Finally we demonstrate how to include in R, code that has been
compiled using another computer language, for example C.

8.1 Packages

A package is an archive of files that conforms to a certain format and structure
and that provides extra functionality, usually extending R in a particular
direction. The R community has produced many high-quality R packages for
performing specific tasks, usually statistical in nature. The HTML help facility
called by help.start() gives details of the packages that are installed on your
computer.

8.1.1 Package management

Any package is in one of three states: installed and loaded, installed but not
loaded, or not installed. A package that is loaded is directly available to your
R session, a package that is installed is available for loading but its contents
are not available until it is loaded, and a package that has not been installed
cannot be loaded.

Find out which packages are loaded using sessionInfo:

> sessionInfo()

R version 2.8.0 (2008-10-20)

i386-unknown-freebsd7.0

127

© 2009 by Taylor & Francis Group, LLC

128 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

locale:

C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

The sessionInfo function is useful because it also provides the version of R
and the operating system for which it is compiled.

Packages are divided into three groups: base, recommended, and other. Base
packages are installed along with R, and their objects are always available.
For example, we can use the lm command from the stats package without
explicitly loading anything. Recommended packages are installed along with R
but must be loaded before they can be used. Other packages are not installed
by default, and must be installed separately.

A non-base package can be loaded using the library function:

> library(lattice)

sessionInfo confirms that lattice has been loaded:

> sessionInfo()

R version 2.8.0 (2008-10-20)

i386-unknown-freebsd7.0

locale:

C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] lattice_0.17-15

loaded via a namespace (and not attached):

[1] grid_2.8.0

Note that the argument to library is an object name, not a character string.
It is possible to pass a vector of package names, encoded as character strings,
but in order to do so we must add the character.only = TRUE argument,
which tells R that the package name can be a string.

If a package is not installed then the library function produces an error. If
the install status is uncertain (for example if you are writing a function that
requires the package), then use the require function, which returns FALSE if
the package is not installed, rather than an error.

© 2009 by Taylor & Francis Group, LLC

PACKAGES 129

Installing all available packages would be a waste of space and time, as you
would never use most of them. Similarly, loading all installed packages every
time you start R would take some time, so by default R only loads the base
packages when it starts and requires the user to load any others as and when
they are needed.

Mostly the require and library functions do not need any arguments other
than the package name. If the package has been installed in a non-standard
place, for example, if it has been installed by a user who lacks write authority
to the default installation directory, then the location of the package on the
user’s hard drive must be passed to the function by the lib.loc argument.

The command to find out what packages are available for loading is in-

stalled.packages. The output of the function is quite verbose, but we only
need the first column. For example, on the computer used to compile this
book, the first five installed packages are:

> installed.packages()[1:5, 1]

Brobdingnag CarbonEL DAAG Design Ecdat

"Brobdingnag" "CarbonEL" "DAAG" "Design" "Ecdat"

In the discussion that follows, we mention a repository. This is a software
storage resource at which one or more packages are available, and it may be
local or remote. The most commonly used repositories are the CRAN (Com-
prehensive R Archive Network) mirrors, which can be accessed from the R
website. All the following commands will work for any suitable repository.

All the packages that are available at a repository, and whose requirements
are matched by the currently running version of R, can be listed using the
command available.packages.

A package that is available in the repository but has not yet been installed may
be installed using the install.packages function. If we include the argument
dependencies = TRUE, then the function will also install packages that are
necessary to run the package or packages of interest; such packages are called
dependencies.

If the user is constrained in terms of write access to the installation directory,
then the packages can be downloaded to a directory nominated in the destdir
argument and installed in a directory nominated in the lib argument. The
latter directory must then be passed to the require or library functions
using the lib.loc argument.

For example, if while using Microsoft Windows we wish to download the spuRs
package to D:/tmp, install it into D:/lib, and then use it in our R session, we
would use the following steps. We shall assume that the directories exist and
are writeable by the user.

© 2009 by Taylor & Francis Group, LLC

130 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

> install.packages("spuRs", destdir="D:/tmp", lib="D:/lib")

> library(spuRs, lib.loc="D:/lib")

If a locally installed package has a dependency that is also locally installed
then the call to library will fail. A simple solution is to load the dependency
first, using library. Alternatively, the location of locally installed packages
can be provided to R using the .libPaths function.

The status of the packages that are installed can be compared with the repos-
itory using the old.packages function, and easily updated using the up-

date.packages function.

In versions of R that support a GUI, such as Rgui.exe in Microsoft Windows,
it is also possible to load and install packages using the GUI. In many operating
systems it is also possible to install packages from the shell. In each case refer
to the R manuals to learn more.

8.1.2 Package construction

The ‘R Installation and Administration’ manual is invaluable reading.

Constructing one’s own packages is a little daunting to start with, but it has
numerous advantages. First, R provides a number of functions that will per-
form various checks on package contents, including things like documentation.
So, if you plan to share or archive your code, writing a package is a good
way to be sure that you include a minimal level of infrastructure. Packages
also provide a simple interface for the user to be able to access functions and
datasets.

Package construction is straightforward if only R code and objects are to be
used. If compilation of source code is required (see Section 8.6) then compli-
cations ensue, and extra software may be required. The extra software that
is useful to support package construction varies across the operating system
supporting the build, and also depends on the target operating system. We
will cover the steps for building source packages on Windows.

package.skeleton is an extremely useful function for constructing packages.
This function checks the current workspace for functions and data, and creates
a directory structure suitable to house all the existing objects, including skele-
tal help files and a set of instructions for how to finish creating the package.
Specific objects can be selected for inclusion in the package if only a subset of
the available objects are wanted. Also, it may be necessary to construct new
help files for objects that are added to the package later, in which case the
prompt function is useful, as it facilitates post-hoc help file construction for
arbitrary objects. This function will work on all three major platforms.

Here we use the package.skeleton function to construct a draft package to
accompany this book, including one dataset and one function.

© 2009 by Taylor & Francis Group, LLC

PACKAGES 131

> rm(list=ls())

> ufc <- read.csv("../data/ufc.csv")

> vol.m3 <- function(dbh.cm, height.m, multiplier=0.5) {

+ vol.m3 <- pi * (dbh.cm/200)^2 * height.m * multiplier

+ }

> package.skeleton(name = "spuRs", path = "../package", force = TRUE)

package.skeleton(name = "spuRs", path = "../package", force = TRUE)

Creating directories ...

Creating DESCRIPTION ...

Creating Read-and-delete-me ...

Saving functions and data ...

Making help files ...

Done.

Further steps are described in '../package/spuRs/Read-and-delete-me'.

This command creates the necessary directories and files at the path nomi-
nated by the appropriate argument. These resources are then used as the basis
of package construction. Next we must complete the task begun by pack-

age.skeleton. The important items to fix are the help files, which are stored
in the man directory and denoted object.Rd. We must add appropriate de-
tails, keywords, and simple examples of the use of the functions. The force

argument tells R to replace the previous version if there is one.

The default installation of R upon Windows does not support package con-
struction, at the time of writing.1 Further tools are necessary. Specifically, R
needs:

1. An installation of Perl, version 5.8.0 or later,

2. Unix-like command line tools, and

3. MinGW compilers.

These tools are all available for free download, kindly provided by Duncan
Murdoch, a member of R-core, as Rtools.exe.2 During the process of instal-
lation, up-to-date information is provided about any other software that might
be useful, for example, LATEX and the Microsoft HTML Help Workshop. In
order for these programs to be used on your system, the PATH must be set.
The installation software will optionally change your PATH appropriately, in
which case a restart of your computer will be necessary.

Open a shell command prompt and change directory so that you are in the
directory that contains the top-level folder for the package. For our example,
we wish to be in the ../package/ directory. We can then learn about the
various command-line options via

> R CMD --help

1 Version 2.8.0.
2 See http://www.murdoch-sutherland.com/Rtools/.

© 2009 by Taylor & Francis Group, LLC

http://www.murdoch-sutherland.com

132 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

Then we input

> R CMD build spuRs

to build the package, and

> R CMD check spuRs

which will report any problems. Each of these commands has numerous op-
tions, which you can learn about using

> R CMD build --help

> R CMD check --help

Here is how to construct a Windows-ready binary.

> R CMD build --binary spuRs

This invocation creates a package that we can now install and load using
library as we need. For example, after installing the new spuRs package in
R, we can do the following.

> library(spuRs)

> data(ufc)

> str(ufc)

'data.frame': 336 obs. of 5 variables:

$ plot : int 2 2 3 3 3 4 4 5 5 6 ...

$ tree : int 1 2 2 5 8 1 2 2 4 1 ...

$ species : Factor w/ 4 levels "DF","GF","WC",..: 1 4 2 3 3 3 1 1 2 1 ...

$ dbh.cm : num 39 48 52 36 38 46 25 54.9 51.8 40.9 ...

$ height.m: num 20.5 33 30 20.7 22.5 18 17 29.3 29 26 ...

8.2 Frames and environments

In order to interact with R effectively in more complex settings, it is important
to know something about how R organises the objects that it creates and
contains. The following description provides enough background for the rest
of the chapter, but we have brushed over some of the deeper details.

R uses frames and environments to organise the objects created within it. A
frame is a device that ties the names of objects to their R representations. An
environment is a frame combined with a reference to another environment,
its parent environment. Environments are nested, and the parent environment
is the environment that directly contains the current environment. That is,
following the analogy developed in Section 2.2, if a variable is like a folder with
a name on the front, the frame is the catalogue of folder names and locations
of the folders in memory, and an environment is a catalogue plus the address
of another catalogue that contains the current catalogue.

© 2009 by Taylor & Francis Group, LLC

FRAMES AND ENVIRONMENTS 133

When R is started, a workspace is created. This workspace is called the global
environment, and is the default container for the objects that are subsequently
created. When packages are loaded they may have their own environment
(namespace) associated with them, which is added to the R search path.

The contents of the search path can be found by

> search()

[1] ".GlobalEnv" "package:lattice" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

When a function is called, R creates a new environment, which is enclosed in
the current environment. The objects that are named in the function argu-
ments are passed from the current environment to the new environment. The
expressions within the function are then applied to the objects within the new
environment. Objects that are created in the new environment are not avail-
able in the parent environment. Likewise, if a function is called from within
a function, another new environment is created, enclosed within the recently
created environment, and so on. When objects are created in the code, R will
create them in the current environment, unless instructed to do otherwise.

When an expression is evaluated, R looks in the current environment for all
the objects that the expression includes. If any objects cannot be located in
the frame of the current environment, then R searches the frame of the parent
environment. This search for objects continues up through the environments
until it reaches the global environment, and then if necessary, the search path.
If an object that is passed to the function is subsequently changed within the
function, then a copy is made and the changes are actually made to a copy of
the object. Otherwise the object itself is made available to the function. This
makes a noticeable difference when the object is complicated, as we show in
the code below.

program spuRs/resources/scripts/scoping.r

Script to demonstrate the difference between passing and copying

arguments.

We use an artificial example with no real-world utility.

require(nlme)

fm1 <- lme(distance ~ age, data = Orthodont)

fm1$numIter <- 1

fm2 <- fm1

nochange <- function(x) {

2 * x$numIter

© 2009 by Taylor & Francis Group, LLC

134 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

return(x)

}

change <- function(x) {

x$numIter <- integer(2)

return(x)

}

> source("../scripts/scoping.r")

> system.time(for (i in 1:10000) change(fm1))

user system elapsed

0.515 0.030 0.584

> system.time(for (i in 1:10000) nochange(fm1))

user system elapsed

0.049 0.000 0.050

This execution shows the extra time taken to copy the object to the environ-
ment of the function when we wish to alter it within the function.

It is possible to evaluate expressions in arbitrary environments, as we will
show in the next section.

8.3 Debugging again

In some cases, it is useful to be able to examine objects in parent environments.
We can do so using the eval and expression functions. We can use

> eval(expression({R expression here}),

+ envir = sys.frame(n))

to evaluate {R expression here} in relative environment n, which might,
for example, be -1, denoting the environment from which your function has
been called. We wrap the R expression in the expression function to ensure
that it is passed to eval without being evaluated. We tell eval the relative
environment in which to evaluate the expression using the envir argument.

For example, to list the objects that are defined in the environment that is
one level up, you might do the following.

> rm(list = ls())

> ls()

character(0)

© 2009 by Taylor & Francis Group, LLC

DEBUGGING AGAIN 135

> x <- 2

> ls.up <- function() {

+ eval(expression(ls()), envir = sys.frame(-1))

+ }

> ls.up()

[1] "ls.up" "x"

This example is not particularly useful by itself, but it shows how to construct
commands that operate in different environments, and such commands are
very useful when debugging inside a browser. Often the root cause of problems
with a function is located in the environment from which the function was
called, rather than in the function itself. It is convenient to be able to show
or manipulate the values of the calling environment, in order to be able to
efficiently detect a bug.

Calling ls in the parent environment is useful to see what objects are there,
and calling print in the parent environment is useful for examining them.

The recover command allows the user to select an environment (but not
the global environment), then calls the browser function to browse it. When
recover is executed it presents a menu with the available environments. re-
cover is invoked automatically upon an error if options(error = recover)

is set. The only limitation is that it does not allow stepping through the code,
as browser does when called directly.

Here is a very trivial example of how we might use recover to locate an error.
We start with the default error response, which is documented in ?stop.

> broken <- function(x) {

+ broken2 <- function(x) {

+ y <- x * z

+ return(y)

+ }

+ y <- broken2(x)

+ y2 <- y^2

+ return(y2)

+ }

> broken(0:2)

Error in broken2(x) : object "z" not found

Now we change the error response option.

> options(error = recover) # Change the response to an error.

> broken(0:2)

Error in broken2(x) : object "z" not found

Enter a frame number, or 0 to exit

© 2009 by Taylor & Francis Group, LLC

136 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

1: broken(0:2)

2: broken2(x)

Selection:

We are offered two environments to browse; we choose the second.

Selection: 2

Called from: eval(expr, envir, enclos)

Browse[1]>

We now have the browser prompt, at which we can evaluate R expressions.

Browse[1]> ls()

[1] "x"

Browse[1]> x

[1] 0 1 2

We have found that the broken2(x) frame lacks z (which is as the error
reported!) We now back out of the current environment and inspect the other
environment.

Browse[1]> c

Enter a frame number, or 0 to exit

1: broken(0:2)

2: broken2(x)

Selection: 1

Called from: eval(expr, envir, enclos)

Browse[1]> ls()

[1] "broken2" "x"

Browse[1]> broken2

function(x) {

y <- x * z

return(y)

}

<environment: 0x87c9c14>

Browse[1]> Q

>

Clearly the function is looking for an object that is unavailable. Note that we
were able to drop in and out of the different available environments, to try to
track down where the problem was originating.

© 2009 by Taylor & Francis Group, LLC

OBJECT-ORIENTED PROGRAMMING: S3 137

8.4 Object-oriented programming: S3

Object-oriented programming, OOP for short, is a style of programming that
can simplify many problems. It is based on defining classes, and creating and
manipulating objects of those classes. By an object we mean a variable with
a particular structure, such as a Boolean variable, vector, dataframe, or a list.
The class of an object is a label that describes the category of the object.

R supports OOP through so-called old-style (S3) and new-style (S4) classes.
This support allows the user to define new classes of objects (variables with
specific structures), and functions that apply to such objects. Also, existing
functions can be augmented to apply to new classes. It is not essential to apply
the principles of OOP when writing R code, but doing so can have advantages,
especially when writing code that is to be used by other people.

In this section we will cover the S3 classes. The key facilities that we need to
discuss are: classes, generic functions, and attributes.

Note that the class of an object should not be confused with the mode, which
is similar but more primitive, and refers to how R stores the object in memory.

Below, we develop an example that demonstrates the application of S3 classes.
In order to follow the development, it is helpful to understand the definition
and use of generic functions.

8.4.1 Generic functions

In R, a generic function is a function that examines the class of its first argu-
ment, and chooses another function appropriate to that class. For example, if
we look at the innards of the mean function,

> mean

function (x, ...)

UseMethod("mean")

<environment: namespace:base>

we see that it merely passes the string ‘mean’ to a function called UseMethod.
The UseMethod function then calls the version of mean that is designated for
the class of the object named in the first argument. If the class of the object
is, for example, widget, then UseMethod calls mean.widget with the same
arguments that were supplied to mean by the user.

Any generic function can be extended by adding a version that acts differently
depending on the class. Not all functions are generic; we can find out if a
function is generic using the methods function.3

3 Observe that in the response to methods(var), R noted that some of the functions are
non-visible. R located the names of the methods even though they are not available on
the search path. Examine such objects using the getAnywhere function.

© 2009 by Taylor & Francis Group, LLC

138 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

> methods(mean)

[1] mean.Date mean.POSIXct mean.POSIXlt mean.data.frame

[5] mean.default mean.difftime

> methods(var)

[1] var.test var.test.default* var.test.formula*

Non-visible functions are asterisked

Warning message:

In methods(var) : function 'var' appears not to be generic

In brief, to write a function that will be automatically invoked to replace an
existing generic function fu when applied to an object of class bar, we need
merely name the function fu.bar. Of course, non-generic functions can also be
written specifically for objects of a given class, but do not require the trailing
object name.

Note that the function.class approach that we have described here is only
for S3 classes; S4 classes have a different and more formal approach.

8.4.2 Example: seed dispersal

We will illustrate OOP in R through an example. We will create a new class,
in other words a new type of object, and then write generic functions that
apply to that class. Specifically we write new versions of the generic functions
print and mean.

Our example comes from plant biology. In studying the spread of plants (in
particular weeds), it is useful to know how their seeds are dispersed. Seed
dispersal is measured using seed traps, which are containers of fixed size that
are situated at a known distance and bearing from a parent plant for a set
amount of time. The number of seeds landing in each container during that
time are counted, and the number that can be attributed to the parent plant
are identified.

For our model, we assume that the seed traps are laid out in a straight line
anchored at the parent plant. The seeds in each trap are then counted after a
certain time (see Figure 8.1).

Let us imagine that the data available to an analyst for such a setup is the
distance of the centre of each trap from the plant, the trap area, and the count
of seeds in each trap. Presently there is no trapTransect class, inasmuch as
there are no special methods for objects of that have class trapTransect, viz:

> methods(class = "trapTransect")

no methods were found

© 2009 by Taylor & Francis Group, LLC

OBJECT-ORIENTED PROGRAMMING: S3 139

Figure 8.1 Transect of seed traps from plant; squares represent seed traps, the circle
represents the median of the overall seed shadow, the black dot is the focal parent
plant.

We can invent one. First, we have to decide what attributes we would like
objects of our new class to have. Each object will contain the data from a
single transect of traps, so we want to store the trap distances from the parent
plant and the seed counts. The trap sizes will be assumed to be constant. The
basic structure of an object of class trapTransectwill therefore be a list with
three components: trap distances, trap seed counts, and trap size.

In R, we invent S3 classes by writing a constructor function that creates
objects of the appropriate structure, sets the class attribute, and returns
the object. We then write functions that manipulate objects of that class. We
start with a constructor function for this class, which applies simple checks
to the inputs, constructs the list, sets the class attribute, and returns the list,
now considered an object of class trapTransect.

> trapTransect <- function(distances, seed.counts, trap.area = 0.0001) {

+ if (length(distances) != length(seed.counts))

+ stop("Lengths of distances and counts differ.")

+ if (length(trap.area) != 1) stop("Ambiguous trap area.")

+ trapTransect <- list(distances = distances,

+ seed.counts = seed.counts,

+ trap.area = trap.area)

+ class(trapTransect) <- "trapTransect"

+ return(trapTransect)

+ }

In the interests of brevity, we have omitted checks for missing values, inputs
that are not numbers, etc., although an operational solution would require
those. Also, our function assumes that the trap area is 0.0001, although this
can be overridden in the arguments when the function is called. We do not
need to specify the units; a more complete solution would do so.

We now create a function that prints out relevant information about the trap-
Transect data when invoked, print.trapTransect, using the very handy str

function. Note that our goal is to provide a compact example, and our use of
str reflects an austere rather than an aesthetic choice!

> print.trapTransect <- function(x, ...) {

© 2009 by Taylor & Francis Group, LLC

140 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

+ str(x)

+ }

Also note that we have chosen the arguments x and ...; these are the same
arguments as for the generic function print.

We now write a specific function for the mean that uses the structure of the
trapTransect object to compute the mean dispersal distance from the plant
along the transect. We indicate that this version of the mean should be used
only for trapTransect objects by post-fixing ‘.trapTransect’ to the function
name.

> mean.trapTransect <- function(x, ...) {

+ return(weighted.mean(x$distances, w = x$seed.counts))

+ }

R now knows about the trapTransect class, in the sense that it recognises
specific versions of generic methods that are suitable to the class.

> methods(class = "trapTransect")

[1] mean.trapTransect print.trapTransect

Finally, we demonstrate the use of the class methods, print.trapTransect
and mean.trapTransect:

> s1 <- trapTransect(distances = 1:4, seed.counts = c(4, 3, 2, 0))

> s1

List of 3

$ distances : int [1:4] 1 2 3 4

$ seed.counts: num [1:4] 4 3 2 0

$ trap.area : num 1e-04

- attr(*, "class")= chr "trapTransect"

> mean(s1)

[1] 1.777778

It is important to note that even though s1 is an object of class trapTran-

sect, it is still a list. We say that objects of class trapTransect inherit the
characteristics of objects of class list.

> is.list(s1)

[1] TRUE

This means that we can still manipulate the object using its list structure. For
example, if we would like to know about the first element, we can examine it
using

© 2009 by Taylor & Francis Group, LLC

OBJECT-ORIENTED PROGRAMMING: S4 141

> s1[[1]]

[1] 1 2 3 4

We continue the development of this example in Section 21.4.2.

Creating all of this infrastructure seems like a lot of work. The advantages
become apparent when we need to construct, manipulate, and analyse models
of complex systems. OOP supports easy and rapid prototyping, and provides a
pathway for adding complexity as complexity becomes necessary. For example,
it is straightforward to drop in a new mean.trapTransect function should we
deem it necessary.

There is a final consideration. It is possible that functions provided by different
packages could be incompatible, in the sense that they have the same name
but different effects. One solution is the use of namespaces (not covered here,
but see L. Tierney, 2003. ‘Name Space Management for R’, R-news 3/1 2–5).
Accessing a specific object in a namespace requires the use of explicit calls
such as package::object, see ?:: for more information.

8.5 Object-oriented programming: S4

In this section we briefly cover the infrastructure that is provided by S4 classes.
S4 classes provide a formal object-method framework for object-oriented pro-
gramming. Here we reinvent the seed trap example of Section 8.4 using S4
classes, with an explanatory commentary. We assume that the structure of
the class and objects will remain as above.

First, we tell R about the class itself, using the setClass function, which
takes the proposed class name and the proposed structure of the objects of
the class as arguments.

> setClass("trapTransect",

+ representation(distances = "numeric",

+ seed.counts = "numeric",

+ trap.area = "numeric"))

[1] "trapTransect"

Writing an object constructor is a little more involved than for S3 classes.
The constructor function is called new, but if we wish to do any processing
of the arguments, including validity checks, then we need to add a specific
initialize function, which will be called by new.

> setMethod("initialize",

+ "trapTransect",

+ function(.Object,

+ distances = numeric(0),

© 2009 by Taylor & Francis Group, LLC

142 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

+ seed.counts = numeric(0),

+ trap.area = numeric(0)) {

+ if (length(distances) != length(seed.counts))

+ stop("Lengths of distances and counts differ.")

+ if (length(trap.area) != 1)

+ stop("Ambiguous trap area.")

+ .Object@distances <- distances

+ .Object@seed.counts <- seed.counts

+ .Object@trap.area <- trap.area

+ .Object

+ })

[1] "initialize"

new creates an empty object and passes it to initialize, along with the
arguments that were provided to it. initialize then returns the updated
object, if the evaluations are successful.

> s1 <- new("trapTransect",

+ distances = 1:4,

+ seed.counts = c(4, 3, 2, 0),

+ trap.area = 0.0001)

Objects from S4 classes differ from objects of S3 classes in a few important
ways. The elements that comprise the object, as defined in the setClass

function, are called slots. The names of the slots can be found by

> slotNames(s1)

[1] "distances" "seed.counts" "trap.area"

The values in the slots are accessed by either the slot function or the “@”
operator, which takes the place of the $ operator used previously.

> s1@distances

[1] 1 2 3 4

We now add two methods for the class: show, to print objects of the class when
just the object name is input, and mean, to compute and return the mean seed
distance from the object. In each case we use the setMethod function, which
requires the method name, the pattern of expected formal arguments (called
the signature), and the function itself.

> setMethod("mean",

+ signature(x = "trapTransect"),

+ function(x, ...) weighted.mean(x@distances,

+ w = x@seed.counts))

[1] "mean"

© 2009 by Taylor & Francis Group, LLC

OBJECT-ORIENTED PROGRAMMING: S4 143

> setMethod("show",

+ signature(object = "trapTransect"),

+ function(object) str(object))

[1] "show"

We demonstrate the application of the new methods to the object.

> s1

Formal class 'trapTransect' [package ".GlobalEnv"] with 3 slots

..@ distances : int [1:4] 1 2 3 4

..@ seed.counts: num [1:4] 4 3 2 0

..@ trap.area : num 1e-04

> mean(s1)

[1] 1.777778

We list the S4 methods for the trapTransect class by

> showMethods(classes = "trapTransect")

Function: initialize (package methods)

.Object="trapTransect"

Function: mean (package base)

x="trapTransect"

Function: show (package methods)

object="trapTransect"

To display the code for a particular S4 method, we use

> getMethod("mean", "trapTransect")

Method Definition:

function (x, ...)

weighted.mean(x@distances, w = x@seed.counts)

Signatures:

x

target "trapTransect"

defined "trapTransect"

See ?Classes and ?Methods for more information.

© 2009 by Taylor & Francis Group, LLC

144 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

8.6 Compiled code

R can provide straightforward links to any compiled C or FORTRAN code that
has been appropriately structured. The ease with which R calls and executes
such code is first-rate compensation for any disadvantage in speed compared
with its competition. Some operations that take considerable time in R can
be executed vastly more quickly in C or FORTRAN, sometimes three orders
of magnitude more quickly. More details and examples can be found in ‘S
Programming’ by W.N. Venables and B.D. Ripley (Springer, 2000), and in
the ‘Writing R Extensions’ manual, which is installed with R by default, and
is also available on CRAN.

There are four steps required to link compiled C code to R:

8.6.1 Writing

We brush over the details of writing C code. It is beyond the scope of this
book to provide any great detail on this topic. Instead, we provide a simple
example, and point out the important elements of working in C with R. We
write a function to sum the elements of a vector in C, and call the function
from R. Note that we do not advocate this function as a replacement for the
built-in sum function, but present it as an instructive example.

Here’s the example written in C:

void csum(double *data, int *ndata, double *sum)

{

int i;

sum[0] = 0;

for (i = 0; i < *ndata; i++) {

sum[0] += data[i];

}

}

The compiled code has to be modular, and written so that all communication
is through the passed arguments, which must be pointers to the objects. In
practical terms this means that the arguments must be declared as pointers
in the function definition, and that care must be taken in the code so that the
pointers are handled correctly. In C, the code must be always be a function
of type void. Also note the following points:

• C indexes vectors differently than R: the first element of an array is element
number 0, not element 1.

• We pass the data object and the object length via the arguments, rather
than determining the length within C. In general, we try to do in R what
we can do well in R.

© 2009 by Taylor & Francis Group, LLC

COMPILED CODE 145

8.6.2 Compiling

This code is subsequently compiled into a binary object that can be called from
R. The nature and specificity of the binary object depends on the operating
system upon which it was compiled; unlike R code, such objects usually cannot
be shared across operating systems. We will refer to the binary object as a
shared library. As far as we are concerned, it is a binary blob that R can
communicate with. For the following development, we will restrict ourselves
to the Windows environment.

Compilation is straightforward if the appropriate software is available. For
Windows the necessary software is the same as that required for package
construction (Section 8.1.2), namely Perl, command line tools and MinGW
compilers. We create the program above as a text file using a text editor,
and name it something useful, for example sum.c. We then open the built-in
command line tool, traverse to the directory that contains the file, and type:

> R CMD SHLIB csum.c

The MinGW compiler will compile and link the code, and create an object
in the same directory called sum.dll. The next step is to link the object to
R (see below). If compilation fails, then the compiler will present reasonably
helpful error messages.

8.6.3 Attaching

In R, we load the binary object using the dyn.load function, and write a
function to call it, as follows:

> mySum <- function(data) {

+ if (!(is.loaded("csum"))) dyn.load("../src/csum.dll")

+ .C("csum",

+ as.double(data),

+ as.integer(length(data)),

+ sum = double(1))$sum

+ }

This code tells R where to find the shared library, and what to do with it.
Note that in the declaration of the function we name the C subroutine and
the arguments. We tell R that when we call mySum(data), data will point to
a double-precision array, that R should compute the length of data, that the
length should be of mode integer, and that sum is an empty, double-precision
array of size one for the output. Then the $sum at the end tells R to return
that array, hopefully no longer empty.

© 2009 by Taylor & Francis Group, LLC

146 POINTERS TO FURTHER PROGRAMMING TECHNIQUES

8.6.4 Call

We can now call the function like any other:

> mySum(1)

[1] 1

> mySum(0.5^(1:1000))

[1] 1

In practice linking compiled C code into R can save a lot of time if you need
to make intensive numerical calculations involving lots of loops. By combining
C with R it is possible to use each for what it is best at: R for manipulating
objects interactively and C for heavy-duty number crunching (in particular if
vectorisation within R is not feasible). As an example, some time ago the third
author was working on calculating signed-rank equivalence tests (S. Wellek,
Testing statistical hypotheses of equivalence, Chapman & Hall, 2003). Each
test required a triple loop over the data, which in this case comprised many
thousands of data points, requiring approximately 27 trillion operations to
compute the test statistic. The entire run took three hours in C, but was
estimated to have gone for a year in R.

8.7 Further reading

For more information on programming in R you should consult the docu-
mentation included with the R distribution: ‘An Introduction to R’ (R-intro),
‘Writing R Extensions’ (R-exts), ‘R Data Import/Export’ (R-data), ‘The R
Language Definition’ (R-lang), and ‘R Installation and Administration’ (R-
admin). These documents are invaluable in describing the contemporary re-
quirements and functionality for R.

There are also numerous books about R (and S) available. Of particular note
relating to this chapter is ‘S Programming’ by W.N. Venables and B.D. Rip-
ley (Springer, 2000). Also, for the use of R, we recommend ‘Modern Ap-
plied Statistics with S. Fourth Edition’ by W.N. Venables and B.D. Ripley
(Springer, 2002), ‘Statistical Models in S’, edited by J. Chambers and T.
Hastie (Wadsworth & Brooks/Cole, 1992), and ‘Data Analysis and Graphics
Using R: An Example-Based Approach. Second Edition’ by J. Maindonald
and J. Braun (Cambridge University Press, 2006).

8.8 Exercises

1. Student records.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 147

Create an S3 class studentRecord for objects that are a list with the named
elements ‘name’, ‘subjects completed’, ‘grades’, and ‘credit’.

Write a studentRecord method for the generic function mean, which re-
turns a weighted GPA, with subjects weighted by credit. Also write a
studentRecord method for print, which employs some nice formatting,
perhaps arranging subjects by year code.

Finally create a further class for a cohort of students, and write methods
for mean and print which, when applied to a cohort, apply mean or print
to each student in the cohort.

2. Let Omega be an ordered vector of numbers and define a subset of Omega
to be an ordered subvector. Define a class set for subsets of Omega and
write functions that perform union, intersection, and complementation on
objects of class set.

Do not use R’s built-in functions union, intersect, setdiff, or setequal.

3. Continued fractions.

A continued fraction has the form

a0 +
1

a1+
1

a2+
1

a3+ 1

...

.

The representation is finite if all the ak are zero for k ≥ k0.

Write a class for continued fractions (with a finite representation). Now
write functions to convert numbers from decimal to continued fraction form,
and back.

© 2009 by Taylor & Francis Group, LLC

PART II

Numerical techniques

© 2009 by Taylor & Francis Group, LLC

CHAPTER 9

Numerical accuracy and program
efficiency

When using a computer to perform intensive numerical calculations, there are
two important issues we should bear in mind: accuracy and speed.

In this chapter we will consider technical details about how computers operate,
and their ramifications for programming practice, particularly within R. We
look at how computers represent numbers, and the effect that this has on the
accuracy of computation results. We also discuss the time it takes to perform
a computation and programming techniques for speeding things up. Finally
we consider the effects of memory limitations on computation efficiency.

9.1 Machine representation of numbers

Computers use switches to encode information. A single ON/OFF indicator is
called a bit; a group of eight bits is called a byte. Although it is quite arbitrary,
it is usual to associate 1 with ON and 0 with OFF.

9.1.1 Integers

A fixed number of bytes is used to represent a single integer, usually four or
eight. Let k be the number of bits we have to work with (usually 32 or 64).
There are a number of schema used to encode integers. We describe three of
them: the sign-and-magnitude, biased, and two’s complement schema.

In the sign-and-magnitude scheme, we use one bit to represent the sign +/−
and the remainder to give a binary representation of the magnitude. Using the
sequence ±bk−2 · · · b2b1b0, where each bi is 0 or 1, we represent the decimal
number ±(20b0 + 21b1 + 22b2 + · · · + 2k−2bk−2). For example, taking k = 8,
−0100101 is interpreted as −(25 + 22 + 20) = −37. The smallest and largest
integers we can represent under this scheme are −(2k−1 − 1) and 2k−1 − 1.

The disadvantage of this scheme is that there are two representations of 0.

In the biased scheme, we use the sequence bk−1 · · · b1b0 to represent the decimal
number 20b0 + 21b1 + · · · 2k−1bk−1 − (2k−1 − 1). For example, taking k = 8,

151

© 2009 by Taylor & Francis Group, LLC

152 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

00100101 is interpreted as 37− 255 = −218. The smallest and largest integers
represented under this scheme are −(2k−1 − 1) and 2k−1.

The disadvantage of this scheme is that addition becomes a little more com-
plex.

The most popular scheme for representing integers on a computer is the two’s
complement scheme. Given k bits, the numbers 0, 1, . . . , 2k−1 − 1 are rep-
resented in the usual way, using a binary expansion, but the numbers −1,
−2, . . . ,−2k−1 are represented by 2k−1, 2k−2, . . . , 2k−2k−1. We will not go
into the details, but it turns out that addition under this scheme is equivalent
to addition modulo 2k, and can be implemented very efficiently.

The representation of integers on your computer happens at a fundamental
level, and R has no control over it. The largest integer you can represent on
your computer (whatever encoding scheme is in use) is known as maxint; R
records the value of maxint on your computer in the variable .Machine.

> .Machine$integer.max

[1] 2147483647

If you know a number is integer valued then it is efficient to store it as such.
However in practice R almost always treats integers the same way it does real
numbers, for which it uses floating point representation.

9.1.2 Real numbers

Floating point representation is based on binary scientific notation. In dec-
imal scientific notation, we write x = d0.d1d2 · · · × 10m, where d0, d1, . . .
are digits, with d0 6= 0 unless x = 0. In binary scientific notation, we write
x = b0.b1b2 · · · × 2m, where b0, b1, . . . are all 0 or 1, with b0 = 1 unless x = 0.
The sequence d0.d1d2 · · · or b0.b1b2 · · · is called the mantissa and m the expo-
nent.

R can use scientific e notation to represent numbers:

> 1.2e3

[1] 1200

The e should be read as ‘ten raised to the power’ and should not be confused
with the exponential.

In practice we must limit the size of the mantissa and the exponent; that is,
we limit the precision and range of the real numbers we work with. In double
precision eight bytes are used to represent floating point numbers: 1 bit is
used for the sign, 52 bits for the mantissa, and 11 bits for the exponent. The
biased scheme is used to represent the exponent, which thus takes on values
from −1023 to 1024. For the mantissa, 52 bits are used for b1, . . . , b52 while
the value of b0 depends on m:

© 2009 by Taylor & Francis Group, LLC

MACHINE REPRESENTATION OF NUMBERS 153

• If m = −1023 then b0 = 0, which allows us to represent 0, using b1 = · · · =
b52 = 0, or numbers smaller in size than 2−1023 otherwise (these are called
denormalised numbers).

• If −1023 < m < 1024 then b0 = 1.

• If m = 1024 then we use b1 = · · · = b52 = 0 to represent ±∞, which
R writes as -Inf and +Inf. If one of the bi 6= 0 then we interpret the
representation as NaN, which stands for Not a Number.

> 1/0

[1] Inf

> 0/0

[1] NaN

In double precision, the smallest non-zero positive number is 2−1074 and the
largest number is 21023(2 − 2−53) (sometimes called realmax). More impor-
tantly, the smallest number x such that 1 + x can be distinguished from 1 is
2−52 ≈ 2.220446× 10−16, which is called machine epsilon. Thus, in base 10,
double precision is roughly equivalent to 16 significant figures, with exponents
of size up to ±308.

> 2^-1074 == 0

[1] FALSE

> 1/(2^-1074)

[1] Inf

> 2^1023 + 2^1022 + 2^1021

[1] 1.572981e+308

> 2^1023 + 2^1022 + 2^1022

[1] Inf

> x <- 1 + 2^-52

> x - 1

[1] 2.220446e-16

> y <- 1 + 2^-53

> y - 1

[1] 0

© 2009 by Taylor & Francis Group, LLC

154 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

When arithmetic operations on double precision floating point numbers pro-
duce a result smaller in magnitude than 2−1074 or larger in magnitude than
realmax, then the result is 0 or ±∞, respectively. We call this underflow or
overflow.

The double precision scheme we have described here is part of the IEEE
Standard for Binary Floating-Point Arithmetic IEEE 754-1985. This standard
is used in practically all contemporary computers, though compliance cannot
be guaranteed. The implementation of floating point arithmetic happens at
a fundamental level of the computer and is not something R can control. It
is something R is aware of however, and the constant .Machine will give you
details about your local numerical environment.

9.2 Significant digits

Using double precision numbers is roughly equivalent to working with 16 sig-
nificant digits in base 10. Arithmetic with integers will be exact for values
from −(253 − 1) to 253 − 1 (roughly −1016 to 1016), but as soon as you start
using numbers outside this range, or fractions, you can expect to lose some
accuracy due to roundoff error. For example, 1.1 does not have a finite bi-
nary expansion, so in double precision its binary expansion is rounded to
1.00011001100 · · ·001, with an error of roughly 2−53.

To allow for roundoff error when comparing numbers, we can use
all.equal(x, y, tol), which returns TRUE if x and y are within tol of
each other, with default given by the square root of machine epsilon (roughly
10−8).

Let ã be an approximation of a, then the absolute error is |ã − a| and the
relative error is |ã − a|/a. Restricting ã to 16 significant digits is equivalent
to allowing a relative error of 10−16. When adding two approximations we
add the absolute errors to get (a bound on) the absolute error of the result.
When multiplying two approximations we add the relative errors to get (an
approximation of) the relative error of result: suppose ǫ and δ are the (small)
relative errors of a and b, then

ãb̃ = a(1 + ǫ)b(1 + δ) = ab(1 + ǫ+ δ + ǫδ) ≈ ab(1 + ǫ+ δ).

Suppose we add 1,000 numbers each of size around 1,000,000 with relative
errors of up to 10−16. Each thus has an absolute error of up to 10−10, so
adding them all we would have a number of size around 1,000,000,000 with an
absolute error of up to 10−7. That is, the relative error remains much the same
at 10−16. However, things can look very different when you start subtracting
numbers of a similar size. For example, consider

1, 234, 567, 812, 345, 678− 1, 234, 567, 800, 000, 000 = 12, 345, 678.

If the two numbers on the left-hand side have relative errors of 10−16, then

© 2009 by Taylor & Francis Group, LLC

SIGNIFICANT DIGITS 155

the right-hand side has an absolute error of about 1, which is a relative er-
ror of around 10−8: a dramatic loss in accuracy, which we call catastrophic
cancellation error.

Catastrophic cancellation is an inherent problem when you have a finite num-
ber of significant digits. However if you are aware of it, it can sometimes be
avoided.

9.2.1 Example: sin(x)− x near 0

Since limx→0 sin(x)/x = 1, we have that sin(x) ≈ x near 0. Thus if we wish
to know sin(x)− x near 0, then we expect catastrophic cancellation to reduce
the accuracy of our calculation.

The Taylor expansion of sin(x) about 0 is
∑∞

n=0(−1)nx2n+1/(2n+ 1)!, thus

sin(x)− x =

∞
∑

n=1

(−1)n x2n+1

(2n+ 1)!
.

If we truncate this expansion to N terms, then the error is at most
|x2N+1/(2N+1)!| (this can be proved using the fact that the summands oscil-
late in sign while decreasing in magnitude). Suppose we approximate sin(x)−x
using two terms, namely

sin(x)− x ≈ −x
3

6
+

x5

120
= −x

3

6

(

1− x2

20

)

.

If |x| < 0.001 then the error in the approximation is less than 0.0015/120 <
10−17 in magnitude. If |x| < 0.000001 then the error is less than 10−302. Since
this formula does not involve subtraction of similarly sized numbers, it does
not suffer from catastrophic cancellation.

> x <- 2^-seq(from = 10, to = 40, by = 10)

> x

[1] 9.765625e-04 9.536743e-07 9.313226e-10 9.094947e-13

> sin(x) - x

[1] -1.552204e-10 -1.445250e-19 0.000000e+00 0.000000e+00

> -x^3/6 * (1 - x^2/20)

[1] -1.552204e-10 -1.445603e-19 -1.346323e-28 -1.253861e-37

We see that for x = 2−20 ≈ 10−6, catastrophic cancellation when calculating
sin(x) − x naively has resulted in an absolute error of around 10−23, which
may sound alright until we reflect that this is a relative error of around 10−4.
For x = 2−30 the relative error is 1!

© 2009 by Taylor & Francis Group, LLC

156 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

9.2.2 Example: range reduction

When approximating sin(x) using a Taylor expansion about 0, the further
x is from 0, the more terms we need in the expansion to get a reasonable
approximation. But sin(x) is periodic, so to avoid this, for large x we can just
take k such that |x− 2kπ| ≤ π, then use sin(x) = sin(x− 2kπ).

Unfortunately this procedure can cause problems because of catastrophic can-
cellation.

Suppose we start with 16 significant digits. If x is large, say around 108, then
the absolute error of x will be around 10−8 and thus the absolute error of
x − 2kπ will be around 10−8. This means the relative error of x − 2kπ has
increased to (at least) 10−8 (more if x− 2kπ is close to 0).

9.3 Time

Ultimately we measure how efficient a program is by how long it takes to run,
which will depend on the language it is written in and the computer it is run
on. Also, computers typically are doing a number of things at once, such as
playing music, watching the mouse or the mailbox, so the time taken to run a
program will also depend on what else the computer is doing at the same time.
To measure how many CPU (Computer Processing Unit) seconds are spent
evaluating an expression, we use system.time(expression). More generally,
the expression proc.time() will tell you how much time you have used on
the CPU since the current R session began.

> system.time(source("primedensity.r"))

user system elapsed

0.08 0.03 0.19

The sum of the user and system time gives the CPU seconds spent evaluating
the expression. The elapsed time also includes time spent on tasks unrelated
to your R session.

In most cases of interest, the time taken to run a program depends on the
nature of the inputs. For example, the time taken to sum a vector or sort a
vector will clearly depend on the length of the vector, n say. Alternatively we
may want a solution to the equation f(x) = 0, accurate to within some toler-
ance ǫ, in which case the time taken will depend on ǫ. Because we cannot test
a program with all possible inputs, we need a theoretical method of assessing
efficiency, which would depend on n or ǫ, and which will give us a measure of
how long the program should take to run. We do this by counting the num-
ber of operations executed in running a program, where operations are tasks
such as addition, multiplication, logical comparison, variable assignment, and
calling built-in functions.

For example, the following program will sum the elements of a vector x:

© 2009 by Taylor & Francis Group, LLC

TIME 157

S <- 0

for (a in x) S <- S + a

Let n be the length of x, then when we run this program we carry out n
addition operations and 2n + 1 variable assignments (we assign a value to a

and to S each time we go around the for loop).

For a second example, suppose we are using the Taylor series
∑N

n=1(−1)n+1xn/n to approximate log(1 + x), for 0 ≤ x ≤ 1, and we want an
error of at most ±ǫ. It can be shown that the approximation error is no greater
in magnitude than the last term in the sum, which suggests the following code:

eps <- 1e-12

x <- 0.5

n <- 0

log1x <- 0

while (n == 0 || abs(last.term) > eps) {

n <- n + 1

last.term <- (-1)^(n+1)*x^n/n

log1x <- log1x + last.term

}

How many arithmetic operations are performed when running this program?
When we go around the loop the n-th time we perform three additions and
2n+3 multiplications/divisions, noting that xn requires n multiplications. We
loop until xn/n < ǫ. Putting x = 1 we get n = ⌈1/ǫ⌉, which is an upper bound
on n for all x ∈ (0, 1]. (Here ⌈1/ǫ⌉ is the ceiling of 1/ǫ, obtained by rounding
up to the nearest integer.) Thus the total number of additions will be bounded
by 3⌈1/ǫ⌉ and the total number of multiplications/divisions bounded by

⌈1/ǫ⌉
∑

n=1

(2n+ 3) = ⌈1/ǫ⌉(⌈1/ǫ⌉+ 1) + 3⌈1/ǫ⌉ = ⌈1/ǫ⌉2 + 4⌈1/ǫ⌉.

In this example, a simple modification to the program will improve the effi-
ciency. Change the line last.term <- (-1)^(n+1)*x^n/n to

last.term <- -last.term*x*(1 - 1/n)

We now have just three multiplications/divisions each time we go around the
loop, so the total number will be bounded by 3⌈1/ǫ⌉. (Multiplying by −1 does
not count as a multiplication.)

In practice, if we know the number of operations grows like anb where n
is the problem size (the length of the vector or the inverse tolerance in our
examples), then the value of b is much more important than the value of a.
For this reason rather than count operations exactly, it is usually sufficient to
ascertain how fast they grow as a function of n. Let f and g be functions of
n, then we say that f(n) = O(g(n)) as n → ∞ if limn→∞ f(n)/g(n) < ∞,
and f(n) = o(g(n)) as n → ∞ if limn→∞ f(n)/g(n) = 0. Our first example

© 2009 by Taylor & Francis Group, LLC

158 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

required O(n) operations to sum a vector of length n. In its initial form, our
second example required O(1/ǫ2) operations to calculate log(1 + x) to within
tolerance ǫ.

Some operations take much longer than others. Variable assignment (to an
existing variable), addition and subtraction are quick. Multiplication and di-
vision take a bit longer, and powers take longer still. Transcendental functions
such as sin and log have to be calculated and so take even longer, but not as
long as user-defined functions.

As we have already seen in Example 3.3.4, creating or changing the size of a
vector (also called redimensioning an array) is relatively slow, which is why,
when we know how big a vector is going to be, it is better to initialise it fully
grown (but full of zeros) than to increase it incrementally. We can compare
the relative speeds using system.time:

> n <- 10000

> x <- rep(0, n)

> system.time(for (i in 1:n) x[i] <- i^2)

user system elapsed

0.023 0.000 0.024

> x <- c()

> system.time(for (i in 1:n) x[i] <- i^2)

user system elapsed

0.515 0.044 0.621

In practice what we do is identify the longest or most important operation
in a program, and count how many times it is performed. For example, for
numerical integration, root-finding, and optimisation, we are working with
a user-defined function f , and we count how many times f(x) is evaluated,
for different x. For numerical sorting algorithms (see Exercise 7), we count
how many comparisons of the form x < y are made. For advanced uses, the
function Rprof can be used to capture a lot of information about a program
as it runs.

9.4 Loops versus vectors

In R, vector operations are generally faster than equivalent loops. However, if
you just count operations there appears to be no reason for this. R is a very
high-level language in which it is relatively easy to create and manipulate
variables. The price we pay for this flexibility is speed. When you evaluate an
expression in R, it is ‘translated’ into a faster lower-level language before being
evaluated, then the result is translated back into R. It is the translation that

© 2009 by Taylor & Francis Group, LLC

LOOPS VERSUS VECTORS 159

takes much of the time, and vectorisation saves on the amount of translation
required.1

For example, take the following code to square each element of x:

for (i in 1:length(x)) x[i] <- x[i]^2

Each time we evaluate the expression x[i] <- x[i]^2, we have to translate
x[i] into our lower-level language, and then translate the result back. In
contrast, to evaluate the expression x <- x^2, we translate x all at once and
then square it, before translating the answer back: all the work takes place in
our faster lower-level language.

Many of R’s functions are vectorised, which means that if the first argument
is a vector, then the output will be a vector of the same length, computed by
applying the function elementwise to the input vector. Vectorisation allows
for faster executing code that is easier to read. User-defined functions can also
be vectorised if they comprise functions that are innately vectorised, or are
invoked using one of the apply family of functions (see Sections 5.4 and 6.4).

When we have a numerically intensive algorithm that uses lots of loops and
cannot be vectorised, then R allows us to encode the algorithm in C or Fortran
(which are faster lower-level languages) and then access this as a function.
Section 8.6 gives some pointers as to how this is done.

9.4.1 Example: column sums of a matrix

We demonstrate a collection of different approaches to solving the problem of
summing across the columns of a matrix. We confine ourselves to R code, and
we order the solutions from the least to the most efficient.

> big.matrix <- matrix(1:1e+06, nrow = 1000)

> colsums <- rep(NA, dim(big.matrix)[2])

We compare

1. A double loop of summations,

> system.time({

+ for (i in 1:dim(big.matrix)[2]) {

+ s <- 0

+ for (j in 1:dim(big.matrix)[1]) {

+ s <- s + big.matrix[j, i]

+ }

+ colsums[i] <- s

+ }

+ })

1 This is a rather simplified view of what is going on. Nonetheless, it provides us with a
workable cognitive model in which we can express the problem.

© 2009 by Taylor & Francis Group, LLC

160 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

user system elapsed

1.727 0.000 1.903

2. The use of apply,

> system.time(colsums <- apply(big.matrix, 2, sum))

user system elapsed

0.035 0.008 0.044

3. A single loop of sums, and

> system.time(for (i in 1:dim(big.matrix)[2]) {

+ colsums[i] <- sum(big.matrix[, i])

+ })

user system elapsed

0.029 0.001 0.030

4. Using the dedicated R function:

> system.time(colsums <- colSums(big.matrix))

user system elapsed

0.004 0.000 0.003

We note that using apply is not faster than using a for loop. This is because,
in R, apply creates its own for loop.

9.5 Memory

Computer memory comes in a variety of forms. For most purposes it is suffi-
cient to think in terms of RAM (random access memory), which is fast, and
the hard disk, which is slow.

Variables require memory. By default they are stored in RAM, but if you
have too many they will be stored on the hard disk then swapped into RAM
when needed, which takes time. Historically RAM was expensive and in short
supply, and keeping memory use to a minimum was important if you wanted
your programs to run quickly. In the present day however, RAM is relatively
cheap, and programmers seldom have to worry about how many variables they
use. Moreover, because accessing an existing variable is invariably quicker than
recalculating it, it is usual to store commonly used quantities for reuse.

For example, consider the function prime from Example 5.4.1:

program spuRs/resources/scripts/prime.r

prime <- function(n) {

returns TRUE if n is prime

assumes n is a positive integer

© 2009 by Taylor & Francis Group, LLC

CAVEAT 161

if (n == 1) {

is.prime <- FALSE

} else if (n == 2) {

is.prime <- TRUE

} else {

is.prime <- TRUE

m <- 2

m.max <- sqrt(n) # only want to calculate this once

while (is.prime && m <= m.max) {

if (n %% m == 0) is.prime <- FALSE

m <- m + 1

}

}

return(is.prime)

}

Calculating
√
n is relatively slow, so we do this once and store the result. An

alternative is for the main while loop to start as follows:

while (is.prime && m <= sqrt(n))

Coding the loop this way would require us to recalculate
√
n each time we

check the loop condition, which is inefficient.

Because R works much more quickly with vectors than loops, it is usual to try
to vectorise R programs. This will occasionally produce very large vectors. As
soon as a vector (or list) is too large to store in RAM all at once, the speed at
which you can use it will drop dramatically. If it is sufficiently large, then it
may not be possible to store it at all, in which case you are said to have run
out of memory.

R has an absolute limit on the length of a vector of 231 − 1 = 2,147,483,647
(the result of using signed 32-bit integers to index vectors), however, if you
run out of memory it is more likely that the problem is that you have reached
the limits of your computing environment. If you find this happening then you
will need to break your vectors down into smaller subvectors and deal with
each in turn. In extreme cases it may be necessary to save a variable and then
delete it from the workspace, using save and rm, to free up enough memory
for your program to keep running.

9.6 Caveat

In this chapter we have considered programming efficiency only from the point
of view of code execution. A more useful approach is to consider programming
efficiency from the point of view of code creation as well as execution; that is,
to include the cost of code development. It may well be that judicious refining
can trim an hour off the execution of your code, but if it takes two hours
to do so, then perhaps there is no real gain. This is the evaluation that a

© 2009 by Taylor & Francis Group, LLC

162 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

programmer must make: what are the short-term and long-term benefits of
code optimisation against the short-term cost of programming time?

For large projects involving more than one programmer other considerations
become important, such as the clarity and stability of your code. That is,
can others easily understand what the code does, and does it produce sen-
sible answers no matter what sort of input is provided (even if that is just
an informative error message). The practice of systematically developing and
maintaining large complicated programs is often referred to as software engi-
neering.

9.7 Exercises

1. In single precision four bytes are used to represent a floating point number:
1 bit is used for the sign, 8 for the exponent, and 23 for the mantissa.

What are the largest and smallest non-zero positive numbers in single pre-
cision (including denormalised numbers)?

In base 10, how many significant digits do you get using single precision?

2. What is the relative error in approximating π by 22/7? What about
355/113?

3. Suppose x and y can be represented without error in double precision. Can
the same be said for x2 and y2?

Which would be more accurate, x2 − y2 or (x− y)(x+ y)?

4. To calculate log(x) we use the expansion

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · .

Truncating to n terms, the error is no greater in magnitude than the last
term in the sum. How many terms in the expansion are required to calculate
log 1.5 with an error of at most 10−16? How many terms are required to
calculate log 2 with an error of at most 10−16?

Using the fact that log 2 = 2 log
√

2, suggest a better way of calculating
log 2.

5. The sample variance of a set of observations x1, . . . , xn is given by S2 =
∑n

i=1(xi − x)2/(n − 1) = (
∑n

i=1 x
2
i − nx2)/(n − 1), where x =

∑n
i=1 xi/n

is the sample mean.

Show that the second formula is more efficient (requires fewer operations)
but can suffer from catastrophic cancellation. Demonstrate catastrophic
cancellation with an example sample of size n = 2.

6. Horner’s algorithm for evaluating the polynomial p(x) = a0 + a1x+ a2x
2 +

· · ·+ anx
n consists of re-expressing it as

a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan) · · ·)).

© 2009 by Taylor & Francis Group, LLC

EXERCISES 163

How many operations are required to evaluate p(x) in each form?

7. This exercise is based on the problem of sorting a list of numbers, which is
one of the classic computing problems. Note that R has an excellent sorting
function, sort(x), which we will not be using.

To judge the effectiveness of a sorting algorithm, we count the number
of comparisons that are required to sort a vector x of length n. That is,
we count the number of times we evaluate logical expressions of the form
x[i] < x[j]. The fewer comparisons required, the more efficient the algo-
rithm.

Selection sort The simplest but least efficient sorting algorithm is selection
sort. The selection sort algorithm uses two vectors, an unsorted vector
and a sorted vector, where all the elements of the sorted vector are less
than or equal to the elements of the unsorted vector. The algorithm
proceeds as follows:

1. Given a vector x, let the initial unsorted vector u be equal to x, and
the initial sorted vector s be a vector of length 0.

2. Find the smallest element of u then remove it from u and add it to
the end of s.

3. If u is not empty then go back to step 2.

Write an implementation of the selection sort algorithm. To do this you
may find it convenient to write a function that returns the index of the
smallest element of a vector.

How many comparisons are required to sort a vector of length n using
the selection sort algorithm?

Insertion sort Like selection sort, insertion sort uses an unsorted vector
and a sorted vector, moving elements from the unsorted to the sorted
vector one at a time. The algorithm is as follows:

1. Given a vector x, let the initial unsorted vector u be equal to x, and
the initial sorted vector s be a vector of length 0.

2. Remove the last element of u and insert it into s so that s is still
sorted.

3. If u is not empty then go back to step 2.

Write an implementation of the insertion sort algorithm. To insert an
element a into a sorted vector s = (b1, . . . , bk) (as per step 2 above),
you do not usually have to look at every element of the vector. Instead,
if you start searching from the end, you just need to find the first i such
that a ≥ bi, then the new sorted vector is (b1, . . . , bi, a, bi+1, . . . , bk).

Because inserting an element into a sorted vector is usually quicker than
finding the minimum of a vector, insertion sort is usually quicker than
selection sort, but the actual number of comparisons required depends
on the initial vector x. What are the worst and best types of vector x,
with respect to sorting using insertion sort, and how many comparisons
are required in each case?

© 2009 by Taylor & Francis Group, LLC

164 NUMERICAL ACCURACY AND PROGRAM EFFICIENCY

Bubble sort Bubble sort is quite different from selection sort and insertion
sort. It works by repeatedly comparing adjacent elements of the vector
x = (a1, . . . , an), as follows:

1. For i = 1, . . . , n− 1, if ai > ai+1 then swap ai and ai+1.

2. If you did any swaps in step 1, then go back and do step 1 again.

Write an implementation of the bubble sort algorithm and work out
the minimum and maximum number of comparisons required to sort a
vector of length n.

Bubble sort is not often used in practice. Its main claim to fame is that
it does not require an extra vector to store the sorted values. There
was a time when the available memory was an important programming
consideration, and so people worried about how much storage an al-
gorithm required, and bubble sort is excellent in this regard. However
at present computing speed is more of a bottleneck than memory, so
people worry more about how many operations an algorithm requires.

If you like bubble sort then you should look up the related algorithm
gnome sort, which was named after the garden gnomes of Holland and
their habit of rearranging flower pots.

Quick sort The quick sort algorithm is (on average) one of the fastest sort-
ing algorithms currently available and is widely used. It was first de-
scribed by C.A.R. Hoare in 1960. Quick sort uses a ‘divide-and-conquer’
strategy: it is a recursive algorithm that divides the problem into two
smaller (and thus easier) problems. Given a vector x = (a1, . . . , an),
the algorithm works as follows:

1. If n = 0 or 1 then x is sorted so stop.

2. If n > 1 then split (a2, . . . , an) into two subvectors, l and g, where
l consists of all the elements of x less than a1, and g consists of all
the elements of x greater than a1 (ties can go in either l or g).

3. Sort l and g. Call the sorted subvectors (b1, . . . , bi) and
(c1, . . . , cj), respectively, then the sorted vector x is given by
(b1, . . . , bi, a1, c1, . . . , cj).

Implement the quick sort algorithm using a recursive function.

It can be shown that on average the quick sort algorithm requires
O(n log n) comparisons to sort a vector of length n, though its worst-
case performance is O(n2). Also, it is possible to implement quick sort
so that it uses memory efficiently while remaining quick.

Two other sorting algorithms that also require on average O(n logn)
comparisons are heap sort and merge sort.

8. Use the system.time function to compare the programs primedensity.r
and primesieve.r, given in Chapter 5.

9. For x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , the convolution of x and y is

© 2009 by Taylor & Francis Group, LLC

EXERCISES 165

the vector z = (z1, . . . , z2n)T given by

zk =

min{k,n}
∑

i=max{1,k−n}
xi · yk−i.

Write two programs to convolve a pair of vectors, one using loops and
the other using vector operations, then use system.time to compare their
speed.

10. Use the system.time function to compare the relative time that it takes
to perform addition, multiplication, powers, and other simple operations.
You may wish to perform each more than once!

© 2009 by Taylor & Francis Group, LLC

CHAPTER 10

Root-finding

10.1 Introduction

The next few chapters introduce numerical algorithms for solving some com-
mon applied mathematical problems. In each case we present motivating ex-
amples, some underpinning theory, and applications in R. This chapter focuses
on root-finding, and covers fixed-point iteration, the Newton-Raphson method,
the secant method, and the bisection method.

Suppose that f : R → R is a continuous function. A root of f is a solution
to the equation f(x) = 0 (see Figure 10.1 for example). That is, a root is
a number a ∈ R such that f(a) = 0. If we draw the graph of our function,
say y = f(x), which is a curve in the plane, a solution of f(x) = 0 is the
x-coordinate of a point at which the curve crosses the x-axis.

The roots of a function are important algebraically, for example, we use the

0 2 4 6 8 10

−
2

0
2

4
6

x

f
(x

)

root at x=1 root at x=7

Figure 10.1 The roots of the function f.

167

© 2009 by Taylor & Francis Group, LLC

168 ROOT-FINDING

roots of a polynomial to factorise it. Moreover the solution to a physical prob-
lem can often be expressed as the root of a suitable function. Root-finding
is also a classical numerical or computational problem, and provides a good
introduction to important issues in numerical mathematics.

10.1.1 Example: loan repayments

Suppose that a loan has an initial amount P , a monthly interest rate r, a
duration of N months, and a monthly repayment of A. The remaining debt
after n months is given by Pn, where

P0 = P ;

Pn+1 = Pn(1 + r)−A.
That is, each month you pay interest on the previous balance, then reduce the
balance of the loan by amount A. This is a first-order recurrence equation,
and has the following solution (check that it works):

Pn = P (1 + r)n −A((1 + r)n − 1)/r.

Putting PN = 0, we get

A

P
=

r(1 + r)N

(1 + r)N − 1
.

Suppose that we know P , N , and A, then we can find r by finding the root(s)
of the following function:

f(x) =
A

P
− x(1 + x)N

(1 + x)N − 1
.

Choose some values for P , N , and A and then try finding r analytically.
If/when you decide this is too hard, you can try doing it numerically with one
of the techniques below.

10.2 Fixed-point iteration

Let g : R→ R be a continuous function. A fixed point of g is a number a such
that g(a) = a. That is, a is a solution of the equation g(x) = x. Graphically, a
fixed point is where the graph y = g(x) of the function crosses the line y = x.

The computational problem of finding fixed points of a function is easily re-
duced to the problem of finding roots. To see this define the function f(x)
by the equation f(x) = c(g(x)− x), where c is a non-zero constant, then one
clearly has f(a) = 0 if and only if g(a) = a. So to find the fixed points of the
function g we need only find the roots of the associated function f , that is
solutions of the equation f(x) = 0. Conversely, the problem of finding roots

© 2009 by Taylor & Francis Group, LLC

FIXED-POINT ITERATION 169

0.0 1.0 2.0 3.0

0
1

2
3

4
5

Divergence

f(
x
)=

x
1
.5

0.0 1.0 2.0 3.0

0
.0

1
.0

2
.0

Convergence

f(
x
)=

x
0
.7

5

Figure 10.2 The fixed-point algorithm applied to the function y = x1.5, starting at
x0 = 1.5, and to the function y = x0.75, starting at x0 = 2.5.

of f(x) = 0 is equivalent to the problem of finding fixed points of the function
g(x) = c · f(x) + x.

Although this is one way to convert from one form of problem to the other, it
is not the only way, and in practice some ways are better than others.

The ‘fixed-point method’ is an iterative method for solving g(x) = x. That
is, it generates a sequence of points x0, x1, x2, . . . that (hopefully) converges
to some point a such that g(a) = a. Starting with our initial guess x0, we
generate the next guess using x1 = g(x0) and repeat. This gives the following
first-order recurrence relation (also called a difference equation):

Fixed-point method
xn+1 = g(xn).

If xn → a then, given g is continuous, we have

a = lim
n→∞

xn+1 = lim
n→∞

g(xn) = g(lim
n→∞

xn) = g(a).

So a is a fixed point of g. But does the sequence {xn}∞n=0 always converge?
The answer, sadly, is no.

In Figure 10.2 we illustrate the application of the fixed-point method to the
functions g1(x) = x1.5 and g2(x) = x0.75, starting to the right of 1 in each
case. The dotted lines give the successive values of xn. The solid lines show
how we obtain xn+1 from xn. Both functions have fixed points at 1, but the
algorithm diverges when applied to g1 and converges when applied to g2. The
crucial difference is the value of g′ at the fixed point: if |g′(a)| < 1 at the
fixed point a, then the algorithm will converge, otherwise it diverges. It is also
necessary to start relatively ‘close’ to the fixed point to guarantee that you

© 2009 by Taylor & Francis Group, LLC

170 ROOT-FINDING

will converge to it. We will not prove this result here, though Exercise 2 gives
an outline of how it is done. You should be able to convince yourself that it
is true by looking at the figure.

Even when the method does converge, we still have a (small) problem: {xn}∞n=0

may converge to a, but never actually reach it. We can never avoid this prob-
lem, rather we have to accommodate it. The best we can do is ask for an xn

within distance δ of a, for some small δ > 0.

