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Explaining the Social Contract
Zachary Ernst

ABSTRACT

Brian Skyrms has argued that the evolution of the social contract may be explained
using the tools of evolutionary game theory. I show in the first half of this paper that
the evolutionary game-theoretic models are often highly sensitive to the specific
processes that they are intended to simulate. This sensitivity represents an important
robustness failure that complicates Skyrms’s project. But I go on to make the positive
proposal that we may none the less obtain robust results by simulating the population
structures that existed among our evolutionary ancestors. It is by extending the
evolutionary models in this way that we should pursue the project of explaining the
evolution of the social contract.
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4 Introducing group selection to evolutionary game theory
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1 Introduction

In his book Evolution of the Social Contract ([1996]) and in an earlier pair of
articles ([1994a], [1994b]), Brian Skyrms argues that evolutionary game
theory is more promising than rational choice theory as a method for
explaining how the ‘existing implicit social contract’ could have evolved
([1996], p. ix).

Evolutionary game theory uses mathematical models to determine which
behaviors will tend to spread through a population. Here, the behaviors are
identified with simple game-playing strategies. As game-players in a
population repeatedly play some game with each other, each player will
enjoy a payoff which depends on her strategy and also on the strategies of
those players with whom she plays the game. In the evolutionary models,
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differential reproduction’ will cause the more successful strategies to increase
in frequency and the less successful ones to decline.

Skyrms begins his analysis with a game called ‘Divide-the-Cake’. This
game, which I will explain below, models a particular kind of bargaining
situation. As a model of bargaining, some of the strategies in Divide-the-
Cake seem intuitively ‘fair’ and others intuitively ‘unfair’. For Skyrms, we
have ‘the beginning of an explanation’ (Skyrms [1996], p. 21) of the social
contract if the evolutionary models can show that ‘fair’ game-playing
strategies will tend to evolve in a population.? Skyrms is careful not to come
to too strong a conclusion on the basis of such simple models. Rather than
propose a full-blown theory of the evolution of the social contract, Skyrms is
merely proposing and defending a particular methodology—evolutionary
game theory—which he hopes can be used eventually to construct such a
theory.

My purpose in this paper is to suggest a method for pursuing Skyrms’s
project. Specifically, I propose that the evolutionary models be extended so as
to take into account the population structures of our evolutionary ancestors.
My argument in support of this suggestion proceeds in two parts. First, I
show that without modeling such population structures, the evolutionary
models are not robust enough to explain the evolution of fairness norms. I
illustrate this robustness failure by showing that a standard evolutionary
model of cultural evolution can behave very differently from the dynamics
which Skyrms uses. I also briefly consider how the simplifying assumptions of
Skyrms’s replicator dynamics model affect the behavior of the model.

In the second part of my argument, I show how the evolutionary models
can be extended so as to take into account the population structures of our
evolutionary ancestors. In particular, I consider how a simple metapopula-
tion model of migration can be superimposed onto an evolutionary dynamics.
When this is done, we can see that such a population structure significantly
favors the evolution of fairness. Surprisingly, this result holds no matter what
underlying evolutionary dynamic is used.

The purpose of the metapopulation model is not to suggest a particular
explanation of the origin of fairness norms. Rather, its purpose is to illustrate

Or some other mechanism. See below.

In order for Skyrms’s explanatory strategy to be complete, we need to understand a ‘social
contract’ merely as a tendency for members of a population to interact with each other in a
‘fair’ manner. If a ‘social contract’ is more than that, then we need to tell a detailed story about
(say) how the evolution of ‘fair’ behaviors promotes the spread of fairness norms, or
conventions which give rise to a social contract. Skyrms does not spell out the relationships
between behaviors, norms, conventions, concepts of justice or fairness, and the social contract.
In fact, Skyrms seems to change the explanandum of his analysis from ‘the evolution of the
social contract’ ([1996], p. ix), to ‘the origin of our concept of justice’ (Ibid., p. 21) to the
evolution of ‘norms of fairness’ (/bid., p. 28). This point raises extremely difficult questions
which I cannot hope to address in this paper. So for the remainder of the paper, I will simply
put the project in terms of explaining the evolution of fairness.
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how the standard evolutionary models can be extended to take various
population structures and other features of group life into account. The
behavior of the model strongly suggests that by taking such population
structures into account, we can achieve results which are both robust and
explanatory. I conclude that for Skyrms’s project to be carried through, the
evolutionary models must be informed by the empirical work of evolutionary
biologists, anthropologists, and primatologists.

2 Skyrms’s strategy

For an analysis of the emergence of fairness, we want to study a game which
is simple enough for the mathematics to be tractable, yet complex enough to
capture some simple pre-analytic intuition about fairness. The game which
Skyrms focuses on is called ‘Divide-the-Cake’. In it, we imagine that there is
some surplus to be divided between two players—here, we imagine that the
surplus is a cake. Without any communication between them, each player
demands some portion of the cake from zero to one. If the sum of the two
players’ demands does not exceed one, then each gets exactly the portion she
demanded. But if their demands add up to more than one, then both players
receive nothing. There is an infinite number of possible demands from zero
(demand none of the cake) to one (demand the entire cake). So to make the
analysis simpler, we imagine that there are only three demands: Demand 1/3,
Demand 1/2, and Demand 2/3.

In research conducted by experimental economists, test subjects are made
to play the Divide-the-Cake game both repeatedly and in one-shot contests
(Davis and Holt [1993], p. 243). As we might expect, test subjects tend to play
the strategy Demand 1/2, which is the strategy we would intuitively judge as
the ‘fair’ or ‘just’ one. When the test subjects are asked why they demanded
half of the good, their answers suggest that the subjects’ behavior is guided,
not by self-interest, but by norms of fairness. The question we address is
whether there is some feature of the ‘fair’ strategy that accounts for the
evolution of fairness norms.

