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Machine learning:  
the study of self-modifying computer systems that can 
acquire new knowledge and improve their own 
performance 

 
 Survey on machine learning techniques:  

induction from examples 
Bayesian learning 
artificial neural networks 
instance-based learning 
genetic algorithms 
reinforcement learning 
unsupervised learning 
and biologically motivated learning algorithms 
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Text Book: 
Ethem Alpaydin (2010) “Introduction to Machine 
Learning”, 2nd edition. MIT Press. 
Tom Mitchell (1997) “Machine Learning”, McGraw-Hill 

Grading: 
Assignments (20%) 
Presentation (30%) 
Final Examination (50%) 
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Machine Learning at AAAI 
Journal of Machine Learning Research 
Journal of Machine Learning Gossip (ML humor) 
mdl-research.org 
Machine Learning Database Repository at UC Irvine 
David Aha's list of machine learning resources 
Avrim Blum's Machine Learning Page 
UCI - Machine Learning Repository 
UTCS Machine Learning Research Group 
Microsoft Bayesian Network Editor (MSBNx) 
Weka 3 -- Machine Learning Software in Java 
Journal of AI Research (online text) 
C5/See5 
MLC++, A Machine Learning Library in C++ 
Web->KB project 
DELVE-Data for Evaluating Learning 
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Introduction (A1, M1)                   (A: Alpaydin, M: Mitchell) 

Supervised Learning (A2, M7) 
Bayesian Learning (A3, A16, M6) 
Parametric Methods (A4) 
Dimensionality Reduction (A6) 
Decision Tree (A9, M3) 
Multilayer Perceptron (A11, M4) 
Kernel Machine (A13) 
Reinforcement Learning (A18, M13) 
Clustering (A7) 
Machine Learning Experiments (A19) 
Genetic Algorithms (M9) 
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Neural Networks:  
 perceptrons, backpropagation, etc. 

Pattern analysis: 
     Bayesian learning, instance-based learning 
Artificial intelligence:  

 decision trees (in some courses) 
Statistics: 

 hypothesis testing 
Data Mining:  

 associations rule and classification 
(Relatively) unique to this course:  

 concept learning, computational learning theory, genetic     
 algorithms, reinforcement learning, decision trees (in depth 
 treatment) 
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Theory-bounded Research: 
Networked Data Classification 
Classification of Uncertain Data 
Similarity-based Dimension Reduction (NCA, NDA, 
DNDA, SDA, …) 
Nearest Neighbor Classification in Non-stationary 
environments 
Learning Distance Metric 
Data Stream Classification 
Ensemble Classifiers 
… 
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Application-based Research: 
ML Methods in Sensor Network 
ML Methods in Control and Robotics 
ML Methods in Weather Forecasting 
ML Methods in Financial Problems 
ML Methods in Filtering (Spam Filtering/Document) 
ML Methods in Machine Vision 
ML Methods in Biomedical Engineering (Biomedical 
Image/Signal Processing) 
… 
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How can machines (computers) learn? 
How can machines improve automatically 
with experience? 
 Benefits: 

 Improved performance 
 Automated optimization 
 New uses of computers 
 Reduced programming  
Insights into human learning and learning 
disabilities 
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Current status: Yet unsolved problem. 
Theoretical insights emerging. 
Practical applications. 
Huge data volume demands ML, and provides 
opportunity to ML (data mining). 
 

State of the art: 
speech recognition 
medical predictions 
fraud detection 
drive autonomous vehicles (highway and desert) 
board games (backgammon, chess) 
theoretical bounds on error, number of inputs needed, 
etc. 
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A program is said to learn from 
experience E with respect to 
task T and 
performance measure P, 
P in T increase with E. 
 

Examples: Playing checkers, Handwriting recognition, 
Robot driving, etc. 
 

Goal of ML: “define precisely a class of problems that 
encompasses interesting forms of learning, to explore 
algorithms that solve such problems, and to 
understand the fundamental structure of learning 
problems and processes” (Mitchell, 1997) 
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Training experience: 
direct vs. indirect (learning to play checkers) 

problem of credit assignment 
 
degree of control over training examples (teacher-
dependent or learner-generated) 
 
closeness of training example distribution to true 
distribution over which P is measured: in many 
cases, ML algorithms assume that both 
distributions are similar, which may not be the 
case in practice. 
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Remaining design choices: 
 

The exact type of knowledge to be learned. 
A representation for this target knowledge. 
A learning mechanism. 
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Type of knowledge to be learned: for example, 
we want to learn the best move in a board 
game. 
 
Can represent as a function (B: board states, M: 
moves): 

  ChooseMove : B  M, 
 
but it is hard to learn directly. 
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Another function (B: board states, R: real 
numbers): 

    V : B  R, 
which gives the evaluation of each board state. 

V (b = win) = 100 
V (b = lose) = −100 
V (b = draw) = 0 
V (b = otherwise) = V (b0), where b0 is the best final 

 board state that can be reached from b. 
However, this is not efficiently computable, i.e., it is a 

 nonoperational definition. 
Goal of ML is to find an operational description of V , 

 however, in practice, an approximation is all we can get. 
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Given an ideal target function V , we want to learn an 
approximate function : 

 
Trade-off between rich and parsimonious representation. 
Example: as a linear combination of number of pieces, 
number of particular relational situations in the board (e.g., 
threatened), etc. (represented as xi) in board configuration b: 

where wi are the weight values to be learned. 

Advantage of the above representation: reduction of scope 
(or dimensionality) from the original problem. 
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Given board state and true V , we want to learn 
the weights wi that specify    . 

Start with a set of a large number of input-
target pairs < b, Vtrain(b) >. 
Problem: cannot come up with a full set of 

     < b, Vtrain(b) > pairs. 
Solution: If Vtrain(b) is unknown, set it to the 
estimated   of its successor board state: 

 Vtrain(b) = train(Successor(b)). 
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Last component in defining a learning algorithm: 
adjustment of weights. 

Want to learn weights wi that best fit the set of 
training samples {< b, Vtrain(b) >}. 

 
How to define best fit? Once we have  we can 
calculate all (b) for all b in the training set, and 
calculate the error (here MSE) 
 

 
How to reduce E? 
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Least Mean Squares (LMS) learning rule to minimize 
MSE: 
Until weights converge : 
 For each training example < b, Vtrain(b) > 
    1) Use the current weights to calculate (b)  
    2) For each weight wi, update it as 
   wi   wi + η(Vtrain(b) − (b))xi, 
     where η is a small learning rate constant 
 

The error Vtrain(b) − (b)  and the input xi both 
contribute to the weight update. 
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Training experience: against experts, against self, table 
of correct moves, ... 
 
Target function: board  move, board value, ... 
 
Representation of target function: polynomial, linear 
function of small number of features, artificial neural 
network, … 
 
Learning algorithm: gradient descent, linear 
programming, Genetic Algorithm, ... 
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Useful to think of ML as searching a very large 
space of possible hypotheses to best fit the data 
and the learner’s prior knowledge. 
 
For example, the hypothesis space for  would be 
all possible  s with different weight assignment. 
 
Useful concepts regarding hypothesis space 
search: 

 Size of hypothesis space 
Number of training examples available/needed. 
Confidence in generalizing to new unseen data. 
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What algorithms exist for generalizable learners given specific 
training set? Requirements for convergence? Which algorithms are 
best for a particular domain? 
 
How much training data needed? Bounds on confidence, based on 
data size? How long to train? 
 
Use of prior knowledge? 
 
How to choose best training experience? Impact of the choice? 
 
How to reduce ML problem to function approximation? 
 
How can learner alter the representation itself? 
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Supervised learning: input-target pairs given. 
 
Unsupervised learning: only input distribution 
is given. 
 
Reinforcement learning: sparse reward signal is 
given for action based on sensory input; 
environment-altering actions. 
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Can machines themselves formulate their own 
learning tasks? 

Can they come up with their own representations? 
Can they come up with their own learning strategy? 
Can they come up with their own motivation?
Can they come up with their own questions/problems? 
 

What if the machines are faced with multiple, 
possibly conflicting tasks? Can there be a meta 
learning algorithm? 
 
