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Chapter 1

Introduction

The seminal papers of Black and Scholes [8] and Merton [39] provided the first analytical

formula for pricing European options, termed the Black-Scholes model. Since then a vast

amount of research has been dedicated to improving the imperfections of the Black-Scholes

model. Two assumptions postulated by the Black-Scholes model have come under much

scrutiny, namely the assumption of normality for the log-returns and the homoskedastic

volatility. Empirical studies have shown that the Black-Scholes model cannot deal with

the volatility clustering and leptokurtosis observed in asset prices. It is widely accepted

that the distribution of log-returns is skewed, peaked around the mean and heavy tailed

(see Anderson, et al. [3], Bollen and Inder [9], Carr, Geman, Madan and Yor [13] and

Cont [16]). Another critical point in the Black-Scholes framework is the requirement that

continuous trading be possible.

A Quantile-Quantile plot (Q-Q plot) of residuals, which are assumed to be standard

normal random variates from our fitted model are plotted in Figure 1.1. The deviation

from normality is easily seen in the left tail in this Q-Q plot.

In the late eighties and early nineties the use of Lévy processes was proposed to relax

the assumption of lognormal asset returns. Among these proposed Lévy processes are the

variance gamma process of Madan and Seneta [35], the normal inverse Gaussian process

of Barndorff-Nielson [4], the Meixner process of Schoutens [48] and the CGMY process

1
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Figure 1.1: Q-Q plot of S&P 500 residuals.

of Carr, et al. [13]. Although these models provide adequate fits, one still had the

assumption of homoskedastic volatility.

Numerous authors have dealt with heteroskedastic volatility models and discrete time

processes in order to achieve a more realistic model.

The framework for the discrete time approach was provided by Rubinstein [44] and

Brennan [12]. Rubinstein and Brennan introduced us to the Risk Neutral Valuation

Relationship (RNVR). Rubinstein and Brennan assumed that all investors have the same

characteristics as a representative investor and it is assumed that constant proportional

risk aversion is exhibited by the representative investor.

Two important classes of volatility models are the continuous time stochastic volatility

models and the generalised autoregressive conditional heteroskedastic (GARCH) models.

A wide range of continuous time stochastic volatility models have been proposed. These

include the jump diffusion model of Merton [40] and the bivariate diffusion models of Hull

and White [32] and Heston [29]. Barndorff-Nielsen and Shephard [6] proposed the use of

Ornstein-Uhlenbeck (OU) processes, driven by Lévy processes, to model volatility. These
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models are generally referred to as BNS models. A different procedure for incorporating

stochastic volatility through the randomisation of time was proposed by Clark [15]. These

models are referred to as time change models. Clark considered geometric Brownian mo-

tion subordinated by an independent Lévy subordinator (nonnegative nondecreasing Lévy

process) for the stock price process. In Geman, Madan and Yor [25] the subordination or

time change of Lévy processes was considered.

Engle [23] introduced the Auto-regressive Conditional Heteroskedastic (ARCH) pro-

cess. The ARCH process was generalised by Bollerslev [10] and aptly named the Gen-

eralised Auto-regressive Conditional Heteroskedastic (GARCH) process. Since its intro-

duction, the GARCH process has gained prominence for modeling financial time series.

Many variants of the GARCH process have since been proposed, most notably the non-

linear asymmetric GARCH (NGARCH) process of Engle and Ng [24] which incorporates

a leverage effect. The leverage effect refers to the negative correlation that exists between

the asset return innovations and volatility innovations. The ability of the GARCH(1,1)

process in modeling volatility was documented by Hansen and Lunde [28]. They com-

pared over three hundred time series models and were unable to find conclusive evidence

that the GARCH(1,1) model is outperformed by any of them.

Duan [21] provided the first rigorous theoretical foundation for option pricing us-

ing this powerful econometric model. Duan’s model provided a connection between the

heteroskedastic volatility approach and the discrete time approach. Duan proposed a

GARCH process with Gaussian innovations for the volatility process. However, a more

general form of the RNVR was required. Duan introduced us to the Locally Risk Neutral

Valuation Relationship (LRNVR). The generalisation of the RNVR incorporated the con-

dition that the conditional variances of the log-returns remain unchanged under a change

from the real world measure to the risk neutral measure. Heston and Nandi [30] proposed
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a GARCH option pricing model (Hereafter, HN-GARCH) with a closed form solution for

European options. Their model incorporated a very specific GARCH like process for the

stochastic volatility. The HN-GARCH model contains a diffusion approximation equiva-

lent to the diffusion model introduced by Heston [29]. Hence, Heston’s stochastic volatility

model is a continuous time limit of the HN-GARCH model. Although the HN-GARCH

model obtains a closed form solution, an empirical comparison was performed by Hsieh

and Ritchken [31] showing the HN-GARCH model is outperformed by a variant of Duan’s

GARCH model . The variant of Duan’s GARCH model incorporated an NGARCH pro-

cess for the stochastic volatility, thereby incorporating a leverage effect. However both

models were capable of explaining the maturity and strike bias in the Black-Scholes model.

The main drawback to the GARCH process and Duan’s GARCH model in volatility

estimation and option pricing is the assumption of normality. Numerous papers in the

volatility estimation literature deal with this assumption. These include Bollerslev [11],

Barndorff-Nielsen [5] and Griebenow [26]. Recently, more general distributions have been

proposed in an attempt to relax the assumption of normality in the GARCH option pric-

ing literature. Duan, Ritchken and Sun [22] included jumps in the Duan model through

a compound Poisson process (Poisson random sum of Gaussian random variables). Menn

and Rachev [37], [38] proposed α-stable and smoothly truncated stable distributions.

Other models proposed include modified tempered stable distributions (Kim, Rachev and

Chung [33]) and Student-t and Paretian distributions (Curto, Pinto and Tavares [19]).

Kim, Rachev and Chung [33] and Menn and Rachev [37] perform out-of-sample predic-

tions using the maximum likelihood estimates from asset prices. Menn and Rachev [38]

also perform in-sample calibrations in addition to the same out-of-sample predictions per-

formed in the other two papers ([33], [37]). The empirical results in the three papers ([33],

[37] and [38]) are very encouraging. Duan’s GARCH model is regularly outperformed in
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the modeling of asset returns and the pricing of European options.

In this dissertation we attempt to relax the assumption of normality by incorporat-

ing infinitely divisible distributions, specifically the normal inverse Gaussian (NIG) and

Meixner distributions, for the random innovations. These distributions have semi-heavy

tails and can be skewed. Semi-heavy tails refers to the instance when the tails of a dis-

tribution are heavier than those of a Gaussian distribution but lighter than those of the

non-Gaussian stable laws. The NIG and Meixner distributions provide much more flexi-

bility through their three characterizing parameters. However, the incorporation of these

distributions provides an additional restriction on the volatility process. This restriction

is introduced in Chapter 6 and we will discuss the impact of this restriction in the empir-

ical analysis in Chapter 7. We will term these models Lévy GARCH models.

The remainder of the dissertation is set out as follows: In Chapter 2 we introduce

Duan’s Gaussian GARCH option pricing model, the LRNVR and the risk-neutral GARCH

model. In Chapter 3 we define the concept of Lévy processes and discusses their main

properties. We define the NIG and Meixner distributions in Chapter 4 and Chapter 5

respectively. We discuss the properties of these distributions and describe methods of

generating random numbers from these distributions. In Chapter 5 we formulate a new

algorithm for generating Meixner random numbers using the rejection method (see Ross

[43], p. 66). In Chapter 6 we formulate the Lévy GARCH model and more specifically

the NIG-GARCH and Meixner-GARCH models. Their respective risk neutral versions

are also introduced. In Chapter 7 we discuss matters regarding parameter estimation,

goodness of fit and the calibration of option prices. This chapter is concluded with a

presentation of results based on the data obtained from the S&P 500 and S&P 100.



Chapter 2

The GARCH Model

2.1 Introduction

Since the GARCH process of Bollerslev [10] was introduced, it has gained prominence for

modeling financial time series. Duan [21] provided the first rigorous theoretical foundation

for option pricing using this powerful econometric model. Due to the complex nature of

the GARCH process, Duan [21] developed his GARCH option pricing model by extending

the conventional risk neutralization in Rubinstein [44] and Brennan [12]. He called it the

locally risk-neutral valuation relationship (LRNVR) (see Definition 2.3.1).

2.2 The Model

Duan [21] proposed the following model for the stock price process,

St = St−∆t exp

(
r∆t− 1

2
ht + λ

√
ht +

√
htεt

)
(2.1)

where St denotes the stock price at time t and S0 is known. ∆t is the time unit (i.e. one

minute, one day, etc.). The sequence (εt)t∈N consist of independent and identically dis-

tributed standard normal random variables, i.e. εt
d∼ N(0, 1) ∀ t ∈ N. λ is a positive real

constant and denotes the market price of risk. r is the constant continuously compounded

risk free interest rate. ht is the conditional variance (squared stochastic volatility) process

which follows a GARCH(1,1) process (see Bollerslev [10]),

ht+∆t = α0 + α1htε
2
t + β1ht (2.2)

6
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where α0, α1 and β1 are non-negative and α1 +β1 is assumed to be less than one to ensure

covariance stationarity of the sequence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2.1: Simulated stock price path.
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Figure 2.2: The variance path
which drives the stock price path in Figure 2.1.

Figures 2.1 and 2.2 plot a single realization of the GARCH model (equations 2.1 and

2.2). The parameter values are given by (α0, α1, β1, λ) = (1.524x10−5, 0.188, 0.716, 0.007),

S0 = 100 and r = 0.

This GARCH model has two distinctive features. Firstly, in contrast to the general

diffusion type models, which are Markovian, the GARCH model is non-Markovian with



8 The GARCH Model Chapter 2

regards to the filtration generated by εt. Secondly, the GARCH model contrasts with

standard preference-free option pricing, since the GARCH option price is a function of

the risk premium embedded into the underlying asset.

Remark. If the coefficients α1 and β1 are zero. Then the GARCH model (equations

(2.1) and (2.2)) reduces to the Black-Scholes discrete time model (see Black and Scholes

[8] and Merton [39]). Hence, this includes the homoskedastic lognormal Black-Scholes

model as a special case of the GARCH model.

2.3 The Risk Neutral Model

The model proposed in the previous section can not be applied to option pricing as it is

not risk-neutral. We must therefore find the risk-neutral model. Before this is done, we

first introduce Duan’s [21] locally risk-neutral valuation relationship.

Definition 2.3.1 A pricing measure Q is said to satisfy the locally risk-neutral valu-

ation relationship (LRNV R) if the measures Q and P are mutually absolutely continuous

and measure Q must also satisfy the following requirements:

(i) The following equation must hold for all 0 ≤ t ≤ T

EQ[e−rtSt | Fk] = e−rkSk

i.e. the discounted stock price process must be a Q-martingale.

(ii) The conditional variances of the logarithmic returns are unaffected by the change of

measure.

VARQ
(

log
St+∆t

St

∣∣∣∣Ft

)
a.s.
= VARP

(
log

St+∆t

St

∣∣∣∣Ft

)
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Duan extended the conventional risk-neutral valuation relationship in the aspect of

variances, condition (ii). Under the LRNVR , the one-period ahead conditional variance,

is invariant with respect to a change to the risk-neutral measure.

Lemma 2.3.2 Define the stock price dynamics under measure Q as

St = St−∆t exp

(
r∆t− 1

2
ht +

√
htξt

)
, (2.3)

where ξt = εt +λ is a sequence of independent and identically distributed random variables

whose distribution under Q equals that of εt under measure P, namely N(0, 1). Note that

ξt
d∼ N(λ, 1) under measure P. Then the conditional variance process, ht, under measure

Q has the following form,

ht+∆t = α0 + α1ht(ξt − λ)2 + β1ht (2.4)

and then this stock price process satisfies the locally risk-neutral valuation relationship.

See Appendix 2.A.1 for the proof of this result.

In general, the conditional variance process is altered under an equivalent change of mea-

sure. Under the LRNVR the admissible equivalent measures are restricted to those under

which the conditional variance of the log-returns remains unchanged. The squared volatil-

ity process, under the LRNVR, is not being driven by a chi-squared random variable ξ2
t

but by a noncentral chi-squared random variable (ξt − λ)2.

The GARCH process, after local risk-neutralization, is characterized by the following

properties:

Theorem 2.3.3 Under the risk-neutral measure Q, if |λ| <
√

(1− α1 − β1)/α1, then

(i) The stationary variance of
√

htξt equals α0

1−(1+λ2)α1−β1
.
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(ii)
√

htξt is leptokurtic.

(iii) COVQ(ht+∆t, ξt) = −2λα0α1

1−(1+λ2)α1−β1
.

Proof: See Appendix 2.A.2.

Under the original measure P, the stationary variance of the GARCH return process

is α0

1−α1−β1
and the conditional variance, under measure P, is uncorrelated with the lagged

asset return (see Bollerslev [10]). Theorem 2.3.3(i), shows that the stationary variance

is increased under local risk neutralization, since λ > 0. We also see that, under local

risk neutralization, the conditional variance is negatively correlated with the lagged asset

return.

Note that the unconditional variance or any conditional variance beyond one period

is not invariant under a change in equivalent pricing measures. Thus, although the risk

premium has been locally risk-neutralized under measure Q, the latter measure still in-

fluences the conditional variance globally. In other words, local risk neutralization and

global risk neutralization are not equivalent.

Due to the nature of European options (see Section 7.2), their pricing requires aggre-

gating single period asset returns to obtain a random terminal asset price at some future

date. We see that the terminal asset price of the GARCH model, ST , can be expressed

in terms of the initial asset price, S0, by

ST = S0 exp

[
rT − 1

2

∑
i

hi∆t +
∑

i

√
hi∆tξi∆t

]
, (2.5)

where i = 1, 2, ..., n and n∆t = T. This follows directly from equation (2.3).
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2.A Appendix

2.A.1 Proof of Lemma 2.3.2

To show this result holds, we must prove that the price dynamics defined by equations

(2.3) and (2.4), satisfy the LRNVR conditions.

