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Preface

This book is aimed at doctoral students and researchers working in Management
and other social science subjects. It aims to provide a resource for training in basic
data analysis and also provide some information about a number of more specialized
techniques used in the management field. The contents have been compiled and written
over a number of years during which time Graeme Hutcheson and Luiz Moutinho
have been involved in teaching postgraduate students, academic staff and researchers
research methods, data analysis and statistical modeling. The material presented here
provides some basic notes for these courses and we are indebted to the many students
who have attended our training sessions and commented on the notes and examples.
Although some complex issues are addressed in later chapters, the main body of the
book attempts to explain how generalized linear models can be applied to a great
range of common research questions and research designs for different types of data.
In particular, this material is designed to be accessible to all postgraduate students.
Although an extensive statistical or mathematical knowledge is not assumed, readers
might benefit from attending an introductory course on statistics, or by consulting one
of the many basic statistical text books that are available.

This book can be broadly divided into two parts, one that deals with generalized
linear models (GLMs) and one that deals with a number of other techniques that may
be applied in management research. As the objective of the former is for teaching, these
chapters are accompanied by data sets that can be analysed and the results compared
to the output provided. The outputs are given in a software-neutral manner so that
these can be compared to the outputs from a number of different statistical packages
(in Management, SPSS is often used, although we strongly recommend the use of R,
a package that is described in more detail below).

The first five chapters of the book describe how data can be classified, coded and
analyzed using a number of generalized linear modeling techniques. The aim has been
to provide a theoretically-consistent method for modeling continuous, ordered and
unordered categorical data. The analysis of experimental data is discussed within the
main chapters in a way that makes clear the links between the hypothesis tests and
the regression models. Chapters 6, 7 and 8 deal with other techniques (such as neural
networks and approximate algorithms) that may also be of interest to researchers in
the management field.

The data that are used in this book are available for download at www.sagepub.
co.uk/hutcheson moutinho and are saved as tab-delimited text to enable them to be
simply imported into a number of statistical packages and spreadsheets. The data used
and where they are presented in the book are shown in the Table below.

The statistics for this book were mainly analyzed using R (see the R Development
Core Team, 2007 and the R website at http://www.r-project.org/) and a number of
associated packages (the most notable being the graphical user interface ‘R Comman-
der’, written by John Fox, 2005). The use of R Commander, in particular, has enabled
us to teach statistics to groups with little or no previous statistical experience whilst
utilizing the power of the R programme. This combination of packages has proved to
be so successful that and we have now adopted R as the only statistics package we use
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for our courses. Its ease of use along with its free download, multi-platform capabil-
ities and extraordinary range of techniques, manuals (in many languages), examples
and a generous community make it a wonderful resource for all data analysts.

Even though R may not be the easiest package to master, there are many resources
available to help with analysis and graphics. Some of the resources I have found
to be particularly useful have been Venables, Smith and the R Development Core
Team (2002), Dalgaard (2002), Crawley (2005), Verzani (2005), Faraway (2005),
Fox (2002), Venables and Ripley (2002), Murrell (2006) and Maindonald and Braun
(2003).

This book was typeset by Graeme Hutcheson at Manchester University using LATEX
and a debt of gratitude is owed to Donald Knuth, the creator of TEX (Knuth, 1984),
Leslie Lamport who built this into the LATEX documentation system, and to the many
contributors who freely give their time and expertise to support this package (see, for
example, Grätzer (2000), Kopka and Daly (2003), Lipkin (1999) and Mittelbach et al.,
(2004)). Full details of the LATEX project are available on the web at ‘http://www.latex-
project.org/’.

Data sets used in this book

Chapter 2

IceCream.txt (Table 2.1)
Whiskey2group.txt (Table 2.16)
Whiskey3group.txt (Table 2.23)
Quality2group.txt (Table 2.32)
Quality3group.txt (Table 2.32)

Chapter 3

Union.txt (Table 3.2)
also available as file CPS 85 Wages from
http://lib.stat.cmu.edu/datasets/

Chapter 4

IceCreamOrdered.txt (Table 4.1)
Whiskey3groupOrdered.txt (Table 4.24)
Quality3groupOrdered.txt (Table 4.32)

Chapter 5

Stores.txt (Table 5.1)
DecisionUnrelated.txt Table 5.15
DecisionRelated.txt Table 5.24

Graeme Hutcheson, Manchester University
Luiz Moutinho, Glasgow University



CHAPTER 1

Measurement Scales

In this chapter we describe ways in which data can be recorded and highlight the
relationship between the actual variable being measured (the attribute) and the mea-
surement itself (the recorded data). This distinction is an important one and forms the
basis of measurement theory.

The fundamental idea behind measurement theory is that measure-
ments are not the same as the attribute being measured. Hence, if
you want to draw conclusions about the attribute, you must take into
account the nature of the correspondence between the attribute and the
measurements.

Sarle, 1995

The measurements made and recorded in the data do not necessarily describe the
attribute accurately. This is important as the analysis and the resulting conclusions may
only apply to the data even though one usually wishes to make conclusions about the
attribute. Such links can only be made if the data and the attribute correspond directly.
Figure 1.1 shows the relationship between the attribute, the data and the conclusions
and suggests that conclusions about the attribute can only be justified if there is a direct
correspondence between the attribute and the data. This is not always the case.

The ideas behind measurement theory are particularly relevant for management
research as a wide variety of variables are used, many of which do not have a one-to-
one correspondence between the attribute being measured and the measurement itself.
The types of data commonly collected and recorded vary from physical, ‘observ-
able’ information such as height, weight, heart rate, earnings, marital status, gender,
and religious affiliation, to mental, essentially unobservable information, such as atti-
tudes, stereotypes, beliefs and feelings. Although some variables are easily converted
into numbers, others require some work and thought before they can be represented
meaningfully.

There are many ways to categorize data and a number of different schemes have
been proposed that utilize a variety of categories and sub-divisions (see, for example,
Agresti and Finlay, 1997; Barford, 1985; Lindsey, 1995; Loewenthal, 2001; Rose and
Sullivan, 1993; Sarle, 1995). Here we shall distinguish between just 3 scales of mea-
surement, continuous, ordered categorical and unordered categorical. Distinguishing
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Figure 1.1 The relationship the attribute, the data and the analysis

between these 3 allows a wide range of statistical analyses to be applied and many
of the important concepts related to modeling to be dealt with, particularly within
the generalized linear modeling group of techniques. It is worth noting that assign-
ing variables to particular scales of measurement is not always obvious as some data
may be legitimately classified in a variety of ways depending on the properties of the
attribute, the coding scheme used to represent this attribute, the number of observa-
tions recorded, the specific research questions being asked and the way the variable
interacts with other variables in the model. The classification of data into different
scales of measurement is not, therefore, an exact science. We will, however, concen-
trate on practical considerations by showing how variables may be profitably classified
for analytical purposes.

The identification of the level of measurement used to represent a variable is
important as it is this that dictates which mathematical operations can be applied
to the data and ultimately the statistical analysis techniques that can be used. This
is particularly important when applying generalized linear models (the subject of
Chapters 2 to 5) as it is the level of measurement which identifies the analysis technique
that can be applied.

1.1 Continuous Data

1.1.1 The underlying distribution

A data point (a single observation) on a continuous scale can, in theory at least, assume
any value between the highest and lowest points. The only restriction on the number of
values possible, is the accuracy of the measuring instrument. For example, the weight
of a person can be measured fairly crudely in pounds using a set of bathroom scales, or
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measured much more accurately in grams using a professional set of medical scales.
A person can, within certain limits at least, be any weight.

When describing continuous data, it is useful to distinguish 2 categories, interval
and ratio, as this distinction is often made in the literature. However, for analytical
purposes, the distinction between the 2 is not usually important as few statistics are
applicable to only one of these scales.

Ratio scale: A ratio scale is characterized by a common and constant unit of mea-
surement which assigns a number to all objects in the set and has a true zero point
as its origin. On such a scale, the ratio of any 2 points is independent of the unit of
measurement. Weight is an obvious example of a variable recorded on a ratio scale
as it has a true zero (no weight) and the ratio of any 2 weights is independent of
the unit of measurement. For example, if the weights of 2 different objects are deter-
mined in pounds and also in grams, we will find that the ratio of the 2 weights in
pounds is identical to the ratio of the 2 weights in grams. That is, an object which is
twice as heavy when measured in pounds will also be twice as heavy when measured
in grams.

Interval scale: An interval scale is also characterized by a common and constant
unit of measurement, but does not have a true zero point. For these data, differences
are meaningful, but one cannot talk about absolute values. An obvious example of
an interval scale is temperature when it is measured in Centigrade or Fahrenheit. It
can be argued that a 1 degree increase in temperature from 1 to 2 degrees Centigrade
is related to a 1 degree increase in temperature from 10 to 11 degrees Centigrade.
The interval of the degree means something. Ratios are not meaningful, however, as
20 degrees Centigrade is not twice as hot as 10 degrees Centigrade, nor is 1 degree
Centigrade infinitely hotter than 0 degrees Centigrade (the same argument applies to
temperatures measured in degrees Fahrenheit1).

1.1.2 Recording the data

Some examples of continuous data are relatively simple to record as the information
has a direct numerical representation. For example, variables recorded on continuous
scales (interval and ratio) can be seen in Table 1.1 which shows average temperature
differences measured in degrees Centigrade between the inside and outside of a house
(interval data) and average daily gas consumption (ratio data) for 15 houses in Milton
Keynes, a town in the United Kingdom.

In certain circumstances, data may also be considered to be continuous even when it
is recorded using discrete categories. As a rough rule of thumb, if the data come from
an underlying continuous distribution, with a relatively large number of categories
and with intervals between successive ratings being at least approximately similar
(see Sarle, 1995), the recorded data may be considered to be continuous, at least for

1Temperature measured on the Kelvin scale may, however, be considered to be ratio data as the Kelvin
scale has a true zero.
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Table 1.1 Examples of interval and ratio scales

Temperature Daily gas Temperature Daily gas
difference consumption difference consumption
(deg C) (kWh) (deg C) (kWh)

10.3 69.81 15.2 81.29
11.4 82.75 15.3 99.20
11.5 81.75 15.6 86.35
12.5 80.38 16.4 110.23
13.1 85.89 16.5 106.55
13.4 75.32 17.0 85.50
13.6 69.81 17.2 90.02
15.0 78.54

Source: The Open University (1984) MDST242. Statistics in Society, Unit A5:
Review.
Second Edition, Milton Keynes: The Open University, Figure 2.13.
Reported in Hand et al., 1994.

some statistical purposes. For example, Mitchell, 1983, used a number of categories to
record information about income. These data, shown in Table 1.2, might be profitably
regarded as continuous, as there are a relatively large number of categories (12) and
household income can be regarded as having an underlying continuous distribution.
Although the equal-distance codes used here may be considered as continuous, the
recorded data could be made to more accurately represent the underlying variable
by using codes that represent the mid-points of each category (for example, rather
than coding the category $10,000 – $14,999 as 4, it could be coded as $12,500 which
represents the category midpoint) rather than utilizing an arbitrary number series that
clearly fails to recognize the different sizes of each category. Mid-category coding is
fairly straightforward but a decision has to be made about the mid-category coding
for the final category ‘$100,000 and over’, as this has no upper-limit (in this case we
have decided to use a similar range as was used for the the previous category, a range
of $25,000).

Although it is important for a continuous variable that has been categorized to have
a relatively large numbers of categories, there are instances where one might wish to
regard data as continuous even when relatively few categories have been recorded. For
example, in the case of factor analysis, it is common to regard likert-type scales as
continuous data (see Hutcheson and Sofroniou, 1999: 222) even though these might
only be constructed from 5 categories.

It is important to note that there are no definite rules about when data collected
on continuous variables should be considered as continuous and when they should be
considered as categorical. The decision is dependent upon the type of data collected,
the underlying distribution, the number of categories, the research questions posed
and the analyses one proposes to perform.



Continuous Data 5

Table 1.2 An example of categorized continuous data

What is your total household income in 19
from all sources before tax?

Earnings Equal-distance Mid-category
code code

less than $5,000 � 1 � 2,500

$5,000–$7,499 � 2 � 6,250

$7,500–$9,999 � 3 � 8,750

$10,000–$14,999 � 4 � 12,500

$15,000–$19,999 � 5 � 17,500

$20,000–$24,999 � 6 � 22,500

$25,000–$29,999 � 7 � 27,500

$30,000–$39,999 � 8 � 35,000

$40,000–$49,999 � 9 � 45,000

$50,000–$74,999 � 10 � 62,500

$75,000–$99,999 � 11 � 87,500

$100,000 and over � 12 � 112,500

Source: Mitchell, A. (1983) The Nine American Lifestyles: Who We Are and Where We’re Going.

Macmillan. Reported in Bearden et al., 1993.

1.1.3 Applying mathematical operations

Interval and ratio data allow different mathematical operations to be applied to the
measurements. These data types will therefore be described separately.

Ratio data: The numbers associated with a ratio scale are ‘true’ numbers and can
be ordered, added, subtracted, divided and multiplied. For example, 10 multiplied
by 5 equals 50 (a calculation on the data) and this also applies to the variable as
10 grams (weight being measured on a ratio scale) multiplied by 5 equals 50 grams.
The mathematical operations that can be applied to ratio data are shown below:

• 10 grams > 5 grams �
• 10 grams < 15 grams �
• 10 grams + 5 grams = 15 grams �
• 10 grams − 5 grams = 5 grams �
• 10 grams × 5 = 50 grams �
• 10 grams ÷ 5 = 2 grams �
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Interval data: As there is no true zero with an interval scale, one cannot use mul-
tiplication or division. Although numerically, 3 multiplied by 4 equals 12, this does
not hold true for the variable as 3 degrees Centigrade multiplied by 4 does not equal
12 degrees Centigrade. The mathematical operations that are not allowed on interval
data are shown below:

• 10 degrees C × 5 �= 50 degrees C

• 10 degrees C ÷ 5 �= 2 degrees C

Interval data does allow a number of other mathematical operations to be applied
including addition and subtraction and operations involving order. Numerically, 10
plus 5 equals 15; and this is also the case for the variable, as 10 degrees Centigrade
plus 5 degrees Centigrade does equal 15 degrees Centigrade. Similarly, 20 degrees
Centigrade minus 28 degrees Centigrade equals −8 degrees Centigrade. The mathe-
matical operations allowed on interval data are shown below:

• 10 degrees C > 5 degrees C �
• 10 degrees C < 15 degrees C �
• 10 degrees C + 5 degrees C = 15 degrees C �
• 10 degrees C −5 degrees C = 5 degrees C �

For the purposes of analysis (at least for those techniques presented in this book),
interval and ratio data are considered equivalent as the same analytical techniques
may be applied to both. Continuous data may be described using mean values and
standard deviations, which require items in the set of data to be added (descriptions
of central tendency and spread for continuous data can be found in basic statistical
and methodology books). The level at which the data are recorded determines the
analytical techniques that may be applied. In the case of continuous data we are able
to use techniques that make use of addition and subtraction (as well as greater-than
and less-than and frequency counts) and one may therefore apply OLS regression (see
Chapter 2) to model such data.

1.2 Ordered Categorical Data

Although variables which have a clearly defined underlying ordered categorical dis-
tribution are quite rare, measurements are frequently gathered and coded in a way
that results in ordered data. Ordered categorical data constitutes a large percentage of
that used in the management field, making its coding and manipulation of particular
interest.

1.2.1 The underlying distribution

Ordered categorical data is composed of a number of distinct categories which have
an order. For example, a person’s highest academic qualification may be a school
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Table 1.3 Ordered categorical coding of army rank: example I

Army rank Code

Private 1
Corporal 2
Sergeant 3
Sergeant-Major 4

. . .

Brigadier 35
. . .

Commander-in-Chief 54

certificate, a diploma from a college, or a postgraduate degree obtained through pro-
longed study at a university. These qualifications represent distinct categories in that
a person’s highest academic achievement will be one or other of the categories, there
are no in-between values. The categories also have an order, in that a school certifi-
cate is generally considered to be less advanced than a diploma and a diploma less
advanced than a postgraduate degree. Other examples of ordered categorical data are
seniority at work (junior manager, section head, director), judo gradings (yellow, blue
and black belts) and poker hands (pairs, triples, full houses, etc.) with perhaps the
classic example being found in the armed forces or police service where seniority is
explicitly designated by ranks.

1.2.2 Recording the data

Ordered categorical data can be recorded from variables having underlying ordered
or continuous distributions. We will deal with both types here, but will first look
at ordered categorical data which is obtained from a variable having an underlying
ordered categorical distribution.

From an ordered categorical distribution: The example we will use here is the
classic example of army rank designated by an ordered categorical scale that runs
from low to high seniority.2 Table 1.3 depicts one of many possible coding schemes
that can be used to code army rank. The numbers chosen to represent seniority (the
code) merely identify relative seniority. For example, a Private is less senior than a
Corporal, who is less senior than a Sergeant, who is less senior than a Brigadier. The
codes themselves do not indicate the actual degree of seniority, they merely iden-
tify the position of each rank in the ordered categories. This can be demonstrated by
taking the example of a Private and a Corporal. Even though a Private is recorded
as 1 and a Corporal as 2, a Corporal does not necessarily have twice the level of
seniority. It should also be noted that increments between items in the list may be
non-standard. For example, the change in seniority between a Private (coded 1) and
a Corporal (coded 2) might be quite minor, whereas the change in seniority between

2The order of seniority shown in this table is not necessarily accurate, it is provided merely for illustration.
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a General (coded 53) and the Commander-in-Chief (coded 54) may be far more sub-
stantial, even though both pairs are coded using adjacent numbers. Table 1.4 depicts
an alternative coding scheme for army rank that uses different codes and orders the
ranks in a reverse order to that used in Table 1.3. This is, however, also a valid coding
scheme as the categories are all explicitly identified and the order in the data has been
maintained.

Table 1.4 Ordered categorical coding of army rank: example II

Army rank Code

Private 187
Corporal 106
Sergeant 104
Sergeant-Major 98

. . .

Brigadier 40
. . .

Commander-in-Chief 2

Tables 1.3 and 1.4 show army rank coded as ordered data. However, once the
coding of the data ceases to represent the order in the variable, the data ceases to be
ordered. Table 1.5 gives an example of an ordered variable coded as unordered data.
In this example, even though the variable is ordered, the data are unordered which
restricts the type of analysis one can use.

Table 1.5 Unordered categorical coding of army rank

Army rank Code

Private 1
Corporal 16
Sergeant 9
Sergeant-Major 98

. . .

Brigadier 10
. . .

Commander-in-Chief 2

From a continuous distribution: A large percentage of the ordered categorical data
one encounters will be from variables which have an underlying continuous distribu-
tion (see Section 1.1) but have been coded, for what ever reason, as ordered categorical.
For example, Table 1.6 shows two variables that have underlying continuous distribu-
tions, but are recorded as ordered categorical. A person’s mental status may be thought
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Table 1.6 Continuous variables coded as ordered categories

Socio-economic status of parents

1 2 3 4 5 6

Well 64 57 57 72 36 21
Mental Mild symptoms 94 94 105 141 97 71
status Moderate symptoms 58 54 65 77 54 54

Impaired functioning 46 40 60 94 78 71

Source: Agresti, A. (1989), ‘Tutorial on modelling ordinal categorical response data’.
Psychological Bulletin, 105: 290–301.

of as having an underlying continuous distribution as someone could be anywhere on a
scale from “Well” through to “Impaired functioning”; there are potentially an infinite
number of degrees of mental impairment between these extremes. Here the data are
recorded using a 4 point ordered scale devised more for descriptive convenience than
as an attempt to record the underlying distribution as accurately as possible. Simi-
larly, socio-economic status may be thought of as having an underlying continuous
distribution, but the data are recorded using 6 discrete ordered categories (1, 2, 3,
4, 5, 6). For both of these variables, there is also no direct correspondence between
the codes used and what is being measured – the codes themselves merely designate
ordered categories. It is also the case that the differences between categories may not
be standard (i.e. the difference in socio-economic status between categories 1 and 2
might bear little relation to the difference in socio-economic status between categories
4 and 5).

Using a different scale for recording data to that which is, at least theoretically
possible for the variable, is not necessarily a mistake or even undesirable – it might
be that an ordered scale is the best that we can hope to obtain. For example, it might
be that mental impairment is best measured on the basis of clinical judgments that
are given using quite broad definitions. This simple ordered categorical scale might in
fact provide the best scale of mental impairment.

Another common example of the use of ordered categories to represent contin-
uous variables is in the measurement of attitudes, thoughts, beliefs and stereotypes,
which are essentially unobservable. Attitudes and opinions are commonly assessed
in management research using 5–7 point ordered scales (see, for example, Childers
et al., 1985; Chonko et al., 1986; Ford et al., 1975). For demonstration purposes we
will take the concept of beauty which can be thought of as a continuous variable that
varies between 2 extremes (very beautiful to not at all beautiful). Although the vari-
able “beauty” can be considered as having an underlying continuous distribution, the
recorded data is likely to consist of ordered responses that distinguish between a few
broad categories defined by the language we use (e.g. “beautiful”, “very beautiful”,
“ugly”). Such data can be obtained by using a question such as that shown in Table
1.7 which uses “beautiful” and “ugly” as extremes of the same underlying attribute.

The use of the coding scheme in Table 1.7 has converted what can be considered a
continuous variable into ordered categorical data. This has lost some of the information
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Table 1.7 A continuous variable coded as ordered categorical data

How beautiful do you think the car in the picture is?

Response Code

Very beautiful � 1

Beautiful � 2

Plain � 3

Ugly � 4

Very ugly � 5

potentially available, as only 5 degrees of beauty are now indicated. Whilst it might be
possible to achieve a finer discrimination of beauty by using more points on the scale,
it is debatable whether people can indicate the degree to which something is beautiful
to this accuracy. This 5-point scale may in fact represent the best data that can be
realistically collected. Other studies that have used similar rating scales are Ohanion,
1990 and Zaichowsky, 1985, who attempted to measure the attractiveness and appeal
of different products, and Leavitt, 1970 and Wells et al., 1971, who investigated
emotional reactions to advertising stimuli.

Ordered categories are also commonly used to code sensitive data that could be
collected as continuous, but to do so would likely lead to unacceptable amounts of
missing data. For example, a direct question about age runs the risk of alienating
respondents. A question such as

How old are you? years months

may elicit continuous data, but is also likely to lead to a number of missing responses.
Typically, for such information, a response frame is used that makes the question less
intrusive and easier to answer. For example, Mitchell, 1983 (as reported in Bearden
et al., 1993) used a response frame to ask about age.

Table 1.8 Representing age using ordered categories

What is your current age? (Please check one box)

Age Code Age Code

18–24 � 1 45–54 � 5

25–29 � 2 55–64 � 6

30–34 � 3 65 and over � 7

35–44 � 4

Source: Mitchell, A. (1983) The Nine American Lifestyles: Who We Are and Where
We’re Going. Macmillan. Reported in Bearden et al., 1993.
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The codes used to designate the categories in Table 1.8 (codes 1–7) are not related
to the actual value of the variable and the category intervals are not standard (e.g. code
1 spans 7 years, code 2 spans 5 years, code 5 spans 10 years, and the span of code 7
is not defined). In this case, these data should be considered as ordered categorical.

Mistaking unordered categorical data for ordered: A fairly common mistake
when attempting to obtain ordered categorical data is to include a ‘don’t know’
response as part of the scale which can render a potentially ordered set of data
unordered. Table 1.9 shows an example where an attempt is made to record ordered
categorical data, but due to the inclusion of a ‘don’t know’ category, the data recorded
is unordered.

The use of the ‘don’t know’ category in the middle (coded as 3) is intended to
represent people who neither agree nor disagree with the statement. However, the
‘don’t know’ response may be used by people who do not know if the company has
an alcohol policy. The scale is not, therefore, an ordered categorical one and it would
be incorrect to analyze these data using this assumption. The analyst must either treat
them as unordered data (using categories 1, 2, 3, 4, 5), or as ordered data once the
middle category has been removed (using categories 1, 2, 4, 5). Neither option is
particularly attractive as the use of unordered analyses will result in the loss of some
information and the use of ordered analyses on a restricted data set may discount an
important section of the population and also polarizes the responses.

Table 1.9 Mis-coding an ordered categorical variable

The company policy on alcohol use at work
should be made more stringent

Strongly agree � 1

Agree � 2

Don’t Know � 3

Disagree � 4

Strongly disagree � 5

1.2.3 Applying mathematical operations

The following discussion of the permissible mathematical operations that can be
conducted on ordered data will be illustrated using the example data from Table 1.10.
These data represent the highest academic award achieved (taken from the English
education system) and should be regarded as ordered categories with higher codes
representing higher academic achievement.

For these data, information about position is meaningful which allows statistics
that preserve the greater-than and less-than relationships to be used. For example, in
addition to knowing that the highest attainment of 12 people is a degree (code 4), we
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Table 1.10 Highest educational attainment

Qualification Code Frequency

No qualifications 1 14
O level 2 52
A level 3 28
Degree 4 12
Masters 5 5
Doctorate 6 9

also know that these people have a higher qualification than those who have a code of
3 or below. We know that the highest attainment of 28 people is A level and also that
these people have a lower qualification than those who obtained a code of 4 or more.
With regards to order, the codes used accurately represent academic achievement.
For example, numerically, 2 is greater than 1, and this also holds for educational
achievement, as an O level is a higher achievement than no qualifications. Similarly,
4 is less than 5 numerically and this also holds for educational achievement as a degree
is a lower achievement than a Masters. These relationships are shown clearly below:

• 2 (O level) > 1 (no qualifications) �
• 4 (degree) < 5 (masters) �

Mathematical procedures that add, subtract or multiply numbers assigned to the
data are, however, not admissible (i.e., any mathematical operation which assumes
that actual values are meaningful). Numerically, 2 plus 1 equals 3, but this does not
apply to achievement, as an O level plus no qualification does not equal an A level.
Similarly, although 2 multiplied by 3 equals 6, this does not hold for achievement as
an O level multiplied by 3 does not equal a doctorate (coded 6). These relationships
are shown clearly below:

• 2 (O level) + 1 (no qualifications) �= 3 (A level)

• 4 (degree) − 3 (A level) �= 1 (no qualifications)

• 2 (O level) × 3 �= 6 (doctorate)

• 6 (doctorate) ÷ 3 �= 2 (O level)

Ordered categorical data may be described using median values and measures of
the range (descriptions of central tendency and spread for ordered data can be found
in basic statistical and methodology books), statistics that make use of the greater-
than and less-than operations. We are not allowed to apply the operations of addition
or subtraction to these data, which means that we are unable to describe ordered
data using measures of mean and standard deviation, or model ordered data using
OLS regression. For these data we need to select a technique that does not violate
the measurement scale and uses the greater-than and less-than operations rather than
addition and subtraction. One method we may use is the proportional odds model and
this is covered in detail in Chapter 4.
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1.3 Unordered Categorical Data

1.3.1 The underlying distribution

Unordered categorical data consist of a number of separate categories that do not have
any inherent order. For example, gender is recorded using unordered categories as a
person may be, generally speaking, either male or female. Any person must fall into
one or other of the categories, there are no in-between values. Unordered categorical
data consisting of 2 categories are commonly referred to as dichotomous. Other exam-
ples of dichotomous unordered categorical data are success–failure, died–survived,
employed–unemployed, yes–no and two-group experimental units (e.g. group A −
group B). Unordered categorical data may also have more than 2 categories, as with
blood group (A, B, O-negative, etc.), make of car (Ford, Nissan, BMW), residential
status (owner-occupier, privately rented, council-rented), experimental group (group
A, group B, group C, etc.), religious belief (Sikh, Christian, Muslim) and individual
subjects that take part in a study (subject01, subject02, subject03, etc.). These data are
commonly referred to as polytomous.

1.3.2 Recording the data

Unordered categorical data can be simply recorded using the category labels. For
example,entering thedataasmale–female, succeed–fail, yes–no, etc.Unorderedcate-
gorical variables may also be represented using numbers, which can cause some con-
fusion.Forexample,Table1.11showshowapolytomousunorderedcategoricalvariable
indicating make of car may be represented numerically using the numbers 1 to 6.3

Table 1.11 Unordered categorical data: coding example I

Which make of car is your
main family transport? Code

Ford � 1

Nissan � 2

BMW � 3

Jaguar � 4

Alfa Romeo � 5

Ferrari � 6

The categories used to indicate the make of car that provides the main family
transport in Table 1.11 are separate and the codes have no inherent order (the numbers
themselves are essentially arbitrary). So long as each category is represented by a
unique identifier, any numbers may be used to represent the cars. For example, the
coding scheme used in Table 1.12 is just as valid, even though it is unusual.

3Representing such variables as numbers is very common and may actually be required by the statistical
analysis package.
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Table 1.12 Unordered categorical data: coding example II

Which make of car is your
main family transport? Code

Ferrari � −1

Ford � 0

Alfa Romeo � 36

Nissan � 4.2

Jaguar � −298

BMW � 0.04

It should be noted that there are many examples where it is usual for an unordered
categorical variable to be coded using a numeric system. The identification of individ-
ual subjects or cases in a related-groups design is often achieved through numerical
identification (for example, 300 subjects can be identified using the codes 1 to 300).
Although such a coding scheme is numeric, the actual variable is not. The numbers
merely identify different subjects; there is no inherent order to the data. If mistakes are
not to be made, it is important that the type of data is identified and taken into account
during analysis (that is, we do not apply operations meant for numerical variables on
codes used to identify categorical variables).

1.3.3 Applying mathematical operations

Table 1.13 shows the number of cars sold in a year by a particular company. Six
different models of car are included in the data along with a simple numeric code
indicating the make of car and a measure of frequency.

Table 1.13 Number of cars sold in a year

Make of Car Code Number sold

Ford 1 46
BMW 2 21
Jaguar 3 32
Nissan 4 54
Ferrari 5 12
Alfa Romeo 6 19

If we had used a numeric code to identify the make of car (as is required by some
statistical packages), we need to be careful when interpreting any statistics based on
this code. Although numerically, 1 is less than 4, and 1 plus 2 does equal 3, such
mathematical operations cannot be applied to the codes used to represent the make
of car. It is clear that when dealing with the make of car, 1 (a Ford) is not less than
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4 (a Nissan) and 1 (a Ford) plus 2 (a BMW) does not equal 3 (a Jaguar). There is no
direct correspondence between the make of car and the coding scheme. As the numeric
codes used to represent the make of car are more or less arbitrary, mathematical oper-
ations that require an ordered or a measured scale cannot be computed. For example,
greater-than and less-than relationships do not hold, nor does addition, subtraction,
multiplication and division. These are clearly shown below.

• Ford (1) ≮ Nissan (4)

• Alfa Romeo (6) ≯ Jaguar (3)

• Ford (1) + BMW (2) �= Jaguar (3)

• Ferrari (5) − Jaguar (3) �= BMW (2)

• BMW (2) × 3 �= Alfa Romeo (6)

• Alfa Romeo (6) ÷ 2 �= Jaguar (3)

Unordered categorical data may be described using frequency counts (the most
frequent category, the mode) but not measures that require the use of the greater-than
or less-than relationships, or addition and subtraction. For the analysis of unordered
categorical data a technique needs to be used that does not violate the measurement
scale. One method we may use is the multi-nomial logistic regression model or, for
binary categories, a logistic regression. These techniques are covered in detail in
Chapters 3 and 5).

1.4 Conclusion

This chapter was designed to show that the way data are coded is important. In par-
ticular, it is crucial for an analyst to realize the relationship between the attribute
and the measurements themselves. The level of measurement of data is particularly
important as it is this that dictates which statistical analysis techniques may be used.
In this book, the analysis of continuous data is dealt with through the use of ordinary
least squares regression, ordered categorical data through the proportional odds model
and unordered categorical data through the multi-nomial logistic regression model. In
order to apply these techniques appropriately and fully appreciate their advantages and
limitations, students must be familiar with the measurement scales of the variables
that they are modeling. Indeed, measurement theory is crucial to the whole endeavour
of data analysis and its importance has been summed up by Sarle, in the final section
of his paper:

Measurement theory encourages people to think about the meaning of
their data. It encourages critical assessment of the assumptions behind
the analysis. It encourages responsible real-world data analysis.

Sarle, 1995





CHAPTER 2

Modeling Continuous Data

This chapter introduces the ordinary least-squares regression model which can be
used to model continuous variables. We cover the theory behind the technique, the
interpretation of the parameters and confidence intervals and also the computation and
interpretation of the model-fit statistics. We also show how categorical variables can
be included and how the technique can be applied to the analysis of simple experi-
mental data.

OLS regression is a particularly important technique not only because it provides
a method of modeling continuous data, but also as it is central to understanding the
wider application of the generalized linear model to other types of data. The techniques
described in this chapter mostly apply to the other regression techniques covered in
this book (logistic regression, proportional odds and multi-nomial logistic regression
models) and forms the basis of the explanations given for all these techniques.

2.1 The Generalized Linear Model

This chapter introduces generalized linear models (GLMs) and shows how they can
be used to model continuous, ordered and unordered data (the three basic scales of
data described in Chapter 1). The object is to provide a coherent introduction to data
modeling rather than provide a comprehensive coverage of all techniques under the
GLM umbrella. GLMs enable descriptive and predictive models to be built that are
sufficiently general to be applicable to much social science data. They can be used
to model data collected from survey and experimental studies and can replace many
of the more traditional hypothesis tests that are still in common use. Of particular
importance is the unified theoretical framework that the method offers, as this enables
certain “economies of scale” to be realized that allow a whole range of data to be
analyzed using similar techniques.

The use of the techniques will be described using a modeling procedure whereby
a particular variable can be modeled (or predicted) using information about other
variables. For example,

Variable Y may be predicted by Variable X1 and Variable X2.
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Variable Y (the variable that is being modeled – the response variable) could be wage,
educational attainment, test score, share price, a binary category indicating success and
failure, university chosen or religious affiliation. Variables X1 and X2 (the variables
used to predict Y – the explanatory variables) could be age, average school grade,
gender, nationality, race, attractiveness, weight, attitude to innovation or treatment
group. In short, variables Y , X1 and X2 can be recorded on any of the scales described
in Chapter 1. Using the concrete example of a particular company’s share price, the
relationship above can be written as:

Share Price may be predicted by output and market confidence.

From the relationship above one can deduce that share price may be determined by
the company’s output and the confidence shown in the market the company operates
in. This is not likely to be a perfect relationship as a number of other variables not
represented in the model will also influence share price (such as government policy
and exchange rates). In general, for the model above, high output and high market
confidence is likely to be associated with a relatively high share price (although this
might not always be the case). The model can be said to consist of 3 components, the
response variable, Y , the explanatory variables, X1 and X2 and a function that links
the 2. These 3 components form the basis of the Generalized Linear Model where they
are commonly referred to as the random component, the systematic component and
the link function.

• The random component:

the probability distribution assumed to underlie the response variable.

• The systematic component:

the fixed structure of the explanatory variables, usually characterized by a linear
function (α + β1x1 + β2x2 + β3x3 + ... + βkxk).

• The link function:

the function that maps the systematic component onto the random component.
This function can be one of identity for normally distributed random com-
ponents, or one of a number of non-linear links when the random component
is not normally distributed.

The GLM can be summarized as:

Random
component

�Link

Function

Systematic
component

with a concrete example being:

Share price �Link

Function

Output
and

Market confidence
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The probability distribution assumed to underlie the random component is a func-
tion of the data. For example, when the response variable is continuous, a normal
distribution may be used, whereas a binomial distribution may be used when the
response variable is dichotomous. The link function is also dependent on the scale
in which the response variable is recorded. For example, for a normally-distributed
response variable, the relationship between the random and systematic components
is one of identity (=), where the random component actually equals the systematic
component. For a binomially distributed response variable, the relationship between
the random and systematic components is the log odds, or logit.

This chapter introduces the generalized linear models using ordinary least-squares
regression, a technique that can be used to model a continuous response variable.
In later chapters this technique is generalized to the prediction of binary and multi-
category ordered and unordered response variables. The introduction to GLMs pro-
vided here has been very concise and only provided a basic description of the theory
behind the technique. There are, however, a number of books and articles that deal with
this topic in some depth, and interested readers are advised to consult one or more of
these references (for example, Agresti, 1996; Collett, 2003; Dobson, 2002; Draper and
Smith, 1998; Fahrmeir and Tutz, 2001; Gill, 2001; Hoffmann, 2004; Hutcheson and
Sofroniou, 1999; Lindsey, 1995, 1997; McCullagh and Nelder, 1989; McCulloch
and Searle, 2001; Nelder and Wedderburn, 1972).

2.2 The Ordinary Least-Squares Model

A continuous response variable can be modeled using ordinary least-squares regression
(OLS regression), one of the GLM modeling techniques. We will describe the theory
and application of the technique in relation to a simple data set and build from a simple
to a multi-variable model that includes categorical explanatory variables. The data that
are to be used here to illustrate the technique are from Koteswara, 1970 (reported in
Hand et al., 1994) who presents data collected over 30 4-week periods from March 18th
1951 to July 11th 1953.1 The data show ice cream consumption (pints per capita), the
price of ice cream (in dollars per pint), the weekly family income (in dollars) and the
mean outdoor temperature (in degrees Fahrenheit). These data are shown in Table 2.1.

2.2.1 Simple OLS regression

Simple OLS regression refers to the case where there is a continuous response variable
and a single explanatory variable. For example, ice cream consumption (measured
on a continuous scale) may be predicted, at least to some extent, by mean outdoor
temperature. As the response variable is continuous, an identity link (=) is used to
link the random and systematic components of the model. At a very basic level, the
relationship between the two variables can be represented as:

Ice cream consumption may be predicted by outdoor temperature

1These data are used as they are easy to understand and provide a good basis for demonstration.
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Table 2.1 Data: ice cream consumption

Ice cream Price Family Temperature
consumption income

.386 .270 78 41

.374 .282 79 56

.393 .277 81 63

.425 .280 80 68

.406 .272 76 69

.344 .262 78 65

.327 .275 82 61

.288 .267 79 47

.269 .265 76 32

.256 .277 79 24

.286 .282 82 28

.298 .270 85 26

.329 .272 86 32

.318 .287 83 40

.381 .277 84 55

.381 .287 82 63

.470 .280 80 72

.443 .277 78 72

.386 .277 84 67

.342 .277 86 60

.319 .292 85 44

.307 .287 87 40

.284 .277 94 32

.326 .285 92 27

.309 .282 95 28

.359 .265 96 33

.376 .265 94 41

.416 .265 96 52

.437 .268 91 64

.548 .260 90 71

Source: Koteswara, 1970.

This is a very simplified view of ice cream consumption and merely states that
consumption may be affected by outdoor temperature. There are clearly many more
variables that are likely to play a role in the amount of ice cream sold, but these
are not included in this example. The non-represented information could have been
included in the model as an error term, but for simplicity, this term has not been made
explicit.2 Generally, one would expect ice cream consumption to increase as outdoor
temperature increases and this is precisely what we observe in the scatterplot of the

2In any case, the regression model does not explicitly include the amount of error in the regression
equation. This information is provided in the model-fit statistics.
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2 variables shown in Figure 2.1. Furthermore, it would appear that the relationship
between the 2 variables can be approximated by a straight line.
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Figure 2.1 A scatterplot showing the relationship between ice cream consumption
and outdoor temperature and the associated OLS regression model

The equation of a straight line is “Y = α +βx”, which represents the relationship
between the 2 variables in the current example. The straight-line regression model of
consumption is therefore:

consumption = α + β temperature (2.1)

Computing and interpreting model parameters: The relationship between the
response variable (consumption) and the explanatory variable (temperature) may be
represented by a straight line and can therefore be given in the form “Y = α + βx”.
This linear model is derived using an algorithm that minimizes the sum of the squares
of the distances from each data point to the line (hence it is known as the least-
squares technique) producing a line of best-fit (the straight line drawn on the graph in
Figure 2.1). Readily available statistical software can compute the model parameters
for the model “consumption = α + β temperature” and these are shown in Table 2.2.
From the estimates provided in this table, one can obtain the intercept (α) and the
regression coefficient for temperature (β) to get the equation of the line of best-fit,
which is

consumption = 0.207 + (0.003 ∗ temperature). (2.2)
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Table 2.2 Regression parameters

Estimate Standard error

(Intercept) 0.207 0.0247
Temperature 0.003 0.0005

Model: consumption = α + β temperature

The estimate for the variable “temperature” indicates that for each unit increase
in temperature, per capita consumption of ice cream is expected to increase by 0.003
pints. This increase in ice cream consumption is the average increase one would
expect.3

It is useful to also determine the limits within which one might expect consumption
to change given a unit increase in temperature (i.e., how accurate the β parameter is).
TheselimitsareknownasconfidenceintervalsandmaybecalculatedusingEquation2.3.

Large sample 95% confidence interval for β = β̂ ± 1.96(s.e. β̂) (2.3)

where β̂ indicates that β is estimated from the data.

For the model above,

Large sample 95% confidence interval for β = 0.003 ± (1.96 × 0.0005)

= 0.002, 0.004

In 95% of cases, the expected increase in per capita consumption of ice cream for
each degree rise in temperature is between 0.002 and 0.004 pints per capita. In other
words, for a unit increase in temperature (a one degree rise) in 95% of cases one
would expect consumption to increase by at least 0.002 pints per capita but not more
than 0.004 pints per capita. As both of these confidence intervals predict an increase
in the consumption of ice cream, we can conclude that at the 95% 2-tailed level of
significance, “temperature” does have a significant affect on the response variable (this
is confirmed in the next section when the model-fit statistics are discussed).

Predicting the response variable: From the model provided above in Equation 2.2,
it is a simple matter to obtain predictions for the response variable at any given value
of temperature (provided that it is within the range of observations recorded during
the study). For example, when the temperature is 50 degrees Fahrenheit, ice cream
consumption is predicted to be

consumption = 0.207 + (0.003 ∗ 50)

= 0.357

3The estimate for the intercept is not all that informative in this case as it just indicates the consumption
when the temperature is zero (as we do not know if a linear model holds for temperatures this low),
interpreting this value is often futile.
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which can be confirmed by looking at the graph of the regression model in Figure 2.1.
It is an easy matter to compute these predictions using software. Table 2.3 shows pre-
dicted probabilities of ice cream consumption for a number of different temperatures
computed using the R statistical package. From the predicted values in the table, it is
easy to see that the predicted consumption increases with temperature.

Table 2.3 Predictions of consumption

Temperature Predicted consumption

41 0.334
56 0.381
63 0.403
68 0.418
69 0.421
65 0.409
61 0.396
47 0.353
32 0.306
24 0.281
28 0.294

Model: consumption = 0.207 + (0.003 * temperature)

Goodness-of-fit statistics: In addition to the model parameters and confidence inter-
vals, it is useful to have an indication of how well the model fits the data. For this
we need to compute some model-fit statistics. How well the model fits the data can
be determined by comparing the observed scores (the data) with those predicted from
the model. The difference between these 2 values (the deviation or residual, as they
are sometimes called) provides an indication of how well the model predicts each data
point. Adding up the deviances for all the data points after they have been squared
(in order to remove any negative values) provides a measure of how much the data
deviates from the model overall. The sum of all the squared residuals is known as
the residual sum of squares (RSS) and essentially provides a measure of model-fit.
A poorly fitting model will deviate markedly from the data and will consequently have
a relatively large RSS, whereas a good-fitting model will not deviate markedly from
the data and will consequently have a relatively small RSS (a perfectly fitting model
will have an RSS equal to zero, as there will be no deviation). The RSS statistic there-
fore provides a measure of model-fit and can be used to determine the significance
of individual and groups of parameters for a regression model. This statistic is also
known as the deviance and is discussed in depth by Agresti, 1996 (pages 96–7).

A “model” computed for a single continuous response variable, Y, has the form
“Y = α”, where α is equal to the mean value (if the only information you have about
a continuous variable is the variable itself, the best prediction you can make about
its value is the mean value). The residuals for such a model are simply the difference
between each data point and the mean of the distribution (the predicted value from the
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model, designated as x̄). The deviance in the model can be computed by adding up all
of the squared residuals for each data point as defined in Equation 2.4 and illustrated
for the variable consumption in Figure 2.2.

deviance = (x1 − x̄)2 + (x2 − x̄)2 + .... + (xk − x̄)2 (2.4)
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Figure 2.2 Residuals for the model “consumption = α”

Table 2.4 shows the residuals and squared residuals for each consumption data
point. These residuals have been calculated by simply subtracting the mean value of
consumption (0.3594) from each of the observed values (xi − x̄). Adding up all of the
squared residuals provides the deviance for the model “consumption = α”, which is
calculated as 0.1255.

The deviance can also be derived for models that include one or more explanatory
variables. Figure 2.3 gives a visual representation of how the residuals are calculated
for the simple regression model “consumption = α + β temperature”. The residuals
are calculated as the distances from each data point to the regression line (rather than
to the average value) and these are clearly shown in the diagram. For a comprehen-
sive illustration of modeling relationships and determining residual scores for simple
regression models, see Miles and Shevlin (2001). Table 2.5 shows the residuals and
squared residuals for each consumption data point.4 Adding up all of the squared
residuals provides the deviance for the model “consumption = α + β temperature”,
which is calculated as 0.0500.

The deviance is an important statistic as it enables the contribution made by an
explanatory variable to the prediction of a response variable to be determined. If by
adding a variable to the model, the deviance is greatly reduced, the added variable can

4These have been computed using commonly available software.
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Table 2.4 Computing the deviance for the model “consumption = α”

Consumption Residual Residual Consumption Residual Residual
squared squared

0.39 0.0266 0.0007 0.38 0.0216 0.0005
0.37 0.0146 0.0002 0.47 0.1106 0.0122
0.39 0.0336 0.0011 0.44 0.0836 0.0070
0.42 0.0656 0.0043 0.39 0.0266 0.0007
0.41 0.0466 0.0022 0.34 −0.0174 0.0003
0.34 −0.0154 0.0002 0.32 −0.0404 0.0016
0.33 −0.0324 0.0011 0.31 −0.0524 0.0027
0.29 −0.0714 0.0051 0.28 −0.0754 0.0057
0.27 −0.0904 0.0082 0.33 −0.0334 0.0011
0.26 −0.1034 0.0107 0.31 −0.0504 0.0025
0.29 −0.0734 0.0054 0.36 −0.0004 0.0000
0.30 −0.0614 0.0038 0.38 0.0166 0.0003
0.33 −0.0304 0.0009 0.42 0.0566 0.0032
0.32 −0.0414 0.0017 0.44 0.0776 0.0060
0.38 0.0216 0.0005 0.55 0.1886 0.0356

Model: consumption = α

deviance =
∑

residual2 = 0.1255
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Figure 2.3 Residuals for the model “consumption = α + β temperature”
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Table 2.5 Computing the deviance for the model “consumption = α+β temperature”

Consumption Residual Residual Consumption Residual Residual
squared squared

0.39 0.0517 0.0027 0.38 −0.0216 0.0005
0.37 −0.0069 0.0000 0.47 0.0394 0.0016
0.39 −0.0096 0.0001 0.44 0.0124 0.0002
0.42 0.0068 0.0000 0.39 −0.0291 0.0008
0.41 −0.0153 0.0002 0.34 −0.0513 0.0026
0.34 −0.0648 0.0042 0.32 −0.0246 0.0006
0.33 −0.0694 0.0048 0.31 −0.0242 0.0006
0.29 −0.0649 0.0042 0.28 −0.0223 0.0005
0.27 −0.0373 0.0014 0.33 0.0352 0.0012
0.26 −0.0254 0.0006 0.31 0.0151 0.0002
0.29 −0.0079 0.0001 0.36 0.0496 0.0025
0.30 0.0103 0.0001 0.38 0.0417 0.0017
0.33 0.0227 0.0005 0.42 0.0476 0.0023
0.32 −0.0132 0.0002 0.44 0.0313 0.0010
0.38 0.0032 0.0000 0.55 0.1205 0.0145

Model: consumption = α + β temperature
deviance =

∑
residual2 = 0.0500

be said to have had a large effect. If, on the other hand, the deviance is not greatly
reduced, the added variable can be said to have had a small effect. The change in
the deviance that results from the explanatory variable being added to the model is
used to determine the significance of that variable’s effect. To assess the effect that
a variable has on the model, one simply compares the deviance statistics before and
after the variable has been added. For a simple OLS regression model, the effect of
the explanatory variable can be assessed by comparing the RSS statistic for the full
regression model with that for the null model (see Equation 2.5).

RSSdiff = (RSS0) − (RSS1) (2.5)

where RSS0 refers to the null model Y = α,

and RSS1 refers to the model Y = α + βx.

For the example above, the effect that temperature has on ice cream consumption
can be ascertained by comparing the deviance in the null model “consumption = α”,
with the deviance in the model “consumption = α + β temperature”. The only differ-
ence between these 2 models is that one includes temperature and the other does not.
The difference in RSS between the models will therefore illustrate the effect of tem-
perature. Commonly available statistical software provides these statistics for simple
OLS regression models and these are shown in Table 2.6.

For our example of ice cream consumption, the addition of the explanatory variable
“temperature” into the model results in a change in deviance of 0.0755 (RSSdiff). The
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Table 2.6 Assessing significance by comparing model deviances

Model RSS df RSSdiff F-value P-value

consumption = α 0.1255 29
consumption = α + β temperature 0.0500 28

0.0755 42.28 4.8e−07

RSS represents the deviance in the model

RSSdiff is the difference in deviance between the two models

F-statistic = 42.28 on 1 and 28 degrees of freedom

significance of this can be determined by calculating an F-statistic using Equation 2.6.
In this equation, 2 nested models are compared, a larger model designated as p+q (the
model “consumption = α +β temperature”) and a nested model designated as p (the
model “consumption = α”). It is important that the models are nested as one cannot
compare deviance statistics for un-nested models (eg., “Y = α + temperature” and
“Y = α + price”). Only nested models can be compared as this allows an evaluation
of the change in deviance that results from the addition of the explanatory variable.

F(dfp−dfp+q),dfp+q = RSSp − RSSp+q

(dfp − dfp+q)(RSSp+q/dfp+q)
(2.6)

where p represents the smaller (null) model, consumption = α,
p + q represents the larger model consumption = α + β temperature,
and df are the degrees-of-freedom for the designated model.

Substituting the values from Table 2.6 into Equation 2.6, it is simple to obtain an
F-statistic that enables us to evaluate the significance of adding a variable into the
model. In this case, the significance of adding “outdoor temperature” into the model
is calculated as:

F(29−28),28 = 0.1255 − 0.0500

(29 − 28)(0.0500/28)

F1,28 = 42.28

An F value of 42.28 on 1 and 28 degrees of freedom is highly significant (P =
0.000000479, or, as it is commonly given, 4.8e−07) and suggests that outdoor tem-
perature is significantly related to ice cream consumption. This information does not
need to be computed manually as it is commonly provided by software in an analysis
of deviance table (see Table 2.7). Although this table is redundant for this model (as
the information has already been provided above), it is included here to illustrate the
typical presentation of results from software.

The significance of individual parameters in the model can also be estimated using
a t-statistic which is simply the estimate divided by the standard error. The t-statistic
for “temperature” is therefore 0.003/.0004, which is 6.502 (this is the estimate from
software, which uses many more decimal places than have been reported here). This
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Table 2.7 Analysis of deviance table: the significance of variables

Sum Sq df F-value P-value

coefficient
temperature 0.0755 1 42.28 4.8e−07
residuals 0.0500

Model: consumption = α + β temperature

value is then tested for significance using a 2-tailed test with n − k − 1 degrees of
freedom (where n is the number of cases and k is the number of parameters excluding
the constant, which, for this example is 28). The t-statistic and associated signifi-
cance level is shown in Table 2.8 below. For simple OLS regression models, the
t-statistic is directly comparable to the F-statistic reported in Tables 2.6 and 2.7 (in
fact

√
F = t; √

42.28 = 6.502).

Table 2.8 Estimating the significance of individual parameters using t-statistics

Estimate Standard error T-value P-value

(intercept) 0.207 0.0247 8.375 4.1e−09
temperature 0.003 0.0005 6.502 4.8e−07

Model: consumption = α + β temperature

In addition to the model-fit statistics, the R2 statistic is also commonly quoted and
provides a measure that indicates the percentage of variation in the response variable
that is “explained’ by the model. R2 is defined as:

R2 = RSS due to regression

Total RSS, corrected for meanȲ
(2.7)

From the results in Table 2.6, R2 can be calculated using the deviance measure for
the regression divided by the total deviance. The total deviance is that associated with
the null model (consumption = α), and is equal to 0.1255. The deviance due to the
regression is the difference between the null model and the full model (consumption =
α + β temperature) and is equal to 0.1255 − 0.0500, or 0.0755 (RSSdiff). Using these
figures, R2 can be computed.

