MIACHINE LE f—i NN G

COWURSE ONERNIEM

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Introcduction

the study of self-modifying computer systems that can
acquire new knowledge and improve their own
performance

induction from examples

Bayesian learning

artificial neural networks

instance-based learning

genetic algorithms

reinforcement learning

unsupervised learning

and biologically motivated learning algorithms

Ethem Alpaydin (2010) “Introduction to Machine
Learning”, 2" edition. MIT Press.

Tom Mitchell (1997) “Machine Learning”, McGraw-Hill

Assignments (20%)
Presentation (30%)
Final Examination (50%)

{3 [O Y O Y Y Y 1 1 1 1 B 1 B 1 B 1 I

General Web Resources

—d

Machine Learning at AAAI
Journal of Machine Learning Research

Journal of Machine Learning Gossip (ML humor)

mdl-research.org

Machine Learning Database Repository at UC Irvine
David Aha's list of machine learning resources
Avrim Blum's Machine Learning Page

UCI - Machine Learning Repository

UTCS Machine Learning Research Group

Microsoft Bayesian Network Editor (MSBNx)

Weka 3 -- Machine Learning Software in Java
Journal of Al Research (online text)

C5/Seeb

MLC++, A Machine Learning Library in C++
Web->KB project

DELVE-Data for Evaluating Learning

O M FM FM M & & 8 M M B @

=i — ‘...\ l‘ .
[_.{_}Llf)& _):;H.H’,l.!)i;l,i

Introduction (A1, M1) (A: Alpaydin, M: Mitchell)
Supervised Learning (A2, M7)
Bayesian Learning (A3, A16, M6)
Parametric Methods (A4)
Dimensionality Reduction (A6)
Decision Tree (A9, M3)

Multilayer Perceptron (A1l, M4)
Kernel Machine (A13)

Reinforcement Learning (A18, M13)
Clustering (A7)

Machine Learning Experiments (A19)
Genetic Algorithms (M9)

Relation to Other Courses
(some overlaps)

Neural Networks:

perceptrons, backpropagation, etc.
Pattern analysis:

Bayesian learning, instance-based learning
Artificial intelligence:

decision trees (in some courses)
Statistics:

hypothesis testing
Data Mining:

associations rule and classification
(Relatively) unique to this course:

concept learning, computational learning theory, genetic
algorithms, reinforcement learning, decision trees (in depth

treatment)

(=]

1 [& [E

' wtas € P asa=siee by
| ODICS TOY Kesearcn

Networked Data Classification

Classification of Uncertain Data

Similarity-based Dimension Reduction (NCA, NDA,
DNDA, SDA, ...)

Nearest Neighbor Classification in Non-stationary
environments

Learning Distance Metric
Data Stream Classification
Ensemble Classifiers

o U 0O 0 0 0 O

! 1__)

1ODICS TOF Kesearen

ML Methods in Sensor Network

ML Methods in Control and Robotics

ML Methods in Weather Forecasting

ML Methods in Financial Problems

ML Methods in Filtering (Spam Filtering/Document)
ML Methods in Machine Vision

ML Methods in Biomedical Engineering (Biomedical
Image/Signal Processing)

Machine Learning Overview

@ How can machines (computers) learn?

@ How can machines improve automatically
with experience?

Improved performance

Automated optimization
= New uses of computers

Reduced programming

Insights into human learning and learning
disabilities

Machine Learning Overview

Yet unsolved problem.
= Theoretical insights emerging.
= Practical applications.

» Huge data volume demands ML, and provides
opportunity to ML (data mining).

speech recognition

medical predictions

fraud detection

drive autonomous vehicles (highway and desert)
board games (backgammon, chess)

theoretical bounds on error, number of inputs needed,
etc.

10

Well-Posed Learning Problem

A program is said to learn from
= experience E with respect to
» task T and
» performance measure P,
» Pin T increase with E.

Examples: Playing checkers, Handwriting recognition,
Robot driving, etc.

o “define precisely a class of problems that
encompasses interesting forms of learning, to explore
algorithms that solve such problems, and to
understand the fundamental structure of learning
problems and processes” (Mitchell, 1997)

11

Designing a Learning System

@ direct vs. indirect (learning to play checkers)
= problem of credit assignment

@ degree of control over training examples (teacher-
dependent or learner-generated)

= closeness of trainin example distribution to true
distribution over which P is measured: in many
cases, ML algorithms assume that both
distributions are similar, which may not be the
case in practice.

12

Designing a Learning System

@ Remaining design choices:

= The exact type of knowledge to be learned.
= A representation for this target knowledge.
= A learning mechanism.

13

Design: Target Function

= Type of knowledge to be learned: for example,
we want to learn the best move in a board
game.

=@ Canrepresent as a function (B: board states, M:
moves):

ChooseMove : B 2> M,

but it is hard to learn directly.

14

Design: Target Function

@ Another function (B: board states, R: real
numbers):

V:B2>R,

which gives the evaluation of each board state.
= V (b=win)=100
V (b =lose) = -100
V (b =draw) =0
V (b = otherwise) = V (b0), where b0 is the best final
board state that can be reached from b.
However, this is not efficiently computable, i.e., itis a
nonoperational definition.
Goal of ML is to find an operational description of V ,

however, in practice, an approximation is all we can get.

15

s P P T . E
Design: Representation 1ol

farget Function

Given an ideal target function V , we want to learn an
approximate function V/:

@ Trade-off between rich and parsimonious representation.

m Example: Vas a linear combination of number of pieces,
number of particular relational situations in the board (e.g.,
threatened), etc. (represented as x;) in board configuration b:

n
V(b) =w, + > WX
where w; are the weight values to be ledrhed.

m Advantage of the above representation: reduction of scope
(or dimensionality) from the original problem.

16

Design: Function Approximation
Algorithm
Given board state and true V , we want to learn

the weights w; that specify V

= Start with a set of a large number of input-
target pairs < b, V,,.;,(b) >.

@ Problem: cannot come up with a full set of
<b, Vi..in(b) > pairs.

@ Solution: If V,;,(b) is unknown, set it to the
estimated V of its successor board state:

Vtrain(b) = 17’craim(Succes‘s’or(b))'

17

Design: Adjusting the Weights

Last component in defining a learning algorithm:
adjustment of weights.

@ Want to learn weights w;, that best fit the set of
training samples {< b, V,,.;.(b) >}.

= How to define best fit? Once we have V we can
calculate all V(b) for all b in the training set, and
calculate the error (here MSE)

Z (Vtrain (b) _\7 (b))2

E <b Virain (b)>€training set

@ How to reduce E? | training set |

18

Design: Adjusting the Weights

Until weights converge :
For each training example < b, V b) >
1) Use the current weights to calculate V(b)
2) For each weight w;, update it as
w; € Wi+ N(Viain(d) = V(B))x;,

where n is a small learning rate constant

train(

@ The error V., (b) — V(b) and the input x; both
contribute to the weight update.

19

f‘f 1"*. l Cigi [V@S5

against experts, against self, table
of correct moves, ...

board—> move, board—>value, ...

polynomial, linear
function of small number of features, artificial neural
network, ...

gradient descent, linear
programming, Genetic Algorithm, ...

20

Pars peéc tives on ML:

Hypothesis Space Search
@ Useful to think of ML as searching a very large

space of possible hypotheses to best fit the data
and the learner’s prior knowledge.

= For exam{)leA the hypothesis space for V would be
all possible V' s with different weight assignment.

= Useful concepts regarding hypothesis space
search:
= Size of hypothesis space
= Number of training examples available/needed.
= Confidence in generalizing to new unseen data.

Issues in ML

What algorithms exist for generalizable learners given specific
training set? Requirements for convergence? Which algorithms are
best for a particular domain?

How much training data needed? Bounds on confidence, based on
data size? How long to train?

Use of prior knowledge?
How to choose best training experience? Impact of the choice?
How to reduce ML problem to function approximation?

How can learner alter the representation itself?

22

Classification of Learning
Algorithms
@ Supervised learning: input-target pairs given.

@ Unsupervised learning: only input distribution
is given.

@ Reinforcement learning: sparse reward signal is
given for action based on sensory input;
environment-altering actions.

23

Broader Questions

@ Can machines themselves formulate their own
learning tasks?
= Can they come up with their own representations?
= Can they come up with their own learning strategy?
= Can they come up with their own motivation?
= Can they come up with their own questions/problems?

@ What if the machines are faced with multiple,
possibly conflicting tasks? Can there be a meta
learning algorithm?

@ What if performance is hard to measure (i.e., hard to
quantify, or even worse, subjective)?

24

MIACHINE L EARMNING

N TrTROIDWIE O

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Whay “Learn™ ?

@ Machine learning is programming computers
to optimize a performance criterion using
example data or past experience.

@ There is no need to “learn” to calculate payroll
@ Learning is used when:

Human expertise does not exist (navigating on
Mars),

Humans are unable to explain their expertise (speech
recognition)

Solution changes in time (routing on a computer
network)

Solution needs to be adapted to particular cases
(user biometrics)

What We Talk About When We
falk About“Learning”

Learning general models from a data of
particular examples

Data is cheap and abundant (data warehouses,
data marts); knowledge is expensive and
scarce.

Example in retail: Customer transactions to
consumer behavior:
People who bought “chips” also bought “yogurt”

Build a model that is
to the data.

Data Mining

m There is a connection between machine
learning and data mining

@ Data mining:
“...the analysis of (often large) observational
data sets to find unsuspected relationships
and to summarize the data in novel ways
that are both understandable and useful to
the data owner.” (Hand et al., 2001)

Data Mining

Define Data
Problem Collection

Machine

Learning
Data Data Interpretation

Preparation Modeling /Evaluation

Implement

/Deploy
Model

1 [

Data Mining

Market basket analysis, Customer
relationship management (CRM)

Credit scoring, fraud detection

Control, robotics,
troubleshooting

Medical diagnosis

Spam filters, intrusion
detection

Motifs, alignment
Search engines

What is Machine Learning?

@ Optimize a performance criterion using
example data or past experience.

= Role of Statistics: Inference from a sample

@ Role of Computer science: Efficient algorithms
to
= Solve the optimization problem
= Representing and evaluating the model for inference

[=]

[=]

[=]

Applications

Association

Supervised Learning
= (Classification
= Regression

Unsupervised Learning
Reinforcement Learning

Learning Associations

@ Basket analysis:

P (Y | X) probability that somebody who buys
X also buys Y where X and Y are
products/services.

Example: P (chips | yogurt) = 0.7

A

Classification

ity)

;ﬂ 1 Low-Risk

5 .) :
Example: Credit 5 AN
scoring .
Differentiating L S
between low-risk 7T High-Risk
and high-risk © e ©
customers from o
their income and | _
savings | -

Discriminant:
low-risk high-risk

10

Classification: Applications

= Aka Pattern recognition

O] Pose, lighting, occlusion
(glasses, beard), make-up, hair style

o Ditferent handwriting
styles.

o Temporal dependency.

o From symptoms to illnesses

0 Recognition/authentication using

hysical and/or behavioral characteristics:
ace, 1r1s, signature, etc

1 ...

11

Face Recognition

Training examples of a person

¥ 2

Test images

ORL dataset,
AT&T Laboratories, Cambridge UK

12

Regression

@ Example: Price of a used car
@ x:car attributes

y : price
y=g|0)

¢ () model, # parameters

1 i
x: milage

13

Regression Applications

= Navigating a car: Angle of the steering wheel
= Kinematics of a robot arm

(xy) a;= (X, Y)

\ a,= &,(x%Y)
d,
J

Response surface design

14

Supervised Learning: Uses
Use the rule to
predict the output for future inputs

The rule is easy to
understand

The rule is simpler than the data
it explains
Exceptions that are not
covered by the rule, e.g., fraud

15

Unsupervised Learning

Learning “what normally happens”
No output

Clustering: Grouping similar instances
Example applications

» Customer segmentation in CRM

» Image compression: Color quantization

» Bioinformatics: Learning motifs (sequence of amino
acid)
= Document clustering

16

Unsupervised Learning

Given: a set (sample) of data (observations).

Task: build a model of the process that generated the data.

This time however, were not trying to learn about the
relationship between inputs and outputs, we just want

to find (and/or take advantage of) structure in the data.

Sometimes called descriptive (rather than predictive) modeling.

Problems that can be framed as unsupervised learning:
dimensionality reduction, compression, probability density
estimation.

17

Reinforcement Learning

Learning a policy: A of outputs
No supervised output but delayed reward
Credit assignment problem

Game playing

Robot in a maze

Multiple agents, partial observability, ...

18

tasets

8 Dal

m
e

Hesoure

©
tll'\l

UCI Repository:

http:/ /www.ics.uci.edu/~mlearn/MLRepository.html

UCI KDD Archive:

http:/ /kdd.ics.uci.edu/summary.data.application.html

m Statlib: http:/ /lib.stat.cmu.edu/

= Delve: http:/ /www.cs.utoronto.ca/~delve/

19

B & [[F [E

(=]

K

Resources: Journals

Journal of Machine Learning Research
www.jmlr.org

Machine Learning

Neural Computation

Neural Networks

IEEE Transactions on Neural Networks

IEEE Transactions on Pattern Analysis and
Machine Intelligence

Annals of Statistics
Journal of the American Statistical Association

20

1 1 B 1 B 1 I 1 R O

E @

RHesources: Conrerences

International Conference on Machine Learning (ICML)
European Conference on Machine Learning (ECML)
Neural Information Processing Systems (INIPS)
Uncertainty in Artificial Intelligence (UAI)
Computational Learning Theory (COLT)

International Conference on Artificial Neural
Networks (ICANN)

International Conference on Al & Statistics (AISTATS)

International Conference on Pattern Recognition
(ICPR)

21

15
|_| - Sl [l |

NIAC FIlNE

SURERMISED) LEA

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Learning a Class from Examples

m Class C of a “family car”

Is car x a family car?

