
Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Machine learning:
the study of self-modifying computer systems that can
acquire new knowledge and improve their own
performance

 Survey on machine learning techniques:

induction from examples
Bayesian learning
artificial neural networks
instance-based learning
genetic algorithms
reinforcement learning
unsupervised learning
and biologically motivated learning algorithms

2

Text Book:
Ethem Alpaydin (2010) “Introduction to Machine
Learning”, 2nd edition. MIT Press.
Tom Mitchell (1997) “Machine Learning”, McGraw-Hill

Grading:
Assignments (20%)
Presentation (30%)
Final Examination (50%)

3

Machine Learning at AAAI
Journal of Machine Learning Research
Journal of Machine Learning Gossip (ML humor)
mdl-research.org
Machine Learning Database Repository at UC Irvine
David Aha's list of machine learning resources
Avrim Blum's Machine Learning Page
UCI - Machine Learning Repository
UTCS Machine Learning Research Group
Microsoft Bayesian Network Editor (MSBNx)
Weka 3 -- Machine Learning Software in Java
Journal of AI Research (online text)
C5/See5
MLC++, A Machine Learning Library in C++
Web->KB project
DELVE-Data for Evaluating Learning

4

Introduction (A1, M1) (A: Alpaydin, M: Mitchell)

Supervised Learning (A2, M7)
Bayesian Learning (A3, A16, M6)
Parametric Methods (A4)
Dimensionality Reduction (A6)
Decision Tree (A9, M3)
Multilayer Perceptron (A11, M4)
Kernel Machine (A13)
Reinforcement Learning (A18, M13)
Clustering (A7)
Machine Learning Experiments (A19)
Genetic Algorithms (M9)

5

Neural Networks:
 perceptrons, backpropagation, etc.

Pattern analysis:
 Bayesian learning, instance-based learning
Artificial intelligence:

 decision trees (in some courses)
Statistics:

 hypothesis testing
Data Mining:

 associations rule and classification
(Relatively) unique to this course:

 concept learning, computational learning theory, genetic
 algorithms, reinforcement learning, decision trees (in depth
 treatment)

6

Theory-bounded Research:
Networked Data Classification
Classification of Uncertain Data
Similarity-based Dimension Reduction (NCA, NDA,
DNDA, SDA, …)
Nearest Neighbor Classification in Non-stationary
environments
Learning Distance Metric
Data Stream Classification
Ensemble Classifiers
…

7

Application-based Research:
ML Methods in Sensor Network
ML Methods in Control and Robotics
ML Methods in Weather Forecasting
ML Methods in Financial Problems
ML Methods in Filtering (Spam Filtering/Document)
ML Methods in Machine Vision
ML Methods in Biomedical Engineering (Biomedical
Image/Signal Processing)
…

8

How can machines (computers) learn?
How can machines improve automatically
with experience?
 Benefits:

 Improved performance
 Automated optimization
 New uses of computers
 Reduced programming
Insights into human learning and learning
disabilities

9

Current status: Yet unsolved problem.
Theoretical insights emerging.
Practical applications.
Huge data volume demands ML, and provides
opportunity to ML (data mining).

State of the art:
speech recognition
medical predictions
fraud detection
drive autonomous vehicles (highway and desert)
board games (backgammon, chess)
theoretical bounds on error, number of inputs needed,
etc.

10

A program is said to learn from
experience E with respect to
task T and
performance measure P,
P in T increase with E.

Examples: Playing checkers, Handwriting recognition,
Robot driving, etc.

Goal of ML: “define precisely a class of problems that
encompasses interesting forms of learning, to explore
algorithms that solve such problems, and to
understand the fundamental structure of learning
problems and processes” (Mitchell, 1997)

11

Training experience:
direct vs. indirect (learning to play checkers)

problem of credit assignment

degree of control over training examples (teacher-
dependent or learner-generated)

closeness of training example distribution to true
distribution over which P is measured: in many
cases, ML algorithms assume that both
distributions are similar, which may not be the
case in practice.

12

Remaining design choices:

The exact type of knowledge to be learned.
A representation for this target knowledge.
A learning mechanism.

13

Type of knowledge to be learned: for example,
we want to learn the best move in a board
game.

Can represent as a function (B: board states, M:
moves):

 ChooseMove : B M,

but it is hard to learn directly.

14

Another function (B: board states, R: real
numbers):

 V : B R,
which gives the evaluation of each board state.

V (b = win) = 100
V (b = lose) = −100
V (b = draw) = 0
V (b = otherwise) = V (b0), where b0 is the best final

 board state that can be reached from b.
However, this is not efficiently computable, i.e., it is a

 nonoperational definition.
Goal of ML is to find an operational description of V ,

 however, in practice, an approximation is all we can get.

15

Given an ideal target function V , we want to learn an
approximate function :

Trade-off between rich and parsimonious representation.
Example: as a linear combination of number of pieces,
number of particular relational situations in the board (e.g.,
threatened), etc. (represented as xi) in board configuration b:

where wi are the weight values to be learned.

Advantage of the above representation: reduction of scope
(or dimensionality) from the original problem.

16

n

i
ii xwwbV

1
0)(ˆ

Given board state and true V , we want to learn
the weights wi that specify .

Start with a set of a large number of input-
target pairs < b, Vtrain(b) >.
Problem: cannot come up with a full set of

 < b, Vtrain(b) > pairs.
Solution: If Vtrain(b) is unknown, set it to the
estimated of its successor board state:

 Vtrain(b) = train(Successor(b)).

17

Last component in defining a learning algorithm:
adjustment of weights.

Want to learn weights wi that best fit the set of
training samples {< b, Vtrain(b) >}.

How to define best fit? Once we have we can
calculate all (b) for all b in the training set, and
calculate the error (here MSE)

How to reduce E?

18

||

))(ˆ)((
)(,

2

settraining

bVbV
E settrainingbVb

train
train

Least Mean Squares (LMS) learning rule to minimize
MSE:
Until weights converge :
 For each training example < b, Vtrain(b) >
 1) Use the current weights to calculate (b)
 2) For each weight wi, update it as
 wi wi + η(Vtrain(b) − (b))xi,
 where η is a small learning rate constant

The error Vtrain(b) − (b) and the input xi both
contribute to the weight update.

19

Training experience: against experts, against self, table
of correct moves, ...

Target function: board move, board value, ...

Representation of target function: polynomial, linear
function of small number of features, artificial neural
network, …

Learning algorithm: gradient descent, linear
programming, Genetic Algorithm, ...

20

Useful to think of ML as searching a very large
space of possible hypotheses to best fit the data
and the learner’s prior knowledge.

For example, the hypothesis space for would be
all possible s with different weight assignment.

Useful concepts regarding hypothesis space
search:

 Size of hypothesis space
Number of training examples available/needed.
Confidence in generalizing to new unseen data.

21

What algorithms exist for generalizable learners given specific
training set? Requirements for convergence? Which algorithms are
best for a particular domain?

How much training data needed? Bounds on confidence, based on
data size? How long to train?

Use of prior knowledge?

How to choose best training experience? Impact of the choice?

How to reduce ML problem to function approximation?

How can learner alter the representation itself?

22

Supervised learning: input-target pairs given.

Unsupervised learning: only input distribution
is given.

Reinforcement learning: sparse reward signal is
given for action based on sensory input;
environment-altering actions.

23

Can machines themselves formulate their own
learning tasks?

Can they come up with their own representations?
Can they come up with their own learning strategy?
Can they come up with their own motivation?
Can they come up with their own questions/problems?

What if the machines are faced with multiple,
possibly conflicting tasks? Can there be a meta
learning algorithm?

What if performance is hard to measure (i.e., hard to
quantify, or even worse, subjective)?
 24

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Machine learning is programming computers
to optimize a performance criterion using
example data or past experience.
There is no need to “learn” to calculate payroll
Learning is used when:

Human expertise does not exist (navigating on
Mars),
Humans are unable to explain their expertise (speech
recognition)
Solution changes in time (routing on a computer
network)
Solution needs to be adapted to particular cases
(user biometrics)

2

Learning general models from a data of
particular examples
Data is cheap and abundant (data warehouses,
data marts); knowledge is expensive and
scarce.
Example in retail: Customer transactions to
consumer behavior:
 People who bought “chips” also bought “yogurt”
Build a model that is a good and useful
approximation to the data.

3

 There is a connection between machine
learning and data mining

 Data mining:

 “…the analysis of (often large) observational
 data sets to find unsuspected relationships
 and to summarize the data in novel ways
 that are both understandable and useful to
 the data owner.” (Hand et al., 2001)

4

5

Define
Problem

Data
Collection

Data
Preparation

Data
Modeling

Interpretation
/Evaluation

Implement
/Deploy
Model

Machine
Learning

Retail: Market basket analysis, Customer
relationship management (CRM)
Finance: Credit scoring, fraud detection
Manufacturing: Control, robotics,
troubleshooting
Medicine: Medical diagnosis
Telecommunications: Spam filters, intrusion
detection
Bioinformatics: Motifs, alignment
Web mining: Search engines
...

6

Optimize a performance criterion using
example data or past experience.
Role of Statistics: Inference from a sample
Role of Computer science: Efficient algorithms
to

Solve the optimization problem
Representing and evaluating the model for inference

7

Association
Supervised Learning

Classification
Regression

Unsupervised Learning
Reinforcement Learning

8

Basket analysis:
 P (Y | X) probability that somebody who buys

X also buys Y where X and Y are
products/services.

 Example: P (chips | yogurt) = 0.7

9

10

Example: Credit
scoring
Differentiating
between low-risk
and high-risk
customers from
their income and
savings

Discriminant: IF income > θ1 AND savings > θ2
 THEN low-risk ELSE high-risk

Aka Pattern recognition
Face recognition: Pose, lighting, occlusion
(glasses, beard), make-up, hair style
Character recognition: Different handwriting
styles.
Speech recognition: Temporal dependency.
Medical diagnosis: From symptoms to illnesses
Biometrics: Recognition/authentication using
physical and/or behavioral characteristics:
Face, iris, signature, etc
...