(i) Using the measurability of ht with respect to Ft−∆t, we get

EQ[e−rtSt|Ft−∆t] = EQ[e−rtSt−∆t exp(r∆t− 1
2
ht +

√
htξt)|Ft−∆t]

= e−r(t−∆t)−1
2

htSt−∆tEQ[exp
(√

htξt

)
|Ft−∆t]

= e−r(t−∆t)−1
2

htSt−∆te
1
2

ht

= e−r(t−∆t)St−∆t.

Hence, St is a Q-martingale.

(ii) To avoid any ambiguity, we will write ht in equations (2.2) and (2.4) as ht and h∗t

respectively.

VARQ
(

log
St

St−∆t

∣∣∣∣Ft−∆t

)
= VARQ

(
r∆t− 1

2
h∗t +

√
h∗t ξt|Ft−∆t

)

= VARQ
(√

h∗t ξt|Ft−∆t

)

= VARQ
(√

ht(εt + λ)|Ft−∆t

)

= ht (2.6)

where the third equality follows from setting ξt = εt + λ. Similarly,

VARP
(

log
St

St−∆t

∣∣∣∣Ft−∆t

)
= VARP

(
r∆t + λ

√
ht − 1

2
ht +

√
htεt|Ft−∆t

)

= htVARP(εt|Ft−∆t)

= ht. (2.7)

¥



12 The GARCH Model Chapter 2

2.A.2 Proof Theorem 2.3.3

Before we prove the result, the following Lemma will play an important role.

Lemma 2.A.1 Let ht be defined as in equation (2.4). Then

VARQ[
√

htξt] = EQ[htξ
2
t ]

= EQ[ht]. (2.8)

Proof:

VARQ[
√

htξt] = EQ[htξ
2
t ]− {EQ[

√
htξt]}2

= EQ[ht EQ[ξ2
t |Ft−∆t]︸ ︷︷ ︸
=1

]− {EQ[
√

ht EQ[ξt|Ft−∆t]︸ ︷︷ ︸
=0

]}2

= EQ[ht].

¥

(i) For the variance of a process {Xt, t ≥ 0} to be stationary we require that

VARQ[Xt] = VARQ[Xs] ∀ t 6= s. (2.9)

Now, using Lemma 2.A.1

VARQ[
√

htξt] = EQ[ht]

= EQ[α0 + α1ht−∆t(ξt−∆t − λ)2 + β1ht−∆t]

= α0 + α1EQ[ht−∆t(ξt−∆t − λ)2] + β1EQ[ht−∆t]

= α0 + α1EQ[ht−∆t(ξ
2
t−∆t − 2ξt−∆tλ + λ2)] + β1EQ[ht−∆t]

= α0 + α1EQ[ht−∆tE[ξ2
t−∆t − 2λξt−∆t + λ2|Ft−∆t]] + β1EQ[ht−∆t]

= α0 + α1(1 + λ2)EQ[ht−∆t ] + β1EQ[ht−∆t]

= α0 + α1(1 + λ2)VARQ[
√

ht−∆tξt−∆t] + β1VARQ[
√

ht−∆tξt−∆t].



Chapter 2 Appendix 13

Now, setting

VARQ[
√

ht−∆tξt−∆t] = VARQ[
√

htξt]

and solving for VARQ[
√

htξt] yields

VARQ[
√

htξt] =
α0

1− (1 + λ2)α1 − β1

. (2.10)

Since VARQ[
√

htξt] ≥ 0, it follows that

1− (1 + λ2)α1 − β1 > 0, (2.11)

which implies

λ2 <
1− β1

α1

− 1

=
1− β1 − α1

α1

.

(ii) For
√

htξt to be leptokurtic we require that

EQ[h2
t ξ

4
t ] ≥ 3{EQ[htξ

2
t ]}2. (2.12)

Now,

EQ[h2
t ξ

4
t ] = EQ[E[h2

t ξ
4
t |Ft−∆t]]

= EQ[h2
tE[ξ4

t |Ft−∆t]]

= 3EQ[h2
t ] (2.13)

because ξt, conditional upon Ft−∆t, is N(0, 1) under Q. Furthermore,

3{EQ[htξ
2
t ]}2 = 3{EQ[E[htξ

2
t |Ft−∆t]]}2

= 3{EQ[htE[ξ2
t |Ft−∆t]]}2

= 3{EQ[ht]}2. (2.14)
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Therefore

EQ[h2
t ξ

4
t ]− 3{EQ[htξ

2
t ]}2

= 3[EQ[h2
t ]− {EQ[ht]}2]

= 3VARQ[ht] ≥ 0. (2.15)

(iii) Since EQ[ξt] = EQ[ξ3
t ] = 0, we have

COVQ(ht+∆t, ξt) = EQ[ht+∆tξt]

= EQ[(α0 + α1ht(ξt − λ)2 + β1ht)ξt]

= EQ[α0ξt + α1ht(ξ
3
t − 2λξ2

t + λ2ξt) + β1htξt]

= α1EQ[htE[ξ3
t − 2λξ2

t + λ2ξt|Ft−∆t]]

= −2α1λEQ[ht].

¥



Chapter 3

Levy Processes

3.1 Introduction

Lévy processes are aptly named after French mathematician Paul Lévy (1886-1971), one of

the founding fathers of probability theory and the modern theory of stochastic processes.

Lévy made substantial contributions to the study of infinitely divisible laws and pioneered

the study of processes with independent and stationary increments, now known as Lévy

processes (see Loève [34]).

The Wiener process and the Poisson process are fundamental examples of Lévy pro-

cesses. All Lévy processes are superpositions of a Wiener process and a number of inde-

pendent Poisson processes.

More recently, the use of infinitely divisible distributions in modeling financial time

series has been proposed. Madan and Senata [35] introduced the variance gamma dis-

tribution as a model for stock returns. Other distributions introduced to model stock

returns include the normal inverse Gaussian distribution by Barndorff-Nielson [4] and the

Meixner distribution by Schoutens and Teugels [51].

3.2 Definition and Properties

Definition 3.2.1 (Lévy Process) A càdlàg stochastic process (Xt)t≥0 on (Ω,F ,P) with

values in R such that X0 = 0, is called a Lévy processes if it possesses the following

properties :

15
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(i) (Xt)t≥0 has independent increments: Xt−Xs is independent of F s for all 0 ≤ s < t,

where F s is the history of the process up to time s.

(ii) (Xt)t≥0 has stationary increments: Xt − Xs has the same distribution as Xt−s for

all 0 ≤ s < t.

(iii) (Xt)t≥0 is stochastically continuous (continuous in probability):

limh→0 P(|Xt+h −Xt| ≥ ε) = 0, for every ε > 0 and t > 0.

Condition (iii) does not imply that the paths of the process (Xt)t≥0 are continuous. In

fact, it serves only to exclude processes that have jumps at nonrandom (fixed) times.

Thus, given a time point t, the probability of a Lévy process jumping at t is zero.

The jump of the process (Xt)t≥0 at time t, is defined as,

∆Xt = Xt −Xt−, (3.1)

where

Xt− := lim
s↑t

Xs. (3.2)

Definition 3.2.2 (Infinite Divisibility) A distribution F on R is said to be infinitely

divisible if, for every n ≥ 2, there exists n independent and identically distributed random

variables X
(n)
1 , ..., X

(n)
n such that

∑n
i=1 X

(n)
i has distribution F .

Let X be a random variable with distribution function F . The characteristic function

of X (equivalently, of F ), φ(u), is defined as

φ(u) = E[eiuX ], u ∈ R. (3.3)

Infinite divisibility may then be reformulated in terms of characteristic functions.
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Lemma 3.2.3 F (or X) is infinitely divisible if and only if for every n ≥ 2 there exists

a characteristic function φn(u) such that

φ(u) = [φn(u)]n. (3.4)

Common examples of distributions that are infinitely divisible are the Poisson distri-

bution, the gamma distribution and the normal distribution. A random variable, Y , with

any of these distributions can be written as Y
(n)
1 +...+Y

(n)
n , where Y

(n)
i i ∈ {1, .., n} has the

same distribution as Y but with modified parameters. For example if Y
d∼ gamma(α, β),

then Y = Y
(n)
1 + ... + Y

(n)
n where Y

(n)
i

d∼ gamma(α/n, β).

Infinite divisibility has a strong relation to Lévy processes, namely

Proposition 3.2.4 Let (Xt)t≥0 be a Lévy process. Then, for every t, Xt has an in-

finitely divisible distribution. Conversely, if F is an infinitely divisible distribution, then

there exists a Lévy process (Xt) such that the distribution of X1 is given by F.

For a proof of this result see Cont and Tankov [17], p. 69.

Define

Nt(A) =
∑
s≤t

I[∆Xs ∈ A], (3.5)

where A is a set bounded away from 0 (does not contain 0 as a limit point). The jump

behavior of a Lévy process is dictated by its Lévy measure, which is defined next.

Definition 3.2.5 (Lévy measure) Let (Xt)t≥0 be a Lévy process. The Lévy measure ν

on R is defined by

ν(A) = E[N1(A)] = E[Nt(A)]/t. (3.6)
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The Lévy measure, ν, is a measure on R, that satisfies the following conditions:

∫

R
(|x|2 ∧ 1)ν(dx) < ∞ and ν({0}) = 0. (3.7)

Thus we see that the Lévy measure of a set A is just the expected number of jumps per

unit time whose size belongs to A . If the Lévy measure is of the form ν(dx) = u(x)dx,

then u(x) is called the Lévy density.

For the proof of the integrability condition (3.7), see Appendix 3.A.1. But first an

important theorem is required, namely the Lévy-Itô decomposition theorem.

Theorem 3.2.6 (Lévy-Itô decomposition theorem) Let (Xt)t≥0 be a Lévy process

and let Nt be given by (3.5). Then Nt is a Poisson process and

Xt = γt + σWt +

∫

0<|x|≤1

x[Nt(dx)− tν(dx)]

+

∫

|x|>1

xNt(dx) (3.8)

where γ ∈ R, σ > 0 and Wt is a standard Brownian motion, statistically independent of

Nt.

See Sato [46], p. 125 for a proof of this result.

The Lévy-Itô decomposition theorem shows that the form of a general Lévy process con-

sists of three parts (see (3.8)): a deterministic part (γt), a Brownian part (σWt) and a

pure jump part. The Lévy measure ν(dx) dictates the frequency and sizes of the jumps

in the process.

Every infinitely divisible distribution has a triplet of Lévy characteristics or Lévy

triplet.
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Definition 3.2.7 (Lévy Triplet) Let Xt be a Lévy process with decomposition (3.8).

Then

(γ, σ2, ν) (3.9)

is called the Lévy triplet of Xt.

Lemma 3.2.8 Let (Xt)t≥0 be a Lévy process with Lévy measure ν(dx) and σ2 = 0. Then

the paths of the process have finite variation if and only if

∫ 1

−1

|x|ν(dx) < ∞ (3.10)

and a finite number of jumps occur in every finite time interval if and only if

∫ 1

−1

ν(dx) < ∞. (3.11)

3.3 Lévy-Khintchine Representation

Theorem 3.3.1 (Lévy-Khintchine representation) Let (Xt)t≥0 be a Lévy process on

R with Lévy triplet (γ, σ2, ν). Then

φX(u) = etψX(u), u ∈ R (3.12)

where

ψX(u) = iuγ − u2σ2

2
+

∫

0<|x|≤1

(eiux − 1− iux)ν(dx)

+

∫

|x|>1

(eiux − 1)ν(dx) (3.13)

Proof: See Appendix 3.A.2.
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3.A Appendix

3.A.1 Proof of Condition (3.7)

It is sufficient to show that, for some ε > 0,
∫
|x|≤ε

|x|2ν(dx) < ∞, since the Lévy measure

of any closed set not containing zero is finite.

Let (Xt)t≥0 be a Lévy process and define

X∗
t =

∫

δ≤|x|≤ε

x[Nt(dx)− tν(dx)] and Yt = Xt −X∗
t .

Then (X∗
t ) and (Yt) are Lévy processes (from the Lévy-Itô decomposition theorem), also

(Yt) and (X∗
t ) are independent. We have,

|E[eiuXt ]| = |E[eiuYt ]E[eiuX∗
t ]|

= |E[eiuYt ]| · |E[eiuX∗
t ]|

≤ |E[eiuX∗
t ]|

because

|E[eiuYt ]| ≤ E[|eiuYt|]

= E[1]

= 1. (3.14)

For some u and t, |E[eiuXt ]| > 0 because a characteristic function cannot equal zero for all

u and t. Thus |E[eiuX∗
t ]| is bounded below by some positive number C < 1 independent

of δ.

The following identity plays an important role in the proof:

2(1− cos at)

a2t2
=

(
sin at

2
at
2

)2

; (3.15)

see Chung [14], p. 138.



Chapter 3 Appendix 21

Now

|E[eiuX∗
t ]| = |E[exp(iu

∫

δ≤|x|≤ε

x[Nt(dx)− tν(dx)])]|

= | exp(t

∫

δ≤|x|≤ε

[exp(iux)− iux− 1]ν(dx))|

= | exp(t

∫

δ≤|x|≤ε

[cos(ux) + i sin(ux)− iux− 1]ν(dx))|

= | exp(t

∫

δ≤|x|≤ε

[cos(ux)− 1]ν(dx)) exp(it

∫

δ≤|x|≤ε

[sin(ux)− ux]ν(dx))|

= exp(t

∫

δ≤|x|≤ε

[cos(ux)− 1]ν(dx)),

where the second equality follows from the fact that

E[exp(iu

∫

δ≤|x|≤ε

x[Nt(dx)− tν(dx)])] = exp(t

∫

δ≤|x|≤ε

[exp(iux)− iux− 1]ν(dx)),

see Appendix 3.A.2 for proof of this result (equations (3.19), (3.21) and (3.23)), and the

fifth equality follows from the identity

|eiθ| = 1 for all θ ∈ R. (3.16)

Therefore,

0 < C ≤ exp(t

∫

δ≤|x|≤ε

[cos(ux)− 1]ν(dx)) ≤ 1

because cos(ux) ≤ 1 for all u and x. Taking the logarithm and multiplying throughout

by −1
t

yields

0 ≤
∫

δ≤|x|≤ε

[1− cos(ux)]ν(dx) ≤ C̃,

where C̃ = − log C
t

> 0 because 0 < C < 1 which implies that −∞ < log C < 0.

