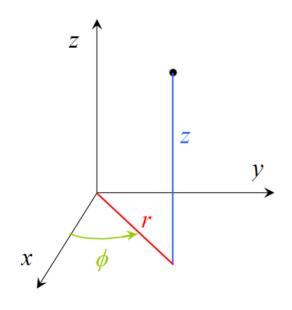
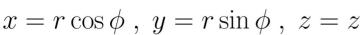

5.1.1. Volume Element in Cylindrical and **Spherical Polar Coordinates** auWyar

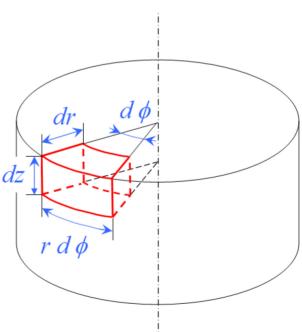
(1) Polar coordinates (r, ϕ) : the area element

$$x = r \cos \phi$$

 $y = r \sin \phi$

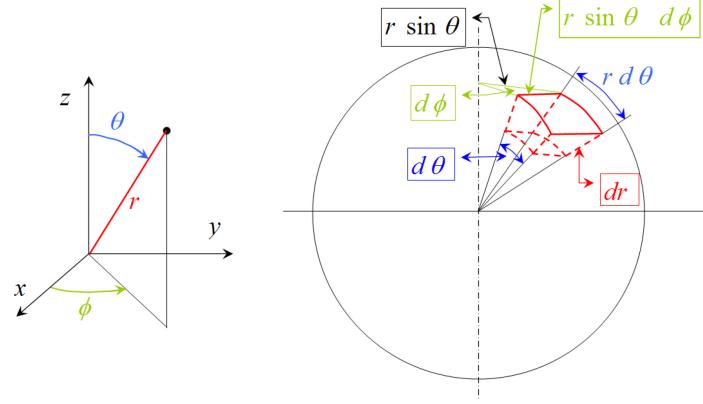



$$dS = r dr d \phi$$
, the area element


Change of variables in the double integral:

$$\iint_R f \, dx \, dy = \iint_R f \, r \, dr \, d\phi$$

(2) Cylindrical polar coordinates (r,ϕ,z)



Volume element: $dV = r dr d\phi dz$ Change of variables in the volume (triple) integral:

$$\iint_V f \, dx \, dy \, dz = \iint_V f \, r \, dr \, d\phi \, dz$$

(3) Spherical polar coordinates (r, θ, ϕ)

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$

Volume element:

$$\frac{dV}{dt} = dr \cdot r d\theta \cdot r \sin \theta d\phi$$
$$= r^2 \sin \theta dr d\theta d\phi$$

Change of variables in the volume (triple) integral:

$$\iint_V f \, dx \, dy \, dz = \iint_V f \, r^2 \sin \theta \, dr \, d\theta \, d\phi$$