Practically, to avoid iterating forever, we stop when |xn − xn−1| ≤ ǫ for some
(user-specified) tolerance ǫ. Noting that g(a) = a, and that g(x) − g(a) ≈
g′(a)(x− a) for x close to a, we have the following:

|xn − xn−1| ≤ ǫ ⇔ |g(xn−1)− xn−1| ≤ ǫ
⇔ |g(xn−1)− g(a)− (xn−1 − a)| ≤ ǫ
⇒ |xn−1 − a| ≤ ǫ+ |g(xn−1)− g(a)| ≈ ǫ+ g′(a)|xn−1 − a|
⇒ |xn−1 − a| ≤ ǫ/(1− g′(a)).

Thus, to ensure |xn−a| ≤ δ we need to choose ǫ ≤ δ(1−g′(a)) (approximately).
Of course, until we know a we can’t find g′(a), so in practice we just choose ǫ
to be small.

Note that the fixed-point method can still be used if g′ does not exist, provided
g is continuous. However, the convergence properties of the method are harder
to describe in such a case.

The code below implements the fixed-point algorithm in a function
fixedpoint. To use it you first need to create a function, ftn(x) say, that re-
turns g(x). fixedpoint(ftn, x0, tol = 1e-9, max.iter = 100) has four
inputs:

ftn is the name of a function that takes a single numeric input and returns
a single numeric result.

x0 is the starting point for the algorithm.

tol is such that the algorithm will stop if |xn − xn−1| ≤ tol, with default
10−9.

max.iter is such that the algorithm will stop when n = max.iter, with
default 100.

We remark that, because the fixed-point method is not guaranteed to converge,
our coding of the algorithm counts how many iterations have been performed,
and stops if they exceed some specified maximum. This prevents the function
running on forever.

program spuRs/resources/scripts/fixedpoint.r

loadable spuRs function

fixedpoint <- function(ftn, x0, tol = 1e-9, max.iter = 100) {

© 2009 by Taylor & Francis Group, LLC

FIXED-POINT ITERATION 171

applies the fixed-point algorithm to find x such that ftn(x) == x

we assume that ftn is a function of a single variable

#

x0 is the initial guess at the fixed point

the algorithm terminates when successive iterations are

within distance tol of each other,

or the number of iterations exceeds max.iter

do first iteration

xold <- x0

xnew <- ftn(xold)

iter <- 1

cat("At iteration 1 value of x is:", xnew, "\n")

continue iterating until stopping conditions are met

while ((abs(xnew-xold) > tol) && (iter < max.iter)) {

xold <- xnew;

xnew <- ftn(xold);

iter <- iter + 1

cat("At iteration", iter, "value of x is:", xnew, "\n")

}

output depends on success of algorithm

if (abs(xnew-xold) > tol) {

cat("Algorithm failed to converge\n")

return(NULL)

} else {

cat("Algorithm converged\n")

return(xnew)

}

}

10.2.1 Example: finding the root of f(x) = log(x) − exp(−x)

We consider three approaches to solving the equation f(x) = log(x) −
exp(−x) = 0. First, we put one term on each side of the equation and ex-
ponentiate both sides to get

x = exp(exp(−x)) = g1(x).

Second, we subtract each side from x to get

x = x− log x+ exp(−x) = g2(x).

Finally, we add x to both sides to get

x = x+ log x− exp(−x) = g3(x).

1. Applying the fixed-point method to g1, we find the sequence appears to con-

© 2009 by Taylor & Francis Group, LLC

172 ROOT-FINDING

verge but it takes 14 iterations for successive guesses to agree to 6 decimal
places.

> source("../scripts/fixedpoint.r")

> ftn1 <- function(x) return(exp(exp(-x)))

> fixedpoint(ftn1, 2, tol = 1e-06)

At iteration 1 value of x is: 1.144921

At iteration 2 value of x is: 1.374719

At iteration 3 value of x is: 1.287768

At iteration 4 value of x is: 1.317697

At iteration 5 value of x is: 1.307022

At iteration 6 value of x is: 1.310783

At iteration 7 value of x is: 1.309452

At iteration 8 value of x is: 1.309922

At iteration 9 value of x is: 1.309756

At iteration 10 value of x is: 1.309815

At iteration 11 value of x is: 1.309794

At iteration 12 value of x is: 1.309802

At iteration 13 value of x is: 1.309799

At iteration 14 value of x is: 1.309800

Algorithm converged

[1] 1.309800

2. Using g2, we find the sequence appears to converge and it takes only 6
iterations.

> ftn2 <- function(x) return(x - log(x) + exp(-x))

> fixedpoint(ftn2, 2, tol = 1e-06)

At iteration 1 value of x is: 1.442188

At iteration 2 value of x is: 1.312437

At iteration 3 value of x is: 1.309715

At iteration 4 value of x is: 1.309802

At iteration 5 value of x is: 1.309799

At iteration 6 value of x is: 1.309800

Algorithm converged

[1] 1.309800

3. Using g3, we find the sequence does not appear to converge at all.

> ftn3 <- function(x) return(x + log(x) - exp(-x))

> fixedpoint(ftn3, 2, tol = 1e-06, max.iter = 20)

At iteration 1 value of x is: 2.557812

At iteration 2 value of x is: 3.41949

At iteration 3 value of x is: 4.616252

At iteration 4 value of x is: 6.135946

At iteration 5 value of x is: 7.947946

At iteration 6 value of x is: 10.02051

At iteration 7 value of x is: 12.32510

At iteration 8 value of x is: 14.83673

At iteration 9 value of x is: 17.53383

© 2009 by Taylor & Francis Group, LLC

THE NEWTON-RAPHSON METHOD 173

At iteration 10 value of x is: 20.39797

At iteration 11 value of x is: 23.4134

At iteration 12 value of x is: 26.56671

At iteration 13 value of x is: 29.84637

At iteration 14 value of x is: 33.24243

At iteration 15 value of x is: 36.74626

At iteration 16 value of x is: 40.35030

At iteration 17 value of x is: 44.04789

At iteration 18 value of x is: 47.83317

At iteration 19 value of x is: 51.70089

At iteration 20 value of x is: 55.64637

Algorithm failed to converge

NULL

This example illustrates that as a method for finding roots, the fixed-point
method has some disadvantages. One needs to convert the problem into fixed-
point form, but there are many ways to do this, each of which will have
different convergence properties and some of which will not converge at all.
We consider the question of the best way of converting a root-finding problem
to a fixed-point problem in Exercise 7.

It also turns out that the fixed-point method is relatively slow, in that the
error is usually divided by a constant factor at each iteration. Both of our
next two algorithms, the Newton-Raphson method and the secant method,
converge more quickly because they make informed guesses as to where to
find a better approximation to the root.

10.3 The Newton-Raphson method

Suppose our function f is differentiable with continuous derivative f ′ and a
root a. Let x0 ∈ R and think of x0 as our current ‘guess’ at a. Now the straight
line through the point (x0, f(x0)) with slope f ′(x0) is the best straight line
approximation to the function f(x) at the point x0 (this is the meaning of the
derivative). The equation of this straight line is given by

f ′(x0) =
f(x0)− y
x0 − x

.

Now this straight line crosses the x-axis at a point x1, which should be a
better approximation than x0 to a. To find x1 we observe

f ′(x0) =
f(x0)− 0

x0 − x1
and so x1 = x0 −

f(x0)

f ′(x0)
.

In other words, the next best guess x1 is obtained from the current guess x0

by subtracting a correction term f(x0)/f
′(x0) (Figure 10.3).

© 2009 by Taylor & Francis Group, LLC

174 ROOT-FINDING

1 2 3 4 5 6

0
2

4
6

x

f
(x

)

xn

xn+1

Figure 10.3 A step in the Newton-Raphson root-finding method.

Now that we have x1, we use the same procedure to get the next guess

x2 = x1 −
f(x1)

f ′(x1)

or in general:

Newton-Raphson method

xn+1 = xn −
f(xn)

f ′(xn)
.

Like the fixed-point method, this is a first-order recurrence relation. It can be
shown that if f is ‘well behaved’ at a (which means f ′(a) 6= 0 and f ′′ is finite
and continuous at a)1 and you start with x0 ‘close enough’ to a, then xn will
converge to a quickly. Unfortunately, like the fixed-point method, we don’t
know if f is well behaved at a until we know a, and we don’t know beforehand
how close is close enough.

So, we cannot guarantee convergence of the Newton-Raphson algorithm. How-
ever, if xn → a then, since f and f ′ are continuous, we have

a = lim
n→∞

xn+1 = lim
n→∞

(

xn −
f(xn)

f ′(xn)

)

1 In fact, we can get away with the slightly less restrictive but more technical condition
that f ′(a) 6= 0 and f ′ is Lipschitz-continuous in a neighbourhood of a, which means that
for some constant c, |f ′(x) − f ′(y)| ≤ c|x − y|.

© 2009 by Taylor & Francis Group, LLC

THE NEWTON-RAPHSON METHOD 175

= lim
n→∞

xn −
f(limn→∞ xn)

f ′(limn→∞ xn)
= a− f(a)

f ′(a)
.

Thus, provided f ′(a) 6= ±∞, we must have f(a) = 0.

Since we are expecting f(xn)→ 0, a good stopping condition for the Newton-
Raphson algorithm is |f(xn)| ≤ ǫ for some tolerance ǫ. If the sequence {xn}∞n=0

is converging to a root a, then for x close to a we have f(x) ≈ f ′(a)(x − a).
So if |f(xn)| ≤ ǫ we have |x− a| ≤ ǫ/f ′(a) (approximately).

The code below implements the Newton-Raphson algorithm in a function
newtonraphson. To use it you first need to create a function, ftn(x) say,
which returns the vector (f(x), f ′(x)). newtonraphson(ftn, x0, tol = 1e-

9, max.iter = 100) has four inputs:

ftn is the name of a function that takes a single numeric input and returns
a numeric vector of length two. If x is the input then the output must be
(f(x), f ′(x)).

x0 is the starting point for the algorithm.

tol is such that the algorithm will stop if |f(xn)| ≤ tol, with default 10−9.

max.iter is such that the algorithm will stop when n = max.iter, with
default 100.

As for the fixed-point method, because we cannot guarantee convergence, we
count the number of iterations and stop if this gets too large. This prevents
the program running indefinitely, though of course you have to make sure
that you do not stop it too soon, in case it is converging more slowly than you
expected. Note that, because our stopping condition only depends on |f(xn)|,
and not |xn − xn−1|, we do not have to store the previous iteration, as we did
with function fixedpoint.

program spuRs/resources/scripts/newtonraphson.r

loadable spuRs function

newtonraphson <- function(ftn, x0, tol = 1e-9, max.iter = 100) {

Newton_Raphson algorithm for solving ftn(x)[1] == 0

we assume that ftn is a function of a single variable that returns

the function value and the first derivative as a vector of length 2

#

x0 is the initial guess at the root

the algorithm terminates when the function value is within distance

tol of 0, or the number of iterations exceeds max.iter

initialise

x <- x0

fx <- ftn(x)

iter <- 0

continue iterating until stopping conditions are met

© 2009 by Taylor & Francis Group, LLC

176 ROOT-FINDING

while ((abs(fx[1]) > tol) && (iter < max.iter)) {

x <- x - fx[1]/fx[2]

fx <- ftn(x)

iter <- iter + 1

cat("At iteration", iter, "value of x is:", x, "\n")

}

output depends on success of algorithm

if (abs(fx[1]) > tol) {

cat("Algorithm failed to converge\n")

return(NULL)

} else {

cat("Algorithm converged\n")

return(x)

}

}

When applied to the function logx− exp(−x) with derivative 1/x+exp(−x),
we get impressively fast convergence

> source("../scripts/newtonraphson.r")

> ftn4 <- function(x) {

+ fx <- log(x) - exp(-x)

+ dfx <- 1/x + exp(-x)

+ return(c(fx, dfx))

+ }

> newtonraphson(ftn4, 2, 1e-06)

At iteration 1 value of x is: 1.122020

At iteration 2 value of x is: 1.294997

At iteration 3 value of x is: 1.309709

At iteration 4 value of x is: 1.309800

Algorithm converged

[1] 1.309800

10.4 The secant method

A problem with the Newton-Raphson algorithm is that it needs the derivative
f ′. If the derivative is hard to compute or does not exist, then we can use the
secant method, which only requires that the function f is continuous.

Like the Newton-Raphson method, the secant method is based on a linear
approximation to the function f . Suppose that f has a root at a. For this
method we assume that we have two current ‘guesses’, x0 and x1, for the
value of a. We will think of x0 as an older guess and we want to replace the
pair x0, x1 by the pair x1, x2, where x2 is a new guess.

To find a good new guess x2 we first draw the straight line from (x0, f(x0)) to

© 2009 by Taylor & Francis Group, LLC

THE SECANT METHOD 177

1 2 3 4 5 6

0
2

4
6

x

f
(x

)

xn−1xn

xn+1

Figure 10.4 A step in the secant root-finding method.

(x1, f(x1)), which is called a secant of the curve y = f(x). Like the tangent,
the secant is a linear approximation of the behaviour of y = f(x), in the
region of the points x0 and x1. As the new guess we will use the x-coordinate
x2 of the point at which the secant crosses the x-axis (Figure 10.4). Now the
equation of the secant is given by

y − f(x1)

x− x1
=
f(x0)− f(x1)

x0 − x1

and so x2 can be found from

0− f(x1)

x2 − x1
=
f(x0)− f(x1)

x0 − x1

which gives

x2 = x1 − f(x1)
x0 − x1

f(x0)− f(x1)
.

Repeating this we get a second-order recurrence relation (each new value de-
pends on the previous two):

Secant method

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

Note that if xn and xn−1 are close together, then

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

© 2009 by Taylor & Francis Group, LLC

178 ROOT-FINDING

so we can view the secant method as an approximation of the Newton-Raphson
method, where we substitute (f(xn)− f(xn−1))/(xn − xn−1) for f ′(xn).

The convergence properties of the secant method are similar to those of the
Newton-Raphson method. If f is well behaved at a and you start with x0

and x1 sufficiently close to a, then xn will converge to a quickly, though not
quite as fast as the Newton-Raphson method. As for the Newton-Raphson
method, we cannot guarantee convergence. Comparing the secant method to
the Newton-Raphson method, we see a trade-off: we no longer need to know
f ′ but in return we give up some speed and have to provide two initial points,
x0 and x1.

The problem of implementing the secant method appears as Exercise 6.

10.5 The bisection method

The Newton-Raphson and secant root-finding methods work by producing
a sequence of guesses to the root and, under favourable circumstances, con-
verge rapidly to the root from an initial guess. Unfortunately they cannot be
guaranteed to work. A more reliable but slower approach is root-bracketing,
which works by first isolating an interval in which the root must lie, and then
successively refining the bounding interval in such a way that the root is guar-
anteed to always lie inside the interval. The canonical example is the bisection
method, in which the width of the bounding interval is successively halved.

Suppose that f is a continuous function, then it is easy to see that f has a
root in the interval (xl, xr) if either f(xl) < 0 and f(xr) > 0 or f(xl) > 0 and
f(xr) < 0. A convenient way to verify this condition is to check if f(xl)f(xr) <
0. The bisection method works by taking an interval (xl, xr) that contains a
root, then successively refining xl and xr until xr − xl ≤ ǫ, where ǫ is some
predefined tolerance. The algorithm is as follows:

Bisection method Start with xl < xr such that f(xl)f(xr) < 0.

1. if xr − xl ≤ ǫ then stop.

2. put xm = (xl + xr)/2; if f(xm) = 0 then stop.

3. if f(xl)f(xm) < 0 then put xr = xm otherwise put xl = xm.

4. go back to step 1.

Note that at every iteration of the algorithm, we know that there is root in
the interval (xl, xr). Provided we start with f(xl)f(xr) < 0, the algorithm is
guaranteed to converge, with the approximation error reducing by a constant
factor 1/2 at each iteration. If we stop when xr − xl ≤ ǫ, then we know that
both xl and xr are within distance ǫ of a root.

Note that the bisection method cannot find a root a if the function f just

© 2009 by Taylor & Francis Group, LLC

THE BISECTION METHOD 179

touches the x-axis at a, that is, if the x-axis is a tangent to the function at a.
The Newton-Raphson method will still work in this case. The most popular
current root-finding methods use root-bracketing to get close to a root, then
switch over to the Newton-Raphson or secant method when it seems safe to
do so. This strategy combines the safety of bisection with the speed of the
secant method.

Here is an implementation of the bisection method in R. Because this al-
gorithm makes certain assumptions about xl and xr, we check that these
assumptions hold before the algorithm runs. Also, because the algorithm is
guaranteed to converge (provided the initial conditions are met), we do not
need to put a bound on the maximum number of iterations. Note that the code
has a number of return statements. Recall that a function terminates the first
time a return is executed. In this function, if we detect a problem with the
inputs then we print an error message and immediately return(NULL), so that
the remainder of the function is not executed.

In Exercise 12 you are asked to generalise bisection so that it can deal with
the case f(xl)f(xr) > 0.

program spuRs/resources/scripts/bisection.r

loadable spuRs function

bisection <- function(ftn, x.l, x.r, tol = 1e-9) {

applies the bisection algorithm to find x such that ftn(x) == 0

we assume that ftn is a function of a single variable

#

x.l and x.r must bracket the fixed point, that is

x.l < x.r and ftn(x.l) * ftn(x.r) < 0

#

the algorithm iteratively refines x.l and x.r and terminates when

x.r - x.l <= tol

check inputs

if (x.l >= x.r) {

cat("error: x.l >= x.r \n")

return(NULL)

}

f.l <- ftn(x.l)

f.r <- ftn(x.r)

if (f.l == 0) {

return(x.l)

} else if (f.r == 0) {

return(x.r)

} else if (f.l * f.r > 0) {

cat("error: ftn(x.l) * ftn(x.r) > 0 \n")

return(NULL)

}

© 2009 by Taylor & Francis Group, LLC

180 ROOT-FINDING

successively refine x.l and x.r

n <- 0

while ((x.r - x.l) > tol) {

x.m <- (x.l + x.r)/2

f.m <- ftn(x.m)

if (f.m == 0) {

return(x.m)

} else if (f.l * f.m < 0) {

x.r <- x.m

f.r <- f.m

} else {

x.l <- x.m

f.l <- f.m

}

n <- n + 1

cat("at iteration", n, "the root lies between", x.l, "and", x.r, "\n")

}

return (approximate) root

return((x.l + x.r)/2)

}

Here it is in action. Observe how slow the method is compared to the Newton-
Raphson method.

> source("../scripts/bisection.r")

> ftn5 <- function(x) return(log(x) - exp(-x))

> bisection(ftn5, 1, 2, tol = 1e-06)

at iteration 1 the root lies between 1 and 1.5

at iteration 2 the root lies between 1.25 and 1.5

at iteration 3 the root lies between 1.25 and 1.375

at iteration 4 the root lies between 1.25 and 1.3125

at iteration 5 the root lies between 1.28125 and 1.3125

at iteration 6 the root lies between 1.296875 and 1.3125

at iteration 7 the root lies between 1.304688 and 1.3125

at iteration 8 the root lies between 1.308594 and 1.3125

at iteration 9 the root lies between 1.308594 and 1.310547

at iteration 10 the root lies between 1.309570 and 1.310547

at iteration 11 the root lies between 1.309570 and 1.310059

at iteration 12 the root lies between 1.309570 and 1.309814

at iteration 13 the root lies between 1.309692 and 1.309814

at iteration 14 the root lies between 1.309753 and 1.309814

at iteration 15 the root lies between 1.309784 and 1.309814

at iteration 16 the root lies between 1.309799 and 1.309814

at iteration 17 the root lies between 1.309799 and 1.309807

at iteration 18 the root lies between 1.309799 and 1.309803

at iteration 19 the root lies between 1.309799 and 1.309801

at iteration 20 the root lies between 1.309799 and 1.309800

[1] 1.309800

© 2009 by Taylor & Francis Group, LLC

EXERCISES 181

10.6 Exercises

1. Draw a function g(x) for which the fixed-point algorithm produces the
oscillating sequence 1, 7, 1, 7, . . . when started with x0 = 7.

2. (a). Suppose that x0 = 1 and that for n ≥ 0

xn+1 = αxn.

Find a formula for xn. For which values of α does xn converge, and to
what?

(b). Consider the fixed-point algorithm for finding x such that g(x) = x:

xn+1 = g(xn).

Let c be the fixed point, so g(c) = c. The first-order Taylor approxima-
tion of g about the point c is

g(x) ≈ g(c) + (x− c)g′(c).
Apply this Taylor approximation to the fixed-point algorithm to give
a recurrence relation for xn − c.
What condition on the function g at the point c will result in the
convergence of xn to c?

3. Use fixedpoint to find the fixed point of cosx. Start with x0 = 0 as your
initial guess (the answer is 0.73908513).

Now use newtonraphson to find the root of cosx− x, starting with x0 = 0
as your initial guess. Is it faster than the fixed-point method?

4. A picture is worth a thousand words.

The function fixedpoint_show.r below is a modification of fixedpoint
that plots intermediate results. Instead of using the variables tol and
max.iter to determine when the algorithm stops, at each step you will
be prompted to enter "y" at the keyboard if you want to continue. There
are also two new inputs, xmin and xmax, which are used to determine the
range of the plot. xmin and xmax have defaults x0 - 1 and x0 + 1, respec-
tively.

program spuRs/resources/scripts/fixedpoint_show.r

loadable spuRs function

fixedpoint_show <- function(ftn, x0, xmin = x0-1, xmax = x0+1) {

applies fixed-point method to find x such that ftn(x) == x

x0 is the starting point

subsequent iterations are plotted in the range [xmin, xmax]

plot the function

x <- seq(xmin, xmax, (xmax - xmin)/200)

fx <- sapply(x, ftn)

plot(x, fx, type = "l", xlab = "x", ylab = "f(x)",

© 2009 by Taylor & Francis Group, LLC

182 ROOT-FINDING

main = "fixed point f(x) = x", col = "blue", lwd = 2)

lines(c(xmin, xmax), c(xmin, xmax), col = "blue")

do first iteration

xold <- x0

xnew <- ftn(xold)

lines(c(xold, xold, xnew), c(xold, xnew, xnew), col = "red")

lines(c(xnew, xnew), c(xnew, 0), lty = 2, col = "red")

continue iterating while user types "y"

cat("last x value", xnew, " ")

continue <- readline("continue (y or n)? ") == "y"

while (continue) {

xold <- xnew;

xnew <- ftn(xold);

lines(c(xold, xold, xnew), c(xold, xnew, xnew), col = "red")

lines(c(xnew, xnew), c(xnew, 0), lty = 2, col = "red")

cat("last x value", xnew, " ")

continue <- readline("continue (y or n)? ") == "y"

}

return(xnew)

}

Use fixedpoint_show to investigate the fixed points of the following func-
tions:

(a). cos(x) using x0 = 1, 3, 6

(b). exp(exp(−x)) using x0 = 2

(c). x− log(x) + exp(−x) using x0 = 2

(d). x+ log(x) − exp(−x) using x0 = 2

5. Below is a modification of newtonraphson that plots intermediate results,
analogous to fixedpoint_show above. Use it to investigate the roots of the
following functions:

(a). cos(x) − x using x0 = 1, 3, 6

(b). log(x) − exp(−x) using x0 = 2

(c). x3 − x− 3 using x0 = 0

(d). x3 − 7x2 + 14x− 8 using x0 = 1.1, 1.2, . . . , 1.9

(e). log(x) exp(−x) using x0 = 2.

program spuRs/resources/scripts/newtonraphson_show.r

loadable spuRs function

newtonraphson_show <- function(ftn, x0, xmin = x0-1, xmax = x0+1) {

applies Newton-Raphson to find x such that ftn(x)[1] == 0

x0 is the starting point

subsequent iterations are plotted in the range [xmin, xmax]

© 2009 by Taylor & Francis Group, LLC

EXERCISES 183

plot the function

x <- seq(xmin, xmax, (xmax - xmin)/200)

fx <- c()

for (i in 1:length(x)) {

fx[i] <- ftn(x[i])[1]

}

plot(x, fx, type = "l", xlab = "x", ylab = "f(x)",

main = "zero f(x) = 0", col = "blue", lwd = 2)

lines(c(xmin, xmax), c(0, 0), col = "blue")

do first iteration

xold <- x0

f.xold <- ftn(xold)

xnew <- xold - f.xold[1]/f.xold[2]

lines(c(xold, xold, xnew), c(0, f.xold[1], 0), col = "red")

continue iterating while user types "y"

cat("last x value", xnew, " ")

continue <- readline("continue (y or n)? ") == "y"

while (continue) {

xold <- xnew;

f.xold <- ftn(xold)

xnew <- xold - f.xold[1]/f.xold[2]

lines(c(xold, xold, xnew), c(0, f.xold[1], 0), col = "red")

cat("last x value", xnew, " ")

continue <- readline("continue (y or n)? ") == "y"

}

return(xnew)

}

6. Write a program, using both newtonraphson.r and fixedpoint.r for guid-
ance, to implement the secant root-finding method:

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

First test your program by finding the root of the function cosx− x. Next
see how the secant method performs in finding the root of log x− exp(−x)
using x0 = 1 and x1 = 2. Compare its performance with that of the other
two methods.

Write a function secant_show.r that plots the sequence of iterates pro-
duced by the secant algorithm.

7. Adaptive fixed-point iteration.

To find a root a of f we can apply the fixed-point method to g(x) =
x + cf(x), where c is some non-zero constant. That is, given x0 we put
xn+1 = g(xn) = xn + cf(xn).

© 2009 by Taylor & Francis Group, LLC

184 ROOT-FINDING

From Taylor’s theorem we have

g(x) ≈ g(a) + (x− a)g′(a)
= a+ (x− a)(1 + cf ′(a))

so
g(x)− a ≈ (x− a)(1 + cf ′(a)).

Based on this approximation, explain why −1/f ′(a) would be a good choice
for c.

In practice we don’t know a so cannot find −1/f ′(a). At step n of the
iteration, what would be your best guess at −1/f ′(a)? Using this guess for
c, what happens to the fixed-point method? (You can allow your guess to
change at each step.)

8. The iterative method for finding the fixed point of a function works in very
general situations. Suppose A ⊂ R

d and f : A → A is such that for some
0 ≤ c < 1 and all vectors x,y ∈ A,

‖f(x)− f(y)‖d ≤ c‖x− y‖d.
It can be shown that for such an f there is a unique point x∗ ∈ A such
that f(x∗) = x∗. Moreover for any x0 ∈ A, the sequence defined by xn+1 =
f(xn) converges to x∗. Such a function is called a contraction mapping, and
this result is called the contraction mapping theorem, which is one of the
fundamental results in the field of functional analysis.

Modify the function fixedpoint(ftn, x0, tol, max.iter) given in Sec-
tion 10.2, so that it works for any function ftn(x) that takes as input a
numerical vector of length d ≥ 1 and returns a numerical vector of length d.
Use your modified function to find the fixed points of the function f below,
in the region [0, 2]× [0, 2].

f(x1, x2) = (log(1 + x1 + x2), log(5− x1 − x2)).

9. For f : R → R, the Newton-Raphson algorithm uses a sequence of linear
approximations to f to find a root. What happens if we use quadratic
approximations instead?

Suppose that xn is our current approximation to f , then a quadratic ap-
proximation to f at xn is given by the second-order Taylor expansion:

f(x) ≈ gn(x) = f(xn) + (x − xn)f ′(xn) + 1
2 (x− xn)2f ′′(xn).

Let xn+1 be the solution of gn(x) = 0 that is closest to xn, assuming a
solution exists. If gn(x) = 0 has no solution, then let xn+1 be the point at
which gn attains either its minimum or maximum. Figure 10.5 illustrates
the two cases.

Implement this algorithm in R and use it to find the fixed points of the
following functions:

(a). cos(x) − x using x0 = 1, 3, 6.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 185

0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x
n
 x

n+1
 x

n
 x

n+1

Figure 10.5 The iterative root-finding scheme of Exercise 9

(b). log(x) − exp(−x) using x0 = 2.

(c). x3 − x− 3 using x0 = 0.

(d). x3 − 7x2 + 14x− 8 using x0 = 1.1, 1.2, . . . , 1.9.

(e). log(x) exp(−x) using x0 = 2.

For your implementation, assume that you are given a function ftn(x)

that returns the vector (f(x), f ′(x), f ′′(x)). Given xn, if you rewrite gn

as gn(x) = a2x
2 + a1x + a0 then you can use the formula (−a1 ±

√

a2
1 − 4a2a0)/2a2 to find the roots of gn and thus xn+1. If gn has no

roots then the min/max occurs at the point g′n(x) = 0.

How does this algorithm compare to the Newton-Raphson algorithm?

10. How do we know π = 3.1415926 (to 7 decimal places)? One way of finding
π is to solve sin(x) = 0. By definition the solutions to sin(x) = 0 are kπ for
k = 0,±1,±2, . . ., so the root closest to 3 should be π.

(a). Use a root-finding algorithm, such as the Newton-Raphson algorithm,
to find the root of sin(x) near 3. How close can you get to π? (You may
use the function sin(x) provided by R.)

The function sin(x) is transcendental, which means that it cannot be written
as a rational function of x. Instead we have to write it as an infinite sum:

sin(x) =

∞
∑

k=0

(−1)k x2k+1

(2k + 1)!
.

(This is the infinite order Taylor expansion of sin(x) about 0.) In practice, to

© 2009 by Taylor & Francis Group, LLC

186 ROOT-FINDING

calculate sin(x) numerically we have to truncate this sum, so any numerical
calculation of sin(x) is an approximation. In particular the function sin(x)

provided by R is only an approximation of sin(x) (though a very good one).

(b). Put

fn(x) =

n
∑

k=0

(−1)k x2k+1

(2k + 1)!
.

Write a function in R to calculate fn(x). Plot fn(x) over the range [0, 7]
for a number of values of n, and verify that it looks like sin(x) for large
n.

(c). Choose a large value of n, then find an approximation to π by solving
fn(x) = 0 near 3. Can you get an approximation that is correct up to
6 decimal places? Can you think of a better way of calculating π?

11. The astronomer Edmund Halley devised a root-finding method faster than
the Newton-Raphson method, but which requires second derivative infor-
mation. If xn is our current solution then

xn+1 = xn −
f(xn)

f ′(xn)− (f(xn)f ′′(xn)/2f ′(xn))
.

Let m be a positive integer. Show that applying Halley’s method to the
function f(x) = xm − k gives

xn+1 =

(

(m− 1)xm
n + (m+ 1)k

(m+ 1)xm
n + (m− 1)k

)

xn.

Use this to show that, to 9 decimal places, 591/7 = 1.790518691.

12. The bisection method can be generalised to deal with the case f(xl)f(xr) >
0, by broadening the bracket. That is, we reduce xl and/or increase xr, and
try again. A reasonable choice for broadening the bracket is to double the
width of the interval [xl, xr], that is (in pseudo-code)

m ← (xl + xr)/2

w ← xr − xl

xl ← m− w
xr ← m+ w

Incorporate bracket broadening into the function bisection given in Sec-
tion 10.5. Note that broadening is not guaranteed to find xl and xr such
that f(xl)f(xr) ≤ 0, so you should include a limit on the number of times
it can be tried.

Use your modified function to find a root of

f(x) = (x− 1)3 − 2x2 + 10− sin(x),

starting with xl = 1 and xr = 2.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 11

Numerical integration

It is frequently necessary to compute definite integrals
∫ b

a f(x)dx of a given
function f . From the Fundamental Theorem of Calculus we know that if we can
find an antiderivative or indefinite integral F , such that F ′(x) = d

dxF (x) =

f(x), then
∫ b

a f(x)dx = F (b) − F (a). However for many functions f it is
impossible to write down an antiderivative in closed form. That is, we have
no finite formula for F . In such cases we can use numerical integration to
approximate the definite integral.

For example, in statistics we often use definite integrals of the standard normal
density, that is, integrals of the form

Φ(z) =

∫ z

−∞

1√
2π
e−x2/2 dx.

We know that Φ(0) = 1/2 and Φ(∞) = 1, but for all other z numerical
integration is used.

In this chapter we consider three numerical integration techniques: the trape-
zoid rule, Simpson’s rule, and adaptive quadrature. In each case we suppose
that we are given an integrable1 function f(x) and an interval [a, b] and the
object is to approximate

∫ b

a

f(x) dx.

We subdivide the interval [a, b] into n equal subintervals each of length h =
(b− a)/n. The endpoints of these subintervals are labelled

a = x0, x1, x2, . . . , xn−1, xn = b.

We approximate the integral on each of these small intervals, then add all the
small approximations to give a total approximation to the original integral.

11.1 Trapezoidal rule

The trapezoidal approximation is obtained by approximating the area under
y = f(x) over the subinterval [xi, xi+1] by a trapezoid. That is, the function

1 All our examples deal with integrable functions, but we are not concerned here with
formal proofs of integrability.

187

© 2009 by Taylor & Francis Group, LLC

188 NUMERICAL INTEGRATION

f
(x

)

0
1

2
3

4
5

x0 x1 x2 x3 x4 x5

Figure 11.1 The approximation of f used by the trapezoidal rule.

f(x) is approximated by a straight line over the subinterval [xi, xi+1] (Fig-
ure 11.1). The width of the trapezoid is h, the left side of the trapezoid has
height f(xi) and the right side has height f(xi+1). The area of the trapezoid
is thus

h

2
(f(xi) + f(xi+1)).

Now we add the areas for all of the subintervals together to get our trapezoidal

approximation T to the integral
∫ b

a
f(x)dx:

Trapezoidal rule

T =
h

2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)).

Notice that for i = 1, . . . , n− 1, f(xi) contributes to the area of the trapezoid
to the left of xi and to the right of xi and so appears multiplied by 2 in the
formula above. In contrast f(x0) and f(xn) contribute only to the area of the
first and last trapezoid, respectively.

Here is an implementation in R. We use it to estimate
∫ 1

0
4x3 dx = 1.

program spuRs/resources/scripts/trapezoid.r

trapezoid <- function(ftn, a, b, n = 100) {

numerical integral of ftn from a to b

using the trapezoid rule with n subdivisions

#

ftn is a function of a single variable

we assume a < b and n is a positive integer

© 2009 by Taylor & Francis Group, LLC

SIMPSON’S RULE 189

h <- (b-a)/n

x.vec <- seq(a, b, by = h)

f.vec <- sapply(x.vec, ftn)

T <- h*(f.vec[1]/2 + sum(f.vec[2:n]) + f.vec[n+1]/2)

return(T)

}

> source("../scripts/trapezoid.r")

> ftn6 <- function(x) return(4 * x^3)

> trapezoid(ftn6, 0, 1, n = 20)

[1] 1.0025

> trapezoid(ftn6, 0, 1, n = 40)

[1] 1.000625

> trapezoid(ftn6, 0, 1, n = 60)

[1] 1.000278

Note that as defined, the function ftn6 is vectorised (given a vector as in-
put, it will return a vector as output). Thus, in trapezoid, the command
sapply(x.vec, ftn) could be replaced by ftn(x.vec). The advantage of
using sapply is that it will work even if ftn is not vectorised.

The trapezoid rule gives exact results if f is a constant or a linear function,
otherwise there will be an error, corresponding to the extent that our trape-
zoidal approximation overshoots or undershoots the actual graph of f .

11.2 Simpson’s rule

Simpon’s rule subdivides the interval [a, b] into n subintervals, where n is even,
then on each consecutive pair of subintervals, it approximates the behaviour
of f(x) by a parabola (polynomial of degree 2) rather than by the straight
lines used in the trapezoidal rule.

Let u < v < w be any three points distance h apart. For x ∈ [u,w] we want
to approximate f(x) by a parabola which passes through the points (u, f(u)),
(v, f(v)), and (w, f(w)). There is exactly one such parabola p(x) and it is
given by the formula

p(x) = f(u)
(x− v)(x − w)

(u− v)(u − w)
+ f(v)

(x − u)(x− w)

(v − u)(v − w)
+ f(w)

(x − u)(x− v)
(w − u)(w − v) .

As an approximation to the area under the curve y = f(x), we use
∫ w

u p(x)dx.
A rather lengthy but elementary calculation shows

∫ w

u

p(x)dx =
h

3
(f(u) + 4f(v) + f(w)).

© 2009 by Taylor & Francis Group, LLC

190 NUMERICAL INTEGRATION

Now, assuming that n is even, we add up the approximations for the subinter-

vals [x2i, x2i+2] to obtain Simpson’s approximationS to the integral
∫ b

a f(x)dx.

Simpson’s rule

S =
h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xn−1) + f(xn)).

Notice that the f(xi) for i odd are all weighted 4, while the f(xi) for i even
(except 0 and n) are weighted 2 as they each appear in two subintervals.

Obviously Simpson’s rule gives exact results if f(x) is a quadratic function
since it is based on approximating each piece of f(x) by a parabola. Surpris-
ingly, it also gives exact results if f(x) is a cubic function. In general it gives
better results than the trapezoid rule.

Here is an implementation in R:

#program spuRs/resources/scripts/simpson_n.r

simpson_n <- function(ftn, a, b, n = 100) {

numerical integral of ftn from a to b

using Simpson's rule with n subdivisions

#

ftn is a function of a single variable

we assume a < b and n is a positive even integer

n <- max(c(2*(n %/% 2), 4))

h <- (b-a)/n

x.vec1 <- seq(a+h, b-h, by = 2*h)

x.vec2 <- seq(a+2*h, b-2*h, by = 2*h)

f.vec1 <- sapply(x.vec1, ftn)

f.vec2 <- sapply(x.vec2, ftn)

S <- h/3*(ftn(a) + ftn(b) + 4*sum(f.vec1) + 2*sum(f.vec2))

return(S)

}

> source("../scripts/simpson_n.r")

> ftn6 <- function(x) return(4 * x^3)

> simpson_n(ftn6, 0, 1, 20)

[1] 1

11.2.1 Example: Φ(z) Phi.r

One of Gauss’ many prodigious acts was to compile by hand tables of Φ(z) =
∫ z

−∞
1√
2π
e−x2/2 dx, estimated to several decimal places. (This is the distribu-

tion function of a normal or Gaussian random variable; see Section 16.5.1.)
Thankfully we can now do this using a computer, as follows.

© 2009 by Taylor & Francis Group, LLC

SIMPSON’S RULE 191

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

phi(z) and Phi(z)

z

Figure 11.2 φ(z) = e−x2/2/
√

2π and its integral Φ; see Example 11.2.1.

program spuRs/resources/scripts/Phi.r

estimate and plot the normal cdf Phi

rm(list = ls()) # clear the workspace

source("../scripts/simpson_n.r")

phi <- function(x) return(exp(-x^2/2)/sqrt(2*pi))

Phi <- function(z) {

if (z < 0) {

return(0.5 - simpson_n(phi, z, 0))

} else {

return(0.5 + simpson_n(phi, 0, z))

}

}

z <- seq(-5, 5, by = 0.1)

phi.z <- sapply(z, phi)

Phi.z <- sapply(z, Phi)

plot(z, Phi.z, type = "l", ylab = "", main = "phi(z) and Phi(z)")

lines(z, phi.z)

Running the command source("../scripts/Phi.r") we get the output
given in Figure 11.2. We will see in Section 16.1 that R actually has a built-in
function for calculating Φ(z), namely pnorm.

© 2009 by Taylor & Francis Group, LLC

192 NUMERICAL INTEGRATION

11.2.2 Example: convergence of Simpson’s rule simpson_test.r

To test the accuracy of Simpson’s rule we estimated
∫ 1

0.01(1/x) dx =
− log(0.01) for a sequence of increasing values of n, the number of partitions.
A plot of log(error) against log(n) appears to have a slope of roughly −4 for
large values of n, indicating that the error decays like n−4. This can in fact be
shown to hold in general for functions f with a continuous fourth derivative.

program simpson_test.r

test the accuracy of Simpson's rule

using the integral of 1/x from 0.01 to 1

rm(list = ls()) # clear the workspace

source("../scripts/simpson_n.r")

ftn <- function(x) return(1/x)

S <- function(n) simpson_n(ftn, 0.01, 1, n)

n.vec <- seq(10, 1000, by = 10)

S.vec <- sapply(n.vec, S)

opar <- par(mfrow = c(1, 2), pty="s", mar=c(4,4,2,1), las=1)

plot(n.vec, S.vec + log(0.01), type = "l",

xlab = "n", ylab = "error")

plot(log(n.vec), log(S.vec + log(0.01)), type = "l",

xlab = "log(n)", ylab = "log(error)")

par(opar)

Running the command source("../scripts/simpson_test.r") we get the
output given in Figure 11.3.

11.2.3 Achieving a set tolerance

When using simpson_n in practice we need some rule for choosing n which
results in a reasonably accurate approximation. Suppose that f is continuous

and we wish to estimate I =
∫ b

a f(x)dx. Let S(n) be the value of the ap-
proximation when we use a partition of size n, then S(n) → I as n → ∞.
Thus S(2n) − S(n) → 0 and we can use a stopping rule of the form n
large enough that |S(2n) − S(n)| ≤ ǫ, where ǫ > 0 is some small toler-
ance. Unfortunately, given a δ > 0 we cannot in general find an ǫ such that
|S(2n)− S(n)| ≤ ǫ ⇒ |S(2n)− I| ≤ δ. (If we know something about f ′ then
it is possible to bound the error, but we will not pursue this here.) As a rule
of thumb, the square root of machine epsilon is a good place to start when
choosing ǫ, that is, around 10−8 if you are working in double precision.

Here is a modification of simpson_n such that instead of specifying the parti-
tion size n, we specify a tolerance ǫ. That is, we automatically increase n until
|S(2n)− S(n)| ≤ ǫ. Observe that we increase n by a factor of 2 each time, so

© 2009 by Taylor & Francis Group, LLC

SIMPSON’S RULE 193

0 200 600 1000

0.0

0.5

1.0

1.5

n

e
rr

o
r

3 4 5 6 7

−12

−10

−8

−6

−4

−2

0

log(n)

lo
g

(e
rr

o
r)

Figure 11.3 Error using Simpson’s method with a partition of size n; see Example
11.2.2.

that we can reuse previous function evaluations. In practice evaluating f is
the most expensive operation we perform when doing numerical integration.
If we increased n by just 2 (n has to be even), then the points at which we
evaluate f would all change, except a and b, so we would be calculating f at
n−1 new points. If we double n then we can reuse all our existing f values, so
we only need to calculate f at n new points. Our modified function simpson

is in the script simpson.r:

program spuRs/resources/scripts/simpson.r

simpson <- function(ftn, a, b, tol = 1e-8, verbose = FALSE) {

numerical integral of ftn from a to b

using Simpson's rule with tolerance tol

#

ftn is a function of a single variable and a < b

if verbose is TRUE then n is printed to the screen

initialise

n <- 4

h <- (b - a)/4

fx <- sapply(seq(a, b, by = h), ftn)

S <- sum(fx*c(1, 4, 2, 4, 1))*h/3

S.diff <- tol + 1 # ensures we loop at least once

increase n until S changes by less than tol

while (S.diff > tol) {

cat('n =', n, 'S =', S, '\n') # diagnostic

S.old <- S

© 2009 by Taylor & Francis Group, LLC

194 NUMERICAL INTEGRATION

n <- 2*n

h <- h/2

fx[seq(1, n+1, by = 2)] <- fx # reuse old ftn values

fx[seq(2, n, by = 2)] <- sapply(seq(a+h, b-h, by = 2*h), ftn)

S <- h/3*(fx[1] + fx[n+1] + 4*sum(fx[seq(2, n, by = 2)]) +

2*sum(fx[seq(3, n-1, by = 2)]))

S.diff <- abs(S - S.old)

}

if (verbose) cat('partition size', n, '\n')

return(S)

}

11.3 Adaptive quadrature

In this section we present a program that does adaptive quadrature using
Simpson’s rule as its basic method. In adaptive quadrature, the subinterval
width h is not constant over the interval [a, b], but instead adapts to the
function. The key observation is that h only needs to be small where the
integrand f is steep.

To see why it is a good idea to change the size of h to suit the behaviour of

the function, we will consider the integral
∫ 1

0 (k + 1)xkdx = 1. How large a

partition is required to estimate
∫ 1

0
(k+1)xkdx = 1 using a tolerance of 10−9?

> source("../scripts/simpson.r")

> options(digits = 16)

> f4 <- function(x) 5 * x^4

> simpson(f4, 0, 1, tol = 1e-09, verbose = TRUE)

partition size 512

[1] 1.000000000009701

> f8 <- function(x) 9 * x^8

> simpson(f8, 0, 1, tol = 1e-09, verbose = TRUE)

partition size 1024

[1] 1.000000000015280

> f12 <- function(x) 13 * x^12

> simpson(f12, 0, 1, tol = 1e-09, verbose = TRUE)

partition size 2048

[1] 1.000000000005419

Clearly as k increases (k+1)xk gets steeper and we need a smaller h to achieve
a given tolerance. But (k+ 1)xk is much steeper over the interval [0.5, 1] than
the interval [0, 0.5]. Thus if we split the integral into two bits, we should find
that we need a much smaller h for the interval [0.5, 1] than for [0, 0.5]:

© 2009 by Taylor & Francis Group, LLC

ADAPTIVE QUADRATURE 195

> S1 <- simpson(f12, 0, 0.5, tol = 5e-10, verbose = TRUE)

partition size 256

> S2 <- simpson(f12, 0.5, 1, tol = 5e-10, verbose = TRUE)

partition size 1024

> S1 + S2

[1] 1.000000000008118

Note that when we split the integral into two, we halved the tolerance for
each part. That way, the tolerance for the recombined integral S1 + S2 is
guaranteed to remain less than 10−9.

Adaptive quadrature automatically allows the interval width h to vary over
the range of integration, using a recursive algorithm. The basic idea is to
apply Simpson’s rule using some initial h and h/2. If the difference between
the two estimates is less than some given tolerance ǫ, then we are done. If
not then we split the range of integration [a, b] into two parts ([a, c] and [c, b]
where c = (a+ b)/2) and on each part we apply Simpson’s rule using interval
widths h/2 and h/4 and a tolerance of ǫ/2. (If the error on each subinterval
is less than ǫ/2, then the error of the combined estimates will be less than
ǫ.) By decreasing h we improve the accuracy. If the desired tolerance is not
met on a given subinterval then we split it further, but we only do this for
subintervals that do not achieve the desired tolerance. Thus a small h is used
only where needed. The method only subdivides intervals when it needs the
greater resolution (generally where the function is spiky) and thereby saves a
lot of work (measured by the number of function evaluations required).

In the implementation below we also keep track of how often we have subdi-
vided (called the level of recursion) since if the function has a singularity (a
point where it heads off to infinity) then it could recursively call itself forever!

program spuRs/resources/scripts/quadrature.r

numerical integration using adaptive quadrature

quadrature <- function(ftn, a, b, tol = 1e-8, trace = FALSE) {

numerical integral of ftn from a to b

ftn is a function of one variable

the partition used is recursively refined until the

estimate on successive partitions differs by at most tol

if trace is TRUE then intermediate results are printed

#

the main purpose of this function is to call function q.recursion

#

the function returns a vector of length 2 whose first element

is the integral and whose second element is the number of

function evaluations required

© 2009 by Taylor & Francis Group, LLC

196 NUMERICAL INTEGRATION

c = (a + b)/2

fa <- ftn(a)

fb <- ftn(b)

fc <- ftn(c)

h <- (b - a)/2

I.start <- h*(fa + 4*fc + fb)/3 # Simpson's rule

q.out <- q.recursion(ftn,a,b,c,fa,fb,fc,I.start,tol,1,trace)

q.out[2] <- q.out[2] + 3

if (trace) {

cat("final value is", q.out[1], "in",

q.out[2], "function evaluations\n")

}

return(q.out)

}

q.recursion <- function(ftn,a,b,c,fa,fb,fc,I.old,tol,level,trace) {

refinement of the numerical integral of ftn from a to b

ftn is a function of one variable

the current partition is [a, c, b]

fi == ftn(i)

I.old is the value of the integral I using the current partition

if trace is TRUE then intermediate results are printed

level is the current level of refinement/nesting

#

the function returns a vector of length 2 whose first element

is the integral and whose second element is the number of

function evaluations required

#

I.left and I.right are estimates of I over [a, c] and [c, b]

if |I.old - I.left - I.right| <= tol then we are done, otherwise

I.left and I.right are recursively refined

level.max <- 64

if (level > level.max) {

cat("recursion limit reached: singularity likely\n")

return(NULL)

} else {

h <- (b - a)/4

f1 <- ftn(a + h)

f2 <- ftn(b - h)

I.left <- h*(fa + 4*f1 + fc)/3 # Simpson's rule for left half

I.right <- h*(fc + 4*f2 + fb)/3 # Simpson's rule for right half

I.new <- I.left + I.right # new estimate for the integral

f.count <- 2

if (abs(I.new - I.old) > tol) { # I.new not accurate enough

q.left <- q.recursion(ftn, a, c, a + h, fa, fc, f1, I.left,

tol/2, level + 1, trace)

© 2009 by Taylor & Francis Group, LLC

ADAPTIVE QUADRATURE 197

q.right <- q.recursion(ftn, c, b, b - h, fc, fb, f2, I.right,

tol/2, level + 1, trace)

I.new <- q.left[1] + q.right[1]

f.count <- f.count + q.left[2] + q.right[2];

} else { # we have achieved the desired tolerance

if (trace) {

cat("integral over [", a, ", ", b, "] is ", I.new,

" (at level ", level, ")\n", sep = "")

}

}

return(c(I.new, f.count))

}

}

We apply quadrature to the function f(x) = 1.5
√
x over the range [0, 1]. f

is only steep near x = 0, so the method keeps subdividing until it handles
the leftmost subinterval correctly, then doesn’t have to subdivide again as it
comes back up.

> rm(list = ls())

> source("../scripts/quadrature.r")

> ftn <- function(x) return(1.5 * sqrt(x))

> quadrature(ftn, 0, 1, tol = 0.001, trace = TRUE)

integral over [0, 0.0009765625] is 3.005339e-05 (at level 11)

integral over [0.0009765625, 0.001953125] is 5.579888e-05 (at level 11)

integral over [0.001953125, 0.00390625] is 0.0001578231 (at level 10)

integral over [0.00390625, 0.0078125] is 0.0004463910 (at level 9)

integral over [0.0078125, 0.015625] is 0.001262585 (at level 8)

integral over [0.015625, 0.03125] is 0.003571128 (at level 7)

integral over [0.03125, 0.0625] is 0.01010068 (at level 6)

integral over [0.0625, 0.125] is 0.02856903 (at level 5)

integral over [0.125, 0.25] is 0.08080541 (at level 4)

integral over [0.25, 0.5] is 0.2285522 (at level 3)

integral over [0.5, 1] is 0.6464433 (at level 2)

final value is 0.9999944 in 45 function evaluations

[1] 0.9999944 45.0000000

Using a more realistic tolerance, we compare adaptive quadrature to the stan-
dard Simpson’s rule:

> quadrature(ftn, 0, 1, 1e-09, trace = FALSE)

[1] 1 1205

> source("../scripts/simpson.r")

> simpson(ftn, 0, 1, 1e-09, verbose = TRUE)

partition size 524288

[1] 1

© 2009 by Taylor & Francis Group, LLC

198 NUMERICAL INTEGRATION

In this case the standard Simpson’s rule used more than 400 times as many
function calls than the adaptive quadrature approach (524,288 + 1 versus
1,205). We can also use the system.time function to compare the efficiency
of the algorithms, and see that adaptive quadrature is substantially faster:

> rm(list = ls())

> ftn <- function(x) return(1.5 * sqrt(x))

> source("../scripts/quadrature.r")

> system.time(quadrature(ftn, 0, 1, 1e-09, trace = FALSE))

user system elapsed

0.015 0.000 0.015

> source("../scripts/simpson.r")

> system.time(simpson(ftn, 0, 1, 1e-09, verbose = FALSE))

user system elapsed

3.132 0.059 3.729

We end this section by noting that R has a built-in function integrate, which
performs adaptive quadrature, and for multivariate integration we can use the
function adapt from the adapt package.

11.4 Exercises

1. Let p be the quadratic p(x) = c0+c1x+c2x
2. Simpson’s rule uses a quadratic

to approximate a given function f over two adjacent intervals, then uses
the integral of the quadratic to approximate the integral of the function.

(a). Show that
∫ h

−h

p(x) dx = 2hc0 +
2

3
c2h

3;

(b). Write down three equations that constrain the quadratic to pass
through the points (−h, f(−h)), (0, f(0)), and (h, f(h)), then solve
them for c0 and c2;

(c). Show that
∫ h

−h

p(x) dx =
h

3
(f(−h) + 4f(0) + f(h)).

2. Suppose f : [0, 2π]→ [0,∞) is continuous and f(0) = f(2π). For (x, y) ∈ R
2

let (R, θ) be the polar coordinates of (x, y), so x = R cos θ and y = R sin θ.
Define the set A ⊂ R

2 by

(x, y) ∈ A if R ≤ f(θ).

We consider the problem of calculating the area of A.

We approximate the area of A using triangles. For small ǫ, the area of

© 2009 by Taylor & Francis Group, LLC

EXERCISES 199

−10 −8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6

8

f(θ)

f(θ+ε)

ε

Figure 11.4 Integration using polar coordinates, as per Exercise 2.

the triangle with vertices (0, 0), (f(θ) cos θ, f(θ) sin θ) and (f(θ+ ǫ) cos(θ+
ǫ), f(θ+ǫ) sin(θ+ǫ)) is sin(ǫ)f(θ)f(θ+ǫ)/2 ≈ ǫf(θ)f(θ+ǫ) (since sin(x) ≈ x
near 0). Thus the area of A is approximately

n−1
∑

k=0

sin(2π/n)f(2πk/n)f(2π(k + 1)/n)/2

≈
n−1
∑

k=0

πf(2πk/n)f(2π(k + 1)/n)/n. (11.1)

See, for example, Figure 11.4.

Write a program to numerically calculate this polar-integral using the sum-
mation formula (11.1).

Check numerically (or otherwise) that as n → ∞ the polar-integral (11.1)

converges to 1
2

∫ 2π

0
f2(x) dx. Use f1(x) = 2 and f2(x) = 4π2 − (x− 2π)2 as

test cases.

3. The standard normal distribution function is given by

Φ(z) =

∫ z

−∞

1√
2π
e−x2/2 dx.

For p ∈ [0, 1], the 100p standard normal percentage point is defined as that

© 2009 by Taylor & Francis Group, LLC

200 NUMERICAL INTEGRATION

zp for which
Φ(zp) = p.

Using the function Phi(z) from Example 11.2.1, calculate zp for p = 0.5,
0.95, 0.975, and 0.99.

Hint: express the problem as a root-finding problem.

4. Consider

I =

∫ 1

0

3

2

√
xdx = 1.

Let Tn be the approximation to I given by the trapezoid rule with a par-
tition of size n and let Sn be the approximation given by Simpson’s rule
with a partition of size n.

Let nT (ǫ) be the smallest value of n for which |Tn− I| ≤ ǫ and let nS(ǫ) be
the smallest value of n for which |Sn− I| ≤ ǫ. Plot nT (ǫ) and nS(ǫ) against
ǫ for ǫ = 2−k, k = 2, . . . , 16.

5. Let T (n) be the estimate of I =
∫ b

a
f(x)dx obtained using the trapezoidal

method with a partition of size n. If f has a continuous second derivative,
then using Taylor’s theorem one can show that the error E(n) = |I −
T (n)| = O(1/n2). This suggests a method for improving the trapezoid
method: if T (n) ≈ I + c/n2 and T (2n) ≈ I + c/(2n)2, for some constant c,
then

R(2n) = (4T (2n)− T (n))/3 ≈ (4I + c/n2 − I − c/n2)/3 = I.

That is, the errors cancel.

This is called Richardson’s deferred approach to the mean. Show that R(2n)
is precisely S(2n), that is, Simpson’s rule using a partition of size 2n.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 12

Optimisation

This chapter concerns the problem of optimisation, that is, finding the max-
imum or minimum of a function. The search for efficient optimisation tech-
niques is one of the major endeavours of modern mathematics. We will con-
sider this problem first in one dimension, then in higher dimensions. We will
restrict our attention to maxima, but everything we say can be equally well
applied to minima, by the simple expedient of multiplying the function by −1.
For univariate functions we will consider Newton’s method and the golden-
section method. For multivariate functions we will consider Newton’s method
(again) and steepest ascent. We also provide some basic information about
the optimisation tools that are available in R.

In one dimension we suppose that we have a function f : R → R with
continuous first and second derivatives. f has a global maximum at x∗ if f(x) ≤
f(x∗) for all x. f has a local maximum at x∗ if f(x) ≤ f(x∗) for all x in a
neighbourhood of x∗ (that is, all x such that |x − x∗| < ǫ for some ǫ > 0). A
necessary condition for x∗ to be a local maximum is f ′(x∗) = 0 and f ′′(x∗) ≤ 0.
A sufficient condition is f ′(x∗) = 0 and f ′′(x∗) < 0.

Finding a local maximum is much easier than finding a global maximum. All
of the algorithms we consider are local search techniques. They work by gener-
ating a sequence of points, x(0), x(1), x(2), . . ., which (hopefully) converge to
a local maximum of f . Given a prospective solution x(n), we look for the next
prospective solution x(n + 1) in some neighbourhood of x(n). Because they
never consider the whole space of possible solutions, local search techniques
can only ever be guaranteed to find local maxima.

Let x∗ be a local maximum of f . Supposing that x(n) → x∗ as n → ∞, we
need stopping criteria to decide when to stop searching. We would like to
be able to stop when |x(n) − x∗| ≤ ǫ, for some predetermined tolerance ǫ.
Unfortunately this is not possible in general, and instead we use combinations
of the following criteria:

• |x(n) − x(n− 1)| ≤ ǫ;
• |f(x(n)) − f(x(n− 1))| ≤ ǫ;
• |f ′(x(n))| ≤ ǫ.

201

© 2009 by Taylor & Francis Group, LLC

202 OPTIMISATION

If the sequence {x(n)}∞n=1 converges to a local maximum, then all three cri-
teria will be satisfied, but the converse is not true. Thus, even when a local
search technique appears to converge, we may still need to check that the final
solution really is a local maximum.

Another problem with local search techniques is that they may not converge
at all. For example if f is unbounded then we may find x(n) → ∞. For this
reason it is usual to specify a maximum number of iterations nmax, and stop
when n = nmax.

12.1 Newton’s method for optimisation

If f : [a, b] → R has a continuous derivative f ′, then the problem of find-
ing the maximum of f is equivalent to finding the maximum of f(a), f(b),
and f(x1), . . . , f(xn), where x1, . . . , xn are the roots of f ′. If we apply the
Newton-Raphson method for root-finding to f ′, we get the Newton method
for optimising f :

x(n+ 1) = x(n)− f ′(x(n))

f ′′(x(n))
.

By strange convention Newton usually shares credit for this algorithm when
it is applied to root-finding, but not when it is used for optimisation.

In implementing Newton’s method we will suppose that we have al-
ready coded up a function that takes argument x and returns the vector
(f(x), f ′(x), f ′′(x)). Our example will be a member of the gamma family of
probability density functions (Figure 12.1). Because we are searching for a
point x∗ such that f ′(x∗) = 0, we will use |f ′(x(n))| ≤ ǫ as our stopping
condition.

Code spuRs/resources/scripts/newton_gamma.r

newton <- function(f3, x0, tol = 1e-9, n.max = 100) {

Newton's method for optimisation, starting at x0

f3 is a function that given x returns the vector

(f(x), f'(x), f''(x)), for some f

x <- x0

f3.x <- f3(x)

n <- 0

while ((abs(f3.x[2]) > tol) & (n < n.max)) {

x <- x - f3.x[2]/f3.x[3]

f3.x <- f3(x)

n <- n + 1

}

if (n == n.max) {

cat('newton failed to converge\n')

} else {

© 2009 by Taylor & Francis Group, LLC

NEWTON’S METHOD FOR OPTIMISATION 203

return(x)

}

}

gamma.2.3 <- function(x) {

gamma(2,3) density

if (x < 0) return(c(0, 0, 0))

if (x == 0) return(c(0, 0, NaN))

y <- exp(-2*x)

return(c(4*x^2*y, 8*x*(1-x)*y, 8*(1-2*x^2)*y))

}

> source("../scripts/newton_gamma.r")

> newton(gamma.2.3, 0.25)

[1] 1.978656e-12

> newton(gamma.2.3, 0.5)

[1] 0

> newton(gamma.2.3, 0.75)

[1] 1

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

x

f X
(x

)

Figure 12.1 The function f(x) = 4x2e−2x (a Γ(2, 3) density), to which we apply
Newton’s method for optimisation.

© 2009 by Taylor & Francis Group, LLC

204 OPTIMISATION

From this example we see that when the Newton algorithm converges, we can
end up with a minimum, or indeed a ‘flat spot’, just as easily as a maxi-
mum. The reason is that all such stationary points satisfy f ′(x∗) = 0. Using
the corresponding root-finding theorem, it can be shown that if x∗ is a local
maximum, f ′(x∗) = 0, f ′′(x∗) < 0 and f ′′ is Lipschitz-continuous1 in a neigh-
bourhood of x∗, then provided x(0) is close enough to x∗, x(n)→ x∗ quickly,
as n→∞.

We revisit Newton’s method later, on a higher plane (that is, in higher dimen-
sions).

12.2 The golden-section method

The golden-section method works in one dimension only, but does not need
f ′.

The golden-section method is similar to the root-bracketing technique for root-
finding. Let f : R→ R be a continuous function (note that we do not assume
that we have a derivative). If we have two points a < b such that f(a)f(b) ≤ 0
then we know that there is a zero in the interval [a, b]. To determine if we
have a local maximum we need three points: if a < c < b and f(a) ≤ f(c) and
f(b) ≤ f(c) then there must be a local maximum in the interval [a, b]. This
observation leads to the following algorithm:

Golden-section method 1 Start with xl < xm < xr such that f(xl) ≤
f(xm) and f(xr) ≤ f(xm)

1. if xr − xl ≤ ǫ then stop

2. if xr − xm > xm − xl then do 2a otherwise do 2b

2a. choose a point y ∈ (xm, xr)
if f(y) ≥ f(xm) then put xl = xm and xm = y otherwise put
xr = y

2b. choose a point y ∈ (xl, xm)
if f(y) ≥ f(xm) then put xr = xm and xm = y otherwise put
xl = y

3. go back to step 1

Note that so far we have not specified how to choose y other than to say it
should be in the larger of the two intervals (xl, xm) and (xm, xr). Suppose that
(xm, xr) is the larger interval, as in Figure 12.2. Let a = xm−xl, b = xr−xm,
and c = y−xm. The golden-section algorithm chooses y so that the ratio of the
lengths of the larger to the smaller interval stays the same at each iteration.

1 That is, there exists a k such that for all x and y, |f ′′(x) − f ′′(y)| ≤ k|x − y|.

© 2009 by Taylor & Francis Group, LLC

THE GOLDEN-SECTION METHOD 205

x
l
 x

m
 y x

r

a b

c

Figure 12.2 Successive approximations to the location of the maximum using the
golden-section method.

That is, if the new bracketing interval is [xl, y] then

a

c
=
b

a

while if the new bracketing interval is [xm, xr] then

b− c
c

=
b

a
.

Put ρ = b/a then solving these for c we get

ρ2 − ρ− 1 = 0 so ρ =
1 +
√

5

2

which is the famous golden ratio. We also get a = b− c, so c = b/(1+ρ) (since
(ρ−1)/ρ = 1/(1+ρ) = 3−

√
5) and thus y = xm +c = xm +(xr−xm)/(1+ρ).

The length ratio of the new interval to the old is either b/(a+b) or (a+c)/(a+
b), which both work out as ρ/(1 + ρ).

An analogous argument applies if (xl, xm) is the larger interval. Using this
method for choosing y gives the following version of the algorithm.

© 2009 by Taylor & Francis Group, LLC

206 OPTIMISATION

Golden-section method 2 Start with xl < xm < xr such that f(xl) ≤
f(xm) and f(xr) ≤ f(xm)

1. if xr − xl ≤ ǫ then stop

2. if xr − xm > xm − xl then do 2a otherwise do 2b

2a. let y = xm + (xr − xm)/(1 + ρ)
if f(y) ≥ f(xm) then put xl = xm and xm = y otherwise put
xr = y

2b. let y = xm − (xm − xl)/(1 + ρ)
if f(y) ≥ f(xm) then put xr = xm and xm = y otherwise put
xl = y

3. go back to step 1

Here it is in R.

