Applied Multivariate Statistical Analysis

STAT-D-401

Catherine Dehon Université libre de Bruxelles

Building R42 - Office : R42.6.204 E-mail: cdehon@ulb.ac.be Phone: (02) 6503858

> First Edition 2011-2012

WARNING

The purpose of this manuscript is to facilitate notetaking during the theoretical lectures. The manuscript will be updated at the end of each lecture and will be made available on the website:

http://www.ulb.ac.be/soco/statrope.

The final exam will cover the material that has been seen during lectures (including what has been added orally) as well as the material covered during the practical sessions (TP).

TO KNOW

- Aims of the course
 - Describe information contained in large datasets
 - Understand mechanisms under multivariate statistical methods
 - Use in practice multivariate statistical software
 - To solve questions using real datasets
- Teaching method
 - Theory : 24h ex-cathedra class
 - Exercises: 12h in computer room
- Evaluation
 - -Written exam: 13 points on theoretical and practical questions
 - Compulsory project in group (from 2 to 5 students) on real dataset with presentation: 7 points

Goal of the group project

- Description of the research questions and short review of the literature
- Description of the dataset
- Univariate and bivariate statistical analysis to present the variables
- Application of multivariate statistical methods to answer research questions (justification and output)
- Conclusions and answers to the question raised at the beginning

Outline of the course

- Background mathematics
- Principal components analysis (PCA)
- Robust statistics and detection of outliers
- Correspondence analysis
- Multiple correspondence analysis
- Canonical correlation analysis
- Discriminant analysis

- Dehon, C. , Droesbeke, J-J. et Vermandele C. (2008), *Eléments de statistique*, Bruxelles, Editions de L'Unviversité de Bruxelles.
- Greenacre, M.J. (2007), Correspondence Analysis in Practice, Second Edition, Chapman Hall / CRC, London.
- Greenacre, M.J. Blasius, J. (1994) (eds), Correspondence Analysis in the Social Sciences: Recent Developments and Applications, Academic Press, London.
- Hardle, W., Simar, L. (2000), Applied Multivariate Statistical Analysis, Springer, Berlin.
- Johnson, R.A., and Wichern, D.W. (1992), Applied Multivariate Statistical Analysis, Prentice Hall, New Jersey.

Chapter 1

Background mathematics 1.1 Matrix calculus

A is a matrix with n line and p column :

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{kp} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{np} \end{pmatrix} = (a_{ij})$$

where a_{ij} $(i \in \{1, ..., n\}; j \in \{1, ..., p\})$ gives the element line i and column jIt can be regarded as a point in $IR^{n \times p}$ A is called a square matrix if n=p

Transpose of a matrix

The transpose \mathbf{A}' of an $n \times p$ matrix $\mathbf{A} = (a_{ij})$ is the $p \times n$ matrix whose ij-th element is a_{ji}

Example:

If
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -1 \\ 4 & 1 & 2 \end{pmatrix}$$
, then $\mathbf{A'} = \begin{pmatrix} 1 & 4 \\ 3 & 1 \\ -1 & 2 \end{pmatrix}$

• It follows that:

$$(\mathbf{A'})' = \mathbf{A}$$

• The square matrix $\mathbf{A}_{K \times K}$ is symmetric if $\mathbf{A'} = \mathbf{A}$, it is to say that $a_{kl} = a_{lk} \forall k, l \in \{1, \dots, K\}$.

Multiplication

The product of **A** and **B** is possible only if the number of columns of **A** is equal to the number of lines of **B**. Then the product $\mathbf{A}_{K \times L} =$ (a_{kl}) with $\mathbf{B}_{L \times H} = (b_{lh})$ is given by $\mathbf{C}_{K \times H} =$ (c_{kh}) where

$$c_{kh} = \sum_{l=1}^{L} a_{kl} b_{lh}$$
 $k = 1, \dots, K; h = 1, \dots, H.$

• Properties: Let $\mathbf{A}_{m \times n}$, $\mathbf{B}_{n \times p}$, $\mathbf{C}_{p \times q}$, $\mathbf{D}_{n \times p}$, $\mathbf{E}_{n \times n}$ and $\mathbf{F}_{n \times n}$

(AB)C = A(BC)A(B+D) = AB + AD(B+D)C = BC + DC $EF \neq FE$

- The square matrix $\mathbf{A}_{K \times K}$ is **idempotent** if $\mathbf{A}^2 = \mathbf{A}$
- $\mathbf{A}_{K \times K}$ is **orthogonal** if $\mathbf{A}'\mathbf{A} = \mathbf{I}$

The rank of a matrix

Q vectors of same dimension $\mathbf{y}_1, \ldots, \mathbf{y}_Q$ are said to be linearly independent if

$$\sum_{q=1}^{Q} \alpha_q \mathbf{y}_q = \mathbf{0}$$

is verified only for $\alpha_1 = \alpha_2 = \ldots = \alpha_Q = 0$

Let **A** be an $n \times p$ matrix.

- The column rank is the maximum number of linearly independent columns.
- The row rank is the maximum number of linearly independent rows.
- The two ranks are equal and it is called the rank and denoted by: $r(\mathbf{A})$.

$$\Rightarrow r(\mathbf{A}) \leq \min(n,p)$$

The determinant of $A_{K \times K}$

The determinant of a squared matrix $\mathbf{A}_{K \times K}$ is a scalar, noted by $|\mathbf{A}|$, given by:

•
$$K = 1$$
: if $\mathbf{A} = a$, then $|\mathbf{A}| = a$;
• $K = 2$: if $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, then $|\mathbf{A}| = a_{11}a_{22} - a_{21}a_{12}$;
• $K = 3$: si $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, then

 $|\mathbf{A}| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$ $-a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33};$

• If
$$K > 3$$
 then

$$|\mathbf{A}| = \sum_{l=1}^{K} a_{kl} A_{kl} \qquad k \in \{1, \dots, K\}$$

where $A_{kl} = (-1)^{k+l} |\mathbf{M}_{kl}|$ with \mathbf{M}_{kl} the squared sub-matrix of \mathbf{A} without line k and column l

The trace of $\mathbf{A}_{K \times K}$

The trace of a square $K \times K$ matrix **A** is the sum of its diagonal elements:

$$tr(A) = \sum_{i=1}^{K} a_{ii}$$

Example:

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix} \Longrightarrow tr(A) = 3 + 2 = 5$$

• Properties: Let $\mathbf{A}_{m \times m}, \mathbf{B}_{m \times m}$

$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$
$$tr(\lambda \mathbf{A}) = \lambda tr(\mathbf{A}) \ \lambda \text{ is a scalar}$$
$$tr(\mathbf{A'}) = tr(\mathbf{A})$$
$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$

Quadratic forms

Let **x** be $K \times 1$ vector and **A** an $K \times K$ symmetric matrix, then the double sums of the form:

$$F(x_1, x_2, \dots, x_K) = \sum_{i=1}^K \sum_{j=1}^K x_i x_j a_{ij} = \mathbf{x}' \mathbf{A} \mathbf{x}$$

can be written as this product of matrix, called a quadratic form in x:

$$\begin{pmatrix} x_1 \ x_2 \ \dots \ x_K \end{pmatrix} \begin{pmatrix} a_{11} \ \dots \ a_{1K} \\ a_{21} \ \dots \ a_{2K} \\ \dots \ \dots \\ a_{K1} \ \dots \ a_{KK} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_K \end{pmatrix}$$

We say that \mathbf{A} is:

- positive definite if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \neq 0$
- positive semidefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0 \quad \forall \mathbf{x} \ne 0$
- negative definite if $\mathbf{x}' \mathbf{A} \mathbf{x} < 0 \quad \forall \mathbf{x} \neq 0$
- negative semidefinite if $\mathbf{x}' \mathbf{A} \mathbf{x} \leq 0 \quad \forall \mathbf{x} \neq 0$

1.2 Geometric point of view in IR^P

Consider the column-vector

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_P \end{pmatrix} = \begin{pmatrix} a_1 \ a_2 \ \cdots \ a_P \end{pmatrix}'.$$

Geometrically \mathbf{a} can be represent in IR^P by line segment \overrightarrow{OA} from the origin O to the point A with coordinate given by vector \mathbf{a} .

 $\overrightarrow{OE_1}, \overrightarrow{OE_2}, \dots, \overrightarrow{OE_p}$ are the vectors defining IR^P associated with

$$\mathbf{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \mathbf{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, \mathbf{e}_{P} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Then for an observation A in IR^P with associated vector $\mathbf{a} = \left(a_1 \ a_2 \ \cdots \ a_P\right)'$ $\overrightarrow{OA} = a_1 \ \overrightarrow{OE_1} + a_2 \ \overrightarrow{OE_2} + \ldots + a_p \ \overrightarrow{OE_P}$

• The scalar product $\langle \overrightarrow{OA}, \overrightarrow{OB} \rangle$ between two vectors is defined by :

$$\langle \overrightarrow{OA}, \overrightarrow{OB} \rangle = \mathbf{a'b} = (a_1, \dots, a_P)(b_1, \dots, b_P)'$$

= $\sum_{p=1}^P a_p b_p$

• The euclidean norm $\| \overline{OA} \|$ measures the length of the vector :

$$\|\overrightarrow{OA}\|^2 = \langle \overrightarrow{OA}, \overrightarrow{OA} \rangle = \mathbf{a'a} = \sum_{p=1}^{P} a_p^2$$

A unit vector is a vector with unit length.

• The euclidean distance d(A, B) between two points A and B is defined by:

$$d^{2}(A, B) = \| \overrightarrow{AB} \|^{2} = \| \overrightarrow{OA} - \overrightarrow{OB} \|^{2}$$
$$= \sum_{p=1}^{P} (a_{p} - b_{p})^{2}$$
$$> d(O, A) = \| \overrightarrow{OA} \|$$

 $\Rightarrow d(O, A) = \parallel OA \parallel$

• The cosine of the angle between vectors \overrightarrow{OA} and \overrightarrow{OB} is defined by:

$$\cos(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\langle \overrightarrow{OA}, \overrightarrow{OB} \rangle}{\| \overrightarrow{OA} \| \| \overrightarrow{OB} \|}$$

The vectors \overrightarrow{OA} and \overrightarrow{OB} are orthogonal iff

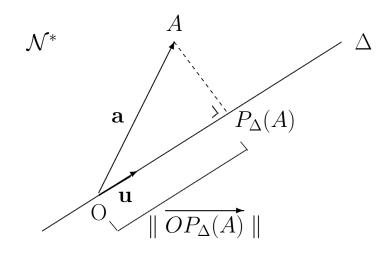
$$\cos(\overrightarrow{OA}, \overrightarrow{OB}) = \cos(\pm 90^{\circ}) = 0$$

It is to say iff

$$\langle \overrightarrow{OA}, \overrightarrow{OB} \rangle = \mathbf{a'b} = \sum_{p=1}^{P} a_p b_p = 0$$

1.2.1 Orthogonal projection in IR^1

Orthogonal projection of observation A in IR^P on the axis Δ that is passing through the origin:



The direction Δ is generated by the unit vector \overrightarrow{OU} noted for simplicity by **u** with coordinates $\mathbf{u} = (u_1, \dots, u_P).$ The point $P_{\Delta}(A)$ is given by the orthogonal projection of A on the subspace Δ .

It is the nearest point on Δ to the point A. This means that \vec{u} and $\overrightarrow{AP_{\Delta}(A)}$ are orthogonal:

$$\cos(\alpha) = \frac{\parallel OP_{\Delta}(A) \parallel}{\parallel \overrightarrow{OA} \parallel}$$

Moreover, since $\cos(\alpha) = \frac{\langle \overrightarrow{OA}, \overrightarrow{u} \rangle}{\|\overrightarrow{OA}\|}$, we obtain that:

$$\| \overrightarrow{OP_{\Delta}(A)} \| = <\overrightarrow{OA}, \overrightarrow{u} > = \sum_{p=1}^{P} a_p u_p$$

1.2.2 Orthogonal projection in a subspace $I\!R^H$

• A normalized orthogonal system u_1, \ldots, u_H is such that:

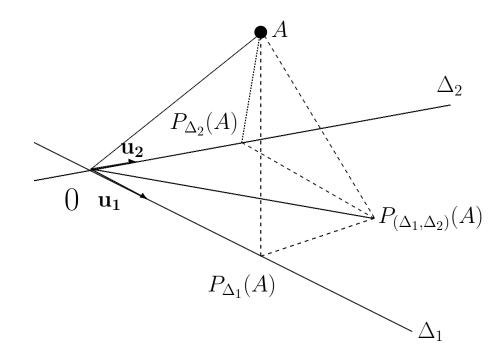
 $\|u_h\| = 1 \qquad \forall h \in \{1, \dots, H\}$ $\langle u_h, u_l \rangle = 0 \qquad \forall h \neq l \in \{1, \dots, H\}$

• These vectors generate a subspace of IR^P called L which is of dimension H. This subspace contains all the linear combinations:

$$\sum_{h=1}^{H} \alpha_h u_h$$

• The orthogonal projection of observation Ain IR^P on the subspace L is given by $P_L(A) \in L$. Among all the points in the subspace L, this point is the closest to A. It is given by:

$$OP_L(A) = \sum_{h=1}^{H} < OA, u_h > u_h$$
$$\|OP_L(A)\|^2 = \sum_{h=1}^{H} < OA, u_h >^2$$



1.3 Eigenvalues and eigenvectors

Let

- **A** be a matrix of dimension $P \times P$
- **u** be a column vector of dimension $P \times 1$
- Transformation of space IR^P by **A**:

$$\mathbf{A}: IR^P \longrightarrow IR^P : \mathbf{u} \longrightarrow \mathbf{Au}$$

• **u** is an eigenvector (non null) of **A** associated with eigenvalue λ iff:

 $\mathbf{A}\mathbf{u} = \lambda\mathbf{u}$ $\Rightarrow \mathbf{A}\mathbf{u} - \lambda\mathbf{u} = 0$ $\Rightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{u} = 0$

• λ is an eigenvalue of **A** iff

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Comments:

- If **u** is an eigenvector of **A** associated with λ , then α **u** ($\forall \alpha \in IR_0$) is also an eigenvector associated with same same eigenvalue
- The equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

can have no real solution. In this case, the transformation of IR^P by the matrix **A** has no fixed direction

- Each matrix **A** has at most P distinct eigenvalues
- If two real eigenvalues are the same \implies there exists a plane of eigenvectors
- Eigenvectors associated with distinct eigenvalues are linearly independent
- Let $\lambda_1, \ldots, \lambda_P$ be the eigenvalues of \mathbf{A} : $\sum_{p=1}^P \lambda_p = trace(\mathbf{A})$ et $\prod_{p=1}^P \lambda_p = det(\mathbf{A})$

Comments:

- A real symmetric matrix has only real eigenvalues
- A singular matrix has at least one eigenvalues zero
- A symmetric matrix is positive definite if and only if all its eigenvalues are positive
- A symmetric matrix is positive semidefinite if and only if all its eigenvalues are nonnegative
- In practice, we take the eigenvectors u_1, \ldots, u_P in order to have an orthonormal basis. Therefore, A can be written as follows:

$$A = \sum_{p=1}^{P} \lambda_p \underline{\mathbf{u}}_p \underline{\mathbf{u}}_p'$$

The particular case of the correlation matrix

The correlation matrix $(P \times P)$ is given by

$$\mathbf{R} = \frac{1}{n} (X^*)' X^*$$

where $X^* (n \times P)$ is the matrix of standardized data

• \mathbf{R} is positive semidefinite:

$$\underline{\mathbf{x}}' R \underline{\mathbf{x}} = \frac{1}{n} \underline{\mathbf{x}}' (X^*)' X^* \underline{\mathbf{x}} = \frac{1}{n} (X^* \underline{\mathbf{x}})' X^* \underline{\mathbf{x}}$$
$$= \frac{1}{n} \|X^* \underline{\mathbf{x}}\|^2 \ge 0 \quad \forall \underline{\mathbf{x}} \neq 0$$

• **R** is positive definite iff the columns are linearly independent (the matrix X^* is of rank P)

• The number of non zero eigenvalues is equal to the rank of ${f R}$

1.4 Références

 Magnus, J.R., Neudecker, H. (1999), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley Series in Probability and Statistics, England.

Chapter 2

Principal Component Analysis (PCA)

2.1 Introduction

- Basic tools **to reduce the dimension** of a multivariate data matrix
- Descriptive technique using **geometrical approach** to reduce the dimension

The output consists of:

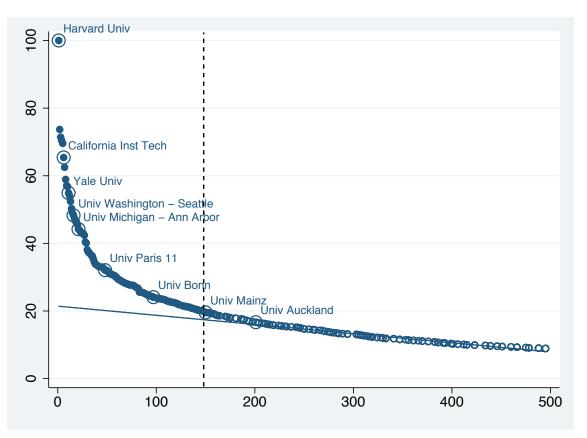
- graphical representation of individuals showing similarities and dissimilarities
- graphical representation of variables based on correlations

2.1.1 Example: Academic Ranking of World Universities (2007)

Question: Can a single "indicator" accurately sum up research excellence ?

- Alumni (10%): Alumni recipients of the Nobel prize or the Fields Medal;
- Award (20%): Current faculty Nobel laureates and Fields Medal winners;
- **HiCi (20%)**: Highly cited researchers in 21 broad subject categories;
- N&S (20%): Articles published in Nature and Science;
- **PUB (20%)**: Articles in the Science Citation Index-expanded, and the Social Science Citation Index;
- **PCP** (10%): The weighted score of the previous 5 indicators divided by the number of full-time academic staff members.

Case study on the TOP 50 (Overall score relative to rank) $% \left({{\rm{Coverall}}} \right)$



Universits	Variables						
	Alumni	Award	HiCi	N&S	SCI	Size	
1. Harvard Univ.	100	100	100	100	100	73	
2. Stanford Univ.	42	78.7	86.1	69.6	70.3	65.7	
3. Univ. California, Berkeley	72.5	77.1	67.9	72.9	69.2	52.6	
4. Univ. Cambridge	93.6	91.5	54	58.2	65.4	65.1	
5. Massachusetts Inst. Tech. (MIT)	74.6	80.6	65.9	68.4	61.7	53.4	
6. California Inst. Tech.	55.5	69.1	58.4	67.6	50.3	100	
7. Columbia Univ.	76	65.7	56.5	54.3	69.6	46.4	
8. Princeton Univ.	62.3	80.4	59.3	42.9	46.5	58.9	
9. Univ. Chicago	70.8	80.2	50.8	42.8	54.1	41.3	
10. Univ. Oxford	60.3	57.9	46.3	52.3	65.4	44.7	

Universits	Variables						
	Alumni	Award	HiCi	N&S	SCI	Size	
11. Yale Univ.	50.9	43.6	57.9	57.2	63.2	48.9	
12. Cornell Univ.	43.6	51.3	54.5	51.4	65.1	39.9	
13. Univ. California, Los Angeles	25.6	42.8	57.4	49.1	75.9	35.5	
14. Univ. California, San Diego	16.6	34	59.3	55.5	64.6	46.6	
15. Univ. Pennsylvania	33.3	34.4	56.9	40.3	70.8	38.7	
16. Univ. Washington, Seattle	27	31.8	52.4	49	74.1	27.4	
17. Univ. Wisconsin, Madison	40.3	35.5	52.9	43.1	67.2	28.6	
18. Univ. California, San Francisco	0	36.8	54	53.7	59.8	46.7	
19. Johns Hopkins Univ.	48.1	27.8	41.3	50.9	67.9	24.7	
20. Tokyo Univ.	33.8	14.1	41.9	52.7	80.9	34	
21. Univ. Michigan, Ann Arbor	40.3	0	60.7	40.8	77.1	30.7	
22. Kyoto Univ.	37.2	33.4	38.5	35.1	68.6	30.6	
23. Imperial Coll. London	19.5	37.4	40.6	39.7	62.2	39.4	
24. Univ. Toronto	26.3	19.3	39.2	37.7	77.6	44.4	
25. Univ. Coll. London	28.8	32.2	38.5	42.9	63.2	33.8	
26. Univ. Illinois, Urbana Champaign	39	36.6	44.5	36.4	57.6	26.2	
27. Swiss Fed. Inst. Tech Zurich	37.7	36.3	35.5	39.9	38.4	50.5	
28. Washington Univ., St. Louis	23.5	26	39.2	43.2	53.4	39.3	
29. Northwestern Univ.	20.4	18.9	46.9	34.2	57	36.9	
30. New York Univ.	35.8	24.5	41.3	34.4	53.9	25.9	
31. Rockefeller Univ.	21.2	58.6	27.7	45.6	23.2	37.8	
32. Duke Univ.	19.5	0	46.9	43.6	62	39.2	
33. Univ. Minnesota, Twin Cities	33.8	0	48.6	35.9	67	23.5	
34. Univ. Colorado, Boulder	15.6	30.8	39.9	38.8	45.7	30	
35. Univ. California, Santa Barbara	0	35.3	42.6	36.2	42.7	35.1	
36. Univ. British Columbia	19.5	18.9	31.4	31	63.1	36.3	
37. Univ. Maryland, Coll. Park	24.3	20	40.6	31.2	53.3	25.9	
38. Univ. Texas, Austin	20.4	16.7	46.9	28	54.8	21.3	
39. Univ. Paris VI	38.4	23.6	23.4	27.2	54.2	33.5	
40. Univ. Texas Southwestern Med. Center	22.8	33.2	30.6	35.5	38	31.9	
41. Vanderbilt Univ.	19.5	29.6	31.4	23.8	51	36	
42. Univ. Utrecht	28.8	20.9	27.7	29.9	56.6	26.6	
43. Pennsylvania State Univ Univ. Park	13.2	0	45.1	37.7	58	23.7	
44. Univ. California, Davis	0	0	46.9	33.1	64.2	30	
45. Univ. California , Irvine	0	29.4	35.5	28	48.9	32.1	
46. Univ. Copenhagen	28.8	24.2	25.7	25.2	51.4	31.7	
47. Rutgers State Univ., New Brunswick	14.4	20	39.9	32.1	44.8	24.2	
48. Univ. Manchester	25.6	18.9	24.6	28.3	56.9	28.4	
49. Univ. Pittsburgh, Pittsburgh	23.5	0	39.9	23.6	65.6	28.5	
50. Univ. Southern California	0	26.8	37.1	23.4	52.7	25.9	

Univariate and bivariate analysis

The first step of all statistical analysis is the univariate and bivariate analysis

Statistiques	Alumni	Award	HiCi	N&S	SCI	Size
	(X_1)	(X_2)	(X_3)	(X_4)	(X_5)	(X_6)
Mean	34.09	36.10	46.62	43.09	60.10	38.63
Median	38.80	32	44.80	40.10	61.85	35.30
Min	0	0	23.40	23.40	23.20	21.30
Max	100	100	100	100	100	100
Variance	525.74	625.57	207.82	217.51	156.63	212.33

• Univariate statistics

• Correlation matrix:

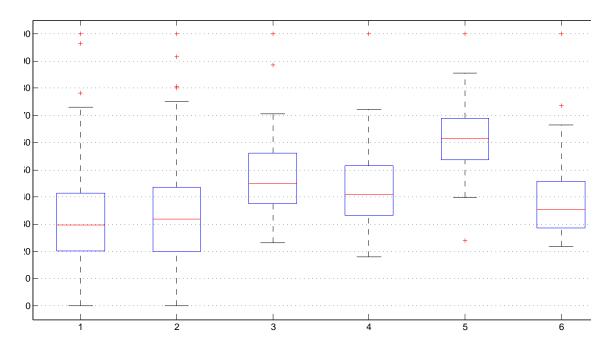
$$\mathbf{R} = \begin{pmatrix} 1.00 & 0.75 & 0.56 & 0.68 & 0.40 & 0.58 \\ 0.75 & 1.00 & 0.59 & 0.73 & 0.09 & 0.74 \\ 0.56 & 0.59 & 1.00 & 0.84 & 0.60 & 0.60 \\ 0.68 & 0.73 & 0.84 & 1.00 & 0.49 & 0.74 \\ 0.40 & 0.09 & 0.60 & 0.49 & 1.00 & 0.16 \\ 0.58 & 0.74 & 0.60 & 0.74 & 0.16 & 1.00 \end{pmatrix}$$

Variables are positively correlated \rightarrow size factor

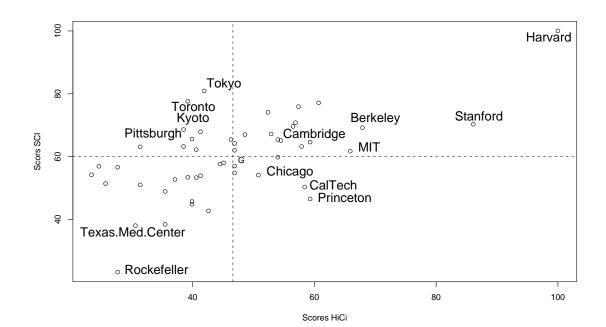
Graphics

• Univariate graphs - Boxplot to detect outliers

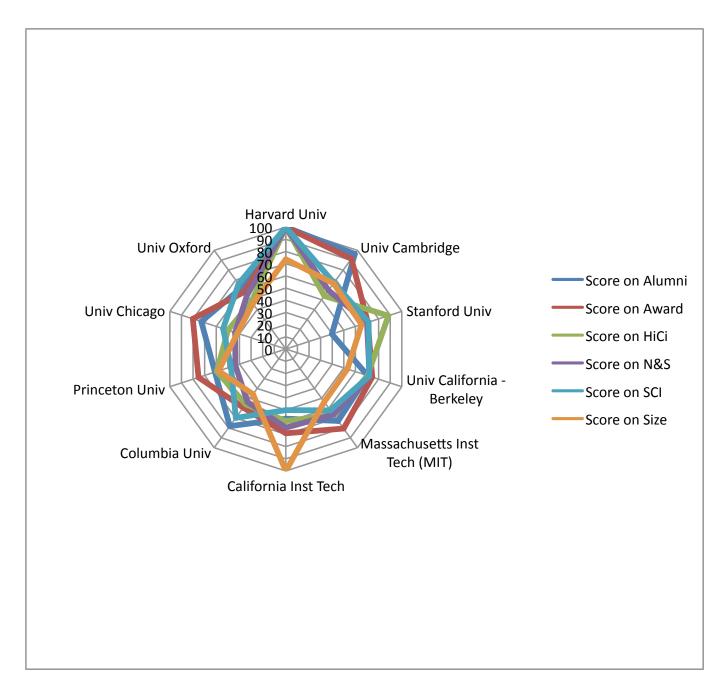
31



• Scatterplots to detect bivariate structure



• Radar type of graph based on TOP 10 to detect multivariate structure



Visualization is not easy when the data contains a large number of individuals

2.1.2 The geometric point of view

Data matrix X $(n \times p)$ is composed of n observations (or individuals) and p variables.

