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Fibonacci Numbers, the Golden section and the Golden String

Fibonacci Numbers and the Golden Section

Thisisthe Home page for the Fibonacci numbers, the Golden section and the Golden string.

The Fibonacci numbersare 0, 1, 1, 2, 3, 5, 8, 13, ... (add the last two to get the next)

The golden section numbersare £0-61803 39887... and +1-61803 39887...

Thegolden stringis1 011010110110101101...

a sequence of Os and 1swhich is closely related to the Fibonacci numbers and the golden section.

Thereisalargeamount of information at thissite (morethan 200 pagesif it was printed), soif all
you want isa quick introduction then the first link takes you to an introductory page on the Fibonacci

numbers and where they appear in Nature.

The rest of this pageisabrief introduction to all the web pages at this site on
Fibonacci Number s the Golden Section and the Golden String
together with their many applications,

What's New? 7 June 2001

A recent back-up error means that I've just lost all emails sent to me during March and April. @
Please can you re-send your email if you've had no reply - sorry!

Fibonacci Numbers and Golden sections in Nature

2 Fibonacci Numbers and Nature
Fibonacci and the original problem about rabbits where the seriesfirst appears, the
family trees of cows and bees, the golden ratio and the Fibonacci series, the
Fibonacci Spiral and sea shell shapes, branching plants, flower petal and seeds,
leaves and petal arrangements, on pineapples and in apples, pine cones and | eaf
arrangements. All involve the Fibonacci numbers - and here's how and why.

2» The Golden section in Nature
Continuing the theme of the first page but with specific reference to why the golden
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section appears in nature. 'HE¥.Now with a Geometer's Sketchpad dynamic
demonstration.

The Puzzling World of Fibonacci Numbers

A pair of pages with plenty of playful problemsto perplex the professional and the part-
time puzzler!

2 The Easier Fibonacci Puzzles page
has the Fibonacci numbersin brick wall patterns, Fibonacci bee lines, seating
people in arow and the Fibonacci numbers again, giving change and a game with
match sticks and even with electrical resistance and lots more puzzles all involve
the Fibonacci numbers!

2 The Harder Fibonacci Puzzles page
still has problems where the Fibonacci numbers are the answers - well, all but ONE,
but WHICH one? If you know the Fibonacci Jigsaw puzzle where rearranging the 4
wedge-shaped pieces makes an additional square appear, did you know the same
puzzle can be rearranged to make a different shape where a square now disappears?
For these puzzles, | do not know of any simple explanations of why the Fibonacci
numbers occur - and that'sthereal puzzle - can you supply asimplereason
why??

The Intriguing Mathematical World of Fibonacci and Phi

The golden section numbers are also written using the greek letters Phi ¢ and phi .
2 The Mathematical Magic of the Fibonacci numbers

looks at the patternsin the Fibonacci numbers themselves, the Fibonacci
numbersin Pascal's Triangle and using Fibonacci series to generate all right-
angled triangles with integers sides based on Pythagoras Theorem.

Impress your friends with a ssimple Fibonacci numbers trick!

There are many investigations for you to do to find patterns for yourself as
well asacompletelist of...

£® Thefirst 500 Fibonacci numbers...

completely factorised up to Fib(300) and all the prime Fibonacci
numbers are identified.

< A Formulafor the Fibonacci numbers
Isthere adirect formulato compute Fib(n) just from n? Yesthereis!
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This page shows several and why they involve Phi and phi - the
golden section numbers.

£® Fibonacci bases and other ways of representing integers

We use base 10 (decimal) for written numbers but computers use
base 2 (binary). What happens if we use the Fibonacci numbers as the
column headers?

Zo The Golden Section - the Number and Its Geometry

The golden section is also called the golden ratio, the golden mean and the
divine proportion. It is closely connected with the Fibonacci series and has a
value of (¥5 - 1)/2 which is 0-61803... which we call phi on these pages. It
has some interesting properties such as 1/phi is the same as 1+phi and we
call thisvalue Phi= (5 + 1)/2.

Two pages are devoted to its applications in Geometry - first in flat (or two
dimensional) geometry and then in the solid geometry of three dimensions.

<® Fantastic Flat Phi Facts
See some of the unexpected places that the golden section (Phi)

occurs in Geometry and in Trigonometry: pentagons and decagons,
paper folding and Penrose Tilings where we phind phi phrequently!

£® The Golden Geometry of the Solid Section or Phi in 3 dimensions

The golden section occurs in the most symmetrical of all the three-
dimensional solids - the Platonic solids. What are the best shapes for
fair dice? Why are there only 5?

The next pages are about the number Phi = 1-61803.. itself and its close
cousin phi = 0-61803... .

£® Phi's Fascinating Figures - the Golden Section number

All the powers of Phi are just whole multiples of itself plus another
whole number. Did you guess that these multiples and the whole
numbers are, of course, the Fibonacci numbers again? Each power of
Phi is the sum of the previous two - just like the Fibonacci numbers
too.

Z» Introduction to Continued Fractions An optional page that

expands on the idea of a continued fraction introduced in the Phi's
Fascinating Figures page.
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< Phigits and Base Phi Representations
We have seen that using a base of the Fibonacci Numbers we can
represent all integersin abinary-like way. Here we show thereis an
interesting way of representing all integersin a binary-like fashion
but using only powers of Phi instead of powers of 2 (binary) or 10
(decimal).

The Golden String

The golden string aso referred to as the Infinite Fibonacci Word or the Fibonacci Rabbit
sequence.

Zo Fibonacci Rabbit Sequence

There is another way to look at Fibonacci's Rabbits problem that gives an infinitely
long sequence of 1sand 0s, which we will call the Fibonacci Rabbit sequence:-

1011010110110101101..

which is aclose relative of the golden section and the Fibonacci numbers. Y ou can hear
the Golden sequence as a Quicktime movie track too!
The Fibonacci Rabbit sequence is an example of afractal.

Fibonacci - the Man and His Times

2» \Who was Fibonacci?
Hereisabrief biography of Fibonacci and his historical achievementsin
mathematics, and how he helped Europe replace the Roman numeral system with
the "algorithms" that we use today.
Also there is aguide to some memorialsto Fibonacci to seein Pisa, Italy.

More Applications of Fibonacci Numbers and Phi

2» The Fibonacci numbersin aformulafor Pi (£
There are several ways to compute pi (3-14159 26535 ..) accurately. One that has
been used alot is based on a nice formulafor calculating which angle has agiven
tangent, discovered by James Gregory. His formula together with the Fibonacci
numbers can be used to compute pi. This page introduces you to all these concepts
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from scratch.

2 Fibonacc Forgeries
Sometimes we find series that for quite afew terms look exactly like the Fibonacci
numbers, but, when we look a bit more closely, they aren't - they are Fibonacci
Forgeries.
Since we would not be telling the truth if we said they were the Fibonacci numbers,

perhaps we should call them Fibonacci Fibs 1

P The Lucas Numbers

Hereisaseriesthat isvery similar to the Fibonacci series, the Lucas series, but it
starts with 2 and 1 instead of Fibonacci's 0 and 1. It sometimes pops up in the pages
above so here we investigate it some more and discover its properties.

It ends with a number trick which you can use "to impress your friends with your
amazing calculating abilities' as the adverts say. It uses facts about the golden
section and its relationship with the Fibonacci and Lucas numbers.

<#® Thefirst 100 L ucas numbers and their factors
together with some suggestions for investigations you can do.

2o The Golden Section In Art, Architecture and Music

The golden section has been used in many designs, from the ancient Parthenon in
Athens (400BC) to Stradivari's violins. It was known to artists such as L eonardo
da Vinci and musicians and composers, notably Bartok and Debussy. Thisisa
different page to those above, being concerned with speculations about where the
golden section both does and does not occur in art, architecture and music. All the
other pages are factual and verifiable - the material here is a often a matter of
opinion - but interesting neverthel ess!

Links and References

2 Fibonacci, Phi and L ucas numbers Formulae
A reference page of over 100 formulae and equations showing the properties of
these series.
HEW Now available in PDF format (96K) for which you will need the free Acrobat
PDF Reader or plug-in.

Zo Links and references

Linksto other sites on Fibonacci numbers and the Golden section together with
references to books and articles.

161503

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..
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Awards for this WWW site

Eachiconisalink to lists of other Award winning sites that opensin a new window. Check them out!
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Site for education!

The Knot a Braid of Links Project at Camel designated this page a cool math site of the week for 22-28
November 1998 (now available viain the Kabol Database search engine).

Thissiteislisted in the BBC Education Web Guide (January 1999).

|LAMFGRRREERIERI| 1. | s | arcier [in Sweish], part of the Swedish Schoolnet

StudyWeb has given Academic Excellence Awards to four pages at this site: The Fibonacci numbersin a

formulafor Pi, The Fibonacci numbers and Nature, | ntroduction to Continued Fractions and Who was
Fibonacci ?

Links2Go has designated The Fibonacci numbersin aformulafor Pi asaK ey Resour ce on the topic of

Constants.
Other citations
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You are visitor nunber Q08026 since March 1996. ‘

There are now nore than 1800 visits each weekday to this Menu page al one.

Hosted by the Departnent of Conputing of Surrey University in Guildford in the
county of Surrey in the UK where the author was a Lecturer in the Mathematics and
Conputi ng departnents for nmany years.

© 1996-2001 Dr Ron Knott  R.Knott@surrey.ac.uk  updated: 21 March 2001
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This page has been split into TWO PARTS.

This, thefirst, looks at the Fibonacci numbers and why they appear in various "family trees"

Fibonacci Numbers and Nature |futis

| EXCELLENCE

}Fﬁﬁ@%“ﬂ{

and patterns of spirals of leaves and seeds.

The second page then examines why the golden section is used by nature in some detail, including
animations of growing plants.

The:

0,

Contents of this Page

== |ine means there is a Things to do investigation at the end of the section.

@ Fibonacci's Rabbits....and Dudeney's Cows

@ Honeybees, Fibonacci numbers and Family Trees: s
@ Fibonacci Numbers and the golden numbers s

@ The Fibonacci Rectangles and Shell Spirals

@ Fibonacci numbers and branching plants

@ Petals on flowers

@ Seed heads

@ Pine cones: wam

@ L eaf arrangementSe s

@ Fibonacci Fingers?

@A quote from Coxeter on Phyllotaxis

@ References

@ Other WWW links on Phyllotaxis, the Fibonacci Numbers and Nature

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Fibonacci's Rabbits

The original problem that Fibonacci investigated (in the year 1202) was about how fast rabbits could breed
inideal circumstances.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html (1 of 20) [12/06/2001 17:12:15]


http://www.studyweb.com/
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

The Fibonacci Numbers and Golden section in Nature - 1

Suppose a newly-born pair of rabbits, one male, one female,
are put in afield. Rabbits are able to mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits. Suppose that our rabbits
never die and that the female always produces one new pair
(one male, one female) every month from the second
month on. The puzzle that Fibonacci posed was...

How many pairs will there be in one year?

1. At theend of the first month, they mate, but there is still one only 1 pair.

2. At the end of the second month the female produces a new pair, so now there are 2 pairs of rabbits
inthe field.

3. At the end of the third month, the original female produces a second pair, making 3 pairsin all in the
field.

4. At the end of the fourth month, the original female has produced yet another new pair, the female
born two months ago produces her first pair also, making 5 pairs.

MNurnber
of pairs

1

33 8@ 28 38 2@

The number of pairs of rabbitsin thefield at the start of eech monthis 1, 1, 2, 3,5, 8, 13, 21, 34, ...
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Can you see how the seriesis formed and how it continues? If not, look at the answer!

The first 100 Fibonacci numbers are here and some questions for you to answer.

Now can you see why thisisthe answer to our Rabbits problem? If not, here's why.
Another view of the Rabbit's Family Tree:

Famil+w Tres of Rabbits

RiikIbIbb b RS

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

The Rabbits problem is not very realistic, is it?

It seemsto imply that brother and sisters mate, which, genetically, leads to problems. We can get round this
by saying that the female of each pair mates with any male and produces another pair.

Another problem which again is not true to life, is that each birth is of exactly two rabbits, one male and
one female.

Dudeney's Cows
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The English puzzlist, Henry E Dudeney (1857 - 1930) wrote several excellent books of puzzles. In one of
them he adapts Fibonacci's Rabbits to cows, making the problem more realistic in the way we observed
above. He gets round the problems by noticing that really, it is only the females that are interesting - er - |
mean the number of females!

He changes months into years and rabbits into bulls (male) and cows (females) in problem 175 in his book
536 puzzles and Curious Problems (1967, Souvenir press):

If acow producesitsfirst she-calf at age two years and after that produces
another single she-calf every year, how many she-calves are there after 12
years, assuming none die?

Thisis abetter ssmplification of the problem and quite realistic now.

But Fibonacci does what mathematicians often do at first, simplify the problem and see what happens - and
the series bearing his name does have lots of other interesting and practical applications as we see later.
So let'slook at another real-life situation that is exactly modelled by Fibonacci's series - honeybees.

Honeybees, Fibonacci numbers and Family trees

There are over 30,000 species of bees and in most of them the bees live solitary lives. The one most of us
know best is the honeybee and it, unusually, livesin a colony called a hive and they have an unusual
Family Tree. In fact, there are many unusual features of honeybees and in this section we will show how
the Fibonacci numbers count a honeybee's ancestors (in this section a "bee" will mean a"honeybee").
First, some unusual facts about honeybees such as. not all of them have two parents!

e
e

N AT
h] There are some dr one bees who are male and do no work.
Males are produced by the queen's unfertilised eggs, so male bees only have a mother but no father!
H’ Y

24 All the females are produced when the queen has mated with a male and so have two parents.
Females usually end up as worker bees but some are fed with a special substance called royal jelly which
makes them grow into queens ready to go off to start a new colony when the bees form a swarm and leave
their home (a hive) in search of aplace to build a new nest.

In acolony of honeybees there is one special female called the queen.

There are many wor ker bees who are female too but unlike the queen bee, they produce no eggs.
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So female bees have 2 parents, amale and a
C? female whereas male bees have just one parent,
1 9 afemale.

| Here we follow the convention of Family Trees that

O parents appear above their children, so the latest
1 Cf‘ generations are at the bottom and the higher up we go,
the older people are. Such trees show all the ancestors
Lueens have 2 parents Males have 1 parent (predecessors, forebears, antecedents) of the person at

the bottom of the diagram. We would get quite a
different tree if we listed all the descendants (progeny, offspring) of a person as we did in the rabbit problem, where we
showed all the descendants of the origina pair.

1. Hehad 1 parent, afemale.

D”T Q lg D”—|— 0
Q .::3,7' ~|Q 2. He has 2 grand-parents, since his mother had two parents,
| _l_ amale and afemae.

Let'slook at the family tree of a male drone bee.

C? 9’_ 3. He has 3 great-grand-parents. his grand-mother had two
| parents but his grand-father had only one.
Ej)'_ 4. How many great-great-grand parents did he have?
{l:j?I Again we see the Fibonacci numbers::
gr eat - great, great gt, gt, gt
gr and- gr and- gr and gr and

Nunber of par ents: parents: parents: parents: par ent s:
of a MALE bee: 1 2 3 5 8
of a FEMALE bee: 2 3 5 8 13

%= The Fibonacci Sequence asit appearsin Nature by S.L.Basin in Fibonacci Quarterly, vol 1
(1963), pages 53 - 57.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

- Things to do -
1. Make a di agram of your own famly tree. Ask your parents and
grandparents and ol der relatives as each will be able to tell you
about particular parts of your famly tree that other's didn't
know. It can be quite fun trying to see how far back you can go. If
you have them put ol d photographs of relatives on a big chart of
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your Tree (or use photocopies of the photographs if your relatives
want to keep the originals). If you like, include the year and
pl ace of birth and death and al so the dates of any marri ages.

2. A brother or sister is the nane for sonmeone who has the sane two
parents as yourself. What is a half-brother and hal f-sister?
Descri be a cousin but use sinpler words such as brother, sister,
parent, chil d?

Do the sane for nephew and niece. What is a second cousin? Wat do
we nean by a bother-in-law, sister-in-law, nother-in-law, etc?

G and- and great- refer to relatives or your parents. Thus a grand-
father is a father of a parent of yours and great-aunt or grand-
aunt is the nane given to an aunt of your parent's.

Make a diagramof Famly Tree Nanes so that "Me" is at the bottom
and "Muni' and "Dad" are above you. Mark in "brother", "sister",
"uncl e", "nephew' and as nmany ot her nanmes of (kinds of) relatives
that you know. It doesn't matter if you have no brothers or sisters
or nephews as the diagramis neant to show the rel ationshi ps and
t heir nanes.
[If you have a friend who speaks a foreign | anguage, ask them what
words they use for these rel ationships.]

3. What is the nane for the wife of a parent's brother?
Do you use a different nanme for the sister of your parent's?
In law these two are sonetines distinguished because one is a bl ood
rel ative of yours and the other is not, just a relative through
marri age.
Whi ch do you think is the blood relative and which the relation
because of narriage?

4. How many parents does everyone have?
So how many grand-parents will you have to make spaces for in your
Famly tree?
Each of them al so had two parents so how many great-grand-parents
of yours will there be in your Tree?
..and how many great-great-grandparents?
What is the pattern in this series of nunbers?
If you go back one generation to your parents, and two to your
grand- parents, how many entries will there be 5 generations ago in
your Tree? and how nmany 10 generati ons ago?

The Fam ly Tree of humans involves a different sequence to the
Fi bonacci Nunbers. What is this sequence call ed?

5, Looki ng at your answers to the previous question, your friend
Dee Duckshun says to you:
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o You have 2 parents.
o They each have two parents, so that's 4 grand-
parents you' ve got.
o They also had two parents each nmaki ng 8 great-grand-
parents in total
o ... and 16 great-great-grand-parents ...
o ... and so on.
o So the farther back you go in your Famly Tree the
nore people there are.
o It is the sane for the Famly Tree of everyone alive
in the world today.
o It shows that the farther back in tine we go, the
nore peopl e there nust have been.
o So it is a logical deduction that the popul ati on of
the world nmust be getting snmaller and snaller as
ti me goes on!
|s there an error in Dee's argunent? If so, what is it?
Ask your maths teacher or a parent if you are not sure of
t he answer!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Fibonacci numbers and the Golden Number

If we take the ratio of two successive numbers in Fibonacci's series, (1, 1, 2, 3, 5, 8, 13, ..) and we divide
each by the number before it, we will find the following series of numbers:

1Y,=1, 2;=2, 3,=15 53=1666.., 85=16 13g=1625 21/ 5=1.61538..

It is easier to see what is happening if we plot the ratios on a graph:
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The ratio seemsto be settling down to a particular value, which we call the golden ratio or the golden
number. It has avalue of approximately 1-61804 , although we shall find an even more accurate value on a

later page [this link opens a new window] .

- Things to do =
. What happens if we take the ratios the other way round i.e. we
di vi de each nunber by the one following it: 1/1, 1/2, 2/3, 3/5,
5/8, 8/13, ..?
Use your cal cul ator and perhaps plot a graph of these ratios and
see if anything simlar is happening conpared with the graph above.
You'l | have spotted a fundanental property of this ratio when you
find the limting value of the new series!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

The golden ratio 1618034 is also called the golden section or the golden mean or just the golden

number. It is often represented by a greek letter Phi . The closely related value which we write as phi
with asmall "p" isjust the decimal part of Phi, namely 0-618034.

The Fibonacci Rectangles and Shell Spirals

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html (8 of 20) [12/06/2001 17:12:15]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

The Fibonacci Numbers and Golden section in Nature - 1

We can make another picture showing the Fibonacci numbers
1,1,2,3,5,8,13,21,.. if we start with two small squares of size 1
next to each other. On top of both of these draw a square of
size2 (=1+1).

We can now draw a new square - touching both a unit square and the latest square of side 2 - so having
sides 3 units long; and then another touching both the 2-square and the 3-square (which has sides of 5
units). We can continue adding squares around the picture, each new squar e having a sidewhich isas
long asthe sum of the latest two squar €' s sides. This set of rectangles whose sides are two successive
Fibonacci numbers in length and which are composed of squares with sides which are Fibonacci numbers,
we will call the Fibonacci Rectangles.

The next diagram shows that we can draw a spiral by putting together
quarter circles, one in each new square. Thisisaspiral (the Fibonacci
Spiral). A similar curve to this occurs in nature as the shape of a snall
shell or some sea shells. Whereas the Fibonacci Rectangles spiral
increases in size by afactor of Phi (1.618..) inaquarter of aturn (i.e.
apoint afurther quarter of aturn round the curveis 1.618... times as
far from the centre, and this appliesto all points on the curve), the
Nautilus spiral curve takes awhole turn before points move afactor of
1.618... from the centre.

Click on the shell picture (a dlice through a Nautilus shell) to expand it.

These spiral shapes are called Equiangular or Logarithmic spirals. The links from these terms contain much
more information on these curves and pictures of computer-generated shells.

Reference

W™ The Curves of Life Theodore A Cook, Dover books, 1979, ISBN 0 486 23701 X.
A Dover reprint of aclassic 1914 book.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

Fibonacci Numbers and Branching Plants
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One plant in particular shows the Fibonacci numbers in the number of "growing points' that it has. Suppose
that when a plant puts out a new shoot, that shoot has to grow two months before it is strong enough to
support branching. If it branches every month after that at the growing point, we get the picture shown here.

A plant that grows very much like thisis the "sneezewort": Achillea ptarmica.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .. More.. [eiz0z

Petals on flowers

On many plants, the number of petalsis a Fibonacci number:
buttercups have 5 petals; lilies and iris have 3 petals; some del phiniums have 8; corn marigolds have 13
petals, some asters have 21 whereas daisies can be found with 34, 55 or even 89 petals.

The links here are to various flower and plant catal ogues:
. the Dutch Flowerweb's searchable index called Flowerbase.

. TheHelsinki Internet Directory for Botany has awealth of information of all aspects of Botany and
includes a gigantic section on Images with links to sites about plants all over the world.

Try searching it to see where you can spot the golden section occurring and the Fibonacci numbers.
. The US Department of Agriculture's Plants Database containing over 1000 images, plant

information and searchable database.
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3 petals: lily, iris
Often lilies have 6 petals formed from two sets of 3.

5 petals: buttercup, wild rose, larkspur, columbine (aquilegia)
The humble buttercup has been bred into a multi-petalled form.

8 petals: delphiniums

13 petals. ragwort, corn marigold, cineraria,

21 petals:. aster, black-eyed susan, chicory

34 petals: plantain, pyrethrum

55, 89 petals. michaelmas daisies, the asteraceae family

Some species are very precise about the number of petals they have - eg buttercups, but others have petals
that are very near those above, with the average being a Fibonacci number.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Seed heads

Fibonacci numbers can also be seen in the arrangement of seeds
on flowerheads. Here is a diagram of what alarge sunflower or
daisy might look if magnified. The centre is marked with a black
dot.

Y ou can see that the seeds seem to form spirals curving both to
the left and to the right. If you count those spiralling to the right
at the edge of the picture, there are 34. How many are spiralling
the other way? Y ou will see that these two numbers are
neighbours in the Fibonacci series.

The same happensin real seed heads in nature. The reason seems
to be that this forms an optimal packing of the seeds so that, no
matter how large the seedhead, they are uniformly packed, al the
seeds being the same size, no crowding in the centre and not too sparse at the edges.

If you count the spirals near the centre, in both directions, they will both be Fibonacci numbers. The spirals
are patterns that the eye sees, "curvier" spirals appearing near the centre, flatter spirals (and more of them)

appearing the farther out we go.
Here are some more pictures of 500, 1000 and 5000 seeds - click on them for the full picture:
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Click on the image on the right for a Quicktime animation of 120 seeds
appearing from asingle central growing point. Each new seed isjust phi
(0-618) of aturn from the last one (or, equivalently, there are Phi (1-618)
seeds per turn). The animation shows that, no matter how big the seed head
gets, the seeds are always equally spaced. At all stages the Fibonacci
Spirals can be seen.

The same pattern shown by these dots (seeds) is followed if the dots then
develop into leaves or branches or petals. Each dot only moves out directly
from the central stemin astraight line.

This process models what happens in nature when the "growing tip" produces seeds in a spiral fashion. The
only active areais the growing tip - the seeds only get bigger once they have appeared.

[ This animation was produced by Maple. If there are N seeds in one frame, then the newest seed appears
nearest the central dot, at 0-618 of a turn from the angle at which the last appeared. A seed whichiisi
frames "old" still keepsits original angle from the exact centre but will have moved out to a distance which
Is the square-root of i.]

Note that you will not always find the Fibonacci numbers in the number of petals or spirals on seed heads
etc., athough they often come close to the Fibonacci numbers.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Pine cones
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Pine cones show the Fibonacci Spirals clearly.
Hereis apicture of a pinecone seen from its base
(sorry the quality isabit poor) and another with
the spirals emphasised: red in one direction and
green in the other.[Click on the images to enlarge
them.]

Things to do - —
How many red spirals are there?
How nmany green?
Col | ect sone pine cones for yourself and count the spirals in both
di rections.
A tip: Soak the cones in water so that they close up and counting
the spirals is easier.
a Does the nunber of spirals differ for each kind of tree/cone
or not?
b. Are all the cones identical in that the steep spiral (the one
wth nost spiral arns) goes in the sanme direction?
What about a pi neappl e? Can you spot the sane spirala pattern? How
many spirals are there in each direction?

%2 vou will occasiona ly find pine cones with do not have a Fibonacci number of spiralsin one or both
directions. Sometimes this is due to deformities produced by disease or pests. For instance, alarge
collection of pine cones of different kinds of Californian pine cones was studied by Brother Alfred
Brousseau and reported in The Fibonacci Quarterly vol 7 (1969) pages 525 - 532 in an article entitled
Fibonacci Statisticsin Conifers. He also found that there were as many with the steep spiral (the one with
more arms) going to the left as to the right.

%= pineapples and Fibonacci Numbers P B Onderdonk The Fibonacci Quarterly vol 8 (1970), pages
507, 508.

0,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..NMore.. pLeis0s

Leaf arrangements

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html (13 of 20) [12/06/2001 17:12:15]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/pinecone.gif
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/pineconeSPRL.gif
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

The Fibonacci Numbers and Golden section in Nature - 1

Also, many plants show the
Fibonacci numbersin the
arrangements of the leaves around
their stems. If we look down on a
plant, the leaves are often arranged
so that leaves above do not hide
leaves below. This means that each
gets agood share of the sunlight and
catches the most rain to channel
down to theroots asit runs down the
leaf to the stem.

The computer generated ray-traced
picture here is created by my
brother, Brian, and here's another,

based on an African violet type of
plant, whereas this has |ots of |eaves.

Leaves per turn

The Fibonacci numbers occur when
counting both the number of times
we go around the stem, going from
leaf to leaf, aswell as counting the
leaves we meet until we encounter a
leaf directly above the starting one.

If we count in the other direction, we
get adifferent number of turnsfor the same number of leaves.

The number of turnsin each direction and the number of leaves met are thr ee consecutive Fibonacci
number s!

For example, in the top plant in the picture above, we have 3 clockwise rotations before we meet a leaf
directly above the first, passing 5 leaves on the way. If we go anti-clockwise, we need only 2 turns. Notice
that 2, 3 and 5 are consecutive Fibonacci numbers.

For the lower plant in the picture, we have 5 clockwise rotations passing 8 leaves, or just 3 rotationsin the
anti-clockwise direction. Thistime 3, 5 and 8 are consecutive numbers in the Fibonacci sequence.

We can write this as, for the top plant, 3/5 clockwise rotations per leaf ( or 2/5 for the anticlockwise
direction). For the second plant it is5/8 of aturn per leaf (or 3/8).

Leaf arrangements of some common plants
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The above are computer-generated " plants’, but you can see the same thing on real plants. One estimate is

that 90 percent of all

plants exhibit this pattern of leaves involving the Fibonacci numbers,

Some common trees with their Fibonacci leaf arrangement numbers are:

1/2 elm

i nden, linme, grasses
1/ 3 beech,

hazel , grasses, bl ackberry

2/ 5 oak, cherry, apple, holly, plum comon groundsel
3/ 8 poplar, rose, pear, wllow
5/13 pussy w |l ow, al nond

where n/t means there are n leavesin t turns or n/t leaves per turn.

Cactus's spines often show the same spirals as we have already seen on pine cones, petals and | eaf
arrangements, but they are much more clearly visible. Charles Dills has noted that the Fibonacci numbers
occur in Bromeliads and his Home page has links to lots of pictures.

0, 1, 1, 2, 3,

5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .. More..

- e Things to do WTH VEGETABLES AND FRUI T . —
. Take a | ook at a cauliflower next tinme you're preparing one:

1. First

2. Then,

| ook at it:
The florets are arranged in spirals, just like the seed
heads and | eaves above.
Count the nunber of florets at sonme fixed distance from
the centre. The nunber in one direction and in the other
wi || be Fi bonacci nunbers, as we've seen here.
Take a closer look at a single floret. It's a mn
cauliflower! Each has its own little florets all arranged
in spirals. If you can, count the spirals in both
directions, and they'l|l be Fibonacci nunbers (but you
expected that!).

when cutting off the florets, try this:
start at the bottom and take off the |argest floret,
cutting it off parallel to the main "stent.
Find the next on up the stem It'll be about 0-618 of a
turn round (in one direction). Cut it off in the sane
way .
Repeat, as far as you |ike and..
Now | ook at the stem Were the florets are rather like a
pi necone or pineapple. The florets were arranged in
spirals up the stem Counting them again shows the
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Fi bonacci nunbers.

. Try the sanme thing for broccoli.

. Chinese | eaves and lettuce are simlar but there is no proper stem
for the |l eaves. Instead, carefully take off the | eaves, fromthe
outernost first, noticing that they overlap and there is usually
only one that is the outernost each tinme. You should be able to
find sonme Fi bonacci nunber connecti ons.

. Look for the Fibonacci nunbers in fruit.

1. What about a banana? Count how many "flat" surfaces it is nade
from- is it 3 or perhaps 5? When you've peeled it, cut it in
half (as if breaking it in half, not |engthw se) and | ook
again. Surprise! There's a Fi bonacci nunber.

2. What about an apple? Instead of cutting it fromthe stalk to
the opposite end (where the flower was), ie from"North pole"
to "South pole", try cutting it along the "Equator". Surprise!
there's your Fi bonacci nunber!

Try a Sharon fruit (which is |like an orange-col oured tonato).

Were el se can you find the Fibonacci nunbers in fruit and

veget abl es? Wiy not email me with your results and the best

ones will be put on the Wb here or |inks added to your own
web pages.

~w

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Fibonacci Fingers?

Look at your own hand:

. 2 hands each of which has ...
. 5fingers, each of which has ...
« 3 parts separated by ...

. 2knuckles

You have... l

However, if you measure the lengths of the bonesin your finger (best seen by dlightly

bending the finger) doesit look asif the ratio of the longest bone in afinger to the middie bone is Phi?
What about the ratio of the middle bone to the shortest bone (at the end of the finger) - Phi again?

Can you find any ratiosin the lengths of the fingers that looks like Phi? ---or doesit look asif it could be
any other similar ratio also?
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Why not measure your friends hands and gather some statistics? 1'd be interested in your resultsif you
want to email them to me.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

A quote from Coxeter on Phyllotaxis

Finaly, note that, although the Fibonacci numbers and golden section seem to appear in many situationsin
nature, they are not the only such numbers. H SM Coxeter, in his Introduction to Geometry (1961,
Wiley, page 172) - see the references at the foot of this page - has the following important quote:

it should be frankly admitted that in some plants the numbers do not belong to the sequence
of f's [ Fibonacci numbers] but to the sequence of g's [ Lucas numbers] or even to the still
mor e anomal ous sequences

3,1,4,5,9,... or 5,2,7,9,16,...

Thus we must face the fact that phyllotaxisisreally not a universal law but only a
fascinatingly prevalent tendency.

He cites A H Church's Thereéation of phyllotaxisto mechanical laws, Williams and Norgate, London,
1904, plates XXV and I X as examples of the Lucas and the latter two sequences and plates V, VII, Xl and
V| as examples of the Fibonacci numbers on sunflowers.

The Lucas numbers are formed in the same way as the Fibonacci numbers - by adding the latest two to get
the next, but instead of starting at 0 and 1 [Fibonacci numbers] they start with 2 and 1 [the Lucas numbers).
The other two sequences he states above have other pairs of starting values but then proceed with the same
rule as the Fibonacci numbers.

Aninteresting fact isthat, for ALL seriesthat are formed from adding the latest two numbers to get the
next, and, starting from ANY two values (bigger than zero), the ratio of successive termswill ALWAYS
tend to Phi!

So Phi isamore universal constant than the Fibonacci seriesitsalf.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

References on Fibonacci and Golden Section
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Key
¥ meansthe referenceis to abook (and any link will take you to more information about
the book and an on-line site from which you can purchase it);

B meansthe referenceisto an articlein amagazine or a paper in ascientific periodical.
4 indicates a link to another web site.

Excellent books which cover similar material to that which you have found on this page are produced by
Trudi Garland and Mark Wahl:

& Mathematical Mystery Tour by Mark Wahl, 1989, isfull of many mathematical investigations,
illustrations, diagrams, tricks, facts, notes as well as guides for teachers using the material. It is a great
resource for your own investigations.

Books by Trudi Garland:

" Fascinating Fibonaccisby Trudi Hammel Garland.
Thisisareally excellent book - suitable for al, and especially good for teachers seeking more
material to usein class.

Trudy is ateacher in Californiaand has some more information on her book. (Y ou can even Buy it
online now!)

She a'so has published severa posters, including one on the golden section suitable for a classroom
or your study room wall.

Y ou should also look at her other Fibonacci book too:

" Fibonacci Fun: Fascinating Activities with Intriguing Numbers Trudi Hammel Garland - a
book for teachers. Click on the book image and you can buy it online now.

S Sex ratio and sex allocation in sweat bees (Hymenoptera: Halictidae) D Y anega, in Journal of
Kansas Entomol ogy Society, volume 69 Supplement, 1966, pages 98-115.

Because of the imbalance in the family tree of honeybees, the ratio of male honeybeesto femalesis not 1-to-
1. Thiswas noticed by Doug Y anega of the Entomology Research Museum at the University of California
In the article above, he correctly deduced that the number of females to males in the honeybee community
will be around the golden-ratio Phi = 1.618033.. .

%= On the Trail of the California Pine, Brother Alfred Brousseau, Fibonacci Quarterly, vol 6, 1968,
pages 69 - 76;

on the authors summer expedition to collect examples of all the pinesin California and count the number of
spiralsin both directions, al of which were neighbouring Fibonacci numbers.

=N Why Fibonacci Sequence for Palm Leaf Spirals? in The Fibonacci Quarterly vol 9 (1971), pages
227 - 244.

%= Fibonacci System in Aroidsin The Fibonacci Quarterly vol 9 (1971), pages 253 - 263. The Aroids
are afamily of plants that include the Dieffenbachias, Monsteras and Philodendrons.
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Other WWW links on Phyllotaxis, the Fibonacci
Numbers and Nature

“ Alan Turi ng
one of the Fathers of modern computing (who lived here in Guildford during his early school years)
was interested in many aspects of computers and Artificial Intelligence (Al) well before the
electronic stored-program computer was devel oped enough to materialise some of hisideas. One of
his interests (see his Collected Works) was Morphogenesis, the study of the growing shapes of
animals and plants.

" The book Alan Turing: The Enigma by Andrew Hodges is an enjoyable and readable account of
his life and work on computing as well as his contributions to solving the German war-time code
which used a machine called "Enigma’".
Unfortunately this book is now out of print, but click on the book-title link and Amazon.com will
see if they can find a copy for you with no obligation.

% The most irrational number

One of the American Maths Society (AMS) web site's What's New in M athematics regular
monthly columns. This oneis on the Golden Section and Fibonacci Spiralsin plants.

“ Phyllotaxis
Aninteractive site for the mathematical study of plant pattern formation for university biology
students at Smith College. Has a useful gallery of pictures showing the Fibonacci spiralsin various

plants.
| ACADEMIC |
 EXCELLINCE)
\ 5 |@Wf

ﬂ' the Fibonacci Home Page

The next Topicis...
=3 The Puzzling World of
Fibonacci Numbers

There are no earlier topics - thisis WHERE TO NOW?
the first.

The next page on thistopicis...
W The golden section in nature
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Fibonacci Numbers and Nature - |fisse

Part 2 TLME
Why is the Golden section the 7

"best" arrangement?

Contents of this Page

The »==m |ine means there is a Things to do investigation at the end of the section.

@ Packi ng
JWhy does Phi appear in nature?

J'Why exact fractions are fruitless!

@ The rational answer istheirrationals!

@ Links and References

On the first page on the Fibonacci Numbers and Nature we saw that the Fibonacci numbers appeared in

(idealised) rabbit, cow and bee populations, and in the arrangements of petals round aflower, leaves
round branches and seeds on seed-heads and pinecones and in everyday fruit and vegetables.

We explained why they appear in the rabbit, cow and bee populations but what about the other
appearances that we see around us in nature? The answer relates to why Phi appears so often in plants and
the Fibonacci numbers appear because the eye "sees' the Fibonaci numbersin the spirals of seedheads,
leaf arrangements and so on, and we looked at this on the previous Fibonacci Numbers in Nature page.

So we ask...

Why does nature like using Phi in so many plants?

The answer liesin packings - the best arrangement of objects to minimise wasted space.

Packings

If you were asked what was the best way to pack objects your answer would depend on the shape of the
objects since....
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...sgquare objects would pack most closely in a square
array,

whereas round objects pack better in a hexagonal
arrangement....

So why doesn't nature use one of these? Seeds are round (mostly), so why don't we see hexagonal
arrangments on seedheads?

Although hexagonal symmetry IS the best packing for circular seeds, it doesn't answer the question of
how leaves should be arranged round a stem or how to pack flower-heads (which are circular because that
Is the shape that encloses maximum area for minimum edge) with seeds that grow in size.

What nature seems to use is the same patter n to place seeds on a seedhead as it used to arrange petals
around the edge of aflower AND to place leaves round a stem. What is more, ALL of these maintain their
efficiency asthe plant continuesto grow and that's alot to ask of a single process!

S0 just how do plants grow to maintain this optimality of design?

The Meristem and Spiral growth patterns

Botanists have shown that plants grow from asingle tiny group of cellsright at the tip of any growing
plant, called the meristem. There is a separate meristem at the end of each branch or twig where new
cells are formed. Once formed, they grow in size, but new cells are only formed at such growing points.
Cells earlier down the stem expand and so the growing point rises.

Also, these cells grow in a spiral fashion, asif the stem turns by an angle and then a new cell appears,
turning again and then another new cell isformed and so on.

These cells may then become a new branch, or perhaps on a flower become petals and stamens.

The amazing thing isthat a single fixed angle can produce the optimal design no matter how big the
plant grows. So, once an angleisfixed for aleaf, say, that leaf will least obscure the |eaves below and be
least obscured by any future leaves above it. Similarly, once a seed is positioned on a seedhead, the seed
continues out in a straight line pushed out by other new seeds, but retaining the original angle on the
seedhead. No matter how large the seedhead, the seeds will always be packed uniformly on the seedhead.

And all this can be done with a single fixed angle of rotation between new cells?

Y es! Thiswas suspected by people as early as the last century. The principle that a single angle produces
uniform packings no matter how much growth appears after it was only proved mathematically in 1993
by Douady and Couder, two french mathematicians.
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Y ou will have already guessed what the fixed angle of turnis- it is Phi cells per turn or phi turns per new
cell.

Why does Phi appear in nature?

The arrangements of leavesis the same as for seeds and petals. All are placed at 0-618034.. |eaves, (seeds,
petals) per turn. In terms of degreesthisis 0-618034 of 360° which is 222-492...°. However, we tend to
"see" the smaller angle which is (1-0-618034)x360 = 0-381966x360 = 137-50776..°.
When we look at properties of Phi and phi on alater page, we shall see that

1-phi = phi2 = Phi-2

If there are Phi (1-618...) leaves per turn (or, equivaently, phi=0-618... turns per
leaf ), then we have the best packing so that each leaf gets the maximum exposure
to light, casting the least shadow on the others. This also gives the best possible
areaexposed to falling rain so the rain is directed back along the leaf and down the
stem to the roots. For flowers or petals, it gives the best possible exposure to insects to attract them for
pollination.
The whole of the plant seemsto produce its leaves, flowerhead petals and then seeds based upon the
golden number.

And why do the Fibonacci numbers appear as leaf arrangements and as the number of spiralson
seedheads?

The Fibonacci numbers form the best whole number approximations to the golden number, which we
examined in greater detail on the first Fibonacci in Nature page.

Let's now try and show just why phi is the best angle to use in the next few sections of this page.

Why is the Golden section the "best" number?

The linksin this section are to Quicktime animations. They are worth viewing as they show the
dynamics of what might happen if seeds were not placed with a phi-angle between them.

Why not 0-6 of aturn per seed or 0-5 or 0-48 or 1-6 or some other number?

First we can agree that turning 0-6 of aturnis exactly the same asturning 1-6 turnsor 2-6 turns or even
12-6 turns because the position of the point looks the same. So we can ignor e the whole number part of
aturn and only examine the fractional part.

Also, since a0-6 of aturn in one direction is the same as 0-4 of aturn in the other, we could limit our
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investigation to turnswhich arelessthan 0-5 too. However sometimes it will be easier to talk of
fractions of aturn which are bigger than 0-5 or even that are bigger than 1, but the only important part of
the number isthefractional part.

So, in terms of seeds - which develop into fruit - what is afruit-ful numbers? Which has the best

properties as aturning angle for our meristem? It turns out that numbers which are smple fractions are
not good choices, as we see in the next section.

Why exact fractions are fruitless!

Let'sfirst see what happens with a simple number such as 0-5 turns per seed.

Since 0-5=1/2 we get just 2 "arms' and the seeds use the space on the seedhead very inefficiently: the
seedhead islong and floppy. The pictureisalink to an animation where you can see the new seeds
appearing at the centre as the older ones continue growing outwards in a straight line from the central
growing point (where the new seed cells appear).

A circular seedhead is more compact and would have better mechanical strength and so be better able to
withstand wind and heavy rain.

Hereis 0-48 of aturn between seeds.

[The pictureisagain alink to an animation.]

The seeds seem to be sprayed from two revolving "arms’. Thisis because
0-48 isvery close to 0-5 and a half-turn between seeds would mean that
they would just appear on alternate sides, in astraight line. Since 0-48isa
bit less than 0-5, the "arms"' seem to rotate backwards a bit each time,

So if we has 0-52 seeds per turn, we would be alittle in advance of half aturn and the final pattern would
be amirror-image (asif we had used 1-0-52=0-48 seeds per turn but turning in the opposite direction).

What do you think will happen with 0-6 of a turn between successive seeds?
Did you expect it to be so different?

Notice how the seeds are not equally spaced, but fairly soon settle downto 5
"arms'. Why?
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Because 0-6=3/5 so every 3 turns will have produced exactly 5 seeds and the sixth seed will be at the
same angle as the first, the seventh in the same (angular) position as the second and so on. The seeds
appearing at every third arm, in turn, round and round the 5 arms. So we count 3-of-the-5 (3/5) to find the
next "arm" where a seed will appear.

If wetry 1-6 or 2-6 or 3-6 can you see that we will get the same animation since the extra
whole turns do not affect where the seeds are placed?

So what seems to be important isjust the fractional part of our seeds-per-turn

value and we can ignore the whole number part. There is another value that will give the
same animation too. What isit? Well, if we went 0-6 of aturn in the other direction, it is equivalent to
going 1-0-6=0-4 of aturn between seeds. So also would be 1-4, 1-4, 3-4 and so on.

Here'swhat happensif we have a value closer to phi(0-6180339..), namely 0-61. You'll noticethat it is
better, but that there are still large gaps between the seeds nearest the centre, so the space is not best used.
Thisisaso equivalent to using 1-61, 2-61, etc. and aso to 1-0-61=0-39 and therefore to 1-39 and 2-39 and
SO on.

In fact, any number which can be written as an exact ratio (arational number) would not be good as a
turn-per-seed angle.

If we use p/qg as our angle-turn-between-successive-turns, then we will end up with q straight arms, the
seeds being placed every p-th arm. [ This explains why 0-6=3/5 has 5 arms and the seeds appear at every
third arm, going round and round.]

The rational answer is the irrationals!

Sowhat isa " good” value? Onethat isNOT an exact ratio since very large seed heads will eventually
end up with seeds in straight lines.

Numbers which cannot be expressed exactly asaratio are called irrational numbers (ir-ratio-nal) and
this description applies to such values as 2, Phi, phi, e, pi and any multiple of them too.

Y ou'll notice that the e(2:71828...) animation has 7 arms since its turns-per-seed is (two whole turns plus)
0-71828... of aturn, which is abit more than 5/7(=0-71428..).

A similar thing happens with pi(3:14159..) since the fraction of aturn left over after 3 wholeturnsis
0-14159 and is close to 1/7=0-142857.. . It isalittle less, so the "arms" bend in the opposite direction to
that of €'s (which were abit more than 5/7).

These rational numbers are called rational approximations to the real number value.

If we take more and more seeds, the spirals alter and we get better and better approximations to the
irrational value.

What is" the best" irrational number?
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One that never settles down to arational approximation for very long. The mathematical theory is called
CONTINUED FRACTIONS.

The simplest such number is that which is expressed as P=1+1/(1+1/(1+1/(...) or, its reciprocal
p=1/(1+1/(1+1/(...))).

Pisjust 1+1/P, or P2=P+1.

pisjust 1/(1+p) so p2+p=1.

We will see later that these are just definitions of Phi (P) and phi (p) (and their negatives)!

The exact value of Phi is (+5 + 1)/2

and of phi is (+5 — 1)/2.

Both areirrational numbers whose rational approximations are ...

phi : /1, 1/2, 2/3, 3/5,  5/8, 8/13, 13/21,
Phi : /1, 2/1, 3/2, 5/3, 85, 13/8, 21/13,

which iswhy you see the Fibonacci spiralsin the seed heads!
Here is another quicktime movie which shows various turns-per-seed values near phi (0-61803) showing

that there are always gaps towards the outer edge of the "seedhead" and that phi gives the best value for
all sizes of flowerhead.

HEY! Try this Geometer's Sketchpad active demonstration which lets you alter the inter-seed angle at

will (and animate it) to see just why the golden section angle produces the best packing.
Geometer's Sketchpad is available for 30 days free trial, for PC and Apple Mac.

Things to do -
. If you have Maple, use this Maple programto try other angles and
make sone ani mations for yourself.

. The "rational approxinmations" to real nunbers are better seen if,

I nstead of producing seeds at the centre, we keep addi ng them round

the outside - that is, along the square-root spiral which has equation
R=vA where Ris the (radial) distance of a point fromthe origin, and A
its angle turn (fromthe O angle direction). Use the Maple programto
"grow plants" that will find good rational approximtions to a deci nal
fraction of your choice. For exanple, Pi as the angle of rotation

bet ween seeds, shows 7 arns clearly after only 100 seeds, gets

confused at about 500 seeds but by 1000 shows a better approxi mation -
there are 113 "arns", seeds being grown every 16 showi ng that a better
approximation for Pi is 3+16/113=335/113.

. What about approximations to sqrt(3) or sqrt(5)?
. Take sqgrt(3) and plot lots of "seeds".
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What sequence of approxi mati ons do you get? You should be able to
answer this if you plot 500 seeds.

. Now convert each approximation into a continued fraction. Wat
pattern in the nunbers in the continued fraction energes?

. Try to prove that the pattern continues indefinitely, by proving
its value is sqgrt(3).

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .. More..

Links and References

Phyllotaxis
The technical term for the study of the arrangements of leaves and of seedheadsin plantsis phyllotaxis.

e An important technical paper about phi and its optimal properties for plant growth can be found in
Phyllotaxis as a self-or ganised growth process by Stephane Douady and Y ves Couder, pages 341 to
352 in Growth Patternsin Physical Sciences and Biology, (editor JM Garcia-Ruiz et al), Plenum press,
1993.

==\ history of the study of phyllotaxisby | Adler, D Barabe, RV Jean in Annals of Botany, 1997,
Vol.80, No.3, pp.231-244.

S A better way to construct the Sunflower head in Mathematical Biosciences volume 44, (1979)
pages 145 - 174.

Fibonacci Numbers in Nature

Here are some not-too technical papers about the maths which justifies the occurrence of the Fibonacci
numbers in nature:

¥ A H Church On therelation of Phyllotaxisto Mechanical Laws, published by Williams and
Norgat, London 1904.

S EE Leppik, Phyllotaxis, anthotaxis and semataxis Acta Biotheoretica Vol 14, 1961, pages 1-28.
% F JRichards Phyllotaxis: 1ts Quantitative Expression and Relation to growth in the Apex Phil.
Trans. SeriesB Vol 235, 1951, pages 509-564.

¥ D'Arcy W Thompson On Growth and Form Dover Press 1992.

Thisisthe complete edition! (Click on the title-link for more information and to order it now.)
Thereis also an abridged version from Cambridge University press (more information and order it on line
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viathetitle-link.)

%= T A Davis, Fibonacci Numbersfor Palm Foliar Spirals Acta Botanica Neelandica, Vol 19, 1970,
pages 236-243.

AT A Davis Why Fibonacci Sequence for Palm Leaf Spirals?, Fibonacci Quarterly, Vol 9, 1971,
pages 237-244.

¥ TheAlgorithmic Beauty of Plants by P Prusinkiewicz, and A Lindenmayer, published by Springer-

Verlag (Second printing 1996) is an astounding book of wonderful images and patterns in plant shapes as
well as agorithms for modelling and simulation by computer. (For more information and how to order it
online use the title-link).

Related to this book is:

¥ The Algorithmic Beauty of Sea Shells (Virtual Laboratory) in hardback by Hans Meinhardit,
Przemyslaw Prusinkiewicz, Deborah R. Fowler (more information and order it online via thistitle-link).
W The Curves of Life: Being an Account of Spiral Formations and Their Application to Growth in
Nature, to Science, and to Art Sir Theodore A Cook, Dover books, 1979, ISBN 0 486 23701 X.

A Dover reprint of aclassic 1914 book. (More information and you can order it online viathe title-link.)
¥ Also see H SM Coxeter's I ntroduction to Geometry, published by Wiley, inits Wiley Classics

Library series, 1989, ISBN 0471504580, especially chapter 11 on Phyllotaxis. (More information and
order it online viathe title-link.)

WWW Links

& Eddy Levin hasinvented a wonderful golden-section measuring tool, like a pair of dividers or
callipers and he has a page of examples of it in use showing the golden section on flowers, insects, leaves

etc that's well worth looking at. Click on his"Dental” link and you can see that, as a dentist, he sees the
golden section every day in the arrangement and width of human teeth too!

| ACADEMIC |
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M Fibonacci Home Page

Frrre—

_ _ P The Fibonacci Numbersin The next Topicis...
There are no earlier topics: Nature =? The Puzzling World of

thisisthefirst. Fibonacci Numbers

WHERE TO NOW?7?

Thisisthe last page on thistopic.

© 1996-1999 Dr Ron Knott  R.Knott@surrey.ac.uk 31 October 2000
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Easier Fibonacci Number puzzles

Easier Fibonacci puzzles

All these puzzles except one (which??) have the Fibonacci numbers as their answers.
So now you have the puzzle and the answer - so what's left? Just the explanation of why the Fibonacci numbers are the answer -
that's the real puzzle!!

Puzzles on this page have fairly straight-forward and simple explanations as to why their solution
invovles the Fibonacci numbers;.
Puzzles on the next page are harder to explain but they still have the Fibonacci Numbers as their

solutions. So does a simple explanation exist for any of them?

Contents of this Page

Puzzles that are ssmply related to the Fibonacci numbers....
. Brick Wall patterns

o Variation - use Dominoes
. Making abee-line with Fibonacci numbers
. Charsinarow: 1
. ChairsinaRow: 2
. Stepping Stones
. Fibonacci numbers for a change!
. Noonel
. Telephone Trees
. Leonardo's Leaps
. Fixor Flip
. Two heads are better than one?
. Leonardo's Lane
. Boat Building "HE"
. Pausefor alittle reflection
. A Puzzle about puzzles!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Lsi20z

rrrrrr

Fibonacci numbers and Brick Wall Patterns

If we want to build a brick wall out of the usual size of brick which has a length twice aslong asits height, and if our wall isto
be two unitstall, we can make our wall in a number of patterns, depending on how long we want it:
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There's just one wall pattern which is 1 unit wide - made by putting the brick on its
end.

There are 2 patterns for awall of length 2: two side-ways bricks laid on top of each
other and two bricks long-ways up put next to each other.

There are three patterns for walls of length 3.

How many patterns can you find for awall of length 4?

How may different patterns are there for awall of length 5?

Look at the number of patterns you have found for awall of length 1, 2, 3, 4 and 5.
Does anything seem familiar?

Can you find areason for this?

Show me an example of why the Fibonacci numbers are the answer

Variation - use Dominoes

A domino is formed from two squares. In this variation of the Brick Wall puzzle, we are not interested in the spots on the
dominoes, just their shape. If you like, turn the dominoes over with the spots underneath so that they all ook the same.

Start by placing n dominoes flat on atable, face down, and turn them so that all arein the "tall” or "8" position (as opposed to
the "wide" or "00" orientation). Pack them neatly together to make arectangle.

Take the same number of dominoes and, using this rectangle as the picture to aim at in ajigsaw puzzle, see how many other
flat patterns you can make which have exactly this shape. This time dominoes can be placed in either the tall or wide direction
in your design.

Make atable of the patterns you have found and the number of patterns possible using 1 domino (easy!), 2 dominoes, 3
dominoes, and so on, not forgetting to include the original rectangle design too.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [tei=0:

Ll |
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Making a bee-line with Fibonacci numbers

Here is a picture of a bee starting at the end of some cellsin its hive. It can start at either cell 1 or cell 2 and movesonly to
theright (that is, only to a cell with ahigher number init).
Thereisonly one path to cell 1, but

YW
\ﬁ,l T — two ways to reach cell 2: directly or viacell 1.
For cell 3, it can go 123, 13, or 23, that is, there are three different paths.
‘°°° How many paths are there from the start to cell number n?

The answer is again the Fibonacci numbers. Can you explain why?

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [tei=0:

Ll |
FFFFE

Chairsinarow: 1

This time we have n chairsin arow and aroomful of people.
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If you've ever been to a gathering where there are teachers present, you will know they always talk about their school/college
(boring!). So we will insist that no two teachers should sit next to each other along arow of seats and count how many ways we
can seat n people, if some are teachers ] (who cannot be next to each other) and some are not @ The number of seati ng
arrangementsis always a Fibonacci number:

1 chair @ or @ 2 ways
2 chairs @@ or @2 or OO0 3ways
since we do not allow

3 chairs @89 ©8S @00 008 000 5 ways
thistime , and are not alowed.

Y ou can write the sequencesusing T for Teacher and N for Normal, oops, | mean Not-teacher !!

There will always be a Fibonacci number of sequences for a given number of chairs, if no two teachers @ are allowed to sit
next to each other!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |L=iz0z

aaaaaa

Chairs in a Row: 2

Thisvariation is alittle friendlier to teachers.
Everyone, teacher @ or not ., must not sit on their own, but a teacher © must be next to another teacher & or the teacher
will be blue, and a non-teacher @ must be next to a non-teacher & or she will be red-faced with embarrassment!

Sowe can have ... 8@ .. since the two teachers have the other teacher next to them. The non-teacher on the ri ght of these 3
will now also need another non-teacher on his other side so that he too is not left on his own.

A special extracondition in this puzzle is that any seating arrangement must also start with a teacher!

1char: - O ways
2 chairs: 1 way
3 chairs: 1 way
4 chairs: or &) 2 ways

5 chairs @SOS or or 3ways

There will always be a Fibonacci number of arrangements if we start with a teacher.

What happens if we start with a non-teacher always?
What happensif we have no restriction on the first seat?
The answers to these two questions also involve the Fibonacci numbers too!!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Lsi20z

aaaaaa

Stepping Stones
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Some stepping stones cross a small river. How many ways back to the bank are there if you are standing on the n-th stone?
Y ou can either step on to the next stone or else hop over one stone to land on the next.

If you are on stone number 1, you can only step (s) on to the bank: 1 route.

If you are on stone 2, you can either step on to stone 1 and then the bank (step, step or ss)
OR you can hop directly onto the bank (h):

2 sequences

From stone 3, you can step, step, step (sss) or else hop over stone 2 and then step (hs) or else step on to stone 2 and then hop
over stone 1 to the bank (sh):

Why are the Fibonacci numbers appearing?
[With thanks to Michael West for bringing this puzzle to my attention.]

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. ‘-'5‘3':'

Fibonacci numbers for a change!

Some countries have coins or notes of value 1 and 2. For instance, in Britain we have coins with values 1 penny (1p) and 2
pence (2p). The USA has 1 cent and 5 cent coins but not a 2 cents coin, but it does have ten dollar and twenty dollar bills ($10,
$20). This problem uses coins or notes of values 1 and 2.

If we have just 1p and 2p coins, in how many ways can we make up a given amount of money with just these two coins? For
instance:-

1p = 1p -- only one way but
2p = 1p+lp or 2p -- two ways, and
3p = 1p+1lp+lp or 1p+2p or 2p+lp -- three ways

Since we are letting 1p+2p and 2p+1p be different solutions, then we are interested in the order that the coins are given also.
Y ou will have guessed how many ways there are to make up 4p and the general answer by now!
But the challenge is: can you explain why the Fibonacci numbers appear yet again?
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Follow up: What if we are interested in collections of coins rather than sequences? Here 1p+2p is the same collection as
2p+1p. How many collections are there? If the coins sum to n pence, these are called partitions of n and have many
applications.

Can you find asimple link between answers to the Change puzzle and your answers to the Stepping Stones puzzle?

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. ‘-""‘3':'

No one!

Y our younger sister is playing with her colouorange rods. They are of various lengths, from single ones (Ilength 1 which are
cubes) which are orange, length 2 are magenta, length 3 are blue and so on.

length 1|
length 2 | mmm
length 3 |
length 4 |
length 5 |

However, her brother has just taken all the length 1 rods (the orange cubes) to play with but has left her with all the rest.
So in how many ways can she make a line of length N if there are no rods of length 1?

For aline of length 3, she can use only arod of length 3.

But for aline of length 4, she can use either arod of length 4 or else two rods of length 2.

