Network Optimization:

Continuous and Discrete Models

Dimitri P. Bertsekas

Massachusetts Institute of Technology

WWW site for book information and orders

http://www.athenasc.com

Athena Scientific, Belmont, Massachusetts

Athena Scientific

Post Office Box 391
Belmont, Mass. 02178-9998
U.S.A.

Email: info@athenasc.com
WWW: http://www.athenasc.com

Cover Design: Ann Gallager

(© 1998 Dimitri P. Bertsekas

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.

Network Optimization: Continuous and Discrete Models

Includes bibliographical references and index

1. Network analysis (Planning). 2. Mathematical Optimization. I. Title.
T57.85.B44 1998 658.4’032-dc20 98-70298

ISBN 1-886529-02-7

ABOUT THE AUTHOR

Dimitri Bertsekas studied Mechanical and Electrical Engineering at
the National Technical University of Athens, Greece, and obtained his
Ph.D. in system science from the Massachusetts Institute of Technology.

He has held faculty positions at Stanford University and the Uni-
versity of Illinois. Since 1979 he has been teaching at the Massachusetts
Institute of Technology (M.I.T.), where he is currently McAfee Professor
of Engineering. He consults regularly with private industry and has held
editorial positions in several journals. His research spans several fields,
including optimization, control, large-scale computation, and data commu-
nication networks. He has written many research papers and he is the
author or coauthor of thirteen textbooks and research monographs.

Professor Bertsekas was awarded the INFORMS 1997 Prize for Re-
search Excellence in the Interface Between Operations Research and Com-
puter Science for his book ”Neuro-Dynamic Programming” (co-authored
with John Tsitsiklis), the 2000 Greek National Award for Operations Re-
search, and the 2001 ACC John R. Ragazzini Education Award. In 2001,
he was elected to the United States National Academy of Engineering.

iii

10.

11.

ATHENA SCIENTIFIC
OPTIMIZATION AND COMPUTATION SERIES

Convex Analysis and Optimization, by Dimitri P. Bertsekas, with
Angelia Nedi¢ and Asuman E. Ozdaglar, 2003, ISBN 1-886529-
45-0, 560 pages

Introduction to Probability by Dimitri P. Bertsekas and John
Tsitsiklis, 2002, ISBN 1-886529-40-X, 430 pages

Dynamic Programming and Optimal Control, Vols. I and II, 2nd
Edition, by Dimitri P. Bertsekas, 2001, ISBN 1-886529-08-6, 704
pages

Nonlinear Programming, 2nd Edition, by Dimitri P. Bertsekas,
1999, ISBN 1-886529-00-0, 800 pages

Network Optimization: Continuous and Discrete Models by Dim-
itri P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages

Network Flows and Monotropic Optimization by R. Tyrrell Rock-
afellar, 1998, ISBN 1-886529-06-X, 634 pages

Introduction to Linear Optimization by Dimitris Bertsimas and
John N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages

Parallel and Distributed Computation: Numerical Methods by
Dimitri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-
01-9, 718 pages

Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John
N. Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages

Constrained Optimization and Lagrange Multiplier Methods, by
Dimitri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages

Stochastic Optimal Control: The Discrete-Time Case by Dimitri
P. Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5,
330 pages

iv

Contents

1.

2.

Introduction

1.1. Graphs and Flows .
1.1.1. Paths and Cycles
1.1.2. Flow and Divergence

1.1.3. Path Flows and Conformal Decomposmon .

1.2. Network Flow Models — Examples .
1.2.1. The Minimum Cost Flow Problem

1.2.2. Network Flow Problems with Convex Cost .

1.2.3. Multicommodity Flow Problems

1.2.4. Discrete Network Optimization Problems
1.3. Network Flow Algorithms — An Overview

1.3.1. Primal Cost Improvement

1.3.2. Dual Cost Improvement

1.3.3. Auction

1.3.4. Good, Bad, and Polynomlal Algorlthms
1.4. Notes, Sources, and Exercises .

Shortest Path Problems

2.1. Problem Formulation and Applications

2.2. A Generic Shortest Path Algorithm .

2.3. Label Setting (Dijkstra) Methods . .
2.3.1. Performance of Label Setting Methods .
2.3.2. The Binary Heap Method
2.3.3. Dial’s Algorithm

2.4. Label Correcting Methods
2.4.1. The Bellman-Ford Method .

2.4.2. The D’Esopo-Pape Algorithm
2.4.3. The SLF and LLL Algorithms
2.4.4. The Threshold Algorithm

2.4.5. Comparison of Label Setting and Label Correctmg

2.5. Single Origin/Single Destination Methods
2.5.1. Label Setting .

T

@@@@’?@’?@@vvpvbb ke

TTUTTCTTTVTTCT T VT

00~ O W

17
19
20
21
24
27
35
37

. 51

52
o7
65
68
69
70
73
73
(0]
76
78
80
81
81

3.

4.

5.

6.

vi

2.5.2. Label Correcting
2.6. Auction Algorithms .
2.7. Multiple Origin/Multiple Deetlnatlon Methode
2.8. Notes, Sources, and Exercises .

The Max-Flow Problem

3.1. The Max-Flow and Min-Cut Problems .
3.1.1. Cuts in a Graph . .
3.1.2. The Max-Flow/Min-Cut Theorem . .
3.1.3. The Maximal and Minimal Saturated Cuts .
3.1.4. Decomposition of Infeasible Network Problems
3.2. The Ford-Fulkerson Algorithm
3.3. Price-Based Augmenting Path Algorlthms
3.3.1. A Price-Based Path Construction Algorithm
3.3.2. A Price-Based Max-Flow Algorithm .
3.4. Notes, Sources, and Exercises .

The Min-Cost Flow Problem

4.1. Transformations and Equivalences .
4.1.1. Setting the Lower Flow Bounds to Zero
4.1.2. Eliminating the Upper Flow Bounds .
4.1.3. Reduction to a Circulation Format
4.1.4. Reduction to an Assignment Problem
4.2. Duality . .
4.2.1. Interpretation of CS and the Dual Problem .
4.2.2. Duality and CS for Nonnegativity Constraints
4.3. Notes, Sources, and Exercises .

Simplex Methods for Min-Cost Flow .

5.1. Main Ideas in Simplex Methods .
5.1.1. Using Prices to Obtain the In-Arc .
5.1.2. Obtaining the Out-Arc
5.1.3. Dealing with Degeneracy .
5.2. The Basic Simplex Algorithm .
5.2.1. Termination Properties of the Slmplex Method
5.2.2. Initialization of the Simplex Method .

5.3. Extension to Problems with Upper and Lower Bounds .

5.4. Implementation Issues . .
5.5. Notes, Sources, and Exercises .

Dual Ascent Methods for Min-Cost Flow .
6.1. Dual Ascent

Contents

b

he)

TUTETTVET TTTETTVTET

TTTVVV VO

151

152
152
153
154
154
155
162
163
164

. 169

170
176
179
183
186
187
188
195
199
203

p- 213
p. 214

7.

8.

Contents

6.2. The Primal-Dual (Sequential Shortest Path) Method

6.3. The Relaxation Method . .
6.4. Solving Variants of an Already Solved Problem .
6.5. Implementation Issues . .
6.6. Notes, Sources, and Exercises .

Auction Algorithms for Min-Cost Flow

7.1. The Auction Algorithm for the Assignment Problem

7.1.1. The Main Auction Algorithm .

7.1.2. Approximate Coordinate Descent Interpretatlon

7.1.3. Variants of the Auction Algorithm
7.1.4. Computational Complexity — e-Scaling .
7.1.5. Dealing with Infeasibility

7.2. Extensions of the Auction Algorithm
7.2.1. Reverse Auction

7.2.2. Auction Algorithms for Asymmetrlc As&gnment

7.2.3. Auction Algorithms with Similar Persons
7.3. The Preflow-Push Algorithm for Max-Flow .
7.3.1. Analysis and Complexity .
7.3.2. Implementation Issues .
7.3.3. Relation to the Auction Algorlthm
7.4. The e-Relaxation Method
7.4.1. Computational Complexity — e- Scahng
7.4.2. Implementation Issues .

7.5. The Auction/Sequential Shortest Path Algorlthm .

7.6. Notes, Sources, and Exercises .

Nonlinear Network Optimization

8.1. Convex and Separable Problems

8.2. Problems with Side Constraints .

8.3. Multicommodity Flow Problems

8.4. Integer Constraints

8.5. Networks with Gains

8.6. Optimality Conditions .

8.7. Duality ..

8.8. Algorithms and Approxunatlons
8.8.1. Feasible Direction Methods .
8.8.2. Piecewise Linear Approximation
8.8.3. Interior Point Methods

8.8.4. Penalty and Augmented Lagranglan Methods .

8.8.5. Proximal Minimization
8.8.6. Smoothing .
8.8.7. Transformations

b

TTTT T

TPV TETTVTE TV VOOV

CREECR-E-RE-E-R-E R R

vii

221
234
243
243
244

9.

10.

viii
9. Notes, Sources, and Exercises .

Convex Separable Network Problems

9.1. Convex Functions of a Single Variable .
9.2. Optimality Conditions .
9.3. Duality .
9.4. Dual Function leferentlablhty .
9.5. Algorithms for Differentiable Dual Problems
9.6. Auction Algorithms .

9.6.1. The e-Relaxation Method

9.6.2. Auction/Sequential Shortest Path Algorlthm .

9.7. Monotropic Programming
9.8. Notes, Sources, and Exercises .

Network Problems with Integer Constraints

10.1. Formulation of Integer-Constrained Problems

10.2. Branch-and-Bound .

10.3. Lagrangian Relaxation .
10.3.1. Subgradients of the Dual Functlon .
10.3.2. Subgradient Methods .

10.3.3. Cutting Plane Methods .
10.3.4. Decomposition and Multlcommodlty Flows

10.4. Local Search Methods
10.4.1. Genetic Algorithms
10.4.2. Tabu Search . .

10.4.3. Simulated Anneahng .

10.5. Rollout Algorithms .

10.6. Notes, Sources, and Exerc1ses

Appendix A: Mathematical Review

A.1. Sets .

A.2. Euclidean Space

A.3. Matrices

A.4. Analysis . .
A.5. Convex Sets and Functlons
A.6. Subgradients .

References .

Index

Contents

p.

he)

k)

TETTETVVTVT

TTETTTTT VTV TTT

TEPTTT

398

. 467

469
483
492
497
499
503
507
512
514
515
516
017
525

. 545

546
047
047
548
951
953

. 555

. 087

Preface

Network optimization lies in the middle of the great divide that separates
the two major types of optimization problems, continuous and discrete.
The ties between linear programming and combinatorial optimization can
be traced to the representation of the constraint polyhedron as the convex
hull of its extreme points. When a network is involved, however, these ties
become much stronger because the extreme points of the polyhedron are in-
teger and represent solutions of combinatorial problems that are seemingly
unrelated to linear programming. Because of this structure and also be-
cause of their intuitive character, network models provide ideal vehicles for
explaining many of the fundamental ideas in both continuous and discrete
optimization.

Aside from their interesting methodological characteristics, network
models are also used extensively in practice, in an ever expanding spec-
trum of applications. Indeed collectively, network problems such as short-
est path, assignment, max-flow, transportation, transhipment, spanning
tree, matching, traveling salesman, generalized assignment, vehicle rout-
ing, and multicommodity flow constitute the most common class of practi-
cal optimization problems. There has been steady progress in the solution
methodology of network problems, and in fact the progress has accelerated
in the last fifteen years thanks to algorithmic and technological advances.

The purpose of this book is to provide a fairly comprehensive and up-
to-date development of linear, nonlinear, and discrete network optimization
problems. The interplay between continuous and discrete structures has
been highlighted, the associated analytical and algorithmic issues have been
treated quite extensively, and a guide to important network models and
applications has been provided.

Regarding continuous network optimization, we focus on two ideas,
which are also fundamental in general mathematical programming: dual-
ity and iterative cost improvement. We provide an extensive treatment of
iterative algorithms for the most common linear cost problem, the mini-
mum cost flow or transhipment problem, and for its convex cost extensions.
The discussion of duality is comprehensive: it starts with linear network

ix

X Preface

programming duality, and culminates with Rockafellar’s development of
monotropic programming duality.

Regarding discrete network optimization, we illustrate problem for-
mulation through major paradigms such as traveling salesman, generalized
assignment, spanning tree, matching, and routing. This is essential because
the structure of discrete optimization problems is far less streamlined than
the structure of their continuous counterparts, and familiarity with impor-
tant types of problems is important for modeling, analysis, and algorith-
mic solution. We also develop the main algorithmic approaches, including
branch-and-bound, Lagrangian relaxation, Dantzig-Wolfe decomposition,
heuristics, and local search methods.

This is meant to be an introductory book that covers a very broad
variety of topics. It is thus inevitable that some topics have been treated in
less detail than others. The choices made reflect in part personal taste and
expertise, and in part a preference for simple models that can help most
effectively the reader develop insight. At the same time, our analysis and
presentation aims to enhance the reader’s mathematical modeling ability in
two ways: by delineating the range of problems for which various algorithms
are applicable and efficient, and by providing many examples of problem
formulation.

The chapter-by-chapter description of the book follows:

Chapter 1: This is an introductory chapter that establishes terminology
and basic notions about graphs, discusses some examples of network mod-
els, and provides some orientation regarding linear network optimization
algorithms.

Chapter 2: This chapter provides an extensive treatment of shortest path
problems. It covers the major methods, and discusses their theoretical and
practical performance.

Chapter 3: This chapter focuses on the max-flow problem and develops
the class of augmenting path algorithms for its solution. In addition to the
classical variants of the Ford-Fulkerson method, a recent algorithm based
on auction ideas is discussed.

Chapter 4: The minimum cost flow problem (linear cost, single commod-
ity, no side constraints) and its equivalent variants are introduced here.
Subsequently, the basic duality theory for the problem is developed and
interpreted.

Chapter 5: This chapter focuses on simplex methods for the minimum
cost flow problem. The basic results regarding the integrality of solutions
are developed here constructively, using the simplex method. Furthermore,
the duality theory of Chapter 4 is significantly strengthened.

Chapter 6: This chapter develops dual ascent methods, including primal-
dual, sequential shortest path, and relaxation methods.

Preface xi

Chapter 7: This chapter starts with the auction algorithm for the assign-
ment problem, and proceeds to show how this algorithm can be extended
to more complex problems. In this way, preflow-push methods for the
max-flow problem and the e-relaxation method for the minimum cost flow
problem are obtained. Several additional variants of auction algorithms
are developed.

Chapter 8: This is an important chapter that marks the transition from
linear to nonlinear network optimization. The primary focus is on continu-
ous (convex) problems, and their associated broad variety of structures and
methodology. In particular, there is an overview of the types of algorithms
from nonlinear programming that are useful in connection with various con-
vex network problems. There is also some discussion of discrete (integer)
problems with an emphasis on their ties with continuous problems.

Chapter 9: This is a fairly sophisticated chapter that is directed primar-
ily towards the advanced and/or research-oriented reader. It deals with
separable convex problems, discusses their connection with classical net-
work equilibrium problems, and develops their rich theoretical structure.
The salient features of this structure are a particularly sharp duality the-
ory, and a combinatorial connection of descent directions with the finite
set of elementary vectors of the subspace defined by the conservation of
flow constraints. Besides treating convex separable network problems, this
chapter provides an introduction to monotropic programming, which is the
largest class of nonlinear programming problems that possess the strong
duality and combinatorial properties of linear programs. This chapter also
develops auction algorithms for convex separable problems and provides an
analysis of their running time.

Chapter 10: This chapter deals with the basic methodological approaches
for integer-constrained problems. There is a treatment of exact methods
such as branch-and-bound, and the associated methods of Lagrangian re-
laxation, subgradient optimization, and cutting plane. There is also a
description of approximate methods based on local search, such as genetic
algorithms, tabu search, and simulated annealing. Finally, there is a dis-
cussion of rollout algorithms, a relatively new and broadly applicable class
of approximate methods, which can be used in place of, or in conjunction
with local search.

The book can be used for a course on network optimization or for part
of a course on introductory optimization at the first-year graduate level.
With the exception of some of the material in Chapter 9, the prerequisites
are fairly elementary. The main one is a certain degree of mathematical
maturity, as provided for example by a rigorous mathematics course beyond
the calculus level. One may cover most of the book in a course on linear
and nonlinear network optimization. A shorter version of this course may
consist of Chapters 1-5, and 8. Alternatively, one may teach a course that

xii Preface

focuses on linear and discrete network optimization, using Chapters 1-5,
a small part of Chapter 8, and Chapter 10. Actually, in these chapter
sequences, it is not essential to cover Chapter 5, if one is content with
weaker versions of duality results (given in Chapter 4) and one establishes
the integrality properties of optimal solutions with a line of argument such
as the one given in Exercise 1.34. The following figure illustrates the chapter
dependencies.

Chapters 1-5
(Intro/Linear)

N

Chapter 6 Chapter 7 Chapter 8 Chapter 10
(Dual Methods) (Auction) (Nonlinear/Discrete) (Integer)
Chapter 9
(Convex)

The book contains a large number of examples and exercises, which
should enhance its suitability for classroom instruction. Some of the exer-
cises are theoretical in nature and supplement substantially the main text.
Solutions to a subset of these (as well as errata and additional material)
will be posted and periodically updated on the book’s web page:

http://www.athenasc.com/netsbook.html
Also, the author’s web page
http://web.mit.edu/dimitrib/www/home.html

contains listings of FORTRAN codes implementing many of the algorithms
discussed in the book.

There is a very extensive literature on continuous and discrete net-
work optimization, and to give a complete bibliography and a historical
account of the research that led to the present form of the subject would
have been impossible. Thus I have not attempted to compile a compre-
hensive list of original contributions to the field. I have cited sources that
I have used extensively, that provide important extensions to the material
of the book, that survey important topics, or that are particularly well
suited for further reading. I have also cited selectively a few sources that
are historically significant, but the reference list is far from exhaustive in
this respect. Generally, to aid researchers in the field, I have preferred to
cite surveys and textbooks for subjects that are relatively mature, and to

Preface xiii

give a larger number of references for relatively recent developments.

A substantial portion of this book is based on the author’s research
on network optimization over the last twenty years. I was fortunate to
have several outstanding collaborators in this research, and I would like
to mention those with whom I have worked extensively. Eli Gafni assisted
with the computational experimentation using the auction algorithm and
the relaxation method for assignment problems in 1979. The idea of e-
scaling arose during my interactions with Eli at that time. Furthermore,
Eli collaborated extensively with me on various routing methods for data
networks, including projection methods for convex multicommodity flow
problems. Paul Tseng worked with me on network optimization starting
in 1982. Together we developed the RELAX codes, we developed several
extensions to the basic relaxation method and we collaborated closely on a
broad variety of other subjects, including the recent auction algorithms for
convex network problems and network problems with gains. David Cas-
tanon has worked extensively with me on a broad variety of algorithms
for assignment, transportation, and minimum cost flow problems, for both
serial and parallel computers, since 1987. John Tsitsiklis has been my coau-
thor and close collaborator for many years on a variety of optimization and
large scale computation topics, including some that deal with networks.
In addition to Eli, Paul, David, and John, I have had substantial research
collaborations with several colleagues, the results of which have been re-
flected in this book. In this regard, I would like to mention Jon Eckstein,
Bob Gallager, Francesca Guerriero, Roberto Musmanno, Stefano Pallot-
tino, and Maria-Grazia Scutella. Several colleagues proofread portions of
the book, and contributed greatly with their suggestions. David Castanon,
Stefano Pallottino, Steve Patek, Serap Savari, Paul Tseng, and John Tsit-
siklis were particularly helpful in this regard. The research support of NSF
under grants from the DDM and the CCI divisions are very much appreci-
ated. My family has been a source of stability and loving support, without
which the book would not have been written.

Dimitri P. Bertsekas
Cambridge, Mass.
Spring 1998

Introduction

1.1.

1.2.

1.3.

1.4.

Contents

Graphs and Flows

1.1.1. Paths and Cycles

1.1.2. Flow and Divergence

1.1.3. Path Flows and Conformal Decomposition

Network Flow Models — Examples

1.2.1. The Minimum Cost Flow Problem

1.2.2. Network Flow Problems with Convex Cost
1.2.3. Multicommodity Flow Problems

1.2.4. Discrete Network Optimization Problems

Network Flow Algorithms — An Overview
1.3.1. Primal Cost Improvement

1.3.2. Dual Cost Improvement

1.3.3. Auction

1.3.4. Good, Bad, and Polynomial Algorithms

Notes, Sources, and Exercises

2 Introduction Chap. 1

Network flow problems are one of the most important and most frequently
encountered class of optimization problems. They arise naturally in the
analysis and design of large systems, such as communication, transporta-
tion, and manufacturing networks. They can also be used to model impor-
tant classes of combinatorial problems, such as assignment, shortest path,
and traveling salesman problems.

Loosely speaking, network flow problems consist of supply and de-
mand points, together with several routes that connect these points and
are used to transfer the supply to the demand. These routes may contain
intermediate transhipment points. Often, the supply, demand, and tran-
shipment points can be modeled by the nodes of a graph, and the routes can
be modeled by the paths of the graph. Furthermore, there may be multiple
“types” of supply/demand (or “commodities”) sharing the routes. There
may also be some constraints on the characteristics of the routes, such as
their carrying capacities, and some costs associated with using particu-
lar routes. Such situations are naturally modeled as network optimization
problems whereby, roughly speaking, we try to select routes that minimize
the cost of transfer of the supply to the demand.

This book deals with a broad spectrum of network optimization prob-
lems, involving linear and nonlinear cost functions. We pay special atten-
tion to four major classes of problems:

(a) The transhipment or minimum cost flow problem, which involves a
single commodity and a linear cost function. This problem has several
important special cases, such as the shortest path, the max-flow, the
assignment, and the transportation problems.

(b) The single commodity network flow problem with convex cost. This
problem is identical to the preceding transhipment problem, except
that the cost function is convex rather than linear.

(¢) The multicommodity network flow problem with linear or convex cost.
This problem generalizes the preceding two classes of problems to the
case of multiple commodities.

(d) Discrete network optimization problems. These are problems where
the quantities transferred along the routes of the network are re-
stricted to take one of a finite number of values. Many combinatorial
optimization problems can be modeled in this way, including some
problems where the network structure is not immediately apparent.
Some discrete optimization problems are computationally very diffi-
cult, and in practice can only be solved approximately. Their algorith-
mic solution often involves the solution of “continuous” subproblems
that belong to the preceding three classes.

All of the network flow problems above can be mathematically mod-
eled in terms of graph-related notions. In Section 1.1, we introduce the
associated notation and terminology. In Section 1.2, we provide mathe-

1.1

Sec. 1.1 Graphs and Flows 3

matical formulations and practical examples of network optimization mod-
els. Finally, in Section 1.3, we give an overview of some of the types of
computational algorithms that we develop in subsequent chapters.