Skyrms is concerned with showing that evolutionary game theory can
explain why norms for such ‘fair’ behavior have evolved. We are to consider a
population which is initially seeded with all of the game-playing strategies
and then we model the strategies as replicators. Each strategy will have a
fitness which is its expected payoff in the population. Those with greater
fitnesses will reproduce more than their less-fit counterparts, and will come to
comprise a larger share of the population. Using an appropriate mathema-
tical model, we can watch the spread of the successful strategies and
determine under what conditions particular strategies will spread in any given
population.
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Since Skyrms proposes to model the strategies as replicators which
reproduce according to their fitness, the evolutionary model seems to be most
appropriate for modeling biological instead of cultural evolution. But because
the social contract probably evolved through a process involving both
cultural and biological evolution, he must argue that both evolutionary
processes can be modeled in the same way.> Skyrms does provide a quick
argument for this. In the introduction, he says:

These biological concepts also have qualitative analogues in the realm of
cultural evolution. Mutation corresponds to spontaneous trial of new
behaviors. Recombination of complex thoughts and strategies is a source
of novelty in culture. Using these tools of evolutionary dynamics, we can
now study aspects of the social contract from a new perspective ([1996],

p- X).

Later, I will argue that this analogy is flawed. But for now, we should look
at how the analogy to biological reproduction leads directly to a set of
equations called the ‘replicator dynamics’.

Suppose we have a population of individuals, each of which is programmed
to play some strategy i € K, where K is the set of all the strategies. Then we
denote the proportion of the population playing strategy as i x; (so that if half
the population is playing strategy i, then x,-:%), and the expected payoff of
strategy i in a population x as u(i,x).* The average payoff to the individuals in
the population is denoted u(x,x). For the replicator dynamics, we want the
growth rate of each strategy i to depend on i’s expected payoff, compared to
the average payoff in that population. If i does better than average, we want it
to spread; but if it does worse than average, we want it to diminish. Since the
growth rate of a population is equal to the fitness of the individuals multiplied
by the number of individuals,’ the growth rate of any strategy must be equal
to the fitness of that strategy multiplied by the current population share of
that strategy. So if we denote the rate of change of the population share
playing strategy i as x, we immediately get the replicator dynamics:

x = [u(i,x) — u(x,x)]x; ey

We should understand Equation 1 as a differential equation with a
suppressed time argument. That is, the value x refers to the growth rate of the

population share playing strategy i at some time . By solving® Equation 1 for
3 See Robert Boyd and Peter Richerson ([1976]) for a discussion of the relationship between
cultural and biological evolution, and how the conflict between both evolutionary processes
can be modeled.

In this discussion, I generally follow the notation in (Weibull [1995]).

The term ‘growth rate’ is commonly used to refer to either (1) the rate of change of the size of
the entire population or (2) the average reproductive fitness of the population. Here, I use the
term ‘growth rate’ to mean the former. See (Deevey [1972], pp. 6-7).

Often, the differential equations will be nonlinear, and the best we can do is approximate their
solution.
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each strategy in a particular game, we can derive a function which takes an
initial population state and time, and yields the population share of that
strategy at that time. By doing so for each strategy and a variety of initial
population states, we can often get a good picture of what states the
populations will evolve toward, how quickly they will evolve to those states,
and under what initial conditions.

This is the method Skyrms uses in his analysis of Divide-the-Cake. Since
there are three strategies in the game, we represent possible states of the
population as points in a triangle, where each vertex represents one of the
three strategies. The points closer to each vertex represent a population where
a larger share of individuals plays that strategy. So the point right on a vertex
of the triangle represents a population in which every agent plays that
strategy. The point in the middle of the triangle represents an equal
representation of strategies in the population, and so on. At a sample of
points in the triangle, we can program a computer to calculate the replicator
dynamics for that population. In Figure 1, I have represented the direction in
which the population evolves by an arrow, where the length of that arrow
represents the rate at which the population shares change.” The strategy
Demand 1/3 is the left-hand vertex, the strategy Demand 2/3 is the top vertex,
and Demand 1/2 is represented by the right vertex.

Examining Figure 1, we immediately notice a few things. First, the majority
of initial populations will eventually approach a state in which every agent
plays Demand 1/2. Unless the population begins at a point very far from the
right-hand vertex, the population shares of the other strategies will eventually
go to zero. The region in which this happens is called the ‘basin of attraction’
for Demand 1/2. According to Skyrms, this basin of attraction comprises about
62% of the triangle ([1996], p. 16). The second thing we notice is another basin
of attraction which leads to a state in which half of the population plays
Demand 1/3 and the other half plays Demand 2/3. This is represented by a
point on the edge of the triangle midway between the left and top vertices.
Because this basin of attraction leads to a polymorphic state in which no player
is a fair-dealer, Skyrms refers to it as a ‘polymorphic trap’ ([1996], p. 21).

The size of these polymorphic traps can be reduced by invoking an
additional assumption—namely, that players are more likely to interact with
others who play the same strategy. In fact, if the correlation is strong enough,
the polymorphic traps can be eliminated entirely. This assumption has been
questioned in depth by D’Arms ez al. ([1998]), so I will not discuss it here. But
if we grant the assumptions in Skyrms’s model, then it looks like evolutionary
game theory does indicate an important asymmetry between the ‘fair’

7 So the figure is actually a vector field. For a discussion of the use of vector fields in evolutionary
game theory, see (Weibull [1995]).
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Fig. 1. Evolution of a population playing Divide-the-Cake under the standard
replicator dynamics.

Demand 1/2 strategy and the other strategies, and suggests circumstances
under which the ‘fair’ strategy will evolve.

3 Other models and model sensitivity

The formal results which Skyrms reports are incontrovertible. The Divide-
the-Cake game under the replicator dynamics is well understood, and all of
Skyrms’s formal claims can be easily confirmed. Thus, Skyrms ends his initial
discussion on a hopeful note when he says that:

In a finite population, in a finite time, where there is some random
element in evolution, some reasonable amount of divisibility of the good
and some correlation, we can say that it is likely that something close to
share and share alike should evolve in dividing-the-cake situations. This
is, perhaps, a beginning of an explanation of the origin of our concept of
justice ([1996], p. 21).

For Skyrms, the evolutionary models suggest a method for explaining ‘the
origin of our concept of justice’ because they seem to show that the evolution
of fair behavior is probable. But do simple models, such as the replicator
dynamics model of Divide-the-Cake, really show this? The way to answer this
question is to examine the simplifying assumptions in Skyrms’s model, and
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determine whether those simplifications relevantly affect its behavior. If it is
found that the simplifying assumptions do have a significant effect on the
behavior of the model, then we will have to modify our explanatory strategy.