11

12

Training examples of a person

Test images

ORL dataset,
AT&T Laboratories, Cambridge UK

Example: Price of a used car
x : car attributes

 y : price
 y = g (x |)

 g () model, parameters

13

y = wx+w0

Navigating a car: Angle of the steering wheel
Kinematics of a robot arm

14

α1= g1(x,y)
α2= g2(x,y)

α1

α2

(x,y)

Response surface design

Prediction of future cases: Use the rule to
predict the output for future inputs
Knowledge extraction: The rule is easy to
understand
Compression: The rule is simpler than the data
it explains
Outlier detection: Exceptions that are not
covered by the rule, e.g., fraud

15

Learning “what normally happens”
No output
Clustering: Grouping similar instances
Example applications

Customer segmentation in CRM
Image compression: Color quantization
Bioinformatics: Learning motifs (sequence of amino
acid)
Document clustering

16

Given: a set (sample) of data (observations).

Task: build a model of the process that generated the data.

This time however, we’re not trying to learn about the

relationship between inputs and outputs, we just want
to find (and/or take advantage of) structure in the data.

Sometimes called descriptive (rather than predictive) modeling.

Problems that can be framed as unsupervised learning:
dimensionality reduction, compression, probability density
estimation.

17

Learning a policy: A sequence of outputs
No supervised output but delayed reward
Credit assignment problem
Game playing
Robot in a maze
Multiple agents, partial observability, ...

18

UCI Repository:
http://www.ics.uci.edu/~mlearn/MLRepository.html

UCI KDD Archive:
http://kdd.ics.uci.edu/summary.data.application.html

Statlib: http://lib.stat.cmu.edu/

Delve: http://www.cs.utoronto.ca/~delve/

19

Journal of Machine Learning Research
www.jmlr.org
Machine Learning
Neural Computation
Neural Networks
IEEE Transactions on Neural Networks
IEEE Transactions on Pattern Analysis and
Machine Intelligence
Annals of Statistics
Journal of the American Statistical Association
...

20

International Conference on Machine Learning (ICML)
European Conference on Machine Learning (ECML)
Neural Information Processing Systems (NIPS)
Uncertainty in Artificial Intelligence (UAI)
Computational Learning Theory (COLT)
International Conference on Artificial Neural
Networks (ICANN)
International Conference on AI & Statistics (AISTATS)
International Conference on Pattern Recognition
(ICPR)
...

21

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Class C of a “family car”
Prediction: Is car x a family car?
Knowledge extraction: What do people expect
from a family car?

Output:
 Positive (+) and negative (–) examples

Input representation:
 x1: price, x2 : engine power

2

N
t

tt ,r 1}{xX

negative is if
positive is if

x
x

0
1

r

3

2

1

x
x

x

2121 power engine AND price eepp

4

negative is says if
positive is says if

)(
x
x

x
h
h

h
0
1

N

t

tt rhhE
1
1 x)|(X

5

Error of h on H

6

most specific hypothesis, S

most general hypothesis, G

h H, between S and G is
consistent
and make up the
version space
(Mitchell, 1997)

Choose h with largest margin

7

N points can be labeled in 2N ways as +/–
H shatters N if there

 exists h H consistent
 for any of these:
 VC(H) = N

8

An axis-aligned rectangle shatters 4 points only !

How many training examples N should we have, such that with
probability at least 1 ‒ δ, h has error at most ε ?

 (Blumer et al., 1989)

Each strip is at most ε/4
Pr that we miss a strip 1‒ ε/4
Pr that N instances miss a strip (1 ‒ ε/4)N

Pr that N instances miss 4 strips 4(1 ‒ ε/4)N

4(1 ‒ ε/4)N ≤ δ and (1 ‒ x)≤exp(‒ x)

4exp(‒ εN/4) ≤ δ and N ≥ (4/ε)log(4/δ)

9

Use the simpler one because
Simpler to use

 (lower computational
 complexity)

Easier to train (lower
 space complexity)

Easier to explain
 (more interpretable)

Generalizes better (lower
 variance - Occam’s razor)

10

N
t

tt ,r 1}{xX

 , i f
 i f

ij
r

j
t

i
t

t
i C

C
x
x

0
1

 , i f
 i f

ij
h

j
t

i
t

t
i C

C
x
x

x
0
1

11

Train hypotheses
hi(x), i =1,...,K:

01 wxwxg

01
2

2 wxwxwxg

12

N

t

tt xgr
N

gE
1

21X|

N

t

tt wxwr
N

wwE
1

2
0101

1X|,

tt

t

N
t

tt

xfr

r

rx 1,X

Learning is an ill-posed problem; data is not
sufficient to find a unique solution
The need for inductive bias, assumptions about
H
Generalization: How well a model performs on
new data
Overfitting: H more complex than C or f
Underfitting: H less complex than C or f

13

There is a trade-off between three factors
(Dietterich, 2003):

1. Complexity of H, c (H),
2. Training set size, N,
3. Generalization error, E, on new data
As N↑ E
As c (H)↑ first E and then E ↑

14

To estimate generalization error, we need data
unseen during training. We split the data as

Training set (50%)
Validation set (25%)
Test (publication) set (25%)

Resampling when there is few data

15

1. Model:

2. Loss function:

3. Optimization
procedure:

|xg

t

tt grLE |,| xX

16

X|min arg* E

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

The world →unknown process →data.

Because of our lack of knowledge about the process, we model
it as a random process and use probability theory to analyse it.

Result of tossing a coin is ϵ {Heads,Tails}
Random var D ϵ{1,0}

 Bernoulli: P {D=1} = po
D (1 ‒ po)(1 ‒ D)

Sample: D = {Dt } Nt =1

 Estimation: po = # {Heads}/#{Tosses} = ∑t D
t / N

Prediction of next toss:
 Heads if po > ½, Tails otherwise

2

Credit scoring: Inputs are income and savings.
 Output is low-risk vs high-risk

Input: D = [D1,D2]T ,Output: h ϵ {0,1}
Prediction:

otherwise 0
)|0()|1(if 1

 choose

or
otherwise 0

 50)|1(if 1
 choose

2121

21

h
h

h
h

 ,ddhP ,ddhP

. ,ddhP

3

Dp
DpPDP hhh | |

1|1|0
00|11|

110

DPDp
PDpPDpDp

PP

hh
hhhh

hh

4

posterior

likelihood prior

evidence

5
)()|(maxarg

)(
)()|(maxarg

)|(maxarg

hPhDP
DP

hPhDP

DhPh

Hh

Hh

Hh
MAP

Generally want the most probable hypothesis given the training data
Maximum a posteriori hypothesis hMAP :

Dp
DpPDP hhh | |

6

If all hypotheses are equally probable a priori:

jij hhhPP ,,)(ih

then, hMAP reduces to:

)|(maxarg hDPh
Hh

ML

 Maximum Likelihood hypothesis

7

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.
The test returns a correct positive result in only 98%, of the cases in
which the disease is actually present, and a correct negative result in
only 97% of the cases in which the disease is not present.
Furthermore, .008 of the entire population have this cancer.

P(cancer)=0.008, P(+|cancer)=0.98, P(+|~cancer)=0.03,
P(~cancer)=0.992, P(-|cancer)=0.02, P(-|~cancer)=0.97

How does P(cancer|+) compare to P(~cancer|+)? What is hMAP ?

8

 P(cancer|+) = P(+|cancer) P(cancer) / P(+) =
(0.98)(0.008) / P(+) = 0.0078 / P(+)

P(~cancer|+) = P(+|~cancer) P(~cancer) / P(+) =
(0.03)(0.992) / P(+) = 0.0298 / P(+)

 hMAP= ~cancer

9

What is the most probable hypothesis given the training data,
vs.

What is the most probable classification?

Example:
 P(h1|D)= 0.4 P(-|h1)=0 P(+|h1)=1
 P(h2|D)= 0.3 P(-|h2)=1 P(+|h2)=0
 P(h3|D)= 0.3 P(-|h3)=1 P(+|h3)=0

- New instance x is classified as - or + ?
hMAP= h1 +
But P(-|x)= .6 -

10

If a new instance can take classification vj ϵ V , then the
probability P(vj |D) of correct classification of new instance
being vj is:

Hih
iijj DhPhvPDvP)|()|()|(

Thus, the optimal classification is:

Hih
iij

Vjv
DhPhvP)|()|(maxarg

11

Example:
 P(h1|D)= 0.4 P(-|h1)=0 P(+|h1)=1
 P(h2|D)= 0.3 P(-|h2)=1 P(+|h2)=0
 P(h3|D)= 0.3 P(-|h3)=1 P(+|h3)=0

6.0)|()|(

4.0)|()|(

i

i

h
ii

h
ii

DhPhP

DhPhP
x is classified as -

12

Given attribute values <a1, a2, ..., an>, give the classification
vϵV :

),,|(maxarg 1 nj
Vjv

MAP aavPv

)()|,,(maxarg
),,(

)()|,,(
maxarg

1

1

1

jjn
Vjv

n

jjn

Vjv
MAP

vPvaaP
aaP

vPvaaP
v

Want to estimate P(a1, a2, ..., an|vj) and P(vj) from
training data.