Program spuRs/resources/scripts/gsection.r

gsection <- function(ftn, x.l, x.r, x.m, tol = 1e-9) {

applies the golden-section algorithm to maximise ftn

we assume that ftn is a function of a single variable

and that x.l < x.m < x.r and ftn(x.l), ftn(x.r) <= ftn(x.m)

#

the algorithm iteratively refines x.l, x.r, and x.m and terminates

when x.r - x.l <= tol, then returns x.m

golden ratio plus one

gr1 <- 1 + (1 + sqrt(5))/2

successively refine x.l, x.r, and x.m

f.l <- ftn(x.l)

f.r <- ftn(x.r)

f.m <- ftn(x.m)

while ((x.r - x.l) > tol) {

if ((x.r - x.m) > (x.m - x.l)) {

y <- x.m + (x.r - x.m)/gr1

f.y <- ftn(y)

if (f.y >= f.m) {

x.l <- x.m

f.l <- f.m

x.m <- y

f.m <- f.y

} else {

x.r <- y

f.r <- f.y

}

} else {

y <- x.m - (x.m - x.l)/gr1

f.y <- ftn(y)

© 2009 by Taylor & Francis Group, LLC

MULTIVARIATE OPTIMISATION 207

if (f.y >= f.m) {

x.r <- x.m

f.r <- f.m

x.m <- y

f.m <- f.y

} else {

x.l <- y

f.l <- f.y

}

}

}

return(x.m)

}

The argument above shows that if we start with xm chosen so that the ratio
(xr − xm)/(xm − xl) = ρ or 1/ρ, then at each iteration the width of the
bracketing interval is reduced by a factor of ρ/(1 + ρ) and so must eventually
go to zero. It can be shown that this rate of convergence is optimal in the sense
that if you choose y any other way, then, in the worst-case, the bracketing
interval will converge more slowly. Also, it is not a problem if you do not start
with the ratio (xr−xm)/(xm−xl) = ρ or 1/ρ, because as soon as you have an
iteration that puts xm = y, this will be the case. Since xr−xm → 0 as n→∞,
to stop the golden-section algorithm it is sufficient to specify a tolerance ǫ > 0
then stop when xr − xl ≤ ǫ. Moreover, provided our initial bracketing triple
satisfies f(xl) ≤ f(xm) and f(xr) ≤ f(xm), the algorithm is guaranteed to
converge.

The golden ratio ρ = (1 +
√

5)/2 is usually defined as the ratio of length to
breadth of a rectangle that can be decomposed into a square and a rectangle
similar to the original (Figure 12.3). Given this it is no surprise that it appears
here in the context of keeping a ratio constant.

12.3 Multivariate optimisation

We now consider the more useful but more difficult problem of finding local
minima or maxima of a function of several variables. This is a central prob-
lem in mathematics and statistics, and continues to be the subject of active
research.

Let f : R
d → R and suppose that all of the first- and second-order par-

tial derivatives of f exist and are continuous everywhere. We write x =
(x1, . . . , xd)

T for an element of R
d and ei for the i-th co-ordinate vector:

x = x1e1 + · · · + xded. The i-th partial derivative at x will be denoted
fi(x) = ∂f(x)/∂xi and we define the gradient

∇f(x) = (f1(x), . . . , fd(x))T

© 2009 by Taylor & Francis Group, LLC

208 OPTIMISATION

Golden ratio:
b

a
 =

a

c
 =

1 + 5

2

b

a

a c

Figure 12.3 Defining the golden ratio using similar rectangles.

and the Hessian

H(x) =

∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xd

...
. . .

...
∂2f(x)
∂xd∂x1

· · · ∂2f(x)
∂xd∂xd

.

For any vector v 6= 0 the slope at x in direction v is given by vT∇f(x)/‖v‖,
where ‖v‖ =

√

v2
1 + · · ·+ v2

d is the Euclidean norm. The curvature at x in
direction v is given by vT H(x)v/‖v‖2. f has a local maximum at x if for all
ǫ > 0 small enough, f(x + ǫei) ≤ f(x) for i = 1, . . . , d. A necessary (but not
sufficient) condition for a maximum at x is ∇f(x) = 0 = (0, . . . , 0)T and for
all v 6= 0, the slope at x in direction v is ≤ 0 (we say that the Hessian is
negative semi-definite). A sufficient (but not necessary) condition for f to have
a local maximum at x is that ∇f(x) = 0 and the curvature in all directions
is < 0 (in which case we say that the Hessian H(x) is negative-definite).

Clearly, by taking −f , finding a local minimum is equivalent to finding a local
maximum.

As in one dimension, we will use iterative local search techniques to find local
maxima. Define ‖x‖∞ = maxi |xi| (the L∞ norm). In higher dimensions we
use stopping conditions that are combinations of the following:

• ‖x(n)− x(n− 1)‖∞ ≤ ǫ;
• |f(x(n)) − f(x(n− 1))| ≤ ǫ;
• ‖∇f(x(n))‖∞ ≤ ǫ.
To guard against non-convergence, we should also specify a maximum number
of iterations nmax, then stop when n = nmax.

© 2009 by Taylor & Francis Group, LLC

STEEPEST ASCENT 209

12.4 Steepest ascent

Let f : R
d → R be a function with continuous partial derivatives everywhere.

We wish to find a local maximum of f in the vicinity of some point x(0).

In the steepest ascent method, we put x(n + 1) = x(n) + αv, where α is a
positive scalar and the direction v is the direction with largest slope. That is,
v maximises vT∇f(x(n))/‖v‖. Consider

∂

∂vi

vT∇f(x)

‖v‖ =
fi(x)

‖v‖ −
(vT∇f(x))vi

‖v‖3 .

Setting this to 0 we get vi ∝ fi(x), from which we see that at the point x
the direction with largest slope is ∇f(x). (The direction with smallest slope
is −∇f(x), which you use if you are searching for a local minimum.) Thus,
the steepest ascent method has the form

x(n+ 1) = x(n) + α∇f(x(n)),

for some α ≥ 0. Given this form, we choose α ≥ 0 to maximise

g(α) = f (x(n) + α∇f(x(n))) .

If α = 0 then we have reached a local maximum, while if α > 0 then f(x(n+
1)) > f(x(n)).

If f is bounded above then, because f(x(n + 1)) ≥ f(x(n)), the sequence
{f(x(n))}∞n=1 must converge. This suggests that we can use the stopping con-
dition f(x(n)) − f(x(n − 1)) ≤ ǫ, for some small tolerance ǫ. However, we
need to be aware that it is still possible that {f(x(n))}∞n=1 converges, but
{x(n)}∞n=1 does not. In fact, it can be shown that if f is bounded and ∇f is
‘well behaved’ (that is, uniformly continuous in the region of interest), then
the sequence {x(n)}∞n=1 will converge to a local maximum.2

We are now in a position to sketch some code for implementing the steepest
ascent method. We will assume that we have already encoded f and ∇f as
functions in R. We will also assume that we have some function line.search,
which takes arguments f , x(n), and∇f(x(n)) and returns x(n)+αm∇f(x(n))
where αm = arg max g(α) (that is, the value of α that maximises g(α)).

Program spuRs/resources/scripts/ascent.r

source("../scripts/linesearch.r")

ascent <- function(f, grad.f, x0, tol = 1e-9, n.max = 100) {

steepest ascent algorithm

find a local max of f starting at x0

function grad.f is the gradient of f

2 P. Wolfe, Convergence conditions for ascent methods. SIAM Review, Vol. 11, pp. 226–235,
1969.

© 2009 by Taylor & Francis Group, LLC

210 OPTIMISATION

x <- x0

x.old <- x

x <- line.search(f, x, grad.f(x))

n <- 1

while ((f(x) - f(x.old) > tol) & (n < n.max)) {

x.old <- x

x <- line.search(f, x, grad.f(x))

n <- n + 1

}

return(x)

}

12.4.1 Line search

To complete the steepest ascent algorithm, at each step n we need to maximise
g(α) = f (x(n) + α∇f(x(n))), over α ≥ 0. As finding a global maximum is
hard, we will instead look for a local maximum, for which we will use the
golden-section algorithm.

The golden-section algorithm requires three initial points αl < αm < αr

such that g(αm) ≥ g(αl) and g(αm) ≥ g(αr). Put αl = 0. In theory, if
‖∇f(x(n))‖ > 0 then g′(0) > 0 and thus there must be some ǫ > 0 such
that g(ǫ) > g(0), so we can put αm = ǫ. In practice, if g′(0) is very small,
then g(ǫ)− g(0) ≈ g′(0)ǫ will be very very small, and we may not be able to
distinguish g(0) from g(ǫ) numerically.

Unfortunately there is not even a theoretical guarantee that a suitable αr

exists, because we may have g increasing over the whole interval [0,∞). To
get around this problem we specify a maximum step size αmax, then if we
cannot find αr ≤ αmax such that g(αr) ≤ g(αm), we just return αmax. We can
now write our line search program:

Program spuRs/resources/scripts/linesearch.r

source("../scripts/gsection.r")

line.search <- function(f, x, y, tol = 1e-9, a.max = 2^5) {

f is a real function that takes a vector of length d

x and y are vectors of length d

line.search uses gsection to find a >= 0 such that

g(a) = f(x + a*y) has a local maximum at a,

within a tolerance of tol

if no local max is found then we use 0 or a.max for a

the value returned is x + a*y

if (sum(abs(y)) == 0) return(x) # g(a) constant

© 2009 by Taylor & Francis Group, LLC

STEEPEST ASCENT 211

g <- function(a) return(f(x + a*y))

find a triple a.l < a.m < a.r such that

g(a.l) >= g(a.m) and g(a.m) <= g(a.r)

a.l

a.l <- 0

g.l <- g(a.l)

a.m

a.m <- 1

g.m <- g(a.m)

while ((g.m < g.l) & (a.m > tol)) {

a.m <- a.m/2

g.m <- g(a.m)

}

if a suitable a.m was not found then use 0 for a

if ((a.m <= tol) & (g.m < g.l)) return(x)

a.r

a.r <- 2*a.m

g.r <- g(a.r)

while ((g.m < g.r) & (a.r < a.max)) {

a.m <- a.r

g.m <- g.r

a.r <- 2*a.m

g.r <- g(a.r)

}

if a suitable a.r was not found then use a.max for a

if ((a.r >= a.max) & (g.m < g.r)) return(x - a.max*y)

apply golden-section algorithm to g to find a

a <- gsection(g, a.l, a.r, a.m)

return(x + a*y)

}

Function line.search uses the function gsection to perform a golden-section
search, once a bracketing triple a.l < a.m < a.r is found. The function g de-
fined inside the function line.searchmakes use of R’s scoping rules. Because
the variables x and y are not defined within g or passed to it as inputs, when
evaluating g R will look in the environment within which it was called for
instances of x and y. That is, it will use the values of x and y passed to the
function line.search.

An implementation of the golden-section algorithm for finding a local maxi-
mum is given in Section 12.2.

12.4.2 Example: sin(x2/2− y2/4) cos(2x− exp(y))

We apply the steepest ascent algorithm to the function

f(x, y) = sin(x2/2− y2/4) cos(2x− exp(y)).

© 2009 by Taylor & Francis Group, LLC

212 OPTIMISATION

−0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

−0.5

0.0

0.5

1.0

1.5

2.0

−0.5

0.0

0.5

x
y

f(x,y)

−1.0

−0.5

0.0

0.5

1.0

Figure 12.4 The function f(x, y) = sin(x2/2 − y2/4) cos(2x − exp(y)).

Figure 12.4 gives a 3D-plot of the function in the region of (0, 0). (The plot
was produced using wireframe, as described in Section 7.7.) In Figure 12.5
we give a contour-plot of f , and show the sequence of points x(n) generated
by the steepest ascent algorithm, for two different starting points: (0.1, 0.3)
and (0, 0.5). We see that a small difference in where you start can make a big
difference to where you end up. Starting at (0.1, 0.3) we find the local maxi-
mum at (2.0307, 1.4015), while starting at (0, 0.5) we find the local maximum
at (0.3425, 1.4272).

Both of these search paths exhibit a well-noted characteristic of the steepest
ascent algorithm: when climbing up a ridge it tends to zig-zag from one side
to the other. This is because the direction v in which you move from x(n) to
x(n + 1) is only the steepest at the point x(n). That is, as you move further
away from x(n) in direction v, you may still be moving up, but v will probably
no longer be the direction of steepest ascent. We only stop and recalculate the
gradient when there is no further gain to be made moving in direction v.

© 2009 by Taylor & Francis Group, LLC

NEWTON’S METHOD IN HIGHER DIMENSIONS 213

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

f(x,y)=sin(x^2/2−y^2/4)*cos(2*x−exp(y))

x

y

Figure 12.5 Search paths of the steepest ascent algorithm applied to the function
f(x, y) = sin(x2/2 − y2/4) cos(2x − exp(y)).

12.5 Newton’s method in higher dimensions

The steepest ascent method uses information about the gradient. By making
use of second-order derivatives, in other words by using the Hessian, we can
construct methods that converge in fewer steps. The simplest second-order
technique is Newton’s method, which can be generalised from one dimension
to higher dimensions relatively easily.

Newton’s method looks for a point x such that ∇f(x) = 0. The basis of
the method is a second-order Taylor expansion of f . For any x and y close
together we have

f(y) ≈ f(x) + (y − x)T∇f(x) + 1
2 (y − x)T H(x)(y − x). (12.1)

This multidimensional approximation can be obtained from Taylor’s theorem
in one dimension. Put v = y − x and define g(α) = f(x + αv), then one has

g′(0) = lim
α→0

g(α)− g(0)

α

© 2009 by Taylor & Francis Group, LLC

214 OPTIMISATION

= lim
α→0

(

f(x + αv1e1 + · · ·+ αvded)− f(x + αv2e2 + · · ·+ αvded)

α

+
f(x + αv2e2 + · · ·+ αvded)− f(x + αv3e3 + · · ·+ αvded)

α
+ · · ·
+
f(x + αvded)− f(x)

α

)

= v1f1(x) + v2f2(x) + · · ·+ vdfd(x) = vT∇f(x).

Similarly one can show from first principles that

g′′(0) = 1
2v

T H(x)v.

Thus a second-order Taylor expansion of g about 0 gives g(α) ≈ g(0)+αg′(0)+
1
2α

2g′′(0) = f(x) + αvT∇f(x) + 1
2α

2vT H(x)v. Putting α = 1 we recover the
second-order Taylor expansion of f .

Taking first-order partial derivatives on both sides of (12.1), with respect to
the components of y, we get

∇f(y) ≈ ∇f(x) + H(x)(y − x).

If y is a local maximum then ∇f(y) = 0 and, solving the equation above, we
get y = x−H(x)−1∇f(x). This is all we need for our algorithm. Suppose x(n)
is our current estimate, then we would like our next estimate x(n+ 1) to be a
local maximum (at least approximately). Putting x = x(n) and y = x(n+ 1)
does the trick:

Newton’s algorithm

x(n+ 1) = x(n)−H(x(n))−1∇f(x(n)).

Clearly if H(x(n)) is singular (has no inverse), then Newton’s method breaks
down. However, as in the one-dimensional case, even if H(x(n)) is non-singular
at each step, Newton’s method may not converge. Despite this, if f has a local
maximum at x∗, f is ‘nicely behaved’ near x∗, and if our initial point x(0) is
‘close enough’ to x∗, then Newton’s method will converge to x∗ quickly. For
our purposes f is nicely behaved near x∗ if H(x∗) is positive-definite and all
the elements of H are Lipschitz-continuous.3

For an invertible matrix A ∈ R
d×d and a vector b ∈ R

d, A−1b is the solution
to the system of equations Ax = b. It turns out that from a numerical point
of view, it is faster and more reliable to solve the system of equations than
to calculate A−1 and then multiply it by b. The command for solving this
system of linear equations in R is solve(A, b). If A is singular then an error is
generated. In our case, because H(x(n)) changes at each step, there is nothing
to be gained by calculating H(x(n))−1.

3 The elements of H are Lipschitz-continuous if there is a constant k such that for all x

and y, |fi,j(x) − fi,j(y)| ≤ k‖x− y‖, where fi,j = ∂2f/∂xi∂xj .

© 2009 by Taylor & Francis Group, LLC

NEWTON’S METHOD IN HIGHER DIMENSIONS 215

In implementing Newton’s method we will assume that we have some function
f3 that takes argument x and returns a list containing f(x), ∇f(x), and H(x).
For our stopping condition we will use ‖∇f(x(n))‖∞ ≤ ǫ.
program spuRs/resources/scripts/newton.r

newton <- function(f3, x0, tol = 1e-9, n.max = 100) {

Newton's method for optimisation, starting at x0

f3 is a function that given x returns the list

{f(x), grad f(x), Hessian f(x)}, for some f

x <- x0

f3.x <- f3(x)

n <- 0

while ((max(abs(f3.x[[2]])) > tol) & (n < n.max)) {

x <- x - solve(f3.x[[3]], f3.x[[2]])

f3.x <- f3(x)

n <- n + 1

}

if (n == n.max) {

cat('newton failed to converge\n')

} else {

return(x)

}

}

We observe that this function newton also works if f is one dimensional.

12.5.1 Example: sin(x2/2− y2/4) cos(2x− exp(y))

We apply Newton’s method to the function used in Example 12.4.2. Fig-
ure 12.6 shows the steps taken from three different starting points. We note
the following:

1. Newton’s method can converge to minima or saddle points, as well as max-
ima;

2. Newton’s method is faster than steepest ascent;

3. Unless you are close to a local minimum or maximum, you can move in
unexpected directions.

To emphasise the last point, we run Newton’s method a number of times, with
starting points clustered around (1.5, 0.5). The algorithm converges each time
(to a stationary point), but to very different destinations.

program spuRs/resources/scripts/f3.r

f3 <- function(x) {

a <- x[1]^2/2 - x[2]^2/4

© 2009 by Taylor & Francis Group, LLC

216 OPTIMISATION

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

f(x,y)=sin(x^2/2−y^2/4)*cos(2*x−exp(y))

x

y

Figure 12.6 Search paths of Newton’s method applied to the function f(x, y) =
sin(x2/2 − y2/4) cos(2x − exp(y)). The starting point is indicated by a filled dot.

b <- 2*x[1] - exp(x[2])

f <- sin(a)*cos(b)

f1 <- cos(a)*cos(b)*x[1] - sin(a)*sin(b)*2

f2 <- -cos(a)*cos(b)*x[2]/2 + sin(a)*sin(b)*exp(x[2])

f11 <- -sin(a)*cos(b)*(4 + x[1]^2) + cos(a)*cos(b) -

cos(a)*sin(b)*4*x[1]

f12 <- sin(a)*cos(b)*(x[1]*x[2]/2 + 2*exp(x[2])) +

cos(a)*sin(b)*(x[1]*exp(x[2]) + x[2])

f22 <- -sin(a)*cos(b)*(x[2]^2/4 + exp(2*x[2])) - cos(a)*cos(b)/2 -

cos(a)*sin(b)*x[2]*exp(x[2]) + sin(a)*sin(b)*exp(x[2])

return(list(f, c(f1, f2), matrix(c(f11, f12, f12, f22), 2, 2)))

}

> source("../scripts/newton.r")

> source("../scripts/f3.r")

> for (x0 in seq(1.4, 1.6, .1)) {

+ for (y0 in seq(0.4, 0.6, .1)) {

+ cat(c(x0,y0), '-->', newton(f3, c(x0,y0)), '\n')

© 2009 by Taylor & Francis Group, LLC

NEWTON’S METHOD IN HIGHER DIMENSIONS 217

+ }

+ }

1.4 0.4 --> 0.04074437 -2.507290

1.4 0.5 --> 0.1179734 3.344661

1.4 0.6 --> -1.553163 6.020013

1.5 0.4 --> 2.837142 5.353982

1.5 0.5 --> 0.04074437 -2.507290

1.5 0.6 --> 9.899083e-10 1.366392e-09

1.6 0.4 --> -0.5584103 -0.7897114

1.6 0.5 --> -0.2902213 -0.2304799

1.6 0.6 --> -1.552947 -3.332638

12.5.2 On differentiation

A potential disadvantage of Newton’s method is the need to calculate the gra-
dient and Hessian. Steepest ascent only requires the gradient, but sometimes
even this can be difficult. For functions that can be expressed in terms of
polynomials and the simple transcendental functions (sin, exp, sinh, etc.), the
process of calculating the gradient and Hessian is essentially mechanical and
should pose no problems. Life is not always easy however, and there are plenty
of situations where f is available but ∇f is not. For example f may be the re-
sult of some numerical procedure (possibly even the result of an optimisation
procedure) or an approximation obtained by simulation.

In this situation there are two approaches we can take. The first assumes that
even if we don’t know what they are, H and/or ∇f do exist, in which case we
can try and estimate them. Exercise 5 explores this option.

The second approach is to use an optimisation method that does not require
the gradient. Such approaches tend to be relatively slow, but relatively reliable.
In one dimension the golden-section algorithm is an example of a derivative-
free approach. In higher dimensions there is an algorithm due to Nelder &
Mead, which is well accepted and again is derivative-free. We will not describe
the Nelder-Mead algorithm here, though we note that it is implemented in R
(see Section 12.6).

We remarked above that for many functions, calculating the gradient and
Hessian is essentially mechanical. Computers are, of course, well suited to
mechanical tasks, and R provides the function deriv for symbolic calculation
of the gradient and Hessian of a function. For example, we can reproduce the
function f3 from Example 12.5.1 as follows:

Df <- deriv(z ~ sin(x^2/2 - y^2/4)*cos(2*x - exp(y)),

c('x', 'y'), func=TRUE, hessian=TRUE)

f3 <- function(x) {

© 2009 by Taylor & Francis Group, LLC

218 OPTIMISATION

Dfx <- Df(x[1], x[2])

f <- Dfx[1]

gradf <- attr(Dfx, 'gradient')[1,]

hessf <- attr(Dfx, 'hessian')[1,,]

return(list(f, gradf, hessf))

}

For further details of deriv please see its help page.

12.6 Optimisation in R and the wider world

In one dimension R provides the function optimize, which uses a combination
of the golden-section algorithm with a technique called parabolic interpolation.

In higher dimensions—which is where all the fun is—there are a variety of op-
timisation methods in current use. The R function optim provides implemen-
tations of three deterministic methods: the Nelder-Mead algorithm, a quasi-
Newton algorithm (also called a variable metric algorithm), and the conjugate
gradient method. Neither the steepest descent nor Newton’s method are much
used in practice, the first because it is relatively slow and the second because
of its unpredictable behaviour.

There are also stochastic optimisation techniques, which as the name suggests,
employ randomness in their search for an optimal point. optim implements
just one of these, the simulated annealing method. By introducing randomness,
stochastic optimisation techniques try to increase the chance of finding a global
optimum, as opposed to a local optimum, irrespective of your starting point.
With a deterministic technique, the local minimum or maximum you find
depends entirely on where you start, which can be a significant drawback if
you know little about the function you are trying to minimise.

The optimisation methods we have considered are for unconstrained problems
with continuous variables. That is, we optimise f(x) over all x ∈ R

d. Dif-
ferent techniques are required if we constrain x to lie in a connected subset
of R

d (constrained optimisation) or if we constrain x to lie in a discrete set
such as Z

d (discrete optimisation). Another practical complication, which also
requires different approaches, is that we may only be able to observe f(x)
with uncertainty. In particular this will be the case if f(x) is estimated using
simulation.

For further reading on numerical optimisation we recommend Numerical
Mathematics and Computing, Sixth Edition, W. Cheney & D. Kincaid. Thom-
son Brooks/Cole Publishing Co., 2008, and Numerical Recipes 3rd Edition:
The Art of Scientific Computing, W.H. Press, S.A. Teukolsky, W.T. Vetter-
ling, B.P. Flannery. Cambridge University Press, 2007.

© 2009 by Taylor & Francis Group, LLC

A CURVE FITTING EXAMPLE 219

12.7 A curve fitting example

Suppose we have observations (x1, y1), . . . , (xn, yn) and we want to find a
function f such that yi ≈ f(xi) for i = 1, . . . , n. Further suppose that f can be
parameterised by some vector of parameters θ = (θ1, . . . , θd)

T . For example, if
we restrict f to be a quadratic then it has the form f(x) = ax2+bx+c, in which
case θ = (a, b, c)T . We write f(x; θ) for f(x) to emphasise the dependence on
θ.

The problem of finding the parameter θ∗, such that the fitted points ŷi =
f(xi; θ

∗) are ‘closest’ to the observations yi, is called curve fitting.

To measure how close the fitted points are to the observed points, we use
a loss function, which measures the distance between y = (y1, . . . , yn)T and
ŷ = (ŷ1, . . . , ŷn)T . Two popular choices are the sum of squares

L2(θ) =

n
∑

i=1

(yi − ŷi)
2

and the sum of absolute differences

L1(θ) =

n
∑

i=1

|yi − ŷi|.

Note that we consider a loss function to be a function of θ, rather than a
function of y, because we are interested in how the loss changes as we change
θ. Given a loss function L, we choose θ∗ to be that θ that minimises L(θ).

As an example we consider some data on the growth of trees. In Figure 12.7
we have plotted the volume of a spruce tree at different ages.4 Volume refers to
the volume of the trunk and is measured in m3. Age is measured by counting
growth rings from a core taken at height 1.3 m, and thus is measured in years
since the trunk reached a height of 1.3 m. A popular ecological model for the
plant size (measured by volume) as a function of age is the Richards curve:

f(x) = a(1− e−bx)c.

Here the parameters are θ = (a, b, c)T . Parameter a gives the maximum size
of the plant and parameter b describes the speed of growth. For biological
reasons parameter c is often expected to be close to 3.

We will use the R function optim to fit the Richards curve to the observations
plotted in Figure 12.7. We will use both the sum of squares loss function and
the sum of absolute differences, and compare the results. The default operation
of optim is to minimise, which suits us, and the default method is the Nelder-
Mead, which also suits us. The reason for preferring the Nelder-Mead method
is that is does not require gradients, and the L1 loss function is not everywhere

4 Taken from A.R. von Guttenberg, Growth and yield of spruce in Hochgebirge. Franz
Deuticke, Wien, 1915 (in German).

© 2009 by Taylor & Francis Group, LLC

220 OPTIMISATION

differentiable. The gradient of L2 with respect to θ can be calculated, so we
could conceivably use other optimisation methods in that case.

Our observations are in the form of a table with three columns: ID, Age, and
Vol (stored in a comma-separated file). The table contains data on a number
of trees. Figure 12.7 is for the tree with ID equal to 1.3.11. In the code below
we first define the function f , called richards, and the two loss functions,
loss.L2 and loss.L1. We then read the data into a dataframe, extract the
data relevant to tree 1.3.11, and apply optim. Finally we plot the fitted
functions against the observations; the result is given in Figure 12.7. We see
that both loss functions have led to good fits, though slightly different.

> richards <- function(t, theta)

+ theta[1]*(1 - exp(-theta[2]*t))^theta[3]

> loss.L2 <- function(theta, age, vol)

+ sum((vol - richards(age, theta))^2)

> loss.L1 <- function(theta, age, vol)

+ sum(abs(vol - richards(age, theta)))

> trees <- read.csv("../data/trees.csv")

> tree <- trees[trees$ID=="1.3.11", 2:3]

> theta0 <- c(1000, 0.1, 3)

> theta.L2 <- optim(theta0, loss.L2, age=tree$Age, vol=tree$Vol)

> theta.L1 <- optim(theta0, loss.L1, age=tree$Age, vol=tree$Vol)

> par(las=1)

> plot(tree$Age, tree$Vol, type="p", xlab="Age", ylab="Volume",

+ main='Tree 1.3.11')

> lines(tree$Age, richards(tree$Age, theta.L2$par), col="blue")

> lines(tree$Age, richards(tree$Age, theta.L1$par), col="blue", lty=2)

12.8 Exercises

1. In the golden-section algorithm, suppose that you start with xl = 0, xm =
0.5, and xr = 1, and that at each step if xr − xm > xm − xl, then y =
(xm + xr)/2, while if xr − xm ≤ xm − xl, then y = (xl + xm)/2.

In the worst-case scenario, for this choice of y, by what factor does the width
of the bracketing interval reduce each time? In the worst-case scenario, is
this choice of y better or worse than the usual golden-section rule?

What about the best-case scenario?

2. Use the golden-section search algorithm to find all of the local maxima of
the function

f(x) =

{

0, x = 0
|x| log(|x|/2)e−|x|, o/w

within the interval [−10, 10].

Hint: plotting the function first will give you a good idea where to look.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 221

0 20 40 60 80 100

0

500

1000

1500

2000

Tree 1.3.11

Age

V
o

lu
m

e

Figure 12.7 Growth of a tree, as per Example 12.7. The points are observed values.
The solid curve is a Richards curve fitted using the sum of squares loss function.
The dashed curve is a Richards curve fitted using the sum of absolute differences
loss function.

3. Write a version of function gsection that plots intermediate results. That
is, plot the function being optimised, then at each step draw a vertical line
at the positions xl, xr , xm, and y (with the line at y in a different colour).

4. The Rosenbrock function is a commonly used test function, given by

f(x, y) = (1 − x)2 + 100(y − x2)2.

You can plot the function in the region [−2, 2]×[−2, 5] using the code below
(Figure 12.8). It has a single global minimum at (1, 1).

program spuRs/resources/scripts/Rosenbrock.r

Rosenbrock <- function(x) {

g <- (1 - x[1])^2 + 100*(x[2] - x[1]^2)^2

g1 <- -2*(1 - x[1]) - 400*(x[2] - x[1]^2)*x[1]

g2 <- 200*(x[2] - x[1]^2)

g11 <- 2 - 400*x[2] + 1200*x[1]^2

g12 <- -400*x[1]

g22 <- 200

return(list(g, c(g1, g2), matrix(c(g11, g12, g12, g22), 2, 2)))

}

x <- seq(-2, 2, .1)

y <- seq(-2, 5, .1)

© 2009 by Taylor & Francis Group, LLC

222 OPTIMISATION

−2

−1

0

1

2

−2

−1
0

1
2

3
4

5

0

1000

2000

3000

x
y

f(x, y)

0

500

1000

1500

2000

2500

3000

3500

Figure 12.8 The Rosenbrock function. See Exercise 4.

xyz <- data.frame(matrix(0, length(x)*length(y), 3))

names(xyz) <- c('x', 'y', 'z')

n <- 0

for (i in 1:length(x)) {

for (j in 1:length(y)) {

n <- n + 1

xyz[n,] <- c(x[i], y[j], Rosenbrock(c(x[i], y[j]))[[1]])

}

}

library(lattice)

print(wireframe(z ~ x*y, data = xyz, scales = list(arrows = FALSE),

zlab = 'f(x, y)', drape = T))

Use the function contourplot from the lattice package to form a contour-
plot of the Rosenbrock function over the region [−2, 2]×[−2, 5]. Next modify
ascent so that it plots each step on the contour-plot, and use it to find
the minimum of the Rosenbrock function (that is, the maximum of −f),
starting at (0, 3). Use a tolerance of 10−9 and increase the maximum number
of iterations to at least 10,000.

Now use newton to find the minimum (no need to use −f in this case).
Plot the steps made by the Newton method and compare them with those
made by the steepest descent method.

5. Suppose f : R
d → R. Since ∂f(x)/∂xi = limǫ→0(f(x + ǫei) − f(x))/ǫ, we

have for small ǫ
∂f(x)

∂xi
≈ f(x + ǫei)− f(x)

ǫ
.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 223

In the same way, show that for i 6= j

∂2f(x)

∂xi∂xj
≈ f(x + ǫei + ǫej)− f(x + ǫei)− f(x + ǫej) + f(x)

ǫ2

and
∂2f(x)

∂x2
i

≈ f(x + 2ǫei)− 2f(x + ǫei) + f(x)

ǫ2
.

(a). Test the accuracy of these approximations using the function f(x, y) =
x3 + xy2 at the point (1, 1). That is, for a variety of ǫ, calculate the
approximate gradient and Hessian, and see by how much they differ
from the true gradient and Hessian.

In R real numbers are only accurate to order 10−16 (try
1+10^{-16} == 1). Thus the error in estimating ∂f(x)/∂xi is of the
order 10−16/ǫ. For example, if ǫ = 10−8 then the error will be order
10−8. It is worse for second-order derivatives: the error in estimating
∂2f(x)/∂xi∂xj is of the order 10−16/ǫ2. Thus if ǫ = 10−8 then the
error will be order 1. We see that we have a trade-off in our choice of
ǫ: too large and we have a poor approximation of the limit; too small
and we suffer rounding error.

(b). Modify the steepest ascent method, replacing the gradient with an ap-
proximation. Apply your modified algorithm to the function f(x, y) =
sin(x2/2− y2/4) cos(2x− exp(y)), using the same starting points as in
Example 12.4.2.

How does the algorithm’s behaviour depend on your choice of ǫ? You
might find it helpful to plot each step, as in Exercise 4.

6. A simple way of using local search techniques to find a global maximum is
to consider several different starting points, and hope that for one of them
its local maximum is in fact the global maximum. If you have no idea where
to start, then randomisation can be used to choose the starting point.

Consider the function

f(x, y) = −(x2 + y2 − 2)(x2 + y2 − 1)(x2 + y2)(x2 + y2 + 1)(x2 + y2 + 2)

×
(

2− sin(x2 − y2) cos(y − exp(y))
)

.

It has several local maxima in the region [−1.5, 1.5] × [−1.5, 1.5]. Using
several randomly chosen starting points, use steepest ascent to find all of
the local maxima of f , and thus the global maximum. You can use the
command runif(2, -1.5, 1.5) to generate a random point (x, y) in the
region [−1.5, 1.5]× [−1.5, 1.5].

A picture of f is given in Figure 12.9. Note that f has been truncated below
at −3.

7. This question follows on from Example 12.7.

The three parameters of the Richards curve give a concise summary of

© 2009 by Taylor & Francis Group, LLC

224 OPTIMISATION

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−2
0
2

4

6

8

10

x

y

f(x,y)

−4

−2

0

2

4

6

8

10

12

Figure 12.9 A function with a number of local maxima: see Exercise 6.

the growth behaviour of a tree. In practice, the optimal management of a
timber plantation requires knowledge of how different trees grow in different
conditions, so that you can choose which trees to put where, and how far
apart.

The table trees.csv contains information on spruce trees grown in a num-
ber of different sites. Each tree has ID of the form x.y.z, where x gives
the site the tree is from and y a location within that site. Fit the Richards
curve to all the trees given in the table, then for each tree plot the point
(a, b) on a graph, where (a, b, c) are the curve parameters. Label each point
according to the site the tree comes from: can you see any relation between
the site a tree is from and the parameters of its Richards curve?

Hint: to print the character 1 at point (a, b) use text(a, b, '1').

© 2009 by Taylor & Francis Group, LLC

PART III

Probability and statistics

© 2009 by Taylor & Francis Group, LLC

CHAPTER 13

Probability

In Part III we introduce mathematical probability, which allows us to describe
and think about uncertainty in a precise fashion. Probability is an essential
tool for developing and interpreting stochastic simulations, which are very
useful for gaining insight about situations that are too complex to analyse

tion.

In this chapter we cover the probability axioms and conditional probability.
We also cover the Law of Total Probability, which can be used to decompose
complicated probabilities into simpler ones that are easier to compute, and
Bayes’ theorem, which is used to manipulate conditional probabilities in very
useful ways.

13.1 The probability axioms

The first step in describing uncertainty is to consider sets of possible outcomes.
The set of all possible outcomes is called the sample space and is often denoted
as Ω. An event is defined as being any subset of Ω.

For example when rolling a die we have Ω = {1, 2, 3, 4, 5, 6} and the event ‘an
even number’ is given by the subset {2, 4, 6}.
Here is some notation and useful results for manipulating sets

∅ = the empty set;

A\B = {x : x ∈ A and x 6∈ B}, A not B;

A = Ω\A, the complement of A;

A ∪B = {x : x ∈ A or x ∈ B}, the union of A and B;

A ∩B = {x : x ∈ A and x ∈ B}, the intersection of A and B;

A ∪B = A ∩B;

A ∩B = A ∪B;

|A| = size of A (the number of elements it contains).

A and B are disjoint if A ∩B = ∅. A partition of Ω is a collection of disjoint
sets whose union is Ω.

227

© 2009 by Taylor & Francis Group, LLC

theoretically. Thus this part of the book launches us into Part IV, on simula-

228 PROBABILITY

The second step in describing uncertainty is to assign a probability to events,
that is, subsets of Ω. A probability measure is a function, generally denoted
P, that takes an event or set and returns a value in [0, 1] that indicates how
‘likely’ that event is. An intuitive (Frequentist) interpretation of this value
is the long-run frequency of the event in a sequence of independent identical
experiments (in cases where such repetition makes sense):

no. times A occurs

no. trials
→ P(A). (13.1)

An alternative (subjective Bayesian) interpretation is to think of probability
as being a personal assessment. For a subjective Bayesian, probability is not
constrained to cases where a sequence of identical experiments can be iden-
tified. In either case it is clear that a probability measure should have the
following properties:

P(Ω) = 1;

P(A) ≥ 0;

P(A ∪B) = P(A) + P(B) if A and B are disjoint.

These three requirements are formally adopted as probability axioms in the
mathematical theory of probability. We define a probability measure to be
a function on subsets of Ω that satisfies the probability axioms. Probability
theory is based on these axioms: all of our proofs ultimately rely on these
axioms and nothing more.1

It is easy to show that the following results follow from the probability axioms,
for any events A and B:

P(∅) = 0;

P(A) = 1− P(A);

P(A) ≤ 1;

P(A) ≤ P(B) if A ⊂ B;

P(A ∪B) = P(A) + P(B)− P(A ∩B) (addition rule).

A set is called countable if you can define a one-to-one mapping between the
set and the set of positive integers. Intuitively this amounts to being able to
count through all the elements of the set by successively numbering them off:
one, two, three, and so on. From the addition rule we see that if we know
P({x}) for all singleton sets {x}, then we can work out P(A) for all countable
sets A.

Finite sets are clearly countable and the set of integers is countable, but it can
be shown that any interval of the real line is not. If Ω is uncountably infinite,
then it turns out that one consequence of adopting our probability axioms

1 Properly speaking the third axiom should hold for a countably infinite union of disjoint
sets, however this finite version is enough for our purposes.

© 2009 by Taylor & Francis Group, LLC

THE PROBABILITY AXIOMS 229

is that it is not possible to assign probabilities to all the subsets of Ω. This
leads to some fascinating theory but will not concern us here. If Ω is countable
then we can always assign a probability to all of its subsets, so our proofs will
always use a countable Ω.

A given sample space can have more than one probability measure defined on
it. For example consider an experiment where we roll a die. If the die is fair
then we would use the following probability:

x 1 2 3 4 5 6
Pfair({x}) 1/6 1/6 1/6 1/6 1/6 1/6

However, if the die was weighted so that the number six was twice as likely to
appear than other numbers, then we would use the following probability:

x 1 2 3 4 5 6
Punfair({x}) 1/7 1/7 1/7 1/7 1/7 2/7

13.1.1 Counting probability

If Ω is finite, |Ω| = n, and every element of Ω is equally likely, then for all
outcomes x and events A

P({x}) =
1

n
and P(A) =

|A|
n
.

In this situation we use techniques for counting the size of A to find the
probability of A.

Counting involves permutations and combinations. When counting we need to
be clear whether or not we are counting ordered or unordered sets. The number
of ways of choosing r things from a set of n when order matters is n!/(n− r)!,
a permutation; when order does not matter it is

(

n
r

)

= n!/(r!(n − r)!), a
combination.

If we order the suits ♣, ♦, ♥, ♠, then we have a proper ordering of a deck of
cards. Suppose we draw five cards from a well shuffled pack and we wish to
know P(exactly 2 hearts) and P(the cards are drawn in increasing order). For
the first calculation order does not matter: outcomes are unordered sets of five
cards, so our state space has size

|Ω1| =
(

52

5

)

.

Let A = {exactly 2 hearts} then |A| =
(

13
2

)(

39
3

)

. The elements of Ω1 are

equally likely so P(exactly 2 hearts) =
(

13
2

)(

39
3

)

/
(

52
5

)

.

For the second calculation order does matter. We now suppose that outcomes
are ordered sets of five cards, so our state space has size

|Ω2| =
52!

47!
.

© 2009 by Taylor & Francis Group, LLC

230 PROBABILITY

Let B = {the cards are drawn in increasing order} then |B| =
(

52
5

)

,
since for each possible choice of five cards, in only one case are they
drawn in increasing order. The elements of Ω2 are equally likely so
P(the cards are drawn in increasing order) =

(

52
5

)

47!/52!.

13.2 Conditional probability

For events A and B the conditional probability of A given B is the probability
that A occurs, assuming that B has occurred. An example of such a quantity
is the probability of getting heart disease given that you are a smoker. We
write this as P(A |B).

Formally, given a sequence of independent trials, to get the conditional prob-
ability of A given B, we just discard all trials with outcome not in B, then
consider the frequency with which A occurs amongst the remaining trials.
That is

no. times A and B occur

no. times B occurs
→ P(A |B).

Dividing the top and bottom by the number of trials n, we get

no. times A and B occur

no. times B occurs
=

no. times A and B occur

n

n

no. times B occurs
→ P(A ∩B)/P(B).

For example the probability that a fair die is even (event A) is 1/2, but if we are
told that the result is less than 4 (event B), then conditional on that knowl-
edge the probability of A changes to 1/3. We define conditional probability as
follows:

P(A |B) = P(A ∩B)/P(B).

This is sometimes referred to as conditioning on B. Clearly the definition is
only sensible if P(B) > 0. We can rearrange the definition to obtain

P(A ∩B) = P(B)P(A |B) = P(A)P(B |A).

This useful general rule for calculating the probability of the intersection of
two events is called the Multiplication rule.

Conditional probability is equivalent to restricting our sample space to B then
scaling all our probabilities by 1/P(B). It is easy to check that P(· |B) is a
probability measure on B, we just need to check that the probability axioms
hold. For any disjoint events A,C ⊂ B we have:

P(B |B) = 1;

P(A |B) ≥ 0;

© 2009 by Taylor & Francis Group, LLC

CONDITIONAL PROBABILITY 231

P(A ∪ C |B) = P((A ∪ C) ∩B)/P(B)

= P((A ∩B) ∪ (C ∩B))/P(B)

= (P(A ∩B) + P(C ∩B))/P(B)

= P(A |B) + P(C |B).

This means that all the results we derive for regular probabilities (such as the
addition rule) also hold for conditional probabilities.

13.2.1 Example: life tables

From life tables, one finds that 89.935% of women live to age 60 and 57.062%
live to age 80. Thus, noting that the event ‘alive at 80’ includes the event
‘alive at 60’, we have

P(a woman lives to age 80 given that she is alive at age 60)

=
0.57062

0.89935
= 0.63448 (to 5 decimal places).

13.2.2 Example: indigenous deaths in custody

The following data for 1992–3 are taken from an Australian Institute of Crim-
inology Report.2 We consider prison deaths.

Indigenous Non-indigenous

Deaths in prison 4 38
Population 15+ 160,000 12,926,000
Prison population 2,198 13,361

The population aged under 15 is ignored since they are not sentenced to prison,
but to youth detention centres.

Let us define the following events: I, being indigenous; P, being in prison in
1992–3; D, dying in 1992–3. Let the total population over 15 (= 13,086,000)
be N .

The Royal Commission into Aboriginal Deaths in Custody wanted to assess
the evidence for the suspicion that indigenous people had a higher chance of
dying in custody than non-indgenous people. If we compare P(D ∩P | I) and
P(D ∩ P | I) then from the table, we get:

P(D ∩ P | I) =
P(D ∩ P ∩ I)

P(I)
=

4

N
/
160, 000

N
= 4/160, 000 ≈ 2.5× 10−5

2 http://www.aic.gov.au/publications/dic/dic6.pdf

© 2009 by Taylor & Francis Group, LLC

http://www.aic.gov.au

232 PROBABILITY

but

P(D∩P | I) =
P(D ∩ P ∩ I)

P(I)
=

38

N
/
12, 926, 000

N
= 38/12, 926, 000≈ 3.0×10−6

so clearly there is a large dependence between events I and D ∩ P .

However, looking more carefully at the data, we see that there are two com-
ponents to this probability:

P(D∩P | I) =
P(D ∩ P ∩ I)

P(I)
=

P(D | P ∩ I)P(P ∩ I)
P(I)

= P(D | P ∩I)P(P | I)

and similarly for I.

The reason we write the probability this way is that P(D |P ∩ I) is largely
dependent on prison conditions/supervision, while P(P | I) is the incarceration
rate, which depends on a much broader range of policy issues.

Using the data above, we get for the various conditional probabilities:

A = I A = I

P(D | P ∩A) 4
2198 ≈ 1.8× 10−3 38

13,361 ≈ 2.8× 10−3

P(P | A) 2198
160,000 ≈ 1.4× 10−2 13,361

12,926,000 ≈ 1.0× 10−3

P(D ∩ P | A) 4
160,000 ≈ 2.5× 10−5 38

12,926,000 ≈ 3.0× 10−6

From this table, we see that the chance of dying once in prison is actually
slightly higher for non-indigenous prisoners; the large discrepancy is in the
incarceration rate of indigenous Australians.

13.3 Independence

We say that events A andB are independent if P(A∩B) = P(A)P(B), or equiv-
alently if P(A |B) = P(A) or P(B |A) = P(B). We interpret independence as
the occurrence or not of B has no effect on the occurrence of A.

13.3.1 Example: disjoint events

If P(A),P(B) > 0 and A and B are disjoint, then they are dependent. This is
because P(A ∩B) = P(∅) = 0 6= P(A)P(B).

You should check that if A = ∅ or A = Ω then A is independent of all other
events B.

13.3.2 Example: the Chevalier de Meré

The Chevalier de Meré was a seventeenth century French count who made
money by betting—at even money—that he could throw at least one six in

© 2009 by Taylor & Francis Group, LLC

THE LAW OF TOTAL PROBABILITY 233

four die rolls. Eventually he couldn’t find anyone to bet against him so he
changed the bet to at least one double six in twenty four rolls of two dice, and
started losing money.

Here’s why. Using independence we have

P(at least one six in four rolls)

= 1− P(no sixes in four rolls)

= 1− P(no six in roll one)× · · · × P(no six in roll four)

= 1− (5/6)4

= 0.5177 (to four decimal places).

and

P(at least one double six in twenty four rolls)

= 1− P(no double sixes in twenty four rolls)

= 1− P(no double six in roll one)× · · ·
· · · × P(no double six in roll twenty four)

= 1− (35/36)24

= 0.4914 (to four decimal places).

So the modified bet was not equivalent to the original as the Count had hoped,
but converted a healthy 1.77% advantage into a 0.86% disadvantage.

13.4 The Law of Total Probability

Suppose that eventsE1, . . . , Ek partition the sample space Ω. That is Ei∩Ej =
∅ for all i 6= j and E1 ∪ · · · ∪ Ek = Ω. Then for any event A we have

P(A) = P(A ∩Ω)

= P(A ∩ (E1 ∪ · · · ∪ Ek))

= P((A ∩ E1) ∪ · · · ∪ (A ∩ Ek))

= P(A ∩E1) + · · ·+ P(A ∩ Ek) (disjoint events)

= P(A |E1)P(E1) + · · ·+ P(A |Ek)P(Ek).

This result is called the Law of Total Probability. It is a very useful method for
splitting a complex eventA into a sequence of simpler eventsA∩E1, . . . , A∩Ek.

For example, in 2003, 53% of VCE students3 were female, with a pass rate of
96.5%. Male students had a 95.5% pass rate. What was the overall pass rate?
Let M be the event ‘male’, F the event ‘female’, and P the event ‘pass’, then

3 Secondary students in the Australian state of Victoria study towards a Victorian Certifi-
cate of Education (VCE).

© 2009 by Taylor & Francis Group, LLC

234 PROBABILITY

we have

P(P) = P(P |M)P(M) + P(P |F)P(F)

= 0.955× (1− 0.53) + 0.965× 0.53

= 0.960 (to three decimal places).

13.5 Bayes’ theorem

For any events A and B we have

P(B |A) =
P(B ∩A)

P(A)

=
P(A |B)P(B)

P(A)
.

This result is called Bayes’ theorem. Bayes’ theorem is used to find conditional
probabilities P(B |A) when you already know P(A |B).4

If we choose the event B to be E1, where E1, . . . , Ek is a partition of the
sample space Ω, then we have

P(E1 |A) =
P(A |E1)P(E1)

P(A)

=
P(A |E1)P(E1)

P(A |E1)P(E1) + · · ·+ P(A |Ek)P(Ek)
.

The last step uses the Law of Total Probability. This is a commonly stated
form of Bayes’ theorem, but note that the original theorem does not require
the introduction of a partition.

13.5.1 Example: prostate cancer screening

Here are data on the effectiveness of digital rectal examination (DRE) to
screen for prostate cancer in men.5

Let P be the event ‘return a positive test result’ and let C be the event ‘have
prostate cancer’, then we have

P(P | C) = 0.57; P(P | C) = 0.43;
P(P | C) = 0.08; P(P | C) = 0.92

P(C) = 0.037; P(C) = 0.963.

4 Bayes’ theorem is a fundamental part of the Bayesian theory of probability, which mod-
els how prior assumptions about the probability of events can be updated as further
information becomes available.

5 http://www.jr2.ox.ac.uk/bandolier/band74/b74-7.html

© 2009 by Taylor & Francis Group, LLC

http://www.jr2.ox.ac.uk

EXERCISES 235

Now suppose you have no other particular reason to believe that you have can-
cer, but you receive a positive test result. Then what should you do? Because
surgery for prostate cancer has a significant risk of complications, what you
really want to know is: what is the chance of having cancer given a positive
test result P(C | P)?

From the Law of Total Probability we find the probability of having a positive
test as

P(P) = P(P ∩ C) + P(P ∩ C) = P(P | C)P(C) + P(P | C)P(C) = 0.097.

Thus Bayes’ theorem gives us

P(C | P) = P(P | C)P(C)/P(P) = 0.57× 0.037/0.097≈ 0.22

which is not very high! The reason is that the relatively high false positive
rate of 8% generates many more positive test results than those arising from
diseased people, as only a small proportion of people are diseased. Let us hope
that better tests are developed soon!

13.6 Exercises

1. List the sample space for the following random experiment. First you toss
a coin. Then, if you get a head, you throw a single die.

2. Blood is of differing types or blood groups: O, A, B, and AB. Not all are
compatible for transfusion purposes. Any recipient can receive the blood
from a donor with the same blood group or from a donor with type O
blood. A recipient with type AB blood can receive blood of any type. No
other combinations will work. Consider an experiment which consists of
drawing a litre of blood and determining its type for each of the next two
donors who enter a blood bank.

(a). List the possible (ordered) outcomes of this experiment.

(b). List the outcomes where the second donor can receive the blood of the
first.

(c). List the outcomes where each donor can receive the blood of the other.

3. (a). The number of alpha particles emitted by a radioactive sample in a fixed
time interval is counted. Give the sample space for this experiment.

(b). The elapsed time is measured until the first alpha particle is emitted.
Give the sample space for this experiment.

4. An experiment is conducted to determine what fraction of a piece of metal
is gold. Give the sample space for this experiment.

5. A box of n components has r (r < n) components which are defective.
Components are tested one by one until all defective components are found,
and the number of components tested is observed. Describe the sample
space for this experiment.

© 2009 by Taylor & Francis Group, LLC

236 PROBABILITY

6. Let A, B, C be three arbitrary events. Find expressions for the events that,
of A, B, and C,

(a). Only B occurs.

(b). Both B and C, but not A, occur.

(c). All three events occur.

(d). At least one occurs.

(e). None occur.

7. Using the probability axioms show that

P(A ∩B) = 1− P(A ∪B).

You may find it helpful to draw a Venn diagram of A and B.

8. Is it possible to have an assignment of probabilities such that P(A) = 2/3,
P(B) = 1/5, and P(A ∩B) = 1/4?

9. When an experiment is performed, one and only one of the events A, B,
or C will occur. Find P(A), P(B), and P(C) under each of the following
assumptions:

(a). P(A) = P(B) = P(C).

(b). P(A) = P(B) and P(C) = 1/4.

(c). P(A) = 2P(B) = 3P(C).

10. Consider a sample space Ω = {a, b, c, d, e} in which the following events are
defined A = {a}, B = {b}, C = {c}, D = {d}, E = {e}. We are given a
number of alternative probability measures on this sample space. It seems
that in some of them an error has been made with the figures. Find those
cases in which an error has been made, indicating why it must be an error.
In those cases where there are no apparent errors, find P(E).

(a). P(A ∪B ∪ C ∪D) = 0.5, P(B ∪ C ∪D) = 0.6.

(b). P(A ∪B) = 0.3, P(C ∪D) = 0.5.

(c). P(A ∪B) = 0.6, P(C) = 0.4.

(d). P(A ∪B ∪ C) = 0.7, P(A ∪B) = P(B ∪ C) = 0.3.

11. Let A and B be events in a sample space such that P(A) = α, P(B) = β,
and P(A∩B) = γ. Find an expression for the probabilities of the following
events in terms of α, β, and γ.

(a). A ∩B.

(b). A ∩B.

(c). A ∩B.

12. If the occurrence of B makes A more likely, does the occurrence of A make
B more likely?

13. Suppose that P(A) = 0.6. What can you say about P(A|B) when

© 2009 by Taylor & Francis Group, LLC

EXERCISES 237

(a). A and B are mutually exclusive?

(b). A is a subset of B?

(c). B is a subset of A?

14. If A and B are events such that P(A) = 0.4 and P(A∪B) = 0.7, find P(B)
if A and B are

(a). Mutually exclusive.

(b). Independent.

15. Determine the conditions under which an event A is independent of its
subset B.

16. How many times should a fair coin be tossed in order that the probability
of observing at least one head is at least 0.99?

17. A random sample of size n is taken from a population of size N . Write
down the number of distinct samples when sampling is:

(a). Ordered, with replacement.

(b). Ordered, without replacement.

(c). Unordered, without replacement.

(d). Unordered, with replacement.

(Note that (d) is hard; it may help to write down a few special cases first.)

18. Suppose that both a mother and father carry genes for blood types A and
B. They each pass one of these genes to a child and each gene is equally
likely to be passed. We assume they pass genes independently. The child
will have blood type A if both parents pass their A genes, type B if both
pass their B genes, and type AB if one A and one B gene are passed. What
are the probabilities that a child of these parents has type A blood? Type
B? Type AB?

19. An individual plays roulette using the following system. He bets $1 that the
roulette wheel will come up black. If he wins, he quits. If he loses he makes
the same bet a second time but now he bets $2. Then irrespective of the
result, he quits. What is the sample space for this experiment? Assuming
he has a probability of 1/2 of winning each bet, what is the probability that
he goes home a winner?

20. Two dice are rolled. What is the probability that at least one is a six? If
the two faces are different, what is the probability that one is a six? If the
sum is seven what is the probability that one die shows a six?

21. A woman has two children. Assume that all possible outcomes for the sexes
are equally likely. What is the probability that she has two boys given that

(a). The eldest is a boy.

(b). At least one is a boy.

© 2009 by Taylor & Francis Group, LLC

238 PROBABILITY

22. Two archers A and B shoot at the same target. Suppose A hits the target
with probability 0.65 and independently B hits the target with probability
0.5.

(a). Given only one of the archers hits the target, what is the probability
it was A?

(b). Given at least one of them hits, what is the probability that B hits?

23. A diagnostic test is used to determine whether or not a person has a certain
disease. If the test is positive, then it is assumed the person has the disease,
if negative that they don’t have it. However the test is not 100% accurate.
If a diseased person is tested, it still gives a negative result 5% of the time
(a false negative) and when testing a person free of the disease, it gives a
false positive 10% of the time. Suppose we choose someone at random from
a population in which only 1 person in 50 has the disease.

(a). Find the probability that their test result is positive.

(b). Find the probability that their test result is misleading.

(c). Find the probability that they actually have the disease if they test
positive.

24. There are two bus lines which travel between towns A and B. Bus line A
runs late 20% of the time, while bus line B runs late 50% of the time. You
travel three times as often by line A as you do by line B. On a certain day
you arrive late. What is the probability that you used bus line B that day?

25. An electronic system receives signals as input and sends out appropriate
coded messages as output.

The system consists of 3 converters (C1, C2, and C3), 2 monitors (M1 and
M2), and a perfectly reliable three-way switch for connecting the input
to the converters. The incoming signal is encoded by one or more of the
converters and the monitors check whether the conversion is correct.

Initially the signal is fed into C1. If M1 passes the conversion, the coded
message is sent out. If M1 rejects the conversion, the input is switched to C2

and the conversion is checked by M2. If M2 passes the conversion, the coded
message is sent out. If M2 rejects the conversion, the input is switched to
C3 and the coded message is sent out without any further checks.

Each of the converters has probability 0.9 of correctly coding the incoming
message. Each of the monitors has probability 0.8 of rejecting a wrongly
coded message and also probability 0.8 of passing a correctly coded message.

Show that the probability of a correct output from the system is about
0.968.

26. The dice game craps is played as follows. The player throws two dice, and if
the sum is seven or eleven, then he wins. If the sum is two, three, or twelve,
then he loses. If the sum is anything else, then he continues throwing until
he either throws that number again (in which case he wins) or he throws

© 2009 by Taylor & Francis Group, LLC

EXERCISES 239

a seven (in which case he loses). Calculate the probability that the player
wins.

27. If you toss a coin four times, the probability of getting four heads in a row
is (0.5)4 = 0.0625. Suppose that we toss a coin twenty times; what is the
probability that we get a sequence of four heads in a row at some point?

Write a program to estimate this probability. Your answer should be greater
than 5× 0.0625 = 0.3125. (Why?)

Your program should have the following structure:

(a). A function four.n.twenty() that simulates twenty coin tosses, then
checks to see if there are four heads in a row.

(b). A function four.n.twenty.prob(N) that executes four.n.twenty()

N times and returns the proportion of times there were four heads in a
row.

Using four.n.twenty.prob(N), what can you do to be confident that your
answer is accurate to two decimal places?

To simulate twenty coin tosses you can use the command
round(runif(20)), then interpret a 1 as a head and a 0 as a tail.
One way to structure four.n.twenty() is to first generate a sequence
of twenty coin tosses, then for i = 1, . . . , 17 check to see if tosses
(i, i+ 1, i+ 2, i+ 3) are all heads. Suppose that you use 1 for a head and 0
for a tail, and that coins is a vector of 0’s and 1’s of length n, then coins

is a sequence of n heads if and only if prod(coins) == 1.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 14

Random variables

In this chapter we introduce the concept of a random variable, which quanti-
fies the outcome of a random experiment. We define discrete and continuous
random variables and consider various ways of describing their distributions,
including the distribution function, probability mass function, and probability
density function. We then define some important aspects of their distributions
(expectation and variance) and their relationships with other random variables
(independence and covariance).

We also consider transformations of random variables, which are needed for
later simulation results, and the Weak Law of Large Numbers, which describes
the change in behaviour of an average as the sample size increases. The Weak
Law of Large Numbers also justifies using frequencies to estimate probabilities.

In the following two chapters we look in more detail at specific examples of
discrete and continuous random variables.

14.1 Definition and distribution function

Suppose that we have a sample space Ω and a probability measure P that
maps events (subsets of Ω) to the interval [0, 1]. A random variable (or rv) X
is a function from Ω to R, the real line. In other words, a random variable is
a value that we associate with each outcome in Ω.

We define P(X = x) to be the probability of the event {ω ∈ Ω : X(ω) = x}.
More generally P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}). In what follows we will
use the shorthand {X ∈ A} for {ω ∈ Ω : X(ω) ∈ A}.
For example, suppose we toss a fair coin three times and let X be the number
of heads until the first tail and let Y be the total number of heads. X and Y
are both random variables. Let ω be an element of Ω, then we have

ω HHH HHT HTH HTT THH THT TTH TTT

P({ω}) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
X(ω) 3 2 1 1 0 0 0 0
Y (ω) 3 2 2 1 2 1 1 0

241

© 2009 by Taylor & Francis Group, LLC

242 RANDOM VARIABLES

Thus P(X = 0) = P({THH, THT, TTH, TTT}) = 1/2 and P(Y = 0) =
P({TTT }) = 1/8.

A note on notation: we usually use capital letters for random variables and
lower case letters for their possible values.

An important concept is that we can describe a random variable X without
having to describe Ω. We do this using the (cumulative) distribution function
(cdf or df) of the random variable:

F (x) = P(X ≤ x).
When we are dealing with more than one rv we will write FX for the df of
X . The distribution function is also called the law of the random variable
or just ‘the distribution’. If you know F then for any interval (a, b] we have
P(a < X ≤ b) = F (b)−F (a), and using combinations of such intervals we can
recover all possible probabilities involving X . One consequence of this formula
is that if a < b then F (a) ≤ F (b) so F is a non-decreasing function. It is also
true that as x→ −∞, F (x)→ 0, and as x→∞, F (x)→ 1.

Random variables are a generalising concept with broad applicability; the
same distribution function can appear in many different contexts, allowing us
to use results from one context in another.

14.2 Discrete and continuous random variables

We identify two particular types of random variable based on their distribution
functions. If the distribution function is a step function then the random
variable is called discrete, and if the distribution function can be written as
the integral of some function (called the density) then the random variable is
called continuous. It is also possible to have random variables that are mixtures
of discrete and continuous, but we will not consider these. Examples of discrete
and continuous random variables are provided in Figures 14.1 and 14.2.

Discrete random variables If the df F of X has a jump of size p at the point
a, then

P(X = a) = P(X ≤ a)− P(X < a)

= P(X ≤ a)− lim
ǫ↓0

P(X ≤ a− ǫ)

= F (a)− lim
ǫ↓0

F (a− ǫ)
= p.

We describe a discrete random variable X using its probability mass function
(pmf), often written p or pX , where for all x

p(x) = P(X = x).

We prefer to use p to describe a random variable, rather than F , as it can be

© 2009 by Taylor & Francis Group, LLC

DISCRETE AND CONTINUOUS RANDOM VARIABLES 243

0 2 4 6 8 10

0
.0

0
0

.1
0

0
.2

0

x

p
(x

)

0 2 4 6 8 10

0
.0

0
.4

0
.8

x

F
(x

)

Figure 14.1 A discrete pmf and the corresponding cdf.

easily interpreted as ‘probability mass’. Given p we can easily recover F and
thus the probability of events of interest:

P(X ∈ (a, b]) = F (b)− F (a) =
∑

x∈(a,b]

p(x).

Of course if we sum the probability mass function over all possible values of
the discrete random variable, we get 1.

Continuous random variables For a continuous rv Y , we assume that the
cumulative distribution function (cdf) can be written as

F (y) = P(Y ≤ y) =

∫ y

−∞
f(u) du,

where f = fY is the probability density function. It follows that F is con-
tinuous everywhere and, at any point y for which f(y) is continuous, F ′(y)
exists and equals f(y) (by the fundamental theorem of calculus). Since F is
continuous, for any a we have

P(Y = a) = P(Y ≤ a)− P(Y < a)

© 2009 by Taylor & Francis Group, LLC

244 RANDOM VARIABLES

0 2 4 6 8 10

0
.0

0
0

.1
0

0
.2

0

x

f(
x
)

0 2 4 6 8 10

0
.0

0
.4

0
.8

x

F
(x

)

Figure 14.2 A continuous pdf and the corresponding cdf.

= P(Y ≤ a)− lim
ǫ↓0

P(Y ≤ a− ǫ)

= F (a)− lim
ǫ↓0

F (a− ǫ)
= 0.

We can think of f(y) as the density of probability at y:

P(y < Y < y + dy) = f(y) dy.

In practice a plot of the pdf f is easier to interpret than a plot of the cdf F ,
but they are equivalent, because F can be obtained by integrating f . The area
under the pdf between a and b is P(a < Y < b), and the total area under the
pdf is 1. Note that it does not matter if f is undefined at some points, since
the integral of f is not changed if we change f at a single point.

We remark that it is theoretically possible for a random variable to have a
continuous cdf, but no density. However such random variables are of limited
practical interest, and we do not describe them further.

© 2009 by Taylor & Francis Group, LLC

EMPIRICAL CDF’S AND HISTOGRAMS 245

14.3 Empirical cdf’s and histograms

In this section we further develop the idea of probability as a long-term fre-
quency. To do this we need to make precise the concept of a ‘sequence of
independent trials’.

We start by extending the concept of independence, defined for events in
Section 13.3, to random variables. Random variables X and Y are said to be
independent if any event defined using X is independent of any event defined
using Y . That is, for any sets A and B, the events {X ∈ A} and {Y ∈ B}
are independent. Independence is usually an assumption that we make, based
on a physical understanding of the rv’s in question, rather than something
we try to prove. For example performing an experiment 100 times in the
same conditions, with fresh equipment each time, we might assume that the
measurement errors are independent. Informally, X and Y are independent if
knowing the value of X tells you nothing new about Y .

Within this book we will say that a random sample from the distribution F is a
sequence of mutually independent random variables, X1, X2, . . . , Xn, with the
same distribution function F . Such a sequence is also called an independent
and identically distributed (iid) sequence. Given a random sample, for any x
we can approximate F (x) using the empirical distribution function

F̂ (x) =
|{Xi ≤ x}|

n
. (14.1)

If F is from a discrete distribution, then we estimate the probability mass
function p using

p̂(x) =
|{Xi = x}|

n
. (14.2)

F̂ (x) and p̂(x) are just the observed frequencies of the events {X ≤ x} and
{X = x}. Thus our concept of probability as a long-term frequency (Equa-
tion 13.1) is equivalent to saying F̂ (x)→ F (x) and p̂(x)→ p(x) as the sample
size n→∞. We will in fact prove this rigorously later, thus showing that the
idea of probability as long-term frequency is consistent with the probability
axioms. The hat notation is used to indicate that F̂ and p̂ are estimates of F
and p, respectively.

