


R Cookbook
SECOND EDITION

Proven Recipes for Data Analysis, Statistics, and Graphics

J.D. Long and Paul Teetor



R Cookbook
by J.D. Long and Paul Teetor

Copyright © 2019 J.D. Long and Paul Teetor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Nicole Tache and Melissa Potter
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: Rachel Head
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
March 2011: First Edition
July 2019: Second Edition

Revision History for the Second Edition
2019-06-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492040682 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. R
Cookbook, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781492040682


used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-04068-2

[LSI]



Welcome to the R Cookbook,
2nd Edition

R is a powerful tool for statistics, graphics, and statistical programming. It
is used by tens of thousands of people daily to perform serious statistical
analyses. It is a free, open source system whose implementation is the
collective accomplishment of many intelligent, hard-working people.
There are more than 10,000 available add-on packages, and R is a serious
rival to all commercial statistical packages.

But R can be frustrating. It’s not obvious how to accomplish many tasks,
even simple ones. The simple tasks are easy once you know how, yet
figuring out that “how” can be maddening.

This book is full of how-to recipes, each of which solves a specific
problem. Each recipe includes a quick introduction to the solution
followed by a discussion that aims to unpack the solution and give you
some insight into how it works. We know these recipes are useful and we
know they work, because we use them ourselves.

The range of recipes is broad. It starts with basic tasks before moving on
to input and output, general statistics, graphics, and linear regression. Any
significant work with R will involve most or all of these areas.

If you are a beginner, then this book will get you started faster. If you are
an intermediate user, this book will be useful for expanding your horizons
and jogging your memory (“How do I do that Kolmogorov–Smirnov test
again?”).

The book is not a tutorial on R, although you will learn something by
studying the recipes. It is not a reference manual, but it does contain a lot
of useful information. It is not a book on programming in R, although
many recipes are useful inside R scripts.



Finally, this book is not an introduction to statistics. Many recipes assume
that you are familiar with the underlying statistical procedure, if any, and
just want to know how it’s done in R.

The Recipes
Most recipes use one or two R functions to solve a specific problem. It’s
important to remember that we do not describe the functions in detail;
rather, we describe just enough to solve the immediate problem. Nearly
every such function has additional capabilities beyond those described
here, and some have amazing capabilities. We strongly urge you to read
the functions’ help pages. You will likely learn something valuable.

Each recipe presents one way to solve a particular problem. Of course,
there are likely several reasonable solutions to each problem. When we
knew of multiple solutions, we generally selected the simplest one. For
any given task, you can probably discover several alternative solutions
yourself. This is a cookbook, not a bible.

In particular, R has literally thousands of downloadable add-on packages,
many of which implement alternative algorithms and statistical methods.
This book concentrates on the core functionality available through the
basic distribution combined with several important packages known
collectively as the tidyverse.

The most concise definition of the tidyverse comes from Hadley
Wickham, its originator and one of its core maintainers:

The tidyverse is a set of packages that work in harmony because they
share common data representations and API design. The tidyverse
package is designed to make it easy to install and load core packages
from the tidyverse in a single command. The best place to learn about
all the packages in the tidyverse and how they fit together is R for Data
Science.

A Note on Terminology

http://bit.ly/2Rh2tq1
http://r4ds.had.co.nz/


The goal of every recipe is to solve a problem and solve it quickly. Rather
than laboring in tedious prose, we occasionally streamline the description
with terminology that is correct but not precise. A good example is the
term generic function. We refer to print(x) and plot(x) as generic
functions because they work for many kinds of x, handling each kind
appropriately. A computer scientist would wince at our terminology
because, strictly speaking, these are not simply “functions”; they are
polymorphic methods with dynamic dispatching. But if we carefully
unpacked every such technical detail, the essential solutions would be
buried in the technicalities. So we just call them functions, which we think
is more readable.

Another example, taken from statistics, is the complexity surrounding the
semantics of statistical hypothesis testing. Using the strict language of
probability theory would obscure the practical application of some tests,
so we use more colloquial language when describing each statistical test.
See the introduction to Chapter 9 for more about how hypothesis tests are
presented in the recipes.

Our goal is to make the power of R available to a wide audience by writing
readably, not formally. We hope that experts in their respective fields will
understand if our terminology is occasionally informal.

Software and Platform Notes
The base distribution of R has frequent and planned releases, but the
language definition and core implementation are stable. The recipes in this
book should work with any recent release of the base distribution.

Some recipes have platform-specific considerations, and we have carefully
noted them. Those recipes mostly deal with software issues, such as
installation and configuration. As far as we know, all other recipes will
work on all three major platforms for R: Windows, macOS, and
Linux/Unix.



Other Resources
Here are a few suggestions for further reading, if oyu’d like to dig a little
deeper:

On the web
The mother ship for all things R is the R project site. From there you
can download R for your platform, add-on packages, documentation,
and source code as well as many other resources.

Beyond the R project site, we recommend using an R-specific search
engine, such as RSeek, created by Sasha Goodman. You can use a
generic search engine, such as Google, but the “R” search term brings
up too much extraneous stuff. See “Searching the Web for Help” for
more about searching the web.

Reading blogs is a great way to learn about R and stay abreast of
leading-edge developments. There are surprisingly many such blogs,
so we recommend following two blogs-of-blogs: R-bloggers, created
by Tal Galili, and PlanetR. By subscribing to their RSS feeds, you will
be notified of interesting and useful articles from dozens of websites.

R books
There are many, many books about learning and using R. Listed here
are a few that we have found useful. Note that the R project site
contains an extensive bibliography of books related to R.

R for Data Science, by Hadley Wickham and Garrett Grolemund
(O’Reilly), is an excellent introduction to the tidyverse packages,
especially for using them in data analysis and statistics. It is also
available online.

We find the R Graphics Cookbook, 2nd ed., by Winston Chang
(O’Reilly), indispensible for creating graphics. The book ggplot2:
Elegant Graphics for Data Analysis by Hadley Wickham (Springer) is
the definitive reference for the graphics package ggplot2, which we
use in this book.

http://www.r-project.org/
http://rseek.org/
http://www.r-bloggers.com/
http://planetr.stderr.org/
http://www.r-project.org/doc/bib/R-books.html
https://oreil.ly/2IIWxCs
http://r4ds.had.co.nz/
https://oreil.ly/2IhNUQj


Anyone doing serious graphics work in R will want R Graphics by Paul
Murrell (Chapman & Hall/CRC).

R in a Nutshell, by Joseph Adler (O’Reilly), is the quick tutorial and
reference you’ll keep by your side. It covers many more topics than
this cookbook.

New books on programming in R appear regularly. We suggest Hands
On Programming with R by Garrett Grolemund (O’Reilly) for an
introduction, or The Art of R Programming by Normal Matloff (No
Starch Press). Hadley Wickham’s Advanced R (Chapman & Hall/CRC)
is available either as a printed book or free online and is a great deeper
dive into advanced R topics. Efficient R Programming, by Colin
Gillespie and Robin Lovelace (O’Reilly), is another good guide to
learning the deeper concepts about R programming.

Modern Applied Statistics with S, 4th ed., by William Venables and
Brian Ripley (Springer), uses R to illustrate many advanced statistical
techniques. The book’s functions and datasets are available in the MASS
package, which is included in the standard distribution of R.

Serious geeks can download the R Language Definition from the R
Core Team. The Definition is a work in progress, but it can answer
many of your detailed questions regarding R as a programming
language.

Statistics books
For learning statistics, a great choice is Using R for Introductory
Statistics by John Verzani (Chapman & Hall/CRC). It teaches statistics
and R together, giving you the necessary computer skills to apply the
statistical methods.

You will need a good statistics textbook or reference book to
accurately interpret the statistical tests performed in R. There are
many such fine books—far too many for us to recommend any one
above the others.

https://oreil.ly/2wUtwyf
https://oreil.ly/2wWPHUd
http://adv-r.had.co.nz/
https://oreil.ly/2wXxK80
http://bit.ly/2FaBgAz


Increasingly, statistics authors are using R to illustrate their methods.
If you work in a specialized field, then you will likely find a useful and
relevant book in the R project bibliography.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
packages, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by the
user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

http://www.r-project.org/doc/bib/R-books.html


WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, source code for the book,
exercises, etc.) is available for download at http://rc2e.com. The Twitter
account for content associated with this book is @R_cookbook.

This book is here to help you get your job done. In general, you may use
the code in this book in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “R Cookbook,
2nd ed., by J.D. Long and Paul Teetor. Copyright 2019 J.D. Long and Paul
Teetor, 978-1-492-04068-2.”

If you feel your use of code examples falls outside fair use or the
permission just described, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

http://rc2e.com/
https://twitter.com/R_cookbook
mailto:permissions@oreilly.com


NOTE
For almost 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit
http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://bit.ly/RCookbook_2e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news,
see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

http://oreilly.com/
http://oreilly.com/
http://bit.ly/RCookbook_2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
With gratitude we thank the R community in general and the R Core Team
in particular. Their selfless contributions are enormous. The world of
statistics is benefiting tremendously from their work. The R Studio
Community Discussion participants were very helpful in workshopping
ideas around how to explain many things. And the staff and leadership of
R Studio were supportive in so many little and big ways. We owe them a
debt of gratitude for all they have given back to the R community.

We wish to thank the book’s technical reviewers: David Curran, Justin
Shea, and MAJ Dusty Turner. Their feedback was critical for improving
the quality, accuracy, and usefulness of this book. Our editors, Melissa
Potter and Rachel Monaghan, were helpful beyond imagination and they
frequently prevented us from publicly demonstrating our ignorance. Our
production editor, Kristen Brown, is the envy of all technical authors
because of her speed and her proficiency with both Markdown and Git.

Paul would like to thank his family for their support and patience during
the creation of this book.

J.D. would like to thank his wife Mary Beth and daughter Ada for their
patience with all the early mornings and weekends that he spent with his
face in the laptop working on this book.

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Chapter 1. Getting Started and Getting Help

This chapter sets the groundwork for the other chapters. It explains how to download, install, and run R.

More importantly, it also explains how to get answers to your questions. The R community provides a wealth of
documentation and assistance. You are not alone. Here are some common sources of help:

Local, installed documentation
When you install R on your computer, a mass of documentation is also installed. You can browse the local
documentation (“Viewing the Supplied Documentation”) and search it (“Searching the Supplied
Documentation”). We are amazed how often we search the web for an answer only to discover it was already
available in the installed documentation.

Task views
A task view describes packages that are specific to one area of statistical work, such as econometrics,
medical imaging, psychometrics, or spatial statistics. Each task view is written and maintained by an expert
in the field. There are more than 35 such task views, so there is likely to be one or more for your areas of
interest. We recommend that every beginner find and read at least one task view in order to gain a sense of
R’s possibilities (“Finding Relevant Functions and Packages”).

Package documentation
Most packages include useful documentation. Many also include overviews and tutorials, called vignettes in
the R community. The documentation is kept with the packages in package repositories such as CRAN, and it
is automatically installed on your machine when you install a package.

Question and answer (Q&A) websites
On a Q&A site, anyone can post a question, and knowledgeable people can respond. Readers vote on the
answers, so the best answers tend to emerge over time. All this information is tagged and archived for
searching. These sites are a cross between a mailing list and a social network; Stack Overflow is the
canonical example.

The web
The web is loaded with information about R, and there are R-specific tools for searching it (“Searching the
Web for Help”). The web is a moving target, so be on the lookout for new, improved ways to organize and
search information regarding R.

Mailing lists
Volunteers have generously donated many hours of time to answer beginners’ questions that are posted to the
R mailing lists. The lists are archived, so you can search the archives for answers to your questions
(“Searching the Mailing Lists”).

Downloading and Installing R

Problem
You want to install R on your computer.

Solution
Windows and macOS users can download R from CRAN, the Comprehensive R Archive Network. Linux and
Unix users can install R packages using their package management tool.

http://cran.r-project.org/web/views
http://cran.r-project.org/
http://stackoverflow.com/


Windows
1. Open http://www.r-project.org/ in your browser.

2. Click on “CRAN.” You’ll see a list of mirror sites, organized by country.

3. Select a site near you or the top one listed as “0-Cloud,” which tends to work well for most locations
(https://cloud.r-project.org/).

4. Click on “Download R for Windows” under “Download and Install R.”

5. Click on “base.”

6. Click on the link for downloading the latest version of R (an .exe file).

7. When the download completes, double-click on the .exe file and answer the usual questions.

macOS
1. Open http://www.r-project.org/ in your browser.

2. Click on “CRAN.” You’ll see a list of mirror sites, organized by country.

3. Select a site near you or the top one listed as “0-Cloud,” which tends to work well for most locations.

4. Click on “Download R for (Mac) OS X.”

5. Click on the .pkg file for the latest version of R, under “Latest release:,” to download it.

6. When the download completes, double-click on the .pkg file and answer the usual questions.

Linux or Unix
The major Linux distributions have packages for installing R. Table 1-1 shows some examples.

Table 1-1. Linux
distributions

Distribution Package name

Ubuntu or Debian r-base

Red Hat or Fedora R.i386

SUSE R-base

Use the system’s package manager to download and install the package. Normally, you will need the root
password or sudo privileges; otherwise, ask a system administrator to perform the installation.

Discussion
Installing R on Windows or macOS is straightforward because there are prebuilt binaries (compiled programs)
for those platforms. You need only follow the preceding instructions. The CRAN web pages also contain links to
installation-related resources, such as frequently asked questions (FAQs) and tips for special situations (“Does R
run under Windows Vista/7/8/Server 2008?”), that you may find useful.

The best way to install R on Linux or Unix is by using your Linux distribution package manager to install R as a
package. The distribution packages greatly streamline both the initial installation and subsequent updates.

On Ubuntu or Debian, use apt-get to download and install R. Run under sudo to have the necessary privileges:

$ sudo apt-get install r-base 

On Red Hat or Fedora, use yum:

http://www.r-project.org/
https://cloud.r-project.org/
http://www.r-project.org/


$ sudo yum install R.i386 

Most Linux platforms also have graphical package managers, which you might find more convenient.

Beyond the base packages, we recommend installing the documentation packages, too. We like to install r-
base-html (because we like browsing the hyperlinked documentation) as well as r-doc-html, which installs the
important R manuals locally:

$ sudo apt-get install r-base-html r-doc-html 

Some Linux repositories also include prebuilt copies of R packages available on CRAN. We don’t use them
because we’d rather get software directly from CRAN itself, which usually has the freshest versions.

In rare cases, you may need to build R from scratch. You might have an obscure, unsupported version of Unix, or
you might have special considerations regarding performance or configuration. The build procedure on Linux or
Unix is quite standard. Download the tarball from the home page of your CRAN mirror; it’ll be called something
like R-3.5.1.tar.gz, except the 3.5.1 will be replaced by the latest version. Unpack the tarball, look for a file
called INSTALL, and follow the directions.

See Also
R in a Nutshell by Joseph Adler (O’Reilly) contains more details on downloading and installing R, including
instructions for building the Windows and macOS versions. Perhaps the ultimate guide is the one entitled “R
Installation and Administration”, available on CRAN, which describes building and installing R on a variety of
platforms.

This recipe is about installing the base package. See “Installing Packages from CRAN” for installing add-on
packages from CRAN.

Installing RStudio

Problem
You want a more comprehensive integrated development environment (IDE) than the R default. In other words,
you want to install RStudio Desktop.

Solution
Over the past few years RStudio has become the most widely used IDE for R. We are of the opinion that almost
all R work should be done in the RStudio Desktop IDE, unless there is a compelling reason to do otherwise.
RStudio makes multiple products, including RStudio Desktop, RStudio Server, and RStudio Shiny Server, just to
name a few. For this book we will use the term RStudio to mean RStudio Desktop, though most concepts apply to
RStudio Server as well.

To install RStudio, download the latest installer for your platform from the RStudio website.

The RStudio Desktop Open Source License version is free to download and use.

Discussion
This book was written and built using RStudio version 1.2.x and R versions 3.5.x. New versions of RStudio are
released every few months, so be sure to update regularly. Note that RStudio works with whichever version of R
you have installed, so updating to the latest version of RStudio does not upgrade your version of R. R must be
upgraded separately.

http://bit.ly/2XSeJQw
https://www.rstudio.com/products/rstudio/download/


Interacting with R is slightly different in RStudio than in the built-in R user interface. For this book, we’ve
elected to use RStudio for all examples.

Starting RStudio

Problem
You want to run RStudio on your computer.

Solution
A common mistake made by new users of R and RStudio is to accidentally start R when they intended to start
RStudio. The easiest way to ensure you’re actually starting RStudio is to search for RStudio on your desktop,
then use whatever method your OS provides for pinning the icon somewhere easy to find later:

Windows

Click on the Start Screen menu in the lower-left corner of the screen. In the search box, type RStudio.

macOS
Look in your launchpad for the RStudio app or press Cmd-space (Cmd is the command or ⌘ key) and type
RStudio to search using Spotlight Search.

Ubuntu

Press Alt-F1 and type RStudio to search for RStudio.

Discussion
It’s easy to get confused between R and RStudio because, as you can see in Figure 1-1, the icons look similar.

Figure 1-1. R and RStudio icons in macOS

If you click on the R icon, you’ll be greeted by something like Figure 1-2, which is the Base R interface on a
Mac, but certainly not RStudio.



Figure 1-2. The R console in macOS

When you start RStudio, by default it will reopen the last project you were working on in RStudio.

Entering Commands

Problem
You’ve started RStudio. Now what?

Solution
When you start RStudio, the main window on the left is an R session. From there you can enter commands
interactively directly to R.

Discussion



R prompts you with >. To get started, just treat R like a big calculator: enter an expression, and R will evaluate
the expression and print the result:

The computer adds 1 and 1, and displays the result, 2.

The [1] before the 2 might be confusing. To R, the result is a vector, even though it has only one element. R
labels the value with [1] to signify that this is the first element of the vector… which is not surprising, since it’s
the only element of the vector.

R will prompt you for input until you type a complete expression. The expression max(1,3,5) is a complete
expression, so R stops reading input and evaluates what it’s got:

In contrast, max(1,3, is an incomplete expression, so R prompts you for more input. The prompt changes from
greater-than (>) to plus (+), letting you know that R expects more:

It’s easy to mistype commands, and retyping them is tedious and frustrating. So R includes command-line
editing to make life easier. It defines single keystrokes that let you easily recall, correct, and reexecute your
commands. A typical command-line interaction goes like this:

1. You enter an R expression with a typo.

2. R complains about your mistake.

3. You press the up arrow key to recall your mistaken line.

4. You use the left and right arrow keys to move the cursor back to the error.

5. You use the Delete key to delete the offending characters.

6. You type the corrected characters, which inserts them into the command line.

7. You press Enter to reexecute the corrected command.

That’s just the basics. R supports the usual keystrokes for recalling and editing command lines, as listed in
Table 1-2.

Table 1-2. R command shortcuts

Labeled key Ctrl-key combo Effect

Up arrow Ctrl-P Recall previous command by moving backward through the history of commands.

Down arrow Ctrl-N Move forward through the history of commands.

Backspace Ctrl-H Delete the character to the left of the cursor.



Labeled key Ctrl-key combo Effect

Delete (Del) Ctrl-D Delete the character to the right of the cursor.

Home Ctrl-A Move the cursor to the start of the line.

End Ctrl-E Move the cursor to the end of the line.

Right arrow Ctrl-F Move the cursor right (forward) one character.

Left arrow Ctrl-B Move the cursor left (back) one character.

Ctrl-K Delete everything from the cursor position to the end of the line.

Ctrl-U Clear the whole darn line and start over.

Tab Complete the name (on some platforms).

On most operating systems, you can also use the mouse to highlight commands and then use the usual copy and
paste commands to paste text into a new command line.

See Also
See “Typing Less and Accomplishing More”. From the Windows main menu, follow Help → Console for a
complete list of keystrokes useful for command-line editing.

Exiting from RStudio

Problem
You want to exit from RStudio.

Solution

Windows and most Linux distributions
Select File → Quit Session from the main menu, or click on the X in the upper-right corner of the window frame.

macOS
Select File → Quit Session from the main menu, or press Cmd-Q, or click on the red circle in the upper-left
corner of the window frame.

On all platforms, you can also use the q function (as in quit) to terminate R and RStudio:

q()

Note the empty parentheses, which are necessary to call the function.

Discussion
Whenever you exit, R typically asks if you want to save your workspace. You have three choices:

Save your workspace and exit.

Don’t save your workspace, but exit anyway.

Cancel, returning to the command prompt rather than exiting.

If you save your workspace, R writes it to a file called .RData in the current working directory. Saving the
workspace saves any R objects you have created. The next time you start R in the same directory, the workspace



will automatically load. Saving your workspace will overwrite the previously saved workspace, if any, so don’t
save if you don’t like your changes (e.g., if you have accidentally erased critical data from your workspace).

We recommend never saving your workspace when you exit and instead always explicitly saving your project,
scripts, and data. We also recommend that you turn off the prompt to save and autorestore the workspace in
RStudio using the global options found in the menu Tools → Global Options and shown in Figure 1-3. This way,
when you exit R and RStudio, you won’t be prompted to save your workspace. But keep in mind that any objects
created but not saved to disk will be lost!

Figure 1-3. Save workspace options

See Also
See “Getting and Setting the Working Directory” for more about the current working directory and “Saving Your
Workspace” for more about saving your workspace. Also see Chapter 2 of R in a Nutshell.



Interrupting R

Problem
You want to interrupt a long-running computation and return to the command prompt without exiting RStudio.

Solution
Press the Esc key on your keyboard, or click on the Session menu in RStudio and select “Interrupt R.” You may
also click on the stop sign icon in the code console window.

Discussion
Interrupting R means telling R to stop running the current command, but without deleting variables from
memory or completely closing RStudio. That said, interrupting R can leave your variables in an indeterminate
state, depending upon how far the computation had progressed, so check your workspace after interrupting.

See Also
See “Exiting from RStudio”.

Viewing the Supplied Documentation

Problem
You want to read the documentation supplied with R.

Solution
Use the help.start function to see the documentation’s table of contents:

help.start()

From there, links are available to all the installed documentation. In RStudio the help will show up in the help
pane, which by default is on the righthand side of the screen.

In RStudio you can also click Help → R Help to get a listing with help options for both R and RStudio.

Discussion
The base distribution of R includes a wealth of documentation—literally thousands of pages. When you install
additional packages, those packages contain documentation that is also installed on your machine.

It is easy to browse this documentation via the help.start function, which opens on the top-level table of
contents. Figure 1-4 shows how help.start appears inside the help pane in RStudio.



Figure 1-4. RStudio help.start

The two links in the Base R Reference section are especially useful:

Packages
Click here to see a list of all the installed packages—both the base packages and the additional installed
packages. Click on a package name to see a list of its functions and datasets.

Search Engine & Keywords
Click here to access a simple search engine that allows you to search the documentation by keyword or
phrase. There is also a list of common keywords, organized by topic; click one to see the associated pages.

The Base R documentation accessed via help.start is loaded on your computer when you install R. The
RStudio help, which you access by using the menu option Help → R Help, presents a page with links to
RStudio’s website. So, you will need internet access to access the RStudio help links.

See Also
The local documentation is copied from the R Project website, which may have updated documents.

Getting Help on a Function

http://www.r-project.org/


Problem
You want to know more about a function that is installed on your machine.

Solution
Use help to display the documentation for the function:

help(functionname) 

Use args for a quick reminder of the function arguments:

args(functionname) 

Use example to see examples of using the function:

example(functionname) 

Discussion
We present many R functions in this book. Every R function has more bells and whistles than we can possibly
describe. If a function catches your interest, we strongly suggest reading the help page for that function. One of
its bells or whistles might be very useful to you.

Suppose you want to know more about the mean function. Use the help function like this:

help(mean)

This will open the help page for the mean function in the help pane in RStudio. A shortcut for the help command
is to simply type ? followed by the function name:

?mean

Sometimes you just want a quick reminder of the arguments to a function: what are they, and in what order do
they occur? For this case, use the args function:

args(mean) 

#> function (x, ...) 

#> NULL

args(sd) 

#> function (x, na.rm = FALSE) 

#> NULL

The first line of output from args is a synopsis of the function call. For mean, the synopsis shows one argument,
x, which is a vector of numbers. For sd, the synopsis shows the same vector, x, and an optional argument called
na.rm. (You can ignore the second line of output, which is often just NULL.) In RStudio you will see the args
output as a floating tool tip over your cursor when you type a function name, as shown in Figure 1-5.



Figure 1-5. RStudio tool tip

Most documentation for functions includes example code near the end of the document. A cool feature of R is
that you can request that it execute the examples, giving you a little demonstration of the function’s capabilities.
The documentation for the mean function, for instance, contains examples, but you don’t need to type them
yourself. Just use the example function to watch them run:

example(mean) 

#> 

#> mean> x <- c(0:10, 50) 

#> 

#> mean> xm <- mean(x) 

#> 

#> mean> c(xm, mean(x, trim = 0.10)) 

#> [1] 8.75 5.50

Everything you see after example(mean) was produced by R, which executed the examples from the help page
and displayed the results.

See Also
See “Searching the Supplied Documentation” for searching for functions and “Displaying Loaded Packages via
the Search Path” for more about the search path.

Searching the Supplied Documentation

Problem
You want to know more about a function that is installed on your machine, but the help function reports that it
cannot find documentation for any such function.

Alternatively, you want to search the installed documentation for a keyword.

Solution
Use help.search to search the R documentation on your computer:

help.search("pattern") 

A typical pattern is a function name or keyword. Notice that it must be enclosed in quotation marks.

For your convenience, you can also invoke a search by using two question marks (in which case the quotes are
not required). Note that searching for a function by name uses one question mark, while searching for a text
pattern uses two:



> ??pattern 

Discussion
You may occasionally request help on a function only to be told R knows nothing about it:

help(adf.test) 

#> No documentation for 'adf.test' in specified packages and libraries: 

#> you could try '??adf.test'

This can be frustrating if you know the function is installed on your machine. Here the problem is that the
function’s package is not currently loaded, and you don’t know which package contains the function. It’s kind of
a catch-22 (the error message indicates the package is not currently in your search path, so R cannot find the help
file; see “Displaying Loaded Packages via the Search Path” for more details).

The solution is to search all your installed packages for the function. Just use the help.search function, as
suggested in the error message:

help.search("adf.test")

The search will produce a listing of all packages that contain the function:

Help files with alias or concept or title matching 'adf.test' using 

regular expression matching: 

 

tseries::adf.test       Augmented Dickey-Fuller Test 

 

Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.

The preceding output indicates that the tseries package contains the adf.test function. You can see its
documentation by explicitly telling help which package contains the function:

help(adf.test, package = "tseries")

or you can use the double colon operator to tell R to look in a specific package:

?tseries::adf.test

You can broaden your search by using keywords. R will then find any installed documentation that contains the
keywords. Suppose you want to find all functions that mention the Augmented Dickey–Fuller (ADF) test. You
could search on a likely pattern:

help.search("dickey-fuller")

See Also
You can also access the local search engine through the documentation browser; see “Viewing the Supplied
Documentation” for how this is done. See “Displaying Loaded Packages via the Search Path” for more about the
search path and “Getting Help on a Function” for getting help on functions.

Getting Help on a Package

Problem
You want to learn more about a package installed on your computer.



Solution
Use the help function and specify a package name (without a function name):

help(package = "packagename") 

Discussion
Sometimes you want to know the contents of a package (the functions and datasets). This is especially true after
you download and install a new package, for example. The help function can provide the contents plus other
information once you specify the package name.

This call to help will display the information for the tseries package, a standard package in the base
distribution:

help(package = "tseries")

The information begins with a description and continues with an index of functions and datasets. In RStudio, the
HTML-formatted help page will open in the help window of the IDE.

Some packages also include vignettes, which are additional documents such as introductions, tutorials, or
reference cards. They are installed on your computer as part of the package documentation when you install the
package. The help page for a package includes a list of its vignettes near the bottom.

You can see a list of all vignettes on your computer by using the vignette function:

vignette()

In RStudio this will open a new tab listing every package installed on your computer that includes vignettes as
well as the vignette names and descriptions.

You can see the vignettes for a particular package by including its name:

vignette(package = "packagename") 

Each vignette has a name, which you use to view the vignette:

vignette("vignettename") 

See Also
See “Getting Help on a Function” for getting help on a particular function in a package.

Searching the Web for Help

Problem
You want to search the web for information and answers regarding R.

Solution
Inside R, use the RSiteSearch function to search by keyword or phrase:

RSiteSearch("key phrase") 

Inside your browser, try using these sites for searching:



RSeek
This is a Google custom search engine that is focused on R-specific websites.

Stack Overflow
Stack Overflow is a searchable Q&A site from Stack Exchange that is oriented toward programming issues
such as data structures, coding, and graphics. Stack Overflow is a great “first stop” for all your syntax
questions.

Cross Validated
Cross Validated is a Stack Exchange site focused on statistics, machine learning, and data analysis rather than
programming. It’s a good place for questions about what statistical method to use.

RStudio Community
The RStudio Community site is a discussion forum hosted by RStudio. The topics include R, RStudio, and
associated technology. Being an RStudio site, this forum is often visited by RStudio staff and those who use
the software frequently. This is a good place for general questions and questions that possibly don’t fit as
well into the Stack Overflow syntax-focused format.

Discussion
The RSiteSearch function will open a browser window and direct it to the search engine on the R Project
website. There you will see an initial search that you can refine. For example, this call would start a search for
“canonical correlation”:

RSiteSearch("canonical correlation")

This is quite handy for doing quick web searches without leaving R. However, the search scope is limited to R
documentation and the mailing list archives.

RSeek provides a wider search. Its virtue is that it harnesses the power of the Google search engine while
focusing on sites relevant to R. That eliminates the extraneous results of a generic Google search. The beauty of
RSeek is that it organizes the results in a useful way.

Figure 1-6 shows the results of visiting RSeek and searching for “correlation.” Note that the tabs across the top
allow for drilling in to different types of content:

All results

Packages

Books

Support

Articles

For Beginners

http://rseek.org/
http://stackoverflow.com/
http://stats.stackexchange.com/
https://community.rstudio.com/
http://search.r-project.org/
http://rseek.org/


Figure 1-6. RSeek

Stack Overflow is a Q&A site, which means that anyone can submit a question and experienced users will supply
answers—often there are multiple answers to each question. Readers vote on the answers, so good answers tend
to rise to the top. This creates a rich database of Q&A dialogues, which you can search. Stack Overflow is
strongly problem-oriented, and the topics lean toward the programming side of R.

Stack Overflow hosts questions for many programming languages; therefore, when entering a term into its
search box, prefix it with “[r]” to focus the search on questions tagged for R. For example, searching for “[r]
standard error” will select only the questions tagged for R and will avoid the Python and C++ questions.

Stack Overflow also includes a wiki about the R language that provides an excellent community-curated list of
online R resources.

Stack Exchange (the parent company of Stack Overflow) has a Q&A area for statistical analysis called Cross
Validated. This area is more focused on statistics than programming, so use it when seeking answers that are
more concerned with statistics in general and less with R in particular.

RStudio hosts its own discussion board as well. This is a great place to ask general questions and more
conceptual questions that may not work as well on Stack Overflow.

http://stackoverflow.com/
https://stackoverflow.com/tags/r/info
https://stats.stackexchange.com/
https://community.rstudio.com/


See Also
If your search reveals a useful package, use “Installing Packages from CRAN” to install it on your machine.

Finding Relevant Functions and Packages

Problem
Of the 10,000+ packages for R, you have no idea which ones would be useful to you.

Solution
To discover packages related to a certain field, visit CRAN’s list of task views. Select the task view for your
area, which will give you links to and descriptions of relevant packages. Or visit RSeek, search by keyword,
click on the Task Views tab, and select an applicable task view.

Visit crantastic and search for packages by keyword.

To find relevant functions, visit RSeek, search by name or keyword, and click on the Functions tab.

Discussion
This problem is especially vexing for beginners. You think R can solve your problems, but you have no idea
which packages and functions would be useful. A common question on the mailing lists is: “Is there a package to
solve problem X?” That is the silent scream of someone drowning in R.

As of this writing, there are more than 10,000 packages available for free download from CRAN. Each package
has a summary page with a short description and links to the package documentation. Once you’ve located a
potentially interesting package, you would typically click on the “Reference manual” link to view the PDF
documentation with full details. (The summary page also contains download links for installing the package, but
you’ll rarely install the package that way; see “Installing Packages from CRAN”.)

Sometimes you simply have a generic interest—such as Bayesian analysis, econometrics, optimization, or
graphics. CRAN contains a set of task view pages describing packages that may be useful. A task view is a great
place to start since you get an overview of what’s available. You can see the list of task view pages at CRAN Task
Views or search for them as described in the Solution. CRAN’s Task Views lists a number of broad fields and
shows packages that are used in each field. For example, there are task views for high-performance computing,
genetics, time series, and social science, just to name a few.

Suppose you happen to know the name of a useful package—say, by seeing it mentioned online. A complete
alphabetical list of packages is available at CRAN with links to the package summary pages.

See Also
You can download and install an R package called sos that provides powerful other ways to search for packages;
see the vignette at SOS.

Searching the Mailing Lists

Problem
You have a question, and you want to search the archives of the mailing lists to see whether your question was
answered previously.

Solution

http://cran.r-project.org/web/views/
http://rseek.org/
http://crantastic.org/
http://rseek.org/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/sos/vignettes/sos.pdf


Open Nabble in your browser. Search for a keyword or other search term from your question. This will show
results from the support mailing lists.

Discussion
This recipe is really just an application of “Searching the Web for Help”. But it’s an important application,
because you should search the mailing list archives before submitting a new question to the list. Your question
has probably been answered before.

See Also
CRAN has a list of additional resources for searching the web; see CRAN Search.

Submitting Questions to Stack Overflow or Elsewhere in the
Community

Problem
You have a question you can’t find the answer to online, so you want to submit a question to the R community.

Solution
The first step to asking a question online is to create a reproducible example. Having example code that someone
can run and see your exact problem is the most critical part of asking for help online. A question with a good
reproducible example has three components:

Example data
This can be simulated data or some real data that you provide.

Example code
This code shows what you have tried or an error you are getting.

Written description
This is where you explain what you have, what you’d like to have, and what you have tried that didn’t work.

The details of writing a reproducible example are covered in the Discussion. Once you have a reproducible
example, you can post your question on Stack Overflow. Be sure to include the r tag in the Tags section of the
ask page.

If your question is more general or related to concepts instead of specific syntax, RStudio runs an RStudio
Community discussion forum. Note that the site is broken into multiple topics, so pick the topic category that
best fits your question.

Or you may submit your question to the R mailing lists (but don’t submit to multiple sites, the mailing lists, and
Stack Overflow, as that’s considered rude cross-posting).

The mailing lists page contains general information and instructions for using the R-help mailing list. Here is the
general process:

1. Subscribe to the main R mailing list, R-help.

2. Write your question carefully and correctly and include your reproducible example.

3. Mail your question to r-help@r-project.org.

Discussion

http://r.789695.n4.nabble.com/
http://cran.r-project.org/search.html
https://stackoverflow.com/questions/ask
https://community.rstudio.com/
http://www.r-project.org/mail.html
http://bit.ly/2Xd4wB2


The R-help mailing list, Stack Overflow, and the RStudio Community site are great resources, but please treat
them as a last resort. Read the help pages, read the documentation, search the help list archives, and search the
web. It is most likely that your question has already been answered. Don’t kid yourself: very few questions are
unique. If you’ve exhausted all other options, though, maybe it’s time to create a good question.

The reproducible example is the crux of a good help request. The first component is example data. A good way
to get this is to simulate the data using a few R functions. The following example creates a data frame called
example_df that has three columns, each of a different data type:

set.seed(42) 

n <- 4 

example_df <- data.frame( 

  some_reals = rnorm(n), 

  some_letters = sample(LETTERS, n, replace = TRUE), 

  some_ints = sample(1:10, n, replace = TRUE) 

) 

example_df 

#>   some_reals some_letters some_ints 

#> 1      1.371            R        10 

#> 2     -0.565            S         3 

#> 3      0.363            L         5 

#> 4      0.633            S        10

Note that this example uses the command set.seed at the beginning. This ensures that every time this code is
run, the answers will be the same. The n value is the number of rows of example data you would like to create.
Make your example data as simple as possible to illustrate your question.

An alternative to creating simulated data is to use example data that comes with R. For example, the dataset
mtcars contains a data frame with 32 records about different car models:

data(mtcars) 

head(mtcars) 

#>                    mpg cyl disp  hp drat   wt qsec vs am gear carb 

#> Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  0  1    4    4 

#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  0  1    4    4 

#> Datsun 710        22.8   4  108  93 3.85 2.32 18.6  1  1    4    1 

#> Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1  0    3    1 

#> Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0  0    3    2 

#> Valiant           18.1   6  225 105 2.76 3.46 20.2  1  0    3    1

If your example is reproducible only with your own data, you can use dput to put a bit of your own data in a
string that you can use in your example. We’ll illustrate that approach using two rows from the mtcars dataset:

dput(head(mtcars, 2)) 

#> structure(list(mpg = c(21, 21), cyl = c(6, 6), disp = c(160, 

#> 160), hp = c(110, 110), drat = c(3.9, 3.9), wt = c(2.62, 2.875 

#> ), qsec = c(16.46, 17.02), vs = c(0, 0), am = c(1, 1), gear = c(4, 

#> 4), carb = c(4, 4)), row.names = c("Mazda RX4", "Mazda RX4 Wag" 

#> ), class = "data.frame")

You can put the resulting structure directly in your question:

example_df <- structure(list(mpg = c(21, 21), cyl = c(6, 6), disp = c(160, 

160), hp = c(110, 110), drat = c(3.9, 3.9), wt = c(2.62, 2.875 

), qsec = c(16.46, 17.02), vs = c(0, 0), am = c(1, 1), gear = c(4, 

4), carb = c(4, 4)), row.names = c("Mazda RX4", "Mazda RX4 Wag" 

), class = "data.frame") 

 

example_df 

#>               mpg cyl disp  hp drat   wt qsec vs am gear carb 

#> Mazda RX4      21   6  160 110  3.9 2.62 16.5  0  1    4    4 

#> Mazda RX4 Wag  21   6  160 110  3.9 2.88 17.0  0  1    4    4



The second part of a good reproducible example is the example code. The code example should be as simple as
possible and illustrate what you are trying to do or have already tried. It should not be a big block of code with
many different things going on. Boil your example down to only the minimal amount of code needed. If you use
any packages, be sure to include the library call at the beginning of your code. Also, don’t include anything in
your question that is potentially harmful to someone running your code, such as rm(list=ls()), which would
delete all R objects in memory. Have empathy for the person trying to help you, and realize that they are
volunteering their time to help you out and may run your code on the same machine they use to do their own
work.

To test your example, open a new R session and try running it. Once you’ve edited your code, it’s time to give
just a bit more information to your potential respondents. In plain text, describe what you were trying to do, what
you’ve tried, and your question. Be as concise as possible. As with the example code, your objective is to
communicate as efficiently as possible with the person reading your question. You may find it helpful to include
in your description which version of R you are running as well as which platform (Windows, Mac, Linux). You
can get that information easily with the sessionInfo command.

If you are going to submit your question to the R mailing list, you should know there are actually several mailing
lists. R-help is the main list for general questions. There are also many special interest group (SIG) mailing lists
dedicated to particular domains such as genetics, finance, R development, and even R jobs. You can see the full
list at https://stat.ethz.ch/mailman/listinfo. If your question is specific to a domain, you’ll get a better answer by
selecting the appropriate list. As with R-help, however, carefully search the SIG list archives before submitting
your question.

See Also
We suggest that you read Eric Raymond and Rick Moen’s excellent essay entitled “How to Ask Questions the
Smart Way” before submitting any question. Seriously. Read it.

Stack Overflow has an excellent post that includes details about creating a reproducible example. You can find
that at https://stackoverflow.com/q/5963269/37751.

Jenny Bryan has a great R package called reprex that helps in the creation of a good reproducible example and
provides helper functions for writing the markdown text for sites like Stack Overflow. You can find that package
on her GitHub page.

https://stat.ethz.ch/mailman/listinfo
http://www.catb.org/~esr/faqs/smart-questions.html
https://stackoverflow.com/q/5963269/37751
https://github.com/tidyverse/reprex


Chapter 2. Some Basics

The recipes in this chapter lie somewhere between problem-solving ideas and tutorials. Yes, they solve common
problems, but the Solutions showcase common techniques and idioms used in most R code, including the code in
this cookbook. If you are new to R, we suggest skimming this chapter to acquaint yourself with these idioms.

Printing Something to the Screen

Problem
You want to display the value of a variable or expression.

Solution
If you simply enter the variable name or expression at the command prompt, R will print its value. Use the
print function for generic printing of any object. Use the cat function for producing custom-formatted output.

Discussion
It’s very easy to ask R to print something—just enter it at the command prompt:

pi 

#> [1] 3.14 

sqrt(2) 

#> [1] 1.41

When you enter expressions like these, R evaluates the expression and then implicitly calls the print function.
So the previous example is identical to this:

print(pi) 

#> [1] 3.14 

print(sqrt(2)) 

#> [1] 1.41

The beauty of print is that it knows how to format any R value for printing, including structured values such as
matrices and lists:

print(matrix(c(1, 2, 3, 4), 2, 2)) 

#>      [,1] [,2] 

#> [1,]    1    3 

#> [2,]    2    4 

print(list("a", "b", "c")) 

#> [[1]] 

#> [1] "a" 

#> 

#> [[2]] 

#> [1] "b" 

#> 

#> [[3]] 

#> [1] "c"

This is useful because you can always view your data: just print it. You need not write special printing logic,
even for complicated data structures.



The print function has a significant limitation, however: it prints only one object at a time. Trying to print
multiple items gives this mind-numbing error message:

print("The zero occurs at", 2 * pi, "radians.") 

#> Error in print.default("The zero occurs at", 2 * pi, "radians."): 

#>     invalid 'quote' argument

The only way to print multiple items is to print them one at a time, which probably isn’t what you want:

print("The zero occurs at") 

#> [1] "The zero occurs at" 

print(2 * pi) 

#> [1] 6.28 

print("radians") 

#> [1] "radians"

The cat function is an alternative to print that lets you concatenate multiple items into a continuous output:

cat("The zero occurs at", 2 * pi, "radians.", "\n") 

#> The zero occurs at 6.28 radians.

Notice that cat puts a space between each item by default. You must provide a newline character (\n) to
terminate the line.

The cat function can print simple vectors, too:

fib <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34) 

cat("The first few Fibonacci numbers are:", fib, "...\n") 

#> The first few Fibonacci numbers are: 0 1 1 2 3 5 8 13 21 34 ...

Using cat gives you more control over your output, which makes it especially useful in R scripts that generate
output consumed by others. A serious limitation, however, is that it cannot print compound data structures such
as matrices and lists. Trying to cat them only produces another mind-numbing message:

cat(list("a", "b", "c")) 

#> Error in cat(list("a", "b", "c")): argument 1 (type 'list') cannot 

#>     be handled by 'cat'

See Also
See “Printing Fewer Digits (or More Digits)” for controlling output format.

Setting Variables

Problem
You want to save a value in a variable.

Solution
Use the assignment operator (<-). There is no need to declare your variable first:

x <- 3

Discussion



Using R in “calculator mode” gets old pretty fast. Soon you will want to define variables and save values in
them. This reduces typing, saves time, and clarifies your work.

There is no need to declare or explicitly create variables in R. Just assign a value to the name and R will create
the variable:

x <- 3 

y <- 4 

z <- sqrt(x^2 + y^2) 

print(z) 

#> [1] 5

Notice that the assignment operator is formed from a less-than character (<) and a hyphen (-) with no space
between them.

When you define a variable at the command prompt like this, the variable is held in your workspace. The
workspace is held in the computer’s main memory but can be saved to disk. The variable definition remains in
the workspace until you remove it.

R is a dynamically typed language, which means that we can change a variable’s data type at will. We could set x
to be numeric, as just shown, and then turn around and immediately overwrite that with (say) a vector of
character strings. R will not complain:

x <- 3 

print(x) 

#> [1] 3 

 

x <- c("fee", "fie", "foe", "fum") 

print(x) 

#> [1] "fee" "fie" "foe" "fum"

In some R functions you will see assignment statements that use the strange-looking assignment operator <<-:

x <<- 3

That forces the assignment to a global variable rather than a local variable. Scoping is a bit, well, out of scope
for this discussion, however.

In the spirit of full disclosure, we will reveal that R also supports two other forms of assignment statements. A
single equals sign (=) can be used as an assignment operator. A rightward assignment operator (->) can be used
anywhere the leftward assignment operator (<-) can be used (but with the arguments reversed):

foo <- 3 

print(foo) 

#> [1] 3

5 -> fum 

print(fum) 

#> [1] 5

We recommend that you avoid these as well. The equals-sign assignment is easily confused with the test for
equality. The rightward assignment can be useful in certain contexts, but it can be confusing to those not used to
seeing it.

See Also
See Recipes , , and . See also the help page for the assign function.



Listing Variables

Problem
You want to know what variables and functions are defined in your workspace.

Solution
Use the ls function. Use ls.str for more details about each variable. You can also see your variables and
functions in the Environment pane in RStudio, shown in the next recipe in Figure 2-1.

Discussion
The ls function displays the names of objects in your workspace:

x <- 10 

y <- 50 

z <- c("three", "blind", "mice") 

f <- function(n, p) sqrt(p * (1 - p) / n) 

ls() 

#> [1] "f" "x" "y" "z"

Notice that ls returns a vector of character strings in which each string is the name of one variable or function.
When your workspace is empty, ls returns an empty vector, which produces this puzzling output:

ls() 

#> character(0)

That is R’s quaint way of saying that ls returned a zero-length vector of strings; that is, it returned an empty
vector because nothing is defined in your workspace.

If you want more than just a list of names, try ls.str; this will also tell you something about each variable:

x <- 10 

y <- 50 

z <- c("three", "blind", "mice") 

f <- function(n, p) sqrt(p * (1 - p) / n) 

ls.str() 

#> f : function (n, p) 

#> x :  num 10 

#> y :  num 50 

#> z :  chr [1:3] "three" "blind" "mice"

The function is called ls.str because it is both listing your variables and applying the str function to them,
showing their structure (see “Revealing the Structure of an Object”).

Ordinarily, ls does not return any name that begins with a dot (.). Such names are considered hidden and are not
normally of interest to users. (This mirrors the Unix convention of not listing files whose names begin with a
dot.) You can force ls to list everything by setting the all.names argument to TRUE:

ls() 

#> [1] "f" "x" "y" "z" 

ls(all.names = TRUE) 

#> [1] ".Random.seed" "f"            "x"            "y" 

#> [5] "z"

The Environment pane in RStudio also hides objects with names that begin with a dot.



See Also
See “Deleting Variables” for deleting variables and “Revealing the Structure of an Object” for inspecting your
variables.

Deleting Variables

Problem
You want to remove unneeded variables or functions from your workspace or to erase its contents completely.

Solution
Use the rm function.

Discussion
Your workspace can get cluttered quickly. The rm function removes, permanently, one or more objects from the
workspace:

x <- 2 * pi 

x 

#> [1] 6.28 

rm(x) 

x 

#> Error in eval(expr, envir, enclos): object 'x' not found

There is no “undo”; once the variable is gone, it’s gone.

You can remove several variables at once:

rm(x, y, z)

You can even erase your entire workspace at once. The rm function has a list argument consisting of a vector of
names of variables to remove. Recall that the ls function returns a vector of variable names; hence, you can
combine rm and ls to erase everything:

ls() 

#> [1] "f" "x" "y" "z" 

rm(list = ls()) 

ls() 

#> character(0)

Alternatively, you could click the broom icon at the top of the Environment pane in RStudio, shown in Figure 2-
1.



Figure 2-1. Environment pane in RStudio

WARNING
Never put rm(list=ls()) into code you share with others, such as a library function or sample code sent to a mailing list or Stack
Overflow. Deleting all the variables in someone else’s workspace is worse than rude and will make you extremely unpopular.

See Also
See “Listing Variables”.

Creating a Vector

Problem
You want to create a vector.

Solution
Use the c(...) operator to construct a vector from given values.

Discussion
Vectors are a central component of R, not just another data structure. A vector can contain either numbers,
strings, or logical values, but not a mixture.

The c(...) operator can construct a vector from simple elements:



c(1, 1, 2, 3, 5, 8, 13, 21) 

#> [1]  1  1  2  3  5  8 13 21 

c(1 * pi, 2 * pi, 3 * pi, 4 * pi) 

#> [1]  3.14  6.28  9.42 12.57 

c("My", "twitter", "handle", "is", "@cmastication") 

#> [1] "My"            "twitter"       "handle"        "is" 

#> [5] "@cmastication" 

c(TRUE, TRUE, FALSE, TRUE) 

#> [1]  TRUE  TRUE FALSE  TRUE

If the arguments to c(...) are themselves vectors, it flattens them and combines them into one single vector:

v1 <- c(1, 2, 3) 

v2 <- c(4, 5, 6) 

c(v1, v2) 

#> [1] 1 2 3 4 5 6

Vectors cannot contain a mix of data types, such as numbers and strings. If you create a vector from mixed
elements, R will try to accommodate you by converting one of them:

v1 <- c(1, 2, 3) 

v3 <- c("A", "B", "C") 

c(v1, v3) 

#> [1] "1" "2" "3" "A" "B" "C"

Here, we tried to create a vector from both numbers and strings. R converted all the numbers to strings before
creating the vector, thereby making the data elements compatible. Note that R does this without warning or
complaint.

Technically speaking, two data elements can coexist in a vector only if they have the same mode. The modes of
3.1415 and "foo" are numeric and character, respectively:

mode(3.1415) 

#> [1] "numeric" 

mode("foo") 

#> [1] "character"

Those modes are incompatible. To make a vector from them, R converts 3.1415 to character mode so it will be
compatible with "foo":

c(3.1415, "foo") 

#> [1] "3.1415" "foo" 

mode(c(3.1415, "foo")) 

#> [1] "character"

WARNING
c is a generic operator, which means that it works with many data types and not just vectors. However, it might not do exactly what
you expect, so check its behavior before applying it to other data types and objects.

See Also
See the introduction to Chapter 5 for more about vectors and other data structures.

Computing Basic Statistics

Problem



You want to calculate basic statistics: mean, median, standard deviation, variance, correlation, or covariance.

Solution
Use one of these functions, assuming that x and y are vectors:

mean(x)

median(x)

sd(x)

var(x)

cor(x, y)

cov(x, y)

Discussion
When you first use R you might open the documentation and begin searching for material entitled “Procedures
for Calculating Standard Deviation.” It seems that such an important topic would likely require a whole chapter.

It’s not that complicated.

Standard deviation and other basic statistics are calculated by simple functions. Ordinarily, the function
argument is a vector of numbers and the function returns the calculated statistic:

x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34) 

mean(x) 

#> [1] 8.8 

median(x) 

#> [1] 4 

sd(x) 

#> [1] 11 

var(x) 

#> [1] 122

The sd function calculates the sample standard deviation, and var calculates the sample variance.

The cor and cov functions can calculate the correlation and covariance, respectively, between two vectors:

x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34) 

y <- log(x + 1) 

cor(x, y) 

#> [1] 0.907 

cov(x, y) 

#> [1] 11.5

All these functions are picky about values that are not available (NA). Even one NA value in the vector argument
causes any of these functions to return NA or even halt altogether with a cryptic error:

x <- c(0, 1, 1, 2, 3, NA) 

mean(x) 

#> [1] NA 

sd(x) 

#> [1] NA

It’s annoying when R is that cautious, but it is appropriate. You must think carefully about your situation. Does
an NA in your data invalidate the statistic? If yes, then R is doing the right thing. If not, you can override this
behavior by setting na.rm=TRUE, which tells R to ignore the NA values:



x <- c(0, 1, 1, 2, 3, NA) 

sd(x, na.rm = TRUE) 

#> [1] 1.14

In older versions of R, mean and sd were smart about data frames. They understood that each column of the data
frame is a different variable, so they calculated their statistics for each column individually. This is no longer the
case and, as a result, you may read confusing comments online or in older books (like the first edition of this
book). In order to apply the functions to each column of a data frame we now need to use a helper function. The
tidyverse family of helper functions for this sort of thing is in the purrr package. As with other tidyverse
packages, this gets loaded when you run library(tidyverse). The function we’ll use to apply a function to
each column of a data frame is map_dbl:

data(cars) 

 

map_dbl(cars, mean) 

#> speed  dist 

#>  15.4  43.0 

map_dbl(cars, sd) 

#> speed  dist 

#>  5.29 25.77 

map_dbl(cars, median) 

#> speed  dist 

#>    15    36

Notice in this example that mean and sd each return two values, one for each column defined by the data frame.
(Technically, they return a two-element vector whose names attribute is taken from the columns of the data
frame.)

The var function understands data frames without the help of a mapping function. It calculates the covariance
between the columns of the data frame and returns the covariance matrix:

var(cars) 

#>       speed dist 

#> speed    28  110 

#> dist    110  664

Likewise, if x is either a data frame or a matrix, then cor(x) returns the correlation matrix and cov(x) returns
the covariance matrix:

cor(cars) 

#>       speed  dist 

#> speed 1.000 0.807 

#> dist  0.807 1.000 

cov(cars) 

#>       speed dist 

#> speed    28  110 

#> dist    110  664

See Also
See “Avoiding Some Common Mistakes”, “Merging Data Frames by Common Column”, and “Testing a
Correlation for Significance”.

Creating Sequences

Problem
You want to create a sequence of numbers.



Solution
Use an n:m expression to create the simple sequence n, n+1, n+2, …, m:

1:5 

#> [1] 1 2 3 4 5

Use the seq function for sequences with an increment other than 1:

seq(from = 1, to = 5, by = 2) 

#> [1] 1 3 5

Use the rep function to create a series of repeated values:

rep(1, times = 5) 

#> [1] 1 1 1 1 1

Discussion
The colon operator (n:m) creates a vector containing the sequence n, n+1, n+2, …, m:

0:9 

#>  [1] 0 1 2 3 4 5 6 7 8 9 

10:19 

#>  [1] 10 11 12 13 14 15 16 17 18 19 

9:0 

#>  [1] 9 8 7 6 5 4 3 2 1 0

R was clever with the last expression (9:0). Because 9 is larger than 0, it counts backward from the starting to
ending value. You can also use the colon operator directly with the pipe to pass data to another function:

10:20 %>% mean()

The colon operator works for sequences that grow by 1 only. The seq function also builds sequences but supports
an optional third argument, which is the increment:

seq(from = 0, to = 20) 

#>  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

seq(from = 0, to = 20, by = 2) 

#>  [1]  0  2  4  6  8 10 12 14 16 18 20 

seq(from = 0, to = 20, by = 5) 

#> [1]  0  5 10 15 20

Alternatively, you can specify a length for the output sequence and then R will calculate the necessary increment:

seq(from = 0, to = 20, length.out = 5) 

#> [1]  0  5 10 15 20 

seq(from = 0, to = 100, length.out = 5) 

#> [1]   0  25  50  75 100

The increment need not be an integer. R can create sequences with fractional increments, too:

seq(from = 1.0, to = 2.0, length.out = 5) 

#> [1] 1.00 1.25 1.50 1.75 2.00

For the special case of a “sequence” that is simply a repeated value, you should use the rep function, which
repeats its first argument:



rep(pi, times = 5) 

#> [1] 3.14 3.14 3.14 3.14 3.14

See Also
See “Creating a Sequence of Dates” for creating a sequence of Date objects.

Comparing Vectors

Problem
You want to compare two vectors, or you want to compare an entire vector against a scalar.

Solution
The comparison operators (==, !=, <, >, <=, >=) can perform an element-by-element comparison of two vectors.
They can also compare a vector’s element against a scalar. The result is a vector of logical values in which each
value is the result of one element-wise comparison.

Discussion
R has two logical values, TRUE and FALSE. These are often called Boolean values in other programming
languages.

The comparison operators compare two values and return TRUE or FALSE, depending upon the result of the
comparison:

a <- 3 

a == pi # Test for equality 

#> [1] FALSE 

a != pi # Test for inequality 

#> [1] TRUE 

a < pi 

#> [1] TRUE 

a > pi 

#> [1] FALSE 

a <= pi 

#> [1] TRUE 

a >= pi 

#> [1] FALSE

You can experience the power of R by comparing entire vectors at once. R will perform an element-by-element
comparison and return a vector of logical values, one for each comparison:

v <- c(3, pi, 4) 

w <- c(pi, pi, pi) 

v == w # Compare two 3-element vectors 

#> [1] FALSE  TRUE FALSE 

v != w 

#> [1]  TRUE FALSE  TRUE 

v < w 

#> [1]  TRUE FALSE FALSE 

v <= w 

#> [1]  TRUE  TRUE FALSE 

v > w 

#> [1] FALSE FALSE  TRUE 

v >= w 

#> [1] FALSE  TRUE  TRUE



You can also compare a vector against a single scalar, in which case R will expand the scalar to the vector’s
length and then perform the element-wise comparison. The previous example can be simplified in this way:

v <- c(3, pi, 4) 

v == pi # Compare a 3-element vector against one number 

#> [1] FALSE  TRUE FALSE 

v != pi 

#> [1]  TRUE FALSE  TRUE

This is an application of the Recycling Rule discussed in “Understanding the Recycling Rule”.

After comparing two vectors, you often want to know whether any of the comparisons were true or whether all
the comparisons were true. The any and all functions handle those tests. They both test a logical vector. The any
function returns TRUE if any element of the vector is TRUE. The all function returns TRUE if all elements of the
vector are TRUE:

v <- c(3, pi, 4) 

any(v == pi) # Return TRUE if any element of v equals pi 

#> [1] TRUE 

all(v == 0) # Return TRUE if all elements of v are zero 

#> [1] FALSE

See Also
See “Selecting Vector Elements”.

Selecting Vector Elements

Problem
You want to extract one or more elements from a vector.

Solution
Select the indexing technique appropriate for your problem:

Use square brackets to select vector elements by their position, such as v[3] for the third element of v.

Use negative indexes to exclude elements.

Use a vector of indexes to select multiple values.

Use a logical vector to select elements based on a condition.

Use names to access named elements.

Discussion
Selecting elements from vectors is another powerful feature of R. Basic selection is handled just as in many
other programming languages—use square brackets and a simple index:

fib <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34) 

fib 

#>  [1]  0  1  1  2  3  5  8 13 21 34 

fib[1] 

#> [1] 0 

fib[2] 

#> [1] 1 

fib[3] 

#> [1] 1 

fib[4] 

#> [1] 2 



[ ]

fib[5] 

#> [1] 3

Notice that the first element has an index of 1, not 0 as in some other programming languages.

A cool feature of vector indexing is that you can select multiple elements at once. The index itself can be a
vector, and each element of that indexing vector selects an element from the data vector:

fib[1:3] # Select elements 1 through 3 

#> [1] 0 1 1 

fib[4:9] # Select elements 4 through 9 

#> [1]  2  3  5  8 13 21

An index of 1:3 means select elements 1, 2, and 3, as just shown. The indexing vector needn’t be a simple
sequence, however. You can select elements anywhere within the data vector—as in this example, which selects
elements 1, 2, 4, and 8:

fib[c(1, 2, 4, 8)] 

#> [1]  0  1  2 13

R interprets negative indexes to mean exclude a value. An index of –1, for instance, means exclude the first value
and return all other values:

fib[-1] # Ignore first element 

#> [1]  1  1  2  3  5  8 13 21 34

You can extend this method to exclude whole slices by using an indexing vector of negative indexes:

fib[1:3] # As before 

#> [1] 0 1 1 

fib[-(1:3)] # Invert sign of index to exclude instead of select 

#> [1]  2  3  5  8 13 21 34

Another indexing technique uses a logical vector to select elements from the data vector. Everywhere that the
logical vector is TRUE, an element is selected:

fib < 10 # This vector is TRUE wherever fib is less than 10 

#>  [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE 

fib[fib < 10] # Use that vector to select elements less than 10 

#> [1] 0 1 1 2 3 5 8 

fib %% 2 == 0 # This vector is TRUE wherever fib is even 

#>  [1]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE 

fib[fib %% 2 == 0] # Use that vector to select the even elements 

#> [1]  0  2  8 34

Ordinarily, the logical vector should be the same length as the data vector so you are clearly either including or
excluding each element. (If the lengths differ, then you need to understand the Recycling Rule, discussed in
“Understanding the Recycling Rule”.)

By combining vector comparisons, logical operators, and vector indexing, you can perform powerful selections
with very little R code.

For example, you can select all elements greater than the median:

v <- c(3, 6, 1, 9, 11, 16, 0, 3, 1, 45, 2, 8, 9, 6, -4) 

v[ v > median(v)] 

#> [1]  9 11 16 45  8  9

or select all elements in the lower and upper 5%:



v[ (v < quantile(v, 0.05)) | (v > quantile(v, 0.95)) ] 

#> [1] 45 -4

The previous example uses the | operator, which means “or” when indexing. If you wanted “and,” you would use
the & operator.

You can also select all elements that exceed ±1 standard deviations from the mean:

v[ abs(v - mean(v)) > sd(v)] 

#> [1] 45 -4

or select all elements that are neither NA nor NULL:

v <- c(1, 2, 3, NA, 5) 

v[!is.na(v) & !is.null(v)] 

#> [1] 1 2 3 5

One final indexing feature lets you select elements by name. It assumes that the vector has a names attribute,
defining a name for each element. You can define the names by assigning a vector of character strings to the
attribute:

years <- c(1960, 1964, 1976, 1994) 

names(years) <- c("Kennedy", "Johnson", "Carter", "Clinton") 

years 

#> Kennedy Johnson  Carter Clinton 

#>    1960    1964    1976    1994

Once the names are defined, you can refer to individual elements by name:

years["Carter"] 

#> Carter 

#>   1976 

years["Clinton"] 

#> Clinton 

#>    1994

This generalizes to allow indexing by vectors of names; R returns every element named in the index:

years[c("Carter", "Clinton")] 

#>  Carter Clinton 

#>    1976    1994

See Also
See “Understanding the Recycling Rule” for more about the Recycling Rule.

Performing Vector Arithmetic

Problem
You want to operate on an entire vector at once.

Solution
The usual arithmetic operators can perform element-wise operations on entire vectors. Many functions operate
on entire vectors, too, and return a vector result.



Discussion
Vector operations are one of R’s great strengths. All the basic arithmetic operators can be applied to pairs of
vectors. They operate in an element-wise manner; that is, the operator is applied to corresponding elements from
both vectors:

v <- c(11, 12, 13, 14, 15) 

w <- c(1, 2, 3, 4, 5) 

v + w 

#> [1] 12 14 16 18 20 

v - w 

#> [1] 10 10 10 10 10 

v * w 

#> [1] 11 24 39 56 75 

v / w 

#> [1] 11.00  6.00  4.33  3.50  3.00 

w^v 

#> [1] 1.00e+00 4.10e+03 1.59e+06 2.68e+08 3.05e+10

Observe that the length of the result here is equal to the length of the original vectors. The reason is that each
element comes from a pair of corresponding values in the input vectors.

If one operand is a vector and the other is a scalar, then the operation is performed between every vector element
and the scalar:

w 

#> [1] 1 2 3 4 5 

w + 2 

#> [1] 3 4 5 6 7 

w - 2 

#> [1] -1  0  1  2  3 

w * 2 

#> [1]  2  4  6  8 10 

w / 2 

#> [1] 0.5 1.0 1.5 2.0 2.5 

2^w 

#> [1]  2  4  8 16 32

For example, you can recenter an entire vector in one expression simply by subtracting the mean of its contents:

w 

#> [1] 1 2 3 4 5 

mean(w) 

#> [1] 3 

w - mean(w) 

#> [1] -2 -1  0  1  2

Likewise, you can calculate the z-score of a vector in one expression—subtract the mean and divide by the
standard deviation:

w 

#> [1] 1 2 3 4 5 

sd(w) 

#> [1] 1.58 

(w - mean(w)) / sd(w) 

#> [1] -1.265 -0.632  0.000  0.632  1.265

Yet the implementation of vector-level operations goes far beyond elementary arithmetic. It pervades the
language, and many functions operate on entire vectors. The functions sqrt and log, for example, apply
themselves to every element of a vector and return a vector of results:

w <- 1:5 

w 



#> [1] 1 2 3 4 5 

sqrt(w) 

#> [1] 1.00 1.41 1.73 2.00 2.24 

log(w) 

#> [1] 0.000 0.693 1.099 1.386 1.609 

sin(w) 

#> [1]  0.841  0.909  0.141 -0.757 -0.959

There are two great advantages to vector operations. The first and most obvious is convenience. Operations that
require looping in other languages are one-liners in R. The second is speed. Most vectorized operations are
implemented directly in C code, so they are substantially faster than the equivalent R code you could write.

See Also
Performing an operation between a vector and a scalar is actually a special case of the Recycling Rule; see
“Understanding the Recycling Rule”.

Getting Operator Precedence Right

Problem
Your R expression is producing a curious result, and you wonder if operator precedence is causing problems.

Solution
The full list of operators is shown in Table 2-1, listed in order of precedence from highest to lowest. Operators of
equal precedence are evaluated from left to right except where indicated.

Table 2-1. Operator precedence

Operator Meaning See also

[ [[ Indexing “Selecting Vector Elements”

:: ::: Access variables in a namespace (environment)

$ @ Component extraction, slot extraction

^ Exponentiation (right to left)

- + Unary minus and plus

: Sequence creation “Creating Sequences”, “Creating a Sequence of Dates”

%any% (including %>%) Special operators Discussion (this recipe)

* / Multiplication, division Discussion (this recipe)

+ - Addition, subtraction

== != < > <= >= Comparison “Comparing Vectors”

! Logical negation

& && Logical “and,” short-circuit “and”

| || Logical “or,” short-circuit “or”

~ Formula “Performing Simple Linear Regression”

-> ->> Rightward assignment “Setting Variables”

Assignment (right to left) “Setting Variables”



Operator Meaning See also
= Assignment (right to left) Setting Variables

<- <<- Assignment (right to left) “Setting Variables”

? Help “Getting Help on a Function”

It’s not important that you know what every one of these operators does, or what they mean. The list here is
intended simply to expose you to the idea that different operators have different precedence.

Discussion
Getting your operator precedence wrong in R is a common problem. It certainly happens to us a lot. We
unthinkingly expect that the expression 0:n-1 will create a sequence of integers from 0 to n–1, but it does not:

n <- 10 

0:n - 1 

#>  [1] -1  0  1  2  3  4  5  6  7  8  9

It creates the sequence from –1 to n–1 because R interprets it as (0:n)-1.

You might not recognize the notation %any% in the table. R interprets any text between percent signs (%…%) as a
binary operator. Several such operators have predefined meanings:

%%

Modulo operator

%/%

Integer division

%*%

Matrix multiplication

%in%

Returns TRUE if the left operand occurs in its right operand; FALSE otherwise

%>%

Pipe that passes results from the left to a function on the right

You can also define new binary operators using the %…% notation; see “Defining Your Own Binary Operators”.
The point here is that all such operators have the same precedence.

See Also
See “Performing Vector Arithmetic” for more about vector operations, “Performing Matrix Operations” for more
about matrix operations, and “Defining Your Own Binary Operators” to define your own operators. See also the
Arithmetic and Syntax topics in the R help pages as well as Chapters 5 and 6 of R in a Nutshell.

Typing Less and Accomplishing More

Problem
You are getting tired of typing long sequences of commands, and especially tired of typing the same ones over
and over.

https://oreil.ly/2wUtwyf


Solution
Open an editor window and accumulate your reusable blocks of R commands there. Then, execute those blocks
directly from that window. Reserve the console window for typing brief or one-off commands.

When you are done, you can save the accumulated code blocks in a script file for later use.

Discussion
The typical R beginner types an expression in the console window and sees what happens. As he gets more
comfortable, he types increasingly complicated expressions. Then he begins typing multiline expressions. Soon,
he is typing the same multiline expressions over and over, perhaps with small variations, in order to perform his
increasingly complicated calculations.

The experienced R user does not often retype a complex expression. She may type the same expression once or
twice, but when she realizes it is useful and reusable she will cut and paste it into an editor window. To execute
the snippet thereafter, she selects the snippet in the editor window and tells R to execute it, rather than retyping
it. This technique is especially powerful as her snippets evolve into long blocks of code.

In RStudio, a few shortcuts in the IDE facilitate this work style. Windows and Linux machines have slightly
different keys than Mac machines: Windows/Linux uses the Ctrl and Alt modifiers, whereas the Mac uses Cmd
and Opt.

To open an editor window
From the main menu, select File → New File, then select the type of file you want to create—in this case, an
R script. Or if you know you want an R script, you can press Shift-Ctrl-N (Windows) or Shift-Cmd-N (Mac).

To execute one line of the editor window
Position the cursor on the line and then press Ctrl-Enter (Windows) or Cmd-Enter (Mac) to execute it.

To execute several lines of the editor window
Highlight the lines using your mouse; then press Ctrl-Enter (Windows) or Cmd-Enter (Mac) to execute them.

To execute the entire contents of the editor window
Press Ctrl-Alt-R (Windows) or Cmd-Opt-R (Mac) to execute the whole editor window. Or from the menu,
click Code → Run Region → Run All.

You can find these keyboard shortcuts and dozens more within RStudio by choosing the Tools → Keyboard
Shortcuts Help menu item.

Reproducing lines from the console window in the editor window is simply a matter of copy and paste. When
you exit RStudio, it will ask if you want to save the new script. You can either save it for future reuse or discard
it.

Creating a Pipeline of Function Calls

Problem
Creating many intermediate variables in your code is tedious and overly verbose, while nesting R functions
makes the code nearly unreadable.

Solution
Use the pipe operator (%>%) to make your expressions easier to read and write. The pipe operator, created by
Stefan Bache and found in the magrittr package, is used extensively in many tidyverse functions as well.



Use the pipe operator to combine multiple functions together into a “pipeline” of functions without intermediate
variables:

library(tidyverse) 

data(mpg) 

 

mpg %>% 

  filter(cty > 21) %>% 

  head(3) %>% 

  print() 

#> # A tibble: 3 x 11 

#>   manufacturer model  displ  year   cyl trans drv     cty   hwy fl    class 

#>   <chr>        <chr>  <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr> 

#> 1 chevrolet    malibu   2.4  2008     4 auto~ f        22    30 r     mids~ 

#> 2 honda        civic    1.6  1999     4 manu~ f        28    33 r     subc~ 

#> 3 honda        civic    1.6  1999     4 auto~ f        24    32 r     subc~

Using the pipe is much cleaner and easier to read than using intermediate temporary variables:

temp1 <- filter(mpg, cty > 21) 

temp2 <- head(temp1, 3) 

print(temp2) 

#> # A tibble: 3 x 11 

#>   manufacturer model  displ  year   cyl trans drv     cty   hwy fl    class 

#>   <chr>        <chr>  <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr> 

#> 1 chevrolet    malibu   2.4  2008     4 auto~ f        22    30 r     mids~ 

#> 2 honda        civic    1.6  1999     4 manu~ f        28    33 r     subc~ 

#> 3 honda        civic    1.6  1999     4 auto~ f        24    32 r     subc~

Discussion
The pipe operator does not provide any new functionality to R, but it can greatly improve the readability of code.
It takes the output of the function or object on the left of the operator and passes it as the first argument of the
function on the right.

Writing this:

x %>% head()

is functionally the same as writing this:

head(x)

In both cases x is the argument to head. We can supply additional arguments, but x is always the first argument.
These two lines are also functionally identical:

x %>% head(n = 10) 

 

head(x, n = 10)

This difference may seem small, but with a more complicated example, the benefits begin to accumulate. If we
had a workflow where we wanted to use filter to limit our data to values, then select to keep only certain
variables, followed by ggplot to create a simple plot, we could use intermediate variables:

library(tidyverse) 

 

filtered_mpg <- filter(mpg, cty > 21) 

selected_mpg <- select(filtered_mpg, cty, hwy) 

ggplot(selected_mpg, aes(cty, hwy)) + geom_point()



This incremental approach is fairly readable but creates a number of intermediate data frames and requires the
user to keep track of the state of many objects, which can add cognitive load. But the code does produce the
desired graph.

An alternative is to nest the functions together:

ggplot(select(filter(mpg, cty > 21), cty, hwy), aes(cty, hwy)) + geom_point()

While this is very concise since it’s only one line, this code requires much more attention to read and understand
what’s going on. Code that is difficult for the user to parse mentally can introduce potential for error, and can
also be harder to maintain in the future. Instead, we can use pipes:

mpg %>% 

  filter(cty > 21) %>% 

  select(cty, hwy) %>% 

  ggplot(aes(cty, hwy)) + geom_point()

The preceding code starts with the mpg dataset and pipes it to the filter function, which keeps only records
where the city mpg value (cty) is greater than 21. Those results are piped into the select command, which
keeps only the listed variables cty and hwy, and in turn those are piped into the ggplot command, which
produces the point plot in Figure 2-2.

Figure 2-2. Plotting with pipes example

If you want the argument going into your target (righthand side) function to be somewhere other than the first
argument, use the dot (.) operator. So this:

iris %>% head(3)

is the same as:

iris %>% head(3, x = .)



However, in the second example we passed the iris data frame into the second named argument using the dot
operator. This can be handy for functions where the input data frame goes in a position other than the first
argument.

Throughout this book we use pipes to hold together data transformations with multiple steps. We typically
format the code with a line break after each pipe and then indent the code on the following lines. This makes the
code easily identifiable as parts of the same data pipeline.

Avoiding Some Common Mistakes

Problem
You want to avoid some of the common mistakes made by beginning users—and by experienced users, for that
matter!

Discussion
Here are some easy ways to make trouble for yourself.

Forgetting the parentheses after a function invocation
You call an R function by putting parentheses after the name. For instance, this line invokes the ls function:

ls()

However, if you omit the parentheses, R does not execute the function. Instead, it shows the function definition,
which is almost never what you want:

ls 

 

# > function (name, pos = -1L, envir = as.environment(pos), all.names = FALSE, 

# >     pattern, sorted = TRUE) 

# > { 

# >     if (!missing(name)) { 

# >         pos <- tryCatch(name, error = function(e) e) 

# >         if (inherits(pos, "error")) { 

# >             name <- substitute(name) 

# >             if (!is.character(name)) 

# >                 name <- deparse(name) 

# > # etc.

Mistyping “<-” as “<(space)-”
The assignment operator is <-, with no space between the < and the -:

x <- pi # Set x to 3.1415926...

If you accidentally insert a space between < and -, the meaning changes completely:

x < -pi # Oops! We are comparing x instead of setting it! 

#> [1] FALSE

This is now a comparison (<) between x and -pi (negative π). It does not change x. If you are lucky, x is
undefined and R will complain, alerting you that something is fishy:

x < -pi 

#> Error in eval(expr, envir, enclos): object 'x' not found



If x is defined, R will perform the comparison and print a logical value, TRUE or FALSE. That should alert you
that something is wrong, as an assignment does not normally print anything:

x <- 0 # Initialize x to zero 

x < -pi # Oops! 

#> [1] FALSE

Incorrectly continuing an expression across lines
R reads your typing until you finish a complete expression, no matter how many lines of input that requires. It
prompts you for additional input using the + prompt until it is satisfied. This example splits an expression across
two lines:

total <- 1 + 2 + 3 + # Continued on the next line 

  4 + 5 

print(total) 

#> [1] 15

Problems begin when you accidentally finish the expression prematurely, which can easily happen:

total <- 1 + 2 + 3 # Oops! R sees a complete expression 

+ 4 + 5 # This is a new expression; R prints its value 

#> [1] 9 

print(total) 

#> [1] 6

There are two clues that something is amiss: R prompted you with a normal prompt (>), not the continuation
prompt (+), and it printed the value of 4 + 5.

This common mistake is a headache for the casual user. It is a nightmare for programmers, however, because it
can introduce hard-to-find bugs into R scripts.

Using = instead of ==
Use the double-equals operator (==) for comparisons. If you accidentally use the single-equals operator (=), you
will irreversibly overwrite your variable:

v <- 1 # Assign 1 to v 

v == 0 # Compare v against zero 

#> [1] FALSE 

v = 0 # Assign 0 to v, overwriting previous contents 

print(v) 

#> [1] 0

Writing 1:n+1 when you mean 1:(n+1)
You might think that 1:n+1 is the sequence of numbers 1, 2, …, n, n+1. It’s not. It is the sequence 1, 2, …, n with
1 added to every element, giving 2, 3, …, n, n+1. This happens because R interprets 1:n+1 as (1:n)+1. Use
parentheses to get exactly what you want:

n <- 5 

1:n + 1 

#> [1] 2 3 4 5 6 

1:(n + 1) 

#> [1] 1 2 3 4 5 6

Getting bitten by the Recycling Rule
Vector arithmetic and vector comparisons work well when both vectors have the same length. However, the
results can be baffling when the operands are vectors of differing lengths. Guard against this possibility by
understanding and remembering the Recycling Rule (see “Understanding the Recycling Rule”).



Installing a package but not loading it with library or require
Installing a package is the first step toward using it, but one more step is required. Use library or require to
load the package into your search path. Until you do so, R will not recognize the functions or datasets in the
package (see “Accessing the Functions in a Package”):

x <- rnorm(100) 

n <- 5 

truehist(x, n) 

#> Error in truehist(x, n): could not find function "truehist"

However, if you load the library first, then the code runs and you get the chart shown in Figure 2-3:

library(MASS) # Load the MASS package into R 

truehist(x, n)

We typically use library instead of require. The reason is that if you create an R script that uses library and
the desired package is not already installed, R will return an error. In contrast, require will simply return FALSE
if the package is not installed.

Figure 2-3. Example truehist

Writing lst[n] when you mean lst[[n]] or vice versa
If the variable lst contains a list, it can be indexed in two ways: lst[[n]] is the nth element of the list, whereas
lst[n] is a list whose only element is the nth element of lst. That’s a big difference. See “Selecting List
Elements by Position”.

Using & instead of &&, or vice versa; same for | and ||
Use & and | in logical expressions involving the logical values TRUE and FALSE. See “Selecting Vector
Elements”.

Use && and || for the flow-of-control expressions inside if and while statements.

Programmers accustomed to other programming languages may reflexively use && and || everywhere because
“they are faster.” But those operators give peculiar results when applied to vectors of logical values, so avoid



them unless you are sure that they do what you want.

Passing multiple arguments to a single-argument function
What do you think is the value of mean(9,10,11)? No, it’s not 10. It’s 9. The mean function computes the mean
of the first argument. The second and third arguments are being interpreted as other positional arguments. To
pass multiple items into a single argument, we put them in a vector with the c operator. mean(c(9,10,11)) will
return 10, as you might expect.

Some functions, such as mean, take one argument. Other arguments, such as max and min, take multiple
arguments and apply themselves across all arguments. Be sure you know which are which.

Thinking that max behaves like pmax, or that min behaves like pmin
The max and min functions have multiple arguments and return one value: the maximum or minimum of all their
arguments.

The pmax and pmin functions have multiple arguments but return a vector with values taken element-wise from
the arguments. For more info, see “Finding Minimums or Maximums”.

Misusing a function that does not understand data frames
Some functions are quite clever regarding data frames. They apply themselves to the individual columns of the
data frame, computing their result for each individual column. Sadly, not all functions are that bright. This
includes the mean, median, max, and min functions. They will lump together every value from every column and
compute their result from the lump, or possibly just return an error. Be aware of which functions are savvy to
data frames and which are not. When in doubt, read the documentation for the function you are considering.

Using a single backslash (\) in Windows paths
It’s common to copy and paste filepaths into your R scripts, but if you’re using R on Windows you need to take
care. Windows File Explorer may show you that your path is C:\temp\my_file.csv, but if you try to tell R to read
that file, you’ll get a cryptic message:

Error: '\m' is an unrecognized escape in character string starting "'.\temp\m"

This is because R sees backslashes as special characters. You can get around this by using either forward slashes
(/) or double backslashes (\\):

read_csv(`./temp/my_file.csv`) 

read_csv(`.\\temp\\my_file.csv`)

This is only an issue on Windows because both Mac and Linux use forward slashes as path separators.

Posting a question to Stack Overflow or the mailing list before searching for the answer
Don’t waste your time. Don’t waste other people’s time. Before you post a question to a mailing list or to Stack
Overflow, do your homework and search the archives. Odds are, someone has already answered your question. If
so, you’ll see the answer in the discussion thread for the question. See “Searching the Mailing Lists”.

See Also
See Recipes , , , , , and .



Chapter 3. Navigating the Software

Both R and RStudio are big chunks of software, first and foremost. You will inevitably spend time doing what
one does with any big piece of software: configuring it, customizing it, updating it, and fitting it into your
computing environment. This chapter will help you perform those tasks. There is nothing here about numerics,
statistics, or graphics. This is all about dealing with R and RStudio as software.

Getting and Setting the Working Directory

Problem
You want to change your working directory, or you just want to know what it is.

Solution
RStudio

Navigate to a directory in the Files pane. Then from the Files pane, select More → Set As Working Directory,
as shown in Figure 3-1.

Console

Use getwd to report the working directory, and use setwd to change it:

getwd() 

#> [1] "/Volumes/SecondDrive/jal/DocumentsPersonal/R-Cookbook"

setwd("~/Documents/MyDirectory")



Figure 3-1. RStudio: Set As Working Directory

Discussion
Your working directory is important because it is the default location for all file input and output—including
reading and writing data files, opening and saving script files, and saving your workspace image. When you open
a file and do not specify an absolute path, R will assume that the file is in your working directory.

If you’re using RStudio projects, your default working directory will be the home directory of the project. See
“Creating a New RStudio Project” for more about creating RStudio projects.

See Also
See “Dealing with “Cannot Open File” in Windows” for dealing with filenames in Windows.

Creating a New RStudio Project

Problem
You want to create a new RStudio project to keep all your files related to a specific project.

Solution
Click File → New Project as in Figure 3-2.



Figure 3-2. Creating a new project

This will open the New Project dialog box and allow you to choose which type of project you would like to
create, as shown in Figure 3-3.



Figure 3-3. New Project dialog

Discussion
Projects are a powerful concept that’s specific to RStudio. They help you by doing the following:

Setting your working directory to the project directory.

Preserving window state in RStudio so when you return to a project your windows are all as you left them.
This includes opening any files you had open when you last saved your project.

Preserving RStudio project settings.

To hold your project settings, RStudio creates a project file with an .Rproj extension in the project directory. If
you open the project file in RStudio, it works like a shortcut for opening the project. In addition, RStudio creates
a hidden directory named .Rproj.user to house temporary files related to your project.

Any time you’re working on something nontrivial in R we recommend creating an RStudio project. Projects help
you stay organized and make your project workflow easier.

Saving Your Workspace

Problem
You want to save your workspace and all variables and functions you have in memory.

Solution
Call the save.image function:



save.image()

Discussion
Your workspace holds your R variables and functions, and it is created when R starts. The workspace is held in
your computer’s main memory and lasts until you exit from R. You can easily view the contents of your
workspace in RStudio in the Environment tab, as shown in Figure 3-4.

Figure 3-4. RStudio Environment pane

However, you may want to save your workspace without exiting R, because you know bad things mysteriously
happen when you close your laptop to carry it home. In this case, use the save.image function.

The workspace is written to a file called .RData in the working directory. When R starts, it looks for that file and,
if it finds it, initializes the workspace from it.

Sadly, the workspace does not include your open graphs: for example, that cool graph on your screen disappears
when you exit R. The workspace also does not include the positions of your windows or your RStudio settings.
This is why we recommend using RStudio projects and writing your R scripts so that you can reproduce
everything you’ve created.

See Also
See “Getting and Setting the Working Directory” for setting the working directory.

Viewing Your Command History

Problem
You want to see your recent sequence of commands.

Solution
Depending on what you are trying to accomplish, you can use a few different methods to access your prior
command history. If you are in the RStudio console pane, you can press the up arrow to interactively scroll
through past commands.



If you want to see a listing of past commands, you can either execute the history function or access the History
pane in RStudio to view your most recent input:

history()

In RStudio typing history() into the console simply activates the History pane (Figure 3-5). You could also
make that pane visible by clicking on it with your cursor.

Figure 3-5. RStudio History pane

Discussion
The history function displays your most recent commands. In RStudio the history command will activate the
History pane. If you’re running R outside of RStudio, history shows the most recent 25 lines, but you can
request more like so:

history(100)          # Show 100 most recent lines of history 

history(Inf)          # Show entire saved history

From within RStudio, the History tab shows an exhaustive list of past commands in chronological order, with the
most recent at the bottom of the list. You can highlight past commands with your cursor, then click on “To
Console” or “To Source” to copy past commands into the console or source editor, respectively. This can be
terribly handy when you’ve done interactive data analysis and then decide you want to save some past steps to a
source file for later use.

From the console you can see your history by simply pressing the up arrow to scroll backward through your
input, which causes your previous typing to reappear, one line at a time.

If you’ve exited from R or RStudio, you can still see your command history. R saves the history in a file called
.Rhistory in the working directory. Open the file with a text editor and then scroll to the bottom; you will see
your most recent typing.

Saving the Result of the Previous Command

Problem
You typed an expression into R that calculated a value, but you forgot to save the result in a variable.

Solution



A special variable called .Last.value saves the value of the most recently evaluated expression. Save it to a
variable before you type anything else.

Discussion
It is frustrating to type a long expression or call a long-running function but then forget to save the result.
Fortunately, you needn’t retype the expression nor invoke the function again—the result was saved in the
.Last.value variable:

aVeryLongRunningFunction()  # Oops! Forgot to save the result! 

x <- .Last.value            # Capture the result now

A word of caution here: the contents of .Last.value are overwritten every time you type another expression, so
capture the value immediately. If you don’t remember until another expression has been evaluated, it’s too late!

See Also
See “Viewing Your Command History” to recall your command history.

Displaying Loaded Packages via the Search Path

Problem
You want to see the list of packages currently loaded into R.

Solution
Use the search function with no arguments:

search()

Discussion
The search path is a list of packages that are currently loaded into memory and available for use. Although many
packages may be installed on your computer, only a few of them are actually loaded into the R interpreter at any
given moment. You might be wondering which packages are loaded right now.

With no arguments, the search function returns the list of loaded packages. It produces output like this:

search() 

#>  [1] ".GlobalEnv"        "package:knitr"     "package:forcats" 

#>  [4] "package:stringr"   "package:dplyr"     "package:purrr" 

#>  [7] "package:readr"     "package:tidyr"     "package:tibble" 

#> [10] "package:ggplot2"   "package:tidyverse" "package:stats" 

#> [13] "package:graphics"  "package:grDevices" "package:utils" 

#> [16] "package:datasets"  "package:methods"   "Autoloads" 

#> [19] "package:base"

Your machine may return a different result, depending on what’s installed there. The return value of search is a
vector of strings. The first string is ".GlobalEnv", which refers to your workspace. Most strings have the form
"package:packagename", which indicates that the package called packagename is currently loaded into R. In the
preceding example, you can see many tidyverse packages installed, including purrr, ggplot2, and tibble.

R uses the search path to find functions. When you type a function name, R searches the path—in the order
shown—until it finds the function in a loaded package. If the function is found, R executes it. Otherwise, it prints
an error message and stops. (There is actually a bit more to it: the search path can contain environments, not just



packages, and the search algorithm is different when initiated by an object within a package; see the R Language
Definition for details.)

Since your workspace (.GlobalEnv) is first in the list, R looks for functions in your workspace before searching
any packages. If your workspace and a package both contain a function with the same name, your workspace will
“mask” the function; this means that R stops searching after it finds your function and so never sees the package
function. This is a blessing if you want to override the package function…and a curse if you still want access to
it. If you find yourself feeling cursed because you (or some package you loaded) overrode a function (or other
object) from an existing loaded package, you can use the full environment::name form to call an object from a
loaded package environment. For example, if you wanted to call the dplyr function count, you could do so using
dplyr::count. Using the full explicit name to call a function will work even if you have not loaded the package,
so if you have dplyr installed but not loaded, you can still call dplyr::count.

NOTE
It is becoming increasingly common with online examples to show the full packagename::function in examples. While this
removes ambiguity about where a function comes from, it makes example code very wordy.

Note that R will include only loaded packages in the search path. So if you have installed a package but not
loaded it by using library(packagename), then R will not add that package to the search path.

R also uses the search path to find R datasets (not files) or any other object via a similar procedure.

Unix and Mac users: don’t confuse the R search path with the Unix search path (the PATH environment variable).
They are conceptually similar but two distinct things. The R search path is internal to R and is used by R only to
locate functions and datasets, whereas the Unix search path is used by the OS to locate executable programs.

See Also
See “Accessing the Functions in a Package” for loading packages into R and “Viewing the List of Installed
Packages” for viewing the list of installed packages (not just loaded packages).

Viewing the List of Installed Packages

Problem
You want to know what packages are installed on your machine.

Solution
Use the library function with no arguments for a basic list. Use installed.packages to see more detailed
information about the packages.

Discussion
The library function with no arguments prints a list of installed packages:

library()

The list can be quite long. In RStudio, it is displayed in a new tab in the editor window.

You can get more details via the installed.packages function, which returns a matrix of information regarding
the packages on your machine. Each row corresponds to one installed package. The columns contain information

https://cran.r-project.org/doc/manuals/R-lang.pdf


such as the package name, library path, and version. The information is taken from R’s internal database of
installed packages.

To extract useful information from this matrix, use normal indexing methods. The following snippet calls
installed.packages and extracts both the Package and Version columns for the first five packages, letting
you see what version of each package is installed:

installed.packages()[1:5, c("Package", "Version")] 

#>           Package     Version 

#> abind     "abind"     "1.4-5" 

#> ade4      "ade4"      "1.7-13" 

#> adegenet  "adegenet"  "2.1.1" 

#> analogsea "analogsea" "0.6.6.9110" 

#> ape       "ape"       "5.3"

See Also
See “Accessing the Functions in a Package” for loading a package into memory.

Accessing the Functions in a Package

Problem
A package installed on your computer is either a standard package or a package you’ve downloaded. When you
try using functions in the package, however, R cannot find them.

Solution
Use either the library function or the require function to load the package into R:

library(packagename) 

Discussion
R comes with several standard packages, but not all of them are automatically loaded when you start R.
Likewise, you can download and install many useful packages from CRAN or GitHub, but they are not
automatically loaded when you run R. The MASS package comes standard with R, for example, but you could get
this message when using the lda function in that package:

lda(x) 

#> Error in lda(x): could not find function "lda"

R is complaining that it cannot find the lda function among the packages currently loaded into memory.

When you use the library function or the require function, R loads the package into memory and its contents
become immediately available to you:

my_model <- 

  lda(cty ~ displ + year, data = mpg) 

#> Error in lda(cty ~ displ + year, data = mpg): could not find function "lda" 

 

library(MASS)                          # Load the MASS library into memory 

#> 

#> Attaching package: 'MASS' 

#> The following object is masked from 'package:dplyr': 

#> 

#>     select 

my_model <- 

  lda(cty ~ displ + year, data = mpg)  # Now R can find the function



Before you call library, R does not recognize the function name. Afterward, the package contents are available
and calling the lda function works.

Notice that you needn’t enclose the package name in quotes.

The require function is nearly identical to library, but it has two features that are useful for writing scripts. It
returns TRUE if the package was successfully loaded and FALSE otherwise. It also generates a mere warning if the
load fails—unlike library, which generates an error.

Both functions have a key feature: they do not reload packages that are already loaded, so calling twice for the
same package is harmless. This is especially nice for writing scripts. The script can load needed packages while
knowing that loaded packages will not be reloaded.

The detach function will unload a package that is currently loaded:

detach(package:MASS)

Observe that the package name must be qualified, as in package:MASS.

One reason to unload a package is that it contains a function whose name conflicts with a same-named function
lower on the search list. When such a conflict occurs, we say the higher function masks the lower function. You
no longer “see” the lower function because R stops searching when it finds the higher function. Hence, unloading
the higher package unmasks the lower name.

See Also
See “Displaying Loaded Packages via the Search Path”.

Accessing Built-in Datasets

Problem
You want to use one of R’s built-in datasets, or you want to access one of the datasets that comes with another
package.

Solution
The standard datasets distributed with R are already available to you, since the datasets package is in your
search path. If you’ve loaded any other packages, datasets that come with those loaded packages will also be
available in your search path.

To access datasets in other packages, use the data function while giving the dataset name and package name:

data(dsname, package = "pkgname") 

Discussion
R comes with many built-in datasets. Other packages, such as dplyr and ggplot2, also come with example data
that’s used in the examples found in their help files. These datasets are useful when you are learning about R,
since they provide data with which to experiment.

Many datasets are kept in a package called (naturally enough) datasets, which is distributed with R. That
package is in your search path, so you have instant access to its contents. For example, you can use the built-in
dataset called pressure:



head(pressure) 

#>   temperature pressure 

#> 1           0   0.0002 

#> 2          20   0.0012 

#> 3          40   0.0060 

#> 4          60   0.0300 

#> 5          80   0.0900 

#> 6         100   0.2700

If you want to know more about pressure, use the help function to learn about it:

help(pressure)      # Bring up help page for pressure dataset

You can see a table of contents for datasets by calling the data function with no arguments:

data()              # Bring up a list of datasets

Any R package can elect to include datasets that supplement those supplied in datasets. The MASS package, for
example, includes many interesting datasets. Use the data function with the package argument to load a dataset
from a specific package. MASS includes a dataset called Cars93, which you can load into memory in this way:

data(Cars93, package = "MASS")

After this call to data, the Cars93 dataset is available to you; then you can execute summary(Cars93),
head(Cars93), and so forth.

When attaching a package to your search list (e.g., via library(MASS)), you don’t need to call data. Its datasets
become available automatically when you attach it.

You can see a list of available datasets in MASS, or any other package, by using the data function with a package
argument and no dataset name:

data(package = "pkgname") 

See Also
See “Displaying Loaded Packages via the Search Path” for more about the search path and “Accessing the
Functions in a Package” for more about packages and the library function.

Installing Packages from CRAN

Problem
You found a package on CRAN, and now you want to install it on your computer.