	X_1	• • •	X_p	• • •	X_P	
1	x_{11}	•••	x_{1p}	• • •	x_{1P}	$\longrightarrow \underline{x}'_1$
•••	•••	•••	•••	•••	•••	
i	x_{i1}	•••	x_{ip}	•••	x_{iP}	$\longrightarrow \underline{\mathbf{x}}'_i$
•••	• • •	• • •	• • •	• • •	• • •	
<i>n</i>	x_{n1}	• • •	x_{np}	• • •	x_{nP}	$\longrightarrow \underline{\mathbf{x}}'_n$
Mean	\bar{x}_1	• • •	\bar{x}_p	• • •	\bar{x}_P	
			-		1	
Variance	s_1^2	•••	s_p^2		-	
Variance	s_1^2 \downarrow	•••	$s_p^2 \downarrow$		-	

Examples:

- ARWU scores of universities on research variables
- indicators of corruption on countries, ...

• Cloud of n points in IR^P :

Proximity between two individuals (observations) reflects a similar behavior on the p variables

• Cloud of p points in IR^n :

Proximity between two variables reflects a similar behavior on the n individuals

BUT ... when n or/and p are large (larger than 2 or 3), we cannot produce interpretable graphs of these clouds of points

Develop methods to reduce the dimension without loosing too much information, the information about the variation and structure of clouds in both spaces Simplest way of dimension reduction:
Take just one variable - Not a very reasonable approach

• Alternative method:

Consider the simple average - All the element are considered with equal importance

• Other solution:

Use a weighted average with fixed weights -Choice of weight is arbitrary

Example: ARWU (2007)

- Take only the variable measuring the number of articles published in Nature and Science
- Summarize the 6 variables using the mean
- Use the weights proposed by the "rankers"

Question:

How to project the point cloud onto a space of lower dimension without loosing too much information?

How to construct new uncorrelated variables $\Phi_1, \Phi_2, \ldots, \Phi_M$ (where M is small) summarizing in the best way the structure of the initial point cloud ?

These new variables will be given as a weighted average, but how to choose the optimal weights?

The new variables will be called "principal components"

Several criteria exist in the literature to obtain "principal components":

 Inertia criteria (Pearson, 1901).
 This point of view is based on geometric approach facilitating the understanding and the interpretation of output.

Moreover correspondence analysis for qualitative variables is a generalization of this method.

- This approach is extensively used in french textbooks and software
- Correlation and Variance criteria (Hotelling, 1931).

Methods used in several english textbooks and software.

2.2 The geometric approach of Pearson

2.2.1 The *n*-dimensional point cloud

Each individual *i* denoted as I_i in IR^P is associated with vector $\underline{\mathbf{x}}_i = (x_{i1}, \dots, x_{iP})'$

$$\implies$$
 Cloud of *n* points: $\aleph = \{I_1, \ldots, I_n\}.$

• Center of gravity
$$G$$
 of \aleph :

$$\underline{\mathbf{g}} = (\bar{x}_1, \dots, \bar{x}_P)'$$

In the example on ranking where the variables are Alumni, Award, HiCi, N&S, SCI and PCP, G characterize an university with mean profile

$$\underline{\mathbf{g}} = (34.09, 36.10, 46.62, 43.09, 60.10, 38.63)'$$

• The total inertia is the dispersion of the cloud \aleph around the gravity center G

$$I(\aleph, G) = \frac{1}{n} \sum_{i=1}^{n} d^2 (I_i, G)$$

= $\frac{1}{n} \sum_{i=1}^{n} \left(\sum_{p=1}^{P} (x_{ip} - \bar{x}_p)^2 \right)$
= $\sum_{p=1}^{P} \left(\frac{1}{n} \sum_{i=1}^{n} (x_{ip} - \bar{x}_p)^2 \right)$
= $\sum_{p=1}^{P} s_p^2$

 \implies The total inertia is the sum of variances

For the ranking example:

$$I(\aleph, G) = 525.7 + 625.6 + 207.8$$
$$+217.5 + 156.6 + 212.3$$
$$= 1945.5$$

The largest part of the total inertia is due to the "Nobels" variables

 \implies The choice of units has clearly an impact.

• Solution: Normalize the PCA

PCAn is independent of the choice of units because it uses the standardized variables:

$$x_{ip}^* = \frac{x_{ip} - \bar{x}_p}{s_p} \quad \forall i \in \{1, \dots, n\}; p \in \{1, \dots, P\}$$

Data matrix X^* of standardized observations

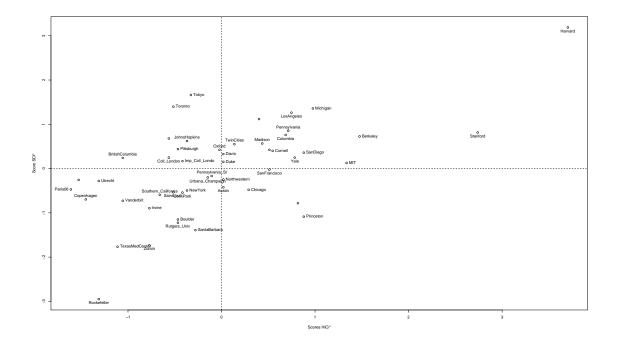
 \implies Point cloud $\aleph^* = \{I_1^*, \dots, I_n^*\}$

 \implies Center of gravity G is the origin of IR^P

 \implies Total inertia: $I(\aleph^*, O) = P$

Universits	Variables			
	X_1^* (HiCi [*])	X_2^* (SCI*)		
1. Harvard Univ.	3.70	3.19		
2. Stanford Univ.	2.74	0.81		
3. Univ. California, Berkeley	1.48	0.73		
4. Univ. Cambridge	0.51	0.42		
5. Massachusetts Inst. Tech. (MIT)	1.34	0.13		
÷	÷	:		
31. Rockefeller Univ.	-1.31	-2.95		
÷	:	:		
49. Univ. Pittsburgh, Pittsburgh	-0.47	0.44		
50. Univ. Southern California	-0.66	-0.59		
Moyenne	0	0		
Variance	1	1		

Example ARWU (2007) on two variables:



2.2.2 First principal component

Projection of $\aleph^* = \{I_1^*, \dots, I_n^*\} \in IR^P$ on a subspace of dimension one (IR^1)

First projecting direction

Find a projecting direction Δ_1 to adjust in "a better way" the point cloud \aleph^*

 \Downarrow

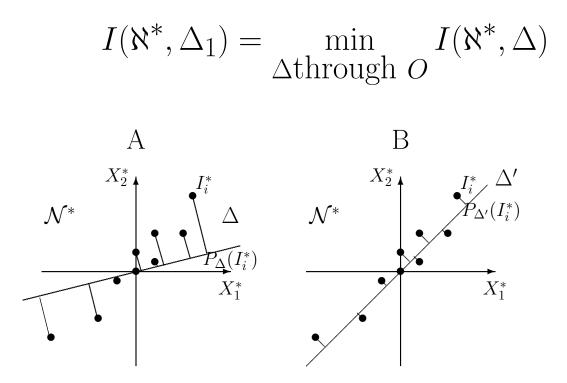
Minimize the loss of information measured by the inertia of cloud \aleph^* around this direction :

$$I(\aleph^*, \Delta_1) = \frac{1}{n} \sum_{i=1}^n d^2(I_i^*, P_{\Delta_1}(I_i^*))$$

where $P_{\Delta_1}(I_i^*)$ is the orthogonal projection of I_i^* on the direction Δ_1

PROBLEM:

Find the direction Δ_1 passing through the origin such that:



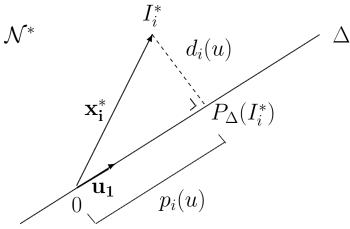
Direction Δ_1 is called the first principal axis Let u_1 be the vector of norm 1 associated to the direction Δ_1 :

$$\underline{\mathbf{u}}_1 = (u_{1,1}, \dots, u_{1,P})'$$

More generally let u be the vector of norm 1 from the origin associated to the direction Δ :

$$\underline{\mathbf{u}} = (u_1, \dots, u_P)'$$

RESOLUTION : IR^P



Let:

$$d_i(u) = \|I_i^* P_{\Delta}(I_i^*)\|$$
$$p_i(u) = \|OP_{\Delta}(I_i^*)\|$$

Find the vector u_1 of norm 1 such that :

$$u_1 = \underset{u \text{ st } \|u\|=1}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n d_i^2(u)$$

By Pythagora's theorem:

$$||OI_i^*||^2 = p_i(u)^2 + d_i(u)^2$$

Then

$$u_1 = \underset{u \text{ st } \|u\|=1}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n d_i^2(u)$$

is equivalent to

$$u_1 = \operatorname*{argmax}_{u \text{ st } ||u||=1} \frac{1}{n} \sum_{i=1}^n p_i^2(u)$$

Using the scalar product:

$$p_i(u) = \langle u, OI_i^* \rangle = \underline{u}' \underline{x}_i^* = \sum_{p=1}^P u_p x_{ip}^*$$

it follows that:

$$u_1 = \operatorname*{argmax}_{u \text{ st } u'u=1} \frac{1}{n} \sum_{i=1}^n (\underline{u'} \underline{x}_i^*)^2.$$

Using matrices in the formulation:

$$\sum_{i=1}^{n} (\underline{u}' \underline{x}_{i}^{*})^{2} = \sum_{i=1}^{n} \underline{u}' \underline{x}_{i}^{*} (\underline{x}_{i}^{*})' \underline{u} = \underline{u}' \left(\sum_{i=1}^{n} \underline{x}_{i}^{*} (\underline{x}_{i}^{*})' \right) \underline{u} = \underline{u}' (X^{*})' X^{*} \underline{u}$$

We have a optimization problem under constraint:

> Maximizing $\frac{1}{n}\underline{\mathbf{u}}'(X^*)'X^*\underline{\mathbf{u}}$ under the constraint $\underline{\mathbf{u}}'\underline{\mathbf{u}} = 1$

 \implies To solve this problem, we introduce the Lagrange function:

$$L(\underline{\mathbf{u}},\lambda) = \frac{1}{n}\underline{\mathbf{u}}'(X^*)'X^*\underline{\mathbf{u}} - \lambda(\underline{\mathbf{u}}'\underline{\mathbf{u}} - 1)$$

The solution of this problem is given by the resolution of a system of P + 1 equations:

$$\begin{cases} \frac{\partial}{\partial u_1} L = 0\\ \dots = \dots\\ \frac{\partial}{\partial u_P} L = 0\\ \frac{\partial}{\partial \lambda} L = 0 \end{cases}$$

The last equation gives the constraint

Let derive componentwise: $u_p \forall p \in \{1, \ldots, P\}$:

$$\begin{aligned} \frac{\partial}{\partial u_p} L &= \frac{\partial}{\partial u_p} \left(\frac{1}{n} \underline{u}'(X^*)' X^* \underline{u} - \lambda(\underline{u}'\underline{u} - 1) \right) \\ &= \frac{\partial}{\partial u_p} \left(\frac{1}{n} \sum_{i=1}^n (\underline{u}' x_i^*)^2 - \lambda(\sum_{l=1}^P u_l^2 - 1) \right) \\ &= \frac{\partial}{\partial u_p} \left(\frac{1}{n} \sum_{i=1}^n (\sum_{l=1}^P u_l x_{il}^*)^2 - \lambda(\sum_{l=1}^P u_l^2 - 1) \right) \\ &= \frac{2}{n} \sum_{i=1}^n \left(\sum_{l=1}^P u_l x_{il}^* \right) x_{ip}^* - 2\lambda u_p \end{aligned}$$

Putting together the P first equations leads to:

$$\begin{bmatrix} \frac{\partial}{\partial u_1} L\\ \dots\\ \frac{\partial}{\partial u_p} L\\ \dots\\ \frac{\partial}{\partial u_p} L\\ \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{n} \sum_{i=1}^n \left(\sum_{l=1}^P u_l x_{il}^* \right) x_{i1}^* - \lambda u_1 \\ \frac{1}{n} \sum_{i=1}^n \left(\sum_{l=1}^P u_l x_{il}^* \right) x_{ip}^* - \lambda u_p \\ \dots\\ \frac{1}{n} \sum_{i=1}^n \left(\sum_{l=1}^P u_l x_{il}^* \right) x_{iP}^* - \lambda u_P \end{bmatrix}$$
$$= 2 \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n \left(x_{i1}^* \\ \dots\\ x_{ip}^* \\ \dots\\ x_{iP}^* \right) (x_i^*)' \underline{u} - \lambda \underline{u} \\ \end{bmatrix}$$
$$= 2 (\frac{1}{n} \sum_{i=1}^n x_i^* (x_i^*)' \underline{u} - \lambda \underline{u})$$
$$= 2 (\frac{1}{n} (X^*)' X^* \underline{u} - \lambda \underline{u})$$

The system of P + 1 equations is then equivalent to the following system:

$$\begin{cases} \frac{1}{n} (X^*)' X^* \underline{\mathbf{u}} = \lambda \underline{\mathbf{u}} \\ \underline{\mathbf{u}}' \underline{\mathbf{u}} = 1 \end{cases}$$

SOLUTION: The first principal axis Δ_1 through the origin is given by the eigenvector u_1 of the correlation matrix $R = \frac{1}{n}(X^*)'X^*$ of variables X_p ($p \in \{1, \ldots, P\}$) associated with the largest eigenvalue λ_1 .

Remarks:

- $\lambda = \lambda \underline{\mathbf{u}}' \underline{\mathbf{u}} = \frac{1}{n} \underline{\mathbf{u}}' (X^*)' X^* \underline{\mathbf{u}}$
- All the eigenvectors are orthogonal
- All eigenvalues are positive or null
- The number of strictly positive eigenvalues is given by the rank of X^*

Example ARWU (2007):

Valeurs	Vecteurs	Alumni	Award	HiCi	N&S	\mathbf{SCI}	PCP
propres	propres	(X_1)	(X_2)	(X_3)	(X_4)	(X_5)	(X_6)
3.94	\mathbf{u}_1	0.42	0.42	0.44	0.47	0.26	0.41
1.09	\mathbf{u}_2	-0.08	-0.42	0.27	0.06	0.79	-0.34
0.47	\mathbf{u}_3	0.76	0.19	-0.37	-0.23	0.16	-0.40
0.26	\mathbf{u}_4	-0.11	0.34	0.49	0.14	-0.32	-0.71
0.13	\mathbf{u}_5	-0.13	-0.01	-0.54	0.80	0.02	-0.21
0.12	\mathbf{u}_6	-0.45	0.70	-0.24	-0.24	0.43	-0.01
	Ŭ						

Eigenvalues and eigenvectors of ${\bf R}$

 $u_1 = (0, 42; 0.42; 0.44; 0.47; 0.26; 0.41)'$ and $\lambda_1 = 3.94$

The norm of u_1

$$||u_1|| = \sum_{p=1}^{P} u_{1,p}^2 = 0.42^2 + \ldots + 0.41^2 = 1$$

is indeed equal to one

First principal component

Orthogonal projection of point cloud \aleph^* on the axis Δ_1 :

$$P_{\Delta_1}(\aleph) = \{P_{\Delta_1}(I_1^*), \dots, P_{\Delta_1}(I_n^*)\}$$

Coordinate of project point $P_{\Delta_1}(I_i^*)$ define the values of the *n* individuals on the new variable Φ_1 . This variable, the best compromise to summarize the information in dimension one, is called the first principal component:

$$\phi_{i1} = \|OP_{\Delta_1}(I_i^*)\| = \langle u_1, OI_i^* \rangle$$
$$= \underline{u}_1' \underline{x}_i^* = \sum_{p=1}^P u_{1,p} x_{ip}^*$$

Let Φ_1 be the vector that contains the *n* coordinates on the first principal component

$$\Phi_1 = X^* \underline{\mathbf{u}}_1$$

The first principal component is a linear combination of the initial variables, it is to say a weighted average.

Example: ARWU (2007)

$$\Phi_1 = (0.42) * Alumni^* + (0.42) * Award^* + (0.44) * HiCi^* + (0.47) * NS^* + (0.26) * SCI^* + (0.41) * PCP^*$$

University	First axis				
	Φ_1	CTR_{Δ_1}	\cos^2		
1. Harvard Univ.	7.50	0.29	0.95		
2. Stanford Univ.	3.88	0.08	0.84		
3. Univ. California, Berkeley	3.57	0.06	0.96		
4. Univ. Cambridge	3.58	0.07	0.78		
5. Massachusetts Inst. Tech. (MIT)	3.33	0.06	0.92		
6. California Inst. Tech.	3.61	0.07	0.53		
7. Columbia Univ.	2.34	0.03	0.82		
8. Princeton Univ.	1.93	0.02	0.44		
9. Univ. Chicago	1.48	0.01	0.36		
10. Univ. Oxford	1.41	0.01	0.71		
:	÷	÷	:		

Properties of Φ_1

• Φ_1 is centered (weighted mean of centered variables):

$$\bar{\Phi}_{1} = \frac{1}{n} \sum_{i=1}^{n} \phi_{i1} = \frac{1}{n} \sum_{i=1}^{n} \sum_{p=1}^{P} u_{1,p} x_{ip}^{*}$$
$$= \sum_{p=1}^{P} u_{1,p} \frac{1}{n} \sum_{i=1}^{n} x_{ip}^{*} = \sum_{p=1}^{P} u_{1,p} \bar{x}_{p}^{*} = 0$$

• The variance of Φ_1 is equal to λ_1 :

$$s_{\Phi_1}^2 = \frac{1}{n} \sum_{i=1}^n (\phi_{i1} - \bar{\phi}_1)^2 = \frac{1}{n} \sum_{i=1}^n \phi_{i1}^2 = \frac{1}{n} \Phi_1' \Phi_1$$
$$= \frac{1}{n} \underline{u}_1' (X^*)' X^* \underline{u}_1 = \underline{u}_1' \frac{1}{n} (X^*)' X^* \underline{u}_1$$
$$= \underline{u}_1' \lambda_1 \underline{u}_1 = \lambda_1 \underline{u}_1' \underline{u}_1 = \lambda_1$$

• The variance of Φ_1 is equal to the inertia of the point cloud projected on Δ_1 :

$$s_{\Phi_1}^2 = \frac{1}{n} \sum_{i=1}^n \phi_{i1}^2 = \frac{1}{n} \sum_{i=1}^n \|OP_{\Delta_1}(I_i^*)\|^2$$
$$= I(P_{\Delta_1}(\aleph^*), O)$$

• Correlation between X_p and Φ_1 is given by

$$r_{X_p,\Phi_1} = \sqrt{\lambda_1} u_{1,p}$$

Indeed, the associated covariance is given by

$$s_{X_p^*,\Phi_1} = \frac{1}{n} \sum_{i=1}^n x_{ip}^* \phi_{i1} \quad \forall p \in \{1,\dots,P\}$$

It follows that $\begin{bmatrix} s_{X_{1}^{*},\Phi_{1}} \\ \dots \\ s_{X_{p}^{*},\Phi_{1}} \\ \dots \\ s_{X_{P}^{*},\Phi_{1}} \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} x_{i1}^{*} \phi_{i1} \\ \dots \\ \frac{1}{n} \sum_{i=1}^{n} x_{ip}^{*} \phi_{i1} \\ \dots \\ \frac{1}{n} \sum_{i=1}^{n} x_{iP}^{*} \phi_{i1} \end{bmatrix} = \begin{bmatrix} \frac{1}{n} (\underline{\mathbf{v}}_{1}^{*})' \Phi_{1} \\ \dots \\ \frac{1}{n} (\underline{\mathbf{v}}_{P}^{*})' \Phi_{1} \\ \dots \\ \frac{1}{n} (\underline{\mathbf{v}}_{P}^{*})' \Phi_{1} \end{bmatrix}$

Leading to :

 $s_{X_p^*,\Phi_1} = \lambda_1 u_{1,p} \quad \forall p \in \{1,\dots,P\}$

Hence,

$$r_{X_{p},\Phi_{1}} = r_{X_{p}^{*},\Phi_{1}} = \frac{s_{X_{p}^{*},\Phi_{1}}}{s_{\Phi_{1}}} = \frac{\lambda_{1}u_{1,p}}{\sqrt{\lambda_{1}}} = \sqrt{\lambda_{1}}u_{1,p}$$

r_{X_k,Φ_h}	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6
Alumni	0.83	-0.09	-0.52	0.06	0.05	0.16
Award	0.84	-0.44	-0.13	-0.17	0.01	-0.24
HiCi	0.86	0.29	0.26	-0.25	0.19	0.08
N&S	0.94	0.06	0.16	-0.07	-0.29	0.08
SCI	0.51	0.82	-0.11	0.16	-0.01	-0.15
Size	0.81	-0.35	0.28	0.36	0.075	0.00

Example: ARWU (2007)

 Φ_1 is positively correlated with all the variables

The proximity of Φ_1 with all the initial variables is given by:

$$\frac{1}{P} \sum_{p=1}^{P} r_{X_p,\Phi_1}^2 = \frac{1}{P} \sum_{p=1}^{P} \lambda_1 u_{1,p}^2 = \frac{\lambda_1}{P} \sum_{p=1}^{P} u_{1,p}^2 = \frac{\lambda_1}{P}$$
$$= \frac{3.94}{6} = 66\%$$

Global quality of the first principal component

Using the decomposition of total inertia, we capture the percentage of information taking into account by the first principal component:

 $||OI_i^*||^2 = ||OP_{\Delta_1}(I_i^*)||^2 + ||I_i^*P_{\Delta_1}(I_i^*)||^2$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \|OI_{i}^{*}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|OP_{\Delta_{1}}(I_{i}^{*})\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \|I_{i}^{*}P_{\Delta_{1}}(I_{i}^{*})\|^{2}$$

 $\Rightarrow I(\aleph^*, O) = I(P_{\Delta_1}(\aleph^*), O) + I(\aleph^*, \Delta_1)$

"Total inertia = inertia explained by Δ_1 + residual inertia"

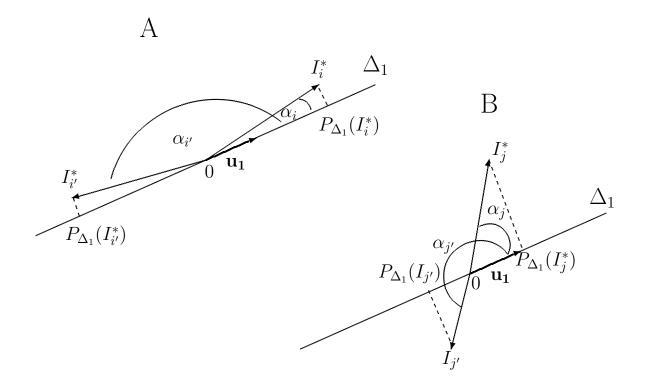
 \rightarrow Global quality is given by $\frac{\lambda_1}{P}$ Example: ARWU (2007) $\frac{\lambda_1}{P} = \frac{3.94}{6} = 66\%$

Quality of the representation of each individual on the first axis

The quality of the representation of each individuals I_i^* on the axis Δ_1 is measured by the squared cosines of the angle between the vector OI_i^* and the axis Δ_1 :

$$\cos^{2}(OI_{i}^{*}, \Delta_{1}) = \cos^{2}(OI_{i}^{*}, OP_{\Delta_{1}}(I_{i}^{*}))$$
$$= \frac{\|0P_{\Delta_{1}}(I_{i}^{*})\|^{2}}{\|0I_{i}^{*}\|^{2}} = \frac{\phi_{i1}^{2}}{\|0I_{i}^{*}\|^{2}}$$

The representation of individual i is satisfying on the first axis if $\cos^2(OI_i^*, \Delta_1)$ is close to 1.



