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Preface



In	This	Book
This	book	will	guide	you	from	being	a	user	of	R	packages	to	being	a	creator	of	R
packages.	In	Chapter	1,	Introduction,	you’ll	learn	why	mastering	this	skill	is	so	important,
and	why	it’s	easier	than	you	think.	Next,	you’ll	learn	about	the	basic	structure	of	a
package,	and	the	forms	it	can	take,	in	Chapter	2,	Package	Structure.	The	subsequent
chapters	go	into	more	detail	about	each	component.	They’re	roughly	organized	in	order	of
importance:

Chapter	3,	R	code

The	most	important	directory	is	R/,	where	your	R	code	lives.	A	package	with	just	this
directory	is	still	a	useful	package.	(And	indeed,	if	you	stop	reading	the	book	after	this
chapter,	you’ll	have	still	learned	some	useful	new	skills.)

Chapter	4,	Package	Metadata

The	DESCRIPTION	lets	you	describe	what	your	package	needs	to	work.	If	you’re
sharing	your	package,	you’ll	also	use	the	DESCRIPTION	to	describe	what	it	does,
who	can	use	it	(the	license),	and	who	to	contact	if	things	go	wrong.

Chapter	5,	Object	Documentation

If	you	want	other	people	(including	“future	you”!)	to	understand	how	to	use	the
functions	in	your	package,	you’ll	need	to	document	them.	I’ll	show	you	how	to	use
roxygen2	to	document	your	functions.	I	recommend	roxygen2	because	it	lets	you
write	code	and	documentation	together	while	continuing	to	produce	R’s	standard
documentation	format.

Chapter	6,	Vignettes:	Long-Form	Documentation

Function	documentation	describes	the	nitpicky	details	of	every	function	in	your
package.	Vignettes	give	the	big	picture.	They’re	long-form	documents	that	show	how
to	combine	multiple	parts	of	your	package	to	solve	real	problems.	I’ll	show	you	how
to	use	Rmarkdown	and	knitr	to	create	vignettes	with	a	minimum	of	fuss.

Chapter	7,	Testing

To	ensure	your	package	works	as	designed	(and	continues	to	work	as	you	make
changes),	it’s	essential	to	write	unit	tests	that	define	correct	behavior,	and	alert	you
when	functions	break.	In	this	chapter,	I’ll	teach	you	how	to	use	the	testthat	package
to	convert	the	informal	interactive	tests	that	you’re	already	doing	to	formal,
automated	tests.

Chapter	8,	Namespace

To	play	nicely	with	others,	your	package	needs	to	define	what	functions	it	makes
available	to	other	packages	and	what	functions	it	requires	from	other	packages.	This
is	the	job	of	the	NAMESPACE	file	and	I’ll	show	you	how	to	use	roxygen2	to	generate
it	for	you.	NAMESPACE	is	one	of	the	more	challenging	parts	of	developing	an	R
package,	but	it’s	critical	to	master	if	you	want	your	package	to	work	reliably.



Chapter	9,	External	Data

The	data/	directory	allows	you	to	include	data	with	your	package.	You	might	do	this
to	bundle	data	in	a	way	that’s	easy	for	R	users	to	access,	or	just	to	provide	compelling
examples	in	your	documentation.

Chapter	10,	Compiled	Code

R	code	is	designed	for	human	efficiency,	not	computer	efficiency,	so	it’s	useful	to
have	a	tool	in	your	back	pocket	that	allows	you	to	write	fast	code.	The	src/	directory
allows	you	to	include	speedy	compiled	C	and	C++	code	to	solve	performance
bottlenecks	in	your	package.

Chapter	11,	Installed	Files

You	can	include	arbitrary	extra	files	in	the	inst/	directory.	This	is	most	commonly
used	for	extra	information	about	how	to	cite	your	package,	and	to	provide	more
details	about	copyrights	and	licenses.

Chapter	12,	Other	Components

This	chapter	documents	the	handful	of	other	components	that	are	rarely	needed:
demo/,	exec/,	po/,	and	tools/.

The	final	three	chapters	describe	general	best	practices	not	specifically	tied	to	one
directory:

Chapter	13,	Git	and	GitHub

Mastering	a	version	control	system	is	vital	for	collaborating	with	others,	and	is	useful
even	for	solo	work	because	it	allows	you	to	easily	undo	mistakes.	In	this	chapter,
you’ll	learn	how	to	use	the	popular	Git	and	GitHub	combo	with	RStudio.

Chapter	14,	Automated	Checking

R	provides	useful	automated	quality	checks	in	the	form	of	R	CMD	check.	Running
them	regularly	is	a	great	way	to	avoid	many	common	mistakes.	The	results	can
sometimes	be	a	bit	cryptic,	so	I	provide	a	comprehensive	cheat	sheet	to	help	you
convert	warnings	to	actionable	insight.

Chapter	15,	Releasing	a	Package

	The	life	cycle	of	a	package	culminates	with	release	to	the	public.	This	chapter
compares	the	two	main	options	(CRAN	and	GitHub)	and	offers	general	advice	on
managing	the	process.

This	is	a	lot	to	learn,	but	don’t	feel	overwhelmed.	Start	with	a	minimal	subset	of	useful
features	(e.g.,	just	an	R/	directory!)	and	build	up	over	time.	To	paraphrase	the	Zen	monk
Shunryū	Suzuki:	“Each	package	is	perfect	the	way	it	is	—	and	it	can	use	a	little
improvement.”



Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.



Using	Code	Examples
PROD:	Please	reach	out	to	author	to	find	out	if	they	will	be	uploading	code	examples	to
oreilly.com	or	their	own	site	(e.g.,	GitHub).	If	there	is	no	code	download,	delete	this	whole
section.	If	there	is,	when	you	email	digidist	with	the	link,	let	them	know	what	you	filled	in
for	title_title	(should	be	as	close	to	book	title	as	possible,	i.e.,	learning_python_2e).	This
info	will	determine	where	digidist	loads	the	files.

Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
http://r-pkgs.had.co.nz/.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“R	Packages	by	Hadley	Wickham	(O’Reilly).
Copyright	2015	Hadley	Wickham,	978-1-491-91059-7.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

http://r-pkgs.had.co.nz/
mailto:permissions@oreilly.com


Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
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How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/r-packages.

Don’t	forget	to	update	the	link	above.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/r-packages
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
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Part	I.	Getting	Started





Chapter	1.	Introduction

In	R,	the	fundamental	unit	of	shareable	code	is	the	package.	A	package	bundles	together
code,	data,	documentation,	and	tests,	and	is	easy	to	share	with	others.	As	of	January	2015,
there	were	over	6,000	packages	available	on	the	Comprehensive	R	Archive	Network,	or
CRAN,	the	public	clearing	house	for	R	packages.	This	huge	variety	of	packages	is	one	of
the	reasons	that	R	is	so	successful:	chances	are	that	someone	has	already	solved	a	problem
that	you’re	working	on,	and	you	can	benefit	from	their	work	by	downloading	their
package.

If	you’re	reading	this	book,	you	already	know	how	to	use	packages:

You	install	them	from	CRAN	with	install.packages("x").

You	use	them	in	R	with	library(x).

You	get	help	on	them	with	package?x	and	help(package	=	"x").

The	goal	of	this	book	is	to	teach	you	how	to	develop	packages	so	that	you	can	write	your
own,	not	just	use	other	people’s.	Why	write	a	package?	One	compelling	reason	is	that	you
have	code	that	you	want	to	share	with	others.	Bundling	your	code	into	a	package	makes	it
easy	for	other	people	to	use	it,	because	like	you,	they	already	know	how	to	use	packages.
If	your	code	is	in	a	package,	any	R	user	can	easily	download	it,	install	it,	and	learn	how	to
use	it.

But	packages	are	useful	even	if	you	never	share	your	code.	As	Hilary	Parker	says	in	her
introduction	to	packages:	“Seriously,	it	doesn’t	have	to	be	about	sharing	your	code
(although	that	is	an	added	benefit!).	It	is	about	saving	yourself	time.”	Organizing	code	in	a
package	makes	your	life	easier	because	packages	come	with	conventions.	For	example,
you	put	R	code	in	R/,	you	put	tests	in	tests/,	and	you	put	data	in	data/.	These	conventions
are	helpful	because:

They	save	you	time

Instead	of	having	to	think	about	the	best	way	to	organize	a	project,	you	can	just
follow	a	template.

Standardized	conventions	lead	to	standardized	tools

If	you	buy	into	R’s	package	conventions,	you	get	many	tools	for	free.

It’s	even	possible	to	use	packages	to	structure	your	data	analyses,	as	Robert	M.	Flight
discusses	in	a	series	of	blog	posts.

http://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
http://rmflight.github.io/posts/2014/07/analyses_as_packages.html


Philosophy
This	book	espouses	my	philosophy	of	package	development:	anything	that	can	be
automated	should	be	automated.	Do	as	little	as	possible	by	hand.	Do	as	much	as	possible
with	functions.	The	goal	is	to	spend	your	time	thinking	about	what	you	want	your	package
to	do	rather	than	thinking	about	the	minutiae	of	package	structure.

This	philosophy	is	realized	primarily	through	the	devtools	package,	a	suite	of	R	functions
that	I	wrote	to	automate	common	development	tasks.	The	goal	of	devtools	is	to	make
package	development	as	painless	as	possible.	It	does	this	by	encapsulating	all	of	the	best
practices	of	package	development	that	I’ve	learned	over	the	years.	Devtools	protects	you
from	many	potential	mistakes,	so	you	can	focus	on	the	problem	you’re	interested	in,	not
on	developing	a	package.

Devtools	works	hand	in	hand	with	RStudio,	which	I	believe	is	the	best	development
environment	for	most	R	users.	The	only	real	competitor	is	Emacs	Speaks	Statistics	(ESS),
which	is	a	rewarding	environment	if	you’re	willing	to	put	in	the	time	to	learn	Emacs	and
customize	it	to	your	needs.	The	history	of	ESS	stretches	back	over	20	years	(predating	R!),
but	it’s	still	actively	developed	and	many	of	the	workflows	described	in	this	book	are	also
available	there.

Together,	devtools	and	RStudio	insulate	you	from	the	low-level	details	of	how	packages
are	built.	As	you	start	to	develop	more	packages,	I	highly	recommend	that	you	learn	more
about	those	details.	The	best	resource	for	the	official	details	of	package	development	is
always	the	official	writing	R	extensions	manual.	However,	this	manual	can	be	hard	to
understand	if	you’re	not	already	familiar	with	the	basics	of	packages.	It’s	also	exhaustive,
covering	every	possible	package	component,	rather	than	focusing	on	the	most	common
and	useful	components,	as	this	book	does.	Writing	R	extensions	is	a	useful	resource	once
you’ve	mastered	the	basics	and	want	to	learn	what’s	going	on	under	the	hood.

http://ess.r-project.org/
http://bit.ly/1EYWyMy


Getting	Started
To	get	started,	make	sure	you	have	the	latest	version	of	R	(at	least	3.1.2,	which	is	the
version	that	the	code	in	this	book	uses),	then	run	the	following	code	to	get	the	packages
you’ll	need:

install.packages(c("devtools",	"roxygen2",	"testthat",	"knitr"))

Make	sure	you	have	a	recent	version	of	RStudio.	You	can	check	that	you	have	the	right
version	by	running	the	following:

install.packages("rstudioapi")

rstudioapi::isAvailable("0.99.149")

If	not,	you	may	need	to	install	the	preview	version.	This	gives	you	access	to	the	latest	and
greatest	features,	and	only	slightly	increases	your	chances	of	finding	a	bug.

If	you	want	to	keep	up	with	the	bleeding	edge	of	devtools	development,	you	can	use	the
following	code	to	access	new	functions	as	I	develop	them:

devtools::install_github("hadley/devtools")

You’ll	need	a	C	compiler	and	a	few	command-line	tools.	If	you’re	on	Windows	or	Mac
and	you	don’t	already	have	them,	RStudio	will	install	them	for	you.	Otherwise:

On	Windows,	download	and	install	Rtools.	Nnote:	this	is	not	an	R	package!

On	Mac,	make	sure	you	have	either	XCode	(available	for	free	in	the	App	Store)	or	the
“Command-Line	Tools	for	Xcode”.	You’ll	need	to	have	a	(free)	Apple	ID.

On	Linux,	make	sure	you’ve	installed	not	only	R,	but	also	the	R	development	tools.	For
example,	on	Ubuntu	(and	Debian)	you	need	to	install	the	Ubuntu	r-base-dev	package.

You	can	check	that	you	have	everything	installed	by	running	the	following	code:

library(devtools)

has_devel()

#>	'/Library/Frameworks/R.framework/Resources/bin/R'	--vanilla	CMD	SHLIB	foo.c	

#>	

#>	clang	-I/Library/Frameworks/R.framework/Resources/include	-DNDEBUG	

#>			-I/usr/local/include	-I/usr/local/include/freetype2	-I/opt/X11/include

#>			-fPIC		-Wall	-mtune=core2	-g	-O2		-c	foo.c	-o	foo.o

#>	clang	-dynamiclib	-Wl,-headerpad_max_install_names	-undefined	dynamic_lookup

#>			-single_module	-multiply_defined	suppress	-L/usr/local/lib	-o	foo.so	foo.o	

#>			-F/Library/Frameworks/R.framework/..	-framework	R	-Wl,-framework	

#>			-Wl,CoreFoundation

[1]	TRUE

This	will	print	out	some	code	that	I	use	to	help	diagnose	problems.	If	everything	is	OK,	it
will	return	TRUE.	Otherwise,	it	will	throw	an	error	and	you’ll	need	to	investigate	the
problem.

http://bit.ly/1F93Iha
http://cran.r-project.org/bin/windows/Rtools/
http://developer.apple.com/downloads


Conventions
Throughout	this	book	I	write	foo()	to	refer	to	functions,	bar	to	refer	to	variables	and
function	parameters,	and	baz/	to	refer	to	paths.	Larger	code	blocks	intermingle	input	and
output.	Output	is	commented	so	that	if	you	have	an	electronic	version	of	the	book	(e.g.,
http://r-pkgs.had.co.nz),	you	can	easily	copy	and	paste	examples	into	R.	Output	comments
look	like	#>	to	distinguish	them	from	regular	comments.

http://r-pkgs.had.co.nz/


Colophon
This	book	was	written	in	Rmarkdown	inside	RStudio.	knitr	and	pandoc	converted	the	raw
Rmarkdown	to	HTML	and	PDF.	The	website	was	made	with	jekyll,	styled	with	bootstrap,
and	published	to	Amazon’s	S3	by	travis-ci.	The	complete	source	is	available	from	GitHub.
This	version	of	the	book	was	built	with:

library(roxygen2)

library(testthat)

devtools::session_info()

#>	Session	info	--------------------------------------------------------------

#>		setting		value																							

#>		version		R	version	3.1.2	(2014-10-31)

#>		system			x86_64,	linux-gnu											

#>		ui							X11																									

#>		language	(EN)																								

#>		collate		en_US.UTF-8																	

#>		tz							<NA>

#>	Packages	------------------------------------------------------------------

#>		package				*	version				date							source																												

#>		bookdown					0.1								2015-02-12	Github	(hadley/bookdown@fde0b07)		

#>		devtools			*	1.7.0.9000	2015-02-12	Github	(hadley/devtools@9415a8a)		

#>		digest					*	0.6.8						2014-12-31	CRAN	(R	3.1.2)																				

#>		evaluate			*	0.5.5						2014-04-29	CRAN	(R	3.1.0)																				

#>		formatR				*	1.0								2014-08-25	CRAN	(R	3.1.1)																				

#>		htmltools		*	0.2.6						2014-09-08	CRAN	(R	3.1.2)																				

#>		knitr						*	1.9								2015-01-20	CRAN	(R	3.1.2)																				

#>		Rcpp							*	0.11.4					2015-01-24	CRAN	(R	3.1.2)																				

#>		rmarkdown				0.5.1						2015-02-12	Github	(rstudio/rmarkdown@0f19584)

#>		roxygen2					4.1.0						2014-12-13	CRAN	(R	3.1.2)																				

#>		rstudioapi	*	0.2								2014-12-31	CRAN	(R	3.1.2)																				

#>		stringr				*	0.6.2						2012-12-06	CRAN	(R	3.0.0)																				

#>		testthat					0.9.1						2014-10-01	CRAN	(R	3.1.1)

http://rmarkdown.rstudio.com/
http://www.rstudio.com/ide/
http://yihui.name/knitr/
http://johnmacfarlane.net/pandoc/
http://jekyllrb.com/
http://getbootstrap.com/
http://aws.amazon.com/s3/
https://travis-ci.org/
https://github.com/hadley/r-pkgs




Chapter	2.	Package	Structure

This	chapter	will	start	you	on	the	road	to	package	development	by	showing	you	how	to
create	your	first	package.	You’ll	also	learn	about	the	various	states	a	package	can	be	in,
including	what	happens	when	you	install	a	package.	Finally,	you’ll	learn	about	the
difference	between	a	package	and	a	library	and	why	you	should	care.



Naming	Your	Package
“There	are	only	two	hard	things	in	computer	science:	cache	invalidation	and	naming
things.”

—	Phil	Karlton

Before	you	can	create	your	first	package,	you	need	to	come	up	with	a	name	for	it.	I	think
this	is	the	hardest	part	of	creating	a	package!	(Not	least	because	devtools	can’t	automate	it
for	you.)



Requirements	for	a	Name
There	are	three	formal	requirements:	the	name	can	only	consist	of	letters,	numbers,	and
periods	(i.e.,	.);	it	must	start	with	a	letter;	and	it	cannot	end	with	a	period.	Unfortunately,
this	means	you	can’t	use	either	hyphens	or	underscores	(i.e.,	-	or	_)	in	your	package	name.
I	recommend	against	using	periods	in	package	names	because	it	has	confusing
connotations	(i.e.,	file	extension	or	S3	method).



Strategies	for	Creating	a	Name
If	you’re	planning	on	releasing	your	package,	I	think	it’s	worth	spending	a	few	minutes	to
come	up	with	a	good	name.	Here	are	some	recommendations	for	how	to	go	about	it:

Choose	a	unique	name	that	can	easily	be	Googled.	This	makes	it	easy	for	potential
users	to	find	your	package	(and	associated	resources)	and	for	you	to	see	who’s	using	it.
You	can	also	check	if	a	name	is	already	used	on	CRAN	by	loading	http://cran.r-
project.org/web/packages/[PACKAGE_NAME].

Avoid	using	both	upper-	and	lowercase	letters:	doing	so	makes	the	package	name	hard
to	type	and	even	harder	to	remember.	For	example,	I	can	never	remember	if	it’s	Rgtk2
or	RGTK2	or	RGtk2.

Find	a	word	that	evokes	the	problem	and	modify	it	so	that	it’s	unique:
plyr	is	a	generalization	of	the	apply	family,	and	evokes	pliers.

lubridate	makes	dates	and	times	easier.

knitr	(knit	+	r)	is	“neater”	than	sweave	(s	+	weave).

testdat	tests	that	data	has	the	correct	format.

Use	abbreviations:
Rcpp	=	R	+	C++	(plus	plus).

lvplot	=	letter	value	plots.

Add	an	extra	R:
stringr	provides	string	tools.

tourr	implements	grand	tours	(a	visualization	method).

gistr	lets	you	programmatically	create	and	modify	GitHub	gists.

If	you’re	creating	a	package	that	talks	to	a	commercial	service,	make	sure	you	check	the
branding	guidelines	to	avoid	problems	down	the	line.	For	example,	rDrop	isn’t	called
rDropbox	because	Dropbox	prohibits	any	applications	from	using	the	full	trademarked
name.



Creating	a	Package
Once	you’ve	decided	on	a	name,	there	are	two	ways	to	create	the	package.	You	can	use
RStudio:

1.	 Click	File	→	New	Project.

2.	 Choose	New	Directory,	as	shown	in	Figure	2-1.

Figure	2-1.	Creating	a	project	from	a	new	directory

3.	 Next,	select	R	Package,	which	is	the	second	option	shown	in	Figure	2-2.



Figure	2-2.	Creating	a	new	R	package

4.	 Finally,	give	your	package	a	name	and	click	Create	Project	(Figure	2-3).



Figure	2-3.	Naming	the	package	and	creating	the	project

Alternatively,	you	can	create	a	new	package	from	within	R	by	running	the	following:

devtools::create("path/to/package/pkgname")

Whether	you	use	RStudio	or	the	command-line	option,	the	result	is	the	same	—	the
smallest	usable	package,	one	with	three	components:

1.	 An	R/	directory,	which	you’ll	learn	about	in	Chapter	3

2.	 A	basic	DESCRIPTION	file,	which	you’ll	learn	about	in	Chapter	4

3.	 A	basic	NAMESPACE	file,	which	you’ll	learn	about	in	Chapter	8

The	package	will	also	include	an	RStudio	project	file,	pkgname.Rproj,	which	makes	your
package	easy	to	use	with	RStudio,	as	described	in	the	next	section.

Don’t	use	package.skeleton()	to	create	a	package.	Following	that	workflow	requires
extra	work	because	it	creates	extra	files	that	you’ll	need	to	delete	or	modify	before	you
can	have	a	working	package.



RStudio	Projects
To	get	started	with	your	new	package	in	RStudio,	double-click	the	pkgname.Rproj	file	that
we	generated	in	the	previous	section	using	either	RStudio’s	graphical	user	interface	(GUI)
or	the	command-line	option.	This	will	open	a	new	RStudio	project	for	your	package.
Projects	are	a	great	way	to	develop	packages	because:

Each	project	is	isolated;	code	run	in	one	project	does	not	affect	any	other	project.

You	get	handy	code	navigation	tools	like	F2	to	jump	to	a	function	definition	and	Ctrl-.
to	look	up	functions	by	name.

You	get	useful	keyboard	shortcuts	for	common	package	development	tasks.	You’ll
learn	about	them	throughout	the	book.	But	to	see	them	all,	press	Alt-Shift-K	or	use	the
Help	→	Keyboard	shortcuts	menu,	shown	in	Figure	2-4.

Figure	2-4.	Keyboard	shortcuts	menu

(If	you	want	to	learn	more	RStudio	tips	and	tricks,	follow	@rstudiotips	on	Twitter.)

Both	RStudio	and	devtools::create()	will	make	an	.Rproj	file	for	you.	If	you	have	an
existing	package	that	doesn’t	include	an	.Rproj	file,	you	can	use
devtools::use_rstudio("path/to/package")	to	add	it.	If	you	don’t	use	RStudio,	you
can	get	many	of	the	benefits	by	starting	a	new	R	session	and	ensuring	the	working
directory	is	set	to	the	package	directory.

https://twitter.com/rstudiotips


What	Is	an	RStudio	Project	File?
An	.Rproj	file	is	just	a	text	file.	The	project	file	created	by	devtools	looks	like	this:

Version:	1.0

RestoreWorkspace:	No

SaveWorkspace:	No

AlwaysSaveHistory:	Default

EnableCodeIndexing:	Yes

Encoding:	UTF-8

AutoAppendNewline:	Yes

StripTrailingWhitespace:	Yes

BuildType:	Package

PackageUseDevtools:	Yes

PackageInstallArgs:	--no-multiarch	--with-keep.source

PackageRoxygenize:	rd,collate,namespace

You	don’t	need	to	modify	this	file	by	hand.	Instead,	use	the	friendly	Project	Options	dialog
box,	accessible	from	the	Projects	menu	in	the	upper-right	corner	of	RStudio	(see	Figure	2-
5	and	Figure	2-6).



Figure	2-5.	Accessing	the	Project	Options	dialog	box



Figure	2-6.	The	general	pane	of	the	project	options	window



What	Is	a	Package?
To	make	your	first	package,	all	you	need	to	know	is	what	you’ve	learned	in	the	preceding
section.	To	master	package	development,	particularly	when	you’re	distributing	a	package
to	others,	it	really	helps	to	understand	the	five	states	a	package	can	be	in	across	its	life
cycle:	source,	bundled,	binary,	installed,	and	in	memory.	Understanding	the	differences
between	these	states	will	help	you	form	a	better	mental	model	of	what
install.packages()	and	devtools::install_github()	do,	and	will	make	it	easier	to
debug	problems	when	they	arise.



Source	Packages
So	far	we’ve	just	worked	with	a	source	package:	the	development	version	of	a	package
that	lives	on	your	computer.	A	source	package	is	just	a	directory	with	components	like	R/,
DESCRIPTION,	and	so	on.



Bundled	Packages
A	bundled	package	is	a	package	that’s	been	compressed	into	a	single	file.	By	convention
(from	Linux),	package	bundles	in	R	use	the	extension	.tar.gz.	This	means	that	multiple
files	have	been	reduced	to	a	single	file	(.tar)	and	then	compressed	using	gzip	(.gz).	While
a	bundle	is	not	that	useful	on	its	own,	it’s	a	useful	intermediary	between	the	other	states.	In
the	rare	case	that	you	do	need	a	bundle,	call	devtools::	build()	to	make	it.

If	you	decompress	a	bundle,	you’ll	see	it	looks	almost	the	same	as	your	source	package.
The	main	differences	between	an	uncompressed	bundle	and	a	source	package	are	as
follows:

Vignettes	are	built	so	that	you	get	HTML	and	PDF	output	instead	of	Markdown	or
LaTeX	input.

Your	source	package	might	contain	temporary	files	used	to	save	time	during
development,	like	compilation	artifacts	in	src/.	These	are	never	found	in	a	bundle.

Any	files	listed	in	.Rbuildignore	are	not	included	in	the	bundle.

.Rbuildignore	prevents	files	in	the	source	package	from	appearing	in	the	bundled	package.
It	allows	you	to	have	additional	directories	in	your	source	package	that	will	not	be
included	in	the	package	bundle.	This	is	particularly	useful	when	you	generate	package
contents	(e.g.,	data)	from	other	files.	Those	files	should	be	included	in	the	source	package,
but	only	the	results	need	to	be	distributed.	This	is	particularly	important	for	CRAN
packages	(where	the	set	of	allowed	top-level	directories	is	fixed).	Each	line	gives	a	Perl-
compatible	regular	expression	that	is	matched,	without	regard	to	case,	against	the	path	to
each	file	(i.e.,	dir(full.names	=	TRUE)	run	from	the	package	root	directory);	if	the
regular	expression	matches,	the	file	is	excluded.

If	you	wish	to	exclude	a	specific	file	or	directory	(the	most	common	use	case),	you	must
anchor	the	regular	expression.	For	example,	to	exclude	a	directory	called	notes,	use
^notes$.	The	regular	expression	notes	will	match	any	filename	containing	notes	(e.g.,
R/notes.R,	man/important-notes.R,	data/endnotes.Rdata,	etc.).	The	safest	way	to	exclude	a
specific	file	or	directory	is	to	use	devtools::	use_build_ignore("notes"),	which	does
the	escaping	for	you.

Here’s	a	typical	.Rbuildignore	file	from	one	of	my	packages:

^.*\.Rproj$									#	Automatically	added	by	RStudio,

^\.Rproj\.user$					#	used	for	temporary	files.	

^README\.Rmd$							#	An	Rmarkdown	file	used	to	generate	README.md

^cran-comments\.md$	#	Comments	for	CRAN	submission

^NEWS\.md$										#	A	news	file	written	in	Markdown

^\.travis\.yml$					#	Used	for	continuous	integration	testing	with	travis

I’ll	mention	when	you	need	to	add	files	to	.Rbuildignore	whenever	it’s	important.



Binary	Packages
If	you	want	to	distribute	your	package	to	an	R	user	who	doesn’t	have	package
development	tools,	you’ll	need	to	make	a	binary	package.	Like	a	package	bundle,	a	binary
package	is	a	single	file.	But	if	you	uncompress	it,	you’ll	see	that	the	internal	structure	is
rather	different	from	a	source	package:

There	are	no	.R	files	in	the	R/	directory.	Instead,	there	are	three	files	that	store	the
parsed	functions	in	an	efficient	file	format.	This	is	basically	the	result	of	loading	all	the
R	code	and	then	saving	the	functions	with	save().	(In	the	process,	this	adds	a	little
extra	metadata	to	make	things	as	fast	as	possible.)

A	Meta/	directory	contains	a	number	of	Rds	files.	These	files	contain	cached	metadata
about	the	package,	like	what	topics	the	help	files	cover	and	parsed	versions	of	the
DESCRIPTION	files.	(You	can	use	readRDS()	to	see	exactly	what’s	in	those	files.)
These	files	make	package	loading	faster	by	caching	costly	computations.

An	html/	directory	contains	files	needed	for	HTML	help.

If	you	had	any	code	in	the	src/	directory	there	will	now	be	a	libs/	directory	that	contains
the	results	of	compiling	32-bit	(i386/)	and	64-bit	(x64/)	code.

The	contents	of	inst/	are	moved	to	the	top-level	directory.

Binary	packages	are	platform	specific:	you	can’t	install	a	Windows	binary	package	on	a
Mac	or	vice	versa.	Also,	while	Mac	binary	packages	end	in	.tgz,	Windows	binary
packages	end	in	.zip.	You	can	use	devtools::build(binary	=	TRUE)	to	make	a	binary
package.

The	diagram	in	Figure	2-7	summarizes	the	files	present	in	the	root	directory	for	source,
bundled,	and	binary	versions	of	devtools.



Figure	2-7.	Important	files	found	in	source,	bundled,	and	binary	packages,	and	how	they	are	related



Installed	Packages
An	installed	package	is	just	a	binary	package	that’s	been	decompressed	into	a	package
library	(described	momentarily).	The	diagram	in	Figure	2-8	illustrates	the	many	ways	a
package	can	be	installed.	This	diagram	is	complicated!	In	an	ideal	world,	installing	a
package	would	involve	stringing	together	a	set	of	simple	steps:	source	→	bundle,	bundle
→	binary,	binary	→	installed.	In	the	real	world,	it’s	not	this	simple	because	there	are	often
(faster)	shortcuts	available.

Figure	2-8.	Five	ways	to	install	a	package

The	tool	that	powers	all	package	installation	is	the	command-line	tool	R	CMD	INSTALL,
which	can	install	a	source,	bundle,	or	a	binary	package.	Devtools	functions	provide
wrappers	that	allow	you	to	access	this	tool	from	R	rather	than	from	the	command	line.
devtools::install()	is	effectively	a	wrapper	for	R	CMD	INSTALL.	devtools::build()	is
a	wrapper	for	R	CMD	build	that	turns	source	packages	into	bundles.
devtools::install_github()	downloads	a	source	package	from	GitHub,	runs	build()
to	make	vignettes,	and	then	uses	R	CMD	INSTALL	to	do	the	install.
devtools::install_url(),	devtools::install_gitorious(),	and	devtools::
install_bitbucket()	work	similarly	for	packages	found	elsewhere	on	the	Internet.

install.packages()	and	devtools::install_github()	allow	you	to	install	a	remote
package.	Both	work	by	downloading	and	then	installing	the	package.	This	makes
installation	very	speedy.	install.packages()	is	used	to	download	and	install	binary
packages	built	by	CRAN.	install_github()	works	a	little	differently	—	it	downloads	a
source	package,	builds	it,	and	then	installs	it.

You	can	prevent	files	in	the	package	bundle	from	being	included	in	the	installed	package
using	.Rinstignore.	This	works	the	same	way	as	.Rbuildignore,	described	earlier.	It’s	rarely
needed.



In-Memory	Packages
To	use	a	package,	you	must	load	it	into	memory.	To	use	it	without	providing	the	package
name	(e.g.,	install()	instead	of	devtools::install()),	you	need	to	attach	it	to	the
search	path.	R	loads	packages	automatically	when	you	use	them.	library()	and
require()	load,	then	attach	an	installed	package:

#	Automatically	loads	devtools

devtools::install()

				

#	Loads	and	_attaches_	devtools	to	the	search	path

library(devtools)

install()

The	distinction	between	loading	and	attaching	packages	is	not	important	when	you’re
writing	scripts,	but	it’s	very	important	when	you’re	writing	packages.	You’ll	learn	more
about	the	difference	and	why	it’s	important	in	“Search	Path”.

library()	is	not	useful	when	you’re	developing	a	package	because	you	have	to	install	the
package	first.	In	future	chapters	you’ll	learn	about	devtools::load_all()	and	RStudio’s
“Build	&	Reload,”	which	allows	you	to	skip	install	and	load	a	source	package	directly	into
memory	(Figure	2-9).

Figure	2-9.	Three	ways	to	load	a	package	into	memory



What	Is	a	Library?
A	library	is	simply	a	directory	containing	installed	packages.	You	can	have	multiple
libraries	on	your	computer.	In	fact,	almost	everyone	has	at	least	two:	one	for	packages
you’ve	installed,	and	one	for	the	packages	that	come	with	every	R	installation	(like	base,
stats,	etc.).	Normally,	the	directories	with	user-installed	packages	vary	based	on	the
version	of	R	that	you’re	using.	That’s	why	it	seems	like	you	lose	all	of	your	packages
when	you	reinstall	R	—	they’re	still	on	your	hard	drive,	but	R	can’t	find	them.

You	can	use	.libPaths()	to	see	which	libraries	are	currently	active.	Here	are	mine:

.libPaths()

#>	[1]	"/Users/hadley/R"																																															

#>	[2]	"/Library/Frameworks/R.framework/Versions/3.1/Resources/library"

lapply(.libPaths(),	dir)

#>	[[1]]

#>			[1]	"AnnotationDbi"			"ash"													"assertthat"					

#>			...						

#>	[163]	"xtable"										"yaml"												"zoo"												

#>	

#>	[[2]]

#>		[1]	"base"									"boot"									"class"								"cluster"					

#>		[5]	"codetools"				"compiler"					"datasets"					"foreign"					

#>		[9]	"graphics"					"grDevices"				"grid"									"KernSmooth"		

#>	[13]	"lattice"						"MASS"									"Matrix"							"methods"					

#>	[17]	"mgcv"									"nlme"									"nnet"									"parallel"				

#>	[21]	"rpart"								"spatial"						"splines"						"stats"							

#>	[25]	"stats4"							"survival"					"tcltk"								"tools"							

#>	[29]	"translations"	"utils"

The	first	lib	path	is	for	the	packages	I’ve	installed	(I’ve	installed	at	lot!).	The	second	is	for
so-called	“recommended”	packages	that	come	with	every	installation	of	R.

When	you	use	library(pkg)	to	load	a	package,	R	looks	through	each	path	in
.libPaths()	to	see	if	a	directory	called	pkg	exists.	If	it	doesn’t	exist,	you’ll	get	an	error
message:

library(blah)

#>	Error	in	library(blah):	there	is	no	package	called	'blah'

The	main	difference	between	library()	and	require()	is	what	happens	when	a	package
isn’t	found.	While	library()	throws	an	error,	require()	prints	a	message	and	returns
FALSE.	In	practice,	this	distinction	isn’t	important	because	when	building	a	package	you
should	never	use	either	inside	a	package.	See	“Dependencies:	What	Does	Your	Package
Need?”	for	what	you	should	do	instead.

When	you	start	learning	R,	it’s	easy	to	get	confused	between	libraries	and	packages
because	you	use	library()	to	load	a	package.	However,	the	distinction	between	the	two
is	important	and	useful.	For	example,	one	important	application	is	packrat,	which
automates	the	process	of	managing	project-specific	libraries.	With	packrat,	when	you
upgrade	a	package	in	one	project,	it	only	affects	that	project,	not	every	project	on	your
computer.	This	is	useful	because	it	allows	you	to	play	around	with	cutting-edge	packages
without	affecting	other	projects’	use	of	older,	more	reliable	packages.	This	is	also	useful



when	you’re	both	developing	and	using	a	package.



Part	II.	Package	Components





Chapter	3.	R	Code

The	first	principle	of	using	a	package	is	that	all	R	code	goes	in	R/.	In	this	chapter,	you’ll
learn	about	the	R/	directory,	my	recommendations	for	organizing	your	functions	into	files,
and	some	general	tips	on	good	style.	You’ll	also	learn	about	some	important	differences
between	functions	in	scripts	and	functions	in	packages.



R	Code	Workflow
The	first	practical	advantage	to	using	a	package	is	that	it’s	easy	to	reload	your	code.	You
can	either	run	devtools::load_all(),	or	in	RStudio	press	Ctrl/Cmd-Shift-L,	which	also
saves	all	open	files,	saving	you	a	keystroke.

This	keyboard	shortcut	leads	to	a	fluid	development	workflow:

1.	 Edit	an	R	file.

2.	 Press	Ctrl/Cmd-Shift-L.

3.	 Explore	the	code	in	the	console.

4.	 Rinse	and	repeat.

Congratulations!	You’ve	learned	your	first	package	development	workflow.	Even	if	you
learn	nothing	else	from	this	book,	you’ll	have	gained	a	useful	workflow	for	editing	and
reloading	R	code.



Organizing	Your	Functions
While	you’re	free	to	arrange	functions	into	files	as	you	wish,	the	two	extremes	are	bad:
don’t	put	all	functions	into	one	file	and	don’t	put	each	function	into	its	own	separate	file.
(It’s	OK	if	some	files	only	contain	one	function,	particularly	if	the	function	is	large	or	has
a	lot	of	documentation.)	Filenames	should	be	meaningful	and	end	in	.R:

#	Good

fit_models.R

utility_functions.R

#	Bad

foo.r

stuff.r

Pay	attention	to	capitalization,	because	you,	or	some	of	your	collaborators,	might	be	using
an	operating	system	with	a	case-insensitive	filesystem	(e.g.,	Microsoft	Windows).	Avoid
problems	by	never	using	filenames	that	differ	only	in	capitalization.

My	rule	of	thumb	is	that	if	I	can’t	remember	the	name	of	the	file	where	a	function	lives,	I
need	to	either	separate	the	functions	into	more	files	or	give	the	file	a	better	name.
(Unfortunately,	you	can’t	use	subdirectories	inside	R/.	The	next	best	thing	is	to	use	a
common	prefix	—	for	example,	abc-*.R.)

The	arrangement	of	functions	within	files	is	less	important	if	you	master	two	important
RStudio	keyboard	shortcuts	that	let	you	jump	to	the	definition	of	a	function:

Click	a	function	name	in	code	and	press	F2.

Press	Ctrl-.,	and	then	start	typing	the	name	(Figure	3-1).

Figure	3-1.	The	code	navigation	popup

After	navigating	to	a	function	using	one	of	these	tools,	you	can	go	back	to	where	you	were
by	clicking	the	back	arrow	at	the	upper-left	of	the	editor	( ),	or	by	pressing	Ctrl/Cmd-
F9.



Code	Style
Good	coding	style	is	like	using	correct	punctuation.	You	can	manage	without	it,	but	it	sure
makes	things	easier	to	read.	As	with	styles	of	punctuation,	there	are	many	possible
variations.	The	following	guidelines	describe	the	style	that	I	use	(in	this	book	and
elsewhere).	They	are	based	on	Google’s	R	Style	Guide,	with	a	few	tweaks.

You	don’t	have	to	use	my	style,	but	I	strongly	recommend	that	you	use	a	consistent	style
and	document	it.	If	you’re	working	on	someone	else’s	code,	don’t	impose	your	own	style.
Instead,	read	their	style	documentation	and	follow	it	as	closely	as	possible.

Good	style	is	important	because	while	your	code	only	has	one	author,	it	will	usually	have
multiple	readers.	This	is	especially	true	when	you’re	writing	code	with	others.	In	that	case,
it’s	a	good	idea	to	agree	on	a	common	style	up	front.	Because	no	style	is	strictly	better
than	another,	working	with	others	may	mean	that	you’ll	need	to	sacrifice	some	preferred
aspects	of	your	style.

The	formatR	package,	by	Yihui	Xie,	makes	it	easier	to	clean	up	poorly	formatted	code.	It
can’t	do	everything,	but	it	can	quickly	get	your	code	from	terrible	to	pretty	good.	Make
sure	to	read	the	notes	on	the	website	before	using	it.	It’s	as	easy	as:

install.packages("formatR")

formatR::tidy_dir("R")

A	complementary	approach	is	to	use	a	code	linter.	Rather	than	automatically	fixing
problems,	a	linter	just	warns	you	about	them.	The	lintr	package	by	Jim	Hester	checks	for
compliance	with	this	style	guide	and	lets	you	know	where	you’ve	missed	something.
Compared	to	formatR,	it	picks	up	more	potential	problems	(because	it	doesn’t	have	to	fix
them),	but	you	will	still	see	false	positives.	Here’s	how	to	use	it:

install.packages("lintr")

lintr::lint_package()

http://bit.ly/1F96seq
http://yihui.name/formatR/


Object	Names
Variable	and	function	names	should	be	lowercase.	Use	an	underscore	(_)	to	separate	words
within	a	name	(reserve	.	for	S3	methods).	Camel	case	is	a	legitimate	alternative,	but	be
consistent!	Generally,	variable	names	should	be	nouns	and	function	names	should	be
verbs.	Strive	for	names	that	are	concise	and	meaningful	(this	is	not	easy!).	Here	are	a	few
examples:

#	Good

day_one

day_1

#	Bad

first_day_of_the_month

DayOne

dayone

djm1

Where	possible,	avoid	using	names	of	existing	functions	and	variables.	This	will	cause
confusion	for	the	readers	of	your	code.	For	example:

#	Bad

T	<-	FALSE

c	<-	10

mean	<-	function(x)	sum(x)



Spacing
Put	spaces	around	all	infix	operators	(=,	+,	-,	<-,	etc.).	The	same	rule	applies	when	using	=
in	function	calls.	Always	put	a	space	after	a	comma,	and	never	before	(just	like	in	regular
English):

#	Good

average	<-	mean(feet	/	12	+	inches,	na.rm	=	TRUE)

#	Bad

average<-mean(feet/12+inches,na.rm=TRUE)

There’s	a	small	exception	to	this	rule:	:,	::,	and	:::	don’t	need	spaces	around	them.	(If
you	haven’t	seen	::	or	:::	before,	don’t	worry	—	you’ll	learn	all	about	them	in
Chapter	8.)	Here	are	a	couple	examples:

#	Good

x	<-	1:10

base::get

#	Bad

x	<-	1	:	10

base	::	get

Place	a	space	before	left	parentheses,	except	in	a	function	call:

#	Good

if	(debug)	do(x)

plot(x,	y)

#	Bad

if(debug)do(x)

plot	(x,	y)

Extra	spacing	(i.e.,	more	than	one	space	in	a	row)	is	OK	if	it	improves	alignment	of	equals
signs	or	assignments	(<-).	For	example:

list(

		total	=	a	+	b	+	c,	

		mean		=	(a	+	b	+	c)	/	n

)

Do	not	place	spaces	around	code	in	parentheses	or	square	brackets	(unless	there’s	a
comma,	in	which	case	refer	to	the	previous	rule):

#	Good

if	(debug)	do(x)

diamonds[5,	]

#	Bad

if	(	debug	)	do(x)		#	No	spaces	around	debug

x[1,]			#	Needs	a	space	after	the	comma

x[1	,]		#	Space	goes	after	comma	not	before



Curly	Braces
An	opening	curly	brace	should	never	go	on	its	own	line	and	should	always	be	followed	by
a	new	line.	A	closing	curly	brace	should	always	go	on	its	own	line,	unless	it’s	followed	by
else.