Since C̃ is independent of δ, the preceding inequalities imply that

0 ≤ lim
δ↓0

∫

δ≤|x|≤ε

[1− cos(ux)]ν(dx) ≤ C̃,
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is equivalent to

0 ≤
∫

0≤|x|≤ε

[1− cos(ux)]ν(dx) ≤ C̃,

i.e. to

0 ≤
∫

0≤|x|≤ε

u2x2

2

(
sin ux

2
ux
2

)2

ν(dx) ≤ C̃,

from (3.15). Now, since
(

sin ux
2

ux
2

)2

→ 1 as
ux

2
→ 0, (3.17)

there exists a0 > 0 such that
(

sin ux
2

ux
2

)2

>
1

2
for all

|ux|
2

< a0. (3.18)

Choose u such that 2a0

x
> ε. Then

0 ≤ u2

4

∫

0≤|x|≤ε

x2ν(dx) ≤
∫

0≤|x|≤ε

u2x2

2

(
sin ux

2
ux
2

)2

ν(dx) ≤ C̃.

Therefore,

∫

0≤|x|≤ε

x2ν(dx) ≤ 4C̃

u2
< ∞.

¥

Outlines of this proof are given in Cont and Tankov [17], p. 82.

3.A.2 Proof of Theorem 3.3.1

We can write Xt+s as

Xt+s = (Xt+s −Xs) + Xs

Therefore,

φXt+s(u) = φ(Xt+s−Xs)+Xs(u)

= φXt+s−XsφXs(u)

= φXtφXs(u),
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where the second and third equalities follow from the properties of a Lévy process. It

follows that

log φXt+s = log φXt(u) + log φXs(u).

We have shown that φXt(u) is linear in t, hence there exists a number ψ(u) such that

log φXt(u) = tψ(u) ∀ t ≥ 0.

Therefore

φXt(u) = etψ(u).

From the Lévy-Itô decomposition theorem, we can represent (Xt)t≥0 as

Xt = γt + σWt +

∫

0<|x|≤1

x{Nt(dx)− tν(dx)}+

∫

|x|>1

xNt(dx).

It then follows that

φXt(u) = E[exp(iuXt)]

= E[exp(iu{γt + σWt +

∫

0<|x|≤1

x{Nt(dx)− tν(dx)}+

∫

|x|>1

xNt(dx)})]

= E[exp(iuγt + iuσWt)]E[exp(iu

∫

0<|x|≤1

x{Nt(dx)− tν(dx)})]

·E[exp(iu

∫

|x|>1

xNt(dx))].

Now

E[exp(iuγt + iuσWt)] = exp(iuγt)E[exp(iuσWt)]

= exp(iuγt− u2σ2t/2),

E[exp(iu

∫

0<|x|≤1

x{Nt(dx)− tν(dx)})]

= lim
n→∞

E[exp(iu
n−1∑

|k|=1

k

n
{Nt(

k

n
,
k + 1

n
)− tν(

k

n
,
k + 1

n
)})] (3.19)
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and

E[exp(iu

∫

|x|>1

xNt(dx))]

= lim
n→∞

E[exp(iu
∞∑

|k|=n

k

n
Nt(

k

n
,
k + 1

n
))], (3.20)

where the expectations on the right hand side of equations (3.19) and (3.20) are given by

E[exp(iu
n−1∑

|k|=1

k

n
{Nt(

k

n
,
k + 1

n
)− tν(

k

n
,
k + 1

n
)})]

=
n−1∏

|k|=1

E[exp(iu
k

n
{Nt(

k

n
,
k + 1

n
)− tν(

k

n
,
k + 1

n
)})]

=
n−1∏

|k|=1

∑
y≥0

exp(iu
k

n
{y − tν(

k

n
,
k + 1

n
)}) exp(−tν(

k

n
,
k + 1

n
))[tν(

k

n
,
k + 1

n
)]y/y!

=
n−1∏

|k|=1

exp(−t[iu
k

n
+ 1]ν(

k

n
,
k + 1

n
))

∑
y≥0

[exp(iu
k

n
)tν(

k

n
,
k + 1

n
)]y/y!

=
n−1∏

|k|=1

exp(−t[iu
k

n
+ 1]ν(

k

n
,
k + 1

n
)) exp(exp(iu

k

n
)tν(

k

n
,
k + 1

n
))

=
n−1∏

|k|=1

exp(t[exp(iu
k

n
)− iu

k

n
− 1]ν(

k

n
,
k + 1

n
))

= exp(t
n−1∑

|k|=1

[exp(iu
k

n
)− iu

k

n
− 1]ν(

k

n
,
k + 1

n
)) (3.21)

and

E[exp(iu
∞∑

|k|=n

k

n
Nt(

k

n
,
k + 1

n
))]

=
∞∏

|k|=n

E[exp(iu
k

n
Nt(

k

n
,
k + 1

n
))]

=
∞∏

|k|=n

∑
y≥0

exp(iu
k

n
y) exp(−tν(

k

n
,
k + 1

n
))[tν(

k

n
,
k + 1

n
)]y/y!
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=
∞∏

|k|=n

exp(−tν(
k

n
,
k + 1

n
))

∑
y≥0

[exp(iu
k

n
)tν(

k

n
,
k + 1

n
)]y/y!

=
∞∏

|k|=n

exp(−tν(
k

n
,
k + 1

n
)) exp(exp(iu

k

n
)tν(

k

n
,
k + 1

n
))

=
∞∏

|k|=n

exp(t[exp(iu
k

n
)− 1]ν(

k

n
,
k + 1

n
))

= exp(t
∞∑

|k|=n

[exp(iu
k

n
)− 1]ν(

k

n
,
k + 1

n
)) (3.22)

respectively. Substituting (3.21) and (3.22) into equations (3.19) and (3.20) respectively

and taking the limit yields the following:

E[exp(iu

∫

0<|x|≤1

x{Nt(dx)− tν(dx)})]

= exp(t

∫

0<|x|≤1

[exp(iux)− iux− 1]ν(dx)) (3.23)

and

E[exp(iu

∫

|x|>1

xNt(dx))] = exp(t

∫

|x|>1

[exp(iux)− 1]ν(dx)) (3.24)

by the definition of a Riemann-Stieljes integral.

Hence,

φXt(u) = exp(iuγt− u2σ2t/2 + t

∫

0<|x|≤1

[exp(iux)− iux− 1]ν(dx)

+t

∫

|x|>1

[exp(iux)− 1]ν(dx))

= exp(t{iuγ − u2σ2/2 +

∫

R
[exp(iux)− 1− iuxI(0<|x|≤1)]ν(dx)}).

Therefore

ψX(u) = iuγ − u2σ2

2
+

∫

0<|x|≤1

(eiux − 1− iux)ν(dx)

+

∫

|x|>1

(eiux − 1)ν(dx).

¥



Chapter 4

The Normal Inverse Gaussian
Distribution

4.1 Introduction

In this chapter we present the normal inverse Gaussian distribution and some of the

properties this distribution contains. The normal inverse Gaussian (NIG) distribution

is a three parameter distribution, introduced by Barndorff-Nielsen [4]. This distribution

often fits asset returns quite well (see Barndorff-Nielsen [4],[5] and Rydberg [45]). This

chapter is concluded with a description on the method used to generate NIG random

numbers.

4.2 Definition and properties

Before introducing the normal inverse Gaussian distribution, we need the following defi-

nition:

Definition 4.2.1 (IG density function, Schoutens [50], p. 53) A random vari-

able is inverse Gaussian distributed with parameters θ = (a, b) if it has the probability

density function

f(x; θ) =
a√
2π

exp(ab)x−3/2 exp(−1

2
(a2x−1 + b2x)), (4.1)

where

x ∈ (0,∞), a ∈ (0,∞), b ∈ (0,∞).

26
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This distribution is denoted X
d∼ IG(a, b).

The normal inverse Gaussian (NIG) distribution can be obtained as a mixture of indepen-

dently distributed random variables from the normal and inverse Gaussian distributions.

Definition 4.2.2 Let Z
d∼ N(0, 1) and Y

d∼ IG(δ,
√

α2 − β2). Then

X = βY +
√

Y Z (4.2)

has a NIG(α, β, δ) distribution.This distribution is denoted as X
d∼ NIG(α, β, δ).

This is more commonly referred to as the normal-variance mixture representation of

the normal inverse Gaussian distribution.

Proposition 4.2.3 (NIG density function, Schoutens [50], p. 60) A random

variable X which is normal inverse Gaussian distributed with parameters θ = (α, β, δ) has

the probability density function

f(x; θ) =
αδ

π
exp(δ

√
α2 − β2 + βx)

K1(α
√

δ2 + x2)√
δ2 + x2

(4.3)

where

x ∈ R, α ∈ (0,∞), β ∈ (−α, α), δ ∈ (0,∞)

and K1(·) is the modified Bessel function of the third kind with index 1.

Proof: See Appendix 4.A.1 for the proof of this result.

It follows from equation (4.2) that the conditional distribution of X given Y = y is

N(βy, y). This result will play an important role in generating normal inverse Gaussian

random numbers (see Section 4.3).
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Lemma 4.2.4 Let X
d∼ NIG(α, β, δ). Then the expected value, variance, skewness

and kurtosis of X are respectively given by

E[X] =
δβ√

α2 − β2
(4.4)

VAR[X] =
δα2

(α2 − β2)3/2
(4.5)

SKEW[X] =
3β

α
√

δ(α2 − β2)1/4
(4.6)

KURT[X] = 3

(
1 +

4β2 + α2

δα2
√

(α2 − β2)

)
. (4.7)

See Schoutens [50], p. 60 for the above results.

Moments of all orders exist for the NIG distribution. Looking at the kurtosis of the

NIG distribution, it can clearly be seen that it is always greater than the kurtosis of the

Normal distribution, which equals 3.

Figures 4.1, 4.2 and 4.3 illustrate the effect of the parameters on the normal inverse

Gaussian distribution. The kurtosis of the density function is influenced by all the pa-

rameters of the distribution. However, the skewness (symmetry) of the density function

is described by the parameter β (see Figure 4.2). The distribution is skewed to the left

for β < 0, skewed to the right for β > 0 and symmetric for β = 0.

Definition 4.2.5 Let X be a random variable with characteristic function φ(u). Then

the cumulant generating function, κ(u), is defined as

κ(u) = logE[euX ] = log φ(−iu). (4.8)
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Figure 4.1: The effect of α in the NIG density.
α ∈ {10, 18, 30}, β = 0, δ = 1.
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Figure 4.2: The effect of β in the NIG density.
α = 8, β ∈ {−6, 0, 6}, δ = 1.
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Figure 4.3: The effect of δ in the NIG density.
α = 8, β = 0, δ ∈ {1, 4, 8}.

Lemma 4.2.6 Let X
d∼ NIG(α, β, δ). Then the characteristic function, φ(u), and the

cumulant generating function, κ(u), are respectively given by

φ(u; θ) = exp
(
δ
(√

α2 − β2 −
√

α2 − (β + iu)2
))

(4.9)

and

κ(u; θ) = δ
(√

α2 − β2 −
√

α2 − (β + u)2
)

(4.10)

where i =
√−1 and u ∈ R.

Proof: See Appendix 4.A.2 and 4.A.3.

Considering the form of the characteristic function of a NIG random variable (4.9), we

see that the NIG(α, β, δ) distribution is infinitely divisible, since

φ(u; α, β, δ) = [φ(u; α, β, δ/n)]n. (4.11)
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The tail behavior of the NIG(α, β, δ) distribution is often referred to as ‘semi-heavy’.

Semi-heavy tails refers to the instance when the tails are heavier than those of the Gaussian

distribution but lighter than those of the non-Gaussian stable laws. The NIG(α, β, δ)

distribution’s semi-heavy tails are characterised by the following asymptotic relation:

f(x; α, β, δ) ∼ C|x|− 3
2 exp(−α|x|+ βx) as x → ±∞, (4.12)

for some C ≥ 0. See Appendix 4.A.5 for proof of this result.

4.3 Simulating a NIG random variable

The Monte Carlo method discussed in Benth, et al. [7] was implemented in generating

NIG(α, β, δ) random variables.

Previously we saw that if Y
d∼ IG(δ,

√
α2 − β2) and Z

d∼ N(0, 1), then

X = βY +
√

Y Z
d∼ NIG(α, β, δ).

This relationship will be used in the simulation of NIG random variables.

The following result plays an important role:

Theorem 4.3.1 (see Schuster [52]) Let Z
d∼ IG(a, b). Then

V =
a2(Z − a/b)2

(a/b)2Z

d∼ χ2
1 (4.13)

where χ2
1 denotes a chi-squared random variable with 1 degree of freedom.

We follow the algorithm set out by Michael, Schucany and Haas [41] to generate random

variables through transformations with multiple roots. χ2
1 random variables are easily

generated as squares of a standard normal random variable. Now, given a χ2
1 observation

υ, we solve for z in (4.13) to obtain a inverse Gaussian observation. There are two roots
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associated with this quadratic equation. These roots can be expressed as

z1 =
a

b
+

υ

2b2
−
√

4abυ + υ2

2b2
(4.14)

and

z2 =
a

b
+

υ

2b2
+

√
4abυ + υ2

2b2
, (4.15)

where z1 ≥ 0 and z2 ≥ 0. See Appendix 4.A.4 for a proof of this.

Define

z = z1I(u ≤ a

a + z1b
) + z2I(u >

a

a + z1b
) (4.16)

where u
d∼ uniform(0, 1). Then z is an observation from an IG(a, b) distribution (see

Michael, et al. [41] for justification of the choice of z). Hence, we can generate a

NIG(α, β, δ) random variable with the following algorithm:

Generating a NIG random variable X

(i) Generate υ
d∼ χ2

1.

(ii) Generate u
d∼ uniform(0, 1).

(iii) Calculate z in (4.16), with a = δ and b =
√

α2 − β2.

(iv) Generate y
d∼ N(0, 1).

(v) Return X = βz +
√

zy.