Solution
R code

Use the install.packages function, putting the name of the package in quotes:

install.packages("packagename") 

RStudio



The Packages pane in RStudio helps make installing new R packages straightforward. All packages that are
installed on your machine are listed in this pane, along with description and version information. To load a
new package from CRAN, click on the Install button near the top of the Packages pane, shown in Figure 3-6.

Figure 3-6. RStudio Packages pane

Discussion
Installing a package locally is the first step toward using it. If you are installing packages outside of RStudio, the
installer may prompt you for a mirror site from which it can download the package files. It will then display a
list of CRAN mirror sites. The top CRAN mirror is 0-Cloud. This is typically the best option, as it connects you
to a globally mirrored content delivery network (CDN) sponsored by RStudio. If you want to select a different
mirror, choose one geographically close to you.

The official CRAN server is a relatively modest machine generously hosted by the Department of Statistics and
Mathematics at WU Wien, Vienna, Austria. If every R user downloaded from the official server, it would buckle
under the load, so there are numerous mirror sites around the globe. In RStudio the default CRAN server is set to
be the RStudio CRAN mirror. The RStudio CRAN mirror is accessible to all R users, not just those running the
RStudio IDE.

If the new package depends upon other packages that are not already installed locally, then the R installer will
automatically download and install those required packages. This is a huge benefit that frees you from the
tedious task of identifying and resolving those dependencies.

There is a special consideration when you are installing on Linux or Unix. You can install the package either in
the systemwide library or in your personal library. Packages in the systemwide library are available to everyone;
packages in your personal library are (normally) used only by you. So, a popular, well-tested package would
likely go in the systemwide library, whereas an obscure or untested package would go into your personal library.

By default, install.packages assumes you are performing a systemwide install. If you do not have sufficient
user permissions to install in the systemwide library location, R will ask if you would like to install the package
in a user library. The default that R suggests is typically a good choice. However, if you would like to control the
path for your library location, you can use the lib argument of the install.packages function:

install.packages("packagename", lib = "~/lib/R") 

Or you can change your default CRAN server as described in “Setting or Changing a Default CRAN Mirror”.



See Also
See “Finding Relevant Functions and Packages” for ways to find relevant packages and “Accessing the Functions
in a Package” for using a package after installing it.

See also “Setting or Changing a Default CRAN Mirror”.

Installing a Package from GitHub

Problem
You’ve found an interesting package you’d like to try. However, the author has not yet published the package on
CRAN, but has published it on GitHub. You’d like to install the package directly from GitHub.

Solution
Ensure you have the devtools package installed and loaded:

install.packages("devtools") 

library(devtools)

Then use install_github and the name of the GitHub repository to install directly from GitHub. For example,
to install Thomas Lin Pederson’s tidygraph package, you would execute the following:

install_github("thomasp85/tidygraph")

Discussion
The devtools package contains helper functions for installing R packages from remote repositories, like
GitHub. If a package has been built as an R package and then hosted on GitHub, you can install the package
using the install_github function by passing the GitHub username and repository name as a string parameter.
You can determine the GitHub username and repo name from the GitHub URL, or from the top of the GitHub
page, as in the example shown in Figure 3-7.

Figure 3-7. Example GitHub project page

Setting or Changing a Default CRAN Mirror

Problem



You are downloading packages. You want to set or change your default CRAN mirror.

Solution
In RStudio, you can change your default CRAN mirror from the RStudio Preferences menu shown in Figure 3-8.

Figure 3-8. RStudio package preferences

If you are running R without RStudio, you can change your CRAN mirror using the following solution. This
solution assumes you have an .Rprofile, as described in “Customizing R Startup”:

1. Call the chooseCRANmirror function:

chooseCRANmirror()

R will present a list of CRAN mirrors.

2. Select a CRAN mirror from the list and press OK.



3. To get the URL of the mirror, look at the first element of the repos option:

options("repos")[[1]][1]

4. Add this line to your .Rprofile file. If you want the RStudio CRAN mirror, you would do the following:

options(repos = c(CRAN = "http://cran.rstudio.com"))

Or you could use the URL of another CRAN mirror.

Discussion
When you install packages, you probably use the same CRAN mirror each time (namely, the mirror closest to
you or the RStudio mirror) because RStudio does not prompt you every time you load a package; it simply uses
the setting from the Preferences menu. You may want to change that mirror to use a different mirror that’s closer
to you or controlled by your employer. Use this solution to change your repo so that every time you start R or
RStudio, you will be using your desired repo.

The repos option is the name of your default mirror. The chooseCRANmirror function has the important side
effect of setting the repos option according to your selection. The problem is that R forgets the setting when it
exits, leaving no permanent default. By setting repos in your .Rprofile, you restore the setting every time R
starts.

See Also
See “Customizing R Startup” for more about the .Rprofile file and the options function.

Running a Script

Problem
You captured a series of R commands in a text file. Now you want to execute them.

Solution
The source function instructs R to read the text file and execute its contents:

source("myScript.R")

Discussion
When you have a long or frequently used piece of R code, capture it inside a text file. That lets you easily rerun
the code without having to retype it. Use the source function to read and execute the code, just as if you had
typed it into the R console.

Suppose the file hello.R contains this one familiar greeting:

print("Hello, World!")

Then sourcing the file will execute the file’s contents:

source("hello.R") 

#> [1] "Hello, World!"



Setting echo=TRUE will echo the script’s lines before they are executed, with the R prompt shown before each
line:

source("hello.R", echo = TRUE) 

#> 

#> > print("Hello, World!") 

#> [1] "Hello, World!"

See Also
See “Typing Less and Accomplishing More” for running blocks of R code inside the GUI.

Running a Batch Script

Problem
You are writing a command script, such as a shell script in Unix or macOS or a BAT script in Windows. Inside
your script, you want to execute an R script.

Solution
Run the R program with the CMD BATCH subcommand, giving the script name and the output filename:

R CMD BATCH scriptfile outputfile 

If you want the output sent to stdout or if you need to pass command-line arguments to the script, consider the
Rscript command instead:

Rscript scriptfile arg1 arg2 arg3 

Discussion
R is normally an interactive program, one that prompts the user for input and then displays the results.
Sometimes you want to run R in batch mode, reading commands from a script. This is especially useful inside
shell scripts, such as scripts that include a statistical analysis.

The CMD BATCH subcommand puts R into batch mode, reading from scriptfile and writing to outputfile. It
does not interact with a user.

You will likely use command-line options to adjust R’s batch behavior to your circumstances. For example, using
--quiet silences the startup messages that would otherwise clutter the output:

R CMD BATCH --quiet myScript.R results.out

Other useful options in batch mode include the following:

--slave

Like --quiet, but it makes R even more silent by inhibiting echo of the input.

--no-restore

At startup, do not restore the R workspace. This is important if your script expects R to begin with an empty
workspace.

--no-save



At exit, do not save the R workspace. Otherwise, R will save its workspace and overwrite the .RData file in
the working directory.

--no-init-file

Do not read either the .Rprofile or the ~/.Rprofile file.

The CMD BATCH subcommand normally calls proc.time when your script completes, showing the execution
time. If this annoys you, then end your script by calling the q function with runLast=FALSE, which will prevent
the call to proc.time.

The CMD BATCH subcommand has two limitations: the output always goes to a file, and you cannot easily pass
command-line arguments to your script. If either limitation is a problem, consider using the Rscript program
that comes with R. The first command-line argument is the script name, and the remaining arguments are given
to the script:

Rscript scriptfile.R arg1 arg2 arg3 

Inside the script, you can access the command-line arguments by calling commandArgs, which returns the
arguments as a vector of strings:

argv <- commandArgs(TRUE)

The Rscript program takes the same command-line options as CMD BATCH, which were just described.

Output is written to stdout, which R inherits from the calling shell script, of course. You can redirect the output
to a file by using the normal redirection:

Rscript --slave scriptfile.R arg1 arg2 arg3 >results.out 

Here is a small R script, arith.R, that takes two command-line arguments and performs four arithmetic
operations on them:

argv <- commandArgs(TRUE) 

x <- as.numeric(argv[1]) 

y <- as.numeric(argv[2]) 

 

cat("x =", x, "\n") 

cat("y =", y, "\n") 

cat("x + y = ", x + y, "\n") 

cat("x - y = ", x - y, "\n") 

cat("x * y = ", x * y, "\n") 

cat("x / y = ", x / y, "\n")

The script is invoked like this:

Rscript arith.R 2 3.1415

which produces the following output:

x = 2 

y = 3.1415 

x + y = 5.1415 

x - y = -1.1415 

x * y = 6.283 

x / y = 0.6366385

On Linux, Unix, or Mac, you can make the script fully self-contained by placing a #! line at the head with the
path to the Rscript program. Suppose that Rscript is installed in /usr/bin/Rscript on your system. Adding this



line to arith.R makes it a self-contained script:

#!/usr/bin/Rscript --slave 

 

argv <- commandArgs(TRUE) 

x <- as.numeric(argv[1]) 

. 

. (etc.) 

.

At the shell prompt, we mark the script as executable:

chmod +x arith.R

Now we can invoke the script directly without the Rscript prefix:

arith.R 2 3.1415

See Also
See “Running a Script” for running a script from within R.

Locating the R Home Directory

Problem
You need to know the R home directory, which is where the configuration and installation files are kept.

Solution
R creates an environment variable called R_HOME that you can access by using the Sys.getenv function:

Sys.getenv("R_HOME") 

#> [1] "/Library/Frameworks/R.framework/Resources"

Discussion
Most users will never need to know the R home directory. But system administrators or sophisticated users must
know it in order to check or change the R installation files.

When R starts, it defines a system environment variable (not an R variable) called R_HOME, which is the path to
the R home directory. The Sys.getenv function can retrieve the system environment variable value. Here are
examples by platform. The exact value reported will almost certainly be different on your own computer:

On Windows:

> Sys.getenv("R_HOME") 

[1] "C:/PROGRA~1/R/R-34~1.4"

On macOS:

> Sys.getenv("R_HOME") 

[1] "/Library/Frameworks/R.framework/Resources"

On Linux or Unix:

> Sys.getenv("R_HOME") 

[1] "/usr/lib/R"



The Windows result looks funky because R reports the old, DOS-style compressed pathname. The full, user-
friendly path would be C:\Program Files\R\R-3.4.4 in this case.

On Unix and macOS, you can also run the R program from the shell and use the RHOME subcommand to display
the home directory:

R RHOME 

# /usr/lib/R

Note that the R home directory on Unix and macOS contains the installation files but not necessarily the R
executable file. The executable could be in /usr/bin while the R home directory is, for example, /usr/lib/R.

Customizing R Startup

Problem
You want to customize your R sessions by, for instance, changing configuration options or preloading packages.

Solution
Create a script called .Rprofile that customizes your R session. R will execute the .Rprofile script when it starts.
The placement of .Rprofile depends upon your platform:

macOS, Linux, or Unix
Save the file in your home directory (~/.Rprofile).

Windows
Save the file in your Documents directory.

Discussion
R executes profile scripts when it starts allowing you to tweak the R configuration options.

You can create a profile script called .Rprofile and place it in your home directory (macOS, Linux, Unix) or your
Documents directory (Windows). The script can call functions to customize your sessions, such as this simple
script that sets two environment variables and sets the console prompt to R>:

Sys.setenv(DB_USERID = "my_id") 

Sys.setenv(DB_PASSWORD = "My_Password!") 

options(prompt = "R> ")

The profile script executes in a bare-bones environment, so there are limits on what it can do. Trying to open a
graphics window will fail, for example, because the graphics package is not yet loaded. Also, you should not
attempt long-running computations.

You can customize a particular project by putting an .Rprofile file in the directory that contains the project files.
When R starts in that directory, it reads the local .Rprofile file; this allows you to do project-specific
customizations (e.g., setting your console prompt to a specific project name). However, if R finds a local profile,
then it does not read the global profile. That can be annoying, but it’s easily fixed: simply source the global
profile from the local profile. On Unix, for instance, this local profile would execute the global profile first and
then execute its local material:

source("~/.Rprofile") 

# 

# ... remainder of local .Rprofile ... 

#



Setting options
Some customizations are handled via calls to the options function, which sets the R configuration options.
There are many such options, and the R help page for options lists them all:

help(options)

Here are some examples:

browser="path"

Path of default HTML browser

digits=n

Suggested number of digits to print when printing numeric values

editor="path"

Default text editor

prompt="string"

Input prompt

repos="url"

URL for default repository for packages

warn=n

Controls display of warning messages

Reproducibility
Many of us use certain packages over and over in our scripts (for example, the tidyverse packages). It is
tempting to load these packages in your .Rprofile so that they are always available without you typing anything.
As a matter of fact, this advice was given in the first edition of this book. However, the downside of loading
packages in your .Rprofile is reproducibility. If someone else (or you, on another machine) tries to run your
script, they may not realize that you had loaded packages in your .Rprofile. Your script might not work for them,
depending on which packages they load. So while it might be convenient to load packages in .Rprofile, you will
play better with collaborators (and your future self) if you explicitly call library(packagename) in your R
scripts.

Another issue with reproducibility is when users change default behaviors of R inside their .Rprofile. An
example of this would be setting options(stringsAsFactors = FALSE). This is appealing, as many users
would prefer this default. However, if someone runs the script without this option being set, they will get
different results or not be able to run the script at all. This can lead to considerable frustration.

As a guideline, you should primarily put things in the .Rprofile that:

Change the look and feel of R (e.g., digits).

Are specific to your local environment (e.g., browser).

Specifically need to be outside of your scripts (i.e., database passwords).

Do not change the results of your analysis.

Startup sequence
Here is a simplified overview of what happens when R starts (type help(Startup) to see the full details):

1. R executes the Rprofile.site script. This is the site-level script that enables system administrators to
override default options with localizations. The script’s full path is R_HOME/etc/Rprofile.site. (R_HOME



is the R home directory; see “Locating the R Home Directory”.)

The R distribution does not include an Rprofile.site file. Rather, the system administrator creates one if it is
needed.

2. R executes the .Rprofile script in the working directory; or, if that file does not exist, executes the
.Rprofile script in your home directory. This is the user’s opportunity to customize R for their own
purposes. The .Rprofile script in the home directory is used for global customizations. The .Rprofile script
in a lower-level directory can perform specific customizations when R is started there—for instance,
customizing R when started in a project-specific directory.

3. R loads the workspace saved in .RData, if that file exists in the working directory. R saves your
workspace in the file called .RData when it exits. It reloads your workspace from that file, restoring access
to your local variables and functions. You can disable this behavior in RStudio through Tools → Global
Options. We recommend you disable this option and always explicitly save and load your work.

4. R executes the .First function, if you defined one. The .First function is a useful place for users or
projects to define startup initialization code. You can define it in your .Rprofile or in your workspace.

5. R executes the .First.sys function. This step loads the default packages. The function is internal to R
and not normally changed by either users or administrators.

Note that R does not load the default packages until the final step, when it executes the .First.sys function.
Before that, only the base package has been loaded. This is a key point, because it means the previous steps
cannot assume that packages other than the base are available. It also explains why trying to open a graphics
window in your .Rprofile script fails: the graphics packages aren’t loaded yet.

See Also
See the R help page for Startup (help(Startup)) and the R help page for options (help(options)). See
“Accessing the Functions in a Package” for more about loading packages.

Using R and RStudio in the Cloud

Problem
You want to run R and RStudio in a cloud environment.

Solution
The most straightforward way to use R in the cloud is to use the RStudio.cloud web service. To use the service,
point your web browser to http://rstudio.cloud and set up an account, or log in with your Google or GitHub
credentials.

Discussion
After you log in, click New Project to begin a new RStudio session in a new workspace. You’ll be greeted by the
familiar RStudio interface shown in Figure 3-9.

Keep in mind that as of this writing the RStudio.cloud service is in alpha testing and may not be 100% stable.
Your work will persist after you log off. However, as with any system, it is a good idea to ensure you have
backups of all the work you do. A common work pattern is to connect your project in RStudio.cloud to a GitHub
repository and push your changes frequently from Rstudio.cloud to GitHub. This workflow has been used
significantly in the writing of this book.

Use of Git and GitHub is beyond the scope of this book, but if you are interested in learning more, we highly
recommend Jenny Bryan’s web book Happy Git and GitHub for the useR.

http://rstudio.cloud/
http://happygitwithr.com/


In its current alpha state, RStudio.cloud limits each session to 1 GB of RAM and 3 GB of drive space—so it’s a
great platform for learning and teaching but might not (yet) be the platform on which you want to build a
commercial data science laboratory. RStudio has expressed its intent to offer greater processing power and
storage as part of a paid tier of service as the platform matures.

Figure 3-9. RStudio.cloud

If you need more computing power than offered by RStudio.cloud and you are willing to pay for the services,
both Amazon Web Services (AWS) and Google Cloud Platform offer cloud-based RStudio offerings. Other cloud
platforms that support Docker, such as Digital Ocean, are also reasonable options for cloud-hosted RStudio.

https://amzn.to/2wUEhQV
http://bit.ly/2WHWGzW
https://do.co/2WJ43C1


Chapter 4. Input and Output

All statistical work begins with data, and most data is stuck inside files and databases. Dealing with input is
probably the first step of implementing any significant statistical project.

All statistical work ends with reporting numbers back to a client, even if you are the client. Formatting and
producing output is probably the climax of your project.

Casual R users can solve their input problems by using basic readr package functions such as read_csv to read
CSV files and read_delim to read more complicated, tabular data. They can use print, cat, and format to
produce simple reports.

Users with heavy-duty input/output (I/O) needs are strongly encouraged to read the R Data Import/Export guide,
available on CRAN. This manual includes important information on reading data from sources such as
spreadsheets, binary files, other statistical systems, and relational databases.

Entering Data from the Keyboard

Problem
You have a small amount of data—too small to justify the overhead of creating an input file. You just want to
enter the data directly into your workspace.

Solution
For very small datasets, enter the data as literals using the c constructor for vectors:

scores <- c(61, 66, 90, 88, 100)

Discussion
When working on a simple problem, you may not want the hassle of creating and then reading a data file outside
of R. You may just want to enter the data into R. The easiest way to do so is by using the c constructor for
vectors, as shown in the Solution.

You can use this approach for data frames, too, by entering each variable (column) as a vector:

points <- data.frame( 

  label = c("Low", "Mid", "High"), 

  lbound = c(0, 0.67,   1.64), 

  ubound = c(0.67, 1.64,   2.33) 

)

See Also
For cutting and pasting data from another application into R, be sure to look at datapasta, a package that
provides RStudio add-ins that make pasting data into your scripts easier.

Printing Fewer Digits (or More Digits)

Problem
Your output contains too many digits, or too few digits. You want to print fewer, or more.

http://cran.r-project.org/doc/manuals/R-data.pdf
https://github.com/MilesMcBain/datapasta


Solution
For print, the digits parameter can control the number of printed digits.

For cat, use the format function (which also has a digits parameter) to alter the formatting of numbers.

Discussion
R normally formats floating-point output to have seven digits. This works well most of the time but can become
annoying when you have lots of numbers to print in a small space. It gets downright misleading when there are
only a few significant digits in your numbers and R still prints seven.

The print function lets you vary the number of printed digits using the digits parameter:

print(pi, digits = 4) 

#> [1] 3.142 

print(100 * pi, digits = 4) 

#> [1] 314.2

The cat function does not give you direct control over formatting. Instead, use the format function to format
your numbers before calling cat:

cat(pi, "\n") 

#> 3.14 

cat(format(pi, digits = 4), "\n") 

#> 3.142

This is R, so both print and format will format entire vectors at once:

print(pnorm(-3:3), digits = 2) 

#> [1] 0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987 

format(pnorm(-3:3), digits = 2) 

#> [1] "0.0013" "0.0228" "0.1587" "0.5000" "0.8413" "0.9772" "0.9987"

Notice that both print and format format the vector elements consistently, finding the number of significant
digits necessary to format the smallest number and then formatting all numbers to have the same width (though
not necessarily the same number of digits). This is extremely useful for formatting an entire table:

q <- seq(from = 0, to = 3, by = 0.5) 

tbl <- data.frame(Quant = q, 

                  Lower = pnorm(-q), 

                  Upper = pnorm(q)) 

tbl                                # Unformatted print 

#>   Quant   Lower Upper 

#> 1   0.0 0.50000 0.500 

#> 2   0.5 0.30854 0.691 

#> 3   1.0 0.15866 0.841 

#> 4   1.5 0.06681 0.933 

#> 5   2.0 0.02275 0.977 

#> 6   2.5 0.00621 0.994 

#> 7   3.0 0.00135 0.999 

print(tbl, digits = 2)             # Formatted print: fewer digits 

#>   Quant  Lower Upper 

#> 1   0.0 0.5000  0.50 

#> 2   0.5 0.3085  0.69 

#> 3   1.0 0.1587  0.84 

#> 4   1.5 0.0668  0.93 

#> 5   2.0 0.0228  0.98 

#> 6   2.5 0.0062  0.99 

#> 7   3.0 0.0013  1.00



As you can see, when an entire vector or column is formatted, each element in the vector or column is formatted
the same way.

You can also alter the format of all output by using the options function to change the default for digits:

pi 

#> [1] 3.14 

options(digits = 15) 

pi 

#> [1] 3.14159265358979

But this is a poor choice in our experience, since it also alters the output from R’s built-in functions, and that
alteration will likely be unpleasant.

See Also
Other functions for formatting numbers include sprintf and formatC; see their help pages for details.

Redirecting Output to a File

Problem
You want to redirect the output from R to a file instead of your console.

Solution
You can redirect the output of the cat function by using its file argument:

cat("The answer is", answer, "\n", file = "filename.txt")

Use the sink function to redirect all output from both print and cat. Call sink with a filename argument to
begin redirecting console output to that file. When you are done, use sink with no argument to close the file and
resume output to the console:

sink("filename")          # Begin writing output to file 

 

# ... other session work ... 

 

sink()                    # Resume writing output to console 

Discussion
The print and cat functions normally write their output to your console. The cat function writes to a file if you
supply a file argument, which can be either a filename or a connection. The print function cannot redirect its
output, but the sink function can force all output to a file. A common use for sink is to capture the output of an
R script:

sink("script_output.txt")   # Redirect output to file 

source("script.R")          # Run the script, capturing its output 

sink()                      # Resume writing output to console

If you are repeatedly cating items to one file, be sure to set append=TRUE. Otherwise, each call to cat will
simply overwrite the file’s contents:

cat(data, file = "analysisReport.out") 

cat(results, file = "analysisRepart.out", append = TRUE) 



cat(conclusion, file = "analysisReport.out", append = TRUE)

Hardcoding filenames like this is a tedious and error-prone process. Did you notice that the filename is
misspelled in the second line? Instead of hardcoding the filename repeatedly, we suggest opening a connection to
the file and writing your output to the connection:

con <- file("analysisReport.out", "w") 

cat(data, file = con) 

cat(results, file = con) 

cat(conclusion, file = con) 

close(con)

(You don’t need append=TRUE when writing to a connection because append is the default with connections.)
This technique is especially valuable inside R scripts because it makes your code more reliable and more
maintainable.

Listing Files

Problem
You want an R vector that is a listing of the files in your working directory.

Solution
The list.files function shows the contents of your working directory:

list.files() 

#>  [1] "_book"                            "_bookdown_files" 

#>  [3] "_bookdown.yml"                    "_common.R" 

#>  [5] "_main.log"                        "_main.rds" 

#>  [7] "_output.yml"                      "01_GettingStarted_cache" 

#>  [9] "01_GettingStarted.md"             "01_GettingStarted.Rmd" 

#> # etc.

Discussion
This function is terribly handy to grab the names of all files in a subdirectory. You can use it to refresh your
memory of your filenames or, more likely, as input into another process, like importing data files.

You can pass list.files a path and a pattern to show files in a specific path and matching a specific regular
expression pattern:

list.files(path = 'data/') # show files in a directory 

#>  [1] "ac.rdata"               "adf.rdata" 

#>  [3] "anova.rdata"            "anova2.rdata" 

#>  [5] "bad.rdata"              "batches.rdata" 

#>  [7] "bnd_cmty.Rdata"         "compositePerf-2010.csv" 

#>  [9] "conf.rdata"             "daily.prod.rdata" 

#> [11] "data1.csv"              "data2.csv" 

#> [13] "datafile_missing.tsv"   "datafile.csv" 

#> [15] "datafile.fwf"           "datafile.qsv" 

#> [17] "datafile.ssv"           "datafile.tsv" 

#> [19] "datafile1.ssv"          "df_decay.rdata" 

#> [21] "df_squared.rdata"       "diffs.rdata" 

#> [23] "example1_headless.csv"  "example1.csv" 

#> [25] "excel_table_data.xlsx"  "get_USDA_NASS_data.R" 

#> [27] "ibm.rdata"              "iris_excel.xlsx" 

#> [29] "lab_df.rdata"           "movies.sas7bdat" 

#> [31] "nacho_data.csv"         "NearestPoint.R" 

#> [33] "not_a_csv.txt"          "opt.rdata" 

#> [35] "outcome.rdata"          "pca.rdata" 



#> [37] "pred.rdata"             "pred2.rdata" 

#> [39] "sat.rdata"              "singles.txt" 

#> [41] "state_corn_yield.rds"   "student_data.rdata" 

#> [43] "suburbs.txt"            "tab1.csv" 

#> [45] "tls.rdata"              "triples.txt" 

#> [47] "ts_acf.rdata"           "workers.rdata" 

#> [49] "world_series.csv"       "xy.rdata" 

#> [51] "yield.Rdata"            "z.RData" 

list.files(path = 'data/', pattern = '\\.csv') 

#> [1] "compositePerf-2010.csv" "data1.csv" 

#> [3] "data2.csv"              "datafile.csv" 

#> [5] "example1_headless.csv"  "example1.csv" 

#> [7] "nacho_data.csv"         "tab1.csv" 

#> [9] "world_series.csv"

To see all the files in your subdirectories, too, use:

list.files(recursive = T)

A possible “gotcha” of list.files is that it ignores hidden files—typically, any file whose name begins with a
dot. If you don’t see the file you expected to see, try setting all.files=TRUE:

list.files(path = 'data/', all.files = TRUE) 

#>  [1] "."                      ".." 

#>  [3] ".DS_Store"              ".hidden_file.txt" 

#>  [5] "ac.rdata"               "adf.rdata" 

#>  [7] "anova.rdata"            "anova2.rdata" 

#>  [9] "bad.rdata"              "batches.rdata" 

#> [11] "bnd_cmty.Rdata"         "compositePerf-2010.csv" 

#> [13] "conf.rdata"             "daily.prod.rdata" 

#> [15] "data1.csv"              "data2.csv" 

#> [17] "datafile_missing.tsv"   "datafile.csv" 

#> [19] "datafile.fwf"           "datafile.qsv" 

#> [21] "datafile.ssv"           "datafile.tsv" 

#> [23] "datafile1.ssv"          "df_decay.rdata" 

#> [25] "df_squared.rdata"       "diffs.rdata" 

#> [27] "example1_headless.csv"  "example1.csv" 

#> [29] "excel_table_data.xlsx"  "get_USDA_NASS_data.R" 

#> [31] "ibm.rdata"              "iris_excel.xlsx" 

#> [33] "lab_df.rdata"           "movies.sas7bdat" 

#> [35] "nacho_data.csv"         "NearestPoint.R" 

#> [37] "not_a_csv.txt"          "opt.rdata" 

#> [39] "outcome.rdata"          "pca.rdata" 

#> [41] "pred.rdata"             "pred2.rdata" 

#> [43] "sat.rdata"              "singles.txt" 

#> [45] "state_corn_yield.rds"   "student_data.rdata" 

#> [47] "suburbs.txt"            "tab1.csv" 

#> [49] "tls.rdata"              "triples.txt" 

#> [51] "ts_acf.rdata"           "workers.rdata" 

#> [53] "world_series.csv"       "xy.rdata" 

#> [55] "yield.Rdata"            "z.RData"

If you just want to see which files are in a directory and not use the filenames in a procedure, the easiest way is
to open the Files pane in the lower-right corner of RStudio. But keep in mind that the RStudio Files pane hides
files that start with a dot, as you can see in Figure 4-1.



Figure 4-1. RStudio Files pane

See Also
R has other handy functions for working with files; see help(files).

Dealing with “Cannot Open File” in Windows

Problem
You are running R on Windows, and you are using filenames such as C:\data\sample.txt. R says it cannot open a
file, but you know the file does exist.

Solution
The backslashes in the filepath are causing trouble. You can solve this problem in one of two ways:

Change the backslashes to forward slashes: "C:/data/sample.txt".

Double the backslashes: "C:\\data\\sample.txt".

Discussion
When you open a file in R, you give the filename as a character string. Problems arise when the name contains
backslashes (\) because backslashes have a special meaning inside strings. You’ll probably get something like
this:

samp <- read_csv("C:\Data\sample-data.csv") 

#> Error: '\D' is an unrecognized escape in character string starting ""C:\D"

R escapes every character that follows a backslash and then removes the backslashes. That leaves a meaningless
filepath, such as C:Datasample-data.csv in this example.

The simple solution is to use forward slashes instead of backslashes. R leaves the forward slashes alone, and
Windows treats them just like backslashes. Problem solved:



samp <- read_csv("C:/Data/sample-data.csv")

An alternative solution is to double the backslashes, since R replaces two consecutive backslashes with a single
backslash:

samp <- read_csv("C:\\Data\\sample-data.csv")

Reading Fixed-Width Records

Problem
You are reading data from a file of fixed-width records: records whose data items occur at fixed boundaries.

Solution
Use the read_fwf function from the readr package (which is part of the tidyverse). The main arguments are the
filename and the description of the fields:

library(tidyverse) 

records <- read_fwf("myfile.txt", 

                    fwf_cols(col1 = 10, 

                             col2 = 7)) 

records

This form uses the fwf_cols parameter to pass column names and widths to the function. You can also pass
column parameters in other ways, as discussed next.

Discussion
For reading data into R, we highly recommend the readr package. There are Base R functions for reading in text
files, but readr improves on these base functions with faster performance, better defaults, and more flexibility.

Suppose we want to read an entire file of fixed-width records, such as fixed-width.txt, shown here:

Fisher    R.A.      1890 1962 

Pearson   Karl      1857 1936 

Cox       Gertrude  1900 1978 

Yates     Frank     1902 1994 

Smith     Kirstine  1878 1939

We need to know the column widths. In this case the columns are:

Last name, 10 characters

First name, 10 characters

Year of birth, 5 characters

Year of death, 5 characters

There are five different ways to define the columns using read_fwf. Pick the one that’s easiest to use (or
remember) in your situation:

read_fwf can try to guess your column widths if there is empty space between the columns, with the
fwf_empty option:

file <- "./data/datafile.fwf" 

t1 <- read_fwf(file, 

          fwf_empty(file, 

          col_names = c("last", "first", "birth", "death"))) 



#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> )

You can define each column by a vector of widths followed by a vector of names with fwf_widths:

t2 <- read_fwf(file, fwf_widths(c(10, 10, 5, 4), 

                                c("last", "first", "birth", "death"))) 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> )

The columns can be defined with fwf_cols, which takes a series of column names followed by the column
widths:

t3 <- 

  read_fwf("./data/datafile.fwf", 

           fwf_cols( 

             last = 10, 

             first = 10, 

             birth = 5, 

             death = 5 

           )) 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> )

Each column can be defined by a beginning position and ending position with fwf_cols:

t4 <- read_fwf(file, fwf_cols( 

  last = c(1, 10), 

  first = c(11, 20), 

  birth = c(21, 25), 

  death = c(26, 30) 

)) 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> )

You can also define the columns with a vector of starting positions, a vector of ending positions, and a vector
of column names, with fwf_positions:

t5 <- read_fwf(file, fwf_positions( 

  c(1, 11, 21, 26), 

  c(10, 20, 25, 30), 

  c("first", "last", "birth", "death") 

)) 

#> Parsed with column specification: 

#> cols( 



#>   first = col_character(), 

#>   last = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> )

The read_fwf function returns a tibble, which is a tidyverse flavor of data frame. As is common with tidyverse
packages, read_fwf has a good selection of default assumptions that make it less tricky to use than some Base R
functions for importing data. For example, read_fwf will, by default, import character fields as characters, not
factors, which prevents much pain and consternation for users.

See Also
See “Reading Tabular Data Files” for more discussion of reading text files.

Reading Tabular Data Files

Problem
You want to read a text file that contains a table of whitespace-delimited data.

Solution
Use the read_table2 function from the readr package, which returns a tibble:

library(tidyverse) 

 

tab1 <- read_table2("./data/datafile.tsv") 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> ) 

tab1 

#> # A tibble: 5 x 4 

#>   last    first    birth death 

#>   <chr>   <chr>    <dbl> <dbl> 

#> 1 Fisher  R.A.      1890  1962 

#> 2 Pearson Karl      1857  1936 

#> 3 Cox     Gertrude  1900  1978 

#> 4 Yates   Frank     1902  1994 

#> 5 Smith   Kirstine  1878  1939

Discussion
Tabular data files are quite common. They are text files with a simple format:

Each line contains one record.

Within each record, fields (items) are separated by a whitespace delimiter, such as a space or tab.

Each record contains the same number of fields.

This format is more free-form than the fixed-width format because fields needn’t be aligned by position. Here is
the data file from “Reading Fixed-Width Records” in tabular format, using a tab character between fields:

last    first   birth   death 

Fisher  R.A.    1890    1962 

Pearson Karl    1857    1936 

Cox Gertrude    1900    1978 



Yates   Frank   1902    1994 

Smith   Kirstine    1878    1939

The read_table2 function is designed to make some good guesses about your data. It assumes your data has
column names in the first row, it guesses your delimiter, and it imputes your column types based on the first
1,000 records in your dataset. Next is an example with space-delimited data.

The source file looks like this:

last first birth death 

Fisher R.A. 1890 1962 

Pearson Karl 1857 1936 

Cox Gertrude 1900 1978 

Yates Frank 1902 1994 

Smith Kirstine 1878 1939

And read_table2 makes some rational guesses:

t <- read_table2("./data/datafile1.ssv") 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> ) 

print(t) 

#> # A tibble: 5 x 4 

#>   last    first    birth death 

#>   <chr>   <chr>    <dbl> <dbl> 

#> 1 Fisher  R.A.      1890  1962 

#> 2 Pearson Karl      1857  1936 

#> 3 Cox     Gertrude  1900  1978 

#> 4 Yates   Frank     1902  1994 

#> 5 Smith   Kirstine  1878  1939

read_table2 often guesses correctly. But as with other readr import functions, you can overwrite the defaults
with explicit parameters:

t <- 

  read_table2( 

    "./data/datafile1.ssv", 

    col_types = c( 

      col_character(), 

      col_character(), 

      col_integer(), 

      col_integer() 

    ) 

  )

If any field contains the string "NA", then read_table2 assumes that the value is missing and converts it to NA.
Your data file might employ a different string to signal missing values, in which case use the na parameter. The
SAS convention, for example, is that missing values are signaled by a single period (.). We can read such text
files using the na="." option. If we have a file named datafile_missing.tsv that has a missing value indicated
with a . in the last row:

last    first     birth   death 

Fisher  R.A.      1890    1962 

Pearson Karl      1857    1936 

Cox     Gertrude  1900    1978 

Yates   Frank     1902    1994 

Smith   Kirstine  1878    1939 

Cox     David     1924    .



we can import it like so:

t <- read_table2("./data/datafile_missing.tsv", na = ".") 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> ) 

t 

#> # A tibble: 6 x 4 

#>   last    first    birth death 

#>   <chr>   <chr>    <dbl> <dbl> 

#> 1 Fisher  R.A.      1890  1962 

#> 2 Pearson Karl      1857  1936 

#> 3 Cox     Gertrude  1900  1978 

#> 4 Yates   Frank     1902  1994 

#> 5 Smith   Kirstine  1878  1939 

#> 6 Cox     David     1924    NA

We’re huge fans of self-describing data: data files that describe their own contents. (A computer scientist would
say the file contains its own metadata.) The read_table2 function makes the default assumption that the first
line of your file contains a header line with column names. If your file does not have column names, you can
turn this off with the parameter col_names = FALSE.

An additional type of metadata supported by read_table2 is comment lines. Using the comment parameter you
can tell read_table2 which character distinguishes comment lines. The following file has a comment line at the
top that starts with #:

# The following is a list of statisticians 

last first birth death 

Fisher R.A. 1890 1962 

Pearson Karl 1857 1936 

Cox Gertrude 1900 1978 

Yates Frank 1902 1994 

Smith Kirstine 1878 1939

so we can import this file as follows:

t <- read_table2("./data/datafile.ssv", comment = '#') 

#> Parsed with column specification: 

#> cols( 

#>   last = col_character(), 

#>   first = col_character(), 

#>   birth = col_double(), 

#>   death = col_double() 

#> ) 

t 

#> # A tibble: 5 x 4 

#>   last    first    birth death 

#>   <chr>   <chr>    <dbl> <dbl> 

#> 1 Fisher  R.A.      1890  1962 

#> 2 Pearson Karl      1857  1936 

#> 3 Cox     Gertrude  1900  1978 

#> 4 Yates   Frank     1902  1994 

#> 5 Smith   Kirstine  1878  1939

read_table2 has many parameters for controlling how it reads and interprets the input file. See the help page (?
read_table2) or the readr vignette (vignette("readr")) for more details. If you’re curious about the
difference between read_table and read_table2, it’s in the help file… but the short answer is that read_table
is slightly less forgiving in file structure and line length.



See Also
If your data items are separated by commas, see “Reading from CSV Files” for reading a CSV file.

Reading from CSV Files

Problem
You want to read data from a comma-separated values (CSV) file.

Solution
The read_csv function from the readr package is a fast (and, according to the documentation, fun) way to read
CSV files. If your CSV file has a header line, use this:

library(tidyverse) 

 

tbl <- read_csv("datafile.csv")

If your CSV file does not contain a header line, set the col_names option to FALSE:

tbl <- read_csv("datafile.csv",  col_names = FALSE)

Discussion
The CSV file format is popular because many programs can import and export data in that format. This includes
R, Excel, other spreadsheet programs, many database managers, and most statistical packages. A CSV file is a
flat file of tabular data, where each line in the file is a row of data, and each row contains data items separated by
commas. Here is a very simple CSV file with three rows and three columns. The first line is a header line that
contains the column names, also separated by commas:

label,lbound,ubound 

low,0,0.674 

mid,0.674,1.64 

high,1.64,2.33

The read_csv function reads the data and creates a tibble. The function assumes that your file has a header line
unless told otherwise:

tbl <- read_csv("./data/example1.csv") 

#> Parsed with column specification: 

#> cols( 

#>   label = col_character(), 

#>   lbound = col_double(), 

#>   ubound = col_double() 

#> ) 

tbl 

#> # A tibble: 3 x 3 

#>   label lbound ubound 

#>   <chr>  <dbl>  <dbl> 

#> 1 low    0      0.674 

#> 2 mid    0.674  1.64 

#> 3 high   1.64   2.33

Observe that read_csv took the column names from the header line for the tibble. If the file did not contain a
header, then we would specify col_names=FALSE and R would synthesize column names for us (X1, X2, and X3 in
this case):



tbl <- read_csv("./data/example1.csv", col_names = FALSE) 

#> Parsed with column specification: 

#> cols( 

#>   X1 = col_character(), 

#>   X2 = col_character(), 

#>   X3 = col_character() 

#> ) 

tbl 

#> # A tibble: 4 x 3 

#>   X1    X2     X3 

#>   <chr> <chr>  <chr> 

#> 1 label lbound ubound 

#> 2 low   0      0.674 

#> 3 mid   0.674  1.64 

#> 4 high  1.64   2.33

Sometimes it’s convenient to put metadata in files. If this metadata starts with a common character, such as a
pound sign (#), we can use the comment=FALSE parameter to ignore metadata lines.

The read_csv function has many useful bells and whistles. A few of these options and their default values
include:

na = c("", "NA")

Indicates what values represent missing or NA values

comment = ""

Indicates which lines to ignore as comments or metadata

trim_ws = TRUE

Indicates whether to drop whitespace at the beginning and/or end of fields

skip = 0

Indicates the number of rows to skip at the beginning of the file

guess_max = min(1000, n_max)

Indicates the number of rows to consider when imputing column types

See the R help page, help(read_csv), for more details on all the available options.

If you have a data file that uses semicolons (;) for separators and commas for the decimal mark, as is common
outside of North America, you should use the function read_csv2, which is built for that very situation.

See Also
See “Writing to CSV Files”. See also the vignette for readr: vignette(readr).

Writing to CSV Files

Problem
You want to save a matrix or data frame in a file using the comma-separated values format.

Solution
The write_csv function from the tidyverse readr package can write a CSV file:

library(tidyverse) 

 

write_csv(df, path = "outfile.csv")



Discussion
The write_csv function writes tabular data to an ASCII file in CSV format. Each row of data creates one line in
the file, with data items separated by commas (,). We can start with the data frame tab1 we created previously
in “Reading Tabular Data Files”:

library(tidyverse) 

 

write_csv(tab1, "./data/tab1.csv")

This example creates a file called tab1.csv in the data directory, which is a subdirectory of the current working
directory. The file looks like this:

last,first,birth,death 

Fisher,R.A.,1890,1962 

Pearson,Karl,1857,1936 

Cox,Gertrude,1900,1978 

Yates,Frank,1902,1994 

Smith,Kirstine,1878,1939

write_csv has a number of parameters with typically very good defaults. Should you want to adjust the output,
here are a few parameters you can change, along with their defaults:

col_names = TRUE

Indicates whether or not the first row contains column names.

col_types = NULL

write_csv will look at the first 1,000 rows (changeable with guess_max) and make an informed guess as to
what data types to use for the columns. If you’d rather explicitly state the column types, you can do so by
passing a vector of column types to the parameter col_types.

na = c("", "NA")

Indicates what values represent missing or NA values.

comment = ""

Indicates which lines to ignore as comments or metadata.

trim_ws = TRUE

Indicates whether to drop whitespace at the beginning and/or end of fields.

skip = 0

Indicates the number of rows to skip at the beginning of the file.

guess_max = min(1000, n_max)

Indicates the number of rows to consider when guessing column types.

See Also
See “Getting and Setting the Working Directory” for more about the current working directory and “Saving and
Transporting Objects” for other ways to save data to files. For more info on reading and writing text files, see the
readr vignette: vignette(readr).

Reading Tabular or CSV Data from the Web



Problem
You want to read data directly from the web into your R workspace.

Solution
Use the read_csv or read_table2 functions from the readr package, using a URL instead of a filename. The
functions will read directly from the remote server:

library(tidyverse) 

 

berkley <- read_csv('http://bit.ly/barkley18', comment = '#') 

#> Parsed with column specification: 

#> cols( 

#>   Name = col_character(), 

#>   Location = col_character(), 

#>   Time = col_time(format = "") 

#> )

You can also open a connection using the URL and then read from the connection, which may be preferable for
complicated files.

Discussion
The web is a gold mine of data. You could download the data into a file and then read the file into R, but it’s
more convenient to read directly from the web. Give the URL to read_csv, read_table2, or another read
function in readr (depending upon the format of the data), and the data will be downloaded and parsed for you.
No fuss, no muss.

Aside from using a URL, this recipe is just like reading from a CSV file (see “Reading from CSV Files”) or a
complex file (“Reading Files with a Complex Structure”), so all the comments in those recipes apply here, too.

Remember that URLs work for FTP servers, not just HTTP servers. This means that R can also read data from
FTP sites using URLs:

tbl <- read_table2("ftp://ftp.example.com/download/data.txt")

See Also
See “Reading from CSV Files” and “Reading Files with a Complex Structure”.

Reading Data from Excel

Problem
You want to read data in from an Excel file.

Solution
The openxlsx package makes reading Excel files easy:

library(openxlsx) 

df1 <- read.xlsx(xlsxFile = "file.xlsx", 

                 sheet = 'sheet_name')

Discussion



The package openxlsx is a good choice for both reading and writing Excel files with R. If we’re reading in an
entire sheet, using the read.xlsx function is a simple option. We need only pass in a filename and, if desired,
the name of the sheet we want imported:

library(openxlsx) 

 

df1 <- read.xlsx(xlsxFile = "data/iris_excel.xlsx", 

                 sheet = 'iris_data') 

head(df1, 3) 

#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

#> 1          5.1         3.5          1.4         0.2  setosa 

#> 2          4.9         3.0          1.4         0.2  setosa 

#> 3          4.7         3.2          1.3         0.2  setosa

But openxlsx supports more complex workflows.

A common pattern is to read a named table out of an Excel file and into an R data frame. This is trickier because
the sheet we’re reading from may have values outside of the named table, but we want to only read in the named
table range. We can use the functions in openxlsx to get the location of a table, then read that range of cells into
a data frame.

First we load the entire workbook into R:

library(openxlsx) 

wb <- loadWorkbook("data/excel_table_data.xlsx")

Then we can use the getTables function to get the names and ranges of all the Excel tables in the input_data
sheet and select the one table we want. In this example the Excel table we are after is named example_table:

tables <- getTables(wb, 'input_data') 

table_range_str <- names(tables[tables == 'example_table']) 

table_range_refs <- strsplit(table_range_str, ':')[[1]] 

 

# use a regex to extract out the row numbers 

table_range_row_num <- gsub("[^0-9.]", "", table_range_refs) 

 

# extract out the column numbers 

table_range_col_num <- convertFromExcelRef(table_range_refs)

Now the vector col_vec contains the column numbers of our named table, while table_range_row_num
contains the row numbers of our named table. We can then use the read.xlsx function to pull in only the rows
and columns we are after:

df <- read.xlsx( 

  xlsxFile = "data/excel_table_data.xlsx", 

  sheet = 'input_data', 

  cols = table_range_col_num[1]:table_range_col_num[2], 

  rows = table_range_row_num[1]:table_range_row_num[2] 

)

While this may seem complicated, this design pattern can save a lot of hassle when sharing data with analysts
who are using highly structured Excel files that include named tables.

See Also
You can see the vignette for openxlsx by installing openxlsx and running vignette('Introduction',
package='openxlsx').

The readxl package is part of the tidyverse and provides fast, simple reading of Excel files. However, readxl
does not currently support named Excel tables.

https://readxl.tidyverse.org/


The writexl package is a fast and lightweight (no dependencies) package for writing Excel files (discussed in
“Writing a Data Frame to Excel”).

Writing a Data Frame to Excel

Problem
You want to write an R data frame to an Excel file.

Solution
The openxlsx package makes writing to Excel files relatively easy. While there are lots of options in openxlsx,
a typical pattern is to specify an Excel filename and a sheet name:

library(openxlsx) 

write.xlsx(df, 

           sheetName = "some_sheet", 

           file = "out_file.xlsx")

Discussion
The openxlsx package has a huge number of options for controlling many aspects of the Excel object model. We
can use it to set cell colors, define named ranges, and set cell outlines, for example. It also has a few helper
functions like write.xlsx that make simple tasks super easy.

When businesses work with Excel, it’s a good practice to keep all input data in an Excel file in a named Excel
table, which makes accessing the data easier and less error prone. However, if you use openxlsx to overwrite an
Excel table in one of the sheets, you run the risk that the new data may contain fewer rows than the Excel table it
replaces. That could cause errors, as you would end up with old data and new data in contiguous rows. The
solution is to first delete the existing Excel table, then add the new data back into the same location and assign
the new data to a named Excel table. To do this we need to use the more advanced Excel manipulation features of
openxlsx.

First we use loadWorkbook to read the Excel workbook into R in its entirety:

library(openxlsx) 

 

wb <- loadWorkbook("data/excel_table_data.xlsx")

Before we delete the table, we want to extract the table’s starting row and column:

tables <- getTables(wb, 'input_data') 

table_range_str <- names(tables[tables == 'example_table']) 

table_range_refs <- strsplit(table_range_str, ':')[[1]] 

 

# use a regex to extract out the starting row number 

table_row_num <- gsub("[^0-9.]", "", table_range_refs)[[1]] 

 

# extract out the starting column number 

table_col_num <- convertFromExcelRef(table_range_refs)[[1]]

Then we can use the removeTable function to remove the existing named Excel table:

removeTable(wb = wb, 

            sheet = 'input_data', 

            table = 'example_table')

http://bit.ly/2F90oYs


Now we can use writeDataTable to write the iris data frame (which comes with R) back into our workbook
object in R:

writeDataTable( 

  wb = wb, 

  sheet = 'input_data', 

  x = iris, 

  startCol = table_col_num, 

  startRow = table_row_num, 

  tableStyle = "TableStyleLight9", 

  tableName = 'example_table' 

)

At this point we could save the workbook and our table would be updated. However, it’s a good idea to save some
metadata in the workbook to let others know exactly when the data was refreshed. We can do this with the
writeData function, then save the workbook to a file and overwrite the original file. In this example, we’ll put
the metadata text in cell B:5, then save the workbook back to a file, overwriting the original:

writeData( 

  wb = wb, 

  sheet = 'input_data', 

  x = paste('example_table data refreshed on:', Sys.time()), 

  startCol = 2, 

  startRow = 5 

) 

 

# then save the workbook 

saveWorkbook(wb = wb, 

             file = "data/excel_table_data.xlsx", 

             overwrite = TRUE)

The resulting Excel sheet is shown in Figure 4-2.

Figure 4-2. Excel table and metadata text



See Also
You can see the vignette for openxlsx by installing openxlsx and running vignette('Introduction',
package='openxlsx').

The readxl package is part of the tidyverse and provides fast, simple reading of Excel files (discussed in
“Reading Data from Excel”).

The writexl package is a fast and lightweight (no dependencies) package for writing Excel files.

Reading Data from a SAS File

Problem
You want to read a Statistical Analysis Software (SAS) dataset into an R data frame.

Solution
The sas7bdat package supports reading .sas7bdat files into R:

library(haven) 

 

sas_movie_data <- read_sas("data/movies.sas7bdat")

Discussion
SAS V7 and beyond all support the .sas7bdat file format. The read_sas function in haven supports reading the
.sas7bdat file format, including variable labels. If your SAS file has variable labels, when they are imported into
R they will be stored in the label attributes of the data frame. These labels will not be printed by default. You
can see the labels by opening the data frame in RStudio, or by calling the attributes Base R function on each
column:

sapply(sas_movie_data, attributes) 

#> $Movie 

#> $Movie$label 

#> [1] "Movie" 

#> 

#> 

#> $Type 

#> $Type$label 

#> [1] "Type" 

#> 

#> 

#> $Rating 

#> $Rating$label 

#> [1] "Rating" 

#> 

#> 

#> $Year 

#> $Year$label 

#> [1] "Year" 

#> 

#> 

#> $Domestic__ 

#> $Domestic__$label 

#> [1] "Domestic $" 

#> 

#> $Domestic__$format.sas 

#> [1] "F" 

#> 

#> 

#> $Worldwide__ 

https://readxl.tidyverse.org/
http://bit.ly/2F90oYs


#> $Worldwide__$label 

#> [1] "Worldwide $" 

#> 

#> $Worldwide__$format.sas 

#> [1] "F" 

#> 

#> 

#> $Director 

#> $Director$label 

#> [1] "Director"

See Also
The sas7bdat package is much slower on large files than haven, but it has more elaborate support for file
attributes. If the SAS metadata is important to you, then you should investigate sas7bdat::read.sas7bdat.

Reading Data from HTML Tables

Problem
You want to read data from an HTML table on the web.

Solution
Use the read_html and html_table functions in the rvest package. To read all tables on the page, do the
following:

library(rvest) 

library(tidyverse) 

 

all_tables <- 

  read_html("url") %>% 

  html_table(fill = TRUE, header = TRUE) 

Note that rvest is installed when you run install.packages('tidyverse'), but it is not a core tidyverse
package. So, you must explicitly load the package.

Discussion
Web pages can contain several HTML tables. Calling read_html(url) and then piping that to html_table reads
all tables on the page and returns them in a list. This can be useful for exploring a page, but it’s annoying if you
want just one specific table. In that case, use extract2(n) to select the nth table.

For example, here we extract all tables from a Wikipedia article:

library(rvest) 

 

all_tables <- 

  read_html("https://en.wikipedia.org/wiki/Aviation_accidents_and_incidents") %>% 

  html_table(fill = TRUE, header = TRUE)

read_html puts all the tables from the HTML document into the output list. To pull a single table from that list,
you can use the function extract2 from the magrittr package:

out_table <- 

  all_tables %>% 

  magrittr::extract2(2) 

 

head(out_table) 



#>   Year Deaths[53] # of incidents[54] 

#> 1 2018      1,040            113[55] 

#> 2 2017        399                101 

#> 3 2016        629                102 

#> 4 2015        898                123 

#> 5 2014      1,328                122 

#> 6 2013        459                138

Two common parameters for the html_table function are fill=TRUE, which fills in missing values with NA, and
header=TRUE, which indicates that the first row contains the header names.

The following example loads all tables from the Wikipedia page entitled “World population”:

url <- 'http://en.wikipedia.org/wiki/World_population' 

tbls <- read_html(url) %>% 

  html_table(fill = TRUE, header = TRUE)

As it turns out, that page contains 23 tables (or things that html_table thinks might be tables):

length(tbls) 

#> [1] 23

In this example we care only about the sixth table (which lists the largest populations by country), so we can
either access that element using brackets—tbls[[6]]—or we can pipe it into the extract2 function from the
magrittr package:

library(magrittr) 

tbl <- tbls %>% 

  extract2(6) 

 

head(tbl, 2) 

#>   Rank Country / Territory    Population         Date % of world population 

#> 1    1       China[note 4] 1,397,280,000 May 11, 2019                 18.1% 

#> 2    2               India 1,347,050,000 May 11, 2019                 17.5% 

#>   Source 

#> 1   [84] 

#> 2   [85]

The extract2 function is a “pipe-friendly” version of the R [[i]] syntax: it pulls out a single list element from
a list. The extract function is analogous to [i], which returns element i from the original list into a list of
length 1.

In that table, columns 2 and 3 contain the country name and population, respectively:

tbl[, c(2, 3)] 

#>    Country / Territory    Population 

#> 1        China[note 4] 1,397,280,000 

#> 2                India 1,347,050,000 

#> 3        United States   329,181,000 

#> 4            Indonesia   265,015,300 

#> 5             Pakistan   212,742,631 

#> 6               Brazil   209,889,000 

#> 7              Nigeria   188,500,000 

#> 8           Bangladesh   166,532,000 

#> 9       Russia[note 5]   146,877,088 

#> 10               Japan   126,440,000

Right away, we can see problems with the data: China and Russia have [note 4] and [note 5] appended to
their names. On the Wikipedia website those were footnote references, but now they’re just bits of unwanted
text. Adding insult to injury, the population numbers have embedded commas, so you cannot easily convert them
to raw numbers. All these problems can be solved by some string processing, but each problem adds at least one
more step to the process.



This illustrates the main obstacle to reading HTML tables. HTML was designed for presenting information to
people, not to computers. When you “scrape” information off an HTML page, you get stuff that’s useful to
people but annoying to computers. If you ever have a choice, choose instead a computer-oriented data
representation such as XML, JSON, or CSV.

NOTE
The read_html(url) and html_table functions are part of the rvest package, which (by necessity) is large and complex. Any time
you pull data from a site designed for human readers, not machines, expect that you will have to do post-processing to clean up the
bits and pieces the machine leaves messy.

See Also
See “Installing Packages from CRAN” for downloading and installing packages such as the rvest package.

Reading Files with a Complex Structure

Problem
You are reading data from a file that has a complex or irregular structure.

Solution
Use the readLines function to read individual lines; then process them as strings to extract data items.

Alternatively, use the scan function to read individual tokens and use the argument what to describe the stream
of tokens in your file. The function can convert tokens into data and then assemble the data into records.

Discussion
Life would be simple and beautiful if all our data files were organized into neat tables with cleanly delimited
data. We could read those files using one of the functions in the readr package and get on with living.

Unfortunately, we don’t live in a land of rainbows and unicorn kisses.

You will eventually encounter a funky file format, and your job is to read the file’s contents into R.

The read.table and read.csv functions are file-oriented and probably won’t help. However, the readLines
and scan functions are useful here because they let you process the individual lines and even tokens of the file.

The readLines function is pretty simple. It reads lines from a file and returns them as a list of character strings:

lines <- readLines("input.txt")

You can limit the number of lines by using the n parameter, which gives the maximum number of lines to be
read:

lines <- readLines("input.txt", n = 10)       # Read 10 lines and stop

The scan function is much richer. It reads one token at a time and handles it according to your instructions. The
first argument is either a filename or a connection. The second argument is called what, and it describes the
tokens that scan should expect in the input file. The description is cryptic but quite clever:

what=numeric(0)

Interprets the next token as a number



what=integer(0)

Interprets the next token as an integer

what=complex(0)

Interprets the next token as a complex number

what=character(0)

Interprets the next token as a character string

what=logical(0)

Interprets the next token as a logical value

The scan function will apply the given pattern repeatedly until all data is read.

Suppose your file is simply a sequence of numbers, like this:

2355.09 2246.73 1738.74 1841.01 2027.85

Use what=numeric(0) to say, “My file is a sequence of tokens, each of which is a number”:

singles <- scan("./data/singles.txt", what = numeric(0)) 

singles 

#> [1] 2355.09 2246.73 1738.74 1841.01 2027.85

A key feature of scan is that the what can be a list containing several token types. The scan function will assume
your file is a repeating sequence of those types. Suppose your file contains triplets of data, like this:

15-Oct-87 2439.78 2345.63 16-Oct-87 2396.21 2207.73 

19-Oct-87 2164.16 1677.55 20-Oct-87 2067.47 1616.21 

21-Oct-87 2081.07 1951.76

Use a list to tell scan that it should expect a repeating, three-token sequence:

triples <- 

  scan("./data/triples.txt", 

       what = list(character(0), numeric(0), numeric(0))) 

triples 

#> [[1]] 

#> [1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87" 

#> 

#> [[2]] 

#> [1] 2439.78 2396.21 2164.16 2067.47 2081.07 

#> 

#> [[3]] 

#> [1] 2345.63 2207.73 1677.55 1616.21 1951.76

Give names to the list elements, and scan will assign those names to the data:

triples <- scan("./data/triples.txt", 

                what = list( 

                  date = character(0), 

                  high = numeric(0), 

                  low = numeric(0) 

                )) 

triples 

#> $date 

#> [1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87" 

#> 

#> $high 

#> [1] 2439.78 2396.21 2164.16 2067.47 2081.07 

#> 



#> $low 

#> [1] 2345.63 2207.73 1677.55 1616.21 1951.76

This can easily be turned into a data frame with the data.frame command:

df_triples <- data.frame(triples) 

df_triples 

#>        date    high     low 

#> 1 15-Oct-87 2439.78 2345.63 

#> 2 16-Oct-87 2396.21 2207.73 

#> 3 19-Oct-87 2164.16 1677.55 

#> 4 20-Oct-87 2067.47 1616.21 

#> 5 21-Oct-87 2081.07 1951.76

The scan function has many bells and whistles, but the following are especially useful:

n=number

Stop after reading this many tokens. (Default: stop at end of file.)

nlines=number

Stop after reading this many input lines. (Default: stop at end of file.)

skip=number

Number of input lines to skip before reading data.

na.strings=list

A list of strings to be interpreted as NA.

An Example
Let’s use this recipe to read a dataset from StatLib, the repository of statistical data and software maintained by
Carnegie Mellon University. Jeff Witmer contributed a dataset called wseries that shows the pattern of wins and
losses for every World Series since 1903. The dataset is stored in an ASCII file with 35 lines of comments
followed by 23 lines of data. The data itself looks like this:

1903  LWLlwwwW    1927  wwWW      1950  wwWW      1973  WLwllWW 

1905  wLwWW       1928  WWww      1951  LWlwwW    1974  wlWWW 

1906  wLwLwW      1929  wwLWW     1952  lwLWLww   1975  lwWLWlw 

1907  WWww        1930  WWllwW    1953  WWllwW    1976  WWww 

1908  wWLww       1931  LWwlwLW   1954  WWww      1977  WLwwlW 

. 

. (etc.) 

.

The data is encoded as follows: L = loss at home, l = loss on the road, W = win at home, w = win on the road. The
data appears in column order, not row order, which complicates our lives a bit.

Here is the R code for reading the raw data:

# Read the wseries dataset: 

#     - Skip the first 35 lines 

#     - Then read 23 lines of data 

#     - The data occurs in pairs: a year and a pattern (char string) 

# 

world.series <- scan( 

  "http://lib.stat.cmu.edu/datasets/wseries", 

  skip = 35, 

  nlines = 23, 

  what = list(year = integer(0), 

              pattern = character(0)), 

)



The scan function returns a list, so we get a list with two elements: year and pattern. The function reads from
left to right, but the dataset is organized by columns and so the years appear in a strange order:

world.series$year 

#>  [1] 1903 1927 1950 1973 1905 1928 1951 1974 1906 1929 1952 1975 1907 1930 

#> [15] 1953 1976 1908 1931 1954 1977 1909 1932 1955 1978 1910 1933 1956 1979 

#> [29] 1911 1934 1957 1980 1912 1935 1958 1981 1913 1936 1959 1982 1914 1937 

#> [43] 1960 1983 1915 1938 1961 1984 1916 1939 1962 1985 1917 1940 1963 1986 

#> [57] 1918 1941 1964 1987 1919 1942 1965 1988 1920 1943 1966 1989 1921 1944 

#> [71] 1967 1990 1922 1945 1968 1991 1923 1946 1969 1992 1924 1947 1970 1993 

#> [85] 1925 1948 1971 1926 1949 1972

We can fix that by sorting the list elements according to year:

perm <- order(world.series$year) 

world.series <- list(year    = world.series$year[perm], 

                     pattern = world.series$pattern[perm])

Now the data appears in chronological order:

world.series$year 

#>  [1] 1903 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 

#> [15] 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 

#> [29] 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 

#> [43] 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 

#> [57] 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 

#> [71] 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 

#> [85] 1988 1989 1990 1991 1992 1993 

 

world.series$pattern 

#>  [1] "LWLlwwwW" "wLwWW"    "wLwLwW"   "WWww"     "wWLww"    "WLwlWlw" 

#>  [7] "WWwlw"    "lWwWlW"   "wLwWlLW"  "wLwWw"    "wwWW"     "lwWWw" 

#> [13] "WWlwW"    "WWllWw"   "wlwWLW"   "WWlwwLLw" "wllWWWW"  "LlWwLwWw" 

#> [19] "WWwW"     "LwLwWw"   "LWlwlWW"  "LWllwWW"  "lwWLLww"  "wwWW" 

#> [25] "WWww"     "wwLWW"    "WWllwW"   "LWwlwLW"  "WWww"     "WWlww" 

#> [31] "wlWLLww"  "LWwwlW"   "lwWWLw"   "WWwlw"    "wwWW"     "WWww" 

#> [37] "LWlwlWW"  "WLwww"    "LWwww"    "WLWww"    "LWlwwW"   "LWLwwlw" 

#> [43] "LWlwlww"  "WWllwLW"  "lwWWLw"   "WLwww"    "wwWW"     "LWlwwW" 

#> [49] "lwLWLww"  "WWllwW"   "WWww"     "llWWWlw"  "llWWWlw"  "lwLWWlw" 

#> [55] "llWLWww"  "lwWWLw"   "WLlwwLW"  "WLwww"    "wlWLWlw"  "wwWW" 

#> [61] "WLlwwLW"  "llWWWlw"  "wwWW"     "wlWWLlw"  "lwLLWww"  "lwWWW" 

#> [67] "wwWLW"    "llWWWlw"  "wwLWLlw"  "WLwllWW"  "wlWWW"    "lwWLWlw" 

#> [73] "WWww"     "WLwwlW"   "llWWWw"   "lwLLWww"  "WWllwW"   "llWWWw" 

#> [79] "LWwllWW"  "LWwww"    "wlWWW"    "LLwlwWW"  "LLwwlWW"  "WWlllWW" 

#> [85] "WWlww"    "WWww"     "WWww"     "WWlllWW"  "lwWWLw"   "WLwwlW"

Reading from MySQL Databases

Problem
You want access to data stored in a MySQL database.

Solution
Follow these steps:

1. Install the RMySQL package on your computer and add a user and password.

2. Open a database connection using the DBI::dbConnect function.

3. Use dbGetQuery to initiate a SELECT and return the result sets.

4. Use dbDisconnect to terminate the database connection when you are done.



Discussion
This recipe requires that the RMySQL package be installed on your computer. That package requires, in turn, the
MySQL client software. If that software is not already installed and configured on your system, consult the
MySQL documentation or your system administrator.

Use the dbConnect function to establish a connection to the MySQL database. It returns a connection object that
is used in subsequent calls to RMySQL functions:

library(RMySQL) 

 

con <- dbConnect( 

    drv = RMySQL::MySQL(), 

    dbname = "your_db_name", 

    host = "your.host.com", 

    username = "userid", 

    password = "pwd" 

  ) 

The username, password, and host parameters are the same parameters used for accessing MySQL through the
mysql client program. The example given here shows them hardcoded into the dbConnect call, but actually that
is an ill-advised practice. It puts your password in a plain-text document, creating a security problem. It also
creates a major headache whenever your password or host changes, requiring you to hunt down the hardcoded
values. We strongly recommend using the security mechanism of MySQL instead. Version 8 of MySQL
introduces even more advanced security options, but currently these have not been built into the RMySQL client.
So, we recommend you use MySQL native passwords by setting default-authentication-
plugin=mysql_native_password in your MySQL configuration file, which is $HOME/.my.cnf on Unix and
C:\my.cnf on Windows. We use loose-local-infile=1 to ensure that we have permissions to write to the
database. Make sure the file is unreadable by anyone except you. The file is delimited into sections with markers
such as [mysqld] and [client]. Put connection parameters into the [client] section, so that your config file
will contain something like this:

[mysqld] 

default-authentication-plugin=mysql_native_password 

loose-local-infile=1 

 

[client] 

loose-local-infile=1 

user="jdl" 

password="password" 

host=127.0.0.1 

port=3306

Once the parameters are defined in the config file, you no longer need to supply them in the dbConnect call,
which then becomes much simpler:

con <- dbConnect( 

  drv = RMySQL::MySQL(), 

  dbname = "your_db_name") 

Use the dbGetQuery function to submit your SQL to the database and read the result sets. Doing so requires an
open database connection:

sql <- "SELECT * from SurveyResults WHERE City = 'Chicago'" 

rows <- dbGetQuery(con, sql)

You are not restricted to SELECT statements. Any SQL that generates a result set is OK. It is common to use CALL
statements, for example, if your SQL is encapsulated in stored procedures and those stored procedures contain



embedded SELECT statements.

Using dbGetQuery is convenient because it packages the result set into a data frame and returns the data frame.
This is the perfect representation of a SQL result set. The result set is a tabular data structure of rows and
columns, and so is a data frame. The result set’s columns have names given by the SQL SELECT statement, and R
uses them for naming the columns of the data frame.

Call dbGetQuery repeatedly to perform multiple queries. When you are done, close the database connection
using dbDisconnect:

dbDisconnect(con)

Here is a complete session that reads and prints three rows from a database of stock prices. The query selects the
price of IBM stock for the last three days of 2008. It assumes that the username, password, dbname, and host
parameters are defined in the my.cnf file:

con <- dbConnect(RMySQL::MySQL()) 

sql <- paste( 

  "select * from DailyBar where Symbol = 'IBM'", 

  "and Day between '2008-12-29' and '2008-12-31'" 

) 

rows <- dbGetQuery(con, sql) 

 

dbDisconnect(con) 

print(rows)

##   Symbol        Day       Next OpenPx HighPx LowPx ClosePx AdjClosePx 

## 1    IBM 2008-12-29 2008-12-30  81.72  81.72 79.68   81.25      81.25 

## 2    IBM 2008-12-30 2008-12-31  81.83  83.64 81.52   83.55      83.55 

## 3    IBM 2008-12-31 2009-01-02  83.50  85.00 83.50   84.16      84.16 

##   HistClosePx  Volume OpenInt 

## 1       81.25 6062600      NA 

## 2       83.55 5774400      NA 

## 3       84.16 6667700      NA

See Also
See “Installing Packages from CRAN” and the documentation for RMySQL, which contains more details about
configuring and using the package.

See “Accessing a Database with dbplyr” for information about how to get data from a SQL database without
writing any SQL.

R can read from several other RDBMSs, including Oracle, Sybase, PostgreSQL, and SQLite. For more
information, see the R Data Import/Export guide, which is supplied with the base distribution (“Viewing the
Supplied Documentation”) and is also available on CRAN.

Accessing a Database with dbplyr

Problem
You want to access a database, but you’d rather not write SQL code in order to manipulate data and return results
to R.

Solution
In addition to being a grammar of data manipulation, the tidyverse package dplyr can, in connection with the
dbplyr package, turn dplyr commands into SQL for you.

http://cran.r-project.org/doc/manuals/R-data.pdf


Let’s set up an example database using RSQLite. Then we’ll connect to it and use dplyr and the dbplyr backend
to extract data.

We’ll first set up the example table by loading the msleep example data into an in-memory SQLite database:

con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:") 

sleep_db <- copy_to(con, msleep, "sleep")

Now that we have a table in our database, we can create a reference to it from R:

sleep_table <- tbl(con, "sleep")

The sleep_table object is a type of pointer or alias to the table on the database. However, dplyr will treat it
like a regular tidyverse tibble or data frame, so you can operate on it using dplyr and other R commands. Let’s
select all animals from the data who sleep less than three hours:

little_sleep <- sleep_table %>% 

  select(name, genus, order, sleep_total) %>% 

  filter(sleep_total < 3)

The dbplyr backend does not go fetch the data when we do the preceding commands. But it does build the query
and get ready. To see the query built by dplyr, you can use show_query:

show_query(little_sleep) 

#> <SQL> 

#> SELECT * 

#> FROM (SELECT `name`, `genus`, `order`, `sleep_total` 

#> FROM `sleep`) 

#> WHERE (`sleep_total` < 3.0)

To bring the data back to your local machine, use collect:

local_little_sleep <- collect(little_sleep) 

local_little_sleep 

#> # A tibble: 3 x 4 

#>   name        genus         order          sleep_total 

#>   <chr>       <chr>         <chr>                <dbl> 

#> 1 Horse       Equus         Perissodactyla         2.9 

#> 2 Giraffe     Giraffa       Artiodactyla           1.9 

#> 3 Pilot whale Globicephalus Cetacea                2.7

Discussion
When you use dplyr to access SQL databases by writing only dplyr commands, you can be more productive by
not having to switch from one language to another and back. The alternative is to have large chunks of SQL code
stored as text strings in the middle of an R script, or have the SQL in separate files that are read in by R.

By allowing dplyr to transparently create the SQL in the background, you are freed from having to maintain
separate SQL code to extract data.

The dbplyr package uses DBI to connect to your database, so you’ll need a DBI backend package for whichever
database you want to access.

Some commonly used DBI backend packages are:

odbc

Uses the Open Database Connectivity (ODBC) protocol to connect to many different databases. This is
typically the best choice when you are connecting to Microsoft SQL Server. ODBC is typically



straightforward on Windows machines but may require some considerable effort to get working in Linux or
macOS.

RPostgreSQL

For connecting to Postgres and Redshift.

RMySQL

For MySQL and MariaDB.

RSQLite

For connecting to SQLite databases on disk or in memory.

bigrquery

For connections to Google’s BigQuery.

TIP
Each DBI backend package discussed here is listed on CRAN and can be installed with the typical
install.packages('packagename') command.

See Also
For more information about connecting the databases with R and RStudio, see https://db.rstudio.com/.

For more detail on SQL translation in dbplyr, see the sql-translation vignette at vignette("sql-
translation") or http://bit.ly/2wVCOKe.

Saving and Transporting Objects

Problem
You want to store one or more R objects in a file for later use, or you want to copy an R object from one machine
to another.

Solution
Write the objects to a file using the save function:

save(tbl, t, file = "myData.RData")

Read them back using the load function, either on your computer or on any platform that supports R:

load("myData.RData")

The save function writes binary data. To save in an ASCII format, use dput or dump instead:

dput(tbl, file = "myData.txt") 

dump("tbl", file = "myData.txt")    # Note quotes around variable name

Discussion
Suppose you’ve found yourself with a large, complicated data object that you want to load into other workspaces,
or you want to move R objects between a Linux box and a Windows box. The load and save functions let you do

https://db.rstudio.com/
http://bit.ly/2wVCOKe


all this: save will store the object in a file that is portable across machines, and load can read those files.

When you run load, it does not return your data per se; rather, it creates variables in your workspace, loads your
data into those variables, and then returns the names of the variables (in a vector). The first time you run load,
you might be tempted to do this:

myData <- load("myData.RData")     # Achtung! Might not do what you think

Let’s look at what myData is:

myData 

#> [1] "tbl" "t" 

str(myData) 

#>  chr [1:2] "tbl" "t"

This might be puzzling, because myData will not contain your data at all. This can be perplexing and frustrating
the first time you encounter it.

There are a few other things to keep in mind, too. First, the save function writes in a binary format to keep the
file small. Sometimes you want an ASCII format instead. When you submit a question to a mailing list or to
Stack Overflow, for example, including an ASCII dump of the data lets others re-create your problem. In such
cases use dput or dump, which write an ASCII representation.

You must also be careful when you save and load objects created by a particular R package. When you load the
objects, R does not automatically load the required packages, too, so it will not “understand” the object unless
you previously loaded the package yourself. For instance, suppose we have an object called z created by the zoo
package, and we save the object in a file called z.RData. The following sequence of functions will create some
confusion:

load("./data/z.RData")   # Create and populate the z variable 

plot(z)                  # Does not plot as expected: zoo pkg not loaded

The plot in Figure 4-3 shows the resulting plot, which is just points.

Figure 4-3. Plot without zoo loaded

We should have loaded the zoo package before printing or plotting any zoo objects, like this:



library(zoo)           # Load the zoo package into memory 

load("./data/z.RData") # Create and populate the z variable 

plot(z)                # Ahhh. Now plotting works correctly

You can see the resulting plot in Figure 4-4.

Figure 4-4. Plotting with zoo

See Also
If you are just saving and loading a single data frame or other R object, you should consider write_rds and
read_rds. These functions don’t have “side effects” like load.



Chapter 5. Data Structures

You can get pretty far in R just using vectors. That’s what Chapter 2 is all about. This chapter moves beyond
vectors to recipes for matrices, lists, factors, data frames, and tibbles (which are a special kind of data frame). If
you have preconceptions about data structures, we suggest you put them aside. R does data structures differently
than many other languages. Before we get to the recipes in this chapter, we’ll take a quick look at different data
structures in R.

If you want to study the technical aspects of R’s data structures, we suggest reading R in a Nutshell and the R
Language Definition. The notes here are more informal. These are things we wish we’d known when we started
using R.

Vectors
Here are some key properties of vectors:

Vectors are homogeneou.s
All elements of a vector must have the same type or, in R terminology, the same mode.

Vectors can be indexed by position.

So v[2] refers to the second element of v.

Vectors can be indexed by multiple positions, returning a subvector.

So v[c(2,3)] is a subvector of v that consists of the second and third elements.

Vector elements can have names.

Vectors have a names property, the same length as the vector itself, that gives names to the elements:

v <- c(10, 20, 30) 

names(v) <- c("Moe", "Larry", "Curly") 

print(v) 

#>   Moe Larry Curly 

#>    10    20    30

If vector elements have names, then you can select them by name.
Continuing the previous example:

v[["Larry"]] 

#> [1] 20

Lists
Here are some key properties of lists:

Lists are heterogeneous.
Lists can contain elements of different types—in R terminology, list elements may have different modes.
Lists can even contain other structured objects, such as lists and data frames; this allows you to create
recursive data structures.

Lists can be indexed by position.

So lst[[2]] refers to the second element of lst. Note the double square brackets. Double brackets means
that R will return the element as whatever type of element it is.

https://oreil.ly/2wUtwyf
https://cran.r-project.org/doc/manuals/R-lang.pdf


Lists let you extract sublists.

So lst[c(2,3)] is a sublist of lst that consists of the second and third elements. Note the single square
brackets. Single brackets means that R will return the items in a list. If you pull a single element with single
brackets, like lst[2], R will return a list of length 1 with the first item being the desired item.

List elements can have names.

Both lst[["Moe"]] and lst$Moe refer to the element named “Moe.”

Since lists are heterogeneous and since their elements can be retrieved by name, a list is like a dictionary or hash
or lookup table in other programming languages (discussed in “Building a Name/Value Association List”).

What’s surprising (and cool) is that in R, unlike most of those other programming languages, lists can also be
indexed by position.

Mode: Physical Type
In R, every object has a mode, which indicates how it is stored in memory: as a number, as a character string, as
a list of pointers to other objects, as a function, and so forth (see Table 5-1).

Table 5-1. R object-mode mapping

Object Example Mode

Number 3.1415 Numeric

Vector of numbers c(2.7.182, 3.1415) Numeric

Character string "Moe" Character

Vector of character strings c("Moe", "Larry", "Curly") Character

Factor factor(c("NY", "CA", "IL")) Numeric

List list("Moe", "Larry", "Curly") List

Data frame data.frame(x=1:3, y=c("NY", "CA", "IL")) List

Function print Function

The mode function gives us this information:

mode(3.1415)                        # Mode of a number 

#> [1] "numeric" 

mode(c(2.7182, 3.1415))             # Mode of a vector of numbers 

#> [1] "numeric" 

mode("Moe")                         # Mode of a character string 

#> [1] "character" 

mode(list("Moe", "Larry", "Curly")) # Mode of a list 

#> [1] "list"

A critical difference between a vectors and lists can be summed up this way:

In a vector, all elements must have the same mode.

In a list, the elements can have different modes.

Class: Abstract Type
In R, every object also has a class, which defines its abstract type. The terminology is borrowed from object-
oriented programming. A single number could represent many different things: a distance, a point in time, or a



weight, for example. All those objects have a mode of "numeric" because they are stored as a number, but they
could have different classes to indicate their interpretation.

For example, a Date object consists of a single number:

d <- as.Date("2010-03-15") 

mode(d) 

#> [1] "numeric" 

length(d) 

#> [1] 1

But it has a class of Date, telling us how to interpret that number—namely, as the number of days since January
1, 1970:

class(d) 

#> [1] "Date"

R uses an object’s class to decide how to process the object. For example, the generic function print has
specialized versions (called methods) for printing objects according to their class: data.frame, Date, lm, and so
forth. When you print an object, R calls the appropriate print function according to the object’s class.

Scalars
The quirky thing about scalars is their relationship to vectors. In some software, scalars and vectors are two
different things. In R, they are the same thing: a scalar is simply a vector that contains exactly one element. In
this book we often use the term “scalar,” but that’s just shorthand for “vector with one element.”

Consider the built-in constant pi. It is a scalar:

pi 

#> [1] 3.14

Since a scalar is a one-element vector, you can use vector functions on pi:

length(pi) 

#> [1] 1

You can index it. The first (and only) element is π, of course:

pi[1] 

#> [1] 3.14

If you ask for the second element, there is none:

pi[2] 

#> [1] NA

Matrices
In R, a matrix is just a vector that has dimensions. It may seem strange at first, but you can transform a vector
into a matrix simply by giving it dimensions.

A vector has an attribute called dim, which is initially NULL, as shown here:

A <- 1:6 

dim(A) 

#> NULL 

print(A) 

#> [1] 1 2 3 4 5 6



We give dimensions to the vector when we set its dim attribute. Watch what happens when we set our vector
dimensions to 2 × 3 and print it:

dim(A) <- c(2, 3) 

print(A) 

#>      [,1] [,2] [,3] 

#> [1,]    1    3    5 

#> [2,]    2    4    6

Voilà! The vector was reshaped into a 2 × 3 matrix.

A matrix can be created from a list, too. Like a vector, a list has a dim attribute, which is initially NULL:

B <- list(1, 2, 3, 4, 5, 6) 

dim(B) 

#> NULL

If we set the dim attribute, it gives the list a shape:

dim(B) <- c(2, 3) 

print(B) 

#>      [,1] [,2] [,3] 

#> [1,] 1    3    5 

#> [2,] 2    4    6

Voilà! We have turned this list into a 2 × 3 matrix.

Arrays
The discussion of matrices can be generalized to three-dimensional or even n-dimensional structures: just assign
more dimensions to the underlying vector (or list). The following example creates a three-dimensional array
with dimensions 2 × 3 × 2:

D <- 1:12 

dim(D) <- c(2, 3, 2) 

print(D) 

#> , , 1 

#> 

#>      [,1] [,2] [,3] 

#> [1,]    1    3    5 

#> [2,]    2    4    6 

#> 

#> , , 2 

#> 

#>      [,1] [,2] [,3] 

#> [1,]    7    9   11 

#> [2,]    8   10   12

Note that R prints one “slice” of the structure at a time, since it’s not possible to print a three-dimensional
structure on a two-dimensional medium.

It strikes us as very odd that we can turn a list into a matrix just by giving the list a dim attribute. But wait: it
gets stranger.

Recall that a list can be heterogeneous (mixed modes). We can start with a heterogeneous list, give it
dimensions, and thus create a heterogeneous matrix. This code snippet creates a matrix that is a mix of numeric
and character data:

C <- list(1, 2, 3, "X", "Y", "Z") 

dim(C) <- c(2, 3) 

print(C) 

#>      [,1] [,2] [,3] 



#> [1,] 1    3    "Y" 

#> [2,] 2    "X"  "Z"

To us, this is strange because we ordinarily assume a matrix is purely numeric, not mixed. R is not that
restrictive.

The possibility of a heterogeneous matrix may seem powerful and strangely fascinating. However, it creates
problems when you are doing normal, day-to-day stuff with matrices. For example, what happens when the
matrix C (from the previous example) is used in matrix multiplication? What happens if it is converted to a data
frame? The answer is that odd things happen.

In this book, we generally ignore the pathological case of a heterogeneous matrix. We assume you’ve got simple,
vanilla matrices. Some recipes involving matrices may work oddly (or not at all) if your matrix contains mixed
data. Converting such a matrix to a vector or data frame, for instance, can be problematic (see “Converting One
Structured Data Type into Another”).

Factors
A factor looks like a character vector, but it has special properties. R keeps track of the unique values in a vector,
and each unique value is called a level of the associated factor. R uses a compact representation for factors,
which makes them efficient for storage in data frames. In other programming languages, a factor would be
represented by a vector of enumerated values.

There are two key uses for factors:

Categorical variables
A factor can represent a categorical variable. Categorical variables are used in contingency tables, linear
regression, analysis of variance (ANOVA), logistic regression, and many other areas.

Grouping
This is a technique for labeling or tagging your data items according to their group. See Chapter 6.

Data Frames
A data frame is a powerful and flexible structure. Most serious R applications involve data frames. A data frame
is intended to mimic a dataset, such as one you might encounter in SAS or SPSS, or a table in an SQL database.

A data frame is a tabular (rectangular) data structure, which means that it has rows and columns. It is not
implemented by a matrix, however. Rather, a data frame is a list with the following characteristics:

The elements of the list are vectors and/or factors.1

Those vectors and factors are the columns of the data frame.

The vectors and factors must all have the same length; in other words, all columns must have the same height.

The equal-height columns give a rectangular shape to the data frame.

The columns must have names.

Because a data frame is both a list and a rectangular structure, R provides two different paradigms for accessing
its contents:

You can use list operators to extract columns from a data frame, such as df[i], df[[i]], or df$name.

You can use matrix-like notation, such as df[i,j], df[i,], or df[,j].

Your perception of a data frame likely depends on your background:

To a statistician
A data frame is a table of observations. Each row contains one observation. Each observation must contain
the same variables. These variables are called columns, and you can refer to them by name. You can also



refer to the contents by row number and column number, just as with a matrix.

To a SQL programmer
A data frame is a table. The table resides entirely in memory, but you can save it to a flat file and restore it
later. You needn’t declare the column types because R figures that out for you.

To an Excel user
A data frame is like a worksheet, or perhaps a range within a worksheet. It is more restrictive, however, in
that each column has a type.

To an SAS user
A data frame is like an SAS dataset for which all the data resides in memory. R can read and write the data
frame on disk, but the data frame must be in memory while R is processing it.

To an R programmer
A data frame is a hybrid data structure, part matrix and part list. A column can contain numbers, character
strings, or factors, but not a mix of them. You can index the data frame just like you index a matrix. The data
frame is also a list, where the list elements are the columns, so you can access columns by using list
operators.

To a computer scientist
A data frame is a rectangular data structure. The columns are typed, and each column must contain numeric
values, character strings, or factors. Columns must have labels; rows may have labels. The table can be
indexed by position, column name, and/or row name. It can also be accessed by list operators, in which case
R treats the data frame as a list whose elements are the columns of the data frame.

To a corporate executive
You can put names and numbers into a data frame. A data frame is like a little database. Your staff will enjoy
using data frames.

Tibbles
A tibble is a modern reimagining of the data frame, introduced by Hadley Wickham in the tibble package,
which is a core package in the tidyverse. Most of the common functions you would use with data frames also
work with tibbles. However, tibbles typically do less than data frames and complain more. This idea of
complaining and doing less may remind you of your least favorite coworker; however, we think tibbles will be
one of your favorite data structures. Doing less and complaining more can be a feature, not a bug.

Unlike data frames, tibbles:

Do not give you row numbers by default.

Do not give you strange, unexpected column names.

Don’t coerce your data into factors (unless you explicitly ask for that).

Recycle vectors of length 1 but not other lengths.

In addition to basic data frame functionality, tibbles:

Print only the top four rows and a bit of metadata by default.

Always return a tibble when subsetting.

Never do partial matching: if you want a column from a tibble, you have to ask for it using its full name.

Complain more by giving you more warnings and chatty messages to make sure you understand what the
software is doing.

All these extras are designed to give you fewer surprises and help you make fewer mistakes.



Appending Data to a Vector

Problem
You want to append additional data items to a vector.

Solution
Use the vector constructor (c) to construct a vector with the additional data items:

v <- c(1, 2, 3) 

newItems <- c(6, 7, 8) 

c(v, newItems) 

#> [1] 1 2 3 6 7 8

For a single item, you can also assign the new item to the next vector element. R will automatically extend the
vector:

v <- c(1, 2, 3) 

v[length(v) + 1] <- 42 

v 

#> [1]  1  2  3 42

Discussion
If you ask us about appending a data item to a vector, we will likely suggest that maybe you shouldn’t.

TIP
R works best when you think about entire vectors, not single data items. Are you repeatedly appending items to a vector? If so, then
you are probably working inside a loop. That’s OK for small vectors, but for large vectors your program will run slowly. The memory
management in R works poorly when you repeatedly extend a vector by one element. Try to replace that loop with vector-level
operations. You’ll write less code, and R will run much faster.

Nonetheless, one does occasionally need to append data to vectors. Our experiments show that the most efficient
way of doing so is to create a new vector using the vector constructor (c) to join the old and new data. This works
for appending single elements or multiple elements:

v <- c(1, 2, 3) 

v <- c(v, 4) # Append a single value to v 

v 

#> [1] 1 2 3 4 

 

w <- c(5, 6, 7, 8) 

v <- c(v, w) # Append an entire vector to v 

v 

#> [1] 1 2 3 4 5 6 7 8

You can also append an item by assigning it to the position past the end of the vector, as shown in the Solution.
In fact, R is very liberal about extending vectors. You can assign to any element and R will expand the vector to
accommodate your request:

v <- c(1, 2, 3)   # Create a vector of three elements 

v[10] <- 10       # Assign to the 10th element 

v                 # R extends the vector automatically 

#>  [1]  1  2  3 NA NA NA NA NA NA 10



Note that R did not complain about the out-of-bounds subscript. It just extended the vector to the needed length,
filling it with NA.

R includes an append function that creates a new vector by appending items to an existing vector. However, our
experiments show that this function runs more slowly than both the vector constructor and the element
assignment.

Inserting Data into a Vector

Problem
You want to insert one or more data items into a vector.

Solution
Despite its name, the append function inserts data into a vector by using the after parameter, which gives the
insertion point for the new item or items:

append(vec, newvalues, after = n)

Discussion
The new items will be inserted at the position given by after. This example inserts 99 into the middle of a
sequence:

append(1:10, 99, after = 5) 

#>  [1]  1  2  3  4  5 99  6  7  8  9 10

The special value of after=0 means insert the new items at the head of the vector:

append(1:10, 99, after = 0) 

#>  [1] 99  1  2  3  4  5  6  7  8  9 10

The comments in “Appending Data to a Vector” apply here, too. If you are inserting single items into a vector,
you might be working at the element level when working at the vector level would be easier to code and faster to
run.

Understanding the Recycling Rule

Problem
You want to understand the mysterious Recycling Rule that governs how R handles vectors of unequal length.

Discussion
When you do vector arithmetic, R performs element-by-element operations. That works well when both vectors
have the same length: R pairs the elements of the vectors and applies the operation to those pairs.

But what happens when the vectors have unequal lengths?

In that case, R invokes the Recycling Rule. It processes the vector elements in pairs, starting at the first elements
of both vectors. At a certain point, the shorter vector is exhausted while the longer vector still has unprocessed
elements. R then returns to the beginning of the shorter vector, “recycling” its elements, while it continues
taking elements from the longer vector until it completes the operation. It will recycle the shorter vector’s
elements as often as necessary until the operation is complete.



It’s useful to visualize the Recycling Rule. Here is a diagram of two vectors, 1:6 and 1:3:

   1:6   1:3 

  ----- ----- 

    1     1 

    2     2 

    3     3 

    4 

    5 

    6

Obviously, the 1:6 vector is longer than the 1:3 vector. If we try to add the vectors using (1:6) + (1:3), it
appears that 1:3 has too few elements. However, R recycles the elements of 1:3, pairing the two vectors like this
and producing a six-element vector:

   1:6   1:3   (1:6) + (1:3) 

  ----- ----- --------------- 

    1     1         2 

    2     2         4 

    3     3         6 

    4               5 

    5               7 

    6               9

Here is what you see in the R console:

(1:6) + (1:3) 

#> [1] 2 4 6 5 7 9

It’s not only vector operations that invoke the Recycling Rule; functions can, too. The cbind function can create
column vectors, such as the following column vectors of 1:6 and 1:3. The two columns have different heights,
of course:

cbind(1:6) 

 

cbind(1:3)

If we try binding these column vectors together into a two-column matrix, the lengths are mismatched. The 1:3
vector is too short, so cbind invokes the Recycling Rule and recycles the elements of 1:3:

cbind(1:6, 1:3) 

#>      [,1] [,2] 

#> [1,]    1    1 

#> [2,]    2    2 

#> [3,]    3    3 

#> [4,]    4    1 

#> [5,]    5    2 

#> [6,]    6    3

If the longer vector’s length is not a multiple of the shorter vector’s length, R gives a warning. That’s good, since
the operation is highly suspect and there is likely a bug in your logic:

(1:6) + (1:5) # Oops! 1:5 is one element too short 

#> Warning in (1:6) + (1:5): longer object length is not a multiple of shorter 

#> object length 

#> [1]  2  4  6  8 10  7

Once you understand the Recycling Rule, you will realize that operations between a vector and a scalar are
simply applications of that rule. In this example, the 10 is recycled repeatedly until the vector addition is
complete:



(1:6) + 10 

#> [1] 11 12 13 14 15 16

Creating a Factor (Categorical Variable)

Problem
You have a vector of character strings or integers. You want R to treat them as a factor, which is R’s term for a
categorical variable.

Solution
The factor function encodes your vector of discrete values into a factor:

f <- factor(v)   # v can be a vector of strings or integers 

If your vector contains only a subset of possible values and not the entire universe, then include a second
argument that gives the possible levels of the factor:

f <- factor(v, levels) 

Discussion
In R, each possible value of a categorical variable is called a level. A vector of levels is called a factor. Factors
fit very cleanly into the vector orientation of R, and they are used in powerful ways for processing data and
building statistical models.

Most of the time, converting your categorical data into a factor is a simple matter of calling the factor function,
which identifies the distinct levels of the categorical data and packs them into a factor:

f <- factor(c("Win", "Win", "Lose", "Tie", "Win", "Lose")) 

f 

#> [1] Win  Win  Lose Tie  Win  Lose 

#> Levels: Lose Tie Win

Notice that when we printed the factor, f, R did not put quotes around the values. They are levels, not strings.
Also notice that when we printed the factor, R displayed the distinct levels below the factor.

If your vector contains only a subset of all the possible levels, then R will have an incomplete picture of the
possible levels. Suppose you have a string-valued variable wday that gives the day of the week on which your
data was observed:

wday <- c("Wed", "Thu", "Mon", "Wed", "Thu", 

          "Thu", "Thu", "Tue", "Thu", "Tue") 

f <- factor(wday) 

f 

#>  [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue 

#> Levels: Mon Thu Tue Wed

R thinks that Monday, Thursday, Tuesday, and Wednesday are the only possible levels. Friday is not listed.
Apparently, the lab staff never made observations on a Friday, so R does not know that Friday is a possible value.
Hence, you need to list the possible levels of wday explicitly:

f <- factor(wday, levels=c("Mon", "Tue", "Wed", "Thu", "Fri")) 

f 

#>  [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue 

#> Levels: Mon Tue Wed Thu Fri



Now R understands that f is a factor with five possible levels. It knows their correct order, too. It originally put
Thursday before Tuesday because it assumes alphabetical order by default. The explicit levels argument defines
the correct order.

In many situations it is not necessary to call factor explicitly. When an R function requires a factor, it usually
converts your data to a factor automatically. The table function, for instance, works only on factors, so it
routinely converts its inputs to factors without asking. You must explicitly create a factor variable when you
want to specify the full set of levels or when you want to control the ordering of levels.

See Also
See “Binning Your Data” to create a factor from continuous data.

Combining Multiple Vectors into One Vector and a Factor

Problem
You have several groups of data, with one vector for each group. You want to combine the vectors into one large
vector and simultaneously create a parallel factor that identifies each value’s original group.

Solution
Create a list that contains the vectors. Use the stack function to combine the list into a two-column data frame:

comb <- stack(list(v1 = v1, v2 = v2, v3 = v3)) # Combine 3 vectors

The data frame’s columns are called values and ind. The first column contains the data, and the second column
contains the parallel factor.

Discussion
Why in the world would you want to mash all your data into one big vector and a parallel factor? The reason is
that many important statistical functions require the data in that format.