Always	indent	the	code	inside	curly	braces:

#	Good

if	(y	<	0	&&	debug)	{

		message("Y	is	negative")

}

if	(y	==	0)	{

		log(x)

}	else	{

		y	^	x

}

#	Bad

if	(y	<	0	&&	debug)

message("Y	is	negative")

if	(y	==	0)	{

		log(x)

}	

else	{

		y	^	x

}

It’s	OK	to	leave	very	short	statements	on	the	same	line:

if	(y	<	0	&&	debug)	message("Y	is	negative")



Line	Length
Strive	to	limit	your	code	to	80	characters	per	line.	This	fits	comfortably	on	a	printed	page
with	a	reasonably	sized	font.	If	you	find	yourself	running	out	of	room,	this	is	a	good
indication	that	you	should	encapsulate	some	of	the	work	in	a	separate	function.



Indentation
When	indenting	your	code,	use	two	spaces.	Never	use	tabs	or	mix	tabs	and	spaces.	Change
these	options	in	the	code	preferences	pane	(Figure	3-2).



Figure	3-2.	RStudio’s	code	preference	pane

The	only	exception	is	if	a	function	definition	runs	over	multiple	lines.	In	that	case,	indent
the	second	line	to	where	the	definition	starts:

long_function_name	<-	function(a	=	"a	long	argument",	

																															b	=	"another	argument",

																															c	=	"another	long	argument")	{

		#	As	usual	code	is	indented	by	two	spaces.

}



Assignment
Use	<-,	not	=,	for	assignment:

#	Good

x	<-	5

#	Bad

x	=	5



Commenting	Guidelines
Comment	your	code.	Each	line	of	a	comment	should	begin	with	the	comment	symbol	and
a	single	space:	#.	Comments	should	explain	the	why,	not	the	what.

Use	commented	lines	of	-	and	=	to	break	up	your	file	into	easily	readable	chunks:

#	Load	data	---------------------------

#	Plot	data	===========================



Top-Level	Code
Up	until	now,	you’ve	probably	been	writing	scripts,	R	code	saved	in	a	file	that	you	load
with	source().	There	are	two	main	differences	between	code	in	scripts	and	packages:

In	a	script,	code	is	run	when	it	is	loaded.	In	a	package,	code	is	run	when	it	is	built.	This
means	your	package	code	should	only	create	objects,	the	vast	majority	of	which	will	be
functions.

Functions	in	your	package	will	be	used	in	situations	that	you	didn’t	imagine.	This
means	your	functions	need	to	be	thoughtful	in	the	way	that	they	interact	with	the
outside	world.

The	next	two	sections	expand	on	these	important	differences.



Loading	Code
When	you	load	a	script	with	source(),	every	line	of	code	is	executed	and	the	results	are
immediately	made	available.	Things	are	different	in	a	package,	because	it	is	loaded	in	two
steps.	When	the	package	is	built	(e.g.,	by	CRAN),	all	the	code	in	R/	is	executed	and	the
results	are	saved.	When	you	load	a	package	with	library()	or	require(),	the	cached
results	are	made	available	to	you.	If	you	loaded	scripts	in	the	same	way	as	packages,	your
code	would	look	like	this:

#	Load	a	script	into	a	new	environment	and	save	it

env	<-	new.env(parent	=	emptyenv())

source("my-script.R",	local	=	env)

save(envir	=	env,	"my-script.Rdata")

#	Later,	in	another	R	session

load("my-script.Rdata")

For	example,	take	x	<-	Sys.time().	If	you	put	this	in	a	script,	x	would	tell	you	when	the
script	was	source()d.	But	if	you	put	that	same	code	in	a	package,	x	would	tell	you	when
the	package	was	built.

This	means	that	you	should	never	run	code	at	the	top-level	of	a	package:	package	code
should	only	create	objects,	mostly	functions.	For	example,	imagine	your	foo	package
contains	this	code:

library(ggplot2)

show_mtcars	<-	function()	{

		qplot(mpg,	wt,	data	=	mtcars)

}

If	someone	tries	to	use	it:

library(foo)

show_mtcars()

The	code	won’t	work	because	ggplot2’s	qplot()	function	won’t	be	available:
library(foo)	doesn’t	re-execute	library(gpplot2).	The	top-level	R	code	in	a	package	is
only	executed	when	the	package	is	built,	not	when	it’s	loaded.

To	get	around	this	problem	you	might	be	tempted	to	do	the	following:

show_mtcars	<-	function()	{

		library(ggplot2)

		qplot(mpg,	wt,	data	=	mtcars)

}

That’s	also	problematic,	as	you’ll	see	in	a	moment.	Instead,	describe	the	packages	your
code	needs	in	the	DESCRIPTION	file,	as	you’ll	learn	in	“Dependencies:	What	Does	Your
Package	Need?”.



The	R	Landscape
Another	big	difference	between	a	script	and	a	package	is	that	other	people	are	going	to	use
your	package,	and	they’re	going	to	use	it	in	situations	that	you	never	imagined.	This
means	you	need	to	pay	attention	to	the	R	landscape,	which	includes	not	just	the	available
functions	and	objects,	but	all	the	global	settings.	You	have	changed	the	R	landscape	if
you’ve	loaded	a	package	with	library(),	changed	a	global	option	with	options(),	or
modified	the	working	directory	with	setwd().	If	the	behavior	of	other	functions	differs
before	and	after	running	your	function,	you’ve	modified	the	landscape.	Changing	the
landscape	is	bad	because	it	makes	code	much	harder	to	understand.

There	are	some	functions	that	modify	global	settings	that	you	should	never	use	because
there	are	better	alternatives:

Don’t	use	library()	or	require()

These	modify	the	search	path,	affecting	what	functions	are	available	from	the	global
environment.	It’s	better	to	use	DESCRIPTION	to	specify	your	package’s
requirements,	as	described	in	the	next	chapter.	This	also	makes	sure	those	packages
are	installed	when	your	package	is	installed.

Never	use	source()	to	load	code	from	a	file

source()	modifies	the	current	environment,	inserting	the	results	of	executing	the
code.	Instead,	rely	on	devtools::load_all(),	which	automatically	sources	all	files
in	R/.	If	you’re	using	source()	to	create	a	dataset,	instead	switch	to	data/,	as
described	in	Chapter	9.

Other	functions	need	to	be	used	with	caution.	If	you	use	them,	make	sure	to	clean	up	after
yourself	with	on.exit():

If	you	modify	global	options()	or	graphics	par(),	save	the	old	values	and	reset	when
you’re	done:

old	<-	options(stringsAsFactors	=	FALSE)

on.exit(options(old),	add	=	TRUE)

Avoid	modifying	the	working	directory.	If	you	do	have	to	change	it,	make	sure	to
change	it	back	when	you’re	done:

old	<-	setwd(tempdir())

on.exit(setwd(old),	add	=	TRUE)

Creating	plots	and	printing	output	to	the	console	are	two	other	ways	of	affecting	the
global	R	environment.	Often	you	can’t	avoid	these	(because	they’re	important!),	but
it’s	good	practice	to	isolate	them	in	functions	that	only	produce	output.	This	also	makes
it	easier	for	other	people	to	repurpose	your	work	for	new	uses.	For	example,	if	you
separate	data	preparation	and	plotting	into	two	functions,	others	can	use	your	data	prep
work	(which	is	often	the	hardest	part!)	to	create	new	visualizations.



The	flip	side	of	the	coin	is	that	you	should	avoid	relying	on	the	user’s	landscape,	which
might	be	different	than	yours.	For	example,	functions	like	read.csv()	are	dangerous
because	the	value	of	the	stringsAsFactors	argument	comes	from	the	global	option
stringsAsFactors.	If	you	expect	it	to	be	TRUE	(the	default),	and	the	user	has	set	it	to	be
FALSE,	your	code	might	fail.



When	You	Do	Need	Side	Effects
Occasionally,	packages	do	need	side	effects.	This	is	most	common	if	your	package	talks	to
an	external	system	—	you	might	need	to	do	some	initial	setup	when	the	package	loads.	To
do	that,	you	can	use	two	special	functions:	.onLoad()	and	.onAttach().	These	are	called
when	the	package	is	loaded	and	attached.	You’ll	learn	about	the	distinction	between	the
two	in	Chapter	8.	For	now,	you	should	always	use	.onLoad()	unless	explicitly	directed
otherwise.

Some	common	uses	of	.onLoad()	and	.onAttach()	include	the	following:

To	display	an	informative	message	when	the	package	loads.	This	might	make	usage
conditions	clear,	or	display	useful	tips.	Startup	messages	is	one	place	where	you	should
use	.onAttach()	instead	of	.onLoad().	To	display	startup	messages,	always	use
packageStartupMessage(),	not	message()	(this	allows
suppressPackageStartupMessages()	to	selectively	suppress	package	startup
messages):

.onAttach	<-	function(libname,	pkgname)	{

		packageStartupMessage("Welcome	to	my	package")

}

To	set	custom	options	for	your	package	with	options().	To	avoid	conflicts	with	other
packages,	ensure	that	you	prefix	option	names	with	the	name	of	your	package.	Also	be
careful	not	to	override	options	that	the	user	has	already	set.	
I	use	the	following	code	in	devtools	to	set	up	useful	options:

.onLoad	<-	function(libname,	pkgname)	{

		op	<-	options()

		op.devtools	<-	list(

				devtools.path	=	"~/R-dev",

				devtools.install.args	=	"",

				devtools.name	=	"Your	name	goes	here",

				devtools.desc.author	=	'person("First",	"Last",	

						"first.last@example.com",	role	=	c("aut",	"cre"))'

				devtools.desc.license	=	"What	license	is	it	under?",

				devtools.desc.suggests	=	NULL,

				devtools.desc	=	list()

		)

		toset	<-	!(names(op.devtools)	%in%	names(op))

		if(any(toset))	options(op.devtools[toset])

		invisible()

}

Then	devtools	functions	can	use	getOption("devtools.name"),	for	example,	to	get
the	name	of	the	package	author,	and	know	that	a	sensible	default	value	has	already
been	set.

To	connect	R	to	another	programming	language.	For	example,	if	you	use	rJava	to	talk
to	a	.jar	file,	you	need	to	call	rJava::.jpackage().	To	make	C++	classes	available	as
reference	classes	in	R	with	Rcpp	modules,	you	call	Rcpp::loadRcppModules().



To	register	vignette	engines	with	tools::vignetteEngine().

As	you	can	see	in	the	examples,	.onLoad()	and	.onAttach()	are	called	with	two
arguments:	libname	and	pkgname.	They’re	rarely	used	(they’re	a	holdover	from	the	days
when	you	needed	to	use	library.dynam()	to	load	compiled	code).	They	give	the	path
where	the	package	is	installed	(the	“library”),	and	the	name	of	the	package.

If	you	use	.onLoad(),	consider	using	.onUnload()	to	clean	up	any	side	effects.	By
convention,	.onLoad()	and	friends	are	usually	saved	in	a	file	called	zzz.R.	(Note	that
.First.lib()	and	.Last.lib()	are	old	versions	of	.onLoad()	and	.onUnload()	and
should	no	longer	be	used.)



S4	Classes,	Generics,	and	Methods
Another	type	of	side	effect	is	defining	S4	classes,	methods,	and	generics.	R	packages
capture	these	side	effects	so	they	can	be	replayed	when	the	package	is	loaded,	but	they
need	to	be	called	in	the	right	order.	For	example,	before	you	can	define	a	method,	you
must	have	defined	both	the	generic	and	the	class.	This	requires	that	the	R	files	be	sourced
in	a	specific	order.	This	order	is	controlled	by	the	Collate	field	in	the	DESCRIPTION.
This	is	described	in	more	detail	in	“S4”.



CRAN	Notes
If	you	plan	to	submit	your	package	to	CRAN,	you	must	use	only	ASCII	characters	in	your
.R	files.	You	can	still	include	Unicode	characters	in	strings,	but	you	need	to	use	the	special
Unicode	escape	format	(e.g.,	"\u1234").	The	easiest	way	to	do	that	is	to	use
stringi::stri_escape_unicode():

x	<-	"This	is	a	bullet	•"

y	<-	"This	is	a	bullet	\u2022"

identical(x,	y)

#>	[1]	TRUE

cat(stringi::stri_escape_unicode(x))

#>	This	is	a	bullet	\u2022

NOTE
Each	chapter	concludes	with	some	hints	for	submitting	your	package	to	CRAN.	If	you	don’t	plan	to	submit
your	package	to	CRAN,	feel	free	to	ignore	these	notes!





Chapter	4.	Package	Metadata

The	job	of	the	DESCRIPTION	file	is	to	store	important	metadata	about	your	package.
When	you	first	start	writing	packages,	you’ll	just	use	this	metadata	to	record	what
packages	are	needed	to	run	your	package.	However,	as	time	goes	by	and	you	start	sharing
your	package	with	others,	the	metadata	file	becomes	increasingly	important	because	it
specifies	who	can	use	it	(the	license)	and	whom	to	contact	(you!)	if	there	are	any
problems.

Every	package	must	have	a	DESCRIPTION.	In	fact,	it’s	the	defining	feature	of	a	package
(RStudio	and	devtools	consider	any	directory	containing	DESCRIPTION	to	be	a	package).
To	get	you	started,	devtools::create("mypackage")	automatically	adds	a	bare-bones
description	file.	This	allows	you	to	start	writing	the	package	without	having	to	worry
about	the	metadata	until	you	need	to.	The	minimal	description	will	vary	a	bit	depending
on	your	settings,	but	should	look	something	like	this:

Package:	mypackage

Title:	What	The	Package	Does	(one	line,	title	case	required)

Version:	0.1

Authors@R:	person("First",	"Last",	email	=	"first.last@example.com",

																		role	=	c("aut",	"cre"))

Description:	What	the	package	does	(one	paragraph)

Depends:	R	(>=	3.1.0)

License:	What	license	is	it	under?

LazyData:	true

(If	you’re	writing	a	lot	of	packages,	you	can	set	global	options	via
devtools.desc.author,	devtools.desc.license,	devtools.desc.suggests,	and
devtools.desc.	See	package?devtools	for	more	details.)

DESCRIPTION	uses	a	simple	file	format	called	the	Debian	control	format	(DCF).	You	can
see	most	of	the	structure	in	the	simple	example	shown	here.	Each	line	consists	of	a	field
name	and	a	value,	separated	by	a	colon.	When	values	span	multiple	lines,	they	need	to	be
indented:

Description:	The	description	of	a	package	is	usually	long,

				spanning	multiple	lines.	The	second	and	subsequent	lines

				should	be	indented,	usually	with	four	spaces.

This	chapter	will	show	you	how	to	use	the	most	important	Description	fields.



Dependencies:	What	Does	Your	Package	Need?
It’s	the	job	of	the	Description	to	list	the	packages	necessary	for	your	package	to	work.	R
has	a	rich	set	of	ways	of	describing	potential	dependencies.	For	example,	the	following
lines	indicate	that	your	package	needs	both	ggvis	and	dplyr	to	work:

Imports:

				dplyr,

				ggvis

Conversely,	the	lines	here	indicate	that	while	your	package	can	take	advantage	of	ggvis
and	dplyr,	they’re	not	required	to	make	it	work:

Suggests:

				dplyr,

				ggvis,

Both	Imports	and	Suggests	take	a	comma-separated	list	of	package	names.	I	recommend
putting	one	package	on	each	line,	and	keeping	them	in	alphabetical	order.	That	makes	it
easy	to	skim.

Imports	and	Suggests	differ	in	their	strength	of	dependency:
Imports

Packages	listed	in	Imports	must	be	present	for	your	package	to	work.	In	fact,	any
time	your	package	is	installed,	those	packages	will,	if	not	already	present,	be	installed
on	your	computer	(devtools::load_all()	also	checks	that	the	packages	are
installed).

Adding	a	package	dependency	here	ensures	that	it’ll	be	installed.	However,	it	does
not	mean	that	it	will	be	attached	along	with	your	package	(i.e.,	library(x)).	The	best
practice	is	to	explicitly	refer	to	external	functions	using	the	syntax
package::function().	This	makes	it	very	easy	to	identify	which	functions	live
outside	of	your	package.	This	is	especially	useful	when	you	read	your	code	in	the
future.

If	you	use	a	lot	of	functions	from	other	packages,	this	is	rather	verbose.	There’s	also	a
minor	performance	penalty	associated	with	::	(on	the	order	of	5µs,	so	it	will	only
matter	if	you	call	the	function	millions	of	times).	You’ll	learn	about	alternative	ways
to	call	functions	in	other	packages	in	“Imports”.

Suggests

Your	package	can	use	these	packages,	but	doesn’t	require	them.	You	might	use
suggested	packages	for	example	datasets,	to	run	tests,	build	vignettes,	or	maybe
there’s	only	one	function	that	needs	the	package.



Packages	listed	in	Suggests	are	not	automatically	installed	along	with	your	package.
This	means	that	you	need	to	check	if	the	package	is	available	before	using	it	(use
requireNamespace(x,	quietly	=	TRUE)).	There	are	two	basic	scenarios:

#	You	need	the	suggested	package	for	this	function				

my_fun	<-	function(a,	b)	{

		if	(!requireNamespace("pkg",	quietly	=	TRUE))	{

				stop("Pkg	needed	for	this	function	to	work.	Please	install	it.",

						call.	=	FALSE)

		}

}

#	There's	a	fallback	method	if	the	package	isn't	available

my_fun	<-	function(a,	b)	{

		if	(requireNamespace("pkg",	quietly	=	TRUE))	{

				pkg::f()

		}	else	{

				g()

		}

}

When	developing	packages	locally,	you	never	need	to	use	Suggests.	When	releasing	your
package,	using	Suggests	is	a	courtesy	to	your	users.	It	frees	them	from	downloading
rarely	needed	packages,	and	lets	them	get	started	with	your	package	as	quickly	as
possible.

The	easiest	way	to	add	Imports	and	Suggests	to	your	package	is	to	use
devtools::use_package().	This	automatically	puts	them	in	the	right	place	in	your
DESCRIPTION,	and	reminds	you	how	to	use	them.	For	example:

devtools::use_package("dplyr")	#	Defaults	to	imports

#>	Adding	dplyr	to	Imports

#>	Refer	to	functions	with	dplyr::fun()

devtools::use_package("dplyr",	"Suggests")

#>	Adding	dplyr	to	Suggests

#>	Use	requireNamespace("dplyr",	quietly	=	TRUE)	to	test	if	package	is	

#>		installed,	then	use	dplyr::fun()	to	refer	to	functions.



Versioning
If	you	need	a	particular	version	of	a	package,	specify	it	in	parentheses	after	the	package
name:

Imports:

				ggvis	(>=	0.2),

				dplyr	(>=	0.3.0.1)

Suggests:

				MASS	(>=	7.3.0)

You	almost	always	want	to	specify	a	minimum	version	rather	than	an	exact	version	(MASS
(==	7.3.0)).	Because	R	can’t	have	multiple	versions	of	the	same	package	loaded	at	the
same	time,	specifying	an	exact	dependency	dramatically	increases	the	chance	of	problems.

Versioning	is	most	important	when	you	release	your	package.	Usually	people	don’t	have
exactly	the	same	versions	of	packages	installed	that	you	do.	If	someone	has	an	older
package	that	doesn’t	have	a	function	your	package	needs,	they’ll	get	an	unhelpful	error
message.	However,	if	you	supply	the	version	number,	they’ll	get	an	error	message	that
tells	them	exactly	what	the	problem	is:	an	out-of-date	package.

Generally,	it’s	always	better	to	specify	the	version	and	to	be	conservative	about	which
version	to	require.	Unless	you	know	otherwise,	always	require	a	version	greater	than	or
equal	to	the	version	you’re	currently	using.



Other	Dependencies
There	are	three	other	fields	that	allow	you	to	express	more	specialized	dependencies:
Depends

Prior	to	the	rollout	of	namespaces	in	R	2.14.0,	Depends	was	the	only	way	to	“depend”
on	another	package.	Now,	despite	the	name,	you	should	almost	always	use	Imports,
not	Depends.	You’ll	learn	why,	and	when	you	should	still	use	Depends,	in	Chapter	8.

You	can	also	use	Depends	to	require	a	specific	version	of	R	(e.g.,	Depends:	R	(>=
3.0.1)).	As	with	packages,	it’s	a	good	idea	to	play	it	safe	and	require	a	version
greater	than	or	equal	to	the	version	you’re	currently	using.	devtools::create()	will
do	this	for	you.

In	R	3.1.1	and	earlier,	you’ll	also	need	to	use	Depends:	methods	if	you	use	S4.	This
bug	is	fixed	in	R	3.2.0,	so	methods	can	go	back	to	Imports	where	they	belong.

LinkingTo

Packages	listed	here	rely	on	C	or	C++	code	in	another	package.	You’ll	learn	more
about	LinkingTo	in	Chapter	10.

Enhances

Packages	listed	here	are	“enhanced”	by	your	package.	Typically,	this	means	you
provide	methods	for	classes	defined	in	other	packages	(a	sort	of	reverse	Suggests).
But	it’s	hard	to	define	what	that	means,	so	I	don’t	recommend	using	Enhances.

You	can	also	list	things	that	your	package	needs	outside	of	R	in	the	SystemRequirements
field.	But	this	is	just	a	plain-text	field	and	is	not	automatically	checked.	Think	of	it	as	a
quick	reference;	you’ll	also	need	to	include	detailed	system	requirements	(and	how	to
install	them)	in	your	README.



Title	and	Description:	What	Does	Your	Package	Do?
The	title	and	description	fields	describe	what	the	package	does.	They	differ	only	in	length:

Title	is	a	one-line	description	of	the	package,	and	is	often	shown	in	the	package
listing.	It	should	be	plain	text	(no	markup),	and	follow	headline-style	capitalization;	it
should	not	end	in	a	period.	Keep	it	short:	listings	will	often	truncate	the	title	to	65
characters.

Description	is	more	detailed	than	the	title.	You	can	use	multiple	sentences	but	you	are
limited	to	one	paragraph.	If	your	description	spans	multiple	lines	(and	it	should!),	each
line	must	be	no	more	than	80	characters	wide.	Indent	subsequent	lines	with	four	spaces.

The	Title	and	Description	for	ggplot2	are	as	follows:

Title:	An	implementation	of	the	Grammar	of	Graphics

Description:	An	implementation	of	the	grammar	of	graphics	in	R.	It	combines	

				the	advantages	of	both	base	and	lattice	graphics:	conditioning	and	shared	

				axes	are	handled	automatically,	and	you	can	still	build	up	a	plot	step	

				by	step	from	multiple	data	sources.	It	also	implements	a	sophisticated	

				multidimensional	conditioning	system	and	a	consistent	interface	to	map

				data	to	aesthetic	attributes.	See	the	ggplot2	website	for	more	information,	

				documentation	and	examples.

A	good	title	and	description	are	important,	especially	if	you	plan	to	release	your	package
to	CRAN,	because	they	appear	on	the	CRAN	download	page,	shown	in	Figure	4-1.



Figure	4-1.	The	CRAN	download	page	for	ggplot2

Because	Description	only	gives	you	a	small	amount	of	space	to	describe	what	your
package	does,	I	also	recommend	including	a	README.md	file	that	goes	into	much	more
depth	and	shows	a	few	examples.	You’ll	learn	about	that	in	“README.md”.



Author:	Who	Are	You?
To	identify	the	package’s	author,	and	whom	to	contact	if	something	goes	wrong,	use	the
Authors@R	field.	This	field	is	unusual	because	it	contains	executable	R	code	rather	than
plain	text.	Here’s	an	example:

Authors@R:	person("Hadley",	"Wickham",	email	=	"hadley@rstudio.com",

		role	=	c("aut",	"cre"))

This	command	says	that	both	the	author	(aut)	and	the	maintainer	(cre)	is	Hadley
Wickham,	and	that	his	email	address	is	hadley@rstudio.com.	The	person()	function	has
four	main	arguments:

The	name,	specified	by	the	first	two	arguments,	given	and	family	(these	are	normally
supplied	by	position,	not	name).	In	Western	cultures,	given	(first	name)	comes	before
family	(last	name),	but	this	convention	does	not	hold	in	many	Eastern	cultures.

The	email	address.

A	three-letter	code	specifying	the	role.	There	are	four	important	roles:
cre

The	creator	or	maintainer,	the	person	you	should	bother	if	you	have	problems.
aut

Authors,	those	who	have	made	significant	contributions	to	the	package.
ctb

Contributors,	those	who	have	made	smaller	contributions,	like	patches.
cph

Copyright	holder.	This	is	used	if	the	copyright	is	held	by	someone	other	than	the
author,	typically	a	company	(i.e.,	the	author’s	employer).

(The	full	list	of	roles	is	extremely	comprehensive.	Should	your	package	have	a
woodcutter	(wdc),	lyricist	(lyr),	or	costume	designer	(cst),	rest	comfortably	that	you
can	correctly	describe	that	person’s	role	in	creating	your	package.)

If	you	need	to	add	further	clarification,	you	can	also	use	the	comment	argument	and	supply
the	desired	information	in	plain	text.

You	can	list	multiple	authors	with	c():

Authors@R:	c(

				person("Hadley",	"Wickham",	email	=	"hadley@rstudio.com",	role	=	"cre"),

				person("Winston",	"Chang",	email	=	"winston@rstudio.com",	role	=	"aut"))

Every	package	must	have	at	least	one	author	(aut)	and	one	maintainer	(cre);	they	might
be	the	same	person.	The	creator	must	have	an	email	address.	These	fields	are	used	to

http://www.loc.gov/marc/relators/relaterm.html


generate	the	basic	citation	for	the	package	(e.g.,	citation("pkgname")).	Only	people
listed	as	authors	will	be	included	in	the	autogenerated	citation.	There	are	a	few	extra
details	if	you’re	including	code	that	other	people	have	written.	This	typically	occurs	when
you’re	wrapping	a	C	library,	so	it’s	discussed	in	Chapter	10.

In	addition	to	your	email	address,	it’s	a	good	idea	to	list	other	resources	available	for	help.
You	can	list	URLs	in	URL.	Multiple	URLs	are	separated	with	a	comma.	BugReports	is	the
URL	where	bug	reports	should	be	submitted.	For	example,	knitr	has:

URL:	http://yihui.name/knitr/

BugReports:	https://github.com/yihui/knitr/issues

You	can	also	use	separate	Maintainer	and	Author	fields.	I	prefer	not	to	use	these	fields
because	Authors@R	offers	richer	metadata.



On	CRAN
The	most	important	thing	to	note	is	that	your	email	address	(i.e.,	the	address	of	cre)	is	the
address	that	CRAN	will	use	to	contact	you	about	your	package.	Make	sure	you	use	an
email	address	that’s	likely	to	be	around	for	a	while.	Also,	because	this	address	will	be	used
for	automated	mailings,	CRAN	policies	require	that	this	be	for	a	single	person	(not	a
mailing	list)	and	that	it	does	not	require	any	confirmation	or	use	any	filtering.



License:	Who	Can	Use	Your	Package?
The	License	field	can	be	either	a	standard	abbreviation	for	an	open	source	license,	like
GPL-2	or	BSD,	or	a	pointer	to	a	file	containing	more	information,	file	LICENSE.	The
license	is	really	only	important	if	you’re	planning	on	releasing	your	package.	If	you	don’t,
you	can	ignore	this	section.	If	you	want	to	make	it	clear	that	your	package	is	not	open
source,	use	License:	file	LICENSE	and	then	create	a	file	called	LICENSE,	containing,
for	example:

Proprietary	

Do	not	distribute	outside	of	Widgets	Incorporated.

Open	source	software	licensing	is	a	rich	and	complex	field.	Fortunately,	in	my	opinion,
there	are	only	three	licenses	that	you	should	consider	for	your	R	package:

YEAR:	<Year	or	years	when	changes	have	been	made>

COPYRIGHT	HOLDER:	<Name	of	the	copyright	holder>

MIT

This	is	a	simple	and	permissive	license,	similar	to	the	BSD	2-	and	3-clause	licenses.
It	lets	people	use	and	freely	distribute	your	code	subject	to	only	one	restriction:	the
license	must	always	be	distributed	with	the	code.	The	MIT	license	is	a	“template,”	so
if	you	use	it,	you	need	License:	MIT	+	file	LICENSE,	and	a	LICENSE	file.

jasmine

Production:	I	reformatted	this	as	a	variable	list,	but	it	moves	the	code	block	that
should	be	here	to	before	the	variable	list.

GPL-2	or	GPL-3

These	are	“copy-left”	licenses.	This	means	that	anyone	who	distributes	your	code	in	a
bundle	must	license	the	whole	bundle	in	a	GPL-compatible	way.	Additionally,
anyone	who	distributes	modified	versions	of	your	code	(derivative	works)	must	also
make	the	source	code	available.	GPL-3	is	a	little	stricter	than	GPL-2,	closing	some
older	loopholes.

CC0

This	license	relinquishes	all	your	rights	on	the	code	and	data	so	that	it	can	be	freely
used	by	anyone	for	any	purpose.	This	is	sometimes	called	putting	it	in	the	public
domain,	a	term	that	is	neither	well	defined	nor	meaningful	in	all	countries.	This
license	is	most	appropriate	for	data	packages.	Data,	at	least	in	the	United	States,	is
not	copyrightable,	so	you’re	not	really	giving	up	much.	This	license	just	makes	this
point	clear.

If	you’d	like	to	learn	more	about	other	common	licenses,		GitHub’s	choosealicense.com	is
a	good	place	to	start.	Another	good	resource	is	tldrlegal.com/,	which	explains	the	most

https://tldrlegal.com/license/mit-license
http://bit.ly/1F96TW4
http://bit.ly/1F96Vxa
http://bit.ly/1F96Zgp
http://choosealicense.com/licenses/
https://tldrlegal.com/


important	parts	of	each	license.	If	you	use	a	license	other	than	the	three	I	suggest,	make
sure	you	consult	the	“Writing	R	Extensions”	section	on	licensing.

If	your	package	includes	code	that	you	didn’t	write,	you	need	to	make	sure	you’re	in
compliance	with	its	license.	This	occurs	most	commonly	when	you’re	including	C	source
code,	so	it’s	discussed	in	more	detail	in	Chapter	10.

http://bit.ly/1F972sx


On	CRAN
If	you	want	to	release	your	package	to	CRAN,	you	must	choose	a	standard	license.
Otherwise,	it’s	difficult	for	CRAN	to	determine	whether	or	not	it’s	legal	to	distribute	your
package!	You	can	find	a	complete	list	of	licenses	that	CRAN	considers	valid	at
https://svn.r-project.org/R/trunk/share/licenses/license.db.

https://svn.r-project.org/R/trunk/share/licenses/license.db


Version
Formally,	an	R	package	version	is	a	sequence	of	at	least	two	integers	separated	by	either	.
or	-.	For	example,	1.0	and	0.9.1-10	are	valid	versions,	but	1	or	1.0-devel	are	not.	You	can
parse	a	version	number	with	numeric_version:

numeric_version("1.9")	==	numeric_version("1.9.0")

#>	[1]	TRUE

numeric_version("1.9.0")	<	numeric_version("1.10.0")

#>	[1]	TRUE

For	example,	a	package	might	have	a	version	1.9.	This	version	number	is	considered	by	R
to	be	the	same	as	1.9.0,	less	than	version	1.9.2,	and	all	of	these	are	less	than	version	1.10
(which	is	version	“one	point	ten,”	not	“one	point	one	zero”).	R	uses	version	numbers	to
determine	whether	package	dependencies	are	satisfied.	A	package	might,	for	example,
import	package	devtools	(>=	1.9.2),	in	which	case	version	1.9	or	1.9.0	wouldn’t	work.

The	version	number	of	your	package	increases	with	subsequent	releases	of	a	package,	but
it’s	more	than	just	an	incrementing	counter	—	the	way	the	number	changes	with	each
release	can	convey	information	about	what	kind	of	changes	are	in	the	package.

I	don’t	recommend	taking	full	advantage	of	R’s	flexiblity.	Instead,	always	use	.	to
separate	version	numbers.

A	released	version	consists	of	three	numbers,	<major>.<minor>.<patch>.	For	version
number	1.9.2,	1	is	the	major	number,	9	is	the	minor	number,	and	2	is	the	patch	number.
Never	use	versions	like	1.0;	instead,	always	spell	out	the	three	components	(i.e.,	1.0.0).

An	in-development	package	has	a	fourth	component:	the	development	version.	This
should	start	at	9000.	For	example,	the	first	version	of	the	package	should	be	0.0.0.9000.
There	are	two	reasons	for	this	recommendation:	first,	it	makes	it	easy	to	see	if	a	package	is
released	or	in-development,	and	second,	the	use	of	the	fourth	place	means	that	you’re	not
limited	to	what	the	next	version	will	be.	0.0.1,	0.1.0,	and	1.0.0	are	all	greater	than
0.0.0.9000.

Increment	the	development	version	(e.g.,	from	9000	to	9001)	if	you’ve	added	an	important
feature	that	another	development	package	needs	to	depend	on.

If	you’re	using	svn,	instead	of	using	the	arbitrary	9000,	you	can	embed	the	sequential
revision	identifier.

The	advice	here	is	inspired	in	part	by	Semantic	Versioning	and	by	the	X.Org	versioning
schemes.	Read	them	if	you’d	like	to	understand	more	about	the	standards	of	versioning
used	by	many	open	source	projects.

We’ll	come	back	to	version	numbers	in	the	context	of	releasing	your	package	in	“Version
Number”.	For	now,	just	remember	that	the	first	version	of	your	package	should	be
0.0.0.9000.

http://semver.org/
http://www.x.org/releases/X11R7.7/doc/xorg-docs/Versions.html


Other	Components
A	number	of	other	fields	are	described	elsewhere	in	the	book:

Collate	controls	the	order	in	which	R	files	are	sourced.	This	only	matters	if	your	code
has	side	effects	(most	commonly	because	you’re	using	S4).	This	is	described	in	more
depth	in	“S4”.

LazyData	makes	it	easier	to	access	data	in	your	package.	Because	it’s	so	important,	it’s
included	in	the	minimal	description	created	by	devtools.	It’s	described	in	more	detail	in
Chapter	9.

There	are	actually	many	other	rarely	used	fields.	A	complete	list	can	be	found	in	the	“The
DESCRIPTION	file”	section	of	the	R	extensions	manual.	You	can	also	create	your	own
fields	to	add	additional	metadata.	The	only	restrictions	are	that	you	shouldn’t	use	existing
names,	and	that,	if	you	plan	to	submit	to	CRAN,	the	names	you	use	should	be	valid
English	words	(so	a	spell-checking	NOTE	won’t	be	generated).

http://bit.ly/1F972sx




Chapter	5.	Object	Documentation

Documentation	is	one	of	the	most	important	aspects	of	a	good	package.	Without	it,	users
won’t	know	how	to	use	your	package.	Documentation	is	also	useful	for	“future	you”	(so
you	remember	what	your	functions	were	supposed	to	do),	and	for	developers	extending
your	package.

There	are	multiple	forms	of	documentation.	In	this	chapter,	you’ll	learn	about	object
documentation,	as	accessed	by	?	or	help().	Object	documentation	is	a	type	of	reference
documentation.	It	works	like	a	dictionary:	while	a	dictionary	is	helpful	if	you	want	to
know	what	a	word	means,	it	won’t	help	you	find	the	right	word	for	a	new	situation.
Similarly,	object	documentation	is	helpful	if	you	already	know	the	name	of	the	object,	but
it	doesn’t	help	you	find	the	object	you	need	to	solve	a	given	problem.	That’s	one	of	the
jobs	of	vignettes,	which	you’ll	learn	about	in	the	next	chapter.

R	provides	a	standard	way	of	documenting	the	objects	in	a	package:	you	write	.Rd	files	in
the	man/	directory.	These	files	use	a	custom	syntax,	loosely	based	on	LaTeX,	and	are
rendered	to	HTML,	plain	text,	and	PDF	for	viewing.	Instead	of	writing	these	files	by	hand,
we’re	going	to	use	roxygen2,	which	turns	specially	formatted	comments	into	.Rd	files.
The	goal	of	roxygen2	is	to	make	documenting	your	code	as	easy	as	possible.	It	has	a
number	of	advantages	over	writing	.Rd	files	by	hand:

Code	and	documentation	are	intermingled	so	that	when	you	modify	your	code,	you’re
reminded	to	also	update	your	documentation.

Roxygen2	dynamically	inspects	the	objects	that	it	documents,	so	you	can	skip	some
boilerplate	that	you’d	otherwise	need	to	write	by	hand.

It	abstracts	over	the	differences	in	documenting	different	types	of	objects,	so	you	need
to	learn	fewer	details.

As	well	as	generating	.Rd	files,	roxygen2	can	also	manage	your	NAMESPACE	and	the
Collate	field	in	DESCRIPTION.	This	chapter	discusses	.Rd	files	and	the	Collate	field.
Chapter	8	describes	how	you	can	use	roxygen2	to	manage	your	NAMESPACE,	and	why
you	should	care.



The	Documentation	Workflow
In	this	section,	we’ll	first	go	over	a	rough	outline	of	the	complete	documentation
workflow.	Then,	we’ll	dive	into	each	step	individually.	There	are	four	basic	steps:

1.	 Add	roxygen	comments	to	your	.R	files.

2.	 Run	devtools::document()	(or	press	Ctrl/Cmd-Shift-D	in	RStudio)	to	convert
roxygen	comments	to	.Rd	files.	(devtools::document()	calls
roxygen2::roxygenise()	to	do	the	hard	work.)

3.	 Preview	documentation	with	?.

4.	 Rinse	and	repeat	until	the	documentation	looks	the	way	you	want.

The	process	starts	when	you	add	roxygen	comments	to	your	source	file:	roxygen
comments	start	with	#'	to	distinguish	them	from	regular	comments.	Here’s	documentation
for	a	simple	function:

#'	Add	together	two	numbers.

#'	

#'	@param	x	A	number.

#'	@param	y	A	number.

#'	@return	The	sum	of	\code{x}	and	\code{y}.

#'	@examples

#'	add(1,	1)

#'	add(10,	1)

add	<-	function(x,	y)	{

		x	+	y

}

Pressing	Ctrl/Cmd-Shift-D	(or	running	devtools::document())	will	generate	a
man/add.Rd	that	looks	like:

%	Generated	by	roxygen2	(4.0.0):	do	not	edit	by	hand

\name{add}

\alias{add}

\title{Add	together	two	numbers}

\usage{

add(x,	y)

}

\arguments{

		\item{x}{A	number}

		\item{y}{A	number}

}

\value{

The	sum	of	\code{x}	and	\code{y}

}

\description{

Add	together	two	numbers

}

\examples{

add(1,	1)

add(10,	1)

}

If	you’ve	used	LaTeX,	this	should	look	familiar,	because	the	.Rd	format	is	loosely	based
on	it.	You	can	read	more	about	the	.Rd	format	in	the	R	extensions	manual.	Note	the

http://cran.r-project.org/doc/manuals/R-exts.html#Rd-format


comment	at	the	top	of	the	file:	it	was	generated	by	code	and	shouldn’t	be	modified.
Indeed,	if	you	use	roxygen2,	you’ll	rarely	need	to	look	at	these	files.

When	you	use	?add,	help("add"),	or	example("add"),	R	looks	for	an	.Rd	file	containing
\alias{"add"}.	It	then	parses	the	file,	converts	it	into	HTML,	and	displays	it.	Figure	5-1
shows	what	the	result	looks	like	in	RStudio.

Figure	5-1.	The	final	rendered	documentation	for	add(),	as	displayed	by	RStudio

NOTE
You	can	preview	development	documentation	because	devtools	overrides	the	usual	help	functions	to	teach
them	how	to	work	with	source	packages.	If	the	documentation	doesn’t	appear,	make	sure	that	you’re	using
devtools	and	that	you’ve	loaded	the	package	with	devtools::load_all().



Alternative	Documentation	Workflow
The	first	documentation	workflow	is	very	fast,	but	it	has	one	limitation:	the	preview
documentation	pages	will	not	show	any	links	between	pages.	If	you’d	like	to	also	see
links,	use	this	workflow:

1.	 Add	roxygen	comments	to	your	.R	files.

2.	 Click	 	in	the	build	pane	or	press	Ctrl/Cmd-Shift-B.	This	completely
rebuilds	the	package,	including	updating	all	the	documentation,	installs	it	in	your
regular	library,	then	restarts	R	and	reloads	your	package.	This	is	slow	but	thorough.