When it comes to making a line of length 5, she has several ways of doing it:

| onerod of length 5: |
] arod of length 3 followed by one of length 2: ]_
'OR she could put the rod of length 2 first and the 3-rod after it: | —-—
We can summarise thisasfollows. 5 =2 + 3 =3 + 2 and we can collect the possibilities in atable which just uses numbers:

. length3=3
. length4=2+2
. length5=5=2+3=3+2

So what we are doing is listing sums where the number ONE must not appear in the sum. The order of the numbers matters so
that 2+3 is not the same sum as 3+2 in this problem.

Technically, the collection of sums which total agiven value N are called the partitions of N.
Here we are finding all the partitions of N that do not use the number 1.
It will always be a Fibonacci number!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [tei=0:

Telephone Trees
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This problem is about the best way to pass on newsto lots of people using the telephone.

We could just phone everyone ourselves, so 14 people to share the news with would take 14 separate calls. Suppose each call
takes just 1 minute, then we will be on the phone at least 14 minutes (if everyone answers their phone immediately).

Can we do better than this? We could use the speakers on the phone - the "hands free" facility which puts the sound out on a
speaker rather than through the handset so that othersin the room can hear the call too. For the sake of a puzzle, let's suppose
that 2 people hear each call. That would halve the number of calls | need to make. My 14 calls now reducesto 7.

Can we do better till?

WEell, we could ask each person who receives a call to not only put the call through the loudspeakers but also to do some
phoning too. So if two people hear the message, they could each phone two others and passit on in the same way and so on.
Here'swhat it looks likeif | have 14 people to phone in this system as the calls "cascade”. In the first minute, my first call is
heard by A and B. A'scall is heard by both C and D; B'scall by E and F, and so on asin this diagram:

ne
R A \
first mnute A B
[----N----\ [----- Ao\
second m nute C D E F
[--"--\ [--"--\ [--"--\ [--"--\
third nminute G H I J K L M N

So all 14 people have heard the news in only 3 minutes! [Thisis an example of recursion - applying the same optimizing
principle at all levels of a problem.]

Can we do even better than this?
Yes- if al the people got together in one room, it would only take one minute! So let's assume that | cannot get everyone
together and | have to use the phone.

Now hereisyour puzzle. The phonesin my company are rather old and do not have an external speaker (and no "conference
call" facility) - only one person can hear each call. So | decide that | will phone only two people using two separate calls. |
shall give them the news and then ask that they do the same and phone just two more people only. What is the shortest time
that the news can pass to 14 people?

1. Draw the cascade tree of telephone calls, or the telephone tree for this problem. It begins like this:

me
[-mmm e AT
first mnute A \
[----N----)\ \
second m nute C \ B
[--"--\ \ [--"--\

third m nute D \ E F \

[--"-\ \ [--"--\ [--"--\ \

How does the tree continue?
2. What is the maximum number of people in the office that could hear the news within N minutes using this method?
Why is the answer related to the Fibonacci numbers?
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=N Inspired by Joan Reinthaler's Discrete Mathematicsis Already in the Classroom - But It'sHiding in Discrete
Mathematics in Schools, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 36, 1997,
pages 295-299.

Thisisagreat book!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

Leonardo's Leaps

| try and take the stairs rather than the elevator whenever | can so that | get alittle more exercise these days. If I'minahurry, |
can leap two stairs at once otherwise it's the usual one stair at atime. If | mix these two kinds of action - step onto the next or
elseleap over the next onto the following one - then in how many different ways can | get up aflight of n steps?

1: step-step-step

—
—
T
L or else
.: 2: leap-step
or finally
3: step-leap

[ %
l//——h
| ...atotal of 3 waysto climb 3 steps.

-,r:hl

How many ways are there to climb a set of 4 stairs? 5 stairs? n stairs? Why?
Adapted from
¥ Applied Combinatorics (Third Edition) by A Tucker, Wiley, 1995, Example 2, pages 280-281.

For example, for 3 stairs, | can go

B

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [tei=0:

Ll |
FFFFE

Fix or Flip?

Permutations are re-arrangements of a sequence of itemsinto another order. For instance, we can permute D,B,C,A into
A,B,CD.

bef ore: DBCA
after : ABCD

Here the D has swopped places with the A whilst the B and C have not moved.

In general, since we can place A in any of the 4 places, leaving 3 places for B (4x3=12 waysto place A and B) and so C can go
in any of the remaining 2 places (so D has 1 choice |eft), then there are 4x3x2=24 permutations of 4 objects.

In generd, there are nx(n-1)x...x3x2 permutations of n objects.

Suppose we restrict how we may move (permute) an object to

either fix it, leaving it in the same position
or flip it with aneighbour - two items next to each other swop places (they cannot now be moved again).
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However, not all permutations are made of just these two kinds of transformation. Here are 4 examples of permutations on 4
objects: A, B, Cand D:

bef ore: ABCD
after : DBCA

bef ore: ABCD
after : ABCD

bef ore: ABCD
after : BACD

bef ore: ABCD
after : BADC

Thisis not afix-or-flip permutation since the A and D have moved more than 1 place.

However, thisis since nothing has moved - all 4 items were fixed!

B and A have flipped and C and D remain fixed and so thisis afix-or-flip permutation.

All objects have been flipped with a neighbour.

For 3 objects, ABC, we have 3x2x1=6 permutations:

before: ABC ABC ABC ABC ABC ABC
after : ABC ACB BAC BCA CAB CBA

Only thefirst three are fix-or-flip permutations. In the fourth A has moved more than 1 place and in the last two C has moved
2 places.
How many fix-or-flip permutations are therefor 4 objects? for 5? for n objects? Why?

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |L=iz0z

Two heads are better than one?

Usually, if using a coin to make adecision, it is something like "Heads | win, Tailsyou lose" !!
What about tossing a coin until two heads appear one after the other?
If we toss a coin twice, then there are four possible outcomes:
TT, TH, HT and HH
Inonly 1 of these four do we get two heads.
What happensif we have to wait for exactly three tosses before we get two heads?
This time the possibilities are
TTT, TTH, THT, HTH, HTT, and THH
Note that we do not have HHT or HHH as we would have got two heads after only 2 tosses which was covered earlier. So
thereisagain just 1 way to get two heads appearing, H on the second and H on the third toss.
How many ways are there if HH appears on the 3rd-and-4th tosses? TTTT, TTTH, TTHT, TTHH, THTT, THTH, HTHH,
HTHT, HTTH, HTTT.
This time we find 2 sequences.
Can you find a method of generating all the sequences of n coin-tossesthat do not have HH until the last two tosses?
Can you find a formula for how many of thesewill end in HH?

OPTIONAL EXTRA!!! What about the number of sequences of n coin tosses that end with three Heads together? Does this
have any relationship to the Fibonacci numbers?

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. ‘-‘5‘3':'
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Leonardo's Lane

This puzzle was suggested by Paul Dixon, a mathematics teacher at Coulby Newham School, Middlesbrough.

A new estate of housesisto be built on one side of astreet - let'scall it Leonardo's Lane. The houses are to be of two types: a
single house (a detached house) or two houses joined by a common wall (called "a pair of semi-detached houses' in the UK)
which take up twice the frontage on the lane as a single house.

For instance, if just 3 houses could be fitted on to the plot of land in arow, we could suggest:

DDD: Three detached houses

Leonardo's Lane

SD: apair of semi'sfirst followed by a detached house

Leonardo's Lane

DS: adetached house followed by a pair of semi's

Leonardo's Lane

If you were the architect and there was space for just n dwellings on the Lane of just the two kinds mentioned above, what
combinations could you use along the lane?

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Lsi20z

Boat Building e

[Suggested by Dmitry Portnoy (7th grade)]

A boat building company makes two kinds of boat:
a canoe, which takes a month to make and
asailing dinghy and they two months to build.

The company only has enough space to build one boat at atime but it does have plenty of customers waiting for a boat to be
built.

Suppose the area where the boats are built has to be closed for maintenance soon:

. Ifitisclosed after one more months work, the builders can only build one boat - a canoe - before then. Let's write this
plan as C;

. if itisto be closed after 2 months work, it can EITHER build 2 canoes (CC) OR EL SE build one dinghy (D), so there
are two plans to choose from;

. if it closed in three monthstime, it could make 3 canoes (CCC) or adinghy followed by a canoe (DC) or a canoe and
then adinghy (CD); so there are three choices of plan.

. What choices are thereif it closed after 4 months?
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. ...or after 5 months?
. ... or after n months?

Y ou can adapt this puzzle:
1. .. tolarger boats: patrol boats taking ayear to build or container ships which take two years to make
2. .. or you can make the problem smaller, and consider model boats, a small kit taking one month on your desk or alarger

kit taking two months.

How many more ideas can you come up with for asimilar puzzle? ‘HE

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |L=1=0z

Ll |
FIFFFE

Pause for a little reflection

If you look at awindow of one sheet of flat, clear glass, what's on the other side is quite clear to see. But
if you look through the same piece of glass when it is dark on the other side, for instance into a shop
window when the shop is dark, you can see your own reflection. This time the clear glassis behaving

Ay
likeamirror.
‘:u ?l 2 ?l If you look very closely, you will see that your reflection is actually doubled - there are two images of

your face side by side. Thisis because your image is not only reflected off the top surface of the glass but
also getsreflected from the other side of the glasstoo - which is called internal reflection.

So anatural question is what happens if we have double glazing which has two sheets of glass separated by an air gap, that is,
4 reflecting surfaces?
Hang on aminute ... what about three surfaces?? Let's look at that first!

For three surfaces (for example two sheets of glass resting on each other) what happens depends on whether we are looking
through both sheets of glass (the rays of light come in on one side of the window but exit from the other) or whether we are
looking at our own reflection from the sheets (the rays of light enter and leave from the same side of the window).

We can ignore the reflection off the top surface - the light bounces off and we get one reflection. The other cases are the
interesting ones - where all the reflections are internal reflections. In other words, the light rays must have actually penetrated
the glass and we can get reflections from one or perhaps both or even none of the two internal surfaces. We may even get more
reflections as the light bounces off the surfaces again and again, some of the light escaping each time.

The diagram here shows the possible reflections ordered by the number of internal
reflections, starting with none (the light goes straight through) to a single internal 0 E
reflection (from either of the internal surfaces so there are two cases) and then exactly 3
two internal reflections and finally we have shown 3 internal reflections.

If you reflect on this, you'll notice that the Fibonacci numbers seem to be making 1 ﬁ
themselves clearly visible (groan!). Why?

[Advanced puzzle: What does happen with 4 reflecting surfaces in a double glazed 2 W‘H ym mﬁ,‘
window?] Y Y

=S

lﬁ

oy Ay A A

3W Y Y
VoW W
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% Reflections across Two and Three Glass Plates by V E Hoggatt J- and Marjorie Bicknell-Johnson in The Fibonacci
Quarterly, volume 17 (1979), pages 118 - 142.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |L=1=0z

Ll |
FIFFFE

A Puzzle about Puzzles

Thisis apuzzle about puzzles - the puzzle is to design your own puzzle!!
Y ou might have noticed that quite afew of the puzzles above are really "the same" but the names and situations are changed a
bit. It isfairly easy to see how L eonardo's L eapsis the same as the 1p and 2p coin change puzzle and also it isjust
Leonardo's L ane but slightly disguised.
So...
can you devise your own puzzle wherethe answer isthe Fibonacci numbers?
The reason the puzzles above are "the same” is that the explanation of the solution of each of them involves the Fibonacci
(recurrence) Rule:
F(n) = F(n-1) + F(n-2)
together with the "initial conditions" that F(0)=0 and F(1)=1
Y our puzzle should be based around this relationship.

Do you want to see your name on this page?

Please do email me with any new variations that you find. Y ou can then share your idea with all the other readers of this page.
L et's see how big a collection we can build!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Lsi20z

More Links and References

4 The Amazing Mathematical Object Factory has an interesting section on Fibonacci Numbers which contains explanations
for some of the puzzles on this page and the rel ationships between them.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Where to Now?

M Fibonacci Home Paq
) i Thisisthefirst e on Fibonacci The next Topicis...
4= The Fibonacci Numbers and Golden PUzzles P 3 The M atElerr:ati cal World of
Section in Nature V' Harder Fibonacci Puzzles Fibonacci and Phi
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Fibonacci series and MORE Number puzzles

The Fibonacci Puzzles page has been divided into two. Here is the SECOND part with puzzles a bit harder than
those of the FIRST part which you are recommended to browse through first!

Harder Fibonacci Puzzles

All these puzzles except one (which??) have the Fibonacci numbers as their answers.
So now you have the puzzle and the answer - so what's left? Just the explanation of why the Fibonacci numbers
are the answer - that'sthereal puzzle!!

The Fibonaci puzzles are split into two sections: those with fairly straight-forward and
simple explanations as to why the answer is the Fibonacci numbers are on the Easier

Fibonacci Puzzles page.

CONTENTS of THIS Page

This page contains the second set where it is not so ssimple to explain why their answers
involve the Fibonacci numbers. Does a simple explanation exist? If you find asimple
explanation please email me and let me know as I'd like to share the ssmpler solutions

on these pages.

. Penniesfor your thoughts - Part 1

. Penniesfor your thoughts - Part 2

. Water Treatment Plants Puzzle

. Wythoff's game

. Non-neighbour Groups

. A |ladder of resistors

. A Fibonacci Jigsaw puzzle or How to Prove 64=65!
. Thesamejigsaw puzzle proves 64=63!!

. Yet another Fibonacci Jigsaw Puzzle HE®

. More Links and References

0, 1, 1, 2, 3, 5, 8 13, 21, 34, 55 89, 144, 233, 377, 610, 987 ..Mure. . [tsEos

Pennies for your thoughts - Part 1

Here are two puzzles which are identical - but we count the solutionsin two different ways. Each involves
arranging pennies (coins) in rows.
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The puzzle here is that only one of these two puzzlesinvolves the Fibonacci number series! The
other puzzle does not but just begins with afew of the Fibonacci numbers and then becomes
something different. One of these puzzlesis a fraud, a Fibonacci forgery. So which isthe real
Fibonacci puzzle?

Arrange penniesin rows under these two conditions:

1. each penny must touch the next in its row
2. each penny except ones on the bottom row touches two pennies on the row below.

Thereisjust 1 pattern with one penny,
and 1 with two pennies

but 2 for three pennies

and 3 with four pennies as shown here:-

1O 2 CO 3 OO C%

40@@0&)30%

Thefirst condition means that there are no gaps in any row and the second means that upper rows are smaller
than lower ones.

The following arrangements are not proper combinations for 6 pennies

because the first has a gap in one row and the second has a penny which is not

on the bottom row and is not touching two beneath it.

If there are P(n) such arrangementsfor n pennies,
arethe P(n) numbers always Fibonacci number s?

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .. MNbre..

Pennies for your thoughts - Part 2

This puzzle is the same as the previous one and again seems to involve the Fibonacci numbers - or does it?

The puzzle is exactly the same, but P(n) now counts the number of arrangements which have n pennies on the
bottom row.
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o o0&
oo Go oD & &R

Herethereisonly 1 arrangement with 1 penny on the bottom row so P(1)=1 and
2 arrangements with two on the bottom row, P(2)=2
and 5 patterns with a bottom row of three coins P(3)=5.
What happened to 3? F(4)=3 is missing! Y ou can check that P(4)=13, so P(n) is clearly not the same asthe
Fibonacci series since F(4)=3 and F(6)=8 are missing. This time the question is
Arethe P(n) numbersthe alternate Fibonacci numbers;

i
Fib(i):
P(n):
n .

3
1

S
NN NN

345
358 21 3

1
1

PR R o
w oo b
AWWoO
S IO I NG

Which one of these two Pennies puzzlesistheforgery (it does not continue with a pattern of
Fibonacci numbers after some point) and which one genuinely always has Fibonacci numbers
of arrangements?

[With thanks to Wendy Hong for brining these two puzzles to my attention.]

References

2 Richard K Guy, The Second Strong Law of Small Numbersin The Mathematics Magazine, Vol 63
(1990), pages 3-21, Examples 45 and 46.

T The firgt Pennies puzzle above was mentioned by F. C. Auluck in On some new types of partitions
associated with Generalised Ferrers graphsin Proceedings of the Cambridge Philosophical Society, 47
(1951), pages 679-686 (examples 45 and 46).
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o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..Moire..

Water Treatment Plants puzzle

Citiesalong ariver discharge cleaned-up water from sewage treatment plants. It is more efficient to have
treatment plants running at maximum capacity and less-used ones switched off for a period. So each city hasits
own treatment plant by the river and also a pipe to its neighbouring city upstream and a pipe to the next city
downstream aong the riverside.

At each city's treatment plant there are three choices:

. either process any water it may receive from one neighbouring city, together with its own dirty water,
discharging the cleaned-up water into theriver;
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. or send its own dirty water, plus any from its downstream neighbour, along to the upstream neighbouring
city's treatment plant (provided that city is not already using the pipe to send it's dirty water downstream);
« or send its own dirty water, plus any from the upstream neighbour, to the downstream neighbouring city's

plant, if the pipe is not being used.
CITY CITY
A S ©

The choices above ensure that
. every city must have its water treated somewhere and
. at least one city must discharge the cleaned water into the river.

Let's represent a city discharging water into theriver as"V" (adownwards flow), passing water onto its
neighbours as">" (to the next city onitsright) or else "<" (to the left). When we have severa cities along the
river bank, we assign a symbol to each (V, < or >) and list the cities symbolsin order.

For example, two cities, A and B, can

. each treat their own sewage and each discharges clean water into the river. So A's action isdenoted V asis
B'sand we write"VV" ;

. or elsecity A can send its sewage along the pipe (to the right) to B for treatment and discharge, denoted
"S>V

. or elsecity B can send its sewageto (the left to) A, which treats it with its own dirty water and discharges
(V) the cleaned water into theriver. So A discharges (V) and B passes water to the left (<), and we denote
thissituation as"V<".

We could not have "><" since this means A sends its water to B and B sends its own to A, so both are using the
same pipe and thisis not allowed. Similarly "<<" is not possible since A's "<" means it sends its water to a non-
existent city on itsleft.

So we have just 3 possible set-ups that fit the conditions:-

A B A>>>B A<<<B
\Y \Y \Y \Y
\Y \Y V \Y
RVER~ ~ ~ ~ ~  ~ ~~~~ ~ ~ ~ ~ ~ Rl VER
w AV V<

Now suppose that we have more than two cities along the river back:-
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<- pipes discharging into river

A () B ( () C ( ... <- pipes connecting cities
|
(

N —
N/

1. What are the eight set-ups possible for 3 cities?

2. If S(n) isthe number of set-upsfor n cities, then S(1)=1 and we have just shown that S(2)=3 and S(3)=8.
But this does not look like the Fibonacci numbers!
What is S(4)? What is S(5)?

3. What is the relationship between the S-numbers here and the Fibonacci series!?

%= See Fibonacci Numbersand Water Pollution Control R A Deininger in Fibonacci Quarterly, Vol 10,
No 3, 1972, pages 299-300 and page 302.

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..
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Wythoff's game

The Fibonacci numbers provide awinning strategy for playing a game with two piles of matches (or counters or
coins etc), first described by W A Wythoff in 1906.

Playerstake it in turns to remove some matches (at least one) from EITHER only one pile OR ELSE an equal
number from both piles. The players can decide how large each heap will be before the game starts and the
winner is the one who takes the LAST match. A complete heap can be removed as your move if you like. Thisis
not to be recommended however, since your opponent can do the same on the next move and so will win by
taking the last match! Thisleadsto the idea of "safe configurations', that is, ones from which it is possible to
force awin, no matter what your opponent does.

For further details, see
- T. H. O'Beirne Puzzes and Paradoxes, Dover press, 1965, chapter 8.
W Ball, W.W.R. and Coxeter, H.S.M. Mathematical Recreations and Essays, 13th edition, Dover Publications,

1987. A great classic with plenty to keep you amused and enthused on Maths - definitely worth buying! (Y ou can
order it online viathe title-link.)

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..M\ore..
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Non-neighbour Groups

How often have the list of namesin your class been read out in alphabetical order, or you have been asked to line
up in alphabetical order for afire-practice or when the results of atest are given out? The trouble with thisis that
you are a\ways next to the same one or two people that are on either side of you in the alphabetical order - your
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alphabetical neighbours. Y ou will have got to know them quite well over the course of ayear, so thispuzzleis
about meeting other people who are not your alphabetical neighbours.

Suppose that part of the classis needed for a particular task or game. Let's also say that the group should contain
no alphabetical neighboursinit, so it gives everyone in the group a chance to team up with new people.

In how many ways can you choose such a group from a class of N students?

For instance, if there are 3 people in the class, let's label them according to their position when in the al phabetical
order, so they are 1, 2 and 3.

The puzzleisto select a group from the class
with no pair of successive numbers (positions) in the group.

So if 1isinthe group, then 2 cannot be and 3 may be or not; so we have the groups:
{1} and {1,3}

If 2 isin the group then, since both 1 and 3 are 2's alphabetical neigbours, then that group will
consist of 2 alone!

{2}
If 3isin the group then 2 cannot be and 1 may be. But remember that the group with 3and 1in it
has aready been included above! So we have the following possible new groups with 3 in:

{3}

All the possible groups of non-neighbours are:

{3 {1} {& {3 {}
Did you notice that the group {} with nobody in it is a non-neighbour group too? So from aclass of 3 people,
there are 5 waysto pick a group consisting solely of non-neighbours. How many are there in a class of size 4? or

57 or 6? Why? "2 On THe Number of Fibonacci Partitions of a Set Helmut Prodinger Fibonacci Quarterly

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..
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A ladder of resistors

Basic principles

A A If we have two electrical resistances of R ohms and Sohmsin series: then the
R 5 combined resistance isjust R+ S ohms.

You'll remember that if we have 2 resistances R and Sin parallel: then the
combined resistance, T, is given by

or
1

1
-+ -
T R S 5 5

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibpuzzles2.html (6 of 12) [12/06/2001 17:13:11]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

Fibonacci series and MORE Number puzzles

Ladder Problem 1

Suppose we extend the pattern of parallel resistorsinto longer and longer ladders, by putting a 1 ohm resistor
between two wires and then keep adding single ohmresistorsin parallel. What is the total resistance?

In the diagram above, the 2 resistor ladder hastwo 1-ohmresistorsin parallel so their combined resistance Ris
given by the equation:

2333

1/R =1/1 + 1/1 = 2 SO R=1/2

For the 3 resistor ladder, we have combined the 2 resistor ladder with another resistor of 1-ohm, in parallel, so
the combined resistance Shereis

1/S = 1/(1/2) + 1/1 = 2+1 = 3 SO S=1/3

Try computing the overall resistance for yourself for 4 resistors, then with 5 and 6.
What pattern are you getting for the combined resistance?

Can you prove that your pattern always holds?

Ladder Problem 2

Now try it with the following patter n of resistances, where one of the legs of the ladder also has resistance of 1-
ohm and we alternately add a resistor on a side leg and then on a rung:
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=
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=
=
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=
%/W-I 1 g
Ly A L
Thefirst ladder hasa single resistor sois1 ohm.
The second ladder has two resistorsin series, so the combined resistanceis 2.
Thethird ladder hasa 1 ohmresistor in parallel with the second ladder (2 ohms), so the combined resistance S
of 1 ohmand 2 ohmsin parallel is

1/S=1/1+ 1/2 = 3/2 e S=2/3

Smilarly, the next ladder hasa 1 ohm resistor in series with the previous ladder, so its total resistanceis
1+2/3=5/3.

What about the next two ladders? What is the general pattern now?

Again, can you prove that your pattern will always hold?

Ladder Problem 3

Try making a ladder where the only resistances are DOWN ONE S DE and thereis no resistance on the "rungs".
What pattern do you get now?

Ladder Problem 4

Replace the resistors with capacitorsin Ladder Problem 2.
What pattern do you get now?
[ Suggested by Bhushit Joshipura.]

References on the Resistance Ladders

“E2. The Golden Ratio in an Electrical Network, J Wlodarski in The Fibonacci Quarterly Vol 9 (1971) pages
188 and pg 194.

& Generalisation of Modified Morgan-Voyce Polynomials, Fibonacci Quarterly Vol 38 No 1, 2000, pgs 8-
16.
An advanced mathematical article dealing with resistors, capactors and inductors.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibpuzzles2.html (8 of 12) [12/06/2001 17:13:11]



Fibonacci series and MORE Number puzzles

0, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

A Fibonacci Jigsaw puzzle
or How to Prove 64=65

el F‘T’ -’J,"/
Pmal

The 8-by-8 blue square in the diagram here can be cut up into 4 pieces that, when rearranged, make the red 5-by-
13 rectangle. But the blue square contains 8x8=64 little squares whereas the red rectangle contains 5x13=65.
Wher e has the extra square come from?

This puzzle can be repeated with other consecutive Fibonacci numbers,

replace 5, 8 and 13 by 8, 13 and 21 or by 3, 5 and 8

If you look at the "8, 13, 21" jigsaw, the square is 13x13=169 but this time the rectangle is 8x21=168 so we have
lost a square thistime! Sometimes there is a square extra, sometimes a sguare goes missing.

Not convinced? Try this demonstration

Try cutting out the pieces as shown and rearranging them yourself if you are not sure the puzze "works'.

It works even better as a class demonstration using an overhead projector: photocopy the square with itsgrid
lines onto an overhead projector transparency, cut out the shapes and show them as a square on the screen, then
rearrange it into the rectangle, carefully lining up the grid lines to "show I'm not cheating"!

But what is the explanation?

Hints:
1. What is the formula behind these puzzes?
For any three consecutive Fibonacci numbers. F(n-1), F(n) and F(n+1), it relates F(n)2 to F(n-1)F(n+1);
what isit?
Perhaps you can try to proveit is always true.
2. Now look carefully at one of the jigsaw puzzes. Isit really what it seems? Try taking a different angle on

the problem - perhaps looking at it from a tangent ),
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¥ Edward Wakeling in Rediscovered Lewis Carroll Puzzes Dover, 1995, says that this puzze was found in
Lewis Carroll's papers (the original is now kept at Princeton University) and that this puzzle goes back to
Schlomilch, 1868.

& Martin Gardner's Mathematics, Magic and Mystery a 1956 Dover book, is a book with magic tricks and

how the mathematics behind them makes them work. It has two chapters on such Geometrical Vanishes and has a
full explanation of this and other puzzles. He also traces its origins back to Sam Loyd (senior) who presented it to
the American Chess congress (using an 8-by-8 chessboard) in 1858, ten years before Wakeling's reference to
Schlomilch in the reference above. However this also appears not to be the earliest refrerence...

¥ David Wells in The Penguin Book of Curious and Interesting Puzzes (Penguin, 1997) in Puzze 143 traces

itsorigin back to William Hooper in Rational Recreations of 1774.

The same puzzle but losing a square
or How to Prove 64=63!!

The blue jigsaw of area 64 little squares, when re-arranged into the
red positions with 65 little squares, had seemingly gained a square.

Hereis another arrangement. This time the blue puzz€'s pieces have
] been re-arranged as shown herein green and now it loses a square --
] there are two 5-by-6 rectangles + 3 squaresin a row joining them,
"_..g-""" making a total area of 63!

| So what's happened this time???

¥ The second version comes from Henry E Dudeney's 536 Puzzes and Curious Problems (which has been
edited by Martin Gardner) 1967, Souvenir Press; Problems 352 and 353 and their answers

- Martin Gardner's Mathematics, Magic and Mystery a 1956 Dover book (mentioned in the first version of
this puzzle) says that Sam Loyd junior (who adopted his father's name and continued his father's puzze columns)
was the first to discover this new reduced-square version. This book has a good explanation of how the two
puzzles work and that the Fibonacci numbers produce other sizes of puzzle with identical variations of an
additional and missing single square. He shows how other generalised Fibonacci sequences (i.e. starting with
two other numbers rather than 0 and 1) can be used to devise variations where any number of squares can be
made to appear and disappear, together with many other kinds of geometrical dissection puzzes. If you like the
puzzles on these two Web pages, you'll enjoy this book too with number, handkerchief and card puzzes based on
mathematics.

wew Yet another Fibonacci Jigsaw Puzzle!
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Roy Nauw of Kloetinge, the Netherlands found another | | |
Fibonacci Puzze. His lecturer, Floor van Lamoen, mentioned it
on the Geometry Puzz es newsgroup (archived at Math Forum)

and it is copied here with Roy's permission (and my thanks to
them both).

It is made up of 4 pieces,

. asmaller greentriangle with height 2 and base 5 ;

. alarger red triangle with height 3 and base §;

. ablue L-shape of the same width and height but a
different shape.

The two L-shaped pieces fit together to make a 3-by-5 rectangle. They can all be arranged into a 13-by-5 triangle
as shown here. Rearranging the 4 pieces shows the triangle has a square missing!
Where does the hole come from?

What's the answer thistime and how is it connected with the Fibonacci Number s?

The puzzle will work with a green triangle height 1 base 3 and a red triangle height 2 base 5, and two straight
pieces (1-by-3) that make up a 2-by-3 rectangle. Rearanging them this time makes the small rectangle 1 square
smaller thistime so the two straight pieces have to overlap.

Smilarly, using triangles of height 3 base 8 and height 5 base 13 the rectangle again loses one square.

small green|largered rectangle rectangle
triangle  [triangle |Or€en width red width R_ectangIeArea
red height green height Difference
height |base |height base|height x base = Area|height x base = Area
smaller) ;1 51 5 |5 2x3=6 1x5=5 1
puzzle
puzzle |, | 5| 3 |g| 3x5=15 2x8=16 +1
above
larger |5 | g | 5 13| 5x8=40 3x13=39 1
puzzle
larger | 5 | i3] g 21| 8x13=104 | 5x21=105 +1
puzzle

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..
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More Links and References
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21 The Amazing Mathematical Object Factory has an interesting section on Fibonacci Numbers which contains
explanations for some of the puzzles on this page and the relationships between them.

o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

Where to Now?

& Fibonacci Home PagdF =2

& The Fibonacci Numbers and A The Easier Fibonacci Puzzles ~ Thenext Topicis...

o : . =% The Mathematical World of
Golden Section in Nature Thisisthe last page of Fibonacci _ _ :
Puzzles. Fibonacci and Phi

© Dr Ron Knott  RKnott@surrey.ac.uk last update: 31 March 2000
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The mathematics of the Fibonacci series

The Mathematics of the Fibonacci series

Take alook at the Fibonacci Numbers List or, better, open another window in your Browser, then you can refer to this page
and the list together.

The:

cContents

== |ine means there is a Things to do investigation at the end of the section.

Patterns in the Fibonacci Numbers

o Cyclesin the Fibonacci numbers
Factors of Fibonacci Numbers s s

o Fibonacci Primes
o A Prime Curio
Benford's Law and Initial Diqits

o When does Benford's Law apply?
The Fibonacci Numbersin Pascal's Triangl€ & s

o Why do the Diagonals sum to Fibonacci numbers?
o Another arrangement of Pascal's Triangle
o Fibonacci's Rabbit Generations and Pascal's Triangle
The Fibonacci Series asaDecimal Fraction s s
A Fibonacci Number Trick
Another number pattern [HEY
Fibonacci Numbers and Pythagorean Triangles
o Using the Fibonacci Numbers to make Pythagorean Triangles
Maths from the Fibonacci Spiral diagram
..and now it's your turn! s e

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Ls120z
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Patterns in the Fibonacci Numbers

Cycles in the Fibonacci numbers

Here are some patterns people have already noticed:

Thereisacyclein the units column - the cycle of units digits (0,1,1,2,3,5,8,13,21,34,55,...) repeats from n=60 and
again every 60 values.

Thereisaso acyclein the last two digits, repeating (00, 01, 01, 02, 03, 05, 08, 13, ...) from n=300 with a cycle of
length 300.

For the last three digits, the cycle length is 1,500

for the last four digits,the cycle length is 15,000 and

for the last five digits the cycle length is 150,000

and so on...
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Factors of Fibonacci Numbers

There are some fascinating and simple patterns in the Fibonacci numbers when we consider their factors. Y ou might like to
click here to open a new browser window which shows the first 100 Fibonacci numbers and their factors. It will be helpful in

the following investigations:

Things to do -
1. Where are the even Fibonacci Nunbers?
Wite down the index nunbers i where Fib(i) is even.
Do you notice a pattern?
Wite down the pattern you find as clearly as you can first in words and then in
mat hematics. Notice that 2=F(3) al so.
2. Now find where there are Fibonacci nunbers which are nmultiples of 3.
and again wite down the pattern you find in words and then in mathematics.
Agai n notice that 3=F(4).
3. What about the multiples of 5? These are easy to spot because they end with O or
5.
Again, wite down the pattern you find.
4. You can try and spot the nmultiples of 8, if you |like now.

Why 8?7 Because we have found the multiples of 2, then 3, then 5 and now 8 is the next
Fi bonacci numrber!

5. Do you think your patterns also have a pattern? That is, for any Fi bonacci
Nunber F can you tell me where you think all its nmultiples will appear in the
whol e list of Fibonacci Nunmbers?

The above investigations should help you to understand the general rule:

Every k-th Fibonacci number isamultiple of F(k)

or, expressed mathematically,
F(nk) isamultiple of F(k) for all values of n and k=1,2,...

This means that if the subscript is composite (not a prime) then so is that Fibonacci number (with one exception - can you find
it?) So we now deduce that

Any prime Fibonacci number must have a subscript which is prime
(with one little exception - can you find it? Hint: you won't have to search far for it © )

“E= A Primer For the Fibonacci Numbers; Part 1X M Bicknell and V' E Hoggatt Jr in The Fibonacci Quarterly Vol 9

(1971) pages 529 - 536 has severa proofsthat F(k) divides exactly into F(nk): using the Binet Formula; by mathematical
induction and using generating functions.

Fibonacci Primes

Unfortunately, the converse is not alwaystrue: that is, it isnot true that if a subscript is prime then so is that Fibonacci number.
Thefirst case to show thisisthe 19th position (and 19 is prime) but F(19)=4181 and F(19) is not prime because 4181=113x37.
In fact, a search using Maple finds that the list of index numbers, i, for which Fib(i) is prime begins as follows:
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i 345/7 /11 13|17 | 23 29 43 47 83 131 | 137 | 359 | 431 | 433 | 449

10 17 28 29 75 90 91 9
digits |digits |digits |digits |digits |digits |digits |digits
Now you should be able to spot the odd one out: that one number, i, which isnot a prime in the list above, even though Fib(i)
is.

Fib(i) |2 /3|5 |13 89 233 1597 |28657 514229 433494437

Two Prime Curios

G. L. Honaker Jr. pointed me to two curious oddities about the Fibonacci numbers and prime number. a Prime Curio that the
number of primes less than 144, which is a Fibonacci number, is 34, another Fibonacci number. He asks:

Can this happen with two larger Fibonacci numbers?
| pass this question on to you - can it? The link to the Prime Curio page uses the notation that (N) means "the number of
primes between 1 and N" and includes N too if N is prime. (See also a graph of thisfunction.) Since the prime numbers begin

2,357,111, 13,17, ...

then m(8)=4 (there are 4 primes between 1 and 8, namely 2, 3, 5 and 7) and m(11)=5.
There are some smaller values, too:

m2) =1
m(3) =2
m(5) =3
m(21) =8

MoreLinksand Referenceson Prime Numbers

4 Thereisa complete list of al Fibonacci numbers and their factors up to the 1000-th Fibonacci and 1000-th Lucas numbers
and partial results beyond that on Blair Kelly's Factorisation pages

4 Chris Caldwell's Prime Numbers site has a host of information.

“4* Thereis anice Primes Calculator at Princeton University's web site.

‘= Factorization of Fibonacci NumbersD E Daykinand L A G Dresdl in The Fibonacci Quarterly, vol 7 (1969) pages
23 - 30 and 82 gives amethod of factorising a Fib(n) for composite n using the "entry point" of a prime, that is, the index of
the first Fibonacci number for which prime p is afactor.

0, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [ist=0s

Benford's Law and initial digits

[With thanks to Rabert Matthews of The Sunday Telegraph for suggesting this topic.]

Having looked at the end digits of Fibonacci numbers, we might ask

Arethere any patternsin the initial digits of Fibonacci numbers?
What are the chances of a Fibonacci number beginning with "1", say? or "5"? We might be forgiven for thinking that they
probably are al the same - each digit is equally likely to start arandomly chosen Fibonacci number. Y ou only need to look at
the Table of the First 100 Fibonacci numbers or use Fibonacci Calculator to see that thisis not so. Fibonacci numbers seem far

more likely to start with "1" than any other number. The next most popular digitis"2" and "9" isthe least probable!

Thislaw is called Benford's L aw and appears in many tables of statistics. Other examples are a table of populations of
countries, or lengths of rivers. About one-third of countries have a population size which begins with the digit "1" and very
few have a population size beginning with "9".

Hereisatable of theinitial digits as produced by the Fibonacci Calculator:
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Initial digit frequencies of fib(i) for i from1l to 100:
Digit: 1 2 3 4 5 6 7 8 9
Frequency: 30 18 13 9 8 6 5 7 4 100 val ues
Per cent : 30 18 13 9 8 6 5 7 4

What are the frequencies for the first 1000 Fibonacci numbers or the first 10,000? Are they settling down to fixed values
(percentages)? Use the Fibonacci Calculator to collect the statistics. According to Benford's Law, large numbers of items |lead

to the following statistics for starting figures for the Fibonacci numbers as well as some natural phenomena
Digit: 1 23 45673829

Percentage: 30 18 1310 8 7 6 5 5

- Things to do -

. Look at a table of sizes of countries. How many countries areas begin with "1"?

"2"? etc.

2. Use a table of population sizes (perhaps of cities in your country or of
countries in the world). It doesn't matter if the figures are not the | atest
ones. Does Benford's Law apply to their initial digits?

3. Look at a table of sizes of |akes and find the frequencies of their initial
digits.

4. Usi ng the Fibonacci Calculator nake a table of the first digits of powers of 2.
Do they follow Benford's Law? What about powers of other nunbers?

5. Sone newspapers give lists of the prices of various stocks and shares, called
"quotations". Select a hundred or so of the quotations (or try the first hundred
on the page) and nmake a table of the distribution of the |eading digits of the
prices. Does it follow Benford' s Law?

6. What ot her sets of statistics can you find which do show Benford's Law? \Wat
about the nunber of the house where the people in your class |ive? Wat about
the initial digit of their hone tel ephone nunber?

7. Generate sone random nunbers of your own and | ook at the leading digits.

You can buy 10-sided dice (bi-pyram ds) or else you can cut out a decagon (a 10-
sided polygon with all sides the sanme |ength) fromcard and | abel the sides from
O0to 9. Put a small stick through the centre (a used matchstick or a cocktai
stick or a small pencil or a ball-point pen) so that it can spin easily and
falls on one of the sides at random (See the footnote about dice and spinners
on the "The Gol den Geonetry of the Solid Section or Phi in 3 dinensions" page,
for picture and nore details.)

Are all digits equally likely or does this device show Benford's Law?

8. Use the random nunber generator on your cal cul ator and make a tabl e of | eading-
digit frequencies. Such functions will often generate a "randon nunber between
0 and 1, although sone cal cul ators generate a randomvalue fromO to the maxi nmum
si ze of nunber on the calculator. O you can use the random nunber generator in
the Fi bonacci Calculator to both generate the values and count the initial digit
frequencies, if you |ike.

Do the frequencies of leading digits of random values conformto Benford s Law?

9. Measure the height of everyone in your class to the nearest centinetre. Plot a
graph of their heights. Are all heights equally likely? Do their initial digits
conformto Benford's Law? Suppose you did this for everyone in your school.
Wul d you expect the sane distribution of heights?

10. What about repeatedly tossing five coins all at once and counting the nunber of
heads each time?

H
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What if you did this for 10 coins, or 207?
What is the name of this distribution (the shape of the frequency graph)?

When does Benford's Law apply?

Random numbers are equally likely to begin with each of the digits 0 to 9. This applies to randomly chosen real numbers or
randomly chosen integers.

Randomly chosen real numbers
If you stick apin at random on aruler which is 10cm long and it will fall in each of the 10 sections Ocm-1cm, 1cm-2cm,
etc with the same probability. Also, if you look at theinitial digits of the points chosen (so that the initial digit of
0.02cm is 2 even though the point isin the 0-1cm section) then each of the 9 values from 1 to 9isaslikely as any other
value.

Randomly chosen integers
This also appliesif we choose random integers.
Take apack of playing cards and remove the jokers, tens, jacks and queens, leaving in al aces up to 9 and the kings.
Each card will represent a different digit, with aking representing zero. Shuffle the pack and put thefirst 4 cardsin a
row to represent a4 digit integer. Suppose we have King, Five, King, Nine. Thiswill represent "0509" or the integer
509 whose first digit is 5. The integer is as likely to begin with 0 (aking) as 1 (an ace) or 2 or any other digit up to 9.
But if our "integer" began with aking (0), then we look at the next "digit".
These have the same distribution as if we had chosen to put down just 3 cardsin arow instead of 4. Thefirst digits all
have the same probability again. If our first two cards had been 0, then we look at the third digit, and the same applies
again.
So if weignore the integer 0, any randomly chosen (4 digit) integer begins with 1 to 9 with equal probability. (Thisis
not quite true of arow of 5 or more cards if we use an ordinary pack of cards - why?)

So the question is, why does this all-digits-equally-likely property not apply to the first digits of each of the following:

. the Fibonacci numbers,

. the Lucas numbers,

. populations of countries or towns

. sizesof lakes

. prices of shares on the Stock Exchange

Whether we measure the size of a country or alake in square kilometres or square miles (or square anything), does not matter -
Benford's Law will still apply.

So when is a number random? We often meant that we cannot predict the next value. If we toss a coin, we can never predict if
it will be Heads or Tailsif we giveit areasonably high flip in the air. Similarly, with throwing adice- "1" isaslikely as"6".
Physical methods such as tossing coins or throwing dice or picking numbered balls from arotating drum as in Lottery games
are always unpredictable.

The answer is that the Fibonacci and Lucas Numbers are governed by a Power Law.
We have seen that Fib(i) is round(Phii/+/5) and Lucas(i) is round(Phii). Dividing by sqrt(5) will merely adjust the scale - which
does not matter. Similarly, rounding will not affect the overall distribution of the digitsin alarge sample.

Basically, Fibonacci and Lucas numbers are power s of Phi. Many natural statistics are also governed by a power law - the
values are related to Bi for some base value B. Such data would seem to include the sizes of lakes and populations of towns as
well as non-natural data such as the collection of prices of stocks and shares at any one time. In terms of natural phenomena
(like lake sizes or heights of mountains) the larger values are rare and smaller sizes are more common. So there are very few
large lakes, quite afew medium sized lakes and very many little lakes. We can see this with the Fibonacci numbers too: there
are 11 Fibonacci numbersin the range 1-100, but only one in the next 3 ranges of 100 (101-200, 201-300, 301-400) and they
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get increasingly rarer for large ranges of size 100. The same is true for any other size of range (1000 or 1000000 or whatever).

Things to do -

1. Type a power expression in the Eval (i)= box, such as pow(1l.2,i) and give a range
of i values fromi=1 to i=100. dicking the Initial digits button will print the
| eading digit distribution.
Change 1.2 to any other value. Does Benford's Law apply here?

2. Using Eval (i)=randint(1,100000) with an i range from1l to 1000 (so that 1000
separate randomintegers are generated in the range 1 to 100000) shows that the
| eading digits are all equally |ikely.

‘== Benford'sLaw for Fibonacci and Lucas Numbers, L. C. Washi ngton, The Fibonacci Quarterly vol. 19, 1981, pages
175-177.

e The original reference: The Law of Anomalous Number s F Benford, (1938) Proceedings of the American
Philosophical Society vol 78, pages 551-572.

“* The Math Forum's archives of the History of Mathematics discussion group have an email from Ralph A. Raimi (July 2000)
about hisresearch into Benford's Law. It seems that Simon Newcomb had written about it much earlier, in 1881, in American

Journal of Mathematics volume 4, pages 39-40. The name Benford is, however, the one that is commonly used today for this
law.

T MathTrek by Ivars Peterson (author of The Mathematical Tourist and 1 slands of Truth) the editor of Science News
Online has produced this very good, short and readable introduction to Benford's Law.

W M Schroeder Fractals, Chaos and Power L aws, Freeman, 1991, ISBN 0-7167-2357-3. Thisis an interesting book but
some of the mathematicsis at first year university level (mathematics or physics degrees), unfortunately, and the rest will need
sixth form or college level mathematics beyond age 16. However, it is still good to browse through. It has only a passing
reference to Benford's Law: The Peculiar Distribution of the Leading Digit on page 116.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Lei=nz

col > 01234
______ A,
1 o] 1
11 r 1] 11 each nunber
121 0 2|1 121 is the sum of
1331 w 3| 1331 t he one above it and
14641 41 14641 the one to the above-left.

eg 6 is 3+3 fromrow above.

Each entry in the triangle on the I eft is the sum of the two numbers either side of it but in the row above. A blank space can be
taken as 0" so that each row starts and ends with "1".

Pascal's Triangle has lots of usesincluding

smCalculating probabilities.
If you throw n coins randomly onto a table then the chance of getting H heads among them isthe entry inrow N, col H
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divided by 2"

for instance, for 3 coins, n=3 so we use row 3:

3 heads: H=3 isfound in 1way (HHH)

2 heads: H=2 can be got in 3ways (HHT, HTH and THH)

1 head: H=1isalso found in 3possible ways (HTT, THT, TTH)
0 heads: H=0 (ie all Tails) isalso possiblein just lway: TTT

# Finding termsin a Binomial expansion: (a+b)"
EG. (a+b)3 = 1a3 + 3a2b + 3ab2 + 1b3

Can you find the Fibonacci Numbersin Pascal's Triangl€?
Hints:

< The answer isin the formula on the right:
where the big brackets with two numbers vertically inside them -1
are a specia mathematical notation for the entry in Pascal'striangle _., , | n—k-1
Fib(n)= Z
onrow n- k- 1 and column k k
k=0

Or, an equivaent formulais:
d1f that till doesn't help, then this animated diagram might:

1

3 A

6 4 1
10 5 1
22015 61

1
2
=
4
bl |
61

Why do the Diagonals sum to Fibonacci numbers?

It is easy to seethat the diagonal sums really are the Fibonacci numbers if we remember that each number in Pascal's triangle
is the sum of two numbersin the row above it (blank spaces count as zero), so that 6 hereis the sum of the two 3's on the row
above:

col : 01234
______ e,
o 1
r 1] 1 1 each nunber
0 21 1 2 1 is the sum of
w 3] 1 3 3 1 t he one above it and
41 1 4 6 4 1 the one to the above-left.
5| 1 51010 5 1
6| 1 6152015 6 1
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The numbersin any diagonal row are therefore formed from adding numbers in the previous two diagonal rows as we see here
where all the blank spaces are zeroes and where we have introduced an extra column of zeros which we will use later:

col : 0 1 2 3 4
______ e,
| 01 <-- the first two diagonal suns
/]
O] 0 1
/
r 1] 0 1 1 5=sum of green nunbers
8=sum of bl ue nunbers
0 2] 0 1 2 1 13=sum of red nunbers
Vo
w 3| 0 1 3 3 1
Vo
4] 0 1 4 6 4 1
Vo
5] 0 1 51010 5 1
Vo
6] 0 1 6152015 6 1
71 O

Notice that the GREEN numbers are on one diagonal and the BL UE ones on the next. The sum of all the green numbersis5
and al the blue numbers add up to 8.

Because all the numbersin Pascal's Triangle are made the same way - by adding the two numbers above and to the left on the
row above, then we can see that each red number isjust the sum of a green number and a blue number and we use up all the
blue and green numbers to make all the red ones.

The sum of all the red numbersis therefore the same as the sum of all the blues and al the greens: 5+8=13!

The genera principle that we have just illustrated is:

The sum of the numbers on one diagonal is the sum of the numbers on the previous two diagonals.

If welet D(i) stand for the sum of the numbers on the Diagonal that starts with one of the extra zeros at the beginning of row i,
then

D(0)=0and D(1)=1
arethetwo initial diagonals shown in the table above. The green diagonal sum is D(5)=5 (sinceits extrainitial zero isin row
5) and the blue diagona sum is D(6) which is8. Our red diagonal is D(7) = 13 = D(6)+D(5).
We aso have shown that thisis always true: one diagonals sum id the sum of the previous two diagonal sums, or, in terms of
our D series of numbers:
D(i) = D(i-1) + D(i-2)
But...
D0)=1
D(1)=1
D(i) = D(i-1) + D(i-2)
is exactly the definition of the Fibonacci numbers! So D(i) isjust F(i) and
the sums of the diagonalsin Pascal's Triangle ar e the Fibonacci number !

Another arrangement of Pascal's Triangle

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibmaths.html (8 of 25) [12/06/2001 17:13:40]



The mathematics of the Fibonacci series

By drawing Pascal's Triangle with al the rows moved over by 1 place, we have a clearer arrangement which shows the
Fibonacci numbers as sums of columns:

O 1 2 3 4 5 6 7 8 9

o1 . .

1. 1 1 . .

2 . 1 2 1 . .

3. 1 3 3 1 . .
4 1 4 6 4 1 .
5. 1 510 10 5
6 . 1 6 15 20
7 . 1 721
8 . 1 8
9. . . . . . . . .1
1 1 2 3 5 8 13 21 34 55 <- suns of colums

This table can be explained by referring to one of the (Easier) Fibonacci Puzzles - the one about Fibonacci for a Change. It
asks how many ways you can pay n pence (in the UK) using only 1 pence and 2 pence coins. The order of the coins matters, so
that 1p+2p will pay for a 3p item and 2p+1p is counted as a different answer. [We now have a new two pound coin that is
increasing in circulation too!]

Here are the answers for paying up to 5p using only 1p and 2p coins:

Ip |2p 3p 4p Sp

1p 2p 1p+2p 2p+2p 1p+2p+2p
1p+1p 2p+lp 1p+1p+2p 2p+1p+2p
1p+1p+1p |1p+2p+1p 2p+2p+1p

2ptlp+lp  |1pt+lp+1p+2p

1p+1p+1p+1p |1p+1p+2p+1p

1p+2p+1p+lp

2p+1p+ip+lp

1p+1p+1p+1lp+lp

1way |2ways|3ways |Sways 8 ways

Let'slook at this another way - arranging our answers according to the number of 1p and 2p coins we use. Columns will
represent all the ways of paying the amount at the head of the column, as before, but now the rows represent the number of
coinsin the solutions:

cost: |1p |2p 3p 4p 5p
lcoin: 1p|2p
2 coins: 1p+1p |1p+2p 2p+2p

2p+1p

1p+1p+lp 1p+lp+2p | 1p+2p+2p
3 coins: 1p+2p+1p 2p+1p+2p
2p+lp+ip 2p+2p+lp

1p+1p+1p+1p |2p+1p+lp+ip

. 1p+1p+1p+2p
4 coins: 1p+1p+2p+1p
1p+2p+1p+1p

5p: 1p+1p+1p+1lp+lip
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If you count the number of solutionsin each box, it will be exactly the form of Pascal's triangle that we showed above!

Fibonacci's Rabbit Generations and Pascal's Triangle

Here's another explanation of how the Pascal triangle numbers sum to give the Fibonacci numbers, this time explained in terms
of our original rabbit problem.

Let's return to Fibonacci's rabbit problem and look at it another way. We shall be returning to it several more times yet in these
pages - and each time we will discover something different!

0 shoane We shall make afamily tree of the rabbits but this time we shall be interested

88 1 only inthefemalesand ignore any malesin the population. If you like, in the

0 I diagram of the rabbit pairs shown here, assume that the rabbit on the left of each

88 1 parismale (say) and so the other isfemale. Now ignore the rabbit on the left in
each pair!

88 3 8 5 We will assume that each mating produces exactly one female and perhaps
some males too but we only show the femalesin the diagram on the left. Alsoin
the diagram on the left we see that each individual rabbit appears several times.

38 8 8 8 8 3 For instance, the original brown female was mated with awhile male and, since

they never die, they both appear once on every line.
38 88 88 38 88 Now, in our new family tree diagram, each female rabbit will appear only
once. As more rabbits are born, so the Family tree grows adding a new entry for
each newly born female.

Asin an ordinary human family tree, we shall show parents above aline of all their children.
Here is afictitious human family tree with the names of the relatives shown for a person marked as M E:

G andpa Grandma Grandma G andpa

Abel ===Mabel Fr eda=====Fr ed
I I
| | Aunty Aunt Uncl e
Uncl e Bob- - -Dad=============Mum - - - Jane--- - - Hayl ey=Cl enent
I I
sister-in-law | brother si ster |
Joan===John- - - ME- - - Jean Cousi n--Cousi n
| Sonny Gal e===Cust of

nephew Dan- - ni ece Pam

The diagram shows that:

Grandpa Abel and Grandma Mabel are the parents of my Dad and
Grandma Freda and Grandpa Fred are the parents of my Mum.

Bob is my Dad's brother and

my Mum has two sisters, my aunts Hayley and Jane.

Aunt Hayley became Hayley Weather when she married Clement Weather.
They have two children, my cousins Sonny Weather and Gale Weather.
Gale married Gustof Wind and so is now Gale Wind.

My brother John and his wife Joan have two children,

my nephew Dan and my niece Pam.

In thisfamily tree of human relationships, the === joins people who are parents or signifies a marriage.
In our rabbit's family tree, rabbits don't marry of course, so we just have the vertical and horizontal lines:
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The vertical line |
points from a mother (above) to the oldest daughter (below);
the horizontal line -
is drawn between sisters from the oldest on the left down to the youngest on the right;
the small letter r
represents ayoung female ( alittle rabbit) and
the large letter R
shows a mature female (a big Rabbit) who can and does mate every month, producing one new daughter each time.

Asin Fibonacci's original problem (in its variant form that makesit a bit more realistic) we assume none die and that each
month every mature female rabbit always produces a babies of which exactly oneisafemale. Here is the Rabbit Family tree as
if grows month by month for the first 8 months:

Mo nt h
1 2 3 4 5 6 7 8
r R R R R R R R
I I I I I |
r Rr RRr R RRr R R RRr R R R RRr
I | I | | I I | | I
r Rrr RRr Rrr R RRr RRr Rrr
I | I I
r Rrr r

So in month 2, our young female (r of month 1) becomes mature (R) and mates.

In month 3, she becomes a parent for the first time and produces her first daughter, shown on aline below - a new generation.
In month 4, the female born in month 3 becomes mature (R) and aso her mother produces another daughter (r).

In month 5, the original female produces another female child added to the end of the line of the generation of her daughters,
while the daughter born the previous month (the second in the line) becomes mature. Also the first daughter produces her own
first daughter, so in month 5 the original female becomes a grand-mother and we have started a third line - the third generation.
The Family tree is shown for the first 8 months as more females are added to it. We can see that our original female becomes a
great-grandmother in month 7 when afourth line is added to the Family tree diagram - a fourth generation!

Have you spotted the Pascal's triangle numbersin the Rabbit's Family Tree?
The numbers of rabbitsin each generation, that is, along each level (line) of the tree, are the Pascal's triangle numbers that add
up to give each Fibonacci number - the total number of (female) rabbitsin the Tree. In month n there are atotal of F(n) rabbits,
anumber made up from the entry in row (n-k) and column (k-1) of Pascal's triangle for each of the levels (generations) k from
1to n. In other words, we are looking at this formula and explaining it in terms of generations, the original rabbit forming
generation 1 and her daughters being generation 2 and so on:

Remember that the rows and columns of Pascal's triangle in this formulabegin at 0!
For example, in month 8, there are 4 levels and the number on each level is:

Mont h 8:
Level 1. 1 rabbit which is Pascal's triangle row 7=8-1 and colum 0=1-1
Level 2: 6 rabbits which is Pascal's triangle row 6=8-2 and colum 1=2-1
Level 3: 10 rabbits which is Pascal's triangle row 5=8-3 and colum 2=3-1
Level 4 4 rabbit which is Pascal's triangle row 4=8-4 and col umm 3=4-1

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibmaths.html (11 of 25) [12/06/2001 17:13:40]



The mathematics of the Fibonacci series

When k is bigger than 4, the column number exceeds the row number in Pascal's Triangle and all those entries are 0.

SUMis F(8)=21

col 0 1 2 3 4 5 6 7 8/9...
______ e A
O] 1.0 0 0 0 0 0 0 O

r 11 1. 12 0 0 0 0 O O O
o] 2] 1.2 1 0 0 0 0 0 O
w 3] 1 3 3 1 0 0 0 0 O

41 1 4 6 4 1 0 0 0 O
5| 1 51010 5 1 0 0 O
6] 1 6152015 6 1 0 O
7] 1 721353521 7 1 O
8| 1 82856 705628 8 1

The genera pattern for month nand level (generation) k is
Level k: isPasca's triangle row n-k and column k-1 For month n we sum all the generations as k goes from 1 to n (but half of
these will be zeros).

- Things to do -

. Make a di agram of your own famly tree. How far back can you go? You will
probably have to ask your relatives to fill in the parts of the tree that you
don't know, so take your tree with you on famly visits and keep extending it as
you | earn about your ancestors!

. Start again and draw the Fenal e Rabbit Famly tree, extending it nonth by nonth.
Don't distinguish between r and R on the tree, but draw the newy born rabbits
using a new colour for each nmonth or, instead of using lots of colours, you
could just put a nunber by each rabbit showing in which nonth it was born.

. If you tossed a coin 10 tinmes, how nany possi bl e sequences of Heads and Tails
could there be in total (use Pascal's Triangle extending it to the row nunbered

10) ?
In how many of these are there 5 heads (and so 5 tails)? What is the probability
of tossing 10 coins and getting exactly 5 heads therefore - it is not 0-5! Draw

up a table for each even nunber of coins from2 to 10 and show the probability
of getting exactly half heads and half tails for each case. Wiat is happening to
the probability as the nunber of coins gets |arger?

. Draw a histogram of the 10th row of Pascal's triangle, that is, a bar chart,
where each columm on the row nunbered 10 is hown as a bar whose height is the
Pascal's triangle nunber. Try it again for tow 20 if you can (or use a
Spreadsheet on your conputer). The shape that you get as the row increases is
called a Bell curve since it looks Iike a bell cut in half. It has many uses in
Statistics and is a very inportant shape.

. Make a Galton Qui ncunx.