What if performance is hard to measure (i.e., hard to 
quantify, or even worse, subjective)? 
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Machine learning is programming computers 
to optimize a performance criterion using 
example data or past experience. 
There is no need to “learn” to calculate payroll 
Learning is used when:

Human expertise does not exist (navigating on 
Mars), 
Humans are unable to explain their expertise (speech 
recognition) 
Solution changes in time (routing on a computer 
network) 
Solution needs to be adapted to particular cases 
(user biometrics) 
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Learning general models from a data of 
particular examples 
Data is cheap and abundant (data warehouses, 
data marts); knowledge is expensive and 
scarce.  
Example in retail: Customer transactions to 
consumer behavior:  
 People who bought “chips” also bought “yogurt” 
Build a model that is a good and useful 
approximation to the data.   
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 There is a connection between machine 
learning and data mining 
 
 Data mining: 

  “…the analysis of (often large) observational 
 data sets to find unsuspected relationships 
 and to summarize the data in novel ways 
 that are both understandable and useful to 
 the data owner.” (Hand et al., 2001) 
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Retail: Market basket analysis, Customer 
relationship management (CRM) 
Finance: Credit scoring, fraud detection 
Manufacturing: Control, robotics, 
troubleshooting 
Medicine: Medical diagnosis 
Telecommunications: Spam filters, intrusion 
detection 
Bioinformatics: Motifs, alignment 
Web mining: Search engines 
... 
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Optimize a performance criterion using 
example data or past experience. 
Role of Statistics: Inference from a sample 
Role of Computer science: Efficient algorithms 
to 

Solve the optimization problem 
Representing and evaluating the model for inference 
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Association 
Supervised Learning 

Classification 
Regression 

Unsupervised Learning 
Reinforcement Learning
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Basket analysis:  
 P (Y | X ) probability that somebody who buys 

X also buys Y where X and Y are 
products/services. 

  
 Example: P ( chips | yogurt ) = 0.7 
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Example: Credit 
scoring 
Differentiating 
between low-risk 
and high-risk 
customers from 
their income and 
savings 

Discriminant: IF income > θ1 AND savings > θ2  
    THEN low-risk ELSE high-risk 



Aka Pattern recognition 
Face recognition: Pose, lighting, occlusion 
(glasses, beard), make-up, hair style  
Character recognition: Different handwriting 
styles. 
Speech recognition: Temporal dependency.  
Medical diagnosis: From symptoms to illnesses 
Biometrics: Recognition/authentication using 
physical and/or behavioral characteristics: 
Face, iris, signature, etc 
... 
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Training examples of a person 

Test images 

ORL dataset, 
AT&T Laboratories, Cambridge UK 



Example: Price of a used car 
x : car attributes 

 y : price 
  y = g (x | ) 
  
 g ( ) model, parameters 
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y = wx+w0 



Navigating a car: Angle of the steering wheel 
Kinematics of a robot arm 
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α1= g1(x,y) 
α2= g2(x,y) 

α1 

α2 

(x,y) 

Response surface design 



Prediction of future cases: Use the rule to 
predict the output for future inputs 
Knowledge extraction: The rule is easy to 
understand 
Compression: The rule is simpler than the data 
it explains 
Outlier detection: Exceptions that are not 
covered by the rule, e.g., fraud 
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Learning “what normally happens” 
No output 
Clustering: Grouping similar instances 
Example applications 

Customer segmentation in CRM 
Image compression: Color quantization 
Bioinformatics: Learning motifs (sequence of amino 
acid) 
Document clustering 
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Given: a set (sample) of data (observations). 
 
Task: build a model of the process that generated the data. 
 
This time however, we’re not trying to learn about the 

relationship between inputs and outputs, we just want 
to find (and/or take advantage of) structure in the data. 

Sometimes called descriptive (rather than predictive) modeling. 
 
Problems that can be framed as unsupervised learning: 
dimensionality reduction, compression, probability density 
estimation. 
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Learning a policy: A sequence of outputs 
No supervised output but delayed reward 
Credit assignment problem 
Game playing 
Robot in a maze 
Multiple agents, partial observability, ... 
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UCI Repository: 
http://www.ics.uci.edu/~mlearn/MLRepository.html 

UCI KDD Archive: 
http://kdd.ics.uci.edu/summary.data.application.html 

Statlib: http://lib.stat.cmu.edu/ 

Delve: http://www.cs.utoronto.ca/~delve/ 
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Journal of Machine Learning Research 
www.jmlr.org 
Machine Learning  
Neural Computation 
Neural Networks 
IEEE Transactions on Neural Networks 
IEEE Transactions on Pattern Analysis and 
Machine Intelligence 
Annals of Statistics 
Journal of the American Statistical Association 
... 
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International Conference on Machine Learning (ICML)  
European Conference on Machine Learning (ECML) 
Neural Information Processing Systems (NIPS) 
Uncertainty in Artificial Intelligence (UAI) 
Computational Learning Theory (COLT) 
International Conference on Artificial Neural 
Networks (ICANN)  
International Conference on AI & Statistics (AISTATS) 
International Conference on Pattern Recognition 
(ICPR) 
... 
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Class C of a “family car” 
Prediction: Is car x a family car? 
Knowledge extraction: What do people expect 
from a family car? 

Output:  
  Positive (+) and negative (–) examples 

Input representation:  
  x1: price, x2 : engine power 
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most specific hypothesis, S 

most general hypothesis, G 

h H, between S and G is 
consistent  
and make up the  
version space 
(Mitchell, 1997) 



Choose h with largest margin 
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N points can be labeled in 2N ways as +/– 
H shatters N if there  

 exists h  H consistent  
 for any of these:  
 VC(H ) = N 
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An axis-aligned rectangle shatters 4 points only ! 



How many training examples N should we have, such that with 
probability at least 1 ‒ δ, h has error at most ε ? 

 (Blumer et al., 1989) 
 

Each strip is at most ε/4 
Pr that we miss a strip 1‒ ε/4 
Pr that N instances miss a strip (1 ‒ ε/4)N 

Pr that N instances miss 4 strips 4(1 ‒ ε/4)N 

4(1 ‒ ε/4)N ≤ δ and (1 ‒ x)≤exp( ‒ x) 

4exp(‒ εN/4) ≤ δ  and N ≥ (4/ε)log(4/δ) 
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Use the simpler one because
Simpler to use  

 (lower computational  
 complexity) 

Easier to train (lower 
 space complexity) 

Easier to explain  
 (more interpretable) 

Generalizes better (lower  
 variance - Occam’s razor) 
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Train hypotheses  
hi(x), i =1,...,K: 
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Learning is an ill-posed problem; data is not 
sufficient to find a unique solution 
The need for inductive bias, assumptions about 
H 
Generalization: How well a model performs on 
new data 
Overfitting: H more complex than C or f  
Underfitting: H less complex than C or f 
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There is a trade-off between three factors 
(Dietterich, 2003): 

1. Complexity of H, c (H), 
2. Training set size, N,  
3. Generalization error, E, on new data 
As N↑ E  
As c (H)↑ first E and then E ↑ 
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To estimate generalization error, we need data 
unseen during training. We split the data as 

Training set (50%) 
Validation set (25%) 
Test (publication) set (25%) 

Resampling when there is few data 
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1. Model:  
   

2. Loss function: 
   

3. Optimization 
procedure: 
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The world →unknown process →data. 

Because of our lack of knowledge about the process, we model 
it as a random process and use probability theory to analyse it. 

Result of tossing a coin is ϵ {Heads,Tails} 
Random var D ϵ{1,0} 

  Bernoulli: P {D=1} = po
D (1 ‒ po)(1 ‒ D) 

Sample: D = {Dt } Nt =1
 

 Estimation: po = # {Heads}/#{Tosses} = ∑t D
t / N 

Prediction of next toss: 
  Heads if po > ½, Tails otherwise 

2 



Credit scoring: Inputs are income and savings.  
  Output is low-risk vs high-risk 

Input: D = [D1,D2]T ,Output: h ϵ {0,1} 
Prediction:   

otherwise 0
 )|0()|1( if 1

 choose

or 
otherwise 0

 50)|1( if 1
 choose

2121
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Generally want the most probable hypothesis given the training data 
Maximum a posteriori hypothesis hMAP : 
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If all hypotheses are equally probable a priori:  

jij hhhPP ,,)(ih

then, hMAP reduces to: 

)|(maxarg hDPh
Hh

ML

 Maximum Likelihood hypothesis 
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Does patient have cancer or not? 
 
A patient takes a lab test and the result comes back positive. 
The test returns a correct positive result in only 98%, of the cases in 
which the disease is actually present, and a correct negative result in 
only 97% of the cases in which the disease is not present.  
Furthermore, .008 of the entire population have this cancer. 
 