Histograms of NIG(α, β, δ) data sets of size 105, generated by the proceeding method, are

plotted in Figures 4.4, 4.5 and 4.6. The parameter values are (α, β, δ) = (8, 0, 1), (8, 6, 1)

and (8,−6, 1) respectively.
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These histograms are directly comparable to the probability density functions plot-

ted in Figure 4.2, where the effect of β is displayed. Figures 4.4, 4.5 and 4.6 have the

NIG(8,0,1), NIG(8,6,1) and NIG(8,-6,1) density functions superimposed on the his-

tograms respectively.

−1.5 −1 −0.5 0 0.5 1 1.5

Figure 4.4: Histogram of a NIG(8, 0, 1) generated data set
with the theoretical density function superimposed.
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−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 4.5: Histogram of a NIG(8, 6, 1) generated data set
with the theoretical density function superimposed.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

Figure 4.6: Histogram of a NIG(8,−6, 1) generated data set
with the theoretical density function superimposed.
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4.A Appendix

4.A.1 Proof of Proposition 4.2.3

The following integral form of the modified Bessel function of the third kind (see Schoutens

[50], p. 148) will play an important part:

K−1(z) = K1(z) =
1

2

∫ ∞

0

u−2 exp

[
− 1

2
z(u +

1

u
)

]
du. (4.17)

We will prove Proposition 4.2.3 using relationship (4.2). We have

P [X ≤ x] = P [βY +
√

Y Z ≤ 0]

=

∫ ∞

0

Φ(
x− βy√

y
)fY (y)dy

and differentiating this with respect to x yields

fX(x) =

∫ ∞

0

y−
1
2 Φ′(

x− βy√
y

)fY (y)dy,

where Φ′(·) denotes the normal density function.

Recalling Definition 4.2.1, we see that

fY (y) =
δ√
2π

y−
3
2 exp

[
δ
√

α2 − β2 − 1

2
(
δ2

y
+ (α2 − β2)y)

]
. (4.18)

Hence,

fX(x)

=
δ

2π

∫ ∞

0

y−2 exp

[
− 1

2
(
x− βy√

y
)

]
exp

[
δ
√

α2 − β2 − 1

2

(
δ2

y
+ (α2 − β2)y

)]
dy

=
δ

2π
exp(α

√
α2 − β2)

∫ ∞

0

y−2 exp

[
− 1

2

(
x2

y
− 2βxy

y
+

β2y2

y
+

δ2

y
+ α2y − β2y

)]
dy

=
δ

2π
exp(α

√
α2 − β2 + βx)

∫ ∞

0

y−2 exp

[
− 1

2
((x2 + δ2)

1

y
+ α2y)

]
dy. (4.19)

Now, writing

(x2 + δ2)
1

y
+ α2y = α

√
x2 + δ2

(√
x2 + δ2

αy

)
+ α

√
x2 + δ2

(
αy√

x2 + δ2

)
(4.20)
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and making the following transformation

u =
αy√

x2 + δ2
du =

α√
x2 + δ2

dy, (4.21)

we have

fX(x) =
δ

2π
exp(α

√
α2 − β2 + βx)

α√
x2 + δ2

∫ ∞

0

u−2 exp

[
− 1

2
(α
√

x2 + δ2(u +
1

u
)

]
dy.

The result is achieved by using relationship (4.17) with z = α
√

x2 + δ2.

¥

4.A.2 NIG Cumulant Generating function

From Proposition 4.2.2,

E[euX ] =

∫

R
eux αδ

π
exp(δ

√
α2 − β2 + βx)

K1(α
√

δ2 + x2)√
δ2 + x2

dx

=

∫

R

αδ

π
exp(δ

√
α2 − β2 + (β + u)x)

K1(α
√

δ2 + x2)√
δ2 + x2

dx

= exp(δ
√

α2 − β2)

∫

R

αδ

π
exp((β + u)x)

K1(α
√

δ2 + x2)√
δ2 + x2

dx

= exp(δ
√

α2 − β2 − δ
√

α2 − (β + u)2) ·
∫

R

αδ

π
exp(δ

√
α2 − (β + u)2 + (β + u)x)

K1(α
√

δ2 + x2)√
δ2 + x2

dx

= exp(δ
√

α2 − β2 − δ
√

α2 − (β + u)2)

∫

R
f(x; α, β + u, δ)dx

= exp
(
δ(

√
α2 − β2 −

√
α2 − (β + u)2)

)
.

Hence,

κ(u) = logE[euX ] = δ(
√

α2 − β2 −
√

α2 − (β + u)2).

¥
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4.A.3 NIG Characteristic function

Using the relationship, φ(u) = exp{κ(iu)} = E[eiuX ], we have

φ(u) = E[eiuX ] = exp
(
δ(

√
α2 − β2 −

√
α2 − (β + iu)2)

)
.

¥

4.A.4 Roots z1 and z2

We are only required to show that z1 ≥ 0, since z2 ≥ 0 follows from the restrictions on a

and b and the fact that a χ2
1 random variable is always positive.

a

b
+

υ

2b2
−
√

4abυ + υ2

2b2
=

a

b
+

υ

2b2
−
√

4a2b2 + 4abυ + υ2 − 4a2b2

2b2

=
a

b
+

υ

2b2
−

√
(2ab + υ)2 − 4a2b2

2b2

≥ a

b
+

υ

2b2
−

√
(2ab + υ)2

2b2

=
a

b
+

υ

2b2
− (2ab + υ)

2b2

= 0.

¥

4.A.5 Proof of Relation (4.12)

The following result is important in deriving the asymptotic relation (4.12) (see Abramowitz

and Stegun [1], p. 378).

Let λ = 1. Then

K1(x) ∼
√

π

2|x| exp(−|x|) (4.22)

as |x| → ∞.
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Using Proposition 4.2.3 and equation (4.22), it follows that

f(x) =
αδ

π
exp(δ

√
α2 − β2 + βx)

K1(α
√

δ2 + x2)√
δ2 + x2

∼ αδ

π

exp(δ
√

α2 − β2 + βx)√
δ2 + x2

√
π

2α
√

δ2 + x2
exp(−α

√
δ2 + x2). (4.23)

Now

exp(−α
√

δ2 + x2) = exp

(
− α|x|

√
δ2

x2
+ 1

)

= exp

(
− α|x|

[
1 +

δ2

2x2
+ O(

1

x2
)

])

= exp

(
− α|x| − αδ2

2|x| + O(
1

|x|)
])

∼ exp(−α|x|) as |x| → ∞, (4.24)

exp(δ
√

α2 − β2 + βx) = exp

(
x

[
δ
√

α2 − β2

x
+ β

])

∼ exp(βx) as |x| → ∞, (4.25)

and

√
δ2 + x2 = |x|

√
δ2

x2
+ 1

∼ |x| as |x| → ∞. (4.26)

Substituting (4.24), (4.25) and (4.26) into (4.23) yields

f(x) ∼ αδ

π

exp(βx)

|x|
√

π

2α|x| exp(−α|x|)

= C exp(−α|x|+ βx)|x|− 3
2

where C =
√

α
2π

δ.

¥
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The Meixner Distribution

5.1 Introduction

In this chapter we present the Meixner distribution and some of the properties this distri-

bution contains. The Meixner distribution and the Meixner process were introduced by

Schoutens and Teugels [51] (see also Schoutens [47]). The Meixner distribution is a three

parameter distribution. The fitting of stock returns using this distribution was considered

by Grigelionis [27] and Schoutens [48],[49]. We conclude this chapter with the proposal

of a new method for generating Meixner random numbers.

5.2 Definition and properties

Definition 5.2.1 (Meixner density function, Schoutens [50], pp. 62) A random

variable X is Meixner distributed with parameters θ = (α, β, δ), if it has the probability

density function

f(x; θ) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp

(
βx

α

)∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

(5.1)

where

∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣ =

( ∫ ∞

0

cos

(
x

α
log y

)
yδ−1e−y

)2

+

( ∫ ∞

0

sin

(
x

α
log y

)
yδ−1e−y

)2

(5.2)

39
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and

x ∈ R, α ∈ (0,∞), β ∈ (−π, π), δ ∈ (0,∞).

This distribution is denoted as X
d∼ Meixner(α, β, δ).

Lemma 5.2.2 Let X
d∼ Meixner(α, β, δ). Then the expected value, variance, skew-

ness and kurtosis of X are respectively given by

E[X] = αδ tan(β/2) (5.3)

VAR[X] =
α2δ

2
sec2(β/2) (5.4)

SKEW[X] =

√
2

δ
sin(β/2) (5.5)

KURT[X] = 3 +
2− cos(β/2)

δ
. (5.6)

See Schoutens [50], p. 63 for the above results.

Moments of all orders exist for the Meixner distribution. Looking at the kurtosis of

the Meixner distribution, it can clearly be seen that it is always greater than the kurtosis

of the Normal distribution, which always equals 3.

Figures 5.1, 5.2 and 5.3 show the effect of the parameters on the Meixner distribution.

Like the normal inverse Gaussian distribution, the kurtosis of the density function is de-

scribed by all the parameters of the distribution. However, the skewness (symmetry) of

the density function is described by the parameter β (see Figure 5.2). The distribution is

skewed to the left for β < 0, skewed to the right for β > 0 and symmetric for β = 0.
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Figure 5.1: The effect of α in the Meixner density.
α ∈ {0.5, 1, 3}, β = 0, δ = 0.1.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
β = −2
β = 0
β = 2

Figure 5.2: The effect of β in the Meixner density.
α = 0.5, β ∈ {−2, 0, 2}, δ = 1.
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Figure 5.3: The effect of δ in the Meixner density.
α = 2, β = 0, δ ∈ {0.1, 0.4, 0.8}.

Lemma 5.2.3 Let X
d∼ Meixner(α, β, δ). Then the characteristic function, φ(u),

and the cumulant generating function, κ(u) = logE[euX ] = log φ(−iu), are respectively

given by

φ(u; θ) =

(
cos(β/2)

cosh((αu− iβ)/2)

)2δ

(5.7)

and

κ(u; θ) = 2δ

[
log(cos(β/2))− log(cos((αu + β)/2))

]
(5.8)

where i =
√−1 and u ∈ R.

Proof: See Appendix 5.A.1 and 5.A.2.

Looking at the form of the characteristic function of a Meixner random variable (5.7), we

see that the Meixner(α, β, δ) distribution is infinitely divisible, since

φ(u; α, β, δ) = [φ(u; α, β, δ/n)]n. (5.9)
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The Meixner(α, β, δ) distribution, like the NIG distribution, also has semi-heavy tails.

The tail behavior is characterised by the following asymptotic relation:

f(x; α, β, δ) ∼
{

C|x|ρ exp(−η−|x|) as x →∞
C|x|ρ exp(−η+|x|) as x → −∞,

(5.10)

where

ρ = 2δ − 1, η− =
π − β

α
, η+ =

π + β

α

and for some C ≥ 0. See Appendix 5.A.3 for the proof of this asymptotic relation.

5.3 Simulating a Meixner random variable

There seems to be no published algorithm to generate random numbers from a Meixner

distribution. One can attempt to generate Meixner random numbers using the inverse

transform of the distribution function. However because there is no closed-form expres-

sion for the latter, the distribution function must be approximated numerically with a

Riemman sum (see Robbertse [42], p. 47). We propose a different method, one using the

rejection method (also referred to as the acceptance-rejection method) described by Ross

[43], p. 66.

Suppose a method exists for generating a random variable from a continuous distribu-

tion with density function g(x). We can then use this distribution as a basis for generating

a random value from a continuous distribution with density function f(x) by generating

Y from g and accepting this value y with a probability proportional to f(y)
g(y)

. Let c be a

constant such that

f(x)

g(x)
≤ c ∀ x. (5.11)

Typically, we choose

c = max
x

f(x)

g(x)
(5.12)
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and accept y with probability f(y)
cg(y)

. Note that this is accomplished by generating a

uniform(0, 1) random number u and then accepting y if u ≤ f(y)
cg(y)

.

For the Meixner distribution with parameters θ = (α, β, δ), we will use for g(x) the

NIG density, with parameters θ∗ = (α∗, β∗, δ∗). The parameters (α∗, β∗, δ∗) are chosen

such that the first three moments of the NIG distribution are equal to those of the Meixner

distribution. This entails the solution of three non-linear equations. In some instances

θ∗ contains complex values. After some simulation we noticed that this occurred mostly

when α < |β| < π. Looking at Figures 4.1, 4.2 and 4.3 we notice that the NIG distribution

is peaked for large values of α and small values of δ. The Meixner distribution is peaked

for small values of α and small values δ (Figures 5.1, 5.2 and 5.3). For the instances when

the moments can not be matched, we set θ∗ equal to:

α∗ =
1

α
(5.13)

β∗ = α∗
β

π
(5.14)

δ∗ = δ. (5.15)

Hence we can generate a Meixner(α, β, δ) random variable with the following algo-

rithm :

Generating a Meixner random variable X

(i) Given α, β, δ, calculate α∗, β∗, δ∗ in the manner indicated above.

(ii) Calculate c using (5.12) with f a Meixner(α, β, δ) density and g a NIG(α, β, δ)

density.

(iii) Generate u
d∼ uniform(0, 1).

(iv) Generate y
d∼ NIG(α∗β∗, δ∗).
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(v) If u ≤ f(y)
cg(y)

, set X = y. Otherwise return to step (iii).

Histograms of Meixner(α, β, δ) generated data sets, of size 105, are plotted in Figures

5.4, 5.5 and 5.6. The parameter values are given by (0.5, 0, 1), (0.5, 2, 1) and (0.5,−2, 1)

respectively. These histograms are directly comparable to the probability density func-

tions plotted in Figure 5.2, where the effect of β is displayed. Figures 5.4, 5.5 and 5.6

have the Meixner(0.5, 0, 1), Meixner(0.5, 2, 1) and Meixner(0.5,−2, 1) density functions

superimposed on the histograms respectively.

−1.5 −1 −0.5 0 0.5 1 1.5

Figure 5.4: Histogram of a Meixner(0.5, 0, 1) generated data set
with the theoretical density function superimposed.
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−1 0 1 2 3 4

Figure 5.5: Histogram of a Meixner(0.5, 2, 1) generated data set
with the theoretical density function superimposed.