This is a device with lots of nails put in a regular hexagon arrangenent. Its
nanme derives fromthe Latin word qui ncunx for the X-1i ke shape of the spots on
the 5-face of a dice:

\ ooo / G@Glton's Quincunx Qui ncunx:
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\ ooooo/ 0 0
\ooo/ funnel to direct the balls 0
\ o/ directly on to 0 o]
[/ .\ the topnost nai
[ . .\
/. . .\
[ . . .0\ r ows
[ . ...\ of
[ ... .0\ nails
/ .o \
/.. o0\
N O O Y B
| | | | |lol | | | | Containers to collect the
| | | |oloJoJo] | | balls as they fall through
|o| |o|o|lo|o|lo]|o| |

The whol e board is tilted forward slightly so that the top is raised off the
table a little. Wien small balls are poured onto the network of nails at the
top, they fall through, bouncing either to the right or to the left and so hit
another nail on the row below. Eventually they fall off the bottomrow of nails
and are caught in containers.

If you have a lot of nails and a lot of little balls (good sources for these are
smal | steel ball-bearings froma bicycle shop or ping-pong balls for a |arge
version or even dried peas or other cheap round seeds fromthe supernmarket) then
they end up formng a shape in the containers that is very nmuch |ike the Bel
curve of the previous exploration.

You will need to space the nails so they are as far apart as about one and a
half times the width of the balls you are using.

Programm ng the Qui ncunx:

You could try simulating this experinent on a conputer using its
random nunber generator to decide on which side of a nail the bal
bounces. |f your "randont function generates nunbers between 0 and 1
then, if such a value is between 0 and 0.5 the ball goes to the left
and if above 0.5 then it bounces to the right. Do this several tines
for each ball to sinmulate several bounces.

Thi nks. com have a great Java version of the Quincunx, called Ball Drop which
illustrates what your Quincunx wll do.

. Let's see how the curve of the last two explorations, the Bell curve m ght
actually occur in sonme real data sets.
Measure the height of each person in your class and plot a graph simlar to the
cont ai ners above, labelled with heights to the nearest centinetre, each
cont ai ner containing one ball for each person with that height. Wat shape do
you get? Try adding in the results fromother classes to get one big graph.
Thi s makes a good practical denonstration for a Science Fair or Parents'
Exhi biti on or Open Day at your school or college. Measure the height of each
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person who passes your display and "add a ball" to the container which
represents their height. Wiat shape do you get at the end of the day?

. What el se could you neasure?

o The wei ght of each person to the nearest pound or nearest 500 grans;
o their age | ast birthday;
but renenber some people do not |ike disclosing their age or know ng too
accurately their own wei ght!
o house or apartnment nunber (what range of values should you allow for? In
the USA this might be up to several thousands!)
o the last 3 digits of their tel ephone nunber;
or try these data sets using coins and dice:
o the total nunmber when you add the spots after throwng 5 dice at once;
o the nunber of heads when you toss 20 coi ns at once.
Do all of these give the Bell curve for |arge sanples?
If not, why do you think some do and sone don't?
Can you deci de beforehand which will give the Bell curve and which won't? If a
distribution is not a Bell curve, what shape do you think it will be? How can
mat hemati cs hel p?

. Wite out the first few powers of 11. Do they rem nd you of Pascal's triangle?
Why? Why does the Pascal's triangle pattern break down after the first few
power s?

(Hint: consider (atb)™ where a=10 and b=1).

. To finish, let's return to a human famly tree. Suppose that the probability of
each child being male is exactly 0.5. So half of all new babies will be nale and
half the time female. If a couple have 2 children, what are the four possible
sequences of children they can have? Wiat is it if they have 3 children? In what
proportion of the couples that have 3 children will all 3 children be girls?
Suppose a couple have 4 children, will is the probability nowthat all 4 will be
girls?

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Ls1=0z

The Fibonacci Series as a Decimal Fraction

Have alook at this decimal fraction:

0-0112359550561. .

It looks like it begins with the Fibonacci numbers, O, 1, 1, 2, 3and 5 and indeed it does if we expressit as:

0-0 +
1 +
1 +
2
3
5
8
13
21
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34
55
89
144

0-011235955056179. ..

What is the value of this decimal fraction?
It can be expressed as

0/10 + 1/100 + 1/1000 + 2/104 + 3/10° + ...
or, using powers of 10 and repl aci ng the Fi bonacci nunbers by F(i):

F(0)/101 + F(1)/102 + F(2)/103 + ... + F(n-1)/10" + ...
or, if we use the negative powers of 10 to indicate the deciml fractions:
F(0)10-1 + F(1)10°2 + F(2)10°3 + ... + F(n-1)10"" + ...

To find the value of the decimal fraction we look at a generalization, replacing 10 by x.
Let P(x) be the polynomial in x whose coefficients are the Fibonacci numbers:

P(x)= 0 + 1 x2+ 1 x3 + 2x4 + 3x> + 5x6 + ...
or P(x)=F(0)x + F(1)x2 + F(2)x3 + ... . HF(n-1)xn o+ L

To avoid confusion between the variable x and the multiplication sign x, we will represent multiplication by *: The decimal
fraction 0.011235955... aboveisjust

0*(1/10) + 1*(1/10)2 + 1*(1/10)3 + 2*(1/10)4 + 3*(1/10)5 + ... + F(n-1)*(1/10)" + ...

which isjust P(x) with x taking the value (1/10), which we write as P(1/10).

Now hereisthe interesting part of the technique!
We now write down xP(x) and x2P(x) because these will "move the Fibonacci coefficients along":

P(x)=F(0)x + F(1)x2 + F(2)x3 + F(3)x4 + ... +F(n-1)x" + ...
XP(X)=F(0)x2 + F(1)x3 + F(2)x4 + ... +F(n-2)x" + ...
X2P(x)=F(0)x3 + F(1)x4 + ... +F(n-3)x" + ...

We can align these terms up so that all the same powers of x are in the same column (as we would do when doing ordinary
decimal arithmetic on numbers) as follows:

P(x)=F(0)x + F(1)x2 + F(2)x3 + F(3)x4 + ... +F(n-1)x" + ...
xP(x) = F(O)x2 + F(1)x3 + F(2)x4 + ... +F(n-2)x" + ...
X2P(x) = F(O)x3 + F(1)x4 + ... +F(n-3)x" + ...
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We have done this so that each Fibonacci number in P(x) is aligned with the two previous Fibonacci numbers. Since the sum
of the two previous numbers always equal s the next in the Fibonacci series, then, when we take them away, the result will be
zero - the terms will vanish!

So, if we take away the last two expressions (for xP(x) and x2P(x)) from the first equation for P(x), the right-hand side will
simplify since all but the first few terms vanish, as shown here:

P(x)=F(0)x + F(1)x2 + F(2)x3 + F(3)x4 + ... +F(n-1)x" + ...
xP(x) = F(O)x2 + F(1)x3 + F(2)x4 + ... +F(n-2)x" + ...
X2P(x) = F(O)x3 + F(1)x4 + ... +F(n-3)x" + ...

(1-x-x2)P(x)=F(0)x +(F(1)-F(0))x2 + (F(2)-F(1)-F(0))x3+. ..

Apart from the first two terms, the general term, which isjust the coefficient of x", becomes F(n)-F(n-1)-F(n-2) and, since
F(n)=F(n-1)+F(n-2) all but the first two terms become zero which is why we wrote down xP(x) and x2P(x):
(1-x-x2)P(X) = X2
X2 B 1
1-x-x2 x2-x1-1
So now our fraction isjust P(1/10), and the right hand side tells us its exact value:
1/(100-10-1) = /89 = 0-0112358...
From our expression for P(x) we can also deduce the following:

P(x) =

10/ 89 = 0-112359550561. ..

If x=1/100, we have

P(1/100) = 0-00 01 01 02 03 05 08 13 21 34 55 ... = 1/(10000-100-1) = 1/9899
and
100/ 9899 = 0-01010203050813213455. ..

and so on.

Things to do -

Can you find exact fractions for the followi ng where all continue with the
Fi bonacci series terns?
. 10102. 0305081321. ..
. 0.001001002003005008013. .
. 1.001002003005008013. . .
. 0.001002003005008013. . .
. 0.0001000100020003000500080013. ..
. Expand these fractions and say how they are related to the Fibonacci nunbers:
10
89

10 90

7171

2 999 1001
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995999 995999 995999
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o, 1, 1, 2, 3, 5 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [tei=0:

A Fibonacci Number Trick

Hereisalittle trick you can perform on friends which seems to show that you have amazing mathematical powers. We explain
how it works after showing you the trick.
Hereis Alice performing the trick on Bill:

Alice: Choose any two numbers you like, Bill, but not too big as you're going to have to do some adding yourself. Write them
asif you are going to add them up and I'll, of course, be looking the other way!
Bill: OK, I've done that.

16
Bill chooses 16 and 21 and writes them one under the other: 21

Alice: Now add the first to the second and write the sum underneath to make the third entry in the column.
Bill: | don't think I'll need my calculator just yet.... Ok, I've done that.

16
Bill writes down 37 (=16+21) under the other two: 21
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37

Alice: Right, now add up the second and your new number and again write their sum underneath. Keep on doing this, adding
the number you have just written to the number before it and putting the new sum underneath. Stop when you have 10 numbers
written down and draw aline under the tenth.

Thereisasound of lots of buttons being tapped on Bill's calcul ator!
Bill: OK, the ten numbers are ready.

Bills column now looks like this: 16
21

37

58

95

153

248

401

649

1050

Alice: Now I'll turn round and look at your numbers and write the sum of all ten numbers straight away!
She turns round and almost immediately writes underneath: 2728.

Bill taps away again on his calculator and is amazed that Alice got it right in so short atime [gasp!]
So how did Alice do it?

The sum of all ten numbersisjust eleven timesthe fourth number from the bottom. Also, Alice knows the quick method of
multiplying a number by eleven. The fourth number from the bottom is 248, and there is the quick and easy method of
multiplying numbers by 11 that you can easily do in your head:

248

Starting at the right, just copy the last digit of the number asthe last digit of your product. Here the last digit of 248 401
) ) i . ) ) 649
is 8 so the product also ends with 8 which Alice writes down: 1050

8

Now, continuing in 248, keep adding up from the right each number and its neighbour, in pairs, writing down their 248
sum as you go. If ever you get a sum bigger than 10, then write down the units digit of the sum and remember to 401
carry anything over into your next pair to add. 649
Here the pairs of 248 are (from the right) 4+8 and then 2+4. So, next to the 8 Alice thinks "4+8=12" so shewrites2 | 1050
and remembers there is an extra one to add on to the next pair:

28

248

401

Then 2+4 is 6, adding the one carried makes 7, so she writes 7 on the |eft of those digits already written down: 649
1050

728
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248

Finally copy down the left hand digit (plus any carry). Alice sees that the left digit is 2 which, because thereis 401
nothing being carried from the previous pair, becomes the left-hand digit of the sum. 649
The final sum istherefore 2728 = 11 x 248 . 1050

2728

Why does it work?

Y ou can see how it works using algebra and by starting with A and B as the two numbers that Bill chooses.
What does he write next? Just A+B in algebraic form.

The next sum is B added to A+B which is A+2B.

The other numbersin the column are 2A+3B, 3A+5B, ... up to 21A+34B.

If you add these up you find the total sum of al ten is 55A+88B.
Now look at the fourth number up from the bottom. What isit?
How isit related to the final sum of 55A+88B?

So the trick works by a special property of adding up exactly ten numbers from a Fibonacci-like sequence and will work for
any two starting values A and B!

Perhaps you noticed that the multiples of A and B were the Fibonacci numbers? Thisis part of a more general pattern whichis
thefirst investigation of several to spot new patternsin the Fibonacci sequence in the next section.

Another Number Pattern

Dave Wood has found another number pattern that we can prove using the same method.
He notices that

f(10)-f(5) 1is 55 - 5 which is 50 or 5 tens and O;
f(11)-f(6) 1is 89 - 8 which is 81 or 8 tens and 1,

f(12)-f(7) is 144 - 13 whichis 131 or 13 tens and 1.
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It looks like the differences seem to be 'copying' the Fibonacci seriesin the tens and in the units columns.
If we continue the investigation we have:

f(13)-f(8) is 233 - 21 whichis 212 or 21 tens and 2;
f(14)-f(9) is 377 - 34 whichis 343 or 34 tens and 3;
f(15)-f(10) is 610 - 55 which is 555 or 55 tens and 5;
f(16)-f(11) is 987 - 89 which is 898 or 89 tens and 8§;

f(17)-f(12) is 1597

144 which is 1453 or 144 tens and 13;

From this point on, we have to borrow aten in order to make the 'units’ have the 2 digits needed for the next Fibonacci number.
Later we shall have to 'borrow' more, but the pattern still seems to hold.

In words we have;

Any Fibonacci number when we take away the Fibonacci number 5 beforeit is
ten times that number we took away PLUS the Fibonacci number ten before it
In mathematical terms, we can write this as:

Fib(n) - Fib(n-5) = 10 Fib(n-5) + Fib(n-10)

A Proof
That the pattern always holds is found by extending the table we used in the Why does it work section of the Number Trick
above:

A
B
B
2B
3B

A
A
2A
3A + 5B
5A + 8B
8A +13B
13A +21B
21A +34B
34A +55B

+ + + + +

We can always write any Fibonacci number Fib(n) as 34A+55B because, since the Fibonacci series extends backwards
infinitely far, we just pick A and B as the two numbers that are 10 and 9 places before the one we want.

Now let'slook at that last line: 34A +55B.
It isamost 11 timesthe number 5 rows before it:

11 x (3A+5B) = 33A+55B,
anditisequa toit if we add on an extra A, i.e. the number ten rows before the last one:
34A + 55B = 11 (3A+5B) + A
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Putting thisin terms of the Fibonacci numbers, where the 34A+55B is F(n) and 3A+5B is "the Fibonacci number 5 before it",
or Fib(n-5) and A is "the Fibonacci number 10 before it" or Fib(n-10), we have:

34A + 55B

11 (3A+5B) + A
or

Fi b(n) 11 Fib(n-5) + Fib(n-10)
We rearrange this now by taking Fib(n-5) from both sides and we have:
Fib(n) - Fib(n-5) = 10 Fib(n-5) + Fib(n-10)

which isjust what Dave Wood observed!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Lsiz0z

Fibonacci Numbers and Pythagorean Triangles

A Pythagorean Triangleis aright-angled triangle with sides which are whole numbers.
In any right-angled triangle with sides s and t and longest side (hypotenuse) h, the Pythagor as Theorem applies:
£ +12=h2
However, for a Pythagorean triangle, we also want the sides to be integers (whole numbers) too. A common exampleisa
triangle with sides s=3, t=4 and h=5:

We can check Pythagoras theorem as follows: 5

P +12

=32+ 42 )
=9+16
=25=52=R2

Hereisalist of some of the smaller Pythagorean Triangles:

s |t |h |*=primitive
3 /4 |5 |*
6 |8 |10|2x(3/4,5)
5 12|13 |*
9 |12 15|3x(3/4,5)
8

15|17 | *
12|16 | 20 | 4x(3,4,5)
7 |24|25|*

15|20 | 25 | 5x(3,4,5)
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10 | 24 | 26 | 2x(5,12,13)
202129 |*

6 3034 2x(8,15,17)
18 | 24 | 36 | 6x(3,4,5)

*§* Here is another longer list of Triples generated using Autograph from Oundle School, Peterborough, UK.

Y ou will seethat some are just magnifications of smaller ones where all the sides have been doubled, or trebled for example.
The others are "new" and are usually called primitive Pythagorean triangles.

Any Pythagorean triangle is either primitive or amultiple of a primitive and thisis shown in the table above. Primitive
Pythagorean triangles are a bit like prime numbersin that every integer is either prime or a multiple of a prime.

Using the Fibonacci Numbers to make Pythagorean Triangles

Thereis an easy way to generate Pythagorean triangles using 4 Fibonacci numbers. Take, for example, the 4 Fibonacci
numbers:

1,2,3,5
Let'scall thefirst two aand b. Since they are from the Fibonacci series, the next is the sum of the previous two: a+b and the
following oneis b+(atb) or at+2b:-

ab|atb at+2b
123 5

Y ou can now make a Pythagorean triangle as follows:

1. Multiply the two middle or inner numbers (here 2 and 3 giving 6);

2. Double theresult (heretwice 6 gives 12). Thisisone side, s, of the Pythagorean Triangle.

3. Multiply together the two outer numbers (here 1 and 5 giving 5). Thisis the second side, t, of the Pythagorean triangle.

4. Thethird side, the longest, is found by adding together the squares of the inner two numbers (here 22=4 and 32=9 and
their sum is 4+9=13). Thisisthethird side, h, of the Pythagorean triangle.

We have generated the 12, 5,13 Pythagorean triangle, or, putting the sidesin order, the 5, 12, 13 triangle thistime.

Try it with 2, 3, 5 and 8 and check that you get the Pythagorean triangle: 30, 16, 34.
Is this one primitive?

In fact, this process works for any two numbersa and b, not just Fibonacci numbers. The third and fourth numbers are found
using the Fibonacci rule: add the latest two values to get the next.

Four such numbers are part of a generalised Fibonacci series which we could continue for aslong as we liked, just aswe did
for the (real) Fibonacci series.

All Pythagor ean triangles can be generated in thisway by choosing suitable starting numbers a
and b!

%= Connectionsin Mathematics; An Introduction to Fibonacci via Pythagoras E A Marchisotto in Fibonacci
Quarterly, vol 31, 1993, pages 21 - 27.

This article explores many ways of introducing the Fibonacci numbers in class starting from the Pythagorean triples, with an
extensive Appendix of references useful for the teacher and comparing different approaches. Highly recommended!

T Pythagor ean Triangles from the Fibonacci Series C W Raine in Scripta Mathematica vol 14 (1948) page 164.
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o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |L=i=0z

aaaaaa

Maths from the Fibonacci Spiral diagram

Let'slook again at the Fibonacci squares and spiral that we saw in the Fibonacci Spiral section of the

Fibonacci in Nature page.

Wherever we stop, we will always get a rectangle, since the next square to add is determined by the

longest edge on the current rectangle. Also, those longest edges are just the sum of the latest two sides-of -

squares to be added. Since we start with squares of sides 1 and 1, thistells us why the squares sides are 13

the Fibonacci numbers (the next is the sum of the previous 2). -.2-| 3
a

&

Also, we see that each rectangleis ajigsaw puzzle made up of al the earlier squares to form arectangle.
All the squares and all the rectangles have sides which are Fibonacci numbersin length. What is the
mathematical relationship that is shown by this pattern of squares and rectangles? We express each rectangl€'s area as a sum of
its component square areas:

The diagram shows that

12412 +22+32 +52+82 +132=13x21
and also, the smaller rectangles show:
12+12=1x2
12+12 +22=2x3
12+12 +22+32=3x5
12+12 +22+32 +52=5x8
12+12 +22+32 +52+82 =8x13
This picture actually is aconvincing proof that the pattern will work for any number of squares of Fibonacci numbers that we
wish to sum. They always total to the largest Fibonacci number used in the squares multiplied by the next Fibonacci number.
That isabit of amouthful to say - and to understand - so it is better to express the relationship in the language of mathematics:
12412+ 22+ 32+ ... + F(n)2 = F(n)F(n+1)
anditistruefor ANY nfrom 1 upwards.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. |Ls1z0z

..and now it's your turn!

- e 1N NQS 10 dO =

Here are sonme series that use the Fibonacci nunbers. Conpute a few terns and see if
you can spot the pattern, ie guess the fornula for the general termand wite it down
mat hemati cal | y:

- F(1), F(1)+F(2), F(1)+F(2)+F(3), ... =1, 2, 4,7, 12, 20,
Keun Young Lee, a student at the d enbrook North Hi gh School in
Chi cago, told ne of a generalization of this. Can you spot it too?
What is F(k)+F(k+1)+...+F(n)?
eg 5+8+13 (k=5 and n=7) is 26
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3+5+8+13+21 (k=4 and n=8) is 50.
This problemw ||l be the sane as the first problemhere if you let k=1
and this is a useful check on your fornula.

. F(1), F(1)+F(3), F(1)+F(3)+F(5), =1, 3, 8, 21,
. F(2), F(2)+F(4), F(2)+F(4)+F(6), =1, 4, 12, 38,
« F(1)+F(4), F(2)+F(5), F(3)+F(6), = 4, 6, 10, 16,
. F(1)+F(5), F(2)+F(6), F(3)+F(7), =6, 9, 15, 24,
.« F(1)2+F(2)2, F(2)2+F(3)2, F(3)2+F(4)2, ...=2, 5, 13, 34,
. Can you find a connection between the terns of:
1x3, 2x5, 3x8, 5x13, ... , F(n-1)xF(n+l),
and the follow ng series?
2x2, 3x3, 5x5, 8x8, ... , F(n)xF(n),

The connection was first noted by Cassini (1625-1712) in 1680 and is called
Cassini's Relation (see Knuth, The Art of Conputer Progranm ng, Vol une
1: Fundanental Al gorithnms, section 1.2.8).

. Try choosing different small values for a and b and finding sone nore
Pyt hagorean triangl es.
Tick those triangles that are primtive and out a cross by those which are
multiples (of a primtive triangle).
Can you find the sinple condition on a and b that tells us when the generated
Pyt hagorean triangle is primtive? [Hnt: the condition has two parts: i) what
happens if both a and b have a conmmon factor? ii) why are no primtive triangles
generated if a and b are both odd?].

. Find all 16 primtive Pythagorean triangles with all 3 sides |ess than 100.
Use your list to generate all Pythagorean triangles with sides snmaller than 100.
How many are there in all?

[Optional extra part: Can you devise a nethod to find which a and b generated a
gi ven Pyt hagorean triangl e?

Eg G ven Pythagorean triangle 9,40,41 (and we can check that 92 + 402 = 412),
how do we cal culate that it was generated fromthe val ues a=1, b=47]

If you don't know how to begin, or get stuck,
look at the Hints and Tips page to get you going!

So try them for yourself. This is where Mathematics becomes more of an Art than a Science, since you are relying on your
intuition to "spot” the pattern. No one is quite sure where this ability in humans comes from. It is not easy to get a computer to
do this (although Maple is quite good at it) - and it may be something specifically human that a computing machine can never
really copy, but no oneis sure at present. Here are two references if you want to explore further the arguments and ideas of
why an electronic computer may or may not be able to mimic a human brain:

= Prof Roger Penrose's book Shadows of the Mind published in 1994 by Oxford Press makes interesting
reading on this subject.
¥ Anon-line Journal, Psyche has many articles and reviews of this book in Volume 2.

Dr. Math has some interesting replies to questions about the Fibonacci series and the Golden section together with afew more
formulae for you to check out.

W& S, V4jda, Fibonacci and L ucas numbers, and the Golden Section: Theory and Applications, Halsted Press (1989).
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The mathematics of the Fibonacci series

Thisis awonderful book - now out of print - which isfull of formulae on the Fibonacci numbers and Phi. Do try and find it in
your local college or university library. It iswell worth dipping in to if you are studying maths at age 16 or beyond!

¥ Mathematical Mystery Tour by Mark Wahl, 1989, is full of many mathematical investigations, illustrations, diagrams,
tricks, facts, notes as well as guides for teachers using the material. It is agreat resource for your own investigations.

& Fibonacci Home Page

. . . The next Topicis...
WHERE TO NOW? )
t—urzggr I:uzzllnq World of the Fibonacci = The Golden Section - the Number and

Its Geometry

\lf Thefirst 500 Fibonacci Numbers
\If A Formulafor Fibonacci Numbers

© 1996-2001 Dr Ron Knott  R.Knott@surrey.ac.uk  last update:31 March 2001
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Thefirst 100 Fibonacci numbers, factorized

The Fibonacci numbers

Contents of this Page

. TheFibonacci series
. Thefirst 100 Fibonacci numbers, factorised

.. and, if you want more ...

. Fibonacci numbers 101-300, factorised
. Fibonacci Numbers 301-500, not factorised)

. Thereisacompletelist of al Fibonacci numbers and their factors up to the 1000-th Fibonacci and 1000-th
Lucas numbers and partial results beyond that on Blair Kelly's Factorization pages

The Fibonacci series

is formed by adding the latest two numbers to get the next one, starting from O and 1:

01 --the series starts |like this.
0+1=1 so the series i s now
011
1+1=2 so the series continues...
011 2 and the next termis
1+2=3 so we now have
01123 and it continues as follows ...

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

N E W (May 1999)
Try this Fibonacci Calculator, written in JavaScript,

if you are using Microsoft Interner Explorer 4.0 or later OR Netsacpe Navigator or Communicator version 4.0 or
later.

It can find Fib(2000) exactly - all 418 digits - in about 50 seconds on an Apple Macintosh PowerBook G3 series
266MHz computer.

It can find the first few digits of even higher numbers, instantly, such as the twenty-millionth Fibonacci
number, F(20,000,000) which begins 285439828. . . and has over 4 million digits!
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Thefirst 100 Fibonacci numbers, factorized

The (recurrence) formulafor these Fibonacci numbersis:

F(0)=0, F(1)=1,

The first 100 Fibonacci numbers, completely factorised

If anumber has no factors except 1 and itself, then it is called a prime number.
The factorizations here are produced by Maple with the command

wi t h( conbi nat) ;

seq(l print(n, :

and then reformatted dlightly:

O©CoO~NOO O WNPE >

NNNRPRRPRRPRRPRPRRRRR
NHO@mN@mwaHO---------

The first 100 Fi bonacci

F(n)=factorization

1 =1

1 =1

2 =2 Prine

3 =3 Prine

5=5 Prinme

8 = 23

13 = 13 Prine

21 = 3 x 7

34 = 2 x 17

55 = 5 x 11
89 = 89 Prine
144 = 24 x 32
233 = 233 Prine
377 = 13 x 29
610 = 2 x 5 x 61
987 = 3 x 7 x 47
1597 = 1597 Prinme
2584 = 23 x 17 x 19
4181 = 37 x 113
6765 = 3 x 5 x 11 x 41
10946 = 2 x 13 x 421
17711 = 89 x 199
28657 = 28657 Prine

N N DN
o b~ w
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46368 = 25 x 32 x 7 x 23

75025 = 52 x 3001

F(n)=F(n-1)+F(n-2) for

and an explicit formulafor F(n) just in terms of n (not previous terms) is given on alater page.

*, fibonacci(n), = ,ifactor(fibonacci(n))),n=1..100);

number s



Thefirst 100 Fibonacci numbers, factorized

26 :
27
28 :
29
30 :
31 :
32
33 :
34
35 :
36 :
37 :
38 :
39 :
40 :
41
42
43
44
45
46
47 .
48
49
50 :
51 :
52 :
53 :
54
55 :
56 :
57
58 :
59
60 :
61 :
62 :
63 :
64
65 :
66
67
68 :
69
70 :
71 :
72

121393 = 233 x 521

196418 = 2 x 17 x 53 x 109

317811 = 3 x 13 x 29 x 281

514229 = 514229 Prine

832040 = 23 x 5 x 11 x 31 x 61

1346269 = 557 x 2417

2178309 = 3 x 7 x 47 x 2207

3524578 = 2 x 89 x 19801

5702887 = 1597 x 3571

9227465 = 5 x 13 x 141961

14930352 = 24 x 33 x 17 x 19 x 107
24157817 = 73 x 149 x 2221

39088169 = 37 x 113 x 9349

63245986 = 2 x 233 x 135721

102334155 = 3 x 5 x 7 x 11 x 41 x 2161
165580141 = 59369 x 2789

267914296 = 23 x 13 x 29 x 211 x 421
433494437 = 433494437 Prinme

701408733 = 3 x 43 x 89 x 199 x 307
1134903170 = 2 x 5 x 17 x 61 x 109441
1836311903 = 139 x 461 x 28657
2971215073 = 2971215073 Prine
4807526976 = 26 x 32 x 7 x 23 x 47 x 1103
7778742049 = 13 x 97 x 6168709
12586269025 = 52 x 11 x 101 x 151 x 3001
20365011074 = 2 x 1597 x 6376021
32951280099 = 3 x 233 x 521 x 90481
53316291173 = 953 x 55945741

86267571272 = 23 x 17 x 19 x 53 x 109 x 5779
139583862445 = 5 x 89 x 661 x 474541

225851433717
365435296162
591286729879
956722026041
1548008755920
2504730781961
4052739537881
6557470319842
10610209857723
17167680177565
27777890035288
44945570212853
72723460248141
117669030460994
190392490709135
308061521170129
498454011879264

2
5
3

9
5
2
5
5
2

WNDN O1TW

3 x 72 x 13 x 29 x 281 x 14503
X 37 x 113 x 797 x 54833

X 514229 x 19489

3 x 2710260697

X 32 x 5 x 11 x 31 x 41 x 61 x 2521

55003497 x 4513
57 x 3010349 x 2417

x 13 x 17 x 421 x 35239681

7 x 47 x 1087 x 2207 x 4481

233 x 14736206161

3 x 89 x 199 x 19801 x 9901

69 x 1429913 x 116849

X 67 X 1597 x 63443 x 3571

2 x 137 x 829 x 18077 x 28657

5x 11 x 13 x 29 x 71 x 911 x 141961
46165371073 x 6673

25 x 33 x 7 x 17 x 19 x 23 x 107 x 103681

X X

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibtable.html (3 of 5) [12/06/2001 17:14:02]



Thefirst 100 Fibonacci numbers, factorized

73 :
74
75 :
76 :
77
78 :
79
80 :
81 :
82 :
83 :
84 :
85 :
86 :
87 :
88 :
89 :
90 :
91 :
92 :
93 :
94 :
95 :
96 :
97 :
98 :
99 :
100:

806515533049393 = 86020717 x 9375829

1304969544928657 = 73 x 149 x 54018521 x 2221

2111485077978050 = 2 x 52 x 61 x 230686501 x 3001
3416454622906707 = 3 x 37 x 113 x 29134601 x 9349
5527939700884757 = 13 x 89 x 4832521 x 988681

8944394323791464 = 23 x 79 x 233 x 521 x 859 x 135721
14472334024676221 = 157 x 92180471494753

23416728348467685 = 3 x 5 x 7 x 11 x 41 x 47 x 1601 x 3041 x 2161
37889062373143906 = 2 x 17 x 53 x 109 x 4373 x 19441 x 2269
61305790721611591 = 370248451 x 59369 x 2789

99194853094755497 = 99194853094755497 Pri e

160500643816367088 = 24 x 32 x 13 x 29 x 83 x 211 x 281 x 421 x 1427
259695496911122585 = 5 x 1597 x 3415914041 x 9521
420196140727489673 = 433494437 x 6709 x 144481

679891637638612258 = 2 x 173 x 3821263937 x 514229

1100087778366101931 3 x 7 x 43 x 89 x 199 x 263 x 307 x 881 x 967
1779979416004714189 1069 x 1665088321800481
2880067194370816120 = 23 x 5 x 11 x 17 x 19 x 31 x 61 x 181 x 541 x 109441
1
3

4660046610375530309 32 x 233 x 159607993 x 741469
7540113804746346429 X 139 x 461 x 275449 x 28657 x 4969

12200160415121876738 = 2 x 557 x 4531100550901 x 2417
19740274219868223167 = 6643838879 x 2971215073

31940434634990099905 = 5 x 37 x 113 x 761 x 67735001 x 29641
51680708854858323072 = 27 x 32 x 7 x 23 x 47 x 769 x 1103 x 3167 x 2207
83621143489848422977 = 193 x 389 x 3084989 x 361040209

135301852344706746049 13 x 29 x 97 x 599786069 x 6168709
218922995834555169026 2 x 17 x 89 x 197 x 18546805133 x 19801

354224848179261915075 = 3 x 52 x 11 x 41 x 101 x 151 x 401 x 570601 x 3001

[Thereisacompletelist of all Fibonacci numbers and their factors up to the 1000-th Fibonacci and 1000-th Lucas
numbers and partial results beyond that on Blair Kelly's site.]

A Fibonacci Calculator

Hereis aFibonacci Calculator which opensin a separate window. It calculates thousands of Fibonacci numbers

exactly and millions upon millions to the first few digits!
N
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Thefirst 100 Fibonacci numbers, factorized

‘.’ the Fibonacci Home Page

'l‘ Mathematical Magic of the
Fibonacci Numbers

The next topicis...

€ The Puzzling World of the WHERE TO NOW?? =3 The Golden Section - the Number

Fibonacci Numbers

and |ts Geometry

\lf Fibonacci numbers 101-300
\lf Fibonacci Numbers 301-500

\lf A Formulafor the Fibonacci
numbers

© 1995-2001 Dr Ron Knott  R.Knott@surrey.ac.uk  updated: 24 January 2000
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A Formulafor the nth Fibonacci number

Thes

A formula for Fib(n)

Contents of this Page

== |[ine means there is a Things to do investigation at the end of the section.

Binet's Formula for the nth Fibonacci number s

Here are several formulae for computing Fib(n) directly in terms of n.
o Historical Note - Binet's Formula or de Moivre's?

How many digits does Fib(n) have?
o Using the display on your calculator
We see how to use thelittle "E" on your calculator's display to find out how many digits there are
in anumber.
o Using the LOG button on your calculator

Here we introduce LOGS to find the length of any number
o S0 how many digits are therein Fib(n)?

Calculating the next Fibonacci number directly
o Proving that thisformulais correct
Binet's Formula for negative n

We extend the formulato look at negative whole-numbers as values for n which leads to a natural
extension of the Fibonacci seriesto ALL integers, positive, negative or zero.
Binet's Formulafor non-integer values of n? (Optional!)

Finally, if you want to see if we can extend the formula yet again to ALL numbersfor n, including
fractional numbers, it leads us to consider Complex Numbers, but this section is a bit advanced and is for
the mathematically minded reader and for post 16 years mathematics students.

o Complex Numbers

o Applications of Complex numbers

o Argand Diagrams

o Plotting functions on an Argand Diagram
o References on Complex Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

Binet's Formula for the nth Fibonacci number

We have only defined the nth Fibonacci number in terms of the two before it:

the n-th Fibonacci number is the sum of the (n-1)th and the (n-2)th.

So to calculate the 100th Fibonacci number, for instance, we need to compute all the 99 values before it first -
quite atask, even with a calculator!
A natural question to ask thereforeis:
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A Formulafor the nth Fibonacci number

Can wefind aformulafor F(n) which involves
only n and does not need any other (earlier) Fibonacci values?
Yes! It involves our golden section number Phi and its reciprocal phi:
Hereitis:
Phi" — (—Phi)™ _ Phi" — (—phi)"
A5 Y5

where Phi = 1.61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ... .
The next version uses just one of the golden section values: Phi, and all the powers are positive:

Iy
Fibm = 1 “pnin
5

Fib(n) =

Since phi is the name we use for 1/Phi on these pages, then we can remove the fraction in the numerator here
and make it simpler, giving the second form of the formula at the start of this section.

1++5 145
We can also write this in terms of 45 since Phi = — and —phi = — ;

n n
Fihm};b“—{—ﬁ“=¢“—{—@“=L[[1+4§] _[1—45] ]

&+ g V5 +5 z &

If you prefer valuesin your formulae, then here is another form:-

1.6180339.." — (—0.6180339..)"

Fib(n) =
() 2.236067977..

Thisisasurprising formula since it involves square roots and powers of Phi (an irrational number) but it always
gives an integer for al (integer) values of n!

Here's how it works:

Let X= Phih =(1-618..)"
and Y=(-Phi)-P=(-1-618..)-"=(-0-618..)" then we have:

n: X=Phin : Y=(-Phi)-n: X-Y: (X-Y)/sqrt(5):
0 1 1 0 0
1 1-618033989 -0-61803399 2- 23606798 1
2 2-618033989 0- 38196601 2- 23606798 1
3 4.236067977 -0-23606798 4.47213595 2
4 6- 854101966 0- 14589803 6- 70820393 3
5 11- 09016994 -0-09016994 11-18033989 5
6 17-94427191 0- 05572809 17- 88854382 8
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A Formulafor the nth Fibonacci number

7 29- 03444185 -0-03444185 29- 06888371 13
8 46- 97871376 0- 02128624 46- 95742753 21
9 76- 01315562 -0-01315562 76- 02631123 34
10 1229918694 0- 00813062 122-9837388 55

Y ou might want to look at two waysto prove this formula: the first way is very simple and the second is more
advanced and is for those who are already familiar with matrices.

Since phi islessthan one in size, its powers decrease rapidly. We can use this to derive the following ssmpler
formulafor the n-th Fibonacci number F(n):

F(n) = round( Phin /+5)
where the round function gives the nearest integer to its argument.

n: Phi "/ sqrt(5) ..rounded
0 0- 447213595 0
1 0- 723606798 1
2 1-170820393 1
3 1-894427191 2
4 3- 065247584 3
5 4.-959674775 5
6 8- 024922359 8
7 12- 98459713 13
8 21- 00951949 21
9 33-99411663 34
10 55- 00363612 55

Notice how, as n gets larger, the value of Phi"/+5 is amost an integer.

Things to do -
1. What then is F(100) according to this fornula? You may choose to wite
a conmputer programfor this, or use a package (such as Mathematica or
Mapl e) which lets you work out very long integers exactly, or you can

just get an approxi mate val ue on your cal cul ator.

2. How many digits does F(100) have? (the approxi mate val ue on your
cal cul ator should tell you). Check your answer with the list of
Fi bonacci nunbers.

3. Look at the followng line fromthe |ast Table above:

n: Phi "=X: (-Phi)-n=y:  X-Y: (X-Y)/+(5):
1 1-618033989 -0-61803399 2.23606798 1
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A Formulafor the nth Fibonacci number

You m ght nave noticed that we didn't ADD the X and Y val ues to get
1-618..-0-618..=1 directly but instead we subtracted and divi ded by

sgrt(5).

Let's see what happens if we do just ADD the X and Y col unms:

(a) Add a new colum to the table above which is X+Y. Fill it in and
you'll notice sonething very surprising - another integer series that

is not the Fibonacci nunbers!! These nunbers are called the Lucas
Nunbers and they al so have sone simlar properties to the Fi bonacci
nunbers and are covered in another page at this site (see Fi bonacci
Hone page).

(b) Can you spot the rule whereby the |latest two Lucas nunbers are
used to generate the next Lucas nunber?

Historical Note - Binet's Formula or de Moivre's?

Many authors say that this formulawas discovered by J. P. M. Binet (1786-1856) in 1843 and so call it Binet's
Formula.

Don Knuthin The Art of Computer Programming, Volume 1 Fundamental Algorithms, section 1-2.8, says
that A de Moivre (1667-1754) had written about this formula more than 100 years before Binet, in 1730, and
had indeed found a method for finding formulafor any general series of numbers formed in asimilar way to the
Fibonacci series. Like many results in Mathematics, it is often not the original discoverer who gets the glory of
having their name attached to the result, but someone later!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

How many digits does a number have?

Using the display on your calculator

One of the questions above asks you to use your calculator to find out how many digits are in a number. When
the number gets too big for the calculator's display, it shows the first few digits and alittle "exponent” which
says how to move the decimal place from where it is shown to it true place - negative means move it to the left,
otherwise move it to the right from where it is shown in the display.

So Phi20/sgrt(5) on my calculator is 6765-000029 and Fib(20)=6765.

But Phi60/sgrt(5) shows as 1:548008755 12 where the little figures at end are the "exponent”, that is, the true
valueis 1-548008755x1012, |If we move the decimal point 12 places to the right (putting in Os for the missing
digits), we get:

1548008755000. and the correct value for Fib(60) is
1548008755920
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A Formulafor the nth Fibonacci number

So the exponent, when positive, has told us how many digits there are in the
number calculated, showing just the first few of the digitsif not all of them
will fit into the display window!

Similarly, phi60 isjust 1/Phi0 which we've just calculated. Using the "1/x" button on my calculator when it is
showing the value above gives: 6-459911784-13 meaning 6-459911784x10-13. This time we must move the
decimal place to the left since the exponent is negative and we must move it 13 places. This gives
0-00000000000064511784 as the value for phi€0 - quite small!

Using the LOG button on your calculator

But how can we calculate the number of digitsin a given whole number?
This section shows how to use the LOG button on your calculator to find out how long a number is.

Returning to the investigation above where you cal culated F(100), this number is usually too big for most
calculators to compute, but we can find how long it is as follows, using the ssimplified formula:

F(n) = round( Phi" /+/(5))
[Thisvery nearly givesthe correct value of F(n) since the part of the formula we have omitted is very small
indeed for large n.]

The LOG button on your calculator can be used to compute how long a number is, that is, how many

decimal digitsit has.
. Thisisthe"logarithm to base 10". Another button, usually labelled LN is the "logarithm to base €".
. Takethe LOG of any 3-digit number and the answer should be "2 point something".

Try with any 4-digit number and you get a LOG of "3.something". So,

the number of digitsin any integer isjust 1+ the whole-part of its LOG.
. LOGs have useful properties such as:
iIf we ADD LOGS we find the length of the PRODUCT of the original numbers,
If we SUBTRACT LOGS we find the length of the QUOTIENT (DIVISION).
So the LOG of x2isjust 2 times LOG x and
the LOG of x3=3 LOG x and
the LOG of +(x) = (LOG x)/2 and so on.

How many digits are there in Fib(n)?

So, now you have enough information to answer the question:
How many digits has F(1000)?
Computing LOG (Phi1000 /+{(5)) is the same as computing
1000* LOG(Phi) - (LOG */(5)) = 1000*LOG Phi - (LOG 5)/2.
So 1+the whole number part of your answer is the number of digitsin F(1000).
In fact, you can find the first few digits by using the rest of the LOG answer, but I'll leave that for you to figure
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out, giving you the hint that the "opposite”" (the inverse) function to LOG(n) is 10"

ThereisaPUMAS (Practical Uses of Maths and Science) page by Kim Aaron, of the Jet
Propulsion Lab, entitled "Just what is alog anyway?' It shows how Kim has found many

practical uses of logarithms as a working engineer.
This page is designed for middle school students, but teachers will also find it well worth
checking out too!

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

Calculating the next Fibonacci number directly

Suppose we have evaluated Fib(100) and we want to know the next value: Fib(101). Do we have to use Binet's
formula again? Well we could do, of course, but hereis a short-cut.

Thereisalso aformulathat, given one Fibonacci number, returns the next Fibonacci number directly,
calculating it in terms only of the previous value (ie not needing the value before as well).

If x is the value of F(n) then
F(n+l) = floor( {x+1+v[5 x2]}/2 )

The "floor" function floor(a) means "the next integer below aor aitself if aisan integer”. For positive values, it
means "rub out anything after the decimal point”. The name comes from the picture of a building with floors at
levels 0, 1, 2, etc (say 10 metrestall) and also some below ground labelled -1, -2, -3, etc. If we now hold an
object at height "a" and let go, what "floor" will it land on?

floor( 2-5)= 2 floor( 2)= 2 floor( 2-99)= 2 floor( 2-00001)= 2
floor(-2-5)=-3 floor(-2)=-2 floor(-2-99)=-3 floor(-2-00001)=-3

Here's an example of the "next Fibonacci” formulausing a small value of n to check it works:
Since F(5)=5 then F(6)=floor( (5+1+sqrt(5x25))/2 )
=floor( (6 +sqgrt( 125))/2 )
=floor( (6 + 11-180 )/2 )
)

=f | oor ( 8- 59
=8

which is correct!
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Here are two more examples.

Proving that this formula is correct

Y ou can easily evaluate F(0) and F(1) by this formula and see that they give 0 and 1 respectively. Then, if you
are familiar with proof by induction you can show that, supposing the formulais true for F(n-1) and F(n) then
it must also be true for F(n+1) by showing that adding the formula's expressions for F(n) and F(n-1) givesthe
formulas expression for F(n+1).

Other ways of proving it involve results about recurrence relations and how to solve them, which are very like
solving differential equations, except that they deal with integer values not real number values. Thisisin
University level courses on Pure or Discrete Mathematics.

[ For the university level mathematician, there is an interesting HAKMEM note on afast way of computing
Fibonacci numbers and its applications.]

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More..

Binet's Formula for negative n?

Earlier on this page we looked at Binet's for mula for the Fibonacci numbers:
Fib(n) = { Phi N - (-phi) " }/5
Here Phi=1-6180339... and phi = 1/Phi = Phi-1 = (+5-1)/2 = 0-6180339... .

We only used thisformulafor positive whole values of n and found - surprisingly - it only givesinteger results.
Well perhaps it was not so surprising really since the formulais supposed to be define the Fibonacci numbers
which are integers; but it is surprising in that this formulainvolves the square root of 5, Phi and phi which are
al irrational numbersi.e. cannot be expressed exactly asthe ratio of two whole numbers.

Suppose we try negative whole numbers for n in Binet's formula.

The formula extends the definition of the Fibonacci numbers F(n) to negative n.

Infact, if we try to extend the Fibonacci series backwards, still keeping to the rule that a Fibonacci number is
the sum of the two numberson its LEFT, we get the following:

n . e

: -5-4-3-2-10 1 2 3 4
Fi b(n): ce - 5-3 2-1 10 1 2 3

5 6
1 5 8

o O

and thisis consistent with Binet's formula for negative whole values of n.
So we can think of Fib(n) being defined an all integer values of n, both positive and negative and the Fibonacci
series extending infinitely far in both the positive and negative directions.
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Binet's formula for non-integer values of n?

This section isoptional and at an advanced level i.e. post 16 year s education.
Take me back to the Fibonacci Home page now

or learn about squar e roots of negative numbersin what follows!

Well now we've tried negative values for n, why not try fractional or other non-whole values for n?

This doesn't make sense in terms of numbersin a series (thereis a 2"d and a 3rd term and even perhaps a -2nd
term but what can we possibly mean by a 2-5th term for instance)??

However, this could give us some interesting (mathematical) insights into the whole-number terms which are
our familiar Fibonacci series.

Complex Numbers
The trouble is that in Binet's formula:

Fib(n) = { Phi N - (-phi) " }/+5
the second term (-phi)" means we have to find the n-th power of a negative number: -phi and nis not awhole

number. If n was 0-5 for instance, meaning sgrt(-phi), then we are taking the square-root of a negative value
which is"impossible".

Mathematicians have already extended the real-number system to cover such "imaginary” numbers. They are
called complex number s and have two parts A and B, both normal real numbers: areal part, A, and an
imaginary part, B. Theimaginary part isamultiple of the basic "imaginary" quantity +(-1), denoted i. So
complex numbers arewrittenasx +iy or x +y i or sometimesasx + | y or even more smply as (x,y).

Applications of Complex numbers

Tomeitisstill surprising that such "imaginary” numbers - or numbers involving the imaginary quantity that is
the square root of a negative number - have very practical applicationsin the real world.

For instance, electrical engineers have already found many applications for such "imaginary" or complex
numbers. Whereas resistance can be described by areal number often measured in ohms, complex numbers are
used for the inductance and capacitance, so they have very practical uses!

Electrical engineerstend to use|j rather than i when writing complex numbers.

Mathematicians find uses for complex numbers in solving equations:

. Every equation of the form Ax+B=0 has a solution which isafraction: namely X=-B/A if A and B are
integers. These are called linear equations where A and B are, in general, any real numbers.
. Every equation of the form Ax2 + Bx + C=0 has either one or two solutions IF we allow complex
numbersfor x. (Here A is not zero or we just get alinear equation.)
For instance x2=2 has two solutions:
+sgrt(2) and -sqrt(2)
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but x2=0 has just one solution namely x=0.
Note that x2=-2 has two solutions too:
x=sgrt(-2)=isgrt(2) and x=-sgrt(-2)=-isgrt(2)
. Every equation of the form Ax3 + Bx2 + Cx + D = 0 has at most 3 solutions again allowing x to be a
complex number if necessary.

Thisleads to a beautiful theorem about solving equations which are sums of (real number multiples of) powers
of x, called polynomialsin x:
If the highest power of x in a polynomial isn then there are at most n complex number solutionswhich
make the polynomial's value zero

& Complex Numbersand Their Applications by F J Budden, Longman's 1968, is now out of print but is
an excellent introduction to the fascinating subject of complex numbers and their applications.

Argand Diagrams

Writing (x,y) for a complex numbers suggests we might be able to plot complex numberson a graph, the x
distance being the real part of a complex number and the y height being its complex part.

Such plots are called Argand diagrams after J. R. Argand (1768-1822).

We can plot an individual point such as 1 - 2i asthe point (1,-2). Numbers Irmaginary

which are real have zero astheir complex part so the real number 3isthe | Argand hicts

same as the complex number 3 + 0 and has "coordinates' (3,0). Thereal L2 zi| (0.3

number -1-5isthesameas-1-5+ 0i or (-1.5,0). 1

In general, the real number r isthe complex number r + 0i and is plotted ip(0,1]

at (r,0) on the Argand diagram. SR AL ':33;334 il
In fact, al the real values are aready in the graph along the x axis also (-15.0 -

called thereal axis. 2 -3
Numbers which are purely imaginary have areal-part of zero and so are of z5if0,-3.5)

the form O+yi always lying exactly on they axis ( theimaginary axis). T

Plotting functions on an Argand Diagram

We can plot a complex function on an Argand diagram, that is, a function whose values are complex numbers.
Thisiswhere Binet's formula comesin since it will give us complex numbers as n (now area number) varies
over the real numbers.

So what happens if we plot a graph of F(n) described by Binet's formula, plotting the results on an Argand
diagram?

The blue plot isfor positive values of n from O to 6. Note how this curve crosses the x axis (representing the
"real part of the complex number") at the Fibonacci numbers, 0, 1, 2, 3, 5 and 8. But thereisaloop so it crosses
the axistwice at x=1, and we really do get the whole Fibonacci sequence 0,1,1,2,3,5,8.. as the crossing points.
Thered plot is of negative values of nfrom -6 to 0. It also crossesthe x axis at thevalues-8, 5, -3, 2,-1, 1and 0
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corresponding to the Fibonacci numbers F(-6), F(-5), F(-4), F(-3), F(-2), F(-1) and F(0).

Fibin»,—-6ini0, Argand diagram Fibin»,0iniG, Argand diagram
o.z
o1
o Q/jm
-0.1
-0.z2
-0.3

Spirals?
. Notethat the red spiral for negative values of nisNOT an equiangular or logarithmic spiral that we
found in sea-shells on the Fibonacci in Nature page. Thisis because where the curve crosses the x axis at

1 and next at 2, so the distance from the origin has doubled, but the next crossing is not at 4 (which
would mean another doubling as required for alogarithmic spiral) but at 5.

. If you adjust the width of your browser window, you should be able to see both curves side by side. Now
it looks asif the two curves are made from the same 3-dimensional spiral spring-shape, abit like a spiral
bed-spring in cartoons, getting narrower towards one end. The red curve seemsto be looking down the
centre of the three-dimensional spring and the blue one looking at the same spring shape but from the
side. Comparing the two diagrams shows even the heights of the loops are the same!
| haven't yet found an explanation for this - can you find one? [Let me know if you do!]

The plots were produced using Maple's parametric plotting provided with its built-in "plot"
function:

Phi:=(sqrt(5)+1)/2; phi:=(sqrt(5)-1)/2;
f:=n->(Phi*n-(-phi)?*n)/sqrt(5);
plot([Re(f(n)),Im(f(n)),n=-6..0], col or =RED,
title="Fib(n),-62n20, Argand diagram);
plot([Re(f(n)),Imf(n)),n=0..6], col or =BLUE,
title="Fib(n),02n26, Argand diagram);

Kurt Papke has a Web page with a Java applet to show the two Argand diagrams but animating the formula that
f(n)=f(n-1)+f(n-2) for any real value n. The complex numbersf(n), f(n-1) and f(n-2) can beillustrated as
vector s, and so the formula f(n)=f(n-1)+f(n-2) becomes a vector equation showing that the vector f(n-1) added
to (followed by) the vector f(n-2) gives the same length-and-direction-movement as the vector f(n).

Kurt has an excellent 3D version of the spiral that you can rotate on the screen (using a Java applet) AND one

also for the Lucas numbers formulal

For adifferent complex function based on Binet's formula, see the following two articles where they both
introduce the factor € " = which is 1 when nis an integer:
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== Argand Diagrams of Extended Fibonacci and Lucas Numbers, F JWunderlich, D E Shaw, M J
Hones Fibonacci Quarterly, vol 12 (1974), pages 233 - 234;

%= An Extension of Fibonacci's Sequence P JdeBruijn, Fibonacci Quarterly vol 12 (1974) page 251 -
258;

References on Complex Numbers

Complex Numbers are included in some (UK based) Mathematics syllabuses at Advanced level (school/college
examinations taken at about age 17). Here are some books relating to different Advanced level Examination
Boards syllabus entries on Complex Numbers:

W GCE A level Maths: Complex Numbers A. Nicolaides,| SBN: 1872684270, 1995.

= Nuffield Advanced Mathematics: Complex Numbers and Numerical Analysis June 1994, Longman, | SBN:

0582099846.
W School Maths Project 16-19: Complex Numbers Cambridge, 1992, ISBN: 0521426529.
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Fibonacci Representations of integers

Using the Fibonacci numbers to represent
Integers

Contents of This Page

The » === symbol means a Thingsto do ends that section.
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m Digits in the Fibonacci system
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# Generalised Fibonacci Series in the Fibonacci System w s

Our decimal system

The way we write our numbersis based on a system of tens - the decimal system. Each column isworth ten times the
one on its right so that the columns indicate powers of ten:

1000 100 10 1
3 6 0 7 = three thousand, six hundred (no tens) and seven

Since each column is TEN times the one on its right, we need ten symbols to represent the ten valuesin each column:
0,1,2,34,5,6,7,8and9, caled digits.

Each positive number has a unique representation in the decimal system. Why use 10? The reason is almost certainly
that early writing systems were based on counting using the fingers. [Our word digit comes from the Latin for finger.
] Taly systems were ways of putting marks or notches in wooden sticks (tally sticks) and they can be read more
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easily if grouped in batches of 5 or 10 for convenience.

Other bases

What if we used another power or base rather than ten?
Binary

Using powers of 2, we have the binary system, used in almost all computers. Here the columns are labelled with the
powers of 2, and there are just 2 binary digits, 0 and 1, called bits.

21
11
2+1

+1 = el even

In order to distinguish 11 (eleven) from 11 in another base, we will put the base as a g oqript (OF SOMetimesin
brackets) after the representation to avoid confusion. So 1011 in binary is 11 in base 10 is written as.

1011, = 11,5 Note that the base nunber is always witten as a decinmal.

In the next section we will see that the binary system isused in musical notation.
Musical Notation

If acrotchet istaken as unit time (one beat), then the semibreveis 4 beats, thye minim 2, acrotchet is, aswe
assumed, 1, aquaver 1/,, a semiquaver 1/, and demisemiquaver is /5. They are written in musical notation as shown
here:

oddddd

421 1 1 1
I 4 B
A dot is placed after anote to add on one half of its value. So adotted crotchet is a crotchet plus aquaver and has a
duration of 15 time units; two dots after a crotchet give aduration of 1 + 1/2 + 1/4 = 1-75 units.

J. = J+.r
J.. = J+.r+.F

= F.JBudden in An Introduction to Number Scales and Computers, Longmans, 1965,

page 65, says he thinks the record number of dotsis4 in Verdi's Requiemin the Rex j
Tremenda. It is useful when along noteis followed by a quick note and the next noteis"on

the beat".

J.. &|d

Sal - va me

Binary fractions are written using column headings as follows:

8 4 2 1 - 1/2 1/4 1/8 ...
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So /4 = 0-01, and 3/8 = 0-011, sinceit is 1/4+1/8.
In binary, a dot after a crotchet adds a one in afractional column:

crotchet =1
crotchet dot = 1-1,

crotchet dot dot = 1-11,
crotchet dot dot dot = 1-111,

and so on.

More bases

Base 8 is called octal and is presumably used by intelligent octopuses (or should that be octopii)!
It uses"digits’' 0, 1, 2,3,4,5,6and 7.

Base 3isternary and usesonly 0, 1 and 2.

Hereis one hundred expressed in al the bases from 2 to 9:

1100100, = 102015 = 12104 = 4005 = 244 = 202; = 1444 = 1219 = 1004
Base 2 is called binary,

Base 3 is called ternary,

Base 4 is called quaternary,

Base 5 is called quinary,

Base 6 is called senary,

Base 7 is called septenary,

Base 8 is called octonary or octal,

Base 9 is called nonary,

Base 10 is called denary or decimal.

What about bases bigger than 10?

Thereisno logical reason why we cannot use any integer bigger than zero for a base. (Think about base 1: what do
the columns represent? What is 2 in base 1? What is 3? What is 7? This corresponds to a very early system of
numbering, where notches were put on sticks or knotstied in strings.) The only problem iswhat to use to represent 10
or more in asingle column? We need a single symbol for each value from 0 to B-1 in base B.

Usually the capital letters, A, B, C, etc, are used which take us up to base 36 (using the 10 digits and the 26 letters) -
after that, it's up to you!

Continuing our list of ways of representing one hundred in different bases, we have:

1010 = A 1110 =B 1210 =C and so on.
Here is one hundered again, this tinme expressed in sone bases bigger than ten:
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10010 = 9111 = 8412 = 7913 = 7214 = 6A15

Base 11 iscalled undenary,
Base 12 is called duodenary or duodecimal,
Base 16 is called hexadecimal.

Chad Lake at the University of Utah has a nice page on what he calls the Snake Algorithm for converting from one
base to another. It isaweb page for a course he gave at Indiana University.

The Fibonacci base system

What if we labelled the columns with the Fibonacci number s instead of powers of 10? We follow the usual
conventions of larger column sizes being on the LEFT:

..1385321
We represent number representations in this system by putting gy, after the representation: eg:
85321
10010Fib:8+2
Digits in the Fibonacci system

Thistimeit isnot clear what digits we should use in the columns. For instance, there are many ways to represent the
value ten in this system as well as in the example above:

10(10) = 2 x 5 = 2000g |,
=5+ 3+ 2 = lllOFib
=3 x3+ 1= BOlFib

10 = 1 :AFib

Usually a number representation system is most useful if it has aunique reprentation of every integer. Here we
don't, but we can get asingle distinctive way of representing all integersif we use only the digits 0 and 1 together
with the rule that no two ones can occur next to each other. Thislast condition is because the sum of any two
consecutive Fibonacci numbersisjust the following Fibonacci number, so we can always replace ..011.. by ..100.. .

To convince yourself that every number can be represented in this system, write down the Fibonacci representations
of al the numbersfrom 1 to 40. It starts as follows:

Deci nal Fi bonacci
.. 85321

0 0

1 1

2 10

3 100
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4 101
1000
1001
1010

10000
9 10001

10 10010

11 10100

12 10101

13 100000

14 100001

15 100010

16 100100

17 100101

18 101000

19 101001

20 101010

We can also call thisthe Fibonaccimal system (pronounced fib-on-arch-i-mal) as Marijke van Gans does because
decimal refersto Base 10.

An Application of the Fibonacci Number Representation

There are approximately 8 kilometresin 5 miles. Since both of these are Fibonacci numbers then there are
approximately Phi (1.618..) kilometresin 1 mile and phi (0.618..) milesin 1 kilometres.