For continuous random variables, we estimate the density using a scaled his-
togram. For small δ we have F ′(x) ≈ (F (x+ δ)− F (x))/δ, so we put

f̂k =
|{i : kδ < xi ≤ (k + 1)δ}|

nδ
=

F̂ ((k + 1)δ)− F̂ (kδ)

δ

≈ F ((k + 1)δ)− F (kδ)

δ
≈ f(kδ).

We use f̂k as an approximation to f(x) for x ∈ (kδ, (k + 1)δ].

You should ask yourself what happens to f̂ as the sample size n → ∞? And
as δ → 0?

© 2009 by Taylor & Francis Group, LLC

246 RANDOM VARIABLES

In the context of histograms it is common to call an interval (kδ, (k + 1)δ]
a bin. For a continuous random variable X , P(X ∈ (kδ, (k + 1)δ]) = P(X ∈
[kδ, (k+1)δ)), so in theory it doesn’t matter whether the bin edges are attached
to the bin on the left, or the bin on the right. In practice we have to make a
choice, but this is quite arbitrary and different authors make different choices.

Also note that the choice of bin width and the bin start points can affect the
apparent distribution of the data. For this reason many analysts prefer to use
smooth density estimates, which we do not cover here.

14.3.1 Example: Cavendish’s experiments

Here are 29 measurements of the density of the Earth made by Henry
Cavendish in 1798, each presented as a multiple of the density of water.

> cavendish <- c(5.5, 5.57, 5.42, 5.61, 5.53, 5.47, 4.88,

+ 5.62, 5.63, 4.07, 5.29, 5.34, 5.26, 5.44, 5.46, 5.55,

+ 5.34, 5.3, 5.36, 5.79, 5.75, 5.29, 5.1, 5.86, 5.58,

+ 5.27, 5.85, 5.65, 5.39)

Clearly there was some error in the measurement process, which we think of
as random. R provides built-in functions for plotting the empirical cdf and
scaled histogram.

> opar <- par(mfrow = c(2, 1), las = 1, mar = c(4.2, 4, 1, 1))

> plot(ecdf(cavendish),

+ xlab="Density of the Earth", ylab="Cumulative Freq", main="")

> hist(cavendish, freq=TRUE, breaks=20,

+ xlab="Density of the Earth", ylab="Scaled Hist", main="")

> par(opar)

The output is given in Figure 14.3. Use help for more detail on the ecdf and
hist functions used to generate the figure.

14.4 Expectation and finite approximations

The expectation EX of a random variable X is akin to its centre of mass, or
its ‘centre of probability’.

EX =

{ ∑

x x p(x), X discrete;
∫

x f(x)dx, X continuous.

Often we will write µ or µX for EX . The expectation is also called the expected
value or mean of the random variable.

The mean is the theoretical analogue of the average. To see this we go back to
our concept of probability as a long-term frequency (Equations 13.1 and 14.1).

© 2009 by Taylor & Francis Group, LLC

EXPECTATION AND FINITE APPROXIMATIONS 247

4.0 4.5 5.0 5.5 6.0

0.0

0.2

0.4

0.6

0.8

1.0

Density of the Earth

C
u

m
u

la
ti
v
e

 F
re

q

Density of the Earth

S
c
a

le
d

 H
is

t

4.0 4.5 5.0 5.5

0

1

2

3

4

5

Figure 14.3 Density of the Earth: empirical cdf and pdf of Cavendish’s measure-
ments. See Example 14.3.1.

Suppose thatX is a discrete rv with pmf p and letX1, . . . , Xn be an iid sample
also with pmf p. Then we have

EX =
∑

x

x p(x) ≈
∑

x

x
|{Xi = x}|

n
=

1

n

n
∑

i=1

Xi = X.

That is, the expectation is approximately the sample average. We will show
later that the right-hand side converges to the left-hand side as n → ∞,
however we have to be careful what convergence means in this context, as the
right-hand side is random.

© 2009 by Taylor & Francis Group, LLC

248 RANDOM VARIABLES

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

x

p
(x

)

mean

Figure 14.4 The pmf of a random variable and its mean (Example 14.4.1).

14.4.1 Example: numerical calculation of the mean expex.r

If we know the pmf of a discrete rv X then we can calculate its mean numer-
ically. For example, suppose that p(x) ∝ x3/2 for x = 1, 1/2, 1/3, . . . , 1/1000.

That is, p(x) = c x3/2 where c is such that
∑

x p(x) = c
∑1000

k=1 (1/k)3/2 = 1.
Here is some R code for calculating EX . The graphical output is given in
Figure 14.4.

program: spuRs/resources/scripts/expex.r

#

calculating the mean of a discrete rv X

x <- 1/(1000:1) # possible values for X

pX <- x^1.5 # probability mass ftn

pX <- pX/sum(pX) # must have sum(pX) == 1

muX <- sum(x*pX) # mean

plot the pmf and mean

par(las=1)

plot(c(0, 1), c(0, max(pX)), type="n", xlab="x", ylab="p(x)")

lines(x, pX, type="h")

points(muX, 0, pch=19)

text(muX, 0, "mean", pos=4)

© 2009 by Taylor & Francis Group, LLC

EXPECTATION AND FINITE APPROXIMATIONS 249

14.4.2 Example: truncated normal

Suppose that X has a normal density truncated to (0, 1). That is, for some
constant c,

f(x) =

{

c exp(−x2/2) for x ∈ (0, 1)
0 otherwise.

What is EX?

We answer this numerically, using the function simpson (see Section 11.3).

Note that to find c we use the fact that
∫ 1

0
f(x)dx = 1.

> source('../scripts/simpson.r')

> f <- function(x) exp(-x^2/2)

> c <- 1/simpson(f, 0, 1)

> xf <- function(x) x*f(x)

> mu <- simpson(xf, 0, 1)*c

> cat('mean of X is ', mu, '\n')

mean of X is 0.4598622

14.4.3 Infinite range

The range of a random variable X is the set of values it can take, that is
{x : X(ω) = x for some ω ∈ Ω}. If the range of X is bounded then EX
exists and is finite, and there should be no problem calculating it numerically.
However, it is a very different story if the range of X is unbounded, as EX
may be infinite, or just not exist.

For example, suppose X is discrete with the pmf

pX(x) =
6

π2x2
for x = 1, 2, . . . ,

then

EX =
∞
∑

x=1

xpX(x) =
6

π2

∞
∑

x=1

1

x
=∞.

For a continuous example, suppose that Y has a Cauchy distribution

fY (y) =
1

π(1 + y2)
for y ∈ R,

then EY does not exist, since
∫ 0

−∞

y

π(1 + y2)
dy = −∞ and

∫ ∞

0

y

π(1 + y2)
dy =∞,

and −∞+∞ is not well defined.

Now consider calculating EX numerically, when X has an infinite range. The

© 2009 by Taylor & Francis Group, LLC

250 RANDOM VARIABLES

problem is that we cannot calculate an infinite sum or integral numerically,
so we must use a finite approximation.

For example, let X be a discrete random variable with range N = {0, 1, . . .}
and pmf p, then we use the approximation

EX =

∞
∑

x=0

xp(x) >

n−1
∑

x=0

xp(x) + n

(

1−
n−1
∑

x=0

p(x)

)

= n−
n−1
∑

x=0

(n− x)p(x) = En.

If EX is finite then En ↑ EX as n→∞. Given δ > 0 we would like to choose
n so that the error En = EX −En ≤ δ. But En depends on p(x) for all x ≥ n,
so we cannot find En numerically, and thus we do not know when to stop.

Unless we have some theoretical bound on En, the best we can do is stop when,
for some predefined tolerance, ǫ > 0,

En − En−1 = 1−
n−1
∑

x=0

p(x) ≤ ǫ.

We must be aware however, that En − En−1 ≤ ǫ 6⇒ EX − En ≤ ǫ. Moreover,
it is possible that En − En−1 ≤ ǫ but EX = ∞. Consider again the discrete
example with pmf pX(x) = 6/(π2x2) for x = 1, 2, We have En−En−1 ≤ ǫ
when

∑n−1
x=1 pX(x) ≥ 1− ǫ, which we can easily check incrementally:

> p_X <- function(x) 6/pi^2/x^2

> E_n <- function(n) n - sum((n - 1:(n-1)) * p_X(1:(n-1)))

> eps <- 1e-6

> n <- 2

> S <- p_X(1)

> while (S < 1 - eps) {

+ n <- n + 1

+ S <- S + 6/pi^2/(n-1)^2

+ }

> n

[1] 607928

> E_n(n)

[1] 9.05509

> E_n(2*n)

[1] 9.476474

The take-home message is, when using a truncation to approximate a sum or
integral over an infinite range, to be confident that our approximation is good,
we need a theoretical bound on the error.

© 2009 by Taylor & Francis Group, LLC

TRANSFORMATIONS 251

14.4.4 Example: gamma function

The gamma function is defined by

Γ(z) =

∫ ∞

0

xz−1e−xdx, for z > 0.

(It appears later in Sections 16.3.3 and 16.4.3.) For integers z you can show
using integration by parts that Γ(z) = (z − 1)!, and using contour integration
you can show that Γ(1/2) =

√
π and Γ(z + 1/2) =

√
π
∏z

n=1(z − n+ 1/2) for
z > 0, but for any other z numerical techniques are required.

Let GT (z) =
∫ T

0 xz−1e−xdx, then GT (z) ↑ Γ(z) as T → ∞, but how large

does T need to be to get a good approximation? Noting that xz−1e−x/2 → 0
as x → ∞, we have xz−1e−x ≤ e−x/2 for all x large enough, so for T large
enough

Γ(z)−GT (z) =

∫ ∞

T

xz−1e−xdx ≤
∫ ∞

T

e−x/2dx = 2e−T/2.

So in this case we can choose T to make the truncation error smaller that any
specified margin δ > 0.

For example, if z = 1.1 then x0.1 ≤ ex/2 for all x, so any T is large enough. If
we specify an error of 10−16 then it suffices to take T such that 2eT/2 ≤ 10−16,
that is T ≥ 75.07 (to 2 decimal places).

14.5 Transformations

A random variable X is a function from Ω to R, so if h is a function from R

to R, then Y = h(X) must also be a random variable.

For any function h : R → R and set A ⊂ R, we define the set-valued inverse
as

h−1(A) = {x : h(x) ∈ A}.
For random variables X and Y = h(X), the cdf of Y can always be described
by using the set-valued inverse:

FY (y) = P(Y ≤ y)
= P(h(X) ≤ y)
= P(h(X) ∈ (−∞, y])
= P(X ∈ h−1((−∞, y])).

If h is strictly increasing then the usual inverse is well defined, and for y in
the range of h we get

FY (y) = P(X ∈ h−1((−∞, y])) = P(X ∈ (−∞, h−1(y)]) = FX(h−1(y)).

We will see in Chapter 18 that a very important application of variable trans-
formations is the simulation of random variables.

© 2009 by Taylor & Francis Group, LLC

252 RANDOM VARIABLES

14.5.1 Transforming a discrete rv

If X is discrete then so is Y = h(X), and we can obtain its pmf pY from the
pmf pX of X :

pY (y) = P(Y = y) = P({ω ∈ Ω : Y (ω) = y})
= P({ω ∈ Ω : h(X(ω)) = y})
= P({ω ∈ Ω : there exists x such that X(ω) = x and h(x) = y})
=

∑

x : h(x)=y

P({ω ∈ Ω : X(ω) = x}) (disjoint sets)

=
∑

x : h(x)=y

pX(x).

For example suppose X has pmf

x −2 −1 0 1 2
pX(x) 0.2 0.2 0.2 0.2 0.2

Let Y = X2 then Y has pmf

y 0 1 4
pY (y) 0.2 0.4 0.4

14.5.2 Example: transforming a continuous rv

Suppose that X has density fX(x) = (x + 1)/2 for −1 < x < 1, and that
Y = exp(X) and Z = X2. What are the densities of Y and Z?

For −1 < x < 1, the cdf of X is given by

FX(x) =

∫ x

−1

fX(u)du =
(u+ 1)2

4

∣

∣

∣

∣

x

−1

=
(x+ 1)2

4
.

Let h(x) = exp(x) then h is strictly increasing and h−1(y) = log(y), so Y has
cdf

FY (y) = P(exp(X) ≤ y)
= P(X ≤ log(y))

=
(log(y) + 1)2

4
.

Note that since −1 < X < 1 we must have 1/e < Y < e, so we can assume
1/e < y < e above. Differentiating we get, for 1/e < y < e,

fY (y) = F ′
Y (y) =

log(y) + 1

2y
.

Let g(x) = x2 then g is not one to one for x ∈ (−1, 1), so we need to take

© 2009 by Taylor & Francis Group, LLC

TRANSFORMATIONS 253

−1 0 1 2 3

0
.0

0
.5

1
.0

1
.5

2
.0

x

d
e

n
s
it
y
 a

t
x
 (

tr
u

n
c
a

te
d

 a
t

2
)

Figure 14.5 Densities of X, Y = exp(X) and Z = X2 (Example 14.5.2.)

care when calculating the cdf of Z. For x ∈ (−1, 1) we get z ∈ [0, 1), so for
z ∈ [0, 1) we have

FZ(z) = P(X2 ≤ z)
= P(−√z ≤ X ≤ √z)
= FX(

√
z)− FX(−√z)

=
(
√
z + 1)2 − (1 −√z)2

4

=
√
z.

Differentiating we get, for z ∈ [0, 1),

fZ(z) = F ′
Z(z) =

1

2
√
z
.

See Figure 14.5 for sketches of the transformed densities.

14.5.3 Expectation of a transformed random variable

When calculating the expectation of a transformed rv, we use the following
rule: for any function h : R→ R

Eh(X) =

{ ∑

x h(x) p(x), X discrete;
∫

h(x) f(x)dx, X continuous.
(14.3)

© 2009 by Taylor & Francis Group, LLC

254 RANDOM VARIABLES

The proof for the discrete case is straightforward. Let Y = h(X) then by
definition

EY =
∑

y

y P(Y = y)

=
∑

y

y
∑

x:y=h(x)

p(x)

=
∑

y

∑

x:y=h(x)

h(x) p(x)

=
∑

x

h(x) p(x).

For example suppose X has pmf

x −2 −1 0 1 2
pX(x) 0.2 0.2 0.2 0.2 0.2

Let Y = X2 then, using Equation 14.3 we get

EY = (−2)2 × 0.2 + (−1)2 × 0.2 + 02 × 0.2 + 12 × 0.2 + 22 × 0.2

= 2.

Alternatively using the pmf of Y we get

EY = 0× 0.2 + 1× 0.4 + 4× 0.4 = 2.

Equation 14.3 simplifies for linear functions, that is, functions of the form
h(x) = ax+ b. Taking the discrete case we have

E(aX + b) =
∑

x

(ax+ b)p(x) = a
∑

x

x p(x) + b
∑

x

p(x) = aEX + b.

This result is true for any random variable, not just discrete ones, provided
the expectation exists.

It is important to note that in general Eh(X) 6= h(EX).

14.5.4 Sums of random variables

We prove that for any two discrete random variables X and Y

E(X + Y) = EX + EY.

The joint probability mass function p(x, y) is defined by

p(x, y) = P(X = x and Y = y).

If we sum over all possible values of x, we get back the pmf of Y , and conversely

© 2009 by Taylor & Francis Group, LLC

TRANSFORMATIONS 255

if we sum over all possible values of y:

∑

x

p(x, y) = P(Y = y) = pY (y)

∑

y

p(x, y) = P(X = x) = pX(x)

∑

x

∑

y

p(x, y) = 1

Now, for any function h : R× R→ R, we have for Z = h(X,Y)

µZ = EZ

=
∑

z

zP(Z = z)

=
∑

z

z
∑

(x,y):h(x,y)=z

p(x, y)

=
∑

z

∑

(x,y):h(x,y)=z

h(x, y) p(x, y)

=
∑

x

∑

y

h(x, y) p(x, y).

In particular, putting h(x, y) = x+ y we get

E(X + Y) =
∑

x

∑

y

(x + y) p(x, y)

=
∑

x

∑

y

x p(x, y) +
∑

x

∑

y

y p(x, y)

=
∑

x

x
∑

y

p(x, y) +
∑

y

y
∑

x

p(x, y)

=
∑

x

x pX(x) +
∑

y

y pY (y)

= E(X) + E(Y).

This result, E(X + Y) = E(X) + E(Y), is true for any random variables,
discrete or continuous, provided the expected values exist. Since we already
know that E(aX) = aE(X), we have that for any random variablesX1, . . . , Xn

and scalars (constants) a1, . . . , an,

E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn). (14.4)

© 2009 by Taylor & Francis Group, LLC

256 RANDOM VARIABLES

14.6 Variance and standard deviation

We define the variance of a random variable X to be E(X − EX)2. We write
VarX or sometimes σ2

X . The standard deviation of X is the square root of the
variance.

Both the variance and standard deviation are measures of spread (Figure 14.6).
The variance is easier to calculate, but the standard deviation is easier to
interpret physically, as it has the same unit of measurement as the random
variable. Together the mean and standard deviation of a random variable give
a simple summary of its distribution.

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

mean = 4 and
 variance = 10

x

p
(x

)

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

mean = 4 and
 variance = 6.67

x

p
(x

)

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

mean = 4 and
 variance = 2.5

x

p
(x

)

Figure 14.6 Relating variance to the spread of a distribution.

Here are some useful results on the variance. All are straightforward to prove
for discrete random variables (and are true for all random variables).

• VarX ≥ 0.

• VarX = EX2 − (EX)2.

• VarX = 0 if and only if X = µ (constant).

• Var (aX + b) = a2VarX for any constants a and b.

To obtain a general expression for the variance of the sum of two random
variables, we start with the basic definition of Var (X + Y):

Var (X + Y) = E(X + Y − (µX + µY))2

= E
(

(X − µX) + (Y − µY)
)2

= E(X − µX)2 + 2E(X − µX)(Y − µY) + E(Y − µY)2

= Var (X) + 2Cov(X,Y) + Var (Y)

where we define Cov(X,Y) = E(X − µX)(Y − µY).

Cov(X,Y) is called the covariance of X and Y and describes how X and Y

© 2009 by Taylor & Francis Group, LLC

THE WEAK LAW OF LARGE NUMBERS 257

‘co-vary’ together. For example if Y tends to be above its mean when X is
(and vice versa) then Cov(X,Y) will be positive and the variance of the sum
will be increased. In this case we call X and Y positively correlated. Similarly,
for negatively correlated random variables, the variance of the sum is reduced.
If Cov(X,Y) = 0 we say that X and Y are uncorrelated.

We show below that independent random variables are uncorrelated. To prove
this we first show that if X and Y are independent random variables, then
E(XY) = (EX)(EY). Let p(x, y) be the joint pmf of X and Y , then since they
are independent, p(x, y) = pX(x)pY (y). Thus

E(XY) =
∑

x

∑

y

xy p(x, y)

=
∑

x

x p(x)
∑

y

y p(y)

= (EX)(EY).

By multiplying out the terms in the definition of Cov(X,Y), we also find:

Cov(X,Y) = E(X − µX)(Y − µY) = E(XY)− (EX)(EY).

So if X and Y are independent they are also uncorrelated and hence

Var (X + Y) = VarX + VarY.

This is a very important and frequently used result for independent random
variables.

Since we already know that Var (aX) = a2Var (X), we thus have that for any
independent random variables X1, . . . , Xn and scalars a1, . . . , an,

Var (a1X1 + · · ·+ anXn) = a2
1Var (X1) + · · ·+ a2

nVar (Xn). (14.5)

We note that Cov(X,Y) will change if the units of measurement change for
the random variables involved. By standardising the covariance appropriately
we obtain a scale invariant measure of how X and Y co-vary, which is called
the correlation coefficient:

ρ(X,Y) =
Cov(X,Y)

√

Var (X)Var (Y)

The correlation coefficient is an important quantity in statistics and in par-
ticular in linear regression.

14.7 The Weak Law of Large Numbers

Let X1, . . . , Xn be an iid random sample with mean µ. In this section we make
precise our earlier statement that X ≈ µ.

© 2009 by Taylor & Francis Group, LLC

258 RANDOM VARIABLES

In statistics X is called an estimator of µ, and as such is sometimes written
µ̂. If xi is the observed value of Xi, then the observed value of X is just
x = (

∑n
i=1 xi)/n, which is called a point estimate of µ. From a statistical point

of view, we think of X as describing the potential values of the sample mean,
and x as a particular realisation. If we were to collect another n observations
of X , then we could take their average to get a second observation of X (or
we could combine the two samples to get a single more accurate estimate).

Let µ = EXi and σ2 = VarXi, then from (14.4) and (14.5) we have that

EX = E(X1/n+ · · ·+Xn/n)

= (EX1)/n+ · · · (EXn)/n

= µ

VarX = Var ((X1 + · · ·+Xn)/n)

= Var (X1 + · · ·+Xn)/n2

= (VarX1 + · · ·+ VarXn)/n2

= σ2/n.

Thus as n → ∞ we have EX = µ and VarX → 0. That is, X starts to look
like the constant µ as n→∞.

Since EX = µ we say it is an unbiased estimator of µ.

Markov’s Inequality If X is a random variable that takes on only non-
negative values, then for any a > 0

P(X ≥ a) ≤ EX

a
.

Proof. Suppose X is discrete with pmf pX(x), then

EX =
∑

x

x pX(x) ≥
∑

x≥a

x pX(x) ≥
∑

x≥a

a pX(x) = aP(X ≥ a).

The continuous case is proved similarly.

Chebyshev’s Inequality If X is a random variable with mean µ and variance
σ2, then for any c > 0

P(|X − µ| ≥ cσ) ≤ 1

c2
.

Proof. The non-negative random variable (X − µ)2 has the expected value
E(X − µ)2 = σ2 and so by Markov’s inequality with a = c2σ2, we have

P((X − µ)2 ≥ c2σ2) ≤ E(X − µ)2

c2σ2
=

1

c2
.

Since (X − µ)2 ≥ c2σ2 if and only if |X − µ| ≥ cσ, the result follows.

© 2009 by Taylor & Francis Group, LLC

THE WEAK LAW OF LARGE NUMBERS 259

The Weak Law of Large Numbers Let X1, . . . , Xn be an iid random sample
each with mean µ and finite variance, then for any ε > 0,

P(|X − µ| > ε)→ 0 as n→∞.
That is, given a tolerance ε, the probability that X is within ε of µ gets as
close to 1 as you like, as the sample size increases. We say X converges in
probability to µ as n→∞, and write

X
P−→ µ as n→∞.

Proof. From Chebyshev’s inequality, for any random variable with finite mean
and variance, P(|X − µ| ≥ kσX) ≤ 1/k2, so

P(|X − µ| ≥ ε) ≤
σ2

X

ε2
=
σ2

X

nε2

P(|X − µ| ≤ ε) ≥ 1− σ2
X

nε2
→ 1 as n→∞.

More generally any estimator that is unbiased for a parameter θ and whose
standard deviation goes to 0 as n→∞, will converge in probability to θ.

We note that one can prove a stronger version of this theorem—called the
Strong Law of Large Numbers—under weaker conditions. Namely, you can
show what is called almost sure convergence, assuming only that you have an
iid sequence with finite mean. The proof, however, requires more probability
theory than we have covered.

14.7.1 Sample proportion

The estimators F̂ and p̂ given in (14.1) and (14.2) are in fact special cases
of µ̂. Let 1A(x) be the indicator function for the set A. That is 1A(x) = 1 if
x ∈ A and 0 otherwise. Then, in the case where X is discrete,

E1A(X) =
∑

x

1A(x)p(x) =
∑

x∈A

p(x) = P(X ∈ A).

Put A = (−∞, x] to get F (x) or A = {x} to get p(x).

In general, suppose that the random variables Xi are indicator variables,

Xi =

{

1, if item i has some property of interest,
0, otherwise,

where p = P(Xi = 1) = EXi. Then the sample mean is just the sample
proportion

X = p̂ =
1

n

n
∑

i=1

Xi.

© 2009 by Taylor & Francis Group, LLC

260 RANDOM VARIABLES

We have

Ep̂ = E

(

1

n

n
∑

i=1

Xi

)

=
1

n

n
∑

i=1

EXi = p,

and, noting that VarXi = EX2
i − (EXi)

2 = p− p2 = p(1− p),

Var p̂ = Var

(

1

n

n
∑

i=1

Xi

)

=
1

n2

n
∑

i=1

VarXi =
p(1− p)

n
.

14.7.2 Sample variance

LetX1, . . . , Xn be an iid sample with the same distribution asX , with EX = µ
and VarX = σ2. Since σ2 = E(X − µ)2, the Weak Law of Large Numbers
suggests that we estimate σ2 using

1

n

n
∑

i=1

(Xi − µ)2.

Of course, the problem with this is that if we do not know σ2, then we probably
do not know µ either. The way around this is to use an estimate of µ, which
leads to the estimator

S2 =
1

n− 1

n
∑

i=1

(Xi −X)2 =
1

n− 1

[

n
∑

i=1

X2
i − nX

2

]

.

S2 is called the sample variance. As it is an estimator for σ2 it is often written
σ̂2. If x1, . . . , xn are the observed sample values, then the observed value of
S2 is s2 =

∑n
i=1(xi − x)2/(n− 1), which is the point estimate of σ2.

Note that in S2 we divide by n − 1 rather than n. This choice makes S2

unbiased, that is, ES2 = σ2.

ES2 = E
1

n− 1

[

n
∑

i=1

X2
i − nX

2

]

=
1

n− 1

[

n
∑

i=1

EX2
i − nEX

2

]

=
1

n− 1

[

n
∑

i=1

(VarXi + (EXi)
2)− n(VarX + (EX)2)

]

=
1

n− 1

[

n
∑

i=1

(σ2 + µ2)− n(σ2/n+ µ2)

]

= σ2.

The sample standard deviation S =
√
S2 is an estimator of the standard

© 2009 by Taylor & Francis Group, LLC

EXERCISES 261

deviation σ. However, S is not unbiased, because ES = E
√
S2 6=

√
ES2.

Nonetheless, the bias is usually small.

If the Xi are indicator variables with µ = p, then σ2 = p(1 − p), and it is
common to estimate σ2 using p̂(1− p̂) = X(1−X). This is in fact very close
to S2, but not quite the same. Because Xi ∈ {0, 1} we have Xi = X2

i , so

X(1 −X) = X −X2

=
1

n

n
∑

i=1

Xi −X
2

=
1

n

[

n
∑

i=1

X2
i − nX

2

]

=
n− 1

n
S2.

14.8 Exercises

1. Suppose you throw two dice. What values can the following random vari-
ables take?

(a). The minimum face value showing;

(b). The absolute difference between the face values showing;

(c). The ratio: minimum face value/other face value.

Assuming all outcomes in the sample space are equally likely, what are the
probability mass functions for these random variables? Give these in a table
format and also do a rough sketch.

Calculate the mean of each random variable.

2. The following is the probability mass function of a discrete random variable
X

x 1 2 3 4 5

P(X = x) 2c 3c c 4c 5c

(a). What is the value of c?

(b). Find P(X ≤ 4) and P(1 < X < 5).

(c). Calculate EX and VarX .

3. A game consists of first tossing an unbiased coin and then rolling a six-sided
die. Let the random variable X be the score that is obtained by adding the
face value of the die and the number of heads obtained (0 or 1). List the
possible values of X and calculate its pmf.

4. This question concerns an experiment with sample space

Ω = {a, b, c, d}.

© 2009 by Taylor & Francis Group, LLC

262 RANDOM VARIABLES

(a) List all possible events for this experiment.

(b) Suppose that P({a}) = P({b}) = P({c}) = P({d}) = 1/4.

Find two independent events and two dependent events.

(c) Define random variables X , Y , and Z as follows

ω a b c d

X(ω) 1 1 0 0
Y (ω) 0 1 0 1
Z(ω) 1 0 0 0

Show that X and Y are independent and that X and Z are dependent.

(d) Let W = X + Y + Z. What is the probability mass function (pmf) of
W? What is its mean and variance?

5. A discrete random variable has pmf f(x) = k(1/2)x for x = 1, 2, 3; f(x) = 0
for all other values of x. Find the value of k and then the mean and variance
of the random variable.

6. Consider the discrete random variable X that takes the values 0, 1, 2, . . . , 9
each with probability 1/10. Let Y be the remainder obtained after dividing
X2 by 10 (e.g., if X = 9 then Y = 1). Y is a function of X and so is also
a random variable. Find the pmf of Y .

7. Consider the discrete probability distribution defined by

p(x) = P(X = x) =
1

x(x+ 1)
for x = 1, 2, 3, . . .

(a) Let S(n) = P(X ≤ n) =
∑n

x=1 p(x). Using the fact that 1
x(x+1) =

1
x − 1

x+1 , find a formula for S(n) and thus show that p is indeed a pmf.

(b) Write down the formula for the mean of this distribution. What is the
value of this sum?

8. For some fixed integer k, the random variable Y has probability mass func-
tion (pmf)

p(y) = P(Y = y) =

{

c(k − y)2 for y = 0, 1, 2, . . . , k − 1
0 otherwise.

(a) What is the value of c? (Your answer will depend on k.)

Hint:
∑n

i=1 i
2 = n(n+ 1)(2n+ 1)/6.

(b) Give a formula for the cumulative distribution function (cdf) F (y) =
P(Y ≤ y) for y = 0, 1, 2, . . . , k − 1.

(c) Write a function in R to calculate F (y). Your function should take y
and k as inputs and return F (y). You may assume that k is an integer
greater than 0 and that y ∈ {0, 1, 2, . . . , k − 1}.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 263

9. Toss a coin 20 times and let X be the length of the longest sequence of
heads. We wish to estimate the probability function p of X . That is, for
x = 1, 2, . . . , 20 we wish to estimate

p(x) = P(X = x).

Here is a function maxheads(n.toss) that simulates X (using n.toss =

20).

maxheads <- function(n.toss) {

returns the length of the longest sequence of heads

in a sequence of n.toss coin tosses

n_heads = 0 # length of current head sequence

max_heads = 0 # length of longest head sequence so far

for (i in 1:n.toss) {

toss a coin and work out length of current head sequence

if (runif(1) < 0.5) { # a head, sequence of heads increases by 1

n_heads <- n_heads + 1

} else { # a tail, sequence of heads goes back to 0

n_heads <- 0

};

see if current sequence of heads is the longest

if (n_heads > max_heads) {

max_heads <- n_heads

}

}

return(max_heads)

}

Use maxheads(20) to generate an iid sample X1, . . . , XN then estimate p
using

p̂(x) =
|{Xi = x}|

N
.

Print out your estimate as a table like this

x p_hat(x)

0 0.0010

1 0.0500

. .

. .

20 0.0000

As a supplementary exercise try rewriting the function maxheads using the
R function rle.

10. Suppose the rv X has continuous pdf f(x) = 2/x2, 1 ≤ x ≤ 2. Determine
the mean and variance of X and find the probability that X exceeds 1.5.

11. Which of the following functions are probability density functions for a
continuous random variable X?

© 2009 by Taylor & Francis Group, LLC

264 RANDOM VARIABLES

(a).

f(x) =

{

5x4 0 ≤ x ≤ 1
0 otherwise

(b).

f(x) =

{

2x −1 ≤ x ≤ 2
0 otherwise

(c).

f(x) =

{

1/2 −1 ≤ x ≤ 1
0 otherwise

(d).

f(x) =

{

2x/9 0 ≤ x ≤ 3
0 otherwise

For those that are pdfs, calculate P(X ≤ 1/2).

12. Suppose a continuous random variable Y has pdf

f(y) =

{

3y2 0 ≤ y ≤ 1
0 otherwise

(a). Sketch this pdf and find P(0 ≤ Y ≤ 1/2) and P(1/2 ≤ Y ≤ 1).

(b). Find the cdf FY (y) of Y.

13. Suppose a continuous random variable Z has pdf

fZ(z) =

z − 1 1 ≤ z ≤ 2
3− z 2 ≤ z ≤ 3
0 otherwise

(a). Sketch this pdf and find P(Z ≤ 3/2) and P(3/2 ≤ Z ≤ 5/2).

(b). Find the cdf FZ(z) of Z.

14. A random variable X has cdf

FX(x) =

{

0 x ≤ 0
1− e−x 0 < x <∞

(a). Sketch this cdf.

(b). Is X continuous or discrete? What are the possible values of X?

(c). Find P(X ≥ 2), P(X ≤ 2), and P(X = 0).

15. A random variable X has cdf

FX(x) =

{

x/2 0 < x ≤ 1
x− 1/2 1 < x < 3/2

(a). Sketch this cdf.

(b). Is X continuous or discrete? What are the possible values of X?

© 2009 by Taylor & Francis Group, LLC

EXERCISES 265

(c). Find P(X ≤ 1/2) and P(X ≥ 1/2).

(d). Find a number m such that P(X ≤ m) = P(X ≥ m) = 1/2 (the
median).

16. For Exercises 12–15 above, try to guess the mean by judging the ‘centre of
gravity’ of the pdf. Then check your guess by evaluating the mean analyt-
ically.

17. Consider two continuous random variables X and Y with pdfs

fX(x) =

{

4x3 0 ≤ x ≤ 1
0 otherwise

fY (y) =

{

1 0 ≤ y ≤ 1
0 otherwise

(a). Sketch both these pdfs and try to guess the means of X and Y . Check
your guesses by actually calculating the means.

(b). From the sketches, which random variable do you think would be more
variable, X or Y ? Check your guess by actually calculating the vari-
ances.

18. It is known that a good model for the variation, from item to item, of
the quality of a certain product is the random variable X with probability
density function f(x) = 2x/λ2 for 0 ≤ x ≤ λ. Here λ is a parameter that
depends on the manufacturing process, and can be altered.

During manufacture, each item is tested. Items for which X > 1 are passed,
and the rest are rejected. The cost of a rejected item is c = aλ+ b and the
profit on a passed item is d− c, for constants a, b, and d.

Find λ such that the expected profit is maximised.

19. The variable X has pdf f(x) = 1
8 (6 − x) for 2 ≤ x ≤ 6. A sample of two

values of X is taken. Denoting the lesser of the two values by Y, use the
cdf of X to write down the cdf of Y. Hence obtain the pdf and mean of Y .
Show that its median is approximately 2.64. (The median is the point m
for which P(Y ≤ m) = 0.5.)

20. Discrete and continuous are not the only possible types of random variable.
For example, what sort of distribution is the time spent waiting in a bank
queue? If we suppose that there is a strictly positive probability of waiting
no time at all, then the cumulative distribution function will have a jump
at 0. However, if there are people ahead of you, the time you wait could be
any value in (0,∞), so that this part of the cumulative distribution will be
a continuous function. Thus this distribution is a mixture of a discrete and
continuous part.

Let X be the length of time that a customer is in the queue, and suppose
that

F (x) = 1− pe−λx for x ≥ 0, λ > 0 and 0 < p < 1.

© 2009 by Taylor & Francis Group, LLC

266 RANDOM VARIABLES

Find P(X = 0) and the cdf for X |X > 0. Hence, find the mean queuing
time, noting that (from the Law of Total Probability)

EX = E(X |X = 0)P(X = 0) + E(X |X > 0)P(X > 0)

= 0 + E(X |X > 0)P(X > 0).

21. Let X1, . . . , Xn be an iid sample with mean µ and variance σ2. Show that
you can write

(n− 1)S2 =
n
∑

i=1

(Xi −X)2 =
n
∑

i=1

(Xi − µ)2 − n(µ−X)2.

Now suppose that E(Xi − µ)4 <∞, and use the Weak Law of Large Num-
bers to show that

S2 P−→ σ2 as n→∞.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 15

Discrete random variables

This chapter builds on the general framework for random variables provided
in the previous chapter. We study some of the most common and important
discrete random variables, and summarise the R functions relating to them. In
particular we cover the Bernoulli distribution, binomial distribution, geometric
distribution, negative binomial distribution, and the Poisson distribution.

In the next chapter we cover continuous random variables.

15.1 Discrete random variables in R

R has built-in functions for handling the most commonly encountered proba-
bility distributions. Suppose that the random variable X is of type dist with
parameters p1, p2, ..., then

ddist(x, p1, p2, ...) equals P(X = x) for X discrete, or the density of
X at x for X continuous;

pdist(q, p1, p2, ...) equals P(X ≤ q);
qdist(p, p1, p2, ...) equals the smallest q for which P(X ≤ q) ≥ p (the

100p %-point);

rdist(n, p1, p2, ...) is a vector of n pseudo-random numbers from dis-
tribution type dist.

The inputs x, q, and p can all be vector valued, in which case the output is
vector valued.

Here are some of the discrete distributions provided by R, together with the
names of their parameter inputs.

Distribution R name (dist) Parameter names

Binomial binom size, prob

Geometric geom prob

Negative binomial nbinom size, prob

Poisson pois lambda

267

© 2009 by Taylor & Francis Group, LLC

268 DISCRETE RANDOM VARIABLES

15.2 Bernoulli distribution

The Bernoulli, binomial, geometric, and negative binomial distributions all
arise from the context of a sequence of independent trials. Each of these ran-
dom variables describes a different aspect of such an experiment.

In any random trial we can always partition the sample space by arbitrarily
characterising some outcomes as ‘successes’ and the complementary outcomes
as ‘failures’. We suppose that each trial is successful with probability p and
unsuccessful otherwise.

A Bernoulli random variable B is based on a single trial and takes on the value
1 if the trial is a success or 0 otherwise. We use the notation B ∼ Bernoulli(p)
to indicate that B has a Bernoulli distribution with parameter p.

P(B = x) =

{

p for x = 1;
1− p for x = 0;

EB = 1 · p+ 0 · (1− p) = p;

VarB = E(B − p)2 = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

The Bernoulli random variable is also referred to as an indicator variable, as
it indicates or signals the occurrence of a success.

15.3 Binomial distribution

Let X be the number of successes in n independent trials, with probability of
success p, then X is said to have a binomial distribution with parameters n
and p. We write X ∼ binom(n, p).

Let B1, . . . , Bn be independent Bernoulli(p) random variables, then

X = B1 + · · ·+Bn ∼ binom(n, p).

For x = 0, 1, . . . , n we have

P(X = x) =

(

n

x

)

px(1− p)n−x;

EX = E(B1 + · · ·+Bn) = EB1 + · · ·+ EBn = np;

VarX = Var (B1 + · · ·+Bn) = VarB1 + · · ·+ VarBn = np(1− p).
The variance result uses the fact that the Bi are independent. To prove the
formula for P(X = x), we use the fact that the number of ways you can choose
x trials (the successful ones) from a set of n is

(

n
x

)

.

Clearly the Bernoulli distribution is the same as a binom(1, p) distribution.
You should check that in the case n = 1, the formulae for the distribution,
mean, and variance are the same as those for the Bernoulli.

© 2009 by Taylor & Francis Group, LLC

BINOMIAL DISTRIBUTION 269

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

binomial(10 , 0.5)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

binomial(20 , 0.5)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

binomial(10 , 0.2)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

binomial(10 , 0.8)

Figure 15.1 Binomial probability mass functions.

The binomial random variable gets its name from the binomial expansion: for
any a and b we have

(a+ b)n =
n
∑

x=0

(

n

x

)

axbn−x.

You can use this identity to show that
∑n

x=0 P(X = x) = 1. Note that 0! is
defined to be 1.

Figure 15.1 shows the probability mass function of several binomial distribu-
tions.

15.3.1 Example: sampling a manufacturing line

Suppose that items on a manufacturing line each have a probability 0.01 of
being faulty. If you test a randomly selected sample of n items, how large does
n have to be to have a 95% chance of having a faulty item in the sample?

Let X be the number of faulty items in the sample, then we want to know

© 2009 by Taylor & Francis Group, LLC

270 DISCRETE RANDOM VARIABLES

how large n has to be to get P(X ≥ 1) ≥ 0.95. Assuming that the sample
items are faulty independently, we have X ∼ binom(n, 0.01), so

P(X ≥ 1) = 1− P(X = 0)

= 1−
(

n

0

)

0.0100.99n = 1− 0.99n

≥ 0.95.

Solving the inequality for n we get n ≥ 299 (rounding up to the nearest
integer).

Alternatively, we might want to know what is the probability that a thousand
randomly selected items will have less than 20 failures. We can resolve this in
R by using the cdf function for the binomial distribution.

> pbinom(19, size = 1000, prob = 0.01)

[1] 0.9967116

15.4 Geometric distribution

Let B1, B2, . . . be an infinite sequence of independent Bernoulli(p) random
variables and let Y be such that B1 = · · · = BY = 0 and BY +1 = 1, then
Y is said to have a geometric distribution with parameter p. That is, Y is
the number of trials up to (but not including) the first success. We write
Y ∼ geom(p), and we have, for y = 0, 1, . . .,

P(Y = y) = P(B1 = 0, . . . , By = 0, By+1 = 1)

= P(B1 = 0) · · ·P(By = 0)P(By+1 = 1) = (1− p)yp;

EY =

∞
∑

y=0

y(1− p)yp =
1− p
p

;

Var Y = EY 2 − (EY)2 = EY (Y − 1) + EY − (EY)2 =
1− p
p2

.

The formula for the mean and variance require some algebra (omitted here).

The geometric random variable gets its name from the formula for the sum of
a geometric progression. For any α ∈ (−1, 1) we have

∞
∑

n=0

αn =
1

1− α.

Use this to show that
∑∞

y=0 P(Y = y) = 1. Similarly we can use the identity
∑∞

n=0 nα
n = α/(1− α)2 to find EY .

Figure 15.2 shows the probability mass function of several geometric distribu-
tions.

© 2009 by Taylor & Francis Group, LLC

GEOMETRIC DISTRIBUTION 271

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

geometric(0.2)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

geometric(0.4)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

geometric(0.6)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

geometric(0.8)

Figure 15.2 Geometric probability mass functions

Warning: some authors define a geometric rv to be the number of trials up to
and including the first success. That is Y + 1 rather than Y .

15.4.1 Example: lighting a Barbeque

You are trying to light a barbeque with matches on a windy day. Each match
has a chance p = 0.1 of lighting the barbeque and you only have four matches.
What is the probability you get the barbeque lit before you run out of matches?

Imagine initially that we have an infinite supply of matches, and let Y be the
number of failed attempts before you light the barbeque. Then Y ∼ geom(0.1)
and the required probability is

P(Y ≤ 3) =

3
∑

y=0

p(1− p)y

= 1− (1− p)4 (geometric sum)

= 0.3439 (four decimal places).

© 2009 by Taylor & Francis Group, LLC

272 DISCRETE RANDOM VARIABLES

In R,

> pgeom(3, 0.1)

[1] 0.3439

Now suppose that using matches two at a time, the probability of successfully
lighting the barbeque increases to 0.3 each time. Is it a good idea to use the
matches two at a time?

Let W be the number of failed attempts to light the barbeque using matches
two at a time, then W ∼ geom(0.3) and we have

P(W ≤ 1) = 0.3 + 0.7× 0.3 = 0.51.

> pgeom(1, 0.3)

[1] 0.51

We conclude that you should use the matches two at a time.

15.4.2 Example: two-up

Two-up is a simple gambling game that was popular with Australian service-
men in the first and second World Wars, and can now be played legally in
Australian casinos and also throughout Australia on ANZAC day. Two coins
are tossed and players bet on whether or not the coins show two heads or two
tails. If there is one of each then the coins are tossed again. In casinos the house
takes all bets if the number of tosses exceeds five. What is the probability of
this occurring?

Let X be the number of tosses with no result. Assuming that the coins are
fair and that tosses are independent (generally not the case when the game is
played outside casinos), we have thatX ∼ geom(0.5). The required probability
is then

P(X ≥ 5) =

∞
∑

x=5

p(1− p)x

= (1− p)5 (geometric sum)

= (0.5)5 = 1/32.

In R,

> 1 - pgeom(4, 0.5)

[1] 0.03125

© 2009 by Taylor & Francis Group, LLC

NEGATIVE BINOMIAL DISTRIBUTION 273

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

neg−binomial(2 , 0.5)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

neg−binomial(3 , 0.5)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

neg−binomial(10 , 0.5)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

neg−binomial(10 , 0.8)

Figure 15.3 Negative binomial probability mass functions.

15.5 Negative binomial distribution

Let Z be the number of failures before the r-th success, in a sequence of iid
Bernoulli(p) trials, then Z is said to have a negative binomial distribution. We
write Z ∼ nbinom(r, p). Let Y1, . . . , Yr be iid geom(p) rv’s, then

Z = Y1 + · · ·+ Yr ∼ nbinom(r, p).

It follows immediately that

EZ = r(1 − p)/p;
VarZ = r(1 − p)/p2.

If the r-th success is on trial x, then the previous r − 1 successes can occur
anywhere in the previous x−1 trials. Thus there are

(

x−1
r−1

)

ways we can get the

r-th success on the x-th trial. Each of these ways has probability pr(1−p)x−r,
so putting z = x− r we have for z = 0, 1, . . .,

P(Z = z) =

(

r + z − 1

r − 1

)

pr(1− p)z.

© 2009 by Taylor & Francis Group, LLC

274 DISCRETE RANDOM VARIABLES

You should check that this formula agrees with the geometric in the case r = 1.

Figure 15.3 shows the probability mass function of several negative binomial
distributions.

Like the geometric, some authors define the negative binomial to be the num-
ber of trials (successes and failures) up to and including the r-th success,
rather than just counting the failures.

15.5.1 Example: quality control

A manufacturer tests the production quality of its product by randomly se-
lecting 100 from each batch. If there are more than two faulty items, then
they stop production and try to fix the problem.

Suppose that each item is faulty independently of the others, with prob-
ability p. Let X be the number of faults in a sample of size 100, then
X ∼ binom(100, p) and

P(stopping production) = P(X ≥ 3).

If p = 0.01 then the probability of stopping production is

> 1 - pbinom(2, 100, 0.01)

[1] 0.0793732

In practice, rather than test every sample item, we test sequentially and stop
when we get three faults. Let Z be the number of working items we check
before we find three faults, then Z ∼ nbinom(3, p) and

P(stopping production) = P(Z + 3 ≤ 100).

Note that Z + 3 is the total number of checks up to and including finding the
third fault. In R we have

> pnbinom(97, 3, 0.01)

[1] 0.0793732

15.6 Poisson distribution

We sayX has a Poisson distribution with parameter λ, and writeX ∼ pois(λ),
if X has pmf

P(X = x) =
e−λλx

x!
for x = 0, 1,

Note that 0! is defined to be 1.

© 2009 by Taylor & Francis Group, LLC

POISSON DISTRIBUTION 275

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

Poisson(0.5)

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

Poisson(1)

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

Poisson(2)

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

P
(X

=
x
)

Poisson(5)

Figure 15.4 Poisson probability mass functions.

The Poisson distribution is used as a model for rare events and events occur-
ring at random over time or space. Examples are the number of accidents in
a year; the number of misprints on a page; the number of gamma particles
released in a second; the number of phone calls arriving at an exchange in an
hour; the number of companies going bankrupt in a year; the number of deaths
due to horse-kick in the Prussian army in a year (a famous initial application);
etc.

Figure 15.4 shows the probability mass function of several Poisson distribu-
tions.

An infinite Taylor’s series expansion of eλ about λ = 0 gives

eλ =

∞
∑

n=0

λn

n!
.

From this we see that
∑∞

x=0 P(X = x) = 1, as required. We also use this fact
to calculate the mean and variance

EX =

∞
∑

x=0

xP(X = x)

© 2009 by Taylor & Francis Group, LLC

276 DISCRETE RANDOM VARIABLES

=

∞
∑

x=0

x
e−λλx

x!

=

∞
∑

x=1

e−λλx

(x− 1)!

= λ

∞
∑

x=1

e−λλ(x−1)

(x− 1)!

= λ

∞
∑

y=0

e−λλy

y!
(y = x− 1)

= λ.

For the variance we use VarX = EX2−(EX)2 = E(X(X−1))+EX−(EX)2 =
EX(X − 1) + λ − λ2. Using the same method that we used to calculate EX
we can show that E(X(X − 1)) = λ2, so that VarX = λ.

15.6.1 Example: the dreaded lurgy

The dreaded lurgy is a disease introduced to humans by the Goons. Suppose
that deaths due to the dreaded lurgy over the last seven years were 2, 3, 3,
2, 2, 1, 1. Now suppose that this year we get four deaths due to the dreaded
lurgy. Deaths have increased four-fold, should we panic?

Let Xi be the number of deaths in year i and assume that X1, . . . , X7 are an
iid sample with a pois(λ) distribution, for some unknown λ. From the Weak

Law of Large Numbers we have X = 2 ≈ EXi = λ, so we take λ̂ = 2 as an
estimate of λ. Given this estimate, we have

P(X8 ≥ 4) = 1− P(X8 < 4) = 1− 0.135− 0.271− 0.271− 0.180 = 0.143.

From R,

> 1 - ppois(3, 2)

[1] 0.1428765

That is, we estimate the chance of getting four or more deaths in a year at
roughly 14%. Perhaps not cause enough to panic yet.

15.6.2 Poisson as a binomial limit

Suppose that X ∼ binom(n, p) and that for some fixed λ, we have p = λ/n,
then

lim
n→∞

P(X = x)→ P(Λ = x) where Λ ∼ pois(λ).

© 2009 by Taylor & Francis Group, LLC

EXERCISES 277

That is, for n large the binom(n, p) distribution is approximately pois(np).

We have

P(X = x) =

(

n

x

)

px(1− p)n−x

= n · (n− 1) · · · (n− x+ 1)
1

x!

(

λ

n

)x (

1− λ

n

)n−x

= 1 · n− 1

n
· · · n− x+ 1

n

λx

x!

(

1− λ

n

)n(

1− λ

n

)−x

→ 1 · 1 · · · 1λ
x

x!
e−λ1 as n→∞

= P(Λ = x).

Here we used the following fundamental result on the exponential:

lim
n→∞

(

1 +
x

n

)n

= ex.

This result shows us why the Poisson distribution is a good model for events
occurring randomly in time, at a constant average rate. Suppose that a certain
event occurs on average λ times per unit time. Split the time interval (0, 1] into
n intervals, (0, 1/n], (1/n, 2/n], . . . , ((n − 1)/n, 1], then suppose that at most
one event can occur in each interval. This assumption is reasonable for large n.
If the probability of an event occurring in any given interval is p then, writing
Xn for the total number of events occurring, we have Xn ∼ binom(n, p) and
EXn = np. As we assumed EXn = λ we must have p = λ/n, so sending n→∞
we find that in the limit the number of events has a pois(λ) distribution.

Another consequence of this result is that, if X and Y are independent Poisson
rv’s with parameters λ and µ, then X + Y ∼ pois(λ+ µ).

15.7 Exercises

1. The probability of recovery from a certain disease is 0.15. Nine people have
contracted the disease. What is the probability that at most 2 of them
recover? What is the expected number that will recover?

2. On a multiple choice exam with five possible answers for each of the ten
questions, what is the probability that a student would get three or more
correct answers just by guessing (choosing an answer at random)? What
is the expected number of correct answers the student would get just by
guessing?

3. An airline knows that on average 10% of people making reservations on a
certain flight will not show up. So they sell 20 tickets for a flight that can
only hold 18 passengers.

© 2009 by Taylor & Francis Group, LLC

278 DISCRETE RANDOM VARIABLES

(a). Assuming individual reservations are independent, what is the proba-
bility that there will be a seat available for every passenger that shows
up?

(b). Now assume there are 15 flights of this type in one evening. Let N0 be
the number of these flights on which everyone who shows up gets a seat
and N1 be the number of these flights that leave just one disgruntled
person behind. What are the distributions of N0 and N1? What are
their means and variances?

(c). The independence assumption in (a) is not really very realistic. Why?
Try to describe what might be a more realistic model for this situation.

4. In the board game Monopoly you can get out of jail by throwing a double
(on each turn you throw two dice). Let N be the number of throws required
to get out of jail this way. What is the distribution ofN , E(N), and Var (N)?

5. A couple decides to keep having children until they have a daughter. That
is, they stop when they get a daughter even if she is their first child. Let N
be the number of children they have. Assume that they are equally likely
to have a boy or a girl and that the sexes of their children are independent.

(a). What is the distribution of N? E(N)? Var (N)?

(b). Write down the probabilities that N is 1, 2, or 3.

Another couple decides to do the same thing but they don’t want an only
child. That is they have two children and then only keep going if they
haven’t yet had a daughter. Let M be the number of children they have.

(c). Calculate P(M = 1), P(M = 2), and P(M = 3).

(d). Explain why we must have P(N = i) = P(M = i) for any i ≥ 3.

(e). Using the above information calculate E(M).

Hint: use the known value of E(N) and consider the difference E(N)−
E(M).

6. A random variable Y ∼ pois(λ) and you are told that λ is an integer.

(a). Calculate P(Y = y)/P(Y = y + 1) for y = 0, 1, . . .

(b). What is the most likely value of Y ?

Hint: what does it mean if the ratio in (a) is less than one?

7. If X has a Poisson distribution and P(X = 0) = 0.2, find P(X ≥ 2).

8. Suppose X ∼ pois(λ).

(a). Find EX(X − 1) and thus show that VarX = λ.

(b). Using the fact that binom(n, λ/n) probabilities converge to pois(λ)
probabilities, as n→∞, again show that VarX = λ.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 279

9. Large batches of components are delivered to two factories, A and B. Each
batch is subjected to an acceptance sampling scheme as follows:

Factory A: Accept the batch if a random sample of 10 components contains
less than two defectives. Otherwise reject the batch.

Factory B: Take a random sample of five components. Accept the batch if
this sample contains no defectives. Reject the batch if this sample contains
two or more defectives. If the sample contains one defective, take a further
sample of five and accept the batch if this sample contains no defectives.

If the fraction defective in the batch is p, find the probabilities of accepting
a batch under each scheme.

Write down an expression for the average number sampled in factory B
and find its maximum value.

10. A new car of a certain model may be assumed to have X minor faults
where X has a Poisson distribution with mean µ. A report is sent to the
manufacturer listing the faults for each car that has at least one fault.
Write down the probability function of Y , the number of faults listed on
a randomly chosen report card and find E(Y). Given E(Y) = 2.5, find µ
correct to two decimal places.

11. A contractor rents out a piece of heavy equipment for t hours and is paid
$50 per hour. The equipment tends to overheat and if it overheats x times
during the hiring period, the contractor will have to pay a repair cost $x2.
The number of times the equipment overheats in t hours can be assumed
to have a Poisson distribution with mean 2t. What value of t will maximise
the expected profit of the contractor?

12. Calculating binomial probabilities using a recursive function.

Let X ∼ binom(k, p) and let f(x, k, p) = P(X = x) =
(

k
x

)

px(1 − p)k−x for
0 ≤ x ≤ k and 0 ≤ p ≤ 1. It is easy to show that

f(0, k, p) = (1− p)k;

f(x, k, p) =
(k − x+ 1)p

x(1 − p) f(x− 1, k, p) for x ≥ 1.

Use this to write a recursive function binom.pmf(x, k, p) that returns
f(x, k, p).

You can check that your function works by comparing it with the built-in
function dbinom(x, k, p).

13. An airline is selling tickets on a particular flight. There are 50 seats to be
sold, but they sell 50 + k as there are usually a number of cancellations.

Suppose that the probability a customer cancels is p = 0.1 and assume that
individual reservations are independent. Suppose also that the airline makes
a profit of $500 for each passenger who travels (does not cancel and does
get a seat), but loses $100 for each empty seat on the plane and loses $500
if a customer does not get a seat because of overbooking. The loss because

© 2009 by Taylor & Francis Group, LLC

280 DISCRETE RANDOM VARIABLES

of an empty seat is due to the fixed costs of flying a plane, irrespective of
how many passengers it has. The loss if a customer does not get a seat
represents both an immediate cost—for example they may get bumped up
to first class—as well as a the cost of lost business in the future.

What value of k maximises the airline’s expected profit?

14. Write a program to calculate P(X + Y + Z = k) for arbitrary discrete
non-negative rv’s X , Y , and Z.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 16

Continuous random variables

In this chapter we further enrich our knowledge of random variables by in-
troducing a number of important continuous random variables. These models
supplement the general theory introduced in Chapter 14 and the discrete ran-
dom variables introduced in the last chapter. We consider the theory, applica-
tion and implementation in R of the uniform, exponential, Weibull, gamma,
normal, χ2, and t distributions.

16.1 Continuous random variables in R

R has built-in functions for handling the most commonly encountered proba-
bility distributions. Suppose that the random variable X is of type dist with
parameters p1, p2, ..., then

ddist(x, p1, p2, ...) equals P(X = x) for X discrete, or the density of
X at x for X continuous;

pdist(q, p1, p2, ...) equals P(X ≤ q);
qdist(p, p1, p2, ...) equals the smallest q for which P(X ≤ q) ≥ p (the

100p %-point);

rdist(n, p1, p2, ...) is a vector of n pseudo-random numbers from dis-
tribution type dist.

The inputs x, q, and p can all be vector valued, in which case the output is
vector valued.

Here are some of the continuous distributions provided by R, together with
the names of their parameter inputs. Default values are indicated using =.

Distribution R name (dist) Parameter names

Uniform unif min = 0, max = 1

Exponential exp rate = 1

χ2 chisq df

Gamma gamma shape, rate = 1

Normal norm mean = 0, sd = 1

t t df

Weibull weibull shape, scale = 1

281

© 2009 by Taylor & Francis Group, LLC

282 CONTINUOUS RANDOM VARIABLES

The parameter rate that appears in the exponential and gamma distributions
will be called λ below; the parameter shape used for the gamma is called m
below. For the normal distribution R uses as parameters the mean µ and
standard deviation σ, rather than the variance σ2, which we will use. The
parameters of the Weibull distribution are explained in Section 16.3.3.

16.2 Uniform distribution

If the probability that X lies in a given subinterval of [a, b] depends only on
the length of the subinterval and not on its location, then X is said to have
a uniform (or rectangular) distribution on [a, b]. Write X ∼ U(a, b). The pdf,
mean, and variance are

f(x) =
1

b− a for a ≤ x ≤ b

µ =
a+ b

2

σ2 =
(b− a)2

12
.

More generally, if S is a bounded subset of R
d then we say X is uniformly

distributed over S if for any A ⊂ S, P(X ∈ A) = |A|/|S|. Here |A| indicates
the size of A, which could be length, area, volume, etc., depending on d.

A trivial example from R is:

> punif(0.5, 0, 1)

[1] 0.5

16.3 Lifetime models: exponential and Weibull

Let X ≥ 0 be the time until some event occurs, such as the the breakdown
of some mechanical component, in which case X is called the lifetime of that
component. Let f and F be the pdf and cdf of X , then we define the survivor
function as G(x) = P(X > x) = 1 − F (x). That is, G(x) is the probability
that the component will survive until time x.

The (age specific) failure rate is called the hazard function λ(x). λ(x) is the
rate at which failure occurs at time x, that is

λ(x) dx = P(lifetime of X between x and x+ dx | lifetime of X > x)

= P(component fails between x and x+ dx | still working at x)

=
f(x) dx

G(x)
,

λ(x) =
f(x)

G(x)
.

© 2009 by Taylor & Francis Group, LLC

LIFETIME MODELS: EXPONENTIAL AND WEIBULL 283

We can find the density f from λ as follows:

f(x) =
dF (x)

dx
=

d

dx
(1−G(x)) = −dG(x)

dx

λ(x) =
f(x)

G(x)
=
−G′(x)

G(x)
= − d

dx
logG(x)

G(x) = exp
(

−
∫ x

0
λ(u) du

)

f(x) = λ(x) exp
(

−
∫ x

0
λ(u) du

)

16.3.1 Exponential distribution

If λ(x) = λ, that is a constant rate of failure, then we sayX has an exponential
distribution and write X ∼ exp(λ). In this case

f(x) = λe−λx

µ = 1/λ

σ2 = 1/λ2

To say λ(x) is constant is to say that ageing has no effect, that is, the compo-
nent fails at random. This property of the exponential is called the memoryless
property. It is usually expressed as follows, for s, t ≥ 0,

P(X > s+ t |X > s) = P(X > s+ t and X > s)/P(X > s)

= P(X > s+ t)/P(X > s)

= e−λ(s+t)/e−λs

= e−λt = P(X > t).

In other words, given that you have survived until age s, the probability of
surviving an additional time t is the same as if you had just been born.

Figure 16.1 shows the probability density function of several exponential dis-
tributions.

16.3.2 Example: radioactive decay

Uranium-238 decays into thorium-234 at some rate λ per year (releasing an
alpha particle in the process), constant over time. The half life of uranium-238
is 4.47 × 109 years, and is defined as the (expected) time it takes for half of
some lump of uranium-238 to decay into thorium-234. That is, if X is the time
to decay of a single atom, then X ∼ exp(λ) and

P(X > 4.47× 109) = 0.5.

But P(X > x) = e−λx so we have λ = log 2/(4.47× 109) = 1.55× 10−8.

A gram of uranium-238 contains approximately 2.53 × 1021 atoms. What is

© 2009 by Taylor & Francis Group, LLC

284 CONTINUOUS RANDOM VARIABLES

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

x

f(
x
)

Exponential densities for parameter values 0.5, 1, 2

Figure 16.1 Some exponential densities.

the expected time until the first release of an alpha particle? Until the first
decay we have 2.53× 1021 atoms each decaying at rate 1.55× 10−8 per year,
so the total rate of decay is roughly 3.9 × 1013 per year. That is, the time to
the first release of an alpha particle has an exp(3.9× 1013) distribution, with
mean of 2.6× 10−14 years (less than one millionth of a second).

We have implicitly used here the fact that the minimum of n independent
exponential random variables is also exponential, with rate given by the sum
of the original n rates (see Exercise 2).

16.3.3 Weibull distribution

X has a Weibull distribution with parameters λ andm if it has hazard function
λ(x) = mλxm−1, for m and λ > 0. We write X ∼Weibull(λ,m).

Clearly a Weibull(λ, 1) rv is the same as an exp(λ) rv. More generally, we have

G(x) = exp
(

−
∫ x

0 λ(u) du
)

= exp(−λxm),

f(x) = λ(x) exp
(

−
∫ x

0 λ(u) du
)

= mλxm−1e−λxm

for x ≥ 0.

© 2009 by Taylor & Francis Group, LLC

LIFETIME MODELS: EXPONENTIAL AND WEIBULL 285

Using these we can show that

µ = λ−1/mΓ(1 + 1/m)

σ2 = λ−2/m(Γ(1 + 2/m)− Γ(1 + 1/m)2)

where Γ is the gamma function:

Γ(p) =

∫ ∞

0

xp−1e−x dx for p > 0;

Γ(p) = (p− 1)Γ(p− 1) for all p > 1; Γ(1) = 1; Γ(1/2) =
√
π;

Γ(n) = (n− 1)! for integer valued n.

For p not equal to an integer or an integer plus 1/2, we need to use numerical
integration to calculate Γ(p).

Figure 16.2 shows the hazard functions and probability density functions of
several Weibull distributions.

Note that the R parameterisation of the Weibull distribution differs from that
presented here. To evaluate Weibull probabilities in R, use m for the shape

argument and λ−1/m for the scale argument. Thus, to reproduce the three
lower panels in Figure 16.2, use the following functions.

curve(dweibull(x, shape = 0.5, scale = 2^(-1/0.5)), from = 0, to = 4)

curve(dweibull(x, shape = 1.5, scale = 2^(-1/1.5)), from = 0, to = 4)

curve(dweibull(x, shape = 3, scale = 2^(-1/3)), from = 0, to = 4)

16.3.4 Example: time to the next disaster

Suppose that the chance of a nuclear power station having a major accident in
any given year is proportional to its age. Also suppose that we keep building
nuclear power stations at a rate of one per year, until we have a major accident.
Let T be the time until the first major accident. What (approximately) is the
distribution of T ?

Let αt be the chance that a single power station age t has an accident in the
next year. This is essentially equivalent to saying that at age t it has accidents
at a rate of αt per year. After t years there are t power stations operating, so
the total rate of accidents is αt2. Thus (approximately) T ∼Weibull(α/3, 3).
T is only approximately Weibull because in reality we can only have a whole
number of power stations, and here we have allowed a fractional number.

For example, let α be one in one million. Then the probability that the first
major accident is within the next 50 years would be

> pweibull(50, 3, (1e-06/3)^(-1/3))

[1] 0.04081054

© 2009 by Taylor & Francis Group, LLC

286 CONTINUOUS RANDOM VARIABLES

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

m < 1

m = 1

1 < m < 2

m = 2

m > 2

x

h
a
z
a
rd

 f
u
n
c
ti
o
n

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

f(
x
) Weibull(2,0.5) density

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

f(
x
) Weibull(2,1.5) density

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

f(
x
) Weibull(2,3) density

Figure 16.2 Hazard functions and densities of some Weibull random variables.

© 2009 by Taylor & Francis Group, LLC

THE POISSON PROCESS AND THE GAMMA DISTRIBUTION 287

16.4 The Poisson process and the gamma distribution

A Poisson process is the continuous-time analogue of a sequence of indepen-
dent trials.

We suppose that we have a sequence of events, occurring at some rate λ per
unit time. That is, the expected number of events occurring in the time interval
(s, t) is λ(t − s), and the infinitesimal probability that an event occurs in the
time interval (t, t+ dt) is λdt.