−4 −3 −2 −1 0 1
0   

Figure 5.6: Histogram of a Meixner(0.5,−2, 1) generated data set
with the theoretical density function superimposed.
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5.3.1 Simulation Study

We compared simulating Meixner random numbers using the rejection method (see Section

5.3) and the method which incorporates the inverse transform of the distribution func-

tion. The Meixner(0.5, 0, 1) distribution was used in the study. We simulated1 a 1000

N ×M matrices of Meixner random numbers and calculated the average time(seconds)

taken for the simulation. The standard deviations are included in brackets. The results

are provided in the Table 5.1 below.

Method
(N,M) Inverse Transform Rejection
(1,10) 0.640 (0.0452) 0.026 (0.0023)

(1,1000) 0.755 (0.0689) 0.056 (0.0038)
(10,10) 2.149 (0.0248) 0.033 (0.0042)

(100,100) 20.134 (1.1364) 0.230 (0.0071)
(1000,1000) 181.273 (2.2526) 8.722 (0.1898)

Table 5.1: Simulation times of a N ×M matrix of Meixner random variates
when moment matching is possible.

For the Meixner(1, 2, 1) distribution one is unable to match the first three moments to

that of the NIG distribution. Hence, the parameter set θ∗ contains complex values. One

thousand N ×M matrices of Meixner(1, 2, 1) random numbers were simulated using the

rejection method. Table 5.2 gives the average time(seconds) taken to generate a (N,M)

matrix of Meixner random numbers (standard deviations included in brackets).

Looking at Tables 5.1 and 5.2 we see that the rejection method for generating Meixner

random numbers is significantly quicker than the inverse transform method. We see that,

at its worst, the rejection method is more than two times slower when the moments of

the NIG and Meixner distributions cannot be matched compared to the case when they

can be matched. However, when the moments cannot be matched, the rejection method

1 Simulations run in Matlab 2007b on a AMD Turion(tm) 64x2 Mobile Technology TL-56 1.79 Ghz
processor with 2 Gb of RAM and Windows XP operating system.
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is still significantly quicker than the inverse transform method.

(N,M) Time
(1,10) 0.045 (0.0035)

(1,1000) 0.077 (0.0054)
(10,10) 0.046 (0.0043)

(100,100) 0.231 (0.0134)
(1000,1000) 19.826 (0.3693)

Table 5.2: Simulation times of a N ×M matrix of Meixner random variates
when moment matching is not possible.

Figure 5.7 below plots a histogram of a generated data set, size 105, of Meixner(1, 2, 1)

random numbers. The theoretical Meixner(1, 2, 1) density function is superimposed on

the histogram.

−2 −1 0 1 2 3 4 5 6 7

Figure 5.7: Histogram of a Meixner(1, 2, 1) generated data set
with the theoretical density function superimposed.
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5.A Appendix

5.A.1 Meixner Cumulant Generating function

From equation (5.1),

E[euX ] =

∫

R
eux (2 cos(β/2))2δ

2απΓ(2δ)
exp

(
βx

α

)∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

dx

=

∫

R

(2 cos(β/2))2δ

2απΓ(2δ)
exp

(
βx + αux

α

)∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

dx

= (2 cos(β/2))2δ

∫

R

1

2απΓ(2δ)
exp

(
(β + αu)x

α

)∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

dx

=
(2 cos(β/2))2δ

(2 cos((β + αu)/2))2δ

∫

R

(2 cos((β + αu)/2))2δ

2απΓ(2δ)
exp

(
(β + αu)x

α

)∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

dx

=
(2 cos(β/2))2δ

(2 cos((β + αu)/2))2δ

∫

R
f(x; α, β + αu, δ)dx

=

(
cos(β/2)

cos((β + αu)/2)

)2δ

Hence,

κ(u) = logE[euX ] = 2δ

[
log(cos(β/2))− log(cos((β + αu)/2))

]
.

¥

5.A.2 Meixner Characteristic function

Using the relationship, φ(u) = exp{κ(iu)} = E[eiuX ] and the following relationship be-

tween complex trigonometric and hyperbolic functions

cos(iz) = cosh(z), (5.16)

we have
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φ(u) = E[eiuX ] =

(
cos(β/2)

cos((β + iαu)/2)

)2δ

=

(
cos(β/2)

cos(i(αu− iβ)/2)

)2δ

=

(
cos(β/2)

cosh((αu− iβ)/2)

)2δ

.

¥

5.A.3 Proof of Relation (5.10)

The following result is important in deriving relation (5.10) (see Copson [18], p. 224).

Let x be finite. Then

|Γ(x + iy)|2 ∼ 2π|y|2x−1 exp(−π|y|). (5.17)

as |y| → ∞.

Using Proposition 5.2.1 and equation (5.17), it follows that

f(x) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp

(
β

α
x

)∣∣∣∣Γ
(

δ +
ix

α

)∣∣∣∣
2

∼ (2 cos(β/2))2δ

2απΓ(2δ)
exp

(
β

α
x

)
2π

∣∣∣∣
x

α

∣∣∣∣
2δ−1

exp

(
− π

∣∣∣∣
x

α

∣∣∣∣
)

= C exp

(−π

α
|x|+ β

α
x

)
|x|2δ−1

=





C exp

(
−π+β

α
|x|

)
|x|2δ−1 as x → +∞

C exp

(
−π−β

α
|x|

)
|x|2δ−1 as x → −∞

=

{
C exp(−η−|x|)|x|ρ as x → +∞
C exp(−η+|x|)|x|ρ as x → −∞
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where

ρ = 2δ − 1, η− =
π − β

α
, η+ =

π + β

α

and C ≥ 0.

¥



Chapter 6

The Lévy-GARCH Model

6.1 Introduction

Duan [21] attempted to relax one of the two main assumptions in the Black-Scholes model,

namely the assumption of constant volatility. As we have seen (Chapter 2), Duan pro-

posed a GARCH(1,1) process for the variance (squared volatility) process. However, Duan

still assumed the log returns of the asset to be normally distributed. Empirical studies

show that the log returns are skewed and heavy-tailed. (see Anderson, et al. [3], Bollen

and Inder [9], Carr, et al. [13] and Cont [16])

Thus, in this chapter we attempt to relax the assumption of normality and replace

it with a more flexible Lévy process distribution, namely the NIG distribution or the

Meixner distribution. We show that the properties of Duan’s GARCH model still hold

when more general distributions are utilized for the random innovations.

Duan’s GARCH model will be referred to as the Gaussian-GARCH model in this chapter

and the succeeding chapters.

6.2 Formulation of the model

For risk-neutrality we require a measure Q which is equivalent to the real world measure

P, such that the discounted stock price process e−rtSt is a martingale, i.e.

52
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EQ[e−rtSt|Fk] = e−rkSk. (6.1)

The log returns model will be written in the following form

log
St

St−∆t

= µt∆t− κ(
√

ht; θ) +
√

htεt, (6.2)

ht+∆t = α0 + α1htε
2
t + β1ht (6.3)

where θ is the parameter set of random variable εt and κ(
√

ht; θ) is the cumulant gener-

ating function of εt. εt = Zt−µZ

σZ
has a standardized distribution, i.e. ε

d∼ (0, 1), and Zt is

an infinitely divisible random variable with mean µZ and variance σ2
Z.

Note that the drift µt can be rewritten as

µt = r + µt − r

= r +
µt − r√

ht

√
ht

∆t

∆t

= r +
λ

∆t

√
ht (6.4)

where λ = µt−r√
ht

∆t is assumed to be constant. λ is defined as the risk premium per

unit time. The risk premium is the expected return above the risk free rate per unit of

volatility.

Hence, our model can be specified as

log
St

St−∆t

= r∆t + λ
√

ht − κ(
√

ht; θ) +
√

htεt. (6.5)

Taking the expectation of St conditional on the history up until time t−∆t, yields

EP[e−rtSt|Ft−∆t] = EP[e−rtSt−∆te
r∆t+λ

√
ht−κ(

√
ht;θ)+

√
htεt|Ft−∆t]

= St−∆te
−r(t−∆t)+λ

√
ht−κ(

√
ht;θ)EP[e

√
htεt|Ft−∆t]

= St−∆te
−r(t−∆t)+λ

√
ht−κ(

√
ht;θ)eκ(

√
ht;θ)

= St−∆te
−r(t−∆t)+λ

√
ht . (6.6)
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We see that the discounted stock price process e−rtSt is not a martingale.

We now apply the following transformation in equation (6.5),

ξt = εt + λ (6.7)

and let Q be a measure such that ξt = εt+λ
d∼ (0, 1) and such that measure Q is equivalent

to measure P. In the case where measure P generates a NIG or Meixner distribution, we

will show that such a measure Q exists and further more generates respectively a NIG

or Meixner distribution (see Appendix 6.A.1). Note that ξt
d∼ (λ, 1) under measure P.

Now substituting (6.7) into (6.2) and (6.3) yields,

St = St−∆t exp
(
r∆t− κ(

√
ht; θ) +

√
htξt

)
(6.8)

ht+∆t = α0 + α1ht(ξt − λ)2 + β1ht (6.9)

Then under Q, λ = 0 in equation (6.5), and it follows from (6.6) after replacing P by

Q and λ by 0 that e−rtSt is a martingale as required.

This model looks similar to that of the Gaussian-GARCH model. However, there

is one more important distinction to point out that can not be seen explicitly above.

The inclusion of the term κ(
√

ht; θ) creates a restriction on the parameters θ and/or ht,

since κ(
√

ht; θ) must be real. κ(
√

ht; θ) contains a function u(
√

ht; θ) which is complex

for certain combinations of values of θ and/or ht. Hence, we incorporate additional

restrictions on θ and/or ht. These restrictions are dependent on the particular distribution

chosen for the innovation εt.

For instance, let Zt
d∼ NIG(α, β, δ). Then using equation (4.10) we have

κ(
√

ht; θ) = −µZ

σZ

√
ht + κZt(

√
ht

σZ

; θ)

= −µZ

σZ

√
ht + δ

(√
α2 − β2 −

√
α2 − (β +

√
ht/σZ)2

)
(6.10)
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where θ = (α, β, δ) and µZ and σZ are given by (4.4) and (4.5) respectively. It follows

that εt = Zt−µZ

σZ
follows a standardized NIG distribution, i.e. εt

d∼ std NIG(α, β, δ). For

(6.10) to be real we require that,

|β| ≤ α and |β +
√

ht/σZ| ≤ α

⇔ −α ≤ β ≤ α −α− β ≤ √
ht/σZ ≤ α− β

⇔ −(α + β) ≤ 0 ≤ α− β −σZ(α + β) ≤ √
ht ≤ σZ(α− β)

The first restriction and the fact that σZ > 0 implies that, the lower bound and the upper

bound of the second restriction are always negative and positive respectively. Now since

ht ≥ 0, we get the following restriction for ht

0 ≤ ht ≤ σ2
Z(α− β)2.

We see that for the NIG distribution we are required to cap the value of ht. We will

denote this cap value by g(θ). Hence, for the NIG distribution g(θ) is given by

g(θ) = σ2
Z(α− β)2. (6.11)

For the Meixner distribution, the incorporation of the additional restrictions on θ

and/or ht are of the same form as the NIG distribution, i.e. we are also required to cap

ht when Zt
d∼ Meixner(α, β, δ) (see Section 6.2.2). Our two Lévy-GARCH models, where

Zt is a NIG or Meixner distribution, can be generally specified as:

St = St−∆t exp
(
r∆t + λ

√
ht − κ(

√
ht; θ) +

√
htεt

)
(6.12)

ht+∆t = (α0 + α1htε
2
t + β1ht) ∧ g(θ). (6.13)

The risk-neutral Lévy-GARCH models are given by

St = St−∆t exp
(
r∆t− κ(

√
ht; θ) +

√
htξt

)
(6.14)

ht+∆t = (α0 + α1ht(ξt − λ)2 + β1ht) ∧ g(θ). (6.15)
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The effect of the restriction g(θ) will be discussed in the next chapter with the pricing

results.

Remark. This model has the following properties:

• The process ht+∆t is Ft measurable and thus predictable.

• The expected price increment over one period conditional on the history, E[St+∆t

St
|Ft],

equals exp(r∆t+λ
√

ht) and thus agrees with the interpretation that λ is the market

price of risk.

• When εt follows a standard normal distribution for all t ∈ N, the model is that

introduced by Duan [21] (see Chapter 2).

• If, in addition, the coefficients α1 and β1 are zero then the model reduces to the

Black-Scholes discrete time model (see Black and Scholes [8] and Merton [39]).

Hence, this ensures the homoskedastic lognormal Black-Scholes model as a special

case of the Lévy GARCH models.

Proposition 6.2.1 Under the risk-neutral measure Q, if |λ| <
√

(1− α1 − β1)/α1, then

(i) The stationary variance of
√

htξt equals α0

1−(1+λ2)α1−β1
.

(ii)
√

htξt is leptokurtic.

(iii) COVQ(ht+∆t, ξt) = (s−2λ)α0α1

1−(1+λ2)α1−β1

where s denotes the skewness coefficient of the distribution ξt.

Proof: See Appendix 6.A.2.

We see that the stationary variance of the Lévy-GARCH return process is equal to
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that of the normal GARCH return process. Also, the conditional variance, under risk-

neutralization, is correlated with the lagged asset return for s 6= 2λ. However, unlike the

normal GARCH return process, the correlation is positive for s > 2λ and negative for

s < 2λ.

As in the Gaussian-GARCH model, the pricing of European options requires aggre-

gating single period asset returns to obtain a random terminal asset price at some future

date. From (6.8) we see that the terminal asset price, ST , can be expressed in terms of

the initial asset price, S0, by

ST = S0 exp

[
rT −

∑
i

κ(
√

hi∆t; θ) +
∑

i

√
hi∆tξi∆t

]
(6.16)

where i = 1, 2, ..., n and n∆t = T .

6.2.1 NIG-GARCH Model

Let Zt
d∼ NIG(α, β, δ). Then, using equations (6.10) and (6.11), the stock price process

is given by

St = St−∆t exp

(
r∆t +

µZ

σZ

√
ht − δ

[√
α2 − β2 −

√
α2 − (β +

√
ht/σZ)2

])

· exp

(√
ht(εt + λ)

)

and the variance process follows a restricted-GARCH(1,1) process,

ht+∆t = (α0 + α1htε
2
t + β1ht) ∧ σ2

Z(α− β)2.