13

• P(vj) is easy to calculate: Just count the frequency.
• The naive Bayes classifier simply assumes that the

attribute values are conditionally independent
given the target value, thus

n

i
jij

Vv
NB vaPvP

j
v

1

)|()(maxarg

14

Naive Bayes Learn(examples)
 For each target value vj
 Pe(vj) estimate P(vj)
 For each attribute value ai of each attribute a
 Pe(ai|vj) estimate P(ai|vj)

Classify New Instance(x)

n

i
jieje

Vv
NB vxPvP

j
v

1

)|()(maxarg

15

Day Outlook Temperature Humidity Wind Play

Tennis

Day1 Sunny Hot High Weak No
Day2 Sunny Hot High Strong No

Day3 Overcast Hot High Weak Yes

Day4 Rain Mild High Weak Yes

Day5 Rain Cool Normal Weak Yes

Day6 Rain Cool Normal Strong No
Day7 Overcast Cool Normal Strong Yes

Day8 Sunny Mild High Weak No

Day9 Sunny Cool Normal Weak Yes

Day10 Rain Mild Normal Weak Yes

Day11 Sunny Mild Normal Strong Yes

Day12 Overcast Mild High Strong Yes

Day13 Overcast Hot Normal Weak Yes

Day14 Rain Mild High Strong No

16

Consider Play Tennis again, and new instance:
x = <Outlk = sunny, Temp = cool, Humid = high, Wind = stron>
 V = {Yes,No}

noxPlayTennisanswer
nostrongPnohighPnocoolPnosunnyPnoP

yesstrongPyeshighPyescoolPyessunnyPyesP

vaPvPv
i

kik
noyesv

NB
k

)(:
1)|()|()|()|()(

005.0)|()|()|()|()(

)|()(maxarg
],[

0.02

9/14 3/9

3/5

In above example:
P(Wind = strong| Play Tennis = no) = nc /n = 3/5
If nc ≈ 0 then

P=1/k , k is the number of possible value for the attribute

K= 2 for wind attribute (weak, strong) p=.5
m is a constant (equivalent sample size)

17

0)|(
i

ki vaP

mn
mpnc m-estimate of probability

General ways of measuring performance/error
Actions: αi (e.g. assign class Ci to some input)
Loss of αi when the state is Ck : λik
Expected risk (Duda and Hart, 1973) (for taking action
αi)

xx

xx

|min| if choose

||

kkii

k

K

k
iki

RR

CPR
1

18

ki
ki

ik if
 if

1
0

x

x

xx

|

|

||

i

ik
k

K

k
kiki

CP

CP

CPR

1

1

19

For minimum risk, choose the most probable class

10
1

1
0

otherwise

 if
 if

,Ki
ki

ik

xxx

xx

|||

||

i
ik

ki

K

k
kK

CPCPR

CPR

1
1

1

otherwise reject
1| and || if choose xxx ikii CPikCPCPC

20

Kigi ,, , 1xxx kkii ggC max if choose

xxx kkii gg max|R

ii

i

i

i

CPCp
CP
R

g
|
|

|

x
x

x
x

21

K decision regions R1,...,RK

(ok for 0/1 loss)

Dichotomizer (K=2) vs Polychotomizer (K>2)
g(x) = g1(x) – g2(x)

Log odds:

otherwise
 if

 choose
2

1 0
C

gC x

x
x

|
|log

2

1

CP
CP

22

(given) Prob of state k given evidence x: P (Sk|x)
(and) Utility of αi when state is k: Uik
(then) Expected utility:

i.e a rational choice –maximize expected utility
(usually equivalent to minimizing expected risk).

xx

xx

| max| if Choose

||

jjii

k
kiki

EUEUα

SPUEU

23

Association rule: X Y
People who buy/click/visit/enjoy X are also likely to
buy/click/visit/enjoy Y.
A rule implies association, not necessarily
causation.

24

Support (X Y):

Confidence (X Y):

Lift (X Y):

25

customers
 and bought whocustomers

#
#, YXYXP

X
YX

XP
YXPXYP

 bought whocustomers
 and bought whocustomers

|

#
#

)(
,

)(
)|(

)()(
,

YP
XYP

YPXP
YXP

For (X,Y,Z), a 3-item set, to be frequent (have
enough support), (X,Y), (X,Z), and (Y,Z) should be
frequent.
If (X,Y) is not frequent, none of its supersets can be
frequent.
Once we find the frequent k-item sets, we convert
them to rules: X, Y Z, ...

 and X Y, Z, ...

26

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

X = { xt }t where xt ~ p (x)
Our model is a specified probability distribution

 Learning = estimating its parameters
Parametric estimation:
 Assume a form for p (x |q) and estimate q , its

sufficient statistics, using X
 e.g., N (μ, σ2) where q = { μ, σ2}
Density estimation (can then be used for

classification, etc.)

2

Likelihood of given the sample X
 l (θ|X) = p (X |θ) = ∏t p (xt|θ)

Log likelihood
 L(θ|X) = log l (θ|X) = ∑t log p (xt|θ)

Why? Small numbers converts product to sum, removes
exp(?)

Maximum likelihood estimator (MLE)
 θ* = argmaxθ L(θ|X)

3

Bernoulli: Two states, failure/success, x in {0,1}
P (x) = po

x (1 – po)
(1 – x)

 L (po|X) = log ∏t po
xt (1 – po)

(1 – xt)
MLE: po = ∑t x

t / N

Multinomial: K>2 states, xi in {0,1}
P (x1,x2,...,xK) = ∏i pi

xi
 L(p1,p2,...,pK|X) = log ∏t ∏i pi

xit
MLE: pi = ∑t xi

t / N

4

2

2

2
exp

2

1 x
-xp

N

mx
s

N

x
m

t

t

t

t

2

2

p(x) = N (μ, σ2)

MLE for μ and σ2:

5

μ σ

2

2

22
1 xxp exp

estimated values

True parameters

6

Unknown parameter
Estimator (of di = d (Xi) on
sample Xi

Bias: b (d) = E [d] –
Variance: E [(d–E [d])2]

Mean square error:
r (d,) = E [(d–)2]
 = (E [d] –)2 + E [(d–E [d])2]
 = Bias2 + Variance

7

• Bias: how much the expected value of the estimator
varies from the correct

• Variance: variation around the expected value.

• Examples:
• Sample mean, m, is an unbiased estimator of the true mean.

It’s also a consistent estimator, since Var(m) tends to zero as N
tends to infinity.

• Sample variance (as it turns out) is a biased estimator of the

true variance.

Treat θ as a random var with prior p (θ)
Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X)

Full: p(x|X) = ∫ p(x|θ) p(θ|X) dθ

i.e an average over predictions using all values of θ, weighted by the
probability of each θ value.

Maximum a Posteriori (MAP): θMAP = argmaxθ p(θ|X)
This uses a priori

Maximum Likelihood (ML): θML = argmaxθ p(X|θ)
This doesn’t have a prior. If prior is flat, MAP == ML.

Bayes’: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ

8

xt ~ N (θ, σo
2) and θ ~ N (μ, σ2)

θML = m
θMAP = θBayes’ =

22
0

2

22
0

2
0

1
1

1 //
/

//
/|

N
m

N
NE X

9

iii

iii

CPCxpxg

CPCxpxg

 log| log
lyequivalentor

|

i
i

i
ii

i

i

i
i

CPxxg

xCxp

 log log log

exp|

2

2

2

2

2
2

2
1

22
1

10

11

Given the sample

ML estimates are

Discriminant becomes

N
t

tt ,rx 1}{X

x
 , i f

 i f
ijx

x
r

j
t

i
t

t
i C

C
0
1

t

t
i

t

t
ii

t

i

t

t
i

t

t
i

t

i
t

t
i

i r

rmx
s

r

rx
m

N

r
CP

2

2 ˆ

i
i

i
ii CP

s
mxsxg ˆ log log log 2

2

2
2

2
1

12

Equal variances

Single boundary at
halfway between means

13

Variances are different

Two boundaries

2

20
,N

,N

|~|

~

|:estimator

xgxrp

xg
xfr

N

t

t
N

t

tt

N

t

tt

xpxrp

rxp

11

1

 log| log

, log|XL

14

We want to learn the parameters
of our model via Max. Likelihood

2

1

2

1
2

2

2

1

|
2
1|

|
2

12log

2
|exp

2
1 log|

N

t

tt

N

t

tt

ttN

t

xgrE

xgrN

xgr

X

XL

15

Important: so maximizing L is equivalent to minimizing MSE
(assuming Gaussian noise)

0101 wxwwwxg tt ,|

t

t

t

tt

t

t

t

t

t

t

xwxwxr

xwNwr

2
10

10

t

t

t
t

t

t

t

t

t
t

t

xr

r

w
w

xx

xN
yw

1

0
2A

yw 1A

16

01
2

2012 wxwxwxwwwwwxg ttkt
kk

t ,,,,|

NNNN

k

k

r

r
r

xxx

xxx
xxx

2

1

22

2222

1211

1

1
1

r D

rw TT DDD
1

17

2

12
1 N

t

tt xgrE ||X

18

Square Error:

Relative Square Error:

Absolute Error: E (θ |X) = ∑t

 |rt – g(xt| θ)|
ε-sensitive Error:
 E (θ |X) = ∑ t 1(|rt – g(xt| θ)|>ε) (|rt – g(xt|θ)| – ε)

2

1

2

1
N

t

t

N

t

tt

rr

xgr
E

|
|X

19

222 ||| xgExgExgExrExxgxrEE XXXX

bias variance

222 xgxrExxrErExxgrE ||||

noise squared error

t
i

t i

tt
i

t

tt

xg
M

xg

xgxg
NM

g

xfxg
N

g

1

1

1

2

22

Variance

Bias

20

M samples Xi={xt
i , rt

i}, i=1,...,M

are used to fit gi (x), i =1,...,M

Example: gi(x)=2 has no variance and high
bias

 gi(x)= ∑t
 rt

i/N has lower bias with variance

As we increase complexity,

 bias decreases (a better fit to data) and
 variance increases (fit varies more with

data)
Bias/Variance dilemma: (Geman et al.,
1992)

21

22

bias

variance

f

gi g

f

23

Best fit “min error”

24

Best fit, “elbow”

Cross-validation: Measure generalization
accuracy by testing on data unused during
training
Regularization: Penalize complex models

 E’=error on data + λ model complexity

 Akaike’s information criterion (AIC),

Bayesian information criterion (BIC)
Minimum description length (MDL):
Kolmogorov complexity, shortest
description of data
Structural risk minimization (SRM)

25

data
model model|datadata|model

p
ppp

26

Prior on models, p(model)

Regularization, when prior favors simpler
models
Bayes, MAP of the posterior, p(model|data)
Average over a number of models with high
posterior (voting, ensembles: Chapter 17)

27

Coefficients increase in
magnitude as order
increases:
1: [-0.0769, 0.0016]
2: [0.1682, -0.6657,
0.0080]
3: [0.4238, -2.5778,
3.4675, -0.0002]
4: [-0.1093, 1.4356,
-5.5007, 6.0454, -
0.0019]

i i

N

t

tt wxgrEtionregulariza 2
2

12
1 ww ||: X

Instructor :
 Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Reduces time complexity: Less computation
Reduces space complexity: Less parameters
Saves the cost of observing the feature
Simpler models are more robust on small datasets
More interpretable; simpler explanation
Data visualization (structure, groups, outliers, etc) if
plotted in 2 or 3 dimensions