Suppose you survey freshmen, sophomores, and juniors regarding their confidence level (“What percentage of
the time do you feel confident in school?”). Now you have three vectors, called freshmen, sophomores, and
juniors. You want to perform an ANOVA of the differences between the groups. The ANOVA function, aov,
requires one vector with the survey results as well as a parallel factor that identifies the group. You can combine
the groups using the stack function:

freshmen <- c(1, 2, 1, 1, 5) 

sophomores <- c(3, 2, 3, 3, 5) 

juniors <- c(5, 3, 4, 3, 3) 

 

comb <- stack(list(fresh = freshmen, soph = sophomores, jrs = juniors)) 

print(comb) 

#>    values   ind 

#> 1       1 fresh 

#> 2       2 fresh 

#> 3       1 fresh 

#> 4       1 fresh 

#> 5       5 fresh 

#> 6       3  soph 

#> 7       2  soph 

#> 8       3  soph 

#> 9       3  soph 

#> 10      5  soph 

#> 11      5   jrs 



#> 12      3   jrs 

#> 13      4   jrs 

#> 14      3   jrs 

#> 15      3   jrs

Now you can perform the ANOVA on the two columns:

aov(values ~ ind, data = comb)

When building the list we must provide tags for the list elements. (The tags are fresh, soph, and jrs in this
example.) Those tags are required because stack uses them as the levels of the parallel factor.

Creating a List

Problem
You want to create and populate a list.

Solution
To create a list from individual data items, use the list function:

lst <- list(x, y, z)

Discussion
Lists can be quite simple, such as this list of three numbers:

lst <- list(0.5, 0.841, 0.977) 

lst 

#> [[1]] 

#> [1] 0.5 

#> 

#> [[2]] 

#> [1] 0.841 

#> 

#> [[3]] 

#> [1] 0.977

When R prints the list, it identifies each list element by its position ([[1]], [[2]], [[3]]) and prints the
element’s value (e.g., [1] 0.5) under its position.

More usefully, lists can, unlike vectors, contain elements of different modes (types). Here is an extreme example
of a mongrel created from a scalar, a character string, a vector, and a function:

lst <- list(3.14, "Moe", c(1, 1, 2, 3), mean) 

lst 

#> [[1]] 

#> [1] 3.14 

#> 

#> [[2]] 

#> [1] "Moe" 

#> 

#> [[3]] 

#> [1] 1 1 2 3 

#> 

#> [[4]] 

#> function (x, ...) 

#> UseMethod("mean") 

#> <bytecode: 0x7ff04b0bc900> 

#> <environment: namespace:base>



You can also build a list by creating an empty list and populating it. Here is our “mongrel” example built in that
way:

lst <- list() 

lst[[1]] <- 3.14 

lst[[2]] <- "Moe" 

lst[[3]] <- c(1, 1, 2, 3) 

lst[[4]] <- mean 

lst 

#> [[1]] 

#> [1] 3.14 

#> 

#> [[2]] 

#> [1] "Moe" 

#> 

#> [[3]] 

#> [1] 1 1 2 3 

#> 

#> [[4]] 

#> function (x, ...) 

#> UseMethod("mean") 

#> <bytecode: 0x7ff04b0bc900> 

#> <environment: namespace:base>

List elements can be named. The list function lets you supply a name for every element:

lst <- list(mid = 0.5, right = 0.841, far.right = 0.977) 

lst 

#> $mid 

#> [1] 0.5 

#> 

#> $right 

#> [1] 0.841 

#> 

#> $far.right 

#> [1] 0.977

See Also
See the introduction to this chapter for more about lists; see “Building a Name/Value Association List” for more
about building and using lists with named elements.

Selecting List Elements by Position

Problem
You want to access list elements by position.

Solution
Use one of these ways. Here, lst is a list variable:

lst[[n]]

Selects the nth element from the list

lst[c(n1, n2, ..., nk)]

Returns a list of elements, selected by their positions

Note that the first form returns a single element and the second form returns a list.



Discussion
Suppose we have a list of four integers, called years:

years <- list(1960, 1964, 1976, 1994) 

years 

#> [[1]] 

#> [1] 1960 

#> 

#> [[2]] 

#> [1] 1964 

#> 

#> [[3]] 

#> [1] 1976 

#> 

#> [[4]] 

#> [1] 1994

We can access single elements using the double-square-bracket syntax:

years[[1]] 

#> [1] 1960

We can extract sublists using the single-square-bracket syntax:

years[c(1, 2)] 

#> [[1]] 

#> [1] 1960 

#> 

#> [[2]] 

#> [1] 1964

This syntax can be confusing because of a subtlety: there is an important difference between lst[[n]] and
lst[n]. They are not the same thing:

lst[[n]]

This is an element, not a list. It is the nth element of lst.

lst[n]

This is a list, not an element. The list contains one element, taken from the nth element of lst.

TIP
The second form is a special case of lst[c(n1, n2, ..., nk)] in which we eliminated the c(...) construct because there is only
one n.

The difference becomes apparent when we inspect the structure of the result—one is a number and the other is a
list:

class(years[[1]]) 

#> [1] "numeric" 

 

class(years[1]) 

#> [1] "list"

The difference becomes annoyingly apparent when we cat the value. Recall that cat can print atomic values or
vectors but complains about printing structured objects:



cat(years[[1]], "\n") 

#> 1960 

 

cat(years[1], "\n") 

#> Error in cat(years[1], "\n"): argument 1 (type 'list') 

#> cannot be handled by 'cat'

We got lucky here because R alerted us to the problem. In other contexts, you might work long and hard to figure
out that you accessed a sublist when you wanted an element, or vice versa.

Selecting List Elements by Name

Problem
You want to access list elements by their names.

Solution
Use one of these forms. Here, lst is a list variable:

lst[["name"]]

Selects the element called name. Returns NULL if no element has that name.

lst$name

Same as previous, just different syntax.

lst[c(name1, name2, ..., namek)]

Returns a list built from the indicated elements of lst.

Note that the first two forms return an element, whereas the third form returns a list.

Discussion
Each element of a list can have a name. If named, the element can be selected by its name. This assignment
creates a list of four named integers:

years <- list(Kennedy = 1960, Johnson = 1964, 

              Carter = 1976, Clinton = 1994)

These next two expressions return the same value—namely, the element that is named “Kennedy”:

years[["Kennedy"]] 

#> [1] 1960 

years$Kennedy 

#> [1] 1960

The following two expressions return sublists extracted from years:

years[c("Kennedy", "Johnson")] 

#> $Kennedy 

#> [1] 1960 

#> 

#> $Johnson 

#> [1] 1964 

 

years["Carter"] 

#> $Carter 

#> [1] 1976



Just as with selecting list elements by position (see “Selecting List Elements by Position”), there is an important
difference between lst[["name"]] and lst["name"]. They are not the same:

lst[["name"]]

This is an element, not a list.

lst["name"]

This is a list, not an element.

TIP
The second form is a special case of lst[c(name1, name2, ..., namek)] in which we don’t need the c(...) construct because
there is only one name.

See Also
See “Selecting List Elements by Position” to access elements by position rather than by name.

Building a Name/Value Association List

Problem
You want to create a list that associates names and values, like a dictionary, hash, or lookup table would in
another programming language.

Solution
The list function lets you give names to elements, creating an association between each name and its value:

lst <- list(mid = 0.5, right = 0.841, far.right = 0.977)

If you have parallel vectors of names and values, you can create an empty list and then populate the list by using
a vectorized assignment statement:

values <- c(1, 2, 3) 

names <- c("a", "b", "c") 

lst <- list() 

lst[names] <- values

Discussion
Each element of a list can be named, and you can retrieve list elements by name. This gives you a basic
programming tool: the ability to associate names with values.

You can assign element names when you build the list. The list function allows arguments of the form
name=value:

lst <- list( 

  far.left = 0.023, 

  left = 0.159, 

  mid = 0.500, 

  right = 0.841, 

  far.right = 0.977 

) 

lst 

#> $far.left 



#> [1] 0.023 

#> 

#> $left 

#> [1] 0.159 

#> 

#> $mid 

#> [1] 0.5 

#> 

#> $right 

#> [1] 0.841 

#> 

#> $far.right 

#> [1] 0.977

One way to name the elements is to create an empty list and then populate it via assignment statements:

lst <- list() 

lst$far.left <- 0.023 

lst$left <- 0.159 

lst$mid <- 0.500 

lst$right <- 0.841 

lst$far.right <- 0.977

Sometimes you have a vector of names and a vector of corresponding values:

values <- -2:2 

names <- c("far.left", "left", "mid", "right", "far.right")

You can associate the names and the values by creating an empty list and then populating it with a vectorized
assignment statement:

lst <- list() 

lst[names] <- values 

lst 

#> $far.left 

#> [1] -2 

#> 

#> $left 

#> [1] -1 

#> 

#> $mid 

#> [1] 0 

#> 

#> $right 

#> [1] 1 

#> 

#> $far.right 

#> [1] 2

Once the association is made, the list can “translate” names into values through a simple list lookup:

cat("The left limit is", lst[["left"]], "\n") 

#> The left limit is -1 

cat("The right limit is", lst[["right"]], "\n") 

#> The right limit is 1 

 

for (nm in names(lst)) cat("The", nm, "limit is", lst[[nm]], "\n") 

#> The far.left limit is -2 

#> The left limit is -1 

#> The mid limit is 0 

#> The right limit is 1 

#> The far.right limit is 2

Removing an Element from a List



Problem
You want to remove an element from a list.

Solution
Assign NULL to the element. R will remove it from the list.

Discussion
To remove a list element, select it by position or by name, and then assign NULL to the selected element:

years <- list(Kennedy = 1960, Johnson = 1964, 

              Carter = 1976, Clinton = 1994) 

years 

#> $Kennedy 

#> [1] 1960 

#> 

#> $Johnson 

#> [1] 1964 

#> 

#> $Carter 

#> [1] 1976 

#> 

#> $Clinton 

#> [1] 1994 

years[["Johnson"]] <- NULL # Remove the element labeled "Johnson" 

years 

#> $Kennedy 

#> [1] 1960 

#> 

#> $Carter 

#> [1] 1976 

#> 

#> $Clinton 

#> [1] 1994

You can remove multiple elements this way, too:

years[c("Carter", "Clinton")] <- NULL # Remove two elements 

years 

#> $Kennedy 

#> [1] 1960

Flattening a List into a Vector

Problem
You want to flatten all the elements of a list into a vector.

Solution
Use the unlist function.

Discussion
There are many contexts that require a vector. Basic statistical functions work on vectors but not on lists, for
example. If iq.scores is a list of numbers, then we cannot directly compute their mean:

iq.scores <- list(100, 120, 103, 80, 99) 

mean(iq.scores) 



#> Warning in mean.default(iq.scores): argument is not numeric or logical: 

#> returning NA 

#> [1] NA

Instead, we must flatten the list into a vector using unlist and then compute the mean of the result:

mean(unlist(iq.scores)) 

#> [1] 100

Here is another example. We can cat scalars and vectors, but we cannot cat a list:

cat(iq.scores, "\n") 

#> Error in cat(iq.scores, "\n"): argument 1 (type 'list') cannot be 

#> handled by 'cat'

One solution is to flatten the list into a vector before printing:

cat("IQ Scores:", unlist(iq.scores), "\n") 

#> IQ Scores: 100 120 103 80 99

See Also
Conversions such as this are discussed more fully in “Converting One Structured Data Type into Another”.

Removing NULL Elements from a List

Problem
Your list contains NULL values. You want to remove them.

Solution
The compact function from the purrr package will remove the NULL elements.

Discussion
The curious reader may be wondering how a list can contain NULL elements, given that we remove elements by
setting them to NULL (see “Removing an Element from a List”). The answer is that we can create a list
containing NULL elements:

library(purrr)     # or library(tidyverse) 

 

lst <- list("Moe", NULL, "Curly") 

lst 

#> [[1]] 

#> [1] "Moe" 

#> 

#> [[2]] 

#> NULL 

#> 

#> [[3]] 

#> [1] "Curly" 

 

compact(lst)   # Remove NULL element 

#> [[1]] 

#> [1] "Moe" 

#> 

#> [[2]] 

#> [1] "Curly"



In practice, we might also end up with NULL items in a list after applying some transformation.

Note that in R, NA and NULL are not the same thing. The compact function will remove NULL from a list but not
NA. To remove NA values, see “Removing List Elements Using a Condition”.

See Also
See “Removing an Element from a List” for how to remove list elements and “Removing List Elements Using a
Condition” for how to remove list elements conditionally.

Removing List Elements Using a Condition

Problem
You want to remove elements from a list according to a conditional test, such as removing elements that are
undefined, negative, or smaller than some threshold.

Solution
Start with a function that returns TRUE when your criteria are met and FALSE otherwise. Then use the discard
function from purrr to remove values that match your criteria. This code snippet, for example, uses the is.na
function to remove NA values from lst:

lst <- list(NA, 0, NA, 1, 2) 

 

lst %>% 

  discard(is.na) 

#> [[1]] 

#> [1] 0 

#> 

#> [[2]] 

#> [1] 1 

#> 

#> [[3]] 

#> [1] 2

Discussion
The discard function removes elements from a list using a predicate, which is a function that returns either
TRUE or FALSE. The predicate is applied to each element of the list. If the predicate returns TRUE, the element is
discarded; otherwise, it is kept.

Suppose we want to remove character strings from lst. The function is.character is a predicate that returns
TRUE if its argument is a character string, so we can use it with discard:

lst <- list(3, "dog", 2, "cat", 1) 

 

lst %>% 

  discard(is.character) 

#> [[1]] 

#> [1] 3 

#> 

#> [[2]] 

#> [1] 2 

#> 

#> [[3]] 

#> [1] 1



You can define your own predicate and use it with discard. This example removes both NA and NULL values from
a list by defining the predicate is_na_or_null:

is_na_or_null <- function(x) { 

  is.na(x) || is.null(x) 

} 

 

lst <- list(1, NA, 2, NULL, 3) 

 

lst %>% 

  discard(is_na_or_null) 

#> [[1]] 

#> [1] 1 

#> 

#> [[2]] 

#> [1] 2 

#> 

#> [[3]] 

#> [1] 3

Lists can hold complex objects, too, not just atomic values. Suppose that mods is a list of linear models created
by the lm function:

mods <- list(lm(x ~ y1), 

             lm(x ~ y2), 

             lm(x ~ y3))

We can define a predicate, filter_r2, to identify models whose R2 values are less than 0.70, then use the
predicate to remove those models from mods:

filter_r2 <- function(model) { 

  summary(model)$r.squared < 0.7 

} 

 

mods %>% 

  discard(filter_r2)

The inverse of discard is the keep function, which uses a predicate to retain list elements instead of discarding
them.

See Also
See “Selecting List Elements by Position”, “Removing an Element from a List”, and “Defining a Function”.

Initializing a Matrix

Problem
You want to create a matrix and initialize it from given values.

Solution
Capture the data in a vector or list, and then use the matrix function to shape the data into a matrix. This
example shapes a vector into a 2 × 3 matrix (i.e., two rows and three columns):

vec <- 1:6 

matrix(vec, 2, 3) 

#>      [,1] [,2] [,3] 



#> [1,]    1    3    5 

#> [2,]    2    4    6

Discussion
The first argument of matrix is the data, the second argument is the number of rows, and the third argument is
the number of columns. Note that the matrix in the Solution was filled column by column, not row by row.

It’s common to initialize an entire matrix to one value, such as 0 or NA. If the first argument of matrix is a single
value, then R will apply the Recycling Rule and automatically replicate the value to fill the entire matrix:

matrix(0, 2, 3) # Create an all-zeros matrix 

#>      [,1] [,2] [,3] 

#> [1,]    0    0    0 

#> [2,]    0    0    0 

 

matrix(NA, 2, 3) # Create a matrix populated with NAs 

#>      [,1] [,2] [,3] 

#> [1,]   NA   NA   NA 

#> [2,]   NA   NA   NA

You can create a matrix with a one-liner, of course, but it becomes difficult to read:

mat <- matrix(c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3), 2, 3) 

mat 

#>      [,1] [,2] [,3] 

#> [1,]  1.1  1.3  2.2 

#> [2,]  1.2  2.1  2.3

A common idiom in R is typing the data itself in a rectangular shape that reveals the matrix structure:

theData <- c( 

  1.1, 1.2, 1.3, 

  2.1, 2.2, 2.3 

) 

mat <- matrix(theData, 2, 3, byrow = TRUE) 

mat 

#>      [,1] [,2] [,3] 

#> [1,]  1.1  1.2  1.3 

#> [2,]  2.1  2.2  2.3

Setting byrow=TRUE tells matrix that the data is row-by-row and not column-by-column (which is the default).
In condensed form, that becomes:

mat <- matrix(c(1.1, 1.2, 1.3, 

                2.1, 2.2, 2.3), 

              2, 3, 

              byrow = TRUE)

Expressed this way, it’s easy to see the two rows and three columns of data.

There is a quick-and-dirty way to turn a vector into a matrix: just assign dimensions to the vector. This was
discussed in the introduction to this chapter. The following example creates a vanilla vector and then shapes it
into a 2 × 3 matrix:

v <- c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3) 

dim(v) <- c(2, 3) 

v 

#>      [,1] [,2] [,3] 

#> [1,]  1.1  1.3  2.2 

#> [2,]  1.2  2.1  2.3



We find this more opaque than using matrix, especially since there is no byrow option here.

See Also
See “Understanding the Recycling Rule”.

Performing Matrix Operations

Problem
You want to perform matrix operations such as transposition, inversion, multiplication, or constructing an
identity matrix.

Solution
Perform these operations with the following functions:

t(A)

Matrix transposition of A

solve(A)

Matrix inverse of A

A %*% B

Matrix multiplication of A and B

diag(n)

Constructs an n×n diagonal (identity) matrix

Discussion
Recall that A*B is element-wise multiplication, whereas A %*% B is matrix multiplication (see “Getting Operator
Precedence Right”).

All these functions return a matrix. Their arguments can be either matrices or data frames. If they are data
frames, then R will first convert them to matrices (although this is useful only if the data frame contains
exclusively numeric values).

Giving Descriptive Names to the Rows and Columns of a Matrix

Problem
You want to assign descriptive names to the rows or columns of a matrix.

Solution
Every matrix has a rownames attribute and a colnames attribute. Assign a vector of character strings to the
appropriate attribute:

rownames(mat) <- c("rowname1", "rowname2", ..., "rownameN") 

colnames(mat) <- c("colname1", "colname2", ..., "colnameN")

Discussion



R lets you assign names to the rows and columns of a matrix, which is useful for printing the matrix. R will
display the names if they are defined, enhancing the readability of your output. Consider this matrix of
correlations between the stock prices of IBM, Microsoft, and Google:

print(corr_mat) 

#>       [,1]  [,2]  [,3] 

#> [1,] 1.000 0.556 0.390 

#> [2,] 0.556 1.000 0.444 

#> [3,] 0.390 0.444 1.000

In this form, the interpretation of the matrix is not self-evident. We can give names to the rows and columns,
clarifying its meaning:

colnames(corr_mat) <- c("AAPL", "MSFT", "GOOG") 

rownames(corr_mat) <- c("AAPL", "MSFT", "GOOG") 

corr_mat 

#>       AAPL  MSFT  GOOG 

#> AAPL 1.000 0.556 0.390 

#> MSFT 0.556 1.000 0.444 

#> GOOG 0.390 0.444 1.000

Now you can see at a glance which rows and columns apply to which stocks.

Another advantage of naming rows and columns is that you can refer to matrix elements by those names:

# What is the correlation between MSFT and GOOG? 

corr_mat["MSFT", "GOOG"] 

#> [1] 0.444

Selecting One Row or Column from a Matrix

Problem
You want to select a single row or a single column from a matrix.

Solution
The solution depends on what you want. If you want the result to be a simple vector, just use normal indexing:

mat[1, ]     # First row 

mat[, 3]     # Third column

If you want the result to be a one-row matrix or a one-column matrix, then include the drop=FALSE argument:

mat[1, , drop=FALSE]   # First row, one-row matrix 

mat[, 3, drop=FALSE]   # Third column, one-column matrix

Discussion
Normally, when you select one row or column from a matrix, R strips off the dimensions. The result is a
dimensionless vector:

mat[1, ] 

#> [1] 1.1 1.2 1.3 

mat[, 3] 

#> [1] 1.3 2.3

When you include the drop=FALSE argument, however, R retains the dimensions. In that case, selecting a row
returns a row vector (a 1 × n matrix):



mat[1, , drop=FALSE] 

#>      [,1] [,2] [,3] 

#> [1,]  1.1  1.2  1.3

Likewise, selecting a column with drop=FALSE returns a column vector (an n × 1 matrix):

mat[, 3, drop=FALSE] 

#>      [,1] 

#> [1,]  1.3 

#> [2,]  2.3

Initializing a Data Frame from Column Data

Problem
Your data is organized by columns, and you want to assemble it into a data frame.

Solution
If your data is captured in several vectors and/or factors, use the data.frame function to assemble them into a
data frame:

df <- data.frame(v1, v2, v3, f1)

If your data is captured in a list that contains vectors and/or factors, use as.data.frame instead:

df <- as.data.frame(list.of.vectors)

Discussion
A data frame is a collection of columns, each of which corresponds to an observed variable (in the statistical
sense, not the programming sense). If your data is already organized into columns, then it’s easy to build a data
frame.

The data.frame function can construct a data frame from vectors, where each vector is one observed variable.
Suppose you have two numeric variables, one character variable, and one response variable. The data.frame
function can create a data frame from your vectors:

data.frame(pred1, pred2, pred3, resp) 

#>   pred1 pred2 pred3 resp 

#> 1  1.75  11.8    AM 13.2 

#> 2  4.01  10.7    PM 12.9 

#> 3  2.64  12.2    AM 13.9 

#> 4  6.03  12.2    PM 14.9 

#> 5  2.78  15.0    PM 16.4

Notice that data.frame takes the column names from your program variables. You can override that default by
supplying explicit column names:

data.frame(p1 = pred1, p2 = pred2, p3 = pred3, r = resp) 

#>     p1   p2 p3    r 

#> 1 1.75 11.8 AM 13.2 

#> 2 4.01 10.7 PM 12.9 

#> 3 2.64 12.2 AM 13.9 

#> 4 6.03 12.2 PM 14.9 

#> 5 2.78 15.0 PM 16.4

If you’d rather have a tibble than a data frame, use the tibble function from the tidyverse:



tibble(p1 = pred1, p2 = pred2, p3 = pred3, r = resp) 

#> # A tibble: 5 x 4 

#>      p1    p2 p3        r 

#>   <dbl> <dbl> <fct> <dbl> 

#> 1  1.75  11.8 AM     13.2 

#> 2  4.01  10.7 PM     12.9 

#> 3  2.64  12.2 AM     13.9 

#> 4  6.03  12.2 PM     14.9 

#> 5  2.78  15.0 PM     16.4

Sometimes, your data may indeed be organized into vectors, but those vectors are held in a list, not individual
program variables:

list.of.vectors <- list(p1=pred1, p2=pred2, p3=pred3, r=resp)

In that case, use the as.data.frame function to create a data frame from the list:

as.data.frame(list.of.vectors) 

#>     p1   p2 p3    r 

#> 1 1.75 11.8 AM 13.2 

#> 2 4.01 10.7 PM 12.9 

#> 3 2.64 12.2 AM 13.9 

#> 4 6.03 12.2 PM 14.9 

#> 5 2.78 15.0 PM 16.4

or use as_tibble to create a tibble:

as_tibble(list.of.vectors) 

#> # A tibble: 5 x 4 

#>      p1    p2 p3        r 

#>   <dbl> <dbl> <fct> <dbl> 

#> 1  1.75  11.8 AM     13.2 

#> 2  4.01  10.7 PM     12.9 

#> 3  2.64  12.2 AM     13.9 

#> 4  6.03  12.2 PM     14.9 

#> 5  2.78  15.0 PM     16.4

Factors in data frames
There is an important difference between creating a data frame and creating a tibble. When you use the
data.frame function to create a data frame, R will convert character values into factors by default. The pred3
value in the preceding data.frame example was converted to a factor, but that is not evident from the output.

The tibble and as_tibble functions, however, do not change character data. If you look at the tibble example,
you’ll see column p3 has type chr, meaning character.

This difference is something you should be aware of. It can be maddeningly frustrating to debug an issue caused
by this subtle difference.

Initializing a Data Frame from Row Data

Problem
Your data is organized by rows, and you want to assemble it into a data frame.

Solution
Store each row in a one-row data frame. Use rbind to bind the rows into one large data frame:

rbind(row1, row2, ... , rowN) 



Discussion
Data often arrives as a collection of observations. Each observation is a record or tuple that contains several
values, one for each observed variable. The lines of a flat file are usually like that: each line is one record, each
record contains several columns, and each column is a different variable (see “Reading Files with a Complex
Structure”). Such data is organized by observation, not by variable. In other words, you are given rows one at a
time rather than columns one at a time.

Each such row might be stored in several ways. One obvious way is as a vector. If you have purely numerical
data, use a vector.

Many datasets, however, are a mixture of numeric, character, and categorical data, in which case a vector won’t
work. We recommend storing each such heterogeneous row in a one-row data frame. (You could store each row
in a list, but this recipe gets a little more complicated.)

We need to bind together those rows into a data frame. That’s what the rbind function does. It binds its
arguments in such a way that each argument becomes one row in the result. If we rbind these three observations,
for example, we get a three-row data frame:

r1 <- data.frame(a = 1, b = 2, c = "X") 

r2 <- data.frame(a = 3, b = 4, c = "Y") 

r3 <- data.frame(a = 5, b = 6, c = "Z") 

rbind(r1, r2, r3) 

#>   a b c 

#> 1 1 2 X 

#> 2 3 4 Y 

#> 3 5 6 Z

When you’re working with a large number of rows, they will likely be stored in a list; that is, you will have a list
of rows. The bind_rows function, from the tidyverse package dplyr, handles that case, as shown in this toy
example:

list.of.rows <- list(r1, r2, r3) 

bind_rows(list.of.rows) 

#> Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character 

#> Warning in bind_rows_(x, .id): binding character and factor vector, 

#> coercing into character vector 

 

#> Warning in bind_rows_(x, .id): binding character and factor vector, 

#> coercing into character vector 

 

#> Warning in bind_rows_(x, .id): binding character and factor vector, 

#> coercing into character vector 

#>   a b c 

#> 1 1 2 X 

#> 2 3 4 Y 

#> 3 5 6 Z

Sometimes, for reasons beyond your control, each row of data is stored in a list rather than one-row data frames.
You may be dealing with rows returned by a function or a database package, for example. bind_rows can handle
that situation as well:

# Same toy data, but rows stored in lists 

l1 <- list(a = 1, b = 2, c = "X") 

l2 <- list(a = 3, b = 4, c = "Y") 

l3 <- list(a = 5, b = 6, c = "Z") 

list.of.lists <- list(l1, l2, l3) 

 

bind_rows(list.of.lists) 

#> # A tibble: 3 x 3 

#>       a     b c 

#>   <dbl> <dbl> <chr> 

#> 1     1     2 X 



#> 2     3     4 Y 

#> 3     5     6 Z

Factors in data frames
If you would rather get characters instead of factors, you have a couple of options. One is to set the
stringsAsFactors parameter to FALSE when data.frame is called:

data.frame(a = 1, b = 2, c = "a", stringsAsFactors = FALSE) 

#>   a b c 

#> 1 1 2 a

Of course, if you inherited your data and it’s already in a data frame with factors, you can convert all the factors
to characters using this bonus recipe:

# same setup as in the previous examples 

l1 <- list( a=1, b=2, c='X' ) 

l2 <- list( a=3, b=4, c='Y' ) 

l3 <- list( a=5, b=6, c='Z' ) 

obs <- list(l1, l2, l3) 

df <- do.call(rbind, Map(as.data.frame, obs)) 

 

# Yes, you could use stringsAsFactors=FALSE above, 

# but we're assuming the data.frame 

# came to you with factors already 

 

i <- sapply(df, is.factor)             # determine which columns are factors 

df[i] <- lapply(df[i], as.character)   # turn only the factors to characters

Keep in mind that if you use a tibble instead of a data frame, then characters will not be forced into factors by
default.

See Also
See “Initializing a Data Frame from Column Data” if your data is organized by columns, not rows.

Appending Rows to a Data Frame

Problem
You want to append one or more new rows to a data frame.

Solution
Create a second, temporary data frame containing the new rows. Then use the rbind function to append the
temporary data frame to the original data frame.

Discussion
Suppose we have a data frame of Chicago-area suburbs:

suburbs <- read_csv("./data/suburbs.txt") 

#> Parsed with column specification: 

#> cols( 

#>   city = col_character(), 

#>   county = col_character(), 

#>   state = col_character(), 

#>   pop = col_double() 

#> )



Further suppose we want to append a new row. First, we create a one-row data frame with the new data:

newRow <- data.frame(city = "West Dundee", county = "Kane", 

                     state = "IL", pop = 7352)

Next, we use the rbind function to append that one-row data frame to our existing data frame:

rbind(suburbs, newRow) 

#> # A tibble: 18 x 4 

#>   city    county   state     pop 

#>   <chr>   <chr>    <chr>   <dbl> 

#> 1 Chicago Cook     IL    2853114 

#> 2 Kenosha Kenosha  WI      90352 

#> 3 Aurora  Kane     IL     171782 

#> 4 Elgin   Kane     IL      94487 

#> 5 Gary    Lake(IN) IN     102746 

#> 6 Joliet  Kendall  IL     106221 

#> # ... with 12 more rows

The rbind function tells R that we are appending a new row to suburbs, not a new column. It may be obvious to
you that newRow is a row and not a column, but it is not obvious to R. (Use the cbind function to append a
column.)

WARNING
The new row must use the same column names as the data frame. Otherwise, rbind will fail.

We can combine these two steps into one, of course:

rbind(suburbs, 

      data.frame(city = "West Dundee", county = "Kane", 

                 state = "IL", pop = 7352)) 

#> # A tibble: 18 x 4 

#>   city    county   state     pop 

#>   <chr>   <chr>    <chr>   <dbl> 

#> 1 Chicago Cook     IL    2853114 

#> 2 Kenosha Kenosha  WI      90352 

#> 3 Aurora  Kane     IL     171782 

#> 4 Elgin   Kane     IL      94487 

#> 5 Gary    Lake(IN) IN     102746 

#> 6 Joliet  Kendall  IL     106221 

#> # ... with 12 more rows

We can even extend this technique to multiple new rows because rbind allows multiple arguments:

rbind(suburbs, 

      data.frame(city = "West Dundee", county = "Kane", 

                 state = "IL", pop = 7352), 

      data.frame(city = "East Dundee", county = "Kane", 

                 state = "IL", pop = 3192) 

) 

#> # A tibble: 19 x 4 

#>   city    county   state     pop 

#>   <chr>   <chr>    <chr>   <dbl> 

#> 1 Chicago Cook     IL    2853114 

#> 2 Kenosha Kenosha  WI      90352 

#> 3 Aurora  Kane     IL     171782 

#> 4 Elgin   Kane     IL      94487 

#> 5 Gary    Lake(IN) IN     102746 

#> 6 Joliet  Kendall  IL     106221 

#> # ... with 13 more rows



It’s worth noting that in the previous examples we seamlessly commingled tibbles and data frames. suburbs is a
tibble because we used the tidy function read_csv, which produces tibbles, while newRow was created using
data.frame, which returns a traditional R data frame. And note that the data frames contain factors while the
tibbles do not:

str(suburbs) # a tibble 

#> Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 17 obs. of 

#> 4 variables: 

#>  $ city  : chr  "Chicago" "Kenosha" "Aurora" "Elgin" ... 

#>  $ county: chr  "Cook" "Kenosha" "Kane" "Kane" ... 

#>  $ state : chr  "IL" "WI" "IL" "IL" ... 

#>  $ pop   : num  2853114 90352 171782 94487 102746 ... 

#>  - attr(*, "spec")= 

#>   .. cols( 

#>   ..   city = col_character(), 

#>   ..   county = col_character(), 

#>   ..   state = col_character(), 

#>   ..   pop = col_double() 

#>   .. ) 

str(newRow)  # a data.frame 

#> 'data.frame':    1 obs. of  4 variables: 

#>  $ city  : Factor w/ 1 level "West Dundee": 1 

#>  $ county: Factor w/ 1 level "Kane": 1 

#>  $ state : Factor w/ 1 level "IL": 1 

#>  $ pop   : num 7352

When the inputs to rbind are a mix of data.frame objects and tibble objects, the result will have the same
type as the first argument of rbind. So this would produce a tibble:

rbind(some_tibble, some_data.frame)

while this would produce a data frame:

rbind(some_data.frame, some_tibble)

Selecting Data Frame Columns by Position

Problem
You want to select columns from a data frame according to their position.

Solution
Use the select function:

df %>% select(n1, n2, ..., nk)

where df is a data frame and n1, n2, …, nk are integers with values between 1 and the number of columns.

Discussion
Let’s use the first three rows of the dataset of population data for the 16 largest cities in the Chicago
metropolitan area:

suburbs <- read_csv("data/suburbs.txt") %>% head(3) 

#> Parsed with column specification: 

#> cols( 

#>   city = col_character(), 

#>   county = col_character(), 

#>   state = col_character(), 



#>   pop = col_double() 

#> ) 

suburbs 

#> # A tibble: 3 x 4 

#>   city    county  state     pop 

#>   <chr>   <chr>   <chr>   <dbl> 

#> 1 Chicago Cook    IL    2853114 

#> 2 Kenosha Kenosha WI      90352 

#> 3 Aurora  Kane    IL     171782

Right off the bat, we can see this is a tibble. This will extract the first column (and only the first column):

suburbs %>% 

  dplyr::select(1) 

#> # A tibble: 3 x 1 

#>   city 

#>   <chr> 

#> 1 Chicago 

#> 2 Kenosha 

#> 3 Aurora

These will extract multiple columns:

suburbs %>% 

  dplyr::select(1, 3, 4) 

#> # A tibble: 3 x 3 

#>   city    state     pop 

#>   <chr>   <chr>   <dbl> 

#> 1 Chicago IL    2853114 

#> 2 Kenosha WI      90352 

#> 3 Aurora  IL     171782 

suburbs %>% 

  dplyr::select(2:4) 

#> # A tibble: 3 x 3 

#>   county  state     pop 

#>   <chr>   <chr>   <dbl> 

#> 1 Cook    IL    2853114 

#> 2 Kenosha WI      90352 

#> 3 Kane    IL     171782

List expressions
The select verb is part of the tidyverse package dplyr. Base R also has its own rich functionality for selecting
columns, at the cost of some additional syntax. The choices can be confusing until you understand the logic
behind the alternatives.

One alternative uses list expressions. This might seem odd until you recall that a data frame is a list of columns.
The list expression selects columns from that list. As you read this explanation, notice how the change in syntax
—double brackets versus single brackets—changes the meaning of the expression.

We can select exactly one column by using double brackets ([[ and ]]):

df[[n]]

Returns a vector—specifically, the vector in the nth column of df

We can select one or more columns by using single brackets ([ and ]).

df[n]

Returns a data frame consisting solely of the nth column of df

df[c(n1, n2, ..., nk)]

Returns a data frame built from the columns in positions n1, n2, …, nk of df

For example, we can use list notation to select the first column from suburbs, the city column:



suburbs[[1]] 

#> [1] "Chicago" "Kenosha" "Aurora"

That column is a character vector, so that’s what suburbs[[1]] returns: a vector.

The result changes when we use the single-bracket notation, as in suburbs[1] or suburbs[c(1,3)]. We still get
the requested columns, but R leaves them in a data frame. This example returns the first column as a one-column
data frame:

suburbs[1] 

#> # A tibble: 3 x 1 

#>   city 

#>   <chr> 

#> 1 Chicago 

#> 2 Kenosha 

#> 3 Aurora

And this example returns the first and third columns as a data frame:

suburbs[c(1, 3)] 

#> # A tibble: 3 x 2 

#>   city    state 

#>   <chr>   <chr> 

#> 1 Chicago IL 

#> 2 Kenosha WI 

#> 3 Aurora  IL

TIP
The expression suburbs[1] is actually a shortened form of suburbs[c(1)]. We don’t need the c(...) wrapper because there is only
one n.

A major source of confusion is that suburbs[[1]] and suburbs[1] look similar but produce very different
results:

suburbs[[1]]

Returns one column

suburbs[1]

Returns a data frame that contains exactly one column

The point here is that “one column” is different from “a data frame that contains one column.” The first
expression returns a vector. The second expression returns a data frame, which is a different data structure.

Matrix-style subscripting
You can use matrix-style subscripting to select columns from a data frame:

df[, n]

Returns a vector taken from the nth column (assuming that n contains exactly one value)

df[, c(n1, n2, ..., nk)]

Returns a data frame built from the columns in positions n1, n2, …, nk

An odd quirk can bite you here: you might get a column vector or you might get a data frame, depending upon
how many subscripts you use and whether you are operating on a tibble or a data.frame. Tibbles will always
return tibbles when you index. However, a data.frame may return a vector if you use one index.



In the simple case of one index on a data.frame you get a vector, like this:

# suburbs is a tibble so we convert for this example 

suburbs_df &lt;<- as.data.frame(suburbs) 

suburbs_df[, 1] 

#> [1] "Chicago" "Kenosha" "Aurora"

But using the same matrix-style syntax with multiple indexes returns a data frame:

suburbs_df[, c(1, 4)] 

#>      city     pop 

#> 1 Chicago 2853114 

#> 2 Kenosha   90352 

#> 3  Aurora  171782

This creates a problem. Suppose you see this expression in some old R code:

df[, vec]

Quick, does that return a column or a data frame? Well, it depends. If vec contains one value, then you get a
column; otherwise, you get a data frame. You cannot tell from the syntax alone.

To avoid this problem, you can include drop=FALSE in the subscripts, forcing R to return a data frame:

df[, vec, drop = FALSE]

Now there is no ambiguity about the returned data structure. It’s a data frame.

When all is said and done, using matrix notation to select columns from data frames can be tricky. Use select
when you can.

See Also
See “Selecting One Row or Column from a Matrix” for more about using drop=FALSE.

Selecting Data Frame Columns by Name

Problem
You want to select columns from a data frame according to their name.

Solution
Use select and give it the column names.

df %>% select(name1, name2, ..., namek)

Discussion
All columns in a data frame must have names. If you know the name, it’s usually more convenient and readable
to select by name, not by position. Note that you don’t put the column names in quotes when using select.

The solutions described here are similar to those for “Selecting Data Frame Columns by Position”, where we
selected columns by position. The only difference is that here we use column names instead of column numbers.
All the observations made in that recipe apply here.

List expressions



The select verb is part of the tidyverse. Base R itself also has several rich methods for selecting columns by
name, at the cost of some additional syntax.

To select a single column, use one of these list expressions. Note that they use double brackets ([[ and ]]):

df[["name"]]

Returns one column, the column called name

df$name

Same as previous, just different syntax

To select one or more columns, use these list expressions. Note that they use single brackets ([ and ]):

df["name"]

Selects one column from a data frame

df[c("name1", "name2", ..., "namek")]

Selects several columns

Matrix-style subscripting
Base R also allows matrix-style subscripting for selecting one or more columns from a data frame by name:

df[, "name"]

Returns the named column

df[, c("name1", "name2", ..., "namek")]

Selects several columns in a data frame

The matrix-style subscripting can return either a column or a data frame, so be careful how many names you
supply. See the comments in “Selecting Data Frame Columns by Position” for a discussion of this “gotcha” and
using drop=FALSE.

See Also
See “Selecting Data Frame Columns by Position” to select by position instead of name.

Changing the Names of Data Frame Columns

Problem
You want to change the names of a data frame’s columns.

Solution
The rename function from the dplyr package makes renaming pretty easy:

df %>% rename(newname1 = oldname1, ... , newnamen = oldnamen)

where df is a data frame, oldnamei are names of columns in df, and newnamei are the desired new names.

Note that the argument order is newname = oldname.

Discussion
The columns of data frames must have names. You can change them using rename:



df <- data.frame(V1 = 1:3, V2 = 4:6, V3 = 7:9) 

df %>% rename(tom = V1, dick = V2) 

#>   tom dick V3 

#> 1   1    4  7 

#> 2   2    5  8 

#> 3   3    6  9

The column names are stored in an attribute called colnames, so another way to rename columns is to change
that attribute:

colnames(df) <- c("tom", "dick", "V2") 

df 

#>   tom dick V2 

#> 1   1    4  7 

#> 2   2    5  8 

#> 3   3    6  9

If you happen to be using select to select individual columns, you can rename those columns at the same time:

df <- data.frame(V1 = 1:3, V2 = 4:6, V3 = 7:9) 

df %>% select(tom = V1, V2) 

#>   tom V2 

#> 1   1  4 

#> 2   2  5 

#> 3   3  6

The difference between renaming with select versus renaming with rename is that rename will rename what
you specify, leaving all other columns intact and unchanged, whereas select keeps only the columns you select.
In the preceding example, V3 is dropped because it’s not in the select statement. Both select and rename use
the same argument order: newname = oldname.

See Also
See “Converting One Structured Data Type into Another”.

Removing NAs from a Data Frame

Problem
Your data frame contains NA values, which is creating problems for you.

Solution
Use na.omit to remove rows that contain any NA values:

clean_dfrm <- na.omit(dfrm) 

Discussion
We frequently stumble upon situations where just a few NA values in a data frame cause everything to fall apart.
One solution is simply to remove all rows that contain any NAs. That’s what na.omit does.

Consider a data frame with embedded NA values:

df <- data.frame( 

  x = c(1, NA, 3, 4, 5), 

  y = c(1, 2, NA, 4, 5) 

) 



df 

#>    x  y 

#> 1  1  1 

#> 2 NA  2 

#> 3  3 NA 

#> 4  4  4 

#> 5  5  5

The cumsum function should calculate cumulative sums, but it stumbles on the NA values:

colSums(df) 

#>  x  y 

#> NA NA

If we remove rows with NA values, cumsum can complete its summations:

cumsum(na.omit(df)) 

#>    x  y 

#> 1  1  1 

#> 4  5  5 

#> 5 10 10

But watch out! The na.omit function removes entire rows. The non-NA values in those rows also disappear,
changing the meaning of “cumulative sum.”

This recipe works for removing NA from vectors and matrices, too, but not lists.

The obvious danger here is that simply dropping observations from your data could render the results
numerically or statistically meaningless. Make sure that omitting data makes sense in your context. Remember
that na.omit will remove entire rows, not just the NA values, which could eliminate useful information.

Excluding Columns by Name

Problem
You want to exclude a column from a data frame using its name.

Solution
Use the select function from the dplyr package with a dash (minus sign) in front of the name of the column to
exclude:

select(df, -bad)   # Select all columns from df except bad

Discussion
Placing a minus sign in front of a variable name tells the select function to drop that variable.

This can come in handy when we’re calculating a correlation matrix from a data frame, and we want to exclude
the nondata columns such as labels:

cor(patient_data) 

#>            patient_id    pre  dosage   post 

#> patient_id     1.0000  0.159 -0.0486  0.391 

#> pre            0.1590  1.000  0.8104 -0.289 

#> dosage        -0.0486  0.810  1.0000 -0.526 

#> post           0.3912 -0.289 -0.5262  1.000



This correlation matrix includes the meaningless “correlation” between patient_id and other variables, which
is annoying. We can exclude the patient_id column to clean up the output:

patient_data %>% 

  select(-patient_id) %>% 

  cor 

#>           pre dosage   post 

#> pre     1.000  0.810 -0.289 

#> dosage  0.810  1.000 -0.526 

#> post   -0.289 -0.526  1.000

We can exclude multiple columns the same way:

patient_data %>% 

  select(-patient_id, -dosage) %>% 

  cor() 

#>         pre   post 

#> pre   1.000 -0.289 

#> post -0.289  1.000

Combining Two Data Frames

Problem
You want to combine the contents of two data frames into one data frame.

Solution
To combine the columns of two data frames side by side, use cbind (column bind):

all.cols <- cbind(df1, df2)

To “stack” the rows of two data frames, use rbind (row bind):

all.rows <- rbind(df1, df2)

Discussion
You can combine data frames in one of two ways: either by putting the columns side by side to create a wider
data frame, or by “stacking” the rows to create a taller data frame.

The cbind function will combine data frames side by side:

df1 <- data.frame(a = c(1,2)) 

df2 <- data.frame(b = c(7,8)) 

 

cbind(df1, df2) 

#>   a b 

#> 1 1 7 

#> 2 2 8

You would normally combine columns with the same height (number of rows). Technically speaking, however,
cbind does not require matching heights. If one data frame is short, R will invoke the Recycling Rule to extend
the short columns as necessary (see “Understanding the Recycling Rule”), which may or may not be what you
want.

The rbind function will “stack” the rows of two data frames:



df1 <- data.frame(x = c("a", "a"), y = c(5, 6)) 

df2 <- data.frame(x = c("b", "b"), y = c(9, 10)) 

rbind(df1, df2) 

#>   x         y 

#> 1 a         5 

#> 2 a         6 

#> 3 b         9 

#> 4 b        10

The rbind function requires that the data frames have the same width—the same number of columns and same
column names. The columns need not be in the same order, however; rbind will sort that out.

Finally, this recipe is slightly more general than the title implies. First, you can combine more than two data
frames because both rbind and cbind accept multiple arguments. Second, you can apply this recipe to other data
types because rbind and cbind work also with vectors, lists, and matrices.

Merging Data Frames by Common Column

Problem
You have two data frames that share a common column. You want to merge or join their rows into one data frame
by matching on the common column.

Solution
We can use the join functions from the dplyr package to join our data frames together on a common column. If
you want only rows that appear in both data frames, use inner_join:

inner_join(df1, df2, by = "col")

where "col" is the column that appears in both data frames.

If you want all rows that appear in either data frame, use full_join instead:

full_join(df1, df2, by = "col")

If you want all rows from df1 and only those from df2 that match, use left_join:

left_join(df1, df2, by = "col")

Or to get all records from df2 and only the matching ones from df1, use right_join:

right_join(df1, df2, by = "col")

Discussion
Suppose we have two data frames, born and died, that each contain a column called name:

born <- tibble( 

  name = c("Moe", "Larry", "Curly", "Harry"), 

  year.born = c(1887, 1902, 1903, 1964), 

  place.born = c("Bensonhurst", "Philadelphia", "Brooklyn", "Moscow") 

) 

 

died <- tibble( 

  name = c("Curly", "Moe", "Larry"), 

  year.died = c(1952, 1975, 1975) 

)



We can merge them into one data frame by using name to combine matched rows:

inner_join(born, died, by="name") 

#> # A tibble: 3 x 4 

#>   name  year.born place.born   year.died 

#>   <chr>     <dbl> <chr>            <dbl> 

#> 1 Moe        1887 Bensonhurst       1975 

#> 2 Larry      1902 Philadelphia      1975 

#> 3 Curly      1903 Brooklyn          1952

Notice that inner_join does not require the rows to be sorted or even to occur in the same order. It found the
matching rows for Curly even though they occur in different positions. It also discarded the row for Harry,
which appeared only in born.

A full_join of these data frames includes every row of both, even rows with no matching values:

full_join(born, died, by="name") 

#> # A tibble: 4 x 4 

#>   name  year.born place.born   year.died 

#>   <chr>     <dbl> <chr>            <dbl> 

#> 1 Moe        1887 Bensonhurst       1975 

#> 2 Larry      1902 Philadelphia      1975 

#> 3 Curly      1903 Brooklyn          1952 

#> 4 Harry      1964 Moscow              NA

Where a data frame has no matching value, its columns are filled with NA: the year.died for Harry is NA.

If we don’t supply the join function with a field to join by, then it will attempt to join by any field with matching
names in both data frames and will return an informational response stating which field it is joining on:

full_join(born, died) 

#> Joining, by = "name" 

#> # A tibble: 4 x 4 

#>   name  year.born place.born   year.died 

#>   <chr>     <dbl> <chr>            <dbl> 

#> 1 Moe        1887 Bensonhurst       1975 

#> 2 Larry      1902 Philadelphia      1975 

#> 3 Curly      1903 Brooklyn          1952 

#> 4 Harry      1964 Moscow              NA

If we want to join two data frames on a field that does not have the same name in both data frames, we need our
by parameter to be a vector of equalities:

df1 <- data.frame(key1 = 1:3, value=2) 

df2 <- data.frame(key2 = 1:3, value=3) 

 

inner_join(df1, df2, by = c("key1" = "key2")) 

#>   key1 value.x value.y 

#> 1    1       2       3 

#> 2    2       2       3 

#> 3    3       2       3

Notice in the preceding example how both tables have a field named value that gets renamed in the output. The
field from the first table becomes value.x, while the field from the second table becomes value.y. dplyr joins
will always rename output this way when there is a naming clash on columns not being joined on.

See Also
See “Combining Two Data Frames” for other ways to combine data frames.



The example joined on a single column, name, but these functions can join on multiple columns, too. For details,
see the function documentation by typing ?dplyr::join.

These join operations were inspired by SQL. Just like in SQL, there are multiple types of joins in dplyr,
including inner, left, right, full, semi, and anti. Again, see the function documentation.

Converting One Atomic Value into Another

Problem
You have a data value that has an atomic data type: character, complex, double, integer, or logical. You want to
convert this value into one of the other atomic data types.

Solution
For each atomic data type, there is a function for converting values to that type. The conversion functions for
atomic types include:

as.character(x)

as.complex(x)

as.numeric(x) or as.double(x)

as.integer(x)

as.logical(x)

Discussion
Converting one atomic type into another is usually pretty simple. If the conversion works, you get what you
would expect. If it does not work, you get NA:

as.numeric(" 3.14 ") 

#> [1] 3.14 

as.integer(3.14) 

#> [1] 3 

as.numeric("foo") 

#> Warning: NAs introduced by coercion 

#> [1] NA 

as.character(101) 

#> [1] "101"

If you have a vector of atomic types, these functions apply themselves to every value. So the preceding examples
of converting scalars generalize easily to converting entire vectors:

as.numeric(c("1", "2.718", "7.389", "20.086")) 

#> [1]  1.00  2.72  7.39 20.09 

as.numeric(c("1", "2.718", "7.389", "20.086", "etc.")) 

#> Warning: NAs introduced by coercion 

#> [1]  1.00  2.72  7.39 20.09    NA 

as.character(101:105) 

#> [1] "101" "102" "103" "104" "105"

When converting logical values into numeric values, R converts FALSE to 0 and TRUE to 1:

as.numeric(FALSE) 

#> [1] 0 

as.numeric(TRUE) 

#> [1] 1



This behavior is useful when you are counting occurrences of TRUE in vectors of logical values. If logvec is a
vector of logical values, then sum(logvec) does an implicit conversion from logical to integer values and
returns the number of TRUEs:

logvec <- c(TRUE, FALSE, TRUE, TRUE, TRUE, FALSE) 

sum(logvec) ## num true 

#> [1] 4 

length(logvec) - sum(logvec) ## num not true 

#> [1] 2

Converting One Structured Data Type into Another

Problem
You want to convert a variable from one structured data type to another—for example, converting a vector into a
list, or a matrix into a data frame.

Solution
These functions convert their argument into the corresponding structured data type:

as.data.frame(x)

as.list(x)

as.matrix(x)

as.vector(x)

Some of these conversions may surprise you, however. We suggest you review Table 5-2 for more detail.

Discussion
Converting between structured data types can be tricky. Some conversions behave as you’d expect. If you convert
a matrix into a data frame, for instance, the rows and columns of the matrix become the rows and columns of the
data frame. No sweat.

In other cases, the results might surprise you. Table 5-2 summarizes some noteworthy examples.

Table 5-2. Data conversions

Conversion How Notes

Vector→List as.list(vec) Don’t use list(vec); that creates a one-element list whose
only element is a copy of vec.

Vector→Matrix To create a one-column matrix: cbind(vec) or
as.matrix(vec) 

 To create a one-row matrix: rbind(vec) 
 To create an n × m matrix: matrix(vec,n,m)

See “Initializing a Matrix”.

Vector→Data
frame

To create a one-column data frame:
as.data.frame(vec) 

 To create a one-row data frame:
as.data.frame(rbind(vec))

List→Vector unlist(lst) Use unlist rather than as.vector; see Note 1 and
“Flattening a List into a Vector”.



Conversion How Notes

List→Matrix To create a one-column matrix: as.matrix(lst) 
 To create a one-row matrix: as.matrix(rbind(lst)) 

 To create an n × m matrix: matrix(lst,n,m)

List→Data
frame

If the list elements are columns of data:
as.data.frame(lst) 

 If the list elements are rows of data, see “Initializing a
Data Frame from Row Data”.

Matrix→Vector as.vector(mat) Returns all matrix elements in a vector.

Matrix→List as.list(mat) Returns all matrix elements in a list.

Matrix→Data
frame

as.data.frame(mat)

Data
frame→Vector

To convert a one-row data frame: df[1,] 
 To convert a one-column data frame: df[,1] or df[[1]]

See Note 2.

Data
frame→List

as.list(df) See Note 3.

Data
frame→Matrix

as.matrix(df) See Note 4.

The notes cited in the table are as follows:

1. When you convert a list into a vector, the conversion works cleanly if your list contains atomic values that
are all of the same mode. Things become complicated if either your list contains mixed modes (e.g.,
numeric and character), in which case everything is converted to characters, or your list contains other
structured data types (such as sublists or data frames), in which case very odd things happen, so don’t do
that.

2. Converting a data frame into a vector makes sense only if the data frame contains one row or one column.
To extract all its elements into one long vector, use as.vector(as.matrix(df)). But even that makes
sense only if the data frame is all numeric or all character; if not, everything is first converted to character
strings.

3. Converting a data frame into a list may seem odd in that a data frame is already a list (i.e., a list of
columns). Using as.list essentially removes the class (data.frame) and thereby exposes the underlying
list. That is useful when you want R to treat your data structure as a list—say, for printing.

4. Be careful when converting a data frame into a matrix. If the data frame contains only numeric values, then
you get a numeric matrix. If it contains only character values, you get a character matrix. But if the data
frame is a mix of numbers, characters, and/or factors, then all values are first converted to characters. The
result is a matrix of character strings.

Special considerations for matrices
The matrix conversions detailed here assume that your matrix is homogeneous—that is, all elements have the
same mode (e.g., all numeric or all character). A matrix can be heterogeneous, too, when the matrix is built from
a list. If so, conversions become messy. For example, when you convert a mixed-mode matrix to a data frame,
the data frame’s columns are actually lists (to accommodate the mixed data).

See Also
See “Converting One Atomic Value into Another” for converting atomic data types; see the introduction to this
chapter for remarks on problematic conversions.



A data frame can be built from a mixture of vectors, factors, and matrices. The columns of the matrices become columns in the data frame. The
number of rows in each matrix must match the length of the vectors and factors. In other words, all elements of a data frame must have the
same height.

1



Chapter 6. Data Transformations

While traditional programming languages use loops, R has traditionally encouraged using vectorized operations
and the apply family of functions to crunch data in batches, greatly streamlining the calculations. There is
nothing to prevent you from writing loops in R that break your data into whatever chunks you want and then
doing an operation on each chunk. However, using vectorized functions can, in many cases, increase the speed,
readability, and maintainability of your code.

In recent history, though, the tidyverse—specifically the purrr and dplyr packages—has introduced new idioms
into R that make these concepts easier to learn and slightly more consistent. The name purrr comes from a play
on the phrase “Pure R.” A “pure function” is a function whose result is determined only by its inputs, and which
does not produce any side effects. This is not a functional programming concept you need to understand in order
to get great value from purrr, however. All most users need to know is that purrr contains functions to help us
operate “chunk by chunk” on our data in a way that meshes well with other tidyverse packages such as dplyr.

Base R has many apply functions—apply, lapply, sapply, tapply, and mapply—as well as their cousins, by
and split. These are solid functions that have been workhorses in Base R for years. We struggled a bit with how
much to focus on the Base R apply functions and how much to focus on the newer “tidy” approach. After much
debate, we’ve chosen to try to illustrate the purrr approach and to acknowledge Base R approaches and, in a few
places, to illustrate both. The interface to purrr and dplyr is very clean and, we believe, in most cases, more
intuitive.

Applying a Function to Each List Element

Problem
You have a list, and you want to apply a function to each element of the list.

Solution
Use map to apply a function to every element of a list:

library(tidyverse) 

 

lst %>% 

  map(fun)

Discussion
Let’s look at a specific example of taking the average of all the numbers in each element of a list:

library(tidyverse) 

 

lst <- list( 

  a = c(1,2,3), 

  b = c(4,5,6) 

) 

lst %>% 

  map(mean) 

#> $a 

#> [1] 2 

#> 

#> $b 

#> [1] 5



The map function will call your function once for every element in your list. Your function should expect one
argument, an element from the list. The map functions will collect the returned values and return them in a list.

The purrr package contains a whole family of map functions that take a list or a vector and then return an object
with the same number of elements as the input. The type of object they return varies based on which map
function is used. See the help file for map for a complete list, but a few of the most common are as follows:

map

Always returns a list, and the elements of the list may be of different types. This is quite similar to the Base
R function lapply.

map_chr

Returns a character vector.

map_int

Returns an integer vector.

map_dbl

Returns a floating-point numeric vector.

Let’s take a quick look at a contrived situation where we have a function that could result in a character or an
integer result:

fun <- function(x) { 

  if (x > 1) { 

    1 

  } else { 

    "Less Than 1" 

  } 

} 

 

fun(5) 

#> [1] 1 

fun(0.5) 

#> [1] "Less Than 1"

Let’s create a list of elements that we can map fun to and look at how some of the map variants behave:

lst <- list(.5, 1.5, .9, 2) 

 

map(lst, fun) 

#> [[1]] 

#> [1] "Less Than 1" 

#> 

#> [[2]] 

#> [1] 1 

#> 

#> [[3]] 

#> [1] "Less Than 1" 

#> 

#> [[4]] 

#> [1] 1

You can see that map produced a list and it is of mixed data types.

map_chr will produce a character vector and coerce the numbers into characters:

map_chr(lst, fun) 

#> [1] "Less Than 1" "1.000000"    "Less Than 1" "1.000000" 

 

## or using pipes 

lst %>% 



  map_chr(fun) 

#> [1] "Less Than 1" "1.000000"    "Less Than 1" "1.000000"

while map_dbl will try to coerce a character string into a double and die trying:

map_dbl(lst, fun) 

#> Error: Can't coerce element 1 from a character to a double

As mentioned earlier, the Base R lapply function acts very much like map. The Base R sapply function is more
like the other map functions we discussed previously, in that the function tries to simplify the results into a vector
or matrix.

See Also
See “Defining a Function”.

Applying a Function to Every Row of a Data Frame

Problem
You have a function and you want to apply it to every row in a data frame.

Solution
The mutate function will create a new variable based on a vector of values. But if we are using a function that
can’t take in a vector and output a vector, then we have to do a row-by-row operation using rowwise.

We can use rowwise in a pipe chain to tell dplyr to do all following commands row by row:

df %>% 

  rowwise() %>% 

  row_by_row_function()

Discussion
Let’s create a function and apply it row by row to a data frame. Our function will simply calculate the sum of a
sequence from a to b by c:

fun <- function(a, b, c) { 

  sum(seq(a, b, c)) 

}

Let’s create some data to apply this function to, then use rowwise to apply our function, fun, to it:

df <- data.frame(mn = c(1, 2, 3), 

                 mx = c(8, 13, 18), 

                 rng = c(1, 2, 3)) 

 

df %>% 

  rowwise %>% 

  mutate(output = fun(a = mn, b = mx, c = rng)) 

#> Source: local data frame [3 x 4] 

#> Groups: <by row> 

#> 

#> # A tibble: 3 x 4 

#>      mn    mx   rng output 

#>   <dbl> <dbl> <dbl>  <dbl> 

#> 1     1     8     1     36 



#> 2     2    13     2     42 

#> 3     3    18     3     63

Had we tried to run this function without rowwise, it would have thrown an error because the seq function
cannot process an entire vector:

df %>% 

  mutate(output = fun(a = mn, b = mx, c = rng)) 

#> Error in seq.default(a, b, c): 'from' must be of length 1

Applying a Function to Every Row of a Matrix

Problem
You have a matrix. You want to apply a function to every row, calculating the function result for each row.

Solution
Use the apply function. Set the second argument to 1 to indicate row-by-row application of the function:

results <- apply(mat, 1, fun)    # mat is a matrix, fun is a function

The apply function will call fun once for each row of the matrix, assemble the returned values into a vector, and
then return that vector.

Discussion
You may notice that we show only the use of the Base R apply function here, while other recipes illustrate purrr
alternatives. As of this writing, matrix operations are out of scope for purrr, so we use the very solid Base R
apply function. If you really like the purrr syntax, you can use those functions if you first convert your matrix
to a data frame or tibble. But if your matrix is large, you will notice a meaningful runtime slowdown using
purrr.

Suppose we have a matrix long containing longitudinal data, so each row has data for one subject and the
columns contain the repeated observations over time:

long <- matrix(1:15, 3, 5) 

long 

#>      [,1] [,2] [,3] [,4] [,5] 

#> [1,]    1    4    7   10   13 

#> [2,]    2    5    8   11   14 

#> [3,]    3    6    9   12   15

We could calculate the average observation for each subject by applying the mean function to each row. The
result is a vector:

apply(long, 1, mean) 

#> [1] 7 8 9

If our matrix has row names, apply uses them to identify the elements of the resulting vector, which is handy:

rownames(long) <- c("Moe", "Larry", "Curly") 

apply(long, 1, mean) 

#>   Moe Larry Curly 

#>     7     8     9



The function being called should expect one argument, a vector, which will be one row from the matrix. The
function can return a scalar or a vector. In the vector case, apply assembles the results into a matrix. The range
function returns a vector of two elements, the minimum and the maximum, so applying it to long produces a
matrix:

apply(long, 1, range) 

#>      Moe Larry Curly 

#> [1,]   1     2     3 

#> [2,]  13    14    15

You can employ this recipe on data frames as well. It works if the data frame is homogeneous—that is, either all
numbers or all character strings. When the data frame has columns of different types, extracting vectors from the
rows isn’t sensible because vectors must be homogeneous.

Applying a Function to Every Column

Problem
You have a matrix or data frame, and you want to apply a function to every column.

Solution
For a matrix, use the apply function. Set the second argument to 2, which indicates column-by-column
application of the function. So, if our matrix or data frame was named mat and we wanted to apply a function
named fun to every column, it would look like this:

apply(mat, 2, fun)

For a data frame, use the map_df function from purrr:

df2 <- map_df(df, fun)

Discussion
Let’s look at an example with real numbers and apply the mean function to every column of a matrix:

mat <- matrix(c(1, 3, 2, 5, 4, 6), 2, 3) 

colnames(mat) <- c("t1", "t2", "t3") 

mat 

#>      t1 t2 t3 

#> [1,]  1  2  4 

#> [2,]  3  5  6 

 

apply(mat, 2, mean)  # Compute the mean of every column 

#>  t1  t2  t3 

#> 2.0 3.5 5.0

In Base R, the apply function is intended for processing a matrix or data frame. The second argument of apply
determines the direction:

1 means process row by row.

2 means process column by column.

This is more mnemonic than it looks. We speak of matrices in “rows and columns,” so rows are first and
columns second: 1 and 2, respectively.



A data frame is a more complicated data structure than a matrix, so there are more options. You can simply use
apply, in which case R will convert your data frame to a matrix and then apply your function. That will work if
your data frame contains only one type of data but will probably not do what you want if some columns are
numeric and some are character. In that case, R will force all columns to have identical types, likely performing
an unwanted conversion as a result.

Fortunately, there are multiple alternatives. Recall that a data frame is a kind of list: it is a list of the columns of
the data frame. purrr has a whole family of map functions that return different types of objects. Of particular
interest here is map_df, which returns a data.frame (thus the df in the name):

df2 <- map_df(df, fun) # Returns a data.frame

The function fun should expect one argument: a column from the data frame.

Here is a common recipe to check the types of columns in data frames. In this example, the batch column of this
data frame, at a quick glance, seems to contain numbers:

load("./data/batches.rdata") 

head(batches) 

#>   batch clinic dosage shrinkage 

#> 1     3     KY     IL    -0.307 

#> 2     3     IL     IL    -1.781 

#> 3     1     KY     IL    -0.172 

#> 4     3     KY     IL     1.215 

#> 5     2     IL     IL     1.895 

#> 6     2     NJ     IL    -0.430

But using map_df to print out the class of each column reveals the column batch to be a factor instead:

map_df(batches, class) 

#> # A tibble: 1 x 4 

#>   batch  clinic dosage shrinkage 

#>   <chr>  <chr>  <chr>  <chr> 

#> 1 factor factor factor numeric

NOTE
Notice how the third line of the output says <chr> repeatedly. This is because the output of class is being put in a data frame and
then printed. The intermediate data frame is all character fields. It’s the last row that tells us our original data frame has three factor
columns and one numeric field.

See Also
See “Selecting Data Frame Columns by Position”, “Applying a Function to Each List Element”, and “Applying a
Function to Every Row of a Matrix”.

Applying a Function to Parallel Vectors or Lists

Problem
You have a function that takes multiple arguments. You want to apply the function element-wise to vectors and
obtain a vector result. Unfortunately, the function is not vectorized; that is, it works on scalars but not on vectors.

Solution



Use one of the map or pmap functions from the tidyverse core package purrr. The most general solution is to put
your vectors in a list, then use pmap:

lst <- list(v1, v2, v3) 

pmap(lst, fun)

pmap will take the elements of lst and pass them as the inputs to fun.

If you only have two vectors you are passing as inputs to your function, the map2 family of functions is
convenient and saves you the step of putting your vectors in a list first. map2 will return a list:

map2(v1, v2, fun)

while the typed variants (map2_chr, map2_dbl, etc.) return vectors of the type their name implies. So, if fun
returns only a double, use the typed variant of map2 instead:

map2_dbl(v1, v2, fun)

The typed variants in purrr functions refer to the output type expected from the function. All the typed variants
return vectors of their respective type, while the untyped variants return lists, which allow mixing of types.

Discussion
The basic operators of R, such as x + y, are vectorized; this means that they compute their result element by
element and return a vector of results. Also, many R functions are vectorized.

Not all functions are vectorized, however, and those that are not typed work only on scalars. Using vector
arguments produces errors at best and meaningless results at worst. In such cases, the map functions from purrr
can effectively vectorize the function for you.

Consider the gcd function from “Defining a Function”, which takes two arguments:

gcd <- function(a, b) { 

  if (b == 0) { 

    return(a) 

  } else { 

    return(gcd(b, a %% b)) 

  } 

}

If we apply gcd to two vectors, the result is wrong answers and a pile of error messages:

gcd(c(1, 2, 3), c(9, 6, 3)) 

#> Warning in if (b == 0) {: the condition has length > 1 and only the first 

#> element will be used 

 

#> Warning in if (b == 0) {: the condition has length > 1 and only the first 

#> element will be used 

 

#> Warning in if (b == 0) {: the condition has length > 1 and only the first 

#> element will be used 

#> [1] 1 2 0

The function is not vectorized, but we can use map to “vectorize” it. In this case, since we have two inputs we’re
mapping over, we should use the map2 function. This gives the element-wise greatest common divisors (GCDs)
between two vectors:

a <- c(1, 2, 3) 

b <- c(9, 6, 3) 



my_gcds <- map2(a, b, gcd) 

my_gcds 

#> [[1]] 

#> [1] 1 

#> 

#> [[2]] 

#> [1] 2 

#> 

#> [[3]] 

#> [1] 3

Notice that map2 returns a list of lists. If we wanted the output in a vector, we could use unlist on the result:

unlist(my_gcds) 

#> [1] 1 2 3

or use one of the typed variants, such as map2_dbl.

The map family of purrr functions give you a series of variations that return specific types of output. The
suffixes on the function names communicate the type of vector they will return. While map and map2 return lists,
since the type-specific variants are returning objects guaranteed to be the same type, they can be put in atomic
vectors. For example, we could use the map_chr function to ask R to coerce the results into character output or
map2_dbl to ensure the results are doubles:

map2_chr(a, b, gcd) 

#> [1] "1.000000" "2.000000" "3.000000" 

map2_dbl(a, b, gcd) 

#> [1] 1 2 3

If our data has more than two vectors, or the data is already in a list, we can use the pmap family of functions,
which take a list as an input:

lst <- list(a,b) 

pmap(lst, gcd) 

#> [[1]] 

#> [1] 1 

#> 

#> [[2]] 

#> [1] 2 

#> 

#> [[3]] 

#> [1] 3

Or if we want a typed vector as output:

lst <- list(a,b) 

pmap_dbl(lst, gcd) 

#> [1] 1 2 3

With the purrr functions, remember that the pmap family are parallel mappers that take in a list as inputs, while
map2 functions take two, and only two, vectors as inputs.

See Also
This is really just a special case of our very first recipe in this chapter, “Applying a Function to Each List
Element”. See that recipe for more discussion of map variants. In addition, Jenny Bryan has a great collection of
purrr tutorials on her GitHub site.

https://jennybc.github.io/purrr-tutorial/


Applying a Function to Groups of Data

Problem
Your data elements occur in groups. You want to process the data by groups—for example, summing by group or
averaging by group.

Solution
The easiest way to do grouping is with the dplyr function group_by in conjunction with summarize. If our data
frame is df and has a variable we want to group by named grouping_var, and we want to apply the function fun
to all the combinations of v1 and v2, we can do that with group_by:

df %>% 

  group_by(v1, v2) %>% 

  summarize( 

    result_var = fun(value_var) 

  )

Discussion
Let’s look at a specific example where our input data frame, df, contains a variable, my_group, which we want to
group by, and a field named values which we would like to calculate some statistics on:

df <- tibble( 

  my_group = c("A", "B","A", "B","A", "B"), 

  values = 1:6 

) 

 

df %>% 

  group_by(my_group) %>% 

  summarize( 

    avg_values = mean(values), 

    tot_values = sum(values), 

    count_values = n() 

  ) 

#> # A tibble: 2 x 4 

#>   my_group avg_values tot_values count_values 

#>   <chr>         <dbl>      <int>        <int> 

#> 1 A                 3          9            3 

#> 2 B                 4         12            3

The output has one record per grouping along with calculated values for the three summary fields we defined.

WARNING
It’s worth noting that the summarize function will silently remove the last of the grouping variables from the group_by. This is done
automatically because leaving the grouping in place will, by definition, mean that no group has more than one row in it. The last
grouping variable is dropped only from the vector of groupings, not from the data frame. That field is still in there, but it’s not used for
groupings. This can be surprising the first time you observe it in action.

Creating a New Column Based on Some Condition

Problem
You want to create a new column in a data frame based on some condition.



Solution
Using the dplyr tidyverse package, we can create new data frame columns with mutate and then use case_when
to implement conditional logic:

df %>% 

  mutate( 

    case_when(my_field == "something" ~ "result", 

              my_field != "something else" ~ "other result", 

              TRUE ~ "all other results") 

  )

Discussion
The case_when function from dplyr is analogous to CASE WHEN in SQL or nested IF statements in Excel. The
function tests every element and, when it finds a condition that is true, returns the value on the righthand side of
the ~ (tilde).

Let’s look at an example where we want to add a text field that describes a value. First let’s set up some simple
example data in a data frame with one column named vals:

df <- data.frame(vals = 1:5)

Now let’s implement logic that creates a field called new_vals. If vals is less than or equal to 2, we’ll return 2
or less; if the value is greater than 2 and less than or equal to 4, we’ll return 2 to 4, and otherwise we’ll return
over 4:

df %>% 

  mutate(new_vals = case_when(vals <= 2 ~ "2 or less", 

                              vals > 2 & vals <= 4 ~ "2 to 4", 

                              TRUE ~ "over 4")) 

#>   vals  new_vals 

#> 1    1 2 or less 

#> 2    2 2 or less 

#> 3    3    2 to 4 

#> 4    4    2 to 4 

#> 5    5    over 4

You can see in the example that the condition goes on the left of the ~, while the resulting return value goes on
the right. Each condition is separated by commas. case_when will evaluate each condition sequentially and stop
evaluating as soon as one of the criteria returns TRUE. Our last line is our “or else” statement. Setting the
condition to TRUE ensures that, no matter what, this condition will be met if no condition above it has returned
TRUE.

See Also
See “Applying a Function to Every Row of a Data Frame” for more examples of using mutate.



Chapter 7. Strings and Dates

Strings? Dates? In a statistical programming package?

As soon as you read files or print reports, you need strings. When you work with real-world problems, you need
dates.

R has facilities for both strings and dates. They are clumsy compared to string-oriented languages such as Perl,
but then it’s a matter of the right tool for the job. We wouldn’t want to perform logistic regression in Perl.

Some of this clunkiness with strings and dates has been improved through the tidyverse packages stringr and
lubridate. As with other chapters in this book, the examples here will pull from Base R as well as add-on
packages that make life easier, faster, and more convenient.

Classes for Dates and Times
R has a variety of classes for working with dates and times, which is nice if you prefer having a choice but
annoying if you prefer living simply. There is a critical distinction among the classes: some are date-only
classes, some are datetime classes. All classes can handle calendar dates (e.g., March 15, 2019), but not all can
represent a datetime (11:45 AM on March 1, 2019).

The following classes are included in the base distribution of R:

Date

The Date class can represent a calendar date but not a clock time. It is a solid, general-purpose class for
working with dates, including conversions, formatting, basic date arithmetic, and time-zone handling. Most
of the date-related recipes in this book are built on the Date class.

POSIXct

This is a datetime class, and it can represent a moment in time with an accuracy of one second. Internally, the
datetime is stored as the number of seconds since January 1, 1970, so it’s a very compact representation. This
class is recommended for storing datetime information (e.g., in data frames).

POSIXlt

This is also a datetime class, but the representation is stored in a nine-element list that includes the year,
month, day, hour, minute, and second. This representation makes it easy to extract date parts, such as the
month or hour. Obviously, this is much less compact than the POSIXct class; hence, it is normally used for
intermediate processing and not for storing data.

The base distribution also provides functions for easily converting between representations: as.Date,
as.POSIXct, and as.POSIXlt.

The following helpful packages are available for downloading from CRAN:

chron

The chron package can represent both dates and times, but without the added complexities of handling time
zones and Daylight Saving Time. It’s therefore easier to use than Date but less powerful than POSIXct and
POSIXlt. It would be useful for work in econometrics or time series analysis.

lubridate

This is a tidyverse package designed to make working with dates and times easier while keeping the
important bells and whistles such as time zones. It’s especially clever regarding datetime arithmetic. This
package introduces some helpful constructs like durations, periods, and intervals. lubridate is part of the



tidyverse, so it is installed when you install.packages('tidyverse'), but it is not part of “core
tidyverse,” so it does not get loaded when you run library(tidyverse). This means you must explicitly
load it by running library(lubridate).

mondate

This is a specialized package for handling dates in units of months in addition to days and years. It can be
helpful in accounting and actuarial work, for example, where month-by-month calculations are needed.

timeDate

This is a high-powered package with well-thought-out facilities for handling dates and times, including date
arithmetic, business days, holidays, conversions, and generalized handling of time zones. It was originally
part of the Rmetrics software for financial modeling, where precision in dates and times is critical. If you
have a demanding need for date facilities, consider this package.

Which class should you select? The article “Date and Time Classes in R” by Gabor Grothendieck and Thomas
Petzoldt offers this general advice:

When considering which class to use, always choose the least complex class that will support the application.
That is, use Date if possible, otherwise use chron and otherwise use the POSIX classes. Such a strategy will
greatly reduce the potential for error and increase the reliability of your application.

See Also
See help(DateTimeClasses) for more details regarding the built-in facilities. See the June 2004 article “Date
and Time Classes in R” by Gabor Grothendieck and Thomas Petzoldt for a great introduction to the date and time
facilities. The June 2001 article “Date-Time Classes” by Brian Ripley and Kurt Hornik discusses the two POSIX
classes in particular. Chapter 16, “Dates and Times”, from the book R for Data Science by Garrett Grolemund
and Hadley Wickham (O’Reilly) provides a great introduction to lubridate.

Getting the Length of a String

Problem
You want to know the length of a string.

Solution
Use the nchar function, not the length function.

Discussion
The nchar function takes a string and returns the number of characters in the string:

nchar("Moe") 

#> [1] 3 

nchar("Curly") 

#> [1] 5

If you apply nchar to a vector of strings, it returns the length of each string:

s <- c("Moe", "Larry", "Curly") 

nchar(s) 

#> [1] 3 5 5

http://bit.ly/2MNK9q8
http://bit.ly/2IHjKoy
http://bit.ly/2WKoOCn
http://bit.ly/2F7dSUI
https://oreil.ly/2IIWxCs


You might think the length function returns the length of a string. Nope. It returns the length of a vector. When
you apply the length function to a single string, R returns the value 1 because it views that string as a singleton
vector—a vector with one element:

length("Moe") 

#> [1] 1 

length(c("Moe", "Larry", "Curly")) 

#> [1] 3

Concatenating Strings

Problem
You want to join together two or more strings into one string.

Solution
Use the paste function.

Discussion
The paste function concatenates several strings together. In other words, it creates a new string by joining the
given strings end to end:

paste("Everybody", "loves", "stats.") 

#> [1] "Everybody loves stats."

By default, paste inserts a single space between pairs of strings, which is handy if that’s what you want and
annoying otherwise. The sep argument lets you specify a different separator. Use an empty string ("") to run the
strings together without separation:

paste("Everybody", "loves", "stats.", sep = "-") 

#> [1] "Everybody-loves-stats." 

paste("Everybody", "loves", "stats.", sep = "") 

#> [1] "Everybodylovesstats."

It’s a common idiom to want to concatenate strings together with no separator at all. The function paste0 makes
this very convenient:

paste0("Everybody", "loves", "stats.") 

#> [1] "Everybodylovesstats."

The function is very forgiving about nonstring arguments. It tries to convert them to strings using the
as.character function silently behind the scenes:

paste("The square root of twice pi is approximately", sqrt(2 * pi)) 

#> [1] "The square root of twice pi is approximately 2.506628274631"

If one or more arguments are vectors of strings, paste will generate all combinations of the arguments (because
of recycling):

stooges <- c("Moe", "Larry", "Curly") 

paste(stooges, "loves", "stats.") 

#> [1] "Moe loves stats."   "Larry loves stats." "Curly loves stats."



Sometimes you want to join even those combinations into one big string. The collapse parameter lets you
define a top-level separator and instructs paste to concatenate the generated strings using that separator:

paste(stooges, "loves", "stats", collapse = ", and ") 

#> [1] "Moe loves stats, and Larry loves stats, and Curly loves stats"

Extracting Substrings

Problem
You want to extract a portion of a string according to position.

Solution
Use substr(string,start,end) to extract the substring that begins at start and ends at end.

Discussion
The substr function takes a string, a starting point, and an ending point. It returns the substring between the
starting and ending points:

substr("Statistics", 1, 4) # Extract first 4 characters 

#> [1] "Stat" 

substr("Statistics", 7, 10) # Extract last 4 characters 

#> [1] "tics"

Just like many R functions, substr lets the first argument be a vector of strings. In that case, it applies itself to
every string and returns a vector of substrings:

ss <- c("Moe", "Larry", "Curly") 

substr(ss, 1, 3) # Extract first 3 characters of each string 

#> [1] "Moe" "Lar" "Cur"

In fact, all the arguments can be vectors, in which case substr will treat them as parallel vectors. From each
string, it extracts the substring delimited by the corresponding entries in the starting and ending points. This can
facilitate some useful tricks. For example, the following code snippet extracts the last two characters from each
string; each substring starts on the penultimate character of the original string and ends on the final character:

cities <- c("New York, NY", "Los Angeles, CA", "Peoria, IL") 

substr(cities, nchar(cities) - 1, nchar(cities)) 

#> [1] "NY" "CA" "IL"

You can extend this trick into mind-numbing territory by exploiting the Recycling Rule, but we suggest you
avoid the temptation.

Splitting a String According to a Delimiter

Problem
You want to split a string into substrings. The substrings are separated by a delimiter.

Solution
Use strsplit, which takes two arguments, the string and the delimiter of the substrings:



strsplit(string, delimiter) 

The delimiter can be either a simple string or a regular expression.

Discussion
It is common for a string to contain multiple substrings separated by the same delimiter. One example is a
filepath, whose components are separated by slashes (/):

path <- "/home/mike/data/trials.csv"

We can split that path into its components by using strsplit with a delimiter of /:

strsplit(path, "/") 

#> [[1]] 

#> [1] ""           "home"       "mike"       "data"       "trials.csv"

Notice that the first “component” is actually an empty string because nothing preceded the first slash.

Also notice that strsplit returns a list and that each element of the list is a vector of substrings. This two-level
structure is necessary because the first argument can be a vector of strings. Each string is split into its substrings
(a vector), and then those vectors are returned in a list.

If you are operating only on a single string, you can pop out the first element like this:

strsplit(path, "/")[[1]] 

#> [1] ""           "home"       "mike"       "data"       "trials.csv"

This example splits three filepaths and returns a three-element list:

paths <- c( 

  "/home/mike/data/trials.csv", 

  "/home/mike/data/errors.csv", 

  "/home/mike/corr/reject.doc" 

) 

strsplit(paths, "/") 

#> [[1]] 

#> [1] ""           "home"       "mike"       "data"       "trials.csv" 

#> 

#> [[2]] 

#> [1] ""           "home"       "mike"       "data"       "errors.csv" 

#> 

#> [[3]] 

#> [1] ""           "home"       "mike"       "corr"       "reject.doc"

The second argument of strsplit (the delimiter argument) is actually much more powerful than these
examples indicate. It can be a regular expression, letting you match patterns far more complicated than a simple
string. In fact, to turn off the regular expression feature (and its interpretation of special characters), you must
include the fixed=TRUE argument.

See Also
To learn more about regular expressions in R, see the help page for regexp. See O’Reilly’s Mastering Regular
Expressions, by Jeffrey E.F. Friedl, to learn more about regular expressions in general.

Replacing Substrings

https://oreil.ly/2XhDBnm


Problem
Within a string, you want to replace one substring with another.

Solution
Use sub to replace the first instance of a substring:

sub(old, new, string) 

Use gsub to replace all instances of a substring:

gsub(old, new, string) 

Discussion
The sub function finds the first instance of the old substring within string and replaces it with the new
substring:

str <- "Curly is the smart one. Curly is funny, too." 

sub("Curly", "Moe", str) 

#> [1] "Moe is the smart one. Curly is funny, too."

gsub does the same thing, but it replaces all instances of the substring (a global replace), not just of the first
instance:

gsub("Curly", "Moe", str) 

#> [1] "Moe is the smart one. Moe is funny, too."

To remove a substring altogether, simply set the new substring to be empty:

sub(" and SAS", "", "For really tough problems, you need R and SAS.") 

#> [1] "For really tough problems, you need R."

The old argument can be a regular expression, which allows you to match patterns much more complicated than
a simple string. This is actually assumed by default, so you must set the fixed=TRUE argument if you don’t want
sub and gsub to interpret old as a regular expression.

See Also
To learn more about regular expressions in R, see the help page for regexp. See Mastering Regular Expressions
to learn more about regular expressions in general.

Generating All Pairwise Combinations of Strings

Problem
You have two sets of strings, and you want to generate all combinations from those two sets (their Cartesian
product).

Solution
Use the outer and paste functions together to generate the matrix of all possible combinations:

m <- outer(strings1, strings2, paste, sep = "") 



Discussion
The outer function is intended to form the outer product. However, it allows a third argument to replace simple
multiplication with any function. In this recipe we replace multiplication with string concatenation (paste), and
the result is all combinations of strings.

Suppose we have four test sites and three treatments:

locations <- c("NY", "LA", "CHI", "HOU") 

treatments <- c("T1", "T2", "T3")

We can apply outer and paste to generate all combinations of test sites and treatments like so:

outer(locations, treatments, paste, sep = "-") 

#>      [,1]     [,2]     [,3] 

#> [1,] "NY-T1"  "NY-T2"  "NY-T3" 

#> [2,] "LA-T1"  "LA-T2"  "LA-T3" 

#> [3,] "CHI-T1" "CHI-T2" "CHI-T3" 

#> [4,] "HOU-T1" "HOU-T2" "HOU-T3"

The fourth argument of outer is passed to paste. In this case, we passed sep="-" in order to define a hyphen as
the separator between the strings.

The result of outer is a matrix. If you want the combinations in a vector instead, flatten the matrix using the
as.vector function.

In the special case where you are combining a set with itself and order does not matter, the result will be
duplicate combinations:

outer(treatments, treatments, paste, sep = "-") 

#>      [,1]    [,2]    [,3] 

#> [1,] "T1-T1" "T1-T2" "T1-T3" 

#> [2,] "T2-T1" "T2-T2" "T2-T3" 

#> [3,] "T3-T1" "T3-T2" "T3-T3"

Or you can use expand.grid to get a pair of vectors representing all combinations:

expand.grid(treatments, treatments) 

#>   Var1 Var2 

#> 1   T1   T1 

#> 2   T2   T1 

#> 3   T3   T1 

#> 4   T1   T2 

#> 5   T2   T2 

#> 6   T3   T2 

#> 7   T1   T3 

#> 8   T2   T3 

#> 9   T3   T3

But suppose we want all unique pairwise combinations of treatments. We can eliminate the duplicates by
removing the lower triangle (or upper triangle). The lower.tri function identifies that triangle, so inverting it
identifies all elements outside the lower triangle:

m <- outer(treatments, treatments, paste, sep = "-") 

m[!lower.tri(m)] 

#> [1] "T1-T1" "T1-T2" "T2-T2" "T1-T3" "T2-T3" "T3-T3"

See Also
See “Calculating Eigenvalues and Eigenvectors” for using paste to generate combinations of strings. The
gtools package on CRAN has the functions combinations and permutation, which may be of help with related

https://cran.r-project.org/web/packages/gtools/index.html


tasks.

Getting the Current Date

Problem
You need to know today’s date.

Solution
The Sys.Date function returns the current date:

Sys.Date() 

#> [1] "2019-05-13"

Discussion
The Sys.Date function returns a Date object. In the preceding example it seems to return a string because the
result is printed inside double quotes. What really happens, however, is that Sys.Date returns a Date object and
then R converts that object into a string for printing purposes. You can see this by checking the class of the result
from Sys.Date:

class(Sys.Date()) 

#> [1] "Date"

See Also
See “Converting a Date into a String”.

Converting a String into a Date

Problem
You have the string representation of a date, such as "2018-12-31", and you want to convert that into a Date
object.

Solution
You can use as.Date, but you must know the format of the string. By default, as.Date assumes the string looks
like yyyy-mm-dd. To handle other formats, you must specify the format parameter of as.Date. Use
format="%m/%d/%Y" if the date is in American style, for instance.

Discussion
This example shows the default format assumed by as.Date, which is the ISO 8601 standard format of yyyy-mm-
dd:

as.Date("2018-12-31") 

#> [1] "2018-12-31"

The as.Date function returns a Date object that (as in the prior recipe) is being converted here back to a string
for printing; this explains the double quotes around the output.



The string can be in other formats, but you must provide a format argument so that as.Date can interpret your
string. See the help page for the stftime function for details about allowed formats.

Being simple Americans, we often mistakenly try to convert the usual American date format (mm/dd/yyyy) into a
Date object, with these unhappy results:

as.Date("12/31/2018") 

#> Error in charToDate(x): character string is not in a standard 

#> unambiguous format

Here is the correct way to convert an American-style date:

as.Date("12/31/2018", format = "%m/%d/%Y") 

#> [1] "2018-12-31"

Observe that the Y in the format string is capitalized to indicate a four-digit year. If you’re using two-digit years,
specify a lowercase y.

Converting a Date into a String

Problem
You want to convert a Date object into a character string, usually because you want to print the date.

Solution
Use either format or as.character:

format(Sys.Date()) 

#> [1] "2019-05-13" 

as.character(Sys.Date()) 

#> [1] "2019-05-13"

Both functions allow a format argument that controls the formatting. Use format="%m/%d/%Y" to get American-
style dates, for example:

format(Sys.Date(), format = "%m/%d/%Y") 

#> [1] "05/13/2019"

Discussion
The format argument defines the appearance of the resulting string. Normal characters, such as a slash (/) or
hyphen (-), are simply copied to the output string. Each two-letter combination of a percent sign (%) followed by
another character has special meaning. Some common ones are:

%b

Abbreviated month name (“Jan”)

%B

Full month name (“January”)

%d

Day as a two-digit number

%m



Month as a two-digit number

%y

Year without century (00–99)

%Y

Year with century

See the help page for the strftime function for a complete list of formatting codes.

Converting Year, Month, and Day into a Date

Problem
You have a date represented by its year, month, and day in different variables. You want to merge these elements
into a single Date object representation.

Solution
Use the ISOdate function:

ISOdate(year, month, day)

The result is a POSIXct object that you can convert into a Date object:

year <- 2018 

month <- 12 

day <- 31 

as.Date(ISOdate(year, month, day)) 

#> [1] "2018-12-31"

Discussion
It is common for input data to contain dates encoded as three numbers: year, month, and day. The ISOdate
function can combine them into a POSIXct object:

ISOdate(2020, 2, 29) 

#> [1] "2020-02-29 12:00:00 GMT"

You can keep your date in the POSIXct format. However, when working with pure dates (not dates and times), we
often convert to a Date object and truncate the unused time information:

as.Date(ISOdate(2020, 2, 29)) 

#> [1] "2020-02-29"

Trying to convert an invalid date results in NA:

ISOdate(2013, 2, 29) # Oops! 2013 is not a leap year 

#> [1] NA

ISOdate can process entire vectors of years, months, and days, which is quite handy for mass conversion of input
data. The following example starts with the year/month/day numbers for the third Wednesday in January of
several years and then combines them all into Date objects:



years <- 2010:2014 

months <- rep(1, 5) 

days <- 5:9 

ISOdate(years, months, days) 

#> [1] "2010-01-05 12:00:00 GMT" "2011-01-06 12:00:00 GMT" 

#> [3] "2012-01-07 12:00:00 GMT" "2013-01-08 12:00:00 GMT" 

#> [5] "2014-01-09 12:00:00 GMT" 

as.Date(ISOdate(years, months, days)) 

#> [1] "2010-01-05" "2011-01-06" "2012-01-07" "2013-01-08" "2014-01-09"

Purists will note that the vector of months is redundant and that the last expression can therefore be further
simplified by invoking the Recycling Rule:

as.Date(ISOdate(years, 1, days)) 

#> [1] "2010-01-05" "2011-01-06" "2012-01-07" "2013-01-08" "2014-01-09"

You can also extend this recipe to handle year, month, day, hour, minute, and second data by using the
ISOdatetime function (see the help page for details):

ISOdatetime(year, month, day, hour, minute, second)

Getting the Julian Date

Problem
Given a Date object, you want to extract the Julian date—which is, in R, the number of days since January 1,
1970.

Solution
Either convert the Date object to an integer or use the julian function:

d <- as.Date("2019-03-15") 

as.integer(d) 

#> [1] 17970 

jd <- julian(d) 

jd 

#> [1] 17970 

#> attr(,"origin") 

#> [1] "1970-01-01" 

attr(jd, "origin") 

#> [1] "1970-01-01"

Discussion
A Julian “date” is simply the number of days since an arbitrary starting point. In the case of R, that starting point
is January 1, 1970, the same starting point as Unix systems. So the Julian date for January 1, 1970 is zero, as
shown here:

as.integer(as.Date("1970-01-01")) 

#> [1] 0 

as.integer(as.Date("1970-01-02")) 

#> [1] 1 

as.integer(as.Date("1970-01-03")) 

#> [1] 2

Extracting the Parts of a Date



Problem
Given a Date object, you want to extract a date part such as the day of the week, the day of the year, the calendar
day, the calendar month, or the calendar year.

Solution
Convert the Date object to a POSIXlt object, which is a list of date parts. Then extract the desired part from that
list:

d <- as.Date("2019-03-15") 

p <- as.POSIXlt(d) 

p$mday        # Day of the month 

#> [1] 15 

p$mon         # Month (0 = January) 

#> [1] 2 

p$year + 1900 # Year 

#> [1] 2019

Discussion
The POSIXlt object represents a date as a list of date parts. Convert your Date object to POSIXlt by using the
as.POSIXlt function, which will give you a list with these members:

sec

Seconds (0–61)

min

Minutes (0–59)

hour

Hours (0–23)

mday

Day of the month (1–31)

mon

Month (0–11)

year

Years since 1900

wday

Day of the week (0–6, 0 = Sunday)

yday

Day of the year (0–365)

isdst

Daylight Saving Time flag

Using these date parts, we can learn that April 2, 2020, is a Thursday (wday = 4) and the 93rd day of the year
(because yday = 0 on January 1):

d <- as.Date("2020-04-02") 

as.POSIXlt(d)$wday 

#> [1] 4 



as.POSIXlt(d)$yday 

#> [1] 92

A common mistake is failing to add 1900 to the year, giving the impression you are living a long, long time ago:

as.POSIXlt(d)$year # Oops! 

#> [1] 120 

as.POSIXlt(d)$year + 1900 

#> [1] 2020

Creating a Sequence of Dates

Problem
You want to create a sequence of dates, such as a sequence of daily, monthly, or annual dates.

Solution
The seq function is a generic function that has a version for Date objects. It can create a Date sequence similarly
to the way it creates a sequence of numbers.

