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WARNING

The purpose of this manuscript is to facilitate

notetaking during the theoretical lectures. The

manuscript will be updated at the end of each

lecture and will be made available on the web-

site:

http://www.ulb.ac.be/soco/statrope.

The final exam will cover the material that has

been seen during lectures (including what has

been added orally) as well as the material cov-

ered during the practical sessions (TP).
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TO KNOW ....

• Aims of the course

– Describe information contained in large datasets

– Understand mechanisms under multivari-

ate statistical methods

– Use in practice multivariate statistical soft-

ware

– To solve questions using real datasets

• Teaching method

– Theory : 24h ex-cathedra class

– Exercises: 12h in computer room

• Evaluation

– Written exam: 13 points on theoretical

and practical questions

– Compulsory project in group (from 2 to

5 students) on real dataset with presenta-

tion: 7 points
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Goal of the group project

• Description of the research questions and short

review of the literature

• Description of the dataset

• Univariate and bivariate statistical analysis

to present the variables

• Application of multivariate statistical meth-

ods to answer research questions (justifica-

tion and output)

• Conclusions and answers to the question raised

at the beginning
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Outline of the course

• Background mathematics

• Principal components analysis (PCA)

• Robust statistics and detection of outliers

• Correspondence analysis

•Multiple correspondence analysis

• Canonical correlation analysis

• Discriminant analysis
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Chapter 1

Background mathematics
1.1 Matrix calculus

A is a matrix with n line and p column :

A =



a11 a12 · · · a1j · · · a1p

a21 a22 · · · a2j · · · a2p

... ... ... ...

ai1 ai2 · · · aij · · · akp
... ... ... ...

an1 an2 · · · anj · · · anp


= (aij)

where aij (i ∈ {1, ..., n}; j ∈ {1, ..., p}) gives

the element line i and column j

It can be regarded as a point in IRn×p

A is called a square matrix if n=p
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Transpose of a matrix

The transpose A′ of an n×pmatrix A = (aij)

is the p× n matrix whose ij-th element is aji

Example:

If A =

(
1 3 −1

4 1 2

)
, then A′ =


1 4

3 1

−1 2

.

• It follows that:

(A′)′ = A

• The square matrix AK×K is symmetric

if A′ = A, it is to say that akl = alk∀k, l ∈
{1, . . . , K}.



CHAPTER 1. BACKGROUND MATHEMATICS 9

Multiplication

The product of A and B is possible only if the

number of columns of A is equal to the num-

ber of lines of B. Then the product AK×L =

(akl) with BL×H = (blh) is given by CK×H =

(ckh) where

ckh =

L∑
l=1

aklblh k = 1, . . . , K;h = 1, . . . , H.

• Properties: Let Am×n, Bn×p, Cp×q, Dn×p,
En×n and Fn×n

(AB)C = A(BC)

A(B + D) = AB + AD

(B + D)C = BC + DC

EF 6= FE

• The square matrix AK×K is idempotent

if A2 = A

• AK×K is orthogonal if A′A = I
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The rank of a matrix

Q vectors of same dimension y1, . . . ,yQ are

said to be linearly independent if

Q∑
q=1

αqyq = 0

is verified only for α1 = α2 = . . . = αQ = 0

Let A be an n× p matrix.

• The column rank is the maximum number

of linearly independent columns.

• The row rank is the maximum number of

linearly independent rows.

• The two ranks are equal and it is called the

rank and denoted by: r(A).

⇒ r(A) ≤ min(n, p)
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The determinant of AK×K
The determinant of a squared matrix AK×K
is a scalar, noted by |A|, given by:

•K = 1: if A = a, then |A| = a;

•K = 2: if A =

(
a11 a12

a21 a22

)
, then |A| =

a11a22 − a21a12;

•K = 3: si A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

, then

|A| = a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a13a22a31 − a12a21a33;

• If K > 3 then

|A| =
K∑
l=1

aklAkl k ∈ {1, . . . , K}

whereAkl = (−1)k+l|Mkl|with Mkl the squared

sub-matrix of A without line k and column l
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The trace of AK×K
The trace of a square K ×K matrix A is the

sum of its diagonal elements:

tr(A) =

K∑
i=1

aii

Example:

A =

[
3 2

1 2

]
=⇒ tr(A) = 3 + 2 = 5

• Properties: Let Am×m, Bm×m

tr(A + B) = tr(A) + tr(B)

tr(λA) = λtr(A) λ is a scalar

tr(A′) = tr(A)

tr(AB) = tr(BA)
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Quadratic forms

Let x be K × 1 vector and A an K × K

symmetric matrix, then the double sums of

the form:

F (x1, x2, . . . , xK) =

K∑
i=1

K∑
j=1

xixjaij = x′Ax

can be written as this product of matrix, called

a quadratic form in x:

(
x1 x2 . . . xK

)

a11 . . . a1K

a21 . . . a2K

· · · · · · · · ·
aK1 . . . aKK




x1

x2

· · ·
xK


We say that A is:

• positive definite if x′Ax > 0 ∀x 6= 0

• positive semidefinite if x′Ax ≥ 0 ∀x 6= 0

• negative definite if x′Ax < 0 ∀x 6= 0

• negative semidefinite if x′Ax ≤ 0 ∀x 6= 0
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1.2 Geometric point of view in IRP

Consider the column-vector

a =


a1

a2

...

aP

 =
(
a1 a2 · · · aP

)′
.

Geometrically a can be represent in IRP by

line segment
-

OA from the origin O to the

point A with coordinate given by vector a.

-

OE1,
-

OE2, . . . ,
-

OEp are the vectors defining

IRP associated with

e1 =



1

0

0
...

0

0


, e2 =



0

1

0
...

0

0


, . . . , eP =



0

0

0
...

0

1


.
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Then for an observation A in IRP with asso-

ciated vector a =
(
a1 a2 · · · aP

)′
-

OA= a1

-

OE1 +a2

-

OE2 + . . . + ap
-

OEP

•The scalar product<
-

OA,
-

OB> between two

vectors is defined by :

<
-

OA,
-

OB> = a′b = (a1, . . . , aP )(b1, . . . , bP )′

=

P∑
p=1

apbp

• The euclidean norm ‖
-

OA ‖ measures the

length of the vector :

‖
-

OA ‖2 = <
-

OA,
-

OA>= a′a =

P∑
p=1

a2
p

A unit vector is a vector with unit length.
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• The euclidean distance d(A,B) between two

points A and B is defined by:

d2(A,B) = ‖
-

AB ‖2 = ‖
-

OA −
-

OB ‖2

=

P∑
p=1

(ap − bp)2

⇒ d(O,A) = ‖
-

OA ‖

• The cosine of the angle between vectors
-

OA

and
-

OB is defined by:

cos(
-

OA,
-

OB) =
<

-

OA,
-

OB>

‖
-

OA ‖‖
-

OB ‖

The vectors
-

OA and
-

OB are orthogonal iff

cos(
-

OA,
-

OB) = cos(±90◦) = 0

It is to say iff

<
-

OA,
-

OB>= a′b =

P∑
p=1

apbp = 0
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1.2.1 Orthogonal projection in IR1

Orthogonal projection of observationA in IRP

on the axis ∆ that is passing through the ori-

gin:

�

*

∆

P∆(A)

O

A

a

N ∗

u

‖
-

OP∆(A) ‖

The direction ∆ is generated by the unit vector
-

OU noted for simplicity by u with coordinates

u = (u1, . . . , uP ).



CHAPTER 1. BACKGROUND MATHEMATICS 18

The point P∆(A) is given by the orthogonal

projection of A on the subspace ∆.

It is the nearest point on ∆ to the point A.

This means that
-

u and
-

AP∆(A) are orthogo-

nal:

cos(α) =
‖

-

OP∆(A) ‖
‖

-

OA ‖

Moreover, since cos(α) = <
-

OA,
-

u>

‖
-

OA ‖ , we obtain

that:

‖
-

OP∆(A) ‖ =<
-

OA,
-

u>=

P∑
p=1

apup
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1.2.2 Orthogonal projection in a subspace IRH

• A normalized orthogonal system u1, . . . , uH

is such that:

‖uh‖ = 1 ∀h ∈ {1, . . . , H}
< uh, ul > = 0 ∀h 6= l ∈ {1, . . . , H}

• These vectors generate a subspace of IRP

called L which is of dimension H . This sub-

space contains all the linear combinations:

H∑
h=1

αhuh
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• The orthogonal projection of observation A

in IRP on the subspace L is given by PL(A) ∈
L. Among all the points in the subspace L,

this point is the closest to A. It is given by:

OPL(A) =

H∑
h=1

< OA, uh > uh

‖OPL(A)‖2 =

H∑
h=1

< OA, uh >
2

-

s

•

0

u2

u1

A

P(∆1,∆2)(A)

P∆1(A)

P∆2(A)

∆2

∆1
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1.3 Eigenvalues and eigenvectors

Let

- A be a matrix of dimension P × P
- u be a column vector of dimension P × 1

• Transformation of space IRP by A:

A : IRP −→ IRP : u −→ Au

• u is an eigenvector (non null) of A associated

with eigenvalue λ iff:

Au = λu

⇒ Au− λu = 0

⇒ (A− λI)u = 0

• λ is an eigenvalue of A iff

det(A− λI) = 0
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Comments:

• If u is an eigenvector of A associated with

λ, then αu (∀α ∈ IR0) is also an eigenvec-

tor associated with same same eigenvalue

• The equation

det(A− λI) = 0

can have no real solution. In this case, the

transformation of IRP by the matrix A has

no fixed direction

• Each matrix A has at most P distinct eigen-

values

• If two real eigenvalues are the same =⇒
there exists a plane of eigenvectors

• Eigenvectors associated with distinct eigen-

values are linearly independent

• Let λ1, . . . , λP be the eigenvalues of A:
∑P
p=1 λp =

trace(A) et
∏P
p=1 λp = det(A)
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Comments:

• A real symmetric matrix has only real eigen-

values

• A singular matrix has at least one eigenval-

ues zero

• A symmetric matrix is positive definite if

and only if all its eigenvalues are positive

• A symmetric matrix is positive semidefinite

if and only if all its eigenvalues are non-

negative

• In practice, we take the eigenvectors u1, . . . , uP

in order to have an orthonormal basis. There-

fore, A can be written as follows:

A =

P∑
p=1

λpu
¯p

u
¯
′
p
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The particular case of the correlation

matrix

The correlation matrix (P × P ) is given by

R =
1

n
(X∗)′X∗

whereX∗ (n×P ) is the matrix of standardized

data

• R is positive semidefinite:

x
¯
′Rx

¯
=

1

n
x
¯
′(X∗)′X∗x

¯
=

1

n
(X∗x

¯
)′X∗x

¯

=
1

n
‖X∗x

¯
‖2 ≥ 0 ∀x

¯
6= 0

• R is positive definite iff the columns are lin-

early independent (the matrix X∗ is of rank

P )

• The number of non zero eigenvalues is equal

to the rank of R
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1.4 Références

•Magnus, J.R., Neudecker, H. (1999), Ma-

trix Differential Calculus with Applica-

tions in Statistics and Econometrics, Wi-

ley Series in Probability and Statistics, Eng-

land.



Chapter 2

Principal Component Analysis

(PCA)

2.1 Introduction

• Basic tools to reduce the dimension of

a multivariate data matrix

• Descriptive technique using geometrical

approach to reduce the dimension

The output consists of:

• graphical representation of individuals show-

ing similarities and dissimilarities

• graphical representation of variables based

on correlations

26
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2.1.1 Example: Academic Ranking of World Universities (2007)

Question: Can a single“indicator” accurately

sum up research excellence ?

•Alumni (10%): Alumni recipients of the

Nobel prize or the Fields Medal;

•Award (20%): Current faculty Nobel lau-

reates and Fields Medal winners;

•HiCi (20%): Highly cited researchers in

21 broad subject categories;

•N&S (20%): Articles published in Nature

and Science;

• PUB (20%): Articles in the Science Cita-

tion Index-expanded, and the Social Science

Citation Index;

• PCP (10%): The weighted score of the

previous 5 indicators divided by the number

of full-time academic staff members.
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Case study on the TOP 50 (Overall score relative to rank)
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B =BB CBB GBB DBB HBB

Universits Variables

Alumni Award HiCi N&S SCI Size

1. Harvard Univ. 100 100 100 100 100 73

2. Stanford Univ. 42 78.7 86.1 69.6 70.3 65.7

3. Univ. California, Berkeley 72.5 77.1 67.9 72.9 69.2 52.6

4. Univ. Cambridge 93.6 91.5 54 58.2 65.4 65.1

5. Massachusetts Inst. Tech. (MIT) 74.6 80.6 65.9 68.4 61.7 53.4

6. California Inst. Tech. 55.5 69.1 58.4 67.6 50.3 100

7. Columbia Univ. 76 65.7 56.5 54.3 69.6 46.4

8. Princeton Univ. 62.3 80.4 59.3 42.9 46.5 58.9

9. Univ. Chicago 70.8 80.2 50.8 42.8 54.1 41.3

10. Univ. Oxford 60.3 57.9 46.3 52.3 65.4 44.7
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Universits Variables

Alumni Award HiCi N&S SCI Size

11. Yale Univ. 50.9 43.6 57.9 57.2 63.2 48.9

12. Cornell Univ. 43.6 51.3 54.5 51.4 65.1 39.9

13. Univ. California, Los Angeles 25.6 42.8 57.4 49.1 75.9 35.5

14. Univ. California, San Diego 16.6 34 59.3 55.5 64.6 46.6

15. Univ. Pennsylvania 33.3 34.4 56.9 40.3 70.8 38.7

16. Univ. Washington, Seattle 27 31.8 52.4 49 74.1 27.4

17. Univ. Wisconsin, Madison 40.3 35.5 52.9 43.1 67.2 28.6

18. Univ. California, San Francisco 0 36.8 54 53.7 59.8 46.7

19. Johns Hopkins Univ. 48.1 27.8 41.3 50.9 67.9 24.7

20. Tokyo Univ. 33.8 14.1 41.9 52.7 80.9 34

21. Univ. Michigan, Ann Arbor 40.3 0 60.7 40.8 77.1 30.7

22. Kyoto Univ. 37.2 33.4 38.5 35.1 68.6 30.6

23. Imperial Coll. London 19.5 37.4 40.6 39.7 62.2 39.4

24. Univ. Toronto 26.3 19.3 39.2 37.7 77.6 44.4

25. Univ. Coll. London 28.8 32.2 38.5 42.9 63.2 33.8

26. Univ. Illinois, Urbana Champaign 39 36.6 44.5 36.4 57.6 26.2

27. Swiss Fed. Inst. Tech. - Zurich 37.7 36.3 35.5 39.9 38.4 50.5

28. Washington Univ., St. Louis 23.5 26 39.2 43.2 53.4 39.3

29. Northwestern Univ. 20.4 18.9 46.9 34.2 57 36.9

30. New York Univ. 35.8 24.5 41.3 34.4 53.9 25.9

31. Rockefeller Univ. 21.2 58.6 27.7 45.6 23.2 37.8

32. Duke Univ. 19.5 0 46.9 43.6 62 39.2

33. Univ. Minnesota, Twin Cities 33.8 0 48.6 35.9 67 23.5

34. Univ. Colorado, Boulder 15.6 30.8 39.9 38.8 45.7 30

35. Univ. California, Santa Barbara 0 35.3 42.6 36.2 42.7 35.1

36. Univ. British Columbia 19.5 18.9 31.4 31 63.1 36.3

37. Univ. Maryland, Coll. Park 24.3 20 40.6 31.2 53.3 25.9

38. Univ. Texas, Austin 20.4 16.7 46.9 28 54.8 21.3

39. Univ. Paris VI 38.4 23.6 23.4 27.2 54.2 33.5

40. Univ. Texas Southwestern Med. Center 22.8 33.2 30.6 35.5 38 31.9

41. Vanderbilt Univ. 19.5 29.6 31.4 23.8 51 36

42. Univ. Utrecht 28.8 20.9 27.7 29.9 56.6 26.6

43. Pennsylvania State Univ. - Univ. Park 13.2 0 45.1 37.7 58 23.7

44. Univ. California, Davis 0 0 46.9 33.1 64.2 30

45. Univ. California , Irvine 0 29.4 35.5 28 48.9 32.1

46. Univ. Copenhagen 28.8 24.2 25.7 25.2 51.4 31.7

47. Rutgers State Univ., New Brunswick 14.4 20 39.9 32.1 44.8 24.2

48. Univ. Manchester 25.6 18.9 24.6 28.3 56.9 28.4

49. Univ. Pittsburgh, Pittsburgh 23.5 0 39.9 23.6 65.6 28.5

50. Univ. Southern California 0 26.8 37.1 23.4 52.7 25.9
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Univariate and bivariate analysis

The first step of all statistical analysis is the

univariate and bivariate analysis

• Univariate statistics
Statistiques Alumni Award HiCi N&S SCI Size

(X1) (X2) (X3) (X4) (X5) (X6)

Mean 34.09 36.10 46.62 43.09 60.10 38.63

Median 38.80 32 44.80 40.10 61.85 35.30

Min 0 0 23.40 23.40 23.20 21.30

Max 100 100 100 100 100 100

Variance 525.74 625.57 207.82 217.51 156.63 212.33

• Correlation matrix:

R =



1.00 0.75 0.56 0.68 0.40 0.58

0.75 1.00 0.59 0.73 0.09 0.74

0.56 0.59 1.00 0.84 0.60 0.60

0.68 0.73 0.84 1.00 0.49 0.74

0.40 0.09 0.60 0.49 1.00 0.16

0.58 0.74 0.60 0.74 0.16 1.00


.