What do people expect
from a family car?

@ Output:

Positive (+) and negative (-) examples
@ Input representation:

X, price, X, : engine power

i \ P

Training set X
X :{Xt’rt}i\lzl

T A
E 1if xispositive
= r=<9 ..., . .
g s o 0if x isnegative
e
| @ @ &b e
& X
,_r ~ 8 X2
o B
S
1 - 1 1 1 ."
X
! x,: Price

gine power

2

x:En

o

o

Class C

(p,<price<p,) AND (g, < engine power<e,)

Py Pz

x: Engine power

s

Hypothesis class 3

-

&

h

S/

S

©

mmz{

e/c

[=)
e

e

False positive

o

1
P

!

2 .
X, Price

1lif hsays xispositive
0if hsays xisnegative

False negative

E(1X) = 1(h(x) 1)

S, G, and the Version Space

x,: Engine power

.

X

most specific hypothesis, S

most general hypothesis, G

h € H, between S and G is
consistent

and make up the

S = version space

N!a!flyifl

@ Choose h with largest margin

¥, Engine power

A
) S
R e________° C 5_1 margin
| |
|
e LA
| B g T 4y
| | ® |
|
L L__é _________ ® |
=
S o

¥ Price

VC Dimension

= N points can be labeled in 2N ways as +/ -
= H N if there
exists 1 € H consistent

for any of these:
VC(H)=N

B B X E FH @

Probably Approximately Correct
(PAC) Learning

How many training examples N should we have, such that with
probability at least 1 — 8, h has error at most € ?

(Blumer et al., 1989)

Each strip is at most /4

Pr that we miss a strip 1-¢/4

Pr that N instances miss a strip (1 —e/4)N
Pr that N instances miss 4 strips 4(1 — e/4)N
4(1-¢e/4)N <8 and (1 — x)<exp(—x)
4exp(—eN/4) <0 and N = (4/¢)log(4/0)

Noise and Model Complexity

Use the simpler one because

@ Simpler to use

3]

= A

(lower computational
complexity) -
= Easier to train (lower
space complexity) 2/ E NG

m Easier to explain & |
(more interpretable) ' & éﬁ

@ Generalizes better (lower N @/

variance - Occam’s razor) =

Engine power

Multiple Classes, C i=],..K

X = {Xt srt}i\lﬂ

Sports car
A . |Lifx" eC,
" |0ifx' eC,, j#i
reject !
' N \a A 2 Train hypotheses
/ . . .
] A VAN AN hI(X)’ I —1,...,K.
] O] Luxury sedan h(t)_ 1ith ECi
N [] ‘ 0ifx' eC,, j =i
Family car
Price]

11

12

Moclel Selection & Generalization

m Learning is an data is not
sufficient to find a unique solution

= The need for assumptions about
H

O How well a model performs on
new data

@ Overfitting: H more complex than C or f
@ Underfitting: H less complex than C or f

13

[=]

O
O

1.
2.
3.

Iriple Trade-Off

There is a trade-off between three factors
(Dietterich, 2003):

Complexity of H, ¢ (H),

Training set size, N,

Generalization error, E, on new data

As N1, E4
As c (H)1, first EJ and then E 1

14

Cross-Validation

@ To estimate generalization error, we need data
unseen during training. We split the data as
= Training set (50%)
= Validation set (25%)
= Test (publication) set (25%)

@ Resampling when there is few data

15

Dimensions of a Supervised
Learner

Model: g(x]o)

Loss function: E(g]X)= Z:L(rt ,g(xt |9))
t
Optimization

d :)
procedure H*:argmelrE(6?|X)

MIACHINE LEARNING

BAYESIAN LEARMING

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Probability and Inference

The world - unknown process —>data.

= Because of our lack of knowledge about the process, we model
it as a random process and use probability theory to analyse it.

Result of tossing a coin is € {Heads,Tails}
Random var D €{1,0}

Bernoulli: P{D=1}=p P (1-p,)1-P
Sample: D ={D*} ", ,
Estimation: p, = # {Heads}/#{Tosses} = >, Dt/ N
Prediction of next toss:

Heads if p,> 7, Tails otherwise

Classitication

@ Credit scoring: Inputs are income and savings.
Output is low-risk vs high-risk

@ Input: D=[D,,D,]”,Output: h € {0,1}

= Prediction:

choose h=1if P(h:_1|d1,dz) > 05
h = 0 otherwise

or

h =1if P(h=1|d,d,) >P(h=0]|d,d,)

choose)
{h = 0 otherwise

M - 4 "
Bayes' Rule

prior likelihood

posteri\o; \() {h)
_ Plh)p(D
Ph1D)- p(\)

evidence

P(h
p(D)=

plh

0)+P(h =1)=1
p(D|h =1)P(h =1)+ p(D|h =0)P(h =0)
0/D)+P(h=1|D)=1

II"II

Choosing Hypotheses
(Brute Force MAP Hypothesis Learner)

|

Ph|D)= P(h)p‘(’g;lh)

Generally want the most probable hypothesis given the training data
Maximum a posteriori hypothesis hy,,, :

hye =argmaxP(h|D)

heH
heH P(D)

=argmax P(D | h)P(h)

heH :

CnNoosing Hypotheses
If all hypotheses are equally probable a priori:
P(h,)=P(h,),h,h,
then, h,,,, reduces to:

h,, =argmaxP(D | h)

heH

- Maximum Likelihood hypothesis

F) - aves B x oz e
Bayes Rule: Example
Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.

The test returns a correct positive result in only 98%, of the cases in
which the disease is actually present, and a correct negative result in
only 97% of the cases in which the disease is not present.
Furthermore, .008 of the entire population have this cancer.

P(cancer)=0.008, P(+]cancer)=0.98, P(+]~cancer)=0.03,
P(~cancer)=0.992, P(-|cancer)=0.02, P(-]|~cancer)=0.97

How does P(cancer|+) compare to P(~cancer|+)? What is h,,p ?

Vi

Bayes rRule: Example

P(cancer|+) = P(+|cancer) P(cancer) / P(+) =
(0.98)(0.008) / P(+) = 0.0078 / P(+)

P(~cancer|+) = P(+]~cancer) P(~cancer) / P(+) =
(0.03)(0.992) / P(+) = 0.0298 / P(+)

hyap= ~Cancer

Bayes Optimal Classirier

What is the most probable hypothesis given the training data,
Vs.
What is the most probable classification?

Example:
P(h1|D)=0.4 P(-|h1)=0 P(+|h1)=1
P(h2|D)=0.3 P(-|h2)=1 P(+|h2)=0
P(h3|D)=0.3 P(-|h3)=1 P(+|h3)=0

- New instance x is classified as - or + ?
hyp= h1 2> +
But P(-|x)=.6 &> -

Bayes Optimal Classirier

If a new instance can take classification V,eV, then the
probability P(v; | D) of correct classification of new instance
being v; is:

P(vj D)= 2> P(vj|h)P(h; | D)
hjeH

Thus, the optimal classification is:

argmax » P(v; |hj)P(h;| D)
VjEV hjeH

10

Bayes Optimal Classitier

Example:
P(h1|D)=0.4 P(-|h1)=0 P(+|h1)=1
P(h2|D)=0.3 P(-|h2)=1 P(+|h2)=0
P(h3|D)=0.3 P(-|h3)=1 P(+|h3)=0

> P(+Ih)P(h |D)=0.4

:> X is classified as -

ZI: P(-] hi)P(hi |D)=0.6

11

Nalve Bayes Classifier

Given attribute values <a,, a,, ..., a,>, give the classification
VeV :

Vmap =argmax P(v; |ay,...,a,)

VjeV
- P(al,---aan |Vj)P(Vj)
Vmap = drgmax P
VjEV (aly"'lan)
= argmax P(a]_,---aan |VJ)P(VJ)
VjeV

Want to estimate P(ay, a,, ..., a,|v;) and P(v;) from
training data.

12

Ilf”‘;’ul 'j}y“; (lii ;Hli“[

P(v;) is easy to calculate: Just count the frequency.
The naive Bayes classifier simply assumes that the
attribute values are conditionally independent
given the target value, thus

n

Ve =argmaxP(v)] [P(a|v))

VJ EV |:1

13

Naive Bayes Classifier:
Algorithrm
Naive Bayes Learn(examples)
For each target value v,
P.(v;) < estimate P(v;)
For each attribute value a, of each attribute a
P.(a;|v;) < estimate P(a;|v;)

Classify New Instance(x)

Ve = arg rUax A ST
Vi< i=1

Day1l
Day2

Day3
Day4
Day5
Day6
Day7
Day8
Day9
Day10
Dayl1l
Day12
Day13
Day14

Sunny
Sunny

Overcast
Rain
Rain
Rain

Overcast

Sunny
Sunny
Rain
Sunny
Overcast
Overcast

Rain

Hot
Hot

Hot
Mild
Cool
Cool
Cool
Mild
Cool
Mild
Mild
Mild

Hot
Mild

High
High
High
High

Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

Weak
Strong

Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

15

Nalve Bayes Classitier:
Example
Consider Play Tennis again, and new instance:

x = <0utlk = sunny, Temp = cool, Humid = high, Wind = stron>
V = {Yes,No}

9/14 Vg = argmaxP(v,) H P(a |v,) 3/9

v, €[yes,no] /

P(yes)P(sunny | yes)P(cool | yes)P(high| yes)P(strong | yes) = 0.005
P(no)P(sunny | no)P(cool | no)P(high|no)P(strong | no) =0.021

= answer : PlayTennis (x) = no AN
3/5 16

Estimating Probabilities:
Wrestimate
= In above example:

= P(Wind = strong]| Play Tennis = no) =n,/n = 3/5
= Ifn.=0 then [][P(a|v,)=0

nc+mp

N+m
= P=1/k, kisthe number of possible value for the attribute

o K= 2 for wind attribute (weak, strong) p=.5

m-estimate of probability

= m is a constant (equivalent sample size)

17

(1 I 1 R 1 B O

|l osses and Risks

General ways of measuring performance/error
Actions: a; (e.g. assign class C. to some input)
Loss of a; when the stateis C, : A,

Expected risk (Duda and Hart, 1973) (for taking action
a,)

R(a;, | X) Z/’t,kPC |x)

choosea, |f R(e, | x)=minR(a, |)

18

Losses and Risks: 0/1

1 - Oifi=k
ko 11ifi#k

a |X Z/IlkP C, |X)

:ZP(Ck |X)

k#i

=1-P(C, |x)

For minimum risk, choose the most probable class

‘ﬂ

L_)

19

F— T - . [l i b " . -'*
Losses and Risks: Reject

0 ifi=k
A=A 1fi=K+1, 0<A<l
1 otherwise

R(ay,, | X) ZlPClx

(ailx :ZP Cklx):]'_P(Cilx)

ki

choose C, if P(C,|x)>P(C,|x) Vk =iand P(C,|x)>1- 4
reject otherwise

Discriminant Functions

choosec, if g,(x)=max,g, (x) g,(x),i=1,....K
~R(a, %) 1 ./ |
gi(x): P(Ci |X)

p(x|C,)P(C;)

(ok for 0/1 loss) reject

,,..-—-—E:—-\..“\ .I
K Rl RK - /’. & &\ E'I
A AN
A A

R, ={x]g,(x)=maxg,(x)}

21

K=2 Classes

¥

m Dichotomizer (K=2) vs Polychotomizer (K>2)
= g(X) = g4(X) — g,(x)

C, if g(x)>0

choose .
{Cz otherwise

= Log odds:

22

[=]

Utility Theory

(given) Prob of state k given evidence X: P (S;|X)
(and) Utility of a; when state is k: U,
(then) Expected utility:

U(er, |) ZU,kPS |x)

Choose q; |f EU(e; | X)=max EU(aj |x)
J

i.e a rational choice —maximize expected utility

(usually equivalent to minimizing expected risk).

23

Association Rules

@ Associationrule: X =2 Y

= People who buy/click/visit/enjoy X are also likely to
buy/click/visit/enjoy Y.

= A rule implies association, not necessarily
causation.

24

ASSOCIATION Measures

= Support (X 2 Y):

P(X,Y)= #{customerswho bought X andY}
' #{customers|

@ Confidence (X =2 Y):
P(Y|X)= PX.Y)
P(X)
_ #{customerswho bought x andY |
= Lift (X 2> Y): ~ #{customerswho bought x}
_P(X,Y) _PYIX)
P(X)PLY) P(Y)

25

Apriori algorithm (Agrawal et al.,
1996)
m For (X,Y,Z), a 3-item set, to be frequent (have

enough support), (X,Y), (X,Z2), and (Y,Z) should be
frequent.

= If (X,Y) is not frequent, none of its supersets can be
frequent.

@ Once we find the frequent k-item sets, we convert
themtorules: X, Y =2 Z, ...

and X2V, Z ..