GRAPHS AND FLOWS

In this section, we introduce some of the basic definitions relating to graphs,
paths, flows, and other related notions. Graph concepts are fairly intuitive,
and can be understood in terms of suggestive figures, but often involve
hidden subtleties. Thus the reader may wish to revisit the present section
and pay close attention to some of the fine points of the definitions.

A directed graph, G = (N, A), consists of a set N of nodes and a set
A of pairs of distinct nodes from A called arcs. The numbers of nodes and
arcs are denoted by N and A, respectively, and it is assumed throughout
that 1 < N < oo and 0 < A < oo. An arc (i,j) is viewed as an ordered
pair, and is to be distinguished from the pair (j,4). If (4,7) is an arc, we
say that (4, 7) is outgoing from node i and incoming to node j; we also say
that j is an outward neighbor of ¢ and that ¢ is an inward neighbor of j. We
say that arc (4, 7) is incident to i and to j, and that i is the start node and
j is the end node of the arc. We also say that ¢ and j are the end nodes of
arc (i,7). The degree of a node 7 is the number of arcs that are incident to
i. A graph is said to be complete if it contains all possible arcs; that is, if
there exists an arc for each ordered pair of nodes.

We do not exclude the possibility that there is a separate arc connect-
ing a pair of nodes in each of the two directions. However, we do not allow
more than one arc between a pair of nodes in the same direction, so that we
can refer unambiguously to the arc with start ¢ and end j as arc (¢, 7). This
is done for notational convenience.t Our analysis can be simply extended
to handle multiple arcs with start ¢ and end j; the extension is based on
modifying the graph by introducing for each such arc, an additional node,
call it n, together with the two arcs (¢,n) and (n,j). On occasion, we will
pause to provide examples of this type of extension.

We note that much of the literature of graph theory distinguishes
between directed graphs where an arc (7, j) is an ordered pair to be distin-
guished from arc (j,4), and undirected graphs where an arc is associated
with a pair of nodes regardless of order. One may use directed graphs, even
in contexts where the use of undirected graphs would be appropriate and
conceptually simpler. For this, one may need to replace an undirected arc
(4,4) with two directed arcs (4,7) and (4, %) having identical characteristics.

T Some authors use a single symbol, such as a, to denote an arc, and use
something like s(a) and e(a) to denote the start and end nodes of a, respectively.
This notational method allows the existence of multiple arcs with the same start
and end nodes, but is also more cumbersome and less suggestive.

4 Introduction Chap. 1

We have chosen to deal exclusively with directed graphs because in our
development there are only a few occasions where undirected graphs are
convenient. Thus, all our references to a graph implicitly assume that the
graph is directed. In fact we often omit the qualifier “directed” and refer
to a directed graph simply as a graph.

1.1.1 Paths and Cycles

A path P in a directed graph is a sequence of nodes (ni,ns,...,nx) with
k > 2 and a corresponding sequence of k—1 arcs such that the ith arc in the
sequence is either (n;,n;+1) (in which case it is called a forward arc of the
path) or (n;11,7n;) (in which case it is called a backward arc of the path).
Nodes n; and ny, are called the start node (or origin) and the end node (or
destination) of P, respectively. A path is said to be forward (or backward)
if all of its arcs are forward (respectively, backward) arcs. We denote by
P+ and P~ the sets of forward and backward arcs of P, respectively.

A cycle is a path for which the start and end nodes are the same. A
path is said to be simple if it contains no repeated arcs and no repeated
nodes, except that the start and end nodes could be the same (in which
case the path is called a simple cycle). A Hamiltonian cycle is a simple
forward cycle that contains all the nodes of the graph. These definitions
are illustrated in Fig. 1.1. We mention that some authors use a slightly
different terminology: they use the term “walk” to refer to a path and they
use the term “path” to refer to a simple path.

Note that the sequence of nodes (ni,n2,...,nk) is not sufficient to
specify a path; the sequence of arcs may also be important, as Fig. 1.1(c)
shows. The difficulty arises when for two successive nodes n; and n;+1 of
the path, both (n;,n;y1) and (niy1,n;) are arcs, so there is ambiguity as
to which of the two is the corresponding arc of the path. If a path is known
to be forward or is known to be backward, it is uniquely specified by the
sequence of its nodes. Otherwise, however, the intended sequence of arcs
must be explicitly defined.

A graph that contains no simple cycles is said to be acyclic. A graph
is said to be connected if for each pair of nodes ¢ and j, there is a path
starting at ¢ and ending at j; it is said to be strongly connected if for each
pair of nodes ¢ and j, there is a forward path starting at ¢ and ending
at j. Thus, for example, the graph of Fig. 1.1(b) is connected but not
strongly connected. It can be shown that if a graph is connected and each
of its nodes has even degree, there is a cycle (not necessarily forward) that
contains all the arcs of the graph exactly once (see Exercise 1.5). Such
a cycle is called an Euler cycle, honoring the historically important work
of Euler; see the discussion in Section 10.1 about the Koénigsberg bridge
problem. Figure 1.2 gives an example of an Euler cycle.

We say that a graph G’ = (N, A’) is a subgraph of a graph G = (N, A)
if N7V C N and A’ C A. A tree is a connected acyclic graph. A spanning

Sec. 1.1 Graphs and Flows

sttt (B (DB 1000

(@) Asimple forward path P =(nq, ny,ng,ng).

Set of backward arcs C”
Set of forward arcs C *

(b) A simple cycle C=(nq, Ny, n3,n 1) which is neither forward nor backward.

Start Node @ @ @—@ End Node

(c) Path P =(ny, ny, N3, N4, N 5) with corresponding sequence of arcs
{(n1.n2),(n3,n2), (N3.Nn4).(N5.N 4}

Figure 1.1: Illustration of various types of paths and cycles. The cycle in (b)
is not a Hamiltonian cycle; it is simple and contains all the nodes of the graph,
but it is not forward. Note that for the path (c), in order to resolve ambiguities,
it is necessary to specify the sequence of arcs of the path (rather than just the
sequence of nodes) because both (n3,n4) and (ng4,ng) are arcs.

1 2 3
4 5
6 7 8

@ (b)

Figure 1.2: Example of an Euler cycle. Consider a 3 x 3 chessboard, where the
middle square has been deleted. A knight starting at one of the squares of the
board can visit every other square exactly once and return to the starting square
as shown in the graph (b), or equivalently in (c). In the process, the knight will
make all the possible moves (in one direction only), or equivalently, it will cross
every arc of the graph in (b) exactly once. The knight’s tour is an Euler cycle for
the graph of (b).

6 Introduction Chap. 1

tree of a graph G is a subgraph of G, which is a tree and includes all the
nodes of G. It can be shown [Exercise 1.14(c)] that a subgraph is a spanning
tree if and only if it is connected and it contains N — 1 arcs.

1.1.2 Flow and Divergence

In many applications involving graphs, it is useful to introduce a variable
that measures the quantity flowing through each arc, like for example,
electric current in an electric circuit, or water flow in a hydraulic network.
We refer to such a variable as the flow of an arc. Mathematically, the flow
of an arc (7,j) is simply a scalar (real number), which we usually denote
by x;;. It is convenient to allow negative as well as positive values for flow.
In applications, a negative arc flow indicates that whatever is represented
by the flow (material, electric current, etc.), moves in a direction opposite
to the direction of the arc. We can always change the sign of a negative
arc flow to positive as long as we change the arc direction, so in many
situations we can assume without loss of generality that all arc flows are
nonnegative. For the development of a general methodology, however, this
device is often cumbersome, which is why we prefer to simply accept the
possibility of negative arc flows.

Given a graph (N, A), a set of flows {zi; | (i,7) € A} is referred to
as a flow vector. The divergence vector y associated with a flow vector x
is the N-dimensional vector with coordinates

yi= > wg— > w, VieN. (1.1)

{31G.5)eA} {31 eA}

Thus, y; is the total flow departing from node i less the total flow arriving
at 4; it is referred to as the divergence of i.

We say that node i is a source (respectively, sink) for the flow vector
x if y; > 0 (respectively, y; < 0). If y; = 0 for all i € A/, then z is called
a circulation. These definitions are illustrated in Fig. 1.3. Note that by
adding Eq. (1.1) over all i € N/, we obtain

Z y; = 0.
1EN

Every divergence vector y must satisfy this equation.
The flow vectors x that we will consider will often be constrained to
lie between given lower and upper bounds of the form

bij §xij §cij, V(Z,]) c A.

Given a flow vector x that satisfies these bounds, we say that a path P is
unblocked with respect to x if, roughly speaking, we can send some positive
flow along P without violating the bound constraints; that is, if flow can

Sec. 1.1 Graphs and Flows 7

Yo =-2 (Sink)

=0 (Neither a source
nor a sink)

(b) A circulation

Figure 1.3: Illustration of flows x;; and the corresponding divergences y;. The
flow in (b) is a circulation because y; = 0 for all 3.

be increased on the set Pt of the forward arcs of P, and can be decreased
on the set P~ of the backward arcs of P:

Tij < Cij, V(i,j)EPJr, bij < xij, V(i,j)EP*.

For example, in Fig. 1.3(a), suppose that all arcs (i, 7) have flow bounds
bij = —2 and ¢;; = 2. Then the path consisting of the sequence of nodes
(1,2,4) is unblocked, while the reverse path (4,2, 1) is not unblocked.

1.1.3 Path Flows and Conformal Decomposition

A simple path flow is a flow vector that corresponds to sending a positive
amount of flow along a simple path; more precisely, it is a flow vector x
with components of the form

a if (i,5) € Pt,
xi; =< —a if (i,7) € P, (1.2)
0 otherwise,
where a is a positive scalar, and P+ and P~ are the sets of forward and

backward arcs, respectively, of some simple path P. Note that the path P
may be a cycle, in which case x is also called a simple cycle flow.

1.2

8 Introduction Chap. 1

It is often convenient to break down a flow vector into the sum of
simple path flows. This leads to the notion of a conformal realization,
which we proceed to discuss.

We say that a path P conforms to a flow vector x if z;; > 0 for all
forward arcs (¢,7) of P and x;; < 0 for all backward arcs (4, j) of P, and
furthermore either P is a cycle or else the start and end nodes of P are a
source and a sink of x, respectively. Roughly, a path conforms to a flow
vector if it “carries flow in the forward direction,” i.e., in the direction
from the start node to the end node. In particular, for a forward cycle to
conform to a flow vector, all its arcs must have positive flow. For a forward
path which is not a cycle to conform to a flow vector, its arcs must have
positive flow, and in addition the start and end nodes must be a source
and a sink, respectively; for example, in Fig. 1.3(a), the path consisting of
the sequence of arcs (1,2), (2,3), (3,4) does not conform to the flow vector
shown, because node 4, the end node of the path, is not a sink.

We say that a simple path flow x5 conforms to a flow vector «x if the
path P corresponding to z* via Eq. (1.2) conforms to x. This is equivalent
to requiring that

0 < x5 for all arcs (4, j) with 0 <z},
x5 <0 for all arcs (4, j) with z; <0,

and that either P is a cycle or else the start and end nodes of P are a

source and a sink of x, respectively.

An important fact is that any flow vector can be decomposed into a
set of conforming simple path flows, as illustrated in Fig. 1.4. We state
this as a proposition. The proof is based on an algorithm that can be used
to construct the conforming components one by one (see Exercise 1.2).

Proposition 1.1: (Conformal Realization Theorem) A nonzero
flow vector z can be decomposed into the sum of ¢ simple path flow
vectors 1, x2, ..., xt that conform to x, with ¢ being at most equal to
the sum of the numbers of arcs and nodes A+ N. If z is integer, then
xl, 22, .. xt can also be chosen to be integer. If x is a circulation,
then z!, 22, ... ! can be chosen to be simple cycle flows, and ¢t < A.

NETWORK FLOW MODELS - EXAMPLES

In this section we introduce some of the major classes of problems that will
be discussed in this book. We begin with the minimum cost flow problem,
which, together with its special cases, will be the subject of the following
six chapters.

Sec. 1.2 Network Flow Models — Examples 9

Y, =-2 (Sink)

y,=1 (Source) e _ ° y,=0 (Neither a source

nor a sink)

Flow =1

Figure 1.4: Decomposition of a flow vector z into three simple path flows con-
forming to x. Consistent with the definition of conformance of a path flow, each
arc (i,7) of the three component paths carries positive (or negative) flow only if
x5 > 0 (or x;; < 0, respectively). The first two paths [(1,2) and (3,4, 2)] are not
cycles, but they start at a source and end at a sink, as required. Arcs (1,3) and
(3,2) do not belong to any of these paths because they carry zero flow. In this
example, the decomposition is unique, but in general this need not be the case.

1.2.1 The Minimum Cost Flow Problem

This problem is to find a set of arc flows that minimize a linear cost function,
subject to the constraints that they produce a given divergence vector and
they lie within some given bounds; that is,

minimize Z @i %ij (1.3)
(i,5)€A
subject to the constraints
Z Tij — Z Tji = Si, VieN, (1.4)
{ilG.5) €A} {ilGG)eAy
bij < wi; < ¢y, A (Z,]) €A, (1.5)
where a;j, bij, ¢ij, and s; are given scalars. We use the following terminol-
ogy:
ai;: the cost coefficient (or simply cost) of (i, 7),
bij and c¢;;: the flow bounds of (i, j),
[bij, cij|: the feasible flow range of (i,),

10 Introduction Chap. 1

si: the supply of node i (when s; is negative, the scalar —s; is called
the demand of 7).

We also refer to the constraints (1.4) and (1.5) as the conservation of flow
constraints, and the capacity constraints, respectively. A flow vector satis-
fying both of these constraints is called feasible, and if it satisfies just the
capacity constraints, it is called capacity-feasible. If there exists at least
one feasible flow vector, the minimum cost flow problem is called feasible;
otherwise it is called infeasible. On occasion, we will consider the variation
of the minimum cost flow problem where the lower or the upper flow bound
of some of the arcs is either —oo or oo, respectively. In these cases, we will
explicitly state so.

For a typical application of the minimum cost flow problem, think
of the nodes as locations (cities, warehouses, or factories) where a certain
product is produced or consumed. Think of the arcs as transportation
links between the locations, each with transportation cost a;; per unit
transported. The problem then is to move the product from the production
points to the consumption points at minimum cost while observing the
capacity constraints of the transportation links.

However, the minimum cost flow problem has many applications that
are well beyond the transportation context just described, as will be seen
from the following examples. These examples illustrate how some impor-
tant discrete/combinatorial problems can be modeled as minimum cost flow
problems, and highlight the important connection between continuous and
discrete network optimization.

Example 1.1. The Shortest Path Problem

Suppose that each arc (4, j) of a graph is assigned a scalar cost a;;, and suppose
that we define the cost of a forward path to be the sum of the costs of its
arcs. Given a pair of nodes, the shortest path problem is to find a forward
path that connects these nodes and has minimum cost. An analogy here is
made between arcs and their costs, and roads in a transportation network and
their lengths, respectively. Within this transportation context, the problem
becomes one of finding the shortest route between two geographical points.
Based on this analogy, the problem is referred to as the shortest path problem,
and the arc costs and path costs are commonly referred to as the arc lengths
and path lengths, respectively.

The shortest path problem arises in a surprisingly large number of con-
texts. For example in a data communication network, a;; may denote the
average delay of a packet to cross the communication link (4, j), in which case
a shortest path is a minimum average delay path that can be used for routing
the packet from its origin to its destination. As another example, if p;; is
the probability that a given arc (4,j) in a communication network is usable,
and each arc is usable independently of all other arcs, then the product of the
probabilities of the arcs of a path provides a measure of reliability of the path.
With this in mind, it is seen that finding the most reliable path connecting

Sec. 1.2 Network Flow Models — Examples 11

two nodes is equivalent to finding the shortest path between the two nodes
with arc lengths (—Inp;;).

The shortest path problem also arises often as a subroutine in algo-
rithms that solve other more complicated problems. Examples are the primal-
dual algorithm for solving the minimum cost flow problem (see Chapter 6),
and the conditional gradient and projection algorithms for solving multicom-
modity flow problems (see Chapter 8).

It is possible to cast the problem of finding a shortest path from node
s to node t as the following minimum cost flow problem:

minimize g QijTij

(i,5)€EA
1 ifi=s,
subject to Z Tij — Z Tj; = { -1 ifi=t¢, (1.6)
{il(i.5) €A} UlGa)eAY 0 otherwise,

0 < zyy, v (i,7) € A.

To see this, let us associate with any forward path P from s to t the flow
vector z with components given by

iy = 1 if (¢,4) belongs to P, (1.7)
0 otherwise.

Then z is feasible for problem (1.6) and the cost of = is equal to the length
of P. Thus, if a vector = of the form (1.7) is an optimal solution of problem
(1.6), the corresponding path P is shortest.

Conversely, it can be shown that if problem (1.6) has at least one op-
timal solution, then it has an optimal solution of the form (1.7), with a
corresponding path P that is shortest. This is not immediately apparent, but
its proof can be traced to a remarkable fact that we will show in Chapter 5
about minimum cost flow problems with node supplies and arc flow bounds
that are integer: such problems, if they have an optimal solution, they have
an integer optimal solution, that is, a set of optimal arc flows that are integer
(an alternative proof of this fact is sketched in Exercise 1.34). From this it
follows that if problem (1.6) has an optimal solution, it has one with arc flows
that are 0 or 1, and which is of the form (1.7) for some path P. This path is
shortest because its length is equal to the optimal cost of problem (1.6), so it
must be less or equal to the cost of any other flow vector of the form (1.7),
and therefore also less or equal to the length of any other path from s to ¢.
Thus the shortest path problem is essentially equivalent with the minimum
cost flow problem (1.6).

Example 1.2. The Assignment Problem

Suppose that there are n persons and n objects that we have to match on a
one-to-one basis. There is a benefit or value a;; for matching person ¢ with
object 7, and we want to assign persons to objects so as to maximize the total

12

Introduction Chap. 1

PERSONS OBJECTS
1 1
0 : : 0 Figure 1.5: The graph represen-

’ ajj G tation of an assignment problem.

benefit. There is also a restriction that person i can be assigned to object j
only if (7, j) belongs to a given set of pairs A. Mathematically, we want to find
a set of person-object pairs (1,7j1),...,(n,jn) from A such that the objects
J1,...,jn are all distinct, and the total benefit Z?:l a;j; is maximized.

The assignment problem is important in many practical contexts. The
most obvious ones are resource allocation problems, such as assigning em-
ployees to jobs, machines to tasks, etc. There are also situations where the
assignment problem appears as a subproblem in methods for solving various
complex combinatorial problems (see Chapter 10).

We may associate any assignment with the set of variables {z;; | (¢,) €
A}, where x;; = 1 if person 4 is assigned to object j and z;; = 0 otherwise.
The value of this assignment is Z(m.)eA a;;xij. The restriction of one object
per person can be stated as Zj zi; = 1 for all ¢ and ZZ xi; = 1 for all j. We
may then formulate the assignment problem as the linear program

maximize Z Qi Lij
(i,5)€A
subject to Z zi; =1, Vi=1,...,n,
{i1(,5)eAY (1.8)
.lfij:l, ijl,...,n,
{il(i.5)€A}
0<z;; <1, v (i,7) € A.

Actually we should further restrict x;; to be either 0 or 1. However, as we
will show in Chapter 5, the above linear program has the property that if it
has a feasible solution at all, then it has an optimal solution where all x;;
are either 0 or 1 (compare also with the discussion in the preceding example
and Exercise 1.34). In fact, the set of its optimal solutions includes all the
optimal assignments.

We now argue that the assignment/linear program (1.8) is a minimum
cost flow problem involving the graph shown in Fig. 1.5. Here, there are
2n nodes divided into two groups: n corresponding to persons and n corre-
sponding to objects. Also, for every possible pair (i,5) € A, there is an arc
connecting person ¢ with object j. The variable z;; is the flow of arc (i, 7).

Sec. 1.2 Network Flow Models — Examples 13

The constraint

Z {Eijzl

{31G,5)eA}

indicates that the divergence of person/node i should be equal to 1, while the

constraint
{il(4,5)€ A}

indicates that the divergence of object/node j should be equal to -1. Finally,
we may view (—a;;) as the cost coefficient of the arc (i,7) (by reversing the
sign of a;j, we convert the problem from a maximization to a minimization
problem).

Example 1.3. The Max-Flow Problem

In the max-flow problem, we have a graph with two special nodes: the source,
denoted by s, and the sink, denoted by t. Roughly, the objective is to move as
much flow as possible from s into ¢ while observing the capacity constraints.
More precisely, we want to find a flow vector that makes the divergence of all
nodes other than s and ¢ equal to 0 while maximizing the divergence of s.

All cost coefficients are
zero except for ag

Source Sink

Artificial fegdback arc

Cost coefficient = -1

Figure 1.6: The minimum cost flow representation of a max-flow problem.
At the optimum, the flow zts equals the maximum flow that can be sent from
s to t through the subgraph obtained by deleting the artificial arc (¢, s).

The max-flow problem arises in many practical contexts, such as calcu-
lating the throughput of a highway system or a communication network. It
also arises often as a subproblem in more complicated problems or algorithms;
in particular, it bears a fundamental connection to the question of existence of
a feasible solution of a general minimum cost flow problem (see our discussion

14

Introduction Chap. 1

in Chapter 3). Finally, several discrete/combinatorial optimization problems
can be formulated as max-flow problems (see the Exercises in Chapter 3).
We formulate the problem as a special case of the minimum cost flow
problem by assigning cost 0 to all arcs and by introducing an artificial arc
(t,s) with cost —1, as shown in Fig. 1.6. Mathematically, the problem is:

maximize Tis
subject to

Z Tij — Z zj; =0, Vie N with i # s and i # t,
{7l(i,5)€eA} {5l(Gi)eA}
S e Y
{7l(s,5)€A} {il(i,t)e A}
bij <xij <eiy, Y (i,7) € Awith (i,7) # (¢, 5).

Viewing the problem as a maximization is consistent with its intuitive inter-
pretation. Alternatively, we could write the problem as a minimization of
—xts subject to the same constraints. Also, we could introduce upper and
lower bounds on x¢s,

Z bit < s < Z cit,

{i|(i,t) € A} {i|(i,t)e A}
but these bounds are actually redundant since they are implied by the other
upper and lower arc flow bounds.
Example 1.4. The Transportation Problem
This problem is the same as the assignment problem except that the node

supplies need not be 1 or —1, and the numbers of sources and sinks need not
be equal. It has the form

minimize g Qi Tij

(i,5)€A
subject to Z Tij = O, Vi=1,...,m,
{ilGi,5) €AY (1.9)
Z zij = B, Vji=1,...,n,
{il(i,5)€ A}

0<zy; < min{ozi,ﬂj}, \4 (’L,]) e A.