2

Feature selection: Choosing k<d important features,
ignoring the remaining d – k

 Subset selection algorithms
Feature extraction: Project the

 original xi , i =1,...,d dimensions to
 new k<d dimensions, zj , j =1,...,k

 Principal components analysis (PCA), linear

 discriminant analysis (LDA), factor analysis (FA)

3

There are 2d subsets of d features
Forward search: Add the best feature at each step

Set of features F initially Ø.
At each iteration, find the best new feature
j = argmini E (F xi)
Add xj to F if E (F xj) < E (F)

Hill-climbing O(d2) algorithm
Backward search: Start with all features and remove
 one at a time, if possible.
Floating search (Add k, remove l)

4

Find a low-dimensional space such that
when x is projected there, information loss
is minimized.
The projection of x on the direction of w
is: z = wTx
Find w such that Var(z) is maximized

 Var(z) = Var(wTx) = E[(wTx – wTμ)2]
 = E[(wTx – wTμ)(wTx – wTμ)]
 = E[wT(x – μ)(x – μ)Tw]
 = wT E[(x – μ)(x –μ)T]w = wT ∑ w
 where Var(x)= E[(x – μ)(x –μ)T] = ∑

5

01max 122222
2

wwwwww
w

TTT

6

Maximize Var(z) subject to ||w||=1

∑w1 = αw1 that is, w1 is an eigenvector of ∑
Choose the one with the largest eigenvalue for Var(z) to

be max
Second principal component: Max Var(z2), s.t.,
||w2||=1 and orthogonal to w1

∑ w2 = α w2 that is, w2 is another eigenvector of ∑
 and so on.

11111
1

wwww
w

TTmax

 z = WT(x – m)

 where the columns of W are the eigenvectors of ∑, and
m is sample mean

 Centers the data at the origin and rotates the axes

7

dk

k

21

21

8

Proportion of Variance (PoV) explained

 when λi are sorted in descending order

Typically, stop at PoV>0.9
Scree graph plots of PoV vs k, stop at
“elbow”

9

10

Find a small number of factors z, which when combined
generate x :

 xi – μi = vi1z1 + vi2z2 + ... + vikzk + εi

 where zj, j =1,...,k are the latent factors with
 E[zj]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,

 εi are the noise sources
 E[εi]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 ,
 and vij are the factor loadings

11

PCA From x to z z = WT(x – μ)
FA From z to x x – μ = Vz + ε

12

x z

z x

In FA, factors zj are stretched, rotated and
translated to generate x

13

Find a low-dimensional
space such that when x
is projected, classes are
well-separated.
Find w that maximizes

t
ttT

t
t

t
ttT

rms
r

r
m

ss
mmJ

2
1

2
11

2
2

2
1

2
21

xw
xw

w

14

T
BB

T

TT

TTmm

2121

2121

2
21

2
21

mmmmww

wmmmmw

mwmw

SS where

15

Between-class scatter:

Within-class scatter:

21
2
1

2
1

111

111

2
1

2
1

SSSS

S

S

WW
T

t
t

Ttt

Tt
t

TttT

t
t

tT

ss

r

r

rms

 where

 where

ww

mxmx

wwwmxmxw

xw

21
1 mmw Wc S

16

Find w that max

LDA soln:

Parametric soln:

ww
mmw

ww
www

W
T

T

W
T

B
T

J
SS

S
2

21

,~| when iiCp μ
μμ 21

1

Nx
w

T
i

t
i

t
t

t
ii

K

i
iW r mxmxSSS

1

17

Within-class scatter:

Between-class scatter:

Find W that max

K

i
i

K

i

T
iiiB K

N
11

1 mmmmmm S

WSW

WSW
W

W
T

B
T

J The largest eigenvectors of SW
-1SB

Maximum rank of K-1

18

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

2

Learn to approximate discrete-valued target functions.
 Step-by-step decision making: It can learn disjunctive

 expressions: Hypothesis space is completely expressive,
 avoiding problems with restricted hypothesis spaces.

 Inductive bias: small trees over large trees.

Each instance holds attribute values.
Instances are classified by filtering the attribute values down
the decision tree, down to a leaf which gives the final
answer.
Internal nodes: attribute names or attribute values.
Branching occurs at attribute nodes.

3

4

Internal decision nodes
Univariate: Uses a single attribute, xi

Numeric xi : Binary split : xi > wm
Discrete xi : n-way split for n possible values

Multivariate: Uses all attributes, x

Leaves
Classification: Class labels, or proportions
Regression: Numeric; r average, or local fit

Learning is greedy; find the best split
recursively (Breiman et al, 1984; Quinlan,
1986, 1993)

5

6

• Each path from root to leaf is a conjunctions of constraints
 on the attribute values.

 (Outlook = Sunny ∧ Humidity = Normal)
 ∨ (Outlook = Overcast)
 ∨ (Outlook = Rain ∧ Wind = Weak)

Good at classification problems where:

Instances are represented by attribute-value pairs.
The target function has discrete output values.
Disjunctive descriptions may be required.
The training data may contain errors.
The training data may contain missing attribute
values.

7

Given a set of examples (training set), both
positive and negative, the task is to construct a
decision tree that describes a concise decision
path.

Using the resulting decision tree, we want to
classify new instances of examples (either as
yes or no).

8

A trivial solution is to explicitly construct paths for
each given example. In this case, you will get a tree
where the number of leaves is the same as the
number of training examples.

The problem with this approach is that it is not
able to deal with situations where, some attribute
values are missing or new kinds of situations arise.

Consider that some attributes may not count much
toward thefinal classification.

9

Memorizing all cases may not be the best way.

We want to extract a decision pattern that can
describe a large number of cases in a concise
way.

In terms of a decision tree, we want to make as
few tests as possible before reaching a decision,
i.e. the depth of the tree should be shallow.

10

Basic idea: pick up attributes that can clearly
separate positive and negative cases.

These attributes are more important than
others: the final classification heavily depend
on the value of these attributes.

11

Main loop:
1. A the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A, create new descendant of
 node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then
 STOP, Else iterate over new leaf nodes

12

13

A1 or A2?

• With initial and final number of positive and negative
 examples based on the attribute just tested, we want to
 decide which attribute is better.

• How to quantitatively measure which one is better?

Use Shannon’s information theory to choose the
attribute that give the maximum information
gain.

Pick an attribute such that the information gain
(or entropy reduction) is maximized.

Entropy measures the average surprisal of
events. Less probable events are more
surprising.

14

Given two events, H and T (Head and Tail):
Rare (uncertain) events give more surprise:

 H more surprising than T if P(H) < P(T)
 H more uncertain than T if P(H) < P(T)
How to represent “more surprising”, or “more uncertain”?

 Surprise(H) > Surprise(T) if
 P(H) < P(T)
 1/ P(H) > 1/ P(T)
 log(1/ P(H))> log(1/ P(T))
 - log(P(H)) > - log(P(T))

15

16

• S is a sample of training examples
• p+ is the proportion of positive examples in S
• p- is the proportion of negative examples in S
• Entropy measures the average uncertainty in S
 Entropy(S) ≡ −p+ log2 p+ − p- log2 p-

By performing some query, if you go from state
S1 with entropy E(S1) to state S2 with entropy
E(S2), where E(S1) > E(S2), your uncertainty has
decreased.

The amount by which uncertainty decreased,
i.e., E(S1) − E(S2), can be thought of as
information you gained (information gain)
through getting answers to your query.

17

18

Ci
ii ppSEntropy)(log)(2

)(
||
||)(),(

)(
v

Avaluesv

v SEntropy
S
SSEntropyASGain

• C: categories (classifications)
• S: set of examples
• A: a single attribute
• Sv: set of examples where attribute A = v.

19

Day Outlook Temperature Humidity Wind Play

Tennis

Day1 Sunny Hot High Weak No
Day2 Sunny Hot High Strong No

Day3 Overcast Hot High Weak Yes

Day4 Rain Mild High Weak Yes

Day5 Rain Cool Normal Weak Yes

Day6 Rain Cool Normal Strong No
Day7 Overcast Cool Normal Strong Yes

Day8 Sunny Mild High Weak No

Day9 Sunny Cool Normal Weak Yes

Day10 Rain Mild Normal Weak Yes

Day11 Sunny Mild Normal Strong Yes

Day12 Overcast Mild High Strong Yes

Day13 Overcast Hot Normal Weak Yes

Day14 Rain Mild High Strong No

• Which attribute
 to test first?

Which attribute is the best classifier?

20

• +: # of positive examples; −: # of negative examples
• Initial entropy = − (9/14) log (9/14) – (5/14) log (5/14) = 0.94.
• You can calculate the rest.
• Note: 0.0 × log 0.0 ≡ 0.0 even though log 0.0 is not defined.

t
t

m

t
tt

m
m

t
mt m

t

m
m

m
m

b
rb

gbgr
N

E

m
b

x
x

x

xx
x

otherwise
 node reaches :i f

21

0
1 X

21

Error at node m:

After splitting:

t
t

mj

t
tt

mj
mjj

t
mjt mj

t

m
m

mj
mj

b
rb

gbgr
N

E

jm
b

x
x

x

xx
x

 '

otherwise
 branch and node reaches :i f

21

0
1 X

22

Model Selection in Trees

Remove subtrees for better generalization
(decrease variance)

Prepruning: Early stopping
Postpruning: Grow the whole tree then prune
subtrees which overfit on the pruning set

Prepruning is faster, postpruning is more
accurate (requires a separate pruning set)

23

24

C4.5Rules
(Quinlan, 1993)

Rule induction is similar to tree induction but
 tree induction is breadth-first,
 rule induction is depth-first; one rule at a time

Rule set contains rules; rules are conjunctions
of terms
Rule covers an example if all terms of the rule
evaluate to true for the example
Sequential covering: Generate rules one at a
time until all positive examples are covered
IREP (Fürnkrantz and Widmer, 1994), Ripper
(Cohen, 1995)

25

26

27

28

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Networks of processing units (neurons) with
connections (synapses) between them
Large number of neurons: 1010

Large connectitivity: 105

Parallel processing
Distributed computation/memory
Robust to noise, failures

2

Levels of analysis (Marr, 1982)
1. Computational theory
2. Representation and algorithm
3. Hardware implementation
Reverse engineering: From hardware to theory
Parallel processing: SIMD vs MIMD

 Neural net: SIMD with modifiable local
memory

 Learning: Update by training/experience

3

Neuron switching time ~.001 second (1 ms)

 Number of neurons ~1010

 Connections per neuron ~104−5

 Scene recognition time ~.1 second (100 ms)

 100 processing steps doesn’t seem like enough

 [] much parallel computation

4

Many neuron-like threshold switching units (real-
valued)
Many weighted interconnections among units
 Highly parallel, distributed process
 Emphasis on tuning weights automatically: New
learning algorithms, new optimization techniques, new
learning principles.