26

RARANME TRIC M THODS

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

\Wrametrie Estimation

m X={xt},where xt ~p (x)
&

= Parametric estimation:

Assume a form for p (x |g) and estimate q , its
sufficient statistics, using X

e.g., N (i, o®) where g = { i, 0%}

Maximum Likelihood Estimation

m Likelihood of @ given the sample X
LOIX)=p (X [0)=]],p (x*]0)

= Log likelihood
L(81X) =log 1 (] X) =¥, log p (x'|6)

= Why? Small numbers converts product to sum, removes
exp(?)

@ Maximum likelihood estimator (MLE)
0" = argmax, L(0 | X)

Examples: Bernoulli/Multinomial

0| Two states, failure/success, x in {0,1}
P(x)=pox(1_po)(1_x)

L (P0|X) = log HtPOXt(l _po)(l_Xt)
MLE: p,=Y, x'/ N

0 K>2 states, x; in {0,1}
P (x1,%,...,.x¢) = [, pi*i

L(p1.po-pic | X) = Log [, T1, P
MLE: p, = Zt xt/ N

Gaussian (Normal) Distribution

True parameters

pd
@ p(x) = N (u, 0%
exp{— (X_/:)z}

20

p(x)=

2mo

= MLE for x and o*

Zx

estimated values
< z x —m)

Rias and Varianece

Unknown parameter ¢
Estimator (of 6)d; = d (X;) on
sample X;

Bias: b,(d) =E [d] - 6
Variance: E [(d-E [d])?]

variance

N

Mean square error:

r (d,d) = E [(d-6)?]
= (E [d] - &2 + E [(d-E [d])?]
= Bias? + Variance

E[d]

%——

bias

Bias and Variance

* Bias: how much the expected value of the estimator

varies from the correct
« Variance: variation around the expected value.

« Examples:
« Sample mean, m, is an unbiased estimator of the true mean.

It’s also a consistent estimator, since Var(m) tends to zero as N
tends to infinity.

« Sample variance (as it turns out) is a biased estimator of the
true variance.

(=]

i

F) - i W "
Eif;}.yf_?.& .'_'.JEI[H’-,[[{_JI

Treat 6 as a random var with prior p (6)
Bayes’ rule: p (61X) = p(X|6) p(6) / p(X)

pXx|X) = [p(x|6) p(6X) db

» iean average over predictions using all values of 6, weighted by the
probability of each 6 value.

Buap = argmax, p(6/X)
» This uses a priori

Oy = argmax, p(X|6)
» This doesn’t have a prior. If prior is flat, MAP == ML.

Bgayes = ELOIX] = | 6 p(6]X) d6

Bayes’ Estimator: Example

= xt~N (0,0,2) and 0~ N (p, 0?)

B Oy =M
=] HMAP = HBayes’ - , /2
1/o

m+
N/ o +1/c° N/G§+1/02ﬂ

Parametrie Classification

Ji (X): p(X |G,)P(Ci)
or equivalently

gi(X): log p(X | Ci)+ log P(Ci)

10

m Given the sample X ={x',r'}\,

lifx" eC,
Oifx" eC,,j#i

i

XESR rt:{

m ML estimates are

= Discriminant becomes

2
g.(x)= —%I 0927 —logs, —(X;—HZ") +logP(C,)
S

i

11

p(C |x)

Likelihoods

Posteriors with equal priors

1 T I T I T I T
08 o o .. —]
0.6 - ot ______________________________________ e e S SRR _
: . Single boundary at
04 Lo e R R -
: halfway between means
o2k -t T AP JUOP A S e s . e .
| I 1 | I |
-10 -8 -6 —4 -2 0 2 4 6 8 10

12

Likelihoods

e --------- ---------- --------- ---------- Variances are different - -

Posteriors with equal priors
T T

p(C |x)

¥ & ga e et
nRejression

«« EIRIl=wx+w
. f(X)+) x X
estimatorg(x|9) FiRte] : pW]X
c~N (O, 62) —
p(r]x)~ N (g(x|(9),02) |
"

N

L(61X)=log]

N

t=1

p(xt ,rt) We want to qurn the parameters
of our model via Max. Likelihood

=log]

t=1

“p(rt |xt)+logﬁp(xt)
t=1

14

Regression: From Logl 1o Errol

L(6]X)=log lﬁ[iexp{— r—g(x IH)]Z}

2
1 \N2TOo 20

= —N logv270 - = ZN:[rt—g(x‘w’)]z

20° <
E(9|X)=%tZN=1:[rt —g(xt |¢9)]2

Important: so maximizing L is equivalent to minimizing MSE
(assuming Gaussian noise) 15

Linear Regression

t i t
g(x IWl,WO)—Wlx +w,

r'=Nw, +w, » x'

2.0 =Nwo +w;)
t t

D rixt=wy Y x' +le(xt)2
t t

t

o s

Zt:xt Zt:(xt)2 - _Ztirtxt_

w=A"Yy

W,

16

Polynomial Regression

t . t t t
g(x IWk,...,WZ,Wl,WO)—Wk(X)k+---+wz(x) +wW X +Ww,

1« (xl)2 (xl)k_]
SO LN S AN O B I
ERE A O A (0 B L

17

[=]

[=]

[=]

Other Error Measures

Square Error: E 9|x

Relative Square Error:

Absolute Error: E (6 |X)

ge-sensitive Error:

E (6 [X)

=2, 1(rt-

22kl

;[r —glx]

E(0]X)=+

o)

o)

2

=3, Irt-g(xt o)

g(xt| O)|>¢€) (Jrt-

S|

t=1
|

g(xto)| - ¢€)

18

Bias and Variance

E l(r - g(x))2] xJ: E l(r —E [r | x])2 | xJ+ (E [r | x]— g(x))2

noise squared error

Ex|(EF 1x]-a(x)F 1x]= ElF I1X]-E,[ab)]f +Ex[bc)~E, [g<)]F]

bias variance

stimating Bias and Yarianc

m M samples Xi={xt, rt}, i=1,...,M
are used to fit g, (x), i =1,...,M

Bia§(g)=%2[§(xt)—f(xt)]2

t

Variancég)= ZZ[Q() ()]
_X):MZgix

(A Y
‘_

-

20

Bias/Varianee Dilemma

m Example: g;(x)=2 has no variance and high
bias
gi(X)= >, rt./N has lower bias with variance

m AS we increase complexity,
bias decreases (a better fit to data) and

variance increases (fit varies more with
data)

= Bias/Variance dilemma: (Geman et al.,
1992)

21

(a) Function and data

variance

(b) Order 1

22

Polynomial Regression

23

(a) Data and fitted polynomials

0 0.5 1 1.5 2 25 3 35 4 4.5 5

(b) Error vs polynomial order

== Training
~++ Validation

05 I I I I I 1 I
B

24

Meoclel Selection

o - Measure generalization
accuracy by testing on data unused during

training
O Penalize complex models
E’=error on data + A model complexity

Akaike’s information criterion (AlC),
Bayesian information criterion (BIC)
[=]

Kolmogorov complexity, shortest
description of data

[=]

25

.

'

]

lavesian Meodel Selection

Prior on models, p(model)
(datalmode) p(mode)

p
modeldata)=
p(modeldata) o(datd

Regularization, when prior favors simpler
models

Bayes, MAP of the posterior, p(model|data)

Average over a number of models with high
posterior (voting, ensembles: Chapter 17)

26

-

&

Reqgress

— [55) (%] e n
T T T T 1

4

on example

+
+ 4
___________._.-—-—-'_;_,_
T
+
T

| | | | |
(=] b (2] I —
T T T —+

0 0.5 1 L5 2 25 3 3.5 4

regularization: E(W| X)=

45

Coefficients increase in
magnitude as order
increases:

1: [-0.0769, 0.0016]
2:[0.1682, -0.6657,
0.0080]

3:[0.4238, -2.5778,
3.4675, -0.0002]
4:[-0.1093, 1.4356,
-5.5007, 6.0454, -
0.0019] ,

[r ~gl w)] + 23w

27

MACHINE LEARNING

—

DINMENSHIOMNALITY REDWIEC THOMN

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

(1 B 1 B 1 B 1 B 1 B O

Why Reduce Dimensionality?

Reduces time complexity: Less computation
Reduces space complexity: Less parameters

Saves the cost of observing the feature

Simpler models are more robust on small datasets
More interpretable; simpler explanation

Data visualization (structure, groups, outliers, etc) if
plotted in 2 or 3 dimensions

Feature Seleetion vs Extraetion

& Choosing k<d important features,
ignoring the remaining d — k

Subset selection algorithms

o Project the
original x;, i =1,...,d dimensions to
new k<d dimensions, z.,j=1,...,k

Principal components analysis (PCA), linear
discriminant analysis (LDA), factor analysis (FA)

(=]

(=]
[

(=]

WINS SN ;.-_.'I*:,”r'_. F10)F)

There are 29 subsets of d features

Forward search: Add the best feature at each step

= Set of features F initially @.

= At each iteration, find the best new feature
j=argmin, E(FuUX;)

= Add x;toF ifE(FuUX;) <E(F)

Hill-climbing O(d?) algorithm
Backward search: Start with all features and remove
one at a time, if possible.

Floating search (Add k, remove /)

Principal Components Analysis

{ E'){(:;f)
= Find a low-dimensional space such that
when x is projected there, information loss
Is minimized.

= The projection of x on the direction of w
is: z= w'x
=@ Find w such that
Var(z) = Var(w’x) = E[(w'x — wTu)?]
= E[(W'Xx - wipn)(w'X — w'p)]
= E[W(x — p)(x - u)'w]
=W E[(X-p)Xx-p)Tw=w'Zw
where Var(x)= E[(x - p)(x —u)7] = =

@ Maximize Var(z) subject to | |w]]=1

maxw, Xw, — a(wlT W, —1)
W1
YW, = aw, that is, w, is an eigenvector of ¥

Choose the one with the largest eigenvalue for Var(z) to
be max

= Second principal component: Max Var(z,), s.t.,
| lw,]]=1 and orthogonal to w;

T T T
max W, 2W, — a(W2W2 —1)—,B(W2W1 - O)
2 : : :
> W, =a W, that is, w, is another eigenvector of ¥
and so on.

X,

What PCA does
Z=W'(x —m)

where the columns of W are the eigenvectors of 3, and
m is sample mean

Centers the data at the origin and rotates the axes

| wa " £
How to ehoose k 2

= Proportion of Variance (PoV) explained

A+A, 4+ A
A+A, 4+ A+ A

when A;are sorted in descending order
= Typically, stop at PoV>0.9

m Scree graph plots of PoV vs k, stop at
“elbow”

200

Eigenvalues
=]
=

o o
o o

Prop of var
=
S

0.2

(a) Scree graph for Optdigits

i e =Y Pl I | T T I R T AR R |
0 10 20 30 40 50 60 70
Eigenvectors

(b) Proportion of variance explained

...................................... SRS [N I Y N N N e

20 30 40 50 60 70
Eigenvectors

Second Eigenvector

et T
e S i 5
. K 2 3 d i :
333, 48 2 § 5
: 3. 28 5.13 2 @
T R g A s
3 - : & : :
- g 55 8:GIO 8. .5
: g 0.%
...................... 7.8, &8 TRt 6@6
T 79 : : 6
% 5.8 5 e ‘6
7 ;99 : L6
N S TR 191111
1. 4 :
! %4 494 5
R ST SO e el Ve e i
49 4 :
4. 4
4 4
I S S S 44
| | | | | | | |
-30 -20 -10 0 10 20 30 40

First Eigenvector

Factor Analysis

= Find a small number of z, which when combined
generate X :

Xi— Uj=VpZy ¥ Vipz, + ...+ VyZp T E;

where z, j =1,....k are the with

E[z;]=0, Var(z)=1, Cov(z; , z)=0, i = j,
g; are the

E[€ 1= w;, Cov(e;, €) =0, i = j, Cov(g, , z) =0,
and vj; are the

11

PCA vs FA

m PCA From xto z z=W'(x-p)
= FA From zto x X-uUu=Vz+¢

i 3 *a z; 5y z,
~00 O 00 O.~

S

new . ‘
variables Q O O O O Q variables
“ %2 Z % *3 Xa
PCA FA

Factor Analysis

= In FA, factors z;are stretched, rotated and
translated to generate x

=S

R : :

13

-

Linear Discriminant Analysis
= Find a low-dimensional A
space such that whenx ="
IS projected, classes are m
well-separated.

= Find w that maximizes

(ml —m,)2 ' k

J(W)=
(w) s.+5; .

Tt t
war 5
_ t 2 Tt t
ml— 51_ Et(WX —ml)r

>
t

= Between-class scatter:
(ml —m,)2 = (WTml _WTmz)Z
:WT(m1 _mZ)(ml _mz)TW

=w’S,w where S, =(m, -m, m,-m,)’

= Within-class scatter:
S5 =) (WTXt —ml)zrt
=y w (xt - ml)(xt - ml)Twrt =w’'S,w
whereS, =>" (xt - ml)(xt = ml)Trt

2 2 T
s; +s; =w'S,w whereS, =S, +S,

15

Fisher's Linear Discriminant

@ Find w that max - 2
J(w)= w'Sgw _|w'(m, —m,)
w'S,w w'S,w

@ LDAsoln: w = c.S;}(ml —m2)

= Parametric soln: .
W=3"(, —p,)
whenp(x|C.)~N (u,,X)

16

= Within-class scatter:
K
Sy=>S S=> rx-m)x-m])
i=1
= Between-class scatter:
K K
S;=> N,(m,—m)m,-m) m =%Zm,
i=1 i=1
= Find W that max
) \WTSBW\

J(W)—W The largest eigenvectors of S,/1S;
" Maximum rank of K-1

17

18

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Decision Tree Learning

Su}my Overcast Rain

)

"

High Normal Strong Weak
/ \ / \
No Yes No Yes

O Learn to approximate discrete-valued target functions.