R2 = 0.0755

0.1255
= 0.60

In this case one can say that 60% of the variability in the response variable is accounted
for by the explanatory variable. Although R2 is widely used, it has a tendency to
increase as the slope of the regression line increases and is not, therefore, a completely
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unbiased measure (see Barrett, 1974).5 One solution to this problem is to calculate
an adjusted R2 statistic (R2

a) which takes into account the number of terms entered
into the model and does not necessarily increase as more terms are added. Adjusted
R2 can be derived using equation 2.8.

R2
a = R2 − k(1 − R2)

n − k − 1
(2.8)

where R2 is the coefficient of multiple determination,

n is the number of cases used to construct the model,

and k is the number of terms in the model (not including the constant).

The R2 and R2
a statistics do not provide an indication of significance and are

therefore of most use as descriptive statistics providing an idea of the strength of the
linear relationship between the response and explanatory variables. Draper & Smith
(1981, page 92) conclude that these measures “might be useful as an initial gross
indicator, but that is all”. Given that neither statistic provides a “perfect” measure of
model fit, this book will use the more widely adopted R2 statistic when describing
model fits.

To conclude this section, one can say on the basis of the simple regression model,
that outdoor temperature appears to be related to ice cream consumption. As outdoor
temperature increases, consumption tends to also increase. This relationship is highly
significant. However, this is a very simple model and one would need to investigate
other variables that might have an effect on consumption before an accurate determi-
nation of the effect of temperature can be made. A more detailed investigation into ice
cream consumption is shown in Section 2.2.2 where a multiple OLS regression model
is described.

2.2.2 Multiple OLS regression

OLS regression can easily be adapted to include a number of explanatory variables.
For example, ice cream consumption is likely to be affected by a number of variables
in addition to outdoor temperature. Table 2.1 shows data on two other variables that
might be important in predicting ice cream consumption (price and family income).
Ice cream consumption may be predicted using all 3 explanatory variables, a model
of which is shown below.

Ice cream consumption may be predicted by outdoor temperature and
price and family income.

Computing and interpreting model parameters: Multiple explanatory variables
are represented as a linear function in much the same way as a single variable. The

5Indeed, R2 will always increase as variables are added to the model.
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additional variables are simply added to the model (the model is thus said to be
additive). For the example above, the model will look like:

consumption = α + β1 outdoor temperature +
β2 price + β3 family income (2.9)

Ice cream consumption can be predicted, at least to some extent, by taking into account
the outdoor temperature, the price of the ice cream and family income. For simplicity,
only the “main effects” (i.e. the effect of each variable on its own) are included in
the model described below. Any interactions there may be between the explanatory
variables are not taken into account. Table 2.9 provides the parameters for the multiple
OLS regression model in Equation 2.9.

Table 2.9 Regression parameters

Estimate Standard error

(intercept) 0.197 0.270
Price −1.044 0.834
Family income 0.003 0.001
Temperature 0.003 0.000

The regression parameters for each of the explanatory variables represent the
average change in ice cream consumption that is expected to result from a change
of one unit in that explanatory variable when all other variables are held constant.
For example, for each unit rise in price, consumption decreases by an average of
1.044 pints per capita.6 Similarly, for each unit increase in temperature, consumption
increases by an average of 0.003 pints per capita. These partial regression coefficients
identify the effect that each explanatory variable has on consumption independent of
other variables in the model (that is, it identifies the unique contribution made by the
explanatory variable in determining consumption).

As with simple OLS regression, confidence intervals for the β parameters can be
easily computed using software (see Equation 2.3 for the method of computation).
The 95% confidence intervals are shown in Table 2.10 below. From the table, we can

Table 2.10 Confidence intervals

2.5% 50% 97.5%

Price −2.759 −1.044 0.671
Family income 0.001 0.003 0.006
Temperature 0.003 0.003 0.004

6One should be aware that a unit change in price is a very large change. For the data collected, price in
fact only fluctuates between .260 to .292.
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see that in 95% of cases, the expected increase in per capita consumption of ice cream
for each degree rise in temperature is between 0.003 and 0.004 pints per capita (to
3 decimal places). In other words, for a unit increase in temperature (a one degree
rise) in 95% of cases one would expect consumption to increase by at least 0.003
pints per capita but not more than 0.004 pints per capita. As both of these confidence
intervals predict an increase in the consumption of ice cream, we can conclude that at
the 95% 2-tailed level of significance, “temperature” does have a significant effect on
the response variable in the model shown in Equation 2.9 (this is confirmed in the next
section when the model-fit statistics are discussed). The variable “price” shows 95%
confidence intervals that predict both a decrease (−2.759) and an increase (0.671) in
ice cream consumption for a unit increase in price. As these intervals include 0, the
variable “price” in this model does not appear to be significant (this is confirmed in
the next section when the model-fit statistics are discussed).

Predicting the response variable: As with the simple OLS regression model, it is a
simple matter to obtain predictions for the response variable at any given values of the
explanatories. From the estimates provided in Table 2.9, one can obtain the intercept
(α) and the regression coefficients for each of the explanatory variables. Substituting
these values into Equation 2.9:

consumption = 0.197 + (−1.044 × price) +
(0.003 × income) + (0.003 × temperature)

Given a certain price, income and temperature (provided that these are within the
range of observations recorded during the study), one can predict the amount of ice
cream that will be consumed. For example, when the price is 0.280, income is 85 and
temperature is 50 degrees Fahrenheit, ice cream consumption is predicted to be

consumption = 0.197 + (−1.044 × 0.280) + (0.003 × 85) + (0.003 × 50)

= 0.310

Table 2.11 shows predicted probabilities of ice cream consumption for a num-
ber of different incomes, prices and temperatures computed using the R statistical
package.

Goodness-of-fit statistics: Similar to simple OLS regression, the significance of
individual and groups of variables in a multiple OLS regression model can be calcu-
lated by comparing the deviance statistics (RSS) for nested models. The general form
for comparing nested models is given as:

RSSdiff = (RSSp) − (RSSp+q) (2.10)

where RSS is the measure of deviance,

p is the smaller, nested model,

and p + q is the larger model.
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Table 2.11 Predictions of consumption

Income Price Temperature Predicted consumption

78 0.270 41 0.315
79 0.282 56 0.358
81 0.277 63 0.394
80 0.280 68 0.405
94 0.265 41 0.373
96 0.265 52 0.418
91 0.268 64 0.440
90 0.260 71 0.469

Model : consumption = 0.197 + (−1.044 × price) +
(0.003 × income) + (0.003 × temperature)

Although these statistics are provided by software (for example, in an analysis of
deviance table similar to the one shown below), it is useful to look at how these statistics
are calculated and this is shown in Table 2.12 which displays the deviance measures
for a number of models along with some specific comparisons and the corresponding
F and P values.

Table 2.12 Assessing significance by comparing model deviances:
individual variables

RSS df RSSdiff F-value P-value

Determining the effect of price

consumption = α + β1 price +
β2 income + β3 temp. 0.035 26

consumption = α + 0.037 27
0.002 1.567 0.222

β2 income + β3 temp.

Determining the effect of family income

consumption = α + β1 price +
β2 income + β3 temp. 0.035 26

consumption = α + β1 price + 0.046 27
0.011 7.973 0.009

β2 temp.

Determining the effect of outdoor temperature

consumption = α + β1 price +
β2 income + β3 temp. 0.035 26

consumption = α + β1 price + 0.117 27
0.082 60.252 3.1e−08

β2 income.
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The significance of each change in deviance (RSSdiff) is obtained by comput-
ing an F-statistic. Equation 2.11 shows the general form of the equation used to
derive F.

F(dfp−dfp+q),dfp+q = RSSp − RSSp+q

(dfp−dfp+q)(RSSp+q/dfp+q)
(2.11)

where p represents the smaller model,
p + q represents the larger model,
and df are the degrees-of-freedom for the designated model.

Substituting numbers into the equation, one can work out the effect that any par-
ticular variable, or group of variables, has. For example, the significance of adding
the variable “price” to the model “consumption = α + β1 outdoor temperature +β3
family income” can be calculated as:

F(27−26),26 = 0.002126

(27 − 26)(0.035273/26)

F1,26 = 1.567091

which is the same value as that provided for the variable “price” in Table 2.12.
The F-value of 1.567 on 1 and 26 degrees of freedom is not significant (P=0.222).
The significance of multiple variables can also be computed by comparing nested
models. Table 2.13 shows how the contribution made by multiple variables may be
obtained. The deviance measure for a number of models is provided along with

Table 2.13 Assessing significance by comparing model deviances: groups of
variables

Model RSS df RSSdiff F-value P-value

Determining the effect of all three variables
consumption = α + β1 price +

β2 income + β3 temp. 0.035 26

consumption = α 0.126 29
0.090 22.175 2.5e−07

Determining the effect of two variables (price and temperature)
consumption = α + β1 price +

β2 income + β3 temp. 0.035 26

consumption = α + β income 0.125 28
0.090 33.156 7.0e−08

the difference in deviances between 2 selected model comparisons and the cor-
responding F and P values. The significance of all 3 variables can be computed
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by comparing the null model with the full model. The corresponding F-statistic can be
calculated as:

F(29−26),26 = 0.090251

(29 − 26)(0.035273/26)

F3,26 = 22.17490

which is the same value as that provided in Table 2.13. The F-value of 22.17490 on
3 and 26 degrees of freedom is highly significant (P = 2.5e − 07). Using an identical
procedure, the significance of the combined effect of price and temperature on the
full model can also be derived. The change in deviance of 0.0899 is highly significant
as F2,26 = 33.156, p = 7.0e − 08. The information on model-fit for individual
parameters does not need to be computed manually as it is commonly provided by
software in an analysis of deviance table (see Table 2.14).

Table 2.14 Analysis of deviance table: the significance of variables

Sum Sq df F-value P-value

coefficient
income 0.011 1 7.973 0.009
price 0.002 1 1.567 0.222
temperature 0.082 1 60.252 3.1e−08
residuals 0.035 26

Model: consumption = α + β1 income + β2 price +
β3 temperature

The significance of individual parameters in the model can also be estimated using
a t-statistic which is simply the estimate divided by the standard error. The t-statistic
for “temperature” in the model “consumption = α+β1income+β2price+β3 temper-
ature” is 0.0034584/.0004455, which is 7.762. This value is then tested for significance
using a 2-tailed test with n−k−1 degrees of freedom (where n is the number of cases
and k is the number of parameters excluding the constant, which, for this example is
26). The t-statistics and associated significance levels are shown in Table 2.15 below.
For single parameter variables (i.e., not categorical), the t-statistics are directly
comparable to the F-statistics reported in Tables 2.12 and 2.14 (in fact

√
F = t).

From the results in Tables 2.12 and 2.13, R2 can be calculated for each model by
dividing the deviance measure for the regression by the total deviance. For the model
“consumption = α + β1 price + β2 income”, the deviance due to the regression
(the variables price and income) is the difference between the deviance for the null
model “consumption = α” (0.126; see Table 2.13) and the deviance for the model
“consumption = α + β1 price + β2 income ” (0.117; see Table 2.12). The value of
R2 for this model is calculated as:

R2 = 0.126 − 0.117

0.126
= 0.071
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Table 2.15 Estimating the significance of individual parameters using t-statistics

Estimate Standard error T-value P-value

(Intercept) 0.197 0.270 0.730 0.472
Income 0.003 0.001 2.824 0.009
Price 1.044 0.834 −1.252 0.222

Temperature 0.003 0.000 7.762 3.1e−08

Model: consumption = α + β1 income + β2 price + β3 temperature

In this case one can say that 7.1% of the variability in the response variable is
accounted for by the explanatory variables price and income. A model that includes
all 3 explanatory variables has an R2 value of (0.126 − 0.035)/0.126, which equals
0.72. We can say that altogether, the 3 explanatory variables account for about 72% of
the variance in consumption. It is a simple matter to compute R2 for the other models
presented in the tables and we leave the reader to compute these by hand or by the use
of statistical software.

To conclude this section, one can say that 72% of the variability in ice cream
consumption is accounted for by the 3 variables price, family income and temperature.
From Table 2.15, outdoor temperature is seen to have the most significant effect
on consumption (t26 = 7.762), followed by income (t26 = 2.824) and then price
(t26 = −1.252). It should be noted, however, that these relationships are only likely to
hold within the range of the collected data. Price, for example, has a marginal effect
on consumption (p > 0.01) compared to the other variables included in the model,
but its effect would be likely to change markedly if it were to be increased by, say,
a factor of 100. What we can conclude is that within the price range investigated in
this study, fluctuations in price only had a marginal effect on consumption. Also, the
effect of family income is significant, but 1 would advise caution when interpreting
this figure as, presumably, consumption would not increase indefinitely with family
income as there is likely to be an upper limit on the amount of ice cream an individual
can consume.

2.3 Categorical Explanatory Variables

It is relatively simple to include categorical explanatory variables into an OLS regres-
sion model if these variables are appropriately coded. A categorical variable may be
entered into the model as a series of individual comparisons that can be evaluated indi-
vidually or collectively (i.e. for a categorical variable representing industry sector; a
number of individual sub-categories such as banking, construction and tourism can be
compared with respect to their relationship with the response variable as well as the
overall relationship between the variable “industry sector” and the response).

The individual comparisons made within the categorical variable depend on the
way in which the variable has been coded. Two different methods of coding are dealt
with in this book, one which compares categories with a specific reference category
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(indicator coding) and one that compares categories with the average of all categories
(deviation coding). These 2 coding schemes are dealt with in detail in the sections on
analyzing simple experimental designs and also in Chapters 3, 4, and 5, where their use
is applied to models of ordered and unordered categorical response variables. Detailed
descriptions and further information about coding categorical variables can be found
in Crawley, 2005, Fox, 2002, Hutcheson and Sofroniou, 1999, and Miles and Shevlin,
2001.

2.4 Analyzing Simple Experimental Designs for
Continuous Data

The analysis of grouped data assessed on a continuous response variable has tradi-
tionally been conducted through the use of a technique known as Analysis of Variance
(ANOVA). This analytical technique is applied to experimental data and provides a
way of determining whether the average scores of groups differ significantly. Regres-
sion, on the other hand, is most often applied to data obtained from correlational
or non-experimental research. These separate analytical traditions have encouraged
the mistaken belief that regression and ANOVA are fundamentally different types of
statistical analysis. In this section we will demonstrate that grouped data can be ana-
lyzed using regression methods and that ANOVA is in fact a special case of regression
analysis. For a more detailed explanation of the relationship between ANOVA and
regression, see Rutherford, 2001.

The following discussion will describe the analysis of experimental data using
OLS regression and the more traditional hypothesis tests. The analysis of unrelated
and related groups will be dealt with for designs that have 2 or more experimental
conditions. In order to emphasize the similarities between the analysis of experimental
and correlational data, the methods and structure of the analyses below will closely
follow those that have already been discussed for simple and multiple OLS regression
models.

2.4.1 Unrelated groups design

With an unrelated groups design, the cases in the groups are independent of one
another. That is, different cases have been chosen for each group (e.g. a random
sample of 40 people are exposed to condition 1 and a different random sample of
40 people are exposed to condition 2). There is no relationship between the members
of the 2 groups.

Comparing two groups using OLS regression: The problem of comparing groups
can be couched in terms of the modeling techniques already discussed earlier in this
chapter. Namely, a variable can be predicted to some extent using information about
another variable. In this case a continuous variable (test score, wage, weight, IQ, etc.)
can be predicted to some extent using information about group membership (teaching
method used, gender, ethic origin, etc.). To use the regression model terminology,
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test score can be predicted by teaching method

reading ability can be predicted by gender

volume of sales can be predicted by location of store.

For these examples, we are aiming to model a continuous response variable using
a categorical explanatory variable. The data set we are to use to demonstrate this can

Table 2.16 Data: the price of whiskey (comparing 2 groups)

State owned Privately owned

4.65 4.82
4.55 5.29
4.11 4.89
4.15 4.95
4.20 4.55
4.55 4.90
3.80 5.25
4.00 5.30
4.19 4.29
4.75 4.85

Source: Chance, 1991. Reported in Hand et al., 1994.

be found on page 318 of Hand et al., (1994). It shows the price charged for whiskey by
state-owned and privately-owned companies. The research hypothesis is of the form

price of whiskey can be predicted by type of ownership.

A pictorial representation of this design is shown in Figure 2.4 below and shows
that the 20 companies are unrelated to one another across the 2 groups (state-owned
and privately-owned). The aim of the analysis is to see if type of ownership is related
to the price of whiskey.7 The regression equation is of the form

price of whiskey = α + β ownership.

The variable “ownership” is an unordered categorical variable and needs to be
appropriately coded before it can be entered into the model. One coding method that
can be used is to “dummy code” each category using the numbers 0 and 1 to indicate the
presence or absence of the attribute. For example, the 2 category variable “ownership”
can be represented using 2 dummy codes, one indicating private-ownership and the
other state-ownership. If we use this coding scheme, the data will look like it does
in Table 2.17. Due to multicollinearity (see Hutcheson and Sofroniou, 1999), it is
not possible to put both dummy codes into the model at the same time as one of

7It should be noted that this will not provide any causal evidence as to the link, as the groups are not
randomly selected and other factors may therefore play a role in determining price.
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Figure 2.4 A pictorial representation of an unrelated groups design

them will be redundant. One of the dummy codes is therefore omitted and becomes
the reference category, that is, it is the category that provides the comparison. For
example, if the dummy code “state” is entered into the regression model, “private”
will be the comparison category. If the dummy code “private” is entered into the model,
“state” will be the comparison category.

Dummy codes are typically constructed automatically by software. Although there
are a number of ways in which the codes can be constructed (enabling different con-
trasts to be made) we will use the indicator method here using 0 and 1 which provides
comparisons with a reference category (commonly known as treatment contrasts).
Later on (in Chapter 3, when we deal with modeling dichotomous data using logistic
regression) another coding method is introduced, deviation coding, that enables com-
parisons to be made with the average of all categories as opposed to a single reference
category. The use of the treatment contrasts is made explicit in the regression output
by the inclusion of the “T” identifier before the parameter description. Table 2.18
shows the model parameters that have been calculated using standard regression
software.

In Table 2.18, the parameter “ownership (T.private)” shows the category privately-
funded” compared to “state-funded”. The “T” identifier indicates that it is a treatment
contrast and “private” indicates that this category is the one that is compared to the
reference. The interpretation of the parameter estimate for this dummy variable is very
similar to that for a continuous variable. A unit increase in the explanatory variable
represents going from “state-owned” (coded as 0) to “privately-owned” (coded as 1)
and therefore results in comparing one category with the other. The estimate of 0.614,
indicates that a privately-owned company on average charges 0.614 units more than a
state-owned company.

It is useful to also compute the confidence intervals for the regression coefficient
(see Equation 2.3). Table 2.19 shows these intervals for the parameter “ownership
(T.private)”. In 95% of cases, we would expect the difference in the price of whiskey
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Table 2.17 Price of whiskey: “ownership” dummy coded

Price Ownership
State Private

4.65 1 0
4.55 1 0
4.11 1 0
4.15 1 0
4.20 1 0
4.55 1 0
3.80 1 0
4.00 1 0
4.19 1 0
4.75 1 0
4.82 0 1
5.29 0 1
4.89 0 1
4.95 0 1
4.55 0 1
4.90 0 1
5.25 0 1
5.30 0 1
4.29 0 1
4.85 0 1

Table 2.18 Regression parameters

Estimate Standard error

(Intercept) 4.295 0.100
Ownership (T.private) 0.614 0.142

Model: price = α + β ownership

Ownership reference category = state-owned

between privately-owned and state-owned companies to be between 0.316 and 0.912.
Of particular interest here is that both estimates predict that privately-owned companies
charge more for whiskey which suggests that this relationship is significant to the
0.05 level (this is confirmed when the model-fit statistics are investigated).

Table 2.19 Confidence intervals

2.5% 50% 97.5%

Ownership (T.private) 0.316 0.614 0.912
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Using the parameters in Table 2.18, the regression equation can be written as

price of whiskey = 4.295 + (0.614 ∗ ownership).

It is simple to use this model to make predictions about the price of whiskey for the
different types of company. For example, the price of whiskey produced in a state-
owned company (where ownership is designated as 0) can be calculated as

price of whiskey: state-owned company = 4.295 + (0.614 ∗ 0)

= 4.295

whereas the price of whiskey produced in a privately-owned company (where owner-
ship is designated as 1) can be calculated as

price of whiskey: privately-owned company = 4.295 + (0.614 ∗ 1)

= 4.909.

These values can also be derived using simple descriptive statistics, as the predicted
prices of the whiskey produced by state-owned and privately-owned companies are
simply the mean values.

Similar to the OLS regression models described so far, model-fit statistics can
be obtained by comparing the deviances (the RSS statistics) of nested models. For
example, in order to assess the significance of the variable “ownership”, one needs to
compare the two models:

whiskey price = α

whiskey price = α + β ownership (T.private).

The deviance in the null model “whiskey price = α” is equal to 3.695 (com-
puted using commonly available software) and for the model “whiskey price =
α + β ownership (T.private)” the deviance is equal to 1.810 (see Table 2.20). The
reduction in deviance between the two models (1.885) indicates the effect that own-
ership has on the price of whiskey. The significance of this reduction in deviance can
be calculated using the F-test, shown in Equation 2.12.

F(dfnull−dfmodel),dfmodel = RSSnull − RSSmodel

(dfnull−dfmodel)(RSSmodel/dfmodel)
(2.12)

where “null” indicates the model Y = α,

“model” indicates the model Y = α + βx,

RSS is the residual sum of squares for the designated model,

and df is the degrees of freedom for the designated model.

For the model of whiskey price, the value of F is

F19−18,18 = 3.6953 − 1.8103

(19 − 18)(1.8103/18)

F1,18 = 18.742
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Table 2.20 Assessing significance by comparing model deviances

Model RSS df RSSdiff F-value P-value

Price = α 3.670 19
Price = α + β ownership 1.810 18

1.885 18.742 4.0e−04

RSS represents the deviance in the model

RSSdiff is the difference in deviance between the two models

F-statistic = 18.74 on 1 and 18 degrees of freedom

which is significant (p = 4.0e−04). The results are summarized in Table 2.20
below.

The information on model-fit for individual parameters does not need to be com-
puted manually as it is commonly provided by software in an analysis of deviance table
(see Table 2.21). Although this table is redundant for this example as the information
on RSS has already been provided, it is included here as it is commonly output by
software.

Table 2.21 Analysis of deviance table: the significance of variables

Sum Sq df F-value P-value

Coefficient
Ownership 1.885 1 18.742 4.0e−04
Residuals 1.810 18

Model: price = α + β1 ownership

The significance of individual parameters in the model can also be estimated using
a t-statistic which is simply the estimate divided by the standard error. The t-statistic
for “ownership” is therefore 0.614/0.142, which is 4.329 (this is the estimate from
software, which uses many more decimal places than have been reported here). This
value is then tested for significance using a 2-tailed test with n−k−1 degrees of
freedom (where n is the number of cases and k is the number of parameters excluding
the constant, which, for this example is 18). The t-statistic and associated significance
level is shown in Table 2.22 below. The t-statistic for a dichotomous explanatory
variable is directly comparable to the F-statistic reported in Tables 2.20 and 2.21 (in
fact

√
F = t; √

18.742 = 4.329).
On this evidence it would appear that whiskey produced by privately-owned com-

panies is more expensive than that produced by state-owned companies. This is sig-
nificant at the .0005 level. When interpreting these results it is, however, important to
realize that the relationship between the two variables cannot be considered as causal.
It might well be that the private sector does charge more for its whiskey, but it could
also be that state-owned companies tend to operate in city areas where strong com-
petition keeps prices down. The difference in prices may therefore be due to location
and not just ownership.



42 Modeling Continuous Data

Table 2.22 Estimating the significance of individual parameters using t-statistics

Estimate Standard error t-value P-value

(Intercept) 4.295 0.100 42.827
Ownership (T.private) 0.614 0.142 4.329 4.0e−04

Model: whiskey price = α + β ownwership

Comparing more than two groups using OLS regression: Using the technique
of regression, it is possible to compare more than 2 groups. This is demonstrated by
adding another group to the data used above (these data are hypothetical and are added
merely to provide a third group comparison) and is shown below in Table 2.23.

Table 2.23 Data: the price of whiskey (comparing three groups)

State–owned Privately–owned State–private
partnership*

4.65 4.82 4.72
4.55 5.29 4.90
4.11 4.89 4.04
4.15 4.95 4.98
4.20 4.55 4.37
4.55 4.90 5.12
3.80 5.25 4.98
4.00 5.30 4.79
4.19 4.29 4.42
4.75 4.85 4.80

* hypothetical data

For these data, the research hypothesis is of the form

price of whiskey can be predicted by ownership.

The data to be modeled (the response variable) is price, which can be considered
to be a continuous variable. Ownership is the explanatory variable and takes one of
3 values (state-owned, privately-owned, or a state-private partnership). In order to
include a multi-category explanatory variable in the regression model, ownership is
dummy coded into 2 dichotomous variables. For simplicity, we will use the indicator
coding method shown in Table 2.24 where the 3 category variable “ownership” is
represented as 2 separate dummy variables, each indicating the presence or absence
of a particular category. For example, dummy variable 1 records whether or not the
company is privately-owned, whilst dummy variable 2 records whether or not the
company is owned by a state–private partnership.8

8For a full description of indicator coding, please refer to Hutcheson and Sofroniou, 1999.
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Table 2.24 The indicator method of dummy coding “ownership”

Original Dummy variables
variable 1 2

State 0 0
Private 1 0

State–private 0 1

You will note that although there are 3 categories of ownership, there are only
2 dummy variables. In general, if we have j categories, a maximum of j − 1 dummy
variables can be entered into a model. The dummy variable which is omitted is called
the reference category and is the category against which other dummy variables are
compared (so long as all j −1 dummy variables are included in the model). It should be
noted that the choice of reference category is often quite arbitrary, although sometimes
there will be reasons that a particular reference category is chosen. For example, when
comparing a number of treatments for a particular illness, it might make sense to
compare each with the standard treatment currently used to treat the disease (see
Hardy, 1993, for a more in-depth discussion of reference category choice). After
coding “ownership” using indicator coding (treatment contrasts) with state-owned as
the reference category, the regression model is of the form:

price of whiskey = α + β1 ownership (T.private) +
β2 ownership (T.partnership).

The single variable “ownership” is therefore represented by 2 parameters which are
shown in Table 2.25; “ownership (T.private)” compares privately-owned companies to
state-owned and shows that whiskey from privately-owned companies is, on average,
0.614 units more expensive than for state-owned companies. Similarly, whiskey from
a state-private partnership is, on average, 0.417 units more expensive than for state-
owned companies.

Table 2.25 Regression parameters

Estimate Standard error

(Intercept) 4.295 0.102
Ownership(T.private) 0.614 0.145
Ownership(T.partnership) 0.417 0.145

Model: price = α + β1 ownership (T.private) +
β2 ownership (T.partnership)

Ownership reference category: state-owned

As with other OLS regression models, confidence intervals for the regression
coefficients can be easily calculated (see Table 2.26). In 95% of cases, we would
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expect the difference in the price of whiskey between privately-owned and state-
owned companies to be between 0.317 and 0.911 and that between a partnership and
state-owned to be between 0.120 and 0.714. Of particular interest here is that as all
estimates predict an increase in price privately-owned and state–private partnership
are both significantly different to state-owned companies at the 0.05 level (this is
confirmed when the model-fit statistics are investigated).

Table 2.26 Confidence intervals

2.5% 50% 97.5%

Ownership (T.private) 0.317 0.614 0.911
Ownership (T.partnership) 0.120 0.417 0.714

The regression equation for this model is

price of whiskey =4.295 + (0.614 ∗ ownership (T.private)) +
(0.417 ∗ ownership (T.partnership))

which allows predictions to be made for each of the three different types of ownership.

price of whiskey: state-owned company = 4.295 + (0.614 ∗ 0) + (0.417 ∗ 0)

= 4.295

price of whiskey: privately-owned company = 4.295 + (0.614 ∗ 1) + (0.417 ∗ 0)

= 4.909

price of whiskey: state–private partnership = 4.295 + (0.614 ∗ 0) + (0.417 ∗ 1)

= 4.712

These values can also be derived using simple descriptive statistics, as the predicted
prices of the whiskey produced by state-owned companies, privately-owned companies
and state-private partnerships is simply the mean values for these groups.

Similar to the OLS regression models described so far, model-fit statistics can be
obtained by comparing the deviances (the RSS statistics) of nested models. Using these
statistics, the significance of individual parameters (e.g., ownership (T.private)) and
variables (ownership) can be obtained. Deviance statistics for the model of whiskey
price are shown in Table 2.27. From this table we can see that adding the 2 parameters
that constitute the variable “ownership” to the model “whiskey price = α” reduces
the deviance by 1.966. This reduction in deviance equates to an F-value of 9.398
(see Equation 2.11), which is tested for significance at 2 and 27 degrees of freedom
(2 parameters difference between the models and n-k-1, where n is the number of
cases and k the number of parameters in the larger model excluding the intercept).
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Similarly, the significance of a single category can also be computed by comparing
the deviances of nested models. For example, the significance of the privately-owned
companies compared to state-owned (i.e., comparing 2 categories from within the
variable “ownership”) can be obtained by comparing the deviances for the 2 nested
models:

whiskey price = α + β1 ownership (T.private) + β2 ownership (T.partnership)

whiskey price = α + β ownership (T.partnership)

If we remove the information about private ownership (contained in the parameter
“ownership (T.private)” the deviance is reduced by 1.884, which is significant at the
.0005 level (F1,27 = 18.025, p = 0.0002). Privately-owned companies therefore
charge significantly more than state-owned companies.

Table 2.27 Assessing significance by comparing model deviances

Model RSS df RSSdiff F-value P-value

Determining the overall effect of ownership

Price = α 4.789 29

Price = α + β1 own (T.private)

+ β2 own (T.partner)
2.824 27

1.966 9.398 7.9e-04

Determining the effect of privately-owned

Price = α + β own (T.partner) 4.708 28

Price = α + β1 own (T.private)

+ β2 own (T.partner)
2.824 27

1.884 18.025 0.0002

Determining the effect of state–private partnership

Price = α + β own (T.private) 3.693 28

Price = α + β1 own (T.private)

+ β2 own (T.partner)
2.824 27

0.869 8.314 0.0076

RSS represents the deviance in the model

RSSdiff is the difference in deviance between the two models

Ownership reference category: state-owned

By changing the reference category, different group comparisons may be obtained.
For example, to obtain a comparison between privately-owned and state–private part-
nership, one could designate either of these as the reference category and then recalcu-
late the model. If we do this, different comparisons are made between the categorical
variable categories, but all model-fit statistics will remain the same.
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The information on model-fit is commonly provided by software in an analysis
of deviance table (see Table 2.28). This table shows the significance of the variable
“ownership” and is derived using the RSS statistics discussed above.

Table 2.28 Analysis of deviance table: the significance of variables

Sum Sq df F-value P-value

Coefficient
Ownership 1.966 2 9.398 7.9e−04
Residuals 2.824 27

Model: price = α + β1 ownership

The signifiance of individual parameters in the model can be estimated using a
t-statistic which is simply the estimate divided by the standard error. The t-statistic for
“ownership (T.private)” is therefore 0.6140/0.1446 , which is 4.246. This value is then
tested for significance using a 2-tailed test with n−k−1 degrees of freedom (where n is
the number of cases and k is the number of parameters excluding the constant, which,
for this example is 27). The t-statistic and associated significance level is shown in
Table 2.29 below. The t-statistics for these parameters are directly comparable to the
F-statistics reported in Table 2.27 (in fact

√
F = t; for example,

√
8.314 = 2.883,

allowing for rounding error).

Table 2.29 Estimating the significance of individual parameters using t-statistics

Estimate Standard error T-value P-value

(Intercept) 4.295 0.102 42.000 0.000
Ownership (T.private) 0.614 0.145 4.246 0.000
Ownership (T.partnership) 0.417 0.145 2.883 0.008

Model: price = α + β1 ownership(1) + β2 ownership(2)

Reference category: state-owned

From these analyses, it is clear that there is a relationship between the price of
whiskey and the type of company ownership. Compared to state-owned companies,
privately-owned companies and state–private partnerships tend to charge more for their
whiskey. Both these results are significant to the 0.01 level. As this was a correlational
study, little can be concluded as to whether this is a causal relationship or not.

Comparing two groups using a t-test: The same analysis as was conducted in
Section 2.4.1 can be obtained using an unrelated t-test. This test can be conducted
using a number of packages and is detailed in numerous introductory statistics books
and manuals and will not, therefore, be explained in detail here. The results obtained
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from a typical statistical software package are reproduced in Table 2.30 to provide a
comparison with the regression analyses already described.

Table 2.30 The two-group whiskey data: t-test

Mean df t P-value

Group 1: state-owned 4.295
Group 2: privately-owned 4.909

18 4.329 0.0004

We can see that the analysis obtained using the unrelated t-test (t = 4.329) is
identical to that obtained using OLS regression (see Table 2.22).

Comparing more than two groups using ANOVA: The same analysis as was
conducted in Section 2.4.1 can be obtained using a one-way ANOVA. This test can
be conducted using a number of packages and is detailed in numerous introductory
statistics books and manuals and will not, therefore, be explained in detail here. The
output from an ANOVA computation is shown in Table 2.31 below.

Table 2.31 The three-group whiskey data: ANOVA

df Sum of squares Mean squares F-value p-Value

Ownership 2 1.966 0.983 9.398 0.0008
Residuals 27 2.824 0.105

We can see that the analysis obtained using the one-way ANOVA (F = 9.398) is
identical to that obtained using OLS regression (see Table 2.27). The overall group
effect of type of ownership is significantly linearly related to the price of whiskey.

2.4.2 Related groups designs

With a related groups design, the cases in the groups are the same (repeated measures)
or they are matched (matched groups). That is, the same case (or pair of cases) takes
part in each phase of the experiment (e.g. 40 people are exposed to condition 1 and
then the same 40 people are exposed to condition 2). The analysis of a related groups
design is the same as for an unrelated groups design apart from the inclusion of the
additional information about subject.

The data set used to illustrate the related groups analyses is hypothetical and shows
the overall rating of quality for a number of stores. Ten subjects were asked to rate the
quality of different stores using a large number of criteria (quality of goods, services,
staff, store atmosphere, etc.). The data shown are the average scores for each store.
These data (which are considered to be continuous) are shown in Table 2.32 with the
design of the study illustrated pictorially in Figure 2.5.
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Table 2.32 Data: quality ratings of stores

Subject Store A Store B Store C

1 3.8 3.2 3.1
2 4.0 2.4 3.7
3 4.1 4.2 3.9
4 4.1 3.2 3.9
5 4.1 3.3 4.0
6 4.1 3.9 3.9
7 4.2 3.8 4.3
8 4.5 3.8 4.4
9 4.5 3.9 4.7
10 4.6 3.9 4.3

Comparing two groups using OLS regression: For this demonstration, as we are
interested in a 2-group comparison, only data from stores A and B will be considered.
The research hypothesis is of the form:

Quality can be predicted by store

The aim of the analysis is to see if quality ratings are related to the store. That is, does
the overall rating of quality differ between stores A and B. The data to be modeled
(the response variable) is quality, which can be considered to be a continuous variable
making OLS regression an appropriate analytical technique. The store evaluated is
the explanatory variable and takes one of 2 values (store A or store B). It is not
appropriate to analyse the data in the same way as the unrelated groups design above,
as there is likely to be a correlation between the measurements. Some subjects may
be harder to please than others and may give stores lower ratings because of this. A
store’s rating will therefore depend not only on factors related to the store, but will
also depend on factors related to the subject. We are thus interested not only in the
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Figure 2.5 A pictorial representation of a dependent groups design
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differences between the groups (store A and store B) but also in the difference between
each subject’s ratings for the stores. Taking into account the coding of the unordered
categorical data into j−1 comparisons (for the variables “store” and “subject”), the
regression model is of the form:

quality = α + β1storeB + β2subject2 + β3subject3 + β4subject4

+ β5subject5 + β6subject6 + β7subject7 + β8subject8

+ β9subject9 + β10subject10.

where store A and subject1 are the reference categories. Table 2.33 shows the param-
eters for this model with the variable “store” dummy coded using the indicator cod-
ing method with Store A designated as the reference category (hence the parameter
identifier “T.storeB” indicating a treatment comparison of store B compared to the
reference category). The variable “subject” is also dummy coded using the indicator
method with subject 1 designated as the reference category (hence the “subject[T.2]”
parameter indicating treatment comparisons of each identified subject to the reference
category, subject 1).

Table 2.33 Regression parameters

Estimate Standard error

(Intercept) 3.820 0.236

Store[T.B] −0.640 0.142

Subject[T.2] −0.300 0.318
Subject[T.3] 0.650 0.318
Subject[T.4] 0.150 0.318
Subject[T.5] 0.200 0.318
Subject[T.6] 0.500 0.318
Subject[T.7] 0.500 0.318
Subject[T.8] 0.650 0.318
Subject[T.9] 0.700 0.318
Subject[T.10] 0.750 0.318

Model: quality = α + β1 store + β2−10 subject

Store reference category: store A
Subject reference category: subject 1

The output in Table 2.33 may look quite confusing as there are now many para-
meters in the model. We are, however, not particularly interested in the parame-
ters associated with the variable “subject” as these are included to control for the
repeated measurements. Controlling for “subject” enables us to evaluate the relation-
ship between “store” and “quality” independent of “subject”. The parameter of interest
here is the one associated with the variable “store”. For a unit increase in store (i.e.
comparing “store B” to the reference category “store A”), quality decreases by 0.64.
Store B, therefore appears to be rated as having a lower quality than store A.
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It is useful to also compute the confidence intervals for the regression coefficients,
and these are shown in Table 2.34. The confidence intervals are interpreted in a similar
way to the models discussed previously in this chapter. For example, in 95% of cases,
one would expect the quality ratings for store B to be between 0.962 and 0.318 lower
than for store A. As both of these predict a decrease, the difference between stores A
and B looks to be significant at the 95% level (this is confirmed when the model-fit
statistics are investigated later in this chapter). Confidence intervals are also provided
for the subjects, but as these are not of any real interest (the research hypothesis is
related to the differences between the stores and not between subjects), they will not
be discussed here.

Table 2.34 Confidence intervals

2.5% 50% 97.5%

(Intercept) 3.286 3.820 4.354

Store[T.B] −0.962 −0.640 −0.318

Subject[T.2] −1.020 −0.300 0.420
Subject[T.3] −0.070 0.650 1.370
Subject[T.4] −0.570 0.150 0.870
Subject[T.5] −0.520 0.200 0.920
Subject[T.6] −0.220 0.500 1.220
Subject[T.7] −0.220 0.500 1.220
Subject[T.8] −0.070 0.650 1.370
Subject[T.9] −0.020 0.700 1.420
Subject[T.10] 0.030 0.750 1.470

Model: quality = α + β1 store + β2−10 subject

Once the model parameters have been obtained, it is a simple matter to compute
predictions from the model. Substituting the model parameters shown in Table 2.33,
the regression equation is

quality = 3.82 + (−0.64 ∗ store B) + (−0.30 ∗ sub2) + (0.65 ∗ sub3)

+ (0.15 ∗ sub4) + (0.20 ∗ sub5) + (0.50 ∗ sub6)

+ (0.50 ∗ sub7) + (0.65 ∗ sub8) + (0.70 ∗ sub9)

+ (0.75 ∗ sub10).

This model can be used to obtain the predicted quality ratings for each subject
for each store. Table 2.35 shows these predictions which have been computed using
software. The predicted ratings show the predictions from the model. The predicted
ratings of quality for the stores is different for each subject. If we average the store
ratings across all the subjects we get a rating of 4.20 for store A and a rating of 3.56 for
store B. The difference between these 2 represents the differences between the stores,
which is equivalent to 0.64 (4.20 − 3.56); the regression parameter for store[T.B] in
Table 2.33.
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Table 2.35 Predicting the quality of the stores

Store Subject Predicted rating
of quality

A 1 3.82
A 2 3.52
A 3 4.47
A 4 3.97
A 5 4.02
A 6 4.32
A 7 4.32
A 8 4.47
A 9 4.52
A 10 4.57
B 1 3.18
B 2 2.88
B 3 3.83
B 4 3.33
B 5 3.38
B 6 3.68
B 7 3.68
B 8 3.83
B 9 3.88
B 10 3.93

Model: quality = α + β1 store + β2−10 subject

Similar to the OLS regression models described so far, model-fit statistics can
be obtained by comparing the deviances (the RSS statistics) of nested models. For
example, in order to assess the significance of the variable “store”, one needs to
compare the deviances of the 2 models:

quality = α + β1−9 subject

quality = α + β1 store + β2−10 subject

The deviance in the model “quality = α + β1−9 subject” is equal to 2.960 and for
the model “quality = α + β1 store + β2−10 subject” the deviance is equal to 0.912.
The difference in deviance between the 2 models is 2.048 and indicates the effect of the
variable “store” on “quality” after “subject” has been accounted for. The significance
of this change in deviance can be calculated using the F-test, shown in Equation 2.11.
These results are summarized in Table 2.36 below.

By comparing the deviances of nested models, it is also possible to calculate the
significance of the subject variable. To do this, one simply compares the deviances
for the 2 nested models shown in Table 2.37 below (one model includes the variable
“subject” whilst the other does not). Removing subject from the model increases
the deviance by 2.212, which is not a significant increase. Subject, is therefore not
significant for this model.
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Table 2.36 Assessing the significance of “store” by comparing model deviances

Model RSS df RSSdiff F-value P-value

Quality = α + β1 store + 0.912 9
β2−10 subject

Quality = α + β1−9 subject 2.960 10

2.048 20.211 0.001

RSS represents the deviance in the model.

RSSdiff is the difference in deviance between the two models.

The information on model-fit for individual parameters does not need to be com-
puted manually as it is commonly provided by software in an analysis of deviance table
(see Table 2.38). Although this table is redundant for this example as the information
on RSS has already been provided, it is included here as it is commonly output by
software.

The significance of individual parameters in the model can be estimated using a
t-statistic which is simply the estimate divided by the standard error. The t-statistic
for “store(T.B)” is therefore −0.640/0.142, which is −4.507 (using more decimal
places, the actual value of t is −4.496, a value provided by software in Table 2.39).
This value is then tested for significance using a 2-tailed test with n−k −1 degrees of
freedom (where n is the number of cases and k is the number of parameters excluding
the constant, which, for this example is 9). The t-statistics and associated significance
level for all parameters are clearly shown in the table.

Table 2.37 Assessing the significance of “subject” by comparing model deviances

Model RSS df RSSdiff F-value P-value

Quality = α + β1 store + 0.912 9
β2−10 subject

Quality = α + β1 store 3.124 18

2.212 2.425 0.102

RSS represents the deviance in the model.

RSSdiff is the difference in deviance between the two models.

Table 2.38 Analysis of deviance table: the significance of variables

Sum sq df F-value P-value

Coefficient
Subject 2.212 9 2.425 0.102
Store 2.048 1 20.210 0.001
Residuals 0.912 9

Model: quality = α + β1 store + β2−10 subject



Analyzing Simple Experimental Designs for Continuous Data 53

Table 2.39 Estimating the significance of individual parameters using t-statistics

Estimate Standard error T-value P-value

(Intercept) 3.820 0.236 16.181 5.8e−08

Store[T.B] −0.640 0.142 −4.496 0.002

Subject[T.2] −0.300 0.318 −0.942 0.371
Subject[T.3] 0.650 0.318 2.042 0.072
Subject[T.4] 0.150 0.318 0.471 0.649
Subject[T.5] 0.200 0.318 0.628 0.545
Subject[T.6] 0.500 0.318 1.571 0.151
Subject[T.7] 0.500 0.318 1.571 0.151
Subject[T.8] 0.650 0.318 2.042 0.072
Subject[T.9] 0.700 0.318 2.199 0.055
Subject[T.10] 0.750 0.318 2.356 0.043

Model: quality = α + β1 store + β2−10 subject

Store reference category: store A
Subject reference category: subject 1

On this evidence it would appear that stores A and B are rated differently with
respect to quality. Store A is rated significantly higher than store B. Subject was not
significantly related to quality and was included in the model to control for the repeated
measurements.

Comparing more than two groups using OLS regression: Using the regression
technique, it is easy to extend the analysis of related groups designs to cases where
there are more than 2 groups. The interpretation of parameters for more than 2 groups
and the inclusion of the subject variable to take account of the repeated measurements
in the design of the study, have already been discussed in previous sections and will
not, therefore, be dealt with in any detail here. What is presented is a minimal set of
analyses that show the relationship between all 3 stores and ratings of quality for a
related groups design.

Using the data shown in Table 2.32, all 3 stores can be compared. The response
variable, “quality”, is continuous which makes OLS regression a suitable analytical
technique with the variables “store” and “subject” dummy coded. Table 2.40 shows
the parameter estimates and t-statistics for the model of quality using all three stores.

The regression parameters in Table 2.40 are interpreted in much the same way as
they were for the model with just 2 stores. Stores B and C have lower quality ratings
compared to store A (0.640 and 0.180 lower, respectively) whilst taking account of
subject. The significance of these parameters is provided by the t-statistics, which
show that store B is significantly different to store A, but store C is not signifi-
cantly different from store A. The major difference between the stores appears to
be between stores A and B. A number of individual subjects are different from the
reference subject, but this finding is not of any particular importance to our research
question.
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Table 2.40 Regression parameters

Estimate Standard error T-value P-value

(Intercept) 3.640 0.181 20.108 0.000

Store[T.B] −0.640 0.128 −5.000 0.000
Store[T.C] −0.180 0.128 −1.406 0.177

Subject[T.2] 0.000 0.234 0.000 1.000
Subject[T.3] 0.700 0.234 2.995 0.008
Subject[T.4] 0.367 0.234 1.569 0.134
Subject[T.5] 0.433 0.234 1.854 0.080
Subject[T.6] 0.600 0.234 2.567 0.019
Subject[T.7] 0.733 0.234 3.138 0.006
Subject[T.8] 0.867 0.234 3.708 0.002
Subject[T.9] 1.000 0.234 4.279 0.001
Subject[T.10] 0.900 0.234 3.851 0.001

Quality = α + β1−2 store + β3−11 subject

Store reference category: store A
Subject reference category: subject 1

An analysis of deviance table is also useful for assessing the overall relationship
between the explanatory variables and ratings of quality (see Table 2.41). We can see
from this table that the variable “store” is significantly related to rated quality. Subject
is also significantly related to rated quality (this result is, however, not of any particular
interest).

Table 2.41 Analysis of deviance table: the significance of variables

Sum Sq df F-value P-value

Coefficient
Subject 3.405 9 4.618 2.8e−03
Store 2.179 2 13.297 2.8e−04
Residuals 1.475 18

Model: quality = α + β1 store + β2−10 subject

Comparing two groups using a t-test: The same analysis as was conducted in
Section 2.4.2 can be obtained using a related t-test. This test can be conducted using
a number of packages and is detailed in numerous introductory statistics books and
manuals and will not, therefore, be explained in detail here. The results obtained from
a typical statistical software package are reproduced in in Table 2.42 to provide a
comparison with the regression analyses already described.

We can see that the analysis obtained using the related t-test (t = 4.496) is identical
to that obtained using OLS regression (see Tables 2.33 and 2.36) and is interpreted in
exactly the same way.
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Table 2.42 The two-group store data: related t-test

Mean df t P-value

Store A 4.20
Store B 3.56

9 4.496 0.0015

Comparing more than two groups using ANOVA: The same analysis as was con-
ducted in Section 2.4.2 can be obtained using an ANOVA. This test can be conducted
using a number of packages and is detailed in numerous introductory statistics books
and manuals and will not, therefore, be explained in detail here. The output from an
ANOVA computation is shown in Table 2.43 below.

Table 2.43 The three-group store data: related ANOVA

df Sum of squares Mean squares F-value p-value

Store 2 2.179 1.089 13.297 0.0003
Subject 9 3.405 0.378 4.618 0.0028

Residuals 18 1.475 0.082

We can see that the analysis obtained using the ANOVA is identical to that obtained
using OLS regression (see Table 2.41) and is interpreted in an identical way.

2.5 Conclusion

In this chapter, OLS regression has been used to model continuous response variables
using continuous and grouped explanatory variables. Detailed descriptions have been
provided about the interpretation of the regression coefficients and model-fit statistics
and the equivalence of the regression technique to the more traditional hypothesis tests
has been made explicit. The t-tests and ANOVAs can be regarded as special cases of
the more general technique of OLS regression.

The advantages of the regression technique is that it allows data to be analyzed and
interpreted under the generalized linear modeling (GLM) umbrella. Analyzing data in
this way enables complex models to be built up that include different types of explana-
tory variables taking into account design constraints (repeated measures designs, for
example). The use of GLM methods is particularly powerful when compared to the
standard hypothesis tests as it allows one to apply similar techniques to other types of
response variable. We will find in the following chapters how to generalize the use of
OLS regression to ordered and unordered categorical data.





CHAPTER 3

Modeling Dichotomous Data

Binary categorical variables are quite common in management research and can indi-
cate, for example, whether someone will make a purchase or not or whether a certain
course of action has been a success. To model a binary response variable, one can
use the generalized linear modeling technique of logistic regression. This chapter
introduces logistic regression, explains the theory behind the technique and the inter-
pretation of the model parameters and model-fit statistics for models containing single
and multiple explanatory variables.

Logistic regression is a particularly important technique not only because it pro-
vides a method of modeling binary data, but also as it is central to understanding
the wider application of the generalized linear model to multi-category ordered and
unordered data. The techniques of proportional odds modeling and multi-nomial logis-
tic regression, which are discussed in subsequent chapters and allow multi-category
ordered and unordered response variables to be modeled, can be seen as extensions to
the basic logistic regression model that is the subject of this chapter.

3.1 The Generalized Linear Model

In Chapter 2, we showed how a linear model (OLS regression) can be used to model
a continuous response variable. In this chapter we show how this analysis technique
can be generalized to enable a binary response variable to be modeled. In order to
demonstrate this, a hypothetical example is used showing whether or not a sale is
achieved given the years of experience of a sales team. The response variable is a
binary classification of success (successful or unsuccessful for each sales enquiry
made) and the explanatory variable is a continuous variable representing years of
service of the sales team. This model of ‘success’ can be represented as:

Success may be predicted by the experience of the sales team

In general, we may expect that the more experience a sales team has, the greater
the probability there is of a sale being made (although this is not the only factor likely
to affect the outcome). The scatterplot in Figure 3.1 which shows the raw data plotted
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suggests that this is the case for these data as successful outcomes do appear to be
associated with a greater degree of experience.

The relationship between success and experience is not, however, that easy to
discern from Figure 3.1 which depicts the raw data. The relationship can be more
clearly shown when the probability of success at different levels of experience is
plotted against the experience of the sales team rather than the actual binary outcome
of each case.1 This is shown in Figure 3.2 which clearly shows that this probability
increases with the experience of the sales team (in the graph, the individual cases are
shown using unfilled circles and the overall probability of success for given levels of
experience are shown using filled circles).