3.	 Preview	documentation	with	?.

4.	 Rinse	and	repeat	until	the	documentation	looks	the	way	you	want.

If	this	workflow	doesn’t	seem	to	be	working,	check	your	project	options	in	RStudio
(Figure	5-2).	Old	versions	of	devtools	and	RStudio	did	not	automatically	update	the
documentation	when	the	package	was	rebuilt.



Figure	5-2.	Documentation	configuration	in	RStudio



Roxygen	Comments
Roxygen	comments	start	with	#'	and	come	before	a	function.	All	the	roxygen	lines
preceding	a	function	are	called	a	block.	Each	line	should	be	wrapped	in	the	same	way	as
your	code,	normally	at	80	characters.

Blocks	are	broken	up	into	tags,	which	look	like	@tagName	details.	The	content	of	a	tag
extends	from	the	end	of	the	tag	name	to	the	start	of	the	next	tag	(or	the	end	of	the	block).
Because	@	has	a	special	meaning	in	roxygen,	you	need	to	write	@@	if	you	want	to	add	a
literal	@	to	the	documentation	(this	is	mostly	important	for	email	addresses	and	for
accessing	slots	of	S4	objects).

Each	block	includes	some	text	before	the	first	tag.	This	is	called	the	introduction,	and	is
parsed	specially:

The	first	sentence	becomes	the	title	of	the	documentation.	That’s	what	you	see	when
you	look	at	help(package	=	mypackage)	and	is	shown	at	the	top	of	each	help	file.	It
should	fit	on	one	line,	be	written	in	sentence	case,	and	end	in	a	full	stop.

The	second	paragraph	is	the	description:	this	comes	first	in	the	documentation	and
should	briefly	describe	what	the	function	does.

The	third	and	subsequent	paragraphs	go	into	the	details:	this	is	a	(often	long)	section
that	is	shown	after	the	argument	description	and	should	go	into	detail	about	how	the
function	works.

All	objects	must	have	a	title	and	description.	Details	are	optional.

Here’s	an	example	showing	what	the	introduction	for	sum()	might	look	like	if	it	had	been
written	with	roxygen:

#'	Sum	of	vector	elements.

#'	

#'	\code{sum}	returns	the	sum	of	all	the	values	present	in	its	arguments.

#'	

#'	This	is	a	generic	function:	methods	can	be	defined	for	it	directly	or	via	the

#'	\code{\link{Summary}}	group	generic.	For	this	to	work	properly,	the	arguments

#'	\code{...}	should	be	unnamed,	and	dispatch	is	on	the	first	argument.

sum	<-	function(...,	na.rm	=	TRUE)	{}

\code{}	and	\link{}	are	formatting	commands	that	you’ll	learn	about	in	“Text
Formatting	Reference	Sheet”.	I’ve	been	careful	to	wrap	the	roxygen	block	so	that	it’s	less
than	80	characters	wide.	You	can	do	that	automatically	in	Rstudio	with	Ctrl/Cmd-Shift-/
(or	from	the	menu,	code	→	re-flow	comment).

You	can	add	arbitrary	sections	to	the	documentation	with	the	@section	tag.	This	is	a
useful	way	of	breaking	a	long	details	section	into	multiple	chunks	with	useful	headings.
Section	titles	should	be	in	sentence	case,	must	be	followed	by	a	colon,	and	they	can	only
be	one	line	long:



#'	@section	Warning:

#'	Do	not	operate	heavy	machinery	within	8	hours	of	using	this	function.

There	are	two	tags	that	make	it	easier	for	people	to	navigate	between	help	files:
@seealso

@seealso	allows	you	to	point	to	other	useful	resources,	either	on	the	web
(\url{http://www.r-project.org}),	in	your	package	(\code{\link{functioname}}),	or
another	package	(\code{\link[packagename]{functioname}}).

@family

If	you	have	a	family	of	related	functions	where	every	function	should	link	to	every
other	function	in	the	family,	use	@family.	The	value	of	@family	should	be	plural.

For	sum,	these	components	might	look	like	this:

#'	@family	aggregate	functions

#'	@seealso	\code{\link{prod}}	for	products,	\code{\link{cumsum}}	for	cumulative

#'			sums,	and	\code{\link{colSums}}/\code{\link{rowSums}}	marginal	sums	over

#'			high-dimensional	arrays.

Three	other	tags	make	it	easier	for	the	user	to	find	documentation:
@aliases	alias1	alias2…

This	adds	additional	aliases	to	the	topic.	An	alias	is	another	name	for	the	topic	that
can	be	used	with	?.

@keywords	keyword1	keyword2…

This	adds	standardized	keywords.	Keywords	are	optional,	but	if	present,	must	be
taken	from	a	predefined	list	found	in	file.path(R.home("doc"),	"KEYWORDS").

Generally,	keywords	are	not	that	useful	except	for	@keywords	internal.	Using	the
internal	keyword	removes	the	function	from	the	package	index	and	disables	some	of
their	automated	tests.	It’s	common	to	use	@keywords	internal	for	functions	that	are
of	interest	to	other	developers	extending	your	package,	but	not	most	users.

Other	tags	are	situational:	they	vary	based	on	the	type	of	object	that	you’re	documenting.
The	following	sections	describe	the	most	commonly	used	tags	for	functions,	packages,
and	the	various	methods,	generics,	and	objects	used	by	R’s	three	object-oriented	(OO)
systems.



Documenting	Functions
	Functions	are	the	most	commonly	documented	object.	As	well	as	the	introduction	block,
most	functions	have	three	tags:	@param,	@examples,	and	@return.	
@param	name	description

This	tag	describes	the	function’s	inputs	or	parameters.	The	description	should	provide
a	succinct	summary	of	the	type	of	the	parameter	(e.g.,	string,	numeric	vector),	and	if
not	obvious	from	the	name,	what	the	parameter	does.

The	description	should	start	with	a	capital	letter	and	end	with	a	full	stop.	It	can	span
multiple	lines	(or	even	paragraphs)	if	necessary.	All	parameters	must	be	documented.

You	can	document	multiple	arguments	in	one	place	by	separating	the	names	with
commas	(no	spaces).	For	example,	to	document	both	x	and	y,	you	can	write	@param
x,y	Numeric	vectors.

@examples

This	tag	provides	executable	R	code	showing	how	to	use	the	function	in	practice.
This	is	a	very	important	part	of	the	documentation	because	many	people	look	at	the
examples	first.	Example	code	must	work	without	errors	because	it	is	run
automatically	as	part	of	R	CMD	check.

For	the	purpose	of	illustration,	it’s	often	useful	to	include	code	that	causes	an	error.
\dontrun{}	allows	you	to	include	code	in	the	example	that	is	not	run.	(You	used	to
be	able	to	use	\donttest{}	for	a	similar	purpose,	but	it’s	no	longer	recommended
because	it	actually	is	tested.)

Instead	of	including	examples	directly	in	the	documentation,	you	can	put	them	in
separate	files	and	use	@example	path/relative/to/packge/root	to	insert	them	into
the	documentation.

@return	description

This	tag	describes	the	output	from	the	function.	This	is	not	always	necessary,	but	is	a
good	idea	if	your	function	returns	different	types	of	output	depending	on	the	input,	or
if	you’re	returning	an	S3,	S4,	or	RC	object.

We	could	use	these	new	tags	to	improve	our	documentation	of	sum()	as	follows:

#'	Sum	of	vector	elements.

#'

#'	\code{sum}	returns	the	sum	of	all	the	values	present	in	its	arguments.

#'

#'	This	is	a	generic	function:	methods	can	be	defined	for	it	directly

#'	or	via	the	\code{\link{Summary}}	group	generic.	For	this	to	work	properly,

#'	the	arguments	\code{...}	should	be	unnamed,	and	dispatch	is	on	the

#'	first	argument.

#'

#'	@param…	Numeric,	complex,	or	logical	vectors.

#'	@param	na.rm	A	logical	scalar.	Should	missing	values	(including	NaN)

#'			be	removed?

#'	@return	If	all	inputs	are	integer	and	logical,	then	the	output

#'			will	be	an	integer.	If	integer	overflow

#'			\url{http://en.wikipedia.org/wiki/Integer_overflow}	occurs,	the	output

#'			will	be	NA	with	a	warning.	Otherwise	it	will	be	a	length-one	numeric	or



#'			complex	vector.

#'

#'			Zero-length	vectors	have	sum	0	by	definition.	See

#'			\url{http://en.wikipedia.org/wiki/Empty_sum}	for	more	details.

#'	@examples

#'	sum(1:10)

#'	sum(1:5,	6:10)

#'	sum(F,	F,	F,	T,	T)

#'

#'	sum(.Machine$integer.max,	1L)

#'	sum(.Machine$integer.max,	1)

#'

#'	\dontrun{

#'	sum("a")

#'	}

sum	<-	function(...,	na.rm	=	TRUE)	{}

Indent	the	second	and	subsequent	lines	of	a	tag	so	that	when	scanning	the	documentation
it’s	easy	to	see	where	one	tag	ends	and	the	next	begins.	Tags	that	always	span	multiple
lines	(e.g.,	@example)	should	start	on	a	new	line	and	don’t	need	to	be	indented.



Documenting	Datasets
	See	“Documenting	Datasets”.



Documenting	Packages
You	can	use	roxygen	to	provide	a	help	page	for	your	package	as	a	whole.	This	is	accessed
with	package?foo,	and	can	be	used	to	describe	the	most	important	components	of	your
package.	It’s	a	useful	supplement	to	vignettes,	as	described	in	the	next	chapter.

There’s	no	object	that	corresponds	to	a	package,	so	you	need	to	document	NULL,	and	then
manually	label	it	with	@docType	package	and	@name	<package-name>.	This	is	also	an
excellent	place	to	use	the	@section	tag	to	divide	up	a	page	into	useful	categories:

#'	foo:	A	package	for	computating	the	notorious	bar	statistic.

#'

#'	The	foo	package	provides	three	categories	of	important	functions:

#'	foo,	bar	and	baz.

#'	

#'	@section	Foo	functions:

#'	The	foo	functions…

#'

#'	@docType	package

#'	@name	foo

NULL

I	usually	put	this	documentation	in	a	file	called	<package-name>.R.	It’s	also	a	good	place
to	put	the	package-level	import	statements	that	you’ll	learn	about	in	“Imports”.



Documenting	Classes,	Generics,	and	Methods
It’s	relatively	straightforward	to	document	classes,	generics,	and	methods.	The	details	vary
based	on	the	object	system	you’re	using.	The	following	sections	give	the	details	for	the
S3,	S4,	and	RC	object	systems.



S3
S3	generics	are	regular	functions,	so	document	them	as	such.	S3	classes	have	no	formal
definition,	so	document	the	constructor	function.	It	is	your	choice	whether	or	not	to
document	S3	methods.	You	don’t	need	to	document	methods	for	simple	generics	like
print().	But	if	your	method	is	more	complicated	or	includes	additional	arguments,	you
should	document	it	so	people	know	how	it	works.	In	base	R,	you	can	see	examples	of
documentation	for	more	complex	methods	like	predict.lm(),	predict.glm(),	and
anova.glm().

NOTE
Older	versions	of	roxygen	required	explicit	@method	generic	class	tags	for	all	S3	methods.	From	version
3.0.0	onward,	this	is	no	longer	needed	as	roxygen2	will	figure	it	out	automatically.	If	you	are	upgrading,
make	sure	to	remove	these	old	tags.	Automatic	method	detection	will	only	fail	if	the	generic	and	class	are
ambiguous.	For	example,	is	all.equal.data.frame()	the	equal.	data.frame	method	for	all,	or	the
data.frame	method	for	all.equal?	If	this	happens,	you	can	disambiguate	with	@method	all.equal
data.frame.



S4
Document	S4	classes	by	adding	a	roxygen	block	before	setClass().	Use	@slot	to
document	the	slots	of	the	class	in	the	same	way	you	use	@param	to	describe	the	parameters
of	a	function.	Here’s	a	simple	example:	

#'	An	S4	class	to	represent	a	bank	account.

#'

#'	@slot	balance	A	length-one	numeric	vector

Account	<-	setClass("Account",

		slots	=	list(balance	=	"numeric")

)

S4	generics	are	also	functions,	so	document	them	as	such.	S4	methods	are	a	little	more
complicated,	however.	Unlike	S3,	all	S4	methods	must	be	documented.	You	document
them	like	a	regular	function,	but	you	probably	don’t	want	each	method	to	have	its	own
documentation	page.	Instead,	put	the	method	documentation	in	one	of	three	places:

In	the	class

You	should	use	this	option	if	the	corresponding	generic	uses	single	dispatch	and	you
created	the	class.

In	the	generic

This	option	is	most	appropriate	if	the	generic	uses	multiple	dispatch	and	you	have
written	both	the	generic	and	the	method.

In	its	own	file

If	the	method	is	complex,	or	if	you’ve	written	the	method	but	not	the	class	or	generic,
you	should	go	with	this	option.

Use	either	@rdname	or	@describeIn	to	control	where	method	documentation	goes.	See
“Documenting	Multiple	Functions	in	the	Same	File”	for	details.

Another	consideration	is	that	S4	code	often	needs	to	run	in	a	certain	order.	For	example,	to
define	the	method	setMethod("foo",	c("bar",	"baz"),	...),	you	must	already	have
created	the	foo	generic	and	the	two	classes.	By	default,	R	code	is	loaded	in	alphabetical
order,	but	that	won’t	always	work	for	your	situation.	Rather	than	relying	on	alphabetic
ordering,	roxygen2	provides	an	explicit	way	of	saying	that	one	file	must	be	loaded	before
another:	@include.	The	@include	tag	gives	a	space-separated	list	of	filenames	that	should
be	loaded	before	the	current	file:

#'	@include	class-a.R

setClass("B",	contains	=	"A")

Often,	it’s	easiest	to	put	this	at	the	top	of	the	file.	To	make	it	clear	that	this	tag	applies	to
the	whole	file,	and	not	a	specific	object,	document	NULL:

#'	@include	foo.R	bar.R	baz.R

NULL



setMethod("foo",	c("bar",	"baz"),	...)

Roxygen	uses	the	@include	tags	to	compute	a	topological	sort,	which	ensures	that
dependencies	are	loaded	before	they’re	needed.	It	then	sets	the	Collate	field	in
DESCRIPTION,	which	overrides	the	default	alphabetic	ordering.	A	simpler	alternative	to
@include	is	to	define	all	classes	and	methods	in	aaa-classes.R	and	aaa-generics.R,	and
rely	on	these	coming	first,	as	they’re	in	alphabetical	order.	The	main	disadvantage	is	that
you	can’t	organize	components	into	files	as	naturally	as	you	might	want.

NOTE
Older	versions	of	roxygen2	required	explicit	@usage,	@alias,	and	@docType	tags	for	document	S4	objects.
However,	as	of	version	3.0.0,	roxygen2	generates	the	correct	values	automatically	so	you	no	longer	need	to
use	them.	If	you’re	upgrading	from	an	old	version,	you	can	delete	these	tags.



RC
Reference	classes	are	different	than	S3	and	S4	because	methods	are	associated	with
classes,	not	generics.	RC	also	has	a	special	convention	for	documenting	methods:	the
docstring.	The	docstring	is	a	string	placed	inside	the	definition	of	the	method	which
briefly	describes	what	it	does.	This	makes	documenting	RC	simpler	than	S4	because	you
only	need	one	roxygen	block	per	class:

#'	A	Reference	Class	to	represent	a	bank	account.

#'

#'	@field	balance	A	length-one	numeric	vector.

Account	<-	setRefClass("Account",

		fields	=	list(balance	=	"numeric"),

		methods	=	list(

				withdraw	=	function(x)	{

						"Withdraw	money	from	account.	Allows	overdrafts"

						balance	<<-	balance	-	x

				}

		)

)

	Methods	with	docstrings	will	be	included	in	the	“Methods”	section	of	the	class
documentation.	Each	documented	method	will	be	listed	with	an	automatically	generated
usage	statement	and	its	docstring.	Also	note	the	use	of	@field	instead	of	@slot.



Special	Characters
There	are	three	characters	that	need	special	handling	if	you	want	them	to	appear	in	the
final	documentation:
@

This	character	usually	marks	the	start	of	a	roxygen	tag.	Use	@@	to	insert	a	literal	@	in
the	final	documentation.

%

This	character	usually	marks	the	start	of	a	LaTeX	comment	that	continues	to	the	end
of	the	line.	Use	\%	to	insert	a	literal	%	in	the	output	document.	The	escape	is	not
needed	in	examples.

\

This	character	usually	marks	the	start	of	a	LaTeX	escape.	Use	\\	to	insert	a	literal	\
in	the	documentation.



Do	Repeat	Yourself
There	is	a	tension	between	the	DRY	(don’t	repeat	yourself)	principle	of	programming	and
the	need	for	documentation	to	be	self-contained.	It’s	frustrating	to	have	to	navigate
through	multiple	help	files	in	order	to	pull	together	all	the	pieces	you	need.	Roxygen2
provides	two	ways	to	avoid	repetition	in	the	source,	while	still	assembling	everything	into
one	documentation	file:

The	ability	to	reuse	parameter	documentation	with	@inheritParams

The	ability	to	document	multiple	functions	in	the	same	place	with	@describeIn	or
@rdname



Inheriting	Parameters	from	Other	Functions
You	can	inherit	parameter	descriptions	from	other	functions	using	@inheritParams
source_function.	This	tag	will	bring	in	all	documentation	for	parameters	that	are
undocumented	in	the	current	function,	but	documented	in	the	source	function.	The	source
can	be	a	function	in	the	current	package,	via	@inheritParams	function,	or	another
package,	via	@inheritParams	package::function.	For	example,	the	following
documentation:

#'	@param	a	This	is	the	first	argument

foo	<-	function(a)	a	+	10

#'	@param	b	This	is	the	second	argument

#'	@inheritParams	foo

bar	<-	function(a,	b)	{

		foo(a)	*	10

}

is	equivalent	to:

#'	@param	a	This	is	the	first	argument

#'	@param	b	This	is	the	second	argument

bar	<-	function(a,	b)	{

		foo(a)	*	10

}

Note	that	inheritance	does	not	chain.	In	other	words,	the	source_function	must	always	be
the	function	that	defines	the	parameter	using	@param.



Documenting	Multiple	Functions	in	the	Same	File
You	can	document	multiple	functions	in	the	same	file	by	using	either	@rdname	or
@describeIn.	However,	it’s	a	technique	best	used	with	caution:	documenting	too	many
functions	in	one	place	leads	to	confusing	documentation.	You	should	use	it	when	functions
have	very	similar	arguments,	or	have	complementary	effects	(e.g.,	open()	and	close()
methods).

@describeIn	is	designed	for	the	most	common	cases:

Documenting	methods	in	a	generic

Documenting	methods	in	a	class

Documenting	functions	with	the	same	(or	similar	arguments)

It	generates	a	new	section,	named	“Methods	(by	class),”	“Methods	(by	generic),”	or
“Functions.”	The	section	contains	a	bulleted	list	describing	each	function.	They’re	labeled
so	that	you	know	what	function	or	method	it’s	talking	about.	Here’s	an	example,
documenting	an	imaginary	new	generic:

#'	Foo	bar	generic

#'

#'	@param	x	Object	to	foo.

foobar	<-	function(x)	UseMethod("foobar")

#'	@describeIn	foobar	Difference	between	the	mean	and	the	median

foobar.numeric	<-	function(x)	abs(mean(x)	-	median(x))

#'	@describeIn	foobar	First	and	last	values	pasted	together	in	a	string.

foobar.character	<-	function(x)	paste0(x[1],	"-",	x[length(x)])

An	alternative	to	@describeIn	is	@rdname.	It	overrides	the	default	filename	generated	by
roxygen	and	merges	documentation	for	multiple	objects	into	one	file.	This	gives	you	the
complete	freedom	to	combine	documentation	as	you	see	fit.

There	are	two	ways	to	use	@rdname.	You	can	add	documentation	to	an	existing	function:

#'	Basic	arithmetic

#'

#'	@param	x,y	numeric	vectors.

add	<-	function(x,	y)	x	+	y

#'	@rdname	add

times	<-	function(x,	y)	x	*	y

Or	you	can	create	a	dummy	documentation	file	by	documenting	NULL	and	setting	an
informative	@name:

#'	Basic	arithmetic

#'

#'	@param	x,y	numeric	vectors.

#'	@name	arith

NULL



#'	@rdname	arith

add	<-	function(x,	y)	x	+	y

#'	@rdname	arith

times	<-	function(x,	y)	x	*	y



Text	Formatting	Reference	Sheet
Within	roxygen	tags,	you	use	.Rd	syntax	to	format	text.	This	vignette	shows	you	examples
of	the	most	important	commands.	The	full	details	are	described	in	R	extensions.

Note	that	\	and	%	are	special	characters	in	the	Rd	format.	To	insert	a	literal	%	or	\,	escape
them	with	a	backslash	(i.e.,	use	\%	or	\\,	respectively).

http://cran.r-project.org/doc/manuals/R-exts.html#Marking-text


Character	Formatting
\emph{italics}:	italics.

\strong{bold}:	bold.

\code{r_function_call(with	=	"arguments")}:	r_function_call(with	=
"arguments")



Links
To	other	documentation:

\code{\link{function}}:	Function	in	this	package

\code{\link[MASS]{abbey}}:	Function	in	another	package

\link[=dest]{name}:	Link	to	dest,	but	show	name

\linkS4class{abc}:	Link	to	an	S4	class

To	the	web:

\url{http://rstudio.com}:	A	URL

\href{http://rstudio.com}{Rstudio}:	A	URL	with	custom	link	text

\email{hadley@@rstudio.com}	(note	the	doubled	@):	An	email	address



Lists
Ordered	(numbered)	lists:

#'	\enumerate{

#'			\item	First	item

#'			\item	Second	item

#'	}

Unordered	(bulleted)	lists:

#'	\itemize{

#'			\item	First	item

#'			\item	Second	item

#'	}

Definition	(named)	lists:

#'	\describe{

#'			\item{One}{First	item}

#'			\item{Two}{Second	item}

#'	}



Mathematics
You	can	use	standard	LaTeX	math	(with	no	extensions).	Choose	between	either	inline	or
block	display:

\eqn{a	+	b}:	Inline	equation

\deqn{a	+	b}:	Display	(block)	equation



Tables
Tables	are	created	with	\tabular{}.	It	has	two	arguments:

Column	alignment,	specified	by	letter	for	each	column	(l	=	left,	r	=	right,	c	=	center.)

Table	contents,	with	columns	separated	by	\tab	and	rows	by	\cr.

The	following	function	turns	an	R	data	frame	into	the	correct	format	(it	ignores	column
and	row	names,	but	should	get	you	started):

tabular	<-	function(df,	...)	{

		stopifnot(is.data.frame(df))

		align	<-	function(x)	if	(is.numeric(x))	"r"	else	"l"

		col_align	<-	vapply(df,	align,	character(1))

		cols	<-	lapply(df,	format,	...)

		contents	<-	do.call("paste",

				c(cols,	list(sep	=	"	\\tab	",	collapse	=	"\\cr\n		")))

		paste("\\tabular{",	paste(col_align,	collapse	=	""),	"}{\n		",

				contents,	"\n}\n",	sep	=	"")

}

cat(tabular(mtcars[1:5,	1:5]))

#>	\tabular{rrrrr}{

#>			21.0	\tab	6	\tab	160	\tab	110	\tab	3.90\cr

#>			21.0	\tab	6	\tab	160	\tab	110	\tab	3.90\cr

#>			22.8	\tab	4	\tab	108	\tab		93	\tab	3.85\cr

#>			21.4	\tab	6	\tab	258	\tab	110	\tab	3.08\cr

#>			18.7	\tab	8	\tab	360	\tab	175	\tab	3.15

#>	}





Chapter	6.	Vignettes:	Long-Form
Documentation

A	vignette	is	a	long-form	guide	to	your	package.	Function	documentation	is	great	if	you
know	the	name	of	the	function	you	need,	but	it’s	useless	otherwise.	A	vignette	is	like	a
book	chapter	or	an	academic	paper:	it	can	describe	the	problem	that	your	package	is
designed	to	solve,	and	then	show	the	reader	how	to	solve	it.	A	vignette	should	divide
functions	into	useful	categories,	and	demonstrate	how	to	coordinate	multiple	functions	to
solve	problems.	Vignettes	are	also	useful	if	you	want	to	explain	the	details	of	your
package.	For	example,	if	you	have	implemented	a	complex	statistical	algorithm,	you
might	want	to	describe	all	the	details	in	a	vignette	so	that	users	of	your	package	can
understand	what’s	going	on	under	the	hood,	and	be	confident	that	you’ve	implemented	the
algorithm	correctly.

Many	existing	packages	have	vignettes.	You	can	see	all	the	installed	vignettes	with
browseVignettes().	To	see	the	vignette	for	a	specific	package,	use	the	argument
browseVignettes("packagename").	Each	vignette	provides	three	things:	the	original
source	file,	a	readable	HTML	page	or	PDF,	and	a	file	of	R	code.	You	can	read	a	specific
vignette	with	vignette(x),	and	see	its	code	with	edit(vignette(x)).	To	see	vignettes	for
a	package	you	haven’t	installed,	look	at	its	CRAN	page	(e.g.,	http://cran.r-
project.org/web/packages/dplyr).

Before	R	3.0.0,	the	only	way	to	create	a	vignette	was	with	Sweave.	This	was	challenging
because	Sweave	only	worked	with	LaTeX,	and	LaTeX	is	both	hard	to	learn	and	slow	to
compile.	Now,	any	package	can	provide	a	vignette	engine,	a	standard	interface	for	turning
input	files	into	HTML	or	PDF	vignettes.	In	this	chapter,	we’re	going	to	use	the	R
markdown	vignette	engine	provided	by	knitr.	I	recommend	this	engine	because:

You	write	in	Markdown,	a	plain-text	formatting	system.	Markdown	is	limited
compared	to	LaTeX,	but	this	limitation	is	good	because	it	forces	you	to	focus	on	the
content.

It	can	intermingle	text,	code,	and	results	(both	textual	and	visual).

Your	life	is	further	simplified	by	the	rmarkdown	package,	which	coordinates
Markdown	and	knitr	by	using	pandoc	to	convert	Markdown	to	HTML	and	by	providing
many	useful	templates.

Switching	from	Sweave	to	R	Markdown	had	a	profound	impact	on	my	use	of	vignettes.
Previously,	making	a	vignette	was	painful	and	slow	and	I	rarely	did	it.	Now,	vignettes	are
an	essential	part	of	my	packages.	I	use	them	whenever	I	need	to	explain	a	complex	topic,
or	to	show	how	to	solve	a	problem	with	multiple	steps.

http://cran.r-project.org/web/packages/dplyr
http://yihui.name/knitr/
http://rmarkdown.rstudio.com/
http://johnmacfarlane.net/pandoc


Currently,	the	easiest	way	to	get	R	Markdown	is	to	use	RStudio.	RStudio	will
automatically	install	all	of	the	necessary	prerequisites.	If	you	don’t	use	RStudio,	you’ll
need	to:

1.	 Install	the	rmarkdown	package	with	install.packages("rmarkdown").

2.	 Install	pandoc.

http://www.rstudio.com/products/rstudio/download/preview/
http://johnmacfarlane.net/pandoc/installing.html


Vignette	Workflow
To	create	your	first	vignette,	run:

devtools::use_vignette("my-vignette")

This	will:

1.	 Create	a	vignettes/	directory.

2.	 Add	the	necessary	dependencies	to	DESCRIPTION	(i.e.,	it	adds	knitr	to	the
Suggests	and	VignetteBuilder	fields).

3.	 Draft	a	vignette,	vignettes/my-vignette.Rmd.

The	draft	vignette	has	been	designed	to	remind	you	of	the	important	parts	of	an	R
Markdown	file.	It	serves	as	a	useful	reference	when	you’re	creating	a	new	vignette.

Once	you	have	this	file,	the	workflow	is	straightforward:

1.	 Modify	the	vignette.

2.	 Press	Ctrl/Cmd-Shift-K	(or	click	 )	to	knit	the	vignette	and	preview	the	output.

There	are	three	important	components	to	an	R	Markdown	vignette:

The	initial	metadata	block

Markdown	for	formatting	text

Knitr	for	intermingling	text,	code,	and	results

These	are	described	in	the	following	sections.



Metadata
The	first	few	lines	of	the	vignette	contain	important	metadata.	The	default	template
contains	the	following	information:

---

title:	"Vignette	Title"

author:	"Vignette	Author"

date:	"`r	Sys.Date()`"

output:	rmarkdown::html_vignette

vignette:	>

		%\VignetteIndexEntry{Vignette	Title}

		%\VignetteEngine{knitr::rmarkdown}

		\usepackage[utf8]{inputenc}

---

This	metadata	is	written	in	YAML,	a	format	designed	to	be	both	human	and	computer
readable.	The	basics	of	the	syntax	is	much	like	the	DESCRIPTION	file,	where	each	line
consists	of	a	field	name,	a	colon,	then	the	value	of	the	field.	The	one	special	YAML
feature	we’re	using	here	is	>.	It	indicates	the	following	lines	of	text	are	plain	text	and
shouldn’t	use	any	special	YAML	features.

The	fields	are:

Title,	author,	and	date

This	is	where	you	put	the	vignette’s	title,	author,	and	date.	You’ll	want	to	fill	these	in
yourself	(you	can	delete	them	if	you	don’t	want	the	title	block	at	the	top	of	the	page).
The	date	is	filled	in	by	default:	it	uses	a	special	knitr	syntax	(explained	later)	to	insert
today’s	date.

Output

This	tells	rmarkdown	which	output	formatter	to	use.	There	are	many	options	that	are
useful	for	regular	reports	(including	HTML,	PDF,	slideshows,	…),	but
rmarkdown::html_vignette	has	been	specifically	designed	to	work	well	inside
packages.	See	?rmarkdown::html_vignette	for	more	details.

Vignette

This	contains	a	special	block	of	metadata	needed	by	R.	Here,	you	can	see	the	legacy
of	LaTeX	vignettes:	the	metadata	looks	like	LaTeX	commands.	You’ll	need	to
modifiy	the	\VignetteIndexEntry	to	provide	the	title	of	your	vignette	as	you’d	like	it	to
appear	in	the	vignette	index.	Leave	the	other	two	lines	as	is.	They	tell	R	to	use	knitr
to	process	the	file,	and	that	the	file	is	encoded	in	UTF-8	(the	only	encoding	you
should	ever	use	to	write	vignettes).

http://www.yaml.org/


Markdown
R	Markdown	vignettes	are	written	in	Markdown,	a	lightweight	markup	language.	John
Gruber,	the	author	of	Markdown,	summarizes	the	goals	and	philosophy	of	Markdown:

Markdown	is	intended	to	be	as	easy-to-read	and	easy-to-write	as	is	feasible.

Readability,	however,	is	emphasized	above	all	else.	A	Markdown-formatted	document
should	be	publishable	as-is,	as	plain	text,	without	looking	like	it’s	been	marked	up	with
tags	or	formatting	instructions.	While	Markdown’s	syntax	has	been	influenced	by
several	existing	text-to-HTML	filters	—	including	Setext,	atx,	Textile,	reStructuredText,
Grutatext,	and	EtText	—	the	single	biggest	source	of	inspiration	for	Markdown’s	syntax
is	the	format	of	plain	text	email.

To	this	end,	Markdown’s	syntax	is	comprised	entirely	of	punctuation	characters,	which
punctuation	characters	have	been	carefully	chosen	so	as	to	look	like	what	they	mean.
E.g.,	asterisks	around	a	word	actually	look	like	emphasis.	Markdown	lists	look	like,
well,	lists.	Even	blockquotes	look	like	quoted	passages	of	text,	assuming	you’ve	ever
used	email.

Markdown	isn’t	as	powerful	as	LaTeX,	reStructuredText,	or	DocBook,	but	it’s	simple,
easy	to	write,	and	easy	to	read	even	when	it’s	not	rendered.	I	find	Markdown’s	constraints
helpful	for	writing	because	it	lets	me	focus	on	the	content,	and	prevents	me	from	messing
around	with	the	styling.

If	you’ve	never	used	Markdown	before,	a	good	place	to	start	is	John	Gruber’s	Markdown
syntax	documentation.	Pandoc’s	implementation	of	Markdown	rounds	off	some	of	the
rough	edges	and	adds	a	number	of	new	features,	so	I	also	recommend	familiarizing
yourself	with	the	pandoc	readme.	When	editing	a	Markdown	document,	RStudio	presents
a	drop-down	menu	via	the	question	mark	icon,	which	offers	a	Markdown	reference	card.

The	following	sections	show	you	what	I	think	are	the	most	important	features	of	pandoc’s
Markdown	dialect.	You	should	be	able	to	learn	the	basics	in	under	15	minutes.

http://daringfireball.net/projects/markdown/syntax
http://johnmacfarlane.net/pandoc/README.html


Sections
Headings	are	identified	by	#:

#	Heading	1

##	Heading	2

###	Heading	3

Create	a	horizontal	rule	with	three	or	more	hyphens	(or	asterisks):

--------

********



Lists
Basic	unordered	lists	use	*:

*	Bulleted	list

*	Item	2

				*	Nested	bullets	need	a	4-space	indent.

				*	Item	2b

If	you	want	multiparagraph	lists,	the	second	and	subsequent	paragraphs	need	additional
indenting:

		

		*	It's	possible	to	put	multiple	paragraphs	of	text	in	a	list	item.	

				But	to	do	that,	the	second	and	subsequent	paragraphs	must	be

				indented	by	four	or	more	spaces.	It	looks	better	if	the	first

				bullet	is	also	indented.

Ordered	lists	use	1.:

1.	Item	1

1.	Item	2

1.	Items	are	numbered	automatically,	even	though	they	all	start	with	1.

You	can	intermingle	ordered	and	bulleted	lists,	as	long	as	you	adhere	to	the	four	space
rule:

1.		Item	1.

				*		Item	a

				*		Item	b

1.		Item	2.

Definition	lists	use	a	colon	(:):

Definition

		:	a	statement	of	the	exact	meaning	of	a	word,	especially	in	a	dictionary.

List	

		:	a	number	of	connected	items	or	names	written	or	printed	consecutively,	

				typically	one	below	the	other.	

		:	barriers	enclosing	an	area	for	a	jousting	tournament.



Inline	Formatting
Inline	format	is	similarly	simple:

_italic_	or	*italic*

__bold__	or	**bold**				

[link	text](destination)

<http://this-is-a-raw-url.com>



Tables
There	are	four	types	of	tables.	I	recommend	using	the	pipe	table,	which	looks	like	this:

|	Right	|	Left	|	Default	|	Center	|

|------:|:-----|---------|:------:|

|			12		|		12		|				12			|				12		|

|		123		|		123	|			123			|			123		|

|				1		|				1	|					1			|					1		|

Notice	the	use	of	the	:	in	the	spacer	under	the	heading.	This	determines	the	alignment	of
the	column.

If	the	data	underlying	your	table	exists	in	R,	don’t	lay	it	out	by	hand.	Instead,	use
knitr::kable(),	or	look	at	printr	or	pander.

http://bit.ly/1F9bisd
https://github.com/yihui/printr
http://rapporter.github.io/pander/


Code
For	inline	code,	use	`code`.

For	bigger	blocks	of	code,	use	```.	These	are	known	as	“fenced”	code	blocks:

```

#	A	comment

add	<-	function(a,	b)	a	+	b

```

To	add	syntax	highlighting	to	the	code,	put	the	language	name	after	the	backtick:

```c

int	add(int	a,	int	b)	{

		return	a	+	b;

}

```

(At	time	of	printing,	languages	supported	by	pandoc	were:	actionscript,	ada,	apache,	asn.1,
asp,	awk,	bash,	bibtex,	boo,	c,	changelog,	clojure,	cmake,	coffee,	coldfusion,	common
lisp,	cpp,	cs,	css,	curry,	d,	diff,	djangotemplate,	doxygen,	doxygenlua,	dtd,	eiffel,	email,
erlang,	fortran,	fsharp,	gnuassembler,	go,	haskell,	haxe,	html,	ini,	java,	javadoc,	javascript,
json,	jsp,	julia,	latex,	lex,	literatecurry,	literatehaskell,	lua,	makefile,	mandoc,	matlab,
maxima,	metafont,	mips,	modula2,	modula3,	monobasic,	nasm,	noweb,	objectivec,
objectivecpp,	ocaml,	octave,	pascal,	perl,	php,	pike,	postscript,	prolog,	python,	r,
relaxngcompact,	rhtml,	ruby,	rust,	scala,	scheme,	sci,	sed,	sgml,	sql,	sqlmysql,
sqlpostgresql,	tcl,	texinfo,	verilog,	vhdl,	xml,	xorg,	xslt,	xul,	yacc,	yaml.	Syntax
highlighting	is	done	by	the	Haskell	package	highlighting-kate;	see	the	website	for	a
current	list.)