5

Input is high-dimensional discrete or real-
valued (e.g. raw sensor input)
Output is discrete or real valued
Output is a vector of values
Possibly noisy data
Long training time (may need occasional,
extensive retraining)
Form of target function is unknown
Fast evaluation of learned target function
Human readability of result is unimportant

6

Speech synthesis
Handwritten character recognition
Financial prediction, Transaction fraud
detection
Driving a car on the highway

7

8

otherwise
xwif

xo
1

0.1
)(

Sometimes we’ll use simpler vector notation:

otherwise
xwxwwif

xxo nn
n 1

0...1
),...,(110

1

9

The tunable parameters are the weights w0,w1, ...,wn, so
the space H of candidate hypotheses is the set of all
possible combination of real-valued weight vectors:

}|{)1(nRwwH

10

Perceptrons can represent basic Boolean functions.
Thus, a network of perceptron units can compute
any Boolean function.

What about XOR or EQUIV?

11

Perceptrons can only represent linearly separable functions.
• Output of the perceptron:

1isoutputthen,0
1isoutputthen,0

1100

1100

tIWIW
tIWIW

The hypothesis space is a collection of separating lines.

12

Rearranging:
1isoutputthen,01100 tIWIW

We get (if W1>0)
,

1
0

1

0
1 W

tI
W
WI

where points above the line, the output is 1, and -1 for those
below the line. Compare with ,

11

0

W
tx

W
Wy

13

Without the bias (t = 0), learning is limited to
adjustment of the slope of the separating line
passing through the origin.
Three example lines with different weights are
shown.

14

Only functions where the -1 points and 1 points are clearly
 separable can be represented by perceptrons.

The geometric interpretation is generalizable to functions
of n arguments, i.e. perceptron with n inputs plus one
threshold (or bias) unit.

15

For functions that take integer or real values as
arguments and output either -1 or 1.
Left: linearly separable (i.e., can draw a straight
line between the classes).
Right: not linearly separable (i.e., perceptrons
cannot represent such a function)

16

Perceptrons cannot represent XOR!

17

:1isoutputthen,01100 tIWIW
1 -t ≤ 0 t ≥ 0
2 W1 - t > 0 W1 > t
3 W0 - t > 0 W2 > t
4 W0 + W1 – t ≤ 0 W0 + W1 ≤ t

2t < W0 + W1 < t (from 2,3 and 4), but t ≥ 0 (from 1),
 a contradiction.

The weights do not have to be calculated manually.
We can train the network with (input,output) pair
according to the following weight update rule:

 wi wi +η (t – o) xi

where η is the learning rate parameter.
Proven to converge if input set is linearly separable
and η is small.

18

 wi wi +η (t – o) xi

When t = o, weight stays.
When t = 1 and o = −1, change in weight is:

 η (1 – (-1)) xi > 0
if xi are all positive. Thus will increase, thus
eventually, output o will turn to 1.

When t = -1 and o = 1, change in weight is:
 η (1 – 1) xi < 0
if xi are all positive. Thus will increase, thus
eventually, output o will turn to -1.
 19

xw.

xw.

The perceptron rule cannot deal with noisy data.
The delta rule will find an approximate solution even
when input set is not linearly separable.
Use linear unit without the step function:

Want to reduce the error by adjusting

20

xwxo .)(
w

Dd
dd otwE 2)(

2
1)(

Want to minimize by adjusting

Note: the error surface is defined by the training data
D. A different data set will give a different surface.
E(w0,w1) is the error function above, and we want to
change (w0,w1) to position under a low E.

21

Dd dd otwEw 2)(
2
1)(:

Gradient

Training rule:

22

nw
E

w
E

w
EwE ,...,][

10

][wEw

i
i w

Ew

23

d
didd

i

d
dd

i
dd

d
dd

i
dd

d
dd

i

d
dd

ii

xot
w
E

xwt
w

ot

ot
w

ot

ot
w

ot
ww

E

))((

).()(

)()(2
2
1

)(
2
1

)(
2
1

,

2

2

Since we want d diddi
i

i xotw
w
Ew ,)(,

Gradient-Descent (training_examples, η)
 Each training example is a pair of the form < , t>, where
 is the vector of input values, and t is the target output
 value. η is the learning rate (e.g., .05).

Initialize each wi to some small random value
Until the termination condition is met, Do
– Initialize each wi to zero.
– for each < , t> in training_examples, Do
 * Input the instance to the unit and compute o
 * for each linear unit weight wi , Do
 Δwi Δwi + η (t – o) xi

 – for each linear unit weight wi , Do
 wi wi + Δwi

24

Gradient descent is effective in searching through
a large or infinite H:

H contains continuously parameterized
hypotheses, and
the error can be differentiated w.r.t the
parameters.

Limitations:
convergence can be slow, and
finds local minima (global minimum not
guaranteed).

25

Avoiding local minima: Incremental gradient descent, or
stochastic gradient descent.

Instead of weight update based on all input in D,
immediately update weights after each input example:

Δwi = η (t – o) xi,
Instead of

Can be seen as minimizing error function

26

,)(
Dd

iddi xotw

.)(
2
1)(2

ddd otwE

In the standard version, error is defined over
entire D.
In the standard version, more computation is
needed per weight update, but η can be larger.
Stochastic version can sometimes avoid local
minima.

27

Perceptron training rule guaranteed to succeed if
Training examples are linearly separable
Sufficiently small learning rate η

Linear unit training rule using gradient descent
Asymptotic convergence to hypothesis with
minimum squared error
Given sufficiently small learning rate η
Even when training data contains noise
Even when training data not separable by H

28

Differentiable threshold unit: sigmoid
Interesting property:

Output:

Other function:

29

)exp(1
1)(

y
y

))(1)(()(yy
dy

yd

).(xwo

1)2exp(
1)2exp()tanh(

y
yy

30

Nonlinear decision
surface

Another example: XOR

31

Dd
didddd

i

dd
i

d dd

Dd dd
ii

xooot
w
E

ot
w

ot

ot
ww

E

,

2

)1(

.

.

.

)()(2
2
1

)(
2
1

Initialize all weights to small random numbers.
Until satisfied, Do

For each training example, Do
1. Input the training example to the network and compute

the network outputs
2. For each output unit k

3. For each hidden unit h

4. Update each network weight wi,j

Note: wji is the weight from i to j
32

))(1(kkkkk otoo

outputsk kkhhhh woo)1(

ijjijijiji xwwherewww

For output unit

For hidden unit

In sum, is the derivate times the error.

33

Error

kk

net

kkk otoo
k

)()1(
)('

erroratedBackpropag

outputsk
kkh

net

hhh woo
h)('

)1(

Different formula for output and hidden
For output unit

For hidden unit

34

ji

d
ji w

Ew

input
i

neterror

jjjj
ji

d xooot
w
E

j)('

)1()(

input
i

error

jDownstreamk
kjk

net

jj
ji

d xwoo
w
E

j

)(
)('

)1(

Gradient descent over entire network weight vector.
Easily generalized to arbitrary directed graphs.
Will find a local, not necessarily global error minimum:

In practice, often works well (can run multiple times with
different initial weights).

Often include weight momentum

Minimizes error over training examples:

Will it generalize well to subsequent examples?

Training can take thousands of iterations slow!
Using the network after training is very fast

35

)1()(,,, nwxnw jijijji

Boolean functions: every Boolean function
representable with two layers (hidden unit size can
grow exponentially in the worst case:

 one hidden unit per input example, and “OR”
 them).

Continuous functions: Every bounded continuous
function can be approximated with an arbitrarily small
error (output units are linear).

Arbitrary functions: with three layers (output units are
linear).

36

H-space = n-D weight space (when there are n
weights).

The space is continuous, unlike decision tree or

 general-to-specific concept learning algorithms.

Inductive bias:
 Smooth interpolation between data points.

37

38

39

Learned encoding is similar to standard 3-bit
binary code.

Automatic discovery of useful hidden layer
representations is a key feature of ANN.

Note: The hidden layer representation is
compressed.

40

Error in two different robot perception tasks.
Training set and validation set error.
Early stopping ensures good performance on
unobserved samples, but must be careful.
Weight decay, use of validation sets, use of k-fold
cross-validation, etc. to overcome the problem.

41

Applications:

Sequence recognition: Speech recognition
Sequence reproduction: Time-series prediction
Sequence association

Network architectures
Time-delay networks (Waibel et al., 1989)
Recurrent networks (Rumelhart et al., 1986)

42

43

44

45

46
(Le Cun et al, 1989)

47

Destructive
Weight decay:

48

i
i

i
i

i

wEE

w
w
Ew

2

2
'

Constructive
Growing networks

(Ash, 1989) (Fahlman and Lebiere, 1989)

Consider weights wi as random vars, prior p(wi)

Weight decay, ridge regression, regularization

 cost=data-misfit + λ complexity
 49

2

2

212

w

w

www

w
w

wwww

EE

wcwpwpp

Cppp

p
p

ppp

i
i

i
i

MAP

'

)/(

ˆ

exp where

 log| log| log

| log max arg ||

XX

X
X

XX

50

ANN learning provides general method for learning real-valued
functions over continuous or discrete-valued attributed.

ANNs are robust to noise.

H is the space of all functions parameterized by the weights.

H space search is through gradient descent: convergence to local
minima.

Backpropagation gives novel hidden layer representations.

Overfitting is an issue.

More advanced algorithms exist.