P(cancer)=0.008,   P(+|cancer)=0.98, P(+|~cancer)=0.03, 
P(~cancer)=0.992, P(-|cancer)=0.02, P(-|~cancer)=0.97 
 
How does P(cancer|+) compare to P(~cancer|+)? What is hMAP ? 
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 P(cancer|+) = P(+|cancer) P(cancer) / P(+) = 
(0.98)(0.008) / P(+) =  0.0078 / P(+) 
 
 
P(~cancer|+) = P(+|~cancer) P(~cancer) / P(+) = 
(0.03)(0.992) / P(+) = 0.0298 / P(+) 

   hMAP= ~cancer 
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What is the most probable hypothesis given the training data, 
vs. 

What is the most probable classification? 

Example: 
  P(h1|D)= 0.4  P(-|h1)=0 P(+|h1)=1 
  P(h2|D)= 0.3  P(-|h2)=1 P(+|h2)=0 
  P(h3|D)= 0.3  P(-|h3)=1 P(+|h3)=0 
 
- New instance x is classified as - or + ? 
hMAP= h1               + 
But    P(-|x)= .6    -  
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If a new instance can take classification vj ϵ V , then the 
probability P(vj |D) of correct classification of new instance 
being vj is: 

Hih
iijj DhPhvPDvP )|()|()|(

Thus, the optimal classification is: 

Hih
iij

Vjv
DhPhvP )|()|(maxarg
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Example: 
  P(h1|D)= 0.4 P(-|h1)=0 P(+|h1)=1 
  P(h2|D)= 0.3 P(-|h2)=1 P(+|h2)=0 
  P(h3|D)= 0.3 P(-|h3)=1 P(+|h3)=0 
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Given attribute values <a1, a2, ..., an>, give the classification 
vϵV : 
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Want to estimate P(a1, a2, ..., an|vj ) and P(vj ) from 
training data. 
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• P(vj ) is easy to calculate: Just count the frequency. 
• The naive Bayes classifier simply assumes that the 

attribute values are conditionally independent 
given the target value, thus 
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Naive Bayes Learn(examples) 
 For each target value vj 
  Pe(vj )   estimate P(vj ) 
  For each attribute value ai of each attribute a 
    Pe(ai|vj )   estimate P(ai|vj ) 
 
 
Classify New Instance(x) 
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Day Outlook Temperature Humidity Wind Play 

Tennis 

Day1 Sunny Hot High Weak No 
Day2 Sunny Hot High Strong No 

Day3 Overcast Hot High Weak Yes 

Day4 Rain Mild High Weak Yes 

Day5 Rain Cool Normal Weak Yes 

Day6 Rain Cool Normal Strong No 
Day7 Overcast Cool Normal Strong Yes 

Day8 Sunny Mild High Weak No 

Day9 Sunny Cool Normal Weak Yes 

Day10 Rain Mild Normal Weak Yes 

Day11 Sunny Mild Normal Strong Yes 

Day12 Overcast Mild High Strong Yes 

Day13 Overcast Hot Normal Weak Yes 

Day14 Rain Mild High Strong No 
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Consider Play Tennis again, and new instance: 
x = <Outlk = sunny, Temp = cool, Humid = high, Wind = stron> 
   V = {Yes,No}  
 
 

noxPlayTennisanswer
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In above example: 
P(Wind = strong| Play Tennis = no) = nc /n = 3/5 
If nc ≈ 0  then                                 
 
 
 
P=1/k ,  k is the number of possible value for the attribute 

K= 2 for wind attribute ( weak,  strong) p=.5 
m is a constant ( equivalent sample size) 
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General ways of measuring performance/error 
Actions: αi  (e.g. assign class Ci to some input) 
Loss of αi when the state is Ck : λik  
Expected risk (Duda and Hart, 1973) (for taking action 
αi) 
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For minimum risk, choose the most probable class 
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K decision regions R1,...,RK 

(ok for 0/1 loss) 



Dichotomizer (K=2) vs Polychotomizer (K>2) 
g(x) = g1(x) – g2(x) 
 
 
 
Log odds:  

otherwise 
 if 
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(given) Prob of state k given evidence x: P (Sk|x) 
(and) Utility of αi when state is k: Uik 
(then) Expected utility: 
 
 
 
 
i.e a rational choice –maximize expected utility 
(usually equivalent to minimizing expected risk). 
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Association rule: X  Y 
People who buy/click/visit/enjoy X are also likely to 
buy/click/visit/enjoy Y. 
A rule implies association, not necessarily 
causation. 
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Support (X  Y):  
  
 

Confidence (X  Y): 
 
 
Lift (X  Y): 
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For (X,Y,Z), a 3-item set, to be frequent (have 
enough support), (X,Y), (X,Z), and (Y,Z) should be 
frequent. 
If (X,Y) is not frequent, none of its supersets can be 
frequent.
Once we find the frequent k-item sets, we convert 
them to rules: X, Y  Z, ... 

 and X  Y, Z, ... 
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X = { xt }t where xt ~ p (x) 
Our model is a specified probability distribution 

 Learning = estimating its parameters 
Parametric estimation:  
 Assume a form for p (x |q ) and estimate q , its 

sufficient statistics, using X 
 e.g., N ( μ, σ2) where q = { μ, σ2} 
Density estimation (can then be used for 

classification, etc.) 

2 



Likelihood of  given the sample X 
  l (θ|X) = p (X |θ) = ∏t p (xt|θ) 
 

Log likelihood
   L(θ|X) = log l (θ|X) = ∑t log p (xt|θ) 
 

Why? Small numbers converts product to sum, removes 
exp(?) 
 

Maximum likelihood estimator (MLE) 
  θ* = argmaxθ L(θ|X) 

3 



Bernoulli: Two states, failure/success, x in {0,1}  
P (x) = po

x (1 – po ) 
(1 – x) 

    L (po|X) = log ∏t po
xt (1 – po ) 

(1 – xt)  
MLE: po = ∑t x

t / N  
 

Multinomial: K>2 states, xi in {0,1} 
P (x1,x2,...,xK) = ∏i pi

xi 
    L(p1,p2,...,pK|X) = log ∏t ∏i pi

xit  
MLE: pi = ∑t xi

t / N 

4 
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MLE for μ and σ2: 
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Unknown parameter 
Estimator (of  di = d (Xi) on 
sample Xi  
 
Bias: b (d) = E [d] –  
Variance: E [(d–E [d])2] 
 
Mean square error:  
r (d, ) = E [(d– )2] 
 = (E [d] – )2 + E [(d–E [d])2] 
 = Bias2 + Variance  

 



7 

• Bias: how much the expected value of the estimator 
varies from the correct 

• Variance: variation around the expected value. 
 

• Examples: 
• Sample mean, m, is an unbiased estimator of the true mean. 

It’s also a consistent estimator, since Var(m) tends to zero as N 
tends to infinity. 

 
• Sample variance (as it turns out) is a biased estimator of the 

true variance. 



Treat θ as a random var with prior p (θ) 
Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X)  
 
Full: p(x|X) = ∫ p(x|θ) p(θ|X) dθ 

i.e an average over predictions using all values of θ, weighted by the 
probability of each θ value. 

Maximum a Posteriori (MAP): θMAP = argmaxθ p(θ|X) 
This uses a priori 

Maximum Likelihood (ML): θML = argmaxθ p(X|θ) 
This doesn’t have a prior. If prior is flat, MAP == ML. 