Variables are positively correlated→ size fac-

tor
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Graphics

• Univariate graphs - Boxplot to detect out-

liers
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• Scatterplots to detect bivariate structure
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• Radar type of graph based on TOP 10 to

detect multivariate structure

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
Harvard Univ 

Univ Cambridge 

Stanford Univ 

Univ California ‐ 
Berkeley 

MassachuseGs Inst 
Tech (MIT) 

California Inst Tech 

Columbia Univ 

Princeton Univ 

Univ Chicago 

Univ Oxford 

Score on Alumni 

Score on Award 

Score on HiCi 

Score on N&S 

Score on SCI 

Score on Size 

Visualization is not easy when the data con-

tains a large number of individuals
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2.1.2 The geometric point of view

Data matrix X (n × p) is composed of n ob-

servations (or individuals) and p variables.

X1 . . . Xp . . . XP

1 x11 . . . x1p . . . x1P −→ x
¯
′
1

· · · · · · · · · · · · · · · · · ·
i xi1 . . . xip . . . xiP −→ x

¯
′
i

· · · · · · · · · · · · · · · · · ·
n xn1 . . . xnp . . . xnP −→ x

¯
′
n

Mean x̄1 . . . x̄p . . . x̄P

V ariance s2
1 . . . s2

p . . . s2
P

↓ ↓ ↓
v
¯1 . . . v

¯p
. . . v

¯P

Examples:

• ARWU scores of universities on research vari-

ables

• indicators of corruption on countries, . . .
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• Cloud of n points in IRP :

Proximity between two individuals (observa-

tions) reflects a similar behavior on the p vari-

ables

• Cloud of p points in IRn :

Proximity between two variables reflects a sim-

ilar behavior on the n individuals

BUT ... when n or/and p are large (larger

than 2 or 3), we cannot produce interpretable

graphs of these clouds of points

Develop methods to reduce the dimension with-

out loosing too much information, the infor-

mation about the variation and structure of

clouds in both spaces
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• Simplest way of dimension reduction:

Take just one variable - Not a very reasonable

approach

• Alternative method:

Consider the simple average - All the element

are considered with equal importance

• Other solution:

Use a weighted average with fixed weights -

Choice of weight is arbitrary

Example: ARWU (2007)

• Take only the variable measuring the num-

ber of articles published in Nature and Sci-

ence

• Summarize the 6 variables using the mean

• Use the weights proposed by the “rankers”
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Question:

How to project the point cloud onto a space

of lower dimension without loosing too much

information?

How to construct new uncorrelated variables

Φ1,Φ2, . . . ,ΦM (where M is small) summa-

rizing in the best way the structure of the ini-

tial point cloud ?

These new variables will be given as a weighted

average, but how to choose the optimal weights?

The new variables will be called “principal

components”
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Several criteria exist in the literature to obtain

“principal components”:

• Inertia criteria (Pearson, 1901).

This point of view is based on geometric

approach facilitating the understanding and

the interpretation of output.

Moreover correspondence analysis for qual-

itative variables is a generalization of this

method.

This approach is extensively used in french

textbooks and software

• Correlation and Variance criteria (Hotelling,

1931).

Methods used in several english textbooks

and software.
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2.2 The geometric approach of Pearson

2.2.1 The n-dimensional point cloud

Each individual i denoted as Ii in IRP is as-

sociated with vector x
¯i

= (xi1, . . . , xiP )′

=⇒ Cloud of n points: ℵ = {I1, . . . , In}.

• Center of gravity G of ℵ:

g
¯

= (x̄1, . . . , x̄P )′

In the example on ranking where the variables

are Alumni, Award, HiCi, N&S, SCI and PCP,

G characterize an university with mean profile

:

g
¯

= (34.09, 36.10, 46.62, 43.09, 60.10, 38.63)′
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• The total inertia is the dispersion of the

cloud ℵ around the gravity center G

I(ℵ, G) =
1

n

n∑
i=1

d2(Ii, G)

=
1

n

n∑
i=1

 P∑
p=1

(xip − x̄p)2


=

P∑
p=1

1

n

n∑
i=1

(xip − x̄p)2


=

P∑
p=1

s2
p

=⇒ The total inertia is the sum of variances
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For the ranking example:

I(ℵ, G) = 525.7 + 625.6 + 207.8

+217.5 + 156.6 + 212.3

= 1945.5

The largest part of the total inertia is due to

the “Nobels” variables

=⇒ The choice of units has clearly an impact.

• Solution: Normalize the PCA

PCAn is independent of the choice of units

because it uses the standardized variables:

x∗ip =
xip − x̄p

sp
∀i ∈ {1, . . . , n}; p ∈ {1, . . . , P}

Data matrix X∗ of standardized observations

=⇒ Point cloud ℵ∗ = {I∗1 , . . . , I∗n}
=⇒ Center of gravity G is the origin of

IRP

=⇒ Total inertia: I(ℵ∗, O) = P
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Example ARWU (2007) on two variables:

Universits Variables

X∗
1 (HiCi∗) X∗

2 (SCI∗)

1. Harvard Univ. 3.70 3.19

2. Stanford Univ. 2.74 0.81

3. Univ. California, Berkeley 1.48 0.73

4. Univ. Cambridge 0.51 0.42

5. Massachusetts Inst. Tech. (MIT) 1.34 0.13
...

...
...

31. Rockefeller Univ. −1.31 −2.95
...

...
...

49. Univ. Pittsburgh, Pittsburgh −0.47 0.44

50. Univ. Southern California −0.66 −0.59

Moyenne 0 0

Variance 1 1
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Deux critères centrés réduits d'évaluation de la rechecrhe (HiCi et SCI)
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2.2.2 First principal component

Projection of ℵ∗ = {I∗1 , . . . , I∗n} ∈ IRP on a

subspace of dimension one (IR1)

First projecting direction

Find a projecting direction ∆1 to adjust in “a

better way” the point cloud ℵ∗

⇓
Minimize the loss of information measured by

the inertia of cloud ℵ∗ around this direction :

I(ℵ∗,∆1) =
1

n

n∑
i=1

d2(I∗i , P∆1
(I∗i ))

where P∆1
(I∗i ) is the orthogonal projection of

I∗i on the direction ∆1
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PROBLEM:

Find the direction ∆1 passing through the ori-

gin such that:

I(ℵ∗,∆1) = min
∆through O

I(ℵ∗,∆)

6

- -

6

•
• •
• •
•

•
•

•

•
• •
• •
•

•
•

•

N ∗ N ∗
X∗2X∗2

X∗1X∗1

∆

∆′
A B

I∗i

P∆(I∗i )

I∗i
P∆′(I∗i )

Direction ∆1 is called the first principal axis

Let u1 be the vector of norm 1 associated to

the direction ∆1:

u
¯1 = (u1,1, . . . , u1,P )′

More generally let u be the vector of norm 1

from the origin associated to the direction ∆:

u
¯

= (u1, . . . , uP )′
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RESOLUTION :

IRP

�

*

di(u)
∆

P∆(I∗i )

0

I∗i

x∗i

N ∗

u1 pi(u)

Let:

di(u) = ‖I∗i P∆(I∗i )‖
pi(u) = ‖OP∆(I∗i )‖

Find the vector u1 of norm 1 such that :

u1 = argmin
u st ‖u‖=1

1

n

n∑
i=1

d2
i (u)

By Pythagora’s theorem:

‖OI∗i ‖2 = pi(u)2 + di(u)2
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Then

u1 = argmin
u st ‖u‖=1

1

n

n∑
i=1

d2
i (u)

is equivalent to

u1 = argmax
u st ‖u‖=1

1

n

n∑
i=1

p2
i (u)

Using the scalar product:

pi(u) =< u,OI∗i >= u
¯
′x
¯
∗
i =

P∑
p=1

upx
∗
ip

it follows that:

u1 = argmax
u st u′u=1

1

n

n∑
i=1

(u
¯
′x
¯
∗
i )

2.

Using matrices in the formulation:

n∑
i=1

(u
¯
′x
¯
∗
i )

2 =

n∑
i=1

u
¯
′x
¯
∗
i (x¯
∗
i )
′u
¯

= u
¯
′
 n∑
i=1

x
¯
∗
i (x¯
∗
i )
′
 u

¯

= u
¯
′(X∗)′X∗u

¯
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We have a optimization problem under con-

straint:

Maximizing 1
nu

¯
′(X∗)′X∗u

¯
under the constraint u

¯
′u
¯

= 1

=⇒ To solve this problem, we introduce the

Lagrange function:

L(u
¯
, λ) =

1

n
u
¯
′(X∗)′X∗u

¯
− λ(u

¯
′u
¯
− 1)

The solution of this problem is given by the

resolution of a system of P + 1 equations:

∂
∂u1

L = 0

. . . = . . .
∂
∂uP

L = 0

∂
∂λL = 0

The last equation gives the constraint
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Let derive componentwise: up ∀p ∈ {1, . . . , P}:

∂

∂up
L =

∂

∂up

(
1

n
u
¯
′(X∗)′X∗u

¯
− λ(u

¯
′u
¯
− 1)

)
=

∂

∂up

1

n

n∑
i=1

(u
¯
′x∗i )2 − λ(

P∑
l=1

u2
l − 1)


=

∂

∂up

1

n

n∑
i=1

(

P∑
l=1

ulx
∗
il)

2 − λ(

P∑
l=1

u2
l − 1)


=

2

n

n∑
i=1

 P∑
l=1

ulx
∗
il

x∗ip − 2λup
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Putting together the P first equations leads to:

∂
∂u1

L

. . .
∂
∂up

L

. . .
∂
∂uP

L


= 2



1
n

∑n
i=1

(∑P
l=1 ulx

∗
il

)
x∗i1 − λu1

. . .
1
n

∑n
i=1

(∑P
l=1 ulx

∗
il

)
x∗ip − λup

. . .
1
n

∑n
i=1

(∑P
l=1 ulx

∗
il

)
x∗iP − λuP



= 2


1

n

n∑
i=1



x∗i1
. . .

x∗ip
. . .

x∗iP


(x∗i )′u¯ − λu

¯


= 2(

1

n

n∑
i=1

x∗i (x∗i )′u¯ − λu
¯
)

= 2(
1

n
(X∗)′X∗u

¯
− λu

¯
)
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The system of P + 1 equations is then equiv-

alent to the following system:{
1
n(X∗)′X∗u

¯
= λu

¯
u
¯
′u
¯

= 1

SOLUTION: The first principal axis ∆1 through

the origin is given by the eigenvector u1 of

the correlation matrix R = 1
n(X∗)′X∗ of vari-

ables Xp (p ∈ {1, . . . , P}) associated with the

largest eigenvalue λ1.

Remarks:

• λ = λu
¯
′u
¯

= 1
nu

¯
′(X∗)′X∗u

¯
• All the eigenvectors are orthogonal

• All eigenvalues are positive or null

• The number of strictly positive eigenvalues

is given by the rank of X∗
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Example ARWU (2007):

Eigenvalues and eigenvectors of R

Valeurs Vecteurs Alumni Award HiCi N&S SCI PCP

propres propres (X1) (X2) (X3) (X4) (X5) (X6)

3.94 u1 0.42 0.42 0.44 0.47 0.26 0.41

1.09 u2 −0.08 −0.42 0.27 0.06 0.79 −0.34

0.47 u3 0.76 0.19 −0.37 −0.23 0.16 −0.40

0.26 u4 −0.11 0.34 0.49 0.14 −0.32 −0.71

0.13 u5 −0.13 −0.01 −0.54 0.80 0.02 −0.21

0.12 u6 −0.45 0.70 −0.24 −0.24 0.43 −0.01

u1 = (0, 42; 0.42; 0.44; 0.47; 0.26; 0.41)′ and

λ1 = 3.94

The norm of u1

‖u1‖ =

P∑
p=1

u2
1,p = 0.422 + . . . + 0.412 = 1

is indeed equal to one
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First principal component

Orthogonal projection of point cloud ℵ∗ on the

axis ∆1:

P∆1
(ℵ) = {P∆1

(I∗1 ), . . . , P∆1
(I∗n)}

Coordinate of project point P∆1
(I∗i ) define the

values of the n individuals on the new vari-

able Φ1. This variable, the best compromise to

summarize the information in dimension one,

is called the first principal component:

φi1 = ‖OP∆1
(I∗i )‖ =< u1, OI

∗
i >

= u
¯
′
1x
¯
∗
i =

P∑
p=1

u1,px
∗
ip

Let Φ1 be the vector that contains the n coor-

dinates on the first principal component

Φ1 = X∗u
¯1
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The first principal component is a linear com-

bination of the initial variables, it is to say a

weighted average.

Example: ARWU (2007)

Φ1 = (0.42) ∗ Alumni∗ + (0.42) ∗ Award∗
+ (0.44) ∗HiCi∗ + (0.47) ∗NS∗
+ (0.26) ∗ SCI∗ + (0.41) ∗ PCP ∗

University First axis

Φ1 CTR∆1
cos2

1. Harvard Univ. 7.50 0.29 0.95

2. Stanford Univ. 3.88 0.08 0.84

3. Univ. California, Berkeley 3.57 0.06 0.96

4. Univ. Cambridge 3.58 0.07 0.78

5. Massachusetts Inst. Tech. (MIT) 3.33 0.06 0.92

6. California Inst. Tech. 3.61 0.07 0.53

7. Columbia Univ. 2.34 0.03 0.82

8. Princeton Univ. 1.93 0.02 0.44

9. Univ. Chicago 1.48 0.01 0.36

10. Univ. Oxford 1.41 0.01 0.71
...

...
...

...
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Properties of Φ1

• Φ1 is centered (weighted mean of centered

variables):

Φ̄1 =
1

n

n∑
i=1

φi1 =
1

n

n∑
i=1

P∑
p=1

u1,px
∗
ip

=

P∑
p=1

u1,p
1

n

n∑
i=1

x∗ip =

P∑
p=1

u1,px̄
∗
p = 0

• The variance of Φ1 is equal to λ1:

s2
Φ1

=
1

n

n∑
i=1

(φi1 − φ̄1)2 =
1

n

n∑
i=1

φ2
i1 =

1

n
Φ′1Φ1

=
1

n
u
¯
′
1(X∗)′X∗u

¯1 = u
¯
′
1

1

n
(X∗)′X∗u

¯1

= u
¯
′
1λ1u

¯1 = λ1u
¯
′
1u
¯1 = λ1
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• The variance of Φ1 is equal to the inertia of

the point cloud projected on ∆1 :

s2
Φ1

=
1

n

n∑
i=1

φ2
i1 =

1

n

n∑
i=1

‖OP∆1
(I∗i )‖2

= I(P∆1
(ℵ∗), O)

• Correlation between Xp and Φ1 is given by

rXp,Φ1
=
√
λ1u1,p

Indeed, the associated covariance is given by

sX∗p ,Φ1
=

1

n

n∑
i=1

x∗ipφi1 ∀p ∈ {1, . . . , P}
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It follows that

sX∗1 ,Φ1

. . .

sX∗p ,Φ1

. . .

sX∗P ,Φ1


=



1
n

∑n
i=1 x

∗
i1φi1

. . .
1
n

∑n
i=1 x

∗
ipφi1

. . .
1
n

∑n
i=1 x

∗
iPφi1


=



1
n(v

¯
∗
1)′Φ1

. . .
1
n(v

¯
∗
p)
′Φ1

. . .
1
n(v

¯
∗
P )′Φ1



=
1

n



(v
¯
∗
1)′

. . .

(v
¯
∗
p)
′

. . .

(v
¯
∗
P )′


Φ1 =

1

n
(X∗)′Φ1 =

1

n
(X∗)′X∗u

¯1

= λ1u
¯1

Leading to :

sX∗p ,Φ1
= λ1u1,p ∀p ∈ {1, . . . , P}
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Hence,

rXp,Φ1
= rX∗p ,Φ1

=
sX∗p ,Φ1

sΦ1

=
λ1u1,p√
λ1

=
√
λ1u1,p

Example: ARWU (2007)

rXk,Φh
Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Alumni 0.83 −0.09 −0.52 0.06 0.05 0.16

Award 0.84 −0.44 −0.13 −0.17 0.01 −0.24

HiCi 0.86 0.29 0.26 −0.25 0.19 0.08

N&S 0.94 0.06 0.16 −0.07 −0.29 0.08

SCI 0.51 0.82 −0.11 0.16 −0.01 −0.15

Size 0.81 −0.35 0.28 0.36 0.075 0.00

Φ1 is positively correlated with all the vari-

ables

The proximity of Φ1 with all the initial vari-

ables is given by:

1

P

P∑
p=1

r2
Xp,Φ1

=
1

P

P∑
p=1

λ1u
2
1,p =

λ1

P

P∑
p=1

u2
1,p =

λ1

P

=
3.94

6
= 66%
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Global quality of the first principal

component

Using the decomposition of total inertia, we

capture the percentage of information taking

into account by the first principal component:

‖OI∗i ‖2 = ‖OP∆1
(I∗i )‖2 + ‖I∗i P∆1

(I∗i )‖2

⇒ 1

n

n∑
i=1

‖OI∗i ‖2 =
1

n

n∑
i=1

‖OP∆1
(I∗i )‖2

+
1

n

n∑
i=1

‖I∗i P∆1
(I∗i )‖2

⇒ I(ℵ∗, O) = I(P∆1
(ℵ∗), O) + I(ℵ∗,∆1)

“Total inertia = inertia explained by ∆1

+ residual inertia”

→ Global quality is given by λ1
P

Example: ARWU (2007) λ1
P = 3.94

6 = 66%
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Quality of the representation of each

individual on the first axis

The quality of the representation of each in-

dividuals I∗i on the axis ∆1 is measured by

the squared cosines of the angle between the

vector OI∗i and the axis ∆1:

cos2(OI∗i ,∆1) = cos2(OI∗i , OP∆1
(I∗i ))

=
‖0P∆1

(I∗i )‖2
‖0I∗i ‖2

=
φ2
i1

‖0I∗i ‖2
.