O Step-by-step decision making: It can learn disjunctive
expressions: Hypothesis space is completely expressive,
avoiding problems with restricted hypothesis spaces.

O Inductive bias: small trees over large trees.

Decision Trees:

Su}my Overcast Rain

)

L
L.
-
o i 1
h—-—
™
(T
AT
L —
L=~
b
[y
-
o

High Normal Strong Weak

/ \ / \

No Yes No Yes

Each instance holds attribute values.

Instances are classified by filtering the attribute values down
the decision tree, down to a leaf which gives the final
answer.

Internal nodes: attribute names or attribute values.
Branching occurs at attribute nodes.

Tree Uses Nodes, and Leaves

" A
® B P c
@ H m
® |
@ A
Wag
e © ®
C:’ . . .
c C

Divide and Conguer

= Internal decision nodes

= Univariate: Uses a single attribute, Xx;

= Numeric Xx; : Binary split : x; > w,,

o Discrete x; : n-way split for n possible values
= Multivariate: Uses all attributes, x

= Leaves
= Classification: Class labels, or proportions
= Regression: Numeric; r average, or local fit

@ Learning is ; find the best split
recursively (Breiman et al, 1984; Quinlan,
1986, 1993)

Decision Trees: What They
Represent

Su}my Overcast Rain

)

High Normal Strong Weak
/ \ / \
No Yes No Yes

e Each path from root to leaf is a conjunctions of constraints
on the attribute values.

(Outlook = Sunny A Humidity = Normal)
V (Outlook = Overcast)
V (Outlook = Rain A Wind = Weak)]

Appropriate Tasks for Decision
| Free:

Good at classification problems where:

Instances are represented by attribute-value pairs.
The target function has discrete output values.
Disjunctive descriptions may be required.

The training data may contain errors.

The training data may contain missing attribute
values.

1 E M [&

Constructing Decision Trees

frrom Examples

= Given a set of examples (training set), both
positive and negative, the task is to construct a
decision tree that describes a concise decision
path.

= Using the resulting decision tree, we want to
classify new instances of examples (either as
yes or no).

Constructing Decision Trees:
F'rivial Solution

@ A trivial solution is to explicitly construct paths for
each given example. In this case, you will get a tree
where the number of leaves is the same as the
number of training examples.

@ The problem with this approach is that it is not
able to deal with situations where, some attribute
values are missing or new kinds of situations arise.

=@ Consider that some attributes may not count much
toward thefinal classification.

Finding a Concise Decision Tree
@ Memorizing all cases may not be the best way.

@ We want to extract a decision pattern that can
describe a large number of cases in a concise
way.

= In terms of a decision tree, we want to make as
few tests as possible before reaching a decision,
i.e. the depth of the tree should be shallow.

10

-I—'.—-

‘Inding a Concise Decision Tree

(eont’d)

Basic idea: pick up attributes that can clearly
separate positive and negative cases.

These attributes are more important than

others: the final classification heavily depend
on the value of these attributes.

11

Decision Tree Learning
Algorithm: 1D3
Main loop:
1. A € the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A, create new descendant of
node
4. Sort training examples to leaf nodes

5. If training examples perfectly classitied, Then
STOP, Else iterate over new leaf nodes

12

Choosing the Best Attribute

[29+,35-] Al=7 [29+,35-] AP="7
t f t f
[21+,5-1 [8+,30-1 [18+,33-1 [11+,2-]
Al or A2?

e With initial and final number of positive and negative
examples based on the attribute just tested, we want to
decide which attribute is better.

e How to quantitatively measure which one is better?

Choosing the Best Attribute to
Test First
Use Shannon’s information theory to choose the
attribute that give the maximum information
gain.
= Pick an attribute such that the information gain
(or entropy reduction) is maximized.

= Entropy measures the average surprisal of
events. Less probable events are more
surprising.

14

Information Theory (Informal Intro)

Given two events, H and T (Head and Tail):
@ Rare (uncertain) events give more surprise:
H more surprising than T if P(H) < P(T)
H more uncertain than T if P(H) < P(T)
@ How to represent “more surprising”, or “more uncertain”?
Surprise(H) > Surprise(T) if
P(H) < P(T)
<> 1/ P(H) > 1/ P(T)
<=2 log(1/ P(H))> log(1/ P(T))
&2 -log(P(H)) > - log(P(T))

15

Information Theory (Cont’d)

F————————————
0.5 1.0

e ' is a sample of training examples

e . isthe proportion of positive examples in

e . is the proportion of negative examples in
e Entropy measures the average uncertainty in

16

Uncertainty and Information

@ By performing some query, if you go from state
S, with entropy E(S,) to state S, with entropy
E(S,), where E(S,) > E(S,), your uncertainty has
decreased.

@ The amount by which uncertainty decreased,
i.e., E(S;)) — E(S,), can be thought of as
information you gained (information gain)
through getting answers to your query.

17

Entropy and Information Gain

Entropy(S) = Z_ p; log,(p;)

ieC

Gain(S, A) = Entropy(S) — Z ISVIEntropy(SV)

vevalues(A)

e C: categories (classifications)

¢ S: set of examples

e A: a single attribute

e S,: set of examples where attribute A = v.

18

e Which attribute
to test first?

Day1
Day?2
Day3
Day4
Day5
Day6
Day7
Day8
Day9
Day10
Day11
Day12
Day13
Day14

rAAmMple

Outlook Temperature Humidity

Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

Choosing the Best Attribute

= Which attribute is the best classifier?

S [9+.53-]
E=0940

Humidiry

High Normal

[3+4-] [6+.1-]
E=0.592

E=0.985

Gain (S, Humidity)

=.940- (7/14).985 - (7/14).592
=.151

e +: # of positive examples;

e Initial entropy = - (9/14) log (9/14) — (5/14) log (5/14) = 0.94.

¢ You can calculate the rest.

e Note: 0.0 x log 0.0 = 0.0 even though log 0.0 is not defined.

8 [9+.5]
E=0.940

Wind

W

[6+2-] [3+3]
E=0.811 E=1.00

Gain (5, Wind)
=.940- (&14).811 - (6/14)1.0
= 048

—: # of negative examples

20

Regression Trees

= Error at node m:

b, (x) 1 ifxeX_ :Xreachemodem
X)=
" 0 otherwise

, 2 , thm(xt)rt
Em=$2t(r ~g,fb,(x') g,= S b, ()

= After splitting:

0 otherwise

x) {1 ifxe X, :x reachesnode mandbranch
(x)=
mj

LTS o) g, Z

DX

21

Model Selection in Trees

ar
Br—ﬂ.S
x
2r x
==
ok
%
-2 1 1 X 1 1 1
1] 1 2 2 4 5
ar
Br—ﬂ.2
x
2+ = sd
=
ok
x
2 1 1 = 1 1 1
i 1 2 3 4 5
ar -
er-u.ns
x
T :
ok
x
2 1 1 = 1 1 1
[u] 1 2 3 4 5

22

Fruning frees

@ Remove subtrees for better generalization
(decrease variance)
= Prepruning: Early stopping
= Postpruning: Grow the whole tree then prune
subtrees which overfit on the pruning set

@ Prepruning is faster, postpruning is more
accurate (requires a separate pruning set)

23

Rule Extraction from Trees

tAge
: Years in job
: Gender
: Job type

I

C4.5Rules
(Quinlan, 1993)

= =

sy

R1: [IF (age>38.5) AND (years-in-job>2.5) THEN y =0.8
R2: IF (age>38.5) AND (years-in-job<2.5) THEN y =0.6
R3: [IF (age<38.5) AND (job-type="A’) THEN y =0.4
R4: IF (age<38.5) AND (job-type=‘B’) THEN y =0.3
R5: IF (age<38.5) AND (job-type=‘C’) THEN y =0.2

Learning Rules

Rule induction is similar to tree induction but
= tree induction is breadth-first,
= rule induction is depth-first; one rule at a time

Rule set contains rules; rules are conjunctions
of terms

Rule an example if all terms of the rule
evaluate to true for the example

Generate rules one at a
time until all positive examples are covered

IREP (FUrnkrantz and Widmer, 1994), Ripper
(Cohen, 1995)

25

Ripper(Pos,Neg,k)
RuleSet «— LearnRuleSet(Pos,Neg)
For k times
RuleSet «— OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
RuleSet — @
DL <—‘DescLen(RuIeSet,Pos,l\leg)‘
Repeat
Rule — LearnRule(Pos,Neg) |
Add Rule to RuleSet
DL" — DesclLen(RuleSet,Pos,Neg)
If DL'>DL+64
PruneRuleSet(RuleSet, Pos,Neg)
Return RuleSet
If DL'<DL DL <« DL’
Delete instances covered from Pos and Neg
Until Pos = 0
Return RuleSet

26

PruneRuleSet(RuleSet,Pos,Neg)
For each Rule € RuleSet in reverse order
DL < DesclLen(RuleSet,Pos,Neg)
DL' «— DesclLen(RuleSet-Rule,Pos,Neg)
IF DL'<«DL Delete Rule from RuleSet
Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)
For each Rule € RuleSet
DLO «— DesclLen(RuleSet,Pos,Neg)
DL1 «— DesclLen(RuleSet-Rule+
'ReplaceRule(RuleSet, Pos,Neg), Pos,Neg)
DL2 «— DesclLen(RuleSet-Rule+
RuIeSet,Rule,Pos,Neg),Pos,Neg)
If DL1=min(DLO,DL1,DL2)
Delete Rule from RuleSet and
add ReplaceRule(RuleSet,Pos,Neg)
Else If DL2=min(DLO0,DL1,DL?2)
Delete Rule from RuleSet and
add ReviseRule(RuleSet,Rule,Pos,Neg)
Return RuleSet

27

RN"

Multivariate Trees

28

MACHFINE L EAS

ML TILAYER RES

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

M & & [[

Neural Networks

Networks of processing units (neurons) with
connections (synapses) between them

Large number of neurons: 10
Large connectitivity: 10°

Parallel processing

Distributed computation/ memory

Robust to noise, failures Q/

Understanding the Brain

= Levels of analysis (Marr, 1982)
1. Computational theory
2. Representation and algorithm
3. Hardware implementation

= Reverse engineering: From hardware to theory
= Parallel processing: SIMD vs MIMD

Neural net: SIMD with modifiable local
memory

Learning: Update by training/experience

Biological Neurons and Networks
@ Neuron switching time ~.001 second (1 ms)

= Number of neurons ~101°
= Connections per neuron ~104

@ Scene recognition time ~.1 second (100 ms)

= 100 processing steps doesn’t seem like enough
[] much parallel computation

Artificial Neural Networks

Many neuron-like threshold switching units (real-
valued)

@ Many weighted interconnections among units

Highly parallel, distributed process

Emphasis on tuning weights automatically: New
learning algorithms, new optimization techniques, new
learning principles.

M & & &

(=]

When to Consider Neural Networks

Input is high-dimensional discrete or real-
valued (e.g. raw sensor input)

Output is discrete or real valued
Output is a vector of values
Possibly noisy data

Long training time (may need occasional,
extensive retraining)

Form of target function is unknown
Fast evaluation of learned target function
Human readability of result is unimportant

(=]

(=]

Example Applications

Speech synthesis
Handwritten character recognition

Financial prediction, Transaction fraud
detection

Driving a car on the highway

rerceptrons

n
Lif Y, w.x.>0
=0 1

-1 otherwise

o X)= 1 0f wy+wX +...+w,Xx,>0
R otherwise

Sometimes we’ll use simpler vector notation:

N 1 ifw.x>0
0(X) = .
—1 otherwise

n
Lif Y w.x.>0
i=0 1

-1 otherwise

The tunable parameters are the weights w,,w,, ...,w,, SO
the space H of candidate hypotheses is the set of all
possible combination of real-valued weight vectors:

H={w|weR""}

Boolean Logic Gates with

V*_}l”ﬁﬁ_’.‘pi’t"ull Units
-1 =15 t 0.5 _1 t_ 0.5

Wi=1 Wi1=1 —
e (0 .—> w2y~

wy

Russel & Norvig

» Perceptrons can represent basic Boolean functions.
» Thus, a network of perceptron units can compute
any Boolean function.

What about XOR or EQUIV?

10

What Perceptrons Can Represent

I1 Output = 1
‘\\\\ J'H'l
N _ Slope =-W0
L . z""’.r WI
— 5 Wi ™)
Output=0 w \\\\

PEICE[JUUIIS cdll 01y represeric iriedr 1y sepdardapie rurcuons.

= Output of the perceptron:

W, x1,+W,x1, —t >0, thenoutputisl
W, x1,+W,x1, -t <0, thenoutputis —1

The hypothesis space is a collection of separating lines. 1

¢ Interpretation

I1 Output = 1
N ' Slope ==WO0
t] w1
— " w1l |

i N o
Rearranging:
W, x 1, +W, x 1, =t > 0, then outputisl
We get (if W;>0) I1>_—W°><IO+L,
1 1
where points above the line, the output is 1, and -1 for those

below the line. Compare with -W, t
y= XX+—,

1 1

Output=0

12

—
s
b—
-
-
L
e
-_
-
—
-y
L
-
L -
ror—
_—
d——

W w1

0
Slope = W0
Wl

» Without the bias (t = 0), learning is limited to
adjustment of the slope of the separating line

passing through the origin.