 
Bayes’: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ  

8 



xt ~ N (θ, σo
2) and θ ~ N ( μ, σ2) 

θML = m 
θMAP = θBayes’ = 
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Given the sample 
 
 
 
ML estimates are 
 
 
 
 
Discriminant becomes 
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Equal variances 

Single boundary at 
halfway between means 
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Variances are different 

Two boundaries 
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We want to learn the parameters 
of our model via Max. Likelihood 
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Important: so maximizing L is equivalent to minimizing MSE  
(assuming Gaussian noise) 
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Square Error:  
 
 
Relative Square Error: 
 
 
Absolute Error: E (θ |X) = ∑t

 |rt – g(xt| θ)| 
ε-sensitive Error:  
   E (θ |X) = ∑ t 1(|rt – g(xt| θ)|>ε) (|rt – g(xt|θ)| – ε) 
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Variance

Bias

20

M samples Xi={xt
i , rt

i}, i=1,...,M  

are used to fit gi (x), i =1,...,M 



Example: gi(x)=2 has no variance and high 
bias 

 gi(x)= ∑t
 rt

i/N has lower bias with variance 
 
As we increase complexity,  

  bias decreases (a better fit to data) and  
  variance increases (fit varies more with 

data) 
Bias/Variance dilemma: (Geman et al., 
1992) 

21 
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Best fit “min error” 
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Best fit, “elbow” 



Cross-validation: Measure generalization 
accuracy by testing on data unused during 
training 
Regularization: Penalize complex models 

  E’=error on data + λ model complexity 
 
 Akaike’s information criterion (AIC), 

Bayesian information criterion (BIC) 
Minimum description length (MDL): 
Kolmogorov complexity, shortest 
description of data 
Structural risk minimization (SRM) 

25 



data
model model|datadata|model

p
ppp

26 

Prior on models, p(model) 
 

 
 
Regularization, when prior favors simpler 
models 
Bayes, MAP of the posterior, p(model|data) 
Average over a number of models with high 
posterior (voting, ensembles: Chapter 17) 
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Coefficients increase in 
magnitude as order 
increases: 
1: [-0.0769, 0.0016] 
2: [0.1682, -0.6657, 
0.0080] 
3: [0.4238, -2.5778, 
3.4675, -0.0002] 
4: [-0.1093, 1.4356,  
-5.5007, 6.0454, -
0.0019] 
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Reduces time complexity: Less computation 
Reduces space complexity: Less parameters 
Saves the cost of observing the feature 
Simpler models are more robust on small datasets 
More interpretable; simpler explanation 
Data visualization (structure, groups, outliers, etc) if 
plotted in 2 or 3 dimensions 

2 



Feature selection: Choosing k<d important features, 
ignoring the remaining d – k 

  Subset selection algorithms 
Feature extraction: Project the  

  original xi , i =1,...,d dimensions to  
  new k<d dimensions, zj , j =1,...,k 
 
  Principal components analysis (PCA), linear 

 discriminant analysis (LDA), factor analysis (FA) 

3 



There are 2d subsets of d features 
Forward search: Add the best feature at each step 

Set of features F initially Ø. 
At each iteration, find the best new feature 
j = argmini E ( F  xi )  
Add xj to F  if E ( F  xj ) < E ( F )  

 
Hill-climbing O(d2) algorithm 
Backward search: Start with all features and remove 
 one at a time, if possible. 
Floating search (Add k, remove l) 

4 



Find a low-dimensional space such that 
when x is projected there, information loss 
is minimized. 
The projection of x on the direction of w 
is: z = wTx 
Find w such that Var(z) is maximized 

  Var(z) = Var(wTx) = E[(wTx – wTμ)2]  
   = E[(wTx – wTμ)(wTx – wTμ)] 
   = E[wT(x – μ)(x – μ)Tw] 
   = wT E[(x – μ)(x –μ)T]w = wT ∑ w  
 where Var(x)= E[(x – μ)(x –μ)T] = ∑ 

5 
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Maximize Var(z) subject to ||w||=1 
 
 

 
∑w1 = αw1 that is, w1 is an eigenvector of ∑ 
Choose the one with the largest eigenvalue for Var(z) to 

be max 
Second principal component: Max Var(z2), s.t., 
||w2||=1 and orthogonal to w1 
 
 
 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 
 and so on. 

11111
1

wwww
w

TTmax



   z = WT(x – m) 

 where the columns of W are the eigenvectors of ∑, and 
m is sample mean 

 Centers the data at the origin and rotates the axes 

7 
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Proportion of Variance (PoV) explained 
 
 

  
 when λi are sorted in descending order  

Typically, stop at PoV>0.9 
Scree graph plots of PoV vs k, stop at 
“elbow” 
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Find a small number of factors z, which when combined 
generate x : 

  xi – μi = vi1z1 + vi2z2 + ... + vikzk + εi  

 
 where zj, j =1,...,k are the latent factors with  
  E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,  

 εi are the noise sources  
  E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , 
 and vij are the factor loadings 
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PCA From x to z           z = WT(x – μ) 
FA   From z to x   x – μ = Vz + ε  
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x z 

z x 



In FA, factors zj are stretched, rotated and 
translated to generate x 
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Find a low-dimensional 
space such that when x 
is projected, classes are 
well-separated.  
Find w that maximizes 
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Between-class scatter: 
 
 
 
 
Within-class scatter: 
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Find w that max 
 
 
LDA soln:  
 
Parametric soln: 
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Within-class scatter:  
 
 
Between-class scatter: 
 
 
Find W that max 
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2 

Learn to approximate discrete-valued target functions. 
 Step-by-step decision making: It can learn disjunctive        

         expressions: Hypothesis space is completely expressive, 
          avoiding problems with restricted hypothesis spaces. 

 Inductive bias: small trees over large trees. 



Each instance holds attribute values. 
Instances are classified by filtering the attribute values down 
the decision tree, down to a leaf which gives the final 
answer.
Internal nodes: attribute names or attribute values. 
Branching occurs at attribute nodes. 

3 
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Internal decision nodes 
Univariate: Uses a single attribute, xi 

Numeric xi : Binary split : xi  > wm 
Discrete xi : n-way split for n possible values 

Multivariate: Uses all attributes, x 

Leaves 
Classification: Class labels, or proportions 
Regression: Numeric; r average, or local fit 

Learning is greedy; find the best split 
recursively (Breiman et al, 1984; Quinlan, 
1986, 1993)  

5 
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• Each path from root to leaf is a conjunctions of constraints    
    on the attribute values. 
 
    (Outlook = Sunny ∧ Humidity = Normal) 
 ∨ (Outlook = Overcast) 
 ∨ (Outlook = Rain ∧ Wind = Weak) 



Good at classification problems where: 

Instances are represented by attribute-value pairs. 
The target function has discrete output values. 
Disjunctive descriptions may be required. 
The training data may contain errors. 
The training data may contain missing attribute 
values. 
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Given a set of examples (training set), both 
positive and negative, the task is to construct a 
decision tree that describes a concise decision 
path. 
 
Using the resulting decision tree, we want to 
classify new instances of examples (either as 
yes or no). 

8 



A trivial solution is to explicitly construct paths for 
each given example. In this case, you will get a tree 
where the number of leaves is the same as the 
number of training examples. 
 
The problem with this approach is that it is not 
able to deal with situations where, some attribute 
values are missing or new kinds of situations arise. 
 
Consider that some attributes may not count much 
toward thefinal classification. 

9 



Memorizing all cases may not be the best way. 
 
We want to extract a decision pattern that can 
describe a large number of cases in a concise 
way. 
 
In terms of a decision tree, we want to make as 
few tests as possible before reaching a decision, 
i.e. the depth of the tree should be shallow. 

10 



 
Basic idea: pick up attributes that can clearly 
separate positive and negative cases. 
 
These attributes are more important than 
others: the final classification heavily depend 
on the value of these attributes. 

11 



Main loop: 
1. A   the “best” decision attribute for next node 
2. Assign A as decision attribute for node 
3. For each value of A, create new descendant of  
    node 
4. Sort training examples to leaf nodes 
5. If training examples perfectly classified, Then  
    STOP, Else iterate over new leaf nodes 

12 
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A1 or A2? 
 
• With initial and final number of positive and negative   
    examples based on the attribute just tested, we want to     
    decide which attribute is better. 
 
• How to quantitatively measure which one is better? 



Use Shannon’s information theory to choose the 
attribute that give the maximum information 
gain. 

Pick an attribute such that the information gain 
(or entropy reduction) is maximized. 

 
Entropy measures the average surprisal of 
events. Less probable events are more 
surprising. 

14 



Given two events, H and T (Head and Tail): 
Rare (uncertain) events give more surprise: 

     H more surprising than T if P(H) < P(T) 
     H more uncertain than T if P(H) < P(T) 
How to represent “more surprising”, or “more uncertain”? 

   Surprise(H) > Surprise(T) if 
    P(H) < P(T) 
          1/ P(H) > 1/ P(T) 
   log(1/ P(H))> log(1/ P(T)) 
     - log(P(H)) > - log(P(T)) 
 

15 
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• S is a sample of training examples 
• p+ is the proportion of positive examples in S 
• p- is the proportion of negative examples in S 
• Entropy measures the average uncertainty in S 
 Entropy(S) ≡  −p+ log2 p+ − p- log2 p- 



By performing some query, if you go from state 
S1 with entropy E(S1) to state S2 with entropy 
E(S2), where E(S1) > E(S2), your uncertainty has 
decreased. 
 
The amount by which uncertainty decreased, 
i.e., E(S1) − E(S2), can be thought of as 
information you gained (information gain) 
through getting answers to your query. 