0 10 20 30 40 50

Successful

Unsuccessful

Experience of sales team (years)

Figure 3.1 Success and the experience of the sales staff

From Figure 3.2, it can also be seen that the relationship between the probability
of success and experience is not linear. The OLS regression model shown in the graph
does not provide a particularly close fit to the probability data (the filled circles). Most
importantly, the probability data are constrained between 0 and 1, but the model is not
(the OLS regression model is the straight line model shown on the graph, ‘success =
α + β experience’). At values of experience below 15 years, the OLS regression
model underestimates the probability of success (as the value of probability cannot go
below zero, the model actually provides invalid predictions for probability) whilst it
overestimates the probability for values of experience above 40 years (again, the model
predicts invalid values, as probabilities cannot assume values greater than 1). Looking
at the pattern made by the solid circles (i.e., the probability of success data), the
relationship between the probability of success and the number of years of experience
would appear to be S-shaped (sigmoid) rather than linear. If this is the case, then clearly
the linear OLS regression model ‘success = α + β experience’ does not provide an

1To obtain this graph, ‘experience’ was represented as a number of equally-sized categories and the
probability of success calculated for each category from the data.
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Figure 3.2 The probability of success and the experience of the sales staff

accurate representation of the relationship between the probability of obtaining a
particular response and the explanatory variable and is not, therefore, appropriate to
use to model these data.2

It is, however, still possible to apply a linear model to these data if the relationship
between the probability measure of response and the explanatory variables can be rep-
resented as a straight line. The discussion of the generalized linear model in Chapter 2
indicated that for a binomially-distributed response variable, the relationship between
the random and systematic components of the model is the log odds, or logit. This
model is shown in Equation 3.1:

logit[Pr(Y = 1)] = α + β1X1 + β2X2 + . . . + βkXk (3.1)

where Pr(Y=1), refers to the probability of the response variable equalling 1 (which
corresponds to one of the categories), and X1 to Xk are the explanatory variables.
For the above example, the relationship between success and experience can be
represented as:

logit[Pr(success)] = α + β experience

The log odds of the probability of success may be predicted, at least to some extent,
by the linear model ‘α + β experience’. As we will see, this is a linear model (similar
to the OLS regression models discussed in Chapter 2) as each unit increase in ‘ex-
perience’ predicts a standard change (β) in the value of the response variable (in
this case, logit[Pr(success)]). Figure 3.3 shows the log odds of the probability of
success plotted against experience. Of particular interest here is the fact that the values

2Or, in fact, any measure of probability derived from a binary response variable.
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Figure 3.3 The log odds of success and the experience of the sales staff

of the response variable are not now constrained between 0 and 1, and a linear model
(the model ‘logit[Pr(success)] = α + β experience’) now more closely represents
the relationship. In essence, the logit transformation of the original response variable
data has transformed the S-shaped relationship suggested in Figure 3.2 into a linear
relationship between the random and systematic components of the model.

The parameters for the model shown in Figure 3.3 now relate to the log odds (the
logit) of success, rather than the probability of success. Although this manipulation
makes it possible to fit a linear model, logits are not particularly easy to interpret.
This is not much of a problem, however, as once the model has been fit, it is easy to
transform the logit scale back to a probability scale by using the inverse of the log odds
transformation. Basically, logit scores have been used so that a linear model of the
response variable can be fitted and in order to interpret the model more easily, the logit
model may be transformed back into probability scores, or into odds. A probability
value, Pr(x), may be transformed into a logit using the equation

log
Pr(x)

1 − Pr(x)
= logit(x) (3.2)

and a logit value, logit(x), may be transformed into a probability using the equation

elogit(x)

1 + elogit(x)
= Pr(x). (3.3)

For the above example, it is a simple matter to convert probabilities of success
into logit scores and also to convert logit scores of success back into probabilities.
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For example, if the model predicts a logit score of 1.72, the probability associated
with this is e1.72/(1 + e1.72), which equates to a probability of 5.585/6.585, or 0.848.
A logit score of 1.72 is equivalent to a probability of success of 0.848. Similarly, if we
wished to know the logit value associated with a probability of 0.5, this can simply be
computed as log[0.5/(1− 0.5)], which equals log(1) or 0.00. From Figure 3.3 we can
see that a 50% success rate is associated with an experience level of about 27 years
(this is the experience level associated with a logit score of 0, which is equivalent
to a success rate of 50%). Table 3.1 demonstrates a number of probabilities being
converted into logits and a number of logits being converted into probabilities. Also
provided is the odds, which is more easily interpreted than the log odds and is, as
we will see, commonly used to describe the relationship between the explanatory and
response variables.

Table 3.1 The logit transformation

Probability → logit

Probability Odds Log odds
x x/(1 − x) log[x/(1 − x)]

0.1 0.11 −2.20
0.5 1.00 0.00
0.9 9.00 2.20

Logit → probability

Log odds Odds Probability
x ex ex/[1 + ex ]

−3.00 0.05 0.05
0.00 1.00 0.50
3.00 20.09 0.95

Using the logit → probability transformation, it is a simple matter to transform the
linear logit model shown in Figure 3.3 to the non-linear model of probability suggested
in Figure 3.2 (this non-linear model can be imagined by connecting the filled dots on
the graph with a line). When this is done, the linear model changes into a non-linear
S-shaped model that more accurately reflects the relationship between the response
and explanatory variables. Figure 3.4 shows the logit model depicted on the original
probability scale.3

By using a logit transformation, therefore, one can model a binary response vari-
able using a linear model. The use of logits enables the basic linear model to be
generalized to non-linear relationships (particularly those related to categorical data)
and is particularly important as the technique can be extended to enable multi-category
ordered and unordered response variables to be modeled (see Chapters 4 and 5).

3This S-shaped model is simply achieved by predicting values of the response variable from the model
and then plotting these against values of the explanatory variable. The curved line on the graph is the linear
logit model that has been transformed back into a probability.
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Figure 3.4 A logit model of the probability of success and the experience of the
sales staff

3.2 The Logistic Regression Model

The logistic regression model will be illustrated using data taken from the Current
Population Survey (CPS). These data are used to supplement census information
between census years and are available in the public domain from the CPS 85 Wages
link on the Statlib datasets archive at http://lib.stat.cmu.edu/datasets/ (see Berndt,
1991). These data consist of a random sample of 534 persons from the CPS, with
information on a number of characteristics of the workers including wage (dollars
per hour), age (in years), gender, occupation (management, sales, clerical, service,
professional, other) and union membership (yes, no). The variables used from this
data set are shown below in Table 3.2 along with some of the data.

The aim of the regression models we are to use in this chapter are to predict the
likelihood that someone is a union member (this variable is a simple binary classifica-
tion of membership indicating whether or not an individual is a member of the union).
It is important to note that the models presented here are merely for illustration and
should not be assumed to constitute well thought out models of union membership.

3.2.1 Simple logistic regression

Simple logistic regression refers to the case where there is a dichotomous response
variable and a single explanatory variable. As the response variable is dichotomous,
a logit link is used to link the random and systematic components of the model. The
relationship we are to model here is the one between union membership and wage.
Using the logit model, this relationship is represented as:

logit[Pr(union member)] = α + β wage (3.4)
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Table 3.2 Data: example for illustrating logistic regression

Union
Case no. membership Age Wage Gender Occupation

1 no 35 5.10 female other
2 no 57 4.95 female other
3 no 19 6.67 male other
4 no 22 4.00 male other
5 no 35 7.50 male other

↓
530 no 29 11.36 male professional
531 no 51 6.10 female professional
532 yes 48 23.25 female professional
533 yes 31 19.88 male professional
534 no 55 15.38 male professional

This is a very simplified model and merely states that the probability someone is a
union member may be related to the amount they earn. There are clearly many more
variables that are likely to play a role in union membership, but these are not included
in this example. The scatterplot in Figure 3.5 shows the raw data (unfilled circles)
and the probabilities of union membership for a number of categories of wage (filled
circles) and suggests that the probability of union membership increases as wage levels
increase. This does not, however, appear to be a particularly strong relationship and it
is unclear from the graph whether or not it is significant.

Computing and interpreting model parameters: The model parameters for the
simple logistic regression model discussed above (see Equation 3.4) were computed
using software4 and are shown in Table 3.3 below. From this table we can derive the

Table 3.3 Regression parameters

Estimate Standard error Odds ratio

(Intercept) −2.207 0.233
Wage 0.072 0.020 1.075

Model: logit[Pr(union member)] = α + β wage

intercept (α) and the regression coefficient (β) for the model. The model of union
membership is therefore

logit[Pr(union member)] = −2.207 + (0.072 × wage)

4The software package used here is R (R Development Core Team, 2007).
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Figure 3.5 Union membership and wage

and is interpreted in the following way. As wage increases by 1 dollar per hour (a unit
increase in wage), logit[Pr(union member)] increases by 0.072. This is almost identical
to the way in which the parameters for an OLS regression model are interpreted. The
only difference here is that the parameters now relate to the log odds of the probability
of being a union member, rather than the actual value of the response variable. Log
odds are, however, difficult to interpret as we do not commonly think in these terms.
A more useful statistic to work with is the odds, which in this case are 1.075 (e0.072).
For each unit increase in wage, the odds of being a member of the union increase from
1 to 1.075 (a 7.5% increase). Higher earners are therefore more likely to be members
of the union.

It is useful to also determine the limits within which one might expect the prob-
ability of being a union member to change given a unit change in wage. In order to
answer this question, 95% confidence intervals may be calculated using Equation 3.5.

confidence intervals for β = β̂ ± 1.96(ASE) (3.5)

This equation is very similar to that shown for the confidence intervals of the parameters
in OLS regression, except that the standard errors estimated for logistic regression are
asymptotic standard errors (see Hutcheson and Sofroniou, 1999, for an explanation
of this). Table 3.4 shows the 95% 2-tailed confidence intervals for the regression
parameters provided in Table 3.3. From the table we can see that in 95% of cases
a unit change in ‘wage’ is associated with a change in logit[Pr(union member)] of
between 0.032 and 0.111, with the odds expected to change from 1.033 (i.e., e0.032) to
1.118 (i.e., e0.111). For each unit increase in ‘wage’, the odds of being a member of the
union can be expected to increase by at least 3.3% (1.033 times the previous value) and
at most 11.8% (1.118 times the previous value). As both of these confidence intervals
predict an increase in the odds ratio we can conclude that at the 95% 2-tailed level
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of significance, ‘wage’ does have a significant affect on the response variable (this is
confirmed in the next section when the model-fit statistics are discussed).

Table 3.4 Confidence intervals

β 95% CIs for β 95% CIs for eβ

Coefficient ASE Lower Upper Lower Upper

Wage 0.072 0.020 0.032 0.111 1.033 1.118
(Constant) −2.207 0.233

Logit[Pr(union member)] = −2.207 + 0.072 wage

Predicted probabilities: Predictions can be provided for logistic regression models
in much the same way as they were for the OLS regression models discussed in
Chapter 2, and can be computed for any given value of the explanatory variable
(one must be careful, however, not to use values of the explanatory variable that are
outside the range of observed values). For a given value of wage, the log odds, odds
and probability of someone being a member of the union can be easily calculated.
For example, when wage equals 5 dollars per hour, the probability of being a union
member is 0.136 compared to a probability of 0.662 when wages are 40 dollars per
hour. These calculations are shown below:

wages of $5 per hour

log odds[Pr(union member)] = α + βx

= -2.207 + (0.072*5)
= -1.847

odds[Pr(union member)] = eα+βx

= e−1.847

= 0.158

Pr(union member) = eα+βx/(1 + eα+βx)

= 0.158/(1+0.158)
= 0.136

wages of $40 per hour

log odds[Pr(union member)] = α + βx

= -2.207 + (0.072*40)
= 0.673

odds[Pr(union member)] = eα+βx

= e0.673

= 1.960

Pr(union member) = eα+βx/(1 + eα+βx)

= 1.960/(1+1.960)
= 0.662.
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It is an easy matter to compute these predictions using software. Table 3.5 shows
predicted probabilities of union membership for a number of different wages computed
using the R statistical package. Although not shown here, it is possible to also determine
the confidence intervals for the predictions of the response variable (see Sofroniou and
Hutcheson, 2002, for details about this).

Table 3.5 Predicted probabilities

Wage Predicted probability
of union membership

4.00 0.128
4.45 0.132
4.95 0.136
5.10 0.137
6.67 0.151
7.50 0.159

13.07 0.219
19.47 0.308

Logit[Pr(union member)] = −2.207 + 0.072 wage

From Table 3.5 we can see that the probability of being a union member increases
as the variable ‘wage’ increases. It is useful to depict this model graphically. Figure 3.6
shows the logistic regression model for union membership given wage.5 The non-
linear nature of the model can be clearly seen in the curvature of the fitted line and
also shows that the higher values of wage are associated with a higher probability of
being a union member.

Goodness-of-fit statistics: In addition to the model parameters, it is useful to have
an indication of how well the model fits the data. For this we need to compute some
model-fit statistics. There are, however, a number of aspects to assessing the model-fit.
These can be utilized to assess the entire model (all the variables considered together),
individual variables and individual categories within variables. There are a number of
statistics that can be used to estimate significance and those used depend, to a large
extent, on the software package being used. This chapter will utilize statistics based on
the deviance measure (−2LL) to estimate the whole model and individual variables, but
will also use the z-statistic to estimate the effect of individual variables and categories
within explanatory variables when the variable is categorical. Although it is possible to
use statistics based on the deviance measure to estimate the significance of individual
categories within variables, this is not particularly easy to achieve in software6 and is

5This graph has been produced by simply plotting the predicted probabilities shown in Table 3.5 against
the explanatory variable.

6The computation of −2LL statistics for the individual categories of a variable often involves manually
re-coding the data and then manually comparing nested models (see Hutcheson and Sofroniou, 1999, for a
full description of this).
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Figure 3.6 Logistic regression model of union membership and wage

therefore often estimated using z-statistics. As this technique is commonly utilized in
software, this technique will also be used in this discussion

For a logistic regression model, model fit can be determined by comparing mea-
sures of deviance for nested models. The log-likelihood statistic provides a measure of
deviance for a logistic regression model (that is, a measure of the difference between the
observed values and those predicted from the model) and can be used as a goodness-of-
fit statistic. This measure of deviance broadly corresponds to the RSS statistic, which
is a measure of deviance for an OLS regression model (see Ryan, 1997: 267). The
log-likelihood statistic is usually quoted as −2 times the log-likelihood (−2LL) as
this has approximately a χ2 distribution, thus enabling significance to be evaluated.
The interpretation of −2LL is quite straightforward – the smaller its value, the better
the model fit (a −2LL score equal to 0 indicates a perfect model where there is no
deviance).

Similar to OLS regression, the effect of a particular explanatory variable may be
computed by comparing the deviance between nested models (one model including
the explanatory variable and the other not) and evaluating significance using the chi-
square distribution with the number of degrees of freedom equal to the difference in
the number of terms between the 2 models. For a simple logistic regression model,
the effect of the explanatory variable can be assessed by comparing the −2LL statistic
for the full regression model with that for the null model (see Equation 3.6).

−2LLdiff = (−2LL0) − (−2LL1) (3.6)

where −2LL0 refers to the null model logit[Pr(Y = 1)] = α,

and −2LL1 refers to the model logit[Pr(Y = 1)] = α + βx.

For the model ‘logit[Pr(union member)] = α + β wage’, the deviance statistics
for the null and regression models and the significance of the change in deviance
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Table 3.6 Assessing significance by comparing model deviances

Model Deviance df −2LLdiff dfdiff P-value
(−2LL)

Logit[Pr(Y = 1)] = α 503.084 533
Logit[Pr(Y = 1)] = α + β wage 490.500 532

12.584 1 0.0004

−2LLdiff is the difference in deviance between the two models

Chi-square statistic = 12.584 on 1 degree of freedom

(−2LLdiff) are shown in Table 3.6. From this table we can see that adding the variable
‘wage’ to the model decreases the deviance from 503.084 to 490.500, a decrease
of 12.584. This change in deviance is tested at 1 degree of freedom using the χ2

statistic and is found to be significant (0.0004). We can therefore say that the variable
‘wage’ significantly reduces the deviance in union membership and the 2 variables
are significantly related. This information is commonly provided by software in an
analysis of deviance table. Although this table is redundant for this model (as the
information has already been provided above), an analysis of deviance table is useful
for multiple regression models and for models that include categorical explanatory
variables and is included here for completeness.

Table 3.7 Analysis of deviance table: the significance of variables

−2LL df P-value

Coefficient
Wage 12.584 1 0.0004

Model: logit[Pr(union member)] = α + β wage

In addition to those statistics based on −2LL, the significance of the explanatory
variable can be estimated using a z-statistic. The z-statistic is simply the estimates
divided by the standard error which can be easily tested for significance. The z-statistic
for wage is therefore 0.072/0.020, which is 3.577 (this is the estimate from software,
which uses many more decimal place than have been reported here). This value is then
tested for significance using a 2-tailed test. Using the z-statistic, we find that wage is
still significantly related to union membership.

In addition to the significance of individual variables, it is also useful to have an
idea of the percentage of variation in the response variable that is ‘explained’ by the
model. In OLS regression, this information is provided by the R2 statistic, however, this
should not be used in logistic regression as it can produce misleading results (see Ryan,
1997, for a detailed explanation of this). A number of alternative measures similar to
the R2 statistic have, however, been proposed for logistic regression models including
those by Cox and Snell (1989), (see also, Cox and Wermuth, 1992) and Nagelkerk
(1991). These statistics are commonly known as pseudo R Square measures and can
be computed using a number of statistical packages. For the model ‘logit[Pr(union
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Table 3.8 Estimating the significance of individual parameters using the z-statistic

Estimate Standard error z statistic P-value

(Intercept) −2.207 0.233
Wage 0.072 0.020 3.577 0.0003

Model: logit[Pr(union member)] = α + β wage

member)] = α + β wage’ Cox & Snell R Square = 0.023 and Nagelkerke R Square =
0.038. These statistics indicate that, although ‘wage’ is significant, it does not explain
much of the variation in union membership (as we would expect from Figure 3.5).
This is, however, to be expected, as there are many factors other than wage likely to
influence union membership.7

To conclude the simple logistic regression analysis; the wage of an individual
does appear to be significantly related to union membership (χ2 = 12.584, df = 1,

p = 0.0004), although this relationship explains relatively little of the variation in
the response variable (pseudo R square measures are in the region of 0.05). The
relationship is positive, with higher wages associated with higher probabilities of
union membership. It should be noted, however, that as this was not an experimental
study, this association should not be interpreted as causal. It is easy to hypothesize
factors other than wage that might be responsible for the relationship, including length
of service (higher wages tend to be earned by older employees who have had more
opportunity to join the union), changing attitudes to union membership (unions may
have been more active in the past), or the type of job available in the company (the
company may, for example, be moving away from manufacturing, which traditionally
has a higher level of union participation).

3.2.2 Multiple Logistic Regression

In the section above it was found that wage is positively related to union membership
(χ2 = 12.584 on 1 degree of freedom, p = 0.0004). It is possible, however, that
this effect is due, at least in part, to the age of the employees (amongst other things).
Older employees will tend to earn more due to their experience and length of service
and may also be more likely to be union members as they have had more opportunity
to join a union and might also have been working at times when unions were more
active than they are today. It would be useful, therefore, to include age when modeling
union membership. This can be simply achieved by including ‘age’ as an explanatory
variable in the model.

Union membership may be predicted by wage and age.

7It should be noted that, similar to the OLS regression R2 statistic, pseudo R2 statistics should be used
with caution and advisably only used as a supplementary statistic.
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The logistic regression equation for multiple explanatory variables is similar to the
case where there is just one explanatory variable except that more than one variable is
entered into the model. Including the variable ‘age’ gives the logistic regression model

logit[Pr(union member)] = α + β1wage + β2age (3.7)

which is a very simplified model and merely states that the probability someone is a
union member may be related to the amount they earn and their age. It is useful at this
point to investigate the relationship between age and union membership. Although
we could do this using a simple logistic regression model, we will just illustrate
the relationship simply using a graph. Figure 3.7 shows a scatterplot illustrating the
relationship between the age of the employee and the probability that they are a
member of the union. This graph has been obtained by categorizing the ages into
groups and then calculating the probability that the members of these groups are union
members.
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Figure 3.7 Probability of being a union member and age

Figure 3.7 suggests that the probability of being a union member appears to increase
with age. Union membership may therefore be related to the age of the employee. It is
also important to look at the relationship between the explanatory variables ‘age’ and
‘wage’, as a strong relationship between these variables will prove problematic when
interpreting the regression coefficients. The variables ‘age’ and ‘wage’ are significantly
related as shown by an OLS regression model (F1,532 = 17.2, Pr = 3.917e − 05),
although the relationship does not account for much of the variance as Adjusted R2 is
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only 0.0295, which suggests that only about 3% of the variation in wage can be
accounted for by the variable ‘age’. This weak relationship can be seen in Figure 3.8,
which shows a scatterplot for these 2 variables along with the linear regression and
lowess best-fit lines. From these graphs it looks as though the variables ‘wage’ and
‘age’ are both likely to be related to union membership and as there is no strong
relationship between them, their regression parameters in a multiple regression model
should provide a good indication of their effect on the response variable. It is useful
to now look at the effect of both variables together using a multiple logistic regression
model.
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Figure 3.8 Relationship between wage and age

Computing and interpreting model parameters: Table 3.9 shows the para-
meters for the multiple logistic regression model shown in Equation 3.7. The
logistic regression model for union membership is therefore,

logit[Pr(union member)] = −2.976 + (0.065 × wage) + (0.022 × age)

These model parameters are interpreted in much the same way as they are for
multiple OLS regression. The only difference is that the estimates now relate to the
log odds. For each unit increase in wage (i.e. as wages increase by one dollar per
hour) when age is held constant, the log odds of the probability of being a member
of the union increase by 0.065. This corresponds to an odds ratio of 1.067 (e0.065);
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Table 3.9 Regression parameters

Estimate Standard error Odds ratio

(Intercept) −2.976 0.427
Wage 0.065 0.020 1.067
Age 0.022 0.010 1.022

Model: logit[Pr(union member)] = α + β1wage + β2age

so, for each unit increase in wage, the odds of being a union member increase by
6.7%. Even after taking age into account, higher paid employees are more likely to
be members of the union. Similarly, for each unit increase in age (i.e. as age increases
by one year) when wage is held constant, the log odds of the probability of being a
member of the union increase by 0.022. This corresponds to an odds ratio of 1.022
(e0.022); so, for each unit increase in age, the odds of being a union member increase
by 2.2%. Even after taking wage into account, older employees are more likely to be
members of the union. From these results it looks as though older and more highly
paid employees are more likely to be members of the union. As predicted from Figure
3.8, the addition of the variable ‘age’ to the model has not affected the parameters for
‘wage’ much (as ‘wage’ and ‘age’ are not strongly related). The parameter for ‘wage’
has changed from 0.072 in the simple model to 0.065 in the multiple model, a change
of 0.007.

As with simple logistic regression, confidence intervals can be easily computed
for the regression parameters using Equation 3.5. Table 3.10 shows the 95% 2-tailed
confidence intervals for the regression parameters provided in Table 3.9. From the table
we can see that in 95% of cases a unit change in ‘wage’ whilst ‘age’ is kept constant,
is associated with a change in logit[Pr(union member)] of between 0.026 and 0.105,
with the odds expected to change from 1.026 (i.e., e0.026) to 1.111 (i.e., e0.105). For
each unit increase in ‘wage’, whilst controlling for ‘age’, the odds of being a member
of the union can be expected to increase by at least 2.6% and at most 11.1%. As both
of these confidence intervals predict an increase in the odds ratio we can conclude
that at the 95% 2-tailed level of significance, ‘wage’ does have a significant affect on
the response variable even when controlling for ‘age’ (this is confirmed in the next
section when the model-fit statistics are discussed).

Table 3.10 Confidence intervals

β 95% CIs for β 95% CIs for eβ

Coefficient ASE Lower Upper Lower Upper

Wage 0.065 0.020 0.026 0.105 1.026 1.111
Age 0.022 0.010 0.003 0.041 1.003 1.042
(Constant) −2.976 0.427

Logit[Pr(union member)] = −2.976 + (0.065 × wage) + (0.022 × age)
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Predicted probabilities: Once the logistic regression model has been derived, the
log odds, odds and probability of someone being a member of the union can be easily
calculated for any combination of age and wage (although, as before, one needs to be
careful when predicting values outside of the range of the recorded data). For example,
when wage = 5 dollars per hour and age is equal to 40, the log odds of someone being
a member of the union are −1.771, which corresponds to an odds ratio of 0.170 and
a probability of 0.145. The calculations showing this are shown below.

log odds[Pr(union member)] = α + β1x1 + β2x2

= −2.976 + (0.065 × wage) + (0.022 × age)

= −2.976 + (0.065 × 5) + (0.022 × 40)

= −1.771

odds[Pr(union member)] = eα+β1x1+β2x2

= e−1.771

= 0.170

Pr(union member) = eα+β1x1+β2x2/(1 + eα+β1x1+β2x2)

= 0.170/(1 + 0.170)

= 0.145

It is an easy matter to compute these predictions using software. Table 3.11 shows
predicted probabilities of union membership for a number of different wages and ages
computed using the R statistical package. Although not shown here, it is possible to
also determine the confidence intervals for the predictions of the response variable
(see Sofroniou and Hutcheson, 2002).

Goodness-of-fit statistics: The significance of individual and groups of variables
in a logistic regression model can be calculated by comparing the −2LL statistics for
nested models. The general form for comparing nested models is given as:

−2LLdiff = (−2LLp) − (−2LLp+q) (3.8)

where −2LL is −2 times the log likelihood (a measure of deviance),
p is the smaller, nested model,
and p + q is the larger model.

By comparing different models one can calculate the effect that individual vari-
ables, groups of variables, or all of the explanatory variables have on the response
variable. For example, the effect of all explanatories can be assessed by comparing
the deviances of the two nested models.

logit[Pr(union member)] = α + β1wage + β2age

logit[Pr(union member)] = α.
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Table 3.11 Predicted probabilities of union membership at a selection of wages
and ages

Wage Age Predicted probability
of union membership

5.10 35 0.133
4.95 57 0.197
6.67 19 0.107
4.00 22 0.097
7.50 35 0.152

13.07 28 0.181
4.45 43 0.149

19.47 27 0.247

Logit[Pr(union member)] = −2.976+
(0.065 × wage) + (0.022 × age)

Similarly, the effect of the single parameter representing age can be assessed by
comparing the deviances of the two nested models.

logit[Pr(union member)] = α + β1wage + β2age

logit[Pr(union member)] = α + β1wage.

Table 3.12 shows the −2LL statistics associated with a number of nested models
and the significance of the differences in these scores. The difference in −2LL when
age and wage are both removed from the model is equal to 17.560. This statistic
approximates to a chi-square distribution and is tested for significance with 2 degrees
of freedom (the nested models differ by two parameters). This is significant at the
0.0005 level. When a single parameter is removed from the model, the difference

Table 3.12 Assessing significance by comparing model deviances

−2LL df −2LLdiff dfdiff P-value
The overall effect of wage and age

Logit(p) = α 503.084 533

Logit(p) = α + β1wage + β2age 485.524 531
17.560 2 0.0002

The effect of wage

Logit(p) = α + β1 age 495.665 532

Logit(p) = α + β1wage + β2age 485.524 531
10.141 1 0.0015

The effect of age

Logit(p) = α + β1 wage 490.500 532

Logit(p) = α + β1wage + β2age 485.524 531
4.976 1 0.0257
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in −2LL is tested at 1 degree of freedom. The variable ‘wage’ is significant at the
0.005 level, and the variable ‘age’ is significant at the 0.05 level. This information is
commonly provided by software in an analysis of deviance table similar to that shown
in Table 3.13.

Table 3.13 Analysis of deviance table: the significance of variables

−2LL df P-value

Coefficient
Wage 10.141 1 0.001
Age 4.976 1 0.026

Model: logit[Pr(union member)] = α + β1 wage + β2 age

In addition to those statistics based on −2LL, the significance of the explanatory
variable can be estimated using a z-statistic. The z-statistic is simply the estimates
divided by the standard error which can be easily tested for significance. The z-statistic
for wage is therefore 0.065/0.020, which is 3.239. This value is then tested for signi-
ficance using a 2-tailed test. Using the z-statistic, we find that wage is still signific-
antly related to union membership.

Table 3.14 Estimating the significance of individual parameters using the z-statistic

Estimate Standard error z statistic P-value

(Intercept) −2.976 0.427
Wage 0.065 0.020 3.239 0.0012
Age 0.022 0.010 2.249 0.0245

Model: logit[Pr(union member)] = α + β wage

Although the variables wage and age are significantly related to union membership,
these variables do not explain much of the variation in the response variable. This is
illustrated by the pseudo R square statistics which show that for the full model, Cox and
Snell R Square equals .032 and Nagelkerke R Square equals .053. It appears that only
about 5% of the variability in union membership can be explained by age and wage.

To conclude the multiple logistic regression analysis; the wage level and age of
an individual does appear to be significantly related to union membership when con-
sidered together (χ2 = 17.560, df = 2, p = 0.0002). The individual explanatory
variables are also significantly related to union membership (for wage, χ2 = 10.141,

df = 1, p = 0.0015, and for age χ2 = 4.976, df = 1, p = 0.0257). Although
this relationship is significant, it only explains relatively little of the variation in the
response variable (pseudo R square measures are in the region of 0.05). The relation-
ships are positive, with higher wages and ages associated with higher probabilities of
union membership. Similar to the simple logistic regression model already discussed,
these associations should not be interpreted as causal.
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3.2.3 Categorical explanatory variables

As with OLS regression, it is relatively simple to include categorical explanatory vari-
ables into the model once they have been appropriately coded. Chapter 2 demonstrated
how a categorical variable can be included in an OLS regression model using the indi-
cator coding method (providing treatment contrasts) where each of the groups are
compared to a reference category. Many other dummy coding methods are available
including one which compares each group to the average of all groups. This technique
is known as deviation coding (providing sum contrasts) and its application to the vari-
able ‘occupation’ is shown in Table 3.15 (see Hutcheson and Sofroniou, 1999, for a
full description of deviation coding).

Table 3.15 Deviation dummy variable coding of ‘occupation’

Dummy variables
Occupation 1 2 3 4 5 6

Management 1 0 0 0 0 0
Sales 0 1 0 0 0 0

Clerical 0 0 1 0 0 0
Service 0 0 0 1 0 0

Professional 0 0 0 0 1 0
Other −1 −1 −1 −1 −1 −1

As with indicator coding, the categorical variable is represented as a series of
dummy variables. A maximum of j−1 dummy variables can be entered into a model.
Using the coding in Table 3.15, the reference category is ‘other’ and the analysis will
not produce any parameters for this category. In order to illustrate the use of categorical
data in a logistic regression analysis, 2 categorical variables, gender and occupation,
will be added to the analysis conducted above. For illustration purposes, gender is
dummy coded using the indicator method (treatment contrasts) whilst occupation is
coded using the deviation method (sum contrasts). When interpreting the regression
parameters, the dummy variable representing gender is compared to the reference cat-
egory whereas occupation is compared to the average of all categories. The regression
model is of the form:

logit[Pr(union member)] = α + β1wage + β2age + β3gender

+ β4−8occupation (3.9)

You will note from Equation 3.9, that the variable ‘occupation’ has 5 regression
coefficients associated with it. This is because it has 6 categories and only j − 1
categories are able to enter into the equation. Before we compute a regression model, it
is useful to look at how gender and occupation relate to union membership and also look
at the relationship between gender and occupation. Figure 3.9 shows this information
in the form of a clustered bar chart and illustrates some interesting relationships in the
data. There appears to be a relationship between occupation and the probability of being
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a union member as there are clear differences between the occupations. There also
may be some relationship between gender and union membership as females generally
are less likely to be union members apart from those employed in a professional
role. It is also interesting to note the relationship between gender and occupation as
there are very few female union members who are employed in management and
sales roles even though females are well represented in these occupations. On the
evidence provided in the graph, one might expect occupation to be a highly significant
predictor of union membership and perhaps gender (albeit at a reduced level). With
these preliminary analyses in mind, it is useful to investigate the effect of all variables
on union membership using a multiple logistic regression model.
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Figure 3.9 Probability of being a union member for different genders and occupations

Computing and interpreting model parameters: One parameter is calculated for
each of the continuous variables ‘age’ and ‘wage’, one parameter compares males with
females (indicator coding), and 5 parameters compare j − 1 categories of occupation
with the average of all occupation categories (deviation coding). These are shown in
Table 3.16 below.8

8Many statistical packages automatically code categorical explanatory variables into dummy categories.
These analyses have been computed using R, which allows categorical variables to be automatically dummy
coded using a variety of methods to provide treatment and sum contrasts.
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Table 3.16 Regression parameters

Estimate Standard error Odds ratio

(Intercept) −4.475 0.566 0.011
Wage 0.088 0.025 1.091
Age 0.030 0.010 1.030

Gender
gender[T.male] 0.614 0.287 1.847

Occupation
Occupation[S.management] −1.370 0.570 0.254
Occupation[S.sales] −1.588 0.870 0.204
Occupation[S.clerical] 0.095 0.394 1.099
Occupation[S.service] 1.074 0.333 2.927
Occupation[S.professional] 0.615 0.305 1.850

Model: logit[Pr(union member)] = α + β1wage + β2age + β3gender + β(4−8)occupation

For each unit increase in wage (i.e. as wages increase by one dollar per hour) when
age, gender and occupation are held constant, the log odds of the probability of being
a member of the union increase by 0.088. This corresponds to an odds ratio of 1.091
(e0.088); so, for each unit increase in wage, the odds of being a union member increase
by 0.091, or nearly 10%. Even after taking age, gender and occupation into account,
higher paid employees are more likely to be members of the union. Looking at the
parameters for gender, the log odds of the probability of being a member of the union
increases by 0.614 for males compared to females. This corresponds to an odds ratio
of 1.847; so males are 1.847 times as likely as females to be members of the union.
The occupation variable is interpreted in much the same way except the deviation
coding method makes the comparison between each dummy code and the average of
all categories. For example, compared to the average of all occupations, those in the
management field are less likely to be members of a union (an odds ratio of 0.254,
which makes them only 0.25 times as likely to be a member when compared to the
average of all employees), whilst those in the service profession are more likely (an
odds ratio of 2.927 which makes them nearly 3 times as likely to be members of the
union compared to the average of all employees).9

Predicted probabilities: Using the parameters from Table 3.16 above, it is a simple
mattertoprovidepredictionsfortheprobabilityofsomeonebeingamemberoftheunion.
These can be computed from the logistic regression model for union membership:

logit[Pr(union member)] = −4.475 + (0.088 × wage) + (0.030 × age) +
(0.614 × male) − (1.370 × management) − (1.588 × sales) +
(0.095 × clerical + (1.074 × service) + (0.615 × professional) (3.10)

9The parameters for females and the ‘other’ profession (the reference categories used above) can be
computed relatively easily by changing the reference category and re-running the analysis (consult the
software manual for your statistical package to discover the best way to achieve this).
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The categorical variables are coded according to a 0 and 1 coding scheme (the
presence or absence of that attribute). For example, for a male who is in management,
male = 1 and management = 1, with all other occupations coded as 0, whereas a
female in sales has male = 0, sales = 1 and all other occupations coded as 0. It is a
simple matter to compute the probability of being a union member for any combination
of values for the explanatory values. For example, for a 40-year-old female clerical
worker earning 5 dollars per hour, the log odds of her being a member of the union can
be calculated by substituting the values for the explanatory variables into Equation
3.10. This calculation is shown below:

logit[Pr(union member)] = − 4.475 + (0.088 × 5) + (0.030 × 40) +
(0.614 × 0) − (1.370 × 0) − (1.588 × 0) +
(0.095 × 1) + (1.074 × 0) + (0.615 × 0)

and results in log odds value equal to −2.74. The associated odds and probability
statistics can be easily computed from the log odds.10 Similarly, for a 60-year-old
male service industry worker earning 12 dollars per hour, the log odds of him being a
member of the union are:

logit[Pr(Union member)] = − 4.475 + (0.088 × 12) + (0.030 × 60) +
(0.614 × 1) − (1.370 × 0) − (1.588 × 0) +
(0.095 × 0) + (1.074 × 1) + (0.615 × 0)

which equals 0.069 (with an associated odds ratio of 1.072 and a probability of 0.517).
Predictions from a multiple logistic regression model with categorical data are easily
obtainable from software and Table 3.17 shows predictions for a selection of values
of the explanatory variables.

Table 3.17 Predicted probabilities of union membership

Wage Age Gender Ooccupation Predicted probability
of union membership

5.10 35 female other 0.140
11.84 44 male management 0.053
3.80 22 female sales 0.006

11.11 32 male clerical 0.136
10.00 44 female clerical 0.100
4.35 51 female service 0.181
3.50 63 male service 0.352

24.98 41 male professional 0.539
4.35 21 female professional 0.054

10In this case, the odds are 0.065 (e−2.74) and the probability is 0.061(0.065/(1 + 0.065)).
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Goodness-of-fit statistics: In addition to the model parameters, confidence inter-
vals and predictions, it is useful to have an indication of how well the model fits the
data and how significantly each explanatory variable is related to the response. As
with the logistic regression models discussed above, significances may be estimated
using statistics based on the deviance (−2LL) and on z-statistics. In this section, the
significance of the variables is to be estimated using statistics based on the measure of
deviance, and the significances associated with comparing categories of the explana-
tory variables is to be estimated using z-statistics.

For a multiple logistic regression model, the effect of individual or groups of
explanatory variables can be assessed by comparing the −2LL statistics for 2 nested
models (see Equation 3.8). The resulting statistic is tested for significance using the
chi-square distribution with the number of degrees of freedom equal to the difference
in the number of terms between the 2 models. Table 3.18 shows the deviance statistics
associated with a number of models and the significances associated with all variables
considered together and gender and occupation individually.

Table 3.18 Assessing significance by comparing model deviances

−2LL df −2LLdiff dfdiff P-value

The effect of all variables

Logit[Pr(union member)] = α 503.084 533

Logit[Pr(union member)] = α +
β1wage + β2age + β3gender +
β(4−8)occupation

437.815 525
65.270 8 4.3e − 11

The effect of gender

Logit[Pr(union member)] = α +
β1wage + β2age+
β(4−8)occupation

442.523 526

Logit[Pr(union member)] = α +
β1wage + β2age + β3gender +
β(4−8)occupation

437.815 525

4.708 1 0.030

The effect of occupation

Logit[Pr(union member)] = α +
β1wage + β2age + β3gender

474.336 530

Logit[Pr(union member)] = α +
β1wage + β2age + β3gender +
β(4−8)occupation

437.815 525

36.521 5 7.5e-07

From Table 3.18 we can see that in our model occupation is strongly related to union
membership with gender also related, but at a less significant level. Information about
the significance of each individual explanatory variable is also typically displayed
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in statistical packages in an analysis of deviance table similar to the one shown in
Table 3.19.

Table 3.19 Analysis of deviance table: the significance of variables

−2LL df p-value

Coefficients
Wage 11.788 1 0.0006
Age 8.301 1 0.0040
Gender 4.708 1 0.030
Occupation 36.521 5 7.47e−07

Model: logit[Pr(union member)] = α + β1wage + β2age +
β3gender + β4−8occupation

In addition to those statistics based on −2LL, the significance of individual cat-
egories of the explanatory variables can be estimated using z-statistics. The z-statistic
is simply the estimate divided by the standard error and is tested for significance using
a 2-tailed test (i.e., Pr(>|z|)). Table 3.20 shows the z-statistics and the associated level
of significance for each parameter in the model for union membership.

Table 3.20 Estimating the significance of individual parameters using the z-statistic

Estimate Standard z statistic P-value
error

(Intercept) −4.475 0.566 −7.904 2.7e−15
Wage 0.088 0.025 3.477 5.1e−04
Age 0.030 0.010 2.886 0.004
Gender[T.male] 0.614 0.287 2.142 0.032
Occupation[S.clerical] 0.095 0.394 0.241 0.810
Occupation[S.management] −1.370 0.570 −2.402 0.016
Occupation[S.other] 1.174 0.282 4.163 3.1e−05
Occupation[S.professional] 0.615 0.305 2.015 0.044
Occupation[S.sales] −1.588 0.870 −1.825 0.068

Model: logit[Pr(union member)] = α + β1wage + β2age + β3gender+
β4−8occupation

From Table 3.20, we can see that the occupation variable has been coded using the
deviation method (indicated by the S character (sum comparison) before the category
label) which compares the identified category with the average of all categories. For
example, clerical workers are not significantly different in their union membership
from the average of all workers in the study (z = 0.241, p = 0.810), whereas those
employed in ‘other’ profession are (z = 4.163, p = 3.1e − 05).

To conclude the multiple logistic regression analysis, the wage level, age, gender
and occupation of an individual when considered together are significantly related to
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union membership (χ2 = 65.27, df = 8, p = 4.3e − 11). All individual explanatory
variables are significantly related to union membership with type of occupation being
the most significant. Higher wages and ages are associated with higher probabilities
of union membership. Males are more likely to be members and type of occupation
also has a significant relationship.

3.3 Analyzing Simple Experimental Designs for
Dichotomous Data

Chapter 2 showed how the inclusion of categorical explanatory variables in a regres-
sion model enabled the experimental group designs to be analyzed using GLMs. The
techniques discussed there can be equally applied to binary response variables and
logistic regression used to analyze independent and dependent group experimental
designs. The analysis of these designs for dichotomous data will not be discussed here
as they are covered in detail using the more general technique of multi-nomial logistic
regression, which can be used to analyze a dichotomous response variable as well as
one that is multi-category. For an experimental design where the outcome is dicho-
tomous, one should apply the multi-nomial logistic regression technique described
in Chapter 5.

3.4 Conclusion

In this chapter, logistic regression has been used to model binary response variables
using continuous and categorical explanatory variables. The use of the logit transfor-
mation has been described in detail particularly with reference to the application of
linear models to categorical data. Detailed descriptions have been provided about the
interpretation of the regression coefficients and model-fit statistics and the similarities
between these statistics and those used in OLS regression.

Logistic regression and the use of logits is particularly important as it provides a
basis for modeling multi-category ordered and unordered response variables. These
models are dealt with in Chapters 4 and 5.



CHAPTER 4

Modeling Ordered Data

This chapter introduces the proportional odds model, which can be used to model
ordered categorical response variables. The chapter covers the theory behind the tech-
nique and the interpretation of the parameters and the model-fit statistics. It also shows
how it can be used to analyze data from simple experimental studies when the response
variable is ordered categorical.

There are a number of other methods available that can be used to model ordered
categorical data including linear-by-linear models and continuation ratio logits. These
techniques are covered in detail by Hutcheson and Sofroniou (1999) including the
analysis of an example data set and will not, therefore be described in any detail
here. We will, however, discuss the use of the proportional odds model, which is an
extension of the logistic regression model for binary data and is, perhaps, the most
widely used technique applied to model ordered data.

4.1 The Generalized Linear Model

In previous chapters we have seen how generalized linear models can be used to model
continuous data using the technique of OLS regression and model binary data using
logistic regression. In this chapter we will demonstrate how the GLM framework
(more particularly, the logit model) can be extended to predict ordered categorical data.
These data provide some challenge for analysis as the numbers used to represent the
categories impart meaning only about order and not about actual magnitude. It is not
appropriate, therefore, to use a technique that makes use of the numeric functions that
should only be applied to continuous data (plus, minus, etc., see Chapter 1). If one is to
model ordered categorical data appropriately, a technique needs to be applied that takes
account of the order but is invariant to the particular coding method used (that is, all
legitimate coding methods used to represent the data should provide the same results).

4.2 The Proportional Odds Model

The proportional odds model can most simply be understood as an extension of
logistic regression. This technique allows one to model ordered data by analyzing
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it as a number of dichotomies. A binary logistic regression model compares one
dichotomy (for example, passed–failed, died–survived, etc.) whereas the propor-
tional odds model compares a number of dichotomies by arranging the ordered data
into a series of binary comparisons. For example, a 4-category ordered variable Y
(coded using j categories, 1, 2, 3, 4) can be represented as 3 binary comparisons.

binary comparison 1: 1 compared to 2, 3, 4

binary comparison 2: 1, 2 compared to 3, 4

binary comparison 3: 1, 2, 3 compared to 4

Using this method of categorizing the data enables the order in the data to be
accounted for as comparisons are being made between higher and lower levels of the
variable (Y > j and Y ≤ j ). It is easy to see that this method takes into account
the order in the data, but is invariant of the actual codes used to designate Y as long as
the order is represented appropriately. For example, if the variable Y was coded using
0, 2, 9, 38 as opposed to 1, 2, 3, 4, exactly the same series of binary comparisons
would be made.

binary comparison 1: 0 compared to 2, 9, 38

binary comparison 2: 0, 2 compared to 9, 38

binary comparison 3: 0, 2, 9 compared to 38

Each binary comparison can be viewed as a separate logistic regression model;
that is, as a logit model using the log odds. To model a 4-category ordered response
variable, 3 regression models need to be equated which are of the form (assuming that
the response variable has been coded 1, 2, 3, 4):

binary comparison 1: logit[Pr(Y > 1)] = α + β1X1 + β2X2 + . . . + βkXk

binary comparison 2: logit[Pr(Y > 2)] = α + β1X1 + β2X2 + . . . + βkXk

binary comparison 3: logit[Pr(Y > 3)] = α + β1X1 + β2X2 + . . . + βkXk

The models above provide three estimates for the effect that each explanatory vari-
able has on the response. It is, however, easier (and more useful) to interpret a single
parameter for each explanatory variable and derive a single parsimonious model of the
response variable. In order to provide a single regression parameter for each explana-
tory variable we assume that the effect of each variable is the same for each binary
comparison. This enables the effects to be averaged and a single parameter calcu-
lated representing the effect of the explanatory variable on the response variable.
It is important, however, to test this assumption statistically (this is demonstrated
later in this chapter, however, see Hoffmann, 2004, for a full description of test-
ing the proportional odds assumption). When the binary comparisons are combined,
the proportional odds model provides a single parameter to predict the probability
of being in a higher compared to a lower category of the response variable as each
explanatory variable changes. The model for multiple explanatory variables is shown
in Equation 4.1 which basically models the effect that changes in the explanatory
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variables X1 to Xk has on the log odds of Y being in a higher rather than a lower
category.

logit[Pr(Y > j)] = α + βX1 + βX2 + . . . + βXk (4.1)

where logit refers to the log odds,

Pr is the probability,

Y is the ordered response variable,

and j is the level of the response variable.

The data set used to illustrate the proportional odds model will be based on the ice
cream consumption data set already used in the chapter that described OLS regression.1

These data have been amended slightly to allow certain analyses to be conducted.
Specifically, consumption is now represented as an ordered categorical variable as
the original continuous consumption variable has been re-coded into 3 categories
(low, medium and high). In addition to this, a hypothetical variable ‘advertising’
has been included in the data set to enable operations on an unordered categorical
explanatory variable to be demonstrated and discussed later in this chapter. The variable
‘advertising’ shows the dominant advertising technique (radio, television or local
posters) used during the period of data collection. The modified data are shown in
Table 4.1 below.

4.2.1 Simple proportional odds

We will begin demonstrating the proportional odds model using the simple example of
trying to predict level of ice cream consumption by using average outdoor temperature
as an explanatory variable. The model for this is shown in Equation 4.2.

logit[Pr(consumption > j)] = α + β temperature (4.2)

You should note that this equation is almost exactly the same as that used to model
consumption when it was recorded as a continuous variable (see Section 2.2.2). The
only difference (in the equation, at least) is that we now model ‘logit[Pr(consumption
> j )]’ rather than consumption directly. In this equation, the log odds that consump-
tion is in a higher rather than a lower category may be predicted by the average
outdoor temperature when the ice cream was sold. The relationship between con-
sumption and temperature has been examined earlier in the OLS regression chapter
and is depicted for the ordered data in Figure 4.1 below. It is obvious from the graph
(and the previous analyses) that, as expected, the level of ice cream consumption
appears to be higher at higher temperatures. The proportional odds model should
demonstrate this and also provide the significance of the relationship between the two
variables.

1The reason for using these data is that the relationships between the variables are easily understood and
we already have a good idea from OLS regression as to the form and strength of the relationships between
the variables. The relatively minor change in coding consumption (from continuous to ordered) will require
a different analysis method, but the results should be similar.
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Table 4.1 Data: ice cream consumption represented as ordered
categories

Ice cream Price Family Temperature Advertising
consumption income method

Low 0.277 79 24 Radio
Low 0.265 76 32 Television
Low 0.277 94 32 Posters
Low 0.282 82 28 Posters
Low 0.267 79 47 Television
Low 0.270 85 26 Posters
Low 0.287 87 40 Radio
Low 0.282 95 28 Radio

Medium 0.287 83 40 Posters
Medium 0.292 85 44 Television
Medium 0.285 92 27 Television
Medium 0.275 82 61 Posters
Medium 0.272 86 32 Radio
Medium 0.277 86 60 Radio
Medium 0.262 78 65 Television
Medium 0.265 96 33 Radio
Medium 0.282 79 56 Posters
Medium 0.265 94 41 Television
Medium 0.277 84 55 Radio

High 0.287 82 63 Posters
High 0.270 78 41 Radio
High 0.277 84 67 Posters
High 0.277 81 63 Television
High 0.272 76 69 Television
High 0.265 96 52 Posters
High 0.280 80 68 Radio
High 0.268 91 64 Television
High 0.277 78 72 Radio
High 0.280 80 72 Posters
High 0.260 90 71 Television

Source: Koteswara, 1970 (with amendments)

Checking the proportional odds assumption: Before we interpret any statistics
from a proportional odds model, it is important to first test the proportional odds
assumption that the effect of the explanatory variable is consistent across all levels of
the response variable (i.e., is it appropriate to average the effect of the explanatory
variable?). The test for this is to determine whether the odds ratios for the j − 1
individual binary comparisons are significantly different from each other. This test is
commonly known as the parallel lines test and is available in most statistical analysis
packages (either the parallel lines test, or a version of it).
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Figure 4.1 Temperature and consumption level of ice cream

The proportional odds assumption may also be tested using the likelihood-ratio test
where the deviance of a multi-nomial logistic regression model of consumption (see
Chapter 5) is compared to the deviance of a proportional odds model of consumption
(as much of this book deals with deviances and the likelihood-ratio tests, this is the
method we shall use to test the proportional odds assumption). As the proportional
odds model (which treats the response variable as ordered categorical data) can be
seen as a constrained model nested within the multi-nomial logistic regression model
(which treats the response variable as unordered categorical data), the fit of the two
models can be compared. The difference in deviance between the models is distributed
as a χ2 with df equivalent to the difference in the number of parameters between the
models. Basically, if the multi-nomial logistic regression model fits better than the
proportional odds model, the proportional odds assumption has not been met (i.e.
accounting for the order has not improved the model which suggests that there may
not be any order in the data to take account of). For this example, the deviance of the
proportional-odds model

logit[Pr(consumption > j)] = α + β temperature

is compared to the deviance of the multi-nomial logistic regression model

log
Pr(consumption = j)

Pr(consumption = j ′)
= α + β temperature

where one consumption category (j) is compared to the reference category (j ′). This
is the odds of being in one category compared to the other and is computed as a
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log, hence this is also a logit model (log odds). The results for this test are shown in
Table 4.2 below. The non-significant difference between the models indicates that it
may be appropriate to combine the parameters for the temperature variable.2

Table 4.2 Test of the proportional odds assumption

Model Residual Difference df P-value
deviance in deviance

Multi-nomial logistic model 40.442
Proportional odds model 40.504

0.062 1 0.803

It should be noted that there is some debate about the adequacy of the propor-
tional odds assumption test, particularly in relation to its sensitivity to sample size
(Scott et al. 1997). Even with this reservation, the test can provide useful information
about the proportional odds model and will be used here as an indication of the test’s
appropriateness. For a full discussion of testing the proportional odds assumption
using this technique see Fox, 2002 and Hoffmann, 2004.

Computing and interpreting model parameters: The model parameters for the
simple proportional odds model discussed above (see Equation 4.2) were computed
using software3 and are shown in Table 4.3 below. You should note from the table
that 2 intercepts are given whilst only one parameter is provided for temperature. This
is because 2 comparisons are made between the levels of the response variable, one
comparing low with medium and high (low | ≥medium) and the other comparing
low and medium with high (≤medium | high). The effect of temperature for these
2 comparisons has been averaged (we can do this as the proportional odds assump-
tion has been met) in order to create a single parameter for the explanatory variable.

Table 4.3 Regression parameters

Estimate Standard error Odds ratio

Coefficients
Temperature 0.146 0.039 1.157

Intercepts
Low | ≥medium 5.078 1.573
≤Medium | high 8.454 2.307

Model: logit[Pr(consumption > j)] = α + β temperature

2If the proportional odds assumption is rejected, it might not be appropriate to combine the parameters.
In this case one may wish to consider the levels as unordered and use an unordered technique such as
multi-nomial logistic regression to model the response variable.