Discussion
A typical use of seq specifies a starting date (from), ending date (to), and increment (by). An increment of 1
indicates daily dates:

s <- as.Date("2019-01-01") 

e <- as.Date("2019-02-01") 

seq(from = s, to = e, by = 1) # One month of dates 

#>  [1] "2019-01-01" "2019-01-02" "2019-01-03" "2019-01-04" "2019-01-05" 

#>  [6] "2019-01-06" "2019-01-07" "2019-01-08" "2019-01-09" "2019-01-10" 

#> [11] "2019-01-11" "2019-01-12" "2019-01-13" "2019-01-14" "2019-01-15" 

#> [16] "2019-01-16" "2019-01-17" "2019-01-18" "2019-01-19" "2019-01-20" 

#> [21] "2019-01-21" "2019-01-22" "2019-01-23" "2019-01-24" "2019-01-25" 

#> [26] "2019-01-26" "2019-01-27" "2019-01-28" "2019-01-29" "2019-01-30" 

#> [31] "2019-01-31" "2019-02-01"

Another typical use specifies a starting date (from), increment (by), and number of dates (length.out):

seq(from = s, by = 1, length.out = 7) # Dates, one week apart 

#> [1] "2019-01-01" "2019-01-02" "2019-01-03" "2019-01-04" "2019-01-05" 

#> [6] "2019-01-06" "2019-01-07"

The increment (by) is flexible and can be specified in days, weeks, months, or years:

seq(from = s, by = "month", length.out = 12)   # First of the month for one year 

#>  [1] "2019-01-01" "2019-02-01" "2019-03-01" "2019-04-01" "2019-05-01" 

#>  [6] "2019-06-01" "2019-07-01" "2019-08-01" "2019-09-01" "2019-10-01" 

#> [11] "2019-11-01" "2019-12-01" 

seq(from = s, by = "3 months", length.out = 4) # Quarterly dates for one year 

#> [1] "2019-01-01" "2019-04-01" "2019-07-01" "2019-10-01" 

seq(from = s, by = "year", length.out = 10)    # Year-start dates for one decade 

#>  [1] "2019-01-01" "2020-01-01" "2021-01-01" "2022-01-01" "2023-01-01" 

#>  [6] "2024-01-01" "2025-01-01" "2026-01-01" "2027-01-01" "2028-01-01"

Be careful with by="month" near month-end. In this example, the end of February overflows into March, which
is probably not what you want:



seq(as.Date("2019-01-29"), by = "month", len = 3) 

#> [1] "2019-01-29" "2019-03-01" "2019-03-29"



Chapter 8. Probability

Probability theory is the foundation of statistics, and R has plenty of machinery for working with probability,
probability distributions, and random variables. The recipes in this chapter show you how to calculate
probabilities from quantiles, calculate quantiles from probabilities, generate random variables drawn from
distributions, plot distributions, and so forth.

Names of Distributions
R has an abbreviated name for every probability distribution. This name is used to identify the functions
associated with the distribution. For example, the name of the normal distribution is “norm,” which is the root of
the function names listed in Table 8-1.

Table 8-1. Normal distribution
functions

Function Purpose

dnorm Normal density

pnorm Normal distribution function

qnorm Normal quantile function

rnorm Normal random variates

Table 8-2 describes some common discrete distributions, and Table 8-3 describes several common continuous
distributions.

Table 8-2. Common discrete distributions

Discrete distribution R
name

Parameters

Binomial binom n = number of trials; p = probability of success for one trial

Geometric geom p = probability of success for one trial

Hypergeometric hyper m = number of white balls in urn; n = number of black balls in urn; k = number of balls drawn
from urn

Negative binomial
(NegBinomial)

nbinom size = number of successful trials; either prob = probability of successful trial or mu = mean

Poisson pois lambda = mean

Table 8-3. Common continuous distributions

Continuous distribution R name Parameters

Beta beta shape1; shape2

Cauchy cauchy location; scale

Chi-squared (Chisquare) chisq df = degrees of freedom

Exponential exp rate



Continuous distribution R name Parameters

F f df1 and df2 = degrees of freedom

Gamma gamma rate or scale

Log-normal (Lognormal) lnorm meanlog = mean on logarithmic scale; sdlog = standard deviation on logarithmic scale

Logistic logis location; scale

Normal norm mean; sd = standard deviation

Student’s t (TDist) t df = degrees of freedom

Uniform unif min = lower limit; max = upper limit

Weibull weibull shape; scale

Wilcoxon wilcox m = number of observations in first sample; n = number of observations in second sample

WARNING
All distribution-related functions require distributional parameters, such as size and prob for the binomial or prob for the geometric.
The big “gotcha” is that the distributional parameters may not be what you expect. For example, we would expect the parameter of an
exponential distribution to be β, the mean. The R convention, however, is for the exponential distribution to be defined by the rate = 1/
β, so we often supply the wrong value. The moral is, study the help page before you use a function related to a distribution. Be sure
you’ve got the parameters right.

Getting Help on Probability Distributions
To see the R functions related to a particular probability distribution, use the help command and the full name of
the distribution. For example, this will show the functions related to the normal distribution:

?Normal

Some distributions have names that don’t work well with the help command, such as “Student’s t.” They have
special help names, as noted in Table 8-2 and Table 8-3: NegBinomial, Chisquare, Lognormal, and TDist. Thus,
to get help on the Student’s t distribution, use this:

?TDist

See Also
There are many other distributions implemented in downloadable packages; see the CRAN task view devoted to
probability distributions. The SuppDists package is part of the R base, and it includes 10 supplemental
distributions. The MASS package, which is also part of the base, provides additional support for distributions,
such as maximum-likelihood fitting for some common distributions as well as sampling from a multivariate
normal distribution.

Counting the Number of Combinations

Problem
You want to calculate the number of combinations of n items taken k at a time.

Solution

http://cran.r-project.org/web/views/Distributions.html


Use the choose function:

choose(n, k) 

Discussion
A common problem in computing probabilities of discrete variables is counting combinations: the number of
distinct subsets of size k that can be created from n items. The number is given by n!/r!(n – r)!, but it’s much
more convenient to use the choose function—especially as n and k grow larger:

choose(5, 3)   # How many ways can we select 3 items from 5 items? 

#> [1] 10 

choose(50, 3)  # How many ways can we select 3 items from 50 items? 

#> [1] 19600 

choose(50, 30) # How many ways can we select 30 items from 50 items? 

#> [1] 4.71e+13

These numbers are also known as binomial coefficients.

See Also
This recipe merely counts the combinations; see “Generating Combinations” to actually generate them.

Generating Combinations

Problem
You want to generate all combinations of n items taken k at a time.

Solution
Use the combn function:

items <- 2:5 

k <- 2 

combn(items, k) 

#>      [,1] [,2] [,3] [,4] [,5] [,6] 

#> [1,]    2    2    2    3    3    4 

#> [2,]    3    4    5    4    5    5

Discussion
We can use combn(1:5,3) to generate all combinations of the numbers 1 through 5 taken three at a time:

combn(1:5, 3) 

#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

#> [1,]    1    1    1    1    1    1    2    2    2     3 

#> [2,]    2    2    2    3    3    4    3    3    4     4 

#> [3,]    3    4    5    4    5    5    4    5    5     5

The function is not restricted to numbers. We can generate combinations of strings, too. Here are all
combinations of five treatments taken three at a time:

combn(c("T1", "T2", "T3", "T4", "T5"), 3) 

#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

#> [1,] "T1" "T1" "T1" "T1" "T1" "T1" "T2" "T2" "T2" "T3" 

#> [2,] "T2" "T2" "T2" "T3" "T3" "T4" "T3" "T3" "T4" "T4" 

#> [3,] "T3" "T4" "T5" "T4" "T5" "T5" "T4" "T5" "T5" "T5"



WARNING
As the number of items, n, increases, the number of combinations can explode—especially if k is not near to 1 or n.

See Also
See “Counting the Number of Combinations” to count the number of possible combinations before you generate
a huge set.

Generating Random Numbers

Problem
You want to generate random numbers.

Solution
The simple case of generating a uniform random number between 0 and 1 is handled by the runif function. This
example generates one uniform random number:

runif(1) 

#> [1] 0.915

NOTE
If you are saying runif out loud (or even in your head), you should pronounce it “are unif” instead of “run if.” The term runif is a
portmanteau of “random uniform” so should not sound as if it’s a flow control function.

R can generate random variates from other distributions as well. For a given distribution, the name of the
random number generator is “r” prefixed to the distribution’s abbreviated name (e.g., rnorm for the normal
distribution’s random number generator). This example generates one random value from the standard normal
distribution:

rnorm(1) 

#> [1] 1.53

Discussion
Most programming languages have a wimpy random number generator that generates one random number,
uniformly distributed between 0.0 and 1.0, and that’s all. Not R.

R can generate random numbers from many probability distributions other than the uniform distribution. The
simple case of generating uniform random numbers between 0 and 1 is handled by the runif function:

runif(1) 

#> [1] 0.83

The argument of runif is the number of random values to be generated. Generating a vector of 10 such values is
as easy as generating one:

runif(10) 

#>  [1] 0.642 0.519 0.737 0.135 0.657 0.705 0.458 0.719 0.935 0.255



There are random number generators for all built-in distributions. Simply prefix the distribution name with “r”
and you have the name of the corresponding random number generator. Here are some common ones:

runif(1, min = -3, max = 3)      # One uniform variate between -3 and +3 

#> [1] 2.49 

rnorm(1)                         # One standard Normal variate 

#> [1] 1.53 

rnorm(1, mean = 100, sd = 15)    # One Normal variate, mean 100 and SD 15 

#> [1] 114 

rbinom(1, size = 10, prob = 0.5) # One binomial variate 

#> [1] 5 

rpois(1, lambda = 10)            # One Poisson variate 

#> [1] 12 

rexp(1, rate = 0.1)              # One exponential variate 

#> [1] 3.14 

rgamma(1, shape = 2, rate = 0.1) # One gamma variate 

#> [1] 22.3

As with runif, the first argument is the number of random values to be generated. Subsequent arguments are the
parameters of the distribution, such as mean and sd for the normal distribution or size and prob for the
binomial. See the function’s R help page for details.

The examples given so far use simple scalars for distributional parameters. Yet the parameters can also be
vectors, in which case R will cycle through the vector while generating random values. The following example
generates three normal random values drawn from distributions with means of –10, 0, and +10, respectively (all
distributions have a standard deviation of 1.0):

rnorm(3, mean = c(-10, 0, +10), sd = 1) 

#> [1] -9.420 -0.658 11.555

That is a powerful capability in cases such as hierarchical models, where the parameters are themselves random.
The next example calculates 30 draws of a normal variate whose mean is itself randomly distributed and with
hyperparameters of μ = 0 and σ = 0.2:

means <- rnorm(30, mean = 0, sd = 0.2) 

rnorm(30, mean = means, sd = 1) 

#>  [1] -0.5549 -2.9232 -1.2203  0.6962  0.1673 -1.0779 -0.3138 -3.3165 

#>  [9]  1.5952  0.8184 -0.1251  0.3601 -0.8142  0.1050  2.1264  0.6943 

#> [17] -2.7771  0.9026  0.0389  0.2280 -0.5599  0.9572  0.1972  0.2602 

#> [25] -0.4423  1.9707  0.4553  0.0467  1.5229  0.3176

If you are generating many random values and the vector of parameters is too short, R will apply the Recycling
Rule to the parameter vector.

See Also
See the introduction to this chapter.

Generating Reproducible Random Numbers

Problem
You want to generate a sequence of random numbers, but you want to reproduce the same sequence every time
your program runs.

Solution



Before running your R code, call the set.seed function to initialize the random number generator to a known
state:

set.seed(42) # Or use any other positive integer...

Discussion
After generating random numbers, you may often want to reproduce the same sequence of “random” numbers
every time your program executes. That way, you get the same results from run to run. One of the authors once
supported a complicated Monte Carlo analysis of a huge portfolio of securities. The users complained about
getting slightly different results each time the program ran. No kidding! The analysis was driven entirely by
random numbers, so of course there was randomness in the output. The solution was to set the random number
generator to a known state at the beginning of the program. That way, it would generate the same (quasi-)random
numbers each time and thus yield consistent, reproducible results.

In R, the set.seed function sets the random number generator to a known state. The function takes one
argument, an integer. Any positive integer will work, but you must use the same one in order to get the same
initial state.

The function returns nothing. It works behind the scenes, initializing (or reinitializing) the random number
generator. The key here is that using the same seed restarts the random number generator back at the same place:

set.seed(165)   # Initialize generator to known state 

runif(10)       # Generate ten random numbers 

#>  [1] 0.116 0.450 0.996 0.611 0.616 0.426 0.666 0.168 0.788 0.442 

 

set.seed(165)   # Reinitialize to the same known state 

runif(10)       # Generate the same ten "random" numbers 

#>  [1] 0.116 0.450 0.996 0.611 0.616 0.426 0.666 0.168 0.788 0.442

WARNING
When you set the seed value and freeze your sequence of random numbers, you are eliminating a source of randomness that may be
critical to algorithms such as Monte Carlo simulations. Before you call set.seed in your application, ask yourself: am I undercutting
the value of my program or perhaps even damaging its logic?

See Also
See “Generating Random Numbers” for more about generating random numbers.

Generating a Random Sample

Problem
You want to sample a dataset randomly.

Solution
The sample function will randomly select n items from a set:

sample(set, n) 

Discussion
Suppose your World Series data contains a vector of years when the Series was played. You can select 10 years at
random using sample:



world_series <- read_csv("./data/world_series.csv") 

sample(world_series$year, 10) 

#>  [1] 2010 1961 1906 1992 1982 1948 1910 1973 1967 1931

The items are randomly selected, so running sample again (usually) produces a different result:

sample(world_series$year, 10) 

#>  [1] 1941 1973 1921 1958 1979 1946 1932 1919 1971 1974

The sample function normally samples without replacement, meaning it will not select the same item twice.
Some statistical procedures (especially the bootstrap) require sampling with replacement, which means that one
item can appear multiple times in the sample. Specify replace=TRUE to sample with replacement.

It’s easy to implement a simple bootstrap using sampling with replacement. Suppose we have a vector, x, of
1,000 random numbers, drawn from a normal distribution with mean 4 and standard deviation 10:

set.seed(42) 

x <- rnorm(1000, 4, 10)

This code fragment samples 1,000 times from x and calculates the median of each sample:

medians <- numeric(1000)   # empty vector of 1000 numbers 

for (i in 1:1000) { 

  medians[i] <- median(sample(x, replace = TRUE)) 

}

From the bootstrap estimates, we can estimate the confidence interval for the median:

ci <- quantile(medians, c(0.025, 0.975)) 

cat("95% confidence interval is (", ci, ")\n") 

#> 95% confidence interval is ( 3.16 4.49 )

We know that x was created from a normal distribution with a mean of 4, and hence the sample median should be
4 also. (In a symmetrical distribution like this one, the mean and the median are the same.) Our confidence
interval easily contains the value.

See Also
See “Randomly Permuting a Vector” for randomly permuting a vector and “Bootstrapping a Statistic” for more
about bootstrapping. “Generating Reproducible Random Numbers” discusses setting seeds for quasi-random
numbers.

Generating Random Sequences

Problem
You want to generate a random sequence, such as a series of simulated coin tosses or a simulated sequence of
Bernoulli trials.

Solution
Use the sample function. Sample n draws from the set of possible values, and set replace=TRUE:

sample(set, n, replace = TRUE) 



Discussion
The sample function randomly selects items from a set. It normally samples without replacement, which means
that it will not select the same item twice and will return an error if you try to sample more items than exist in
the set. With replace=TRUE, however, sample can select items over and over; this allows you to generate long,
random sequences of items.

The following example generates a random sequence of 10 simulated flips of a coin:

sample(c("H", "T"), 10, replace = TRUE) 

#>  [1] "H" "T" "H" "T" "T" "T" "H" "T" "T" "H"

The next example generates a sequence of 20 Bernoulli trials—random successes or failures. We use TRUE to
signify a success:

sample(c(FALSE, TRUE), 20, replace = TRUE) 

#>  [1]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE 

#> [12]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE

By default sample will choose equally among the set elements, so the probability of selecting either TRUE or
FALSE is 0.5. With a Bernoulli trial, the probability p of success is not necessarily 0.5. You can bias the sample
by using the prob argument of sample; this argument is a vector of probabilities, one for each set element.
Suppose we want to generate 20 Bernoulli trials with a probability of success p = 0.8. We set the probability of
FALSE to be 0.2 and the probability of TRUE to 0.8:

sample(c(FALSE, TRUE), 20, replace = TRUE, prob = c(0.2, 0.8)) 

#>  [1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

#> [12]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE

The resulting sequence is clearly biased toward TRUE. We chose this example because it’s a simple demonstration
of a general technique. For the special case of a binary-valued sequence you can use rbinom, the random
generator for binomial variates:

rbinom(10, 1, 0.8) 

#>  [1] 1 0 1 1 1 1 1 0 1 1

Randomly Permuting a Vector

Problem
You want to generate a random permutation of a vector.

Solution
If v is your vector, then sample(v) returns a random permutation.

Discussion
We typically think of the sample function for sampling from large datasets. However, the default parameters
enable you to create a random rearrangement of the dataset. The function call sample(v) is equivalent to:

sample(v, size = length(v), replace = FALSE)



which means “select all the elements of v in random order while using each element exactly once.” That is a
random permutation. Here is a random permutation of 1, …, 10:

sample(1:10) 

#>  [1]  7  3  6  1  5  2  4  8 10  9

See Also
See “Generating a Random Sample” for more about sample.

Calculating Probabilities for Discrete Distributions

Problem
You want to calculate either the simple or the cumulative probability associated with a discrete random variable.

Solution
For a simple probability, P(X = x), use the density function. All built-in probability distributions have a density
function whose name is “d” prefixed to the distribution name; for example, dbinom for the binomial distribution.

For a cumulative probability, P(X ≤ x), use the distribution function. All built-in probability distributions have a
distribution function whose name is “p” prefixed to the distribution name; thus, pbinom is the distribution
function for the binomial distribution.

Discussion
Suppose we have a binomial random variable X over 10 trials, where each trial has a success probability of 1/2.
Then we can calculate the probability of observing x = 7 by calling dbinom:

dbinom(7, size = 10, prob = 0.5) 

#> [1] 0.117

That calculates a probability of about 0.117. R calls dbinom the density function. Some textbooks call it the
probability mass function or the probability function. Calling it a density function keeps the terminology
consistent between discrete and continuous distributions (see “Calculating Probabilities for Continuous
Distributions”).

The cumulative probability, P(X ≤ x), is given by the distribution function, which is sometimes called the
cumulative probability function. The distribution function for the binomial distribution is pbinom. Here is the
cumulative probability for x = 7 (i.e., P(X ≤ 7)):

pbinom(7, size = 10, prob = 0.5) 

#> [1] 0.945

It appears the probability of observing X ≤ 7 is about 0.945.

The density functions and distribution functions for some common discrete distributions are shown in Table 8-4.

Table 8-4. Discrete distributions

Distribution Density function: P(X = x) Distribution function: P(X ≤ x)

Binomial dbinom(x, size, prob) pbinom(x, size, prob)

Geometric dgeom(x, prob) pgeom(x, prob)



Distribution Density function: P(X = x) Distribution function: P(X ≤ x)

Poisson dpois(x, lambda) ppois(x, lambda)

The complement of the cumulative probability is the survival function, P(X > x). All of the distribution functions
let you find this right-tail probability simply by specifying lower.tail=FALSE:

pbinom(7, size = 10, prob = 0.5, lower.tail = FALSE) 

#> [1] 0.0547

Thus we see that the probability of observing X > 7 is about 0.055.

The interval probability, P(x1 < X ≤ x2), is the probability of observing X between the limits x1 and x2. It is
calculated as the difference between two cumulative probabilities: P(X ≤ x2) – P(X ≤ x1). Here is P(3 < X ≤ 7) for
our binomial variable:

pbinom(7, size = 10, prob = 0.5) - pbinom(3, size = 10, prob = 0.5) 

#> [1] 0.773

R lets you specify multiple values of x for these functions and will return a vector of the corresponding
probabilities. Here we calculate two cumulative probabilities, P(X ≤ 3) and P(X ≤ 7), in one call to pbinom:

pbinom(c(3, 7), size = 10, prob = 0.5) 

#> [1] 0.172 0.945

This leads to a one-liner for calculating interval probabilities. The diff function calculates the difference
between successive elements of a vector. We apply it to the output of pbinom to obtain the difference in
cumulative probabilities—in other words, the interval probability:

diff(pbinom(c(3, 7), size = 10, prob = 0.5)) 

#> [1] 0.773

See Also
See this chapter’s introduction for more about the built-in probability distributions.

Calculating Probabilities for Continuous Distributions

Problem
You want to calculate the distribution function (DF) or cumulative distribution function (CDF) for a continuous
random variable.

Solution
Use the distribution function, which calculates P(X ≤ x). All built-in probability distributions have a distribution
function whose name is “p” prefixed to the distribution’s abbreviated name—for instance, pnorm for the normal
distribution.

For example, we can calculate the probability of a draw being from a random standard normal distribution being
below 0.8 as follows:

pnorm(q = .8, mean = 0, sd = 1) 

#> [1] 0.788



Discussion
The R functions for probability distributions follow a consistent pattern, so the solution to this recipe is
essentially identical to the solution for discrete random variables (see “Calculating Probabilities for Discrete
Distributions”). The significant difference is that continuous variables have no “probability” at a single point,
P(X = x). Instead, they have a “density” at a point.

Given that consistency, the discussion of distribution functions in “Calculating Probabilities for Discrete
Distributions” is applicable here, too. Table 8-5 gives the distribution functions for several continuous
distributions.

Table 8-5. Continuous distributions

Distribution Distribution function: P(X ≤ x)

Normal pnorm(x, mean, sd)

Student’s t pt(x, df)

Exponential pexp(x, rate)

Gamma pgamma(x, shape, rate)

Chi-squared (χ2) pchisq(x, df)

We can use pnorm to calculate the probability that a man is shorter than 66 inches, assuming that men’s heights
are normally distributed with a mean of 70 inches and a standard deviation of 3 inches. Mathematically
speaking, we want P(X ≤ 66) given that X ~ N(70, 3):

pnorm(66, mean = 70, sd = 3) 

#> [1] 0.0912

Likewise, we can use pexp to calculate the probability that an exponential variable with a mean of 40 could be
less than 20:

pexp(20, rate = 1 / 40) 

#> [1] 0.393

Just as for discrete probabilities, the functions for continuous probabilities use lower.tail=FALSE to specify the
survival function, P(X > x). This call to pexp gives the probability that the same exponential variable could be
greater than 50:

pexp(50, rate = 1 / 40, lower.tail = FALSE) 

#> [1] 0.287

Also like discrete probabilities, the interval probability for a continuous variable, P(x1 < X < x2), is computed as
the difference between two cumulative probabilities, P(X < x2) – P(X < x1). For the same exponential variable,
here is P(20 < X < 50), the probability that it could fall between 20 and 50:

pexp(50, rate = 1 / 40) - pexp(20, rate = 1 / 40) 

#> [1] 0.32

See Also
See this chapter’s introduction for more about the built-in probability distributions.



Converting Probabilities to Quantiles

Problem
Given a probability p and a distribution, you want to determine the corresponding quantile for p: the value x such
that P(X ≤ x) = p.

Solution
Every built-in distribution includes a quantile function that converts probabilities to quantiles. The function’s
name is “q” prefixed to the distribution name; thus, for instance, qnorm is the quantile function for the normal
distribution.

The first argument of the quantile function is the probability. The remaining arguments are the distribution’s
parameters, such as mean, shape, or rate:

qnorm(0.05, mean = 100, sd = 15) 

#> [1] 75.3

Discussion
A common example of computing quantiles is when we compute the limits of a confidence interval. If we want
to know the 95% confidence interval (α = 0.05) of a standard Normal variable, then we need the quantiles with
probabilities of α/2 = 0.025 and (1 – α)/2 = 0.975:

qnorm(0.025) 

#> [1] -1.96 

qnorm(0.975) 

#> [1] 1.96

In the true spirit of R, the first argument of the quantile functions can be a vector of probabilities, in which case
we get a vector of quantiles. We can simplify this example into a one-liner:

qnorm(c(0.025, 0.975)) 

#> [1] -1.96  1.96

All the built-in probability distributions provide a quantile function. Table 8-6 shows the quantile functions for
some common discrete distributions.

Table 8-6. Discrete quantile
distributions

Distribution Quantile function

Binomial qbinom(p, size, prob)

Geometric qgeom(p, prob)

Poisson qpois(p, lambda)

Table 8-7 shows the quantile functions for common continuous distributions.

Table 8-7. Continuous quantile distributions

Distribution Quantile function

Normal qnorm(p, mean, sd)

Student’s t qt(p, df)



Distribution Quantile function

Exponential qexp(p, rate)

Gamma qgamma(p, shape, rate) or qgamma(p, shape, scale)

Chi-squared (χ2) qchisq(p, df)

See Also
Determining the quantiles of a dataset is different from determining the quantiles of a distribution—see
“Calculating Quantiles (and Quartiles) of a Dataset”.

Plotting a Density Function

Problem
You want to plot the density function of a probability distribution.

Solution
Define a vector x over the domain. Apply the distribution’s density function to x and then plot the result. If x is a
vector of points over the domain you care about plotting, you then calculate the density using one of the d_____
density functions, like dlnorm for lognormal or dnorm for normal:

dens <- data.frame(x = x, 

                   y = d_____(x)) 

ggplot(dens, aes(x, y)) + geom_line()

Here is a specific example that plots the standard normal distribution for the interval –3 to +3:

library(ggplot2) 

 

x <- seq(-3, +3, 0.1) 

dens <- data.frame(x = x, y = dnorm(x)) 

 

ggplot(dens, aes(x, y)) + geom_line()

Figure 8-1 shows the smooth density function.



Figure 8-1. Smooth density function

Discussion
All the built-in probability distributions include a density function. For a particular density, the function name is
“d” prepended to the distribution name. The density function for the normal distribution is dnorm, the density for
the gamma distribution is dgamma, and so forth.

If the first argument of the density function is a vector, then the function calculates the density at each point and
returns the vector of densities.

The following code creates a 2 × 2 plot of four densities (Figure 8-2):

x <- seq(from = 0, to = 6, length.out = 100) # Define the density domains 

ylim <- c(0, 0.6) 

 

# Make a data.frame with densities of several distributions 

df <- rbind( 

  data.frame(x = x, dist_name = "Uniform"=, y = dunif(x, min   = 2, max = 4)), 

  data.frame(x = x, dist_name = "Normal"=, y = dnorm(x, mean  = 3, sd = 1)), 

  data.frame(x = x, dist_name = "Exponential", y = dexp(x, rate  = 1 / 2)), 

  data.frame(x = x, dist_name = "Gamma"=, y = dgamma(x, shape = 2, rate = 1)) ) 

 

# Make a line plot like before, but use facet_wrap to create the grid 

ggplot(data = df, aes(x = x, y = y)) + 

  geom_line() + 

  facet_wrap(~dist_name)   # facet and wrap by the variable dist_name



Figure 8-2. Multiple density plots

Figure 8-2 shows four density plots. However, a raw density plot is rarely useful or interesting by itself, and we
often shade a region of interest.

Figure 8-3 is a normal distribution with shading from the 75th percentile to the 95th percentile.

We create the plot by plotting the density and then creating a shaded region with the geom_ribbon function from
ggplot2.

First, we create some data and draw a density curve like the one shown in Figure 8-4:

x <- seq(from = -3, to = 3, length.out = 100) 

df <- data.frame(x = x, y = dnorm(x, mean = 0, sd = 1)) 

 

p <- ggplot(df, aes(x, y)) + 

  geom_line() + 

  labs( 

    title = "Standard Normal Distribution", 

    y = "Density", 

    x = "Quantile" 

  ) 

p



Figure 8-3. Standard normal with shading

Figure 8-4. Density plot

Next, we define the region of interest by calculating the x values for the quantiles we’re interested in. Finally, we
use geom_ribbon to add a subset of our original data as a colored region:



q75 <- quantile(df$x, .75) 

q95 <- quantile(df$x, .95) 

 

p + 

  geom_ribbon( 

    data = subset(df, x > q75 & x < q95), 

    aes(ymax = y), 

    ymin = 0, 

    fill = "blue", 

    color = NA, 

    alpha = 0.5 

  )

The resulting plot is shown in Figure 8-5.

Figure 8-5. Normal density with shading



Chapter 9. General Statistics

Any significant application of R includes statistics or models or graphics. This chapter addresses the statistics.
Some recipes simply describe how to calculate a statistic, such as relative frequency. Most recipes involve
statistical tests or confidence intervals. The statistical tests let you choose between two competing hypotheses;
that paradigm is described next. Confidence intervals reflect the likely range of a population parameter and are
calculated based on your data sample.

Null Hypotheses, Alternative Hypotheses, and p-Values
Many of the statistical tests in this chapter use a time-tested paradigm of statistical inference. In the paradigm,
we have one or two data samples. We also have two competing hypotheses, either of which could reasonably be
true.

One hypothesis, called the null hypothesis, is that nothing happened: the mean was unchanged; the treatment had
no effect; you got the expected answer; the model did not improve; and so forth.

The other hypothesis, called the alternative hypothesis, is that something happened: the mean rose; the treatment
improved the patients’ health; you got an unexpected answer; the model fit better; and so forth.

We want to determine which hypothesis is more likely in light of the data. Here’s how we do this:

1. To begin, we assume that the null hypothesis is true.

2. We calculate a test statistic. It could be something simple, such as the mean of the sample, or it could be
quite complex. The critical requirement is that we must know the statistic’s distribution. We might know
the distribution of the sample mean, for example, by invoking the Central Limit Theorem.

3. From the statistic and its distribution we can calculate a p-value, the probability of a test statistic value as
extreme or more extreme than the one we observed, while assuming that the null hypothesis is true.

4. If the p-value is too small, we have strong evidence against the null hypothesis. This is called rejecting the
null hypothesis.

5. If the p-value is not small, then we have no such evidence. This is called failing to reject the null
hypothesis.

There is one necessary decision here: when is a p-value “too small”?

NOTE
In this book, we follow the common convention that we reject the null hypothesis when p < 0.05 and fail to reject it when p > 0.05. In
statistical terminology, we choose a significance level of α = 0.05 to define the border between strong evidence and insufficient
evidence against the null hypothesis.

But the real answer is, “It depends.” Your chosen significance level depends on your problem domain. The
conventional limit of p < 0.05 works for many problems. In our work, the data is especially noisy and so we are
often satisfied with p < 0.10. For someone working in high-risk areas, p < 0.01 or p < 0.001 might be necessary.

In the recipes, we mention which tests include a p-value so that you can compare the p-value against your chosen
significance level of α. We worded the recipes to help you interpret the comparison. Here is the wording from
“Testing Categorical Variables for Independence”, a test for the independence of two factors:

Conventionally, a p-value of less than 0.05 indicates that the variables are likely not independent, whereas a
p-value exceeding 0.05 fails to provide any such evidence.

This is a compact way of saying:



The null hypothesis is that the variables are independent.

The alternative hypothesis is that the variables are not independent.

For α = 0.05, if p < 0.05 then we reject the null hypothesis, giving strong evidence that the variables are not
independent; if p > 0.05, we fail to reject the null hypothesis.

You are free to choose your own α, of course, in which case your decision to reject or fail to reject might be
different.

Remember, the recipe states the informal interpretation of the test results, not the rigorous mathematical
interpretation. We use colloquial language in the hope that it will guide you toward a practical understanding and
application of the test. If the precise semantics of hypothesis testing are critical for your work, we urge you to
consult the reference cited under See Also or one of the other fine textbooks on mathematical statistics.

Confidence Intervals
Hypothesis testing is a well-understood mathematical procedure, but it can be frustrating. First, the semantics
are tricky. The test does not reach a definite, useful conclusion. You might get strong evidence against the null
hypothesis, but that’s all you’ll get. Second, it does not give you a number, only evidence.

If you want numbers then use confidence intervals, which bound the estimate of a population parameter at a
given level of confidence. Recipes in this chapter can calculate confidence intervals for means, medians, and
proportions of a population.

For example, “Forming a Confidence Interval for a Mean” calculates a 95% confidence interval for the
population mean based on sample data. The interval is 97.16 < μ < 103.98, which means there is a 95%
probability that the population’s mean, μ, is between 97.16 and 103.98.

See Also
Statistical terminology and conventions can vary. This book generally follows the conventions of Mathematical
Statistics with Applications, 6th ed., by Dennis Wackerly et al. (Duxbury Press). We recommend this book also
for learning more about the statistical tests described in this chapter.

Summarizing Your Data

Problem
You want a basic statistical summary of your data.

Solution
The summary function gives some useful statistics for vectors, matrices, factors, and data frames:

summary(vec) 

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>     0.0     0.5     1.0     1.6     1.9    33.0

Discussion
The Solution exhibits the summary of a vector. The 1st Qu. and 3rd Qu. are the first and third quartile,
respectively. Having both the median and mean is useful because you can quickly detect skew. The output in the
Solution, for example, shows a mean that is larger than the median; this indicates a possible skew to the right, as
one would expect from a lognormal distribution.

The summary of a matrix works column by column. Here we see the summary of a matrix, mat, with three
columns named Samp1, Samp2, and Samp3:



summary(mat) 

#>      Samp1           Samp2            Samp3 

#>  Min.   :  1.0   Min.   :-2.943   Min.   : 0.04 

#>  1st Qu.: 25.8   1st Qu.:-0.774   1st Qu.: 0.39 

#>  Median : 50.5   Median :-0.052   Median : 0.85 

#>  Mean   : 50.5   Mean   :-0.067   Mean   : 1.60 

#>  3rd Qu.: 75.2   3rd Qu.: 0.684   3rd Qu.: 2.12 

#>  Max.   :100.0   Max.   : 2.150   Max.   :13.18

The summary of a factor gives counts:

summary(fac) 

#> Maybe    No   Yes 

#>    38    32    30

The summary of a character vector is pretty useless, giving just the vector length:

summary(char) 

#>    Length     Class      Mode 

#>       100 character character

The summary of a data frame incorporates all these features. It works column by column, giving an appropriate
summary according to the column type. Numeric values receive a statistical summary and factors are counted
(character strings are not summarized):

suburbs <- read_csv("./data/suburbs.txt") 

summary(suburbs) 

#>      city              county             state 

#>  Length:17          Length:17          Length:17 

#>  Class :character   Class :character   Class :character 

#>  Mode  :character   Mode  :character   Mode  :character 

#> 

#> 

#> 

#>       pop 

#>  Min.   :   5428 

#>  1st Qu.:  72616 

#>  Median :  83048 

#>  Mean   : 249770 

#>  3rd Qu.: 102746 

#>  Max.   :2853114

The “summary” of a list is pretty funky: you get the data type of each list member. Here is a summary of a list of
vectors:

summary(vec_list) 

#>   Length Class  Mode 

#> x 100    -none- numeric 

#> y 100    -none- numeric 

#> z 100    -none- character

To summarize the data inside a list of vectors, map summary to each list element:

library(purrr) 

map(vec_list, summary) 

#> $x 

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>  -2.572  -0.686  -0.084  -0.043   0.660   2.413 

#> 

#> $y 

#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

#>  -1.752  -0.589   0.045   0.079   0.769   2.293 

#> 

#> $z 



#>    Length     Class      Mode 

#>       100 character character

Unfortunately, the summary function does not compute any measure of variability, such as standard deviation or
median absolute deviation. This is a serious shortcoming, so we usually call sd or mad (mean absolute deviation)
right after calling summary.

See Also
See “Computing Basic Statistics” and “Applying a Function to Each List Element”.

Calculating Relative Frequencies

Problem
You want to count the relative frequency of certain observations in your sample.

Solution
Identify the interesting observations by using a logical expression; then use the mean function to calculate the
fraction of observations it identifies. For example, given a vector x, you can find the relative frequency of
positive values in this way:

mean(x > 3) 

#> [1] 0.12

Discussion
A logical expression, such as x > 3, produces a vector of logical values (TRUE and FALSE), one for each element
of x. The mean function converts those values to 1s and 0s, respectively, and computes the average. This gives the
fraction of values that are TRUE—in other words, the relative frequency of the interesting values. In the Solution,
for example, that’s the relative frequency of values greater than 3.

The concept here is pretty simple. The tricky part is dreaming up a suitable logical expression. Here are some
examples:

mean(lab == "NJ")

Fraction of lab values that are New Jersey

mean(after > before)

Fraction of observations for which the effect increases

mean(abs(x-mean(x)) > 2*sd(x))

Fraction of observations that exceed two standard deviations from the mean

mean(diff(ts) > 0)

Fraction of observations in a time series that are larger than the previous observation

Tabulating Factors and Creating Contingency Tables

Problem
You want to tabulate one factor or build a contingency table from multiple factors.



Solution
The table function produces counts of one factor:

table(f1) 

#> f1 

#>  a  b  c  d  e 

#> 14 23 24 21 18

It can also produce contingency tables (cross-tabulations) from two or more factors:

table(f1, f2) 

#>    f2 

#> f1   f  g  h 

#>   a  6  4  4 

#>   b  7  9  7 

#>   c  4 11  9 

#>   d  7  8  6 

#>   e  5 10  3

table works for characters, too, not only factors:

t1 <- sample(letters[9:11], 100, replace = TRUE) 

table(t1) 

#> t1 

#>  i  j  k 

#> 20 40 40

Discussion
The table function counts the levels of one factor or characters, such as these counts of initial and outcome
(which are factors):

set.seed(42) 

initial <- factor(sample(c("Yes", "No", "Maybe"), 100, replace = TRUE)) 

outcome <- factor(sample(c("Pass", "Fail"), 100, replace = TRUE)) 

 

table(initial) 

#> initial 

#> Maybe    No   Yes 

#>    39    31    30 

 

table(outcome) 

#> outcome 

#> Fail Pass 

#>   56   44

The greater power of table is in producing contingency tables, also known as cross-tabulations. Each cell in a
contingency table counts how many times that row/column combination occurred:

table(initial, outcome) 

#>        outcome 

#> initial Fail Pass 

#>   Maybe   23   16 

#>   No      20   11 

#>   Yes     13   17

This table shows that the combination of initial = Yes and outcome = Fail occurred 13 times, the
combination of initial = Yes and outcome = Pass occurred 17 times, and so forth.

See Also



The xtabs function can also produce a contingency table. It has a formula interface, which some people prefer.

Testing Categorical Variables for Independence

Problem
You have two categorical variables that are represented by factors. You want to test them for independence using
the chi-squared test.

Solution
Use the table function to produce a contingency table from the two factors. Then use the summary function to
perform a chi-squared test of the contingency table. In this example we have two vectors of factor values, which
we created in the prior recipe:

summary(table(initial, outcome)) 

#> Number of cases in table: 100 

#> Number of factors: 2 

#> Test for independence of all factors: 

#>  Chisq = 3, df = 2, p-value = 0.2

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the variables are likely
not independent, whereas a p-value exceeding 0.05 fails to provide any such evidence.

Discussion
This example performs a chi-squared test on the contingency table from “Tabulating Factors and Creating
Contingency Tables”, and yields a p-value of 0.2:

summary(table(initial, outcome)) 

#> Number of cases in table: 100 

#> Number of factors: 2 

#> Test for independence of all factors: 

#>  Chisq = 3, df = 2, p-value = 0.2

The large p-value indicates that the two factors, initial and outcome, are probably independent. Practically
speaking, we conclude there is no connection between the variables. This makes sense, as this example data was
created by simply drawing random data using the sample function in the prior recipe.

See Also
The chisq.test function can also perform this test.

Calculating Quantiles (and Quartiles) of a Dataset

Problem
Given a fraction f, you want to know the corresponding quantile of your data. That is, you seek the observation x
such that the fraction of observations below x is f.

Solution
Use the quantile function. The second argument is the fraction, f:



quantile(vec, 0.95) 

#>  95% 

#> 1.43

For quartiles, simply omit the second argument altogether:

quantile(vec) 

#>      0%     25%     50%     75%    100% 

#> -2.0247 -0.5915 -0.0693  0.4618  2.7019

Discussion
Suppose vec contains 1,000 observations between 0 and 1. The quantile function can tell you which
observation delimits the lower 5% of the data:

vec <- runif(1000) 

quantile(vec, .05) 

#>     5% 

#> 0.0451

The quantile documentation refers to the second argument as a “probability,” which is natural when we think of
probability as meaning relative frequency.

In true R style, the second argument can be a vector of probabilities; in this case, quantile returns a vector of
corresponding quantiles, one for each probability:

quantile(vec, c(.05, .95)) 

#>     5%    95% 

#> 0.0451 0.9363

That is a handy way to identify the middle 90% (in this case) of the observations.

If you omit the probabilities altogether, then R assumes you want the probabilities 0, 0.25, 0.50, 0.75, and 1.0—
in other words, the quartiles:

quantile(vec) 

#>       0%      25%      50%      75%     100% 

#> 0.000405 0.235529 0.479543 0.737619 0.999379

Amazingly, the quantile function implements nine (yes, nine) different algorithms for computing quantiles.
Study the help page before assuming that the default algorithm is the best one for you.

Inverting a Quantile

Problem
Given an observation x from your data, you want to know its corresponding quantile. That is, you want to know
what fraction of the data is less than x.

Solution
Assuming your data is in a vector vec, compare the data against the observation and then use mean to compute
the relative frequency of values less than x—say, 1.6 as per this example:

mean(vec < 1.6) 

#> [1] 0.948



Discussion
The expression vec < x compares every element of vec against x and returns a vector of logical values, where
the nth logical value is TRUE if vec[n] < x. The mean function converts those logical values to 0s and 1s: 0 for
FALSE and 1 for TRUE. The average of all those 1s and 0s is the fraction of vec that is less than x, or the inverse
quantile of x.

See Also
This is an application of the general approach described in “Calculating Relative Frequencies”.

Converting Data to z-Scores

Problem
You have a dataset, and you want to calculate the corresponding z-scores for all data elements. (This is
sometimes called normalizing the data.)

Solution
Use the scale function:

scale(x) 

#>          [,1] 

#>  [1,]  0.8701 

#>  [2,] -0.7133 

#>  [3,] -1.0503 

#>  [4,]  0.5790 

#>  [5,] -0.6324 

#>  [6,]  0.0991 

#>  [7,]  2.1495 

#>  [8,]  0.2481 

#>  [9,] -0.8155 

#> [10,] -0.7341 

#> attr(,"scaled:center") 

#> [1] 2.42 

#> attr(,"scaled:scale") 

#> [1] 2.11

This works for vectors, matrices, and data frames. In the case of a vector, scale returns the vector of normalized
values. In the case of matrices and data frames, scale normalizes each column independently and returns
columns of normalized values in a matrix.

Discussion
You might also want to normalize a single value y relative to a dataset x. You can do so by using vectorized
operations as follows:

(y - mean(x)) / sd(x) 

#> [1] -0.633

Testing the Mean of a Sample (t-Test)

Problem



You have a sample from a population. Given this sample, you want to know if the mean of the population could
reasonably be a particular value m.

Solution
Apply the t.test function to the sample x with the argument mu = m:

t.test(x, mu = m) 

The output includes a p-value. Conventionally, if p < 0.05 then the population mean is unlikely to be m, whereas
p > 0.05 provides no such evidence.

If your sample size n is small, then the underlying population must be normally distributed in order to derive
meaningful results from the t-test. A good rule of thumb is that “small” means n < 30.

Discussion
The t-test is a workhorse of statistics, and this is one of its basic uses: making inferences about a population
mean from a sample. The following example simulates sampling from a normal population with mean μ = 100. It
uses the t-test to ask if the population mean could be 95, and t.test reports a p-value of 0.005:

x <- rnorm(75, mean = 100, sd = 15) 

t.test(x, mu = 95) 

#> 

#>  One Sample t-test 

#> 

#> data:  x 

#> t = 3, df = 70, p-value = 0.005 

#> alternative hypothesis: true mean is not equal to 95 

#> 95 percent confidence interval: 

#>   96.5 103.0 

#> sample estimates: 

#> mean of x 

#>      99.7

The p-value is small, so it’s unlikely (based on the sample data) that 95 could be the mean of the population.

Informally, we could interpret the low p-value as follows. If the population mean were really 95, then the
probability of observing our test statistic (t = 2.8898 or something more extreme) would be only 0.005. That is
very improbable, yet that is the value we observed. Hence we conclude that the null hypothesis is wrong;
therefore, the sample data does not support the claim that the population mean is 95.

In sharp contrast, testing for a mean of 100 gives a p-value of 0.9:

t.test(x, mu = 100) 

#> 

#>  One Sample t-test 

#> 

#> data:  x 

#> t = -0.2, df = 70, p-value = 0.9 

#> alternative hypothesis: true mean is not equal to 100 

#> 95 percent confidence interval: 

#>   96.5 103.0 

#> sample estimates: 

#> mean of x 

#>      99.7

The large p-value indicates that the sample is consistent with assuming a population mean μ of 100. In statistical
terms, the data does not provide evidence against the true mean being 100.

A common case is testing for a mean of zero. If you omit the mu argument, it defaults to 0.



See Also
The t.test function is a many-splendored thing. See “Forming a Confidence Interval for a Mean” and
“Comparing the Means of Two Samples” for other uses.

Forming a Confidence Interval for a Mean

Problem
You have a sample from a population. Given that sample, you want to determine a confidence interval for the
population’s mean.

Solution
Apply the t.test function to your sample x:

t.test(x)

The output includes a confidence interval at the 95% confidence level. To see intervals at other levels, use the
conf.level argument.

As in “Testing the Mean of a Sample (t-Test)”, if your sample size n is small, then the underlying population
must be normally distributed for there to be a meaningful confidence interval. Again, a good rule of thumb is
that “small” means n < 30.

Discussion
Applying the t.test function to a vector yields a lot of output. Buried in the output is a confidence interval:

t.test(x) 

#> 

#>  One Sample t-test 

#> 

#> data:  x 

#> t = 50, df = 50, p-value <2e-16 

#> alternative hypothesis: true mean is not equal to 0 

#> 95 percent confidence interval: 

#>   94.2 101.5 

#> sample estimates: 

#> mean of x 

#>      97.9

In this example, the confidence interval is approximately 94.2 < μ < 101.5, which is sometimes written simply as
(94.2, 101.5).

We can raise the confidence level to 99% by setting conf.level=0.99:

t.test(x, conf.level = 0.99) 

#> 

#>  One Sample t-test 

#> 

#> data:  x 

#> t = 50, df = 50, p-value <2e-16 

#> alternative hypothesis: true mean is not equal to 0 

#> 99 percent confidence interval: 

#>   92.9 102.8 

#> sample estimates: 

#> mean of x 

#>      97.9



That change widens the confidence interval to 92.9 < μ < 102.8.

Forming a Confidence Interval for a Median

Problem
You have a data sample, and you want to know the confidence interval for the median.

Solution
Use the wilcox.test function, setting conf.int=TRUE:

wilcox.test(x, conf.int = TRUE)

The output will contain a confidence interval for the median.

Discussion
The procedure for calculating the confidence interval of a mean is well defined and widely known. The same is
not true for the median, unfortunately. There are several procedures for calculating the median’s confidence
interval. None of them is “the” procedure, but the Wilcoxon signed rank test is pretty standard.

The wilcox.test function implements that procedure. Buried in the output is the 95% confidence interval,
which is approximately (–0.102, 0.646) in this case:

wilcox.test(x, conf.int = TRUE) 

#> 

#>  Wilcoxon signed rank test 

#> 

#> data:  x 

#> V = 200, p-value = 0.1 

#> alternative hypothesis: true location is not equal to 0 

#> 95 percent confidence interval: 

#>  -0.102  0.646 

#> sample estimates: 

#> (pseudo)median 

#>          0.311

You can change the confidence level by setting conf.level, such as conf.level=0.99 or other such values.

The output also includes something called the pseudomedian, which is defined on the help page. Don’t assume it
equals the median; they are different:

median(x) 

#> [1] 0.314

See Also
The bootstrap procedure is also useful for estimating the median’s confidence interval; see “Generating a
Random Sample” and “Bootstrapping a Statistic”.

Testing a Sample Proportion

Problem
You have a sample of values from a population consisting of successes and failures. You believe the true
proportion of successes is p, and you want to test that hypothesis using the sample data.



Solution
Use the prop.test function. Suppose the sample size is n and the sample contains x successes:

prop.test(x, n, p) 

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the true proportion is
unlikely to be p, whereas a p-value exceeding 0.05 fails to provide such evidence.

Discussion
Suppose you encounter some loudmouthed fan of the Chicago Cubs early in the baseball season. The Cubs have
played 20 games and won 11 of them, or 55% of their games. Based on that evidence, the fan is “very confident”
that the Cubs will win more than half of their games this year. Should they be that confident?

The prop.test function can evaluate the fan’s logic. Here, the number of observations is n = 20, the number of
successes is x = 11, and p is the true probability of winning a game. We want to know whether it is reasonable to
conclude, based on the data, that p > 0.5. Normally, prop.test would check for p ≠ 0.05, but we can check for p
> 0.5 instead by setting alternative="greater":

prop.test(11, 20, 0.5, alternative = "greater") 

#> 

#>  1-sample proportions test with continuity correction 

#> 

#> data:  11 out of 20, null probability 0.5 

#> X-squared = 0.05, df = 1, p-value = 0.4 

#> alternative hypothesis: true p is greater than 0.5 

#> 95 percent confidence interval: 

#>  0.35 1.00 

#> sample estimates: 

#>    p 

#> 0.55

The prop.test output shows a large p-value, 0.55, so we cannot reject the null hypothesis; that is, we cannot
reasonably conclude that p is greater than 1/2. The Cubs fan is being overly confident based on too little data. No
surprise there.

Forming a Confidence Interval for a Proportion

Problem
You have a sample of values from a population consisting of successes and failures. Based on the sample data,
you want to form a confidence interval for the population’s proportion of successes.

Solution
Use the prop.test function. Suppose the sample size is n and the sample contains x successes:

prop.test(x, n) 

The function output includes the confidence interval for p.

Discussion
We subscribe to a stock market newsletter that is well written, but includes a section purporting to identify
stocks that are likely to rise. It does this by looking for a certain pattern in the stock price. It recently reported,
for example, that a certain stock was following the pattern. It also reported that the stock rose six times after the



last nine times that pattern occurred. The writers concluded that the probability of the stock rising again was
therefore 6/9, or 66.7%.

Using prop.test, we can obtain the confidence interval for the true proportion of times the stock rises after the
pattern. Here, the number of observations is n = 9 and the number of successes is x = 6. The output shows a
confidence interval of (0.309, 0.910) at the 95% confidence level:

prop.test(6, 9) 

#> Warning in prop.test(6, 9): Chi-squared approximation may be incorrect 

#> 

#>  1-sample proportions test with continuity correction 

#> 

#> data:  6 out of 9, null probability 0.5 

#> X-squared = 0.4, df = 1, p-value = 0.5 

#> alternative hypothesis: true p is not equal to 0.5 

#> 95 percent confidence interval: 

#>  0.309 0.910 

#> sample estimates: 

#>     p 

#> 0.667

The writers are pretty foolish to say the probability of the stock rising is 66.7%. They could be leading their
readers into a very bad bet.

By default, prop.test calculates a confidence interval at the 95% confidence level. Use the conf.level
argument for other confidence levels:

prop.test(x, n, p, conf.level = 0.99)   # 99% confidence level

See Also
See “Testing a Sample Proportion”.

Testing for Normality

Problem
You want a statistical test to determine whether your data sample is from a normally distributed population.

Solution
Use the shapiro.test function:

shapiro.test(x) 

The output includes a p-value. Conventionally, p < 0.05 indicates that the population is likely not normally
distributed, whereas p > 0.05 provides no such evidence.

Discussion
This example reports a p-value of 0.4 for x:

shapiro.test(x) 

#> 

#>  Shapiro-Wilk normality test 

#> 

#> data:  x 

#> W = 1, p-value = 0.4



The large p-value suggests the underlying population could be normally distributed. The next example reports a
very small p-value for y, so it is unlikely that this sample came from a normal population:

shapiro.test(y) 

#> 

#>  Shapiro-Wilk normality test 

#> 

#> data:  y 

#> W = 0.7, p-value = 7e-13

We have highlighted the Shapiro–Wilk test because it is a standard R function. You can also install the package
nortest, which is dedicated entirely to tests for normality. This package includes the following tests:

Anderson–Darling (ad.test)

Cramer–von Mises (cvm.test)

Lilliefors (lillie.test)

Pearson chi-squared for the composite hypothesis of normality (pearson.test)

Shapiro–Francia (sf.test)

The problem with all of these is their null hypothesis: they all assume that the population is normally distributed
until proven otherwise. As a result, the population must be decidedly nonnormal before the test reports a small p-
value and you can reject that null hypothesis. That makes the tests quite conservative, tending to err on the side
of normality.

Instead of depending solely upon a statistical test, we suggest also using histograms (“Creating a Histogram”)
and quantile-quantile plots (“Creating a Normal Quantile–Quantile Plot”) to evaluate the normality of any data.
Are the tails too fat? Is the peak too peaked? Your judgment is likely better than a single statistical test.

See Also
See “Installing Packages from CRAN” for how to install the nortest package.

Testing for Runs

Problem
Your data is a sequence of binary values: yes/no, 0/1, true/false, or other two-valued data. You want to know: is
the sequence random?

Solution
The tseries package contains the runs.test function, which checks a sequence for randomness. The sequence
should be a factor with two levels:

library(tseries) 

runs.test(as.factor(s)) 

The runs.test function reports a p-value. Conventionally, a p-value of less than 0.05 indicates that the sequence
is likely not random, whereas a p-value exceeding 0.05 provides no such evidence.

Discussion
A run is a subsequence composed of identical values, such as all 1s or all 0s. A random sequence should be
properly jumbled up, without too many runs. It shouldn’t contain too few runs, either—a sequence of perfectly



alternating values (0, 1, 0, 1, 0, 1, …) contains no runs, but would you say that it’s random?

The runs.test function checks the number of runs in your sequence. If there are too many or too few, it reports
a small p-value.

This first example generates a random sequence of 0s and 1s and then tests the sequence for runs. Not
surprisingly, runs.test reports a large p-value, indicating the sequence is likely random:

s <- sample(c(0, 1), 100, replace = T) 

runs.test(as.factor(s)) 

#> 

#>  Runs Test 

#> 

#> data:  as.factor(s) 

#> Standard Normal = 0.1, p-value = 0.9 

#> alternative hypothesis: two.sided

This next sequence, however, consists of three runs and so the reported p-value is quite low:

s <- c(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) 

runs.test(as.factor(s)) 

#> 

#>  Runs Test 

#> 

#> data:  as.factor(s) 

#> Standard Normal = -2, p-value = 0.02 

#> alternative hypothesis: two.sided

See Also
See “Creating a Factor (Categorical Variable)” and “Generating Random Sequences”.

Comparing the Means of Two Samples

Problem
You have one sample each from two populations. You want to know if the two populations could have the same
mean.

Solution
Perform a t-test by calling the t.test function:

t.test(x, y) 

By default, t.test assumes that your observations are not paired. If the observations are paired (i.e., if each xi is
paired with one yi), then specify paired=TRUE:

t.test(x, y, paired = TRUE) 

In either case, t.test will compute a p-value. Conventionally, if p < 0.05 then the means are likely different,
whereas p > 0.05 provides no such evidence:

If either sample size is small, then the populations must be normally distributed. Here, “small” means fewer
than 20 data points.

If the two populations have the same variance, specify var.equal=TRUE to obtain a less conservative test.



Discussion
We often use the t-test to get a quick sense of the difference between two population means. It requires that the
samples be large enough (i.e., both samples have 20 or more observations) or that the underlying populations be
normally distributed. We don’t take the “normally distributed” part too literally. Being bell-shaped and
reasonably symmetrical should be good enough.

A key distinction here is whether or not your data contains paired observations, since the results may differ in
the two cases. Suppose we want to know if drinking coffee in the morning improves scores on SATs. We could
run the experiment two ways:

Randomly select one group of people. Give them the SAT twice, once with morning coffee and once without
morning coffee. For each person, we will have two SAT scores. These are paired observations.

Randomly select two groups of people. One group has a cup of morning coffee and takes the SAT. The other
group just takes the test. We have a score for each person, but the scores are not paired in any way.

Statistically, these experiments are quite different. In experiment 1, there are two observations for each person
(caffeinated and not) and they are not statistically independent. In experiment 2, the observations are
independent.

If you have paired observations (experiment 1) and erroneously analyze them as unpaired observations
(experiment 2), then you could get this result with a p-value of 0.3:

load("./data/sat.rdata") 

t.test(x, y) 

#> 

#>  Welch Two Sample t-test 

#> 

#> data:  x and y 

#> t = -1, df = 200, p-value = 0.3 

#> alternative hypothesis: true difference in means is not equal to 0 

#> 95 percent confidence interval: 

#>  -46.4  16.2 

#> sample estimates: 

#> mean of x mean of y 

#>      1054      1069

The large p-value forces you to conclude there is no difference between the groups. Contrast that result with the
one that follows from analyzing the same data but correctly identifying it as paired:

t.test(x, y, paired = TRUE) 

#> 

#>  Paired t-test 

#> 

#> data:  x and y 

#> t = -20, df = 100, p-value <2e-16 

#> alternative hypothesis: true difference in means is not equal to 0 

#> 95 percent confidence interval: 

#>  -16.8 -13.5 

#> sample estimates: 

#> mean of the differences 

#>                   -15.1

The p-value plummets to 2e-16, and we reach the exactly opposite conclusion.

See Also
If the populations are not normally distributed (bell-shaped) and either sample is small, consider using the
Wilcoxon–Mann–Whitney test described in “Comparing the Locations of Two Samples Nonparametrically”.

Comparing the Locations of Two Samples Nonparametrically



Problem
You have samples from two populations. You don’t know the distribution of the populations, but you know they
have similar shapes. You want to know: is one population shifted to the left or right compared with the other?

Solution
You can use a nonparametric test, the Wilcoxon–Mann–Whitney test, which is implemented by the wilcox.test
function. For paired observations (every xi is paired with yi), set paired=TRUE:

wilcox.test(x, y, paired = TRUE)

For unpaired observations, let paired default to FALSE:

wilcox.test(x, y)

The test output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the second
population is likely shifted left or right with respect to the first population, whereas a p-value exceeding 0.05
provides no such evidence.

Discussion
When we stop making assumptions regarding the distributions of populations, we enter the world of
nonparametric statistics. The Wilcoxon–Mann–Whitney test is nonparametric and so can be applied to more
datasets than the t-test, which requires that the data be normally distributed (for small samples). This test’s only
assumption is that the two populations have the same shape.

In this recipe, we are asking: is the second population shifted left or right with respect to the first? This is similar
to asking whether the average of the second population is smaller or larger than that of the first. However, the
Wilcoxon–Mann–Whitney test answers a different question: it tells us whether the central locations of the two
populations are significantly different or, equivalently, whether their relative frequencies are different.

Suppose we randomly select a group of employees and ask each one to complete the same task under two
different circumstances: under favorable conditions and under unfavorable conditions, such as a noisy
environment. We measure their completion times under both conditions, so we have two measurements for each
employee. We want to know if the two times are significantly different, but we can’t assume they are normally
distributed.

The observations are paired, so we must set paired=TRUE:

load(file = "./data/workers.rdata") 

wilcox.test(fav, unfav, paired = TRUE) 

#> 

#>  Wilcoxon signed rank test 

#> 

#> data:  fav and unfav 

#> V = 10, p-value = 1e-04 

#> alternative hypothesis: true location shift is not equal to 0

The p-value is essentially zero. Statistically speaking, we reject the assumption that the completion times were
equal. Practically speaking, it’s reasonable to conclude that the times were different.

In this example, setting paired=TRUE is critical. Treating the data as unpaired would be wrong because the
observations are not independent, and this in turn would produce bogus results. Running the example with
paired=FALSE produces a p-value of 0.1022, which leads to the wrong conclusion.

See Also



See “Comparing the Means of Two Samples” for the parametric test.

Testing a Correlation for Significance

Problem
You calculated the correlation between two variables, but you don’t know if the correlation is statistically
significant.

Solution
The cor.test function can calculate both the p-value and the confidence interval of the correlation. If the
variables came from normally distributed populations then use the default measure of correlation, which is the
Pearson method:

cor.test(x, y)

For nonnormal populations, use the Spearman method instead:

cor.test(x, y, method = "spearman")

The function returns several values, including the p-value from the test of significance. Conventionally, p < 0.05
indicates that the correlation is likely significant, whereas p > 0.05 indicates it is not.

Discussion
In our experience, people often fail to check a correlation for significance. In fact, many people are unaware that
a correlation can be insignificant. They jam their data into a computer, calculate the correlation, and blindly
believe the result. However, they should ask themselves: Was there enough data? Is the magnitude of the
correlation large enough? Fortunately, the cor.test function answers those questions.

Suppose we have two vectors, x and y, with values from normal populations. We might be very pleased that their
correlation is greater than 0.75:

cor(x, y) 

#> [1] 0.751

But that is naïve. If we run cor.test, it reports a relatively large p-value of 0.09:

cor.test(x, y) 

#> 

#>  Pearson's product-moment correlation 

#> 

#> data:  x and y 

#> t = 2, df = 4, p-value = 0.09 

#> alternative hypothesis: true correlation is not equal to 0 

#> 95 percent confidence interval: 

#>  -0.155  0.971 

#> sample estimates: 

#>   cor 

#> 0.751

The p-value is above the conventional threshold of 0.05, so we conclude that the correlation is unlikely to be
significant.

You can also check the correlation by using the confidence interval. In this example, the confidence interval is (–
0.155, 0.971). The interval contains zero and so it is possible that the correlation is zero, in which case there



would be no correlation. Again, you could not be confident that the reported correlation is significant.

The cor.test output also includes the point estimate reported by cor (at the bottom, labeled “sample
estimates”), saving you the additional step of running cor.

By default, cor.test calculates the Pearson correlation, which assumes that the underlying populations are
normally distributed. The Spearman method makes no such assumption because it is nonparametric. Use
method="Spearman" when working with nonnormal data.

See Also
See “Computing Basic Statistics” for calculating simple correlations.

Testing Groups for Equal Proportions

Problem
You have samples from two or more groups. The groups’ elements are binary-valued: either success or failure.
You want to know if the groups have equal proportions of successes.

Solution
Use the prop.test function with two vector arguments:

ns <- c(48, 64) 

nt <- c(100, 100) 

prop.test(ns, nt) 

#> 

#>  2-sample test for equality of proportions with continuity 

#>  correction 

#> 

#> data:  ns out of nt 

#> X-squared = 5, df = 1, p-value = 0.03 

#> alternative hypothesis: two.sided 

#> 95 percent confidence interval: 

#>  -0.3058 -0.0142 

#> sample estimates: 

#> prop 1 prop 2 

#>   0.48   0.64

These are parallel vectors. The first vector, ns, gives the number of successes in each group. The second vector,
nt, gives the size of the corresponding group (often called the number of trials).

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that it is likely the groups’
proportions are different, whereas a p-value exceeding 0.05 provides no such evidence.

Discussion
In “Testing a Sample Proportion”, we tested a proportion based on one sample. Here, we have samples from
multiple groups and want to compare the proportions in the underlying groups.

One of the authors recently taught statistics to 38 students and awarded a grade of A to 14 of them. A colleague
taught the same class to 40 students and awarded an A to only 10. We wanted to know: was the author fostering
grade inflation by awarding significantly more A grades than the other teacher did?

We used prop.test. “Success” means awarding an A, so the vector of successes contains two elements, the
number awarded by the author and the number awarded by the colleague:

successes <- c(14, 10)



The number of trials is the number of students in the corresponding class:

trials <- c(38, 40)

The prop.test output yields a p-value of 0.4:

prop.test(successes, trials) 

#> 

#>  2-sample test for equality of proportions with continuity 

#>  correction 

#> 

#> data:  successes out of trials 

#> X-squared = 0.8, df = 1, p-value = 0.4 

#> alternative hypothesis: two.sided 

#> 95 percent confidence interval: 

#>  -0.111  0.348 

#> sample estimates: 

#> prop 1 prop 2 

#>  0.368  0.250

The relatively large p-value means that we cannot reject the null hypothesis: the evidence does not suggest any
difference between the teachers’ grading.

See Also
See “Testing a Sample Proportion”.

Performing Pairwise Comparisons Between Group Means

Problem
You have several samples, and you want to perform a pairwise comparison between the sample means. That is,
you want to compare the mean of every sample against the mean of every other sample.

Solution
Place all data into one vector and create a parallel factor to identify the groups. Use pairwise.t.test to
perform the pairwise comparison of means:

pairwise.t.test(x, f)   # x is the data, f is the grouping factor 

The output contains a table of p-values, one for each pair of groups. Conventionally, if p < 0.05 then the two
groups likely have different means, whereas p > 0.05 provides no such evidence.

Discussion
This is more complicated than “Comparing the Means of Two Samples”, where we compared the means of two
samples. Here we have several samples and want to compare the mean of every sample against the mean of every
other sample.

Statistically speaking, pairwise comparisons are tricky. It is not the same as simply performing a t-test on every
possible pair. The p-values must be adjusted, as otherwise you will get an overly optimistic result. The help
pages for pairwise.t.test and p.adjust describe the adjustment algorithms available in R. Anyone doing
serious pairwise comparisons is urged to review the help pages and consult a good textbook on the subject.

Suppose we are using a larger sample of the data from “Combining Multiple Vectors into One Vector and a
Factor”, where we combined data for freshmen, sophomores, and juniors into a data frame called comb. The data



frame has two columns: the data in a column called values, and the grouping factor in a column called ind. We
can use pairwise.t.test to perform pairwise comparisons between the groups:

pairwise.t.test(comb$values, comb$ind) 

#> 

#>  Pairwise comparisons using t-tests with pooled SD 

#> 

#> data:  comb$values and comb$ind 

#> 

#>      fresh soph 

#> soph 0.001 - 

#> jrs  3e-04 0.592 

#> 

#> P value adjustment method: holm

Notice the table of p-values. The comparisons of juniors versus freshmen and of sophomores versus freshmen
produced small p-values: 0.001 and 0.0003, respectively. We can conclude there are significant differences
between those groups. However, the comparison of sophomores versus juniors produced a (relatively) large p-
value of 0.592, so they are not significantly different.

See Also
See “Combining Multiple Vectors into One Vector and a Factor” and “Comparing the Means of Two Samples”.

Testing Two Samples for the Same Distribution

Problem
You have two samples, and you are wondering: did they come from the same distribution?

Solution
The Kolmogorov–Smirnov test compares two samples and tests them for being drawn from the same
distribution. The ks.test function implements that test:

ks.test(x, y) 

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the two samples (x and
y) were drawn from different distributions, whereas a p-value exceeding 0.05 provides no such evidence.

Discussion
The Kolmogorov–Smirnov test is wonderful for two reasons. First, it is a nonparametric test and so you needn’t
make any assumptions regarding the underlying distributions: it works for all distributions. Second, it checks the
location, dispersion, and shape of the populations, based on the samples. If these characteristics disagree then the
test will detect that, allowing you to conclude that the underlying distributions are different.

Suppose we suspect that the vectors x and y come from differing distributions. Here, ks.test reports a p-value
of 0.04:

ks.test(x, y) 

#> 

#>  Two-sample Kolmogorov-Smirnov test 

#> 

#> data:  x and y 

#> D = 0.2, p-value = 0.04 

#> alternative hypothesis: two-sided



From the small p-value we can conclude that the samples are from different distributions. However, when we
test x against another sample, z, the p-value is much larger (0.6); this suggests that x and z could have the same
underlying distribution:

z <- rnorm(100, mean = 4, sd = 6) 

ks.test(x, z) 

#> 

#>  Two-sample Kolmogorov-Smirnov test 

#> 

#> data:  x and z 

#> D = 0.1, p-value = 0.6 

#> alternative hypothesis: two-sided



Chapter 10. Graphics

Graphics is a great strength of R. The graphics package is part of the standard distribution and contains many
useful functions for creating a variety of graphic displays. The base functionality has been expanded and made
easier with ggplot2, part of the tidyverse of packages. In this chapter we will focus on examples using ggplot2,
and we will occasionally suggest other packages. In this chapter’s See Also sections we mention functions in
other packages that do the same job in a different way. We suggest that you explore those alternatives if you are
dissatisfied with what’s offered by ggplot2 or base graphics.

Graphics is a vast subject, and we can only scratch the surface here. Winston Chang’s R Graphics Cookbook, 2nd
ed., is part of the O’Reilly Cookbook series and walks through many useful recipes with a focus on ggplot2. If
you want to delve deeper, we recommend R Graphics by Paul Murrell (Chapman & Hall); it discusses the
paradigms behind R graphics, explains how to use the graphics functions, and contains numerous examples,
including the code to re-create them. Some of the examples are pretty amazing.

The Illustrations
The graphs in this chapter are mostly plain and unadorned. We did that intentionally. When you call the ggplot
function, as in:

library(tidyverse)

df <- data.frame(x = 1:5, y = 1:5) 

ggplot(df, aes(x, y)) + 

  geom_point()

you get a plain graphical representation of x and y as shown in Figure 10-1.

Figure 10-1. Simple plot

https://oreil.ly/2IhNUQj


You could adorn the graph with colors, a title, labels, a legend, text, and so forth, but then the call to ggplot
becomes more and more crowded, obscuring the basic intention:

ggplot(df, aes(x, y)) + 

  geom_point() + 

  labs( 

    title = "Simple Plot Example", 

    subtitle = "with a subtitle", 

    x = "x-values", 

    y = "y-values" 

  ) + 

  theme(panel.background = element_rect(fill = "white", color = "grey50"))

The resulting plot is shown in Figure 10-2. We want to keep the recipes clean, so we emphasize the basic plot and
then show later (as in “Adding a Title and Labels”) how to add adornments.

Figure 10-2. Slightly more complicated plot

Notes on ggplot2 Basics
While the package is called ggplot2, the primary plotting function in the package is called ggplot. It is
important to understand the basic pieces of a ggplot graph. In the preceding examples, you can see that we pass
data into ggplot, then define how the graph is created by stacking together small phrases that describe some
aspect of the plot. This stacking together of phrases is part of the “grammar of graphics” ethos (that’s where the
gg comes from). To learn more, you can read “A Layered Grammar of Graphics” written by ggplot author
Hadley Wickham. The concept originated with Leland Wilkinson, who articulated the idea of building graphics
up from a set of primitives (i.e., verbs and nouns). With ggplot, the underlying data need not be fundamentally
reshaped for each type of graphical representation. In general, the data stays the same and the user changes the
syntax slightly to illustrate the data differently. This is significantly more consistent than base graphics, which
often require reshaping the data in order to change the way it is visualized.

As we’re talking about ggplot graphics, it’s worth defining the components of a ggplot graph:

http://bit.ly/2If6eJz


Geometric object functions

These are geometric objects that describe the type of graph being created. Their names start with geom_;
examples include geom_line, geom_boxplot, and geom_point, along with dozens more.

Aesthetics

The aesthetics, or aesthetic mappings, communicate to ggplot which fields in the source data get mapped to
which visual elements in the graphic. This is the aes line in a ggplot call.

Stats
Stats are statistical transformations that are done before displaying the data. Not all graphs will have stats,
but a few common stats are stat_ecdf (the empirical cumulative distribution function) and stat_identity,
which tells ggplot to pass the data without doing any stats at all.

Facet functions
Facets are subplots where each small plot represents a subgroup of the data. The faceting functions include
facet_wrap and facet_grid.

Themes
Themes are the visual elements of the plot that are not tied to data. These might include titles, margins, table
of contents locations, or font choices.

Layer
A layer is a combination of data, aesthetics, a geometric object, a stat, and other options to produce a visual
layer in the ggplot graphic.

“Long” Versus “Wide” Data with ggplot
One of the first sources of confusion for new ggplot users is that they are inclined to reshape their data to be
“wide” before plotting it. “Wide” here means every variable they are plotting is its own column in the underlying
data frame. This is an approach that many users develop while using Excel and then bring with them to R.
ggplot works most easily with “long” data, where additional variables are added as rows in the data frame rather
than columns. The great side effect of adding more measurements as rows is that any properly constructed
ggplot graphs will automatically update to reflect the new data without changing the ggplot code. If each
additional variable were added as a column, then the plotting code would have to be changed to introduce
additional variables. This idea of “long” versus “wide” data will become more obvious in the examples in the
rest of this chapter.

Graphics in Other Packages
R is highly programmable, and many people have extended its graphics machinery with additional features.
Quite often, packages include specialized functions for plotting their results and objects. The zoo package, for
example, implements a time series object. If you create a zoo object z and call plot(z), then the zoo package
does the plotting; it creates a graphic that is customized for displaying a time series. zoo uses base graphics, so
the resulting graph will not be a ggplot graphic.

There are even entire packages devoted to extending R with new graphics paradigms. The lattice package is an
alternative to base graphics that predates ggplot2. It uses a powerful graphics paradigm that enables you to
create informative graphics more easily. It was implemented by Deepayan Sarkar, who also wrote Lattice:
Multivariate Data Visualization with R (Springer), which explains the package and how to use it. The lattice
package is also described in R in a Nutshell (O’Reilly).



There are two chapters in Hadley Wickham and Garrett Grolemund’s excellent book R for Data Science that deal
with graphics. Chapter 7, “Exploratory Data Analysis,” focuses on exploring data with ggplot2, while Chapter
28, “Graphics for Communication,” explores communicating to others with graphics. R for Data Science is
available in print or online.

Creating a Scatter Plot

Problem
You have paired observations: (x1, y1), (x2, y2), …, (xn, yn). You want to create a scatter plot of the pairs.

Solution
We can plot the data by calling ggplot, passing in the data frame, and invoking a geometric point function:

ggplot(df, aes(x, y)) + 

  geom_point()

In this example, the data frame is called df and the x and y data are in fields named x and y, which we pass to the
aesthetic in the call aes(x, y).

Discussion
A scatter plot is a common first attack on a new dataset. It’s a quick way to see the relationship, if any, between x
and y.

Plotting with ggplot requires telling ggplot what data frame to use, then what type of graph to create and which
aesthetic mapping (aes) to use. The aes in this case defines which field from df goes into which axis on the plot.
Then the command geom_point communicates that you want a point graph, as opposed to a line or other type of
graphic.

We can use the built-in mtcars dataset to illustrate plotting horsepower (hp) on the x-axis and fuel economy
(mpg) on the y-axis:

ggplot(mtcars, aes(hp, mpg)) + 

  geom_point()

The resulting plot is shown in Figure 10-3.

https://r4ds.had.co.nz/


Figure 10-3. Scatter plot

See Also
See “Adding a Title and Labels” for adding a title and labels, “Adding (or Removing) a Grid” for adding a grid,
and “Adding (or Removing) a Legend” for adding a legend. See “Plotting All Variables Against All Other
Variables” for plotting multiple variables.

Adding a Title and Labels

Problem
You want to add a title to your plot or add labels for the axes.

Solution
With ggplot we add a labs element that controls the labels for the title and axes.

When calling labs in ggplot, specify:

title

Desired title text

x

x-axis label

y

y-axis label

For example:



ggplot(df, aes(x, y)) + 

  geom_point() + 

  labs(title = "The Title", 

       x = "X-axis Label", 

       y = "Y-axis Label")

Discussion
The graph created in “Creating a Scatter Plot” is quite plain. A title and better labels will make it more
interesting and easier to interpret.

Note that in ggplot you build up the elements of the graph by connecting the parts with the plus sign, +. So, we
add further graphical elements by stringing together phrases. You can see this in the following code, which uses
the built-in mtcars dataset and plots horsepower versus fuel economy in a scatter plot, shown in Figure 10-4:

ggplot(mtcars, aes(hp, mpg)) + 

  geom_point() + 

  labs(title = "Cars: Horsepower vs. Fuel Economy", 

       x = "HP", 

       y = "Economy (miles per gallon)")

Figure 10-4. Labeled axes and title

Adding (or Removing) a Grid

Problem
You want to change the background grid of your graphic.

Solution



With ggplot background grids come as a default, as you have seen in previous recipes. However, we can alter
the background grid using the theme function or by applying a prepackaged theme to our graph.

We can use theme to alter the background panel of our graphic. This example removes it, as seen in Figure 10-5:

ggplot(df) + 

  geom_point(aes(x, y)) + 

  theme(panel.background = element_rect(fill = "white", color = "grey50"))

Figure 10-5. White background

Discussion
ggplot fills in the background with a grey grid by default. You may find yourself wanting to remove that grid
completely or change it to something else. Let’s create a ggplot graphic and then incrementally change the
background style.

We can add or change aspects of our graphic by creating a ggplot object, then calling the object and using the +
to add to it. The background shading in a ggplot graphic is actually three different graph elements:

panel.grid.major

The major grid is white by default and heavy.

panel.grid.minor

The minor grid is white by default and light.

panel.background

The background is grey by default.

You can see these elements if you look carefully at the background of Figure 10-4.

If we set the background as element_blank, then the major and minor grids are still there, but they are white on
white so we can’t see them in Figure 10-6:



g1 <- ggplot(mtcars, aes(hp, mpg)) + 

  geom_point() + 

  labs(title = "Cars: Horsepower vs. Fuel Economy", 

       x = "HP", 

       y = "Economy (miles per gallon)") + 

  theme(panel.background = element_blank()) 

g1

Figure 10-6. Blank background

Notice in the previous code we put the ggplot graph into a variable called g1. Then we printed the graphic by
just calling g1. Having the graph inside of g1 means we can add further graphical components without rebuilding
the graph.

If we wanted to show the background grid with unusual patterns for illustration, it’s as easy as setting its
components to a color and setting a line type, as in this example (see Figure 10-7):

g2 <- g1 + theme(panel.grid.major = 

                   element_line(color = "black", linetype = 3)) + 

  # linetype = 3 is dash 

  theme(panel.grid.minor = 

          element_line(color = "darkgrey", linetype = 4)) 

  # linetype = 4 is dot dash 

g2



Figure 10-7. Major and minor gridlines

Figure 10-7 lacks visual appeal, but you can clearly see that the dotted black lines make up the major grid and
the dashed grey lines are the minor grid.

Or we could do something less garish and take the ggplot object g1 from before and add grey gridlines to the
white background, as shown in Figure 10-8:

g1 + 

  theme(panel.grid.major = element_line(color = "grey"))



Figure 10-8. Grey major gridlines

See Also
See “Applying a Theme to a ggplot Figure” to see how to apply an entire canned theme to your figure.

Applying a Theme to a ggplot Figure

Problem
You want your plot to use a preset collection of colors, styles, and formatting.

Solution
ggplot supports themes, which are collections of settings for your figures. To use one of the themes, just add the
desired theme function to your ggplot with a +:

ggplot(df, aes(x, y)) + 

  geom_point() + 

  theme_bw()

The ggplot2 package contains the following themes:

theme_bw() 

theme_dark() 

theme_classic() 

theme_gray() 

theme_linedraw() 

theme_light() 

theme_minimal() 

theme_test() 

theme_void()



Discussion
Let’s start with a simple plot and then show how it looks with a few of the built-in themes. Figure 10-9 shows a
basic ggplot figure with no theme applied:

p <- ggplot(mtcars, aes(x = disp, y = hp)) + 

  geom_point() + 

  labs(title = "mtcars: Displacement vs. Horsepower", 

       x = "Displacement (cubic inches)", 

       y = "Horsepower") 

p

Figure 10-9. Starting plot

Let’s create the same plot multiple times, but apply a different theme to each one. Figure 10-10 shows what it
looks like with the black and white theme applied:

p + theme_bw()

Figure 10-11 shows the classic theme:

p + theme_classic()



Figure 10-10. theme_bw

Figure 10-11. theme_classic

Figure 10-12 shows the minimal theme:

p + theme_minimal()



Figure 10-12. theme_minimal

And Figure 10-13 shows the void theme:

p + theme_void()

Figure 10-13. theme_void



In addition to the themes included in ggplot2, there are packages, like ggtheme, that include themes to help you
make your figures look more like the figures found in popular tools and publications such as Stata or The
Economist.

See Also
See “Adding (or Removing) a Grid” to see how to change a single theme element.

Creating a Scatter Plot of Multiple Groups

Problem
You have data in a data frame with multiple observations per record: x, y, and a factor f that indicates the group.
You want to create a scatter plot of x and y that distinguishes among the groups.

Solution
With ggplot we control the mapping of shapes to the factor f by passing shape = f to the aes function:

ggplot(df, aes(x, y, shape = f)) + 

  geom_point()

Discussion
Plotting multiple groups in one scatter plot creates an uninformative mess unless we distinguish one group from
another. We make this distinction in ggplot by setting the shape parameter of the aes function.

The built-in iris dataset contains paired measures of Petal.Length and Petal.Width. Each measurement also
has a Species property indicating the species of the flower that was measured. If we plot all the data at once, we
just get the scatter plot shown in Figure 10-14:

ggplot(data = iris, 

       aes(x = Petal.Length, 

           y = Petal.Width)) + 

  geom_point()



Figure 10-14. iris: length vs. width

The graphic would be far more informative if we distinguished the points by species. In addition to
distinguishing the species by shape, we could also differentiate by color. We can add shape = Species and
color = Species to our aes call to get each species with a different shape and color, as shown in Figure 10-15:

ggplot(data = iris, 

       aes( 

         x = Petal.Length, 

         y = Petal.Width, 

         shape = Species, 

         color = Species 

       )) + 

  geom_point()



Figure 10-15. iris: shape and color

ggplot conveniently sets up a legend for you as well, which is handy.

See Also
See “Adding (or Removing) a Legend” for more on how to add a legend.

Adding (or Removing) a Legend

Problem
You want your plot to include a legend, the little box that decodes the graphic for the viewer.

Solution
In most cases ggplot will add legends automatically, as you can see in the previous recipe. But if we do not have
explicit grouping in the aes function, then ggplot will not show a legend by default. If we want to force ggplot
to show a legend, we can set the shape or line type of our graph to a constant. ggplot will then show a legend
with one group. We use guides to guide ggplot in how to label the legend.

This can be illustrated with our iris scatter plot:

g <- ggplot(data = iris, 

       aes(x = Petal.Length, 

           y = Petal.Width, 

           shape="Observation")) + 

  geom_point()  + 

  guides(shape=guide_legend(title="My Legend Title")) 

g



Figure 10-16 illustrates the result of setting the shape to a string value and then relabeling the legend using
guides.

Figure 10-16. Legend added

More commonly, you may want to turn legends off, which you can do by calling theme with legend.position =
"none". Figure 10-17 shows the result when we add this call to the iris plot from the previous recipe:

g <- ggplot(data = iris, 

            aes( 

              x = Petal.Length, 

              y = Petal.Width, 

              shape = Species, 

              color = Species 

            )) + 

  geom_point() + 

  theme(legend.position = "none") 

g



Figure 10-17. Legend removed

Discussion
Adding legends to ggplot when there is no grouping is an exercise in “tricking” ggplot into showing the legend
by passing a string to a grouping parameter in aes. While this will not change the grouping (as there is only one
group), it will result in a legend being shown with a name.

Then we can use guides to alter the legend title. It’s worth noting that we are not changing anything about the
data, just exploiting settings in order to coerce ggplot into showing a legend when it typically would not.

One of the huge benefits of ggplot is its very good defaults. Getting positions and correspondence between
labels and their point types is done automatically, but this can be overridden if needed. To remove a legend
totally, we set theme parameters with theme(legend.position = "none"). We can also set the
legend.position to be "left", "right", "bottom", "top", or a two-element numeric vector. Use a two-
element numeric vector in order to pass ggplot specific coordinates of where you want the legend. If you’re
using the coordinate positions, the values passed are between 0 and 1 for the x and y positions, in that order.

Figure 10-18 shows an example of a legend positioned at the bottom, created with this adjustment to the
legend.position:

g + theme(legend.position = "bottom")



Figure 10-18. Legend at the bottom

Or we could use a two-element numeric vector to put the legend in a specific location, as in Figure 10-19. This
example puts the center of the legend at 80% to the right and 20% up from the bottom:

g + theme(legend.position = c(.8, .2))

In many aspects beyond legends, ggplot uses sane defaults but offers the flexibility to override them and tweak
the details. You can find more details on ggplot options related to legends in the help for theme by typing ?
theme or by looking in the ggplot online reference material.

http://ggplot2.tidyverse.org/reference/theme.html


Figure 10-19. Legend at a point

Plotting the Regression Line of a Scatter Plot

Problem
You are plotting pairs of data points, and you want to add a line that illustrates their linear regression.

Solution
With ggplot there is no need to calculate the linear model first using the R lm function. We can instead use the
geom_smooth function to calculate the linear regression inside of our ggplot call.

If our data is in a data frame df and the x and y data are in columns x and y, we plot the regression line like this:

ggplot(df, aes(x, y)) + 

  geom_point() + 

  geom_smooth(method = "lm", 

              formula = y ~ x, 

              se = FALSE)

The se = FALSE parameter tells ggplot not to plot the standard error bands around our regression line.

Discussion
Suppose we are modeling the strongx dataset found in the faraway package. We can create a linear model using
the built-in lm function in R. We can predict the variable crossx as a linear function of energy. First, let’s look
at a simple scatter plot of our data (Figure 10-20):

library(faraway) 

data(strongx) 



 

ggplot(strongx, aes(energy, crossx)) + 

  geom_point()

Figure 10-20. strongx scatter plot

ggplot can calculate a linear model on the fly and then plot the regression line along with our data (Figure 10-
21):

g <- ggplot(strongx, aes(energy, crossx)) + 

  geom_point() 

 

g + geom_smooth(method = "lm", 

                formula = y ~ x)



Figure 10-21. Simple linear model ggplot

We can turn the confidence bands off by adding the se = FALSE option, as shown in Figure 10-22:

g + geom_smooth(method = "lm", 

                formula = y ~ x, 

                se = FALSE)

Notice that in geom_smooth we use x and y rather than the variable names. ggplot has set x and y inside the plot
based on the aesthetic. Multiple smoothing methods are supported by geom_smooth. You can explore those and
other options in the help by typing ?geom_smooth.



Figure 10-22. Simple linear model ggplot without se

If we had a line we wanted to plot that was stored in another R object, we could use geom_abline to plot the line
on our graph. In the following example we pull the intercept term and the slope from the regression model m and
add those to our graph (see Figure 10-23):

m <- lm(crossx ~ energy, data = strongx) 

 

ggplot(strongx, aes(energy, crossx)) + 

  geom_point() + 

  geom_abline( 

    intercept = m$coefficients[1], 

    slope = m$coefficients[2] 

  )



Figure 10-23. Simple line from slope and intercept

This produces a plot very similar to Figure 10-22. The geom_abline method can be handy if you are plotting a
line from a source other than a simple linear model.

See Also
See Chapter 11 for more about linear regression and the lm function.

Plotting All Variables Against All Other Variables

Problem
Your dataset contains multiple numeric variables. You want to see scatter plots for all pairs of variables.

Solution
ggplot does not have any built-in method to create pairs plots; however, the package GGally provides this
functionality with the ggpairs function:

library(GGally) 

ggpairs(df)

Discussion
When you have a large number of variables, finding interrelationships between them is difficult. One useful
technique is looking at scatter plots of all pairs of variables. This would be quite tedious if coded pair-by-pair,
but the ggpairs function from the package GGally provides an easy way to produce all those scatter plots at
once.



The iris dataset contains four numeric variables and one categorical variable:

head(iris) 

#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

#> 1          5.1         3.5          1.4         0.2  setosa 

#> 2          4.9         3.0          1.4         0.2  setosa 

#> 3          4.7         3.2          1.3         0.2  setosa 

#> 4          4.6         3.1          1.5         0.2  setosa 

#> 5          5.0         3.6          1.4         0.2  setosa 

#> 6          5.4         3.9          1.7         0.4  setosa

What is the relationship, if any, between the columns? Plotting the columns with ggpairs produces multiple
scatter plots, as seen in Figure 10-24:

library(GGally) 

ggpairs(iris)

Figure 10-24. ggpairs plot of iris data

The ggpairs function is pretty, but not particularly fast. If you’re just doing interactive work and want a quick
peek at the data, the base R plot function provides faster output (see Figure 10-25):

plot(iris)



Figure 10-25. Base plot pairs plot

While the ggpairs function is not as fast to plot as the Base R plot function, it produces density graphs on the
diagonal and reports correlation in the upper triangle of the graph. When factors or character columns are
present, ggpairs produces histograms in the lower triangle of the graph and boxplots in the upper triangle. These
are nice additions to understanding relationships in your data.

Creating One Scatter Plot for Each Group

Problem
Your dataset contains (at least) two numeric variables and a factor or character field defining a group. You want
to create several scatter plots for the numeric variables, with one scatter plot for each level of the factor or
character field.

Solution
We produce this kind of plot, called a conditioning plot, in ggplot by adding facet_wrap to our plot. In this
example we use the data frame df, which contains three columns, x, y, and f, with f being a factor (or a character
string):

ggplot(df, aes(x, y)) + 

  geom_point() + 

  facet_wrap( ~ f)

Discussion
Conditioning plots (coplots) are another way to explore and illustrate the effect of a factor or to compare
different groups to each other.

The Cars93 dataset contains 27 variables describing 93 car models as of 1993. Two numeric variables are
MPG.city, the miles per gallon in the city, and Horsepower, the engine horsepower. One categorical variable is



Origin, which can be USA or non-USA according to where the model was built.

Exploring the relationship between MPG and horsepower, we might ask: is there a different relationship for USA
models and non-USA models?

Let’s examine this as a facet plot (Figure 10-26):

data(Cars93, package = "MASS") 

ggplot(Cars93, aes(MPG.city, Horsepower)) + 

  geom_point() + 

  facet_wrap( ~ Origin)

Figure 10-26. Cars93 data with facet

The resulting plot reveals a few insights. If we really crave that 300-horsepower monster, then we’ll have to buy
a car built in the USA; but if we want high MPG, we have more choices among non-USA models. These insights
could be teased out of a statistical analysis, but the visual presentation reveals them much more quickly.

Note that using facet results in subplots with the same x- and y-axis ranges. This helps ensure that visual
inspection of the data is not misleading because of differing axis ranges.

See Also
The Base R graphics function coplot can accomplish very similar plots using only base graphics.

Creating a Bar Chart

Problem
You want to create a bar chart.

Solution



A common situation is to have a column of data that represents a group and then another column that represents
a measure about that group. This format is “long” data because the data runs vertically instead of having a
column for each group.

Using the geom_bar function in ggplot, we can plot the heights as bars. If the data is already aggregated, we add
stat = "identity" so that ggplot knows it needs to do no aggregation on the groups of values before plotting:

ggplot(data = df, aes(x, y)) + 

  geom_bar(stat = "identity")

Discussion
Let’s use the cars made by Ford in the Cars93 dataset in an example:

ford_cars <- Cars93 %>% 

  filter(Manufacturer == "Ford") 

 

ggplot(ford_cars, aes(Model, Horsepower)) + 

  geom_bar(stat = "identity")

Figure 10-27 shows the resulting bar chart.

Figure 10-27. Ford cars bar chart

This example uses stat = "identity", which assumes that the heights of your bars are conveniently stored as a
value in one field with only one record per column. That is not always the case, however. Often you have a vector
of numeric data and a parallel factor or character field that groups the data, and you want to produce a bar chart
of the group means or the group totals.

Let’s work up an example using the built-in airquality dataset, which contains daily temperature data for a
single location for five months. The data frame has a numeric Temp column and Month and Day columns. If we
want to plot the mean temperature by month using ggplot, we don’t need to precompute the mean; instead, we
can have ggplot do that in the plot command logic. To tell ggplot to calculate the mean, we pass stat =



"summary", fun.y = "mean" to the geom_bar command. We can also turn the month numbers into dates using
the built-in constant month.abb, which contains the abbreviations for the months:

ggplot(airquality, aes(month.abb[Month], Temp)) + 

  geom_bar(stat = "summary", fun.y = "mean") + 

  labs(title = "Mean Temp by Month", 

       x = "", 

       y = "Temp (deg. F)")

Figure 10-28 shows the resulting plot. But you might notice the sort order on the months is alphabetical, which is
not how we typically like to see months sorted.

Figure 10-28. Bar chart: temp by month

We can fix the sorting issue using a few functions from dplyr combined with fct_inorder from the forcats
tidyverse package. To get the months in the correct order, we can sort the data frame by Month, which is the
month number. Then we can apply fct_inorder, which will arrange our factors in the order they appear in the
data. You can see in Figure 10-29 that the bars are now sorted properly:

library(forcats) 

 

aq_data <- airquality %>% 

  arrange(Month) %>% 

  mutate(month_abb = fct_inorder(month.abb[Month])) 

 

ggplot(aq_data, aes(month_abb, Temp)) + 

  geom_bar(stat = "summary", fun.y = "mean") + 

  labs(title = "Mean Temp by Month", 

       x = "", 

       y = "Temp (deg. F)")



Figure 10-29. Bar chart properly sorted

See Also
See “Adding Confidence Intervals to a Bar Chart” for adding confidence intervals and “Coloring a Bar Chart” for
adding color.

Type ?geom_bar for help with bar charts in ggplot.

You can also use barplot for Base R bar charts or the barchart function in the lattice package.

Adding Confidence Intervals to a Bar Chart

Problem
You want to augment a bar chart with confidence intervals.

Solution
Suppose we have a data frame df with columns group (group names), stat (a column of statistics), and lower
and upper (which represent the corresponding limits for the confidence intervals). We can display a bar chart of
stat for each group and its confidence interval using the geom_bar function combined with geom_errorbar:

ggplot(df, aes(group, stat)) + 

  geom_bar(stat = "identity") + 

  geom_errorbar(aes(ymin = lower, ymax = upper), width = .2)

Figure 10-30 shows the resulting bar chart with confidence intervals.



Figure 10-30. Bar chart with confidence intervals

Discussion
Most bar charts display point estimates, which are shown by the heights of the bars, but rarely do they include
confidence intervals. Our inner statisticians dislike this intensely. The point estimate is only half of the story; the
confidence interval gives the full story.

Fortunately, we can plot the error bars using ggplot. The hard part is calculating the intervals. In the previous
examples our data had a simple –15% and +20% interval. However, in “Creating a Bar Chart” we calculated
group means before plotting them. If we let ggplot do the calculations for us, we can use the built-in mean_se
along with the stat_summary function to get the standard errors of the mean measures.