Here a; and (; are positive scalars, which for feasibility must satisfy

m n
E a; = E Bijs
i=1 =1

Sec. 1.2 Network Flow Models — Examples 15

(add the conservation of flow constraints). In an alternative formulation,
the upper bound constraint z;; < min{a;, 3;} could be discarded, since it is
implied by the conservation of flow and the nonnegativity constraints.

As a practical example of a transportation problem that has a combi-
natorial flavor, suppose that we have m communication terminals, each to be
connected to one of n traffic concentrators. We introduce variables z;;, which
take the value 1 if terminal 4 is connected to concentrator j. Assuming that
concentrator j can be connected to no more than b; terminals, we obtain the
constraints

injgb]’, Vj—l,...,n.
i=1

Also, since each terminal must be connected to exactly one concentrator, we
have the constraints

n
Zitij:l, Vi:l,...,m.
j=1

Assuming that there is a cost a;; for connecting terminal ¢ to concentrator j,
the problem is to find the connection of minimum cost, that is, to minimize

m n
E E A5 Tiq5
i=1 j=1

subject to the preceding constraints. This problem is not yet a transportation
problem of the form (1.9) for two reasons:

(a) The arc flows z;; are constrained to be 0 or 1.

(b) The constraints "
in problem (1.9).

1 Zij < bj are not equality constraints, as required

It turns out, however, that we can ignore the 0-1 constraint on z;;j. As
discussed in connection with the shortest path and assignment problems,
even if we relax this constraint and replace it with the capacity constraint
0 < z;; < 1, there is an optimal solution such that each z;; is either 0 or
1. Furthermore, to convert the inequality constraints to equalities, we can
introduce a total of Z;:I bj —m “dummy” terminals that can be connected
at zero cost to all of the concentrators. In particular, we introduce a special
supply node 0 together with the constraint

n n
S = Yo
j=1 j=1
and we change the inequality constraints Z;L:1 zij < b; to

m
Toj + E Tij = bj.
=1

The resulting problem has the transportation structure of problem (1.9), and
is equivalent to the original problem.

16 Introduction Chap. 1

1.2.2 Network Flow Problems with Convex Cost
A more general version of the minimum cost flow problem arises when the

cost function is convex rather than linear. An important special case is the
problem

minimize Z fij(zi5)

(i,5)€A
subject to Z Tij — Z Tji = S, VieN,
{Jl(i,5)eA} {il(5,5)e A}

Tij € Xij, A (Z,]) € A,

where f;; is a convex function of the flow z;; of arc (i,7), s; are given
scalars, and X;; are convex intervals of real numbers, such as for example

Xij = [bij, cisls

where b;; and c;; are given scalars. We refer to this as the separable convex
cost network flow problem, because the cost function separates into the sum
of cost functions, one per arc. This problem will be discussed in detail in
Chapters 8 and 9.

Example 1.5. The Matrix Balancing Problem

Here the problem is to find an m x n matrix X that has given row sums and
column sums, and approximates a given m X n matrix M in some optimal
manner. We can formulate such a problem in terms of a graph consisting of
m sources and n sinks. In this graph, the set of arcs consists of the pairs
(i,4) for which the corresponding entry z;; of the matrix X is allowed to be
nonzero. The given row sums r; and the given column sums c¢; are expressed
as the constraints

E Tij = Ti, z':l,...,m,

{71(,5)eA}

E Tij = Cj, j:l,‘..,n.

{il(s,5)eA}

There may be also bounds for the entries x;; of X. Thus, the structure of
this problem is similar to the structure of a transportation problem. The cost
function to be optimized has the form

> fulwi),

(i,5)eA

Sec. 1.2 Network Flow Models — Examples 17

and expresses the objective of making the entries of X close to the corre-
sponding entries of the given matrix M. A commonly used example is the
quadratic function

Fislwa) = Y wig(@y —miy)?,

(4,5)€A

where w;; are given positive scalars.
Another interesting cost function is the logarithmic

fig(wig) = w4 {ln (:1—2]]) - 1] ;

where we assume that m;; > 0 for all (4, j) € A. Note that this function is not
defined for z;; < 0, so to obtain a problem that fits our framework, we must
use a constraint interval of the form X;; = (0, 00) or X;; = (0, ¢;5], where ¢y
is a positive scalar.

An example of a practical problem that can be addressed using the
preceding optimization model is to predict the distribution matrix X of tele-
phone traffic between m origins and n destinations. Here we are given the
total supplies 7; of the origins and the total demands c; of the destinations,
and we are also given some matrix M that defines a nominal traffic pattern
obtained from historical data.

There are other types of network flow problems with convex cost that
often arise in practice. We generically represent such problems in the form

minimize f(z)

subject to z € F

where F is a convex subset of flow vectors in a graph and f is a convex
function over the set F. We will discuss in some detail various classes
of problems of this type in Chapter 8, and we will see that they arise in
several different ways; for example, the cost function may be nonseparable
because of coupling of the costs of several arc flows, and/or there may be
side constraints, whereby the flows of several arcs are jointly restricted by
the availability of resource. An important example is multicommodity flow
problems, which we discuss next.

1.2.3 Multicommodity Flow Problems

Multicommodity network flow problems involve several flow “types” or
commodities, which simultaneously use the network and are coupled through
either the arc flow bounds, or through the cost function. Important exam-
ples of such problems arise in communication, transportation, and man-
ufacturing networks. For example, in communication networks the com-
modities are the streams of different classes of traffic (telephone, data,

18 Introduction Chap. 1

video, etc.) that involve different origin-destination pairs. Thus there is
a separate commodity per class of traffic and origin-destination pair. The
following example introduces this context. In Chapter 8, we will discuss
similar and/or more general multicommodity network flow problems that
arise in other practical contexts.

Example 1.6. Routing in Data Networks

We are given a directed graph, which is viewed as a model of a data com-
munication network. We are also given a set of ordered node pairs (im,jm),
m = 1,..., M, referred to as origin-destination (OD) pairs. The nodes in,
and j,, are referred to as the origin and the destination of the OD pair. For
each OD pair (im,jm), we are given a scalar rp, that represents its input
traffic. In the context of routing of data in a communication network, r,
(measured for example in bits/second) is the arrival rate of traffic entering
the network at node i, and exiting at node j,,. The routing objective is to
divide each 7, among the many paths from the origin ,, to the destination
Jjm in a way that the resulting total arc flow pattern minimizes a suitable cost
function (see Fig. 1.7).

Destination of
OD pair (i, jm)

Origin of
OD pair (i, »Jm)

Figure 1.7: Illustration of how the input 7, of the OD pair (im,jm) is
divided into nonnegative path flows that start at i,, and end at j,,. The
flows of the different OD pairs interact by sharing the arcs of the network.

If we denote by z;;(m) the flow on arc (4,7) of OD pair (im, jm), we
have the conservation of flow constraints

Tm if 4 = im,
Z xi5(m) — Z zji(m) =< —rpm it i = jm, VieN,
(1G9 EAY {51 eA} 0 otherwise,
for each m = 1,..., M. Furthermore, the flows x;;(m) are required to be

nonnegative, and possibly to satisfy additional constraints, such as upper
bounds. The cost function often has the form

f@) =Y filys),

(i,4)€A

Sec. 1.2 Network Flow Models — Examples 19

where f;; is a function of the total flow of arc (i, j)

M
vii = Y wis(m).
m=1

Such a cost function is often based on a queueing model of average delay (see
for example the data network textbook by Bertsekas and Gallager [1992]).

1.2.4 Discrete Network Optimization Problems

Many linear or convex network flow problems, in addition to the conser-
vation of flow constraints and arc flow bounds, involve some additional
constraints. In particular, there may be constraints that couple the flows
of different arcs, and there may also be integer constraints on the arc flows,
such as for example that each arc flow be either 0 or 1. Several famous
combinatorial optimization problems, such as the following one, are of this

type.

Example 1.7. The Traveling Salesman Problem

This problem refers to a salesman who wants to find a minimum mileage/cost
tour that visits each of N given cities exactly once and returns to the city
he started from. To convert this to a network flow problem, we associate a
node with each city ¢ = 1,..., N, and we introduce an arc (i,) with traversal
cost a;; for each ordered pair of nodes i and j. A tour is synonymous to
a Hamiltonian cycle, which was earlier defined to be a simple forward cycle
that contains all the nodes of the graph. Equivalently, a tour is a connected
subgraph that consists of N arcs, such that there is exactly one incoming and
one outgoing arc for each node i = 1,..., N. The problem is to find a tour
with minimum sum of arc costs.

To formulate this problem as a network flow problem, we denote by x;;
the flow of arc (¢, j) and we require that this flow is either 1 or 0, indicating
that the arc is or is not part of the tour, respectively. The cost of a tour T is

then
Z QAijTij-
(4,§)€T

The constraint that each node has a single incoming and a single outgoing arc
on the tour is expressed by the following two conservation of flow equations:

Z zi; =1, i=1,...,N,

j=1,...,N
JFi

Z zi;j=1, j=1,...,N.

i=1,...,N
i

1.3

20 Introduction Chap. 1
There is one additional connectivity constraint:
the subgraph with node set A" and arc set {(¢,5) | z;; = 1} is connected.

If this constraint was not present, the problem would be an ordinary assign-
ment problem. Unfortunately, this constraint is essential, since without it,
there would be feasible solutions involving multiple disconnected cycles.

Despite the similarity, the traveling salesman problem is far more dif-
ficult than the assignment problem. Solving problems having a mere few
hundreds of nodes can be very challenging. By contrast, assignment prob-
lems with hundreds of thousands of nodes can be solved in reasonable time
with the presently available methodology.

Actually, we have already described some discrete/combinatorial prob-
lems that fall within the framework of the minimum cost flow problem, such
as shortest path and assignment (cf. Examples 1.1 and 1.2). These prob-
lems require that the arc flows be 0 or 1, but, as mentioned earlier, we can
neglect these 0-1 constraints because it turns out that even if we relax them
and replace them with flow bound intervals [0, 1], we can obtain optimal
flows that are 0 or 1 (for a proof, see Section 5.2 or Exercise 1.34).

On the other hand, once we deviate from the minimum cost flow struc-
ture and we impose additional constraints or use a nonlinear cost function,
the integer character of optimal solutions is lost, and all integer constraints
must be explicitly imposed. This often complicates dramatically the so-
lution process, and in fact it may be practically impossible to obtain an
exactly optimal solution. As we will discuss in Chapter 10, there are sev-
eral approximate solution approaches that are based on simplified versions
of the problem, such as relaxing the integer constraints. These simpli-
fied problems can often be addressed with the efficient minimum cost flow
algorithms that we will develop in Chapters 2-7.

NETWORK FLOW ALGORITHMS — AN OVERVIEW

This section, which may be skipped without loss of continuity, provides
a broad classification of the various classes of algorithms for linear and
convex network optimization problems. It turns out that these algorithms
rely on just a few basic ideas, so they can be easily grouped in a few
major categories. By contrast, there is a much larger variety of algorithmic
ideas for discrete optimization problems. For this reason, we postpone the
corresponding discussion for Chapter 10.

Network optimization problems typically cannot be solved analyti-
cally. Usually they must be addressed computationally with one of several
available algorithms. One possibility, for linear and convex problems, is to
use a general purpose linear or nonlinear programming algorithm. How-
ever, the network structure can be exploited to speed up the solution by

Sec. 1.3 Network Flow Algorithms — An Overview 21

using either an adaptation of a general purpose algorithm such as the sim-
plex method, or by using a specialized network optimization algorithm. In
practice, network optimization problems can often be solved hundreds and
even thousands of times faster than general linear or convex programs of
comparable dimension.

The algorithms for linear and convex network problems that we will
discuss in this book can be grouped in three main categories:

(a) Primal cost improvement. Here we try to iteratively improve the
cost to its optimal value by constructing a corresponding sequence of
feasible flows.

(b) Dual cost improvement. Here we define a problem related to the orig-
inal network flow problem, called the dual problem, whose variables
are called prices. We then try to iteratively improve the dual cost to
its optimal value by constructing a corresponding sequence of prices.
Dual cost improvement algorithms also iterate on flows, which are
related to the prices through a property called complementary slack-
ness.

(c) Auction. Here we generate a sequence of prices in a way that is rem-
iniscent of real-life auctions. Strictly speaking, there is no primal or
dual cost improvement here, although we will show that auction can
be viewed as an approximate dual cost improvement process. In ad-
dition to prices, auction algorithms also iterate on flows, which are
related to prices through a property called e-complementary slack-
ness; this is an approximate form of the complementary slackness
property mentioned above.

All of the preceding types of algorithms can be used to solve both
linear and convex network problems (although the structure of the given
problem may favor significantly the use of some types of methods over
others). For simplicity, in this chapter we will explain these ideas primarily
through the assignment problem, deferring a more detailed development to
subsequent chapters. Our illustrations, however, are relevant to the general
minimum cost flow problem and to its convex cost extensions. Some of our
explanations are informal. Precise statements of algorithms and results will
be given in subsequent chapters.

1.3.1 Primal Cost Improvement

Primal cost improvement algorithms for the minimum cost flow problem
start from an initial feasible flow vector and then generate a sequence of
feasible flow vectors, each having a better cost than the preceding one.
Let us derive an important characterization of the differences between suc-
cessive vectors, which is the basis for algorithms as well as for optimality
conditions.

22 Introduction Chap. 1

Let x and T be two feasible flow vectors, and consider their difference
z =% — x . This difference must be a circulation with components

Zij = Tij — Tij,
since both x and T are feasible. Furthermore, if the cost of T is smaller
than the cost of x, the circulation z must have negative cost, i.e.,

Z Q5255 < 0.
(i,5)€eA
We can decompose z into the sum of simple cycle flows by using the confor-
mal realization theorem (Prop. 1.1). In particular, for some positive integer

K, we have
K
z= E wk&k,
k=1

where w* are positive scalars, and & are simple cycle flows whose nonzero
components ffj are 1 or -1, depending on whether z;; > 0 or z; < 0,
respectively. It is seen that the cost of z is

K
> g =y wkek,
(i,7)€A k=1

where c* is the cost of the simple cycle flow £+, Thus, since the scalars wk

are positive, if the cost of z is negative, at least one c¥ must be negative.
Note that if Cy is the cycle corresponding to &F, we have

ck= Y agghi= Y ay— Y ay

(i,5)€A (i.4)€C; (i,5)€Cy

where C,j and C are the sets of forward and backward arcs of the cycle
CY, respectively. We refer to the expression in the right-hand side above
as the cost of the cycle Cy.

The preceding argument has shown that if = is feasible but not opti-
mal, and T is feasible and has smaller cost than x, then at least one of the
cycles corresponding to a conformal decomposition of the circulation T — x
as above has negative cost. This is used to prove the following important
optimality condition.

Proposition 1.2: Consider the minimum cost flow problem. A flow
vector x* is optimal if and only if x* is feasible and every simple cycle
C that is unblocked with respect to x* has nonnegative cost; that is,

Z Qij — Z a;; > 0.

(4,5)eCt (i,5)eC™

Sec. 1.3 Network Flow Algorithms — An Overview 23

Proof: Let z* be an optimal flow vector and let C be a simple cycle that
is unblocked with respect to z*. Then there exists an ¢ > 0 such that
increasing (decreasing) the flow of arcs of Ct+ (of C—, respectively) by €
results in a feasible flow that has cost equal to the cost of x* plus e times
the cost of C. Thus, since z* is optimal, the cost of C' must be nonnegative.

Conversely, suppose, to arrive at a contradiction, that z* is feasible
and has the nonnegative cycle property stated in the proposition, but is not
optimal. Let T be a feasible flow vector with cost smaller that the one of
x*, and consider a conformal decomposition of the circulation z =T — x*.
From the discussion preceding the proposition, we see that there is a simple
cycle C' with negative cost, such that z}; < 7;; for all (4,j) € C*, and such
that scjj > T;j for all (i,) € C—. Since T is feasible, we have b;; < Ti; < ¢45
for all (i, 7). It follows that a7, < ¢;; for all (7, j) € C*, and z}; > b;; for
all (,7) € C—, so that C' is unblocked with respect to z*. This contradicts
the hypothesis that every simple cycle that is unblocked with respect to x*
has nonnegative cost. Q.E.D.

Most primal cost improvement algorithms (including for example the
simplex method, to be discussed in Chapter 5) are based on the preceding
proposition. They employ various mechanisms to construct negative cost
cycles along which flow is pushed without violating the bound constraints.
The idea of improving the cost by pushing flow along a suitable cycle often
has an intuitive meaning as we illustrate in the context of the assignment
problem.

Example 1.7. Multi-Person Exchanges in Assignment

Consider the n x n assignment problem (cf. Example 1.2) and suppose that
we have a feasible assignment, that is, a set of n pairs (¢,7) involving each
person i exactly once and each object j exactly once. In order to improve
this assignment, we could consider a two-person exchange, that is, replacing
two pairs (i1, j1) and (i2,j2) from the assignment with the pairs (i1, j2) and
(i2,41). The resulting assignment will still be feasible, and it will have a
higher value if and only if

Qiyjp + Qigjy > Qigjy + Qigja-

We note here that, in the context of the minimum cost flow representation of
the assignment problem, a two-person exchange can be identified with a cycle
involving the four arcs (i1, j1), (¢2,72), (i1, j2), and (42, 71). Furthermore, this
cycle is the difference between the assignment before and the assignment after
the exchange, while the preceding inequality is equivalent to the cycle having
a positive value.

Unfortunately, it may be impossible to improve the current assignment
by a two-person exchange, even if the assignment is not optimal; see Fig.
1.8. An improvement, however, is possible by means of a k-person exchange,
for some k > 2, where a set of pairs (i1, j1),. .., (i, jk) from the current as-
signment is replaced by the pairs (i1,72),..., (ik—1, k), (ix,J1). To see this,

24 Introduction Chap. 1

Figure 1.8: An example of a nonoptimal

feasible assignment that cannot be improved
by a two-person exchange. The value of

each pair is shown next to the correspond-

ing arc. Here, the value of the assignment

{(1,1),(2,2),(3,3)} is left unchanged at 3

by any two-person exchange. Through a

three-person exchange, however, we obtain

the optimal assignment, {(1,2), (2, 3),(3,1)},
which has value 6.

Figure 1.9: Illustration of the correspon-

o 0 dence of a k-person exchange to a simple

cycle. This is the same example as in the

preceding figure. The backward arcs of the

cycle are (1,1), (2,2), and (3,3), and corre-

A spond to the current assignment pairs. The
e forward arcs of the cycle are (1,2), (2,3),

and (3,1), and correspond to the new as-

signment pairs. This three-person exchange

is value-improving because the sum of the
values of the forward arcs (2 + 2 + 2) is

e e greater than the sum of the values of the

backward arcs (1+ 1+ 1).

note that in the context of the minimum cost flow representation of the as-
signment problem, a k-person exchange corresponds to a simple cycle with
k forward arcs (corresponding to the new assignment pairs) and k backward
arcs (corresponding to the current assignment pairs that are being replaced);
see Fig. 1.9. Thus, performing a k-person exchange is equivalent to pushing
one unit of flow along the corresponding simple cycle. The k-person exchange
improves the assignment if and only if

k

k—1
Qipjy + Z Qi1 — Z Qi imm s
m=1

m=1

which is equivalent to the corresponding cycle having positive value. Further-
more, by Prop. 1.2, a cost improving cycle exists if the flow corresponding to
the current assignment is not optimal.

1.3.2 Dual Cost Improvement

Duality theory deals with the relation between the original network opti-
mization problem and another optimization problem called the dual. To
develop an intuitive understanding of duality, we will focus on an n x n as-
signment problem (cf. Example 1.2) and consider a closely related economic
equilibrium problem. In particular, let us consider matching the n objects

Sec. 1.3 Network Flow Algorithms — An Overview 25

with the n persons through a market mechanism, viewing each person as
an economic agent acting in his/her own best interest. Suppose that object
J has a price p; and that the person who receives the object must pay the
price p;. Then the net value of object j for person ¢ is a;; — p;, and each
person 7 will logically want to be assigned to an object j; with maximal
value, that is, with

aij; — pj; = max {ai; — p;}, (1.10)
JEA(I)

where
A@) ={j | (4,7) € A}

is the set of objects that can be assigned to person i. When this condition
holds for all persons i, we say that the assignment and the price vector
p=(p1,...,pn) satisfy complementary slackness (CS for short); this name
is standard in linear programming. The economic system is then at equi-
librium, in the sense that no person would have an incentive to unilaterally
seek another object. Such equilibrium conditions are naturally of great
interest to economists, but there is also a fundamental relation with the
assignment problem. We have the following proposition.

Proposition 1.3: If a feasible assignment and a set of prices satisfy
the complementary slackness condition (1.10) for all persons i, then
the assignment is optimal and the prices are an optimal solution of
a dual problem, which is to minimize over p = (p1,...,pn) the cost

function
n n
> a)+ > pi,
i=1 j=1

where the functions ¢; are given by

qi(p):jglgé){az‘j—pj}, i=1,...,n.

Furthermore, the value of the optimal assignment and the optimal cost
of the dual problem are equal.

Proof: The total value of any feasible assignment {(i,k;) | i = 1,...,n}
satisfies

n

> i, < erélgé){aij —pi}+ > i, (1.11)
i=1 j=1

i=1

26 Introduction Chap. 1

for any set of prices {p; | j = 1,...,n}, since the first term of the right-hand
side is no less than N

Z Ak, — pk

i=1

while the second term is equal to Z?:l Pk;- On the other hand, the given
assignment and set of prices, denoted by {(i,j;) [i = 1,...,n} and {p; |

j=1,...,n}, respectively, satisfy the CS conditions, so we have
Qij, —P;. = MaxX {Qij — D |, 1=1,...,n.
174 pjz jEA(i){] pj}

By adding this relation over all ¢, we have

n n
) (félj‘x {aij = p;} +pji> = ;“Ui

i=1

and by using Eq. (1.11), we obtain

< ;nggg){au pi}+ ;pj,

for every feasible assignment {(¢,k;) | i = 1,...,n} and every set of prices
{pj | 3 = 1,...,n}. Therefore, the assignment {(¢,5;) | ¢ = 1,...,n} is
optimal for the primal problem, and the set of prices {p, | j = 1,...,n}
is optimal for the dual problem. Furthermore, the two optimal values are
equal. Q.E.D.

In analogy with primal cost improvement algorithms, one may start
with a price vector and try to successively obtain new price vectors with
improved dual cost. The major algorithms of this type involve price changes

of the form
_pi+y ifieS,
pi = {pi figs (1.12)

where S is a connected subset of nodes, and 7y is some positive scalar that
is small enough to ensure that the new price vector has an improved dual
cost.

The existence of a node subset S that results in cost improvement at
a nonoptimal price vector, as described above, will be shown in Chapter 6.

Sec. 1.3 Network Flow Algorithms — An Overview 27

This is an important and remarkable result, which may be viewed as a dual
version of the result of Prop. 1.2 (at a nonoptimal flow vector, there exists
at least one unblocked simple cycle with negative cost). In fact both results
are special cases of a more general theorem concerning elementary vectors
of subspaces, which is central in the theory of monotropic programming
(see Chapter 9).