3.1 Cultural evolution and other models

The first assumption I would like to question is that biological and cultural
evolution may be modeled in the same way. The first thing to notice about
this assumption is that it is an assumption. For, at least on the surface, the
processes underlying learning and imitation are quite different from the
processes of biological natural selection, so it is not as obvious as it may seem
that biological and cultural evolution are really so closely analogous.

The second thing to notice about this assumption is how crucial it is to
Skyrms’s argument, because it is obviously a very difficult and unresolved
question to what degree each process operates in the evolution of social
norms. If cultural and biological evolution are relevantly different from each
other, then it is quite possible that the two processes might lead to
significantly different outcomes. The importance of this assumption has been
noted by Philip Kitcher in his commentary, but he seems to accept it when he
says that cultural evolution is ‘compatible with the same dynamics’ as
biological evolution ([1999], p. 221).2

But is Skyrms’s claim that ‘the Darwinian story can be transposed into the
context of cultural evolution, in which imitation and learning play an
important role’ ([1996], p. 11) really true? We are used to thinking of cultural
and biological evolution as very closely analogous.’ But on closer inspection
we can see that the analogy between biological and cultural evolution breaks
down much faster than is usually assumed. To see this, consider an alternate
dynamics which models how game strategies spread through a population of
agents who learn by imitation. Intuitively, the picture is this.'” Players in the
population live and interact with each other forever. Periodically, each player
reviews how well her strategy is doing. If she judges that her strategy’s payoff
is falling below some threshold, she may choose to revise it. The process of
revising a strategy consists in sampling a segment of the population and
switching to a strategy which she judges has a higher payoff than her own.
This dynamics is called the ‘aspiration-imitation model’ because players
‘aspire’ to a certain threshold of payoffs, and try to increase their payoffs by
imitating others.

8 Kitcher does express a little concern over this assumption in a footnote ([1999], p. 221), but he
believes that the two processes are analogous enough to support Skyrms’s analysis.
° This assumption is probably influenced by Dawkins’s famous analogy between genes and

‘memes’, where a meme is ‘a unit of information in a brain” which sometimes is copied from one

communicating brain to another (Dawkins [1999], p. 109). On this rough analogy, genes and

memes are both replicators, and would therefore seem to get the same evolutionary analysis.
10 This discussion comes from (Samuelson [1997]) and (Weibull [1995]).
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Given such a picture of the evolutionary process, we have to attend to two
new variables. The first is the ‘review rate’ r,(x) which is the probability that a
player playing strategy 7 in a population x will review her strategy in a given
unit of time. The second is the ‘choice probability’ p/(x) that a reviewing
player with strategy 7 will switch to strategy j in a population x. With these
two functions in hand, we can easily formulate the rate of change x for any
population share of i-strategists. It will be equal to the proportion of players
who switch to strategy from some other strategy, minus the proportion of i-
strategists who switch to other strategies:

X = 30 xiropi(x) = X2 X ()P () @

Obviously, there are many different ways in which we could fill in the review
rate and choice probability in Equation 2. For example, suppose that less
successful agents review their strategies more often, so that the review rate is a
linearly decreasing function:

r{x) = a — pu(ix) 3)

Furthermore, suppose that players switch strategies by randomly selecting a
member of the population and adopting that player’s strategy. So the
probability of a reviewing i-strategist switching to strategy j is just the
probability that the switching player will randomly pick a j-strategist, which
is just the proportion of the population playing strategy j. So we have:

Pi=Yx “4)
Equation 4 might be interpreted as modeling an environment in which the
players have no information about the actual payoffs of other strategies and
assume that more successful strategies are more common.

In a reply to critics, Skyrms defends his reliance on the replicator dynamics
by correctly pointing out that a variety of different models yield behavior that
is ‘qualitatively identical’ to it ([1999], pp. 244-5). Skyrms is right about this.
In fact, if we insert Equations 3 and 4 into Equation 2, we get a system whose
behavior is identical to that of the replicator dynamics, except that it may
evolve at a different rate.!!

Unfortunately, such equivalences between the replicator dynamics and
other models does not justify our exclusive use of the replicator dynamics.
When a different dynamics such as the aspiration-imitation model turns out
to be equivalent to the replicator dynamics, that is an exceptional case. For
the ‘aspiration-imitation model’ is not a single model, but rather a family of
models whose members are generated by choosing among the many possible
review rates and choice probabilities. In fact, the equivalence between the

" For proof, see Weibull ([1995], p. 154).
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replicator dynamics and the aspiration-imitation model depends crucially on
our choosing Equations 3 and 4 as the model’s review rates and choice
probabilities. But there are many environments for which other functions are
more appropriate; in those environments, the aspiration-imitation model
behaves quite differently.

For example, consider an environment in which the review rate is
nonlinear. We might imagine players who are forced to update their
strategies if their performance dips below a certain threshold value, but are
highly reluctant to give up their strategies otherwise. If those players also had
relatively good information about how well other strategies were performing,
then they would be more likely to switch to high-performing strategies rather
than merely popular strategies. To model this type of situation, we might
define the review rate and choice probability as follows:

(1 u(i,x) — minu(j,x) " )
T max; u(j,x) — min; u(j,x)
. )
pix) = ] (6)

Equations 5 and 6 deserve some unpacking. In Equation 5, the quantities
max;u(j,x) and min;u(j,x) refer to the highest possible payoffs in the
population x and the lowest possible payoffs in x, respectively. Thus, for any
strategy i and population x, the value of

u(i, x) — min; u( j, x)
max; u(j, x) — min; u( j, x)

will range from zero to one—=zero if i is the best-performing strategy, and one
if i is the worst-performing. In the special case where the exponent u = 1, the
function is linear. But if we have p > 1, then the range of r; still remains
between zero and one, but will rise nonlinearly. The greater the value of y, the
more nonlinear the function, so that in the limit as u approaches infinity, r;
becomes a step function.