Let’s use the airquality data we used previously. First we’ll do the sorted factor procedure (from the prior
recipe) to get the month names in the desired order:

aq_data <- airquality %>% 

  arrange(Month) %>% 

  mutate(month_abb = fct_inorder(month.abb[Month]))

Now we can plot the bars along with the associated standard errors, as in Figure 10-31:

ggplot(aq_data, aes(month_abb, Temp)) + 

  geom_bar(stat = "summary", 

           fun.y = "mean", 

           fill = "cornflowerblue") + 

  stat_summary(fun.data = mean_se, geom = "errorbar") + 

  labs(title = "Mean Temp by Month", 

       x = "", 

       y = "Temp (deg. F)")



Figure 10-31. Mean temp by month with error bars

Sometimes you’ll want to sort the columns in your bar chart in descending order based on their height, as in
Figure 10-32. This can be a little bit confusing when you’re using summary stats in ggplot, but the secret is to
use mean in the reorder statement to sort the factor by the mean of the temp. Note that the reference to mean in
reorder is not quoted, while the reference to mean in geom_bar is quoted:

ggplot(aq_data, aes(reorder(month_abb, -Temp, mean), Temp)) + 

  geom_bar(stat = "summary", 

           fun.y = "mean", 

           fill = "tomato") + 

  stat_summary(fun.data = mean_se, geom = "errorbar") + 

  labs(title = "Mean Temp by Month", 

       x = "", 

       y = "Temp (deg. F)")



Figure 10-32. Mean temp by month in descending order

You may look at this example and the result in Figure 10-32 and wonder, “Why didn’t they just use
reorder(month_abb, Month) in the first example instead of that sorting business with forcats::fct_inorder
to get the months in the right order?” Well, we could have. But sorting using fct_inorder is a design pattern
that provides flexibility for more complicated things. Plus it’s quite easy to read in a script. Using reorder
inside aes is a bit denser and harder to read later, but either approach is reasonable.

See Also
See “Forming a Confidence Interval for a Mean” for more about t.test.

Coloring a Bar Chart

Problem
You want to color or shade the bars of a bar chart.

Solution
With gplot we add the fill parameter to our aes call and let ggplot pick the colors for us:

ggplot(df, aes(x, y, fill = group))

Discussion
We can use the fill parameter in aes to tell ggplot what field to base the colors on. If we pass a numeric field
to ggplot, we will get a continuous gradient of colors, and if we pass a factor or character field to fill, we will
get contrasting colors for each group. Here we pass the character name of each month to the fill parameter:



aq_data <- airquality %>% 

  arrange(Month) %>% 

  mutate(month_abb = fct_inorder(month.abb[Month])) 

 

ggplot(data = aq_data, aes(month_abb, Temp, fill = month_abb)) + 

  geom_bar(stat = "summary", fun.y = "mean") + 

  labs(title = "Mean Temp by Month", 

       x = "", 

       y = "Temp (deg. F)") + 

  scale_fill_brewer(palette = "Paired")

We define the colors in the resulting bar chart (Figure 10-33) by calling
scale_fill_brewer(palette="Paired"). The "Paired" color palette comes, along with many other color
palettes, in the package RColorBrewer.

Figure 10-33. Colored monthly temp bar chart

If we want to change the color of each bar based on the temperature, we can’t just set fill = Temp—as might
seem intuitive—because ggplot won’t understand we want the mean temperature after the grouping by month.
The way we get around this is by accessing a special field inside of our graph called ..y.., which is the
calculated value on the y-axis. But we don’t want the legend labeled ..y.., so we add fill = "Temp" to our
labs call in order to change the name of the legend. The result is shown in Figure 10-34:

ggplot(airquality, aes(month.abb[Month], Temp, fill = ..y..)) + 

  geom_bar(stat = "summary", fun.y = "mean") + 

  labs(title = "Mean Temp by Month", 

       x = "", 

       y = "Temp (deg. F)", 

       fill = "Temp")



Figure 10-34. Bar chart shaded by value

If we want to reverse the color scale, we can just add a negative sign, -, in front of the field we are filling by:
fill=-..y.., for example.

See Also
See “Creating a Bar Chart” for creating a bar chart.

Plotting a Line from x and y Points

Problem
You have paired observations in a data frame: (x1, y1), (x2, y2), …, (xn, yn). You want to plot a series of line
segments that connect the data points.

Solution
With ggplot we can use geom_point to plot the points:

ggplot(df, aes(x, y)) + 

  geom_point()

Since ggplot graphics are built up element by element, we can have both a point and a line in the same graphic
very easily by having two geoms:

ggplot(df, aes(x , y)) + 

  geom_point() + 

  geom_line()

Discussion



To illustrate, let’s look at some example US economic data that comes with ggplot2. This example data frame
has a column called date, which we’ll plot on the x-axis, and a field called unemploy, which is the number of
unemployed people:

ggplot(economics, aes(date , unemploy)) + 

  geom_point() + 

  geom_line()

Figure 10-35 shows the resulting chart, which contains both lines and points because we used both geoms.

Figure 10-35. Line chart

See Also
See “Creating a Scatter Plot”.

Changing the Type, Width, or Color of a Line

Problem
You are plotting a line, and you want to change its type, width, or color.

Solution
ggplot uses the linetype parameter for controlling the appearance of lines. The options are:

linetype="solid" or linetype=1 (default)

linetype="dashed" or linetype=2

linetype="dotted" or linetype=3



linetype="dotdash" or linetype=4

linetype="longdash" or linetype=5

linetype="twodash" or linetype=6

linetype="blank" or linetype=0 (inhibits drawing)

We can change the line characteristics by passing linetype, col, and/or size as parameters to geom_line. For
example, if we wanted to change the line type to dashed, red, and heavy, we could pass the following params to
geom_line:

ggplot(df, aes(x, y)) + 

  geom_line(linetype = 2, 

            size = 2, 

            col = "red")

Discussion
The example syntax shows how to draw one line and specify its style, width, or color. A common scenario
involves drawing multiple lines, each with its own style, width, or color.

In ggplot this can be a conundrum for many users. The challenge is that ggplot works best with “long” data
instead of “wide” data, as was mentioned in the introduction to this chapter.

Let’s set up some example data:

x <- 1:10 

y1 <- x**1.5 

y2 <- x**2 

y3 <- x**2.5 

df <- data.frame(x, y1, y2, y3)

Our example data frame has four columns of wide data:

head(df, 3) 

#>   x   y1 y2    y3 

#> 1 1 1.00  1  1.00 

#> 2 2 2.83  4  5.66 

#> 3 3 5.20  9 15.59

We can make our wide data long by using the gather function from the core tidyverse package tidyr. In this
example, we use gather to create a new column named bucket and put our column names in there while keeping
our x and y variables:

df_long <- gather(df, bucket, y, -x) 

head(df_long, 3) 

#>   x bucket    y 

#> 1 1     y1 1.00 

#> 2 2     y1 2.83 

#> 3 3     y1 5.20 

tail(df_long, 3) 

#>     x bucket   y 

#> 28  8     y3 181 

#> 29  9     y3 243 

#> 30 10     y3 316

Now we can pass bucket to the col parameter and get multiple lines, each a different color:

ggplot(df_long, aes(x, y, col = bucket)) + 

  geom_line()



Figure 10-36 shows the resulting graph with each variable represented in a different color.

Figure 10-36. Multiple line chart

It’s straightforward to vary the line weight by a variable—simply pass a numerical variable to size:

ggplot(df, aes(x, y1, size = y2)) + 

  geom_line() + 

  scale_size(name = "Thickness based on y2")

The result of varying the thickness with x is shown in Figure 10-37.



Figure 10-37. Thickness as a function of x

See Also
See “Plotting a Line from x and y Points” for plotting a basic line.

Plotting Multiple Datasets

Problem
You want to show multiple datasets in one plot.

Solution
We can add multiple data frames to a ggplot figure by creating an empty plot and then adding two different
geoms to the plot:

ggplot() + 

  geom_line(data = df1, aes(x1, y1)) + 

  geom_line(data = df2, aes(x2, y2))

This code uses geom_line, but you could use any geom.

Discussion
We could combine the data into one data frame before plotting using one of the join functions from dplyr.
However, next we will create two separate data frames and then add them each to a ggplot graph.

First let’s set up our example data frames, df1 and df2:



# example data 

n <- 20 

 

x1 <- 1:n 

y1 <- rnorm(n, 0, .5) 

df1 <- data.frame(x1, y1) 

 

x2 <- (.5 * n):((1.5 * n) - 1) 

y2 <- rnorm(n, 1, .5) 

df2 <- data.frame(x2, y2)

Typically we would pass the data frame directly into the ggplot function call. Since we want two geoms with
two different data sources, we will initiate a plot with ggplot and then add in two calls to geom_line, each with
its own data source:

ggplot() + 

  geom_line(data = df1, aes(x1, y1), color = "darkblue") + 

  geom_line(data = df2, aes(x2, y2), linetype = "dashed")

ggplot allows us to make multiple calls to different geom_ functions, each with its own data source, if desired.
Then ggplot will look at all the data we are plotting and adjust the ranges to accommodate all the data.

The graph with expanded limits is shown in Figure 10-38.

Figure 10-38. Two lines, one plot

Adding Vertical or Horizontal Lines

Problem
You want to add a vertical or horizontal line to your plot, such as an axis through the origin or a pointer to a
threshold.



Solution
The ggplot functions geom_vline and geom_hline produce vertical and horizontal lines, respectively. The
functions can also take color, linetype, and size parameters to set the line style:

# using the data.frame df1 from the prior recipe 

ggplot(df1) + 

  aes(x = x1, y = y1) + 

  geom_point() + 

  geom_vline( 

    xintercept = 10, 

    color = "red", 

    linetype = "dashed", 

    size = 1.5 

  ) + 

  geom_hline(yintercept = 0, color = "blue")

Figure 10-39 shows the resulting plot with added horizontal and vertical lines.

Figure 10-39. Vertical and horizontal lines

Discussion
A typical use of lines would be drawing regularly spaced lines. Suppose we have a sample of points, samp. First,
we plot them with a solid line through the mean. Then we calculate and draw dotted lines at ±1 and ±2 standard
deviations away from the mean. We can add the lines into our plot with geom_hline:

samp <- rnorm(1000) 

samp_df <- data.frame(samp, x = 1:length(samp)) 

 

mean_line <- mean(samp_df$samp) 

sd_lines <- mean_line + c(-2, -1, +1, +2) * sd(samp_df$samp) 

 

ggplot(samp_df) + 

  aes(x = x, y = samp) + 

  geom_point() + 



  geom_hline(yintercept = mean_line, color = "darkblue") + 

  geom_hline(yintercept = sd_lines, linetype = "dotted")

Figure 10-40 shows the sampled data along with the mean and standard deviation lines.

Figure 10-40. Mean and SD bands in a plot

See Also
See “Changing the Type, Width, or Color of a Line” for more about changing line types.

Creating a Boxplot

Problem
You want to create a boxplot of your data.

Solution
Use geom_boxplot from ggplot to add a boxplot geom to a ggplot graphic. Using the samp_df data frame from
the prior recipe, we can create a boxplot of the values in the x column. The resulting graph is shown in
Figure 10-41:

ggplot(samp_df) + 

  aes(y = samp) + 

  geom_boxplot()



Figure 10-41. Single boxplot

Discussion
A boxplot provides a quick and easy visual summary of a dataset:

The thick line in the middle is the median.

The box surrounding the median identifies the first and third quartiles; the bottom of the box is Q1, and the
top is Q3.

The “whiskers” above and below the box show the range of the data, excluding outliers.

The circles identify outliers. By default, an outlier is defined as any value that is farther than 1.5 × IQR away
from the box. (IQR is the interquartile range, or Q3–Q1.) In this example, there are a few outliers on the high
side.

We can rotate the boxplot by flipping the coordinates. There are some situations where this makes a more
appealing graphic, as shown in Figure 10-42:

ggplot(samp_df) + 

  aes(y = samp) + 

  geom_boxplot() + 

  coord_flip()



Figure 10-42. Single boxplot, flipped

See Also
One boxplot alone is pretty boring. See “Creating One Boxplot for Each Factor Level” for creating multiple
boxplots.

Creating One Boxplot for Each Factor Level

Problem
Your dataset contains a numeric variable and a factor (or other categorical text). You want to create several
boxplots of the numeric variable broken out by levels.

Solution
With ggplot we pass the name of the categorical variable to the x parameter in the aes call. The resulting
boxplot will then be grouped by the values in the categorical variable:

ggplot(df) + 

  aes(x = factor, y = values) + 

  geom_boxplot()

Discussion
This recipe is another great way to explore and illustrate the relationship between two variables. In this case, we
want to know whether the numeric variable changes according to the level of a category.

The UScereal dataset from the MASS package contains many variables regarding breakfast cereals. One variable
is the amount of sugar per portion and another is the shelf position (counting from the floor). Cereal
manufacturers can negotiate for shelf position, placing their products for the best sales potential. We wonder:



where do they put the high-sugar cereals? We can produce Figure 10-43 and explore that question by creating one
boxplot per shelf:

data(UScereal, package = "MASS") 

 

ggplot(UScereal) + 

  aes(x = as.factor(shelf), y = sugars) + 

  geom_boxplot() + 

  labs( 

    title = "Sugar Content by Shelf", 

    x = "Shelf", 

    y = "Sugar (grams per portion)" 

  )

Figure 10-43. Boxplots by shelf number

The boxplots suggest that shelf #2 has the most high-sugar cereals. Could it be that this shelf is at eye level for
young children who can influence their parents’ choice of cereals?

TIP
Note that in the aes call we had to tell ggplot to treat the shelf number as a factor. Otherwise, ggplot would not react to the shelf as a
grouping and would print only a single boxplot.

See Also
See “Creating a Boxplot” for creating a basic boxplot.

Creating a Histogram

Problem



You want to create a histogram of your data.

Solution
Use geom_histogram, and set x to a vector of numeric values.

Discussion
Figure 10-44 is a histogram of the MPG.city column taken from the Cars93 dataset:

data(Cars93, package = "MASS") 

 

ggplot(Cars93) + 

  geom_histogram(aes(x = MPG.city)) 

#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

The geom_histogram function must decide how many cells (bins) to create for binning the data. In this example,
the default algorithm chose 30 bins. If we wanted fewer bins, we would include the bins parameter to tell
geom_histogram how many bins we want:

ggplot(Cars93) + 

  geom_histogram(aes(x = MPG.city), bins = 13)

Figure 10-45 shows the histogram with 13 bins.

Figure 10-44. Histogram of counts by MPG



Figure 10-45. Histogram of counts by MPG with fewer bins

See Also
The Base R function hist provides much of the same functionality, as does the histogram function of the
lattice package.

Adding a Density Estimate to a Histogram

Problem
You have a histogram of your data sample, and you want to add a curve to illustrate the apparent density.

Solution
Use the geom_density function to approximate the sample density, as shown in Figure 10-46:

ggplot(Cars93) + 

  aes(x = MPG.city) + 

  geom_histogram(aes(y = ..density..), bins = 21) + 

  geom_density()



Figure 10-46. Histogram with density plot

Discussion
A histogram suggests the density function of your data, but it is rough. A smoother estimate could help you
better visualize the underlying distribution. A kernel density estimation (KDE) is a smoother representation of
univariate data.

In ggplot we tell the geom_histogram function to use the geom_density function by passing it aes(y =
..density..).

The following example takes a sample from a gamma distribution and then plots the histogram and the estimated
density, as shown in Figure 10-47:

samp <- rgamma(500, 2, 2) 

 

ggplot() + 

  aes(x = samp) + 

  geom_histogram(aes(y = ..density..), bins = 10) + 

  geom_density()



Figure 10-47. Histogram and density: gamma distribution

See Also
The geom_density function approximates the shape of the density nonparametrically. If you know the actual
underlying distribution, use “Plotting a Density Function” to plot the density function instead.

Creating a Normal Quantile–Quantile Plot

Problem
You want to create a quantile–quantile (Q–Q) plot of your data, typically because you want to know how the data
differs from a normal distribution.

Solution
With ggplot we can use the stat_qq and stat_qq_line functions to create a Q–Q plot that shows the observed
points as well as the Q–Q line. Figure 10-48 shows the resulting plot:

df <- data.frame(x = rnorm(100)) 

 

ggplot(df, aes(sample = x)) + 

  stat_qq() + 

  stat_qq_line()



Figure 10-48. Q–Q plot

Discussion
Sometimes it’s important to know if your data is normally distributed. A quantile–quantile (Q–Q) plot is a good
first check.

The Cars93 dataset contains a Price column. Is it normally distributed? This code snippet creates a Q–Q plot of
Price, as shown in Figure 10-49:

ggplot(Cars93, aes(sample = Price)) + 

  stat_qq() + 

  stat_qq_line()



Figure 10-49. Q–Q plot of car prices

If the data had a perfect normal distribution, then the points would fall exactly on the diagonal line. Many points
are close, especially in the middle section, but the points in the tails are pretty far off. Too many points are above
the line, indicating a general skew to the left.

The leftward skew might be cured by a logarithmic transformation. We can plot log(Price), which yields
Figure 10-50:

ggplot(Cars93, aes(sample = log(Price))) + 

  stat_qq() + 

  stat_qq_line()



Figure 10-50. Q–Q plot of log car prices

Notice that the points in the new plot are much better behaved, staying close to the line except in the extreme left
tail. It appears that log(Price) is approximately normal.

See Also
See “Creating Other Quantile–Quantile Plots” for creating Q–Q plots for other distributions. See “Diagnosing a
Linear Regression” for an application of Normal Q–Q plots to diagnose linear regression.

Creating Other Quantile–Quantile Plots

Problem
You want to view a quantile-quantile plot for your data, but the data is not normally distributed.

Solution
For this recipe, you must have some idea of the underlying distribution, of course. The solution is built from the
following steps:

1. Use the ppoints function to generate a sequence of points between 0 and 1.

2. Transform those points into quantiles, using the quantile function for the assumed distribution.

3. Sort your sample data.

4. Plot the sorted data against the computed quantiles.

5. Use abline to plot the diagonal line.

This can all be done in two lines of R code. Here is an example that assumes your data, y, has a Student’s t
distribution with 5 degrees of freedom. Recall that the quantile function for Student’s t is qt and that its second



argument is the degrees of freedom.

First let’s make some example data:

df_t <- data.frame(y = rt(100, 5))

In order to create the Q–Q plot we need to estimate the parameters of the distribution we want to plot. Since this
is a Student’s t distribution, we only need to estimate one parameter, the degrees of freedom. Of course we know
the actual degrees of freedom is 5, but in most situations we’ll need to calculate that value. So, we’ll use the
MASS::fitdistr function to estimate the degrees of freedom:

est_df <- as.list(MASS::fitdistr(df_t$y, "t")$estimate)[["df"]] 

est_df 

#> [1] 19.5

As expected, that’s pretty close to what was used to generate the simulated data, so let’s pass the estimated
degrees of freedom to the Q–Q functions and create Figure 10-51:

ggplot(df_t) + 

  aes(sample = y) + 

  geom_qq(distribution = qt, dparams = est_df) + 

  stat_qq_line(distribution = qt, dparams = est_df)

Figure 10-51. Student’s t distribution Q–Q plot

Discussion
The Solution looks complicated, but the gist of it is picking a distribution, fitting the parameters, and then
passing those parameters to the Q–Q functions in ggplot.

We can illustrate this recipe by taking a random sample from an exponential distribution with a mean of 10 (or,
equivalently, a rate of 1/10):



rate <- 1 / 10 

n <- 1000 

df_exp <- data.frame(y = rexp(n, rate = rate))

est_exp <- as.list(MASS::fitdistr(df_exp$y, "exponential")$estimate)[["rate"]] 

est_exp 

#> [1] 0.101

Notice that for an exponential distribution, the parameter we estimate is called rate as opposed to df, which was
the parameter in the t distribution.

The quantile function for the exponential distribution is qexp, which takes the rate argument. Figure 10-52
shows the resulting Q–Q plot using a theoretical exponential distribution:

ggplot(df_exp) + 

  aes(sample = y) + 

  geom_qq(distribution = qexp, dparams = est_exp) + 

  stat_qq_line(distribution = qexp, dparams = est_exp)

Figure 10-52. Exponential distribution Q–Q plot

Plotting a Variable in Multiple Colors

Problem
You want to plot your data in multiple colors, typically to make the plot more informative, readable, or
interesting.

Solution
We can pass a color to a geom_ function in order to produce colored output (see Figure 10-53):



df <- data.frame(x = rnorm(200), y = rnorm(200)) 

 

ggplot(df) + 

  aes(x = x, y = y) + 

  geom_point(color = "blue")

If you are reading this in print you may see only black. Try it out on your own in order to see the graph in full
color.

Figure 10-53. Point data in color

The value of color can be:

One color, in which case all data points are that color.

A vector of colors, the same length as x, in which case each value of x is colored with its corresponding color.

A short vector, in which case the vector of colors is recycled.

Discussion
The default color in ggplot is black. While it’s not very exciting, black is high contrast and easy for almost
anyone to see.

However, it is much more useful (and interesting) to vary the color in a way that illuminates the data. Let’s
illustrate this by plotting a graphic two ways, once in black and white and once with simple shading.

This produces the basic black-and-white graphic in Figure 10-54:

df <- data.frame( 

  x = 1:100, 

  y = rnorm(100) 

) 

 

ggplot(df) + 

  aes(x, y) + 

  geom_point()



Figure 10-54. Simple point plot

Now we can make it more interesting by creating a vector of "gray" and "black" values, according to the sign
of x, and then plotting x using those colors, as shown in Figure 10-55:

shade <- if_else(df$y >= 0, "black", "gray") 

 

ggplot(df) + 

  aes(x, y) + 

  geom_point(color = shade)



Figure 10-55. Color-shaded point plot

The negative values are now plotted in gray because the corresponding element of colors is "gray".

See Also
See “Understanding the Recycling Rule” regarding the Recycling Rule. Execute colors to see a list of available
colors, and use geom_segment in ggplot to plot line segments in multiple colors.

Graphing a Function

Problem
You want to graph the value of a function.

Solution
The ggplot function stat_function will graph a function across a range. In Figure 10-56, we plot a sine wave
across the range –3 to 3:

ggplot(data.frame(x = c(-3, 3))) + 

  aes(x) + 

  stat_function(fun = sin)



Figure 10-56. Sine wave plot

Discussion
It’s pretty common to want to plot a statistical function, such as a normal distribution, across a given range.
stat_function in ggplot allows us to do this. We need only supply a data frame with x value limits, and
stat_function will calculate the y values and plot the results as shown in Figure 10-57:

ggplot(data.frame(x = c(-3.5, 3.5))) + 

  aes(x) + 

  stat_function(fun = dnorm) + 

  ggtitle("Standard Normal Density")



Figure 10-57. Standard Normal density plot

Notice here that we used ggtitle to set the title. If setting multiple text elements in a ggplot we use labs, but
when we’re just adding a title, ggtitle is more concise than labs(title='Standard Normal Density'),
although they accomplish the same thing. See ?labs for more discussion of labels with ggplot.

stat_function can graph any function that takes one argument and returns one value. Let’s create a function
and then plot it. Our function is a dampened sine wave—that is, a sine wave that loses amplitude as it moves
away from 0:

f <- function(x) exp(-abs(x)) * sin(2 * pi * x)

ggplot(data.frame(x = c(-3.5, 3.5))) + 

  aes(x) + 

  stat_function(fun = f) + 

  ggtitle("Dampened Sine Wave")

The resulting plot is shown in Figure 10-58.



Figure 10-58. Dampened sine wave plot

See Also
See “Defining a Function” for how to define a function.

Displaying Several Figures on One Page

Problem
You want to display several plots side by side on one page.

Solution
There are a number of ways to put ggplot graphics into a grid, but one of the easiest to use and understand is
patchwork by Thomas Lin Pedersen. patchwork is not currently available on CRAN, but you can install it from
GitHub using the devtools package:

devtools::install_github("thomasp85/patchwork")

After installing the package, you can use it to plot multiple ggplot objects using a + between the objects, then a
call to plot_layout to arrange the images into a grid, as shown in Figure 10-59. The example code here has four
ggplot objects:

library(patchwork) 

p1 + p2 + p3 + p4



Figure 10-59. A patchwork plot

patchwork supports grouping with parentheses and using / to put groupings under other elements, as illustrated
in Figure 10-60:

p3 / (p1 + p2 + p4)



Figure 10-60. A patchwork 1 / 2 plot

Discussion
Let’s use a multifigure plot to display four different beta distributions. Using ggplot and the patchwork
package, we can create a 2×2 layout effect by creating four graphics objects and then printing them using the +
notation from patchwork:

library(patchwork) 

 

df <- data.frame(x = c(0, 1)) 

 

g1 <- ggplot(df) + 

  aes(x) + 

  stat_function( 

    fun = function(x) 

      dbeta(x, 2, 4) 

  ) + 

  ggtitle("First") 

 

g2 <- ggplot(df) + 

  aes(x) + 

  stat_function( 

    fun = function(x) 

      dbeta(x, 4, 1) 

  ) + 

  ggtitle("Second") 

 

g3 <- ggplot(df) + 

  aes(x) + 

  stat_function( 

    fun = function(x) 

      dbeta(x, 1, 1) 

  ) + 

  ggtitle("Third") 

 

g4 <- ggplot(df) + 

  aes(x) + 



( )

  stat_function( 

    fun = function(x) 

      dbeta(x, .5, .5) 

  ) + 

  ggtitle("Fourth") 

 

g1 + g2 + g3 + g4 + plot_layout(ncol = 2, byrow = TRUE)

The output is shown in Figure 10-61.

Figure 10-61. Four plots using patchwork

To lay the images out in column order, we could pass byrow=FALSE to plot_layout:

g1 + g2 + g3 + g4 + plot_layout(ncol = 2, byrow = FALSE)

See Also
“Plotting a Density Function” discusses plotting density functions as we do here.

“Creating One Scatter Plot for Each Group” shows how you can create a matrix of plots using a facet function.

The grid package and the lattice package contain additional tools for multifigure layouts with base graphics.

Writing Your Plot to a File

Problem
You want to save your graphics in a file, such as a PNG, JPEG, or PostScript file.

Solution



With ggplot figures you can use ggsave to save a displayed image to a file. ggsave will make some default
assumptions about size and file type for you, allowing you to specify only a filename:

ggsave("filename.jpg")

The file type is derived from the extension you use in the filename you pass to ggsave. You can control details of
size, file type, and scale by passing parameters to ggsave. See ?ggsave for specific details.

Discussion
In RStudio, a shortcut is to click on Export in the Plots window and then click on “Save as Image,” “Save as
PDF,” or “Copy to Clipboard.” The save options will prompt you for a file type and a filename before writing the
file. The “Copy to Clipboard” option can be handy if you are manually copying and pasting your graphics into a
presentation or word processor.

Remember that the file will be written to your current working directory (unless you use an absolute filepath), so
be certain you know which directory is your working directory before calling savePlot.

In a noninteractive script using ggplot, you can pass plot objects directly to ggsave so they need not be
displayed before saving. In the prior recipe we created a plot object called g1. We can save it to a file like this:

ggsave("g1.png", plot = g1, units = "in", width = 5, height = 4)

Note that the units for height and width in ggsave are specified with the units parameter. In this case we used
in for inches, but ggsave also supports mm and cm for the more metrically inclined.

See Also
See “Getting and Setting the Working Directory” for more about the current working directory.



Chapter 11. Linear Regression and ANOVA

In statistics, modeling is where we get down to business. Models quantify the relationships between our
variables. Models let us make predictions.

A simple linear regression is the most basic model. It’s just two variables and is modeled as a linear relationship
with an error term:

yi = β0 + β1xi + εi

We are given the data for x and y. Our mission is to fit the model, which will give us the best estimates for β0 and
β1 (see “Performing Simple Linear Regression”).

That generalizes naturally to multiple linear regression, where we have multiple variables on the righthand side
of the relationship (see “Performing Multiple Linear Regression”):

yi = β0 + β1ui + β2vi + β3wi + εi

Statisticians call u, v, and w the predictors and y the response. Obviously, the model is useful only if there is a
fairly linear relationship between the predictors and the response, but that requirement is much less restrictive
than you might think. “Regressing on Transformed Data” discusses transforming your variables into a (more)
linear relationship so that you can use the well-developed machinery of linear regression.

The beauty of R is that anyone can build these linear models. The models are built by a function, lm, which
returns a model object. From the model object, we get the coefficients (βi) and regression statistics. It’s easy.
Really!

The horror of R is likewise that anyone can build these models. Nothing requires you to check that the model is
reasonable, much less statistically significant. Before you blindly believe a model, check it! Most of the
information you need is in the regression summary (see “Understanding the Regression Summary”):

Is the model statistically significant?
Check the F statistic at the bottom of the summary.

Are the coefficients significant?
Check the coefficient’s t statistics and p-values in the summary, or check their confidence intervals (see
“Forming Confidence Intervals for Regression Coefficients”).

Is the model useful?

Check the R2 near the bottom of the summary.

Does the model fit the data well?
Plot the residuals and check the regression diagnostics (see “Plotting Regression Residuals” and “Diagnosing
a Linear Regression”).

Does the data satisfy the assumptions behind linear regression?
Check whether the diagnostics confirm that a linear model is reasonable for your data (see “Diagnosing a
Linear Regression”).

ANOVA
Analysis of variance (ANOVA) is a powerful statistical technique. First-year graduate students in statistics are
taught ANOVA almost immediately because of its importance, both theoretical and practical. We are often
amazed, however, at the extent to which people outside the field are unaware of its purpose and value.



Regression creates a model, and ANOVA is one method of evaluating such models. The mathematics of ANOVA
are intertwined with the mathematics of regression, so statisticians usually present them together; we follow that
tradition here.

ANOVA is actually a family of techniques that are connected by a common mathematical analysis. This chapter
mentions several applications:

One-way ANOVA
This is the simplest application of ANOVA. Suppose you have data samples from several populations and are
wondering whether the populations have different means. One-way ANOVA answers that question. If the
populations have normal distributions, use the oneway.test function (see “Performing One-Way ANOVA”);
otherwise, use the nonparametric version, the kruskal.test function (see “Performing Robust ANOVA
(Kruskal–Wallis Test)”).

Model comparison
When you add or delete a predictor variable in a linear regression, you want to know whether that change
improved the model. The anova function compares two regression models and reports whether they are
significantly different (see “Comparing Models by Using ANOVA”).

ANOVA table

The anova function can also construct the ANOVA table of a linear regression model, which includes the F
statistic needed to gauge the model’s statistical significance (see “Getting Regression Statistics”). This
important table is discussed in nearly every textbook on regression.

Example Data
In many of the examples in this chapter, we start by creating example data using R’s pseudorandom number
generation capabilities. So at the beginning of each recipe, you may see something like the following:

set.seed(42) 

x <- rnorm(100) 

e <- rnorm(100, mean=0, sd=5) 

y <- 5 + 15 * x + e

We use set.seed to set the random number generation seed so that if you run the example code on your machine
you will get the same answer. In the preceding example, x is a vector of 100 draws from a standard normal
(mean=0, sd=1) distribution. Then we create a little random noise called e from a normal distribution with mean=
0 and sd= 5. y is then calculated as 5 + 15 * x + e. The idea behind creating example “toy” data rather than
using “real-world” data is that with simulated data you can change the coefficients and parameters and see how
the change impacts the resulting model. For example, you could increase the standard deviation of e in the
example data and see what impact that has on the R^2 of your model.

See Also
There are many good texts on linear regression. One of our favorites is Applied Linear Regression Models, 4th
ed., by Michael Kutner, Christopher Nachtsheim, and John Neter (McGraw-Hill/Irwin). We generally follow
their terminology and conventions in this chapter.

We also like Linear Models with R by Julian Faraway (Chapman & Hall/CRC), because it illustrates regression
using R and is quite readable. Earlier versions of Faraday’s work are available free online, too.

Performing Simple Linear Regression

http://bit.ly/2WJvrjo


Problem
You have two vectors, x and y, that hold paired observations: (x1, y1), (x2, y2), …, (xn, yn). You believe there is a
linear relationship between x and y, and you want to create a regression model of the relationship.

Solution
The lm function performs a linear regression and reports the coefficients.

If your data is in vectors:

lm(y ~ x)

Or if your data is in columns in a data frame:

lm(y ~ x, data = df)

Discussion
Simple linear regression involves two variables: a predictor (or independent) variable, often called x, and a
response (or dependent) variable, often called y. The regression uses the ordinary least-squares (OLS) algorithm
to fit the linear model:

yi = β0 + β1xi + εi

where β0 and β1 are the regression coefficients and εi are the error terms.

The lm function can perform linear regression. The main argument is a model formula, such as y ~ x. The
formula has the response variable on the left of the tilde character (~) and the predictor variable on the right. The
function estimates the regression coefficients, β0 and β1, and reports them as the intercept and the coefficient of
x, respectively:

set.seed(42) 

x <- rnorm(100) 

e <- rnorm(100, mean = 0, sd = 5) 

y <- 5 + 15 * x + e 

 

lm(y ~ x) 

#> 

#> Call: 

#> lm(formula = y ~ x) 

#> 

#> Coefficients: 

#> (Intercept)            x 

#>        4.56        15.14

In this case, the regression equation is:

yi = 4.56 + 15.14xi + εi

It is quite common for data to be captured inside a data frame, in which case you want to perform a regression
between two data frame columns. Here, x and y are columns of a data frame dfrm:

df <- data.frame(x, y) 

head(df) 

#>        x     y 

#> 1  1.371 31.57 

#> 2 -0.565  1.75 

#> 3  0.363  5.43 

#> 4  0.633 23.74 

#> 5  0.404  7.73 

#> 6 -0.106  3.94



The lm function lets you specify a data frame by using the data parameter. If you do, the function will take the
variables from the data frame and not from your workspace:

lm(y ~ x, data = df)          # Take x and y from df 

#> 

#> Call: 

#> lm(formula = y ~ x, data = df) 

#> 

#> Coefficients: 

#> (Intercept)            x 

#>        4.56        15.14

Performing Multiple Linear Regression

Problem
You have several predictor variables (e.g., u, v, and w) and a response variable, y. You believe there is a linear
relationship between the predictors and the response, and you want to perform a linear regression on the data.

Solution
Use the lm function. Specify the multiple predictors on the righthand side of the formula, separated by plus signs
(+):

lm(y ~ u + v + w)

Discussion
Multiple linear regression is the obvious generalization of simple linear regression. It allows multiple predictor
variables instead of one predictor variable and still uses OLS to compute the coefficients of a linear equation.
The three-variable regression just given corresponds to this linear model:

yi = β0 + β1ui + β2vi + β3wi + εi

R uses the lm function for both simple and multiple linear regression. You simply add more variables to the
righthand side of the model formula. The output then shows the coefficients of the fitted model. Let’s set up
some example random normal data using the rnorm function:

set.seed(42) 

u <- rnorm(100) 

v <- rnorm(100, mean = 3,  sd = 2) 

w <- rnorm(100, mean = -3, sd = 1) 

e <- rnorm(100, mean = 0,  sd = 3)

Then we can create an equation using known coefficients to calculate our y variable:

y <- 5 + 4 * u + 3 * v + 2 * w + e

Now if we run a linear regression, we can see that R solves for the coefficients and gets pretty close to the actual
values just used:

lm(y ~ u + v + w) 

#> 

#> Call: 

#> lm(formula = y ~ u + v + w) 

#> 

#> Coefficients: 

#> (Intercept)            u            v            w 

#>        4.77         4.17         3.01         1.91



The data parameter of lm is especially valuable when the number of variables increases, since it’s much easier to
keep your data in one data frame than in many separate variables. Suppose your data is captured in a data frame,
such as the df variable shown here:

df <- data.frame(y, u, v, w) 

head(df) 

#>       y      u     v     w 

#> 1 16.67  1.371 5.402 -5.00 

#> 2 14.96 -0.565 5.090 -2.67 

#> 3  5.89  0.363 0.994 -1.83 

#> 4 27.95  0.633 6.697 -0.94 

#> 5  2.42  0.404 1.666 -4.38 

#> 6  5.73 -0.106 3.211 -4.15

When you supply df to the data parameter of lm, R looks for the regression variables in the columns of the data
frame:

lm(y ~ u + v + w, data = df) 

#> 

#> Call: 

#> lm(formula = y ~ u + v + w, data = df) 

#> 

#> Coefficients: 

#> (Intercept)            u            v            w 

#>        4.77         4.17         3.01         1.91

See Also
See “Performing Simple Linear Regression” for simple linear regression.

Getting Regression Statistics

Problem
You want the critical statistics and information regarding your regression, such as R2, the F statistic, confidence
intervals for the coefficients, residuals, the ANOVA table, and so forth.

Solution
Save the regression model in a variable, say m:

m <- lm(y ~ u + v + w)

Then use functions to extract regression statistics and information from the model:

anova(m)

ANOVA table

coefficients(m)

Model coefficients

coef(m)

Same as coefficients(m)

confint(m)

Confidence intervals for the regression coefficients



deviance(m)

Residual sum of squares

effects(m)

Vector of orthogonal effects

fitted(m)

Vector of fitted y values

residuals(m)

Model residuals

resid(m)

Same as residuals(m)

summary(m)

Key statistics, such as R2, the F statistic, and the residual standard error (σ)

vcov(m)

Variance–covariance matrix of the main parameters

Discussion
When we started using R, the documentation said to use the lm function to perform linear regression. So we did
something like this, getting the output shown in “Performing Multiple Linear Regression”:

lm(y ~ u + v + w) 

#> 

#> Call: 

#> lm(formula = y ~ u + v + w) 

#> 

#> Coefficients: 

#> (Intercept)            u            v            w 

#>        4.77         4.17         3.01         1.91

How disappointing! The output was nothing compared to other statistics packages such as SAS. Where is R2?
Where are the confidence intervals for the coefficients? Where is the F statistic, its p-value, and the ANOVA
table?

Of course, all that information is available—you just have to ask for it. Other statistics systems dump everything
and let you wade through it. R is more minimalist. It prints a bare-bones output and lets you request what more
you want.

The lm function returns a model object that you can assign to a variable:

m <- lm(y ~ u + v + w)

From the model object, you can extract important information using specialized functions. The most important
function is summary:

summary(m) 

#> 

#> Call: 

#> lm(formula = y ~ u + v + w) 

#> 

#> Residuals: 

#>    Min     1Q Median     3Q    Max 



#> -5.383 -1.760 -0.312  1.856  6.984 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)    4.770      0.969    4.92  3.5e-06 *** 

#> u              4.173      0.260   16.07  < 2e-16 *** 

#> v              3.013      0.148   20.31  < 2e-16 *** 

#> w              1.905      0.266    7.15  1.7e-10 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 2.66 on 96 degrees of freedom 

#> Multiple R-squared:  0.885,  Adjusted R-squared:  0.882 

#> F-statistic:  247 on 3 and 96 DF,  p-value: <2e-16

The summary shows the estimated coefficients, the critical statistics (such as R2 and the F statistic), and an
estimate of σ, the standard error of the residuals. The summary is so important that there is an entire recipe
devoted to understanding it (“Understanding the Regression Summary”).

There are specialized extractor functions for other important information:

Model coefficients (point estimates)

coef(m) 

#> (Intercept)           u           v           w 

#>        4.77        4.17        3.01        1.91

Confidence intervals for model coefficients

confint(m) 

#>             2.5 % 97.5 % 

#> (Intercept)  2.85   6.69 

#> u            3.66   4.69 

#> v            2.72   3.31 

#> w            1.38   2.43

Model residuals

resid(m) 

#>       1       2       3       4       5       6       7       8       9 

#> -0.5675  2.2880  0.0972  2.1474 -0.7169 -0.3617  1.0350  2.8040 -4.2496 

#>      10      11      12      13      14      15      16      17      18 

#> -0.2048 -0.6467 -2.5772 -2.9339 -1.9330  1.7800 -1.4400 -2.3989  0.9245 

#>      19      20      21      22      23      24      25      26      27 

#> -3.3663  2.6890 -1.4190  0.7871  0.0355 -0.3806  5.0459 -2.5011  3.4516 

#>      28      29      30      31      32      33      34      35      36 

#>  0.3371 -2.7099 -0.0761  2.0261 -1.3902 -2.7041  0.3953  2.7201 -0.0254 

#>      37      38      39      40      41      42      43      44      45 

#> -3.9887 -3.9011 -1.9458 -1.7701 -0.2614  2.0977 -1.3986 -3.1910  1.8439 

#>      46      47      48      49      50      51      52      53      54 

#>  0.8218  3.6273 -5.3832  0.2905  3.7878  1.9194 -2.4106  1.6855 -2.7964 

#>      55      56      57      58      59      60      61      62      63 

#> -1.3348  3.3549 -1.1525  2.4012 -0.5320 -4.9434 -2.4899 -3.2718 -1.6161 

#>      64      65      66      67      68      69      70      71      72 

#> -1.5119 -0.4493 -0.9869  5.6273 -4.4626 -1.7568  0.8099  5.0320  0.1689 

#>      73      74      75      76      77      78      79      80      81 

#>  3.5761 -4.8668  4.2781 -2.1386 -0.9739 -3.6380  0.5788  5.5664  6.9840 

#>      82      83      84      85      86      87      88      89      90 

#> -3.5119  1.2842  4.1445 -0.4630 -0.7867 -0.7565  1.6384  3.7578  1.8942 

#>      91      92      93      94      95      96      97      98      99 

#>  0.5542 -0.8662  1.2041 -1.7401 -0.7261  3.2701  1.4012  0.9476 -0.9140 

#>     100 

#>  2.4278

Residual sum of squares



deviance(m) 

#> [1] 679

ANOVA table

anova(m) 

#> Analysis of Variance Table 

#> 

#> Response: y 

#>           Df Sum Sq Mean Sq F value  Pr(>F) 

#> u          1   1776    1776   251.0 < 2e-16 *** 

#> v          1   3097    3097   437.7 < 2e-16 *** 

#> w          1    362     362    51.1 1.7e-10 *** 

#> Residuals 96    679       7 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If you find it annoying to save the model in a variable, you are welcome to use one-liners such as this:

summary(lm(y ~ u + v + w))

Or you can use magrittr pipes:

lm(y ~ u + v + w) %>% 

  summary

See Also
See “Understanding the Regression Summary” for more on the regression summary. See “Identifying Influential
Observations” for regression statistics specific to model diagnostics.

Understanding the Regression Summary

Problem
You created a linear regression model, m. However, you are confused by the output from summary(m).

Discussion
The model summary is important because it links you to the most critical regression statistics. Here is the model
summary from “Getting Regression Statistics”:

summary(m) 

#> 

#> Call: 

#> lm(formula = y ~ u + v + w) 

#> 

#> Residuals: 

#>    Min     1Q Median     3Q    Max 

#> -5.383 -1.760 -0.312  1.856  6.984 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)    4.770      0.969    4.92  3.5e-06 *** 

#> u              4.173      0.260   16.07  < 2e-16 *** 

#> v              3.013      0.148   20.31  < 2e-16 *** 

#> w              1.905      0.266    7.15  1.7e-10 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 2.66 on 96 degrees of freedom 



#> Multiple R-squared:  0.885,  Adjusted R-squared:  0.882 

#> F-statistic:  247 on 3 and 96 DF,  p-value: <2e-16

Let’s dissect this summary by section. We’ll read it from top to bottom, even though the most important statistic
(the F statistic) appears at the end:

Call

#> lm(formula = y ~ u + v + w)

This shows how lm was called when it created the model, which is important for putting this summary into
the proper context.

Residuals statistics

#> Residuals: 

#>     Min      1Q  Median      3Q     Max 

#>  -5.383  -1.760  -0.312   1.856   6.984

Ideally, the regression residuals would have a perfect normal distribution. These statistics help you identify
possible deviations from normality. The OLS algorithm is mathematically guaranteed to produce residuals
with a mean of zero,1 hence the sign of the median indicates the skew’s direction and the magnitude of the
median indicates the extent. In this case the median is negative, which suggests some skew to the left.

If the residuals have a nice bell-shaped distribution, then the first quartile (1Q) and third quartile (3Q) should
have about the same magnitude. In this example, the larger magnitude of 3Q versus 1Q (1.856 versus 1.76)
indicates a slight skew to the right in our data, although the negative median makes the situation less clear-
cut.

The Min and Max residuals offer a quick way to detect extreme outliers in the data, since extreme outliers (in
the response variable) produce large residuals.

Coefficients

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)    4.770      0.969    4.92  3.5e-06 *** 

#> u              4.173      0.260   16.07  < 2e-16 *** 

#> v              3.013      0.148   20.31  < 2e-16 *** 

#> w              1.905      0.266    7.15  1.7e-10 ***

The column labeled Estimate contains the estimated regression coefficients as calculated by ordinary least
squares.

Theoretically, if a variable’s coefficient is zero then the variable is worthless; it adds nothing to the model.
Yet the coefficients shown here are only estimates, and they will never be exactly zero. We therefore ask:
statistically speaking, how likely is it that the true coefficient is zero? That is the purpose of the t statistics
and the p-values, which in the summary are labeled (respectively) t value and Pr(>|t|).

The p-value is a probability. It gauges the likelihood that the coefficient is not significant, so smaller is
better. Big is bad because it indicates a high likelihood of insignificance. In this example, the p-value for the
u coefficient is a mere 0.00106, so u is likely significant. The p-value for w, however, is 0.05744; this is just
over our conventional limit of 0.05, which suggests that w is likely insignificant.2 Variables with large p-
values are candidates for elimination.

A handy feature is that R flags the significant variables for quick identification. Did you notice the extreme
righthand column containing triple asterisks (*)? Other values you might see in this column are double
asterisks (**), a single asterisk (*), and a period (.). This column highlights the significant variables. The



line labeled Signif. codes at the bottom of the Coefficients section gives a cryptic guide to the flags’
meanings. You can interpret them as follows:

Significance indication Meaning

*** p-value between 0 and 0.001

** p-value between 0.001 and 0.01

* p-value between 0.01 and 0.05

. p-value between 0.05 and 0.1

(blank) p-value between 0.1 and 1.0

The column labeled Std. Error is the standard error of the estimated coefficient. The column labeled t
value is the t statistic from which the p-value was calculated.

Residual standard error

# Residual standard error: 2.66 on 96 degrees of freedom

This reports the standard error of the residuals (σ)—that is, the sample standard deviation of ε.

R2 (coefficient of determination)

# Multiple R-squared:  0.885,    Adjusted R-squared:  0.882

R2 is a measure of the model’s quality. Bigger is better. Mathematically, it is the fraction of the variance of y
that is explained by the regression model. The remaining variance is not explained by the model, so it must
be due to other factors (i.e., unknown variables or sampling variability). In this case, the model explains
0.4981 (49.81%) of the variance of y, and the remaining 0.5019 (50.19%) is unexplained.

That being said, we strongly suggest using the adjusted rather than the basic R2. The adjusted value accounts
for the number of variables in your model and so is a more realistic assessment of its effectiveness. In this
case, then, we would use 0.8815, not 0.8851.

F statistic

# F-statistic: 246.6 on 3 and 96 DF,  p-value: < 2.2e-16

The F statistic tells you whether the model is significant or insignificant. The model is significant if any of
the coefficients are nonzero (i.e., if βi ≠ 0 for some i). It is insignificant if all coefficients are zero (β1 = β2 =
… = βn = 0).

Conventionally, a p-value of less than 0.05 indicates that the model is likely significant (one or more βi are
nonzero), whereas values exceeding 0.05 indicate that the model is likely not significant. Here, the
probability is only 2.2e-16 that our model is insignificant. That’s good.

Most people look at the R2 statistic first. The statistician wisely starts with the F statistic, because if the
model is not significant then nothing else matters.

See Also
See “Getting Regression Statistics” for more on extracting statistics and information from the model object.

Performing Linear Regression Without an Intercept



Problem
You want to perform a linear regression, but you want to force the intercept to be zero.

Solution
Add "+ 0" to the righthand side of your regression formula. That will force lm to fit the model with a zero
intercept:

lm(y ~ x + 0)

The corresponding regression equation is:

yi = βxi + εi

Discussion
Linear regression ordinarily includes an intercept term, so that is the default in R. In rare cases, however, you
may want to fit the data while assuming that the intercept is zero. In this case you make a modeling assumption:
when x is zero, y should be zero.

When you force a zero intercept, the lm output includes a coefficient for x but no intercept for y, as shown here:

lm(y ~ x + 0) 

#> 

#> Call: 

#> lm(formula = y ~ x + 0) 

#> 

#> Coefficients: 

#>   x 

#> 4.3

We strongly suggest you check that modeling assumption before proceeding. Perform a regression with an
intercept; then see if the intercept could plausibly be zero. Check the intercept’s confidence interval. In this
example, the confidence interval is (6.26, 8.84):

confint(lm(y ~ x)) 

#>             2.5 % 97.5 % 

#> (Intercept)  6.26   8.84 

#> x            2.82   5.31

Because the confidence interval does not contain zero, it is not statistically plausible that the intercept could be
zero. So in this case, it is not reasonable to rerun the regression while forcing a zero intercept.

Regressing Only Variables That Highly Correlate with Your
Dependent Variable

Problem
You have a data frame with many variables and you want to build a multiple linear regression using only the
variables that are highly correlated to your response (dependent) variable.

Solution
If df is our data frame containing both our response (dependent) and all our predictor (independent) variables
and dep_var is our response variable, we can figure out our best predictors and then use them in a linear
regression. If we want the top four predictor variables, we can use this:



best_pred <- df %>% 

  select(-dep_var) %>% 

  map_dbl(cor, y = df$dep_var) %>% 

  sort(decreasing = TRUE) %>% 

  .[1:4] %>% 

  names %>% 

  df[.] 

 

mod <- lm(df$dep_var ~ as.matrix(best_pred))

This recipe is a combination of many different pieces of logic used elsewhere in this book. We will describe each
step here, and then walk through it in the Discussion using some example data.

First we drop the response variable out of our pipe chain so that we have only our predictor variables in our data
flow:

df %>% 

  select(-dep_var)

Then we use map_dbl from purrr to perform a pairwise correlation on each column relative to the response
variable:

  map_dbl(cor, y = df$dep_var) %>%

We then take the resulting correlations and sort them in decreasing order:

  sort(decreasing = TRUE) %>%

We want only the top four correlated variables, so we select the top four records in the resulting vector:

  .[1:4] %>%

And we don’t need the correlation values, only the names of the rows—which are the variable names from our
original data frame, df:

names %>%

Then we can pass those names into our subsetting brackets to select only the columns with names matching the
ones we want:

df[.]

Our pipe chain assigns the resulting data frame into best_pred. We can then use best_pred as the predictor
variables in our regression and we can use df$dep_var as the response:

mod <- lm(df$dep_var ~ as.matrix(best_pred))

Discussion
By combining the mapping functions discussed in “Applying a Function to Every Column”, we can create a
recipe to remove low-correlation variables from a set of predictors and use the high-correlation predictors in a
regression.

We have an example data frame that contains six predictor variables named pred1 through pred6. The response
variable is named resp. Let’s walk that data frame through our logic and see how it works.

Loading the data and dropping the resp variable is pretty straightforward, so let’s look at the result of mapping
the cor function:



# loads the pred data frame 

load("./data/pred.rdata") 

 

pred %>% 

  select(-resp) %>% 

  map_dbl(cor, y = pred$resp) 

#> pred1 pred2 pred3 pred4 pred5 pred6 

#> 0.573 0.279 0.753 0.799 0.322 0.607

The output is a named vector of values where the names are the variable names and the values are the pairwise
correlations between each predictor variable and resp, the response variable.

If we sort this vector, we get the correlations in decreasing order:

pred %>% 

  select(-resp) %>% 

  map_dbl(cor, y = pred$resp) %>% 

  sort(decreasing = TRUE) 

#> pred4 pred3 pred6 pred1 pred5 pred2 

#> 0.799 0.753 0.607 0.573 0.322 0.279

Using subsetting allows us to select the top four records. The . operator is a special operator that tells the pipe
where to put the result of the prior step:

pred %>% 

  select(-resp) %>% 

  map_dbl(cor, y = pred$resp) %>% 

  sort(decreasing = TRUE) %>% 

  .[1:4] 

#> pred4 pred3 pred6 pred1 

#> 0.799 0.753 0.607 0.573

We then use the names function to extract the names from our vector. The names are the names of the columns
we ultimately want to use as our independent variables:

pred %>% 

  select(-resp) %>% 

  map_dbl(cor, y = pred$resp) %>% 

  sort(decreasing = TRUE) %>% 

  .[1:4] %>% 

  names 

#> [1] "pred4" "pred3" "pred6" "pred1"

When we pass the vector of names into pred[.], the names are used to select columns from the pred data frame.
We then use head to select only the top six rows for easier illustration:

pred %>% 

  select(-resp) %>% 

  map_dbl(cor, y = pred$resp) %>% 

  sort(decreasing = TRUE) %>% 

  .[1:4] %>% 

  names %>% 

  pred[.] %>% 

  head 

#>    pred4   pred3  pred6  pred1 

#> 1  7.252  1.5127  0.560  0.206 

#> 2  2.076  0.2579 -0.124 -0.361 

#> 3 -0.649  0.0884  0.657  0.758 

#> 4  1.365 -0.1209  0.122 -0.727 

#> 5 -5.444 -1.1943 -0.391 -1.368 

#> 6  2.554  0.6120  1.273  0.433

Now let’s bring it all together and pass the resulting data into the regression:



best_pred <- pred %>% 

  select(-resp) %>% 

  map_dbl(cor, y = pred$resp) %>% 

  sort(decreasing = TRUE) %>% 

  .[1:4] %>% 

  names %>% 

  pred[.] 

 

mod <- lm(pred$resp ~ as.matrix(best_pred)) 

summary(mod) 

#> 

#> Call: 

#> lm(formula = pred$resp ~ as.matrix(best_pred)) 

#> 

#> Residuals: 

#>    Min     1Q Median     3Q    Max 

#> -1.485 -0.619  0.189  0.562  1.398 

#> 

#> Coefficients: 

#>                           Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)                  1.117      0.340    3.28   0.0051 ** 

#> as.matrix(best_pred)pred4    0.523      0.207    2.53   0.0231 * 

#> as.matrix(best_pred)pred3   -0.693      0.870   -0.80   0.4382 

#> as.matrix(best_pred)pred6    1.160      0.682    1.70   0.1095 

#> as.matrix(best_pred)pred1    0.343      0.359    0.95   0.3549 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 0.927 on 15 degrees of freedom 

#> Multiple R-squared:  0.838,  Adjusted R-squared:  0.795 

#> F-statistic: 19.4 on 4 and 15 DF,  p-value: 8.59e-06

Performing Linear Regression with Interaction Terms

Problem
You want to include an interaction term in your regression.

Solution
The R syntax for regression formulas lets you specify interaction terms. To indicate the interaction of two
variables, u and v, we separate their names with an asterisk (*):

lm(y ~ u * v)

This corresponds to the model yi = β0 + β1ui + β2vi + β3uivi + εi, which includes the first-order interaction term
β3uivi.

Discussion
In regression, an interaction occurs when the product of two predictor variables is also a significant predictor
(i.e., in addition to the predictor variables themselves). Suppose we have two predictors, u and v, and want to
include their interaction in the regression. This is expressed by the following equation:

yi = β0 + β1ui + β2vi + β3uivi + εi

Here the product term, β3uivi, is called the interaction term. The R formula for that equation is:

y ~ u * v



When you write y ~ u * v, R automatically includes u, v, and their product in the model. This is for a good
reason. If a model includes an interaction term, such as β3uivi, then regression theory tells us the model should
also contain the constituent variables ui and vi.

Likewise, if you have three predictors (u, v, and w) and want to include all their interactions, separate them by
asterisks:

y ~ u * v * w

This corresponds to the regression equation:

yi = β0 + β1ui + β2vi + β3wi + β4uivi + β5uiwi + β6viwi + β7uiviwi + εi

Now we have all the first-order interactions and a second-order interaction (β7uiviwi).

Sometimes, however, you may not want every possible interaction. You can explicitly specify a single product by
using the colon operator (:). For example, u:v:w denotes the product term βuiviwi but without all possible
interactions. So the R formula:

y ~ u + v + w + u:v:w

corresponds to the regression equation:

yi = β0 + β1ui + β2vi + β3wi + β4uiviwi + εi

It might seem odd that a colon (:) means pure multiplication while an asterisk (*) means both multiplication and
inclusion of constituent terms. Again, this is because we normally incorporate the constituents when we include
their interaction, so making that approach the default for * makes sense.

There is some additional syntax for easily specifying many interactions:

(u + v + ... + w)^2

Include all variables (u, v, …, w) and all their first-order interactions.

(u + v + ... + w)^3

Include all variables, all their first-order interactions, and all their second-order interactions.

(u + v + ... + w)^4

And so forth.

Both the asterisk (*) and the colon (:) follow a “distributive law,” so the following notations are also allowed:

x*(u + v + ... + w)

Same as x*u + x*v + ... + x*w (which is the same as x + u + v + ... + w + x:u + x:v + ... +
x:w)

x:(u + v + ... + w)

Same as x:u + x:v + ... + x:w

All this syntax gives you some flexibility in writing your formula. For example, these three formulas are
equivalent:

y ~ u * v 

y ~ u + v + u:v 

y ~ (u + v) ^ 2

They all define the same regression equation, yi = β0 + β1ui + β2vi + β3uivi + εi .



See Also
The full syntax for formulas is richer than described here. See R in a Nutshell or the R Language Definition for
more details.

Selecting the Best Regression Variables

Problem
You are creating a new regression model or improving an existing model. You have the luxury of many
regression variables, and you want to select the best subset of those variables.

Solution
The step function can perform stepwise regression, either forward or backward. Backward stepwise regression
starts with many variables and removes the underperformers:

full.model <- lm(y ~ x1 + x2 + x3 + x4) 

reduced.model <- step(full.model, direction = "backward")

Forward stepwise regression starts with a few variables and adds new ones to improve the model until it cannot
be improved further:

min.model <- lm(y ~ 1) 

fwd.model <- 

  step(min.model, 

       direction = "forward", 

       scope = (~ x1 + x2 + x3 + x4))

Discussion
When you have many predictors, it can be quite difficult to choose the best subset. Adding and removing
individual variables affects the overall mix, so the search for “the best” can become tedious.

The step function automates that search. Backward stepwise regression is the easiest approach. Start with a
model that includes all the predictors. We call that the full model. The model summary, shown here, indicates
that not all predictors are statistically significant:

# example data 

set.seed(4) 

n <- 150 

x1 <- rnorm(n) 

x2 <- rnorm(n, 1, 2) 

x3 <- rnorm(n, 3, 1) 

x4 <- rnorm(n,-2, 2) 

e <- rnorm(n, 0, 3) 

y <- 4 + x1 + 5 * x3 + e 

 

# build the model 

full.model <- lm(y ~ x1 + x2 + x3 + x4) 

summary(full.model) 

#> 

#> Call: 

#> lm(formula = y ~ x1 + x2 + x3 + x4) 

#> 

#> Residuals: 

#>    Min     1Q Median     3Q    Max 

#> -8.032 -1.774  0.158  2.032  6.626 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

http://bit.ly/2XLiQgX


#> (Intercept)  3.40224    0.80767    4.21  4.4e-05 *** 

#> x1           0.53937    0.25935    2.08    0.039 * 

#> x2           0.16831    0.12291    1.37    0.173 

#> x3           5.17410    0.23983   21.57  < 2e-16 *** 

#> x4          -0.00982    0.12954   -0.08    0.940 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 2.92 on 145 degrees of freedom 

#> Multiple R-squared:  0.77,   Adjusted R-squared:  0.763 

#> F-statistic:  121 on 4 and 145 DF,  p-value: <2e-16

We want to eliminate the insignificant variables, so we use step to incrementally eliminate the underperformers.
The result is called the reduced model:

reduced.model <- step(full.model, direction="backward") 

#> Start:  AIC=327 

#> y ~ x1 + x2 + x3 + x4 

#> 

#>        Df Sum of Sq  RSS AIC 

#> - x4    1         0 1240 325 

#> - x2    1        16 1256 327 

#> <none>              1240 327 

#> - x1    1        37 1277 329 

#> - x3    1      3979 5219 540 

#> 

#> Step:  AIC=325 

#> y ~ x1 + x2 + x3 

#> 

#>        Df Sum of Sq  RSS AIC 

#> - x2    1        16 1256 325 

#> <none>              1240 325 

#> - x1    1        37 1277 327 

#> - x3    1      3988 5228 539 

#> 

#> Step:  AIC=325 

#> y ~ x1 + x3 

#> 

#>        Df Sum of Sq  RSS AIC 

#> <none>              1256 325 

#> - x1    1        44 1300 328 

#> - x3    1      3974 5230 537

The output from step shows the sequence of models that it explored. In this case, step removed x2 and x4 and
left only x1 and x3 in the final (reduced) model. The summary of the reduced model shows that it contains only
significant predictors:

summary(reduced.model) 

#> 

#> Call: 

#> lm(formula = y ~ x1 + x3) 

#> 

#> Residuals: 

#>    Min     1Q Median     3Q    Max 

#> -8.148 -1.850 -0.055  2.026  6.550 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)    3.648      0.751    4.86    3e-06 *** 

#> x1             0.582      0.255    2.28    0.024 * 

#> x3             5.147      0.239   21.57   <2e-16 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 2.92 on 147 degrees of freedom 

#> Multiple R-squared:  0.767,  Adjusted R-squared:  0.763 

#> F-statistic:  241 on 2 and 147 DF,  p-value: <2e-16



Backward stepwise regression is easy, but sometimes it’s not feasible to start with “everything” because you have
too many candidate variables. In that case use forward stepwise regression, which will start with nothing and
incrementally add variables that improve the regression. It stops when no further improvement is possible.

A model that “starts with nothing” may look odd at first:

min.model <- lm(y ~ 1)

This is a model with a response variable (y) but no predictor variables. (All the fitted values for y are simply the
mean of y, which is what you would guess if no predictors were available.)

We must tell step which candidate variables are available for inclusion in the model. That is the purpose of the
scope argument. scope is a formula with nothing on the lefthand side of the tilde (~) and candidate variables on
the righthand side:

fwd.model <- step( 

  min.model, 

  direction = "forward", 

  scope = (~ x1 + x2 + x3 + x4), 

  trace = 0 

)

Here we see that x1, x2, x3, and x4 are all candidates for inclusion. (We also included trace = 0 to inhibit the
voluminous output from step.) The resulting model has two significant predictors and no insignificant
predictors:

summary(fwd.model) 

#> 

#> Call: 

#> lm(formula = y ~ x3 + x1) 

#> 

#> Residuals: 

#>    Min     1Q Median     3Q    Max 

#> -8.148 -1.850 -0.055  2.026  6.550 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)    3.648      0.751    4.86    3e-06 *** 

#> x3             5.147      0.239   21.57   <2e-16 *** 

#> x1             0.582      0.255    2.28    0.024 * 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 2.92 on 147 degrees of freedom 

#> Multiple R-squared:  0.767,  Adjusted R-squared:  0.763 

#> F-statistic:  241 on 2 and 147 DF,  p-value: <2e-16

The step-forward algorithm reached the same model as the step-backward model by including x1 and x3 but
excluding x2 and x4. This is a toy example, so that is not surprising. In real applications, we suggest trying both
the forward and backward regression and then comparing the results. You might be surprised.

Finally, don’t get carried away with stepwise regression. It is not a panacea, it cannot turn junk into gold, and it
is definitely not a substitute for choosing predictors carefully and wisely. You might think: “Oh boy! I can
generate every possible interaction term for my model, then let step choose the best ones! What a model I’ll
get!” You’d be thinking of something like this, which starts with all possible interactions and then tries to reduce
the model:

full.model <- lm(y ~ (x1 + x2 + x3 + x4) ^ 4) 

reduced.model <- step(full.model, direction = "backward") 

#> Start:  AIC=337 

#> y ~ (x1 + x2 + x3 + x4)^4 

#> 



#>               Df Sum of Sq  RSS AIC 

#> - x1:x2:x3:x4  1    0.0321 1145 335 

#> <none>                     1145 337 

#> 

#> Step:  AIC=335 

#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + 

#>     x3:x4 + x1:x2:x3 + x1:x2:x4 + x1:x3:x4 + x2:x3:x4 

#> 

#>            Df Sum of Sq  RSS AIC 

#> - x2:x3:x4  1      0.76 1146 333 

#> - x1:x3:x4  1      8.37 1154 334 

#> <none>                  1145 335 

#> - x1:x2:x4  1     20.95 1166 336 

#> - x1:x2:x3  1     25.18 1170 336 

#> 

#> Step:  AIC=333 

#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + 

#>     x3:x4 + x1:x2:x3 + x1:x2:x4 + x1:x3:x4 

#> 

#>            Df Sum of Sq  RSS AIC 

#> - x1:x3:x4  1      8.74 1155 332 

#> <none>                  1146 333 

#> - x1:x2:x4  1     21.72 1168 334 

#> - x1:x2:x3  1     26.51 1172 334 

#> 

#> Step:  AIC=332 

#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + 

#>     x3:x4 + x1:x2:x3 + x1:x2:x4 

#> 

#>            Df Sum of Sq  RSS AIC 

#> - x3:x4     1      0.29 1155 330 

#> <none>                  1155 332 

#> - x1:x2:x4  1     23.24 1178 333 

#> - x1:x2:x3  1     31.11 1186 334 

#> 

#> Step:  AIC=330 

#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + 

#>     x1:x2:x3 + x1:x2:x4 

#> 

#>            Df Sum of Sq  RSS AIC 

#> <none>                  1155 330 

#> - x1:x2:x4  1      23.4 1178 331 

#> - x1:x2:x3  1      31.5 1187 332

This does not work well. Most of the interaction terms are meaningless. The step function becomes
overwhelmed, and you are left with many insignificant terms.

See Also
See “Comparing Models by Using ANOVA”.

Regressing on a Subset of Your Data

Problem
You want to fit a linear model to a subset of your data, not to the entire dataset.

Solution
The lm function has a subset parameter that specifies which data elements should be used for fitting. The
parameter’s value can be any index expression that could index your data. This shows a fitting that uses only the
first 100 observations:

lm(y ~ x1, subset=1:100)          # Use only x[1:100]



Discussion
You will often want to regress only a subset of your data. This can happen, for example, when you’re using in-
sample data to create the model and out-of-sample data to test it.

The lm function has a parameter, subset, that selects the observations used for fitting. The value of subset is a
vector. It can be a vector of index values, in which case lm selects only the indicated observations from your
data. It can also be a logical vector, the same length as your data, in which case lm selects the observations with a
corresponding TRUE.

Suppose you have 1,000 observations of (x, y) pairs and want to fit your model using only the first half of those
observations. Use a subset parameter of 1:500, indicating lm should use observations 1 through 500:

## example data 

n <- 1000 

x <- rnorm(n) 

e <- rnorm(n, 0, .5) 

y <- 3 + 2 * x + e 

lm(y ~ x, subset = 1:500) 

#> 

#> Call: 

#> lm(formula = y ~ x, subset = 1:500) 

#> 

#> Coefficients: 

#> (Intercept)            x 

#>           3            2

More generally, you can use the expression 1:floor(length(x)/2) to select the first half of your data,
regardless of size:

lm(y ~ x, subset = 1:floor(length(x) / 2)) 

#> 

#> Call: 

#> lm(formula = y ~ x, subset = 1:floor(length(x)/2)) 

#> 

#> Coefficients: 

#> (Intercept)            x 

#>           3            2

Let’s say your data was collected in several labs and you have a factor, lab, that identifies the lab of origin. You
can limit your regression to observations collected in New Jersey by using a logical vector that is TRUE only for
those observations:

load('./data/lab_df.rdata') 

lm(y ~ x, subset = (lab == "NJ"), data = lab_df) 

#> 

#> Call: 

#> lm(formula = y ~ x, data = lab_df, subset = (lab == "NJ")) 

#> 

#> Coefficients: 

#> (Intercept)            x 

#>        2.58         5.03

Using an Expression Inside a Regression Formula

Problem
You want to regress on calculated values, not simple variables, but the syntax of a regression formula seems to
forbid that.



Solution
Embed the expressions for the calculated values inside the I(...) operator. That will force R to calculate the
expression and use the calculated value for the regression.

Discussion
If you want to regress on the sum of u and v, then this is your regression equation:

yi = β0 + β1(ui + vi) + εi

How do you write that equation as a regression formula? This won’t work:

lm(y ~ u + v)    # Not quite right

Here R will interpret u and v as two separate predictors, each with its own regression coefficient. Likewise,
suppose your regression equation is:

yi = β0 + β1ui + β2ui
2 + εi

This won’t work:

lm(y ~ u + u ^ 2)  # That's an interaction, not a quadratic term

R will interpret u^2 as an interaction term (see “Performing Linear Regression with Interaction Terms”) and not
as the square of u.

The solution is to surround the expressions by the I(...) operator, which inhibits an expression from being
interpreted as a regression formula. Instead, it forces R to calculate the expression’s value and then incorporate
that value directly into the regression. Thus, the first example becomes:

lm(y ~ I(u + v))

In response to that command, R computes u + v and then regresses y on the sum.

For the second example we use:

lm(y ~ u + I(u ^ 2))

Here R computes the square of u and then regresses on the sum u + u ^ 2.

TIP
All the basic binary operators (+, -, *, /, ^) have special meanings inside a regression formula. For this reason, you must use the
I(...) operator whenever you incorporate calculated values into a regression.

A beautiful aspect of these embedded transformations is that R remembers them and applies them when you
make predictions from the model. Consider the quadratic model described by the second example. It uses u and
u^2, but we supply the value of u only and R does the heavy lifting. We don’t need to calculate the square of u
ourselves:

load('./data/df_squared.rdata') 

m <- lm(y ~ u + I(u ^ 2), data = df_squared) 

predict(m, newdata = data.frame(u = 13.4)) 

#>   1 

#> 877



See Also
See “Regressing on a Polynomial” for the special case of regression on a polynomial. See “Regressing on
Transformed Data” for incorporating other data transformations into the regression.

Regressing on a Polynomial

Problem
You want to regress y on a polynomial of x.

Solution
Use the poly(x, n) function in your regression formula to regress on an n-degree polynomial of x. This
example models y as a cubic function of x:

lm(y ~ poly(x, 3, raw = TRUE))

The example’s formula corresponds to the following cubic regression equation:

yi = β0 + β1xi + β2xi
2 + β3xi

3 + εi

Discussion
When people first use a polynomial model in R, they often do something clunky like this:

x_sq <- x ^ 2 

x_cub <- x ^ 3 

m <- lm(y ~ x + x_sq + x_cub)

Obviously, this is quite annoying, and it litters their workspace with extra variables.

It’s much easier to write:

m <- lm(y ~ poly(x, 3, raw = TRUE))

The raw = TRUE is necessary. Without it, the poly function computes orthogonal polynomials instead of simple
polynomials.

Beyond the convenience, a huge advantage is that R will calculate all those powers of x when you make
predictions from the model (see “Predicting New Values”). Without that, you are stuck calculating x2 and x3

yourself every time you employ the model.

Here is another good reason to use poly. You cannot write your regression formula in this way:

lm(y ~ x + x^2 + x^3)     # Does not do what you think!

R will interpret x^2 and x^3 as interaction terms, not as powers of x. The resulting model is a one-term linear
regression, completely unlike your expectation. You could write the regression formula like this:

lm(y ~ x + I(x ^ 2) + I(x ^ 3))

But that’s getting pretty verbose. Just use poly.

See Also



See “Performing Linear Regression with Interaction Terms” for more about interaction terms. See “Regressing
on Transformed Data” for other transformations on regression data.

Regressing on Transformed Data

Problem
You want to build a regression model for x and y, but they do not have a linear relationship.

Solution
You can embed the needed transformation inside the regression formula. If, for example, y must be transformed
into log(y), then the regression formula becomes:

lm(log(y) ~ x)

Discussion
A critical assumption behind the lm function for regression is that the variables have a linear relationship. To the
extent this assumption is false, the resulting regression becomes meaningless.

Fortunately, many datasets can be transformed into a linear relationship before applying lm.

Figure 11-1 shows an example of exponential decay. The left panel shows the original data, z. The dotted line
shows a linear regression on the original data; clearly, it’s a lousy fit.

Figure 11-1. Example of a data transform

If the data is really exponential, then a possible model is:
z = exp[β0 + β1t + ε]



where t is time and exp[] is the exponential function (ex). This is not linear, of course, but we can linearize it by
taking logarithms:

log(z) = β0 + β1t + ε

In R, that regression is simple because we can embed the log transform directly into the regression formula:

# read in our example data 

load(file = './data/df_decay.rdata') 

z <- df_decay$z 

t <- df_decay$time 

 

# transform and model 

m <- lm(log(z) ~ t) 

summary(m) 

#> 

#> Call: 

#> lm(formula = log(z) ~ t) 

#> 

#> Residuals: 

#>     Min      1Q  Median      3Q     Max 

#> -0.4479 -0.0993  0.0049  0.0978  0.2802 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)   0.6887     0.0306    22.5   <2e-16 *** 

#> t            -2.0118     0.0351   -57.3   <2e-16 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 0.148 on 98 degrees of freedom 

#> Multiple R-squared:  0.971,  Adjusted R-squared:  0.971 

#> F-statistic: 3.28e+03 on 1 and 98 DF,  p-value: <2e-16

The right panel of Figure 11-1 shows the plot of log(z) versus time. Superimposed on that plot is their regression
line. The fit appears to be much better; this is confirmed by the R2 = 0.97, compared with 0.82 for the linear
regression on the original data.

You can embed other functions inside your formula. If you thought the relationship was quadratic, you could use
a square-root transformation:

lm(sqrt(y) ~ month)

You can apply transformations to variables on both sides of the formula, of course. This formula regresses y on
the square root of x:

lm(y ~ sqrt(x))

This regression is for a log-log relationship between x and y:

lm(log(y) ~ log(x))

See Also
See “Finding the Best Power Transformation (Box–Cox Procedure)”.

Finding the Best Power Transformation (Box–Cox Procedure)

Problem
You want to improve your linear model by applying a power transformation to the response variable.



Solution
Use the Box–Cox procedure, which is implemented by the boxcox function of the MASS package. The procedure
will identify a power, λ, such that transforming y into yλ will improve the fit of your model:

library(MASS) 

m <- lm(y ~ x) 

boxcox(m)

Discussion
To illustrate the Box–Cox transformation, let’s create some artificial data using the equation y–1.5 = x + ε, where ε
is an error term:

set.seed(9) 

x <- 10:100 

eps <- rnorm(length(x), sd = 5) 

y <- (x + eps) ^ (-1 / 1.5)

Then we will (mistakenly) model the data using a simple linear regression and derive an adjusted R2 of 0.637:

m <- lm(y ~ x) 

summary(m) 

#> 

#> Call: 

#> lm(formula = y ~ x) 

#> 

#> Residuals: 

#>      Min       1Q   Median       3Q      Max 

#> -0.04032 -0.01633 -0.00792  0.00996  0.14516 

#> 

#> Coefficients: 

#>              Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)  0.166885   0.007078    23.6   <2e-16 *** 

#> x           -0.001465   0.000116   -12.6   <2e-16 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 0.0291 on 89 degrees of freedom 

#> Multiple R-squared:  0.641,  Adjusted R-squared:  0.637 

#> F-statistic:  159 on 1 and 89 DF,  p-value: <2e-16

When plotting the residuals against the fitted values, we get a clue that something is wrong. We can get a ggplot
residual plot using the broom library. The augment function from broom will put our residuals (and other things)
into a data frame for easier plotting. Then we can use ggplot to plot:

library(broom) 

augmented_m <- augment(m) 

 

ggplot(augmented_m, aes(x = .fitted, y = .resid)) + 

  geom_point()

The result is shown in Figure 11-2.



Figure 11-2. Fitted values versus residuals

If you just need a fast peek at the residual plot and don’t care if the result is a ggplot figure, you can use Base
R’s plot method on the model object, m:

plot(m, which = 1)  # which = 1 plots only the fitted vs. residuals

We can see in Figure 11-2 that this plot has a clear parabolic shape. A possible fix is a power transformation on
y, so we run the Box–Cox procedure:

library(MASS) 

#> 

#> Attaching package: 'MASS' 

#> The following object is masked from 'package:dplyr': 

#> 

#>     select 

bc <- boxcox(m)

The boxcox function plots values of λ against the log-likelihood of the resulting model, as shown in Figure 11-3.
We want to maximize that log-likelihood, so the function draws a line at the best value and also draws lines at
the limits of its confidence interval. In this case, it looks like the best value is around –1.5, with a confidence
interval of about (–1.75, –1.25).



Figure 11-3. Output of boxcox on the model (m)

Oddly, the boxcox function does not return the best value of λ. Rather, it returns the (x, y) pairs displayed in the
plot. It’s pretty easy to find the values of λ that yield the largest log-likelihood, y. We use the which.max
function:

which.max(bc$y) 

#> [1] 13

Then this gives us the position of the corresponding λ:

lambda <- bc$x[which.max(bc$y)] 

lambda 

#> [1] -1.52

The function reports that the best λ is –1.52. In an actual application, we would urge you to interpret this number
and choose the power that makes sense to you, rather than blindly accepting this “best” value. Use the graph to
assist you in that interpretation. Here, we’ll go with –1.52.

We can apply the power transform to y and then fit the revised model; this gives a much better R2 of 0.967:

z <- y ^ lambda 

m2 <- lm(z ~ x) 

summary(m2) 

#> 

#> Call: 

#> lm(formula = z ~ x) 

#> 

#> Residuals: 

#>     Min      1Q  Median      3Q     Max 

#> -13.459  -3.711  -0.228   2.206  14.188 

#> 

#> Coefficients: 

#>             Estimate Std. Error t value Pr(>|t|) 

#> (Intercept)  -0.6426     1.2517   -0.51     0.61 

#> x             1.0514     0.0205   51.20   <2e-16 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> Residual standard error: 5.15 on 89 degrees of freedom 



#> Multiple R-squared:  0.967,  Adjusted R-squared:  0.967 

#> F-statistic: 2.62e+03 on 1 and 89 DF,  p-value: <2e-16

For those who prefer one-liners, the transformation can be embedded right into the revised regression formula:

m2 <- lm(I(y ^ lambda) ~ x)

TIP
By default, boxcox searches for values of λ in the range –2 to +2. You can change that via the lambda argument; see the help page for
details.

We suggest viewing the Box–Cox result as a starting point, not as a definitive answer. If the confidence interval
for λ includes 1.0, it may be that no power transformation is actually helpful. As always, inspect the residuals
before and after the transformation. Did they really improve?

Compare Figure 11-4 (transformed data) with Figure 11-2 (no transformation).

augmented_m2 <- augment(m2) 

 

ggplot(augmented_m2, aes(x = .fitted, y = .resid)) + 

  geom_point()

Figure 11-4. Fitted values versus residuals: m2

See Also
See “Regressing on Transformed Data” and “Diagnosing a Linear Regression”.

Forming Confidence Intervals for Regression Coefficients



Problem
You are performing linear regression and you need the confidence intervals for the regression coefficients.

Solution
Save the regression model in an object; then use the confint function to extract confidence intervals:

load(file = './data/conf.rdata') 

m <- lm(y ~ x1 + x2) 

confint(m) 

#>             2.5 % 97.5 % 

#> (Intercept) -3.90   6.47 

#> x1          -2.58   6.24 

#> x2           4.67   5.17

Discussion
The Solution uses the model y = β0 + β1(x1)i + β2(x2)i + εi. The confint function returns the confidence intervals
for the intercept (β0), the coefficient of x1 (β1), and the coefficient of x2 (β2):

confint(m) 

#>             2.5 % 97.5 % 

#> (Intercept) -3.90   6.47 

#> x1          -2.58   6.24 

#> x2           4.67   5.17

By default, confint uses a confidence level of 95%. Use the level parameter to select a different level:

confint(m, level = 0.99) 

#>             0.5 % 99.5 % 

#> (Intercept) -5.72   8.28 

#> x1          -4.12   7.79 

#> x2           4.58   5.26

See Also
The coefplot function of the arm package can plot confidence intervals for regression coefficients.

Plotting Regression Residuals

Problem
You want a visual display of your regression residuals.

Solution
You can plot the model object by using broom to put model results in a data frame, then plot with ggplot:

m <- lm(y ~ x1 + x2) 

 

library(broom) 

augmented_m <- augment(m) 

 

ggplot(augmented_m, aes(x = .fitted, y = .resid)) + 

  geom_point()

Discussion



Using the linear model m from the prior recipe, we can create a simple residual plot:

library(broom) 

augmented_m <- augment(m) 

 

ggplot(augmented_m, aes(x = .fitted, y = .resid)) + 

  geom_point()

The output is shown in Figure 11-5.

Figure 11-5. Model residual plot

You could also use the Base R plot method to get a quick peek, but it will produce Base R graphics output,
instead of a ggplot graph:

plot(m, which = 1)

See Also
See “Diagnosing a Linear Regression”, which contains examples of residuals plots and other diagnostic plots.

Diagnosing a Linear Regression

Problem
You have performed a linear regression. Now you want to verify the model’s quality by running diagnostic
checks.

Solution
Start by plotting the model object, which will produce several diagnostic plots using Base R graphics:



m <- lm(y ~ x1 + x2) 

plot(m)

Next, identify possible outliers either by looking at the diagnostic plot of the residuals or by using the
outlierTest function of the car package:

library(car) 

outlierTest(m)

Finally, identify any overly influential observations. See “Identifying Influential Observations”.

Discussion
R fosters the impression that linear regression is easy: just use the lm function. Yet fitting the data is only the
beginning. It’s your job to decide whether the fitted model actually works and works well.

Before anything else, you must have a statistically significant model. Check the F statistic from the model
summary (“Understanding the Regression Summary”) and be sure that the p-value is small enough for your
purposes. Conventionally, it should be less than 0.05 or else your model is likely not very meaningful.

Simply plotting the model object produces several useful diagnostic plots, shown in Figure 11-6:

m <- lm(y ~ x1 + x2) 

par(mfrow = (c(2, 2))) # this gives us a 2x2 plot 

plot(m)



Figure 11-6. Diagnostics of a good fit



Figure 11-6 shows diagnostic plots for a pretty good regression:

The points in the Residuals vs Fitted plot are randomly scattered with no particular pattern.

The points in the Normal Q–Q plot are more or less on the line, indicating that the residuals follow a normal
distribution.

In both the Scale–Location plot and the Residuals vs Leverage plot, the points are in a group with none too far
from the center.

In contrast, the series of graphs in Figure 11-7 show the diagnostics for a not-so-good regression:

load(file = './data/bad.rdata') 

m <- lm(y2 ~ x3 + x4) 

par(mfrow = (c(2, 2)))      # this gives us a 2x2 plot 

plot(m)

Observe that the Residuals vs Fitted plot has a definite parabolic shape. This tells us that the model is
incomplete: a quadratic factor is missing that could explain more variation in y. Other patterns in residuals
would be suggestive of additional problems: a cone shape, for example, may indicate nonconstant variance in y.
Interpreting those patterns is a bit of an art, so we suggest reviewing a good book on linear regression while
evaluating the plot of residuals.

There are other problems with these not-so-good diagnostics. The Normal Q–Q plot has more points off the line
than it does for the good regression. Both the Scale–Location and Residuals vs Leverage plots show points
scattered away from the center, which suggests that some points have excessive leverage.

Another pattern is that point number 28 sticks out in every plot. This warns us that something is odd about that
observation. The point could be an outlier, for example. We can check that hunch with the outlierTest function
of the car package:

library(car) 

outlierTest(m) 

#>    rstudent unadjusted p-value Bonferonni p 

#> 28     4.46           7.76e-05       0.0031

outlierTest identifies the model’s most outlying observation. In this case, it identified observation number 28
and so confirmed that it could be an outlier.



Figure 11-7. Diagnostics of a poor fit



See Also
See “Understanding the Regression Summary” and “Identifying Influential Observations”. The car package is
not part of the standard distribution of R; see “Installing Packages from CRAN” for how to install it.

Identifying Influential Observations

Problem
You want to identify the observations that are having the most influence on the regression model. This is useful
for diagnosing possible problems with the data.

Solution
The influence.measures function reports several useful statistics for identifying influential observations, and
it flags the significant ones with an asterisk (*). Its main argument is the model object from your regression:

influence.measures(m)

Discussion
The title of this recipe could be “Identifying Overly Influential Observations,” but that would be redundant. All
observations influence the regression model, even if only a little. When a statistician says that an observation is
influential, it means that removing the observation would significantly change the fitted regression model. We
want to identify those observations because they might be outliers that distort our model; we owe it to ourselves
to investigate them.

The influence.measures function reports several statistics: DFBETAS, DFFITS, covariance ratio, Cook’s
distance, and hat matrix values. If any of these measures indicate that an observation is influential, the function
flags that observation with an asterisk (*) along the righthand side:

influence.measures(m) 

#> Influence measures of 

#>   lm(formula = y2 ~ x3 + x4) : 

#> 

#>      dfb.1_   dfb.x3   dfb.x4    dffit cov.r   cook.d    hat inf 

#> 1  -0.18784  0.15174  0.07081 -0.22344 1.059 1.67e-02 0.0506 

#> 2   0.27637 -0.04367 -0.39042  0.45416 1.027 6.71e-02 0.0964 

#> 3  -0.01775 -0.02786  0.01088 -0.03876 1.175 5.15e-04 0.0772 

#> 4   0.15922 -0.14322  0.25615  0.35766 1.133 4.27e-02 0.1156 

#> 5  -0.10537  0.00814 -0.06368 -0.13175 1.078 5.87e-03 0.0335 

#> 6   0.16942  0.07465  0.42467  0.48572 1.034 7.66e-02 0.1062 

#> 7  -0.10128 -0.05936  0.01661 -0.13021 1.078 5.73e-03 0.0333 

#> 8  -0.15696  0.04801  0.01441 -0.15827 1.038 8.38e-03 0.0276 

#> 9  -0.04582 -0.12089 -0.01032 -0.14010 1.188 6.69e-03 0.0995 

#> 10 -0.01901  0.00624  0.01740 -0.02416 1.147 2.00e-04 0.0544 

#> 11 -0.06725 -0.01214  0.04382 -0.08174 1.113 2.28e-03 0.0381 

#> 12  0.17580  0.35102  0.62952  0.74889 0.961 1.75e-01 0.1406 

#> 13 -0.14288  0.06667  0.06786 -0.15451 1.071 8.04e-03 0.0372 

#> 14 -0.02784  0.02366 -0.02727 -0.04790 1.173 7.85e-04 0.0767 

#> 15  0.01934  0.03440 -0.01575  0.04729 1.197 7.66e-04 0.0944 

#> 16  0.35521 -0.53827 -0.44441  0.68457 1.294 1.55e-01 0.2515   * 

#> 17 -0.09184 -0.07199  0.01456 -0.13057 1.089 5.77e-03 0.0381 

#> 18 -0.05807 -0.00534 -0.05725 -0.08825 1.119 2.66e-03 0.0433 

#> 19  0.00288  0.00438  0.00511  0.00761 1.176 1.99e-05 0.0770 

#> 20  0.08795  0.06854  0.19526  0.23490 1.136 1.86e-02 0.0884 

#> 21  0.22148  0.42533 -0.33557  0.64699 1.047 1.34e-01 0.1471 

#> 22  0.20974 -0.19946  0.36117  0.49631 1.085 8.06e-02 0.1275 

#> 23 -0.03333 -0.05436  0.01568 -0.07316 1.167 1.83e-03 0.0747 



#> 24 -0.04534 -0.12827 -0.03282 -0.14844 1.189 7.51e-03 0.1016 

#> 25 -0.11334  0.00112 -0.05748 -0.13580 1.067 6.22e-03 0.0307 

#> 26 -0.23215  0.37364  0.16153 -0.41638 1.258 5.82e-02 0.1883   * 

#> 27  0.29815  0.01963 -0.43678  0.51616 0.990 8.55e-02 0.0986 

#> 28  0.83069 -0.50577 -0.35404  0.92249 0.303 1.88e-01 0.0411   * 

#> 29 -0.09920 -0.07828 -0.02499 -0.14292 1.077 6.89e-03 0.0361 

#> # etc.

This is the model from “Diagnosing a Linear Regression”, where we suspected that observation 28 was an
outlier. An asterisk is flagging that observation, confirming that it’s overly influential.

TIP
This recipe can identify influential observations, but you shouldn’t reflexively delete them. Some judgment is required here. Are those
observations improving your model or damaging it?

See Also
See “Diagnosing a Linear Regression”. Use help(influence.measures) to get a list of influence measures and
some related functions. See a regression textbook for interpretations of the various influence measures.

Testing Residuals for Autocorrelation (Durbin–Watson Test)

Problem
You have performed a linear regression and want to check the residuals for autocorrelation.

Solution
The Durbin–Watson test can check the residuals for autocorrelation. The test is implemented by the dwtest
function of the lmtest package:

library(lmtest) 

m <- lm(y ~ x)           # Create a model object 

dwtest(m)                # Test the model residuals

The output includes a p-value. Conventionally, if p < 0.05 then the residuals are significantly correlated, whereas
p > 0.05 provides no evidence of correlation.

You can perform a visual check for autocorrelation by graphing the autocorrelation function (ACF) of the
residuals:

acf(m)                   # Plot the ACF of the model residuals

Discussion
The Durbin–Watson test is often used in time series analysis, but it was originally created for diagnosing
autocorrelation in regression residuals. Autocorrelation in the residuals is a scourge because it distorts the
regression statistics, such as the F statistic and the t statistics for the regression coefficients. The presence of
autocorrelation suggests that your model is missing a useful predictor variable or that it should include a time
series component, such as a trend or a seasonal indicator.

This first example builds a simple regression model and then tests the residuals for autocorrelation. The test
returns a p-value well above zero, which indicates that there is no significant autocorrelation:



library(lmtest) 

load(file = './data/ac.rdata') 

m <- lm(y1 ~ x) 

dwtest(m) 

#> 

#>  Durbin-Watson test 

#> 

#> data:  m 

#> DW = 2, p-value = 0.4 

#> alternative hypothesis: true autocorrelation is greater than 0

This second example exhibits autocorrelation in the residuals. The p-value is near zero, so the autocorrelation is
likely positive:

m <- lm(y2 ~ x) 

dwtest(m) 

#> 

#>  Durbin-Watson test 

#> 

#> data:  m 

#> DW = 2, p-value = 0.01 

#> alternative hypothesis: true autocorrelation is greater than 0

By default, dwtest performs a one-sided test and answers this question: is the autocorrelation of the residuals
greater than zero? If your model could exhibit negative autocorrelation (yes, that is possible), then you should
use the alternative option to perform a two-sided test:

dwtest(m, alternative = "two.sided")

The Durbin–Watson test is also implemented by the durbinWatsonTest function of the car package. We
suggested the dwtest function primarily because we think the output is easier to read.

See Also
Neither the lmtest package nor the car package is included in the standard distribution of R; see “Accessing the
Functions in a Package” and “Installing Packages from CRAN” for accessing their functions and installing them.
See “Plotting the Autocorrelation Function” and “Finding Lagged Correlations Between Two Time Series” for
more regarding tests of autocorrelation.

Predicting New Values

Problem
You want to predict new values from your regression model.

Solution
Save the predictor data in a data frame. Use the predict function, setting the newdata parameter to the data
frame:

load(file = './data/pred2.rdata') 

 

m <- lm(y ~ u + v + w) 

preds <- data.frame(u = 3.1, v = 4.0, w = 5.5) 

predict(m, newdata = preds) 

#>  1 

#> 45



Discussion
Once you have a linear model, making predictions is quite easy because the predict function does all the heavy
lifting. The only annoyance is arranging for a data frame to contain your data.

The predict function returns a vector of predicted values with one prediction for every row in the data. The
example in the Solution contains one row, so predict returned one value.

If your predictor data contains several rows, you get one prediction per row:

preds <- data.frame( 

  u = c(3.0, 3.1, 3.2, 3.3), 

  v = c(3.9, 4.0, 4.1, 4.2), 

  w = c(5.3, 5.5, 5.7, 5.9) 

) 

predict(m, newdata = preds) 

#>    1    2    3    4 

#> 43.8 45.0 46.3 47.5

In case it’s not obvious: the new data needn’t contain values for response variables, only predictor variables.
After all, you are trying to calculate the response, so it would be unreasonable of R to expect you to supply it.

See Also
These are just the point estimates of the predictions. See “Forming Prediction Intervals” for the confidence
intervals.

Forming Prediction Intervals

Problem
You are making predictions using a linear regression model. You want to know the prediction intervals: the range
of the distribution of the prediction.

Solution
Use the predict function and specify interval = "prediction":

predict(m, newdata = preds, interval = "prediction")

Discussion
This is a continuation of “Predicting New Values”, which described packaging your data into a data frame for the
predict function. We are adding interval = "prediction" to obtain prediction intervals.

Here is the example from “Predicting New Values”, now with prediction intervals. The new lwr and upr columns
are the lower and upper limits, respectively, for the interval:

predict(m, newdata = preds, interval = "prediction") 

#>    fit  lwr  upr 

#> 1 43.8 38.2 49.4 

#> 2 45.0 39.4 50.7 

#> 3 46.3 40.6 51.9 

#> 4 47.5 41.8 53.2

By default, predict uses a confidence level of 0.95. You can change this via the level argument.

A word of caution: these prediction intervals are extremely sensitive to deviations from normality. If you suspect
that your response variable is not normally distributed, consider a nonparametric technique, such as the bootstrap



(see “Bootstrapping a Statistic”), for prediction intervals.

Performing One-Way ANOVA

Problem
Your data is divided into groups, and the groups are normally distributed. You want to know if the groups have
significantly different means.

Solution
Use a factor to define the groups. Then apply the oneway.test function:

oneway.test(x ~ f)

Here, x is a vector of numeric values and f is a factor that identifies the groups. The output includes a p-value.
Conventionally, a p-value of less than 0.05 indicates that two or more groups have significantly different means,
whereas a value exceeding 0.05 provides no such evidence.

Discussion
Comparing the means of groups is a common task. One-way ANOVA performs that comparison and computes
the probability that they are statistically identical. A small p-value indicates that two or more groups likely have
different means. (It does not indicate that all groups have different means.)

The basic ANOVA test assumes that your data has a normal distribution or that, at least, it is pretty close to bell-
shaped. If not, use the Kruskal–Wallis test instead (see “Performing Robust ANOVA (Kruskal–Wallis Test)”).

We can illustrate ANOVA with stock market historical data. Is the stock market more profitable in some months
than in others? For instance, a common folk myth says that October is a bad month for stock market investors.3

We explored this question by creating a data frame, GSPC_df, containing two columns, r and mon. The factor r is
the daily returns in the Standard & Poor’s 500 index, a broad measure of stock market performance. The factor
mon indicates the calendar month in which that change occurred: Jan, Feb, Mar, and so forth. The data covers the
period 1950 though 2009.