Most dual cost improvement methods, simultaneously with changing
p along a direction of dual cost improvement, also iterate on a flow vector
x satisfying CS together with p. They terminate when x becomes feasible,
at which time, by Prop. 1.3, the pair (x, p) must consist of a primal and a
dual optimal solution.

In Chapter 6 we will discuss two main methods that select subsets S
and corresponding directions of dual cost improvement in different ways:

(a) In the primal-dual method, the direction has a steepest ascent prop-
erty, that is, it provides the maximal rate of improvement of the dual
cost per unit change in the price vector.

(b) In the relazation (or coordinate ascent) method, the direction is com-
puted so that it has a small number of nonzero elements (i.e., the set
S has few nodes). Such a direction may not be optimal in terms of
rate of dual cost improvement, but can typically be computed much
faster than the steepest ascent direction. Often the direction has only
one nonzero element, in which case only one node price coordinate is
changed; this motivates the name “coordinate ascent.” Note, how-
ever, that coordinate ascent directions cannot be used exclusively to
improve the dual cost, as is shown in Fig. 1.10.

1.3.3 Auction

Our third type of algorithm represents a significant departure from the
cost improvement idea; at any one iteration, it may deteriorate both the
primal and the dual cost, although in the end it does find an optimal primal
solution. It is based on an approximate version of complementary slackness,
called e-complementary slackness, and while it implicitly tries to solve a
dual problem, it actually attains a dual solution that is not quite optimal.
This subsection introduces the main ideas underlying auction algorithms.
Chapters 7 and 9 provide a detailed discussion for the minimum cost flow
problem and for the separable convex cost problem, respectively.

Naive Auction

Let us return to the assignment problem, and consider a natural process
for finding an equilibrium assignment and price vector. We will call this
process the naive auction algorithm, because it has a serious flaw, as will be

28 Introduction Chap. 1

P, |
Surfaces of Equal
Dual Cost
Figure 1.10: (a) The difficulty with
using exclusively coordinate ascent it-
- erations to solve the dual problem.
P, Because the dual cost is piecewise lin-
(@) ear, it may be impossible to improve
it at some corner points by chang-
Pk ing any single price coordinate. (b)

As will be discussed in Chapter 6, a

N\ Surfaces of Equal dual cost improvement is possible by

Dual Cost changing several price coordinates by
equal amounts, as in Eq. (1.12).

(b)

seen shortly. Nonetheless, this flaw will help motivate a more sophisticated
and correct algorithm.

The naive auction algorithm proceeds in iterations and generates a
sequence of price vectors and partial assignments. By a partial assignment
we mean an assignment where only a subset of the persons have been
matched with objects. A partial assignment should be contrasted with a
feasible or complete assignment where all the persons have been matched
with objects on a one-to-one basis. At the beginning of each iteration, the
CS condition [cf. Eq. (1.10)]

ij; = Pj; = jréljé?){aij —pi}

is satisfied for all pairs (4,7;) of the partial assignment. If all persons
are assigned, the algorithm terminates. Otherwise some person who is
unassigned, say 1, is selected. This person finds an object j; which offers
maximal value, that is,

i = arg max {a;; — p;
ji = arg max {ai; — ps},

and then:

(a) Gets assigned to the best object j;; the person who was assigned to
Ji at the beginning of the iteration (if any) becomes unassigned.

Sec. 1.3 Network Flow Algorithms — An Overview 29

(b) Sets the price of j; to the level at which he/she is indifferent between
Jji and the second best object; that is, he/she sets pj; to

Dj; + Vi,
where
Yi = Ui — Wy, (113)
v; is the best object value,
Vi = Mmax {aij — Pj}t, 1.14
jGA(i){ ij —Dj} ()

and w; is the second best object value,

wW; = max a;i — Pit. 1.15
jeA(z‘),#ji{ i~ ik (1.15)

(Note that as pj, is increased, the value a;j, — pj, offered by object j;
to person ¢ is decreased. -y; is the largest increment by which p;, can
be increased, while maintaining the property that j; offers maximal
value to i.)

This process is repeated in a sequence of iterations until each person has
been assigned to an object.

We may view this process as an auction where at each iteration the
bidder i raises the price of a preferred object by the bidding increment ;.
Note that v; cannot be negative, since v; > w; [compare Egs. (1.14)and
(1.15)], so the object prices tend to increase. The choice v; is illustrated
in Fig. 1.11. Just as in a real auction, bidding increments and price in-
creases spur competition by making the bidder’s own preferred object less
attractive to other potential bidders.

e-Complementary Slackness

Unfortunately, the naive auction algorithm does not always work (although
it is an excellent initialization procedure for other methods, such as primal-
dual or relaxation, and it is useful in other specialized contexts). The diffi-
culty is that the bidding increment ~; is 0 when two or more objects are tied
in offering maximum value for the bidder i. As a result, a situation may be
created where several persons contest a smaller number of equally desirable
objects without raising their prices, thereby creating a never ending cycle;
see Fig. 1.12.

To break such cycles, we introduce a perturbation mechanism, moti-
vated by real auctions where each bid for an object must raise its price by
a minimum positive increment, and bidders must on occasion take risks to
win their preferred objects. In particular, let us fix a positive scalar e, and

30 Introduction Chap. 1

v - The value ofji , the best object for person i

Bidding increment y of person i for its best
objectji

/ i% - The value of the second best object for person i
Values ;i - P; /

of objects’j

for person i \
O

@

Figure 1.11: In the naive auction algorithm, even after the price of the best
object j; is increased by the bidding increment +;, j; continues to be the best
object for the bidder ¢, so CS is satisfied at the end of the iteration. However, we
have ~; = 0 if there is a tie between two or more objects that are most preferred
by i.

say that a partial assignment and a price vector p satisfy e-complementary
slackness (e-CS for short) if

aij —pj = k@gé){aik — PR} —€
for all assigned pairs (,7). In words, to satisfy e-CS, all assigned persons

of the partial assignment must be assigned to objects that are within € of
being best.

The Auction Algorithm

We now reformulate the previous auction process so that the bidding in-
crement is always at least equal to €. The resulting method, the auction
algorithm, is the same as the naive auction algorithm, except that the
bidding increment ~; is

Vi =V — w; + € (1.16)

rather than ~v; = v; — w; as in Eq. (1.13). With this choice, the e-CS
condition is satisfied, as illustrated in Fig. 1.13. The particular increment
i = v; —w; +€ used in the auction algorithm is the maximum amount with
this property. Smaller increments -; would also work as long as v; > e,
but using the largest possible increment accelerates the algorithm. This
is consistent with experience from real auctions, which tend to terminate
faster when the bidding is aggressive.

Sec. 1.3 Network Flow Algorithms — An Overview 31

PERSONS OBJECTS

Initially assigned
to object 1

Initial price =0

Initially assigned " .
Initial price = 0

to object 2
Here a;=C>O0forall (i withi = 1,23 andj=1.2
and aij =0forall (i,j) withi=1,2,3and j=3

Initially o

unassigned Initial price = 0

At Start of |Object | Assigned | Bidder | Preferred | Bidding
Iteration # Prices Pairs Object Increment
1 0,0,0 |(1,1), (2,2) 3 2 0
2 0,0,0 |(1,1), (3,2) 2 2 0

3 0,0,0 |(1,1), (2,2) 3 2

Figure 1.12: Illustration of how the naive auction algorithm may never terminate
for a problem involving three persons and three objects. Here objects 1 and 2
offer benefit C' > 0 to all persons, and object 3 offers benefit 0 to all persons. The
algorithm cycles as persons 2 and 3 alternately bid for object 2 without changing
its price because they prefer equally object 1 and object 2.

It can be shown that this reformulated auction process terminates,
necessarily with a feasible assignment and a set of prices that satisfy e-
CS. To get a sense of this, note that if an object receives a bid during
m iterations, its price must exceed its initial price by at least me. Thus,
for sufficiently large m, the object will become “expensive” enough to be
judged “inferior” to some object that has not received a bid so far. It follows
that only for a limited number of iterations can an object receive a bid while
some other object still has not yet received any bid. On the other hand,
once every object has received at least one bid, the auction terminates.
(This argument assumes that any person can bid for any object, but it can
be generalized to the case where the set of feasible person-object pairs is
limited, as long as at least one feasible assignment exists; see Prop. 7.2 in
Chapter 7.) Figure 1.14 shows how the auction algorithm, based on the
bidding increment v; = v; — w; + € [see Eq. (1.16)], overcomes the cycling
difficulty in the example of Fig. 1.12.

When the auction algorithm terminates, we have an assignment sat-
isfying e-CS, but is this assignment optimal? The answer depends strongly

32 Introduction Chap. 1

o Vi The value of j,, the best object for person i

Bidding increment ; of person i for its best
objectji

177 'W; : The value of the second best object for person i
/ ¢
...... Y.

Valuesa; - P, / -
of objects j
for person i -

N

Figure 1.13: In the auction algorithm, even after the price of the preferred
object j; is increased by the bidding increment ~;, j; will be within e of being
most preferred, so the e-CS condition holds at the end of the iteration.

on the size of €. In a real auction, a prudent bidder would not place an
excessively high bid for fear of winning the object at an unnecessarily high
price. Consistent with this intuition, we can show that if ¢ is small, then
the final assignment will be “almost optimal.” In particular, we will show
that the total benefit of the final assignment is within ne of being optimal.
The idea is that a feasible assignment and a set of prices satisfying e-CS
may be viewed as satisfying CS for a slightly different problem, where all
benefits a;; are the same as before except the benefits of the n assigned
pairs, which are modified by no more than e.

Proposition 1.4: A feasible assignment satisfying e-complementary
slackness, together with some price vector, attains within ne the opti-
mal primal value. Furthermore, the price vector attains within ne the
optimal dual cost.

Proof: Let A* be the optimal total assignment benefit

n
A*x = max E ik
ki, i=1l,....n 4 4

k;#km if i#m =1

and let D* be the optimal dual cost (cf. Prop. 1.3):

n n
Dr = jj},}.nn ;jgljgg){aij —pi} +;py’

Sec. 1.3 Network Flow Algorithms — An Overview 33

PERSONS OBJECTS

Initially assigned Initial price = 0

to object 1

Initially assigned » .

to object 2 Initial price = 0
Here a;= C>O0forall (i,jywithi =1,2,3andj=1,2
and ai]-— Oforall (i,j) withi=1,2,3and j=3

Initially - o

unassigned Initial price = 0

At Start of |Object | Assigned | Bidder |Preferred | Bidding
Iteration # Prices Pairs Object Increment
1 0,0,0 |(1,1), (2,2) 3 2 €
2 0,e,0 | (1,1), (3,2) 2 1 2¢
3 2¢,6,0 | (2,1), (3,2) 1 2 2¢
4 2¢,3¢,0 | (1,2), (2,1) 3 1 2e
5 4¢,3¢,0 | (1,2), (3,1) 2 2 2¢

6

Figure 1.14: Illustration of how the auction algorithm, by making the bidding
increment at least €, overcomes the cycling difficulty for the example of Fig. 1.12.
The table shows one possible sequence of bids and assignments generated by
the auction algorithm, starting with all prices equal to 0 and with the partial
assignment {(1,1),(2,2)}. At each iteration except the last, the person assigned
to object 3 bids for either object 1 or 2, increasing its price by ¢ in the first iteration
and by 2e in each subsequent iteration. In the last iteration, after the prices of 1
and 2 reach or exceed C, object 3 receives a bid and the auction terminates.

If {(i,7:) | i =1,...,n} is the given assignment satisfying the e-CS condi-
tion together with a price vector p, we have

max {a;; — D} — € < Gij. —Ps;..
jeA(i){ 1] p]} — g4 p_]2

By adding this relation over all ¢, we see that

D* < Z (jlélj()li_){aij —ﬁj} +ﬁji> < Zaiji + ne < A* + ne.
i i=1

i=1

Since we showed in Prop. 1.3 that A* = D=* it follows that the total
assignment benefit Y . | a;j; is within ne of the optimal value A*, while
the dual cost of p is within ne of the optimal dual cost. Q.E.D.

34 Introduction Chap. 1

Suppose now that the benefits a;; are all integer, which is the typical
practical case. (If a;; are rational numbers, they can be scaled up to integer
by multiplication with a suitable common number.) Then the total benefit
of any assignment is integer, so if ne < 1, any complete assignment that is
within ne of being optimal must be optimal. It follows that if

1
€< —
n
and the benefits a;; are all integer, then the assignment obtained upon ter-
mination of the auction algorithm is optimal.

Figure 1.15 shows the sequence of generated object prices for the ex-
ample of Fig. 1.12 in relation to the contours of the dual cost function.
It can be seen from this figure that each bid has the effect of setting the
price of the object receiving the bid nearly equal (within €) to the price
that minimizes the dual cost with respect to that price, with all other
prices held fixed (this will be shown rigorously in Section 7.1). Successive
minimization of a cost function along single coordinates is a central fea-
ture of coordinate descent and relaxation methods, which are popular for
unconstrained minimization of smooth functions and for solving systems
of smooth equations. Thus, the auction algorithm can be interpreted as
an approximate coordinate descent method; as such, it is related to the
relaxation method discussed in the previous subsection.

Scaling

Figure 1.15 also illustrates a generic feature of auction algorithms. The
amount of work needed to solve the problem can depend strongly on the
value of € and on the maximum absolute object benefit

C = max laijl.
(i,)eA
Basically, for many types of problems, the number of iterations up to termi-
nation tends to be proportional to C'/e. This can be seen from the figure,
where the total number of iterations is roughly C/e, starting from zero
initial prices.

Note also that there is a dependence on the initial prices; if these
prices are “near optimal,” we expect that the number of iterations needed
to solve the problem will be relatively small. This can be seen from Fig.
1.15; if the initial prices satisfy p1 =~ p3 + C and p2 = p3 + C, the number
of iterations up to termination is quite small.

The preceding observations suggest the idea of e-scaling, which con-
sists of applying the algorithm several times, starting with a large value of
e and successively reducing e until it is less than some critical value (for
example, 1/n, when a;; are integer). Each application of the algorithm pro-
vides good initial prices for the next application. This is a common idea

Sec. 1.3 Network Flow Algorithms — An Overview 35

24

Contours of the
dual function

&
/ Price p,is fixed at 0

Figure 1.15: A sequence of prices p; and p2 generated by the auction algorithm
for the example of Figs. 1.12 and 1.14. The figure shows the equal dual cost
surfaces in the space of p; and pa, with ps fixed at 0. The arrows indicate the
price iterates as given by the table of Fig. 1.14. Termination occurs when the prices
reach an e-neighborhood of the point (C,C), and object 3 becomes “sufficiently
inexpensive” to receive a bid and to get assigned. The total number of iterations
is roughly C'/e, starting from zero initial prices.

in nonlinear programming; it is encountered, for example, in barrier and
penalty function methods (see Section 8.8). In practice, scaling is typically
beneficial, and accelerates the termination of the auction algorithm.

1.3.4 Good, Bad, and Polynomial Algorithms

We have discussed several types of methods, so the natural question arises:
is there a best method and what criterion should we use to rank methods?

A practitioner who has a specific type of problem to solve, perhaps
repeatedly, with the data and size of the problem within some limited range,
will usually be interested in one or more of the following:

(a) Fast solution time.

(b) Flexibility to use good starting solutions (which the practitioner can
usually provide, based on his/her knowledge of the problem, or based
on a known solution of some similar problem).

36 Introduction Chap. 1

(¢) The ability to perform sensitivity analysis (resolve the problem with
slightly different problem data) quickly.

(d) The ability to take advantage of parallel computing hardware.

Given the diversity of these considerations, it is not surprising that
there is no algorithm that will dominate the others in all or even most
practical situations. Otherwise expressed, every type of algorithm that we
will discuss is best given the right type of practical situation. Thus, to
make intelligent choices, the practitioner needs to understand the proper-
ties of different algorithms relating to speed of convergence, flexibility, par-
allelization, and suitability for specific problem structures. For challenging
problems, the choice of algorithm is often settled by experimentation with
several candidates.

A theoretical analyst may also have difficulty ranking different algo-
rithms for specific types of problems. The most common approach for this
purpose is worst-case computational complexity analysis. For example, for
the minimum cost flow problem, one tries to bound the number of elemen-
tary numerical operations needed by a given algorithm with some measure
of the “problem size,” that is, with some expression of the form

Kf(N,AC,U,S),
where
N is the number of nodes,
is the number of arcs,
is the arc cost range max(; j)ea |aijl,
is the maximum arc flow range max; jyeca(cij — bij),

is the supply range max;en |il,

-~ n © Q

is some known function,
K is a (usually unknown) constant.

If a bound of this form can be found, we say that the running time or
operation count of the algorithm is O(f(N, A, CU, S)) If f(N,A,C,U,S)
can be written as a polynomial function of the number of bits needed to
express the problem data, the algorithm is said to be polynomial. Exam-
ples of polynomial complexity bounds are O(N@A#) and O(N>APlogC),
where o and 3 are positive integers, and the numbers a;; are assumed in-
teger. The bound O(N“Aﬁ) is sometimes said to be strongly polynomial
because it involves only the graph size parameters. A bound of the form
O(NQAﬁC’) is not polynomial, even assuming that the a;; are integer, be-
cause C is not a polynomial expression of log C, the number of bits needed
to express a single number a;;. Bounds like O(N @ABC’), which are poly-
nomial in the problem data rather than in the number of bits needed to
express the data, are called pseudopolynomial.

1.4

Sec. 1.4 Notes, Sources, and Exercises 37

A common assumption in theoretical computer science is that poly-
nomial algorithms are “better” than pseudopolynomial, and pseudopoly-
nomial algorithms are “better” than exponential [for example, those with
a bound of the form K29(N:4) where g is a polynomial in N and A]. Fur-
thermore, it is thought that two polynomial algorithms can be compared in
terms of the degree of the polynomial bound; e.g., an O(N2) algorithm is
“better” than an O(N3) algorithm. Unfortunately, quite often this assump-
tion is not supported by computational practice in linear programming and
network optimization. Pseudopolynomial and even exponential algorithms
are often faster in practice than polynomial ones. In fact, the simplex
method for general linear programs is an exponential algorithm, as shown
by Klee and Minty [1972] (see also the textbooks by Chvatal [1983], or
Bertsimas and Tsitsiklis [1997]), and yet it is used widely, because of its
excellent practical properties.

There are two main reasons why worst-case complexity estimates may
fail to predict the practical performance of network flow algorithms. First,
the estimates, even if they are tight, may be very pessimistic as they may
correspond to problem instances that are highly unlikely in practice. (Av-
erage complexity estimates would be more appropriate for such situations.
However, obtaining these is usually hard, and the statistical assumptions
underlying them may be inappropriate for many types of practical prob-
lems.) Second, worst-case complexity estimates involve the (usually un-
known) constant K, which may dominate the estimate for all except for
unrealistically large problem sizes. Thus, a comparison between two algo-
rithms that is based on the size-dependent terms of running time estimates,
and does not take into account the corresponding constants may be unre-
liable.

Despite its shortcomings, computational complexity analysis is valu-
able because it often illuminates the computational bottlenecks of many al-
gorithms and motivates the use of efficient data structures. For this reason,
throughout the book, we will comment on available complexity results, we
will prove some of the most important estimates, and we will try to relate
these estimates to computational practice. For some classes of problems,
however, it turns out that the methods with the best computational com-
plexity are impractical, because they are either too complicated or too slow
in practice. In such cases, we will refer to the literature, without providing
a detailed discussion.

NOTES, SOURCES, AND EXERCISES

Network problems are discussed in many books (Berge [1962], Berge and
Ghouila-Houri [1962], Ford and Fulkerson [1962], Dantzig [1963], Busacker
and Saaty [1965], Hu [1969], Iri [1969], Frank and Frisch 1970], Christofides

38 Introduction Chap. 1

[1975], Zoutendijk [1976], Minieka [1978], Jensen and Barnes [1980], Ken-
nington and Helgason [1980], Papadimitriou and Steiglitz [1982], Chvatal
[1983], Gondran and Minoux [1984], Luenberger [1984], Rockafellar [1984],
Bazaraa, Jarvis, and Sherali [1990], Bertsekas [1991a], Murty [1992], Bert-
simas and Tsitsiklis [1997]). Several of these books discuss linear program-
ming first and develop linear network optimization as a special case. An
alternative approach that relies heavily on duality, is given by Rockafellar
[1984]. The conformal realization theorem (Prop. 1.1) has been developed
in different forms in several sources, including Ford and Fulkerson [1962],
Busacker and Saaty [1965], and Rockafellar [1984].

The primal cost improvement approach for network optimization was
initiated by Dantzig [1951], who specialized the simplex method to the
transportation problem. The extensive subsequent work using this ap-
proach is surveyed at the end of Chapter 5.

The dual cost improvement approach was initiated by Kuhn [1955]
who proposed the Hungarian method for the assignment problem. (The
name of the algorithm honors its connection with the research of the Hun-
garian mathematicians Egervary [1931] and Konig [1931].) Work using this
approach is surveyed in Chapter 6.

The auction approach was initiated in Bertsekas [1979a] for the as-
signment problem, and in Bertsekas [1986a], [1986b] for the minimum cost
flow problem. Work using this approach is surveyed at the end of Chapter
7.

EXERCISES

1.1

Consider the graph and the flow vector of Fig. 1.16.

(a) Enumerate the simple paths and the simple forward paths that start at
node 1.

Is the graph connected? Is it strongly connected?
Calculate the divergences of all the nodes and verify that they add to 0.

Give an example of a simple path flow that starts at node 1, ends at node
5, involves four arcs, and conforms to the given flow vector.

(f) Suppose that all arcs have arc flow bounds -1 and 5. Enumerate all the
simple paths that start at node 1, end at node 5, and are unblocked with

Sec. 1.4 Notes, Sources, and Exercises 39

respect to the given flow vector.

Figure 1.16: Flow vector for Ex-
ercise 1.1. The arc flows are the
numbers shown next to the arcs.

1.2 (Proof of the Conformal Realization Theorem)

Prove the conformal realization theorem (Prop. 1.1) by completing the details
of the following argument. Assume first that x is a circulation. Consider the
following procedure by which given z, we obtain a simple cycle flow z’ that
conforms to x and satisfies

0 < iy < iy for all arcs (i,7) with 0 < x5,
zij < a3 <0 for all arcs (i, 7) with z;; <0,

Tij = Ty for at least one arc (i,7) with z;; # 0;

(see Fig. 1.17). Choose an arc (4,j) with z;; # 0. Assume that z;; > 0. (A
similar procedure can be used when z;; < 0.) Construct a sequence of node
subsets To, 11, .. ., as follows: Take Tp = {j}. For k =0,1,..., given Ty, let

Tit1 = {n ¢ U};:OTP | there is a node m € Ty, and either an arc (m,n)

such that Zm, > 0 or an arc (n,m) such that zpm < O},
and mark each node n € Ty41 with the label “(m,n)” or “(n,m),” where m
is a node of T} such that zm,, > 0 or xpm, < 0, respectively. The procedure
terminates when Tk41 is empty.