Thereal figureis more like 1.6093.. kilometresin 1 mile. This comes from the precise definition of 1 inch equals 2.54 centimetres
exactly, and 100,000 centimetres make 1 kilometre. In the imperial system, 36 inchesare 1 yard and 1760 yards are 1 mile.

Replacing each Fibonacci number by the one before it has the effect of reducing it by approximately 0.618 (phi) times
(the ratio of a Fibonacci number to the one before it is nearly phi).

So to convert 13 kilometresto miles, replace 13 by the previous Fibonacci number, 8, and 13 kilometresis about 8
miles. Similarly, 5 kilometresis about 3 miles and 2 kilometres is about 1 mile.

Now suppose we want to convert 20 kilometres to miles where 20 is not a Fibonacci number. We can express 20 as a
sum of Fibonacci numbers and convert each number separately and then add them up.

Thus20=13+5+ 2.
Using = to stand for approximately equals and replacing 13 by 8, 5 by 3and 2 by 1, we have

20 kms = 13+ 5+ 2 kilometres
= 8+ 3+ 1miles
= 12 miles.
To convert milesto kilometr es, we write the number of miles as a sum of Fibonacci numbers and then replace each
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by the next larger Fibonacci number:

20 miles = 13+ 5+ 2 miles
21 + 8 + 3 kilometres
32 miles.

There is no need to use the Fibonacci Representation of a number, which uses the fewest Fibonacci numbers, but you
can use any combination of numbers that add to the number you are converting. For instance, 40 kilometresis 2 x 20
and we have just seen that 20 kmsis 12 miles. So 40 kmsis 2 x 12 = 24 miles approximately.

o

[With thanks to Paul V S Townsend for reminding me of this application.]

- Things to do -
. Afew years ago, the speed limt in USA was 55 nph (niles per hour). Wat would that
be in kph (kilonetres per hour)?
o« The speed limt on UK notorways is 70 nph. What is this in kph?
VWhat is the speed limt in built up areas (30 nmph) in kph?
« The current train speed record of 552 kph was set on April 14 1999 in Japan.
What is the equivalent speed in nph using the Fibonacci nethod?
What is the equival ent speed in nph using the conversion factor of 1.6093 km per mle?

Reference

W& Concrete Mathematics (2nd edition) by Graham, Knuth and Patashnik, Addison-Wesley, section 6.6.

An easy way to Multiply

The Egyptian system - using Doubling...

The Egyptians had an easy way to multiply two integers which involved only doubling numbers and adding - no
multiplication tables to learn and no need for a calculator (except to do the addition).

For example, 19 x 65. We write the two numbers at the head of two columns, choosing one column to keep doubling
and the other to keep halving (ignoring remainders), until the halving column reaches 1.

hal ve doubl e odd?
19 65 +
9 130 +

4 260
2 520
1 1040 +

Any row whose halving column entry was odd is marked (here with +) and we add the marked values from the
doubling column. In our example 65+130+1040=1235 which is the product of 19 and 65.

The method works because if we represent 19 in the binary system we have 16+2+1=10011(2). So we want
19x65=(16+2+1)x65=16*56 + 2*65 + 1*65. ie, the 1st, 2nd and 5th values
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- Things to do - ——

. Check that if you halve the 65 columm and double the 19 colum the nethod
still works.

. Try the Egyptian nmethod on 32x65.

« Try it on 31x65.

The Fibonacci system
A similar system uses the Fibonacci representation to replace each doubling of the Egyptian method with an addition.

Let's take the same example: 19x65.

Thistime we take just one number - say 65 - as the head of the right hand column, the left column starting with 1. The
second row has 2 on the left and we double 65 to get 130 on the right. Now each successive row is the sum of the
previous TWO entries above it, taking each column separately. So since we started with 1 and 2 on the left we will get
3,5,8,... that is, the Fibonacci numbers on the left hand side. Stop when we can find a Fibonacci number which is
bigger than the other number in the product - here 19:

65 +
130
195
325 +
520
845 +

R WOoOUTWN -

N -

We mark the rows this time by finding those entries in the left column that add up to 19. There many be several ways
to do this selection but any will do. Here we have chosen 13+5+1. If we add up the right hand entries on these rows
we have: 65+325+845=1235 which is again 19x65.

- . TN NQS 10 dO - —

« Try it the other way round, starting with 19 and stop when the Fibonacci nunber
exceeds 65.

« Try the same nultiplications as above: 32x65 and 31x65.

« Look up the article where this idea was first presented:
Fi bonacci, Lucas and the Egyptians by S La Barbera in The Fi bonacci Quarterly, Vol 9,
1971, pages 177-187.

Patterns in the Fibonacci representations

Patterns in the columns - the Rabbit sequence

In base 10, if welist al the integers from 1, then there are patterns in the columns:
Decimal patterns

Column 1 (units) cyclesthrough all the digits O, 1, 2, 3, 4, 5, 6, 7, 8 and 9 repeatedly;
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Column 2 (tens) cycles through all the digits but each digit occurs ten times;
Column 3 (hundreds) is the same but each digits occurs 100 times;
and so on.

Fibonacci Representations patterns

Is there a pattern in the columns of the Fibonacci numbers in the Table above?
Yesthereis!

It is based on the Rabbit sequence which now includes the initial 0.

The pattern in column one is derived from the rabbit sequence where

every "1" in the rabbit sequence has been replaced by "10":-

The rabbit sequence:

010110101101101011010...

becomes:

01 01 1 01 01 12 01 1 01 01 1 01 O...
0 10 0 10 10 0 10 0 10 10 0 10 10 0 10 0 10 10 0 10 O ...
which is column 1 above, read downwards.

[NB Thisisexactly the same asif we flipped the bits (1 changesto 0 and 0 to 1) in the Rabbit sequence (without its
initial zero)!! However, there is a pattern in the other columns which is better seen with the description above.]

What about column 2 of the Fibonacci representations?
Thisisderived similarly:

every "1" in the rabbit sequence is replaced by "100" and
every "0" isreplaced by "00".

0 1 0 1 1 0 1 0 1 1 0 1 1 0O ... Rabbit Sequence
00 100 00 100 100 00 100 OO 100 100 00 100 100 00 ... Colum 2

where column 2 in the Table of Fibonacci representations is read downwards.

For column 3, replace "0" by "000" and "1" by "11000"
For column 4, replace "0" by "00000" and "1" by "11100000"
For column 5, replace "0" by "00000000" and "1" by "1111100000000"

The same pattern follows for all the columns:
Column i the just the rabbit sequence with "0" replaced by F(i) Osand "1" replaced by F(i-1) 1s followed by F(i) Os.

The number of 1s in a Fibonacci Representation

What is the least number of Fibonacci numbers that sum to a given n?
Thisisthe number of 1sin the Fibonaci representation, since the description given above guarantees the least number
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of Fibonacci's and is also called the minimal Fibonacci representation. Here we repeat the Fibonacci Representation
table from above but now include the number of 1'sin each representation:

Deci mal Fi bonacci 1s count
.. 85321
1

10

100

101
1000
1001
1010
10000
10001
10 10010
11 10100
12 10101

O©oO~NO O, WNBE

WINDNNENNENRERPRPPRE

From the table, we can see that the number of numbers with a Fibonacci representation of agiven lengthisa
Fibonacci number:

Thereis 1 of length 1,

thereis 1 of length 2,

there are 2 of length 3,

there are 3 of length 4,

thereare 5 of length 5,...

Hereis amore compact list of the number of 1sin the (minimal) Fibonacci representation of the first few whole
numbers :

123456|7/8/9/10/111|12|13/14|15/16|17|18|19|20 21|22 23|24|25|26|27 28|29 30|31|32|33|...

111212211212 2 3121|2232 3 31|12 2|2 3|23/323|3 3|4

If we split thislist into sublists corresponding to the different lengths of Fibonacci representations we have the
following:

1=1pip 1,

2=10ip 1,

3=100p,,4=101g, 1,2

5=1000g;,, 6=1001q,, 7=1010g, 1.2,2

8,9,10,11and 12 122,23

13t0 20 1,2,2,2,3,2,3,3

211033 1,2,2,2,3,2,3,3,2,3,3,3,4

34t054 1,2,2,2,3,2,3,3,2,3,3,3,4,2,3,3,3,4,3,4,4

It is quite easy to see where this pattern comes from: Each time we put a 1 at the start of our Fibonacci representations
and then copy the earlier patterns. For example, 8, 9, 10, 11 and 12 are 8+0, 8+1, 8+2, 8+3 and 8+4.
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Can you see any patternsin these sequences?

It seems that each sequence starts off the following sequence.

Can you discover how the remainder of each isformed, that is, the part that follows (the copy of) the previous
sequence? It is not quite the sequence before, but, one added to all the items of the sequence before:

Start with 1 and 1.
The next sequence is the preceding one followed by adding one to the sequence before the preceding one.

Since each sequence in the list above starts off the following one, it defines a unique infinite sequence.

Generalised Fibonacci Series in the Fibonacci System

This section was suggested by Marijke van Gans.

If we take any Fibonacci-type series starting with any two number s of your choice, -let's call them A and B - and
the series continues in the same fashion as the Fibonacci series (by adding the latest two numbers to get the next) then
the seriesis:

A, B, A+B, A+2B, 2A+3B, ...

The interesting part isleft for you to discover for yourself in the following questions:

- Things to do -
. What series of nunbers do you get if we start with the foll ow ng:
1. 2 and 3 (A=2 and B=3)
2. 3 and 5
3. Can you think of other pairs which give the "sane" answers as questions 1 and 2
above?
4. 3 and 4
51 and 5
6. Try sone others starting pairs of your own.
. Extend the A-B-series above:
The next termis 3A+5B. What are the next 3 terns? Wiat do you notice about the
multiples of A and B?
« Pick one of your Ceneralised Flbonacci series fromabove (take at |least the first
ei ght nunbers).
Express these 8 or nore nunbers as Fi bonacci nal s.
What do you notice about the pattern in the Fi bonaccinmal s?
Try it for several nore of the series above. Does the sanme thing happen?

The reason for this behaviour isfound in a Theorem that

Any Generalised Fibonacci series has successive termswhoseratio tendsto Phi in thelong run,
no matter what the two starting numbersare.

So the behaviour you spotted islike the rule in Base Ten - to multiply by the Base (10) just shift the numbers one
place to the | eft.
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On alater page we will investigate what happensif instead of using the Fibonacci numbers as
column header s we use powers of Phi (1.61803..), ie base Phi.

%= A Primer for the Fibonacci Numbers; Part Xllby V E Hoggatt Jr, N Cox, M Bicknell in Fibonacci
Quarterly, vol 11 (1973), pages 317 -331

isauseful introduction to resultsin this area, but for post-18 mathematics students.

ﬁ' Fibonacci Home Page

™ A Formulafor the Fibonacgi The next topic is...

€ The Fibonacci Numbersin Art, numbers =¥ The Golden Section - the Number

Music and Architecture

and Its Geometry

WHERE TO NOW7???

Thisisthe last page on this topic.

© 1996-2001 Dr Ron Knott  R.Knott@surrey.ac.uk  last update:7 April 2001
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The Golden Section - the Number and Its Geometry

The Golden section ratio: Phi

Contents of this Page

The» === [ine means thereisa Things to do investigation at the end of the section.
@ What is the Golden Ratio (or Phi)?

® A simple definition of Phi
@ A bit of history... r ==

@ Linkson Euclid and his"Elements’
@ Phi and the Egyptian Pyramids? MEY

@ Other names for Phi
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@ Phi and the Fibonacci numbers

® The Ratio of nelghbouring Fibonacci Numbers tends to Phi \HEY
@ Another definition of Phi
® A formulafor Phi using a continued fraction

@ Phi isnot afraction
@ Rational Approximations to Phi

@ \Why do the Fibonacci humbers occur in the convergents?

@ Other ways to find Phi using your calcul ator

@ Calculator Method 1: Invert and Add 1 & s
@ Calculator method 2: Add 1 and take the square-root « s

@ Similar numbers v =

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More. .

What is the golden section (or Phi)?

We will call the Golden Ratio (or Golden number) after a greek letter,Phi (‘f) here, athough some
writers and mathematicians use another Greek letter, tau (t). Also, we shall use phi (note the lower case
p) for aclosely related value.
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A simple definition of Phi

There are just two numbers that remain the same when they are squared namely 0 and 1. Other numbers
get bigger and some get smaller when we square them:

Squaresthat are bigger |Squaresthat are smaller
22is4 1/2=0-5 and 0-52 is 0-25=1/4
32is9 1/5=0-2 and 0-22 is 0-04=1/25
102is 100 1/10=0-1 and 0-12 is 0-01=1/100

One definition of Phi (the golden section number) is that
tosquareit you just add 1
or, in mathematics:
Phi2 = Phi + 1
In fact, there are two numbers with this property, one is Phi and another is closely related to it when we
write out some of its decimal places.

Here is amathematical derivation (or proof) of the two values. Y ou can skip over thisto
the answers at the foot of this paragraph if you like.

Multiplying both sides by Phi gives a quadratic equation:

Phi2=Phi + 1 or
Phi2—Phi—1=0

We can solve this quadratic equation to find two possible values for Phi asfollows:

. First note that (Phi — 1/,)2 = Phi2 — Phi + 1/,

. Using this we can write Phi2 — Phi — 1 as (Phi —1/,)2 -5/,
and since Phi2 — Phi — 1 = 0 then (Phi — 1/,)2 must equal /4

. Taking square-roots gives (Phi — 1/5) = +4(5/,5) or ={(5/,,).

. 50 Phi =1/, +(5/,) or 15 —{(5/,).

. We can simplify this by noting that +(5/,) = wf5/1f4 ={5/,
. Thetwo values of Phi are therefore:
* 1/, + 55 and 1/, -5/,

Use your calculator to seethat the values of these two numbers are 1-6180339887...
and —0-6180339887...
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Did you notice that their decimal partsareidentical ?
We will name the first value Phi and the second — phi using thefirst letter to tell usif we
want the bigger value (Phi) 1-618... or the smaller one (phi) 0-618... .

Note that Phi isjust 1+phi. Asalittle practice at algebra, use the expressions above to show that phi
times Phi is exactly 1. Here is a summary of what we have found already that we will find very useful in
what follows:

Phi phi = 1, Phi - phi = 1, Phi + phi =+5
Phi = 1.6180339.. phi = 0.6180339..
Phi = 1 + phi phi = Phi —1
Phi = 1/phi phi = 1/Phi
Phi2=Phi+1  (-phi)2=-phi + 1 or phi2 =1 —phi
Phi = (5 + 1)/2 phi = (5—1)/2

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. NMore..

A bit of history...

Euclid, the Greek mathematician who lived from about 365BC to 300BC wrote the Elements which isa
collection of 13 books on Geometry (written in Greek originally). It was the most important
mathematical work until this century, when Geometry began to take alower place on school syllabuses,
but it has had a major influence on mathematics.

It starts from basic definitions called axioms or "postulates” (self-evident starting points). An exampleis
the fifth axiom that

thereisonly one line parallel to another line through a given point.
From these Euclid develops more results (called propositions) about geometry which he proves based
purely on the axioms and previously proved propositions using logic alone. The propositions involve
constructing geometric figures using a straight edge and compasses only so that we can only draw
straight lines and circles.
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For instance, Book 1, Proposition 10 to find the exact centre

of any line AB

Put your compass point on one end of theline at point A.

2. Open the compasses to the other end of the line, B, and draw
the circle.

3. Draw another circle in the same way with centre at the other
end of theline.

4. Thisgivestwo points where the two red circles cross and, if
we join these points, we have a (green) straight line at 90 degreesto the original line which goes
through its exact centre.

=

In Book 6, Proposition 30, Euclid shows how to divide a line in mean and extreme ratio which we
would call "finding the golden section G point on the line".

Euclid used this phrase to mean the ratio of the smaller part of thisline, GB to the larger part AG (ie the
ratio GB/AG) isthe SAME asthe ratio of the larger part, AG, to the whole line AB (ie is the same as the
ratio AG/AB). If we let the line AB have unit length and AG have length g (so that GB is then just 1)
then the definition means that

GB = AG or 1-g = g so that 1-g=g2
AG AB g 1

Notice that earlier we defined Phi2 as Phi+1 and here we have g2 = 1-g or g2+g=1.
We can solve thisin the same way as for Phi and we find that
—1 +45 —1-+5
org=
2 2

g:

So there are two numbers which when added to their squares give 1. For our geometrical problem, gisa
positive number so the first value is the one we want. Thisis our friend phi also equal to Phi—1 (and the
other value is merely —Phi).

It seems that this ratio had been of interest to earlier Greek mathematicians, especially Pythagoras
(580BC - 500BC) and his"school".

- Things to do -
1. Suppose we | abelled the parts of our line as foll ows:
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A G B

so that ABis now has length 1+x. If Euclid' s "division of AB
Into nmean and extrene ratio" still applies to point G what
guadratic equation do you now get for x? What is the val ue of x?

Links on Euclid and his "Elements"

“#* From Clarke Univers ty comes D Joyce's exciting project making Euclid's Elements interactive using
Java applets.

Phi and the Egyptian Pyramids?

The Rhind Papyrus of about 1650 BC is one of the oldest mathematical works in existence, giving
methods and problems used by the ancient Babylonians and Egyptians. It includes the solution to some
problems about pyramids but it does not mention anything about the golden ratio Phi.

The ratio of the length of aface of the Great Pyramid (from centre of the bottom of aface to the apex of
the pyramid) to the distance from the same point to the exact centre of the pyramid's base square is about
1-6. It isamatter of debate whether this was "intended" to be the golden section number or not.
According to Elmer Robinson (see the reference below), using the average of eight sets of data, says that
“the theory that the perimeter of the pyramid divided by twice its vertical height isthe value of pi" fits
the data much better than the theory above about Phi.

The following references will explain circumstantial evidence for and against:

“# The golden section in The Kings Tomb in Egy pt.

%> How to Find the" Golden Number" without really trying Roger Fischler, Fibonacci Quarterly,
1981, Vol 19, pp 406 - 410
Case studies include the Great Pyramid of Cheops and the various theories propounded to explain
its dimensions, the golden section in architecture, its use by Le Corbusier and Seurat and in the
visual arts. He concludes that several of the works that purport to show Phi was used are, in fact,
fallacious and "without any foundation whatever".

% The Fibonacci Drawing Board Design of the Great Pyramid of Gizeh Col. R SBeard in
Fibonacci Quarterly vol 6, 1968, pages 85 - 87,
has three separate theories (only one of which involves the golden section) which agree quite well
with the dimensions as measured in 1880.

%= A Noteon the Geometry of the Great Pyramid Elmer D Robinson in The Fibonacci Quarterly
vol 20 (1982) page 343
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shows that the theory involving pi fits much better than the one regarding Phi.

= George Markowsky's Misconceptions about the Golden ratio in The College Mathematics
Journal Vol 23, January 1992, pages 2-19.
Thisis readable and well presented. Y ou may or may not agree with all that Markowsky says, but
thisisavery good article that tries to debunk a simplistic and unscientific "cult" status being
attached to Phi, seeing it where it really is not! He has some convincing arguments that Phi does
not occur in the measurements of the Egyptian pyramids.

Other names for Phi

Euclid (365BC - 300BC) in his"Elements" calls dividing aline at the 0.6180399.. point dividing a line
in the extreme and mean ratio. This later gave rise to the name golden mean.

There are no extant records of the Greek architects plans for their most famous temples and buildings
(such as the Parthenon). So we do not know if they deliberately used the golden section in their

architectural plans. The American mathematician Mark Barr used the Greek |etter phi (%) to represent
the golden ratio, using theinitial letter of the Greek Phidias who used the golden ratio in his scul ptures.

L uca Pacioli (also written as Paccioli) wrote a book called De Divina Proportione (The Divine
Proportion) in 1509. It contains drawings made by Leonardo da Vinci of the 5 Platonic solids. It was
probably Leonardo (daVinci) who first called it the sectio aurea (Latin for the golden section).

Today, mathematicians also use the Greek letter tau (T), the initial letter of tome which is the Greek work
for "cut" aswell asphi.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More. .

Phi to 2000 decimal places

Phi hasthevalue”r5+ 1 and phi is?.

Both have identical fractional parts after the decimal point. Both are also irrational which means that

. They cannot be written as M/N for any whole numbers M and N;

. their decimal fraction parts have no pattern in their digits, that is, they never end up repeating a
fixed cycle of digitsas do al rational values (which are expressed as M/N for some whole
numbers M and N).
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Later on this page we will show why Phi and phi cannot be written as exact fractions. There is another
surprise in store later when we find which fractions are the best approximations to Phi.

Hereisthe decimal value of Phi to 2000 places grouped in blocks of 5 decimal digits. The value of phi is
the same but begins with 0-6.. instead of 1-6.. .
Read this as ordinary text, in lines across, so Phi is 1-61803398874...)

Dps:
1-61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 50
28621 35448 62270 52604 62818 90244 97072 07204 18939 11374 100
84754 08807 53868 91752 12663 38622 23536 93179 31800 60766
72635 44333 89086 59593 95829 05638 32266 13199 28290 26788 200
06752 08766 89250 17116 96207 03222 10432 16269 54862 62963
13614 43814 97587 01220 34080 58879 54454 74924 61856 95364 300
86444 92410 44320 77134 49470 49565 84678 85098 74339 44221
25448 77066 47809 15884 60749 98871 24007 65217 05751 79788 400
34166 25624 94075 89069 70400 02812 10427 62177 11177 78053
15317 14101 17046 66599 14669 79873 17613 56006 70874 80710 500

13179 52368 94275 21948 43530 56783 00228 78569 97829 77834
78458 78228 91109 76250 03026 96156 17002 50464 33824 37764
86102 83831 26833 03724 29267 52631 16533 92473 16711 12115
88186 38513 31620 38400 52221 65791 28667 52946 54906 81131
71599 34323 59734 94985 09040 94762 13222 98101 72610 70596
11645 62990 98162 90555 20852 47903 52406 02017 27997 47175
34277 75927 78625 61943 20827 50513 12181 56285 51222 48093
94712 34145 17022 37358 05772 78616 00868 83829 52304 59264
/78780 17889 92199 02707 76903 89532 19681 98615 14378 03149
97411 06926 08867 42962 26757 56052 31727 77520 35361 39362 1000

10767 38937 64556 06060 59216 58946 67595 51900 40055 59089
50229 53094 23124 82355 21221 24154 44006 47034 05657 34797
66397 23949 49946 58457 88730 39623 09037 50339 93856 21024
23690 25138 68041 45779 95698 12244 57471 78034 17312 64532
20416 39723 21340 44449 48730 23154 17676 89375 21030 68737
88034 41700 93954 40962 79558 98678 72320 95124 26893 55730
97045 09595 68440 17555 19881 92180 20640 52905 51893 49475
92600 73485 22821 01088 19464 45442 22318 89131 92946 89622
00230 14437 70269 92300 78030 85261 18075 45192 88770 50210
96842 49362 71359 25187 60777 88466 58361 50238 91349 33331

22310 53392 32136 24319 26372 89106 70503 39928 22652 63556
20902 97986 42472 75977 25655 08615 48754 35748 26471 81414
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51270 00602 38901
12194 32048 19643
15077 22117 50826
83728 84058 74610
93855 57697 54841
07542 26417 29394
20144 55950 44977
06970 18940 98864

62077
87675
94586
33781
49144
68036
92120
00764

713224
86331
39320
05444
53415
73198
76124
43617

49943
47985
45652
39094
09129
05861
78564
09334

53088
71911
09896
36835
54070
83391
59161
17270

99909
39781
98555
83581
05019
83285
60837
91914

50168
53978
67814
38113
47754
99130
05949
33650

03281
07476
10696
11689
86163
39607
87860

13715 2000

Phi to 10,000,000 places!

Simon Plouffe of Simon Fraser University notes that Greg J Fee programmed a method of

his to compute the golden ratio (Phi) to ten million placesin December 1996. He used
Maple and it took about 30 minutes on a 194MHz computer. Have alook at the first part

with 15,000 decimal places. Therest are organised in severa files which you can

investigate using this index.

Phi'svaluein binary to 500 placesis:

1-10011 11000 11011
11110 00001 01011
11001 11011 01110
11011 01011 11110
01101 10001 10101
01010 10010 01110
00100 11110 11011
11010 11011 11110
01101 11100 00100
00000 11101 01100

10111
11100
01000
01110
00001
11001
11111
00110
10010
10010

10011
11100
00110
10001
00011
11111
00000
00001
10000
11101

01110
11100
10000
00111
10100
10000
01101
00111
10000
00100

01011
11000
01000
00100
00110
10110
00011
11110
00001
00001

11111
00001
01000
10100
00001
00101
10000
00000
10000
11100

01001
10000
00100
01111
10001
01001
01000
01100
00000
11001

01001

00101 100

01001

11000 200

11010

11101 300

10110

01000 400

01011

10101 500

Neither the decimal form of Phi, nor the binary one nor any other base have any ultimate repeating

pattern in their digits.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576
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Phi and the Fibonacci numbers

On the Fibonacci and Nature page we saw a graph which showed that the ratio of successive Fibonacci
numbers gets closer and closer to Phi.

Here is the connection the other way round, where we can discover the Fibonacci numbers arising from
the number Phi.

The graph on the right shows aline whose gradient is Phi, that is The y = Fhi x line
the line

157
y = Phi x = 1-6180339.. x Ll
Since Phi is not the ratio of any two integers, the graph will never 131
go through any points of the form (i,j) where i and j are whole 17
numbers - apart from one trivial exception - can you spot it?
So we can ask
What are the nearest integer-coordinate points to the Phi line? 17
Let's start at the origin and work up the line. =)
Thefirst is (0,0) of course, so here ARE two integersi=0 and j=0
making the point (i,j) exactly ontheline! Infact ANY line y=kx
will go through the origin, so that is why we will ignore this point
asa"trivial exception" (as mathematicians like to put it). =)
The next point close to the line looks like (0,1) although (1,2) is
nearer still. The next nearest seems even closer: (2,3) and (3,5)
even closer again. So far our sequence of "integer coordinate
points close to the Phi line" isasfollows: (0,1), (1,2), (2,3), (3,5)
What is the next closest point? and the next? Surprised? The
coordinates are successive Fibonacci number sl 1

117
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0 } } } } } } } } |
Let's call thesethe Fibonacci points. Notice that theratioy/xfor © 1 = = 4 5 & 7 & 4
each Fibonacci point (x,y) gets closer and closer to Phi=1-618...
but the interesting point that we see on this graph is that

the Fibonacci points are the closest points to the Phi line.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More..

The Ratio of neighbouring Fibonacci Numbers
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tends to Phi

On the Fibonacci Numbers and Nature page we saw that the ratio of two neighbouring Fibonacci
numbers soon settled down to a particular value near 1-6:
= o

1.5
1.5 o000

1.4
1.2 Fbi
1 o Abii-1)

0.2
0.6
0.4
0.2

= 4 6 8 W
In fact, the exact value is Phi and, the larger the two Fibonacci numbers, the closer their ratio isto Phi.
Why? Here we show how this happens.

The basic Fibonacci relationship is

F(i+2) = F(i+1) + F(i)  The Fibonacci relationship|

The graph shows that the ratio F(i+1)/F(i) seems to get closer and closer to a particular value, which for
now we will call X.

If we take three neighbouring Fibonacci numbers, F(i), F(i+1) and F(i+2) then, for very large values of i,
theratio of F(i) and F(i+1) will be almost the same as F(i+1) and F(i+2), so let's see what happens if both
of these are the same value: X.

F(i+1) F(@i+2) _
FGi) F@i+1)
But, using the The Fibonacci relationship we can replace F(i+2) by F(i+1)+F(i) and then simplify the
resulting fraction a bit, as follows:

F(i+2) _ F(i+1) + F()
Fi+1) F(i+1)
Fi+1) = F()
FGi+1) F(i+1)
(i)
F(i+1)

1+
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So, putting in this new format of F(i+2)/F(i+1) back into the equation for X, we have:

X _F(i+1) . K3i)
TORG) T OR3i+1)
But the last fraction isjust 1 + 1/X, so now we have an equation purely in terms of X:
F(i+1) F(i) 1
X = - = F— =1+—
F(i) F(@i+1) X
Multiplying both sides by X gives:
1
X=1+-
X
X2=X+1

But we have seen this equation before in A simple definition of Phi so know that X is, indeed, exactly
Phi!

Remember, this supposed that the ratio of two pairs of neighbours in the Fibonacci series was the same
value. This only happens"in the limit" as mathematicians say. So what happensis that, as the series
progresses, the ratios get closer and closer to this limiting value, or, in other words, the ratios get closer
and closer to Phi the further down the series that we go.

But there are two values that satisfy X2 = X + 1 aren't there?

Y es, there are. The other value, —-phi which is—0-618... isrevealed if we extend the Fibonacci series
backwards. We still maintain the same Fibonacci relationship but we can find numbers before 0 and still
keep this relationship:

i ..|-10|-9(8 [-7|-6|-5|4|3|-2|-1|0|1(2|3|4|5(6|7 (8 (9 |10]..

Fib(i) | ...|-55/34 /21|13 8|5 3|2 1|1 |0/1/1/2/3/5/8(13/21|3455]/...

When we use this compl ete Fibonacci series and plot the ratios F(i)/F(i—1) we see that the ratios on the
|eft-hand side of O are

1 A 2 3 5
= =15 =-055=-0666.~ =06 =-0625,

Plotting these shows both solutionsto X2 = X + 1:-
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1.8
Fbi) o
1.6 o S8 —0—0
Rb-1) o

1.4

1.2

0.2
0.5

0.2

w8 B 4 2 2 4 B 8 W
-0.24
-0.45

-0

o .17

Another definition of Phi

We defined Phi to be (one of the two values given by)
Phi2 = Phi+1

Suppose we divide both sides of this equation by Phi:
Phi =1 + 1/Phi

Here is another definition of Phi - that number which is1 morethan itsreciprocal
(the reciprocal of anumber is 1 over it so that, for example, the reciprocal of 2 is 1/2 and the reciprocal
of 91s1/9).

A formula for Phi using a continued fraction

Look again at the last equation:
Phi =1 + 1/Phi
This means that wherever we see "Phi" we can substitute (1 + 1/Phi).
But we see Phi on the right hand side, so lets substitute it in there!
Phi =1+ 1/(1 + 1/Phi)
In fact, we can do this again and again and get:

Phi = 1 + 1 =1+ 1U(1+1(1+2(C1+.)))
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1 + 1

This unusual expression is called a continued fraction since we continue to form fractions underneath
fractions underneath fractions.

This continued fraction has a big surprise in store for us....

Phi is not a fraction

But Phi isafraction .. itis (/5 + 1)/,

Here, by a fraction we mean a number fraction such as 2/ or —17/,, or 12/ or 8/,,. The first two here are
proper fractions since they are less than 1; the third can also be written as 15/;, which has awhole part
(1) and afraction part (°/-) so it isamixed number; the fourth is not in its lowest terms since it is the
same as %/ which isin its lowest terms since there is no simpler representation of this quantity. Also 5.61

isafraction, a decimal fraction sinceit is 561/100, the ratio of a whole number and a power of ten.
Strictly, all whole numbers can be written as fractions if we make the denominator (the part below the
line) equal to 1! However, we commonly use the word fraction when there really is afraction in the
value.

Mathematicians call all these fractional (and whole) numbers rational number s because they are the
ratio of two whole numbers and it is these number fractions that we will mean by fraction in this section.

It may seem asif all number can be written as fractions - but thisis, in fact, false. There are numbers
which are not the ratio of any two whole numbers, eg +/2=1.41421356... , »=3.14159..., e=2.71828.... .
Such values are called ir-ratio-nal since they cannot be represented as aratio of two whole numbers (ie a
fraction). A simple consequence of thisisthat their decimal fraction expansions go on for ever and never
repeat at any stage!

Any and every fractionhas a decimal fraction expansion that either

. stopsasin, for example, 1/8 = 0.125 exactly or else

. eventually getsinto arepeating pattern that repeats for ever eg 5/12 = 0.416666666... or 3/7 =
0.428571 428571 428571 ...

Can wewrite Phi asafraction?

The answer is"No!" and thereis a surprisingly simple proof of this. Hereit is. [This proof was given in
the Fibonacci Quarterly, volume 13, 1975, page 32, in A simple Proof that Phi isIrrational by J
Shallit and later corrected by D Ross - see below.]
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Suppose we could write Phi as A/B where A and B are two integers. If this was possible then we can
choose the simplest form for Phi and write Phi=p/q (p and g are integers again) but now p and g will have
no factorsin common. What we now show isthat thisleadsto alogical contradiction. The only
assumption we have made isthat Phi can be written as a fraction and, since thiswill lead to alogical
impossibility, then this assumption must be wrong - i.e. Phi cannot be written as a fraction.
The definition of Phi (and also of —phi) isthat it satisfies the equation

Phi2 — Phi =1 (%)
So, if we are assuming that Phi can be written as p/q, we substitute thisin:

(p/a)? - plg =1
Since g is not zero, we can multiply through by g2 to get:

p2 — pq = g2 (**)

but we can factorise the |left hand side, so

p(p — a) = g2
Since the left hand side has a factor of p then so must the right hand side. In other words p is afactor of
9.
Since we said that p and q had no factor in common - except 1 which is afactor common to all numbers -
then p must be 1.

Note there is an error in the paper quoted above, which is corrected in the next paragraph and in A Letter to the Editor
from David Ross in Fibonacci Quarterly vol 13 (1975) page 198.

Also, be re-arranging the equation marked (**) above, we have:

0 q, being a factor of the right-hand side must also be afactor of the left-hand side, which is p2. But
again, since p and g have no common factor except 1 then g also must be 1 too!

Hereisthe contradiction if both p and 1 are 1, then p/qis 1 and this does not satisfy our original equation
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for Phi, the one marked (*).

So we have alogical impossibility if we assume Phi can be written as a proper fraction.

The only possibility that logical allows thereforeisthat Phi cannot be written as a proper fraction - Phi is
irrational.

Rational Approximations to Phi

If no fraction can be the exact value of Phi, what fractions are good approximations to Phi?

The answer liesin the continued fraction for Phi that we saw earlier on this page.
If we stop the continued fraction for Phi at various points, we get values which approximate to Phi:

Pi=1 Phizl+s=2 Phizl+—0 =0 Phizl+—b =2
1 12 1 3

= g

1 L

1

The next approximation is always 1 plus 1-over-the-previous-approximation (shown in green).
Did you notice that this series of fractionsis just the ratios of successive Fibonacci numbers - surprise!

The proper mathematical term for these fractions which are formed from stopping a continued fraction
for Phi at various pointsis the conver gentsto Phi. The series of convergentsis

Why do Fibonacci numbers occur in the convergents?

Thisis an optional section where we show exactly why the Fibonacci numbers appear in the successive
approximations (the convergents) above. Skip to the next section if you like!

The convergents start with /1 which is F(1)/F(0)
where F(n) represents the n-th Fibonacci number.

To get from one fraction to the next, we saw that we just take the reciprocal of the fraction and add 1.
so the next one after F(1)/F(0) is

1+ 1 = 1+ F(0) = F(1)+F(0)
F(1)/ F(0) F(1) F(1)
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But the Fibonacci numbers have the property that two successive numbers add to give the next, so
F(1)+F(0)=F(2) and our next fraction can be written as

1 + 1 = 1+ FO) = F(1)+F(0) = F(2)
F(1)/F(0) F(1) F(1) F(1)

So starting with the ratio of the first two Fibonacci numbers the next convergent to Phi is the ratio of the
next two Fibonacci numbers.

This aways happens:
if we have F(n)/F(n—1) as a conver gent to Phi, then the next convergent is F(n+1)/F(n).

We will get all the ratios of successive Fibonacci numbers as values which get closer and closer to Phi.
Y ou can find out more about continued fractions and how they relateto splitting a

rectangle into squares and also to Euclid's algorithm on the I ntroduction to Continued
Fractions page at this site.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More. .

Other ways to find Phi using your calculator

Here are two more interesting ways to find it.

Calculator Method 1: Invert and Add 1

Enter 1 to start the process.
Takeitsreciprocal (the 1/, button). Add 1.

Takeitsreciprocal. Add 1.
Takeitsreciprocal. Add 1.

K eep repeating these two operations (take the reciprocal, add 1) and you will find that soon the display
does not alter and settles down ("converging" as mathematicians call it) to a particular value, namely
1.61803... .

In fact, you can start with many values but not all (for instance 0 or -1 will cause problems) and it will
still converge to the same value: Phi.
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Why?

The formula Phi=1+1/Phi shows us where the two instructions come from.
To start, we note that the simplest approximation to the continued fraction aboveisjust 1.

- Things to do -
1. In Cal cul ator nethod 1, O causes a probl em because we cannot take
Its reciprocal.

Soif xis -1, when we take its reciprocal (1/.; = -1 ) and add 1
we get 0. So 0 and -1 are bad choices since they don't lead to
Phi .

What value of x wll give -1? And what val ue of x would give that
val ue?

Can you find a whole series of nunbers which, in fact, do not

lead to Phi with Cal cul ator nethod 17?
[ Thanks to Warren Criswell for this problem]

Calculator Method 2: Add 1 and take the square-root
Here is another way to get Phi on your calculator.

Enter any number (whole or fractional) but it must be bigger than —1.
Add 1. Take its square root.
Add 1. Take its square root.
Add 1. Take its square root.

K eep repeating these two instructions and you will find it too converges to Phi.
Why?
This time we have used the other definition of Phi, namely

Phi2 = Phi + 1

or, taking the sguare root of both sides:

Phi =+( Phi +1)

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/phi.html (17 of 20) [12/06/2001 17:16:59]



The Golden Section - the Number and Its Geometry

Can you see why we must start with a number which is not smaller (i.e. is not more negative) than —17?

161503
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Similar numbers

Robert Kerr Baxter wrote to me about other numbers that have the Phi property that when you square
them their decimal parts remain the same:
Phi = 1.618033.. and Phi2 is 2.618033..

Phi hes the value 2. 1

Rob had noticed that this happensif we replace the 45 with 413 or +/17 or 421 and so on. The series of
number hereisb, (9), 13, 17, 21, (25), 29, ... which are the numbers that are 1 more than the multiples of
4. The numbers 9 and 25 are in brackets because they are perfect squares, so taking their square roots
gives awhole number - in fact, an odd number - so when we add 1 and divide the result by two we just
get awhole number with .00000... as the decimal part.

Why does this happen?

Algebra can come to our help here and it is a nice application of "Solving Quadratics' that we have
already seen in the first section on this page.

We want to find aformula for the numbers (x, say) "that have the same decimal part astheir squares’.

So, if we subtract x from x2, the result will be awhole number because the decimal parts were identical.
Let's call thisdifference N, remembering that it is a whole number.
So

the difference between x2 and x is N, a whole number
Is adescription of these numbers in words. We can write this in the language of mathematics as follows:
x2—x=N or, adding x to both sides: x2=N + X
and we can "solve" it in exactly the same way as we did for Phi's quadratic: x2 = 1 + x. The formula for x
thistimeis

e (1 + 4N)
2
Y ou can see that, under the square-root sign, we have 1 plus a multiple of 4 which gives the series:
N: 12 3| 4 5.

1+4N:|5/9|13/17 21/|...

just as Rob had found.
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For example: if we choose N=5, then the number x (that increases by exactly 5 when squared) is

L Y1+ 45) 1£+421
2 2
Checking we see that the square of thisx isexactly N ( i.e. 5) more than the origina number x.

= 2.791287847.. and x2 = 7.791287847... = 5 + X

Another example: take Phi, whichis (1 + %5)/2 or (1 + ~(1+4x1))/2 so that N=1. Thus we can "predict"
that Phi squared will be (N=)1 more than Phi itself and, indeed, Phi=1.618033.. and Phi2=2.618033.. .
We can do the same for other whole number valuesfor N.

Mor e generally: Thereis nothing in the maths of this section that prevents N from being any number,
for instance 0-5 or «. Suppose N ispi (#=3.1415926535... ). We can find the number x that, when
squared, increases by exactly «! Itis

L Y(1+4+) 1++12.566370614...
2 2
and x2 = 5-483220372... = 2:3416277185... + 3.1415926535...

= 2-3416277185...

Things to do -
1. Make a table of the first few nunbers simlar to Phi in this way,
starting with Phi and its square.
2. W& have only used the + sign in the formula for x above, giving
positive val ues of x.
What negative values of x are there, that is negative nunbers
whi ch, when squared (becom ng positive) have exactly the sane
deci mal fraction part?
What is the nunber that can be squared by just adding 0-5?
|s there an upper limt to the size of N?
Can you use the fornula to find two nunbers that increase by one
mllion (1,000,000) when squared?
5. Can N be negative?
a For instance, can we use the fornula to find a nunber (as we
have seen, there are two of them that is 0-5 smaller when
It I's squared?
b. What about a nunber that decreases by 1 when it is squared?
C.ls there a lower |imt for the value of N?

> w

We | ook at sone other nunbers simlar to Phi but in a different way on
the (optional) Continued Fractions page. This tinme we find nunbers

which are |like the Golden Mean, Phi, in that their deciml fraction
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parts are the sane when we take their reciprocals, ie find 1/x. They
are called the Silver Means.
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The next page on this Topic is...
\V Flat Phi Facts
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Two-dimensional Geometry and the Golden section

Fascinating Flat Facts about Phi

On this page we meet some of the marvellous flat (that is, two dimensional) geometry facts related to the
golden section number Phi. A following page turns our attention to the solid world of 3 dimensions.

Contents of this Page

The» === line means thereisa Thingsto do investigation at the end of the section.

m Phi and 2-Dimensional geometry
.1 Constructing the golden section: phi

Given any line AB, find apoint G phi of the way along it.
21 Constructing the golden section: Phi

Given any line AB, make anew line AG which is Phi times aslong.
21 Phi and the Root-5 Rectangle

A rectangle which is sgrt(5) wide and 1 unit high contains two golden rectangles.
1 Pentagons and Pentagrams

There are two kinds of triangles in pentagons and pentagrams, both have sides of length Phi and
1

a1 Making a Paper Knot to show the Golden Section in Pentagons
# Flags of the World and pentagram stars s s
21 The shape of a piece of paper
H"A" series Paper
al Fibonacci paper
21 Phi_ and the Pentagon Triangles

The two triangles of the pentagon and pentagram have some more interesting interactions
involving Phi.
#l Phi and another |soscelestriangle
= Decagons

2 Penrose tilings
Until recently, it was thought that there were no flat tilings that had five-fold symmetry, until
Penrose discovered two tiles that do! These tilings involve the two pentagon/pentagram triangles
and apply the relationships we found in the previous section.

4 A Rectangle/Triangle dissection Problem

Another geometric problem which, surprisingly, involves Phi.
21 The Golden Spiral

We return to the spiral of sea-shells and seeds and find its equation.
m Trigonometry and Phi_

21 Phi and Trig graphs (sin, cos and tan) » s
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Other angles related to Phi
H A Purely Trigonometric Formulafor Fib(n) HE¥
H Phi and Powers of Pi HEY

mLinkstoother sites
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Phi and 2-dimensional geometry

Let's start by showing how to construct the golden section points on any line: first aline phi (0-618..)
times as long as the original and then aline Phi (1-618..) times aslong.

Constructing the golden section: phi

If we have aline with end-points A and B, how can we find the point which
P E dividesit at the golden section point?
We can do this using compasses for drawing circles and a set-squar e for
drawing lines at right-angles to other lines, and we don't need aruler at all for measuring lengths!

(In fact we can do it with just the compasses, but how to do it without the set-square isleft as an exercise

for you.)
We want to find a point G between A and B so that AG:AB = phi (0-61803...)

i by which we mean that G is phi of the way along the line. Thiswill also mean

A G B that the smaller segment GB is 0-61803.. times the size of the longer segment
AG too.
AG = GB = phi = 0-618033.. = sqrt(5)-1
AB AG 2

Here's how to construct point G using set-square and compasses only:
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1. First we find the mid point of AB. To do thiswithout a ruler, put your
)(' compasses on one end, open them out to be somewhere near the other
end of the line and draw a semicircle over the line AB. Repeat this at the
other end of the line without altering the compass size. The two points
where the semicircles cross can then be joined and this new line will
cross AB at its mid point.

2. Now we are going to draw aline half the length of AB at point B, but at
right-angles to the original line. Thisiswhere you use the set-square (but
you CAN do thisjust using your compasses too - how?). So first draw a
line at right anglesto AB at end B.

3. Put your compasses on B, open them to the mid-
point of AB and draw an arc to find the point on

— your new line which is half aslong as AB. Now
you have anew line at right angles to the
original and exactly half aslong as the original
line.

. Join the point just found to the other end of the original line (A) to make a
triangle. Putting the compass point at the top point of the triangle and
opening it out to point B (so it has aradius along the right-angle line)
mark out a point on the diagonal which will also be half aslong as the
origina line.

. Finally, put the compass point at point A, open it out to the new point just
found on the diagonal and mark a point the same distance along the
original line. This point is now divides the original line AB into two
parts, where the longer part AG is phi (0-61803..) times as long as the

1 original line AB.

Why does thiswork?
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T It works because, if we call the top point of the triangle T, then BT is half
aslong as AB. So suppose we say AB has length 1. Then BT will have
W length 1/2. We can find the length of the other side of the triangle, the
diagonal AT, by using Pythagoras' Theorem:
AT2=AB2+ BT?

A G B I.e.
AT2=12+ (1/2)2

AT2=1+1/4=5/4
Now, taking the square-root of each side gives:
AT = (+5)/2
Point VV was drawn so that TV isthe samelengthas TB = AB/2 = 1/2.
So AV isjust AT - TV = (+/5)/2 - 1/2 = phi.
The final construction isto mark apoint G which is same distance (AV) aong the origina
line (AB) which we do using the compasses.

So AGisphi timesaslong as AB!

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. NMore. . itz

Constructing the golden section: Phi

This time we find a point outside of our line ssgment AB so that the new point defines aline which is Phi
(1-618..) times aslong as the original one.

& ; E

Here's how to find the new line Phi times aslong asthe original:
1. First repeat the steps 1 and 2 above so that we have found the mid-point of AB and also have a
line at right angles at point B.

2. Now place the compass point on B and open them out to touch A so that you can mark apoint T
on the vertical linewhich isaslong astheoriginal line.
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it B
3. Placing the compass point on the mid-point M of AB, open them out to the new point T on the
vertical line and draw an arc on the original line extended past point B to a new point G.

T

1 1 £
A M B G

4. Theline AG isnow Phi times aslong asthe origina line AB.

ful B E

Why does thiswork?
If you followed the reasoning for why the first construction (for phi) worked, you should find it quite easy

to prove that AG is Phi timesthe length of AB, that is, that AG = (sgrt(5)/2 + 1/2) times AB.

Hint:
Let AB have length 1 again and so AM=MB=1/2. Since BT isnow also 1, how longisMT?

Thisisthe same length as MG so you can now find out how long AG is since
AG=AM+MG.
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Phi and the Root-5 Rectangle

If we draw arectangle which is 1 unit high and +/5 long, that is, about 2-236 units long, we can draw a
squareinit, which, if we placeit centrally, will leave two rectangles | eft over. Each of these will be

phi=0-618.. units wide and, of course, 1 unit high.
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Since we aready know that the ratio of 1 to phi(=0-618) is the same as Phi(=1-618..)to 1, then the two
rectangles are Golden Rectangles.

45

phi phi

Thisisnicely illustrated on Ironheart Armoury's Root Rectangles page where he shows how to construct
all the rectangles with width any sguare root, starting from a square.

This rectangle is supposed to have been used by some artists asit is another pleasing rectangular shape,
like the golden rectangle itself.

Pentagons and Pentagrams

We can prove that AB:BC is the golden ratio: A

In this diagram, the triangle ACD isisosceles, since the two sides, AC and AD, are
equal as are the two angles ADC and ACD.

[Also, angles ADC and ACD aretwice angle CAD.] B
If we bisect the base angle at D by aline from D to point B on AC then we have the _ 25
angles as shown. BDC is then an isosceles triangle so CD=BD. D C

Since ABD is also isosceles, then DB=AB also, so CD=BD=AB.

We also note that triangles BCD and CDA are similar since their angles are equal. AB=CD so
BC BC

which isthe ratio of the lengths of the long side to the base in a 36°-72°-72° triangle.

In the 36°-72°-72° degree triangle ADC, it is the same as the ratio of AC to CD, so:

D = AC
BC CD

We have shown that CD=AB so now
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G = AC = AC
BC CD AB

Putting these equalities together we have:

AB = CD = AC =
BC BC CD AB

8

=r, say

and we have called thisratior.

If welet BC be of length 1, then we have AB=r (since AB/BC=r above) and AC=AB+BC=1+r, or:
r/1=(1+r)/r, ie r2=1+r, the equation which defined the golden ratio (and a negative quantity, but lengths
are positive).

Pentagrams contain this triangle

If welook at the way a pentagram is constructed, we can see there are lots of lines
divided in the golden ratio: Since the points can be joined to make a pentagon, the
golden ratio appears in the pentagon also and the relationship between its sides and
the diagonal s (joining two non-adjacent points).

The reason is that Phi has the value 2 cos (pi/5) where the angle is described in radians, or, in degrees,
Phi=2 cos (36°).
[See below for more angles whose sines and cosines involve Phi!]

Since the ratio of apair of consecutive Fibonacci numbersis roughly equal to the
golden section, we can get an approximate pentagon and pentagram using the
Fibonacci numbers as lengths of lines:

There is another flatter triangle inside the pentagon here. Has this any golden sectionsin it? Yes! We see
where further down this page, but first, a quick and easy way to make a pentagram without measuring
angles or using Compasses:

Making a Paper Knot to show the Golden Section in a Pentagon
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Here's an easy method to show the golden section by making a Knotty Pentagram; it doesn't need aruler
and it doesn't involve any maths either!

Take alength of paper from aroll - for instance the type that supermarkets use to print out your bill - or
cut off astrip of paper a couple of centimetres wide from the long side of a piece of paper. If youtiea
knot in the strip and put a strong light behind it, you will see a pentagram with al lines divided in golden
ratios.

E'hisis my favourite method since it involves a Knot(t)!

R0 & &

e’

Here are 5 pictures to help (well it is a pentagram so | had to make 5 pictures!) - although it really is easy
once you practice tying the knot!

1. Asyou would tie aknot in a piece of string ...

2. ... gently make an over-and-under knot, rolling the paper round as in the diagram.

3. (Thisisthe dlightly tricky bit!)
Gently pull the paper so that it tightens and you can crease the folds as shown to make it lie
perfectly flat.

4. Now if you hold it up to abright light, you'll notice you almost have the pentagram shape - one
more fold reveasit ...

5. Fold the end you pushed through the knot back (creasing it along the edge of the pentagon) so that
the two ends of the paper almost meet. The knot will then hang like amedal at the end of a ribbon.
L ooking through the knot held very close of a desk-light or table lamp will show a perfect
pentagram, just like the (red) diagram above.

Flags of the World and Pentagram stars

Here are two flags with just one 5-pointed star:
Guinea-Bissau (left) and Puerto Rico (right).
They are part of alarger (but incompl ete) *—

collection in Australia. y

How many five-pointed stars are there on the
USA flag? Why?

Things to do - —
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Two-dimensional Geometry and the Golden section

1. Many countries have a flag which contains the 5-pointed star
above.
To help, try the Flags O The Wrld al phabetical |ist of
countries or use this map of the world
2. Sone countries have a flag wwth a star which does not have 5
poi nts: Wiich country has a six-pointed star in its flag?

3. Find all those countries with a flag which has a star of nore than
6 points.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .

The shape of a piece of paper

Modern paper sizes have sides that are in the ratio 1:sgrt(2). This means that they can be folded in half
and the two halves are still exactly the same shape. Here is an explanation of why thisis so:

"A" series Paper

Fold Take a sheet of A4 paper.
Turn' Fold it in half from top to bottom.
Turn it round and you have a smaller sheet of paper of exactly
) the same shape as the original, but half the area, called A5.
Sinceits areais exactly half the origina, its sides are sqrt(1/2)
Al A3 of the originals, or, an A4 sheet has sides sgrt(2) times bigger
than a sheet of A5.

Do thison alarge A3 sheet and you get a sheet of size A4.
The sides must be in the ratio of 1:sgrt(2) since if the original sheet has the shorter side of length 1 and the
longer side of length s, then when folded in half the short-to-longer-side ratio is now §/2:1.

By the two sheets being of the same shape, we mean that the ratio of the short-to-long side is the same. So
we have:

1/s = /2 /1 which means that s2=2 and so sis sqrt(2).

Fibonacci paper
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Fold fI:utnzuff
If we take a sheet of paper and fold a corner over to make a square at the top

; : and then cut off that square, then we have a new smaller piece of paper.

=1 -1
If we want the smaller piece to have the same shape as the original one, then, if the longer sideislength f
and the short side length 1 in the original shape, the smaller one will have shorter side of length f-1 and
longer side of length 1.
So the ratio of the sides must be the same in each if they have the same shape: we have 1/f = (f-1)/1 or, f2-
f=1 which is exactly the equation from which we derived Phi.
Thusiif the sheets are to have the same shape, their sides must be in the ratio of 1 to Phi, or, the sides are
approximately two successive Fibonacci numbersin length!

Hereis another site on paper sizes.
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Phi and the Pentagon Triangle

Earlier we saw that the triangle shown here occurs in the pentagon and decagon.
If the shorter sideis of unit length and we say the longer side has length P, we
can calculate P, the ratio of the longer to shorter sides of this "sharply pointed"
Isosceles triangle (i.e. two sides of the triangle are equal and therefore two of its
angles are also). We do this by introducing a point D on side AC.
We choose it so that it makes BD of length 1 also, so BCD isisosceles too.
So we can writein itsangles (BDC = 72° also leaving 180°-72°-72°=36° for
angle DBC). In other words

Triangle BCD isthe same shape astriangle ABC
since their angles are equal. We also see that BD halvesthe 72 degree angle
ABC, so ABD hastwo angles equal and it too isisosceles. This means that sides
AD and BD are equal too, so AD isof length 1 also.
Now we deduce that BD is of length P-1 since AC is of length P and AB is of length 1.
All we have done isjustify the numbers and angles on the diagram here.

Now to calculate P!

Since BCD isthe same shape as ABC, their sides are in the same ratios.
So the longer-side-to-shorter-sideratio in BCD isalso P, i.e.

BD/ DC=1/ (P-1)= P
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P(P-1) = P2-P
P2-P- 1

or 1
or 0

Refer back to the Fibonacci and Geometry section above where we solved this equation to get

P=(1++5)/ 2 = 1.6180339. ..
or P=(1-+5)/2 =-0- 6180339. .

Clearly a side of negative length does not apply here, so thefirst valueisthe unique value of P, the
uniqueratio of the sides of the triangle ABC.

So we see P was just Phi all along!

Phi and another Isosceles triangle

If we copy the BCD triangle from the red diagram above (the 36°-72°-
72° triangle), and put another triangle on the side as we see in this

green diagram, we are again using P=Phi as above and get asimilar
shape - another isosceles triangle - but a "flat" triangle.

The red triangle of the pentagon has angles 72°, 72° and 36°, this B
green one has 36°, 36°, and 72°.

Again theratio of the shorter to longer sides is Phi, but the two equal
sides here are the shorter ones (they were the longer ones in the "sharp” triangle).

These two triangles are the basic building shapes of Penrose tilings (see the section mentioned previously
for more references). They are a 2-dimensiona analogue of the golden section and make avery
interesting study in their own right. They have many relationships with both the Fibonacci numbers and
Phi.

Decagons

Hereis adecagon - a 10-sided regular polygon with all its angles equal and all
its sides the same length - which has been divided into 10 triangles.

Because of its symmetry, all the triangles have two sides that are the same
length and so the two other anglesin each triangle are also equal.

In each triangle, what is the size of the angle at the centre of the decagon?
We now know enough to identify the triangle since we know one angle and
that the two sides surrounding it are equal. Which triangle on this pageisit?

From what we have aready found out about this triangle earlier, we can now
say that

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/phi2DGeomTrig.html (11 of 22) [12/06/2001 17:17:41]



Two-dimensional Geometry and the Golden section

The radius of acircle through the points of a decagon is Phi times aslong as the side of the
decagon.

Thisfollows directly from Euclid's Elements Book 13, Proposition 9.
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Penrose tilings
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Recently, Prof Roger Penrose has come up with some tilings that exhibit five-fold symmetry yet which do
not repeat themselves for which the technical term is aperiodic or quasiperiodic. When they appear in
nature in crystals, they are called quasicrystals. They were thought to be impossible until fairly recently.
Thereisalot in common between Penrose's tilings and the Fibonacci numbers.

The picture above is made up of two shapes of rhombus or rhombs - that is, "pushed over squares’ where
each shape has all sides of the same length. The two rhombs are made from glueing two of the flat
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pentagon triangles together along their long sides and the other from glueing two of the sharp pentagon
triangles together along their short sides.

“Sharp” triangle “Flat” triangle zc® - radians

5
72" =27 radians

1na°=3£ radians
5

This pictureis part of the Hypercard stack developed by me (Ron Knott) available from this site.
[Download 156K binhex file.] Thetiling picture was made with Quasitiler 3.0 which is a web-based tool

and its link mentions more references to Penrose tilings.
A floor has been tiled with Penrose Rhombs at Wadham College at Oxford University.

| plan more to follow here, but in the meantime, here are some interesting links to the Penrose tilings at
other sites.

. The Golden section and Penrose Tilings .
. Here are some ready-to-photocopy Penrose tiles for you to photocopy and cut-out and experiment

with making tiling patterns.
. Puzzlesto buy from Pentaplex (UK)

. Penrose's rhombs (afat and athin diamond) tilings.
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A Rectangle-Triangle dissection Problem

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/phi2DGeomTrig.html (13 of 22) [12/06/2001 17:17:41]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/contactron.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Hypercard/penrosetilings.Bin
http://www.geom.umn.edu/apps/quasitiler/about.html
http://tony.ai/KW/goldenpenrose.html
http://www.cs.uidaho.edu/~casey931/puzzle/penrose/penrose.html
http://www.pentaplex.com/
http://www.cs.uidaho.edu/~casey931/seminar/rhombs.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

Two-dimensional Geometry and the Golden section

The problem is, given arectangle, to cut off three triangles from the cor ners of ¥
the rectangle so that all three triangles have the same area. Or, expressed
another way, to find atriangle inside a given rectangle (any rectangle) which
when it is removed from the rectangle leaves three triangles of the same area.
As shown here, the area of the leftmost triangle is x(w+2)/2.
The area of the top-right triangle is yw/2.
The area of the bottom triangle is (x+y)z/2.
Making these equal means.
X(w+2) = yw and x(w+z)= z(x+y).
Thefirst equation tells us that x = yw/(w+z).
The second equation, when we multiply out the brackets and cancel the zx terms on each side, tells us that
xw=zy. This means that y/x=w/z.