3The software package used here is R (R Development Core Team, 2007).
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The parameters for the model shown in Table 4.3 can be interpreted as follows. For
a unit increase in temperature, the log odds of being in a higher compared to a lower
category increases by 0.146; this corresponds to an odds ratio of 1.157 (e0.146). Put
another way, the odds of being in a high category are 1.157 times higher than the odds
of being in a medium or low category for each unit increase in temperature. Similarly,
the odds of being in a high or a medium category are 1.157 times higher than being
in a low category for each unit increase in temperature. The odds of moving up one
category in consumption are 1.157 times higher for each unit increase in temperature.
In general, as temperature increases, the more likely it is that the amount of ice cream
consumed also increases. It should be noted that this interpretation of the parameters
is very similar to that for the OLS regression model shown in Section 2.2.1. The only
difference here is that we are modeling the probability of being in higher or lower
categories of consumption rather than modeling an actual defined amount.

Using software, it is a simple matter to compute the confidence intervals for the
parameter estimates.4 Table 4.4 shows the 95% confidence intervals for temperature
for both the log odds and odds ratios. We can see that for each unit increase in temper-
ature, the odds of being in a higher compared to a lower category of consumption is
expected to be between 1.072 and 1.250. As both of these estimates predict an increase
(the odds are greater than 1.0 in each case), it appears that the effect of temperature is
significant to the 95% level.

Table 4.4 Confidence intervals

2.5% 50% 97.5%

Temperature
Log odds 0.069 0.146 0.223
Odds ratio 1.072 1.157 1.250

Model: logit[Pr(consumption > j)] = α + β temperature

Predicted probabilities: Predictions can be made from the proportional odds model
in much the same way as they were from the OLS and logistic regression models.
However, as there is more than one model computed (leading to multiple intercepts)
and an averaging procedure employed for the regression parameters, the calculations
are not as simple but predictions can be made using statistical software.5 For example,
for the model

logit[Pr(consumption > j)] = α + β temperature

predictions can be made of the probability of being in any one of the response cat-
egories for a given temperature. Table 4.5 shows the predicted probabilities of being
in each response category for a selection of temperatures. We can see from the table

4These are also easy to compute manually, as the 95% confidence intervals for the parameters are simply
the estimate ±1.96 times the standard error.

5The package R has been used to generate these statistics. Identical statistics can be obtained from a
number of other packages.
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Table 4.5 Predicted consumption

Probability of being in category...

Temperature Low Medium High

24 0.828 0.165 0.007
32 0.600 0.378 0.022
32 0.600 0.378 0.022

40 0.318 0.614 0.068
44 0.206 0.677 0.116
27 0.757 0.232 0.011

72 0.004 0.108 0.887
72 0.004 0.108 0.887
71 0.005 0.123 0.872

Model: logit[Pr(consumption > j)] = α + β temperature

that the probability of being in response category low when the temperature is 24 is
0.828. The probability of being in categories medium and high are 0.165 and 0.007
respectively. Similarly, when the temperature is 72 degrees, the probability of being in
the high consumption category is 0.887 with the probabilities of being in the medium
and low categories being 0.108 and 0.004 respectively. So, when the temperature is
relatively high, consumption is likely to be in the high category, when it is relatively
low, consumption is likely to be be in the low category, and when it is less extreme,
consumption is likely to be in the medium category. The predicted probabilities of
being in each category given temperature is shown in Figure 4.2 below.

Goodness-of-fit statistics: In addition to the model parameters, it is useful to have
an indication of how well the model fits the data. For this we need to compute some
model-fit statistics. There are, however, a number of aspects to assessing the model-fit.
These can be utilized to assess the entire model (all the variables considered together),
individual variables and individual categories within variables. There are a number of
statistics that can be used to estimate significance and those used depend, to a large
extent, on the software package being used. This chapter will utilize statistics based on
the deviance measure (−2LL) to estimate the whole model and individual variables,
but will use t-statistics to estimate the effect of individual categories within explana-
tory variables. Although it is possible to use statistics based on the deviance measure
to estimate the significance of individual categories within variables, this is not par-
ticularly easy to achieve in software6 and is therefore often estimated using t-statistics
(or a comparable statistic). As this technique is commonly utilized in software, this
technique will also be used in this discussion.

6The computation of −2LL statistics for the individual categories of a variable often involves manually
re-coding the data and then manually comparing nested models (see Hutcheson and Sofroniou, 1999, for a
full description of this).
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Figure 4.2 Predicted probabilities for each group given temperature

For a proportional odds model, model fit can be determined by comparing mea-
sures of deviance for nested models. The measure of deviance used is −2LL (see the
chapter on logistic regression for a full discussion of this statistic) which is tested for
significance using the chi-square distribution with the number of degrees of freedom
equal to the difference in the number of terms between two nested models. For a simple
proportional odds model, the effect of the single explanatory variable can be assessed
by comparing the −2LL statistic for the full regression model with that for the null
model (see Equation 4.3).

−2LLdiff = (−2LL0) − (−2LL1) (4.3)

where −2LL0 is the deviance in the null model logit[Pr(Y > j )] = α,

and −2LL1 is the deviance in the model logit[Pr(Y > j )] = α + βx.

For the model ‘logit[Pr(consumption > j)] = α + β temperature’, the deviance
statistics for the null and regression models and the significance of the change in
deviance (-2LLdiff) are shown in Table 4.6. A model that just includes the response
variable (the null model) has a deviance of 65.293. Adding the variable temperature to
the model results in a model with a deviance equal to 40.504. This indicates that adding
the variable temperature to the null model has reduced the variance by 24.789, which
is a highly significant change, given that the models only differ by one parameter
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(hence the 1 df the change in deviance is tested on). Adding temperature to the
model therefore significantly reduces the deviance and indicates that temperature is a
significant predictor of consumption category.

Table 4.6 Assessing significance by comparing model deviances

Model Residual Difference df P-value
deviance in deviance

Logit[Pr(Y > j)] = α 65.293
Logit[Pr(Y > j)] = α + β temperature 40.504

24.789 1 6.4e−07

Y = ice cream consumption category

In many statistical packages, these model-fit statistics are provided in simple
analysis of deviance tables as part of the analysis output. Table 4.7, shows this
output for the simple proportional odds model of consumption. Although this table
is redundant for this model (as the information has already been provided above),
it is useful for multiple regression models and for models that include categorical
explanatory variables and is included here for completeness.

Table 4.7 Analysis of deviance table: the significance of variables

−2LL df P-value

Coefficient
Temperature 24.789 1 6.4e − 07

Model: logit[Pr(consumption > j)] = α + β temperature

In addition to those statistics based on −2LL, the significance of the explanatory
variables can be estimated using t-statistics. The t-statistics are simply the estimates
divided by the standard error and tested for significance using n − k − 1 degrees of
freedom (where n is the number of cases and k is the number of parameters excluding
the constant). The t-statistic for temperature is therefore 0.146/0.039, which is 3.728
(this is the estimate from software, which uses many more decimal places than have
been reported here). This value is then tested at 28 degrees of freedom and signif-
icance reported for a 2-tailed test (see Table 4.8). Using the t-statistic, we find that
temperature is still significantly related to consumption level, albeit at a reduced level
of significance.

In addition to the significance it is also useful to have an idea of the percentage
of variation in the response variable that is ‘explained’ by the model. Similar to the
logistic regression model (see Section 3.2.1), ‘pseudo R2’ statistics can be computed.
For the above model, Cox & Snell R Square = 0.562 and Nagelkerke R Square =
0.634. These statistics indicate that temperature ‘explains’ over 50% of the variation in
consumption and corresponds quite well with the R2 statistic from the OLS regression
procedure for the similar model shown in Section 2.2.1 which showed an R2 value of
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Table 4.8 Estimating the significance of individual parameters using t-statistics

Estimate Standard error t-statistic P-value

Coefficients
Temperature 0.146 0.039 3.728 8.7e − 04

Intercepts
Low | ≥medium 5.078 1.573
≤Medium | high 8.454 2.307

Model: logit[Pr(consumption > j)] = α + β temperature

0.6. It should be noted that, similar to the logistic regression pseudo R2 statistics, these
should be used with caution and advisably only used as a supplementary statistic.

In conclusion, the simple proportional odds model of ice cream consumption sug-
gests that, as expected, temperature is significantly related to consumption and explains
over half of the variation. The test of parallel lines indicated that the proportional odds
assumption was met, however, one may wish to investigate the model further using
regression diagnostics (see, for example, Crawley, 2005; Draper and Smith, 1998;
Everitt and Hothorn, 2006; Hoffman, 2004).

4.2.2 Multiple proportional odds

As is the case in OLS and logistic regression models, it is a simple matter to include
more than one explanatory variable into a proportional odds model. These explanatory
variables are entered into the model as additional terms. For example, the ordered
categorical variable ‘ice cream consumption’ can be modeled using information about
temperature, price and income. If the errors are independently distributed according to
the standard logistic distribution, we get the ordered logit model shown in Equation 4.4.

logit[Pr(consumption > j)] = α + β1 price +
β2 family income + β3 temperature (4.4)

It is useful at this stage to investigate the relationships between each explanatory
variable and the consumption category using boxplots. Figure 4.3 shows these rela-
tionships and suggests that whilst temperature appears to be related to consumption,
income and price do not. We need to be careful, however, when evaluating these graphs
as they do not take into account the relationships between the explanatory variables.

Relationships between the explanatory variables can have serious consequences
for interpretation of the proportional odds model as they introduce a degree of
multicollinearity (see Hutcheson and Sofroniou, 1999, for a detailed discussion).
This is unlikely to be the case in this particular study as the explanatory variables
are unlikely to be highly related to one another. Theoretically, it is unlikely that the
explanatory variables would be related; for example, temperature is unlikely to be
related to income or price (unless, for example, prices are made higher on hot days).
Figure 4.4 shows a matrix scatterplot of the explanatory variables and suggests that
they are not highly related to each other.
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Figure 4.3 Boxplots showing relationships between each explanatory variable and
the level of consumption

On the evidence from the graphs above it would appear that only temperature is
likely to be related to consumption level. The proportional odds model should be able
to illustrate this.

Checking the proportional odds assumption: Before we interpret the model
statistics, it is important to test the proportional odds assumption. The test results are
shown in Table 4.9 below and suggest that the proportional odds assumption cannot
be rejected. The difference in deviance between the multi-nomial logistic regression
model and the proportional odds model is tested at 3 degrees of freedom as there
are now 3 parameters in the proportional odds model. For this example, it therefore
looks appropriate to combine the parameters for the explanatory variables and use a
proportional odds model.

Table 4.9 Test of the proportional odds assumption

Model Residual Difference df P-value
deviance in deviance

Multi-nomial logistic model 38.257
Proportional odds model 37.807

0.450 3 0.930

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income +
β3 temperature

Computing and interpreting model parameters: Table 4.10 shows the parame-
ters for the multiple proportional odds model shown in Equation 4.4. Similar to the



The Proportional Odds Model 95

income

0.260 0.270 0.280 0.290

80

85

90

95

0.260

0.270

0.280

0.290

price

80 85 90 95 30 40 50 60 70

30

40

50

60

70temperature

Figure 4.4 Matrix scatterplot showing relationships between the explanatory
variables

simple proportional odds model, there are 2 intercepts representing the 2 comparisons
modeled (low | ≥ medium, and ≤ medium | high) and a single parameter for each
of the explanatory variables (these have been averaged across the models to provide
single parameters). The parameters for this model are interpreted almost identically
to the multiple OLS and multiple logistic regression models. For example, for a unit
increase in price, when controlling for income and temperature, the log odds of being
in a higher compared to a lower category increase by an average of 2.408. The odds
ratio for price indicates that you are 11 times more likely to be in a higher category
of consumption for each unit increase in price. Similarly, for a unit increase in tem-
perature, when controlling for income and price, the log odds of being in a higher
compared to a lower category increase by an average of 0.175. The odds ratio for
temperature indicates that you are 1.191 times as likely to be in a higher category
of consumption for each unit increase in temperature. It is a simple matter to also
compute the confidence intervals for the parameter estimates. Table 4.11 shows the
95% confidence intervals for the log odds and odds ratios of all explanatory variables
in the model.
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Table 4.10 Regression parameters

Estimate Standard error Odds ratio

Coefficients
Price 2.408 2.388 11.112
Income 0.124 0.081 1.132
Temperature 0.175 0.048 1.191

Intercepts
Low | ≥ medium 17.635 7.526
≤ Medium | high 21.233 7.945

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income
+ β3 temperature

Table 4.11 Confidence intervals

2.5% 50% 97.5%

Price
Log odds −2.273 2.408 7.089
Odds ratio 0.103 11.112 119.708

Income
Log odds −0.035 0.124 0.283
Odds ratio 0.966 1.132 1.327

Temperature
Log odds 0.081 0.175 0.269
Odds ratio 1.084 1.191 1.309

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income
+ β3 temperature

You should note that the size of the parameter estimates do not give any indication
of significance as they are related to the measurement scales used. The effect of price
may look impressive when compared to temperature, but this may be due to the fact
that a unit increase in price is a relatively large increase when compared to a unit
increase in temperature (values of price range from 0.260 to 0.292, whilst values of
temperature range from 24 to 72). In order to make statements about the significance
of these parameters, one needs to look at the goodness-of-fit statistics presented below.

Predicted probabilities: Predictions can be made from a multiple proportional odds
model in much the same way as they were for a simple model. Using statistical soft-
ware, predictions can be made as to the probability of being in any one of the response
categories for a given price, income and temperature. Table 4.12 shows the predicted
probabilities of being in each response category for a selection of price, income and
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temperature values. We can see from the table that the probability of being in response
category low when the price is 0.277, income is 79 and temperature is 24 is 0.950. The
probability of being in categories medium and high are 0.048 and 0.001 respectively.

Table 4.12 Predicted probabilities

Predicted probabilities
of being in category...

Price Income Temperature Low Medium High

0.277 79 24 0.950 0.048 0.001
0.265 76 32 0.875 0.121 0.004
0.277 94 32 0.422 0.542 0.036

0.277 86 60 0.014 0.333 0.652
0.262 78 65 0.017 0.367 0.617
0.265 96 33 0.330 0.618 0.053

0.277 78 72 0.005 0.145 0.850
0.280 80 72 0.004 0.116 0.880
0.260 90 71 0.001 0.046 0.953

Model: logit[Pr(consumption > j)] = α + β1 price +
β2 income + β3 temperature

Table 4.12 suggests that consumption is closely related to temperature, but this
relationship is more difficult to see than in the previous simple model as there are now
3 interacting variables rather than a single variable acting on the response. However, in
general, it still looks as if higher consumption is associated with higher temperatures.

Goodness-of-fit statistics: In addition to the model parameters, it is useful to have
an indication of how well the model fits the data and how significantly each explana-
tory variable is related to the response. As with the simple proportional odds model
discussed above significances may be estimated using statistics based on the deviance
and on t-statistics. In this section, the significance of the variables is to be estimated
using statistics based on −2LL, and the significance of individual categories within
variables is to be estimated using t-statistics.

For a multiple proportional odds model, the effect of individual or groups of
explanatory variables can be assessed by comparing the −2LL statistics for 2 nested
models (see Equation 4.5). The resulting statistic is tested for significance using the
chi-square distribution with the number of degrees of freedom equal to the difference
in the number of terms between the 2 models.

−2LLdiff = (−2LLp) − (−2LLp+q) (4.5)

where p is the smaller, nested model,

and p + q is the larger model.
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Table 4.13 shows the −2LL statistics associated with a number of nested models and
the significance of the differences in these scores.

Table 4.13 Assessing significance by comparing model deviances

−2LL df −2LLdiff dfdiff P-value

The overall effect of price, income and temperature

Logit[Pr(Y > j)] = α 65.293 28

Logit[Pr(Y > j)] = α + β1price +
27.486 3 4.7e−06

β2income + β3temp
37.807 25

The effect of price

Logit[Pr(Y > j)] = α + β2income +
β3temp

37.823 26

Logit[Pr(Y > j)] = α + β1price +
0.016 1 0.900

β2income + β3temp
37.807 25

The effect of temperature

Logit[Pr(Y > j)] = α + β1price +
β2income

64.594 26

Logit[Pr(Y > j)] = α + β1price +
26.787 1 2.3e−07

β2income + β3temp
37.807 25

Y = ice cream consumption level

From Table 4.13, we can see that the effect of all explanatory variables on
the prediction of Y is highly significant with a χ2 value of 27.486 at 3 degrees
of freedom (p = 4.7e−06). The effect of price on consumption in the model
‘logit[Pr(consumption> j )] = α + β1 price + β2 income + β3 temperature’ is non-
significant (χ2 = 0.016 at 1 degree of freedom, p = 0.9), whilst temperature is highly
significant, (χ2 = 26.787 at 1 degree of freedom, p = 2.3e−07). This information
about the significance of each individual explanatory variable is also typically dis-
played in statistical packages in an analysis of deviance table similar to the one shown
in Table 4.14.

In addition to those statistics based on −2LL, the significance of the explanatory
variables can be estimated using t-statistics (the parameter estimates divided by the
standard error and tested for significance using n − k − 1 degrees of freedom). The
t-statistics for the multiple regression model of ice cream consumption are shown
in Table 4.15. Using the t-statistics, we find similar relationships to those identified
using the −2LL statistics. Temperature is still the only variable significantly related
to consumption level, albeit at a reduced level.

It is worth comparing these statistics with the ones computed using OLS regression
for the original uncategorized consumption variable. Given that the data sets are very
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Table 4.14 Analysis of deviance table: the significance of variables

−2LL df P-value

Coefficients
Price 0.016 1 0.900
Income 2.680 1 0.102
Temperature 26.787 1 2.3e−07

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income +
β3 temperature

Table 4.15 Estimating the significance of individual parameters using t-statistics

Estimate Standard error T-statistic P-value

Coefficients
Price 2.408 2.388 1.008 0.323
Income 0.124 0.081 1.531 0.138
Temperature 0.175 0.048 3.661 0.001

Intercepts
Low | ≥ medium 17.635 7.526
≤ Medium | high 21.233 7.945

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income
+β3 temperature

similar, the results from the 2 models should also be similar. The 2 regression models
are shown in Table 4.16 below. As expected, the statistics for the two models are similar,
but do show some differences, particularly with respect to the variable ‘income’ which
does not reach significance in the proportional odds model (this is perhaps due to the
loss of some of the information that was encoded in the variable ‘consumption’ when
it was transformed into three ordered categories). In general, though, the results and
interpretation of the analyses are similar.

Similar to the simple proportional odds regression model, ‘pseudo R2’ statistics
can be computed for models containing multiple explanatory variables. For the above
model containing price, income and temperature, Cox and Snell R Square = 0.600
and Nagelkerke R Square = 0.677, which compares to the R2 value of 0.791 com-
puted for the OLS multiple regression model in section 2.2.2. Using these indicators,
it appears that the 3 variables together ‘explain’ about 60% of the variation in the cat-
egorized consumption variable, although, as before, one should treat these statistics
as supplementary.

In conclusion, the multiple proportional odds model of ice cream consumption
suggests that out of the 3 variables tested, only temperature is significantly related
to consumption. From the pseudo R-Square statistics we find that all 3 variables
explain about 60% of the variation in consumption. The test of the proportional odds
assumption indicated that the proportional odds model can be used, however, one may
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Table 4.16 Comparing proportional odds and OLS regression models

OLS regression model Proportional odds model

All variables F3,26 = 22.175, p = 2.45e − 07 χ2 = 27.486, df = 3, p = 4.7e−06

Price F1,26 = 1.567, p = 0.222 χ2 = 0.016, df = 1, p = 0.900

Income F1,26 = 7.973, p = 0.009 χ2 = 2.680, df = 1, p = 0.102

Temperature F1,26 = 60.252, p = 3.1e − 10 χ2 = 26.787, df = 1, p = 2.3e−07

OLS model: consumption = α + β1 price + β2 income + β3 temperature

Proportional odds model: logit[Pr(consumption > j)] = α + β1 price+
β2 income + β3 temperature

wish to investigate the model further using regression diagnostics and maybe employ
some variable selection techniques to choose a more parsimonious model that only
includes those variables that reach a certain level of significance (see, for example,
Draper and Smith, 1998; Hoffman, 2004; Maindonald and Braun, 2003).

4.2.3 Categorical explanatory variables

As with OLS and logistic regression, it is relatively simple to include categorical
explanatory variables into a proportional odds model once the variable has been appro-
priately coded (this is usually carried out automatically by software). The technique
for coding categorical variables in proportional odds regression models is identical
to those for OLS and logistics regression described in Chapters 2 and 3 and will not
be revisited here. It is, however, useful to show an example proportional odds anal-
ysis that includes an unordered categorical variable. The model we will demonstrate
here is the ice cream consumption model shown in Section 4.2.2 with the addition of
the unordered categorical variable ‘advertising method’ (see Table 4.1). The model is
shown in Equation 4.6 below.

logit[Pr(consumption > j)] = α + β1 price + β2 family income +
β3 temperature + β4−5 advertising method (4.6)

Advertising method is a 3 group unordered categorical variable which designates
the type of advertising predominantly used during the period of data collection (radio,
posters or television). The 3 groups result in two parameters in the regression model
(hence the 2 parameters associated with advertising, β4−5, in Equation 4.6). It should
be noted that adding the variable designating advertising method to the model will
result in individual regression parameters being estimated on fewer data points. For
example, predictions for each level of consumption are now divided between three
methods of advertising. If there were, say, 9 observations in the low consumption
category spread equally among the advertising methods, this will mean only 3 obser-
vations can be used for estimating each parameter, which can make the parameter
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estimates very unstable. As the number of cases in this data set are very limited, the
inclusion of the categorical variable could well cause problems and needs to be re-
cognized when interpreting the results. Even though there are likely to be difficulties
caused by the limited sample size, we will continue with this analysis for the purpose
of demonstration.

low medium high
Consumption category

F
re

q
u

en
cy

posters radio television

0

1

2

3

4

5

6

Figure 4.5 Level of consumption and type of advertising used

Figure 4.5 shows the relationship between consumption and advertising method
in a graphical format. Posters and television advertising methods are associated with
higher levels of consumption, but the relationship between radio and consumption
level is inconsistent (as medium consumption is the highest category). In general,
the graph shows little evidence of a strong relationship between the two variables
(although this is confirmed in the forthcoming analysis, this variable is included in the
model for the purpose of illustration).

Table 4.17 shows the test of the proportional odds assumption for the model and the
non-significant result suggests that the assumption cannot be rejected. The difference
in deviance between the multi-nomial logistic regression model and the proportional
odds model is tested at 5 df as there are now 5 parameters in the proportional odds
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Table 4.17 Test of the proportional odds assumption

Model Residual Difference df P-value
deviance in deviance

Multi-nomial logistic model 37.774
Proportional odds model 37.718

0.056 5 0.99996

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income +
β3 temperature + β4−5 advertise

model. For this example, therefore, it looks appropriate to combine the parameters for
the explanatory variables and use a proportional odds model.

The parameters for the proportional odds model of ice cream consumption are
shown in Table 4.18. The interpretation of the parameters for the categorical variable
‘advertise’ is very similar to the interpretation of the categorical variable included in
a logistic regression model (see Section 3.2.3). In this analysis, advertising method
has been coded using treatment coding (hence the letter ‘T’ printed before the com-
parison group) so that each category is compared against a reference category, which
in this case is the use of posters. Using radio to advertise compared to posters, when
controlling for income, price and temperature, the log odds of being in a higher com-
pared to a lower category of consumption increase by an average of 0.196. The odds
ratio for radio (1.217) indicates that for this model, someone is more likely to be in
a higher category of consumption when the advertising medium is radio compared to
posters. For these data, the use of radio would appear to a more effective advertising
tool than the use of posters. The estimate of 0.252 for television, suggests that the use
of television to advertise is even more effective than posters (and, consequently, also
more effective than radio).

It is also useful to look at the confidence intervals as these provide clues about the
precision of the estimates. Table 4.19 shows the 95% confidence intervals for each
of the parameters in Equation 4.6. It should be immediately obvious from this table
(particularly when compared to the results in Table 4.11), that the variable ‘price’ may
be problematic as it has huge estimates associated with it and these change dramatically
when other variables are taken out of the model.7 As we will find out later, price does
not appear to be a significant variable in the model, but from this table it does look to
have a significant effect (both confidence intervals for the odds ratio are above 1). This
effect is most likely due to the fact that there are very few observations for this model.
For example, at low consumption, there are only two observations for television and
these observations are very close (0.265 and 0.267). On this information one would
question the inclusion of this number of variables in the model and either increase
the sample size, or reduce the number of variables (by, for example, removing those

7For instance, the parameter for price changes from 12.880 to −5.018 (with a standard error of 51.217),
when income is removed from the model. This illustrates the imprecision of the estimate for price as income
is only weakly associated with the response variable (and with price), and its removal should not, therefore,
influence the model parameters to such a degree.
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Table 4.18 Regression parameters

Estimate Standard error Odds ratio

Coefficients
Price 12.880 2.503 3.9e+05
Income 0.129 0.082 1.138
Temperature 0.177 0.048 1.194

Advertise(T.radio) 0.196 1.041 1.217
Advertise(T.television) 0.252 1.022 1.287

Intercepts
Low | ≥ medium 21.193 7.655
≤ Medium | high 24.774 8.064

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income
+β3 temperature + β4−5 advertise

Advertise reference category = posters

Table 4.19 Confidence intervals

2.5% 50% 97.5%

Price
Log odds 7.975 12.880 17.786
Odds ratio 2.93+03 3.9e+05 5.3e+07

Income
Log odds −0.033 0.129 0.291
Odds ratio 0.968 1.138 1.338

Temperature
Log odds 0.083 0.177 0.271
Odds ratio 1.087 1.194 1.311

Advertise (T.radio)
Log odds −1.843 0.196 2.235
Odds ratio 0.158 1.217 9.346

Advertise (T.television)
Log odds −1.753 0.252 2.256
Odds ratio 0.173 1.287 9.545

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income
+β3 temperature + β4−5 advertise

Advertise reference category = posters
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that are non-significant). Table 4.19 does show some interesting information about the
categorical variable and suggests that the effect of radio and television, when compared
to the use of posters is not significant when predicting consumption category (the
confidence intervals for both variables contain 1).

The predicted probabilities of being in each response category for a selection of
price, income, temperature and advertising values is shown in Table 4.20. The addition
of the variable ‘advertising’ has made little difference to the predicted values when
compared to the predictions made for a model that did not include advertising (these
are shown in Table 4.12).

Table 4.20 Predicted probabilities

Predicted probabilities

Price Income Temperature Advertising Low Medium High

0.277 79 24 Radio 0.951 0.047 0.001
0.265 76 32 Television 0.885 0.111 0.004
0.277 94 32 Posters 0.454 0.513 0.032

0.277 86 60 Radio 0.013 0.314 0.672
0.262 78 65 Television 0.018 0.376 0.606
0.265 96 33 Radio 0.341 0.608 0.051

0.277 78 72 Radio 0.005 0.136 0.859
0.280 80 72 Posters 0.004 0.125 0.871
0.260 90 71 Television 0.001 0.045 0.953

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income +
β3 temperature + β4−5 advertise

It is important, however, not to read too much into these statistics before the
significances of the variables are determined. The significance associated with all
explanatory variables is shown in Table 4.21 with the individual variables shown in
Table 4.22 and the individual categories of the advertising variable shown in Table 4.23.

The significance of all explanatory variables can be computed by comparing the
deviance in the full regression model (see Equation 4.6) with the deviance in the null
model (ice cream consumption on it own). These statistics are shown in Table 4.21.8

The significance of the change in deviances associated with individual variables are
shown in Table 4.22. You will note that the significance of the variables price, income
and temperature are tested at one degree of freedom as these variables are single
parameters, whereas the variable advertising is tested at two degrees of freedom as
this variable is represented using two parameters.

From Table 4.22, we can see that the variable ‘advertising’ is not significantly
related to ice cream consumption when included in a model with the other explanatory

8These statistics may appear as the ‘model chi-square’ (or similar) in the output of your statistical package.
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variables. When the two parameters associated with advertising are removed from
the full regression model, −2LL reduces by 0.089, which is insignificant (χ2 =
0.089, df = 2, p = 0.957). Of all the explanatory variables in the model, only
temperature is significant (χ2 = 26.550, df = 1, p = 2.6e − 07). As one would
expect, these results are very similar to those obtained for the multiple proportional
odds model discussed earlier.

Table 4.21 Assessing significance by comparing model deviances

−2LL df −2LLdiff dfdiff P-value

Logit[Pr(Y > j)] = α 65.293 28

Logit[Pr(Y > j)] = α + β1price +
27.575 5 4.4e−05

β2income + β3temp + β4−5advert
37.718 23

Y = ice cream consumption category

Table 4.22 Analysis of deviance table: the significance of variables

−2LL df P-value

Coefficients
Price 0.066 1 0.797
Income 2.686 1 0.101
Temperature 26.550 1 2.6e−07
Advertising 0.089 2 0.957

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income +
β3 temperature + β4−5 advertise

The significance of each individual parameter may be estimated using t-statistics. It
is important to note that although the variable ‘price’ is significant using the t-statistic,
this is not the case when it is tested using the change in deviance (−2LL).9 As suggested
before, this anomaly is likely due to the small sample size used. This example is useful,
however, as a demonstration of the potential problems of small samples and the use
of the significance tests to assess their contribution.

In conclusion, unordered categorical variables can be included simply in a multiple
proportional odds model as the parameters and model-fit statistics for the categorical
data are interpreted in much the same way as for other GLM models. In this case, it
appeared that the categorical variable did not significantly contribute to the prediction
of the response variable and may therefore be a candidate for removal (in addition to
the other non-significant variables) in order to derive a simpler model of ice cream
consumption.

9As these tests provide conflicting information, we would want to exercise caution when interpreting
these results.
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Table 4.23 Estimating the significance of individual parameters using t-values

Estimate Standard T-value P-value
error

Coefficients
Price 12.880 2.503 5.146 2.9e−05
Income 0.129 0.082 1.565 0.131
Temperature 0.177 0.048 3.682 0.001

Advertise(T.radio) 0.196 1.041 0.188 0.852
Advertise(T.television) 0.252 1.022 0.246 0.808

Intercepts
Low | ≥ medium 21.193 7.655
≤ Medium | high 24.774 8.064

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income
+β3 temperature + β4−5 advertise

Advertise reference category = posters

P-values (2-tailed) are tested at n − k − 1 degrees of freedom

4.3 Analyzing Simple Experimental Designs
for Ordered Data

The analysis of ordered data from simple experimental or quasi-experimental stud-
ies has traditionally been conducted through the use of non-parametric tests such as
the Mann-Whitney, Kruskal-Wallis, Wilcoxon and Friedman tests (see, for example,
Agresti and Finlay, 1997; Crawley, 2005; Everitt and Hothorn, 2006; Kanji, 1999;
Moutinho et al., 1998; Siegel and Castellan, 1988). These grouped data can also be
analyzed using regression methods; in particular, the proportional odds model for
ordered data. The analysis of such data can be viewed in a similar way to the model-
ing techniques already discussed earlier in this chapter. Namely, an outcome variable
can be predicted to some extent using information about other variables. In this case
an ordered variable (management grade, ability, rank, position in class, etc.) can
be predicted to some extent using information about group membership (teaching
method used, gender, ethnic origin, university attended). To use the regression model
terminology,

examination grade can be predicted by teaching method

managerial level can be predicted by gender

level of satisfaction can be predicted by reputation of store.

The aim is to represent the hypothesis in the form of an equation that can be subjected
to a regression modeling technique. In an independent groups design the response vari-
able is predicted using information about group membership, whereas in a dependent
groups design the additional information about subject also needs to be included.
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A GLM model allows a number of advantages over the more traditional tests, not
least the ability to include a number of additional variables in the model (those that are
not controlled experimentally) and the use of a general technique to replace multiple
tests.10 It is also possible to apply a full range of model selection techniques and
model diagnostics, although these are beyond the scope of the present book.

The following discussion will describe the analysis of simple experimental and
quasi-experimental data from unrelated and related groups designs using proportional
odds regression models and compare these results with the more traditional non-
parametric hypothesis tests.11

4.3.1 Unrelated groups design

In an unrelated groups design, the cases in the groups are independent of one another.
That is, different cases have been chosen for each group (e.g. a random sample of
40 people are exposed to condition A and a different random sample of 40 people
are exposed to condition B). There is no direct relationship between the members of
the 2 groups.

In order illustrate the analysis of an unrelated groups design we will use the data
set showing the price of whiskey and its relationship to the type of ownership.12 This
data set is identical to that used in Chapter 2, except that the response variable (price
of whiskey) has been recoded into an ordered categorical variable. The four ordered
categories relate to the original continuous variable as follows; category 1 = ≤ 4.19,
category 2 = ≥ 4.20 and ≤ 4.60, category 3 = ≥ 4.61 and ≤ 4.89, category 4 = ≥
4.90 and are shown in Table 4.24. For a full description of the original data set, see
Section 2.4.1.

A pictorial representation of this design is shown in Figure 4.6 below and shows the
30 companies are unrelated to one another across the 3 groups (state-funded, privately-
funded or state–private funded). The regression model that will test the relationship
between the groups and the price of whiskey is shown in Equation 4.7. As the data to
be modeled (the response variable) is ordered a proportional odds regression model
can be used.

logit[Pr(price > j)] = α + β funded (4.7)

Before interpreting the model parameters, it is useful to test the proportional odds
assumption to see if it is appropriate to use this model on these data. Table 4.25 shows
the test of the proportional odds assumption and the non-significant result indicates
that the assumption cannot be rejected. The proportional odds model may therefore
be appropriately applied to these data.

10This is particularly useful for teaching purposes as a single technique can replace a number of individual
tests.

11As the GLM is a general technique, this section is very similar to the discussion in Chapter 2 that
described the use of OLS regression to analyze experimental designs for continuous data. Readers are
advised to familiarize themselves with this material.

12This data set has the advantage of being quite simple and also enables the results to be compared with
those from the OLS regression analysis.
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Table 4.24 Data: ranked price of whiskey

State-funded Privately-funded State–private
partnership

3 3 3
2 4 4
1 3 1
1 4 4
2 2 2
2 4 4
1 4 4
1 4 3
1 2 2
3 3 3

Chance, 1991 (with amendments).
Reported in Hand et al., 1994
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Figure 4.6 A pictorial representation of an unrelated groups design

Table 4.25 Test of the proportional odds assumption

Model Residual Difference df P-value
deviance in deviance

Multi-nomial logistic model 66.784
Proportional odds model 69.378

2.594 4 0.628

Model: logit[Pr(price > j)] = α + β funded
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Table 4.26 shows the parameter estimates for the model shown in Equation 4.7.
There are 3 intercepts shown, which correspond to the 3 comparison logit models
computed for the 4 levels of the response variable. The parameters have been aver-
aged across these multiple logit models to provide single estimates for each explana-
tory variable (this is appropriate as the test of the proportional odds assumption was
insignificant). From the table we can see that the type of funding has been dummy
coded using the indicator method to provide treatment contrasts (signified by the ‘T.’
before the category identifier), which mean that each identified category is compared
to the reference category (which in this example is state–private partnership). The log
odds of being in a higher price category for a privately-owned company is 0.531 higher
than for a state–private partnership. This equates to an odds ratio of 1.701. The price
of whiskey in a privately-funded company is more likely to be higher than for a state–
private partnership. The log odds of being in a higher price category for a state-owned
company is 2.542 units lower than for the reference category. This equates to an odds
ratio of 0.079. The price of whiskey in a state-owned company is more likely to be
lower than for a state–private partnership. Looking at this in a slightly different way,
one can say that a state-owned company is 12.658 (1/0.079) times as likely to be in a
lower price category than a state-private partnership.

It is useful to also compute the confidence intervals for the regression coefficients.
Table 4.27 shows these intervals for the variable ‘funded’. These intervals are quite
wide and show the imprecision of the estimates. Of particular interest is the fact that
the odds ratio for ‘funded (T.private)’ include 1.0, which suggests that this parameter
is not significant (the 95% confidence intervals predict an increase in price as well as
a decrease). The odds ratio for ‘funded (T.state)’ does not include 1.0, which suggests
that this parameter is significant at the 95% level (both of the 95% confidence intervals
predict a decrease in price).

Once we have the model, it is a simple matter to obtain the estimated probabilities
of each of our funding groups falling into any of the categories of the response variable.
These statistics are shown in Table 4.28 and clearly show the greater probability that

Table 4.26 Regression parameters

Estimate Standard error Odds ratio

Coefficients
Funded (T.private) 0.531 0.843 1.701
Funded (T.state) −2.542 0.952 0.079

Intercepts
Level 1 | ≥level 2 −2.570 0.835
≤Level 2 | ≥level 3 −0.964 0.658
≤Level 3 | level 4 0.530 0.629

Model: logit[Pr(price > j)] = α + β1−2 funded

Funded reference category = state-private partnership
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Table 4.27 Confidence intervals

2.5% 50% 97.5%

Funded (T.private)
Log odds −1.122 0.531 2.184
Odds ratio 0.326 1.701 8.882

Funded (T.state)
Log odds −4.408 −2.542 −0.676
Odds ratio 0.012 0.079 0.509

Model: logit[Pr(price > j)] = α + β1−2 funded
Funded reference category = state-private partnership

state funded companies have of being in a low price category compared to other types
of funding. Similarly, privately-funded companies have a greater probability of being
in the highest price category compared to the other types of ownership.

Table 4.28 Predicted probabilities

How funded Predicted probability of being in . . .

Category 1 Category 2 Category 3 Category 4
lowest price highest price

State 0.493 0.336 0.127 0.044

Private 0.043 0.140 0.317 0.500

State–private 0.071 0.205 0.353 0.371
Partnership

Model: logit[Pr(price > j)] = α + β1−2 funded

It is important to determine the significance of the estimated effects of the grouping
variable. The significance of this variable can be determined by comparing the deviance
measures (−2LL) for two nested models; one that includes the variable ‘funding’ and
one that does not. The significance of the differences between the individual categories
of the variable can be estimated by looking at the t-statistics in the output table provided
the software package (the actual statistic used to estimate significance depends on the
package used and can be represented using t-, z-, or Wald statistics). It should be
noted that −2LL statistics can also be used to assess the significance of individual
categories by comparing nested models, but this often requires the variable to be
manually dummy-coded; see Hutcheson and Sofroniou, 1999, for a full discussion
of this). For simplicity, here we will use −2LL to assess the overall significance of
the variable ‘ownership’ and the t-statistics to assess the significance of individual
categories of the variable ‘ownership’. The −2LL statistics are shown in Table 4.29
and the t-statistics are shown in Table 4.30.
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Table 4.29 Assessing significance by comparing model deviances

Model Residual Difference in df P-value
deviance deviance

Logit[Pr(Y > j)] = α 82.507
Logit[Pr(Y > j)] = α + β1−2 funded 69.378

13.129 2 1.4e − 03

Y = price category

Adding the variable ‘funded’ to the model results in a reduction in deviance of
13.129, which, at 2 degrees of freedom is highly significant (p< 0.005). There would
appear to be a significant relationship between the type of funding and the price of
whiskey.

Table 4.30 Estimating the significance of individual parameters using t-values
(reference category for variable ‘funded’ = state–private partnership)

Estimate Standard t-value P-value
error

Coefficients
Funded (T.private) 0.531 0.843 0.630 0.534
Funded (T.state) −2.542 0.952 −2.671 0.013

Intercepts
Level 1 | ≥level 2 −2.570 0.835
≤Level 2 | ≥level 3 −0.964 0.658
≤Level 3 | level 4 0.530 0.629

Model: logit[Pr(price > j)] = α + β1−2 funded

Funded reference category = state–private partnership

P-values (2-tailed) are tested at n − k − 1 degrees of freedom

We can see from the t-statistics in Table 4.30 that the two categories ‘funded
(T.private)’ and ‘funded (T.partnership)’ (the identified category compared to the ref-
erence category) are not significantly different at the 0.1 level (t = 0.630, df = 27,

p = 0.534), whereas ‘funded (T.state)’ is significantly different from ‘funded (T.part-
nership)’ (t = −2.671, df = 27, p = 0.013).13 It is a simple matter to obtain statis-
tics comparing state-funded and privately-funded companies. This can be achieved
by changing the reference category to either state or private. Table 4.31 shows the
analysis when the reference category has been defined as private-funded. If you run
this analysis, you should note that all model-fit statistics are the same as for the model
with a different reference category. All that have changed are the comparisons.

13df = n − k − 1, where n is the number of cases and k is the number of parameters (excluding the
constant). Significance is quoted using a 2-tailed test.
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It appears that the parameter ‘funded (T.state)’ is significantly different from
‘funded (T.private)’ and this appears to be the most significant difference between
all the categories (t = −3.142, df = 28, p = 0.004). Privately-funded would appear
to be the most expensive followed by the partnership and then state-funded. The only
significant differences are between state-funded and the other categories, with the
most significant difference being between state and privately funded. These results
are illustrated in the boxplot shown in Figure 4.7.

Table 4.31 Estimating the significance of individual parameters using t-values
(reference category for variable ‘funded’= private)

Estimate Standard t-value P-value
error

Coefficients
Funded (T.partner) −0.531 0.843 −0.630 0.534
Funded (T.state) −3.073 0.978 −3.142 0.004

Intercepts
Level 1 | ≥level 2 −3.101 0.870
≤Level 2 | ≥level 3 −1.495 0.685
≤Level 3 | level 4 −0.001 0.611

Model: logit[Pr(price > j)] = α + β1−2 funded

Funded reference category = private

P-values (2-tailed) are tested at n − k − 1 degrees of freedom

The results for the proportional odds analysis of the whiskey ownership data are
broadly similar to the more traditional non-parametric hypothesis tests that can also be
used. For a multiple group analysis such as this, the Kruskal-Wallis rank sum test may
be used. Using this technique, the groups are also shown to be significantly different
with respect to the price of whiskey (Kruskal-Wallis chi-square = 11.238, df = 2,
p-value = 0.004). The proportional odds technique does, in this case, provide a more
significant estimate of the difference between the groups.

In conclusion, the proportional odds model suggests that privately-owned com-
panies are associated with more expensive whiskey and this association is highly
significant. It would be unwise to interpret this relationship as causal however, as
the data are only quasi-experimental and the groups self-selected to some extent.14

Although the results from the proportional odds model are in broad agreement with
those from the non-parametric Kruskal-Wallis test, we would argue that the consistent
theoretical underpinnings of the proportional odds model and the additional informa-
tion available to the analyst (model diagnostics, ability to add additional explanatory
variables, etc.) make it a superior technique for analyzing these data.

14The privately-owned companies might operate more in the well-established and affluent parts of the
country. The price of whiskey may be affected by geographical considerations that also affect type of
ownership. It would be incorrect in this case to state that type of ownership ‘causes’ price differentials.
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Figure 4.7 Average ranked price of whiskey for each type of ownership

4.3.2 Related groups design

It is relatively simple for the proportional odds model to also deal with related groups
designs (also knows as dependent groups). In a related groups design, the individual
cases in the groups are the same (repeated measures) or they are matched (matched
groups). That is, the same case (or matched cases) takes part in each phase of the
experiment (e.g. 40 people are exposed to both condition 1 and condition 2). The
analysis of these studies is different to the independent groups, as an additional source
of variation needs to be accounted for; the variation between cases as well as between
groups. This design is illustrated pictorially in Figure 4.8.

This extra source of information (the subject) can be simply added to the model
as an unordered categorical variable. For example, if there are two conditions that
are applied to individual subjects, we are interested in comparing the results from the
two conditions (to see if the two conditions are different), but we also have to take
account of the fact that the subject scores may be related. So, the information we have
to include in the model (the sources of variation) are condition and subject, which are
both unordered categorical variables. If the response variable is ordered, a proportional
odds model may be appropriate and this is shown in Equation 4.8). You will note that
this is the same equation as for an independent groups analysis (see Equation 4.7),
except that subject is now added to the model.

logit[Pr(outcome > j)] = α + β1 condition + β2 subject (4.8)

The data we are to use here to demonstrate the analysis are shown in Table 4.32.
These data show repeated measurements taken from individual subjects and show the
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Figure 4.8 A pictorial representation of a dependent groups design

perceived quality of 3 stores that they have been asked to rate. The rating of quality is
from a 5-point ordered scale indicating low to high quality.

Table 4.32 Data: ranked quality ratings of stores

Subject Store A Store B Store C

1 1 5 4
2 3 3 1
3 3 4 2
4 1 5 5
5 1 4 4
6 3 2 1
7 2 3 2
8 2 4 1
9 3 1 3
10 5 2 5
11 4 4 2
12 2 3 3
13 1 4 4
14 2 5 3
15 1 2 3

The three stores are represented by two regression parameters and the 15 subjects
are represented by 14 parameters in the model of quality. The proportional odds model
for quality is shown below in Equation 4.9.

logit[Pr(quality > j)] = α + β1−2 store + β3−16 subject (4.9)

Before interpreting any model parameters, it is useful to test the proportional
odds assumption to see if it is appropriate to use this model on these data. Table
4.33 shows the test and the non-significant result indicates that the proportional odds
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Table 4.33 Test of the proportional odds assumption

Model Residual Difference df P-value
deviance in deviance

Multi-nomial logistic model 62.276
Proportional odds model 124.922

62.646 48 0.076

Model: logit[Pr(quality > j)] = α + β1−2 store + β3−16 subject

assumption cannot be rejected. The proportional odds model may therefore be appro-
priately applied to these data.

Table 4.34 shows the parameter estimates for the model shown in Equation 4.9.
There are 4 intercepts shown, which correspond to the 4 comparison logit models
computed for the 5 levels of the response variable. The parameters have been aver-
aged across these multiple logit models providing single estimates for each explana-
tory variable (this is appropriate as the test of the proportional odds assumption was
insignificant). From the table we can see that ‘store’ and ‘subject’ have been dummy
coded using the indicator method to provide treatment contrasts (signified by the ‘T.’
before the category identifier), which means that each identified category is compared
to the reference category (which in this example is ‘store A’ and ‘subject 01’). The
log odds of store B being rated in a higher quality category than store A is 1.872,
which corresponds to an odds ratio of 6.501. The odds of a subject being 1 category of
perceived quality higher for store B are 6.501 times what they are for store A. Store A
therefore appears to be associated with lower quality. Similarly, store C would appear
to also be associated with higher quality ratings when compared to store A, but with
only 2.243 times the odds. The parameters for the subjects are not particularly infor-
mative as we are primarily interested in comparing the quality of the stores, rather
than comparing subjects. The subjects are included in the model as we need to con-
trol for the effect of the repeated observations. These statistics are presented here for
completeness, but may often be left out of the output in presentations. In general, the
model parameters suggest that store B is associated with the highest quality ratings,
followed by store C and with store A being associated with the lowest ratings. This
is exactly what we find when we chart the average rated quality of each store; see
Figure 4.9 (although this is not taking into account subject, the boxplot is useful in
illustrating the difference between the stores).

As with the other models described in this chapter, it is useful to also compute the
confidence intervals for the regression coefficients. Table 4.35 shows these intervals
for the variables ‘store’ and ‘subject’ (as the parameters for the different subjects
are not particularly informative, only the log odds for two subjects are shown in the
table). These intervals are quite wide and show the imprecision of the estimates. Of
particular interest is the fact that the odds ratio for ‘store(T.B)’ does not include 1.0,
which suggests that this parameter is significant (the 95% confidence intervals both
predict that store B is higher quality than store A). The odds ratio for store C does
contain 1.0, which suggests a non-significant result. Although store B appears to be
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Table 4.34 Regression parameters

Estimate Standard error Odds ratio

Coefficients

Store[T.B] 1.872 0.737 6.501
Store[T.C] 0.808 0.695 2.243

Subject[T.02] −1.973 1.621 0.139
Subject[T.03] −0.891 1.524 0.410
Subject[T.04] 1.097 1.839 2.995
Subject[T.05] −0.866 1.588 0.421
Subject[T.06] −2.624 1.671 0.073
Subject[T.07] −1.849 1.505 0.157
Subject[T.08] −1.814 1.595 0.163
Subject[T.09] −1.614 1.653 0.199
Subject[T.10] 1.966 1.882 7.142
Subject[T.11] −0.424 1.577 0.654
Subject[T.12] −1.420 1.502 0.242
Subject[T.13] −0.866 1.588 0.421
Subject[T.14] −0.343 1.552 0.710
Subject[T.15] −2.595 1.624 0.075

Intercepts
Level 1 | ≥level 2 −1.993 1.334

≤Level 2 | ≥level 3 −0.774 1.325
≤Level 3 | ≥level 4 0.573 1.316
≤Level 4 | level 5 2.343 1.330

Model: logit[Pr(quality > j)] = α + β1−2 store + β3−16 subject

significantly different from store A, the confidence intervals are very large and range
between 1.543 and 27.55 for the odds.

Also of use when interpreting this model are the estimated probabilities of each of
the stores falling into any of the categories of the response variable. These statistics
are shown in Table 4.36 and clearly show the greater probability that store B has of
being in higher levels of the response variable and the higher probability that store A
has of being in a lower level of rated quality.

The significance of these variables can be determined by comparing the deviance
measures (−2LL) for nested models. The significance of both variables together can
be assessed by comparing the deviance of the model that includes both of the variables
with a model that includes neither. The significance of the variable ‘store’ in Equation
4.9 can be assessed by comparing the full model with one that does not includes the
variable ‘store’. Similarly, the significance of the variable ‘subject’ can be assessed
by comparing the deviance of the full model with one that does not include ‘subject’.
These statistics are shown below in Tables 4.37 and 4.38.

The significance of the differences between the individual categories of the vari-
ables can be estimated by looking at the t-statistics in the output table provided in
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Figure 4.9 Average rated quality for each store

Table 4.35 Confidence intervals

2.5% 50% 97.5%

STORE
Store(T.storeB)
Log odds 0.428 1.872 3.316
Odds ratio 1.534 6.501 27.550

Store(T.storeC)
Log odds −0.555 0.808 2.171
Odds ratio 0.574 2.243 8.767

SUBJECT
Subject (T.sub2)
Log odds −5.150 −1.973 1.205

↓ ↓ ↓ ↓
Subject (T.sub15)
Log odds −5.778 −2.595 0.589

Model: logit[Pr(quality > j)] = α + β1−2 store + β3−16 subject

Table 4.39.15 In general, this table provides similar information to that provided in
the previous tables, but also enables us to investigate the individual categories in more
detail. Of particular interest here is the finding that stores B and A are significantly

15The significance of individual categories can also be assessed by comparing the deviances of nested
models. However, the t-values will be used here as they are commonly available in statistical software.
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Table 4.36 Predicted probabilities

How funded Predicted average probability of being in . . .

Category 1 Category 2 Category 3 Category 4 Category 5
Lowest Highest

Store A 0.316 0.233 0.221 0.160 0.070
Store B 0.081 0.129 0.237 0.309 0.244
Store C 0.188 0.204 0.255 0.227 0.126

The predicted probabilities shown are the average probabilities for all subjects.

Table 4.37 Assessing significance by comparing model deviances

−2LL df −2LLdiff dfdiff P-value

Logit[Pr(Y > j)] = α 143.193 41

Logit[Pr(Y > j)] = α + β1−2 store +
18.271 16 0.308

β3−16 subject
124.922 25

Table 4.38 Analysis of deviance table: significance of variables

−2LL df P-value

Store 6.9589 2 0.031
Subject 12.4076 14 0.574

Model: logit[Pr(consumption > j)] = α + β1 price + β2 income +
β3 temperature + β4−5 advertise

different at the 0.05 level (t28 = 2.541; p = 0.017). Stores C and A are, however, not
significantly different (t28 = 1.162; p = 0.255). By changing the reference category
and re-estimating the model one can show that the difference between stores B and
C is also not significant (t28 = 1.556; p = 0.129). The comparisons of subjects are
not particularly informative and shows no significant difference between the subjects
(when compared to subject 1).

The data above could also have been analyzed using the non-parametric Friedman
test16 that is frequently used on related group designs with ordered data (see Greene
and D’Oliveira, 2005, for a discussion of this). The results of the Friedman test show
χ2 = 4.588, df = 2, asymptotic significance = 0.101, and suggest that the three
stores are not significantly different at the 0.05 level after controlling for the effect of
subject. This is different from the results obtained using the proportional odds model,
which suggests that stores are significantly different at the 5% level after controlling for
subject (χ2 = 6.959, df = 2, p = 0.031). The proportional odds model has provided,
in this case, a more significant result and has also enabled a number of additional
conclusions to be drawn about the analysis.