When	you	include	R	code	in	your	vignette,	you	usually	won’t	use	```r.	Instead,	you’ll	use
```{r},	which	is	specially	processed	by	knitr,	as	described	next.

http://johnmacfarlane.net/highlighting-kate


Knitr
Knitr	allows	you	to	intermingle	code,	results,	and	text.	Knitr	takes	R	code,	runs	it,
captures	the	output,	and	translates	it	into	formatted	Markdown.	Knitr	captures	all	printed
output,	messsages,	warnings,	errors	(optionally),	and	plots	(basic	graphics,	lattice	and
ggplot,	and	more).

Consider	this	simple	example	(note	that	a	knitr	block	looks	similar	to	a	fenced	code	block,
but	instead	of	using	r,	you	use	{r}):

```{r}

#	Add	two	numbers	together

add	<-	function(a,	b)	a	+	b

add(10,	20)

```

This	generates	the	following	Markdown:

```r

#	Add	two	numbers	together

add	<-	function(a,	b)	a	+	b

add(10,	20)

##	[1]	30

```

Which,	in	turn,	is	rendered	as:

#	Add	two	numbers	together

add	<-	function(a,	b)	a	+	b

add(10,	20)

##	30

Once	you	start	using	knitr,	you’ll	never	look	back.	Because	your	code	is	always	run	when
you	build	the	vignette,	you	can	rest	assured	knowing	that	all	your	code	works.	There’s	no
way	for	your	input	and	output	to	be	out	of	sync.



Options
You	can	specify	additional	options	to	control	the	rendering:

To	affect	a	single	block,	add	the	block	settings:

```{r,	opt1	=	val1,	opt2	=	val2}

#	code

```

To	affect	all	blocks,	call	knitr::opts_chunk$set()	in	a	knitr	block:

```{r,	echo	=	FALSE}

knitr::opts_chunk$set(

		opt1	=	val1,

		opt2	=	val2

)

```

The	most	important	options	are:

eval	=	FALSE	prevents	evaluation	of	the	code.	This	is	useful	if	you	want	to	show	some
code	that	would	take	a	long	time	to	run.	Be	careful	when	you	use	this:	because	the	code
is	not	run,	it’s	easy	to	introduce	bugs.	(Also,	your	users	will	be	puzzled	when	they	copy
and	paste	code	and	it	doesn’t	work.)

echo	=	FALSE	turns	off	the	printing	of	the	code	input	(the	output	will	still	be	printed).
Generally,	you	shouldn’t	use	this	in	vignettes	because	understanding	what	the	code	is
doing	is	important.	It’s	more	useful	when	writing	reports	because	the	code	is	typically
less	important	than	the	output.

results	=	"hide"	turns	off	the	printing	of	code	output.

warning	=	FALSE	and	message	=	FALSE	suppress	the	display	of	warnings	and
messages.

error	=	TRUE	captures	any	errors	in	the	block	and	shows	them	inline.	This	is	useful	if
you	want	to	demonstrate	what	happens	if	code	throws	an	error.	Whenever	you	use
error	=	TRUE,	you	also	need	to	use	purl	=	FALSE.	This	is	because	every	vignette	is
accompanied	by	a	file	code	that	contains	all	the	code	from	the	vignette.	R	must	be	able
to	source	that	file	without	errors,	and	purl	=	FALSE	prevents	the	code	from	being
inserted	into	that	document.

collapse	=	TRUE	and	comment	=	"#>"	are	my	preferred	way	of	displaying	code
output.	I	usually	set	these	globally	by	putting	the	following	knitr	block	at	the	start	of
my	document:

```{r,	echo	=	FALSE}

knitr::opts_chunk$set(collapse	=	TRUE,	comment	=	"#>")

```

results	=	"asis"	treats	the	output	of	your	R	code	as	literal	Markdown.	This	is	useful



if	you	want	to	generate	text	from	your	R	code.	For	example,	if	you	want	to	generate	a
table	using	the	pander	package,	you’d	do:

```{r,	results	=	"asis"}

pander::pandoc.table(iris[1:3,	1:4])

```

That	generates	a	Markdown	table	that	looks	as	follows:

--------------------------------------------------------

	Sepal.Length			Sepal.Width			Petal.Length			Petal.Width	

--------------	-------------	--------------	-------------

					5.1												3.5											1.4												0.2					

					4.9													3												1.4												0.2					

					4.7												3.2											1.3												0.2					

---------------------------------------------------------

Which	makes	a	table	that	looks	like	this:

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.1 3.5 1.4 0.2

4.9 3 1.4 0.2

4.7 3.2 1.3 0.2

fig.show	=	"hold"	holds	all	figures	until	the	end	of	the	code	block.

fig.width	=	5	and	fig.height	=	5	set	the	height	and	width	of	figures	(in	inches).

Many	other	options	are	described	at	http://yihui.name/knitr/options.

http://yihui.name/knitr/options


Development	Cycle
Run	code	a	chunk	at	a	time	using	Cmd-Alt-C.	Rerun	the	entire	document	in	a	fresh	R
session	using	Knit	(Ctrl/Cmd-Shift-K).

You	can	build	all	vignettes	from	the	console	with	devtools::build_vignettes(),	but	this
is	rarely	useful.	Instead,	use	devtools::build()	to	create	a	package	bundle	with	the
vignettes	included.	RStudio’s	“Build	&	Reload”	does	not	build	vignettes	to	save	time.
Similarly,	devtools::install_github()	(and	friends)	will	not	build	vignettes	by	default
because	they’re	time	consuming	and	may	require	additional	packages.	You	can	force
building	with	devtools::install_github(build_	vignettes	=	TRUE).	This	will	also
install	all	suggested	packages.



Advice	for	Writing	Vignettes
“If	you’re	thinking	without	writing,	you	only	think	you’re	thinking.”

—	Leslie	Lamport

When	writing	a	vignette,	you’re	teaching	someone	how	to	use	your	package.	You	need	to
put	yourself	in	the	readers’	shoes,	and	adopt	a	“beginner’s	mind.”	This	can	be	difficult
because	it’s	hard	to	forget	all	of	the	knowledge	that	you’ve	already	internalized.	For	this
reason,	I	find	teaching	in	person	a	really	useful	way	to	get	feedback	on	my	vignettes.	In
addition	to	receiving	immediate	feedback,	it’s	also	a	much	easier	way	to	learn	what	people
already	know.

A	useful	side	effect	of	this	approach	is	that	it	helps	you	improve	your	code.	It	forces	you
to	re-see	the	initial	onboarding	process	and	to	appreciate	the	parts	that	are	hard.	Every
time	that	I’ve	written	text	that	describes	the	initial	experience,	I’ve	realized	that	I’ve
missed	some	important	functions.	Adding	those	functions	not	only	helps	my	users,	but	it
often	also	helps	me!	(This	is	one	of	the	reasons	that	I	like	writing	books.)

You	should	also	check	out	the	following	resources:

I	strongly	recommend	literally	anything	written	by	Kathy	Sierra.	Her	old	blog	Creating
Passionate	Users	is	full	of	advice	about	programming,	teaching,	and	how	to	create
valuable	tools.	I	thoroughly	recommend	reading	through	all	the	older	content.	Her	new
blog,	Serious	Pony,	doesn’t	have	as	much	content,	but	it	has	some	great	articles.

If	you’d	like	to	learn	how	to	write	better,	I	highly	recommend	Style:	Lessons	in	Clarity
and	Grace	by	Joseph	M.	Williams	and	Joseph	Bizup.	It	helps	you	understand	the
structure	of	writing	so	that	you’ll	be	better	able	to	recognize	and	fix	bad	writing.

Writing	a	vignette	also	makes	a	nice	break	from	coding.	In	my	experience,	writing	uses	a
different	part	of	the	brain	from	programming,	so	if	you’re	sick	of	programming,	try
writing	for	a	bit.	(This	is	related	to	the	idea	of	structured	procrastination.)

http://headrush.typepad.com/
http://seriouspony.com/blog/
http://amzn.com/0321898680
http://www.structuredprocrastination.com/


Organization
For	simpler	packages,	one	vignette	is	often	sufficient.	But	for	more	complicated	packages,
you	may	actually	need	more	than	one.	In	fact,	you	can	have	as	many	vignettes	as	you	like.
I	tend	to	think	of	them	like	chapters	of	a	book	—	they	should	be	self-contained,	but	still
link	together	into	a	cohesive	whole.

Although	it’s	a	slight	hack,	you	can	link	various	vignettes	by	taking	advantage	of	how
files	are	stored	on	disk:	to	link	to	vignette	abc.Rmd,	just	make	a	link	to	abc.html.



CRAN	Notes
Note	that	because	you	build	vignettes	locally,	CRAN	only	receives	the	HTML/PDF	and
the	source	code.	However,	CRAN	does	not	rebuild	the	vignette.	It	only	checks	that	the
code	is	runnable	(by	running	it).	This	means	that	any	packages	used	by	the	vignette	must
be	declared	in	the	DESCRIPTION.	But	this	also	means	that	you	can	use	R	Markdown
(which	uses	pandoc)	even	though	CRAN	doesn’t	have	pandoc	installed.

Some	common	problems	include	the	following:

The	vignette	builds	interactively,	but	when	checking,	it	fails	with	an	error	about	a
missing	package	that	you	know	is	installed.	This	means	that	you’ve	forgotten	to	declare
that	dependency	in	the	DESCRIPTION	(usually	it	should	go	in	Suggests).

Everything	works	interactively,	but	the	vignette	doesn’t	show	up	after	you’ve	installed
the	package.	One	of	the	following	may	have	occurred.	First,	because	RStudio’s	“Build
&	Reload”	doesn’t	build	vignettes,	you	may	need	to	run	devtools::install()	instead.
Next,	check	the	following:
Is	the	directory	called	vignettes/	and	not	vignette/?

Have	you	inadvertently	excluded	the	vignettes	with	.Rbuildignore?

Do	you	have	the	necessary	vignette	metadata?

If	you	use	error	=	TRUE,	you	must	use	purl	=	FALSE.

You’ll	need	to	watch	the	file	size.	If	you	include	a	lot	of	graphics,	it’s	easy	to	create	a	very
large	file.	There	are	no	hard-and-fast	rules,	but	if	you	have	a	very	large	vignette,	be
prepared	to	either	justify	the	file	size	or	to	make	it	smaller.



Where	to	Go	Next
If	you’d	like	more	control	over	the	appearance	of	your	vignette,	you’ll	need	to	learn	more
about	R	Markdown.	The	R	Markdown	website	is	a	great	place	to	start.	There	you	can
learn	about	alternative	output	formats	(like	LaTex	and	PDF)	and	how	you	can	incorporate
raw	HTML	and	LaTeX	if	you	need	additional	control.

If	you	write	a	nice	vignette,	consider	submitting	it	to	the	Journal	of	Statistical	Software	or
The	R	Journal.	Both	journals	are	electronic	only	and	peer	reviewed.	Comments	from
reviewers	can	be	very	helpful	for	improving	the	quality	of	your	vignette	and	the	related
software.

http://rmarkdown.rstudio.com




Chapter	7.	Testing

Testing		is	a	vital	part	of	package	development.	It	ensures	that	your	code	does	what	you
want	it	to	do.	Testing,	however,	adds	an	additional	step	to	your	development	workflow.
The	goal	of	this	chapter	is	to	show	you	how	to	make	this	task	easier	and	more	effective	by
doing	formal	automated	testing	using	the	testthat	package.

Up	until	now,	your	workflow	probably	looked	like	this:

1.	 Write	a	function.

2.	 Load	it	with	Ctrl/Cmd-Shift-L	or	devtools::load_all().

3.	 Experiment	with	it	in	the	console	to	see	if	it	works.

4.	 Rinse	and	repeat.

Although	you	are	testing	your	code	in	this	workflow,	you’re	only	doing	it	informally.	The
problem	with	this	approach	is	that	when	you	come	back	to	this	code	in	three	months’	time
to	add	a	new	feature,	you’ve	probably	forgotten	some	of	the	informal	tests	you	ran	the	first
time	around.	This	makes	it	very	easy	to	break	code	that	used	to	work.

I	started	using	automated	tests	because	I	discovered	I	was	spending	too	much	time
refixing	bugs	that	I’d	already	fixed	before.	While	writing	code	or	fixing	bugs,	I’d	perform
interactive	tests	to	make	sure	the	code	worked.	But	I	never	had	a	system	that	could	store
those	tests	so	I	could	rerun	them	as	needed.	I	think	that	this	is	a	common	practice	among	R
programmers.	It’s	not	that	you	don’t	test	your	code,	it’s	that	you	don’t	automate	your	tests.

In	this	chapter,	you’ll	learn	how	to	graduate	from	using	informal	ad	hoc	testing,	done	at
the	command	line,	to	formal	automated	testing	(aka	unit	testing).	While	turning	casual
interactive	tests	into	reproducible	scripts	requires	a	little	more	work	up	front,	it	pays	off	in
four	ways:

Fewer	bugs

Because	you’re	explicit	about	how	your	code	should	behave,	you	will	have	fewer
bugs.	The	reason	why	is	a	bit	like	the	reason	double	entry	bookkeeping	works:
because	you	describe	the	behavior	of	your	code	in	two	places,	both	in	your	code	and
in	your	tests,	you	are	able	to	check	one	against	the	other.	By	following	this	approach
to	testing,	you	can	be	sure	that	bugs	that	you’ve	fixed	in	the	past	will	never	come
back	to	haunt	you.

Better	code	structure



Code	that’s	easy	to	test	is	usually	better	designed.	This	is	because	writing	tests	forces
you	to	break	up	complicated	parts	of	your	code	into	separate	functions	that	can	work
in	isolation.	This	reduces	duplication	in	your	code.	As	a	result,	functions	will	be
easier	to	test,	understand,	and	work	with	(it’ll	be	easier	to	combine	them	in	new
ways).

Easier	restarts

If	you	always	finish	a	coding	session	by	creating	a	failing	test	(e.g.,	for	the	next
feature	you	want	to	implement),	testing	makes	it	easier	for	you	to	pick	up	where	you
left	off:	your	tests	will	let	you	know	what	to	do	next.

Robust	code

If	you	know	that	all	the	major	functionality	of	your	package	has	an	associated	test,
you	can	confidently	make	big	changes	without	worrying	about	accidentally	breaking
something.	For	me,	this	is	particularly	useful	when	I	think	I	have	a	simpler	way	to
accomplish	a	task	(usually	the	reason	my	solution	is	simpler	is	that	I’ve	forgotten	an
important	use	case!).

If	you’re	familiar	with	unit	testing	in	other	languages,	you	should	note	that	there	are	some
fundamental	differences	with	testthat.	This	is	because	R	is,	at	heart,	more	a	functional
programming	language	than	an	object-oriented	(OO)	programming	language.	For	instance,
because	R’s	main	OO	systems	(S3	and	S4)	are	based	on	generic	functions	(i.e.,	methods
belong	to	functions	not	classes),	testing	approaches	built	around	objects	and	methods
don’t	make	much	sense.



Test	Workflow
To	set	up	your	package	to	use	testthat,	run	the	following:

devtools::use_testthat()

This	will:

1.	 Create	a	tests/testthat	directory.

2.	 Add	testthat	to	the	Suggests	field	in	the	DESCRIPTION.

3.	 Create	a	file	tests/testthat.R	that	runs	all	your	tests	are	when	R	CMD	check	runs.
(You’ll	learn	more	about	that	in	Chapter	14.)

Once	you’re	set	up,	the	workflow	is	simple:

1.	 Modify	your	code	or	tests.

2.	 Test	your	package	with	Ctrl/Cmd-Shift-T	or	devtools::test().

3.	 Repeat	until	all	tests	pass.

The	testing	output	looks	like	this:

Expectation	:	...........

rv	:	...

Variance	:	....123.45.

Each	line	represents	a	test	file.	Each	.	represents	a	passed	test.	Each	number	represents	a
failed	test.	The	numbers	index	into	a	list	of	failures	that	provides	more	details:

1.	Failure(@test-variance.R#22):	Variance	correct	for	discrete	uniform	rvs	-----

VAR(dunif(0,	10))	not	equal	to	var_dunif(0,	10)

Mean	relative	difference:	3

2.	Failure(@test-variance.R#23):	Variance	correct	for	discrete	uniform	rvs	-----

VAR(dunif(0,	100))	not	equal	to	var_dunif(0,	100)

Mean	relative	difference:	3.882353

Each	failure	gives	a	description	of	the	test	(e.g.,	“Variance	correct	for	discrete	uniform
rvs”),	its	location	(e.g.,	“@test-variance.R#22”),	and	the	reason	for	the	failure	(e.g.,
“VAR(dunif(0,	10))	not	equal	to	var_dunif(0,	10)”).	The	goal	is	to	pass	all	the	tests.



Test	Structure
A	test	file	lives	in	tests/testthat.	Its	name	must	start	with	test.	Here’s	an	example	of	a	test
file	from	the	stringr	package:

library(stringr)

context("String	length")

test_that("str_length	is	number	of	characters",	{

		expect_equal(str_length("a"),	1)

		expect_equal(str_length("ab"),	2)

		expect_equal(str_length("abc"),	3)

})

test_that("str_length	of	factor	is	length	of	level",	{

		expect_equal(str_length(factor("a")),	1)

		expect_equal(str_length(factor("ab")),	2)

		expect_equal(str_length(factor("abc")),	3)

})

test_that("str_length	of	missing	is	missing",	{

		expect_equal(str_length(NA),	NA_integer_)

		expect_equal(str_length(c(NA,	1)),	c(NA,	1))

		expect_equal(str_length("NA"),	2)

})

Tests	are	organized	hierarchically:	expectations	are	grouped	into	tests,	which	are
organized	in	files:

An	expectation	is	the	atom	of	testing.	It	describes	the	expected	result	of	a	computation:
Does	it	have	the	right	value	and	right	class?	Does	it	produce	error	messages	when	it
should?	An	expectation	automates	visual	checking	of	results	in	the	console.
Expectations	are	functions	that	start	with	expect_.

A		test	groups	together	multiple	expectations	to	test	the	output	from	a	simple	function,
a	range	of	possibilities	for	a	single	parameter	from	a	more	complicated	function,	or
tightly	related	functionality	from	across	multiple	functions.	This	is	why	they	are
sometimes	called	unit,	as	they	test	one	unit	of	functionality.	A	test	is	created	with
test_that().

A	file	groups	together	multiple	related	tests.	Files	are	given	a	human-readable	name
with	context().

Expectations	are	described	in	detail	in	the	next	section.



Expectations
An	expectation	is	the	finest	level	of	testing.	It	makes	a	binary	assertion	about	whether	or
not	a	function	call	does	what	you	expect.	All	expectations	have	a	similar	structure:

They	start	with	expect_.

They	have	two	arguments:	the	first	is	the	actual	result,	the	second	is	what	you	expect.

If	the	actual	and	expected	results	don’t	agree,	testthat	throws	an	error.

While	you’ll	normally	put	expectations	inside	tests	inside	files,	you	can	also	run	them
directly.	This	makes	it	easy	to	explore	expectations	interactively.	There	are	almost	20
expectations	in	the	testthat	package.	The	most	important	are	discussed	here.

There	are	two	basic	ways	to	test	for	equality:	expect_equal()	and	expect_identical().
expect_equal()	is	the	most	commonly	used;	it	uses	all.equal()	to	check	for	equality
within	a	numerical	tolerance:

expect_equal(10,	10)

expect_equal(10,	10	+	1e-7)

expect_equal(10,	11)

#>	Error:	10	not	equal	to	11

#>	Mean	relative	difference:	0.09090909

If	you	want	to	test	for	exact	equivalence,	or	need	to	compare	a	more	exotic	object	like	an
environment,	use	expect_identical().	It’s	built	on	top	of	identical():

expect_equal(10,	10	+	1e-7)

expect_identical(10,	10	+	1e-7)

#>	Error:	10	is	not	identical	to	10	+	1e-07.	Differences:	

#>	Objects	equal	but	not	identical

expect_match()	matches	a	character	vector	against	a	regular	expression.	The	optional	all
argument	controls	whether	all	elements	or	just	one	element	needs	to	match.	This	is
powered	by	grepl()	(additional	arguments	like	ignore.case	=	FALSE	or	fixed	=	TRUE
are	passed	on	down):

string	<-	"Testing	is	fun!"

expect_match(string,	"Testing")	

#	Fails,	match	is	case-sensitive

expect_match(string,	"testing")

#>	Error:	string	does	not	match	'testing'.	Actual	value:	"Testing	is	fun!"

#	Additional	arguments	are	passed	to	grepl:

expect_match(string,	"testing",	ignore.case	=	TRUE)

Three	variations	of	expect_match()	let	you	check	for	other	types	of	result:
expect_output()	inspects	printed	output;	expect_message()	inspects	messages;
expect_warning()	inspects	warnings;	and	expect_error()	inspects	errors.	For	example:

a	<-	list(1:10,	letters)



expect_output(str(a),	"List	of	2")

expect_output(str(a),	"int	[1:10]",	fixed	=	TRUE)

expect_message(library(mgcv),	"This	is	mgcv")

With	expect_message(),	expect_warning(),	and	expect_error()	you	can	leave	the
second	argument	blank	if	you	just	want	to	see	if	a	message,	warning,	or	error	is	created.
However,	it’s	normally	better	to	be	explicit,	and	provide	some	text	from	the	message:

expect_warning(log(-1))

expect_error(1	/	"a")	

#	But	always	better	to	be	explicit

expect_warning(log(-1),	"NaNs	produced")

expect_error(1	/	"a",	"non-numeric	argument")

#	Failure	to	produce	a	warning	or	error	when	expected	is	an	error

expect_warning(log(0))

#>	Error:	log(0)	no	warnings	given

expect_error(1	/	2)	

#>	Error:	1/2	code	did	not	generate	an	error

expect_is()	checks	that	an	object	inherit()s	from	a	specified	class:

model	<-	lm(mpg	~	wt,	data	=	mtcars)

expect_is(model,	"lm")

expect_is(model,	"glm")

#>	Error:	model	inherits	from	lm	not	glm

expect_true()	and	expect_false()	are	useful	catchalls	if	none	of	the	other	expectations
do	what	you	need.

Sometimes	you	don’t	know	exactly	what	the	result	should	be,	or	it’s	too	complicated	to
easily	re-create	in	code.	In	that	case,	the	best	you	can	do	is	check	that	the	result	is	the
same	as	last	time.	expect_equal_to_reference()	caches	the	result	the	first	time	it’s	run,
and	then	compares	it	to	subsequent	runs.	If	for	some	reason	the	result	does	change,	just
delete	the	cache	(*)	file	and	retest.

Running	a	sequence	of	expectations	is	useful	because	it	ensures	that	your	code	behaves	as
expected.	You	could	even	use	an	expectation	within	a	function	to	check	that	the	inputs	are
what	you	expect.	However,	they’re	not	so	useful	when	something	goes	wrong.	All	you
know	is	that	something	is	not	as	expected.	You	don’t	know	the	goal	of	the	expectation.
Tests,	described	next,	organize	expectations	into	coherent	blocks	that	describe	the	overall
goal	of	a	set	of	expectations.



Writing	Tests
Each	test	should	have	an	informative	name	and	cover	a	single	unit	of	functionality.	The
idea	is	that	when	a	test	fails,	you’ll	know	what’s	wrong	and	where	in	your	code	to	look	for
the	problem.	You	create	a	new	test	using	test_that(),	with	the	test	name	and	code	block
as	arguments.	The	test	name	should	complete	the	sentence	“Test	that	…”.	The	code	block
should	be	a	collection	of	expectations.

It’s	up	to	you	how	to	organize	your	expectations	into	tests.	The	main	thing	is	that	the
message	associated	with	the	test	should	be	informative	so	that	you	can	quickly	narrow
down	the	source	of	the	problem.	Try	to	avoid	putting	too	many	expectations	in	one	test	—
it’s	better	to	have	many	smaller	tests	than	a	small	handful	of	larger	tests.

Each	test	is	run	in	its	own	environment	and	is	self-contained.	However,	testthat	doesn’t
know	how	to	clean	up	after	actions	affect	the	R	landscape:

The	filesystem:	Creating	and	deleting	files,	changing	the	working	directory,	and	so	on

The	search	path:	library(),	attach()

Global	options:	options()	and	par()

When	you	use	these	actions	in	tests,	you’ll	need	to	clean	up	after	yourself.	While	many
other	testing	packages	have	setup	and	teardown	methods	that	are	run	automatically	before
and	after	each	test,	these	are	not	so	important	with	testthat	because	you	can	create	objects
outside	of	the	tests	and	you	can	rely	on	R’s	copy-on-modify	semantics	to	keep	them
unchanged	between	test	runs.	To	clean	up	other	actions,	you	can	use	regular	R	functions.



What	to	Test
“Whenever	you	are	tempted	to	type	something	into	a	print	statement	or	a	debugger
expression,	write	it	as	a	test	instead.”

—	Martin	Fowler

There	is	a	fine	balance	to	writing	tests.	Each	test	that	you	write	makes	your	code	less
likely	to	change	inadvertently;	but	it	also	can	make	it	harder	to	change	your	code	on
purpose.	It’s	hard	to	give	good	general	advice	about	writing	tests,	but	you	might	find	these
points	helpful:

Focus	on	testing	the	external	interface	to	your	functions	—	if	you	test	the	internal
interface,	then	it’s	harder	to	change	the	implementation	in	the	future	because	as	well	as
modifying	the	code,	you’ll	also	need	to	update	all	the	tests.

Strive	to	test	each	behavior	in	one	and	only	one	test.	If	a	particular	behavior	changes	at
a	later	point,	you	only	need	to	update	a	single	test.

Avoid	testing	simple	code	that	you’re	confident	will	work.	Instead,	focus	your	time	on
code	that	you’re	not	sure	about,	and	code	that	is	fragile	or	has	complicated
interdependencies.	That	said,	I	often	find	I	make	the	most	mistakes	when	I	falsely
assume	that	the	problem	is	simple	and	doesn’t	need	any	tests.

Always	write	a	test	when	you	discover	a	bug.	You	may	find	it	helpful	to	adopt	the	test-
first	philosophy.	There	you	always	start	by	writing	the	tests,	and	then	write	the	code
that	makes	them	pass.	This	reflects	an	important	problem-solving	strategy:	start	by
establishing	your	success	criteria,	how	you	know	if	you’ve	solved	the	problem.



Skipping	a	Test
Sometimes	it’s	impossible	to	perform	a	test	—	you	may	not	have	an	Internet	connection	or
you	may	be	missing	an	important	file.	Unfortunately,	another	likely	reason	follows	from
this	simple	rule:	the	more	machines	you	use	to	write	your	code,	the	more	likely	it	is	that
you	won’t	be	able	to	run	all	of	your	tests.	In	short,	there	are	times	when,	instead	of	getting
a	failure,	you	just	want	to	skip	a	test.	To	do	that,	you	can	use	the	skip()	function	—	rather
than	throwing	an	error	it	simply	prints	an	S	in	the	output:

check_api	<-	function()	{

		if	(not_working())	{

				skip("API	not	available")

		}

}

test_that("foo	api	returns	bar	when	given	baz",	{

		check_api()

		...

})



Building	Your	Own	Testing	Tools
As	you	start	to	write	more	tests,	you	might	notice	duplication	in	your	code.	For	example,
the	following	code	shows	one	test	of	the	floor_date()	function	from
library(lubridate).	There	are	seven	expectations	that	check	the	results	of	rounding	a
date	down	to	the	nearest	second,	minute,	hour,	and	so	on.	There’s	a	lot	of	duplication
(which	increases	the	chance	of	bugs),	so	we	might	want	to	extract	common	behavior	into	a
new	function:

library(lubridate)

test_that("floor_date	works	for	different	units",	{

		base	<-	as.POSIXct("2009-08-03	12:01:59.23",	tz	=	"UTC")

		expect_equal(floor_date(base,	"second"),	

				as.POSIXct("2009-08-03	12:01:59",	tz	=	"UTC"))

		expect_equal(floor_date(base,	"minute"),	

				as.POSIXct("2009-08-03	12:01:00",	tz	=	"UTC"))

		expect_equal(floor_date(base,	"hour"),			

				as.POSIXct("2009-08-03	12:00:00",	tz	=	"UTC"))

		expect_equal(floor_date(base,	"day"),				

				as.POSIXct("2009-08-03	00:00:00",	tz	=	"UTC"))

		expect_equal(floor_date(base,	"week"),			

				as.POSIXct("2009-08-02	00:00:00",	tz	=	"UTC"))

		expect_equal(floor_date(base,	"month"),		

				as.POSIXct("2009-08-01	00:00:00",	tz	=	"UTC"))

		expect_equal(floor_date(base,	"year"),			

				as.POSIXct("2009-01-01	00:00:00",	tz	=	"UTC"))

})

I’d	start	by	defining	a	couple	of	helper	functions	to	make	each	expectation	more	concise.
That	allows	each	test	to	fit	on	one	line,	so	you	can	line	up	actual	and	expected	values	to
make	it	easier	to	see	the	differences:

test_that("floor_date	works	for	different	units",	{

		base	<-	as.POSIXct("2009-08-03	12:01:59.23",	tz	=	"UTC")

		floor_base	<-	function(unit)	floor_date(base,	unit)

		as_time	<-	function(x)	as.POSIXct(x,	tz	=	"UTC")

		expect_equal(floor_base("second"),	as_time("2009-08-03	12:01:59"))

		expect_equal(floor_base("minute"),	as_time("2009-08-03	12:01:00"))

		expect_equal(floor_base("hour"),			as_time("2009-08-03	12:00:00"))

		expect_equal(floor_base("day"),				as_time("2009-08-03	00:00:00"))

		expect_equal(floor_base("week"),			as_time("2009-08-02	00:00:00"))

		expect_equal(floor_base("month"),		as_time("2009-08-01	00:00:00"))

		expect_equal(floor_base("year"),			as_time("2009-01-01	00:00:00"))

})

We	could	go	a	step	further	and	create	a	custom	expectation	function:

base	<-	as.POSIXct("2009-08-03	12:01:59.23",	tz	=	"UTC")

expect_floor_equal	<-	function(unit,	time)	{

		expect_equal(floor_date(base,	unit),	as.POSIXct(time,	tz	=	"UTC"))

}

expect_floor_equal("year",	"2009-01-01	00:00:00")

However,	if	the	expectation	fails,	this	doesn’t	give	very	informative	output:

expect_floor_equal("year",	"2008-01-01	00:00:00")

#>	Error:	floor_date(base,	unit)	not	equal	to	as.POSIXct(time,	tz	=	"UTC")

#>	Mean	absolute	difference:	31622400



Instead,	you	can	use	a	little	nonstandard	evaluation	to	produce	something	more
informative.	The	key	is	to	use	bquote()	and	eval().	In	the	following	bquote()	call,	note
the	use	of	.(x)	—	the	contents	of	()	will	be	inserted	into	the	call:

expect_floor_equal	<-	function(unit,	time)	{

		as_time	<-	function(x)	as.POSIXct(x,	tz	=	"UTC")

		eval(bquote(expect_equal(floor_date(base,	.(unit)),	as_time(.(time)))))

}

expect_floor_equal("year",	"2008-01-01	00:00:00")

#>	Error:	floor_date(base,	"year")	not	equal	to	as_time("2008-01-01	00:00:00")

#>	Mean	absolute	difference:	31622400

This	sort	of	refactoring	is	often	worthwhile	because	removing	redundant	code	makes	it
easier	to	see	what’s	changing.	Readable	tests	give	you	more	confidence	that	they’re
correct:

test_that("floor_date	works	for	different	units",	{

		as_time	<-	function(x)	as.POSIXct(x,	tz	=	"UTC")

		expect_floor_equal	<-	function(unit,	time)	{

				eval(bquote(expect_equal(floor_date(base,	.(unit)),	as_time(.(time)))))

		}

		base	<-	as_time("2009-08-03	12:01:59.23")

		expect_floor_equal("second",	"2009-08-03	12:01:59")

		expect_floor_equal("minute",	"2009-08-03	12:01:00")

		expect_floor_equal("hour",			"2009-08-03	12:00:00")

		expect_floor_equal("day",				"2009-08-03	00:00:00")

		expect_floor_equal("week",			"2009-08-02	00:00:00")

		expect_floor_equal("month",		"2009-08-01	00:00:00")

		expect_floor_equal("year",			"2009-01-01	00:00:00")

})

http://adv-r.had.co.nz/Computing-on-the-language.html


Test	Files
The	highest-level	structure	of	tests	is	the	file.	Each	file	should	contain	a	single	context()
call	that	provides	a	brief	description	of	its	contents.	Just	like	the	files	in	the	R/	directory,
you	are	free	to	organize	your	tests	any	way	that	you	like.	But	again,	the	two	extremes	are
clearly	bad	(all	tests	in	one	file,	one	file	per	test).	You	need	to	find	a	happy	medium	that
works	for	you.	A	good	starting	place	is	to	have	one	file	of	tests	for	each	complicated
function.



CRAN	Notes
CRAN	will	run	your	tests	on	all	CRAN	platforms:	Windows,	Mac,	Linux,	and	Solaris.
There	are	a	few	things	to	bear	in	mind:

Tests	need	to	run	relatively	quickly	—	aim	for	under	a	minute.	Place	skip_on_cran()
at	the	beginning	of	long-running	tests	that	shouldn’t	be	run	on	CRAN	—	they’ll	still	be
run	locally,	but	not	on	CRAN.

Note	that	tests	are	always	run	in	the	English	language	(LANGUAGE=EN)	and	with	C	sort
order	(LC_COLLATE=C).	This	minimizes	spurious	differences	between	platforms.

Be	careful	about	testing	things	that	are	likely	to	be	variable	on	CRAN	machines.	It’s
risky	to	test	how	long	something	takes	(because	CRAN	machines	are	often	heavily
loaded)	or	to	test	parallel	code	(because	CRAN	runs	multiple	package	tests	in	parallel,
multiple	cores	will	not	always	available).	Numerical	precision	can	also	vary	across
platforms	(it’s	often	less	precise	on	32-bit	versions	of	R),	so	use	expect_equal()	rather
than	expect_identical().





Chapter	8.	Namespace

The	package	namespace	(as	recorded	in	the	NAMESPACE	file)	is	one	of	the	more
confusing	parts	of	building	a	package.	It’s	a	fairly	advanced	topic,	and	by	and	large,	not
that	important	if	you’re	only	developing	packages	for	yourself.	However,	understanding
namespaces	is	vital	if	you	plan	to	submit	your	package	to	CRAN.	This	is	because	CRAN
requires	that	your	package	plays	nicely	with	other	packages.

When	you	first	start	using	namespaces,	it’ll	seem	like	a	lot	of	work	for	little	gain.
However,	having	a	high-quality	namespace	helps	encapsulate	your	package	and	makes	it
self-contained.	This	ensures	that	other	packages	won’t	interfere	with	your	code,	that	your
code	won’t	interfere	with	other	packages,	and	that	your	package	works	regardless	of	the
environment	in	which	it’s	run.



Motivation
As	the	name	suggests,	namespaces	provide	“spaces”	for	“names.”	They	provide	a	context
for	looking	up	the	value	of	an	object	associated	with	a	name.

Without	knowing	it,	you’ve	probably	already	used	namespaces.	For	example,	have	you
ever	used	the	::	operator?	It	disambiguates	functions	with	the	same	name.	For	example,
both	plyr	and	Hmisc	provide	a	summarize()	function.	If	you	load	plyr,	then	Hmisc,
summarize()	will	refer	to	the	Hmisc	version.	But	if	you	load	the	packages	in	the	opposite
order,	summarize()	will	refer	to	the	plyr	version.	This	can	be	confusing.	Instead,	you	can
explicitly	refer	to	specific	functions:	Hmisc::summarize()	and	plyr::summarize().	Then
the	order	in	which	the	packages	are	loaded	won’t	matter.

Namespaces	make	your	packages	self-contained	in	two	ways:	the	imports	and	the	exports.
The	imports	defines	how	a	function	in	one	package	finds	a	function	in	another.	To
illustrate,	consider	what	happens	when	someone	changes	the	definition	of	a	function	that
you	rely	on	—	for	example,	the	simple	nrow()	function	in	base	R:

nrow

#>	function	(x)	

#>	dim(x)[1L]

#>	<bytecode:	0x1f681a0>

#>	<environment:	namespace:base>

It’s	defined	in	terms	of	dim().	So	what	will	happen	if	we	override	dim()	with	our	own
definition?	Does	nrow()	break?

dim	<-	function(x)	c(1,	1)

dim(mtcars)

#>	[1]	1	1

nrow(mtcars)

#>	[1]	32

Surprisingly,	it	does	not!	That’s	because	when	nrow()	looks	for	an	object	called	dim(),	it
uses	the	package	namespace,	so	it	finds	dim()	in	the	base	environment,	not	the	dim()	we
created	in	the	global	environment.

The	exports	helps	you	avoid	conflicts	with	other	packages	by	specifying	which	functions
are	available	outside	of	your	package	(internal	functions	are	available	only	within	your
package	and	can’t	easily	be	used	by	another	package).	Generally,	you	want	to	export	a
minimal	set	of	functions;	the	fewer	you	export,	the	smaller	the	chance	of	a	conflict.
Although	conflicts	aren’t	the	end	of	the	world	(because	you	can	always	use	::	to
disambiguate),	they’re	best	avoided	where	possible	because	it	makes	the	lives	of	your
users	easier.



Search	Path
To	understand	why	namespaces	are	important,	you	need	a	solid	understanding	of	search
paths.	To	call	a	function,	R	first	has	to	find	it.	R	does	this	by	first	looking	in	the	global
environment.	If	R	doesn’t	find	it	there,	it	looks	in	the	search	path,	the	list	of	all	the
packages	you	have	attached.	You	can	see	this	list	by	running	search().	For	example,
here’s	the	search	path	for	the	code	in	this	book:

search()

#>		[1]	".GlobalEnv"								"package:methods"			"package:bookdown"	

#>		[4]	"package:rmarkdown"	"package:stats"					"package:graphics"	

#>		[7]	"package:grDevices"	"package:utils"					"package:datasets"	

#>	[10]	"Autoloads"									"package:base"

There’s	an	important	difference	between	loading	and	attaching	a	package.	Normally	when
you	talk	about	loading	a	package	you	think	of	library(),	but	that	actually	attaches	the
package.

Loading	an	installed	package	will	load	code,	data,	and	any	DLLs;	register	S3	and	S4
methods;	and	run	the	.onLoad()	function.	After	loading,	the	package	is	available	in
memory,	but	it’s	on	the	search	path.	That	means	you	can’t	access	its	components	without
using	::.	There	are	two	ways	to	load	a	package.	The	most	common	is	to	use	::,	which
automatically	loads	a	package	if	needed.	It’s	also	possible	to	explicitly	load	a	package
with	requireNamespace()	or	loadNamespace(),	but	this	is	rarely	needed.

Attaching	a	loaded	package	puts	it	in	the	search	path.	The	most	common	way	to	attach	a
package	is	with	library()	or	require(),	which	automatically	load	the	package	if	needed.
You	can	see	the	currently	attached	packages	with	search().

If	a	package	isn’t	installed,	loading	(and	hence	attaching)	will	fail	with	an	error.

To	see	the	differences	more	clearly,	consider	two	ways	of	running	expect_that()	from
the	testthat	package.	If	we	use	library(),	testthat	is	attached	to	the	search	path.	If	we	use
::,	it’s	not:

old	<-	search()

testthat::expect_equal(1,	1)

setdiff(search(),	old)

#>	character(0)

expect_true(TRUE)

#>	Error	in	eval(expr,	envir,	enclos):	could	not	find	function	"expect_true"

				

library(testthat)

expect_equal(1,	1)

setdiff(search(),	old)

#>	[1]	"package:testthat"

expect_true(TRUE)

There	are	four	functions	that	make	a	package	available,	as	listed	in	the	following	table.
They	differ	based	on	whether	they	load	or	attach,	and	what	happens	if	the	package	is	not
found	(i.e.,	throws	an	error	or	returns	FALSE):



	 Throws	error Returns	FALSE

Load loadNamespace("x") requireNamespace("x",	quietly	=	TRUE)

Attach library(x) require(x,	quietly	=	TRUE)

Of	the	four,	you	should	only	ever	use	two:

Use	library(x)	in	data	analysis	scripts.	It	will	throw	an	error	if	the	package	is	not
installed,	and	will	terminate	the	script.	You	want	to	attach	the	package	to	save	typing.
Never	use	library()	in	a	package.

Use	requireNamespace(x,	quietly	=	TRUE)	inside	a	package	if	you	want	a	specific
action	(e.g.,	throw	an	error)	depending	on	whether	or	not	a	suggested	package	is
installed.

You	never	need	to	use	require()	(requireNamespace()	is	almost	always	better),	or
loadNamespace()	(which	is	only	needed	for	internal	R	code).	You	should	never	use
require()	or	library()	in	a	package:	instead,	use	the	Depends	or	Imports	fields	in	the
DESCRIPTION.

Now’s	a	good	time	to	come	back	to	an	important	issue	that	we	glossed	over	earlier.	What’s
the	difference	between	Depends	and	Imports	in	the	DESCRIPTION?	When	should	you
use	one	or	the	other?

Listing	a	package	in	either	Depends	or	Imports	ensures	that	it’s	installed	when	needed.
The	main	difference	is	that	where	Imports	just	loads	the	package,	Depends	attaches
it.There	are	no	other	differences.	The	rest	of	the	advice	in	this	chapter	applies	whether	or
not	the	package	is	in	Depends	or	Imports.

Unless	there	is	a	good	reason	otherwise,	you	should	always	list	packages	in	Imports,	not
Depends.	That’s	because	a	good	package	is	self-contained,	and	minimizes	changes	to	the
global	environment	(including	the	search	path).	The	only	exception	is	if	your	package	is
designed	to	be	used	in	conjunction	with	another	package.	For	example,	the	analogue
package	builds	on	top	of	vegan.	It’s	not	useful	without	vegan,	so	it	has	vegan	in	Depends
instead	of	Imports.

Now	that	you	understand	the	importance	of	the	namespace,	let’s	dive	into	the	nitty-gritty
details.	The	two	sides	of	the	package	namespace,	imports	and	exports,	are	both	described
by	the	NAMESPACE	file.	You’ll	learn	what	this	file	looks	like	in	the	next	section.	In	the
section	after	that,	you’ll	learn	the	details	of	exporting	and	importing	functions	and	other
objects.

https://github.com/gavinsimpson/analogue
https://github.com/vegandevs/vegan


The	NAMESPACE
The	following	code	is	an	excerpt	of	the	NAMESPACE	file	from	the	testthat	package:

#	Generated	by	roxygen2	(4.0.2):	do	not	edit	by	hand

S3method(as.character,expectation)

S3method(compare,character)

export(auto_test)

export(auto_test_package)

export(colourise)

export(context)

exportClasses(ListReporter)

exportClasses(MinimalReporter)

importFrom(methods,setRefClass)

useDynLib(testthat,duplicate_)

useDynLib(testthat,reassign_function)

You	can	see	that	the	NAMESPACE	file	looks	a	bit	like	R	code.	Each	line	contains	a
directive:	S3method(),	export(),	exportClasses(),	and	so	on.	Each	directive	describes
an	R	object,	and	says	whether	it’s	exported	from	this	package	to	be	used	by	others,	or	if
it’s	imported	from	another	package	to	be	used	locally.

In	total,	there	are	10	namespace	directives.	Five	describe	exports:
export()

Export	functions	(including	S3	and	S4	generics)
exportPattern()

Export	all	functions	that	match	a	pattern

exportClasses()	and	exportMethods()

Export	S4	classes	and	methods
S3method()

Export	S3	methods

And	five	describe	imports:
import()

Import	all	functions	from	a	package
importFrom()

Import	selected	functions	(including	S4	generics)

importClassesFrom()	and	importMethodsFrom()

Import	S4	classes	and	methods
useDynLib()

Import	a	function	from	C	(this	is	described	in	more	detail	in	Chapter	10)

I	don’t	recommend	writing	these	directives	by	hand.	Instead,	in	this	chapter,	you’ll	learn
how	to	generate	the	NAMESPACE	file	with	roxygen2.	There	are	three	main	advantages	to
using	roxygen2:



Namespace	definitions	live	next	to	their	associated	functions,	so	when	you	read	the
code	it’s	easier	to	see	what’s	being	imported	and	exported.

Roxygen2	abstracts	away	some	of	the	details	of	NAMESPACE.	You	only	need	to	learn
one	tag,	@export,	which	will	automatically	generate	the	right	directive	for	functions,
S3	methods,	S4	methods,	and	S4	classes.

Roxygen2	keeps	NAMESPACE	tidy.	No	matter	how	many	times	you	use	@importFrom
foo	bar,	you’ll	only	get	one	importFrom(foo,	bar)	in	your	NAMESPACE.	This
makes	it	easy	to	attach	import	directives	to	every	function	that	needs	them,	rather	than
trying	to	manage	in	one	central	place.

Note	that	you	can	choose	to	use	roxygen2	to	generate	just	NAMESPACE,	just	man/*.Rd,	or
both.	If	you	don’t	use	any	namespace-related	tags,	roxygen2	won’t	touch	NAMESPACE.	If
you	don’t	use	any	documentation-related	tags,	roxygen2	won’t	touch	man/.



Workflow
Generating	the	namespace	with	roxygen2	is	just	like	generating	function	documentation
with	roxygen2.	You	use	roxygen2	blocks	(starting	with	#')	and	tags	(starting	with	@).	The
workflow	is	the	same:

1.	 Add	roxygen	comments	to	your	.R	files.

2.	 Run	devtools::document()	(or	press	Ctrl/Cmd-Shift-D	in	RStudio)	to	convert
roxygen	comments	to	.Rd	files.

3.	 Look	at	NAMESPACE	and	run	tests	to	check	that	the	specification	is	correct.

4.	 Rinse	and	repeat	until	the	correct	functions	are	exported.



Exports
For	a	function	to	be	usable	outside	of	your	package,	you	must	export	it.	When	you	create	a
new	package	with	devtools::create(),	it	produces	a	temporary	NAMESPACE	that
exports	everything	in	your	package	that	doesn’t	start	with	.	(a	single	period).	If	you’re	just
working	locally,	it’s	fine	to	export	everything	in	your	package.	However,	if	you’re
planning	on	sharing	your	package	with	others,	it’s	a	really	good	idea	to	only	export	needed
functions.	This	reduces	the	chances	of	a	conflict	with	another	package.

To	export	an	object,	put	@export	in	its	roxygen	block.	For	example:

#'	@export

foo	<-	function(x,	y,	z)	{

		...

}

This	will	then	generate	export(),	exportMethods(),	exportClass(),	or	S3method()
depending	on	the	type	of	the	object.

You	export	functions	that	you	want	other	people	to	use.	Exported	functions	must	be
documented,	and	you	must	be	cautious	when	changing	their	interface	—	other	people	are
using	them!	Generally,	it’s	better	to	export	too	little	than	too	much.	It’s	easy	to	export
things	that	you	didn’t	before;	it’s	hard	to	stop	exporting	a	function	because	it	might	break
existing	code.	Always	err	on	the	side	of	caution,	and	simplicity.	It’s	easier	to	give	people
more	functionality	than	it	is	to	take	away	stuff	they’re	used	to.

I	believe	that	packages	that	have	a	wide	audience	should	strive	to	do	one	thing	and	do	it
well.	All	functions	in	a	package	should	be	related	to	a	single	problem	(or	a	set	of	closely
related	problems).	Any	functions	not	related	to	that	purpose	should	not	be	exported.	For
example,	most	of	my	packages	have	a	utils.R	file	that	contains	many	small	functions	that
are	useful	for	me,	but	aren’t	part	of	the	core	purpose	of	those	packages.	I	never	export
these	functions:

#	Defaults	for	NULL	values

`%||%`	<-	function(a,	b)	if	(is.null(a))	b	else	a

#	Remove	NULLs	from	a	list

compact	<-	function(x)	{

		x[!vapply(x,	is.null,	logical(1))]

}

That	said,	if	you’re	creating	a	package	for	yourself,	it’s	far	less	important	to	be	so
disciplined.	Because	you	know	what’s	in	your	package,	it’s	fine	to	have	a	local	“misc”
package	that	contains	a	passel	of	functions	that	you	find	useful.	But	I	don’t	think	you
should	release	such	a	package.

The	following	sections	describe	what	you	should	export	if	you’re	using	S3,	S4,	or	RC.



S3
If	you	want	others	to	be	able	to	create	instances	of	an	S3	class,	@export	the	constructor
function.	S3	generics	are	just	regular	R	functions,	and	you	can	@export	them	like
functions.

S3	methods	represent	the	most	complicated	case,	because	there	are	four	different
scenarios:

A	method	for	an	exported	generic

In	this	case,	export	every	method.

A	method	for	an	internal	generic

Technically,	you	don’t	need	to	export	these	methods.	However,	I	recommend
exporting	every	S3	method	you	write,	because	it’s	simpler	and	makes	it	less	likely
that	you’ll	introduce	hard-to-find	bugs.	Use	devtools::missing_s3()	to	list	all	S3
methods	that	you’ve	forgotten	to	export.

A	method	for	a	generic	in	a	required	package

You’ll	need	to	import	the	generic	(described	in	“Imports”),	and	export	the	method.

A	method	for	a	generic	in	a	suggested	package

Namespace	directives	must	refer	to	available	functions,	so	they	cannot	reference
suggested	packages.	It’s	possible	to	use	package	hooks	and	code	to	add	this	at
runtime,	but	this	is	sufficiently	complicated	that	I	currently	wouldn’t	recommend	it.
Instead,	you’ll	have	to	design	your	package	dependencies	in	a	way	that	avoids	this
scenario.



S4
For	S4	classes,	if	you	want	others	to	be	able	to	extend	your	class,	@export	it.	If	you	want
others	to	create	instances	of	your	class	but	not	to	extend	it,	@export	the	constructor
function,	not	the	class.	For	example:

#	Can	extend	and	create	with	new("A",	...)

#'	@export

setClass("A")

#	Can	extend	and	create	with	new("B",	...).	You	can	use	B()

#	to	construct	instances	in	your	own	code,	but	others	cannot

#'	@export

B	<-	setClass("B")

#	Can	create	with	C(...)	and	new("C",	...),	but	can't	create

#	a	subclass	that	extends	C

#'	@export	C

C	<-	setClass("C")

#	Can	extend	and	create	with	D(...)	or	new("D",	...)

#'	@export	D

#'	@exportClass	D

D	<-	setClass("D")

For	S4	generics,	@export	if	you	want	the	generic	to	be	publicly	usable.

Finally,	for	S4	methods,	you	only	need	to	@export	methods	for	generics	that	you	did	not
define.	But	I	think	it’s	a	good	idea	to	@export	every	method:	that	way	you	don’t	need	to
remember	whether	or	not	you	created	the	generic.



RC
The	principles	used	for	S4	classes	also	apply	for	RC.	Note	that	due	to	the	way	that	RC	is
currently	implemented,	it’s	typically	impossible	for	your	classes	to	be	extended	outside	of
your	package.



Data
As	you’ll	learn	in	Chapter	9,	files	that	live	in	data/	don’t	use	the	usual	namespace
mechanism	and	don’t	need	to	be	exported	.



Imports
NAMESPACE	also	controls	which	external	functions	can	be	used	by	your	package	without
having	to	use	::.

It’s	confusing	that	both	DESCRIPTION	(through	the	Imports	field)	and	NAMESPACE
(through	import	directives)	seem	to	be	involved	in	imports.	This	is	just	an	unfortunate
choice	of	names.	The	Imports	field	really	has	nothing	to	do	with	functions	imported	into
the	namespace:	it	just	makes	sure	the	package	is	installed	when	your	package	is.	It	doesn’t
make	functions	available.	You	need	to	import	functions	in	exactly	the	same	way	regardless
of	whether	or	not	the	package	is	attached.

Depends	is	just	a	convenience	for	the	user:	if	your	package	is	attached,	it	also	attaches	all
packages	listed	in	Depends.	If	your	package	is	loaded,	packages	in	Depends	are	loaded,	but
not	attached,	so	you	need	to	qualify	function	names	with	::	or	specifically	import	them.

It’s	common	for	packages	to	be	listed	in	Imports	in	DESCRIPTION,	but	not	in
NAMESPACE.	In	fact,	this	is	what	I	recommend:	list	the	package	in	DESCRIPTION	so
that	it’s	installed,	then	always	refer	to	it	explicitly	with	pkg::fun().	Unless	there	is	a
strong	reason	not	to,	it’s	better	to	be	explicit.	It’s	a	little	more	work	to	write,	but	a	lot
easier	to	read	when	you	come	back	to	the	code	in	the	future.	The	converse	is	not	true.
Every	package	mentioned	in	NAMESPACE	must	also	be	present	in	the	Imports	or
Depends	fields.



R	Functions
If	you	are	using	just	a	few	functions	from	another	package,	my	recommendation	is	to	note
the	package	name	in	the	Imports:	field	of	the	DESCRIPTION	file	and	call	the	function(s)
explicitly	using	::	(e.g.,	pkg::fun()).

If	you	are	using	functions	repeatedly,	you	can	avoid	::	by	importing	the	function	with
@importFrom	pgk	fun.	This	also	has	a	small	performance	benefit,	because	::	adds
approximately	5	µs	to	function	evaluation	time.

Alternatively,	if	you	are	repeatedly	using	many	functions	from	another	package,	you	can
import	all	of	them	using	@import	package.	This	is	the	least	recommended	solution
because	it	makes	your	code	harder	to	read	(you	can’t	tell	where	a	function	is	coming
from),	and	if	you	@import	many	packages,	it	increases	the	chance	of	conflicting	function
names.



S3
S3	generics	are	just	functions,	so	the	same	rules	for	functions	apply.	S3	methods	always
accompany	the	generic,	so	as	long	as	you	can	access	the	generic	(either	implicitly	or
explicitly),	the	methods	will	also	be	available.	In	other	words,	you	don’t	need	to	do
anything	special	for	S3	methods.	As	long	as	you’ve	imported	the	generic,	all	the	methods
will	also	be	available.



S4
To	use	classes	defined	in	another	package,	place	@importClassesFrom	package	ClassA
ClassB…	next	to	the	classes	that	inherit	from	the	imported	classes,	or	next	to	the	methods
that	implement	a	generic	for	the	imported	classes.

To	use	generics	defined	in	another	package,	place	@importMethodsFrom	package
GenericA	GenericB…	next	to	the	methods	that	use	the	imported	generics.

Because	S4	is	implemented	in	the	methods	package,	you	need	to	make	sure	it’s	available.
This	is	easy	to	overlook	because	while	the	method	package	is	always	available	in	the
search	path	when	you’re	working	interactively,	it’s	not	automatically	loaded	by	Rscript,
the	tool	often	used	to	run	R	from	the	command	line.	There	are	two	ways	to	do	so	based	on
the	version	of	R	you’re	targeting:

Pre	R	3.2.0:	Depends:	methods	in	DESCRIPTION

Post	R	3.2.0:	Imports:	methods	in	DESCRIPTION

You’ll	be	using	a	lot	of	functions	from	methods,	so	you’ll	probably	also	want	to	import	the
complete	package	with:

#'	@imports	methods

NULL

Or	you	might	just	want	to	import	the	most	commonly	used	functions:

#'	@importFrom	methods	setClass	setGeneric	setMethod	setRefClass

NULL

Here	I’m	documenting	NULL	to	make	it	clear	that	these	directives	don’t	apply	to	just	one
function.	It	doesn’t	matter	where	they	go,	but	if	you	have	package	docs,	as	described	in
“Documenting	Packages”,	that’s	a	natural	place	to	put	them.



Compiled	Functions
To	make	C/C++	functions	available	in	R,	see	Chapter	10.





Chapter	9.	External	Data

It’s	often	useful	to	include	data	in	a	package.		If	you’re	releasing	the	package	to	a	broad
audience,	it’s	a	way	to	provide	compelling	use	cases	for	the	package’s	functions.	If	you’re
releasing	the	package	to	a	more	specific	audience,	interested	either	in	the	data	(e.g.,	NZ
census	data)	or	the	subject	(e.g.,	demography),	it’s	a	way	to	distribute	that	data	along	with
its	documentation	(as	long	as	your	audience	is	R	users).

There	are	three	main	ways	to	include	data	in	your	package,	depending	on	what	you	want
to	do	with	it	and	who	should	be	able	to	use	it:

If	you	want	to	store	binary	data	and	make	it	available	to	the	user,	put	it	in	data/.	This	is
the	best	place	to	put	example	datasets.

If	you	want	to	store	parsed	data,	but	not	make	it	available	to	the	user,	put	it	in
R/sysdata.rda.	This	is	the	best	place	to	put	data	that	your	functions	need.

If	you	want	to	store	raw	data,	put	it	in	inst/extdata.

A	simple	alternative	to	these	three	options	is	to	include	it	in	the	source	of	your	package,
either	creating	by	hand,	or	using	dput()	to	serialize	an	existing	dataset	into	R	code.

Each	possible	location	is	described	in	more	detail	in	the	following	sections.



Exported	Data
The	most	common	location	for	package	data	is	(surprise!)	data/.	Each	file	in	this	directory
should	be	an	.RData	file	created	by	save()	containing	a	single	object	(with	the	same	name
as	the	file).	The	easiest	way	to	adhere	to	these	rules	is	to	use	devtools::use_data():

x	<-	sample(1000)

devtools::use_data(x,	mtcars)

It’s	possible	to	use	other	types	of	files,	but	I	don’t	recommend	it	because	.RData	files	are
already	fast,	small,	and	explicit.	Other	options	are	described	in	data().	For	larger	datasets,
you	may	want	to	experiment	with	the	compression	setting.	The	default	is	bzip2,	but
sometimes	gzip	or	xz	can	create	smaller	files	(typically	at	the	expense	of	slower	loading
times).

If	the	DESCRIPTION	contains	LazyData:	true,	then	datasets	will	be	lazily	loaded.	This
means	that	they	won’t	occupy	any	memory	until	you	use	them.	The	following	example
shows	memory	usage	before	and	after	loading	the	nycflights13	package.	You	can	see	that
memory	usage	doesn’t	change	until	you	inspect	the	flights	dataset	stored	inside	the
package:

pryr::mem_used()

#>	23.9	MB

library(nycflights13)

pryr::mem_used()

#>	24.1	MB

invisible(flights)

pryr::mem_used()

#>	59.4	MB

I	recommend	that	you	always	include	LazyData:	true	in	your	DESCRIPTION.
devtools::create()	does	this	for	you.

Often,	the	data	you	include	in	data/	is	a	cleaned-up	version	of	raw	data	you’ve	gathered
from	elsewhere.	I	highly	recommend	taking	the	time	to	include	the	code	used	to	do	this	in
the	source	version	of	your	package.	This	will	make	it	easy	for	you	to	update	or	reproduce
your	version	of	the	data.	I	suggest	that	you	put	this	code	in	data-raw/.	You	don’t	need	it	in
the	bundled	version	of	your	package,	so	also	add	it	to	.Rbuildignore.	You	can	do	all	this	in
one	step	with:

devtools::use_data_raw()

You	can	see	this	approach	in	practice	in	some	of	my	recent	data	packages.	I’ve	been
creating	these	as	packages	because	the	data	will	rarely	change,	and	because	multiple
packages	can	then	use	them	for	examples:

babynames

https://github.com/hadley/babynames


fueleconomy

nasaweather

nycflights13

usdanutrients

https://github.com/hadley/fueleconomy
https://github.com/hadley/nasaweather
https://github.com/hadley/nycflights13
https://github.com/hadley/usdanutrients


Documenting	Datasets
Objects	in	data/	are	always	effectively	exported	(they	use	a	slightly	different	mechanism
than	NAMESPACE’s	but	the	details	are	not	important).	This	means	that	they	must	be
documented.	Documenting	data	is	like	documenting	a	function,	with	a	few	minor
differences.	Instead	of	documenting	the	data	directly,	you	document	the	name	of	the
dataset.	For	example,	the	roxygen2	block	used	to	document	the	diamonds	data	in	ggplot2
looks	something	like	this:

#'	Prices	of	50,000	round	cut	diamonds

#'

#'	A	dataset	containing	the	prices	and	other		

#'	attributes	of	almost	54,000	diamonds

#'

#'	@format	A	data	frame	with	53940	rows	and	10	variables:

#'	\describe{

#'			\item{price}{price,	in	US	dollars}

#'			\item{carat}{weight	of	the	diamond,	in	carats}

#'			...

#'	}

#'	@source	\url{http://www.diamondse.info/}

"diamonds"

There	are	two	additional	tags	that	are	important	for	documenting	datasets:
@format

This	gives	an	overview	of	the	dataset.	For	data	frames,	you	should	include	a
definition	list	that	describes	each	variable.	It’s	usually	a	good	idea	to	describe
variables’	units	here.

@source

This	provides	details	of	where	you	got	the	data,	often	a	\url{}.

Never	@export	a	dataset.



Internal	Data
Sometimes	functions	need	precomputed	data	tables.	If	you	put	these	in	data/,	they’ll	also
be	available	to	package	users,	which	is	not	appropriate.	Instead,	you	can	save	them	in
R/sysdata.rda.	For	example,	two	color-related	packages,	munsell	and	dichromat,	use
R/sysdata.rda	to	store	large	tables	of	color	data.

You	can	use	devtools::use_data()	to	create	this	file	with	the	argument	internal	=
TRUE:

x	<-	sample(1000)

devtools::use_data(x,	mtcars,	internal	=	TRUE)

Again,	to	make	this	data	reproducible,	it’s	a	good	idea	to	include	the	code	used	to	generate
it.	Put	it	in	data-raw/.

Objects	in	R/sysdata.rda	are	not	exported	(they	shouldn’t	be),	so	they	don’t	need	to	be
documented.	They’re	only	available	inside	your	package.

https://github.com/cwickham/munsell
http://cran.r-project.org/web/packages/dichromat/index.html


Raw	Data
If	you	want	to	show	examples	of	loading/parsing	raw	data,	put	the	original	files	in
inst/extdata.	When	the	package	is	installed,	all	files	in	inst/	are	moved	to	the	top-level
directory	(so	they	can’t	have	names	like	R/	or	DESCRIPTION).	To	refer	to	files	in
inst/extdata	(whether	installed	or	not),	use	system.file().	For	example,	the	testdat
package	uses	inst/extdata	to	store	a	UTF-8	encoded	CSV	file	for	use	in	examples:

system.file("extdata",	"2012.csv",	package	=	"testdat")

#>	[1]	"/usr/local/lib/R/site-library/testdat/extdata/2012.csv"

Beware:	if	the	file	does	not	exist,	system.file()	does	not	return	an	error	—	it	just	returns
the	empty	string:

system.file("extdata",	"2010.csv",	package	=	"testdat")

#>	[1]	""

https://github.com/ropensci/testdat


Other	Data
Two	other	uses	of	data	are:

Data	for	tests

It’s	OK	to	put	small	files	directly	in	your	test	directory.	But	remember	unit	tests	are
for	testing	correctness,	not	performance,	so	keep	the	size	small.

Data	for	vignettes

If	you	want	to	show	how	to	work	with	an	already	loaded	dataset,	put	that	data	in
data/.	If	you	want	to	show	how	to	load	raw	data,	put	that	data	in	inst/extdata.



CRAN	Notes
Generally,	package	data	should	be	smaller	than	a	megabyte	—	if	it’s	larger,	you’ll	need	to
argue	for	an	exemption.	This	is	usually	easier	to	do	if	the	data	is	in	its	own	package	and
won’t	be	updated	frequently.	You	should	also	make	sure	that	the	data	has	been	optimally
compressed:

1.	 Run	tools::checkRdaFiles()	to	determine	the	best	compression	for	each	file.

2.	 Rerun	devtools::use_data()	with	compress	set	to	that	optimal	value.	If	you’ve
lost	the	code	for	re-creating	the	files,	you	can	use	tools::resaveRdaFiles()	to
resave	in	place.





Chapter	10.	Compiled	Code

R	is	a	high-level,	expressive	language.	But	that	expressivity	comes	at	a	price:	speed.
That’s	why	incorporating	a	low-level,	compiled	language	like	C	or	C++	can	powerfully
complement	your	R	code.	Although	C	and	C++	often	require	more	lines	of	code	(and
more	careful	thought)	to	solve	the	same	problem,	they	can	be	orders	of	magnitude	faster
than	R.

Teaching	you	how	to	program	in	C	or	C++	is	beyond	the	scope	of	the	book.	If	you’d	like
to	learn,	start	with	C++	and	the	Rcpp	package.	Rcpp	makes	it	easy	to	connect	C++	to	R.
I’d	also	recommend	using	RStudio	because	it	has	many	tools	that	facilitate	the	entire
process.	Start	by	reading	my	“High	Performance	Functions	with	Rcpp”,	a	freely	available
book	chapter	from	Advanced	R:	it	gently	introduces	the	language	by	translating	examples
of	familiar	R	code	into	C++.	Next,	check	out	the	Rcpp	book	and	the	other	resources	listed
in	learning	more.

http://adv-r.had.co.nz/Rcpp.html
http://amzn.to/1F9d6RW
http://www.rcpp.org/book
http://bit.ly/1F9d9x4


C++
To	set	up	your	package	with	Rcpp,	run	the	following:

devtools::use_rcpp()

This	will:

Create	an	src/	directory	to	hold	your	.cpp	files.

Add	Rcpp	to	the	LinkingTo	and	Imports	fields	in	the	DESCRIPTION.

Set	up	a	.gitignore	file	to	make	sure	you	don’t	accidentally	check	in	any	compiled	files
(learn	more	about	this	in	Chapter	13).

Tell	you	the	two	roxygen	tags	you	need	to	add	to	your	package:

#'	@useDynLib	your-package-name

#'	@importFrom	Rcpp	sourceCpp

NULL



Workflow
Once	you’re	set	up,	the	basic	workflow	should	now	be	familiar:

1.	 Create	a	new	C++	file,	as	illustrated	in	Figure	10-1.

Figure	10-1.	Creating	a	new	C++	file

The	default	template	looks	like	this:

#include	<Rcpp.h>

using	namespace	Rcpp;

//	Below	is	a	simple	example	of	exporting	a	C++	function	to	R.	You	can

//	source	this	function	into	an	R	session	using	the	Rcpp::sourceCpp	

//	function	(or	via	the	Source	button	on	the	editor	toolbar)

//	For	more	on	using	Rcpp	click	the	Help	button	on	the	editor	toolbar

//	[[Rcpp::export]]

int	timesTwo(int	x)	{

			return	x	*	2;

}

It	includes	a	basic	function	and	some	instructions	to	get	started.	The	two	most
important	parts	are	the	header	#includes,	and	the	special	attribute	//
[[Rcpp::export]].

2.	 Generate	the	necessary	modifications	to	your	NAMESPACE	by	documenting	them
with	Ctrl/Cmd-Shift-D.

3.	 Click	Build	&	Reload	in	the	build	pane,	or	press	Ctrl/Cmd-Shift-B.	You	can	continue
to	use	the	standard	devtools::load_all()	process,	but	it	is	more	risky.	Because
you’re	loading	and	unloading	C	code,	the	chances	of	corrupting	memory	are	high,
and	you’re	better	off	with	the	safer,	but	slower,	Build	&	Reload,	which	installs	the



package	and	then	restarts	R.

4.	 Run	timesTwo(10)	from	the	console	to	check	that	it	works.

Behind	the	scenes,	Build	&	Reload	is	doing	a	lot	of	work	for	you.	Specifically,	it	does	the
following:

Sets	up	your	R	environment	to	compile	code	and	warn	you	if	you’re	missing	necessary
pieces.

Calls	Rcpp::compileAttributes().	This	inspects	your	.cpp	functions	looking	for
attributes	of	the	form	//	[[Rcpp::export]].	When	it	finds	one,	it	generates	the	code
needed	to	make	the	function	available	in	R,	and	creates	src/RcppExports.cpp	and
R/RcppExports.R.	You	should	never	modify	these	files	by	hand.

Builds	a	dynamically	linked	library	(DLL)	and	makes	it	available	to	R.



Documentation
Each	exported	C++	function	automatically	gets	a	wrapper	function	(it	will	be	located	in
R/RcppExports.R).	For	example,	the	R	timesTwo()	function	looks	as	follows:

timesTwo	<-	function(x)	{

		.Call('timesTwo',	PACKAGE	=	'mypackage',	x)

}

This	uses	the	base	function	.Call()	to	execute	the	C	function	timesTwo	provided	by
mypackage.	You	can	use	roxygen2	to	document	this	like	a	regular	R	function.	But	instead
of	using	#'	for	comments,	use	//',	the	C++	convention:

//'	Multiply	a	number	by	two

//'	

//'	@param	x	A	single	integer.

//'	@export

//	[[Rcpp::export]]

int	timesTwo(int	x)	{

			return	x	*	2;

}

That	generates	roxygen	comments	in	R/RcppExports.R:

#'	Multiply	a	number	by	two

#'	

#'	@param	x	A	single	integer.

#'	@export

timesTwo	<-	function(x)	{

		.Call('timesTwo',	PACKAGE	=	'mypackage',	x)

}

The	distinctions	between	the	two	export	directives	is	important:

[[Rcpp::export]]	makes	the	C++	function	available	to	R.	If	you	have	trouble
remembering	the	exact	details,	note	that	everything	comes	in	twos:	two	\s,	two	[s,	two
:s,	and	two	]s.

@export	makes	the	R	wrapper	function	available	outside	your	package	by	adding	it	to
the	NAMESPACE.



Exporting	C++	Code
To	make	your	C++	code	callable	from	C++	code	in	other	packages,	add	the	following:

//	[[Rcpp::interfaces(r,	cpp)]]

This	will	generate	a	header	file	called	inst/include/mypackage.h	that	can	be	included	by
other	packages	(the	low-level	details	are	described	in	“Exporting	C	Code”).	See	“Rcpp