The representation of individual i is satisfying

on the first axis if cos2(OI∗i ,∆1) is close to 1.
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1

1

3

9

0

0

A

B

∆1

∆1

I∗i

I∗i′

P∆1
(I∗i )

P∆1
(I∗i′)

αi

αi′

u1

u1

I∗j

P∆1
(I∗j )

Ij′

P∆1
(Ij′)

αj′

αj

�

�

Example: ARWU (2007)

‖OI∗Harvard‖2 = d2(O, I∗Harvard)
= (3.70)2 + (3.19)2 + . . . = 59.21

⇒ cos2(OI∗Harvard,∆1) =
(7.50)2

59.21
= 0.95



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS (PCA) 60

Contribution of each individual on the

construction of the first axis

Note that :

λ1 = I(P∆1
(ℵ∗), O) = s2

Φ1
=

1

n

n∑
i=1

φ2
i1

The contribution of each individual i on the

variance Φ1 is then given by

CTR∆1
(i) =

1
nφ

2
i1

λ1

Each contribution gives a percentage since
n∑
i=1

CTR∆1
(i) = 1

Interpretation: One individual is important in

the construction of the first axis if its contri-

bution is large. The construction of the first

principal component is based essentially on in-

dividuals far away from the center of gravity.
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Universities First axis Second axis

Φ1 CTR∆1 cos2 Φ2 CTR∆2 cos2

1. Harvard Univ. 7.50 0.29 0.95 1.65 0.05 0.05

2. Stanford Univ. 3.88 0.08 0.84 0.13 0.00 0.00

3. Univ. California, Berkeley 3.57 0.06 0.96 −0.06 0.00 0.00

4. Univ. Cambridge 3.58 0.07 0.78 −1.23 0.03 0.09

5. Massachusetts Inst. Tech. (MIT) 3.33 0.06 0.92 −0.67 0.01 0.04

6. California Inst. Tech. 3.61 0.07 0.53 −2.35 0.10 0.23

7. Columbia Univ. 2.34 0.03 0.82 0.00 0.00 0.00

8. Princeton Univ. 1.93 0.02 0.44 −1.94 0.07 0.44

9. Univ. Chicago 1.48 0.01 0.36 −1.24 0.03 0.26

10. Univ. Oxford 1.41 0.01 0.71 −0.24 0.00 0.02

11. Yale Univ. 1.58 0.01 0.92 0.04 0.00 0.00

12. Cornell Univ. 1.07 0.01 0.87 0.18 0.00 0.02

13. Univ. California, Los Angeles 0.71 0.00 0.20 1.21 0.03 0.57

14. Univ. California, San Diego 0.74 0.00 0.22 0.49 0.00 0.10

15. Univ. Pennsylvania 0.40 0.00 0.13 0.89 0.01 0.62

16. Univ. Washington, Seattle 0.14 0.00 0.01 1.37 0.03 0.82

17. Univ. Wisconsin, Madison 0.16 0.00 0.02 0.79 0.01 0.58

18. Univ. California, San Francisco 0.17 0.00 0.01 0.09 0.00 0.00

19. Johns Hopkins Univ. −0.03 0.00 0.00 0.83 0.01 0.32
...

...
...

...
...

...
...

31. Rockefeller Univ. −1.13 0.01 0.11 −2.99 0.16 0.77

32. Duke Univ. −0.80 0.00 0.25 0.78 0.01 0.24

33. Univ. Minnesota, Twin Cities −1.07 0.01 0.31 1.40 0.04 0.53

34. Univ. Colorado, Boulder −1.31 0.01 0.64 −0.70 0.01 0.18

35. Univ. California, Santa Barbara −1.44 0.01 0.46 −0.98 0.02 0.21

36. Univ. British Columbia −1.41 0.01 0.72 0.25 0.00 0.02

37. Univ. Maryland, Coll. Park −1.51 0.01 0.92 0.01 0.00 0.00

38. Univ. Texas, Austin −1.65 0.01 0.76 0.39 0.00 0.04

39. Univ. Paris VI −1.61 0.01 0.59 −0.56 0.01 0.07

40. Univ. Texas Southwestern Med. Center −1.63 0.01 0.52 −1.48 0.04 0.43

41. Vanderbilt Univ. −1.71 0.01 0.76 −0.72 0.01 0.13

42. Univ. Utrecht −1.76 0.02 0.83 −0.08 0.00 0.00

43. Pennsylvania State Univ., Univ. Park −1.67 0.01 0.68 0.85 0.01 0.17

44. Univ. California, Davis −1.70 0.01 0.55 1.16 0.02 0.26

45. Univ. California, Irvine −1.97 0.02 0.79 −0.59 0.01 0.07

46. Univ. Copenhagen −1.88 0.02 0.77 −0.64 0.01 0.09

47. Rutgers State Univ., New Brunswick −1.91 0.02 0.83 −0.46 0.00 0.05

48. Univ. Manchester −1.94 0.02 0.83 −0.12 0.00 0.00

49. Univ. Pittsburgh, Pittsburgh −1.80 0.02 0.66 1.02 0.02 0.21

50. Univ. Southern California −2.21 0.02 0.86 −0.15 0.00 0.00



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS (PCA) 62

2.2.3 Second principal component

Second projecting direction

The second projecting axis ∆2 is

• an axis through the origin of IRP (the grav-

ity center of point cloud ℵ∗)
• orthogonal to ∆1

• minimizing the residual inertia I(ℵ∗, (∆1,∆2))

In practice, we can show that ∆2 is given by

the direction u2, eigenvector with unitary norm

of the correlation matrixR associated with the

second largest eigenvalue λ2.

The sub-space (∆1,∆2) of dimension 2 is called

the first principal plan.
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• Decomposition of the total inertia

-

s

•

0

u2

u1

I∗i

P(∆1,∆2)(I
∗
i )

P∆1(I
∗
i )

P∆2(I
∗
i )

∆2

∆1
Let:

• P∆1
(I∗i ) the orthogonal projection of I∗i on

the axis ∆1

• P∆2
(I∗i ) the orthogonal projection of I∗i on

the axis ∆2

• P(∆1,∆2)(I
∗
i ) the orthogonal projection of

I∗i on the axis (∆1,∆2).
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By Pythagora’s theorem:

‖0I∗i ‖2 = ‖0P(∆1,∆2)(I
∗
i )‖2+‖I∗i P(∆1,∆2)(I

∗
i )‖2

Moreover

• P∆1
(I∗i ) is the orthogonal projection of P(∆1,∆2)(I

∗
i )

on the axis ∆1

• P∆2
(I∗i ) is the orthogonal projection of P(∆1,∆2)(I

∗
i )

on the axis ∆2,

=⇒ ‖0I∗i ‖2 = ‖0P∆1(I
∗
i )‖2 + ‖0P∆2(I

∗
i )‖2

+ ‖I∗i P(∆1,∆2)(I
∗
i )‖2

⇓
=⇒ 1

n

n∑
i=1

‖0I∗i ‖2 =
1

n

n∑
i=1

‖0P∆1(I
∗
i )‖2 +

1

n

n∑
i=1

‖0P∆2(I
∗
i )‖2

+
1

n

n∑
i=1

‖I∗i P(∆1,∆2)(I
∗
i )‖2

⇓
I(ℵ∗, 0) = I(P∆1(ℵ∗), 0) + I(P∆2(ℵ∗), 0) + I(ℵ∗, (∆1,∆2)).
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Second principal component

Orthogonal projection of point cloud ℵ∗ on the

axis ∆2:

P∆2
(ℵ∗) = {P∆2

(I∗1 ), . . . , P∆2
(I∗n)}

In the same way that for the first direction,

define:

φi2 = ‖0P∆2
(I∗i )‖ ∀i = 1, . . . , n

where φi2 gives the value of individual i on the

second principal component Φ2

The second principal component is also a weighted

average of initial variables

φi2 = < u2, 0I
∗
i >

= u
¯
′
2x
¯
∗
i

=

P∑
p=1

u2,px
∗
ip.
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Let Φ2 be the vector that contains the n coor-

dinate on the first principal component Φ2 =

(φ12, . . . , φn2)′:

Φ2 = X∗u2.

The second new variable Φ2 is a linear combi-

nation of the initial variables X∗1 , . . . , X∗P :

Φ2 =

P∑
p=1

u2,pX
∗
p .

Example: ARWU (2007)

Φ2 = −0.08 ∗ Alumni∗ − 0.42 ∗ Award∗
+ 0.27 ∗HiCi∗ + 0.06 ∗NS∗
+ 0.79 ∗ SCI∗ − 0.34 ∗ PCP ∗

The second component discriminates between

in one hand Nobel prize (Award) and size (PCP),

and in the other hand the volume of publica-

tion (SCI and HiCi) (to be verified with corre-

lation matrix)
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Properties of Φ2

• Φ2 has zero mean (exercise)

• Φ2 has a variance equal to λ2 (exercise)

It follows that

λ2 = s2
Φ2

=
1

n

n∑
i=1

φ2
i2

=
1

n

n∑
i=1

‖0P∆2
(I∗i )‖2

= I(P∆2
(ℵ∗), 0).

• The correlation between Φ1 and Φ2 is equal

to zero:

sΦ1,Φ2
=

1

n

n∑
i=1

φi1φi2

=
1

n
Φ′1Φ2 =

1

n
u′1(X∗)′X∗u2

= u′1λ2u2 = λ2u
′
1u2 = 0

=⇒ rΦ1,Φ2
= 0.
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• Correlation between the second component

and initial variables (exercise):

rXp,Φ2
=
√
λ2u2,p ∀p = 1, . . . , P.

Example: ARWU (2007)

rXk,Φh
Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Alumni 0.83 −0.09 −0.52 0.06 0.05 0.16

Award 0.84 −0.44 −0.13 −0.17 0.01 −0.24

HiCi 0.86 0.29 0.26 −0.25 0.19 0.08

N&S 0.94 0.06 0.16 −0.07 −0.29 0.08

SCI 0.51 0.82 −0.11 0.16 −0.01 −0.15

Size 0.81 −0.35 0.28 0.36 0.075 0.00

⇓
Φ2 discriminates, for universities with globally

the same level on Φ1, 2 behaviors:

•Volume of publication dominates the number

of Nobel prize : φ{Michigan,2} = 2.10,

• Nobel prizes dominates the score on the vol-

ume of publication: φ{Rockfeller,2} = −2.99
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Global quality of the second principal

component

Percentage of inertia explained by ∆2:

λ2

P

Percentage of inertia explained by the first prin-

cipal plan (∆1,∆2):

λ1 + λ2

P

Example: ARWU (2007)

∆2 explains 1.09
6 = 18.17% of total inertia

⇓
Then (∆1,∆2) explains 3.94+1.09

6 = 83.83% of

total inertia
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Quality of the representation of each

individual on the second axis

Quality of representation of each point I∗i on

the axis ∆2 is measured by the squared cosines

of angle between the vector OI∗i and the di-

rection ∆2 :

cos2(OI∗i ,∆2) =
‖0P∆2

(I∗i )‖2
‖0I∗i ‖2

=
φ2
i2

‖0I∗i ‖2
.

-

s

•

0

u2

u1

I∗i

P(∆1,∆2)(I
∗
i )

P∆1(I
∗
i )

P∆2(I
∗
i )

∆2

∆1

α1,i

α(1,2),i

α2,i
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Quality of representation of each point I∗i on

the plan (∆1,∆2) is measured by the squared

cosines of angle between the vector OI∗i and

the plan (∆1,∆2) :

cos2(OI∗i , (∆1,∆2)) =
‖0P(∆1,∆2)(I

∗
i )‖2

‖0I∗i ‖2

=
‖0P(∆1)(I

∗
i )‖2 + ‖0P(∆2)(I

∗
i )‖2

‖0I∗i ‖2

=
φ2
i1 + φ2

i2

‖0I∗i ‖2
= cos2(OI∗i ,∆1) + cos2(OI∗i ,∆2).
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Contribution of each individual on the

construction of the second axis ∆2

Note that:

λ2 = I(P∆2
(ℵ∗), 0) = s2

Φ2
=

1

n

n∑
i=1

φ2
i2,

The contribution of each individual i on the

variance Φ2 is given by:

CTRλ2
=

1
nφ

2
i2

λ2
.
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Universities First axis Second axis

Φ1 CTR∆1 cos2 Φ2 CTR∆2 cos2

1. Harvard Univ. 7.50 0.29 0.95 1.65 0.05 0.05

2. Stanford Univ. 3.88 0.08 0.84 0.13 0.00 0.00

3. Univ. California, Berkeley 3.57 0.06 0.96 −0.06 0.00 0.00

4. Univ. Cambridge 3.58 0.07 0.78 −1.23 0.03 0.09

5. Massachusetts Inst. Tech. (MIT) 3.33 0.06 0.92 −0.67 0.01 0.04

6. California Inst. Tech. 3.61 0.07 0.53 −2.35 0.10 0.23

7. Columbia Univ. 2.34 0.03 0.82 0.00 0.00 0.00

8. Princeton Univ. 1.93 0.02 0.44 −1.94 0.07 0.44

9. Univ. Chicago 1.48 0.01 0.36 −1.24 0.03 0.26

10. Univ. Oxford 1.41 0.01 0.71 −0.24 0.00 0.02

11. Yale Univ. 1.58 0.01 0.92 0.04 0.00 0.00

12. Cornell Univ. 1.07 0.01 0.87 0.18 0.00 0.02

13. Univ. California, Los Angeles 0.71 0.00 0.20 1.21 0.03 0.57

14. Univ. California, San Diego 0.74 0.00 0.22 0.49 0.00 0.10

15. Univ. Pennsylvania 0.40 0.00 0.13 0.89 0.01 0.62

16. Univ. Washington, Seattle 0.14 0.00 0.01 1.37 0.03 0.82

17. Univ. Wisconsin, Madison 0.16 0.00 0.02 0.79 0.01 0.58

18. Univ. California, San Francisco 0.17 0.00 0.01 0.09 0.00 0.00

19. Johns Hopkins Univ. −0.03 0.00 0.00 0.83 0.01 0.32
...

...
...

...
...

...
...

31. Rockefeller Univ. −1.13 0.01 0.11 −2.99 0.16 0.77

32. Duke Univ. −0.80 0.00 0.25 0.78 0.01 0.24

33. Univ. Minnesota, Twin Cities −1.07 0.01 0.31 1.40 0.04 0.53

34. Univ. Colorado, Boulder −1.31 0.01 0.64 −0.70 0.01 0.18

35. Univ. California, Santa Barbara −1.44 0.01 0.46 −0.98 0.02 0.21

36. Univ. British Columbia −1.41 0.01 0.72 0.25 0.00 0.02

37. Univ. Maryland, Coll. Park −1.51 0.01 0.92 0.01 0.00 0.00

38. Univ. Texas, Austin −1.65 0.01 0.76 0.39 0.00 0.04

39. Univ. Paris VI −1.61 0.01 0.59 −0.56 0.01 0.07

40. Univ. Texas Southwestern Med. Center −1.63 0.01 0.52 −1.48 0.04 0.43

41. Vanderbilt Univ. −1.71 0.01 0.76 −0.72 0.01 0.13

42. Univ. Utrecht −1.76 0.02 0.83 −0.08 0.00 0.00

43. Pennsylvania State Univ., Univ. Park −1.67 0.01 0.68 0.85 0.01 0.17

44. Univ. California, Davis −1.70 0.01 0.55 1.16 0.02 0.26

45. Univ. California, Irvine −1.97 0.02 0.79 −0.59 0.01 0.07

46. Univ. Copenhagen −1.88 0.02 0.77 −0.64 0.01 0.09

47. Rutgers State Univ., New Brunswick −1.91 0.02 0.83 −0.46 0.00 0.05

48. Univ. Manchester −1.94 0.02 0.83 −0.12 0.00 0.00

49. Univ. Pittsburgh, Pittsburgh −1.80 0.02 0.66 1.02 0.02 0.21

50. Univ. Southern California −2.21 0.02 0.86 −0.15 0.00 0.00
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2.2.4 Extended dimensions

The hth projecting axis ∆h is

• an axis passing through the origin of IRP

(the gravity center of point cloud ℵ∗)
• orthogonal to ∆1, . . . ,∆h−1

• minimizing the residual inertia

In practice, we can show that ∆h is given by

the direction uh which is the eigenvector (with

unitary norm) of the correlation matrix R that

is associated with the hth largest eigenvalue

λh.

It is clear that if h is equal to the rank of X∗,
the data cloud ℵ∗ is contained in the subspace

generated by {u1, . . . , uh} and the reduction

mechanism can stop.
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Orthogonal projection of point cloud ℵ∗ on the

axis ∆h:

P∆h
(ℵ∗) = {P∆h

(I∗1 ), . . . , P∆h
(I∗n)}

In the same way that for other directions, de-

fine:

φih = ‖0P∆h
(I∗i )‖ ∀i = 1, . . . , n

where φih gives the value of individual i on the

principal component Φh

The principal component is also a weighted

average of the initial variables

φih = < uh, 0I
∗
i >

= u
¯
′
hx

¯
∗
i

=

P∑
p=1

uh,px
∗
ip.
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Properties of Φh

• Φh has zero mean (exercise)

• Φh has a variance equal to λh (exercise)

• Correlation between Φl(l ∈ {1, . . . , h − 1}
and Φh is equal to zero:

sΦl,Φh
=

1

n

n∑
i=1

φilφih

=
1

n
Φ′lΦh =

1

n
u′l(X

∗)′X∗uh
= u′lλhuh = λhu

′
luh = 0

=⇒ rΦl,Φh
= 0.

• Correlation between the hth component and

the initial variables (exercise):

rXp,Φh =
√
λhuh,p ∀p = 1, . . . , P.
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Correlations and eigenvectors

By linear algebra:

R =
1

n
(X∗)′X∗ =

H∑
h=1

λhuhu
′
h.

Then, for each p 6= l ∈ {1, . . . , P}:

rXp,Xl =

H∑
h=1

λhuh,puh,l.
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Question: How many principal components

needed?