The one-way ANOVA shows a p-value of 0.03347:

load(file = './data/anova.rdata') 

oneway.test(r ~ mon, data = GSPC_df) 

#> 

#>  One-way analysis of means (not assuming equal variances) 

#> 

#> data:  r and mon 

#> F = 2, num df = 10, denom df = 7000, p-value = 0.03

We can conclude that stock market changes varied significantly according to the calendar month.

Before you run to your broker and start flipping your portfolio monthly, however, we should check something:
did the pattern change recently? We can limit the analysis to recent data by specifying a subset parameter. This
works for oneway.test just as it does for the lm function. The subset contains the indexes of observations to be
analyzed; all other observations are ignored. Here, we give the indexes of the 2,500 most recent observations,
which is about 10 years’ worth of data:

oneway.test(r ~ mon, data = GSPC_df, subset = tail(seq_along(r), 2500)) 

#> 

#>  One-way analysis of means (not assuming equal variances) 

#> 



#> data:  r and mon 

#> F = 0.7, num df = 10, denom df = 1000, p-value = 0.8

Uh-oh! Those monthly differences evaporated during the past 10 years. The large p-value, 0.8, indicates that
changes have not recently varied according to calendar month. Apparently, those differences are a thing of the
past.

Notice that the oneway.test output says “(not assuming equal variances)”. If you know the groups have equal
variances, you’ll get a less conservative test by specifying var.equal = TRUE:

oneway.test(x ~ f, var.equal = TRUE)

You can also perform a one-way ANOVA by using the aov function like this:

m <- aov(x ~ f) 

summary(m)

However, the aov function always assumes equal variances and so is somewhat less flexible than oneway.test.

See Also
If the means are significantly different, use “Finding Differences Between Means of Groups” to see the actual
differences. Use “Performing Robust ANOVA (Kruskal–Wallis Test)” if your data is not normally distributed, as
required by ANOVA.

Creating an Interaction Plot

Problem
You are performing a multiway ANOVA, using two or more categorical variables as predictors. You want a
visual check of possible interaction between the predictors.

Solution
Use the interaction.plot function:

interaction.plot(pred1, pred2, resp)

Here, pred1 and pred2 are two categorical predictors and resp is the response variable.

Discussion
ANOVA is a form of linear regression, so ideally there is a linear relationship between every predictor and the
response variable. One source of nonlinearity is an interaction between two predictors: as one predictor changes
value, the other predictor changes its relationship to the response variable. Checking for interaction between
predictors is a basic diagnostic.

The faraway package contains a dataset called rats. In it, treat and poison are categorical variables and time
is the response variable. When plotting poison against time we are looking for straight, parallel lines, which
indicate a linear relationship. However, using the interaction.plot function produces Figure 11-8, which
reveals that something is not right:

library(faraway) 

data(rats) 

interaction.plot(rats$poison, rats$treat, rats$time)



Each line graphs time against poison. The difference between lines is that each line is for a different value of
treat. The lines should be parallel, but the top two are not exactly parallel. Evidently, varying the value of
treat “warped” the lines, introducing a nonlinearity into the relationship between poison and time.

This signals a possible interaction that we should check. For this data it just so happens that yes, there is an
interaction, but no, it is not statistically significant. The moral is clear: the visual check is useful, but it’s not
foolproof. Follow up with a statistical check.

Figure 11-8. Interaction plot

See Also
See “Performing Linear Regression with Interaction Terms”.

Finding Differences Between Means of Groups

Problem
Your data is divided into groups, and an ANOVA test indicates that the groups have significantly different
means. You want to know the differences between those means for all groups.

Solution
Perform the ANOVA test using the aov function, which returns a model object. Then apply the TukeyHSD
function to the model object:

m <- aov(x ~ f) 

TukeyHSD(m)

Here, x is your data and f is the grouping factor. You can plot the TukeyHSD result to obtain a graphical display of
the differences:

plot(TukeyHSD(m))



Discussion
The ANOVA test is important because it tells you whether or not the groups’ means are different. But the test
does not identify which groups are different, and it does not report their differences.

The TukeyHSD function can calculate those differences and help you identify the largest ones. It uses the “honest
significant differences” method invented by John Tukey.

We’ll illustrate TukeyHSD by continuing the example from “Performing One-Way ANOVA”, which grouped daily
stock market changes by month. Here, we group them by weekday instead, using a factor called wday that
identifies the day of the week (Mon, …, Fri) on which the change occurred. We’ll use the first 2,500
observations, which roughly cover the period from 1950 to 1960:

load(file = './data/anova.rdata') 

oneway.test(r ~ wday, subset = 1:2500, data = GSPC_df) 

#> 

#>  One-way analysis of means (not assuming equal variances) 

#> 

#> data:  r and wday 

#> F = 10, num df = 4, denom df = 1000, p-value = 5e-10

The p-value is essentially zero, indicating that average changes varied significantly depending on the weekday.
To use the TukeyHSD function, we first perform the ANOVA test using the aov function, which returns a model
object, and then apply the TukeyHSD function to the object:

m <- aov(r ~ wday, subset = 1:2500, data = GSPC_df) 

TukeyHSD(m) 

#>   Tukey multiple comparisons of means 

#>     95% family-wise confidence level 

#> 

#> Fit: aov(formula = r ~ wday, data = GSPC_df, subset = 1:2500) 

#> 

#> $wday 

#>              diff       lwr       upr p adj 

#> Mon-Fri -0.003153 -4.40e-03 -0.001911 0.000 

#> Thu-Fri -0.000934 -2.17e-03  0.000304 0.238 

#> Tue-Fri -0.001855 -3.09e-03 -0.000618 0.000 

#> Wed-Fri -0.000783 -2.01e-03  0.000448 0.412 

#> Thu-Mon  0.002219  9.79e-04  0.003460 0.000 

#> Tue-Mon  0.001299  5.85e-05  0.002538 0.035 

#> Wed-Mon  0.002370  1.14e-03  0.003605 0.000 

#> Tue-Thu -0.000921 -2.16e-03  0.000314 0.249 

#> Wed-Thu  0.000151 -1.08e-03  0.001380 0.997 

#> Wed-Tue  0.001072 -1.57e-04  0.002300 0.121

Each line in the output table includes the difference between the means of two groups (diff) as well as the lower
and upper bounds of the confidence interval (lwr and upr) for the difference. The first line in the table, for
example, compares the Mon group and the Fri group: the difference of their means is 0.003 with a confidence
interval of (–0.0044, –0.0019).

Scanning the table, we see that the Wed–Mon comparison had the largest difference, which was 0.00237.

A cool feature of TukeyHSD is that it can display these differences visually, too. Simply plot the function’s return
value to get output, as shown in Figure 11-9:

plot(TukeyHSD(m))



Figure 11-9. TukeyHSD plot

The horizontal lines plot the confidence intervals for each pair. With this visual representation you can quickly
see that several confidence intervals cross over zero, indicating that the difference is not necessarily significant.
You can also see that the Wed–Mon pair has the largest difference because their confidence interval is farthest to
the right.

See Also
See “Performing One-Way ANOVA”.

Performing Robust ANOVA (Kruskal–Wallis Test)



Problem
Your data is divided into groups. The groups are not normally distributed, but their distributions have similar
shapes. You want to perform a test similar to ANOVA—you want to know if the group medians are significantly
different.

Solution
Create a factor that defines the groups of your data. Use the kruskal.test function, which implements the
Kruskal–Wallis test. Unlike the ANOVA test, this test does not depend upon the normality of the data:

kruskal.test(x ~ f)

Here, x is a vector of data and f is a grouping factor. The output includes a p-value. Conventionally, p < 0.05
indicates that there is a significant difference between the medians of two or more groups, whereas p > 0.05
provides no such evidence.

Discussion
Regular ANOVA assumes that your data has a normal distribution. It can tolerate some deviation from normality,
but extreme deviations will produce meaningless p-values.

The Kruskal–Wallis test is a nonparametric version of ANOVA, which means that it does not assume normality.
However, it does assume same-shaped distributions. You should use the Kruskal–Wallis test whenever your data
distribution is nonnormal or simply unknown.

The null hypothesis is that all groups have the same median. Rejecting the null hypothesis (with p < 0.05) does
not indicate that all groups are different, but it does suggest that two or more groups are different.

One year, Paul taught Business Statistics to 94 undergraduate students. The class included a midterm
examination, and there were four homework assignments prior to the exam. He wanted to know: what is the
relationship between completing the homework and doing well on the exam? If there is no relation, then the
homework is irrelevant and needs rethinking.

He created a vector of grades, one per student, and he also created a parallel factor that captured the number of
homework assignments completed by that student. The data is in a data frame named student_data:

load(file = './data/student_data.rdata') 

head(student_data) 

#> # A tibble: 6 x 4 

#>   att.fact hw.mean midterm hw 

#>   <fct>      <dbl>   <dbl> <fct> 

#> 1 3          0.808   0.818 4 

#> 2 3          0.830   0.682 4 

#> 3 3          0.444   0.511 2 

#> 4 3          0.663   0.670 3 

#> 5 2          0.9     0.682 4 

#> 6 3          0.948   0.954 4

Notice that the hw variable—although it appears to be numeric—is actually a factor. It assigns each midterm
grade to one of five groups depending upon how many homework assignments the student completed.

The distribution of exam grades is definitely not normal: the students have a wide range of math skills, so there
are an unusual number of A and F grades. Hence, regular ANOVA would not be appropriate. Instead we used the
Kruskal–Wallis test and obtained a p-value of essentially zero (4 × 10–5, or 0.00004):

kruskal.test(midterm ~ hw, data = student_data) 

#> 

#>  Kruskal-Wallis rank sum test 

#> 



#> data:  midterm by hw 

#> Kruskal-Wallis chi-squared = 30, df = 4, p-value = 4e-05

Obviously, there is a significant performance difference between students who complete their homework and
those who do not. But what could Paul actually conclude? At first, he was pleased that the homework appeared so
effective. Then it dawned on him that this was a classic error in statistical reasoning: he assumed that correlation
implied causality. It does not, of course. Perhaps strongly motivated students do well on both homework and
exams, whereas lazy students do not. In that case, the causal factor is degree of motivation, not the brilliance of
the homework selection. In the end, he could only conclude something very simple—students who complete the
homework will likely do well on the midterm exam—but he still doesn’t really know why.

Comparing Models by Using ANOVA

Problem
You have two models of the same data, and you want to know whether they produce different results.

Solution
The anova function can compare two models and report if they are significantly different:

anova(m1, m2)

Here, m1 and m2 are both model objects returned by lm. The output from anova includes a p-value.
Conventionally, a p-value of less than 0.05 indicates that the models are significantly different, whereas a value
exceeding 0.05 provides no such evidence.

Discussion
In “Getting Regression Statistics”, we used the anova function to print the ANOVA table for one regression
model. Now we are using the two-argument form to compare two models.

The anova function has one strong requirement when comparing two models: one model must be contained
within the other. That is, all the terms of the smaller model must appear in the larger model. Otherwise, the
comparison is impossible.

The ANOVA analysis performs an F test that is similar to the F test for a linear regression. The difference is that
this test is between two models, whereas the regression F test is between using the regression model and using
no model.

Suppose we build three models of y, adding terms as we go:

load(file = './data/anova2.rdata') 

m1 <- lm(y ~ u) 

m2 <- lm(y ~ u + v) 

m3 <- lm(y ~ u + v + w)

Is m2 really different from m1? We can use anova to compare them, and the result is a p-value of 0.0091:

anova(m1, m2) 

#> Analysis of Variance Table 

#> 

#> Model 1: y ~ u 

#> Model 2: y ~ u + v 

#>   Res.Df RSS Df Sum of Sq    F Pr(>F) 

#> 1     18 197 

#> 2     17 130  1      66.4 8.67 0.0091 ** 



#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The small p-value indicates that the models are significantly different. Comparing m2 and m3, however, yields a
p-value of 0.055:

anova(m2, m3) 

#> Analysis of Variance Table 

#> 

#> Model 1: y ~ u + v 

#> Model 2: y ~ u + v + w 

#>   Res.Df RSS Df Sum of Sq    F Pr(>F) 

#> 1     17 130 

#> 2     16 103  1      27.5 4.27  0.055 . 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is right on the edge. Strictly speaking, it does not pass our requirement of being smaller than 0.05; however,
it’s close enough that you might judge the models to be “different enough.”

This example is a bit contrived, so it does not show the larger power of anova. We use anova when, while
experimenting with complicated models by adding and deleting multiple terms, we need to know whether or not
the new model is really different from the original one. In other words: if we add terms and the new model is
essentially unchanged, then the extra terms are not worth the additional complications.

Unless you performed the linear regression without an intercept term (see “Performing Linear Regression Without an Intercept”).

The significance level of α = 0.05 is the convention observed in this book. Your application might instead use α = 0.10, α = 0.01, or some other
value. See the introduction to Chapter 9.

In the words of Mark Twain, “October: This is one of the peculiarly dangerous months to speculate in stocks in. The others are July, January,
September, April, November, May, March, June, December, August, and February.”

1

2

3



Chapter 12. Useful Tricks

The recipes in this chapter are neither obscure numerical calculations nor deep statistical techniques. Yet they
are useful functions and idioms that you will likely need at one time or another.

Peeking at Your Data

Problem
You have a lot of data—too much to display at once. Nonetheless, you want to see some of the data.

Solution
Use head to view the first few data values or rows:

head(x) 

Use tail to view the last few data values or rows:

tail(x) 

Or you can view the whole thing in an interactive viewer in RStudio:

View(x) 

Discussion
Printing a large dataset is pointless because everything just rolls off your screen. Use head to see a little bit of
the data (six rows by default):

load(file = './data/lab_df.rdata') 

head(lab_df) 

#>         x lab      y 

#> 1  0.0761  NJ  1.621 

#> 2  1.4149  KY 10.338 

#> 3  2.5176  KY 14.284 

#> 4 -0.3043  KY  0.599 

#> 5  2.3916  KY 13.091 

#> 6  2.0602  NJ 16.321

Use tail to see the last few rows and the number of rows:

tail(lab_df) 

#>          x lab      y 

#> 195  7.353  KY 38.880 

#> 196 -0.742  KY -0.298 

#> 197  2.116  NJ 11.629 

#> 198  1.606  KY  9.408 

#> 199 -0.523  KY -1.089 

#> 200  0.675  KY  5.808

Both head and tail allow you to pass a number to the function to set the number of rows returned:

tail(lab_df, 2) 

#>          x lab     y 



#> 199 -0.523  KY -1.09 

#> 200  0.675  KY  5.81

RStudio comes with an interactive viewer built in. You can call the viewer from the console or a script:

View(lab_df)

Or you can pipe an object to the viewer:

lab_df %>% 

  View()

When piping to View you will notice that the viewer names the View tab simply . (just a dot). To get a more
informative name, you can put a descriptive name in quotes:

lab_df %>% 

  View("lab_df test from pipe")

The resulting RStudio viewer is shown in Figure 12-1.

Figure 12-1. RStudio viewer



See Also
See “Revealing the Structure of an Object” for seeing the structure of your variable’s contents.

Printing the Result of an Assignment

Problem
You are assigning a value to a variable and you want to see its value.

Solution
Simply put parentheses around the assignment:

x <- 1/pi            # Prints nothing 

(x <- 1/pi)          # Prints assigned value 

#> [1] 0.318

Discussion
Normally, R inhibits printing when it sees you enter a simple assignment. When you surround the assignment
with parentheses, however, it is no longer a simple assignment and so R prints the value. This can be very handy
for quick debugging in a script.

See Also
See “Printing Something to the Screen” for more ways to print things.

Summing Rows and Columns

Problem
You want to sum the rows or columns of a matrix or data frame.

Solution
Use rowSums to sum the rows:

rowSums(m) 

Use colSums to sum the columns:

colSums(m) 

Discussion
This is a mundane recipe, but it’s so common that it deserves mentioning. We use this recipe, for example, when
producing reports that include column totals. In this example, daily.prod is a record of this week’s factory
production and we want totals by product and by day:

load(file = './data/daily.prod.rdata') 

daily.prod 

#>     Widgets Gadgets Thingys 

#> Mon     179     167     182 

#> Tue     153     193     166 

#> Wed     183     190     170 



#> Thu     153     161     171 

#> Fri     154     181     186 

colSums(daily.prod) 

#> Widgets Gadgets Thingys 

#>     822     892     875 

rowSums(daily.prod) 

#> Mon Tue Wed Thu Fri 

#> 528 512 543 485 521

These functions return a vector. In the case of column sums, we can append the vector to the matrix and thereby
neatly print the data and totals together:

rbind(daily.prod, Totals=colSums(daily.prod)) 

#>        Widgets Gadgets Thingys 

#> Mon        179     167     182 

#> Tue        153     193     166 

#> Wed        183     190     170 

#> Thu        153     161     171 

#> Fri        154     181     186 

#> Totals     822     892     875

Printing Data in Columns

Problem
You have several parallel data vectors, and you want to print them in columns.

Solution
Use cbind to form the data into columns, then print the result.

Discussion
When you have parallel vectors, it’s difficult to see their relationship if you print them separately:

load(file = './data/xy.rdata') 

print(x) 

#>  [1] -0.626  0.184 -0.836  1.595  0.330 -0.820  0.487  0.738  0.576 -0.305 

print(y) 

#>  [1]  1.5118  0.3898 -0.6212 -2.2147  1.1249 -0.0449 -0.0162  0.9438 

#>  [9]  0.8212  0.5939

Use the cbind function to form them into columns that, when printed, show the data’s structure:

print(cbind(x,y)) 

#>            x       y 

#>  [1,] -0.626  1.5118 

#>  [2,]  0.184  0.3898 

#>  [3,] -0.836 -0.6212 

#>  [4,]  1.595 -2.2147 

#>  [5,]  0.330  1.1249 

#>  [6,] -0.820 -0.0449 

#>  [7,]  0.487 -0.0162 

#>  [8,]  0.738  0.9438 

#>  [9,]  0.576  0.8212 

#> [10,] -0.305  0.5939

You can include expressions in the output, too. Use a tag to give them a column heading:

print(cbind(x, y, Total = x + y)) 

#>            x       y  Total 

#>  [1,] -0.626  1.5118  0.885 



#>  [2,]  0.184  0.3898  0.573 

#>  [3,] -0.836 -0.6212 -1.457 

#>  [4,]  1.595 -2.2147 -0.619 

#>  [5,]  0.330  1.1249  1.454 

#>  [6,] -0.820 -0.0449 -0.865 

#>  [7,]  0.487 -0.0162  0.471 

#>  [8,]  0.738  0.9438  1.682 

#>  [9,]  0.576  0.8212  1.397 

#> [10,] -0.305  0.5939  0.289

Binning Your Data

Problem
You have a vector, and you want to split the data into groups according to intervals. Statisticians call this binning
your data.

Solution
Use the cut function. You must define a vector, say breaks, that gives the ranges of the intervals. The cut
function will group your data according to those intervals. It returns a factor whose levels (elements) identify
each datum’s group:

f <- cut(x, breaks)

Discussion
This example generates 1,000 random numbers that have a standard normal distribution. It breaks them into six
groups by defining intervals at ±1, ±2, and ±3 standard deviations:

x <- rnorm(1000) 

breaks <- c(-3, -2, -1, 0, 1, 2, 3) 

f <- cut(x, breaks)

The result is a factor, f, that identifies the groups. The summary function shows the number of elements by level.
R creates names for each level, using the mathematical notation for an interval:

summary(f) 

#> (-3,-2] (-2,-1]  (-1,0]   (0,1]   (1,2]   (2,3]    NA's 

#>      25     147     341     332     132      18       5

The results are bell-shaped, which is what we expect from the rnorm function. There are five NA values,
indicating that two values in x fell outside the defined intervals.

We can use the labels parameter to give nice, predefined names to the six groups instead of the funky
synthesized names:

f <- cut(x, breaks, labels = c("Bottom", "Low", "Neg", "Pos", "High", "Top"))

Now the summary function uses our names:

summary(f) 

#> Bottom    Low    Neg    Pos   High    Top   NA's 

#>     25    147    341    332    132     18      5

Binning is useful for summaries such as histograms. But it results in information loss, which can be harmful in
modeling. Consider the extreme case of binning a continuous variable into two values, high and low. The binned



data has only two possible values, so you have replaced a rich source of information with one bit of information.
Where the continuous variable might be a powerful predictor, the binned variable can distinguish at most two
states and so will likely have only a fraction of the original power. Before you bin, we suggest exploring other
transformations that are less lossy.

Finding the Position of a Particular Value

Problem
You have a vector. You know a particular value occurs in the contents, and you want to know its position.

Solution
The match function will search a vector for a particular value and return the position:

vec <- c(100, 90, 80, 70, 60, 50, 40, 30, 20, 10) 

match(80, vec) 

#> [1] 3

Here match returns 3, which is the position of 80 within vec.

Discussion
There are special functions for finding the location of the minimum and maximum values—which.min and
which.max, respectively:

vec <- c(100,90,80,70,60,50,40,30,20,10) 

which.min(vec)          # Position of smallest element 

#> [1] 10 

which.max(vec)          # Position of largest element 

#> [1] 1

See Also
This technique is used in “Finding the Best Power Transformation (Box–Cox Procedure)”.

Selecting Every nth Element of a Vector

Problem
You want to select every nth element of a vector.

Solution
Create a logical indexing vector that is TRUE for every nth element. One approach is to find all subscripts that
equal zero when taken modulo n:

v[seq_along(v) %% n == 0]

Discussion
This problem arises in systematic sampling: we want to sample a dataset by selecting every nth element. The
seq_along(v) function generates the sequence of integers that can index v; it is equivalent to 1:length(v). We
compute each index value modulo n by the expression:



v <- rnorm(10) 

n <- 2 

seq_along(v) %% n 

#>  [1] 1 0 1 0 1 0 1 0 1 0

Then we find those values that equal zero:

seq_along(v) %% n == 0 

#>  [1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE

The result is a logical vector, the same length as v and with TRUE at every nth element, that can index v to select
the desired elements:

v 

#>  [1]  2.325  0.524  0.971  0.377 -0.996 -0.597  0.165 -2.928 -0.848  0.799 

v[ seq_along(v) %% n == 0 ] 

#> [1]  0.524  0.377 -0.597 -2.928  0.799

If you just want something simple like every second element, you can use the Recycling Rule in a clever way.
Index v with a two-element logical vector, like this:

v[c(FALSE, TRUE)] 

#> [1]  0.524  0.377 -0.597 -2.928  0.799

If v has more than two elements, then the indexing vector is too short. Hence, R will invoke the Recycling Rule
and expand the index vector to the length of v, recycling its contents. That gives an index vector that is FALSE,
TRUE, FALSE, TRUE, FALSE, TRUE, and so forth. Voilà! The final result is every second element of v.

See Also
See “Understanding the Recycling Rule” for more about the Recycling Rule.

Finding Minimums or Maximums

Problem
You have two vectors, v and w, and you want to find the minimums or the maximums of pairwise elements. That
is, you want to calculate:

min(v1, w1), min(v2, w2), min(v3, w3), …

or:

max(v1, w1), max(v2, w2), max(v3, w3), …

Solution
R calls these the parallel minimum and the parallel maximum. The calculation is performed by pmin(v,w) and
pmax(v,w), respectively:

pmin(1:5, 5:1)    # Find the element-by-element minimum 

#> [1] 1 2 3 2 1 

pmax(1:5, 5:1)    # Find the element-by-element maximum 

#> [1] 5 4 3 4 5

Discussion



When an R beginner wants pairwise minimums or maximums, a common mistake is to write min(v,w) or
max(v,w). Those are not pairwise operations: min(v,w) returns a single value, the minimum over all v and w.
Likewise, max(v,w) returns a single value from all of v and w.

The pmin and pmax values compare their arguments in parallel, picking the minimum or maximum for each
subscript. They return a vector that matches the length of the inputs.

You can combine pmin and pmax with the Recycling Rule to perform useful hacks. Suppose the vector v contains
both positive and negative values, and you want to reset the negative values to zero. This does the trick:

v <- c(-3:3) 

v 

#> [1] -3 -2 -1  0  1  2  3 

v <- pmax(v, 0) 

v 

#> [1] 0 0 0 0 1 2 3

By the Recycling Rule, R expands the zero-valued scalar into a vector of zeros that is the same length as v. Then
pmax does an element-by-element comparison, taking the larger of zero and each element of v.

Actually, pmin and pmax are more powerful than the Solution indicates. They can take more than two vectors,
comparing all vectors in parallel.

It is not uncommon to use pmin or pmax to calculate a new variable in a data frame based on multiple fields.
Let’s look at a quick example:

df <- data.frame(a = c(1,5,8), 

                 b = c(2,3,7), 

                 c = c(0,4,9)) 

df %>% 

  mutate(max_val = pmax(a,b,c)) 

#>   a b c max_val 

#> 1 1 2 0       2 

#> 2 5 3 4       5 

#> 3 8 7 9       9

We can see the new column, max_val, now contains the row-by-row max value from the three input columns.

See Also
See “Understanding the Recycling Rule” for more about the Recycling Rule.

Generating All Combinations of Several Variables

Problem
You have two or more variables. You want to generate all combinations of their levels, also known as their
Cartesian product.

Solution
Use the expand.grid function. Here, f and g are vectors:

expand.grid(f, g)

Discussion



This code snippet creates two vectors—sides represents the two sides of a coin, and faces represents the six
faces of a die (those little spots on a die are called pips):

sides <- c("Heads", "Tails") 

faces <- c("1 pip", paste(2:6, "pips"))

We can use expand.grid to find all combinations of one roll of the die and one coin toss:

expand.grid(faces, sides) 

#>      Var1  Var2 

#> 1   1 pip Heads 

#> 2  2 pips Heads 

#> 3  3 pips Heads 

#> 4  4 pips Heads 

#> 5  5 pips Heads 

#> 6  6 pips Heads 

#> 7   1 pip Tails 

#> 8  2 pips Tails 

#> 9  3 pips Tails 

#> 10 4 pips Tails 

#> 11 5 pips Tails 

#> 12 6 pips Tails

Similarly, we could find all combinations of two dice, but we won’t print the output here because it’s 36 lines
long:

expand.grid(faces, faces)

The result of expand.grid is a data frame. R automatically provides the row names and column names.

The Solution and the example show the Cartesian product of two vectors, but expand.grid can handle three or
more factors, too.

See Also
If you’re working with strings and want a bit more control over how you bring the combinations together, then
you can also use “Generating All Pairwise Combinations of Strings” to generate combinations.

Flattening a Data Frame

Problem
You have a data frame of numeric values. You want to process all its elements together, not as separate columns
—for example, to find the mean across all values.

Solution
Convert the data frame to a matrix and then process the matrix. This example finds the mean of all elements in
the data frame dfrm:

mean(as.matrix(dfrm))

It is sometimes necessary then to convert the matrix to a vector. In that case, use
as.vector(as.matrix(dfrm)).

Discussion



Suppose we have a data frame, such as the factory production data from “Summing Rows and Columns”:

load(file = './data/daily.prod.rdata') 

daily.prod 

#>     Widgets Gadgets Thingys 

#> Mon     179     167     182 

#> Tue     153     193     166 

#> Wed     183     190     170 

#> Thu     153     161     171 

#> Fri     154     181     186

Suppose also that we want the average daily production across all days and products. This won’t work:

mean(daily.prod) 

#> Warning in mean.default(daily.prod): argument is not numeric or logical: 

#> returning NA 

#> [1] NA

The mean function doesn’t really know what to do with a data frame, so it just throws an error. When you want
the average across all values, first collapse the data frame down to a matrix:

mean(as.matrix(daily.prod)) 

#> [1] 173

This recipe works only on data frames with all-numeric data. Recall that converting a data frame with mixed
data (numeric columns mixed with character columns or factors) into a matrix forces all columns to be
converted to characters.

See Also
See “Converting One Structured Data Type into Another” for more about converting between data types.

Sorting a Data Frame

Problem
You have a data frame. You want to sort the contents, using one column as the sort key.

Solution
Use the arrange function from the dplyr package:

df <- arrange(df, key)

Here df is a data frame and key is the sort-key column.

Discussion
The sort function is great for vectors but is ineffective for data frames. Suppose we have the following data
frame and we want to sort by month:

load(file = './data/outcome.rdata') 

print(df) 

#>   month day outcome 

#> 1     7  11     Win 

#> 2     8  10    Lose 

#> 3     8  25     Tie 



#> 4     6  27     Tie 

#> 5     7  22     Win

The arrange function rearranges the months into ascending order and returns the entire data frame:

library(dplyr) 

arrange(df, month) 

#>   month day outcome 

#> 1     6  27     Tie 

#> 2     7  11     Win 

#> 3     7  22     Win 

#> 4     8  10    Lose 

#> 5     8  25     Tie

After rearranging the data frame, the month column is in ascending order—just as we wanted. If you want to sort
the data in descending order, put a - in front of the column you want to sort by:

arrange(df,-month) 

#>   month day outcome 

#> 1     8  10    Lose 

#> 2     8  25     Tie 

#> 3     7  11     Win 

#> 4     7  22     Win 

#> 5     6  27     Tie

If you want to sort by multiple columns, you can add them to the arrange function. The following example sorts
by month first, then by day:

arrange(df, month, day) 

#>   month day outcome 

#> 1     6  27     Tie 

#> 2     7  11     Win 

#> 3     7  22     Win 

#> 4     8  10    Lose 

#> 5     8  25     Tie

Within months 7 and 8, the days are now sorted into ascending order.

Stripping Attributes from a Variable

Problem
A variable is carrying around old attributes. You want to remove some or all of them.

Solution
To remove all attributes, assign NULL to the variable’s attributes property:

attributes(x) <- NULL

To remove a single attribute, select the attribute using the attr function, and set it to NULL:

attr(x, "attributeName") <- NULL

Discussion
Any variable in R can have attributes. An attribute is simply a name/value pair, and the variable can have many
of them. A common example is the dimensions of a matrix variable, which are stored in an attribute. The



attribute name is dim and the attribute value is a two-element vector giving the number of rows and columns.

You can view the attributes of x by printing attributes(x) or str(x).

Sometimes you want just a number and R insists on giving it attributes. This can happen when you fit a simple
linear model and extract the slope, which is the second regression coefficient:

load(file = './data/conf.rdata') 

m <- lm(y ~ x1) 

slope <- coef(m)[2] 

slope 

#>  x1 

#> -11

When we print slope, R also prints "x1". That is a name attribute given by lm to the coefficient (because it’s the
coefficient for the x1 variable). We can see that more clearly by printing the internals of slope, which reveals a
"names" attribute:

str(slope) 

#>  Named num -11 

#>  - attr(*, "names")= chr "x1"

It’s easy to strip out all the attributes, after which the slope value becomes simply a number:

attributes(slope) <- NULL    # Strip off all attributes 

str(slope)                   # Now the "names" attribute is gone 

#>  num -11 

 

slope                        # And the number prints cleanly without a label 

#> [1] -11

Alternatively, we could have stripped out the single offending attribute this way:

attr(slope, "names") <- NULL

WARNING
Remember that a matrix is a vector (or list) with a dim attribute. If you strip out all the attributes from a matrix, that will strip away the
dimensions and thereby turn it into a mere vector (or list). Furthermore, stripping the attributes from an object (specifically, an S3
object) can render it useless. So, remove attributes with care.

See Also
See “Revealing the Structure of an Object” for more about seeing attributes.

Revealing the Structure of an Object

Problem
You called a function that returned something. Now you want to look inside that something and learn more about
it.

Solution
Use class to determine the thing’s object class:

class(x) 



Use mode to strip away the object-oriented features and reveal the underlying structure:

mode(x) 

Use str to show the internal structure and contents:

str(x) 

Discussion
We are regularly amazed by how often we call a function, get something back, and wonder: “What the heck is
this thing?” Theoretically, the function documentation should explain the returned value, but somehow we feel
better when we can see its structure and contents ourselves. This is especially true for objects with a nested
structure: objects within objects.

Let’s dissect the value returned by lm (the linear modeling function) in the simplest linear regression recipe,
“Performing Simple Linear Regression”:

load(file = './data/conf.rdata') 

m <- lm(y ~ x1) 

print(m) 

#> 

#> Call: 

#> lm(formula = y ~ x1) 

#> 

#> Coefficients: 

#> (Intercept)           x1 

#>        15.9        -11.0

Always start by checking the thing’s class. The class indicates if it’s a vector, matrix, list, data frame, or object:

class(m) 

#> [1] "lm"

Hmmm. It seems that m is an object of class lm. That may not mean anything to you but we know that all object
classes are built upon the native data structures (vector, matrix, list, or data frame). We can use mode to strip
away the object facade and reveal the underlying structure:

mode(m) 

#> [1] "list"

Ah-ha! It seems that m is built on a list structure. Now we can use list functions and operators to dig into its
contents. First, we want to know the names of its list elements:

names(m) 

#>  [1] "coefficients"  "residuals"     "effects"       "rank" 

#>  [5] "fitted.values" "assign"        "qr"            "df.residual" 

#>  [9] "xlevels"       "call"          "terms"         "model"

The first list element is called "coefficients". We could guess those are the regression coefficients. Let’s have
a look:

m$coefficients 

#> (Intercept)          x1 

#>        15.9       -11.0

Yes, that’s what they are. We recognize those values.



We could continue digging into the list structure of m, but that would get tedious. The str function does a good
job of revealing the internal structure of any variable:

str(m) 

#> List of 12 

#>  $ coefficients : Named num [1:2] 15.9 -11 

#>   ..- attr(*, "names")= chr [1:2] "(Intercept)" "x1" 

#>  $ residuals    : Named num [1:30] 36.6 58.6 112.1 -35.2 -61.7 ... 

#>   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ... 

#>  $ effects      : Named num [1:30] -73.1 69.3 93.9 -31.1 -66.3 ... 

#>   ..- attr(*, "names")= chr [1:30] "(Intercept)" "x1" "" "" ... 

#>  $ rank         : int 2 

#>  $ fitted.values: Named num [1:30] 25.69 13.83 -1.55 28.25 16.74 ... 

#>   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ... 

#>  $ assign       : int [1:2] 0 1 

#>  $ qr           :List of 5 

#>   ..$ qr   : num [1:30, 1:2] -5.477 0.183 0.183 0.183 0.183 ... 

#>   .. ..- attr(*, "dimnames")=List of 2 

#>   .. .. ..$ : chr [1:30] "1" "2" "3" "4" ... 

#>   .. .. ..$ : chr [1:2] "(Intercept)" "x1" 

#>   .. ..- attr(*, "assign")= int [1:2] 0 1 

#>   ..$ qraux: num [1:2] 1.18 1.02 

#>   ..$ pivot: int [1:2] 1 2 

#>   ..$ tol  : num 1e-07 

#>   ..$ rank : int 2 

#>   ..- attr(*, "class")= chr "qr" 

#>  $ df.residual  : int 28 

#>  $ xlevels      : Named list() 

#>  $ call         : language lm(formula = y ~ x1) 

#>  $ terms        :Classes 'terms', 'formula'  language y ~ x1 

#>   .. ..- attr(*, "variables")= language list(y, x1) 

#>   .. ..- attr(*, "factors")= int [1:2, 1] 0 1 

#>   .. .. ..- attr(*, "dimnames")=List of 2 

#>   .. .. .. ..$ : chr [1:2] "y" "x1" 

#>   .. .. .. ..$ : chr "x1" 

#>   .. ..- attr(*, "term.labels")= chr "x1" 

#>   .. ..- attr(*, "order")= int 1 

#>   .. ..- attr(*, "intercept")= int 1 

#>   .. ..- attr(*, "response")= int 1 

#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 

#>   .. ..- attr(*, "predvars")= language list(y, x1) 

#>   .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric" 

#>   .. .. ..- attr(*, "names")= chr [1:2] "y" "x1" 

#>  $ model        :'data.frame':   30 obs. of  2 variables: 

#>   ..$ y : num [1:30] 62.25 72.45 110.59 -6.94 -44.99 ... 

#>   ..$ x1: num [1:30] -0.8969 0.1848 1.5878 -1.1304 -0.0803 ... 

#>   ..- attr(*, "terms")=Classes 'terms', 'formula'  language y ~ x1 

#>   .. .. ..- attr(*, "variables")= language list(y, x1) 

#>   .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1 

#>   .. .. .. ..- attr(*, "dimnames")=List of 2 

#>   .. .. .. .. ..$ : chr [1:2] "y" "x1" 

#>   .. .. .. .. ..$ : chr "x1" 

#>   .. .. ..- attr(*, "term.labels")= chr "x1" 

#>   .. .. ..- attr(*, "order")= int 1 

#>   .. .. ..- attr(*, "intercept")= int 1 

#>   .. .. ..- attr(*, "response")= int 1 

#>   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 

#>   .. .. ..- attr(*, "predvars")= language list(y, x1) 

#>   .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric" 

#>   .. .. .. ..- attr(*, "names")= chr [1:2] "y" "x1" 

#>  - attr(*, "class")= chr "lm"

Notice that str shows all the elements of m and then recursively dumps each element’s contents and attributes.
Long vectors and lists are truncated to keep the output manageable.

There is an art to exploring an R object. Use class, mode, and str to dig through the layers. We have found that
often str tells you everything you want to know…and sometimes a lot more!



Timing Your Code

Problem
You want to know how much time is required to run your code. This is useful, for example, when you are
optimizing your code and need “before” and “after” numbers to measure the improvement.

Solution
The tictoc package contains a very easy way to time and label chunks of code. The tic function starts a timer
and the toc function stops the timer and reports the execution time:

library(tictoc) 

tic('Optional helpful name here') 

aLongRunningExpression() 

toc() 

The output is the execution time in seconds.

Discussion
Suppose we want to know the time required to generate 10,000,000 random normal numbers and sum them
together:

library(tictoc) 

tic('making big numbers') 

total_val <- sum(rnorm(1e7)) 

toc() 

#> making big numbers: 0.794 sec elapsed

The toc function returns the message set in tic along with the runtime in seconds.

If you assign the result of toc to an object, you can have access to the underlying start time, finish time, and
message:

tic('two sums') 

sum(rnorm(10000000)) 

#> [1] -84.1 

sum(rnorm(10000000)) 

#> [1] -3899 

toc_result <- toc() 

#> two sums: 1.373 sec elapsed 

 

print(toc_result) 

#> $tic 

#> elapsed 

#>    2.64 

#> 

#> $toc 

#> elapsed 

#>    4.01 

#> 

#> $msg 

#> [1] "two sums"

If you want to report the results in minutes (or hours!), you can use the elements of the output to get at the
underlying start and finish times:

print(paste('the code ran in', 

            round((toc_result$toc -  toc_result$tic) / 60, 4), 



            'minutes')) 

#> [1] "the code ran in 0.0229 minutes"

You can accomplish the same thing using just Sys.time calls, but without the convenience of labeling and
clarity of syntax provided by toctoc:

start <- Sys.time() 

sum(rnorm(10000000)) 

#> [1] 3607 

sum(rnorm(10000000)) 

#> [1] 1893 

Sys.time() - start 

#> Time difference of 1.37 secs

Suppressing Warnings and Error Messages

Problem
A function is producing annoying error messages or warning messages. You don’t want to see them.

Solution
Surround the function call with suppressMessage(…) or suppressWarnings(…):

suppressMessage(annoyingFunction()) 

suppressWarnings(annoyingFunction())

Discussion
The Augmented Dickey–Fuller Test, adf.test, is a popular time series function. However, it produces an
annoying warning message, shown here at the bottom of the output, when the p-value is below 0.01:

library(tseries) 

load(file = './data/adf.rdata') 

results <- adf.test(x) 

#> Warning in adf.test(x): p-value smaller than printed p-value

Fortunately, we can muzzle the function by calling it inside suppressWarnings(…):

results <- suppressWarnings(adf.test(x))

Notice that the warning message disappeared. The message is not entirely lost because R retains it internally. We
can retrieve the message at our leisure by using the warnings function:

warnings()

Some functions also produce “messages” (in R terminology), which are even more benign than warnings.
Typically, they are merely informative and not signals of problems. If such a message is annoying you, you can
make it disappear by calling the function inside suppressMessages(...).

See Also
See the options function for other ways to control the reporting of errors and warnings.

Taking Function Arguments from a List



Problem
Your data is captured in a list structure. You want to pass the data to a function, but the function does not accept a
list.

Solution
In simple cases, convert the list to a vector. For more complex cases, the do.call function can break the list into
individual arguments and call your function:

do.call(function, list) 

Discussion
If your data is in a vector, life is simple and most R functions work as expected:

vec <- c(1, 3, 5, 7, 9) 

mean(vec) 

#> [1] 5

If your data is captured in a list, some functions complain and return a useless result, like this:

numbers <- list(1, 3, 5, 7, 9) 

mean(numbers) 

#> Warning in mean.default(numbers): argument is not numeric or logical: 

#> returning NA 

#> [1] NA

The numbers list is a simple, one-level list, so we can just convert it to a vector and call the function:

mean(unlist(numbers)) 

#> [1] 5

The big headaches come when you have multilevel list structures: lists within lists. These can occur within
complex data structures. Here is a list of lists in which each sublist is a column of data:

my_lists <- 

  list(col1 = list(7, 8), 

       col2 = list(70, 80), 

       col3 = list(700, 800)) 

my_lists 

#> $col1 

#> $col1[[1]] 

#> [1] 7 

#> 

#> $col1[[2]] 

#> [1] 8 

#> 

#> 

#> $col2 

#> $col2[[1]] 

#> [1] 70 

#> 

#> $col2[[2]] 

#> [1] 80 

#> 

#> 

#> $col3 

#> $col3[[1]] 

#> [1] 700 

#> 

#> $col3[[2]] 

#> [1] 800



Suppose we want to form this data into a matrix. The cbind function is supposed to create data columns, but it
gets confused by the list structure and returns something useless:

cbind(my_lists) 

#>      my_lists 

#> col1 List,2 

#> col2 List,2 

#> col3 List,2

If we unlist the data then we just get one big, long column, which is not what we are after either:

cbind(unlist(my_lists)) 

#>       [,1] 

#> col11    7 

#> col12    8 

#> col21   70 

#> col22   80 

#> col31  700 

#> col32  800

The solution is to use do.call, which splits the list into individual items and then calls cbind on those items:

do.call(cbind, my_lists) 

#>      col1 col2 col3 

#> [1,] 7    70   700 

#> [2,] 8    80   800

Using do.call in that way is functionally identical to calling cbind like this:

cbind(my_lists[[1]], my_lists[[2]], my_lists[[3]]) 

#>      [,1] [,2] [,3] 

#> [1,] 7    70   700 

#> [2,] 8    80   800

WARNING
Be careful if the list elements have names. In that case, do.call interprets the element names as names of parameters to the function,
which might cause trouble.

This recipe presents the most basic use of do.call. The function is quite powerful and has many other uses. See
the help page for more details.

See Also
See “Converting One Structured Data Type into Another” for converting between data types.

Defining Your Own Binary Operators

Problem
You want to define your own binary operators, making your R code more streamlined and readable.

Solution
R recognizes any text between percent signs (%…%) as a binary operator. Create and define a new binary operator
by assigning a two-argument function to it.



Discussion
R contains an interesting feature that lets you define your own binary operators. Any text between two percent
signs (%…%) is automatically interpreted by R as a binary operator. R predefines several such operators, such as
%/% for integer division, %*% for matrix multiplication, and the pipe %>% in the magrittr package.

You can create a new binary operator by assigning a function to it. This example creates an operator, %+-%:

'%+-%' <- function(x, margin) 

  x + c(-1, +1) * margin

The expression x %+-% m calculates x ± m. Here it calculates 100 ± (1.96 × 15), the two-standard-deviation range
of a standard IQ test:

100 %+-% (1.96 * 15) 

#> [1]  70.6 129.4

Notice that we quote the binary operator when defining it but not when using it.

The pleasure of defining your own operators is that you can wrap commonly used operations inside a succinct
syntax. If your application frequently concatenates two strings without an intervening blank, then you might
define a binary concatenation operator for that purpose:

'%+%' <- function(s1, s2) 

  paste(s1, s2, sep = "") 

"Hello" %+% "World" 

#> [1] "HelloWorld" 

"limit=" %+% round(qnorm(1 - 0.05 / 2), 2) 

#> [1] "limit=1.96"

A danger of defining your own operators, however, is that the code becomes less portable to other environments.
Bring the definitions along with the code in which they are used; otherwise, R will complain about undefined
operators.

All user-defined operators have the same precedence and are listed collectively in Table 2-1 as %any%. Their
precedence is fairly high: higher than multiplication and division but lower than exponentiation and sequence
creation. As a result, it’s easy to misexpress yourself. If we omit parentheses from the %+-% example, we get an
unexpected result:

100 %+-% 1.96 * 15 

#> [1] 1471 1529

R interpreted the expression as (100 %+-% 1.96) * 15.

See Also
See “Getting Operator Precedence Right” for more about operator precedence and “Defining a Function” for how
to define a function.

Suppressing the Startup Message

Problem
When you run R from a command prompt or shell script, you are tired of seeing R’s verbose startup message.

Solution



Use the --quiet command-line option when you start R from the command line or a shell script.

Discussion
The startup message from R is handy for beginners because it contains useful information about the R project
and getting help. But the novelty wears off pretty quickly—especially if you start R from a shell prompt to use it
as a calculator throughout the day. This is not particularly helpful if you’re using R only from RStudio.

If you start R from the shell prompt, use the --quiet option to hide the startup message:

R --quiet

On a Linux or Mac box, you could alias R like this from the shell so you never see the startup message:

alias R="/usr/bin/R --quiet"

Getting and Setting Environment Variables

Problem
You want to see the value of an environment variable, or you want to change its value.

Solution
Use the Sys.getenv function to see values. Use Sys.putenv to change them:

Sys.setenv(DB_PASSWORD = "My_Password!") 

Sys.getenv("DB_PASSWORD") 

#> [1] "My_Password!"

Discussion
Environment variables are often used to configure and control software. Each process has its own set of
environment variables, which are inherited from its parent process. You sometimes need to see the environment
variable settings for your R process in order to understand its behavior. Likewise, you sometimes need to change
those settings to modify that behavior.

A common use case is to store a username or password for use in accessing a remote database or cloud service.
It’s a really bad idea to store passwords in plain text in a project script. One way to avoid storing passwords in
your script is to set an environment variable containing your password when R starts.

To ensure your password and username are available at every R login, you can add calls to Sys.setenv in the
.Rprofile file in your home directory. .Rprofile is an R script that is run every time R starts.

For example, you could add the following to your .Rprofile:

Sys.setenv(DB_USERID = "Me") 

Sys.setenv(DB_PASSWORD = "My_Password!")

Then you could fetch and use the environment variables in a script to log into an Amazon Redshift database, for
example:

con <- DBI::dbConnect( 

  RPostgreSQL::PostgreSQL(), 

  dbname   = "my_database", 

  port     = 5439, 

  host     = "my_database.amazonaws.com", 

  user     = Sys.getenv("DB_USERID"), 



  password = Sys.getenv("DB_PASSWORD") 

)

See Also
See “Customizing R Startup” for more about changing configuration at startup.

Use Code Sections

Problem
You’ve got a long script and you’re finding it difficult to navigate from one section of code to the next.

Solution
Code sections provide section dividers in an outline pane on the side of your editor. To use code sections, simply
start a comment with # and then end the comment with ---- or #### or ====:

# My First Section      ----- 

x <- 1 

 

# My Second Section     #### 

y <- 2 

 

# My Third Section      ==== 

z <- 3

In the RStudio editor window you can see the outline on the righthand side (see Figure 12-2).

Figure 12-2. Code sections

Discussion
Code sections are just a specially formatted type of R comment since they start with the # symbol. If you open
your code with any editor other than RStudio, they are treated simply as code comments. But RStudio sees these
specially formatted code comments as section headers and creates a helpful outline in the side panel of the
editor.



TIP
The first time you use code sections, you may need to click the outline icon to the right of the Source button in order to show the
outline.

If you are writing R Markdown instead of a *.R script, your Markdown headings and subheadings will show up in
the outline pane, making navigating your document much easier.

See Also
See “Inserting Document Headings” for using section headings in R Markdown documents.

Executing R in Parallel Locally

Problem
You have code that takes a while to run, and you would like to speed it up by using more of the cores on your
local computer.

Solution
The easiest solution to get up and running with is to use the furrr package, which in turn uses the future
package to provide parallel processing via functions that feel like those from purrr except that they operate in
parallel.

You’ll want to download the latest development version from GitHub because the package is still under active
development as of this writing:

devtools::install_github("DavisVaughan/furrr")

To use furrr to parallelize our code, we call the furrr::future_map function in place of the purrr::map
function we discussed in “Applying a Function to Each List Element”. But first we have to tell furrr how we
want to parallelize. In this case we want a multiprocess parallel process that uses all our local processors, so
we set that up by calling plan(multiprocess). Then we can apply a function to every element in our list using
future_map:

library(furrr) 

 

plan(multiprocess) 

 

future_map(my_list, some_function)

Discussion
Let’s do an example simulation to illustrate parallelization. A classic stochastic simulation is to draw random
points inside of a 2 × 2 box and see how many points fall within one unit from the center of the box. The ratio of
points inside the box / total points multiplied by 4 is a good estimate of pi. The following function takes one
input, n_iterations, which is the number of random points to simulate. Then it returns the resulting average
estimate of pi:

simulate_pi <- function(n_iterations) { 

  rand_draws <- matrix(runif(2 * n_iterations, -1, 1), ncol = 2) 

  num_in <- sum(sqrt(rand_draws[, 1]**2 + rand_draws[, 2]**2) <= 1) 

  pi_hat <- (num_in / n_iterations) * 4 



  return(pi_hat) 

} 

simulate_pi(1000000) 

#> [1] 3.14

As you can see, even with 1,000,000 simulations the result is only accurate out to a couple of decimal points.
This is not a very efficient way to estimate pi, but it works for our illustration.

For the purpose of comparison later, let’s run 200 runs of this pi simulator where each run has 2,500,000
simulated points. We’ll do this by creating a list with 200 elements, each of which is the value 2,500,000, which
we will pass to simulate_pi. We’ll time the code with the tictoc package:

library(purrr) # for `map` 

library(tictoc) # for timing our code 

 

draw_list <- as.list(rep(5000000, 200)) 

 

tic("simulate pi - single process") 

sims_list <- map(draw_list, simulate_pi) 

toc() 

#> simulate pi - single process: 90.772 sec elapsed 

 

mean(unlist(sims_list)) 

#> [1] 3.14

That runs in less than two minutes and gives an estimate of pi based on a billion simulations (5m × 200).

Now let’s take the exact same process but run it through future_map to run it in parallel:

library(furrr) 

#> Loading required package: future 

#> 

#> Attaching package: 'future' 

#> The following object is masked from 'package:tseries': 

#> 

#>     value 

plan(multiprocess) 

 

tic("simulate pi - parallel") 

sims_list <- future_map(draw_list, simulate_pi) 

toc() 

#> simulate pi - parallel: 26.33 sec elapsed 

mean(unlist(sims_list)) 

#> [1] 3.14

The preceding example was run on a MacBook Pro with four physical cores and two virtual cores per physical
core. When you’re running code in parallel the best-case scenario is that the runtime is reduced by 1/(number of
physical cores). With four physical cores you can see the parallel runtime is much faster than the single-threaded
version, but not quite one-fourth the runtime of the single-threaded version. There is always some overhead from
moving the data around, so you will never experience the best-case scenario. And the more data each iteration
produces, the less speed improvement you will experience from parallelization.

See Also
See “Executing R in Parallel Remotely”.

Executing R in Parallel Remotely

Problem
You have access to a number of remote machines and you would like to run your code in parallel across them all.



Solution
Running code in parallel across multiple machines can be tricky to set up initially. However, if we start with a
few key prerequisites in place, the process has a much higher probability of success.

The starting prerequisites are:

You can ssh from your main machine to each remote node without a password using previously generated
SSH keys.

The remote nodes all have R installed (ideally the same version of R).

Paths are set such that you can run Rscript from SSH.

The remote nodes have the package furrr installed (which in turn installs future).

The remote nodes already have all the packages your distributed code depends on installed.

Once you have worker nodes that are set up and ready to go, you can create a cluster by calling
makeClusterPSOCK from the future package. Then use the resulting cluster with the furrr function
future_map:

library(furrr) # loads future as a dependency 

 

workers <- c("node_1.domain.com", "node_2.domain.com") 

 

cl <- makeClusterPSOCK( 

  worker = workers 

) 

 

plan(cluster, workers = cl) 

 

future_map(my_list, some_function)

Discussion
Suppose we have two big Linux machines named von-neumann12 and von-neumann15 that we can use to run
numerical models. These machines meet the criteria just listed, so they are good candidates to be our backend for
a furrr/future cluster. Let’s do the same pi simulation we did in the previous recipe using the simulate_pi
function:

library(tidyverse) 

library(furrr) 

library(tictoc) 

 

my_workers <- c('von-neumann12','von-neumann15') 

 

cl <- makeClusterPSOCK( 

  workers = my_workers, 

  rscript = '/home/anaconda2/bin/Rscript',  #yours may differ 

  verbose=TRUE 

) 

 

draw_list <- as.list(rep(5000000, 200)) 

 

plan(cluster, workers = cl) 

 

tic('simulate pi - parallel map') 

sims_list_parallel <- draw_list %>% 

  future_map(simulate_pi) 

toc() 

#> simulate pi - parallel map: 116.986 sec elapsed 

 

mean(unlist(sims_list_parallel)) 

#> [1] 3.14167



This is ~8.5 million sims per second.

The two nodes in our ad hoc cluster each have 32 processors and 128 GB of RAM. But if you compare the
runtime of the preceding code with the runtime of the prior recipe run on a humble MacBook Pro, you’ll notice
that the MacBook executed the code in about the same time as the multi-CPU Linux cluster with 64 total
processors! This unintuitive surprise happens because the preceding code runs only on one CPU per cluster node.
So, as a result, it uses only two CPUs, while the MacBook uses all four of its CPUs.

So how do we run parallel code on a cluster and have each node also run in parallel across multiple CPU cores?
To do that we need to make three changes to our code:

1. Create a nested parallel plan that uses both cluster and multiprocess.

2. Create an input list that is a nested list. Each cluster machine will get from the main list an item that
contains sublist items that it can process in parallel across all its CPUs.

3. Call future_map twice, using a nested call. The outer future_map will parallelize items across the cluster
nodes, and then the inner call will parallelize across the CPUs.

To created the nested parallel plan, we will create a multipart plan by passing a list of two plans to the plan
function like this:

plan(list(tweak(cluster, workers = cl), multiprocess))

The second change is to create the nested list to iterate on. We can do that by using the split command and
passing it our prior list followed by a vector of 1:4, like so:

split(draw_list, 1:4)

This will break the initial list into four sublists, so our resulting list will have four elements. Each sublist will
have 50 inputs for our final simulate_pi function.

The third change to our code is to create a nested future_map call that will pass each of our four list elements to
the worker nodes, which subsequently will iterate over the elements of each sublist. We create that nested
function like this:

future_map(draw_list, ~future_map(.,simulate_pi))

The ~ sets up R to expect an anonymous function inside the first future_map call, and the . tells R where to put
the list element. The anonymous function in this example is a separate call to future_map that gets executed on
each node.

Here are all three changes integrated into the code:

# nested parallel plan - the first part of the plan is the cluster call 

# followed by the multiprocess 

plan(list(tweak(cluster, workers = cl), multiprocess)) 

 

# break the draw_list into a nested list with fewer elements 

draw_list_nested <- split(draw_list, 1:4) 

 

tic('simulate pi - parallel nested map') 

sims_list_nested_parallel <- future_map( 

  draw_list_nested, ~future_map(.,simulate_pi) 

) 

toc() 

#> simulate pi - parallel nested map: 15.964 sec elapsed 

mean(unlist(sims_list_nested_parallel)) 

#> [1] 3.14158



You can see the runtime decreased substantially from the previous example, although with 32 processors on each
node, we’re not seeing a 32× improvement in runtime. This is because we’re passing only 50 sets of simulations
to each node. Each node runs 32 sets of simulations in the first pass but only 18 in the second pass, leaving half
the CPUs idle.

Let’s keep the CPUs a little busier by increasing our total simulations from 1 billion to 25 billion. Then we’ll
break them into 500 work blocks to be spread to the two worker nodes:

draw_list <- as.list(rep(5000000, 5000)) 

draw_list_nested <- split(draw_list, 1:50) 

 

plan(list(tweak(cluster, workers = cl), multiprocess)) 

 

tic('simulate pi - parallel nested map') 

sims_list_nested_parallel <- future_map( 

  draw_list_nested, ~future_map(.,simulate_pi) 

) 

toc() 

#> simulate pi - parallel nested map: 260.532 sec elapsed 

mean(unlist(sims_list_nested_parallel)) 

#> [1] 3.14157

This gives us ~ 96 million sims per second.

See Also
The future package has multiple excellent vignettes. To better understand the nested plan call, start with
vignette('future-3-topologies',package = 'future').

Further info about furrr can be found at its GitHub page.

https://github.com/DavisVaughan/furrr


Chapter 13. Beyond Basic Numerics and
Statistics

This chapter presents a few advanced techniques such as those you might encounter in the first or second year of
a graduate program in applied statistics.

Most of these recipes use functions available in the base distribution. Through add-on packages, R provides
some of the world’s most advanced statistical techniques. This is because researchers in statistics now use R as
their lingua franca, showcasing their newest work. Anyone looking for a cutting-edge statistical technique is
urged to search CRAN and the web for possible implementations.

Minimizing or Maximizing a Single-Parameter Function

Problem
Given a single-parameter function f, you want to find the point at which f reaches its minimum or maximum.

Solution
To minimize a single-parameter function, use optimize. Specify the function to be minimized and the bounds
for its domain (x):

optimize(f, lower = lowerBound, upper = upperBound) 

If you instead want to maximize the function, specify maximum = TRUE:

optimize(f, 

         lower = lowerBound, 

         upper = upperBound, 

         maximum = TRUE) 

Discussion
The optimize function can handle functions of one argument. It requires upper and lower bounds for x that
delimit the region to be searched. The following example finds the minimum of a polynomial, 3x4 – 2x3 + 3x2 –
4x + 5:

f <- function(x) 

  3 * x ^ 4 - 2 * x ^ 3 + 3 * x ^ 2 - 4 * x + 5 

optimize(f, lower = -20, upper = 20) 

#> $minimum 

#> [1] 0.597 

#> 

#> $objective 

#> [1] 3.64

The returned value is a list with two elements: minimum, the x value that minimizes the function; and objective,
the value of the function at that point.

A tighter range for lower and upper means a smaller region to be searched and hence a faster optimization.
However, if you are unsure of the appropriate bounds, use big but reasonable values such as lower = -1000 and



upper = 1000. Just be careful that your function does not have multiple minima within that range! The
optimize function will find and return only one such minimum.

See Also
See “Minimizing or Maximizing a Multiparameter Function”.

Minimizing or Maximizing a Multiparameter Function

Problem
Given a multiparameter function f, you want to find the point at which f reaches its minimum or maximum.

Solution
To minimize a multiparameter function, use optim. You must specify the starting point, which is a vector of
initial arguments for f:

optim(startingPoint, f) 

To maximize the function instead, specify this control parameter:

optim(startingPoint, f, control = list(fnscale = -1)) 

Discussion
The optim function is more general than optimize (see “Minimizing or Maximizing a Single-Parameter
Function”) because it handles multiparameter functions. To evaluate your function at a point, optim packs the
point’s coordinates into a vector and calls your function with that vector. The function should return a scalar
value. optim will begin at your starting point and move through the parameter space, searching for the function’s
minimum.

Here is an example of using optim to fit a nonlinear model. Suppose you believe that the paired observations z
and x are related by zi = (xi + α)β + εi, where α and β are unknown parameters and where the εi are nonnormal
noise terms. Let’s fit the model by minimizing a robust metric, the sum of the absolute deviations:

∑|z – (x + a)b|

First we define the function to be minimized. Note that the function has only one formal parameter, a two-
element vector. The actual parameters to be evaluated, a and b, are packed into the vector in locations 1 and 2:

load(file = './data/opt.rdata')  # loads x, y, z 

 

f <- 

  function(v) { 

    a <- v[1] 

    b <- v[2]                           # "unpack" v, giving a and b 

    sum(abs(z - ((x + a) ^ b)))         # calculate and return the error 

  }

The following code makes a call to optim, starts from (1, 1), and searches for the minimum point of f:

optim(c(1, 1), f) 

#> $par 

#> [1] 10.0  0.7 

#> 

#> $value 



#> [1] 1.26 

#> 

#> $counts 

#> function gradient 

#>      485       NA 

#> 

#> $convergence 

#> [1] 0 

#> 

#> $message 

#> NULL

The returned list includes convergence, the indicator of success or failure. If this indicator is 0, then optim
found a minimum; otherwise, it did not. Obviously, the convergence indicator is the most important returned
value because other values are meaningless if the algorithm did not converge.

The returned list also includes par, the parameters that minimize our function, and value, the value of f at that
point. In this case, optim did converge and found a minimum point at approximately a = 10.0 and b = 0.7.

NOTE
There are no lower and upper bounds for optim, just the starting point that you provide. A better guess for the starting point means a
faster minimization.

The optim function supports several different minimization algorithms, and you can select among them. If the
default algorithm does not work for you, see the help page for alternatives. A typical problem with
multidimensional minimization is that the algorithm gets stuck at a local minimum and fails to find a deeper,
global minimum. Generally speaking, the algorithms that are more powerful are less likely to get stuck.
However, there is a trade-off: they also tend to run more slowly.

See Also
The R community has implemented many tools for optimization. On CRAN, see the task view for Optimization
and Mathematical Programming for more solutions.

Calculating Eigenvalues and Eigenvectors

Problem
You want to calculate the eigenvalues or eigenvectors of a matrix.

Solution
Use the eigen function. It returns a list with two elements, values and vectors, which contain (respectively)
the eigenvalues and eigenvectors.

Discussion
Suppose we have a matrix such as the Fibonacci matrix:

fibmat <- matrix(c(0, 1, 1, 1), 2, 2) 

fibmat 

#>      [,1] [,2] 

#> [1,]    0    1 

#> [2,]    1    1

http://cran.r-project.org/web/views/Optimization.html


Given the matrix, the eigen function will return a list of its eigenvalues and eigenvectors:

eigen(fibmat) 

#> eigen() decomposition 

#> $values 

#> [1]  1.618 -0.618 

#> 

#> $vectors 

#>       [,1]   [,2] 

#> [1,] 0.526 -0.851 

#> [2,] 0.851  0.526

Use either eigen(fibmat)$values or eigen(fibmat)$vectors to select the needed value from the list.

Performing Principal Component Analysis

Problem
You want to identify the principal components of a multivariable dataset.

Solution
Use the prcomp function. The first argument is a formula whose righthand side is the set of variables, separated
by plus signs (+). The lefthand side is empty:

r <- prcomp( ~ x + y + z) 

summary(r) 

#> Importance of components: 

#>                          PC1     PC2     PC3 

#> Standard deviation     1.894 0.11821 0.04459 

#> Proportion of Variance 0.996 0.00388 0.00055 

#> Cumulative Proportion  0.996 0.99945 1.00000

Discussion
Base R includes two functions for principal component analysis (PCA), prcomp and princomp. The
documentation mentions that prcomp has better numerical properties, so that’s the function presented here.

An important use of PCA is to reduce the dimensionality of your dataset. Suppose your data contains a large
number N of variables. Ideally, all the variables are more or less independent and contributing equally. But if you
suspect that some variables are redundant, PCA can tell you the number of sources of variance in your data. If
that number is near N, then all the variables are useful. If the number is less than N, then your data can be
reduced to a dataset of smaller dimensionality.

PCA recasts your data into a vector space where the first dimension captures the most variance, the second
dimension captures the second most, and so forth. The actual output from prcomp is an object that, when printed,
gives the needed vector rotation:

load(file = './data/pca.rdata') 

r <- prcomp(~ x + y) 

print(r) 

#> Standard deviations (1, .., p=2): 

#> [1] 0.393 0.163 

#> 

#> Rotation (n x k) = (2 x 2): 

#>      PC1    PC2 

#> x -0.553  0.833 

#> y -0.833 -0.553



We typically find the summary of PCA much more useful. It shows the proportion of variance that is captured by
each component:

summary(r) 

#> Importance of components: 

#>                          PC1   PC2 

#> Standard deviation     0.393 0.163 

#> Proportion of Variance 0.853 0.147 

#> Cumulative Proportion  0.853 1.000

In this example, the first component captured 85% of the variance and the second component only 15%, so we
know the first component captured most of it.

After calling prcomp, use plot(r) to view a bar chart of the variances of the principal components and
predict(r) to rotate your data to the principal components.

See Also
See “Factor Analysis” for an example of using principal component analysis. Further uses of PCA in R are
discussed in Modern Applied Statistics with S-Plus by W. N. Venables and B. D. Ripley (Springer).

Performing Simple Orthogonal Regression

Problem
You want to create a linear model using orthogonal regression in which the variances of x and y are treated
symmetrically.

Solution
Use prcomp to perform PCA on x and y. From the resulting rotation, compute the slope and intercept:

r <- prcomp(~ x + y) 

slope <- r$rotation[2, 1] / r$rotation[1, 1] 

intercept <- r$center[2] - slope * r$center[1]

Discussion
Orthogonal regression is also known as total least squares (TLS).

The ordinary least squares (OLS) algorithm has an odd property: it is asymmetric. That is, calculating lm(y ~
x) is not the mathematical inverse of calculating lm(x ~ y). The reason is that OLS assumes the x values to be
constants and the y values to be random variables, so all the variance is attributed to y and none is attributed to x.
This creates an asymmetric situation.

The asymmetry is illustrated in Figure 13-1, where the upper-left panel displays the fit for lm(y ~ x). The OLS
algorithm tries the minimize the vertical distances, which are shown as dotted lines. The upper-right panel shows
the identical dataset but fit with lm(x ~ y) instead, so the algorithm is minimizing the horizontal dotted lines.
Obviously, you’ll get a different result depending upon which distances are minimized.

The lower panel of Figure 13-1 is quite different. It uses PCA to implement orthogonal regression. Now the
distances being minimized are the orthogonal distances from the data points to the regression line. This is a
symmetric situation: reversing the roles of x and y does not change the distances to be minimized.



Figure 13-1. Ordinary least squares versus orthogonal regression

Implementing a basic orthogonal regression in R is quite simple. First, perform the PCA:

load(file = './data/pca.rdata') 

r <- prcomp(~ x + y)

Next, use the rotations to compute the slope:

slope <- r$rotation[2, 1] / r$rotation[1, 1]

And then, from the slope, calculate the intercept:

intercept <- r$center[2] - slope * r$center[1]

We call this a “basic” regression because it yields only the point estimates for the slope and intercept, not the
confidence intervals. Obviously, we’d like to have the regression statistics, too. “Bootstrapping a Statistic”



shows one way to estimate the confidence intervals using a bootstrap algorithm.

See Also
Principal component analysis is described in “Performing Principal Component Analysis”. The graphics in this
recipe were inspired by the work of Vincent Zoonekynd and his tutorial on regression.

Finding Clusters in Your Data

Problem
You believe your data contains clusters: groups of points that are “near” each other. You want to identify those
clusters.

Solution
Your dataset, x, can be a vector, data frame, or matrix. Assume that n is the number of clusters you desire:

d <- dist(x)               # Compute distances between observations 

hc <- hclust(d)            # Form hierarchical clusters 

clust <- cutree(hc, k=n)   # Organize them into the n largest clusters 

The result, clust, is a vector of numbers between 1 and n, one for each observation in x. Each number classifies
its corresponding observation into one of the n clusters.

Discussion
The dist function computes distances between all the observations. The default is Euclidean distance, which
works well for many applications, but other distance measures are also available.

The hclust function uses those distances to form the observations into a hierarchical tree of clusters. You can
plot the result of hclust to create a visualization of the hierarchy, called a dendrogram, as shown in Figure 13-2.

Finally, cutree extracts clusters from that tree. You must specify either how many clusters you want or the
height at which the tree should be cut. Often the number of clusters is unknown, in which case you will need to
explore the dataset for clustering that makes sense in your application.

We’ll illustrate clustering of a synthetic dataset. We start by generating 99 normal variates, each with a randomly
selected mean of either –3, 0, or +3:

means <- sample(c(-3, 0, +3), 99, replace = TRUE) 

x <- rnorm(99, mean = means)

For our own curiosity, we can compute the true means of the original clusters. (In a real situation, we would not
have the means factor and would be unable to perform this computation.) We can confirm that the groups’ means
are pretty close to –3, 0, and +3:

tapply(x, factor(means), mean) 

#>     -3      0      3 

#> -3.015 -0.224  2.760

To “discover” the clusters, we first compute the distances between all points:

d <- dist(x)

Then we create the hierarchical clusters:

http://zoonek2.free.fr/UNIX/48_R/09.html


hc <- hclust(d)

And we can plot the hierarchical cluster dendrogram by calling plot on the hc object (Figure 13-2):

plot(hc, 

     sub = "", 

     labels = FALSE)

Figure 13-2. Hierarchical cluster dendrogram

We can now extract the three largest clusters:

clust <- cutree(hc, k=3)

Obviously, we have a huge advantage here because we know the true number of clusters. Real life is rarely that
easy. However, even if we didn’t already know we were dealing with three clusters, looking at the dendrogram
gives us a good clue that there are three big clusters in the data.

clust is a vector of integers between 1 and 3, one integer for each observation in the sample, that assigns each
observation to a cluster. Here are the first 20 cluster assignments:

head(clust, 20) 

#>  [1] 1 2 2 2 1 2 3 3 2 3 1 3 2 3 2 1 2 1 1 3

By treating the cluster number as a factor, we can compute the mean of each statistical cluster (see “Applying a
Function to Groups of Data”):

tapply(x, clust, mean) 

#>      1      2      3 

#>  3.190 -2.699  0.236

R did a good job of splitting the data into clusters: the means appear distinct, with one near –2.7, one near 0.27,
and one near +3.2. (The order of the extracted means does not necessarily match the order of the original groups,



of course.) The extracted means are similar but not identical to the original means. Side-by-side boxplots can
show why (see Figure 13-3):

library(patchwork) 

 

df_cluster <- data.frame(x, 

                         means = factor(means), 

                         clust = factor(clust)) 

 

g1 <- ggplot(df_cluster) + 

  geom_boxplot(aes(means, x)) + 

  labs(title = "Original Clusters", x = "Cluster Mean") 

 

g2 <- ggplot(df_cluster) + 

  geom_boxplot(aes(clust, x)) + 

  labs(title = "Identified Clusters", x = "Cluster Number") 

 

g1 + g2

Figure 13-3. Cluster boxplots

The clustering algorithm perfectly separated the data into nonoverlapping groups. The original clusters
overlapped, whereas the identified clusters do not.

This illustration used one-dimensional data, but the dist function works equally well on multidimensional data
stored in a data frame or matrix. Each row in the data frame or matrix is treated as one observation in a
multidimensional space, and dist computes the distances between those observations.

See Also
This demonstration is based on the clustering features of the base package. There are other packages, such as
mclust, that offer alternative clustering mechanisms.



Predicting a Binary-Valued Variable (Logistic Regression)

Problem
You want to perform logistic regression, a regression model that predicts the probability of a binary event
occurring.

Solution
Call the glm function with family = binomial to perform logistic regression. The result is a model object:

m <- glm(b ~ x1 + x2 + x3, family = binomial)

Here, b is a factor with two levels (e.g., TRUE and FALSE, 0 and 1), while x1, x2, and x3 are predictor variables.

Use the model object, m, and the predict function to predict a probability from new data:

df <- data.frame(x1 = value, x2 = value, x3 = value) 

predict(m, type = "response", newdata = dfrm)

Discussion
Predicting a binary-valued outcome is a common problem in modeling. Will a treatment be effective or not?
Will prices rise or fall? Who will win the game, team A or team B? Logistic regression is useful for modeling
these situations. In the true spirit of statistics, it does not simply give a “thumbs up” or “thumbs down” answer;
rather, it computes a probability for each of the two possible outcomes.

In the call to predict, we set type = "response" so that predict returns a probability. Otherwise, it returns
log-odds, which most of us don’t find intuitive.

In his unpublished book entitled Practical Regression and ANOVA Using R, Julian Faraway gives an example of
predicting a binary-valued variable: test from the dataset pima is true if the patient tested positive for diabetes.
The predictors are diastolic blood pressure and body mass index (BMI). Faraway uses linear regression, so let’s
try logistic regression instead:

data(pima, package = "faraway") 

b <- factor(pima$test) 

m <- glm(b ~ diastolic + bmi, family = binomial, data = pima)

The summary of the resulting model, m, shows that the respective p-values for the diastolic and bmi variables
are 0.8 and (essentially) 0. We can therefore conclude that only the bmi variable is significant:

summary(m) 

#> 

#> Call: 

#> glm(formula = b ~ diastolic + bmi, family = binomial, data = pima) 

#> 

#> Deviance Residuals: 

#>    Min      1Q  Median      3Q     Max 

#> -1.913  -0.918  -0.685   1.234   2.742 

#> 

#> Coefficients: 

#>             Estimate Std. Error z value Pr(>|z|) 

#> (Intercept) -3.62955    0.46818   -7.75  9.0e-15 *** 

#> diastolic   -0.00110    0.00443   -0.25      0.8 

#> bmi          0.09413    0.01230    7.65  1.9e-14 *** 

#> --- 

#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#> 

#> (Dispersion parameter for binomial family taken to be 1) 

http://bit.ly/2FchrZw


#> 

#>     Null deviance: 993.48  on 767  degrees of freedom 

#> Residual deviance: 920.65  on 765  degrees of freedom 

#> AIC: 926.7 

#> 

#> Number of Fisher Scoring iterations: 4

Because only the bmi variable is significant, we can create a reduced model like this:

m.red <- glm(b ~ bmi, family = binomial, data = pima)

Let’s use the model to calculate the probability that someone with an average BMI (32.0) will test positive for
diabetes:

newdata <- data.frame(bmi = 32.0) 

predict(m.red, type = "response", newdata = newdata) 

#>     1 

#> 0.333

According to this model, the probability is about 33.3%. The same calculation for someone in the 90th percentile
gives a probability of 54.9%:

newdata <- data.frame(bmi = quantile(pima$bmi, .90)) 

predict(m.red, type = "response", newdata = newdata) 

#>   90% 

#> 0.549

See Also
Using logistic regression involves interpreting the deviance to judge the significance of the model. We suggest
you review a text on logistic regression before attempting to draw any conclusions from your regression.

Bootstrapping a Statistic

Problem
You have a dataset and a function to calculate a statistic from that dataset. You want to estimate a confidence
interval for the statistic.

Solution
Use the boot package. Apply the boot function to calculate bootstrap replicates of the statistic:

library(boot) 

bootfun <- function(data, indices) { 

  # . . . calculate statistic using data[indices]. . . 

  return(statistic) 

} 

 

reps <- boot(data, bootfun, R = 999)

Here, data is your original dataset, which can be stored in either a vector or a data frame. The statistic function
(bootfun in this case) should expect two arguments: data and indices, a vector of integers that selects the
bootstrap sample from data.

Next, use the boot.ci function to estimate a confidence interval from the replications:

boot.ci(reps, type = c("perc", "bca"))



Discussion
Anybody can calculate a statistic, but that’s just the point estimate. We want to take it to the next level: what is
the confidence interval (CI)? For some statistics, we can calculate the CI analytically. The CI for a mean, for
instance, is calculated by the t.test function. Unfortunately, that is the exception and not the rule. For most
statistics, the mathematics are too tortuous or simply unknown, and there is no known closed-form calculation
for the CI.

The bootstrap algorithm can estimate a CI even when no closed-form calculation is available. It works like this.
The algorithm assumes that you have a sample of size N and a function to calculate the statistic and performs the
following steps:

1. Randomly select N elements from the sample, sampling with replacement. That set of elements is called a
bootstrap sample.

2. Apply the function to the bootstrap sample to calculate the statistic. That value is called a bootstrap
replication.

3. Repeat steps 1 and 2 many times to yield many (typically thousands) of bootstrap replications.

4. From the bootstrap replications, compute the confidence interval.

That last step may seem mysterious, but there are several algorithms for computing the CI. A simple one uses
percentiles of the replications, such as taking the 2.5 percentile and the 97.5 percentile to form the 95% CI.

We’re huge fans of the bootstrap because we work daily with obscure statistics, it is important that we know their
confidence intervals, and there is definitely no known formula for obtaining those. The bootstrap gives us a good
approximation.

Let’s work an example. In “Performing Principal Component Analysis” we estimated the slope of a line using
orthogonal regression. That gave us a point estimate, but how can we find the CI? First, we encapsulate the slope
calculation within a function:

stat <- function(data, indices) { 

  r <- prcomp(~ x + y, data = data, subset = indices) 

  slope <- r$rotation[2, 1] / r$rotation[1, 1] 

  return(slope) 

}

Notice that the function is careful to select the subset defined by indices and to compute the slope from that
exact subset.

Next, we calculate 999 replications of the slope. Recall that we had two vectors, x and y, in the original recipe;
here, we combine them into a data frame:

load(file = './data/pca.rdata') 

library(boot) 

set.seed(3) # for reproducability 

 

boot.data <- data.frame(x = x, y = y) 

reps <- boot(boot.data, stat, R = 999)

The choice of 999 replications is a good starting point. You can always repeat the bootstrap with more and see if
the results change significantly.

The boot.ci function can estimate the CI from the replications. It implements several different algorithms, and
the type argument selects which algorithms are performed. For each selected algorithm, boot.ci will return the
resulting estimate:

boot.ci(reps, type = c("perc", "bca")) 

#> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

#> Based on 999 bootstrap replicates 



#> 

#> CALL : 

#> boot.ci(boot.out = reps, type = c("perc", "bca")) 

#> 

#> Intervals : 

#> Level     Percentile            BCa 

#> 95%   ( 1.07,  1.99 )   ( 1.09,  2.05 ) 

#> Calculations and Intervals on Original Scale

Here we chose two algorithms, percentile and BCa, by setting type = c("perc","bca"). The two resulting
estimates appear at the bottom under their names. Other algorithms are available; see the help page for boot.ci.

You will note that the two confidence intervals are slightly different: (1.068, 1.992) versus (1.086, 2.050). This is
an uncomfortable but inevitable result of using two different algorithms. We don’t know any method for
deciding which is better. If the selection is a critical issue, you will need to study the reference and understand
the differences. In the meantime, our best advice is to be conservative and use the minimum lower bound and the
maximum upper bound; in this case, that would be (1.068, 2.050).

By default, boot.ci estimates a 95% CI. You can change that via the conf argument, like this:

boot.ci(reps, type = c("perc", "bca"), conf = 0.90)

See Also
See “Performing Principal Component Analysis” for the slope calculation. A good tutorial and reference for the
bootstrap algorithm is An Introduction to the Bootstrap by Bradley Efron and Robert Tibshirani (Chapman &
Hall/CRC).

Factor Analysis

Problem
You want to perform factor analysis on your dataset, usually to discover what your variables have in common.

Solution
Use the factanal function, which requires your dataset and your estimate of the number of factors:

factanal(data, factors = n) 

The output includes n factors, showing the loadings of each input variable for each factor.

The output also includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the number of
factors is too small and does not capture the full dimensionality of the dataset; a p-value exceeding 0.05
indicates that there are likely enough (or more than enough) factors.

Discussion
Factor analysis creates linear combinations of your variables, called factors, that abstract the variables’
underlying commonality. If your n variables are perfectly independent, then they have nothing in common and n
factors are required to describe them. But to the extent that the variables have an underlying commonality, fewer
factors capture most of the variance and so fewer than n factors are required.

For each factor and variable, we calculate the correlation between them, known as the loading. Variables with a
high loading are well explained by the factor. We can square the loading to know what fraction of the variable’s
total variance is explained by the factor.



Factor analysis is useful when it shows that a few factors capture most of the variance of your variables. Thus, it
alerts you to redundancy in your data. In that case you can reduce your dataset by combining closely related
variables or by eliminating redundant variables altogether.

A more subtle application of factor analysis is interpreting the factors to find interrelationships between your
variables. If two variables both have large loadings for the same factor, then you know they have something in
common. What is it? There is no mechanical answer. You’ll need to study the data and its meaning.

There are two tricky aspects of factor analysis. The first is choosing the number of factors. Fortunately, you can
use PCA to get a good initial estimate of the number of factors. The second tricky aspect is interpreting the
factors themselves.

Let’s illustrate factor analysis by using stock prices, or, more precisely, changes in stock prices. The dataset
contains six months of price changes for the stocks of 12 companies. Every company is involved in the
petroleum and gasoline industry. Their stock prices probably move together, since they are subject to similar
economic and market forces. We might ask: how many factors are required to explain their changes? If only one
factor is required, then all the stocks are the same and one is as good as another. If many factors are required, we
know that owning several of them provides diversification.

We start by doing a PCA on diffs, the data frame of price changes. Plotting the PCA results shows the variance
captured by the components (Figure 13-4):

load(file = './data/diffs.rdata') 

plot(prcomp(diffs))

Figure 13-4. PCA results plot

We can see in Figure 13-4 that the first two components capture much of the variance, but possibly a third is
required. So we perform the initial factor analysis while assuming that two factors are required:

factanal(diffs, factors = 2) 

#> 

#> Call: 

#> factanal(x = diffs, factors = 2) 

#> 

#> Uniquenesses: 

#>   APC    BP   BRY   CVX   HES   MRO   NBL   OXY   ETP   VLO   XOM 

#> 0.307 0.652 0.997 0.308 0.440 0.358 0.363 0.556 0.902 0.786 0.285 

#> 

#> Loadings: 

#>     Factor1 Factor2 

#> APC 0.773   0.309 



#> BP  0.317   0.497 

#> BRY 

#> CVX 0.439   0.707 

#> HES 0.640   0.389 

#> MRO 0.707   0.377 

#> NBL 0.749   0.276 

#> OXY 0.562   0.358 

#> ETP 0.283   0.134 

#> VLO 0.303   0.350 

#> XOM 0.355   0.767 

#> 

#>                Factor1 Factor2 

#> SS loadings       2.98   2.072 

#> Proportion Var    0.27   0.188 

#> Cumulative Var    0.27   0.459 

#> 

#> Test of the hypothesis that 2 factors are sufficient. 

#> The chi square statistic is 62.9 on 34 degrees of freedom. 

#> The p-value is 0.00184

We can ignore most of the output because the p-value at the bottom is very close to zero (.00184). The small p-
value indicates that two factors are insufficient, so the analysis isn’t good. More are required, so we try again
with three factors instead:

factanal(diffs, factors = 3) 

#> 

#> Call: 

#> factanal(x = diffs, factors = 3) 

#> 

#> Uniquenesses: 

#>   APC    BP   BRY   CVX   HES   MRO   NBL   OXY   ETP   VLO   XOM 

#> 0.316 0.650 0.984 0.315 0.374 0.355 0.346 0.521 0.723 0.605 0.271 

#> 

#> Loadings: 

#>     Factor1 Factor2 Factor3 

#> APC  0.747   0.270   0.230 

#> BP   0.298   0.459   0.224 

#> BRY                  0.123 

#> CVX  0.442   0.672   0.197 

#> HES  0.589   0.299   0.434 

#> MRO  0.703   0.350   0.167 

#> NBL  0.760   0.249   0.124 

#> OXY  0.592   0.357 

#> ETP  0.194           0.489 

#> VLO  0.198   0.264   0.535 

#> XOM  0.355   0.753   0.190 

#> 

#>                Factor1 Factor2 Factor3 

#> SS loadings      2.814   1.774   0.951 

#> Proportion Var   0.256   0.161   0.086 

#> Cumulative Var   0.256   0.417   0.504 

#> 

#> Test of the hypothesis that 3 factors are sufficient. 

#> The chi square statistic is 30.2 on 25 degrees of freedom. 

#> The p-value is 0.218

The large p-value (0.218) confirms that three factors are sufficient, so we can use the analysis.

The output includes a table of explained variance, shown here:

               Factor1 Factor2 Factor3 

SS loadings      2.814   1.774   0.951 

Proportion Var   0.256   0.161   0.086 

Cumulative Var   0.256   0.417   0.504

This table shows that the proportion of variance explained by each factor is 0.256, 0.161, and 0.086, respectively.
Cumulatively, they explain 0.504 of the variance, which leaves 1 – 0.504 = 0.496 unexplained.



Next we want to interpret the factors, which is more like voodoo than science. Let’s look at the loadings,
repeated here:

Loadings: 

    Factor1 Factor2 Factor3 

APC  0.747   0.270   0.230 

BP   0.298   0.459   0.224 

BRY                  0.123 

CVX  0.442   0.672   0.197 

HES  0.589   0.299   0.434 

MRO  0.703   0.350   0.167 

NBL  0.760   0.249   0.124 

OXY  0.592   0.357 

ETP  0.194           0.489 

VLO  0.198   0.264   0.535 

XOM  0.355   0.753   0.190

Each row is labeled with the variable name (stock symbol): APC, BP, BRY, and so forth. The first factor has
many large loadings, indicating that it explains the variance of many stocks. This is a common phenomenon in
factor analysis. We are often looking at related variables, and the first factor captures their most basic
relationship. In this example, we are dealing with stocks, and most stocks move together in concert with the
broad market. That’s probably captured by the first factor.

The second factor is more subtle. Notice that the loadings for CVX (0.67) and XOM (0.75) are the dominant
ones, with BP not far behind (0.46), but all other stocks have noticeably smaller loadings. This indicates a
connection between CVX, XOM, and BP. Perhaps they operate together in a common market (e.g., multinational
energy) and so tend to move together.

The third factor also has three dominant loadings: VLO, ETP, and HES. These are somewhat smaller companies
than the global giants we saw in the second factor. Possibly these three share similar markets or risks and so their
stocks also tend to move together.

In summary, it seems there are three groups of stocks here:

CVX, XOM, BP

VLO, ETP, HES

Everything else

Factor analysis is an art and a science. We suggest that you read a good book on multivariate analysis before
employing it.

See Also
See “Performing Principal Component Analysis” for more about PCA.



Chapter 14. Time Series Analysis

Time series analysis has become a hot topic with the rise of quantitative finance and automated trading of
securities. Many of the facilities described in this chapter were invented by practitioners and researchers in
finance, securities trading, and portfolio management.

Before you start any time series analysis in R, a key decision is your choice of data representation (object class).
This is especially critical in an object-oriented language such as R, because the choice affects more than how the
data is stored; it also dictates which functions (methods) will be available for loading, processing, analyzing,
printing, and plotting your data. When many people start using R they simply store time series data in vectors.
That seems natural. However, they quickly discover that none of the coolest analytics for time series analysis
work with simple vectors. We’ve found when users switch to using an object class intended for time series data,
the analysis gets easier, opening a gateway to valuable functions and analytics.

This chapter’s first recipe recommends using the zoo or xts packages for representing time series data. They are
quite general and should meet the needs of most users. Nearly every subsequent recipe assumes you are using
one of those two representations.

NOTE
The xts implementation is a superset of zoo, so xts can do everything that zoo can do. In this chapter, whenever a recipe works for a
zoo object, you can safely assume (unless stated otherwise) that it also works for an xts object.

Other Representations
Other representations of time series data are available in the R universe, including:

The fts package

The irts class from the tseries package

The timeSeries package

The ts class in the base distribution

The tsibble package, a tidyverse style package for time series

In fact, there is a whole toolkit, called tsbox, just for converting between representations.

Two representations deserve special mention.

ts (base distribution)
The base distribution of R includes a time series class called ts. We don’t recommend this representation for
general use because the implementation itself is too limited and restrictive.

However, the base distribution includes some important time series analytics that depend upon ts, such as the
autocorrelation function (acf) and the cross-correlation function (ccf). To use those base functions on xts data,
use the to.ts function to “downshift” your data into the ts representation before calling the function. For
example, if x is an xts object, you can compute its autocorrelation like this:

acf(as.ts(x))

tsibble package



The tsibble package is a recent extension to the tidyverse, specifically designed for working with time series
data within the tidyverse. We find it useful for cross-sectional data—that is, data for which the observations are
grouped by date, and you want to perform analytics within dates more than across dates.

Date Versus Datetime
Every observation in a time series has an associated date or time. The object classes used in this chapter, zoo and
xts, give you the choice of using either dates or datetimes for representing the data’s time component. You
would use dates to represent daily data, of course, and also for weekly, monthly, or even annual data; in these
cases, the date gives the day on which the observation occurred. You would use datetimes for intraday data,
where both the date and time of observation are needed.

In describing this chapter’s recipes, we found it pretty cumbersome to keep saying “date or datetime.” So, we
simplified the prose by assuming that your data is daily and thus uses whole dates. Please bear in mind, of
course, that you are free and able to use timestamps below the resolution of a calendar date.

See Also
R has many useful functions and packages for time series analysis. You’ll find pointers to them in the task view
for Time Series Analysis.

Representing Time Series Data

Problem
You want an R data structure that can represent time series data.

Solution
We recommend the zoo and xts packages. They define a data structure for time series, and they contain many
useful functions for working with time series data. Create a zoo object this way, where x is a vector, matrix, or
data frame, and dt is a vector of corresponding dates or datetimes:

library(zoo) 

ts <- zoo(x, dt)

Create an xts object in this way:

library(xts) 

ts <- xts(x, dt)

Convert between representations of the time series data by using as.zoo and as.xts:

as.zoo(ts)

Converts ts to a zoo object

as.xts(ts)

Converts ts to an xts object

Discussion
R has at least eight different implementations of data structures for representing time series. We haven’t tried
them all, but we can say that zoo and xts are excellent packages for working with time series data and better

http://cran.r-project.org/web/views/TimeSeries.html


than the others that we have tried.

These representations assume you have two vectors: a vector of observations (data) and a vector of dates or
times of those observations. The zoo function combines them into a zoo object:

library(zoo) 

#> 

#> Attaching package: 'zoo' 

#> The following objects are masked from 'package:base': 

#> 

#>     as.Date, as.Date.numeric 

x <- c(3, 4, 1, 4, 8) 

dt <- seq(as.Date("2018-01-01"), as.Date("2018-01-05"), by = "days") 

 

ts <- zoo(x, dt) 

print(ts) 

#> 2018-01-01 2018-01-02 2018-01-03 2018-01-04 2018-01-05 

#>          3          4          1          4          8

The xts function is similar, returning an xts object:

library(xts) 

#> 

#> Attaching package: 'xts' 

#> The following objects are masked from 'package:dplyr': 

#> 

#>     first, last 

ts <- xts(x, dt) 

print(ts) 

#>            [,1] 

#> 2018-01-01    3 

#> 2018-01-02    4 

#> 2018-01-03    1 

#> 2018-01-04    4 

#> 2018-01-05    8

The data, x, should be numeric. The vector of dates or datetimes, dt, is called the index. Legal indices vary
between the packages:

zoo

The index can be any ordered values, such as Date objects, POSIXct objects, integers, or even floating-point
values.

xts

The index must be a supported date or time class. This includes Date, POSIXct, and chron objects. Those
should be sufficient for most applications, but you can also use yearmon, yearqtr, and dateTime objects.
The xts package is more restrictive than zoo because it implements powerful operations that require a time-
based index.

The following example creates a zoo object that contains the price of IBM stock for the first five days of 2010; it
uses Date objects for the index:

prices <- c(132.45, 130.85, 130.00, 129.55, 130.85) 

dates <- as.Date(c( 

  "2010-01-04", "2010-01-05", "2010-01-06", 

  "2010-01-07", "2010-01-08" 

)) 

ibm.daily <- zoo(prices, dates) 

print(ibm.daily) 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>        132        131        130        130        131



In contrast, the next example captures the price of IBM stock at one-second intervals. It represents time by the
number of hours past midnight starting at 9:30 a.m. (1 second = 0.00027778 hours, more or less):

prices <- c(131.18, 131.20, 131.17, 131.15, 131.17) 

seconds <- c(9.5, 9.500278, 9.500556, 9.500833, 9.501111) 

ibm.sec <- zoo(prices, seconds) 

print(ibm.sec) 

#>  10  10  10  10  10 

#> 131 131 131 131 131

Those two examples used a single time series, where the data came from a vector. Both zoo and xts can also
handle multiple, parallel time series. For this, capture the several time series in a matrix or data frame and then
create a multivariate time series by calling the zoo (or xts) function:

ts <- zoo(df, dt) # OR: ts <- xts(dfrm, dt)

The second argument is a vector of dates (or datetimes) for each observation. There is only one vector of dates
for all the time series; in other words, all observations in each row of the matrix or data frame must have the
same date. See “Merging Several Time Series” if your data has mismatched dates.

Once the data is captured inside a zoo or xts object, you can extract the pure data via coredata, which returns a
simple vector (or matrix):

coredata(ibm.daily) 

#> [1] 132 131 130 130 131

You can extract the date or time portion via index:

index(ibm.daily) 

#> [1] "2010-01-04" "2010-01-05" "2010-01-06" "2010-01-07" "2010-01-08"

The xts package is very similar to zoo. It is optimized for speed, so is especially well suited for processing large
volumes of data. It is also clever about converting to and from other time series representations.

One big advantage of capturing data inside a zoo or xts object is that special-purpose functions become
available for printing, plotting, differencing, merging, periodic sampling, applying rolling functions, and other
useful operations. There is even a function, read.zoo, dedicated to reading time series data from ASCII files.

Remember that the xts package can do everything that the zoo package can do, so everywhere that this chapter
talks about zoo objects you can also use xts objects.

If you are a serious user of time series data, we strongly recommend studying the documentation of these
packages in order to learn about the ways they can improve your life. They are rich packages with many useful
features.

See Also
See CRAN for documentation on zoo and xts, including reference manuals, vignettes, and quick reference cards.
If the packages are already installed on your computer, view their documentation using the vignette function:

vignette("zoo") 

vignette("xts")

The timeSeries package is another good implementation of a time series object. It is part of the Rmetrics
project for quantitative finance.

http://cran.r-project.org/web/packages/zoo/
http://cran.r-project.org/web/packages/xts/


Plotting Time Series Data

Problem
You want to plot one or more time series.

Solution
Use plot(x), which works for zoo objects and xts objects containing either single or multiple time series.