Attributes”	for	more	details,	including	how	to	combine	handwritten	and	automatically
generated	header	files.

http://bit.ly/1F9dQXe


Importing	C++	Code
To	use	C++	code	from	another	package,	follow	these	steps:

1.	 In	DESCRIPTION,	add	LinkingTo:	otherPackage.	Confusingly,	this	has	nothing	to
do	with	the	linker.	It’s	called	LinkingTo	because	it	adds	otherPackage/include	to	the
include	path,	allowing	you	to	dynamically	“link	to”	other	code	via	the	headers.

2.	 In	the	C++	file,	add	the	following:

#include	<otherPackage.h>

3.	 C++	functions	from	otherPackage	will	be	included	in	the	otherPackage	namespace.
Use	otherPackage::foo()	to	access	functions,	or	make	them	available	globally
with	using	namespace	otherPackage.



Best	Practices
Here	are	some	best	practices	to	keep	in	mind:

To	print	output,	use	Rcout	<<	...	(not	cout	<<	...).	This	prints	to	the	right	place,
which	might	be	a	GUI	console	or	a	file	(if	sink()	is	active).

In	long-running	loops,	regularly	run	Rcpp::checkUserInterrupt().	This	aborts	your
C++	if	the	user	has	pressed	Ctrl-C	or	Escape	in	R.

Use	the	.h	extension	for	headers	and	include	files.	(If	you	don’t,	R	CMD	check	will
complain.)

Follow	Martyn	Plummer’s	recommendations	on	Portable	C++	for	R	Packages.

Whenever	you	use	C++	code	in	your	package,	you	need	to	clean	up	after	yourself	when
your	package	is	unloaded.	Do	this	by	writing	an	.onUnload()	function	that	unloads	the
DLL:

.onUnload	<-	function	(libpath)	{

		library.dynam.unload("mypackage",	libpath)

}

Use	clang	instead	of	gcc	to	compile	your	C++	code:	it	gives	much	better	error
messages.	You	can	make	clang	the	default	by	creating	an	.R/Makevars	file	(Linux	and
Mac)	or	an	.R/Makevars.win	file	(Windows)	in	your	home	directory	that	contains:

CXX=clang++

(If	you	don’t	know	where	your	home	directory	is,	path.expand("~")	will	tell	you.)

To	speed	up	compilation	on	Linux	or	Mac,	install	ccache,	then	replace	~/.R/Makevars
with	the	following:

CC=ccache	clang	-Qunused-arguments

CXX=ccache	clang++	-Qunused-arguments

CCACHE_CPP2=yes

http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf


C
If	you’re	writing	new	compiled	code,	it’s	almost	always	better	to	use	Rcpp.	It’s	less	work,
more	consistent,	better	documented,	and	it	has	better	tools.	However,	there	are	some
reasons	to	choose	C:

You’re	working	with	an	older	package	that	already	uses	the	C	API.

You’re	binding	to	an	existing	C	library.

There	are	two	ways	to	call	C	functions	from	R:	.C()	and	.Call().	.C()	is	a	quick-and-
dirty	way	to	call	a	C	function	that	doesn’t	know	anything	about	R,	because	.C()
automatically	converts	between	R	vectors	and	the	corresponding	C	types.	.Call()	is	more
flexible,	but	more	work:	your	C	function	needs	to	use	the	R	API	to	convert	its	inputs	to
standard	C	data	types.



Getting	Started	with	.Call()
To	call	a	C	function	from	R,	you	first	need	a	C	function!	In	an	R	package,	C	code	lives	in
.c	files	in	src/.	You’ll	need	to	include	two	header	files:

#include	<R.h>

#include	<Rinternals.h>

(Yes,	including	<Rinternals.h>	seems	like	bad	form.	On	top	of	that,	doing	so	doesn’t
actually	give	you	access	to	the	“internal”	internal	API	unless	you	set	some	additional
flags.	The	default	just	gives	you	access	to	the	“public”	internal	API,	which	is	both
necessary	and	done	for	safety’s	sake.	Yes,	this	is	confusing.)

These	headers	allow	you	to	access	R’s	C	API.	Unfortunately,	this	API	is	not	well
documented.	I’d	recommend	starting	with	my	notes	at	R’s	C	interface.	After	that,	read
“The	R	API”	in	“Writing	R	Extensions.”	A	number	of	exported	functions	are	not
documented,	so	you’ll	also	need	to	read	the	R	source	code	to	figure	out	the	details.

Here’s	the	bare	minimum	you	need	to	know:	C	functions	that	talk	to	R	must	use	the	SEXP
type	for	both	inputs	and	outputs.	SEXP,	short	for	S	expression,	is	the	C	struct	used	to
represent	every	type	of	object	in	R.	A	C	function	typically	starts	by	converting	SEXPs	to
atomic	C	objects,	and	ends	by	converting	C	objects	back	to	a	SEXP.	(The	R	API	is
designed	so	that	these	conversions	often	don’t	require	copying.)	The	following	table	lists
the	functions	that	convert	length	one	R	vectors	to	and	from	C	scalars:

R	type C	type R	->	C C	->	R

Integer int asInteger(x) ScalarInteger(x)

Numeric double asReal(x) ScalarReal(x)

Logical int asLogical(x) ScalarLogical(x)

Character const	char* CHAR(asChar(x)) mkString(x)

We	now	have	enough	information	to	write	a	simple	C	function	that	can	add	two	numbers:

#include	<R.h>

#include	<Rinternals.h>

SEXP	add_(SEXP	x_,	SEXP	y_)	{

		double	x	=	asReal(x_);

		double	y	=	asReal(y_);

		

		double	sum	=	x	+	y;

		

		return	ScalarReal(sum);

}

We	call	this	from	R	with	.Call():

#'	@useDynLib	mypackage	add_

add	<-	function(x,	y)	.Call(add_,	x,	y)

http://adv-r.had.co.nz/C-interface.html
http://bit.ly/1F9dY9l
https://github.com/wch/r-source


Where	does	the	first	argument	to	.Call(),	add_,	come	from?	It	comes	from	@useDynLib,
which	creates	a	line	in	the	NAMESPACE	that	looks	like	this:

useDynLib(mypackage,	add_)

This	directive	instructs	R	to	create	an	object	called	add_,	which	describes	a	C	function
pointer:

mypackage:::add_

#>	$name

#>	[1]	"add_"

#>	

#>	$address

#>	<pointer:	0x107be3f40>

#>	$package

#>	NULL

#>	

#>	attr(,"class")

#>	[1]	"NativeSymbolInfo"

.Call()	takes	the	pointer	to	a	C	function	and	calls	it.	All	R	objects	have	the	same	C	type
(the	SEXP);	you	need	to	make	sure	the	arguments	are	of	the	type	you	expect.	Either	do	that
in	the	R	function,	in	the	C	function,	or	just	accept	that	R	will	crash	every	time	you
accidentally	supply	the	wrong	type	of	input.

The	most	complicated	part	of	working	with	the	.Call()	interface	is	memory	management.
Whenever	you	create	an	R-level	data	structure,	you	must	PROTECT()	it	so	the	garbage
collector	doesn’t	try	and	free	it,	then	UNPROTECT()	it	at	the	end	of	the	function.	This	topic
is	beyond	the	scope	of	this	chapter,	but	you	can	learn	more	about	it	at	the	“Creating	and
modifying	vectors”	section	of	“R’s	C	interface”.

http://bit.ly/1F9e7cQ


Getting	Started	with	.C()
.C()	is	simpler	than	.Call()	and	can	be	useful	if	you	already	have	standard	C	code.
Because	you	never	create	R	objects	in	.C(),	you	never	need	to	worry	about	memory
management.	To	use	it,	you	first	write	a	void	C	function,	using	in-place	modification	of
function	parameters	to	return	values:

void	add_(double*	x,	double*	y,	double*	out)	{

		out[0]	=	x[0]	+	y[0];

}

Then	like	.Call(),	you	create	an	R	wrapper:

#'	@mypackage	src.c	add_

add	<-	function(x,	y)	{

		.C(add_,	x,	y,	numeric(1))[[3]]

}

(Here	we	extract	the	third	element	of	the	result	because	that	corresponds	to	the	out
parameter.)

.C()	automatically	converts	back	and	forth	between	R	vectors	and	their	C	equivalents.
The	following	table	shows	the	R	types	and	their	C	equivalents:

R	type C	type

Logical int*

Integer int*

Double double*

Character char**

Raw unsigned	char*

Note	that	.C()	assumes	your	function	doesn’t	know	how	to	deal	with	missing	values	and
will	throw	an	error	if	any	arguments	contain	an	NA.	If	it	can	correctly	handle	missing
values,	set	NAOK	=	TRUE	in	the	call	to	.C().

You	can	learn	more	about	.C()	in	its	help,	?.C,	or	in	R-extensions.

http://bit.ly/1F9ehRt


Workflow
The	usual	workflow	still	applies:

1.	 Modify	the	C	code.

2.	 Build	and	reload	the	package	with	Ctrl/Cmd-Shift-B.

3.	 Experiment	at	the	console.

The	first	time	you	add	@useDynLib,	you’ll	also	need	to	run	devtools::document()
(Ctrl/Cmd-Shift-D)	and	reload	the	package.



Exporting	C	Code
R	packages	need	to	provide	DLLs	that	can	be	relocated	(i.e.,	DLLs	that	work	regardless	of
where	they	live	on	disk).	This	is	because	most	R	users	don’t	build	packages	from	source.
Instead,	they	get	binaries	from	CRAN	that	can	get	installed	in	many	different	places.	This
need	for	relocatable	DLLs	adds	a	few	more	steps	to	the	job	of	importing	and	exporting	C
code	for	R	packages	(the	same	problem	arises	for	C++,	but	Rcpp	attributes	automate	the
manual	steps	described	here).

R	solves	this	problem	using	function	registration.	To	export	a	.Call()	C	function,	you
register	it	with	R_RegisterCCallable().	To	import	a	.Call()	C	function,	you	get	a
pointer	to	it	with	R_GetCCallable().	Similar	techniques	are	available	for	.C()	C
functions,	but	are	beyond	the	scope	of	this	book.	As	we’ll	see	momentarily,	a	user-friendly
package	will	do	both	these	tasks,	so	users	of	the	package	can	ignore	the	details	and	simply
include	a	header	file.

NOTE
Confusingly,	there’s	another	type	of	function	registration.	Instead	of	registering	C	functions	using	the
namespace	(i.e.,	@useDynLib	pkg	fun),	you	can	register	them	with	R_registerRoutines()	and
@useDynLib	mypackage,	.registration	=	TRUE.	To	learn	the	details,	read	the	“Registering	native
routines”	section	of	“Writing	R	extensions”.

To	register	a	function,	call	R_RegisterCCallable(),	defined	in	<R_ext/Rdynload.h>.
Function	registration	should	be	done	in	a	function	called	R_init_<mypackage>.	This
function	is	called	automatically	when	the	“mypackage”	DLL	is	loaded.
R_RegisterCCallable()	has	three	arguments:

A	pointer	to	the	DLL

The	name	of	the	function

A	pointer	to	the	function,	cast	as	DL_FUNC	(i.e.,	a	dynamically	loaded	function)

The	following	code	registers	the	add()	function	defined	earlier:

#include	"add.h"

#include	<R_ext/Rdynload.h>

void	R_init_mypackage(DllInfo	*info)	{

		R_RegisterCCallable(info,	"add_",		(DL_FUNC)	&add_)

}

It	doesn’t	matter	where	this	code	lives,	but	it’s	usually	put	in	a	file	called	src/mypackage-
init.c.

To	access	a	registered	function	from	another	package,	call	R_GetCCallable().	It	has	two
arguments,	the	function	name	and	the	package	name.	It	returns	a	function	pointer.	The
function	pointer	has	no	type	information,	so	it	should	always	be	wrapped	in	a	helper
function	that	defines	the	inputs:

http://bit.ly/1F9flEO


#include	<R_ext/Rdynload.h>

#include	<R.h>

#include	<Rinternals.h>

SEXP	add_(SEXP	x,	SEXP	y)	{

		static	SEXP(fun*)(SEXP,	SEXP)	=	NULL;

		if	(fun	==	NULL)

				fun	=	(SEXP(*)(SEXP,	SEXP))	R_GetCCallable("add",	"mypackage");

		return	fun(x,	y);

}

Rather	than	relying	on	each	package	that	imports	your	C	code	to	do	this	correctly,	you
should	instead	do	it	for	them.	Write	inst/include/mypackageAPI.h,	which	provides	a
wrapper	function	for	each	exported	function.	A	popular	package	that	does	that	is	xts.
Download	the	source	package	and	look	in	the	include/	directory	to	see	what	it	does.

http://cran.r-project.org/web/packages/xts/


Importing	C	Code
Using	C	code	from	another	package	varies	based	on	how	the	package	is	implemented:

If	it	uses	the	system	described	previously,	all	you	need	is	LinkingTo:	otherPackage	in
the	DESCRIPTION,	and	#include	otherPackageAPI.h	in	the	C	file.	(Remember
LinkingTo	is	not	about	the	linker,	but	actually	affects	the	include	path.)

If	it	registers	the	functions,	but	doesn’t	provide	a	header	file,	you’ll	need	to	write	the
wrapper	yourself.	Because	you’re	not	using	any	header	files	from	the	package,	use
Imports	and	not	LinkingTo.	You	also	need	to	make	sure	the	package	is	loaded.	You
can	do	this	by	importing	any	function	with	@importFrom	mypackage	foo,	or	by	adding
requireNamespace("mypackage",	quietly	=	TRUE)	to	.onLoad().

If	it	doesn’t	register	the	functions,	you	can’t	use	them.	You’ll	have	to	ask	the
maintainer	nicely	or	even	provide	a	pull	request.



Best	Practices
Writing	C	code	in	R	is	a	little	different	from	writing	C	code	outside	of	R.	Here	are	some
best	practices	to	keep	in	mind:

Avoid	calls	to	assert(),	abort(),	and	exit():	these	will	kill	the	R	process,	not	just
your	C	code.	Instead,	use	error(),	which	is	equivalent	to	calling	stop()	in	R.

To	print	output,	use	Rprintf(),	not	printf().	Doing	so	always	prints	to	the	right
place,	whether	it’s	the	GUI	console	or	a	file	(if	sink()	is	active).

In	long-running	loops,	regularly	call	R_CheckUserInterrupt()	to	allow	the	user	to
interrupt	the	C	code.

Don’t	use	C’s	random	number	generators	(like	rand()	or	random()).	Instead,	use	the	C
API	to	R’s	rngs:	unif_rand(),	norm_rand(),	etc.	Note	the	caveats	in	“Random
number	generation”	—	you	must	call	GetRNGstate()	before	and	PutRNGstate()	after.

Use	the	R	macros	ISNAN(x)	and	R_FINITE(x)	to	check	for	NaNs	and	infinite	values.
These	work	on	more	platforms	than	the	C99	isnan()	and	isfinite().

Like	with	C++,	whenever	you	use	C	code	in	your	package,	you	should	unload	the	DLL
when	the	package	is	unloaded:

.onUnload	<-	function	(libpath)	{

		library.dynam.unload("mypackage",	libpath)

}

Use	clang	instead	of	gcc	to	compile	your	C	code:	it	gives	much	better	error	messages.
You	can	make	clang	the	default	by	creating	an	~/.R/Makevars	file	that	contains	the
following:

C=clang

http://bit.ly/1F9fwQD


Debugging	Compiled	Code
It’s	possible,	with	a	little	extra	work,	to	use	an	interactive	debugger	to	debug	your	C/C++
in	the	same	way	that	you	can	use	browser()	and	debug()	to	debug	your	R	code.
Unfortunately,	you	won’t	be	able	to	use	RStudio;	you’ll	have	to	run	R	from	the	command
line.

Open	a	shell	(e.g.,	with	Tools	→	Shell…)	and	start	R	by	typing:

#	If	you	compile	with	clang

R	--debugger=lldb

#	If	you	compile	with	gcc

R	--debugger=gdb

This	will	start	either	lldb	or	gdb,	the	debuggers	that	work	with	code	produced	by	clang	or
gcc,	respectively.	Like	R,	lldb	and	gdb	provide	a	run-eval-print	loop	(REPL)	in	which
you	enter	commands	and	then	look	at	the	results.	In	the	examples	that	follow,	I’ll	show	the
results	of	lldb,	which	is	what	I	use	(the	output	from	gdb	is	similar).	For	each	interactive
command,	I’ll	tell	you	the	explicit,	but	long,	lldb	command	and	the	short,	but	cryptic,	gdb
command.	Because	lldb	understands	all	gdb	commands,	you	can	choose	to	be	explicit	or
terse.

Once	you’ve	started	the	debugger,	start	R	by	typing	process	start	(lldb)	or	run	(gdb).
Now	when	your	C/C++	code	crashes,	you’ll	be	dumped	into	an	interactive	debugger
instead	of	getting	a	cryptic	error	message	and	a	crash.

Let’s	start	with	a	simple	C++	function	that	writes	to	memory	it	doesn’t	“own”:

Rcpp::cppFunction("

bool	mistake()	{

		NumericVector	x(1);

		int	n	=	INT_MAX;

		x[n]	=	0;

		return	true;

}

",	plugins	=	"debug",	verbose	=	TRUE,	rebuild	=	TRUE)

mistake()

Use	devtools::load_all()	to	load	the	current	package.	Then	copy	and	paste	the	code
that	creates	the	bug.	Here’s	a	crash	report	from	a	package	that	I	was	working	on:

Process	32743	stopped

*	thread	#1:	tid	=	0x1f79f6,	0x…	gggeom.so…`

			frame	#0:	0x0..	gggeom.so`vw_distance(x=...,	y=...)	+	...	at	vw-distance.cpp:54

			51								int	prev_idx	=	prev[idx];

			52			

			53							next[prev[idx]]	=	next_idx;

->	54							prev[next[idx]]	=	prev_idx;

			55							prev[idx]	=	-1;

			56							next[idx]	=	-1;

			57

It	tells	us	that	the	crash	occurred	because	of	an	EXC_BAD_ACCESS	—	this	is	one	of	the	most
common	types	of	crash	in	C/C++	code.	Helpfully,	lldb	shows	exactly	which	line	of	C++

http://lldb.llvm.org/
http://www.gnu.org/software/gdb/


code	caused	the	problem:	vw-distance.cpp:54.	Often,	just	knowing	where	the	problem
occurs	is	enough	to	fix	it.	But	we’re	also	now	at	an	interactive	prompt.	There	are	many
commands	you	can	run	here	to	explore	what’s	going	on.	These	are	the	most	useful:

See	a	list	of	all	commands:	help.

Show	your	location	on	the	callstack	with	thread	backtrace	or	bt.	This	will	print	a	list
of	calls	leading	up	to	the	error,	much	like	traceback()	does	in	R.	Navigate	the
callstack	with	frame	select	<n>	or	frame	<n>,	or	up	and	down.

Evaluate	the	next	expression	with	thread	step-over	or	next,	or	step	into	it	with
thread	step-in	or	step.	Continue	executing	the	rest	of	the	code	with	thread	step-
out	or	finish.

Show	all	variables	defined	in	the	current	frame	with	frame	variable	or	info	locals,
or	print	the	value	of	a	single	variable	with	frame	variable	<var>	or	p	<var>.

Instead	of	waiting	for	a	crash	to	occur,	you	can	also	set	breakpoints	in	your	code.	To	do	so,
start	the	debugger	and	run	R.	Then	follow	these	steps:

1.	 Press	Ctrl-C.

2.	 Type	breakpoint	set	--file	foo.c	--line	12	or	break	foo.c:12.

3.	 Type	process	continue	or	c	to	go	back	to	the	R	console.	Now	run	the	C	code
you’re	interested	in,	and	the	debugger	will	stop	when	it	gets	to	the	specified	line.

Finally,	you	can	also	use	the	debugger	if	your	code	is	stuck	in	an	infinite	loop.	Press	Ctrl-
C	to	break	into	the	debugger	and	you’ll	see	which	line	of	code	is	causing	the	problem.



Makefiles
Although	makefiles	are	beyond	the	scope	of	this	book,	they	are	a	useful	tool.	A	good,
gentle	introduction	with	a	focus	on	reproducible	research	is	Karl	Broman’s	“minimal
make”.

Generally,	R	packages	should	avoid	a	custom	Makefile.	Instead,	use	Makevars.	Makevars
is	a	makefile	that	overrides	the	default	makefile	generated	by	R	(which	is	located	at
file.path(R.home("etc"),	"Makeconf")).	This	allows	you	to	take	advantage	of	R’s
default	behavior	(it’s	over	150	lines,	and	battle	tested	across	many	years	and	many
systems,	so	you	want	to!)	while	being	able	to	set	the	flags	you	need.	These	are	the	most
commonly	used	flags:
PKG_LIBS

Linker	flags.	A	common	use	is	PKG_LIBS	=	$(BLAS_LIBS).	This	allows	you	to	use
the	same	BLAS	library	as	R.

PKG_CFLAGS	and	PKG_CXXFLAGS

C	and	C++	flags.	Most	commonly	used	to	set	define	directives	with	-D.
PKG_CPPFLAGS

Preprocessor	flags	(not	C++	flags!).	Most	commonly	used	to	set	include	directories
with	-I.	Any	package	listed	in	the	LinkingTo	field	in	the	DESCRIPTION	will	be
automatically	included	—	you	do	not	need	to	explicitly	add	it.

To	set	flags	only	on	Windows,	use	Makevars.win.	To	build	a	Makevars	with	configure,
use	Makevars.in.

By	default,	R	will	use	the	system	make,	which	is	not	always	GNU	compatible	(i.e.,	on
Solaris).	If	you	want	to	use	GNU	extensions	(which	are	extremely	common),	add
SystemRequirements:	GNU	make	to	DESCRIPTION.	If	you’re	not	sure	if	you’re	using
GNU	extensions,	play	it	safe	and	add	it	to	the	system	requirement.

http://kbroman.org/minimal_make/


Other	Languages
It	is	possible	to	connect	R	to	other	languages,	but	the	interfaces	are	not	as	nice	as	the	one
for	C++:

Fortran

It’s	possible	to	call	Fortran	subroutines	directly	with	.Fortran(),	or	via	C	or	C++
with	.Call().	See	?.Fortran	and	the	R	extensions	manual	for	more	details.

Java

The	rJava	package	makes	it	possible	to	call	Java	code	from	within	R.	Note	that	unlike
with	C	and	C++,	passing	an	R	object	to	a	Java	call	will	involve	a	copy	operation,
something	that	has	serious	performance	implications.

https://github.com/s-u/rJava


Licensing
Because	it’s	common	to	use	other	people’s	libraries	when	writing	compiled	code,	you
need	to	make	sure	that	your	package	license	is	compatible	with	the	licenses	of	all	included
code:

The	simplest	solution	is	to	use	the	same	license	as	the	included	code.	You	can’t
relicense	someone	else’s	code,	so	you	may	need	to	change	your	license.

If	you	don’t	want	to	use	the	same	license,	it’s	best	to	stick	with	common	cases	where
the	interactions	are	well	known.	For	example,	Various	Licenses	and	Comments	about
Them	describes	what	licenses	are	compatible	with	the	GPL	license.

In	this	case,	your	description	should	contain	License:	<main	license>	+	FILE	license
where	<main	license>	is	a	license	that	is	valid	for	the	entire	package	(both	R	and
compiled	code),	and	the	license	file	describes	the	licenses	of	individual	components.

For	nonstandard	cases,	you’ll	need	to	consult	a	lawyer.

In	all	cases,	make	sure	you	include	copyright	and	license	statements	from	the	original
code.

https://www.gnu.org/licenses/license-list.html


Development	Workflow
When	developing	C	or	C++	code,	it’s	usually	better	to	use	RStudio’s	Build	&	Reload
instead	of	devtools::load_all().	Your	C	objects	persist	between	reloads	with
`load_all()`,	so	if	you	change	the	way	that	data	is	stored	in	memory,	then	the	old	objects
won’t	work	with	new	code,	and	you’re	likely	to	crash	R.



CRAN	Issues
Packages	with	compiled	code	are	much	more	likely	to	have	difficulties	getting	on	CRAN
than	those	without.	The	reason?	Your	package	must	build	from	source	on	all	major
platforms	(Linux,	Mac,	and	Windows).	This	is	hard!	Here	are	some	tips:

CRAN	provides	an	automated	service	for	checking	R	packages	on	Windows:	win-
builder.	You	can	easily	access	this	by	running	devtools::build_win(),	which	builds
and	uploads	a	package	bundle.

I’ve	tried	to	include	the	most	important	advice	in	this	chapter,	but	I’d	recommend
reading	the	entire	section	on	writing	portable	C	and	C++	code	in	“Writing	R
Extensions”.

In	exceptional	circumstances,	like	binding	to	Windows-only	functionality,	you	may	be
able	to	opt	out	of	the	cross-platform	requirement,	but	be	prepared
to	make	a	strong	case	for	it.

The	interface	between	CRAN’s	automated	and	manual	checking	can	be	particularly
frustrating	for	compiled	code.	Requirements	vary	from	submission	to	submission,	based
on	which	maintainer	you	get	and	how	much	free	time	they	have.	The	rules	are
inconsistently	applied,	but	if	your	package	doesn’t	pass,	it’s	better	to	bite	the	bullet	and
make	the	change	rather	than	trying	to	argue	about	it:

Sometimes	you	will	need	to	list	all	authors	and	copyright	holders	of	included	code	in
the	DESCRIPTION.

Sometimes	your	package	will	need	to	work	on	Solaris.	But	due	to	the	difficulty	of
accessing	a	computer	running	Solaris,	fixing	Solaris	issues	can	be	hard.	However,	you
will	be	in	a	stronger	negotiating	position	if	the	package	has	no	problems	on	other
platforms.	
One	common	gotcha:	the	gcc/clang	flags	-Wall,	-pedantic,	and	-O0,	do	not	work	with
the	default	compiler	on	Solaris.

http://win-builder.r-project.org/
http://bit.ly/1F9gnAL




Chapter	11.	Installed	Files

When	a	package	is	installed,	everything	in	inst/	is	copied	into	the	top-level	package
directory.	In	some	sense	inst/	is	the	opposite	of	.Rbuildignore	—	where	.Rbuildignore	lets
you	remove	arbitrary	files	and	directories	to	the	top	level,	inst/	lets	you	add	them.	You	are
free	to	put	anything	you	like	in	inst/	with	one	caution:	because	inst/	is	copied	into	the	top-
level	directory,	you	should	never	use	a	subdirectory	with	the	same	name	as	an	existing
directory.	This	means	that	you	should	avoid	inst/build,	inst/data,	inst/demo,	inst/exec,
inst/help,	inst/html,	inst/inst,	inst/libs,	inst/Meta,	inst/man,	inst/po,	inst/R,	inst/src,
inst/tests,	inst/tools,	and	inst/vignettes.

This	chapter	discusses	the	most	common	files	found	in	inst/:

inst/AUTHOR	and	inst/COPYRIGHT:	If	the	copyright	and	authorship	of	a	package	is
particularly	complex,	you	can	use	plain-text	files	inst/COPYRIGHTS	and
inst/AUTHORS	to	provide	more	information.

inst/CITATION:	How	to	cite	the	package,	see	“Package	Citation”	for	details.

inst/docs:	This	is	an	older	convention	for	vignettes,	and	should	be	avoided	in	modern
packages.

inst/extdata:	Additional	external	data	for	examples	and	vignettes.	See	“Raw	Data”	for
more	detail.

inst/java,	inst/python,	etc.:	See	“Other	Languages”.

To	find	a	file	in	inst/	from	code	use	system.file().	For	example,	to	find
inst/extdata/mydata.csv,	you’d	call	system.file("extdata",	"mydata.csv",	package	=
"mypackage").	Note	that	you	omit	the	inst/	directory	from	the	path.	This	will	work	if	the
package	is	installed,	or	if	it’s	been	loaded	with	devtools::load_all().



Package	Citation
The	CITATION	file	lives	in	the	inst/	directory	and	is	intimately	connected	to	the
citation()	function,	which	tells	you	how	to	cite	R	and	R	packages.	Calling	citation()
without	any	arguments	tells	you	how	to	cite	base	R:

citation()

#>	

#>	To	cite	R	in	publications	use:

#>	

#>			R	Core	Team	(2014).	R:	A	language	and	environment	for

#>			statistical	computing.	R	Foundation	for	Statistical	Computing,

#>			Vienna,	Austria.	URL	http://www.R-project.org/.

#>	

#>	A	BibTeX	entry	for	LaTeX	users	is

#>	

#>			@Manual{,

#>					title	=	{R:	A	Language	and	Environment	for	Statistical	Computing},

#>					author	=	,

#>					organization	=	{R	Foundation	for	Statistical	Computing},

#>					address	=	{Vienna,	Austria},

#>					year	=	{2014},

#>					url	=	{http://www.R-project.org/},

#>			}

#>	

#>	We	have	invested	a	lot	of	time	and	effort	in	creating	R,	please

#>	cite	it	when	using	it	for	data	analysis.	See	also

#>	'citation("pkgname")'	for	citing	R	packages.

Calling	it	with	a	package	name	tells	you	how	to	cite	that	package:

citation("lubridate")

#>	

#>	To	cite	lubridate	in	publications	use:

#>	

#>			Garrett	Grolemund,	Hadley	Wickham	(2011).	Dates	and	Times	Made

#>			Easy	with	lubridate.	Journal	of	Statistical	Software,	40(3),

#>			1-25.	URL	http://www.jstatsoft.org/v40/i03/.

#>	

#>	A	BibTeX	entry	for	LaTeX	users	is

#>	

#>			@Article{,

#>					title	=	{Dates	and	Times	Made	Easy	with	{lubridate}},

#>					author	=	{Garrett	Grolemund	and	Hadley	Wickham},

#>					journal	=	{Journal	of	Statistical	Software},

#>					year	=	{2011},

#>					volume	=	{40},

#>					number	=	{3},

#>					pages	=	{1--25},

#>					url	=	{http://www.jstatsoft.org/v40/i03/},

#>			}

To	customize	the	citation	for	your	package,	add	an	inst/CITATION	that	looks	like	this:

citHeader("To	cite	lubridate	in	publications	use:")

citEntry(entry	=	"Article",

		title								=	"Dates	and	Times	Made	Easy	with	{lubridate}",

		author							=	personList(as.person("Garrett	Grolemund"),

																			as.person("Hadley	Wickham")),

		journal						=	"Journal	of	Statistical	Software",

		year									=	"2011",

		volume							=	"40",

		number							=	"3",

		pages								=	"1--25",

		url										=	"http://www.jstatsoft.org/v40/i03/",



		textVersion		=

		paste("Garrett	Grolemund,	Hadley	Wickham	(2011).",

								"Dates	and	Times	Made	Easy	with	lubridate.",

								"Journal	of	Statistical	Software,	40(3),	1-25.",

								"URL	http://www.jstatsoft.org/v40/i03/.")

)

You	need	to	create	inst/CITATION.	As	you	can	see,	it’s	pretty	simple:	you	only	need	to
learn	one	new	function,	citEntry().	The	most	important	arguments	are:
entry

This	is	the	type	of	citation	—	for	example,	“Article,”	“Book,”	“PhDThesis,”	and	so
on.

The	standard	bibliographic	information

This	includes	information	like	title,	author	(which	should	be	a	personList()),
year,	journal,	volume,	issue,	pages,	and	so	on.

A	complete	list	of	arguments	can	be	found	in	?bibentry.

Use	citHeader()	and	citFooter()	to	add	additional	exhortations.



Other	Languages
Sometimes	a	package	contains	useful	supplementary	scripts	in	other	programming
languages.	Generally,	you	should	avoid	these,	because	it	adds	an	extra	dependency,	but	it
may	be	useful	when	wrapping	substantial	amounts	of	code	from	another	language.	For
example,	gdata	wraps	the	Perl	module	Spreadsheet::ParseExcel	to	read	Excel	files	into	R.

The	convention	is	to	put	scripts	of	this	nature	into	a	subdirectory	of	inst/	(e.g.,	inst/python,
inst/perl,	inst/ruby,	etc.).	If	these	scripts	are	essential	to	your	package,	make	sure	you	also
add	the	appropriate	programming	language	to	the	SystemRequirements	field	in	the
DESCRIPTION.	(This	field	is	for	human	reading,	so	don’t	worry	about	exactly	how	you
specify	it.)

Java	is	a	special	case	because	you	need	to	include	both	the	source	code	(which	should	go
in	java/	and	be	listed	in	.Rinstignore),	and	the	compiled	.jar	files	(which	should	go	in
inst/java).	Make	sure	to	add	rJava	to	IMPORTS.

http://cran.r-project.org/web/packages/gdata/index.html
http://search.cpan.org/~dougw/Spreadsheet-ParseExcel-0.65/




Chapter	12.	Other	Components

There	are	four	other	directories	that	are	valid,	top-level	directories.	They	are	rarely	used:

demo/

For	package	demos.	These	were	useful	prior	to	the	introduction	of	vignettes,	but	are
no	longer	recommended.	See	the	following	section	for	more	information.

exec/

For	executable	scripts.	Compared	to	other	directories,	files	in	exec/	are	automatically
flagged	as	executable.

po/

Translations	for	messages.	This	is	useful	but	beyond	the	scope	of	this	book.	See	the
Internationalization	chapter	of	“R	extensions”	for	more	details.

tools/

Auxiliary	files	needed	during	configuration,	or	for	sources	that	need	to	generate
scripts.

http://bit.ly/1F9gTyI


Demos
A	demo	is	an	.R	file	that	lives	in	demo/.	Demos	are	like	examples	but	tend	to	be	longer.
Instead	of	focusing	on	a	single	function,	they	show	how	to	weave	together	multiple
functions	to	solve	a	problem.

You	list	and	access	demos	with	demo():

To	show	all	available	demos,	use	demo().

To	show	all	demos	in	a	package,	use	demo(package	=	"httr").

To	run	a	specific	demo,	use	demo("oauth1-twitter",	package	=	"httr").

To	find	a	demo,	use	system.file("demo",	"oauth1-twitter.R",	package	=
"httr").

Each	demo	must	be	listed	in	demo/00Index	in	the	following	form:	demo-name	Demo
description.	The	demo	name	is	the	name	of	the	file	without	the	extension	(e.g.,
demo/my-demo.R	becomes	my-demo).

By	default,	the	demo	asks	for	human	input	for	each	plot:	“Hit	to	see	next	plot:”	This
behavior	can	be	overridden	by	adding	devAskNewPage(ask	=	FALSE)	to	the	demo	file.
You	can	add	pauses	by	adding	readline("press	any	key	to	continue").

Generally,	I	do	not	recommend	using	demos.	Demos	are	not	automatically	tested	by	R	CMD
check.	This	means	that	they	can	easily	break	without	your	knowledge.	Instead,	consider
writing	a	vignette.	Vignettes	have	both	input	and	output,	so	readers	can	see	the	results
without	having	to	run	the	code	themselves.	Longer	demos	need	to	mingle	code	with
explanation,	and	R	Markdown	is	better	suited	to	that	task	than	R	comments.	Vignettes	are
listed	on	the	CRAN	package	page,	which	makes	it	easier	for	new	users	to	discover	them.



Part	III.	Best	Practices





Chapter	13.	Git	and	GitHub

If	you’re	serious	about	software	development,	you	need	to	learn	about	Git.	Git	is	a	version
control	system,	a	tool	that	tracks	changes	to	your	code	and	shares	those	changes	with
others.	Git	is	most	useful	when	combined	with	GitHub,	a	website	that	allows	you	to	share
your	code	with	the	world,	solicit	improvements	via	pull	requests,	and	track	issues.
Git/GitHub	is	the	most	popular	version	control	system	for	developers	of	R	packages
(witness	the	thousands	of	R	packages	hosted	on	GitHub).

Git	and	Github	are	generally	useful	for	all	software	development	and	data	analysis,	not
just	R	packages.	I’ve	included	it	here	because	it	is	so	useful	when	you’re	making	a
package.	There’s	no	way	I	could	be	as	productive	without	Git	and	GitHub	at	my	back,
enabling	me	to	rapidly	spot	mistakes	and	easily	collaborate	with	others.

Why	use	Git/GitHub?

It	makes	sharing	your	package	easy.	Any	R	user	can	install	your	package	with	just	two
lines	of	code:

install.packages("devtools")

devtools::install_github("username/packagename")

GitHub	is	a	great	way	to	make	a	bare-bones	website	for	your	package.	Readers	can
easily	browse	code	and	read	documentation	(via	Markdown).	They	can	report	bugs,
suggest	new	features	with	GitHub	issues,	and	propose	improvements	to	your	code	with
pull	requests.

Have	you	ever	tried	to	collaboratively	write	code	with	someone	by	sending	files	back
and	forth	via	email	or	a	Dropbox	folder?	It	takes	a	lot	of	effort	just	to	make	sure	that
the	two	of	you	aren’t	working	on	the	same	file	and	overwriting	each	other’s	changes.
With	Git,	both	of	you	can	work	on	the	same	file	at	the	same	time.	Git	will	either
combine	your	changes	automatically,	or	it	will	show	you	all	the	ambiguities	and
conflicts.

Have	you	ever	accidentally	pressed	S	instead	of	Cmd-S	to	save	your	file?	I	do	it	all	the
time!	It’s	very	easy	to	accidentally	introduce	a	mistake	that	takes	a	few	minutes	to	track
down.	Git	makes	this	problem	easy	to	spot	because	it	allows	you	to	see	exactly	what’s
changed	and	undo	any	mistakes.

You	can	do	many	of	these	same	things	with	other	tools	(like	Subversion	or	Mercurial)	and
other	websites	(like	GitLab	and	Bitbucket).	Git	is	most	useful	in	conjunction	with	GitHub,
and	vice	versa,	so	I’ll	make	no	effort	to	distinguish	between	features	that	belong	to	Git	and
those	that	belong	to	GitHub.	But	I	think	Git/GitHub	is	the	most	user-friendly	system
(especially	for	new	developers),	not	least	because	its	popularity	means	that	the	answer	or
solution	to	every	possible	question	or	problem	can	be	found	on	StackOverflow.

http://github.com/
https://guides.github.com/features/issues/
https://subversion.apache.org/
http://mercurial.selenic.com/
https://about.gitlab.com/
https://bitbucket.org/


This	is	not	to	say	that	Git	is	easy	to	learn.	Your	initial	experiences	with	Git	will	be
frustrating	and	you	will	frequently	curse	at	the	strange	terminology	and	unhelpful	error
messages.	Fortunately,	there	are	many	tutorials	available	online,	and	although	they	aren’t
always	well	written	(many	provide	a	lot	of	information	but	little	guidance	about	what	to
do	with	it	or	why	you	need	to	care),	you	can	absolutely	master	Git	with	a	little	practice.
Don’t	give	up!	Persevere	and	you’ll	unlock	the	super	power	of	code	collaboration.



RStudio,	Git,	and	GitHub
RStudio	makes	day-to-day	use	of	Git	simpler.	Once	you’ve	set	up	a	project	to	use	Git,
you’ll	see	a	new	pane	and	toolbar	icon.	These	provide	shortcuts	to	the	most	commonly
used	Git	commands.	However,	because	only	a	handful	of	the	150+	Git	commands	are
available	in	RStudio,	you	also	need	to	be	familiar	with	using	Git	from	the	shell	(aka	the
command	line	or	the	console).	It’s	also	useful	to	be	familiar	with	using	Git	in	a	shell
because	if	you	get	stuck,	you’ll	need	to	search	for	a	solution	with	the	Git	command	names.

The	easiest	way	to	get	to	a	shell	from	RStudio	is	Tools	→	Shell.	This	will	open	a	new
shell	located	in	the	root	directory	of	your	project.	(Note:	on	Windows,	this	opens	up	a
bash	shell,	the	standard	Linux	shell,	which	behaves	a	little	differently	from	the	usual
cmd.exe	shell.)

Don’t	worry	if	you’ve	never	used	the	shell	before,	because	it’s	very	similar	to	using	R.
The	main	difference	is	that	instead	of	functions,	you	call	commands,	which	have	a	slightly
different	syntax.	For	example,	in	R	you	might	write	f(x,	y	=	1),	where	in	the	shell	you’d
write	f	x	--y=1	or	f	x	-y1.	Also,	while	shell	commands	are	even	less	regular	than	R
functions,	you	fortunately	only	need	to	be	familiar	with	a	few.	In	this	chapter,	you	won’t
be	doing	much	in	the	shell	apart	from	running	Git	commands.	However,	it’s	a	good	idea	to
learn	the	three	most	important	shell	commands:
pwd

Stands	for	print	working	directory.	This	command	tells	you	which	directory	you’re
currently	in.

cd	<name>

This	command	changes	the	directory.	Use	cd	..	to	move	up	the	directory	hierarchy.
ls

This	command	lists	all	the	files	in	the	current	directory.

If	you’ve	never	used	the	shell	before,	I	recommend	playing	Terminus.	It’s	a	fun	way	to
learn	the	basics	of	the	shell.	I	also	recommend	taking	a	look	at	Philip	Guo’s	Basic	Unix-
like	command	line	tutorial	videos,	Michael	Stonebank’s	Unix	tutorial,	and	Brennen
Bearnes’s	Userland.

http://bit.ly/1GyJI4R
http://pgbovine.net/command-line-tutorial.htm
http://bit.ly/1GyJNp7
https://p1k3.com/userland-book/


Initial	Setup
If	you’ve	never	used	Git	or	GitHub	before,	start	by	installing	Git	and	creating	a	GitHub
account.	Then,	link	the	two	together:

1.	 Install	Git:
Windows:	http://git-scm.com/download/win.

OS	X:	http://git-scm.com/download/mac.

Debian/Ubuntu:	sudo	apt-get	install	git-core.

Other	Linux	distros:	http://git-scm.com/download/linux.

2.	 Tell	Git	your	name	and	email	address.	These	are	used	to	label	each	commit	so	that
when	you	start	collaborating	with	others,	it’s	clear	who	made	each	change.	In	the
shell,	run	the	following:

git	config	--global	user.name	"YOUR	FULL	NAME"

git	config	--global	user.email	"YOUR	EMAIL	ADDRESS"

(You	can	check	if	you’re	set	up	correctly	by	running	git	config	--global	--
list.)

3.	 Create	an	account	on	GitHub.	(The	free	plan	is	fine.)	Use	the	same	email	address	as
before.

4.	 If	needed,	generate	an	SSH	key.	SSH	keys	allow	you	to	securely	communicate	with
websites	without	a	password.	There	are	two	parts	to	an	SSH	key:	one	public,	one
private.	People	with	your	public	key	can	securely	encrypt	data	that	can	only	be	read
by	someone	with	your	private	key.	
You	can	check	if	you	already	have	an	SSH	key	pair	by	running:

file.exists("~/.ssh/id_rsa.pub")

If	that	returns	FALSE,	you’ll	need	to	create	a	new	key.	You	can	either	follow	the
instructions	on	GitHub	or	use	RStudio.	To	use	RStudio,	go	to	the	RStudio	options,
choose	the	Git/SVN	panel,	and	click	“Create	RSA	key…”	(Figure	13-1).

http://git-scm.com/download/win
http://git-scm.com/download/mac
http://git-scm.com/download/linux
https://github.com/
https://help.github.com/articles/generating-ssh-keys


Figure	13-1.	RStudio’s	Git	options

5.	 Give	GitHub	your	SSH	public	key:	https://github.com/settings/ssh.	The	easiest	way
to	find	the	key	is	to	click	“View	public	key”	in	RStudio’s	Git/SVN	preferences	pane.

https://github.com/settings/ssh


Creating	a	Local	Git	Repository
Now	that	you	have	installed	and	configured	Git,	you	can	use	it!	To	use	GitHub	with	your
package,	you’ll	need	to	initialize	a	local	repository,	or	repo	for	short.	This	creates	a	.git
directory	that	stores	configuration	files	and	a	database	that	records	changes	to	your	code.
A	new	repo	exists	only	on	your	computer;	you’ll	learn	how	to	share	it	with	others	shortly.

To	create	a	new	repo:

1.	 In	RStudio,	go	to	project	options,	then	to	the	Git/SVN	panel.	Change	“Version
control	system”	from	“None”	to	“Git”	(Figure	13-2).

Figure	13-2.	Creating	a	new	repo	in	RStudio

2.	 You’ll	then	be	prompted	to	restart	RStudio.	In	a	shell,	run	git	init.	Restart	RStudio
and	reopen	your	package.

Once	Git	has	been	initialized,	you’ll	see	two	new	components:	the	Git	pane,	at	the	upper
right,	shows	you	what	files	have	changed	and	includes	buttons	for	the	most	important	Git



commands	(Figure	13-3).

Figure	13-3.	RStudio’s	Git	pane

The	Git	drop-down	menu,	found	in	the	toolbar,	includes	Git	and	GitHub	commands	that
apply	to	the	current	file	(Figure	13-4).



Figure	13-4.	RStudio’s	Git	options



Seeing	What’s	Changed
The	first	benefit	of	Git	is	that	you	can	easily	see	the	changes	you’ve	made.	I	find	this
really	helpful,	as	I	often	accidentally	mistype	keyboard	shortcuts,	leaving	stray	characters
in	my	code.	The	RStudio	Git	pane	lists	every	file	that’s	been	added,	modified,	or	deleted.
The	icon	describes	the	change:

,	Modified.	You’ve	changed	the	contents	of	the	file.

,	Untracked.	You’ve	added	a	new	file	that	Git	hasn’t	seen	before.

,	Deleted.	You’ve	deleted	a	file.

You	can	get	more	details	about	modifications	with	a	“diff”	by	clicking	 .	This
opens	a	new	window	showing	the	detailed	differences	(Figure	13-5).

Figure	13-5.	An	example	diff	(additions	in	red,	deletions	in	green)



The	background	colors	tell	you	whether	the	text	has	been	added	(green)	or	removed	(red).
(If	you’re	colorblind,	you	can	use	the	line	numbers	in	the	two	columns	at	the	far	left	as	a
guide:	a	number	in	the	first	column	identifies	the	old	version,	a	number	in	the	second
column	identifies	the	new	version.)	The	gray	lines	of	code	above	and	below	the	changes
give	you	additional	context.

In	the	shell,	use	git	status	to	see	an	overview	of	changes	and	git	diff	to	show	detailed
differences.



Recording	Changes
The	fundamental	unit	of	work	in	Git	is	a	commit.	A	commit	takes	a	snapshot	of	your	code
at	a	specified	point	in	time.	Using	a	Git	commit	is	like	using	anchors	and	other	protection
when	rock	climbing.	If	you’re	crossing	a	dangerous	rock	face,	you	want	to	make	sure
there’s	protection	in	case	you	fall.	Commits	play	a	similar	role:	if	you	make	a	mistake,	you
can’t	fall	past	the	previous	commit.	Coding	without	commits	is	like	free	climbing:	you	can
travel	much	faster	in	the	short	term,	but	in	the	long	term,	the	chances	of	catastrophic
failure	are	high!	Like	rock	climbing	protection,	you	want	to	be	judicious	in	your	use	of
commits.	Committing	too	frequently	will	slow	your	progress;	use	more	commits	when
you’re	in	uncertain	or	dangerous	territory.	Commits	are	also	helpful	to	others,	because
they	show	your	journey,	not	just	the	destination.

There	are	five	key	components	to	every	commit:

A	unique	identifier	called	a	secure	hash	algorithm	(SHA)

A	changeset	that	describes	which	files	were	added,	modified,	and	deleted

A	human-readable	commit	message

A	parent,	the	commit	that	came	before	this	one	(there	are	two	exceptions	to	this	rule:
the	initial	commit,	which	doesn’t	have	a	parent,	and	merges,	which	have	two	parents;
you’ll	learn	about	merges	later)

An	author

You	create	a	commit	in	two	stages:

1.	 You	stage	files,	telling	Git	which	changes	should	be	included	in	the	next	commit.

2.	 You	commit	the	staged	files,	describing	the	changes	with	a	message.

In	RStudio,	staging	and	committing	are	done	in	the	same	place,	the	commit	window,

which	you	can	open	by	clicking	 	or	by	pressing	Ctrl-Alt-M	(Figure	13-
6).



Figure	13-6.	RStudio’s	commit	window	shows	you	what	files	have	been	modified,	and	exactly	what’s	changed	in	the
seclted	file

The	commit	window	is	made	up	of	three	panes:

The	upper-left	pane	shows	the	current	status	of	each	file.	It’s	the	same	as	the	Git	pane
in	the	main	RStudio	window.

The	bottom	pane	shows	the	diff	of	the	currently	selected	file.

The	upper-right	pane	is	where	you’ll	enter	the	commit	message,	a	human-readable
message	summarizing	the	changes	made	in	the	commit.	We’ll	discuss	that	in	more
detail	momentarily.

(Yes,	this	is	exactly	the	same	window	you	see	when	clicking	 !)

To	create	a	new	commit:

1.	 Save	your	changes.



2.	 Open	the	commit	window	by	clicking	 	or	pressing	Ctrl-Alt-M.

3.	 Select	files.	To	stage	(select)	a	single	file	for	inclusion,	tick	its	checkbox.	To	stage	all

files,	press	Ctrl/Cmd-A,	then	click	 .	
As	you	stage	each	file,	you’ll	notice	that	its	status	changes.	The	icon	will	change
columns	from	right	(unstaged	status)	to	left	(staged	status),	and	you	might	see	one	of
two	new	icons:

Added:	

After	staging	an	untracked	file,	Git	now	knows	that	you	want	to	add	it	to	the
repo.

Renamed:	

If	you	rename	a	file,	Git	initially	sees	it	as	a	deletion	and	addition.	Once	you
stage	both	changes,	Git	will	recognize	that	it’s	a	rename.

Sometimes	you’ll	see	a	status	in	both	columns	(e.g.,	 	 ).	This	means	that	you
have	both	staged	and	unstaged	changes	in	the	same	file.	This	happens	when	you’ve
made	some	changes,	staged	them,	and	then	made	some	more.	Clicking	the	staged
checkbox	will	stage	your	new	changes,	clicking	it	again	will	unstage	both	sets	of
changes.

4.	 Stage	files,	as	before.

5.	 Write	a	commit	message	(upper-right	panel)	that	describes	the	changes	you’ve	made.
The	first	line	of	a	commit	message	is	called	the	subject	line	and	should	be	brief	(50
characters	or	less).	For	complicated	commits,	you	can	follow	it	with	a	blank	line	and
then	a	paragraph	or	bulleted	list	providing	more	detail.	Write	messages	in
imperative,	like	you’re	telling	someone	what	to	do:	“fix	this	bug,”	not	“fixed	this
bug”	or	“this	bug	was	fixed.”

6.	 Click	Commit.

Staging	files	is	a	little	more	complicated	in	the	shell.	You	use	git	add	to	stage	new	and
modified	files,	and	git	rm	to	stage	deleted	files.	To	create	the	commit,	use	git	commit	-
m	<message>.



Best	Practices	for	Commits
Ideally,	each	commit	should	be	minimal	but	complete:

Minimal

A	commit	should	only	contain	changes	related	to	a	single	problem.	This	will	make	it
easier	to	understand	the	commit	at	a	glance,	and	to	describe	it	with	a	simple	message.
If	you	happen	to	discover	a	new	problem,	you	should	do	a	separate	commit.

Complete

A	commit	should	solve	the	problem	that	it	claims	to	solve.	If	you	think	you’ve	fixed	a
bug,	the	commit	should	contain	a	unit	test	that	confirms	you’re	right.

Each	commit	message	should:

Be	concise,	yet	evocative

At	a	glance,	you	should	be	able	to	see	what	a	commit	does.	But	there	should	be
enough	detail	so	you	can	remember	(and	understand)	what	was	done.

Describe	the	why,	not	the	what

You	can	always	retrieve	the	diff	associated	with	a	commit,	so	the	message	doesn’t
need	to	say	exactly	what	changed.	Instead,	it	should	provide	a	high-level	summary
that	focuses	on	the	reasons	for	the	change.

If	you	follow	these	best	practices,	you’ll	benefit	in	the	following	ways:

It	will	be	easier	to	work	with	others.	For	example,	if	two	people	have	changed	the	same
file	in	the	same	place,	it	will	be	easier	to	resolve	conflicts	if	the	commits	are	small	and
it’s	clear	why	each	change	was	made.

Project	newcomers	can	more	easily	understand	the	history	by	reading	the	commit	logs.

You	can	load	and	run	your	package	at	any	point	along	its	development	history.	This	can
be	tremendously	useful	for	tools	like	bisectr,	which	allows	you	to	use	binary	search	to
quickly	find	the	commit	that	introduced	a	bug.

If	you	can	figure	out	exactly	when	a	bug	was	introduced,	you	can	easily	understand
what	you	were	doing	(and	why!).

You	might	think	that	because	no	one	else	will	ever	look	at	your	repo,	writing	good	commit
messages	is	not	worth	the	effort.	But	keep	in	mind	that	you	have	one	very	important
collaborator:	“future	you”!	If	you	spend	a	little	time	now	polishing	your	commit
messages,	“future	you”	will	thank	you	if	and	when	it’s	necessary	to	do	a	postmortem	on	a
bug.

Remember	that	these	directives	are	aspirational.	You	shouldn’t	let	them	get	in	your	way.	If
you	look	at	the	commit	history	of	my	repositories,	you’ll	notice	a	lot	of	them	aren’t	that
good,	especially	when	I	start	to	get	frustrated	that	I	still	haven’t	managed	to	fix	a	bug.

https://github.com/wch/bisectr


Strive	to	follow	these	guidelines,	and	remember	it’s	better	to	have	multiple	bad	commits
than	to	have	one	perfect	commit.



Ignoring	Files
Often,	there	are	files	that	you	don’t	want	to	include	in	the	repository.	They	might	be
transient	(like	LaTeX	or	C	build	artifacts),	very	large,	or	generated	on	demand.	Rather
than	carefully	not	staging	them	each	time,	you	should	instead	add	them	to	.gitignore.	This
will	prevent	them	from	ever	being	added.	The	easiest	way	to	do	this	is	to	right-click	the
file	in	the	Git	pane	and	select	Ignore	(Figure	13-7).

Figure	13-7.	Access	the	ignore	files	dialog	by	right-clicking	a	filename

If	you	want	to	ignore	multiple	files,	you	can	use	a	wildcard	“glob”	like	*.png.	To	learn
more	about	the	options,	see	Ignoring	Files	in	Pro-Git.

Some	developers	never	commit	derived	files	(i.e.,	files	that	can	be	generated
automatically).	For	an	R	package,	this	would	mean	ignoring	the	files	in	the	NAMESPACE
and	man/	directories	because	they’re	generated	from	comments.	From	a	practical
perspective,	it’s	better	to	commit	these	files:	R	packages	have	no	way	to	generate	.Rd	files
on	installation,	so	ignoring	derived	files	means	that	users	who	install	your	package	from
GitHub	will	have	no	documentation.

http://bit.ly/1F9hxMw


Undoing	Mistakes
The	best	thing	about	using	commits	is	that	you	can	undo	mistakes.	RStudio	makes	it
particularly	easy:

To	undo	the	changes	you’ve	just	made,	right-click	the	file	in	the	Git	pane	and	select
“revert.”	This	will	roll	any	changes	back	to	the	previous	commit.	Beware:	you	can’t
undo	this	operation!	
You	can	also	undo	changes	to	just	part	of	a	file	in	the	diff	window.	Look	for	a	“Discard
chunk”	button	above	the	block	of	changes	that	you	want	to	undo:

.	You	can	also	discard	changes	to	individual	lines	or
selected	text.

If	you	committed	changes	too	early,	you	can	modify	the	previous	commit	by	staging
the	extra	changes.	Before	you	click	commit,	select	

.	(Don’t	do	this	if	you’ve	pushed	the	previous
commit	to	GitHub	—	you’re	effectively	rewriting	history,	which	should	be	done	with
care	when	you’re	doing	it	in	public.)

If	you	didn’t	catch	the	mistake	right	away,	you’ll	need	to	look	backwards	in	history	and
find	out	where	it	occurred:

1.	 Open	the	history	window	by	clicking	 	in	the	Git	pane	(Figure	13-
8).



Figure	13-8.	The	history	pane	shows	all	the	commits	in	your	at	top,	and	the	details	of	the	selected	commit	at
bottom

The	history	window	is	divided	into	two	parts.	The	top	part	lists	every	commit	to	your
repo.	The	bottom	part	shows	you	the	commit:	the	SHA	(the	unique	id),	the	author,
the	date,	the	parent,	and	the	changes	in	the	commit.

2.	 Navigate	back	in	time	until	you	find	the	commit	where	the	mistake	occurred.	Write
down	the	parent	SHA:	that’s	the	commit	that	occurred	before	the	mistake,	so	it	will
be	good.

Now	you	can	use	that	SHA	in	the	shell:

See	what	the	file	looked	like	in	the	past	so	you	can	copy	and	paste	the	old	code:

git	show	<SHA>	<filename>

Or	copy	the	version	from	the	past	back	in	to	the	present:

git	checkout	<SHA>	<filename>



In	both	cases,	you’ll	need	to	finish	by	staging	and	committing	the	files.

NOTE
It’s	also	possible	to	use	Git	as	if	you	went	back	in	time	and	prevented	the	mistake	from	happening	in	the
first	place.	This	is	an	advanced	technique	called	rebasing	history.	As	you	might	imagine,	going	back	in	time
to	change	the	past	can	have	a	profound	impact	on	the	present.	It	can	be	useful,	but	it	needs	to	be	done	with
extreme	care.

If	you’re	still	stuck,	try	Seth	Robertson’s	“On	undoing,	fixing,	or	removing	commits	in
git”	or	Justin	Hileman’s	“Git	pretty”.	They	give	step-by-step	approaches	to	fixing	many
common	(and	not	so	common!)	problems.

http://sethrobertson.github.io/GitFixUm/fixup.html
http://bit.ly/1GyK4s6


Synchronizing	with	GitHub
So	far	we’ve	only	been	working	locally,	using	commits	to	track	the	progress	of	a	project
and	to	provide	safe	checkpoints.	However,	Git	really	shines	when	you	start	sharing	your
code	with	others	on	GitHub.	While	there	are	other	choices,	I	recommend	GitHub	because
it	is	free	for	open	source	projects,	it	has	all	the	features	you’ll	need,	and	is	a	popular
choice	in	the	R	world.

To	publish,	or	push,	your	code	to	GitHub:

1.	 First,	create	a	new	repo	on	GitHub.	Give	it	the	same	name	as	your	package,	and
include	the	package	title	as	the	repo	description.	Leave	all	the	other	options	as	is,
then	click	Submit.

2.	 Open	a	shell,	then	follow	the	instructions	on	the	new	repo	page.	They’ll	look
something	like	this:

git	remote	add	origin	git@github.com:hadley/r-pkgs.git

git	push	-u	origin	master

The	first	line	tells	Git	that	your	local	repo	has	a	remote	version	on	GitHub,	and	calls
it	“origin.”	The	second	line	pushes	all	your	current	work	to	that	repo.

Now	let’s	make	a	commit	and	verify	that	the	remote	repo	updates:

1.	 Modify	DESCRIPTION	to	add	URL	and	BugReports	fields	that	link	to	your	new
GitHub	site.	For	example,	dplyr	has:

URL:	http://github.com/hadley/dplyr

BugReports:	http://github.com/hadley/dplyr/issues

2.	 Save	the	file	and	commit	(with	the	message	“Updating	DESCRIPTION	to	add	links
to	GitHub	site”).

3.	 Push	your	changes	to	GitHub	by	clicking	 .	(This	is	the	same	as
running	git	push	in	the	shell).

4.	 Go	to	your	GitHub	page	and	look	at	the	DESCRIPTION.

Usually,	each	push	will	include	multiple	commits.	This	is	because	you	push	much	less
often	than	you	commit.	How	often	you	push	versus	commit	is	completely	up	to	you,	but
pushing	code	means	publishing	code.	So	strive	to	push	code	that	works.

To	ensure	your	code	is	clean,	I	recommend	always	running	R	CMD	check	before	you	push
(a	topic	you’ll	learn	about	in	Chapter	14,	which	covers	automated	checking).	If	you	want
to	publish	code	that	doesn’t	work	(yet),	I	recommend	using	a	branch,	as	you’ll	learn	about
later	in	“Branches”.

http://github.com/
https://github.com/new


Once	you’ve	connected	your	repo	to	GitHub,	the	Git	pane	will	show	you	how	many
commits	you	have	locally	that	are	not	on	GitHub:	

.	This
message	indicates	that	I	have	one	commit	locally	(my	branch)	that	is	not	on	GitHub
(“origin/master”).



Benefits	of	Using	GitHub
Here’s	a	quick	rundown	of	the	benefits	of	using	GitHub:

You	get	a	decent	website.	The	GitHub	page	for	your	project	—	that	is,	the	GitHub	repo
for	testthat	(e.g.,	https://github.com/hadley/testthat)	—	lists	all	the	files	and	directories
in	your	package.	.R	files	will	be	formatted	with	syntax	highlighting,	and	.md/.Rmd	files
will	be	rendered	as	HTML.	And,	if	you	include	a	README.md	file	in	the	top-level
directory,	it	will	be	displayed	on	the	home	page.	You’ll	learn	more	about	the	benefits	of
creating	this	file	in	“README.md”.

It	makes	it	easy	for	anyone	to	install	your	package	(and	to	benefit	from	your	hard
work):

devtools::install_github("<your_username>/<your_package>")

You	can	track	the	history	of	the	project	in	the	commit	view	(e.g.,
https://github.com/hadley/testthat/commits/master).	When	I’m	working	on	a	package
with	others,	I	often	keep	this	page	open	so	I	can	see	what	they’re	working	on.
Individual	commits	show	the	same	information	that	you	see	in	the	Commit/Diff
window	in	RStudio.

It’s	easy	to	see	the	history	of	a	file.	If	you	navigate	to	a	file	and	click	History,	you’ll	see
every	commit	that	affected	that	file.	Another	useful	view	is	Blame;	it	shows	the	last
change	made	to	each	line	of	code,	who	made	the	change,	and	the	commit	the	change
belongs	to.	This	is	tremendously	helpful	when	you’re	tracking	down	a	bug.

You	can	jump	directly	to	these	pages	from	RStudio	with	the	Git	drop-down	in	the	main
toolbar	(Figure	13-9).

https://github.com/hadley/testthat
https://github.com/hadley/testthat/commits/master


Figure	13-9.	The	RStudio	git	dropdown	shows	actions	related	to	the	current	file

You	can	comment	on	commits.	To	comment	on	the	commit	as	a	whole,	use	the
comment	box	at	the	bottom	of	the	page.	To	comment	on	an	individual	line,	click	the

plus	sign	that	appears	when	you	mouse	over	a	line	number,	 .	This	is	a	great
way	to	let	your	collaborators	know	if	you	see	a	mistake	or	have	a	question.	It’s	better
than	email	because	it’s	public	so	anyone	working	on	the	repo	(both	present	and	future)
can	see	the	conversation.



Working	with	Others
You	use	push	to	send	your	changes	to	GitHub.	If	you’re	working	with	others,	they	also
push	their	changes	to	GitHub.	But	to	see	their	changes	locally,	you’ll	need	to	pull	their
changes	from	GitHub.	In	fact,	to	make	sure	everyone	is	in	sync,	Git	will	only	let	you	push
to	a	repo	if	you’ve	retrieved	the	most	recent	version	with	a	pull.

When	you	pull,	Git	first	downloads	(fetches)	all	of	the	changes	and	then	merges	them	with
the	changes	that	you’ve	made.	A	merge	is	a	commit	with	two	parents.	It	takes	two
different	lines	of	development	and	combines	them	into	a	single	result.	In	many	cases,	Git
can	do	this	automatically:	for	example,	when	changes	are	made	to	different	files,	or	to
different	parts	of	the	same	file.	However,	if	changes	are	made	to	the	same	place	in	a	file,
you’ll	need	to	resolve	the	merge	conflict	yourself.

In	RStudio,	you’ll	discover	that	you	have	merge	conflict	when:

A	pull	fails	with	an	error.

In	the	Git	pane,	you	see	a	status	like	 .

RStudio	currently	doesn’t	provide	any	tools	to	help	with	merge	conflicts,	so	you’ll	need	to
use	the	command	line.	I	recommend	starting	by	setting	your	merge	conflict	“style”	to
diff3.	The	diff3	style	shows	three	things	when	you	get	a	merge	conflict:	your	local
changes,	the	original	file,	and	the	remote	changes.	The	default	style	is	diff2,	which	only
shows	your	changes	and	the	remote	changes.	This	generally	makes	it	harder	to	figure	out
what’s	happened.

If	you’ve	encountered	your	first	merge	conflict,	do	the	following:

#	Abort	this	merge

git	merge	--abort

#	Set	the	conflict	style

git	config	--global	merge.conflictstyle	diff3

#	Retry	the	merge

git	pull

If	you’re	not	in	the	middle	of	a	merge	conflict,	just	run	this:

git	config	--global	merge.conflictstyle	diff3

To	resolve	a	merge	conflict,	you	need	to	open	every	file	with	the	status	 .	In
each	file,	you’ll	find	a	conflict	marker	that	looks	like	this:

<<<<<<<	HEAD

|||||||	merged	common	ancestors

=======

>>>>>>>	remote



This	shows	all	three	versions	of	the	conflicting	code:

At	the	top,	your	local	code.

In	the	middle,	the	code	from	the	last	commit	before	the	split	between	the	two	lines	of
development.	(This	is	missing	in	the	default	conflict	style,	so	if	you	don’t	see	it,	follow
the	instructions	from	before.)

At	the	bottom,	the	remote	code	that	you	pulled	down	from	GitHub.

You	need	to	work	through	each	conflict	and	decide	either	which	version	is	better,	or	how
to	combine	both	versions.	Then,	before	you	stage	the	file,	make	sure	you’ve	deleted	all	the
conflict	markers.	Once	you’ve	fixed	all	conflicts,	make	a	new	commit	and	push	to	GitHub.

A	couple	of	pointers	when	fixing	text	generated	by	roxygen:

Don’t	fix	problems	in	man/*.Rd	files.	Instead,	resolve	any	conflicts	in	the	underlying
roxygen	comments	and	redocument	the	package.

Merge	conflicts	in	the	NAMESPACE	file	will	prevent	you	from	reloading	or
redocumenting	a	package.	Resolve	them	enough	so	that	the	package	can	be	loaded,
then	redocument	to	generate	a	clean	and	correct	NAMESPACE.

Handling	merge	conflicts	is	one	of	the	trickier	parts	of	Git.	You	may	need	to	read	a	few
tutorials	before	you	get	the	hang	of	it.	Google	and	StackOverflow	are	great	resources.	If
you	get	terribly	confused,	you	can	always	abort	the	merge	and	try	again	by	running	git
merge	--abort	then	git	pull.



Issues
Every	GitHub	repo	comes	with	a	page	for	tracking	issues.	Use	it!	If	you	encounter	a	bug
while	working	on	another	project,	jot	down	a	note	on	the	issues	page.	When	you	have	a
smaller	project,	don’t	worry	too	much	about	milestones,	tags,	or	assigning	issues	to
specific	people.	Those	are	more	useful	once	you	get	over	a	page	of	issues	(>50).	Once	you
get	to	that	point,	read	the	GitHub	guide	on	issues.

A	useful	technique	is	closing	issues	from	a	commit	message.	Just	put	Closes	#<issue
number>	somewhere	in	your	commit	message	and	GitHub	will	close	the	issue	for	you
when	you	next	push.	The	best	thing	about	closing	issues	this	way	is	that	it	makes	a	link
from	the	issue	to	the	commit.	This	is	useful	if	you	ever	have	to	come	back	to	the	bug	and
want	to	see	exactly	what	you	did	to	fix	it.	You	can	also	link	to	issues	without	closing
them;	just	refer	to	#<issue	number>.

As	you’ll	learn	about	in	“NEWS.md”,	it’s	a	good	idea	to	add	a	bullet	to	NEWS.md
whenever	you	close	an	issue.	The	bullet	point	should	describe	the	issue	in	terms	that	users
will	understand,	as	opposed	to	the	commit	message,	which	is	written	for	developers.