Stopping rules for determining the number of

principal components:

• Classical rule based on τh, the percentage

of variance explained by the first h principal

components, h ∈ {1, . . . , H}:
τh =

λ1 + . . . + λh
λ1 + . . . + λH

=
λ1 + . . . + λh

P
.

If τ is big enough (close to one), h is the

number of factors to choose. But this rule

is rather subjective.

• Keep principal component Φh iff λh > 1

(mean of eigenvalues).

• Examine the scree s plot that shows the

fraction of total variance in the data ex-

plained by each principal component
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2.2.5 Graphical representations

The principal components are used to repre-

sent graphically individuals and variables

Map of individuals

Projection of the data cloud ℵ∗ on the first

principal plan (∆1,∆2):

⇓
∀i = 1, . . . , n the projection P(∆1,∆2)(Ii∗) of

individual Ii∗ on the first plan has coordinates

(φi1, φi2)

on the axis ∆1 and ∆2.

This graph makes the interpretation of axis

easier as well as the comparison between indi-

viduals
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Example: ARWU (2007)

Well represented individuals can be interpreted
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• The first axis segregates the universities from

the less quality to the best quality in terms

on research

• The second axis discriminates between “vol-

ume of publication” and “Nobel prizes”

• Harvard seems to be an outlier

If the principal plan is not sufficient, (∆1,∆3)

and (∆2,∆3) plans can also be analyzed
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Correlations circle

Representation of variables is based on the

projection of the cloud of p variables X∗ in

IRn on the principal components. The coor-

dinate on the fisrt principal plan are

Bp = (rXp,Φ1
, rXp,Φ2

).

-

6

*

1

1

rXk,Φ1

rXk,Φ2
Bk

0

This graph makes it easier to visualize

• correlations between old and new variables

• the quality of the representation ofXp given

by the norm of the vector 0Bp
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Example: ARWU (2007)

-

6

z

j

:
-

�

z

SCI

Award

HiCi

N&S

Size
Alumni

Φ1

Φ2

• All variables have a good quality of repre-

sentation in IR2

• The first principal component is positively

correlated with all variables (quality factor)

• The second principal component discrimi-

nates between “Volume” and “Prizes” =⇒
type of research quality
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2.3 Additional variables or individuals

• Additional individuals is

- Step 1: Standardize the coordinate of new

individual is using mean and standard devia-

tion calculated on active individuals

- Step 2: Project new standardize individual

on principal axis:

φis1 =

P∑
p=1

u1,px
∗
isp

φis2 =

P∑
p=1

u2,px
∗
isp

etc

- Step 3: Project this observation on the first

plan.
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• Additional continuous variable Xs

The information on the additional continuous

variable Xs will be given by the correlations

circle where the coordinates are

rXs,Φ1
and rXs,Φ2

Example: ARWU (2007)

Representation of the ranking given in Shang-

hai ranking

-

6

z

j

:
-

�

z

9

SCI

Award

HiCi

N&S

Size
Alumni

Rank

Φ1

Φ2
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• Additional qualitative variable Xs

If the variable is qualitative, the correlation

can not be used

⇓
Create K groups individuals formed by the K

categories of Xs

Then project the Kmean individuals on the

map of individuals

Note that if the variable is ordinal, you can

link the mean individuals by the way of a line



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS (PCA) 86

Example: ARWU (2007)

Representation of groups of individuals : eu-

ropean, asian and US universities
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• US universities is a little bit better than the

two others

• European universities perform better in terms

of Nobel prizes

• Asian universities perform better in terms

of volume of publications
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2.4 ACP following Hotelling

These procedures seem to be less complex but

are less intuitive from a geometrical point of

view

Correlation criteria

Find J new standardized uncorrelated vari-

ables Z1, . . . , ZJ such that the following cri-

teria is maximized:
J∑
j=1

[
1

P

P∑
p=1

r2
Xp,Zj

].

It is possible to prove that the maximum is

reached by reducing the principal principal com-

ponents

Zj = Φ∗j =
Φj√
λj

and the maximum is given by λ1+...+λJ
P .
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Variance criteria

Find J new uncorrelated variables Z1, . . . , ZJ

such that

Zj =

P∑
p=1

νj,pXp

where the vectors

νj = (νj,1, . . . , νj,P )′

maximize the following criteria

J∑
j=1

s2
Zj
.

• The maximum is given by

λν1 + . . . + λνJ

• The maximum is reached for orthogonal eigen-

vectors of covariance matrix

• If the standardized variables are used, then

Zj = Φj and the maximum is given by λ1+

. . . + λJ
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Chapter 3

A short introduction on robust

statistics

3.1 Why robust statistics ?

• Develop procedures (in estimation, in test-

ing problem, in regression, in time series, . . . )

that are valid (bias, efficiency) under small de-

viations from the underlying model

“All models are wrong, but some are useful.”

(Box, 1979)

90
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⇓
• Robustness: Find the structure fitting the ma-

jority of the data.

•Diagnostics: Identify outliers and sub-structure

in the sample

• Robust methods are needed in explanatory

analysis (data mining)

• Robust methods allows to control the weight

of outliers (leverage points) in the statistical

procedure
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• Regression and Multivariate Analysis are used

in many fields. But classical methods are very

vulnerable to the presence of outliers

• Example of Simple Regression - Astronomy

Data: 43 stars (the majority) are in the direc-

tion of Gygnus but 4 stars are called giants.
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• Regression and Multivariate Analysis are used

in many fields. But classical methods are very

vulnerable to the presence of outliers

• Example of Simple Regression - Astronomy

Data: 43 stars (the majority) are in the direc-

tion of Gygnus but 4 stars are called giants.
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To perform the analysis:

• Inclusion of outliers using classical methods

⇒ fallacious results

• Two-step procedure: Detection of outliers in

the first step, and classical methods applied to

the “clean sample” (exclusion of outliers) ⇒
need detection of outliers

• Robust Methods:

1) Valid results for the majority of the data

2) Detection of outliers
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Parametric, non-parametric and robust

statistics

Robust statistics is an extension of parametric

statistics: Statistics model: (χ, β, P )

Parametric hypothesis: P ∈ {Pθ|θ ∈ Θ}
Non-parametric hypothesis: P ∈ { large fam-

ily of distributions }
Robust hypothesis P is “close” to one element

of {Pθ|θ ∈ Θ}

Important remarks

• Robust statistics doesn’t replace classical one

• The two-step procedure, where classical meth-

ods are used in the second step after having

deleted outliers, requires robust methods

• The word “robust” is used in various context,

with different meaning.



CHAPTER 3. A SHORT INTRODUCTION ON ROBUST STATISTICS 96

New concept linked to robustness

The bias and the efficiency are well-known in

statistics but robust statistics need new “mea-

sures”:

• Influence function (IF): local stability

• Breakdown point: global validity

• Maxbias curve : a theoritical summary

Important: Trade-off between robustness and

efficiency
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Example: Cushny and Peebles

3.2 Detection

• Cushny and Peebles reported the results of

a clinical trial of the effect of various drug on

duration of sleep:

Sample: {0,0.8,1,1.2,1.3,1.3,1.4,1.8,2.4,4.6}
The last observation 4.6 seems to be outlier rel-

atively to the other nine observation.
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Boxplot: Cushny and Peebles
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The rejection rule: The 3 σ rule

• If X ∼ N(µ, σ2), it is well known that:

P (µ− 3σ < X < µ + 3σ) ≈ 0.999

• Tchebyshev’s rule (valid for all distribution):

at least(1− 1

k2
)of observations ∈ (µ± kσ)

Example: if k = 3 at least 89% of observations

∈ (µ± 3σ)

But µ and σ are unknown !!!!

Classical rule: an observation xi is considered

as an outliers if

xi /∈ (x̄± 3s) = (−2.11; 5.27)

PROBLEM: MASKING EFFECT !!!!
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The robust 3 σ rule

An observation xi is considered as an outliers if

xi /∈ [med(x)− 3MAD(x),med(x) + 3MAD(x)]

/∈ (−0.48, 3.08)

A robust estimator of scale is given by the me-

dian absolute deviation MAD, which is the me-

dian of the n distances to the median:

MAD(x) = c med(|xi −med(x)|)
where c = 1

Φ−1(3/4)
in order to obtain Fisher

consistency at the normal distribution.

The rejection rule estimation is then given by:

0 + 0.8 + 1.0 + 1.2 + 1.3 + 1.4 + 1.8 + 2.4

9
= 1.24
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Bivariate simulated example

Univariate analysis
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Outliers in two-dimension space but not in in a

single one dimensional space



CHAPTER 3. A SHORT INTRODUCTION ON ROBUST STATISTICS 101

Multivariate example

Stack loss (Rousseeuw & Leroy, 1987)

i x1 x2 x3 y i x1 x2 x3 y

1 80 27 89 42 12 58 17 88 13

2 80 27 88 37 13 58 18 82 11

3 75 25 90 37 14 58 19 93 12

4 62 24 87 28 15 50 18 89 8

5 62 22 87 18 16 50 18 86 7

6 62 23 87 18 17 50 19 72 8

7 62 24 93 19 18 50 19 79 8

8 62 24 93 20 19 50 20 80 9

9 58 23 87 15 20 56 20 82 15

10 58 18 80 14 21 70 20 91 15

11 58 18 89 14

x1: air flow, x2: cooling water inlet tempera-

ture, x3: acide concentration

y: stack loss, defiend as the percentage of in-

going ammonia that escapes unabsorbed (re-

sponse).

BUT: It is not possible to visualize all informa-

tion in one figure
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Mahalanobis distances

Let X be the matrix of data of dimension n×p
Let xi be the vector of dimension p× 1

Classical Mahalanobis distances are defined by:

MDi =
√

((xi − T (X))′C(X)−1(xi − T (X)))

where T (X) is the mean vector:

T (X) =
1

n

∑
xi

and C(X) is the empirical covariance matrix:

C(X) =
1

n

∑
((xi − T (X))(xi − T (X)))′

T (X) and C(X) are not robust

⇓
MASKING EFFECT
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Robust Multivariate estimators

Let b be a constant and A (p×p) a non-singuliar

matrix

Let X = {x1, . . . , xn},
Y = {x1 + b, . . . , xn + b} = X + b,

Z = AX + b

Equivariance for the location estimator T (X):

• Translation equivariant:= T (Y ) = T (X) + b

• Affine equivariant:= T (Z) = AT (X) + b

Equivariance for the covariance estimatorC(X):

• Translation invariant:= C(Y ) = C(X)

• Affine equivariant:= C(Z) = A′C(X)A
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Generalization of the univariate median

The median is an univariate location estimator

with BDP = 50% which is defined by the min-

imization problem:

med(x) = argmint

n∑
i=1

|xi − t|

• First proposition: the L1 estimator minimizes∑n
i=1 ‖xi − T‖

Problem: not affin equivariant

• Second proposition: the coordinatewise me-

dian:

T = (medixi1, . . . ,medixip)

Problem: For p ≥ 3 the coordinatewise median

is not always in the convex hull of the sample
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Several propositions of affine equivari-

ant estimators

• Multivariate M-estimateurs (Maronna, 76)

• Convex Peeling (Barnett, 76; Bennington, 78)

• Ellipsoid Peeling (Titterington, 78; Hebling,

83)

• Iterative Trimming (Gnanadesikan and Ket-

tering, 78)

• Generalized median (Oja, 83)

• . . .

PROBLEM:

all these estimators have a BDP≤ 1
p+1

⇓
BDP decreases when the dimension increases !!!!
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Stahel-Donoho estimator

Stahel (1981) and Donoho (1982) proposed the

first affine equivariant estimators for which the

BDP is of 50%.

It is based on the concept of outlyingness:

ui = sup
‖v‖=1

|xiv′ −medianj(xjv
′)|

medianl |xlv′ −medianj(xjv′)|

Reweighted classical estimators with weights given

by w(ui):

T (x) =

∑
iw(ui)xi∑
iw(ui)

C(x) =

∑
iw(ui)(xi − T (x))(xi − T (x))′∑

iw(ui)
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Minimum Covariance Determinant (MCD)

Suppose that p = 2 for simplicity: Z = (X, Y ) ∈
IR2, with

Σ =

[
σ2
X σXY

σY X σ2
Y

]
=⇒ ρ =

σXY
σXσY

The generalized variance defined as:

det(Σ) = σ2
Xσ

2
Y − σ2

Y X

can be seen as a generalization of the variance.

T (X): mean of the 50% points of X for which

the determinant of the empirical covariance ma-

trix is minimal;

C(X): given by the same covariance matrix,

multiplied by a factor to obtain consistency

Properties:

• affin equivariant • BDP= 50%

• asymptotic normality (Butler et Jhun, 1988)
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S-estimators

• Classical estimators (tn, Cn) can be obtained

by minimizing det(C) under the constraint:

1

n

n∑
i=1

(
√

(xi − t)′C−1(xi − t))2 = p

∀(t, C) ∈ RP ×PSD(p) where PSD(p) is the

set of all symmetric and positive definite matrix

of dimension(p× p)

• S-estimators (tn, Cn) can be obtained by min-

imizing det(C) under the constraint:

1

n

n∑
i=1

ρ(
√

(xi − t)′C−1(xi − t)) ≤ b

∀(t, C) ∈ RP × PSD(p)
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Robust distances

RDi =
√

((xi − T (X))′C(X)−1(xi − T (X)))

where T (X) is a robust multivariate estimator

of location and C(X) is a robust estimator of

the covariance matrix

Idea: Represent graphically the robust distances.

Outliers can be detected by large distances.

How to find the cutoff ?? Suppose that

X ∼ Np(µ,Σ), then

Σ−1/2(X − µ) ∼ N(0, I)

It follows that ((xi−µ)′Σ−1(xi−µ)) is the sum

of p independent standardized normal squared

⇓
((xi − µ)′Σ−1(xi − µ)) ∼ χ2

p

The cut-off will be then approximated by the

squared root of the 0.975 quantile of the χ2
p



CHAPTER 3. A SHORT INTRODUCTION ON ROBUST STATISTICS 110



INTRODUCTION SHANGHAI SCORES CRITICISMS ACP ROBUSTNESS ALTERNATIVES CONCLUSION

QUANTIFYING ACADEMIC EXCELLENCE,
WHAT DO THE SHANGHAI RANKING

MEASURE ?

C. Dehon, A. McCathie & V. Verardi
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• Increased competition in Higher Education

⇓

emergence of multiple rankings

• The most widely reported university rankings are:

I Academic Ranking of World Universities (ARWU - Shanghai)

I THES-QS Ranking (Times Higher Education)

• We choose the ARWU: objective choice of variables and greater
transparency

⇒ OUR AIM: to find the underlying factors measured by ARWU

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE

QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?
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SHANGHAI RANKING (ARWU): VARIABLES AND WEIGHTS

I Alumni (10%): Alumni recipients of the Nobel prize or the
Fields Medal;

I Award (20%): Current faculty Nobel laureates and Fields
Medal winners;

I HiCi (20%): Highly cited researchers in 21 broad subject
categories;

I N&S (20%): Articles published in Nature and Science;

I PUB (20%): Articles in the Science Citation
Index-expanded, and the Social Science Citation Index;

I PCP (10%): The weighted score of the previous 5 indicators
divided by the number of full-time academic staff members..

http://www.arwu.org/rank/2008/ranking2008.htm

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE
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CRITICISM OF THE SHANGHAI RANKING:

I Limited scope despite the complexity of a university;

I Favours English-speaking countries;

I Very heavily biased towards science and technology subjects;

I Production versus efficiency: “Bigger is better”;

I Input variables not taken in consideration (Aghion et al,
2007);

I Highly sensitive due to the normalization step;

I Confidence intervals needed.

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE
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PRINCIPAL COMPONENT ANALYSIS on TOP 150

QUESTION: Can a single“indicator” accurately sum up research
excellence ?

GOAL: To determine the underlying factors measured by the
variables used in the Shanghai ranking

⇒ Principal component analysis

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE
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PRINCIPAL COMPONENT ANALYSIS

The first component accounts for 64% of the inertia and is given
by:
Φ1 = 0.42 ∗ Alumni + 0.44 ∗ Awards + 0.48 ∗ HiCi + 0.50 ∗ NS + 0.38 ∗ PUB

What does this component measure?? The quality of research??

Variable Corr(φ1, .)

Alumni 78%
Awards 81%

HiCi 89%
N&S 92%
PUB 70%

Total score 99%

BUT ...
C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE

QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?



INTRODUCTION SHANGHAI SCORES CRITICISMS ACP ROBUSTNESS ALTERNATIVES CONCLUSION

Harvard is an outlier ⇒ 18% of Φ1 is due solely to Harvard

The Top 10 universities account for over 60% of Φ1!
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DETECTION OF OUTLIERS - Robust distances:

RDi =
√

((xi − T (X ))′C (X )−1(xi − T (X )))
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ROBUST PCA based on RMCD ESTIMATORS
(Croux and Haesbroeck, 2000)

IDEA : Robustify matrix of correlations by working with robust
estimators (MCD, RMCD).

Suppose that p = 2 for simplicity: Z = (X ,Y ) ∈ IR2, with

Σ =

[
σ2

X σXY

σYX σ2
Y

]
=⇒ ρ =

σXY

σXσY

The generalized variance (Wilks, 1932) defined as:

det(Σ) = σ2
Xσ

2
Y − σ2

YX

can be seen as a generalization of the variance.
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Minimum Covariance Determinant Estimator (Rousseeuw, 1985):

MCD estimators Tn and Cn: For the sample {z1, . . . , zn}, select
that subsample {zi1 , . . . , zih} of size h (h ≤ n) with minimum
determinant of its covariance matrix. Then compute sample
covariance estimator over that subsample. Take h ≈ n

2 .