For a simple vector v of time series observations, you can use either plot(v,type = "l") or plot.ts(v).

Discussion
The generic plot function has a version for zoo objects and xts objects. It can plot objects that contain a single
time series or multiple time series. In the latter case, it can plot each series in a separate plot or together in one
plot.

Suppose that ibm.infl is a zoo object that contains two time series. One shows the quoted price of IBM stock
from January 2000 through December 2017, and the other is that same price adjusted for inflation. If you plot the
object, R will plot the two time series together in one plot, as shown in Figure 14-1:

load(file = "./data/ibm.rdata") 

library(xts) 

 

main <- "IBM: Historical vs. Inflation-Adjusted" 

lty <- c("dotted", "solid") 

 

# Plot the xts object 

plot(ibm.infl, 

  lty = lty, main = main, 

  legend.loc = "left" 

)



Figure 14-1. Example xts plot

The plot function for xts provides a default title as simply the name of the xts object. As we show here, it’s
common to set the main parameter to a more meaningful title.

The code specifies two line types (lty) so that the two lines are drawn in two different styles, making them
easier to distinguish.

See Also
For working with financial data, the quantmod package contains special plotting functions that produce beautiful,
stylized plots.

Extracting the Oldest or Newest Observations

Problem
You want to see only the oldest or newest observations of your time series.

Solution
Use head to view the oldest observations:

head(ts) 

Use tail to view the newest observations:

tail(ts) 

Discussion



The head and tail functions are generic, so they will work whether your data is stored in a simple vector, a zoo
object, or an xts object.

Suppose you have an xts object with a multiyear history of the price of IBM stock, like the one used in the prior
recipe. You can’t display the whole dataset because it would scroll off your screen. But you can view the initial
observations:

ibm <- ibm.infl$ibm # grab one column for illustration 

head(ibm) 

#>             ibm 

#> 2000-01-01 78.6 

#> 2000-01-03 82.0 

#> 2000-01-04 79.2 

#> 2000-01-05 82.0 

#> 2000-01-06 80.6 

#> 2000-01-07 80.2

And you can view the final observations:

tail(ibm) 

#>            ibm 

#> 2017-12-21 148 

#> 2017-12-22 149 

#> 2017-12-26 150 

#> 2017-12-27 150 

#> 2017-12-28 151 

#> 2017-12-29 150

By default, head and tail show (respectively) the six oldest and six newest observations. You can see more
observations by providing a second argument—for example, tail(ibm, 20).

The xts package also includes first and last functions, which use calendar periods instead of number of
observations. We can use first and last to select data by number of days, weeks, months, or even years:

first(ibm, "2 week") 

#>             ibm 

#> 2000-01-01 78.6 

#> 2000-01-03 82.0 

#> 2000-01-04 79.2 

#> 2000-01-05 82.0 

#> 2000-01-06 80.6 

#> 2000-01-07 80.2

At first glance this output might be confusing. We asked for "2 week" and xts returned six days. That might
seem off until we look at a calendar of January 2000 (Figure 14-2).

Figure 14-2. January 2000 calendar



We can see from the calendar that the first week of January 2000 has only one day, Saturday the 1st. Then the
second week runs from the 2nd to the 8th. Our data has no value for the 8th, so when we ask first for the first
"2 week" it returns all the values from the first two calendar weeks. In our example dataset the first two
calendar weeks contain only six values.

Similarly, we can ask last to give us the last month’s worth of data:

last(ibm, "month") 

#>            ibm 

#> 2017-12-01 152 

#> 2017-12-04 153 

#> 2017-12-05 152 

#> 2017-12-06 151 

#> 2017-12-07 150 

#> 2017-12-08 152 

#> 2017-12-11 152 

#> 2017-12-12 154 

#> 2017-12-13 151 

#> 2017-12-14 151 

#> 2017-12-15 149 

#> 2017-12-18 150 

#> 2017-12-19 150 

#> 2017-12-20 150 

#> 2017-12-21 148 

#> 2017-12-22 149 

#> 2017-12-26 150 

#> 2017-12-27 150 

#> 2017-12-28 151 

#> 2017-12-29 150

If we had been using zoo objects here, we would need to have converted them to xts objects before passing the
objects to first or last, as those are xts functions.

See Also
See help(first.xts) and help(last.xts) for details on the first and last functions, respectively.

WARNING
The tidyverse package dplyr also has functions called first and last. If your workflow involves loading both the xts and dplyr
packages, make sure to be explicit about which function you are calling by using the package::function notation (for example,
xts::first).

Subsetting a Time Series

Problem
You want to select one or more elements from a time series.

Solution
You can index a zoo or xts object by position. Use one or two subscripts, depending upon whether the object
contains one time series or multiple time series:

ts[_i-]

Selects the ith observation from a single time series

ts[j,i]



Selects the ith observation of the jth time series of multiple time series

You can index the time series by date. Use the same type of object as the index of your time series. This example
assumes that the index contains Date objects:

ts[as.Date("yyyy-mm-dd")] 

You can index it by a sequence of dates:

dates <- seq(startdate, enddate, increment) 

ts[dates] 

The window function can select a range by start and end date:

window(ts, start = startdate, end = enddate) 

Discussion
Recall our xts object that is a sample of inflation-adjusted IBM stock prices from the previous recipe:

head(ibm) 

#>             ibm 

#> 2000-01-01 78.6 

#> 2000-01-03 82.0 

#> 2000-01-04 79.2 

#> 2000-01-05 82.0 

#> 2000-01-06 80.6 

#> 2000-01-07 80.2

We can select an observation by position, just like selecting elements from a vector (see “Selecting Vector
Elements”):

ibm[2] 

#>            ibm 

#> 2000-01-03  82

We can also select multiple observations by position:

ibm[2:4] 

#>             ibm 

#> 2000-01-03 82.0 

#> 2000-01-04 79.2 

#> 2000-01-05 82.0

Sometimes it’s more useful to select by date. Simply use the date itself as the index:

ibm[as.Date("2010-01-05")] 

#>            ibm 

#> 2010-01-05 103

Our ibm data is an xts object, so we can use date-like subsetting, too (the zoo object does not offer this
flexibility):

ibm['2010-01-05'] 

 

ibm['20100105']

We can also select by a vector of Date objects:



dates <- seq(as.Date("2010-01-04"), as.Date("2010-01-08"), by = 2) 

ibm[dates] 

#>            ibm 

#> 2010-01-04 104 

#> 2010-01-06 102 

#> 2010-01-08 103

The window function is easier for selecting a range of consecutive dates:

window(ibm, start = as.Date("2010-01-05"), end = as.Date("2010-01-07")) 

#>            ibm 

#> 2010-01-05 103 

#> 2010-01-06 102 

#> 2010-01-07 102

We can select a year/month combination using yyyymm subsetting:

ibm['201001']  # Jan 2010

Select year ranges using / like so:

ibm['2009/2011'] # all of 2009 - 2011

Or use / to select ranges including months:

ibm['2009/201001'] # all of 2009 plus Jan 2010 

ibm['2009/201001'] # all of 2009 plus Jan 2010 

ibm['200906/201005'] # June 2009 through May 2010

See Also
The xts package provides many other clever ways to index a time series. See the package documentation.

Merging Several Time Series

Problem
You have two or more time series. You want to merge them into a single time series object.

Solution
Use a zoo or xts object to represent the time series, then use the merge function to combine them:

merge(ts1, ts2) 

Discussion
Merging two time series is an incredible headache when the two series have differing timestamps. Consider
these two time series, with the daily price of IBM stock from 1999 through 2017 and the monthly Consumer
Price Index (CPI) for the same period:

load(file = "./data/ibm.rdata") 

head(ibm) 

#>             ibm 

#> 1999-01-04 64.2 

#> 1999-01-05 66.5 

#> 1999-01-06 66.2 

#> 1999-01-07 66.7 



#> 1999-01-08 65.8 

#> 1999-01-11 66.4 

head(cpi) 

#>              cpi 

#> 1999-01-01 0.938 

#> 1999-02-01 0.938 

#> 1999-03-01 0.938 

#> 1999-04-01 0.945 

#> 1999-05-01 0.945 

#> 1999-06-01 0.945

Obviously, the two time series have different timestamps because one is daily data and the other is monthly data.
Even worse, the downloaded CPI data is timestamped for the first day of every month, even when that day is a
holiday or weekend (e.g., New Year’s Day).

Thank goodness for the merge function, which handles the messy details of reconciling the different dates:

head(merge(ibm, cpi)) 

#>             ibm   cpi 

#> 1999-01-01   NA 0.938 

#> 1999-01-04 64.2    NA 

#> 1999-01-05 66.5    NA 

#> 1999-01-06 66.2    NA 

#> 1999-01-07 66.7    NA 

#> 1999-01-08 65.8    NA

By default, merge finds the union of all dates: the output contains all dates from both inputs, and missing
observations are filled with NA values. You can replace those NA values with the most recent observation by using
the na.locf function from the zoo package:

head(na.locf(merge(ibm, cpi))) 

#>             ibm   cpi 

#> 1999-01-01   NA 0.938 

#> 1999-01-04 64.2 0.938 

#> 1999-01-05 66.5 0.938 

#> 1999-01-06 66.2 0.938 

#> 1999-01-07 66.7 0.938 

#> 1999-01-08 65.8 0.938

(Here locf stands for “last observation carried forward.”) Observe that the NAs were replaced. However,
na.locf left an NA in the first observation (1999-01-01) because there was no IBM stock price on that day.

You can get the intersection of all dates by setting all = FALSE:

head(merge(ibm, cpi, all = FALSE)) 

#>             ibm   cpi 

#> 1999-02-01 63.1 0.938 

#> 1999-03-01 59.2 0.938 

#> 1999-04-01 62.3 0.945 

#> 1999-06-01 79.0 0.945 

#> 1999-07-01 92.4 0.949 

#> 1999-09-01 89.8 0.956

Now the output is limited to observations that are common to both files.

Notice, however, that the intersection begins on February 1, not January 1. The reason is that January 1 is a
holiday, so there is no IBM stock price for that date and hence no intersection with the CPI data. To fix this, see
“Filling or Padding a Time Series”.

Filling or Padding a Time Series



Problem
Your time series data is missing observations. You want to fill or pad the data with the missing dates/times.

Solution
Create a zero-width (dataless) zoo or xts object with the missing dates/times. Then merge your data with the
zero-width object, taking the union of all dates:

empty <- zoo(, dates) # 'dates' is vector of the missing dates 

merge(ts, empty, all = TRUE)

Discussion
The zoo package includes a handy feature in the constructor for zoo objects: you can omit the data and build a
zero-width object. The object contains no data, just dates. We can use these “Frankenstein” objects to perform
such operations as filling and padding on other time series objects.

Suppose you download monthly CPI data used in the last recipe. The data is timestamped with the first day of
each month:

head(cpi) 

#>              cpi 

#> 1999-01-01 0.938 

#> 1999-02-01 0.938 

#> 1999-03-01 0.938 

#> 1999-04-01 0.945 

#> 1999-05-01 0.945 

#> 1999-06-01 0.945

As far as R knows, we have no observations for the other days of the months. However, we know that each CPI
value applies to the subsequent days through month-end. So first we build a zero-width object with every day of
the decade, but no data:

dates <- seq(from = min(index(cpi)), to = max(index(cpi)), by = 1) 

empty <- zoo(, dates)

We use min(index(cpi)) and max(index(cpi)) to get the minimum and maximum index values from our cpi
data. So our resulting empty object is just an index of daily dates with the same range as our cpi data.

Then we take the union of the CPI data and the zero-width object, yielding a dataset filled with NA values:

filled.cpi <- merge(cpi, empty, all = TRUE) 

head(filled.cpi) 

#>              cpi 

#> 1999-01-01 0.938 

#> 1999-01-02    NA 

#> 1999-01-03    NA 

#> 1999-01-04    NA 

#> 1999-01-05    NA 

#> 1999-01-06    NA

The resulting time series contains every calendar day, with NAs where there was no observation. That might be
what you need. However, a more common requirement is to replace each NA with the most recent observation as
of that date. The na.locf function from the zoo package does exactly that:

filled.cpi <- na.locf(merge(cpi, empty, all = TRUE)) 

head(filled.cpi) 

#>              cpi 

#> 1999-01-01 0.938 



#> 1999-01-02 0.938 

#> 1999-01-03 0.938 

#> 1999-01-04 0.938 

#> 1999-01-05 0.938 

#> 1999-01-06 0.938

January’s value of 1 is carried forward until February 1, at which time it is replaced by the February value. Now
every day has the latest CPI value as of that date. Note that in this dataset, the CPI is based on January 1, 1999 =
100% and all CPI values are relative to the value on that date:

tail(filled.cpi) 

#>             cpi 

#> 2017-11-26 1.41 

#> 2017-11-27 1.41 

#> 2017-11-28 1.41 

#> 2017-11-29 1.41 

#> 2017-11-30 1.41 

#> 2017-12-01 1.41

We can use this recipe to fix the problem mentioned in “Merging Several Time Series”. There, the daily price of
IBM stock and the monthly CPI data had no intersection on certain days. We can fix that using several different
methods. One way is to pad the IBM data to include the CPI dates and then take the intersection (recall that
index(cpi) returns all the dates in the CPI time series):

filled.ibm <- na.locf(merge(ibm, zoo(, index(cpi)))) 

head(merge(filled.ibm, cpi, all = FALSE)) 

#>             ibm   cpi 

#> 1999-01-01   NA 0.938 

#> 1999-02-01 63.1 0.938 

#> 1999-03-01 59.2 0.938 

#> 1999-04-01 62.3 0.945 

#> 1999-05-01 73.6 0.945 

#> 1999-06-01 79.0 0.945

That gives monthly observations. Another way is to fill out the CPI data (as described previously) and then take
the intersection with the IBM data. That gives daily observations, as follows:

filled_data <- merge(ibm, filled.cpi, all = FALSE) 

head(filled_data) 

#>             ibm   cpi 

#> 1999-01-04 64.2 0.938 

#> 1999-01-05 66.5 0.938 

#> 1999-01-06 66.2 0.938 

#> 1999-01-07 66.7 0.938 

#> 1999-01-08 65.8 0.938 

#> 1999-01-11 66.4 0.938

Another common method for filling missing values uses the cubic spline technique, which interpolates smooth
intermediate values from the known data. We can use the zoo function na.approx to fill our missing values
using a cubic spline:

combined_data <- merge(ibm, cpi, all = TRUE) 

head(combined_data) 

#>             ibm   cpi 

#> 1999-01-01   NA 0.938 

#> 1999-01-04 64.2    NA 

#> 1999-01-05 66.5    NA 

#> 1999-01-06 66.2    NA 

#> 1999-01-07 66.7    NA 

#> 1999-01-08 65.8    NA 

 

combined_spline <- na.spline(combined_data) 

head(combined_spline) 



#>              ibm   cpi 

#> 1999-01-01  4.59 0.938 

#> 1999-01-04 64.19 0.938 

#> 1999-01-05 66.52 0.938 

#> 1999-01-06 66.21 0.938 

#> 1999-01-07 66.71 0.938 

#> 1999-01-08 65.79 0.938

Notice that both the missing values for cpi and ibm were filled. However, the value filled in for January 1, 1999
for the ibm column seems out of line with the January 4th observation. This illustrates one of the challenges with
cubic splines: they can become quite unstable if the value that is being interpolated is at the very beginning or
the very end of a series. To get around this instability, we could get some data points from before January 1,
1999, then interpolate using na.spline, or we could simply choose a different interpolation method.

Lagging a Time Series

Problem
You want to shift a time series in time, either forward or backward.

Solution
Use the lag function. The second argument, k, is the number of periods to shift the data:

lag(ts, k) 

Use positive k to shift the data forward in time (tomorrow’s data becomes today’s data). Use a negative k to shift
the data backward in time (yesterday’s data becomes today’s data).

Discussion
Recall the zoo object containing five days of IBM stock prices from “Representing Time Series Data”:

ibm.daily 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>        132        131        130        130        131

To shift the data forward one day, we use k = +1:

lag(ibm.daily, k = +1, na.pad = TRUE) 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>         NA        132        131        130        130

We also set na.pad = TRUE to fill the trailing dates with NA. Otherwise, they would simply be dropped, resulting
in a shortened time series.

To shift the data backward one day, we use k = -1. Again we use na.pad = TRUE to pad the beginning with NAs:

lag(ibm.daily, k = -1, na.pad = TRUE) 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>         NA        132        131        130        130

If the sign convention for k seems odd to you, you are not alone.



WARNING
The function is called lag, but a positive k actually generates leading data, not lagging data. Use a negative k to get lagging data. Yes,
this is bizarre. Perhaps the function should have been called lead.

The other thing to be careful with when using lag is that the dplyr package contains a function named lag as
well. The arguments for dplyr::lag are not exactly the same as for the Base R lag function. In particular,
dplyr uses n instead of k:

dplyr::lag(ibm.daily, n = 1) 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>         NA        132        131        130        130

WARNING
If you want to load dplyr, you should use the namespace to be explicit about which lag function you are using. The Base R function
is stats::lag, while the dplyr function is, naturally, dplyr::lag.

Computing Successive Differences

Problem
Given a time series, x, you want to compute the difference between successive observations: (x2 – x1), (x3 – x2),
(x4 – x3), ….

Solution
Use the diff function:

diff(x)

Discussion
The diff function is generic, so it works on simple vectors, xts objects, and zoo objects. The beauty of
differencing a zoo or xts object is that the result is the same type of object you started with and the differences
have the correct dates. Here we compute the differences for successive prices of IBM stock:

ibm.daily 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>        132        131        130        130        131 

diff(ibm.daily) 

#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>      -1.60      -0.85      -0.45       1.30

The difference labeled 2010-01-05 is the change from the previous day (2010-01-04), which is usually what you
want. The differenced series is shorter than the original series by one element because R can’t compute the
change as of 2010-01-04, of course.

By default, diff computes successive differences. You can compute differences that are more widely spaced by
using its lag parameter. Suppose you have monthly CPI data and want to compute the change from the previous
12 months, giving the year-over-year change. Specify a lag of 12:



head(cpi, 24) 

#>              cpi 

#> 1999-01-01 0.938 

#> 1999-02-01 0.938 

#> 1999-03-01 0.938 

#> 1999-04-01 0.945 

#> 1999-05-01 0.945 

#> 1999-06-01 0.945 

#> 1999-07-01 0.949 

#> 1999-08-01 0.952 

#> 1999-09-01 0.956 

#> 1999-10-01 0.957 

#> 1999-11-01 0.959 

#> 1999-12-01 0.961 

#> 2000-01-01 0.964 

#> 2000-02-01 0.968 

#> 2000-03-01 0.974 

#> 2000-04-01 0.973 

#> 2000-05-01 0.975 

#> 2000-06-01 0.981 

#> 2000-07-01 0.983 

#> 2000-08-01 0.983 

#> 2000-09-01 0.989 

#> 2000-10-01 0.990 

#> 2000-11-01 0.992 

#> 2000-12-01 0.994 

head(diff(cpi, lag = 12), 24) # Compute year-over-year change 

#>               cpi 

#> 1999-01-01     NA 

#> 1999-02-01     NA 

#> 1999-03-01     NA 

#> 1999-04-01     NA 

#> 1999-05-01     NA 

#> 1999-06-01     NA 

#> 1999-07-01     NA 

#> 1999-08-01     NA 

#> 1999-09-01     NA 

#> 1999-10-01     NA 

#> 1999-11-01     NA 

#> 1999-12-01     NA 

#> 2000-01-01 0.0262 

#> 2000-02-01 0.0302 

#> 2000-03-01 0.0353 

#> 2000-04-01 0.0285 

#> 2000-05-01 0.0296 

#> 2000-06-01 0.0353 

#> 2000-07-01 0.0342 

#> 2000-08-01 0.0319 

#> 2000-09-01 0.0330 

#> 2000-10-01 0.0330 

#> 2000-11-01 0.0330 

#> 2000-12-01 0.0330

Performing Calculations on Time Series

Problem
You want to use arithmetic and common functions on time series data.

Solution
No problem. R is pretty clever about operations on zoo and xts objects. You can use arithmetic operators (+, -,
*, /, etc.) as well as common functions (sqrt, log, etc.) and usually get what you expect.

Discussion



When you perform arithmetic on zoo or xts objects, R aligns the objects according to date so that the results
make sense. Suppose we want to compute the percentage change in IBM stock. We need to divide the daily
change by the price, but those two time series are not naturally aligned—they have different start times and
different lengths. Here’s an illustration with a zoo object:

ibm.daily 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>        132        131        130        130        131 

diff(ibm.daily) 

#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>      -1.60      -0.85      -0.45       1.30

Fortunately, when we divide one series by the other, R aligns the series for us and returns a zoo object:

diff(ibm.daily) / ibm.daily 

#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>   -0.01223   -0.00654   -0.00347    0.00994

We can scale the result by 100 to compute the percentage change, and the result is another zoo object:

100 * (diff(ibm.daily) / ibm.daily) 

#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>     -1.223     -0.654     -0.347      0.994

Functions work just as well. If we compute the logarithm or square root of a zoo object, the result is a zoo object
with the timestamps preserved:

log(ibm.daily) 

#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>       4.89       4.87       4.87       4.86       4.87

In investment management, computing the difference of logarithms of prices is quite common. That’s a piece of
cake in R:

diff(log(ibm.daily)) 

#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

#>   -0.01215   -0.00652   -0.00347    0.00998

See Also
See “Computing Successive Differences” for the special case of computing the difference between successive
values.

Computing a Moving Average

Problem
You want to compute the moving average of a time series.

Solution
Use the rollmean function of the zoo package to calculate the k-period moving average:

library(zoo) 

ma <- rollmean(ts, k)



Here ts is the time series data, captured in a zoo object, and k is the number of periods.

For most financial applications, you want rollmean to calculate the mean using only historical data; that is, for
each day, you use only the data available that day. To do that, specify align = right. Otherwise, rollmean will
“cheat” and use future data that was actually unavailable at the time:

ma <- rollmean(ts, k, align = "right")

Discussion
Traders are fond of moving averages for smoothing out fluctuations in prices. The formal name is the rolling
mean. You could calculate the rolling mean as described in “Applying a Rolling Function” by combining the
rollapply function and the mean function, but rollmean is much faster.

Besides speed, the beauty of rollmean is that it returns the same type of time series object it’s called on (i.e.,
xts or zoo). For each element in the object, its date is the “as of” date for a calculated mean. Because the result
is a time series object, you can easily merge the original data and the moving average and then plot them
together as in Figure 14-3:

ibm_year <- ibm["2016"] 

ma_ibm <- rollmean(ibm_year, 7, align = "right") 

ma_ibm <- merge(ma_ibm, ibm_year) 

plot(ma_ibm)

Figure 14-3. Rolling average plot

The output is normally missing a few initial data points, since rollmean needs a full k observations to compute
the mean. Consequently, the output is shorter than the input. If that’s a problem, specify na.pad = TRUE; then
rollmean will pad the initial output with NA values.

See Also



See “Applying a Rolling Function” for more about the align parameter.

The moving average described here is a simple moving average. The quantmod, TTR, and fTrading packages
contain functions for computing and plotting many kinds of moving averages, including simple ones.

Applying a Function by Calendar Period

Problem
Given a time series, you want to group the contents by a calendar period (e.g., week, month, or year) and then
apply a function to each group.

Solution
The xts package includes functions for processing a time series by day, week, month, quarter, or year:

apply.daily(ts, f) 

apply.weekly(ts, f) 

apply.monthly(ts, f) 

apply.quarterly(ts, f) 

apply.yearly(ts, f)

Here ts is an xts time series, and f is the function to apply to each day, week, month, quarter, or year.

If your time series is a zoo object, convert it to an xts object first so you can access these functions; for
example:

apply.monthly(as.xts(ts), f)

Discussion
It is common to process time series data according to calendar period. But figuring calendar periods is tedious at
best and bizarre at worst. Let these functions do the heavy lifting.

Suppose we have a five-year history of IBM stock prices stored in an xts object:

ibm_5 <- ibm["2012/2017"] 

head(ibm_5) 

#>            ibm 

#> 2012-01-03 152 

#> 2012-01-04 151 

#> 2012-01-05 150 

#> 2012-01-06 149 

#> 2012-01-09 148 

#> 2012-01-10 148

We can calculate the average price by month if we use apply.monthly and mean together:

ibm_mm <- apply.monthly(ibm_5, mean) 

head(ibm_mm) 

#>            ibm 

#> 2012-01-31 151 

#> 2012-02-29 158 

#> 2012-03-30 166 

#> 2012-04-30 167 

#> 2012-05-31 164 

#> 2012-06-29 159



Notice that the IBM data is in an xts object from the start. Had the data been in a zoo object, we would have
needed to convert it to xts using as.xts.

A more interesting application is calculating volatility by calendar month, where volatility is measured as the
standard deviation of daily log-returns. Daily log-returns are calculated this way:

diff(log(ibm_5))

We calculate their standard deviation, month by month, like this:

apply.monthly(as.xts(diff(log(ibm_5))), sd)

We can scale the daily number to estimate annualized volatility, as shown in Figure 14-4:

ibm_vol <- sqrt(251) * apply.monthly(as.xts(diff(log(ibm_5))), sd) 

plot(ibm_vol, 

  main = "IBM: Monthly Volatility" 

)

Figure 14-4. IBM volatility plot

Applying a Rolling Function

Problem
You want to apply a function to a time series in a rolling manner: calculate the function at a data point using
some window of time around that point, move to the next data point, calculate the function around that point,
move to the next data point, and so forth.

Solution



Use the rollapply function in the zoo package. The width parameter defines how many data points from the
time series (ts) should be processed by the function (f) at each point:

library(zoo) 

rollapply(ts, width, f)

For many applications, you will likely set align = "right" to avoid computing f with historical data that was
unavailable at the time:

rollapply(ts, width, f, align = "right") 

Discussion
The rollapply function extracts a “window” of data from your time series, calls your function with that data,
saves the result, and moves to the next window—and repeats this pattern for the entire input. As an illustration,
consider calling rollapply with a width of 21:

rollapply(ts, 21, f)

rollapply will repeatedly call the function, f, with a sliding window of data, like this:

1. f(ts[1:21])

2. f(ts[2:22])

3. f(ts[3:23])

4. … etc. …

Observe that the function should expect one argument, which is a vector of values. rollapply will save the
returned values before packaging them into a zoo object along with a timestamp for every value. The choice of
timestamp depends on the align parameter given to rollapply:

align="right"

The timestamp is taken from the rightmost value.

align="left"

The timestamp is taken from the leftmost value.

align="center" (default)

The timestamp is taken from the middle value.

By default, rollapply will recalculate the function at successive data points. You may instead want to calculate
the function at every nth data point. Use the by = n parameter to have rollapply move ahead n points after
each function call. When we calculate the rolling standard deviation of a time series, for example, we usually
want each window of data to be separate, not overlapping, so we set the by value equal to the window size:

ibm_sds <- rollapply(ibm_5, width = 30, FUN = sd, by = 30, align = "right") 

ibm_sds <- na.omit(ibm_sds) 

head(ibm_sds)

The rollapply function will, by default, return an object with as many observations as your input data with the
missing values filled with NA. In the preceding example we use na.omit to drop the NA values so that our
resulting object has records only for the dates for which we have values.



Plotting the Autocorrelation Function

Problem
You want to plot the autocorrelation function (ACF) of your time series.

Solution
Use the acf function:

acf(ts) 

Discussion
The autocorrelation function is an important tool for revealing the interrelationships within a time series. It is a
collection of correlations, ρk for k = 1, 2, 3, …, where ρk is the correlation between all pairs of data points that
are exactly k steps apart.

Visualizing the autocorrelations is much more useful than listing them, so the acf function plots them for each
value of k. The following example shows the autocorrelation functions for two time series, one with
autocorrelations (Figure 14-5) and one without (Figure 14-6). The dashed line delimits the significant and
insignificant correlations: values above the line are significant (the height of the line is determined by the
amount of data). We can plot them as follows:

load(file = "./data/ts_acf.rdata") 

 

acf(ts1, main = "Significant Autocorrelations") 

 

acf(ts2, main = "Insignificant Autocorrelations")

Figure 14-5. Autocorrelations at each lag: ts1



Figure 14-6. Autocorrelations at each lag: ts2

The presence of autocorrelations is one indication that an autoregressive integrated moving average (ARIMA)
model could model the time series. From the ACF, you can count the number of significant autocorrelations,
which is a useful estimate of the number of moving average (MA) coefficients in the model. Figure 14-5 shows
seven significant autocorrelations, for example, so we estimate that its ARIMA model will require seven MA
coefficients (MA(7)). That estimate is just a starting point, however, and must be verified by fitting and
diagnosing the model.

Testing a Time Series for Autocorrelation

Problem
You want to test your time series for the presence of autocorrelations.

Solution
Use the Box.test function, which implements the Box–Pierce test for autocorrelation:

Box.test(ts) 

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the data contains
significant autocorrelations, whereas a p-value exceeding 0.05 provides no such evidence.

Discussion
Graphing the autocorrelation function is useful for digging into your data. Sometimes, however, you just need to
know whether or not the data is autocorrelated. A statistical test such as the Box–Pierce test can provide an
answer.



We can apply the Box–Pierce test to the data whose autocorrelation function we plotted in “Plotting the
Autocorrelation Function”. The test shows p-values for the two time series that are nearly 0 and 0.79,
respectively:

Box.test(ts1) 

#> 

#>  Box-Pierce test 

#> 

#> data:  ts1 

#> X-squared = 100, df = 1, p-value <2e-16 

 

Box.test(ts2) 

#> 

#>  Box-Pierce test 

#> 

#> data:  ts2 

#> X-squared = 0.07, df = 1, p-value = 0.8

The p-value near 0 indicates that the first time series has significant autocorrelations. (We don’t know which
autocorrelations are significant; we just know they exist.) The p-value of 0.8 indicates that the test did not detect
autocorrelations in the second time series.

The Box.test function can also perform the Ljung–Box test, which is better for small samples. That test
calculates a p-value whose interpretation is the same as that for the Box–Pierce p-value:

Box.test(ts, type = "Ljung-Box")

See Also
See “Plotting the Autocorrelation Function” to plot the autocorrelation function, a visual check of the
autocorrelation.

Plotting the Partial Autocorrelation Function

Problem
You want to plot the partial autocorrelation function (PACF) for your time series.

Solution
Use the pacf function:

pacf(ts) 

Discussion
The partial autocorrelation function is another tool for revealing the interrelationships in a time series. However,
its interpretation is much less intuitive than that of the autocorrelation function. We’ll leave the mathematical
definition of partial correlation to a textbook on statistics. Here, we’ll just say that the partial correlation
between two random variables, X and Y, is the correlation that remains after accounting for the correlation shown
by X and Y with all other variables. In the case of time series, the partial autocorrelation at lag k is the correlation
between all data points that are exactly k steps apart, after accounting for their correlation with the data between
those k steps.

The practical value of a PACF is that it helps you to identify the number of autoregression (AR) coefficients in
an ARIMA model. The following example shows the PACF for the two time series used in “Plotting the
Autocorrelation Function”. One of these series has partial autocorrelations and one does not. Lag values whose



lines cross above the dotted line are statistically significant. In the first time series (Figure 14-7) there are two
such values, at k = 1 and k = 2, so our initial ARIMA model will have two AR coefficients (AR(2)). As with
autocorrelation, however, that is just an initial estimate and must be verified by fitting and diagnosing the model.
The second time series (Figure 14-8) shows no such autocorrelation pattern. We can plot them as follows:

pacf(ts1, main = "Significant Partial Autocorrelations") 

 

pacf(ts2, main = "Insignificant Partial Autocorrelations")

Figure 14-7. Autocorrelations at each lag: ts1



Figure 14-8. Autocorrelations at each lag: ts2

See Also
See “Plotting the Autocorrelation Function”.

Finding Lagged Correlations Between Two Time Series

Problem
You have two time series, and you are wondering if there is a lagged correlation between them.

Solution
Use the Ccf function from the package forecast to plot the cross-correlation function, which will reveal lagged
correlations:

library(forecast) 

Ccf(ts1, ts2) 

Discussion
The cross-correlation function helps you discover lagged correlations between two time series. A lagged
correlation occurs when today’s value in one time series is correlated with a future or past value in the other time
series.

Consider the relationship between commodity prices and bond prices. Some analysts believe those prices are
connected because changes in commodity prices are a barometer of inflation, one of the key factors in bond
pricing. Can we discover a correlation between them?

Figure 14-9 shows a cross-correlation function generated from daily changes in bond prices and a commodity
price index:1



library(forecast) 

load(file = "./data/bnd_cmty.Rdata") 

b <- coredata(bonds)[, 1] 

c <- coredata(cmdtys)[, 1] 

 

Ccf(b, c, main = "Bonds vs. Commodities")

Figure 14-9. Cross-correlation function

Note that since the objects we start with, bonds and cmdtys, are xts objects, we extract from each the vector of
data using coredata()[1]. This is because the Ccf function expects inputs to be simple vectors.

Every vertical line shows the correlation between the two time series at some lag, as indicated along the x-axis.
If a correlation extends above or below the dotted lines, it is statistically significant.

Notice that the correlation at lag 0 is –0.24, which is the simple correlation between the variables:

cor(b, c) 

#> [1] -0.24

Much more interesting are the correlations at lags 1, 5, and 8, which are statistically significant. Evidently there
is some “ripple effect” in the day-to-day prices of bonds and commodities because changes today are correlated
with changes tomorrow. Discovering this sort of relationship is useful to short-term forecasters such as market
analysts and bond traders.

Detrending a Time Series

Problem
Your time series data contains a trend that you want to remove.

Solution



Use linear regression to identify the trend component, and then subtract the trend component from the original
time series. These two lines show how to detrend the zoo object ts and put the result in detr:

m <- lm(coredata(ts) ~ index(ts)) 

detr <- zoo(resid(m), index(ts))

Discussion
Some time series data contains trends, which means that it gradually slopes upward or downward over time.
Suppose our time series object (a zoo object in this case), yield, contains a trend as shown in Figure 14-10.

Figure 14-10. Time series with trend

We can remove the trend component in two steps. First, we identify the overall trend by using the linear model
function, lm. The model should use the time series index for the x variable and the time series data for the y
variable:

m <- lm(coredata(yield) ~ index(yield))

Second, we remove the linear trend from the original data by subtracting the straight line found by lm. This is
easy because we have access to the linear model’s residuals, which are defined by the difference between the
original data and the fitted line:
ri = yi − β1xi − β0

where ri is the ith residual and β1 and β0 are the model’s slope and intercept, respectively. We can extract the
residuals from the linear model by using the resid function and then embed the residuals inside a zoo object:

detr <- zoo(resid(m), index(yield))

Notice that we use the same time index as the original data. When we plot detr it is clearly trendless, as is
evident in Figure 14-11:



autoplot(detr)

Figure 14-11. Residual plot

This data is the state average corn yield for Illinois in bushels per acre (bu/ac), so detr is the difference between
the actual yield and the trend. Sometimes when detrending you may want to determine the percent deviation
from the trend. In that case you can divide by the initial measure (see Figure 14-12):

library(patchwork) 

# y <- autoplot(yield) + 

#   labs(x='Year', y='Yield (bu/ac)', title='IL Corn Yield') 

d <- autoplot(detr, geom = "point") + 

  labs( 

    x = "Year", y = "Yield Dev (bu/ac)", 

    title = "IL Corn Yield Deviation from Trend (bu/ac)" 

  ) 

dp <- autoplot(detr / yield, geom = "point") + 

  labs( 

    x = "Year", y = "Yield Dev (%)", 

    title = "IL Corn Yield Deviation from Trend (%)" 

  ) 

 

d / dp



Figure 14-12. Detrended plots

The top plot in Figure 14-12 shows the yield deviation from the trend in bu/ac (the original units), while the
lower plot shows the percent deviation from the trend.

Fitting an ARIMA Model

Problem
You want to fit an ARIMA model to your time series data.

Solution
The auto.arima function in the forecast package can select the correct model order and fit the model to your
data:

library(forecast) 

auto.arima(x) 

If you already know the model order, (p, d, q), then the arima function can fit the model directly:

arima(x, order = c(p, d, q)) 

Discussion
Creating an ARIMA model involves three steps:

1. Identify the model order.

2. Fit the model to the data, giving the coefficients.

3. Apply diagnostic measures to validate the model.



The model order is usually denoted by three integers, (p, d, q), where p is the number of autoregressive
coefficients, d is the degree of differencing, and q is the number of moving average coefficients.

When most of us build an ARIMA model, we are usually clueless about the appropriate order. Rather than
tediously searching for the best combination of p, d, and q, we typically use auto.arima, which does the
searching for us:

library(forecast) 

library(fpp2) # for example data 

 

auto.arima(ausbeer) 

#> Series: ausbeer 

#> ARIMA(1,1,2)(0,1,1)[4] 

#> 

#> Coefficients: 

#>         ar1     ma1    ma2    sma1 

#>       0.050  -1.009  0.375  -0.743 

#> s.e.  0.196   0.183  0.153   0.050 

#> 

#> sigma^2 estimated as 241:  log likelihood=-886 

#> AIC=1783   AICc=1783   BIC=1800

In this case, auto.arima decided the best order was (1, 1, 2), which means that it differenced the data once (d =
1) before selecting a model with one AR coefficient (p = 1) and two MA coefficients (q = 2). In addition, the
auto.arima function determined that our data has seasonality and included the seasonal terms P = 0, D = 1, Q =
1 and a period of m = 4. The seasonality terms are similar to the nonseasonal ARIMA terms, but relate to the
seasonality component of the model. The m term tells us the periodicity of the seasonality, which in this case is
quarterly. We can see this more easily if we plot the ausbeer data as in Figure 14-13:

autoplot(ausbeer)

Figure 14-13. Australian beer consumption



By default, auto.arima limits p and q to the range 0 ≤ p ≤ 5 and 0 ≤ q ≤ 5. If you are confident that your model
needs fewer than five coefficients, use the max.p and max.q parameters to limit the search further; this makes it
faster. Likewise, if you believe that your model needs more coefficients, use max.p and max.q to expand the
search limits.

If you want to turn off the seasonality component of auto.arima, you can set seasonal = FALSE:

auto.arima(ausbeer, seasonal = FALSE) 

#> Series: ausbeer 

#> ARIMA(3,2,2) 

#> 

#> Coefficients: 

#>          ar1     ar2     ar3     ma1    ma2 

#>       -0.957  -0.987  -0.925  -1.043  0.142 

#> s.e.   0.026   0.018   0.024   0.062  0.062 

#> 

#> sigma^2 estimated as 327:  log likelihood=-935 

#> AIC=1882   AICc=1882   BIC=1902

But notice that since the model fits a nonseasonal model, the coefficients are different than in the seasonal
model.

If you already know the order of your ARIMA model, the arima function can quickly fit the model to your data:

arima(ausbeer, order = c(3, 2, 2)) 

#> 

#> Call: 

#> arima(x = ausbeer, order = c(3, 2, 2)) 

#> 

#> Coefficients: 

#>          ar1     ar2     ar3     ma1    ma2 

#>       -0.957  -0.987  -0.925  -1.043  0.142 

#> s.e.   0.026   0.018   0.024   0.062  0.062 

#> 

#> sigma^2 estimated as 319:  log likelihood = -935,  aic = 1882

The output looks identical to that of auto.arima with the seasonal parameter set to FALSE. What you can’t see
here is that arima executes much more quickly.

The output from auto.arima and arima includes the fitted coefficients and the standard error (s.e.) for each
coefficient:

Coefficients: 

          ar1      ar2      ar3      ma1     ma2 

      -0.9569  -0.9872  -0.9247  -1.0425  0.1416 

s.e.   0.0257   0.0184   0.0242   0.0619  0.0623

You can find the coefficients’ confidence intervals by capturing the ARIMA model in an object and then using
the confint function:

m <- arima(x = ausbeer, order = c(3, 2, 2)) 

confint(m) 

#>       2.5 % 97.5 % 

#> ar1 -1.0072 -0.907 

#> ar2 -1.0232 -0.951 

#> ar3 -0.9721 -0.877 

#> ma1 -1.1639 -0.921 

#> ma2  0.0195  0.264

This output illustrates a major headache of ARIMA modeling: not all the coefficients are necessarily significant.
If one of the intervals contains zero, the true coefficient might be zero itself, in which case the term is
unnecessary.



If you discover that your model contains insignificant coefficients, use “Removing Insignificant ARIMA
Coefficients” to remove them.

NOTE
The auto.arima and arima functions contain useful features for fitting the best model. For example, you can force them to include or
exclude a trend component. See the help pages for details.

A final caveat: the danger of auto.arima is that it makes ARIMA modeling look simple. ARIMA modeling is
not simple. It is more art than science, and the automatically generated model is just a starting point. We urge
you to review a good book about ARIMA modeling before settling on a final model.

See Also
See “Running Diagnostics on an ARIMA Model” for performing diagnostic tests on the ARIMA model.

As a textbook on time series forecasting we highly recommend Forecasting: Principles and Practice, 2nd ed., by
Rob J. Hyndman and George Athanasopoulos, which is freely available online.

Removing Insignificant ARIMA Coefficients

Problem
One or more of the coefficients in your ARIMA model are statistically insignificant. You want to remove them.

Solution
The arima function includes the parameter fixed, which is a vector. The vector should contain one element for
every coefficient in the model, including a term for the drift (if any). Each element is either NA or 0. Use NA for
the coefficients to be kept and use 0 for the coefficients to be removed. This example shows an ARIMA(2, 1, 2)
model with the first AR coefficient and the first MA coefficient forced to be 0:

arima(x, order = c(2, 1, 2), fixed = c(0, NA, 0, NA))

Discussion
The fpp2 package contains a dataset called euretail, which is a quarterly retail index for the Euro area. Let’s
run auto.arima on the data and look at the 98% confidence intervals:

m <- auto.arima(euretail) 

m 

#> Series: euretail 

#> ARIMA(0,1,3)(0,1,1)[4] 

#> 

#> Coefficients: 

#>         ma1    ma2    ma3    sma1 

#>       0.263  0.369  0.420  -0.664 

#> s.e.  0.124  0.126  0.129   0.155 

#> 

#> sigma^2 estimated as 0.156:  log likelihood=-28.6 

#> AIC=67.3   AICc=68.4   BIC=77.7 

confint(m, level = .98) 

#>          1 %   99 % 

#> ma1  -0.0246  0.551 

#> ma2   0.0774  0.661 

https://otexts.org/fpp2/


#> ma3   0.1190  0.721 

#> sma1 -1.0231 -0.304

In this example, we can see that the 98% confidence interval for the ma1 parameter contains 0 and we can
reasonably conclude that this parameter is insignificant at this level of confidence. We can set this parameter to 0
using the fixed parameter:

m <- arima(euretail, 

                   order = c(0, 1, 3), 

                   seasonal = c(0, 1, 1), 

                   fixed = c(0, NA, NA, NA)). 

m 

#> 

#> Call: 

#> arima(x = euretail, 

                     order = c(0, 1, 3), 

                     seasonal = c(0, 1, 1), 

                     fixed = c(0, 

#>     NA, NA, NA)) 

#> 

#> Coefficients: 

#>       ma1    ma2    ma3    sma1 

#>         0  0.404  0.293  -0.700 

#> s.e.    0  0.129  0.107   0.135 

#> 

#> sigma^2 estimated as 0.156:  log likelihood = -30.8,  aic = 69.5

Observe that the ma1 coefficient is now 0. The remaining coefficients (ma2, ma3, sma1) are still significant, as
shown by their confidence intervals, so we have a reasonable model:

confint(m, level = .98) 

#>          1 %   99 % 

#> ma1       NA     NA 

#> ma2   0.1049  0.703 

#> ma3   0.0438  0.542 

#> sma1 -1.0140 -0.386

Running Diagnostics on an ARIMA Model

Problem
You have built an ARIMA model using the forecast package, and you want to run diagnostic tests to validate
the model.

Solution
Use the checkresiduals function. This example fits the ARIMA model using auto.arima, puts the results in m,
and then runs diagnostics on the model:

m <- auto.arima(x) 

checkresiduals(m)

Discussion
The result of checkresiduals is a set of three graphs, as shown in Figure 14-14. A good model should produce
results like these:

#> 

#>  Ljung-Box test 

#> 



#> data:  Residuals from ARIMA(1,1,2)(0,1,1)[4] 

#> Q* = 5, df = 4, p-value = 0.3 

#> 

#> Model df: 4.   Total lags used: 8

Figure 14-14. Residuals plots: good model

Here’s what’s good about the graphs:

The standardized residuals don’t show clusters of volatility.

The autocorrelation function (ACF) shows no significant autocorrelation between the residuals.

The residuals look bell-shaped, suggesting they are reasonably symmetrical.

The p-value in the Ljung–Box test is large, indicating that the residuals are patternless—meaning all the
information has been extracted by the model and only noise is left behind.

For contrast, Figure 14-15 shows diagnostic charts with problems:

#> 

#>  Ljung-Box test 

#> 

#> data:  Residuals from ARIMA(1,1,1)(0,0,1)[4] 

#> Q* = 20, df = 5, p-value = 5e-04 

#> 

#> Model df: 3.   Total lags used: 8



Figure 14-15. Residuals plots: problem model

The issues here are:

The ACF shows significant autocorrelations between residuals.

The p-values for the Ljung–Box statistics are small, indicating there is some pattern in the residuals (i.e.,
there is still information to be extracted from the data).

The residuals appear asymmetrical.

These are basic diagnostics, but they are a good start. Find a good book on ARIMA modeling and perform the
recommended diagnostic tests before concluding that your model is sound. Additional checks of the residuals
could include:

Tests for normality

Quantile–quantile (Q–Q) plot

Scatter plot against the fitted values

Making Forecasts from an ARIMA Model

Problem
You have an ARIMA model for your time series that you built with the forecast package. You want to forecast
the next few observations in the series.

Solution
Save the model in an object, and then apply the forecast function to the object. This example saves the model
from “Removing Insignificant ARIMA Coefficients” and predicts the next eight observations:



m <- arima(euretail, order = c(0, 1, 3), seasonal = c(0, 1, 1), 

  fixed = c(0, NA, NA, NA)) 

forecast(m) 

#>         Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 

#> 2012 Q1           95.1  94.6  95.6  94.3  95.9 

#> 2012 Q2           95.2  94.5  95.9  94.1  96.3 

#> 2012 Q3           95.2  94.2  96.3  93.7  96.8 

#> 2012 Q4           95.3  93.9  96.6  93.2  97.3 

#> 2013 Q1           94.5  92.8  96.1  91.9  97.0 

#> 2013 Q2           94.5  92.6  96.5  91.5  97.5 

#> 2013 Q3           94.5  92.3  96.7  91.1  97.9 

#> 2013 Q4           94.5  92.0  97.0  90.7  98.3

Discussion
The forecast function will calculate the next few observations and their standard errors according to the model.
It returns a list with 10 elements. When we print the model, as we just did, forecast returns the time series
points it is forecasting, the forecast, and two pairs of confidence bands: high/low 80% and high/low 95%.

If we want to extract out just the forecast, we can do that by assigning the results to an object, and then pulling
out the list item named mean:

fc_m <- forecast(m) 

fc_m$mean 

#>      Qtr1 Qtr2 Qtr3 Qtr4 

#> 2012 95.1 95.2 95.2 95.3 

#> 2013 94.5 94.5 94.5 94.5

The result is a Time-Series object containing the forecasts created by the forecast function.

Plotting a Forecast

Problem
You have created a time series forecast with the forecast package and you would like to plot it.

Solution
Time series models created with the forecast package have a plotting method that uses ggplot2 to create
graphs easily, as shown in Figure 14-16:

fc_m <- forecast(m) 

autoplot(fc_m)



Figure 14-16. Forecast cone of uncertainty: default

Discussion
The autoplot function makes a very reasonable figure, as shown in Figure 14-16. Since the resulting figure is a
ggplot object, we can adjust the plotting parameters the same way we would with any other ggplot object. Here
we add labels and a title and change the theme, as shown in Figure 14-17:

autoplot(fc_m) + 

  ylab("Euro Index") + 

  xlab("Year/Quarter") + 

  ggtitle("Forecasted Retail Index") + 

  theme_bw()



Figure 14-17. Forecast cone of uncertainty: labeled

See Also
See Chapter 10 for more information on working with ggplot figures.

Testing for Mean Reversion

Problem
You want to know if your time series is mean-reverting (stationary).

Solution
A common test for mean reversion is the Augmented Dickey–Fuller (ADF) test, which is implemented by the
adf.test function of the tseries package:

library(tseries) 

adf.test(ts) 

The output from adf.test includes a p-value. Conventionally, if p < 0.05, the time series is likely mean-
reverting, whereas a p > 0.05 provides no such evidence.

Discussion
When a time series is mean-reverting, it tends to return to its long-run average. It may wander off, but eventually
it wanders back. If a time series is not mean-reverting, then it can wander away without ever returning to the
mean.



Figure 14-18 appears to be wandering upward and not returning. The large p-value from adf.test confirms that
it is not mean-reverting:

library(tseries) 

library(fpp2) 

autoplot(goog200) 

adf.test(goog200) 

#> 

#>  Augmented Dickey-Fuller Test 

#> 

#> data:  goog200 

#> Dickey-Fuller = -2, Lag order = 5, p-value = 0.7 

#> alternative hypothesis: stationary

Figure 14-18. Time series without mean reversion

The time series in Figure 14-19, however, is just bouncing around its average value. The small p-value (0.01)
confirms that it is mean-reverting:

autoplot(hsales) 

adf.test(hsales) 

#> 

#>  Augmented Dickey-Fuller Test 

#> 

#> data:  hsales 

#> Dickey-Fuller = -4, Lag order = 6, p-value = 0.01 

#> alternative hypothesis: stationary



Figure 14-19. Time series with mean reversion

The example data here comes from the fpp2 package and comprises all Time-Series object types. If your data
were in a zoo or xts object, then you would need to call coredata to extract out the raw data from the object
before passing it to adf.test:

library(xts) 

data(sample_matrix) 

xts_obj <- as.xts(sample_matrix, dateFormat = "Date")[, "Close"] # vector of data 

 

adf.test(coredata(xts_obj)) 

#> 

#>  Augmented Dickey-Fuller Test 

#> 

#> data:  coredata(xts_obj) 

#> Dickey-Fuller = -3, Lag order = 5, p-value = 0.3 

#> alternative hypothesis: stationary

The adf.test function massages your data before performing the ADF test. First it automatically detrends your
data, and then it recenters the data, giving it a mean of zero.

If either detrending or recentering is undesirable for your application, use the adfTest function in the
fUnitRoots package instead:

library(fUnitRoots) 

adfTest(coredata(ts1), type = "nc")

With type = "nc", the function neither detrends nor recenters your data. With type = "c", the function
recenters your data but does not detrend it.

Both the adf.test and adfTest functions let you specify a lag value that controls the exact statistic they
calculate. These functions provide reasonable defaults, but serious users should study the textbook description of
the ADF test to determine the appropriate lag for their application.



See Also
The urca and CADFtest packages also implement tests for a unit root, which is the test for mean reversion. Be
careful when comparing the tests from several packages, however. Each package can make slightly different
assumptions, which can lead to puzzling differences in the results.

Smoothing a Time Series

Problem
You have a noisy time series. You want to smooth the data to eliminate the noise.

Solution
The KernSmooth package contains functions for smoothing. Use the dpill function to select an initial bandwidth
parameter, and then use the locpoly function to smooth the data:

library(KernSmooth) 

 

gridsize <- length(y) 

bw <- dpill(t, y, gridsize = gridsize) 

lp <- locpoly(x = t, y = y, bandwidth = bw, gridsize = gridsize) 

smooth <- lp$y

Here, t is the time variable and y is the time series.

Discussion
The KernSmooth package is a standard part of the R distribution. It includes the locpoly function, which
constructs, around each data point, a polynomial that is fitted to the nearby data points. These are called local
polynomials. The local polynomials are strung together to create a smoothed version of the original data series.

The algorithm requires a bandwidth parameter to control the degree of smoothing. A small bandwidth means less
smoothing, in which case the result follows the original data more closely. A large bandwidth means more
smoothing, so the result contains less noise. The tricky part is choosing just the right bandwidth: not too small,
not too large.

Fortunately, KernSmooth also includes the function dpill for estimating the appropriate bandwidth, and it works
quite well. We recommend that you start with the dpill value and then experiment with values above and below
that starting point. There is no magic formula here. You need to decide what level of smoothing works best in
your application.

The following is an example of smoothing. We’ll create some example data that is the sum of a simple sine wave
and normally distributed “noise”:

t <- seq(from = -10, to = 10, length.out = 201) 

noise <- rnorm(201) 

y <- sin(t) + noise

Both dpill and locpoly require a grid size—in other words, the number of points for which a local polynomial
is constructed. We often use a grid size equal to the number of data points, which yields a fine resolution. The
resulting time series is very smooth. You might use a smaller grid size if you want a coarser resolution or if you
have a very large dataset:

library(KernSmooth) 

gridsize <- length(y) 

bw <- dpill(t, y, gridsize = gridsize)



The locpoly function performs the smoothing and returns a list. The y element of that list is the smoothed data:

lp <- locpoly(x = t, y = y, bandwidth = bw, gridsize = gridsize) 

smooth <- lp$y 

 

ggplot() + 

  geom_line(aes(x = t, y = y)) + 

  geom_line(aes(x = t, y = smooth), linetype = 2)

In Figure 14-20, the smoothed data is shown as a dashed line, while the solid line is our original example data.
The figure demonstrates that locpoly did an excellent job of extracting the original sine wave.

Figure 14-20. Example time series plot

See Also
The ksmooth, lowess, and HoltWinters functions in the base distribution can also perform smoothing. The
expsmooth package implements exponential smoothing.

Specifically, the bonds variable is the log-returns of the Vanguard Long-Term Bond Index Fund (VBLTX), and the cmdtys variable is the log-
returns of the Invesco DB Commodity Tracking Fund (DBC). The data was taken from the period 2007-01-01 through 2017-12-31.

1



Chapter 15. Simple Programming

R lets you accomplish a lot without knowing anything about programming. Programming opens the door to
accomplishing more, however, and most serious users eventually perform some level of programming, starting
simply and possibly becoming quite proficient. While this is not a programming book, this chapter lays out some
programming recipes that R users typically find useful to begin their journey.

If you are already familiar with programming and programming languages, a few notes here may help you
quickly adapt. (If these terms are unfamiliar to you, you can skip this section.) Here are some technical details of
R to be aware of:

Typeless variables
Variables in R do not have a fixed type, such as integer or character, unlike in typed languages such as C and
Java. A variable could contain a number one moment and a data frame the next.

Return values
All functions return a value. Normally, a function returns the value of the last expression in its body. You can
also use return(expr) anywhere within the body.

Call-by-value parameters
Function parameters are “call by value”—in other words, parameters are strictly local variables, and changes
to those variables do not affect the caller’s value.

Local variables
You create a local variable simply by assigning a value to it. Explicit declaration is not required. When the
function exits, local variables are lost.

Global variables
Global variables are held in the user’s workspace. Within a function you can change a global variable by
using the <<- assignment operator, but this is not encouraged.

Conditional execution

The R syntax includes an if statement. See help(Control) for details.

Loops

The R syntax also includes for loops, while loops, and repeat loops. For details, see help(Control).

Case or switch statements

A special function called switch provides a basic case statement. The semantics may strike you as odd,
however. See help(switch) for details.

Lazy evaluation
R does not immediately evaluate function arguments when the function is called. Rather, it waits until the
argument is actually used within the function, then evaluates it. This gives the language an especially rich
and powerful semantics. Most of the time, it’s not noticeable, but occasionally it results in situations that are
baffling to programmers familiar only with “eager” evaluation, where arguments are evaluated when the
function is called.

Functional semantics
Functions are “first-class citizens” and can be treated like other objects: assigned to variables, passed to
functions, printed, inspected, and so forth.



Object orientation
R supports object-oriented programming. In fact, there are several different paradigms for object orientation,
which is a blessing if you enjoy having a choice and baffling if you don’t.

Choosing Between Two Alternatives: if/else

Problem
You want to write a conditional branch that will choose between two paths based on a simple test.

Solution
An if block can implement conditional logic by testing a simple condition:

if (condition) { 

  ## do this if condition is TRUE 

} else { 

  ## do this if condition is FALSE 

} 

Notice the parentheses around the condition, which are required, and the curly braces around the subsequent two
blocks of code.

Discussion
The if structure lets you choose between two alternative code paths by testing some condition, such as x == 0
or y > 1, and then following one path or the other accordingly. This if, for example, checks for negative
numbers before calculating a square root:

if (x >= 0) { 

  print(sqrt(x))             # do this if x >= 0 

} else { 

  print("negative number")   # do this otherwise 

}

You can chain a series of if/else structures to make a series of decisions. Let’s suppose we want a value to be
cupped at 0 (no negative values) and capped at 1. We could code that as follows:

x <- -0.3 

 

if (x < 0) { 

  x <- 0 

} else if (x > 1) { 

  x <- 1 

} 

 

print(x) 

#> [1] 0

It is important that the conditional test (the expression after if) is a simple test; that is, it must return a single,
logical value of either TRUE or FALSE. A common problem is mistakenly using a vector of logical values, as in
this example:

x <- c(-2, -1, 0, 1, 2) 

 

if (x < 0) { 

  print("values are negative") 



} 

#> Warning in if (x < 0) {: the condition has length > 1 and only the first 

#> element will be used 

#> [1] "values are negative"

The problem arises because x < 0 is ambiguous when x is a vector: are you testing for all values being negative
or some values being negative? R provides the helper functions all and any to address the situation. They take a
vector of logical values and reduce them to one, single value:

x <- c(-2, -1, 0, 1, 2) 

 

if (all(x < 0)) { 

  print("all are negative") 

} 

 

if (any(x < 0)) { 

  print("some are negative") 

} 

#> [1] "some are negative"

See Also
The if structure presented here is intended for programming. There is also a function called ifelse that
implements a vectorized if/else structure, useful for transforming entire vectors. See help(ifelse).

Iterating with a Loop

Problem
You want to iterate over the elements of a vector or list.

Solution
A common iteration technique uses the for structure. If v is a vector or list, this for loop selects each element of
v one by one, assigns the element to x, and does something with it:

for (x in v) { 

  # do something with x 

}

Discussion
Programmers from C and Python will recognize for loops. They are less common in R but still occasionally
useful.

For illustration, this for loop prints the first five integers and their squares. It sets x to 1, 2, 3, 4, and 5
successively, executing the body of the loop each time:

for (x in 1:5) { 

  cat(x, x^2, "\n") 

} 

#> 1 1 

#> 2 4 

#> 3 9 

#> 4 16 

#> 5 25

We can also iterate over the subscripts of a vector or list, which is useful for updating the data in place. Here, we
initialize v with the vector 1:5, then update its elements by squaring each one:



v <- 1:5 

for (i in 1:5) { 

  v[[i]] <- v[[i]] ^ 2 

} 

print(v) 

#> [1]  1  4  9 16 25

But, frankly, this also illustrates one reason why loops are less common in R than in other programming
languages. The vectorized operations of R are fast and easy, often eliminating the need for looping altogether.
Here is the vectorized version of the previous example:

v <- 1:5 

v <- v^2 

print(v) 

#> [1]  1  4  9 16 25

See Also
Another reason loops are rare is that map and similar functions can process entire vectors and lists at once,
usually more quickly and easily than a loop. See “Applying a Function to Each List Element” for details on using
the purrr package to apply functions to lists.

Defining a Function

Problem
You want to define a new R function.

Solution
Create the function by using the function keyword followed by a list of parameter names and then the function
body:

name <- function(param1, ..., paramN) { 

          expr1 

          . 

          . 

          . 

          exprM 

        } 

Put parentheses around the parameter names. Put curly braces around the function body, which is a sequence of
one or more expressions. R will evaluate each expression in order and return the value of the last one, denoted
here as exprM.

Discussion
Function definitions are how you tell R, “Here’s how to calculate this.” For example, R does not have a built-in
function for calculating the coefficient of variation, but we can create such a function, calling it cv:

cv <- function(x) { 

  sd(x) / mean(x) 

}

This function has one parameter, x, and the body of the function is sd(x) / mean(x).



When we call the function with an argument, R will set the parameter x to that value, then evaluate the body of
the function:

cv(1:10)     # Set x = 1:10 and evaluate sd(x)/mean(x) 

#> [1] 0.550482

Note that the parameter x is distinct from any other variable called x. If you have a global variable x in your
workspace, for example, that x is distinct from this x and won’t be affected by cv. Furthermore, the parameter x
exists only while the cv function is executing and disappears after that.

A function can have more than one argument. This function has two arguments, both integers, and implements
Euclid’s algorithm for computing their greatest common divisor:

gcd <- function(a, b) { 

  if (b == 0) { 

    a                # Return a to caller 

  } else { 

    gcd(b, a %% b)   # Recursively call ourselves 

  } 

} 

 

# What's the greatest common denominator of 14 and 21? 

gcd(14, 21) 

#> [1] 7

(This function definition is recursive because it calls itself when b is nonzero.)

Normally, the function returns the value of the last expression in the function body. You can choose to return a
value earlier, however, by writing return(expr), forcing the function to stop and immediately return expr to
the caller. We can illustrate this by coding gcd in a subtly different way using an explicit return:

gcd <- function(a, b) { 

  if (b == 0) { 

    return(a)    # Stop and return a 

  } 

  gcd(b, a %% b) 

}

When parameter b is 0, gcd executes return(a), returning that value immediately to the caller.

See Also
Functions are a central component of R programming, so they are covered well in books such as R for Data
Science by Hadley Wickham and Garrett Grolemund (O’Reilly) and The Art of R Programming by Norman
Matloff (No Starch Press).

Creating a Local Variable

Problem
You want to create a variable that is local to a function—that is, a variable that is created inside the function,
used inside the function, and removed when the function is done.

Solution
Inside the function, simply assign a value to the name. The name automatically becomes a local variable and will
be removed when the function finishes.



Discussion
This function will map a vector, x, into the unit interval. It requires two intermediate values, low and high:

unitInt <- function(x) { 

  low <- min(x) 

  high <- max(x) 

  (x - low) / (high - low) 

}

The low and high values are automatically created by the assignment statements. Because the assignments occur
within the function body, the variables are local to the function. That brings two important advantages.

First, the local variables named low and high are distinct from any global variables named low and high in your
workspace. Because they are distinct, there is no “collision”: changes to the local variables do not change the
global variables.

Second, local variables disappear when the function is done. That prevents clutter and automatically frees the
space they used.

Choosing Between Multiple Alternatives: switch

Problem
A variable can take on several different values. You want your program to handle each case separately, according
to the value.

Solution
The switch function will branch according to a value, letting you select how you handle each case.

Discussion
The first argument to switch is a value for R to consider. The remaining arguments show how to handle each
possible value. For example, this call to switch considers the value of who, then returns one of three possible
results:

hair_type = switch(who, 

                   Moe = "long", 

                   Larry = "fuzzy", 

                   Curly = "none")

Notice that each expression after the initial who is labeled with a possible value for who. If who is Moe, then the
switch returns "long"; if it is Larry, the switch returns "fuzzy"; if it’s Curly, it returns "none".

Very often, you cannot anticipate all possible values to be considered, so switch lets you define a default for the
situation where no label matches. Simply put the default last with no label. This switch, for example, will
translate the contents of s from "one", "two", or "three" into the corresponding integer. It returns NA for any
other value:

num <- switch(s, 

              one = 1, 

              two = 2, 

              three = 3, 

              NA)

An annoying quirk of switch arises when the labels are integers. This won’t do what you expect, for example:



switch(i,            # Does not work the way you expect 

       10 = "ten", 

       20 = "twenty", 

       30 = "thirty", 

       "other")

But there is a workaround—convert the integer to a character string, then use character strings for the labels:

switch(as.character(i), 

       "10" = "ten", 

       "20" = "twenty", 

       "30" = "thirty", 

       "other")

See Also
See help(switch) for more details.

This sort of feature is quite common in other programming languages, where it’s usually called a switch or case
statement.

The switch function works only with scalars. Switching on the contents of a data frame is more complicated.
See the function case_when in the dplyr package for a powerful mechanism to handle that situation.

Defining Defaults for Function Parameters

Problem
You want to define default parameters for a function—that is, values to use when the caller does not provide
explicit arguments.

Solution
R lets you set default values for parameters by including them in the function definition:

my_fun <- function(param = default_value) { 

  ... 

} 

Discussion
Let’s create a toy function that greets someone by name:

greet <- function(name) { 

  cat("Hello,", name, "\n") 

} 

 

greet("Fred") 

#> Hello, Fred

If we call greet without a name argument, we get this error:

greet() 

#> Error in cat("Hello,", name, "\n") : 

#>   argument "name" is missing, with no default

We can change the function definition, however, to define a default name. In this case, we’ll default to the
generic name world:



greet <- function(name = "world") { 

  cat("Hello,", name, "\n") 

}

Now if we omit the argument, R supplies a default:

greet() 

#> Hello, world

This mechanism for defaults is handy. Nonetheless, we recommend using it judiciously. We’ve seen too many
cases where the function creator defined defaults and the function caller accepted the defaults without much
thought, leading to questionable results. For example, if you are using the k-nearest neighbors algorithm, the
choice of k is critical and providing a default makes no sense. Sometimes it’s better to force the caller to make a
choice.

Signaling Errors

Problem
When your code encounters a serious problem, you want to halt and alert the user.

Solution
Call the stop function, which will print your message and terminate all processing.

Discussion
It is critical to halt processing when your code encounters fatal errors, such as this check that an account still has
a positive balance:

if (balance < 0) { 

  stop("Funds exhausted.") 

}

This call to stop would display the message, terminate processing, and put the user back at the console prompt:

#> Error in eval(expr, envir, enclos): Funds exhausted

Problems arise for all sorts of reasons: bad data, user error, network failures, and bugs in code, to name a few.
The list is endless. It is important that you anticipate potential problems and code appropriately:

Detect
At a minimum, detect possible errors. Halt if further processing is impossible. Undetected errors are a major
source of program failures.

Report
If you must halt, give users a reasonable explanation of why. That will help them diagnose and fix the
problem.

Recover
In some cases, the code may be able to correct the situation itself and continue. We recommend, however,
warning the user that your code encountered a problem and corrected it.

Error handling is part of defensive programming, the practice of making your code robust.



See Also
An alternative to stop is the warning function, which prints its message and continues without halting. Be sure,
however, that it is actually reasonable to continue.

Protecting Against Errors

Problem
You anticipate the possibility of fatal errors, and you want to handle them rather than halt altogether.

Solution
Use the possibly function to “wrap” the problematic code. It will trap errors and let you respond to them.

Discussion
The purrr package contains a function called possibly, which takes two parameters. The first parameter is a
function, and possibly will protect against failures in that function. The second parameter is a value called
otherwise.

A concrete example is useful here. The read.csv function tries to read a file, but it simply halts if the file does
not exist. That could be undesirable. We might want to recover and continue instead.

We can “wrap” the read.csv function in a protective layer this way:

library(purrr) 

safe_read <- possibly(read.csv, otherwise=NULL)

It may seem strange, but possibly returns a new function. The new function, called safe_read here, behaves
exactly like the old function, read.csv, but with one very important difference. When read.csv would fail and
halt, safe_read will instead return the otherwise value (NULL) and let you continue. (If read.csv succeeds, you
get its usual result: a data frame.)

You could use safe_read like this to handle optional files:

details = safe_read("details.csv")    # Try to read details.csv file 

if (is.null(details)) {               # NULL means read.csv failed 

  cat("Details are not available\n") 

} else { 

  print(details)                      # We got the contents! 

}

If the details.csv file exists, safe_read returns the contents and this code will print them. If it does not exist,
then read.csv fails, safe_read returns NULL, and this code prints a message.

The otherwise value in this case is NULL, but it can be anything. It could be a data frame, for example, which
provides a default. In that case, when the details.csv file is unavailable, safe_read would return that default.

See Also
The purrr package contains other functions for protecting against errors. Check out the safely and quietly
functions.

If you need even higher-powered tools, use help(tryCatch) to see the mechanism behind possibly, which has
sophisticated bells and whistles for handling both errors and warnings. It mirrors the familiar try/catch



paradigm of other programming languages.

Creating an Anonymous Function

Problem
You are using tidyverse functions such as map or discard that require a function. You want a shortcut for easily
defining the required function.

Solution
Use the function keyword to define a function with parameters and a body, but instead of giving the function a
name, simply use its definition inline.

Discussion
It may seem strange to create a function with no name, but it can be a handy convenience.

In “Defining a Function”, we defined a function, is_na_or_null, and used it to remove NA and NULL elements
from a list:

is_na_or_null <- function(x) { 

  is.na(x) || is.null(x) 

} 

 

lst %>% 

  discard(is_na_or_null)

Sometimes, writing a tiny, one-off function such as is_na_or_null is annoying. You can avoid that hassle by
using the function definition directly, not giving it a name:

lst %>% 

  discard(function(x) is.na(x) || is.null(x))

This kind of function is called an anonymous function, for the obvious reason that it has no name.

See Also
Function definitions are described in “Defining a Function”.

Creating a Collection of Reusable Functions

Problem
You want to reuse one or more functions across several scripts.

Solution
Save the functions in a local file, say myLibrary.R, then use the source function to load those functions into your
script:

source("myLibrary.R")

Discussion



Quite often, you will write functions that are useful in several scripts. For example, you could have one function
that loads, checks, and cleans your data; now you want to reuse that function in every script that needs the data.

Most beginners simply cut and paste the reusable function into each script, duplicating the code. That creates a
serious problem. What if you discover a bug in that duplicated code? Or what if you must change the code to
accommodate new circumstances? You’re forced to hunt down every copy and make the identical change
everywhere, an annoying and error-prone process.

Instead, create a file, say myLibrary.R, and save the function definition there. The file contents could look like
this:

loadMyData <- function() { 

  # code for data loading, checking, and cleaning here 

}

Then, inside each script, use the source function to read the code from the file:

source("myLibrary.R")

When you run the script, the source function reads the indicated file, just as if you’d typed the file contents at
that location in the script. It’s better than cutting and pasting because you’ve isolated the function’s definition
into one known place.

TIP
This example has only one function in the sourced file, but the file can contain multiple functions, of course. We suggest gathering
related functions into their own file, creating a group of related, reusable functions.

See Also
This recipe is a very simple method for reusing code, appropriate for small projects. A more powerful approach
is to create your own R package of functions, which is especially useful for collaborating with other people.
Package creation is a large topic, but getting started is pretty easy. We suggest the excellent book R Packages by
Hadley Wickham (O’Reilly), available in printed form or online.

Automatically Reindenting Code

Problem
You want to reformat your code so that it lines up nicely and is indented consistently.

Solution
To consistently indent a block of code, highlight the text in RStudio, then press Ctrl-I (Windows or Linux) or
Cmd-I (Mac).

Discussion
One of the many features of the RStudio IDE is that it helps with routine code maintenance, such as
reformatting. When you’re editing code it’s easy to end up with indentation that is inconsistent and a little
confusing. The IDE can fix that.

Take the following code, for example:

http://r-pkgs.had.co.nz/


for (i in 1:5) { 

    if (i >= 3) { 

  print(i**2) 

} else { 

  print(i * 3) 

} 

  }

While that’s valid code, it can be tricky to read because of the odd indentation. If we highlight the text in the
RStudio IDE and press Ctrl-I (or Cmd-I on Mac), then our code gets consistent indentation:

for (i in 1:5) { 

  if (i >= 3) { 

    print(i**2) 

  } 

  else { 

    print(i * 3) 

  } 

}

See Also
RStudio has several helpful features for code editing. You can access cheat sheets by clicking Help →
Cheatsheets or by going directly to https://www.rstudio.com/resources/cheatsheets/.

https://www.rstudio.com/resources/cheatsheets/


Chapter 16. R Markdown and Publishing

While R by itself is an incredibly powerful tool for data analysis and visualization, almost all of us, after we do
analysis, will need to communicate the results to others. We may do that with published papers, blog posts,
PowerPoint presentations, or books. R Markdown is the tool that helps us go from R analysis and visualization
all the way to publishable documents.

R Markdown is a package (as well as an ecosystem of tools) that allows us to add R code to a plain-text file with
some Markdown formatting. The document can then be rendered into many different output formats, including
PDF, HTML, Microsoft Word, and Microsoft PowerPoint. At rendering, also called knitting, the R code is run
and the resulting output and figures are placed in the final document.

In this chapter we’ll give you recipes to get you started creating R Markdown documents. After you go through
these recipes, one of the best ways to learn more about R Markdown is by looking at the source files and final
output of other people’s R Markdown work. The book you are reading was itself written in R Markdown. You can
see the source to this book on GitHub.

In addition, Yihui Xie, J. J. Allaire, and Garrett Grolemund have written R Markdown: The Definitive Guide
(Chapman & Hall/CRC) and also made the source R Markdown available on GitHub.

Many other books written with R Markdown have been made freely available online.

We mentioned that R Markdown is an ecosystem as well as a package. There are specialized packages to extend
R Markdown for blogging (blogdown), for books (bookdown), and for making gridded dashboards
(flexdashboard). The initial package in the ecosystem is called knitr, and we still call the process of turning R
Markdown into a final format “knitting” the document. The R Markdown ecosystem supports many output
formats, and covering them all would be unreasonable. In this book we’ll stick primarily to four common output
formats: HTML, LaTeX, Microsoft Word, and Microsoft PowerPoint.

The RStudio IDE contains many helpful features for creating and editing R Markdown documents. While we’ll
make use of those features in the following recipes, R Markdown is not dependent on RStudio in order to be
useful. It’s possible to edit plain-text R Markdown files with your favorite text editor and then knit the document
using R’s command-line interface. However, the RStudio tools are so helpful that we’ll illustrate them
extensively.

Creating a New Document

Problem
You want to create a new R Markdown document to tell your data story.

Solution
The easiest way to create a new R Markdown document is using the File → New File → R Markdown… menu
choice in the RStudio IDE (see Figure 16-1).

https://github.com/CerebralMastication/R-Cookbook
https://bookdown.org/yihui/rmarkdown/
https://github.com/rstudio/rmarkdown-book
https://bookdown.org/


Figure 16-1. Creating a new R Markdown document

Selecting “R Markdown…” will lead you to the New R Markdown dialog, where you can choose the type of
output document you would like to create (see Figure 16-2). The default option is HTML, which is a good choice
if you want to publish your work online or in an email, or if you haven’t made up your mind yet about how you’d
like to output your final document. Changing to a different format later is typically as easy as chaining one line
of text in the document, or a few clicks in the IDE.



Figure 16-2. New R Markdown document options

After you make your selection and click OK, you’ll get an R Markdown template with some metadata and
example text (see Figure 16-3).



Figure 16-3. New R Markdown document

Discussion
R Markdown documents are plain-text files. The shortcut just outlined is the fastest way to get a template for
creating a new R Markdown text document. Once you have the template you can edit the text, alter the R code,
and change anything you want. The other recipes in this chapter deal with the types of things you will likely want
to do in your R Markdown document, but if you just want to see what some output looks like, click on the Knit
button in the RStudio IDE and your R Markdown document will be rendered into your desired output format.

Adding a Title, Author, or Date

Problem
You want to alter the title, author, or date of your document.

Solution
At the top of an R Markdown document is a block of specially formatted text that starts and ends with ---. This
block contains important metadata about your document. In this block, you can set the title, author, and date:



--- 

title: "Your Title Here" 

author: "Your Name Here" 

date: "12/31/9999" 

output: html_document 

---

You can also set the output format (e.g., output: html_document). We’ll discuss the different output formats
later in the recipes that cover specific formats.

Discussion
When you knit your R Markdown document to create your output, R will run each chunk, create Markdown (not
R Markdown) for each chunk’s output, and pass the full Markdown document to Pandoc. Pandoc is the software
that creates your final output document from the intermediate Markdown. Most of the time, you don’t even need
to think about the steps unless you’re having a problem knitting your document.

The text at the top of your R Markdown document between the --- marks is in a format called YAML (Yet
Another Markup Language). This chunk is used to pass metadata to the Pandoc software that builds your output
document. The fields title, author, and date are read by Pandoc and inserted at the top of most output
document formats.

The way these values are formatted and inserted into the output document is a function of the template used for
output. The default templates for HTML, PDF, and Microsoft Word each format the title, author, and date
fields similarly (see Figure 16-4).

Figure 16-4. Header illustration

You can add other key/value pairs into the YAML header, but if your template is not configured to use these
values, they are ignored.

See Also
For information on creating your own templates, see Chapter 17, “Document Templates,” in R Markdown: The
Definitive Guide.

Formatting Document Text

Problem
You want to format the text of your document, such as putting text into italics or bold.

Solution
The body of an R Markdown document is plain text and allows formatting using Markdown notation. You’ll
likely want to add formatting, such as making text bold or italic. You’ll also want to add section headers, lists,
and tables, which will be covered in later recipes. All of these options can be accomplished through Markdown.

https://bookdown.org/yihui/rmarkdown/document-templates.html


Table 16-1 shows a brief summary of some of the most common formatting syntax.

Table 16-1. Common
Markdown formatting syntax

Markdown Output

plain text plain text

*italics* italics

**bold** bold

`code` code

sub~script~ subscript

super^script^ superscript

~~strikethrough~~ strikethrough

endash: -- endash: –

emdash: --- emdash: —

See Also
RStudio publishes a handy reference sheet.

See also recipes for inserting various structures, such as “Inserting Document Headings”, “Inserting a List”, and
“Inserting a Table”.

Inserting Document Headings

Problem
Your R Markdown document needs section headings.

Solution
You can insert section headings by starting a line with the # (hash) character. Use one hash character for the top
level, two for the second level, and so on:

# Level 1 Heading 

## Level 2 Heading 

### Level 3 Heading 

#### Level 4 Heading 

##### Level 5 Heading 

###### Level 6 Heading

Discussion
Markdown and HTML both support up to six heading levels, so that’s what’s supported in R Markdown. In R
Markdown (and Markdown in general) the formatting does not include specific font details; it communicates
only what formatting class to apply to text. The specifics of each class are defined by the output format and the
template used by each output format.

Inserting a List

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf


Problem
You want to include a bulleted or numbered list in your document.

Solution
To create a bulleted list, start each line with an asterisk (*) like so:

* first item 

* second item 

* third item

To create a numbered list, start each line with 1. as follows:

1. first item 

1. second item 

1. third item

R Markdown will replace the 1. prefixes with the sequence 1., 2., 3., and so on.

The rules for lists are a bit strict:

There must be a blank line before the list.

There must be a blank line after the list.

There must be a space character after the leading asterisk.

Discussion
The syntax for lists is simple, but watch out for the rules given in the Solution. If you violate even one, the
output will be gobbledygook.

An important feature of lists is that they allow sublists. This bulleted list has three subitems:

* first item 

   * first subitem 

   * second subitem 

   * third subitem 

* second item

which produces this output:

first item

— first subitem

— second subitem

— third subitem

second item

Again, there is an important rule: the sublists must be indented by two, three, or four spaces relative to the level
above. No more, no less—otherwise, chaos will ensue.

The Solution recommends using the prefix 1. to identify numbered lists. You can also use a. and i., which will
produce lowercase letters and roman numeral sequences, respectively. That’s handy for formatting sublists:

1. first item 

1. second item 

   a. subitem 1 

   a. subitem 2 

      i. sub-subitem 1 

      i. sub-subitem 2 



   a. subitem 2 

1. third item

This produces:

1. first item

2. second item

a. subitem 1

b. subitem 2

i. sub-subitem 1

ii. sub-subitem 2

c. subitem 2

3. third item

See Also
The syntax for lists is more flexible and feature-laden than described here. See the reference material for details,
such as the Pandoc Markdown guide.

Showing Output from R Code

Problem
You want to execute some R code and show the results in the output document.

Solution
You can insert R code in an R Markdown document. It will be executed and the output included in the final
document.

There are two ways to insert the code. For small bits of code, include them inline between two tick marks (``),
as in:

The square root of pi is `r sqrt(pi)`.

which results in this output:

The square root of pi is 1.772.

For larger blocks of code, define a code chunk by placing the block between matching triple tick marks (```).

```{r} 

# code block goes here 

```

Note the {r} after the first triple tick marks: this alerts R Markdown that we want it to execute the code.

Discussion
Embedding R code into your document is the most powerful feature of R Markdown. In fact, without that
feature, R Markdown would just be plain old Markdown.

https://pandoc.org/MANUAL.html#pandocs-markdown


Inline R, described first in the Solution, is useful for pulling in small bits of information directly into the text of
a report—information such as dates, times, or the results of small calculations.

Code chunks are for doing the heavy lifting. By default, the code chunk is shown in the text, and the results are
displayed directly under the code. The results are preceded by a prefix, which defaults to a double hash tag: ##.

If we had this code chunk in a source R Markdown document:

```{r} 

sqrt(pi) 

sqrt(1:5) 

```

it would produce this output:

sqrt(pi) 

## [1] 1.77 

sqrt(1:5) 

## [1] 1.00 1.41 1.73 2.00 2.24

Conveniently, having the results preceded by the ## allows the reader to paste the code and results into their own
R session and execute the code. R will ignore the results because they look like comments.

NOTE
The {r} after the tick marks is important because R Markdown allows code blocks from other languages, too, such as Python or SQL.
If you work in a multilanguage environment, this is a very powerful feature. See the R Markdown documentation for details.

See Also
See “Controlling Which Code and Results Are Shown” for controlling what’s shown in the output.

For details on the available language engines, see “Other language engines” in R Markdown: The Definitive
Guide.

Controlling Which Code and Results Are Shown

Problem
Your document contains chunks of R code. You want to control what’s shown in the final document: only the
results, only the code, or neither.

Solution
Code blocks support several options that control what appears in the final document. Set the options at the top of
the block. For example, this block has echo set to FALSE:

```{r echo=FALSE} 

# . . . code here will not appear in output . . . 

```

See the Discussion for a table of available options.

Discussion

https://bookdown.org/yihui/rmarkdown/language-engines.html


There are many display options, such as echo, which controls whether the code itself appears in the final output,
and eval, which controls whether or not the code is evaluated (executed).

A few of the most popular options are listed in Table 16-2.

Table 16-2. Options that control what’s shown in the final document

Chunk option Executes code Shows code Shows output text Shows figures

results='hide' X X X

include=FALSE X

echo=FALSE X X X

fig.show='hide' X X X

eval=FALSE X

You can mix and match combinations of options to get the results you’re after. Some common use cases are:

You want the code’s output to appear, but not the code itself: echo=FALSE.

You want the code to appear, but not be executed: eval=FALSE.

You want to execute the code for its side effects (e.g., loading packages or loading data), but neither the code
nor any incidental output should appear: include=FALSE.

We often use include=FALSE for the first code chunk of an R Markdown document, where we are calling
library, initializing variables, and doing other housekeeping tasks whose incidental output is just an annoyance.

In addition to the output options just described, there are several options that control handling of the error
messages, warning messages, and informational messages generated by your code:

error=TRUE allows your document to build completely even if there is an error in the code chunk. This is
helpful when you’re creating a document where you specifically want to see the error in the output. The
default is error=FALSE.

warning=FALSE suppresses warning messages. The default is warning=TRUE.

message=FALSE suppresses informational messages. This is handy when your code uses chatty packages that
produce messages while loading. The default is message=TRUE.

See Also
The R Markdown cheat sheet from RStudio lists many available options.

The author of knitr, Yihui Xie, has documented the options on his website.

Inserting a Plot

Problem
You want to insert a plot into your output document.

Solution
Simply create a code chunk that creates the plot, and insert that chunk into your R Markdown document. R
Markdown will capture the plot and insert it into your output document.

http://bit.ly/2XLuKrb
https://yihui.name/knitr/options/


Discussion
Here’s an R Markdown code chunk that creates a ggplot plot called gg, then “prints” it:

```{r} 

library(ggplot2) 

gg <- ggplot(airquality, aes(Wind, Temp)) + geom_point() 

print(gg) 

```

Recall that print(gg) renders the plot. If we insert this code chunk into an R Markdown document, R
Markdown will capture the result and insert it into the output, which looks something like this:

library(ggplot2) 

gg <- ggplot(airquality, aes(Wind, Temp)) + geom_point() 

print(gg)

The resulting plot is shown in Figure 16-5.

Figure 16-5. Example ggplot in R Markdown

Almost any plot we can produce in R can be rendered into the output document. We have some control over the
rendered results using options in the code block, such as setting the size, resolution, and format of the output.
Let’s look at some examples using the gg plot object we just created.

We can shrink the output using out.width:

```{r out.width='30%'} 

print(gg) 

```

which results in Figure 16-6:

print(gg)



Figure 16-6. Small-width plot

Or we can enlarge the output to the full width of the page:

```{r out.width='100%'} 

print(gg) 

```

which results in Figure 16-7:

print(gg)

Figure 16-7. Large-width plot

Some common output settings to use with graphics are:

out.width and out.height
The size of the output figure as a percentage of the page size.

dev



The R graphical device used to create the figure. The default is 'png' for HTML output and 'pdf' for LaTeX
output. You can also use 'jpg' or 'svg', for example.

fig.cap

The figure caption.

fig.align

The alignment of the plot: 'left', 'center', or 'right'.