Example: ARWU (2007)

$$\|OI_{Harvard}^*\|^2 = d^2(O, I_{Harvard}^*)$$

= $(3.70)^2 + (3.19)^2 + \dots = 59.21$
 $\Rightarrow \cos^2(OI_{Harvard}^*, \Delta_1) = \frac{(7.50)^2}{59.21} = 0.95$

Contribution of each individual on the construction of the first axis

Note that :

$$\lambda_1 = I(P_{\Delta_1}(\aleph^*), O) = s_{\Phi_1}^2 = \frac{1}{n} \sum_{i=1}^n \phi_{i1}^2$$

The contribution of each individual i on the variance Φ_1 is then given by

$$CTR_{\Delta_1}(i) = \frac{\frac{1}{n}\phi_{i1}^2}{\lambda_1}$$

Each contribution gives a percentage since

$$\sum_{i=1}^{n} CTR_{\Delta_1}(i) = 1$$

Interpretation: One individual is important in the construction of the first axis if its contribution is large. The construction of the first principal component is based essentially on individuals far away from the center of gravity.

m

CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS (PCA)

Universities	F	First axis			Second axis		
	Φ_1	CTR_{Δ_1}	\cos^2	Φ_2	CTR_{Δ_2}	\cos^2	
1. Harvard Univ.	7.50	0.29	0.95	1.65	0.05	0.05	
2. Stanford Univ.	3.88	0.08	0.84	0.13	0.00	0.00	
3. Univ. California, Berkeley	3.57	0.06	0.96	-0.06	0.00	0.00	
4. Univ. Cambridge	3.58	0.07	0.78	-1.23	0.03	0.09	
5. Massachusetts Inst. Tech. (MIT)	3.33	0.06	0.92	-0.67	0.01	0.04	
6. California Inst. Tech.	3.61	0.07	0.53	-2.35	0.10	0.23	
7. Columbia Univ.	2.34	0.03	0.82	0.00	0.00	0.00	
8. Princeton Univ.	1.93	0.02	0.44	-1.94	0.07	0.44	
9. Univ. Chicago	1.48	0.01	0.36	-1.24	0.03	0.26	
10. Univ. Oxford	1.41	0.01	0.71	-0.24	0.00	0.02	
11. Yale Univ.	1.58	0.01	0.92	0.04	0.00	0.00	
12. Cornell Univ.	1.07	0.01	0.87	0.18	0.00	0.02	
13. Univ. California, Los Angeles	0.71	0.00	0.20	1.21	0.03	0.57	
14. Univ. California, San Diego	0.74	0.00	0.22	0.49	0.00	0.10	
15. Univ. Pennsylvania	0.40	0.00	0.13	0.89	0.01	0.62	
16. Univ. Washington, Seattle	0.14	0.00	0.01	1.37	0.03	0.82	
17. Univ. Wisconsin, Madison	0.16	0.00	0.02	0.79	0.01	0.58	
18. Univ. California, San Francisco	0.17	0.00	0.01	0.09	0.00	0.00	
19. Johns Hopkins Univ.	-0.03	0.00	0.00	0.83	0.01	0.32	
:	:	÷	÷	÷	÷	÷	
31. Rockefeller Univ.	-1.13	0.01	0.11	-2.99	0.16	0.77	
32. Duke Univ.	-0.80	0.00	0.25	0.78	0.01	0.24	
33. Univ. Minnesota, Twin Cities	-1.07	0.01	0.31	1.40	0.04	0.53	
34. Univ. Colorado, Boulder	-1.31	0.01	0.64	-0.70	0.01	0.18	
35. Univ. California, Santa Barbara	-1.44	0.01	0.46	-0.98	0.02	0.21	
36. Univ. British Columbia	-1.41	0.01	0.72	0.25	0.00	0.02	
37. Univ. Maryland, Coll. Park	-1.51	0.01	0.92	0.01	0.00	0.00	
38. Univ. Texas, Austin	-1.65	0.01	0.76	0.39	0.00	0.04	
39. Univ. Paris VI	-1.61	0.01	0.59	-0.56	0.01	0.07	
40. Univ. Texas Southwestern Med. Center	-1.63	0.01	0.52	-1.48	0.04	0.43	
41. Vanderbilt Univ.	-1.71	0.01	0.76	-0.72	0.01	0.13	
42. Univ. Utrecht	-1.76	0.02	0.83	-0.08	0.00	0.00	
43. Pennsylvania State Univ., Univ. Park	-1.67	0.01	0.68	0.85	0.01	0.17	
44. Univ. California, Davis	-1.70	0.01	0.55	1.16	0.02	0.26	
45. Univ. California, Irvine	-1.97	0.02	0.79	-0.59	0.01	0.07	
46. Univ. Copenhagen	-1.88	0.02	0.77	-0.64	0.01	0.09	
47. Rutgers State Univ., New Brunswick	-1.91	0.02	0.83	-0.46	0.00	0.05	
48. Univ. Manchester	-1.94	0.02	0.83	-0.12	0.00	0.00	
49. Univ. Pittsburgh, Pittsburgh	-1.80	0.02	0.66	1.02	0.02	0.21	
50. Univ. Southern California	-2.21	0.02	0.86	-0.15	0.00	0.00	

2.2.3 Second principal component

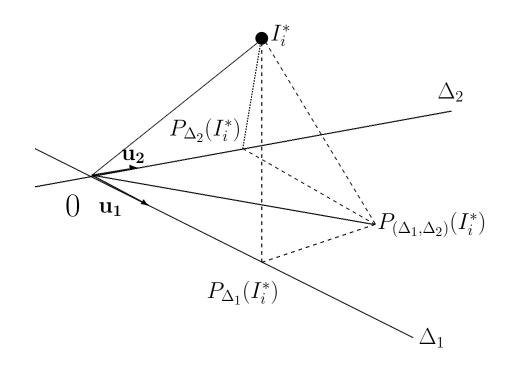
Second projecting direction

The second projecting axis Δ_2 is

- an axis through the origin of IR^P (the gravity center of point cloud \aleph^*)
- orthogonal to Δ_1
- minimizing the residual inertia $I(\aleph^*, (\Delta_1, \Delta_2))$

In practice, we can show that Δ_2 is given by the direction u_2 , eigenvector with unitary norm of the correlation matrix R associated with the second largest eigenvalue λ_2 .

The sub-space (Δ_1, Δ_2) of dimension 2 is called the first principal plan. • Decomposition of the total inertia



Let:

- $P_{\Delta_1}(I_i^*)$ the orthogonal projection of I_i^* on the axis Δ_1
- $P_{\Delta_2}(I_i^*)$ the orthogonal projection of I_i^* on the axis Δ_2
- $P_{(\Delta_1, \Delta_2)}(I_i^*)$ the orthogonal projection of I_i^* on the axis (Δ_1, Δ_2) .

By Pythagora's theorem:

$$\|0I_i^*\|^2 = \|0P_{(\Delta_1,\Delta_2)}(I_i^*)\|^2 + \|I_i^*P_{(\Delta_1,\Delta_2)}(I_i^*)\|^2$$

Moreover

- $P_{\Delta_1}(I_i^*)$ is the orthogonal projection of $P_{(\Delta_1, \Delta_2)}(I_i^*)$ on the axis Δ_1
- $P_{\Delta_2}(I_i^*)$ is the orthogonal projection of $P_{(\Delta_1, \Delta_2)}(I_i^*)$ on the axis Δ_2 ,

$$\Longrightarrow \|0I_{i}^{*}\|^{2} = \|0P_{\Delta_{1}}(I_{i}^{*})\|^{2} + \|0P_{\Delta_{2}}(I_{i}^{*})\|^{2} \\ + \|I_{i}^{*}P_{(\Delta_{1},\Delta_{2})}(I_{i}^{*})\|^{2} \\ \Downarrow \\ \implies \frac{1}{n}\sum_{i=1}^{n}\|0I_{i}^{*}\|^{2} = \frac{1}{n}\sum_{i=1}^{n} \|0P_{\Delta_{1}}(I_{i}^{*})\|^{2} + \frac{1}{n}\sum_{i=1}^{n}\|0P_{\Delta_{2}}(I_{i}^{*})\|^{2} \\ + \frac{1}{n}\sum_{i=1}^{n}\|I_{i}^{*}P_{(\Delta_{1},\Delta_{2})}(I_{i}^{*})\|^{2}$$

 $\Downarrow I(\aleph^*, 0) = I(P_{\Delta_1}(\aleph^*), 0) + I(P_{\Delta_2}(\aleph^*), 0) + I(\aleph^*, (\Delta_1, \Delta_2)).$

Second principal component

Orthogonal projection of point cloud \aleph^* on the axis Δ_2 :

$$P_{\Delta_2}(\aleph^*) = \{P_{\Delta_2}(I_1^*), \dots, P_{\Delta_2}(I_n^*)\}$$

In the same way that for the first direction, define:

$$\phi_{i2} = \|0P_{\Delta_2}(I_i^*)\| \qquad \forall i = 1, \dots, n$$

where ϕ_{i2} gives the value of individual *i* on the second principal component Φ_2

The second principal component is also a weighted average of initial variables

$$\phi_{i2} = \langle u_2, 0I_i^* \rangle \\ = \underbrace{u'_2 x_i^*}_{P} \\ = \sum_{p=1}^{P} u_{2,p} x_{ip}^*.$$

Let Φ_2 be the vector that contains the *n* coordinate on the first principal component $\Phi_2 = (\phi_{12}, \ldots, \phi_{n2})'$:

$$\Phi_2 = X^* u_2.$$

The second new variable Φ_2 is a linear combination of the initial variables X_1^*, \ldots, X_P^* :

$$\Phi_2 = \sum_{p=1}^{P} u_{2,p} X_p^*.$$

Example: ARWU (2007)

 $\Phi_2 = -0.08 * Alumni^* - 0.42 * Award^*$ $+ 0.27 * HiCi^* + 0.06 * NS^*$ $+ 0.79 * SCI^* - 0.34 * PCP^*$

The second component discriminates between in one hand Nobel prize (Award) and size (PCP), and in the other hand the volume of publication (SCI and HiCi) (to be verified with correlation matrix)

Properties of Φ_2

- Φ_2 has zero mean (exercise)
- Φ_2 has a variance equal to λ_2 (exercise) It follows that

$$\lambda_{2} = s_{\Phi_{2}}^{2} = \frac{1}{n} \sum_{i=1}^{n} \phi_{i2}^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \|0P_{\Delta_{2}}(I_{i}^{*})\|^{2}$$
$$= I(P_{\Delta_{2}}(\aleph^{*}), 0).$$

• The correlation between Φ_1 and Φ_2 is equal to zero:

$$s_{\Phi_{1},\Phi_{2}} = \frac{1}{n} \sum_{i=1}^{n} \phi_{i1} \phi_{i2}$$

= $\frac{1}{n} \Phi_{1}' \Phi_{2} = \frac{1}{n} u_{1}' (X^{*})' X^{*} u_{2}$
= $u_{1}' \lambda_{2} u_{2} = \lambda_{2} u_{1}' u_{2} = 0$
 $\implies r_{\Phi_{1},\Phi_{2}} = 0.$

• Correlation between the second component and initial variables (exercise):

$$r_{X_p,\Phi_2} = \sqrt{\lambda_2} u_{2,p} \qquad \forall p = 1,\ldots, P.$$

Example: ARWU (2007)

r_{X_k,Φ_h}	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6
Alumni	0.83	-0.09	-0.52	0.06	0.05	0.16
Award	0.84	-0.44	-0.13	-0.17	0.01	-0.24
HiCi	0.86	0.29	0.26	-0.25	0.19	0.08
N&S	0.94	0.06	0.16	-0.07	-0.29	0.08
SCI	0.51	0.82	-0.11	0.16	-0.01	-0.15
Size	0.81	-0.35	0.28	0.36	0.075	0.00

 \Downarrow

 Φ_2 discriminates, for universities with globally the same level on Φ_1 , 2 behaviors:

- Volume of publication dominates the number of Nobel prize : $\phi_{\{Michigan,2\}} = 2.10$,
- Nobel prizes dominates the score on the volume of publication: $\phi_{\{Rockfeller,2\}} = -2.99$

Global quality of the second principal component

Percentage of inertia explained by Δ_2 :

Percentage of inertia explained by the first principal plan (Δ_1, Δ_2) :

 $\frac{\lambda_2}{P}$

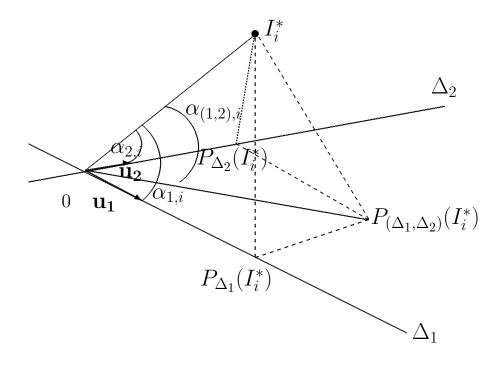
$$\frac{\lambda_1 + \lambda_2}{P}$$

Example: ARWU (2007) Δ_2 explains $\frac{1.09}{6} = 18.17\%$ of total inertia \downarrow Then (Δ_1, Δ_2) explains $\frac{3.94+1.09}{6} = 83.83\%$ of total inertia

Quality of the representation of each individual on the second axis

Quality of representation of each point I_i^* on the axis Δ_2 is measured by the squared cosines of angle between the vector OI_i^* and the direction Δ_2 :

$$\cos^2(OI_i^*, \Delta_2) = \frac{\|0P_{\Delta_2}(I_i^*)\|^2}{\|0I_i^*\|^2} = \frac{\phi_{i2}^2}{\|0I_i^*\|^2}.$$



Quality of representation of each point I_i^* on the plan (Δ_1, Δ_2) is measured by the squared cosines of angle between the vector OI_i^* and the plan (Δ_1, Δ_2) :

$$\begin{aligned} \cos^2(OI_i^* \ , \ (\Delta_1, \Delta_2)) &= \frac{\|0P_{(\Delta_1, \Delta_2)}(I_i^*)\|^2}{\|0I_i^*\|^2} \\ &= \frac{\|0P_{(\Delta_1)}(I_i^*)\|^2 + \|0P_{(\Delta_2)}(I_i^*)\|^2}{\|0I_i^*\|^2} \\ &= \frac{\phi_{i1}^2 + \phi_{i2}^2}{\|0I_i^*\|^2} \\ &= \cos^2(OI_i^*, \Delta_1) + \cos^2(OI_i^*, \Delta_2). \end{aligned}$$

Contribution of each individual on the construction of the second axis Δ_2 Note that:

$$\lambda_2 = I(P_{\Delta_2}(\aleph^*), 0) = s_{\Phi_2}^2 = \frac{1}{n} \sum_{i=1}^n \phi_{i2}^2,$$

The contribution of each individual i on the variance Φ_2 is given by:

$$CTR_{\lambda_2} = \frac{\frac{1}{n}\phi_{i2}^2}{\lambda_2}.$$

CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS (PCA)

Universities	First axis				Second axis		
	Φ_1	CTR_{Δ_1}	\cos^2	Φ_2	CTR_{Δ_2}	\cos^2	
1. Harvard Univ.	7.50	0.29	0.95	1.65	0.05	0.05	
2. Stanford Univ.	3.88	0.08	0.84	0.13	0.00	0.00	
3. Univ. California, Berkeley	3.57	0.06	0.96	-0.06	0.00	0.00	
4. Univ. Cambridge	3.58	0.07	0.78	-1.23	0.03	0.09	
5. Massachusetts Inst. Tech. (MIT)	3.33	0.06	0.92	-0.67	0.01	0.04	
6. California Inst. Tech.	3.61	0.07	0.53	-2.35	0.10	0.23	
7. Columbia Univ.	2.34	0.03	0.82	0.00	0.00	0.00	
8. Princeton Univ.	1.93	0.02	0.44	-1.94	0.07	0.44	
9. Univ. Chicago	1.48	0.01	0.36	-1.24	0.03	0.26	
10. Univ. Oxford	1.41	0.01	0.71	-0.24	0.00	0.02	
11. Yale Univ.	1.58	0.01	0.92	0.04	0.00	0.00	
12. Cornell Univ.	1.07	0.01	0.87	0.18	0.00	0.02	
13. Univ. California, Los Angeles	0.71	0.00	0.20	1.21	0.03	0.57	
14. Univ. California, San Diego	0.74	0.00	0.22	0.49	0.00	0.10	
15. Univ. Pennsylvania	0.40	0.00	0.13	0.89	0.01	0.62	
16. Univ. Washington, Seattle	0.14	0.00	0.01	1.37	0.03	0.82	
17. Univ. Wisconsin, Madison	0.16	0.00	0.02	0.79	0.01	0.58	
18. Univ. California, San Francisco	0.17	0.00	0.01	0.09	0.00	0.00	
19. Johns Hopkins Univ.	-0.03	0.00	0.00	0.83	0.01	0.32	
:	:	÷	÷	÷	÷	÷	
31. Rockefeller Univ.	-1.13	0.01	0.11	-2.99	0.16	0.77	
32. Duke Univ.	-0.80	0.00	0.25	0.78	0.01	0.24	
33. Univ. Minnesota, Twin Cities	-1.07	0.01	0.31	1.40	0.04	0.53	
34. Univ. Colorado, Boulder	-1.31	0.01	0.64	-0.70	0.01	0.18	
35. Univ. California, Santa Barbara	-1.44	0.01	0.46	-0.98	0.02	0.21	
36. Univ. British Columbia	-1.41	0.01	0.72	0.25	0.00	0.02	
37. Univ. Maryland, Coll. Park	-1.51	0.01	0.92	0.01	0.00	0.00	
38. Univ. Texas, Austin	-1.65	0.01	0.76	0.39	0.00	0.04	
39. Univ. Paris VI	-1.61	0.01	0.59	-0.56	0.01	0.07	
40. Univ. Texas Southwestern Med. Center	-1.63	0.01	0.52	-1.48	0.04	0.43	
41. Vanderbilt Univ.	-1.71	0.01	0.76	-0.72	0.01	0.13	
42. Univ. Utrecht	-1.76	0.02	0.83	-0.08	0.00	0.00	
43. Pennsylvania State Univ., Univ. Park	-1.67	0.01	0.68	0.85	0.01	0.17	
44. Univ. California, Davis	-1.70	0.01	0.55	1.16	0.02	0.26	
45. Univ. California, Irvine	-1.97	0.02	0.79	-0.59	0.01	0.07	
46. Univ. Copenhagen	-1.88	0.02	0.77	-0.64	0.01	0.09	
47. Rutgers State Univ., New Brunswick	-1.91	0.02	0.83	-0.46	0.00	0.05	
48. Univ. Manchester	-1.94	0.02	0.83	-0.12	0.00	0.00	
49. Univ. Pittsburgh, Pittsburgh	-1.80	0.02	0.66	1.02	0.02	0.21	
50. Univ. Southern California	-2.21	0.02	0.86	-0.15	0.00	0.00	

2.2.4 Extended dimensions

The h^{th} projecting axis Δ_h is

- an axis passing through the origin of IR^P (the gravity center of point cloud \aleph^*)
- orthogonal to $\Delta_1, \ldots, \Delta_{h-1}$
- minimizing the residual inertia

In practice, we can show that Δ_h is given by the direction u_h which is the eigenvector (with unitary norm) of the correlation matrix R that is associated with the h^{th} largest eigenvalue λ_h .

It is clear that if h is equal to the rank of X^* , the data cloud \aleph^* is contained in the subspace generated by $\{u_1, \ldots, u_h\}$ and the reduction mechanism can stop. Orthogonal projection of point cloud \aleph^* on the axis Δ_h :

$$P_{\Delta_h}(\aleph^*) = \{P_{\Delta_h}(I_1^*), \dots, P_{\Delta_h}(I_n^*)\}$$

In the same way that for other directions, define:

$$\phi_{ih} = \|0P_{\Delta_h}(I_i^*)\| \qquad \forall i = 1, \dots, n$$

where ϕ_{ih} gives the value of individual *i* on the principal component Φ_h

The principal component is also a weighted average of the initial variables

$$\phi_{ih} = \langle u_h, 0I_i^* \rangle$$
$$= \underbrace{\mathbf{u}'_h \mathbf{x}^*_i}_P \\= \sum_{p=1}^P u_{h,p} x_{ip}^*.$$

Properties of Φ_h

- Φ_h has zero mean (exercise)
- Φ_h has a variance equal to λ_h (exercise)
- Correlation between $\Phi_l (l \in \{1, \ldots, h-1\})$ and Φ_h is equal to zero:

$$s_{\Phi_l,\Phi_h} = \frac{1}{n} \sum_{i=1}^n \phi_{il} \phi_{ih}$$

= $\frac{1}{n} \Phi'_l \Phi_h = \frac{1}{n} u'_l (X^*)' X^* u_h$
= $u'_l \lambda_h u_h = \lambda_h u'_l u_h = 0$
 $\implies r_{\Phi_l,\Phi_h} = 0.$

• Correlation between the h^{th} component and the initial variables (exercise):

$$r_{X_p,\Phi_h} = \sqrt{\lambda_h} u_{h,p} \qquad \forall p = 1, \dots, P.$$

Correlations and eigenvectors

By linear algebra:

$$R = \frac{1}{n} (X^*)' X^* = \sum_{h=1}^{H} \lambda_h u_h u'_h.$$

Then, for each $p \neq l \in \{1, \dots, P\}$: $r_{X_p, X_l} = \sum_{h=1}^{H} \lambda_h u_{h, p} u_{h, l}.$ *Question: How many principal components needed?*

Stopping rules for determining the number of principal components:

• Classical rule based on τ_h , the percentage of variance explained by the first h principal components, $h \in \{1, \dots, H\}$:

$$\tau_h = \frac{\lambda_1 + \ldots + \lambda_h}{\lambda_1 + \ldots + \lambda_H} = \frac{\lambda_1 + \ldots + \lambda_h}{P}.$$

If τ is big enough (close to one), h is the number of factors to choose. But this rule is rather subjective.

- Keep principal component Φ_h iff $\lambda_h > 1$ (mean of eigenvalues).
- Examine the scree s plot that shows the fraction of total variance in the data explained by each principal component

2.2.5 Graphical representations

The principal components are used to represent graphically individuals and variables

Map of individuals

Projection of the data cloud \aleph^* on the first principal plan (Δ_1, Δ_2) :

\downarrow

 $\forall i = 1, \dots, n$ the projection $P_{(\Delta_1, \Delta_2)}(I_i^*)$ of individual I_i^* on the first plan has coordinates

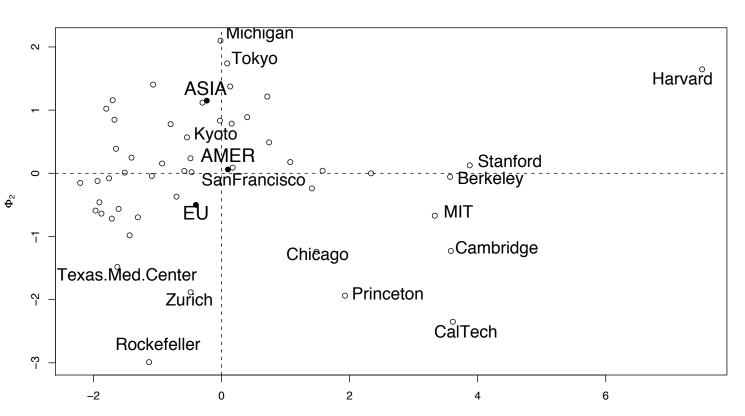
 (ϕ_{i1}, ϕ_{i2})

on the axis Δ_1 and Δ_2 .

This graph makes the interpretation of axis easier as well as the comparison between individuals

Example: ARWU (2007)

Well represented individuals can be interpreted

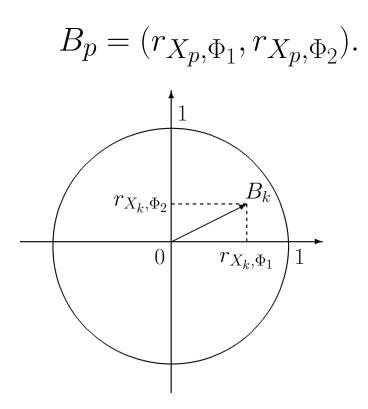


- The first axis segregates the universities from the less quality to the best quality in terms on research
- The second axis discriminates between "volume of publication" and "Nobel prizes"
- Harvard seems to be an outlier

If the principal plan is not sufficient, (Δ_1, Δ_3) and (Δ_2, Δ_3) plans can also be analyzed

Correlations circle

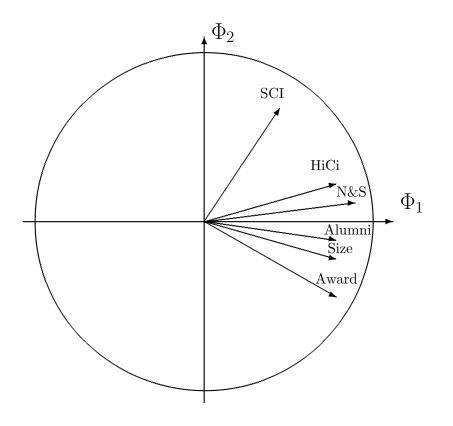
Representation of variables is based on the projection of the cloud of p variables X^* in IR^n on the principal components. The coordinate on the first principal plan are



This graph makes it easier to visualize

- correlations between old and new variables
- the quality of the representation of X_p given by the norm of the vector $0B_p$

Example: ARWU (2007)



- \bullet All variables have a good quality of representation in $I\!R^2$
- The first principal component is positively correlated with all variables (quality factor)
- The second principal component discriminates between "Volume" and "Prizes" \implies type of research quality

2.3 Additional variables or individuals

• Additional individuals i_s

- Step 1: Standardize the coordinate of new individual i_s using mean and standard deviation calculated on active individuals

- Step 2: Project new standardize individual on principal axis:

$$\phi_{i_s1} = \sum_{p=1}^{P} u_{1,p} x_{i_s p}^*$$
$$\phi_{i_s2} = \sum_{p=1}^{P} u_{2,p} x_{i_s p}^*$$
etc

- Step 3: Project this observation on the first plan.