Equation 6 may be interpreted in the following way. When a reviewing
player decides which strategy to adopt, she looks at the payoff of every strategy
in the population. For each strategy j, she assigns it a weight equal to ¢*U9. If
¢ > 1 then reviewing players will be more likely to switch to strategies with
higher payoffs. By dividing this weight by the sum of all the weights for all the
strategies, we guarantee that p’(x) is a probability function.'? As with Equation

12 Where a probability function must have a range between zero and one, and the sum of all its
values for every element in its domain must be equal to one.
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S, the larger the constant (this time the constant is ¢), the more sharply
nonlinear the function.

If we use nonlinear functions such as Equations 5 and 6 for the review rate
and choice probability, we will frequently be left with a dynamical system
which differs significantly from the replicator dynamics. To see this, consider
what happens in the model as ¢ increases. The constant ¢ can be interpreted
as representing the quality of the information each player receives about the
payoffs of other strategies. So as ¢ increases, players become increasingly
likely to choose the best-performing strategies when they switch. Similarly,
as u increases, the review rate becomes more sharply nonlinear. This means
that players with inferior strategies will be much more likely to switch, while
other players will be much more likely to keep their strategies, even if some
benefit could be achieved by switching. The evolution of the system is given
in Figure 2.

This system obviously behaves quite differently from the replicator
dynamics pictured in Figure 1. Although we see regions of the triangle
which roughly correspond to the same basins of attraction, the actual
behavior of the system is quite different. The most striking feature is that if
the initial population contains a mix of all three strategies, this version of the
aspiration-imitation model never approaches a monomorphic state of 100%
Demand 1/2. The reason is that as the greedy Demand 2/3 strategy dies out
(as the population approaches the bottom of the triangle), these individuals
switch either to Demand 1/3 or Demand 1/2. But the players playing Demand
1/3 are content with their constant payoff of % The result is that the
population shares of Demand 1/3 and Demand 1/2 both increase, although
they do so very slowly, as the population share of Demand 2/3 approaches
zero. Since two different strategies are always increasing in that region, the
population cannot go to a monomorphic equilibrium of Demand 1/2.

It is important to note that there is nothing contrived about the aspiration—
imitation model with nonlinear review rates and choice probabilities.'* In
fact, it’s easy to think of many environments in which those probability
functions are nonlinear. For example, we might imagine a group of well-
informed investors who want to increase the return on their investments, but
who must pay a large tax penalty for withdrawing their funds. Such investors
will switch investments by buying and selling only when the difference
between their own return and some other is greater than the tax penalty. This
is a situation in which there is a clear threshold separating those who will
switch strategies from those who will not. Given such a threshold, their
switching behavior must be described by nonlinear functions such as the one
in our model.

13 The behavior in Figure 2 also appears over a wide range of values for y and o.
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Fig. 2. Evolution of Divide-the-Cake under the aspiration-imitation model with
oc=15and p=4.

3.2 Effects of simplifying assumptions

In addition to the existence of alternative, non-equivalent dynamics, there is a
second source of difficulty in employing evolutionary game theory in an
analysis of this kind. This difficulty lies in the use of idealizing assumptions in
the replicator dynamics. Although I do not believe that there is anything
wrong with idealized models as such, we should take the time to recognize
those idealizing assumptions and perform a careful inventory of their
implications.

The assumption I will discuss here is what I will call the ‘continuous time’
assumption. In the derivation of the replicator dynamics, we think of the
difference in population shares of some strategy i at some time ¢ and later at
time 7+ t. This is approximated by considering the expected payoff of
strategy 7 at ¢+ and comparing it with the average payoff of the population.
When we let t approach zero, we get Equation 1. Since we’ve moved from
considering discrete intervals of time to thinking of a smooth evolution of the
population over every instant of time, we say that this is a ‘continuous time’
model.
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Although the assumption of continuous time may seem harmless enough,
there are environments in which it makes a significant difference. To see why,
consider a population whose makeup is changing in some interval of length 7.
If 7 is large, there will be many births and deaths (or many individuals
changing strategies) during that interval. But as we shrink that interval of
time, the probability that there will be a large number of individuals dying or
giving birth (or changing strategies) during that time diminishes. In the
limiting case where t has approached zero, and when we’re assuming an
infinitely large population, it is as if there is exactly one individual changing
state each moment. In other words, when we have a model which operates in
continuous time, the picture is one where the individuals change state one at a
time.

On the other hand, in discrete time, the number of individuals who change
state at a time is proportional to the size of the interval 7. When a large
number of agents make changes within the same interval, the dynamical
system makes a non-continuous ‘jump’ from one state to another. As a real-
world example of this phenomenon, think of the stock exchange. Overnight,
many investors receive news and place orders which will all be executed as the
market opens the next morning. Accordingly, we often see a sizable jump in
the state of the stock market as all of these orders are (more or less)
simultaneously executed. But if we imagine a fictitious stock exchange which
operates in continuous time, the investors’ orders will be executed one at a
time. In this case, each investor would be able to respond to the prior
movements of every other investor, and the market would not experience
those sudden lurches.

In the kinds of dynamical systems studied in evolutionary game theory, the
behavior of discrete-time systems differs from that of continuous-time
systems in an important way. The population trajectories in continuous-time
systems usually change according to smooth curves such as those in Figure 1.
In a discrete-time system, the population shares move in the same direction as
in a continuous-time system, but jump in that direction without occupying
any intermediate states. The size of those jumps will depend on the size of the
interval 7. If 7 is large enough, the dynamical system may jump across
important basins of attraction, just as the stock market may sometimes
‘overcorrect’ as large numbers of investors receive information or place
orders simultaneously.'*

In Divide-the-Cake, as in other games, the effect of using a discrete-time
dynamics depends on the size of the interval 7 as well as on the choice of
underlying dynamics (e.g. whether you use the replicator dynamics in discrete

4 Sober gives an example of a system which is either cyclic, unstable, or a stable spiral attractor,
depending on the underlying dynamics ([1994]).
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time or the aspiration-imitation model in discrete time). For example, in a
discrete-time version of the replicator dynamics, the behavior of the system
will be arbitrarily close to that of the continuous-time system, provided 7 is
sufficiently small. If 7 is larger, the system may cycle around a point which is a
stable attractor in the continuous time dynamics. In a discrete-time version of
the aspiration-imitation model with highly nonlinear review rates and choice
probabilities, entire strategies may become extinct when they would never
become extinct in a continuous-time model. This is because when we assume
that 7 is very large and the review rates are nonlinear, the entire share of the
population playing a particular poorly performing strategy may all decide to
change strategies simultaneously (that is, within a single interval of length 7).
This might happen, for instance, when Demand 2/3 has the lowest payoff. If
everyone switches strategies simultaneously, then all of the Demand 2/3
players will switch, and Demand 2/3 will become extinct. But if time is
continuous, then it is as if players review their strategies one at a time. In that
case, as some of the Demand 2/3 players gradually switch to (say) Demand
1/3, the expected payoff of Demand 2/3 will go up. And if the payoff of
Demand 2/3 goes up as some of the Demand 2/3 players switch strategies,
then, after a certain point, we should see the remaining Demand 2/3 players
decide to remain with their strategy.