At the end of the procedure, trace labels backward from ¢ until node j is
reached. (How do we know that i belongs to one of the sets T?) In particular,
let “(i1,4)” or “(i,i1)” be the label of i, let “(i2,41)” or “(i1,i2)” be the label
of i1, etc., until a node i, with label “(ix,7)” or “(j,ix)” is found. The cycle
C = (J,yik,ik—1,...,11,%,j) is simple, it contains (7,7) as a forward arc, and is
such that all its forward arcs have positive flow and all its backward arcs have
negative flow. Let a = mingy, nyec |Tmn| > 0. Then the simple cycle flow z’,
where

a if (i,§) € CT,
zi; =4 —a if (i,j) € C,
0 otherwise,
has the required properties.

Now subtract z’ from z. We have z;; — xj; > 0 only for arcs (i,J) with

xij > 0, x4 — x;; < 0 only for arcs (i,5) with z; < 0, and zs; — x}; = 0 for at

40 Introduction Chap. 1

Figure 1.17: Construction of a cycle of arcs with nonzero flow used in the proof
of the conformal realization theorem.

least one arc (i,j) with z;; # 0. If = is integer, then z’ and z — 2’ will also be
integer. We then repeat the process (for at most A times) with the circulation z
replaced by the circulation 2 — 2’ and so on, until the zero flow is obtained.

If = is not a circulation, we form an enlarged graph by introducing a new
node s and by introducing for each node i € N an arc (s,4) with flow zs; equal
to the divergence y;. The resulting flow vector is seen to be a circulation in the
enlarged graph (why?). This circulation, by the result just shown, can be decom-
posed into at most A + N simple cycle flows of the enlarged graph, conforming
to the flow vector. Out of these cycle flows, we consider those containing node
s, and we remove s and its two incident arcs while leaving the other cycle flows
unchanged. As a result we obtain a set of at most A+ N path flows of the original
graph, which add up to . These path flows also conform to x, as required.

1.3

Use the algorithm of Exercise 1.2 to decompose the flow vector of Fig. 1.16 into
conforming simple path flows.

1.4 (Path Decomposition Theorem)

(a) Use the conformal realization theorem (Prop. 1.1) to show that a forward
path P can be decomposed into a (possibly empty) collection of simple
forward cycles, together with a simple forward path that has the same
start node and end node as P. (Here “decomposition” means that the

Sec. 1.4 Notes, Sources, and Exercises 41

union of the arcs of the component paths is equal to the set of arcs of P
with the multiplicity of repeated arcs properly accounted for.)

Suppose that a graph is strongly connected and that a length a;; is given for
every arc (4,7). Show that if all forward cycles have nonnegative length,
then there exists a shortest path from any node s to any node ¢. Show
also that if there exists a shortest path from some node s to some node ¢,
then all forward cycles have nonnegative length. Why is the connectivity
assumption needed?

1.5 (Cycle Decomposition - Euler Cycles)

Consider a graph such that each of the nodes has even degree.

(a)

1.6

Give an algorithm to decompose the graph into a collection of simple cycles
that are disjoint, in the sense that they share no arcs (although they may
share some nodes). (Here “decomposition” means that the union of the
arcs of the component cycles is equal to the set of arcs of the graph.) Hint:
Given a connected graph where each of the nodes has even degree, the
deletion of the arcs of any cycle creates some connected subgraphs where
each of the nodes has even degree (including possibly some isolated nodes).

Assume in addition that the graph is connected. Show that there is an
Euler cycle, i.e., a cycle that contains all the arcs of a graph exactly once.
Hint: Apply the decomposition of part (a), and successively merge an Euler
cycle of a subgraph with a simple cycle.

In the graph of Fig. 1.16, consider the graph obtained by deleting node 1 and
arcs (1,2), (1,3), and (5,4). Decompose this graph into a collection of simple
cycles that are disjoint (cf. Exercise 1.5) and construct an Euler cycle.

1.7

(a)

Consider an n x n chessboard, and a rook that is allowed to make the
standard moves along the rows and columns. Show that the rook can start
at a given square and return to that square after making each of the possible
legal moves exactly once and in one direction only [of the two moves (a, b)
and (b, a) only one should be made]. Hint: Construct an Euler cycle in a
suitable graph.

Consider an n X n chessboard with n even, and a bishop that is allowed to
make two types of moves: legal moves (which are the standard moves along
the diagonals of its color), and illegal moves (which go from any square of
its color to any other square of its color). Show that the bishop can start at
a given square and return to that square after making each of the possible
legal moves exactly once and in one direction only, plus n2/ 4 illegal moves.

42 Introduction Chap. 1

For every square of its color, there should be exactly one illegal move that
either starts or ends at that square.

1.8 (Forward Euler Cycles)

Consider a graph and the question whether there exists a forward cycle that
passes through each arc of the graph exactly once. Show that such a cycle exists
if and only if the graph is connected and the number of incoming arcs to each
node is equal to the number of outgoing arcs from the node.

1.9

Consider an n X n chessboard with n > 4. Show that a knight starting at any
square can visit every other square, with a move sequence that contains every
possible move exactly once [a move (a,b) as well as its reverse (b, a) should be
made]. Interpret this sequence as a forward Euler cycle in a suitable graph (cf.
Exercise 1.8).

1.10 (Euler Paths)

Consider a graph and the question whether there exists a path that passes through
each arc of the graph exactly once. Show that such a path exists if and only if
the graph is connected, and either the degrees of all the nodes are even, or else
the degrees of all the nodes except two are even.

1.11

In shatranj, the old version of chess, the firz (or vizier, the predecessor to the
modern queen) can move one square diagonally in each direction. Show that
starting at a corner of an n X n chessboard where n is even, the firz can reach
the opposite corner after making each of the possible moves along its diagonals
exactly once and in one direction only [of the two moves (a, b) and (b, a) only one
should be made].

1.12

Show that the number of nodes with odd degree in a graph is even.

1.13

Assume that all the nodes of a graph have degree greater than one. Show that
the graph must contain a cycle.

Sec. 1.4 Notes, Sources, and Exercises 43

1.14

(a) Show that every tree with at least two nodes has at least two nodes with
degree one.

(b) Show that a graph is a tree if and only if it is connected and the number
of arcs is one less than the number of nodes.

1.15

Consider a volleyball net that consists of a mesh with m squares on the horizontal
dimension and n squares on the vertical. What is the maximum number of strings
that can be cut before the net falls apart into two pieces.

1.16 (Checking Connectivity)

Consider a graph with A arcs.

(a) Devise an algorithm with O(A) running time that checks whether the graph
is connected, and if it is connected, simultaneously constructs a path con-
necting any two nodes. Hint: Start at a node, mark its neighbors, and
continue.

(b) Repeat part (a) for the case where we want to check strong connectedness.

(c) Devise an algorithm with O(A) running time that checks whether there
exists a cycle that contains two given nodes.

(d) Repeat part (c) for the case where the cycle is required to be forward.

1.17 (Inequality Constrained Minimum Cost Flows)

Consider the following variant of the minimum cost flow problem:

minimize E QijTij

(i,5)EA
subject to s, < Z Tij — Z zj; < 5, VieN,
{51(i,5) €A} {5l(Gi)eA}
bij < xij < cij, v (i,7) € A,

where the bounds s, and 5; on the divergence of node i are given. Show that
this problem can be converted to a standard (equality constrained) minimum
cost flow problem by adding an extra node A and an arc (A,) from this node to
every other node ¢, with feasible flow range [0,3; — s,].

44 Introduction Chap. 1
1.18 (Node Throughput Constraints)

Consider the minimum cost flow problem with the additional constraints that
the total flow of the outgoing arcs from each node ¢ must lie within a given range

[t;, %], that is,
t, < Z xij < ;.
{il(i,5)€A}

Convert this problem into the standard form of the minimum cost flow problem
by splitting each node into two nodes with a connecting arc.

1.19 (Piecewise Linear Arc Costs)

Consider the minimum cost flow problem with the difference that, instead of the
linear form a;;x;;, each arc’s cost function has the piecewise linear form

1 2 .
aijmij + aj; (T —maig) i mai; < @iy < iy,

1 .
f‘ (.’E) _ aijxij if bij S Tij S mij,
ij\Lij) —
. . . 1
where m;;, agj, and a?j are given scalars satisfying b;; < mq; < ¢ij and a;; < afj‘

(a) Show that the problem can be converted to a linear minimum cost flow
problem where each arc (¢, j) is replaced by two arcs with arc cost coeffi-
cients a;; and a;, and arc flow ranges [bi;,m;] and [0, c;; — m.;], respec-
tively.

(b) Generalize to the case of piecewise linear cost functions with more than
two pieces.

1.20 (Asymmetric Assignment and Transportation Problems)

Consider an assignment problem where the number of objects is larger than the
number of persons, and we require that each person be assigned to one object.
The associated linear program (cf. Example 1.2) is

maximize E QijTij

(i,5)€A
subject to Z Tij =1, Vi=1,...,m,
{7l(i,5) €A}
Y w<l Vi=l...m
{il(i,5)€ A}

where m < n.

(a) Show how to formulate this problem as a minimum cost flow problem by
introducing extra arcs and nodes.

Sec. 1.4 Notes, Sources, and Exercises 45

(b) Repeat part (a) for the case where there may be some persons that are

left unassigned; that is, the constraint Z{jw!j)eA} xi; = 1 is replaced by
Z{j‘(m)eA} zi; < 1. Give an example of a problem with a;; > 0 for all
(3,7) € A, which is such that in the optimal assignment some persons are
left unassigned, even though there exist feasible assignments that assign

every person to some object.

(c) Formulate an asymmetric transportation problem where the total supply
is less than the total demand, but some demand may be left unsatisfied,
and appropriately modify your answers to parts (a) and (b).

1.21 (Bipartite Matching)

Bipartite matching problems are assignment problems where the coefficients (i, 7)
are all equal to 1. In such problems, we want to maximize the cardinality of the
assignment, that is, the number of assigned pairs (¢,7). Formulate a bipartite
matching problem as an equivalent max-flow problem.

1.22 (Production Planning)
Consider a problem of scheduling production of a certain item to meet a given
demand over N time periods. Let us denote:

x;: The amount of product stored at the beginning of period i, where
1=0,...,N — 1. There is a nonnegativity constraint on x;.

u;: The amount of product produced during period i. There is a constraint
0 < u; < ¢;, where the scalar ¢; is given for each i.

d;: The amount of product demanded during period i. This is a given
scalar for each 1.

The amount of product stored evolves according to the equation

xi+1:xi+ui—di, 2:0,,N—1

Given zg, we want to find a feasible production sequence {uo,...,uny—1} that
minimizes

N—1

Z (aizi + biug),

i=0

where a; and b; are given scalars for each ¢. Formulate this problem as a minimum
cost flow problem. Hint: For each ¢, introduce a node that connects to a special
artificial node.

1.23 (Capacity Expansion)

The capacity of a certain facility is to be expanded over N time periods by adding
an increment u; € [0, ci] at time period ¢ =0, ..., N —1, where ¢; is a given scalar.
Thus, if x; is the capacity at the beginning of period i, we have

Tit1 = Ti + Ui, i=0,...,N—1.

46 Introduction Chap. 1

Given xo, consider the problem of finding u;, i =0,..., N — 1, such that each x;
lies within a given interval [z;, Z;] and the cost

N-1
Z (aszi + bius)
i=0

is minimized, where a; and b; are given scalars for each i. Formulate the problem
as a minimum cost flow problem.

1.24 (Dynamic Transhipment Problems)

Consider a transhipment context for the minimum cost flow problem where the
problem is to optimally transfer flow from some supply points to some demand
points over arcs of limited capacity. In a dynamic version of this context, the
transfer is to be performed over N time units, and transferring flow along an arc
(,4) requires time 7;;, which is a given positive integer number of time units.
This means that at each time ¢t =0,..., N — 7;;, we may send from node 7 along
arc (i,7) a flow x;; € [0, ¢;;], which will arrive at node j at time ¢+ 7;;. Formulate
this problem as a minimum cost flow problem involving a copy of the given graph
for each time period.

1.25 (Concentrator Assignment)

We have m communication terminals, each to be connected to one out of a
given collection of concentrators. Suppose that there is a cost a;; for connecting
terminal ¢ to concentrator j, and that each concentrator j has an upper bound
b; on the number of terminals it can be connected to. Also, each terminal ¢ can
be connected to only a given subset of concentrators.

(a) Formulate the problem of finding the minimum cost connection of terminals
to concentrators as a minimum cost flow problem. Hint: You may use the
fact that there exists an integer optimal solution to a minimum cost flow
problem with integer supplies and arc flow bounds. (This will be shown in
Chapter 5.)

(b) Suppose that a concentrator j can operate in an overload condition with
a number of connected terminals greater than b;, up to a number b; > b;.
In this case, however, the cost per terminal connected becomes a@;; > a;;.
Repeat part (a).

(c) Suppose that when no terminals are connected to concentrator j there is
a given cost savings ¢; > 0. Can you still formulate the problem as a
minimum cost flow problem?

1.26

Consider a round-robin chess tournament involving n players that play each other
once. A win scores 1 for the winner and 0 for the loser, while a draw scores 1/2

Sec. 1.4 Notes, Sources, and Exercises 47

for each player. We are given a set of final scores (s1, ..., sn) for the players, from
the range [0, n — 1], whose sum is n(n—1)/2, and we want to check whether these
scores are feasible [for example, in a four-player tournament, a set of final scores
of (3,3,0,0) is impossible]. Show that this is equivalent to checking feasibility of
some transportation problem.

1.27 (k-Color Problem)

Consider the k-color problem, which is to assign one out of k colors to each node
of a graph so that for every arc (i, 7), nodes i and j have different colors.

(a) Suppose we want to choose the colors of countries in a world map so that
no two adjacent countries have the same color. Show that if the number of
available colors is k, the problem can be formulated as a k-color problem.

(b) Show that the k-color problem has a solution if and only if the number of
nodes can be partitioned in k or less disjoint subsets such that there is no
arc connecting a pair of nodes from the same subset.

(c) Show that when the graph is a tree, the 2-color problem has a solution.
Hint: First color some node ¢ and then color the remaining nodes based on
their “distance” from 1.

(d) Show that if each node has at most k — 1 neighbors, the k-color problem
has a solution.

1.28 (k-Coloring and Parallel Computation)
Consider the n-dimensional vector = (z1,...,Z») and an iteration of the form

m] ::f](x)7 j:]‘""7n7

where f = (f1,..., fn) is a given function. The dependency graph of f has nodes

1,...,n and an arc set such that (¢,7) is an arc if the function f; exhibits a
dependence on the component x;. Consider an ordering ji, ..., j, of the indices
1,...,n, and a partition of {j1, ..., jn } into disjoint subsets J1, ..., Jas such that:

(1) For all k, ifjk € Jm, then Jht1 € Jm U---U .
(2) If jp,jq € Jm and p < g, then f;, does not depend on z;,.

Show that such an ordering and partition exist if and only if the nodes of the
dependency graph can be colored with M colors so that there exists no forward
cycle with all the nodes on the cycle having the same color. Note: This is
challenging (see Bertsekas and Tsitsiklis [1989], Section 1.2.4, for discussion and
analysis). An ordering and partition of this type can be used to execute Gauss-
Seidel iterations in M parallel steps.

48 Introduction Chap. 1

1.29 (Replacing Arc Costs with Reduced Costs)

Consider the minimum cost flow problem and let p; be a scalar price for each
node j. Show that if the arc cost coefficients a;; are replaced by ai; + p; — ps,
we obtain a problem that is equivalent to the original (except for a scalar shift
in the cost function value).

1.30

Consider the assignment problem.

(a) Show that every k-person exchange can be accomplished with a sequence
of k — 1 successive two-person exchanges.

(b) In light of the result of part (a), how do you explain that a nonoptimal
assignment may not be improvable by any two-person exchange?

1.31 (Dual Cost Improvement Directions)

Consider the assignment problem. Let p; denote the price of object j, let T be a
subset of objects, and let

S = {z | the maximum of a;; — p; over j € A(%)

is attained by some element of T}.

Assume that:

(1) For each ¢ € S, the maximum of a;; — p; over j € A(i) is attained only by
elements of T'.

(2) S has more elements than 7.

Show that the direction d = (du,...,dy), where d; = 1if j € T and d; = 0 if
j ¢ T, is a direction of dual cost improvement. Note: Directions of this type are
used by the most common dual cost improvement algorithms for the assignment
problem.

1.32

Use e-CS to verify that the assignment of Fig. 1.18 is optimal and obtain a bound
on how far from optimal the given price vector is. State the dual problem and
verify the correctness of the bound by comparing the dual value of the price
vector with the optimal dual value.

Sec. 1.4 Notes, Sources, and Exercises 49

Value =C

Figure 1.18: Graph of an assignment prob-
lem. Objects 1 and 2 have value C for all
p=C+1/8 persons. Object 3 has value 0 for all per-
sons. Object prices are as shown. The
thick lines indicate the given assignment.

1.33 (Generic Negative Cycle Algorithm)
Consider the following minimum cost flow problem

minimize E QijTij

(3,§)€A

subject to Z Tij — Z Tji = Si, Vie N,
{5l(i,5) €A} {5l(Gi)eA}
0<zi <cij, V(ij) €A,

and assume that the problem has at least one feasible solution. Consider first
the circulation case where s; = 0 for all ¢ € A. Construct a sequence of flow
vectors 20, x!, ... as follows: Start with 2° = 0. Given z*, stop if z* is optimal,
and otherwise find a simple cycle C* that is unblocked with respect to z* and
has negative cost (cf. Prop. 1.2). Increase (decrease) the flow of the forward
(backward, respectively) arcs of C* by the maximum possible increment.

(a) Show that the cost of z"' is smaller than the cost of z® by an amount
that is proportional to the cost of the cycle C* and to the increment of the
corresponding flow change.

(b) Assume that the flow increment at each iteration is greater or equal to
some scalar § > 0. Show that the algorithm must terminate after a finite
number of iterations with an optimal flow vector. Note: The assumption
of existence of such a ¢ is essential (see Exercise 3.7 in Chapter 3).

(c) Extend parts (a) and (b) to the general case where we may have s; # 0 for
some 4, by converting the problem to the circulation format (a method for
doing this is given in Section 4.1.3).

1.34 (Integer Optimal Solutions of Min-Cost Flow Problems)

Consider the minimum cost flow problem of Exercise 1.33, where the upper
bounds c;; are given positive integers and the supplies s; are given integers.
Assume that the problem has at least one feasible solution. Show that there
exists an optimal flow vector that is integer. Hint: Show that the flow vectors
generated by the negative cycle algorithm of Exercise 1.33 are integer.

50 Introduction Chap. 1

1.35 (The Original Hamiltonian Cycle)

The origins of the traveling salesman problem can be traced (among others) to the
work of the Irish mathematician Sir William Hamilton. In 1856, he developed a
system of commutative algebra, which inspired a puzzle marketed as the “Icosian
Game.” The puzzle is to find a cycle that passes exactly once through each
of the 20 nodes of the graph shown in Fig. 1.19, which represents a regular
dodecahedron. Find a Hamiltonian cycle on this graph using as first four nodes
the ones marked 1-4 (all arcs are considered bidirectional).

LN
| >

Figure 1.19: Graph for the Icosian Game (cf. Exercise 1.35). The arcs and nodes
correspond to the edges and vertices of the regular dodecahedron, respectively.
The name “icosian” comes from the Greek word “icosi,” which means twenty.
Adjacent nodes of the dodecahedron correspond to adjacent faces of the regular
icosahedron.

1.36 (Hamiltonian Cycle on the Hypercube)

The hypercube of dimension n is a graph with 2" nodes, each corresponding to
an n-bit string where each bit is either a 0 or a 1. There is a bidirectional arc
connecting every pair of nodes whose n-bit strings differ by a single bit. Show
that for every m > 2, the hypercube contains a Hamiltonian cycle. Hint: Use
induction.

1.37 (Hardy’s Theorem)

Let {a1,...,an} and {b1,...,b,} be monotonically nondecreasing sequences of
numbers. Consider the problem of associating with each ¢ = 1,...,n a distinct
index j; in a way that maximizes Z?zl a;bj;. Formulate this as an assignment
problem and show that it is optimal to select j; = ¢ for all i. Hint: Use the
complementary slackness conditions with prices defined by p1 = 0 and p, =
Pk—1 + ak(bk — bkfl) fork=2,...,n.

The Shortest Path Problem

2.1.
2.2.
2.3.

2.4.

2.5.

2.6.
2.7.
2.8.

Contents

Problem Formulation and Applications
A Generic Shortest Path Algorithm

Label Setting (Dijkstra) Methods

2.2.1. Performance of Label Setting Methods
2.3.2. The Binary Heap Method

2.3.3. Dial’s Algorithm

Label Correcting Methods

2.4.1. The Bellman-Ford Method

2.4.2. The D’Esopo-Pape Algorithm

2.4.3. The SLF and LLL Algorithms

2.4.4. The Threshold Algorithm

2.4.5. Comparison of Label Setting and Label Correcting

Single Origin/Single Destination Methods
2.5.1. Label Setting
2.5.2. Label Correcting

Auction Algorithms
Multiple Origin/Multiple Destination Methods

Notes, Sources, and Exercises

51

2.1

52 The Shortest Path Problem Chap. 2

The shortest path problem is a classical and important combinatorial prob-
lem that arises in many contexts. We are given a directed graph (A, .A)
with nodes numbered 1,..., N. Each arc (i,j) € A has a cost or “length”
a;; associated with it. The length of a forward path (i1,42,...,1i) is the

length of its arcs
k-1
Z Qip, in+1 N
n=1

This path is said to be shortest if it has minimum length over all forward
paths with the same origin and destination nodes. The length of a shortest
path is also called the shortest distance. The shortest path problem deals
with finding shortest distances between selected pairs of nodes. [Note that
here we are optimizing over forward paths; when we refer to a path (or a
cycle) in connection with the shortest path problem, we implicitly assume
that the path (or the cycle) is forward.]

The range of applications of the shortest path problem is very broad.
In the next section, we will provide some representative examples. We
will then develop a variety of algorithms. Most of these algorithms can be
viewed as primal cost or dual cost improvement algorithms for an appro-
priate special case of the minimum cost flow problem, as we will see later.
However, the shortest path problem is simple, so we will discuss it based
on first principles, and without much reference to cost improvement. This
serves a dual purpose. First, it provides an opportunity to illustrate some
basic graph concepts in the context of a problem that is simple and rich in
intuition. Second, it allows the early development of some ideas and results
that will be used later in a variety of other algorithmic contexts.

PROBLEM FORMULATION AND APPLICATIONS

The shortest path problem appears in a large variety of contexts. We
discuss a few representative applications.