16This has been computed using SPSS.
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Table 4.39 Estimating the significance of individual parameters using t-values

Estimate Standard error t-statistic P-value

Coefficients
Store(T.B) 1.872 0.737 2.541 0.017
Store(T.C) 0.808 0.695 1.162 0.255

Subject[T.02] −1.973 1.621 −1.217
Subject[T.03] −0.891 1.524 −0.585
Subject[T.04] 1.097 1.839 0.596
Subject[T.05] −0.866 1.588 −0.545
Subject[T.06] −2.624 1.671 −1.570
Subject[T.07] −1.849 1.505 −1.228
Subject[T.08] −1.814 1.595 −1.138
Subject[T.09] −1.614 1.653 −0.977
Subject[T.10] 1.966 1.882 1.045
Subject[T.11] −0.424 1.577 −0.269
Subject[T.12] −1.420 1.502 −0.946
Subject[T.13] −0.866 1.588 −0.545
Subject[T.14] −0.343 1.552 −0.221
Subject[T.15] −2.595 1.624 −1.597

Intercepts
Level 1 | ≥level 2 −1.9928 1.3338 −1.4941
≤Level 2 | ≥level 3 −0.7736 1.3254 −0.5837
≤Level 3 | ≥level 4 0.5734 1.3160 0.4357
≤Level 3 | level 4 2.3433 1.3297 1.7622

Model: logit[Pr(price > j)] = α + β1−2 store + β3−16subject

In conclusion, the analysis of the related groups data suggests that subjects do rate
stores differently in terms of quality. The only difference between this analysis and
the previous one conducted on independent groups, was the addition of the variable
subject into the model to take account of the experimental design. Although the more
traditional non-parametric tests are often used to analyze these data (e.g. the Fried-
man), we would argue that the proportional odds model is a superior technique as it
has a consistent theoretical basis as part of the generalized linear model and allows
the analyst to use the full range of techniques available for these class of models (for
example, model diagnostics and the addition of additional explanatory variables).

4.4 Conclusion

This chapter looked at the proportional odds technique for modeling ordered cat-
egorical data. This model is particularly useful as it allows continuous and categorical
explanatory variables to be included in the model which allows the analysis of simple
experimental designs as well as correlational studies. The analyses presented concen-
trated on the interpretation of the regression parameters and on the use of the deviance
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statistic to determine the significance of the variables in the model. A major goal of this
chapter was to illustrate the similarities between this model and the other generalized
linear modeling techniques so far covered.

The proportional odds model is a powerful technique for analysing ordered
categorical data and also provides an alternative to the older hypothesis tests for
ordered data. The proportional odds model greatly simplifies the choice of test as
it can be applied to 2 or more groups which are part of an independent or related
design. When there are 2 groups being compared, the Wilcoxon test may be used for
related designs whilst the Mann-Whitney test may be applied to unrelated designs.
However, if there are more than 2 groups, the Friedman test and Page’s L-trend test
may be used for related designs, whilst the Kruskal-Wallis and Jonckheere trend test
may be used for unrelated designs. These are just a few of the tests available, however,
if one uses the generalized linear model, the choice of test is simple as they are all
proportional odds models. In addition to this simplicity, the proportional odds model
offers greater power and flexibility to the analyst than the hypothesis tests.

There are a number of areas that we have not touched upon including the use of
diagnostic tests, data transformation, techniques of model selection and the extension
of the proportional odds model to hierarchical (multi-level) data. These topics are
beyond the scope of the present book, however, information about these topics may be
found in Agresti, 1996; Agresti and Finlay, 1997; Clogg and Shihadeh, 1994; Crawley,
2005; Everitt and Hothorn, 2006; Fox, 2002, Franses and Paap, 2001; Hoffmann, 2004;
Powers and Xie, 1999; Raudenbusch and Bryk, 2002.



CHAPTER 5

Modeling Unordered Data

This chapter introduces the multi-nomial logistic regression model which can be used
to model unordered categorical response variables. The chapter covers the theory
behind the technique and the interpretation of the parameters and the model-fit statis-
tics. It also shows how it can be used to analyse data from simple experimental studies
when the response variable is unordered categorical.

Before we commence with describing the multi-nomial logistic regression model,
it is important to distinguish it from the log-linear model, a technique that can also be
used to model unordered categorical data. The basic difference is that multi-nomial
logistic regression models a single response variable using information from explana-
tory variables, whereas a log-linear model essentially treats every variable as explana-
tory (it models the cell count rather than an actual variable). The 2 techniques are,
however, similar as evidenced by the fact that when all explanatory variables are
categorical the multi-nomial logistic regression model can be made to correspond to
a log-linear model. As we are concerned with predicting single response variables
(in order to maintain consistency with the other techniques presented in this book),
we will concentrate on the multi-nomial logistic regression technique which has the
advantage of being a simple generalization of the logistic regression model. A full
description of log-linear models is beyond the scope of this chapter, however, detailed
information may be found in Agresti (1990), Anderson (1997), Christensen (1997),
Simonoff (2003) and Zelterman (2006).

5.1 The Generalized Linear Model

In previous chapters we have seen how generalized linear models can be used to model
continuous data using the technique of OLS regression, binary data using logistic
regression and ordered categorical data using the proportional odds model. In this
chapter we will demonstrate how the GLM framework (more particularly, the logit
model) can be extended to predict unordered categorical data. When we have an
unordered categorical response variable, an extension of the binary logit model called
a multi-nomial logit model can be used. This model implies that an ordinary logit model
holds for each pair of response categories. As a multi-nomial logistic regression is an
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extension of logistic regression it can be interpreted in much the same way. As it is a
generalized linear model, methods of assessing model fit and interpreting parameters
are similar to those for OLS, logistic and the proportional odds regression models.

5.2 The Multi-nomial Logistic Regression Model

The multi-nomial logistic regression model can most simply be understood as an
extension of logistic regression. This technique allows each category of an unordered
response variable to be compared to an arbitrary reference category providing a num-
ber of logistic regression models. A binary logistic regression model compares one
dichotomy (for example, passed–failed, died–survived, etc.) whereas the multi-nomial
logistic regression model compares a number of dichotomies by using a series of
binary comparisons. The multinomial logistic regression procedure outputs a num-
ber of logistic regression models that make specific comparisons. When there are j

categories, the model consists of j − 1 logit equations which are fit simultaneously.
Multi-nomial logistic regression is basically multiple logistic regressions conducted
on a multi-category unordered response variable that has been dummy coded.

Multinomial logistic regression allows each category of an unordered response
variable to be compared to a reference category providing a number of logistic regres-
sion models. For example, if one were to model which of 3 supermarkets was chosen
by a customer, 2 models could be computed; one comparing supermarket A with the
reference category (supermarket C) and one comparing supermarket B with the refer-
ence category (supermarket C). The choice between 3 supermarkets can therefore be
represented using 2 (i.e. j − 1) logit models.

log
Pr(Y = supermarket A)

Pr(Y = supermarket C)
= α + β1X1 + β2X2 + ... + βkXk

log
Pr(Y = supermarket B)

Pr(Y = supermarket C)
= α + β1X1 + β2X2 + ... + βkXk

The models above provide 2 estimates for the effect that each explanatory variable has
on the response. This is useful information as the effect of the explanatory variables
(Xk) can be assessed for each logit model (i.e. the effect of X1 on the choice between
supermarkets A and C) and also for the model as a whole (i.e. the effect of X1 across
all supermarkets). It is also useful to interpret a single parameter for each explanatory
variable in order to derive a single parsimonious model of the response variable. The
multi-nomial logistic regression model allows the effects of the explanatory variables
to be assessed across all the logit models and provides estimates of the overall signi-
ficance (i.e. for all comparisons rather than each individual comparison). The general
multi-nomial logistic regression model is shown in Equation 5.1 below:

log
Pr(Y = j)

Pr(Y = j ′)
= α + β1X1 + β2X2 + ... + βkXk (5.1)

where j is the identified supermarket

and j ′ is the reference supermarket.
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As we will see, software provides estimates of model-fit statistics for the individual
comparisons as well as estimates for the overall model (in the regression parameter and
analysis of deviance tables). To demonstrate this technique we will use an example
of supermarket choice behavior (see Moutinho and Hutcheson, 2007, for a more
complete description of these data). The data used here are a subset of those used
in the original study with variables chosen in order to provide a description of the
technique rather than a complete analysis of supermarket choice behavior. The aim of
this analysis is to model which supermarket someone is likely to choose given their
salary and whether they use a car or not.1 The data set is taken directly from the
original study and includes a number of missing data points which have been coded as
NA (unsurprisingly, a number of respondents were unwilling to provide information
about their salary, even though the questionnaire used divided salary into just a few
categories).

5.2.1 Simple multi-nomial logistic regression

We will begin demonstrating the multi-nomial logistic regression model using the
simple example of trying to predict supermarket choice by using average salary as an
explanatory variable. This model is shown in Equation 5.2.

log
Pr(Y = j)

Pr(Y = j ′)
= α + β salary (5.2)

where j is the identified supermarket
and j ′ is the reference supermarket.

Equation 5.2 simply represents a comparison between one supermarket (Y = j)

and the reference supermarket (Y = j ′). In this equation, the log odds of choosing
one supermarket compared to the reference category may be predicted, at least to
some extent, by salary. It is useful at this point to illustrate the relationship between
supermarket choice and salary using a graph such as the box plot shown in Figure
5.1. The graph shows that the average salary appears to be related to the supermarket
consumers selected and suggests that Sainsburys and Asda tend to be chosen by con-
sumers with relatively high salaries compared to those consumers who chose Solo and
Kwik Save. A multi-nomial logistic regression model should demonstrate this rela-
tionship and also provide the significance of the relationship between the variables
and the supermarket categories.

Computing and interpreting model parameters: The model parameters for the
simple multi-nomial logistic regression model discussed above (see Equation 5.2) were
computed using software2 and are shown in Table 5.2 below. You should note from
the table that parameters for 3 comparisons are provided as 3 comparisons are made

1The original data contains many more variables, these have just been chosen for the purpose of
illustration.

2The software package used here is R (R Development Core Team, 2007).
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between the 4 categories of the response variable, one comparing each supermarket
with the reference category.

Table 5.2 Regression parameters

Supermarket Parameter Estimate Standard error Odds ratio

Asda (intercept) −0.722 0.498
salary 0.000 0.001 1.000

Solo (intercept) 2.034 0.496
salary −0.012 0.003 0.988

Kwik Save (intercept) 1.987 0.395
salary −0.007 0.001 0.993

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β salary

j ′ = reference category = Sainsburys

The parameters for the model shown in Table 5.2 can be interpreted as follows.
For a unit increase in salary, the log odds of a consumer selecting Solo as opposed to
Sainsburys decreases by 0.012. This equates to an odds ratio of 0.988 (e−0.012). For
each unit increase in salary, the odds of someone selecting Solo decreases by 0.012.
Put simply, consumers with higher salaries tend to select Sainsburys compared to
Solo (this is consistent with the information provided in Figure 5.1). Whilst this might
appear to be quite a small difference, one needs to recognizse that a unit increase in

Sainsburys Solo Kwik Save Asda

100

200
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400

500

600

700

Supermarket
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Figure 5.1 Selected supermarket and average salary
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salary is a small measure and that consumers’ salaries can differ by large amounts.
For a unit increase in salary, there is no difference to 3 decimal places in the log
odds of a consumer selecting Asda as opposed to Sainsburys. Consumers of these two
supermarkets therefore appear to be similar, at least with respect to their salaries (this
finding is also consistent with the information provided in Figure 5.1).

Using software, it is a simple matter to compute the confidence intervals for the
parameter estimates in Table 5.2.3 The 95% confidence intervals for salary for both
the log odds and odds ratios are shown in Table 5.3 below:

Table 5.3 Confidence intervals

Confidence intervals
Supermarket Parameter 2.5% 50% 97.5%

Asda salary (log odds) −0.002 0.000 0.003
salary (odds ratio) 0.998 1.000 1.003

Solo salary (log odds) −0.018 −0.012 −0.007
salary (odds ratio) 0.982 0.988 0.993

Kwik Save salary (log odds) −0.010 −0.007 −0.004
salary (odds ratio) 0.990 0.993 0.996

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β salary

j ′ = reference category = Sainsburys

We can see that for each unit increase in salary, the odds of a consumer selecting
Solo as opposed to Sainsburys is expected to be between 0.982 and 0.993; as both of
these predict a reduction in the odds that someone will choose Solo, this relationship
looks to be significant at the 95% level (this is confirmed in Table 5.7, which shows
that consumers selecting Solo and Sainsburys have significantly different salaries).
Similarly, for a unit increase in salary, the odds of a consumer selecting Asda as
opposed to Sainsburys is expected to be between 0.998 and 1.003. As these limits
include 1.0, this relationship looks to be non-significant at the 95% level (this is also
confirmed in Table 5.7, which shows that the salaries of consumers selecting Asda
and Sainsburys are not significantly different).

Predicted probabilities: Predictions can be made from the multi-nomial logistic
regression model in much the same way as they were from the OLS, logistic and
proportional odds regression models. For example, for the model

log
Pr(Y = j)

Pr(Y = j ′)
= α + β salary

3These are also easy to compute manually, as the 95% confidence intervals for the parameters are simply
the estimate ±1.96 times the standard error (see Faraway, 2006).
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predictions can be made of the probability of consumers who earn certain salaries
selecting particular supermarkets. Table 5.4 shows the predicted probabilities of a
consumer selecting each supermarket for a number of different salaries.4 From the
table we can clearly see that consumers with higher salaries are more likely to select
Sainsburys and Asda (this is precisely what we would expect given the results shown
in Figure 5.1 and Table 5.2).

Table 5.4 Predicted probabilities

Probability of selecting supermarket ...
Salary Asda Kwik Save Sainsburys Solo

80 0.058 0.492 0.117 0.333
200 0.128 0.461 0.249 0.161
375 0.248 0.257 0.460 0.034
625 0.344 0.060 0.594 0.002

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β salary

Goodness-of-fit statistics: In addition to the model parameters, it is useful to have
an indication of how well the model fits the data. For this we need to compute some
model-fit statistics. There are, however, a number of aspects to assessing the model-fit.
These can be utilized to assess the entire model (all the variables considered together),
individual variables and individual categories within variables. There are a number
of statistics that can be used to estimate significance and those used depend, to a
large extent, on the software package being used. This chapter will utilize statistics
based on the deviance measure (−2LL) to estimate the whole model and individual
variables, but will use Wald statistics to estimate the effect of individual categories
within explanatory variables (and also provide additional estimates of the significance
of individual variables).

For a multi-nomial logistic regression model, model fit can be determined by
comparing measures of deviance for nested models. The measure of deviance used
is −2LL (see the chapter on logistic regression for a full discussion of this statistic)
which is tested for significance using the chi-square distribution with the number of
degrees of freedom equal to the difference in the number of terms between 2 nested
models. For a simple multi-nomial logistic regression model, the effect of the single
explanatory variable can be assessed by comparing the −2LL statistic for the full
regression model with that for the null model (see Equation 5.3).

−2LLdiff = (−2LL0) − (−2LL1) (5.3)

where −2LL0 is the deviance in the null model ‘log Pr(Y=j)
Pr(Y=j ′) = α’

and −2LL1 is the deviance in the model ‘log Pr(Y=j)
Pr(Y=j ′) = α + β salary’

4The package R has been used to generate these statistics. Identical statistics can however be obtained
from a number of other packages.
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The deviance statistics for the null and regression models and the significance of
the change in deviance (−2LLdiff) are shown in Table 5.5. A model that just includes
the response variable (the null model) has a deviance of 482.401. Adding the vari-
able ‘salary’ to the model results in a model with a deviance equal to 427.644. This
indicates that adding the variable ‘salary’ to the null model has reduced the deviance
by 54.757, which is a highly significant change, given that the models only differ by
three parameters (hence the 3 df the change in deviance is tested on – it is 3 degrees
of freedom as the effect of the explanatory variable is assessed across the three com-
parisons that have been made between the supermarkets). Adding salary to the model
therefore significantly reduces the deviance and indicates that salary is a significant
predictor of store choice.

Table 5.5 Assessing significance by comparing model deviances

Model Residual df Difference in df P-value
deviance deviance

Log Pr(Y=j)
Pr(Y=j ′) = α 482.401 549

Log Pr(Y=j)
Pr(Y=j ′) = α + β salary 427.644 546

54.757 3 7.7e−12

In many statistical packages, these model-fit statistics are provided in simple ana-
lysis of deviance tables as part of the analysis output. Table 5.6, shows this out-
put for the simple multi-nomial logistic regression model of store choice. Although
this table is redundant for this model (as the information has already been provided
above), it is useful for multiple regression models and for models that include cat-
egorical explanatory variables and is included here for completeness.

Table 5.6 Analysis of deviance table: significance of variables

−2LL df P-value

Coefficient
salary 54.757 3 7.7e-12

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β salary

It is also useful to look at the model-fit statistics for the explanatory variables
comparing individual categories of the response variable. Although it is possible to
use statistics based on the deviance measure to do this, this is not particularly easy
to achieve in software5 and is therefore often estimated using Wald statistics (or a
comparable statistic). It should be noted, however, that several authors have identified

5The computation of −2LL statistics for the individual categories of a variable often involves manually
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problems with their use. For example, Menard (1995) warns that for large coefficients,
standard error is inflated, lowering the Wald statistic value and Agresti (1996) states
that the likelihood-ratio test is more reliable for small sample sizes than the Wald test.
Even with these reservations, the Wald and z-statistics are discussed here as they are
commonly utilized in software. These statistics are shown in Table 5.7.

Table 5.7 Estimating the significance of individual parameters using Wald and
z-statistics (reference supermarket = Sainsburys)

Supermarket Parameter Estimate Standard z Wald P-value
error

Asda (Intercept) −0.722 0.498
salary 0.000 0.001 0.202 0.041 0.840

Solo (Intercept) 2.034 0.496
salary −0.012 0.003 −4.550 20.703 5.4e − 06

Kwik Save (Intercept) 1.987 0.395
salary −0.007 0.001 −4.582 20.995 4.6e − 06

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β salary

j ′ = reference category = Sainsburys

The significance of salary when comparing consumers who selected Asda com-
pared to Sainsburys can be estimated from the z-statistic, which is simply the estimate
divided by the standard error (allowing for rounding error, this equals 0.202). Testing
this for significance using a 2-tailed test (i.e. Pr(>|z|)) indicates that this change in
deviance is not significant. Salary does not distinguish between consumers who choose
Asda and those who choose Sainsburys.

z = 0.202, df = 1, p = 0.840

The Wald statistic is z2, and is distributed as a chi-square with one degree of
freedom. This statistic provides the same information as the z-statistic and shows
exactly the same level of significance (it is used here as it is often included in statistical
software output):

χ2 = 041, df = 1, p = 0.840

Looking at these results, it would appear that the biggest differences between the
supermarkets with respect to the salaries of consumers is between Sainsburys and Solo
and between Sainsburys and Kwik Save, which is what is expected from Figure 5.1. At
the moment we do not have comparisons between Asda, Kwik Save and Sainsburys,

re-coding the data and then manually comparing nested models (see Hutcheson and Sofroniou, 1999, for a
full description of this).
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however, it is a relatively simple matter to obtain these comparisons by changing the
reference category.6 For example, in order to compare Solo and Kwik Save, we can
change the reference category to Solo and re-run the model. From Figure 5.1 we would
expect the difference between these 2 to be small, which is what we find in Table 5.8,
which re-run the model using Solo as the reference category supermarket.

Table 5.8 Estimating the significance of individual parameters using Wald and
z-statistics (reference supermarket = Solo)

Supermarket Parameter Estimate Standard z Wald P-value
error

Asda (Intercept) −2.756 0.573
salary 0.013 0.003 4.471 19.990 7.8e − 06

Kwik Save (Intercept) −0.048 0.410
salary 0.005 0.003 2.090 4.368 0.037

Sainsburys (Intercept) −2.034 0.496
salary 0.012 0.003 4.550 20.703 5.4e − 06

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β salary

j ′ = reference category = Solo

In conclusion, the simple multi-nomial logistic regression model of supermarket
choice suggests that salary is significantly related to choice and that the main differ-
ences are between two supermarkets that attract relatively high earners (Sainsburys
and Asda) and two supermarkets that attract relatively low earners (Kwik Save and
Solo). We will now develop this model into a multiple multi-nomial logistic regression
by considering the effect of an additional variable on supermarket choice.

5.2.2 Multiple multi-nomial logistic regression
including categorical variables

As is the case in OLS, logistic and proportional odds regression models, it is a simple
matter to include more than one explanatory variable into a multi-nomial logistic
regression model. These explanatory variables may be numeric or categorical and
are simply entered into the model as additional terms. For example, the unordered
categorical variable ‘supermarket’ can be modeled using information about salary and
car use. If the errors are independently distributed according to the standard logistic
distribution, we get the unordered logit model shown in Equation 5.4.

log
Pr(Y = j)

Pr(Y = j ′)
= α + β1 salary + β2 car (5.4)

6refer to the software manuals for information about how this can be achieved in specific packages.
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Figure 5.2 Selected supermarket, average salary and car use

The additional variable added to the model is ‘car’, which identifies whether the
consumer uses a car. This variable is a simple binary classification of car use. It is useful
at this stage to investigate the relationship between this variable and supermarket choice
using a graph. Figure 5.2 shows a clustered bar chart that illustrates that consumers
who choose different supermarkets are quite different with respect to whether they use
a car or not. Whilst consumers who select Sainsburys, Asda and Kwik Save tend to be
predominantly car users, those consumers who select Solo tend to not use a car. The
biggest difference between the supermarkets in car use also appears to be between
Solo and Sainsburys. This finding should be reinforced in the following analysis.

It is also useful to investigate the relationship between the explanatory variables
‘salary’ and ‘car use’. The boxplot in Figure 5.3 shows that these two variables are
related with higher salaries associated with car use. This information is important
as it is necessary to control for salary when assessing the influence of car use on
supermarket selection.

Computing and interpreting model parameters: Table 5.9 shows the parameters
for the multiple multi-nomial logistic regression model shown in Equation 5.4. Similar
to the simple multi-nomial logistic regression model, there are 3 sets of parameters
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Figure 5.3 Relationship between average salary and car use

representing the 3 comparisons made between the 4 supermarkets. The following
discussion will concentrate on the interpretation of the unordered categorical variable
‘car’, as this is the variable that has been added to the model.

Table 5.9 Regression parameters

Supermarket Parameter Estimate Standard error Odds ratio

Asda (Intercept) 0.288 0.941
salary 0.001 0.001 1.001
Car(T.yes) −1.249 0.981 0.287

Solo (Intercept) 3.526 0.829
salary −0.007 0.003 0.993
Car(T.yes) −3.789 0.867 0.023

Kwik Save (Intercept) 3.098 0.778
salary −0.006 0.002 0.994
Car(T.yes) −1.468 0.793 0.230

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car

j ′ = reference category = Sainsburys

The parameters for the model shown in Table 5.9 can be interpreted as follows.
For a unit increase in salary whilst controlling for car use, the log odds of a consumer
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selecting Solo as opposed to Sainsburys decreases by 0.007. This equates to an odds
ratio of 0.993 (e−0.007). Even after controlling for car use, consumers with higher
salaries tend to select Sainsburys.

Car use has been dummy coded using treatment coding method which means that
the identified category is compared to the reference. In this case, the identified category
is car user (hence the (T.yes) designation in the tables). The log odds of a car user
selecting Solo compared to Sainsburys is −3.789, which equates to an odds ratio of
0.023 (e−3.789). Car users are therefore much more likely to select Sainsburys than
Solo even after controlling for salary (this result confirms the impression of the data
provided in Figure 5.2).

Using software, it is a simple matter to compute the confidence intervals for the
parameter estimates.7 Table 5.10 shows the 95% confidence intervals for salary and
car use for both the log odds and odds ratios. From this table we can see that for each
unit increase in salary, the odds of a consumer selecting Solo as opposed to Sainsburys
is expected to be between 0.988 and 0.999; as both of these predict a reduction in the
odds that someone will choose Solo, this relationship looks to be just significant at the
95% level. Similarly, we find that Solo’s customers are much less likely to use cars
than Sainsbury’s customers as the 95% confidence intervals both show a reuction in
the odds (0.004 to 0.124). When investigating car use for consumers who choose Asda
compared to Sainsburys we find that the confidence intervals for the odds ratio predict
both an increase and a decrease (the confidence intervals for the odds ratio include 1.0)
and indicate that the relationship is not significant to the 0.05 level. The significance
values for these relationships are discussed later in this chapter and confirm these
findings.

Predicted probabilities: Predictions can be made from a multiple multi-nomial
logistic regression model in much the same way as they were for a simple model.
Using statistical software, predictions can be made as to the probability of being in
any one of the response categories for a given salary and category of car use. Table 5.11
shows the predicted probabilities of being in each response category for a selection of
salaries and car use.8

The effect of car use is particularly noticeable when comparing Solo and Sains-
burys (as was expected from the graph). We can also clearly see the effect of salary.
From these predictions we would expect car use to be significant (particularly for the
comparison between Solo and Sainsburys) and salary to also be important in distin-
guishing between stores as it appears clear that even once car use is taken into account,
there is still a large effect of salary (for example, those consumers on higher salaries
are more likely to choose Asda and Sainsburys, whereas those on lower incomes are
more likely to select Kwik Save).

7These are also easy to compute manually, as the 95% confidence intervals for the parameters are simply
the estimate ±1.96 times the standard error.

8Note that the high probabilities associated with Kwik Save is affected by the larger number of people
that have selected this store.
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Table 5.10 Confidence intervals

Confidence intervals
Supermarket Parameter 2.5% 50% 97.5%

Asda Salary (log odds) −0.002 0.001 0.004
Salary (odds ratio) 0.998 1.001 1.004

Car(T.yes) (log odds) −3.171 −1.249 0.673
Car(T.yes) (odds ratio) 0.042 0.287 1.960

Solo Salary (log odds) −0.012 −0.007 −0.001
Salary (odds ratio) 0.988 0.890 0.999

Car(T.yes) (log odds) −5.488 −3.789 −2.091
Car(T.yes) (odds ratio) 0.004 0.023 0.124

Kwik Save Salary (log odds) −0.009 −0.006 −0.003
Salary (odds ratio) 0.991 0.994 0.997

Car(T.yes) (log odds) −3.021 −1.468 0.086
Car(T.yes) (odds ratio) 0.049 0.230 1.090

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car

j ′ = reference category = Sainsburys

Table 5.11 Predicted probabilities

Probability of selecting supermarket ...

Salary Car use Asda Kwik Save Sainsburys Solo

80 yes 0.081 0.630 0.200 0.089
80 no 0.040 0.382 0.028 0.550

125 yes 0.101 0.578 0.242 0.079
125 no 0.054 0.381 0.037 0.529

375 yes 0.242 0.252 0.478 0.028
375 no 0.231 0.299 0.131 0.339

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car

Goodness-of-fit statistics: In addition to the model parameters and predictions, it is
useful to have an indication of how well the model fits the data and how significantly
each explanatory variable is related to the response. As with the simple multi-nomial
logistic regression model discussed above, significances may be estimated using statis-
tics based on the deviance and on z- and Wald statistics. In this section, the significance
of the variables is to be estimated using statistics based on the measure of deviance
(−2LL), and the significance of the variables when comparing individual categories
of the response variable is to be estimated using z- and Wald statistics.
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For a multiple multi-nomial logistic regression model, the effect of individual or
groups of explanatory variables can be assessed by comparing the −2LL statistics for
two nested models (see Equation 5.5). The resulting statistic is tested for significance
using the chi-square distribution with the number of degrees of freedom equal to the
difference in the number of terms between the 2 models.

−2LLdiff = (−2LLp) − ( −2LLp+q) (5.5)

where −2LLp is the smaller, nested model

and −2LLp+q is the larger model.

Table 5.12 shows the significance of each of the explanatory variables and both
explanatory variables together computed using the change in deviance. From the
table we can see that both explanatory variables together reduce the deviance in
the response variable by 91.123. This is tested at 6 degrees of freedom (the mod-
els differ by 2 parameters for each of the 3 supermarket comparisons). This result is
highly significant. When car use is removed from the model, the deviance increases by
36.366, which when tested at 3 degrees of freedom (1 parameter difference for each
of the 3 supermarket comparisons) also proves to be highly significant.

Table 5.12 Assessing significance by comparing model deviances

Model Deviance −2LLdiff df P-value

Determining the effect of all explanatory variables

Log Pr(Y=j)
Pr(Y=j ′) = α 482.401

Log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car 391.278

91.123 6 1.8e−17

Determining the effect of salary

Log Pr(Y=j)
Pr(Y=j ′) = α + β car 418.156

Log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car 391.278

26.878 3 6.2e−06

Determining the effect of car use

Log Pr(Y=j)
Pr(Y=j ′) = α + β salary 427.644

Log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car 391.278

36.366 3 6.3e−08

Information about the significance of each individual explanatory variable is also
typically displayed in statistical packages in an analysis of deviance table similar to
the one shown in Table 5.13.
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Table 5.13 Analysis of deviance table: significance of variables

−2LL df P-value

Coefficient
salary 26.878 3 6.2e − 06
Car use 36.366 3 6.3e − 08

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car use

In addition to those statistics based on −2LL, the significance of the explanatory
variables for individual supermarket comparisons can be estimated using z and Wald
statistics. The z-statistic is simply the estimate divided by the standard error and tested
for significance using a 2-tailed test (i.e. Pr(>|z|)). The Wald statistic can also be used
to test for significance, which is z2, and is distributed as a chi-square with one degree
of freedom. Table 5.14 shows the z and Wald statistics and the associated level of
significance for each parameter in the model for each supermarket comparison.

Table 5.14 Estimating the significance of individual parameters using Wald and
z-statistics

Market Parameter Estimate Standard z Wald P-value
error

Asda (Intercept) 0.288 0.941
salary 0.001 0.001 0.521 0.271 0.603
Car(T.yes) −1.249 0.981 −1.274 1.623 0.203

Solo (Intercept) 3.526 0.829
salary −0.007 0.003 −2.389 5.707 0.017
Car(T.yes) −3.789 0.867 −4.373 19.123 1.2e−05

Kwik Save (Intercept) 3.098 0.778
salary −0.006 0.002 −3.923 15.390 8.7e−05
Car(T.yes) −1.468 0.793 −1.852 3.430 0.064

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1 salary + β2 car use

j ′ = reference category = Sainsburys

It is interesting to compare the results from Table 5.14 with the results from the
simple multi-nomial logistic regression model that did not include the variable ‘car use’
(see Tables 5.7 and Table 5.8). Although salary and car use are both highly significant
the effect of these variables is very different depending on which supermarkets are
being compared. Asda and Sainsburys appear to be quite similar as both explanatory
variables are insignificant. Sainsburys and Solo are differentiated on the basis of car
use, whereas Sainsburys and Kwik Save appear to be differentiated on the basis of
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salary. It would appear that Kwik Save attracts consumers who have relatively low
salaries and Solo attracts consumers who do not use cars.

In conclusion, the multiple multi-nomial logistic regression model has identified
that salary and car use are significantly related to supermarket choice. The relation-
ship between these variables and choice behavior is, however, dependent upon which
supermarkets are compared. For this analysis, the multi-nomial logistic regression
model has allowed the significance of the explanatory variables to be determined for
the model as a whole and for each category of the response variable compared with
the reference category. These statistics have allowed detailed analysis of an unordered
categorical variable.

5.3 Analyzing Simple Experimental Designs for
Unordered Data

The analysis of unordered data from simple experimental or quasi-experimental stud-
ies has traditionally been conducted through the use of chi-square analysis (see, for
example, Anderson, 1997). These grouped data can also be analyzed using regression
methods; in particular, the multi-nomial logistic regression model. The analysis of
such data can be viewed in a similar way to the modeling techniques already dis-
cussed earlier in this chapter. Namely, an outcome variable can be predicted to some
extent using information about other variables. In this case an unordered categorical
variable (management style, store chosen etc.) can be predicted to some extent using
other information (teaching method used, gender, ethnic origin, university attended).
The aim is to represent the hypothesis in the form of an equation that can be subjected
to a regression modeling technique.

A GLM model has a number of advantages over the more traditional hypothesis
tests, not least the ability to include a number of additional variables in the model (those
that are not controlled experimentally) and the use of a general technique to replace
multiple tests. It is also possible to apply a full range of model selection techniques
and model diagnostics, although these are beyond the scope of the present book. The
following discussion will describe the analysis of data from simple experimental and
quasi-experimental unrelated and related groups designs using multi-nomial logistic
regression models.9

5.3.1 Unrelated groups design

In an unrelated groups design, the cases in the groups are independent of one another.
That is, different cases have been chosen for each group (e.g. a random sample of
40 people are exposed to condition A and a different random sample of 40 people
are exposed to condition B). There is no direct relationship between the members of
the two groups.

9As the GLM is a general technique, this section is very similar to the discussions in Chapters 2 and 4
that described the use of OLS regression and the proportional odds model to analyze experimental designs
for continuous and ordered data. Readers are advised to familiarize themselves with this material.
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We will use hypothetical data here showing an unordered categorical outcome
variable (the response variable) which can be one of 3 values; accept, decline or
undecided. These data are considered to be unordered as the 3 categories are very
different outcomes. There are 3 groups that take part in the study (identified by the
grouped explanatory variable), each group having received a different type of training.
Each group comprises 15 randomly selected subjects (there are 45 subjects in total).
The aim of the study is to see if the type of training (represented by the variable ‘group’)
has an effect on the customer’s decision (represented by the variable ‘outcome’). The
regression model to test this hypothesis is shown in Equation 5.6 with a pictorial
representation of the experiment shown in Figure 5.4.

log
Pr(Y = j)

Pr(Y = j ′)
= α + β group (5.6)

where j is the identified category

and j ′ is the reference category.
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Figure 5.4 A pictorial representation of an unrelated groups design

Table 5.15 shows the data from the experiment shown in tabular form.10 These
types of data are often recorded in a table of cell frequencies as shown in Table 5.16
below.

Before we run the model, it is useful to illustrate the data using an association plot
(Cohen, 1980; Friendly, 1992; R Development Core Team, 2007). Figure 5.5 shows
a Cohen-Friendly association plot which indicates the deviations from independence

10As these data are hypothetical it is easy to experiment with them (change values and add and delete cases
etc.) to see the effects certain changes can have on the model. Readers who are interested in the application
of these methods to real-life data sets are directed to one of the many sources that deal with these models
and provide real-world example data sets (see, for example, Agresti, 1996; Anderson, 1997; Everitt and
Hothorn, 2006; Hand et al., 1994.)



Analyzing Simple Experimental Designs for Unordered Data 139

Table 5.15 Data: unordered categorical data from an unrelated groups design

Group A Group B Group C

Accept Accept Decline
Undecided Undecided Decline

Decline Decline Decline
Decline Undecided Accept
Accept Accept Decline

Undecided Decline Undecided
Decline Undecided Undecided
Accept Decline Decline
Accept Decline Undecided
Decline Undecided Undecided
Accept Decline Decline
Decline Decline Undecided
Accept Accept Accept
Accept Decline Undecided
Decline Decline Decline

(see also, extended association plots; Meyer et al., 2003 and 2006). The area of the
rectangles is proportional to the difference in observed and expected frequencies (if
the variables are independent). For observed frequencies that are below expected, the
rectangles are depicted below the baseline, with observed frequencies that are greater
than expected being depicted above the baseline. The association plot suggests that
Group A is associated with more acceptances and fewer undecided responses than the
other groups and Group C is associated with more undecided and fewer acceptances
than the other groups. The most noticeable difference appears to be between groups
A and C in the response categories accept and undecided. Keeping this information in
mind, we now analyze the data using the multi-nomial logistic regression model.

Table 5.16 Contingency table

Group
A B C

Accept 7 3 2
Decline 6 8 7
Undecided 2 4 6

Table 5.17 shows the parameter estimates for the model shown in Equation 5.6.
You will note that there are 2 sets of parameters, one corresponding to each of the
comparisons made between the identified category and the reference category of the
response variable. There are, therefore, 2 models in this output, one that compares
‘decline’ with ‘accept’ and another that compares ‘undecided’ with ‘accept’. In these
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models the variable ‘group’ have been dummy-coded and are represented as 2 param-
eters (β1−2).

log
Pr(Y = decline)

Pr(Y = accept)
= α + β1−2 group

log
Pr(Y = undecided)

Pr(Y = accept)
= α + β1−2 group

Although there is no direct comparison between the categories “decline” and “unde-
cided”, it is a simple matter to change the reference category to enable this comparisons
to be made (for instruction on how to do this, refer to the manual for the software you
are using). From Table 5.17 we can see that the type of training (represented by the
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Figure 5.5 An association plot

explanatory variable “group”) has been dummy coded using the indicator method to
provide treatment contrasts (signified by the “T.” before the category identifier), which
means that each identified category is compared to the reference category (which in
this example is group A). Each parameter therefore provides information about the
log odds of being in one particular response category compared to the reference out-
come category “accept” for each identified training group compared to group A. For
example, the parameter estimate of 1.135 for the outcome category “decline” and
group(T.B) shows the log odds of someone in group B compared to group A being
in the category ‘decline’ as opposed to “accept”. The odds ratio of 3.111 shows that
someone in group B has over 3 times the odds of being in the category “decline”
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Table 5.17 Regression parameters

Estimate Standard error Odds ratio

Coefficients
Outcome = decline

Intercept −0.154 0.556
Group (T.B) 1.135 0.876 3.111
Group (T.C) 1.407 0.976 4.084

Outcome = undecided
Intercept −1.253 0.802
Group (T.B) 1.540 1.107 4.665
Group (T.C) 2.352 1.144 10.507

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

Outcome reference category = accept

as opposed to “accept” than someone in group A. Similarly, the parameter estimate
of 2.352 for the outcome category “undecided” and group (T.C) shows the log odds
of someone in group C compared to group A being in the category “undecided” as
opposed to “accept”. The odds ratio of 10.507 shows that someone in group C has
over 10 times the odds of being in the category ‘undecided’ as opposed to “accept”
than someone in group A. These results confirm the picture of the data provided in
the association plot shown in Figure 5.5. From the association plot and the parameter
estimates, the major difference appears to be between groups A and C between the
categories “accept” and “undecided”.

In addition to the parameter estimates, it is also useful to compute the confidence
intervals for the regression coefficients. Table 5.18 shows these intervals for the para-
meters shown in Table 5.17. These intervals are quite wide and show the imprecision of
the estimates. Of particular interest is the observation that only one parameter appears
to be significant (i.e. both confidence intervals for the odds ratio predict either an
increase or decrease; that is, the confidence intervals for the odds ratio include 1.0).
According to the table, group C compared to group A has more undecided responses
compared to accept responses (the confidence intervals do not include 1.0 as they
predict a value from 1.115 to 98.890). This result is confirmed in the association plot
as these are the 4 biggest deviations as shown in the deviation plot (i.e. the accept and
undecided responses of group A and group C).

Once we have the model, it is a simple matter to obtain the estimated probabilities
of each of our training groups being in any of the categories of the response variable.
These statistics are shown in Table 5.19 and clearly show the greater probability that
members of group A have of being in the category “accept” and the greater probability
that members of group C have of being in the category “undecided”.

It is important to determine the significance of the estimated effects of the grouping
variable. The significance of this variable can be determined by comparing the deviance
measures (−2LL) for 2 nested models; one that includes the grouping variable and one
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Table 5.18 Confidence intervals

2.5% 50% 97.5%

Outcome = decline
Group (T.B)
Log odds −0.583 1.135 2.852
Odds ratio 0.558 3.111 17.322

Group (T.C)
Log odds −0.506 1.407 3.320
Odds ratio 0.603 4.084 27.660

Outcome = undecided
Group (T.B)
Log odds −0.630 1.540 3.711
Odds ratio 0.533 4.665 40.895

Group (T.C)
Log odds 0.109 2.352 4.594
Odds ratio 1.115 10.507 98.890

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

Table 5.19 Predicted probabilities

Outcome Predicted probability of being in category ...
Accept Decline Undecided

Group (T.A) 0.467 0.400 0.133
Group (T.B) 0.200 0.533 0.267
Group (T.C) 0.133 0.467 0.400

that does not. The significance of the differences between the individual categories of
the variable can be estimated by comparing nested models using the −2LL statistics
(see Hutcheson and Sofroniou, 1999, for a full discussion of this), but can also be
estimated using the Wald statistics in the output table provided by software (the actual
statistic used to estimate significance depends on the package used and can be repre-
sented using z- or Wald statistics). For simplicity, here we will use −2LL to assess
the overall significance of the variable “group” and the Wald statistic to assess the
significance of individual categories of the variable “group”.11 The −2LL statistics
for the variable “group” are shown in Table 5.20 and the Wald statistics showing the
significance of each category in the variable “group” are shown in Table 5.22.

From Table 5.20, we can see that adding the variable ‘group’ to the model results
in a reduction in deviance of 5.716, which, at 4 degrees of freedom (two parameters
for group in the two (j − 1) logit models comparing outcomes) is not significant

11This approach has been used as these are typical statistics provided by software.
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Table 5.20 Assessing significance by comparing model deviances

Model Residual Difference in df P-value
deviance deviance

Log Pr(Y=j)
Pr(Y=j ′) = α 95.454

Log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group 89.739

5.716 4 0.221

(p = 0.221). There does not appear to be a relationship between the types of training
used (the variable ‘group’) and the outcome. These statistics are commonly provided
in an analysis of deviance table such as that shown in Table 5.21 below:

Table 5.21 Analysis of deviance table: significance of variables

−2LL df P-value

Coefficient
Group 5.716 4 0.221

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

Although one should be careful when interpreting the significance of the differ-
ences between individual categories when the overall group is not significant, for
demonstration purposes we will show these statistics here. Table 5.22 shows the z-
and Wald statistics for the model. The z-statistic is simply the estimate divided by the
standard error, whilst the Wald statistic is the square of the estimate divided by the
square of the error (see Agresti and Finlay, 1997, for an explanation of this).

The significance of the variable group (T.B) compared to group (T.A) for the cat-
egory decline compared to accept, can be estimated from the Wald statistic, which is
simply 1.1352/0.8762 = 1.677 (allowing for rounding error). The Wald statistic is dis-
tributed as a chi-square with one degree of freedom (there is one parameter associated
with the statistic). The significance of the statistic can therefore be calculated as:

χ2 = 1.677, df = 1, p = 0.195

The corresponding z-statistic is 1.295, which provides the same estimate for signifi-
cance on a 2-tailed test (i.e. Pr(>|z|)):

z = 1.295, p = 0.195

From this analysis, it appears that groups A and C are significantly different
(Wald = 4.223, p = 0.040) when comparing the outcomes ‘accept’ and ‘undecided’,
although we need to be careful not to attach too much importance to this as the vari-
able ‘group’ was not significant overall (see Table 5.20). The table does not provide
an explicit comparison between the outcome categories of ‘decline’ and ‘undecided’.
Table 5.23 shows the results of the model when the category ‘undecided’ is defined
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Table 5.22 Estimating the significance of individual parameters using Wald and
z-statistics (outcome reference category = accept)

Estimate Standard z- Wald P
error statistic statistic value

Coefficients
Outcome = decline

Intercept −0.154 0.556 −0.277 0.077
Group (T.B) 1.135 0.876 1.295 1.677 0.195
Group (T.C) 1.407 0.976 1.442 2.079 0.149

Outcome = undecided
Intercept −1.253 0.802 −1.563 2.443
Group (T.B) 1.540 1.107 1.391 1.935 0.164
Group (T.C) 2.352 1.144 2.055 4.223 0.040

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

Outcome reference category (j ′) = accept

as the reference category for the response variable (Group A is still defined as the
reference category for the explanatory variable).

Table 5.23 Estimating the significance of individual parameters using Wald and
z-statistics (outcome reference category = undecided)

Estimate Standard z- Wald P
error statistic statistic value

Outcome = decline
Intercept 1.099 0.816 1.346 1.812
Group (T.B) −0.405 1.021 −0.397 0.158 0.691
Group (T.C) −0.944 0.988 −0.956 0.914 0.339

Outcome = accept
Intercept 1.253 0.802 1.562 2.440
Group (T.B) −1.540 1.107 −1.391 1.935 0.164
Group (T.C) −2.351 1.144 −2.055 4.223 0.040

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β group

Outcome reference category = undecided

From Table 5.23 we can see that group A does not differ significantly from groups
B and C when comparing the outcome categories of ‘decline’ and ‘undecided’. The
results for ‘accept’ compared to ‘undecided’ are the same as in Table 5.22, as exactly
the same comparison is being made.

In conclusion, the multi-nomial logistic regression model suggests that the type
of training someone receives does not have a significant effect on the outcome. There
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is some evidence, however, that groups A and C differ when comparing the outcomes
‘accept’ and ‘undecided’, but we would not wish to over-interpret this result as the
grouping variable was not significant overall.

5.3.2 Related groups design

It is relatively simple for the multi-nomial logistic regression model to also deal with
related groups designs (also known as dependent groups). In a related groups design,
the individual cases in the groups are the same (repeated measures) or they are matched
(matched groups). That is, the same case (or matched cases) takes part in each phase of
the experiment (e.g. the same or matched 40 people are exposed to both condition 1 and
condition 2). The analysis of these studies is different from the independent groups’
design, as an additional source of variation needs to be accounted for; the variation
between cases as well as between groups. This design is illustrated pictorially in
Figure 5.6.
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Figure 5.6 A pictorial representation of a dependent groups design

This extra source of information (the subject) can be simply added to the model
as an unordered categorical variable. For example, if there are 2 conditions that are
applied to individual subjects, we are interested in comparing the results from the
2 conditions (to see if the 2 conditions are different), but we also have to take account
of the fact that the subject scores may be related. So, the information we have to
include in the model (the sources of variation) are condition and subject, which are
both unordered categorical variables. If the response variable is unordered, a multi-
nomial logistic regression model may be appropriate and this is shown in Equation
5.7). You will note that this is the same equation as for an independent groups analysis
(see Equation 5.6), except that the variable ‘subject’ is now added to the model.

log
Pr(Y = j)

Pr(Y = j ′)
= α + β group + β subject (5.7)

where j is the identified category

and j ′ is the reference category.
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The data we are to use here to demonstrate the analysis is shown in Table 5.24.
These hypothetical data show repeated measurements taken from matched subjects
who were exposed to one of three conditions (Groups A, B and C) and show an outcome
decision (accept, decline, undecided). The data are essentially identical to that used
for the unrelated groups’ design except that this time the group members have been
matched.

Table 5.24 Data: Unordered categorical data from a related groups
design

Group
Subject A B C

Sub01 Accept Accept Decline
Sub02 Undecided Undecided Decline
Sub03 Decline Decline Decline
Sub04 Decline Undecided Accept
Sub05 Accept Accept Decline
Sub06 Undecided Decline Undecided
Sub07 Decline Undecided Undecided
Sub08 Accept Decline Decline
Sub09 Accept Decline Undecided
Sub10 Decline Undecided Undecided
Sub11 Accept Decline Decline
Sub12 Aecline Decline Undecided
Sub13 Accept Accept Accept
Sub14 Accept Decline Undecided
Sub15 Decline Decline Decline

The 3 conditions are represented by two regression parameters and the
15 matched subjects are represented by 14 parameters in the model of decision out-
come. The multi-nomial logistic regression model for outcome is shown below in
Equation 5.8.

log
Pr(Y = j)

Pr(Y = j ′)
= α + β1−2 group + β3−16 subject (5.8)

Table 5.25 shows the parameter estimates for the model shown in Equation 5.8.
From the table we can see that “group” and “subject” have been dummy coded using
the indicator method to provide treatment contrasts (signified by the “T.” before the
category identifier), which means that each identified category is compared to the
reference category (which in this example is “group A” and “subject 01”).

The log odds of someone in group B being “decline” as opposed to “accept” is
3.060, which corresponds to an odds ratio of 21.328. A subject in Group B has over
21 times the likelihood of declining as opposed to accepting compared to a subject in
group A. Group B subjects therefore tend to decline more than accept compared to
group A subjects, even after controlling for the repeated observations. This result is
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Table 5.25 Regression parameters

Estimate Standard error Odds ratio

Outcome = decline
Intercept −3.616 2.044 0.027

Group[T.groupB] 3.060 1.569 21.328
Group[T.groupC] 4.060 1.898 57.974

Subject[T.sub02] 22.540 0.856 6.15e+09
Subject[T.sub03] 25.667 0.000 1.40e+11
Subject[T.sub04] 1.866 2.492 6.462
Subject[T.sub05] 0.000 2.010 1
Subject[T.sub06] 22.540 0.856 6.15e+09
Subject[T.sub07] 22.540 0.856 6.15e+09
Subject[T.sub08] 2.293 2.319 9.905
Subject[T.sub09] 1.866 2.492 6.462
Subject[T.sub10] 22.540 0.856 6.15e+09
Subject[T.sub11] 2.293 2.319 9.905
Subject[T.sub12] 21.546 0.860 2.3e+09
Subject[T.sub13] −41.100 0.000 1
Subject[T.sub14] 1.866 2.492 6.462
Subject[T.sub15] 25.667 0.000 1.40e+11

Outcome = undecided
Intercept −20.950 1.411 8.0e−10

Group[T.groupB] 4.058 1.920 57.858
Group[T.groupC] 6.232 2.272 5.1e+02

Subject[T.sub02] 39.643 0.856 1.6e+17
Subject[T.sub03] −8.308 0.000 2.5e−04
Subject[T.sub04] 17.710 1.955 4.9e+07
Subject[T.sub05] −24.850 0.000 1.6e−11
Subject[T.sub06] 39.643 0.856 1.6e+17
Subject[T.sub07] 39.643 0.856 1.6e+17
Subject[T.sub08] −17.821 0.000 1.8e−08
Subject[T.sub09] 17.710 1.955 4.9e+07
Subject[T.sub10] 39.643 0.856 1.6e+17
Subject[T.sub11] −17.821 0.000 1.8e−08
Subject[T.sub12] 37.004 0.860 1.2e+16
Subject[T.sub13] −28.859 0.000 2.9e−13
Subject[T.sub14] 17.710 1.955 4.9e+07
Subject[T.sub15] −8.308 0.000 2.5e−04

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group + β3−16 subject

Outcome reference category = accept
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consistent with the association plot in Figure 5.5 that shows the relationship between
the outcome and group membership. Similarly, from the regression coefficients, a
person in group C would appear to be more likely to be “undecided” and “decline”
compared to someone in group A. The parameters for the subjects are not particularly
informative as we are primarily interested in comparing the different groups rather
than comparing subjects. The subjects are included in the model as we need to control
for the effect of the repeated observations. These statistics are presented here for
completeness, but may often be left out of the output in presentations.

As with the other models described in this chapter, it is useful to also compute the
confidence intervals for the regression coefficients. Table 5.26 shows these intervals
for the variable “group” (as the parameters for the different subjects are not particularly
informative, they are not shown in the table). These intervals are quite wide and show
the imprecision of the estimates.

Table 5.26 Confidence intervals

2.5% 50% 97.5%

Outcome = decline
Group (T.B)
Log odds −0.015 3.060 6.136
Odds ratio 0.985 21.328 4.6e+02

Group (T.C)
Log odds 0.340 4.060 7.779
Odds ratio 1.405 57.974 2.4e+03

Outcome = undecided
Group (T.B)
Log odds 0.296 4.058 7.821
Odds ratio 1.344 57.858 2.5e+03

Group (T.C)
Log odds 1.780 6.232 10.684
Odds ratio 5.930 5.1e+02 4.4e+04

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group + β3−16 subject

Of particular interest here is that the odds ratios associated with the groups all
include 1.0, apart from group B when comparing “decline” with “accept” (although
these parameters only just include 1.0 which suggests that the difference is close to
significance). We would, therefore, expect these relationships to be significant at the
95% level, apart from when comparing group B with group A for ‘decline’ as opposed
to “accept”. This is what we find in the results in Table 5.30.

Once we have the model, it is a simple matter to obtain the estimated probabilities
of each of our groups being in any of the categories of the response variable. These
statistics are shown in Table 5.27 and clearly show the greater probability that members
of group A have of being in the category “accept” and the greater probability that
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members of group C have of being in the category “undecided”. You will note that
this table is exactly the same as Table 5.19 as the effect of subject has been averaged
across each group. The results are presented here for completeness.