Putting thisin other words, we have our first deduction that
Both sides of therectangle are divided in the same proportion.

Returning to xw=zy, we put x = yw/(w+z) into it giving yw?/(w+z)=zy.

We can cancel y from each side and rearrange it to give w2 = 72 + zw.

If we divide by z2 we have a quadratic equation in w/z.

Let X=w/zthen X2=1+ X.

The positive solution of thisis X = Phi, that is, w = z Phi. Since we have already seen that y/x=w/z then:

Each side of therectangleisdivided in the sameratio
ThisratioisPhi = 1-6180339... ie 1:1-618 or 0-618:1.
The Golden Section strikes again!

S This puzzle appeared in JA H Hunter's Triangle Inscribed I n a Rectangle in The Fibonacci
Quarterly, Vol 1, 1963, page 66.

=N\ follow-up article by H E Huntley entitled Fibonacci Geometry in volume 2 (1964) of the
Fibonacci Quarterly on page 104 shows that, if the rectangle isitself a golden rectangle (the ratio of the
longer side to the shorter one is Phi) then the triangle is both isosceles and right-angled!

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More..

The Golden Spiral

On the Fibonacci Numbers and Golden Section in Nature page, we looked at a spiral formed from squares
whose sides had Fibonacci numbers as their lengths.
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This section answers the question:

What isthe equation of the Golden spiral?
B The Golden section squares are shown in red here,
the axesin blue and all the points of the squareslie
on the green lines, which pass through the origin
(0,0).
Also, the blue (axes) lines and the green lines are
each separated from the next by 45° exactly.
The large rectangle ABDF is the same shape as
CDFH, but is phi times as large. Also it has been
rotated by a quarter turn. Similarly with CDFH
and HJEF. This appliesto all the golden rectangles
in the diagram.
So to transform OE (on the x axis) to OC (on they
axis), and indeed any point on the spiral to another
point on the spiral, we expand lengths by phi times
for every rotation of 90°: that is, we change (r,theta) to (r Phi,thetat+Pi/2) (where, as usual, we express
anglesin radian measure, not degrees).

5 &‘?
r=Phi | thet-:r —_—

+

Soif wesay Eisat (1,0), then Cisat (Phi,Pi/2), A is at (Phi2, Pi), and so on.
Similarly, Gisat (phi,-pi/2), and | isat (phi2, -pi) and so on because phi is 1/Phi.

The points on the spiral are therefore summarised by:

r = Phi" and theta= n Pi/2
If we eliminate the n in the two equations, we get a single equation that all the points on the spiral satisfy:
r = Phi2theta/ Pi
or
r = Mtheta where M = PhiZ/Pi
Such spirals, where the distance from the origin is a constant to the power of the angle, are called
equiangular spirals, that is, aline from the origin to any point on the curve always finds (the tangent to)
the curve meeting it at the same angle.
Coxeter states that:

Thistrue spiral is closely approximated by the artificial spiral formed by circular quadrants
inscribed in the successive squares, asin [the figure above]. (But the true spiral cuts the
sides of the squares at very small angles, instead of touching them.)

The above is adapted from H S M Coxeter's book Introduction to Geometry, 1961, page 165.]
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Ned May has generated some beautiful pictures based on Fibonacci Spirals using

Visual Basic.
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Trigonometry and Phi

What is trigonometry?

We can answer this by looking at the origin of the word trigonometry.

Words ending with -metry are to do with measuring (from the greek word metron meaning
"measurement"). (What do you think that thermometry measures? What about geometry? Can you think
of any more words ending with -metry?)

Also, the -gon part comes from the greek gonia) meaning angle. It is derived from the greek word for
"knee" which is gony.

The prefix tri- isto do with three asin tricycle (a three-wheeled cycle), trio (three people), trident (a three-
pronged fork).
Similarly, quad means 4, pent 5 and hex six asin the following:

. a(five-sided and) five-angled shape is a penta-gon meaning literally five-angles and
. asix angled oneis called a hexa-gon then we could call
. afour-angled shape a quadragon

(but we don't - using the word quadrilater al instead which means "four-sided™) and
. athree-angled shape would be atria-gon

(but we cdll it atriangle instead)

"Trigon" was indeed the old english word for atriangle.

So trigonon means "three-angled"” or, as we would now say in English, "tri-angular” and hence we have
tri-gonia-metria meaning "the measurement of triangles".
With thanks to proteus of softnet for this information.

Phi and Trig graphs
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Here are the graphs of three familiar trigonometric functions:
sin x, cos x and tan x in the region of x from 0 to pi/2 (radians)
= 90°:

The graphs meet at

. theorigin, wheretan x = sin x

. inthemiddle, wheresin x = cosx iewheretanx =1 or
X = 45° = pi/4 radians

. at another angle where tan x = cos x

What angleis at the third meeting point?

tan x = cos x and, since tan X = sin x / cos X, we have:
sin x =(cos x)?2
=1-(sin x)2 because (sin x)2+(cos x)?2=1.
or
(sin x)2 + sinx =1

and solving this as a quadratic in sin x, we find

sin x = (-1+45)/2
or sinx = (-1-45)/2

The second value is negative and our graph picture isfor positive X, so we have our answer:
thethird point of intersection isthe angle whose sine is Phi-1=0-6180339...=phi
which is about 0-66623943.. radians or 38:1727076..°
On our graph, we can say that the intersection of the green and blue graphs (cos(x) and tan(x)) is where
the red graph (sin(x)) has the value phi [i.e. at the x value of the point where the line y=phi meets the
sin(x) curve].

Is there any significance in the value of tan(x) where tan(x)=cos(x)?

Yes. It is+phi = +/0-618033988... = 0-786151377757.. .

Things to do - —
1. Extend t he graph above to include

I. sec(x) defined as 1/cos(x)

li. cosec(x) defined as 1/sin(x)
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iii. cot (x) defined as 1/tan(x).
Find the points of intersection of these with thenselves and with
the other 3 trig functions.
2. I n your graph of the question above, can you find these val ues at
poi nts of intersection?
a Phi = 1.618033..
b. ¥Phi = 1.2720196495. ..
c. ¥2 = 1.414213562. . .
3. In your answer to the previous question, can you prove that the
points of intersection really are the exact val ues given above?

%= SomeResultsin Trigonometry, Brother L Raphael, The Fibonacci Quarterly vol 8 (1970) pages
371 and 392.

Other angles related to Phi

Look again at the sharp and flat triangles of the pentagon that we saw

above. If we divide each in half, we have right angled triangles with sides
1 and Phi/2 around the 36° angle in the flat triangle and sides 1/2 and Phi
around the 72° angle in the sharp triangle. So: &

oy = cod 2% Y = sin(18?) = sirf 2} =P =L
cos(72)—cos(5)—sn(18)—51n(10)—2—2¢ / L

o= cod 2} = sin(sar) = srf 32 ) <2 =L
cos(36°) —CO{S)—SII’](54 ) —sm(lo)-2 T

We have sin(18°) but what about cos(18°)? This has a somewhat more awkward expression as:

cos(18°) = Phi +/5

Now we know the sin and cos of both 30° and 18° we can find the sin and cos of their difference using:
cos(A-B) = cos(A)cos(B) + sin(A)sin(B)

cos(12) - +1/3 & 45

4

and get:

AAAAgh! as Snoopy might have said.
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Isthere a neater (that is, asimpler) expression? Perhaps you can find one. Let me know if you do and it
will be added here with your name!

Thisform of cos(12°) is derived from the expression on page 42 of

& Roots of (H-L)/15 Recurrence Equationsin Generalized Pascal Trianglesby C Smithand V E
Hoggatt Jr. in The Fibonacci Quarterly vol 18 (1980) pages 36-42.

What about other angles? From an equilateral triangle cut in half we can easily show that:

1
cos(60°) = sin(30°) =§

cos(30°) = sin(60°) :%

and from a 45-45-90 degree triangle we can derive:

o1 42
cos(45°) = sin(45°) B2
and not forgetting, of course:
sin(0°) = cos(90°) =0
sin(90°) = cos(0°) =1
Can you find any more angles that have an exact expression (not necessarily involving Phi or phi)? Let
me know what you find and let's get alist of them here.

A Purely Trigonometric Formula for Fib(n)
These formulae can lead us to away of writing Binet's Formula:

Phin — (—Phi)™ _ Phin — (—phi)"
+5 - +5

Fib(n) =

purely in terms of trig. functions. First we have:

. r{‘i’) (3¢) 45 . r(sgb)_ (%) 45
sn—=|sn—|=— and sn—|gn—F——
5 5/ 4 5 5 4

and so Binet's formula above (in its second form) becomes:

Fib(n) =2;+2 cosn(z)s: r(g)s ”(Sf) * 009(3?)9 n(?’g)g r(gg) )

or, if you prefer degrees rather than radians:
on+2

Fib(n) ==

( cosN(36°) sin( 36°) sin(108°) + cos"(108°) sin(108°) sin(—36°) )

Can you see how thisisjust Binet's form re-written?

%25 SeeFibonacci in Trigonometric Form Problem B-374 proposed and solved by F Sternin The
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Fibonacci Quarterly vol 17 (1979) page 93 where another form is also given.
Phi and Powers of Pi

Thereisasimple (infinite) series for calculating the cosine and the sine of an angle where the angleis
expressed in radians. See Radian Measure (the link opensin a new window - closeit to return here) for a
fuller explanation.

Basically, instead of 360 degreesin afull turn there are 2« radians. The radian measure makes many trigonometric
equations simpler and so it isthe preferred unit of measuring angles in mathematics.

If angle x is measured in radians then

x2 x4 x6
TR

x3 x° x!
Sn(x)=X—+——+

31 5 7

Here, n! means the factorial of n which means the product of all the whole numbersfrom 1 to n.
For example, 4! means 1x2x3x4 which is 24.

So, using the particular angles above in sin(pi/10) and cos(pi/5) we have formulae for phi () and Phi (#)
in terms of powersof pi (#):-

=
po= ZSlr(lo)

_ ] <:f>3 N 055 957 +
10 1033! 1055 1077
= >3 @ @l

— + + ...
5 3,000 6,000,000 25,200,000,000

=
g = 2005(5)

<?f>2 ¢>4 ¢>6 <?f>8
15201 54 506 '588!_'")

5 22 g4 20 29
25 7500 5625000 7,875,000000

In the upper formula, going to up to the pi® term only will give phi to 9 decimal places whereas stopping
at the pi8 term in the lower formulawill give Phi to 7 decimal places.
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These two formula easily lend themselves as an iterative method for a computer program (i.e. using a
loop) to compute Phi and phi. To compute the next term from the previous one, multiply it by (pi/5)2 [or
(pi/10)2 for phi] and divide by two integers to update the factorial on the bottom, remembering to add the

next term if the previous one was subtracted and vice versa. Finally multiply your number by 2.

Y ou will need and an accurate value of Pi. Hereis Pi to 102 decimal places:

3. 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82. .

With thanks to John R Goering for suggesting this connection between Phi and pi.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. Mre..

Links to other sites

“®The golden section, geometry, Penrose tilingsby Rashomon has some more pictures of Penrose
tilings.
4 Steve Fi nch'spage about the Golden section starts with the material on these pages but he also

has some interesting results about the Fibonacci spiral and some truly remarkable formulae of
Srinivasan Ramanujan, the famous Indian mathematician who died in 1920. The formulae relate

e=2-71828.. , pi=3-14159.. and Phi=1-6180339.. and, like me, you can just admire them if you
can't understand them!

% Kyungsoon Jeon at the University of Georgia has an excellent article about Phi and the
Fibonacci series and how to investigate it using a Spreadshest.

“#Domi ngo Goémez Morin's | soscel es-Fibonacci partitionpage shows how to construct points on

any line AB which divideit into AB/2, AB/3, AB/5, AB/8, and so on, where the denominators are
the Fibonacci numbers.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. Mre..

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/phi2DGeomTrig.html (21 of 22) [12/06/2001 17:17:42]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://tony.ai/kw/goldenpenrose.html
http://www.mathsoft.com/asolve/constant/gold/gold.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Ramanujan.html
http://jwilson.coe.uga.edu/emt669/Student.Folders/Jeon.Kyungsoon/jks.html
http://jwilson.coe.uga.edu/emt669/Student.Folders/Jeon.Kyungsoon/writeup5/writeup5.html
http://www.etheron.net/usuarios/dgomez/sip.htm
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

Two-dimensional Geometry and the Golden section

M Fibonacci Home Pageft£12a2

'1* The Golden Section - the
4= The Mathematical Magicof ~ Number and Its Geometry The next topicis...
the Fibonacci Numbers =* The Golden String

Whereto now?

WV Phi in 3 dimensions

©1996-2001 Dr Ron Knott ~ R.Knott@surrey.ac.uk  last update:7 June 2001
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Three-dimensional Solid Geometry and the Golden section

Some Solid (Three-dimensional)
Geometrical Facts about the Golden
Section

Having looked at the flat geometry (two dimensional) of the number Phi, we now find it in the most
symmetrical of the three-dimensional solids - the Platonic Solids.

Contents of this Page

The » === [ine means there isa Thingsto do investigation at the end of the section.

H Phi and 3-dimensional geometry
From 2-dimensional (flat) shapes, we turn to 3-dimensional ones (solids).
2Dice Shapes
We need symmetry in diceif they areto be fair, but is the cube the only possible shape?
No, there are 5 and only 5 fair dice shapes:
21 Coordinates and other statistics of the 5 Platonic Solids

H The Tetrahedron

# The Cube or Hexahedron
# The Octahedron

1 The Dodecahedron

# The Icosahedron

Some other relationships between these shapes...
# The Dual of a Solid

a1 Golden sections in the Dodecahedron, |cosahedron and Octahedron s s
#AnN Icosahedron in an Octahredron
4The Greeks, Kepler and the Five Elements solids
M Quasicrystals and Phi
21 Are any Platonic solids space-filling?
4 Quasicrystals
21 Do guasicrystals occur in nature too?
M References and Links
8 Two Footnhotes
.1 Footnote on Plato and Euclid
.1 Footnote on Shapes for Fair Dice
= Bi-pyramids as dice
# | so-hedral shapes
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Phi and 3-dimensional geometry

The five regular solids (where "regular" means all sides are equal and al angles are the same and al the
faces are identical) are called the five Platonic solids after the Greek philosopher and mathematician,
Plato. Euclid also wrote about them. For more information on these two famous Greeks, see the footnote.

Dice shapes

What shapes make the best dice?
We need to make sure all the faces are the same shape and that all the angles and sides are equal, or some
faces will be favoured more than others and so our dice will be "unfair”.
The dice you usually find today are cube-shaped - 6 square faces, all angles are right-angles and all sides
are the same length.

[ There are other shapes that make fair dice if we relax these conditions alittle. Can you guess what they
are? See the footnote for the answers.]

There are only FIVE fair-dice-shapes atogether if we strictly insist on the following conditions:

al sidesare equal in length and
al angles are equal so that
all the faces are identical in shape and size

Coordinates and other statistics of the 5 Platonic
Solids

They are the tetrahedron, cube (or hexahedron), octahedron, dodecahedron and icosahedron.

Their names come from the number of faces (hedron=face in Greek and its plural is hedra). tetra=4,
hexa=6, octa=8, dodeca=12 and icosa=20.

Clicking on theimage gets you an animation of the object
The Tetrahedron
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Three-dimensional Solid Geometry and the Golden section

A tetrahedron of edge length sgrt(8) has coordinates
i i; (1, 1, 1), (1, -1, -1, (-1, 1, -1, (-1, -1, 1).
Other views: % v

The Cube or Hexahedron

A cube (or hexahedron) of edge length 2 has coordinates:
(11 11 1)1 (11 11 _1)1 (11 _11 1)1 (11 _11 _1)1
(-1, 1, 1), (-1, 1, -1, (-1, -1, 1), (-1, -1, -1).

Other views:

The Octahedron

An octahedron of edge length sgrt(2) has coordinates
(1, o, 0, (-1, 0o, 0), (O, 1, 0), (O, -2, 0), (0, 0, 1),
(0, 0, -1).

Other views:

The Dodecahedron

The dodecahedr on of side 2/Phi has coordinates

(0, phi, Phi), (0, phi, -Phi), (0, -phi, Phi), (0, -phi, -
Phi ),

(Phi, 0O, phi), (Phi, O, -phi), (-Phi, O, phi), (-Phi, O, -
phi),
(phi, Phi, 0), (phi, -Phi, 0), (-phi, Phi, 0), (-phi, -

Phi, 0),
(1, 1, 1), (1, 1, -1), (1, -1, 1), (1, -1, -1),
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Three-dimensional Solid Geometry and the Golden section

(-1, 1, 1), (-2, 1, -1), (-1, -1, 1), (-1, -1, -1).
20 points, 30 edges, 12 faces. where Phi=1-61803.. and phi=1/Phi=Phi-1=0-61803....

e
RS

Other views:

The Icosahedron

The icosahedron of side 2 is defined by coordinates

(0, 1, Phi), (O, -1, Phi), (O, 1, -Phi), (0, -1, -Phi),
(Phi, 0, 1), (Phi, O, -1), (-Phi, O, 1), (-Phi, 0, -1),
(1, Phi, 0), (2, -Phi, 0), (-1, Phi, 0), (-2, -Phi, O0).
where Phi isthe golden ratio (1-61803..).

12 points, 30 edges, 20 faces.

qr v

.'ll \"'\- r'lr E

*, .-"r- y

Other views:

The Dual of a Solid

There are two more important relationships between the dodecahedron and the icosahedron. First, the
mid-points of the faces of the dodecahedron define the points on an icosahedron and the mid-points of the
faces of an icosahedron define a dodecahedron. The same is true of the cube and the octahedron. If we try
it with atetrahedron, we just get another tetrahedron. Each is called the dual of the other solid where the
number of edgesin each pair isthe same, but the number of faces of one isthe number of points of the
other, and vice-versa.

Golden sections in the Dodecahedron, Icosahedron and Octahedron

If we join mid-points of the dodecahedron's faces, we can
get three rectangles all at right angles to each other.
What's more, they are Golden Rectangles since their
edges areintheratio 1 to Phi.

The same happens if we join the vertices of the
icosahedron since it is the dual of the dodecahedron.
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Three-dimensional Solid Geometry and the Golden section

Using these golden rectanglesit is easy to see that the coordinates of the
icoshedron are as given above since they are:

(0,£ 1, + phi), (2 phi, 0, £ 1), (£ 1, + phi, 0) .

- e 1N NQS 0O dO - —

1. Here is an interesting way to nake a nodel of an
| cosahedron based on the three gol den rectangl es
I ntersecting as in the picture above:

o Cut out three golden rectangles. One way to do this is to
take three postcards or other thin card and cut them so they
are 10cm by 16.2cm

o In the centre of each, nmake a cut parallel to the | ongest
side which is as long as the shortest side of a card.

The three cards will be slotted through these slits to make
the arrangenent in the picture above. To do this, on one of
the cards extend the cut to one of the edges.

T + Make and one R +
! I two of ! !
| ====== I of t hese | =—==—========
! | these ! !
e e e e + o e e +

o Assenbl e the cards so that they | ook |ike the picture here of
the red, green and blue rectangles. [This is a nice little
puzzle itself!] You may want to put pices of sticky-tape
where two cards neet just to nake it a bit nore stable.

o Now you can make an i cosahedron by joining the corners of the
rectangles by gluing cotton so that it |ooks |like the picture
above.

o It will be quite delicate, so tape another piece of cotton to
one of the short edges of one of the cards and hang it up
i ke a nobil e!

2. 1f you are good at coordinate geonetry or |ike a challenge, then

show that the 12 points of the icoshedron divide the edges of the
octahedron in the ratio Phi:1 (or 1:phi if you like) where the
oct ahedron has vertices at:

( tPhi2 , 00 ), ( O, #Phi2 , 0), ( 0O, 0, #Phi?2)

[fromH S M Coexter's book Introduction to Geonetry, 1961, page 163.]

An Icosahedron in an Octahedron
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Using the same three golden rectangles at right-angles to
each other, we can also make an octahedron.

If we put a square as shown around each rectangle, the
squares will also be at right angles to each other and form
the edges of an octahedron.

Now if we join the "golden-
section points' forming the corners of our three
rectangles (and now on both the edges of an
octahedron and also forming the vertices of an
icoshedron as we saw above), we can see how to fit
an icosahedron into an octahedron - and the process
involves golden sections!

Here are some more Platonic-solids-within-Platonic-solids:

A Tetrahedron in a Cube

Select one corner of acube and join it to the opposite corner on each face.

An Octahedron in a Tetrahedron

Join the mid-point of each edge to any other edge mid-point where the connecting
line lies on one face of the tetrahedron.

%

N
/]

€ > An Octahedron in a Cube

Join the mid-points of faces: if two faces are next to each other at a corner, then
their mid-points can be joined.

s
M,

The Greeks, Kepler and the Five Elements
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The Greeks saw great significance in the existence of just 5 Platonic solids and they
related them to the 4 ELEMENTS (fire, earth, air and water) that they thought
everything was made from. Together with the UNIVERSE, they associated each with a
particular solid.

The astronomer and mathematician, Kepler (1571-1630), shown here as alink to the
History of Mathematics web site at St Andrews University, Scotland, justified this as
follows:

Of the 5 solids, the tetrahedr onhas the smallest volume for its surface area and the

icosahedr onthe largest; they therefore show the properties of drynessand wetnessrespectively and
so correspond to FIRE and WATER.

The cube, standing firmly on its base, corresponds to the stable EARTH but the octahedr onwhich
rotates freely when held by two opposite vertices, corresponds to the mobile AIR.

The dodecahedr oncorresponds to the UNIVERSE because the zodiac has 12 signs (the
constellations of stars that the sun passes through in the course of one year) corresponding to the
12 faces of the dodecahedron.

Kepler called the golden section "the division of aline into extreme and mean ratio", as did the Greeks.
He wrote the following about it:

" Geometry hastwo great treasures: oneisthe Theorem of Pythagoras; the other, the
division of alineinto extreme and mean ratio. Thefirst we may compareto a
measur e of gold; the second we may name a precious jewel."

Johannes Kepler, (1571-1630)

W Raoul Martens recommends an article in German on Kepler'sinterest in the Platonic solds: Die
kosmische Funktion des Goldenen Schnitts by Theodor Landscheidt in Sterne, Mond, Kometen,
Bremen und die Astronomie zum 75. Jahrestag der Olbers-Gesell-schaft Bremen eV. Verlag H. M.
Hauschild, Bremen 1995.

1- 61803 39887 49894 84820 45868 34365 63811 /77203 09179 80576 ..More..

Quasicrystals and Phi

On the Flat Phi page, we saw that the two triangles that appear in the pentagram and pentagon were used
by Roger Penrose to design tiling patterns with five-fold symmetry called Penronse tilings. Isthere a

three-dimensional analogue of those two-dimensional tilings? The answer, thought to be impossible until
Penrose's work of the early 1970's showed that there could be structures that filled space (in the same
way that tilingsfill planes) that have five-fold symmetry.
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Are any Platonic solids space-filling?

Yes, sinceidentical copies of acube can be stacked to fill avolume of space as large as we like with no
gaps. The same istrue of the tetrahedron and the octahedron, but the icosahedron and the dodecahedron
cannot be used to fill space. Thisis analgousto trying to tile a plane with pentagons - they |leave odd gaps
that are not pentagonal. Both the dodecahedron and the icosahedron exhibit five-fold symmetry too. To
see this, look back at the sectios above on the | cosahedron and Dodecaehdron and you wil find that, in
the "other views" each has aview with five-fold symmetry. These views correspond to looking along an
axis through the centre of the solids which have five-fold symmetry.

Quasicrystals

Penrose found that there are two simple shapes that you can use to fill a space as large as you like and
which have five-fold axes of symmetry. The shapes are built from 6 flat faces which are , that is, shapes
with all sides of equal length (like a square) and which has oppopsite sides paralled (again like a square),
but which does not have all its angles equal - so they are diamond shaped (rhombs, rhombuses). The
Penrose tiling shown on the Flat Phi page is also made from two rhombuses and fills theplane with a five-
fold symmetric pattern.
For the solid shapes, the faces are all diamonds (rhombs) but not the ones used in the Penrose tiling and
pentagons and pentagrams. The surprising relationship that holds for these new rhombuses is that
theratio of the two diagonals of the diamonds (rhombuses) is Phi! &
So thisis adifferent rhomb from the Penrose rhombs and we shall call it the
golden rhomb.

This makes the semi-angles (half the angles inside the rhombus) have tangents of Phi and phi so the
angles of the rhombus are 2x31-717474..° = 2x0-55357435889" and 2x58:282525588° =
2x1-0172219674".

[The angles in the rhombs in the Penrose tiling are 2/5 pi and 3/5 pi (72° and 108°) in one and 1/5 pi and
4/5 pi (36° and 144°) in the other.]

The two solids are similar to a cube but the faces are golden rhombs. The first shape is made by attaching
three golden rhombs at their shorter angles in the same way as three squares meet at a corner of acube. A
duplicate is made and the two fit together to make a six-sided shape like a slanted cube. Thisiscaled a
prolate rhombohedron.

The other shape is made by joining three golden rhombs together in the same way but at the larger angles
thistime. A duplicate of thisis again fitted to make a different six-sided cube-like shape. Thisiscalled an
oblate rhombohedron.

The two shapes look like cubes |eaning over to one side.

Take alarge number of one of these shapes and you can indeed fill as large a space as you like with them.
When stacking cubes or octahedra, all the shapes are aligned identically (look identical, with the same
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orientation). When we use arhombohedron, some must be turned round to fit in with others. These also
occur in nature, although only discovered since the 1950's and, because they are not quite as symmetrical
as crystals, as called quasi-crystals.

Do quasicrystals occur in nature too?
Y es they do and a large number of substances have now been identified with such structures.

Crystals, the most symmetrical structures (with identical orientation for all the building blocks) are seen
in sugar and salt as well as diamonds and quartz. Quasicrystals are an unsuspected new state of matter,

sharing some of the properties of crystals and also on non-crystalline matter (such as glass). In 1984 the
"impossible” five-fold symmetry was observed in an aluminiun-manganese alloy (AlgMn) and the term

quasicrystal wasinvented for it in:

%= D Shechtman, | Blech, D Gratias, JW Cahn Metallic phase with long-range orientational order
and no trandational symmetry Physics Review Letters 1984, Vol 53, pages 1951-1953.

References and Links

W SeeH SM Coxeter, Regular Polytopes, (Third Ed) 1973, Dover, pages 52-53 is a very popular book
at an amazingly low price - well worth getting!

¥ H SM Coxeter, Introduction to Geometry, 1961, John Wiley, (isaclassic! See especially section
11.2: De Divina Proportione.

"™ Theclassic and encyclopedic book on tilings is Grunbaum and Shepard's Tilings and Patter ns
Freeman and Co, 1986. It is well worth dipping into just to admire the pictures and patterns as the maths
in it can be a bit scary!

"™ Fractals, Chaos and Power Laws, M Schroeder, W H Freeman publishers, 1991. Thisis another
fascinating book with much on self-similar sequences and patterns, Fibonacci and Phi. | have found
myself dipping into this book time and time again. There is a chapter on the forbidden five-fold
symmetry and its relation to the Fibonacci rabbits. (More information and you can order itonline viathe
title-link.)

. Robert Conroy has a page with lots of wire-frame pictures of other three-dimensional structures

that are related to the I coshedron and Dodecahendron.
. If your browser hasaVRML plug-in, then check out this polyhedron site with over 700 polyhedra
to manipulate on-screen!
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Footnotes

Footnote 1: On Plato and Euclid

The Greeks from Euclid (365BC-300BC) and before knew that there were only 5 solid shapes with all
sides equal, all angles equal, so that the faces are regular polygons.

Plato

They were also mentioned by the Greek philosopher Plato (428BC-348BC). He established an Academy
in Greece and the motto over the entrance was

L et no one ignorant of geometry enter here

As aphilosopher, he held the view that mathematical objects "really" existed so that they are discover ed
by mathematicians (in the same way that new continents are discovered by explorers) rather than
invented in the way that the TV or computer were invented. Plato believed that mathematics provided
the best training for thinking about science and philosophy. The five regular solids are named "Platonic
Solids' today after Plato.

Euclid

The most famous ancient book on geometry was written by Euclid (pronounced "Y ou - klid") who lived

from 365 BC to 300 BC and worked at the Library at Alexandriain Egypt, the foremost centre of
learning in the world at that time. Actually, the book was a collection of 13 volumes, called The Elements
and was the collected knowledge on geometry, superbly arranged and logically presented. It was the
standard mathematics text book in Europe for centuries because it trained the reader to think logically,
only relying on results that could be proved logically from self-evident starting points (axioms).

Here are some axioms:

Things that are equal to the same thing are equal to each other.

The whole is greater than the part.

It is possible to draw a circle with any point as centre and with any radius.
It is possible to draw a straight line between any two points.

From these, Euclid proved theor ems such as

The anglesin atriangle add up to two right angles.
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Three-dimensional Solid Geometry and the Golden section

One of Euclid'saimsin his Elements seems to be to prove that there were only 5 solid (i.e. 3-
dimensional) objects with all sides equal and all angles equal, and this occupies the final (13th) book of
the Elements.

Footnote 2: Shapes for Fair Dice

We saw above that the Greeks knew of the 5 shapes that make fair dice. The Romans used
acubic dice and this is the one we most often use today. b "

Should we say one die or one dice?

The dictionary saysthat dieis singular and diceisits plural form, so we ought to speak of
throwing a die or two dice.

These days the plural word dice is often used for one die and the dictionary recognises this
also.

A popular gambling game from at least Roman times involved throwing dice and is also
called casting the dice. Some of the Roman soldiers "cast lots" for the clothes of Jesus at
his crucifiction. Today we still use the phrasethe dieis cast. | used to think this phrase
meant that a mould (US spelling=mold) had been made since we also read of someone
being cast in the heroic mould as if they had been molten metal poured into a mould from
which they solidify into a heroic shape. However | waswrong and it is just another use of
the word die.

Thereal meaning of the phrasethe dieis cast isthat a dice (one!) has been thrown (cast)
meaning that, asin a game of chance, "the outcome is now fixed, the decision is made".

In these pages, | shall stick to the popular and common use, and make dice refer to the
singular as well asthe plural.

From the Platonic solids that we saw above, we have dice of

4 sides : the tetrahedron

6 sides: the cube (or hexahedron)
8 sides. the octahedron

12 sides: the dodecahedron

20 sides: the icosahedron

There are other shapesif we don't insist that all the sides are the same length OR we allow 2-D shapes,
but which still are fair dice - i.e. each number on afaceisaslikely as any other number to turn up.
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Three-dimensional Solid Geometry and the Golden section

If we let sides be different lengths, we can have a prism which is like a new (unsharpened) pencil with
flat sides. Often pencils have just 6 flat sides, and we roll the pencil so that any sideislikely to be face

up. We can imagine a pencil with 8 sides, or 7 or even 27. If we have an odd number
of sides, no onefaceis"up" (consider atriangular cross-sectioned pencil for instance,

with just 3 choices of side). Here we may agree to use the side that the pencil lands on.

The other range of shapesisthe spinner that comes with some boxed games. Here we have aflat
g polygon with all sides of the same length (to make it fair). Thiswas not in our list of
ﬁh Platonic solids becauseit is not asolid - it isjust aflat 2-dimensional shape. However,
TR we can have any number of sides and each is equally likely to be the side the spinner
landson, so itisfair.

Bi-pyramids as dice

Putting both of the above shapes together, we get a dice which is two n-gon-al pyramids,

s joined at their bases (the n-gons) to form a double pyramid or bi-pyramid. The picture
shows a 12-sided dice formed from two 6-sided pyramids joined at their hexagonal bases.

Perhaps we should call it a bi-hexahedral dice.

If we used pentagons then the bi-pyramidal dice would be 10-sided. It would be useful for generating
random numbers up to 10.

By using two of them, say ared onefor tensdigitsand a one for units digits, we can roll random
numbers from the hundred values between 00 and 99. If we added a blue one a'so, then we can get up to
999, and so on.

The advantage of the bi-pyramidal diceisthat thereis always a side on top no matter how the dice lands.

Iso-hedral shapes

Hereis Ed Pegg Jr.'s complete list of ALL the 3-D dice shapes which have every face identical.

It includes al our 5 Platonic solids, and, since it also includes those where not every edge is the same
length, it includes the bi-pyramids too. Every face isidentical to every other face, so al the faces have
exactly the same polygonal shape, but some edges have different lengths to others. There are others apart
from the Platonic solids and the bi-pyramids and are some pretty weird too!

The common feature is that all of them would make good dice.

Since every face is the same, they are called iso-hedral.

[Back to the main text.]
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Continued Fractions - An introduction

An Introduction to Continued Fractions

Continued fractions are just another way of writing fractions. They have some interesting
connections with a jigsaw-puzzle problem of splitting a rectangle up into squares and aso with one

of the oldest algorithms known to Greek mathematicians of 300 BC - Euclid's Algorithm - for
computing the greatest divisor common to two numbers (gcd).
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A jigsaw puzzle: splitting rectangles into
squares

Suppose we have arectangle which is 45 units by 16. We shall use this to express 45
45/16 as acontinued fraction since at present 45/16 is just asimple fraction. 16

Looking at the rectangle the other way, its sides are in the ratio 16/45. We shall use
this change of view when expressing 45/16 as a continued fraction. 45/16 is 2 lots of 16, with 13 |eft over, or, in
terms of ordinary fractions:

45 = 16 + 16 + 13 = 2 + 1

16 16 16

In terms of the picture, we have just cut off squares from the rectangle until we have 16 16
another rectangular bit remaining. There are 2 squares (of side 16) and a 13 by 16 16
rectangle left over.

Now, suppose we do the same with the 13-by-16 rectangle, viewing it the other way round, so it is 16 by 13 (so we
are expressing 16/13 as awhole number part plus afraction left over). In terms of the mathematical notation we
have:

45 = 16 + 16 + 13 =2 + 1 =2 + 1

6 16 16 16/ 13

=

Repeating what we did above but on 16/13 now, we see that thereisjust 1 square to cut off of side 16, with a 3-by-
13 rectangle left over, expressing 13/3 as a whole-number-plus-fraction:

=2 + 1 =2 + 1 16
16/ 13 1 +

3
13

Notice how we have continued to use fractions and how the maths ties up with the picture.
Now we do the same thing on the left-over 3-by-13 rectangle, but looking at it as a 13-by-3 rectangle. There will
be 4 squares (of side 3) and arectangle 1-by-3 |eft over:

16
45 = 2 + 1 =2 + 1 =2 + 1
16 1+

Ul

& |
w w
H
w
~~
w
N
+

Now we have ended up with an exact number of squaresin arectangle, with nothing left over so we cannot split it
down any more.
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45 = 2 + 1 45
16 1 + 1 16 16

In the rectangle of the rectangle, we can relate the geometry to the arithmetic as follows:

we see 2 orange squares (16 by 16), 1 brown square (13 by 13), 4 red squares (3 by 3) leaving a blue rectangle of
size 1 by 3 (or you can think of this as 3 blue squares of size 1 by 1): the numbersare 2, 1, 4 and 3, as seen in the
continued fraction above.

The General form of a Continued Fraction

We can do the same to any fraction, P/Q (P and Q are whole, positive numbers) expressing it in the form of a
continued fraction asfollows:

E:a0+ 1 =a0+1/(a1+1/(a2+1/(..)))
Q a; + 1

where ag, a4, &, etc are all whole numbers. If P/Q isless than 1, then g, will be O.

The fractional form that we have derived is called the continued fraction.

Thereisno need to draw the rectangles-as-squares pictures each time, unless you want to, because we can merely
look at the numbers. If the fraction islessthan 1, we use its reciprocal and then we can split it into a whole-number
part plus another fraction which will be less than 1 and repeat. We stop when the fraction has a numerator or a
denominator of 1.

Take for instance, 7/30. It isaready less than 1 so we start off by writing it as

7/ 30 =0 + 1/(30/7)
and then we apply the method of the last paragraph:

7/ 30 =0 1/ (4 + 2/7)
0+ 1/(4 + 1/(7/2))
0+ 1/(4 + 1/(3 + 1/2))

0+ 1/(4 + 1/(3 + U (1 + 1/1)))

i n +

Either of thelast two linesis avalid continued fraction form for 7/30.
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The List Notation for Continued Fractions

We can write down any continued fraction such as
PPQ=ag + 1/(a; + 1/ (a, + 1/ (ag + ...)))
just asalist of theds:
PPQ=[ag a;, ap az, ...]
The first number is the whole number part of the fraction, so we separate from the other coefficients by using a

semi-colon (;) after it.
For the continued fractions used above, we can now write them as:

45/16 = [2;1,4, 3]
7/30 = [0; 4, 3, 2]

If the first number in thelist is 0, then the numerical valueis less one. For instance, one haf is:
1/ 2 = [0; 2]

Also, thereisasimple way to find the reciprocal of a continued fraction, for instance 16/45, sinceitslist formisO
+ 1/(45/16), so we have:

16/ 45=[ 0; 2, 1, 4, 3]

If itslist form begins with a zero already, asin 1/2 = [0,2], then its reciprocal is found by removing the O from the
start of the list:

2 = [2]

Things to do -
1. Express the follow ng as continued fractions:
1. 41/13
2. 125/ 37
3.5/12

4 2 5 4
L
mnmm
2. i [TTT]

14

14
The three rectangles in the picture are split into squares.
Assum ng that the small est sized square has sides of length 1, what is
the ratio of the two sides of each of the three rectangl es?
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What is the length of each of the rectangle's sides if the small est
squares have sides of length 2?

3.In the continued fraction for 45/16 = [2; 1, 4, 3], let's shall see what
happens when change the final 3 to another nunber. Can you spot the

pattern?
Convert the following to proper fractions:
o [2; 1, 4, 4]
o [2; 1, 4, 5]
a] [2; 1, 4, 6]
o [2; 1, 4, 7]
o [2; 1, 4, n]

How i s your pattern related to the proper fraction for [2; 1,4 ]7?
4. Convert these pairs of continued fractions into a single proper
fraction:
o [0; 1,2,3] and [0; 1, 2,2, 1]
o [1; 1,2] and [1; 1,1,1]
o [3; 2] and [3; 1, 1]
What is the general principle here?
5. Here is the Fibonacci Spiral fromthe Fibonacci Nunbers in
Nat ur e page:
If the small est squares have sides of length 1, what continued
fraction does it correspond to?
What proper fraction is this?

6. Convert the successive Fibonacci nunber ratios into continued fractions.
You should notice a striking simlarity in your answers.
1. 1/1
2. 2/1
3.3/2
4. 5/ 3
5 8/5
If the ratio of consecutive Fibonacci nunbers gets closer and closer to
Phi, what do you think the continued fraction m ght be for
Phi =1-618034... which is what the above fractions are tendi ng towards?
7. The |l ast question made fractions from nei ghbouring Fi bonacci nunbers.
Suppose we take next-but-one pairs for our fractions, eg
1, , 3, _5, _8, 13, etc.
8 13 21 34

N
w |-
o1 N

o Convert each of these to continued fractions, expressing themin
the list form Wat pattern do you notice?
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Continued Fractions and Euclid's GCD
Algorithm

Euclid's GCD algorithm

One of the often studied algorithms in computing science is Euclid's Algorithm for finding the greatest common
divisor (gcd) of two numbers. The greatest common divisor (often just abbreviated to gcd) is also caled the highest
common factor (or just hcf). It isintimately related to continued fractions, but thisis hardly ever mentioned in
computing science text books. Here we try to show you the link and introduce a visual way of seeing the algorithm
at work aswell as giving an aternative look into continued fractions.

So let'slook again at the calculations we did above for 45/16.

45 = 2x16 + 13 : 45 as a nultiple of 16 has 13 left over
16 = 1x13 + 3 : 16 as a multiple of 13 has 3 left over
13 =4x 3 + 1 : 13 as amultiple of 3 has 1 left over
3=3x1+ O0: 3is anmltiple of 1 exactly.
L=Nx S+ R

The bold figures ( N ) are our continued fraction numbers. The L column isthe Longest side of each rectangle that
we encountered with S the Shortest side and R being the Remainder.
The method shown hereis

. precise, and
. worksfor any two numbersin place of 45 and 13, and
. it aways terminates since each time the numbers are reduced until eventually we reach 1.

These are the three conditions necessary for an algorithm - amethod that a computer can carry out automatically
and which eventually stops.

Euclid (a Greek mathematicians and philosopher who lived from about 300 BC to 260 BC) describes this
algorithm in Propositions 1 and 2 of Book 7 of The Elements, although it was probably known to the Babylonian
and Egyptian mathematicians of 3000-4000 BC also.

If wetry it with other numbers, the final non-zero remainder is the greatest number that is an exact divisor of both
our original numbers (the greatest common divisor) - hereitis 1.

Given any two numbers, they each have 1 as adivisor so there will always be a greatest common
divisor of any two (positive) numbersand it will be at least 1.

Using Lists of Divisors to find the GCD
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Here are the divisors of 45 and of 16:

45 has divisors 1, 3, 5, 9, 15 and 45
16 has divisors 1, 2, 4, 8 and 16

So the largest number in both of theselistsisjust 1.

Let's take afraction such as 168/720. It isnot in its lowest terms because we can find an equivalent fraction which
uses simpler numbers. Since both 168 and 720 are even, then 168/720 is the same (size) as 84/360. This fraction
too can be reduced, and perhaps the new one will be reducible too. So can we find the lar gest number to divide
into both numerator 168 and denominator 720 and get to the ssimplest form immediately?

However, first, let's try to find the largest number to divide into both 168 and 720 directly:

Find the lists of the divisors of 168 and of 720 and pick the largest number in both lists:

168 has divisors 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84 and 168
720 has divisors 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36,
40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360 and 720

Phew! - that took some work!

Now we just need to find the largest number in both lists. A bit of careful searching soon revealsthat it is24. So 24

Is the greatest common divisor (gcd) of 168 and 720. Y ou will often see statements such as this written as follows:
gcd(168,720) =24

Theimportance of the gcd of aand b isthat it tells us how to put the fraction a/b into its ssmplest
form which isto divide the top and the bottom by the gcd. Theresulting fraction will bethe
simplest form possible. So

168 = 168+24 = 7 and simlarly 720 = 30 = 4+2

720 720+24 30 168 7 7

Euclid's algorithm is here applied to 720 and 168: Just keep dividing and noting remainders so that the larger
number 720 is 4 lots of the smaller number 168 with 48 |eft over. Now repeat on the smaller number (168) and the
remainder (48) and so on:

720 = 4x168 + 48
168 = 3x 48 + 24
48 = 2x 24 + O

so the last multiple before we reach the zero is 24, just as we found above but with rather less effort this time!

720 Hereisarectangle 720 by 168 split up into squares, as above. Note how
168 | 183 | 18z |168 4 the quotients 4, 3 and 2 are shown in the picture and also that the gcd is
158168 pi= 24 (the side of the smallest squares):
24%24
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And hereis 720/168 expressed as a continued fraction:

720 = 4 + 48 = 4 + 1 =4 + 1 = 4 + 1
168 168 168 3 + 24 3 +1
48 48 2

- Things to do -

1. For each of the fractions in the previous Things To Do section, use
Euclid' s algorithmto check your answers.

2. There is another sinple way to find gcd's which takes nore work than
Euclid' s nmethod but is quicker than enunerating all the divisors. It
I nvol ves expressing the two nunbers as powers of prinme factors, for
I nst ance:

720 = 24 x 32 x 51
168 23 x 31 x 71

o First re-wite these so that the same prime nunbers appear in both
lists, using a-prine-to-the-power-of-0 if necessary.
For instance, there are no 7's in the prinmes product for 720, so,
since 79=1, we introduce an extra factor of x70. In the sane way we
can introduce x59 into the product for 168. Now both |ists contains
exactly the sane prines: 2, 3, 5 and 7:

720 = 24 x 32 x 51 x 70
168 = 23 x 31 x 50 x 71

3. Since there nust be 2's in the gcd of 720 and 168, how nmany twos do we
need for the greatest factor which divides both?
What about the nunber of 3's? and 5' s? and 7's?
So the greatest common divisor has the form

2a x 3b x 5c x 7d

What nunbers stand in place of the letters?

4. What is the general principle for conputing the gcd, given two nunbers
expressed as powers of the sane prines?

5. What is the greatest common divisor of 24 and 18 (call it G? Wuat is
the gcd of 24, 18 and 30? Howis it related to the gcd of G and 307?
[This is Proposition 3 of Euclid' s The El enents, Book 7.]

Continued Fractions for decimal fractions?

If we look at irrational numbers (numbers which cannot be written exactly as afraction) we will find no pattern in
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their decimal fractions. For instance, here is+2 to 200 decimal places:

1- 41421 35623 73095 04880 16887 24209 69807 85696 71875 37694
80731 76679 73799 07324 78462 10703 88503 87534 32764 15727
35013 84623 09122 97024 92483 60558 50737 21264 41214 97099
93583 14132 22665 92750 55927 55799 95050 11527 82060 57147

Indeed, it is not too difficult to show that, if any decimal fraction ever repeats, then it must be a proper fraction,
that isa rational number - see the references section at the foot of this page.

The converseis aso true, i.e. that every rational number has a decimal fraction that either stops or eventually
repeats the same cycle of digits over and over again for ever.

But what about continued fractions for irrational numbers?

Thereis a pleasant surprise here since square-roots have repeating patternsin their continued fraction forms.

Terminating Decimal fractions

If we have aterminating decimal fraction, such as 1-53 then we can always represent it as a proper fraction by
using a denominator which is a big enough power of 10.

For instance, 1-53 isjust 153/100.

Similarly 3-456 is just 3456/1000

and 0.00075 is 75/100000.

Since they are fractions, we can now use Euclid's algorithm to express them as continued fractions and so their list
of integersin the continued fraction will eventually end.

Continued fractions for square-roots

But what about a continued fraction for ¥2? Since it's decimal fraction never ends, and it is not possible to write it
as afraction, how can we convert it to a continued fraction?

Algebra can come to our assistance here.

To express 42 as a continued fraction, we know its value is bigger than 1 so we will write it as:

sqrt(2) =1 + 1/x

[We use 1/x so that x will be bigger than one.] All we have to do now isfind x!
o let's rearrange this equation to find the value of x:

(sgrt(2) - 1) = 1/x so
x =1/ (sqrt(2) - 1)

Thereisauseful technique for simplifying fractions with square-roots in the denominator, to get a whole number
in the denominator: Here we will multiply the top and bottom of the fraction by (v2 + 1):
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1 sqrt(2)+1 sgrt(2)+1
X = --------- R = e-e------ = sqrt(2)+1
sqrt(2)-1 (sqrt(2)-1)(sqrt(2)+1) 2-1
But we know sgrt(2) = 1 + 1/x, so we have:
x=sqrt(2)+1=1 + 1/x + 1 = 2 + 1/X

By substituting 2 + 1/x wherever we see x, we now have our continued fraction for x:

Xx=2 +1 =2 + 1 =2 + 1 = ...
X 2 + 1 2 + 1
X

So now we can express 2 as a continued fraction, which goes on for ever but which has a simple pattern for its
components:

W2 =1 +1=1+ 1
X

In terms of our list notation, we would write:

W2 = [1; 2, 2, 2, 2, 2, 2, ...]

It turns out that ALL square roots have similar infinite repeating patternsin their continued fractions, but for the
details, you will need to look at books on Number Theory. Here are some more. What patterns can you spot? To
find out more, look at the books in the References section below.

W2 = [1; 2, 2, 2, 2, 2, 2, 2, 2, ... ] =1[1] then repeat [2]

¥3 =[1; 1, 2, 1, 2, 1, 2, 1, 2, ... ] =[1] then repeat [1,2]

W4 = [2]

W5 = [2; 4, 4, 4, 4, 4, 4, 4, 4, ] =[2] then repeat [4]

W6 = [2; 2, 4, 2, 4, 2, 4, 2, 4, ] =[2] then repeat [2,4]

A7 = [2; 1, 1, 1, 4, 1, 1, 1, 4, ] =1[2] then repeat [1,1,1, 4]
48 = [2; 1, 4, 1, 4, 1, 4, 1, 4, ] =1[2] then repeat [1,4]

49 = [3]

410= [3; 6, 6, 6, 6, 6, 6, 6, 6, ] = [3] then repeat [6]
v11=[3; 3, 6, 3, 6, 3, 6, 3, 6, ] =[3] then repeat [3, 6]
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+12=[3; 2, 6, 2, 6, 2, 6, 2, 6, ... ] =[3] then repeat [2,6]
Y ou can produce these by a computer program as follows:

. Find the square root as areal number,
. then expressit as afraction over alarge power of 10,
. next use Euclid's algorithm to find the entries in the continued fraction list.

Hereis atable of the square-roots of all numbers from 2 to 100:

vn |[ & Period ] i |[ a; Period ]

2 |1 2 V51| 7; 7,14

W3 |1 1,2 V52| 7, 4,1,2,1,4, 14

W4 | 2 53| 7, 3,1,1,3, 14

W5 | 2; 4 V54| 7, 2,1,6,1,2, 14

M6 | 2; 2,4 55| 7; 2,2,2, 14

W7 12 1,1,1,4 56| 7; 2,14

W | 2 1,4 W57 7, 1,1,4,1,1,14

o | 3; 58| 7; 1,1,1,1,1,1, 14

Y10| 3: 6 59| 7: 1,2,7,2,1, 14

W11| 3; 3,6 60| 7; 1,2,1,14

12| 3; 2,6 W61 70 1,4,3,1,2,2,1,3,4,1,14
v13] 3; 1,1,1,1,6 ¥62| 7; 1,6,1,14

14| 3; 1,2,1,6 W63l 70 1 14

15| 3; 1,6 64 8; |

16| 4; 65| 8; 16

17| 4; 8 66| 8, 8,16

18| 4; 4,8 W67/ 8 5,2,1,1,7,1,1,2,5,16
19| 4; 2,1,3,1,2,8 ¥68| 8: 4,16

Y20 4; 2,8 69| 8; 3,3,1,4, 1,3, 3,16
21] 4; 1,1,2,1,1,8 70| 8; 2,1,2,1,2,16

22| 4: 1,2,4,2,1,8 A71) 8 2,2,1,7,1,2, 2,16
V23| 4; 1,3,1,8 72| 8 2. 16

24| 4; 1,8 73| 8; 1,1,5,5,1,1, 16

+25| 5: \74) 8 1,1,1,1,16

26| 5; 10 75/ 8; 1,1,1, 16

27| 5; 5,10 ¥76| 8 1,2,1,1,5,4,5,1,1,2, 1,16
Y28 5; 3,2,3,10 77| 8; 1,3,2,3,1,16

29| 5; 2,1,1,2,10
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30| 5; 2,10 78| 8; 1,4,1,16
31| 5, 1,1,3,5,3,1,1, 10 79| 8; 1,7, 1,16
32| 5; 1,1,1,10 80| 8; 1,16
33| 5; 1,2,1,10 81| 9;
34| 5; 1,4,1,10 82| 9; 18
35| 5; 1,10 83| 9; 9,18
36| 6; 84| 9 6,18
37| 6; 12 85| 9; 4,1,1,4,18
38| 6; 6,12 V86| 9; 3,1,1,1,8,1,1,1,3,18
39| 6; 4,12 87| 9; 3,18
40| 6; 3,12 88| 9; 2,1,1,1,2,18
a1l 6; 2,2, 12 89| 9; 2,3,3,2 18
42| 6; 2,12 90| 9; 2,18
a3 6; 1,1,3,1,5,1,3,1,1, 12 o1/ 9; 1,1,5,1,5,1,1, 18
a4l 6; 1,1,1,2,1,1,1,12 92| 9; 1,1,2,4,2,1,1,18
Yas5| 6, 1,2,2,2,1,12 93| 9; 1,1,1,4,6,4,1,1,1,18
46| 6; 1,3,1,1,2,6,2,1,1,3,1,12|v94| 9; 1,2,3,1,1,5,1,8,1,5,1,1,3,2,1, 18
47| 6; 1,5,1,12 o5/ 9; 1,2,1,18
a8l 6; 1,12 96| 9; 1,3, 1,18
a9 7; Y97/ 9; 1,5,1,1,1,1,1,1,5, 1, 18
50| 7; 14 o8| 9; 1,8,1,18
99| 9; 1,18
- - Things to dO w—
What patterns do you notice in the table of square-roots above?

Four easy ones first:

What is special about the first nunmber of the continued fraction?
What is special about the last nunber in the periodic part?

Can you spot the connection between these two nunbers in each row
of the table?

What about the other nunbers in the periodic part? Is there a
pattern to themthat they ALL have?

2. Now let's look for patterns in the table as a whole.
How about the continued fractions for the square-roots of

2, 3,

O

O

0

10, 17 and 26.
What pattern do they all have?
What is the next nunber in this sequence of square-roots that has
t he sane pattern?
Can you prove your results?
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The proof is quite easy!

Fol | ow t he steps above where we showed [ 1; 2,2,2,2,2...
] was sqrt(2), but replace the 2's by 2n's say since the
general pattern here is [ n; 2n,2n,2n,2n,... ].

3. How about this pattern:
| ook at the square-roots of 3, 6, 11, 18 and 27.
o What is the pattern this tinme? Express the general pattern as a
mat hermat i cal expression.
o What is the next square-root with this pattern?
o Again try to verify your results are always true.
4. ..or spot the pattern in these sequences of square-roots:
3, 8, 15, 24 and 35
7, 14, 23, 34 and 47
12, 39 and 84
W have now covered the patterns of all the square-roots up to 13.
There is another pattern that applies to sone of these snaller
nunber's too - what pattern connects the cf lists for the square-
roots of :
6, 12, 20 and 307
o So what about 13? What pattern starts with the square-roots of 13,
29 and 537
o A pattern which includes sqrt(19) is difficult to spot (well |
haven't been able to find one yet - can you?) but what other
patterns can you find that cover nost of the rest of the nunbers up
to 1007
What square-roots are |left over?

O O () O

Was the table above produced by a computer program? Yes! The algorithmisexplainedin R. B. J. T. Allenby and
Ed. Redfern's excellent book Introduction to Number Theory with Computing, published by E Arnold in 1989
but now out of print. It iswell worth browsing through if you can find a copy in your library! Why not produce
your own program and then you can extend the table further, using the values above to check your program (and
minel)

Solving Quadratics with Continued Fractions

Many problems, when modelled in mathematics, involve a quadratic equation - i.e. an equation of the form
Ax2+Bx+C=0
wherethe A, B and C are numbers and we want to find values for x to make the equation true.

For instance, takex2-5x - 1=0.
Can you think of an x value for which this equation holds? We can rewrite the equation in a different way as.

X2=5x+1
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and now we can divide both sides by x to get:

X =5+1/x
This means that wherever we have "x", we can replace it by "5 + 1/x". So we can replace the x in "5 + 1/x" for
exampleto get:

5 +1
X

We can clearly replace the x again and get an infinite (periodic) continued fraction:

X =5 + 1 =[5 5 5 5 ...]

The Golden section and a quadratic equation

We have seen several times in the other Fibonacci Web pages at this site (see, for example, Formulae for Phi) that
Phi isaroot of the quadratic equation x2 - x - 1 =0.

Rearranging this equation gives x2=x + 1 and so dividing both sides by x (since x is not zero) we have x = 1 + 1/x
which leads directly a continued fraction for the (positive) root, the value of x which we called phi:

x=1+1x=1+1/(1+1/x) =... =11, 1, 1, ... ]

Of al continued fractions, thisis the simplest.
The mathematician Lagrange (1736-1813) proved the Continued Fraction Theorem which saysthat a quadratic

equation with integer coefficients has a periodic continued fraction for all itsreal roots.

Things to do -
1. Find the 2 roots and a continued fraction for a root of these quadratic
equat i ons:
ax2+x=1
b. x2 - 2x =1
2. What happens if we try to find square-roots using this nethod, for
exanple, the square root of 2 is a solution to x2 - 2 = 0. Wiy do we not
get a continued fraction this tine?
How does the answer to the second part of the previous question give a
continued fraction for sqrt(2)?

The Silver Means
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Can we find some more numbers with a pattern in their continued fractions which is like that of the golden mean,
Phi? Since Phi as a continued fraction is:

Phi =11, 1,1,1,1,1,... ]

then we can look at the numbers whose continued fractions are

[2; 2,2,2,2,2, ]
[3; 3,3,3,3,3, ]
[4;, 4,4,4,4,4, ]
[5; 5,5,5,5,5, ]

These also have some interesting properties and are called the silver means since the most marvellous properties
of al arefor that rather specia number we call the golden mean! Let's use T(n) for the n-th number in the list
above, so that T(1) isjust Phi and T(n) = [n; n,n,n,n,n, ...]

so T(n) = n+1/(n+1/(n+..)) or T(n) = n+1/T(n) since the value inside the bracketsisjust T(n)! So we havea
definition of the Silver Means:

A silver mean isanumber T(n) which has the property that it is n more than its reciprocal, ie T(n) =
n+1/T(n).

Numerical values of the Silver Means

Using the last property can we find values for the silver means? For instance,
T(1) = 16180339 = 1 + 1/1-6180339 = 1 + 0-6180339

T(2) = 2-4142135 =2 + 1/2-4142135 = 2 + 0-4142135

and so on.

Here is one ssmple way to find the values and all you need is your calculator!

Things to do -
1. The values of T(n) are easy to find on your calculator using the sane
met hod that we used to discover Phi fromits property that it is "1 nore
than its reciprocal".
The nmethod is, for exanple, to find T(2) on your calcul ator:
1. Enter any positive nunber you liKke.
2. Press the reciprocal button (to find 1 divided by the displayed
nunber)
3. Add 2 (or, to find T(n), add n) and wite down the result.
4. Repeat fromstep 2 as often as you |ike.

After just a few key presses, the nunbers you wite down wll be
identical and this is the value of T(n) as accurately as your cal cul ator
will allow

For T(2), you will soon reach 2-414213562.
2. For the value of T(2) here, subtract 1 and square the result. Wat is
t he answer?
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What exact val ue does this suggest for T(2)?
(You will see the answer in next section!)
3. Use the method above to find nunerical values for T(3) and T(4).

Exact values of the Silver Means

The Things To Do suggested to us an exact value for T(2). We could guess values for T(3) and T(4), but they are
not easy to spot! So it's mathematics to the rescue!