6.2.1.1 The NIG-GARCH Risk-Neutral Model

The risk neutral stock price process and volatility process are given by

St = St−∆t exp

(
r∆t +

µZ

σZ

√
ht − δ

[√
α2 − β2 −

√
α2 − (β +

√
ht/σZ)2

] )

· exp

(√
htξt

)
, (6.17)

ht+∆t = (α0 + α1ht(ξt − λ)2 + β1ht) ∧ σ2
Z(α− β)2, (6.18)
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where ξt
d∼ std NIG(α, β, δ). We will call this the NIG-GARCH (risk neutral) model.
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Figure 6.1: Simulated NIG-GARCH stock path.
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Figure 6.2: Simulated NIG-GARCH variance path.

Figures 6.1 and 6.2 plot a single realization of the NIG-GARCH model. The param-

eter values are given by (α0, α1, β1, λ) = (1.524x10−5, 0.188, 0.716, 0.007), (α, β, δ) =

(1.8, 0.189, 1.62), S0 = 100 and r = 0. For this parameter set g(θ) = 2.3769. Hence,

looking at Figure 6.2, we see that the restriction g(θ) plays no role in this single real-

ization. The impact of the restriction g(θ) in the empirical analysis will be looked at in

Chapter 7.
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6.2.2 Meixner-GARCH Model

Let Zt
d∼ Meixner(α, β, δ). Then, using equation (5.8) we have

κ(
√

ht; θ) = −µZ

σZ

√
ht + 2δ

[
log(cos(β/2))− log(cos((α

√
ht/σZ + β)/2))

]
(6.19)

where θ = (α, β, δ), µZ and σZ are given by (5.3) and (5.4) respectively. It follows that

εt = Zt−µZ

σZ
follows a standardized Meixner distribution, i.e. εt

d∼ stdMeixner(α, β, δ). For

(6.19) to be real we require that

∣∣∣∣
β

2

∣∣∣∣ ≤
π

2
and

∣∣∣∣α
√

ht/σZ+β
2

∣∣∣∣ ≤ π
2

⇔ −π ≤ β ≤ π −π − β ≤ α
√

ht/σZ ≤ π − β

⇔ −(π + β) ≤ 0 ≤ π − β −σZ(π + β)/α ≤ √
ht ≤ σZ(π − β)/α

The first restriction and the fact that σZ > 0 and α > 0 implies that, the lower bound and

the upper bound of the second restriction are always negative and positive respectively.

Now since ht ≥ 0, we get the following restriction for ht

0 ≤ ht ≤ σ2
Z(π − β)2

α2
.

Hence, the restriction g(θ) is given by

g(θ) =
(π − β)2σ2

Z

α2
. (6.20)

Then the stock price process is defined by

St = St−∆t exp

(
r∆t− 2δ

[
log(cos(β/2))− log(cos((α

√
ht/σZ + β)/2))

])

· exp

(
µZ

σZ

√
ht +

√
ht(εt + λ)

)

and the variance process follows a restricted-GARCH(1,1) process,

ht+∆t = (α0 + α1htε
2
t + β1ht) ∧ (π − β)2σ2

Z

α2
.
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6.2.2.1 The Meixner-GARCH Risk-Neutral Model

The risk neutral stock price process and volatility process are given by

St = St−∆t exp

(
r∆t− 2δ

[
log(cos(β/2))− log(cos((α

√
ht/σZ + β)/2))

])

· exp

(
µZ

σZ

√
ht +

√
htξt

)
, (6.21)

ht+∆t = (α0 + α1ht(ξt − λ)2 + β1ht) ∧ (π − β)2σ2
Z

α2
. (6.22)

where ξt
d∼ stdMeixner(α, β, δ). We will call this the Meixner-GARCH (risk neutral)

model.

Figures 6.3 and 6.4 plot a single realization of the Meixner-GARCH model. The pa-

rameter values are given by (α0, α1, β1, λ) = (1.524x10−5, 0.188, 0.716, 0.007), (α, β, δ) =

(1, 0.18, 1), S0 = 100 and r = 0. For this parameter set g(θ) = 0.71. Hence, looking at

Figure 6.4, we see that the restriction g(θ) plays no role in this single realization.
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Figure 6.3: Simulated Meixner-GARCH stock path.
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Figure 6.4: Simulated Meixner-GARCH variance path.
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6.A Appendix

6.A.1 Construction of the Risk Neutral Measure Q

We base our construction of the risk neutral measure Q on the following result, which

gives necessary and sufficient conditions for the equivalence of the distributions for two

infinitely divisible distributions.

Theorem 6.A.1 (Sato [46], Theorem 33.1) Let (X,P) and (X,Q) be two infinitely di-

visible random variables on R with Lévy triplet (γ, σ2, ν) and (γ̃, σ̃2, ν̃) respectively. Then

P and Q are equivalent if and only if the following conditions are satisfied:

(i) σ2 = σ̃2.

(ii) The Lévy measures are equivalent with

∫ ∞

−∞
(eψ(x)/2 − 1)2ν(dx) < ∞, (6.23)

where ψ(x) = log( ν̃(dx)
ν(dx)

).

(iii) If σ = 0 then we must in addition have

γ̃ − γ =

∫ 1

−1

x(ν̃ − ν)dx. (6.24)

Proof: See Sato [46], p. 218 for a proof of this result.

6.A.1.1 NIG Distribution

For the NIG distribution the Lévy triplet under P is given by (see Schoutens [50], p. 59)

σ = 0 (6.25)

γ(β) =
2δα

π

∫ 1

0

sinh(βx)K1(αx)dx (6.26)

ν(β) =
δα

π

exp(βx)K1(α|x|)
|x| . (6.27)
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Proposition 6.A.2 Let X be distributed NIG(α, β, δ) under measure P and NIG(α, β̃, δ)

under measure Q with Lévy triplets (γ(β), 0, ν(β)) and (γ(β̃), 0, ν(β̃)) respectively. Then

P and Q are equivalent measures.

Proof: For convenience we write γ̃ and ν̃ for γ(β̃) and ν(β̃) respectively. We must

show that conditions (ii) and (iii) from Theorem 6.A.1 hold, since condition (i) follows

easy from equation (6.25).

(ii)

ψ(x) = log(
ν̃(dx)

ν(dx)
)

= log

( δα
π

exp(β̃x)K1(α|x|)
|x|

δα
π

exp(βx)K1(α|x|)
|x|

)

= (β̃ − β)x (6.28)

The integral in condition (ii) can be rewritten as

∫ ∞

−∞
(eψ(x)/2 − 1)2ν(dx) =

∫

|x|<1

(eψ(x)/2 − 1)2ν(dx)

+

∫

|x|>1

(eψ(x)/2 − 1)2ν(dx). (6.29)

The second integral in (6.29) is finite since

∫

|x|>1

(eψ(x)/2 − 1)2ν(dx) =

∫

|x|>1

(

√
ν̃(dx)

ν(dx)
− 1)2ν(dx)

=

∫

|x|>1

(
√

ν̃(dx)−
√

ν(dx))2

≤
∫

|x|>1

ν̃(dx) +

∫

|x|>1

ν(dx)

< ∞. (6.30)

Now

∫

|x|<1

(eψ(x)/2 − 1)2ν(dx) =

∫

|x|<1

(e(β̃−β)x/2 − 1)2ν(dx).
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For β̃ 6= β and |x| < 1

(
e(β̃−β)x/2 − 1

)2

=

(
β̃ − β

2
x + O(x2)

)2

=

(
β̃ − β

2

)2

x2 + O(x3)

≤ Cx2.

for some positive constant C. Hence,

∫

|x|<1

(e(β̃−β)x/2 − 1)2ν(dx) ≤ C

∫

|x|<1

x2ν(dx)

< ∞

for all Lévy measures ν.

(iii)

γ̃ − γ =
2δα

π

∫ 1

0

sinh(β̃x)K1(αx)dx− 2δα

π

∫ 1

0

sinh(βx)K1(αx)dx

=
2δα

π

∫ 1

0

[sinh(β̃x)− sinh(βx)]K1(αx)dx

=
δα

π

∫ 1

0

(eβ̃x − e−β̃x − eβx + e−βx)K1(αx)dx

=
δα

π

∫ 1

0

(eβ̃x − eβx)K1(αx)dx− δα

π

∫ 1

0

(e−β̃x − e−βx)K1(αx)dx

=
δα

π

∫ 1

0

(eβ̃x − eβx)K1(α|x|)dx− δα

π

∫ 0

−1

(eβ̃x − eβx)K1(α|x|)dx

=
δα

π

∫ 1

0

(eβ̃x − eβx)
x

|x|K1(α|x|)dx +
δα

π

∫ 0

−1

(eβ̃x − eβx)
x

|x|K1(α|x|)dx

=
δα

π

∫ 1

−1

(eβ̃x − eβx)
x

|x|K1(α|x|)dx

=

∫ 1

−1

x(ν̃ − ν)dx. (6.31)

¥
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6.A.1.2 Meixner Distribution

We use a different form of γ than stated in Schoutens [50]. γ can be calculated as follows:

γ = lim
n→∞

n

∫ 1

−1

xdFn(x), (6.32)

where dFn(x) is a Meixner(α, β, δ/n) distribution (see Marshall [36]). It follows from

(6.32) that

γ(β) = lim
n→∞

n

∫ 1

−1

x
(2 cos(β/2))2δ/n

2απΓ(2δ/n)
exp(βx/α)

∣∣∣∣Γ
(

δ

n
+

ix

α

)∣∣∣∣
2

dx

= lim
n→∞

n

∫ 1

−1

x
(2 cos(β/2))2δ/n

2απΓ(2δ/n + 1)n/2δ
exp(βx/α)

∣∣∣∣Γ
(

δ

n
+

ix

α

)∣∣∣∣
2

dx

=

∫ 1

−1

x
δ

απ
exp(βx/α)

∣∣∣∣Γ
(

ix

α

)∣∣∣∣
2

dx

=

∫ 1

−1

x
δ

απ
exp(βx/α)

πα

x sinh(πx/α)
dx

= δ

∫ 1

−1

exp(βx/α)

sinh(πx/α)
dx. (6.33)

For the Meixner distribution the Lévy triplet under P is given by (see Schoutens [50], p.

63)

σ = 0 (6.34)

γ(β) = δ

∫ 1

−1

exp(βx/α)

sinh(πx/α)
dx (6.35)

ν(β) = δ
exp(βx/α)

x sinh(πx/α)
. (6.36)

Proposition 6.A.3 Let X be distributed Meixner(α, β, δ) under measure P and

Meixner(α, β̃, δ) under measure Q with Lévy triplets (γ(β), 0, ν(β)) and (γ(β̃), 0, ν(β̃))

respectively. Then P and Q are equivalent measures.

Proof: For convenience we write γ̃ and ν̃ for γ(β̃) and ν(β̃) respectively. We must

show that conditions (ii) and (iii) from Theorem 6.A.1 hold, since condition (i) follows

easy from equation (6.34).
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(ii)

ψ(x) = log(
ν̃(dx)

ν(dx)
)

= log

(
δ exp(β̃x/α)

x sinh(πx/α)

δ exp(βx/α)
x sinh(πx/α)

)

=
β̃ − β

α
x. (6.37)

Looking at equations (6.29) and (6.30), we are required to show

∫ 1

−1

(e(β̃−β)x/2α − 1)2ν(dx) < ∞. (6.38)

For β̃ 6= β and |x| < 1

(
e(β̃−β)x/2α − 1

)2

=

(
β̃ − β

2α
x + O(x2)

)2

=

(
β̃ − β

2α

)2

x2 + O(x3)

≤ Cx2.

for some positive constant C. Hence,

∫

|x|<1

(e(β̃−β)x/2α − 1)2ν(dx) ≤ C

∫

|x|<1

x2ν(dx)

< ∞

for all Lévy measures ν.

(iii)

γ̃ − γ = δ

∫ 1

−1

exp(β̃x/α)

sinh(πx/α)
dx− δ

∫ 1

−1

exp(βx/α)

sinh(πx/α)
dx

= δ

∫ 1

−1

exp(β̃x/α)− exp(βx/α)

sinh(πx/α)
dx

= δ

∫ 1

−1

x

x

exp(β̃x/α)− exp(βx/α)

sinh(πx/α)
dx

=

∫ 1

−1

x(ν̃ − ν)dx. (6.39)

¥
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6.A.2 Proof of Proposition 6.2.1

(i) This proof follows that in Appendix 2.A.2 (i).

(ii) Let KURT[ξt] = k. Now,

EQ[h2
t ξ

4
t ] = EQ[E[h2

t ξ
4
t |Ft−∆t]]

= EQ[h2
tE[ξ4

t |Ft−∆t]]

= EQ[h2
tKURT[ξt]]

= kEQ[h2
t ] (6.40)

and

3{EQ[htξ
2
t ]}2 = 3{EQ[E[htξ

2
t |Ft−∆t]]}2

= 3{EQ[htE[ξ2
t |Ft−∆t]]}2

= 3{EQ[ht]}2. (6.41)

We know that

VAR[X] = E[X2]− {E[X]}2 ≥ 0 (6.42)

therefore

E[X2] ≥ {E[X]}2. (6.43)

It then follows that

EQ[h2
t ] ≥ {EQ[ht]}2. (6.44)

Now, since k is always greater than 3, we see that the condition for a leptokurtic

random variable (2.12) is satisfied.
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(iii) Let SKEW[ξt] = s.

COVQ(ht+∆t, ξt) = EQ[ht+∆tξt]− EQ[ht+∆t]EQ[ξt]

= EQ[(α0 + α1ht(ξt − λ)2 + β1ht)ξt]

= EQ[α0ξt + α1ht(ξ
3
t − 2λξ2

t + λ2ξt) + β1htξt]

= α1EQ[htE[ξ3
t − 2λξ2

t + λ2ξt|Ft−∆t]]

= α1λEQ[ht(SKEW[ξt]− 2λ)]

= α1(s− 2λ)EQ[ht]. (6.45)

¥



Chapter 7
Option Pricing

7.1 Introduction

This chapter is devoted to the fitting of times series and the calibration of option prices,

using the GARCH models discussed in previous chapters. We discuss aspects such as

parameter estimation, calibration and goodness of fit. We give a brief description of the

data. This chapter is then concluded with a presentation of the results based on the data

analysis.