Table 5.27 Predicted probabilities

Outcome Predicted probability of being in category...
Accept Decline Undecided

Group (T.A) 0.467 0.400 0.133
Group (T.B) 0.200 0.533 0.267
Group (T.C) 0.133 0.467 0.400

It is important to determine the significance of the estimated effects of the
grouping variable and subject. The significance of these variables can be determined
by comparing the deviance measures (−2LL) for nested models. The significance of
the differences between the individual categories of the variables can be estimated by
comparing nested models using the −2LL statistics (see Hutcheson and Sofroniou,
1999, for a full discussion of this), but can also be estimated using the Wald statistics in
the output table provided by software (the actual statistic used to estimate significance
depends on the package used and can be represented using z- or Wald statistics). For
simplicity, here we will use −2LL to assess the overall significance of the variables
“group” and “subject” and the Wald statistic to assess the significance of individual
categories of the variables for different comparisons of the response variable cate-
gories.12 The −2LL statistics for the variables “group” and “subject” are shown in
Table 5.28 with the associated ANOVA table output shown in Table 5.29 and the Wald
statistics showing the significance of each individual category shown in Table 5.30.

From Table 5.28, we can see that adding the variables “group” and “subject” to the
model results in a reduction in deviance of 54.407, which, at 32 degrees of freedom

Table 5.28 Assessing significance by comparing model deviances

Model Residual Difference in df P-value
deviance deviance

Effect of group and subject

log Pr(Y=j)
Pr(Y=j ′) = α 95.454

log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

+β3−16 subject 41.047

54.407 32 0.008

continued on next page . . .

12This approach has been used as these are typical statistics provided by software.
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. . . continued from previous page

Model Residual Difference in df P-value
deviance deviance

Effect of group

log Pr(Y=j)
Pr(Y=j ′) = α + β3−16 subject 54.147

log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

+β3−16 subject 41.047

13.100 4 0.011

Effect of subject

log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group 89.739

log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group

+β3−16 subject 41.047

48.691 28 0.009

(2 parameters for group and 14 parameters for subject in the 2 (j −1) logit models
comparing outcomes) is significant (p = 0.008). There appears to be a relationship
between the types of training used (the variable “group”) and the outcome once the
repeated measurements are taken account of (the variable “subject”). These statis-
tics are commonly provided in an analysis of deviance table such as that shown in
Table 5.29 below:

Table 5.29 Analysis of deviance table: significance of variables

−2LL df P-value

Coefficient
Group 13.100 4 0.011
Subject 48.691 28 0.009

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group + β3−16 subject

The significance of each category in the model can be estimated from the Wald
statistic, which is simply the squared estimate divided by the squared standard error.
The Wald statistic is distributed as a chi-square with one degree of freedom. Table 5.30
shows the Wald (and z-) values for each category. As it is the variable “group” which
is of interest here, the Wald and associated significance statistics are only provided for
these parameters.

When comparing the response variable categories “decline” and “accept” (the top
half of the table), subjects in group C and A are statistically different from the 95%
level. As expected from Table 5.26, the difference between groups B and C just fails
to reach significance. When comparing the response variable categories “undecided”
and “accept” (the bottom half of the table) groups A and B, and groups A and C are
significantly different. As suggested in Figure 5.5, it is the difference between groups
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Table 5.30 Estimating the significance of individual parameters using Wald and
z-statistics

Standard z Wald P
Estimate error statistic statistic value

Outcome = decline
intercept −3.616 2.044

group[T.groupB] 3.060 1.569 1.950 3.802 0.051
group[T.groupC] 4.060 1.898 2.139 4.575 0.032

subject[T.sub02] 22.540 0.856 26.335
subject[T.sub03] 25.667 0.000 1.7e+09
subject[T.sub04] 1.866 2.492 0.749
subject[T.sub05] 0.000 2.010 4.7e−05
subject[T.sub06] 22.540 0.856 26.335
subject[T.sub07] 22.540 0.856 26.335
subject[T.sub08] 2.293 2.319 0.989
subject[T.sub09] 1.866 2.492 0.749
subject[T.sub10] 22.540 0.856 26.335
subject[T.sub11] 2.293 2.319 0.989
subject[T.sub12] 21.546 0.860 25.064
subject[T.sub13] −41.100 0.000 −6.6e+16
subject[T.sub14] 1.866 2.492 0.749
subject[T.sub15] 25.667 0.000 1.7e+09

Outcome = undecided
intercept −20.950 1.411

group[T.groupB] 4.058 1.920 2.114 4.469 0.035
group[T.groupC] 6.232 2.272 2.744 7.530 0.006

subject[T.sub02] 39.643 0.856 46.318
subject[T.sub03] −8.308 0.000 −4.0e+20
subject[T.sub04] 17.710 1.955 9.060
subject[T.sub05] −24.850 0.000 −8.7e+17
subject[T.sub06] 39.643 0.856 46.318
subject[T.sub07] 39.643 0.856 46.318
subject[T.sub08] −17.821 0.000 −1.9e+15
subject[T.sub09] 17.710 1.955 9.060
subject[T.sub10] 39.643 0.856 46.318
subject[T.sub11] −17.821 0.000 −2.4e+15
subject[T.sub12] 37.004 0.860 43.046
subject[T.sub13] −28.859 0.000 −1.8e+19
subject[T.sub14] 17.710 1.955 9.060
subject[T.sub15] −8.308 0.000 −4.0e+20

Model: log Pr(Y=j)
Pr(Y=j ′) = α + β1−2 group + β3−16 subject

Outcome reference category = accept
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A and C between the response variable categories “undecided” and “accept” that is
the most significant. The significant results for the related groups design analysis are
particularly interesting as the same data gave insignificant results when the variable
subject was not controlled for.

5.4 Conclusion

This chapter looked at the multi-nomial logistic regression technique for modeling
unordered categorical data. This model is particularly useful as it allows continuous
and categorical explanatory variables to be included in the model which allows the
analysis of experimental designs as well as correlational studies. The analyses pre-
sented concentrated on the interpretation of the regression parameters and on the use
of the deviance statistic to determine the significance of the variables in the model. A
major goal of this chapter was to illustrate the similarities between this model and the
other generalized linear modeling techniques so far covered.

The multi-nomial logistic regression model is a powerful technique for analysing
unordered categorical data and also provides an alternative to the older hypothesis tests
for unordered data. The multi-nomial logistic regression model greatly simplifies the
choice of test as it can be applied to 2 or more groups which are part of an independent
or related design.

There are a number of areas that we have not touched upon, including the use of
diagnostic tests, data transformation, techniques of model selection and the extension
of the model to hierarchical (multi-level) data. These topics are beyond the scope of
the present book, but information about these topics may be found in Agresti, 1990,
1996; Agresti and Finlay, 1997; Crawley, 2005; Faraway, 2006; Fox, 2002, Hoffmann,
2004; Raudenbusch and Bryk, 2002.



CHAPTER 6

Neural Networks

Recent business research has identified the potential for the use of neural networks
in areas where statistical and structural equation modeling approaches have been
traditionally used. Where little is yet known about the research area, a neural network
analysis may be more useful in establishing a pattern of relationships. In a situation
where there is strong previous research evidence for believing that the latent variables
influence both sets of outer variables, structural equation models are likely to be the
chosen technique.

The human brain processes information by interconnecting the five senses, sight,
touch, smell, hearing and taste. The actual processing of this information occurs via
nerves and the 10,000 million neurons which make up the average human brain. Cur-
rently, it is probably feasible using current silicon digital technology, notwithstanding
cost, to achieve neural-based computers with 1 million processing elements (‘neurons’)
and 100 million interconnects, i.e. with 1/10,000th the latent processing power of the
average human brain!

6.1 Cognitive Theory – Nodes and Links –
Mental Manipulation of Data

6.1.1 Roots: A parallel Model of the Brain

The starting point of the approach is based on the workings of the brain, which is taken
to comprise an interconnected set of ‘neurons’. The interconnections are referred to
as ‘synapses’. The neural networks approach (hereafter designated as NN) is also
described as connectionism. NN models attempt to replicate the brain’s own problem
solving processes, whereby ‘input neurons’ receive direct stimuli which are then fed
into through a pattern matching process to produce a conclusion or response. The
signals input into a NN can identify certain patterns. Pattern matching operations
translate well into the Marketing Environment, to the extent that we are concerned
with perceptions, cognition and stimuli (impact of advertising on consumer motivation,
opportunity and ability [MOA]). The simplest form of NN consists only of two sets
or ‘layers’ of neurons – input and output layers. Each input is potentially linked to
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each output. The input neurons record or are activated by sensors. The output neurons
would relate to either specific recognized stimuli or to decisions regarding specific
outcomes. This simple model is the ‘Perceptron’ model.

The original inspiration for the Neural Networks approach came from physiology
and psychology. The aim is to work with a direct analogy of the human brain as
a set of interconnected processing nodes operating in parallel, copying the lower
level computational actions (as opposed to cognitive operations) carried out by the
brain. Knowledge is acquired by the NN through a process of learning from examples
presented to it, and thus NNs can be viewed not just in terms of the replication of
human intelligence but also as a mechanism for machine learning. Neural Networks
originated as models of the operation of the brain and its processes. The motivation
was to escape from problems of knowledge representation and knowledge acquisition
which seriously constrain developers of expert systems. With NNs there is no need
for an explicit or ‘symbolic’ representation of expert knowledge and no requirement
for processes of inference.

6.1.2 Neural networks embody a process of learning

NN models originated as models of the operation of the brain. The main aim was
to delve into physical details (rather than concentrate on concepts, cognition). The
motivation was to escape from problems of knowledge representation and knowledge
acquisition which seriously constrain developers of Expert Systems (ES). With NN
there is no need for an explicit or ‘symbolic’ representation of expert knowledge
and no regiment for processes of inference. Instead, early NN models date back to
‘Perceptron’ model (Rosenblatt 1958). Interest in the potential of NN has gone far
beyond their potential use as representations of the brain and its processes. The best
way to think of this is in terms of NN as alternatives to more traditional statistical
procedures (regression and discriminant analysis). This arises because NN embody a
process of learning (learning can be looked at from logical angle) and NN belong also
to the study of machine learning.

Neural networks learn directly from data using pattern recognition to simulate
human learning and make predictions. Neural computing attempts to model directly
the biological structure of the human brain and the way it processes information (albeit
at a somewhat simple level). NNs incorporate knowledge and memory in terms of the
interaction of separate neurons. They amount to a ‘sub-symbolic’ or direct physical
representation, equivalent to working not with a conceptual view of the human (or
indeed animal) thought process but with the brain’s equivalent of electrical circuitry.

NNs embody intelligence in the interconnections between physical neurons. This
‘connectionist’ approach is in contrast to the main alternative philosophy of artificial
intelligence (AI) which deals with symbolic computation and seeks direct representa-
tion of human knowledge rather than embedding knowledge in interactions between
neurons. If an expert system is like a trained professional, neural nets are like idiot
savants (idiot savants are mentally impaired individuals who exhibit extraordinary
genius in particular areas such as music or higher mathematics).

One implication of neural networks to computing technology is that they may offer
new approaches to processes that have not been easily susceptible to conventional
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computing, e.g. those that involve a large element of ‘gut feel’. Typically such pro-
cesses require integration of disparate types of data, including current, past (experi-
ence) and future data (expectations) as well as the use of data that is incomplete. Neural
computing may therefore provide a useful tool for marketing management seeking to
escape from the simple extension of past trends which traditional computing processes
imply.

Neural networks are good at inexact problems. The more fuzzy the problem, the
more likely a neural net can give a more optimized solution than a conventional
approach. If you don’t know how to solve a problem, you can throw a neural net at it.
It can take as little as an hour to configure a system where a conventional analysis and
programming technique could take six months.

In contrast to traditional modeling techniques that start with hypotheses about
relevant causes and effects, the user of neural networks can start with a chaotic mass
of historic data or mixed forms; some may be certain and quantified, others uncertain
and prone to error (‘noisy’), some missing and some categorical.

Neural computers are also particularly effective at predicting the behavior of non-
linear or ‘chaotic’ systems. This is a task that conventional statistical techniques find
very difficult to perform. Applying neural network technology to analyze and predict
customer purchase patterns has resulted in fairly good predictions of a customer’s next
product choice.

In the UK, neural computers such as customer predictor and data builder are
being used experimentally to derive predictions of customer behavior that can be used
for direct marketing and advertising media planning. For database marketers, neural
computers offer the benefit that they can easily handle missing and categorical data –
a frequent occurrence in marketing databases.

However, one drawback to using neural network technology to make sense of
historic data on markets and customers, etc. is that the reasoning that underpins a
neural network’s predictions can be very difficult to understand and to interpolate into
rules.

This means that although you might use a neural network system to provide cost-
effective customer purchasing predictions, you will not be able to benefit from investi-
gating, understanding and even developing the system’s reasoning. Therefore, alterna-
tive systems are being developed which, like neural networks, develop rules from data
but also, and unlike neural networks, explain the reasoning process. One such product
is data mariner, a system which combines traditional statistical cluster analysis with
an inductive machine-learning algorithm.

The internal workings of a neural network behave largely as a ‘black box’, in that
it is not possible to tell how the network achieved its results, only that it does. Unlike
knowledge-based systems, which make their reasoning processes fully explicit, and
data processing systems, whose behavior can be traced step by step, a neural network
cannot explain its reasoning very easily, since its knowledge or ‘program’ is implicitly
encoded as numerical weights distributed across the network.

A neural computer consists of a number of elementary units called neurons. A
neuron is a simple mathematical processing unit, which takes one or more inputs
and produces an output. Each input into the neuron is called a connection and each
connection has an association weight that determines the ‘intensity’ of an input.
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Figure 6.1 A neural network with one hidden layer

For many problems one hidden layer is sufficient to give the model much greater
representational power. The outputs of the neural network are functions of hidden
layer nodes which in turn are functionally dependent on inputs. Hidden layer nodes
receive signals which are represented as weighted linear functions of inputs. The NN
model amounts to a complex non-linear representation of the output variables in terms
of the inputs. The hidden layers in such a model are of interest to the marketer in
that the hidden layer nodes can be regarded as latent or unobservable variables, which
can be named or described through considering their links with measurable input and
output variables. The underlying philosophy is related to that of a structural equation
model, or of factor analysis.

These layers are the ‘hidden layers’ in that they do not contain directly meas-
urable variables. In terms of the brain analogy they can be related to the internal
workings of the brain rather than its physical exterior. It provides a richer modeling
platform, permitting the inclusion of more real-world structures. Also, the multi-
layer model has the advantage that the intermediate layers may frequently be linked
to important concepts. This is particularly valuable where these concepts are not
susceptible to direct measurement. The hidden layers may add valuable features,
e.g. the (Kohonen) self-organizing [network] contains a first layer which is seen to
direct stimuli towards those neurons which are particularly able to process certain
patterns.
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6.1.3 Implementation of NNs

In formal terms, a NN model may be expressed in terms of the interconnections
between its neurons. These interconnections can be regarded as weights – a kind of
sophisticated regression analysis. The network learns from a set of examples. There
are many techniques (called training algorithms) for training a neural network. One of
the most powerful training methods is supervised training. For a particular layer above
the first input layer we have each neuron that is functionally dependent on neurons
in the layer immediately below it. A vital feature of the approach is that the values
of the weights are established by ‘training’, whereby they are induced from example
connections. In ‘supervised training’, the network is fed training pairs or related inputs
and outputs.

In ‘unsupervised training’ it is forced to rely only on input vectors and learns
by means of clustering methods. The fact that a network can learn from experience,
reduces the need for an extensive process of knowledge acquisition, and so is an
advantage over rule-based systems.

Learning depends very heavily on correct selection of training examples. Learning
takes place through a statistically based procedure of iteratively adjusting the weights.

For supervised training, this is done in order to arrive at values for the weights
which minimize the distances between actual output levels of neurons in the ‘training
set’ and the values of the output neurons predicted from the inputs.

A ‘backpropagation’ algorithm is used whereby inputed values are calculated for
hidden layer neurons. These are calculated by using values of neurons in the previous
layer.

Rules may be derived a posteriori by interpretation of layers and their weights.
NN techniques, in that they deal with the inner workings of a process in numeric

terms, employ what may be called ‘sub-symbolic’ computation. The model provides
a framework for parameter estimation which permits the inclusion of intermediate
layers of essentially non-measurable psychological variables.

There are several possibilities of combining NN with a rule-based formulation. The
two could combine alternative sources of knowledge: NN could generate statistically
based knowledge from examples.

The network is trained from a set of ‘examples’. Where examples consist of both
input layer and output layer values learning is said to be ‘supervised’, a condition
equivalent to statistical estimation. ‘Unsupervised’ learning corresponds to the statis-
tical problem of classification or discrimination.

Examples may consist of both inputs and outputs (‘supervised learning’, which
corresponds to statistical estimation of the outputs), or inputs only (‘unsupervised
learning’, which corresponds to statistical classification or discrimination).

A vital feature of the approach is that the values of the weights are established by
‘training’, whereby they are induced from example connections.

• Supervised training: the network is fed training pairs of related inputs and
outputs.

• Unsupervised training: the network is forced to rely only on input vectors and
learns by means of clustering methods.
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The key task performed by a neural computer, which lies at the heart of most of the
current applications of the technology is pattern recognition, which involved matching
an input pattern with a stored bank of known patterns with the aim of finding the closest
fit. Pattern recognition is an extremely difficult task for conventional computers to
perform since it is very difficult to describe the solution to this task and all the possible
input situations which can arise. Neural networks, however, have proved to be very
effective at performing this task.

A number of analytical tasks can be identified which use pattern matching in one
form or another.

1 Classification

2 Prediction

3 Assessment

4 Diagnosis.

For the ‘Perceptron’ model the most common scheme for supervised learning is
through an iterative procedure known as the ‘Delta’ rule, whereby the weights for
each node are adjusted in proportion to the difference between the given values of the
output nodes in the training set and the values generated or predicted by the network.

The most common learning scheme for NN implementations with supervised learn-
ing, and the one used in the model discussed in this chapter, is known as the ‘back-
propagation algorithm’. This is an extension of the ‘Delta rule’, whereby the weights
for each node are adjusted in proportion to the ‘errors’, which represent the differ-
ences between the given values of the output nodes in the training set of examples
and the values predicted by the network. It is of course impossible to compute pre-
diction errors for the hidden layer nodes. The algorithm circumvents this problem by
calculating inputed values for these errors at each stage, by dividing the output layer
error pro rata between the hidden nodes. Backpropagation refers to this process of
calculating errors by working backwards from the output nodes.

Although it is technically not possible to calculate the errors for hidden nodes, the
algorithm is made feasible by ‘propagating’ errors backwards from output nodes to
hidden nodes. These inputed errors are then used to compute the adjustments to the
weights at each stage.

6.1.4 The backpropagation algorithm (BP)

Here the weights (parameter values) are to be adjusted in proportion to the ‘errors’,
which represent the differences between the given values of the nodes in the output
layer and the values ‘predicted’ by the network.

The ‘backpropagation algorithm’: this is an extension of an iterative procedure
known as the ‘Delta rule’, whereby the weights for each node are adjusted in proportion
to the difference between the given values of the output nodes in the training set of
examples and the values predicted by the network. For the hidden layer, the algorithm
calculates inputed values for these errors at each stage, by dividing the output layer
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error between the hidden nodes. An element of non-linearity is brought in through the
use of threshold levels for each hidden layer node. The threshold effect is modeled by a
suitable continuous function, in this case the Sigmoid function which maps values to a
range of plus one to minus one. For small input signals the function slopes steeply, but
as the signal becomes stronger the differential impact becomes progressively lower.

An overview of the backpropagation training method is as follows:

1 A set of example cases for training the network is assembled. Each case consists
of a problem statement (which represents the input into the network) and the
corresponding solution (which represents the desired output from the network).

2 Some case data are entered into the network via the input layer.

3 Each neuron in the network processes the input data with the resultant
values steadily ‘percolating’ through the network, layer by layer, until a
result is generated by the output layer.

4 The output of the network is compared to what it should have been for that
particular input. This results in an error value, representing the discrepancy
between given input and expected output. On the basis of this error value all of the
connection weights in the network are gradually adjusted, working backwards
from the output layer, through the hidden layer, and back to the input layer, until
the correct output is produced. Fine tuning the weights in this way has the effect
of teaching the network how to produce the correct output for a particular input,
i.e. the network learns.

The process that a neuron performs is quite straightforward :

1 Multiply each of the connection values by its respective weight.

2 Add up the resulting numbers for all the connections.

3 Filter this result through a ‘squashing’ or threshold function such as the Sigmoid
equation commonly used in backpropagation.

If the result of the addition and multiplication process carried out by the network
is less than the threshold value then no signal in output (or, in some cases, some form
of ‘negative’ or inhibitory signal may be generated).

As the addition of hidden layers in a completely linear model would provide no
additional representational power, it is also usual for an element of non-linearity to be
brought in through the use of threshold levels for each hidden layer node. Networks
are most commonly presumed to be linear in structure. The problem is, however, that
adding hidden layers in a completely linear model provides no added representational
value. It is usual therefore for an element of non-linearity to be brought in through
the use of threshold levels for each hidden layer node. Thresholds could be modeled
by a simple step function, whereby a node is activated only if the weighted sum of
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its inputs exceeds a given level. A more interesting scheme is to model the threshold
effect by means of a suitable continuous function. The most interesting scheme is
to model the threshold effect by means of a suitable continuous function. The most
common scheme uses the Sigmoid function.

Y = φ(x) = 1

(1 + e−x)
(6.1)

This is shown in the figure below. The threshold effect is modeled by a suitable
continuous function, in this case the Sigmoid function which maps values to a range
of one to zero. For small input signals the function slopes steeply, but as the signal
becomes stronger the differential impact becomes progressively lower.

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.2 The Sigmoid function

The Sigmoid function and other trigonometric squashing functions offer almost
infinite flexibility, to the extent that it is often stated that NNs are ‘universal approxi-
mators’ capable of fitting themselves to almost any arbitrary functional relationship.

The process by which NN learn (or are trained) is close to the statistician’s idea of
estimation, especially in the case of complex non-linear models in which it is necessary
to estimate using a search procedure.

This can be seen looking more closely at the learning processes embodied in
the multi-layer Perceptron (MLP) model, the term commonly used to denote the
model of Rumerlhart et al., (1986). In the simplest case of a single layer network,
the outputs of the network are functions of hidden layer nodes which in turn are
functionally dependent on the inputs. Hidden layer nodes receive signals which are
represented as weighted linear functions of inputs. In addition, an ‘activation’ function
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is used whereby a hidden node only operates if it receives a suitably strong incoming
signal. Simple step functions could be used for this purpose but it is usual to adopt
a more fuzzy approach in which the input signal is ‘squashed’ into a narrow interval
such as 0,1. The classical Rumerlhart version of this used the Sigmoid function (see
Equation 6.1).

Other similar trigonometric functions may also be adopted. Output nodes receive
signals from the hidden nodes which are also represented linearly. It is also possible to
transform these signals through a squashing function. The process of learning in such
a model amounts to a search for the parameter weights. Conventionally, the weights
are chosen to minimize RMS or MSE error. Hence, the process is entirely equivalent
to non-linear regression models in which numerical search procedure is employed to
carry out the actual least squares estimation. This begs the question of the appropriate
error metric to use, which must be dependent on a formal error structure being inserted
into the model, for example, one may derive the quadratic or lease squares error metric
from a maximum likelihood approach to estimation, but only given a suitable ‘well
behaved’ error term. Aside from considerations of error terms the NN model amounts
to a complex non-linear representation of the output variables in terms of the inputs.
This complex relationship amounts to sums of Sigmoid expressions. As well as regres-
sion, the approach is equivalent to discriminant analysis and other procedures whereby
data points are classified by means of a function of a set of independent input variables.
Much of the differences are simply a matter of terminology. A formal demonstration
of these ideas was developed by White (1989) whose highly generalized and sophis-
ticated methods yield formal proofs that NNs are susceptible to a classical statistical
treatment. The particular method used by Rumerlhart et al. is backpropagation which
has become by far the most popular approach. Here the weights (i.e parameter values)
are progressively adjusted in response to differences between the actual outputs and the
values predicted by the network. To counter the fact that errors for hidden nodes are by
definition impossible to compute, errors at the output level are propagated backwards
through the network: in other words imputed errors are calculated for hidden nodes by
pro rata allocation of output errors. This procedure is equivalent to optimizing the error
metric (minimizing the root mean square (RMS) error) by gradient descent methods.
These methods change parameter weights in accordance with the first derivative of the
error function with respect to the parameters. They are however known to generate local
optima.

Details of the algorithm: Both the delta rule and the BP algorithm may be viewed
as applications of gradient descent methods, whereby the parameter space is searched
in such a way as to move always in the direction which gives the largest improvement
in the objective functional. Rumerlhart et al. (1986) offer a proof that the method
will find an optimum. This proof is worth examining since it shows the importance
of the threshold function, particularly useful for this purpose being the properties of
the Sigmoid function. It is assumed for the purposes of exposition that network has a
single hidden layer. Output, hidden layer and input nodes are denoted by Y, Z and X
variables respectively. Weights are expressed as vectors α and β.
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The value of each node in the hidden layer depends on the input ‘squashed’ by the
sigmoid function (φ).

Zi = φ(

n∑
j=1

βjXj ) (6.2)

The output layer in turn receives a linear combination of these activated signals
from the hidden layer.

Yk =
m∑

j=1

αiZi (6.3)

The advantage of the sigmoid model is that it possesses a very convenient first
derivative:

dy

dx
= y(1 − y) (6.4)

This expression is both simple and tractable and also has the added advantage of
being parameter free. Gradient descent involves adjusting the weights in response to
the first derivative of the function to be optimized (the error function).

Thus, despite the enormous popularity of BP methods and variations on the same
theme that other numeric routines should be adopted.

Key parameters in the running of neural networks are the following:

Learning rate: the change in weight as a proportion of the prediction error at each
iteration.

Learning momentum: is an extra refinement whereby the adjustment to a weight
depends not only on the prediction error but also, proportionately, on the adjust-
ment carried out at the previous iteration.

Learning threshold (of convergence): learning stops when the errors for all sample
cases fall below this level.

Net weight change: (learning rate) * (error) + (momentum) * (last weight change).

A neural network (NN) can be defined as a collection of interrelated nodes. Def-
initions of this nature remove the need to rely on analogies of the brain and take us
into more general domains, in which the nodes amount to what are known more famil-
iarly as variables. Neural network techniques have become an accepted part of the
‘toolkit’ available to researchers in numerous fields. There are other less well-known
NN techniques which also hold much potential, and perhaps the most notable of these
is the Kohonen SOM. Self-organization can be described as the progressive formation
within the system of sequential, ordered relationships between the interacting dynamic
variables. One might also describe the phenomenon as ‘adaptation’. The SOM pro-
vides, quite literally, a picture or map of a set of a data, but it does so in an adaptive
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or ‘intelligent’ way. On the other hand, NNs in general, including those which apply
supervised learning, are also self-organizing in a similar sense: e.g. the hidden nodes
in Perceptron models provide approximations to an underlying function and can act
to filter the data.

The Kohonen self-organizing map (SOM) belongs to the general discipline of
neural networks (NNs). This holds to the extent we may regard a neural net as a set
of interrelated processing nodes. The SOM does not, however, form part of what may
be termed the NN ‘orthodoxy’. It involves unsupervised learning (i.e. without targets
or outputs) and is more closely related to statistical clustering techniques than it is to
methods such as regression analysis. It offers a rather novel approach to clustering.

NN techniques have become an accepted part of the ‘toolkit’ available to marketing
researchers. There is a tendency, however, as in other disciplines where NNs have been
popularized, towards theestablishmentof anorthodoxy in thesematters.Theorthodoxy
is characterized by use of the multi-layer perceptron (MLP) with Sigmoid activation,
which may be labelled more informatively as a ‘feedforward logistic network’. The
learning algorithm used in the orthodox approach is some variant of backpropagation
(although other methods are available which offer potentially superior performance).

It is quite common for authors simply to note the usual distinction between super-
vised and unsupervised learning and thence to proceed to use the MLP, which effec-
tively means that the network model is being used in a way equivalent to non-linear
regression or discriminant analysis. The advantage of NNs in this context is that no
prior specification is required for functional forms, relying on the so-called ‘univer-
sal approximation’ property. The capacity of networks to adapt to arbitrary target
functions is a crucial part of their attractiveness.

Unsupervised learning implies the absence of what in more conventional ter-
minology means of a dependent variable. It applies separately or independently
to a set of network inputs. In statistical terms (let us not forget the NN applica-
tions in very many disciplines are statistical in nature), we are dealing with techniques
of data transformation or data reduction.

The Kohonen self-organizing map (SOM) may be regarded as a form of clustering
analysis, where in contrast to more conventional methods of clustering, the transfor-
mation does not involve the same space as the data, but rather a two dimensional grid
of nodes. The idea is that a set of input data or input vectors is subject to a topology
preserving transformation such that they are effectively described by the ‘prototypes’
(the SOM equivalent of clusters). Each node in the grid is a prototype in the sense that
it possesses a set of weights which are values for the set of inputs. The position of each
node in the grid vis-à-vis its neighboring nodes is of major importance, particularly
during the training process.

In what follows we examine the details of the SOM approach and examine its
potential through the ‘market maps’ that are obtained. At this point we may also note
one important aspect. We referred above to the universal approximation property of
feedforward networks, noting that non-linear approximation is perhaps their single
most important advantage. SOMs can also be considered in a similar way, although
little emphasis has been placed on this aspect in the literature on their applications.
More specifically, the SOM has been shown (Mulier and Cherkassy, 1995) as being
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implied kernel smoothing process. Kernel methods are another interesting statistical
technique for non-linear modeling without assumed functional forms, and Mulier and
Cherkassy have pointed out that there are important formal similarities between kernel
estimates and the implied non-linear transformation carried out in the SOM.

The SOM amounts to a relationship between a set of input nodes and a set of
nodes connected to these inputs which perform the operations of transformation and
grouping. There is no output node serving the role of predicted or target value and hence
in NN terminology we have ‘unsupervised learning’. Specifically these ‘Kohonen’
nodes are arranged in a 2-dimension grid, with each node being connected to each of
the inputs.

Interestingly, the actual spacing of the Kohonen nodes has no meaning: what
is important is their grouping together. This is because each node is regarded as a
‘prototype’, a set of cognate values of the attributes of the input data. An equivalent
term is ‘reference vector’. These values are the weights of the node. As discussed below,
each vector of observed values, which may be continuous, discrete or categorical, will
be closest in terms of Euclidean distance to one particular prototype node. The latter
nodes serve to classify or cluster inputs, but the proximity of each node to its neighbors
in the grid is a key element, which distinguishes the SOM from conventional statistical
clustering techniques. Whereas Cluster Analysis (CA) operated in the space of actual
values, the SOM operates within its own 2-dimensional grid. Standard methods of CA
are almost invariably designed to produce non-overlapping clusters (Everitt, 1993),
but the prototypes of the SOM are not mutually exclusive. This means that the final
feature map, instead of showing several distinct clusters with differing characteristics,
shows neighboring nodes which have many similar characteristics but differ perhaps
on one or two, or in degree of intensity of characteristics.

In the terminology of the SOM, the grid preserves the ‘topological structure’ of
the data or alternatively may help us uncover such structure. The Concise Oxford
Dictionary defines topology as ‘study of geometrical properties and spatial relations
left unchanged by the continuous change of shape or size of figure’. The topological
structure emerges as a ‘feature map’ in which the prototypes are related and subject to
potential overlaps. Topology preservation implies that input vectors close together in
input space map to close nodes in the grid. Thus, not only are the prototypes intended
to reflect ‘typical’ values of the inputs in their respective neighborhoods, but their
grid positions reflect the relative positioning and density of the original data. No such
ordering exists for the clusters which merge from CA.

6.1.5 Basic properties of the SOM

The Kohonen network model can be considered has having two main groupings of
nodes. In the first place we have input nodes, which are essentially the same as inputs
in more standard networks. Each node represents a measurable attribute relating to
data points. An input vector is a collection of attribute measures for each data unit,
e.g. a firm or consumer.

What gives the SOM its primary distinctive feature is the 2-dimensional grid of
Kohonen nodes. The grid serves to relate the nodes together, rather than them being
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taken as separate clusters. Each node in the grid is a ‘prototype’ rather than a cluster
in the conventional sense. It represents a particular set of attribute values, these being
comprised of its weights. For each Kohonen node, therefore, the number of weights
is the same as the number of inputs to the network. The structure of the network is
illustrated in Figure 6.3 below.

Kohonen
nodes

Inputs

Figure 6.3 Connections operate between all inputs and all Kohonen nodes

Once the weights have been established, the network operates simply finding the
Kohonen node which is the nearest match to a given input vector, measured in terms
of the Euclidean distance between the input vector and the weights of the node. This
classifies the input data by linking each data point to a single prototype.

Actually establishing the weights (‘training’ in NN parlance) involves a similar
theme, giving rise to ‘competitive’ or ‘winner takes all’ learning. Input vectors are
presented repeatedly to the network, as with more conventional models, and at each
presentation the ‘winning’ Kohonen node is identified. This being the prototype for
which the weights are the best representation of a particular input vector, the weights
are then adjusted to move nearer toward it. The actual adjustment is such that the change
in each weight of the prototype is proportional to the Euclidean distance between the
current weights and the current input vector. The adjustment proportion, denoted by λ,
is referred to as the learning constant.

Where the SOM becomes more interesting, however, is through the fact that it is
not only the winning node which is adjusted. Other nodes within a defined ‘neigh-
borhood’ of the winner are also subject to adjustment, thus exploiting the fact that
the nodes are positioned with a grid. These neighboring nodes are themselves sub-
jected to proportionate adjustment, with the proportion in this case being known as
the ‘interaction term’, denoted by ε.

We have noted how, once ‘trained’, the network classifies a data point by identi-
fying the nearest Kohonen node. As regards the training process, a similar principle is
adopted. As is common in NN operation, data points are presented randomly to the net-
work, and at each stage the nearest Kohonen node is identified. This is referred to as the
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‘winning’ node and the learning mechanism itself as ‘competitive learning’ or ‘winner
takes all learning’. The weights of the winning node are adjusted so as to move towards
the current data point, in which case the training process involves allowing the weights
of each node to reflect or describe the data. The topological structure of the data is pre-
served because not only is the winning node updated, but also its neighboring nodes are.
The shape of the neighborhood may take various forms, such as square or diamond.
It is also possible to model the proximity of nodes by a Gaussian decay function.

More formally, we denote the input data by an m×n matrix X, each row of which
contains a data point comprising observed values of the n inputs. Each node k in the
SOM grid is characterized by a 1 × n vector w(k) of weights. The Euclidean distance
between the kth node and the j th input vector is then given by

D =
∑

i

(W
(k)
i − Xji)

2 (6.5)

where the observed values of the attributes of each data vector are indexed by i.
During training, the winning node is that with the smallest distance from the

current data vector. The distance is in fact modified to allow for the frequency with
which nodes have previously been ‘winners’, a so-called ‘conscience mechanism’
through which an additional egality is inserted. The adjusted distance is given by

D∗ = D − γ (NFk − 1) (6.6)

where N is the number of Kohonen nodes, F is the relative frequency with which
the kth of these nodes has been the winning node, and is a constant between zero and
unity. For nodes whose frequency is the average for all nodes, i.e. 1/N , the adjustment
is zero. Nodes winning with higher or lower frequencies have the distances adjusted
downward or upward respectively. The frequency values are estimates adjusted at each
iteration.

The weight adjustment process involves finding the node nearest to the data vector
in terms of adjusted distance D∗, and this node, p say, has its weights updated. The
actual adjustment used is such that the change in each weight of the prototype is propor-
tional to the Euclidean distance between the current weights and the current input vec-
tor. The adjustment proportion λ is referred to as the learning constant. Hence we have

W
(p)∗
i = W

(p)
i + λ(Xji − W

(p)
i ) (6.7)

Where Wip
(p)∗ and W

(p)
i respectively denote new and old weight values. Neigh-

boring weights have the slightly different update expression

W
(j)∗
i = W

(j)
i + λ(εji − W

(j)
j ) (6.8)

where j �= p.

The shape of the neighborhood may for example be characterized by a square or
a diamond. A refinement of this basic method involves a ‘conscience’ mechanism,
whereby nodes which have been selected frequently are discouraged. As noted by
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Mulier and Cherkassy (1995), the above equations allow us to note that there is an
implied iterative non-linear transformation which is being implemented.

An interesting presentation of this learning rule is given by Kohonen (1995) and
Ritter et al., (1992), who make an analogy with data compression techniques, in
which the primary aim is subsequent reconstruction of the data with minimal error.
They show that the SOM has a similar interpretation, whereby the learning procedure
amounts to a search for a set of weights to minimize the expected reconstruction error.
The learning rule embodies the principle of gradient descent and there is therefore
an element of similarity with backpropagation. Also, as well as being an independent
statistical procedure in its own right, the SOM may be used as a pre-filter to other forms
of NN, for instance to a standard multiplayer Perceptron using backpropagation.

6.1.6 Potential benefits of the approach

The SOM technique can be used as a method of clustering questionnaire responses
in order to categorize respondents into segments. It differs from traditional clustering
techniques in that it uses a 2-dimensional grid within the dataspace, and therefore
the clusters represented by adjacent points on the grid are spatially linked to each
other. Traditional clustering methods (see e.g. Everitt, 1993) may involve a variety
of algorithms but share the property of building distinct self-contained clusters in the
same space as the data. In contrast, an SOM market map shows neighboring segments
which have many similar characteristics. This is potentially a fuller representation of
a market space – if marketers are trying to segment the market for a particular product
using a few characteristics, often only a core of consumer or companies in any one
segment will actually have all the characteristics of the segment, while others will
be closer to that segment than any other, but may differ on one or more attributes.
If these attributes are, for instance, used in developing a promotional message, the
message may be irrelevant (or worse) to those on the edge of the segment who differ
on those attributes. A market map produced using an SOM will be able to show this
‘fuzziness’ between segments – for instance, two clusters obtained may be found to
be very similar yet differ on one attribute (e.g. some are young singles, others are
young couples with children). It is then open to marketers either to treat these two as
separate segments, or to treat them as one segment but ensure that the marketing mix
is suitable for both, perhaps in this example by ensuring that promotion shows usage
of the product in a setting which could be equally relevant to both types of people.

6.1.7 Business applications

SOMs have been shown to be useful in different types of business applications.
Mazanec (1995) analyzed positioning issues related to luxury hotels, using SOMs
based on the discrete-value neighborhood technique. Using data on perceptions of
hotels and customer satisfaction, he showed that the non-parametric nature of this
analysis allowed for compression of binary profile data.

Cottrell et al. (1998) applied the SOM in a forecasting context, with the nodes
in the Kohonen layer used to store profiles describing the shapes of various trends,
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as opposed to relying solely on traditional parameters such as mean and standard
deviation.

Serrano Cimca (1998) examined strategic groupings among Spanish savings banks,
using a combination of SOMs and CA. The idea of the strategic group is often used
to explain relationships between firms in the same sector, but here the groups were
identified using only data from published financial information, thus giving groups
of firms that followed similar financial strategies, with similar levels of profitability,
cost structures, etc. The methodology allowed the visualization of similarities between
firms in an intuitive manner, and showed up profound regional differences between
Spanish savings banks.

The Kohonen SOM is a form of NN, which shares with other networks an origin
in models of neural processing. As with other NNs, applications of such methods tend
to take us into the realm of statistics, with the SOM operating as a new and interesting
variant on CA. The aim is to provide a ‘topology preserving’ data transformation
onto a 2-dimensional grid, in which the location of the nodes vis-à-vis each other is
important.

The SOM has some similarities with CA, in the sense that both involve ‘unsuper-
vised learning’, where there is no dependent variable. Most clustering techniques
involve attempts to find non-overlapping groups, so that each data point belongs
uniquely. In the SOM, however, each data point is associated with the nearest proto-
type, but this does not exclude an association with others. Indeed, the fact that Kohonen
nodes are spatially related in defined ‘neighborhoods’ is an important feature of the
approach. Clustering and SOMs tend to show us different aspects of the data. Cluster-
ing, by its concentration on differences, points out the observations that do not conform,
while SOMs concentrate on similarities and gradual changes in the data. The relation-
ships between prototypes are a key part of the model. One may navigate between them,
and important attributes of the data set may be found in groups of prototypes.

It is also possible to employ the SOM in a predictive format, involving supervised
learning. It can be used in this way as a pre-filter to a predictive NN, using methods
such as backpropagation. The model first of all derives a Kohonen map, and then
applies supervised learning as a second step.

6.2 Example-Applications

6.2.1 The research model

For this study, data were collected from 445 consumers, 220 male and 225 female,
and analysed using the neural network software NEUROSHELL from Ward Systems,
Inc. This is a backpropagation neural network with one hidden layer. The network
had 6 input nodes, corresponding to the 6 explanatory variables (expectation of car,
functional ability of car, respondent’s own self-image, desire to impress others, price
of car, and age of respondent). A hidden layer of 4 hidden nodes was used; this was
thought to be a reasonable number of intermediate variables that could be identified
and labeled, and the network did not give significantly better results by increasing
the number. The 2 output nodes corresponded to satisfaction with car purchased, and
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loyalty (likelihood of repurchase). It was believed that responses were likely to vary
with gender, and thus the male and female subsamples were analyzed separately.
Figure 6.4 shows the network.

Expectations Age

Satisfaction Loyalty

PriceImpress
others

Self-
image

Functional
ability

Figure 6.4 Neural network used in car buyer analysis

• Measurement of variables. All variables were measured on a 5-point scale.

• Expectations was operationalized as a belief above the future (at the time of pur-
chase), and evaluation of that belief (as Oliver, 1980). Respondents were asked
to consider comfort, safety, fuel economy, transportation and performance.

• Functional ability was a measure of the respondents’ certainty that their car
would function as it should, considering specifically brakes, engine, safety and
reliability.

• Self-image was a measure of how well respondents felt their car fitted their own
image.

• Impress others: this question asked how much the respondent would like the
car to impress family, friends and colleagues.

• Price measured the importance of price to the far purchase decision. A high
importance placed on price would generally indicate that the respondent had a
limited budget and did not wish to pay a high price for a car, but might in some
cases indicate a reluctance to consider cars priced too low, owing to a belief that
this indicates poor quality or high risk (e.g. a stolen or rebuilt car).

• Age was measured using the following 5 categories: under 18 (20% of sample);
19–24 (29% of sample); 25–34 (33% of sample); 35–44 (8% of sample); and
over 45 (9% of sample). For the male subsample the proportions in each age
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group were 19%, 27%, 35%, 11% and 7%, while for the female subsample they
were 22%, 31%, 32%, 4% and 12%.

• Satisfaction: respondents were asked to rate their overall satisfaction with the
ownership of their car.

• Loyalty: respondents were asked how likely they would be to purchase the same
make of car again.

6.2.2 Analysis of the data

For each subsample, the neural network was run several times, varying parameters
such as learning rate and momentum slightly each time. In no case could the network
be made to converge at any error level less than 0.15, and so it was allowed to run
(attempting convergence of 0.0001) until it appeared that no further improvement could
be made to the quality of its predictions. At this stage, for the optimum configuration
for each subsample, R2 values for the make subsample and 0.43 and 0.35 for the
female subsample.

Tables 6.1 and 6.2 show, for male and female data respectively, the weights of the
network connections between the nodes and the contributions made by the different
variables. It can be seen that these differ considerably between male and female results.

Table 6.1 Network weights for male buyers

a) From input node

To hidden node Expectation Functional Self- Impress Price Age

ability image others

1 −9.36 2.02 −2.60 −9.22 23.00 −12.7
2 −3.03 −1.92 4.60 −2.96 −7.69 −2.25
3 −3.16 −14.00 1.01 −4.55 2.24 −2.51
4 0.50 −2.33 −2.58 0.62 0.43 −0.11
Total
contribution 16.00 20.30 10.80 17.30 33.30 17.60
of input mode

a) From input node

To output node 1 2 3 4 Bias of
output node

Satisfaction −7.42 −3.38 4.00 −2.36 2.15
Loyalty −10.20 −2.32 4.46 −2.22 1.64
Bias of
hidden mode −17.80 1.88 3.03 2.66

The values and signs (+ or −) of the network connection weights between the input
nodes and the 4 hidden nodes were used to deduce suitable intermediate attributes with
which to label the hidden nodes. It is appreciated that this labeling must have some
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Table 6.2 Network weights for female buyers

a) From input node

To hidden node Expectation Functional Self- Impress Price Age

ability image others

1 −0.86 −2.75 −10.40 3.96 0.49 0.03
2 −0.56 1.61 2.78 3.06 −1.26 2.01
3 0.80 0.85 2.68 −4.40 −0.80 −3.60
4 −1.05 −4.90 −3.27 −1.68 3.54 −1.69
Total
contribution 3.30 10.10 19.20 12.80 6.10 7.30
of input mode

a) From input node

To output node 1 2 3 4 Bias of
output node

Satisfaction −0.97 −0.03 0.39 −1.97 1.30
Loyalty −2.36 −2.07 −1.84 −2.24 3.78
Bias of
hidden mode −7.44 −3.21 0.85 0.98

element of subjectivity, but this is true of many causation models that attempt to
explain attitudes or behavior in terms of latent variables: for instance, LISREL (Long,
1983a, 1983b). Similarly, in factor analysis, the interpretation and labeling of factors
is subjective. After labeling, both networks were analyzed in terms of the relationships
between the variables on each layer.

6.2.3 Labeling of hidden nodes: male buyers

Hidden node 1 had a very high positive value was ‘functional ability’. This was thought
to show an attitude of high cost-consciousness, with some concern for functional
ability – getting the best possible for the money paid. Financial constraints necessitated
lower expectations, and lack of concern for the car fitting the buyer’s own image or
impressing others, while the fairly high negative connection with age showed buyers
to be relatively young and thus likely to be less affluent. The node was thus labeled
‘Price consciousness’.

For hidden node 2, the only positive input was from ‘self-image’. There was a
fairly high negative connection from ‘price’, indicating a lack of importance, and the
other connections were, although negative, all small in value. Thus the overriding
attitude here was a desire to have a car that reflected the buyer’s self-image, and thus
the node was labeled ‘Individuality’.

By far the highest value connection to hidden node 3 was the negative connection
from functional ability, showing a high level of uncertainty that the car would func-
tion correctly. Other connections being much smaller in value, this node was labeled
‘Low confidence’.



172 Neural Networks

Finally, for hidden node 4, all connections, whether positive or negative, were
small in value. There appeared to be no overriding influencing factor on this node,
which was therefore labelled ‘Equity/balance/desires congruence’.

6.2.4 Labeling of hidden nodes: female buyers

Hidden node 1 showed a high negative connection from ‘self-image’. The highest pos-
itive connection was from ‘impress others’. The connection from ‘functional ability’
was also negative, and the other connections very small in value. This was interpreted
as an attitude of concern with impressing others at the expense both of the buyer’s
own self-image and being sure of correct functioning, and the hidden node was thus
labeled ‘Status-seeking’.

Hidden node 2 also showed concern with impressing others, but this time the
connection from ‘self-image’ was also positive. This node also showed a positive link
with age and functional ability. It was thought, although still showing concern with
status, to indicate a more mature and confident attitude than hidden node 1, and was
thus labeled ‘Social confidence’.

Hidden node 3 had a negative connection from ‘impress others’, a positive con-
nection from ‘self-image’, and very small connections from ‘expectations’ and ‘func-
tional ability’ (positive) and ‘price’ (negative). This seemed to indicate a balanced and
‘down to earth’ attitude, with little concern for others’ opinions, and so was labeled
‘Rationality’.

The only positive connection to hidden node 4 was from ‘price’, indicating a
concern for price above all else, so the node was labeled ‘Price consciousness’.

Table 6.3 summarizes the labels given to the hidden nodes.

Table 6.3 Labels given to the hidden nodes

Hidden node Male Female

1 Price consciousness Status seeking
2 Individuality Social confidence
3 Low confidence Rationality
4 Equity/balance/desires congruence Price consciousness

6.2.5 Findings: male car buyers

Links between input and hidden nodes show that:

• Price consciousness is negatively linked with both expectations and a desire
to impress others. Buyers who are heavily constrained by price in their choice
of car have lower expectations, and believe that a cheaper car is unlikely to
impress others. Conversely, buyers with high expectations and/or a high desire
to impress others have a low degree of price consciousness.
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• Younger buyers are the most price conscious.

• Individuality is negatively linked with price importance. Buyers for whom it is
important to find a car that fits their own self-image believe that they will need
to pay more for this. This may be because they want a model, such as a sports
car or off-road vehicle, that immediately gives off a particular image, or they
want a more basic model customized to their taste.

• A high level of distrust in the car’s functional ability is correlated with low
expectations, low desire to impress others, and a small degree of price impor-
tance (links to hidden node 3). However, looking back at hidden node 1,
a high degree of price importance is linked with some degree of confidence
in functional ability. This suggests that a low level of confidence in a car is
not the result of having to buy a cheap car, but is a more fundamental buyer
attitude of lack of confidence, either in his own decision-making or in cars in
general. This may of course be rooted in past experience of his current car
or a previous one.

• A sense of equity, balance and desires congruency on the part of the male buyer
is most affected by uncertainty regarding the functioning of the car, and lack of
fit between his own self-image and the car.

Links between hidden and output nodes show that:

• The expected link between satisfaction and loyalty is in evidence: connections
from each of the 4 hidden nodes are either both positive or both negative.

• The most price-conscious buyers are the least likely to be satisfied, and the
least likely to be loyal. This seems intuitively correct, as price-conscious
buyers could be tempted to try a different make owing to availability of a
cheaper model, dealer discounts or special finance deals. The converse of this
finding is that the least price-conscious buyers are more likely to be loyal to
a particular make, which confirms previous findings (Diem, 1994) of a high
degree of loyalty among owners of upmarket models such as Lincoln and
Cadillac.

• Rather surprisingly, low confidence was a predictor of satisfaction and loyalty.
This may indicate that the doubts of such buyers about the functioning of their
cars are as yet unconfirmed, or that their lack of confidence extends to all
cars, and therefore they prefer to stay with a model they know. This finding,
however, could be seen to agree with that of Srinivasan and Ratchford (1991),
that subjective knowledge leads to less perceived risk but increases search. If the
lack of confidence, i.e. greater perceived risk, is caused by a lack of subjective
knowledge, then the search is decreased, and therefore the probability of buying
the same model again is higher.

• Overall satisfaction and loyalty are not greatly affected either by degree of
individuality or by need for equity, balance and desires congruency.
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6.2.6 Findings: female car buyers

Owing to the resulting interconnections of contribution weights from input factors to
hidden nodes in the neural network pertaining to female buyers, 3 of the 4 hidden
nodes were labeled differently from their male counterparts. The only hidden node
that applied to both male and female car owners was the degree of price consciousness.

Links between input and hidden nodes show that:

• Female consumers’ perceived status as delivered by the ownership of a particular
type of car does not seem to be influenced by product expectations, perceived
performance or even by their perceived self-image. The price of the car has a
slight influence on perceived status.

• Perceived product performance, the consumer’s self-image and her desire to
impress others are all factors that have an effect on the degree of social confi-
dence felt by female car owners. Older female buyers are more likely to feel
socially confident.

• As would be expected, the degree of rationality felt by female car owners is posi-
tively related to product expectations and perceived performance. It is interesting
that this hidden node also shows a positive connection from self-image, and the
highest negative correlation with age of the 4 hidden nodes. This could indicate
the existence of a segment of young female buyers who make their car purchase
decisions independently, and feel they have the ability to make a rational and
sensible choice of a car that will function correctly and also fit their own image.
These buyers do not find it necessary to impress others with their choice. This
finding ties in with the increasing proportion of women among buyers under 25
(Candler, 1991).

• As with the male buyers, a high degree of price consciousness is associated with
low expectations, and lack of concern for the car to fit the buyer’s self-image or to
impress others. Unlike the male buyers, however, highly price-conscious female
buyers have low confidence that their car will function correctly. Conversely,
for female buyers, perceived performance, and to a lesser extent the desire to
have a car fitting their own self-image, were the main factors tending to lower
price consciousness, while for male buyers the main factors doing so were high
expectations and desire to impress others.

• Price consciousness showed a negative link with age, though not nearly such a
strong link as for male buyers.

Links between hidden and output nodes show that:

• The formation of overall satisfaction felt by female car owners is mainly instru-
mental, being positively impacted by the degree of rationality, while all other
hidden nodes show a small negative impact.

• Correlation between satisfaction and loyalty is not as strong as for male buyers.
Each hidden node has a significantly lower impact on loyalty than on satisfaction.
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• None of the 4 hidden nodes seems to have a great deal of impact on car brand
loyalty with regard to female consumers. This may indicate that there are other
factors, not considered in this study, which are more likely to affect loyalty in
female car buyers.