Let Tk be the time between the k − 1 and k-th events, and let N(s, t) be
the number of events that have occurred during the interval (s, t). It can be
shown that the {Tk}∞k=1 are iid exp(λ) random variables and that N(s, t) ∼
pois(λ(t − s)). Moreover, if the intervals (a, b) and (s, t) are disjoint, then
N(a, b) and N(s, t) are independent.

To understand the Poisson process it is useful to consider a discrete approxi-
mation. Take the time interval [0, t] and split it into n subintervals of length
t/n. The probability of an event occurring in the i-th interval is approximately
λt/n, independently of all the others. The total number of events occurring
in [0, t] thus has a binom(n, λt/n) distribution, which converges to a pois(λt)
distribution as n → ∞ (see Section 15.6). The number of intervals between
any two events, X say, has a geom(λt/n) distribution. Thus the time between
any two events is given by Y = (t/n)X and we have

P(Y > y) = P(X > ny/t)

=

∞
∑

x=⌈ny/t⌉
(λt/n)(1 − λt/n)x

=

(

1− λt

n

)⌈ny/t⌉

→ (e−λt)y/t = e−λy as n→∞.
But this is just the probability that an exp(λ) random variable is larger than
y, as required.

Figure 16.3 shows a realisation of a Poisson process.

16.4.1 A paradox?

Suppose we have a Poisson process of rate λ, and we turn up at some random
time t to observe it. On average, we will arrive halfway between two arrivals.
Thus the expected time until the next arrival will be half the expected time
between any two arrivals, that is 1/(2λ). But the memoryless property of the
exponential tells us that the time from our appearance to the next arrival
should still be exponential(λ), with mean 1/λ, a contradiction!

© 2009 by Taylor & Francis Group, LLC

288 CONTINUOUS RANDOM VARIABLES

0

1

2

3

4

N
(0

,t
)

T1 T2 T3 T4

Figure 16.3 A Poisson process.

This seeming paradox is not in fact real, as there is a flaw in the above ar-
gument. If we turn up at a random time, then we are more likely to turn up
between two widely spaced arrivals than between two closely spaced arrivals.
Thus the interarrival period in which we turn up will be larger on average
than the norm, and so its expected length will be larger than the norm (in
fact, exactly twice the norm).

16.4.2 Merging and Thinning

The Poisson process has many useful properties. Two of these concern merging
and thinning, which are illustrated in Figure 16.4.

If we merge a Poisson process rate λ1 with an independent Poisson process
rate λ2, then the result is a Poisson process rate λ1 +λ2. By merging we mean
that we add all of the events together.

We thin a process by tossing a (biased) coin for each event: heads we keep
it; tails it is discarded. If we start with a Poisson process rate λ, and the
probability of keeping an event is p, then the result is a Poisson process rate
pλ.

Both of these results are intuitively clear from the discrete approximation.

16.4.3 Gamma distribution

The exponential distribution is the continuous analogue of the geometric dis-
tribution. If we sum independent geometric distributions we get a negative

© 2009 by Taylor & Francis Group, LLC

THE POISSON PROCESS AND THE GAMMA DISTRIBUTION 289

+

=

H H H H HT T T

Figure 16.4 Merging and thinning of Poisson processes.

binomial. The continuous analogue of the negative binomial is the gamma
distribution (see Table 16.1).

Let X be the sum of m independent exp(λ) random variables, then it can be
shown that X has the following pdf, mean, and variance

f(x) =
1

Γ(m)
λmxm−1e−λx for x ≥ 0 and m,λ > 0

µ = m/λ

σ2 = m/λ2

We write X ∼ Γ(λ,m). Note that this definition actually holds for all m > 0,
not just integer values. In the special case where m is integer valued, the
gamma distribution is more properly known as the Erlang distribution. F (x) =
∫ x

0 f(u)du must be calculated numerically when m is not an integer.

Examples of gamma densities are presented in Figure 16.5. To produce these
density plots use

> curve(dgamma(x, shape = 0.5, rate = 2), from = 0, to = 4)

> curve(dgamma(x, shape = 1.5, rate = 2), from = 0, to = 4)

> curve(dgamma(x, shape = 3, rate = 2), from = 0, to = 4)

Note that in R, the default order for the parameters of the gamma distribution
is (m, λ) rather than (λ, m).

16.4.4 Example: discrete simulation of a queue

Consider a store where customers queue to pay for their goods at the check-
out.

© 2009 by Taylor & Francis Group, LLC

290 CONTINUOUS RANDOM VARIABLES

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

f(
x
)

Gamma(2,0.5) density

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

f(
x
)

Gamma(2,1.5) density

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

f(
x
)

Gamma(2,3) density

Figure 16.5 Some gamma densities.

Table 16.1 Some correspondences between discrete and continuous distributions

Context Discrete case Continuous case

Random Process Sequence of inde-
pendent trials

Poisson process

Number of events in
an interval

Binomial Poisson

Time between two
events

Geometric Exponential

Time between mul-
tiple events

Negative binomial Gamma

We will use a Poisson process to model the arrival of customers at the check-
out. That is, customers arrive randomly at some constant rate λ. This as-
sumption is reasonably realistic.

We will also suppose that the time taken to serve a single customer has an
exponential distribution, with parameter µ. This assumption is less realistic
than the arrival assumption, but we make it because it simplifies our analysis
enormously. The reason for the simplification is that the exponential distribu-
tion has the memoryless property.

© 2009 by Taylor & Francis Group, LLC

THE POISSON PROCESS AND THE GAMMA DISTRIBUTION 291

When customer i arrives at the head of the queue, we associate with him a
random variable Si, which is how long he will take to be served. If he arrives
at time t then he will depart when his service finishes at time t+ Si.

If Si ∼ exp(µ) then this is equivalent to the following: if at time t+s customer
i is still being served, the probability that service finishes in the next small
interval of time (t+ s, t+ s+ dt) is µdt. That is, the points at which services
finish are just like the events in a Poisson process with rate µ. Thus, with
exponential service times, we can determine the times when people depart the
queue using a ‘service process’, which is a Poisson process of rate µ.

The only thing we have to worry about is if a service event occurs when the
queue is empty, but we can in fact just discard these.

Here is a program for simulating a queuing system. We use a discrete approx-
imation to the arrival and service processes. That is, we split time into small
intervals of length δ, then the chance of an arrival in any interval is λδ and the
chance of a departure is µδ (provided the queue is not empty). Note that we
do not allow an arrival and a departure to occur in the same interval. (This
has probability λµδ2, which will be very small if δ is small.) Also note that
we use the command set.seed(rand.seed). The function set.seed will be
explained in Section 18.1.2, but can be ignored at this point.

The output is given in Figure 16.6. What would happen if µ < λ? Try it and
see.

program: spuRs/resources/scripts/discrete_queue.r

Discrete Queue Simulation

inputs

lambda <- 1 # arrival rate

mu <- 1.1 # service rate

t.end <- 100 # duration of simulation

t.step <- 0.05 # time step

rand.seed <- 99 # seed for random number generator

simulation

set.seed(rand.seed)

queue <- rep(0, t.end/t.step + 1)

for (i in 2:length(queue)) {

if (runif(1) < lambda*t.step) { # arrival

queue[i] <- queue[i-1] + 1

} else if (runif(1) < mu*t.step) { # potential departure

queue[i] <- max(0, queue[i-1] - 1)

} else { # nothing happens

queue[i] <- queue[i-1]

}

}

output

© 2009 by Taylor & Francis Group, LLC

292 CONTINUOUS RANDOM VARIABLES

0 20 40 60 80 100

0
5

1
0

1
5

time

q
u

e
u

e
 s

iz
e

Queuing Simulation. Arrival rate: 1 Service rate: 1.1

Figure 16.6 Output from discrete_queue.r: a simulation of a single server queue.

plot(seq(from=0, to=t.end, by=t.step), queue, type='l',

xlab='time', ylab='queue size')

title(paste('Queuing Simulation. Arrival rate:', lambda,

'Service rate:', mu))

16.5 Sampling distributions: normal, χ2, and t

The following types of distribution are important in Statistics, because they
appear naturally when dealing with random samples.

16.5.1 Normal or Gaussian distribution

The importance of the normal (or Gaussian) distribution comes from the Cen-
tral Limit Theorem (see Chapter 17), which tells us that when you take the
average of a sufficiently large iid sample, the distribution of the sample aver-
ages looks like that of a normal random variable. The normal distribution is
also commonly used to model measurement errors, as well as many natural

© 2009 by Taylor & Francis Group, LLC

SAMPLING DISTRIBUTIONS: NORMAL, χ2, AND T 293

phenomena. We write X ∼ N(µ, σ2), where µ = EX and σ2 = VarX . The
normal density is

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2) for −∞ < x <∞.

The case µ = 0, σ2 = 1 is called the standard normal. If Z ∼ N(0, 1) then
σZ + µ ∼ N(µ, σ2).

The distribution function F of X cannot be obtained analytically, instead we
must use numerical integration. The density of the standard normal is denoted
φ and the distribution function is denoted Φ. F can be obtained from Φ via
F (x) = Φ((x − µ)/σ).

Figure 16.7 presents several normal densities.

16.5.2 Example: normal percentage points

In Statistics much use is made of Φ−1, and it is common for textbooks to
give tables of Φ−1, called percentage points or quantiles. One important use
of quantiles is in the calculation of confidence intervals: see Section 17.3. For
example, if Z ∼ N(0, 1), then P(Z > 1.6449) = 5% and P(Z > 1.9600) =
2.5%. That is, Φ−1(0.95) = 1.6449 and Φ−1(0.975) = 1.9600. So 1.6449 is the
95th percentage point or the 0.95 quantile of N(0, 1).

Let zα = Φ−1(α), then zα is the unique root of the function Φ(z)−α. Thus, if
we can calculate Φ then we can find zα using a root-finding algorithm, which
is what the following code does.

program: spuRs/resources/scripts/ppoint.r

phi <- function(x) return(exp(-x^2/2)/sqrt(2*pi))

ppoint <- function(p, pdf = phi, z.min = -10, tol = 1e-9) {

calculate a percentage point

#

p is assumed to be between 0 and 1

pdf is assumed to be a probability density function

#

let F(x) be the integral of pdf from -infinity to x

we apply the Newton-Raphson algorithm to find z_p such that F(z_p) = p

that is, to find z_p such that F(z_p) - p = 0

note that the derivative of F(z) - p is just pdf(z)

#

we approximate -infinity by z.min (that is we assume that the integral

of pdf from -infinity to z.min is negligible)

do first iteration

x <- 0

© 2009 by Taylor & Francis Group, LLC

294 CONTINUOUS RANDOM VARIABLES

−3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x
)

Normal distributions: sigma = 1, mu = 0,1,2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x
)

Normal distributions: mu=0, sigma = 1,2,3

Figure 16.7 Normal density: the effect of µ and σ2.

© 2009 by Taylor & Francis Group, LLC

SAMPLING DISTRIBUTIONS: NORMAL, χ2, AND T 295

f.x <- simpson_n(pdf, z.min, x) - p

continue iterating until stopping conditions are met

while (abs(f.x) > tol) {

x <- x - f.x/pdf(x)

f.x <- simpson_n(pdf, z.min, x) - p

}

return(x)

}

> source("../scripts/simpson_n.r")

> source("../scripts/ppoint.r")

> ppoint(0.95)

[1] 1.644853

> ppoint(0.975)

[1] 1.959966

We note that R provides convenient built-in functions for determining per-
centage points for a variety of distributions: see Section 16.1.

16.5.3 The sum of independent normals

A remarkable result, which we will not be proving, is that if X ∼ N(µ1, σ
2
1)

and Y ∼ N(µ2, σ
2
2) independent of X , then X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

Even if we cannot prove that the sum of two independent normals is normal,
we can verify the theorem experimentally. R provides the function rnorm for
simulating normal random variables. We can check that rnorm actually works
by simulating an iid sample of N(0, 1) rv’s, and checking that their histogram
looks like a normal density.

> z <- rnorm(10000)

> par(las = 1)

> hist(z, breaks = seq(-5, 5, 0.2), freq = F)

> phi <- function(x) exp(-x^2/2)/sqrt(2 * pi)

> x <- seq(-5, 5, 0.1)

> lines(x, phi(x))

The output is given in Figure 16.8. Happy that rnorm does what is says on
the box, we can now check our theorem on the sum of independent normals.

> z1 <- rnorm(10000, mean=1, sd=1)

> z2 <- rnorm(10000, mean=1, sd=2)

> z <- z1 + z2 # mean = 2, var = 1^2 + 2^2 = 5

> par(las=1)

> hist(z, breaks=seq(-10, 14, .2), freq=F)

> f <- function(x) exp(-(x-2)^2/10)/sqrt(10*pi) # N(2, 5) density

> x <- seq(-10, 14, .1)

> lines(x, f(x))

© 2009 by Taylor & Francis Group, LLC

296 CONTINUOUS RANDOM VARIABLES

Histogram of z

z

D
e

n
s
it
y

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

Figure 16.8 Validating rnorm.

Histogram of z

z

D
e

n
s
it
y

−10 −5 0 5 10

0.00

0.05

0.10

0.15

Figure 16.9 Checking that the distribution of the sum of two independent normals is
normal.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 297

The output is given in Figure 16.9. We see that the scaled histogram is very
close to the theoretical density, which supports the theory.

16.5.4 χ2 distribution

Suppose Z1, . . . , Zν are iid N(0, 1), then X = Z2
1 + · · · + Z2

ν is said to have
a χ2

ν distribution. We say X has a chi-squared distribution with ν degrees
of freedom, and write X ∼ χ2

ν . It can be shown that a χ2
ν has the same

distribution as a Γ(1/2, ν/2). Thus EX = ν and VarX = 2ν.

16.5.5 Student’s t distribution

If X ∼ N(0, 1) and Y ∼ χ2
ν independently of X , then

T =
X

√

Y/ν

is said to have a t distribution with ν degrees of freedom, and written T ∼ tν .
T has density

f(x) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(

1 +
x2

ν

)−(ν+1)/2

for −∞ < x <∞.

The tν distribution is symmetric, and similar in shape to the N(0, 1), but
with fatter tails. As ν →∞, the tν density converges to the standard normal
density.

The t distribution is also called Student’s t distribution, after the pseudonym
‘Student’ of William Sealy Gosset, who first described it. Gosset used the
pseudonym because his then employer, the Guinness brewery in Dublin, pro-
hibited the publication of any papers by its employees. The t distribution
is used to construct confidence intervals for the mean when the population
variance is unknown: see Section 17.3.3.

Several t densities are presented in Figure 16.10.

16.6 Exercises

1. A random variable U has a U(a, b) distribution if P(U ∈ (u, v)) = (v −
u)/(b− a) for all a ≤ u ≤ v ≤ b.
Show that if U ∼ U(a, b) then so is a+ b− U .

2. Show that if X ∼ exp(λ) and Y ∼ exp(µ), independently of X , then
Z = min{X,Y } ∼ exp(λ+ µ).

Hint: min{X,Y } > z ⇐⇒ X > z and Y > z.

© 2009 by Taylor & Francis Group, LLC

298 CONTINUOUS RANDOM VARIABLES

−6 −4 −2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

x

d
e

n
s
it
y

t densities with 1, 2, 4 and 10 d.f., and normal limit in bold

Figure 16.10 t densities for ν = 1, 2, 4, 10, and ∞.

3. The time to failure of a new type of light bulb is thought to have an expo-
nential distribution.

Reliability is defined as the probability that an article will not have failed
by a specified time. If the reliability of this type of light bulb at 10.5 weeks
is 0.9, find the reliability at 10 weeks.

One hundred bulbs of this type are put in a new shop. All the bulbs that
have failed are replaced at 20-week intervals and none are replaced at other
times. If R is the number of bulbs that have to be replaced at the end of
the first interval, find the mean and variance of R.

Explain why this result will hold for any such interval and not just the
first.

4. The length of a certain type of battery is normally distributed with mean
5.0 cm and standard deviation 0.05 cm. Find the probability that such a
battery has a length between 4.92 and 5.08 cm.

Tubes are manufactured to contain four such batteries. 95% of the tubes
have lengths greater than 20.9, and 10% have lengths greater than 21.6 cm.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 299

Assuming that the lengths are also normally distributed, find the mean and
standard deviation, correct to two decimal places.

If tubes and batteries are chosen independently, find the probability that a
tube will contain four batteries with at least 0.75 cm to spare.

5. A man travels to work by train and bus. His train is due to arrive at 08:45
and the bus he hopes to catch is due to leave at 08:48. The time of arrival
of the train has a normal distribution with mean 08:44 and standard devi-
ation three mins; the departure time of the bus is independently normally
distributed with mean 08:50 and standard deviation one minute. Calculate
the probabilities that:

• The train is late;

• The bus departs before the train arrives;

• In a period of five days there are at least three days on which the bus
departs before the train arrives.

6. Suppose X ∼ U(0, 1) and Y = X2.

Use the cdf of X to show that P (Y ≤ y) =
√
y for 0 < y < 1, and thus

obtain the pdf of Y . Hence or otherwise evaluate E(Y) and Var (Y).

7. A mechanical component is only usable if its length is between 3.8 cm and
4.2 cm. It is observed that on average 7% are rejected as undersized, and
7% are rejected oversized. Assuming the lengths are normally distributed,
find the mean and standard deviation of the distribution.

8. Telephone calls arrive at a switchboard in accordance with a Poisson process
of rate λ = 5 per hour.

(a). What is the distribution of N1 = the number of calls that arrive in any
one hour period?

(b). What is the distribution of N2 = the number of calls that arrive in any
half hour period?

(c). Find the probability that the operator is idle for the next half hour.

9. Glass sheets have faults called ‘seeds’, which occur in accordance with a
Poisson process at a rate of 0.4 per square metre. Find the probability that
rectangular sheets of glass of dimensions 2.5 metres by 1 metre will contain:

(a). No seeds.

(b). More than one seed.

If sheets with more than one seed are rejected, find the probability that in
a batch of 10 sheets, at most one is rejected.

10. Cars pass through an intersection in accordance with a Poisson process
with rate λ = 3 per minute. A pedestrian takes s seconds to cross at the
intersection and chooses to start to cross irrespective of the traffic condi-
tions. Assume that if he is on the intersection when a car passes by, then
he is injured. Find the probability that the pedestrian crosses safely for s
= 5, 10, and 20.

© 2009 by Taylor & Francis Group, LLC

300 CONTINUOUS RANDOM VARIABLES

11. We examine blood under a microscope for red blood cell deficiency, using a
small fixed volume that will contain on the average five red cells for a normal
person. What is the probability that a specimen from a normal person will
contain only two red cells or fewer (assume that cells are independently and
uniformly distributed throughout the volume)?

12. Defects occur in an optical fibre in accordance with a Poisson process with
rate λ = 4.2 per kilometre. Let N1 be the number of defects in the first
kilometre of fibre and N2 be the number of defects in the second and third
kilometres of fibre.

(a). What are the distributions of N1 and N2?

(b). Are N1 and N2 dependent or independent?

(c). Let N = N1 +N2. What is the distribution of N?

13. The time (in hours) until failure of a transistor is a random variable T ∼
exp(1/100).

(a). Find P(T > 10).

(b). Find P(T > 100).

(c). It is observed that after 90 hours the transistor is still working. Find
the conditional probability that T > 100, that is, P(T > 100 |T > 90).
How does this compare with part (a)? Explain this result.

14. Jobs submitted to a computer system have been found to require a CPU
time T , which is exponentially distributed with mean 150 milliseconds. If
a job doesn’t complete within 90 milliseconds is suspended and put back
at the end of the queue. Find the probability that an arriving job will be
forced to wait for a second quantum.

15. An insurance company has received notification of five pending claims.
Claim settlement will not be complete for at least one year. An actuary
working for the company has been asked to determine the size of the reserve
fund that should be set up to cover these claims. Claims are independent
and exponentially distributed with mean $2,000. The actuary recommends
setting up a claim reserve of $12,000. What is the probability that the total
claims will exceed the reserve fund?

16. Suppose that X ∼ U(0, 1).

(a). Put Y = h(X) where h(x) = 1 + x2. Find the cdf FY and the pdf fY

of Y .

(b). Calculate EY using
∫

yfY (y) dy and
∫

h(x)fX(x) dx.

(c). The function runif(n) simulates n iid U(0, 1) random variables, thus
1 + runif(n)^2 simulates n iid copies of Y .

Estimate and plot the pdf of Y using a simulated random sample.
Experiment with the bin width to get a good-looking plot: it should be
reasonably detailed but also reasonably smooth. How large does your
sample have to be to get a decent approximation?

© 2009 by Taylor & Francis Group, LLC

EXERCISES 301

17. Let N(t) be the number of arrivals up to and including time t in a Poisson
process of rate λ, with N(0) = 0. In this exercise we will verify that N(t)
has a pois(λt) distribution.

We define the Poisson process in terms of the times between arrivals, which
are independent with an exp(λ) distribution. The first part of the task is to
simulate N(t) by simulating all the arrival times up until time t. Let T (k)
be the time of the first arrival, then

T (1) ∼ exp(λ) and T (k)− T (k − 1) ∼ exp(λ).

Given the arrival times we get N(t) = k where k is such that

T (k) ≤ t < T (k + 1).

Thus to simulate N(t) we simulate T (1), T (2), . . ., and keep going until we
get T (n) > t, then put N(t) = n− 1.

Once you have code that can simulateN(t), use it to generate a sample with
λ = 0.5 and t = 10. Now check the distribution of N(t) by using the sample
to estimate the probability function of N(t). That is, for x ∈ {0, 1, 2, . . .}
(stop at around 20), we calculate p̂(x) = proportion of sample with value
x, and compare the estimates with the theoretical Poisson probabilities

p(x) = e−λt (λt)
x

x!
.

An easy way to compare the two is to plot p̂(x) for each x and then on
the same graph plot the true probability function using vertical lines with
heights p(x),

You might also like to try plotting the sample path of a Poisson process.
That is, plot N(t) as a function of t.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 17

Parameter Estimation

An important practical challenge in model fitting is as follows. Imagine that
we have a set of data that we believe comes from some distribution or other.
How can we find values of the relevant parameters so that the distribution
represents the data?

In parametric model fitting (also called parametric inference), we specify a
priori what type of distribution we will fit, for example a normal distribution,
then choose the parameters that best fit the data (µ and σ2 in the case of the
normal distribution).

In this chapter we cover a range of approaches to finding the single best
estimate of a parameter, given some data and a model, as well as approaches
to determining a range of possible values that a parameter could take.

Another important practical task is to choose the distribution that best fits
an observed sample; we do not cover this challenge here.

17.1 Point Estimation

We start with the problem of finding values for the parameters that provide
the best fit between the model and the data, called point estimates. First,
we need to define what we mean by ‘best fit’. There are two commonly used
criteria:

Method of moments chooses the parameters so that the sample moments (for
example the sample mean and variance) match the theoretical moments of
our chosen distribution.

Maximum likelihood chooses the parameters to maximise a function of the
data called the likelihood, which measures how likely it is to observe our
given sample.

We will demonstrate both approaches through two examples.

17.1.1 Example: Kew rainfall

The rainfall at Kew Gardens in London has been systematically measured
since 1697. Figure 17.1 gives a histogram of total July rainfall in millimetres,

303

© 2009 by Taylor & Francis Group, LLC

304 PARAMETER ESTIMATION

over the years 1697 to 1999.1 The gamma distribution is often a good fit to
aggregated rainfall data, and will be our candidate distribution in this case.

Method of moments We read the Kew rainfall data from the file kew.txt

and calculate the sample mean and variance. The data are in units of 0.1 mm,
so we first divide by 10 to get millimetres.

> kew <- read.table("../data/kew.txt", col.names = c("year",

+ "jan", "feb", "mar", "apr", "may", "jun", "jul", "aug",

+ "sep", "oct", "nov", "dec"))

> kew[, 2:13] <- kew[, 2:13]/10

> kew.mean <- apply(kew[-1], 2, mean)

> kew.var <- apply(kew[-1], 2, var)

Here the command apply(kew[-1], 2, mean) applies the mean function to
the columns of kew[-1], that is, to all columns apart from the first. If X ∼
Γ(λ,m) then it has mean m/λ and variance m/λ2. Let X1, . . . , Xn be an iid
sample from X . Using the method of moments, we choose m and λ so that
the sample and theoretical mean and variance match, giving us a (non-linear)
system of equations for m and λ:

µ̂ = X = m/λ

σ̂2 = S2 = m/λ2.

In this case the system has an easy solution: λ = X/S2 and m = X
2
/S2.

Using these equations we can estimate λ and m for each month. To judge
how well our chosen distribution fits the data, we plot a histogram of the July
figures (scaled to integrate to 1) and superimpose the density of our fitted
distribution (Figure 17.1).

> lambda.mm <- kew.mean/kew.var

> m.mm <- kew.mean^2/kew.var

> hist(kew$jul, breaks = 20, freq = FALSE, xlab = "rainfall (mm)",

+ ylab = "density", main = "July rainfall at Kew, 1697 to 1999")

> t <- seq(0, 200, 0.5)

> lines(t, dgamma(t, m.mm[7], lambda.mm[7]), lty = 2)

The distribution seems like a reasonable candidate based on this figure.

Maximum likelihood Maximum likelihood fitting is usually more work than
the method of moments, but it is preferred as the resulting estimator is known
to have good theoretical properties. We will restrict ourselves to the mechanics
of maximum likelihood fitting, for a theoretical justification please read up on
statistical inference.

1 Data obtained from the U.S. National Climatic Data Center, Global
Historical Climatology Network data base (GHCN-Monthly Version 2)
http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly/.

© 2009 by Taylor & Francis Group, LLC

http://www.ncdc.noaa.gov

POINT ESTIMATION 305

Suppose X1, . . . , Xn are iid continuous random variables with density function
f , then for scalars x1, . . . , xn, we have

P(x1 < X1 ≤ x1 + dx, . . . , xn < Xn ≤ xn + dx)

=

n
∏

i=1

P(xi < Xi ≤ xi + dx) =

n
∏

i=1

f(xi)dx.

Thus
∏n

i=1 f(xi) gives us a measure of how likely it is to observe values
x1, . . . , xn. Maximum likelihood fitting consists of choosing f to maximise
∏n

i=1 f(xi), for a given set of observations. In practice it is usually easier to
solve the equivalent problem of maximising log(

∏n
i=1 f(xi)) =

∑n
i=1 log f(xi),

which is called the log likelihood.

Let xi be the observed July rainfall in year i. We suppose that the xi are iid
observations from a Γ(λ,m) distribution, so the log likelihood is

l(λ,m) =

1999
∑

i=1697

log
(

λmxm−1
i e−λxi/Γ(m)

)

= n
(

m logλ+ (m− 1)log x− λx− log Γ(m)
)

,

where n = 1999− 1696 = 303 and the bar indicates an average over all i. We
choose λ and m to maximise l(λ,m).

Note that l is infinite if any xi = 0. This is theoretically impossible if our
model is correct, but may happen in practice, invalidating the method. To
avoid this problem we increase any observations of 0 to 0.1.

> x <- kew$jul

> x[x == 0] <- 0.1

The partial derivative with respect to λ is

∂l(λ,m)

∂λ
= n

(m

λ
− x
)

.

Setting this to zero we get λ = m/x. Substituting this back into l, we see that
we need to choose m to maximise

l(m) = n
(

m log(m/x) + (m− 1)log x−m− log Γ(m)
)

.

Thus, differentiating and setting the derivative to zero, m must satisfy

l′(m) = logm− log x+ log x− Γ′(m)

Γ(m)
= 0.

We cannot solve this exactly, so instead we use the Newton-Raphson root-
finding algorithm.

We think of l as a function of m (and λ), but it also depends on the sample
x1, . . . , xn. The sample remains fixed as we optimise l, but it is useful to be
able to pass it as a parameter. Accordingly we use the following modification
of our function newtonraphson (Section 10.3).

© 2009 by Taylor & Francis Group, LLC

306 PARAMETER ESTIMATION

> newtonraphson <- function(ftn, x0, tol = 1e-9, max.iter = 100, ...) {

+ # find a root of ftn(x, ...) near x0 using Newton-Raphson

+ # initialise

+ x <- x0

+ fx <- ftn(x, ...)

+ iter <- 0

+ # continue iterating until stopping conditions are met

+ while ((abs(fx[1]) > tol) && (iter < max.iter)) {

+ x <- x - fx[1]/fx[2]

+ fx <- ftn(x, ...)

+ iter <- iter + 1

+ }

+ # output depends on success of algorithm

+ if (abs(fx[1]) > tol) {

+ stop("Algorithm failed to converge\n")

+ } else {

+ return(x)

+ }

+ }

To apply newtonraphson we need a function that returns the vector
(l′(m), l′′(m)). Let a = log x− log x, then we have

> dl <- function(m, a) {

+ return(c(log(m) - digamma(m) - a, 1/m - trigamma(m)))

+ }

Here we have used two built-in functions: digamma(x) returns Γ′(x)/Γ(x) and
trigamma(x) returns (Γ(x)Γ′′(x)−Γ′(x)2)/Γ(x)2. (If we wished we could write
our own functions instead, using one of our numerical integration routines.)

We can now find m and thus λ. We do this using the July data and then
plot the corresponding density over the scaled histogram (Figure 17.1). As a
starting point for the Newton-Raphson algorithm, we use the estimate of m
obtained using the method of moments.

> m.ml <- newtonraphson(dl, m.mm[7], a = log(mean(x)) -

+ mean(log(x)))

> lambda.ml <- m.ml/mean(x)

> lines(t, dgamma(t, m.ml, lambda.ml))

The curve that represents the maximum likelihood fit also seems to provide a
reasonable match to the observed data.

17.1.2 Example: truncated normal

The truncated normal distribution appears in a variety of settings, usually as
a result of measurement problems or sampling restrictions.

© 2009 by Taylor & Francis Group, LLC

POINT ESTIMATION 307

July rainfall at Kew, 1697 to 1999

rainfall (mm)

d
e

n
s
it
y

0 50 100 150

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Figure 17.1 Histogram of July rainfall at Kew with two fitted gamma densities: the
dashed line is from the method of moments and the solid line from maximum likeli-
hood. See Example 17.1.1.

For example, demographers use historical military records to see how the
distribution of height has changed over time. Most armies keep good records
of their soldiers, including height, but typically they only accept recruits above
a certain minimum height, say 150 cm. Given that adult height is normally
distributed, the height of men in the army is then truncated normal.

For another example, consider trace elements. In many biomedical samples
the log-concentration of a given trace element follows a normal distribution.
However even our best measuring devices cannot accurately measure very
small concentrations, and so we have to discard measurements below a certain
level, therefore our observations are truncated below.

The truncated normal is also often seen in the health and economics literatures
when observations are censored in some way.

There is a subtle difference between our first two examples. In the first case
we do not know how many potential recruits were too short, but in the second
case we do know how many measurements were discarded. For this example
we will suppose that we are in the first situation. Suppose that we observe Y
truncated below at a (where a is known). More specifically, we only observe Y
if it is greater than a, which is to say we observe Y conditioned to be greater
than a. Thus if X is the distribution of our observation, then

P(X ≤ x) = P(Y ≤ x |Y > a) = P(a < Y ≤ x)/P(Y > a).

© 2009 by Taylor & Francis Group, LLC

308 PARAMETER ESTIMATION

Let fY and FY be the density and cdf of Y , then X has the density

fX(x) =
fY (x)

1− FY (a)
for x > a.

Suppose Y ∼ N(µ, σ2) and x1, . . . , xn are independent observations of X . We
can use maximum likelihood to find µ and σ. That is, we choose µ and σ to
maximise the log-likelihood l, given by

l(µ, σ) =

n
∑

i=1

log fX(xi).

Using R’s built-in functions for the density and distribution function, we can
encode the log-likelihood easily.

> ell <- function(theta, a, x) {

+ mu <- theta[1]

+ si <- theta[2]

+ sum(log(dnorm(x, mu, si)) - log(1 - pnorm(a, mu, si)))

+ }

To test how well maximum likelihood performs in this situation, we simulate
10,000 N(0, 1) random variables, conditioned to be greater than a = −1, then
estimate µ and σ. To maximise the likelihood we use optim (with the default
Nelder-Mead algorithm), with starting values of 0 and 1 for µ̂ and σ̂. Note
that optim minimises rather than maximises, however the argument control
= list(fnscale = -1) instructs optim to multiply ell by −1 first.

> # inputs

> mu <- 0

> si <- 1

> a <- -1

> # generate sample

> set.seed(890)

> x <- rnorm(10000, mu, si)

> x.small <- (x <= a)

> while (sum(x.small) > 0) {

+ x[x.small] <- rnorm(sum(x.small), mu, si)

+ x.small <- (x <= a)

+ }

> # maximise the likelihood

> ell.optim <- optim(c(mu, si), ell, a = a, x = x,

+ control = list(fnscale = -1))

> cat("ML estimate of mu", ell.optim$par[1], "and sigma",

+ ell.optim$par[2], "\n")

ML estimate of mu 0.03018642 and sigma 0.9819888

In this case our estimates are accurate to one decimal place.

© 2009 by Taylor & Francis Group, LLC

THE CENTRAL LIMIT THEOREM 309

17.2 The Central Limit Theorem

The Central Limit Theorem (CLT) is one of the most important results in
probability theory, largely because it provides the theoretical justification for
many statistical procedures. We will use it principally to tell us how precise
X is as an estimate of EX , which we do using confidence intervals.

Suppose thatX1, X2, . . . , Xn are independent and identically distributed, with
mean µ and finite variance σ2. Put X = (X1 +X2 + · · ·+Xn)/n, then for all
x ∈ (−∞,∞),

P

(

X − EX√
VarX

≤ x
)

= P

(

X − µ
σ/
√
n
≤ x

)

→ Φ(x) as n→∞,

where Φ is the cumulative distribution function of a standard normal random
variable.

We say that
√
n(X −µ)/σ converges in distribution to Z, where Z ∼ N(0, 1),

and write
X − µ
σ/
√
n

d−→ Z as n→∞.

The process of transforming a random variable by subtracting the mean and
dividing by the standard deviation is called standardisation. A standardised
random variable always has mean 0 and variance 1.

The CLT is used loosely in the following ways

X ≈ N(µ, σ2/n) for large n,
∑

i

Xi ≈ N(nµ, nσ2) for large n.

Here we interpret ≈ as meaning the cdf of the left-hand side is approximately
equal to the distribution on the right-hand side.

17.2.1 Proof of the Central Limit Theorem

A rigourous and general proof of the CLT requires a working knowledge of
the Fourier transform, which is the complex conjugate of the characteristic
function. This is properly beyond the scope of an introductory programming
course, but we nonetheless give a brief sketch of the proof here, because it is
so important.

For any random variable X we can define the characteristic function

ψX(t) = EeitX ,

where i =
√
−1. Let {Yn}∞n=1 be a sequence of random variables, then it

turns out that Yn
d−→ Z if and only if ψYn

(t) → ψZ(t) for all real t. It can

© 2009 by Taylor & Francis Group, LLC

310 PARAMETER ESTIMATION

also be shown that if the random variables U and V are independent, then
ψU+V (t) = ψU (t)ψV (t) for all real t.

A second-order Taylor series expansion of ψX about 0 gives us

ψX(t) = ψX(0) + tψ′
X(0) + t2ψ′′

X(0)/2 + o(t2),

where the term o(t2) goes to 0 faster than t2. To calculate ψ′
X and ψ′′

X we do the
differentiation inside the expectation (a step that requires some mathematical
justification) to get ψ′

X(0) = iEX and ψ′′
X(0) = −EX2, so

ψX(t) = 1 + itµX − t2(σ2
X + µ2

X)/2 + o(t2).

Now let Ui = (Xi − µ)/σ and Yn =
∑n

i=1 Ui/
√
n =

√
n(X − µ)/σ. Since

µUi
= 0 and σ2

Ui
= 1 we have

ψYn
(t) = ψP

i
Ui

(t/
√
n)

=
∏

i

ψUi
(t/
√
n)

=

(

1− t2

2n
+ o

(

t2

n

))n

→ e−t2/2 as n→∞.
Thus Yn

d−→ Z, where Z is a random variable with characteristic function
ψZ(t) = e−t2/2. It can be shown that the random variable with this charac-
teristic function is the standard normal.

17.2.2 Normal approximation to the binomial

Suppose that X1, . . . , Xn are iid Bernoulli(p) random variables. Then Y =
∑n

i=1Xi ∼ binom(n, p) and by the CLT, for large n,

Y ≈ N(µY , σ
2
Y) = N(np, np(1− p)).

That is, the binomial distribution can be approximated by the normal distri-
bution provided n is large enough. As a rule of thumb, this approximation is
reasonable provided np > 5 and n(1− p) > 5; see Figure 17.2.

17.2.3 Continuity correction

If we are approximating a discrete random variableX (for example, a binomial
random variable) by a continuous random variable Y , how do we make sense
of probabilities such as P(X = 28) or the difference between P(X > 32)
and P(X ≥ 32)? In the case where X is integer valued we use the following
continuity correction:

P(X = x) ≈ P(x− 1
2 < Y < x+ 1

2).

© 2009 by Taylor & Francis Group, LLC

THE CENTRAL LIMIT THEOREM 311

0 1 2 3 4

0
.0

5
0

.2
0

0
.3

5

binomial(4, 0.5)

p
.m

.f
.

a
n

d
 p

.d
.f

.

0 5 10 15

0
.0

0
0

.1
0

0
.2

0

binomial(16, 0.5)

p
.m

.f
.

a
n

d
 p

.d
.f

.
20 25 30 35 40

0
.0

0
0

.0
6

binomial(64, 0.5)

p
.m

.f
.

a
n

d
 p

.d
.f

.

Figure 17.2 The normal approximation to the binomial distribution. In each plot the
vertical lines give the pmf of a binomial distribution and the continuous curve is the
pdf of the corresponding normal approximation.

Thus we approximate P(X > 32) by P(Y > 32.5) and approximate P(X ≥ 32)
by P(Y > 31.5). Formally, we have transformed the continuous pdf of Y to a
discrete pmf, by concentrating all the mass in the interval (x− 1

2 , x+ 1
2) onto

the point x.

From this discussion it should be clear that the normal approximation for the
left-most example given in Figure 17.2 is poor.

17.2.4 Example: insurance risk

A car insurance company is estimating the risk on a block of 250 annual
policies. Given that historically 10% of policyholders have at least one claim
in a year, what is the probability that more than 12% of the policyholders in
this block will have at least one claim?

Let X be the number of policyholders in this block with at least one claim.
We want to know P(X > 30). Assuming the policyholders act independently
and in line with history, X is modelled as a binomial random variable:

X ∼ binom(250, 0.1)

We can calculate P(X > 30) as 1 − P(X ≤ 30) = 1 −∑30
k=0 P(X = k) =

1 −∑30
k=0

(

250
k

)

0.1k0.9250−k. However it is easier to use the normal approxi-
mation to the binomial, which is justified since here n is large and np > 5.
We approximate P(X > 30) by P(Y > 30.5) where Y ∼ N(25, 22.5). Let
Z ∼ N(0, 1) then we have

P(X > 30) ≈ P(Y > 30.5)

= P

(

Y − 25√
22.5

>
30.5− 25√

22.5

)

= P(Z > 1.1595) = 1− Φ(1.1595).

© 2009 by Taylor & Francis Group, LLC

312 PARAMETER ESTIMATION

We can use the function pnorm(1.1595) to calculate Φ(1.1595), or use our
own numerical integration function:

> source("../scripts/simpson_n.r")

> phi <- function(x) return(exp(-x^2/2)/sqrt(2*pi))

> Phi <- function(z) return(simpson_n(phi, -10, z))

> Phi(1.1595)

[1] 0.8768741

Hence P(X > 30) is approximately 0.123. We can confirm this computation
using the built-in function:

> 1 - pbinom(30, 250, 0.1)

[1] 0.1246714

17.2.5 Normal approximation to the Poisson

Fix λ and choose n and p so that λ = np. From Section 15.6.2 we know that
for n large enough (equivalently p small enough)

pois(λ) ≈ binom(n, p).

Moreover, from our rule of thumb, if λ = np > 5 then

binom(n, p) ≈ N(np, np(1− p)).
Sending p→ 0 we get np(1− p) = λ(1 − p)→ λ. Thus, for λ > 5 we have

pois(λ) ≈ N(λ, λ).

The approximation gets better as λ→∞; see Figure 17.3.

0 2 4 6 8

0
.0

0
0

.1
0

0
.2

0

Poisson(3)

p
.m

.f
.

a
n

d
 p

.d
.f

.

0 5 10 15 20

0
.0

0
0

.0
6

0
.1

2

Poisson(8)

p
.m

.f
.

a
n

d
 p

.d
.f

.

10 15 20 25 30

0
.0

2
0

.0
6

Poisson(20)

p
.m

.f
.

a
n

d
 p

.d
.f

.

Figure 17.3 The normal approximation to the Poisson distribution. In each plot the
vertical lines give the pmf of a Poisson distribution and the continuous curve is the
pdf of the corresponding normal approximation.

© 2009 by Taylor & Francis Group, LLC

THE CENTRAL LIMIT THEOREM 313

The normal approximation can be used to calculate Poisson probabilities when
‘exact’ methods fail. Suppose that X ∼ pois(150), and we would like to know

P(X ≤ 180) =

180
∑

k=0

P(X = k) =

180
∑

k=0

150k e−150

k!
.

We try calculating this numerically as follows:

> poispmf <- function(k, lambda) {

+ # returns P(X = k) where X ~ pois(lambda)

+ return(lambda^k*exp(-lambda)/prod(1:k))

+ }

> poiscdf <- function(k, lambda) {

+ # returns P(X <= k) where X ~ pois(lambda)

+ return(sum(sapply(0:k, poispmf, lambda=lambda)))

+ }

> poiscdf(180, 150)

[1] NaN

The calculation fails because for large k the values P(X = k) become impos-
sible to calculate:

> sapply(141:180, poispmf, lambda = 150)

[1] 0.02548978 Inf Inf Inf Inf Inf

[7] Inf Inf Inf Inf Inf Inf

[13] Inf Inf Inf Inf Inf Inf

[19] Inf Inf Inf Inf Inf Inf

[25] Inf Inf Inf Inf Inf Inf

[31] NaN NaN NaN NaN NaN NaN

[37] NaN NaN NaN NaN

You can check that for k ≥ 142, 150k evaluates to ∞, and for k ≥ 171, k!
evaluates to ∞ (and ∞/∞ is not defined). To some extent the problems with
these calculations can be avoided by recursively calculating each P(X = k)
from P(X = k − 1). However inaccuracies due to the computation of eλ for
large λ remain.

Using a normal approximation we can estimate the probability easily. X ≈
Y ∼ N(150, 150) so, using a continuity correction,

P(X ≤ 180) ≈ P(Y < 180.5)

= P

(

Y − 150√
150

<
180.5− 150√

150

)

= P(Z ≤ 2.4903) = Φ(2.4903) = 0.9936,

where Z ∼ N(0, 1) and has cdf Φ.

Of course, R’s built-in functions can also handle this computation:

© 2009 by Taylor & Francis Group, LLC

314 PARAMETER ESTIMATION

> ppois(180, 150)

[1] 0.9923574

17.2.6 Normal approximation to the negative binomial and gamma

Let X =
∑r

i=1 Yi where Yi ∼ geom(p), then X ∼ nbinom(r, p). Thus for
large r

X ≈ N(r(1 − p)/p, r(1− p)/p2).

Let X =
∑n

i=1 Yi where Yi ∼ exp(λ), then X ∼ gamma(n, λ). Thus for large n

X ≈ N(n/λ, n/λ2).

17.3 Confidence intervals

We know from the Weak Law of Large Numbers that X
P−→ EX , but how

fast does it converge? For an estimate to be really useful, we need to know
how precise it is.

One way to judge how precise an estimate X is, is to plot how it changes as
the sample size increases. For example, suppose we are given a sample of n
iid Poisson(λ) rv’s, and we wish to estimate the mean λ using X . Let X(k) =
∑k

i=1Xi/k be the sample mean of the first k sample points. By plotting X(k)
against k we get an idea of whether or not X(k) has converged by the time k
reaches n. We do this in the code below, using the built-in function rpois to
simulate Poisson random variables. The output is given in Figure 17.4.

set.seed(100)

n <- 2000

la <- 2

x <- rpois(n, la)

xbar <- cumsum(x)/1:n

plot(1:n, xbar, type = "l",

xlab="sample size k", ylab="k point average", col='blue')

abline(la, 0)

Unfortunately this approach is often misleading. In the example above, we see
thatX(k) seems to have settled down around 2.05, which we know is incorrect.
If we could increase the sample size ad infinitum, then we would eventually
see X(k) converge to λ = 2, but if we did not know the true value of λ, then
there is no way we could tell this just by looking at the graph.

A better way of judging how precise X is, is to estimate how variable it is,
which we can do by repeating the whole experiment a number of times. We
do this in the following code, and plot the output in Figure 17.5.

© 2009 by Taylor & Francis Group, LLC

CONFIDENCE INTERVALS 315

0 500 1000 1500 2000

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

sample size k

k
 p

o
in

t
a

v
e

ra
g

e

Figure 17.4 Convergence of x to µ as the sample size increases.

set.seed(100)

n <- 2000

la <- 2

plot(c(1, n), c(la-sqrt(la), la+sqrt(la)), type = "n",

xlab = "sample size k", ylab = "k point average")

for (i in 1:20) {

x <- rpois(n, la)

xbar <- cumsum(x)/1:n

lines(1:n, xbar, type = "l", col='blue')

}

abline(la, 0)

lines(1:n, la + 2*sqrt(la/1:n))

lines(1:n, la - 2*sqrt(la/1:n))

Figure 17.5 shows two important things. First, for a sample of size n = 2000,
it is not unusual to find X anywhere between 1.95 and 2.05. Second, as k
increases, the range of values displayed by X(k) has a width roughly equal to
c/
√
k, for some constant c. But what is c? We will answer this question using

the Central Limit Theorem.

Up till now we have been content to use one number to estimate the mean
(point estimation). It would be much more informative if we had an interval
telling us where the mean was likely to be. That is, the width of the interval
would give us an idea of the margin for error in the point estimate. Such
intervals are called confidence intervals (CIs) and the process of estimating
them is called interval estimation.

© 2009 by Taylor & Francis Group, LLC

316 PARAMETER ESTIMATION

0 500 1000 1500 2000

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

sample size k

k
 p

o
in

t
a

v
e

ra
g

e

Figure 17.5 20 plots of the sample mean against sample size, showing how variable
x is as an estimator of µ, as the sample size increases.

Suppose X1, . . . , Xn are iid with mean µ and variance σ2, then by the CLT

we have
√
n(X − µ)/σ

d−→ N(0, 1) and by the Weak Law of Large Numbers

S2 P−→ σ2. Let Z ∼ N(0, 1), then for large n we have

0.95 = P(−1.96 < Z < 1.96)

≈ P

(

−1.96 <
X − µ
σ/
√
n
< 1.96

)

≈ P

(

−1.96 <
X − µ
S/
√
n
< 1.96

)

= P

(

−1.96
S√
n
< X − µ < 1.96

S√
n

)

= P

(

X − 1.96
S√
n
< µ < X + 1.96

S√
n

)

.

If X1, . . . , Xn are an iid sample with mean µ and finite variance, then
we say

(

X − 1.96
S√
n
, X + 1.96

S√
n

)

is a 95% CI for µ.

The way we interpret this is that in repeated sampling, 95% of the time this
interval will cover the true value of µ. Our best guess for µ is the point estimate

© 2009 by Taylor & Francis Group, LLC

CONFIDENCE INTERVALS 317

X; the size of the CI about X gives us an idea of how reliable an estimate it
is. Note that sometimes people just use 2 instead of 1.96, to give a slightly
more conservative interval estimate.

For the example above we calculate a 95% CI as follows. We use the built-in
function sd for calculating the sample standard deviation.

> set.seed(100)

> n <- 2000

> la <- 2

> x <- rpois(n, la)

> xbar <- mean(x)

> S <- sd(x)

> L <- xbar - 1.96 * S/sqrt(n)

> U <- xbar + 1.96 * S/sqrt(n)

> cat("estimate is", xbar, "\n")

estimate is 2.05

> cat("95% CI is (", L, ", ", U, ")\n", sep = "")

95% CI is (1.986073, 2.113927)

Different-sized confidence intervals—90%, 98%, 99%—may be constructed
similarly. Let zα be such that P(Z < zα) = α, that is zα = Φ−1(α).
zα is called the 100α%-point of the standard normal distribution. Then
P(zα/2 < Z < z1−α/2) = 1 − α, so that a 100(1 − α)% CI for µ is given
by

(

X − z1−α/2
S√
n
, X + z1−α/2

S√
n

)

.

Note that because the standard normal density is symmetric about 0, zα/2 =
−z1−α/2 (see Figure 17.6).

CI : 90% 95% 98% 99%
α : 0.1 0.05 0.02 0.01

z1−α/2 : 1.6449 1.9600 2.3263 2.5758

We see that to be more confident that the interval contains µ, the interval has
to be wider. By far the most commonly used confidence interval is the 95%,
but this is just convention.

17.3.1 Confidence interval for a proportion

If X ∼ binom(n, p), then using np̂(1 − p̂) = n(X/n)(1−X/n) as an estimate
of VarX = np(1− p), an approximate 95% CI for p is

(

X

n
− 1.96

√

(X/n)(1−X/n)

n
,
X

n
+ 1.96

√

(X/n)(1−X/n)

n

)

.

© 2009 by Taylor & Francis Group, LLC

318 PARAMETER ESTIMATION

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x

p
h
i(
x
)

z(0.05) z(0.95)

area 0.90

area 0.05 area 0.05

Figure 17.6 The 5% and 95% percentage points of the standard normal distribution.

Observe that for p ∈ [0, 1], the maximum value of p(1−p) is 1/4 when p = 1/2.
Thus, VarX ≤ n/4. Using this bound to construct a confidence interval we
get, for large n,

P

(

p ∈
(

X

n
− 1.96

2
√
n
,
X

n
+

1.96

2
√
n

))

≥ 0.95.

This is a conservative confidence interval in the sense that it will contain p at
least 95% of the time, but possibly more than that because it is wider than
it really needs to be. In particular this CI may significantly overestimate the
variability of p̂ when p is close to 0 or 1. Its advantage is that you don’t have to
know p̂ to estimate how large the sample should be to achieve some required
precision.

We remark that exact confidence intervals for a proportion, called Clopper-
Pearson intervals, are available from the binom package on CRAN.

© 2009 by Taylor & Francis Group, LLC

CONFIDENCE INTERVALS 319

17.3.2 Example: accuracy of an opinion poll

In an exit poll of 1000 voters, 443 said they voted for the ALP (Australian
Labor Party). A 95% confidence interval for the actual proportion p that voted
for the ALP, is

0.443± 1.96

√

0.443× 0.557

1000
= 0.443± 0.031 = (0.412, 0.474).

Notice that the width of the confidence interval is roughly ±3%, called in this
context the ‘sampling error’, which is typical of opinion polls, since in opinion
polls p is often near 0.5 and n is usually around a thousand.

How large would n have to be to reduce the sampling error to ±1%? Taking
the worst-case, p = 0.5, the sampling error is ±1.96/(2

√
n), so we require

1.96/(2
√
n) ≤ 0.01. Thus, n ≥ 9604.

17.3.3 Small sample confidence intervals

In applying the Central Limit Theorem (CLT) to obtain a confidence interval
for µ, we had to assume that the sample size n was large. In practice n ≥ 100
is usually enough, but the larger n is, the better.

For smaller sample sizes it is still possible to obtain a confidence interval, pro-
vided the sample comes from a normal distribution. Suppose that X1, . . . , Xn

are iid N(µ, σ2), then it can be shown that for all n

T =
X − µ
S/
√
n
∼ tn−1,

where tν is the Student-t distribution with ν degrees of freedom. The proof of
this result is non-trivial and requires the use of quadratic forms. As n → ∞
the tn−1 distribution converges to a N(0, 1) distribution, in accordance with
the CLT.

Even though we cannot prove this result, we can test it numerically. We will
make use of the function rnorm for simulating normal random variables and
the function dt, which gives the density of a student-t distribution. To test
that T ∼ tn−1, we estimate the probability density function of T using a scaled
histogram. This means we need to generate a large sample of T ’s. Without
loss of generality (wlog), we take the case Xi ∼ N(0, 1). Suitable code is given
below, and the output appears as Figure 17.7.

set.seed(99)

n <- 5 # size of X sample

nT <- 10000 # size of T sample

simulate T sample

Tsample <- rep(0, nT)

for (i in 1:nT) {

© 2009 by Taylor & Francis Group, LLC

320 PARAMETER ESTIMATION

x

a
c
tu

a
l
a

n
d

 e
s
ti
m

a
te

d
 d

e
n

s
it
y
 f

(x
)

−15 −10 −5 0 5 10

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 17.7 Obtaining the t distribution by standardising the sample mean of an iid
normal sample.

Xsample <- rnorm(n)

Tsample[i] <- sqrt(n)*mean(Xsample)/sd(Xsample)

}

plot scaled histogram of T sample

hist(Tsample, breaks=sqrt(nT), freq=F,

xlab='x', ylab='actual and estimated density f(x)', main='')

plot target density on top

x <- seq(min(Tsample), max(Tsample), 0.01)

lines(x, sapply(x, dt, df=n-1))

Let tη,ν be the 100η%-point of the tν distribution. That is

P(T < tη,ν) = η for T ∼ tν .
As the tν distribution is symmetric about 0, tη,ν = −t1−η,ν .
We form a 100(1− α)% confidence interval for µ as follows:

1− α = P

(

tα/2,n−1 <
X − µ
S/
√
n
< t1−α/2,n−1

)

= P

(

µ− t1−α/2,n−1
S√
n
< X < µ− tα/2,n−1

S√
n

)

= P

(

µ ∈
(

X − t1−α/2,n−1
S√
n
, X + t1−α/2,n−1

S√
n

))

.

tη,ν decreases as n increases, with limiting value zη, the 100η% point of the

© 2009 by Taylor & Francis Group, LLC

MONTE-CARLO CONFIDENCE INTERVALS 321

standard normal. Thus, we see that for small samples, the confidence interval
is wider than we would expect from using the Central Limit Theorem. This
is because of the extra uncertainty caused by having to estimate σ from the
sample. For example, for a 95% CI we have

ν : 2 5 20 50 100 ∞
t0.975,ν : 4.3027 2.5706 2.0860 2.0086 1.9840 1.9600

17.4 Monte-Carlo confidence intervals

In Section 17.3 we noted that a qualitative method of seeing how precise an
estimator is, is to generate several independent realisations of the estimator
and observe how variable they are. We can quantify this procedure somewhat.

Suppose thatE1, . . . , Ek are independent, continuous, and unbiased estimators
of µ. That is, for each i, EEi = µ. We also assume that µ is the median point
for each Ei, so that P(Ei < µ) = 0.5.

For example, suppose Ei = (X i
1, . . . , X

i
n(i))/n(i) where the {X i

j}
n(i)
j=1 are an iid

sample with mean µ and finite variance. Each Ei is an unbiased estimator of
µ, and from the CLT Ei is approximately normal, so µ is also (approximately)
the median. Note that we have not assumed that the n(i) are all equal.

Let E(1), E(2), . . . , E(k) be the ordered sample, so that E(1) < E(2) < · · · < E(k)

(because they are continuous random variables, the probability of a tie is 0).
Then we have

P(E(1) ≤ µ ≤ E(k)) = 1− P(E(1) > µ)− P(E(k) < µ)

= 1− P(all Ei > µ)− P(all Ei < µ)

= 1− 0.5k − 0.5k = 1− 0.5k−1.

Put k = 6, then we get 1− 0.55 = 0.96875 ≈ 0.97.

If E1, . . . , E6 are independent, continuous, and unbiased estimators of µ,
such that µ is also the median for each Ei, then

(E(1), E(6)) =
(

min
i
Ei, max

i
Ei

)

is a 97% CI for µ.

We do not have to restrict ourselves to the smallest and largest Ei when
forming a confidence interval. Suppose 1 ≤ a < b ≤ k, then

P(E(a) ≤ µ ≤ E(b))

= P(at least a of the Ei < µ and at most b− 1 of the Ei < µ).

Let N = |{Ei : Ei < µ}| then N ∼ binom(k, 0.5), and

P(E(a) ≤ µ ≤ E(b)) = P(a ≤ N < b) =

b−1
∑

i=a

(

k

i

)

0.5k.

© 2009 by Taylor & Francis Group, LLC

322 PARAMETER ESTIMATION

This technique provides a quick and simple way to estimate the precision of
an estimate. Better tools exist, such as the bootstrap or jackknife, and we
recommend them to the interested reader.

17.4.1 Example: meta-analysis of opinion polls

Suppose that eight independent polls report on the proportion of Australians
who plan to vote Green in the next federal election, with the following results

9.7%, 8.6%, 11.5%, 10.5%, 10.4%, 10.8%, 9.1%, 12.5%.

We will use the second and seventh points in the ordered sample to form a
confidence interval. We have

6
∑

1=2

(

8

i

)

0.58 = 1−
((

8

0

)

+

(

8

1

)

+

(

8

7

)

+

(

8

8

))

0.58

= 1− 18× 0.58 = 0.930 to 3 significant figures.

Thus a 93% CI for the true proportion is (0.091, 0.115).

Suppose now that we also know the number of people surveyed in each poll:

1000, 1000, 600, 800, 1000, 500, 1000, 400.

The total number of people surveyed was thus 6300 and the total number who
said they planned to vote Green was:

1000× 0.097 + 1000× 0.086 + 600× 0.115 + 800× 0.105

+ 1000× 0.104 + 500× 0.108 + 1000× 0.091 + 400× 0.125 = 635.

A 93% CI for the true proportion p is p̂ ± z0.965

√

p̂(1− p̂)/n. Here p̂ =
635/6300 = 0.1008 (to four significant figures) and n = 6300, so we get a
93% confidence interval of (0.0970, 0.1046).

Because the second confidence interval uses more information than the first—
the information about the sample sizes—we suspect that it is a better interval
estimate for p. That is, it gives a better estimate of the variability of p̂.

17.5 Exercises

1. Using a normal approximation, find the probability that a Poisson variable
with mean 20 takes the value 20. Compare this with the true value; to how
many decimal places do they agree?

2. Migrating geese arrive at a certain wetland at a rate of 220 per day during
the migration season. Suggest a model for X , the number of geese that
arrive per hour (assume the arrival rate remains constant throughout the
day).

© 2009 by Taylor & Francis Group, LLC

EXERCISES 323

What is P(X > 10)? Give the answer exactly, based on your model (it is
sufficient to express the probability as a finite sum), and approximately,
using the Central Limit Theorem.

3. The weights of 20 people are measured, and the resulting sample mean and
sample standard deviation are

x = 71.2 kg, s = 4.9 kg.

Calculate a 95% CI for the mean µ of the underlying population. Assume
that the weights are iid normal.

4. A random sample of size n is taken without replacement from a very large
sample of components and r of the sample are found to be defective. Write
down an approximate 99% confidence interval for the proportion of the
population that are defective stating clearly three reasons why your interval
is only approximate.

If n = 400 show that the longest the confidence interval can be is about
0.13.

5. Assume a manager is using the sample proportion p̂ to estimate the propor-
tion p of a new shipment of computer chips that are defective. He doesn’t
know p for this shipment, but in previous shipments it has been close to
0.01, that is 1% of chips have been defective.

(a). If the manager wants the standard deviation of p̂ to be about 0.02, how
large a sample should she take based on the assumption that the rate
of defectives has not changed dramatically?

(b). Now suppose something went wrong with the production run and the
actual proportion of defectives in the shipment is 0.3, that is 30% are
defective. Now what would be the actual standard deviation of p̂ for
the sample size you choose in (a)?

6. A company fills plastic bottles with orange juice. The bottles are supposed
to contain 250 ml. In fact, the contents vary according to a normal distri-
bution with mean µ = 242 ml and standard deviation σ = 12 ml.

(a). What is the probability that one bottle contains less than 250 ml?

(b). What is the probability that the mean contents of a carton with 12
bottles is less than 250 ml?

7. The number of accidents per week at a hazardous intersection follows a
Poisson distribution with mean 2.2. We observe the intersection for a full
year (52 weeks) and calculate X the mean number of accidents per week.

(a). What is the approximate distribution of X according to the Central
Limit Theorem?

(b). What is the approximate probability that X is less than 2?

(c). What is the approximate distribution of T , the total number of acci-
dents in the year?

© 2009 by Taylor & Francis Group, LLC

324 PARAMETER ESTIMATION

(d). What is the probability that there are fewer than 90 accidents at the
intersection during the year?

8. A scientist is observing the radioactive decay of a substance. The waiting
time between successive decays has an exponential distribution with a mean
of 10 minutes.

(a). What is the probability that the first waiting time exceeds 12 minutes?

(b). The scientist observes 50 successive waiting times and calculates the
mean. What is the probability that this mean exceeds 12 minutes?

(c). In another experiment the scientist waits until the 80th decay. What is
the probability that he waits longer than 14 hours?

9. An actuary has received notification that 100 claims on an account have
been filed but are still in the course of settlement. The actuary has been
asked to determine the size of an appropriate reserve fund for these 100
claims. Claim sizes are independent and exponentially distributed with
mean $300. The actuary recommends setting up a claim reserve of $31,000.
What is the probability that the total claims will exceed the reserve fund?

Hint: use an appropriate approximation.

10. Suppose that 55% of the voting population are Democrat voters. If 200
people are selected at random from the population, what is the probability
that more than half of them are Democrat voters?

11. Approximate the probability that the proportion of heads obtained will be
between 0.50 and 0.52 when a fair coin is tossed

(a). 50 times.

(b). 500 times.

12. A course can cater for 200 new students. Not all offers to students are
accepted, so 250 offers are made based on previous rejection rates. Assume
that for this current round of offers the actual rejection rate is 35% and
that students make their decisions independently.

(a). State the distribution of N , the number of students who accept, and
state its mean and standard deviation.

(b). Find the approximate probability that less than 180 students accept.

(c). Find the approximate probability that more than 200 students accept.

13. A survey of 900 people asked whether they play any competitive sport. In
fact only 5% of the surveyed population plays a competitive sport.

(a). Find the mean and standard deviation of the proportion of the sample
who play competitive sport.

(b). What sample size would be required to reduce the standard deviation
of the sample proportion to one-half the value you found in (a)?

© 2009 by Taylor & Francis Group, LLC

EXERCISES 325

14. Cards with different shapes printed on them are used to test if a subject
has extrasensory perception (ESP). The subject has to guess the shape
on the card being viewed by the experimenter without viewing the card
itself. Assume we use a large pack containing cards marked with one of
four different shapes in equal proportions. That is, we can assume that
on each draw, each shape is equally likely, and that successive draws are
independent. We test subjects (who are all just guessing at random) on 800
cards each.

(a). What is the probability that any one subject guesses correctly on any
one trial?

(b). What are the mean and standard deviation of the proportion of suc-
cesses among the 800 attempts?

(c). What is the probability that any one subject is successful in at least
26% of the 800 attempts?

(d). Assume you decide to do further tests on any subject whose proportion
of successes is so large that there is only a probability of 0.02 that they
could do that well or better simply by guessing. What proportion of
successes must a subject have to meet this standard?

(e). How many subjects will the researcher need to assess so that the prob-
ability at least one of them will be tested further is 0.75?

15. You take a random sample of size n from a population which is uniform on
the interval (0, θ), where θ is an unknown parameter.

(a). Using the Central Limit Theorem, about which point do you think
the distribution of the sample mean will become concentrated as the
sample size increases? Consequently, what function of the sample mean
would you suggest to estimate θ?

(b). Arguing intuitively, what do you think will happen to the distribution
of the sample maximum as the sample size increases?

(c). Suppose that X ∼ U(0, θ); write down the pdf and cdf of X . Hence
find the cdf and pdf of the sample maximum.

(d). Calculate the expected value of the sample maximum. Use this result
to suggest a function of the sample maximum which would give you an
unbiased estimate of the unknown parameter θ.

16. Calculating the confidence interval.

Write a function that takes as input a vector x, then returns as output the
vector (m, lb, ub), where m is the mean and (lb, ub) is a 95% confidence
interval for m. That is

m = x,

lb = x− 1.96
√

s2/n,

ub = x+ 1.96
√

s2/n,

© 2009 by Taylor & Francis Group, LLC

326 PARAMETER ESTIMATION

where

s2 =
1

n− 1

n
∑

i=1

(xi − x)2 =
1

n− 1

(

n
∑

i=1

x2
i − nx2

)

.

Write a program that applies your subroutine to the following sample

11 52 87 45 39 95 42 38 10 03 48 56

To four decimal places you should be getting (43.8333, 27.9526, 59.7140).

17. Gaining confidence with confidence intervals.

We know that the U(−1, 1) rv has mean 0. Use a sample of size 100 to
estimate the mean and give a 95% confidence interval. Does the confidence
interval contain 0?

Repeat the above a large number of times. What percentage of time does the
confidence interval contain 0? Write your code so that it produces output
similar to the following

Number of trials: 10

Sample mean lower bound upper bound contains mean?