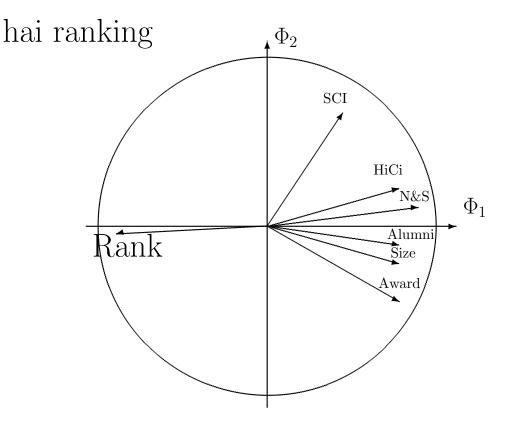
• Additional continuous variable X_s

The information on the additional continuous variable X_s will be given by the correlations circle where the coordinates are

 r_{X_s,Φ_1} and r_{X_s,Φ_2}

Example: ARWU (2007)

Representation of the ranking given in Shang-



• Additional qualitative variable X_s

If the variable is qualitative, the correlation can not be used

 \Downarrow

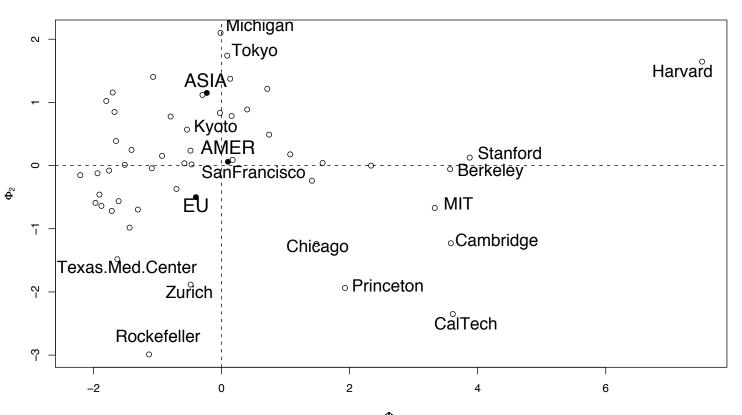
Create K groups individuals formed by the K categories of X_s

Then project the K mean individuals on the map of individuals

Note that if the variable is ordinal, you can link the mean individuals by the way of a line

Example: ARWU (2007)

Representation of groups of individuals : european, asian and US universities



- US universities is a little bit better than the two others
- European universities perform better in terms of Nobel prizes
- Asian universities perform better in terms of volume of publications

2.4 ACP following Hotelling

These procedures seem to be less complex but are less intuitive from a geometrical point of view

Correlation criteria

Find J new standardized uncorrelated variables Z_1, \ldots, Z_J such that the following criteria is maximized:

$$\sum_{j=1}^{J} \left[\frac{1}{P} \sum_{p=1}^{P} r_{X_p,Z_j}^2\right].$$

It is possible to prove that the maximum is reached by reducing the principal principal components

$$Z_j = \Phi_j^* = \frac{\Phi_j}{\sqrt{\lambda_j}}$$

and the maximum is given by $\frac{\lambda_1 + \dots + \lambda_J}{P}$.

Variance criteria

Find J new uncorrelated variables Z_1, \ldots, Z_J such that

$$Z_j = \sum_{p=1}^{P} \nu_{j,p} X_p$$

where the vectors

$$\nu_j = (\nu_{j,1}, \dots, \nu_{j,P})'$$

maximize the following criteria

$$\sum_{j=1}^{J} s_{Z_j}^2.$$

• The maximum is given by

$$\lambda_{\nu_1} + \ldots + \lambda_{\nu_J}$$

- The maximum is reached for orthogonal eigenvectors of covariance matrix
- If the standardized variables are used, then $Z_j = \Phi_j$ and the maximum is given by $\lambda_1 + \dots + \lambda_J$

2.5 References

- Dehon, C., Droesbeke, J-J. et Vermandele C. (2008), *Elments de statistique*, Bruxelles, Editions de L'Unviversit de Bruxelles
- Joliffe I. T. (1986), *Principal Component Analysis*, 2nd edition, New York Springer.
- Hotelling H. (1933), "Analysis of a complex statistical variable into principal component", J. Edu. Psy., Vol 24, 417-441 and 498-520.
- Pearson K. (1901), "On lines and planes of closest fit to systems of points in space", *Phil. Mag.*,2, 11, 559-572
- Rao C.R. (1964), "The use and interpretation of principal components analysis in applied research", *Sankhya*, serie A, Vol 26, 329-357

Chapter 3

A short introduction on robust statistics

3.1 Why robust statistics ?

• Develop procedures (in estimation, in testing problem, in regression, in time series, ...) that are valid (bias, efficiency) under small deviations from the underlying model

"All models are wrong, but some are useful." (Box, 1979) \Downarrow

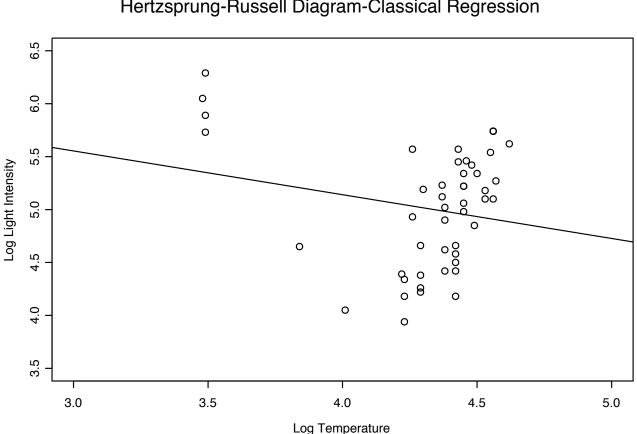
• Robustness: Find the structure fitting the majority of the data.

• Diagnostics: Identify outliers and sub-structure in the sample

• Robust methods are needed in explanatory analysis (data mining)

• Robust methods allows to control the weight of outliers (leverage points) in the statistical procedure • Regression and Multivariate Analysis are used in many fields. But classical methods are very vulnerable to the presence of outliers

• Example of Simple Regression - Astronomy Data: 43 stars (the majority) are in the direction of Gygnus but 4 stars are called giants.

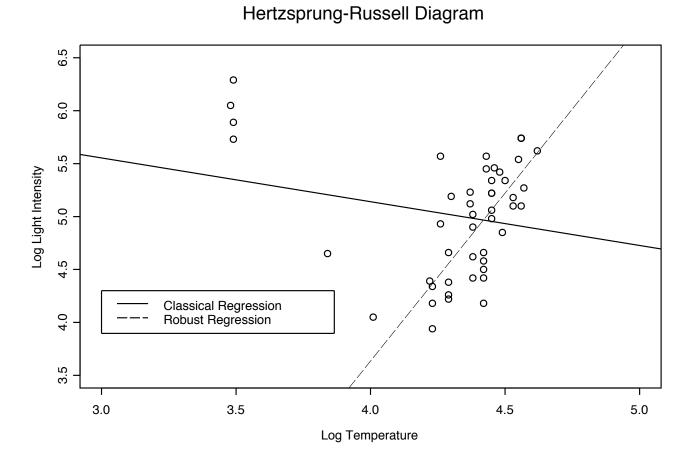


Hertzsprung-Russell Diagram-Classical Regression

• Regression and Multivariate Analysis are used in many fields. But classical methods are very vulnerable to the presence of outliers

93

• Example of Simple Regression - Astronomy Data: 43 stars (the majority) are in the direction of Gygnus but 4 stars are called giants.



To perform the analysis:

Inclusion of outliers using classical methods
 ⇒ fallacious results

• Two-step procedure: Detection of outliers in the first step, and classical methods applied to the "clean sample" (exclusion of outliers) \Rightarrow need detection of outliers

- Robust Methods:
- 1) Valid results for the majority of the data
- 2) Detection of outliers

Parametric, non-parametric and robust statistics

Robust statistics is an extension of parametric statistics: Statistics model: (χ, β, P)

Parametric hypothesis: $P \in \{P_{\theta} | \theta \in \Theta\}$

Non-parametric hypothesis: $P \in \{ \text{ large fam-} i \}$

Robust hypothesis P is "close" to one element of $\{P_{\theta} | \theta \in \Theta\}$

Important remarks

• Robust statistics doesn't replace classical one

• The two-step procedure, where classical methods are used in the second step after having deleted outliers, requires robust methods

• The word "robust" is used in various context, with different meaning.

New concept linked to robustness

The bias and the efficiency are well-known in statistics but robust statistics need new "measures":

- Influence function (IF): local stability
- Breakdown point: global validity
- Maxbias curve : a theoritical summary

Important: Trade-off between robustness and efficiency

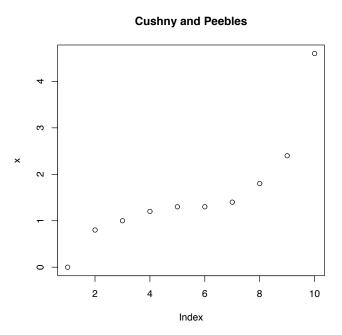
Example: Cushny and Peebles

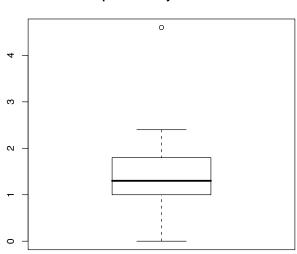
3.2 Detection

• Cushny and Peebles reported the results of a clinical trial of the effect of various drug on duration of sleep:

Sample: $\{0, 0.8, 1, 1.2, 1.3, 1.3, 1.4, 1.8, 2.4, 4.6\}$

The last observation 4.6 seems to be outlier relatively to the other nine observation.





Boxplot: Cushny and Peebles

The rejection rule: The 3 σ rule

• If
$$X \sim N(\mu, \sigma^2)$$
, it is well known that:

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.999$$

Tchebyshev's rule (valid for all distribution): at least(1 - ¹/_{k²})of observations ∈ (μ ± kσ)
Example: if k = 3 at least 89% of observations ∈ (μ ± 3σ)

But μ and σ are unknown !!!!

Classical rule: an observation x_i is considered as an outliers if

$$x_i \notin (\bar{x} \pm 3s) = (-2.11; 5.27)$$

PROBLEM: MASKING EFFECT !!!!

The robust 3 σ rule

An observation x_i is considered as an outliers if

$$x_i \notin [med(x) - 3MAD(x), med(x) + 3MAD(x)]$$
$$\notin (-0.48, 3.08)$$

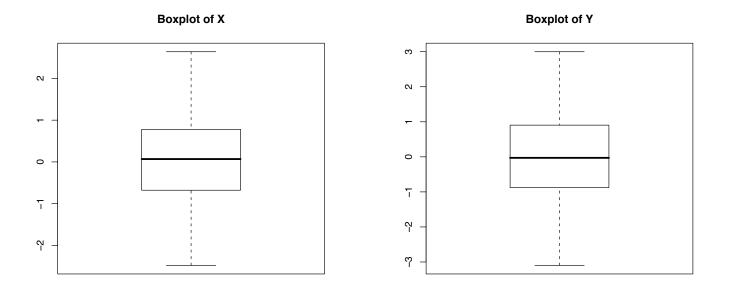
A robust estimator of scale is given by the median absolute deviation MAD, which is the median of the n distances to the median:

$$MAD(x) = c \ med(|x_i - med(x)|)$$

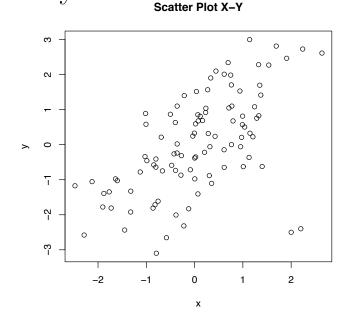
where $c = \frac{1}{\Phi^{-1}(3/4)}$ in order to obtain Fisher consistency at the normal distribution.

The rejection rule estimation is then given by: $\frac{0 + 0.8 + 1.0 + 1.2 + 1.3 + 1.4 + 1.8 + 2.4}{9} = 1.24$

Bivariate simulated example Univariate analysis



Bivariate analysis



Outliers in two-dimension space but not in in a single one dimensional space

100

Multivariate example

Stack loss (Rousseeuw & Leroy, 1987)

i	x_1	x_2	x_3	y	i	x_1	x_2	x_3	y
1	80	27	89	42	12	58	17	88	13
2	80	27	88	37	13	58	18	82	11
3	75	25	90	37	14	58	19	93	12
4	62	24	87	28	15	50	18	89	8
5	62	22	87	18	16	50	18	86	7
6	62	23	87	18	17	50	19	72	8
7	62	24	93	19	18	50	19	79	8
8	62	24	93	20	19	50	20	80	9
9	58	23	87	15	20	56	20	82	15
10	58	18	80	14	21	70	20	91	15
11	58	18	89	14					

 x_1 : air flow, x_2 : cooling water inlet temperature, x_3 : acide concentration y: stack loss, defiend as the percentage of ingoing ammonia that escapes unabsorbed (response).

BUT: It is not possible to visualize all information in one figure

Mahalanobis distances

Let X be the matrix of data of dimension $n \times p$ Let x_i be the vector of dimension $p \times 1$

Classical Mahalanobis distances are defined by:

 $MD_i = \sqrt{((x_i - T(X))'C(X)^{-1}(x_i - T(X)))}$ where T(X) is the mean vector:

$$T(X) = \frac{1}{n} \sum x_i$$

and C(X) is the empirical covariance matrix:

$$C(X) = \frac{1}{n} \sum ((x_i - T(X))(x_i - T(X)))'$$

T(X) and C(X) are not robust

 \Downarrow

Robust Multivariate estimators

Let b be a constant and A $(p \times p)$ a non-singuliar matrix

Let
$$X = \{x_1, ..., x_n\},\$$

 $Y = \{x_1 + b, ..., x_n + b\} = X + b,\$
 $Z = AX + b$

Equivariance for the location estimator T(X):

- Translation equivariant:= T(Y) = T(X) + b
- Affine equivariant:= T(Z) = AT(X) + b

Equivariance for the covariance estimator C(X):

- Translation invariant:= C(Y) = C(X)
- Affine equivariant:= C(Z) = A'C(X)A

Generalization of the univariate median

The median is an univariate location estimator with BDP = 50% which is defined by the minimization problem:

$$med(x) = argmin_t \sum_{i=1}^n |x_i - t|$$

• First proposition: the L_1 estimator minimizes $\sum_{i=1}^{n} ||x_i - T||$ Problem: not affin equivariant

• Second proposition: the coordinatewise median:

$$T = (med_i x_{i1}, \dots, med_i x_{ip})$$

Problem: For $p \geq 3$ the coordinatewise median is not always in the convex hull of the sample

Several propositions of affine equivariant estimators

- Multivariate M-estimateurs (Maronna, 76)
- Convex Peeling (Barnett, 76; Bennington, 78)
- Ellipsoid Peeling (Titterington, 78; Hebling, 83)
- Iterative Trimming (Gnanadesikan and Kettering, 78)
- Generalized median (Oja, 83)
- . . .

PROBLEM:

all these estimators have a BDP $\leq \frac{1}{p+1}$

 \Downarrow

BDP decreases when the dimension increases !!!!

Stahel-Donoho estimator

Stahel (1981) and Donoho (1982) proposed the first affine equivariant estimators for which the BDP is of 50%.

It is based on the concept of outlyingness:

$$u_i = \sup_{\|v\|=1} \frac{|x_i v' - \text{median}_j(x_j v')|}{\text{median}_l |x_l v' - \text{median}_j(x_j v')|}$$

Reweighted classical estimators with weights given by $w(u_i)$:

$$T(x) = \frac{\sum_{i} w(u_i) x_i}{\sum_{i} w(u_i)}$$
$$C(x) = \frac{\sum_{i} w(u_i) (x_i - T(x)) (x_i - T(x))'}{\sum_{i} w(u_i)}$$

Minimum Covariance Determinant (MCD)

Suppose that p = 2 for simplicity: $Z = (X, Y) \in IR^2$, with

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_Y^2 \end{bmatrix} \Longrightarrow \rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

The generalized variance defined as:

$$\det(\Sigma) = \sigma_X^2 \sigma_Y^2 - \sigma_{YX}^2$$

can be seen as a generalization of the variance.

T(X): mean of the 50% points of X for which the determinant of the empirical covariance matrix is minimal;

C(X): given by the same covariance matrix, multiplied by a factor to obtain consistency

Properties:

- affin equivariant BDP = 50%
- asymptotic normality (Butler et Jhun, 1988)

S-estimators

• Classical estimators (t_n, C_n) can be obtained by minimizing det(C) under the constraint:

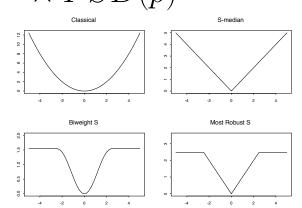
$$\frac{1}{n}\sum_{i=1}^{n}(\sqrt{(x_i-t)'C^{-1}(x_i-t)})^2 = p$$

 $\forall (t, C) \in \mathbb{R}^P \times PSD(p)$ where PSD(p) is the set of all symmetric and positive definite matrix of dimension $(p \times p)$

• S-estimators (t_n, C_n) can be obtained by minimizing det(C) under the constraint:

$$\frac{1}{n} \sum_{i=1}^{n} \rho(\sqrt{(x_i - t)'C^{-1}(x_i - t)}) \le b$$

 $\forall (t,C) \in R^P \times PSD(p)$



Robust distances

 $RD_i = \sqrt{((x_i - T(X))'C(X)^{-1}(x_i - T(X)))}$ where T(X) is a robust multivariate estimator of location and C(X) is a robust estimator of the covariance matrix

Idea: Represent graphically the robust distances. Outliers can be detected by large distances.

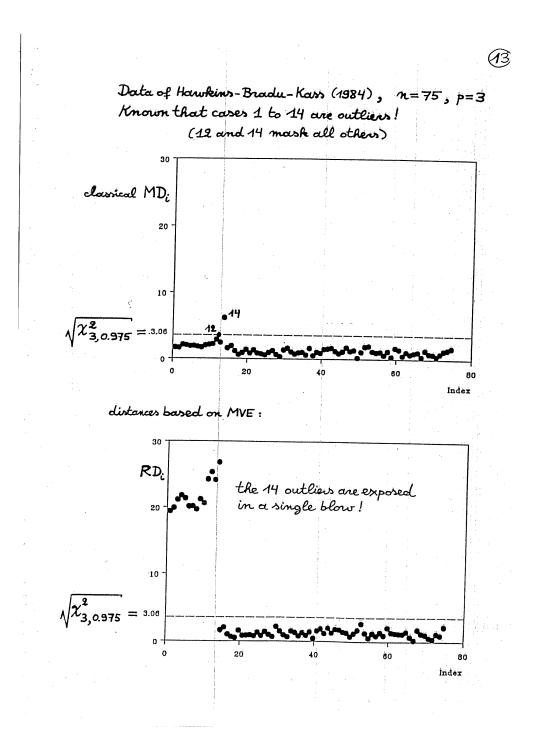
How to find the cutoff ?? Suppose that

$$X \sim N_p(\mu, \Sigma)$$
, then
 $\Sigma^{-1/2}(X - \mu) \sim N(0, I)$

It follows that $((x_i - \mu)' \Sigma^{-1} (x_i - \mu))$ is the sum of p independent standardized normal squared

$$\Downarrow ((x_i - \mu)' \Sigma^{-1} (x_i - \mu)) \sim \chi_p^2$$

The cut-off will be then approximated by the squared root of the 0.975 quantile of the χ_p^2



QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?

C. Dehon, A. McCathie & V. Verardi

Université libre de Bruxelles, ECARES - CKE

September 2009

Université libre de Bruxelles, ECARES - CKE

SQ P

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶

QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?

C. Dehon, A. McCathie & V. Verardi

• Increased competition in Higher Education

emergence of multiple rankings

 \downarrow

- The most widely reported university rankings are:
 - Academic Ranking of World Universities (ARWU Shanghai)
 - THES-QS Ranking (Times Higher Education)
- We choose the ARWU: objective choice of variables and greater transparency
- \Rightarrow OUR AIM: to find the underlying factors measured by ARWU

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?

SQ P

INTRODUCTION **SHANGHAI**

SCORES

CRITICISMS ACP

ROBUSTNESS

ALTERNATIVES CONCLUSION

<ロト < 回 > < 三 >

SQ Q

SHANGHAI RANKING (ARWU): VARIABLES AND WEIGHTS

- Alumni (10%): Alumni recipients of the Nobel prize or the Fields Medal:
- Award (20%): Current faculty Nobel laureates and Fields Medal winners:
- ▶ HiCi (20%): Highly cited researchers in 21 broad subject categories;
- N&S (20%): Articles published in Nature and Science;
- PUB (20%): Articles in the Science Citation Index-expanded, and the Social Science Citation Index;
- ▶ PCP (10%): The weighted score of the previous 5 indicators divided by the number of full-time academic staff members..

http://www.arwu.org/rank/2008/ranking2008.htm

INTRODUCTION SHANGHAI SCORES CRITICISMS ACP ROBUSTNESS ALTERNATIVES CONCLUSION

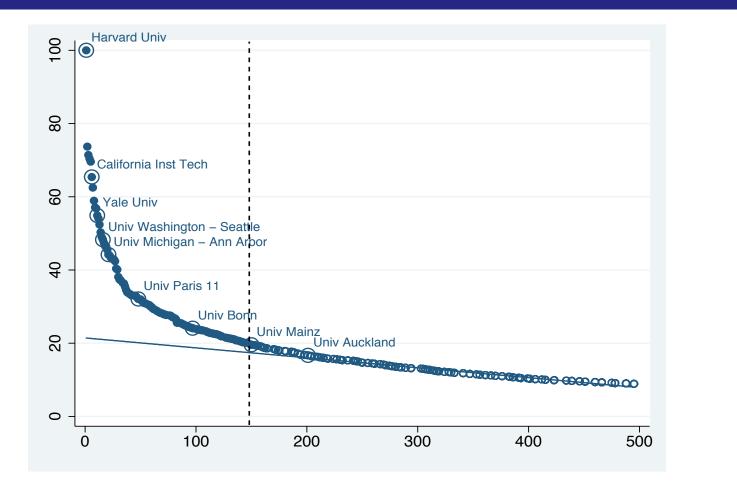


Figure: Overall score relative to rank a state of the score relative t

C. Dehon, A. McCathie & V. Verardi	Université libre de Bruxelles, ECARES - CKE
QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKI	NG MEASURE ?

CRITICISM OF THE SHANGHAI RANKING:

- Limited scope despite the complexity of a university;
- Favours English-speaking countries;
- Very heavily biased towards science and technology subjects;
- Production versus efficiency: "Bigger is better";
- Input variables not taken in consideration (Aghion et al, 2007);
- Highly sensitive due to the normalization step;
- Confidence intervals needed.

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

PRINCIPAL COMPONENT ANALYSIS on TOP 150

QUESTION: Can a single "indicator" accurately sum up research excellence ?

GOAL: To determine the underlying factors measured by the variables used in the Shanghai ranking

 \Rightarrow Principal component analysis

C. Dehon, A. McCathie & V. Verardi Université libre de Bruxelles, ECARES - CKE QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

SHANGHAI SCORES CR

CRITICISMS ACP ROBUSTNESS

ALTERNATIVES CONCLUSION

PRINCIPAL COMPONENT ANALYSIS

The first component accounts for 64% of the inertia and is given by:

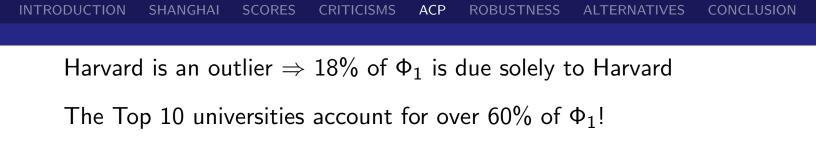
 $\Phi_1 = 0.42 * \textit{Alumni} + 0.44 * \textit{Awards} + 0.48 * \textit{HiCi} + 0.50 * \textit{NS} + 0.38 * \textit{PUB}$

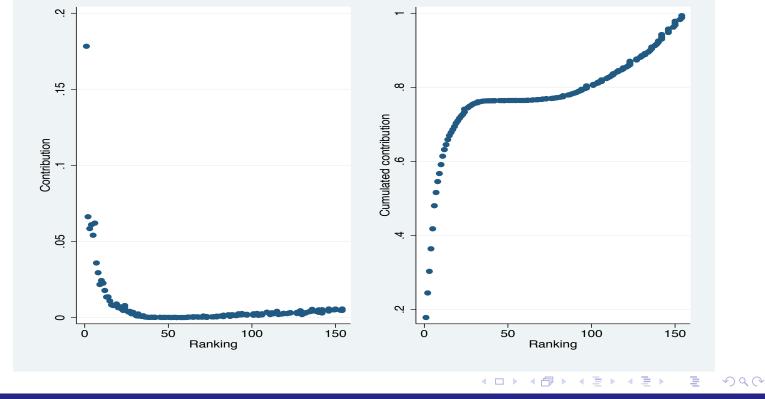
What does this component measure?? The quality of research??

Variable	$Corr(\phi_1,.)$
Alumni	78%
Awards	81%
HiCi	89%
N&S	92%
PUB	70%
Total score	99%

BUT ...