Example 2.1. Routing in Data Networks

Data network communication involves the use of a network of computers
(nodes) and communication links (arcs) that transfer packets (groups of bits)
from their origins to their destinations. The most common method for se-
lecting the path of travel (or route) of packets is based on a shortest path
formulation. In particular, each communication link is assigned a positive
scalar which is viewed as its length. A shortest path routing algorithm routes
each packet along a minimum length (or shortest) path between the origin
and destination nodes of the packet.

There are several possibilities for selecting the link lengths. The sim-
plest is for each link to have unit length, in which case a shortest path is

Sec. 2.1 Problem Formulation and Applications 53

simply a path with minimum number of links. More generally, the length
of a link, may depend on its transmission capacity and its projected traffic
load. The idea here is that a shortest path should contain relatively few and
uncongested links, and therefore be desirable for routing. Sophisticated rout-
ing algorithms also allow the length of each link to change over time and to
depend on the prevailing congestion level of the link. Then a shortest path
may adapt to temporary overloads and route packets around points of con-
gestion. Within this context, the shortest path routing algorithm operates
continuously, solving the shortest path problem with lengths that vary over
time.

A peculiar feature of shortest path routing algorithms is that they are
often implemented using distributed and asynchronous communication and
computation. In particular, each node of the communication network mon-
itors the traffic conditions of its adjacent links, calculates estimates of its
shortest distances to various destinations, and passes these estimates to other
nodes who adjust their own estimates, etc. This process is based on stan-
dard shortest path algorithms that will be discussed in this chapter, but it
is also executed asynchronously, and with out-of-date information because of
communication delays between the nodes. Despite this fact, it turns out that
these distributed asynchronous algorithms maintain much of the validity of
their synchronous counterparts (see the textbooks by Bertsekas and Tsitsiklis
[1989], and Bertsekas and Gallager [1992] for related analysis).

There is an important connection between shortest path problems
and problems of deterministic discrete-state dynamic programming, which
involve sequential decision making over a finite number of time periods.
The following example shows that dynamic programming problems can be
formulated as shortest path problems. The reverse is also possible; that is,
any shortest path problem can be formulated as a dynamic programming
problem (see e.g., Bertsekas [1995a], Ch. 2).

Example 2.2. Dynamic Programming

Here we have a discrete-time dynamic system involving N stages. The state
of the system at the start of the kth stage is denoted by xx and takes values
in a given finite set, which may depend on the index k. The initial state zq is
given. During the kth stage, the state of the system changes from zy to xx+1
according to an equation of the form

Tht1 = fr(zk, ur), (2.1)

where uy is a control that takes values from a given finite set, which may
depend on the index k. This transition involves a cost gi(zk,ur). The final
transition from zny—_1 to zy, involves an additional terminal cost G(zn).
Here, the functions fx, gr, and G are given.

Given a control sequence (uo,...,un—1), the corresponding state se-
quence (zo,...,zn) is determined from the given initial state xo and the
system of Eq. (2.1). The objective in dynamic programming is to find a

54 The Shortest Path Problem Chap. 2

control sequence and a corresponding state sequence such that the total cost

N-—1
G(rn) + Z gr(2x, uk)

k=0

is minimized.

For an example, consider an inventory system that operates over N
time periods, and let x and ux denote the number of items held in stock and
number of items purchased at the beginning of period k, respectively. We
require that ux be an integer from a given range [0, r;]. We assume that the
stock evolves according to the equation

Tk+1 = Tk + Uk — Uk,

where v is a known integer demand for period k; this is the system equa-
tion [cf. Eq. (2.1)]. A negative xj here indicates unsatisfied demand that is
backordered. A common type of cost used in inventory problems has the form

gk(Trk, ur) = hi(zr) + cruk,

where ¢, is a given cost per unit stock at period k, and h(zx) is a cost either
for carrying excess inventory (zx > 0) or for backordering demand (zr < 0).
For example hy(x1,) = max{arxi, —brxi} or hy(rr) = dixh, where ag, by, and
dy, are positive scalars, are both reasonable choices for cost function. Finally,
we could take G(zn) = 0 to indicate that the final stock xx has no value
[otherwise G(zn) indicates the cost (or negative salvage value) of xn]. The
objective in this problem is roughly to determine the sequence of purchases
over time to minimize the costs of excess inventory and backordering demand
over the N time periods.

To convert the dynamic programming problem to a shortest path prob-
lem, we introduce a graph such as the one of Fig. 2.1, where the arcs corre-
spond to transitions between states at successive stages and each arc has a
cost associated with it. To handle the final stage, we also add an artificial
terminal node ¢t. Each state zx at stage IV is connected to the terminal node
t with an arc having cost G(xzn). Control sequences correspond to paths
originating at the initial state xo and terminating at one of the nodes corre-
sponding to the final stage N. The optimal control sequence corresponds to a
shortest path from node z to node ¢. For an extensive treatment of dynamic
programming and associated shortest path algorithms we refer to Bertsekas
[1995a].

Shortest path problems arise often in contexts of scheduling and se-
quencing. The following two examples are typical.

Example 2.3. Project Management

Consider the planning of a project involving several activities, some of which
must be completed before others can begin. The duration of each activity is

Sec. 2.1 Problem Formulation and Applications 55

X2 XN-1

Terminal Arcs

X1 XN with Cost Equal
to Terminal Cost
Initial State
Xo
Artificial Terminal
Node
Stage 0 Stage 1 Stage 2 -+ -StageN -1 Stage N

Figure 2.1: Converting a deterministic finite-state N-stage dynamic program-
ming problem to a shortest path problem. Nodes correspond to states. An arc
with start and end nodes xj, and xy41, respectively, corresponds to a transition
of the form xy11 = fr(xk,ur). The length of this arc is equal to the cost of
the corresponding transition gx(zg,ur). The problem is equivalent to finding a
shortest path from the initial state/node xg to the artificial terminal node ¢. Note
that the state space and the possible transitions between states may depend on
the stage index k.

known in advance. We want to find the time required to complete the project,
as well as the critical activities, those that even if slightly delayed will result
in a corresponding delay of completion of the overall project.

The problem can be represented by a graph where nodes represent
completion of some phase of the project (cf. Fig. 2.2). An arc (i, j) represents
an activity that starts once phase i is completed and has known duration
t;j > 0. A phase (node) j is completed when all activities or arcs (¢,7) that
are incoming to j are completed. Two special nodes 1 and N represent the
start and end of the project, respectively. Node 1 has no incoming arcs,
while node N has no outgoing arcs. Furthermore, there is at least one path
from node 1 to every other node. An important characteristic of an activity
network is that it is acyclic. This is inherent in the problem formulation and
the interpretation of nodes as phase completions.

For any path p = {(1,]’1), (J1,J2,)y s (jk,i)} from node 1 to a node
1, let D, be the duration of the path defined as the sum of durations of its
activities; that is,

Dp = tijy +tjygp + 0+ Ly
Then the time T; required to complete phase i is

T; = max Dp.
paths p
from 1 to i
The maximum above is attained by some path because there can be only a
finite number of paths from 1 to ¢, since the network is acyclic. Thus to find

56

The Shortest Path Problem Chap. 2

Order
Material

Transport
Material

Construction

Train
Personnel

Train

Personnel Personnel

Figure 2.2: Example graph of an activity network. Arcs (7,j) represent
activities and are labeled by the corresponding duration ¢;;. Nodes represent
completion of some phase of the project. A phase is completed if all activities
associated with incoming arcs at the corresponding node are completed. The
project is completed when all phases are completed. The project duration
time is the longest sum of arc durations over paths that start at node 1 and
end at node 5. The path of longest duration, also called a critical path, is
shown with thick line. Because the graph is acyclic, finding this path is a
shortest path problem with the length of each arc (4, j) being —t;;. Activities
on the critical path have the property that if any one of them is delayed, a
corresponding delay of completion of the overall project will result.

T;, we should find the longest path from 1 to i. Because the graph is acyclic,
this problem may also be viewed as a shortest path problem with the length
of each arc (4,7) being —t;;. In particular, finding the duration of the project
is equivalent to finding the shortest path from 1 to N. For further discussion
of project management problems, we refer to the literature, e.g., the textbook
by Elmaghraby [1978].

Example 2.4. The Paragraphing Problem

This problem arises in a word processing context, where we want to break
down a given paragraph consisting of N words into lines for “optimal” ap-
pearance and readability. Suppose that we have a heuristic rule, which assigns
to any sequence of words a cost that expresses the undesirability of grouping
these words together in a line. Based on such a rule, we can assign a cost
ci; to a line starting with word ¢ and ending with word j — 1 of the given
paragraph. An optimally divided paragraph is one for which the sum of the
costs of its lines is minimal.

We can formulate this as a shortest path problem. There are N nodes,
which correspond to the N words of the paragraph, and there is an arc (i,)
with cost ¢;; connecting any two words ¢ and j with ¢ < j. The arcs of the
shortest path from node/word 1 to node/word N correspond to the lines of
the optimally broken down paragraph.

2.2

Sec. 2.2 A Generic Shortest Path Algorithm 57

The exercises contain a number of additional examples that illustrate
the broad range of applications of the shortest path problem.

A GENERIC SHORTEST PATH ALGORITHM

The shortest path problem can be posed in a number of ways; for example,
finding a shortest path from a single origin to a single destination, or finding
a shortest path from each of several origins to each of several destinations.
We focus initially on problems with a single origin and many destinations.
For concreteness, we take the origin node to be node 1. The arc lengths a;;
are given scalars. They may be negative and/or noninteger, although on
occasion we will assume in our analysis that they are nonnegative and/or
integer, in which case we will state so explicitly.

In this section, we develop a broad class of shortest path algorithms
for the single origin/all destinations problem. These algorithms maintain
and adjust a vector (di,da,...,dn), where each dj, called the label of node
4, is either a scalar or co. The use of labels is motivated by a simple
optimality condition, which is given in the following proposition.

Proposition 2.1: Let di,ds,...,dy be scalars satisfying
d; < d; + aij, Y (i,7) € A, (2.2)
and let P be a path starting at a node i; and ending at a node 7. If
dj = d; + aij, for all arcs (4,) of P, (2.3)

then P is a shortest path from i1 to i.

Proof: By adding Eq. (2.3) over the arcs of P, we see that the length of
P is equal to the difference d;;, — d;, of labels of the end node and start
node of P. By adding Eq. (2.2) over the arcs of any other path P’ starting
at 41 and ending at ix, we see that the length of P’ must be no less than
d;, — di;. Therefore, P is a shortest path. Q.E.D.

The conditions (2.2) and (2.3) are called the complementary slackness
(CS) conditions for the shortest path problem. This terminology is moti-
vated by the connection of the shortest path problem with the minimum
cost flow problem (cf. Section 1.2.1); we will see in Chapter 4 that the CS
conditions of Prop. 2.1 are a special case of a general optimality condition
(also called CS condition) for the equivalent minimum cost flow problem

58 The Shortest Path Problem Chap. 2

(in fact they are a special case of a corresponding CS condition for general
linear programs; see e.g., Bertsimas and Tsitsiklis [1997], Dantzig [1963]).
Furthermore, we will see that the scalars d; in Prop. 2.1 are related to dual
variables.

Let us now describe a prototype shortest path method that contains
several interesting algorithms as special cases. In this method, we start
with some vector of labels (di,ds,...,dy), we successively select arcs (3, j)
that violate the CS condition (2.2), i.e., dj > d; + a;5, and we set

dj =d; + Aij.

This is continued until the CS condition d; < d; + a;; is satisfied for all
arcs (4,7).

A key idea is that, in the course of the algorithm, d; can be interpreted
for all ¢ as the length of some path P; from 1 to ¢.t Therefore, if d; > d;+a;;
for some arc (i,7), the path obtained by extending path P; by arc (3, j),
which has length d; + a;;, is a better path than the current path P;, which
has length d;. Thus, the algorithm finds successively better paths from the
origin to various destinations.

Instead of selecting arcs in arbitrary order to check violation of the CS
condition, it is usually most convenient and efficient to select nodes, one-at-
a-time according to some order, and simultaneously check violation of the
CS condition for all of their outgoing arcs. The corresponding algorithm,
referred to as gemeric, maintains a list of nodes V, called the candidate
list, and a vector of labels (di,da,...,dn), where each d; is either a real

number or co. Initially,
V= {1}7

di =0, di=oc0, Vi#l

The algorithm proceeds in iterations and terminates when V' is empty. The
typical iteration (assuming V' is nonempty) is as follows:

Iteration of the Generic Shortest Path Algorithm

Remove a node i from the candidate list V. For each outgoing arc
(Z,]) € A, ifd; > d; + aij, set

dj =d; + Qij

and add j to V if it does not already belong to V.

1 In the case of the origin node 1, we will interpret the label d; as either the
length of a cycle that starts and ends at 1, or (in the case d; = 0) the length of
the trivial “path” from 1 to itself.

Sec. 2.2 A Generic Shortest Path Algorithm 59

Iteration # | Candidate List V' | Node Labels | Node out of V
1 {1} (0, 00, 00, 00) 1
2 {2,3} (0,3,1,00) 2
3 {3,4} (0,3,1,5) 3
4 {4,2} (0,2,1,4) 4
5 {2} (0,2,1,4) 2
17 (0,2,1,4)

Figure 2.3: Illustration of the generic shortest path algorithm. The numbers
next to the arcs are the arc lengths. Note that node 2 enters the candidate list
twice. If in iteration 2 node 3 was removed from V instead of node 2, each node
would enter V' only once. Thus, the order in which nodes are removed from V is
significant.

It can be seen that, in the course of the algorithm, the labels are
monotonically nonincreasing. Furthermore, we have
d; < 00 = i has entered V at least once.

Figure 2.3 illustrates the algorithm. The following proposition gives its
main properties.

Proposition 2.2: Consider the generic shortest path algorithm.
(a) At the end of each iteration, the following conditions hold:

(i) If d; < oo, then d; is the length of some path that starts
at 1 and ends at j.

(ii) If ¢ ¢ V, then either d; = co or else

d; < d; + aij, Y j such that (7,7) € A.

60 The Shortest Path Problem Chap. 2

(b) If the algorithm terminates, then upon termination, for all j with
dj < 00, d; is the shortest distance from 1 to j and

_ [ming jea{di +aiz} if j#1L
4 {0 el (2.4)

Furthermore, upon termination we have d; = oo if and only if
there is no path from 1 to j.

(c) If the algorithm does not terminate, then there exists some node
j and a sequence of paths that start at 1, end at j, and have
lengths that diverge to —oo.

(d) The algorithm terminates if and only if there is no path that
starts at 1 and contains a cycle with negative length.

Proof: (a) We prove (i) by induction on the iteration count. Indeed, (i)
holds at the end of the first iteration since the nodes j # 1 with d; < oo
are those for which (1, 7) is an arc and their labels are d; = a1;, while for
the origin 1, we have di = 0, which by convention is viewed as the length
of the trivial “path” from 1 to itself. Suppose that (i) holds at the start
of some iteration at which the node removed from V is ¢. Then d; < oo
(which is true for all nodes of V' by the rules of the algorithm), and (by the
induction hypothesis) d; is the length of some path P; starting at 1 and
ending at ¢. When a label d; changes as a result of the iteration, d; is set
to d; + a;;, which is the length of the path consisting of P; followed by arc
(4,4). Thus property (i) holds at the end of the iteration, completing the
induction proof.

To prove (ii), note that for any 4, each time ¢ is removed from V', the
condition d; < d; 4 a;; is satisfied for all (é,j) € A by the rules of the
algorithm. Up to the next entrance of ¢ into V, d; stays constant, while
the labels d; for all j with (i,7j) € A cannot increase, thereby preserving
the condition d; < d; + a;;.

(b) We first introduce the sets
I ={i| d; < co upon termination},

I ={i | d; = oo upon termination},

and we show that we have j € I if and only if there is no path from 1 to j.
Indeed, if ¢ € I, we have d; < oo and therefore d; < oo for all j such that
(i,4) is an arc in view of condition (ii) of part (a), so that j € I. It follows
that there is no path from any node of I (and in particular, node 1) to
any node of I. Conversely, if there is no path from 1 to j, it follows from

Sec. 2.2 A Generic Shortest Path Algorithm 61

condition (i) of part (a) that we cannot have d; < co upon termination, so
jel.

We show now that for all j € I, upon termination, d; is the shortest
distance from 1 to j and Eq. (2.4) holds. Indeed, conditions (i) and (ii) of
part (a) imply that upon termination we have, for all ¢ € I,

d; < d; + aij, Y j such that (i,7) € A, (2.5)

while d; is the length of some path from 1 to ¢, denoted P;. Fix a node
m € I, and consider any path P from 1 to m. By adding the condition
(2.5) over the arcs of P, we see that the length of P is no less than d, —di,
which is less or equal to d,, (we have d; < 0, since initially d; = 0 and all
node labels are monotonically nonincreasing). Hence Py, is a shortest path
from 1 to m and the shortest distance is d,,. Furthermore, the equality
d; = d; + a;; must hold for all arcs (4, j) on the shortest paths P, m € I,
implying that d; = ming jyea{di + ai;} for all j € I with j # 1, while
di = 0.

(c) If the algorithm never terminates, some label d; must decrease strictly
an infinite number of times, generating a corresponding sequence of distinct
paths P; as per condition (i) of part (a). Each of these paths can be
decomposed into a simple path from 1 to j plus a collection of simple
cycles, as in Exercise 1.4 of Chapter 1. Since the number of simple paths
from 1 to j is finite, and the length of P; is monotonically decreasing, it
follows that P; eventually must involve a cycle with negative length. By
replicating this cycle a sufficiently large number of times, one can obtain
paths from 1 to j with arbitrarily small length.

(d) Using part (c), we have that the algorithm will terminate if and only if
there is a lower bound on the length of all paths that start at node 1. Thus,
the algorithm will terminate if and only if there is no path that starts at
node 1 and contains a cycle with negative length. Q.E.D.

When some arc lengths are negative, Prop. 2.2 points to a way to
detect existence of a path that starts at the origin 1 and contains a cycle
of negative length. If such a path exists, it can be shown under mild
assumptions that the label of at least one node will diverge to —oo (see
Exercise 2.32). We can thus monitor whether for some j we have

di < (N -1 i
i< ()(ig_l)lg " Qij

When this condition occurs, the path from 1 to j whose length is equal to
d; [as per Prop. 2.2(a)] must contain a negative cycle [if it were simple, it
would consist of at most NV — 1 arcs, and its length could not be smaller
than (N — 1) min; jye 4 aij; a similar argument would apply if it were not
simple but it contained only cycles of nonnegative length].

62 The Shortest Path Problem Chap. 2

Bellman’s Equation and Shortest Path Construction

When all cycles have nonnegative length and there exists a path from node
1 to every node j, then Prop. 2.2 shows that the generic algorithm termi-
nates and that, upon termination, all labels are equal to the corresponding
shortest distances, and satisfy di = 0 and

dj = min {d; +ai;}, Vj#1l (2.6)
(i,7)€A

This is known as Bellman’s equation and it has an intuitive meaning: it
indicates that the shortest distance from 1 to j is obtained by optimally
choosing the predecessor i of node j in order to minimize the sum of the
shortest distance from 1 to ¢ and the length of arc (¢, 7). It also indicates
that if P; is a shortest path from 1 to j, and a node i belongs to Pj, then
the portion of P; from 1 to ¢, is a shortest path from 1 to i.

From Bellman’s equation, we can obtain the shortest paths (in addi-
tion to the shortest path lengths) if all cycles not including node 1 have
strictly positive length. To do this, select for each j # 1 one arc (4,7)
that attains the minimum in d; = min jye 4{di + ai;} and consider the
subgraph consisting of these NV — 1 arcs; see Fig. 2.4. To find the short-
est path to any node j, start from j and follow the corresponding arcs of
the subgraph backward until node 1 is reached. Note that the same node
cannot be reached twice before node 1 is reached, since a cycle would be
formed that, on the basis of Egs. (2.6), would have zero length. [To see
this, let (41,42,...,1k,91) be the cycle and add the equations

diy = diy + @iyiy

diy_y = diy, + @igiy_,
diy = diy + aiyiy,

obtaining aiyi, +- -+ aipiy_, +iji, = 0.] Since the subgraph is connected
and has IV — 1 arcs, it must be a spanning tree. We call this subgraph a
shortest path spanning tree, and we note its special structure: it has a root
(node 1) and every arc of the tree is directed away from the root. The
preceding argument can also be used to show that Bellman’s equation has
no solution other than the shortest distances; see Exercise 2.5.

A shortest path spanning tree can also be constructed in the process
of executing the generic shortest path algorithm by recording the arc (4, 5)
every time d; is decreased to d; + a;j; see Exercise 2.4.

Sec. 2.2 A Generic Shortest Path Algorithm 63

Figure 2.4: Example of construction
of shortest path spanning tree. The arc
lengths are shown next to the arcs, and
the shortest distances are shown next
to the nodes. For each j # 1, we select

° d4=3 an arc (%,7) such that

dj =d; + aij

Origin

d3: 1 and we form the shortest path spanning
tree. The arcs selected in this example
are (1,3), (3,2), and (2,4).

Advanced Initialization

The generic algorithm need not be started with the initial conditions
V:{l}, d1:0, di:OO, VZ#].,

in order to work correctly. Any set of labels (di,...,dy) and candidate
list V' can be used initially, as long as they satisfy the conditions of Prop.
2.2(a). It can be seen that the proof of the remaining parts of Prop. 2.2 go
through under these conditions.

In particular, the algorithm works correctly if the labels and the can-
didate list are initialized so that di = 0 and:

(a) For each node i, d; is either oo or else it is the length of a path from
1 to <.

(b) The candidate list V' contains all nodes ¢ such that

di + a;; < dj for some (i,7) € A. (2.7)

This kind of initialization is very useful in reoptimization contexts,
where we have to solve a large number of similar problems that differ
slightly from each other; for example they may differ by just a few arc
lengths or they may have a slightly different node set. The lengths of the
shortest paths of one problem can be used as the starting labels for another
problem, and substantial computational savings may be obtained, because
it is likely that many of the nodes will maintain their shortest path lengths
and will never enter V.

Another important situation where an advanced initialization is very
useful arises if, by using heuristics or an available solution of a similar
shortest path problem, we can construct a set of “good” paths from node 1
to the other nodes. Then we can use the lengths of these paths as the initial
labels in the generic shortest path algorithm and start with a candidate list
consisting of the nodes where the CS condition is violated [cf. Eq. (2.7)].

64 The Shortest Path Problem Chap. 2

Finally, let us note another technique that is sometimes useful in
reoptimization settings. Suppose that we have some scalars d1,...,d0ny and
we change the arc lengths to

&ij = ai; + 0i — 5j.