17 
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• C: categories (classifications) 
• S: set of examples 
• A: a single attribute 
• Sv: set of examples where attribute A = v. 
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Day Outlook Temperature Humidity Wind Play 

Tennis 

Day1 Sunny Hot High Weak No 
Day2 Sunny Hot High Strong No 

Day3 Overcast Hot High Weak Yes 

Day4 Rain Mild High Weak Yes 

Day5 Rain Cool Normal Weak Yes 

Day6 Rain Cool Normal Strong No 
Day7 Overcast Cool Normal Strong Yes 

Day8 Sunny Mild High Weak No 

Day9 Sunny Cool Normal Weak Yes 

Day10 Rain Mild Normal Weak Yes 

Day11 Sunny Mild Normal Strong Yes 

Day12 Overcast Mild High Strong Yes 

Day13 Overcast Hot Normal Weak Yes 

Day14 Rain Mild High Strong No 

• Which attribute  
    to test first? 



Which attribute is the best classifier? 

20 

• +: # of positive examples;          −: # of negative examples 
• Initial entropy = − (9/14) log (9/14) – (5/14) log (5/14) = 0.94. 
• You can calculate the rest. 
• Note: 0.0 × log 0.0 ≡ 0.0 even though log 0.0 is not defined. 
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Error at node m: 
 
 
 
 
 
After splitting: 
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Model Selection in Trees 



Remove subtrees for better generalization 
(decrease variance) 

Prepruning: Early stopping 
Postpruning: Grow the whole tree then prune 
subtrees which overfit on the pruning set 
 

Prepruning is faster, postpruning is more 
accurate (requires a separate pruning set) 
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C4.5Rules  
(Quinlan, 1993) 



Rule induction is similar to tree induction but  
 tree induction is breadth-first,  
 rule induction is depth-first; one rule at a time 

Rule set contains rules; rules are conjunctions 
of terms 
Rule covers an example if all terms of the rule 
evaluate to true for the example 
Sequential covering: Generate rules one at a 
time until all positive examples are covered 
IREP (Fürnkrantz and Widmer, 1994), Ripper 
(Cohen, 1995) 
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Networks of processing units (neurons) with 
connections (synapses) between them 
Large number of neurons: 1010 

Large connectitivity: 105 

Parallel processing 
Distributed computation/memory 
Robust to noise, failures 
 

2 



Levels of analysis (Marr, 1982) 
1. Computational theory 
2. Representation and algorithm 
3. Hardware implementation 
Reverse engineering: From hardware to theory 
Parallel processing: SIMD vs MIMD 

 Neural net: SIMD with modifiable local 
memory 

 Learning: Update by training/experience 

3 



Neuron switching time ~.001 second (1 ms) 
 
 Number of neurons  ~1010 
 

 Connections per neuron  ~104−5 
 

 Scene recognition time  ~.1 second (100 ms) 
 
 100 processing steps doesn’t seem like enough 

      [ ] much parallel computation 

4 



Many neuron-like threshold switching units (real-
valued) 
Many weighted interconnections among units 
 Highly parallel, distributed process 
 Emphasis on tuning weights automatically: New 
learning algorithms, new optimization techniques, new 
learning principles. 

5 



Input is high-dimensional discrete or real-
valued (e.g. raw sensor input) 
Output is discrete or real valued 
Output is a vector of values 
Possibly noisy data 
Long training time (may need occasional, 
extensive retraining) 
Form of target function is unknown 
Fast evaluation of learned target function 
Human readability of result is unimportant 
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Speech synthesis 
Handwritten character recognition 
Financial prediction, Transaction fraud 
detection 
Driving a car on the highway 
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The tunable parameters are the weights w0,w1, ...,wn, so 
the space H of candidate hypotheses is the set of all 
possible combination of real-valued weight vectors: 

}|{ )1(nRwwH
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Perceptrons can represent basic Boolean functions. 
Thus, a network of perceptron units can compute 
any Boolean function. 
 

What about XOR or EQUIV? 
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Perceptrons can only represent linearly separable functions. 
• Output of the perceptron: 

1isoutputthen,0
1isoutputthen,0

1100

1100

tIWIW
tIWIW

The hypothesis space is a collection of separating lines. 
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Rearranging:  
1isoutputthen,01100 tIWIW

We get (if W1>0) 
,

1
0

1

0
1 W

tI
W
WI

where points above the line, the output is 1, and -1 for those 
below the line. Compare with ,
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Without the bias (t = 0), learning is limited to 
adjustment of the slope of the separating line 
passing through the origin. 
Three example lines with different weights are 
shown. 
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Only functions where the -1 points and 1 points are clearly 
     separable can be represented by perceptrons. 
 

The geometric interpretation is generalizable to functions 
of n arguments, i.e. perceptron with n inputs plus one 
threshold (or bias) unit. 
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For functions that take integer or real values as 
arguments and output either -1 or 1. 
Left: linearly separable (i.e., can draw a straight 
line between the classes). 
Right: not linearly separable (i.e., perceptrons 
cannot represent such a function) 
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Perceptrons cannot represent XOR! 
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:1isoutputthen,01100 tIWIW
1                   -t  ≤ 0                     t ≥ 0 
2          W1 - t  > 0                 W1 > t 
3          W0  - t  > 0               W2 > t 
4            W0 + W1 – t ≤ 0             W0 + W1  ≤ t 

2t < W0 + W1 < t (from 2,3 and 4), but t ≥ 0 (from 1), 
 a contradiction. 



The weights do not have to be calculated manually. 
We can train the network with (input,output) pair 
according to the following weight update rule: 

    wi  wi +η ( t – o ) xi 

where η is the learning rate parameter. 
Proven to converge if input set is linearly separable 
and η is small. 

18 



  wi  wi +η ( t – o ) xi 

When t = o, weight stays. 
When t = 1 and o = −1, change in weight is: 

   η ( 1 – (-1) ) xi > 0 
if xi are all positive. Thus         will increase, thus 
eventually, output o will turn to 1. 

When t = -1 and o = 1, change in weight is: 
   η ( 1 – 1 ) xi < 0 
if xi are all positive. Thus         will increase, thus 
eventually, output o will turn to -1. 
 19 
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The perceptron rule cannot deal with noisy data. 
The delta rule will find an approximate solution even 
when input set is not linearly separable. 
Use linear unit without the step function:  
 
 
Want to reduce the error by adjusting  

   

20 
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Want to minimize by adjusting 
 
 
Note: the error surface is defined by the training data 
D. A different data set will give a different surface. 
E(w0,w1) is the error function above, and we want to 
change (w0,w1) to position under a low E. 
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Gradient 
 
 
Training rule: 
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Gradient-Descent (training_examples, η ) 
 Each training example is a pair of the form < , t>, where 
  is the vector of input values, and t is the target output 
 value. η is the learning rate (e.g., .05). 

Initialize each wi to some small random value 
Until the termination condition is met, Do 
– Initialize each wi to zero. 
– for each < , t> in training_examples, Do 
     * Input the instance  to the unit and compute o  
    * for each linear unit weight wi , Do 
  Δwi  Δwi  + η (t – o ) xi 

 –  for each linear unit weight wi , Do 
               wi   wi + Δwi  
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Gradient descent is effective in searching through 
a large or infinite H: 

H contains continuously parameterized 
hypotheses, and 
the error can be differentiated w.r.t the 
parameters. 

Limitations: 
convergence can be slow, and 
finds local minima (global minimum not 
guaranteed). 
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Avoiding local minima: Incremental gradient descent, or 
stochastic gradient descent. 

Instead of weight update based on all input in D, 
immediately update weights after each input example: 

Δwi = η ( t – o ) xi,
Instead of   
 
 

Can be seen as minimizing error function 
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In the standard version, error is defined over 
entire D. 
In the standard version, more computation is 
needed per weight update, but η can be larger. 
Stochastic version can sometimes avoid local 
minima. 
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Perceptron training rule guaranteed to succeed if 
Training examples are linearly separable 
Sufficiently small learning rate η  

Linear unit training rule using gradient descent 
Asymptotic convergence to hypothesis with 
minimum squared error 
Given sufficiently small learning rate η  
Even when training data contains noise 
Even when training data not separable by H 
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Differentiable threshold unit: sigmoid 
Interesting property: 
 
 
Output:  
 
Other function:  
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Nonlinear decision 
surface 

Another example: XOR 
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Initialize all weights to small random numbers. 
Until satisfied, Do 

For each training example, Do 
1. Input the training example to the network and compute 

the network outputs 
2. For each output unit k 
  
3. For each hidden unit h 

 
4. Update each network weight wi,j 

 
 
 

Note: wji is the weight from i to j 
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For output unit 
 
 
For hidden unit 
 
 
 
In sum,  is the derivate times the error. 
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Different formula for output and hidden 
For output unit 
 
 
 
For hidden unit 
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Gradient descent over entire network weight vector. 
Easily generalized to arbitrary directed graphs. 
Will find a local, not necessarily global error minimum: 

In practice, often works well (can run multiple times with 
different initial weights). 