» Three example lines with different weights are

shown.

13

Lﬂﬂh[ﬂ”{)” fj,i Pﬂ-—'lrf_;_}!)!rurl(“
I1 Output = 1

|
O Wl

",
.,
o
-,
-,
.
-,
- [
. “
.
.
.\\.

Output=0 V
» Only functions where the -1 points and 1 points are clearly
separable can be represented by perceptrons.

» The geometric interpretation is generalizable to functions
of n arguments, i.e. perceptron with n inputs plus one
threshold (or bias) unit. 14

inaay Sas = Bt L
Lineat _M_i}f,!{i.lf)_lll[/

I §, It j o
® o
o
o © ® o ® ¢
°® o o ©
® 9) ®
. - .
(1} 10
@
Linearly—separable Not Linearly-separable

= For functions that take integer or real values as
arguments and output either -1 or 1.

= Left: linearly separable (i.e., can draw a straight
line between the classes).

= Right: not linearly separable (i.e., perceptrons
cannot represent such a function)

15

Linear Separability (cont’d)

I I Il

™
SENN © © SEE
™,
\
?
S = 10 J 0 10 0 = 10
AND A OR XOR

» Perceptrons cannot represent XOR!

AOR in Detal

Io I XOR . O\\i\
1 0 0 g
2 | o 1 1 v

3 | 1 0 1 !

4 | A 1 B

O

T4 I Chatput

t
Wi

I 1
i) Slope = —W0
Wl

tput={

] \l, o

W, x I, +W, x 1, —t >0, then outputisl:

S~ W N R

a contradiction.

t<0 >
W,-t >0 >
W,-t>0 >

W,+W,-t<0 -

£>0
W, >t
W, >t

W,+ W, <t
2t <W,+ W, <t(from 2,3 and 4), butt=0 (from 1),

17

Learnineg: Perceptron Rule

i
1if X w.x.>0
i=0 1

-1 otherwise

@ The weights do not have to be calculated manually.

@ We can train the network with (input,output) pair
according to the following weight update rule:

w; € w, M (t-0)x;
where 1) is the learning rate parameter.

@ Proven to converge if input set is linearly separable
and 1 is small.

18

Learning in Perceptrons (Cont'd)
=4 F

w, € w,t(t-0)x

= Whent = o, weight stays.

@ Whent=1and o= -1, change in weight is:
n(1-(¢-1))x>0

if x; are all positive. Thus W.X will increase, thus

eventually, output o will turn to 1.

= Whent=-1and o =1, change in weight is:
n(1-1)x<0

if x, are all positive. Thus W.X will increase, thus

eventually, output o will turn to -1.

19

Another Learning Rule: Delta Rule

= The perceptron rule cannot deal with noisy data.

The delta rule will find an approximate solution even
when input set is not linearly separable.

Use linear unit without the step function:

0(X) = W.X

Want to reduce the error by adjusting W

E (W) E%Z(td _Od)2

deD

20

Want to minimize by adjusting

. .1
w: E(W) =§Zd€D(td —04)°

Note: the error surface is defined by the training data
D. A different data set will give a different surface.

E(wy,w,) is the error function above, and we want to
change (w,,w,) to position under a low E.

21

Gradient Descent (Cont’d)

Gradient

VEW { OE OE O }

oW, ow, ow,
Training rule: AW = —nVE[W]

oE
AW, =—1——
i Ji AW

22

Graclient Descent (Cont’d)

E 01

=== 23'(t,—0,)’
8Wi 8Wi 2g(d d)

1w 0)

==Y = (t, -0
DI GRS
1

:Ezdlz(td _Od)%(td _Od)

- ;(td _Od)%(td _V_V-Xd)

=T -0)(x)

oE
Since we want AW, = —77%, Aw; = Uzd (ts —04) Xi g

23

Gradient Descent: Summary

Gradient-Descent (training_examples, 7)

Each training example is a pair of the form <x, t>, where
x is the vector of input values, and t is the target output
value. 7 is the learning rate (e.g., .05).
Initialize each w; to some small random value
= Until the termination condition is met, Do
— Initialize each w; to zero.
— for each <x, t> in training_examples, Do
* Input the instance X to the unit and compute o
* for each linear unit weight w, , Do
Aw; € Aw; + 1 (t-0)x
— for each linear unit weight w; , Do

w;, € w;+Aw,

24

Gradient Descent Properties

Gradient descent is effective in searching through
a large or infinite H:

= H contains continuously parameterized
hypotheses, and

@ the error can be differentiated w.r.t the
parameters.

Limitations:
@ convergence can be slow, and

@ finds local minima (global minimum not
guaranteed).

25

& N Ry W | ———— - PP " 1
toChastic Approximation to
Grad. Desc

|

Avoiding local minima: Incremental gradient descent, or
stochastic gradient descent.

> Instead of weight update based on all input in D,
immediately update weights after each input example:

Aw;=n(t-0)x,

Aw, :UZ(td —04)X;,

deD

Instead of

> Can be seen as minimizing error function

£, (1) =2 1, -0,)"

26

Stancdarel aned Stoehastie Grael.
Dese.: Differences

= In the standard version, error is defined over
entire D.

@ In the standard version, more computation is

needed per weight update, but n can be larger.

m Stochastic version can sometimes avoid local
minima.

27

SUMMmary

Perceptron training rule guaranteed to succeed if
= Training examples are linearly separable

= Sufficiently small learning rate n

Linear unit training rule using gradient descent

= Asymptotic convergence to hypothesis with
minimum squared error

= Given sufficiently small learning rate n
= Even when training data contains noise
= Even when training data not separable by H

28

(=]

(=]

[=]

Multilayer

Differentiable threshold unit: sigmoid |o

Interesting property:

Networks

1

o= afnet) = o
l+e

1

V)= 1+exp(-y)

Output: |0 = o (W.X)

do(y)
dy

=o(y)d-a(y))

Other function: tanh(y) =

exp(=2y) -1
exp(-2y) +1 20

Multilayer Networks and Backpropagation

& hid
+ hod
= had
& Based
= hmard
o Bl

b wha'd
= hoad

Nonlinear decision

-
1
surface oAk R e o
M*H&g umq-!-uwmwmg};i
Ouipat (i Oyt ; 053
(7] L P 052
l i : 02 2 \ 051
% ===, % o
--/_.- T— 1 _,."'- —— 1
e 18 -~ A
o 'E}--—m_ AT Inpat 2 LA i a4 Emuz
nti O g n,..fdz o1 T a2

Another example: XOR

30

Error Gradient for a Sigmeid
Units
E 01
deD (td _Od)z

oW, ow, 2
1 0
=§Zd 2(t, _Od)ﬁ(td —0y)

o — _Z(tGI — 0y)Od (1-04)%; 4

i deD

31

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

= For each training example, Do

1. Input the training example to the network and compute
the network outputs

2. For each output unit k
5 < 0y (1_ Ok)(tk o Ok)
3. For each hidden unit h
S5, < 0,(1-0,)>’

4. Update each network weight Wi j

k eoutputs h k

W <= W +Aw;, where AW}, =nd ;X

Note: w;; is the weight from i to]
32

| N@ o 1erm

= For output unit o, <0, (1-0,)(t, —0,)

' '
o'(nety) Error

= For hidden unit o, <= 0,(1-0,) Z W, O,

keoutputs

o'(net;)

Backpropagated error

= In sum, § is the derivate times the error.

33

Derivation of Aw
OE,

iji =—

OW

ji

@ Different formula for output and hidden

m For output unit

= For hidden unit

O, _

OW. ..

J1

ok
d _
-=—(t;—0;)0;d-05) X
Ji 5 —errorxg'(net) IPUL
_ oj(]_—Oj) Zé‘kwkj X;
N ~ “keDownstream(j) [~
pnsvat g |input
i error _

S

34

¢ U DY E)r;rujr;[l;”] Dy UU“H!’*“'

Gradient descent over entire network weight vector.
Easily generalized to arbitrary directed graphs.

Will find a local, not necessarily global error minimum:

» In practice, often works well (can run multiple times with
different initial weights).

Often include weight momentum o

AW, ;(n) =nd;X ; +aAw, ;(n—1)

17

Minimizes error over training examples:
» Will it generalize well to subsequent examples?

Training can take thousands of iterations = slow!
Using the network after training is very fast

35

Representational Power of
reedforward Networks

= Boolean functions: every Boolean function
representable with two layers (hidden unit size can
grow exponentially in the worst case:

one hidden unit per input example, and “OR”
them).

= Continuous functions: Every bounded continuous
function can be approximated with an arbitrarily small
error (output units are linear).

= Arbitrary functions: with three layers (output units are
linear).

36

H-Space Search and Inductive B

m H-space = n-D weight space (when there are n
weights).

m The space is continuous, unlike decision tree or
general-to-specific concept learning algorithms.

@ Inductive bias:
Smooth interpolation between data points.

) 4

1245

37

Learning Hidden Layer

Representations

Outputs

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

38

Learned Hidden Layer
Representations

Input Hidden Qutput
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 11 .88 — 01000000
00100000 — .01 97 27 — 00100000
00010000 — .99 97 71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Learned Hidden Layer

Representations

= Learned encoding is similar to standard 3-bit
binary code.

= Automatic discovery of useful hidden layer
representations is a key feature of ANN.

= Note: The hidden layer representation is
compressed.

40

Qverfitting
Error versus weight updates -
0.01 T T T

0009 Training set error - .
WValidation set error
0,008

[eXe

++I§I .IJ

0o0e

0.005 .
0.004 - .

0003 .
0002

Ermor

0 5000 1000 15000 20000
Mumber of weight updates

Error in two different robot perception tasks.
Training set and validation set error.

Early stopping ensures good performance on
unobserved samples, but must be careful.

Weight decay, use of validation sets, use of k-fold
cross-validation, etc. to overcome the problem.

Learning Time

= Applications:
= Sequence recognition: Speech recognition
= Sequence reproduction: Time-series prediction
= Sequence association

= Network architectures
= Time-delay networks (Waibel et al., 1989)
= Recurrent networks (Rumelhart et al., 1986)

42

Time-Delay Neural Networks

Recurrent Networks

44

Unfolding in Time

STt LIF:

el MILP

(Le Cun et al, 1989)

46

Weight Sharing

h

Tuning the Network Size

= Destructive @ Constructive
m Weight decay: @ Growing networks

Dynamic Node Creation Cascade Correlation

(Ash, 1989) (Fahlman and Lebiere, 1989)

48

Bayesian Learning
@ Consider weights w; as random vars, prior p(w;)

p(w|X)= p(Xpl(v)v()g) (w) Wy =argm stlog p(w|X)

log p(w|X)=logp(X |w)+log p(w)+C
IO(W)=H|O(Wi) where p(Wi)=C-exp{— w; }

2(1/22)

E'=E + A|w]’

= Weight decay, ridge regression, regularization
cost=data-misfit + A complexity

49

Dimensionality Reduction

8
]
£
=
S
=z,

50

\%

\

SUMMmary

ANN learning provides general method for learning real-valued
functions over continuous or discrete-valued attributed.

ANNEs are robust to noise.
H is the space of all functions parameterized by the weights.

H space search is through gradient descent: convergence to local
minima.

Backpropagation gives novel hidden layer representations.
Overfitting is an issue.

More advanced algorithms exist.
51

MIACHINE LEAR jll G

IKERMEL MyACEINE

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Kearnel Maehines

Discriminant-based: No need to estimate densities first
Define the discriminant in terms of

The use of , application-specific
measures of similarity

No need to represent instances as vectors
Convex optimization problems with a unique solution

Optimal Separating Hyperplane

X :{xt,rt}t wherert =4 " _If Xtt =G
-1 ifx €C,

findw andw, suchthat

w'x' +w, >+1forrt =+1

w'x' +w, <+1forr'=-1

whichcanberewritten as

rt(wat +W0)2 +1

(Cortes and Vapnik, 1995; Vapnik, 1995)

Miargin

Distance from the discriminant to the closest
instances on either side

w'x' +w
Distance of x to the hyperplane is ‘] :
W
: rt(WTxt +W)
We require ™ /> p, vt
W

For a unique sol'n, fix p| |w| | =1, and to max
margin

min£||w||2 subjectto r'(w'xt +w,)= +1,vt
2

Margin

m iansz subjectto r{(w'x +w,)> +1,vt
2

L, = %HWH2 —20& [t (Wt +w,)-1]

N N
_ %HWHZ - Zoctrt(wat +WO)+ Zat
t=1

t=1

oL N
—=0=>w=>) a'r'x’
oW m

oL N
—p:O:Zatrt =0
oW =)

0

L, = %(WTW)—WT datx aw Y a'rt+ D o
t t t
=—%(WTW)+ >
t

_ _%Zzatasrtrs(xt)sz + Zat
t S t

subjectto > a'r'=0anda' >0,vt
t

Most a are 0 and only a small number have a’>0; they
are the

Soft Margin Hyperplane
» Not linearly separable
rt(wat +WO)21—§t

> Soft error

2.5

t

» New primal is
1 2 t tl.tfi. Tt t t et
L, =§||W|| +CZ§ —Za [r (W X +W0)—1+§]—Z,u £

8

2
1.5

1t
3.5

0

21 [s2] ~l [52] w
T T T T

loss for ' = 1

[} [¥5] =
T

[¢ross entropy T~ «

A

(A

Lhinge(yt’rt) :{

quared error

~ - _ hinge loss
-
-

-~
‘ﬁ

0/1 loss

1-yr

0

t

ify'r'>1

' otherwise

10

] 9 x‘/ t\:]

min— : —
| 2HWH Vo + N Ztlé
subjectto

rt(wat+w)>,o—§t E'>0,p20

=Y T

t=1 s
subjectto

Zloztrt =0,0<a" S%,Zat <y
t t

n controls the fraction of support vectors

11

Kernel Triek

» Preprocess input x by basis functions
2= g(x) ¢()=w'z

g(x)=w! @(x)
» The SVM solution

W= Zatrtz‘ = Zt:atrtq)(xt)
g(x)=w"o(x)= Zatrttp(xt) o(x)
g(X)=ZatrtK(Xt,X)

12

Vectorial Kernels

= Polynomials of degree q: l
15/
K(Xt ,X):(XTXt +1)q
i
05L e
K(x,y)=(x"y+1f
= (lel +X,Y, +1)2 0 . 1| N é

=1+ 2XY; + 2X,Y, + 22X, X1 + X1 Ys + X5Y5

¢(X) - [1’ \/Exl , \/§X2 ’\/EX1X2 1 X12 ’XS]T

13

Vectorial Kernels

m Radial-basis functions:

2 2 2
: X -
K(x ,x)zexp —
2 2
S 1 1

Do Oo 1 2
2 .