Then it can be seen that the length of any path from a node m to a node
n will be increased by 0., — dy,, while the shortest paths will be unaffected.
Thus it may be advantageous to use the modified arc lengths a;; instead
of the original lengths a;;, if this will enhance the application of a suitable
shortest path algorithm. For example, we may be able with proper choice
of d;, to reduce the arc cost range max; ;) |Gi;| (this is helpful in some
algorithms) or to make @;; nonnegative (see Section 2.7 for an application
of this idea).

Implementations of the Generic Algorithm

There are many implementations of the generic algorithm. They differ in
how they select the node to be removed from the candidate list V', and
they are broadly divided into two categories:

(a) Label setting methods. In these methods, the node i removed from
V is a node with minimum label. Under the assumption that all arc
lengths are nonnegative, these methods have a remarkable property:
each node will enter V' at most once, as we will show shortly; its label
has its permanent or final value at the first time it is removed from
V. The most time-consuming part of these methods is calculating
the minimum label node in V' at each iteration; there are several
implementations, that use a variety of creative procedures to obtain
this minimum.

(b) Label correcting methods. In these methods the choice of the node i
removed from V is less sophisticated than in label setting methods,
and requires less calculation. However, a node may enter V' multiple
times.

There are several worst-case complexity bounds for label setting and
label correcting methods. The best bounds for the case of nonnegative arc
lengths correspond to label setting methods. The best practical methods,
however, are not necessarily the ones with the best complexity bounds, as
will be discussed in the next two sections.

In practice, when the arc lengths are nonnegative, the best label set-
ting methods and the best label correcting methods are competitive. As a
general rule, a sparse graph favors the use of a label correcting over a label
setting method for reasons that will be explained later (see the discussion at
the end of Section 2.4). An important advantage of label correcting meth-
ods is that they are more general, since they do not require nonnegativity
of the arc lengths.

2.3

Sec. 2.3 Label Setting (Dijkstra) Methods 65
LABEL SETTING (DIJKSTRA) METHODS

In this section we discuss various implementations of the label setting ap-
proach. The prototype label setting method, first published by Dijkstra
[1959] but also discovered independently by several other researchers, is
the special case of the generic algorithm where the node i removed from
the candidate list V' at each iteration has minimum label, that is,

di = min dj.
jeEV

For convenient reference, let us state this method explicitly.
Initially, we have
vV ={1}
dip =0, di =00, Vi#l.
The method proceeds in iterations and terminates when V' is empty. The
typical iteration (assuming V' is nonempty) is as follows:

Iteration of the Label Setting Method

Remove from the candidate list V' a node 4 such that
d; = grél‘l/l dj.

For each outgoing arc (4, j) € A, if d;j > di + a4y, set
dj = di + aj

and add j to V if it does not already belong to V.

Figure 2.5 illustrates the label setting method. Some insight into the
method can be gained by considering the set W of nodes that have already
been in V but are not currently in V:

W ={i|di<o0,i¢V}

We will prove later, in Prop. 2.3(a), that as a consequence of the policy of
removing from V a minimum label node, W contains nodes with “small”
labels throughout the algorithm, in the sense that

dj <di, fjeWandigW. (2.8)

Using this property and the assumption a;; > 0, it can be seen that when
a node 7 is removed from V', we have, for all j € W for which (7, j) is an
arc,

dj <d; + agj.

66 The Shortest Path Problem Chap. 2

Iteration # |Candidate List V' | Node Labels | Node out of V
1 {1} (0, 00, 0, 00,) 1
2 {2, 3} (0,2,1, 00, 00) 3
3 {2, 4} (0,2,1,4,0) 2
4 {4,5} (0,2,1,3,2) 5
5 {4} (0,2,1,3,2) 4
17} (0,2,1,3,2)

Figure 2.5: Example illustrating the label setting method. At each iteration,
the node with the minimum label is removed from V. Each node enters V' only
once.

Hence, once a node enters W, it stays in W and its label does not change
further. Thus, W can be viewed as the set of permanently labeled nodes,
that is, the nodes that have acquired a final label, which by Prop. 2.2, must
be equal to their shortest distance from the origin.

The following proposition makes the preceding argument precise and
proves some additional facts.

Proposition 2.3: Assume that all arc lengths are nonnegative.

(a) For any iteration of the label setting method, the following hold
for the set
W={i|di <o0,i¢V} (2.9)

(i) No node belonging to W at the start of the iteration will
enter the candidate list V' during the iteration.

(ii) At the end of the iteration, we have d; < d; for all i € W
and j ¢ W.

Sec. 2.3 Label Setting (Dijkstra) Methods 67

(iii) For each node j, consider simple paths that start at 1, end
at j, and have all their other nodes in W at the end of the
iteration. Then the label d; at the end of the iteration is
equal to the length of the shortest of these paths (d; = 0o
if no such path exists).

(b) The label setting method will terminate, and all nodes with a
final label that is finite will be removed from the candidate list
V exactly once in order of increasing shortest distance from node
1; that is, if the final labels of 7 and j are finite and satisfy d; < dj,
then ¢ will be removed before j.

Proof: (a) Properties (i) and (ii) will be proved simultaneously by induc-
tion on the iteration count. Clearly (i) and (ii) hold for the initial iteration
at which node 1 exits V' and enters W.

Suppose that (i) and (ii) hold for iteration k& — 1, and suppose that
during iteration k, node i satisfies d; = minjey d; and exits V. Let W
and W be the set of Eq. (2.9) at the start and at the end of iteration k,
respectively. Let d; and d; be the label of each node j at the start and at
the end of iteration k, respectively. Since by the induction hypothesis we
have d; < d; for all j € W, and a;; > 0 for all arcs (4,), it follows that
d; < d;i + a5 for all arcs (i,7) with j € W. Hence, a node j € W cannot
enter V' at iteration k. This completes the induction proof of property (i),
and shows that

W =W u{i}.

Thus, at iteration k, the only labels that may change are the labels d;
of nodes j ¢ W such that (i,j) is an arc; the label d; at the end of the
iteration will be min{d;,d; + a;;}. Since a;; > 0, d; < d; for all j ¢ W,
and d; = d;, we must have d; < d; for all j ¢ W. Since by the induction
hypothesis we have d,,, < d; and d,,, = dm for all m € W, it follows that
dy, < dj for all m € W and j ¢ W. This completes the induction proof of
property (ii).

To prove property (iii), choose any node j and consider the subgraph
consisting of the nodes W U {j} together with the arcs that have both
end nodes in W U {j}. Counsider also a modified shortest path problem
involving this subgraph, and the same origin and arc lengths as in the
original shortest path problem. In view of properties (i) and (ii), the label
setting method applied to the modified shortest path problem yields the
same sequence of nodes exiting V' and the same sequence of labels as when
applied to the original problem up to the current iteration. By Prop.
2.2, the label setting method for the modified problem terminates with the
labels equal to the shortest distances of the modified problem at the current

68 The Shortest Path Problem Chap. 2

iteration. This means that the labels at the end of the iteration have the
property stated in the proposition.

(b) Since there is no cycle with negative length, by Prop. 2.2(d), we see
that the label setting method will terminate. At each iteration the node
removed from V is added to W, and according to property (i) (proved
above), no node from W is ever returned to V. Therefore, each node
with a final label that is finite will be removed from V and simultaneously
entered in W exactly once, and, by the rules of the algorithm, its label
cannot change after its entrance in W. Property (ii) then shows that each
new node added to W has a label at least as large as the labels of the nodes
already in W. Therefore, the nodes are removed from V in the order stated
in the proposition. Q.E.D.

2.3.1 Performance of Label Setting Methods

In label setting methods, the candidate list V is typically maintained with
the help of some data structure that facilitates the removal and the addition
of nodes, and also facilitates finding the minimum label node from the list.
The choice of data structure is crucial for good practical performance as
well as for good theoretical worst-case performance.

To gain some insight into this, we first consider a somewhat naive
implementation that will serve as a yardstick for comparison. By Prop.
2.3, there will be exactly N iterations, and in each of these, the candidate
list V' will be searched for a minimum label node. Suppose this is done
by examining all nodes in sequence, checking whether they belong to V,
and finding one with minimum label among those who do. Searching V'
in this way requires O(NN) operations per iteration, for a total of O(N?)
operations. Also during the algorithm, we must examine each arc (4,)
exactly once to check whether the condition d; > d; + a;; holds, and to set
d; := d;+ay; if it does. This requires O(A) operations, which is dominated
by the preceding O(N?2) estimate.

The O(A) operation count for arc examination is unavoidable and
cannot be reduced [each arc (%, j) must be checked at least once just to ver-
ify the optimality condition d; < d; + a;;]. However, the O(N2) operation
count for minimum label searching can be reduced considerably by using
appropriate data structures. The best estimates of the worst-case running
time that have been thus obtained are O(A+ N log N) and O(A+N+/log C),
where C'is the arc length range C' = max(; j)c 4 aij; see Fredman and Tar-
jan [1984], and Ahuja, Mehlhorn, Orlin, and Tarjan [1990]. On the basis
of present experience, however, the implementations that perform best in
practice have considerable less favorable running time estimates. The ex-
planation for this is that the O(+) estimates involve a different constant for
each method and also correspond to worst-case problem instances. Thus,
the worst-case complexity estimates may not provide a reliable practical

Sec. 2.3 Label Setting (Dijkstra) Methods 69

comparison of various methods. We now discuss two of the most popular
implementations of the label setting method.

2.3.2 The Binary Heap Method

Here the nodes are organized as a binary heap on the basis of label values
and membership in V; see Fig. 2.6. The node at the top of the heap is the
node of V' that has minimum label, and the label of every node in V' is no
larger than the labels of all the nodes that are in V' and are its descendants
in the heap. Nodes that are not in V' may be in the heap but may have no
descendants that are in V.

Label =1

Label =5 Label =2

Node notinV Label=7 NodenotinV Label=4 Label=6 Node notinV

Figure 2.6: A binary heap organized on the basis of node labels is a binary
balanced tree such that the label of each node of V' is no larger than the labels of
all its descendants that are in V. Nodes that are not in V' may have no descendants
that are in V. The topmost node, called the root, has the minimum label. The
tree is balanced in that the numbers of arcs in the paths from the root to any
nodes with no descendants differ by at most 1. If the label of some node decreases,
the node must be moved upward toward the root, requiring O(log N) operations.
(It takes O(1) operations to compare the label of a node ¢ with the label of one
of its descendants j, and to interchange the positions of ¢ and j if the label of j
is smaller. Since there are log N levels in the tree, it takes at most log N such
comparisons and interchanges to move a node upward to the appropriate position
once its label is decreased.] Similarly, when the topmost node is removed from V,
moving the node downward to the appropriate level in the heap requires at most
log N steps and O(log N) operations. (Each step requires the interchange of the
position of the node and the position of one of its descendants. The descendant
must be in V for the step to be executed; if both descendants are in V', the one
with smaller label is selected.)

At each iteration, the top node of the heap is removed from V. Fur-
thermore, the labels of some nodes already in V' may decrease, so these
may have to be repositioned in the heap; also, some other nodes may enter

70 The Shortest Path Problem Chap. 2

V for the first time and have to be inserted in the heap at the right place.
It can be seen that each of these removals, repositionings, and insertions
can be done in O(log N) time. There are a total of N removals and N
node insertions, so the number of operations for maintaining the heap is
O((N + R)log N), where R is the total number of node repositionings.
There is at most one repositioning per arc, since each arc is examined at
most once, so we have R < A and the total operation count for maintaining
the heap is O(Alog N). This dominates the O(A) operation count to ex-
amine all arcs, so the worst-case running time of the method is O(Alog N).
On the other hand, practical experience indicates that the number of node
repositionings R is usually a small multiple of N, and considerably less
than the upper bound A. Thus, the running time of the method in prac-
tice typically grows approximately like O(A + N log N).

2.3.3 Dial’s Algorithm

This algorithm, due to Dial [1969], requires that all arc lengths are non-
negative integers. It uses a naive yet often surprisingly effective method
for finding the minimum label node in V. The idea is to maintain for every
possible label value, a list of the nodes that have that value. Since every
finite label is equal to the length of some path with no cycles [Prop. 2.3(a),
part (iii)], the possible label values range from 0 to (N — 1)C, where

C = max a;j.
(i,5)€A

Thus, we may scan the (N — 1)C + 1 possible label values (in ascending
order) and look for a label value with nonempty list, instead of scanning
the candidate list V.

To visualize the algorithm, it is useful to think of each integer in
the range [0, (N — 1)C] as some kind of container, referred to as a bucket.
Each bucket b holds the nodes with label equal to b. Tracing steps, we see
that the method starts with the origin node 1 in bucket 0 and all other
buckets empty. At the first iteration, each node j with (1,j) € A enters
the candidate list V' and is inserted in bucket a1;. After we are done with
bucket 0, we proceed to check bucket 1. If it is nonempty, we repeat the
process, removing from V all nodes with label 1 and moving other nodes
to smaller numbered buckets as required; if not, we check bucket 2, and so
on. Figure 2.7 illustrates the method with an example.

Let us now consider the efficient implementation of the algorithm. We
first note that a doubly linked list (see Fig. 2.8) can be used to maintain the
set of nodes belonging to a given bucket, so that checking the emptiness of
a bucket and inserting or removing a node from a bucket are easy, requiring
O(1) operations. With such a data structure, the time required for mini-
mum label node searching is O(NC'), and the time required for adjusting
node labels and repositioning nodes between buckets is O(A). Thus the

Sec. 2.3 Label Setting (Dijkstra) Methods 71

Origin

Iter. Cand. Node Buck. | Buck. | Buck. [Buck. | Buck. | Out
List V Labels 0 1 2 3 4 of V
1 {1} | (0, 00, 00, 00, 0) 1 - - - — 1
2 {2,3} | (0,2,1,00,00) 1 3 2 - - 3
3 {2,4} (0,2,1,4,00) 1 3 2 - 4 2
4 {4,5} (0,2,1,3,2) 1 3 2,5 4 - 5
5 {4} (0,2,1,2,2) 1 3 2,4,5 - - 4

a (0,2,1,2,2) 1 3 2,4,5 - -

Figure 2.7: An example illustrating Dial’s method.

overall running time is O(A + NC'). The algorithm is pseudopolynomial,
but for small values of C' (much smaller than N) it performs very well in
practice.
In problems where the minimum arc length
a= min a;;
(i,5)€A

is greater than 1, the performance of the algorithm can be improved by
using a device suggested by Denardo and Fox [1979]. The idea is that the
label of a node cannot be reduced below b + @ while searching bucket b,
so that no new nodes will be added to buckets b+ 1,...,b+a@ — 1 while

searching bucket b. As a result, buckets b,b+1,...,b4+a—1 can be lumped
into a single bucket. To take advantage of this idea, we can use

{(N—l)C—i—l"

a

buckets, and follow the strategy of placing node i into bucket b if
ab<d;<ab+1)—1.

The running time of the algorithm is then reduced to O(A4 + (NC/a)).

72 The Shortest Path Problem Chap. 2

Bucket b 01 2 314|5|6|7|8
Contents of b 111345 27| 16| | —| —
FIRST(b) 110 3 210)6)0[0]0
Node i 112, 3[/4|5]6]7
Label d; 03] 2]2]|2|5|3
NEXT(i) 0] 714/ 5]0]0]0
PREVIOUS (i) 0] 0] 0]3]|4]0]2

Figure 2.8: Illustration of a doubly linked list data structure to maintain the can-
didate list V' in buckets. In this example, the nodes in V' are numbered 1,2,...,7,
and the buckets are numbered 0,1,...,8. A node i belongs to bucket b if d; = b.

As shown in the first table, for each bucket b we maintain the first node of
the bucket in an array element FIRST(b), where FIRST(b) = 0 if bucket b is
empty.

As shown in the second table, for every node ¢ we maintain two array
elements, NEXT (i) and PREVIOUS(i), giving the next node and the pre-
ceding node, respectively, of node ¢ in the bucket where i is currently residing
[NEXT(i) =0or PREVIOUS(i) = 0 if ¢ is the last node or the first node in its
bucket, respectively].

Another useful idea is that it is sufficient to maintain only C + 1
buckets, rather than (N —1)C + 1, thereby significantly saving in memory.
The reason is that if we are currently searching bucket b, then all buckets
beyond b+ C are known to be empty. To see this, note that the label d; of
any node j must be of the form d; + a;;, where 7 is a node that has already
been removed from the candidate list. Since d; < b and a;; < C, it follows
that d; < b+ C.

The idea of using buckets to maintain the nodes of the candidate
list can be generalized considerably. In particular, buckets of width larger
than max{l, ming jye aij} may be used. This results in fewer buckets to
search over, thereby alleviating the O(NC') bottleneck of the running time
of the algorithm. There is a price for this, namely the need to search for a
minimum label node within the current bucket. This search can be speeded
up by using buckets with nonuniform widths, and by breaking down buckets
of large width into buckets of smaller width at the right moment. With

2.4

Sec. 2.4 Label Correcting Methods 73

intelligent strategies of this type, one may obtain label setting methods
with very good polynomial complexity bounds; see Johnson [1977], Denardo
and Fox [1979], Ahuja, Mehlhorn, Orlin, and Tarjan [1990]. In practice,
however, the simpler algorithm of Dial has been more popular than these
methods.

LABEL CORRECTING METHODS

We now turn to the analysis of label correcting methods. In these methods,
the selection of the node to be removed from the candidate list V' is simpler
and requires less overhead than in label setting methods, at the expense of
multiple entrances of nodes in V. All of these methods use some type of
queue to maintain the candidate list V. They differ in the way the queue
is structured, and in the choice of the queue position into which nodes
are inserted. In this section, we will discuss some of the most interesting
possibilities.

2.4.1 The Bellman-Ford Method

The simplest label correcting method uses a first-in first-out rule to update
the queue that is used to store the candidate list V. In particular, a node is
always removed from the top of the queue, and a node, upon entrance in the
candidate list, is placed at the bottom of the queue. Thus, it can be seen
that the method operates in cycles of iterations: the first cycle consists of
just iterating on node 1; in each subsequent cycle, the nodes that entered
the candidate list during the preceding cycle, are removed from the list
in the order that they were entered. We will refer to this method as the
Bellman-Ford method, because it is closely related to a method proposed
by Bellman [1957] and Ford [1956] based on dynamic programming ideas
(see Exercise 2.6).

The complexity analysis of the method is based on the following prop-
erty, which we will prove shortly:

Bellman-Ford Property
For each node i and integer k£ > 1, let

df = Shortest distance from 1 to ¢ using paths that have k arcs or less,
where d¥ = oo if there is no path from 1 to i with k arcs or less. Then

the label d; at the end of the kth cycle of iterations of the Bellman-Ford
method is less or equal to d¥.

74 The Shortest Path Problem Chap. 2

In the case where all cycles have nonnegative length, the shortest
distance of every node can be achieved with a path having N — 1 arcs or
less, so the above Bellman-Ford property implies that the method finds
all the shortest distances after at most N — 1 cycles. Since each cycle
of iterations requires a total of O(A) operations (each arc is examined at
most once in each cycle), the running time of the Bellman-Ford method is
O(NA).

To prove the Bellman-Ford property, we first note that

A" = min{ d*, min {d* 4+ a;;} }, Vi, k>1, 2.10
F = min{df, min {df + i) e (210)

since d;“l is either the length of a path from 1 to j with k arcs or less, in
which case it is equal to d;?, or else it is the length of some path that starts
at 1 goes to a predecessor node i with k arcs or less, and then goes to j
using arc (i,j). We now prove the Bellman-Ford property by induction.
At the end of the 1st cycle, we have for all 7,

0 ifi=1,
di =< ay; ifi 75 1 and (Li) €A,
oo ifi#1and (1,i) ¢ A,

while

?

ay; if (l,i) € A,
oo if (1i) & A,

so that d; < d} for all 7. Let d; and V be the node labels and the contents
of the candidate list at the end of the kth cycle, respectively. Let also d; be
the node labels at the end of the (k + 1)st cycle. We assume that d; < d¥
for all 4, and we will show that d; < df“ for all ¢. Indeed, by condition
(ii) of Prop. 2.2(a), we have

dj <d; + aij, Y (i,j) € Awithi ¢V,

and since d; < dj, it follows that

dj <d; + aij, YV (i,j) € Awithi ¢ V. (2.11)
We also have
d; < d; + aij, Y (i,5) € Awith i €V, (2.12)

since at the time when i is removed from V, its current label, call it JZ-,
satisfies d; < d;, and the label of j is set to d; + a;; if it exceeds d; + a;j.
By combining Egs. (2.11) and (2.12), we see that
dj < min {d; +a;;} < (rn)inA{df—Faij}; v j, (2.13)
i,j)€

(i,5)€A

Sec. 2.4 Label Correcting Methods 75

where the second inequality follows by the induction hypothesis. We also
have d; < d; < d;? by the induction hypothesis, so Eq. (2.13) yields

d; <min{dF, min {d¥ +ai}p =d¥H,
Jmm{j Juin {di +aitp = d;

where the last equality holds by Eq. (2.10). This completes the induction
proof of the Bellman-Ford property.

The Bellman-Ford method can be used to detect the presence of a
negative cycle. Indeed, from Prop. 2.2, we see that the method fails to
terminate if and only if there exists a path that starts at 1 and contains
a negative cycle. Thus in view of the Bellman-Ford property, such a path
exists if and only if the algorithm has not terminated by the end of N — 1
cycles.

The best practical implementations of label correcting methods are
more sophisticated than the Bellman-Ford method. Their worst-case run-
ning time is no better than the O(N A) time of the Bellman-Ford method,
and in some cases it is considerably slower. Yet their practical performance
is often considerably better. We will discuss next three different types of
implementations.

2.4.2 The D’Esopo-Pape Algorithm

In this method, a node is always removed from the top of the queue used
to maintain the candidate list V. A node, upon entrance in the queue, is
placed at the bottom of the queue if it has never been in the queue before;
otherwise it is placed at the top.

The idea here is that when a node 7 is removed from the queue, its
label affects the labels of a subset B; of the neighbor nodes j with (4, j) € A.
When the label of i changes again, it is likely that the labels of the nodes
in B; will require updating also. It is thus argued that it makes sense to
place the node at the top of the queue so that the labels of the nodes in B;
get a chance to be updated as quickly as possible.

While this rationale is not quite convincing, it seems to work well in
practice for a broad variety of problems, including types of problems where
there are some negative arc lengths. On the other hand, special examples
have been constructed (Kershenbaum [1981], Shier and Witzgall [1981]),
where the D’Esopo-Pape algorithm performs very poorly. In particular, in
these examples, the number of entrances of some nodes in the candidate
list V' is not polynomial. Computational studies have also shown that for
some classes of problems, the practical performance of the D’Esopo-Pape
algorithm can be very poor (Bertsekas [1993a]). Pallottino [1984], and
Gallo and Pallottino [1988] give a polynomial variant of the algorithm,
whose practical performance, however, is roughly similar to the one of the
original version.