-0.0733 -0.1888 0.0422 1

-0.0267 -0.1335 0.0801 1

-0.0063 -0.1143 0.1017 1

-0.0820 -0.1869 0.0230 1

-0.0354 -0.1478 0.0771 1

-0.0751 -0.1863 0.0362 1

-0.0742 -0.1923 0.0440 1

0.0071 -0.1011 0.1153 1

0.0772 -0.0322 0.1867 1

-0.0243 -0.1370 0.0885 1

100 percent of CI's contained the mean

18. Use rnorm(10, 1, 1) to generate a sample of 10 independent N(1, 1) ran-
dom variables. Form a 90% CI for the mean of this sample (using a t
distribution). Does this CI include 1?

Repeat the above 20 times. How many times did the CI include 1? How
many times do you expect the CI to include 1?

19. A bottle-washing plant has to discard many bottles because of breakages.
Bottles are washed in batches of 144. Let Xi be the number of broken
bottles in batch i and let p be the probability that a given bottle is broken.

(a). Assuming that each bottle breaks independently of the others, what is
the distribution of X1? Also, what is the distribution of Y = X1+X2+
· · ·+X100?

(b). Data are collected from 100 batches of bottles; the total number of
broken bottles was 220. Using this data give an estimate and 95% CI
for p.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 327

(c). Which would be the more suitable approximation for X1, a Normal
approximation or a Poisson approximation?

20. Consider a normal distribution Y , with mean µ and variance σ2, truncated
so that only observations above some limit a are observed. In Example
17.1.2 we used the method of maximum likelihood to estimate µ and σ; in
this exercise we use the method of moments.

Let µX = g1(µ, σ) and σ2
X = g2(µ, σ) be the mean and variance of the

truncated random variable X . That is,

µX =

∫ ∞

a

xfY (x)

1− FY (a)
dx and

σ2
X =

∫ ∞

a

(x− µX)2fY (x)

1− FY (a)
dx,

where the pdf and df of Y (fY and FY respectively), depend on µ and σ2.
Given µ and σ2, µX and σ2

X can be calculated numerically.

If X1, . . . ,Xn is a sample from X , then you estimate µ and σ by solving

µ̂X = X = g1(µ, σ),

σ̂2
X = S2 = g2(µ, σ).

Put θ = (µ, σ)T , then this is equivalent to solving g(θ) = θ, where

g(θ) = θ +A

(

X − g1(µ, σ)
S2 − g2(µ, σ)

)

,

for any non-singular 2× 2 matrix A.

One way to solve g(θ) = θ is to find an A such that g is a contraction map-
ping (by trial and error), then use the fixed-point method (see Chapter 10,
Exercise 8). Test your method using the same sample used in Example
17.1.2.

© 2009 by Taylor & Francis Group, LLC

PART IV

Simulation

© 2009 by Taylor & Francis Group, LLC

CHAPTER 18

Simulation

Most stochastic simulations have the same basic structure:

1. Identify a random variable of interest X and write a program to simulate
it.

2. Generate an iid sample X1, . . . , Xn with the same distribution as X .

3. Estimate EX (using X) and assess the accuracy of the estimate (using a
confidence interval).

Step 1 is an example of model building. Typically we build up a complex
model from simple components, which in this case are independent rv’s with
known distributions. In other words, random variables are the building blocks
of stochastic simulations. As we have seen, R has built-in functions for simulat-
ing all the common rv’s we encountered in Chapters 15 and 16. The purpose of
this chapter is to see how to do this for ourselves, so that we have the tools for
simulating the random variables that R does not provide for us. We consider
discrete random variables, the inversion and rejection methods for simulat-
ing continuous random variables, and then look at particular techniques for
simulating normals.

It turns out that all random variables can be generated by manipulating
U(0, 1) rv’s, so that is where we start.

18.1 Simulating iid uniform samples

We cannot generate truly random numbers on a computer. Instead we gener-
ate pseudo-random numbers, which have the appearance of random numbers,
but are in fact completely deterministic. Pseudo-random numbers can be gen-
erated by chaotic dynamical systems, which have the characteristic that the
future is very hard to predict given the present.

A very important advantage of using pseudo-random numbers is that, be-
cause they are deterministic, any experiment performed using pseudo-random
numbers can be repeated exactly.

331

© 2009 by Taylor & Francis Group, LLC

332 SIMULATION

18.1.1 Congruential generators

Congruential generators were the first reasonable class of pseudo-random num-
ber generators. At the time of writing R uses a pseudo-random number gener-
ator called the Mersenne-Twister, which has similar properties to congruential
generators, but with a much longer cycle length.

Given an initial number X0 ∈ {0, 1, . . . ,m − 1} and two big numbers A and
B we define a sequence of numbers Xn ∈ {0, 1, . . . ,m− 1}, n = 0, 1, . . ., by

Xn+1 = (AXn +B)modm.

We get a sequence of numbers Un ∈ [0, 1), n = 0, 1, . . ., by putting Un =
Xn/m. If m, A, and B are well chosen then the sequence U0, U1, . . ., is almost
impossible to distinguish from an iid sequence of U(0, 1) random variables.

In practice it is sensible to discard the value 0 when it occurs, as we often
divide by Un. This is justifiable since for a true uniform, the probability of
taking on the value 0 is zero. The value 1 can also be a problem, but note that
as defined, Un < 1 for all n.

For example if we take m = 10, A = 103, and B = 17, then for X0 = 2, we
have

X1 = 223 mod10 = 3

X2 = 326 mod10 = 6

X3 = 635 mod10 = 5

...

Clearly the sequence produced by a congruential generator will eventually
cycle and thus since there are at most m possible values, the maximum cycle
length is m. Because computers use binary arithmetic, if we have m = 2k for
some k, then taking xmodm is very quick. An example of a good congruential
generator is m = 232, A =1,664,525, and B = 1,013,904,223. An example
of a bad congruential generator is RANDU, which was shipped with IBM
computers in the 1970’s. RANDU used m = 231, A =65,539, and B = 0.

18.1.2 Seeding

The number X0 is called the seed. If you know the seed (as well as m, A, and
B), then you can reproduce the whole sequence exactly. This is a very good
idea from a scientific point of view; being able to repeat an experiment means
that your results are verifiable.

To generate n pseudo-random numbers in R, use runif(n). R does not use
a congruential generator, but is still needs a seed to generate pseudo-random

© 2009 by Taylor & Francis Group, LLC

SIMULATING DISCRETE RANDOM VARIABLES 333

numbers. In R the command set.seed(seed) puts you at point seed (as-
sumed integer) on the cycle of pseudo-random numbers. The current state of
the random number generator is kept in the vector .Random.seed. You can
save the value of .Random.seed and then use it to return to that point in
the sequence of pseudo-random numbers. If the random number generator is
not initialised before you start generating pseudo-random numbers, then R
initialises it using a value taken from the system clock.

> set.seed(42)

> runif(2)

[1] 0.9148060 0.9370754

> RNG.state <- .Random.seed

> runif(2)

[1] 0.2861395 0.8304476

> set.seed(42)

> runif(4)

[1] 0.9148060 0.9370754 0.2861395 0.8304476

> .Random.seed <- RNG.state

> runif(2)

[1] 0.2861395 0.8304476

In order to be able to reproduce a sequence of pseudo-random numbers, you
need to know the seed and the algorithm. To find out (and change) which
algorithm R is using, use the function RNGkind. R allows you to use older
versions of its pseudo-random number generator, so that simulation results
obtained using older versions of R can still be verified.

18.2 Simulating discrete random variables

Let X be a discrete random variable taking values in the set {0, 1, . . .} with cdf
F and pmf p. The following snippet of code takes a uniform random variable
U and returns a discrete random variable X with cdf F .

given U ~ U(0,1)

X <- 0

while (F(X) < U) {

X <- X + 1

}

When the algorithm terminates we have F (X) ≥ U and F (X − 1) < U , that
is U ∈ (F (X − 1), F (X)]. Thus

P(X = x) = P(U ∈ (F (x− 1), F (x)]) = F (x)− F (x − 1) = p(x)

© 2009 by Taylor & Francis Group, LLC

334 SIMULATION

−1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

simulating from a binom(3, 0.5) c.d.f.

X ~ binom(3, 0.5)

U
 ~

 U
(0

,1
)

(0.875,1) mapped to 3

(0.5,0.875) mapped to 2

(0.125,0.5) mapped to 1

(0,0.125) mapped to 0

Figure 18.1 Simulating a binom(3, 0.5) rv by transforming a U(0, 1) rv.

as required.

Figure 18.1 shows how this algorithm works, in the case X ∼ binom(3, 0.5).
We see that F is used to map U to X . The algorithm can easily be generalised
to any discrete distribution; see Exercise 8.

For simulating a finite rv R provides

sample(x, size, replace = FALSE, prob = NULL)

The inputs are

x A vector giving the possible values the rv can take;

size How many rv’s to simulate;

replace Set this to TRUE to generate an iid sample, otherwise the rv’s will be
conditioned to be different from each other;

prob A vector giving the probabilities of the values in x. If omitted then the
values in x are assumed to be equally likely.

18.2.1 Example: binomial

We present some code to simulate a binomial random variable as an example.
We stress that R has superior binomial probability and simulation functions,
compared with those that we present below. See ?rbinom for more information.

© 2009 by Taylor & Francis Group, LLC

SIMULATING DISCRETE RANDOM VARIABLES 335

If X ∼ binom(n, p) then it has pmf pX(x) =
(

n
x

)

px(1 − p)n−x. The function
binom.cdf below calculates the cdf FX of X . The function cdf.sim takes as
its first argument a function F, which is assumed to calculate the cdf of a
non-negative integer valued random variable. cdf.sim also uses the argument
... to pass parameters to the function F.

To simulate a single binom(n, p) rv use cdf.sim(binom.cdf, n, p).

binom.cdf <- function(x, n, p) {

Fx <- 0

for (i in 0:x) {

Fx <- Fx + choose(n, i)*p^i*(1-p)^(n-i)

}

return(Fx)

}

cdf.sim <- function(F, ...) {

X <- 0

U <- runif(1)

while (F(X, ...) < U) {

X <- X + 1

}

return(X)

}

In the program above, suppose that U is close to 1. In this case we will need
to calculate FX(x) for many values of x. But if we look at how binom.cdf is
defined, each time we calculate FX(x) we recalculate pX(0), pX(1), . . ., which
is rather inefficient. We can avoid this by combining the loop in cdf.sim,
which checks F(X, ...) < U, with the loop in binom.cdf, which calculates
FX . To improve the efficiency further we use a recursive formula to calculate
pX(x), namely

pX(x) =
(n− x+ 1)p

x(1− p) pX(x− 1).

program spuRs/resources/scripts/binom.sim.r

binom.sim <- function(n, p) {

X <- 0

px <- (1-p)^n

Fx <- px

U <- runif(1)

while (Fx < U) {

X <- X + 1

px <- px*p/(1-p)*(n-X+1)/X

Fx <- Fx + px

}

return(X)

© 2009 by Taylor & Francis Group, LLC

336 SIMULATION

}

To see that binom.sim works, observe that at the beginning of each cycle of
the while loop we always have px equal to the pmf at X and Fx equal to the
cdf at X. To verify numerically that binom.sim works, we generate a large
sample using binom.sim, use it to estimate pX , then compare the estimate
with the known pmf. We use dbinom to calculate pX (alternatively you could
write your own function, as per Chapter 15, Exercise 12), and plot the output
in Figure 18.2. The true values are indicated with a filled dot, and a plus sign
is used for the estimates and their 95% confidence intervals.

inputs

N <- 10000 # sample size

n <- 10 # rv parameters

p <- 0.7

set.seed(100) # seed for RNG

generate sample and estimate p

X <- rep(0, N)

for (i in 1:N) X[i] <- binom.sim(n, p)

phat <- rep(0, n+1)

for (i in 0:n) phat[i+1] <- sum(X == i)/N

phat.CI <- 1.96*sqrt(phat*(1-phat)/N)

plot output

plot(0:n, dbinom(0:n, n, p), type="h", xlab="x", ylab="p(x)")

points(0:n, dbinom(0:n, n, p), pch=19)

points(0:n, phat, pch=3)

points(0:n, phat+phat.CI, pch=3)

points(0:n, phat-phat.CI, pch=3)

18.2.2 Sequences of independent trials

For random variables that are defined using a sequence of independent trials
(the binomial, geometric, and negative binomial), we have alternative meth-
ods. Given a U(0, 1) rv U we can generate a Bernoulli rv B with parameter p
using

given U ~ U(0,1)

if (U < p) {B <- 1} else {B <- 0}

Thus, given n and p, to generate a binom(n, p) rv X we can use

X <- 0

for (i in 1:n) {

U <- runif(1)

if (U < p) X <- X + 1

}

© 2009 by Taylor & Francis Group, LLC

SIMULATING DISCRETE RANDOM VARIABLES 337

0 2 4 6 8 10

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

x

p
(x

)

Figure 18.2 Estimated and actual pmf for a binom(10, 0.7) rv.

Alternatively we can use that fact R coerces TRUE to 1 and FALSE to 0 to
rewrite this in one line

X <- sum(runif(n) < p)

This is clearly much simpler than the approach of Example 18.2.1, and is
faster. Its only disadvantage is that it uses more uniforms (n as opposed to 1),
so that if you generate a lot of binomial random variables with this algorithm,
then your ‘random’ numbers will start repeating themselves sooner. This is
usually not a problem, however; the Mersenne-Twister (the random number
generator used by R at the time of writing) has a cycle length of 219937 − 1,
so even if we are using these a few hundred at a time, it will be a long while
before our binomial random variables start cycling.

Given p, to generate a geom(p) rv Y, we can use

Y <- 0

success <- FALSE

while (!success) {

U <- runif(1)

if (U < p) {

success <- TRUE

} else {

Y <- Y + 1

}

}

The negative binomial distribution can be treated similarly: see Exercise 5.

© 2009 by Taylor & Francis Group, LLC

338 SIMULATION

18.3 Inversion method for continuous rv

In the following sections we study two general methods for simulating contin-
uous distributions and also look at some techniques used to simulate the very
important normal distribution.

Suppose that we are given U ∼ U(0, 1) and want to simulate a continuous rv
X with cdf FX . Put Y = F−1

X (U) then we have

FY (y) = P(Y ≤ y) = P(F−1
X (U) ≤ y) = P(U ≤ FX(y)) = FX(y).

That is, Y has the same distribution as X . Thus, if we can simulate a U(0, 1)
rv, then we can simulate any continuous rv X for which we know F−1

X . This
is called the inverse transformation method or simply the inversion method.
It is the continuous analogue of the method for simulating discrete random
variables given in Section 18.2.

Another way of looking at this remarkable result is that, for any continuous
rv X , FX(X) ∼ U(0, 1).

18.3.1 Example: uniform distribution

Consider X ∼ U(1, 3). Verify that X has cdf FX(x) = 2(x− 1) for x ∈ (1, 3)
and thus that F−1

X (y) = 2y+ 1 for y ∈ (0, 1). The inversion method therefore
tells us to generate X using 2U + 1, where U ∼ U(0, 1). Geometrically this
result is clear: the factor of 2 stretches the U(0, 1) distribution from (0, 1) to
(0, 2), and it is then translated to the right by 1. Figure 18.3 illustrates this
transformation using a plot of FX . Imagine a ‘uniform rain’ of observations
on U falling on the interval (0, 1) on the vertical axis. The inverse cdf function
converts this into a uniform rain on the interval (1, 3) on the horizontal axis,
that is observations on X ∼ U(1, 3).

18.3.2 Example: exponential distribution

If X ∼ exp(λ) then the pdf is fX(x) = λe−λx, for x > 0, and by integrating
we find

FX(x) =

{

0 for x < 0;
1− e−λx for x ≥ 0.

Putting y = FX(x) we derive the inverse function as follows:

y = 1− e−λx

1− y = e−λx

log (1− y) = −λx

x = − 1

λ
log (1 − y) = F−1

X (y).

© 2009 by Taylor & Francis Group, LLC

REJECTION METHOD FOR CONTINUOUS RV 339

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Inversion method for U(1, 3)

X

U

Figure 18.3 Illustration of the inversion method. A ‘uniform rain’ of points on the
vertical interval (0, 1) becomes a uniform rain on the horizontal interval (1, 3).

So the inversion method generatesX ∼ exp(λ) by using−λ−1 log (1 − U) with
U ∼ U(0, 1). It is easy to show that if U ∼ U(0, 1) then 1− U ∼ U(0, 1), so
−λ−1 log (U) ∼ exp(λ).

Figure 18.4 illustrates the conversion of a uniform rain of points on the vertical
interval (0, 1) to an ‘exponentially distributed rain’ on the horizontal axis
through this transformation. Notice that the values of U between 0.15 and 0.2
are transformed into a much smaller interval on the x-axis than those falling
between 0.85 and 0.9 (the regions shaded in the figure).

18.4 Rejection method for continuous rv

The inversion method works well if we can find F−1 analytically. If not. we
can use root-finding techniques to invert F numerically (see Exercise 16), but
this can be time-consuming. An alternative method in this situation, which is
often faster, is the rejection method.

To motivate the rejection method let us consider a simple example. Say we
have a continuous random variableX with pdf fX concentrated on the interval
(0, 4), as illustrated in Figure 18.5. We imagine ‘sprinkling’ points P1, P2, . . .,
uniformly at random under the density function. By sprinkling uniformly, we
mean that a small target square under the pdf has the same chance of being
hit wherever it is located. Our random points Pi are actually two-dimensional

© 2009 by Taylor & Francis Group, LLC

340 SIMULATION

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Inversion method for exp(1)

X

U

Figure 18.4 Illustration of the inversion method. A ‘uniform rain’ of points on the
vertical interval (0, 1) becomes an ‘exponentially distributed rain’ on the horizontal
axis.

random variables (Xi, Yi), where Xi and Yi are the random coordinates of the
i-th point.

Consider the distribution of X1, the x coordinate of P1. (Note that all Xi have
the same distribution.) Let R be the shaded region under fX between a and
b, as shown in Figure 18.5, then

P(a < X1 < b) = P(P1 hits R)

=
Area of R

Area under density

=

∫ b

a
fX(x)dx

1

=

∫ b

a

fX(x)dx.

Thus by the definition of the pdf, X1 has the same distribution as X . So we
can generate observations on X by taking the x coordinate of random points
sprinkled under its pdf fX . But how do we generate the points Pi uniformly
under fX? The answer is to generate points at random in the rectangle [0, 4]×
[0, 0.5] (dotted in Figure 18.5), and then reject those that fall above the pdf,
hence the name rejection method.

© 2009 by Taylor & Francis Group, LLC

REJECTION METHOD FOR CONTINUOUS RV 341

This method extends to any density with finite support that is bounded above.
That is, fX(x) ≤ k for all x and some constant k.

Rejection method (uniform envelope) Suppose that fX is non-zero
only on [a, b], and fX ≤ k.
1. Generate X ∼ U(a, b) and Y ∼ U(0, k) independent of X (so P =

(X,Y) is uniformly distributed over the rectangle [a, b]× [0, k]).

2. If Y < fX(X) then return X , otherwise go back to step 1.

−1 0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

x

p
d

f

a b

Figure 18.5 Points uniformly distributed under a pdf.

18.4.1 Example: triangular density

Consider the triangular pdf fX defined as

fX(x) =

x if 0 < x < 1;
(2− x) if 1 ≤ x < 2;
0 otherwise.

We apply the rejection method as follows:

program spuRs/resources/scripts/rejecttriangle.r

rejectionK <- function(fx, a, b, K) {

simulates from the pdf fx using the rejection algorithm

assumes fx is 0 outside [a, b] and bounded by K

© 2009 by Taylor & Francis Group, LLC

342 SIMULATION

note that we exit the infinite loop using the return statement

while (TRUE) {

x <- runif(1, a, b)

y <- runif(1, 0, K)

if (y < fx(x)) return(x)

}

}

fx<-function(x){

triangular density

if ((0<x) && (x<1)) {

return(x)

} else if ((1<x) && (x<2)) {

return(2-x)

} else {

return(0)

}

}

generate a sample

set.seed(21)

nreps <- 3000

Observations <- rep(0, nreps)

for(i in 1:nreps) {

Observations[i] <- rejectionK(fx, 0, 2, 1)

}

plot a scaled histogram of the sample and the density on top

hist(Observations, breaks = seq(0, 2, by=0.1), freq = FALSE,

ylim=c(0, 1.05), main="")

lines(c(0, 1, 2), c(0, 1, 0))

The output is given in Figure 18.6.

18.4.2 General rejection method

Our rejection method above uses a rectangular envelope to cover the target
density fX , then generates candidate points uniformly within the rectangle.
However if the rectangle is infinite, then we cannot generate points uniformly
within it, because it has infinite area. Instead we need a shape with finite area,
within which we can simulate points uniformly.

Let X have pdf h and, given X , let Y ∼ U(0, kh(X)) (so the range of Y
depends on X), then (X,Y) is uniformly distributed over the region A defined
by the curve kh above and 0 below. To see this we use conditional probability:

P((X,Y) ∈ (x, x + dx)× (y, y + dy))

= P(Y ∈ (y, y + dy) |X ∈ (x, x + dx))P(X ∈ (x, x+ dx))

© 2009 by Taylor & Francis Group, LLC

REJECTION METHOD FOR CONTINUOUS RV 343

Observations

D
e

n
s
it
y

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 18.6 Empirical pdf of the triangular distribution, simulated using the rejection
method.

=
dy

kh(x)
h(x)dx

=
1

k
dxdy.

That is, the chance of being in a small rectangle of size dx × dy is the same
anywhere in A. (We say that (X,Y) has a joint density, given by 1

k1{(x,y)∈A},
where k is the area of A.)

Suppose we wish to simulate from the density fX . Let h be a density we can
simulate from, and choose k such that

k ≥ k∗ = sup
x

fX(x)

h(x)
.

Note that k∗ ≥ 1, with equality if and only if fX and h are identical. Then kh
forms an envelope for fX , and we can generate points uniformly within this
envelope. By accepting points below the curve fX , we get the general rejection
method:

© 2009 by Taylor & Francis Group, LLC

344 SIMULATION

General rejection method
To simulate from the density fX , we assume that we have envelope den-
sity h from which you can simulate, and that we have some k <∞ such
that supx fX(x)/h(x) ≤ k.
1. Simulate X from h.

2. Generate Y ∼ U(0, kh(X)).

3. If Y < fX(X) then return X , otherwise go back to step 1.

18.4.3 Efficiency

The efficiency of the rejection method is measured by the expected number of
times you have to generate a candidate point (X,Y). The area under the curve
kh is k and the area under the curve fX is 1, so the probability of accepting a
candidate is 1/k. Thus the number of times N we have to generate a candidate
point has distribution 1+ geom(1/k), with mean EN = 1+(1−1/k)/(1/k) = k.
So, the closer h is to fX , the smaller we can choose k, and the more efficient
the algorithm is.

18.4.4 Example: gamma

For m,λ > 0 the Γ(λ,m) density is f(x) = λmxm−1e−λx/Γ(m), for x > 0.
There is no explicit formula for the cdf F or its inverse, so we will use the
rejection method to simulate from f .

We will use an exponential envelope h(x) = µe−µx, for x > 0. Using the
inversion method we can easily simulate from h using − log(U)/µ, where U ∼
U(0, 1). To envelop f we need to find

k∗ = sup
x>0

f(x)

h(x)
= sup

x>0

λmxm−1e(µ−λ)x

µΓ(m)
.

Clearly k∗ will be infinite if m < 1 or λ ≤ µ. For m = 1 the gamma is just
an exponential. Thus we will assume m > 1 and choose µ < λ. For m ∈ (0, 1)
the rejection method can still be used, but a different envelope is required.

To find k∗ we take the derivative of the right-hand side above and set it to
zero, to find the point where the maximum occurs. You can check that this is
at the point x = (m− 1)/(λ− µ), which gives

k∗ =
λm(m− 1)m−1e−(m−1)

µ(λ− µ)m−1Γ(m)
.

To improve efficiency we would like to choose our envelope to make k∗ as
small as possible. Looking at the formula for k∗ this means choosing µ to
make µ(λ− µ)m−1 as large as possible. Setting the derivative with respect to

© 2009 by Taylor & Francis Group, LLC

SIMULATING NORMALS 345

µ to zero, we see that the maximum occurs when µ = λ/m. Plugging this
back in we get k∗ = mme−(m−1)/Γ(m).

We can now code up our rejection algorithm.

program spuRs/resources/scripts/gamma.sim.r

gamma.sim <- function(lambda, m) {

sim a gamma(lambda, m) rv using rejection with an exp envelope

assumes m > 1 and lambda > 0

f <- function(x) lambda^m*x^(m-1)*exp(-lambda*x)/gamma(m)

h <- function(x) lambda/m*exp(-lambda/m*x)

k <- m^m*exp(1-m)/gamma(m)

while (TRUE) {

X <- -log(runif(1))*m/lambda

Y <- runif(1, 0, k*h(X))

if (Y < f(X)) return(X)

}

}

set.seed(1999)

n <- 10000

g <- rep(0, n)

for (i in 1:n) g[i] <- gamma.sim(1, 2)

hist(g, breaks=20, freq=F, xlab="x", ylab="pdf f(x)",

main="theoretical and simulated gamma(1, 2) density")

x <- seq(0, max(g), .1)

lines(x, dgamma(x, 2, 1))

To check the function gamma.sim works we simulated a large sample, using
the parameters m = 2 and λ = 1, and used them to estimate the density. The
result, with the density plotted on top, is given in Figure 18.7.

18.5 Simulating normals

In this section we consider various ways to generate normal random variables.
Historically the problem of simulating normal random variables has attracted
a lot of attention because normal random variables are important, and because
there is no one way of simulating them that is clearly best. To see what R
uses, type RNGkind() then ?RNGkind.

If Z ∼ N(0, 1) then µ+σZ ∼ N(µ, σ2), so it is sufficient to be able to simulate
standard N(0, 1) rv’s.

18.5.1 Central Limit Theorem

The Central Limit Theorem (CLT) suggests an obvious approximate approach
to simulating the normal, by averaging. Recall that for U ∼ U(0, 1), EU = 1/2

© 2009 by Taylor & Francis Group, LLC

346 SIMULATION

theoretical and simulated gamma(1, 2) density

x

p
d

f
f(

x
)

0 2 4 6 8 10 12 14

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

Figure 18.7 Γ(1, 2) density estimated from a sample generated using the rejection
method.

and VarU = 1/12, so if U1, . . . , U12 are iid U(0, 1) then

Z =

(

12
∑

i=1

Ui

)

− 6

has mean 0 and variance 1, and thus by the CLT is (approximately) N(0, 1).

This generator works quite well in fact, but it is not difficult to do better and
this approach is wasteful of uniforms.

18.5.2 Rejection with exponential envelope

If we chop a standard normal distribution in half and use only the positive
side (scaled up by a factor of 2 to maintain a proper density), then we get the
so-called ‘half normal’ density:

fX(x) =

{ √

2
π exp (− 1

2x
2) if x > 0;

0 otherwise.

If Z ∼ N(0, 1) then |Z| has a half normal density. Conversely if X is half
normal and S = ±1 with probability half each, independently of X , then

Z = SX ∼ N(0, 1).

We write S ∼ U{−1,+1} to indicate that the distribution of S is uniformly
distributed over the finite set {−1,+1}.

© 2009 by Taylor & Francis Group, LLC

SIMULATING NORMALS 347

We can use rejection to generate observations on the half normal X . Consider
an exponential distribution with parameter λ = 1 as a possible envelope. That
is, the envelope density is h(x) = exp(−x) for x > 0. One can easily check
that

k∗ = sup
x

fX(x)

h(x)
= sup

x

√

2

π
exp(x− x2/2) =

√

2e

π
.

This gives us the following algorithm (here φ stands for the standard normal
density):

Standard normal simulation using rejection

1. Generate X ∼ exp(1) and Y ∼ U(0, exp(−X)
√

2e/π).

2. If Y < φ(X) then generate S ∼ U{−1,+1} and return Z = SX ,
otherwise go back to step 1.

It is possible to improve the efficiency of this algorithm a little. First, observe
that to generate X ∼ exp(1) we use − log(U) (using the inverse transform)
where U ∼ U(0, 1). Thus, exp(−X) = U and so Y ∼ U(0, U

√

2e/π). Second,
rather than generate S ∼ U{−1,+1} we note that if Y < φ(X), then Y <
φ(X)/2 with probability 1/2, independently of X . Incorporating these two
refinements we get

Improved standard normal simulation using rejection.

1. Generate U ∼ U(0, 1) and Y ∼ U(0, U
√

2e/π)

2. Put X = − log(U).

3. (a). If Y < φ(X)/2 then return Z = −X ,

(b). Else if φ(X)/2 < Y < φ(X) then return Z = X ,

(c). Else go back to step 1.

18.5.3 Box-Muller algorithm

Suppose P = (X,Y) where X and Y are independent N(0, 1) rv’s, then P is
said to have a standard bivariate normal distribution. The Box-Muller algo-
rithm works by simulating P in polar coordinates (R,Θ), then transforming
these back to cartesian co-ordinates using X = R cos(Θ) and Y = R sin(Θ).
Thus we generate two independent N(0, 1) rv’s each time.

The derivation of the distribution of P in polar coordinates is not particularly
straight-forward. It can be shown1 that R2 ∼ exp(1/2) and Θ ∼ U(0, 2π),
independently of R. This gives us the following algorithm:

1 The proof requires the transformation of a joint distribution function, using multivariate
calculus.

© 2009 by Taylor & Francis Group, LLC

348 SIMULATION

Box-Muller simulation of standard normal

1. Generate U1, U2 ∼ U(0, 1).

2. Set Θ = 2πU1 and R =
√

−2 log (U2).

3. Return X = R cos (Θ) and Y = R sin (Θ).

Calculating sines and cosines can be expensive (in terms of the time required),
but there is a version of the Box-Muller algorithm that avoids this. Suppose
that the point Q = (A,B) is uniformly distributed over the unit circle. Let
(S,Ψ) be the polar coordinates of Q, then one can show that S2 ∼ U(0, 1)
and Ψ ∼ U(0, 2π), independently of S. Thus, (

√

−2 log(S2),Ψ) has the same
distribution as the polar coordinates of P , namely bivariate standard normal.
The advantage of this representation is that it we can easily calculate X and
Y from A and B. A little trigonometry gives us that

S2 = A2 +B2

cos(Ψ) = A/S

sin(Ψ) = B/S

so, for R =
√

−2 log(S2),

X = R cos(Ψ) = A

√

−2 log(S2)

S2

Y = R sin(Ψ) = B

√

−2 log(S2)

S2
.

We still need to generate Q, but this can be easily achieved using a rejection
algorithm. Generate U, V ∼ U(−1, 1) independently, then accept the point
(U, V) if it is inside the unit circle, that is, if U2 + V 2 < 1.

Putting these together we get the following:

Improved Box-Muller simulation of standard normal, with re-
jection step

1. Generate U, V ∼ U(−1, 1).

2. Accept S2 = U2 + V 2 provided S2 < 1 else return to step 1.

3. Set W =
√

−2 log(S2)/S2.

4. Return X = UW and Y = VW .

18.6 Exercises

1. Express 45 in binary.

Now express 45 mod 16 and 45 mod 17 in binary.

What can you say about these three binary representations?

© 2009 by Taylor & Francis Group, LLC

EXERCISES 349

2. Find all of the cycles of the following congruential generators. For each
cycle identify which seeds X0 lead to that cycle.

(a). Xn+1 = 9Xn + 3 mod11.

(b). Xn+1 = 8Xn + 3 mod11.

(c). Xn+1 = 8Xn + 2 mod12.

3. Here is some pseudo-code of an algorithm for generating a sample y1, . . . , yk

from the population x1, . . . , xn without replacement (k ≤ n):

for (i in 1:k) {

{ Select j at random from 1:(n+1-i) }

y[i] <- x[j]

{ Swap x[j] and x[n+1-i] }

}

Implement this algorithm in R. (The built-in implementation is sample.)

4. Consider the discrete random variable with pmf given by:

P(X = 1) = 0.1, P(X = 2) = 0.3, P(X = 5) = 0.6.

Plot the cdf for this random variable.

Write a program to simulate a random variable with this distribution, using
the built-in function runif(1).

5. How would you simulate a negative binomial random variable from a se-
quence of Bernoulli trials? Write a function to do this in R. (The built-in
implementation is rnbinom(n, size, prob).)

6. For X ∼ Poisson(λ) let F (x) = P(X ≤ x) and p(x) = P(X = x). Show
that the probability function satisfies

p(x+ 1) =
λ

x+ 1
p(x).

Using this write a function to calculate p(0), p(1), . . . , p(x) and F (x) =
p(0) + p(1) + · · ·+ p(x).

If X ∈ Z+ is a random variable and F(x) is a function that returns the cdf
F of X , then you can simulate X using the following program:

F.rand <- function () {

u <- runif(1)

x <- 0

while (F(x) < u) {

x <- x + 1

}

return(x)

}

In the case of the Poisson distribution, this program can be made more
efficient by calculating F just once, instead of recalculating it every time
you call the function F(x). By using two new variables, p.x and F.x for
p(x) and F (x) respectively, modify this program so that instead of using

© 2009 by Taylor & Francis Group, LLC

350 SIMULATION

the function F(x) it updates p.x and F.x within the while loop. Your
program should have the form

F.rand <- function(lambda) {

u <- runif(1)

x <- 0

p.x <- ?

F.x <- ?

while (F.x < u) {

x <- x + 1

p.x <- ?

F.x <- ?

}

return(x)

}

You should ensure that at the start of the while loop you always have p.x
equal to p(x) and F.x equal to F (x).

7. This exercise asks you to verify the function F.rand from Exercise 6. The
idea is to use F.rand to estimate the Poisson probability mass function, and
compare the estimates with known values. Let X1, . . . , Xn be independent
and identically distributed (iid) pois(λ) random variables, then we estimate
pλ(x) = P(X1 = x) using

p̂λ(x) =
|{Xi = x}|

n
.

Write a program F.rand.test(n, lambda) that simulates n pois(λ) ran-
dom variables and then calculates p̂λ(x) for x = 0, 1, . . . , k, for some chosen
k. Have your program print a table giving pλ(x), p̂λ(x) and a 95% confi-
dence interval for pλ(x), for x = 0, 1, . . . , k.

Finally, modify your program F.rand.test so that it also draws a graph
of p̂ and p, with confidence intervals, similar to Figure 18.2.

8. Suppose that X takes on values in the count-
able set {. . . , a−2, a−1, a0, a1, a2, . . .}, with probabilities
{. . . , p−2, p−1, p0, p1, p2, . . .}. Suppose also that you are given that
∑∞

i=0 pi = p, then write an algorithm for simulating X .

Hint: first decide whether or not X ∈ {a0, a1, . . .}, which occurs with prob-
ability p.

9. Suppose that X and Y are independent rv’s taking values in Z+ =
{0, 1, 2, . . .} and let Z = X + Y .

(a). Suppose that you are given functions X.sim() and Y.sim(), which
simulateX and Y . Using these, write a function in R to estimate P(Z =
z) for a given z.

(b). Suppose that instead of X.sim() and Y.sim() you are given X.pmf(x)

and Y.pmf(y), which calculate P(X = x) and P(Y = y) respectively.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 351

Using these, write a function Z.pmf(z) to calculate P(Z = z) for a
given z.

(c). Given Z.pmf(z) write a function in R to calculate EZ.

Note that we may have P(Z = z) > 0 for all z ≥ 0. To approximate

µ = EZ numerically we use µtrunc
n =

∑n−1
z=0 zP(Z = z) + nP(Z ≥ n) =

n−∑n−1
z=0 (n− z)P(Z = z). How can we decide how large n needs to be

to get a good approximation?

Do you think this method of approximating EZ is better or worse than
simulation?

10. Consider the following program, which performs a simulation experiment.
The function X.sim() simulates some random variable X , and we wish to
estimate EX .

set.seed(7)

seed position 1

mu <- rep(0, 6)

for (i in 1:6) {

set.seed(7)

seed position 2

X <- rep(0, 1000)

for (j in 1:1000) {

set.seed(7)

seed position 3

X[j] <- X.sim()

}

mu[i] <- mean(X)

}

spread <- max(mu) - min(mu)

mu.estimate <- mean(mu)

(a). What is the value of spread used for?

(b). If we uncomment the command set.seed(7) at seed position 3, then
what is spread?

(c). If we uncomment the command set.seed(7) at seed position 2 (only),
then what is spread?

(d). If we uncomment the command set.seed(7) at seed position 1 (only),
then what is spread?

(e). At which position should we set the seed?

11. (a). Here is some code for simulating a discrete random variable Y . What
is the probability mass function (pmf) of Y ?

Y.sim <- function() {

U <- runif(1)

Y <- 1

while (U > 1 - 1/(1+Y)) {

Y <- Y + 1

© 2009 by Taylor & Francis Group, LLC

352 SIMULATION

}

return(Y)

}

Let N be the number of times you go around the while loop when
Y.sim() is called. What is EN and thus what is the expected time
taken for this function to run?

(b). Here is some code for simulating a discrete random variable Z. Show
that Z has the same pmf as Y

Z.sim <- function() {

Z <- ceiling(1/runif(1)) - 1

return(Z)

}

Will this function be faster or slower that Y.sim()?

12. People arrive at a shoe store at random. Each person then looks at a random
number of shoes before deciding which to buy.

(a). Let N be the number of people that arrive in an hour. Given that
EN = 10, what would be a good distribution for N?

(b). Customer i tries on Xi pairs of shoes they do not like before finding
a pair they like and then purchase (Xi ∈ {0, 1, . . .}). Suppose that the
chance they like a given pair of shoes in 0.8, independently of the other
shoes they have looked at. What is the distribution of Xi?

(c). Let Y be the total number of shoes that have been tried on, excluding
those purchased. Supposing that each customer acts independently of
other customers, give an expression for Y in terms of N and the Xi,
then write functions for simulating N , Xi, and Y .

(d). What is P(Y = 0)?

Use your simulation of Y to estimate P(Y = 0). If your confidence
interval includes the true value, then you have some circumstantial
evidence that your simulation is correct.

13. Consider the continuous random variable with pdf given by:

f(x) =

{

2(x− 1)2 for 1 < x ≤ 2,
0 otherwise.

Plot the cdf for this random variable.

Show how to simulate a rv with this cdf using the inversion method.

14. Consider the continuous random variable X with pdf given by:

fX(x) =
exp (−x)

(1 + exp (−x))2 −∞ < x <∞.

X is said to have a standard logistic distribution. Find the cdf for this
random variable. Show how to simulate a rv with this cdf using the inversion
method.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 353

15. Let U ∼ U(0, 1) and let Y = 1−U . Derive an expression for the cdf FY (y)
of Y in terms of the cdf of U and hence show that Y ∼ U(0, 1).

16. For a given u, adapt the bisection method from Chapter 10 to write a
program to find the root of the function Φ(x) − u where Φ(x) is the cdf
of the standard normal distribution. (You can evaluate Φ using numerical
integration or by using the built-in R function.) Notice that the root satisfies
x = Φ−1(u).

Using the inversion method, write a program to generate observations on a
standard normal distribution. Compare the proportion of your observations
that fall within the interval (−1, 1) with the theoretical value of 68.3%.

17. The continuous random variable X has the following probability density
function (pdf), for some positive constant c,

f(x) =
3

(1 + x)3
for 0 ≤ x ≤ c.

(a). Prove that c =
√

3− 1.

(b). What is EX? (Hint: EX = E(X + 1)− 1.)

(c). What is VarX? (Hint: start with E(X + 1)2.)

(d). Using the inversion method, write a function that simulates X .

18. The Cauchy distribution with parameter α has pdf

fX(x) =
α

π(α2 + x2)
−∞ < x <∞.

Write a program to simulate from the Cauchy distribution using the inver-
sion method.

Now consider using a Cauchy envelope to generate a standard normal ran-
dom variable using the rejection method. Find the values for α and the
scaling constant k that minimise the probability of rejection. Write an R
program to implement the algorithm.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 19

Monte-Carlo integration

The term Monte-Carlo is used to refer to techniques involving computer sim-
ulation, alluding to the games of chance played in the casinos of Monte Carlo.
Monte-Carlo integration is numerical integration using simulation.

This chapter covers two simulation-based approaches to integration—the hit-
and-miss method and the (improved) Monte-Carlo method—adding to the
techniques that were introduced in Chapter 11. Again, our goal is to integrate
a function for which the antiderivative is not known in closed form.

At the end of the chapter we give some comparative results on the errors of
different numerical integration methods. We see that techniques like Simpson’s
rule work very well in one dimension, but are not efficient for calculating high-
dimensional integrals

∫

· · ·
∫

f(x1, . . . , xd)dx1 · · · dxd. In contrast Monte-Carlo
integration is not as good as Simpson’s rule in one dimension but is relatively
more efficient in higher dimensions.

19.1 Hit-and-miss method

We wish to calculate I =
∫ b

a f(x)dx.

Let c and d be such that f(x) ∈ [c, d] for all x ∈ [a, b]. Let A be the set bounded
above by the curve and by the box [a, b]× [c, d], then I = |A|+ c(b− a). Thus
if we can estimate |A| then we can estimate I. A is illustrated as the shaded
region in Figure 19.1.

To estimate |A| imagine throwing darts at the box [a, b]×[c, d]. On average the
proportion that land under the curve will be given by the area of A over the
area of the box, that is by |A|/((b−a)(d−c)), giving us a means of estimating
|A|.
Take X ∼ U(a, b) and Y ∼ U(c, d), then (X,Y) is uniformly distributed over
the box [a, b]× [c, d], and

P((X,Y) ∈ A) = P(Y ≤ f(X)) =
|A|

(b − a)(d− c) .

Let Z = 1A(X,Y), that is Z = 1 if Y ≤ f(X) and 0 otherwise, then EZ =

355

© 2009 by Taylor & Francis Group, LLC

356 MONTE-CARLO INTEGRATION

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
6

−
4

−
2

0
2

y =x
3
− 7x

2
+ 1

x

y

a=0 b=1

c
=

−
6

d
=

2

Figure 19.1 The area of interest in the hit-and-miss method.

P((X,Y) ∈ A) and we have

I = (EZ)(b − a)(d− c) + c(b− a).
By simulating X and Y we can simulate Z and by repeatedly simulating
Z, we can estimate EZ and thus I. Here is some code that implements the
hit-and-miss method in R.

program spuRs/resources/scripts/hit_miss.r

hit_miss <- function(ftn, a, b, f.min, f.max, n) {

Monte-Carlo integration using the hit and miss method

ftn is a function of one variable

[a, b] is the range of integration

f.min and f.max are bounds on ftn over the range [a, b]

that is f.min <= ftn(x) <= f.max for all x in [a, b]

n is the number of samples used in the estimation

that is the number of calls made to the function ftn

Z.sum <- 0

for (i in 1:n) {

X <- runif(1, a, b)

Y <- runif(1, f.min, f.max)

Z <- (ftn(X) >= Y)

Z.sum <- Z.sum + Z

cat("X =", X, "Y =", Y, "Z =", Z, "Z.sum =", Z.sum, "\n")

}

I <- (b - a)*f.min + (Z.sum/n)*(b - a)*(f.max - f.min)

© 2009 by Taylor & Francis Group, LLC

HIT-AND-MISS METHOD 357

return(I)

}

We apply the method to estimate
∫ 1

0

(x3 − 7x2 + 1)dx = (x4/4− 7x3/3 + x)|10
= −13/12 = −1.0833 (to 4 decimal places).

Taking the min and max of each term we see that on [0, 1] the function is
bounded below by c = 0− 7 + 1 = −6 and above by d = 1 + 0 + 1 = 2.

> source('../scripts/hit_miss.r')

> f <- function(x) x^3 - 7*x^2 + 1

> hit_miss(f, 0, 1, -6, 2, 10)

[1] -1.2

> hit_miss(f, 0, 1, -6, 2, 100)

[1] -0.88

> hit_miss(f, 0, 1, -6, 2, 1000)

[1] -0.784

> hit_miss(f, 0, 1, -6, 2, 10000)

[1] -1.0912

> hit_miss(f, 0, 1, -6, 2, 100000)

[1] -1.08928

> hit_miss(f, 0, 1, -6, 2, 1000000)

[1] -1.084752

We see that the number of repetitions n needs to be very large just to get just
two decimal places accuracy.

Here is a vectorised version of the previous program. We have added a line
to plot the successive approximations to the integral. The output is given in
Figure 19.2.

hit_miss2 <- function(ftn, a, b, c, d, n) {

Monte-Carlo integration using the hit & miss method

vectorised version

X <- runif(n, a, b)

Y <- runif(n, c, d)

Z <- (Y <= sapply(X, ftn))

I <- (b - a)*c + (cumsum(Z)/(1:n))*(b - a)*(d - c)

plot(1:n, I, type = "l")

return(I[n])

}

© 2009 by Taylor & Francis Group, LLC

358 MONTE-CARLO INTEGRATION

0 2000 4000 6000 8000 10000

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

Number of points

A
p
p
ro

x
im

a
ti
o
n
 t
o
 t
h
e
 i
n
te

g
ra

l

Figure 19.2 Successive approximations to the integral using the hit-and-miss method.

> source('hit_miss2.r')

> hit_miss2(f, 0, 1, -6, 2, 10000)

[1] -1.052

> lines(c(1, 10000), c(-13/12, -13/12))

19.2 (Improved) Monte-Carlo integration

Hit-and-miss Monte-Carlo converges very slowly. In this section we give a bet-
ter Monte-Carlo integration technique, which is the technique people usually
refer to as ‘Monte-Carlo integration’. When we say one Monte-Carlo technique
is better than another we mean that, using the same number of function calls,
it has smaller variance. Bear in mind that because our estimates are based on
random samples, they are themselves random variables.

Again we consider the integral I =
∫ b

a f(x)dx. From Riemann’s definition of

© 2009 by Taylor & Francis Group, LLC

(IMPROVED) MONTE-CARLO INTEGRATION 359

the integral we have

I = lim
n→∞

n−1
∑

i=0

f(a+ i(b− a)/n)(b− a)/n.

Here the term f(a + i(b − a)/n)(b − a)/n approximates the integral from
a + i(b − a)/n to a + (i + 1)(b − a)/n by the area of a rectangle of width
(b− a)/n and height f(a+ i(b− a)/n).

Now consider the random variable Xn, which takes values in the set {a, a +
(b−a)/n, a+2(b−a)/n, . . . , a+(n−1)(b−a)/n} with equal probability 1/n,
then

Ef(Xn) =

n−1
∑

i=0

f(a+ i(b− a)/n)P(Xn = a+ i(b− a)/n)

=

n−1
∑

i=0

f(a+ i(b− a)/n)/n.

Thus, I = limn→∞ Ef(Xn)(b− a).

19.2.1 Lemma

Xn
d−→ U(a, b) as n→∞. That is, for any x ∈ [a, b],

P(Xn ≤ x)→ P(U ≤ x) =
x− a
b− a as n→∞,

where U ∼ U(a, b).

Proof. Computing the left-hand side above we get

P(Xn ≤ x) =
|{i : a+ i(b− a)/n ≤ x}|

n

=
|{i ≤ (x− a)n/(b− a)}|

n

=

(

1 +

⌊

x− a
b− a n

⌋)

1

n

→ x− a
b− a as n→∞

as required. (Note that we start counting at 0.)

Using the lemma we get

I = lim
n→∞

Ef(Xn)(b− a)
= Ef(lim

n→∞
Xn)(b− a)

= Ef(U)(b − a) where U ∼ U(a, b).

© 2009 by Taylor & Francis Group, LLC

360 MONTE-CARLO INTEGRATION

(Strictly speaking we need to justify exchanging the limit and expectation.
Although we won’t do this here, it can be done provided f is bounded and
continuous.) Thus if U1, . . . , Un are an iid sample of U(a, b) random variables,
then our estimate of I is

Î =
1

n

n
∑

i=1

f(Ui)(b − a).

The following function performs Monte-Carlo integration of the function ftn

over the interval [a, b].

mc.integral <- function(ftn, a, b, n) {

Monte-Carlo integral of ftn over [a, b] using a sample of size n

u <- runif(n, a, b)

x <- sapply(u, ftn)

return(mean(x)*(b-a))

}

19.2.2 Accuracy in higher dimensions

The big-O notation is used to describe how fast a function grows. We say f(x)
is O(x−α) if lim supx→∞ f(x)/x−α = lim supx→∞ f(x)xα <∞.

Let d be the dimension of our integral and n the number of function calls
used, then the accuracy of the different numerical integration techniques we
have seen is as follows:

Method Error

Trapezoid O(n−2/d)

Simpson’s rule O(n−4/d)

Hit-and-miss Monte-Carlo O(n−1/2)
Improved Monte-Carlo O(n−1/2)

We see that the size of the error for the Monte-Carlo methods does not depend
on d and that, asymptotically, they are preferable when d > 8.

19.3 Exercises

1. Suppose that X and Y are iid U(0, 1) random variables.

(a). What is P((X,Y) ∈ [a, b]× [c, d]) for 0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1?

Based on your previous answer, what do you think you should get for
P((X,Y) ∈ A), where A is an arbitrary subset of [0, 1]× [0, 1]?

(b). Let A = {(x, y) ∈ [0, 1]× [0, 1] : x2 + y2 ≤ 1}. What is the area of A?

© 2009 by Taylor & Francis Group, LLC

EXERCISES 361

(c). Define the rv Z by

Z =

{

1 if X2 + Y 2 ≤ 1,
0 otherwise.

What is EZ?

(d). By simulating Z, write a program to estimate π.

2. Which is more accurate, the hit-and-miss method or the improved Monte-
Carlo method? Suppose that f : [0, 1] → [0, 1] and we wish to estimate

I =
∫ 1

0 f(x) dx.

Using the hit-and-miss method, we obtain the estimate

ÎHM =
1

n

n
∑

i=1

Xi,

where X1, . . . , Xn are an iid sample and Xi ∼ binom(1, I) (make sure you
understand why this is the case).

Using the improved Monte-Carlo method, we obtain the estimate

ÎMC =
1

n

n
∑

i=1

f(Ui),

where U1, . . . , Un are an iid sample of U(0, 1) random variables.

The accuracy of the hit-and-miss method can be measured by the standard
deviation of ÎHM , which is just 1/

√
n times the standard deviation of X1.

Similarly the accuracy of the basic Monte-Carlo method can be measured
by the standard deviation of ÎMC , which is just 1/

√
n times the standard

deviation of f(U1).

Show that

VarX1 =

∫ 1

0

f(x) dx −
(
∫ 1

0

f(x) dx

)2

,

and that

Var f(U1) =

∫ 1

0

f2(x) dx −
(∫ 1

0

f(x) dx

)2

.

Explain why (in this case at least) the improved Monte-Carlo method is
more accurate than the hit-and-miss method.

3. The previous exercise gave a theoretical comparison of the hit-and-miss and
improved Monte-Carlo method. Can you verify this experimentally?

Repeat the example of Section 19.1 using the improved Monte-Carlo
method. How many function calls are required to get 2 decimal places
accuracy?

4. The trapezoidal rule for approximating the integral I =
∫ 1

0
f(x) dx can be

broken into two steps

Step 1: I =
∑n−1

i=0 (Area under the curve from i/n to (i+ 1)/n);

© 2009 by Taylor & Francis Group, LLC

362 MONTE-CARLO INTEGRATION

Step 2: Area under the curve from i/n to (i + 1)/n ≈ 1
2 (f(i/n) + f((i +

1)/n))× 1
n .

In two dimensions the integral I =
∫ 1

0

∫ 1

0 f(x, y) dx dy can be broken down
as

n−1
∑

i=0

n−1
∑

j=0

(Volume under the surface above the square

[i/n, (i+ 1)/n]× [j/n, (j + 1)/n]).

(a). By analogy with the trapezoidal method, suggest a method for ap-
proximating the volume under the surface above the square [i/n, (i+
1)/n]× [j/n, (j+1)/n], and thus a method for approximating the two-
dimensional integral.

(b). Can you suggest a two-dimensional analogue for the improved Monte-
Carlo algorithm?

© 2009 by Taylor & Francis Group, LLC

CHAPTER 20

Variance reduction

Previously we have used X =
∑n

i=1Xi/n to estimate µ, where X1, . . . , Xn are
an iid sample with mean µ. This chapter introduces several innovations to the
way we sample X1, . . . , Xn that can dramatically increase the accuracy of our
estimate when judiciously applied. We cover antithetic sampling, importance
sampling, and correction using control variates.

Consider using simulation to estimate the parameters of a distribution. Due
to the inherent randomness, our estimates will vary from one simulation run
to the other. Naturally it is desirable to reduce this variability as much as
possible, thus improving the reliability of the resulting estimates. We can
always reduce overall variability by increasing the number of simulation trials,
but this can take too long. The variance reduction techniques we introduce
sometimes offer substantial efficiency gains by working smarter not harder,
using an understanding of the structure of the simulation task at hand.

Antithetic sampling reframes our estimate as a sum of negatively correlated
random variables, using the fact that negative correlation reduces the variance
of a sum.

Importance sampling involves placing samples where they will be most bene-
ficial, that is, where the underlying variability is high.

Control variates uses a variable Y with known parameters to control another
variable X with unknown parameters. Instead of working with what might be
a highly variable X directly, we work with the residual variability of X − Y .

20.1 Antithetic sampling

Suppose we are interested in estimating a parameter θ and we have two un-
biased estimators X and Y , with finite variances σ2

X = σ2
Y = σ2. Clearly

Z = (X + Y)/2 is also unbiased, and is also a candidate estimator for θ, but
is it any better than X or Y ?

GivenX , Y , and Z are all unbiased, we can compare them using their variances
(the smaller the better). We have

VarZ = 1
4VarX + 1

4VarY + 1
2Cov(X,Y) = 1

2 (σ2 + Cov(X,Y)).

363

© 2009 by Taylor & Francis Group, LLC

364 VARIANCE REDUCTION

If X and Y are independent then, compared to X or Y on their own, the vari-
ance of Z decreases by a factor of two, corresponding to the fact that we are
using twice as many sample points. However if X and Y are negatively corre-
lated, or antithetic, then Cov(X,Y) will be negative and VarZ even smaller.
That is, there is more to be gained from averaging negatively correlated es-
timates than from averaging independent estimates (and averaging positively
correlated averages is relatively worse).

We motivate the idea of antithetic variates by considering an interesting mod-
ification to a famous problem in geometric probability.

20.1.1 Example: Buffon’s needle and cross

In 1733 the Compte de Buffon calculated the probability q that a needle of
length l, thrown at random onto a table ruled with parallel lines of distance
d ≥ l apart, would not intersect a line. If we let p = 1− q then Buffon showed
that p = 2l/πd, thus simulation of this experiment offers a way to estimate p
and hence π.

From now we assume l = d, so p = 2/π. Let N be the total number of
intersections in n independent throws of the needle, then N ∼ binom(n, p).
Let p̂ = N/n be our estimator for p, then Var p̂ = p(1− p)/n.

Suppose now that instead of throwing a single needle, you throw a pair of
needles, fixed at right angles at their centres, to form a cross. For convenience
we will imagine that the cross is composed of a red and a black needle. Let
NR and NB be the total number of intersections in n throws of the cross, for
the red and black needle, respectively. Clearly NR and NB each have the same
distribution as N , namely binom(n, p). It should also be clear that NR and
NB are negatively correlated: if the red needle lies roughly parallel to the lines
on the table then it is unlikely to intersect any, but the black needle will be
nearly perpendicular to the lines on the table and thus very likely to intersect
one.

If we put p̂R = NR/n and p̂B = NB/n, then we use the average p̂C = (NR +
NB)/2n to estimate p. Note that p̂C uses n tosses of the cross, but, because
NR and NB are antithetic, it will have smaller variance than p̂ based on 2n
tosses of a needle.

20.1.2 General antithetic variate technique

Say we wish to estimate θ = E(Z), with Var (Z) = σ2.

We can estimate θ using the average of 2n independent observations on Z.
That is, using θ̂1 =

∑2n
i=1 Zi/2n. We have Var (θ̂1) = σ2/2n.

Alternatively, suppose we can generate n independent pairs of observations

© 2009 by Taylor & Francis Group, LLC

ANTITHETIC SAMPLING 365

(Xi, Yi), where Xi and Yi have the same distribution as Z, but are negatively

correlated. We estimate θ using the unbiased estimate θ̂a = (X+Y)/2, which
has variance

Var (θ̂a) =
1

4
(Var (X) + Var (Y) + 2Cov(X,Y))

=
σ2

2n
+

1

2n
Cov(Xi, Yi)

=
σ2

2n
(1 + ρ(Xi, Yi)) ,

where ρ(Xi, Yi) is the correlation of Xi and Yi. Thus we have a −100ρ%

variance reduction compared to θ̂1, attributable to the negative covariance.

20.1.3 Example: improved Monte-Carlo integration

Consider θ =
∫ 1

0 g(u)du where g is an increasing function on [0, 1]. Our usual
improved Monte-Carlo estimate, based on 2n observations, is

θ̂1 =
2n
∑

i=1

g(Ui)

where U1, . . . , U2n are iid U(0, 1).

Put (Xi, Yi) = (g(Ui), g(1 − Ui)) then, using the fact that 1 − Ui ∼ U(0, 1),
Xi and Yi have the same distribution. Thus E(Xi) = E(Yi) = θ and we can
form the antithetic estimate:

θ̂a =
1

2n

(

n
∑

i=1

g(Ui) +
n
∑

i=1

g(1− Ui)

)

.

For this to be useful we need that Cov(Xi, Yi) is negative. Note that θ̂a uses
only n uniforms, U1, . . . , Un, but requires 2n calls to the function g. That
is, θ̂1 and θ̂a make the same number of function calls and thus should take
approximately the same amount of time to run.

Since g is increasing we can find u∗ in [0, 1] so that g(1−u) > θ if u < u∗ and
g(1− u) < θ if u > u∗. Thus

Cov(Xi, Yi) = Cov(g(Ui), g(1− Ui))

= E(g(Ui)− θ)(g(1 − Ui)− θ)
= Eg(Ui)(g(1− Ui)− θ)

< g(u∗)

∫ u∗

0

(g(1− u)− θ)du+ g(u∗)

∫ 1

u∗
(g(1− u)− θ)du

= 0.

That is, Xi and Yi are antithetic, as required. By symmetry the same result
also holds for g decreasing.

© 2009 by Taylor & Francis Group, LLC

366 VARIANCE REDUCTION

The following R program enables you to compare the variances of θ̂1 and θ̂a

empirically, for a function of your choice (we initially consider g(x) = 1− x2).
We put n = 50, then calculate each estimator N = 5000 times and form the
sample variance.

Note that we have written vectorised code, which eschews explicit loops for
computational efficiency. The colMeans function computes the means of each
column of a matrix.

> g <- function(x) 1 - x^2

> N <- 5000

> n <- 50

> u_1 <- matrix(runif(2 * n * N), ncol = N)

> theta_1 <- colMeans(g(u_1))

> u_a <- matrix(runif(n * N), ncol = N)

> theta_a <- 0.5 * (colMeans(g(u_a)) + colMeans(g(1 - u_a)))

> var1 <- var(theta_1)

> vara <- var(theta_a)

> reduction <- 100 * (var1 - vara)/var1

> cat("Variance theta_1 is", var1, "\n")

Variance theta_1 is 0.0009080722

> cat("Variance theta_a is", vara, "\n")

Variance theta_a is 0.0001112241

> cat("Variance reduction is", reduction, "percent \n")

Variance reduction is 87.75163 percent

We can show theoretically that Var (θ̂1) = 2/45n and Var (θ̂a) = 1/180n,
corresponding to an 87.5% variance reduction.

There is an interesting geometric interpretation of the antithetic estimator in

this case. We note that
∫ 1

0 g(x)dx =
∫ 1

0 g(1− x)dx, so we can rewrite θ as

θ =

∫ 1

0

1

2
(g(x) + g(1− x)) dx.

Write the improved Monte-Carlo estimator for θ in this form and you will see
it is identical to θ̂a. So the antithetic approach in this case is equivalent to
replacing g by h where h(x) = (g(x) + g(1 − x))/2. The function h averages
g(x) with its mirror image around x = 1/2. If h is less variable than g, this
results in a variance reduction. If g is already symmetric around 1/2, there
is no reduction. If h is constant then the estimator is constant with 100%
variance reduction. (Try g(x) = sin(πx) or g(x) = 1− x in the program.)

© 2009 by Taylor & Francis Group, LLC

IMPORTANCE SAMPLING 367

20.1.4 Antithetic pairs through inversion

In general, to generate antithetic pairs (Xi, Yi), i = 1, . . . , n, where Xi and
Yi have the same cdf F but are negatively correlated, we can use the inverse
transformation method. For Ui ∼ U(0, 1) we set Xi = F−1(Ui) and Yi =
F−1(1 − Ui), so both have cdf F , and Cov(Xi, Yi) < 0 follows immediately
from the the previous section on putting g = F−1.

20.2 Importance sampling

We will motivate importance sampling by introducing a generalisation of the
improved Monte-Carlo integration method considered in Section 19.2.

Previously we observed that if θ =
∫ b

a φ(x) 1
b−adx, then θ = Eφ(U), where

U ∼ U(a, b). We generalise this by permitting a distribution other than the

uniform. That is, suppose that we wish to estimate θ =
∫ b

a
φ(x)f(x)dx, where

f is a pdf with support [a, b] (possibly infinite), then we have

θ =

∫ b

a

φ(x)f(x)dx = Eφ(X) where X has pdf f .

Thus if X1, . . . , Xn is a random sample from f , then an unbiased estimator of
θ is

θ̂ =
1

n

n
∑

i=1

φ(Xi).

The variance of θ̂ is

Var θ̂ =
1

n

(

∫ b

a

φ(x)2f(x)dx − θ2
)

,

which cannot be calculated exactly unless we already know θ.

This more general formulation of Monte-Carlo integration allows us to evaluate
the integral of a function h by thinking of it as the product φf , for a suitably
chosen pdf f . The choice of f can make a big difference to Var θ̂, as the next
example shows.

20.2.1 Example: evaluating a simple integral three different ways

Assume we wish to evaluate the integral

θ =

∫ 1

0

(1− x2)dx =
2

3

(whose value we luckily already know) using a Monte-Carlo method.

© 2009 by Taylor & Francis Group, LLC

368 VARIANCE REDUCTION

Method 1: Our improved Monte-Carlo method uses uniformly distributed
points over the interval [0, 1]. We obtain the estimator

θ̂1 =
1

n

n
∑

i=1

φ(Xi) =
1

n

n
∑

i=1

(1−X2
i)

where the Xi are U(0, 1). A simple calculation shows Var (θ̂1) = 4/45n.

To apply the generalised Monte-Carlo method we ask: ‘Are all points in [0, 1]
equally important in evaluating the integral?’ The function is larger near zero
so this region makes a proportionately larger contribution to the area that we
want to estimate. Hence we speculate whether we can reduce the variability
of our Monte-Carlo estimator by choosing the distribution of our random
evaluation points to somehow match the shape of the integrand.

Method 2: Our first generalised Monte-Carlo estimator reformulates the inte-
gral as

θ =

∫ 1

0

2

3

3

2
(1− x2)dx

which corresponds to setting φ(x) = 2
3 and f(x) = 3

2 (1 − x2), which is a pdf
over [0, 1]. We then have

θ̂2 =
1

n

n
∑

i=1

φ(Xi) =
2

3
,

where X1, . . . , Xn is an iid sample from f .

In this case we have made the distribution of our random points exactly match
the shape of the function being integrated. And our estimator is equal to θ
exactly with no variability at all! (Var θ̂2 = 0.) Of course there is no real gain
here, as we needed to know θ to verify that our choice of f was a proper
density, but this illustrates our objective. Since in real cases of interest θ is
unknown, we simply try as best we can to match the function with a known
pdf. In this example let us consider a simple triangular distribution for f , to
give some emphasis to the higher values near zero.

Method 3: Our second general Monte-Carlo estimator reformulates the integral
as

θ =

∫ 1

0

(1− x2)dx =

∫ 1

0

1

2
(1 + x)2(1− x)dx

which corresponds to setting φ(x) = 1
2 (1 + x) and f(x) = 2(1− x), which is a

pdf over [0, 1]. We then have

θ̂3 =
1

n

n
∑

i=1

1

2
(1 +Xi)

where the Xi, i = 1, . . . , n, are an iid sample with the new f distribution.
A simple calculation yields Var (θ̂3) = 1/72n. Hence the variability of the
original improved Monte-Carlo estimator has been reduced by a factor of 6.4.

© 2009 by Taylor & Francis Group, LLC

IMPORTANCE SAMPLING 369

To put this example into the general framework of importance sampling, con-
sider again the expectation

θ =

∫

φ(x)f(x)dx = Eφ(X),

where X has pdf f . Now imagine choosing a density g that shadows φf as
closely as possible. If Y has pdf g then we have

Eφ(X) =

∫

φ(x)f(x)dx

=

∫

φ(x)f(x)

g(x)
g(x)dx

=

∫

ψ(x)g(x)dx

= Eψ(Y),

where ψ(x) = φ(x)f(x)/g(x) = w(x)φ(x).