Often include weight momentum  
 
 
Minimizes error over training examples: 

Will it generalize well to subsequent examples? 

Training can take thousands of iterations  slow! 
Using the network after training is very fast 
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Boolean functions: every Boolean function 
representable with two layers (hidden unit size can 
grow exponentially in the worst case: 

     one hidden unit per input example, and “OR”       
     them). 
 

Continuous functions: Every bounded continuous 
function can be approximated with an arbitrarily small 
error (output units are linear). 
 
Arbitrary functions: with three layers (output units are 
linear). 
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H-space = n-D weight space (when there are n 
weights). 
 
The space is continuous, unlike decision tree or 

 general-to-specific concept learning algorithms. 
 

Inductive bias: 
  Smooth interpolation between data points. 
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Learned encoding is similar to standard 3-bit 
binary code. 
 
Automatic discovery of useful hidden layer 
representations is a key feature of ANN. 
 
Note: The hidden layer representation is 
compressed. 
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Error in two different robot perception tasks. 
Training set and validation set error. 
Early stopping ensures good performance on 
unobserved samples, but must be careful. 
Weight decay, use of validation sets, use of k-fold 
cross-validation, etc. to overcome the problem. 
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Applications: 

Sequence recognition: Speech recognition 
Sequence reproduction: Time-series prediction 
Sequence association 
 

Network architectures 
Time-delay networks (Waibel et al., 1989) 
Recurrent networks (Rumelhart et al., 1986) 
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(Le Cun et al, 1989) 
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Destructive 
Weight decay: 
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Constructive 
Growing networks 

(Ash, 1989) (Fahlman and Lebiere, 1989) 



Consider weights wi as random vars, prior p(wi) 
 
 
 
 
 
 
 
Weight decay, ridge regression, regularization 

  cost=data-misfit + λ complexity 
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ANN learning provides general method for learning real-valued 
functions over continuous or discrete-valued attributed. 
 
ANNs are robust to noise. 
 
H is the space of all functions parameterized by the weights. 
 
H space search is through gradient descent: convergence to local 
minima. 
 
Backpropagation gives novel hidden layer representations. 
 
Overfitting is an issue. 
 
More advanced algorithms exist. 
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Discriminant-based: No need to estimate densities first 
Define the discriminant in terms of support vectors 
The use of kernel functions, application-specific 
measures of similarity 
No need to represent instances as vectors 
Convex optimization problems with a unique solution 
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Distance from the discriminant to the closest 
instances on either side 
Distance of x to the hyperplane is 
 
We require  
 
For a unique sol’n, fix ρ||w||=1, and to max 
margin 
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Not linearly separable 
 
 
Soft error 
 
 
New primal is 
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Preprocess input x by basis functions 
  z = φ(x)  g(z)=wTz   
     g(x)=wT φ(x) 

The SVM solution  
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Polynomials of degree q: 
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Radial-basis functions: 
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Kernel “engineering” 
Defining good measures of similarity 
String kernels, graph kernels, image 
kernels, ... 
Empirical kernel map: Define a set of 
templates mi and score function s(x,mi) 

  (xt)=[s(xt,m1), s(xt,m2),..., s(xt,mM)] 
 and  
 K(x,xt)= (x)T (xt) 
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Fixed kernel combination 
 
 
Adaptive kernel combination 

 
 
 
 

Localized kernel combination 
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1-vs-all 
Pairwise separation 
Error-Correcting Output Codes (section 17.5) 
Single multiclass optimization 
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Use a linear model (possibly kernelized) 
   f(x)=wTx+w0 
Use the є-sensitive error function 
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Polynomial Kernel Gaussian Kernel 



Consider a sphere with center a and radius R 
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Kernel PCA does 
PCA on the kernel 
matrix (equal to 
canonical PCA with 
a linear kernel) 
 
Kernel LDA 
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How an autonomous agent that sense and act 
in the environment can learn to choose 
optimal actions to achieve its goals. 
Examples: mobile robot, optimization in 
process control, board games, etc. 
Ingredients: reward/penalty for each action, 
where the reinforcement signal can be 
significantly delayed. 
One approach: Q learning 

2 



Terminology: 
State: state of the environment, obtained through 
sensors 
Action: alter the state 
Policy: choosing actions that achieve a particular 
goal, based on the current state. 
Goal: desired configuration (or state). 

Desired policy: 
From any initial state, choose actions that 
maximize the reward accumulated over time by 
the agent. 
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Agent has a state in an environment, takes an action and 
sometimes receives reward and the state changes 
 
Goal: learn to choose actions that maximize discounted, 
cumulative award: 
 
 
That is, we want to learn a policy  : S  A that maximizes 
the above, where S is the set of states, and A that of actions. 
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Among K levers, choose  
   the one that pays best 
 Q(a): value of action a 
 Reward is ra 
 Set Q(a) = ra 
 
 Choose a* if  
  Q(a*)=maxa Q(a) 
  
  

Rewards stochastic (keep an expected reward) 
aQaraQaQ tttt 11



Deterministic vs. nondeterministic action 
outcomes. 
 
With or without prior knowledge about the 
effect of action on environmental state. 
 
Partially or fully known environmental state 
(e.g., Partially Observable Markov Decision 
Process [POMDP]). 
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st : State of agent at time t 
at: Action taken at time t 
In st, action at is taken, clock ticks and reward rt+1 
is received and state changes to st+1 
Next state prob: P (st+1 | st , at ) 
Reward prob: p (rt+1 | st , at ) 
Initial state(s), goal state(s) 
Episode (trial) of actions from initial state to goal 
(Sutton and Barto, 1998; Kaelbling et al., 1996) 
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Policy, 
Value of a policy, 
Finite-horizon: 
 
 
Infinite horizon:   
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10 

• Immediate reward given only when entering the goal   
    state G. 
 
• Given any initial state, we want to generate an action   
   sequence to maximize V . 



Discount rate:  = 0.9 
Top middle: 100 + 0 + 0 + ... = 100 
Top left: 0 + 100 + 0 + ... = 90 
Bottom left: 0 + 0 + 100 + ... = 81 
Note that these values are supposed to be 
obtained using the optimal policy  . 

11 

r(s,a) V*(s) values 



Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is known 
There is no need for exploration 
Can be solved using dynamic programming 
Solve for 
 
 
Optimal policy 
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Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is not 
known; model-free learning 
 
There is need for exploration to sample from  

 P (st+1 | st , at ) and p (rt+1 | st , at ) 
 

Use the reward received in the next time step to update 
the value of current state (action) 
 
The temporal difference between the value of the 
current action and the value discounted from the next 
state  
 15 



ε-greedy: With pr ε,choose one action at random 
uniformly; and choose the best action with pr 1-ε 
Probabilistic: 
 
 
Move smoothly from exploration/exploitation.  
Decrease ε 
Annealing 
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Deterministic: single possible reward and 
next state 
 
 

 used as an update rule (backup) 
 
 
 Starting at zero, Q values increase, never 

decrease 
 

17 

1111
1

1

ttas
tttttt asQassPrEasQ

t
t

,max,|, **

111
1

ttattt asQrasQ
t

,max,

111
1

ttattt asQrasQ
t

,ˆmax,ˆ



Consider the value of action marked by ‘*’: 
If path A is seen first, Q(*)=0.9*max(0,81)=73 
Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 
If path B is seen first, Q(*)=0.9*max(100,0)=90 
Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 
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When next states and rewards are nondeterministic 
(there is an opponent or randomness in the 
environment), we keep averages (expected values) 
instead as assignments 
Q-learning (Watkins and Dayan, 1992):
 
 
Off-policy vs on-policy (Sarsa) 
Learning V (TD-learning: Sutton, 1988) 
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Keep a record of previously visited states (actions) 
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Tabular: Q (s , a) or V (s) stored in a table 
Regressor: Use a learner to estimate Q (s , a) or V (s) 
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The agent does not know its state but receives an 
observation  p(ot+1|st,at) which can be used to infer a 
belief about states 
Partially observable MDP 
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Two doors, behind one of which there is a tiger 
p: prob that tiger is behind the left door 
 
 
 