By multiplying both side of the equation T(n)=n+1/T(n) by T(n), we get: T(n)2 = nT(n)+1.
For example, the number [5; 5,5,5,5,5, ...] we have already met above and we found that it had the property that

X2=5x+1.
We can solve this quadratic equation or you can just check that there are two values of x with this property:

(5 + +29)/2 and
(5 - +29)/2

X
X

Since ¥29 is bigger than 5, then the second is a negative value, but since all our continued fractions are positive
(they do not contain a negative number!) then the first is the value of our continued fraction:

[5; 5,5,55/5 ...] = (5 + %29)/2

If we review what we did above, then you will notice that we found
W2=[1; 2,2,2,2,2, ...]

so we can deduce that

[2; 2,2,2,2,2, ...] =1+ 42

Following the same reasoning and including the golden mean a so, gives the following pattern:

[1; 1,1,1,1,1, ...] = (1 ++5 )/2

[2; 2,2,2,2,2, ...] = (2 ++48 )/2 =1+ 42

[3; 3,3,3,3,3, ...] = (3 ++13)/2

[4; 4,4,4,4,4, ...] = (4 + 20 )/2 =2 + 45

[5; 5,5,55,5 ...] = (5 + %29 )/2
6,6,6,6,6, ...] = (6 + 440 )/2 = 3 + 410

The following Things To Do explores this series and produces some more amazing connections between Phi and
the Fibonacci numbers!
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Things to do -
o What is the next line in the table above for T(7)?

o Express the n-th line, that is T(n) as a formula involving square-
roots.

2. T(1) is just Phi.
o T(4) also involves 5. Using the Table of Properties of Phi express
this as a power of Phi.
o T(11) al so involves 5. Wat is T(11)?
o Express T(11) as a power of Phi.
o What is the pattern here? Which powers of Phi are also Silver Means
and which silver nmeans are they?
[H nt: the answer involves the Lucas nunbers.]
3. What powers of Phi are missing in the answer to the | ast question? \Wat
are their continued fractions?
4. Express all the powers of Phi in the form (X+Y+¥5)/2. Find a fornula for
Phi" in ternms of the Lucas and Fi bonacci nunbers?

Other numbers with patterns in their CFs

All proper fractions can be expressed as continued fractions using the jigsaw-puzzle technique at the top of this

page where we split rectangles up into squares. Such continued fractions will eventually end since they are the
ratio of two finite whole numbers.

In the section above, we have seen that expressions involving square-roots can be expressed as continued fractions
with repeating patterns in them. Such continued fractions never end, but the pattern keeps repeating for ever.

Are there other numbers that have patternsin their continued fractions?
Yes! In particular, e does.

E

"E" isthe base of natural logarithms and a number which occursin many placesin mathematics. eis aso the
number that this series settles down to eventually:

(1+1/,)2=2.25
(1+1/5)3=2.37037..
(1+1/,)4=2-4414..
(1+1/5)5=2.48832,
(1+Y/6)6=2.5216..,

e = let (1+1/n)n
that is: n->infinity

Itsvalueto 200 dpsis
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2- 71828 18284 59045 23536 02874 71352 66249 77572 47093 69995
95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
27466 39193 20030 59921 81741 35966 29043 57290 03342 95260
59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 ...

As a continued fraction, it can be written as

e-1=1+ =1+
2+—— 1+

5+... 4+

5+ ..
The above forms were found by the Swiss mathematician Leonhard Euler (1707-1783). [ See Cut-the-Knot for
more.]

Note that the above continued fractions does not have 1 as the numerator (the top part) of the
fractions so we do not write it in its abbreviated form as alist inside square brackets since thisis
only used for the numerator=1 form.

However, another form for e is possible which does have our "standard" form:
e=[2;121,141,16,1,18/1,1,10,1, ..]

The pattern continues with .. 1, 2n, 1, ... repeated for ever.
Euler also found the following:
Je=[1;1,1,1,51,1,941,1, 13,11, 17,1,1, ..]

veto 200 dpsis:

1- 64872 12707 00128 14684 86507 87814 16357 16537 76100 71014
80115 75079 31164 06610 21194 21560 86327 76520 05636 66430
02866 63775 63077 97004 67116 69752 19609 15984 09714 52490
05979 69294 22659 09840 39147 19948 46465 94892 44896 86890 ...

Two other expressions with e that have patterns in their continued fractions are

el 10261014 ]
e+1
which is a specia case (k=2) of the following:
H -1 _ 100k 3K, 5K, 7k, 9K
k11 = [0; k, 3k, 5k, 7k, 9K, ...]
Substituting 2k for k in the general case doubles all the continued fraction entries ...
elk —1
krq [O; 2k, 6k, 10k, 14k, 18K, ...]

... and we can substitute 4k for k and quadruple the numbers ...
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el(2) _ 1

== = [0; 4k, 12k, 20k, 28K, 36K, ...
@11 | ]

By playing with a computer algebra package (because they do computations to large numbers of decimal places
accurately), you can discover more continued fraction patternsinvolving e:

R
1

[1;1,1,1,51,1,9,1,1, 13,1,1, ...]= 1.648721270700128146848651

1
€

1,211,811, 141,1, 20,1,1, ...]= 1.395612425086089528628125

1
et

[1;3,1,1,11,1,1,19,1,1, 27,1,1, ...]= 1.284025416687741484073421

1
e

[1;4,1,1,141,1,24,1,1, 34,11, ...]= 1.221402758160169833921072

1

€=[1;n-1,1,1 3n-1,1,1, 5n-1,1,1, 7n-1,1,1, ..]

€2 also has a pattern in its continued fraction a property not shared with any other natural number power of e:

€= [7;2,1,1,3,185,1,1,6,30,8, 1,1,9,42,11, ...]= 7.389056098930650227230427

We can take odd-numbered roots (cube-roots, fifth-roots, seventh-roots, etc) of €2 and discover another simple
pattern:

2
€%=[1; 1,187, 1,10,54,16, 1,19,90,25, 1,28,126,34, ...]= 1.947734041054675856639021

2
€= [1;2,30,12, 1,1,17,90,27, 1,1,32,150,42, 1,1,47,20,57, ...]= 1.491824697641270317824853

N

€' =[1; 3,42,17, 1,1,24,126,38, 1,1,45,210,59, 1,1,66,294,80, ...]= 1.3307121974473499773031851

_2_ [1;n, 12n+6, 5n+2, 1, 1, 7n+3, 36n+18, 11n+5, 1, 1, 13n+6, 60n+30, 17n+8,
€™l= 1 1,19n+9, 84n+42, 23n+1, ...]

Pi
Compare the above continued fractions involving e with the continued fraction for Pi and for +Pi which begin :

P =
[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,99, 1, 2, 2, 6, 3,
51,16,8,1,7,1,2,3,7,1,2,1,1,12,1,1,1,3,1,1,8,1,1,2,1,6,1,1,5,2,2,3,1, 2,4,4, 16, 1, 161,
45,1,22,1,2,2,1,4,1,2,..]
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Pi =
[1,1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,4,1,2,4,1,288,1,90,1,12,1,1,7,1,3,1,6, 1, 2,
71,9,3,1,536,1,221,1,1,259,8,1,7,1,2,2,1,63,1,4,3,1,6,1,1,1,51,9,2,54,1,2,1,1,2,
20,1,1,2,1,10,5,2,1,100,11,1,9,1,2,1,1,1,1,3, ..]

corrected and verified 28 January 2001

These series are not known to have any pattern in them in contrast to those of e and sgrt(e) above. Why? At present
no one knows!

There are other more general forms of continued fraction which do not have denominators which are aways 1.
This one was found sometime around the year 1655 by William Brouncker:

12

=1+

=1

2+3—2
2+5—2
2+ ”

2+ ...

%= For more on the two continued fractions below, see An Elegant Continued Fraction for Pi by L JLargein
American Mathematical Monthly vol 106, May 1999, pages 456-8.

2 2
4=1+ - »=3+ s
5+3—2 6+5—2
7+ 4 6+ 7
9+ 6+ 92
6+ ...

Squared Fibonacci Number Ratios

What is the period of the continued fractions of the following numbers?

a 25/9
b. 64/25
c. 169/64

Y ou might have noticed that in all the fractions, both the numerator (top) and denominator (bottom) are square
numbers (in the sequence 1, 4, 9, 16, 25, 36 ,49, 64,...). The numbers that are squared are Fibonacci numbers
(starting with 0 and 1 we add the latest two numbers to get the next, giving the series 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, ...).

The fractions above are the squares of the ratio of successive Fibonacci numbers:
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a. 25/9 = (5/3)2 = (Fib(5)/Fib(4))2

b. 64/25 = (8/5)2 = (Fib(6)/Fib(5))2

c. 169/64 = (13/8)2 = (Fib(7)/Fib(6))2
d. ..

Thereisasimple pattern in the continued fractions of all the fractionsin this series.

What other continued fraction patternsin fractions formed from Fibonacci numbers (and the Lucas Numbers
2,1,3,4,7,11, 18, 29, 47, ...) can you find?

% Continued Fractions of Quadratic Fibonacci Ratios Brother Alfred Brousseau in The Fibonacci
Quarterly vol 9 (1971) pages 427 - 435.

“E%> Continued Fractions of Fibonacci and L ucas Ratios Brother Alfred Brousseau in The Fibonacci
Quarterly vol 2 (1964) pages 269 - 276.

A link between The Golden string, Continued Fractions
and The Fibonacci Series

Suppose we make the golden sequence into a binary number (base 2) so that its columns are interpreted not as
(fractional) powers of 10, but as powers of 2:

0-1011010110 1101011010 1101101011 ...
= 1x2-1 + Ox2-2 + 1x2-3 + 1x2-4 + 0Ox2-5 + 1x2-6 + ...

It is called the Rabbit Constant.
Expressed as anormal decimal fraction, itis
0-70980 34428 61291 3... .
Its value has been computed to 330 decimal places where our Phi isreferred to astau.

The surprise in store is what happens if we express this number as a continued fraction. It is

[0;1,2,2,4,8, 32, 256,...]
These look like powers of 2 and indeed all of the numbersin this continued fraction are powers of two. So which
powers are they? Here is the continued fraction with the powers written in:
[0; 20, 21, 21 22 23 25 28 ]
Surprise!l The powers of two are the Fibonacci numbers!!!
[0; 2F(0), 2K(1), 2F(2), .., 2F(), .. ]

% A Seriesand Its Associated Continued Fraction J L Davison, Fibonacci Quarterly vol 63, 1977, pages 29-
32.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/cfINTRO.html (21 of 25) [12/06/2001 17:19:22]


http://www.lacim.uqam.ca/piDATA/rabbit.txt

Continued Fractions - An introduction

Two Continued Fractions involving The Fibonacci and
the Lucas Numbers

The continued fraction for +5 & :5_—;5 = 1.3819660112501051518...is[1;2,1,1,1,1,1,1,1,...]

dit ‘ _1347111829
and its convergents are: 573578 1321
The pattern continues with the L ucas Number s on the top and the Fibonacci Number s on the bottom of the
convergent's fractions.

2
Taking the reciprocal of thisvalue, i.e.% :5—"'.||l5 =0.72360679774997896964... = [0;1,2,1,1,1,1,1,1,1.1,...]
we get the Fibonacci numbers on the top and the Lucas numbers on the bottom of the convergents.

e The Strong Law of Small Number s Richard K Guy in The American Mathematical Monthly, Vol 95,
1988, pages 697-712, Example 14.

Best Rational Approximations to Real
Numbers

Continued fractions can be simplified by cutting them off after a given number of terms. The result - aterminating
continued fraction - will give atrue fraction, but it will only be an approximation to the full value.

It turns out - and we shall not prove this here - that these fractions are "the best possible approximations’ to (in this
case) the square-root of 2. By "best" here, we mean no closer fraction can be made from smaller numbersin the
numerator and denominator.

Approximating Root 2 using Fractions

For instance, earlier we saw that the square-root of 2is[1; 2,2,2,2,2,...]. So the following sequence of values will
give rational approximations to root-2:

Shortened CF Fraction Value Error

[1] =1 =1 =1 -0.4142135..
[1;2] =1+1/2 =3/2 =15 +0.0857864..
[1;2,2] =1+1/(2+1/2) =7/5 =14 -0.0142135..
[1;2,2,2] = 1+1/(2+1/(2+1/2)) =17/12 =1.416666.. +0.0024531..
[1,2,2,2,2] =1+1/(2+1/(2+1/(2+1/2))) =41/29 =1.4137931.. -0.0004204..
[1,2,2,2,2,2] =99/70 = 1.4142857.. +0.0000721..

There are some intriguing patterns in the numerators and denominators of the successive fractions in the table
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above, which | leave you to explore on your own.

Best Fractions for Pi

To find a continued fraction for Pi, take any number of decimal places of Pi and expressthis as a decimal fraction:

€J
Pi = 3.1415926535 = 31415926535 / 10000000000

Then express the fraction as a continued fraction:
31415926535/10000000000 = [3; 7,15,1,292,1,1,278,1,1, 1,9, ..]

So, what are the best rational approximationsto Pi?

3
The nearest whole number.
3+1/7 = 22/7 = 3.142857 = pi+0.00126.
Thisisthe value everyone knows from school, 22/7. It is a good approximation for Pi, accurate to one-
eighth of one percent.
3+1/(7+1/15) = 333/106 = 3.1415094.. = pi-0.00008..,
3+1/(7+1/(15+1/1)) = 355/113 = 3.14159292.. = pi+0.000000266...
Thisvalueis easy to remember - think of the first three odd numbers written down twice: 113355, then split
it in the middle to form two three-digit numbers, 113 355, and put the larger number above the smaller!
3+1/(7+1/(15+1/(1+1/292))) = 103993/33102 =3.1415926530.. = pi-0.00000000057..
Thisisthe next convergent to pi. It correspondsto aterm in the CF that is alarge number so it gives a
particularly good approximation to pi. It is over 400 times more accurate than the previous one (355/113),
but this time the numbers involved are not so easy to remember!

S0 to express a number as a continued fraction means we can determine the best rational approximations to any
desired degree. The larger the terms, the better will be the approximation.

An Application to the Solar System

An application of thisisif we wish to make two cog wheels where one rotates root-2 times faster than the other.
Since cog wheels have a whole number of teeth round their rims, one can only revolve at afixed fraction of the
rate of the other.

We could have 7 cogs on one and 5 on the other, or 17 and 12 cogs would give a closer approximation. From the
last line in the table, if we allow ourselves up to 100 teeth on a cog, then the best approximation to root-2 is given
by 99 teeth and 70, with an error of only 0.007%.

Such fractions would be useful to know if you were building a clockwork model of the Solar System (called an
orrery) where you wanted the planets to revolve around a central Sun and accurately represent the period of
revolution (a"year") for every planet.

The "most irrational number"
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From the examples above, we see that our rational approximations get better if we have large numbersin the
continued fraction of the value we are approximating.

So the "hardest” number to make "rational” would be one with the smallest terms, namely, all ones. Thisis Phi -
the golden section number!

The best rational approximations to Phi are just the ratios of successive Fibonacci numbers.

So lan Stewart, and others, have called Phi "the most irrational number" because of this. But | prefer to call it the
"least irrational number" because it is so easy to approximate it with fractions!!

Links and References

WWW Links

More on continued fractions from Calvin College
its history, theory, applications and a bibliography.

References to articles and books

E="-Nre3 Kimberling, A visual Euclidean algorithm in Mathematics Teacher, vol 76 (1983) pages 108-109.
isthe earliest reference | have found to the Rectangle Jigsaw approach to continued fractions.
= | ntroduction to Number Theory with Computing by RB JT Allenby and E Redfern
1989, Edward Arnold publishers, ISBN: 0713136618
is an excellent book on continued fractions and lots of other related and interesting things to do with
numbers and suggestions for programming exercises and explorations using your computer.
W= The Higher Arithmetic by Harold Davenport,
Cambridge University Press, (7th edition) 1999, ISBN: 0521422272
Is an enjoyable and readable book about Number Theory which has an excellent chapter on Continued
Fractions and proves some of the results we have found above. (More information and you can order it
online viathetitle-link.)
Beware though! We have used [a,b,c,d,...]=X/Y as our concise notation for a continued fraction but
Davenport uses [a,b,c,d,..] to mean the numerator only, that is, just the X part of the (ordinary) fraction!
"= |ntroduction to the Theory of numbers by G H Hardy and E M Wright
Oxford University Press, 1980, ISBN: 0198531710
isaclassic but definitely at mathematics undergraduate level. It takes the reader through some of the
fundamental results on continued fractions. Surprisingly, it doesn't have an Index, but there is a Web page
Index to editions 4 and 5 that you may find useful.
" Continued Fractions by A Y Khinchin, ISBN: 0 486 69630 8
ThisisaDover book (Sept 1997), well produced, slim and cheap, but it is quite formal and abstract, so
probably only of interest to serious mathematicians!

% A Limited Arithmetic on Simple Continued Fractions, C T Long and JH Jordan, Fibonacci Quarterly,
Vol 5, 1967, pp 113-128;
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Continued Fractions - An introduction

“E A Limited Arithmetic on Simple Continued Fractions- 11, CT Long and JH Jordan, Fibonacci
Quarterly, Vol 8, 1970, pp 135-157;

% A Limited Arithmetic on Simple Continued Fractions- |11, C T Long, Fibonacci Quarterly, Vol 19,
1981, pp 163-175;
Three articles on continued fractions with a single repeated digit or a pair of repeated digits or with asingle
different digit followed by these patterns.
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Phigits and the Base Phi representation

Using Powers of Phi to represent Integers
(Base Phi)

If you have already looked at the page where we showed how to represent integers using the Fibonacci humbers, and
you have also read about the numerical properties of powers of Phi then this page takes you a stage further - writing

the integers in base Phi!

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More.

Contents of this Page

The == [ine means there is a Things to do investigation at the end of the section.

o Powers of Phi

H Integers as sums of powers of Phiw s

o Base Phi Representations

# Reducing the number of 1'sin a Base Phi Representation

# Expanding the number of 1'sin a Base Phi Representati One s
# Minimal base Phi Representati ONSe s

# Other names for Base Phi

# Links and References

Powers of Phi

Hereis part of the table of numerical properties of powers Phi:

Renenber: Phi = 1-6180339...

and phi = 0-6180339... = Phi-1 = 1/ Phi
Phi r eal
power A + B phi val ue
Phi® =8 + 5 phi = 11-090169..
Phi 4 5 + 3 phi = 6-8541019..
Phi3 =3 + 2 phi = 4-2360679..
Phi2 =2 + 1 phi = 2-6180339..
Phil =1 + 1 phi = 1-6180339..
Phi0O =1 + 0 phi = 1-0000000..
Phi-1 = 0 + 1 phi = 0-6180339.
Phi-2 =1 - 1 phi = 0-3819660.
Phi-3 =-1 + 2 phi = 0-2360679.
Phi-4 = 2 - 3 phi = 0-1458980.
Phi-® =-3 + 5 phi = 0-0901699.
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Phigits and the Base Phi representation

We can capture these relationships precisely in aformula:

Phin = Fib(n+l) + Fib(n) ph

[Itisnot difficult to prove (by Induction) that this formulaisindeed true.] Thisformula applies to negative n as well,
if we extend the Fibonacci series backwards:

., -8, 5, -3, 2, -1, 1, O, 1, 1,2, 3, 5, 8,

where we still have the Fibonacci property:

Fib(n) = Fib(n-1) + Fib(n-2)

but it now holds for all values of n, positive, zero and negative!
Another property of this extended Fibonacci series of numbersis that

Fi b(-n) - Fib(n), for even n and

Fib(n), for odd n.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More..

Integers as sums of powers of Phi

In the table of powers of phi above, you will have noticed that the same multiples of Phi occur, sometimes positive
and sometimes negative. For example, 2 phi occurs in both Phi3 = 3 + 2 phi and Phi-3 = -1 + 2 phi. If we subtract
these two powers, the multiples of phi will disappear and leave us with an integer.

Similarly, 3 phi occursin both Phi4 =5 + 3 phi and Phi-4 = 2 - 3 phi. If we add these two powers, again the multiples
of phi will cancel out and leave an integer.

Here are some more examples:

Phil + Phi-2 = (1 + 1 phi) + (1 - 1 phi) =2
Phi2 + Phi-2 = (2 + 1 phi) + (1 - 1 phi) = 3
Phi3 - Phi-3 = (3 + 2 phi) - (-1 + 2 phi) =5
Phi4 + Phi-4 = (5 + 3 phi) + (2 - 3 phi) =7

So we have expressed the integers 2, 3, 5 and 7 as a sum of power s of Phi.
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If we also use Phi0 = 1, then we can add 1 (=Phi%) to those numbers above and so represent 3, 4, 6 and 8 as a sum of
powers of Phi.

We can also add combinations of these numbers and get other onestoo. In al of them, we are writing the integer as a
sum of different powers of Phi.

4 =3+ 1= (Phi2 + Phi-2) + PhiO
8 =7+ 1= (Phi4 + Phi-4) + PhiO
9 =2+ 7 =(Phil + Phi-2) + (Phi4 + Phi-4)
10 = 3 + 7 = (Phi2 + Phi-2) + (Phi4 + Phi-4)

This reminds us of expressing numbersas:

. sums of powers of 2 (binary), or

« sums of powers of 3 (ternary), or

. sums of powers of eight (octal) and, of course, the usual way using
. sums of powers of 10 (decimal)!

All the above are powers of an integer (2, 3, 8 or 10) but the really unusual thing here is that we are taking powers of
Phi, anirrational number and adding them to get a purely whole number!

A natural question now is:

Are all integers representable as sums of powers of phi?
The answer isYes! The number nisjust n+ 0 Phi !!!
So let's rephrase the question...
What we really meant to ask was how to do thisusing only power s of Phi and not repeating any power in the sum
(which iswhat we did in the examples above).

Thingsto do - e

1.1 = Phi® and
1 = Phi-1+ Phi-2 and
1 = Phi-1+ Phi-3 + Phi-4
How many nore ways to represent 1 can you find? Renenber that no power of Phi can be
used nore than once!
2. Try to express each of the followi ng nunbers as a sum of different powers of Phi each
power occurring no nore than once.
You coul d check your answers in two ways:
o on your calculator to see if you are approximately right but a better way (that
is, nore precise) is
o to use the exact values by translating all the powers of Phi into suns of
integers and multiples of Phi using the formula Phi™ = Fi b(n+l1) + Fib(n) phi so
that you can check that all the nultiples cancel out:
* 5 as the sumof 2 and 3
* 5 as the sumof 4 and 1
(use your answers to the first question using different representations of 1)

again, but find a different answer this tine
Find THREE di fferent answers!

E I

6
6
9
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10

11

12

each of the nunbers from 13 to 20

3. O your representations of nunber 6 in the previous question, which answer has the
f ewest powers of Phi?

4. Find a table of answers for all the values from1 to 20 but all your answers should
have the fewest nunber of powers in them

* Ok X *

From your answers to the above questions, it may look like many numbers can be expressed in Base Phi. Do you
think that ALL whole numbers can be?

If you do, how would you try to convince someone of this?
If you do not, which integer do you think does NOT have a Base Phi representation? (Are you sure?)

141503

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More.

Base Phi Representations

Let's use what we learned on the Fibonacci Bases Page to write down our sums-of-distinct-powers-of-Phi
representations of a number. Asin decimal notation, the columns represent the powers of the Base, but for us the base
is Phi, not 10. We have negative powers of Phi aswell as positive ones, so, just asin decimal fractions, we need a
"point" to separate the positive powers of Phi from the negative ones.

Soif 1-25 in decima means

3210. -1-2 <-- powers of 10
1. 2 5 =1+ 2x10°1 + 5x10-2

then
2 = Phil + Phi-2
so 2 in Base Phi is

3 210 . -1 -2 -3 <-- powers of Phi
1 0 . 0 1

which we write as 2=10-01p, to indicate that it is a Base Phi representation.

1-61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More.

Reducing the number of 1's in a Base Phi Representation

We haven't used much of the theory about Fibonacci numbers yet (those formulae further up this page). There are
some interesting and relevant facts in the Formula for powers of Phi that we saw on the Phi's Fascinating Figures

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/phigits.html (4 of 7) [12/06/2001 17:21:08]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/propsOfPhi.html#summary
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/propsOfPhi.html

Phigits and the Base Phi representation

page. One of these was

Phin = Phin-1 + Phin-2
Thistellsusthat, if ever we find two consecutive 1'sin a Base Phi representation, we can replace them by an
additional onein the column to the left

For instance,

N 10'01Phi + 1'0Phi = 1101Ph|
but we can replace the two consecutive 1's by a 1 in the phi2 column:
3 =100-01py
Let'scall thisthe Reducing 1's Process.

What happens if we have three 1s next to each other?

There will always be two consecutive ones that have a zero on their left, so start with those. Thiswill replace the two
ones by zeros. We can always start with the leftmost pair of ones and then repeat the Reducing 1's Process on the new
form if necessary.

Repeatedly applying the Reducing 1's process means that we can reduce a Base Phi representation until
eventually we have no pairs of consecutive 1's

161803 39887 49894 84820 45868 34365 63811 77203 09179 80576 ..More..

Expanding the number of 1's in a Base Phi
Representation

What if we get more than one of a certain power of Phi?
The solution here is to use the same formula but backwards, that is, replacing a 1 by 1'sin the two columnsto the
right. So that, whenever we have

.100... we can replace it by ...011...

Let's call thisthe Expanding 1's Process.

EG 2 = 1+1 = 1:-0ppj+1: 0p,; Expandi ng the second 1-0 into 0-11:
1-Opnj +0- 11p,; Now we can add without getting nore than 1 in any

col um:
= 1-11p,; and we are ready to apply the Reducing 1's process:
:lO'Olphi
— Things to do - e

1. Wite 3 as 2+1 and reduce it to its mininmal form(no two consecutive 1's).
2. Try it for 4 = 3+1.
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3. Look through your answers to the earlier questions and re-wite your Table of Base Phi
representations so that all the nunbers from1l to 20 have no two consecutive 1's.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More.

Minimal Base Phi Representations

Y ou might like to convince yourself that, by successively adding 1's, if necessary applying the Expanding 1's process,
then
we can always find away of representing ANY integer as sum of distinct powers of Phi.
By applying the Reducing 1's process as often as necessary, we can then
always find a base Phi representation that has the minimum number of 1's
and no two of them will be next to each other.

Using the digits 0 and 1 only, we can express every integer as a sum of some powers of Phi

— s TN NQS t0 do (Difficult!) -
1. How unusual is this property? Could we express every integer as sum of powers of 222

(The answer is easy if you think about even powers of JZ)
2. What about powers of e or T or sone other irrational value which has no integer power
gi ving an integer?

Other names for Base Phi

Let us call our representations of an integer n as a sum of different powers of Phi the Base Phi representation of n.
Other names that have been suggested are

® Phigital: compare with digital for Base Ten;

® Phinary: compare with Binary since we are also using just the digits 0 and 1 but to base Phi [with thanks to
Marijke van Gans for thisterm|;

® expressing a number in PhigitgWith thanks to Prof Jose Glez-Regueral of Madrid for mentioning this one.]

Links and References

&2 This material originally appeared in an article by George Bergman, in the M athematics M agazine 1957, Vol
31, pages 98-110, where he a so gives pencil-and-paper methods of doing arithmetic in Base Phi.

%= C. Rousseau The Phi Number System Revisited in Mathematics Magazine 1995, Vol 68, pages 283-284.

Oleksiy Stakhov leads a group of Slavonic mathematicians who investigate the applications of Fibonacci and Phi

number systems for instance representing numbers in a computer rather than the familiar binary system. He has
published a book on this: Computer Arithmetic based on Fibonacci Numbers and Golden Section: New Information

and Arithmetic Computer Foundations and his web site has lots more information on it.
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The Fibonacci Rabbit sequence

The Fibonacci Rabbit sequence

Other names for the Rabbit Sequence are the Golden Sequence because, as we shall seeg, it is closaly related to the
golden section numbers Phi (=1-6180339..) and phi=(0-6180339..).

Contents

The »==m line means there is a Things to do investigation at the end of the section.

. Fibonacci Numbers and the Rabbit sequence
o Lining up the Rabbits
o Another way to generate The Rabbit sequence
o Computers use the Rabbit sequence!
« Thenumber of additions when computing f(n) tHE%
. Phi and the Rabbit sequence
o The Phi line Graph
o Therabbit sequence defined using the whole part of Phi multipl €S » e
o Therabbit sequence defined using the fractional parts of Phi multiples s s
o The rabbit sequence and the "spectrum” of Phi s s
. Thefirst 2000 bits of the Rabbit Sequence
o Now you can hear the Golden sequence too
o Doesthe Golden String ever repeat?
. Fractals
o Another way to make the Golden String
o The Golden String contains a copy Of itSelf w s
o Fibonacci and the Mandelbrot set
. Referencesand Links

Fibonacci Numbers and the Rabbit sequence

This page is al about aremarkable sequence of Os and 1swhich isintimately related to the Fibonacci numbers and to
Phi:
10110101101101011010110110101101...

First we re-examine Fibonacci's original Rabbit problem and see how it can generate an infinite sequence of two
symbolsand in alater section we see how the same sequence is very smply related to Phi also.

Lining up the Rabbits

If we return to Fibonacci's original problem - about the rabbits (see the Fibonacci home page if you want to remind
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yourself) then we start with asingle New pair of rabbitsin the field. Call this pair N for "new".
Mont h O:
N
Next month, the pair become M ature, denoted by "M".
Month 0: 1:
N M
The following month, the M becomes"MN" since they have produced a new pair (and the original pair also survives).
Month O0: 1. 2:

N M M
N

The M of month 2 become MN again and the N of month 2 has become M, so month 3is: "MNM"

1: 2.
N- M- M-
\ \
N -

LZI@®

The next month itis"MNMMN".
The general ruleis

replacing every M in one month by MN in the next and similarly replace every N by M.
Hence MNM goesto MN M MN .

We have now got a collection of sequences of M's and N's which begins:
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0: N =N

(N
1: M =M KEY:
1
2: M N =WN
33 M N M =MVNM 2 A
Rabhbit
4: MNM MN =MNMVN i n ri M |mature.-3
5 MM W M\M  =MN\MVNIV\M 4 MMM M N Rabbit
'L | | | SUrYives
S5 MMM MM FMN M

Compare this with the picture we had of the Rabbit Family Tree where
sometimes M is replaced by NM and sometimes by MN.

We often use 1s and Os for this sequence, so here we have replaced M by 1 and N by O:

10110101101101011010110110101101...

Another way to generate The Rabbit sequence

We can make the rabbit sequence for month x by taking the sequence from month x-1 and writing it out again,
following it by a copy of the sequence of month x-2.

So, starting from N and M the next isM (last month) followed by N (the previous month) giving MN.

The next will be MN followed by M = MNM

and the one after that is MNM followed by MN = MNMMN.

From this definition we can see that
each monthly sequence is the start of the following month's sequence.

Thismeans that (after the first sequence which begins with N), thereisreally just one infinitely long sequence, which
we call the rabbit sequence or the golden sequence or the golden string.

10110101101101011010110110101101...

Computers use The Rabbit sequence!

In this section we show how the definition of the Fibonacci numbers leads us directly to the Fibonacci Rabbit
sequence, but this time we use Os and 1sinstead of Msand Ns.

We see how a computer actually carries out the evaluation of a Fibonacci number using the Rabbit sequence secretly
behind the scenes!
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We can write a computer program to compute the Fibonacci numbers using the recursive definition:

f(0)=0
f(l)=1
f(n)=f(n-1)+f(n-2) for n>1

We will be interested in how the computer is evaluating a call of f on a number n - in particular, what are the actual
numbers added (and in what order) when computing f(n). The third line of the definition means that to compute f(n)
we first need to compute f(n-1) as a separate computation and then remember its result so that, when we have then
computed f(n-2) - another separate computation - we can add the two valuesto find f(n). Thefirst line of the
definition means that

to compute f(0)

the program function immediately returns the answer 0.

The second line of the definition means that

to compute f(1)

the computer again immediately returns the answer 1.

We will examine the calls to the function f and represent them in diagrams of "calling sequences’ so that we have the
following diagram for f(0):

f(0)
0

to show that
acall of f(0) isreplaced by (gets expanded to) O

Similarly,

f(1)
1

shows that f(1) gets expanded to 1, shown on the line below it, using the function definition given above.

What happensfor larger values of n?
To computef(2)
since n>1 we will be using the third line of the definition

f(n)=f(n-1)+f(n-2)

For f(2), nis 2 so we need to compute f(1)+f(0).
First f(1) is computed, giving 1 and then we compute and add on (0), which is recomputed as 0. The pattern of calls
of f when computing f(2) istherefore shown in our calling sequence diagram as follows:

F(2)
f (1) +f (0)
1 0

To computef(3)
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The Fibonacci Rabbit sequence

the function tellsus to call f(2) and f(1) to compute f(2)+f(1). f(2) is called first, repeating the above computations and
eventually returning 1+0=1 and after thisf(1) is called, returning 1, so the final result of (1+0)+1=2 is returned.
In this case, the calling sequence in the computer again forms a "tree":

f(3)

f(2)...... +f (1)

f (1) +f (0) 1
1 0

Note that the actual additions performed are 1+0+1, and that these numbers appear the lower end of the "branches’ in
the"calling tree".

A note on treesin computing
In computing science such tree diagrams are very useful and they appear in many different situations.
The natural way to represent them is as above, where the "root" from which the "tree" growsis at the
top (since we read from top down a page of text) and so the ends of the "branches" - often called
"leaves" - appear at the lowest level! So our trees are antipodean i.e Australian since they grow upside-

down!@'

For f(4)
the calling sequence treeis f(3) asin the last calling tree diagram but now inculding the call of f(2) since
f(4)=f(3)+f(2):

f(4)

F(3) e, + (2)

f(2)...... +f (1) f(1)+f(0)

f (1) +f (0) 1 1 0
1 0

so the actual addition performed is
1+0+1+1+0

If we consider further calls of f(n) for n=5 and above
then since f(n)=f(n-1)+f(n-2), each tree begins with the previous tree [used to compute f(n-1)] and is followed by the
whole of the tree before that, namely for f(n-2).

For instance, here isthe calling tree for f(5) which starts with f(4) and, on the right, we include f(3):

f(5)
FOA) o +f (3)
F(3) e, + (2) f(2)...... +f (1)
f(2)...... +f (1) f(1)+f(0) f(1)+f(0) 1
f (1) +f (0) 1 1 0 1 0

1 0

The actual additionsthistime are
1+0+1+1+0+1+0+1=5
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The Fibonacci Rabbit sequence

Y ou should now be able to see that the sequence of 0's and 1's used in the additions is defined as follows: let's let s(n)
stand for the sequence of O's and 1's used in computing f(n) so that:

s(0)=0
s(1)=1
s(n)=s(n-1) "followed by" s(n-2)
so we have
nunmber of
Os 1s in s(n):
s(0)=0 = 1 0
s(1)=1 =
s(2)=1+0 =
s(3)=1+0+1 =

s(4)=1+0+1+1+0 =
s(5)=1+0+1+1+0+1+0+1 =
s(6) =1+0+1+1+0+1+0+1+1+0+1+1+0 =

G wNEFkrRFkO
COTWN PP

and we see s(n) gives a sequence of additions involving Os and 1s which defined the Fibonacci numbers.

Thereisno "last" sequence in the s(n) series but we see that a unique sequence of infintely many O'sand 1'sis defined
by this process and is the one we call the the Fibonacci Rabbit sequence or the Golden Sequence.

The number of additions when computing f(n)

When computing f(n) by the recursive formula at the start of this section:

f(0)=0; f(1)=1; f(n)=f(n-1)+f(n-2) for n<0 or n>1
It takes longer to compute the larger values. Thisis because the computer is doing alot of recalculation as we have
just seen above. So we can ask

How much work does it take to compute f(n)?

Thisis measured by the number of additions performed.
We have already written out the actual additions in the table above, up to s(6). Let'slook at it again and count the
number of addition operations this time:

nunmber of +'s

s(0)=0 0
s(1)=1 0
s(2)=1+0 1
s(3)=1+0+1 2
s(4) =1+0+1+1+0 4
s(5)=1+0+1+1+0+1+0+1 7
1

s(6) =1+0+1+1+0+1+0+1+1+0+1+1+0 2

What is the pattern in the series 0,0,1,2,4,7,12,...?
Let'scall thisthe A series (for Additions):
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n: 0/1/2/3/4|5/6

A(n): |0lol1/2]4|7 12].

We can see some information by just looking at the recursion formula:
f(n) = f(n-1)+ f(n-2)

SO

A(n) isthe number of additionsin computing F(n-1)
PLUS the number of additionsin computing F(n-1)
PLUS 1in order to add f(n-1) to f(n-2)

or, using the A(i) notation for 'the number of additions in computing f(i)":
A(n) =A(n-1) + A(n-2) + 1; A(0)=0; A(2)=0
Thisisnow acomplete (recursive) definition of A. We can now use it to find A(7), the number of additions needed to
compute f(7) (=13).
ItisA(6)+A(5)+1 or 7+12+1 whichis 20.
Here are afew more values:

nn 10123456789 |10
A(n):|0/0/1/2(4|7|12|20|33|54 89

Thereis another of the Fibonacci surprises here. Though the numbers are not the Fibonacci numbers, they have a
similar method of construction (add the last two and then add 1). Have you noticed how the A seriesisrelated to the
Fibonacci numbers themselves? The answer....

The A numbers are just 1 less than a Fibonacci number:

n: 0/1/2|3/4|5/6 |7 |8 |9 |10
A(m): (0|01 /2/4|7|12/20/33|54/ 88
f(n+1): |1|/1/2/3|5/8|13 /2134|5589

So

A(n)=f(n+l) -1
This means that the work needed to compute f(n) is measured by f(n+1) because we can ignore the 'minus 1' asit is
insignificant when f(n) islarge.

With thanks to Aaron Goh for suggesting this section.

10110101101101011010110110101101...

Phi and the Rabbit sequence
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The Fibonacci Rabbit sequence

Our "golden" sequence has many remarkabl e properties that involve the golden section.

The Phi line Graph

If we draw the liney = Phi x on agraph, (ie aline whose gradient is Phi) then we The U = Phi*x |ine
can see the Rabbit sequence directly. 1 /

Where the Phi line crosses a horizontal grid line (y=1, y=2, etc) we write 1 by it
on the line and where the Phi line crosses avertical grid line (x=1, x=2, etc) we
record a 0.

o

m)]

Now as we travel along the Phi line from the origin, we meet a sequence of 1s
and Os - the Rabbit sequence again!

"L

10110101101101011010110110101101...

The following sections explore this relationship using functions such as "the next integer below" (the floor function)
and "the next integer above" (the ceiling function) which will tell us which grid-line we have just crossed.

The rabbit sequence defined using the whole part of Phi
multiples

If we take the number Phi, which we have seen is closely related to the Fibonacci series, then it leads to another
simple definition of the rabbit sequence.

With the definitions above, we have to find al the preceding bits (Ms or Ns) to find which letter occursin placei in
the sequence. Using Phi=1-618034... we can compute it directly:

If welet M =1 and N=0 then thre rabbit sequence is 101101... and:

rabbit(i)=trunc((i+1)*Phi)-trunc(i*Phi) -1 OR
rabbit (i)=trunc((i+1)*phi)-trunc(i*phi)
where Phi=(sqrt(5)+1)/2=1-618034... and phi =Phi-1=(sqrt(5)-1)/2=0-618034. ..

"Trunc(x)" isthe function which just forgets anything after a decimal point in x.
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To see how thisworks, ook at this table:

[ I * Phi trunc(i*Phi) diff diff-1 RabSeq
1 1.618034. . 1

2 1 M
2 3. 223606. . 3

1 0 N
3 4.854101. . 4

2 1 M
4 6.472135.. 6

2 1 M
5 8. 090169. . 8

1 0 N
6 9.708203. . 9

2 1 M
7 11. 326237. . 11

where diff isthe difference between the trunc item of the row above and the row following with 1=M and O=N.

Things to do -

1. Try extending the table for a few nore rows.

2. Use phi=Phi-1 instead of Phi in the table but don't subtract 1 fromthe
diffs.

The rabbit sequence defined using the fractional parts of
Phi multiples

Here is another method to generate the Rabbit sequence but this time using the bits we threw away above - the
fractional parts of the multiples of Phi!

i I * Phi frac(i*Phi) R or L?
1 1-618034.. 0-618034. .

2 3-223606. . 0-223606. . L

3 4.854101. . 0-854101. . R

4 6-472135. . 0-472135.. L

5 8- 090169. . 0- 090169. . L

6 9.-708203. . 0- 708203. . R

7 11-326237.. 0-326237. . L

"R or L?" neans that the fractional part on that |ine=frac(i*Phi)
I's noRe or Less than the fractional value on the Iine above=frac((i-1)*Phi)
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An aternative way to generate the sequence of R and L isto look at this
Quicktime movie of the fractional parts of the first 56 multiples of Phi
(click on the picture).

Fractional part=s

of nw¥Phi where

Does the point move to the Right of the previous one or to the L eft. FhistsqritSoel /e=1. 6150239
(Tip: Use the dlider on the Quicktime movie frame to advance the picture = i
one frame at atime.) +
R T A T N I
o 1.2 .32 .4 .5 6.7 .8.91
- e |11 NQJS 10 DO -
1. Note that sonetinmes a new point will be plotted further to the right than
any previous one (i.e. its fractional part will be larger than any before

it). Wiat nultiples of Phi result in these "furthest out" points?
2. What nul tiples correspond to those points plotted furthest to the left?

The rabbit sequence and the "spectrum” of Phi

If we look again at the multiples of Phi, but this time concentrate on the whole number part of the multiples, we find
another extraordinary relationship.

The "whole number part” of x isfloor(x) so we are looking at floor(i* Phi) for i=1,2,3,.. .

The numbersin the series {trunc(i* Phi)} for i=1,2,... tell us exactly where the 1s (or Ms) appear in the Rabbit
sequence!

[ 1 2 3 56 o

trunc(i*Phi) 1 34 8 9 11 12 .. Position of 1's bel ow
2 5 7 10 13 ..

Rabbit sequence: 101101011 0 1 1 O0..

4
6

The sequence of truncated multiples of areal number R is called the spectrum of R.

10110101101101011010110110101101...

- e 1N NQJS 10 O -
1. Find the first few nunbers in the spectrum of phi=Phi-1=0-618034 using
your cal culator. Sonme nunbers in this spectrumare repeated and others are
not. How do the repeated nunbers relate to the rabbit sequence and how do
t he ot hers?
2. What is the significance of the nunbers in the spectrum of
phi #2=2-618034... when regarded as index nunbers of the Rabbit sequence?
3. Look at the differences between the nunbers in th3e spectrum of
Phi =1-618034. Do you recogni ze the sequence of differences?
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The Fibonacci Rabbit sequence

The first 2000 bits of the Rabbit Sequence

1011010110
1010110110
1010110101
0110110101
0110101101
0101101101
0101101011
1101101011
1101011011
1011011010

1011010110
1011010110
1010110110
0110110101
0110101101
0101101101
0101101011
1101101011
1101011011
1011011010

1011010110
1011010110
1010110110
0110110101
0110101101
0110101101
0101101101
1101101011
1101011011
1101011010

1011010110
1011010110
1010110110
0110110101
0110101101
0110101101
0101101101
1101101011
1101011011
1101011010
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1101011010
1011011010
1011010110
1010110110
1010110101
0110110101
0110101101
0101101101
0101101011
1101101011

1101011010
1011011010
1011010110
1010110110
1010110101
0110110101
0110101101
0101101101
0101101011
1101101011

1101011011
1011011010
1011010110
1011010110
1010110110
0110110101
0110101101
0101101101
0101101011
1101101011

1101011011
1011011010
1011010110
1011010110
1010110110
0110110101
0110101101
0110101101
0101101101
1101101011

1101101011
1101011011
1101011010
1011011010
1011010110
1010110110
1010110101
0110101101
0110101101
0101101101

1101101011
1101011011
1101011010
1011011010
1011010110
1010110110
1010110101
0110110101
0110101101
0101101101

0101101011
1101101011
1101011010
1011011010
1011010110
1010110110
1010110101
0110110101
0110101101
0101101101

0101101011
1101101011
1101011011
1011011010
1011010110
1011010110
1010110110
0110110101
0110101101
0101101101

0110101101
0101101101
1101101011
1101011011
1101011010
1011010110
1011010110
1010110110
0110110101
0110101101

0110101101
0101101101
1101101011
1101011011
1101011010
1011011010
1011010110
1010110110
1010110101
0110101101

0110101101
0101101101
1101101011
1101011011
1101011010
1011011010
1011010110
1010110110
1010110101
0110110101

0110101101
0101101101
0101101011
1101101011
1101011010
1011011010
1011010110
1010110110
1010110101
0110110101

0110110101
0110101101
0101101101
0101101011
1101101011
1101011011
1011011010
1011010110
1011010110
1010110110

0110110101
0110101101
0110101101
0101101101
1101101011
1101011011
1101011010
1011010110
1011010110
1010110110

0110110101
0110101101
0110101101
0101101101
1101101011
1101011011
1101011010
1011011010
1011010110
1010110110

1010110101
0110110101
0110101101
0101101101
1101101011
1101011011
1101011010
1011011010
1011010110

50
100

200

300

400

500

1010110110 2000



The Fibonacci Rabbit sequence

Hear the golden sequence too

Thefirst 100 notes of the sequence are encoded in the sound track of a Quicktime movie made into notes with every

"1" converted to an A note (220Hz) and every "0" into the A an octave higher (440Hz) played at about 5 notes per
second (so the track lasts about 20 seconds), in a467K file.

The rhythm is quite fascinating - hypnotic even - and it seems to have a definite beat that keeps changing and keeping
your attention.

10110101101101011010110110101101...

Does the Golden String ever repeat?

Y ou can use your browser to explore the non-repeating properties of the Fibonacci Rabbit sequence.

The Golden String page contains the digits so that, by re-sizing the Browser page you will get the same number of
digits per line and you can see the repetitions in the lines. The best "matches" (when lines ook most alike) are when
there are a Fibonacci number of digits per line (but by now you probably expected that!). Have a go and experiment
for yourself.

10110101101101011010110110101101...

Fractals

Thereisalot of interest currently in Fractals. A Fractal is ashape or sequence or system that isinfinite and contains
acopy of itself within itself. Such pictures or series are called self-replicating or self-generating.

Our golden string contains copies of itself inside it. To see thiswe first show another way in which we can write
down the golden string.

Another way to make the Fibonacci Rabbit sequence

Above, we started with M and then replaced M by MN. From then on, we repeatedly replace M by MN and each N by
M which was the process whereby we made the Fibonacci rabbit sequence at the top of this page.

Combining this with the fact that each time we replace all the letters and get a new string, the fact that the old string is
the start of the new string, then we have the following simple method of generating the golden sequence (we use 1 for
M and O for N so that it givesthe list of bits above):

1. Start by writing 10 (which stands for MN above) and point to the second symbol, the O, with your left hand.
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The Fibonacci Rabbit sequence

Keep your right hand ready to add some more symbols at the end of the same sequence.
2. Usethe symbol pointed at by your left hand to determine how to extend the sequence at the right hand end:
o If the symbol you are pointing at with your left hand isa 1, then, with your right hand, write 10 (at the
end of the string);
o If your left hand is pointing at a0 then write 1 with your right hand.
In both cases, then move your left hand to point to the next symbol along.
3. Repeat the step 2 for aslong asyou like.

Here is how the process starts, where the * indicates the symbol pointed at by our left hand:

10
N We are pointing at 0, so wite a 1 at the end,
101
A and nove the left hand on one place on (to point to the new synbol in
fact):

101

A W are pointing at a 1, so wite 10 at the end
10110

A and nove the | eft hand on one pl ace:
10110

A W are pointing at a 1 so wite 10 at the end
1011010

A and nove the |left hand on one pl ace:
1011010

N

Hereisthealgorithm

Start with sequence 10, pointing at the O.
(Step 1) if pointing at O
then wite 1 on to the end of the sequence;
ORif pointing at 1
then wite 10 at the end;
(Step 2) Now point at the next synbol al ong
(Step 3) Start again at step 1.

and below it is shown as an animated gif image:
To01r 101011001

Since we are writing more symbols than we are "reading"”, the sequence never ends.

The Golden String contains a copy of itself

The sequence contains a copy of itself since we can apply the above process backwards:
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The Fibonacci Rabbit sequence

. Start by pointing at the left hand end of the (infinite) Fibonacci rabbit sequence with your left hand and with
the right get ready to start writing another series.

. If you are pointing at "10", then write down "1".
Otherwise you will be pointing at a"1", so write down a"0".

. Moveyour left hand past the symbols you have just "read" and repeat the previous step as often as you like.

You will find that your right hand is copying the original sequence, but at something like 0-6 of the speed (actualy, at
0-618034... of the speed!!).

Things to do = —

1. Looki ng at the other ways of generating the Rabbit sequence above, can you
adapt themto

o find another way of witing down the golden string by repl acing
groups of bits pointed at by your left hand by bits witten with your
ri ght hand?

o Use your answer "backwards" to find another way in which the gol den
string conatinas a conplete copy of itself

2. Look at the nunmber of bits read and the nunber of bits witten at each
stage. Make a table of these two. What is the ratio between then? Do you
noti ce the Fibonacci nunbers appearing? This shows that the ratio of the
two (the nunmber of bits used to the nunber of bits witten) will approach
phi (0-6180339..).

3. Here is another way to show the Gol den sequence contains a copy of itself.
W "read" digits with our left hand again, one at a tine, and the right
hand wi Il hop over one or two digits, crossing off the next digit. Both
hands start at the leftnost digit of the golden sequence. The crossed off
digits are still "readable" by the I eft hand when we cone to them by the
way.

If we are pointing at a 1 with the left hand, then hop over TWO digits
with the right hand and cross off the next.

If we are pointing at a 0 then hop over ONE digit with the right hand and
cross off the next. [In other words, hop over one nore digit than you are
| ooki ng at and cross off the next.]

Here's how the process starts:

>

is left-hand-pointer and v is the right hand pointer

i ndi cates a digit hopped over by the right hand

I ndicates the digit belowis to be crossed off by the right hand
is a crossed-out 1 and

Is a crossed-out O:

Here is the starting position:

v

10110101101101011010110...

N

™ + X !

- - X
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[EE

0110101101201201212010110...
Hop over the first two digits and cross off the third

>

- X
10+101011021101011010121210...
N Hop over one and cross off the next

- - X
10+1810110110101120101210...
A Hop over two since we are pointing at a (crossed-out) 1

- - X
10+1810+1011010112010110...
- X
10+1810+10+10

o X

o !
= X

10+1810+10+1810+181

We now have:
10+1810+10+1810+1810+10...
and renoving the crossed-off digits gives:

10 1 10 10 1 10 1 10 10...

which is, of course, the original sequence.
We have shown t he gol den sequence is self-sinmlar.
s Continue the process above for sonme nore digits of the gol den
sequence and check it.
o What do you notice about the digits we have renoved?

Fibonacci and the Mandelbrot Set

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonaccif/fibrab.html (15 of 17) [12/06/2001 17:21:33]



The Fibonacci Rabbit sequence

The Mandelbrot set shown here has been written about often in maths
books, appears in magazines and posters, greeting cards and wrapping
paper and in lots of places on the Net.

A detail from the Mandelbrot set picture is shown here. It
iIsalso alink to a page on how the Fibonacci numbers

occur in the Mandelbrot Set (at Boston University
Mathematics Department).

10110101101101011010110110101101...
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page 137.

%2 The Fibonacci Tree, Hofstadter and the Golden Stri ng K P Togneti, G Winley, T van Ravenstein in
Applications of Fibonacci Numbers, 3rd International Conference, (editor: A N Phillippou), pages 325-334.

% Characterisation of the Set of val uesf(n)=[n alpha], n=1,2.. by A S Fraenkel, J Levitt, M Shimshoni, in
Discrete Mathematics Vol 2, 1972, pages 332-345.

Links on Fractals

Here are afew linksto help you explore the concept of a Fractal.
[They are not related to the Fibonacci numbers or the golden section or golden string. ]

@ Xah Lee's Fractal Gallery
has lots of pictures of fractals
@ Fractint
is free and generates fractals on your PC.

10110101101101011010110110101101...
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Who was Fibonacci?

A brief biographical sketch of Fibonacci, hislife, times and mathematical achievements. Ca R
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Who was Fibonacci?

The "greatest European mathematician of the middle ages', his full name was
L eonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the

city with the famous Leaning Tower, about 1175 AD.

Pisawas an important commercia town in its day and had links with many
Mediterranean ports. Leonardo's father (Guglielmo Bonaccio) was akind of customs
officer in the North African town of Bugia now called Bougie where wax candles were
exported to France. They are still called "bougies’ in French, but the town isaruin today says D E Smith
(see below).

So Leonardo grew up with a North African education under the Moors and later travelled extensively
around the Mediterranean coast. He would have met with many merchants and learned of their systems
of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over al the
others.

D E Smith points out that another famous Italian - St Francis of Assisi (anearby Italian town) - was also
alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and
died in 1226 (before Fibonacci's death commonly assumed to be around 1250).
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[The portrait hereis alink to the University of St Andrew's site which has more on Fibonacci himself, his life and works.]

His names

He called himself Fibonacci [pronounced fib-on-arch-ee or fee-bur-narch-eg] short for filius Bonacci
which means son of Bonacci. Since Fibonacci in Latin is"filius Bonacci" and means "the son of
Bonacci", two early writers on Fibonacci (Boncompagni and Milanesi) regard Bonacci as the family
name so that Fib-Bonacci is like the English names of Robin-son or John-son. Fibonacci himself wrote
both "Bonacci" and "Bonaccii" aswell as"Bonacij"! Others think Bonacci may be a kind of nick-name
meaning "lucky son" (literally, "son of good fortune").

He is perhaps more correctly called L eonardo of Pisa or, using alatinisation of his name, L eonardo
Pisano. Occasionally he also wrote L eonar do Bigollo since, in Tuscany, bigollo means a traveller.

We shall just call him Fibonacci as do most modern authors, but if you are looking him up in older
books, be prepared to see any of the above variations of his name.

¥ D E Smith's History of Mathematics Volume 1, (Dover, 1958 - areprint of the orignal version from
1923) gives acomplete list of other books that he wrote and is afuller reference on Fibonacci's life and
works.

“* There is another brief bi ography of Fibonacci which is part of Karen Hunger Pashall's (Virginia
University) The art of Algebrafrom from al-Khwarizmi to Viéte: A Study in the Natural Selection of
Ideasif you want to read more about the history of mathematics.

= Eight Hundred Years Young by A F Horadam (University of New England) in The Australian
Mathematics Teacher Vol 31, 1985, pages 123-134, is an interesting and readable article on Fibonacci,
his names and origins as well as his mathematical works. He refers to and expands upon the following
article...

S The Autobiogralhy of Leonardo Pisano R E Grimm, in Fibonacci Quarterly vol 11, 1973, pages
99-104.

W& Leonard of Pisa and the New Mathematics of the Middle Ages by Jand F Gies, Thomas Y
Crowell publishers, 1969, 127 pages, is another book with much on the background to Fibonacci's life
and work.

¥ Dellavitaedelle operedi Leonardo Pisano Baldassarre Boncompagni, Rome, 1854 is the only
complete printed version of Fibonacci's 1228 edition of Liber Abbaci.

“* The the Math Forum's archives of the History of Mathematics discussion group contain a useful
discussion on some of the controversial topics of Fibonacci's names and life (February 1999). Use its

next>> link to follow the thread of the discussion through its 6 emailed contributions. It talks about the
uncertainlty of his birth and death dates and his names. It seems that Fibonacci never referred to himself
as "Fibonacci" but this was a nick-name given to him by later writers.
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Fibonacci's Mathematical Contributions

Introducing the Decimal Number system into
Europe

He was one of the first people to introduce the Hindu-Arabic number system into Europe - the positional
system we use today - based on ten digits with its decimal point and a symbol for zero:

1 2 3 4 5 6 7 8 9 . —and 0
His book on how to do arithmetic in the decimal system, called Liber abbaci (meaning Book of the
Abacus or Book of Calculating) completed in 1202 persuaded many European mathematicians of his day

to use this"new" system.

The book describes (in Latin) the ruleswe all now learn at elementary school for adding numbers,
subtracting, multiplying and dividing, together with many problems to illustrate the methods:

17 4 + 17 4 - 17 4 x 17 4 + 28
2 8 2 8 2 8 'S
2 02 146 3480 + 6 remal nder 6
---------- 1392
4 8 7 2

Let'sfirst of all look at the Roman number system still in use in Europe at that time (1200) and see how
awkward it was for arithmetic.

Roman Numerals

The method in use in Europe until then used the Roman numerals:

Il =1,
V = 5,
X = 10,
L = 50,
C = 100,
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D = 500 and
M = 1000

You can still see them used on foundation stones of old buildings and on some clocks. For instance, 13
would be written as X111 or perhaps 111X. 2003 would be MMIII or IIIMM. 99 would be LXXXXVIIII
and 1998 is MDCCCCLXXXXVIII.

Later, an abbreviation became popular where the order of letters did matter and, if asingle smaller value
came before the next larger one, it was subtracted and if it came after, it was added as usual.

For example, X1 means 10+1=1 but I X means 1 lessthan 10 or 9. 8 is still written as V111 (not [1X).
[Note that in the UK we use asimilar system for time when 6:50 is often said as "ten to 7" rather than "6
fifty", ssimilarly for "a quarter to 4" meaning 3:45. In the USA, 6:50 is sometimes referred to as " 10 of
7" ]

Using this method, 1998 would be written much more compactly as MCMXCV 11 but thistakes alittle
more timeto interpret: 1000 + (100 less than 1000) + (10 lessthan 100) +5+ 1+ 1 + 1.

Look out for Roman numerals used as the date a film was made, often recorded on the
screen which givesits censor certification or perhaps the very last image of the movie
giving credits or copyright information.

Arithmetic with Roman Numerals
Arithmetic was not easy in the Roman system:

CLXXI'l'l'l added to XXVI1l is CC I
CLXXI'II'l |ess XXVITT  is CXXXXVI

*§* For more on Roman Numeral's, see the excellent Frequently Asked Questions on Roman Numerals at
Math Forum.

The Decimal Positional System

The system that Fibonacci introduced into Europe came from India and Arabia and used the Arabic
symbols 1, 2, 3, 4,5, 6, 7, 8, 9 with, most importantly, a symbol for zero O.