7.2 European Options

The importance of derivatives in the world of finance is forever increasing. Many different

types of derivatives exist, these include forwards, options and swaps. Options are traded

both on exchanges and in the over-the-counter market. Two basic types of option exist,

namely a call option and a put option. A call (put) option gives the holder the right to buy

(sell) the underlying. Once this has been distinguished, options are further categorized

by other aspects, including the strike price, time to maturity, exercise times and payoff.

European call (put) options give the holder the right to buy (sell) the underlying for

a given price (the strike price) when the option matures on a specified date, known as the

expiry date. European options are the simplest of options. The payoff of a European call

option, with strike price K, is given by:

payoff =

{
ST −K if ST > K

0 otherwise,
(7.1)

69
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this can be written more concisely as (ST −K)+.

7.2.1 Pricing Formula for European Call Options

Let Ct(K, T ) denote the value (price) of a European call option, with strike K and ma-

turity T , at time t. For a European call option the value, Ct(K,T ), is given by the

discounted expectation of the payoff under the risk-neutral measure Q (see Delbaen and

Schachermayer [20]).

Ct(K, T ) = exp{−r(T − t)}EQ
[

max{ST −K, 0}
]
, (7.2)

where r is the risk free interest rate.

Since no analytical formulas exist for the Gaussian-GARCH, NIG-GARCH and Meixner-

GARCH option pricing models, the expectation in equation (7.2) is calculated using Monte

Carlo simulation.

7.3 Parameter Estimation

In select cases it is an easy task to decide how to estimate a parameter and often intuition

can lead us to good parameter estimates. However in complicated models, such as the

option pricing models we have discussed, we need a more theoretical approach in esti-

mating parameters. Methods of estimating parameters include the method of moments

and maximum likelihood. Estimating parameters using maximum likelihood is by far the

most popular technique and we also use it in our estimation procedure. We employ a

two part parameter estimation procedure. Firstly we calculate the maximum likelihood

estimates on the stock price series and then use the maximum likelihood estimates as

initial estimates in our calibration procedure on option data. It is relevant to use the real

world model to get initial parameter estimates because, when εt has a NIG or Meixner

distribution, the distribution of ξt falls into the same class of distributions as εt (see Chap-



Chapter 7 Parameter Estimation 71

ter 6). Calibration entails matching an option pricing model to observed market prices

by minimizing the root mean square error (see Section 7.3.3.1) between the market and

the model prices.

7.3.1 Maximum Likelihood Estimators

Before defining the concept of maximum likelihood estimators, we need the following

definition:

Definition 7.3.1 (Likelihood function) Let x1, x2, ..., xn be an i.i.d. sample from a

population with pdf f(x; θ), where θ = (θ1, ..., θk). Then the likelihood function is defined

by

L(θ;x) = L(θ1, ..., θk; x1, ..., xn) =
n∏

i=1

f(xi; θ1, ..., θk) (7.3)

where x = {x1, x2, ..., xn}.

We now define the concept of maximum likelihood estimators.

Definition 7.3.2 (Maximum likelihood estimators) For each sample point x, let

θ̂(x) be a parameter value at which L(θ; x) attains its maximum as a function of θ,

with x held fixed. A maximum likelihood estimator of the parameter θ based on a sample

x = (x1, x2, ..., xn) is θ̂(x), where

θ̂(x) = arg max
θ

L(θ|x) (7.4)

However, in many cases it is easier to use the natural log of the likelihood function, defined

as

l(θ;x) = log L(θ;x) =
n∑

i=1

log f(xi; θ1, ..., θk). (7.5)
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Since the log function is monotone increasing, maximizing the likelihood function is equiv-

alent to maximizing the log-likelihood function. Hence we have the following relationship

θ̂(x) = arg max
θ

L(θ;x) = arg max
θ

l(θ;x). (7.6)

The abbreviation MLE (maximum likelihood estimate) is used when referring to the re-

alized value of the estimator. Intuitively, the MLE can be defined as the parameter value

for which the observed sample is most likely. Also note, by the construction of the max-

imum likelihood estimator, the range of the MLE coincides with that of the parameter.

Solving for the MLE analytically is impossible except in some special cases, for example

the normal distribution. Often, in solving for the maximum likelihood estimates, it is

best to rely on a highly efficient optimization package. In fact, this is one of the most

important features of maximum likelihood estimation. If the likelihood function can be

expressed explicitly, then there is hope of maximizing the likelihood function numerically.

However a drawback to using optimization packages is that one generally requires an ini-

tial estimate for the MLEs and if the likelihood function has multiple local maxima, the

MLEs are often dependent on the initial starting values.

Let yi∆t = log Si∆t

S(i−1)∆t
for i = 1, ..., n., denote the log returns. Then our ’real world’

model is given by

yi∆t = r∆t + λ
√

ht − κ(
√

ht; θ) +
√

hi∆tεi∆t, (7.7)

where εi∆t
d∼ (0, 1). Then, using equation (7.5), the log-likelihood functions are given by:

For εi∆t
d∼ N(0, 1)

l(θ;y) = −1

2

n∑
i=1

[(
yi∆t − r∆t− λ

√
hi∆t + 1

2
hi∆t√

hi∆t

)2

+ log hi∆t

]
. (7.8)

For εi∆t = Zi∆t−µZ

σZ
, where Zi∆t

d∼ NIG(α, β, δ) and µZ and σZ are given by (4.4) and (4.5)
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respectively,

l(θ;y) =
n∑

i=1

log fNIG

(
yi∆t − r∆t− λ

√
hi∆t + κ(

√
hi∆t/σZ; θ)√

hi∆t/σZ

; θ

)

−1

2

n∑
i=1

log
hi∆t

σ2
Z

. (7.9)

For εi∆t = Zi∆t−µZ

σZ
, where Zi∆t

d∼ Meixner(α, β, δ) and µZ and σZ are given by (5.3) and

(5.4) respectively,

l(θ;y) =
n∑

i=1

log fMeixner

(
yi∆t − r∆t− λ

√
hi∆t + κ(

√
hi∆t/σZ; θ)√

hi∆t/σZ

; θ

)

−1

2

n∑
i=1

log
hi∆t

σ2
Z

. (7.10)

The likelihood function is dependant on the choice of the starting values ε0 and h0.

However, for large samples the impact of the starting values on the estimation results is

negligible. Therefore, we set ε0 = 0 and h0 equal to the stationary variance of the return

process
√

hi∆tεi∆t, i.e. h0 = α0

1−(1+λ2)α1−β1
.

Maximizing the likelihood functions (7.8), (7.9) and (7.10) leads to estimates θ̂(y) for

the unknown model parameters θ. From the estimates θ̂(y) we can obtain the time series

of empirical residuals ε̂i∆t for i = 1, ..., n. The empirical residuals are calculated using the

following equation

ε̂i∆t =
yi∆t − r∆t− λ

√
ĥi∆t + κ(

√
ĥi∆t; θ̂)√

ĥi∆t

(7.11)

where ĥi∆t is obtained from

ĥi∆tα̂0 + α̂1hi∆tε̂
2
i∆t + β̂1ĥi∆t (7.12)

and ε̂0 = ε0 and ĥ0 = h0.

7.3.2 Goodness of Fit

To assess the goodness of fit of the Gaussian-GARCH and Lévy-GARCH models to a

series of asset closing prices, we use the chi-squared test (χ2 test).
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Define the null hypotheses as follows:

Hnormal
0 : εi∆t follows the standard normal distribution.

HNIG
0 : εi∆t follows the standard normal inverse Gaussian distribution.

HMeixner
0 : εi∆t follows the standard Meixner distribution.

7.3.2.1 The χ2 Test

A general method for comparing fact with theory, namely the chi-squared test or χ2 test,

was devised by Karl Pearson (1857 - 1936). The χ2 test is the most well known test for

the goodness of fit problem.

Let A1, A2, ..., Am denote the division of the sample space into m cells of equal width,

for a random sample x. Let θ̂0 denote the MLE of the parameter θ of a distribution F

under the null hypothesis. Then the expected number of observations in the ith cell, êi,

is given by

êi = np̂i, i = 1, 2, ..., m, (7.13)

where n denotes the sample size and p̂i, for i = 1, 2, ..., m, is given by

p̂i = P [X ∈ Ai] = F (Ai; θ̂0)− F (Ai−1; θ̂0), (7.14)

Let oi, for i = 1, 2, ...m, denote the number of observations from a random sample x

falling into the ith cell, Ai. Then the χ2 statistic is given by

χ̂2 =
m∑

i=1

(oi − êi)
2

êi

, (7.15)

and if n is large, χ̂2 has approximately a chi-squared distribution with (m−1−k) degrees

of freedom where k is the number of parameters in the null distribution that we must

estimate. We therefore reject H0 at significance level α if

χ̂2 > χ2
m−1−k;1−α (7.16)
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where χ2
m−1−k;1−α denotes the 100(1−α)th percentile of the chi-squared distribution with

(m− 1− k) degrees of freedom.

7.3.3 Calibration

We calibrate our different models to a given set of option data. In the figures we denote

the market prices by a circle (©), the in-sample calibrated prices by plus sign (+) and

the out-of-sample predictions by a star (?). Our goal is to get the plus signs and stars as

close to the circles as possible.

Except in the calculation of initial parameter estimates under the real world model,

we do not explicitly use any historical data in the calibration process. All necessary in-

formation is contained in the option prices, which are observed in the market.

Option prices, from the GARCH models, are calculated using Monte Carlo simulation

and equation (7.2). We simulate n stock paths, using the risk neutral stock path processes,

and estimate the expectation by

1

n

n∑
i=1

max{Si
T −K, 0} (7.17)

where i,∀i = 1, 2, ..., n., denotes the ith stock path .

7.3.3.1 RMSE

For an estimate of the goodness of calibration, we calculate the root-mean-square error

(RMSE):

RMSE =

√√√√ ∑
options

(market price - model price)2

number of options
(7.18)

In the calibration procedure we estimate the model parameters by minimizing the root-

mean-square error (RMSE) between the model and market prices.

In-sample calibrations and out-of-sample predictions are calculated on the option price



76 Option Pricing Chapter 7

data. In-sample calibrations refers to the procedure discussed above whereby the param-

eters are estimated through the minimization of some criteria, in our case the RMSE.

Out-of-sample refers to the predicting of the option prices using the parameters esti-

mated by the in-sample calibration or maximum likelihood procedure. We then calculate

the RMSE for these predicted prices.

7.4 Data

7.4.1 S&P 500

The S&P 500 data set consists of both the Index series and a set of option prices.

The Index series consists of the closing prices from the 2nd of January 1990 till the

18th of April 2002 (see Figure 7.1). The option set consists of 75 mid-prices of a set of

European call options on the S&P 500 Index (see Figure 7.2) at the close of the market on

18 April 2002. On this date the S&P 500 Index closed at 1124.47. The risk-free interest

rate is given as 0.7%. For the exact option prices and their maturities see Table 7.8 in

Appendix 7.A.1.
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Figure 7.1: S&P 500 Index Series, 2 January 1990 - 18 April 2002.
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Figure 7.2: S&P 500 Option prices.

7.4.2 S&P 100

The S&P 100 data set also consists of both the Index series and a set of option prices.

The Index series consists of the closing prices from the 4th of March 1998 till the 4th

of March 2008 (see Figure 7.3). The option set consists of mid-prices of a set of European

call options on the S&P 100 Index (see Figure 7.4) at the close of the market on 4 March

2008. On this date the S&P 100 Index closed at 611.15. For the risk-free interest rate we

used a zero coupon swap yield curve. For the exact option prices and their maturities see

Tables 7.9 and 7.10 in Appendix 7.A.2.

Unlike the S&P 500 data, the risk-free interest rate we use in the S&P 100 data analysis

is nonconstant. We thus replace r in our GARCH models by rt. It then follows that the

stock price processes under measure P and Q are given by

St = St−∆t exp
(
rt∆t + λ

√
ht − κ(

√
ht; θ) +

√
htεt

)
(7.19)
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and

St = St−∆t exp
(
rt∆t− κ(

√
ht; θ) +

√
htξt

)
(7.20)

respectively. The option price at time t with strike K and maturity T (see Equation (7.2))

then becomes

Ct(K, T ) = exp{−
T∑
t

rt∆t}EQ
[

max{ST −K, 0}
]
. (7.21)
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Figure 7.3: S&P 100 Index Series, 4 March 1998 - 4 March 2008.
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Figure 7.4: S&P 100 Option prices.

7.5 Results

The maximum likelihood estimates for the S&P 500 and S&P100 Index series are given

in Tables 7.1 and 7.2 respectively. The χ2 statistics and the respective p-values for the

two data sets are given in Table 7.3. The chi-squared statistic was calculated on the

range of five standard deviations either side of the mean or [-5,5] since the innovations are

distributed with zero mean and standard deviation one. This range was then partitioned

into 80 equal intervals.

Looking at the results in Table 7.3, we see that the hypothesis that εi∆t is distributed

standard normal is rejected for the S&P 500 and S&P 100 index series. At a 5% sig-

nificance level, we were unable to reject the hypotheses that εi∆t has a NIG or Meixner

distribution for both data sets. With p-values of 0.75 and 0.69 respectively, we see that

the NIG and Meixner distributions fit the innovations extremely well in the S&P 100

index. This is evident in the Q-Q plots (see Figures 7.5, 7.6 and 7.7).
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Model
Parameters Gaussian-GARCH NIG-GARCH Meixner-GARCH

α0 5.8135x10−7 1.0225x10−6 7.6620x10−7

α1 0.0578 0.0367 0.0640
β1 0.9376 0.9063 0.9233
α - 1.4970 1.3376
β - -0.3590 -0.5524
δ - 2.6038 1.0159
λ 0.0700 0.0578 0.0066

Log-Likelihood 13118.2315 10363.2894 10361.8063

Table 7.1: S&P 500 Maximum Likelihood Estimates.