6.2.7 Conclusions and implications

The study showed clear difference in the attitudes of male and female consumers.
The price of a car was shown to be important for both male and female buyers, but
for different reasons. For male buyers, paying a higher price for a car meant that
they could have higher expectations and impress others more, whereas for female
buyers a higher price was more important in assuring them that their car would per-
form as it should. A high level of price consciousness tended to reduce satisfaction
and loyalty for both male and female buyers, but to a much large extent for male
buyers.

The major influence on satisfaction for female buyers was their degree of ration-
ality, positively related to expectations, product performance and fit with self-image.
Satisfaction for male buyers was most highly linked with low price consciousness,
but was also positively linked with the hidden node labeled ‘Low confidence’, which
was correlated with a low level of certainty about the car’s performance. Some ideas
on this finding were given above. Loyalty for male buyers was highly correlated with
satisfaction, while for female buyers this was less apparent.

The positive link between age and both satisfaction and loyalty, found by Peter-
son and Wilson (1992) and Diem (1994), is borne out to some extent in the find-
ing, in the male contingent, that younger buyers were most price conscious and
hence least likely to be satisfied or loyal. The findings for female buyers are incon-
clusive on this aspect. However, the sample used was heavily weighted towards
younger buyers, with only 17% of the whole sample being over 35, and only 9%
over 45. A further study, with a sample including a higher proportion of respond-
ents between 45 and 55, and also over 55, would be likely to give a more balanced
picture.

The generally smaller contribution weights at both levels of the female network,
compared with the male network, tend to suggest that the factors considered in this
study are less important to female buyers than to male buyers. In addition, several
aspects of car choice that have been previously shown to impact upon satisfaction and
loyalty have not been examined, such as search behavior, satisfaction with car dealer,
overall life satisfaction.

With regard to the methods used, this study shows the applicability of a neural
network approach in bringing together psychometric and econometric approaches
to the measurement of attitudes and emotions. The latent constructs that may be
represented by hidden nodes can be particularly useful in the early stages of model
development, when investigating the determinants of consumer responses. The fact
that neural networks attempt to mimic the workings of the brain means that the model
developed may be a realistic, albeit extremely simplified, representation of what is
actually going on in a consumer’s mind.
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Further research in this area could include the comparison of the foregoing analysis
with analysis of the same data by other methods, such as the LISREL model or pure
linear regression models. The results achieved by each method could be compared, and
the method’s accuracy as a predictor of consumer responses tested with new data, in
order to discover the advantages and disadvantages of each method and the situations
to which each would be most applicable.



CHAPTER 7

Approximate Algorithms for
Management Problems

NOTE: This chapter is based on a previously published research paper
by Hurley, S. and Moutinho, L. (1996).

Optimization methods have been widely used in marketing. These have traditionally
involved linear programming, integer and mixed-integer programming, and non-linear
programming (Lilien et al., 1992). As with the general integer programming methods,
general non-linear programming is inherently a difficult problem. Until recently it has
been the prevailing wisdom that general solution techniques are not always successful,
and that special insight into the structure of the problem is often required. However, a
new breed of general optimization methods are currently in use in areas such as opera-
tions research, which we believe will be able to solve important industry-based market-
ing problems more successfully than traditional methods (assuming such methods exist
for a particular problem). Successful in this context means first and foremost the qual-
ity of solution found, but also ease of extendibility to different formulations of the
same problem.

7.1 Genetic Algorithms

Genetic algorithms were invented by Holland (1975) to mimic some of the processes
of natural evolution and selection. They attempt to simulate natural evolution in the
following manner.

The first step is to represent a candidate solution to the problem that you are
solving by a string of genes that can take on some value from a specified finite range or
alphabet. This string of genes, which represents a solution, is known as a chromosome.
Then an initial population of legal chromosomes is constructed at random. At each
generation, the fitness of each chromosome in the population is measured (a high fitness
value would indicate a better solution than would a low fitness value). The selection
procedure is biased towards selecting the fitter chromosomes to produce offspring for
the next generation, which inherit the best characteristics of both parents. After many
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generations of selection for the fitter chromosomes, the result is hopefully a population
that is substantially fitter than the original.

The theoretical basis for the genetic algorithm is the schemata theorem (Holland,
1975), which states that individual chromosomes with good, short, low-order schemata
or building blocks (that is, beneficial parts of the chromosome) receive an exponentially
increasing number of trials in successive generations. All genetic algorithms consist
of the following components (Goldberg, 1989).

1 Chromosomal representation
Each chromosome represents a legal solution to the problem, and is composed
of a string of genes. The binary alphabet {0,1} is often used to represent these
genes, but sometimes, depending on the application, integers or real numbers
are used. In fact, almost any representation can be used that enables a solution
to be encoded as a finite-length string.

2 Initial population
Once a suitable representation has been decided upon for the chromosomes, it
is necessary to create an initial population to serve as the starting point for the
genetic algorithm. This initial population can be created randomly or by using
specialized, problem-specific information. From empirical studies, over a wide
range of function optimization problems, a population size of between 30 and
100 is usually recommended.

3 Fitness evaluation
Fitness evaluation involves defining an objective or fitness function against
which each chromosome is tested for suitability for the environment under con-
sideration. As the algorithm proceeds we would expect the individual fitness of
the best chromosome to increase, as well as the total fitness of the population
as a whole.

4 Selection
We need to select chromosomes from the current population for reproduction. If
we have a population of size 2n, where n is some positive integer value, the selec-
tion procedure picks out two parent chromosomes, based on their fitness values,
which are then used by the crossover and mutation operators (described below) to
produce two offspring for the new population. This selection/crossover/mutation
cycle is repeated until the new population contains 2n chromosomes: that is,
after n cycles. The higher the fitness value, the higher the probability of those
chromosomes being selected for reproduction.

5 Crossover and mutation
Once a pair of chromosomes has been selected, crossover can take place to
produce offspring. A crossover probability of 1.0 indicates that all the selected
chromosomes are used in reproduction: that is, there are no survivors. However,
empirical studies (De Jong, 1975) have shown that better results are achieved by
a crossover probability of between 0.65 and 0.85, which implies that the prob-
ability of a selected chromosomes surviving to the next generation unchanged
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(apart from any changes arising from mutation) ranges from 0.35 (1 0.65) to
0.15 (1 0.85). One-point crossover involves taking the two selected parents and
crossing them at a randomly chosen point. For example, if we have the following
parents (with x and y representing individual values within the chromosome):

parent 1 x1 x2 x3 x4 x5 x6 x7 x8
parent 2 y1 y2 y3 y4 y5 y6 y7 y8

and we cross at point 3 say, the following offspring would be produced:

child 1 x1 x2 x3 x4 x5 x6 x7 x8
child 2 y1 y2 y3 y4 y5 y6 y7 y8

If we use only the crossover operator to produce offspring, one potential problem
that may arise is that if all the chromosomes in the initial population have the
same value at a particular position then all future offspring will have this same
value at this position. For example, if all the chromosomes have a 0 in position
two then all future offspring will have a 0 at position two. To combat this
undesirable situation a mutation operator is used. This attempts to introduce
some random alteration of the genes: for example, 0 becomes 1 and vice versa.
Typically this occurs infrequently, so mutation is of the order of about one
bit changed in a thousand tested. Each bit in each chromosome is checked for
possible mutation by generating a random number between 0 and 1, and if this
number is less than or equal to the given mutation probability, e.g. 0.001, then
the bit value is changed.

This completes one cycle of the simple genetic algorithm. The fitness of each chromo-
some in the new population is evaluated and the whole procedure repeated:

Generate random population

REPEAT

evaluate fitness of current population

select chromosomes, based on fitness, for reproduction

perform crossover and mutation to give new improved population

UNTIL finished

where finished indicates that either an optimal or suitable suboptimal has been found,
or the maximum number of generations has been exceeded.

7.1.1 Site location analysis using genetic algorithms

Site acquisition and retail location is an important consideration in the enhancement of
corporate profitability. For many types of market, a multi-unit company will find that
individual optimum locations do not necessarily result in a generally optimum network
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in a market area (Achabal et al., 1982). In the situation where a number of sites already
exist, say 50 or more, and there is a choice of several proposed sites, the problem of
finding the optimal network is difficult. We shall consider the following proposed
sites to use, to augment and improve the existing network in terms of profitability,
attractiveness to potential customers, or any other suitable metric. The existing network
is assumed to be dynamic: that is, existing sites may be removed from the network if
this gives an improvement in overall network performance.

7.1.2 Chromosome representation

Each chromosome represents a possible network consisting of existing sites and pos-
sible new sites. If there are Se existing sites and Sp possible new sites, the length
of chromosome will be Se + Sp. The individual genes within each chromosome are
represented by a binary alphabet: 0 indicates that a particular site is not used in the
network, whereas a 1 would indicate that a site is used. The position within the chro-
mosome is important, as this indicates the site under consideration. For example, bit
position 4 (from left to right) represents site 4. To illustrate, if we have 4 existing
outlets and 3 possible new sites, then the chromosome {1 1 1 1 0 1 0} represents a
network where sites 1, 2, 3 and 4 are used (the existing network) and site 6 is used;
sites 5 and 7 remain unused.

7.1.3 Fitness function

The most important problem-dependent aspect in applying genetic algorithms is find-
ing a suitable function to determine the fitness or goodness of a chromosome in the
genetic population. One possible fitness function involves a slight modification of the
Penny and Broom spatial interaction model (Penny and Broom, 1988), and is given by
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(∑
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)
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−β1Tij∑
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]
(7.1)

where EXPij is the expenditure from zone i to site j ; β0 and β1 are parameters; Ek is
the mean expenditure on the product/service category by household category k; Hik is
the number of households of category k located in zone i; Wj is a subjective measure
of attraction of the proposed store/outlet; Tij is the travel time from zone i to the site
at j ; Wm is a subjective measure of attractiveness of competitor m or outlets from
the same company (i.e. inter-company competition); and Tim is the travel time from
zone i to competitor m.

In the original Penny and Broom model, Wm considered only competitors, but here
we consider outlets from the same company as well. The genetic algorithm will then
attempt to maximize this expression: that is, find a network of sites that maximizes
customer expenditure.
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7.1.4 Genetic operators

Each chromosome is represented by a binary string with an associated fitness. If 2
chromosomes are selected for reproduction by the selection procedure, the various
crossover operators (Goldberg, 1989) can be used to generate offspring. For example,
if the two chromosomes

1 1 1 1 0 1 0 (sites 5 and 7 unused)
1 0 1 1 0 0 1 (sites 2, 5 and 6 unused)

are selected for reproduction, and one-point crossover is used (e.g. at position 3), then
the following offspring are produced:

1 1 1 1 0 0 1 (sites 5 and 6 unused)
1 0 1 1 0 1 0 (sites 2, 5 and 7 used)

Similarly, the standard mutation operator can be used: that is, a bit is changed
with a low probability, e.g. 0.001.

7.1.5 Simple illustration

Given 4 existing sites and 3 possible new sites, consider a population of 5 chromo-
somes, consisting of the following:

C1 1 0 1 1 0 1 1 fitness = 1562
C2 0 1 1 1 1 1 0 fitness = 3511
C3 1 0 1 0 0 0 1 fitness = 4756
C4 1 1 1 1 0 1 1 fitness = 1929
C5 1 0 0 1 1 1 1 fitness = 756

In this illustration the fitness values for each chromosome were randomly selected,
whereas in actual site analysis using genetic algorithms the fitness would be calculated
using Equation 7.1. Chromosomes C2 and C3 are the most fit, so they would be more
likely to be selected for crossover and mutation. If one-point crossover was used at a
randomly chosen position, say position 2, the following offspring would be produced:

C2 1 0 1 1 1 1 0
C3 0 1 1 0 0 0 1

If their respective fitness values, calculated using Equation 7.1, were 4212 and
5681, then we have found a network of sites, represented by chromosome C3, which
is theoretically better than any network in the previous population.

The advantages in using GAs are as follows:

• They find an optimal or near-optimal site location in reasonable time.

• The goodness of alternative site networks can be easily accessed.

• Poor networks can be identified, and therefore avoided.

• It is relatively easy to solve different formulations of the site location problem.
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7.2 Tabu Search

Tabu search is an iterative procedure for solving discrete combinatorial optimization
problems. The basic idea, described by Glover et al. (1993), is to explore the search
space of all feasible solutions by a sequence of moves. A move from one solution
to another is the best available. However, for each iteration, to escape from locally
optimal but not globally optimal solutions and to prevent cycling, some moves are
classified as forbidden or tabu (or taboo). Tabu moves are based on the short-term and
long-term history of the sequence of moves. Sometimes a tabu move can be overridden;
such aspiration criteria might include the case that, by forgetting that a move is tabu,
leads to a solution that is the best obtained so far.

Suppose f is the real-valued objective function on a search space S, and it is
required to find a c ∈ S such that f (c) has maximal or near-maximal value. A charac-
terization of the search space S is that there is a set of k moves M(s) = {m1, K, mk},
and the application of the moves to a feasible solution s ∈ S leads to k solutions
M(s) = {m1(s), K, mk(s)}. The subset N(s) ⊆ M(s) of feasible solutions is known
as the neighborhood of s.

The method commences with a (possibly random) solution s0 ∈ S, and determines
a sequence of solutions s0, s1, K, sn ∈ S. For each j , N ′(sj ) is the set of those solutions
in N(sj ) that are either tabu, but satisfy the aspiration criteria, or non-tabu. A solution
in N ′(sj ) that maximizes f is selected. Note that it is possible, and even desirable, to
avoid convergence at a local maximum, that f (sj+1) < f (sj ).

The following procedure describes the tabu search method more formally:

k = 1

generate initial solution s

WHILE not finished

Identify N(s) ⊂ S (neighborhood set)

Identify T (s) ⊆ N(s) (tabu set)

Identify A(s) ⊆ T (s) (aspirant set)

Choose s′ ∈ (N(s) − T (s))YA(s), for which F(s′) is maximal

s = s′

k = k + 1

END WHILE

The procedure continues until either a maximum number of iterations have been
completed or an acceptable suboptimal solution has been found. The conditions for
a neighbor to be tabu or an aspirant will be problem specific. For example, a move
mr may be tabu if it could lead to a solution that has already been considered in the
last q iterations (recency or short-term condition) or which has been repeated many
times before (frequency or long-term condition). A tabu move satisfies that aspiration
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criteria if, for example, the value of f (s′) with s′ ∈ T (sj ) satisfies f (s′) > f (si) for
all i, 0 ≤ i ≤ j .

7.2.1 Example

In this example, the search space S is the set of all rooted binary trees with n terminal
nodes and therefore n1 internal nodes. The objective function f associates with each
tree a real value, and might, for example, involve the height of and the weighted
distance between terminal nodes. The search commences with an initial tree, whose
nodes are labeled arbitrarily from 1 to 2n − 1. A move mij consists in taking 2 nodes
i and j and swapping the subtrees whose roots are at nodes i and j . Such a swap is
only valid if i is not an ancestor or descendant of j . Figure 7.1 illustrates the move
m26 applied to a tree with 5 terminal nodes. Note that the set of terminal nodes is left
invariant by such a move.

1 1

2 6

4 5 6 7 7

9854

2

8 9

3 3m 26

Figure 7.1 Example of a move applied to a tree with 5 terminal nodes

In this example, a move mij is tabu if one of i, j is the index of a recent move.
This representation allows the exploration of the whole search space form any initial
tree. It has similarities with a successful implementation of tabu search for traveling
salesperson problem in Glover (1991).

7.2.2 Application of tabu search to segmentation

Ramaswany and DeSarbo (1990) have proposed a new methodology for deriving hier-
archical product-market structures from disaggregate purchase data. A hierarchical
product-market tree was estimated from scanner panel purchase data in a maximum
likelihood framework. The derived product-market representation portrays both prod-
ucts and market segments as terminal nodes in a hierarchical tree where the closer a
product is to a particular segment the higher is the revealed preference of that product.
The hierarchical representation of products and segments and the composition of
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the market segments are derived simultaneously. Ramaswany and DeSarbo’s new
methodology, called SCULPTURE (Stochastic Ultrametric Purchase Tree), has been
developed by formulating a stochastic choice model.

Given only scanner panel purchase data, we also consider the problem of deriving
product-market structures by determining a hierarchical tree representation where
terminal nodes are used for both products and segments. A segment’s preference for a
product is inversely related to dsj , the length of the unique path between the terminal
nodes corresponding to the segment s and product j .

The raw data are the values xhj that represent the number of choices of product j

for household h. The objective is to determine the tree and values of as , which are the
proportion of households in the sample belonging to the segment s, by maximizing
the expression

L(a, x, d) =
∏
h

∑
s

as

∏
j

(
exp(−dsj )∑
k exp(−dsk)

)xhj

which measures the likelihood of the sample having this product-market structure. In
the application of tabu search to this multi-modal optimization problem, a move will
be either to change the vector a or to change the tree. These moves, and the notion of
tabu, will be along the lines of the example in a previous section. Thus a solution of
the search space t is represented by

• a set of integer values ys , one for each segment, with
∑

s ys = N , for some
fixed N ; and

• a binary tree, each of whose terminal nodes corresponds either to a segment or
to a product.

Such a solution is evaluated from the expression L(a, x, d) by calculating the
values of as = ys/N and dsj , the length of the path between the terminal nodes
representing the segment s and the product j . A move is either

• to increment yu and decrement yv for two segments u, v; or

• to swap the subtrees whose roots are at nodes i, j .

Precise definition of a tabu move will be found by experimentation. One of the
advantages of this method of solving the optimization problem is that the tabu search
acts directly on the hierarchical tree rather than, as in Ramaswany and DeSarbo (1990),
the distances that are constrained to correspond to a tree. A second advantage is that
the optimization of the vector a and the tree are considered in parallel rather than as
individual optimization problems to be solved sequentially for each iteration.

7.3 Simulated Annealing

Simulated annealing (SA) is a stochastic computational technique derived from statis-
tical mechanics for finding near-globally minimum-cost solutions to large optimization
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problems. The method has a direct analogy with thermodynamics, specifically with
the way that liquids freeze and crystallize, or metals cool and anneal. At high tem-
peratures, the molecules of a liquid move freely with respect to one another. If the
liquid is cooled slowly, thermal mobility is restricted. The atoms are often able to
line themselves up and form a pure crystal that is completely regular. This crystal is
the state of minimum energy for the system, which would correspond to the optimal
solution in a mathematical optimization problem. In order to make use of this analogy
with thermodynamical systems for solving mathematical optimization problems, one
must first provide the following elements:

• A description of possible system configurations: that is, some way of rep-
resenting a solution to the minimization (maximization) problem. Usually
this involves some configuration of parameters X = (x1, x2, . . . , xN) that
represents a solution.

• A generator of random changes, known as moves, in a configuration. These
changes are typically solutions in the neighborhood of the current configuration:
for example, a change in one of the parameters xi .

• An objective or cost function E(X) (analogue of energy), whose minimization
is the goal of the procedure.

• A control parameter T (analogue of temperature) and an annealing schedule,
which indicates how T is lowered from high values to low values: for example,
after how many random changes in configuration is T reduced and by how
much?

7.3.1 Sales territory design using simulated annealing

In this section we indicate how the technique of simulated annealing can be applied
to the problem of designing the territories for an organization that wishes to deploy
a salesforce over a large geographical area. In the first subsection, we determine a
mathematical model of the problem. This has been chosen to be simplistic for the
purpose of the descriptive ease, yet it incorporates many of the criteria relevant to the
design. In the second subsection we describe how such a model may be optimized.

We shall assume that the geographical area is presented as a number of small sales
coverage units (SCUs), and that, for each unit, relevant statistical or factual information
is available. For example, the SCUs might be zipcodes (USA) or postcodes (UK), and
the information might consist of volume sales in a previous time period, the average
time in contact with each customer per call, the contiguous SCUs, and the traveling
time between contiguous SCUs. The required properties of the territory design are:

• contiguity: the SCUs in a territory form a connected cohesive block;

• equality of workload: each territory has equal sales workload;

• equality of sales potential: each territory has equal sales potential.
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The problem of dividing the region into territories is seen as assigning each
SCU to a single territory in such a way that, first, the constraints of contiguity,
equal workload, equal sales potential are satisfied; and, second, the profit differs
from those of Zoltners and Sinha (1983) and others by adding explicitly the max-
imization of profit, and allows extensions to models where profit is measured by
a more complex formula. We have also added the constraint of equal sales poten-
tial as a desirable feature, to ensure, for example, that commission potential is bal-
anced among the SCUs. In the notion of Howick and Pidd (1990), the model we
have chosen can be classified as multiple criteria using a travel measure and centre-
seeking alignment.

We shall suppose that the size of the salesforce (that is, the number of territories
required) is fixed, and also that the number of calls to each customer in a time period
has been predetermined. A package based on the algorithm to solve the sales territory
design could be used on a what if . . . basis if these variables are unknown quantities.

7.3.2 Information about a single SCU

In a single SCU the salesforce will divide its time between maintaining existing cus-
tomers, prospecting for new customers, and administering the SCU. We shall assume
that the administration time is subsumed in the variables representing the contact time
with the customer. For customer c, the workload wc, measured in hours, will depend
on nc, the number of calls; on tc, the average time spent in contact with the customer;
and on sc, the average time spent in traveling to make a call:

wc = nctc + ncsc

Summing over all customers in the SCU we get a total workload W given by

W =
∑

c

wc =
∑

c

nctc +
∑

c

ncsc

For a salesforce centered at a distance d from the centre of this SCU, the values sc will
all be approximately equal to s = 2d/u, where u is the average traveling speed. This
assumes that separate calls require separate journeys from the center of the territory.

For a particular SCU, let the workload for customer contact be a = ∑
c nctc, and

let n = ∑
c nc be the total number of calls. Then the total workload for the SCU is

W = a + ns. The sales potential depends on whether a customer is an existing or
prospective one. For an existing customer, the sales potential qc is measured using the
sales q ′

c for the previous time period and the holding rate hc :

qc = q ′
chc

For a prospective customer, the sales potential is measured by rc, the estimated volume
of sales if the customer is converted, and the probability vc of the conversion:

qc = rcvc
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Note that both hc and vc are influenced by the values of nc, the number of calls that
the customer receives, and tc, the average contact time. Summing over all customers
in a SCU, we obtain a sales potential of b = ∑

c qc. The profit pc associated with
each customer is measured by the margin m on the sales and the average cost of xc of
servicing the customer:

pc = mqc − zc

For a customer c, the two components of xc are the cost of the time spent in contact
with the customer and the cost of the sales calls. If these are the only components,
and f is the rate per hour for customer contact and g is the cost per unit distance for
traveling, then

zc = f wc + gncsc

Summing over all customers, we obtain a profit for the SCU of given by

p =
∑

c

pc = m
∑

c

qc − f
∑

c

wc − g
∑

c

ncsc

= mb − f (a + ns) − 2ngd/u

7.3.3 The model

Suppose there are J SCUs numbered from 1 to J , and that for the j th SCU, 1 ≤ j ≤ J ,
we have the following values derived in the last subsection:

• aj denotes the workload for customer contact;

• bj denotes the sales potential;

• nj denotes the total number of calls required;

• sj denotes the traveling distance from the center of the SCU to the designated
center of the territory in which it lies;

• pj denotes the profit.

In addition we suppose that, for each pair j and k of the contiguous SCUs, the
distance between their centers is the number djk . These values could be placed in
a 2-dimensional array array J × J array H , where a zero entry indicates that the
corresponding SCUs are not contiguous. Now suppose that I territories are required,
which are numbered from 1 to I . The value I will be significantly smaller than J . The
problem of determining a territory design can be considered as the determination of
an assignment function F , which assigns to each SCU j the territory i = F(j). That
is, for each j , 1 ≤ j ≤ J :

F(j) = i (7.2)

for some i, 1 ≤ i ≤ I . We now consider how the constraints and the maximization of
profit are affected by this assignment.
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7.3.4 Contiguity

We shall need to be able to ascertain for any design that all the territories are contiguous.
For the other constraints we shall also be required to determine a distance between
2 (not necessarily contiguous) SCUs in the same territory. Both can be accomplished
by using Floyd’s algorithm on subarrays of the array H as the distance matrix of
a graph (Sedgewick, 1988). Thus it is possible, using the representation described
above, for a new territory design to be efficiently checked for contiguity.

7.3.5 Equal workload

The distance between two SCUs of a territory can be taken to be the shortest path
between them using as intermediate junctions any other centers of the territory as
are convenient to use. If j, k are the SCUs, then we denote this distance by Djk . As
mentioned in the paragraph above, these values can be simultaneously and efficiently
determined using Floyd’s algorithm. Suppose that the main office of territory i is
placed at SCU. From the expression for the workload of the SCU in the previous
subsection, we have that the work of the territory is Ai , given by

Ai =
∑

j,F (j)=i

(
aj + nj sj

)
=

∑
j,F (j)=i

(
aj + njDj,ci

)

The choice of the center ci of territory i may be chosen, for example, as that SCU in
the territory that minimizes the expression for Ai . The constraint that the workload
of each territory should be precisely the same will be impossible to achieve in prac-
tice. Instead, the objective function, that is, the function that the simulated annealing
algorithm maximizes, includes a term, Amax, which is the maximum deviation of the
workload in any territory from the average workload over all territories:

Amax = max|Ai − A| (7.3)

for i = 1, 2, K, I , and where A, the average of the workload taken over all territories,
is given by

A = (1/I)

I∑
i=1

Ai

The objective function used should attempt to minimize the term Amax. This cor-
responds to designing territories that have a workload that is as equal as possible.

7.3.6 Equality of sales potential

The sales potential for territory is the aggregate of the sales potential for each SCU in
that territory. If Bi denotes this total sales then

Bi =
∑

j,F (j)=i

bj
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In a similar way for the discussion of the equality of workload, denote by B the average
sales potential, so that

B = (1/I)

I∑
i=1

Bi

Then the equality of sales potential is catered for in the objective function by including
the term

Bmax = max|Bi − B| (7.4)

for each i = 1, 2, K, I .

7.3.7 Profit

The overall profit Q of the organization is given by the aggregate P of the expected
profits from sales in each territory less the cost R of administering the salesforce over
all the territories. For territory i, the profit Pi is the sums of the profits from the SCUs
in that territory. Thus

Pi =
∑

j,F (j)=i

Pj = mBi − f Ai − (2g/u)
∑

j,F (j)=i

njDj,ci

Assuming R is independent of the territory design, the objective is to maximize
P where

P =
I∑

i=1

Pi = mIB − f IA − (2g/u)

I∑
i=1

∑
j,F (j)=i

njDj,ci
(7.5)

To summarize, the formulation of the territory design problem is to determine an
assignment function F , defined by Equation 7.2, that:

1 makes the territories contiguous;

2 minimizes the maximum deviation in the workload of territories;

3 minimizes the maximum deviation in the sales potential of territories;

4 maximizes P given by Equation 7.5.

The objective function, to be maximized, can therefore be written as

E = P − Amax − Bmax (7.6)

Each term in the objective function could be weighted to reflect the relative impor-
tance of one term over another: for example, profit over equal sales potential.
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7.3.8 Application of simulated annealing

An initial design is found for which the territories are contiguous. The profit P is
computed, along with Amax and Bmax. Denote this design by Xold. Also initialized is
the value of the control parameter, T .

A move from Xold is to select at random an SCU j in territory i, remove it and place
it in territory k. The move is valid if territories i, k remain contiguous. If the move is
valid then the new design is called Xnew, and the difference in the objective function
values, �E = Eold − Enew is computed. The new design is accepted when �E is
negative and with probability prob = e�E/T when it is positive. When accepted, the
value of Xold becomes Xnew. The method now continues to select another move at
random, and so on until Nc moves have been tried for the temperature T at which
point T is reduced, and the whole process is repeated until T falls below a certain
threshold. The full procedure is as follows:

Initialize T

Initialize Xold

WHILE T > Tmin DO

FOR u = 1 to Nc DO

Make a random move by removing SCU j from territory i to k

Call the new design Xnew

IF territories i, k are contiguous THEN

compute Enew and �E = Eold − Enew

IF �E < 0 or random < prob = e�e/T THEN

Xold becomes Xnew

END IF

END IF

END FOR

reduce T

END WHILE

where Nc is the number of random changes in configuration at each temperature T ,
and the variable random is a randomly generated number in the range [0,1]. Precise
details about the values of T and the annealing schedule will need to be determined
by experimentation.



CHAPTER 8

Other Statistical,
Mathematical and
Co-pattern Modeling
Techniques

8.1 Discriminant Analysis

Like regression analysis, discriminant analysis (DA) uses a linear equation to pre-
dict the dependent variable (say, sales). However, while in regression analysis the
parameters (coefficients) are used to minimize the sum of squares, in discriminant
analysis the parameters are selected in such a way as to maximize the ratio:

Variance between group means

Variance within groups

Discriminant analysis is used in marketing for predicting brand loyalty and buying
or attempting to predict consumer behavior in general; this classification method could
be used when the data (the independent variables) are interval scales.

8.2 Automatic Interaction Detection (AID)

The regression analysis mentioned above attempts to identify association between the
dependent and the independent variables, one at a time. In addition, the assumption
is that the data are measured on interval scales. In many other marketing research
situations we need a method able to handle nominal or ordinal data and to identify
all the significant relationships between the dependent and the independent variables.
Automatic interaction detection (AID) is a computer-based method for interactively
selecting the independent variables in order to be able to predict the dependent vari-
ables. It splits the sample of observations into two groups on a sequential routine,
trying to keep the subgroups that emerge as homogenous as possible, relative to the
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dependent variable. The homogeneity is measured by minimizing the sum-of-square
deviations of each subgroup member from its subgroup mean. AID is used in market-
ing for market segments analysis, analyzing the effect of advertising levels on retail
sales, predicting consumption/sales and brand loyalty.

The method is not as powerful as regression analysis and since the minimum
subgroup size should be no less than 30, the original sample of objects required must
be fairly large (1000 or more).

8.3 Logical Type Discriminant Models:
The C5 Algorithm

The C5 algorithm provides the induction of logical type discriminant models, namely
classification trees and sets of propositional rules. In addition to the original software
implemented by Quinlan (1993), available programs that may be used to run this
algorithm are included in some well-known data mining and statistical packages (e.g.
the SPSS Clementine version).

Classification trees translate a hierarchical partitioning process that starts with a
sample of observations concerning descriptors and segment membership (root node)
and successively divides nodes based on the descriptors values. This process attempts
to decrease diversity in each new descendent node of the tree, in order to decrease the
risk of classification. Thus, in a classification tree each terminal node (leaf) represents
a set of relatively homogeneous observations in what concerns segment membership,
the class distribution tending to concentrate in one particular segment.

A prepositional rule is represented by a if condition then class logical type expres-
sion where the condition is a conjunctive preposition that allocates specific values to
the descriptors. A set of prepositional rules may provide means to classify observations
that meet the conditions associated with each class.

The C5 algorithm grows a classification tree based on the Information Gain Ratio
measure, an entropy based criterion (14). According to this criterion, the selection
of a specific predictor Xj to split a node O is guided by the objective of decreasing
diversity (entropy) in the descendent nodes. Diversity in these child nodes should
then be inferior to diversity in the parent node O. As a consequence, the frequency
distribution in each child node will thus tend to concentrate in specific segments.

In other words, splitting a node O based on a chosen attribute Xj (and on a
particular categorization of Xj levels) translates the capacity of the chosen attribute to
add information concerning classification of individuals of node O into the segments.
If Xj is metric or ordinal, binary partitions will be considered as candidates (thresholds
will be the sorted values of Xj ). If Xj is categorical, its categories will yield a partition
of node O. As an option, C5 provides a heuristic procedure that considers possible
combinations of attributes categories in order to optimizse the Information Gain Ratio.

To deal with missing observations concerning a chosen attribute (Xj ) to split node
O, C5 divides these observations among the descendent nodes of O, according to the
empirical distribution of frequencies associated with the correspondent categorization
(partition) a∗

j .
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C5 provides pruning of the initial classification tree to avoid overfitting. A descen-
dent subtree AO of node O will be pruned if its pessimistic error of classification
is greater than the one corresponding to node O (pessimistic error being the upper
bound of a confidence interval associated with the proportion of incorrectly classified
observations).

The final classification tree may be translated in a set of prepositional rules, each
one corresponding to a leaf node. Each initial rules condition (descriptors values) is
obtained following the path from the root to each terminal node and the rules class is
the modal segment for this leaf.

After deriving the classification tree, C5 provides means to simplify, reduce and
rank the initial set of prepositional rules that corresponds to the leaves of the classifi-
cation tree, yielding a new model of classification.

Simplification of the initial subset of rules obeys the minimum pessimistic error
criterion, trying to generalize rules by removing propositions from the rules conditions
(pessimistic error is considered to compare precision of alternative rules).

After simplification, a simulated annealing heuristic is applied to each subset,
discarding some rules in order to minimize an estimate of the number of bits necessary
to encode to encode each subset (Minimum Description Length criterion).

Finally, rules within each subset are sorted by precision and subsets are sorted
according to a minimum of false positives criterion. As such, subsets that incorrectly
classify the least number of cases are ranked in first place.

Classification of an observation xj within a class (segment) is finally provided by
the first rule that covers it. If it is covered by multiple rules corresponding to different
classes, voting takes place, the weight associated with each vote being the precision
associated to each rule. When xj isn’t covered by any rule, a default classification
is used and xj is allocated to the segment that contains the most training cases not
covered by any rule.

Costs of incorrect classification of an observation that belongs to a class l∗ in a
class l of the dependent variable (l, l∗ ∈ {1 . . . S}) may also be incorporated in the
final classification decision. In this case a minimum cost criterion is adopted (instead
of maximum precision).

Classification trees and prepositional rules may be associated with the correspond-
ing measures of precision for classification. In particular, hit rates measures (the pro-
portion of correctly classified observations, Pr ) returned by estimated models may
illustrate model fitting.

As resubstitution errors tend to overestimate precision, discriminant models based
on a training sample may be applied to a test (or holdout) sample where the cor-
responding hit rates prove more realistic estimates of classification precision.

Recently, an analysis of the performance of several classification algorithms (18)
suggests that, in what concerns classification precision, there is some empirical evid-
ence that similar performances can be achieved by several discriminant methods,
namely linear discriminant analysis, logistic regression, neural networks and classifi-
cation trees. When choosing an algorithm for profiling a segment structure, additional
criteria must, thus, be taken into account. Namely, the need for specific paramet-
ric assumptions, the capacity to deal with missing observations, the existence of
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Example

AGE ≤ 40 [Mode: regular users] (636.796)

AGE ≤ 27 [Mode: first time users] (111.869)

AGE ≤ 18 [Mode: regular users] (5.378, 0.961) then regular users

AGE ≤ 18 [Mode: first time users] (106.491)

EDUCATION L. ≤ 4 [Mode: first-time users] (40.043, 0.681) then first-time users

EDUCATION L. > 4 [Mode: regular users] (66.448)

FEMALE [Mode: first-time users] (30.174, 0.567) then first-time users

MALE [Mode: regular users] (36.274)

AGE ≤ 24 [Mode: regular users] (4.909, 0.973) then regular users

AGE > 24 [Mode: regular users] (31.366)

AGE ≤ 25 [Mode: first-time users] (5.887, 0.789) then first-time users

AGE > 25 [Mode: regular users] (25.478, 0.62) then regular users

AGE > 27 [Mode: regular users] (524.926)

EDUCATION L. ≤ 4 [Mode: regular users] (184.832)

INCOME L. ≤ 1 [Mode: first-time users] (14.759, 0.773)

INCOME L. > 1 [Mode: regular users] (170.073)

OTHER REGIONS [Mode: regular users] (62.302)

[SINGLE or DIVORCED] [Mode: first-time users] (7.59, 0.642) then first-time
users

[MARRIED or WIDOW] [Mode: regular users] (54.667, 0.606) then regular
users

LISBON [Mode: regular users] (81.659, 0.611) then regular users

OPORTO [Mode: regular users] (26.112)

INCOME L. ≤ 2 [Mode: first-time users] (16.175)

FEMALE [Mode: first-time users] (12.467)

AGE ≤ 34 [Mode: first-time users](8.447, 0.848) then first-time users

AGE > [Mode: regular users] (4.02, 0.959) then regular users

MALE [Mode: first-time users] (3.708, 0.662) then first-time users

INCOME L. > 2 [Mode: regular users] (9.937, 0.726) then regular users

EDUCATION L. > 4 [Mode: regular users] (340.094, 0.704) then regular users

AGE > 40 [Mode: regular users] (813.204, 0.594) then regular users

Note: the terminal nodes (leafs) of the tree are signed in bold and the number and proportion of correctly classified

cases are presented between parenthesis.

estimation problems and the interpretability of results, should be considered. Regard-
ing these criteria some advantages of the proposed discriminant logical type models
(based on the C5 algorithm, in particular) may be referred:

1 C5 is a purely nonparametric procedure that requires no assumptions concerning
the data, as opposed to other discriminant methods that may be restricted to obey
to some assumptions (e.g. normality in linear discriminant analysis).
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Table 8.1 5 set of propositional rules (C5 Ra)

Rules for first-time users: Rules for regular users:

IF OPORTO IF AGE ≤ 18
and AGE > 27 then regular users (5, 0.857)
and AGE ≤ 34 IF AGE ≤ 40
and FEMALE then regular users (592, 0.63)
and EDUCATION L. ≤ 4 IF AGE > 40
and INCOME L. ≤ 2 then regular users (756, 0.604)
then first-time users (7, 0.889)
IF age ≤ 40
and EDUCATION L. ≤ 4
and INCOME L. ≤ 1
then first-time users (26, 0.786)
IF OTHER REGIONS
and AGE > 27
and AGE ≤ 40
and [SINGLE or DIVORCED]
and EDUCATION L. ≤ 4
then first-time users (7, 0.778)
IF AGE > 24
and AGE ≤ 25
then first-time users (14, 0.75)
IF AGE > 18
and AGE ≤ 27
and EDUCATION L. ≤ 4
then first-time users (36, 0.711)
IF AGE > 18
and AGE ≤ 27
and FEMALE
then first-time users (52, 0.611)
IF AGE ≤ 27
then first-time users (104, 0.538)

Default : Regular users

2 The C5 algorithm has a specific procedure (summarized in this text) to deal with
missing values, as opposed to general statistical discriminant approaches that
rely on complete observations for allowing parameters estimation. This specific
C5 procedures may also be seen as advantageous when compared to similar
approaches to deal with missing values, in particular the CARTs surrogates
approach.

3 The induction of logical type discriminant models has no estimation problems.
Some estimation problems may, however, occur (boundary solutions or non-
identified parameters) when trying to derive statistical models (e.g. when trying
to maximize complex likelihood functions as those that may be associated with
mixture models).



196 Other Statistical, Mathematical and Co-pattern Modeling Techniques

Table 8.2 5 set of propositional rules (C5 Rb)

Rules for first-time users Rules for regular users

IF AGE 24 IF AGE ≤ 18
and AGE ≤ 25 then first-time users (5, 0.857)
then first-time users (14, 0.75) IF AGE > 53
IF AGE > 18 and EDUCATION L. ≤ 2
and AGE ≤ 27 then first-time users (18, 0.8)
and EDUCATION L. ≤ 4 IF OTHER REGIONS
then first-time users (36, 0.711) and AGE > 40
IF AGE ≤ 40 and EDUCATION L. ≤ 2
and INCOME L. ≤ 1 then first-time users (14, 0.75)
then first-time users (38, 0.675) IF AGE > 25
IF AGE ≤ 53 and AGE ≤ 27
and EDUCATION L. ≤ 2 and MALE
then first-time users (22, 0.667) and EDUCATION L. > 4

then first-time users (24, 0.615)
IF EDUCATION L. > 2
then first-time users (1324, 0.615)

Rules for heavy users

IF OTHER REGIONS IF OPORTO
and AGE > 67 and AGE > 53
and EDUCATION L. > 2 and AGE ≤ 62
then heavy users (12, 0.786) and EDUCATION L. ≤ 3
IF AGE > 51 and INCOME L. ≤ 3
and AGE ≤ 53 then heavy users (4, 0.667)
and EDUCATION L. ≤ 3 IF AGE > 53
and INCOME L. > 3 and DIVORCED
then heavy users (2, 0.75) and MALE
IF age > 40 and INCOME L. ≤ 3
and AGE ≤ 41 then heavy users (1, 0.667)
and EDUCATION L. > 3 IF AGE > 53
and INCOME L. > 3 and AGE ≤ 70
then heavy users (6, 0.75) and WIDOW
IF OPORTO and EDUCATION L. > 2
and AGE > 53 then heavy users (6, 0.625)
and EDUCATION L. > 4 IF LISBON
and INCOME L. > 3 and AGE > 53
then heavy users (5, 0.714) and MALE
IF AGE > 53 then heavy users (29, 0.548)
and SINGLE IF AGE > 64
and MALE and MARRIED
and INCOME L. ≤ 3 and EDUCATION L. > 2
then heavy users (4, 0.667) and INCOME L. ≤ 3

then heavy users (81, 0.53)

Default : Regular users
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Table 8.3 Classification precision

Recursive based partitioning model C5 CT

Predicted
First-time Regular Heavy

Actual users users users
Training s (hit rate = 63.3%)

First-time users 71a 225
Regular users 29 847a

Heavy users 0 278

Test s (hit rate = 62%)
First-time users 25a 121
Regular users 23 448a

Heavy users 4 142

Recursive based partitioning model C5 Ra

Predicted
First-time Regular Heavy

Actual users users users
Training s (hit rate = 63.2%)

First-time users 67a 229
Regular users 26 850a

Heavy users 0 278

Test s (hit rate = 62.1%)
First-time users 25a 121
Regular users 22 449a

Heavy users 4 142

Recursive based partitioning model C5 Rb

Predicted
First-time Regular Heavy

Actual users users users
Training s (hit rate = 64%)

First-time users 52a 244 0
Regular users 19 854a 3
Heavy users 1 255 22a

Test s (hit rate = 61.9%)
First-time users 26a 120 0
Regular users 20 441a 10
Heavy users 1 140 5a

a = the numbers of correctly classified cases
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4 In what regards interpretability, a set of propositional rules as well as the cor-
responding measures of precision) speaks for itself. In fact, the use of natural
(logical type) language makes the profiles and the structure of classification easy
to interpret thus proving to be very appealing to practitioners.

Some limitations of this approach may also be considered:

1 C5 results do not include measures of the descriptor’s relative importance for
discrimination (typically provided by statistical approaches).

2 As the C5 results consistency must be based on cross-validation procedures, the
quantity of available data is a critical issue for the proposed approach.

In what concerns the first limitation some insight concerning the relative impor-
tance of descriptors based on the classification tree construction may be obtained,
presuming that descriptors that are first selected for node splitting are more discrim-
inant. This is, naturally, an empirical approach and further research will, thus, be
needed to confirm that these results are consistent with those provided by significant
tests, for example.

8.4 Multidimensional Scaling

Multidimensional scaling (MS) is a measurement technique concerned mainly with
the representation of relationship, differences, dissimilarities (or similarities), substi-
tutability, interaction, etc., among behavioral data such as perceptions, preferences and
attitudes. The input data on various objects (variables) which are to be analyzed are
collected from the subjects (respondents) by a number of direct or indirect questions.
The questions can be either of Likert type (i.e. a 5-point scale questionnaire indicating
the level of agreement or disagreement to statements) or, alternatively, asking each of
the respondents to rank the variables to be investigated (for example, products, brands,
characteristics, etc.). When the number of variables investigated are n, the number of
all possible relationships among these variables (along k dimensions) are n(n1)/2. In
order to visualize and quantify the overall attitudinal data of these respondents with
regard to the n variables investigated along (k) dimensions, the data should be input
onto one of the available software packages.

The solution (output) of the MS computer program is of a metric nature, consisting
of a geometric configuration, usually in 2 or 3 dimensions. The distances between the
variables (objects) and/or respondents (subjects) investigated, which are presented as
points in the configuration, represent the (dis)similarity, substitutability, relationship,
etc. Multidimensional scaling is used particularly in its non-metric version, the non-
metric multidimensional scaling (NMS). The advantage of NMS in relation to, say,
factor or cluster analyses is the ability to see the entire structure of variables together
and to obtain metric output, from attitudinal (non-metric) input data. In addition, NMS
enables easy comprehension of the results since the decision maker can visualize and
assess the relationships among the variables.
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Multidimensional scaling and non-metric multidimensional scaling in particular
have been successfully applied in investigating various marketing problems (for exam-
ple, market research, sales and market share, market segmentation, determination of
marketing mix, consumer buyer behavior, brand positioning, branch preference, export
marketing, etc.). An introduction to multidimensional scaling is presented by Diaman-
topoulos and Schlegelmilch (1997). Discussion on when to use NMS techniques in
marketing research is offered by Coates et al. (1994).

8.5 Conjoint Analysis

This technique is concerned with the joint effects of two or more independent vari-
ables on the ordering of a dependent variable. Conjoint analysis, like multidimen-
sional scaling, is concerned with the measurement of psychological judgments, such
as consumer preferences. Products are essentially bundles of attributes, such as price
and color. For example, conjoint analysis software generates a deck of cards, each of
which combines levels of these product attributes. Respondents are asked to sort the
cards generated into an order of preference. Conjoint analysis then assigns a value to
each level and produces a ready-reckoner to calculate the preference for each chosen
combination. The preference logic of conjoint analysis is as follows. The respondent
had to base his or her overall ranking of the versions on an evaluation of the attributes
presented. The values that the individual implicitly assigns each attribute associated
with the most preferred brand must, in total, sum to a greater value than those asso-
ciated with the second most-preferred brand. The same relationship must hold for the
second and third most-preferred brands, the third and fourth most-preferred brands
and so forth. The computation task then is to find a set of values that will meet these
requirements.

Potential areas of application for conjoint analysis include product design, new
product concept descriptions and testing, price–value relationships, attitude measure-
ment, promotional congruence testing, the study of functional versus symbolic product
characteristic, and to rank a hypothetical product against existing competitors already
in the market and suggest modifications to existing products which would help to
strengthen a products performance. The limitations of conjoint analysis are quite clear
when, for example, we are using this technique to predict trial rate. These include:

1 Utility measurement rather than actual purchase behavior is used as the predictor.

2 The configuration of elements used in the concepts may not be complete.

3 In the case of a new product that differs substantially from its principal com-
petitors, the same elements cannot be used for aggregating utilities.

4 The effects of promotion and distribution effort on competitive reaction are not
considered.

5 Perceptions from a concept statement and those from the actual product may
differ.
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6 New products may take several years to reach the market, during which time
customer preferences and competitive products may have undergone substantial
changes.

Conjoint analysis has been applied widely on consumer research (Vriens, 1994),
in advertising evaluation (Stanton and Reese, 1983) and other commercial uses (Cattin
and Wittink, 1982).

8.6 Correspondence Analysis

Correspondence analysis is a visual or graphical technique for representing multi-
dimensional tables. It can often be impossible to identify any relationships in a table
and very difficult to account for what is happening. Correspondence analysis unravels
the table and presents data in an easy-to-understand chart. One approach for generating
maps uses cross-classification data (e.g. brands rated as having or not having a set of
attributes) as a basis (Hoffman and Franke, 1986). In this approach both brands and
attributes are simultaneously portrayed in a single space. This technique is particularly
useful to identify market segments, track brand image, position a product against its
competition and determine who non-respondents in a survey most closely resemble.
Correspondence analysis shows the relationships between rows and columns of a
correspondence or a cross-tabulation table. This method can be used for analyzing
binary, discrete or/and continuous data. CA belongs to the family of multidimensional
scaling techniques and could be employed to scale a matrix of non-negative data to
represent points (described by rows or columns) in a lower dimensional space. It
facilitates both within- and between-set squared distance comparisons (Carroll et al.,
1986) and the results could be represented graphically and used as such in marketing
investigations.

Figure 8.1 shows the different stages of correspondence analysis. The results
of a cross-tabulation is used as raw data in a correspondence analysis. The specific
mathematics involved in correspondence analysis can be found in Greenacre (1984).

Figure 8.2 presents the output of a study that maps out how bank branch personnel
in various roles see themselves (internal perceptions) and what are their colleagues’
(external) perceptions with regard to the 27 selling bank branch functions identified
(Meidan and Lim, 1993). The figures represent the output of a study where respondents
were asked who they felt were mainly responsible for the selling function of identifying
customers’ needs in a bank. The responses of various function holders are indicated
by the triangular signs on the map (e.g. counselor, manager, business development
officer, etc.). The respondents themselves were grouped into three categories indicated
by the circles (e.g. lower grades (cashier, statements clerk), middle grades (counselors,
officers), managerial grades (branch managers, etc.)).

The interpretation of data output is fairly straightforward, although not all dimen-
sions could be labeled. The closer two points are on the map, the closer the relationship.
For example:

1 Lower grades tend to believe that the enquiries clerk and receptionist are mainly
responsible for identifying customer needs.
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Results of cross-tabulation
used as raw data

Cumulative proportion
explained by the number
of dimensions calculated

Contribution of column points
to the inertia of each
dimension calculated

Row and column
scores plotted on a

correspondence map

Row scores calculated

Contribution of row points
to the inertia of each
dimension calculated

Column scores calculated

Figure 8.1 Procedural steps for correspondence analysis

2 Middle grades, however, are more inclined to see this as mainly the counselors’
responsibility. Some middle grades also tend to consider it the responsibility of
cashiers, investment officers or everyone (all).

3 Managerial grades believe that this function is mainly their own responsibil-
ity. These beliefs of various role players within the branch are, of course, of
paramount importance, as it might lead to under-training for certain function(s)
at grade levels, where customer contact is higher. Therefore, this kind of study
could focus the training efforts and needs for specific selling functions and
certain grade levels/roles.

8.7 Latent Analysis

Latent structure analysis (LA) is a statistical technique somewhat related to factor
analysis, which can be used as a framework for investigating causal systems involv-
ing both manifest variables and latent factors having discrete components. Latent
structure analysis shares the objective of factor analysis, i.e. first, to extract important
factors and express relationships of variables with these factors, and second, to classify
respondents into typologies.

The latent class model treats the manifest categorical variables as imperfect
indicators of underlying traits, which are themselves inherently unobservable. The
latent class model treats the observable (manifest) categorical variables as imperfect
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Figure 8.2 Success and the experience of the sales staff
Source: Meidan and Lim, 1993.

indicators of underlying traits, which are themselves inherently unobservable (latent).
This technique is appropriate for the analysis of data with discrete components.

Essentially, LA attempts to explain the observed association between the manifest
variables by introducing one (or more) other variables. Thus, the basic motivation
behind latent analysis is the belief that the observed association between two or more
manifest categorical variables is due to the mixing of heterogeneous groups. In this
sense, latent analysis can be viewed as a data-unmixing procedure. This assumption of
conditional independence is directly analogous to the assumption in the factor-analytic
model.

The main advantage of latent analysis is that it could be used for investigat-
ing causal systems involving latent variables. A very flexible computer program for
maximum likelihood latent structure analysis, called MLLSA, is available to market-
ing researchers. Latent class models have great potential and no doubt will be used
more frequently in marketing investigations in the future.

One of the major limitations related to LA concerns the estimation problem,
which previously made this class of models largely inaccessible to most marketing
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researchers. This problem was later solved by formulating latent class models in the
same way as in the general framework of log-linear models. Latent structure anal-
ysis models have been used in segmentation research, consumer behavior analysis,
advertising research and market structure analysis.

One of the best papers in this field is by Dillon and Mulani (1989). A number
of latent structure models have been developed (DeSarbo, 1993) for problems asso-
ciated with traditional customer response modeling (for example, for more regres-
sion, conjoint analysis, structural equation models, multidimensional scaling, limited
dependent variables, etc.). Such latent structure models simultaneously estimate mar-
ket segment membership and respective model coefficients by market segment, to
optimize a common objective function.