With Roman numbers, 2003 could be written as MMI |1 or, just as clearly, it could be written as IHIMM -
the order does not matter since the values of the letters are added to make the number in the original
(unabbreviated) system. With the abbreviated system of 1X meaning 9, then the order did matter but it
seems this sytem was not often used in Roman times.

In the "new system", the order does matter always since 23 is quite a different number to 32. Also, since
the position of each digit isimportant, then we may need a zero to get the digits into their correct places
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(columns) eg 2003 which has no tens and no hundreds. (The Roman system would have just omitted the
values not used so had no need of "zero".)

This decimal positional system, aswe call it, uses the ten symbols of Arabic origin and the "methods"
used by Indian Hindu mathematicians many years before they were imported into Europe. It has been
commented that in India, the concept of nothing isimportant in its early religion and philosophy and so it
was much more natural to have a symbol for it than for the Latin (Roman) and Greek systems.

"Algorithm"

Earlier the Persian author Abu Jafar Mohammed ibn M(sa al-Khowérizmi had written a book which
included the rules of arithmetic for the decimal positional number system, called Kitab al jabr w'al-
mugabala (Rules of restoration and reduction) dating from about 825 AD. D E Knuth says his name can
be trandated as Father of Ja'far, Mohammed, son of Moses, native of the town of Al-Khowarizmi. He was
an astromomer to the caliph at Baghdad (now in Iraq).

mA|-Khowérizmiis the region south and to the east of the Aral Seaaround the town now called
Khiva(or Urgench) on the Amu Daryariver. It was part of the Silk Route, a major trading
pathway between the East and Europe. In 1200 it was in Persia but today isin Uzbekistan, part of
the former USSR, north of Iran, which gained its independence in 1991.

#mProf Don Knuthhas a picture of a postage stampissued by the USSR in 1983 to commemorate al-

Khowarizmi1200 year anniversary of his probable birth date.

mFrom the title of this book Kitab al jabr w'al-mugabalawe derive our modern word algebr a.
HThe Persian author's name is commemorated in the word algorithm. It has changed over the
years from an original European pronunciation and latinisation of algorism. Algorithms were
known of before Al-Khowarizmi's writings, (for example, Euclid's Elementsis full of algorithms
for geometry, including one to find the greatest common divisor of two numbers called Euclid's
algorithmtoday).

#The USA Library of Congress hasalist of citationsof Al-Khowarizmiand his works.

Our modern word "algorithm" does not just apply to the rules of arithmetic but means any precise set of
instructions for performing a computation whether this be
 amethod followed by humans, for example:

ma cooking recipe;
maknitting pattern;
stravel instructions;
ma car manual pagefor example, on how to remove the gear-box;
mamedical proceduresuch as removing your appendix;
ma calculation by human computors: two examples are:
& William Shankswho computed the value of pi to 707 decimal places by hand last century
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over about 20 years up to 1873 - but he was wrong at the 526-th place when it was checked
by desk calculatorsin 1944!

mEarlier Johann Dasehad computed pi correctly to 205 decimal placesin 1844 when aged
20 but this was done completely in his headjust writing the number down after working on
it for two months!!

m or mechanically by machines (such as placing chips and components at correct places on acircuit
board to go inside your TV)
m or automatically by electronic computers which store the instructions as well as datato work on.

W& See D E Knuth, The Art of Computer Programming Volume 1; Fundamental Algorithms (now in its
Third Edition, 1997)pages 1-2.

W& Thereisan English translation of the".. al jabr .." book: L C Karpinski Robert of Chester'sLatin
Trandlation ... of al-Khowarizmi published in New Y ork in 1915. [Note the variation in the spelling of
"Al-Khowérizmi" here - thisis not unusual! Other spellings include a-Khorezmi.]

¥ |an Stewart's The Problems of M athematics (Oxford) 1992, ISBN: 0-19-286148-4 has a chapter
on algorithms and the history of the name: chapter 21: Dixit Algorizmi.

The Fibonacci Series

In Fibonacci's book he introduces a problem for his readers to use to practice their arithmetic:-

apair of rabbitsare put in a field and, if rabbits take a month to
become mature and then produce a new pair every month after that,
how many pairswill there be in twelve months time?

He assumes the rabbits do not escape and none die. The answer involves the series of numbers:
1,1,2,3,5,8,13 21, ...

but it was the French mathematician Edouard L ucas (1842-1891) who gave the name Fibonacci
number s to this series and found many other important applications of them.

Fibonaccl memorials to see in Pisa
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Hedied in the 1240's and thereis
now a statue commemorating him
located at the Leaning Tower end
of the cemetery next to the
Cathedral in Pisa. [With special
thanks to Nicholas Farhi, an ex-
pupil of Winchester College, for
the picture of the statue.]

The picture of Pisas cathedral and leaning tower isa
link to more information on Pisa.

Clark Kimberling, Professor of Mathematics at
Evansville University, Indiana, has a Fibonacci

biography page. It shows the face of another

Fibonacci statute down by the Arno river off the Via
Fibonacci.

g '. t-p!ll'lf'r...
Y ciinipienl

i

Fibonacci's Mathematical Books

Leonardo of Pisawrote 5 mathematical works, 4 as books and one preserved as a | etter:

Liber Abbaci, 1202 but revised in 1228.
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meaning The Book of the Abacus (or The Book of Calcuating). One of the problemsin this book
was the problem about the rabbitsin afield which introduced the series 1, 2, 3,5, 8, ... . It was
much later (around 1870) that L ucas named this series of numbers after Fibonacci.

Practica geometriae, 1220.
A book on geometry.

Flos, 1225

Liber quadratorum, 1225
The Book of Squares, his largest book.
It was trandlated into English by L E Sigler and published as The Book of Squaresin 1987,
Academic Press. Another article about this book:

% |_eonardo of Pisa and hisLiber Quadratorum by R B McClenon in American
Mathematical Monthly vol 26, pages 1-8.

A letter to Master Theodorus, around 1225.
Theodorus was a philosopher at the court of the Holy Roman Emporer Frederick I1.
Thereisavery readable outline of the problemsin the letter to Master Theodorusin:

“E+ Fibonacci's Mathematical L etter to Master TheodorusA F Horodam, Fibonacci
Quarterly 1991, vol 29, pages 103-107.

The most comprehensive translation of the manuscripts of the 5 works aboveis:

W scritti di Leonar do Pisano B Boncompagni, 2 volumes, published in Romein 1857 (vol 1) and
1862 (vol 2).

References to Fibonacci's Life and Times

W L eonardo of Pisa and the New Mathematics of the Middle Ages J Gies, F Gies, Crowel| press,
1969.

e The Autobiography of Leonardo Pisano R E Grimm, in Fibonacci Quarterly, vol 11, 1973,
pages 99-104 with corrections on pages 162 and 168.

%> 800 Years young A F Horodam in Australian Mathematics Teacher vol 31, 1975, pages 123-134.
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Pi and the Fibonacci Numbers

Surprisingly, there are several formulae that use the Fibonacci numbers to compute Pi (
).

Here's abrief introduction from scratch to al that you need to know to appreciate these
formul ae.

Contents of this page

Ther =mmline means there is a Things to doinvestigation at the end of the section.
. How Pi iscalculated

o Measuring the steepness of ahill

o Thetangent of an angle

o Thearctan function

o Gregory's Formula for arctan(t)

o Radian measure

o Gregory's series and pi

o Using Gregory's Series to calculate pi

o Machin's Formula

o Another two-angle arctan formulafor pi
. Pi and the Fibonacci Numbers r wmm

o The General Formulae
. Some more formulae for two angles

o Some Experimental Maths for you to try F s
. Morelinks and References

How Pi is calculated

Until very recently there were just two methods used to compute pi, one invented by the Greek mathematician Archimedes,
and the other by the Scottish mathematician James Gregory. We'l just look at Gregory's method here.

Measuring the steepness of a hill

The steepness of a hill can be measured in different ways.
It is shown on road signs which indicate a hill and the measure of the stegpnessisindicated in differing ways from country to
country. Some countries measure the steepness by aratio (eg 1 in 3) and others by a percentage.

Theratio is converted to a decimal to get its percentage, so aslope of "1in 5"

means 1/5 or 20%.
The picture on the road-sign tells us if we are going up a hill or down. &

We could say that a 20% riseis a steepness measured as +20% and a 20% fall asa
steepness of -20% too. 6%
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But what does "a slope of 1in 5" mean?

There are two interpretations.
Some peopletake "1 in 5" to mean the drop (or rise) of 1 (metres, milesor kilometers) for

a
//-1 1 every 5 (metres, miles, kilometers) travelled along the road. In the diagram, the distances
are shown in orange.
/-1 i Othersmeasureit asthe drop or rise per unit distance travelled horizontally. A "1in 5"
slope means that | would rise 1 metre for every 5 metres travelled horizontally. The same
& numbers apply if | measure distance in miles or centimeters or any other unit.

In the second interpretation it is easier to calculate the stegpness from a map. On the map, take two points where contour lines
cross the road. The contour lines give the rise or fall in height vertically between the two points. Using aruler and the scale of
the map you can find the horizontal distance between the points but make sure it isin the same units as the horizontal
distance! Dividing one by the other gives the ratio measuring the steepness of the road between the two points.

But they look the same slope?

Y es, they do when the Slopeis"1in 5" because the differenceis very small - about 0-23° in

fact. 1
1.01

Hereisasdope of 1-01. The green lineis 1-01 times as long as the blue height and the red line

istoo. You can see that they "measure” very different slopes (the green line and the black line

are clearly different slopes now).

What do you think aslope of "1 in 1" meansin the two interpretations? Only one interpretation will mean a

slope of 45° - which one?

1.01

So we had better be clear about what we mean by slope of aline in mathematics!!

. Thefirst interpretation is called the sine of the angle of the slope where we divide the change in height by the distance
along theroad (hypotenuse).

. The second interpretation is called the tangent of the angle of the slope where we divide the change in height by the
horizontal distance.

Thedopeof alinein mathematicsisALWAY S taken to mean the tangent of the angle of slope.

So in mathematics, as on road-signs, we measure the slope by aa ratio which is just a number. The higher the number, the
steeper the slope. A perfectly "flat" road will have slope 0 in both interpretations. Uphill roads will have a positive steepness
and downhill roads will be negative in both interpretations.

In mathematics, asmall incline upwards will have slope 0-1 (i.e.10% or 1/10 or arise of 1 in 10)

aroad going slightly downhill had slope -0-2 (i.e. 20% or 1/5 or afall of 1 in 5); afairly steep road uphill will have slope 0-4
(ie 40% or 2/5) and the same road travelled in the other direction (downhill) has the same number, but negative: -0-4

In mathematics, a"1in 1" slope will means ametre rise for every metre travelled "along”, so theslopeis1:1=1/1=1o0r 45
degrees (upward).

Note that with the other interpretation (using the sine of the angle) of 1in 1isarise of 1 metre for every metre
along the road. Thiswould mean avertical road (acliff-face) which isnot at al the same thing as a tangent of
1

Similarly, in mathematics, a slope of -1 would be a hill going downwards at 45 degrees.
In maths, lines can have slopes much steeper than roads designed for vehicles, so our slopes can be anything up to vertical
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both upwards and downwards. Such aline would have a slope of "infinity".

The tangent of an angle

So we can relate the angle of the slope to the ratio of the two sides of the (right-angled) triangle. This

" ratio is called the tangent of the angle.
a Inthe diagram here, the tangent of angle x is ab, written:
e tan(x) = &,
b
A 45° right-angled triangle has the two sides by the right-angle of equal size, so their ratio is 1, which we write
a &
A tan(45°) = ¥, = 1
a
If we split an equilateral triangle (ie al sides and all angles are the same) in half, we get a 60°-30°-90°
triangle as shown:
We can use Pythagoras' Theorem to find the length of the vertical red line. Pythagoras Theorem
2 f30° 2 saysthat, in any right-angled triangle with sides a, b and h (h being the hypotenuse which is the
longest side - see the first triangle here) then
a2+ b2=h2
60° [

1 1
So, in our split-equilateral triangle with sides of length 2, its height squared must be 22-12=3, ieits height is3.
So we have
tan(60°) = +3 and
tan(30°) = Y45

The arctan function

If we are given a slope (atangent of an angle) we may want to find the angle of that slope. This would mean using the tangent
function "backwards" which in mathematics is called the inverse of the tangent function.

It iscaled the atan or arctan function so that arctan(t) takes a slopet (a tangent number) and returns the angle of a straight
line with that slope.

Gregory's Formula for arctan(t)

In 1672, James Gregory (1638-1675) wrote about a formulafor calculating the angle given the tangent t for angles up to 45°
(i.efor tangents or slopest of sizeup to 1):
3 5 t7 9

actan(t) =t —— +— —— +— — ..
3 5 7 9

Actualy, it isnot so much aformulaas a series, since it goes on for ever.

So we could ask if it will it ever compute an actual value (an angle) if there are always terms to come?

Provided that t islessthan 1 in size then the termswill get smaller and smaller as the powers of t get higher and higher. So we
can stop after some point confident that the terms missed out contribute an amount too small to alter the amount we have
already computed to a certain degree of accuracy. [ The question now becomes. "How many terms do | need for a given degree
of accuracy?']

Why must the value of t not exceed 1?
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Look at what happenswhen t is 2, say. t3 is then 8, the fifth power is 32, the seventh power 128 and so on. Even
when we divide by 3,5,7 etc, the values of each term get bigger and bigger (called diver gence).
The only way that powers can get smaller and smaller (and so the series settles down to a single sum or the
series conver ges) iswhen t<1.
For this series, it aso givesasum if t=1, but as soon as t>1, the series diverges.
Of course t may be negative too. The same applies: the series convergesif t is greater than -1 (itssizeisless
than 1 if weignorethe sign) and divergesif t islessthan -1 (itssizeis greater than 1 if we ignore the sign).
The neatest way to sum thisup isto say that

Gregory's series convergesif t does not exceed 1 in size (ignoring any minussign) i.e. -1 <t<1.

The error between what we compute for an arctan and what we leave out will be small if we take lots of terms.

The limiting angle that Gregory's Series can be used on has atangent that isjust 1, ie 45 degrees.

Radian measure

First, we note that the angle in Gregory's series is not returned in degrees, but in radians which turns out
to be the "natural” measure of angles since formulae are much simpler if we use this rather than degrees.
If we draw the angle at the center of acircle of unit radius, then the radian is the length of the arc cut
off by the angle (hence the "arc" in "arctan”: "the arc of an angle whose tangent is...").

So 360 degreesis the whole circumference, that is

angle

360° = 2 Pi radians = 2 Pi" and halving this gives
180° = Pi radians = Pi" and

90° = Pi/2 radians = (Pi/2)".

Since 60° isasixth of afull turn (360°) then

60° = 2 Pi/ 6 = Pi/3 radians = (Pi/3)" and so

30° = Pi/6 radians = (Pi/6)".

Note that, when it does not cause confusion with "raising to the power r" then & means "aradians’.
A single degree is 1/360 of afull turn of 2 Pi radians so

1° = 2 Pi/360 radians = pi/180 radians\
Similarly, 1 radianis 1/(2 Pi) of afull turn of 360 degrees so
1 radian = 360/ (2 Pi) degrees = 180/ Pi degrees. \

Using radian measure explains why the inverse-tangent function is also called the ARCtan function - it returns the arc angle
when given atangent.

Gregory's series and «

We now have severa angles whose tangents we know :-
tan 45° (or /4 radians) =1, therefore

o
arctan(l) = 2

and if we plug thisinto Gregory's Series: arctan(t) =t - t3/5 + t5/5 - t’/; + t9g - ... we get the following surprisingly simple and
beautiful formulafor Pi:
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@

arctan(1)=Z:1— +

Wik

1
L=
5

=
=

Actually, Gregory never explicitly wrote down this formula but another famous mathematician of the time, Gottfried Leibnitz

(1646-1716), mentioned it in print first in 1682, and so this special case of Gregory's seriesis usually caled Leibnitz
Formulafor .

We can use other angles whose tangent we know too to get some more formulae for Pi. For instance, earlier we saw that tan
60° (orm/3 radians) = 3 therefore

arctan( +3) :§

So what formula do we get when we use this in Gregory's Series? But wait!!! %3 is bigger than 1, so Gregory's series cannot
be used!! The serieswe would get is not useful since wherever we stop it, the terms left out will always contribute a much
larger amount and swamp what we already have. In mathematics we would say that the sum diverges.

Instead let's still use the 30-60-90 triangle, but consider the other angle of 30°. Since tan 30° (or T/6 radians) = 1/43 which is

less than 1:
t 1 _Z
arctan Y s

The other angle whose tangent we mentioned above gives :

1y + 1 1 1 1
arct —_— == =— + — + ...
a"(«fs) 6 3 3x33 5x323  7x3%3

We can factor out the 43 and get
£ 1 401 1 1,1
— =5 — - - .
6 3 3x3 5x32 7x33 934
or
O A S 1,1 -
i 3x3 5x32 7x33 9x3t

Using Gregory's Series to calculate =

If you try and work out the value of /4 from the formula marked as (*) above, you find that the formula, although very pretty
(or elegant as mathematicians like to say), it is not very useful or practical for calculating pi:

1 = 1- 000000000000000000 -
1/3 = 0- 333333333333333333 +
1/5 = 0- 200000000000000000 -
1/7 = 0-142857142857142857 +
1/9 = 0-111111111111111111 -
1/11= 0- 090909090909090909 +
1/ 13= 0-076923076923076923 -

In fact, the first 5 terms have to be used before we get to 1/11 which isless than 1/10, that is, before we get aterm with a0 in
the first decimal place.

It takes 50 terms before we get to 1/101 which has Os in the first two decimal places and

500 terms before we get terms with 3 initial zeros.

We would need to compute five million terms just to get m/4 to 6 (or 7) decimal places!
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Thisiscalled aslow "rate of convergence”.

The second formula above that is marked (**) that we derived from arctan(1/+3) is a lot better

1 = 1.-000000000000 -
1/9 = 0-111111111111 +
1/ 45 = 0- 022222222222 -
1/ 189 = 0- 005291005291 +
1/ 729 = 0-001371742112 -
1/ 2673 = 0-000374111485 +
1/ 9477 = 0-000105518624 -
1/ 32805 = 0-000030483158 +
1/111537 = 0- 000008965634 -
1/ 373977 = 0-000002673961 +
1/1240029= 0- 000000806432 -

and after just 10 terms, we are getting zeros in the first 6 places - remember that would have been after at least half amillion
terms by Leibnitz Formulal
Summing the above and multiplying by 243 gives

7 = 3-14159 to 5 decimal places
The only problem with the faster formula above is that we need to use +3 and, before calculators were invented, this was
tedious to compute.
Can we find some other formulae where there are some nice easy tangent values that we know but which don't involve
computing square roots? Y es!

Machin's Formula
In 1706, John Machin (1680-1752) found the following formula:

i-4arct } arct i
4 5 239

The 239 number is quite large, so we never need very many terms of arctan(1/239) before we've got lots of zerosin theinitial
decimal places. The other term, arctan(1/5) involves easy computations if you are computing terms by hand, since it involves
finding reciprocals of powers of 5. In fact, that was just what Machin did, and computed 100 places by hand!

Here are the computations:

Al'l conputations to 15 deci mal pl aces:

arctan(1/5) arctan(1/239):

1/5 = 0-200000000000000 1/ 239 = 0-004184100418410
1/ 375 =-0-002666666666666 1/ 40955757 =-0-000000024416591
1/ 15625 = 0-000064000000000 1/ 3899056325995= 0- 000000000000256
1/ 546875 =-0-000001828571428

1/ 17578125 = 0- 000000056888889

1/ 537109375 =-0-000000001861818

1/ 15869140625 = 0-000000000063015

1/ 457763671875  =-0-000000000002184

1/12969970703125 = 0- 000000000000077
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1/ 362396240234375=-0- 000000000000002

SUWM NG
arctan(1/5) = 0-1973955598498807 and arctan(1/239) = 0-004184076002074
Putting these in the Machin's fornula gives:
Pi/4= 4xarctan(1/5 ) - arctan( 1/239 )
or Pi l6xarctan(1/5 ) - 4xarctan( 1/239 )

16x0- 1973955598498807 - 4x0-004184076002074
3-1415926535897922

Another two-angle arctan formula for =
Here's another beautifully simple formula which Euler (1707-1783) wrote about in 1738:

2 e S e
4 2 3

It's even more elegant when we write pi/4 as ar ctan(l):

tan(1) = arct }+ ct }
arcan()—arcar(z) ar ar(g)

With just alittle geometry and the diagram here, you might be able to verify that this formulais indeed
correct.

HINTS:

What are tan(a), tan(b) and tan(c) from the diagram?

The dark blue and light blue triangles are the same shape (why? consider tangents)
so which anglein the light-blue triangle is the same as b in the dark blue one?

E A

b? (ie prove that angle a=angle b + angle ¢)
Express this angle relationship using arctans, since you know their tangents from Hint 1 above.
Eh Voila!

o u

Here is another diagram which illustrates the relationship even more smply:

The green angle has a tangent of 1/2;

the blue angle has atangent of 1/3;

together they make the corner angle in red whose tangent is 1.

) NOW we are ready for the formula using the Fibonacci Numbers to compute !

Pi and the Fibonacci Numbers

Now we return to using the Fibonacci numbers to compute . Euler's formulathat we have just proved:
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= oly) ol

isgood for computing Tt since 1/2 and 1/3 are smaller than 1. (The smaller the value of the tangent in Gregory's formula, the
quicker the sum converges and the less work we have to do to find pi!)

Things to do -
. Use this formula to conpute mw to a few deci mal places by hand

Arethere any more formulae like it, that is, using two angles whose tangents we know and which add up to 45 degrees (ie /4
radians whose tangent is 1)?

Y es, here are some (not proved here). Can you spot the pattern?

Pi/4 = arctan(l) and ...
arctan(l) = arctan(1/2) + arctan(1/3)

arctan(1/3) arctan(1/5) + arctan(1/8)

arctan(1/8)

arctan(1/13) + arctan(1/21)

arctan(1/21) arctan(1/34) + arctan(1/55)

We can combine them by putting the second equation for arctan (1/3) into the first to get:
Pil4 arctan(l)

arctan(1l/2) + arctan(1l/3)

arctan(1/2) + arctan(1/5) + arctan(1/8)

and then combine this with the third equation for arctan(1/8) to get:

Pi/4 = arctan(1/2) + arctan(1/5) + arctan(1/13) + arctan(1/21)

You'll have aready noticed the Fibonacci number s here. However, not all the Fibonacci numbers appear on the left hand
sides. For instance, we have no expansion for arctan(1/5) nor for arctan(1/13).
Only the even numbered Fibonacci terms seem to be expanded (F(2)=1, F(4)=3, F(6)=8, F(8)=21, ...):

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. [isi=1:

aaaaaa

The General Formulae

We have just seen that there are infinitely many formulae for Pi using the Fibonacci numbers! They are:
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Pi/4 arctan(l)
arctan(1/2)
arctan(1/2)
arctan(1/2)
arctan(1/2)

arctan(1/3)

arctan(1/5) + arctan(1/8)

arctan(1/5) + arctan(1/13) + arctan(1/21)

arctan(1/5) + arctan(1/13) + arctan(1l/34) + arctan(55)

+ + + +

or, putting these in terms of the Fibonacci numbers:

Pi/4 arctan(1/Fib(1l) )
arctan(1/ Fib(3))
arctan(1/Fib(3))
arctan(1/Fi b(3))
arctan(1/ Fib(3))
arctan(1/Fi b(10))

arctan(1/ (Fib(4))

arctan(1l/Fib(5)) + arctan(1/Fib(6))

arctan(1/Fib(5)) + arctan(1/Fib(7)) + arctan(1l/Fib(8))
arctan(1/Fib(5)) + arctan(1/Fib(7)) + arctan(1/Fib(9)) +

+ + + +

What isthe general formula?

Itis
1 1 1
arctan =arctanf ——— J+actanf —
(Fi b(2n)) (Fi b(2n+1)) (Fi b(2n+2))

What happensif we keep on expanding the last term as we have done above?
We get the infinite sum

1
arctan(1) :Sarctan(lz (2n+1))

n=1
or

arctan(l) arctan(1/Fib(3)) + arctan(1/Fib(5)) + arctan(1l/Fib(7)) + ...

arctan(1/2) + arctan(1/5) + arctan(1/13)+. ..

which isaspecial case of the following when k is 1:
arct L)—Sarct 1
F(2k) &= F(2n+1)

Some more formulae for two angles

There are many more angles which have tangents of the form 1/X which are the sum of two other angles with tangents of the
same kind. Above we looked at such formulae which only involved the Fibonacci numbers. Here are some more examples:

arctan(1/2)
arctan(1/3)
arctan(1/4)

arctan(1/ 3) + arctan(l/ 7)
arctan(1/ 4) + arctan(1l/13)
arctan(1/ 5) + arctan(1/21)
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arctan(1/5)
arctan(1/5)
arctan(1/6)
arctan(1/7)
arctan(1/7)
arctan(1/7)

arctan(1/ 6)
arctan(1/ 7)
arctan(1/ 7)
arctan(1/ 8)
arctan(1/ 9)
arctan(1/12)

+ + + + + +

arctan(1/31)
arctan(1/18)
arctan(1/43)
arctan(1/57)
arctan(1/ 32)
arctan(1/17)

Some Experimental Maths for you to try

Here are some suggestions to see if we can find some reasons for the above results, and some order in the numbers.

Y ou can use a computer to do the hard work, then you have the fun job of looking for patternsin its results! Thisiscalled
Experimental Mathematics since we are using the computer as a microscope is used in biology or like atelescope for
astronomy. We can find some results that we then have to find atheory or explanation for, except that what we look at isthe
World of Numbers, not plants or stars.

1.

N

. Once you have a list of pairs of angles which sumto another,

Thingsto do-
Is there a formula of the kind
arctan(1l/ X) =

arctan(1/Y) + arctan(1l/2)
for all positive integers X (Y and Z al so positive integers)? that is, if |
give you an X can you always find a Y and a Z?

How woul d you go about doing a conputer search for nunerical values that | ook
as if they mght be true (ie searching through some small values of X, Y and Z
and seeing where the value of the left hand side is alnost equal to the val ue
of the right hand side? [ Renenber, it could just be that the nunbers are
really al nost equal but not exactly equal. However, you have to allow for smal
errors in your conputer's tan and arctan functions, so you al nost certainly
will not get zero exactly even for results which we can prove are true

mat hematically. This is the central problem of Experinental Maths and show t hat
it never avoids the need for proving your results.]

Can you spot any patterns in the nunerical results of your conputer search?

Can you prove that your patterns are always true?

Try a different approach to the proofs. Since we have a proof for the first
result (we used the dark blue and light blue triangles in the diagramearlier
in this page), can we extend or generalize the proof nethod?

use it to
an

you can
generate three angles that sumto another (as we did for 3 then 4 and
infinite nunber for the arctan(l) series for m above). Eg:
arctan(1/4) = arctan(1/5) +
and arctan(1/5) =
and substituting gives
arctan(1/4) = arctan(1/6) +

arctan(1/21)
arctan(1/6) + arctan(1/31)

arctan(1/21) + arctan(1/31)

Perhaps there are suns of three angles that are NOT generated in this way (ie
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where any two of the angles do not sumto one with a tangent of the form1/X)?
It |ooks Iike:
arctan(1/2) = arctan(1/4) + arctan(1/5) + arctan(1/47)

m ght be one (if, indeed, it is exactly true). If so, how would you go about
searching for them nunerically?

5. W've only | ooked at angl es whose tangents are of the form 1/ N. Perhaps there
are sone nice formula for expressing angles of the formarctan(MN) as the sum
of angles of the formarctan(1l/X)? or even as a sum of other such "rational"
tangents, not just reciprocals. What patterns are there here?

To start you off:
One such pattern | ooks |ike having Y=X+1, that is,

arctan(1l/X) = arctan(1l/(X+1)) + arctan(1l/2)
Here are sone results froma conputer search ( - or are they?!'? - see below):
NB To save space here and also in other mathematical texts, arctan is
abbrevi ated further to atan.

atan(1/2)=atan(1/3)+atan( 1/7) In fact, there IS a m stake in one of
atan(1/ 3)=atan(1/4)+atan(1/13) these 7 lines because a genui ne
atan(1/4)=atan(1/5)+atan(1/21) mat hemati cal pattern is spoilt by one
atan(1/5) =atan(1/6) +at an( 1/ 31) of the results - but which one?

atan( 1/ 6)=atan(1/7)+atan( 1/ 43) Can you find a formula for Z and
atan(1/7)=atan(1/8)+atan(1/57) can you prove that it is
atan(1/8)=atan(1/9)+atan(1/72) al ways true?

6. Tadaaki Ohno, amathematics student at the University of Tokyo , Japan, (July 1999) has found a nice method of
looking for arctangent relations which depends on factoring numbers. Using the following formulafor the tangent of
the sum of two angles, aand b:

tana+tanb

tan(a+b) = l-tanatanb

He transformsit into the problem of finding integersx, y and z which satisfy:
(x-2)(y-2) = 22+1

(Y ou can derive this expression from the tan(a+b) formula as follows:

Let tan a= Ux i.earctan(l/x) isangle aand let tan b = 1/y so arctan(l/y) isangle b.

Then at+b = arctan(1/x) + arctan(1/y) = arctan(1/z) so that tan(a+b) = 1/z.

Put these valuesin the tan(at+b) formula above and then simplify the right hand side by multiplying top and bottom by xy.
After rearranging you will then need to add z2 to both sides and then Tadaaki Ohno's formula appears.)

So, for instance, if arctan(1/z)= pi/4 and therefore z is 1 then we can find values x and y by solving
X=1Dy-1) =12+1=2

The important thingsisthat x and y are integer sso we only need to look for integer fractors of 2 and there are only
two factors of 2, namely 1 and 2:

x—1=landy—-1=2whichgivesx=2andy =3
Thisisthe first two-angle formulathat we mentioned earlier that Euler found in 1738:

Pi/, = arctan( Y/, ) + arctan( 1/3)
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The important other part of Tad's proof is that
all two-angle values satisfy this formula

So we now know that there is only one way to write arctan(1) as the sum of two angles of the form arctan(1/x) + arctan(1/y).

o How does this formula help in answering the first question in this Things
To Do section?
o Find all the two-angle suns (x and y) for z from1 to 12.
o Research Problem Can you find a simlar formula for x, y and z when
arctan(1l/z) = 2 arctan(1l/x) + arctan(1l/y)

VWhat about

arctan(1/z) 3 arctan(1l/x) + arctan(l/y)

and

arctan(1/ z) 4 arctan(1l/x) + arctan(1l/y)

and, in general,

arctan(1/z) k arctan(1/x) + arctan(1l/y)

Tad says he has proved that Machin's fornmula (which has z=1, x=239 and y=5)
is the only solution for k=4.

7. Research Probl ens
Hwang Chien-lih of Taiwan told nme that Stornmer proved that there are only four
2-termformulae for arctan(l), including Euler's and Machin's that we have
al ready net:
arctan(l) 4 arctan(1l/5) — arctan(1l/239) discovered Machin in 1706.
arctan(l) arctan(1/2) + arctan(1/3), discovered by Euler in 1738
arctan(l) 2 arctan(1/2) — arctan(1/7) (discovered by Hermann in 17067?)
arctan(l) = 2 arctan(1/3) + arctan(1/7) (discovered by Hutton in 17767?)
He al so says the sane Stornmer found 103 three-termfornulae, J WWench had

found 2 nore and Hang Chien-lih has found another. How many are there in total?

If you get some results from these problems, please send them to me - 1'd be interested to see what you come up with so | can
put your name and your results on this page too. Perhaps you can find some results in the Journals in your University library
(not so easy!)? Even if the results you discover for yourself are already known (in books and papers), you'll have done some
real maths in the meantime. Anyway, perhaps your results really are new and your proofs are much simpler than those known
and we need to let the world know so have a go!

Leroy Quet of Denver, Colorado, has found a proof (hereit is) of the real pattern in asimple proof.

More links and References

Links

4 A brief history of computing pi
at the St Andrews site and well worth looking at.
4 Jeremy Gilbert's Pi to 10 Million places!
Y ou can search the first 10,000,000 places of Pi for any particular string of numbers eg if your birthday is 4" May,
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1982, we can write it as a number such as 04051982 (or 040582 or, if you are American, 050482 or perhaps 820504) or
for some other sequences. "999999" occurs no less than 17 timesin the first ten million places, the first time being at
decimal places 763-768!

Jeremy's page aso points to an actua list of all 10 million digits of Pi which you can download. Before you do,
however, beware that since each digit is stored as one byte, the fileis 10 Megabytesin size! So how about...

% University of Exeter has a page of the first 10,000 digits of Pi!

References
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He further abbreviates arcot(A) to just { A} - note the curly brackets - so that our formula
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%= More Machi n-type identities Mathematical Gazette March 1997, pages 120-121.
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%2 Machin revisited Mathematical Gazette March 1997, pages 121-123.

e Some new inverse cotangent identitiesfor pi Mathematical Gazette (19977 or 1998?) pages 459-460.

&2 problem B-218 in the Fib. Q., 10, 1972, pp 335-336
gives the sum of the arctans of the reciprocals of the aternate (odd-indexed) Fibonacci numbers from F(2k+1) onwards
as the arctan of 1/F(2k). The formulafor pi/4 then follows when k=1.

e cw Trigg Geometric Proof of a Result of Lehmer's, Fib. Q., 11, 1973, pp 539-540
again proves the main formula of this page but using geometric arguments.

%= D H Lehmer, Problem 3801, Am Math Month 1936, pp 580
here the problem is posed to prove the main formula on this page that the arctans of reciprocals of alternate Fibonacci
numbers sum to pi/4. It's proof was given in...

% M A Heaslet Solution 3801, Am Math Month, 1938, pg 636-7

%= D H Lehmer On arcotangent relations for Pi Am Math Month 1938, pp 657-664
Here are many formulae involving arctans that sum to pi/4.
He gives the originators of two of the Fibonacci formulathat we derived earlier on this page as
pi/4 = arctan(1/2)+arctan(1/3) as Euler and
pi/4 = arctan(1/2)+arctan(1/5)+arctan(1/8) as Daze
= The Joy of Pi D Blatner, 1997,
isafun book which will appeal to school students and upward.
= Petr Beckmann's A History of Pi, 1976, St Martins Press

isaclassic, quirky, fun book on Pi and its calculation, with odd and interesting snippets from its history. However,
there are errorsin one or two of the formulae.

Robert Erraof E.S.I-E-A (Ecole Supérieure d'Informatique- Electronique- Automatique), Paris, has contributed the following
references:

%= D.H. Lehmer, On arcotangent relationsfor Pi Amer. Math. Month. Vol 45, 1938, pp 657-664.
W J Todd, A problem on arc tangent relations, Amer. Math Month. Vol 56, 1940, pp 517-528.

e S, Stormer, Sur I'application de lathéorie des nombres entier s complexes Archiv for Math. og Naturv. Vol 19, 1897,
pp 1-96,
Therest of thetitleisala solution en nombresrationnels x1,x2...c1c2... del'éguation: cl arctan x1+...+ cn arctan
xn =k Pi/4.
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Pi and the Fibonacci Numbers

Thisisalong and very interesting article in French which uses what are now called Gaussian integers.

%2 R H Birch, An algorithm for the construction of arctangent relations, 1946,
isreprinted in the following book ...

"= pi: A Source Book , L Berggren, ISBN: 0 387 94924 0, Springer-Verlag, 1997.

== This pageisaLinks?Go K ey Resource

, 1 vl }_ g
e s =
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on the topic of Constants.

& Theiconisalink toalarge
resource of other excellent pages on Pi.

4= Fibonacci - the man and His Times

‘l‘ Fibonacci Home Pagsg

Theisthefirst page on
More Applications of the Fibonacci
Numbers and Phi.
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*lf Fibonacci Forgeries

The next topics...

=2 Fibonacci, Phi and Lucas numbers
Formulae

=2 Links and References

© 1998-2001 Dr Ron Knott

R.Knott@surrey.ac.uk
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Watch out for Fibonacci Forgeries!

This page is about series that masquerade as the Fibonacci numbers, but, when we examine them
carefully, they are forgeries.

Contents of this Page

. What isa"Fibonacci Forgery"?

. Another formulafor the Fibonacci numbers?
. A Polynomia formulafor Fib(n)?

. Right-angled links: a new forgery?

. Links and References

What is a "Fibonacci Forgery"

Sometimes we find a series of numbers which looks as if it is the Fibonacci series, but, when we look at
bit further, we discover it isn't! These are the Fibonacci For geries!

Another formula for the Fibonacci numbers?

Someone suggests to you that the following is another formula for the Fibonacci numbers - isit?

G(n) = ceiling( e"-2/2)) = ceiling( (+e)"-2)
where the "ceiling" function means "the next integer above" (eg: celling(2-1)=3 and ceiling(2-9)=3 a s0).
Thisis aremarkable formula since we get:

n: 12 3|4/5/ 6,78
G(n):|1/1/2 3|/5/8 /13|21

butitis, infact, aforgery!
References

% RK Guy in The Second Strong Law of Small Number sin The Mathematics Magazine (1990),
Vol 63, pages 3-20, example 41 adapts an inequality of Larry Hoehn's to get this surprising coincidence.

Things to do -
. How far does G n) go before we no | onger get the successive
nunbers of the Fibonacci series appearing?
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A Polynomial formula for Fib(n)?

A polynomial in x,P(x), isasum of various powers of x and their (postive or negative) multiples.

The highest power of x which occursis called the degr ee of the polynomial. A polynomial of degree 1is
cdled linear;

apolyniomial of degree 2 is called quadratic;

apolynomial of degree 3 iscalled cubic; etc.

If the polynomial has an infinite number of powersof X, it is called a power series.

A simple polynomial

Hereis asimple example of alinear polynomial P(x) which givesthe first 3 values of the Fibonacci
series, that is, P(1)=1, P(2)=2 and P(3)=3:

P(x) = X

but that doesn't give P(4)=5, which iswhat we want for the real Fibonacci series, so thisP(x) isa
Fibonacci forgery.

Another polynomial

Can you find a polynomia Q(x) which gives Q(1)=1, Q(2)=2, Q(3)=3 and Q(4)=5? Hereisacubic
polynomial which does that:

Q(X)=(x3-6x2+17x-6)/6
but Q(5) is... 9 whereas Fib(5)=8, so thisis another, but better, forgery! How aboui...

And another!

Here's an example of a"Fibonacci Forgery" polynomial p(x) for which p(1)=1, p(2)=2, p(3)=3, p(4)=5
and p(6)=8 so that itsfirst 6 values ook like the Fibonacci series. However, here, p(7)=aand "a" can be
any value you choose!
p(x) =[ (a-11) x° + (160-15a) x4 + (85 a-865) x3 + (2180-225 a) x2
+ (274 a- 2424) x - 120 a + 1080] / 120;
Or, if you want both 1's at the beginning of your series, then the following versionhas 1, 1, 2, 3, 5, 8 and
then "a" asitsfirst 7 values:
p(x) =[ (a-8) x6 + (150-21 a) x> + (175 a-1070) x4
+ (3630-735 a) x3 + (1624 a - 5762) x2
+(3780-1764a) x + 720a] / 720;
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Things to do -
« It looks like, given the 4 values P(1),P(2),P(3) and P(4) we can find a
degree 3 polynomal for P (ie one whose highest power of x is 3); and given 6
val ues a degree 5 polynom al and given 7 values a degree 6 pol ynoni al .
However, the first 3 values were fitted to a |linear (degree 1) polynom al.
Is it always true that given N values for P(1) to P(N) then we can find a
pol ynom al P which has degree at nost N 1? [Consult your teacher or maths
library at college.] If so, how do we cal cuate the pol ynom al ?

Right-angled links: a new Forgery?

In the December issue of The Mathematics Teacher (ISSN 0025-5769) a letter from Deborah Freedman a
student at Framingham High School, MA, USA, conjectured that the following series was the Fibonacci
numbers.

In how many ways can n segments of equal length be connected in a plane if the beginning
of one segment is to be connected to the end of the previous segment at a right-angle?
Congruent configurations are to be counted as one.

From the examples given, we can clear up afew questions left by this definition.

By congruent, she means that a shape can be rotated or reflected and it still counts as the same shape. So
for 3 links, there are just two "shapes':

0000 0000 0] 0) O O 0000 0000 0000
0] 0] 0] 0] 0O O0=0 =0 0 = 0]
0000 = 0000 = 0000 = 0000 and 0000 o000 O O 0000
0] 0]
) o)

The sequences are not to overlap, that is, alater ssgment cannot lie on top of an earlier one, so that each
diagram of n links has exactly n straight line segmentsin it. Links can cross over (at the ends where they
join others) and we can have "sgquares' in our link chains for example:

0000000 0000 0000000 0000000
O O or 0O O or O O 0 but not 0O O o
0000 0000000 0000000 0000000

0O O 0O O 0O O o
0000 0000 0000000
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since the last shape cannot be made from 12 links in a single chain (in other words, it cannot be drawn in
one go, without taking your pen off the page and without going over any line twice).
Deborah'stable of small solutionsis:

nunmber of number of
segnment s configurations way's
1 000 1
2 000
0] 1
0
3 000 00
0] 00 2
000 000
4 000 000 O 000
0] 0O 00 3
000 000 000
0
0
5 000 0 000 O 000 000 0
o] 0 00O 00 0
000 000 O 0O 000 000 000 5
0 0O OO0
000 000 000
o]
000
6 000 000 000 000 O 000 000 O 000 000
0 0 000 O 0 000 0O 00
000 000 O 000 O 000 000 000 O 00000 000 00000
o] 00 OO0 00 0 0
000 000 000 000 000 0 8
0
0
7 000 O 000 000 0O O 0
0 0 00 0 0O O 0
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000 000 O 000 0O 0O 000 O 00000 000 000 000 000
0] 0 0O0O00O 0O 00 00O 0O

000 000 O 000 000 000 000 0 000 000

0 00
000 000

000 000 000 O 0O
O O 00O 0O 13

000 000 00000 000 000 00000 00000 00000
00O 0O 0O 0 00 00O
00000 000 000 0 000 00000

[With thanks to Jeff Myers, Granville High School, OH, USA for part of this table and for pointing out
this problem in The Mathematics Teacher.]

How many shapes are there with 7 links? Try it and you'll find the number of 7-link shapesis 15. In her
listing in the The Mathematics Teacher she only gave 13, and missed the following two shapes with 7
links:

000
0O
000 000 000 000
o) 00O
000 000 000

These were generated by a computer program (in Prolog), so, if my programming is correct, there aren't
any more shapes missing. The program also showed that The number of 8-link shapesis 23 and this
should be 21 if the Fibonacci numbers were the correct series. There are 43 9-link shapes and again this
should be 34 if the Fibonacci numbers were involved.

So - Deborah's conjecture looks interesting - that there are Fib(n) shapes that can be made from n links at
right-angles with no overlapping and allowing for rotations and reflections, but it is another forgery!

[There is an online WWW page for The Mathematics Teacher.]

Links and References

Mark Lewis and John Moore have a page on Fibonacci Forgeries which isasummary of a Scientific
American article of May 1995 by lan Stewart on series that ook asif they are the Fibonacci numbersto
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Watch out for Fibonacci Forgeries!

start with, but which turn out not to be.

References

%= Richard K Guy in The Second Strong Law of Small Number sin The Mathematics Magazine
(1990), Vol 63, pages 3-20
mentions the Pennies Puzzle 1 and Pennies Puzzle 2 on the Fibonacci Puzzle page and that only one of

them is truly Fibonacci.

This fun paper also has severa other Fibonacci Forgeries including ones on partitions of n, rooted trees
with one label, the number of disconnected graphs on n+1 vertices and the number of connected graphs
on n+2 vertices which have just one cycle.

There are many other forgeriesin the paper to do with primes, Catalan numbers, binomial and trinomial
numbers, mixing some genuine examples with the forgeries. His whole point is that There are not
enough small numbersto meet the many demands made of them and so we are bound to be fooled
with small examples of a problem if we are not careful!

M Fibonacci Home Pagdt£=2=

N The Fibonacci Numbersin The next topics...
4= Fibonacci - the man and His  formulae for Pi =2 Fibonacci, Phi and L ucas
Times numbers Formulae

WHERE TO NOW?7? =? Links and References

\lf The Lucas Numbers

© 1996-1999 Dr Ron Knott ~ R.Knott@surrey.ac.uk 29 August 1999
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The Lucas Numbers

The Lucas Numbers

We have seen in earlier pages that there is another series quite similar to the Fibonacci series that often occurs
when working with the Fibonacci series. Edouard L ucas (1842-1891) (who gave the name "Fibonacci Numbers'
to the series written about by Leonardo of Pisa) studied this second series of numbers:. 2, 1, 3, 4, 7, 11, 18, ..
called the Lucas numbersin his honour. On this page we examine some of the interesting properties of the
Lucas numbers themselves as well aslooking at its close relationship with the Fibonacci numbers.

Contents

The » === line means thereisa Thingsto do investigation at the end of the section.

# Other starting values for a"Fibonacci" SerieSs wm
a The Lucas series
# Two formulae relating the Lucas and Fibonacci nuUmMbers s s
H A formulafor the Lucas Numbers involving Phi and phi & s
# A number trick based on Phi, L ucas and Fibonacci numbers!
1 An even more complicated-looking variation!
2 Why does it work?
H The Lucas Numbersin Pascal's Triangle
s References

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 .. More..

Other starting values for a "Fibonacci" series

The definition of the Fibonacci seriesis:

Fn+1 - Fn-l + Fn ; if n>1
FO =0
Fl =1

What if we have the same general rule: add the latest two values to get the next but we started with different
valuesinstead of 0 and 1?

Things to do - ——

1. The Fi bonacci series starts with 0 and 1. What if we started a
"Fi bonacci" series with 1 and 2, using the sane general rule is for the
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Fi bonacci series proper, so that Fp = 1 and F; = 2? \Wat nunbers
fol | ow?

2. What if we started with 2 and 3 so that Fop = 2 and F; = 3?

3. What ot her starting values give the sane series as the previous two
guesti ons?

4. The sinplest values to start with are

0 and 1, or

1 and 1, or

1 and 2 or even

1 and O (in this order)

all of which we recognise as (part of) the Fibonacci series after a few

terns.

The next two sinplest nunbers are 2 and 1.

What if we started with 2 and 1 so that Fp = 2 and F; = 1? Does this

becone part of the Flbonacci series too?

Try some other starting val ues of your own.

| nvesti gate what happens to the ratio of successive terns in the series

of the earlier questions. W know that for the Fibonacci series, the

ratio gets closer and closer to Phi = (+5+1)/2. Does it | ook as (oh

dear, | feel a pun com ng on: Lucas Cj) if all the series, no matter

what starting val ues we choose, eventually have successive terns whose
ratio is Phi?

o o

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 ..More.

The Lucas series

The French mathematician, Edouard L ucas (1842-1891), who gave the series of numbers0, 1, 1, 2, 3,5, 8, 13, ..

the name the Fibonacci Numbers. found another similar series: 2, 1, 3, 4, 7, 11, 18, ... . The Fibonacci rule of
adding the latest two to get the next is kept, but here we begin with 2 and 1 (in this order).

The series, called the L ucas Number s after him, is defined as follows: where we write its membersasL,, for
L ucas:

Ln=L1+ Lo forn>1
Lo=2
L,=1
and here are some more values of L, together with the Fibonacci numbers for comparison:

nn 012345 6 7 8 9 |10
Fr|0(1]1|2(3|5 |8 [13|21|34(55

L1211 3471118 29 47 76 123 ...
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The Lucas numbers have lots of properties similar to those of Fibonacci numbers and, uniquely among the series
you examined in the Things To Do section above, the L ucas numbers often occur in various formulae for the
Fibonacci Numbers. Also, if you look at many formulae for the Lucas numbers, you will find the Fibonacci
seriesisthere too. The next section introduces you to some of these equations. So of all the 'general Fibonacci'
series, these two seem to be the most important.

For instance, here isthe graph of the ratios of successive Lucas numbers:

1 3 4 7 11 18 29 47
5 =05 i =3 § =1.333.. Z =175 7 =1.5714.. E = 1.6363.. E =1-6111.. Z) = 1-6206..
Lucas Numbers Ratios
]
z
/ '\./_,.-—__.__-I o o B o o o m
1
04 : : : : : : : : : f f : |

In fact, for every series formed by adding the latest two values to get the next, and no matter what two values we
start with we will always end up having terms whose ratio is Phi=1-6180339.. eventually!

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 ..Moire..

Two formulae relating the Lucas and Fibonacci
numbers

Suppose we add up alternate Fibonacci numbers, F,,.; + Fy+1; that is, what do you notice about the two Fibonacci
numbers either side of a Lucas number in the table below: eg

nn 012345 6 7 8 9 10
Fri 011235 8 13213455
L2113 471118 29 47 76 123 ...

Now try your guess on some other Lucas numbers.
This gives our first equation connecting the Fibonacci numbers F(n) to the Lucas numbers L(n):

L(n) = F(n-1) + F(n+1) for all integers n

What about adding alternate L ucas numbers?
n: 0(1/12(3|14(5 (6 |7 |8 |9 |10
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Fri 011235 8 13213455
L2134 71118 29 47 76 123 ..

The sum of L(2)=3 and L(4)=7 is not F(3)=2 However, try afew more additionsin this pattern:

L(1)=1 and L(3)= 4 so their sumis 5 whereas F(2)=1;
L(2)=3 and L(4)= 7 so their sumis 10 whereas F(3)=2;
L(3)=4 and L(5)=11 so their sumis 15 whereas F(4)=3;
L(4)=7 and L(6)=18 so their sumis 25 whereas F(5)=5;

Have you spotted the pattern?

5Fn) =L(n-1) + L(n+1) for al integersn
Things to do -

a What about the Fibonacci nunbers that are TWO pl aces away from

e.

Lucas(n)?
n: [0|112|13|1415 [6 |7 [8 |9 |10
Fni|0]2(1]2|3|5 |8 |13(21|34 (55

Ly 2113471118 29 47 76 123 ...

What is the relationship between F(n-2), and F(n+2) that will give
L(n)?

There is also a rel ationship between F(n-3) and F(n+3) that gives
L(n).

n: 0(1(2|3|14|15 |16 |7 [8 [9 |10
Fii 011235 8 13213455
Ly 2/1347 1118 29 47 76 123 ...

Wat is it? Wite it down as a mathematical formul a.

and between F(n-4) and F(n+4) to give L(n)?
Look back at the fornmula you have just found. Do they work if nis
negative (n<0)?
Can you wite down a general expression that relates F(n-k) and
F(n+k) to give L(n)?

2. How about the other way round now
a W have already found the relationship between L(n-1) and L(n+1)

that gives F(n) - in fact 5F(n) - above.
What about L(n-2) and L(n+2) to give F(n)?
And now try using L(n-3) and L(n+3) to get F(n).
and how can you use L(n-4) and L(n+4) to derive F(n)?
Look back at the fornula you have just found. Do they work if nis
negative (n<0)?
Can you wite down a general expression that relates L(n-k) and
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L(n+k) to give F(n)?
3. Now - the really interesting part!
Have you spotted a pattern in these patterns?
I f you have, can you wite down a nmat hemati cal expression which covers
ALL the formula found in this Things To Do section?

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 .

Hereis Fibonacci and L ucas Numbers Calculator to help with the investigations on this page. It opens the
calculator in a separate window.

A formula for the Lucas Numbers involving Phi and phi

Binet's formulafor the Fibonacci numbersin terms of Phi and phi is:

Phin_ ( —phi )1

s
Some alternative forms for this equation are:

-t et 1 |[14B) (1B
g+ 5 SB[l oz

Fib(n) =

Fibin) = .

On the Phi's Fascinating Figures page the Things To Do in the Numerical Relationships between Phi and its
Powers section asked you to investigate what happens when, instead of subtracting the powers of Phi and (-phi)
asin the formulafor Fib(n) above, we added them:

Phin (-phi)n Phin-+(-phi)n
1.000000000 |1-000000000 |2-000000000
1-618033989 |-0-618033989 |1-000000000
2.618033989 |0-318196601 3-000000000
4-236067978 |-0-236067978 |4-000000000

Extend this table by afew more rows. Do the values |ook like they are integers always? What integers do they
Luc-asif they are (hint!)? Yes! They are the Lucas numbers again:

L ucas(n) =Phi"+ ( —phi )"

w| Nk O] 3

Things to do -

1. Meke a table of the first few powers of Phi=(+5+1)/2=1-618033..
starting at the second power (Phi squared).
Round each value to the nearest whol e nunber.
What do you notice? This is an easier nmethod than the formula given
above.

2. Take a Fi bonacci nunber, double it and add it to its nei ghbour on its

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/lucasNbs.html (5 of 12) [12/06/2001 17:22:52]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/propsOfPhi.html
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/propsOfPhi.html#numprops
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/propsOfPhi.html#numprops

The Lucas Numbers

right. What do you notice?
Can you prove that your observation is always true?
[Hnt: Use the formula for the Lucas nunbers given in terns of the
Fi bonacci nunbers. ]
3. Take F, and nultiply it by the Fibonacci nunber after it:

Fo=1 and F3=2 and 1x2=2.
Do this wth Fg,

W th Fg,

wth Fg and so on.

There is a rel ationshi p between the new nunbers you have found and the
Lucas series. Wiat is it?

[Hnt: multiply your nunber by 5 and see if it is near a nunber in the
Lucas series.]

Now wite the relationship as a nathenmatical fornula.

[ You should be able to prove this one if you keep applying the basic
definition of that a Fi bonacci nunber is the sumof the two previous
ones and do this several tines!]

Optional extra!
Can you prove that your fornula is always true?
This result may hel p: Foim = Foo1Fm + FrFmes

4. 1f we sumthe first k Fi bonacci nunbers, the answer is al nost another
Fi bonacci nunber. First find the exact fornmula by continuing the
pattern below for a fewnore rows, filling in the gaps marked ? and !
so that the ! values are as small as possible and ! is the sane val ue
on each line:

F]_:F?-!
Fi. + Fp = F5 - |
F1+F2+F3:F?'!
Now fill in this sentence replacing ? and ! synbols with something nore

preci se:

The sumof the first K Fi bonacci nunbers is !
| ess than the ?-th Fi bonacci nunber.

5 Now try the sane pattern as in the previous question, but using L
instead of F: and again @is to be the sane val ue on each line:

L1:L?'@
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L1+L2:L?'@
L1+L2+L3:L?'@

and so fill in this sentence:

The sum of the first K Lucas nunbers is @I ess
than the ?-th Lucas nunber.

6. Conpare F, with F;.
Conpare F, wth Fs.
Conpare Fg with Fj.
Conpare Fg wth Fy.
What pattern is energing?
[Hi nt: does one divide exactly into the other?]
How is this pattern related to the Lucas nunbers?
Now express the pattern as a nmathemati cal equati on.
7. W have seen that Lucas Nunmber L(n) is also just F(n-1)+F(n+l).
So we can ask:
| s there anything special about F(n-2)+F(n+2)?
Yes! They are all nultiples of 3 but can you spot which nultiples they
are, that is, can you fill in this equation:
F(n-2)+F(n+2) = 3 x ?
Try the sane thing for
5 F(n-3)+F(n+3) 2 x ?
o F(n-4)+F(n+4) 7 x ?
o F(n-5) +F(n+5)

O « .
Can you put all these results into one fornmnul a:
F(n-k) + F(n+k) = ?? x ??
Hi nt: consider even values of k then | ook at the odd val ues of Kk.
8. Surprisingly, there is a simlar fornula for the Lucas nunbers L(n-
K) +L( n+K) .
Repeat the above investigation for this new expression, spotting the
patterns for k=1, then k=2, k=3, k=4, and so on, until you can spot the
general pattern

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 ..Moire..

A number trick based on Phi, Lucas and Fibonacci
numbers!
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Hereisatrick that you can use to amaze your friends with your (supposed) stupendous calculating powers. All
you need to remember is afew Lucas and Fibonacci numbers and you can write down a complicated expression
like this:

1

4J7+3J5 B 4\(7_31;5_
2 2

Y ou can ask them to verify these formulas on their calculators and they will always work out! The 4 by the+ sign
means the fourth-root. So if

24=16 "2tothefourthis16" then
2 =*{16"2isthefourth-root of 16"

Y ou will often find a button on your calculator which extracts roots (perhaps marked ¥+/x) near the button which

computes the power of a number (marked x”). If thereisno Y+/x button on your calculator, you can compute *16
for instance by computing 1/4 first and using this as the y power with x as 16. Thisis because

Yaix = x1y

What's the secret?

Y ou will need to learn afew of the early Lucas and Fibonacci numbers and their positions in the sequences:

nn 012345 6 7 8 9 10
Fiy 0112835 8 13213455

Ly 213 4[711 18 29 47 76 123 ...

For the example at the head of this section, | randomly picked the index (column) 4 numbers, F(4)=3 and L(4)=7.
We will use these three numbers, 4, 3 and 7 in both expressions. Notice that the first expression has aplusinside
its 4-th-root-sign whereas the second has aminus.

Since the position number, 4, iSEVEN, | will useaMINUS sign BETWEEN the two expressions.

Now just substitute your values into this formula:

+ =1
2 2
The SIGN inthe middleis+ if nisODD and —if nisEVEN

”JL(n)+F(n)*J5 . ”}JL(n)—F(n)*JS

Hereisa Fibonacci and L ucas Numbers Calculator which also generates these expressionsfor you. Click
on the" Amaze me!" button and see a new example every time.

An even more complicated-looking variation!

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/lucasNbs.html (8 of 12) [12/06/2001 17:22:52]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html

The Lucas Numbers

If you want to make it ook even more complicated, choose TWO columnsin the table, one for the first
expression and one for the second. Here's an example where | use the fifth and ninth columns:

5\{1“5% . S1{76-34%5_1
2 2

The sign in the middle (between the two root-expressions) will depend on the SECOND POSITION (in the
example it was 9): if itisODD (and 9 here is odd), then use PLUS and if it iSEVEN put aMINUS sign.

In the new example above, | chose two different positions: 5 for the first expression and 9 for the second.
For the first expression with position=5, | will then use Fib(5)=5 and Lucas(5)=11.

For the second, with position 9, | will use Fib(9)=34 and L ucas(9)=76.

Since 9, the second choice, is ODD, | will put a PLUS sign between the two expressions.