https://guides.github.com/features/issues/


Branches
Sometimes	you	want	to	make	big	changes	to	your	code	without	having	to	disturb	your
main	stream	of	development.	Maybe	you	want	to	break	it	up	into	multiple	simple	commits
so	you	can	easily	track	what	you’re	doing.	Maybe	you’re	not	sure	what	you’ve	done	is	the
best	approach	and	you	want	someone	else	to	review	your	code.	Or,	maybe	you	want	to	try
something	experimental	(you	can	merge	it	back	only	if	the	experiment	succeeds).
Branches	and	pull	requests	provide	powerful	tools	to	handle	these	situations.

Although	you	might	not	have	realized	it,	you’re	already	using	branches.	The	default
branch	is	called	master;	it’s	where	you’ve	been	saving	your	commits.	If	you	synchronize
your	code	to	GitHub,	you’ll	also	have	a	branch	called	origin/master:	it’s	a	local	copy	of	all
the	commits	on	GitHub,	which	gets	synchronized	when	you	pull.	git	pull	is	shorthand
for	two	actions:

git	fetch	origin	master	to	update	the	local	origin/master	branch	with	the	latest
commits	from	GitHub.

git	merge	orgin/master	to	combine	the	remote	changes	with	your	changes.

It’s	useful	to	create	your	own	branches	when	you	want	to	(temporarily)	break	away	from
the	main	stream	of	development.	You	can	create	a	new	branch	with	git	checkout	-b
<branch-name>.	Names	should	be	in	lowercase	letters	and	numbers,	with	-	used	to
separate	words.

Switch	between	branches	with	git	checkout	<branch-name>.	For	example,	to	return	to
the	main	line	of	development,	use	git	branch	master.	You	can	also	use	the	branch
switcher	at	the	upper-right	of	the	Git	pane	(Figure	13-10).

Figure	13-10.	In	Rstudio,	you	can	switch	between	branches	using	the	drop-down	at	the	upper-right	of	the	Git	pane

If	you’ve	forgotten	the	name	of	your	branch	in	the	shell,	you	can	use	git	branch	to	list	all
existing	branches.

If	you	try	to	synchronize	this	branch	to	GitHub	from	inside	RStudio,	you’ll	notice	that

push	and	pull	are	disabled:	 .	To	enable	them,	you’ll	need	to
first	tell	Git	that	your	local	branch	has	a	remote	equivalent:

git	push	--set-upstream	origin	<branch-name>

After	you’ve	done	that	once,	you	can	use	the	pull	and	push	buttons	as	usual.



If	you’ve	been	working	on	a	branch	for	a	while,	other	work	might	have	been	going	on	in
the	master	branch.	To	integrate	that	work	into	your	branch,	run	git	merge	master.	You
will	need	to	resolve	any	merge	conflicts	(discussed	earlier).	It’s	best	to	do	this	fairly
frequently	—	the	less	your	branch	diverges	from	the	master,	the	easier	it	will	be	to	merge.

Once	you’re	done	working	on	a	branch,	merge	it	back	into	the	master,	then	delete	the
branch:

git	checkout	master

git	merge	<branch-name>

git	branch	-d	<branch-name>

NOTE
Git	won’t	let	you	delete	a	branch	unless	you’ve	merged	it	back	into	the	master	branch.	If	you	do	want	to
abandon	a	branch	without	merging	it,	you’ll	need	to	force	delete	with	-D	instead	of	-d.	If	you	accidentally
delete	a	branch,	don’t	panic.	It’s	usually	possible	to	get	it	back.



Making	a	Pull	Request
A	pull	request	is	a	tool	for	proposing	and	discussing	changes	before	merging	them	into	a
repo.	The	most	common	use	for	a	pull	request	is	to	contribute	to	someone	else’s	code:	it’s
the	easiest	way	to	propose	changes	to	code	that	you	don’t	control.

Here	you’ll	learn	about	pull	requests	to	make	changes	to	your	own	code.	This	may	seem	a
bit	pointless	because	you	don’t	need	them,	as	you	can	directly	modify	your	code.	But	pull
requests	are	surprisingly	useful	because	they	allow	you	to	get	feedback	on	proposed
changes.	We	use	them	frequently	in	RStudio	to	get	feedback	before	merging	major
changes.

GitHub	has	some	good	documentation	on	using	pull	requests.	In	this	chapter,	I’ll	focus	on
the	basics	you	need	to	know	to	use	pull	requests	effectively,	and	show	you	how	they	fit	in
with	the	Git	commands	you’ve	learned	so	far.

To	create	a	pull	request,	you	create	a	branch,	commit	code,	then	push	the	branch	to
GitHub.	When	you	next	go	to	the	GitHub	website,	you’ll	see	a	header	that	invites	you	to
submit	a	pull	request.	You	can	also	do	it	by	following	these	steps:

1.	 Switching	branches	(Figure	13-11).

Figure	13-11.	On	GitHub,	switch	between	branches	using	the	Branches	drop-down	on	the	upper-left

2.	 Clicking	 .

https://help.github.com/articles/using-pull-requests/


This	will	create	a	page	that	looks	like	Figure	13-12.

Figure	13-12.	Sample	issue	page	on	GitHub

This	pull	request,	which	fixes	a	couple	of	small	problems,	is	one	that	was	submitted	to	this
book’s	GitHub	site.

There	are	three	parts	to	a	pull	request:

A	conversation,	 ,	where	you	can	discuss	the	changes
as	a	whole.

The	commits	view,	 ,	where	you	can	see	each	individual
commit.

The	file	changes,	 ,	where	you	see	the	overall	diff	of
the	commits,	and	you	can	comment	on	individual	lines.

Once	you’re	done	discussing	a	pull	request,	you	either	choose	to	merge	it	or	delete	it.
Merging	it	is	equivalent	to	running	git	merge	<branchname>	from	the	shell;	deleting	is
equivalent	to	git	branch	-r	<branchname>.



Submitting	a	Pull	Request	to	Another	Repo
To	submit	a	pull	request	to	a	repo	that	you	don’t	own,	you	first	need	to	create	a	copy	of	the
repo	that	you	can	own,	called	a	fork,	and	then	clone	that	fork	on	your	own	computer:

1.	 Fork	the	original	repo	by	going	to	the	repo	on	GitHub	and	clicking	

.	This	creates	a	copy	of	the	repo	that	belongs	to	you.

2.	 Clone	the	forked	repo	to	create	a	local	copy	of	the	remote	repo.	It’s	possible	to	do
this	within	RStudio	(using	“Create	New	Project”	from	“Version	Control”)	but	I	think
it’s	easier	to	do	it	from	the	shell:

git	clone	git@github.com:<your-name>/<repo>.git

cd	<repo>

A	fork	is	a	static	copy	of	the	repo:	once	you’ve	created	it,	GitHub	does	nothing	to	keep	it
in	sync	with	the	upstream	repo.	This	is	a	problem	because	while	you’re	working	on	a	pull
request,	changes	might	occur	in	the	original	repo.	To	keep	the	forked	and	the	original	repo
in	sync,	start	by	telling	your	repo	about	the	upstream	repo:

git	remote	add	upstream	git@github.com:<original-name>/extrafont.git

git	fetch	upstream

Then	you	can	merge	changes	from	the	upstream	repo	to	your	local	copy:

git	merge	upstream/master

When	working	on	a	forked	repo,	I	recommend	that	you	don’t	work	on	the	master	branch.
Because	you’re	not	really	working	on	the	main	line	of	development	for	that	repo,	using
your	master	branch	makes	things	confusing.

If	you	always	create	pull	requests	in	branches,	you	can	make	it	a	little	easier	to	keep	your
local	repo	in	sync	with	the	upstream	repo	by	running:

git	branch	-u	upstream/master			

Then	you	can	update	your	local	repo	with	the	following	code:

git	checkout	master

git	pull

Changes	may	occur	while	you’re	working	on	the	pull	request,	so	remember	to	merge	them
into	your	branch	with:

git	checkout	<my-branch>

git	merge	master



A	pull	request	(PR)	is	a	one-to-one	mapping	to	a	branch,	so	you	can	also	use	this
technique	to	make	updates	based	on	the	pull	request	discussion.	Don’t	create	a	new	pull
request	each	time	you	make	a	change;	instead,	you	just	need	to	push	the	branch	that	the
PR	is	based	on	and	the	PR	web	page	will	automatically	update.

The	diagram	in	Figure	13-13	illustrates	the	main	steps	of	creating	a	pull	request	and
updating	the	request	as	the	upstream	repo	changes.



Figure	13-13.	Workflows	for	creating	a	new	pull	request	and	updating	an	existing	pull	request



Reviewing	and	Accepting	Pull	Requests
As	your	package	gets	more	popular,	you’re	likely	to	receive	pull	requests.	Receiving	a	pull
request	is	fantastic.	Someone	not	only	cares	about	your	package	enough	to	use	it,	but
they’ve	actually	read	the	source	code	and	made	an	improvement!

When	you	receive	a	pull	request,	I	recommend	reviewing	it	using	the	three-step	approach
described	by	Sarah	Sharp.	I’ve	summarized	the	three	phases	here,	but	I	highly	recommend
reading	the	full	article:

Is	it	a	good	idea?

If	you	don’t	think	the	contribution	is	a	good	fit	for	your	project,	it’s	polite	to	let	the
contributor	know	as	quickly	as	possible.	Thank	them	for	their	work,	and	refocus	them
on	a	better	area	to	work	on.

Is	the	overall	approach	sound?

At	this	point,	you	want	to	focus	on	the	big	picture:	have	they	modified	the	right
functions	in	the	right	way?	Avoid	nitpicking	minor	style	problems	(that’s	the	final
phase);	instead,	just	provide	a	pointer	to	your	style	preferences	(e.g.,	http://r-
pkgs.had.co.nz/style.html).

Is	it	polished?

In	the	final	review	phase,	make	sure	that	the	noncode	parts	of	the	PR	are	polished.
Prompt	the	contributor	to	update	the	documentation,	point	out	spelling	mistakes,	and
suggest	better	wording.	I	recommend	asking	the	contributor	to	include	a	bullet	point
in	NEWS.md,	briefly	describing	the	improvement	and	thanking	themselves	with	their
GitHub	username.	More	details	to	follow	in	“Prepare	for	Next	Version”.

After	discussion	is	complete,	you	can	incorporate	the	changes	by	clicking	the	merge
button.	If	the	button	doesn’t	work,	GitHub	provides	some	instructions	on	how	to	do	it
from	the	command	line.	Although	you’ve	seen	all	the	pieces	before,	it’s	useful	to	read
through	this	just	so	you	understand	what	exactly	is	happening:

#	Create	a	new	branch,	and	sync	it	with	the	pull	request

git	checkout	-b	<branch>	master

git	pull	https://github.com/<user>/<branch>.git	patch-3

#	Merge	the	changes	into	the	main	line	of	development

git	checkout	master

git	merge	--no-ff	<branch>

#	Resolve	conflicts,	stage	and	add.

#	Sync	your	local	changes	with	GitHub

git	push	origin	master

http://sarah.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
http://r-pkgs.had.co.nz/style.html


Learning	More
Git	and	GitHub	are	a	rich	and	powerful	set	of	tools,	and	there’s	no	way	this	chapter	has
taught	you	everything	you	need	to	know.	However,	you	should	now	have	the	basic
knowledge	to	be	effective,	and	you	should	be	in	a	good	position	to	learn	more.	Some	good
resources	are:

GitHub	help	not	only	teaches	you	about	GitHub,	but	also	has	good	tutorials	on	many
Git	features.

If	you’d	like	to	learn	more	about	the	details	of	Git,	read	Pro	Git	by	Scott	Chacon	and
Ben	Straub	(Apress).

Finally,	StackOverflow	is	a	vital	part	of	Git	—	when	you	have	a	problem	that	you	don’t
know	how	to	solve,	StackOverflow	should	be	your	first	resource.	It’s	highly	likely	that
someone	has	already	had	the	same	exact	problem	as	you,	and	that	there	will	be	a	variety	of
approaches	and	solutions	to	choose	from.

https://help.github.com
http://git-scm.com/book/en/v2




Chapter	14.	Automated	Checking

An	important	part	of	the	package	development	process	is	R	CMD	check,	which
automatically	checks	your	code	for	common	problems.	It’s	essential	if	you’re	planning	on
submitting	to	CRAN,	but	it’s	useful	even	if	you’re	not	because	it	automatically	detects
many	commons	problems	that	you’d	otherwise	discover	the	hard	way.

R	CMD	check	will	be	frustrating	the	first	time	you	run	it	—	you’ll	discover	many	problems
that	need	to	be	fixed.	The	key	to	making	R	CMD	check	less	frustrating	is	to	actually	run	it
more	often:	the	sooner	you	find	a	problem,	the	easier	it	is	to	fix.	The	upper	limit	of	this
approach	is	to	run	R	CMD	check	every	time	you	make	a	change.	If	you	use	GitHub,	you’ll
learn	precisely	how	to	do	that	with	“Checking	After	Every	Commit	with	Travis”.



Workflow
R	CMD	check	is	the	name	of	the		command	you	run	from	the	terminal.	I	don’t	recommend
calling	it	directly.	Instead,	run	devtools::check(),	or	press	Cmd-Shift-E	in	RStudio.	In
contrast	to	R	CMD	check,	devtools::check():

Ensures	that	the	documentation	is	up	to	date	by	running	devtools::document().

Bundles	the	package	before	checking	it.	This	is	the	best	practice	for	checking	packages
because	it	makes	sure	the	check	starts	with	a	clean	slate:	because	a	package	bundle
doesn’t	contain	any	of	the	temporary	files	that	can	accumulate	in	your	source	package
(e.g.,	artifacts	like	.so	and	.o	files	that	accompany	compiled	code),	you	can	avoid	the
spurious	warnings	such	files	will	generate.

Sets	the	NOT_CRAN	environment	variable	to	TRUE.	This	allows	you	to	selectively	skip
tests	on	CRAN.	(See	?testthat::skip_on_cran	for	details.)

The	workflow	for	checking	a	package	is	simple,	but	tedious:

1.	 Run	devtools::check(),	or	press	Ctrl/Cmd-Shift-E.

2.	 Fix	the	first	problem.

3.	 Repeat	until	there	are	no	more	problems.

R	CMD	check	returns	three	types	of	messages:

ERRORs

Severe	problems	that	you	should	fix	regardless	of	whether	or	not	you’re	submitting	to
CRAN.

WARNINGs

Likely	problems	that	you	must	fix	if	you’re	planning	to	submit	to	CRAN	(and	a	good
idea	to	look	into	even	if	you’re	not).

NOTEs

Mild	problems.	If	you	are	submitting	to	CRAN,	you	should	strive	to	eliminate	all
NOTEs,	even	if	they	are	false	positives.	If	you	have	no	NOTEs,	human	intervention	is
not	required,	and	the	package	submission	process	will	be	easier.	If	it’s	not	possible	to
eliminate	a	NOTE,	you’ll	need	to	describe	why	it’s	OK	in	your	submission	comments,
as	described	in	“The	Submission	Process”.	If	you’re	not	submitting	to	CRAN,
carefully	read	each	NOTE,	but	don’t	go	out	of	your	way	to	fix	things	that	you	don’t
think	are	problems.



Checks
R	CMD	check	is	composed	of	over	50	individual	checks,	described	in	the	following
sections.	For	each	check,	I	briefly	describe	what	it	does,	what	the	most	common	problems
are,	and	how	to	fix	them.	When	you	have	a	problem	with	R	CMD	check	and	can’t
understand	how	to	fix	it,	use	this	list	to	help	figure	out	what	you	need	to	do.	To	make	it
easier	to	understand	how	the	checks	fit	together,	I’ve	organized	them	into	sections	roughly
corresponding	to	the	chapters	in	this	book.	This	means	they	will	be	in	a	somewhat
different	order	to	what	you’ll	see	when	you	run	check().

This	list	includes	every	check	run	in	R	3.1.1.	If	you’re	using	a	more	recent	version,	you
may	want	to	consult	the	most	recent	online	version	of	this	chapter:	http://r-
pkgs.had.co.nz/check.html.	Please	let	me	know	if	you	encounter	a	problem	that	this
chapter	doesn’t	help	with:	hadley@rstudio.com.

http://r-pkgs.had.co.nz/check.html
mailto:hadley@rstudio.com


Check	Metadata
R	CMD	check	always	starts	by	describing	your	current	environment.	I’m	running	R	3.1.1
on	OS	X	with	a	UTF-8	charset:

Using	log	directory	‘/Users/hadley/Documents/web/httr.Rcheck’

Using	R	version	3.1.1	(2014-07-10)

Using	platform:	x86_64-apple-darwin13.1.0	(64-bit)

Using	session	charset:	UTF-8

Next,	the	description	is	parsed	and	the	package	version	is	printed.	Here	I’m	checking	httr
version	0.5.0.9000	(you	learned	about	that	weird	version	number	in	“Version”):

Checking	for	file	‘httr/DESCRIPTION’

This	is	package	‘httr’	version	‘0.5.0.9000’



Package	Structure
The	package	structure	checks	ensure	that	the	files	and	directories	inside	the	package	are
organized	correctly.	If	you’ve	been	following	the	advice	in	this	book,	you’re	unlikely	to
see	these	problems:

Checking	package	directory.

The	directory	you’re	checking	must	exist;	devtools::check()	protects	you	against
this	problem.

Checking	if	this	is	a	source	package.

You	must	check	a	source	package,	not	a	binary	or	installed	package.	This	should
never	fail	if	you	use	devtools::check().

Checking	for	executable	files.

You	must	not	have	executable	files	in	your	package:	they’re	not	portable,	they’re	not
open	source,	and	they	are	a	security	risk.	Delete	any	executables	files	from	your
package.	(If	you’re	not	submitting	to	CRAN,	you	can	silence	this	warning	by	listing
each	executable	file	in	the	BinaryFiles	field	in	your	DESCRIPTION.)

Checking	for	hidden	files	and	directories.

On	Linux	and	OS	X,	files	with	a	name	starting	with	.	are	hidden	by	default,	and
you’ve	probably	included	them	in	your	package	by	mistake.	Either	delete	them,	or	if
they	are	important,	use	.Rbuildignore	to	remove	them	from	the	package	bundle.	R
automatically	removes	some	common	directories	like	.git	and	.svn.

Checking	for	portable	filenames.

R	packages	must	work	on	Windows,	Linux,	and	OS	X,	so	you	can	only	use	filenames
that	work	on	all	platforms.	The	easiest	way	to	do	this	is	to	stick	to	letters,	numbers,
underscores,	and	dashes.	Avoid	non-English	letters	and	spaces.	Fix	this	check	by
renaming	the	listed	files.

Checking	for	sufficient/correct	file	permissions.

If	you	can’t	read	a	file,	you	can’t	check	it.	This	check	detects	the	unlikely	occurrence
that	you	have	files	in	the	package	that	you	don’t	have	permission	to	read.	Fix	this
problem	by	fixing	the	file	permissions.

Checking	whether	package	‘XYZ’	can	be	installed.

R	CMD	check	runs	R	CMD	install	to	make	sure	that	it’s	possible	to	install	your
package.	If	this	fails,	you	should	run	devtools::install()	or	RStudio’s	Build	&
Reload	and	debug	any	problems	before	continuing.

Checking	installed	package	size.



It’s	easy	to	accidentally	include	large	files	that	blow	up	the	size	of	your	package.	This
check	ensures	that	the	whole	package	is	less	than	5	MB	and	each	subdirectory	is	less
than	1	MB.	If	you	see	this	message,	check	that	you	haven’t	accidentally	included	a
large	file.

If	submitting	to	CRAN,	you’ll	need	to	justify	the	size	of	your	package.	First,	make
sure	the	package	is	as	small	as	it	possibly	can	be:	try	recompressing	the	data	and
minimizing	vignettes.	If	it’s	still	too	large,	consider	moving	data	into	its	own
package.

Checking	top-level	files.

Only	specified	files	and	directories	are	allowed	at	the	top	level	of	the	package	(e.g.,
DESCRIPTION,	R/,	src/).	To	include	other	files,	you	have	two	choices:

If	they	don’t	need	to	be	installed	(i.e.,	they’re	only	used	in	the	source	package),
add	them	to	.Rbuildignore	with	devtools::use_build_ignore().

If	they	need	to	be	installed,	move	into	inst/.	They’ll	be	moved	back	to	the	top-
level	package	directory	when	installed.

Checking	package	subdirectories.

Don’t	include	any	empty	directories.	These	are	usually	removed	automatically	by
R	CMD	build	so	you	shouldn’t	see	this	error.	If	you	do,	just	delete	the	directory.

The	case	of	files	and	directories	is	important.	All	subdirectories	should	be
lowercase,	except	for	R/.	A	citation	file,	if	present,	should	be	in	inst/CITATION.
Rename	as	needed.

The	contents	of	inst/	shouldn’t	clash	with	top-level	contents	of	the	package	(like
build/,	R/,	etc.).	If	they	do,	rename	your	files/directories.

Checking	for	leftover	files.

Remove	any	files	listed	here.	They’ve	been	included	in	your	package	by	accident.



Description
When	submitting	your	package	to	CRAN,	it’s	important	that	the	metadata	about	your
package	(as	recorded	in	the	DESCRIPTION),	is	correct.	It’s	not	possible	to	check	all	of	the
data	automatically,	but	R	CMD	check	at	least	looks	for	the	most	common	problems:

Checking	DESCRIPTION	meta-information.

The	DESCRIPTION	must	be	valid.	You	are	unlikely	to	see	this	error,	because
devtools::load_all()	runs	the	same	check	each	time	you	reload	the	package.

If	you	use	any	non-ASCII	characters	in	the	DESCRIPTION,	you	must	also	specify
an	encoding.	There	are	only	three	encodings	that	work	on	all	platforms:	Latin	1,
Latin	2,	and	UTF-8.	I	strongly	recommend	UTF-8:	Encoding:	UTF-8.

The	License	must	refer	to	either	a	known	license	(a	complete	list	can	be	found	at
https://svn.r-project.org/R/trunk/share/licenses/license.db),	or	it	must	use	file
LICENSE	and	that	file	must	exist.	Errors	here	are	most	likely	to	be	typos.

You	should	either	provide	Authors@R	or	Authors	and	Maintainer.	You’ll	get	an
error	if	you’ve	specified	both,	which	you	can	fix	by	removing	the	one	you	didn’t
want.

Checking	package	dependencies.

All	packages	listed	in	Depends,	Imports,	and	LinkingTo	must	be	installed,	and
their	version	requirements	must	be	met;	otherwise,	your	package	can’t	be	checked.
An	easy	way	to	install	any	missing	or	outdated	dependencies	is	to	run
devtools::install_deps(dependencies	=	TRUE).

Packages	listed	in	Suggests	must	be	installed,	unless	you’ve	set	the	environment
variable	_R_CHECK_FORCE_SUGGESTS_	to	a	false	value	(e.g.,	with
check(force_suggests	=	FALSE).	This	is	useful	if	some	of	the	suggested
packages	are	not	available	on	all	platforms.

R	packages	cannot	have	a	cycle	of	dependencies	(i.e.,	if	package	A	requires	B,
then	B	cannot	require	A;	otherwise,	which	one	would	you	load	first?).	If	you	see
this	error,	you’ll	need	to	rethink	the	design	of	your	package.	One	easy	fix	is	to
move	the	conflicting	package	from	Imports	or	Depends	to	Suggests.

Any	packages	used	in	the	NAMESPACE	must	be	listed	in	one	of	Imports	(most
commonly)	or	Depends	(only	in	special	cases).	See	“Search	Path”	for	more	details.

Every	package	listed	in	Depends	must	also	be	imported	in	the	NAMESPACE	or
accessed	with	pkg::foo.	If	you	don’t	do	this,	your	package	will	work	when
attached	to	the	search	path	(with	library(mypackage))	but	will	not	work	when
only	loaded	(e.g.,	mypackage::foo()).

https://svn.r-project.org/R/trunk/share/licenses/license.db


Checking	CRAN	incoming	feasibility.

These	checks	only	apply	if	you’re	submitting	to	CRAN:

If	you’re	submitting	a	new	package,	you	can’t	use	the	same	name	as	an	existing
package.	You’ll	need	to	come	up	with	a	new	name.

If	you’re	submitting	an	update,	the	version	number	must	be	higher	than	the	current
CRAN	version.	Update	the	Version	field	in	DESCRIPTION.

If	the	maintainer	of	the	package	has	changed	(even	if	it’s	just	a	change	in	email
address),	the	new	maintainer	should	submit	to	CRAN,	and	the	old	maintainer
should	send	a	confirmation	email.

You	must	use	a	standard	open	source	license,	as	listed	in	https://svn.r-
project.org/R/trunk/share/licenses/license.db.	You	cannot	use	a	custom	license,	as
CRAN	does	not	have	the	legal	resources	to	review	custom	agreements.

The	Title	and	Description	must	be	free	from	spelling	mistakes.	The	title	of	the
package	must	be	in	title	case.	The	title	and	description	should	not	include	the
name	of	your	package	or	the	word	“package.”	Reword	your	title	and	description
as	needed.

If	you’re	submitting	a	new	package,	you’ll	always	get	a	NOTE.	This	reminds	the
CRAN	maintainers	to	do	some	extra	manual	checks.

Avoid	submitting	multiple	versions	of	the	same	package	in	a	short	period	of	time.
CRAN	prefers	at	most	one	submission	per	month.	If	you	need	to	fix	a	major	bug,
be	apologetic.

https://svn.r-project.org/R/trunk/share/licenses/license.db


Namespace
Working	with	the	namespace	by	hand	is	a	painful	experience,	and	it’s	easy	to	accidentally
introduce	errors.	Fortunately,	you’re	using	roxygen2	to	generate	your	NAMESPACE,	so
you’ll	never	see	most	of	these	problems:

Checking	if	there	is	a	namespace.

You	must	have	a	NAMESPACE	file.	Roxygen2	will	create	this	for	you	as	described	in
Chapter	8.

Checking	package	namespace	information.

The	NAMESPACE	should	be	parseable	by	parseNamespaceFile()	and	valid.	If	this
check	fails,	it’s	a	bug	in	roxygen2.

Checking	whether	the	package	can	be	loaded	with	stated	dependencies.

Runs	library(pkg)	with	R_DEFAULT_PACKAGES=NULL,	so	the	search	path	is	empty
(i.e.,	stats,	graphics,	grDevices,	utils,	datasets,	and	methods	are	not	attached	like
usual).	Failure	here	typically	indicates	that	you’re	missing	a	dependency	on	one	of
those	packages.

Checking	whether	the	namespace	can	be	loaded	with	stated	dependencies.

Runs	loadNamespace(pkg)	with	R_DEFAULT_PACKAGES=NULL.	Failure	usually
indicates	a	problem	with	the	namespace.



R	Code
Problems	in	this	section	represent	likely	problems	with	your	R	code:

Checking	R	files	for	non-ASCII	characters.

For	maximum	portability	(i.e.,	so	people	can	use	your	package	on	Windows)	you
should	avoid	using	non-ASCII	characters	in	R	files.	It’s	OK	to	use	them	in
comments,	but	object	names	shouldn’t	use	them,	and	in	strings	you	should	use
unicode	escapes.	See	“CRAN	Notes”	for	more	deatils.

Checking	R	files	for	syntax	errors.

Obviously	your	R	code	must	be	valid.	You’re	unlikely	to	see	this	error	if	you’re	been
regularly	using	devtools::load_all().

Checking	dependencies	in	R	code.

Errors	here	often	indicate	that	you’ve	forgotten	to	declare	a	needed	package	in	the
DESCRIPTION.	Remember	that	you	should	never	use	require()	or	library()
inside	a	package	—	see	“Imports”	for	more	details	on	best	practices.

Alternatively,	you	may	have	accidentally	used	:::	to	access	an	exported	function
from	a	package.	Switch	to	::	instead.

Checking	S3	generic/method	consistency.

S3	methods	must	have	a	compatible	function	signature	with	their	generic.	This	means
that	the	method	must	have	the	same	arguments	as	its	generic,	with	one	exception.	If
the	generic	includes	...	the	method	can	have	additional	arguments.

A	common	cause	of	this	error	is	defining	print	methods,	because	the	print()	generic
contains...:

#	BAD

print.my_class	<-	function(x)	cat("Hi")

#	GOOD

print.my_class	<-	function(x,	...)	cat("Hi")

#	Also	ok

print.my_class	<-	function(x,	...,	my_arg	=	TRUE)	cat("Hi")

Checking	replacement	functions.

Replacement	functions	(e.g.,	functions	that	are	called	like	foo(x)	<-	y),	must	have
value	as	the	last	argument.

Checking	R	code	for	possible	problems.

This	is	a	compound	check	for	a	wide	range	of	problems:

Calls	to	library.dynam()	(and	library.dynam.unload())	should	look	like
library.dynam("name"),	not	library.dynam("name.dll").	Remove	the
extension	to	fix	this	error.



Put	library.dynam()	in	.onLoad(),	not	.onAttach();	put
packageStartupMessage()	in	.onAttach(),	not	.onLoad().	Put
library.dynam.unload()	in	.onUnload().	If	you	use	any	of	these	functions,
make	sure	they’re	in	the	right	place.

Don’t	use	unlockBinding()	or	assignInNamespace()	to	modify	objects	that
don’t	belong	to	you.

codetools::checkUsagePackage()	is	called	to	check	that	your	functions	don’t
use	variables	that	don’t	exist.	This	sometimes	raises	false	positives	with	functions
that	use	nonstandard	evaluation	(NSE),	like	subset()	or	with().	Generally,	I
think	you	should	avoid	NSE	in	package	functions,	and	hence	avoid	this	note,	but
if	you	cannot,	see	?globalVariables	for	how	to	suppress	it.

You	are	not	allowed	to	use	.Internal()	in	a	package.	Either	call	the	R	wrapper
function,	or	write	your	own	C	function.	(If	you	copy	and	paste	the	C	function
from	base	R,	make	sure	to	maintain	the	copyright	notice,	use	a	GPL-2	compatible
license,	and	list	R-core	in	the	Author	field.)

Similarly,	you	are	not	allowed	to	use	:::	to	access	nonexported	functions	from
other	packages.	Either	ask	the	package	maintainer	to	export	the	function	you	need,
or	write	your	own	version	of	it	using	exported	functions.	Alternatively,	if	the
licenses	are	compatible,	you	can	copy	and	paste	the	exported	function	into	your
own	package.	If	you	do	this,	remember	to	update	Authors@R.

Don’t	use	assign()	to	modify	objects	in	the	global	environment.	If	you	need	to
maintain	state	across	function	calls,	create	your	own	environment	with	e	<-
new.env(parent	=	emptyenv())	and	set	and	get	values	in	it:

e	<-	new.env(parent	=	emptyenv())

add_up	<-	function(x)	{

		if	(is.null(e$last_x))	{

				old	<-	0

		}	else	{

				old	<-	e$last_x

		}

		new	<-	old	+	x

		e$last_x	<-	new

		new

}

add_up(10)

#>	[1]	10

add_up(20)

#>	[1]	30

Don’t	use	attach()	in	your	code.	Instead,	refer	to	variables	explicitly.

Don’t	use	data()	without	specifying	the	envir	argument.	Otherwise,	the	data	will
be	loaded	in	the	global	environment.



Don’t	use	deprecated	or	defunct	functions.	Update	your	code	to	use	the	latest
versions.

You	must	use	TRUE	and	FALSE	in	your	code	(and	examples),	not	T	and	F.

Checking	whether	the	package	can	be	loaded.

R	loads	your	package	with	library().	Failure	here	typically	indicates	a	problem
with	.onLoad()	or	.onAttach().

Checking	whether	the	package	can	be	unloaded	cleanly.

Loads	with	library()	and	then	detach()es.	If	this	fails,	check	.onUnload()	and
.onDetach().

Checking	whether	the	namespace	can	be	unloaded	cleanly.

Runs	loadNamespace("pkg");	unloadNamespace("pkg").	Check	.onUnload()	for
problems.

Checking	loading	without	being	on	the	library	search	path.

Calls	library(x,	lib.loc	=	...).	Failure	here	indicates	that	you	are	making	a
false	assumption	in	.onLoad()	or	.onAttach().



Data
There	are	a	handful	of	checks	related	to	data	in	the	data/	directory:

Checking	contents	of	data/	directory.

The	data/	directory	can	only	contain	file	types	described	in	“Exported	Data”.

Data	files	can	only	contain	non-ASCII	characters	if	the	encoding	is	not	correctly
set.	This	usually	shouldn’t	be	a	problem	if	you’re	saving	.Rdata	files.	If	you	do
see	this	error,	look	at	the	Encoding()	of	each	column	in	the	data	frame,	and	ensure
none	are	“unknown.”	(You’ll	typically	need	to	fix	this	somewhere	in	the	import
process.)

If	you’ve	compressed	a	data	file	with	bzip2	or	xz	you	need	to	declare	at	least
Depends:	R	(>=	2.10)	in	your	DESCRIPTION.

If	you’ve	used	a	suboptimal	compression	algorithm	for	your	data,	recompress	with
the	suggested	algorithm.



Documentation
You	can	run	the	most	common	of	these	outside	devtools::check()	with
devtools::check_doc()	(which	automatically	calls	devtools::document()	for	you).	If
you	have	documentation	problems,	it’s	best	to	iterate	quickly	with	check_doc(),	rather
than	running	the	full	check	each	time.

Checking	Rd	files.

This	checks	that	all	man/*.Rd	files	use	the	correct	Rd	syntax.	If	this	fails,	it	indicates
a	bug	in	roxygen2.

Checking	Rd	metadata.

Names	and	aliases	must	be	unique	across	all	documentation	files	in	a	package.	If	you
encounter	this	problem	you’ve	accidentally	used	the	same	@name	or	@aliases	in
multiple	places;	make	sure	they’re	unique.

Checking	Rd	line	widths.

Lines	in	Rd	files	must	be	less	than	90	characters	wide.	This	is	unlikely	to	occur	if	you
wrap	your	R	code,	and	hence	roxygen	comments,	to	80	characters.	For	very	long
URLs,	use	a	link-shortening	service	like	bit.ly.

Checking	Rd	cross-references.

Errors	here	usually	represent	typos.	Recall	the	syntax	for	linking	to	functions	in	other
packages:	\link[package_name]{function_name}.	Sometimes	I	accidentally	switch
the	order	of	\code{}	and	\link{}:	\link{\code{function}}	will	not	work.

Checking	for	missing	documentation	entries.

All	exported	objects	must	be	documented.	See	?tools::undoc	for	more	details.

Checking	for	code/documentation	mismatches.

This	check	ensures	that	the	documentation	matches	the	code.	This	should	never	fail
because	you’re	using	roxygen2,	which	automatically	keeps	them	in	sync.

Checking	Rd	\usage	sections.

All	arguments	must	be	documented,	and	all	@params	must	document	an	existing
argument.	You	may	have	forgotten	to	document	an	argument,	forgotten	to	remove	the
documentation	for	an	argument	that	you’ve	removed,	or	mispelled	an	argument
name.

S3	and	S4	methods	need	to	use	special	\S3method{}	and	\S4method{}	markup	in	the
Rd	file.	Roxygen2	will	generate	this	for	you	automatically.

Checking	Rd	contents.

This	checks	for	autogenerated	content	made	by	package.skeleton().	Because
you’re	not	using	package.skeleton()	you	should	never	have	a	problem	here.

Checking	for	unstated	dependencies	in	examples.

http://bit.ly/


If	you	use	a	package	only	for	an	example,	make	sure	it’s	listed	in	the	Suggests	field.
Before	running	example	code	that	depends	on	it,	test	to	see	if	it’s	available	with
requireNamespace("pkg",	quietly	=	TRUE):

#'	@examples

#'	if	(requireNamespace("dplyr",	quietly	=	TRUE))	{

#'			...

#'	}

Checking	examples.

Every	documentation	example	must	run	without	errors,	and	must	not	take	too	long.
Exclude	failing	or	slow	tests	with	\donttest{}.	See	“Documenting	Functions”	for
more	details.

Examples	are	one	of	the	last	checks	run,	so	fixing	problems	can	be	painful	if	you
have	to	run	devtools::check()	each	time.	Instead,	use	devtools::run_examples():
it	only	checks	the	examples,	and	has	an	optional	parameter	that	tells	it	which	function
to	start	at.	That	way	once	you’ve	discovered	an	error,	you	can	rerun	from	just	that
file,	not	all	the	files	that	lead	up	to	it.

Note:	you	can’t	use	unexported	functions	and	you	shouldn’t	open	new	graphics
devices	or	use	more	than	two	cores.	Individual	examples	shouldn’t	take	more	than	5s.

Checking	PDF	version	of	manual.

Occasionally,	you’ll	get	an	error	when	building	the	PDF	manual.	This	is	usually
because	the	PDF	is	built	by	LaTeX	and	you’ve	forgotten	to	escape	something.
Debugging	this	is	painful	—	your	best	bet	is	to	look	up	the	LaTeX	logs	and	combined
tex	file	and	work	back	from	there	to	.Rd	files	then	back	to	a	roxygen	comment.	I
consider	any	such	failure	to	be	a	bug	in	roxygen2,	so	please	let	me	know.



Demos
If	you	use	demos,	you	need	to	make	sure	every	demo	is	listed	in	an	index	file:

Checking	index	information.

If	you’ve	written	demos,	each	demo	must	be	listed	in	demos/00Index.	The	file	should
look	like	this:

demo-name-without-extension		Demo	description

another-demo-name												Another	description



Compiled	Code
R	CMD	check	includes	some	checks	to	make	sure	that	your	compiled	code	is	as	portable	as
possible:

Checking	foreign	function	calls.

.Call(),	.C(),	.Fortran(),	and	.External()	must	always	be	called	either	with	a
NativeSymbolInfo	object	(as	created	with	@useDynLib)	or	use	the	.package
argument.	See	?tools::checkFF	for	more	details.

Checking	line	endings	in	C/C++/Fortran	sources/headers.

Always	use	LF	as	a	line	ending.

Checking	line	endings	in	Makefiles.

As	above.

Checking	for	portable	use	of	$(BLAS_LIBS)	and	$(LAPACK_LIBS).

Errors	here	indicate	an	issue	with	your	use	of	BLAS	and	LAPACK.

Checking	compiled	code.

Checks	that	you’re	not	using	any	C	functions	that	you	shouldn’t.	See	details	in	“Best
Practices”.



Tests
R	CMD	check	must	be	able	to	run	the	tests	(i.e.,	you’ve	listed	all	the	dependencies	they
need),	and	all	tests	must	succeed:

Checking	for	unstated	dependencies	in	tests.

Every	package	used	by	tests	must	be	included	in	the	dependencies.

Checking	tests.

Each	file	in	tests/	is	run.	If	you’ve	followed	the	instructions	in	Chapter	7,	you’ll	have
at	least	one	file:	testthat.R.	The	output	from	R	CMD	check	is	not	usually	that	helpful,
so	you	may	need	to	look	at	the	logfile	package.Rcheck/tests/testthat.Rout.	Fix	any
failing	tests	by	iterating	with	devtools::test().

Occasionally,	you	may	have	a	problem	where	the	tests	pass	when	run	interactively
with	devtools::test(),	but	fail	when	in	R	CMD	check.	This	usually	indicates	that
you’ve	made	a	faulty	assumption	about	the	testing	environment,	and	it’s	often	hard	to
figure	it	out.



Vignettes
Obviously	R	CMD	check	can’t	check	the	contents	of	your	vignettes,	but	it	does	its	best	to
check	the	code	in	them:

Checking	build	directory.

build/	is	used	to	track	vignette	builds.	I’m	not	sure	how	this	check	could	fail	unless
you’ve	accidentally	used	.Rbuildignore	on	the	build/	directory.

Checking	installed	files	from	inst/doc.

Don’t	put	files	in	inst/doc;	vignettes	now	live	in	vignettes/.

Checking	files	in	vignettes.

Problems	here	are	usually	straightforward	—	you’ve	included	files	that	are	already
included	in	R	(e.g.,	jss.cls,	jss.bst,	or	Sweave.sty),	or	you	have	leftover	LaTeX
compilation	files.	Delete	these	files.

Checking	for	sizes	of	PDF	files	under	inst/doc.

If	you’re	making	PDF	vignettes,	you	can	make	them	as	small	as	possible	by	running
tools::compactPDF().

Checking	for	unstated	dependencies	in	vignettes.

As	with	tests,	every	package	that	you	use	in	a	vignette	must	be	listed	in	the
DESCRIPTION.	If	a	package	is	used	only	for	a	vignette,	and	not	elsewhere,	make
sure	it’s	listed	in	Suggests.

Checking	package	vignettes	in	inst/doc.

This	checks	that	every	source	vignette	(i.e.,	.Rmd)	has	a	built	equivalent	(i.e.,	.html)
in	inst/doc.	This	shouldn’t	fail	if	you’ve	used	the	standard	process	outlined	in
Chapter	6.	If	there	is	a	problem,	start	by	checking	your	.Rbuildignore.

Checking	running	R	code	from	vignettes.

The	R	code	from	each	vignette	is	run.	If	you	want	to	deliberately	execute	errors	(to
show	the	user	what	failure	looks	like),	make	sure	the	chunk	has	error	=	TRUE,	purl
=	FALSE.

Checking	rebuilding	of	vignette	outputs.

Each	vignette	is	reknit	to	make	sure	that	the	output	corresponds	to	the	input.	Again,
this	shouldn’t	fail	in	normal	circumstances.

To	run	vignettes,	the	package	first	must	be	installed.	That	means	check():

1.	 Builds	the	package.

2.	 Installs	the	package	without	vignettes.

3.	 Builds	all	the	vignettes.



4.	 Reinstalls	the	package	with	vignettes.

If	you	have	a	lot	of	compiled	code,	this	can	be	rather	slow.	You	may	want	to	add	--no-
build-vignettes	to	the	commands	list	in	the	Build	Source	Packages	field	in	the	project
options	(Figure	14-1).

Figure	14-1.	You	can	save	time	by	not	building	vignettes	when	you	build	the	package;	see	this	option	in	project	options



Checking	After	Every	Commit	with	Travis
If	you	use	Git	and	GitHub,	as	described	in	Chapter	13,	I	highly	recommend	learning	about
Travis.	Travis	is	a	continuous	integration	service,	which	means	that	it	runs	automated
testing	code	every	time	you	push	to	GitHub.	For	open	source	projects,	Travis	provides	50
minutes	of	free	computation	on	an	Ubuntu	server	for	every	push.	For	an	R	package,	the
most	useful	code	to	run	is	devtools::check().

To	use	Travis,	follow	these	steps:

1.	 Run	devtools::use_travis()	to	set	up	a	basic	.travis.yml	config	file.

2.	 Navigate	to	your	Travis	account	and	enable	Travis	for	the	repo	you	want	to	test.

3.	 Commit	and	push	to	GitHub.

4.	 Wait	a	few	minutes	to	see	the	results	in	your	email.

With	this	setup	in	place,	every	time	you	push	to	GitHub,	and	every	time	someone	submits
a	pull	request,	devtools::check()	will	be	automatically	run.	You’ll	find	out	about
failures	right	away,	which	makes	them	easier	to	fix.	Using	Travis	also	encourages	me	to
check	more	often	locally,	because	I	know	if	it	fails	I’ll	find	out	about	it	a	few	minutes
later,	often	once	I’ve	moved	on	to	a	new	problem.

https://travis-ci.org/
https://travis-ci.org/profile


Basic	Config
The	Travis	config	is	stored	in	yaml	file	called	.travis.yml.	The	default	config	created	by
devtools	looks	like	this:

yaml

language:	r

warnings_are_errors:	true

R	has	recently	become	a	community	supported	language	on	Travis	and	you	can	read	the
documentation	at	http://docs.travis-ci.com/user/languages/r/.

There	are	two	particularly	useful	options:

r_github_packages

A	list	of	R	packages	to	install	from	github.	This	allows	you	to	test	against	the
development	version	of	your	depedencies.

r_binary_packages

A	list	of	precompiled	R	packages	to	install	from	ubuntu.	This	allows	you	to	reduce
your	the	build	time.	You	can	see	if	a	binary	version	of	a	package	is	available	by
searching	on	http://packages.ubuntu.com	for	r-cran-lowercasename.	For	example,
searching	for	r-cran-xml	reveals	that	you	can	get	a	binary	version	of	XML	package.

http://docs.travis-ci.com/user/languages/r/
http://packages.ubuntu.com


Other	Uses
Because	Travis	allows	you	to	run	arbitrary	code,	there	are	many	other	things	that	you	can
use	it	for:

Republishing	a	book	website	every	time	you	make	a	change	to	the	source	(like	this
book!).

Building	vignettes	and	publishing	them	to	a	website.

Automatically	building	a	documentation	website	for	your	package.

To	learn	more,	read	about	the	many	deployment	options	provided	by	Travis.

http://docs.travis-ci.com/user/deployment/




Chapter	15.	Releasing	a	Package

If	you	want	your	package	to	have	significant	traction	in	the	R	community,	you	need	to
submit	it	to	CRAN.	Submitting	to	CRAN	is	a	lot	more	work	than	just	providing	a	version
on	GitHub,	but	the	vast	majority	of	R	users	do	not	install	packages	from	GitHub,	because
CRAN	provides	discoverability,	ease	of	installation,	and	a	stamp	of	authenticity.	The
CRAN	submission	process	can	be	frustrating,	but	it’s	worthwhile,	and	this	chapter	will
make	it	as	painless	as	possible.

To	get	your	package	ready	to	release,	follow	these	steps:

1.	 Choose	a	version	number.

2.	 Run	and	document	R	CMD	check.

3.	 Check	that	you’re	aligned	with	CRAN	policies.

4.	 Update	README.md	and	NEWS.md.

5.	 Submit	the	package	to	CRAN.

6.	 Prepare	for	the	next	version	by	updating	version	numbers.

7.	 Publicize	the	new	version.



Version	Number
If	you’ve	been	following	the	advice	in	“Version”,	the	version	number	of	your	in-
development	package	will	have	four	components,	major.minor.patch.dev,	where	dev	is
at	least	9000.	The	number	9000	is	arbitrary,	but	provides	a	strong	visual	signal	there’s
something	different	about	this	version	number.	Released	packages	don’t	have	a	dev
component,	so	now	you	need	to	drop	that	and	pick	a	version	number	based	on	the	changes
you’ve	made.	For	example,	if	the	current	version	is	0.8.1.9000,	will	the	next	CRAN
version	be	0.8.2,	0.9.0,	or	1.0.0?	Use	this	advice	to	decide:

For	a	patch,	increment	patch	(e.g.,	0.8.2)

A	patch	is	used	when	you’ve	fixed	bugs	without	adding	any	significant	new	features.
I’ll	often	do	a	patch	release	if,	after	release,	I	discover	a	showstopping	bug	that	needs
to	be	fixed	ASAP.	Most	releases	will	have	a	patch	number	of	0.

For	a	minor	release,	increment	minor	(e.g.,	0.9.0)

A	minor	release	can	include	bug	fixes,	new	features,	and	changes	in	backward
compatibility.	This	is	the	most	common	type	of	release.	It’s	perfectly	fine	to	have	so
many	minor	releases	that	you	need	to	use	two	(or	even	three!)	digits	(e.g.,	1.17.0).

For	a	major	release,	increment	major	(e.g.,	1.0.0)

This	is	best	reserved	for	changes	that	are	not	backward	compatible	and	that	are	likely
to	affect	many	users.	Going	from	0.b.c	to	1.0.0	typically	indicates	that	your
package	is	feature	complete	with	a	stable	API.

In	practice,	backward	compatibility	is	not	an	all-or-nothing	threshold.	For	example,	if
you	make	an	API-incompatible	change	to	a	rarely	used	part	of	your	code,	it	may	not
deserve	a	major	number	change.	But	if	you	fix	a	bug	that	many	people	depend	on,	it
will	feel	like	an	API	breaking	change.	Use	your	best	judgment.



Backward	Compatibility
The	big	difference	between	major	and	minor	versions	is	whether	or	not	the	code	is
backward	compatible.	This	difference	is	a	bit	academic	in	the	R	community	because	the
way	most	people	update	packages	is	by	running	update.packages(),	which	always
updates	to	the	latest	version	of	the	package,	even	if	the	major	version	has	changed,
potentially	breaking	code.	While	more	R	users	are	becoming	familiar	with	tools	like
packrat,	which	capture	package	versions	on	a	per-project	basis,	you	do	need	to	be	a	little
cautious	when	making	big	backward-incompatible	changes,	regardless	of	what	you	do
with	the	version	number.

The	importance	of	backward	compatibility	is	directly	proportional	to	the	number	of	people
using	your	package:	you	are	trading	your	time	for	your	users’	time.	The	harder	you	strive
to	maintain	backward	compatibility,	the	harder	it	is	to	develop	new	features	or	fix	old
mistakes.	Backward-compatible	code	also	tends	to	be	harder	to	read	because	of	the	need	to
maintain	multiple	paths	to	support	functionality	from	previous	versions.	Be	concerned
about	backward	compatibility,	but	don’t	let	it	paralyze	you.

There	are	good	reasons	to	make	backward-incompatible	changes	—	if	you	made	a	design
mistake	that	makes	your	package	harder	to	use,	it’s	better	to	fix	it	sooner	rather	than	later.
If	you	do	need	to	make	a	backward-incompatible	change,	it’s	best	to	do	it	gradually.
Provide	interim	version(s)	between	where	you	are	now	and	where	you’d	like	to	be,	and
provide	advice	about	what’s	going	to	change.	Depending	on	what	you’re	changing,	use
one	of	the	following	techniques	to	let	your	users	know	what’s	happening:

Don’t	immediately	remove	a	function.	Instead,	deprecate	it	first.	For	example,	imagine
your	package	is	version	0.5.0	and	you	want	to	remove	fun().	In	version	0.6.0,	you’d
use	.Deprecated()	to	display	a	warning	message	whenever	someone	uses	the	function:

#	0.1.0

fun	<-	function(x,	y,	z)	{

		.Deprecated("sum")

		x	+	y	+	z

}

fun(1,	2,	3)

#>	Warning:	'fun'	is	deprecated.

#>	Use	'sum'	instead.

#>	See	help("Deprecated")

#>	[1]	6

Then,	remove	the	function	once	you	get	to	0.7.0	(or	if	you	are	being	very	strict,	once
you	get	to	1.0.0	since	it’s	a	backward-incompatible	change).

Similarly,	if	you’re	removing	a	function	argument,	first	warn	about	it:

bar	<-	function(x,	y,	z)	{

		if	(!missing(y))	{

				warning("argument	y	is	deprecated;	please	use	z	instead.",	

						call.	=	FALSE)

				z	<-	y

		}

http://rstudio.github.io/packrat/


}

bar(1,	2,	3)

#>	Warning:	argument	y	is	deprecated;	please	use	z	instead.

If	you’re	deprecating	a	lot	of	code,	it	can	be	useful	to	add	a	helper	function.	For
example,	ggplot2	has	gg_dep,	which	automatically	displays	a	message,	warning,	or
error,	depending	on	how	much	the	version	number	has	changed:

gg_dep	<-	function(version,	msg)	{

		v	<-	as.package_version(version)

		cv	<-	packageVersion("ggplot2")

		#	If	current	major	number	is	greater	than	last-good	major	number,	or	if

		#	current	minor	number	is	more	than	1	greater	than	last-good	minor	number,

		#	return	an	error.

		if	(cv[[1,1]]	>	v[[1,1]]		||		cv[[1,2]]	>	v[[1,2]]	+	1)	{

				stop(msg,	"	(Defunct;	last	used	in	version	",	version,	")",

						call.	=	FALSE)

		#	If	minor	number	differs	by	one,	give	a	warning

		}	else	if	(cv[[1,2]]	>	v[[1,2]])	{

				warning(msg,	"	(Deprecated;	last	used	in	version	",	version,	")",

						call.	=	FALSE)

		#	If	only	subminor	number	is	greater,	provide	a	message

		}	else	if	(cv[[1,3]]	>	v[[1,3]])	{

				message(msg,	"	(Deprecated;	last	used	in	version	",	version,	")")

		}

		invisible()

}

Significant	changes	to	an	existing	function	requires	planning,	including	making	gradual
changes	over	multiple	versions.	Try	to	develop	a	sequence	of	transformations	where
each	change	can	be	accompanied	by	an	informative	error	message.

If	you	want	to	use	functionality	in	a	new	version	of	another	package,	don’t	make	it	a
hard	install-time	dependency	in	the	DESCRIPTION	(forcing	your	users	to	upgrade	that
package	might	break	other	code).	Instead,	check	for	the	version	at	runtime:

if	(packageVersion("ggplot2")	<	"1.0.0")	{

		stop("ggplot2	>=	1.0.0	needed	for	this	function.",	call.	=	FALSE)

}

This	is	also	useful	if	you’re	responding	to	changes	in	one	of	your	dependencies	—
you’ll	want	to	have	a	version	that	will	work	both	before	and	after	the	change.	This	will
allow	you	to	submit	it	to	CRAN	at	any	time,	even	before	the	other	package.	Doing	this
may	generate	some	R	CMD	check	notes.	For	example:

if	(packageVersion("foo"	>	"1.0.0"))	{

		foo::baz()

}	else	{

		foo::bar()

}

If	baz	doesn’t	exist	in	foo	version	1.0.0,	you’ll	get	a	note	that	it	doesn’t	exist	in	foo’s



namespace.	Just	explain	that	you’re	working	around	a	difference	between	versions	in
your	submission	to	CRAN.



The	Submission	Process
To	manually	submit	your	package	to	CRAN,	you	create	a	package	bundle	(with
devtools::build())	then	upload	it	to	http://cran.r-project.org/submit.html,	along	with
some	comments	that	describe	the	process	you	followed.	This	section	shows	you	how	to
make	submission	as	easy	as	possible	by	providing	a	standard	structure	for	those
comments.	Later,	in	“Release”,	you’ll	see	how	to	actually	submit	the	package	with
devtools::release().

When	submitting	to	CRAN,	remember	that	CRAN	is	staffed	by	volunteers,	all	of	whom
have	other	full-time	jobs.	In	a	typical	week,	there	are	over	100	submissions	and	only	three
volunteers	to	process	them	all.	The	less	work	you	make	for	them,	the	more	likely	you	are
to	have	a	pleasant	submission	experience.

I	recommend	that	you	store	your	submission	comments	in	a	file	called	cran-comments.md.
This	file	should	be	checked	into	Git	(so	you	can	track	it	over	time),	and	listed	in
.Rbuildignore	(so	it’s	not	included	in	the	package).	As	the	extension	suggests,	I
recommend	using	Markdown	because	it	gives	a	standard	way	of	laying	out	plain	text.
However,	because	the	contents	will	never	be	rendered	to	another	format,	you	don’t	need	to
worry	about	sticking	to	it	too	closely.	Here	is	the	cran-comments.md	file	from	a	recent
version	of	httr:

##	Test	environments

*	local	OS	X	install,	R	3.1.2

*	ubuntu	12.04	(on	travis-ci),	R	3.1.2

*	win-builder	(devel	and	release)

##	R	CMD	check	results

There	were	no	ERRORs	or	WARNINGs.	

There	was	1	NOTE:

*	checking	dependencies	in	R	code…	NOTE

		Namespace	in	Imports	field	not	imported	from:	'R6'

		R6	is	a	build-time	dependency.

##	Downstream	dependencies

I	have	also	run	R	CMD	check	on	downstream	dependencies	of	httr	

(https://github.com/wch/checkresults/blob/master/httr/r-release).	

All	packages	that	I	could	install	passed	except:

*	Ecoengine:	this	appears	to	be	a	failure	related	to	config	on	

		that	machine.	I	couldn't	reproduce	it	locally,	and	it	doesn't	

		seem	to	be	related	to	changes	in	httr	(the	same	problem	exists	

		with	httr	0.4).

This	layout	is	designed	to	be	easy	to	skim,	and	easy	to	match	up	to	the	R	CMD	check
results	seen	by	CRAN	maintainers.	It	includes	three	sections:

Test	environments

This	describes	where	I	checked	the	package.	I	always	check	on	three	platforms:	my
Mac,	“Checking	After	Every	Commit	with	Travis”,	and	win-builder.

Check	results

http://cran.r-project.org/submit.html


I	always	state	that	there	were	no	errors	or	warnings.	Any	NOTEs	go	in	a	bulleted	list.
For	each	NOTE,	I	include	the	message	from	R	CMD	check	and	a	brief	description	of
why	I	think	it’s	OK.	If	there	were	no	NOTEs,	I’d	say	“There	were	no	ERRORs,
WARNINGs,	or	NOTEs.”

Downstream	dependencies

If	there	are	downstream	dependencies,	I	run	R	CMD	check	on	each	package	and
summarize	the	results.	If	there	are	no	downstream	dependencies,	keep	this	section,
but	say:	“There	are	currently	no	downstream	dependencies	for	this	package.”

These	are	described	in	more	detail	in	the	following	sections.



Test	Environments
When	checking	your	package	you	need	to	make	sure	that	it	passed	with	the	current
development	version	of	R	and	it	works	on	at	least	two	platforms.	R	CMD	check	is
continuously	evolving,	so	it’s	a	good	idea	to	check	your	package	with	the	latest
development	version,	R-devel.	You	can	install	R-devel	on	your	own	machine:

For	Mac,	install	from	http://r.research.att.com.

For	Windows,	install	from	http://cran.r-project.org/bin/windows/base/rdevel.html.

For	Linux,	either	build	it	from	source,	or	better,	learn	about	Docker	containers	and	run
the	R-devel	container	from	https://github.com/rocker-org/rocker.

It’s	painful	to	manage	multiple	R	versions,	especially	because	you’ll	need	to	reinstall	all
your	packages.	Instead,	you	can	run	R	CMD	check	on	CRAN’s	servers	with
devtools::build_win().	This	builds	your	package	and	submits	it	to	the	CRAN	win-
builder.	Approximately	10–20	minutes	after	submission,	you’ll	receive	an	email	telling
you	the	check	results.

CRAN	runs	on	multiple	platforms:	Windows,	Mac	OS	X,	Linux,	and	Solaris.	You	don’t
need	to	run	R	CMD	check	on	every	one	of	these	platforms,	but	it’s	a	really	good	idea	to	do
it	on	at	least	two.	This	increases	your	chances	of	spotting	code	that	relies	on	the
idiosyncrasies	of	a	specific	platform.	If	you’re	on	Linux	or	the	Mac,	use
devtools::build_win()	to	check	on	Windows.	If	you’re	on	Windows,	use	Travis,	as
described	in	“Checking	After	Every	Commit	with	Travis”,	to	run	checks	on	Linux.

Debugging	code	that	works	on	your	computer	but	fails	elsewhere	is	painful.	If	that
happens	to	you,	either	install	a	virtualization	tool	so	that	you	can	run	another	operating
system	locally,	or	find	a	friend	to	help	you	figure	out	the	problem.	Don’t	submit	the
package	and	hope	CRAN	will	help	you	figure	out	the	problem.

http://r.research.att.com/
http://cran.r-project.org/bin/windows/base/rdevel.html
https://github.com/rocker-org/rocker


Check	Results
You’ve	already	learned	how	to	use	R	CMD	check	and	why	it’s	important	in	Chapter	14.
Compared	to	running	R	CMD	check	locally,	there	are	a	few	important	differences	when
running	it	for	a	CRAN	submission:

You	must	fix	all	ERRORs	and	WARNINGs.	A	package	that	contains	any	errors	or	warnings
will	not	be	accepted	by	CRAN.

Eliminate	as	many	NOTEs	as	possible.	Each	note	requires	human	oversight,	which	is	a
precious	commodity.	If	there	are	notes	that	you	do	not	believe	are	important,	it	is
almost	always	easier	to	fix	them	(even	if	the	fix	is	a	bit	of	a	hack)	than	to	persuade
CRAN	that	they’re	OK.	See	“Checks”	for	details	on	how	to	fix	individual	problems.	
If	you	have	no	NOTEs,	it	is	less	likely	that	your	package	will	be	flagged	for	additional
human	checks.	These	are	time	consuming	for	both	you	and	CRAN,	so	are	best	avoided
if	possible.

If	you	can’t	eliminate	a	NOTE,	document	it	in	cran-comments.md,	describing	why	you
think	it	is	spurious.	Your	comments	should	be	easy	to	scan,	and	easy	to	match	up	with
R	CMD	check.	Provide	the	CRAN	maintainers	with	everything	they	need	in	one	place,
even	if	it	means	repeating	yourself.

NOTE
There	will	always	be	one	NOTE	when	you	first	submit	your	package.	This	reminds	CRAN	that	this	is	a	new
submission	and	that	they’ll	need	to	do	some	extra	checks.	You	can’t	eliminate	this,	so	just	mention	in	cran-
comments.md	that	this	is	your	first	submission.



Reverse	Dependencies
Finally,	if	you’re	releasing	a	new	version	of	an	existing	package,	it’s	your	responsibility	to
check	that	downstream	dependencies	(i.e.,	all	packages	that	list	your	package	in	the
Depends,	Imports,	Suggests,	or	LinkingTo	fields)	continue	to	work.	To	help	you	do	this,
devtools	provides	devtools::revdep_check().	This:

1.	 Sets	up	a	temporary	library	so	it	doesn’t	clobber	any	existing	packages	you	have
installed.

2.	 Installs	all	of	the	dependencies	of	the	downstream	dependencies.

3.	 Runs	R	CMD	check	on	each	package.

4.	 Summarizes	the	results	in	a	single	file.

Run	use_revdep()	to	set	up	your	package	with	a	useful	template.

If	any	packages	fail	R	CMD	check,	you	should	give	package	authors	at	least	two	weeks	to
fix	the	problem	before	you	submit	your	package	to	CRAN	(you	can	easily	get	all
maintainer	email	addresses	with	revdep_maintainers()).	After	the	two	weeks	is	up,
rerun	the	checks,	and	list	any	remaining	failures	in	cran-comments.md.	Each	package
should	be	accompanied	by	a	brief	explanation	that	either	tells	CRAN	that	it’s	a	false
positive	in	R	CMD	check	(e.g.,	you	couldn’t	install	a	dependency	locally)	or	that	it’s	a
legitimate	change	in	the	API	(which	the	maintainer	hasn’t	fixed	yet).

Inform	CRAN	of	your	release	process:	“I	advised	all	downstream	packages	maintainers	of
these	problems	two	weeks	ago.”	Here’s	an	example	from	a	recent	release	of	dplyr:

Important	reverse	dependency	check	notes	(full	details	at	

https://github.com/wch/checkresults/tree/master/dplyr/r-release);

*	COPASutils,	freqweights,	qdap,	simPH:	fail	for	various	reasons.	All	package	

		authors	were	informed	of	the	upcoming	release	and	shown	R	CMD	check	issues	

		over	two	weeks	ago.

*	ggvis:	You'll	be	receiving	a	submission	that	fixes	these	issues	very	shortly

		from	Winston.

*	repra,	rPref:	uses	a	deprecated	function.



CRAN	Policies
As	well	as	the	automated	checks	provided	by	R	CMD	check,	there	are	a	number	of	CRAN
policies	that	must	be	checked	manually.	The	CRAN	maintainers	will	typically	look	at	this
very	closely	on	a	package’s	first	submission.

I’ve	summarized	the	most	common	problems	in	the	following	list:

It’s	vital	that	the	maintainer’s	email	address	is	stable,	because	this	is	the	only	contact
information	CRAN	has	for	you,	and	if	there	are	problems	and	they	can’t	get	in	touch
with	you,	they	will	remove	your	package	from	CRAN.	So	make	sure	it’s	something
that’s	likely	to	be	around	for	a	while,	and	that	it’s	not	heavily	filtered.

You	must	have	clearly	identified	the	copyright	holders	in	DESCRIPTION:	if	you	have
included	external	source	code,	you	must	ensure	that	the	license	is	compatible.	See
“License:	Who	Can	Use	Your	Package?”	and	“Licensing”	for	more	details.

You	must	“make	all	reasonable	efforts”	to	get	your	package	working	across	multiple
platforms.	Packages	that	don’t	work	on	at	least	two	will	not	normally	be	considered.

Do	not	make	external	changes	without	explicit	user	permission.	Don’t	write	to	the
filesystem,	change	options,	install	packages,	quit	R,	send	information	over	the	Internet,
open	external	software,	or	make	other	similar	changes.

Do	not	submit	updates	too	frequently.	The	policy	suggests	a	new	version	once	every	1–
2	months	at	most.

I	recommend	following	the	CRAN	Policy	Watch	Twitter	account,	which	tweets	whenever
there’s	a	policy	change.	You	can	also	look	at	the	GitHub	repository	that	powers	it.

http://cran.r-project.org/web/packages/policies.html
https://twitter.com/CRANPolicyWatch
https://github.com/eddelbuettel/crp/commits/master/texi


Important	Files
You	now	have	a	package	that’s	ready	to	submit	to	CRAN.	But	before	you	do,	there	are
two		important	files	that	you	should	update:	README.md,	which	describes	what	the
package	does,	and	NEWS.md,	which	describes	what’s	changed	since	the	previous	version.
I	recommend	using	Markdown	for	these	files,	because	it’s	useful	for	them	to	be	readable
as	both	plain	text	(e.g.,	in	emails)	and	HTML	(e.g.,	on	GitHub	or	in	blog	posts).	I
recommend	using	GitHub-flavored	Markdown	for	these	files.

https://help.github.com/articles/GitHub-flavored-Markdown/


README.md
The	goal	of	the	README.md	is	to	answer	the	following	questions	about	your	package:

Why	should	I	use	it?

How	do	I	use	it?

How	do	I	get	it?

On	GitHub,	the	README.md	will	be	rendered	as	HTML	and	displayed	on	the	repository
home	page.

I	normally	structure	my	README	as	follows:

1.	 A	paragraph	that	describes	the	high-level	purpose	of	the	package.

2.	 An	example	that	shows	how	to	use	the	package	to	solve	a	simple	problem.

3.	 Installation	instructions,	giving	code	that	can	be	copied	and	pasted	into	R.

4.	 An	overview	that	describes	the	main	components	of	the	package.	For	more	complex
packages,	this	will	point	to	vignettes	for	more	details.



README.Rmd
If	you	include	an	example	in	your	README	(a	good	idea!)	you	may	want	to	generate	it
with	R	Markdown.	The	easiest	way	to	get	started	is	to	use	devtools::
use_readme_rmd().	This	creates	a	template	README.Rmd	and	adds	it	to	.Rbuildignore.
The	template	looks	like:

---

output:

		md_document:

				variant:	markdown_github

---

<!--	README.md	is	generated	from	README.Rmd.	Please	edit	that	file	-->