8.8 Fuzzy Sets

The fuzzy set theory is a relatively new approach that has been growing steadily since its
inception in the mid-1960s. In the fuzzy set theory, an abstract concept such as a sunny
day can be considered as a fuzzy set and defined mathematically by assigning to each
individual in the universe of discourse, a value representing its grade of membership
in the fuzzy set. This grade corresponds to the degree to which that individual is
similar or compatible with the concept represented by the fuzzy set. Thus, individuals
may belong in the fuzzy set to a greater or lesser degree as indicated by a larger or
smaller membership grade. These membership grades are very often represented by
real member values ranging in the closed interval between 0 and 1. Thus, a fuzzy set
representing our concept of sunniness might assign a degree of membership 1 to a
cloud cover of 0%, 0.8 to a cloud cover of 20%, 0.4 to a cloud cover of 30% and 0
to a cloud cover of 75%. These grades signify the degree to which each percentage
of cloud cover approximates our subjective concept of sunniness, and the set itself
models the semantic flexibility inherent in such a common linguistic term. Vagueness
in describing many consumer behavior constructs is intrinsic, not the result of a lack
of knowledge about the available rating. That is why a great variety of definitions in
marketing exist and most of them cannot describe the fuzzy concepts completely. So
long as the semantic assessment facets in the construct can be quantified and explicitly
defined by corresponding membership functions, the initial steps of the mathematical
definition of marketing constructs are achieved. Recognizing the difficulty of accurate
quantification of the semantic assessment facets like product interest, hedonic value
and others, some researchers utilize the fuzzy mathematical method (Klir and Yuan,
1995; Zimmerman, 1991) to quantify the assessment facets by membership functions
so that the results obtained are more accurate than the traditional statistical methods
and more suitable for the semantically modified assessment facets.

The benefits of using fuzzy sets are:

1 The membership function is deliberately designed in fuzzy set theory to
treat the vagueness caused by natural language. Therefore, using membership
functions to assess the semantically defined measuring facets is more reliable
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and accurate than using the traditional statistical methods to score points or
scatterplot.

2 The membership function standardizes the semantic meaning of assessment
facets so that we can compare the degree of the definition of marketing
constructs regardless of the differences of timing, situation, consumer and
so on.

3 The membership functions are continuous functions which are more accurate
in measuring the assessment facets than the traditional discrete methods.

4 The fuzzy mathematical method is easier to perform than the traditional method,
once the membership of assessment facets are defined.

Some of the main characteristics, advantages, limitations and applications of
simulation and fuzzy sets in marketing are presented in Table 8.4 below:

Table 8.4 Fuzzy set theory

BASED ON MARKETING APPLICATIONS

Vagueness concerning the description of the Modeling consumer behavior.
semantics of the terms. It is essentially Marketing planning (Diagnosis and
a factual modeling process that attempts to Prognosis).
fine-tune the expression of knowledge. New product testing.
It does this via using a linguistic scale Perceived price testing.
describing the characteristics under each Marketing communication effects
of the main dimensions of the model to form research.
fuzzy sets; a hierarchical aggregation of
information based on fuzzy aggregation
operators; and a conceptual hypercube to
determine the rank and ranking size of the
outcomes.
Includes the concept of membership function
(between 0 and 1).

MAIN ADVANTAGE MAIN LIMITATIONS

Flexibility which accommodates a degree of Difficult measurement scaling and
uncertainty or fuzziness, in diagnosis. estimation of the bipolar descriptors.
This fuzziness is indeed lauded as Linguistic scale for characteristics
realistic in expressing human judgment. description.

Description of the values for the
parameters of the model.
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8.9 Fuzzy Decision Trees

Inductive decision trees were first introduced in 1963 with the Concept Learning
System Framework. Since then they have continued to be developed and applied. The
structure of a decision tree starts with a root decision node, from which all branches
originate. A branch is a series of nodes where decisions are made at each node
enabling progression through (down) the tree. A progression stops at a leaf node,
where a decision classification is given.

As with many data analysis techniques (e.g. traditional regression models), deci-
sion trees have been developed within a fuzzy environment. For example, the well-
known decision tree method ID3 was developed to include fuzzy entropy measures.
The fuzzy decision tree method was introduced by Yuan and Shaw (1995) to take
account of cognitive uncertainty, i.e. vagueness and ambiguity.

Central to any method within a fuzzy environment is the defining of the required
membership functions. Incorporating a fuzzy aspect (using membership functions)
enables the judgments to be made with linguistic scales.

Summary of fuzzy decision tree method: In this section a brief description of the
functions used in the fuzzy decision tree method are exposited. A fuzzy set A in a
universe of discourse U is characterized by a membership function µA which take
values in the interval [0, 1]. For all µ ∈ U , the intersection A ∩ B of two fuzzy sets
is given by µA∩B = min(µA(u), µA(u)).

A membership function µ(x) of a fuzzy variable Y defined on X, can be viewed as
a possibility distribution of Y on X, i.e. π(x) = µ(x), for all x ∈ X. The possibilistic
measure – E∝(Y ) of ambiguity is defined as:

E∝(Y ) = g(π) =
n∑

i=1

(π∗ − π∗
i+1)1n[i],

where π∗ = {π∗
1 , π∗

2 , . . . , π∗
n } is the permutation of the possibility dis-

tribution π = {π(x1), π(x2), . . . , π(xn)}, sorted so that π∗
i ≥ π∗

i+1 for
i = 1, . . . , n, and π∗

i+1 = 0.

The ambiguity of attribute A is then:

E∝(A) = 1

m

m∑
i=1

E ∝ (A(ui)),

where E ∝ (A(ui)) = g(µT s(ui)/max
15j5s

(µTj (ui))), with T the linguistic

scales used within an attribute.

The fuzzy subsethood S(A, B) measures the degree to which A is a subset of B

(see Kosko, 1986) and is given by:

S(A, B) =
∑

u∈U min(µA(u), µB(u))∑
u∈U µA(u)
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Given fuzzy evidence E, the possibility of classifying an object to Class C can be
defined as:

µ = (Ci\E) = S(E, Ci)

max
j

S(E, Cj )

where S(E, C) represents the degree of truth for the classification rule.

Knowing a single piece of evidence (i.e. a fuzzy value from an attribute) the
classification ambiguity based on this fuzzy evidence is defined as:

G(E) = g(π(C\E))

The classification ambiguity with fuzzy partitioning P = {E1, . . ., Ek} on the
fuzzy evidence F , denoted as G(P \F), is the weighted average of classification
ambiguity with each subset of partition:

G(P \F) =
k∑

i=1

w(Ei\F)G(Ei ∩ F),

Where G(Ei ∩ F) is the classification ambiguity with fuzzy evidence
Ei ∩F, w(Ei\F ) is the weight which represents the relative size of subset
Ei ∩ F in F .

w(Ei |F) =
∑

u∈U min(µEi(u), µF (u))∑k
j=1

[∑
u∈U min(µEi(u), µF (u))

]
The fuzzy decision tree method considered here utilizes these functions. In sum-

mary, attributes are assigned to nodes based on the lowest level of ambiguity. A node
becomes a leaf node if the level of subsethood (based on the conjunction (intersection)
of the branches from the root) is higher than some truth value β assigned to the whole
of the decision tree. The classification from the leaf node is to the decision class with
the largest subsethood value.

The results of the decision tree, are classification rules each with an associated
degree of truth in their classification. These rules are relatively simple to read and
apply.

8.10 Artificial Intelligence

Artificial intelligence (AI) models have emerged in the last few years as a follow-up
to simulation, attempting to portray, comprehend and analyze the reasoning in a range
of situations. Although the two methods of artificial intelligence (expert systems and
neural networks) are, in a certain sense, simulations, because of the importance and
the potential of these methods, we have introduced them under a separate stand-alone
heading.
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8.11 Expert Systems

Simply defined, an expert system is a computer program which contains human know-
ledge or expertise which it can use to generate reasoned advice or instructions.

8.11.1 Method based on marketing main advantages main
limitations applications

The knowledge base is usually represented internally in the machine as a set of IF . . .

THEN rules and the inference engine of the expert system matches together appropriate
combinations of rules in order to generate conclusions.

In determining whether a particular marketing domain is suited for this method-
ology the following checklist is useful:

• Are the key relationships in the domain logical rather than computational? In
practical terms, the answer requires an assessment of whether the decision area
is knowledge-intensive (e.g. generating new product areas) or data-intensive
(e.g. allocating an advertising budget across media).

• Is the problem domain semi-structured rather than structured or unstructured?
If the problem is well structured, a traditional approach using sequential pro-
cedures will be more efficient than an expert system approach. This would be
true, for example, when the entire problem-solving sequence can be enumer-
ated in advance.

• Is knowledge in the domain structured? If the problem is well structured, a tradi-
tional approach using sequential procedures will be more efficient than an expert
system approach. This would be true, for example, when the entire problem-
solving sequence can be enumerated in advance. Moreover, for highly unstruc-
tured domains, expert system performance may be disappointing because the
available problem-solving strategies may be inadequate.

• Is knowledge in the domain incomplete? In other words, is it difficult to identify
all the important variables or to specify fully their interrelationships? Expert
systems are particularly applicable in domains with incomplete knowledge.

• Will problem solving in the domain require a direct interface between the man-
ager and the computer system? A direct interface may be necessary in situations
calling for online decision support. Such situations generally are characterized
by a high level of decision urgency (e.g. buying and selling stocks) or complexity
(e.g. retail site selection). Expert systems are particularly useful in these contexts
because of their flexible and friendly user–interaction facilities coupled with
their ability to explain their reasoning (Rangaswamy et al., 1989). A number of
expert systems in marketing have been developed over the years, in particular
focusing on the following domains: marketing research, test marketing, pricing,
generation of advertising appeals, choice of promotional technique, selection
of effective sales techniques, negotiation strategies, site selection, allocation of
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marketing budget, promotion evaluation, strategic positioning, strategic mar-
keting, assessment of sales territories, brand management, marketing planning,
international marketing, bank marketing, tourism marketing and industrial mar-
keting (see Curry and Moutinho, 1991).

The greatest single problem with regard to the effectiveness and applicability of
expert system models in the management and marketing context concerns the con-
struction and validation of the knowledge base.

8.12 Fuzzy Logic and Fuzzy Expert Systems

The domain expert’s reasoning processes are already structured in a manner developed
over the years, different from any other individual in the world. The precise way in
which a part of his knowledge and skill are made available to others through a computer
program has to be worked out on a highly individual basis through the domain expert –
knowledge engineer interaction.

Fortunately, the tools of fuzzy systems theory make it possible for this interaction
to take place mainly in terms of words, many of which are already familiar to both.
The concepts of fuzzy logic are already a part of every individual’s knowledge; what is
new is the development of theory to formalize everyday non-formal thinking concepts,
and use them in computer programming.

Most of us have had some contact with conventional logic at some point in our
lives. In conventional logic, a statement is either true or false, with nothing in between.
This principle of true or false was formulated by Aristotle some 2000 years ago as the
law of the excluded middle, and has dominated Western logic ever since.

Of course, the idea that things must be either true or false is in many cases nonsense.
Is the statement ‘I am good’ completely true or completely false? Probably neither.
How about ‘I am rich’? This can be true (Donald Trump) or false (Skid Row), but
how about most of us? The idea of gradations of truth is familiar to everyone.

Fuzzy logic offers a better way of representing reality. In fuzzy logic, a statement is
true to various degrees, ranging from completely true through half-truth to completely
false.

Topics covered by Fuzzy expert systems include general purpose fuzzy expert
systems, processing imperfect information using structured frameworks, fuzzy lin-
guistic inference network generator, fuzzy associative memories, the role of approx-
imate reasoning in medical expert systems, MILORD (a fuzzy expert systems shell),
COMAX (which is an autonomous fuzzy expert system for tactical communications
networks (. . . ). Fuzzy expert systems provide an invaluable reference resource for
researchers and students in artificial intelligence (AI) and approximate reasoning
(AR), as well as for other researchers looking for methods to apply similar tools
in their own designs of intelligent systems.

8.13 Rough Set Theory

Rough set theory (RST) is a fairly new approach to decision making in the presence
of uncertainty and vagueness (Pawlak, 1997). Rough set theory was first introduced
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by Zdzislaw Pawlak in the early 1980s, as a new mathematical tool to deal with
vagueness and uncertainty. This approach seems to be of fundamental importance to
artificial intelligence (AI) and cognitive sciences, especially in the areas of machine
learning, knowledge discovery from databases, expert systems, decision support sys-
tems, inductive reasoning and pattern recognition. One of the main advantages of RST
is that it does not need any preliminary of additional information about data, such as
probability distributions or basic probability assignments. This means that RST has
numerous real-world applications (Pawlak et al., 1995).

The main concept of RST is an indiscernabilty relation normally associated with
a set of attributes. The key problem in this description is the informal term ‘nor-
mally associated’. In real life, such an association does not exist until additional
assumptions are made. The subjectivity issue is more complicated than in other meth-
ods for managing uncertainty, therefore RST is potentially an important tool in the
analysis of data with important applications in data mining and knowledge discov-
ery. However, claims of its superiority (objectivity) over other approaches remains
to be substantiated by scientific evidence (Koczkodaj et al., 1988). The results of
RST are a set of ‘if . . . then . . . ’ rules which enable prediction of classification of
objects.

The critical issues of data mining were examined by Lingras and Yao (1998) who
used the theory of rough sets, which is a recent proposal for generalizing classical
set theory the Pawlak rough set model is based on the concept of an equivalence
relation. Research has shown that a generalized rough set model need not be based on
equivalence relations axioms. Lingras and Yao (1998) demonstrated that a generalized
rough set model could be used for generating rules from incomplete databases. These
rules are based on plausibility functions. These authors also emphasized the importance
of rule extraction from incomplete databases in data mining.

A RST approach was used by Dimitras et al. (1999) to provide a set of rules able
to discriminate between healthy and failing firms in order to predict business failure.
The evaluation of its prediction ability was the main objective of the study. The results
were very encouraging, compared with those from discriminate and logit analyses,
and proved the usefulness of the method. The rough set approach discovers relevant
subsets of characteristics and represents in these terms all important relationships
between the key constructs. The method analyzes only facts hidden in the input data
and communicates with the decision maker in the material language of rules derived
from his or her experience.

A recent development on RST is the variable precision rough set model (VPRS), by
Ziarko (1993a, 1993b). Unlike RST which constructs deterministic rules (i.e. 100%
in correct classification by a rule) VPRS enables a level of confidence in correct
classification by a rule. That is, they are probabilistic rules.

Dissatisfied customers pose numerous potential problems for any organization, for
example, negative word of mouth, reduced change of repeat lower brand loyalty. All of
these problems will negatively affect the measurements of any business, e.g. profits and
market shares. Therefore, assessing customer satisfaction level and more importantly
why they are dissatisfied has great benefits to any company. This is particularly true
in highly competitive globalized markets, where search costs are low and the cost
of switching supplier negligible.
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8.14 Variable Precision Rough Sets (VPRS)

A further RST innovation has been the development by Ziarko (1993b) of a variable
precision rough sets (VPRS) model, which incorporates probabilistic decision rules.
This is an important extension, since as noted by Kattan and Cooper (1998), when
discussing computer-based decision techniques in a corporate failure setting. In real-
world decision making, the patterns of classes often overlap, suggesting that predictor
information may be incomplete . . . This lack of information results in probabilistic
decision making, where perfect prediction accuracy is not expected. An et al. (1996)
applied VPRS (which they termed Enhanced RST) to generating probabilistic rules
to predict the demand for water. Relative to the traditional rough set approach, VPRS
has the additional desirable property of allowing for partial classification compared
to the complete classification required by RST. More specifically, when an object is
classified using RST it is assumed that there is complete certainty that it is a correct
classification. In contrast, VPRS facilitates a degree of confidence in classification,
invoking a more informed analysis of the data, which is achieved through the use
of a majority inclusion relation. This chapter extends previous work by providing an
empirical exposition of VPRS, where we present the results of an experiment which
applies VPRS rules to the corporate failure decision. In addition, we mitigate the impact
of using the subjective views of an expert (as employed in previous studies) to discretize
the data, by utilizing the sophisticated FUSINTER discretization technique which is
applied to a selection of attributes (variables) relating to companies’ financial and
non-financial characteristics. The discretized data, in conjunction with other nominal
attributes, are then used in this new VPRS framework to identify rules to classify
companies in a failure setting. To facilitate a comparison of our experimental VPRS
results with those of existing techniques, we present the predictive ability of classical
statistical methods logit analysis and MDA together with 2 more closely related non-
parametric decision-tree methods, RPA and the Elysée method, which utilizes ordinal
discriminant analysis.

8.14.1 An overview of VPRS

VPRS (as with RST) operates on what may be described as a decision table or informa-
tion system. As is illustrated in Table 8.5, a set of objects U(o1, . . ., o7) are contained
in the rows of the table. The columns denote condition attributes C(c1, . . ., c6) of
these objects and a relate decision attribute D(d). A value denoting the nature of an
attribute to an object is called a descriptor. As noted above, a VPRS data requirement
is that it must be in discrete or categorical form.

Table 8.5 shows that, with this particular example, the condition attribute descrip-
tors comprise 0s and 1s (for example, denoting yes and no answers), and the decision
attribute values are L and H (for example, denoting low and high). The table shows
that the objects have been classified into one of these decision values, which are also
referred to as concepts. For the condition attributes in this example, all of the objects
(U) can be placed in five groups: X1 = {o1, o4, o6}, X2 = {o2}, X3 = {o3}, X4 =
{o5} and X5 = {o7}. The objects within a group are indiscernible to each other so that,
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Table 8.5 Example of a decision table

Condition Decision
attributes attribute
(c) (d)

Objects c1 c2 c3 c4 c5 c6 d

o1 1 0 1 1 0 1 L
o2 1 0 0 0 0 0 L
o3 0 0 1 0 0 0 L
o4 1 0 1 1 0 1 H
o5 0 0 0 0 1 1 H
o6 1 0 1 1 0 1 H
o7 0 0 0 0 1 0 H

objects o1, o4 and o6 in X1 have the same descriptor values for each of the condition
attributes. These groups of objects are referred to as equivalence classes or conditional
classes, for the specific attributes. The equivalence classes for the decision attribute are:
YL = {o1, o2, o3} andYH = {o4, o5, o6, o7}. The abbreviation of the set of equivalence
classes for the conditional attributes C, is denoted by E(C) = {X1, X2, X3, X4, X5}
and for the decision attribute, it is defined E(D) = {YL, YH }. VPRS measurement
is based on ratios of elements contained in various sets. A case in point is the condi-
tional probability of a concept given a particular set of objects (a condition class). For
example:

Pr(YL|X1) = Pr({o1, o2, o3}|{o1, o4, o6})

= |{o1, o2, o3} ∩ {o1, o4, o6}|
|{o1, o4, o6}|

= 0.333

It follows that this measures the accuracy of the allocation of the conditional class
X1 to the decision class YL. Hence for a given probability value β, the β-positive
region corresponding to a concept is delineated as the set of objects with conditional
probabilities of allocation at least equal to β. More formally:

β-positive region of the set Z ⊆ U : POS
β
P (Z)

= Y
Pr(Z|Xi)≥β

{Xi ∈ E(P )} with P ⊆ C.

Following An et al. (1996), β is defined to lie between 0.5 and 1.0. Hence for the
current example, the condition equivalence class X1 = {o1, o4, o6} have a majority
inclusion (with at least 60% majority needed, i.e. β = 0.6) in YH , in that most
objects (2 out of 3) in X1 belong in YH . Hence X1 is in POS0.6

C (YH ). It follows
POS0.6

C (YH ) = {o1, o4, o5, o6, o7}. Corresponding expressions for the β-boundary
and β-negative regions are given by Ziarko (1993c) as follows:
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β-boundary region of the set Z ⊆ U : BND
β
P (Z)

= Y
1−β〈Pr(Z|Xi)〉≥β

{Xi ∈ E(P )} with P ⊆ C,

β-negative region of the set Z ⊆ U : NEG
β
P (Z)

= Y
Pr(Z|Xi)≤1−β

{Xi ∈ E(P )} with P ⊆ C.

Using P and Z from the previous example, with β = 0.6, then BND0.6
C (YH ) = 0

(empty set) and NEG0.6
C (YH ) = {o2, o3}. Similarly for the decision class YL it follows

POS0.6
C (YL){o2, o3}, BND0.6

C (YL) = 0 and NEG0.6
C (YL) = {o1, o4, o5, o6, o7}.

VPRS applies these concepts by first seeking subsets of the attributes, which are
capable (via construction of decision rules) of explaining allocations given by the
whole set of condition attributes. These subsets of attributes are termed β-reducts or
approximate reducts. Ziarko (1993c) states that a β-reduct, a subset P of the set of
conditional attributes C with respect to a set of decision attributes D, must satisfy the
following conditions: (i) that the subset P offers the same quality of classification
(subject to the same β value) as the whole set of condition attributes C; and (ii) that
no attribute can be eliminated from the subset P without affecting the quality of the
classification (subject to the same β value).

The quality of the classification is defined as the proportion of the objects made
up of the union of the β-positive regions of all the decision equivalence classes based
on the condition equivalence classes for a subset P of the condition attributes C.

As with decision tree techniques, ceteris paribus, a clear benefit to users of VPRS
is the ability to interpret individual rules in a decision-making context (as opposed to
interpreting coefficients in conventional statistical models). Hence VPRS-generated
rules are relatively simple, comprehensible and are directly interpretable with reference
to the decision domain. For example, users are not required to possess the technical
knowledge and expertise associated with interpreting classical models. These VPRS
characteristics are particularly useful to decision makers, who are interested in inter-
preting the rules (based on factual cases) with direct reference to the outcomes they
are familiar with.

8.15 Dempster-Shafer Theory

The Dempster-Shafer Theory (DST) of evidence originated in the work of Dempster
(1967) on the theory of probabilities with upper and lower bounds. It has since been
extended by numerous authors and popularized, but only to a degree, in the litera-
ture on Artificial Intelligence (AI) and Expert Systems, as a technique for modeling
reasoning under uncertainty. In this respect it can be seen to offer numerous advan-
tages over the more traditional methods of statistics and Bayesian decision theory.
Hajek (1994) remarked that real, practical applications of DST methods have been
rare, but subsequent to these remarks there has been a marked increase in the appli-
cations incorporating the use of DST. Although DST is not in widespread use, it has
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been applied with some success to such topics as face recognition (Ip and Ng, 1994),
statistical classification (Denoeux, 1995) and target identification (Buede and Girardi,
1997). Additional applications centered around multi-source information, including
plan recognition (Bauer, 1996).

Applications in the general areas of business decision making are in fact quite rare.
An exception is the paper by Cortes-Rello and Golshani (1990), which although written
for a computing science/AI readership does deal with the knowledge domain of fore-
casting and marketing planning. The DST approach is as yet very largely unexploited.

Decision analysis relies on a subjectivist view of the use of probability, whereby
the probability of an event indicates the degree to which someone believes it, rather
than the alternative frequentist approach. The latter approach is based only on the
number of times an event is observed to occur. Bayesian statisticians may agree that
their goal is to estimate objective probabilities from frequency data, but they ad-
vocate using subjective prior probabilities to improve the estimates.

Shafer and Pearl (1990) noted that the three defining attributes of the Bayesian
approach are:

1 Reliance on a complete probabilistic model of the domain or frame of
discernment.

2 Willingness to accept subjective judgments as an expedient substitute for
empirical data.

3 The use of Bayes theorem (conditionality) as the primary mechanism for
updating beliefs in light of new information.

However, the Bayesian technique is not without its critics, including among others
Walley (1987), as well as Caselton and Luo (1992) who discussed the difficulty arising
when conventional Bayesian analysis is presented only with weak information sources.
In such cases we have the Bayesian dogma of precision, whereby the information
concerning uncertain statistical parameters, no matter how vague, must be represented
by conventional, exactly specified, probability distributions.

Some of the difficulties can be understood through the Principle of Insufficient
Reason, as illustrated by Wilson (1992). Suppose we are given a random device that
randomly generates integer numbers between 1 and 6 (its frame of discernment), but
with unknown chances. What is our belief in 1 being the next number? A Bayesian
will use a symmetry argument, or the principle of insufficient reason to say that the
Bayesian belief in a 1 being the next number, say P(1) should be 1/6. In general in
a situation of ignorance a Bayesian is forced to use this principle to evenly allocate
subjective (additive) probabilities over the frame of discernment.

To further understand the Bayesian approach, especially with the regard to rep-
resentation of ignorance, consider the following example, similar to that in Wilson
(1992). Let a be a proposition that;

I live in Byres Road, Glasgow.

How could one construct P(a), a Bayesian belief in a? Firstly we must choose a
frame of discernment, denoted by 
 and a subset A of 
 representing the proposition
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a; then would need to use the Principle of Insufficient Reason to arrive at a Bayesian
belief. The problem is there are a number of possible frames of discernment 
 that we
could choose, depending effectively on how many Glasgow roads can be enumerated.
If only two such streets are identifiable, then 
 = {x1, x2}, A = {x1}. The principle
of insufficient reason then gives P(A), to be 0.5, through evenly allocating subjective
probabilities over the frame of discernment. If it is estimated that there are about 1,000
roads in Glasgow, then 
 = {x1, x2, . . ., x1000} with again A = {x1} and the other
xs representing the other roads. In this case the theory of insufficient reason gives
P(A) = 0.001.

Either of these frames may be reasonable, but the probability assigned to A is
crucially dependent upon the frame chosen. Hence one’s Bayesian belief is a function
not only of the information given and one’s background knowledge, but also of a
sometimes arbitrary choice of frame of discernment. To put the point another way,
we need to distinguish between uncertainty and ignorance. Similar arguments hold
where we are discussing not probabilities per se but weights which measure subjective
assessments of relative importance. This issue arises in decision support models such
as the analytic hierarchy process (AHP), which requires that certain weights on a given
level of the decision tree sum to unity, see Saaty (1980).

The origins of Dempster-Shafer theory go back to the work by A.P. Dempster
(1967, 1968) who developed a system of upper and lower probabilities. Following
this, his student G. Shafer, in his 1976 book A Mathematical Theory of Evidence,
added to Dempster’s work, including a more thorough explanation of belief functions.
Even though DST was not created specifically in relation to AI, the name Dempster-
Shafer Theory was coined by J.A. Barnett (1981) in an article which marked the entry
of the belief functions into the AI literature. In summary, it is a numerical method for
evidential reasoning (a term often used to denote the body of techniques specifically
designed for manipulation of reasoning from evidence, based upon the DST of belief
functions; see Lowrance et al. (1986).

Following on from the example concerning Glasgow roads in the previous section,
one of the primary features of the DST model is that we are relieved of the need to force
our probability or belief measures to sum to unity. There is no requirement that belief
not committed to a given proposition should be committed to its negation. The total
allocation of belief can vary to suit the extent of our knowledge. The second basic idea
of DST is that numerical measures of uncertainty may be assigned to overlapping sets
and subsets of hypotheses, events or propositions as well as to individual hypotheses.
To illustrate, consider the following expression of knowledge concerning murderer
identification adapted from Parsons (1994).

Mr Jones has been murdered, and we know that the murderer was one of 3 no-
torious assassins, Peter, Paul and Mary, so we have a set of hypotheses, i.e. frame
of discernment, 
 = {Peter, Paul, Mary}. The only evidence we have is that the
person who saw the killer leaving is 80% sure that it was a man, i.e. P (man) = 0.8.
The measures of uncertainty, taken collectively are known in DST terminology as
a basic probability assignment (bpa). Hence we have a bpa, say m1 of 0.8 given
to the focal element {Peter, Paul}, i.e. m1({Peter, Paul}) = 0.8; since we know
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nothing about the remaining probability it is allocated to the whole of the frame of the
discernment, i.e. m1({Peter, Paul, Mary}) = 0.2.

The key point to note is that assignments to singleton sets may operate at the same
time as assignments to sets made up of a number of propositions. Such a situation is
simply not permitted in a conventional Bayesian framework, although it is possible
to have a Bayesian assignment of prior probabilities for groups of propositions (since
conventional probability theory can cope with joint probabilities). As pointed out by
Schubert (1994), DST is in this sense a generalization of the Bayesian Theory. It
avoids the problem of having to assign non-available prior probabilities and makes no
assumptions about non-available probabilities.

The DS/AHP method allows opinions on sets of decision alternatives and addresses
some of the concerns inherent within the standard AHP:

• The number of comparison and opinions are at the decision maker’s discretion.

• There is no need for consistency checks at the decision alternative level.

• The allowance for ignorance/uncertainty in our judgments.

We remind the reader that the direction of this method is not necessarily towards
obtaining the highest ranked decision alternative, but towards reducing the number of
serious contenders.

8.16 Chaos Theory

Chaos theory has the potential to contribute valuable insights into the nature of complex
systems in the business world. As is often the case with the introduction of a new
management metaphor, chaos is now being discovered at all levels of managerial
activity (Stacey, 1993).

What is chaos theory?: Chaos theory can be compactly defined as the qualitative
study of unstable aperiodic behavior in deterministic non-linear dynamical systems
(Kellert, 1993: 2). A researcher can often define a system of interest by representing
its important variables and their interrelationships by a set of equations. A system
(or, more technically, its equations) is dynamical when the equations are capable
of describing changes in the values of system variables from one point in time to
another. Non-linear terms involve complicated functions of the system variables such
as: yt + 1 = xtyt .

Chaos theorists have discovered that even simple non-linear sets of equations can
produce complex aperiodic behavior. The most familiar example being the logistic
equation of the form: xt+1 = rxt (1 − xt ) where x lies between zero and one. This
system is deterministic in the sense that no stochastic or chance elements are involved.
Figure 1 depicts the behavior of this system for varying levels of r .

At values of r < 2, iterating over the logistic equation will result in the system
stabilizing at x = 0 (Figure 8.3(a)). Between r = 2 and r = 3 the system reaches
equilibrium at progressively higher and higher values of x (Figure 8.3(b)). At around
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r = 3 the system is seen to bifurcate into two values. The steady state value of x

alternates periodically between two values (Figure 8.3(c)). As r continues to increase
it continues to increase in periodicity, alternating between 2, then 4, 8 and 16 points.
When r is approximately 3.7 another qualitative change occurs the system becomes
chaotic. The output ranges over a seemingly infinite (non-repeating) range of x values
(Figure 8.3(d)).
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Figure 8.3 Output of logistic equation for varying r

Chaotic systems are also unstable, exhibiting a sensitive dependence on initial
conditions. The Lyapunov exponent is a mathematically precise measure of the degree
of sensitive dependence on initial conditions. The Lyapunov exponent takes the one-
dimensional form eλt . If λ < 0 then the initial differences will converge exponentially.
If λ = 0 then the displacements will remain constant over time, while if λ > 0 small
differences will magnify over time. All chaotic systems have a λ value that is greater
than zero.

Initially, the system of interest would have to be specified in terms of non-linear
dynamical equations. Few researchers in the social sciences have attempted to identify
non-linear deterministic behaviors in their systems of interest. In the main, quantitative
research in the social sciences has tended to be both statistical and linear in nature.
Of course, it is possible that the appeal of chaos theory may excite an interest in
developing non-linear models.

The researcher would also need to demonstrate that the system was capable of
chaotic behavior over some valid region of its parameters. By running digital simula-
tions of the non-linear systems, researchers would hope to discover regions of chaos
in the models that could be linked with phenomena in the observed world. Ideally, the
Lyapunov exponent could then by calculated and found to be greater than zero.
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8.17 Data Mining

Data mining (DM), or knowledge discovery, is the computer-assisted process of dig-
ging through and analyzing enormous sets of data and then extracting the meaning of
the data nuggets. DM is being used both to describe past trends and to predict future
trends.

8.17.1 Mining and refining data

Experts involved in significant DM efforts agree that the DM process must begin
with the business problem. Since DM is really providing a platform or workbench for
the analyst, understanding the job of the analyst logically comes first. Once the DM
system developer understands the analyst’s job, the next step is to understand those
data sources that the analyst uses and the experience and knowledge the analyst brings
to the evaluation.

The DM process generally starts with collecting and cleaning information, then
storing it, typically in some type of data warehouse or datamart. But in some of the more
advanced DM work, advanced knowledge representation tools can logically describe
the contents of databases themselves, then use this mapping as a meta-layer to the
data. Data sources are typically flat files of point-of-sale transactions and databases of
all flavors.

DM tools search for patterns in data. This search can be performed automatically
by the system (a bottom-up dredging of raw facts to discover connections) or inter-
actively with the analyst asking questions (a top-down search to test hypotheses).
A range of computer tools such as neural networks, rule-based systems, case-based
reasoning, machine learning, and statistical programs either alone or in combination
can be applied to a problem.

Typically with DM, the search process is interactive, so that as analysts review
the output, they form a new set of questions to refine the search or elaborate on some
aspect of the findings. Once the interactive search process is complete, the data-mining
system generates report findings. It is then the job of humans to interpret the results
of the mining process and to take action based on those findings.

AT&T, A.C. Nielsen, and American Express are among the growing ranks of
companies implementing DM techniques for sales and marketing. These systems are
crunching through terabytes of point-of-sale data to aid analysts in understanding
consumer behavior and promotional strategies. Why? To increase profitability, of
course.

Many marketers believe one of the most powerful competitive weapons is under-
standing and targeting each customer’s individual needs. To this end, more companies
are harnessing DM techniques to shed light on customer preferences and buying pat-
terns. With this information, companies can better target customers with products and
promotional offerings.

A.C. Nielsen’s Spotlight is a good example of a DM tool. Nielsen clients use
Spotlight to mine point-of-sale databases. These terabyte-size databases contain facts
(e.g. quantities sold, dates of sale, prices) about thousands of products, tracked across
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hundreds of geographic areas for at least 125 weeks. Spotlight transforms tasks that
would take a human from weeks to months to do into which a computer can do in
minutes to hours. Nielsen says it has sold about 100 copies of Spotlight (DOS and
Windows) to U.S. clients, who have in turn deployed it to field-sales representatives in
multiple regional centers. The software frees analysts to work on higher-level projects
instead of being swamped by routine, laborious chores.

In the past two years, a global group at Nielsen has changed the U.S. version of
Spotlight for use in other countries. Spotlight is the most widely distributed application
in the consumer packaged-goods industry, claims Mark Ahrens, director of custom
software sales at Nielsen.

American Express is analyzing the shopping patterns of its card holders and using
the information to offer targeted promotions.

8.17.2 Siftware

Hardware and software vendors are extolling the DM capabilities of their products
whether they have true DM capabilities or not. This hype cloud is creating much
confusion about data mining. In reality, data mining is the process of sifting through
vast amounts of information in order to extract meaning and discover knowledge.

It sounds simple, but the task of data mining has quickly overwhelmed traditional
query-and-report methods of data analysis, creating the need for new tools to analyze
databases and date warehouses intelligently. The products now offered for DM range
from online analytical processing (OLAP) tools.

8.17.3 Invasion of the data snatchers

The need for DM tools is growing as fast as data stores swell. More-sophisticated
DM products are beginning to appear that perform bottom-up as well as top-down
mining. The day is probably not too far off when intelligent agent technology will
be harnessed for the mining of vast public online sources, traversing the Internet,
searching for information and presenting it to the human user.

Data mining is evolving from answering questions about what has happened and
why it happened.

A handful of DM tools are sometimes lumped together under the rubric information
discovery or knowledge discovery. They often have a resemblance algorithmically
speaking to expert systems or AI. Most of these autonomous tools are low-touch but
high-tech.

DM can also be defined as discovery tools, which take large amounts of detailed
transaction-level data and apply mathematical techniques against it, finding or discov-
ering insights into consumer behavior.

Most humans are better at detecting anomalies than inferring relationships from
large data sets, and that’s why information discovery can be so useful. Rather than
relying on a human to come up with hypotheses that can be confirmed or rejected based
on the evidence (i.e. data), good discovery tools will look at the data and essentially
generate the hypotheses.
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Others have described DM as an intensive search for new information and new
combinations pursuing defined paths of inquiry and allowing unexpected results to
generate new lines of analysis and further exploration. They are clearly thinking of
iterative exploratory techniques of data surfing using MDA or OLAP tools. MDA rep-
resents data as n-dimensional matrices called hypercubes. OLAP and related hyper-
cubes let users iteratively calculate metrics such as sales, revenue, market share, or
inventory over a subset of available data, by exploring combinations of one or more
dimensions of data.

The idea is to load a multidimensional server with data that is likely to be combined.
Imagine all the possible ways of analyzing clothing sales: by brand name, size, color,
location, advertising, and so on. If you fill a multidimensional hypercube with this data,
viewing it from any 2-D perspective (n-dimensional hypercubes have n∗(n−1)) sides,
or views will be easy and fast.

Most businesses need more than a single DM tool. Multidimensional databases,
OLAP products, DM, and traditional decision-support tools all belong in your toolbox
right alongside standard relational databases.

For example, rather than use an OLAP or hypercube tool, you are better off creating
a warehouse using a relational database if you have lots of data or are facing com-
plex loading and consolidation from multiple data sources. Why? Because there’s
a mature utility market to support those activities. However, don’t expect mining
operations that represent joins across many multi-row tables to be fast. That’s where
OLAP servers shine, providing blindingly fast results to queries along predefined
dimensions.

8.17.4 Mining with query tools

Most of these tools come with graphing components. Some even support a degree of
multidimensionality, such as pivoting, intelligent drilling, crosstab reporting, and time-
series analysis. A few are beginning to offer easy-to-use intelligent support (versus
alerts that can be established programmatically). If you need to select a new query-
and-reporting tool and need to support a mixed environment of PCs and Macs, be sure
to make that a feature on your checklist.

You should think of query-and-reporting tools as generic mining tools. They gen-
erally support direct access to source data and may offer cross-database joins, but their
unbridled use can wreak havoc with production systems. And, given the challenges of
performing joins across systems, it may be hard for end users to know if the answer
they are getting is accurate.

Because information-discovery tools have only recently gained widespread atten-
tion as DM tools, they still tend to be rather technical and best suited for analysts with
strong mathematical backgrounds. Look for explosive growth in this area of DM tools
as better user interfaces make them easier for end users to harness. As for intelligent
agents, especially agents such as Internet gofers and email filters, within a year, you’ll
wonder how you ever lived without them.

The popularity of DM shows that businesses are looking for new ways to let
end users find the data they need to make decisions, serve customers, and gain a
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competitive advantage. If your workers aren’t asking for better mining tools, you’d
better ask why.

8.18 Data Mining (knowledge discovery
in databases)

Data are a valuable resource. As such, perhaps one can mine the resource for its nuggets
of gold. In part, the interest in data mining has been driven by individuals and organiza-
tions who find themselves with large data holdings, which they feel ought to be sources
of valuable information. They may have little idea what to do with them. Computer
hardware and software vendors, hoping to increase their sales, have fanned the interest.

There is no firm distinction between data mining and statistics. Much commercial
data mining activity uses relatively conventional statistical methods. A difference is
that data miners may be working with quite huge data sets. A data set with values of
20 or 30 variables for each of several hundred thousand records is, in the context of
commercial data mining, small.

This more exploratory form of data mining applies a search process to a data
set, often a very large data set, and looks for interesting associations. While the data
may initially have been collected to answer some primary question or questions, the
expectation is that there will be other interesting and potentially useful information
in the data. Most experienced statisticians have at some time encountered unexpected
and interesting results when, as a prelude to the main analysis, they have set out to
do a careful exploratory analysis. Is it possible to set up automatic processes that may
bring such results to attention?

Much of the focus of data-mining research has been on ways to find views of data
that highlight interesting or unusual features, a search for what statisticians would call
outliers. Research on data visualization is in this same tradition.

Some data-mining approaches are fairly specific to individual research areas, such
as astrophysics at one extreme or business data processing at the other. There is a
need for courses which compare and contrast a variety of statistical methodologies,
including decision-tree methods, classical statistical methods and modern regression
methods as described.

Perhaps the best way to understand data mining is that it puts a new spin on statis-
tical analysis. The name has been effective, far more than conventional terminology,
in selling to business the idea that data can be a valuable resource. Extracting the infor-
mation requires effort. The sheer size of many of the data sets raises huge computing
problems. There has been an inevitable attention to the heavy computing demands.
There has not always been a matching attention to statistical issues.

Data miners may come to their task with a database management perspective, with
a computing systems perspective, with a statistical perspective, or with a numerical
algorithms perspective. Different parts of the data mining literature reflect the different
perspectives of those who come to data mining from these different backgrounds. All
too often, the technical difficulty of the data management and other computing tasks
distracts attention form statistical inference from data issues.



Data Mining 221

8.18.1 A computing perspective on data mining

Fayyad argues that there may be a misunderstanding of the aims of data mining. Data
miningisnotaboutautomatingdataanalysis.Dataminingisaboutmakinganalysismore
convenient, scaling analysis algorithms to large databases, and providing data owners
with easy-to-use tools to help them navigate, visualize, summarize, and model data.

I personally look forward to the proper balance that will emerge from the mix-
ing of computational algorithm-oriented approaches characterizing the database and
computer science communities with the powerful mathematical theories and methods
for estimation developed in statistics (Fayyad 1998).

Data mining is a set of methods used in the knowledge discovery process to dis-
tinguish previously unknown relationships and patterns within data.

Data mining, like all forms of exploratory analysis, is open to abuse. Under torture,
the data may yield false confessions. Data mining readily becomes data dredging, a
practice that well deserves its bad reputation. Classical inferential procedures may
require substantial adaptation, or have little relevance, for data-mining applications
with large data sets.

8.18.2 Data-mining tools

Tree-based regression and neural nets have been widely promoted as data-mining tools.
Both these methods are beginning to attract interest from the statistical community.
The commonest application is discrimination, e.g. a bank may want to distinguish
good from bad lending risks. Fayyad et al., (1996) distinguish knowledge discovery
in databases (KDD) from data mining. KDD, it is said, refers to the overall process of
discovering useful knowledge from data, while data mining refers to the initial step
of extracting patterns, without the additional steps designed to check whether these
patterns are meaningful.

Decision trees and neural nets seem most effective with very large data sets, with
at least some tens of thousands of records. For smaller data sets, parametric methods
which build in more structure may be preferable. In the trade-off between sampling
variance and model bias, sampling variance may be more serious in data sets with some
hundreds of records, while model bias may be more important in data sets with tens
of thousands of records. Biases that are inherent in the data themselves are unaffected
by sample size.

8.18.3 Try New Data-mining Techniques –
they can overcome, augment traditional
stat analysis

Data-mining techniques have recently gained popularity with researchers in part
because they overcome many of the limitations of traditional statistics and can handle
complex data sets. New data-mining applications which are appearing at an explosive
rate, offer a powerful complement though not a replacement to statistical techniques,
and have useful customer satisfaction research applications.
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Researchers typically must try to answer a set of common customer satisfaction
questions. For example, companies that are evaluating their continuous improvement
programs often study the importance that customers place on different product and
service attributes. Some research directly asks respondents to rate the importance
of different attributes, but most researchers use statistically inferred ratings of impor-
tance. That is, using statistical methods (typically multiple regression), the researchers
regress ratings of customer satisfaction with different attributes (independent vari-
ables) against overall satisfaction (dependent variable).

But multiple regression and related techniques make numerous assumptions that
researchers often violate in practice. For example, a typical problem in customer satis-
faction research is high levels of correlation between attributes, which can dramatically
affect the statistical value that determines the relative importance of those attributes.
If the research shows high levels of correlation between attributes, then that statisti-
cal value that determines their relative importance probably will be biased, and the
importance ratings are likely to be inaccurate.

Another assumption of statistical analysis that can skew results is that the ratings
follow a normal distribution essentially, that the scores will resemble a normal bell
curve which isn’t the case with customer satisfaction. Past research has shown that
data about customer satisfaction is often positively skewed, and that most satisfaction
scores fall at the upper end of the scale (for example, in the 8- to 10-point range on a
10-point scale).

Finally, these statistical techniques also assume that the relationships between
the independent and dependent variables are linear, even though research has clearly
demonstrated that those relationships are often far from a straight line. In many indus-
tries, statistical assumptions don’t hold and can result in biased and misleading results
(Garver 2002).



References

Achabal, D. D., Gorr, W. L. and Mahajan, V. (1982) ‘MULTILOC: a multiple store location
decision model’, Journal of Retailing, 58(2): 5–25.

Agresti, A. (1989) ‘Tutorial on modelling ordinal categorical response data’, Psychological
Bulletin, 105: 290–301.

Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley and Sons, Inc.
Agresti, A. (1996) An Introduction to Categorical Data Analysis. New York: John Wiley and

Sons, Inc.
Agresti, A. and Finlay, B. (1997) Statistical Methods for the Social Sciences (Third edition).

Prentice-Hall.
An, A., Shan, N., Chan, C., Cercone, N. and Ziarko, W. (1996) ‘Discovering rules for water

demand prediction: An Enhanced Rough-Set Approach’, Engineering Applications in
Artificial Intelligence, 9(6): 645–53.

Anderson, E. B. (1997) Introduction to the Statistical Analysis of Categorical Data. New York:
Springer.

Barford, N. C. (1985) Experimental Measurements: Precision, Error and Truth (Second edi-
tion). New York: John Wiley and Sons.

Barnett, J. A. (1981) ‘Computational methods for a mathematical theory of evidence’, Proceed-
ings 7th International Joint Conference on Artificial Intelligence (IJCAI), Vancouver
Vol II, 868–75.

Barrett, J. P. (1974) ‘The coefficient of determination – limitations’, The American Statistician,
28: 19–20.

Bauer, M. (1996) ‘A Dempster-Shafer Approach to Modeling Agent Preferences for Plan Recog-
nition’, User Modeling and User-Adapted Interaction, 5, 317–48.

Bearden, W. O., Netemeyer, R. G. and Mobley, M. F. (1993) Handbook of Marketing Scales:
Multi-item Measures for Marketing and Consumer Behaviour Research. London: Sage
Publications.

Berndt, E. R. (1991) The Practice of Econometrics. London: Addison-Wesley.
Buede, D. M. and Girardi, P. (1997) ‘A target identification comparison of Bayesian and

Dempster-Shafer multisensor fusion’, IEEE Transaction on Systems, Man and Cyber-
netics Part A: Systems and Humans, 27(5), 569–77.

Candler, J. (1991) ‘Woman car buyer do not call her a niche anymore’, Advertising Age, January
21: S8.

Carroll, J., Green, E. and Schaffer, M. (1986) ‘Interpoint distance comparisons in corres-
pondence analysis’, Journal of Marketing Research, 23, August: 271–90.

Caselton, W. F. and Luo, W. (1992) ‘Decision making with imprecise probabilities: Dempster-
Shafer theory and applications’, Water Resources Research, 28(12): 3071–83.

Cattin, P. and Wittink, D. R. (1982) ‘Commercial use of conjoint analysis: a survey’, Journal
of Marketing, Summer: 44-53.



224 REFERENCES

Chance (1991) in D. J. Hand et al. (1994) A Handbook of Small Data Sets. London: Chapman
and Hall.

Childers, T. L., Houston, M. J. and Heckler, S. (1985) ‘Measurement of individual differences
in visual versus verbal information processing’, Journal of Consumer Research, 12:
125–34.

Chonko, L. B., Howell, R. D. and Bellenger, D. (1986) ‘Congruence in sales force evaluations:
relation to sales force perception of conflict and ambiguity’, Journal of Personal Selling
and Sales Management, 6: 35–48.

Christensen, R. (1997) Log-Linear Models and Logistic Regression (Second edition). New York:
Springer.

Clogg, C. C. and Shihadeh, E. S. (1994) Statistical Models for Ordinal Variables (Advanced
Quantitative Techniques in the Social Sciences). London: Sage Publications, Inc.

Coates, D., Doherty, N. and French, A. (1994) ‘The new multivariate jungle’, in G. J. Hooley and
M. K. Hussey (eds), Quantitative Methods in Marketing. New York: Academic Press.

Cohen, A. (1980) ‘On the graphical display of the significant components in a two-way
contingency table’, Communications in Statistics – Theory and Methods, A9: 1025-41.

Collett, D. (1991) Modelling Binary Data. London: Chapman and Hall.
Collett, D. (2003) Modelling Binary Data (Second edition). London: Chapman and Hall.
Cortes-Rello, E. and Golshani, F. (1990) ‘Uncertain reasoning using the Dempster-Shafer

method: an application in forecasting and marketing management’, Expert Systems,
7(1): 9–17.

Cottrell, M., Girard, B. and Rousset, P. (1998) ‘Forecasting of curves using a Kohonen
classification’, Journal of Forecasting, 17: 429–39.

Cox, D. R. and Snell, E. J. (1989) Analysis of Binary Data (Second edition). London: Chapman
and Hall.

Cox, D. R. and Wermuth, N. (1992) ‘A comment on the coefficient of determination for binary
responses’, The American Statistician, 46: 1.

Crawley, M. J. (2005) Statistics: An Introduction Using R. Chichester: Wiley.
Curry, B. and Moutinho, L. (1991) ‘Expert systems and marketing strategy: an application to

site location decisions’, Journal of Marketing Channels, 1(1): 23–7.
Dalgaard, P. (2002) Introductory Statistics with R. New York: Springer.
De Jong, K. A. (1975) ‘An analysis of the behaviour of a class of genetic adaptive systems.

PhD dissertation’, Dissertation Abstracts International, 36.
Dempster, A. P. (1967) ‘Upper and lower probabilities induced by a multi-valued mapping’,

Annals of Mathematical Statistics, 38: 325–39.
Dempster, A. P. (1968) ‘A Generalization of Bayesian Inference (with discussion)’, Journal of

the Royal Statistical Society Series B, 30(2): 205–47.
Denoeux, T. (1995) ‘A k-nearest neighbour classification rule based on Dempster-Shafer

theory’, IEEE Transactions on Systems, Man and Cybernetics, 25(5): 804–13.
DeSarbo, W. S. (1993) ‘A lesson in customer response modelling’, Marketing News, 27(12):

H24–H25.
Diamantopoulos, A. and Schlegelmilch, B. B. (1997) Taking the Fear out of Data Analysis.

London: Dryden Press.
Diem, W. R. (1994) ‘Bond stronger with age’, Advertising Age, 65: 5–6.
Dillon, W. R. and Mulani, N. (1989) ‘LADI: a latent discriminant model for analyzing

marketing research data’, Journal of Marketing, 26, February: 15–29.
Dimitras, A. I., Slowinski, R., Susmaga, R. and Zopounidis, C. (1999) ‘Business failure

prediction using rough sets’, European Journal of Operational Research, 11(4): 263–80.



REFERENCES 225

Dobson, A. (2002) An Introduction to Generalized Linear Models (Second edition). London:
Chapman and Hall/CRC.

Draper, N. and Smith, H. (1981) Applied Regression Analysis, (Second edition). New York:
John Wiley and Sons.

Draper, N. R. and Smith, H. (1998) Applied Regression Analysis (Third edition). Chichester:
Wiley.

Everitt, B. S. (1993) Cluster Analysis. London: Edward Arnold.
Everitt, B. S. and Hothorn, T. (2006) A Handbook of Statistical Analyses Using R. London:

Chapman and Hall/CRC.
Fahrmeir, L. and Tutz, G. (2001) Multivariate Statistical Modelling Based on Generalized

Linear Models (second edition). New York: Springer.
Faraway, J. J. (2005) Linear Models with R. London: Chapman and Hall/CRC.
Faraway, J. J. (2006) Extending the Linear Model with R. London: Chapman and Hall/CRC.
Fayyad, U. (1998) ‘Editorial’, Data Mining and Knowledge Discovery, 2, 5–7.
Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P. (1996) ‘From data mining to knowl-

edge discovery: An overview’, in U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and
R. Uthurusamy, Advances in Knowledge Discovery and Data Mining, 1–34. Cambridge,
MA: AAAI Press/MIT Press.

Ford, N. M., Walker, O. C. Jr. and Churchill, G. A. Jr. (1975) ‘Expectation-specific measures
of the inter-sender conflict and role ambiguity experienced by industrial salesmen’,
Journal of Business Research, 3: 95–112.

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. London: Sage Publications.
Fox, J. (2005) ‘The R Commander: a basic statistics graphical user interface to R’, Journal of

Statistical Software, 14(9).
Franses, P. H. and Paap, R. (2001) Quantitative Models in Marketing Research. Cambridge:

Cambridge University Press.
Friendly, M. (1992) ‘Graphical methods for categorical data’, SAS User Group International

Conference Proceedings, 17: 190–200.
Garver, M. (2002) ‘Try new data-mining techniques: they can overcome and augment

traditional stat analysis’, Marketing News, September 16: 31–3.
Gill, J. (2001) Generalized Linear Models: A Unified Approach. London: Sage Publications.
Glover, F. (1991) Multilevel Tabu Search and Embedded Search Neighborhoods for the

Travelling Salesman Problem. Boulder, CO: Graduate School of Business, University
of Colorado at Boulder.

Glover, F., Taillard, E. and de Werra, D. (1993) ‘A user’s guide to tabu search’, Annals of
Operations Research, 41: 3–28.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
London: Addison-Wesley.

Grätzer, G. (2000) Math into LATEX (third edition). Boston, MA: Birkhäuser.
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