RMCD estimators are defined by

TR
n =

∑n
i=1 wizi∑n
i=1 wi

CR
n = c2

∑n
i=1 wi (zi − TR

n )(zi − TR
n )t∑n

i=1 wi

where c2 is a consistency constant and the weight are given by

wi =

{
1 si (zi − Tn)tC−1

n (zi − Tn) ≤ qδ

0 otherwise

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE
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Two underlying factors are uncovered:
•ΦR

1 explains 38% of inertia
•ΦR

2 explains 28% of inertia

But what do these two factors represent??

Variable Corr(φ1, .) Corr(φ2, .)

Alumni -20% 80%
Awards -25% 82%

HiCi 87% 7%
N&S 77% 22%
PUB 68% -1%

Total score 75% 64%

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE
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Highly sensitivity to the weights attributed to the variables ⇒
SCOREi = wi ∗ (Alumni + Award) + (1− wi ) ∗ (HiCi + N&S + PUB)

with wi = 0, 0.1, . . . , 1

Example 1: TOP 10
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Example 2: Some european universities
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USE RANKINGS WITH CAUTION!!

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE
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Chapter 4

Correspondence analysis (CA)

4.1 Introduction

•Method that displays and summarizes the in-

formation contained in a dataset with quali-

tative type of variables

• CA is conceptually similar to PCA

• Can be divided into 2 areas:

– Binary correspondence analysis (BCA): Tech-

nique that displays the rows and the columns

of a two-way contingency table

– Multiple correspondence analysis (MCA):

Extension of BCA to more than 2 variables

127
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Goals of BCA

Study the associations between the categories

of two qualitative variables using the two-way

contingency table:

2 qualitative (categorical) variables X and Y :

-X has J categories (or modalities): A1, . . . , AJ

- Y hasK categories (or modalities): B1, . . . , BK .

Examples

1. In education, can we suppose that the vari-

ables concerning work/study habits of stu-

dents (regularity and work during the exam)

are coherent?

2. In a research in education can we suppose

that the father’s level of education will tend

to be very close to the level of education of

the mother?
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For the students in ULB, the answer is positive:
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The methodology can be summed up

as follows:

• Step 1: Perform PCA on the table of row pro-

files where the Aj (j ∈ 1, . . . , J) play the role

of individuals and the Bk (k ∈ 1, . . . , K) the

role of variables

• Step 2: Perform PCA on the table of column

profiles where the Bk (k ∈ 1, . . . , K) play the

role of individuals and the Aj (j ∈ 1, . . . , J)

the role of variables

• Step 3: Study the links between both PCAs

• Step 4: Plot graphs to show the proximity be-

tween row profiles, the proximity between col-

umn profiles and put forward the relationship

between rows and columns.
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Generalization of PCA in two directions :

• The weight associated to each individual (cat-

egory) depends on the following frequencies:

– Step 1: the weight allocated to the individ-

ual (category) Aj is equal to the frequency

of this category (fj.)

– Step 2: the weight assigned to the individ-

ual (category) Bk is equal to the frequency

of this category (f.k)

• In PCA, the distance between observations

corresponds to Euclidean distance. In corre-

spondance analysis the distance between modal-

ities corresponds to chi square type of dis-

tance
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4.2 Example

Survey on 1000 workers:

• Variable X : “Diploma”

3 categories: A1, A2, A3 (Primary school, High

school, University)

• Variable Y : “Salary”

3 categories: B1, B2, B3 (low, middle, high)

Two-way contingency table:

njk B1 B2 B3 nj.

A1 150 40 10 200

A2 190 350 60 600

A3 10 110 80 200

n.k 350 500 150 1000
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Notations

2 qualitative (categorical) variables X and Y :

-X has J categories (or modalities): A1, . . . , AJ

- Y hasK categories (or modalities): B1, . . . , BK .

A sample of size is n leads to the following two-

way contingency table:

X|Y B1 . . . Bk . . . BK
∑K
k=1

A1 n11 . . . n1k . . . n1K n1.

· · · · · · · · · · · · · · · · · ·
Aj nj1 . . . njk . . . njK nj.

· · · · · · · · · · · · · · · · · ·
AJ nJ1 . . . nJk . . . nJK nJ.∑J
j=1 n.1 . . . n.k . . . n.K n

where njk counts the number of individuals that

are in category Aj for the variable X and in

category Bk for the variable Y

Remark: nj. =
∑K
k=1 njk et n.k =

∑J
j=1 njk
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4.3 Explonatory analysis

Two-way contingency table of relative frequencies F :

Proportion of individuals that belong to cate-

gory Aj for the variable X and into category

Bk for the variable Y

fjk =
njk
n

(j = 1 . . . , J ; k = 1, . . . , K).

fjk B1 B2 B3 fj.

A1 0.15 0.04 0.01 0.20

A2 0.19 0.35 0.06 0.60

A3 0.01 0.11 0.08 0.20

f.k 0.35 0.50 0.15 1

The marginal frequencies are given by:

fj. =
nj.
n

(j = 1 . . . , J)

and

f.k =
n.k
n

(k = 1, . . . , K).
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To formalize the notion of independence between

the two variables X and Y, let us consider that:

fjk is the estimation of

πjk = P (X ∈ Aj, Y ∈ Bk)

fj. is the estimation of πj. = P (X ∈ Aj)

f.k is the estimation of π.k = P (Y ∈ Bk)
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Tables of conditional frequencies:

• Table of row profiles:

Proportion of individuals that belong to cate-

gory Bk for the variable Y among the individ-

uals that have the modality Aj for the variable

X :

fk|j =
njk
nj.

=
njk/n

nj./n
=
fjk
fj.

(j fixed; k = 1, . . . , K).

fk|j is the estimation of P (Y ∈ Bk|X ∈ Aj)

fjk
fj.

B1 B2 B3

A1 0.75 0.20 0.05 1

A2 0.32 0.58 0.10 1

A3 0.05 0.55 0.40 1

f.k 0.35 0.50 0.15 1
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• Table of column profiles:

Proportion of individuals that belong to cate-

gory Aj for the variable X among the individ-

uals that have the modality Bk for the variable

Y :

fj|k =
njk
n.k

=
njk/n

n.k/n
=
fjk
f.k

(j = 1, . . . , J ; kfixed).

fj|k is the estimation of P (X ∈ Aj|Y ∈ Bk)

fjk
fj.

B1 B2 B3 fj.

A1 0.43 0.08 0.07 0.20

A2 0.54 0.70 0.40 0.40

A3 0.03 0.22 0.53 0.20

1 1 1 1
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Independence between X and Y

• Two random variables X and Y are indepen-

dent iff ∀j ∈ {1, . . . , J} and ∀k ∈ {1, . . . , K}:
a)P (X ∈ Aj, Y ∈ Bk) = P (X ∈ Aj)P (Y ∈ Bk)

b)P (Y ∈ Bk|X ∈ Aj) = P (Y ∈ Bk)

c)P (X ∈ Aj|Y ∈ Bk) = P (X ∈ Aj)

• At the sample level, these equalities can be

estimated by:

a )fjk ≈ fj.f.k ∀j ∈ {1, . . . , J} ∀k ∈ {1, . . . , K}
b )fk|j =

fjk
fj.
≈ f.k ∀j, ∀k

c )fj|k =
fjk
f.k
≈ fj. ∀j, ∀k.
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We can therefore define the theoretical frequen-

cies and relative frequencies under the assump-

tion of independence as follows:

f∗jk = fj.f.k and n∗jk = nf∗jk =
nj.n.k
n

Observed frequencies

njk B1 B2 B3 nj.

A1 150 40 10 200

A2 190 350 60 600

A3 10 110 80 200

n.k 350 500 150 1000

Theoretical frequencies under independence

n∗jk B1 B2 B3 nj.

A1 70 100 30 200

A2 210 300 90 600

A3 70 100 30 200

n.k 350 500 150 1000
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Observed relative frequencies

fjk B1 B2 B3 fj.

A1 0.15 0.04 0.01 0.20

A2 0.19 0.35 0.06 0.60

A3 0.01 0.11 0.08 0.20

f.k 0.35 0.50 0.15 1

Theoretical relative frequencies under indepen-

dence

f∗jk B1 B2 B3 fj.

A1 0.07 0.10 0.03 0.20

A2 0.21 0.30 0.09 0.60

A3 0.07 0.10 0.03 0.20

f.k 0.35 0.50 0.15 1
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Attraction/repulsion matrix D

• The element jk of the Attraction/repulsion

matrix D (J ×K) is defined by:

djk =
njk
n∗jk

=
fjk
f∗jk

=
fjk
fj.f.k

• Interpretations:

djk > 1 ⇐⇒ fjk > fj.f.k

fjk > fj.f.k ⇐⇒ fk|j > f.k and fj|k > fj.

→ The modalities (categories) Aj and Bk are

attracted to each other

djk < 1 ⇐⇒ fjk < fj.f.k

fjk < fj.f.k ⇐⇒ fk|j < f.k and fj|k < fj.

→ The modalities (categories) Aj and Bk are

repulse to each other
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Example

fjk B1 B2 B3 f∗jk B1 B2 B3

A1 0.15 0.04 0.01 A1 0.07 0.10 0.03

A2 0.19 0.35 0.06 A2 0.21 0.30 0.09

A3 0.01 0.11 0.08 A3 0.07 0.10 0.03

djk B1 B2 B3

A1 2.14 0.40 0.33

A2 0.90 1.16 0.67

A3 0.14 1.10 2.67

• High salary is more frequent for people with

university diploma

• High salary is less frequent for people with at

most a primary diploma

• Low salary is less frequent for people with

university diploma

• . . .
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Measures of association

• The χ2 statistic:

Conditions for application:

n ≥ 30

n∗jk ≥ 1 ∀j, k
at least 80% of n∗jk ≥ 5

If these conditions are not met =⇒ group classes

(modalities).

Statistic of test:

χ2 =

J∑
j=1

K∑
k=1

(njk − n∗jk)2

n∗jk

Reject the null hypothesis (independence be-

tween X and Y ) at the level α% if

χ2 > χ2
(J−1)(K−1);1−α
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• The statistic φ2 = χ2

n :

φ2 =

J∑
j=1

K∑
k=1

(fjk − f∗jk)2

f∗jk
=

J∑
j=1

K∑
k=1

(
njk
n −

n∗jk
n )2

n∗jk
n

Remark: Using weights for the attraction/repulsion

indices (
∑J
j=1

∑K
k=1 f

∗
jk = 1):

d̄ =

J∑
j=1

K∑
k=1

f∗jkdjk =

J∑
j=1

K∑
k=1

f∗jk
fjk
f∗jk

=

J∑
j=1

K∑
k=1

fjk = 1

s2
d =

J∑
j=1

K∑
k=1

f∗jk(djk − 1)2 =
χ2

n
= φ2

=⇒ The dispersion of the attraction/repulsion

indices (around the mean) is given by φ2
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4.4 Analysis of row profiles

The point cloud ℵl of row profiles

• At each line Aj of the table of row profiles is

associated a point Lj in IRK with coordinates:

l
¯j

= (f1|j, . . . , fk|j, . . . , fK|j)′.

• A weight fj. (% of individuals that have the

modality Aj) is associated with the row profile

l
¯j

(j ∈ {1, . . . , J})

=⇒ The point cloud ℵl of observations in IRK

contains J weighted row profiles:

ℵl = {(L1; f1.), (L2; f2.), . . . , LJ ; fJ.)}.
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Center of gravity of ℵl
The coordinates of the center of gravity are given

by a weighted mean of the J row profiles:

g
¯l

=

J∑
j=1

fj. l
¯j

Consequently, the coordinate k of gl is :

J∑
j=1

fj.fk|j =

J∑
j=1

fj.
fjk
fj.

=

J∑
j=1

fjk = f.k

⇓
g
¯l

= (f.1, . . . , f.K)′

The center of gravityGl of the J (weighted) row

profiles is equal to the marginal profile ( % of

individuals having the modality Bk).
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The χ2 distance in IRK

• Definition: The χ2 distance in IRK between

two pointsX and Y with coordinates (x1, . . . , xK)

and (y1, . . . , yK) is given by:

d2
χ2(X, Y ) =

K∑
k=1

(xk − yk)2

f.k

The euclidian distance gives the same weight to

each column. The χ2 distance gives the same

relative importance to each column proportion-

ally to the frequency Bk
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Total inertia of ℵl
Total inertia based on the χ2 distance and the

weighted row profiles in IRK :

Iχ2(ℵl, Gl) =

J∑
j=1

fj.d
2
χ2(Lj, Gl)

=

J∑
j=1

fj.

K∑
k=1

1

f.k
(fk|j − f.k)2

=

J∑
j=1

fj.

K∑
k=1

1

f.k
(
fjk
fj.
− f.k)2

=

J∑
j=1

K∑
k=1

fj.
f.k

(
fjk − fj.f.k

fj.
)2

=

J∑
j=1

K∑
k=1

(fjk − f.kfj.)2

fj.f.k

= φ2 =
χ2

n

=⇒ This explains why this distance is called the

chi square distance!
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Interpretation of the inertia :

• It measures the dependence between the two

qualitative variables X and Y

• This measure is independent of the sample

size n

• Iχ2(ℵl, Gl) = 0 means that all row profiles

L1, . . . , LJ are equal to the center of gravity

Gl:

∀k ∈ {1, . . . , K} et ∀j ∈ {1, . . . , J}
fk|j = f.k
fjk
fj.

= f.k

fjk = fj.f.k

leading to the independence of X and Y .
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4.5 Step 1: PCA on the row profiles ℵl

Same methodology than PCA applied to quan-

titative variables with two modifications:

• The weights of “individuals (categories)” are

not the same: the weight of Aj is equal to fj.

• The distance used to measure the proximity

between two “individuals” is the χ2 distance.

⇓
The PCA is not directly applied to the initial

point cloud ℵl:
ℵl = {(L1, f1.), . . . , (LJ , fJ.)}

but on a normalized point cloud ℵ∗l :
ℵ∗ = {(L∗1, f1.), . . . , (L

∗
J , fJ.)}

where the coordinates of L∗j are given by:

l
¯
∗
j = (

fj1

fj.
√
f.1
−
√
f.1, . . . ,

fjK

fj.
√
f.K
−
√
f.K)′

The center of gravity of ℵ∗l is the origin
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First projecting direction ∆1

The first projecting direction ∆1 is the direction

passing through the origin that “fits in an opti-

mal way” the point cloud ℵ∗l in terms of inertia:

I(ℵ∗l ,∆1) = min
∆:direction through the origin

I(ℵ∗l ,∆)

where I(ℵ∗l ,∆) =
∑J
j=1 fj.d

2(L∗l , P∆(L∗j)).

Problem: Find the direction given by the vector

u1 such that I(0, P∆1
(L∗j)) is maximized:

max

J∑
j=1

fj.d
2(0, P∆1

(L∗j))

under the constriant

‖u1‖ = 1
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It is again a problem of maximization under con-

straint, and as in PCA, the solution is given by

the eigenvalues and eigenvectors of the matrix:

V =

J∑
j=1

fj.l¯
∗
j(l¯
∗
j)
′

=⇒ u1 is the eigenvector associated with the

largest eigenvalue λ1 = I(0, P∆1
(L∗j)).

Note that the element (k, k′) of the matrix V (K×
K) is given by :

vkk′ =

J∑
j=1

(
fjk − fj.f.k√

fj.f.k

)(
fjk′ − fj.f.k′√

fj.f.k′

)
which yields V = X ′X with elements of X(J×
K) given as:

xjk =
fjk − fj.f.k√

fj.f.k
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First principal component

To create the first principal component Φ1, the

point cloud ℵ∗l is projected on ∆1:

P∆1
(ℵ∗l ) = {P∆1

(L∗1), . . . , P∆1
(L∗J)}.

The coordinate for each point associated with

modality Aj (∀j = 1, . . . , J) is given by:

φ1,j = ‖OP∆1
(L∗j)‖ =< OL∗j , u1 >=

K∑
k=1

u1,k(l
¯
∗
j)k

= u1,1(l
¯
∗
j)1 + u1,2(l

¯
∗
j)2 + . . . + u1,K(l

¯
∗
j)K

Then φ1,j is the value of the row profile j (as-

sociated with Aj) on the first principal compo-

nent.

It can be proven that

• φ1 is centered:
∑J
j=1 fj.φ1,j = 0

• the variance of φ1 is equal to λ1
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Global quality of the first principal com-

ponent

Using the decomposition of total inertia, it can

be shown that the percentage of inertia that is

kept by projecting on ∆1 is given by :

λ1

φ2
since I(ℵ∗l , 0) = I(ℵ∗l ,∆1) + I(0, P∆1

(L∗j))

Contribution of modality Aj (j = 1, . . . , J)

Knowing that

λ1 = s2
φ1

=

J∑
j=1

fj.φ
2
1,j =

J∑
j=1

fj.d
2(0, P∆1

(L∗j))

the contribution of the modality Aj is given by:

CTRλ1
(Aj) =

fj.φ
2
1,j

λ1
.

=⇒ The interpretation of φ1 is mainly based on

modalities Aj that have a high contribution
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Quality of representation on the first

axis

The quality of representation of the row pro-

file L∗j on the first axis ∆1 is measured by the

squared cosine of the angle formed by the vector

OL∗j and the axis ∆1:

cos2(OL∗j ,∆1) =

(
< OL∗j , u1 >

‖OL∗j‖‖u1‖

)2

=
φ2

1,j

‖OL∗j‖2
.

This formula does not contain the weight fj.

=⇒ one modality can be:

• close to the axis ∆1 and and therefore be well

represented (well explained)

• because of a low weight fj. , it can have a low

contribution to the axis
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Extended dimensions

The second projecting axis ∆2 is defined by the

vector u2:

• through the origin (the center of gravity)

• orthogonal to u1 (u2⊥u1)

• minimizing the residual inertia

=⇒ u2 is the eigenvector of V associated to the

second largest eigenvalues λ2.

In the same way, we can find the other project-

ing axis ∆3,∆4, . . .
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How many principal components ?