1

. B
Do 1 2 Oo 1 2

Defining kernels

= Kernel “engineering”
= Defining good measures of similarity

= String kernels, graph kernels, image
kernels, ...

O : Define a set of
templates m; and score function s(x,m,)

Hx")=[s(x',m,;), s(x',m,),..., s(x',m,)]
and

Kxx)=¢ (x)" ¢ (x')

15

Multiple Kernel Learning

» Fixed kernel combination eK(x,y)

K(%,y)=1K,(x,y)+K,(x,y)
K (6, Y K, (%)

» Adaptive kernel combination

K(x,y)=Z:lf7iKi(x,y)

L=>.a' —%ZZatasrtrSZniKi(xt ,xs)
g(x):ZatrthiKi(xt,x)

» Localized kernel combination

909=Xe'r X (x10)K;(x' %)

16

Multiclass Kernel Machines

1-vs-all

Pairwise separation

Error-Correcting Output Codes (section 17.5)
Single multiclass optimization

o1&
m'nEZHWiHZ +CY > &
i=1 i t

subjectto

Tt T t t ; t t
W X +W, 2W X +W,, +2-57, VI#Z, & 20

17

SYM for Regression
» Use a linear model (possibly kernelized)
flx)=w'x+w,
> Use the e-sensitive error function

o) -1 <o

r—f(x')-¢ otherwise

> min wf +C X (e +e)

r‘— (WTXﬂLWo)S £+&,
(WTX+WO)— rr<e+&t
§+ ’g— 2 0 N

24

O
= ICha

19

Polynomial Kernel

Gaussian Kernel

20

One-Class Kernel Machines

@ Consider a sphere with center a and radius R

minR* + C) &'
t

subjectto .|

xt —al|<R*+ &£ 20

L, =Zozt(xt Jxe —ZN:Zatasrtrs(xt)sz .
t

t=1 s

subjectto
0<at SC,Zat =1
t

21

(a)s° =
20
1.5¢
T
0.5¢
UD 1

22

(=]

does

PCA on the kernel T

matrix (equal to
canonical PCA witl
a linear kernel)

Kernel LDA 2

(a) Quadratic kernel in the x space

9

_6.

23

MIACHUNE L EARMNING

REINEFORCEMENT LEARMING

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Reinforcement Learning (RL)

= How an autonomous agent that sense and act
in the environment can learn to choose
optimal actions to achieve its goals.

= Examples: mobile robot, optimization in
process control, board games, etc.

= Ingredients: reward/penalty for each action,
where the reinforcement signal can be
significantly delayed.

= One approach: Q learning

Introduction: Agent

Terminology:

= State: state of the environment, obtained through
Sensors

= Action: alter the state

= Policy: choosing actions that achieve a particular
goal, based on the current state.

= Goal: desired configuration (or state).
Desired policy:
= From any initial state, choose actions that

maximize the reward accumulated over time by
the agent.

Introduction: RL Task

Agent

Environment

(ag/1g) (ag/n) (a/1rp)
5, —(lh) 55 @) g _ (ln)

Agent has a state in an environment, takes an action and
sometimes receives reward and the state changes

Goal: learn to choose actions that maximize discounted,
cumulative award:

[,+y 1 +y°r,+..,where 0< A <1.

That is, we want to learn a policy 7: S = A that maximizes
the above, where S is the set of states, and A that of actions.

Single State: K-armed Bandit

» Among K levers, choose @ Lever |
the one that pays best . ;Z .
Q(a): value of action a ~—® Lever 2
Reward is r,
Set Q(a) =Ty ¢ @ Leverk
Choose a’ if
Q(a*)=maxa Q(a) reward

» Rewards stochastic (keep an expected reward)

Qui(a)<-Q@)+7lr..(@)-Q (@)

Variations of RL Tasks

= Deterministic vs. nondeterministic action
outcomes.

= With or without prior knowledge about the
effect of action on environmental state.

= Partially or fully known environmental state
(e.g., Partially Observable Markov Decision
Process [POMDP]).

Elements of RL (Markeov Decision
Frocesses)

= S;: State of agent at time t
a;: Action taken at time t

In s, action a, is taken, clock ticks and reward r,,
Is received and state changes to s;,,

Next state prob: P (Si.1 | S¢, &)

Reward prob: p (re.q | S¢» @;)

Initial state(s), goal state(s)

Episode (trial) of actions from initial state to goal
(Sutton and Barto, 1998; Kaelbling et al., 1996)

E &

E F E & M

rolicy and Cumulative Reward

= Policy, 7:S—>A a =xls,)
= Value of a policy,V~(s,)
@ Finite-horizon:

.
Vﬂ(st): E[rt+1 Tl t+ g]: E|:Zrt+i:|

i=1
= Infinite horizon:
V”(St): E[rt+1 TN 7/2rt+3 T]: E|:27ilrt+i:|
i=1

0<y<1 isthe discount rate

V(s)=maxVv”(s,),Vs,

=maxE| > »'™r,, }
i=1

C i-1
=m aXE rt+1 + 7/27 rt+i+1:|
| i=1

=maxE[r,, +V'(s,)] Bellman’s equation

Vie)mad el] EPG 15,8 6.

St+l

V*(s,)=maxQ’(s,,a,) Value ofa, ins,
Q* (St ’a't): E[rt+1]+ yzp(stﬂ | St ’a't)n;tal'XQ* (St+1’a't+1)

St+l

Example: Grid World
i_... IE_... O)
= 6’
§ |0 § |0 4
0y £+U|+ ol 1100

* Immediate reward given only when entering the goal
state G.

* Given any initial state, we want to generate an action
sequence to maximize V .

Grid World: V' (s) Values

100

-

-~

i \J] —_— |, N
g 90 100 »

-—F g
0 T | 4|

0

— ! -

| |
' Ol

0

{
| 100 K K

- —
8Bl | 90 | 100

0 0
_+ ES—

< ¥
|

0

Bl E [[FE [

r(s,a) V*(s) values
Discount rate: y=0.9
Top middle: 100 + y0 + y% 0 + ... = 100
Top left: 0 + y100 + y% 0 + ... = 90
Bottom left: 0 + y 0 + 2100 + ... = 81

Note that these values are supposed to be
obtained using the optimal policy * .

11

[1 I CT R |

Model-Based Learning

Environment, P (Siy; | Sty @), P (feq | Sis &), is known
There is no need for exploration

Can be solved using dynamic programming

Solve for

Vie)-maf by ol 5 4N 5.)

Stn

Optimal policy

n*<st>=argma{E[nﬂ|st,@]+yzp<st+l|st,atw*<sm>j

a St41

12

Value lteration

Initialize V(s) to arbitrary values
Repeat
For all s€ S
For all a € A
Q(s,a) «— E[r|s,a] +~ Zs’es P(s'|s,a)V(s)
V(s) <« max, Q(s, a)
Until V(s) converge

13

Policy lreration

Initialize a policy & arbitrarily
Repeat
T TF,
Compute the values using =« by
solving the linear equations
VT (s) = Elrls, m(s)] +7 3 o P(5's, m(s)V™(s)
Improve the policy at each state
Tr’(,s) — arg maxq (E[r|s,a] + ’}’ZS,Es P(s'|s,a)VT(s"))
until m ==’

14

16

(=

amporal Difference Learning

Environment, P (Si; | Sty &), P (e | Sty &), is not
known; model-free learning

There is need for exploration to sample from
P (Ste1 | St»a) and p (e | Spv a;)

Use the reward received in the next time step to update
the value of current state (action)

The temporal difference between the value of the
current action and the value discounted from the next

state
15

Exploration Strategies

e-greedy: With pr ¢,choose one action at random
uniformly; and choose the best action with pr 1-¢

Probabilistic:

Als)— expQ(s,a)
Pals) ZbAzlepr(s,b)

Move smoothly from exploration/exploitation.

= Decrease ¢

Annealing

p(als)= exp[Q(s,a)/T]
ZbA:lexp[Q(s, b)/T]

16

Deterministie Rewarels anel

ACTIONS

Q'(5.8)~Elr+ 7 TP (5152 M (5108

t+1
St+l

Deterministic: single possible reward and
next state

Q(St ’at) = rt+1 + ymaXQ(SHl’aHl)

t+1

used as an update rule (backup)

Q(St ’a‘t) <~ rt+l + y”;axé(stﬂ’a“wl)

t+1

Starting at zero, Q values increase, never
decrease

17

@ Consider the value of action marked by ™*’:
= If path A is seen first, Q(*)=0.9*max(0,81)=73
= Then B is seen, Q(*)=0.9*max(100,81)=90

= Or,
= If path B is seen first, Q(*)=0.9*max(100,0)=90
= Then A is seen, Q(*)=0.9"max(100,81)=90

m Q values increase but never decrease

18

Noncdeterministie Rewards and

= When next states and rewards are nondeterministic
(there is an opponent or randomness in the
environment), we keep averages (expected values)
instead as assignments

@ Q-learning (Watkins and Dayan, 1992):

05, 2) - Qlsa)+ 7o+ 7maxd(ss) -Qe.a)

= Off-policy vs on-policy (Sarsa)
@ Learning V (TD-learning: Sutton, 1988)

V(s)=V(s)+ 71 + WV (s00) - V(s)

19

Q-learning

Initialize all Q(s,a) arbitrarily
For all episodes
Initalize s
Repeat
Choose a using policy derived from @, e.d., e-greedy
Take action a, observe r and s’
Update Q(s,a):
Q(s,a) — Q(s,a) + n(r + ymax,, Q(s',a") — Q(s,a))
s+ g

Until s is terminal state

20

o am -
.JE!' -.Ju':’,l

Initialize all Q(s,a) arbitrarily
For all episodes
Initalize s
Choose a using policy derived from @, e€.9., e-greedy
Repeat
Take action a, observe r and s’

Choose a’ using policy derived from Q, e.d., e-greedy

Update Q(s,a):
Q(s,a) — Q(s,a) +n(r +vRQ(s",a") = Q(s,a))
s— s, a—ad

Until s is terminal state

21

Eligibility Traces

= Keep a record of previously visited states (actions)

1 if s=s, and a=a,
yle,_,(s,a) otherwise

et(s,a)z{

Oy =l + 7’Q(St+1 'at+1)_ Q(St 1at) v
Q(s,,a,)« Q(s,,a,)+ns.e(s,a),vs,a [T =S

22

Sarsa (M)

Initialize all Q(s.a) arbitrarily, e(s,a) — 0,¥s,a
For all episodes
Initalize s
Choose a using policy derived from @, e.9., e-greedy
Repeat
Take action a, observe r and &
Choose a' using policy derived from @, e.g., e-greedy
§—r+Q(s.a’) — Q(s, a)
e(s,a)y— 1
For all s, a:
Q(s,a) — Q(s.a) + nde(s.a)
e(s,a) «— yAe(s,a)
s— g, a—a
Until s is terminal state

23

Generalization

= Tabular: Q (s, a) or V (S) stored in a table
= Regressor: Use a learner to estimate Q (S, a) or V (s)

() [t+1+7Q(St+1’a-t+1)_Q(St’at)]2
AQ = 77[lipa + 7’Q(St+1’at+1)_Q(St x:h)]VetQ(St ’a'()
Eligibiliy
A0=775e

t+1 + 7Q(t+l’a1+1) Q(St ’at)
et = yﬁet_l +V, Q(s;.a,) with e, all zeros

24

Partially Observable States

@ The agent does not know its state but receives an
observation p(0 |S;,8;) which can be used to infer a
belief about states

= Partially observable MDP

State Action

25

(=]

The Tiger Problem

Two doors, behind one of which there is a tiger
p: prob that tiger is behind the left door

r(A,Z7) Tiger left Tiger right
Open left —100 +80
Open right +90 —-100

R(a,)=-100p+80(1-p), R(ag)=90p-100(1-p)
We can sense with a reward of R(ag)=-1
We have unreliable sensors