51

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Discriminant-based: No need to estimate densities first
Define the discriminant in terms of support vectors
The use of kernel functions, application-specific
measures of similarity
No need to represent instances as vectors
Convex optimization problems with a unique solution

2

3

1

11
11

1
1

0

0

0

0

2

1

wr

rw

rw

w
C
C

rr

tTt

ttT

ttT

t

t
t

t
tt

xw

xw
xw

w
x
x

x

as rewritten be can which
 for
 for

that such and find
 if
 if

 where,X

(Cortes and Vapnik, 1995; Vapnik, 1995)

4

Distance from the discriminant to the closest
instances on either side
Distance of x to the hyperplane is

We require

For a unique sol’n, fix ρ||w||=1, and to max
margin

w
xw 0wtT

twr tTt

,
w
xw 0

twr tTt ,1
2
1

0
2 xww to subject min

5

6

00

0

2
1

1
2
1

1
2
1

10

1

11
0

2

1
0

2

0
2

N

t

ttp

N

t

tttp

N

t

t
N

t

tTtt

N

t

tTtt
p

tTt

r
w
L

r
L

wr

wrL

twr

xw
w

xww

xww

xww

 to subject min ,

7

t
 and to subject

tr

rr

rwrL

ttt
t

tsTtst

t s

st

t

tT

t t

ttt

t

tttTT
d

,00
2
1
2
1

2
1

0

xx

ww

xwww

Most αt are 0 and only a small number have αt >0; they
are the support vectors

Not linearly separable

Soft error

New primal is

8

ttTt wxr 10w

t

t

t
tt

t
ttTtt

t
t

p wxrCL 1
2
1

0
2 ww

9

10

otherwise
 if

tt

tt
tt

hinge ry
ry

ryL
1

10
),(

11

t

tttt

N

t s

sTtstst
d

tttTt

t

t

N
r

xxrrL

wr

N

,,

,,

100

2
1

00

2
1

1

0

2

t

to subject

to subject

1 - min

xw

w

n controls the fraction of support vectors

Preprocess input x by basis functions
 z = φ(x) g(z)=wTz
 g(x)=wT φ(x)

The SVM solution

12

t

ttt
t

TtttT

t

ttt

t

ttt

Krg

rg

rr

xxx

xφxφxφwx

xφzw

,

Polynomials of degree q:

13

qtTtK 1xxxx ,

T

T

xxxxxx

yxyxyyxxyxyx

yxyx

K

2
2

2
12121

2
2

2
2

2
1

2
121212211

2
2211

2

2221

2221
1

1

,,,,,

,

x

yxyx

Radial-basis functions:

14

2

2

2s
K

t
t

xx
xx exp,

Kernel “engineering”
Defining good measures of similarity
String kernels, graph kernels, image
kernels, ...
Empirical kernel map: Define a set of
templates mi and score function s(x,mi)

 (xt)=[s(xt,m1), s(xt,m2),..., s(xt,mM)]
 and
 K(x,xt)= (x)T (xt)

15

Fixed kernel combination

Adaptive kernel combination

Localized kernel combination

16

yxyx
yxyx

yx
yx

,,
,,

,
,

21

21

KK
KK

cK
K

i

t
ii

t

tt
t s i

st
ii

stst

t

t
d

i

m

i
i

Krg

KrrL

KK

xxx

xx

yxyx

,)(

,

,,

2
1

1

i

t
ii

t

tt Krg xxxx ,|)(

1-vs-all
Pairwise separation
Error-Correcting Output Codes (section 17.5)
Single multiclass optimization

17

02

2
1

00

1

2

t
i

tt
ii

tT
iz

tT
z

i t

t
i

K

i
i

ziww

C

tt

to subject

 min

,,xwxw

w

Use a linear model (possibly kernelized)
 f(x)=wTx+w0
Use the є-sensitive error function

18

otherwise
i f

, tt

tt
tt

fr
fr

fre
x

x
x

0

t

ttC2

2
1 wmin

0
0

0

tt

ttT

tTt

rw

wr

,

xw
xw

19

20

Polynomial Kernel Gaussian Kernel

Consider a sphere with center a and radius R

21

t

tt

N

t s

sTtstst

t

sTtt
d

ttt

t

t

C

xxrrxxL

Ra

R

10

0

1

2

2

,

,

to subject

to subject

C min

x

22

Kernel PCA does
PCA on the kernel
matrix (equal to
canonical PCA with
a linear kernel)

Kernel LDA

23

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

How an autonomous agent that sense and act
in the environment can learn to choose
optimal actions to achieve its goals.
Examples: mobile robot, optimization in
process control, board games, etc.
Ingredients: reward/penalty for each action,
where the reinforcement signal can be
significantly delayed.
One approach: Q learning

2

Terminology:
State: state of the environment, obtained through
sensors
Action: alter the state
Policy: choosing actions that achieve a particular
goal, based on the current state.
Goal: desired configuration (or state).

Desired policy:
From any initial state, choose actions that
maximize the reward accumulated over time by
the agent.

3

Agent has a state in an environment, takes an action and
sometimes receives reward and the state changes

Goal: learn to choose actions that maximize discounted,
cumulative award:

That is, we want to learn a policy : S A that maximizes
the above, where S is the set of states, and A that of actions.

4

Agent

Environment

Action Reward State

...)/(
2

)/(
1

)/(
0

221100 rarara SSS

.10...,2
2

10 whererrr

5

Among K levers, choose
 the one that pays best
 Q(a): value of action a
 Reward is ra
 Set Q(a) = ra

 Choose a* if
 Q(a*)=maxa Q(a)

Rewards stochastic (keep an expected reward)
aQaraQaQ tttt 11

Deterministic vs. nondeterministic action
outcomes.

With or without prior knowledge about the
effect of action on environmental state.

Partially or fully known environmental state
(e.g., Partially Observable Markov Decision
Process [POMDP]).

6

st : State of agent at time t
at: Action taken at time t
In st, action at is taken, clock ticks and reward rt+1
is received and state changes to st+1
Next state prob: P (st+1 | st , at)
Reward prob: p (rt+1 | st , at)
Initial state(s), goal state(s)
Episode (trial) of actions from initial state to goal
(Sutton and Barto, 1998; Kaelbling et al., 1996)

7

Policy,
Value of a policy,
Finite-horizon:

Infinite horizon:

8

tt sa : AS

tsV

T

i
itTtttt rErrrEsV

1
21

rate discount the is 10
1

1
3

2
21

i
it

i
tttt rErrrEsV

9

1111

111

11

1
1

1
1

1

1

1
1

1

ttas
tttttt

ttttat

t
s

ttttat

tta

i
it

i
ta

i
it

i

a

ttt

asQassPrEasQ

saasQsV

sVassPrEsV

sVrE

rrE

rE

ssVsV

t
t

t

t
t

t

t

t

,,,

,

,

,

**

**

**

*

*

max|

 in of Valuemax

|max

max

max

max

max

Bellman’s equation

10

• Immediate reward given only when entering the goal
 state G.

• Given any initial state, we want to generate an action
 sequence to maximize V .

Discount rate: = 0.9
Top middle: 100 + 0 + 0 + ... = 100
Top left: 0 + 100 + 0 + ... = 90
Bottom left: 0 + 0 + 100 + ... = 81
Note that these values are supposed to be
obtained using the optimal policy .

11

r(s,a) V*(s) values

Environment, P (st+1 | st , at), p (rt+1 | st , at), is known
There is no need for exploration
Can be solved using dynamic programming
Solve for

Optimal policy

12

111
1

t
s

ttttat sVassPrEsV
t

t

** ,|max

111
1

t
s

tttttt
a

t sVassPasrEs
tt

,|,|max arg

13

14

Environment, P (st+1 | st , at), p (rt+1 | st , at), is not
known; model-free learning

There is need for exploration to sample from

 P (st+1 | st , at) and p (rt+1 | st , at)

Use the reward received in the next time step to update
the value of current state (action)

The temporal difference between the value of the
current action and the value discounted from the next
state
 15

ε-greedy: With pr ε,choose one action at random
uniformly; and choose the best action with pr 1-ε
Probabilistic:

Move smoothly from exploration/exploitation.
Decrease ε
Annealing

16

A

1b
bsQ

asQsaP
,exp

,exp|

A

1b
TbsQ

TasQsaP
/,exp

/,exp|

Deterministic: single possible reward and
next state

 used as an update rule (backup)

 Starting at zero, Q values increase, never

decrease

17

1111
1

1

ttas
tttttt asQassPrEasQ

t
t

,max,|, **

111
1

ttattt asQrasQ
t

,max,

111
1

ttattt asQrasQ
t

,ˆmax,ˆ

Consider the value of action marked by ‘*’:
If path A is seen first, Q(*)=0.9*max(0,81)=73
Then B is seen, Q(*)=0.9*max(100,81)=90

Or,
If path B is seen first, Q(*)=0.9*max(100,0)=90
Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

18

γ=0.9

When next states and rewards are nondeterministic
(there is an opponent or randomness in the
environment), we keep averages (expected values)
instead as assignments
Q-learning (Watkins and Dayan, 1992):

Off-policy vs on-policy (Sarsa)
Learning V (TD-learning: Sutton, 1988)

19

ttttattttt asQasQrasQasQ
t

,ˆ,ˆmax,ˆ,ˆ
111

1

ttttt sVsVrsVsV 11

20

21

Keep a record of previously visited states (actions)

22

asaseasQasQ
asQasQr

ase
aass

ase

tttttt

tttttt

t

tt
t

,,,,,
,,

,
,

111

1

1
otherwise

 and if

23

Tabular: Q (s , a) or V (s) stored in a table
Regressor: Use a learner to estimate Q (s , a) or V (s)

24

zeros all with

yEligibilit

0θ1

111

111

2
111

eee

eθ

θ
θ

θ

tttt

tttttt

tt

ttttttt

ttttt
t

asQ
asQasQr

asQasQasQr
asQasQrE

t

t

,
,,

,,,
,,

The agent does not know its state but receives an
observation p(ot+1|st,at) which can be used to infer a
belief about states
Partially observable MDP

25

Two doors, behind one of which there is a tiger
p: prob that tiger is behind the left door

R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p)
We can sense with a reward of R(aS)=-1
We have unreliable sensors

26

If we sense oL , our belief in tiger’s position changes

27

1

1301007090

110090

1308070100

180100

13070
70

)|(
)(

)(.
)(

.
)'('

)|(),()|(),()|(
)(

)(.
)(

.
)'('

)|(),()|(),()|(
)(..