Model
Parameters Gaussian-GARCH NIG-GARCH Meixner-GARCH

α0 9.9533x10−7 9.6983x10−7 6.9593x10−7

α1 0.0669 0.1048 0.1100
β1 0.9254 0.8813 0.8868
α - 4.3854 0.5105
β - -1.3997 -0.7752
δ - 2.1590 3.4219
λ 0.0440 0.0025 0.0001

Log-Likelihood 10240.1408 8011.3395 8009.6526

Table 7.2: S&P 100 Maximum Likelihood Estimates.

Data Model χ2 p-value
Gaussian-GARCH 7290.19 0

S&P 500 NIG-GARCH 94.80 0.094
Meixner-GARCH 93.66 0.095
Gaussian-GARCH 3950.93 0

S&P 100 NIG-GARCH 68.26 0.751
Meixner-GARCH 71.19 0.694

Table 7.3: Goodness of Fit Statistics.
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Figure 7.5: Gaussian-GARCH model: Q-Q plot of S&P 100 residuals.
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Figure 7.6: NIG-GARCH model: Q-Q plot of S&P 100 residuals.
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Figure 7.7: Meixner-GARCH model: Q-Q plot of S&P 100 residuals.

From Figure 7.5 we see that the residuals from the Gaussian-GARCH model do not

fit the normal distribution very well, especially in the left tail. In Figures 7.6 and 7.7 we

see that the residuals for the NIG-GARCH and Meixner-GARCH models, except for a

few points in the left tail, are close to their model-implied distributions.

The calibration results include the results for both the in-sample and out-of-sample

tests. The S&P 500 in-sample test was calibrated on the first four maturities for all

strikes (43 options), while the S&P 100 in-sample test was calibrated on the first three

maturities for all strikes (117 options). The out-of-sample predictions where calculated

on the remaining options. Tables 7.4 and 7.5 give the RMSE for the S&P 500 and S&P

100 options respectively. The S&P 500 and S&P 100 calibrated parameters are given in

Tables 7.6 and 7.7 respectively.

The first couple of maturities were chosen for the in-sample calibrations. This was

done so that the out-of-sample predictions would be a forecast of long dated options and

future options that would become available in the market.
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Models RMSE
Calibrated In-sample Out-of-sample

Black-Scholes 3.60 7.14
Gaussian-GARCH 2.83 6.35

NIG-GARCH 1.07 4.05
Meixner-GARCH 1.07 3.21

Table 7.4: S&P 500 Calibration Results: Measures of fit.

Models RMSE
Calibrated In-sample Out-of-sample

Black-Scholes 2.93 8.98
Gaussian-GARCH 2.81 7.39

NIG-GARCH 1.67 6.22
Meixner-GARCH 1.84 6.73

Table 7.5: S&P 100 Calibration Results: Measures of fit.

We see, from Tables 7.4 and 7.5, that the NIG-GARCH and Meixner-GARCH mod-

els outperform the Gaussian-GARCH model in both the in-sample calibrations as well

as out-of-sample predictions. The in-sample RMSE for the Lévy Models is significantly

lower than the Gaussian-GARCH models.

Model
Parameters Gaussian-GARCH NIG-GARCH Meixner-GARCH

α0 5.4390x10−7 1.06x10−7 3.5931x10−7

α1 0.0679 0.0063 0.0014
β1 0.9271 0.9907 0.9951
α - 0.2251 7.9649
β - -0.0301 -0.1800
δ - 6.4955 0.8111
λ 5.2981x10−4 3.5428x10−8 7.3532x10−8

Table 7.6: S&P 500 Calibration Results: Parameters.
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Model
Parameters Gaussian-GARCH NIG-GARCH Meixner-GARCH

α0 1.4977x10−6 1.7236x10−6 9.9509x10−7

α1 0.0430 0.0162 0.0273
β1 0.9515 0.9807 0.9706
α - 1.7439 0.5609
β - -0.2066 -0.6237
δ - 3.6055 4.0280
λ 2.5659x10−4 3.6055x10−6 3.0736x10−6

Table 7.7: S&P 100 Calibration Results: Parameters.

Figures 7.8, 7.9 and 7.10 show the market prices of the S&P 500 options with the cali-

brated option prices superimposed for the Gaussian-GARCH, NIG-GARCH and Meixner-

GARCH models respectively.
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Figure 7.8: S&P 500 Gaussian-GARCH Calibration.
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Figure 7.9: S&P 500 NIG-GARCH Calibration.
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Figure 7.10: S&P 500 Meixner-GARCH Calibration.
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Figure 7.11: S&P 500 Comparison of out-of-sample prices.

Figure 7.11 plots the out-of-sample prices for the Black-Scholes, Gaussian-GARCH

and NIG-GARCH models against the market prices. We left the Meixner-GARCH model

prices out so that the figure is not cluttered. We can clearly see that the NIG-GARCH

outperforms the Gaussian-GARCH and Black-Scholes models in predicting the market

prices. This is most evident in the out of the money options, were the Black-Scholes and

Gaussian-GARCH models greatly undervalue the option prices.

Figures 7.12, 7.13 and 7.14 plot the market prices of the S&P 100 options with the cali-

brated option prices superimposed for the Gaussian-GARCH, NIG-GARCH and Meixner-

GARCH models respectively. Since the S&P 100 option prices are congested (see Figure

7.4) only the options with strikes between $550 and $750 are plotted. We see that the

Lévy GARCH models provide better fits than the Gaussian-GARCH model.
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Figure 7.12: S&P 100 Gaussian-GARCH Calibration.
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Figure 7.13: S&P 100 NIG-GARCH Calibration.
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Figure 7.14: S&P 100 Meixner-GARCH Calibration.
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Figure 7.15: S&P 100 Comparison of out-of-sample prices.
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Figure 7.15 plots the out-of-sample predictions for the Gaussian-GARCH, NIG-GARCH

and Meixner-GARCH models against the market prices. Here we see, like the S&P 500 op-

tions, that the Lévy models outperform the Gaussian-GARCH model. The NIG-GARCH

and Meixner-GARCH provide very similar predictions for the market option prices.

7.5.1 Impact of the restriction g(θ)

In the empirical analysis, not a single instance occurred where the simulated squared

volatility process in the NIG-GARCH and Meixner-GARCH models reached the cap

value, g(θ), for both the S&P 500’s and S&P 100’s maximum likelihood estimates and

the calibrated parameters. Hence, the additional restriction had no impact in the results

obtained for these two data sets. Whether or not this restriction will influence the results

for other data sets is not known.
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7.A Appendix

7.A.1 S&P 500 Data

Strike May June Sep. Dec. March June Dec.
2002 2002 2002 2002 2003 2003 2003

975 161.60 173.30
995 144.80 157.00 182.10

1025 120.10 133.10 146.50
1050 84.50 100.70 114.80 143.00 171.40
1075 64.30 82.50 97.60
1090 43.10
1100 35.60 65.50 81.20 96.20 111.30 140.40
1110 39.50
1120 22.90 33.50
1125 20.20 30.70 51.00 66.90 81.70 97.00
1130 28.00
1135 25.60 45.50
1140 13.30 23.20 58.90
1150 19.10 38.20 53.90 68.30 83.30 112.80
1160 15.30
1170 12.10
1175 10.90 27.70 42.50 56.60 99.80
1200 19.60 33.00 46.10 60.90
1225 13.20 24.90 36.90 49.80
1250 18.30 29.30 41.20 66.90
1275 13.20 22.50

Table 7.8: S&P 500 Option Data.
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7.A.2 S&P 100 Data

Strike 22 March 19 April 17 May 19 June 20 Sep. 20 Dec. 19 Dec.
2008 2008 2008 2008 2008 2008 2009

400 217.80
420 199.40
440 181.30 189.60
460 163.60
480 135.80 136.70 138.40 142.70 146.00 158.40
485 130.20 130.90
490 125.20 126.00 127.20
495 120.20
500 115.20 116.40 117.80 120.20 125.40 143.50
505 110.00 111.50
510 106.80 108.60
515 100.20 102.00
520 95.30 97.30 99.50 102.40 108.70 114.00 129.30
525 90.30 92.60
530 85.30 88.00
535 80.40
540 78.80 81.90 85.40 92.90 98.70 115.00
545 70.60 74.30
550 65.80 69.90 73.40
555 61.00 65.50
560 56.30 61.30 65.10 69.40 77.70 84.30
565 51.60
570 52.90 57.20
575 42.60 48.90
580 38.20 45.00 49.60 70.80 90.40
585 34.00 41.20
590 30.00 37.50
595 26.10 33.90
600 22.50 30.50 35.70 40.80 50.70 58.10 78.80
605 19.05 27.20

Table 7.9: S&P 100 Option Data (Part 1).
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Strike 22 March 19 April 17 May 19 June 20 Sep. 20 Dec. 19 Dec.
2008 2008 2008 2008 2008 2008 2009

610 15.90 29.40
615 21.05
620 10.15 18.35 23.60 28.90 39.00 67.90
625 7.90 15.75
630 5.90 13.30 18.45
635 4.35 11.20
640 3.00 14.00 18.95 28.80 36.40 57.90
645 7.45
650 1.30 5.95
655 0.88 4.65
660 0.57 3.65 7.15 11.20 20.25 27.50 48.80
665 0.38 2.75
670 0.25 4.75
675 1.40
680 0.13 0.88 2.95 5.85 13.50 20.15
685 0.08 0.65
690 0.15 0.45 1.70
695 0.15 0.38
700 0.05 0.35 0.95 14.20 33.40
705 0.05 0.50
710 0.30 0.28 0.55
715 0.30
720 0.35 0.95 4.85 9.45 27.10
725 0.30
730 0.10 0.50
740 0.30 0.50 0.28 0.50 2.50 21.60
750 0.30
760 0.30 0.50 0.50 1.15 17.05
780 0.30 0.50 0.50 0.50 0.55 2.10 13.20
800 0.50 0.50 1.15

Table 7.10: S&P 100 Option Data (Part 2).



Summary and Conclusion

Duan [21] proposed the first option pricing model which modeled volatility using a

GARCH process. In this dissertation we have explored an extension of Duan’s [21]

GARCH option pricing model. This extension allowed us to drop the assumption of

lognormal returns. We replaced the assumption of normality by proposing Lévy process

innovations. These models were aptly named Lévy-GARCH option pricing models. More

specifically, the normal inverse Gaussian and Meixner distributions were proposed. The

main advantage of the models we proposed was that they allowed the daily conditional

logarithmic returns to be heavy tailed and skewed. These GARCH models (both Duan’s

and the Lévy models) are able to capture another stylized fact of financial data, namely

volatility clustering. A disadvantage of the Lévy-GARCH models was the necessity of

incorporating an additional restriction on the evolution of the squared volatility. For the

NIG and Meixner distributions, the additional restriction required us to cap the squared

volatility process.

The normal inverse Gaussian and Meixner distributions were shown to be acceptable

candidates to govern the innovation process. Both distributions can be skewed, either

positively or negatively, and have kurtosis greater than that of the normal distribution.

These distributions still allow for desirable properties of Duan’s GARCH option pricing

model to persist. The normal inverse Gaussian and Meixner innovations were standardized

so that the innovation process had an equivalent mean and variance to the Gaussian-

GARCH’s innovation process. This allowed for direct comparisons to Duan’s Gaussian-

93



94 Summary and Conclusion

GARCH model.

In addition, we were able to show that an equivalent martingale measure for the NIG

or Meixner distribution exists and furthermore that the equivalent martingale measure

generates respectively a NIG or Meixner distribution.

We proposed a new method to generate random numbers from a Meixner distribution.

This method is based on the rejection method discussed in Ross [43]. Using the NIG

distribution as a basis, we matched the first three moments of the Meixner and NIG

distributions so that the distributions were as ’close’ as possible. However, matching the

moments is not always possible. In the cases where the moments are not matched, we used

a transform of the Meixner parameters to get the NIG parameters. A brief justification

was given on the choice of transformation used. We showed, in a simulation study, that

the rejection method was significantly more efficient, irrespective of whether the moments

can or cannot be matched, than the inverse transform method.

In our empirical analysis we used data on the S&P 500 and S&P 100 index series as

well as a set of European options on each index. Empirical tests on the ability of the

GARCH models to price options were provided.

Modeling the innovations with the NIG and Meixner distributions significantly im-

proved the goodness of fit statistics. Furthermore, the χ2 test rejected the hypothesis

that the innovations are normally distributed but did not reject the hypothesis that the

innovations are normal inverse Gaussian or Meixner distributed.

The Lévy GARCH models outperformed the Gaussian-GARCH and Black-Scholes

models in both in-sample calibrations and out-of-sample predictions. Overall, we con-

clude that the Lévy GARCH models outperform the Gaussian-GARCH model in both

fitting the stock price process and in the calibrating and predicting of option prices. The

skewness and semi-heavy tails of the NIG and Meixner innovations seem to generate sig-
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nificant improvements in the empirical results.

The main drawbacks to our model was the necessity of incorporating a restriction

on the squared volatility process and that there was no leverage effect incorporated into

our model. Looking ahead we would try to relieve the Lévy GARCH models of these

drawbacks.

The first drawback is a difficult one to overcome. Due to the complex nature of the

characteristic functions for the distributions we have considered and many other more

general heavy tailed distributions, this restriction must be incorporated. However, our

empirical results were not affected by this restriction as the squared volatility process

never reached the cap value. This could be due to the data sets we used or there is a

remote possibility that this will always be the case irrespective of the data used. This will

be left for further investigation.

As for the leverage effect, it can be incorporated into the model with a modification

in the squared volatility process. We can replace the GARCH(1,1) process by one of

two modified GARCH processes. The first being the nonlinear asymmetric GARCH or

NGARCH model. The NGARCH(1,1) model is given by:

ht = α0 + α1ht(εt − ρ)2 + β1ht. (7.22)

The other option is to incorporate positive innovations and negative innovations separately

through the use of indicator functions. The innovations are then given different weights

in the squared volatility process. This is done as follows:

ht = α0 + α1htε
2
t I(εt > 0) + α2htε

2
t I(εt < 0) + βht. (7.23)

These two variations of the GARCH process add an additional parameter to the model.

The increase in pricing performance of the GARCH models due to the inclusion of this

additional parameter is also left for further investigation.
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