P(orlzr) = 0.7 P(or|zgr) = 0.3
P(orl|zr) = 0.3 P(orlzgr) = 0.7

= If we sense 0, , our belief in tiger’s position changes

Plo 1z)P(z) 0.7p
Po) 0.7p+0.31-p)

R(@ lo)=r(a.,z)P(z lo)+r(a.,z;)P(z; 10)
=-100p'+80(1-p')

0.7p 80 0.31—p)

P) P()

R@g 10)=r(as,z)P(z lo)+r(@s,zz)P(zz |0,)
=90p'-100(1—-p")

0.7p _1000.3(1— P)

P(o.) P(,)

R(as I OL) =-1

p': P(ZL IOL) -

=-100

=90

27

\V'= Z[ma)(i R(a |0j)]3(01')

= max@(aL IOL)iR(aR IOL)’R
—100p +80(l-p

=Mmax

—-43p
33p
90p

a; [0,))P(0,) +maxR(a 10;).R(@; 10;).R(as 10;))P(0;)

~

—46(1-p
+26(L-p
—-100(1- p)

~—

28

Expected reward Expected reward

Expected reward

100

-100 ——
0

100

(a) Initially

(b) After sensing o

0.5 1

0.5 1

(d) Optimal after sensing

(c) After sensing g

29

= Let us say the tiger can move from one room to the
other with prob 0.8

p'=0.2p+0.81—p)
—100p" +80(L-p)
V'=max 33p +26(-p')
90p -100(1—p")

(a) Tiger can move

Expected reward

30

= When planning for episodes of two, we can take a,, ag,
or sense and wait:

—-100p +80(L-p)
V,=maX 90p —-100(1-p)
maxV' -1

(b) Value in two steps

100

Expected reward

0 05)

31

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

Semiparametric Density
Estimation
Assume a single model for p (x | C))
p (x | G)is a mixture of densities

Multiple possible explanations/prototypes:
Different handwriting styles, accents in speech

No model; data speaks for itself

Mixture Densities

k

p(x)=>_p(xIG P(G)

i=1

where G; the components/groups/ clusters,
P (G;) mixture proportions (priors),
p (x | G;) component densities

Gaussian mixture where p(x | G;) ~ N (p;, Y,;) parameters
O ={P (Gi), pi, 2i =1
unlabeled sample X={x'}, (unsupervised learning)

Classes vs. Clusters

O] X={xtr}, = X={xt},
= Classes C; i=1,...K @ Clusters G;i=1,...,k
K K
p(x)= Zp(XICi P(C) p(x)= Zp(XIGi)P(Gi)
i=1 i=1
wherep (x | C)~N (g, Y) where p (x | G)~N (#;, D))
5 O={P(C), i,)i} 5 O={P(G), m,)il
) r! tritxt
P(Ci):th m; = Zz:ltrit Labels, rt; ?

(=]

(=]

(=]

k-Means Clustering

Find k reference vectors (prototypes/codebook
vectors/codewords) which best represent data

Reference vectors, my, | =1,...K

Use nearest (most similar) reference:

¢ —mi| =mirfx' —m|
J

Reconstruction error

E(fm J X)= 3 3 bix —m)|

b! =

|

L it =it -m|
0 otherwise

Encoding/Decoding

Encoder

i

m.
i

Find closest

b! =

Communication

line

()

Decoder

—L mn .
i

1 if th -m. H = m_iont -m, H
J

0

otherwise

k-means Clusterin

s

Initialize m;,i = 1,..., k, for example, to k random z!
Repeat
For all &t € X
) 1 T lle’ —mi = ming |* —my]|
! 0 otherwise
For all m;,i=1,....k
m; < Zt biz'/ Zt b;

until m,; converge

k—means: Initial

20 s (R SRR

0] T ' L

ST U P SO o

T I T S .

-30
—-40 -20 0 20

After 2 iterations

20 AR ARRERRERRE SRR

0] T '

T OSSO AU e

o0b T S .

40

-3 ; ; ;
-40 -20 0 20

40

After 1 iteration

20 R R reeeeees :
40b- -t O
o, o
&>
U ..
k
A0
_2[] ..
=30
—-40 =20 0 20 40
%
After 3 iterations
20 [EREEREEEE SREEEEEEEES
o 5
-1[] Q R O :
o o
3 >
U l -
O
% :
] P
_2[] ..
-30 . !
-40 =20 0 20 40
X

Expectation-Maximization (EM)

Log likelihood with a mixture model

L(CI>|X):Iogl_[p(xt |(I))
= Ztlogi px' 16, P(G,)

Assume hidden variables z, which when known, make
optimization much simpler

Complete likelihood, L (® |X,Z), in terms of x and z
Incomplete likelihood, L(® | X), in terms of x

E- and M-steps

Iterate the two steps
. E-step: Estimate z given X and current @
. M-step: Find new @’ given z, X, and old .

E-step:Q(@]@')=E|L, (@]X,2)| X, ']
M-step: @' =argmaxQ (CI)|CD')

An increase in Q increases incomplete
likelihood
L(®" X)z L(@'|X)

10

EM In Gaussian Mixtures

z', =1 if x* belongs to G;, 0 otherwise (labels r Y, of
supervised learning); assume p(x | G;)~N(u;,> ;)

E-step: t | (Xt G,)D(Gi)
E[Zi ‘X D]: Zzp(xt IGj ,(DI)D(GJ.)
M-step: =P Ix!, @')=h'

Z h{ " Z hix' Use estimated labels in
P(Gi): Tt m; = ﬁ place of unknown
¢l

labels
gt _ Zt hit (Xt B m!”th B m:+1)T
|

2N

11

20

15

10

-10

-15

-20

-25

-30

EM solution

-40 -30 -20 -10 0 10 20

12

Mixtures of Latent Variable
Meocdels

@ Regularize clusters

1.

2.

Assume shared/diagonal covariance matrices

Use PCA/FA to decrease dimensionality: Mixtures of
PCA/FA

p(Xt IGi): N (mi AVAYA "‘\I’i)

Can use EM to learn V; (Ghahramani and Hinton, 1997;
Tipping and Bishop, 1999)

13

Arter Clustering

= Dimensionality reduction methods find
correlations between features and group
features

@ Clustering methods find similarities between
instances and group instances
= Allows knowledge extraction through
number of clusters,
prior probabilities,
cluster parameters, i.e., center, range of features.
Example: CRM, customer segmentation

14

Clustering as Preprocessing

= Hstimated group labels h; (soft) or b; (hard) may
be seen as the dimensions of a new k
dimensional space, where we can then learn
our discriminant or regressor.

= Local representation (only one b; is 1, all others
are 0; only few h; are nonzero) vs

Distributed representation (After PCA; all z; are
nonzero)

15

Mixture of Mixtures

= In classification, the input comes from a
mixture of classes (supervised).

= If each class is also a mixture, e.g., of
Gaussians, (unsupervised), we have a mixture
of mixtures:

p(x|C,) ZP(X|G.,)D()

j=1
K

:Zp(X|Ci)P(C

i=1

16

Hierarchical Clustering

= Cluster based on similarities/distances
= Distance measure between instances x" and x°
Minkowski (L) (Euclidean for p = 2)

d, (¢) =[x —xc P]

City-block distance

dcb (Xr ’XS): Z(jj:l

r S
Xj =X

17

Agglomerative Clustering

= Start with N groups each with one instance and
merge two closest groups at each iteration
= Distance between two groups G; and G;:
= Single-link:
d(@,.6,)= , min_dlx'x)
= Complete-link:
d(Gi,Gj):Xrergas)ido(x X°)

= Average-link, centroid

18

Example: Single-Link Clustering

. <‘//
A
%

+

a b e c d f

Dendrogram

Choosing &

= Defined by the application, e.g., image quantization

Plot data (after PCA) and check for clusters

= Incremental (leader-cluster) algorithm: Add one at a

time until “elbow” (reconstruction error/log
likelihood /intergroup distances)

Manually check for meaning

20

MACHINE LEARNING
D.E_J.,Lm, f.\f\D. ANALYSIS OF MACHINE
LEARNING EXRERIMENTS

Instructor :
Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University
Contact Info:
o_sojoodi@{ieee.org, m.ieice.org}

Introcduction

@ Questions:

= Assessment of the expected error of a learning
algorithm: Is the error rate of 1-NN less than 2%?

= Comparing the expected errors of two algorithms: Is
k-NN more accurate than MLP ?

= Training/validation/test sets
= Resampling methods: K-fold cross-validation

Algorithm Preference

@ Criteria (Application-dependent):
Misclassification error, or risk (loss functions)

Training time/space complexity

Testing time/space complexity

Interpretability
= Easy programmability

= Cost-sensitive learning

Factors and Response

Controllable
factors

o

Input Output

—
2 g

S =
2=
)
o

Strategies of Experimentation

Factor?

A | Iy A (e | “ I___T__.'__I___l ‘L - _.'_._'.
BRSSP
g | 00000
Oy |999000 100000
B O |00-0-0
|] | I | | I | I

= 600666
Factor!
(a) Best guess (b) One factor at a time () Factorial design

Response surface design for approximating and
maximizing
the response function in terms of the controllable factors

m o onNow

e

Guidelines for ML experiments

Aim of the study

Selection of the response variable
Choice of factors and levels

Choice of experimental design
Performing the experiment
Statistical Analysis of the Data
Conclusions and Recommendations

Resampling and
K-Fold Cross-Validation

@ The need for multiple training/validation sets
{X;, V,};: Training/validation sets of fold i
@ K-fold cross-validation: Divide X into k, X,,i=1,...,K

V=X, T, =X, UX;U---UX,
V,=X, T,=X uUX,uU---UX,

V=X, T, =X UX,U--UX,,

@ T, share K-2 parts

=

5%2 Cross-Validation

= 5 times 2 fold cross-validation (Dietterich, 1998)

T,=XY v,=xV?
T, = Xl(z) V, = X1(l)
T, = Xz(l) V,; = Xz(z)
T,= X2(2) V, = Xz(l)
Ty =XY V=X
Ty = XESZ) Vi = xs(l)

BooOtstrapping

= Draw instances from a dataset with replacement
= Prob that we do not pick an instance after N

draws
N
(l—ij ~e*=0.368
N

that is, only 36.8% is new!

Mleasuring Error

Predicted class
True Class Yes No
Yes TP: True Positive | FN: False Negative
No FP: False Positive | TN: True Negative

= Errorrate = # of errors / # of instances = (FN+FP) / N
@ Recall = # of found positives / # of positives
=TP / (TP+FN) = sensitivity = hit rate
@ Precision = # of found positives / # of found
=TP / (TP+FP)
@ Specificity = TN / (TN+FP)
= False alarm rate = FP / (FP+TN) =1 - Specificity

Hit rate: |TP|/(|]TPIH|FN))

ROC Curve

Sensitivity (Hit rate)

.

-

[

|

False alarm rate: |FP|/(|FP+|TN]|)

|

Specificity = I-False alarm rate

11

tp-rate

z

_____________________ ?

&

"/
"/“"
"/“f'
. ‘//"
"/("
"//"
f /{/
"/("
fp-rate fp-rate
(b) Different ROC
(a) Example ROC curve curves for different
classifiers

12

Precision and Recall

_ a
retrieved relevant Precision:
records records a b
R L
a
Recall:
a + ¢

(a) Precision and recall

(b) Precision=1 (¢)Recall=1

13

Interval Estimation

Uit Normal Z=N(0,1)

= X ={xt},where x'~ N (y, 0?