ℵ∗l is contained in a space of dimension

H ≤ min(J − 1, K − 1)

where H is equal to the rank of the matrix V

(K ×K)

⇓
at most H orthogonal projecting directions
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4.6 Step 2: PCA on the column profiles ℵc

The previous results and definitions based on

the point cloud ℵl are directly transposable to

the point cloud ℵc of column profiles

The point cloud ℵc in IRJ of the K column

profiles is defined by:

ℵc = {(C1; f.1), (L2; f.2), . . . , (CK ; f.K)}
where the point Ck in IRJ has coordinates:

c
¯k

= (f1|k, . . . , fj|k, . . . , fJ |k)′.

Instead of working directly with this point cloud,

we prefer to transform it such that the center of

gravity is the origin:

ℵ∗c = {(C∗1 , f.1), . . . , (C∗K, f.K)}
where C∗j has the coordinates:

c
¯
∗
j = (

f1|k√
f1.
−
√
f1., . . . ,

fJ |k√
fJ.
−
√
fJ.)
′
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Projecting directions

The projecting directions Γ1, . . . ,ΓH of ℵ∗c are

defined by the orthogonal eigenvectors v1, . . . , vH

of the matrix

W = XX ′

associated with H(= min(J − 1, K − 1)) non

zero eigenvalues λ1, . . . , λH . v1 is associated

with the largest eigenvalue, . . .

The elements of the matrix X(J ×K) are de-

fined as:

xjk =
fjk − fj.f.k√

fj.f.k

The eigenvalues of W are the same as the eigen-

values of V
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Principal components

The principal components ψ1, . . . , ψH are de-

fined by ∀k = 1, . . . , K::

ψh,k = ‖OPΓh
(C∗k)‖ =< OC∗k , vh >=

J∑
j=1

vh,j(c¯
∗
k)j

= vh,1(c
¯
∗
k)1 + vh,2(c

¯
∗
k)2 + . . . + vh,J(c

¯
∗
k)J

Properties of principal components ψ1, ψ2, . . . , ψH

∀h ∈ {1, . . . , H}:
• Principal components are centered:

J∑
j=1

fj.ψh,j = 0

• The variance of ψh is given by λh

• Principal components are uncorrelated.
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Global quality of Γh

The percentage of inertia that is kept when pro-

jecting on Γh is given by

λh
φ2

Contribution of modality Bk, j = 1, . . . , J

Knowing that

λh = s2
ψh

=

K∑
k=1

f.kψ
2
h,k

the contribution of the modality Bk is given by:

CTRλh(Bk) =
f.kψ

2
h,k

λh
.

Quality of the representation of C∗k on

Γh

cos2(OC∗k ,Γh) =

(
< OC∗k , vh >
‖OC∗k‖‖vh‖

)2

=
ψ2
h,k

‖OC∗k‖2
.
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4.7 Step 3: Links between both PCAs

The analysis of point cloud ℵ∗c could be deduced

from the analysis of point cloud ℵ∗l and vice

versa.

=⇒ The possibility to study the associations

between the two variables is due to the links

between the two analysis.
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Row profiles ℵ∗l : IRK Column profiles ℵ∗c : IRJ

(λh, uh) where h = 1, . . . , H (λh, vh) where h = 1, . . . , H

are the eigenvalues and the eigenvectors of

V = X ′X W = XX ′

leading to the relations

V uh = λhuh Wvh = λhvh

Hence we have

X ′Xuh = λhuh XX ′vh = λhvh

XX ′Xuh = λhXuh X ′XX ′vh = λhX
′vh

WXuh = λhXuh V X ′vh = λhX
′vh

=⇒
Xuh eigenvector of W X ′vh eigenvector of V

The norm of these vectors is given by

‖Xuh‖ =
√
λh ‖X ′vh‖ =

√
λh

the normed eigenvectors associated to λh are:
1√
λh
Xuh

1√
λh
X ′vh

To conclude, we have the following relations:

vh = 1√
λh
Xuh uh = 1√

λh
X ′vh
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These relations between both PCA leads (after

some developments) to a relation between the

attraction/repulsion index and the coordinates

of modalities in the two new system.

The distance for the couple (Aj, Bk) to the in-

dependence situation is measured by:

⇒ fjk
fj.f.k

= 1 +

H∑
h=1

1√
λh
φh,jψh,k

⇒ djk = 1 +

H∑
h=1

1√
λh
φh,jψh,k

⇓
We can visualize graphically the attraction/repulsion

indices using the first principal plan (in a first

approximation)
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4.8 Graphical representations

4.8.1 Pseudo-barycentric representation

Superposition of both PCAs:

- the point cloud of row profiles ℵ∗l is projected

on the first factorial plan (∆1,∆2)

- the point cloud of column profiles ℵ∗c is pro-

jected on the first factorial plan (Γ1,Γ2)

=⇒ Simultaneous representation of the modal-

ities {A1, . . . , AJ} and {B1, . . . , BK}

The modality Aj is associated to A∗j which has

coordinates (φ1,j, φ2,j)
′ and the modality Bk is

associated toB∗k which has coordinates (ψ1,k, ψ2,k)′.
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Interpretation of projections on ∆1,Γ1

If cos2(OL∗j ,∆1) is close to one =⇒ the profil

L∗j is close to its projection P∆1
(L∗j) on ∆1

=⇒ l
¯
∗
j =

H∑
h=1

φh,ju¯h
=⇒ l

¯
∗
j ≈ φ1,ju¯1

This implies that ∀k ∈ {1, . . . , K}:
djk =

fjk
fj.f.k

≈ 1 +
1√
λ1
φ1,jψ1,k.

We can therefore say that:

- The modalities Aj and Bk are attracted to

each other (djk > 1)

if φ1,j > 0 and ψ1,k > 0

if φ1,j < 0 and ψ1,k < 0

- The modalities Aj and Bk are repulse each

other (djk < 1)

if φ1,j > 0 and ψ1,k < 0

if φ1,j < 0 and ψ1,k > 0
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Interpretation of the first principal map

If cos2(OL∗j , (∆1,∆2)) is close to one =⇒ the

profil L∗j is close to its projection P(∆1,∆2)(L
∗
j)

=⇒ l
¯
∗
j =

H∑
h=1

φh,ju¯h
=⇒ l

¯
∗
j ≈ φ1,ju¯1 + φ2,ju¯2

This implies that ∀k ∈ {1, . . . , K}:
djk =

fjk
fj.f.k

≈ 1+
1√
λ1
φ1,jψ1,k+

1√
λ2
φ2,jψ2,k.

Therefore:

- The modalities Aj and Bk are attracted to

each other (djk > 1) if A∗j and B∗k ∈ are belong

to the same quadrant

- The modalities Aj and Bk are repulse each

other (djk < 1) if A∗j and B∗k ∈ are in opposite

quadrants

- We cannot conclude if A∗j and B∗k ∈ belong to

adjacent quadrants.
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Pas de conclusion

Aj*

Bj*

If a modality A∗j is well represented on the

first factorial plan, it is possible to determine

graphically whether this modality is attracted

or repulsed by some modalities Bk
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4.8.2 Barycentric representation

In case of uncertainty about the attraction/repulsion

between modalities, this representation can give

an answer:

The attraction/repulsion indices are given by:

djk = 1 +

H∑
h=1

1√
λh
φh,jψh,k

=⇒ we are going to use the standardized prin-

cipal components ψ̃h instead of ψh:

ψ̃h =
ψh√
λh
.

=⇒ Superposition of both PCAs:

- the row profile Aj is associated to A∗j which

has coordinates (φ1,j, φ2,j)
′

- the column profile Bk is associated to B̃∗k
which has coordinates (ψ̃1,k, ψ̃2,k)′ = (

ψ1,k√
λ1
,
ψ2,k√
λ2

)′
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Interpretation for the first factorial plan

If a modality A∗j is well represented on the

first principal plan ∆1,∆2:

djk ≈ 1 + φ1,jψ̃1,k + φ2,jψ̃2,k

≈ 1+ < OA∗j , OB̃∗k >

where< ., . > is the usual scalar product in IR2

We can therefore say that:

The modalities Aj and Bk are attracted to each

other (djk > 1) if the angle between OA∗j and

OB̃∗k is acute (< OA∗j , OB̃∗k > is therefore pos-

itive)

The modalitiesAj andBk are repulse each other

(djk < 1) if the angle between OA∗j and OB̃∗k
is obtuse (< OA∗j , OB̃∗k > is therefore negative)
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Examples where no conclusion can be drawn

with the pseudo-barycentric representation. But

with the barycentric representation, the rule is:

Draw A⊥j which passes through the origin and

which is orthogonal to OA∗j . This line separates

the space into two parts: the modalities Bk that

are on the same side than A∗j are attracted by

it and the modalities on the other side are re-

pulsed by A∗j .
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4.8.3 Biplot

The angles between the modalities and the fac-

tors yield most of the information. We therefore

introduce a new variable where the coordinates

of row profiles are divided by
√
λ1. This leads

to a better visibility of the first principal plan.

=⇒ Simultaneous representation of the modal-

ities {A1, . . . , AJ} and {B1, . . . , BK} in the

first principal map:

- The modalityAj is associated to Ã∗j which

has coordinates (φ̃1,j, φ̃2,j)
′ = (

φ1,j√
λ1
,
φ2,j√
λ1

)′.

- The modalityBk is associated to B̃∗k which

has coordinates (ψ̃1,k, ψ̃2,k)′ = (
ψ1,k√
λ1
,
ψ2,k√
λ2

)′.

This type of standardization is called BIPLOT.
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Chapter 5

Multiple correspondence analysis

(MCA)

• Extension of BCA to more than 2 variables.

• Goal: Analysis of a table n× P of “individu-

als × qualitative variables”.

• Method: apply BCA to a table called “com-

plete disjunctive table”.

174
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5.1 Data, tables and distances

5.1.1 The complete disjunctive table

Example

4 individuals: n = 4

3 variables: P = 3

• Y1: gender−→ 2 modalities: K1 = 2 (male=1,

female=2)

• Y2: civil status −→ 3 modalities: K2 = 3

(single=1, married=2, divorced or widower=3)

• Y3: level of education→ 2 modalities: K3 =

2 (primary or secondary school=1, higher or

university diploma=2)

K = K1 + K2 + K3 = 2 + 3 + 2 = 7.
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Logic table (the modalities are coded)

n|P Y1 Y2 Y3

1 2 1 1

2 2 1 2

3 1 3 2

4 2 2 1

Complete disjunctive table (CDT)

X1 X2 X3

X11 X12 X21 X22 X23 X31 X32 P

1 0 1 1 0 0 1 0 3

2 0 1 1 0 0 0 1 3

3 1 0 0 0 1 0 1 3

4 0 1 0 1 0 1 0 3

npl 1 3 2 1 1 2 2 12
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Notations:

• n individuals, P variables: Y1, . . . , YP

• The variable Yp has Kp modalities =⇒ K =∑P
p=1Kp total number of modalities in the

dataset

• npl number of individuals having the modal-

ity l for the variable Yp

• xipl = 1 if individual i has modality l of Yp,

0 otherwise

•Xpl is a dummy (binary) variable which is

associated with modality l of Yp

•Xp = (Xp1, . . . , XpKp
) vectors of dummy

variables of Yp

The following relations hold:

Kp∑
l=1

npl = n and

P∑
p=1

Kp∑
l=1

npl = nP
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Table of dummy variables Xp associated to Yp:

1 . . . l . . . Kp
∑Kp

l=1

1 x1p1 . . . x1pl . . . x1pKp
1

... ... ... ... ... ...

i xip1 . . . xipl . . . xipKp
1

... ... ... ... ... ...

n xnp1 . . . xnpl . . . xnpKp
1∑n

i=1 np1 . . . npl . . . npKp
n

Complete disjunctive table X = (X1, . . . , XP ):

x 1 . . . p . . . P
∑P

p=1

∑Kp

l=1

1 . . . . . . P
... ... ... ... ... ...

i x1(n×K1) . . . xp(n×Kp) . . . xP (n×KP ) P
... ... ... ... ... ...

n . . . . . . P∑n
i=1 nP
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5.1.2 Row and column profiles, attraction/repulsion indices

MCA on Y1, . . . , YP = BCA on the complete

disjunctive table.

Relative frequencies of the complete disjunctive

table:

Y1 . . . Yp . . . YP

1 . . . l . . . K1 . . . 1 . . . l . . . Kp . . . 1 . . . l . . . KP

1 . . . . . . 1
n

... . . . . . . 1
n

i . . . fipl =
xipl

nP . . . 1
n

... . . . . . . 1
n

n . . . . . . 1
n

. . . f.pl =
npl

nP . . . 1

where the marginal relative frequencies are given

by:

fi.. =
1

n
and f.pl =

npl
nP
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Row profiles Li of individual i: li(1×K)

⇒ the coordinate pl of the row profile i:

(l
¯i

)pl =
fipl
fi..

=
xipl/nP

1/n
=
xipl
P

∀p = 1, . . . , P ; l = 1, . . . , Kp

Column profile Cpl associated to the

modality l of Yp:

cpl(n× 1)

⇒ the coordinate i of the column profile pl:

(c
¯pl

)i =
fipl
f.pl

=
xipl/nP

npl/nP
=
xipl
npl

∀i = 1, . . . , n.

Notations

(l
¯i

)pl : coordinate pl of the row profile i

(c
¯pl

)i : coordinate i of the column profile pl
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Example

• Row profiles table:

X1 X2 X3

X11 X12 X21 X22 X23 X31 X32

1 0 1
3

1
3 0 0 1

3 0 1

2 0 1
3

1
3 0 0 0 1

3 1

3 1
3 0 0 0 1

3 0 1
3 1

4 0 1
3 0 1

3 0 1
3 0 1

1
12

3
12

2
12

1
12

1
12

2
12

2
12 1

• Column profiles table:

X1 X2 X3

X11 X12 X21 X22 X23 X31 X32

1 0 1
3

1
2 0 0 1

2 0 1
4

2 0 1
3

1
2 0 0 0 1

2
1
4

3 1 0 0 0 1 0 1
2

1
4

4 0 1
3 0 1 0 1

2 0 1
4

1 1 1 1 1 1 1 1



CHAPTER 5. MULTIPLE CORRESPONDENCE ANALYSIS (MCA) 182

Attraction/repulsion indices between in-

dividual i and modality l of Yp:

di,pl =
fipl
fi..f.pl

=

xipl
nP

1
n
npl
nP

=
xipl
npl/n

As xipl = {0, 1} and npl/n ≤ 1, we have that

di,pl = 0 if xipl = 0

di,pl =
n

npl
≥ 1 if xipl = 1

Interpretation: If one individual i has the

modality l of the variable Yp, then the at-

traction/repulsion index di,pl increases as the

modality l of the variable Yp becomes rare

(npl small).
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5.1.3 Point cloud and distances between row profiles

Point cloud

- n row profiles L1, . . . , Ln

- in IRK where K =
∑P
p=1Kp

- with weight 1/n

- and the χ2 distance.

The center of gravity Gl has coordinate pl (p =

1, . . . , P ; l = 1, . . . , Kp) given by:

n∑
i=1

1

n
(l
¯i

)pl =
1

nP

n∑
i=1

xipl =
npl
nP

=⇒Gl is the marginal profile (marginal relative

profile)
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Properties

• Distance between individuals (row profiles)

d2
χ2(Li1, Li2) =

P∑
p=1

Kp∑
l=1

1

f.pl
((l

¯i1
)pl − (l

¯i2
)pl)

2

=

P∑
p=1

Kp∑
l=1

1
npl
nP

(
xi1pl
P
− xi2pl

P
)2

=
n

P

P∑
p=1

Kp∑
l=1

1

npl
(xi1pl − xi2pl)2

Interpretation:

The distance between 2 individuals is small

if they have many modalities that are the

same.
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Example

Distance between individual 1 (female, sin-

gle with primary or secondary diploma) and

2 (female, single with a higher or university

formation):

d2
χ2(L1, L2) =

3∑
p=1

Kp∑
l=1

1

f.pl
((l

¯1)pl − (l
¯2)pl)

2

= 12(0− 0)2 +
12

3
(
1

3
− 1

3
)2

+
12

2
(
1

3
− 1

3
)2 +

12

2
(0− 0)2 + 12(0− 0)2

+ 6(
1

3
− 0)2 + 6(0− 1

3
)2 =

4

3
= 1.33

Another way to compute it:

d2
χ2(L1, L2) =

n

P

3∑
p=1

Kp∑
l=1

1

npl
(xi1pl − xi2pl)2

=
4

3
(1(0− 0)2 +

1

3
(1− 1)2

+
1

2
(1− 1)2 + 1(0− 0)2 + 1(0− 0)2

+
1

2
(1− 0)2 +

1

2
(0− 1)2) =

4

3
= 1.33
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Matrix of distances and matrix of squared

distances between individuals (row profiles)

d2
χ2(Li, Lj) L1 L2 L3 L4

L1 - 1.33 5.11 2.00

L2 1.33 - 3.78 3.33

L3 5.11 3.78 - 5.78

L4 2.00 3.33 5.78 -

dχ2(Li, Lj) L1 L2 L3 L4

L1 - 1.15 2.26 1.41

L2 1.15 - 1.94 1.83

L3 2.26 1.94 - 2.40

L4 1.41 1.83 2.40 -

Conclusions

• individuals 1 and 2 are close to each

other (both are female and single)

• individuals 1 and 3 are very different

(all the modalities between those individ-

uals are different).
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• Distance between the row profile Li and the
center of gravity:

d2
χ2(Li, Gl) =

P∑
p=1

Kp∑
l=1

1

f.pl
((l

¯i
)pl − npl

nP
)2

=

P∑
p=1

Kp∑
l=1

nP

npl
(
xipl
P
− npl
nP

)2

=

P∑
p=1

Kp∑
l=1

n

Pnpl

(
x2
ipl +

n2
pl

n2
− 2xipl

npl
n

)

=
n

P

P∑
p=1

Kp∑
l=1

xipl
npl

+
1

nP

P∑
p=1

Kp∑
l=1

npl − 2

P

P∑
p=1

Kp∑
l=1

xipl

=
n

P

P∑
p=1

Kp∑
l=1

xipl
npl

+
1

nP
nP − 2

P
P

=
n

P

P∑
p=1

Kp∑
l=1

xipl
npl
− 1

=⇒ The distance between the individual i

and the center of gravity Gl increases as

the modalities taking by the individual i

becomes rare (xipl = 1 and npl small).