R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p) 
We can sense with a reward of R(aS)=-1 
We have unreliable sensors 
 
 

26 



If we sense oL  , our belief in tiger’s position changes 
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Let us say the tiger can move from one room to the 
other with prob 0.8 
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When planning for episodes of two, we can take aL, aR, 
or sense and wait: 

31 

1
110090
180100

2

'max
)(
)(

max
V

pp
pp

V



Instructor : 
Omid Sojoodi 

Faculty of Electrical, Computer and IT Engineering 
Qazvin Azad University 

Contact Info: 
   o_sojoodi@{ieee.org, m.ieice.org}  



Parametric: Assume a single model for p (x | Ci)  
 
Semiparametric: p (x | Ci) is a mixture of densities 

 Multiple possible explanations/prototypes: 
 Different handwriting styles, accents in speech 
 

Nonparametric: No model; data speaks for itself  
 

2 



 
 
 
 
where Gi the components/groups/clusters,  
  P ( Gi ) mixture proportions (priors), 
  p ( x | Gi) component densities 
 
Gaussian mixture where p(x|Gi) ~ N ( μi , ∑i ) parameters 

Φ = {P ( Gi ), μi , ∑i }k
i=1  

 unlabeled sample X={xt}t (unsupervised learning) 
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Supervised: X = { xt ,rt }t  
Classes Ci i=1,...,K 

 
 
 

where p ( x | Ci) ~ N ( μi , ∑i ) 

Φ = {P (Ci ), μi , ∑i }K
i=1 
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Unsupervised : X = { xt }t  
Clusters Gi i=1,...,k 
 
 
 

 where p ( x | Gi) ~ N ( μi , ∑i )  

Φ = {P ( Gi ), μi , ∑i }k
i=1 

 
  Labels, r ti ? 
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Find k reference vectors (prototypes/codebook 
vectors/codewords) which best represent data 
Reference vectors, mj, j =1,...,k 
Use nearest (most similar) reference: 
 
 
Reconstruction error 
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Log likelihood with a mixture model 
 
 
 
 
Assume hidden variables z, which when known, make 
optimization much simpler
Complete likelihood, Lc(Φ |X,Z), in terms of x and z 
Incomplete likelihood, L(Φ |X), in terms of x  
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Iterate the two steps 
1. E-step: Estimate z given X and current Φ 
2. M-step: Find new Φ’ given z, X, and old Φ.  

 
 

  
 An increase in Q increases incomplete 

likelihood  
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zt
i = 1 if xt belongs to Gi, 0 otherwise (labels r ti of 

supervised learning); assume p(x|Gi)~N(μi,∑i) 
E-step:  
 
 
M-step:  
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Use estimated labels in 
place of unknown 
labels 
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Regularize clusters 
1. Assume shared/diagonal covariance matrices 
2. Use PCA/FA to decrease dimensionality: Mixtures of 

PCA/FA 
 

 
 Can use EM to learn Vi (Ghahramani and Hinton, 1997; 

Tipping and Bishop, 1999) 
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Dimensionality reduction methods find 
correlations between features and group 
features 
Clustering methods find similarities between 
instances and group instances 
Allows knowledge extraction through  
 number of clusters, 
 prior probabilities,  
 cluster parameters, i.e., center, range of features. 

 Example: CRM, customer segmentation 
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Estimated group labels hj (soft) or bj (hard) may 
be seen as the dimensions of a new k 
dimensional space, where we can then learn 
our discriminant or regressor. 
Local representation (only one bj is 1, all others 
are 0; only few hj are nonzero) vs 

 Distributed representation (After PCA; all zj are 
nonzero) 
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In classification, the input comes from a 
mixture of classes (supervised).  
If each class is also a mixture, e.g., of 
Gaussians, (unsupervised), we have a mixture 
of mixtures: 
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Cluster based on similarities/distances 
Distance measure between instances xr and xs 

 Minkowski (Lp) (Euclidean for p = 2) 
 
 
  
 City-block distance 
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Start with N groups each with one instance and 
merge two closest groups at each iteration 
Distance between two groups Gi and Gj: 

Single-link:  
 

 
Complete-link: 
 

 
Average-link, centroid 
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Dendrogram 



Defined by the application, e.g., image quantization 
Plot data (after PCA) and check for clusters 
Incremental (leader-cluster) algorithm: Add one at a 
time until “elbow” (reconstruction error/log 
likelihood/intergroup distances) 
Manually check for meaning 
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Instructor : 
Omid Sojoodi 

Faculty of Electrical, Computer and IT Engineering 
Qazvin Azad University 

Contact Info: 
   o_sojoodi@{ieee.org, m.ieice.org}  



Questions: 
Assessment of the expected error of a learning 
algorithm: Is the error rate of 1-NN less than 2%? 
Comparing the expected errors of two algorithms: Is 
k-NN more accurate than MLP ? 

Training/validation/test sets 
Resampling methods: K-fold cross-validation 
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Criteria (Application-dependent): 
Misclassification error, or risk (loss functions) 
Training time/space complexity 
Testing time/space complexity 
Interpretability 
Easy programmability 

Cost-sensitive learning 
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Response surface design for approximating  and 
maximizing  
the response function in terms of the controllable factors 
 5 



A. Aim of the study 
B. Selection of the response variable 
C. Choice of factors and levels 
D. Choice of experimental design 
E. Performing the experiment 
F. Statistical Analysis of the Data 
G. Conclusions and Recommendations 
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The need for multiple training/validation sets 
 {Xi,Vi}i: Training/validation sets of fold i 

K-fold cross-validation: Divide X into k, Xi,i=1,...,K 
 
 
 
 
 
 
Ti share K-2 parts 
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5 times 2 fold cross-validation (Dietterich, 1998) 
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Draw instances from a dataset with replacement 
Prob that we do not pick an instance after N 
draws 
 
 

  
 that is, only 36.8% is new! 
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Error rate  = # of errors / # of instances = (FN+FP) / N 
Recall  = # of found positives / # of positives  

   = TP / (TP+FN) = sensitivity = hit rate 
Precision  = # of found positives / # of found 

   = TP / (TP+FP) 
Specificity  = TN / (TN+FP) 
False alarm rate = FP / (FP+TN) = 1 - Specificity 
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X = { xt }t where xt ~ N ( μ, σ2) 
m ~ N ( μ, σ2/N) 
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When σ2 is not known: 
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Reject a null hypothesis if not supported by the sample 
with enough confidence 
X = { xt }t where xt ~ N ( μ, σ2) 

  H0: μ = μ0 vs. H1: μ ≠ μ0  
 Accept H0 with level of significance α if μ0 is in the  
  100(1- α) confidence interval 
 
 
 Two-sided test 
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One-sided test: H0: μ ≤  μ0 vs. H1: μ > μ0  
 Accept if 
 
 

Variance unknown: Use t, instead of z  
 Accept H0: μ = μ0 if  
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Single training/validation set: Binomial Test 
 If error prob is p0, prob that there are e errors or less in 

N validation trials is   
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Number of errors X is approx N with mean Np0 and 
var Np0(1-p0) 
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Multiple training/validation sets 
xt

i = 1 if instance t misclassified on fold i 
Error rate of fold i: 
 
With m and s2 average and var of pi , we accept p0 or 
less error if 

 
 
 is less than tα,K-1 
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Single training/validation set: McNemar’s Test 
 
 
 
 
Under H0, we expect e01= e10=(e01+ e10)/2 
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Use K-fold cv to get K training/validation folds 
pi

1, pi
2: Errors of classifiers 1 and 2 on fold i 

pi = pi
1 – pi

2 : Paired difference on fold i 
The null hypothesis is whether pi has mean 0 
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Use 5×2 cv to get 2 folds of 5 tra/val replications 
(Dietterich, 1998)  
pi

(j) :  difference btw errors of 1 and 2 on fold j=1, 2 of 
replication i=1,...,5 
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Two-sided test: Accept H0: μ0 =  μ1 if in (-tα/2,5,tα/2,5)  
One-sided test:  Accept H0: μ0  ≤ μ1 if < tα,5  



Two-sided test: Accept H0: μ0 =  μ1 if < Fα,10,5 
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Errors of L algorithms on K folds 
 
We construct two estimators to σ2 .  