Let Y1, . . . , Yn be an iid sample with pdf g, then our importance sampling
estimator for Eψ(Y) is

θ̂g =
1

n

n
∑

i=1

ψ(Yi) =
1

n

n
∑

i=1

w(Yi)φ(Yi),

where w(x) = f(x)/g(x). This estimator can be thought of as a weighted
version of the original improved Monte-Carlo estimator, where the weights
compensate for the fact that we are sampling from g rather than f . We have
that θ̂g is an unbiased estimator with

Var (θ̂g) =
1

n
Varψ(Y1).

Clearly the better g shadows φf then the closer ψ is to a constant, and the
greater the variance reduction achieved.

20.2.2 Example: standard normal tail probability

Suppose we want to estimate the probability

θ = P(Z > 2) =

∫ ∞

2

f(x)dx = 0.02275

where Z has a standard normal distribution with pdf f(x) = e−x2/2/
√

2π.

Method 1: We think of the integral as

θ =

∫ ∞

2

f(x)dx =

∫ ∞

−∞
φ(x)f(x)dx

© 2009 by Taylor & Francis Group, LLC

370 VARIANCE REDUCTION

where φ(x) equals 1 if x > 2 and 0 otherwise. Then, if X1, . . . , Xn are an iid
sample from f , we use

θ̂1 =
1

n

n
∑

i=1

φ(Xi) =
N

n

where N ∼ binom(n, θ). So we are simply estimating the probability by
generating normal observations and counting the proportion greater than 2.
Var (θ̂1) = θ(1− θ)/n = 0.0223/n.

Method 2: To benefit from importance sampling we need to choose a density
that is similar to the tail of the standard normal above two and zero below
two. One standard method is to use a shifted version of the original density,
relocated towards the important values. In this case we choose a half-normal
density shifted to start at two, that is

g(x) =

{

0 if x < 2;
√

2
π e

−(x−2)2/2 if x > 2.

If X has pdf g, we obtain

θ = E

(

f(X)

g(X)

)

=
e2

2
E(e−2X), and

θ̂g =
1

n

n
∑

i=1

e2

2
e−2Xi ,

where the Xi are an iid sample from g. By construction θ̂g is unbiased and

Var (θ̂g) =
1

n
Var

(

1

2
e2e−2X1

)

=
1

n

(

e4

4
E(e−4X1)− θ2

)

.

A simple integration shows E(e−4X1) = 2P(Z > 4) so Var (θ̂g) = 0.000347/n.
In this case the variance has been reduced by a factor of around 64. One
intuitive way of understanding this variance reduction is that θ̂g uses more

information from each Xi than θ̂1, which only notes whether the value is
greater or smaller than 2.

20.2.3 Example: standard normal central probability

Let Z ∼ N(0, 1) and consider

θ =

∫ 1

0

e−x2/2dx =
√

2πP(0 < Z < 1).

A simple estimator for θ is θ̂1 =
√

2πp̂, where p̂ is the proportion of n iid stan-
dard normals in (0, 1). We have p̂ ∼ binom(n, θ/

√
2π)/n, so θ̂1 has variance

θ(
√

2π − θ)/n = 1.413/n.

© 2009 by Taylor & Francis Group, LLC

IMPORTANCE SAMPLING 371

To apply importance sampling, note that by using a second-order Taylor ex-
pansion of ex2/2 about 0, we have

e−x2/2 =
1

ex2/2
≈ 1

1 + x2/2
= h(x).

Thus we choose our importance sampling density g ∝ h(x). This is a truncated
form of a non-standard Cauchy density. Since

∫ x

0

1

1 + u2/2
du =

√
2 arctan

(x

2

)

our density g has cdf

G(x) =
arctan (x/

√
2)

arctan (1/
√

2)
for x ∈ (0, 1).

We can generate observations on g using the inverse transformation method
with G−1(u) =

√
2 tan(u arctan(1/

√
2)).

Our importance sampling estimator is

θ̂g =
1

n

n
∑

i=1

e−X2

i
/2
√

2 arctan

(

1√
2

)(

1 +
X2

i

2

)

where Xi = G−1(Ui) and U1, . . . , Un are iid U(0, 1).

The following (vectorised) R code estimates the variance reduction using im-

portance sampling with density g. We calculate θ̂1 and θ̂g N times, each time
with a sample size of n.

> Ginv <- function(u) {

+ sqrt(2) * tan(u * atan(1/sqrt(2)))

+ }

> Psi <- function(x) {

+ exp(-(x^2)/2) * sqrt(2) * atan(1/sqrt(2)) * (1 + (x^2)/2)

+ }

> N <- 10000

> n <- 50

> u_a <- matrix(runif(n * N), ncol = N)

> theta_a <- colMeans(Psi(Ginv(u_a)))

> var1 <- 1.413/n

> vara <- var(theta_a)

> reduction <- 100 * (var1 - vara)/var1

> cat("Variance theta_1 is", var1, "\n")

Variance theta_1 is 0.02826

> cat("Variance theta_a is", vara, "\n")

Variance theta_a is 8.433276e-06

> cat("Variance reduction is", reduction, "% \n")

© 2009 by Taylor & Francis Group, LLC

372 VARIANCE REDUCTION

Variance reduction is 99.97016 %

In this example importance sampling reduces the variance by a factor of ap-
proximately 3400.

20.3 Control variates

Like antithetic variates, control variates take advantage of covariance. The
difference is that control variates obtain a variance reduction from positive
covariance rather than negative covariance. The basic idea is to use one vari-
able Y with known mean µ to control another variable X with unknown mean
θ. Suppose that Cov(X,Y) > 0, then we define the ‘controlled’ version of X
to be

X∗ = X − α(Y − µ)

where α > 0 is some constant. Clearly E(X∗) = θ so X∗ is an unbiased
estimator of θ, and

Var (X∗) = Var (X) + α2Var (Y)− 2αCov(X,Y − µ)

= Var (X)− α(2Cov(X,Y)− αVar (Y)).

We have VarX∗ < VarX if and only if 2Cov(X,Y) − αVar (Y) > 0, or
equivalently 0 < α < 2Cov(X,Y)/Var (Y).

As f(α) = Var (X∗) is a parabola, it is minimised by choosing α such that
f ′(α) = 0. That is

α = α∗ =
Cov(X,Y)

Var (Y)
.

Hence the minimum value of Var (X∗) is

f(α∗) = Var (X)− Cov(X,Y)2

Var (X)Var (Y)
Var (X)

= Var (X)(1− ρ2)

where ρ = Cov(X,Y)√
Var (X)Var (Y)

is the correlation coefficient (which may be famil-

iar to the reader as the residual variability in a linear regression of X on Y).
The resulting variance reduction is 100ρ2%.

20.3.1 Example: standard normal central probability

We revisit Example 20.2.3. We are estimating

θ =

∫ 1

0

e−x2/2dx

© 2009 by Taylor & Francis Group, LLC

CONTROL VARIATES 373

Let X = θ̂ be the previously derived importance sampling estimator. That is

X = θ̂ =
1

n

n
∑

i=1

e−T 2

i
/2
√

2 arctan

(

1√
2

)(

1 +
T 2

i

2

)

=
1

n

n
∑

i=1

ψ1(Ti), say,

where the Ti, i = 1, . . . , n, are an iid sample with density g as before. A second-
order Taylor expansion of e−x2/2 near 0 gives e−x2/2 ≈ 1− x2/2. Accordingly
we define

µ =

∫ 1

0

(

1− x2

2

)

dx =
5

6
,

and choose as our control variate Y the estimator µ̂ for µ based on the same
importance sampling distribution g as used to estimate θ. That is

Y = µ̂ =
1

n

n
∑

i=1

(

1− T 2
i

2

)√
2 arctan

(

1√
2

)(

1 +
T 2

i

2

)

=
1

n

n
∑

i=1

ψ2(Ti), say.

By construction EY = µ, and we can ensure a positive correlation between
X and Y by using the same Ti to generate them. For α > 0 we form X∗, the
controlled version of X , as

X∗ = θ̂c = X − α
(

Y − 5

6

)

= θ̂ − α
(

µ̂− 5

6

)

.

Note this equation makes it clear that the control variate estimator θ̂c is the
original estimator θ̂ plus a correction term. For example if the control variable
µ̂ exceeds its known mean, the positive correlation would suggest that θ̂ might
also be high, so the estimate is corrected down.

Note also that the optimal choice of α, namely Cov(X,Y)/VarY =
Cov(ψ1(T1), ψ2(T1))/Varψ2(T1), is not known, but we can estimate it using
a sample covariance and variance based on the simulation, as is done in the
following vectorised R code. Note the use of the colSums function, analogous
to the colMeans function.

> Ginv <- function(u){

+ sqrt(2)*tan(u*atan(1/sqrt(2)))

+ }

> psi1 <- function(x){

+ exp(-(x^2)/2)*sqrt(2)*atan(1/sqrt(2))*(1+(x^2)/2)

+ }

> psi2 <- function(x){

© 2009 by Taylor & Francis Group, LLC

374 VARIANCE REDUCTION

+ (1-(x^2)/2)*sqrt(2)*atan(1/sqrt(2))*(1+(x^2)/2)

+ }

> N <- 10000 # Number of estimates of each type

> n <- 50 # Sample size

> commonG <- matrix(Ginv(runif(n*N)), ncol=N)

> p1g <- psi1(commonG)

> p2g <- psi2(commonG)

> theta_hat <- colMeans(p1g)

> mu_hat <- colMeans(p2g)

> samplecov <- colSums((p1g - theta_hat) * (p2g - 5/6))/n

> samplevar <- colSums((p2g - 5/6)^2)/n

> alphastar <- samplecov/samplevar

> theta_hat_c <- theta_hat - alphastar*(mu_hat - 5/6)

> var1 <- var(theta_hat)

> varc <- var(theta_hat_c)

> reduction<-100*(var1-varc)/var1

> cat("Variance theta_hat is", var1, "\n")

Variance theta_hat is 8.22984e-06

> cat("Variance theta_hat_c is", varc, "\n")

Variance theta_hat_c is 3.069343e-08

> cat("Variance reduction is", reduction, "percent \n")

Variance reduction is 99.62705 percent

We find the controlled version is significantly less variable. Relative to the
naive approach of looking at the proportion of standard normals in (0, 1),
the combination of control variates and importance sampling has reduced the
variance by a factor of order 106.

20.4 Exercises

1. Write a program to calculate the Monte-Carlo integral of a function ftn(x),
using antithetic sampling, then use it to estimate

B(z, w) =

∫ 1

0

xz−1(1− x)w−1 dx, for z = 0.5, w = 2.

B(z, w) is called the beta function, and is finite for all z, w > 0.

2. Suppose that X has a continuous cdf F , and that F−1 is known. Let
U1, . . . , Un be iid U(0, 1) rv’s and put Xi = F−1(Ui), then we can es-
timate µ = EX and σ2 = VarX using X = n−1

∑

i Xi and S2 =
(n− 1)−1

∑

i(Xi −X)2, respectively.

(a). Show that if U ∼ U(0, 1), then

Cov(F−1(U), F−1(1− U)) ≤ 0.

© 2009 by Taylor & Francis Group, LLC

EXERCISES 375

(b). Show how to use antithetic sampling to improve our estimate of µ.

(c). Suppose that the distribution of X is symmetric about µ. Show that
antithetic sampling will not improve our estimate of σ2.

3. Consider the integral

I =

∫ 1

0

√

1− x2 dx.

(a). Estimate I using Monte-Carlo integration.

(b). Estimate I using antithetic sampling, and compute an estimate of
the percentage variance reduction achieved by using the antithetic ap-
proach.

(c). Approximate the integrand by a straight line and use a control variate
approach to estimate the value of the integral. Estimate the resulting
variance reduction achieved.

(d). Use importance sampling to estimate the integral I. Try using three
different importance sampling densities, and compare their effective-
ness.

4. Suppose that the rv X has mean µ and can be simulated. Further, suppose
that f is a non-linear function, and that we wish to estimate a = Ef(X)
using simulation.

Using g(x) = f(µ) + (x− µ)f ′(µ) and tuning parameter α = 1, estimate a
using control variates. That is, if X1, . . . , Xn are an iid sample distributed
as X , show that for α = 1, the controlled estimate of a is

1

n

n
∑

i=1

f(Xi)− (X − µ)f ′(µ).

Furthermore, using the fact that for x close to µ, g(x) ≈ f(x), show that
the controlled estimate can be written approximately as

1

n

n
∑

i=1

f(Xi)− f(X) + f(µ).

Finally, derive the optimal (theoretical) value of α.

5. Daily demand for a newspaper is approximately gamma distributed, with
mean 10,000 and variance 1,000,000. The newspaper prints and distributes
11,000 copies each day. The profit on each newspaper sold is $1, and the
loss on each unsold newspaper is $0.25.

(a). Express the expected daily profit as a finite integral, then estimate it
using both Simpson’s method and Monte-Carlo integration.

(b). Improve your Monte-Carlo estimate using importance sampling and/or
a control variate.

© 2009 by Taylor & Francis Group, LLC

376 VARIANCE REDUCTION

(c). For m integer valued, a Γ(λ,m) rv can be written as the sum of m iid
exp(λ) rv’s. Using this approach to simulate gamma rv’s, estimate the
expected daily profit using antithetic sampling.

6. Consider estimating I =
∫ 1

0
g(x)dx by improved Monte-Carlo integration.

We showed in Section 20.1.3, that using antithetic variates is equivalent
to replacing g by h(x) = (g(x) + g(1 − x))/2, which averages g with its
mirror image around x = 1/2. Further variance reduction may be possible
by iterating this process on subintervals, as illustrated below.

(a). Let g(x) = x4. Write an R program to calculate the improved Monte-
Carlo estimator Î of I, and to estimate its variance.

(b). Repeat (a) using antithetic variates, and compute the variance reduc-
tion achieved.

(c). Using the fact that h(x) = h(1− x), verify that

I =

∫ 1/2

0

(g(x) + g(1− x))dx.

Then verify that over this subinterval you can again replace the inte-
grand by a function which averages its value with the value of its mirror
image around x = 1/4. Hence verify that

I =

∫ 1/4

0

(g(x) + g(1− x) + g((1/2)− x) + g((1/2) + x))dx

Use this to estimate I and calculate the resulting variance reduction.

© 2009 by Taylor & Francis Group, LLC

CHAPTER 21

Case studies

21.1 Introduction

In this chapter we present three case studies: extended examples intended to
demonstrate some of our simulation techniques. Simulation is ubiquitous in
science, so trying to list all the areas where it appears would be an endless task.
To give you a taste, here are some (but not all) of the areas where simulation
is being employed in the authors’ home department.

• Spin systems: big lattices of interacting molecules.

• Granular materials: how do grains of dirt move about when you put a
weight (like a building) on them?

• Molecular geometry: the shape of complex molecules has an important effect
on how they act.

• Stock markets: how should we value financial instruments such as bonds,
options, etc?

• Health care: modelling and then optimising patient care.

• Telecommunications: optimal design of communication networks.

• Carbon modelling: where is all the carbon, and how will it affect global
warming?

• Forest management: where, when, and what should I plant?

The development of new simulation techniques is a scientific field in its own
right. As computer power increases, numerical simulation and optimisation
techniques become more sophisticated and more widely applicable. Here is a
list (not exhaustive) of some of the simulation topics we have not been able
to cover in this book. The interested reader is encouraged to explore!

• Stochastic processes: simulating and analysing systems that evolve over
time. That is, instead of having independent samples, our random vari-
ables are dependent. Discrete event simulation is one of the most important
methodologies in this area.

• Markov Chain Monte-Carlo: the simulation technique that underpins mod-
ern Bayesian statistics.

377

© 2009 by Taylor & Francis Group, LLC

378 CASE STUDIES

• Stochastic optimisation: using a stochastic (random) process to optimise a
function. Techniques include simulated annealing, genetic algorithms, cross-
entropy, ant-heaps, and many more.

• Bootstrapping: a very clever statistical technique for extracting information
from a sample by resampling.

• Meta-modelling: using a simpler but faster simulation to approximate a
complex but slow simulation.

• Perfect simulation: how to reach an asymptotic limit in a finite amount of
time.

21.2 Epidemics

The science of epidemiology, the study of the spread of disease, includes math-
ematical/statistical models of how disease spreads. In this section we look at
some of these models and investigate their behaviour using simulation.

21.2.1 SIR model

SIR stands for Susceptible, Infected, and Removed. In this model we suppose
that individuals can be one of three types: susceptible if they have not yet
caught the disease, infected if they currently have the disease, and removed if
they have had the disease and have since recovered (and are now immune) or
died. In our following descriptions, we will use the type labels—susceptible,
infected, and removed—as shorthand to describe individuals of that type. We
measure time in discrete steps. At each time step, each infected can infect
susceptibles or can recover/die, at which point the infected is removed.

Let S(t), I(t) and R(t) be the number of susceptible, infected and removed
individuals at time t. At each time step each infected has probability α of
infecting each susceptible. (This assumes that each infected has equal con-
tact with all susceptibles. This is called a mixing assumption.) At the end of
each time step, after having had a chance to infect people, each infected has
probability β of being removed.

We take initial conditions

S(0) = N ;

I(0) = 1;

R(0) = 0.

Note that the total population is N +1 and this remains fixed. That is S(t)+
I(t) +R(t) = N + 1 for all t.

Each time step t the chance that a susceptible remains uninfected is (1−α)I(t).

© 2009 by Taylor & Francis Group, LLC

EPIDEMICS 379

That is, each infected must fail to pass on the infection to the susceptible.
Thus,

S(t+ 1) ∼ binom(S(t), (1 − α)I(t)).

As each infected has a chance β of being removed, we have

R(t+ 1) ∼ R(t) + binom(I(t),β).

Given S(t+ 1) and R(t+ 1) we get I(t+ 1) from the total population

I(t+ 1) = N + 1−R(t+ 1)− S(t+ 1).

These rules are enough to write a simulation of an SIR process.

program spuRs/resources/scripts/SIRsim.r

SIRsim <- function(a, b, N, T) {

Simulate an SIR epidemic

a is infection rate, b is removal rate

N initial susceptibles, 1 initial infected, simulation length T

returns a matrix size (T+1)*3 with columns S, I, R respectively

S <- rep(0, T+1)

I <- rep(0, T+1)

R <- rep(0, T+1)

S[1] <- N

I[1] <- 1

R[1] <- 0

for (i in 1:T) {

S[i+1] <- rbinom(1, S[i], (1 - a)^I[i])

R[i+1] <- R[i] + rbinom(1, I[i], b)

I[i+1] <- N + 1 - R[i+1] - S[i+1]

}

return(matrix(c(S, I, R), ncol = 3))

}

In Figure 21.1 we plot S(t), I(t), and R(t) for four separate simulations, with
α = 0.0005 and β = 0.1, 0.2, 0.3, and 0.4. We see that as β increases, the size
of the epidemic decreases.

To see the range of behaviour possible for a single choice of α and β, we plot
several realisations of the simulation on the same graph: see Figure 21.2. We
see that epidemics either die out quickly or else grow to be quite large.

It would be nice to know exactly how α and β affect the size of an epidemic.
Using simulation we can estimate ES(T) for different values of α and β and
see how it varies. The following program does this for α ∈ [0.0001, 0.001] and
β ∈ [0.1, 0.5] and plots the results on a 3D-graph. (See Section 7.7 for guidance
on 3D-plotting.) The output is given in Figure 21.3.

program spuRs/resources/scripts/SIR_grid.r

discrete SIR epidemic model

#

© 2009 by Taylor & Francis Group, LLC

380 CASE STUDIES

0 20 40 60 80 100

0
6

0
0

alpha = 5e−04 beta = 0.1
S

[t
]

0 20 40 60 80 100

0
6

0
0

I[
t]

0 20 40 60 80 100

0
6

0
0

R
[t

]

0 20 40 60 80 100

0
6

0
0

alpha = 5e−04 beta = 0.2

S
[t

]

0 20 40 60 80 100

0
6

0
0

I[
t]

0 20 40 60 80 100

0
6

0
0

R
[t

]

0 20 40 60 80 100

0
6

0
0

alpha = 5e−04 beta = 0.3

S
[t

]

0 20 40 60 80 100

0
6

0
0

I[
t]

0 20 40 60 80 100

0
6

0
0

R
[t

]

0 20 40 60 80 100

0
6

0
0

alpha = 5e−04 beta = 0.4

S
[t

]

0 20 40 60 80 100

0
6

0
0

I[
t]

0 20 40 60 80 100

0
6

0
0

R
[t

]

Figure 21.1 Simulations of an SIR epidemic with α = 0.0005 and β = 0.1, 0.2, 0.3,
and 0.4.

initial susceptible population N

initial infected population 1

infection probability a

removal probability b

#

estimates expected final population size for different values of

the infection probability a and removal probability b

we observe a change in behaviour about the line Na = b

© 2009 by Taylor & Francis Group, LLC

EPIDEMICS 381

0 20 40 60 80 100

0
4

0
0

8
0

0

alpha = 5e−04 beta = 0.3

S
[t

]

0 20 40 60 80 100

0
4

0
0

8
0

0

I[
t]

0 20 40 60 80 100

0
4

0
0

8
0

0

R
[t

]

Figure 21.2 Twenty realisations of an SIR epidemic with α = 0.0005 and β = 0.3.

(Na is the expected number of new infected at time 1 and

b is the expected number of infected who are removed at time 1)

SIR <- function(a, b, N, T) {

simulates SIR epidemic model from time 0 to T

returns number of susceptibles, infected and removed at time T

S <- N

I <- 1

R <- 0

for (i in 1:T) {

S <- rbinom(1, S, (1 - a)^I)

R <- R + rbinom(1, I, b)

I <- N + 1 - S - R

}

return(c(S, I, R))

}

set parameter values

N <- 1000

T <- 100

a <- seq(0.0001, 0.001, by = 0.0001)

b <- seq(0.1, 0.5, by = 0.05)

n.reps <- 400 # sample size for estimating E S[T]

f.name <- "SIR_grid.dat" # file to save simulation results

© 2009 by Taylor & Francis Group, LLC

382 CASE STUDIES

2e−04

4e−04

6e−04

8e−04

1e−03

0.1
0.2

0.3
0.4

0.5

200

400

600

800

a

b

E S[T]

0

200

400

600

800

1000

Figure 21.3 Average epidemic size for various infection rates α and removal rates
β.

estimate E S[T] for each combination of a and b

write(c("a", "b", "S_T"), file = f.name, ncolumns = 3)

for (i in 1:length(a)) {

for (j in 1:length(b)) {

S.sum <- 0

for (k in 1:n.reps) {

S.sum <- S.sum + SIR(a[i], b[j], N, T)[1]

}

write(c(a[i], b[j], S.sum/n.reps), file = f.name,

ncolumns = 3, append = TRUE)

}

}

plot estimates in 3D

g <- read.table(f.name, header = TRUE)

library(lattice)

print(wireframe(S_T ~ a*b, data = g, scales = list(arrows = FALSE),

aspect = c(.5, 1), drape = TRUE,

xlab = "a", ylab = "b", zlab = "E S[T]"))

We observe a change in behaviour about the line Nα = β. Nα is the expected
number of new infected at time 1 and β is the expected number of infected

© 2009 by Taylor & Francis Group, LLC

EPIDEMICS 383

who are removed at time 1. When Nα > β then we nearly always get a big
epidemic, but when Nα ≤ β the size of the epidemic drops away sharply.

For more insight into why this threshold occurs, we look at a class of models
called branching processes.

21.2.2 Branching processes

An epidemic has the potential to be large if, in its early stages,
E(new infected) > E(infected removed). For a general epidemic, calculating
E(new infected) is difficult because individuals interact:

• Finite population size means infected individuals are ‘competing’ for indi-
viduals to infect;

• Spatial restrictions restrict contact between infected and susceptible.

The SIR model ignores spatial interactions but does model the finite popula-
tion. Branching processes ignore the finite population restriction as well. This
results in a simpler but hopefully still useful model. The branching process
can be viewed as a model for the early stages of an epidemic.

Branching processes are typically described in terms of births and population
growth rather than infection. Let Zn be the size of the population at genera-
tion/time n. At each time step every individual independently gives birth to a
random number of offspring, with distribution X , then dies. (You can include
the case where the individual does not die by adding 1 to X .) Put Z0 = 1
then we have

Zn+1 = Xn,1 + · · ·+Xn,Zn
,

where Xn,i is the i-th family size in generation n. The Xn,i are iid with the
same distribution as X .

If you just look at the infected, then the first step of an SIR epidemic is
the same as the first step of a branching process, with X0,1 = A + B where
A ∼ binom(N,α) are the new infected and B ∼ binom(1, 1 − β) is 1 if the
initial infected is not removed and 0 otherwise. Note that EX = Nα+ 1 − β

so the condition for an epidemic to grow, Nα > β, is equivalent to EX > 1.

Here is some code for simulating and plotting a branching process. It makes
use of the construct ... for passing a variable number of inputs to a function.

Program spuRs/resources/scripts/bp.r

branching process simulation

bp <- function(gen, rv.sim, ...) {

population of a branching process from generation 0 to gen

rv.sim(n, ...) simulates n rv's from the offspring distribution

Z[i] is population at generation i-1; Z[1] = 1

© 2009 by Taylor & Francis Group, LLC

384 CASE STUDIES

Z <- rep(0, gen+1)

Z[1] <- 1

for (i in 1:gen) {

if (Z[i] > 0) {

Z[i+1] <- sum(rv.sim(Z[i], ...))

}

}

return(Z)

}

bp.plot <- function(gen, rv.sim, ..., reps = 1, logplot = TRUE) {

simulates and plots the population of a branching process

from generation 0 to gen; rv.sim(n, ...) simulates n rv's

from the offspring distribution

the plot is repeated reps times

if logplot = TRUE then the population is plotted on a log scale

Z[i,j] is population at generation j-1 in the i-th repeat

Z <- matrix(0, nrow = reps, ncol = gen+1)

for (i in 1:reps) {

Z[i,] <- bp(gen, rv.sim, ...)

}

if (logplot) {

Z <- log(Z)

}

plot(c(0, gen), c(0, max(Z)), type = "n", xlab = "generation",

ylab = if (logplot) "log population" else "population")

for (i in 1:reps) {

lines(0:gen, Z[i,])

}

return(invisible(Z))

}

Figure 21.4 gives some sample output where we took X ∼ binom(2, 0.6).
There are 20 simulations over 20 generations. Note that in half
the simulations the population has died out, in the other half
it appears to be growing exponentially. The command used was
bp.plot(20, rbinom, 2, .6, 20, logplot = F).

What is the relationship between the offspring distribution X and the growth
of the process? To investigate this question we fixed T then used simulation
to estimate log EZT for a number of different X and then plotted this against
µ = EX . We put T = 50 and X ∼ binom(2, p) for p ∈ [.3, .6]. Here is the
code we used; the output is given in Figure 21.5. Note that values of log(0)
(= −∞) are not plotted.

program spuRs/resources/scripts/bp_grid.r

bp.sim <- function(gen, rv.sim, ...) {

population of a branching process at generation gen

© 2009 by Taylor & Francis Group, LLC

EPIDEMICS 385

0 5 10 15 20

0
5

0
1

0
0

1
5

0

generation

p
o

p
u

la
ti
o

n
binomial(2, 0.6) offspring distribution, 20 reps

Figure 21.4 Several realisations of a branching process.

rv.sim(n, ...) simulates n rv's from the offspring distribution

Z <- 1

for (i in 1:gen) {

if (Z > 0) {

Z <- sum(rv.sim(Z, ...))

}

}

return(Z)

}

set parameter values

gen <- 50

size <- 2

prob <- seq(0.3, 0.6, by = 0.01)

n.reps <- 100 # sample size for estimating E Z

estimate E Z for each value of prob

mu <- rep(0, length(prob))

Z.mean <- rep(0, length(prob))

© 2009 by Taylor & Francis Group, LLC

386 CASE STUDIES

0.6 0.7 0.8 0.9 1.0 1.1 1.2

−
2

0
2

4
6

8

E family size

lo
g

 p
o

p
 a

t
g

e
n

 5
0

Figure 21.5 Expected population at time T agianst the expected family size.

for (i in 1:length(prob)) {

Z.sum <- 0

for (k in 1:n.reps) {

Z.sum <- Z.sum + bp.sim(gen, rbinom, size, prob[i])

}

mu[i] <- size*prob[i]

Z.mean[i] <- Z.sum/n.reps

}

plot estimates

note that values of log(0) (= -infinity) are not plotted

plot(mu, log(Z.mean), type = "o",

xlab = "E family size", ylab = paste("log pop at gen", gen))

There is a quite convincing linear relationship between EX and log EZT , with
an x-intercept at 1. That is, for some constant c = c(T), we have

log EZT ≈ c(EX − 1)

EZT ≈ ec(EX−1).

Thus if EX > 1 then EZT > 1 but if EX < 1 then EZT < 1.

© 2009 by Taylor & Francis Group, LLC

EPIDEMICS 387

Because the branching process is a relatively simple model, we can prove some
exact results for it. In particular it is possible to show that

EZn = (EX)n. (21.1)

So if EX > 1 the process grows exponentially (on average), while if EX < 1
then it dies out exponentially fast (on average). This agrees with our previous
observations of the SIR process.

A useful exercise is to verify the relationship (21.1) using simulation.

21.2.3 Forest fire model

The forest fire model incorporates spatial interactions. Like the SIR model
we suppose that we have a population made up of susceptible (unburnt),
infected (on fire), and removed (burnt out) individuals. The difference is that
the individuals are placed on a grid and an infected individual can only infect
a susceptible individual if they are neighbours. We define the neighbours of
a point (x, y) to be the eight points (x − 1, y − 1), (x − 1, y), (x − 1, y + 1),
(x, y − 1), (x, y + 1), (x + 1, y − 1), (x + 1, y), and (x + 1, y + 1) (smaller or
larger neighbourhoods can also be considered).

We take time in discrete steps. At each step an infected individual has a
probability α of infecting each of its susceptible neighbours. Thus for a sus-
ceptible individual, the probability of remaining uninfected is (1− α)x where
x is the number of infected neighbours. After having had a chance to infect
its neighbours, an individual is removed with probability β.

We restrict our forest fire to a grid of size N ×N . Let Xt be a matrix of size
N ×N representing the population at time t. We put

Xt(i, j) =

2 if the individual at (i, j) is susceptible;
1 if the individual at (i, j) is infected;
0 if the individual at (i, j) is removed.

Here is some code for simulating the forest fire model and printing the results.
An example of the output is provided in Figure 21.6. If you play around with
this for a while you will see that we still see a threshold below which the fire
rarely gets going but above which there is a chance that it can grow quite
large. Again there is a balance between how fast new infections appear and
how fast infected individuals are removed.

program: spuRs/resources/scripts/forest_fire.r

forest fire simulation

rm(list = ls())

neighbours <- function(A, i, j) {

calculate number of neighbours of A[i,j] that are infected

© 2009 by Taylor & Francis Group, LLC

388 CASE STUDIES

we have to check for the edge of the grid

nbrs <- 0

sum across row i - 1

if (i > 1) {

if (j > 1) nbrs <- nbrs + (A[i-1, j-1] == 1)

nbrs <- nbrs + (A[i-1, j] == 1)

if (j < ncol(A)) nbrs <- nbrs + (A[i-1, j+1] == 1)

}

sum across row i

if (j > 1) nbrs <- nbrs + (A[i, j-1] == 1)

nbrs <- nbrs + (A[i, j] == 1)

if (j < ncol(A)) nbrs <- nbrs + (A[i, j+1] == 1)

sum across row i + 1

if (i < nrow(A)) {

if (j > 1) nbrs <- nbrs + (A[i+1, j-1] == 1)

nbrs <- nbrs + (A[i+1, j] == 1)

if (j < ncol(A)) nbrs <- nbrs + (A[i+1, j+1] == 1)

}

return(nbrs)

}

forest.fire.plot <- function(X) {

plot infected and removed individuals

for (i in 1:nrow(X)) {

for (j in 1:ncol(X)) {

if (X[i,j] == 1) points(i, j, col = "red", pch = 19)

else if (X[i,j] == 0) points(i, j, col = "grey", pch = 19)

}

}

}

forest.fire <- function(X, a, b, pausing = FALSE) {

simulate forest fire epidemic model

X[i, j] = 2 for susceptible; 1 for infected; 0 for removed

set up plot

plot(c(1,nrow(X)), c(1,ncol(X)), type = "n", xlab = "", ylab = "")

forest.fire.plot(X)

main loop

burning <- TRUE

while (burning) {

burning <- FALSE

check if pausing between updates

if (pausing) {

input <- readline("hit any key to continue")

}

update

© 2009 by Taylor & Francis Group, LLC

EPIDEMICS 389

B <- X

for (i in 1:nrow(X)) {

for (j in 1:ncol(X)) {

if (X[i, j] == 2) {

if (runif(1) > (1 - a)^neighbours(X, i, j)) {

B[i, j] <- 1

}

} else if (X[i, j] == 1) {

burning <- TRUE

if (runif(1) < b) {

B[i, j] <- 0

}

}

}

}

X <- B

plot

forest.fire.plot(X)

}

return(X)

}

spark

set.seed(3)

X <- matrix(2, 21, 21)

X[11, 11] <- 1

big fires

#X <- forest.fire(X, .1, .2, TRUE)

X <- forest.fire(X, .2, .4, TRUE)

medium fires

#X <- forest.fire(X, .07, .2, TRUE)

#X <- forest.fire(X, .1, .4, TRUE)

small fires

#X <- forest.fire(X, .05, .2, TRUE)

#X <- forest.fire(X, .07, .4, TRUE)

Clearly as α increases and/or β decreases, the chance of a large fire will
increase. Like the SIR and branching process models, we imagine that there
will be a threshold above which large fires become much more likely. For
example, suppose that the fire is burning along a straight front. Along the
front each susceptible tree is adjacent to three burning trees, so the probability
of catching on fire is 1− (1−α)3. Thus, given burning trees are removed with
probability β, we might conjecture that the fire will grow if 1− (1−α)3 > β.

As it turns out, this conjecture understates the chance of a large fire. The
reason is that fire fronts are not straight, and an irregular front will move
faster than a straight front. Even a front that starts straight will quickly

© 2009 by Taylor & Francis Group, LLC

390 CASE STUDIES

5 10 15 20

5
1

0
1

5
2

0

5 10 15 20

5
1

0
1

5
2

0

5 10 15 20

5
1

0
1

5
2

0

5 10 15 20

5
1

0
1

5
2

0

Figure 21.6 Simulation of a forest fire epidemic at times 5, 10, 15, and 20. Infected
individuals are dark grey and removed individuals light grey. Here α = 0.2 and
β = 0.4; we started with a single infected individual in the centre of the grid.

contort, which one can easily see in the simulation, using the following initial
condition.

X <- matrix(2, 21, 21)

X[21,] <- 1

21.3 Inventory

To meet demand in time and compete in the market, a company needs to keep
stock in hand. The purpose of inventory theory is to determine rules or policies
that minimise the cost of running an inventory system, while meeting customer
demand. The following are possible costs associated with an inventory system

1. Ordering and setup cost: This includes the cost of paperwork and billing
associated with an order, and may include overheads on the cost of delivery.
If the product is produced internally, this cost may also include the cost of
setting up and shutting down a machine in a production system.

© 2009 by Taylor & Francis Group, LLC

INVENTORY 391

The Lead time is the length of time between when an order is placed and
when the order arrives.

2. Purchasing cost: For outsourced products this will include per-item trans-
portation costs as well as the cost of the product. For goods produced
internally, this includes the cost of raw materials and labour.

3. Holding cost: This is the cost of holding one unit of inventory for one period
of time. If the period is one year then it is the annual holding cost. This
cost can include insurance costs, the cost of renting space, security costs,
loss due to spoilage, and the effects of inflation.

4. Shortage cost: When a demand cannot be met in time, a shortage is said
to have occurred. There are two possible cases:

(a) The customers accept delivery on a later date, which is called a back-
logged demand;

(b) The customers refuse to have the delivery on a later date, which is
called a lost sale.

In the second case the shortage cost is primarily the lost revenue. In the
first case the shortage cost includes penalties paid for late delivery. In both
cases the shortage cost can also include a component that represents lost
future sales due to the lack of service shortage represents.

21.3.1 Continuous Review Inventory Model

The continuous review inventory model makes the following assumptions.

1. The inventory system is under continuous review, which means that sales
are recorded when they occur so that the level of inventory in the system
I(t) is known at all times t.

2. The demand is a Poisson process with a rate of D items per year.

3. The lead time L is a known constant.

4. There is an ordering cost of K and a price per unit of p.

5. The unit holding cost is h per year.

6. Shortage results in lost sales, with a shortage cost of s per item.

We suppose that the inventory policy (or the ordering policy) is a so-called
(q, r) policy. That is, when the inventory level is r (reorder point), an order
of size q is placed, which will arrive after a lead time of L. Our objective is to
choose q and r to minimise cost.

The expected demand over a lead time period is LD. Hence, if we reorder
when I(t) = r the expected minimum inventory level will be m = r − LD.
The quantity m is called the safety stock. We will assume that m ≥ 0, that is
r ≥ LD, and that q ≥ r.

© 2009 by Taylor & Francis Group, LLC

392 CASE STUDIES

0.00 0.05 0.10 0.15

0
5

0
1

0
0

1
5

0

t

E
 I

(t
)

L q/D

r
m

q
+

m

Figure 21.7 Expected inventory level under a (q, r) policy, over a single cycle.

We would like to estimate c(q, r), which is the expected cost per unit time
of running the system (that is, the annual cost), and then choose q and r
to minimise it. However we have to be careful what we mean by ‘cost per
unit time’, because the costs change as the level of inventory changes. The
way around this problem is to consider cycles. Define a cycle to be the time
from one reorder point to the next, when the stock is at level r. With a little
thought you should see that these cycle lengths are independent.1 Let C be
the running costs and T the length of a single cycle, then we define

c(q, r) = E

(

C

T

)

≈ EC

ET
.

In Figure 21.7 we plot the expected inventory level over a single cycle. The
expected demand is D per year. Thus the graph of EI(t) will decrease from
r to m with a constant slope of −D, jump to q +m, then decrease to r with
slope −D. We see immediately that ET = q/D.

To estimate EC we split the cost into four parts—holding cost, ordering cost,
purchasing cost, and shortage cost—and consider each in turn.

1. Put I(0) = r. Noting that m = r − LD, the expected holding cost over a

1 In fact, our inventory system is an example of a renewal process, and the reorder points
are known as renewal times.

© 2009 by Taylor & Francis Group, LLC

INVENTORY 393

single cycle is

E

∫ T

0

hI(t) dt ≈ h

∫ q/D

0

EI(t) dt

= h

∫ q/D

0

(m+Dt) dt

= h

(

q2

2D
+

(r − LD)q

D

)

.

Here we have approximated T by ET .

2. The ordering cost per cycle is exactly K.

3. The purchasing cost per cycle is exactly pq.

4. To calculate the shortage cost we note that demand during the lead time
has a Poisson(DL) distribution. To simplify things we will approximate the
demand during the lead time by a continuous distribution with probability
density function f(x). Given this the expected shortage during the lead
time will be

n(r) =

∫ ∞

r

(x− r)f(x) dx

and so the expected shortage cost will be sn(r).

Putting these together, the expected cost per unit time under a (q, r) policy
is (approximately)

c(q, r) = h
(

r − LD +
q

2

)

+
KD

q
+ pD +

sDn(r)

q
.

Theorem A necessary condition for c(q, r) to be minimised is that q and r
satisfy the equations

q =

√

2D(K + sn(r))

h
and 1− F (r) =

qh

sD
, (21.2)

where F (r) =
∫ r

0 f(x)dx.

Proof. We note that

∂c(q, r)

∂q
=
h

2
− KD

q2
− sDn(r)

q2

and
∂c(q, r)

∂r
= h+

sDn′(r)

q

where

n′(r) =
d

dr

(
∫ ∞

r

xf(x)dx − r
∫ ∞

r

f(x)dx

)

= −rf(r)−
∫ ∞

r

f(x)dx + rf(r)

© 2009 by Taylor & Francis Group, LLC

394 CASE STUDIES

= F (r)− 1.

Setting ∂c(q, r)/∂q = ∂c(q, r)/∂r = 0 gives the result.

The service level α is the probability of not running out of stock in any given
cycle, namely F (r). In practice, rather than solve the above equations for q and
r, what practitioners often do is specify the required service level beforehand,
based on perceived customer requirements. Typically we take α = 0.95 or
0.99. Having specified α and thus r, the expected cost is now a function of q
alone, which we minimise in the usual way. We have

c(q) = h
(

r − LD +
q

2

)

+
KD

q
+ pD +

sDn(r)

q
.

From this the optimal value of q is

q∗ =

√

2D(K + sn(r))

h
≈
√

2KD

h
,

noting that for α close to 1, n(r) will be small. This last value is known as the
Economic Order Quantity (EOQ) in the inventory literature.

For example, suppose that D = 1000 per year, L = 0.1 years, K = 1000,
p = 100, h = 100 per year, and s = 200. Let X be the demand during the lead
time, then X ∼ pois(100) ≈ N(100, 100). Using the normal approximation we
have f(x) = 1√

200π
exp(−(x− 100)2/200).

If we specify a service level of α = 0.95, then r satisfies P(X ≤ r) = 0.95. To
calculate the left-hand side we can use Simpson’s rule for numerical integra-
tion. To solve the equation we can use the Newton-Raphson algorithm. Let
F (x) =

∫ x

−∞ f(u)du = 0.5 +
∫ x

100 f(u)du (the second form avoids having an
infinite domain to integrate over).

> rm(list = ls())

> source("../scripts/simpson.r")

> f <- function(x) exp(-(x - 100)^2/200)/sqrt(200 * pi)

> F <- function(x) {

+ if (x > 100)

+ return(0.5 + simpson(f, 100, x))

+ else if (x < 100)

+ return(0.5 - simpson(f, x, 100))

+ else return(0.5)

+ }

> source("../scripts/newtonraphson.r")

> g <- function(r) c(F(r) - 0.95, f(r))

> r <- newtonraphson(g, 100)

At iteration 1 value of x is: 111.2798

At iteration 2 value of x is: 115.0524

At iteration 3 value of x is: 116.3077

© 2009 by Taylor & Francis Group, LLC

INVENTORY 395

At iteration 4 value of x is: 116.4469

At iteration 5 value of x is: 116.4485

At iteration 6 value of x is: 116.4485

Algorithm converged

Rounding to the nearest integer we get r = 116. Using the EOQ to approxi-
mate q we have q =

√

2KD/h = 141 (rounding to the nearest integer).

How good are these values of q and r? To find out, we solve the Equations
(21.2) and compare the answers.

Let A be any 2 × 2 non-singular matrix, then the optimal (q, r)T is a fixed
point of the equation

G

(

q
r

)

= A

(

q2h− 2D(K + s n(r))
(1 − F (r))sD − qh

)

+

(

q
r

)

.

If we can choose A so that G is a contraction, then we can obtain the fixed
point by iterating G. We say G is a contraction if there exists δ ∈ (0, 1) such
that, for any vectors x and y, ‖G(x)−G(y)‖ ≤ δ‖x−y‖. In this case, putting
xn = G(xn−1) we have

‖xn+1 − xn‖ = ‖G(xn)−G(xn−1)‖
≤ δ‖xn − xn−1‖
≤ δn‖x1 − x0‖ → 0 as n→∞.

It follows that for any k, ‖xn+k − xn‖ ≤ δn‖x1 − x0‖/(1− δ), and thus that
xn converges, to x∗ say (this is Cauchy’s convergence criterion). Since G is
continuous,

x∗ = lim
n→∞

xn+1 = lim
n→∞

G(xn) = G(lim
n→∞

xn) = G(x∗).

That is, x∗ is a fixed point of G.

To calculate G we need n(r) =
∫∞

r
(x−r)f(x)dx. Using the change of variables

y = (x− 100)2/2, we can rewrite n as

n(r) =
√

50/π exp(−(r − 100)2/200)− (r − 100)(1− F (r)).

This reformulation has the advantage that it does not require an integral over
an infinite domain.

After some trial and error, it turns out that a suitable A is
(

−1/50, 000 0
0 1/50, 000

)

.

Using (141, 116)T as the starting point for our iteration, G does indeed con-
verge to a fixed point:

> n <- function(r) {

+ return(sqrt(50/pi)*exp(-(r - 100)^2/200) - (r - 100)*(1 - F(r)))

+ }

© 2009 by Taylor & Francis Group, LLC

396 CASE STUDIES

> G <- function(x) {

+ q <- x[1]

+ r <- x[2]

+ A <- matrix(c(-1, 0, 0, 1), 2, 2)/50000

+ return(A %*% c(100*q^2 - 2000*(1000 + 200*n(r)),

+ (1 - F(r))*200000 - 100*q) + c(q, r))

+ }

> tol <- 1e-3

> x <- c(141, 116)

> x.diff <- 1

> while (x.diff > tol) {

+ x.old <- x

+ x <- G(x)

+ x.diff <- sum(abs(x - x.old))

+ }

> x

[,1]

[1,] 145.9390

[2,] 114.5481

Rounding to the nearest integer we get q = 146 and r = 115. Comparing
our two solutions, first note that the service level corresponding to r = 115 is
F (r) = 0.933 (to 3 significant figures), a little lower than the level of 0.95 we
initially assumed. Calculating the annual cost we have

c(141, 116) = 116, 071.9, c(146, 115) = 116, 050.8.

So in this case using the EOQ gave a reasonable approximation to the optimal
value of q.

21.3.2 Simulated inventory level

The cost per unit time c(q, r), derived in the previous section, incorporated
some simplifying assumptions. In particular we assumed

E

(

C

T

)

≈ EC

ET

and

E

∫ T

0

hI(t) dt ≈ h
∫ q/D

0

EI(t) dt.

We also assumed that the demand during the lead time could be approximated
by a continuous distribution.

To judge how much of an effect these simplifying assumptions have on c(q, r),
we use simulation to provide an independent estimate. We will use a technique
called discrete event simulation.

© 2009 by Taylor & Francis Group, LLC

INVENTORY 397

Let I(t) be the level of stock (that is, inventory) at time t, and c(t) the
accumulated costs at time t. The triple (t, I(t), c(t)) describes the state of our
system. Discrete event simulation updates the state only when certain events
occur. In our case the relevant events are purchases and the arrival of new
stock.

Suppose that at the previous event the state was (u, I(u), c(u)) and that the
next event after time u happens at time v.

If the new event is a purchase then I(v) = max{I(u) − 1, 0}. Updating the
costs is more complex:

• Over the time interval (u, v] the holding costs have increased by I(u)(v−u);
• If I(u) = 0 then there will be a shortage cost of s;

• If I(v) = r then there will be a reordering cost of K + qp.

If the new event is the arrival of new stock, then I(v) = I(u) + q and c(v) =
c(u) + I(u)(v − u).
We maintain a list of events and when they will occur. We update this list
every time an event occurs, by removing the event that has just occurred, and
adding any new events we now know about. In our case, if the event at time
v is a purchase, then we generate a new purchase event at time v +A, where
A ∼ exp(D). That is, A is the time between arrivals in a Poisson process of
rate D. Moreover, if the stock level drops to r then we generate a new stock
arrival event at time v+L. The arrival of new stock does not trigger any new
events. (By assumption q > r, so we know that it is never necessary to order
new stock immediately.)

Once we have defined rules for updating the state for each type of event,
and for generating new events, the simulation has the following simple form
(pseudo-code):

initialise state and event list

while (stopping condition not met) {

get next event

if event type = a

update state and event list

else if event type = b

update state and event list

else ...

}

The event list We will implement the event list as a list in R. Each ele-
ment will itself be a list, with two named elements: type and time. We will
assume that the elements of the event list are ordered according to their time
components.

Given this structure, to get the next event we just need the first element of
the event list:

© 2009 by Taylor & Francis Group, LLC

398 CASE STUDIES

current.event <- event.list[[1]]

event.list <- event.list[-1]

Inserting a new event into the event list requires more work, as we need to
preserve the ordering. Here is a function to do this for us:

add_event <- function(event.list, new.event) {

add new.event to event.list

N <- length(event.list)

if (N == 0) return(list(new.event))

find position n of new.event

n <- 1

while ((n <= N) && (new.event$time > event.list[[n]]$time)) {

n <- n + 1

}

add new.event to event.list

if (n == 1) {

event.list <- c(list(new.event), event.list)

} else if (n == N + 1) {

event.list <- c(event.list, list(new.event))

} else {

event.list <- c(event.list[1:(n-1)], list(new.event), event.list[n:N])

}

return(event.list)

}

In our case the event list will only ever contain the next purchase event and
sometimes also the next stock arrival event.

Here is our program for simulating an inventory system. To simulate a single
cycle we put I(0) = r and c(0) = 0 and then run the simulation until the next
time I(t) = r.

program: spuRs/resources/scripts/inventory_sim.r

rm(list=ls())

set.seed(1939)

source("../scripts/add_event.r")

inputs

system parameters

D <- 1000

L <- 0.1

K <- 1000

p <- 100

h <- 100

s <- 200

control parameters

q <- 146

r <- 115

© 2009 by Taylor & Francis Group, LLC

INVENTORY 399

initialise system and event list

n <- 0 # number of events so far

t <- 0 # time

stock <- r

costs <- 0

event.list <- list(list(type = "purchase", time = rexp(1, rate = D)))

event.list <- add_event(event.list, list(type = "new stock", time = L))

initialise stopping condition

time.to.stop <- FALSE

simulation

while (!time.to.stop) {

get next event

current.event <- event.list[[1]]

event.list <- event.list[-1]

n <- n + 1

update state and event list according to type of current event

if (current.event$type == "purchase") {

update system state

t[n+1] <- current.event$time

if (stock[n] > 0) { # reduce inventory, update holding costs

costs[n+1] <- costs[n] + h*stock[n]*(t[n+1] - t[n])

stock[n+1] <- stock[n] - 1

} else { # lost sale

costs[n+1] <- costs[n] + s

stock[n+1] <- stock[n]

}

generate next purchase

new.event <- list(type = "purchase", time = t[n+1] + rexp(1, rate = D))

event.list <- add_event(event.list, new.event)

check for end of cycle

if (stock[n+1] == r) {

order more stock

new.event <- list(type = "new stock", time = t[n+1] + L)

event.list <- add_event(event.list, new.event)

costs[n+1] <- costs[n+1] + K + q*p

}

} else if (current.event$type == "new stock") {

update system state

t[n+1] <- current.event$time

costs[n+1] <- costs[n] + h*stock[n]*(t[n+1] - t[n])

stock[n+1] <- stock[n] + q

}

check stopping condition

if (stock[n+1] == r) time.to.stop <- TRUE

}

It is worthwhile to plot the stock (inventory) level over a single cycle, and
compare with the expected stock level, which was the basis of the analysis
used in Section 21.3.1.

© 2009 by Taylor & Francis Group, LLC

400 CASE STUDIES

0.00 0.05 0.10 0.15

0
5

0
1

0
0

1
5

0

t

S
to

c
k

Figure 21.8 Simulated and expected stock (inventory) level for a continuous review
inventory model.

plot(t, stock, type = "s", ylim=c(0, max(stock)))

lines(c(0, L, L, q/D), c(r, r-L*D, q+r-L*D, r), lty=2, col="red")

The output is given in Figure 21.8. We see that qualitatively the simulated
stock level looks a lot like the expected stock level.

To estimate c(q, r) we need to run the simulation for several cycles. The pro-
gram inventory_sim.r incrementally updates the state vectors t, stock and
costs at each event. This gives us a complete record of the process, but is
too slow for simulating more than a few cycles. Thus to estimate c(q, r) we
rewrite the program so that it only keeps the current state, not the whole
history. We also need to change the stopping condition, so that we stop after
a fixed number of cycles. Finally, for each cycle we need to record the observed
value of C/T . The rewritten program can be found as inventory2_sim.r in
the resources/scripts directory within the spuRs archive.

Simulating 1000 cycles we obtained ĉ(q, r) = 116, 338.3 with a 95% CI of
(115,826.9, 116,849.8). Our approximation from Section 21.3.1 was 116,050.8,
which sits comfortably in the confidence interval.

21.3.3 A two-stage inventory system

Our approximation of c(q, r) for a continuous review inventory system worked
quite well. Unfortunately such an analysis becomes much harder for more
complex systems, and we have to rely more on simulation.

© 2009 by Taylor & Francis Group, LLC

INVENTORY 401

Consider an inventory system with a retail store and a depot. The store sells
items one at a time, keeps a small amount of inventory on site, and frequently
orders replacement stock from the depot. The depot supplies batches of stock
to the store, keeps a large amount of inventory, and infrequently orders large
quantities of replacement stock. Delivery from the depot to the store should be
quite quick, but the lead time for deliveries to the depot could be quite large.
Such systems are used when storage at the store is expensive, but storage at
the depot is cheap.

In practice a depot will often serve several stores, however we will restrict
ourselves to a single store.

The parameters needed to describe this two-stage system are

• D demand (at store);

• L1, L2 lead time for store and depot;

• K1, K2 ordering/delivery cost for store and depot;

• p per item cost (depot only);

• h1, h2 holding cost per item per unit time at store and depot;

• s shortage cost (at store);

• q1, q2 order quantities for store and depot;

• r1, r2 reorder point for store and depot.

Using discrete event simulation, we describe the state of the system using the
variables

• Time t;

• Inventory at the store I1;

• Inventory at the depot I2;

• Cumulative cost c;

and we have the following events

• Purchase at the store;

• Stock arrives at the store;

• Stock arrives at the depot.

There is a complication to the two-stage system that does not appear in the
simple continuous review model. It is possible that when the store orders stock
from the depot, the depot is empty. We cannot treat this as a lost sale, rather
the order has to be backlogged, then filled when the depot gets new stock. A
convenient way to deal with backlogged orders is to create a new event

• Backlogged order

When the depot fails to fill an order we just create a backlogged order at some
predetermined time b in the future. That is, we wait time b then try again.

© 2009 by Taylor & Francis Group, LLC

402 CASE STUDIES

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

t

S
to

c
k
 (

S
to

re
)

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
0
0

3
0
0

t

S
to

c
k
 (

D
e
p
o
t)

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0
0
0

2
0
0
0
0

t

C
o
s
ts

Figure 21.9 A simulation of the two-stage inventory system, showing the level of
stock (inventory) at the store and depot, and cumulative costs.

Pseudo-code Rather than give a full implementation of the two-stage inven-
tory system here, we will map out a suitable structure using pseudo-code. The
interested reader can find a working version as inventory_2stage_sim.r in
the spuRs archive, and some sample output is given in Figure 21.9, using a
plausible set of parameter values.

The two-stage inventory system is still a renewal process, though the cycles
are now more complex. Observe that when the inventory level at the depot
reaches the reorder point r2, it must be that the inventory level at the store
has just reached r1, because the only time we take stock from the depot is
when it is ordered by the store. At this point we also know all there is to know
about coming events: there will be a stock arrival at the store after a lead
time of L1; a stock arrival at the depot after a lead time of L2; the time to the
next purchase event is exponentially distributed, with rate D; and there will
be no pending backlogged order, because we know the depot has just filled an
order. Thus the point where the inventory levels I1 and I2 hit r1 and r2 is a
renewal point, and marks the start/finish of independent cycles.

For this example, even though we have a renewal structure, instead of running
the simulation for a given number of cycles, we have chosen to run it for a
fixed length of time, T say. The basic structure of our program is as follows:

initialise state variables

t <- 0

© 2009 by Taylor & Francis Group, LLC

INVENTORY 403

I1 <- r1

I2 <- r2

c <- 0

initialise event list

create empty event list

add stock_arrival_at_store event at time L1

add stock_arrival_at_depot event at time L2

add purchase event at time X ~ exp(D)

run the simulation

while (t < T) {

t.old <- t

get next event from event list

if (next event is a purchase) {

update state and event list for a purchase

...

} else if (next event is a stock_arrival_at_store) {

update state and event list for a stock_arrival_at_store

...

} else if (next event is a stock_arrival_at_depot) {

update state and event list for a stock_arrival_at_depot

...

} else { # next event is a backlogged_order

update state and event list for a backlogged_order

...

}

}

With each event we need to adjust the time and add accumulated holding
costs to c, other changes to the state variables and event list depend on the
event in question. We consider the purchase event first:

update state and event list for a purchase

update time

t <- new event time

update holding costs

c <- c + h1*I1*(t - t.old) + h2*I2*(t - t.old)

update stock level

if (I1 > 0) {

I1 <- I1 - 1

} else {

incur shortfall cost

c <- c + s

}

check store reorder level

if (I1 == r1) {

order from depot

...

}

schedule next purchase

add purchase event at time t + X where X ~ exp(D)

© 2009 by Taylor & Francis Group, LLC

404 CASE STUDIES

The process of making an order from the depot requires some thought, as it
will affect the level of stock at the depot, which means we also need to check
the depot reorder point. Moreover, if the depot does not have enough stock
to fill the order, then we have to generate a backlogged order. We will assume
that the level of stock at the depot is always a multiple of q1, which means
that r2 must also be a multiple of q1. The advantage of this assumption is
that we know to reorder only when I2 = r2, rather than when I2 ≤ r2. If we
reorder whenever I2 ≤ r2 we can make several orders while we are waiting
for the first one to arrive. (A more general way of dealing with this issue is
to include in the state description a logical variable that indicates whether or
not the store is waiting for an order to arrive.)

order from depot

if (I2 >= q1) {

depot can fill order

I2 <- I2 - q1

c <- c + K1

add stock_arrival_at_store event at time t + L1

check depot reorder level

if (I2 == r2) {

order from supplier

c <- c + K2 + q2*p

add stock_arrival_at_depot event at time t + L2

}

} else {

depot cannot fill order

add backlogged_order event at time t + d

}

A backlogged order event involves updating the state, then attempting an
order from the depot, as above.

update state and event list for a backlogged_order

update time

t <- new event time

update holding costs

c <- c + h1*I1*(t - t.old) + h2*I2*(t - t.old)

order from depot

...

The stock arrival events are both straightforward.

update state and event list for a stock_arrival_at_store

update time

t <- new event time

update holding costs

c <- c + h1*I1*(t - t.old) + h2*I2*(t - t.old)

update stock

I1 <- I1 + q1

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 405

update state and event list for a stock_arrival_at_depot

update time

t <- new event time

update holding costs

c <- c + h1*I1*(t - t.old) + h2*I2*(t - t.old)

update stock

I2 <- I2 + q2

Putting all these bits together we get our complete program. The process of
breaking down a problem into smaller manageable tasks is sometimes called
top-down programming or top-down refinement, and is an important tech-
nique for dealing with large problems. In this case we have used what is called
an event based viewpoint to structure the problem, but there are other pos-
sibilities, such as the process based viewpoint, the activity based viewpoint, or
the three-phase approach. For further reading on the topic of discrete event
simulation, have a look at the book ‘Computer Simulation in Management
Science’, by Mike Pidd, or ‘Simulation Modelling and Analysis’, by Law and
Kelton.

21.4 Seed dispersal

Plant ecologists who perform research in plant propagation are often inter-
ested in how far plant seeds disperse from a parent plant. Information about
dispersal enables ecologists to make predictions about the ability of an invasive
species to colonise a new area, for example.

One of the first questions we can ask is, ‘what is the mean displacement of a
seed from the parent plant?’ In order to frame this question in the context of
a model, we can ask, ‘what is the distribution of (R,Θ), the polar coordinates
of the displacement from the parent plant of a randomly chosen seed?’ To
collect suitable data to answer these questions, the ecologists install seedtraps
in lines that extend out from the parent plant (see Figure 21.10). These lines
are called transects. After a specified amount of time (for example, a single
flowering season), the seeds in each trap are counted; these seed counts at
given distances form the experimental data that we have to work with.

We will assume that the seed rain is radially symmetric around the plant,
although this is usually untrue. This assumption is called isotropy. An im-
mediate consequence of the assumption is that Θ ∼ U(0, 2π), independently
of R. Moreover, the dispersal of seeds along each transect will be identically
distributed, so it is sufficient for us to restrict our attention to a single transect.

Let T be the distance from the parent plant of a seed chosen at random from
the transect. Importantly, T has a different distribution to R, which is what we
really want to know. The reason is that the seeds in the closer traps are over
weighted relative to the seeds in the remote traps, because their traps subtend
a greater angle than do the remote traps. That is, the near traps sample a

© 2009 by Taylor & Francis Group, LLC

406 CASE STUDIES

Figure 21.10 Transect of seedtraps from plant; squares represent seed traps, the circle
represents the median of the overall seed shadow, the black dot is the focal parent
plant.

0 2 4 6 8 10

−4

−2

0

2

4

δ

t

angle θ ≈ δ t

Figure 21.11 Relating distance along the transect t to the radial distance r.

larger slice of the circular seed rain than do the remote traps. The situation is
illustrated in Figure 21.11. Suppose the traps have width δ (assumed small),
then seeds that fall at distance t on the transect will have polar coordinates
(r, α), where r = t and −θ/2 < α < θ/2, for θ such that

t sin θ = δ.

If δ/t is small then so is θ, in which case sin θ ≈ θ and we get

− δ

2t
< α <

δ

2t
.

That is, the overcounting of seeds at distance t along the transect is inversely
proportional to t.

A further problem is that we do not actually observe T . Suppose that trap i
covers area [xi − ǫ/2, xi + ǫ/2]× [−δ/2, δ/2], for j = 1, . . . , k. Using the trap

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 407

centres as our displacements, we observe a discretised version of T , call it T ∗,
where

P(T ∗ = xi) =
P(xi − ǫ/2 < T < xi + ǫ/2)

∑k
j=1 P(xj − ǫ/2 < T < xj + ǫ/2)

.

In practice, if the traps are regularly spaced and reasonably close together
(relative to the range of observations), we will just treat our observations of
T ∗ as if they are observations of T . That is, we will ignore this problem.

Let t1, . . . , tn be our sample from T . A probability density function can be used
to represent the relative number of seeds that are located along the transect,
as a function of distance from the parent plant. We will refer to this as the
transect pdf. For the moment, we shall assume that the transect pdf follows
the exponential function; that is, for 0 ≤ t <∞ and τ > 0,

fT (t) = τe−tτ ,

where τ is the rate parameter. The expected mean and variance of T in terms
of the parameters of the model are 1/τ and 1/τ2 respectively, and we can
estimate τ using τ̂ = 1/t̄, where t̄ is the mean distance from the seeds to the
plant.

Fitting the transect pdf is straightforward, but how does this give us the
density of R, which we call the radial pdf? Let fR be the pdf of R, then from
Figure 21.11 we see that

fT (t) dt = P(t < T < t+ dt)

≈ P

(

t < R < t+ dt and − δ

2t
< Θ <

δ

2t

)

= fR(t) dt
δ

2t
as R and Θ are independent.

That is
fR(r) ∝ rfT (r). (21.3)

The approximation step above comes from putting sin Θ ≈ Θ. The approxi-
mation becomes exact in the limit as δ → 0.

Thus, in the case T ∼ exp(τ) we have fR(r) = kre−rτ , for 0 ≤ r < ∞
and τ > 0, where k is some normalising constant, chosen so that the density
function integrates to 1. Using integration by parts it is easy to check that
k = τ2, so

fR(r) = rτ2e−rτ .

This is the gamma distribution, with shape of 2 and rate of τ . Thus, the
mean and variance of the distance that a seed travels, determined radially, are
ER = 2/τ and VarR = 2/τ2, respectively. If we mistakenly use the exponential
distribution instead of the gamma distribution, then our model for the seeds
will place them too close to the plant and insufficiently variable.

In short, if we measure a transect of seedtraps and fit an exponential distri-
bution to the numbers using τ̂ = 1/t, then to model the seed rain in two

© 2009 by Taylor & Francis Group, LLC

408 CASE STUDIES

dimensions, we use a Γ(τ, 2) distribution for the radial distance and an inde-
pendent U(0, 2π) distribution for the angle.

Note, by integrating both sides of Equation 21.3, we can deduce that in general

fR(r) =
rfT (r)

E(T)
. (21.4)

That is, E(T) is the appropriate rescaling factor for the length weighted radial
distribution.

21.4.1 Simulating the radial distance R

Consider now the problem of simulating the process by which a plant species
colonises a new area. If we model this at the level of individual plants, then
we need to be able to simulate where the seeds of each plant land. That is, we
need to be able to simulate (R,Θ). Of course, we also need to know how many
seeds a plant produces and when, how long the plant lives, and the chance
that a seed will successfully germinate, which will depend on where it lands,
but these are questions for another time.

As we have seen, if we know the transect density fT then we can obtain the
radial density fR using Equation 21.4. However the exact functional form
of the transect density may not be known. What we would like is a general
technique which, assuming we can simulate T , allows us to simulate R. For
example, if we wanted to make no assumptions at all about the distribution
of T , we could simulate T directly from the observations t1, . . . , tn. That is,
put P(T = ti) = 1/n for i = 1, . . . , n. A more sophisticated approach would
be to use a non-parametric estimate of fT , but this is beyond the scope of this
book.

We now demonstrate that it is possible to simulate fR using fT and rejection
sampling. That is, we can simulate fR without knowing its closed-form ex-
pression, just so long as we know fT . Suppose that the range of T is bounded
by a. That is 0 ≤ T ≤ a. Take U ∼ U(0, a) independently of T then define

S = T |T > U.