Thus, when we construct an evolutionary game-theoretic model of some
phenomenon, we have to make many choices. First, we must choose between
different dynamics; in this section, I've focused on just the replicator
dynamics and the aspiration—imitation model, but there are many others.
Furthermore, when we analyze the behavior of those dynamics, we have to
choose appropriate parameters and functions which will be plugged into the
equations. As an example, we’ve seen how the aspiration—imitation model
forces us to choose parameters and functions so that we have specific review
rates and choice probabilities for our analysis. Furthermore, in order for the
math to be tractable, we are forced to make various simplifying assumptions.
As an example, we’ve seen how we must choose between discrete and
continuous time. But again, there are many other simplifying assumptions
which I have not discussed here, but are equally important. For example,
Samuelson ([1997]) has an interesting discussion of how the assumption that
populations are infinitely large affects the dynamics. Bergstrom and Stark
discuss how the models behave differently if we drop the assumption of
asexual reproduction ([1993]). A similar analysis of the effects of introducing
sexual reproduction into the evolutionary models has recently been offered by
Tennant ([1999]). All of these choices dramatically affect the probability that
particular strategies will evolve to fixation. Some models, such as Skyrms’s
application of the replicator dynamics, may put the probability of Demand 1/2
evolving to fixation quite high. But other models, such as some versions of the
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aspiration-imitation model, may place that probability vanishingly close to
Z€ero.

4 Introducing group selection to evolutionary game theory

Of course, the considerations presented so far do not show that it is
impossible for evolutionary models to demonstrate that fairness will evolve in
a population. However, I believe that the previous arguments do show that in
order for such an explanatory strategy to succeed, we have to pay careful
attention to the evolutionary mechanisms the models are supposed to
simulate.

If we do attend closely to the variety of mechanisms which might have
encouraged the evolution of fairness, then we will be naturally led to a
substantial shift in our explanatory strategies. Rather than attempting to base
an explanation of the evolution of fairness on one general model such as
Skyrms’s application of the replicator dynamics, we should look at a variety
of models which capture particular features of the lives of our evolutionary
ancestors. For example, we might examine models which characterize their
migration patterns, kinship relations, and other population structures. If such
models were to reveal that particular features of our evolutionary ancestors’
lives significantly encourage the evolution of fairness, then those models
would provide an explanation. In this section, I will illustrate this approach
by constructing a very simple metapopulation model which suggests how
migration patterns favor the evolution of fairness.

We begin by considering a model proposed by Maynard Smith in an
argument against group selection ([1976]). Maynard Smith’s goal was to
study under what conditions, if any, group selection might cause a gene for
altruism to evolve. He defined ‘altruism’ as behavior which reduces the
agent’s own fitness, while increasing the fitness of others. It follows
immediately from this definition of altruism that within any isolated
population, altruistic individuals will eventually be driven to extinction
while ‘selfish” individuals will go to fixation.

Clearly, if individual selection works so efficiently against the evolution of
altruism, group-selection mechanisms must operate to a very high degree if
altruism is going to have a chance of spreading. Thus, Maynard Smith was
forced into considering a highly unlikely set of circumstances which he
thought were necessary for the evolution of altruism. Specifically, he
proposed a model in which there is a species of mice which engage in either
timid or aggressive behavior, where timidity is identified with altruism and
aggression with selfishness. This behavior is determined by their genes: an A4
or Aa mouse is of the aggressive/selfish type, whereas an aa mouse is timid/
altruistic. Maynard Smith’s insight was to recognize that even though
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altruistic aa mice might be driven to extinction in any mixed population
containing both types; a population consisting entirely of altruists would
grow more quickly than other types of populations, provided that the benefit
altruistic mice confer on others is sufficiently great.

Therefore, what is needed if altruism is to spread is a population structure
in which the greater growth rate of altruistic groups is enough to counteract
the individual-selection pressure which favors selfishness. The population
structure Maynard Smith proposed was this. The mice live out their entire
reproductive cycles in haystacks, where each haystack colony is founded by a
single impregnated female. This founding female gives birth to a sibling
group, which then reproduces for one year, during which time we assume
each colony would go to fixation, leaving only pure selfish groups (unless the
colony began with only altruists). The next summer, all of the mice are
blended back into the global population, mating occurs, and new colonies are
founded by a single impregnated female.

The Haystack Model shows that if the colonies are sufficiently isolated
(that is, that they do not compete with each other for food and other
resources), the vast majority of mating occurs only within colonies, and
colonies of altruistic mice grow sufficiently more quickly than other colonies,
then altruism can spread in the global population. However, these
assumptions are so severe, and the population structure is so fanciful, that
Maynard Smith concluded that group-selection effects will be negligibly small
in the real world.

Before we give up on group-selection models, we should note that
Maynard Smith’s conclusion is a consequence of his extremely strong
presumption that the altruistic gene will inevitably and quickly be driven to
extinction within any mixed population (Sober and Wilson [1998], p. 70).
However, our explanandum—the emergence of fairness—does not sanction
this strong assumption. After all, fair behavior is significantly different from
altruistic behavior. For what defines altruistic behavior is that the altruist is
unconditionally worse-off because of her altruistic acts. This means that we
would expect altruists to fare poorly against selfish individuals in any mixed
population. But as we’ve seen above, the same is not true of fair individuals.
For there are a variety of populations in which fair-dealers have higher fitness
that their unfair counterparts.