(□▶ ▲郡▶ ▲≧▶ ▲≧▶ 喜 ���(





SCORES CRI

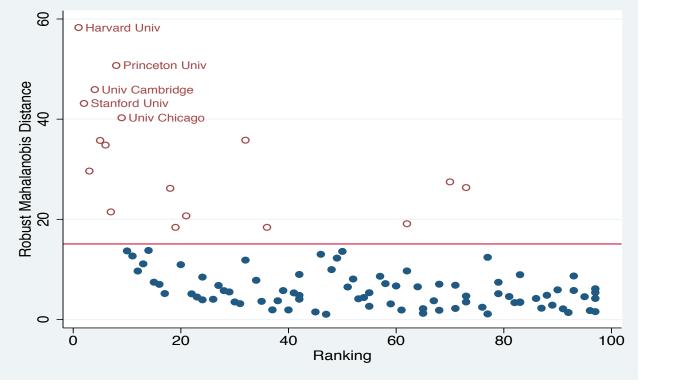
SHANGHAI

CRITICISMS ACP ROBUSTNESS

ALTERNATIVES CONCLUSION

DETECTION OF OUTLIERS - Robust distances:

$$RD_i = \sqrt{((x_i - T(X))'C(X)^{-1}(x_i - T(X)))}$$



▲口 ▶ ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

INTRODUCTION SHANGHAI SCORES CRITICISMS ACP ROBUSTNESS ALTERNATIVES CONCLUSION

ROBUST PCA based on RMCD ESTIMATORS (Croux and Haesbroeck, 2000)

IDEA : Robustify matrix of correlations by working with robust estimators (MCD, RMCD).

Suppose that p = 2 for simplicity: $Z = (X, Y) \in \mathbb{R}^2$, with

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_Y^2 \end{bmatrix} \Longrightarrow \rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

The generalized variance (Wilks, 1932) defined as:

$$\det(\Sigma) = \sigma_X^2 \sigma_Y^2 - \sigma_{YX}^2$$

can be seen as a generalization of the variance , and the variance is the seen as a generalization of the seen as a generalization of the variance is the seen as a generalization of the seen as a generaliza

INTRODUCTION SHANGHAI SCORES CRITICISMS ACP ROBUSTNESS ALTERNATIVES CONCLUSION

Minimum Covariance Determinant Estimator (Rousseeuw, 1985):

MCD estimators T_n and C_n : For the sample $\{z_1, \ldots, z_n\}$, select that subsample $\{z_{i_1}, \ldots, z_{i_h}\}$ of size h $(h \le n)$ with minimum determinant of its covariance matrix. Then compute sample covariance estimator over that subsample. Take $h \approx \frac{n}{2}$.

RMCD estimators are defined by

$$T_{n}^{R} = \frac{\sum_{i=1}^{n} w_{i} z_{i}}{\sum_{i=1}^{n} w_{i}}$$

$$C_{n}^{R} = c_{2} \frac{\sum_{i=1}^{n} w_{i} (z_{i} - T_{n}^{R})(z_{i} - T_{n}^{R})^{t}}{\sum_{i=1}^{n} w_{i}}$$

where c_2 is a consistency constant and the weight are given by

$$w_i = \begin{cases} 1 & \text{si } (z_i - T_n)^t C_n^{-1} (z_i - T_n) \le q_\delta \\ 0 & \text{otherwise} \end{cases}$$

Two underlying factors are uncovered:

- • Φ_1^R explains 38% of inertia
- • $\Phi_2^{\overline{R}}$ explains 28% of inertia

But what do these two factors represent??

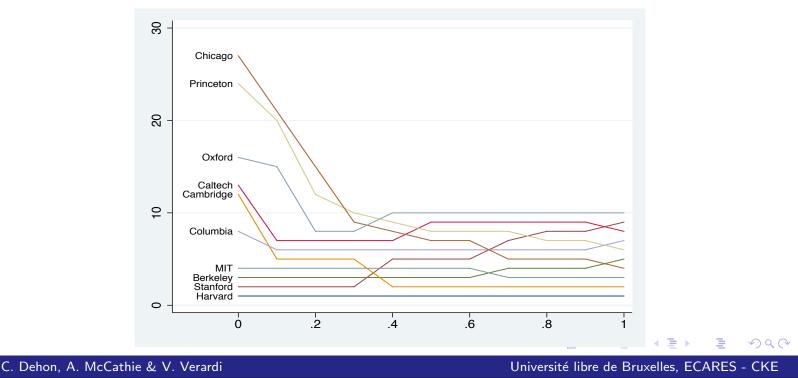
Variable	$Corr(\phi_1,.)$	$Corr(\phi_2, .)$
Alumni	-20%	80%
Awards	-25%	82%
HiCi	87%	7%
N&S	77%	22%
PUB	68%	-1%
Total score	75%	64%

▲□▶▲□▶▲□▶▲□▶ ■ ろくの

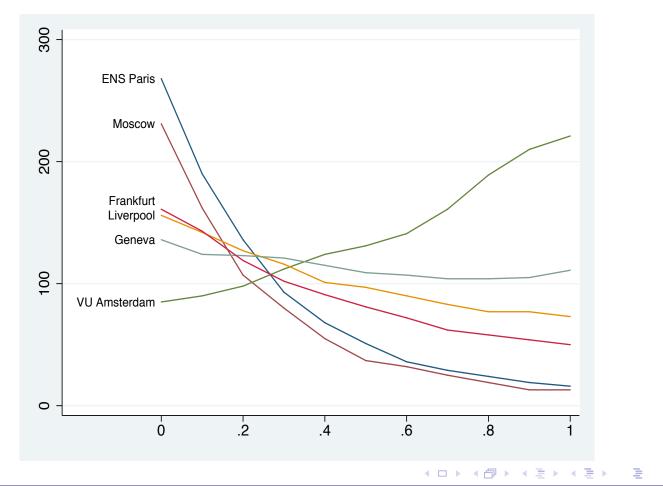
INTRODUCTION SHANGHAI SCORES CRITICISMS ACP ROBUSTNESS ALTERNATIVES CONCLUSION

Highly sensitivity to the weights attributed to the variables \Rightarrow $SCORE_i = w_i * (Alumni + Award) + (1 - w_i) * (HiCi + N\&S + PUB)$ with $w_i = 0, 0.1, ..., 1$

Example 1: TOP 10



QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?



USE RANKINGS WITH CAUTION!!

<ロト < 回 > < 臣 > < 臣 > 三臣 うくで

Université libre de Bruxelles, ECARES - CKE QUANTIFYING ACADEMIC EXCELLENCE, WHAT DO THE SHANGHAI RANKING MEASURE ?

C. Dehon, A. McCathie & V. Verardi

3.2.1 References

- Cook, RD., and Weisberg, S. (1999), Applied Regression including Computing and Graphics, John Wiley and Sons, NY.
- Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A. (1986), *Robust Statistics*, John Wiley and Sons, NY.
- Heritier, S., Cantoni, E., Copt, S. and Victoria-Feser, M.-P. (2009), Robust Methods in Biostatistics, Chichester, UK: John Wiley Sons.
 Huber, P. J. (1981), Robust Statistics, New

York: John Wiley and Sons.

- Maronna, R.A., Martin, R.D., and Yohai, V.J. (2006), *Robust Statistics*, John Wiley and Sons, NY.
- Rousseeuw, P.J., and Leroy, A.M. (1987), Robust Regression and Outliers Detection, John Wiley and Sons, NY.

Chapter 4

Correspondence analysis (CA)

4.1 Introduction

- Method that displays and summarizes the information contained in a dataset with qualitative type of variables
- CA is conceptually similar to PCA
- Can be divided into 2 areas:
 - Binary correspondence analysis (BCA): Technique that displays the rows and the columns of a two-way contingency table
 - Multiple correspondence analysis (MCA):
 Extension of BCA to more than 2 variables

Goals of BCA

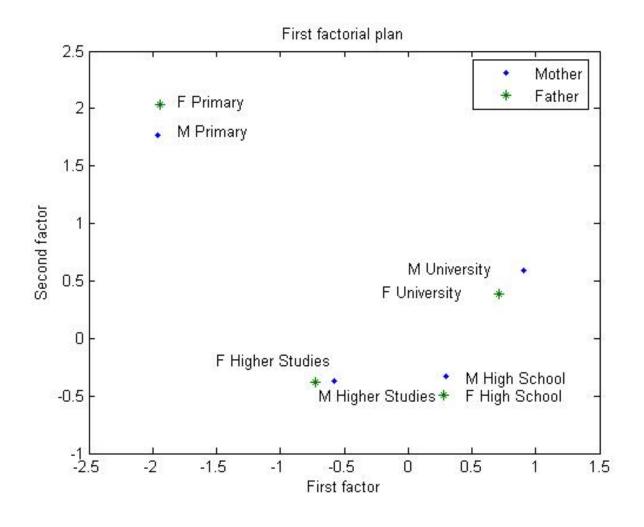
Study the associations between the categories of two qualitative variables using the two-way contingency table:

2 qualitative (categorical) variables X and Y:

- X has J categories (or modalities): A_1, \ldots, A_J

- Y has K categories (or modalities): B_1, \ldots, B_K . Examples

- 1. In education, can we suppose that the variables concerning work/study habits of students (regularity and work during the exam) are coherent?
- 2. In a research in education can we suppose that the father's level of education will tend to be very close to the level of education of the mother?



For the students in ULB, the answer is positive:

The methodology can be summed up as follows:

• Step 1: Perform PCA on the table of row profiles where the A_j $(j \in 1, ..., J)$ play the role of individuals and the B_k $(k \in 1, ..., K)$ the role of variables

• Step 2: Perform PCA on the table of column profiles where the B_k $(k \in 1, ..., K)$ play the role of individuals and the A_j $(j \in 1, ..., J)$ the role of variables

• Step 3: Study the links between both PCAs

• Step 4: Plot graphs to show the proximity between row profiles, the proximity between column profiles and put forward the relationship between rows and columns.

Generalization of PCA in two directions :

- The weight associated to each individual (category) depends on the following frequencies:
 - Step 1: the weight allocated to the individual (category) A_j is equal to the frequency of this category $(f_{j.})$
 - Step 2: the weight assigned to the individual (category) B_k is equal to the frequency of this category $(f_{.k})$
- In PCA, the distance between observations corresponds to Euclidean distance. In correspondance analysis the distance between modalities corresponds to chi square type of distance

4.2 Example

Survey on 1000 workers:

Variable X: "Diploma"
3 categories: A₁, A₂, A₃ (Primary school, High school, University)

Variable Y: "Salary"
3 categories: B₁, B₂, B₃ (low, middle, high)
Two-way contingency table:

n_{jk}	B_1	B_2	B_3	$n_{j.}$
A_1	150			200
A_2	190	350	60	600
A_3	10	110	80	200
$n_{.k}$	350	500	150	1000

Notations

2 qualitative (categorical) variables X and Y:

- X has J categories (or modalities): A_1, \ldots, A_J

- Y has K categories (or modalities): B_1, \ldots, B_K . A sample of size is n leads to the following twoway contingency table:

X Y	B_1	•••	B_k	• • •	B_K	$\sum_{k=1}^{K}$
A_1	n_{11}	• • •	n_{1k}	•••	n_{1K}	$n_{1.}$
•••	•••	•••	•••	•••	• • •	
A_j	n_{j1}	• • •	n_{jk}	• • •	n_{1K} \dots n_{jK} \dots n_{JK}	$n_{j.}$
•••	•••	•••	• • •	•••	•••	
A_J	n_{J1}	• • •	n_{Jk}	• • •	n_{JK}	$n_{J.}$
$\sum_{j=1}^{J}$	n.1	• • •	$n_{.k}$	• • •	$n_{.K}$	n

where n_{jk} counts the number of individuals that are in category A_j for the variable X **and** in category B_k for the variable Y

Remark: $n_{j.} = \sum_{k=1}^{K} n_{jk}$ et $n_{.k} = \sum_{j=1}^{J} n_{jk}$

4.3 Explonatory analysis

Two-way contingency table of relative frequencies F: Proportion of individuals that belong to category A_j for the variable X and into category B_k for the variable Y

$$f_{jk} = \frac{n_{jk}}{n} \qquad (j = 1 \dots, J; k = 1, \dots, K).$$

$$\frac{f_{jk}}{A_1} \begin{array}{c|c} B_1 & B_2 & B_3 & f_j. \\\hline A_1 & 0.15 & 0.04 & 0.01 & 0.20 \\\hline A_2 & 0.19 & 0.35 & 0.06 & 0.60 \\\hline A_3 & 0.01 & 0.11 & 0.08 & 0.20 \\\hline f_{.k} & 0.35 & 0.50 & 0.15 & 1 \end{array}$$

The marginal frequencies are given by:

$$f_{j.} = \frac{n_{j.}}{n} \qquad (j = 1..., J)$$

and

$$f_{.k} = \frac{n_{.k}}{n}$$
 $(k = 1, \dots, K).$

To formalize the notion of independence between the two variables X and Y, let us consider that:

 f_{jk} is the estimation of

$$\pi_{jk} = P(X \in A_j, Y \in B_k)$$

 f_{j} is the estimation of $\pi_{j} = P(X \in A_j)$

 $f_{.k}$ is the estimation of $\pi_{.k} = P(Y \in B_k)$

CHAPTER 4. CORRESPONDENCE ANALYSIS (CA)

Tables of conditional frequencies:

• Table of row profiles:

Proportion of individuals that belong to category B_k for the variable Y among the individuals that have the modality A_j for the variable X:

$$f_{k|j} = \frac{n_{jk}}{n_{j.}} = \frac{n_{jk}/n}{n_{j.}/n} = \frac{f_{jk}}{f_{j.}}$$
 (j fixed; $k = 1, \dots, K$).

 $f_{k|j}$ is the estimation of $P(Y \in B_k | X \in A_j)$

$\frac{f_{jk}}{f_{j.}}$	B_1	B_2	B_3	
A_1	0.75	0.20	0.05	1
A_2	0.32	0.58	0.10 0.40	1
A_3	0.05	0.55	0.40	1
$f_{.k}$	0.35	0.50	0.15	1

• Table of column profiles:

Proportion of individuals that belong to category A_j for the variable X among the individuals that have the modality B_k for the variable Y:

$$f_{j|k} = \frac{n_{jk}}{n_{.k}} = \frac{n_{jk}/n}{n_{.k}/n} = \frac{f_{jk}}{f_{.k}} \quad (j = 1, \dots, J; k \text{fixed}).$$

 $f_{j|k}$ is the estimation of $P(X \in A_j | Y \in B_k)$

$\frac{f_{jk}}{f_{j.}}$			B_3	
A_1	0.43	0.08	0.07 0.40 0.53	0.20
A_2	0.54	0.70	0.40	0.40
A_3	0.03	0.22	0.53	0.20
	1	1	1	1

Independence between X and Y

• Two random variables X and Y are independent iff $\forall j \in \{1, \dots, J\}$ and $\forall k \in \{1, \dots, K\}$: $a)P(X \in A_j, Y \in B_k) = P(X \in A_j)P(Y \in B_k)$ $b)P(Y \in B_k | X \in A_j) = P(Y \in B_k)$ $c)P(X \in A_j | Y \in B_k) = P(X \in A_j)$

• At the sample level, these equalities can be estimated by:

 $\begin{array}{ll} a &)f_{jk} \approx f_{j.}f_{.k} & \forall j \in \{1, \dots, J\} \ \forall k \in \{1, \dots, K\} \\ b &)f_{k|j} = \frac{f_{jk}}{f_{j.}} \approx f_{.k} & \forall j, \ \forall k \\ c &)f_{j|k} = \frac{f_{jk}}{f_{.k}} \approx f_{j.} & \forall j, \ \forall k. \end{array}$

We can therefore define the theoretical frequencies and relative frequencies under the assumption of independence as follows:

$$f_{jk}^* = f_{j.}f_{.k}$$
 and $n_{jk}^* = nf_{jk}^* = \frac{n_{j.}n_{.k}}{n}$

Observed frequencies

n_{jk}	B_1	B_2	B_3	$n_{j.}$
A_1		40		200
A_2	190	350	60	600
A_3	10	110	80	200
$n_{.k}$	350	500	150	1000

Theoretical frequencies under independence

n_{jk}^*	B_1	B_2	B_3	$n_{j.}$
A_1	70	100	30	200
A_2	210	300	90	600
A_3	70	100	30	200
$n_{.k}$	350	500	150	1000

Observed relative frequencies

			B_3	
A_1	0.15	0.04	0.01 0.06 0.08	0.20
A_2	0.19	0.35	0.06	0.60
A_3	0.01	0.11	0.08	0.20
$f_{.k}$	0.35	0.50	0.15	1

Theoretical relative frequencies under independence

			B_3	
A_1	0.07	0.10	0.03 0.09 0.03	0.20
A_2	0.21	0.30	0.09	0.60
A_3	0.07	0.10	0.03	0.20
$f_{.k}$	0.35	0.50	0.15	1

Attraction/repulsion matrix D

• The element jk of the Attraction/repulsion matrix $D (J \times K)$ is defined by:

$$d_{jk} = \frac{n_{jk}}{n_{jk}^*} = \frac{f_{jk}}{f_{jk}^*} = \frac{f_{jk}}{f_{j.}f_{.k}}$$

• Interpretations:

$$d_{jk} > 1 \iff f_{jk} > f_{j.}f_{.k}$$

 $f_{jk} > f_{j.}f_{.k} \iff f_{k|j} > f_{.k} \text{ and } f_{j|k} > f_{j.}$
 \rightarrow The modalities (categories) A_j and B_k are
attracted to each other

$$d_{jk} < 1 \iff f_{jk} < f_{j.}f_{.k}$$

$$f_{jk} < f_{j.}f_{.k} \iff f_{k|j} < f_{.k} \text{ and } f_{j|k} < f_{j.}$$

 \rightarrow The modalities (categories) A_j and B_k are repulse to each other

Example

f_{jk}	B_1	B_2	B_3	f_{jk}^*	B_1	B_2	B_3
A_1	0.15	0.04	0.01 0.06 0.08	A_1	0.07	0.10	0.03
A_2	0.19	0.35	0.06	A_2	0.21	0.30	0.09
A_3	0.01	0.11	0.08	A_3	0.07	0.10	0.03

$$\begin{array}{c|cccc} d_{jk} & B_1 & B_2 & B_3 \\ \hline A_1 & 2.14 & 0.40 & 0.33 \\ A_2 & 0.90 & 1.16 & 0.67 \\ A_3 & 0.14 & 1.10 & 2.67 \end{array}$$

- High salary is more frequent for people with university diploma
- High salary is less frequent for people with at most a primary diploma
- Low salary is less frequent for people with university diploma

• . . .

Measures of association

• The χ^2 statistic:

Conditions for application:

 $n \geq 30$ $n_{jk}^* \geq 1 \quad \forall j, k$ at least 80% of $n_{jk}^* \geq 5$

If these conditions are not met \implies group classes (modalities).

Statistic of test:

$$\chi^2 = \sum_{j=1}^J \sum_{k=1}^K \frac{(n_{jk} - n_{jk}^*)^2}{n_{jk}^*}$$

Reject the null hypothesis (independence between X and Y) at the level $\alpha\%$ if

$$\chi^2 > \chi^2_{(J-1)(K-1);1-\alpha}$$

• The statistic $\phi^2 = \frac{\chi^2}{n}$:

$$\phi^2 = \sum_{j=1}^J \sum_{k=1}^K \frac{(f_{jk} - f_{jk}^*)^2}{f_{jk}^*} = \sum_{j=1}^J \sum_{k=1}^K \frac{(\frac{n_{jk}}{n} - \frac{n_{jk}^*}{n})^2}{\frac{n_{jk}^*}{n}}$$

Remark: Using weights for the attraction/repulsion indices $(\sum_{j=1}^{J} \sum_{k=1}^{K} f_{jk}^* = 1)$:

$$\bar{d} = \sum_{j=1}^{J} \sum_{k=1}^{K} f_{jk}^{*} d_{jk} = \sum_{j=1}^{J} \sum_{k=1}^{K} f_{jk}^{*} \frac{f_{jk}}{f_{jk}^{*}}$$
$$= \sum_{j=1}^{J} \sum_{k=1}^{K} f_{jk} = 1$$
$$s_{d}^{2} = \sum_{j=1}^{J} \sum_{k=1}^{K} f_{jk}^{*} (d_{jk} - 1)^{2} = \frac{\chi^{2}}{n} = \phi^{2}$$

 \implies The dispersion of the attraction/repulsion indices (around the mean) is given by ϕ^2

4.4 Analysis of row profiles

The point cloud \aleph_l of row profiles

• At each line A_j of the table of row profiles is associated a point L_j in IR^K with coordinates:

$$\underline{l}_j = (f_{1|j}, \dots, f_{k|j}, \dots, f_{K|j})'.$$

• A weight $f_{j.}$ (% of individuals that have the modality A_j) is associated with the row profile $\underline{l}_j \ (j \in \{1, \dots, J\})$

 \implies The point cloud \aleph_l of observations in IR^K contains J weighted row profiles:

$$\aleph_l = \{ (L_1; f_{1.}), (L_2; f_{2.}), \dots, L_J; f_{J.}) \}.$$

Center of gravity of \aleph_l

The coordinates of the center of gravity are given by a weighted mean of the J row profiles:

$$\underline{\mathbf{g}}_l = \sum_{j=1}^J f_{j.} \, \underline{\mathbf{l}}_j$$

Consequently, the coordinate k of g_l is :

The center of gravity G_l of the J (weighted) row profiles is equal to the marginal profile (% of individuals having the modality B_k).

The χ^2 distance in IR^K

• Definition: The χ^2 distance in IR^K between two points X and Y with coordinates (x_1, \ldots, x_K) and (y_1, \ldots, y_K) is given by:

$$d_{\chi^2}^2(X,Y) = \sum_{k=1}^K \frac{(x_k - y_k)^2}{f_{.k}}$$

The euclidian distance gives the same weight to each column. The χ^2 distance gives the same relative importance to each column proportionally to the frequency B_k

Total inertia of \aleph_l

Total inertia based on the χ^2 distance and the weighted row profiles in IR^K :

$$\begin{split} I_{\chi^2}(\aleph_l, G_l) &= \sum_{j=1}^J f_{j.} d_{\chi^2}^2 (L_j, G_l) \\ &= \sum_{j=1}^J f_{j.} \sum_{k=1}^K \frac{1}{f_{.k}} (f_{k|j} - f_{.k})^2 \\ &= \sum_{j=1}^J f_{j.} \sum_{k=1}^K \frac{1}{f_{.k}} (\frac{f_{jk}}{f_{j.}} - f_{.k})^2 \\ &= \sum_{j=1}^J \sum_{k=1}^K \frac{f_{j.}}{f_{.k}} (\frac{f_{jk} - f_{j.}f_{.k}}{f_{j.}})^2 \\ &= \sum_{j=1}^J \sum_{k=1}^K \frac{(f_{jk} - f_{.k}f_{j.})^2}{f_{j.}f_{.k}} \\ &= \phi^2 = \frac{\chi^2}{n} \end{split}$$

 \implies This explains why this distance is called the chi square distance!

Interpretation of the inertia :

• It measures the dependence between the two qualitative variables X and Y

• This measure is independent of the sample size n

• $I_{\chi^2}(\aleph_l, G_l) = 0$ means that all row profiles L_1, \ldots, L_J are equal to the center of gravity G_l :

$$\forall k \in \{1, \dots, K\} \quad \text{et} \quad \forall j \in \{1, \dots, J\}$$
$$f_{k|j} = f_{.k}$$
$$\frac{f_{jk}}{f_{j.}} = f_{.k}$$
$$f_{jk} = f_{j.}f_{.k}$$

leading to the independence of X and Y.

4.5 Step 1: PCA on the row profiles \aleph_l

Same methodology than PCA applied to quantitative variables with two modifications:

• The weights of "individuals (categories)" are not the same: the weight of A_j is equal to f_{j} .

• The distance used to measure the proximity between two "individuals" is the χ^2 distance.

\Downarrow

The PCA is not directly applied to the initial point cloud \aleph_l :

$$\aleph_l = \{ (L_1, f_{1.}), \dots, (L_J, f_{J.}) \}$$

but on a normalized point cloud \aleph_l^* :

$$\aleph^* = \{ (L_1^*, f_{1.}), \dots, (L_J^*, f_{J.}) \}$$

where the coordinates of L_{i}^{*} are given by:

$$\underline{l}_{j}^{*} = \left(\frac{f_{j1}}{f_{j.}\sqrt{f_{.1}}} - \sqrt{f_{.1}}, \dots, \frac{f_{jK}}{f_{j.}\sqrt{f_{.K}}} - \sqrt{f_{.K}}\right)'$$

The center of gravity of \aleph_l^* is the origin

First projecting direction Δ_1

The first projecting direction Δ_1 is the direction passing through the origin that "fits in an optimal way" the point cloud \aleph_l^* in terms of inertia:

$$I(\aleph_l^*, \Delta_1) = \min_{\Delta: \text{direction through the origin}} I(\aleph_l^*, \Delta)$$

where
$$I(\aleph_{l}^{*}, \Delta) = \sum_{j=1}^{J} f_{j} d^{2}(L_{l}^{*}, P_{\Delta}(L_{j}^{*})).$$

Problem: Find the direction given by the vector u_1 such that $I(0, P_{\Delta_1}(L_j^*))$ is maximized:

$$\max \sum_{j=1}^{J} f_{j.} d^2(0, P_{\Delta_1}(L_j^*))$$

under the constriant

$$||u_1|| = 1$$

It is again a problem of maximization under constraint, and as in PCA, the solution is given by the eigenvalues and eigenvectors of the matrix:

$$V = \sum_{j=1}^{J} f_{j,\underline{l}_{j}^{*}}(\underline{l}_{j}^{*})'$$

 $\implies u_1$ is the eigenvector associated with the largest eigenvalue $\lambda_1 = I(0, P_{\Delta_1}(L_j^*)).$

Note that the element (k, k') of the matrix $V(K \times K)$ is given by :

$$v_{kk'} = \sum_{j=1}^{J} \left(\frac{f_{jk} - f_{j.}f_{.k}}{\sqrt{f_{j.}f_{.k}}} \right) \left(\frac{f_{jk'} - f_{j.}f_{.k'}}{\sqrt{f_{j.}f_{.k'}}} \right)$$

which yields V = X'X with elements of $X(J \times K)$ given as:

$$x_{jk} = \frac{f_{jk} - f_{j.}f_{.k}}{\sqrt{f_{j.}f_{.k}}}$$

First principal component

To create the first principal component Φ_1 , the point cloud \aleph_l^* is projected on Δ_1 :

$$P_{\Delta_1}(\aleph_l^*) = \{P_{\Delta_1}(L_1^*), \dots, P_{\Delta_1}(L_J^*)\}.$$

The coordinate for each point associated with modality A_j ($\forall j = 1, ..., J$) is given by:

$$\phi_{1,j} = \|OP_{\Delta_1}(L_j^*)\| = \langle OL_j^*, u_1 \rangle = \sum_{k=1}^K u_{1,k}(\underline{l}_j^*)_k$$
$$= u_{1,1}(\underline{l}_j^*)_1 + u_{1,2}(\underline{l}_j^*)_2 + \ldots + u_{1,K}(\underline{l}_j^*)_K$$
Then ϕ_1 , is the value of the row profile i (as

Then $\phi_{1,j}$ is the value of the row profile j (associated with A_j) on the first principal component.