.
)(

)()|()|('

LS

LL

LRRRLLLRLR

LL

LRRLLLLLLL

L

LLL
LL

oaR
oP

p
oP
p

pp
ozPzarozPzaroaR

oP
p

oP
p

pp
ozPzarozPzaroaR

pp
p

oP
zPzoPozPp

28

)(
)(
)(
)(

max

)())|(),|(),|(max()())|(),|(),|(max(

)()|(max'

pp
pp
pp
pp

oPoaRoaRoaRoPoaRoaRoaR

oPoaRV

RRSRRRLLLSLRLL

j
j

jii

110090
12633
14643
180100

29

Let us say the tiger can move from one room to the
other with prob 0.8

30

)'(
)'(
)'('

max'

)(..'

pp
pp
pp

V

ppp

110090
12633
180100

18020

When planning for episodes of two, we can take aL, aR,
or sense and wait:

31

1
110090
180100

2

'max
)(
)(

max
V

pp
pp

V

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Parametric: Assume a single model for p (x | Ci)

Semiparametric: p (x | Ci) is a mixture of densities

 Multiple possible explanations/prototypes:
 Different handwriting styles, accents in speech

Nonparametric: No model; data speaks for itself

2

where Gi the components/groups/clusters,
 P (Gi) mixture proportions (priors),
 p (x | Gi) component densities

Gaussian mixture where p(x|Gi) ~ N (μi , ∑i) parameters

Φ = {P (Gi), μi , ∑i }k
i=1

 unlabeled sample X={xt}t (unsupervised learning)

3

k

i
ii GPGpp

1
|xx

Supervised: X = { xt ,rt }t
Classes Ci i=1,...,K

where p (x | Ci) ~ N (μi , ∑i)

Φ = {P (Ci), μi , ∑i }K
i=1

4

K

i
ii Ppp

1
CC|xx

t
t
i

T
i

t
t i

tt
i

i

t
t
i

t
tt

i
i

t
t
i

i

r
r

r
r

N
r

CP

mxmx

x
m

S

 ˆ

Unsupervised : X = { xt }t
Clusters Gi i=1,...,k

 where p (x | Gi) ~ N (μi , ∑i)

Φ = {P (Gi), μi , ∑i }k
i=1

 Labels, r ti ?

k

i
ii GPGpp

1
|xx

Find k reference vectors (prototypes/codebook
vectors/codewords) which best represent data
Reference vectors, mj, j =1,...,k
Use nearest (most similar) reference:

Reconstruction error

5

j
t

ji
t mxmx min

otherwise
mini f

0
1

1

j
t

ji
t

t
i

t i i
tt

i
k
ii

b

bE

mxmx

mxm X

6

otherwise0
minif1 j

t

ji
t

t
i

mxmx
b

7

8

Log likelihood with a mixture model

Assume hidden variables z, which when known, make
optimization much simpler
Complete likelihood, Lc(Φ |X,Z), in terms of x and z
Incomplete likelihood, L(Φ |X), in terms of x

9

t

k

i
ii

t

t

t

GPGp

p

1
|log

|log|

x

xXL

Iterate the two steps
1. E-step: Estimate z given X and current Φ
2. M-step: Find new Φ’ given z, X, and old Φ.

 An increase in Q increases incomplete

likelihood

10

ll

l
C

l E

|maxarg:step-M

|||:step-E

Q

X,ZX,LQ
1

XLXL || ll 1

zt
i = 1 if xt belongs to Gi, 0 otherwise (labels r ti of

supervised learning); assume p(x|Gi)~N(μi,∑i)
E-step:

M-step:

11

t
i

lt
i

j j
l

j
t

i
l

i
t

lt
i

hGP

GPGp
GPGpzE

,

,
,X

x

x
x

|

|
|,

t
t
i

Tl
i

t
t

l
i

tt
il

i

t
t
i

t
tt

il
i

t
t
i

i

h
h

h
h

N
h

P

11
1

1

mxmx

x
m

S

 G
Use estimated labels in
place of unknown
labels

12

5.0)|(11 hxGP

Regularize clusters
1. Assume shared/diagonal covariance matrices
2. Use PCA/FA to decrease dimensionality: Mixtures of

PCA/FA

 Can use EM to learn Vi (Ghahramani and Hinton, 1997;

Tipping and Bishop, 1999)

13

i
T
iiiit Gp ψmx VV,| N

Dimensionality reduction methods find
correlations between features and group
features
Clustering methods find similarities between
instances and group instances
Allows knowledge extraction through
 number of clusters,
 prior probabilities,
 cluster parameters, i.e., center, range of features.

 Example: CRM, customer segmentation

14

Estimated group labels hj (soft) or bj (hard) may
be seen as the dimensions of a new k
dimensional space, where we can then learn
our discriminant or regressor.
Local representation (only one bj is 1, all others
are 0; only few hj are nonzero) vs

 Distributed representation (After PCA; all zj are
nonzero)

15

In classification, the input comes from a
mixture of classes (supervised).
If each class is also a mixture, e.g., of
Gaussians, (unsupervised), we have a mixture
of mixtures:

16

K

i
ii

k

j
ijiji

Ppp

GPGpp
i

1

1

CC

C

|

||

xx

xx

Cluster based on similarities/distances
Distance measure between instances xr and xs

 Minkowski (Lp) (Euclidean for p = 2)

 City-block distance

17

pd

j

ps
j

r
j

sr
m xxd

/
,

1

1
xx

d

j
s
j

r
j

sr
cb xxd

1
xx ,

Start with N groups each with one instance and
merge two closest groups at each iteration
Distance between two groups Gi and Gj:

Single-link:

Complete-link:

Average-link, centroid

18

sr
ji dGGd

j
s

i
r

xx
xx

,min,
, GG

sr
ji dGGd

j
s

i
r

xx
xx

,max,
, GG

19

Dendrogram

Defined by the application, e.g., image quantization
Plot data (after PCA) and check for clusters
Incremental (leader-cluster) algorithm: Add one at a
time until “elbow” (reconstruction error/log
likelihood/intergroup distances)
Manually check for meaning

20

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Questions:
Assessment of the expected error of a learning
algorithm: Is the error rate of 1-NN less than 2%?
Comparing the expected errors of two algorithms: Is
k-NN more accurate than MLP ?

Training/validation/test sets
Resampling methods: K-fold cross-validation

2

Criteria (Application-dependent):
Misclassification error, or risk (loss functions)
Training time/space complexity
Testing time/space complexity
Interpretability
Easy programmability

Cost-sensitive learning

3

4

Response surface design for approximating and
maximizing
the response function in terms of the controllable factors
 5

A. Aim of the study
B. Selection of the response variable
C. Choice of factors and levels
D. Choice of experimental design
E. Performing the experiment
F. Statistical Analysis of the Data
G. Conclusions and Recommendations

6

The need for multiple training/validation sets
 {Xi,Vi}i: Training/validation sets of fold i

K-fold cross-validation: Divide X into k, Xi,i=1,...,K

Ti share K-2 parts

7

121

3122

3211

KKKK

K

K

XXXTXV

XXXTXV

XXXTXV

2

1

5 times 2 fold cross-validation (Dietterich, 1998)

8

1
510

2
510

2
59

1
59

1
24

2
24

2
23

1
23

1
12

2
12

2
11

1
11

XVXT

XVXT

XVXT

XVXT

XVXT

XVXT

Draw instances from a dataset with replacement
Prob that we do not pick an instance after N
draws

 that is, only 36.8% is new!

9

368011 1 .e
N

N

Error rate = # of errors / # of instances = (FN+FP) / N
Recall = # of found positives / # of positives

 = TP / (TP+FN) = sensitivity = hit rate
Precision = # of found positives / # of found

 = TP / (TP+FP)
Specificity = TN / (TN+FP)
False alarm rate = FP / (FP+TN) = 1 - Specificity

10

11

12

13

X = { xt }t where xt ~ N (μ, σ2)
m ~ N (μ, σ2/N)

14

1

950961961

950961961

22 N
zm

N
zmP

N
m

N
mP

mNP

mN

//

...

...

~ Z

100(1- α) percent
confidence
interval

When σ2 is not known:

15

1

950641

950641

N
zmP

N
mP

mNP

..

..

1

1

1212

1
22

N
Stm

N
StmP

t
S
mNNmxS

NN

N
t

t

,/,/

~ /

Reject a null hypothesis if not supported by the sample
with enough confidence
X = { xt }t where xt ~ N (μ, σ2)

 H0: μ = μ0 vs. H1: μ ≠ μ0
 Accept H0 with level of significance α if μ0 is in the
 100(1- α) confidence interval

 Two-sided test

16

22
0

// ,zzmN

One-sided test: H0: μ ≤ μ0 vs. H1: μ > μ0
 Accept if

Variance unknown: Use t, instead of z
 Accept H0: μ = μ0 if

17

zmN ,0

1212
0

NN tt
S

mN
,/,/ ,

Single training/validation set: Binomial Test
 If error prob is p0, prob that there are e errors or less in

N validation trials is

18

Accept if this prob is less than 1- α

jNjj
e

j

pp
j
N

eXP 00
1

1

1- α
N=100, e=20

Number of errors X is approx N with mean Np0 and
var Np0(1-p0)

19

Z~
00

0

1 pNp
NpX

Accept if this prob for X = e is
less than z1-α

1- α

Multiple training/validation sets
xt

i = 1 if instance t misclassified on fold i
Error rate of fold i:

With m and s2 average and var of pi , we accept p0 or
less error if

 is less than tα,K-1

20

1
0 ~ KtS

pmK

N
x

p
N

t
t
i

i
1

Single training/validation set: McNemar’s Test

Under H0, we expect e01= e10=(e01+ e10)/2

21

2
1

1001

2
1001 1

X~
ee

ee

Accept if < X2
α,1

Use K-fold cv to get K training/validation folds
pi

1, pi
2: Errors of classifiers 1 and 2 on fold i

pi = pi
1 – pi

2 : Paired difference on fold i
The null hypothesis is whether pi has mean 0

22

12121

1
2

21

00

0
1

00

KKK

K

i i
K

i i

ttt
s

mK
s
mK

K
mp

s
K

p
m

HH

,/,/ ,~

::

 in if Accept

 vs.