Given that fair-dealers do not always have the lowest fitness in a mixed
population, we need not examine how the highly artificial population
structure of the Haystack Model affects the evolution of fairness in Divide-
the-Cake. After all, that population structure was only necessary to
counteract the extremely powerful individual-selection pressure which
works against the evolution of altruism. However, although the motivation
for the details of the Haystack Model does not apply to our problem of
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explaining the evolution of fairness, the fundamental insight of Maynard
Smith’s model is still instructive. If populations are sufficiently isolated, and
the growth rate of a population increases with the proportion of fair-dealers
in the population, then the global population share of fair-dealers will
increase significantly.

Introducing a small amount of formalism will help apply this to Divide-
the-Cake. Call a metapopulation a ‘set of populations occupying a cluster of
habitable sites’ (Wilson [1975], p. 108). To keep things simple, suppose that
each population in the metapopulation is completely reproductively isolated,
and that they do not compete with each other to any significant degree. Let
each population in the metapopulation be denoted p;.

Recall that u(x,x) denotes the average payoff in the population x.
Economists often call this value the ‘social efficiency’ of the population. In
our biological context, the social efficiency u(p;,p;) of a population p; helps to
determine the growth rate of the population. Since we interpret payoffs as
fitnesses and fitness is a measure of the expected number of offspring, it
follows that populations with greater social efficiency will have a higher rate
of growth than populations with lower social efficiency. So for any
population p;, let P(p,t) be the size of the population p; at some time ¢.
Assuming that growth rates are linearly proportional to efficiency (which
amounts to the simplifying assumption that there are no environmental
constraints on population size), we have:

dP

= (P PP )

So suppose we begin with a metapopulation which is initially seeded with
populations, each of which has a random distribution of strategies. If the
populations are isolated and there are no constraints on population size, then
by assuming that the populations evolve according to some particular
dynamics, we can discover what will happen in the metapopulation. For
simplicity, suppose that each population evolves according to the replicator
dynamics. By making this assumption, we can apply our discussion of Section
2; but as we will see, our choice of underlying dynamics is—surprisingly—
largely unimportant.

As Skyrms demonstrates, there are two significant basins of attraction in
the replicator dynamics model for Divide-the-Cake (when there is no
correlation): a basin comprising 62% of possible populations which leads to
the fixation of Demand 1/2, and another comprising the remaining 38% of
possible populations, which leads to a state in which half the population plays
Demand 1/3 and the other half plays Demand 2/3. Accordingly, if we use a
replicator dynamics model, we should expect about 62% of the populations
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in the metapopulation to evolve to Demand 1/2, and the rest to go to the
polymorphic attractor.! Call the first set of populations the ‘fair populations’
and the rest the ‘greedy-modest’ populations.

To calculate the relative growth rates of the two kinds of populations, we
must figure out the efficiency of each. Since the efficiency of a population is
the average payoff in that population, the calculation is simple. The efficiency
of the fair populations will be equal to the average payoff of Demand 1/2 in a
monomorphic population of Demand 1/2, which is just 1. To calculate the
efficiency of the greedy-modest populations, we note that such a population
contains many pairs of individuals. One-quarter of those pairs will be
(Demand 1/3, Demand 1/3), in which case the average payoff is 1. One-half of
the pairs of individuals in the population will be (Demand 1/3, Demand 2/3),
with an average payoff of 1. And lastly, one-quarter of the pairs in the
population will be (Demand 2/3, Demand 2/3), in which case they receive an
average payoff of zero. So the average payoff in the polymorphic population
st +id+io =1

Since the efficiency of the fair populations is significantly larger than that of
the greedy-modest populations, we should expect, by Equation 7, that each of
the fair populations will eventually be much larger than the greedy-modest
populations. By itself, this model does not say what will happen to the
distribution of strategies in the metapopulation under a group-selection
mechanism. But the model is suggestive, for it is natural to suppose that,
under ordinary circumstances, group-selection mechanisms will tend to favor
those strategies which predominate in the largest populations. For example, if
populations send out colonies in proportion to their size so that larger
populations colonize at higher rates than smaller populations, we would
expect to see a large proportion of Demand 1/2 colonies. Similarly, if smaller
populations are more likely to go extinct, then we’d expect the polymorphic
populations to die out more frequently, leaving a larger proportion of
Demand 1/2 populations in the metapopulation.

Furthermore, all of these observations hold, at least to some significant
degree, regardless of whether the replicator dynamics or some other dynamics
is used to describe the evolution of the populations. For the growth rate of a
population will be proportional to their share of Demand 1/2 players, no
matter what dynamics is chosen.!® Furthermore, we should note that it is not
necessary for any of the subpopulations in a group selection model to evolve
to a state in which Demand 1/2 has gone to fixation. If a population has a
relatively large share of Demand 1/2 players, then its growth rate will be

!5 This assumes that each possible initial population state is equally likely, which might not be
true. But this assumption will not cause any problems for the analysis.

16 Although we do require that higher payoffs entail higher reproductive fitness, this is not a
significant constraint on the choice of evolutionary dynamics.
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correspondingly higher, even if its share of Demand 1/2 players is less than
one. So the result that group selection mechanisms will favor the spread of
fair strategies should be robust across a wide range of dynamical models.

4.1 The Island Model

Given the observations of the previous section, we should examine one
particular group-selection mechanism in more detail. This will enable us to
see how evolutionary game theory can be extended to take group-selection
mechanisms into account.

In his ‘Isolation by Distance’ ([1943]) and in Evolution and the Genetics of
Populations ([1969]), Sewall Wright examined how evolution is affected across
a continuum of population structures. These structures ranged from nearly
perfect isolation, as in the Haystack Model, to an environment in which all of
the populations interact with each other to a high degree. Of these different
population structures, the one I will examine here is the ‘Island Model’, so
named by Wright because he thought that this described best a metapopula-
tion whose populations live on different islands. In such an island
environment, the majority of any particular population will be made up of
individuals who are natives to that population, while some smaller
proportion—call it m—are migrants. As an idealization, the Island Model
assumes that the migrants to any particular island are representative of the
entire metapopulation.