It can be proven that

- ϕ_1 is centered: $\sum_{j=1}^J f_{j} \phi_{1,j} = 0$
- the variance of ϕ_1 is equal to λ_1

Global quality of the first principal component

Using the decomposition of total inertia, it can be shown that the percentage of inertia that is kept by projecting on Δ_1 is given by :

 $\frac{\lambda_1}{\phi^2} \text{ since } I(\aleph_l^*, 0) = I(\aleph_l^*, \Delta_1) + I(0, P_{\Delta_1}(L_j^*))$

Contribution of modality A_j (j = 1, ..., J)Knowing that

$$\lambda_1 = s_{\phi_1}^2 = \sum_{j=1}^J f_{j.\phi_{1,j}^2} = \sum_{j=1}^J f_{j.d^2}(0, P_{\Delta_1}(L_j^*))$$

the contribution of the modality A_j is given by:

$$CTR_{\lambda_1}(A_j) = \frac{f_{j.}\phi_{1,j}^2}{\lambda_1}.$$

 \implies The interpretation of ϕ_1 is mainly based on modalities A_j that have a high contribution

Quality of representation on the first axis

The quality of representation of the row profile L_j^* on the first axis Δ_1 is measured by the squared cosine of the angle formed by the vector OL_j^* and the axis Δ_1 :

$$\cos^2(OL_j^*, \Delta_1) = \left(\frac{\langle OL_j^*, u_1 \rangle}{\|OL_j^*\| \|u_1\|}\right)^2 = \frac{\phi_{1,j}^2}{\|OL_j^*\|^2}.$$

This formula does not contain the weight f_{j} . \implies one modality can be:

- close to the axis Δ_1 and and therefore be well represented (well explained)
- because of a low weight $f_{j.}$, it can have a low contribution to the axis

Extended dimensions

The second projecting axis Δ_2 is defined by the vector u_2 :

- through the origin (the center of gravity)
- orthogonal to $u_1 (u_2 \perp u_1)$
- minimizing the residual inertia

 $\implies u_2$ is the eigenvector of V associated to the second largest eigenvalues λ_2 .

In the same way, we can find the other projecting axis $\Delta_3, \Delta_4, \ldots$

How many principal components ? \aleph_l^* is contained in a space of dimension

$$H \le \min(J-1, K-1)$$

where H is equal to the rank of the matrix V $(K \times K)$

 \Downarrow

at most H orthogonal projecting directions

4.6 Step 2: PCA on the column profiles \aleph_c

The previous results and definitions based on the point cloud \aleph_l are directly transposable to the point cloud \aleph_c of column profiles

The point cloud \aleph_c in IR^J of the K column profiles is defined by:

 $\aleph_c = \{ (C_1; f_{.1}), (L_2; f_{.2}), \dots, (C_K; f_{.K}) \}$

where the point C_k in IR^J has coordinates:

$$\underline{\mathbf{c}}_k = (f_{1|k}, \dots, f_{j|k}, \dots, f_{J|k})'.$$

Instead of working directly with this point cloud, we prefer to transform it such that the center of gravity is the origin:

$$\aleph_c^* = \{ (C_1^*, f_{.1}), \dots, (C_K^*, f_{.K}) \}$$

where C_i^* has the coordinates:

$$\underline{c}_{j}^{*} = \left(\frac{f_{1|k}}{\sqrt{f_{1.}}} - \sqrt{f_{1.}}, \dots, \frac{f_{J|k}}{\sqrt{f_{J.}}} - \sqrt{f_{J.}}\right)'$$

Projecting directions

The projecting directions $\Gamma_1, \ldots, \Gamma_H$ of \aleph_c^* are defined by the orthogonal eigenvectors v_1, \ldots, v_H of the matrix

$$W = XX'$$

associated with $H(=\min(J-1, K-1))$ non zero eigenvalues $\lambda_1, \ldots, \lambda_H$. v_1 is associated with the largest eigenvalue, ...

The elements of the matrix $X(J \times K)$ are defined as:

$$x_{jk} = \frac{f_{jk} - f_{j.}f_{.k}}{\sqrt{f_{j.}f_{.k}}}$$

The eigenvalues of W are the same as the eigenvalues of V

Principal components

The principal components ψ_1, \ldots, ψ_H are defined by $\forall k = 1, \ldots, K$::

$$\psi_{h,k} = \|OP_{\Gamma_h}(C_k^*)\| = \langle OC_k^*, v_h \rangle = \sum_{j=1}^J v_{h,j}(\underline{c}_k^*)_j$$
$$= v_{h,1}(\underline{c}_k^*)_1 + v_{h,2}(\underline{c}_k^*)_2 + \dots + v_{h,J}(\underline{c}_k^*)_J$$

Properties of principal components $\psi_1, \psi_2, \dots, \psi_H$ $\forall h \in \{1, \dots, H\}$:

• Principal components are centered:

$$\sum_{j=1}^{J} f_{j} \psi_{h,j} = 0$$

- The variance of ψ_h is given by λ_h
- Principal components are uncorrelated.

Global quality of Γ_h

The percentage of inertia that is kept when projecting on Γ_h is given by

 $\frac{\lambda_h}{\phi^2}$

Contribution of modality B_k , j = 1, ..., JKnowing that

$$\lambda_h = s_{\psi_h}^2 = \sum_{k=1}^K f_{.k} \psi_{h,k}^2$$

the contribution of the modality B_k is given by:

$$CTR_{\lambda_h}(B_k) = \frac{f_{.k}\psi_{h,k}^2}{\lambda_h}.$$

Quality of the representation of C_k^* on Γ_h

$$\cos^2(OC_k^*, \Gamma_h) = \left(\frac{\langle OC_k^*, v_h \rangle}{\|OC_k^*\| \|v_h\|}\right)^2 = \frac{\psi_{h,k}^2}{\|OC_k^*\|^2}$$

4.7 Step 3: Links between both PCAs

The analysis of point cloud \aleph_c^* could be deduced from the analysis of point cloud \aleph_l^* and vice versa.

 \implies The possibility to study the associations between the two variables is due to the links between the two analysis.

Row profiles
$$\aleph_l^*$$
: IR^K Column profiles \aleph_c^* : IR^J (λ_h, u_h) where $h = 1, \ldots, H$ (λ_h, v_h) where $h = 1, \ldots, H$ are the eigenvalues and the eigenvectors of $V = X'X$ $W = XX'$ leading to the relations $Vu_h = \lambda_h u_h$ $Wv_h = \lambda_h v_h$ Hence we have $X'Xu_h = \lambda_h u_h$ $XX'v_h = \lambda_h v_h$ $XX'Xu_h = \lambda_h Xu_h$ $X'XX'v_h = \lambda_h X'v_h$ $VXu_h = \lambda_h Xu_h$ $X'xV_h = \lambda_h X'v_h$ $VXu_h = \lambda_h Xu_h$ $X'v_h$ eigenvector of V The norm of these vectors is given by $||Xu_h|| = \sqrt{\lambda_h}$ $||Xu_h|| = \sqrt{\lambda_h}$ $||X'v_h|| = \sqrt{\lambda_h}$ the normed eigenvectors associated to λ_h are: $\frac{1}{\sqrt{\lambda_h}}Xu_h$ $\frac{1}{\sqrt{\lambda_h}}X'v_h$ To conclude, we have the following relations: $v_h = \frac{1}{\sqrt{\lambda_h}}Xu_h$ $u_h = \frac{1}{\sqrt{\lambda_h}}X'v_h$

These relations between both PCA leads (after some developments) to a relation between the attraction/repulsion index and the coordinates of modalities in the two new system.

The distance for the couple (A_j, B_k) to the independence situation is measured by:

$$\Rightarrow \frac{f_{jk}}{f_{j.}f_{.k}} = 1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,j} \psi_{h,k}$$
$$\Rightarrow d_{jk} = 1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,j} \psi_{h,k}$$

 \Downarrow

We can visualize graphically the attraction/repulsion indices using the first principal plan (in a first approximation)

4.8 Graphical representations

4.8.1 Pseudo-barycentric representation

Superposition of both PCAs:

- the point cloud of row profiles \aleph_l^* is projected on the first factorial plan (Δ_1, Δ_2)

- the point cloud of column profiles \aleph_c^* is projected on the first factorial plan (Γ_1, Γ_2)

 \implies Simultaneous representation of the modalities $\{A_1, \ldots, A_J\}$ and $\{B_1, \ldots, B_K\}$

The modality A_j is associated to A_j^* which has coordinates $(\phi_{1,j}, \phi_{2,j})'$ and the modality B_k is associated to B_k^* which has coordinates $(\psi_{1,k}, \psi_{2,k})'$. Interpretation of projections on Δ_1, Γ_1 If $\cos^2(OL_j^*, \Delta_1)$ is close to one \Longrightarrow the profil L_j^* is close to its projection $P_{\Delta_1}(L_j^*)$ on Δ_1 $\Longrightarrow \underline{l}_j^* = \sum^H \phi_{h,j} \underline{u}_h \Longrightarrow \underline{l}_j^* \approx \phi_{1,j} \underline{u}_1$

This implies that $\forall k \in \{1, \dots, K\}$:

h=1

$$d_{jk} = \frac{f_{jk}}{f_{j.}f_{.k}} \approx 1 + \frac{1}{\sqrt{\lambda_1}}\phi_{1,j}\psi_{1,k}.$$

We can therefore say that:

- The modalities A_j and B_k are attracted to each other $(d_{jk} > 1)$

if
$$\phi_{1,j} > 0$$
 and $\psi_{1,k} > 0$
if $\phi_{1,j} < 0$ and $\psi_{1,k} < 0$

- The modalities A_j and B_k are repulse each other $(d_{jk} < 1)$

if
$$\phi_{1,j} > 0$$
 and $\psi_{1,k} < 0$
if $\phi_{1,j} < 0$ and $\psi_{1,k} > 0$

Interpretation of the first principal map If $\cos^2(OL_j^*, (\Delta_1, \Delta_2))$ is close to one \Longrightarrow the profil L_j^* is close to its projection $P_{(\Delta_1, \Delta_2)}(L_j^*)$ $\Longrightarrow \underline{l}_j^* = \sum_{h=1}^H \phi_{h,j} \underline{u}_h \Longrightarrow \underline{l}_j^* \approx \phi_{1,j} \underline{u}_1 + \phi_{2,j} \underline{u}_2$

This implies that $\forall k \in \{1, \dots, K\}$:

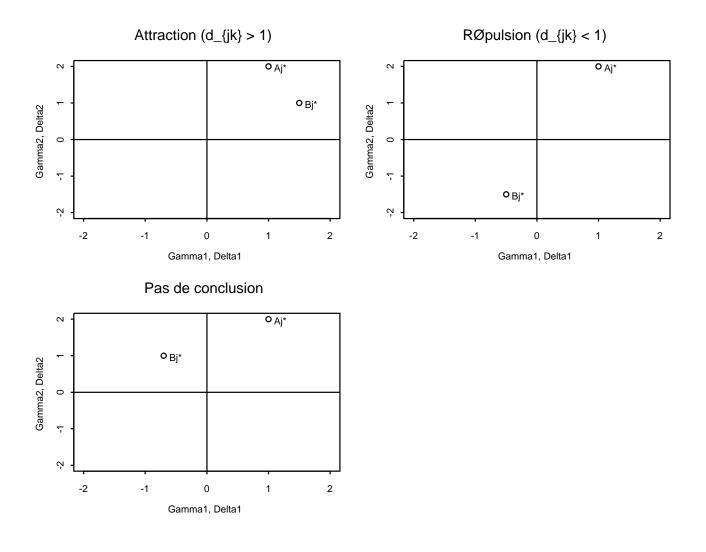
$$d_{jk} = \frac{f_{jk}}{f_{j.}f_{.k}} \approx 1 + \frac{1}{\sqrt{\lambda_1}}\phi_{1,j}\psi_{1,k} + \frac{1}{\sqrt{\lambda_2}}\phi_{2,j}\psi_{2,k}.$$

Therefore:

- The modalities A_j and B_k are attracted to each other $(d_{jk} > 1)$ if A_j^* and $B_k^* \in$ are belong to the same quadrant

- The modalities A_j and B_k are repulse each other $(d_{jk} < 1)$ if A_j^* and $B_k^* \in$ are in opposite quadrants

- We cannot conclude if A_j^* and $B_k^* \in$ belong to adjacent quadrants.



If a modality A_j^* is **well represented** on the first factorial plan, it is possible to determine graphically whether this modality is attracted or repulsed by some modalities B_k

4.8.2 Barycentric representation

In case of uncertainty about the attraction/repulsion between modalities, this representation can give an answer:

The attraction/repulsion indices are given by:

$$d_{jk} = 1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,j} \psi_{h,k}$$

 \implies we are going to use the standardized principal components $\tilde{\psi}_h$ instead of ψ_h :

$$\tilde{\psi}_h = \frac{\psi_h}{\sqrt{\lambda_h}}.$$

 \implies Superposition of both PCAs:

- the row profile A_j is associated to A_j^* which has coordinates $(\phi_{1,j}, \phi_{2,j})'$

- the column profile B_k is associated to \tilde{B}_k^* which has coordinates $(\tilde{\psi}_{1,k}, \tilde{\psi}_{2,k})' = (\frac{\psi_{1,k}}{\sqrt{\lambda_1}}, \frac{\psi_{2,k}}{\sqrt{\lambda_2}})'$ Interpretation for the first factorial plan If a modality A_j^* is well represented on the first principal plan Δ_1, Δ_2 :

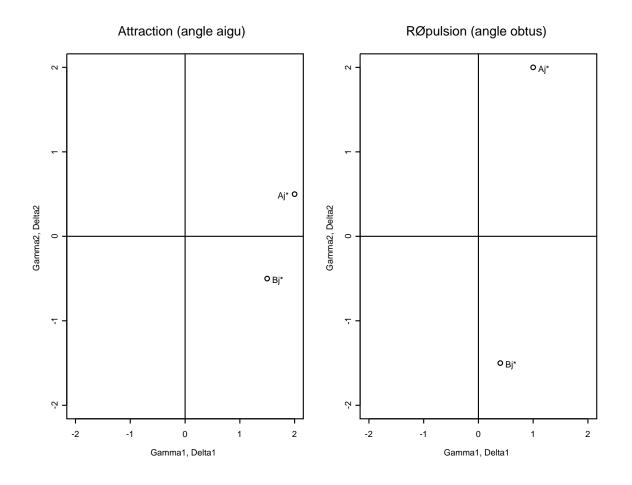
$$\begin{split} d_{jk} &\approx 1 + \phi_{1,j} \tilde{\psi}_{1,k} + \phi_{2,j} \tilde{\psi}_{2,k} \\ &\approx 1 + < OA_j^*, O\tilde{B}_k^* > \end{split}$$

where $\langle ., . \rangle$ is the usual scalar product in IR^2

We can therefore say that:

The modalities A_j and B_k are attracted to each other $(d_{jk} > 1)$ if the angle between OA_j^* and $O\tilde{B}_k^*$ is acute $(\langle OA_j^*, O\tilde{B}_k^* \rangle$ is therefore positive)

The modalities A_j and B_k are repulse each other $(d_{jk} < 1)$ if the angle between OA_j^* and $O\tilde{B}_k^*$ is obtuse $(< OA_j^*, O\tilde{B}_k^* > \text{is therefore negative})$



Examples where no conclusion can be drawn with the pseudo-barycentric representation. But with the barycentric representation, the rule is: Draw A_j^{\perp} which passes through the origin and which is orthogonal to OA_j^* . This line separates the space into two parts: the modalities B_k that are on the same side than A_j^* are attracted by it and the modalities on the other side are repulsed by A_j^* .

4.8.3 Biplot

The angles between the modalities and the factors yield most of the information. We therefore introduce a new variable where the coordinates of row profiles are divided by $\sqrt{\lambda_1}$. This leads to a better visibility of the first principal plan.

 \implies Simultaneous representation of the modalities $\{A_1, \ldots, A_J\}$ and $\{B_1, \ldots, B_K\}$ in the first principal map:

- The modality A_j is associated to \tilde{A}_j^* which has coordinates $(\tilde{\phi}_{1,j}, \tilde{\phi}_{2,j})' = (\frac{\phi_{1,j}}{\sqrt{\lambda_1}}, \frac{\phi_{2,j}}{\sqrt{\lambda_1}})'$.

- The modality B_k is associated to \tilde{B}_k^* which has coordinates $(\tilde{\psi}_{1,k}, \tilde{\psi}_{2,k})' = (\frac{\psi_{1,k}}{\sqrt{\lambda_1}}, \frac{\psi_{2,k}}{\sqrt{\lambda_2}})'$.

This type of standardization is called BIPLOT.

4.9 References

Benzecri, (1973), L'analyse des données. Tome
1: La taxinomie. Tome 2: L'analyse des correspondances (2^{de}. éd. 1976). Dunod, Paris.

• Escofier and Pages (2008), Analyses factorielles simples et multiples: Objectifs, méthodes et interprétation. Dunod, Paris.

Hirschfeld, (1935), "A connection between correlation and contingency.", Proc. Camb. Phil. Soc., 31, 520-524.

• Guttman, (1941), The quantification of a class of attributes: a theory and method of a scale construction. In: The prediction of personal adjustement (Horst P., Ed.), 251-264, SSCR New York.

Chapter 5

Multiple correspondence analysis (MCA)

• Extension of BCA to more than 2 variables.

• Goal: Analysis of a table $n \times P$ of "individuals \times qualitative variables".

• Method: apply BCA to a table called "complete disjunctive table".

- 5.1 Data, tables and distances
- 5.1.1 The complete disjunctive table

Example

- 4 individuals: n = 4
- 3 variables: P = 3
 - Y_1 : gender $\longrightarrow 2$ modalities: $K_1 = 2$ (male=1, female=2)
 - Y_2 : civil status $\longrightarrow 3$ modalities: $K_2 = 3$ (single=1, married=2, divorced or widower=3)
 - Y_3 : level of education $\rightarrow 2 \mod$ ities: $K_3 = 2 \pmod{9}$ (primary or secondary school=1, higher or university diploma=2)

$$K = K_1 + K_2 + K_3 = 2 + 3 + 2 = 7.$$

Logic table (the modalities are coded)

n P	Y_1	Y_2	Y_3
1	2	1	1
2	2	1	2
3	1	3	2
4	2	2	1

Complete disjunctive table (CDT)

	X	ζ_1		X_2		Х		
	X_{11}	X_{12}	X_{21}	X_{22}	X_{23}	X_{31}	X_{32}	P
1	0	1	1	0	0	1	0	3
2	0	1	1	0	0	0	1	3
3	1	0	0	0	1	0	1	3
4	0	1	0	1	0	1	0	3
n_{pl}	1	3	2	1	1	2	2	12

Notations:

- n individuals, P variables: Y_1, \ldots, Y_P
- The variable Y_p has K_p modalities $\implies K = \sum_{p=1}^{P} K_p$ total number of modalities in the dataset
- n_{pl} number of individuals having the modality l for the variable Y_p
- $x_{ipl} = 1$ if individual *i* has modality *l* of Y_p , 0 otherwise
- X_{pl} is a dummy (binary) variable which is associated with modality l of Y_p
- $X_p = (X_{p1}, \dots, X_{pK_p})$ vectors of dummy variables of Y_p

The following relations hold:

$$\sum_{l=1}^{K_p} n_{pl} = n \text{ and } \sum_{p=1}^{P} \sum_{l=1}^{K_p} n_{pl} = nP$$

Table of dummy variables X_p associated to Y_p :

	1	•••	l	•••	K_p	$\sum_{l=1}^{K_p}$
1	x_{1p1}	•••	x_{1pl}	•••	x_{1pK_p}	1
•	•	•	• •	:	•	
i	x_{ip1}	•••	x_{ipl}	•••	x_{ipK_p}	1
:	•	•	•	:	:	
n	x_{np1}	• • •	x_{npl}	•••	x_{npK_p}	1
$\sum_{i=1}^{n}$	n_{p1}	• • •	n_{pl}	• • •	n_{pK_p}	n

Complete disjunctive table $X = (X_1, \ldots, X_P)$:

x	1	•••	p	•••	Р	$\sum_{p=1}^{P} \sum_{l=1}^{K_p}$
1				•••		Р
:	:	:	:	:	÷	
i	$x_1(n \times K_1)$		$x_p(n \times K_p)$	•••	$x_P(n \times K_P)$	Р
÷	:	:	:	:	÷	
n				•••		Р
$\sum_{i=1}^{n}$						nP

5.1.2 Row and column profiles, attraction/repulsion indices

MCA on Y_1, \ldots, Y_P = BCA on the complete disjunctive table.

Relative frequencies of the complete disjunctive table:

			Y_{\pm}	1					Y_{p}	D		•••			Y	P		
	1	•••	l	•••	K_1		1		l		K_p	•••	1	•••	l		K_P	
1												•••						$\frac{1}{n}$
÷												•••						$\frac{1}{n}$
i								f_{ipl}	=	$\frac{x_{ipl}}{nP}$		•••						$\frac{1}{n}$
÷												•••						$\frac{1}{n}$
n												•••						$\frac{1}{n}$
								$f_{.pl}$. =	$\frac{n_{pl}}{nP}$		•••						1

where the marginal relative frequencies are given by:

$$f_{i..} = \frac{1}{n}$$
 and $f_{.pl} = \frac{n_{pl}}{nP}$

Row profiles L_i of individual $i: l_i(1 \times K)$ \Rightarrow the coordinate pl of the row profile i:

$$(\underline{l}_i)_{pl} = \frac{f_{ipl}}{f_{i..}} = \frac{x_{ipl}/nP}{1/n} = \frac{x_{ipl}}{P}$$
$$\forall p = 1, \dots, P; \quad l = 1, \dots, K_p$$

Column profile C_{pl} associated to the modality l of Y_p :

 $c_{pl}(n \times 1)$

 \Rightarrow the coordinate *i* of the column profile *pl*:

$$(\underline{\mathbf{c}}_{pl})_i = \frac{f_{ipl}}{f_{.pl}} = \frac{x_{ipl}/nP}{n_{pl}/nP} = \frac{x_{ipl}}{n_{pl}}$$

 $\forall i=1,\ldots,n.$

Notations

 $(\underline{l}_i)_{pl}$: coordinate pl of the row profile i $(\underline{c}_{pl})_i$: coordinate i of the column profile pl

Example

• Row profiles table:

	X	$\overline{1}$		X_2	Х			
	X_{11}	X_{12}	X_{21}	X_{22}	X_{23}	X_{31}	X_{32}	
1	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	1
2	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$	1
3	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$	0	$\frac{1}{3}$	1
4	0	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	0	1
	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{2}{12}$	1

• Column profiles table:

		$\overline{1}$		X_2	X_3		
	X_{11}	X_{12}	X_{21}	X_{22}	X_{23}	X_{31}	X_{32}
1	0	$\frac{1}{3}$	$\frac{1}{2}$	0	0	$\frac{1}{2}$	0
2	0	$\frac{1}{3}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$
3	1	0	0	0	1	0	$\frac{1}{2}$
4	0	$\frac{1}{3}$	0	1	0	$\frac{1}{2}$	0
	1	1	1	1	1	1	1

Attraction/repulsion indices between individual i and modality l of Y_p :

$$d_{i,pl} = \frac{f_{ipl}}{f_{i..}f_{.pl}} = \frac{\frac{x_{ipl}}{nP}}{\frac{1}{n}\frac{n_{pl}}{nP}} = \frac{x_{ipl}}{n_{pl}/n}$$

As $x_{ipl} = \{0, 1\}$ and $n_{pl}/n \le 1$, we have that $d_{i,pl} = 0 \quad \text{if} \quad x_{ipl} = 0$ $d_{i,pl} = \frac{n}{n_{pl}} \ge 1 \quad \text{if} \quad x_{ipl} = 1$

Interpretation: If one individual i has the modality l of the variable Y_p , then the attraction/repulsion index $d_{i,pl}$ increases as the modality l of the variable Y_p becomes rare $(n_{pl} \text{ small})$.

5.1.3 Point cloud and distances between row profiles

Point cloud

- n row profiles L_1, \ldots, L_n
- in IR^K where $K = \sum_{p=1}^{P} K_p$
- with weight 1/n
- and the χ^2 distance.