 One is valid if H0 is true, the other is always valid. 
 We reject H0  if the two estimators disagree.  
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If ANOVA rejects, we do pairwise posthoc tests 

)(~

: vs :

1

10

2 KL
w

ji

jiji

t
mm

t

HH



Comparing two algorithms:  
 Sign test: Count how many times A beats B over N 

datasets, and check if this could have been by chance if 
A and B did have the same error rate 

 
Comparing multiple algorithms 

 Kruskal-Wallis test: Calculate the average rank of all 
algorithms on N datasets, and check if these could have 
been by chance if they all had equal error 

 If KW rejects, we do pairwise posthoc tests to find 
which ones have significant rank difference 
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Instructor : 
Omid Sojoodi 

Faculty of Electrical, Computer and IT Engineering 
Qazvin Azad University 

Contact Info: 
   o_sojoodi@{ieee.org, m.ieice.org}  



Based loosely on simulated evolution. 
Hypotheses: described in bit strings (subject to 
interpretation in specific domains). 
Search: population of hypotheses, refined 
through mutation and crossover to increase 
fitness. 
Applications: optimization problems, learning 
the topology and parameters in neural 
networks, and many more. 

2 



Lamarck and others: 
Species “transmute” over time (inheritance of 
acquired trait)  

Darwin and Wallace: 
Consistent, heritable variation among individuals in 
population 
Natural selection of the fittest 

Mendel and genetics: 
A mechanism for inheriting traits 
Genotype  phenotype mapping 
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Mutation and crossover of hypotheses in the 
current population. 
Basically a generate-and-test beam search. 
Motivating factors: 

Evolution is known to be successful. 
GAs can search hypotheses containing complex 
interacting parts. 
Easily parallelizable 
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Population: set of current hypotheses 
Fitness: predefined measure of success 
Elements of GA: 

 fitness test  selection  reproduction 
(mutation, crossover) 
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GA(Fitness, Fitness threshold, p, r, m) 
 Initialize: P   p random hypotheses 
Evaluate: for each h in P, compute Fitness(h) 
 While [maxh Fitness(h)] < Fitness threshold 

    1. Select: Probabilistically select (1−r)p members of P to add to Ps. 

     

    2. Crossover: Probabilistically select  pairs of hypotheses from P. 
  For each pair, <h1, h2>, produce two offspring by applying the 
  Crossover operator. Add all offspring to Ps. 
    3. Mutate: Invert a randomly selected bit in m. p random members of Ps. 
    4. Update: P  Ps 
    5. Evaluate: for each h in P, compute Fitness(h) 

Return the hypothesis from P that has the highest fitness. 
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Represent 
(Outlook = Overcast _ Rain) ^ (Wind = Strong) 
by 
  Outlook  Wind 
      011      10 
Represent 
 IF Wind = Strong THEN PlayTennis = yes 
by 
 Outlook    Wind  PlayTennis 
     111       10       10 
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Fitness proportionate selection: 

     

Tournament selection: 
Pick h1, h2 at random with uniform prob. 
With probability p, select the more fit. 
 

Rank selection:  
Sort all hypotheses by fitness 
Probability of selection is proportional to rank 
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Learn disjunctive set of propositional rules, competitive with C4.5 
Fitness: 
  Fitness(h) = (percent_correct(h))2 

Representation: 
        IF a1 = T ^ a2 = F THEN c = T;           IF a2 = T THEN c = F 
 
represented by 
  a1  a2  c   a1  a2  c 
 10   01    1   11  10  0 
Genetic operators: 

 want variable length rule sets (as number of attributes can change) 
 want only well-formed bitstring hypotheses 
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Start with 
a1  a2  c   a1  a2  c 

h1 :    10 01  1   11  10   0 
h2 :    01  11  0   10  01  0 

1. choose crossover points for h1, e.g., after bits 1, 8 
2. now restrict points in h2 to those that produce bitstrings with 
    well-defined semantics, e.g.,  <1, 3>, <1, 8>, <6, 8>. 

if we choose <1, 3>, result is 
a1  a2  c 

h3 :    11  10   0 
a1  a2  c  a1  a2  c  a1  a2 c 

h4 :    00  01   1  11  11  0  10  01 0 
11 



Add new genetic operators, also applied probabilistically: 
1. AddAlternative: generalize constraint on ai by changing a 0 to 1 
2. DropCondition: generalize constraint on ai by changing every 0 to 1 

And, add new field to bitstring to determine whether to allow 
these 

a1  a2  c  a1  a2  c  AA DC 
01  11    0  10  01   0    1   0 

So now the learning strategy also evolves. (Allowing this 
increased accuracy.) 
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Performance of GABIL comparable to symbolic rule/tree 
learning methods C4.5, ID5R, AQ14 
 
Average performance on a set of 12 synthetic problems: 

GABIL without AA and DC operators: 92.1% accuracy 
GABIL with AA and DC operators: 95.2% accuracy 
symbolic learning methods ranged from 91.2 to 96.6 
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How to characterize evolution of population in GA? 
Schema = string containing 0, 1, * (“don’t care”) 

Typical schema: 10**0* 
Instances of above schema: 101101, 100000, ... 
An instance of length 4, say 0010, can have 24 matching 

schemas. 

Characterize population by number of instances 
representing each possible schema: 

m(s, t) = number of instances of schema s in pop at time t 
Want to estimate m(s, t + 1) given m(s, t) and other factors. 
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m(s, t) can change as t changes, due to the 
following factors: 

Selection: if individuals representing s get selected 
more often, m(s, ·) will increase.  
Crossover 
Mutation 

Schema theorem: gives E[m(s, t + 1)]. 
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= average fitness of pop. at time t 
m(s, t) = instances of schema s in pop at time t 

= average fitness of instances of s at time t 
: instances of schema s in the population at time t 

Probability of selecting h in one selection step 

    

Mean fitness of instances of s at time t: 
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Probability of selecting an instance of s in one step 
 
  
  

 
Expected number of instances of s after n selections 
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m(s, t) = instances of schema s in pop at time t 
  = average fitness of pop. at time t 

 = ave. fitness of instances of s at time t 
pc = probability of single point crossover operator 
pm = probability of mutation operator 
l = length of single bit strings 
o(s) = number of defined (non “*”) bits in s 
d(s) = distance between leftmost, rightmost defined bits in s 
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Population of programs represented by tree 
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Goal: spell UNIVERSAL 
Terminals: 

CS (“current stack”) = name of the top block on stack, or F. 
TB (“top correct block”) = name of topmost correct block on 
stack 
NN (“next necessary”) = name of the next block needed 
above TB in the stack 
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(MS x): (“move to stack”), if block x is on the table, moves x to 
the top of the stack and returns the value T. Otherwise, does 
nothing and returns the value F. 

(MT x): (“move to table”), if block x is somewhere in the stack, 
moves the block at the top of the stack to the table and returns the 
value T. Otherwise, returns F. 

(EQ x y): (“equal”), returns T if x equals y, and returns F otherwise. 
(NOT x): returns T if x = F, else returns F 
(DU x y): (“do until”) executes the expression x repeatedly until 

expression y returns the value T 
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Trained to fit 166 test problems 
 
Using population of 300 programs, found this after 10 
generations: 
 
(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)) ) 
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Lamarck (19th century) 
Believed individual genetic makeup was 
altered by lifetime experience 
But current evidence contradicts this view 
 

What is the impact of individual learning on 
population evolution? 
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Assume 
Individual learning has no direct influence on individual DNA 
But ability to learn reduces need to “hard wire” traits in DNA 

 
Then 

Ability of individuals to learn will support more diverse gene pool 
 – Because learning allows individuals with various “hard  
    wired” traits to be successful 

More diverse gene pool will support faster evolution of gene pool 
 

 individual learning (indirectly) increases rate of evolution 
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Plausible example: 
 
 1. New predator appears in environment 
 2. Individuals who can learn (to avoid it) will be selected 
 3. Increase in learning individuals will support more diverse gene 
     pool 
 4. resulting in faster evolution 
 5. possibly resulting in new non-learned traits such as instinctive  
                fear of predator 
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Evolve simple neural networks: 
Some network weights fixed during lifetime, others trainable 
Genetic makeup determines which are fixed, and their weight 
values 
 

Results: 
With no individual learning, population failed to improve over time 
When individual learning allowed 

Early generations: population contained many individuals with 
many trainable weights 
Later generations: higher fitness, while number of trainable weights 
decreased 
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Coevolution: escalating effect or complementary 
dependence (insects and flowering plants) 
between two or more species. 
 
Cultural transmission: memes vs. genes. 
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Conduct randomized, parallel, hill-climbing search through H 
 
Approach learning as optimization problem (optimize fitness) 
 
Nice feature: evaluation of Fitness can be very indirect 

consider learning rule set for multistep decision making 
no issue of assigning credit/blame to individual steps 
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