It turns out that if we apply the Island Model to the Divide-the-Cake game,
fair-dealers will comprise an even /arger share of the metapopulation than in
the Haystack Model. To see this, note that some of the conclusions from the
Haystack Model will carry over into this model. In particular, we should note
that no matter what underlying dynamics is chosen, populations which have a
larger share of fair-dealers will tend to have higher growth rates than other
populations. For this reason, as time passes, we should expect a larger and
larger share of all migrants to play Demand 1/2. That is, the fair-dealers
should come to comprise the greatest share of migrants to any island.

It is the higher proportion of fair-dealing migrants which causes the
Demand 1/2 strategy to spread through the metapopulation. For consider a
population in which Demand 1/2 has gone to fixation. If Demand 2/3 players
immigrate to the population, they will always receive a payoff of zero, and
will go extinct (or switch strategies) quickly. If Demand 1/3 players immigrate
to the population, they will have an expected payoff of i, which will be
consistently lower than the expected payoff of { which the native Demand 1/2
players receive. The only way for the population to move from all Demand 1/2
is if it is invaded by a proportionally huge number of Demand 2/3 players
with a corresponding number of Demand 1/3 players. If this happened, then
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the expected payoff of the Demand 2/3 immigrants could go over the
expected payoff of the native Demand 1/2 population. However, since we’re
assuming that all players are equally likely to migrate, there will always be a
compensating number of Demand 1/2 players immigrating to the population.
Those players will tend to stabilize the population at Demand 1/2, so the
Demand 1/3 and Demand 2/3 players will never be able to take over.

So populations of Demand 1/2 are stable. However, mixed populations can
change. Consider the other stable attractor in the replicator dynamics in
which half the population plays Demand 1/3 and the other half plays
Demand 2/3. A group of Demand 1/2 immigrants will survive and reproduce
in the population if their frequency in the population is greater than 1.!” In
any such population with this ‘critical mass’ of Demand 1/2 immigrants, the
population will eventually be taken over by the ‘fair’ strategy.'®

4.2 Constructing a group-selection explanation

The arguments presented so far, coupled with the behavior of the two models
in the previous sections, suggest a method for pursuing a robust explanation
for the evolution of fairness.

My suggestion is that the evolutionary models can be adapted to a
provide a group-level explanation, whereby the evolution of fairness is
attributed to the benefits such behavior imparts on the group. Although
group-level explanations have been recently given a sustained defense by
Sober and Wilson ([1998]), such explanations are usually met with
suspicion. Skyrms himself suggests that group-level explanations of this
sort are ‘misguided’, although he moderates that comment in an endnote
([1996], pp. 67, 121). As another example, Jonathon Elster characterizes
such group-level explanations as ‘just-so stories’ ([1989], p. 148). For him,
the very ease with which we can construct group-level explanations makes
them unconvincing.

However, I think that we should not take these objections to be more
substantive than they really are. For these authors, the problem with most
group-level explanations is that they often do not demonstrate a plausible
mechanism which allows group-selection for the behavior to outweigh the
17 The Demand 1/2 players begin to take over the population when their expected payoff rises

above that of the Demand 2/3 players. Let x;, x», and x3 be the population shares of Demand

1/3, Demand 1/2, and Demand 2/3 respectively. Since the population that will be invaded is

comprised of Demand 1/3 and Demand 2/3 in equal proportions, let x; = x3. Because
X1 +x2 4+ x3 = 1, we have x; =1 — %2, The expected payoff of Demand 1/2 is greater than that

2
of Demgnd ‘2/3 when 1(x; + x2) > $x;. Substituting for x;, we get (3 — %+ x2) >3(3 - %),
which simplifies to x; > 1.

This discussion mirrors some game-theoretic definitions of stability. One standard definition of
a stable strategy is one which no mutant strategy can invade, provided that the number of

mutants which enter the population at any one time is relatively small.

3
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individual-selection against it.'"” So if we are to meet the objection, we must

posit a specific mechanism which operated at the level of the group.?® That
mechanism must encourage the ‘fair’ behaviors to evolve, even when such
behaviors may be selected against at the level of the individual.?!

Fair behaviors are often the ones which raise a population’s efficiency,
where ‘efficiency’ is understood as average fitness. My claim in the previous
sections has been that some population structures encourage the spread of
such efficiency-raising behaviors. This was suggested in the discussion of the
Haystack Model, when it became clear that populations of fair-dealers will
have a higher efficiency, and therefore a higher growth rate, than other
populations. In the population structure of the Island Model, that higher
growth rate meant that we’d expect to see a larger proportion of migrants
who play the intuitively ‘fair’ strategy. When the migrants tend to be fair-
dealers, we see the ‘fair’ strategy spread through the entire metapopulation.
Thus, the Island Model shows that when the metapopulation is comprised of
relatively isolated populations which send out migrants, efficiency-raising
behaviors will tend to spread.

There are many other population structures which tend to spread
efficiency-raising behaviors. Colonization, inter-group competition for
resources, differential group extinction, and many other plausible structures
may play such a role. By examining our close relatives among the non-human
primates, we can infer which population structures were present in our own
evolutionary history.??> We may then adapt our game-theoretic models in such
a way as to represent the evolutionary impact of these population structures.
Although this explanatory strategy will not necessarily allow us to derive
probabilities for the evolution of fairness norms, it will allow us to identify
historically real population structures and demonstrate that they encourage
the evolution of fairness.

19 In this respect, these authors’” worries exactly parallel those of Gould and Lewontin, who warn
against being overeager to construct adaptationist explanations in evolutionary biology
([1979]). Gould and Lewontin are quite correct when they point out that traits may evolve for
reasons having little or nothing to do with any adaptive benefits they may confer on the
organism. But of course, this does not mean that adaptationist explanations are never
appropriate. We merely have to be careful, when proposing adaptationist explanations, that
there is a plausible mechanism which actually selected for that trait.

Of course, this is not the only objection to group-level explanations. Jonathon Elster, for
example, has a series of arguments against them ([1989], pp. 147-9). Unfortunately, there is not
enough room here to discuss them.