Just substitute your two sets of values: N, Lucas(N) and Fib(N); K, Lucas(K) and Fib(K) in each expression like
this, taking care not to mix up your two sets of numbers:

1

”'\{L(n)+F(n)ﬂlr5 . k'\{L(k)—F(k)*JS_
2 B 2 -

REMEMBER that the fir st expression always has a plus(+) inside the root sign and the second
aways hasaminus (-) inside its root-sign but the sign in-between depends on the second (K)
value.

Why does it work?

Follow through the suggestions in the following Investigation section and the secret will be reveal ed!

Thingsto do -

1. (a) See what happensin the first n-th-root expression if we let n=2. Thefirst expression isjust:
'\( 3+ 145
2

Use your calculator and find its value.
(b) Now try the second expression with n (or k) =2:
J3—145
2

Use your calculator and find this value.
(c) Adding the numbersin (a) and (b) should give 1. Does it?
2. Repeat the above for n=3 finding the two values:
3\{4+2«f5 and 3\(4_2%
2 2

Check that combining them really does give 1, remembering that since nis ODD, you must subtractthe
second from the first, not add it.
3. You cantry n=4, if you like:
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4\(”3% 4K(7—3«J5
and
2 2
4. What do you notice about the values of the separate square-, cube- and fourth-rootsin al the questions
above?
5. Look at the Table of relationships between Phi, phi and 5 and see if you can spot the two expressionsin

each of questions. So when we take the square-roots in question (1) and the cube-roots in question (2),
and the fourth-roots in question (3), what are the results for each expression?
6. Finally, doesit matter if we use different columns of figures for the two expressions in the trick?

Now you know the secret behind thistrick!

With thanksto R. S. (Chuck) Tiberio of Wellesley, MA, USA for pointing out to me the basic rel ationships that
thistrick depends upon. He was one of the solvers of the original problem which you can find in:

%= Problem 402 in The College M athematics Journal, vol. 21, No. 4, September 1990, page 339.

For asimilar unlikely-looking collection of identities see:
%2 Incredible Identities by D Shanks in Fibonacci Quarterly vol 12 (1974) pages 271 amd 280.

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 .

The Lucas Numbers in Pascal's Triangle

We found the Fibonacci numbers appearing as sums of "diagonals' in Pascal's Triangle on the M athematical
Patterns in the Fibonacci Numbers page. We can aso find the Lucas numbers there too.

Here isthe alternative form of Pascal's triangle that we referred to above, with the diagonals re-aligned as
columns and the sums of the new columns are the Fibonacci numbers:

O 1 2 3 4 5 6 7 8 9
01
1 1
2 2 1
3 1 3 3 1
4 1 4 6 4 1
> 1 5 10 10 5
6 1 6 15 20
7 1 7 21
8 1 8
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The Lucas Numbers

O . . . . . . . . .1
1 1 2 3 5 8 13 21 34 55
To derive the Lucas numbers we still add the columns, but to each number in the column we first multiply by its
column number and divide by itsrow number! Here's an example:-

Let's take the third column which, when after the appropriate multiplications and divisions should sum to L(3)
which is 4. The lowest number in column 3is1 anditisonrow 3, so we need:

1 xcolum/ row=1x 3/ 3 =1

which, in this case, doesn't alter the number by much!
The other number in column 3is2 on row 2, so this time we have:

2 xcolum/ row=2x 3/ 2 =3

Note that for all the numbersin the same column, we will always multiply by the same number - the column
number is the same for all of them - but the divisors will alter each time.

Adding the numbers we have derived for this column we have 1+3=4 which is the third Lucas number L(3).

Here iswhat happensin column 4, starting from the bottom again:-

W
X X X
§ NG NN
———
ZI\)oo-h
Mo nn
\I)I\Jhl—\

SU

Here's our revised Pascal's triangle from above showing some of the fractions that we use to derive the Lucas
numbers - it shows the pattern in the multipliers and divisors more easily:

=

]1 1x1/ 1=1|1x2/ 1=2

2 1x2/ 2=1|2x3/ 2=3|1x4/ 2=2

3 1x3/ 3=1|3x4/ 3=4|3x5/ 3=5|1x6/ 3=2

4 1x4/ 4=1|4x5/ 4=56x6/ 4=9| 4x7/ 4= 7| 1x8/ 4= 2

5 1x5/ 5=1|5x6/ 5=610x7/ 5=14 10x8/ 5=16 . . .
6 1x6/ 6=1| 6x7/6= 7|15x8/ 6=20]. ..
]7 1x7/ 7= 1| 7x8/7= 8. ..
8 1x8/ 8= 1/. ..
| 1 3 4 7 11 18 29 47

http://Iwww.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/lucasNbs.html (11 of 12) [12/06/2001 17:22:52]




The Lucas Numbers

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 ..Mre.. 51203

FRFFe

References

W |_ucas and Primality Testing Hugh C Williams, Wiley, 1998, ISBN: 0471 14852 0

isanew book (due April 1998) on how to test if a number is prime without factoring it using a technique
developed by Edouard Lucas, with modern extensions to his work.

Primality testing has become afocus of modern number-theory and algorithmics research. Our present inability
to find prime factors of a number in afast and efficient way isrelied upon in encryption systems - systems which
encode information to send over phone lines. Such encryption systems are now built into computer chipsin

. cash-card machines which communicate with your bank's central computing service to check your PIN
and to verify the transaction;

. €lectronic cash transfer over the WWW where your browser encodes the message

. credit card transactions when your card is swiped through a machine at the till

Each of these systems must send the information in a secure way, free from tampering by fraudsters.
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numbers Formulae
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Times
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Thefirst 100 Lucas Numbers

The First 100 Lucas numbers and their
factors

The Lucas numbers are defined very similarly to the Fibonacci numbers, but start with 2 and 1 (in this
order) rather than the Fibonacci's 0 and 1:

—
o
I

2
1
L, = Lpo1 + Lyop for n>1

—
[
[

This Maple program was used to produce the table below:

| ucas: =proc(n) option renenber;
# this OPTION nakes it very fast even though defined
# by using an inefficient formof recursion
If n=0 then 2
elif n=1 then 1
el se lucas(n-1)+l ucas(n-2)
fi
end;

seq(lprint(i, : ,lucas(i), = ,ifactor(lucas(i))),i=1..100);

and hereisthe output - atable of the first 100 Lucas numbers and their factors, where the prime numbers
are indicated:

n L, Factors of L,
1:1=1

2. 3 =3 Prime
3: 4 =272

4 : 7 =7 Prime
5: 11 = 11 Prine
6 : 18 = 2*3"2

7 : 29 = 29 Prime
8 : 47 = 47 Prime
9 : 76 = 2722*19

10 : 123 = 3*41
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11 :
12
13 :
14
15 :
16 :
17
18 :
19 :
20 :
21 :
22
23 :
24
25 :
26 :
27
28 :
29 :
30 :
31 :
32
33 :
34
35
36
37
38 :
39 :
40
41
42 .
43
44
45
46
47
48 .
49 .
50 :
51 :
52
53 :

199

322

521

843

1364
2207
3571
5778
9349
15127
24476
39603
64079
10368
16776
27144
43920
71064
11498
18604
30103
48708
78811
12752
20633
33385
54018
87403
14142
22882
37024
59907
96932
15683
25377
41061
66438
10749
17393
28143
45537
73681
11921

199 Prine

2*7*23
521 Prine
3*281

272*11*31

2207 Prine

3571 Prine

2*373*107

9349 Prine

7*2161

272*29* 211
3*43* 307

139*461

2*47*1103

11*101*151

3*90481

2"2*19*5779

772* 14503
59*19489

2*3N2*41* 2521
3010349 Prine
1087*4481

272*199* 9901
3*67*63443
11*29*71*911
2*7*23*103681
54018521 Prinme
3%29134601
27N2*79*521* 859
47*1601*3041
370248451 Prinme
2*3N2*83*281* 1427
6709* 144481
7*263*881*967
27N2*11*19*31*181*541
3*275449* 4969
6643838879 Prinme
2*769*3167* 2207
29*599786069
3*41*401*570601
549124 272*919*3469* 3571
302247 7*103*102193207
8851371 = 119218851371 Prinme

2
1
3
4
7
51
98
49
47
96
043
239
282
521
803
2324
6127
8451
4578
3029
97607
20636
18243
38879
957122
796001
753123
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54
55
56 :
57
58 :
59
60 :
61 :
62 :
63 :
64 :
65 :
66 :
67 :
68 :
69 :
70 :
71
72 :
73 :
74
75
76 :
77
78 :
79 :
80 :
81 :
82 :
83 :
84
85 :
86
87
88 :
89
90 :
91
92 :
93 :
94
95
96

192900153618
312119004989
505019158607
817138163596
1322157322203
2139295485799
3461452808002
5600748293801
9062201101803
14662949395604
23725150497407
38388099893011
62113250390418
100501350283429
162614600673847
263115950957276
425730551631123
688846502588399
1114577054219522
1803423556807921
2918000611027443
4721424167835364
7639424778862807
12360848946698171
20000273725560978
32361122672259149
52361396397820127
84722519070079276
137083915467899403
221806434537978679
358890350005878082
580696784543856761
939587134549734843
1520283919093591604
2459871053643326447
3980154972736918051
6440026026380244498
10420180999117162549
16860207025497407047
27280388024614569596

2*3"M4*107%11128427
1172*199*331* 39161
47*10745088481
27N2*229*9349* 95419
3*347*1270083883
709*336419* 8969
2*7*23*241*20641* 2161
5600748293801 Prime
3*3020733700601
272*19*29*211*1009* 31249
127*186812208641
11*131*521*24571* 2081
2*3"2*43*307*261399601
24994118449*4021
7*23230657239121
2"2*139*461*691* 1485571
3*41*281*12317523121
688846502588399 Prime
2*47*1103*10749957121
11899937029* 151549
3*81143477963*11987
27"2*11*31*101*151*18451*12301
7*1091346396980401
29*199*9321929* 229769
2*372*12280217041*90481
32361122672259149 Prime
23725145626561* 2207
2"2*19*62650261*5779* 3079
3*163*800483* 350207569
6202401259*35761381
2* (N2*23*167*65740583* 14503
11*12760031*1158551*3571
3*313195711516578281
2"2*59*349*947104099* 19489
47*562418561* 93058241
179*22235502640988369
2*3"3*41*107*10783342081* 2521
29*521*689667151970161
7*9506372193863* 253367
27"2*3010349*35510749* 63799
44140595050111976643 3*563*4632894751907*5641
71420983074726546239 11*191*87382901*41611*9349
115561578124838522882 = 2*1087*11862575248703* 4481
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97 : 186982561199565069121
98 : 302544139324403592003 3*281*61025309469041* 5881
99 : 489526700523968661124 2"2*19*199*991*1513909*9901* 2179
100 : 792070839848372253127 = 7*5738108801*9125201*2161

56678557502141579* 3299

Rules for Primes and Factors of the Fibonacci
Numbers

The table of the first 100 Fibonacci numbers had some very interesting properties such as:
Fk isamultiple of Fy

For example:
2 and 4 are both factors of 8:
so F,=1 and F,=3 should be factors of Fg=21

We aso saw that, for the Fibonacci numbers,

the Fibonacci number F,, isprime only if nis prime.

apart from F, which is prime!
[But remember the converseis not always true - just because n is prime does not mean that F,, must be
prime!]

Do the Fibonacci rules apply to the Lucas
numbers?

The same rules do not seem to apply to the Lucas numbers above!
For example:
2 and 4 are factors of 8:
but L,=3 and L4,=7 but Lg=47 is prime
so cannot have factors 3 and 7!

So the big question is:

Can you find some other rules that apply to Lucas numbers and their
factors?
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To help with your investigations, here are the results of a search for prime number among the first 1000
L ucas numbers:

The only Lucas number which are prime up to L(1000) are L(i) where
1=

2,4,5,7,8,11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313,
353, 503, 613, 617, 863.

( Lucas(1000) has 209 digits!)

Cycles in the Lucas numbers?

On the The Mathematics of the Fibonacci Series we saw that the units digits of the Fibonacci numbers
repeat in acycle of length 60 (so that the units digits of Fgp = the units digits of F;, and so on for
following digits).

. For the Lucas numbers, thereis also a cycle of 60 - which iswhen the last two digitsrepeat in a
cycle.
Thereisacycle of unitsdigitsin the Lucas numbers, which is much shorter. What isit? How long
Isit?

ﬂ' Fibonacci Home Page

1‘ Fibonacci Forgeries!

A The Lucas Numbers <> Fibonacai, Phi and L ucas
4= Fibonacci - the man and His umbers Forr’nul o
Times WHERE TO NOW??? = Links and References
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The Golden Section in Art, Architecture and Music

The Golden Section in Art, Architecture
and Music

This section introduces you to some of the occurrences of the Fibonacci series and the Golden Ratio in
architecture, art and music.

Contents of this page

. Thegolden section in architecture
o The Parthenon and Greek Architecture
o Modern Architecture
o Architecture links
. The golden section and Art
o Leonardo's Art
o Linksto Art sources including Contemporary Artists
. Fibonacci and Poetry
. Fibonacci and Music
o Golden sectionsin Violin construction
o Did Mozart use the Golden mean?
o Phi in Beethoven's Fifth
o Bartdk, Debussy, Schubert, Bach and Satie
. A controversial issue
. References and Links on the golden section in Music and Art

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More..

The Golden section in architecture

The Parthenon and Greek Architecture

Even from the time of the Greeks, arectangle whose sides are in the "golden proportion” (1: 1.618
which isthe same as 0.618 : 1) has been known since it occurs naturally in some of the proportions of the
Five Platonic Solids (as we have already seen). Thisrectangle is supposed to appear in many of the

proportions of that famous ancient Greek temple, the Parthenon, in the Acropolisin Athens, Greece.
(Thereisareplicaof the original building (accurate to one-eighth of an inch!) at Nashville which calls
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itself "The Athens of South USA".)

The Acropalis, in the centre of Athens, is an outcrop of rock that dominates this ancient city. Its most
famous monument, now largely ruined, is the Parthenon, atemple to the goddess "Athena’ built around
430 or 440 BC.

Though no original plans of the temple exist, it appears that the temple was built on a square-root-of-5
rectangle, that is, it is+5 times aslong asit is wide. These are also the dimensions of the longest side
view of the temple. Also, the front elevation is built on a Golden Rectangle, that is, it is Phi times as wide
asitistall.

]-'El-

¢+ HilININININININININININEEIE

Links

4 Thereis awonderful collection of pictures of the Parthenon and the Acropolis at Indiana University's
web site.
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Modern Architecture

The architect LeCorbusier deliberately incorporated some golden rectangles as the shapes of windows or
other aspects of buildings he designed. One of these (not designed by LeCorbusier) isthe United Nations
building in New Y ork which is L-shaped. Although you will read in some books that "the upright part of
the L has sidesin the golden ratio, and there are distinctive marks on this taller part which divide the
height by the golden ratio", when | looked at photos of the building, | could not find these measurements.
The United Nations Headquarters On-line Tour has an aerial view of the building (with thanks to Ralph

Bechtolt for alerting meto thislink).

Here are three more impressive photographs that you can use for your own investigation (part of
the New Y ork SkyscrapersWWW pages).

. The Secretariat building from the visitors entrance (photo by Lawrence A Martin)

[With thanks to Bjorn Smestad of Finnmark College, Norway for mentioning these links.]

Joerg Wiegels of Duesseldorf told me that he was astonished to see the Fibonacci numbers glowing
brightly in the night sky on avisit to Turku in Finland. The chimney of the Turku power station has the
Fibonacci numberson it in 2 metre high neon lights! The artist says "it is a metaphor of the human quest
for order and harmony among chaos."

Incidentally, in Halifax, Nova Scotia, there are 4 non-cable TV channels and they are numbered 3, 5, 8
and 13! Karl Dilcher reported this coincidence at the Eighth International Conference on Fibonacci
Numbers and their Applicationsin summer 1998.

Architecture links

“4*An excellent source of architecture imagesis the University of Wisconsin's Library of Art
History images- well worth checking out! It has many images of the Parthenon, pictures of its
friezes and other details. Use their searchersel ecting the Period Ancient Greece: Classicaland the
Site Athens. Note: the images cannot be copied or even made into links, only viewed on their
page!

“4*Also see University of Michigan, June Komisar's pageof architectural links. She pointsto the
Great Building Collectionwhich has some excellent photo images on their Parthenon page. Do
check this out as they have a FREE 3D viewer to download and |ots of buildingsin 3D to view.

Y ou can take your own virtual walk through the Parthenon!

“#Thereisalink to some nice pictures of Greek temples etc at http://tony.al/KW/golden.html.

“#The golden section in The Kings Tombin Egypt.
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o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 .

The Golden Section and Art

Luca Pacioli (1445-1517) in his Divina proportione (On Divine Proportion) wrote about the golden
section aso called the golden mean or the divine proportion:

A M B

Theline AB isdivided at point M so that theratio of thetwo parts, the smaller to thelarger (AM
and MB), isthesame astheratio of thelarger part (MB) to thewhole AB.

If AB isof length 1 unit, and we let MB have length X, then the definition (in bold) above
becomes
theratio of 1-x to x isthe same astheratio of x to 1 or, in symbols:

1 - x = x which sinplifies to 1-x = x2
1

This gives two values for x, (-1-+5)/2 and (¥5-1)/2.
Thefirst is negative, so does not apply here. The second isjust phi (which has the same
value as 1/Phi and as Phi-1).

Pacioli's work influenced Leonardo da Vinci (1452-1519) and Albrecht Durer (1471-1528) and is seen in
some of the work of Georges Seurat, Paul Signac and Mondrian, for instance.

Many books on oil painting and water colour in your local library will point out that | |
it is better to position objects not in the centre of the picture but to one side or
“about one-third" of the way across, and to use lines which divide the picture into
thirds. This seems to make the picture design more pleasing to the eye and relies
again on the idea of the golden section being "ideal”.

Leonardo's Art

The Uffizi Gallery's Web site in Florence, Italy, has a virtual room of some of Leonardo da Vinci's

paintings. Here are two for you to analyse for yourself. [ The pictures are links to the Uffizi Gallery site
and the pictures are copyrighted by the Gallery.]
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(image: The Annunciation)
iIsapicturethat lookslikeit isin aframe of 1:sgrt(5) shape (aroot-5 rectangle). Print it and
measureit - isit aroot-5 rectangle? Divide it into a square on the left and another on the right. (If
it isaroot-5 rectangle, these lines mark out two golden-section rectangles as the parts remaining
after a square has been removed). Also mark in the lines across the picture which are 0-618 of the
way up and 0-618 of the way down it. Also mark in the vertical lines which are 0-618 of the way
along from both ends. Y ou will see that these lines mark out significant parts of the picture or go
through important objects. Y ou can then try marking lines that divide these parts into their golden
sections too.

This image: Madonna with Child and Saints
Isin asquare frame. Print it out and mark on it the golden section lines (0-618 of the way down
and up the frame and 0-618 of the way across from the left and from the right) and see if these
lines mark out significant parts of the picture. Do other sub-divisionslook like further golden
sections?

Links to Art sources

Links specifically related to the Fibonacci numbers or the golden section
(Phi):

A ray traced imagebased on Fibonacci spirals and rectangles

“¥*the Web M useumpages on Durer, Famous Painting Virtual Exhibition. their long list of famous
artists and their works,

“$Thereis avery useful set of mathematical linksto Art and Musicweb resources from
M athematics Archivesthat is worth looking at.

Links to major sources of Art on the Web:

% Top9.com's List of the top art sources on the webis an excellent place for links to good art
sources on the web. Highly recommended!
4 The Metropolitan Museum of Artin New Y ork houses more than 2 million works of art.

“$*The Fine Arts Museums of San Francisco sitehas an | mage base of 65,000 works of art. It
includes art from Ancient to Modern, from paintings to ceramics and textiles, from all over the
world aswell as America

*5* A Guideto Art Collectionsin the UK

% Michelangelois famous for his paintings (such as the ceiling in the Sistine Chapel) and his

sculptures (for instance David). This site has links to several sources and images of hisworks and
some links to sites on the golden section.
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Using the picture of his Davidscul pture, measure it and see if he has used Phi - eg is the navel
("belly button™) 0-618 of the David's height?

*§*Why not visit the Leonardo Museum in the town of Vinci (Italy) itselffrom which town

L eonardo is named, of course.
There are many sketches and paintings of Leonardo's at The WebMuseum, Paristoo.

Thework of modern artistsusing the Golden Section

“Billie Ruth Sudduthis aNorth American artist specialising in basket work that is now
internationally known. Her designs are based on the Fibonacci Numbers and the golden section -
see her web page JABOBs(Just A Bunch Of Baskets). Mathematics Teaching in the Middle

Schoolhas a good online introductionto her work (January 1999).

*§*Keas van Prooijenof California has used asimilar seriesto the

Fibonacci series - one made from adding the previous three terms, as a
basisfor his art.

“$"Ned May has generated some beautiful pictures based on Fibonacci
Spiralsusing Visual Basic (an example is shown here on the right).

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. Mdre..

Fibonacci and Poetry

Martin Gardner, in the chapter "Fibonacci and Lucas Numbers' in "Mathematical Circus" (Penguin
books, 1979) mentions Prof George Eckel Duckworth's book Structural patternsand proportionsin
Virgil's Aeneid : a study in mathematical composition (University of Michigan Press, 1962).
Duckworth argues that Virgil consciously used Fibonacci numbers to structure his poetry and so did
other Roman poets of the time.

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More. .

Fibonacci and Music

Trudi H Garland's [see below] points out that on the 5-tone scale (the black notes on the piano), the 8-
tone scale (the white notes on the piano) and the 13-notes scale (a complete octave in semitones, with the
two notes an octave apart included). However, thisis bending the truth alittle, since to get both 8 and 13,
we have to count the same note twice (C...C in both cases). Yes, it is called an octave, because we
usually sing or play the 8th note which completes the cycle by repeating the starting note "an octave
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higher" and perhaps sounds more pleasing to the ear. But there are really only 12 different notesin our
octave, not 13!

Various composers have used the Fibonacci numbers when composing music - more detailsin Garland's
book.

Golden sections in Violin construction

The section on "The Violin" in The New Oxford Companion to Music, Volume 2, shows how Stradivari
was aware of the golden section and used it to place the f-holes in his famous violins.

Baginsky's method of constructing violinsis also based on golden sections.

Did Mozart use the Golden mean?

Thisisthetitle of an article in the American Scientist of March/April 1996 by Mike Kay. He reports on
the analysis of many of Mozart's sonatas and finds they divide into two parts exactly at the golden
section point in almost all cases. Was this a conscious choice (his sister said he was always playing with
numbers and was fascinated by mathematics) or did he do thisintuitively?

%= The Mathematics M agazine Vol 68 No. 4, pages 275-282, October 1995 has an article by Putz
on Mozart and the Golden section in his music.

Beethoven's Fifth

S Inan interesting little article in Mathematics Teaching volume 84 in 1978, Derek Haylock writes
about The Golden Section in Beethoven's Fifth on pages 56-57.
He finds that the famous opening "motto" appears not only in the first and last bars (bar 601 before the
Coda) but also exactly at the golden mean point 0-618 of the way through the symphony (bar 372) and
also at the start of the recapitulation which is phi or 0-382 of the way through the piece! He poses the
guestion:

Was this by design or accident?

Bartok, Debussy, Schubert, Bach and Satie

There are some fascinating articles and books which explain how these composers may have deliberately
used the golden section in their music:

= Duality and Synthesisin the Music of Bela Bartok E Lendvai
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pages 174-193 of Module, Proportion, Symmetry, Rhythm G Kepes (editor), George Brazille,
1966;

%= Some striking Proportionsin the Music of Bela Bartok
in Fibonacci Quarterly Vol 9, part 5, 1971, pages 527-528 and 536-537.

& BeaBartok: an analysis of his music
by Erno Lendvai, published by Kahn & Averill, 1971; has amore detailed look at Bartok's use of
the golden mean.

W Debussy in Proportion - amusical analysis by Roy Howat,
Cambridge Univ. Press, 1983, ISBN = 0 521 23282 1. After itsfirst publication in 1986, this book
iIsnow (February 2000) back in print.

“# Seedso Roy Howat's Web site for more information.

S Adams, Coutney S. Erik Satie and Golden Section Analysis.
in Music and Letters, Oxford University Press,|SSN 0227-4224, VVolume 77, Number 2 (May
1996), pages 242-252

W& Schubert Studies, (editor Brian Newbould) London: Ashgate Press, 1998
has a chapter by Roy Howat Architecture as drama in late Schubert, pages 168 - 192, about
Schubert's golden sectionsin his late A mgor sonata (D.959).

S The Proportional Design of J.S. Bach's Two Italian Cantatas, Tushaar Power, Musical Praxis,
Vol.1, No.2. Autumn 1994, pp.35-46.
Thisis part of the author's Ph D Thesis J.S. Bach and the Divine Proportion presented at Duke
University's Music Department in March 2000.

Ee pr oportionsin Music by Hugo Norden in Fibonacci Quarterly vol 2 (1964) pages 219-222
talks about the first fuguein J S Bach's The Art of Fugue and shows how both the Fibonacci and
L ucas numbers appear in its organisation.

“# Thereis avery useful set of mathematical linksto Art and Music web resources from M athematics
Archivesthat isworth looking at.

161503

1- 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 .. More. .

A Controversial Issue

There are many books and articles that say that the golden rectangle is the most pleasing shape and
point out how it was used in the shapes of famous buildings, in the structure of some music and in the
design of some famous works of art. Indeed, people such as Corbusier and Bartok have deliberately and
consciously used the golden section in their designs.

However, the "most pleasing shape" ideais open to criticism. The golden section as a concept was
studied by the Greek geometers several hundred years before Christ, as mentioned on earlier pages at this
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site, But the concept of it as apleasing or beautiful shape only originated in the late 1800's and does not
seem to have any written texts (ancient Greek, Egyptian or Babylonian) as supporting hard evidence.

At best, the golden section used in design isjust one of several possible " theory of design” methods
which help people structure what they are creating. At worst, some people have tried to elevate the
golden section beyond what we can verify scientifically. Did the ancient Egyptiansreally use it as the
main "number"” for the shapes of the Pyramids? We do not know. Usually the shapes of such buildings
are not truly square and perhaps, as with the pyramids and the Parthenon, parts of the buildings have
been eroded or fallen into ruin and so we do not know what the original lengths were. Indeed, if you look
at where | have drawn the lines on the Parthenon picture above, you can see that they can hardly be
called precise so any measurements quoted by authors are fairly rough!

So this page has lots of speculative material on it and would make a good Project for a Science Fair
perhaps, investigating if the golden section does account for some major design features in important
works of art, whether architecture, paintings, sculpture, music or poetry. It's over to you on this one!

Important article that point out the weaknesses in parts of "the golden-section is the most pleasing shape”
theory:

= George Markowsky's Misconceptions about the Golden ratio in The College Mathematics

Journal Vol 23, January 1992, pages 2-19.
Thisisreadable and well presented. Perhaps too many people just take the (unsupportable?)
remarks of others and incorporate them in their works? Y ou may or may not agree with all that
Markowsky says, but thisis a good article which tries to debunk a simplistic and unscientific
"cult" status being attached to Phi, seeing it whereit really isnot! Thisis not to deny that Phi
certainly is genuinely present in much of botany and the mathematical reasons for this are
explained on earlier pages at this site.

%= How to Find the" Golden Number" without really trying Roger Fischler, Fibonacci Quarterly,
1981, Vol 19, pp 406 - 410
Another important paper that points out how taking measurements and averaging them will almost
aways produce an average near Phi. Case studies are data about the Great Pyramid of Cheops and
the various theories propounded to explain its dimensions, the golden section in architecture, its
use by Le Corbusier and Seurat and in the visual arts. He concludes that several of the works that
purport to show Phi was used are, in fact, fallacious and "without any foundation whatever".

%2> The Fibonacci Drawing Board Design of the Great Pyramid of Gizeh Col. R SBeard in
Fibonacci Quarterly vol 6, 1968, pages 85 - 87,
has three separate theories (only one of which involves the golden section) which agree quite well
with the dimensions as measured in 1880.

Since amost all of the materia at this site is about Mathematics, then this page is definitely the odd one
out! All the other material is scientifically (mathematically) verifiable and this page (and the final part of
the Links page) is the only speculative material on these Fibonacci and Phi pages.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibInArt.html (9 of 11) [12/06/2001 17:23:19]



The Golden Section in Art, Architecture and Music

References and Links on the golden section in
Music and Art

Key:
W= abook

an articlein amagazine or
apaper in an academic journal

+# |awebsite

T

Music

¥ Fascinating Fibonaccis by Trudi Hammel Garland,

Dae Seymours publications, 1987 is an excellent introduction to the Fibonacci
series with lots of useful ideas for the classroom. Includes a section on Music.

e An example of Fibonacci Numbersused to Generate Rhythmic Valuesin
Modern Music
in Fibonacci Quarterly Vol 9, part 4, 1971, pages 423-426;

Links to other Music Web sites
Gamelan music

*§*Game| an
IS the percussion oriented music of Indonesia.

4 New music
from David Canright of the Maths Dept at the Naval Postgraduate School in

Monterey, USA; combining the Fibonacci series with Indonesian Gamelan musical
forms.

“* Some CDs
on Gamelan music of Central Java (the country not the software!).

Other music

“* The Fibonacci Sequence

isthe name of a classical music ensemble of internationally famous soloists, who
are the musicians in residence at Kingston University (Kingston-upon-Thames,
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Surrey, UK). Based in the London (UK) area, their current programme of eventsis
on the Web site link above.

Art
¥ A Mathematical History of the Golden Section |SBN 0486400077.
¥ Education through Art (3rd edition) H Read,
Pantheon books, 1956, pages 14-22;
¥ The New Landscapein Art and Science G Kepes
P Theobald and Co, 1956, pages 329 and 294;
¥ H E Huntley's, The Divine Proportion: A study in mathematical beauty,
ISBN 0-486-22254-3 isa 1970 Dover reprint of an old classic.
¥ C.F. Linn, The Golden Mean: Mathematics and the Fine Arts,
Doubleday 1974.
- Gyorgy Doczi, The Power of Limits: Proportional Harmoniesin Nature, Art, and
Architecture
Shambala Press, (new edition 1994).
¥ M. Boles, The Golden Relationship: Art, Math, Nature, 2nd ed.,
Pythagorean Press 1987.
The "Golden Cut" or beauty and design using the golden section, through the eyes
of aflorist.
[ IS
% Fibonacci Home Pagel’
A The Lucas Numbers The next topics...
_ _ = Fibonacci, Phi and Lucas
€ Who was Fibonacci? WHERE TO NOW??? numbers Formulae
=& Links and References
Thisisthe last page on
More Applications of the
Fibonacci Numbers and Phi.
LS S

© 1996-2001 Dr Ron Knott  R.Knott@surrey.ac.uk  updated: 23 April 2001
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Fibonacci and Golden Ratio Equations

Fibonacci, Lucas, Generalised Fibonacci and
Golden section Formulae

Here are about 100 formulainvolving the Fibonacci numbers, the golden ratio and the L ucas numbers.
Thisforms amajor reference page for my Fibonacci Web site where there are many more detalils,
explanations and applications, with puzzles and tricks aimed at secondary school students and teachers as
well as interested mathematical enthusiasts.

Contents of This Page

. Definitions and Notation

. Linear Relationships

. Basic Golden Ratio |dentities

. Golden Ratio with Fibonacci and Lucas
« Order 2 Fibonacci and L ucas Relationships
. Basic G |dentities

. Quadratic G Relationships

. Fibonacci and L ucas Summations

. Genera Summations

. Summations with Binomial Coefficients
. References

Definitions and Notation

Beware of different golden ratio symbols used by different authors!
At thisweb site Phi is 1.618033... and phi is 0.618033.. but Vg da(see below) and Dunlap(see below) use

asymbol for -0.618033.. .
Where aformula below (or a simple re-arrangement of it) occurs in either Vada or Dunlap's book, the
reference number they useis given. Dunlap's formulae are listed in his Appendix A3. Hoggatt's formula
are from his"Fibonacci and Lucas Numbers' booklet. Full bibliographic details are at the end of this
page.

Asused here Vajda |Dunlap Description
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trunc(x), not used for

floor(x) [X] %<0

1 1
round(x) [ X + 5 ] trunc(x + E)
ceil(x) - -

the nearest integer < x.

When x>0, thisis "the integer part of X" or "truncate
X" 1.e. delete any fractional part after the decimal
point.

3=floor(3)=floor(3.1)=floor(3.9), -4=floor(-4)=floor(-
3.1)=floor(-3.9)

the nearest integer to x, equivalent to trunc(x+0.5)
3=round(3)=round(3.1), 4=round(3.9),
-4=round(-4)=round(-3.9), -3=round(-3.1)
4=round(3.5), -3=round(-3.5)

the nearest integer > x.
3=ceil(3), 4=ceil(3.1)=ceil(3.9), -3=ceil(-3)=cell(-
3.1)=ceil(-3.9)

nCr, n chooser, the element in row n
column r of Pascal's Triangle, the
__n coefficient of X in (1+x)N, the
r' (n—r)! | number of ways of choosing r
objects from a set of n different
objects. n>0 and r>0.

F(i) isthe Fibonacci seriesand L (i) isthe Lucas series.

Formula

F0)=0,F1) =1, FKn+2) =F(n+1) |

+ F(n)

LO)=2,L(1) =L, L(n+2)=L(n+ |

1) +L(n)
G(n+2)=G(n+1)+G(n)

. 54+1
Phi =
'Y

. A5-1
phi —

=T

=

Vajda |Dunlap |Comments

Fibonacci series

Lucas series

Generalised Fibonacci series, G(0) and G(1)
needed

=1,63 |Phi and —phi aretherootsof x2=x + 1

Dunlap occasionally uses # to represent our phi

—$.65 = 0.61803.., but more frequently he uses ¢ to

represent -0.618033..!

Linear Relationships
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Linear relationships involve only sums or differences of Fibonacci numbers or Lucas numbers or their
multiples.

Formula Vajda Dunlap
F(-n) = (=) * 1 K(n) 2 5
L(-n) = ()" L(n) 4 6

F(N)+Fn+3)=2F(n+2) - -
Ln)+L(n+3)=2L(n+2) - -
F(n)+ F(n+4) =3 F(n+2) - -
L(n)+L(n+4)=3L(n+2) - -

5FnN)=L(n-1)+L(n+1) 5 13
L(n)=Fn+1) +Fn-1) 6, Hoggatt-18 |14
L(n)=FMn)+2Fn-1) - (32
5Fn)=L(Nn)+2L(n-1) - -
L(n)=Fn+2)—Fn-2) 7a 15
5Fn)=L(n+2)—-L(n-2) - -
2F(n+1)=Fn)+L(n) 7b 16
2L(n+1)=L(n) +5F(n) - -
2F(n+2)=3F(n)+L(n) 26 28
2L(n+2)=3L(n) +5Fn) 27 29
L(n)=Fn+3)-2F(n) - 31-possiblel
5Fn)=L(n+3)—2L(n) - -
L(n)=Fn+2)—Fn)+Fn-1) |- 31-possible2

Basic Golden Ratio Identities

Here Phi is Vajda's and Dunlap's tau (T). phi hereis Vajda's sigma (&) and Dunlap's &.

Formula Vajda Dunlap
Phi phi =1 page 51(3) |65

Phi / phi =Phi + 1 - -

Phi + phi =5 - -
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phi / Phi = 1 —phi - -
Phi —phi = 1 - -
Phi = phi + 1 =+/5 - phi
phi = Phi — 1 =+5 - Phi
Phi2 = Phi + 1 page 51(4) 64
phi2 + phi = 1 page 51(4) 64
Phin+2=Phin+1 + Phin
phin=phi”+1+phin+2 - -

Golden Ratio with Fibonacci and Lucas

Formula Vajda |Dunlap
Binet's Formula: (45=Phi—phi)
F(n) _Phin — (—phi)n 58 69,Hoggatt-page 11
Y5
L(n) = Phin + (—phi)n 59 70
Phin
F(n) = round(E) Jif >0 62 |71corrected
L (n) = round(Phin),if n>2 63 72

—(—phi)=™
Y5
L (—n) = round( (—phi)—), n>3 - -

F(-n) = round( ) Jif n>0

hin

F(—) = (- +1 round(:r—S) Jf n>0

L (—n) = round( (—Phi)"), n>3
F(n + 1) = round(Phi F(n)),if n>2 64 73
L(n+ 1) = round(Phi L(n)),if n>4 65 74
F(n+1) — Phi F(n) = (—phi)" 103b |75
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Order 2 Fibonacci and Lucas Relationships

Formulainvolving squares of Fibonacci or Lucas numbers or a product of a Fibonacci number and Lucas
number.

Formula Vajda Dunlap
Vajda-13,

F(2 n) = F(n) L(n) Dunlap-17,
Hoggatt-17

F(2 n) = F(n)2 + 2 F(n — 1)F(n)

L(2n) =L(n)2—-2(-1)"

F(2n+ 1) =Fn+ 1)2+ F(n)2 11 7

L(n+1)2+L(N)2=5F2n+1)

L(2n+1)=L(n+ 1)2-5F(n)?

F(n+2) F(n—1) = F(n + 1)2 — F(n)? 12 8

L(n+2)L(n=1)=L(n+ 1)2—-L(n)2

F(n+ 1) F(n—1) —F(n)2 = (-1)" 29 9

L(n+1)L(n—-1)—-L(n)2=-5(-1)n

L(2n) + 2 (<1)" = L(n)2 17¢c 12

L(2n) -2 (-1)" =5 F(n)2 23 25

Fn+1)L(n)=F2n+1)+ (-1 30,31 27,30

L(n+1) F(n)=F2n+1)—(-1)"

F2n+1)=Fn+1)L(n+21)—Fn)L(n) 14 18

L2n+1)=Fn+1)L(n+1)+Fn)L(n)

L(n)2—2L(2n) =-5F(n)2 22 24

5F()2—L(n)2=4(-n+1 24 26

5(F(N)2+Fn+ 12 =L(n)2+L(n+1)=5F2n+1)2|25a

F(n)=F(m) F(n+ 1-m) + F(m—-1) F(n—m) - 10

F(n) L(m) = F(n+ m) + (1) F(n —m) 15a 19

L(n) F(m) = F(n + m) — (-1)™M F(n —m) 15b 20

5Fm) F(n)=L(n+m)—(-1)ML(n—m) 17b 23
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L(n+m)+ (-1)ML(n—m)=L(m) L(n) 17a 11
2F(n+m)=_L(m) F(n) +L(n) F(m) 16a 21
2L(n+m)=L(m)L(n) +5F(n) F(m) - -

1)m2F(n—-m)=L(m) F(n) —L(n) F(m) 16b 22

L(n+i) F(n+K)—L(n) F(n+i + k) =
D"+ L F(G) L(k)

F(n+i)L(n+ k) —F(n) L(n+i +k) = (<) F(i) L(k) |19b i
F(n+i) F(n+ k) —F(n) F(n+i + k) = (-1)" F(i) F(k) |20a -
L(n+i)L(n+K)—L(n) L(n+i +K)

= (=D * L5 K() F(K)

F(n)2 F(m + 1) F(m — 1) — F(m)2 F(n + 1) F(n— 1)
= ()" 1Fm+n) F(m—n)

19a -

20b -

Basic G Identities

G(i) isthe General Fibonacci series. It has the same recurrence relation as Fibonacci and Lucas, namely
G(n+2) = G(n+1) + G(n) for all integersn (i.e. n can be negative), but the "starting values" of G(0)
and G(1) can be specified. It therefore is a generalisation of both series and includes them both as special
cases. Hoggatt and others use the letter H for series G.

e.g.

. If G(0)=0 and G(1)=1 we have 0,1,1,2,3,5,8,13,.. the Fibonacci series, i.e. G(0,1,i) = F(i);

. G(0)=2and G(1)=1gives2,1,3,4,7,11,18,.. the Lucas series, i.e. G(2,1,i) = L(i);

. G(0)=1and G(1)=1gives1,1,2,3,5,8,13,.. the Fibonacci series again but "moved left one place"
l.e. G(1,1,i) = F(i+1).

. G(0,2,1)is0,2,2,4,6,10,16,26,.. which is the Fibonacci series with all terms doubled, i.e. G(0,2,i) =

2 Fib(i).
. G(3,0,i)is3,0,3,3,6,9,15,.. which is Fibonacci tripled and shifted right one place: G(3,0,i) = 3 F(i-
1.
. G(3,2,)is3,2,5,7,12,19,31,.. isnew - it isnot a multiple of either the Fibonacci or Lucas series
values.
Formula Refs
G(n+2)=G(n+1)+G(n) Vada-3, Dunlap-4

G(n) = G(0) F(n—1) + G(1) F(n) -
G(=n) = ()" (G(0) K(n + 1) — G(1) F(n))
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G(n+m)=Fm-=1) G(n) + F(m) G(n + 1) Vg da-8, Dunlap-33
G(n—=m) =(=1)M (F(m + 1) G(n) — F(m) G(n + 1)) Vada9, Dunlap-34
L(m) G(n) = G(n+ m) + (-1)M G(n —m) Vgjda-10a, Dunlap-35
F(m) (G(n—1) + G(n + 1)) = G(n + m) — (<1)™ G(n —m) |Vajda-10b,Dunlap-36
G(m) F(n) —G(n) F(m) = (-)"* 1 G(0) F(m —n) Vajda-21a

G(m) F(n) — G(n) F(m) = (-1)™ G(0) F(n —m) Vajda-21b

Order 2 G Formulae

These formulae include terms which are a product of two G numbers either from the same G series of
from two different G seriesi.e. with different index 0 and 1 values. Where the series may be different
they are denoted G and H eg special cases include G = Fibonacci(F) and H = Lucas(L ), or they could also
be the same series, G=H=F.

Formula Vajda Dunlap
G(n+i) Hn+K)—=G(n) H(n+i + k) = (-1)" (G(i) H(k) — G(0) H(i +k)) |18 -

G(n+ 1) G(n—1) —G(n)2 = (-1)" (G(1)2 - G(0) G(2)) 28 -

45 G(n) = (G(1) + G(0) phi) Phi" + (G(0) Phi — G(1)) (—phi)" 55,56 |77

Fibonaccl and Lucas Summations

These formulae involve a sum of Fibonacci or Lucas numbers.

Formula Vajda Dunlap
n

Z Hoggatt-11

1=0

F(i)=F(n+2)-1

n
ZL(i)=L(n+2)—1 Hoggatt-12
i=0

n
ZF(i)zF(n+2)—F(a+l) : :
I=a
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n
ZL(i)zL(n+2)—L(a+1)

i=a

n
ZF(Zi):F(2n+1)—1, n>=1 Hoggatt-16
i=1

n

ZL(Zi)zL(2n+1)—1 i i
=1

n

ZF(Zi—l)zF(Zn)—l, n>=1 |Hoggatt-15
i=1

n
ZL(Zi—l):L(Zn)—Z
=1

n
Zzn—i F(i—-1)=2"—F(n+2) |37avariant 42-variant
=1

n
Z(—l)i L(n—-2i)=2F(n+1) |97 54
=0

Formula Vajda Dunlap

Z&):z 60 51

i=0

m -

Z L(@) r+2
= T r2-r-1
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Z ﬂ =10 61 52
: 2
=1
=0
i L
Z '2_'> = 5 _ _
i=1
20
1
Z ——— =4 —Phi = 3—phi |77-corrected |53-corrected
1H2)
td>-
<
Formula Vajda Dunlap
2n
D) F(i-1)=F(2n)? 40 45
=1

2n
ZL(i)L(i—l)zL(Zn)2—4

=1
2n+1
D R)R(i-1)=F(2n+1)2-1 |42 47
i=1
2n+1
Z L(i)L(i-1)=L(2n+1)2=5 :
i=1
n-1
Z FRi+ DZ:W 95 :
i=0
n-1
ZL(2i+1)2=F(4n)—2n % :
i=0
n
F(i)2=F(n)F(n+1) ﬁ%ggatt-135°

=1
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n
ZL(i)ZzL(n)L(n+1)—2

=1

2n-1
ZL(i)2=5F(2n)F(2n-l)
i=1

=(n+1)L(nN-2Fn+1)
{ =nL(n) —F(n)

n
SZF(i)F(n—i)
i=0

=(n+1)L(n)+2FNn+1)
{z (n+2) L(n) + F(n)

n
ZL(i)L(n—i)
i=0

n
ZF(i)L(n—i):(n+1)F(n)
i=0

i=1

n
Z L2iI)2=F@4n+2)+2n-1

Hoggatt-14
98 55
99 56
100 57
page 70

General Summations

Formula

Vajda

Dunlap

n
ZG(i) =G(n+2)—G(2)
i=1

33

38

n
»G() = G(n+2) - Ga+ 1)

i=a
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n
G(2i —1) = G(2 n) - G(0) 34 37
=
n
ZG(Z )= G@2n+1)—G(1) 35 39
i=1
n n
G(21) —ZG(Z i —1) = G(2n—1) + G(0) - G(1) 36 40
= =
n
Zzn —IGi-1)=2-1G0)+G(3))-G(n+2) 37-variant 41-variant
i=1
4n+2
Z G(i)=L(@2n+1)G2n+3) 38 43
=
2n
ZG(i) G(i — 1) = G(2 n)2 — G(0)2 39 44
i=1
2n+1
G() G(i—1) = G@n+ 1)2-GOR-G(1)2+G(0) |, 46
- G(2)
=1
n
ZG(i +2) G(i—1) = G(n + 1)2 — G(1)2 43 48
i=1
n
G(i)2 = G(n) G(n + 1) — G(0) G(1) 44 49
=
oo Stan Rabinowitz,
Z G(a, b, i) a+br "Second-Order Linear Recurrences' card,
_ i Tato__q Generating Function
=0 special case (x=1/r, P=1, Q=-1)

Zi G(a b,i) r(br-2ar+b-a)
T (r2-r-1)2

i=0
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Summations with Binomial Coefficients

Formula Vajda Dunlap
n .
Z (n_l):F(n) - -
-1
=1
i n—-i—-1
( i )= F(n) 54 corrected |84 corrected
i=0
n
n+1 _
Z ( )F(|)=F(2n+1)—1 50 82
1+1
i=0
2n
2n
Z ( . )F(Zi):Sn F(2n) 69 85
i=0 |
2n
2n
Z ( i )L(Zi)=5“L(2n) 71 87
i=0
2n+1
2n+1
Z ( . )F(Zi):SnL(2n+1) 70 86
i=0 !
2n+1
2n+1
Z ( i )L(Zi)=5n+1F(2n+1) 72 88
i=0
2n
2n
Z ( . )F(i)2:5”—1 L(2n) 73 89
i=0 |
2n
2n
Z ( i )L(i)2=5” L(2n) 75 91
i=0
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2n+1

2n+1
Z( i )F(i)2=5”F(2n+1) 74 90

i=0

2n+1

2n+1
Z ( i )L(i)2=5”+1F(2n+1) 76 92
i=0

iSi( " ):2n-1 F(n) o1 .
<l 2041

i=0

iSi( " ) =2n-1 L(n) 92 -
. 21
=0

With Generalised Fibonacci:

n

Z (T) G(i) = G(2 n) 47 80

i=0

n

> (.”)G(p—i)=e(p+n) I 9
i=0 !

n

Z (r.])G(p+i)=G(p+2n) 49 81
i=0 !

n

Z (1) (n) G(n+p—i)=G(p—n) 51 83
i=0 !
References

W& SV4da, Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications,

Halsted Press (1989).
Thisisawonderful book! Unfortunately, it is now out of print. Vada packs the book full of formulae on
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the Fibonacci numbers and Phi and the L ucas numbers. The whole book devel ops these formul ae step by
step, proving each from earlier ones or occasionally from scratch.

¥ R A Dunlap, The Golden Ratio and Fibonacci Number s World Scientific Press, 1997.

An introductory book strong on the geometry and natural aspects of the golden section and which does
not dwell overmuch on the mathematical details. Beware - some of the formulain the Appendix are
wrong! The formulae on this Web page are corrected versions and have been verified .

W= V E Hoggatt Jr Fibonacci and L ucas Number s published by and available from The Fibonacci
Association, 1969 (Houghton Mifflin). A very good introduction to the Fibonacci and Lucas Numbers

written by afounder of the Fibonacci Quarterly.

©Dr Ron Knott R.Knott@surrey.ac.uk 1 June 2000
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References and other Links on Fibonacci and the Golden Section

Further sources of Information on
Fibonacci Numbers and the Golden
Section

Thisis apage of WWW links to other sites on Fibonacci numbers and the Golden section in general,
together with alist of useful books and articles that are recommended for further reading.

Contents

. Other WWW pages on Fibonacci and his series
There is much on the Web still to explore if these pages have sparked your interest in the
Flbonacci numbers, Phi and the Golden string. Here are some suggestions for you to explore.

. Books and other Articles
Books for teachers and for the interested general reader.

. Current research and speculations
Some links on the more speculative applications of Fibonacci and Phi, or work in progress, for
your perusal. What do you think?

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. jeis0:

e

Other WWW pages on Fibonacci and his series

& About Fibonacci himself (St Andrews University)
& Dawson Merrill's Fibonacci and Phi siteis excellent and full of useful material and links. | highly
recommend it!

@& ACCESS Indiana's K-12 Teachi ng and Learning Center has an excellent page Fibonacci, Golden
section, Art and Music links that is worth checking out.

& Prof. Robert Devaney of Boston University has found the Fibonacci numbersin the Mandelbrot set
and it's all to do with those buds on the outside of the set!

& The Fibonacc Quarterly is devoted solely to the Fibonacci numbers and their uses. See also the
current volume and other books by the Fibonacci Association too.

The early issues of the Fibonacci Quarterly have some useful introductions to the Fibonacci numbers
suitable to pre-university (and undergraduate) students and | highly recommend them. The Quarterly

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibrefs.html (1 of 5) [12/06/2001 17:23:59]


http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html
http://pw2.netcom.com/~merrills/fibphi.html
http://tlc.ai.org/fibonacc.htm
http://tlc.ai.org/fibonacc.htm
http://math.bu.edu/DYSYS/FRACGEOM2/node7.html
http://www.sdstate.edu/~wcsc/http/fibhome.html
http://www.sdstate.edu/~wcsc/http/fibcurrent.html
http://www.sdstate.edu/~wcsc/http/fibbooks.html

References and other Links on Fibonacci and the Golden Section

started in 1963 but you may need to hunt through some University and College on-line periodicals

catal ogues to see who holds current and back copies.

The contents of some recent back copies give you an idea of the kind of papers published which are
increasingly now only accessible to professional mathematicians. The earlier volumes (1960s and 1970s)
are very readable by anyone who has enjoyed the pages at this site.

@ The Eighth International Conference on Fibonacci Numbers and their Applications was held June 21 -
June 26 1998 in Rochester, New Y ork State, USA. Published as Applications of the Fibonacci Numbers,
Volume 8 edited by F T Howard, Kluwer Press, 1999. The Proceedings of previous conferencesin this

series are available as books:
Applications of Fibonacci Numbers, Volume 7 edited by Gerald E. Bergum, Andreas N. Philippou and

Alwyn F. Horadam, Kluwer Press, 1998.
Applications of Fibonacci Numbers, Proceedings of the Sixth International Conference edited by G E

Bergum and A N Phillipou, Kluwer Press, 1996.

& Dr Mathisfor secondary schools (US: elementary school and high schools) where you can ask "Dr
Math" questions. Search Dr Math's archives to find some answers to previously asked questions about the
Fibonacci numbers or the Golden section.

& pon Cohen, alias the Mathman has some interesting samples of his workbooks on the Web. His

approach to maths | heartily agree with and recommend to you - letting people discover the beauty and
fascination of maths for themselves. Do have alook at this site if you're an educator, student or just
interested in more maths! [Thanks to Bud Weiss of New Y ork City for this]

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. =0z

Useful book references

More fascinating facts on Fibonacci numbers are available in your local library:

- means the whole book is useful and
% jndicatesan articlein a magazine or else a paper in a professional journal where

mathematicians and scientists report their latest findings (which may only be availablein a
college or university library).

% |an Stewart's Mathematical Recr eations column on page 96 of the January 1995 (vol.272 no.1)
Issue of Scientific American.

W The Penguin Dictionary of Curious and Interesting Numbers, by David Wells, Penguin press, (new
edition 1998) isfull of interesting facts about all sorts of individual numbers. See the entry under
1-6180339887... for more information about Phi and the FIbonacci numbers. Thisis an excellent book!
(More information and you can order it online viathe title-link.)
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W& Garth Runion's The Golden Section Dale Seymours publications, 1990, is also an excellent
introduction to applications and maths on the Golden section and is very popular especially as a source
for classroom work. (More information and you can order it online viathe title-link.)

¥ Theoni Pappas, The Joy of Mathematics: Discovering Mathematics All Around Y ou, World Wide
Publishers, 1989, ISBN: 0 93317465 9.

W J& FGies, Leonard of Pisa & the New Mathematics of the Middle Ages, Thos Cromwell, New
York, 1969. F Giesisthe author of the entry on Fibonacci numbers in the Encyclopaedia Brittanica.

W Martin Gardner's books are dways worth looking at. He has covered different aspects of the
Fibonacci numbersin severa of hisbooksin his own enthusiastic and fascinating style:

¥ Mathematical Circus, Mathematical Association of America, 1992 , chapter 13.
Fibonacci and Lucas Numbers

W More mathematical puzzles and diversions, Mathematical Association of America
press, ISBN: 0 14013823 4, (revised edition 1997), chapter 8 Phi: the Golden Ratio

¥ Penrose Tilesto Trapdoor Ciphers, W H Freeman and Co press, 1988, chapters 1
and 2 on Penrose Tilings and also chapter 8 Wyithoff's Nim

A complete list of hisbooksis available at this Think.com site, with separate links to each book at

Amazon.com's on-line bookstore. All of isbooks are atreasure trove of fun and he writes with a clarity
and | guarantee you will be dipping into them again and again.

Books by Trudi Garland:

W Fascinating Fibonaccisby Trudi Hammel Garland.
Trudy isateacher in California and has some more information on her book. She also has
published several posters, including one on the golden sectionsuitable for a classroom or your

study room wall.
Y ou should also ook at her other Fibonacci books too:

. Fibonacci Fun: Fascinating Activities with Intriguing NumbersTrudi Hammel Garland - a
book for teachers;

- Math and Music: Harmonious Connectionsby Trudi Hammel Garland, Charity Vaughan
Kahn and Katarina Stenstedt .

= On the theme of good books for teachers, Math Curse by Jon Scieszka and Lane Smith, published by

Viking in 1995, is the story of Mrs Fibonacci and, of course, mentions the Fibonacci series. It is getting
good reviews as a book for (US) grades 4 to 8.

b Schroeder, Manfred R. Number Theory in Science and Communication, With Applicationsin
Cryptography, Springer-Verlag, 1990. ISBN 3540158006.
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http://www.amazon.com/exec/obidos/ASIN/0866515100/fibonacnumbersan
http://www.amazon.com/exec/obidos/ASIN/0933174659/fibonacnumbersan
http://www.eb.com/
http://www.amazon.com/exec/obidos/ASIN/0883855062/fibonacnumbersan
http://www.amazon.com/exec/obidos/ASIN/0883855216/fibonacnumbersan
http://thinks.com/books/gardner.htm
http://www.amazon.com/exec/obidos/ASIN/0866513434/fibonacnumbersan
http://www.iguanagraphics.com/fibonacci/
http://fibonacci.net/
http://www.iguanagraphics.com/fibonacci/golden.html
http://www.amazon.com/exec/obidos/ASIN/0866518290/fibonacnumbersan
http://www.amazon.com/exec/obidos/ASIN/0670861944/fibonacnumbersan
http://secure.bookshop.co.uk/scripts/webbook.asp?isbn=3540158006
http://secure.bookshop.co.uk/scripts/webbook.asp?isbn=3540158006

References and other Links on Fibonacci and the Golden Section

Thisisafascinating collection of all sorts of applications of Number Theory to many areas of science and
technology. It has sections on the Fibonacci Numbers, the Golden section and the Rabbit sequence (also
called the Golden String).

¥ SHildebrandt and A Tromba's The Parsimonious Universe - Shape and Form in the Natural World
How scientists and mathematicians have sought the laws of shape of natural forms.

Books available through the Fibonacci Association:
The current volume and previous volumes indexes (or should it be indices?) of the Fibonacci Quarterly
are useful to see the kind of papers that they deal with.

Eric W. Weisstein's World of Mathematics list of books on Fibonacci numbers .

W Some earlier Proceedings of the Third, Fourth, Fifth and Sixth International Conference on

Fibonacci Numbers and Their Applications are available as books. The editor of each is A N Philippou.
The latest is the Seventh edited by Gerald E. Bergum, Andreas N. Philippou and Alwyn F. Horadam .

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. =0z

Current research and speculations

Some speculations about the Fibonacci numbers and some propositions about Phi - not proved, just
conjectures, but for your interest!

® John Harrisof Canada has been working for over 30 years on some aspects of astronomy - in
particular, arejection of Bode's Law (an ad hoc scheme to explain the mean distances of the
planets from the sun). His own research involves Phi to make sense of the statistics of orbits, and it
involves Phi! Phi in fact turned out to be the solution to a quadratic equation (Section 3) necessary
to determine alog-linear function for the planetary periods. He speculates about the history of this
subject - what do you think? [John's pages need some familiarity with logarithms and log graphs
aswell as astronomical terms such as synodic period.]
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http://www.amazon.com/exec/obidos/ASIN/0387979913/fibonacnumbersan
http://www.sdstate.edu/~wcsc/http/fibbooks.html
http://www.sdstate.edu/~wcsc/http/fibhome.html
http://www.sdstate.edu/~wcsc/http/fibcurrent.html
http://www.sdstate.edu/~wcsc/http/fibprevious.html
http://www.treasure-troves.com/books/FibonacciNumbers.html
http://secure.bookshop.co.uk/scripts/webbook.asp?isbn=079230523X
http://secure.bookshop.co.uk/scripts/webbook.asp?isbn=0792313097
http://secure.bookshop.co.uk/scripts/webbook.asp?isbn=0792324919
http://secure.bookshop.co.uk/scripts/webbook.asp?isbn=0792339568
http://www.amazon.com/exec/obidos/ASIN/0792350227/fibonacnumbersan
http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibCalcX.html
http://www3.bc.sympatico.ca/JNHDA/sbb4d.htm
http://www3.bc.sympatico.ca/JNHDA/sbb4c.htm

References and other Links on Fibonacci and the Golden Section
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‘.' Fibonacci Home Page

1" Fibonacci, Phi and Lucas numbers
4= More Applications of Fibonacci Formulae Thisisthelast
Numbers and Phi topic.
WHERE TO NOW???

Theisthe last page of Links and
References
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