```{r,	echo	=	FALSE}

knitr::opts_chunk$set(

		collapse	=	TRUE,

		comment	=	"#>",

		fig.path	=	"README-"

)

```

This:

Outputs	Github-flavored	Markdown.

Includes	a	comment	in	README.md	to	remind	you	to	edit	README.Rmd,	not
README.md.

Sets	up	my	recommended	knitr	options,	including	saving	an	image	to	README-
chunkname.png	(which	is	automatically	.Rbuildignored.)

You’ll	need	to	remember	to	re-knit	README.Rmd	each	time	you	modify	it.	If	you	use	Git,
use_readme_rmd()	automatically	adds	the	following	“pre-commit”	hook:

#!/bin/bash

if	[[	README.Rmd	-nt	README.md	]];	then

		echo	"README.md	is	out	of	date;	please	re-knit	README.Rmd"

		exit	1

fi	

This	prevents	git	commit	from	succeeding	unless	README.md	is	more	recent	than
README.Rmd.	If	you	get	a	false	positive,	you	can	ignore	the	check	with	git	commit	--
no-verify.	Note	that	Git	commit	hooks	are	not	stored	in	the	repository,	so	every	time	you
clone	the	repo,	you’ll	need	to	run	devtools::use_readme_rmd()	to	set	it	up	again.



NEWS.md
The		README.md	is	aimed	at	new	users.	The	NEWS.md	is	aimed	at	existing	users:	it
should	list	all	the	API	changes	in	each	release.	There	are	a	number	of	formats	you	can	use
for	package	news,	but	I	recommend	NEWS.md.	It’s	not	supported	by	CRAN	(so	you’ll
need	to	run	devtools::use_build_ignore("NEWS.md")),	but	it’s	well	supported	by
GitHub	and	is	easy	to	repurpose	for	other	formats.

Organize	your	NEWS.md	as	follows:

Use	a	top-level	heading	for	each	version	(e.g.,	#	mypackage	1.0).	The	most	recent
version	should	go	at	the	top.

Each	change	should	be	included	in	a	bulleted	list.	If	you	have	a	lot	of	changes,	you
might	want	to	break	them	up	using	subheadings	(e.g.,	##	Major	changes,	##	Bug
fixes,	etc.).	I	usually	stick	with	a	simple	list	until	just	before	releasing	the	package,
when	I’ll	reorganize	into	sections,	if	needed.	It’s	hard	to	know	in	advance	exactly	what
sections	you’ll	need.

If	an	item	is	related	to	an	issue	in	GitHub,	include	the	issue	number	in	parentheses
(e.g.,	(#10)).	If	an	item	is	related	to	a	pull	request,	include	the	pull	request	number	and
the	author	(e.g.,	(#101,	@hadley)).	Doing	this	makes	it	easy	to	navigate	to	the	relevant
issues	on	GitHub.

The	main	challenge	with	NEWS.md	is	getting	into	the	habit	of	noting	a	change	as	you
make	a	change.



Release
You’re	now	ready	to	submit	your	package	to	CRAN.	The	easiest	way	to	do	this	is	to	run
devtools::release().	This:

Builds	the	package	and	runs	R	CMD	check	one	last	time.

Asks	you	a	number	of	yes/no	questions	to	verify	that	you	followed	the	most	common
best	practices.

Allows	you	to	add	your	own	questions	to	the	check	process	by	including	an	unexported
release_questions()	function	in	your	package.	This	should	return	a	character	vector
of	questions	to	ask.	For	example,	httr	has:

release_questions	<-	function()	{

		c(

				"Have	you	run	all	the	OAuth	demos?",

				"Is	inst/cacert.pem	up	to	date?"

		)

}

This	is	useful	for	reminding	you	to	do	any	manual	tasks	that	can’t	otherwise	be
automated.

Uploads	the	package	bundle	to	the	CRAN	submission	form	including	the	comments	in
cran-comments.md.

Within	the	next	few	minutes,	you’ll	receive	an	email	notifying	you	of	the	submission	and
asking	you	to	approve	it	(this	confirms	that	the	maintainer	address	is	correct).	Next,	the
CRAN	maintainers	will	run	their	checks	and	get	back	to	you	with	the	results.	This
normally	takes	around	24	hours,	but	occasionally	can	take	up	to	5	days.

http://cran.r-project.org/submit.html


On	Failure
If	your	package	does	not	pass	R	CMD	check	or	is	in	violation	of	CRAN	policies,	a	CRAN
maintainer	will	email	you	and	describe	the	problem(s).	Failures	are	frustrating,	and	the
feedback	may	be	curt	and	may	feel	downright	insulting.	Arguing	with	CRAN	maintainers
will	likely	waste	both	your	time	and	theirs.	Instead:

Breathe.	A	rejected	CRAN	package	is	not	the	end	of	the	world.	It	happens	to	everyone.
Even	members	of	R-core	have	to	go	through	the	same	process	and	CRAN	is	no
friendlier	to	them.	I	have	had	numerous	packages	rejected	by	CRAN.	I	was	banned
from	submitting	to	CRAN	for	two	weeks	because	too	many	of	my	existing	packages
had	minor	problems.

If	the	response	gets	you	really	riled	up,	take	a	couple	of	days	to	cool	down	before
responding.	Ignore	any	ad	hominem	attacks,	and	strive	to	respond	only	to	technical
issues.

If	a	devtools	problem	causes	a	CRAN	maintainer	to	be	annoyed	with	you,	I	am	deeply
sorry.	If	you	forward	me	the	message	along	with	your	address,	I’ll	send	you	a
handwritten	apology	card.

Unless	you	feel	extremely	strongly	that	discussion	is	merited,	don’t	respond	to	the	email.
Instead:

Fix	the	identified	problems	and	make	recommended	changes.	Rerun
devtools::check()	to	make	sure	you	didn’t	accidentally	introduce	any	new	problems.

Add	a	“Resubmission”	section	at	the	top	of	cran-comments.md	(this	should	clearly
identify	that	the	package	is	a	resubmission,	and	list	the	changes	that	you	made):

##	Resubmission

This	is	a	resubmission.	In	this	version	I	have:

*	Converted	the	DESCRIPTION	title	to	title	case.

*	More	clearly	identified	the	copyright	holders	in	the	DESCRIPTION

		and	LICENSE	files.

If	necessary,	update	the	check	results	and	downstream	dependencies	sections.

Run	devtools::submit_cran()	to	resubmit	the	package	without	working	through	all
the	release()	questions	a	second	time.



Binary	Builds
After	the	package	has	been	accepted	by	CRAN	it	will	be	built	for	each	platform.	It’s
possible	this	may	uncover	further	errors.	Wait	48	hours	until	all	the	checks	for	all
packages	have	been	run,	then	go	to	the	check	results	package	for	your	package	(Figure	15-
1).

Figure	15-1.	To	find	the	check	results	for	your	package,	go	to	its	CRAN	page	and	click	“[packagename]	results”

Prepare	a	patch	release	that	fixes	the	problems	and	submit	using	the	same	process	as
before.



Prepare	for	Next	Version
Once	your	package	has	been	accepted	by	CRAN,	you	have	a	couple	of	technical	tasks	to
do:

If	you	use	GitHub,	go	to	the	repository	release	page.	Create	a	new	release	with	tag
version	v1.2.3	(i.e.,	“v”	followed	by	the	version	of	your	package).	Copy	and	paste	the
contents	of	the	relevant	NEWS.md	section	into	the	release	notes.

If	you	use	Git,	but	not	GitHub,	tag	the	release	with	git	tag	-a	v1.2.3.

Add	the	.9000	suffix	to	the	Version	field	in	the	DESCRIPTION	to	indicate	that	this	is
a	development	version.	Create	a	new	heading	in	NEWS.md	and	commit	the	changes.



Publicizing	Your	Package
Now	you’re	ready	for	the	fun	part:	publicizing	your	package.	This	is	really	important.	No
one	will	use	your	helpful	new	package	if	they	don’t	know	that	it	exists.

Start	by	writing	a	release	announcement.	This	should	be	an	R	Markdown	document	that
briefly	describes	what	the	package	does	(so	people	who	haven’t	used	it	before	can
understand	why	they	should	care),	and	what’s	new	in	this	version.	Start	with	the	contents
of	NEWS.md,	but	you’ll	need	to	modify	it.	The	goal	of	NEWS.md	is	to	be	comprehensive;
the	goal	of	the	release	announcement	is	to	highlight	the	most	important	changes.	Include	a
link	at	the	end	of	the	announcement	to	the	full	release	notes	so	people	can	see	all	the
changes.	Where	possible,	I	recommend	showing	examples	of	new	features:	it’s	much
easier	to	understand	the	benefit	of	a	new	feature	if	you	can	see	it	in	action.

There	are	a	number	of	places	you	can	include	the	announcement:

If	you	have	a	blog,	publish	it	there.	I	now	publish	all	package	release	announcements
on	the	RStudio	blog.

If	you	use	Twitter,	tweet	about	it	with	the	#rstats	hashtag.

Send	it	to	the	r-packages	mailing	list.	Messages	sent	to	this	list	are	automatically
forwarded	to	the	R-help	mailing	list.

http://blog.rstudio.org/author/hadleywickham/
https://twitter.com/search?q=%23rstats&src=typd
https://stat.ethz.ch/mailman/listinfo/r-packages


Congratulations!
You	have	released	your	first	package	to	CRAN	and	made	it	to	the	end	of	the	book!
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