Use 5×2 cv to get 2 folds of 5 tra/val replications
(Dietterich, 1998)
pi

(j) : difference btw errors of 1 and 2 on fold j=1, 2 of
replication i=1,...,5

23

55

1
2

1
1

2221221

5

2

t
s

p

ppppsppp

i i

iiiiiiii

~
/

 /

Two-sided test: Accept H0: μ0 = μ1 if in (-tα/2,5,tα/2,5)
One-sided test: Accept H0: μ0 ≤ μ1 if < tα,5

Two-sided test: Accept H0: μ0 = μ1 if < Fα,10,5

24

5105

1
2

5

1

2

1

2

2
,~ F

s

p

i i

i j
j

i

Errors of L algorithms on K folds

We construct two estimators to σ2 .

 One is valid if H0 is true, the other is always valid.
 We reject H0 if the two estimators disagree.

25

LH 210 :

KiLjX jij ,..., ,,...,,,~ 112N

26

2
12

0

22
12

2

1

2
2

2

2
21

2

1

0

1

1

L

j
jL

j

j

L

j

j

j j
L

j j

K

i

ij
j

SSb
H

mmKSSb
K
mm

L
mm

K

SK
L

mm
S

L

m
m

K
K
X

m

H

X

X

N

~

~
/

ˆ

/,~

:

have wetrue, is whenSo

namely, , is of estimator an Thus

true is If

2

27

11210

11

22

2
12

2
12

2

2

2

1

2
1

2
2

2
0

1
1

11

1

11

KLLL

KLL

KLK
j

j i
jij

j i

jij
L

j

j
K

i jij
j

j

FH

F
KLSSw
LSSb

KL
SSw

L
SSb

SSwS
K

mXSSw

KL
mX

L
S

K
mX

S

S

H

,,

,

:

~
/

////

~~

ˆ

 if

: variances group of average
the is to estimator second our of Regardless

2

2

XX

28

If ANOVA rejects, we do pairwise posthoc tests

)(~

: vs :

1

10

2 KL
w

ji

jiji

t
mm

t

HH

Comparing two algorithms:
 Sign test: Count how many times A beats B over N

datasets, and check if this could have been by chance if
A and B did have the same error rate

Comparing multiple algorithms

 Kruskal-Wallis test: Calculate the average rank of all
algorithms on N datasets, and check if these could have
been by chance if they all had equal error

 If KW rejects, we do pairwise posthoc tests to find
which ones have significant rank difference

29

Instructor :
Omid Sojoodi

Faculty of Electrical, Computer and IT Engineering
Qazvin Azad University

Contact Info:
 o_sojoodi@{ieee.org, m.ieice.org}

Based loosely on simulated evolution.
Hypotheses: described in bit strings (subject to
interpretation in specific domains).
Search: population of hypotheses, refined
through mutation and crossover to increase
fitness.
Applications: optimization problems, learning
the topology and parameters in neural
networks, and many more.

2

Lamarck and others:
Species “transmute” over time (inheritance of
acquired trait)

Darwin and Wallace:
Consistent, heritable variation among individuals in
population
Natural selection of the fittest

Mendel and genetics:
A mechanism for inheriting traits
Genotype phenotype mapping

3

Mutation and crossover of hypotheses in the
current population.
Basically a generate-and-test beam search.
Motivating factors:

Evolution is known to be successful.
GAs can search hypotheses containing complex
interacting parts.
Easily parallelizable

4

Population: set of current hypotheses
Fitness: predefined measure of success
Elements of GA:

 fitness test selection reproduction
(mutation, crossover)

5

GA(Fitness, Fitness threshold, p, r, m)
 Initialize: P p random hypotheses
Evaluate: for each h in P, compute Fitness(h)
 While [maxh Fitness(h)] < Fitness threshold

 1. Select: Probabilistically select (1−r)p members of P to add to Ps.

 2. Crossover: Probabilistically select pairs of hypotheses from P.
 For each pair, <h1, h2>, produce two offspring by applying the
 Crossover operator. Add all offspring to Ps.
 3. Mutate: Invert a randomly selected bit in m. p random members of Ps.
 4. Update: P Ps
 5. Evaluate: for each h in P, compute Fitness(h)

Return the hypothesis from P that has the highest fitness.

6

Represent
(Outlook = Overcast _ Rain) ^ (Wind = Strong)
by
 Outlook Wind
 011 10
Represent
 IF Wind = Strong THEN PlayTennis = yes
by
 Outlook Wind PlayTennis
 111 10 10

7

8

Fitness proportionate selection:

Tournament selection:
Pick h1, h2 at random with uniform prob.
With probability p, select the more fit.

Rank selection:
Sort all hypotheses by fitness
Probability of selection is proportional to rank

9

Learn disjunctive set of propositional rules, competitive with C4.5
Fitness:
 Fitness(h) = (percent_correct(h))2

Representation:
 IF a1 = T ^ a2 = F THEN c = T; IF a2 = T THEN c = F

represented by
 a1 a2 c a1 a2 c
 10 01 1 11 10 0
Genetic operators:

 want variable length rule sets (as number of attributes can change)
 want only well-formed bitstring hypotheses

10

Start with
a1 a2 c a1 a2 c

h1 : 10 01 1 11 10 0
h2 : 01 11 0 10 01 0

1. choose crossover points for h1, e.g., after bits 1, 8
2. now restrict points in h2 to those that produce bitstrings with
 well-defined semantics, e.g., <1, 3>, <1, 8>, <6, 8>.

if we choose <1, 3>, result is
a1 a2 c

h3 : 11 10 0
a1 a2 c a1 a2 c a1 a2 c

h4 : 00 01 1 11 11 0 10 01 0
11

Add new genetic operators, also applied probabilistically:
1. AddAlternative: generalize constraint on ai by changing a 0 to 1
2. DropCondition: generalize constraint on ai by changing every 0 to 1

And, add new field to bitstring to determine whether to allow
these

a1 a2 c a1 a2 c AA DC
01 11 0 10 01 0 1 0

So now the learning strategy also evolves. (Allowing this
increased accuracy.)

12

Performance of GABIL comparable to symbolic rule/tree
learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

GABIL without AA and DC operators: 92.1% accuracy
GABIL with AA and DC operators: 95.2% accuracy
symbolic learning methods ranged from 91.2 to 96.6

13

How to characterize evolution of population in GA?
Schema = string containing 0, 1, * (“don’t care”)

Typical schema: 10**0*
Instances of above schema: 101101, 100000, ...
An instance of length 4, say 0010, can have 24 matching

schemas.

Characterize population by number of instances
representing each possible schema:

m(s, t) = number of instances of schema s in pop at time t
Want to estimate m(s, t + 1) given m(s, t) and other factors.

14

m(s, t) can change as t changes, due to the
following factors:

Selection: if individuals representing s get selected
more often, m(s, ·) will increase.
Crossover
Mutation

Schema theorem: gives E[m(s, t + 1)].

15

= average fitness of pop. at time t
m(s, t) = instances of schema s in pop at time t

= average fitness of instances of s at time t
: instances of schema s in the population at time t

Probability of selecting h in one selection step

Mean fitness of instances of s at time t:

16

Probability of selecting an instance of s in one step

Expected number of instances of s after n selections

17

m(s, t) = instances of schema s in pop at time t
 = average fitness of pop. at time t

 = ave. fitness of instances of s at time t
pc = probability of single point crossover operator
pm = probability of mutation operator
l = length of single bit strings
o(s) = number of defined (non “*”) bits in s
d(s) = distance between leftmost, rightmost defined bits in s

18

Population of programs represented by tree

19

20

Goal: spell UNIVERSAL
Terminals:

CS (“current stack”) = name of the top block on stack, or F.
TB (“top correct block”) = name of topmost correct block on
stack
NN (“next necessary”) = name of the next block needed
above TB in the stack

21

(MS x): (“move to stack”), if block x is on the table, moves x to
the top of the stack and returns the value T. Otherwise, does
nothing and returns the value F.

(MT x): (“move to table”), if block x is somewhere in the stack,
moves the block at the top of the stack to the table and returns the
value T. Otherwise, returns F.

(EQ x y): (“equal”), returns T if x equals y, and returns F otherwise.
(NOT x): returns T if x = F, else returns F
(DU x y): (“do until”) executes the expression x repeatedly until

expression y returns the value T

22

Trained to fit 166 test problems

Using population of 300 programs, found this after 10
generations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

23

Lamarck (19th century)
Believed individual genetic makeup was
altered by lifetime experience
But current evidence contradicts this view

What is the impact of individual learning on
population evolution?

24

Assume
Individual learning has no direct influence on individual DNA
But ability to learn reduces need to “hard wire” traits in DNA

Then

Ability of individuals to learn will support more diverse gene pool
 – Because learning allows individuals with various “hard
 wired” traits to be successful

More diverse gene pool will support faster evolution of gene pool

 individual learning (indirectly) increases rate of evolution

25

Plausible example:

 1. New predator appears in environment
 2. Individuals who can learn (to avoid it) will be selected
 3. Increase in learning individuals will support more diverse gene
 pool
 4. resulting in faster evolution
 5. possibly resulting in new non-learned traits such as instinctive
 fear of predator

26

Evolve simple neural networks:
Some network weights fixed during lifetime, others trainable
Genetic makeup determines which are fixed, and their weight
values

Results:
With no individual learning, population failed to improve over time
When individual learning allowed

Early generations: population contained many individuals with
many trainable weights
Later generations: higher fitness, while number of trainable weights
decreased

27

Coevolution: escalating effect or complementary
dependence (insects and flowering plants)
between two or more species.

Cultural transmission: memes vs. genes.

28

Conduct randomized, parallel, hill-climbing search through H

Approach learning as optimization problem (optimize fitness)

Nice feature: evaluation of Fitness can be very indirect

consider learning rule set for multistep decision making
no issue of assigning credit/blame to individual steps

29