The center of gravity G_l has coordinate pl $(p = 1, \ldots, P; l = 1, \ldots, K_p)$ given by: $\sum_{i=1}^{n} \frac{1}{n} (\underline{l}_i)_{pl} = \frac{1}{nP} \sum_{i=1}^{n} x_{ipl} = \frac{n_{pl}}{nP}$

 $\implies G_l$ is the marginal profile (marginal relative profile)

Properties

• Distance between individuals (row profiles)

$$d_{\chi^2}^2(L_{i_1}, L_{i_2}) = \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{1}{f_{.pl}} ((\underline{l}_{i_1})_{pl} - (\underline{l}_{i_2})_{pl})^2$$
$$= \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{1}{\underline{n}_{pl}} (\frac{x_{i_1pl}}{P} - \frac{x_{i_2pl}}{P})^2$$
$$= \frac{n}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{1}{n_{pl}} (x_{i_1pl} - x_{i_2pl})^2$$

Interpretation:

The distance between 2 individuals is small if they have many modalities that are the same.

Example

Distance between individual 1 (female, single with primary or secondary diploma) and 2 (female, single with a higher or university formation):

$$d_{\chi^2}^2(L_1, L_2) = \sum_{p=1}^3 \sum_{l=1}^{K_p} \frac{1}{f_{.pl}} ((\underline{l}_1)_{pl} - (\underline{l}_2)_{pl})^2$$

= $12(0-0)^2 + \frac{12}{3}(\frac{1}{3} - \frac{1}{3})^2$
+ $\frac{12}{2}(\frac{1}{3} - \frac{1}{3})^2 + \frac{12}{2}(0-0)^2 + 12(0-0)^2$
+ $6(\frac{1}{3} - 0)^2 + 6(0 - \frac{1}{3})^2 = \frac{4}{3} = 1.33$

Another way to compute it:

$$d_{\chi^2}^2(L_1, L_2) = \frac{n}{P} \sum_{p=1}^3 \sum_{l=1}^{K_p} \frac{1}{n_{pl}} (x_{i_1pl} - x_{i_2pl})^2$$

= $\frac{4}{3} (1(0-0)^2 + \frac{1}{3}(1-1)^2)$
+ $\frac{1}{2} (1-1)^2 + 1(0-0)^2 + 1(0-0)^2$
+ $\frac{1}{2} (1-0)^2 + \frac{1}{2} (0-1)^2) = \frac{4}{3} = 1.33$

Matrix of distances and matrix of squared distances between individuals (row profiles)

$d^2_{\chi^2}(L_i,L_j)$	L_1	L_2	L_3	L_4
L_1	_	1.33	5.11	2.00
L_2	1.33	-	3.78	3.33
L_3	5.11	3.78	-	5.78
L_4	2.00	3.33	5.78	_
$\overline{d_{\chi^2}(L_i,L_j)}$	L_1	L_2	L_3	L_4
$\frac{d_{\chi^2}(L_i,L_j)}{L_1}$		L_2 1.15		
	_		2.26	1.41
L_1	- 1.15	1.15	2.26 1.94	1.41 1.83

Conclusions

• individuals 1 and 2 are close to each other (both are female and single)

• individuals 1 and 3 are very different (all the modalities between those individuals are different). • Distance between the row profile L_i and the center of gravity:

$$\begin{aligned} d_{\chi^2}^2(L_i, G_l) &= \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{1}{f_{.pl}} ((\underline{l}_i)_{pl} - \frac{n_{pl}}{nP})^2 \\ &= \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{nP}{n_{pl}} (\frac{x_{ipl}}{P} - \frac{n_{pl}}{nP})^2 \\ &= \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{n}{Pn_{pl}} \left(x_{ipl}^2 + \frac{n_{pl}^2}{n^2} - 2x_{ipl} \frac{n_{pl}}{n} \right) \\ &= \frac{n}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{x_{ipl}}{n_{pl}} + \frac{1}{nP} \sum_{p=1}^P \sum_{l=1}^{K_p} n_{pl} - \frac{2}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} x_{ipl} \\ &= \frac{n}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{x_{ipl}}{n_{pl}} + \frac{1}{nP} nP - \frac{2}{P} P \\ &= \frac{n}{P} \sum_{p=1}^P \sum_{l=1}^K \frac{x_{ipl}}{n_{pl}} - 1 \end{aligned}$$

 \implies The distance between the individual i and the center of gravity G_l increases as the modalities taking by the individual i becomes rare ($x_{ipl} = 1$ and n_{pl} small). • Total inertia of point cloud \aleph_l around G_l :

$$\begin{split} I_{\chi^2}(\aleph_l, G_l) &= \sum_{i=1}^n f_{i..} d_{\chi^2}^2(L_i, G_l) \\ &= \sum_{i=1}^n \frac{1}{n} \left(\frac{n}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{x_{ipl}}{n_{pl}} - 1 \right) \\ &= \frac{1}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} \sum_{i=1}^n \frac{x_{ipl}}{n_{pl}} - \frac{1}{n} \sum_{i=1}^n 1 \\ &= \frac{1}{P} \sum_{p=1}^P \sum_{l=1}^{K_p} \frac{n_{pl}}{n_{pl}} - \frac{1}{n} \sum_{i=1}^n 1 \\ &= \frac{K}{P} - 1 \end{split}$$

where $\frac{K}{P}$ is the average number of modalities by variables $\qquad \qquad \Downarrow$ The total inertia depends only on the number of variables and on the number of modalities. It does not depend at all on the relations between the variables. From a statistical point of view, this quantity cannot be interpreted (as in PCA).

• $\forall i \in \{1, \dots, n\}$ the row profile \underline{l}_i satisfies the *P* linear constraints:

$$\sum_{l=1}^{K_p} (l_i)_{pl} = \sum_{l=1}^{K_p} \frac{x_{ipl}}{P} = \frac{1}{P} \qquad p = 1, \dots, P$$

 \implies the point cloud \aleph_l is inside a sub-space of at most K - P dimensions.

5.1.4 Point cloud and distances between column profiles

Point cloud - $K = \sum_{p=1}^{P} K_p$ column profiles C_{pl} - in IR^n - with weight $f_{.pl} = \frac{n_{pl}}{nP}$

- and the χ^2 distance.

The i^{th} coordinate of the center of gravity G_c is given by:

$$\sum_{p=1}^{P} \sum_{l=1}^{K_p} f_{.pl}(\underline{c}_{pl})_i = \sum_{p=1}^{P} \sum_{l=1}^{K_p} \frac{n_{pl}}{nP} \frac{x_{ipl}}{n_{pl}} = \frac{1}{n}$$

 $\implies G_c$ is the marginal profile (marginal relative profile)

Properties

• Distance between modalities (column profiles) The χ^2 distance between modality l_1 of variable Y_{p1} and modality l_2 of variable Y_{p2} is:

$$\begin{aligned} d_{\chi^2}^2(c_{p1l1}, c_{p2l2}) &= \sum_{i=1}^n \frac{1}{f_{i..}} ((\underline{c}_{p1l1})_i - (\underline{c}_{p2l2})_i)^2 \\ &= \sum_{i=1}^n \frac{1}{\underline{1}} (\frac{x_{ip1l1}}{n_{p1l1}} - \frac{x_{ip2l2}}{n_{p2l2}})^2 \\ &= n \sum_{p=i}^n (\frac{x_{ip1l1}}{n_{p1l1}} - \frac{x_{ip2l2}}{n_{p2l2}})^2 \end{aligned}$$

Interpretation:

- if the same individuals take these 2 modalities, the distance between the 2 modalities is small

- if a modality is rare, it is far away from the other modalities.

Example

Distance between modality 1 of Y_1 (male) and 2 of Y_2 (married):

$d_{\chi^2}^2(c_{11}, c_{22}) = \sum_{i=1}^n \frac{1}{f_{i}} ((c_{11})_i - (c_{22})_i)^2$										
$= 4\left((0-0)^2 + (0-0)^2 + (1-0)^2 + (0-1)^2\right)$										
= 8								·		
$d_{\chi^2}(,)$	11	12	21	22	23	31	32			
11	_	2.31	2.45	2.83	0	2.45	1			
12		-	0.67	0.94	2.31	0.67	1.37			
21			-	2.45	2.45	1.41	1.41			
22				-	2.83	1	2.45			
23					-	2.45	1			
31						-	2			
32							_			

- "12" and "21" are close to each other (50% of individuals have chosen these two modalities)

• Distance between the column profile C_{pl} and the center of gravity:

$$\begin{aligned} d_{\chi^2}^2(C_{pl}, G_c) &= \sum_{i=1}^n n((\underline{c}_{pl})_i - \frac{1}{n})^2 \\ &= \sum_{i=1}^n n(\frac{x_{ipl}}{n_{pl}} - \frac{1}{n})^2 \\ &= \sum_{i=1}^n n\frac{x_{ipl}^2}{n_{pl}^2} + \sum_{i=1}^n n\frac{1}{n^2} - 2\sum_{i=1}^n \frac{x_{ipl}}{n_{pl}} \\ &= \frac{n}{n_{pl}^2}\sum_{i=1}^n x_{ipl} + 1 - \frac{2}{n_{pl}}\sum_{i=1}^n x_{ipl} \\ &= \frac{n}{n_{pl}} - 1 \end{aligned}$$

 \implies The distance between the modality l of Y_p and the center of gravity G_c increases as the modality becomes more rare $(n_{pl} \text{ small})$.

• Total inertia of point cloud \aleph_c around G_c :

$$\begin{split} I_{\chi^2}(\aleph_c, G_c) &= \sum_{p=1}^{P} \sum_{l=1}^{K_p} f_{.pl} d_{\chi^2}^2(C_{pl}, G_c) \\ &= \sum_{p=1}^{P} \sum_{l=1}^{K_p} \frac{n_{pl}}{nP} (\frac{n}{n_{pl}} - 1) \\ &= \sum_{p=1}^{P} \sum_{l=1}^{K_p} \frac{1}{P} (1 - \frac{n_{pl}}{n}) \\ &= \sum_{p=1}^{P} \frac{1}{P} (K_p - 1) = \frac{1}{P} (K - P) \\ &= \frac{K}{P} - 1 \end{split}$$

Notice that $I_{\chi^2}(\aleph_c, G_c) = 1$ if all the variables have exactly two modalities.

• Contribution of the modality l of the variable Y_p to the total inertia of the point cloud \aleph_c :

$$f_{.pl}d_{\chi^2}^2(C_{pl}, G_c) = \frac{n_{pl}}{nP}(\frac{n}{n_{pl}} - 1)$$
$$= \frac{1}{P} - \frac{n_{pl}}{nP} = \frac{1}{P}(1 - \frac{n_{pl}}{nP})$$

 \implies The contribution of the modality l of the variable Y_p increases when n_{pl} decreases. A rare modality has therefore a larger impact than a common modality.

• The contribution of the variable Y_p (sum of the contributions of the modalities) is given by:

T 7

$$\sum_{l=1}^{K_p} \frac{1}{P} (1 - \frac{n_{pl}}{n}) = \frac{1}{P} (K_p - 1)$$

 \implies The contribution of a variable increases with the number of modalities.

\Downarrow

When doing a survey, it is better to take into account variables that have more or less the same number of modalities. It is also adviced to avoid having rare modalities.

5.2 MCA

5.2.1 Projecting directions (similar results than BCA)

Row profiles

 $\aleph_l = \{(L_1; \frac{1}{n}), \dots, (L_n; \frac{1}{n})\}$ with χ^2 distances in IR^K where L_i has coordinates:

$$\underline{l}_i = \frac{x_{ipl}}{P} \qquad p = 1, \dots, P; l = 1, \dots, K_p$$

Column profiles

 $\aleph_c = \{(C_{pl}; f_{pl} = \frac{n_{pl}}{n}) \text{ where } p = 1, \dots, P \text{ and } l = 1, \dots, K_p\} \text{ with } \chi^2 \text{ distances in } IR^n \text{ where } C_{pl}$ has coordinates:

$$\underline{c}_{pl} = \frac{x_{ipl}}{n_{pl}} \qquad i = 1, \dots, n$$

Row profiles
$$\aleph_l^*$$
: IR^K Columb profiles \aleph_c^* : IR^n (λ_h, u_h) where $h = 1, \ldots, H$ (λ_h, v_h) where $h = 1, \ldots, H$ are the eigenvalues and the eigenvectors of $V = T'T$ $W = TT'$ Hence we have $Vu_h = \lambda_h u_h$ $Wv_h = \lambda_h v_h$

ī.

where T is a matrix $n \times K$ with coordinates:

$$t_{i,pl} = \frac{f_{ipl} - f_{i..}f_{.pl}}{\sqrt{f_{i..}f_{.pl}}} = \frac{x_{ipl} - \frac{n_{pl}}{n}}{\sqrt{Pn_{pl}}}$$

Construction of the principal components (projection of the row and column profiles):

$$\begin{split} \phi_{h,j} &= \|OP_{\Delta_h}(L_j^*)\| = = \sum_{k=1}^K u_{h,k}(\underline{l}_j^*)_k \\ \psi_{h,pl} &= \|OP_{\Gamma_h}(C_{pl}^*)\| = = \sum_{i=1}^N v_{h,j}(\underline{c}_{pl}^*)_i \end{split}$$

How many principal components ? Stopping rule in PCA: Keep principal component iff the associated eigen-

value is larger than 1 (mean of eigenvalues).

This rule is adapted to MCA as follows: Keep principal component iff the associated eigenvalue is larger than $\frac{1}{P}$.

Indeed, suppose that H = K - P (usual situation), then the mean of all non-zero eigenvalues is given by:

$$\frac{1}{K-P} \sum_{l=1}^{N} \text{ non zero eigenvalues}$$

$$= \frac{1}{K-P} \text{ total inertia of point cloud } \aleph_l \text{ around } G_l$$

$$= \frac{1}{K-P} (\frac{K}{P} - 1) = \frac{1}{P}.$$

This results explains the criteria given above.

5.2.2 Quality of the representation of each modality

• Quality of representation of each modality l of the variable Y_p on the axis Γ_h is given by:

$$\cos^2 (\text{ angle between } OC_{pl}^* \text{ and the axis } \Gamma_h)$$

$$\cos^2 (\beta_{h,pl}) = \frac{\psi_{h,pl}^2}{\|OC_{pl}^*\|^2}$$

It can be proven that:

$$\cos(\beta_{h,pl}) = r_{X_{pl},\phi_h}$$

As for PCA, it is possible to construct a correlation circle with the modalities.

5.2.3 Contribution of each modality

• Contribution of the modality l of Y_p on the variance of the new variable ψ_h :

$$CTR_{\Gamma_h}(X_{pl}) = \frac{f_{.pl}\psi_{h,pl}^2}{\lambda_h} = \frac{n_{pl}}{nP\lambda_h}\psi_{h,pl}^2$$

The contribution of the modality X_{pl} increases with the correlation between ϕ_h and the modality. It also increases as the modality becomes more rare $(n_{pl} \ small)$

• Global contribution of the variable Y_p (sum on all modalities) on the variance of ψ_h :

$$CTR_{\Gamma_h}(Y_p) = \sum_{l=1}^{K_p} CTR_{\Gamma_h}(X_{pl})$$

5.2.4 Reconstitution formula

The formula introduced for BCA becomes:

$$f_{ipl} = f_{i..}f_{.pl}(1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i}\psi_{h,pl})$$
$$\implies \frac{x_{ipl}}{nP} = \frac{1}{n} \frac{n_{pl}}{nP} (1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i}\psi_{h,pl})$$
$$\implies x_{ipl} = \frac{n_{pl}}{n} (1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i}\psi_{h,pl})$$

The distance between the "observed probability" that individual i has modality l on variable Y_p (x_{ipl}) and the "mean probability" to have this modality ($\frac{n_{pl}}{n}$) is given as a function of principal components

\Downarrow

This leads to the link between individual i and the modality l associated to the variable Y_p m

Two other formulas can be introduced :

• The number of individuals with modality l on

 Y_p and modality l' on $Y_{p'} = n_{pl,p'l'}$ is given by:

$$n_{pl,p'l'} = \sum_{i=1}^{n} x_{ipl} x_{ip'l'}$$

= $\sum_{i=1}^{n} \frac{n_{pl}}{n} (1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i} \psi_{h,pl})$
 $\times \frac{n_{p'l'}}{n} (1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i} \psi_{h,p'l'})$
= ...
= $\frac{n_{pl} n_{p'l'}}{n} (1 + \sum_{h=1}^{H} \psi_{h,pl} \psi_{h,p'l'})$

 \implies Comparison between modalities

But the attraction/repulsion index $d_{pl,p'l'}$ between the modality l of Y_p and the modality l'de Y'_p is given by:

$$d_{pl,p'l'} = \frac{n_{pl,p'l'/n}}{\frac{n_{pl}}{n}\frac{n_{p'l'}}{n}} = \frac{n_{pl,p'l'}}{\frac{n_{pl}n_{p'l'}}{n}}$$
$$\implies d_{pl,p'l'} = 1 + \sum_{h=1}^{H} \psi_{h,pl}\psi_{h,p'l'}$$

• The proximity between two individuals i and i' is defined by :

$$p_{i,i'} = 1 + \sum_{h=1}^{H} \phi_{h,i} \phi_{h,i'}$$

Two individuals are close (same behaviour) if they have in general the same modalities.

5.3 Graphical representations

Two types of graphical representations:

- Pseudo-barycentric representation (standard)
- Biplot representation (barycentric)

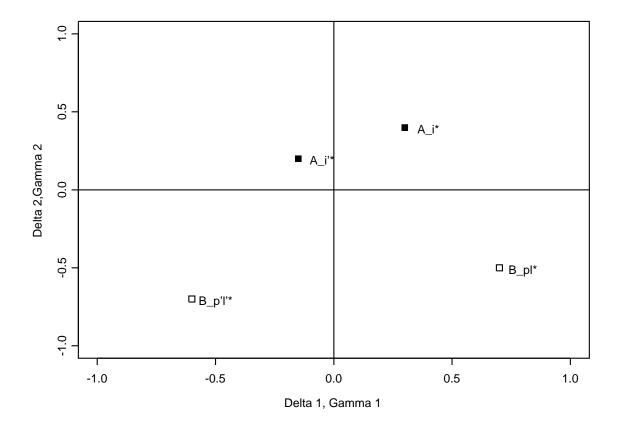
5.3.1 Standard representation (Pseudo-barycentric)

We focus on the first principal plan but more dimensions can be analyzed with the same methodology

The first principal plan is constructed using both PCAs:

- individual A_i^* (i = 1, ..., n) is projected on the first factorial plan leading to coordinate $(\phi_{1,i}, \phi_{2,i})$

- modality B_{pl}^* $(p = 1, ..., P; l = 1, ..., K_p)$ is projected on the first factorial plan leading to coordinate $(\psi_{1,pl}, \psi_{2,pl})$



This representation is the closest representation of the simultaneous information inside point clouds \aleph_l^* and \aleph_c^*

Interpretation:

• The well represented modalities on the first principal plan are compared using the following approximated formula:

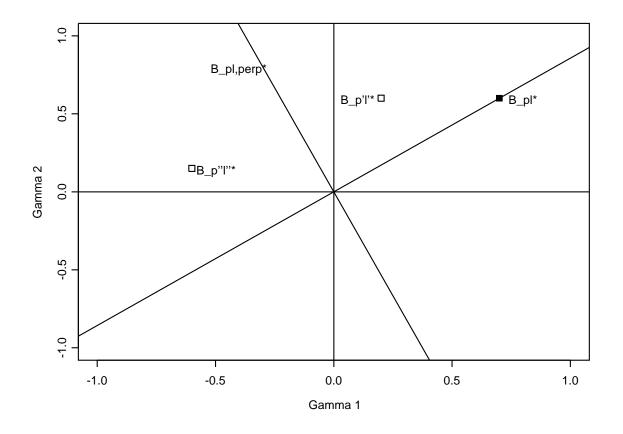
$$\begin{aligned} d_{pl,p'l'} &\approx 1 + \sum_{h=1}^{2} \psi_{h,pl} \psi_{h,pl} \\ &= 1 + \langle 0B_{pl}^{*}, 0B_{p'l'}^{*} \rangle \\ &= 1 + \|0B_{pl}^{*}\| \|0B_{p'l'}^{*}\| \cos(0B_{pl}^{*}, 0B_{p'l'}^{*}) \end{aligned}$$

Draw B_{pl}^{\perp} which passes through the origin and which is orthogonal to $0B_{pl}^*$. This line separates the space into two parts:

- the modalities that are on the same side than B_{pl}^* are attracted by it

- the modalities on the other side are repulsed by B_{pl}^{\ast}

The attraction/repulsion index increases with $| < 0B_{pl}^*, 0B_{p'l'}^* > |.$



If the modalities pl, p'l' and p''l'' are well represented on the first principal plan, therefore we can conclude that pl and p'l' are attracted by each other, and modalities pl and p''l'' are repulse by each other.

• The well represented individuals on the first principal plan are compared using the following approximated formula:

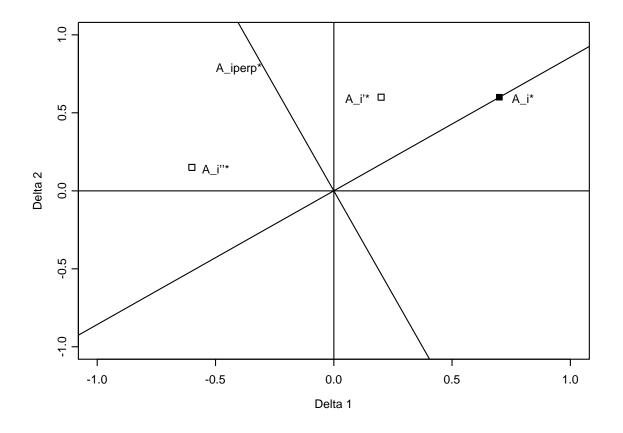
$$p_{i,i'} \approx 1 + \sum_{h=1}^{2} \phi_{h,i} \phi_{h,i'}$$

= 1+ < 0 A_i^* , 0 $A_{i'}^*$ >
= 1 + $\|0A_i^*\| \|0A_{i'}^*\| \cos(0A_i^*, 0A_{i'}^*)$

Draw A_i^{\perp} which passes through the origin and which is orthogonal to $0A_i^*$. This line separates the space into two parts:

- the modalities that are on the same side than A_i^* are individuals who share a set of modalities with individual *i*. And the common set increases with $< 0A_i^*, 0A_{i'}^* >$.

- the modalities on the other side than A_i^* are individuals who have few characteristic in common with individual *i*.



If the individuals i, i' and i'' are well represented on the first principal plan, therefore we can conclude that individual i is close to individual i' and has few characteristic in common with individual i''

• The well represented modalities and individuals on the first principal plan are compared using the following approximated formula:

$$x_{ipl} \approx \frac{n_{pl}}{n} (1 + \sum_{h=1}^{2} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i} \psi_{h,pl})$$

The coefficient $\frac{1}{\sqrt{\lambda_h}}$ implies some difficulties in the interpretation.

If A_i^* and B_{pl}^* are well represented on the first principal plan:

- The probability that the individual A_i^* has modality l on variable Y_p is high if they are belong to the same quadrant
- The probability that the individual A_i^* has modality l on variable Y_p is low if they are in opposite quadrants
- We cannot conclude if they belong to adjacent quadrants.

5.3.2 Biplot

The Biplot representation leads to a better visibility of the first principal plan to compare the individuals with the modalities.

• The individual i is associated to \tilde{A}_i^* which has coordinates:

$$(\tilde{\phi}_{1,i}, \tilde{\phi}_{2,i})' = (\frac{\phi_{1,i}}{\sqrt{\lambda_1}}, \frac{\phi_{2,i}}{\sqrt{\lambda_2}})'$$

• The modality l on variable Y_p $(p = 1, ..., P; l = 1, ..., K_p)$ is associated with B_{pl}^* which has coordinates:

$$\psi_{1,pl}, \psi_{2,pl}.$$

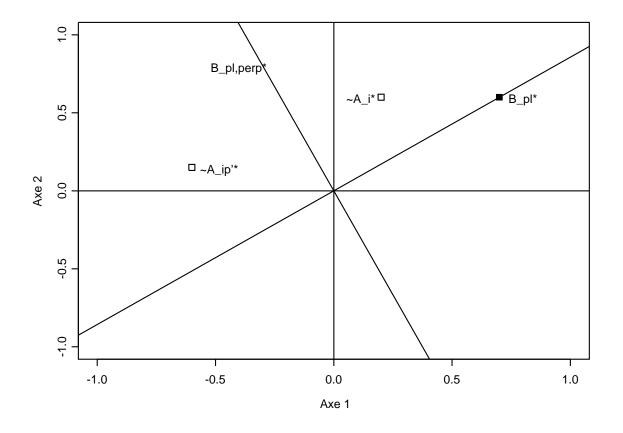
Reconstitution formula to compare the individuals with the modalities:

$$\begin{aligned} x_{ipl} &\approx \frac{n_{pl}}{n} (1 + \sum_{h=1}^{2} \tilde{\phi}_{h,i} \psi_{h,pl}) \\ &= \frac{n_{pl}}{n} (1 + \langle 0\tilde{A}_{i}^{*}, 0B_{pl}^{*} \rangle) \\ &= \frac{n_{pl}}{n} (1 + \|0\tilde{A}_{i}^{*}\| \|0B_{pl}^{*}\| \cos(0\tilde{A}_{i}^{*}, 0B_{pl}^{*})) \end{aligned}$$

Draw B_{pl}^{\perp} which passes through the origin and which is orthogonal to $0B_{pl}$. This line separates the space into two parts:

- the individuals that are on the same side than B_{pl} have, with high probability, the modality l on variable Y_p

- the individuals on the other side have, with low probability, the modality l on variable Y_p .



If the modality l on variable Y_p is well represented on the first principal plan, therefore the probability that individual i has modality l on variable Y_p is high and the probability that individual i' has modality l on variable Y_p is low.

5.4 The Burt table (BT)

When the use of BT is more appropriate than the use of CDT?