= m~N (p, 0°/N)

m(m—#)~z

o -
{ 196<\/_()<196} 0.95

o
o o
Pim-196—<u<m+1.96—;=0.95
{ N m}
100(1- a) percent

P{ <pu<m+z /Zi}zl—a confidence

alz\/_ ’ \/N interval

14

p{m (m-p) <1.64}=0.95

P{m ~1.64—2< u} =0.95

O
Pim-z —<u;r=1-«
{ “IN “}

= When 02 is not known:

2= (xt —m) /(N-1)

t

P{m—ta,Z,NliN< u<m+t

IN(m—p) _
S

tN—l

al2N-1 i} =l-a
"IN

15

Hypothesis Testing

@ Reject a null hypothesis if not supported by the sample
with enough confidence

= X={x},where x*~ N (y, 0?)
Hy: pp = po vs. Hy: pp # g
Accept Hy with level of significance a if y is in the
100(1- a) confidence interval

‘/N(m_,uo) (

€ _Za/2’za/2)

O
Two-sided test

16

Decision

Truth Accept Reject
True Correct Type I error
False | Type Il error | Correct (Power)

= One-sided test: Hy: p < py vs. Hy: p >

‘/N(m_ﬂo)e(

o)

Accept if

_OO’Za)

= Variance unknown: Use ¢, instead of z
Accept Hy: p =y if
\/N(m —Ho)
S

< (_ta/Z,N—l’ta/Z,N—l)

Assessing Error: Hy: p £ b, VS,
H,.:p> p,

@ Single training/validation set: Binomial Test

If error prob is p,, prob that there are e errors or less in
N validation trials is

P{X < e}:i(l_ljpoj@— o,

i\ J

Accept if this prob is less than 1- a

N=100, e=20 |

18

Normal Approximation to the
Binomial

= Number of errors X is approx N with mean Np, and
var Npo(1-po)

X —Np,

\/Npoil_po)

Accept if this prob for X=e is
less than z,_,

~Z

88 8§ 5§

19

¢t Test

Multiple training/validation sets
xt. =1 if instance t misclassified on fold i
Error rate of fold i:

With m and s? average and var of p;, we accept p, or
less error if
Nt
Z:t:lxi
P=NT

is less than ¢, ; ;

20

Comparing Classifiers:
o o= Uy V8. Hyt e 2 1

= Single training/validation set: McNemar’s Test

epo: Number of examples ep1: Number of examples
misclassified by both misclassified by 1 but not 2
e10: Number of examples e11: Number of examples
misclassified by 2 but not 1 | correctly classified by both

= Under Hj, we expect ey, = e;g=(ep;* €10)/ 2

(J% B e1o| _1)2 ~ X2
€011t €10 '

Accept if < X2,

i-Foldd CV Pairecdl t Test

Use K-fold cv to get K training/validation folds
p, p> Errors of classifiers 1 and 2 on fold i

p; = pt - p?: Paired difference on fold i

The null hypothesis is whether p;, has mean 0

Ho:zt=0 vs. Hy: u#0

m= M 2 Z:il(pi B m)2
K

T K
JK(m=-0) JK-m

S _ 5 ~t, , Acceptifin (_taIZ,K—l’taIZ,K—l)

22

%2 €y Palred t Test

= Use 5%2 cv to get 2 folds of 5 tra/val replications
(Dietterich, 1998)

= p): difference btw errors of 1 and 2 on fold j=1, 2 of
replication i=1,...,5

[:(i(l)+pi(2))/2 Si2 :(pi(l)_ﬁi)z +(pi(2)_5i)2
p;”

Z; s’ /5

Two-sided test: Accept Hy: o = py ifin (-ty/55.t,/25)
One-sided test: Accept Hy: yg <y if < t;5

~t5

23

8%2 ¢v Paired F Test

IINCEN
225 S_2 10,5
i=1 !

= Two-sided test: Accept Hy: g = pqif < Fqq05

24

Comparing L>2 Algorithms:
Analysis of Variance (Anova)

Ryt == =m

@ Errors of L algorithms on K folds

@ We construct two estimators to 02 .
One is valid if H; is true, the other is always valid.
We reject H,, if the two estimators disagree.

25

If H, istrue:
m, :i%~ N (/,I,GZ/K)

-1
|szlmi g2 — Zj(mj _m)2
L

m = =
L-1

Thus an estimatorof o isK - S*, namely,

~2 L<mj_m)2
o —K]Z:: 1
(mj_m)2 2 2
Zj: —yy ~ X2, SSbEKZj:(mj—m)
SowhenH, istrue, we have

2
XL—l

2

26

Regardlessof H, our secondestimatorto ¢ is the
average of group variances S.2 ;

2 XK2 1 T 2 XLZ(K—l)
O

(K-
[s MSSV\//J j_ SSb/(L-1) .

L(K-1)) ssw/(L(k-1)) MY
Hy iy =p, == If<FaL 1,L(K-1)

27

.". - " % L i .
Al | {J Hl'/f{ \ fal)&

Source of Sum of Degrees of Mean
variation squares freedom square Fo
Between | SSp =
groups KX ;(mj—m)? L-1 MSp = % ;‘gﬁ
“71’[1’]_111 \S‘Sw =
groups iji[Xij—mj)z LIK-1) M'Sw:“%f”
Total SSt =

ZJZ;(XU—m)z L-K-1

If ANOVA rejects, we do pairwise posthoc tests

Ho o gt =1y Vs H, 2 1 #

t=

_mi-m

J2o,

- tL(K—l)

28

Comparison over Multiple
Datasets

= Comparing two algorithms:

Sign test: Count how many times A beats B over N
datasets, and check if this could have been by chance if
A and B did have the same error rate

= Comparing multiple algorithms

Kruskal-Wallis test: Calculate the average rank of all
algorithms on N datasets, and check if these could have
been by chance if they all had equal error

If KW rejects, we do pairwise posthoc tests to find
which ones have significant rank difference

29

Omid Sojoodi
Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

0_sojoodi@{ieee.org, m.ieice.org}

1Nt !"fJf,| LeELIoOn

Based loosely on simulated evolution.

= Hypotheses: described in bit strings (subject to

Interpretation in specific domains).

Search: population of hypotheses, refined
through mutation and crossover to increase
fitness.

Applications: optimization problems, learning

the topology and parameters in neural
networks, and many more.

Lamarck and others:

= Species “transmute” over time (inheritance of
acquired trait)

Darwin and Wallace:

= Consistent, heritable variation among individuals in
population

= Natural selection of the fittest
Mendel and genetics:

= A mechanism for inheriting traits

= Genotype - phenotype mapping

['“'f’f])1 | ekt 1)1

= Mutation and crossover of hypotheses in the
current population.

= Basically a generate-and-test beam search.

= Motivating factors:
= Evolution is known to be successful.

= GAs can search hypotheses containing complex
interacting parts.

= Easily parallelizable

Genetic Algorithms

= Population: set of current hypotheses
= Fitness: predefined measure of success
= Elements of GA:

fitness test = selection = reproduction
(mutation, crossover)

GA(Fitness, Fitness threshold, p, r, m)
= [nitialize: P < p random hypotheses
= FEvaluate: for each /7 in P, compute Fitness(h)
= While [max,, Fitness(h)] < Fitness threshold
1. Select: Probabilistically select (1—7)p members of P to add to ..
Fitness(h;)
?:1 Fitness(h;)

Pr(h;) = >

2. Crossover: Probabilistically select % pairs of hypotheses from P.
For each pair, </1,, /1,>, produce two offspring by applying the
Crossover operator. Add all offspring to /’s.
3. Mutate: Invert a randomly selected bit in 172. p random members of Ps.
4. Update: P < Ps
5. Evaluate: for each /1 in P, compute Fitness(h)
= Return the hypothesis from P that has the highest fitness.

Representing Hypotheses

Represent
(Outlook = Overcast _ Rain) (Wind = Strong)
by
Outlook Wind
011 10

Represent

IF Wind = Strong THEN PlayTennis = yes
by

Outlook Wind PlayTennis

111 10 10

Genetic Operators

Single-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation:

Initial strings Crossover Mask Offspring

11101001000 11101010101

- : 11111000000 :
00001010101 00001001000

11101001000 11001011000

: 00111110000 :
00001010101 00101000101

11101001000 10001000100

:: 10011010011 ::
00001010101 01101011001

11101001000 - 11101011000

Selecting Most Fit Hypotheses

= Fitness proportionate selection:

Fitness(h;)
p ; .
=1 Fitness(h;)

Pr(h;) = >

= Tournament selection:
= Pick /1;, 1, at random with uniform prob.
= With probability p, select the more fit.

= Rank selection:
= Sort all hypotheses by fitness
= Probability of selection is proportional to rank

Example: GABIL [Dejong et al,
1993]
Learn disjunctive set of propositional rules, competitive with C4.5
Fitness:
Fitness(h) = (percent_correct(h))?

Representation:
[Fa,=T"a,=FTHEN c=T; IFa,=TTHEN c=F

represented by
a, a, c a, a, c
10 01 1 11 10 0
Genetic operators:

= want variable length rule sets (as number of attributes can change)

= want only well-formed bitstring hypotheses

10

Crossover with Variable-Length Bitstrings

Start with

a, a, C a, a, C
hy, o 10 01 1 11 10
h,: 01 11 0 10 01 0

1. choose crossover points for /1,, e.g., after bits 1, 8
2. now restrict points in /7, to those that produce bitstrings with
well-defined semantics, e.g., <1, 3>, <1, 8>, <6, 8>,

iIf we choose <1, 3>, result is

a; a, c
hyt 11 10 0

a; a, c a; a, c a; a, c
hy,: 00 01 1 11 11 0 10 01

Fxrtensions to GARIL

Add new genetic operators, also applied probabilistically:
1. AddAlternative: generalize constraint on 2, by changinga Oto 1
2. DropCondition: generalize constraint on #; by changing every 0 to 1

And, add new field to bitstring to determine whether to allow
these

ay a, C a4 a, C AA DC
01 11 0 10 01 0 1 0

So now the learning strategy also evolves. (Allowing this
increased accuracy.)

12

GARBIL Results

Performance of GABIL comparable to symbolic rule/tree
learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:
= GABIL without AA and DC operators: 92.1% accuracy
= GABIL with AA and DC operators: 95.2% accuracy
= symbolic learning methods ranged from 91.2 to 96.6

13

b

Characterizing Eveolution: Schemas

How to characterize evolution of population in GA?
Schema = string containing 0, 1, * (“don’t care”)
= Typical schema: 10**0*

= [nstances of above schema: 101101, 100000, ...
= An instance of length 4, say 0010, can have 2* matching

schemas.

Characterize population by number of instances
representing each possible schema:
= (s, t) = number of instances of schema s in pop at time ¢

= Want to estimate mi(s, t + 1) given mi(s, t) and other factors.

14

Factors Influencing Change in m(s, t)

m(s, t) can change as f changes, due to the
following factors:

= Selection: if individuals representing s get selected
more often, n:(s, -) will increase.

= Crossover
= Mutation

Schema theorem: gives E[m(s, t + 1)].

15

Influence of Selection

£ (t)= average fitness of pop. at time

m(s, t) = instances of schema s in pop at time ¢

(s, t)= average fitness of instances of s at time ¢

h € s N p;: instances of schema s in the population at time ¢
Probability of selecting /: in one selection step

3 Y B (1 R

__fy _
Pr(h) = G20 = v
Mean fitness of instances of s at time ¢:

ZhESﬂpt f(h)
m(s,t)

(s, t) =

16

Influence of Selection

Probability of selecting an instance of s in one step

f(h) u(s,t)
Pr(h € s) = ZhESﬂptF(t) =) m(s,t)

Expected number of instances of s after 1 selections

E[m(s,t +1)] = ﬁf(zt? m(s,t)

17

=

3 Y I Y N 1 1 B 1 B O

Sehema Theorem

E[m(s,t + 1] = ﬁ;it;) m(s, t) (1 — P ldE—SD (1 - pm)°®

m(s, t) = instances of schema s in pop at time ¢

f(t) = average fitness of pop. at time ¢

ii(s,t) = ave. fitness of instances of s at time ¢

p. = probability of single point crossover operator

p,, = probability of mutation operator

[= length of single bit strings

o(s) = number of defined (non “*”) bits in s

d(s) = distance between leftmost, rightmost defined bits in s

18

Genetic Programming

= Population of programs represented by tree

sin(x) +x?+y
(+)

19

btrees
er: Swap whole su
Crossover:

Py
m

Bloeck Problern

] vl ol 1 fa] L]
AAAHIIIITTAEEEAEEEEEEAAEEEEEAE

Goal: spell UNIVERSAL
Terminals:

(=]

[=

CS (“current stack™) = name of the top block on stack, or F.

TB (“top correct block™) = name of topmost correct block on
stack

NN (“next necessary”) = name of the next block needed
above TB in the stack

21

4

Primitive Funetions

= (MS x): (“move to stack”™), if block x is on the table, moves x to

the top of the stack and returns the value T. Otherwise, does

nothing and returns the value F.

B (MT x): (*“move to table™), if block x is somewhere in the stack,
moves the block at the top of the stack to the table and returns the
value T. Otherwise, returns F.

= (EQ xy): (“equal”), returns T if x equals 1, and returns F otherwise.
@ (NOT x): returns T'if x = F, else returns F

= (DU x y): (“do until”) executes the expression x repeatedly until
expression y returns the value T

22

Learned Program
Trained to fit 166 test problems

Using population of 300 programs, found this after 10
generations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

23

Lamarck (19th century)

= Believed individual genetic makeup was
altered by lifetime experience

= But current evidence contradicts this view

What is the impact of individual learning on
population evolution?

24

BRalehwin Effect

Assume
= [ndividual learning has no direct influence on individual DNA
= But ability to learn reduces need to “hard wire” traits in DNA

Then
= Ability of individuals to learn will support more diverse gene pool

— Because learning allows individuals with various “hard
wired” traits to be successful
= More diverse gene pool will support faster evolution of gene pool

- individual learning (indirectly) increases rate of evolution

25

Baldwin Effect
Plausible example:

1. New predator appears in environment

2. Individuals who can learn (to avoid it) will be selected

3. Increase in learning individuals will support more diverse gene
pool

4. resulting in faster evolution

5. possibly resulting in new non-learned traits such as instinctive
fear of predator

26

Computer Experiments on Baldwin Effect

Hinton and Nowlan, 1987]

Evolve simple neural networks:
@ Some network weights fixed during lifetime, others trainable

= Genetic makeup determines which are fixed, and their weight
values

Results:
= With no individual learning, population failed to improve over time

= When individual learning allowed

o Early generations: population contained many individuals with
many trainable weights

o Later generations: higher fitness, while number of trainable weights
decreased

27

Other Consiclerations

= Coevolution: escalating effect or complementary
dependence (insects and flowering plants)
between two or more species.

= Cultural transmission: memes vs. genes.

28

summary: Eveolutionary Learning

= Conduct randomized, parallel, hill-climbing search through H
= Approach learning as optimization problem (optimize fitness)

= Nice feature: evaluation of Fitness can be very indirect
= consider learning rule set for multistep decision making
= no issue of assigning credit/blame to individual steps

29