CHAPTER 5. MULTIPLE CORRESPONDENCE ANALYSIS (MCA) 188

• Total inertia of point cloud ℵl around Gl:

Iχ2(ℵl, Gl) =

n∑
i=1

fi..d
2
χ2(Li, Gl)

=

n∑
i=1

1

n

n

P

P∑
p=1

Kp∑
l=1

xipl
npl
− 1


=

1

P

P∑
p=1

Kp∑
l=1

n∑
i=1

xipl
npl
− 1

n

n∑
i=1

1

=
1

P

P∑
p=1

Kp∑
l=1

npl
npl
− 1

n

n∑
i=1

1

=
K

P
− 1

where K
P is the average number of modalities

by variables ⇓
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The total inertia depends only on the num-

ber of variables and on the number of modal-

ities. It does not depend at all on the re-

lations between the variables. From a sta-

tistical point of view, this quantity cannot

be interpreted (as in PCA).

• ∀i ∈ {1, . . . , n} the row profile l
¯i

satisfies the

P linear constraints:

Kp∑
l=1

(li)pl =

Kp∑
l=1

xipl
P

=
1

P
p = 1, . . . , P

=⇒ the point cloud ℵl is inside a sub-space

of at most K − P dimensions.
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5.1.4 Point cloud and distances between column profiles

Point cloud

- K =
∑P
p=1Kp column profiles Cpl

- in IRn

- with weight f.pl =
npl
nP

- and the χ2 distance.

The ith coordinate of the center of gravity Gc

is given by:

P∑
p=1

Kp∑
l=1

f.pl(c¯pl
)i =

P∑
p=1

Kp∑
l=1

npl
nP

xipl
npl

=
1

n

=⇒Gc is the marginal profile (marginal relative

profile)
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Properties

• Distance between modalities (column profiles)

The χ2 distance between modality l1 of vari-

able Yp1 and modality l2 of variable Yp2 is:

d2
χ2(cp1l1, cp2l2) =

n∑
i=1

1

fi..
((c

¯p1l1)i − (c
¯p2l2)i)

2

=

n∑
i=1

1
1
n

(
xip1l1

np1l1
− xip2l2

np2l2
)2

= n

n∑
p=i

(
xip1l1

np1l1
− xip2l2

np2l2
)2

Interpretation:

- if the same individuals take these 2 modal-

ities, the distance between the 2 modalities

is small

- if a modality is rare, it is far away from

the other modalities.
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Example

Distance between modality 1 of Y1 (male)

and 2 of Y2 (married):

d2
χ2(c11, c22) =

n∑
i=1

1

fi..
((c11)i − (c22)i)

2

= 4
(

(0− 0)2 + (0− 0)2 + (1− 0)2 + (0− 1)2
)

= 8

dχ2(, ) 11 12 21 22 23 31 32

11 - 2.31 2.45 2.83 0 2.45 1

12 - 0.67 0.94 2.31 0.67 1.37

21 - 2.45 2.45 1.41 1.41

22 - 2.83 1 2.45

23 - 2.45 1

31 - 2

32 -

- “12” and “21” are close to each other (50%

of individuals have chosen these two modali-

ties)
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• Distance between the column profile Cpl and

the center of gravity:

d2
χ2(Cpl, Gc) =

n∑
i=1

n((c
¯pl

)i −
1

n
)2

=

n∑
i=1

n(
xipl
npl
− 1

n
)2

=

n∑
i=1

n
x2
ipl

n2
pl

+

n∑
i=1

n
1

n2
− 2

n∑
i=1

xipl
npl

=
n

n2
pl

n∑
i=1

xipl + 1− 2

npl

n∑
i=1

xipl

=
n

npl
− 1

=⇒ The distance between the modality l of

Yp and the center of gravity Gc increases

as the modality becomes more rare (npl small).
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• Total inertia of point cloud ℵc around Gc:

Iχ2(ℵc, Gc) =

P∑
p=1

Kp∑
l=1

f.pld
2
χ2(Cpl, Gc)

=

P∑
p=1

Kp∑
l=1

npl
nP

(
n

npl
− 1)

=

P∑
p=1

Kp∑
l=1

1

P
(1− npl

n
)

=

P∑
p=1

1

P
(Kp − 1) =

1

P
(K − P )

=
K

P
− 1

Notice that Iχ2(ℵc, Gc) = 1 if all the vari-

ables have exactly two modalities.
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• Contribution of the modality l of the variable

Yp to the total inertia of the point cloud ℵc:
f.pld

2
χ2(Cpl, Gc) =

npl
nP

(
n

npl
− 1)

=
1

P
− npl
nP

=
1

P
(1− npl

n
)

=⇒ The contribution of the modality l of

the variable Yp increases when npl decreases.

A rare modality has therefore a larger im-

pact than a common modality.

• The contribution of the variable Yp (sum of

the contributions of the modalities) is given

by:

Kp∑
l=1

1

P
(1− npl

n
) =

1

P
(Kp − 1)

=⇒The contribution of a variable increases

with the number of modalities.
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⇓
When doing a survey, it is better to take

into account variables that have more or

less the same number of modalities.

It is also adviced to avoid having rare modal-

ities.
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5.2 MCA

5.2.1 Projecting directions (similar results than BCA)

Row profiles

ℵl = {(L1; 1
n), . . . , (Ln; 1

n)} with χ2 distances

in IRK where Li has coordinates:

l
¯i

=
xipl
P

p = 1, . . . , P ; l = 1, . . . , Kp

Column profiles

ℵc = {(Cpl; f.pl =
npl
n ) where p = 1, . . . , P and l =

1, . . . , Kp} with χ2 distances in IRn where Cpl

has coordinates:

c
¯pl

=
xipl
npl

i = 1, . . . , n
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Row profiles ℵ∗l : IRK Columb profiles ℵ∗c : IRn

(λh, uh) where h = 1, . . . , H (λh, vh) where h = 1, . . . , H

are the eigenvalues and the eigenvectors of

V = T ′T W = TT ′

Hence we have

V uh = λhuh Wvh = λhvh

where T is a matrix n×K with coordinates:

ti,pl =
fipl − fi..f.pl√

fi..f.pl
=
xipl −

npl
n√

Pnpl

Construction of the principal components (pro-

jection of the row and column profiles):

φh,j = ‖OP∆h
(L∗j)‖ =< OL∗j , uh >=

K∑
k=1

uh,k(l
¯
∗
j)k

ψh,pl = ‖OPΓh
(C∗pl)‖ =< OC∗pl, vh >=

n∑
i=1

vh,j(c¯
∗
pl)i
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How many principal components ?

Stopping rule in PCA:

Keep principal component iff the associated eigen-

value is larger than 1 (mean of eigenvalues).

This rule is adapted to MCA as follows:

Keep principal component iff the associated

eigenvalue is larger than 1
P .

Indeed, suppose that H = K − P (usual situa-

tion), then the mean of all non-zero eigenvalues

is given by:

1

K − P
∑

non zero eigenvalues

=
1

K − P total inertia of point cloud ℵl around Gl

=
1

K − P (
K

P
− 1) =

1

P
.

This results explains the criteria given above.
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5.2.2 Quality of the representation of each modality

• Quality of representation of each modality l

of the variable Yp on the axis Γh is given by:

cos2 ( angle between OC∗pl and the axis Γh)

cos2 ( βh,pl) =
ψ2
h,pl

‖OC∗pl‖2

It can be proven that:

cos(βh,pl) = rXpl,φh

As for PCA, it is possible to construct a cor-

relation circle with the modalities.
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5.2.3 Contribution of each modality

• Contribution of the modality l of Yp on the

variance of the new variable ψh:

CTRΓh
(Xpl) =

f.plψ
2
h,pl

λh
=

npl
nPλh

ψ2
h,pl

The contribution of the modality Xpl increases

with the correlation between φh and the modal-

ity. It also increases as the modality becomes

more rare (npl small)

• Global contribution of the variable Yp (sum

on all modalities) on the variance of ψh:

CTRΓh
(Yp) =

Kp∑
l=1

CTRΓh
(Xpl)
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5.2.4 Reconstitution formula

The formula introduced for BCA becomes:

fipl = fi..f.pl(1 +

H∑
h=1

1√
λh
φh,iψh,pl)

=⇒ xipl
nP

=
1

n

npl
nP

(1 +

H∑
h=1

1√
λh
φh,iψh,pl)

=⇒ xipl =
npl
n

(1 +

H∑
h=1

1√
λh
φh,iψh,pl)

The distance between the “observed probabil-

ity” that individual i has modality l on vari-

able Yp (xipl) and the “mean probability” to

have this modality (
npl
n ) is given as a function

of principal components

⇓
This leads to the link between individual i

and the modality l associated to the variable

Yp
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Two other formulas can be introduced :

• The number of individuals with modality l on

Yp and modality l′ on Yp′ = npl,p′l′ is given by:

npl,p′l′ =

n∑
i=1

xiplxip′l′

=

n∑
i=1

npl
n

(1 +

H∑
h=1

1√
λh
φh,iψh,pl)

× np′l′
n

(1 +

H∑
h=1

1√
λh
φh,iψh,p′l′)

= . . .

=
nplnp′l′
n

(1 +

H∑
h=1

ψh,plψh,p′l′)

=⇒ Comparison between modalities
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But the attraction/repulsion index dpl,p′l′ be-

tween the modality l of Yp and the modality l′

de Y ′p is given by:

dpl,p′l′ =
npl,p′l′/n
npl
n

np′l′
n

=
npl,p′l′
nplnp′l′
n

=⇒ dpl,p′l′ = 1 +

H∑
h=1

ψh,plψh,p′l′

• The proximity between two individuals i and

i′ is defined by :

pi,i′ = 1 +

H∑
h=1

φh,iφh,i′

Two individuals are close (same behaviour)

if they have in general the same modalities.
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5.3 Graphical representations

Two types of graphical representations:

• Pseudo-barycentric representation (standard)

• Biplot representation (barycentric)

5.3.1 Standard representation (Pseudo-barycentric)

We focus on the first principal plan but more di-

mensions can be analyzed with the same method-

ology

The first principal plan is constructed using both

PCAs:

- individual A∗i (i = 1, . . . , n) is projected

on the first factorial plan leading to coordinate

(φ1,i, φ2,i)

- modalityB∗pl (p = 1, . . . , P ; l = 1, . . . , Kp)

is projected on the first factorial plan leading to

coordinate (ψ1,pl, ψ2,pl)
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This representation is the closest representation

of the simultaneous information inside point clouds

ℵ∗l and ℵ∗c
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Interpretation:

• The well represented modalities on the first

principal plan are compared using the following

approximated formula:

dpl,p′l′ ≈ 1 +

2∑
h=1

ψh,plψh,pl

= 1+ < 0B∗pl, 0B
∗
p′l′ >

= 1 + ‖0B∗pl‖‖0B∗p′l′‖ cos(0B∗pl, 0B
∗
p′l′)

Draw B⊥pl which passes through the origin and

which is orthogonal to 0B∗pl. This line separates

the space into two parts:

- the modalities that are on the same side

than B∗pl are attracted by it

- the modalities on the other side are re-

pulsed by B∗pl

The attraction/repulsion index increases with

| < 0B∗pl, 0B
∗
p′l′ > |.
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If the modalities pl, p′l′ and p′′l′′ are well rep-

resented on the first principal plan, therefore

we can conclude that pl and p′l′ are attracted

by each other, and modalities pl and p′′l′′ are

repulse by each other.
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• The well represented individuals on the first

principal plan are compared using the following

approximated formula:

pi,i′ ≈ 1 +

2∑
h=1

φh,iφh,i′

= 1+ < 0A∗i , 0A∗i′ >
= 1 + ‖0A∗i ‖‖0A∗i′‖ cos(0A∗i , 0A∗i′)

Draw A⊥i which passes through the origin and

which is orthogonal to 0A∗i . This line separates

the space into two parts:

- the modalities that are on the same side

thanA∗i are individuals who share a set of modal-

ities with individual i. And the common set in-

creases with < 0A∗i , 0A∗i′ >.

- the modalities on the other side than A∗i
are individuals who have few characteristic in

common with individual i.
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If the individuals i, i′ and i′′ are well rep-

resented on the first principal plan, there-

fore we can conclude that individual i is close

to individual i′ and has few characteristic in

common with individual i′′
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• The well represented modalities and individ-

uals on the first principal plan are compared

using the following approximated formula:

xipl ≈
npl
n

(1 +

2∑
h=1

1√
λh
φh,iψh,pl)

The coefficient 1√
λh

implies some difficulties in

the interpretation.

If A∗i and B∗pl are well represented on the first

principal plan:

- The probability that the individual A∗i has

modality l on variable Yp is high if they are

belong to the same quadrant

- The probability that the individual A∗i has

modality l on variable Yp is low if they are

in opposite quadrants

- We cannot conclude if they belong to ad-

jacent quadrants.
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5.3.2 Biplot

The Biplot representation leads to a better vis-

ibility of the first principal plan to compare the

individuals with the modalities.

• The individual i is associated to Ã∗i which has

coordinates:

(φ̃1,i, φ̃2,i)
′ = (

φ1,i√
λ1
,
φ2,i√
λ2

)′

•The modality l on variable Yp (p = 1, . . . , P ; l =

1, . . . , Kp) is associated with B∗pl which has co-

ordinates:

ψ1,pl, ψ2,pl.
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Reconstitution formula to compare the individ-

uals with the modalities:

xipl ≈
npl
n

(1 +

2∑
h=1

φ̃h,iψh,pl)

=
npl
n

(1+ < 0Ã∗i , 0B∗pl >)

=
npl
n

(1 + ‖0Ã∗i ‖‖0B∗pl‖ cos(0Ã∗i , 0B∗pl))

Draw B⊥pl which passes through the origin

and which is orthogonal to 0Bpl. This line

separates the space into two parts:

- the individuals that are on the same side

than Bpl have, with high probability, the modal-

ity l on variable Yp

- the individuals on the other side have, with

low probability, the modality l on variable Yp.
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If the modality l on variable Yp is well rep-

resented on the first principal plan, therefore

the probability that individual i has modality

l on variable Yp is high and the probability

that individual i′ has modality l on variable

Yp is low.
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5.4 The Burt table (BT)

When the use of BT is more appropri-

ate than the use of CDT?

• If n is large, the simultaneous representation

of individuals and modalities is unreadable.

• If the individuals are anonymous, the interest

is only based on the modalities.

⇓
Contingency table (symmetric) with K = K1 +

. . . + KP modalities on P variables.
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Y1 . . . Yp . . . YP

1 . . . K1 . . . 1 . . . Kp . . . 1 . . . KP

1 n11 0 . . . . . . Pn11

Y1
... . . . ... n1l,pl′

... n1l,P l′
...

K1 0 n1K1
. . . . . . Pn1K1

...
...

...
...

1 . . . np1 0 . . . Pnp1

Yp
... npl,1l′

... . . . ... npl,P l′
...

Kp . . . 0 npKp
. . . PnpKp

...
...

...
...

1 . . . nPl,pl′ . . . nP1 0 PnP1

Yp
... nPl,1l′

...
... . . . ...

Kp . . . . . . 0 nPKP
PnPKP

Pn11 . . . Pn1K1
. . . Pnp1 . . . PnpKp

. . . PnP1 . . . PnPKP
nP 2

We use the BCA on the Burt table, instead of

the application of the BCA on the complete dis-

junctive table (CDT).

Remark: The row profiles and the column pro-

files are identical since the Burt table is sym-

metric.
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5.4.1 Links between MCA on CDT and MCA on BT

• The inertia obtained by MCA on BT are given

by the squared inertia obtained by MCA on

CDT:

λBT,h = λ2
h h = 1, . . . , H

•The variances of the principal component ψBT,h

obtained by MCA on BT are given by the squared

variances of the principal component obtained

by MCA on CDT:

s2
ψh

= λh and s2
ΨBT,h

= λBT,h = λ2
h

• It holds also that ∀h = 1, . . . , H :

ψBT,h =
√
λhψh
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5.5 Practical example

Research question:

Determining if, inside the PS electorate, Mus-

lims behave differently from non-believers and

Catholics.

Database:

Votes for the PS in the regional elections of June

2004 in the Brussels Region

Method:

To this end, we will look into the answers given

to society-oriented questions using multiple cor-

respondence analysis.
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5.5.1 Society-oriented questions:

• Mail services should be privatized;

• Trade Unions should weigh heavily in major

economic decisions;

•Homosexual couples should be allowed to adopt

children;

• Consumption of cannabis should be forbidden;

• People don’t feel at home in Belgium anymore;

• Abolishing the death penalty was the right

decision.

The answers proposed to these questions are:

Total agreement (1),

Rather in agreement (2),

Rather opposed (3),

Totally opposed (4),

No opinion (5).
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The questionnaire also includes a question con-

cerning a subjective judgment of the individual

about his general behavior on a left-right scale:

“Here is a political left-right scale. 0 is the most

left-wing position 9 the most right-wing. Where

would you locate yourself?”

The variable “Belief” with three categories (Mus-

lims, non-believers and Catholics) is also avail-

able
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5.5.2 χ2 independence test

First, we analyze each society-oriented question

separately by testing its dependency with re-

spect to the belief variable using a χ2 indepen-

dence test.