That is, for r ∈ [0, a],

P(S ≤ r) = P(T ≤ r |T > U).

To calculate the right-hand side probability we need the following version
of the Law of Total Probability, which we give here without proof. For any
random variables X and Y , with Y continuous, and any set A ⊂ R

2, we have

P((X,Y) ∈ A) =

∫

y

P((X, y) ∈ A |Y = y)fY (y)dy.

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 409

In our case, noting that T and U are independent, we have

P(T ≤ r |T > U) =
P(U < T ≤ r)

P(T > U)

=

∫ a

0 P(U < t ≤ r)fT (t)dt
∫ a

0
P(t > U)fT (t)dt

=

∫ r

0
(t/a)fT (t)dt

∫ a

0
(t/a)fT (t)dt

=

∫ r

0
fR(t)dt

∫ a

0 fR(t)dt

= FR(t) = P(R ≤ t).
That is, S = T |T > U has the same distribution as R, the radial displace-
ment. Moreover, if we can simulate T then we can simulate S easily using a
rejection algorithm. Suppose that T.sim() simulates T , then to simulate S
(or equivalently R), we can use the function below. The argument a gives an
upper bound on the range of T .

R.sim <- function(a) {

while (TRUE) {

U <- runif(1, 0, a)

T <- T.sim()

if (T > U) return(T)

}

}

Recall from Equation 21.3 that compared to R, displacements as measured
by T are over represented by a factor proportional to the inverse distance
from the origin. Our rejection algorithm thins out our observations of T , by
a factor inversely proportional to the distance from the origin, negating the
over representation caused by measuring along a transect.

Our definition of S required the range of T to be bounded. In practice, pro-
vided we are prepared to live with some occasional errors, if T has an un-
bounded range then we just take a large enough that P(T > a) ≤ ǫ, for some
small ǫ. For example, if T ∼ exp(1/2) then P(T > a) = exp(−a/2), so for
ǫ = 0.0001 we get a ≥ −2 log ǫ = 18.42 (to 2 decimal places). What happens
is that simulated values of T greater than a are always accepted, rather than
being thinned.

To test that the distributions of S and R really are the same, we consider a
case where we know what the distribution of R is, and compare that with an
empirical estimate of the density of S, calculated from a simulated sample. We
take the case T ∼ exp(1/2) and R ∼ Γ(1/2, 2) and put a = 20. The output of
our simulation experiment is given in Figure 21.12. In the left panel, we show
the transect pdf (solid line) and the analytically computed radial pdf (dotted

© 2009 by Taylor & Francis Group, LLC

410 CASE STUDIES

line). In the right panel, we include the analytical radial pdf again, and add
an empirical estimate of the density of S. The two are extremely close.

To simulate S we use a vectorised version of R.sim. This has the advantage of
speeding up the simulation, but the disadvantage that we don’t know exactly
how many observations of S we are going to get. In this case, provided we get
enough observations to estimate the density of S, this is not a problem.

program spuRs/resources/scripts/seed-test.r

set up two plots side-by-side

par(las=1, mfrow=c(1,2), mar=c(4,5,0,2))

graph f_R and f_T on the LHS plot

curve(dgamma(x, shape=2, rate=1/2), from=0, to=20,

ylim=c(0, dexp(0, rate=1/2)), lty=2,

xlab="r", ylab=expression(paste(f[T](r), " and ", f[R](r))))

curve(dexp(x, rate=1/2), add=TRUE)

abline(h=0, col="grey")

generate T, U, and S samples for case 1

T <- rexp(1000000, rate=1/2)

U <- runif(1000000, min=0, max=20)

S <- T[T > U]

graph estimate of f_S and f_R on the RHS plot

hist(S, breaks=seq(0, max(S)+0.5, 0.5), freq=FALSE,

xlim=c(0,20), ylim=c(0, dexp(0, rate=1/2)),

main="", xlab="r",

ylab=expression(paste(f[R](r), " and ", hat(f)[S](r))),

col="lightgrey", border="darkgrey")

curve(dgamma(x, shape=2, rate=1/2), add=TRUE)

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

r

f T
(r

)
a

n
d

 f
R
(r

)

r

f R
(r

)
a

n
d

 f^ S
(r

)

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

Figure 21.12 Acceptance/rejection sampling for seed shadows using an exponential
transect pdf.

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 411

To conclude this example, we consider a couple of other cases where the radial
pdf of fR can be obtained analytically and can also be easily simulated, thereby
providing a further test of our rejection algorithm.

In the first case we suppose that the transect pdf fT is a lognormal density
with parameters µ and σ2. That is,

fT (x | µ, σ2) =
1√

2πxσ
e−(log x−µ)2/(2σ2).

The radial pdf is thus

fR(r) ∝ e−(log r−µ)2/(2σ2).

This suggests deriving the distribution of logR (by applying the transforma-
tion theory from Section 14.5.2), which gives logR ∼ N(µ + σ2, σ2). Hence,
R is still lognormal but with parameters µ+ σ2 and σ2.

In the second case we use a Weibull distribution, with parameters a and b,
which has density

fT (x | a, b) =
a

b

(x

b

)a−1

exp
(

−
(x

b

)a)

.

Thus, for a Weibull transect with parameters a = 2 and b = 2 say, we have
the radial pdf

fR(r) ∝ x2e−x2/4,

which we recognise as a chi distribution with three degrees of freedom, scaled
by a factor of

√
2. We write R ∼

√
2χ3. A χ random variable with k degrees

of freedom is defined as the square root of a χ2
k random variable.

To estimate fR we use code very similar to the code that created Figure 21.12.
The only substantial changes are in simulating T , the distribution of the tran-
sect pdf (Figure 21.13).

> # set up two plots side-by-side

> par(las=1, mfrow=c(1,2), mar=c(4,5,3,2))

> # Construct a graphic for the Lognormal transect pdf

> T <- rlnorm(1000000, meanlog = 0.5, sdlog = 0.55)

> U <- runif(1000000, min=0, max=20)

> S <- T[T > U]

> hist(S, breaks=seq(0, max(S)+0.5, 0.125), freq=FALSE,

+ xlim=c(0,7), ylim=c(0, dexp(0, rate=1/2)),

+ main="Lognormal", xlab="r",

+ ylab=expression(paste(f[R](r), " and ", hat(f)[S](r))),

+ col="lightgrey", border="darkgrey")

> curve(dlnorm(x, meanlog = 0.5, sdlog = 0.55), add=TRUE, lty=2)

> curve(dlnorm(x, meanlog = 0.8025, sdlog = 0.55), add=TRUE)

> # Construct a graphic for the Weibull transect pdf

> T <- rweibull(1000000, shape=2, scale=2)

> U <- runif(1000000, min=0, max=20)

© 2009 by Taylor & Francis Group, LLC

412 CASE STUDIES

> S <- T[T > U]

> hist(S, breaks=seq(0, max(S)+0.5, 0.125), freq=FALSE,

+ xlim=c(0,7), ylim=c(0, dexp(0, rate=1/2)),

+ main="Weibull", xlab="r",

+ ylab=expression(paste(f[R](r), " and ", hat(f)[S](r))),

+ col="lightgrey", border="darkgrey")

> curve(dweibull(x, shape=2, scale=2), add=TRUE, lty=2)

> curve((1/(2*sqrt(pi)))*x^2*exp(-(x^2)/4),add=TRUE)

Lognormal

r

f R
(r

)
a

n
d

 f^ S
(r

)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

Weibull

r

f R
(r

)
a

n
d

 f^ S
(r

)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

Figure 21.13 Acceptance/rejection sampling for seed shadows using lognormal and
Weibull transect pdfs. The dotted lines represent the transect pdfs, the shaded his-
tograms represent the radial pdfs from simulation, and the solid lines are the exact
radial pdfs we derived.

21.4.2 Object-oriented programming implementation

In Section 8.4 (on object-oriented programming, or OOP), we developed a
trapTransect class. In this section we will construct a transectHolder class
that contains one or more trapTransect objects, and methods to fit a nom-
inated pdf to the seed distances along the transect, and to simulate random
seed locations from the fitted transect pdf using rejection sampling as outlined
above.

Here is the S3 trapTransect constructor function from Section 8.4, and two
methods, print and mean. Recall that the seed data are stored as seed counts
at given distances.

> trapTransect <- function(distances, seed.counts, trap.area = 0.0001) {

+ if (length(distances) != length(seed.counts))

+ stop("Lengths of distances and counts differ.")

+ if (length(trap.area) != 1) stop("Ambiguous trap area.")

+ trapTransect <- list(distances = distances,

+ seed.counts = seed.counts,

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 413

+ trap.area = trap.area)

+ class(trapTransect) <- "trapTransect"

+ return(trapTransect)

+ }

> print.trapTransect <- function(x, ...) {

+ str(x)

+ }

> mean.trapTransect <- function(x, ...) {

+ return(weighted.mean(x$distances, w=x$seed.counts))

+ }

We imagine a situation in which we have a large number of plants, around
each of which a transect of seedtraps has been installed. Critically, the number
of seedtraps may vary by plant. For example, the seedtrap count might change
by plant height. In order to store the observations for later analysis, we need
a storage device that does not require that everything be the same length,
for which a list is ideal. That is, a transectHolder should contain a list of
trapTransect objects (and possibly some other bits and pieces).

We wish to have a function fitDistances, that takes a transectHolder

object and fits a nominated pdf to the observed (transect) seed distances. That
is, we assume that the transect distribution is the same for each plant, and fit a
single pdf to all of our observations. There are various ways we could do this;
our approach is to fit the nominated pdf to each transect, then summarise
across the transects by taking the mean of the computed parameters. This
strategy is not optimal, but is not unreasonable.

We could hide the fitDistances function inside the transectHolder con-
structor function, which we present below, but it might be useful to try differ-
ent models, so we prefer the fitDistances function to be readily available to
the user. The work of actually fitting a pdf is performed using maximum likeli-
hood by the convenient fitdistr function from the MASS package: we just need
to get our data into the correct format. To this end we define getDistances,
which takes a trapTransect object and returns a vector of seed distances.

> fitDistances <- function(x, family=NULL) {

+ # x$transects is a list of trapTransect objects

+ # family is a string giving the name of a pdf

+ require(MASS) # we need this package for the fitdistr() function

+ getDistances <- function(y) {

+ rep(y$distances, y$seed.counts)

+ }

+ getEstimates <- function(distance) {

+ fitdistr(distance, family)$estimate

+ }

+ distances <- lapply(x$transects, getDistances)

+ parameter.list <- lapply(distances, getEstimates)

+ parameters <- colMeans(do.call(rbind, parameter.list))

© 2009 by Taylor & Francis Group, LLC

414 CASE STUDIES

+ return(parameters)

+ }

Observe the function do.call, which accepts as arguments a function name
and a list of arguments for the function, and calls the function using the list
of arguments.

As before, for the sake of brevity, we omit useful checks for correct object
class, and we omit informative behaviour in the case of an empty transect.
Note that even though we are operating upon arbitrary numbers of objects,
we never need to invoke a loop. Instead we vectorise all the operations using
the graceful lapply function.

We now give a constructor for our transectHolder class. Rather than just
create a list of trapTransect objects, we will add infrastructure in order to
simplify its use for our purposes. The extra infrastructure that we will add is
the automatic fitting of a nominated pdf to the transects, and the ability to
simulate from the fitted model.

> transectHolder <- function(..., family="exponential") {

+ transectHolder <- list()

+ transectHolder$transects <- list(...)

+ distname <- tolower(family)

+ transectHolder$family <- family

+ transectHolder$parameters <- fitDistances(transectHolder, distname)

+ transectHolder$rng <- switch(distname,

+ "beta" = "rbeta",

+ "chi-squared" = "rchisq",

+ "exponential" = "rexp",

+ "f" = "rf",

+ "gamma" = "rgamma",

+ "log-normal" = "rlnorm",

+ "lognormal" = "rlnorm",

+ "negative binomial" = "rnbinom",

+ "poisson" = "rpois",

+ "weibull" = "rweibull",

+ NULL)

+ if (is.null(transectHolder$rng))

+ stop("Unsupported distribution")

+ class(transectHolder) <- "transectHolder"

+ return(transectHolder)

+ }

This simple constructor again omits checks for suitable arguments, suc-
cessful fitting of the probability density function, and so on. The
list of trapTransect objects is stored as transectHolder$transects.
fitDistances is used to estimate the parameters for the nominated pdf; the
pdf family and fitted parameters are stored as transectHolder$family and
transectHolder$parameters. transectHolder$rng stores the name of the

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 415

function that will be used to simulate from the fitted transect distribution.
When complete, the object is then assigned the transectHolder class.

A function to print the object might look like this.

> print.transectHolder <- function(x, ...){

+ print(paste("This object of class transectHolder contains ",

+ length(x$transects), " transects.", sep=""))

+ str(x)

+ }

We can construct a function to simulate n random seed locations, given a
transectHolder object, using the generic function simulate.

> methods(simulate)

[1] simulate.lm*

Non-visible functions are asterisked

> simulate

function (object, nsim = 1, seed = NULL, ...)

UseMethod("simulate")

<environment: namespace:stats>

We need to write a version that will be specific to our class. We make sure
that we match the argument names of the generic function.

> simulate.transectHolder <- function(object, nsim=1, seed=NULL, ...) {

+ if (!is.null(seed)) set.seed(seed)

+ distances <- c()

+ while(length(distances) < nsim) {

+ unfiltered <- do.call(object$rng,

+ as.list(c(10*nsim, object$parameters)))

+ filter <- runif(10*nsim, 0, max(unfiltered))

+ distances <- c(distances, unfiltered[unfiltered > filter])

+ }

+ distances <- distances[1:nsim]

+ angles <- runif(nsim, 0, 2*pi)

+ return(data.frame(distances = distances,

+ angles = angles,

+ x = cos(angles) * distances,

+ y = sin(angles) * distances))

+ }

Notice that, using do.call, we directly invoke the random-number generator
and pass to it the estimated parameters, without knowing what distribution
it is, nor how many parameters it requires.

We now demonstrate the construction of a transectHolder object, using data

© 2009 by Taylor & Francis Group, LLC

416 CASE STUDIES

that mimics the structure of a field experiment, and simulate five random
seedlings using the distribution fitted to the trap data.

> transect.1 <- trapTransect(distances = 1:4,

+ seed.counts = c(4, 3, 2, 0))

> transect.2 <- trapTransect(distances = 1:3,

+ seed.counts = c(3, 2, 1))

> transect.3 <- trapTransect(distances=(1:5)/2,

+ seed.counts = c(3, 4, 2, 3, 1))

> allTraps <- transectHolder(transect.1, transect.2, transect.3,

+ family="Weibull")

> allTraps

[1] "This object of class transectHolder contains 3 transects."

List of 4

$ transects :List of 3

..$:List of 3

.. ..$ distances : int [1:4] 1 2 3 4

.. ..$ seed.counts: num [1:4] 4 3 2 0

.. ..$ trap.area : num 1e-04

.. ..- attr(*, "class")= chr "trapTransect"

..$:List of 3

.. ..$ distances : int [1:3] 1 2 3

.. ..$ seed.counts: num [1:3] 3 2 1

.. ..$ trap.area : num 1e-04

.. ..- attr(*, "class")= chr "trapTransect"

..$:List of 3

.. ..$ distances : num [1:5] 0.5 1 1.5 2 2.5

.. ..$ seed.counts: num [1:5] 3 4 2 3 1

.. ..$ trap.area : num 1e-04

.. ..- attr(*, "class")= chr "trapTransect"

$ family : chr "Weibull"

$ parameters: Named num [1:2] 2.37 1.8

..- attr(*, "names")= chr [1:2] "shape" "scale"

$ rng : chr "rweibull"

- attr(*, "class")= chr "transectHolder"

> simulate(allTraps, 5, seed = 123)

distances angles x y

1 1.9707469 3.769842 -1.5944481 -1.1582653

2 0.7456877 2.091192 -0.3707734 0.6469754

3 2.8898740 3.070046 -2.8824807 0.2065838

4 1.4863482 5.997136 1.4259521 -0.4193945

5 1.6207433 3.034165 -1.6114000 0.1737775

This brief demonstration concludes the first phase of development of our class.

We are now able to test our earlier conjecture (that the displacement pdf fR

and the transect pdf fT are related by fR(r) ∝ rfT (r)), for a wider range of
transect distributions, using simulation. We can proceed as follows.

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 417

1. Choose one of the available transect distributions, and simulate a two-
dimensional seed shadow using the acceptance sampling algorithm.

2. Using only the random points located within a fixed-width transect, com-
pare the quantiles with the original transect distribution.

In short, we should be able to recover our original transect distribution by the
correct simulation followed by sampling along a transect.

We simulate from the Weibull distribution, with arbitrary but known shape
and scale parameters, and discretise the random numbers to mimic the process
of sampling for seedtraps. The pdf of the Weibull density that we used is as
follows:

f(x) =
a

b

(x

b

)a−1

exp
(

−
(x

b

)a)

where the shape parameter is a and scale parameter is b.

> simulated.seed.points <- table(round(rweibull(1000, shape = 2,

+ scale = 5)))[-1]

We drop the first measure to remove zeros from the observations. We use
these simulated seedtrap points to construct a transect, and store that in a
transectHolder, in the process fitting the Weibull pdf to the seedtrap data.

> simulated.transect <-

+ trapTransect(distances = as.numeric(names(simulated.seed.points)),

+ seed.counts = simulated.seed.points)

> simulated.holder <- transectHolder(simulated.transect, family="Weibull")

Finally we simulate a new site, using the fitted model, and select only those
points that are in our new transect, which for convenience’s sake we will not
discretise. We arbitrarily set our transect as being x > 0 and −0.5 < y < 0.5.
If our conjecture is correct then the distribution of these points should be close
to the original fitted density, which is Weibull.

> good.site <- simulate(simulated.holder, 100000)

> good.points <- good.site$x[abs(good.site$y) < 0.5 & good.site$x > 0]

We compare the distributions using the following code, with output in Fig-
ure 21.14. Rather than try to visually compare simulated and theoretical dis-
tributions, here we provide a scatterplot of the simulated and theoretical quan-
tiles, called a quantile-quantile plot. If the simulated distribution matches the
theoretical distribution well, then the simulated quantiles should line up well
with the theoretical quantiles. The comparison seems favourable; the simulated
distribution along the transect matches the theoretical distribution quite well.

© 2009 by Taylor & Francis Group, LLC

418 CASE STUDIES

> par(las = 1)

> quantiles <- (1:99)/100

> plot(quantile(good.points, probs = quantiles), do.call(qweibull,

+ c(list(quantiles), unlist(simulated.holder$parameters))),

+ xlab = "Simulated Quantiles", ylab = "Theoretical Quantiles")

> abline(0, 1, col = "darkgrey")

2 4 6 8 10

2

4

6

8

10

Simulated Quantiles

T
h

e
o

re
ti
c
a

l
Q

u
a

n
ti
le

s

Figure 21.14 Quantile-quantile plot of observed and theoretical seedling distance dis-
tributions.

To conclude our development, we will add functions to compute the
mean and standard deviation of the transect distance, using all the tran-
sects contained in the transectHolder object. We will assume that each
of the plants should have equal weight. Because each object contained
within transectHolder$transects is a trapTransect, we can reuse the
mean.trapTransect function that we have already written.

> mean.transectHolder <- function(x) {

+ mean(sapply(x$transects, mean))

+ }

Note that the call to mean within the sapply function will automatically
deploy mean.trapTransect if the objects to which the function is being ap-
plied are of class trapTransect. If at any time we need to use a different
function for the mean of trapTransect objects, all we have to do is rewrite
mean.trapTransect.

sd is not a generic function, so although we can create sd.transectHolder, it
will not be automatically used in place of sd if the latter is called. An explicit
call to the function sd.transectHolder is needed, as below.

> var.trapTransect <- function(x) {

© 2009 by Taylor & Francis Group, LLC

SEED DISPERSAL 419

+ return(var(rep(x$distances, x$seed.counts)))

+ }

> sd.transectHolder <- function(x) {

+ sqrt(mean(sapply(x$transects, var.trapTransect)))

+ }

We can now invoke these functions to find the mean of the means of the
transect seed distances, and the quadratic mean of the standard deviations of
the transect seed distances.

> mean(allTraps)

[1] 1.584046

> sd.transectHolder(allTraps)

[1] 0.7746426

© 2009 by Taylor & Francis Group, LLC

CHAPTER 22

Student projects

This chapter presents a suite of problems that can be tackled by students.
They are less involved than the case studies that were detailed in the preceding
chapter, but more substantial than the exercises that we have included in each
chapter.

22.1 The level of a dam

In this assignment we will model the changing level (or height) of water in a
dam (Figure 22.1). The minimum level is 0 and the maximum is hmax. The
level increases when rain falls in the catchment area and decreases as a result
of evaporation and use. We will ignore any loss due to leaks or seepage.

22.1.1 Height and volume

Volume Let A(h) be the cross-sectional area of the dam at height h.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

h Area A(h)

Figure 22.1 An idealized dam.

The volume of water contained by the dam when it is filled to level h is

V (h) =

∫ h

0

A(u) du.

421

© 2009 by Taylor & Francis Group, LLC

422 STUDENT PROJECTS

Write a function volume(h, hmax, ftn) that returns V (h) for h ∈ [0, hmax],
where hmax is hmax and ftn is a function of a single variable which is assumed
to return A(h). For h < 0 your function should return 0, and for h > hmax it
should return Vmax = V (hmax).

Use at least 100 subdivisions when calculating the integral numerically.

Height If the current level of the dam is h and the volume of the dam changes
by an amount v, then the level of the dam becomes u = H(h, v) where u
satisfies

V (u) = V (h) + v.

Note that if the right-hand side of this equation is > Vmax or < 0, then this
equation has no solution. In this case we take u = hmax or u = 0, respectively.

Using a root-finding algorithm, write a function height(h, hmax, v, ftn)

that returns H(h, v), where hmax is hmax and ftn is a function of a single
variable that is assumed to return A(h).

Use a tolerance of 1e-6 in your root-finding algorithm.

Test case Suppose that the dam is bowl-shaped with profile given by the
equation y = πx2. That is, the dam has the shape obtained by rotating the
curve y = πx2 about the y-axis (Figure 22.2).

x

z

y y = xp
2

Figure 22.2 A schematic dam.

Show that, for h ∈ [0, hmax] and v ∈ [−h2/2, Vmax − h2/2],

A(h) = h;

V (h) = h2/2; and

H(h, v) =
√

h2 + 2v.

© 2009 by Taylor & Francis Group, LLC

THE LEVEL OF A DAM 423

To test that your function height(h, hmax, v, ftn) works, define

A <- function(h) return(h)

then calculate height(h, hmax = 4, v, ftn = A) for the following values
of h and v:

h 0 2 4 1 1
v 1 1 1 0.1 −0.1

22.1.2 Tracking height over time

Suppose that h(t) is the level of the dam at the start of day t, and that v(t)
is the volume of rain falling into the catchment during day t, for t = 1, . . . , n.
Also let α be the volume of water taken from the dam for use per day, and let
βA(h(t)) be the volume of water lost due to evaporation during day t. Then
the level of water in the dam at the start of day t+ 1 is given by

h(t+ 1) = H(h(t), v(t)− α− βA(h(t))).

Further suppose that hmax = 10, α = 1, β = 0.05, and A(h) has the form

A(h) =

{

100h2 for 0 ≤ h ≤ 2;
400(h− 1) for 2 ≤ h.

The file catchment.txt (in the spuRs archive) gives v(t) for n = 100 con-
secutive days. Write a program that reads this file then, for a given value of
h(1), calculates h(2), . . . , h(n + 1). Plot your output for the cases h(1) = 1
and h(1) = 5, as in Figures 22.3 and 22.4, respectively.

© 2009 by Taylor & Francis Group, LLC

424 STUDENT PROJECTS

0 20 40 60 80 100

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Daily water level in a dam

day

le
v
e
l

Figure 22.3 Simulated time trace of water level for dam, h(1) = 1.

0 20 40 60 80 100

4
.2

4
.4

4
.6

4
.8

5
.0

5
.2

Daily water level in a dam

day

le
v
e
l

Figure 22.4 Simulated time trace of water level for dam, h(1) = 5.

© 2009 by Taylor & Francis Group, LLC

ROULETTE 425

22.2 Roulette

At the Crown Casino in Melbourne, Australia, some roulette wheels have 18
slots coloured red, 18 slots coloured black, and 1 slot (numbered 0) coloured
green. The red and black slots are also numbered from 1 to 36. (Note that
some of the roulette wheels also have a double zero, also coloured green, which
nearly doubles the house percentage.)

You can play various ‘games’ or ‘systems’ in roulette. Four possible games are:

• A. Betting on Red

This game involves just one bet. You bet $1 on red. If the ball lands on red
you win $1, otherwise you lose.

• B. Betting on a Number

This game involves just one bet. You bet $1 on a particular number, say
17; if the ball lands on that number you win $35, otherwise you lose.

• C. Martingale System

In this game you start by betting $1 on red. If you lose, you double your
previous bet; if you win, you bet $1 again. You continue to play until you
have won $10, or the bet exceeds $100.

• D. Labouchere System

In this game you start with the list of numbers (1, 2, 3, 4). You bet the sum
of the first and last numbers on red (initially $5). If you win you delete the
first and last numbers from the list (so if you win your first bet it becomes
(2,3)), otherwise you add the sum to the end of your list (so if you lose
your first bet it becomes (1, 2, 3, 4, 5)). You repeat this process until your
list is empty, or the bet exceeds $100. If only one number is left on the list,
you bet that number.

Different games offer different playing experiences, for example some allow you
to win more often than you lose, some let you play longer, some cost more to
play, and some risk greater losses. The aim of this assignment is to compare
the four games above using the following criteria:

1. The expected winnings per game;

2. The proportion of games you win;

3. The expected playing time per game, measured by the number of bets
made;

4. The maximum amount you can lose;

5. The maximum amount you can win.

© 2009 by Taylor & Francis Group, LLC

426 STUDENT PROJECTS

22.2.1 Simulation

For each game write a function (with no inputs) that plays the game once
and returns a vector of length two consisting of the amount won/lost and how
many bets were made. Then write a program that estimates 1, 2, and 3, by
simulating 100,000 repetitions of each game. Note that a game is won if you
make money and lost if you lose money.

22.2.2 Verification

For games A and B, check your estimates for 1 and 2 by calculating the
exact answers. What is the percentage error in your estimates for 100,000
repetitions?

For each game, work out the exact answers for 4 and 5. Of course, if this is not
close to the answer given by your simulation, then you should suspect that
either your calculation or your program is erroneous.

22.2.3 Variation

Repeat the simulation experiment of Part 22.2.1 five times. Report the mini-
mum and maximum values for 1, 2, and 3 in a table as follows:

Exp. winnings Prop. wins Exp. play time
Game min–max min–max min–max

A

B

C

D

Modify your program from Part 22.2.1 so that in addition to estimating the
expected winnings, expected proportion of wins, and expected playing time,
it also estimates the standard deviation of each of these values. (You may use
the built-in function sd(x) to do this.) For a single run, consisting of 100,000
repetitions of each game, report your results in a table as follows:

© 2009 by Taylor & Francis Group, LLC

ROULETTE 427

Winnings Prop. wins Play time
Game mean, std dev mean, std dev mean, std dev

A

B

C

D

For which game is the amount won most variable?

For which game is the expected playing time most variable?

© 2009 by Taylor & Francis Group, LLC

428 STUDENT PROJECTS

22.3 Buffon’s needle and cross

The following question was first considered by George Louis Leclerc, later
Comte de Buffon, in 1733:

‘If a thin, straight needle of length l is thrown at random onto the middle
of a horizontal table ruled with parallel lines a distance d ≥ l apart, so
that the needle lies entirely on the table, what is the probability that no
line will be crossed by the needle?’

The answer depends on π−1 and so simulation of this experiment offers a way
of estimating π−1. We will look at the complementary probability that the
needle actually intersects with a ruled line on the table; call this a crossing.

22.3.1 Theoretical analysis

We can think of the position of the needle as being determined by two random
variables:

Y : the perpendicular distance of the centre of the needle from the nearest
line on the table and

X : the angle that the top half of the needle makes with a ray through its
centre, parallel to the table lines and extending in a positive direction.

See Figure 22.5 for a sketch.

For the position of the needle to be random, we require Y to be U(0, d/2) and
X to be U(0, π). We then define the sample space Ω of all possible outcomes
or positions of the needle as Ω = [0, π]× [0, d/2].

1. Identify the inequality that X and Y must satisfy if the needle is to cross
a ruled table line. Draw a picture of the sample space Ω and use your
inequality to shade that part of it that corresponds to a crossing. We will
refer to this region as the crossing region C.

2. As the needle is thrown at random, the probability of falling in any region
R in Ω can be calculated as the ratio of the area of R, denoted |R|, to the
total area of Ω. That is, 2|R|/(πd). Using integration, find the area of C
and hence confirm that the probability of a crossing is 2l/(πd).

22.3.2 Simulation estimates

Let T1 be the number of crossings in n tosses of the needle, then E1 = T1d/(nl)
is an unbiased estimator of 2/π. Write a program to simulate E1 using n =
100,000 needle tosses.

Calculate the variance of E1 and thus suggest the best needle length l to use,
subject to the restriction l ≤ d.

© 2009 by Taylor & Francis Group, LLC

BUFFON’S NEEDLE AND CROSS 429

Y
X

d

l

Figure 22.5 Sketch of Buffon’s needle.

22.3.3 Buffon’s cross

An extension of the Buffon needle problem is to think of throwing a cross
made up of two equal length needles joined at right angles at their centres.
We will assume that the needle lengths l = d. The cross can intersect the ruled
lines 0, 1, or 2 times.

1. If the position of the first needle (and hence the cross) is specified by (X,Y)
as above, show that the second needle crosses the ruled lines if:

Y ≤ l

2
cos(X), for 0 < X <

π

2
;

Y ≤ −l
2

cos(X), for
π

2
< X < π.

2. Write a program to estimate the probabilities of 0, 1, or 2 crossings, using
n =50,000 simulated tosses of the cross.

3. You can think of the cross as just a convenient way of throwing two needles
at once. So if T2 represents the total crossings in n tosses of the cross, then
E2 = T2/2n should be another unbiased estimator of 2/π.

Write E2 as
∑n

i=1 Zi/n, where Zi ∈ {0, 1, 2} is the number of crossings
on the i-th toss. We can estimate the variance of E2 using S2

Z/n, where
S2

Z =
∑n

i=1(Zi−Z)2/(n− 1) is the sample variance. Compare your answer
with the theoretical variance of E1 when n =100,000. Is it smaller, larger,
or about the same? (This is an example of antithetic sampling.)

© 2009 by Taylor & Francis Group, LLC

430 STUDENT PROJECTS

22.4 Insurance risk

This is a simplified version of two common problems faced by insurance com-
panies: calculating the probability that they go bust and estimating how much
money they will make.

Suppose that an insurance company has current assets of $1,000,000. They
have n = 1,000 customers who each pay an annual premium of $5,500, paid at
the start of each year. Based on previous experience, it is estimated that the
probability of a customer making a claim is p = 0.1 per year, independently
of previous claims and other customers. The size X of a claim varies, and is
believed to have the following density, with α = 3 and β = 100,000,

f(x) =

αβα

(x + β)α+1
for x ≥ 0,

0 for x < 0.

(Such an X is said to have a Pareto distribution, and in the real world is not
an uncommon model for the size of an insurance claim.)

We consider the fortunes of the insurance company over a five-year period.
Let Z(t) be the company’s assets at the end of year t, so

Z(0) = 1, 000, 000,

Z(t) =

{

max{Z(t− 1) + premiums− claims, 0} if Z(t− 1) > 0,
0 if Z(t− 1) = 0.

Note that if Z(t) falls below 0 then it stays there. That is, if the company
goes bust then it stops trading.

22.4.1 Simulating X

Let X be the size of a typical claim as above. Calculate the cdf FX , EX , and
VarX .

Using the inversion method, write a subroutine to simulate X .

Use simulation to estimate the pdf of X and compare your estimate to the
true pdf. Your answer should include a plot like Figure 22.6.

22.4.2 Simulating Z

Write a function to simulate the assets of the company over five years, then
use it to plot the assets as a graph like Figure 22.7.

Using your function, estimate:

1. The probability that the company goes bust, and

2. The expected assets at the end five years.

© 2009 by Taylor & Francis Group, LLC

INSURANCE RISK 431

Pareto(3, 100000) density

x

f(
x
)

0e+00 2e+05 4e+05 6e+05 8e+05

0
.0

e
+

0
0

4
.0

e
−

0
6

8
.0

e
−

0
6

1
.2

e
−

0
5

Figure 22.6 Simulated and true pdf for insurance risk example.

0 1 2 3 4 5

0
5

0
0

0
0

0
1

5
0

0
0

0
0

2
5

0
0

0
0

0

Year

A
s
s
e

ts

Figure 22.7 Simulated assets for insurance risk example.

© 2009 by Taylor & Francis Group, LLC

432 STUDENT PROJECTS

22.4.3 Profit taking

Suppose now that the company takes profits at the end of each year. That is,
if Z(t) > 1,000,000 then Z(t)− 1,000,000 is paid out to the shareholders. If
Z(t) ≤ 1,000,000 then the shareholders get nothing that year.

Using this new scheme, estimate

1. The probability of going bust.

2. The expected assets at the end of five years, and

3. The expected total profits taken over the five years.

Compare these answers with your answers for Part 22.4.2 and comment.

© 2009 by Taylor & Francis Group, LLC

SQUASH 433

22.5 Squash

A game of squash is played by two people: player 1 and player 2. The game
consists of a sequence of points. If player i serves and wins the point, then
his/her score increases by 1 and he/she retains the serve (for i = 1 or 2). If
player i serves and loses the point, then the serve is transferred to the other
player and the scores stay the same.

The winner is the first person to get 9 points, unless the score reaches 8 all
first. If the score reaches 8 all then play continues until one player is 2 points
ahead of the other, in which case he/she is the winner.

The object of this assignment is to simulate a game of squash and estimate
the probability that player 1 wins. Define

a = P(player 1 wins a point | player 1 serves)

b = P(player 1 wins a point | player 2 serves)

x = number of points won by player 1

y = number of points won by player 2

z =

{

1 if player 1 has the serve
2 if player 2 has the serve

We will assume that player 1 serves first.

22.5.1 Status of the game

Write a function status that takes inputs x and y and returns one of the
following text strings:

"unfinished" if the game has not yet finished;

"player 1 win" if player 1 has won the game;

"player 2 win" if player 2 has won the game;

"impossible" if x and y are impossible scores.

You may assume that the inputs x and y are integers.

When you have written your function, load or type the function status.test

below.

Program spuRs/resources/scripts/status.test.r

status.test <- function(s.ftn) {

x.vec <- (-1):11

y.vec <- (-1):11

plot(x.vec, y.vec, type = "n", xlab = "x", ylab = "y")

for (x in x.vec) {

for (y in y.vec) {

© 2009 by Taylor & Francis Group, LLC

434 STUDENT PROJECTS

s <- s.ftn(x, y)

if (s == "impossible") text(x, y, "X", col = "red")

else if (s == "unfinished") text(x, y, "?", col = "blue")

else if (s == "player 1 win") text(x, y, "1", col = "green")

else if (s == "player 2 win") text(x, y, "2", col = "green")

}

}

return(invisible(NULL))

}

Executing the expression status.test(status) should give you the output
presented in Figure 22.8.

0 2 4 6 8 10

0
2

4
6

8
1

0

x

y

X

X

X

X

X

X

X

X

X

X

X

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

2

X

X

X

?

?

?

?

?

?

?

?

?

?

2

X

X

1

1

1

1

1

1

1

1

?

?

?

2

X

X

X

X

X

X

X

X

X

1

?

?

?

X

X

X

X

X

X

X

X

X

X

1

?

?

Figure 22.8 Squash game status.

22.5.2 Simulating a game

The vector state = (x, y, z) describes the current state of the game. Write a
function play_point that takes inputs state, a and b, simulates the play of a
single point, then returns an updated vector state representing the new state
of the game.

Now code up the function play_game exactly as follows.

Program spuRs/resources/scripts/play_game.r

© 2009 by Taylor & Francis Group, LLC

SQUASH 435

play_game <- function(a, b) {

state <- c(0, 0, 1)

while (status(state[1], state[2]) == "unfinished") {

show(state)

state <- play_point(state, a, b)

}

if (status(state[1], state[2]) == "player 1 win") {

return(TRUE)

} else {

return(FALSE)

}

}

Provided your functions status and play_point work properly, function
play_game simulates a single game of squash and returns TRUE if player 1
wins and FALSE otherwise.

We define p(a, b) = P(player 1 wins the game | player 1 serves first). By
simulating n squash games, estimate p(0.55, 0.45) for n = 2k and k =
1, 2, . . . , 12, then plot the results, as per Figure 22.9.

2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

estimated probability for different sample sizes

log(n)/log(2)

p
_

h
a

t

Figure 22.9 Squash game simulations.

Is p(0.55, 0.45) = 0.5? Explain your answer briefly?

Note that your code should specify a seed for the random number generator,
so that you can reproduce your results exactly, if required.

© 2009 by Taylor & Francis Group, LLC

436 STUDENT PROJECTS

22.5.3 Probability of winning

Let X1, . . . , Xn be an iid sample of Bernoulli(p) random variables. We use
p̂ = X to estimate p. Show that Var p̂ = p(1− p)/n.

The standard deviation is the square root of the variance. What value of n
will guarantee that the standard deviation of p̂ is ≤ 0.01 for any value of p?

Using the value of n calculated above, reproduce the following table, which
estimates p(a, b) for different values of a and b.

estimated p(a, b) for various a and b

|b=0.1 b=0.2 b=0.3 b=0.4 b=0.5 b=0.6 b=0.7 b=0.8 b=0.9

------|---

a=0.1 |0 0 0 0 0 0 0.01 0.05 0.51

a=0.2 |0 0 0 0 0.01 0.04 0.16 0.51 0.96

a=0.3 |0 0 0.01 0.03 0.09 0.25 0.51 0.85 1

a=0.4 |0.01 0.01 0.05 0.12 0.28 0.53 0.79 0.97 1

a=0.5 |0.02 0.06 0.15 0.32 0.53 0.76 0.94 0.99 1

a=0.6 |0.06 0.19 0.35 0.55 0.76 0.9 0.98 1 1

a=0.7 |0.18 0.36 0.56 0.75 0.9 0.97 1 1 1

a=0.8 |0.35 0.59 0.79 0.9 0.97 0.99 1 1 1

a=0.9 |0.66 0.82 0.92 0.98 0.99 1 1 1 1

Briefly explain the pattern of values you observe. Note that your numbers will
be slightly different, as they are simulation estimates.

Make sure that your code specifies a seed for the random number generator,
so that you can reproduce your results exactly, if required.

22.5.4 Length of a game

Modify the function play_game so that it returns the number of points played
in the game (rather than the winning status of player 1).

Using your modified function, reproduce the following table, which estimates
the expected number of points played in a game, for different values of a and
b. Use the same value for n as above.

average length of game for various a and b

| b=0.1 b=0.2 b=0.3 b=0.4 b=0.5 b=0.6 b=0.7 b=0.8 b=0.9

------|---

a=0.1 | 12.23 14.87 18.29 22.90 28.81 38.71 54.38 85.37 151.84

a=0.2 | 12.54 15.38 19.06 23.69 30.52 40.21 54.54 74.18 84.84

a=0.3 | 12.82 15.92 19.63 24.86 31.46 39.78 48.48 53.86 53.11

a=0.4 | 13.26 16.44 20.43 25.37 30.52 35.53 39.41 39.18 37.49

a=0.5 | 13.83 17.22 20.94 24.58 28.09 30.28 29.91 29.12 27.79

a=0.6 | 14.46 17.51 20.48 22.79 23.87 24.07 23.54 22.59 21.57

© 2009 by Taylor & Francis Group, LLC

SQUASH 437

a=0.7 | 14.81 17.06 18.91 19.46 19.88 19.10 18.48 17.72 17.04

a=0.8 | 14.36 15.63 16.14 15.91 15.32 14.93 14.50 14.00 13.87

a=0.9 | 12.39 12.90 12.61 12.23 11.94 11.70 11.34 11.22 11.09

Briefly explain the pattern of values you observe. Note that your numbers will
be slightly different, as they are simulation estimates.

Make sure that your code specifies a seed for the random number generator,
so that you can reproduce your results exactly, if required.

© 2009 by Taylor & Francis Group, LLC

438 STUDENT PROJECTS

22.6 Stock prices

A popular model for stock prices is Geometric Brownian Motion. Let S(i) be
the stock price at the close of trading on day i (we take today as day 0), then
using a Geometric Brownian Motion model we assume that

S(i+ 1) = S(i) exp(µ− 1
2σ

2 +
√
σ2Z(i+ 1))

where Z(1), Z(2), . . ., are iid N(0, 1) random variables. The parameter µ is
called the drift and σ2 is known as the volatility.

In practice both µ and σ2 have to be estimated from the previous behaviour
of the stock price.

22.6.1 Simulating S

Write a program that takes as input µ, σ2, S(0), and t, then simulates
S(1), . . . , S(t) and plots them as a graph.

In your report include sample plots for at least two values of µ and two values
of σ2, and describe qualitatively what happens as µ increases/decreases and
as σ2 increases/decreases.

22.6.2 Estimating ES(t)

Fix S(0) = 1 then show that logS(t) ∼ N(α,β2) for some α and β2, and find
α and β

2.

Unfortunately, ES(t) = E exp(logS(t)) 6= exp(E logS(t)) = exp(α). It turns
out that ES(t) can be calculated exactly (the answer is exp(µt)), but the
calculation is rather difficult. Instead we will estimate ES(t) using simulation.

Write a program that takes as input µ, σ2, and t, simulates S(t) a number
of times (at least 10,000) and then estimates ES(t) and P(S(t) > S(0)) and
gives a 95% confidence interval for each estimate.

Use your program to complete the following table

µ 0.05 0.01 0.01
σ2 0.0025 0.0025 0.01

Estimate of ES(100)
95% CI for ES(100)

Estimate of P(S(100) > S(0))
95% CI for P(S(100) > S(0))

© 2009 by Taylor & Francis Group, LLC

STOCK PRICES 439

22.6.3 Down-and-out call option

A Down-and-Out Call Option is a financial instrument that is sold alongside
shares in our stock of interest. The option is determined by its strike price K,
time to maturity t, and barrier price B. A single option gives you the right to
buy a single share at time t for price K, provided the share price stayed above
B.

Let V (t) be the value of our option at maturity, then

V (t) =

{

S(t)−K if S(t) ≥ K and min0≤i≤t S(i) > B,
0 if S(t) < K or min0≤i≤t S(i) ≤ B.

Options are used by companies to reduce the risks caused by changing prices.
For example, a steel producer knows that it will need large quantities of iron
ore 12 months in the future. Rather than buy the iron ore now it can buy
options, which give a guaranteed price at which to buy the ore in the future.

Assuming S(0) = 1, write a program that asks for µ, σ2, K, t, and B, then
simulates V (t) a number of times (at least 10,000) and estimates the cumula-
tive distribution function of V (t). Note that the cdf of V (t) will have a jump
at 0, but be continuous otherwise (it is an example of a mixed distribution).

Hence or otherwise, for µ = 0.01, σ ∈ {0.0025, 0.005, 0.01}, K = 2, t =
100, and B = 0.2, estimate P (V (100) > 0). What can you say about the
distribution of V (t) as σ2 increases/decreases?

An important question (but one you do not have to answer) is what should
we pay for the option now? Merton and Scholes won the 1997 Nobel Prize in
Economics for their answer to this question (in the special case B = 0).

© 2009 by Taylor & Francis Group, LLC

Glossary of R commands

Workspace and help

getwd() get working directory
setwd(dir) set working directory to dir

help(topic) ?topic get help on topic

help.search("keyword") search for help
help.start() HTML help interface
demo() list available demos
save(..., file) load(file) save and load objects
savehistory(f) loadhistory(f) save and load command history
source(file) execute commands from file

list.files(dir) dir(dir) list files in directory dir

q() quit R

Objects

mode(x) mode of x
ls() objects() list existing objects
rm(x) rm(list = ls()) remove object x or all objects
exists(x) test if object x already exists
as.numeric(x) as.list(x) ... coerce mode of object x
is.numeric(x) is.na(x) ... test mode of object x
identical(x1, x2) test if objects are identical
return(invisible(x)) return invisible copy (doesn’t print)

Packages

install.packages(name) download and install package name

download.packages(name, dir) download package name into dir

library(name) require(name) load package name

data(name) load dataset name
.libPaths(dir) add directory dir to library paths
sessionInfo() list loaded packages

441

© 2009 by Taylor & Francis Group, LLC

442 GLOSSARY OF R COMMANDS

Flow and control and function definition

if (logical_expression) expression_1 else expression_2

for (x in vector) expression

while (logical_expression) expression

name <- function(input_1, ...) {expression_1; ...; return(output)}

stop(message) cease processing and print message
browser() stop to inspect objects for debugging
system.time(expression) report runtime for expression

Mathematical and logical operators and functions

+ - * / ^ %% %\% algebraic operators
< > <= >= == != comparison operators
& | ! logical operators (and, or, not)
&& || and/or evaluated progressively from left
xor(A, B) exclusive or (A or B but not both)
ifelse(condition, x, y) choose x or y elementwise
sin(x) cos(x) tan(x) sine, cosine, and tangent
asin(x) acos(x) atan(x) inverse sine, cosine, and tangent
exp(x) log(x) exponential and logarithm base e
sqrt(x) square root
abs(x) absolute value
pi 3.1415926 . . .
ceiling(x) smallest integer >= x

floor(x) largest integer <= x

all.equal(x, y) almost equal
round(x, k) round x to k digits
deriv(expression, vars) symbolic differentiation

Vectors

x[i] select subvector using index vector
x[logical] subset(x, subset) select subvector using logical vector
c(...) combine vectors
seq(from, to, by) from:to generate an arithmetic sequence
rep(x, times) generate repeated values
length(x) length of x
which(x) indices of TRUE elements of x
sum(...) sum over vector(s)
prod(...) product over vector(s)
cumsum(x) cumprod(x) cumulative sum and product
min(...) max(...) minimum and maximum
sort(x) sort a vector
mean(x) sample mean

© 2009 by Taylor & Francis Group, LLC

GLOSSARY OF R COMMANDS 443

var(x) sd(x) sample variance and standard deviation
order(x) rank order of elements of x

Matrices

matrix(data, nrow, ncol, byrow) create a matrix
rbind(...) cbind(...) combine rows or columns
diag(x) create a diagonal matrix
%*% matrix multiplication
nrow(A) ncol(A) number of rows and columns
colMeans(A) colSums(A) column means or sums
dim(A) dimensions of x
det(A) determinant
t(A) transpose
solve(A, b) solution of A x == b

solve(A) matrix inverse
array(data, dim) create multidimensional array

Dataframes, factors and lists

data.frame(...) create a dataframe
str(x) summarise structure of x
names(x) names of x
dim(x) number of rows and columns of x
attach(x) copy dataframe objects into workspace
detach(x) delete dataframe objects from workspace
factor(x) create a factor
levels(x) list levels of factor x
list(...) create a list
unlist(x) flatten list x into a vector
apply(x, i, f, ...) apply f over index i of array x

sapply(x, f, ...) apply f to x and return a vector
lapply(x, f, ...) apply f to x and return a list
tapply(x, i, f, ...) apply f to subvectors of x given by

levels of factor i
mapply(f, ...) apply f to multiple arguments

Input and output

scan(file, what, n, sep, skip) read from a file (or keyboard)
read.table(file) read file in table format into dataframe
read.csv(file) read comma separated data
read.delim(file) read tab-delimited data into dataframe
readline(prompt) read a line of text from the keyboard
show(object) display object on screen

© 2009 by Taylor & Francis Group, LLC

444 GLOSSARY OF R COMMANDS

head(object) list first few lines of object
tail(object) list last few lines of object
print(object) print object
options(digits = x) display x digits in output
cat(..., file) concatenate and write
format(x, digits, nsmall, width) format x for output
paste(..., sep = " ") paste strings together
write(x, file, append = FALSE) write to a file (or screen)
sink(file) redirect output to a file
dump("x", file) write text representation of x
write.table(x, file) write datafame x to a file

Plotting

plot(x, y) plot y against x
type = "?" determine the type:

"p", "l", "b" for points, lines, or both
"c" for the lines part alone of "b"
"o" for both lines and points overplotted
"h" for vertical lines (histogram like plot)
"s", "S" for step function, across/up or reverse
"n" no data plotted, only axes

main = "title" provides plot title
xlim = c(a,b) set lower and upper limits of x-axis
ylim = c(a,b) set lower and upper limits of y-axis
xlab ="?" ylab = "?" provide label for x-axis or y-axis
pch = k set shape of points (k from 1 to 25)
lwd = ? set line width, default 1
col = "?" set line and point colour

colour() or color() list R colours
lines(x, y) add lines to plot
abline(h) abline(v) draw horizontal and vertical lines
points(x, y) add points to plot
text(x, y, labels) place text on plot
curve(f, from, to) plot f
par(?) set graphical parameters:

mfrow = c(nr, nc) create grid of plots with nr rows and nc

columns filled by row (mfcol fills by col)
oma = c(b, l, t, r) create outer margin around all plots
mar = c(b, l, t, r) create margin around each plot
las = 1 make y-axis labels horizontal
pty = "s" force the plot shape to be square
cex = x magnify symbols and text by a factor x
bty = "?" determine box type drawn around plot

© 2009 by Taylor & Francis Group, LLC

GLOSSARY OF R COMMANDS 445

Random numbers and probability distributions

ddist(x, p1, ...) P(X = x) or f(x)
pdist(q, p1, ...) P(X ≤ q)
qdist(p, p1, ...) p-th quantile, equivalently 100p%-point
rdist(n, p1, ...) pseudo-random numbers
dist p1, ... distribution and parameters:

unif min = 0 max = 1 uniform
binom size prob binomial
geom prob geometric
hyper m n k hypergeometric
nbinom size prob negative binomial
pois lambda Poisson
exp rate exponential
chisq df chi square
gamma shape rate gamma
norm mean sd normal
t df t distribution
weibull shape scale Weibull

set.seed(seed) set position in pseudo-random sequence
.Random.seed state of the random number generator
RNGkind() which random number generator?
sample(x, n, replace = TRUE) sample of size n from x

© 2009 by Taylor & Francis Group, LLC

Programs and functions developed in
the text

add_event 398
antithetic sampling 366
ascent 210
Australian rules football 96
binom.sim 336
bisection 180
bp 384
bp_grid 386
change 108
compound 38
control variates 373
curve fitting 219
discrete_queue 292
err 80
expex 248
f3 216
fibonacci 37
fitDistances 413
fixedpoint 171
fixedpoint_show 182
forest_fire 389
gamma.sim 345
gsection 207
hit_miss 357
hit_miss2 358
importance sampling 371
inventory_2stage_sim 402
inventory_sim 399
Kew rainfall 303
life 82
linesearch 211
maxheads 263
mc.integral 360
moverings 84
mySum 145
n_choose_r 66

newton 215
newtonraphson 176
newton_gamma 203
newtonraphson_show 183
next.gen 125
nfact1 34
nfact2 74
pension 35
Phi 191
powers 50
ppoint 295
predprey 46
prime 73
primedensity 72
primesieve 76
print.transectHolder 415
quad1 30
quad2 32
quad2b 54
quad3 65
quadrature 197
quartiles1 53
rejecttriangle 342
Rosenbrock 222
scoping 134
seed-test 410
simpson 194
simpson_n 190
simpson_test 192
simulate.transectHolder 415
SIR_grid 382
SIRsim 379
sum of normals 295
swap 67
threexplus1 39
threexplus1array 45

447

© 2009 by Taylor & Francis Group, LLC

448 PROGRAMS AND FUNCTIONS DEVELOPED IN THE TEXT

transectHolder 414
trapezoid 189
trapTransect 139
tree growth 102
truncated normal 306
wmean 67

© 2009 by Taylor & Francis Group, LLC

	c6872_c000.pdf
	INTRODUCTION TO: Scientific Programming and Simulation Using R
	Preface
	Course structure options
	Chapter outlines
	Bibliography/further reading
	The R language
	Scientific programming/numerical techniques
	Stochastic modelling and simulation

	Caveat computator
	Thanks

	Contents
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c001.pdf
	Table of Contents
	PART I: Programming
	CHAPTER 1: Setting up
	1.1 Installing R
	1.2 Starting R
	1.3 Working directory
	1.4 Writing scripts
	1.5 Help
	1.6 Supporting material
	1.6.1 Installing and loading the package when you have write privileges
	1.6.2 Installing and loading the package with limited write privileges

	Glossary of R commands
	Programs and functions developed in the text

	c6872_c002.pdf
	Table of Contents
	CHAPTER 2: R as a calculating environment
	2.1 Arithmetic
	2.2 Variables
	2.3 Functions
	2.4 Vectors
	2.4.1 Example: mean and variance
	2.4.2 Example: simple numerical integration
	2.4.3 Example: exponential limit

	2.5 Missing data
	2.6 Expressions and assignments
	2.7 Logical expressions
	2.7.1 Example: rounding error
	2.7.2 Sequential && and ||

	2.8 Matrices
	2.9 The workspace
	2.10 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c003.pdf
	Table of Contents
	CHAPTER 3: Basic programming
	3.1 Introduction
	3.1.1 Example: roots of a quadratic 1 quad1.r

	3.2 Branching with if
	3.2.1 Example: roots of a quadratic 2 quad2.r

	3.3 Looping with for
	3.3.1 Example: summing a vector
	3.3.2 Example: n factorial 1 nfact1.r
	3.3.3 Example: pension value pension.r
	3.3.4 Example: redimensioning an array

	3.4 Looping with while
	3.4.1 Example: Fibonacci numbers fibonacci.r
	3.4.2 Example: compound interest compound.r

	3.5 Vector-based programming
	3.6 Program flow
	3.6.1 Pseudo-code

	3.7 Basic debugging
	3.8 Good programming habits
	3.9 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c004.pdf
	Table of Contents
	CHAPTER 4: I/O: Input and Output
	4.1 Text
	4.2 Input from a file
	4.2.1 Example: file input quartiles1.r

	4.3 Input from the keyboard
	4.3.1 Example: roots of a quadratic 2b quad2b.r

	4.4 Output to a file
	4.5 Plotting
	4.6 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c005.pdf
	Table of Contents
	CHAPTER 5: Programming with functions
	5.1 Functions
	5.1.1 Example: roots of a quadratic 3 quad3.r
	5.1.2 Example: n choose r n_choose_r.r
	5.1.3 Example: Winsorised mean wmean.r
	5.1.4 Program flow using functions

	5.2 Scope and its consequences
	5.3 Optional arguments and default values
	5.4 Vector-based programming using functions
	5.4.1 Example: density of primes primedensity.r

	5.5 Recursive programming
	5.5.1 Example: n factorial 2 nfact2.r
	5.5.2 Example: Sieve of Eratosthenes primesieve.r

	5.6 Debugging functions
	5.7 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c006.pdf
	Table of Contents
	CHAPTER 6: Sophisticated data structures
	6.1 Factors
	6.2 Dataframes
	6.2.1 Attaching

	6.3 Lists
	6.3.1 Example: Australian rules football

	6.4 The apply family
	6.4.1 tapply
	6.4.2 Applying functions to lists lapply and sapply
	6.4.3 Example: tree growth

	6.5 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c007.pdf
	Table of Contents
	CHAPTER 7: Better graphics
	7.1 Introduction
	7.2 Graphics parameters: par
	7.3 Graphical augmentation
	7.4 Mathematical typesetting
	7.5 Permanence
	7.6 Grouped graphs: lattice
	7.7 3D-plots
	7.8 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c008.pdf
	Table of Contents
	CHAPTER 8: Pointers to further programming techniques
	8.1 Packages
	8.1.1 Package management
	8.1.2 Package construction

	8.2 Frames and environments
	8.3 Debugging again
	8.4 Object-oriented programming: S3
	8.4.1 Generic functions
	8.4.2 Example: seed dispersal

	8.5 Object-oriented programming: S4
	8.6 Compiled code
	8.6.1 Writing
	8.6.2 Compiling
	8.6.3 Attaching
	8.6.4 Call

	8.7 Further reading
	8.8 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c009.pdf
	Table of Contents
	PART II: Numerical techniques
	CHAPTER 9: Numerical accuracy and program efficiency
	9.1 Machine representation of numbers
	9.1.1 Integers
	9.1.2 Real numbers

	9.2 Significant digits
	9.2.1 Example: sin(x) − x near 0
	9.2.2 Example: range reduction

	9.3 Time
	9.4 Loops versus vectors
	9.4.1 Example: column sums of a matrix

	9.5 Memory
	9.6 Caveat
	9.7 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c010.pdf
	Table of Contents
	CHAPTER 10: Root-finding
	10.1 Introduction
	10.1.1 Example: loan repayments

	10.2 Fixed-point iteration
	10.2.1 Example: finding the root of f(x) = log(x) – exp(–x)

	10.3 The Newton-Raphson method
	10.4 The secant method
	10.5 The bisection method
	10.6 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c011.pdf
	Table of Contents
	CHAPTER 11: Numerical integration
	11.1 Trapezoidal rule
	11.2 Simpson’s rule
	11.2.1 Example: Phi(z) Phi.r
	11.2.2 Example: convergence of Simpson’s rule simpson_test.r
	11.2.3 Achieving a set tolerance

	11.3 Adaptive quadrature
	11.4 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c012.pdf
	Table of Contents
	CHAPTER 12: Optimisation
	12.1 Newton’s method for optimisation
	12.2 The golden-section method
	12.3 Multivariate optimisation
	12.4 Steepest ascent
	12.4.1 Line search
	12.4.2 Example: sin(x2/–y2/4) cos(2x–exp(y))

	12.5 Newton’s method in higher dimensions
	12.5.1 Example: sin(x2/2–y2/4) cos(2x–exp(y))
	12.5.2 On differentiation

	12.6 Optimisation in R and the wider world
	12.7 A curve fitting example
	12.8 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c013.pdf
	Table of Contents
	PART III: Probability and statistics
	CHAPTER 13: Probability
	13.1 The probability axioms
	13.1.1 Counting probability

	13.2 Conditional probability
	13.2.1 Example: life tables
	13.2.2 Example: indigenous deaths in custody

	13.3 Independence
	13.3.1 Example: disjoint events
	13.3.2 Example: the Chevalier de Meré

	13.4 The Law of Total Probability
	13.5 Bayes’ theorem
	13.5.1 Example: prostate cancer screening

	13.6 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c014.pdf
	Table of Contents
	CHAPTER 14: Random variables
	14.1 Definition and distribution function
	14.2 Discrete and continuous random variables
	14.3 Empirical cdf’s and histograms
	14.3.1 Example: Cavendish’s experiments

	14.4 Expectation and finite approximations
	14.4.1 Example: numerical calculation of the mean expex.r
	14.4.2 Example: truncated normal
	14.4.3 Infinite range
	14.4.4 Example: gamma function

	14.5 Transformations
	14.5.1 Transforming a discrete rv
	14.5.2 Example: transforming a continuous rv
	14.5.3 Expectation of a transformed random variable
	14.5.4 Sums of random variables

	14.6 Variance and standard deviation
	14.7 The Weak Law of Large Numbers
	14.7.1 Sample proportion
	14.7.2 Sample variance

	14.8 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c015.pdf
	Table of Contents
	CHAPTER 15: Discrete random variables
	15.1 Discrete random variables in R
	15.2 Bernoulli distribution
	15.3 Binomial distribution
	15.3.1 Example: sampling a manufacturing line

	15.4 Geometric distribution
	15.4.1 Example: lighting a Barbeque
	15.4.2 Example: two-up

	15.5 Negative binomial distribution
	15.5.1 Example: quality control

	15.6 Poisson distribution
	15.6.1 Example: the dreaded lurgy
	15.6.2 Poisson as a binomial limit

	15.7 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c016.pdf
	Table of Contents
	CHAPTER 16: Continuous random variables
	16.1 Continuous random variables in R
	16.2 Uniform distribution
	16.3 Lifetime models: exponential and Weibull
	16.3.1 Exponential distribution
	16.3.2 Example: radioactive decay
	16.3.3 Weibull distribution
	16.3.4 Example: time to the next disaster

	16.4 The Poisson process and the gamma distribution
	16.4.1 A paradox?
	16.4.2 Merging and Thinning
	16.4.3 Gamma distribution
	16.4.4 Example: discrete simulation of a queue

	16.5 Sampling distributions: normal, X2, and t
	16.5.1 Normal or Gaussian distribution
	16.5.2 Example: normal percentage points
	16.5.3 The sum of independent normals
	16.5.4 X2 distribution
	16.5.5 Student’s t distribution

	16.6 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c017.pdf
	Table of Contents
	CHAPTER 17: Parameter Estimation
	17.1 Point Estimation
	17.1.1 Example: Kew rainfall
	17.1.2 Example: truncated normal

	17.2 The Central Limit Theorem
	17.2.1 Proof of the Central Limit Theorem
	17.2.2 Normal approximation to the binomial
	17.2.3 Continuity correction
	17.2.4 Example: insurance risk
	17.2.5 Normal approximation to the Poisson
	17.2.6 Normal approximation to the negative binomial and gamma

	17.3 Confidence intervals
	17.3.1 Confidence interval for a proportion
	17.3.2 Example: accuracy of an opinion poll
	17.3.3 Small sample confidence intervals

	17.4 Monte-Carlo confidence intervals
	17.4.1 Example: meta-analysis of opinion polls

	17.5 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c018.pdf
	Table of Contents
	PART IV: Simulation
	CHAPTER 18: Simulation
	18.1 Simulating iid uniform samples
	18.1.1 Congruential generators
	18.1.2 Seeding

	18.2 Simulating discrete random variables
	18.2.1 Example: binomial
	18.2.2 Sequences of independent trials

	18.3 Inversion method for continuous rv
	18.3.1 Example: uniform distribution
	18.3.2 Example: exponential distribution

	18.4 Rejection method for continuous rv
	18.4.1 Example: triangular density
	18.4.2 General rejection method
	18.4.3 Efficiency
	18.4.4 Example: gamma

	18.5 Simulating normals
	18.5.1 Central Limit Theorem
	18.5.2 Rejection with exponential envelope
	18.5.3 Box-Muller algorithm

	18.6 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c019.pdf
	Table of Contents
	CHAPTER 19: Monte-Carlo integration
	19.1 Hit-and-miss method
	19.2 (Improved) Monte-Carlo integration
	19.2.1 Lemma
	19.2.2 Accuracy in higher dimensions

	19.3 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c020.pdf
	Table of Contents
	CHAPTER 20: Variance reduction
	20.1 Antithetic sampling
	20.1.1 Example: Bu�on’s needle and cross
	20.1.2 General antithetic variate technique
	20.1.3 Example: improved Monte-Carlo integration
	20.1.4 Antithetic pairs through inversion

	20.2 Importance sampling
	20.2.1 Example: evaluating a simple integral three di�erent ways
	20.2.2 Example: standard normal tail probability
	20.2.3 Example: standard normal central probability

	20.3 Control variates
	20.3.1 Example: standard normal central probability

	20.4 Exercises
	Glossary of R commands
	Programs and functions developed in the text

	c6872_c021.pdf
	Table of Contents
	CHAPTER 21: Case studies
	21.1 Introduction
	21.2 Epidemics
	21.2.1 SIR model
	21.2.2 Branching processes
	21.2.3 Forest fire model

	21.3 Inventory
	21.3.1 Continuous Review Inventory Model
	21.3.2 Simulated inventory level
	21.3.3 A two-stage inventory system

	21.4 Seed dispersal
	21.4.1 Simulating the radial distance R
	21.4.2 Object-oriented programming implementation

	Glossary of R commands
	Programs and functions developed in the text

	c6872_c022.pdf
	Table of Contents
	CHAPTER 22: Student projects
	22.1 The level of a dam
	22.1.1 Height and volume
	22.1.2 Tracking height over time

	22.2 Roulette
	22.2.1 Simulation
	22.2.2 Verification
	22.2.3 Variation

	22.3 Buffon’s needle and cross
	22.3.1 Theoretical analysis
	22.3.2 Simulation estimates
	22.3.3 Buffon’s cross

	22.4 Insurance risk
	22.4.1 Simulating X
	22.4.2 Simulating Z
	22.4.3 Profit taking

	22.5 Squash
	22.5.1 Status of the game
	22.5.2 Simulating a game
	22.5.3 Probability of winning
	22.5.4 Length of a game

	22.6 Stock prices
	22.6.1 Simulating S
	22.6.2 Estimating ES(t)
	22.6.3 Down-and-out call option

	Glossary of R commands
	Programs and functions developed in the text

	c6872_glossary.pdf
	Table of Contents
	Glossary of R commands
	Workspace and help
	Objects
	Packages
	Flow and control and function definition
	Mathematical and logical operators and functions
	Vectors
	Matrices
	Dataframes, factors and lists
	Input and output
	Plotting
	Random numbers and probability distributions
	Programs and functions developed in the text

	c6872_Programs_functions.pdf
	Table of Contents
	Programs and functions developed in the text
	Glossary of R commands