The approach that I advocate here has been anticipated to some extent by Robert Boyd and
Peter Richerson, who discuss a dual model of evolution, where mechanisms of biological and
cultural evolution are allowed to act simultaneously on the evolution of a species ([1976]). Like
the present analysis, Boyd and Richerson emphasize the simulation of specific evolutionary
mechanisms, and would allow both group-selection and individual-selection mechanisms to
operate to varying degrees ([1976], p. 261).

See (Sober [1988]) for a detailed discussion of how cladistics may be used to infer such facts
about our evolutionary ancestors.
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It is important to note that this explanatory strategy has a virtue which we
haven’t yet addressed. I said above that fair behaviors are often the ones
which raise the population’s efficiency—"often’, but not ‘always’. Since there
are cases where fairness does not correlate with efficiency, group-level
selection, as a working hypothesis, can explain why fairness sometimes does
not evolve. We should not be too optimistic about human nature. Human
interactions are often unfair. Thus, a good account of the evolution of
fairness should have something to say about unfairness as well.

Consider the so-called ‘Ultimatum Game’ (sometimes called the ‘Proposer-
Disposer’ game), which has been studied extensively by economists, as well as
by Skyrms. This game is played by two people: the Proposer and the
Disposer. As in Divide-the-Cake, there is a surplus to be divided between
them. The Proposer makes some offer as to how the surplus is to be divided,
such as ‘T'll take two-thirds and you take one-third’. The Disposer has two
options: accept or reject. If the Disposer accepts, then the surplus is divided
exactly according to the Proposer’s offer. If the Disposer rejects, then neither
gets anything.

Just as we saw in Divide-the-Cake, there is an intuitively obvious ‘fair’
division of the surplus in which Proposer and Disposer each get half—and in
experimental studies (even across different cultures) this is approximately
what happens (Giith, Schmittberger, and Schwarze [1982]; Roth [1985]). But
in the vast majority of evolutionary models, this is not what happens. Instead,
the most unfair division soon sweeps through the population in which the
Proposer offers to take as much as she possibly can and the Disposer accepts
anything. This happens because no matter what offer the Proposer makes, the
Disposer is better off accepting—for if the Disposer rejects, then she gets
nothing at all. Given that the Disposer will accept anything, the Proposer is
better off making her proposals as greedy as possible.??

For our purposes, the important point about the Ultimatum Game is that
in it, there is no correlation between fairness and group efficiency—so long as
the Disposer accepts the offer, the entire surplus is used. Thus, even if the

2 Many hypotheses have been offered to account for the disparity between the standard
evolutionary models of the Ultimatum Game and the experimental results. The leading
explanations seem to be that the test subjects place intrinsic value on fairness, or that they want
to be perceived as fair by their peers. It is unclear what significance, if any, this disparity has for
the project of explaining the evolution of fairness norms. After all, the agents in our
evolutionary models cannot be guided by norms of fairness, since we are attempting to explain
the origins of such norms. Thus, the evolutionary models which I have considered in this paper
cannot be falsified by these experimental results, provided the test subjects are, in fact, guided
by norms of fairness. Rather, I suspect that the lesson we learn from the Ultimatum Game is
that, to the extent that games like it describe the interactions of our evolutionary ancestors, we
should expect a propensity towards unfairness to have evolved. See Davis and Holt ([1993], p.
269) and Thaler ([1988]) for surveys of research on the Ultimatum Game, and Rabin ([1990])
for a detailed theory of how to model agents who are guided by norms of fairness.
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population structure favors populations with high efficiency, we should not
expect anything like fairness to evolve.

So what the group-selection models seem to suggest is this. Often, fairness
correlates with efficiency. When it does, and the appropriate population
structures are present, group-selection will lead fairness to spread through the
global population. If fairness does not correlate with efficiency, as in the
Ultimatum Game, all bets are off—groups of fair-dealers will not necessarily
out-compete other groups and fairness will probably not spread through the
population. In cases where it is unclear how game-playing strategies impact
the group’s efficiency, an appropriate group-selection model can help us to
predict or explain how certain behaviors, including fairness, are established.

5 Conclusion

Given the novelty of Skyrms’s use of evolutionary game theory in explaining
the evolution of the social contract, it is not surprising that discussions of his
work tend to focus on methodological issues. The purpose of this paper has
been to raise some of these issues and suggest ways to resolve them.

The most important methodological problem with an evolutionary game
theory approach is that the models are highly sensitive to the kind of process
which they are intended to analyze. An important example of this sensitivity
is that models of biological reproduction (e.g. the replicator dynamics) have
significantly different behavior from models of learning processes (e.g. the
aspiration-imitation model). However, this robustness failure does not stand
in the way of pursuing Skyrms’s project. It just shows that we must use the
models to simulate specific evolutionary mechanisms, and not make general
claims based on the behavior of a small number of models.

As a working hypothesis, it is not implausible to think that the explanation
for the emergence of norms of fairness has a great deal to do with the benefits
such norms impart to the group. We may superimpose a group-selection
model onto an evolutionary game-theoretic model as in Section 4. This will
allow us to study how group-selection mechanisms favor the spread of norms
of fairness. When we understand which group-selection mechanisms favor the
spread of fairness norms, we will have an explanation of the evolution of
fairness.

There is another benefit to pursuing group-selection models. In his
commentary ([1999]), Philip Kitcher suggests that the next line of research in
this area should be modeling coalition-formation. His interest in modeling
coalitions is motivated by a desire to ensure that the game-theoretic models
are really explanatory. For, as Kitcher points out, ‘If we are serious about
accounting for the origin of a human conception of justice, then we have to
suppose that the dynamics of the populations corresponds to a process that
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occurred in human prehistory’ ([1999], p. 222). He goes on to suggest that if
we look to the pre-historic record, we’ll find that ‘our ancestors lived in larger
social groups, comparable to those of present-day chimpanzees and bonobos’
([1999], p. 224) who form coalitions and alliances. Since coalitions are a
particular kind of group, the first step toward understanding the dynamics of
coalitions may be to examine simple group-selection models. Additionally, we
should look at other sorts of population structures which were common
among our evolutionary ancestors. If the evolutionary models show that
those structures favor the evolution of fairness, we will have taken a
significant step in explaining the origins of fairness.
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