χ2 Mail Trade Union Homosexual

Test 26.78 27.13 144.82

p-value (0.00) (0.00) (0.00)

χ2 Cannabis Home D. Penalty

Test 86.98 27.94 11.75

p-value (0.00) (0.00) (0.16)

The assumption of independence between the

society-oriented questions and belief-oriented ques-

tion is rejected for all of the questions (at the

5% level) except for the question on the death

penalty (very small variation inside the ques-

tion).
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5.5.3 Attraction-repulsion indexes

Links between each pair of modalities of two

variables with the attraction-repulsion indexes

djk defined as

djk =
fjk
fj.f.k

where fjk is the observed frequency and fj.f.k

is the theoretical frequency under the indepen-

dence hypothesis.

Interpretation:

djk > 1⇐⇒ the two modalities attract each others

djk < 1⇐⇒ the two modalities push each other away

djk ≈ 1⇐⇒ the two modalities are close to being.

independent
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Mail services should be privatized

Attraction Index Non-believer Catholic Muslim

Total agreement 0.712 1.411 1.196

Rather in agreement 1.055 0.707 1.113

Rather opposed 1.080 1.001 0.866

Totally opposed 1.119 1.062 0.757

No opinion 0.779 0.857 1.472

• Proportion of Muslim PS-voters who declare

having no opinion on the subject is much higher

than the corresponding proportions of Catholic

and Non-believer PS-voters.

• Proportion of Catholics who are in total

agreement to a privatization of mail services is

much higher.
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Trade Unions should weigh heavily in

major economic decisions

Attraction Index Non-believer Catholic Muslim

Total agreement 0.878 0.920 1.261

Rather in agreement 1.117 0.930 0.853

Rather opposed 1.203 1.102 0.588

Totally opposed 0.953 1.779 0.534

No opinion 0.847 0.953 1.290

•As for the influence of Trade Unions in major

political decisions, Muslim PS-voters are more

prone to agree with the necessity of more influ-

ence than the others, while Catholics seem to

be very opposed to the latter.
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Homosexual couples should be allowed

to adopt children

Attraction Index Non-believer Catholic Muslim

Total agreement 1.311 0.886 0.558

Rather in agreement 1.470 0.959 0.240

Rather opposed 1.101 1.220 0.676

Totally opposed 0.468 1.104 1.821

No opinion 1.240 0.674 0.825

•The answers to the question of allowing adop-

tion by homosexual couples is very clear-cut.

• Non-believers are proportionally much more

in agreement with the assertion than others

• Catholics generally seem to oppose or totally

oppose it.

• A vast majority of Muslims declare them-

selves totally opposed to the proposition.
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Consumption of cannabis should be for-

bidden

Attraction Index Non-believer Catholic Muslim

Total agreement 0.626 1.116 1.548

Rather in agreement 0.748 1.176 1.300

Rather opposed 1.341 0.948 0.463

Totally opposed 1.371 0.680 0.601

No opinion 1.024 1.186 0.830

•Majority of Muslims agree with the proposal

•Majority of Non-believers declare themselves

opposed to it.
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People don’t feel at home in Belgium

anymore

Attraction Index Non-believer Catholic Muslim

Total agreement 0.786 1.433 1.056

Rather in agreement 0.677 1.330 1.311

Rather opposed 0.937 1.207 0.962

Totally opposed 1.178 0.738 0.885

No opinion 0.867 1.082 1.166

• Strong opposition between Non-believers and

Catholics. The Catholic are proportionally more

prone to agree with the assertion than Non-

believers.

• Muslims also seem to agree on the fact that

they ”don’t feel at home in Belgium anymore”.
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Abolishing the death penalty was the

right decision

Attraction Index Non-believer Catholic Muslim

Total agreement 1.069 0.881 0.967

Rather in agreement 1.020 0.926 1.019

Rather opposed 0.735 1.486 1.105

Totally opposed 0.762 1.390 1.127

No opinion 0.932 1.178 0.989

• High number of ”totally in agreement” with

abolishing it

• Muslims don’t really show a tendency one

way or another with respect to the others.

• Catholics seem to be more prone than Non-

believers to be against the abolishment of the

death penalty.
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5.5.4 Multiple correspondance analysis (AFCM)

Multivariate vision of the set of society-oriented

questions (active variables)
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Figure 5.1: Multiple Correspondence Analysis on society-oriented questions. Belief and the

political scale are added as illustrative variables.

Two illustrative variables: belief and the polit-

ical scale

The first axis represents a left-right dimension.

To visualize better, we deleted modality “no

opinion” for the society-oriented questions.
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• Inertia explained by the first plane: 20%

• Contributors on first factorial axis:

24.8% feeling at home in Belgium

22.7% the death penalty

17.9% adoption by homosexual couples

17% prohibition of cannabis consumption

10.4% privitization of mail services

7.2% Trade Unions in political decisions

• Contributors on second factorial axis:

24.2% privitization of mail services

19.3% adoption by homosexual couples

16.5% prohibition of cannabis consumption

14.7% the death penalty

13.6% feeling at home in Belgium

11.8% Trade Unions in political decisions
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5.5.5 Econometric Model

Multivariate data analysis doesn’t take into ac-

count the influence of other variables which may

strongly influence the results

Dependent variable: the left-right indicator built

on the basis of the six society-oriented questions

Regression 1 Regression 2

Variable Coefficient Std. Error Coefficient Std. Error

C -0.166*** (0.027) -0.457*** (0.078)

NONCROYANT -0.319*** (0.050) -0.225*** (0.048)

MUSULMAN 0.089 (0.055) 0.152*** (0.055)

AGE 0.008*** (0.001)

AUCUN 0.371*** (0.112)

PRIMAIRE 0.421*** (0.094)

PROFESSIONNEL 0.310*** (0.083)

SECINF 0.416*** (0.068)

SECSUP 0.274*** (0.053)

SUPNONUNIV 0.163*** (0.054)

TECHNIQUE 0.151 (0.096)

R-squared: 12.6 % R-squared: 24.4 %

Sample size: 676, *Statistically different from zero at 10%,



Chapter 6

Discriminant and classification

6.1 Introduction

OBJECTIVES:

1. Discrimination or separation: Separate two

(or more) classes of objects. Describe the

different caracteristics of observations arising

from different known populations.

2. Classification or allocation: Define rules that

assign an individual to a certain class.

Overlap between the two approaches since the

variables that discriminate can also be used to

allocate new observation to one group and vice-

versa.

232
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EXAMPLES

Populations π1 and π2 Measured variables

Good and poor Income, age, number of

credit risks credit cards, family size

Successful and unsuccessful Socio-economic variables,

students secondary path, gender

Males and females Anthropological measurements

Purchasers of a new product Income, education, family size

and laggards amount of previous brand switching

Papers written by two authors Frequencies of different words

and lengths of sentences

Two species of flowers Sepal and petal length,

pollen diameter

Remark: In the sequel we present the problem

using two populations but the generalization to

more than two populations is straightforward.
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THEORITICAL CONTEXT:

Let denote the 2 populations by : π1 and π2.

The information on observations can be sum-

marized in p variables:

X ′ = [X1, . . . , Xp]

The behavior of the variables is different in the

two populations

⇓
The joint density functions on X are respec-

tively given by : f1(x) et f2(x)

IDEA: Separate the space IRp into 2 parts R1

and R2 using the sample.

RULE: If a new observation ∈ R1 (∈ R2) then

we suppose that it belongs to π1 (π2).
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For the sample, we known the values of X and

also to which population it belongs to.

But for new observation, the population is un-

known : WHY ?

1. Incomplete knowledge of future performance

(example: future firm’s bankruptcy)

2. Information on the memberships of π1 or π2

requires the destruction (example: lifetime of

a battery)

3. Unavailable or expensive information (exam-

ple: medical problems)

⇓
Find optimal rules based on the sample to clas-

sify observations to reduce misclassification as

much as possible.
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Example: Separate the space (by a segment in

this case) to target the population that could

be interested in buying a new washing machine

(fictive data).

Variables: X1: income of the family in euros,

X2: quantity (in kilo) dirty laundry per week.
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The way the variables X are distributed in the

space IR2 does not allow to obtain a complete

separation of the two populations.
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6.2 Rules of classification based on the expected cost

of misclassification

Let denote Ω the support of vector X . Let R1

and R2 = Ω − R1 be mutually exclusive and

exhaustive:

R1 ∪R2 = Ω

R1 ∩R2 = ∅
RULE: If a new observation ∈ R1 (∈ R2) then

we suppose that it belongs to π1 (π2). It is then

possible to measure the conditional probability

of misclassification.

The conditional probability of classifying an ob-

ject as π2 when in fact it is from π1 is:

P (2|1) = P (X ∈ R2|π1) =

∫
R2=Ω−R1

f1(x)dx

and similarly the conditional probability is:

P (1|2) = P (X ∈ R1|π2) =

∫
R1

f2(x)dx
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But we have also to take into account prior

probabilities:

p1 = P (belong to π1)

p2 = P (belong to π2)

Hence probabilities of correctly or incorrectly

classifying an observation can be derived:

P (obs. from π1 is correctly classified as π1)

= P (π1)P (X ∈ R1|π1)

= p1P (1|1)

P (obs. from π1 is uncorrectly classified)

= P (π1)P (X ∈ R2|π1) = p1P (1|2)

P (obs. from π2 is correctly classified as π2)

= P (π2)P (X ∈ R2|π2) = p2P (2|2)

P (obs. from π2 is uncorrectly classified)

= P (π2)P (X ∈ R1|π2) = p2P (2|1)
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The cost of misclassification

Example: Not detecting a disease for a sick per-

son is more important than detecting a disease

for a healthy person

The cost of misclassification can be defined by

a cost matrix:

R1 R2

π1 0 c(2|1)

π2 c(1|2) 0
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Expected cost of misclassification (ECM)

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2

RESULT: The regionsR1 andR2 that minimize

ECM are defined by the values of x for which

the following inequalities hold:

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)

p2

p1

R2 :
f1(x)

f2(x)
<
c(1|2)

c(2|1)

p2

p1

Proof: Johnson & Wichern (2002) page 647.

Particular cases:

• Equal prior probabilities:

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)
et R2 :

f1(x)

f2(x)
<
c(1|2)

c(2|1)
• Equal misclassification costs:

R1 :
f1(x)

f2(x)
≥ p2

p1
et R2 :

f1(x)

f2(x)
<
p2

p1
• Equal prior probabilities and misclassifica-

tion costs

R1 :
f1(x)

f2(x)
≥ 1 et R2 :

f1(x)

f2(x)
< 1.
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Other criteria to derive optimal classi-

fication procedure

• Minimize the total probability of misclassifi-

cation (TPM):

TPM = p1P (2|1) + p2P (1|2)

⇒ Mathematically, this problem is equivalent

to minimizing ECM when the costs of misclas-

sification are equal.

• Allocate a new observation x0 to the popu-

lation with the largest “posterior” probability

P (πi|x0). By Bayes ’s rule, we obtain:

P (π1|x0) =
p1f1(x0)

p1f1(x0) + p2f2(x0)

P (π2|x0) =
p2f2(x0)

p1f1(x0) + p2f2(x0)
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6.3 Classification with two multivariate normal popu-

lations

Often used in theory and practice because of

their simplicity and reasonably high efficiency

across a wide variety of population models.

HYPOTHESES:

f1(x) = Np(µ1,Σ1) et f2(x) = Np(µ2,Σ2)

If X ∼ Np(µ,Σ) then:

f (x) =
1

(2π)p/2 det(Σ)
1
2

exp[−1

2
(x−µ)′Σ−1(x−µ)]

Before using these rules, it is necessary to test

the normality hypothesis (e.g. QQ-plot). If the

data reject the gaussianity assumption, we can

try to obtain this assumption by a transforma-

tion of the data(e.g. by logarithm transforma-

tion).
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Linear classification: Σ1 = Σ2 = Σ

RESULT: The regionsR1 andR2 that minimize

ECM are defined by the values of x for which

the following inequalities hold:

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)

p2

p1

R2 :
f1(x)

f2(x)
<
c(1|2)

c(2|1)

p2

p1

which is after simplification:

R1 : (µ1 − µ2)′Σ−1x− 1

2
(µ1 − µ2)′Σ−1(µ1 + µ2) ≥ ln[

c(1|2)

c(2|1)

p2

p1
]

R2 : (µ1 − µ2)′Σ−1x− 1

2
(µ1 − µ2)′Σ−1(µ1 + µ2) < ln[

c(1|2)

c(2|1)

p2

p1
]

But in practice µ1, µ2 and Σ are unknwon

⇓
Estimate these parameters with unbiased esti-

mators.
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Estimate µ1 and Σ1 using the sample from π1
of size n1:

µ̂1 =


x̄

(1)
1

x̄
(1)
2

· · ·
x̄

(1)
p

 et Σ̂1 = S1


S

(1)
11 S

(1)
12 . . . S

(1)
1p

S
(1)
21 S

(1)
22 . . . S

(1)
2p

· · · . . . . . . · · ·
S

(1)
p1 S

(1)
p2 . . . S

(1)
pp


Estimate µ2 and Σ2 using the sample from π2

of size n2:

µ̂2 =


x̄

(2)
1

x̄
(2)
2

· · ·
x̄

(2)
p

 et Σ̂1 = S1


S

(2)
11 S

(2)
12 . . . S

(2)
1p

S
(2)
21 S

(2)
22 . . . S

(2)
2p

· · · . . . . . . · · ·
S

(2)
p1 S

(2)
p2 . . . S

(2)
pp



Under the hypothesis Σ1 = Σ2, we can use an
unbiased pooled estimator of Σ:

Σ̂ = Spooled =
n1 − 1

(n1 − 1) + (n2 − 1)
S1 +

n2 − 1

(n1 − 1) + (n2 − 1)
S2

The estimated rule minimizing ECM is then:

R1 : (x̄1 − x̄2)′S−1
pooledx−

1

2
(x̄1 − x̄2)′S−1

pooled(x̄1 + x̄2) ≥ ln[
c(1|2)

c(2|1)

p2

p1
]

R2 : (x̄1 − x̄2)′S−1
pooledx−

1

2
(x̄1 − x̄2)′S−1

pooled(x̄1 + x̄2) < ln[
c(1|2)

c(2|1)

p2

p1
]
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Quadratic classification: Σ1 6= Σ2

RESULT: The regionsR1 andR2 that minimize

ECM are defined by the values of x for which

the following inequalities hold:

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)

p2

p1
and R2 :

f1(x)

f2(x)
<
c(1|2)

c(2|1)

p2

p1

which is after simplification:

R1 : −1

2
x′(Σ−1

1 − Σ−1
2 )x + (µ′1Σ−1

1 − µ′2Σ−1
2 )x− k ≥ ln[

c(1|2)

c(2|1)

p2

p1
]

R2 : −1

2
x′(Σ−1

1 − Σ−1
2 )x + (µ′1Σ−1

1 − µ′2Σ−1
2 )x− k < ln[

c(1|2)

c(2|1)

p2

p1
]

where

k =
1

2
ln(

det(Σ1)

det(Σ2)
) +

1

2
(µ′1Σ−1

1 µ1 − µ′2Σ−1
2 µ2)

The estimated rule minimizing ECM is then:

R1 : −1

2
x′(S−1

1 − S−1
2 )x + (x̄′1S

−1
1 − x̄′2S−1

2 )x− k ≥ ln[
c(1|2)

c(2|1)

p2

p1
]

R2 : −1

2
x′(S−1

1 − S−1
2 )x + (x̄′1S

−1
1 − x̄′2S−1

2 )x− k < ln[
c(1|2)

c(2|1)

p2

p1
]
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6.4 Evaluation of classification rules

Total probability of misclassification (TPM):

TPM = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx

The lowest value of this quantity is called the

optimum error rate (OER).

Suppose that p1 = p2, C(2|1) = C(1|2) and
f1(x) = N(µ1,Σ) and f2(x) = N(µ2,Σ), then
the regions minimizing TPM are:

R1 : (µ1 − µ2)′Σ−1x− 1

2
(µ1 − µ2)′Σ−1(µ1 + µ2) ≥ 0

R2 : (µ1 − µ2)′Σ−1x− 1

2
(µ1 − µ2)′Σ−1(µ1 + µ2) < 0

RESULT: The optimum Error Rate is:

OER = Φ(
−∆

2
) where ∆2 = (µ1−µ2)′Σ−1(µ1−µ2)

Example: if ∆2 = 2.56 then OER = 0.2119,

hence then optimal rule of classification fails in

21% of cases.
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But the rule is generally based on estimators

⇓
We need to calculate the actual error rate (AER):

AER = p1

∫
R̂2

f1(x)dx + p2

∫
R̂1

f2(x)dx

where

R̂1 : (x̄1 − x̄2)′S−1
pooledx−

1

2
(x̄1 − x̄2)′S−1

pooled(x̄1 + x̄2) ≥ 0

R̂2 : (x̄1 − x̄2)′S−1
pooledx−

1

2
(x̄1 − x̄2)′S−1

pooled(x̄1 + x̄2) < 0

But calculus to obtain AER are difficult and

depend on f1(x) and f2(x).
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Apparent Error rate (APER):

APER = % of obs. in the sample misclassified

=⇒ Easy to calculate and does not require knowl-

edge on density functions

But underestimates AER even if ni are large.

Solution: the problem comes from the fact that

the same sample is used to construct the rule

and also to test the quality of the classification

⇓
Divide the sample in two parts : the training

sample to construct the rule (±80%) and the

validation sample to calculate APER.

But: • It requires large sample size

• The evaluated classification rule is not

the one that is used (with all observations) (us-

ing all observations).
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6.5 Extensions and remarks

• The generalization to the case where p > 2 is

straighforward

• If some variables in the database are binary,

it is better to use the logistic regression instead

of classification rules which are usually based on

normality assumption

• If the dataset is too large (too many variables),

you can perform a stepwise discriminant analy-

sis

• Others methods: Classification trees (CART),

Neural Networks (NN), . . .