- If n is large, the simultaneous representation of individuals and modalities is unreadable.
- If the individuals are anonymous, the interest is only based on the modalities.

\Downarrow

Contingency table (symmetric) with $K = K_1 + \dots + K_P$ modalities on P variables.

			Y_1				Y_p				Y_P		
		1		K_1		1		K_p		1		K_P	
	1	n_{11}		0									Pn_{11}
Y_1	÷		·		:		$n_{1l,pl'}$		÷		$n_{1l,Pl'}$:
	K_1	0		$n_{1K_{1}}$									Pn_{1K_1}
	:				:				:				:
	1					n_{p1}		0					Pn_{p1}
Y_p	:		$n_{pl,1l'}$:		·		:		$n_{pl,Pl'}$:
	K_p					0		n_{pK_p}					Pn_{pK_p}
	:				:				:				:
	1						$n_{Pl,pl'}$			n_{P1}		0	Pn_{P1}
Y_p	:		$n_{Pl,1l'}$:				:		·		:
	K_p									0		n_{PK_P}	Pn_{PK_P}
		Pn_{11}	•••	Pn_{1K_1}		Pn_{p1}	• • •	Pn_{pK_p}		Pn_{P1}	•••	Pn_{PK_P}	nP^2

We use the BCA on the Burt table, instead of the application of the BCA on the complete disjunctive table (CDT).

Remark: The row profiles and the column profiles are identical since the Burt table is symmetric.

5.4.1 Links between MCA on CDT and MCA on BT

• The inertia obtained by MCA on BT are given by the squared inertia obtained by MCA on CDT:

$$\lambda_{BT,h} = \lambda_h^2 \qquad h = 1, \dots, H$$

• The variances of the principal component $\psi_{BT,h}$ obtained by MCA on BT are given by the squared variances of the principal component obtained by MCA on CDT:

$$s_{\psi_h}^2 = \lambda_h$$
 and $s_{\Psi_{BT,h}}^2 = \lambda_{BT,h} = \lambda_h^2$

• It holds also that $\forall h = 1, \dots, H$:

$$\psi_{BT,h} = \sqrt{\lambda_h} \psi_h$$

5.5 Practical example

Research question:

Determining if, *inside the PS electorate*, Muslims behave differently from non-believers and Catholics.

Database:

Votes for the PS in the regional elections of June 2004 in the Brussels Region

Method:

To this end, we will look into the answers given to society-oriented questions using multiple correspondence analysis.

5.5.1 Society-oriented questions:

- Mail services should be privatized;
- Trade Unions should weigh heavily in major economic decisions;
- Homosexual couples should be allowed to adopt children;
- Consumption of cannabis should be forbidden;
- People don't feel at home in Belgium anymore;
- Abolishing the death penalty was the right decision.

The answers proposed to these questions are: Total agreement (1), Rather in agreement (2), Rather opposed (3),

Totally opposed (4),

No opinion (5).

The questionnaire also includes a question concerning a subjective judgment of the individual about his general behavior on a left-right scale:

"Here is a political left-right scale. 0 is the most left-wing position 9 the most right-wing. Where would you locate yourself?"

The variable "Belief" with three categories (Muslims, non-believers and Catholics) is also available 5.5.2 χ^2 independence test

First, we analyze each society-oriented question separately by testing its dependency with respect to the *belief* variable using a χ^2 independence test.

χ^2	Mail	Trade Union	Homosexual
Test	26.78	27.13	144.82
p-value	(0.00)	(0.00)	(0.00)

χ^2	Cannabis	Home	D. Penalty
Test	86.98	27.94	11.75
p-value	(0.00)	(0.00)	(0.16)

The assumption of independence between the society-oriented questions and belief-oriented question is rejected for all of the questions (at the 5% level) except for the question on the death penalty (very small variation inside the question).

5.5.3 Attraction-repulsion indexes

Links between each pair of modalities of two variables with the attraction-repulsion indexes d_{jk} defined as

$$d_{jk} = \frac{f_{jk}}{f_{j.}f_{.k}}$$

where f_{jk} is the observed frequency and $f_{j.}f_{.k}$ is the theoretical frequency under the independence hypothesis.

Interpretation:

 $d_{jk} > 1 \iff$ the two modalities attract each others $d_{jk} < 1 \iff$ the two modalities push each other away $d_{jk} \approx 1 \iff$ the two modalities are close to being. independent

Mail services should be privatized

Attraction Index	Non-believer	Catholic	Muslim
Total agreement	0.712	1.411	1.196
Rather in agreement	1.055	0.707	1.113
Rather opposed	1.080	1.001	0.866
Totally opposed	1.119	1.062	0.757
No opinion	0.779	0.857	1.472

• Proportion of Muslim PS-voters who declare having no opinion on the subject is much higher than the corresponding proportions of Catholic and Non-believer PS-voters.

• Proportion of Catholics who are in total agreement to a privatization of mail services is much higher.

Trade Unions should weigh heavily in major economic decisions

Attraction Index	Non-believer	Catholic	Muslim
Total agreement	0.878	0.920	1.261
Rather in agreement	1.117	0.930	0.853
Rather opposed	1.203	1.102	0.588
Totally opposed	0.953	1.779	0.534
No opinion	0.847	0.953	1.290

• As for the influence of Trade Unions in major political decisions, Muslim PS-voters are more prone to agree with the necessity of more influence than the others, while Catholics seem to be very opposed to the latter.

Homosexual couples should be allowed to adopt children

Attraction Index	Non-believer	Catholic	Muslim
Total agreement	1.311	0.886	0.558
Rather in agreement	1.470	0.959	0.240
Rather opposed	1.101	1.220	0.676
Totally opposed	0.468	1.104	1.821
No opinion	1.240	0.674	0.825

• The answers to the question of allowing adoption by homosexual couples is very clear-cut.

• Non-believers are proportionally much more in agreement with the assertion than others

• Catholics generally seem to oppose or totally oppose it.

• A vast majority of Muslims declare themselves totally opposed to the proposition.

Consumption of cannabis should be forbidden

Attraction Index	Non-believer	Catholic	Muslim
Total agreement	0.626	1.116	1.548
Rather in agreement	0.748	1.176	1.300
Rather opposed	1.341	0.948	0.463
Totally opposed	1.371	0.680	0.601
No opinion	1.024	1.186	0.830

• Majority of Muslims agree with the proposal

• Majority of Non-believers declare themselves opposed to it.

People don't feel at home in Belgium anymore

Attraction Index	Non-believer	Catholic	Muslim
Total agreement	0.786	1.433	1.056
Rather in agreement	0.677	1.330	1.311
Rather opposed	0.937	1.207	0.962
Totally opposed	1.178	0.738	0.885
No opinion	0.867	1.082	1.166

• Strong opposition between Non-believers and Catholics. The Catholic are proportionally more prone to agree with the assertion than Nonbelievers.

• Muslims also seem to agree on the fact that they "don't feel at home in Belgium anymore".

Abolishing the death penalty was the right decision

Attraction Index	Non-believer	Catholic	Muslim
Total agreement	1.069	0.881	0.967
Rather in agreement	1.020	0.926	1.019
Rather opposed	0.735	1.486	1.105
Totally opposed	0.762	1.390	1.127
No opinion	0.932	1.178	0.989

• High number of "totally in agreement" with abolishing it

• Muslims don't really show a tendency one way or another with respect to the others.

• Catholics seem to be more prone than Nonbelievers to be against the abolishment of the death penalty.

5.5.4 Multiple correspondance analysis (AFCM)

Multivariate vision of the set of society-oriented questions (active variables)

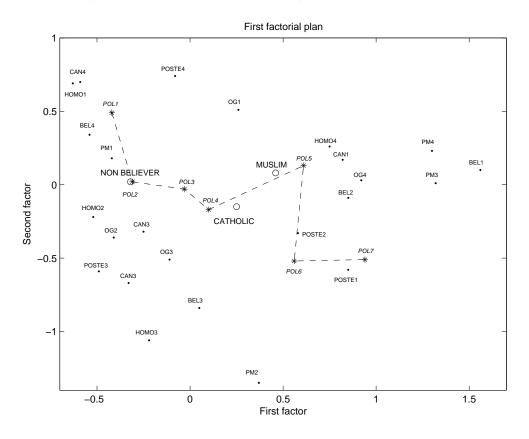


Figure 5.1: Multiple Correspondence Analysis on society-oriented questions. *Belief* and the *political scale* are added as illustrative variables.

Two illustrative variables: *belief* and the *political scale*

The first axis represents a left-right dimension. To visualize better, we deleted modality "no opinion" for the society-oriented questions.

- \bullet Inertia explained by the first plane: 20%
- Contributors on first factorial axis:
 24.8% feeling at home in Belgium
 22.7% the death penalty
 17.9% adoption by homosexual couples
 17% prohibition of cannabis consumption
 10.4% privitization of mail services
 7.2% Trade Unions in political decisions
- Contributors on second factorial axis:
 24.2% privitization of mail services
 19.3% adoption by homosexual couples
 16.5% prohibition of cannabis consumption
 14.7% the death penalty
 13.6% feeling at home in Belgium
 11.8% Trade Unions in political decisions

5.5.5 Econometric Model

Multivariate data analysis doesn't take into account the influence of other variables which may strongly influence the results

Dependent variable: the left-right indicator built on the basis of the six society-oriented questions

	Regression 1		Regression 2	
Variable	Coefficient	Std. Error	Coefficient	Std. Error
С	-0.166***	(0.027)	-0.457***	(0.078)
NONCROYANT	-0.319***	(0.050)	-0.225***	(0.048)
MUSULMAN	0.089	(0.055)	0.152***	(0.055)
AGE			0.008***	(0.001)
AUCUN			0.371***	(0.112)
PRIMAIRE			0.421***	(0.094)
PROFESSIONNEL			0.310***	(0.083)
SECINF			0.416***	(0.068)
SECSUP			0.274***	(0.053)
SUPNONUNIV			0.163***	(0.054)
TECHNIQUE			0.151	(0.096)
	R-squared:	12.6 %	R-squared:	24.4 %

Sample size: 676, *Statistically different from zero at 10%,

Chapter 6

Discriminant and classification

6.1 Introduction

OBJECTIVES:

- Discrimination or separation: Separate two (or more) classes of objects. Describe the different caracteristics of observations arising from different known populations.
- 2. Classification or allocation: Define rules that assign an individual to a certain class.

Overlap between the two approaches since the variables that discriminate can also be used to allocate new observation to one group and viceversa.

EXAMPLES

Populations π_1 and π_2	Measured variables
Good and poor	Income, age, number of
credit risks	credit cards, family size
Successful and unsuccessful	Socio-economic variables,
students	secondary path, gender
Males and females	Anthropological measurements
Purchasers of a new product	Income, education, family size
and laggards	amount of previous brand switching
Papers written by two authors	Frequencies of different words
	and lengths of sentences
Two species of flowers	Sepal and petal length,
	pollen diameter

Remark: In the sequel we present the problem using two populations but the generalization to more than two populations is straightforward.

THEORITICAL CONTEXT:

Let denote the 2 populations by : π_1 and π_2 . The information on observations can be summarized in p variables:

 $X' = [X_1, \ldots, X_p]$

The behavior of the variables is different in the two populations

 \Downarrow

The joint density functions on X are respectively given by : $f_1(x)$ et $f_2(x)$

IDEA: Separate the space IR^p into 2 parts R_1 and R_2 using the sample.

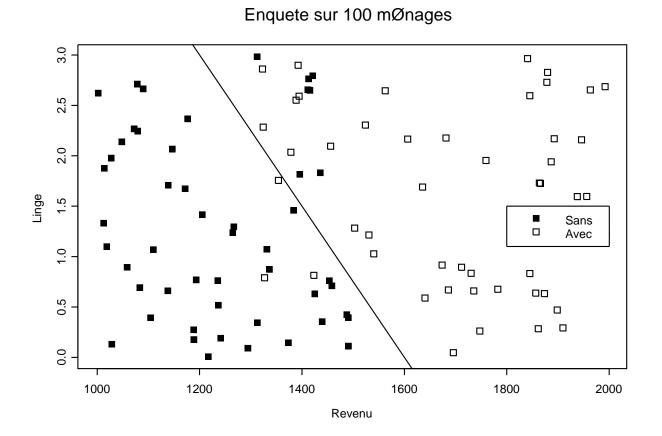
RULE: If a new observation $\in R_1 \ (\in R_2)$ then we suppose that it belongs to $\pi_1 \ (\pi_2)$. For the sample, we known the values of X and also to which population it belongs to. But for new observation, the population is unknown : WHY ?

- 1. Incomplete knowledge of future performance (example: future firm's bankruptcy)
- 2. Information on the memberships of π_1 or π_2 requires the destruction (example: lifetime of a battery)
- 3. Unavailable or expensive information (example: medical problems)

\Downarrow

Find optimal rules based on the sample to classify observations to reduce misclassification as much as possible. Example: Separate the space (by a segment in this case) to target the population that could be interested in buying a new washing machine (fictive data).

Variables: X_1 : income of the family in euros, X_2 : quantity (in kilo) dirty laundry per week.



The way the variables X are distributed in the space IR^2 does not allow to obtain a complete separation of the two populations.

6.2 Rules of classification based on the expected cost of misclassification

Let denote Ω the support of vector X. Let R_1 and $R_2 = \Omega - R_1$ be mutually exclusive and exhaustive:

$$R_1 \cup R_2 = \Omega$$
$$R_1 \cap R_2 = \emptyset$$

RULE: If a new observation $\in R_1 \ (\in R_2)$ then we suppose that it belongs to $\pi_1 \ (\pi_2)$. It is then possible to measure the conditional probability of misclassification.

The conditional probability of classifying an object as π_2 when in fact it is from π_1 is:

$$P(2|1) = P(X \in R_2|\pi_1) = \int_{R_2 = \Omega - R_1} f_1(x) dx$$

and similarly the conditional probability is:

$$P(1|2) = P(X \in R_1 | \pi_2) = \int_{R_1} f_2(x) dx$$

But we have also to take into account **prior probabilities**:

$$p_1 = P(\text{belong to } \pi_1)$$

 $p_2 = P(\text{belong to } \pi_2)$

Hence probabilities of correctly or incorrectly classifying an observation can be derived:

$$P(\text{obs. from } \pi_1 \quad \text{is correctly classified as } \pi_1)$$

$$= P(\pi_1)P(X \in R_1|\pi_1)$$

$$= p_1P(1|1)$$

$$P(\text{obs. from } \pi_1 \quad \text{is uncorrectly classified})$$

$$= P(\pi_1)P(X \in R_2|\pi_1) = p_1P(1|2)$$

$$P(\text{obs. from } \pi_2 \quad \text{is correctly classified as } \pi_2)$$

$$= P(\pi_2)P(X \in R_2|\pi_2) = p_2P(2|2)$$

$$P(\text{obs. from } \pi_2 \quad \text{is uncorrectly classified})$$

$$= P(\pi_2)P(X \in R_1|\pi_2) = p_2P(2|1)$$

The cost of misclassification

Example: Not detecting a disease for a sick person is more important than detecting a disease for a healthy person

The cost of misclassification can be defined by a cost matrix:

	R_1	R_2
π_1	0	c(2 1)
π_2	c(1 2)	0

Expected cost of misclassification (ECM)

 $ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$

RESULT: The regions R_1 and R_2 that minimize ECM are defined by the values of x for which the following inequalities hold:

$$R_{1} : \frac{f_{1}(x)}{f_{2}(x)} \ge \frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}$$
$$R_{2} : \frac{f_{1}(x)}{f_{2}(x)} < \frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}$$

Proof: Johnson & Wichern (2002) page 647. Particular cases:

• Equal prior probabilities:

$$R_1: \frac{f_1(x)}{f_2(x)} \ge \frac{c(1|2)}{c(2|1)} \text{ et } R_2: \frac{f_1(x)}{f_2(x)} < \frac{c(1|2)}{c(2|1)}$$

• Equal misclassification costs:

 $B_1 \cdot \frac{f_1(x)}{p_2} > \frac{p_2}{p_2} \text{ et } B_2 \cdot \frac{f_1(x)}{p_2} < 0$

$$R_1: \frac{f_1(x)}{f_2(x)} \ge \frac{p_2}{p_1} \text{ et } R_2: \frac{f_1(x)}{f_2(x)} < \frac{p_2}{p_1}$$

 η_0

• Equal prior probabilities and misclassification costs

$$R_1: \frac{f_1(x)}{f_2(x)} \ge 1 \text{ et } R_2: \frac{f_1(x)}{f_2(x)} < 1.$$

Other criteria to derive optimal classification procedure

• Minimize the total probability of misclassification (TPM):

$$TPM = p_1 P(2|1) + p_2 P(1|2)$$

 \Rightarrow Mathematically, this problem is equivalent to minimizing ECM when the costs of misclassification are equal.

• Allocate a new observation x_0 to the population with the largest "posterior" probability $P(\pi_i|x_0)$. By Bayes 's rule, we obtain:

$$P(\pi_1|x_0) = \frac{p_1 f_1(x_0)}{p_1 f_1(x_0) + p_2 f_2(x_0)}$$
$$P(\pi_2|x_0) = \frac{p_2 f_2(x_0)}{p_1 f_1(x_0) + p_2 f_2(x_0)}$$

6.3 Classification with two multivariate normal populations

Often used in theory and practice because of their simplicity and reasonably high efficiency across a wide variety of population models.

HYPOTHESES:

$$f_1(x) = N_p(\mu_1, \Sigma_1)$$
 et $f_2(x) = N_p(\mu_2, \Sigma_2)$

If
$$X \sim N_p(\mu, \Sigma)$$
 then:

$$f(x) = \frac{1}{(2\pi)^{p/2} \det(\Sigma)^{\frac{1}{2}}} \exp[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)]$$

Before using these rules, it is necessary to test the normality hypothesis (e.g. QQ-plot). If the data reject the gaussianity assumption, we can try to obtain this assumption by a transformation of the data(e.g. by logarithm transformation).

Linear classification: $\Sigma_1 = \Sigma_2 = \Sigma$

RESULT: The regions R_1 and R_2 that minimize ECM are defined by the values of x for which the following inequalities hold:

$$R_{1} : \frac{f_{1}(x)}{f_{2}(x)} \ge \frac{c(1|2)p_{2}}{c(2|1)p_{1}}$$
$$R_{2} : \frac{f_{1}(x)}{f_{2}(x)} < \frac{c(1|2)p_{2}}{c(2|1)p_{1}}$$

which is after simplification:

$$R_{1} : (\mu_{1} - \mu_{2})' \Sigma^{-1} x - \frac{1}{2} (\mu_{1} - \mu_{2})' \Sigma^{-1} (\mu_{1} + \mu_{2}) \ge \ln[\frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}]$$

$$R_{2} : (\mu_{1} - \mu_{2})' \Sigma^{-1} x - \frac{1}{2} (\mu_{1} - \mu_{2})' \Sigma^{-1} (\mu_{1} + \mu_{2}) < \ln[\frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}]$$

But in practice μ_1 , μ_2 and Σ are unknown

 \downarrow

Estimate these parameters with unbiased estimators. Estimate μ_1 and Σ_1 using the sample from π_1 of size n_1 :

$$\hat{\mu}_{1} = \begin{bmatrix} \bar{x}_{1}^{(1)} \\ \bar{x}_{2}^{(1)} \\ \cdots \\ \bar{x}_{p}^{(1)} \end{bmatrix} \text{ et } \hat{\Sigma}_{1} = S_{1} \begin{bmatrix} S_{11}^{(1)} & S_{12}^{(1)} & \cdots & S_{1p}^{(1)} \\ S_{21}^{(1)} & S_{22}^{(1)} & \cdots & S_{2p}^{(1)} \\ \cdots & \cdots & \cdots \\ S_{p1}^{(1)} & S_{p2}^{(1)} & \cdots & S_{pp}^{(1)} \end{bmatrix}$$

Estimate μ_2 and Σ_2 using the sample from π_2 of size n_2 :

$$\hat{\mu}_{2} = \begin{bmatrix} \bar{x}_{1}^{(2)} \\ \bar{x}_{2}^{(2)} \\ \cdots \\ \bar{x}_{p}^{(2)} \end{bmatrix} \text{ et } \hat{\Sigma}_{1} = S_{1} \begin{bmatrix} S_{11}^{(2)} & S_{12}^{(2)} & \cdots & S_{1p}^{(2)} \\ S_{21}^{(2)} & S_{22}^{(2)} & \cdots & S_{2p}^{(2)} \\ \cdots & \cdots & \cdots \\ S_{p1}^{(2)} & S_{p2}^{(2)} & \cdots & S_{pp}^{(2)} \end{bmatrix}$$

Under the hypothesis $\Sigma_1 = \Sigma_2$, we can use an unbiased pooled estimator of Σ :

$$\hat{\Sigma} = S_{pooled} = \frac{n_1 - 1}{(n_1 - 1) + (n_2 - 1)} S_1 + \frac{n_2 - 1}{(n_1 - 1) + (n_2 - 1)} S_2$$

The estimated rule minimizing ECM is then:

$$R_{1} : (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} x - \frac{1}{2} (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} (\bar{x}_{1} + \bar{x}_{2}) \ge \ln[\frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}]$$

$$R_{2} : (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} x - \frac{1}{2} (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} (\bar{x}_{1} + \bar{x}_{2}) < \ln[\frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}]$$

Quadratic classification: $\Sigma_1 \neq \Sigma_2$

RESULT: The regions R_1 and R_2 that minimize ECM are defined by the values of x for which the following inequalities hold:

$$R_{1}: \frac{f_{1}(x)}{f_{2}(x)} \geq \frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}} \text{ and } R_{2}: \frac{f_{1}(x)}{f_{2}(x)} < \frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}$$

which is after simplification:
$$R_{1}: -\frac{1}{2}x'(\Sigma_{1}^{-1} - \Sigma_{2}^{-1})x + (\mu_{1}'\Sigma_{1}^{-1} - \mu_{2}'\Sigma_{2}^{-1})x - k \geq \ln[\frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}]$$
$$R_{2}: -\frac{1}{2}x'(\Sigma_{1}^{-1} - \Sigma_{2}^{-1})x + (\mu_{1}'\Sigma_{1}^{-1} - \mu_{2}'\Sigma_{2}^{-1})x - k < \ln[\frac{c(1|2)}{c(2|1)} \frac{p_{2}}{p_{1}}]$$

where

$$k = \frac{1}{2} \ln(\frac{\det(\Sigma_1)}{\det(\Sigma_2)}) + \frac{1}{2} (\mu_1' \Sigma_1^{-1} \mu_1 - \mu_2' \Sigma_2^{-1} \mu_2)$$

The estimated rule minimizing ECM is then: $R_1 : -\frac{1}{2}x'(S_1^{-1} - S_2^{-1})x + (\bar{x}_1'S_1^{-1} - \bar{x}_2'S_2^{-1})x - k \ge \ln[\frac{c(1|2)}{c(2|1)}\frac{p_2}{p_1}]$ $R_2 : -\frac{1}{2}x'(S_1^{-1} - S_2^{-1})x + (\bar{x}_1'S_1^{-1} - \bar{x}_2'S_2^{-1})x - k < \ln[\frac{c(1|2)}{c(2|1)}\frac{p_2}{p_1}]$

6.4 Evaluation of classification rules

Total probability of misclassification (TPM):

$$TPM = p_1 \int_{R_2} f_1(x) dx + p_2 \int_{R_1} f_2(x) dx$$

The lowest value of this quantity is called the optimum error rate (OER).

Suppose that $p_1 = p_2$, C(2|1) = C(1|2) and $f_1(x) = N(\mu_1, \Sigma)$ and $f_2(x) = N(\mu_2, \Sigma)$, then the regions minimizing TPM are:

$$R_1 : (\mu_1 - \mu_2)' \Sigma^{-1} x - \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2) \ge 0$$

$$R_2 : (\mu_1 - \mu_2)' \Sigma^{-1} x - \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2) < 0$$

RESULT: The optimum Error Rate is:

$$OER = \Phi(\frac{-\Delta}{2})$$
 where $\Delta^2 = (\mu_1 - \mu_2)' \Sigma^{-1}(\mu_1 - \mu_2)$
Example: if $\Delta^2 = 2.56$ then $OER = 0.2119$,
hence then optimal rule of classification fails in
21% of cases.

But the rule is generally based on estimators

 \downarrow

We need to calculate the actual error rate (AER):

$$AER = p_1 \int_{\hat{R}_2} f_1(x) dx + p_2 \int_{\hat{R}_1} f_2(x) dx$$

where

$$\hat{R}_{1} : (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} x - \frac{1}{2} (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} (\bar{x}_{1} + \bar{x}_{2}) \ge 0$$

$$\hat{R}_{2} : (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} x - \frac{1}{2} (\bar{x}_{1} - \bar{x}_{2})' S_{pooled}^{-1} (\bar{x}_{1} + \bar{x}_{2}) < 0$$

But calculus to obtain AER are difficult and depend on $f_1(x)$ and $f_2(x)$.

Apparent Error rate (APER):

APER = % of obs. in the sample misclassified \implies Easy to calculate and does not require knowledge on density functions

But underestimates AER even if n_i are large.

Solution: the problem comes from the fact that the same sample is used to construct the rule and also to test the quality of the classification

 \Downarrow

Divide the sample in two parts : the training sample to construct the rule $(\pm 80\%)$ and the validation sample to calculate APER.

But: • It requires large sample size

• The evaluated classification rule is not the one that is used (with all observations) (using all observations).

6.5 Extensions and remarks

• The generalization to the case where p > 2 is straighforward

• If some variables in the database are binary, it is better to use the logistic regression instead of classification rules which are usually based on normality assumption

• If the dataset is too large (too many variables), you can perform a stepwise discriminant analysis

• Others methods: Classification trees (CART), Neural Networks (NN), ...