76 The Shortest Path Problem Chap. 2

2.4.3 The SLF and LLL Algorithms

These methods are motivated by the hypothesis that when the arc lengths
are nonnegative, the queue management strategy should try to place nodes
with small labels near the top of the queue. For a supporting heuristic
argument, note that for a node j to reenter V, some node i such that
di + a;j < d; must first exit V. Thus, the smaller d; was at the previous
exit of j from V' the less likely it is that d;4-a;; will subsequently become less
than d; for some node ¢ € V and arc (¢, 7). In particular, if d; < min;ey d;
and the arc lengths a;; are nonnegative, it is impossible that subsequent
to the exit of j from V' we will have d; + a;; < d; for some i € V.

We can think of Dijkstra’s method as implicitly placing at the top of
an imaginary queue the node with the smallest label, thereby resulting in
the minimal number N of iterations. The methods of this section attempt
to emulate approximately the minimum label selection policy of Dijkstra’s
algorithm with a much smaller computational overhead. They are primarily
suitable for the case of nonnegative arc lengths. While they will work even
when there are some negative arc lengths as per Prop. 2.2, there is no
reason to expect that in this case they will terminate faster (or slower)
than any of the other label correcting methods that we will discuss.

A simple strategy for placing nodes with small label near the top of the
queue is the Small Label First method (SLF for short). Here the candidate
list V is maintained as a double ended queue Q. At each iteration, the
node exiting V is the top node of Q). The rule for inserting new nodes is
given below:

SLF Strategy

Whenever a node j enters @), its label d; is compared with the label
d; of the top node i of Q. If d; < d;, node j is entered at the top of
Q; otherwise j is entered at the bottom of Q.

The SLF strategy provides a rule for inserting nodes in @, but always
removes (selects for iteration) nodes from the top of). A more sophis-
ticated strategy is to make an effort to remove from) nodes with small
labels. A simple possibility, called the Large Label Last method (LLL for
short) works as follows: At each iteration, when the node at the top of Q
has a larger label than the average node label in @ (defined as the sum of
the labels of the nodes in @ divided by the cardinality |Q| of @), this node
is not removed from @, but is instead repositioned to the bottom of Q.

LLL Strategy
Let i be the top node of @, and let

Sec. 2.4 Label Correcting Methods s

2 jeq i

QI
If d; > a, move 7 to the bottom of (). Repeat until a node ¢ such that
d; < a is found and is removed from Q.

a =

It is simple to combine the SLF queue insertion and the LLL node
removal strategies, thereby obtaining a method referred to as SLF/LLL.

Experience suggests that, assuming nonnegative arc lengths, the SLF,
LLL, and combined SLF/LLL algorithms perform substantially faster than
the Bellman-Ford and the D’Esopo-Pape methods. The strategies are also
well-suited for parallel computation (see Bertsekas, Guerriero, and Mus-
manno [1996]). The combined SLF/LLL method consistently requires a
smaller number of iterations than either SLF or LLL, although the gain in
number of iterations is sometimes offset by the extra overhead.

Regarding the theoretical worst-case performance of the SLF and the
combined SLF/LLL algorithms, an example has been constructed by Chen
and Powell [1997], showing that these algorithms do not have polynomial
complexity in their pure form. However, nonpolynomial behavior seems
to be an extremely rare phenomenon in practice. In any case, one may
construct polynomial versions of the SLF and LLL algorithms, when the
arc lengths are nonnegative. A simple approach is to first sort the outgoing
arcs of each node by length. That is, when a node ¢ is removed from @), first
examine the outgoing arc from ¢ that has minimum length, then examine
the arc of second minimum length, etc. This approach, due to Chen and
Powell [1997], can be shown to have complexity O(NA2) (see Exercise
2.9). Note, however, that sorting the outgoing arcs of a node by length
may involve significant overhead.

There is also another approach to construct polynomial versions of
the SLF and LLL algorithms (as well as other label correcting methods),
which leads to O(NA) complexity, assuming nonnegative arc lengths. To
see how this works, suppose that in the generic label correcting algorithm,
there is a set of increasing iteration indices 1, ta, ..., tn41 such that t; =1,
and for ¢+ = 1,...,n, all nodes that are in V at the start of iteration t;
are removed from V at least once prior to iteration ¢;+1. Because all arc
lengths are nonnegative, this guarantees that the minimum label node of
V' at the start of iteration t; will never reenter V after iteration ¢;41. Thus
the candidate list must have no more than N — ¢ nodes at the start of
iteration ¢;4+1, and must become empty prior to iteration ¢y4;. Thus, if
the running time of the algorithm between iterations ¢; and ¢;4; is bounded
by R, the total running time of the algorithm will be bounded by N R, and
if R is polynomially bounded, the running time of the algorithm will also
be polynomially bounded.

Specializing now to the SLF and LLL cases, assume that between

78 The Shortest Path Problem Chap. 2

iterations ¢; and t;41, each node is inserted at the top of @ for a number
of times that is bounded by a constant and that (in the case of SLF/LLL)
the total number of repositionings is bounded by a constant multiple of
A. Then it can be seen that the running time of the algorithm between
iterations t; and ¢; 41 is O(A), and therefore the complexity of the algorithm
is O(NA).

To modify SLF or SLF/LLL so that they have an O(N A) worst-case
complexity, based on the preceding result, it is sufficient that we fix an inte-
ger k > 1, and that we separate the iterations of the algorithm in successive
blocks of kN iterations each. We then impose an additional restriction that,
within each block of kN iterations, each node can be inserted at most k—1
times at the top of @ [that is, after the (k — 1)th insertion of a node to the
top of @ within a given block of kN iterations, all subsequent insertions of
that node within that block of £V iterations must be at the bottom of Q).
In the case of SLF/LLL, we also impose the additional restriction that the
total number of repositionings within each block of kN iterations should
be at most kA (that is, once the maximum number of kA repositionings is
reached, the top node of @) is removed from @ regardless of the value of its
label). The worst-case running times of the modified algorithms are then
O(NA). In practice, it is highly unlikely that the restrictions introduced
into the algorithms to guarantee O(INA) complexity will ever be exercised
if k is larger than a small number such as 3 or 4.

2.4.4 The Threshold Algorithm

Similar to the SLF/LLL methods, the premise of this algorithm is also
that, for nonnegative arc lengths, the number of iterations is reduced by
removing from the candidate list V' nodes with relatively small label. In
the threshold algorithm, V' is organized into two distinct queues @’ and Q"
using a threshold parameter s. The queue @)’ contains nodes with “small”
labels; that is, it contains only nodes whose labels are no larger than s.
At each iteration, a node is removed from @', and any node j to be added
to the candidate list is inserted at the bottom of @)’ or " depending on
whether d; < s or d; > s, respectively. When the queue @’ is exhausted,
the entire candidate list is repartitioned. The threshold is adjusted, and
the queues @’ and @’ are recalculated, so that ()’ consists of the nodes
with labels that are no larger than the new threshold.

To understand how the threshold algorithm works, consider the case
of nonnegative arc lengths, and suppose that at time ¢ the candidate list
is repartitioned based on a new threshold value s, and that at some sub-
sequent time ¢’ > t the queue @’ gets exhausted. Then at time ¢/, all the
nodes of the candidate list have label greater than s. In view of the nonneg-
ativity of the arc lengths, this implies that all nodes with label less than or
equal to s will not reenter the candidate list after time ¢/. In particular, all
nodes that exited the candidate list between times ¢ and ¢/ become perma-

Sec. 2.4 Label Correcting Methods 79

nently labeled at time ¢/ and never reenter the candidate list. We may thus
interpret the threshold algorithm as a block version of Dijkstra’s method,
whereby a whole subset of nodes becomes permanently labeled when the
queue @' gets exhausted.

The preceding interpretation suggests that the threshold algorithm is
suitable primarily for the case of nonnegative arc lengths (even though it
will work in general). Furthermore, the performance of the algorithm is
quite sensitive to the method used to adjust the threshold. For example, if
s is taken to be equal to the current minimum label, the method is identical
to Dijkstra’s algorithm; if s is larger than all node labels, Q" is empty and
the algorithm reduces to the generic label correcting method. With an
effective choice of threshold, the practical performance of the algorithm
is very good. A number of heuristic approaches have been developed for
selecting the threshold (see Glover, Klingman, and Phillips [1985], and
Glover, Klingman, Phillips, and Schneider [1985]). If all arc lengths are
nonnegative, a bound O(N A) on the operation count of the algorithm can
be shown; see Exercise 2.8(c).

Combinations of the Threshold and the SLF/LLL Methods

We mentioned earlier that the threshold algorithm may be interpreted as
a block version of Dijkstra’s method, whereby attention is restricted to the
subset of nodes that belong to the queue @/, until this subset becomes per-
manently labeled. The algorithm used to permanently label the nodes of @’
is essentially the Bellman-Ford algorithm restricted to the subgraph defined
by @'. It is possible to use a different algorithm for this purpose, based for
example on the SLF and LLL strategies. This motivates combinations of
the threshold and the SLF/LLL algorithms.

In particular, the LLL strategy can be used when selecting a node
to exit the queue @’ in the threshold algorithm (the top node of Q' is
repositioned to the bottom of ()’ if its label is found smaller than the
average label in @’). Furthermore, whenever a node enters the queue @,
it is added, according to the SLF strategy, at the bottom or the top of @’
depending on whether its label is greater than the label of the top node of
@’ or not. The same policy is used when transferring to @’ the nodes of
Q" whose labels do not exceed the current threshold parameter. Thus the
nodes of Q" are transferred to)’ one-by-one, and they are added to the
top or the bottom of @’ according to the SLF strategy. Finally, the SLF
strategy is also followed when a node enters the queue Q.

Generally, the threshold strategy and the SLF/LLL strategy are com-
plementary and work synergistically. Computational experience suggests
that their combination performs extremely well in practice, and typically
results in an average number of iterations per node that is only slightly
larger than the minimum of 1 achieved by Dijkstra’s method. At the same

80 The Shortest Path Problem Chap. 2

time, these combined methods require considerably less overhead than Di-
jkstra’s method.

2.4.5 Comparison of Label Setting and Label Correcting

Let us now try to compare the two major special cases of the generic
algorithm, label setting and label correcting methods, assuming that the
arc lengths are nonnegative.

We mentioned earlier that label setting methods offer a better guar-
antee of good performance than label correcting methods, because their
worst-case running time is more favorable. In practice, however, there
are several considerations that argue in favor of label correcting methods.
One such consideration is that label correcting methods, because of their
inherent flexibility, are better suited for exploiting advanced initialization.

Another consideration is that when the graph is acyclic, label cor-
recting methods can be adapted to exploit the problem’s structure, so that
each node enters and exits the candidate list only once, thereby nullifying
the major advantage of label setting methods (see Exercise 2.10). The cor-
responding running time is O(A), which is the minimum possible. Note
that an important class of problems involving an acyclic graph is dynamic
programming (cf. Fig. 2.1).

A third consideration is that in practice, the graphs of shortest path
problems are often sparse; that is, the number of arcs is much smaller
than the maximum possible N2. 1In this case, efficient label correcting
methods tend to have a faster practical running time than label setting
methods. To understand the reason, note that all shortest path methods
require the unavoidable O(A) operations needed to scan once every arc, plus
some additional time which we can view as “overhead.” The overhead of
the popular label setting methods is roughly proportional to N in practice
(perhaps times a slowly growing factor, like log V), as argued earlier for the
binary heap method and Dial’s algorithm. On the other hand, the overhead
of label correcting methods grows linearly with A (times a factor that likely
grows slowly), because for the most popular methods, the average number
of node entrances in the queue per node is typically not much larger than
1. Thus, we may conclude that the overhead ratio of label correcting to
label setting methods is roughly

— - stant factor).
N (a constant factor)

The constant factor above depends on the particular method used and
may vary slowly with the problem size, but is typically much less than 1.
Thus, the overhead ratio favors label correcting methods for a sparse graph
(A << N2), and label setting methods for a dense graph (A ~ N?2). This
is consistent with empirical observations.

2.5

Sec. 2.5 Single Origin/Single Destination Methods 81

Let us finally note that label setting methods can take better advan-
tage of situations where only a small subset of the nodes are destinations, as
will be seen in the next section. This is also true of the auction algorithms
to be discussed in Section 2.6.

SINGLE ORIGIN/SINGLE DESTINATION METHODS

In this section, we discuss the adaptation of our earlier single origin/all
destination algorithms to the case where there is only one destination, call
it t, and we want to find the shortest distance from the origin node 1 to
t. We could of course use our earlier all-destinations algorithms, but some
improvements are possible.

2.5.1 Label Setting

Suppose that we use the label setting method. Then we can stop the
method when the destination ¢ becomes permanently labeled; further com-
putation will not improve the label d; (Exercise 2.13 sharpens this criterion
in the case where ming;; ey aij > 0). If ¢ is closer to the origin than
many other nodes, the saving in computation time will be significant. Note
that this approach can also be used when there are several destinations.
The method is stopped when all destinations have become permanently
labeled.

Another possibility is to use a two-sided label setting method; that is,
a method that simultaneously proceeds from the origin to the destination
and from the destination to the origin. In this method, we successively label
permanently the closest nodes to the origin (with their shortest distance
from the origin) and the closest nodes to the destination (with their shortest
distance to the destination). It can be shown that when some node gets
permanently labeled from both sides, the labeling can stop; by combining
the forward and backward paths of each labeled node and by comparing
the resulting origin-to-destination paths, one can obtain a shortest path.
Exercise 2.14 develops in some detail this approach, which can often lead
to a dramatic reduction in the total number of iterations. However, the
approach does not work when there are multiple destinations.

2.5.2 Label Correcting

Unfortunately, when label correcting methods are used, it may not be easy
to realize the savings just discussed in connection with label setting. The
difficulty is that even after we discover several paths to the destination ¢
(each marked by an entrance of ¢ into V'), we cannot be sure that better
paths will not be discovered later. In the presence of additional problem

82 The Shortest Path Problem Chap. 2

structure, however, the number of times various nodes will enter V' can be
reduced considerably, as we now explain.

Suppose that at the start of the algorithm we have, for each node i, an
underestimate u; of the shortest distance from i to ¢ (we require u; = 0).
For example, if all arc lengths are nonnegative we may take u; = 0 for
all i. (We do not exclude the possibility that u; = —oco for some 4, which
corresponds to the case where no underestimate is available for the shortest
distance of i.) The following is a modified version of the generic shortest
path algorithm.

Initially

vV ={1},

d1:0, di:Oov VZ#l

The algorithm proceeds in iterations and terminates when V' is empty. The
typical iteration (assuming V' is nonempty) is as follows.

Iteration of the Generic Single Origin/Single Destination Al-
gorithm

Remove a node ¢ from V. For each outgoing arc (i,j) € A, if
di + ai; < min{dj, di — Uj},

set
dj =d; + Qij

and add j to V if it does not already belong to V.

The preceding iteration is the same as the one of the all-destinations
generic algorithm, except that the test d; + a;; < d; for entering a node j
into V' is replaced by the more stringent test d; + ai; < min{d;,d; — u;}.
(In fact, when the trivial underestimate u; = —oo is used for all j # ¢ the
two iterations coincide.) To understand the idea behind the iteration, note
that the label d; corresponds at all times to the best path found thus far
from 1 to j (cf. Prop. 2.2). Intuitively, the purpose of entering node j in
V when its label is reduced is to generate shorter paths to the destination
that pass through node j. If P; is the path from 1 to j corresponding to
d; + a;ij, then d; + a;; + u; is an underestimate of the shortest path length
among the collection of paths P; that first follow path P; to node j and
then follow some other path from j to t. However, if

di + aij +uj > di,

the current best path to ¢, which corresponds to d:, is at least as short as
any of the paths in the collection P;, which have P; as their first component.

Sec. 2.5 Single Origin/Single Destination Methods 83

Origin estnaton
e 0
1 e -

Iter. # | Candidate List V| Node Labels |Node out of V
1 {1} (0, 00, 00, 00, 00) 1
2 {2,3} (0,2,1, 00, 0) 2
3 {3,5} (0,2,1,0,2) 3
4 {5} (0,2,1,00,2) 5
1% (0,2,1, 0, 2)

Figure 2.9: Illustration of the generic single origin/single destination algorithm.
Here the destination is ¢ = 5 and the underestimates of shortest distances to ¢ are
u; = 0 for all 7. Note that at iteration 3, when node 3 is removed from V, the
label of node 4 is not improved to d4s = 2 and node 4 is not entered in V. The
reason is that d3 + as4 (which is equal to 2) is not smaller than ds — ua (which is
also equal to 2). Note also that upon termination the label of a node other than
t may not be equal to its shortest distance (e.g. da).

It is unnecessary to consider such paths, and for this reason node j need
not be entered in V. In this way, the number of node entrances in V' may
be sharply reduced.

Figure 2.9 illustrates the algorithm. The following proposition proves
its validity.

Proposition 2.4: Consider the generic single origin/single destina-
tion algorithm.

(a) At the end of each iteration, if d; < oo, then d; is the length of
some path that starts at 1 and ends at j.

(b) If the algorithm terminates, then upon termination, either d: <
00, in which case d; is the shortest distance from 1 to ¢, or else
there is no path from 1 to ¢.

(c) If the algorithm does not terminate, there exist paths of arbi-
trarily small length that start at 1.

84 The Shortest Path Problem Chap. 2

Proof: (a) The proof is identical to the corresponding part of Prop. 2.2.

(b) If upon termination we have d; = oo, then the extra test d; + ai; +u; <
d; for entering V is always passed, so the algorithm generates the same
label sequences as the generic (all destinations) shortest path algorithm.
Therefore, Prop. 2.2(b) applies and shows that there is no path from 1 to ¢.
It will thus be sufficient to prove this part assuming that we have d; < oo
upon termination.

Let d; be the final values of the labels d; obtained upon termination
and suppose that d; < co. Assume, to arrive at a contradiction, that there
is a path P; = (1,j1,42,...,Jk,t) that has length L; with L; < d¢. For
m=1,...,k, let L;, be the length of the path Py, = (1, j1,Jj2,...,Jm)-

Let us focus on the node ji preceding ¢t on the path P;. We claim that
Lj, < dj,. Indeed, if this were not so, then j, must have been removed at
some iteration from V with a label d;, satisfying d;, < Lj, . If d; is the
label of ¢ at the start of that iteration, we would then have

djy + ajpe < Lj, 4 aje = Ly < dy < dy,

implying that the label of ¢ would be reduced at that iteration from d: to
dj, + aj,t, which is less than the final label d; — a contradiction.

Next we focus on the node j;_1 preceding ji and ¢ on the path P.. We
use a similar (though not identical) argument to show that Lj, , < dj,_,.
Indeed, if this were not so, then jx_; must have been removed at some
iteration from V' with a label d;, | satisfying d;,_, < Lj, . If dj, and d;
are the labels of j; and ¢ at the start of that iteration, we would then have

djp_y + ajp_yjp, < Ljp_y + a5y, = Ljj, < dj, < djy.,
and since Lj, +uj, < Ly < di < d¢, we would also have
djy g + gy gy < de — .

From the above two equations, it follows that the label of j; would be
reduced at that iteration from dj, to dj, _, +aj, ¢, which is less than the
final label dj, — a contradiction.

Proceeding similarly, we obtain L;,, < d;,, for all m = 1,...,k, and
in particular a1;, = Lj, < dj,. Since

alj; + uj; <Li < Et,

and d; is monotonically nonincreasing throughout the algorithm, we see
that at the first iteration we will have a1;, < min{d;,,d: —uj, }, so j1 will
enter V with the label a1j,, which cannot be less than the final label dj, .
This is a contradiction; the proof of part (b) is complete.

(c¢) The proof is identical to the proof of Prop. 2.2(c). Q.E.D.

Sec. 2.5 Single Origin/Single Destination Methods 85

There are a number of possible implementations of the algorithm of
this subsection, which parallel the ones given earlier for the many destina-
tions problem. An interesting possibility to speed up the algorithm arises
when an owverestimate v; of the shortest distance from j to t is known a
priori. (We require that v; = 0. Furthermore, we set v; = oo if no overes-
timate is known for j.) The idea is that the method still works if the test
d; +a;; < d¢ —u;j is replaced by the possibly sharper test d; +ai; < D —u;,
where D is any overestimate of the shortest distance from 1 to ¢t with D < d;
(check the proof of Prop. 2.4). We can obtain estimates D that may be
strictly smaller than d; by using the scalars v; as follows: each time the
label of a node j is reduced, we check whether d; +v; < D; if this is so, we
replace D by dj +wv;. In this way, we make the test for future admissibility
into the candidate list V' more stringent and save some unnecessary node
entrances in V.

Advanced Initialization

We finally note that similar to the all-destinations case, the generic sin-
gle origin/single destination method need not be started with the initial
conditions

V={1}, di=0, di=oco, Vi#lL

The algorithm works correctly using several other initial conditions. One
possibility is to use for each node 4, an initial label d; that is either co or
else it is the length of a path from 1 to 4, and to take V = {i | d; < oo}.
A more sophisticated alternative is to initialize V so that it contains all
nodes 7 such that

d; + ai; < min{d;,d; — u;} for some (i,7) € A.

This kind of initialization can be extremely useful when a “good”
path
P=(1,i1,...,ik,t)

from 1 to ¢ is known or can be found heuristically, and the arc lengths are
nonnegative so that we can use the underestimate u; = 0 for all 7. Then
we can initialize the algorithm with

00 ifi ¢ P,
V= {1,,... i}

If P is a near-optimal path and consequently the initial value d; is near its
final value, the test for future admissibility into the candidate list V' will
be relatively tight from the start of the algorithm and many unnecessary
entrances of nodes into V' may be saved. In particular, it can be seen that
all nodes whose shortest distances from the origin are greater or equal to
the length of P will never enter the candidate list.

d — { Length of portion of path P from 1 to ¢ ifi € P,

2.6

86 The Shortest Path Problem Chap. 2

AUCTION ALGORITHMS

In this section, we discuss another class of algorithms for finding a shortest
path from an origin s to a destination ¢. These are called auction algorithms
because they can be shown to be closely related to the naive auction algo-
rithm for the assignment problem discussed in Section 1.3 (see Bertsekas
[1991a], Section 4.3.3, or Bertsekas [1991b]). The main algorithm is very
simple. It maintains a single path starting at the origin. At each iteration,
the path is either extended by adding a new node, or contracted by deleting
its terminal node. When the destination becomes the terminal node of the
path, the algorithm terminates.

To get an intuitive sense of the algorithm, think of a mouse moving in
a graph-like maze, trying to reach a destination. The mouse criss-crosses
the maze, either advancing or backtracking along its current path. Each
time the mouse backtracks from a node, it records a measure of the desir-
ability of revisiting and advancing from that node in the future (this will
be represented by a suitable variable). The mouse revisits and proceeds
forward from a node when the node’s measure of desirability is judged
superior to those of other nodes. The algorithm emulates efficiently this
search process using simple data structures.

The algorithm maintains a path P = ((s,41), (i1,42),.- -, (ik—1,x))
with no cycles, and modifi