Let’s use these settings to create a figure with 50% width, 20% height, a caption, and left alignment:

```{r out.width='50%', 

       out.height='20%', 

        fig.cap='Temperature versus wind speed', 

        fig.align='left'} 

print(gg)

This produces Figure 16-8:

print(gg)

Figure 16-8. Temperature vs. wind speed

Inserting a Table

Problem
You want to insert a nicely formatted table into your document.

Solution
Lay out the contents in a text table, using the pipe character (|) to separate columns. Use dashes to “underline”
column headings. R Markdown will format that into attractive output. For example, this input:

| Stooge | Year | Hair?           | 

|--------|------|-----------------| 

| Moe    | 1887 | Yes             | 

| Larry  | 1902 | Yes             | 

| Curly  | 1903 | No (ironically) |



will produce this output:

Stooge Year Hair?

Moe 1887 Yes

Larry 1902 Yes

Curly 1903 No (ironically)

You must place a blank line before and after the table.

Discussion
The syntax for tables lets you “draw” the table using ASCII characters. The “underline” made from dashes is a
signal to R Markdown that the line above it contains column headings. Without that “underline,” R Markdown
would interpret the first line as contents, not headings.

The table formatting is a bit more flexible than the Solution might suggest. This (ugly) input, for example, would
produce the same (beautiful) output as shown in the Solution:

| Stooge | Year | Hair? | 

|--------|------|-----------------| 

| Moe | 1887 | Yes | 

| Larry | 1902 | Yes | 

| Curly | 1903 | No (ironically) |

The computer cares only about pipe characters (|) and dashes. The whitespace padding is optional. Use it to
make the input easier for you to read.

A handy feature is the use of colons (:) to control justification of columns. Include colons in the dash
“underline” to set the column justification. This table defines the justification for three of four columns:

|Left   |Right | Center  | Default | 

|:------|-----:|:-------:|---------| 

| 12345 |12345 | 12345   | 12345   | 

| text  | text | text    | text    | 

| 12    | 12   | 12      | 12      |

which gives this result:

Left Right Center Default

12345 12345 12345 12345

text text text text

12 12 12 12

Use the colons within a column heading’s “underline” this way:

A colon at the extreme left end causes left justification.

A colon at the extreme right causes right justification.

Colons at both ends cause center justification.

See Also
Actually, R Markdown supports several syntaxes for tables—some might say a bewildering number of syntaxes.
This recipe shows only one, just to keep it simple. See the Markdown reference material for the alternatives.



Inserting a Table of Data

Problem
You want to include a table of computer-generated data in your output document.

Solution
Use the kable function from the knitr package, shown here formatting a data frame called dfrm:

library(knitr) 

kable(dfrm)

Discussion
In “Inserting a Table”, we showed how to put a static table into a document using plain text. Here, we have the
table contents captured in a data frame, and we want to show the data in the document output.

We could just print the table, and it would end up in the output, unformatted:

myTable <- tibble( 

  x=c(1.111, 2.222, 3.333), 

  y=c('one', 'two', 'three'), 

  z=c(pi, 2*pi, 3*pi)) 

myTable 

#> # A tibble: 3 x 3 

#>       x y         z 

#>   <dbl> <chr> <dbl> 

#> 1  1.11 one    3.14 

#> 2  2.22 two    6.28 

#> 3  3.33 three  9.42

But we typically want something more attractive and formatted. The easiest way to implement this is by using
the kable function from the knitr package (Figure 16-9):

library(knitr) 

kable(myTable, caption = 'My Table')

Figure 16-9. A kable table

The kable function takes a data frame as input and a number of formatting parameters, returning a formatted
table suitable for display.

kable produces great-looking output, but many people discover they want more control over the output than it
allows. Luckily kable can be paired with another package, kableExtra, for—not surprisingly—extra kable
functionality.



Here we set the rounding and caption using kable. Then we use kable_styling to make the table more narrow
than full width, add shaded striping in our LaTeX output, and center the table in the output (Figure 16-10):

library(knitr) 

library(kableExtra) 

#> 

#> Attaching package: 'kableExtra' 

#> The following object is masked from 'package:dplyr': 

#> 

#>     group_rows 

 

kable(myTable, digits = 2, caption = 'My Table') %>% 

   kable_styling(full_width = FALSE, 

                 latex_options = c('hold_position', 'striped'), 

                 position = "center", 

                 font_size = 12)

Figure 16-10. A kableExtra table

The kable_styling function takes a kable table as input (not a data frame), plus formatting parameters, then
returns a formatted table.

Some options in kable_styling have a different impact on your output depending on your output format. In our
previous example, the full_width = FALSE does not change anything in LaTeX (PDF) format because tables in
LaTeX output default to not being full width. In HTML, however, the default behavior for kable tables is to be
full width, so this option has an impact.

Similiarly, the latex_options = c('hold_position', 'striped') option applies only to LaTeX output, not
HTML. The 'hold_position' ensures that the table ends up where we put it in our source, not at the top or
bottom of the page, which tends to happen in LaTeX. The 'striped' option makes zebra-striped tables with
alternating light and dark rows for easier reading.

For more control over Microsoft Word tables, we recommend using the function flextable::regulartable,
which is discussed in “Generating Microsoft Word Output”.

Inserting Math Equations

Problem
You want to insert a mathematical equation in your document.

Solution
R Markdown supports the LaTeX math equation notation. There are two ways of entering LaTeX in R Markdown.



For short formulas, put the LaTeX notation inline between single dollar signs ($). The notation for the solution to
a linear regression could be expressed as $\beta = (X^{T}X)^{-1}X^{T}{\bf{y}}$, which would result in the
inline formula β = (XT X)

−1
XT y.

For large formula blocks, embed the block between double dollar signs ($$), like this:

$$ 

\frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2} 

      \mathrm S^{2} \frac{\partial^{2} \mathrm C}{\partial \mathrm C^2} 

    + \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ = 

    \mathrm r \mathrm C 

    \label{eq:1} 

$$

which generates this output:

+ σ2
S

2
+ rS = rC

Discussion
The math equation markup syntax is a LaTeX standard that originated in TeX. Building on that standard, R
Markdown can render mathematical expressions in PDF, HTML, MS Word, and MS PowerPoint documents. The
PDF and HTML formats support a full range of LaTeX math equations. The translation into Microsoft Word and
PowerPoint, however, supports only a subset of the full syntax.

The details of LaTeX equation notation are beyond the scope of this book, but since TeX has been around for 40+
years there are many great resources available online and in print. A very good online resource is the
Wikibooks.org introduction to LaTeX/Mathematics.

Generating HTML Output

Problem
You would like to create a HyperText Markup Language (HTML) document from an R Markdown document.

Solution
In RStudio, click on the down arrow next to the button labeled Knit at the top of the code editing window. When
you do, you’ll get a drop-down list of all the output formats available for your current document. Select the
“Knit to HTML” option, as shown in Figure 16-11.

∂C

∂t

1

2

∂ 2C

∂C2

∂C

∂S

https://en.wikibooks.org/wiki/LaTeX/Mathematics


Figure 16-11. Knit to HTML

Discussion
When you select “Knit to HTML,” RStudio moves html_document: default to the top of your YAML output
chunk at the top of the document, saves the file, and then runs rmarkdown::render(./YourFile.Rmd). If you
have knitted your document into three different formats, your YAML may look like this:

output: 

  html_document: default 

  pdf_document: default 

  word_document: default

If you run render(./YourFile.Rmd) on your R Markdown document, substituting your actual filename for
YourFile.Rmd, it will, by default, knit to the topmost output format (in this case, HTML).

WARNING
If you are knitting to HTML, your R Markdown document should not contain any special LaTeX-specific formatting, as this will not
knit properly in HTML. The exception, as mentioned in prior recipes, is LaTeX math equations, which show up properly in HTML
thanks to the MathJax JavaScript library.

See Also
See “Inserting Math Equations”.

Generating PDF Output

Problem
You would like to create an Adobe Portable Document Format (PDF) document from an R Markdown document.

Solution



In RStudio, click on the down arrow next to the button labeled Knit at the top of the code editing window. When
you do, you’ll get a drop-down list of all the output formats available for your current document. Select the
“Knit to PDF” option, as shown in Figure 16-12.

This will move pdf_document to the top of your YAML output options:

--- 

title: "Nice Title" 

output: 

  pdf_document: default 

  html_document: default 

---

and then knit the document to PDF.

Figure 16-12. Knit to PDF

Discussion
Knitting to PDF uses Pandoc and a LaTeX engine to generate a PDF document. If you don’t already have a
LaTeX distribution installed on your computer, the easiest way to get one is with the tinytex package. Install
tinytex in R, then call install_tinytex(), and tinytex will install a small and efficient LaTeX distribution
on your computer:

install.packages("tinytex") 

tinytex::install_tinytex()

LaTeX is rich with options, and fortunately, most things that we want to do can be represented with R Markdown
and automatically converted to LaTeX via Pandoc. Since LaTeX is a powerful typesetting tool, it is possible to do
things with it for which there is no R Markdown equivalent. We can’t enumerate all the possibilities here, but we
can talk about the ways to pass parameters directly to LaTeX from R Markdown. Keep in mind, though, that any
LaTeX-specific options you use will not be translated properly into other formats, like HTML or MS Word.

There are two main ways to pass information from R Markdown to the LaTeX rendering engine:

1. Pass LaTeX directly to the LaTeX compiler.

2. Set LaTeX options in the YAML header.

If you want to pass LaTeX commands directly through to the LaTeX compiler, you can use the LaTeX command
beginning with \. The limitation is that if you knit the document to any format other than PDF, the command



following the slash is completely omitted from the output.

For example, if we put this phrase into our R Markdown source:

Sometimes you want to write directly in \LaTeX !

it will be rendered as shown in Figure 16-13.

Figure 16-13. LaTeX typeset

However, if you render your document to HTML, the \LaTeX command will be dropped completely, leaving you
with an unappealing blank in your document.

If you want to set global options for LaTeX, you can do so by adding parameters to the YAML header in your R
Markdown document. The YAML header has top-level metadata as well as subdata for some options. Different
parameters are set at different levels of indentation, so we typically look them up in R Markdown: The Definitive
Guide just to be sure.

For example, if you have some previously written LaTeX content and you want to include it in your document,
you can add this prewritten content in three different places in your document: in the header, before the body
content, or after the body content at the end. If you were adding external content in all three sections, your
YAML header would look something like this:

--- 

title: "My Wonderful Document" 

output: 

  pdf_document: 

    includes: 

      in_header: header_stuff.tex 

      before_body: body_prefix.tex 

      after_body: body_suffix.tex 

---

Another common LaTeX option to use is a LaTeX template for formatting your document. Many templates are
available online, and some companies and schools have their own templates. If you want to use an existing
template, you can reference it in the YAML header like this:

--- 

title: "Poetry I Love" 

output: 

  pdf_document: 

    template: i_love_template.tex 

---

You can also turn on or off page numbering and section numbering:

--- 

title: "Why I Love a Good ToC" 

output: 

  pdf_document: 

    toc: true 

    number_sections: true 

---

Some LaTeX options, however, get set with top-level YAML metadata:

--- 

title: "Custom Report" 

https://bookdown.org/yihui/rmarkdown/
https://www.sharelatex.com/templates


output: pdf_document 

fontsize: 12pt 

geometry: margin=1.2in 

---

So when you are setting LaTeX options, consult the R Markdown documentation to determine if the option you
are setting is a suboption of the output: parameter or its own top-level YAML option.

See Also
See the section “PDF document” in R Markdown: The Definitive Guide.

See also the Pandoc template documentation.

Generating Microsoft Word Output

Problem
You would like to create a Microsoft Word document from an R Markdown document.

Solution
In RStudio, click on the down arrow next to the button labeled Knit at the top of the code editing window. When
you do, you’ll get a drop-down list of all the output formats available for your current document. Select the
“Knit to Word” option, as shown in Figure 16-14.

Figure 16-14. Knit to Word

This will move word_document to the top of your YAML output options and then knit your R Markdown
document to Word:

--- 

title: "Nice Title" 

output: 

  word_document: default 

  pdf_document: default 

---

Discussion

http://bit.ly/31t3HmV
http://bit.ly/2IN0wxB


Knitting to Microsoft Word is helpful in businesses and scholastic environments where supervisors and
collaborators expect documents in Word format. Most R Markdown features work very well in Word, but there
are a few tweaks we have found to be helpful when using Word output.

Microsoft has its own equation editing tool. Pandoc will coerce your LaTeX equations into MS Equation Editor,
which works well with most basic equations but does not support all LaTeX equation options. One challenge is
that MS Equation Editor does not support changing fonts for part of an equation. As a result, matrix notation
with fractions and other formulas that require varying fonts can look a bit odd in Word.

Here’s a matrix example that looks good in HTML and PDF:

$$ 

M = \begin{bmatrix} 

       \frac{1}{6} & \frac{1}{6} & 0           \\[0.3em] 

       \frac{7}{8} & 0           & \frac{2}{3} \\[0.3em] 

       0           & \frac{7}{9} & \frac{7}{7} 

     \end{bmatrix} 

$$

Here’s how it renders in these output formats:

M =

⎡
⎢ ⎢ ⎢
⎣

0

0

0

⎤
⎥ ⎥ ⎥
⎦

But it looks like Figure 16-15 in MS Word.

Figure 16-15. Matrix in MS Word

Any formula using scaling of characters will not work properly in Word. For example, this:

$( \big( \Big( \bigg( \Bigg($

would look like this in HTML and LaTeX:

1

6

1

6

7

8

2

3

7

9

7

7



but will get simplified in MS Equation Editor, as shown in Figure 16-16.

Figure 16-16. Equation font scaling in MS Word

The easiest solution for equations in Word is to try your equation first. If you don’t like the output, take your
LaTeX equation to an online free equation editor, render it there, and save it as an image file. Then include that
image file in your R Markdown document, ensuring that your Word documents have rendered equations that look
as good as HTML or LaTeX documents. You will probably want to save your LaTeX equation source in a text file
just to make sure you can alter it easily later.

Another challenge with Word output is that often figures don’t look quite as good as they do in HTML or PDF.
Take this example of a line graph:

```{r} 

mtcars %>% 

  group_by(cyl, gear) %>% 

  summarize(mean_hp=mean(hp)) %>% 

  ggplot(., aes(x = cyl, y = mean_hp, group = gear)) + 

    geom_point() + 

    geom_line(aes(linetype = factor(gear))) + 

    theme_bw() 

```

In a Word document this image appears as shown in Figure 16-17.

Figure 16-17. Graph in Word

This looks pretty good, but when printed, the image looks a little blocky and not sharp.

You can improve this by increasing the dots per inch (dpi) setting used when knitting the output. This will help
make the output smoother and sharper:

```{r, dpi=300} 

mtcars %>% 

http://www.sciweavers.org/free-online-latex-equation-editor


  group_by(cyl, gear) %>% 

  summarize(mean_hp=mean(hp)) %>% 

  ggplot(., aes(x = cyl, y = mean_hp, group = gear)) + 

    geom_point() + 

    geom_line(aes(linetype = factor(gear))) + 

    theme_bw() 

```

To show the improvement in appearance, we’ve stitched together a composite image showing the default low dpi
on the left and the higher dpi on the right in Figure 16-18.

Figure 16-18. Image resolution in Word (default low dpi in left half, higher dpi on right)

In addition to images, table output in Word sometimes is not as customized as we desire. Using kable, as
illustrated in previous recipes, produces a good, no-frills table in MS Word (see Figure 16-19):

library(knitr) 

myTable <- tibble(x = c(1.111, 2.222, 3.333), 

                 y = c('one', 'two', 'three'), 

                 z = c(5, 6, 7)) 

kable(myTable, caption = 'My Table in Word')



Figure 16-19. A table in Word

Pandoc puts the table in a Microsoft table structure inside the Word document. But, just like with tables in PDFs
or HTML, we can use the flextable package in Word too:

library(flextable) 

regulartable(myTable)

which gives us Figure 16-20 in Word.

Figure 16-20. A regulartable in Word

We can tap into the rich formatting features of flextable and pipe chains to adjust the column widths, add
background color to our headers, and make the header font white:

regulartable(myTable) %>% 

   width(width = c(.5, 1.5, 3)) %>% 

   bg(bg = "#000080", part = "header") %>% 

   color(color = "white", part = "header")

which gives us Figure 16-21 in Word.



Figure 16-21. A customized regulartable in Word

For details on all the customizable options in flextable, see the flextable vignettes and the flextable online
documentation.

Knitting to Word allows a template to control the formatting of your Word output. To use a template, add
reference_docs: template.docx to the YAML header:

title: "Nice Title" 

output: 

  word_document: 

     reference_docx: template.docx 

When you knit an R Markdown file to Word using a template, knitr maps the formatting of elements in your
source document to styles in the template. So if you want to change the font of the body text, you can set the
body text style in a Word template to your desired font. Then knitr will use the template style in the new
document.

A common workflow when using a template for the first time is to knit your document to Word without a
template, then open the resulting Word document, adjust the styles of each section to your preference, and use
the adjusted Word document as a template in the future. This way, you don’t have to guess what style knitr is
using for each element.

See Also
See the flextable vignette on formatting, vignette('format','flextable'), and the flextable online
documentation.

Generating Presentation Output

Problem
You would like to create a presentation from an R Markdown document.

Solution
R Markdown and knitr support creating presentations from R Markdown documents. The most common
formats for presentations are HTML (using the ioslides or Slidy HTML templates), PDF with Beamer, or
Microsoft PowerPoint. The biggest difference between R Markdown documents and R Markdown presentations
is that presentations default to landscape layout (wide, not long), and every time you create a second-level
header starting with ##, knitr will create a new “page” or slide.

The easiest way to get started with presentations with R Markdown is to use RStudio and select File → New File
→ R Markdown…, then choose one of the four presentation formats offered by the dialog in Figure 16-22.

http://bit.ly/2WHvuw2


The four classes of presentations map to the three major classes of documents discussed in previous document
recipes.

When it comes time to knit your document to an output format, in RStudio you click the down arrow next to the
Knit button and select the type of presentation you would like to produce from the drop-down list, as shown in
Figure 16-23.

Figure 16-22. New R Markdown Presentation dialog



Figure 16-23. Knit: presentations

Discussion
Knitting to a presentation format is very similar to knitting to a regular document, only with different output
names. When you use the Knit button in RStudio to choose your output format, RStudio moves your selected
output format to the top of the output options in the YAML header of your document, then runs
rmarkdown::render("your_file.Rmd"), which knits to the topmost format in your YAML header.

For example, if we selected “Knit to PDF (Beamer)”, the header of the presentation might look like this:

--- 

title: "Best Presentation Ever" 

output: 

  beamer_presentation: default 

  slidy_presentation: default 

  ioslides_presentation: default 

  powerpoint_presentation: default 

---

Most of the HTML options discussed in previous recipes apply to Slidy and ioslides HTML presentations.
Beamer is a PDF-based format, so most LaTex and PDF options discussed in previous recipes apply to Beamer.
And last, but never least, PowerPoint is a Microsoft format, so the caveats and options discussed previously
about Word documents apply to PowerPoint as well.

See Also
The other recipes related to R Markdown output can be helpful: see “Generating HTML Output”, “Generating
PDF Output”, and “Generating Microsoft Word Output”.

Creating a Parameterized Report

Problem
You would like to run the same report periodically with different inputs.

Solution
R Markdown documents can be created with parameters in the YAML header that can then be used as variables
in the document body. The parameters are stored as named items in a list called params, which you can access in
your code chunk:



--- 

output: html_document 

params: 

  var: 2 

--- 

```{r} 

print(params$var) 

```

Later, if you want to change the parameter(s), you have three options:

Edit the R Markdown document and then render it again.

Render the document from within R using the command rmarkdown::render, passing parameters as a list:

rmarkdown::render("test_params.Rmd", params = list(var=3))

Using RStudio, select Knitr → Knit with Parameters, and RStudio will prompt you for parameters before
knitting.

Discussion
Using parameters in R Markdown is very helpful if you have a document you need to run regularly with different
settings. A common use case is a report in which only a date setting and a label are changed each time it runs.

Here’s an example R Markdown document illustrating how parameters can be passed into the text of a document:

--- 

title: "Example of Params" 

output: html_document 

params: 

  effective_date: '2018-07-01' 

  quarter_num: 2 

--- 

 

## Illustrate Params 

```{r, results='asis', echo=FALSE} 

cat('### Quarter', params$quarter_num, 

    'report. Valuation date:', 

    params$effective_date) 

```

The rendered R Markdown results in Figure 16-24.

Figure 16-24. Parameter output

In the header of the chunk, we set results='asis', because our code chunk is going to generate Markdown text
directly. We want to dump that Markdown into our document without prefixing it with ##, which is what



normally happens to the output from a code chunk. In addition, inside the code block we use cat to concatenate
our text together. We use cat here instead of paste because cat performs less conversion on the text than calling
paste. This ensures that the text is simply put together and passed into the Markdown document without being
altered.

If we want to render the document with other parameters, we can edit the default values in the YAML header and
then knit, or we can use the Knitr menu (Figure 16-25) to knit with parameters.

Figure 16-25. Knit with Parameters… menu option

This then prompts us for parameters, as shown in Figure 16-26.

Or we can render the document from R, passing new parameters as a list:

rmarkdown::render("example_of_params.Rmd", 

params = list(quarter_num=2, effective_date='2018-07-01'))

As an alternative to using the Knitr menu, if we want to be prompted for parameters we can set params="ask"
when we call rmarkdown::render and R will prompt us for inputs:

rmarkdown::render("example_of_params.Rmd", params="ask")



Figure 16-26. Knit with Parameters dialog

See Also
See the section “Parameterized reports” in R Markdown: The Definitive Guide.

Organizing Your R Markdown Workflow

Problem
You want to organize your R Markdown project so that it’s efficient, flexible, and productive.

Solution

https://rmarkdown.rstudio.com/developer_parameterized_reports


The best way to get control of your project is to organize your workflow. Organization takes a bit of effort, so it
might be overkill to have a highly structured project if your R Markdown document is only one page of output
with three small code chunks. However, most people find that organizing their workflow is worth the added
effort.

Here are four tips for organizing your workflow so that your work is easier to read, edit, and maintain in the
future:

1. Use RStudio Projects.

2. Name directories intuitively.

3. Create an R package for reused logic.

4. Keep R Markdown focused on content, and source logic.

Use RStudio Projects
RStudio includes the notion of an RStudio Project (note the capital P), which is a way of storing metadata and
settings related to a logical project. When you open a Project in RStudio, one of the things that RStudio does is
set the working directory to the path where the Project is located. Every Project should live in its own unique
directory. All code is run from that working directory, which means your code should never contain setwd
commands that would keep your analysis from being run on someone else’s computer.

Name directories intuitively
It’s a good idea to organize the files in your Project directory into subdirectories and then name your files
thoughtfully inside those directories. As the number of files in a project increases, so does the importance of
organization and intuitive naming. One common structure recommended by the team at Software Carpentry is
this:

my_project 

 |- data 

 |- doc 

 |- results 

 |- src

In this structure, raw input data goes in the data directory, documentation goes in doc, results of analyses go in
results, and R source code goes in src.

Once you have a directory structure to put your work into, the individual files should be named in a way that’s
readable to both humans and computers. This helps with maintaining your code in the future and saves a lot of
headaches. Some of the best advice we’ve seen on file naming comes from Jenny Bryan:

Use underscores instead of spaces in filenames; spaces cause too many headaches later.

If you put dates in your filenames, use ISO 8601 dates: YYYY-MM-DD.

Use a prefix on your scripts so they sort properly—for example, 00_start_here.R, 01_data_scrub.R,
02_report_output.Rmd.

Using numeric prefixes on your scripts and using ISO 8601 dates helps ensure that your files sort in a
meaningful way by default. This is very helpful when someone else, or even future you, tries to make sense of
your project.

Create an R package for reused logic
Once you have a good directory structure and rational naming, you should give some thought to what logic goes
where. You should consider building an R package for logic you use in more than three different projects. R
packages are collections of functions and other code that provide functionality not available in Base R.
Throughout this book we’ve used a number of packages, and there’s nothing stopping you from writing a package

https://software-carpentry.org/
http://bit.ly/2HVL0jY


for your functions that you use over and over. Building a package is out of scope for this book, but Jim Hester’s
presentation “You Can Make a Package in 20 Minutes” is one of the best introductions to the topic.

Keep R Markdown focused on content, and source logic
Most of us start a project with one big .Rmd file full of all our logic in code chunks. As the document grows and
the code chunks expand, this can get difficult to manage. You may find that your code formatting is intermingled
with code that reshapes data and fetches things from files and databases. Having logic, formatting, and
presentation code all intermingled can make it hard to alter your code later and even harder for someone else to
understand your code. We recommend keeping the code blocks in your main reporting .Rmd file focused on
content, tables, and figures and having your manipulation logic stored in *.R files that you pull in with the
source function.

Using source to pull in external R code involves passing the filename of your R file to the source function:

source("my_logic_file.R")

R will run the entire contents of my_logic_file.R at the place in your code where you call source. A good
pattern is to source files that extract data frames and reshape your data into the form you need to make graphs or
tables in your document. Then, in your main .Rmd file, you keep mostly code that prepares graphs and tables.

Keep in mind that this is a design pattern for managing large, unwieldy R Markdown files. If your project is not
very large, you should probably just keep all your code in the .Rmd file.

See Also
Useful references include:

“Project-oriented workflow” tidyverse documentation

Project Management with RStudio from Software Carpentry

R Packages by Hadley Wickham (O’Reilly)

Naming Things by Jenny Bryan

“Good Enough Practices in Scientific Computing” by Greg Wilson, et al.

http://bit.ly/2IhtrLl
http://bit.ly/2KQVRNU
http://bit.ly/2IffhdI
http://r-pkgs.had.co.nz/
http://bit.ly/2KicdQh
http://bit.ly/2XLhO4P


Index

Symbols

! (logical negation) operator, Solution
!= (inequality) operator, Discussion, Solution
# beginning comment lines, Discussion, Discussion, Solution
#! (shebang) line, Discussion
## ending comment lines, Solution
% (percent sign) in format strings for dates, Discussion
%% (modulo) operator, Discussion, Solution
%*% (matrix multiplication) operator, Discussion, Problem, Discussion
%/% (integer division) operator, Discussion, Discussion
%>% (pipe) operator, Discussion, Solution, Solution, Discussion,
Discussion
%in% (contained in) operator, Discussion
%…% (binary) operator, Discussion, Solution
& (logical and) operator, Discussion, Solution, Using & instead of &&, or
vice versa; same for | and ||
&& (short-circuit and) operator, Solution, Using & instead of &&, or vice
versa; same for | and ||
() (parentheses)

enclosing an assignment, Solution
enclosing conditions in if-else statement, Solution
enclosing function parameters, Solution
grouping with, Writing 1:n+1 when you mean 1:(n+1), Solution
in function calls, Forgetting the parentheses after a function invocation



* (asterisk)
multiplication and inclusion of constituent terms, Discussion
multiplication operator, Discussion, Solution

+ (plus sign)
connecting graphical elements in ggplot2, Discussion
connecting graphical elements in patchwork, Solution
continuation prompt, Discussion, Incorrectly continuing an expression
across lines
unary plus or addition operator, Discussion, Solution

, (comma)
as decimal mark, Discussion
separator, Discussion, Discussion, Discussion

- (unary minus, subtraction) operator, Discussion, Discussion, Solution
using minus before variable names with select, Discussion

--- text beginning/ending with, in R Markdown documents, Solution
---- ending comment lines, Solution
-> (assignment) operator, Discussion, Solution
->> (assignment) operator, Solution
. (dot)

dot operator, Discussion
indicating missing values, Discussion
names beginning with, Discussion, Discussion
View tab in RStudio, Discussion

/ (division) operator, Discussion, Solution
/ (forward slash)

in patchwork groupings, Solution
selecting year and month ranges, Discussion



/ (forward slash) as path separator, Using a single backslash (\) in
Windows paths, Solution
: (colon) operator, Discussion, Discussion, Discussion, Discussion
:: (double colon) operator, Discussion
; (semicolon) separators, Discussion
< (less than) operator, Discussion, Solution
<- (assignment) operator, Solution, Solution

mistakes with, Mistyping “<-” as “<(space)-”

<<- (assignment) operator, Discussion, Solution
<= (less than or equal to) operator, Discussion, Solution
= (assignment) operator, Discussion, Solution
== (equality) operator, Discussion, Solution

mistaking = operator for, Using = instead of ==

==== ending comment lines, Solution
> (command prompt), Discussion, Incorrectly continuing an expression
across lines
> (greater than) operator, Discussion, Discussion, Solution
>= (greater than or equal to) operator, Discussion, Solution
? (help) operator, Solution
?? (search shortcut), Solution
[[]] (list indexing), Writing lst[n] when you mean lst[[n]] or vice versa,
Discussion, Lists, Data Frames, Discussion

accessing single list elements, Discussion
in list expressions, List expressions, List expressions

[] (square brackets)
accessing contents in data frames, Data Frames
accessing list elements, Lists
extracting sublists with, Discussion



in list expressions, List expressions, List expressions
in subsetting, Solution
vector indexing, Discussion

\ (backslash) in Windows paths, Using a single backslash (\) in Windows
paths, Solution
\n (newline) character, Discussion
\\ (double backslash), escaping single backslash, Using a single backslash
(\) in Windows paths, Solution
^ (exponentiation, interaction term) operator, Discussion
{} (curly braces)

enclosing code blocks, Solution
enclosing function body, Solution

| (logical or) operator, Discussion, Solution, Using & instead of &&, or
vice versa; same for | and ||
|| (short-circuit or) operator, Solution, Using & instead of &&, or vice
versa; same for | and ||
~ (tilde) in formulas, Discussion, Discussion, Discussion

A

abline function, Solution
ACF (see autocorrelation function)
acf function, Solution
ADF (Augmented Dickey-Fuller ) test, Discussion
adf.test function, Discussion, Discussion
adfTest function, Discussion
aesthetics, Notes on ggplot2 Basics

aes function, Solution
fill parameter of aes function, Discussion



grouping parameters in aes function, Discussion
passing name of categorical variable to aes, Solution
shape parameter of aes function, Solution

Alt key combinations, Discussion
alternative hypothesis, Null Hypotheses, Alternative Hypotheses, and p-
Values
Amazon Web Services (AWS), Discussion
analysis of variance (ANOVA), ANOVA

comparing linear models with, Problem-Discussion
creating an interaction plot, Problem-Discussion
finding differences between means of groups, Problem-Discussion
on differences between groups, Discussion
one-way, ANOVA

performing, Problem-See Also

robust, performing (Kruskal-Wallis test), Problem
table, ANOVA, Discussion

anonymous functions, Problem
anova function, ANOVA, Solution
aov function, Discussion, Discussion, Solution
append function, Discussion

inserting data into a vector, Solution

Applied Linear Regression Models (Kutner et al.), See Also
apply family of functions, Data Transformations
apply function, Solution, Discussion
apply.monthly function, Discussion
args function, Solution
arguments, Discussion

function, taking from a list, Problem-Discussion



help with, Solution
mistakenly passing multiple arguments to single-argument function,
Passing multiple arguments to a single-argument function

arima function, Solution, Discussion, Solution
arithmetic operations

on time series data, Solution
on vectors, Problem-See Also
operator precedence, Solution

arm package, See Also
arrange function, Solution
arrays, Arrays
as.character function, Discussion, Discussion, Solution
as.complex function, Discussion
as.data.frame function, Solution, Solution

using with map, Discussion

as.Date function, Classes for Dates and Times, Solution, Solution
as.integer function, Discussion
as.list function, Solution
as.logical function, Discussion
as.matrix function, Solution, Solution
as.numeric function, Discussion
as.POSIXct function, Classes for Dates and Times
as.POSIXlt function, Classes for Dates and Times, Solution
as.vector function, Solution, Discussion, Solution
as.xts function, Solution
as.zoo function, Solution
ASCII

dataset stored in, An Example



drawing tables using ASCII characters, Discussion
saving in ASCII format, Solution
writing tabular data to ASCII file in CSV format, Discussion

assignment
-> (assignment) operator, Discussion
<- (assignment) operator, Solution
<<- (assignment) operator, Discussion
= (assignment) operator, Discussion
data elements to a vector, Discussion
populating list elements via, Discussion
printing results of, Problem

as_tibble function, Discussion
atomic values/data types, Problem
attr function, Solution
attributes

attributes Base R function, Discussion
stripping from variables, Problem

augment function, Discussion, Solution
Augmented Dickey-Fuller (ADF) test, Discussion, Discussion
authentication to MySQL databases, Discussion
author, setting for R Markdown document, Solution
auto.arima function, Solution, Discussion, Discussion, Solution
autocorrelation

testing residuals for, Problem-See Also
testing time series for, Problem

autocorrelation function (ACF), Discussion, Discussion
graphing for residuals, Solution
plotting for a time series, Problem-Discussion



autoplot function, Discussion, Discussion
autoregression (AR) coefficients in ARIMA model, Discussion
autoregressive integrated moving average (ARIMA) model, Discussion,
Discussion

fitting to a time series, Problem-See Also
making forecasts from, Problem
removing insignificant coefficients, Problem
running diagnostics on, Problem-Discussion

averages, Discussion, Discussion
(see also mean; mean function)
computing moving average of a time series, Problem

B

background grid of ggplot graphics, changing, Problem-See Also
bandwidth parameter in smoothing data, Discussion
bar charts

adding confidence intervals, Problem-Discussion
coloring or shading, Problem-Discussion
creating, Solution-See Also

Base R documentation, Discussion
batch scripts, running, Problem-See Also
Beamer (PDF-based format), Discussion
Bernoulli trials, generating random sequence of, Discussion
beta distributions, Discussion
beyond basics (see techniques, advanced)
binary data

binary-valued variable, predicting, Problem-See Also
save function writing, Solution



binary operators
defining your own, Problem
special meanings inside regression formulas, Discussion

bind_rows function, Discussion
binning data, Problem
binomial coefficients, Discussion
binomial distribution, Names of Distributions

cumulative probability function pbinom, Solution
density function dbinom, Solution
pbinom function, Discussion

bins (in histograms), Discussion
blogdown package, R Markdown and Publishing
body of a function, Solution
bookdown package, R Markdown and Publishing
Boolean values, Discussion
boot function, Solution
boot.ci function, Discussion
bootstrap procedures, See Also

bootstrapping a statistic, Problem-See Also
sampling with replacement, Discussion

bootstrap replications, Discussion
bootstrap samples, Discussion
Box.test function, Solution
boxcox function, Solution-Problem
boxplots

creating, Problem-See Also
creating one for each factor level, Problem-Discussion
of clusters, Discussion



Box–Cox procedure, Solution-Problem
Box–Pierce test for autocorrelation, Solution
broom library, Discussion, Solution
bulleted lists, Solution

C

c operator, Discussion, Passing multiple arguments to a single-argument
function, Solution, Solution
calendar period, applying function to time series by, Problem-Problem
call by value, Simple Programming
CALL statements (SQL), Discussion
canonical correlation, Discussion
car package, Solution, Discussion
Cartesian product, Problem, Problem-See Also
case or switch statements, Simple Programming
case_when function, Discussion, See Also
cat function, Discussion

flattening a list into a vector for, Discussion
redirecting output to file with file argument, Solution
redirecting output to file with sink function, Discussion
using format function with, Discussion

categorical variables, Factors, Problem, Discussion
(see also factors)
in ggplot boxplot, Solution
testing for independence, Problem

cbind function, Discussion, Discussion, Solution, Solution, Discussion
Ccf function, Solution
character data, Discussion, Discussion



(see also strings)
converting atomic values to, Solution
in creation of data frames vs. tibbles, Factors in data frames, Factors in
data frames
map_chr function, Discussion
using character strings for switch labels, Discussion

checkresiduals function, Solution
chi-squared test, Solution
chisq.test function, See Also
choose function, Solution
chooseCRANmirror function, Solution
chron package, Classes for Dates and Times
classes

defining abstract type of objects, Class: Abstract Type
for dates and time, Classes for Dates and Times

deciding which to select, Classes for Dates and Times

revealing object's class with class function, Solution

cloud, installing R and RStudio in, Problem
cluster and multiprocess, remote plan using, Discussion-Discussion
clusters, finding in data, Problem-See Also
CMD BATCH subcommand, Solution
Cmd key combinations, Discussion
code

controlling results shown in R Markdown documents, Problem
inserting R code in R Markdown document, Solution
reindenting automatically, Problem
timing running of, Problem-Problem
using sections, Problem



code blocks
options controlling display in R Markdown, Solution
running in R scripts, See Also
saving in a script, Solution

code chunks, Solution
coefficients, Linear Regression and ANOVA, Discussion

(see also regression coefficients)
autoregression (AR) coefficients in ARIMA model, Discussion
calculating coefficient of variation, Discussion
for ARIMA model fitted to time series, Discussion
for ARIMA model, removing insignificant coefficients, Problem
moving average coefficients, Discussion

coefplot function, See Also
coin toss, Discussion

generating random sequence of, Discussion

collect function, Solution
colnames attribute, Solution
colon operator (see : (colon) operator, under Symbols)
colors

adding to ggplot bar chart, Problem-Discussion
color parameter in geometric object functions, Solution
plotting a variable in multiple colors, Problem-See Also
specifying for lines in a line chart, Discussion

colSums function, Solution
columns

changing names in data frames, Problem
column as sort key for a data frame, Problem



creating new column in a data frame based on a condition, Problem-See
Also
data in, using to initialize a data frame, Problem
defining width with read_fwf function, Solution
excluding by name in data frames, Problem
in data frames, Data Frames
in matrices or data frames, applying a function to, Problem-Discussion
in tables in R Markdown, setting justification, Discussion
merging data frames by a common column, Problem-See Also
putting data into and printing, Problem
selecting by name in data frames, Problem-See Also
selecting by position in data frames, Problem-Matrix-style subscripting
selecting one column from a matrix, Solution

combinations
counting number of, Problem
generating, Problem
generating all combinations of several variables, Problem-See Also

combinations function, See Also
combn function, Solution
comma-separated values files (see CSV files)
command line

+ prompt, Discussion
> prompt, Discussion
editing, Discussion
starting R from, using --quiet option, Solution

commandArgs function, Discussion
commands

entering, Solution-Discussion



shortcuts, Discussion

saving result of previous command, Problem
viewing command history, Problem-Discussion

comments, Solution
comment parameter in read_table2 function, Discussion
in read_csv function, Discussion

compact function, Solution
comparison operators (== != < > <= >=), Solution, Solution
complex atomic type, Solution
computer scientists, meaning of data frames to, Data Frames
conditional branch, Problem
conditional execution, Simple Programming
conditionals

creating new column in a data frame based on a condition, Problem-See
Also
if-else statements, Problem-See Also
removing list elements using a condition, Problem-Discussion

conditioning plots, Solution
conf.level argument, Discussion
confidence intervals, Confidence Intervals

adding to a bar chart, Problem-Discussion
bootstrapping for statistics, Problem-See Also
checking for intercepts in regression, Discussion
computing limits of, Discussion
finding for ARIMA model coefficients, Discussion
for ARIMA model coefficients, Discussion
for regression coefficients, Discussion, Problem
forming for a mean, Problem-Discussion



forming for a median, Problem
forming for a proportion, Problem
of a correlation, Solution

confint function, Solution
connection to a file, writing output to, Discussion
connection to MySQL database, Discussion
contained in operator (%in%), Discussion
contingency tables, Solution
continuation prompt (+), Incorrectly continuing an expression across lines
continuous distributions, Names of Distributions

calculating probabilities for, Problem
quantile functions for, Discussion

coord_flip function, Discussion
coplot function, See Also
cor function, Discussion
cor.test function, Solution
coredata function, Discussion, Discussion
corporate executives, meaning of data frames to, Data Frames
correlation

autocorrelation function of a time series, Discussion
calculating correlation matrix from a data frame, Discussion
calculating with cor function, Discussion
finding lagged correlations between time series, Problem
partial autocorrelation function for time series, Problem-Problem
testing for autocorrelation in time series, Problem
testing for significance, Problem-Problem

covariance, Solution, Discussion
calculating with cov function, Discussion



CRAN (Comprehensive R Archive Network)
CRAN Search, See Also
crantastic.org, searching for packages by keyword, Solution
distributions in downloadable packages, See Also
downloading and installing R from, Solution-See Also
installing packages from, Problem-See Also
list of task views, Solution
package documentation, Getting Started and Getting Help
packages for dates and time, Classes for Dates and Times
setting or changing default mirror, Problem

cross-correlation function, Solution
cross-sectional data, tsibble package
cross-tabulations (see contingency tables)
CSV (comma-separated values) files

read.csv function, Discussion
reading from, Problem-Discussion
reading from the web, Problem
writing to, Problem

Ctrl key combinations, Discussion
cubic spline, Discussion
cumsum function, Discussion
cumulative probability function, Discussion
customizing R startup, Problem-See Also
cut function, Solution
cutree function, Discussion

D

dampened sine wave, Discussion



data
binning, Problem
computer-oriented representations of, Discussion
displaying partial, Problem
entering from the keyboard, Problem
finding clusters in, Problem-See Also
self-describing, Discussion

data frames
accessing content of, Data Frames
appending rows to, Problem-Problem
applying a function to each column, Discussion, Problem-Discussion
applying a function to every row, Problem
changing names of columns, Problem
combining two, Problem
comparison to tibbles, Tibbles
converting between other structured types, Discussion
converting list of vectors to, Solution
converting to z-scores, Solution
creating new column based on a condition, Problem-See Also
creating vs. creating tibbles, Factors in data frames
defined, Data Frames
different meanings coming from different backgrounds, Data Frames
excluding columns by name, Problem
flattening, Problem
formatting in R Markdown document, Solution
functions not understanding, misusing, Misusing a function that does
not understand data frames
in linear regressions, Discussion



initializing from column data, Problem
initializing from row data, Problem-See Also
merging by common column, Problem-See Also
multiple, adding to one plot, Solution
removing NA value from, Problem
selecting columns by name, Problem-See Also

using list expressions, List expressions
using matrix-style subscripting, Matrix-style subscripting
using select function, Solution

selecting columns by position, Problem-Matrix-style subscripting
using list expressions, List expressions
using matrix-style subscripting, Matrix-style subscripting
using select function, Solution

sorting, Problem
summary of, Discussion
summing rows and columns, Problem
writing to Excel file, Problem, See Also

data function, Solution
data structures, Data Structures

(see also data frames; factors; lists; matrices; tibbles; vectors)
representing time series data, Discussion

data transformations (see transformations)
data types

dynamic, Discussion
in vectors, Discussion
R as typeless language, Simple Programming
structured, converting to another type, Problem-See Also
value having atomic type, converting to another, Problem



data.frame command, Discussion, Solution
converting all factors to characters, Factors in data frames
stringsAsFactors parameter, Factors in data frames

datapasta package, See Also
datasets

built-in, viewing, Problem
calculating quantiles and quartiles of, Problem
example, supplied with R, Discussion
factor analysis on, Problem-Discussion

Date class, Classes for Dates and Times
dates and time, Strings and Dates-Discussion

classes for, Classes for Dates and Times
deciding which to select, Classes for Dates and Times

converting a date into a string, Problem
converting a string to a date, Problem
converting year, month, and day into a date, Problem
creating a sequence of dates, Problem
Date object and Date class, Class: Abstract Type
dates or datetime in time series analysis, Date Versus Datetime
extracting parts of a date, Problem
getting the current date, Solution
getting the Julian date, Problem
indexing time series by date, Solution
output of timing code execution, Discussion
setting date for R Markdown document, Solution
time representation in time series analysis, Discussion
vector of, in time series data representation, Solution

dbDisconnect function, Discussion



dbGetQuery function, Discussion
DBI backend packages, Discussion
DBI::dbConnect function, Discussion
dbinom function, Discussion
dbplyr package, accessing a database with, Solution-Problem
defensive programming, Discussion
degrees of freedom (DOF), Solution
delimiters, Problem

delimiter argument of strsplit, Discussion

dendrograms, Discussion
density estimate, adding to histogram, Problem-See Also
density function, Discussion

plotting for probability distributions, Problem-Discussion

dependent variables, Discussion
(see also response)

detach function, Discussion
detecting errors, Discussion
devtools package, Solution
dice, rolling, finding all combinations of results, Discussion
diff function, Discussion, Discussion-Problem, Discussion

computing difference of logarithms of prices, Discussion

digits, formatting for printing, Problem-See Also
dimensions

assigning to a vector, Discussion
dropping or retaining in selecting row or column from a matrix,
Discussion
giving to a list, Matrices
giving to a vector, Matrices



of matrix variable, stored in attribute, Discussion

discard function, Discussion
discrete distributions, Names of Distributions

calculating probabilities for, Problem-See Also
density functions and distribution functions for, Discussion
quantile functions for, Discussion

display options for R code in R Markdown, Discussion
dist function, Discussion, Discussion
distribution functions, Discussion, Solution
distributions

getting help on, Getting Help on Probability Distributions
names of, Names of Distributions
random number generators for, Solution
testing two samples for same distribution, Problem

do.call function, Discussion
Docker, Discussion
documentation, Getting Started and Getting Help

installing locally, Discussion
searching supplied documentation, Problem-See Also
supplied with R, viewing, Problem-See Also

Documents directory (Windows), profile scripts in, Discussion
dpill function, Solution
dplyr package, Discussion, Solution

arrange function, Solution
data transformations with, Data Transformations
first and last functions, See Also
joins, Discussion
rename function, Solution



dplyr::count function, Discussion
dplyr::lag function, Discussion
dput function, Discussion, Solution
dump function, Solution
durbinWatsonTest function, Discussion
Durbin–Watson test, Problem-See Also
dwtest function, Solution

alternative option, Discussion

dynamically typed languages, Discussion

E

echo option for code display, Solution
eigen function, Solution
eigenvalues or eigenvectors, calculating, Problem
environment variables

getting and setting, Problem
setting system environment variables, Discussion
system environment variable R_HOME, Discussion

environments
in R search path for functions, Discussion
RStudio Environment tab, Discussion

equality operator (see ==, under Symbols)
equation editor (Microsoft), Discussion
error messages, suppressing, Problem
error terms (in linear regression), Discussion
errors

in R code chunks in R Markdown, Discussion
protecting against, Problem



signaling in code, Problem

escaping special characters with backslash, Discussion
eval option, Discussion
example function, Discussion
Excel

meaning of data frames to a user, Data Frames
nested IF statements, Discussion
reading data from files, Problem-See Also
writing R data frames to, Problem-See Also

executing R in parallel
locally, Problem-Discussion
remotely, Problem-Discussion

expand.grid function, Discussion, Solution
exponential distributions, Discussion
expressions

incorrectly continuing across lines, Incorrectly continuing an expression
across lines
using in regression formula, Problem-See Also

extract2 function, Discussion

F

F statistic, Discussion, Discussion
facets

facet_wrap function, Solution
functions for, Notes on ggplot2 Basics

factanal function, Solution
factor analysis, performing, Problem-Discussion
factor function, Solution



levels argument, Discussion

factors, Factors
constructing data frames from, Solution
conversion of character data to in data frame creation, Factors in data
frames, Factors in data frames
creating, Problem
creating parallel factor from combined vectors, Problem
summary of, Discussion
tabulating and creating contingency tables, Problem
use in building data frames, Data Frames

FALSE and TRUE logical values, Discussion
faraway package, Discussion
fct_order function, Discussion, Discussion
files

dealing with Cannot Open File in Windows, Problem
listing, Problem, See Also
with complex or irregular structure, reading data from, Problem-
Problem

fill in ggplot charts, Discussion
filling or padding time series data, Problem-Discussion
filter function, Discussion
first and last functions, Discussion
fitdistr function, Solution
fitting ARIMA model to time series, Problem-See Also
fixed-width records, reading, Problem-Discussion
flexdashboard package, R Markdown and Publishing
flextable package, Discussion
floating-point numbers



map_dbl function, Discussion
R formatting for output, Discussion

for loops, Simple Programming
iterating over vector or list elements, Solution-See Also

forcats package, Discussion
forecast function, Solution
forecast package, Solution, Solution
Forecasting: Principles and Practice (Hyndman and Athanasopoulos), See
Also
forecasts

making from an ARIMA model, Problem
plotting a time series forecast, Problem

format function, Discussion, Solution
format strings for dates, Solution

converting American-style date to ISO standard, Discussion

formatting document text in R Markdown, Problem
fpp2 package

euretail dataset, Discussion
Time-Series object types, Discussion

full_join function, Solution, Discussion
function definition, using inline, Solution
function keyword, Solution
functions, Simple Programming

accessing in a package, Problem, Discussion
applying rolling function to time series, Problem-Discussion
applying to time series by calendar period, Problem-Problem
arguments, taking from a list, Problem-Discussion
assignment statements using <<- operator, Discussion



computing logarithm or square root of time series, Discussion
creating anonymous function, Problem
creating pipeline of function calls, Problem-Discussion
defining, Problem-See Also
defining defaults for parameters, Problem
distribution-related, parameter requirements, Names of Distributions
extracting regression statistics from linear models, Solution
finding relevant functions, Solution
finding via the search path, Discussion
getting help on, Problem-See Also
graphing value of, Solution-See Also
local variables in, Problem
multiparameter, minimizing or maximizing, Problem-See Also
not understanding data frames, Misusing a function that does not
understand data frames
pure, Data Transformations
reusable, creating collection of, Problem
searching for help in supplied documentation, Problem-See Also
single-argument vs. multiple arguments, Passing multiple arguments to
a single-argument function
single-parameter, minimizing or maximizing, Problem

fUnitRoots package, Discussion
furrr package, Solution
future_map function, Discussion, Solution

G

gamma distribution, Discussion
dgamma density function, Discussion



gather function, Discussion
gcd function, Discussion, Discussion
geometric object functions, Notes on ggplot2 Basics

geom_abline function, Discussion
geom_bar function, Solution, Discussion
geom_boxplot function, Solution
geom_density function, Solution
geom_histogram function, Solution
geom_hline function, Discussion
geom_line function, Solution, Solution

linetype. col, and size parameters, Solution

geom_point function, Discussion, Discussion, Solution, Solution
geom_qq function, Solution, Discussion
geom_ribbon function, Discussion
geom_segment function, See Also
geom_smooth function, Solution, Discussion
geom_vline function, Solution

getTables function, Discussion
getwd command, Solution
GGally package, Discussion
ggpairs function, Discussion
ggplot function, The Illustrations

creating smoothed time series data plot, Discussion
piping function call results into, Discussion
plot in R Markdown, Discussion
plotting regression residuals, Discussion, Solution

ggplot2 package, Discussion, Graphics
defining components of graphs, Notes on ggplot2 Basics



long vs. wide data, “Long” Versus “Wide” Data with ggplot
notes on the basics, Notes on ggplot2 Basics
plotting density function for probability distributions, Problem-
Discussion
use to plot time series forecast, Solution

ggsave function, Solution
Git, using, information on, Discussion
GitHub

installing packages from, Problem
patchwork package, Solution
R Markdown source for this book, R Markdown and Publishing
R Markdown: The Definitive Guide, R Markdown and Publishing
using, information on, Discussion

glm function, Solution
Global Options in RStudio, Discussion
global variables, Discussion, Simple Programming

local variables and, Discussion

Google Cloud Platform, Discussion
graphics, Graphics-Graphics in Other Packages

(see also plots)
common output settings for in R Markdown, Discussion
ggplot2 basics, Notes on ggplot2 Basics
in packages other than ggplot2, Graphics in Other Packages

graphics package, Graphics
grid package, See Also
grid size, Discussion
grouping

applying a function to groups of data, Problem



patchwork support for, Solution
using categorical variables, Factors

groups
creating scatter plot of multiple groups, Problem-See Also
finding differences between means of, Problem-Discussion
testing for equal proportions, Problem

group_by function, Solution
gsub function, Solution
gtools package, See Also

H

haven library, read_sas function, Discussion
hclust function, Discussion
head function, Discussion, Discussion, Solution, Discussion
header lines

column names in, Discussion
in CSV files, Solution

headings, inserting in R Markdown documents, Solution
help

? operator, Solution
for functions, Problem-See Also
for options, Setting options
for probability distributions, Getting Help on Probability Distributions
for regular expressions, See Also
help function, Solution, Discussion
searching R mailing lists, Problem
searching web for help on R, Problem-See Also
sources of, Getting Started and Getting Help



help.search function, Solution
help.start function, Solution
hidden names, Discussion

list.files ignoring, Discussion

hierarchical cluster dendrogram, Discussion
hist function, See Also
histograms

adding density estimate to, Problem-See Also
creating, Problem-See Also

history function, Solution
home directory

locating for R, Problem
profile scripts in, Discussion

“How to Ask Questions the Smart Way” (Raymond and Moen), See Also
HTML

generating HTML document from R Markdown document, Problem
matrix notation rendered in, Discussion
R Markdown output to, Discussion
reading data from HTML files, Problem-See Also
Slidy and ioslides presentations, Discussion

html_table function, Solution-Discussion
hypothesis testing, Null Hypotheses, Alternative Hypotheses, and p-Values

I

I(…) operator, Solution
surrounding expressions inside regression formula, Discussion

if-else statements, Problem-See Also
ifelse function, See Also



images
image resolution in Word, Discussion
saving plots as image in RStudio, Discussion

increments
in seq function for Date objects, Discussion, Solution
in sequences, Discussion

indenting code, Problem
independent variables, Discussion

(see also predictors)

indexing
creating logical indexing vector to sample every nth element, Solution
indexes for xts or zoo objects, Discussion
lists, Writing lst[n] when you mean lst[[n]] or vice versa, Discussion,
Discussion

double vs. single brackets, Lists, Discussion

scalars, Scalars
to select row or column from a matrix, Solution
vectors, Discussion-See Also
xts or zoo objects, Solution

influence.measures function, Solution
influential observations, Problem-See Also
inner_join function, Solution
install.packages function, Solution, Solution
installed.packages function, Discussion
installing R, Problem-See Also

in the cloud, Problem

installing RStudio, Problem
install_github function, Solution



integers
converting atomic values to, Solution
map_int function, Discussion
switch labels, Discussion

integrated development environments (IDEs)
RStudio, Problem

interaction plot, creating, Problem-Discussion
interaction terms, Discussion, Discussion

generating with stepwise regression, Discussion
performing linear regression with, Problem-See Also

interaction.plot function, Solution
intercepts, Discussion

calculating in orthogonal regression, Discussion
performing linear regression without intercept, Problem-Discussion

interquartile range (IQR), Discussion
interrupting R, Problem
intersection of all dates, Discussion, Discussion
interval probability, Discussion, Discussion
is.character predicate, Discussion
ISOdate function, Solution
ISOdatetime function, Discussion

J

joins
full_join function, Solution
inner_join function, Solution
left_join function, Solution
right_join function, Solution



Julian date, getting, Problem

K

k-nearest neighbors algorithm, Discussion
kable function, Solution
kable_styling function, Discussion
keep function, Discussion
kernel density estimation (KDE), Discussion
KernSmooth package, Solution
keyboard shortcuts, Discussion
keyboard, entering data from, Problem
keywords (search engine)

broadening your search with, Discussion
documentation for, Discussion

knitr package, Discussion
knitting R Markdown documents, R Markdown and Publishing
Kolmogorov–Smirnov test, Solution
kruskal.test function, ANOVA, Solution
Kruskal–Wallis test, Discussion, Problem
ks.test function, Solution

L

labels
adding to ggplot graphics, Problem
from SAS file read into data frame, Discussion
in switch function, Discussion
labs function in ggplot, Discussion
parameter in cut function, Discussion



lag function, Solution
lagging a time series, Problem, Discussion, Discussion

finding lagged correlations between time series, Problem

lambda argument, Discussion
lapply function, Discussion
last function, Discussion
.Last.value variable, Solution
LaTeX

Beamer and, Discussion
excluding from HTML output, Discussion
installing distribution on your computer, Discussion
Pandoc coercing equations into MS Equation Editor, Discussion
passing information from R Markdown to LaTeX rendering engine,
Discussion
R Markdown document with data table, Discussion
using templates to format documents, Discussion
ways to enter LaTeX in R Markdown, Solution

lattice package, Graphics in Other Packages, See Also
histogram function, See Also

layers (in ggplot graphics), Notes on ggplot2 Basics
lazy evaluation, Simple Programming
leading data, Discussion
left_join function, Solution
legends, adding or removing in ggplot graphics, Problem-Discussion
length function, Discussion
levels (of factors), Factors, Discussion
library function, Discussion, Installing a package but not loading it with
library or require, Discussion, Discussion, Discussion, Reproducibility,



Classes for Dates and Times
using with no arguments to display installed packages, Discussion

line charts
changing type, width, and color of lines, Problem-Discussion
plotting a line from x and y points, Problem-Discussion

linear models, Discussion
full model, Discussion
reduced model, Discussion

Linear Models with R (Faraway), See Also
linear regression, Linear Regression and ANOVA-Discussion

and ANOVA, ANOVA
comparing models, using ANOVA, Problem-Discussion
creating interaction plot, using ANOVA, Problem-Discussion
diagnosing model fit, Problem-Discussion
finding best power transformation (BoxCox procedure), Solution-
Problem
finding differences between means of groups, using ANOVA, Problem-
Discussion
forming confidence intervals for regression coefficients, Problem
forming prediction intervals, Problem
getting regression statistics, Problem-See Also
identifying influential observations, Problem-See Also
multiple, performing, Problem-See Also
performing one-way ANOVA, Problem-See Also
performing robust ANOVA (Kruskal-Wallis test), Problem
performing with interaction terms, Problem-See Also
performing without an intercept, Problem-Discussion
plotting regression line of a scatter plot, Problem-Discussion



plotting regression residuals, Problem
predicting new values from the model, Problem
regressing on a polynomial, Problem
regressing on subset of your data, Problem
regressing on transformed data, Problem-Problem
regressing only variables highly correlating to your dependent variable,
Problem-Problem
selecting best regression variables, Problem-Discussion
simple, performing, Problem
testing residuals for autocorrelation, Problem-See Also
understanding the regression summary, Problem-See Also
using expression inside a regression formula, Problem-See Also

lines
newline (\n) character, Discussion
vertical or horizontal, adding to ggplot graph, Problem-Discussion

Linux
/ (forward slash) path separator, Using a single backslash (\) in
Windows paths
Alt and Ctrl key combinations, Discussion
exiting RStudio, Windows and most Linux distributions
installing R, Linux or Unix
shebang line starting with #!, Discussion
starting RStudio, Solution
Sys.getenv function results, Discussion

list expressions
using to select columns by name in data frames, List expressions
using to select columns by position in data frames, List expressions

list function, Solution



building name/value association list, Solution-Problem

list.files function, Solution-Discussion
lists, Lists

applying a function to each element, Problem-Discussion
applying a function to parallel vectors or lists, Problem-Problem
building name/value association list, Problem-Problem
bulleted or numbered, inserting in R Markdown documents, Problem-
See Also
containing vectors or factors, initializing into a data frame, Solution
converting between other structured types, Discussion
creating a matrix from, Matrices, Arrays
creating and populating, Problem-See Also
data frames as, Data Frames
elements having different modes, Mode: Physical Type
elements of different modes (types), Discussion
flattening into a vector, Problem
indexing, Writing lst[n] when you mean lst[[n]] or vice versa,
Discussion
printing with print function, Discussion
removing an element, Problem
removing elements using a condition, Problem-Discussion
removing NULL elements from, Problem
selecting elements by names, Problem
selecting elements by position, Problem-Discussion
summary of, Discussion
tags for list elements, Discussion
taking function arguments from, Problem-Discussion
using list functions and operators to examine an object, Discussion



Ljung–Box test, Discussion, Discussion
lm function, Discussion, Linear Regression and ANOVA, Solution,
Discussion

data parameter, Discussion, Discussion
examining return value for object structure, Discussion
for multiple linear regressions, Discussion
subset parameter, Solution
with no intercept, Discussion

lmtest package, Solution
load function, Solution
loading, Discussion
loadWorkbook function, Discussion
local polynomials, Discussion
local variables, Simple Programming

creating, Problem

locpoly function, Solution, Discussion
log function, Discussion, Discussion
logarithmic transformations, Discussion, Discussion
logical expressions, Discussion
logical operators, Discussion

mistakes in using, Using & instead of &&, or vice versa; same for | and
||

logical values, Discussion, Discussion
converting other types to, Solution
creating logical indexing vector for sampling every nth element,
Discussion

logistic regression, Problem-See Also



long vs. wide data (ggplot), “Long” Versus “Wide” Data with ggplot,
Discussion
loops, Simple Programming

iterating over vector or list elements, Problem-See Also

lower.tri function, Discussion
ls function, Solution

forcing to list hidden names, Discussion
using with rm function, Discussion

ls.str function, Solution
lubridate package, Classes for Dates and Times

M

Mac systems
R search path vs. Unix search path, Discussion
shebang line starting with #!, Discussion
Sys.getenv function results, Discussion

macOS
/ (forward slash) path separator, Using a single backslash (\) in
Windows paths
Cmd and Opt key combinations, Discussion
exiting RStudio, macOS
installing R, Discussion
starting RStudio, Solution

magrittr package, Discussion, Discussion
pipes, Discussion

mailing lists for R, Getting Started and Getting Help
searching for answer to a question, Problem
submitting questions to, Problem-See Also



map function, Solution
loops and, See Also
using with as.data.frame, Discussion

map2 function, Solution, Discussion
map2_chr function, Discussion
map2_dbl function, Discussion
map_chr function, Discussion, Discussion
map_dbl function, Discussion, Discussion, Discussion, Solution
map_df function, Discussion
map_int function, Discussion
Markdown, Solution

(see also R Markdown)

MASS package, See Also
datasets in, Discussion

MASS::fitdistr function, Solution
match function, Solution
math equations, inserting into R Markdown documents, Solution
Mathematical Statistics with Applications (Wackerly et al.), See Also
matrices, Matrices

%*% multiplication operator, Discussion
applying a function to every column, Problem-Discussion
applying a function to every row, Problem-Discussion
calculating correlation matrix from a data frame, Discussion
calculating eigenvalues or eigenvectors, Problem
converting between other structured types, Discussion

special considerations, Special considerations for matrices

converting data frame into, Solution
converting to vector, Solution



converting to z-scores, Solution
correlation and covariance, Discussion
flattening into a vector, Discussion
giving descriptive names to rows and columns, Problem
heterogeneous, creating from heterogeneous list, Arrays
initializing, Solution
matrix-style subscripting, Matrix-style subscripting, Matrix-style
subscripting
performing matrix operations, Problem
printing with print function, Discussion
selecting one row or column from, Problem
summary of, Discussion
summing rows and columns, Problem
use in building data frames, Data Frames

matrix function, Solution
max function, Passing multiple arguments to a single-argument function
mean

calculating, Solution-Discussion
calculating for clusters, Discussion
calculating in ggplot, Discussion
comparing for two samples, Problem-See Also
confidence interval for, Confidence Intervals
finding differences between means of groups, Problem-Discussion
forming confidence interval for, Problem-Discussion
in example data for linear regression, Example Data
in ggplot graph line, Discussion
mean function, Discussion, Passing multiple arguments to a single-
argument function



pairwise comparisons between group means, Problem-Discussion
rolling mean, Discussion
testing mean of a sample, Problem

mean function, Discussion, Discussion, Solution
applying to each column of a matrix, Discussion
collapsing data frames to matrices for, Discussion

mean reversion, testing time series for, Problem-See Also
mean_se function, Discussion
median

calculating, Problem
calculating for samples, Discussion
forming confidence interval for, Problem

merge function, Discussion
messages, suppressing, Problem-See Also, Discussion
metadata about R Markdown document, Solution
Microsoft Word

generating Word document from R Markdown document, Problem-
Discussion

equations in Word, Discussion
graphics and charts in Word, Discussion
tables in Word, Discussion

R Markdown output to, Discussion
tables in R Markdown output to, Discussion

Min and Max regression residuals, Discussion
min function, Passing multiple arguments to a single-argument function
minimum or maximum

finding, Problem
maximizing multiparameter functions, Solution



maximizing single-parameter functions, Solution
minimizing multiparameter functions, Solution
minimizing single-parameter functions, Problem
using min and max functions for index values, Discussion

missing values, Discussion
(see also NA values)

mistakes (common), avoiding, Problem-Posting a question to Stack
Overflow or the mailing list before searching for the answer
mm/dd/yyyy date format, Discussion
mode function, Mode: Physical Type, Solution
models

comparing linear models using ANOVA, Problem-Discussion
evaluating with ANOVA, ANOVA
extracting information from linear models using functions, Discussion
linear models, Linear Regression and ANOVA
model object returned by lm function, Discussion

modes, Mode: Physical Type
different modes in list elements, Discussion
of vector elements, Discussion, Vectors

mondate package, Classes for Dates and Times
moving average (MA) coefficients, Discussion
MS Equation Editor, Discussion
multiprocess and cluster, remote plan using, Discussion-Discussion
mutate function, Solution, Discussion
mysql client program, Discussion
MySQL databases

reading from, Problem-Problem
RMySQL DBI backend package, Discussion



N

n:m expressions, Solution
NA (not available) values, Discussion

filling in, html_table function, Discussion
in read_table2 function, Discussion
in vectors, Discussion
removing from data frame, Problem
removing from list by defining a predicate for discard, Discussion
replacing in time series data, Discussion

na.approx function, Discussion
na.locf function, Discussion
na.omit function, Solution

removal of entire rows, Discussion

na.pad setting, Discussion
na.spline function, Discussion
Nabble, Solution
name/value association lists, Problem-Problem
names

changing for columns in data frames, Problem
excluding columns by, in data frames, Problem
for list elements, Lists, Discussion
getting with names function, Discussion
given by lm function to regression coefficients, Discussion
giving to matrix rows and columns, Problem
indexing vectors by, Discussion
selecting data frame columns by, Problem-See Also
selecting list elements by, Discussion



nchar function, Solution
negative indexes, Discussion
nonparametric statistics, Discussion, Discussion
normal distributions, Discussion, Example Data

and prediction intervals' response to non-normal distributions,
Discussion
creating normal Q-Q plot, Problem-See Also
distribution function pnorm, Solution
example random data using rnorm function, Discussion
functions for, Names of Distributions
plotting the density function, Solution
quantile function qnorm, Solution
random number generator, Discussion
testing data sample for normality, Problem

nortest package, Discussion
not available values (see NA values)
null hypothesis, Null Hypotheses, Alternative Hypotheses, and p-Values
NULL values

assigning to attributes property of variables, Solution
assigning to list elements, Solution
in vectors, Discussion
removing from list by defining a predicate for discard, Discussion
removing NULL elements from a list, Problem

number of trials, Solution
numbered lists, Solution
numeric data

converting atomic values to, Solution
generating combinations of numbers, Discussion



O

object orientation, Simple Programming
objects

choice of object class, Time Series Analysis
class defining abstract type, Class: Abstract Type
mode, Mode: Physical Type
revealing structure of, Problem-Discussion
saving and transporting R objects, Problem-See Also
stripping attributes from, Discussion

observations, Discussion
influential, identifying in linear model, Problem-See Also

oneway.test function, ANOVA, Solution-See Also
openxlsx package, Discussion
operator precedence, Problem-See Also
operators

having special meaning in regression formulas, Discussion
user-defined, Discussion

Opt key combinations, Discussion
optim function, Solution-See Also
optimize function, Solution
options function, Solution, Setting options

digits parameter, changing default for, Discussion

ordinary least-squares (OLS) algorithm, Discussion
orthogonal regression, Problem-See Also
outer function, Solution
outlierTest function, Solution
output

CMD BATCH subcommand, to file, Discussion



redirecting to file, Problem
Rscript output to stdout, Discussion

output format for R Markdown documents, Solution

P

p-values, Null Hypotheses, Alternative Hypotheses, and p-Values,
Solution, Solution, Solution, Solution

in linear model, Discussion

pacf function, Discussion
packages

accessing functions in, Problem-Discussion
creating your own package of R functions, See Also
datasets in, Discussion
documentation, Getting Started and Getting Help, Discussion
for dates and time, on CRAN, Classes for Dates and Times
from CRAN, installing, Problem-See Also
from GitHub, installing, Problem
full name of functions in, Discussion
getting help on, using help function, Solution
installed, not loading with library or require, Installing a package but
not loading it with library or require
installed, viewing list of, Problem
loaded, displaying via search path, Problem-See Also
loading in profile scripts, Reproducibility
relevant, finding, Problem

paired data
pairwise combinations of strings, Problem
plotting pairs of variables, Problem-Discussion



paired observations, Solution, Solution
creating scatter plot for, Problem-See Also

pairwise comparisons
between group means, Problem-Discussion
parallel minimum and parallel maximum for vector elements,
Discussion

pairwise.t.test function, Solution
Pandoc, Discussion, Discussion
Pandoc Markdown Guide, See Also
parallel maximum (pmax function), Solution
parallel minimum (pmin function), Solution
parallelization

executing R in parallel locally, Problem-Discussion
executing R in parallel remotely, Problem-Discussion

parameterized report, creating in R Markdown, Problem-Problem
parameters

in function definitions, Solution
setting default values for, Solution

partial autocorrelation function (PACF), plotting for time series, Problem-
Problem
paste function, Discussion

using with outer function, Solution

patchwork package, Solution
PATH environment variable, Discussion
patterns, Discussion

(see also regular expressions)
using in searches of supplied documentation, Solution

pbinom function, Discussion



PDF
generating PDF document from R Markdown document, Problem
Knit to PDF (Beamer), Discussion
matrix notation rendered in, Discussion
R Markdown output to, Discussion

Pearson correlation, Discussion
permutations

permutation function, See Also
random permutation of a vector, Problem

pexp function, Discussion
pi, Scalars

simulating, Discussion, Discussion

pipe operator (%>%), Solution
pipes

creating pipeline of function calls, Problem-Discussion
piping object to RStudio viewer, Discussion
using magrittr pipes for linear model, Discussion

plain-text files, R Markdown documents, Discussion
plan function, Discussion
plot function, Discussion, Discussion, Discussion, Solution
plots

adding confidence intervals to a bar chart, Problem-Discussion
adding or removing a grid, Solution-See Also
adding or removing legends in ggplot, Problem-Discussion
adding title and labels, Problem
adding vertical or horizontal lines, Problem-Discussion
applying themes in ggplot, Problem-Discussion
boxplot of clusters, Discussion



changing type, width, and color of lines, Problem-Discussion
coloring or shading a bar chart, Problem-Discussion
creating a bar chart, Solution-See Also
creating a boxplot, Problem-See Also
creating a scatter plot, Problem-See Also
creating interaction plot, Problem-Discussion
creating normal quantile-quantile (Q-Q) plot, Problem-See Also
creating one boxplot for each factor level, Problem-Discussion
creating one scatter plot for each group of data, Problem-See Also
creating quantile-quantile (Q-Q) plots in other distributions, Problem-
Discussion
creating scatter plot of multiple groups, Problem-See Also
density function for probability distributions, Problem-Discussion
displaying several on one page, Problem-See Also
graphing value of a function, Problem-See Also
graphs from running checkresiduals on ARIMA model, Discussion
hierarchical cluster dendrogram, Discussion
histogram, adding density estimate to, Problem-See Also
inserting into R Markdown output document, Problem-Problem

common output settings, Discussion
enlarging output to full page, Discussion
shrinking with out.width, Discussion

multiple datasets in one plot, Problem-Discussion
of autocorrelation function of time series, Problem-Discussion
of detrended time series, Discussion
of paired variables, Problem-Discussion
of partial autocorrelation function for time series, Problem-Problem
of smoothed time series, Discussion



of time series data, Problem
of time series forecast, Problem
plotting a line from x and y points, Problem-Discussion
plotting ACF of linear model residuals, Solution
plotting linear model object, Solution
plotting regression line of a scatter plot, Problem-Discussion
plotting regression residuals, Discussion, Problem
plotting TukeyHSD function returns, Discussion
plotting variables in multiple colors, Problem-See Also
saving to file in ggplot, Problem
using function call pipelines, Discussion
volatility plot for prices, Discussion

plot_layout function, Solution
pmap function, Solution, Discussion
pmax function, Solution
pmin function, Solution
pnorm function, Solution
point plots, Discussion
poly function, Solution

raw = TRUE parameter, Discussion

polynomial, regressing on, Problem
POSIXct class, Classes for Dates and Times
POSIXct object, Solution
POSIXlt class, Classes for Dates and Times
POSIXlt object, Solution
possibly function, Solution
power transformation, finding the best, Solution-Problem
ppoints function, Solution



Practical Regression and ANOVA Using R (Faraway), Discussion
prcomp function, Solution, Discussion
precedence, operator, Problem-See Also

for user-defined operators, Discussion

predicates
defining for discard function, Discussion
in data.frame function, Factors in data frames

predict function, Solution, Solution
interval parameter, Solution

predictions
forming prediction intervals, Problem
predicting a binary-valued variable, Problem-See Also
predicting new values from linear model, Problem

predictors, Linear Regression and ANOVA, Discussion, Solution
choosing best subset, Discussion-Discussion
in linear model formulas, Discussion
interaction between, plotting, Problem-Discussion
multiple, specifying in linear regression formula, Solution
removing low-correlation variables from, Discussion

presentation, creating from R Markdown document, Problem-Discussion
principal component analysis (PCA), Problem, Discussion, Discussion
print function

digits parameter, Solution
redirecting output to file with sink function, Solution

printing
data in columns, Problem
fewer digits or more digits, Problem
ggplot plots, Discussion



multiple items with cat function, Discussion
print function methods for different object classes, Class: Abstract Type
results of an assignment, Problem
single items with print function, Problem

probability, Probability-Discussion
calculating for continuous distributions, Problem
calculating for discrete distributions, Problem-See Also
converting probabilities to quantiles, Problem-See Also, Discussion
counting number of combinations, Problem
distributions

getting help on, Getting Help on Probability Distributions
names of, Names of Distributions

generating combinations, Problem
generating random numbers, Problem-Discussion
generating random permutation of a vector, Problem
generating random samples, Solution
generating random sequences, Problem
generating reproducible random numbers, Problem
plotting a density function, Problem-Discussion

proc.time function, Discussion
profile scripts, Solution

reproducibility issues with, Reproducibility

programming, simple, Simple Programming-See Also
creating a local variable, Problem
creating an anonymous function, Problem
creating collection of reusable functions, Problem
defining functions, Problem-See Also
if-else statements, Problem-See Also



iterating with a loop, Problem-See Also
protecting against errors, Problem
reindenting code automatically, Problem
signaling errors, Problem
switch function, choosing among multiple alternatives, Problem

projects, creating in RStudio, Problem-Discussion
prop.test function, Solution, Solution, Solution
proportions

equal, testing groups for, Problem
forming confidence interval for, Problem
testing for a sample, Problem

pseudomedian, Discussion
pure functions, Data Transformations
purrr package, Discussion

compact function, Solution
data transformations with, Data Transformations
map family of functions, Discussion
other functions protecting against errors, See Also
possibly function, Discussion
tutorials on, See Also

Q

q (quit) function, macOS, Discussion
qexp function, Discussion
qnorm function, Solution
qt function, Solution
quantile function, Solution
quantile-quantile (Q-Q) plots



creating non-normal distribution Q-Q plots, Problem-Discussion
creating normal Q-Q plot, Problem-See Also

quantiles
calculating for a dataset, Problem
converting probabilities to, Problem-See Also
inverting, Problem

quantmod package, See Also
quartiles, Discussion

calculating for a dataset, Solution

questions
searching mailing list archives for answers to, Problem
submitting to R community, Problem-See Also

--quiet command line option, Solution
quietly function, See Also

R

R
meaning of data frames to a programmer, Data Frames
technical details for programming, Simple Programming

R Data Import/Export guide, See Also
R for Data Science (Wickham), Graphics in Other Packages
R Graphics (Murrell), Graphics
R Graphics Cookbook (Chang), Graphics
R Markdown, Discussion, R Markdown and Publishing-See Also

adding title, author, or date to a document, Problem-Problem
creating a new document, Problem-Discussion
creating a parameterized report, Problem-See Also
ecosystem as well as a package, R Markdown and Publishing



formatting document text, Problem
generating HTML output, Problem
generating Microsoft Word output, Problem-Discussion
generating PDF output, Problem
generating presentation output, Problem-Discussion
inserting math equations into documents, Solution
inserting plots into output documents, Problem-Problem
inserting section headings in documents, Solution
inserting table of data into a document, Problem
inserting tables into documents, Problem-See Also
organizing your workflow, Problem

creating R package for reused logic, Create an R package for reused
logic
keeping focus on content and source logic, Keep R Markdown
focused on content, and source logic
naming Project directories, Name directories intuitively
using RStudio Projects, Use RStudio Projects

passing information to LaTeX rendering engine, Discussion
showing output from R code in a document, Problem

random numbers, generating, Problem-Discussion
pseudorandom number generation in R, Example Data
reproducible random numbers, Problem

randomness, checking a sequence for, Solution
range function, Discussion
rate parameter (exponential distribution), Discussion
rbind function, Discussion, Discussion, Solution

inputs as mix of tibbles and data frames, Discussion

rbinom function, Discussion



RColorBrewer package, Discussion
RDBMS systems, R reading from, See Also
read.csv function, wrapping with possibly, Discussion
read.xlsx function, Discussion
readLines function, Solution
readr package, benefits of using, Discussion
read_csv function, Solution-Discussion, Discussion

reading CSV data from the web, Solution

read_csv2 function, Discussion
read_fwf function, Solution-Discussion
read_html function, Solution-Discussion
read_rds function, See Also
read_sas function, Discussion
read_table function, Discussion
read_table2 function, Solution-Discussion

reading tabular data from the web, Solution

records, fixed-width, reading, Problem-Discussion
recovering from errors, Discussion
recursive functions, Discussion
Recycling Rule, Discussion, Getting bitten by the Recycling Rule

combining pmin and pmax functions with, Discussion
understanding, Problem-Problem

regression, Linear Regression and ANOVA
(see also linear regression)
logistic, Problem-See Also
performing simple orthogonal regression, Problem-See Also

regression coefficients, Discussion, Discussion
and autocorrelation of residuals, Discussion



confidence intervals for, Discussion
forming confidence intervals for, Problem
from linear models, Linear Regression and ANOVA
in multiple linear regressions, Discussion
information about, extracted from linear model, Discussion
slope, Discussion

regular expressions, Discussion
as delimiters in splitting a string, Discussion
matching files in specific pattern, Discussion
using in substring substitutions, Discussion

relative frequencies, Problem
removeTable function, Discussion
rename function, Solution
render function, Discussion
reorder function, Discussion
rep function, Solution
repeat loops, Simple Programming
reporting errors, Discussion
repos option, Solution
reprex package, See Also
reproducible examples, Solution-See Also
require function, Installing a package but not loading it with library or
require, Discussion
resid function, Discussion
residuals

checking for ARIMA model, Discussion
from linear model, Discussion
in linear model, Discussion



plotting regression residuals, Problem
plotting with ggplot, Discussion
statistics on regression residuals, Discussion
testing for autocorrelation, Problem-See Also

response, Linear Regression and ANOVA, Discussion
in linear model formulas, Discussion
regressing on variables highly correlating with, Problem-Problem

return statements, Discussion
return values, Simple Programming, Discussion
reusable code snippets, Discussion
RHOME subcommand, Discussion
right_join function, Solution
rm function, Discussion
Rmetrics, Classes for Dates and Times
RMySQL package, Solution
rnorm function, Discussion
rollapply function, Discussion, Solution
rolling mean, Discussion
rollmean function, Solution
rownames attribute, Solution
rows

appending to a data frame, Problem-Problem
applying a function to each matrix row, Problem-Discussion
applying a function to each row in data frames, Problem
initializing a data frame from row data, Problem-See Also
selecting one row from a matrix, Solution

rowSums function, Solution
rowwise operation, Solution



Rscript program, Solution
RSeek, Discussion, Solution
RSiteSearch function, Discussion
RSQLite package, Solution
RStudio

changing CRAN mirror, Solution
code editing features, See Also
community discussion board, Discussion, Solution
creating a new project, Problem-Discussion
creating a new R Markdown document, Solution
creating and editing R Markdown documents, R Markdown and
Publishing
deleting variables in Environment Pane, Discussion
exiting, Problem
Files pane, Discussion
getting help in, Solution
indenting code blocks in, Solution
installing, Problem
installing in the cloud, Problem
installing packages from CRAN, Solution
Knit to HTML, Solution
Knit to PDF, Solution
Knit to Word, Solution
Knit: Presentation, Solution
Knitr menu, Knit with Parameters, Solution, Discussion
Projects, Use RStudio Projects
R Markdown cheat sheet, See Also
R Markdown presentation formats, Solution



shortcuts, Discussion
starting, Solution-Discussion
viewer, interactive, Discussion

RStudio Desktop (see RStudio)
runif function, Solution
runs, Discussion
runs.test function, Solution
rvest package, Solution
R_HOME environment variable, Solution
R² coefficient of determination, Discussion

S

safely function, See Also
safe_read function, Discussion
sample function, Discussion, Solution

random permutation of a vector, Solution

samples
comparing locations nonparametrically, Problem
sampling a dataset by selecting every nth element, Discussion
testing for same distribution, Problem
testing mean of, Problem
testing sample proportion, Problem

sampling with replacement, Discussion
sapply function, Discussion
SAS

meaning of data frames to a user, Data Frames
reading data from files, Problem-See Also

sas7bdat package, Solution



save function, Solution
save.image function, Discussion
saving

function definitions to file, Discussion
images to file in ggplot, Solution
objects in R, Solution-Discussion
on exiting RSpace, Discussion
result of previous command, Problem
value in a variable, Solution
workspace in RStudio, Problem

scalars, Scalars
comparing a vector to a scalar, Discussion
operations between vectors and, Discussion, Discussion

scale function, Solution
scale_fill_brewer function, Discussion
scan function, Discussion-Problem
scatter plots

creating for paired observations, Problem-See Also
creating of multiple groups, Problem-See Also
creating one plot for each group, Problem-See Also
of paired variables, Problem-Discussion
plotting regression line of, Problem-Discussion

scripts
redirecting output to file with sink function, Discussion
running, Problem
running a batch script, Problem-See Also

sd function, Discussion
search engine, accessing in R documentation, Discussion, See Also



searches
broadending by using keywords, Discussion
finding minimums or maximums for pairwise elements in vectors,
Problem
finding relevant functions and packages, Problem
search function, Solution
searching a vector for particular value and its position, Solution
searching R mailing lists, Problem
searching supplied documentation, Problem-See Also
searching web for help on R, Problem-See Also

select function, Discussion, Solution, Solution, Solution
changing column name with, Discussion

SELECT statements (SQL), Discussion
self-describing data, Discussion
separators

hyphen as separator between strings, Discussion
in string concatenation with paste, Discussion

seq function, Solution, Discussion
creating sequence of dates, Solution

sequences
creating sequence of numbers, Problem-See Also
indexing time series by sequences of dates, Solution
random, generating, Problem

seq_along function, Discussion
Session menu in RStudio, Solution
sessionInfo command, Discussion
set.seed command, Discussion
set.seed function, Solution, Discussion, Example Data



setwd command, Solution
shading

background shading in ggplot graphics, Discussion
bars of a bar chart, Problem-Discussion
color shading in point plot, Discussion

shape parameter (aes function), Solution
shapiro.test function, Solution
Shapiro–Wilk test, Discussion
shebang line, starting with #!, Discussion
shell prompt, starting R from, Discussion
shortcuts for R commands, Discussion
show_query function, Solution
significance

of linear models, Linear Regression and ANOVA
testing a correlation for, Problem-Discussion

simulate_pi function, Discussion, Discussion
sine wave, dampened, Discussion
sink function, Solution
slope (regression coefficient), Discussion, Discussion
smoothing a time series, Problem-See Also
sort function, data frames and, Discussion
sorting

data frames, Problem
fixing in ggplot bar chart, Discussion
in ggplot bar chart with confidence intervals, Discussion

source function, Solution, Discussion, Solution
Spearman method, Solution
split function, Discussion



SQL (Structured Query Language)
CASE WHEN statements, Discussion
in MySQL database queries, Discussion
meaning of data frames to a programmer, Data Frames
turning dplyr commands into, Solution-Problem

SQLite database, See Also
loading example data into, Solution
RSQLite package, Discussion

sqrt function, Discussion
SSH, Solution
stack function, Solution
Stack Overflow website, Getting Started and Getting Help, Discussion

post on creating reproducible examples, See Also
submitting questions to, Discussion

StackExchange website, Discussion
standard deviation

calculating, Discussion-Discussion
calculating in figures month by month, Discussion
in example data for linear regression, Example Data
in ggplot graph line, Discussion

standard error
for ARIMA model coefficients, Discussion
in ggplot bar chart with confidence intervals, Discussion
of residuals, Discussion
se parameter of ggplot, Solution

startup message, suppressing, Problem
startup, customizing for R sessions, Problem-See Also
Statistical Analysis Software (see SAS)



statisticians, meaning of data frames to, Data Frames
statistics, General Statistics

basic, computing, Problem-Problem
applying a function to each column of data frame, Discussion

bootstrapping a statistic, Problem-See Also
calculating quantiles and quartiles of a dataset, Problem
calculating relative frequencies, Problem
comparing locations of two samples nonparametrically, Problem
comparing means of of two samples, Problem-See Also
converting data to z-scores, Problem
forming confidence interval for a mean, Problem-Discussion
forming confidence interval for a median, Problem
forming confidence interval for a proportion, Problem
inverting a quantile, Problem
pairwise comparisons between group means, Problem-Discussion
regression statistics, getting, Problem-See Also
tabulating a factor and creating contingency tables, Problem
testing a sample proportion, Problem
testing categorical variables for independence, Problem
testing correlation for significance, Problem-Problem
testing for normality, Problem
testing for runs, Problem-Problem
testing groups for equal proportions, Problem
testing the mean of a sample, Problem
testing two samples for same distribution, Problem

stats in ggplot graphs, Notes on ggplot2 Basics
stats::lag function, Discussion
stat_function, Discussion



stat_qq and stat_qq_line functions, Solution
stat_summary function, Discussion
stdout, Rscript output to, Discussion
step function, Solution-Discussion
stepwise regression, Solution-Discussion
stftime, Discussion
stop function, Solution
str function, Discussion

revealing internal structure of variables, Discussion

strings, Strings and Dates
concatenating, Problem
converting dates to, Problem
converting to dates, Problem
Date object converted to, Discussion
extracting substrings, Problem
generating all pairwise combinations of, Problem
generating combinations of, Discussion
getting length of, Problem
replacing substrings within a string, Problem
splitting according to a delimiter, Problem
str function, Discussion
vectors of, returned by ls function, Discussion

strsplit function, Solution
structures, Discussion, Data Structures

(see also data frames; factors; lists; matrices; tibbles; vectors)
converting between structured types, Problem-See Also

Student's t distribution, Solution
sub function, Solution



subdirectories, listing files in, Discussion
sublists in R Markdown, Discussion
subscripting, matrix-style, Matrix-style subscripting, Matrix-style
subscripting
subscripts of a vector or list, iterating over, Discussion
subsets

regressing on, Solution, Problem
subsetting a time series, Problem-See Also

substr function, Solution
summarize function, Solution
summarizing data, Problem-Discussion
summary function, Discussion, Solution, Solution, Discussion

understanding the regression summary, Problem-See Also
using on linear models, Discussion

summing rows and columns, Problem
suppressMessage function, Problem
suppressWarnings function, Problem
survival function, Discussion, Discussion
switch function, Problem
switch statements, Simple Programming
Sys.Date function, Discussion
Sys.getenv function, Solution, Solution
Sys.putenv function, Solution
Sys.setenv function, Discussion, Discussion
Sys.time function, Discussion

T

t statistic, Discussion, Discussion



t-test, Discussion, Discussion, Discussion
t.test function, Solution, Discussion, Solution
table function, Solution, Solution

factors as input, Discussion

tables
ANOVA, of linear regression models, ANOVA
in R Markdown output to Word, Discussion
inserting computer-generated data into R Markdown document,
Problem
inserting into R Markdown output document, Problem-See Also

tabular data files
data frames, Data Frames
reading, Problem-See Also
reading from the web, Problem

tail function, Solution, Discussion
techniques, advanced

bootstrapping a statistic, Problem-See Also
calculating eigenvalues or eigenvectors, Problem
factor analysis, Problem-Discussion
finding clusters in data, Problem-See Also
minimizing or maximizing multiparameter functions, Problem-See Also
minimizing or maximizing single-parameter functions, Solution
performing principal component analysis, Problem
performing simple orthogonal regression, Problem-See Also
predicting a binary-valued variable, Problem-See Also

templates
controlling R Markdown output formatting in Word, Discussion
for creating R Markdown documents, Discussion



for R Markdown document output, Discussion
LaTeX, for formatting documents, Discussion

text editors, R Markdown and Publishing
text, formatting in R Markdown documents, Problem
theme function, Solution

legend.position setting, Solution

themes, Notes on ggplot2 Basics
applying to ggplot graphics, Problem-Discussion

tibble function, Discussion
tibbles, Discussion, Factors in data frames

comingling with data frames, Discussion
creating from vectors in a list, Discussion
defined, Tibbles
tibble and as_tibble functions, not changing character data, Factors in
data frames

tic function, Solution, Discussion
tidygraph package, installing, Solution
tidyr package, Discussion
tidyverse packages

helper functions for calculating basic statistics, Discussion
installing, Solution
select function, List expressions
tibbles, Discussion, Tibbles

time series analysis, Time Series Analysis-See Also
calculations on time series, Problem
computing moving average of a time series, Problem
computing successive differences, Problem-Problem
date vs. datetime, Date Versus Datetime



detrending a time series, Problem-Discussion
extracting newest or oldest observations, Problem-See Also
filling or padding a time series, Problem-Discussion
finding lagged correlations between time series, Problem
fitting ARIMA model to a time series, Problem-See Also
functions for, Discussion
lagging a time series, Problem
making forecasts from ARIMA model, Problem
merging several time series, Problem-Discussion
other representations of data, Other Representations
packages for, zoo and xts, Time Series Analysis
plotting a time series forecast, Problem
plotting partial autocorrelation function, Problem-Problem
plotting the autocorrelation function, Problem-Discussion
plotting time series data, Problem
removing insignificant ARIMA coefficients, Problem
representing time series data, Problem-See Also
running diagnostics on ARIMA model, Problem-Discussion
subsetting a time series, Problem-See Also
testing for autocorrelation, Problem
testing for mean reversion, Problem-See Also

Time-Series object types, Discussion
timeDate package, Classes for Dates and Times
timeSeries package, See Also
timing code, Problem-Problem
tinytex package, Discussion
titles

adding to ggplot graphics, Problem



setting for R Markdown document, Solution
setting with ggtitle, Discussion

toc function, Solution, Discussion
total least squares (TLS), Discussion

(see also orthogonal regression)

transformations, Data Transformations-See Also
applying a function to each column in a matrix or data frame, Problem-
Discussion
applying a function to each list element, Problem-Discussion
applying a function to each matrix row, Problem, Discussion
applying a function to each row in data frames, Problem
applying a function to groups of data, Problem
applying a function to parallel vectors or lists, Problem-Problem
creating new column in a data frame based on a condition, Problem-See
Also
regressing on transformed data, Problem-Problem

trends, identifying and removing from a time series
trends,identifying and removing from a time series, Problem-Discussion
TRUE and FALSE logical values, Discussion
ts class, ts (base distribution)
tseries::adf.test function, Discussion
tsibble package, tsibble package
TukeyHSD function, Solution-Discussion

U

union of all dates, Discussion, Solution
unit root tests, See Also
Unix



search path, Discussion
shebang line starting with #!, Discussion
Sys.getenv function results, Discussion

unlist function, Discussion, Discussion
URLs, using to read data from the web, Solution

V

variables
assigning value to, Solution
categorical, representing with factors, Factors
data type, changing at will, Discussion
deleting, Problem
.Last.value, Discussion
listing, Problem
local, Problem
plotting all variables against other variables, Problem-Discussion
stripping attributes from, Problem

variance, Factors
(see also analysis of variance)
calculating, Problem

vectorized operations of R, eliminating need for loops, Discussion
vectors

appending data to, Problem
applying a function to parallel vectors or lists, Problem-Problem
arithmetic operations on, Problem-See Also
comparing, Problem-Problem
comparing elements in parallel with pmin and pmax, Solution
constructing data frames from, Solution



converting between other structured types, Discussion
converting matrices to, Solution
converting to z-scores, Solution
creating, Solution-See Also
elements having same mode, Mode: Physical Type
finding position of a particular value, Problem
flattening a list into, Problem
flattening matrices into, Discussion
formatting with print and format functions, Discussion
getting length of, Discussion
inserting data into, Problem
key properties of, Vectors
multiple, combining into one vector and a factor, Problem
of atomic types, converting to other types, Discussion
of levels (see factors)
of names and values, populating list with, Discussion
of probabilities in quantile functions, Discussion
of strings, Discussion
of unequal length, Problem-Problem
of unequal lengths, Getting bitten by the Recycling Rule
of years, months, and days converting to Date objects, Discussion
printing with cat function, Discussion
random permutation of, Problem
results of expressions in R, Discussion
scalars as one-element vector, Scalars
selecting elements from, Problem
selecting every nth element, Problem
summary of, Solution



transforming into matrices, Matrices
turning a vector into a matrix, Discussion
use in building data frames, Data Frames

versions, extracting for installed packages, Discussion
viewing data, partial and full dataset, Problem
vignettes, Getting Started and Getting Help

listing for a package, Discussion
openxlsx, See Also
readr, Discussion
sql-translation, See Also

volatility, calculating by calendar periods, Discussion

W

warning function, See Also
warnings, suppressing, Problem, Discussion
web search for help on R, Problem-See Also
web, reading CSV and tabular data from, Discussion
which.max function, Discussion, Discussion
which.min function, Discussion
while loops, Simple Programming
wide vs. long data (ggplot), “Long” Versus “Wide” Data with ggplot,
Discussion
wilcox.test function, Solution, Solution
Wilcoxon–Mann–Whitney test, Discussion
window function, Solution

selecting range of consecutive dates, Discussion

Windows
Alt and Ctrl key combinations, Discussion



Cannot Open File error, Problem
exiting RStudio, Windows and most Linux distributions
installing R, Discussion
starting RStudio, Solution
Sys.getenv function results, Discussion
\ (backslash) in file paths, escaping, Using a single backslash (\) in
Windows paths

Word (see Microsoft Word)
working directory, Problem
workspace

indicated by .GlobalEnv, Discussion
saving, Discussion, Problem

write.xlsx function, Discussion
writeData function, Discussion
writeDataTable function, Discussion
write_csv function, Solution
write_rds function, See Also

X

xtabs function, See Also
xts object, Solution

plot function, Discussion

xts package, Time Series Analysis

Y

YAML header in R Markdown documents, Discussion
LaTeX options set in, Discussion

year, month, and day, converting to a date, Problem



year/month (yyyymm) subsetting, Discussion
yyyy-mm-dd format for dates, Discussion

Z

z- scores, Discussion
converting data to, Problem

zoo object, Solution
Date objects as index, Discussion
plot function, Discussion

zoo package, Graphics in Other Packages, Time Series Analysis



About the Authors
J.D. Long is a misplaced southern agricultural economist currently
working for Renaissance Re in New York City. J.D. is an avid user of
Python, R, AWS, and colorful metaphors, and is a frequent presenter at R
conferences as well as the founder of the Chicago R User Group. He lives
in Jersey City, NJ, with his wife, a recovering trial lawyer, and his 11-year-
old circuit-bending daughter.

Paul Teetor is a quantitative developer with master’s degrees in statistics
and computer science. He specializes in analytics and software
engineering for investment management, securities trading, and risk
management. He works with hedge funds, market makers, and portfolio
managers in the greater Chicago area.



Colophon
The animal on the cover of R Cookbook is a harpy eagle (Harpia harpyja).
One of the 50 species of eagle in the world, the harpy eagle is native to the
tropical rain forests of Central and South America, and prefers to nest in
the upper canopy layer thereof. Both its genus and species names refer to
the harpies of ancient Greek mythology—vicious creatures with the face
of a woman and the body of an eagle or vulture.

On average, harpy eagles weigh about 18 lbs, are 36 to 40 inches long, and
have a wingspan of 6 to 7 feet, though females are consistently larger than
males. The plumage of both sexes is identical, however: slate-black
feathers dominate the animal’s top half, while the underside is white or
light gray. Light gray–colored heads are accentuated with a double crest of
large feathers, which specimens can raise when showing hostility.

Harpy eagles are monogamous, and pairs raise only one chick every two to
three years. Females will usually lay two eggs at a time, and after the first
hatches, the other is neglected and does not hatch. Though the chick will
fledge within six months, both parents continue to care for and feed the
chick for at least a year. Because of this low rate of population growth, the
harpy eagle is particularly susceptible to encroachments on its habitat and
losses from human hunting. Throughout its range, the animal’s
conservation status ranges from threatened to critically endangered.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and
white engraving from J.G. Wood’s Animate Creation. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.


	Welcome to the R Cookbook, 2nd Edition
	The Recipes
	A Note on Terminology
	Software and Platform Notes
	Other Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Getting Started and Getting Help
	Downloading and Installing R
	Problem
	Solution
	Discussion
	See Also

	Installing RStudio
	Problem
	Solution
	Discussion

	Starting RStudio
	Problem
	Solution
	Discussion

	Entering Commands
	Problem
	Solution
	Discussion
	See Also

	Exiting from RStudio
	Problem
	Solution
	Discussion
	See Also

	Interrupting R
	Problem
	Solution
	Discussion
	See Also

	Viewing the Supplied Documentation
	Problem
	Solution
	Discussion
	See Also

	Getting Help on a Function
	Problem
	Solution
	Discussion
	See Also

	Searching the Supplied Documentation
	Problem
	Solution
	Discussion
	See Also

	Getting Help on a Package
	Problem
	Solution
	Discussion
	See Also

	Searching the Web for Help
	Problem
	Solution
	Discussion
	See Also

	Finding Relevant Functions and Packages
	Problem
	Solution
	Discussion
	See Also

	Searching the Mailing Lists
	Problem
	Solution
	Discussion
	See Also

	Submitting Questions to Stack Overflow or Elsewhere in the Community
	Problem
	Solution
	Discussion
	See Also


	2. Some Basics
	Printing Something to the Screen
	Problem
	Solution
	Discussion
	See Also

	Setting Variables
	Problem
	Solution
	Discussion
	See Also

	Listing Variables
	Problem
	Solution
	Discussion
	See Also

	Deleting Variables
	Problem
	Solution
	Discussion
	See Also

	Creating a Vector
	Problem
	Solution
	Discussion
	See Also

	Computing Basic Statistics
	Problem
	Solution
	Discussion
	See Also

	Creating Sequences
	Problem
	Solution
	Discussion
	See Also

	Comparing Vectors
	Problem
	Solution
	Discussion
	See Also

	Selecting Vector Elements
	Problem
	Solution
	Discussion
	See Also

	Performing Vector Arithmetic
	Problem
	Solution
	Discussion
	See Also

	Getting Operator Precedence Right
	Problem
	Solution
	Discussion
	See Also

	Typing Less and Accomplishing More
	Problem
	Solution
	Discussion

	Creating a Pipeline of Function Calls
	Problem
	Solution
	Discussion

	Avoiding Some Common Mistakes
	Problem
	Discussion
	See Also


	3. Navigating the Software
	Getting and Setting the Working Directory
	Problem
	Solution
	Discussion
	See Also

	Creating a New RStudio Project
	Problem
	Solution
	Discussion

	Saving Your Workspace
	Problem
	Solution
	Discussion
	See Also

	Viewing Your Command History
	Problem
	Solution
	Discussion

	Saving the Result of the Previous Command
	Problem
	Solution
	Discussion
	See Also

	Displaying Loaded Packages via the Search Path
	Problem
	Solution
	Discussion
	See Also

	Viewing the List of Installed Packages
	Problem
	Solution
	Discussion
	See Also

	Accessing the Functions in a Package
	Problem
	Solution
	Discussion
	See Also

	Accessing Built-in Datasets
	Problem
	Solution
	Discussion
	See Also

	Installing Packages from CRAN
	Problem
	Solution
	Discussion
	See Also

	Installing a Package from GitHub
	Problem
	Solution
	Discussion

	Setting or Changing a Default CRAN Mirror
	Problem
	Solution
	Discussion
	See Also

	Running a Script
	Problem
	Solution
	Discussion
	See Also

	Running a Batch Script
	Problem
	Solution
	Discussion
	See Also

	Locating the R Home Directory
	Problem
	Solution
	Discussion

	Customizing R Startup
	Problem
	Solution
	Discussion
	See Also

	Using R and RStudio in the Cloud
	Problem
	Solution
	Discussion


	4. Input and Output
	Entering Data from the Keyboard
	Problem
	Solution
	Discussion
	See Also

	Printing Fewer Digits (or More Digits)
	Problem
	Solution
	Discussion
	See Also

	Redirecting Output to a File
	Problem
	Solution
	Discussion

	Listing Files
	Problem
	Solution
	Discussion
	See Also

	Dealing with “Cannot Open File” in Windows
	Problem
	Solution
	Discussion

	Reading Fixed-Width Records
	Problem
	Solution
	Discussion
	See Also

	Reading Tabular Data Files
	Problem
	Solution
	Discussion
	See Also

	Reading from CSV Files
	Problem
	Solution
	Discussion
	See Also

	Writing to CSV Files
	Problem
	Solution
	Discussion
	See Also

	Reading Tabular or CSV Data from the Web
	Problem
	Solution
	Discussion
	See Also

	Reading Data from Excel
	Problem
	Solution
	Discussion
	See Also

	Writing a Data Frame to Excel
	Problem
	Solution
	Discussion
	See Also

	Reading Data from a SAS File
	Problem
	Solution
	Discussion
	See Also

	Reading Data from HTML Tables
	Problem
	Solution
	Discussion
	See Also

	Reading Files with a Complex Structure
	Problem
	Solution
	Discussion
	An Example

	Reading from MySQL Databases
	Problem
	Solution
	Discussion
	See Also

	Accessing a Database with dbplyr
	Problem
	Solution
	Discussion
	See Also

	Saving and Transporting Objects
	Problem
	Solution
	Discussion
	See Also


	5. Data Structures
	Vectors
	Lists
	Mode: Physical Type
	Class: Abstract Type
	Scalars
	Matrices
	Arrays
	Factors
	Data Frames
	Tibbles
	Appending Data to a Vector
	Problem
	Solution
	Discussion

	Inserting Data into a Vector
	Problem
	Solution
	Discussion

	Understanding the Recycling Rule
	Problem
	Discussion

	Creating a Factor (Categorical Variable)
	Problem
	Solution
	Discussion
	See Also

	Combining Multiple Vectors into One Vector and a Factor
	Problem
	Solution
	Discussion

	Creating a List
	Problem
	Solution
	Discussion
	See Also

	Selecting List Elements by Position
	Problem
	Solution
	Discussion

	Selecting List Elements by Name
	Problem
	Solution
	Discussion
	See Also

	Building a Name/Value Association List
	Problem
	Solution
	Discussion

	Removing an Element from a List
	Problem
	Solution
	Discussion

	Flattening a List into a Vector
	Problem
	Solution
	Discussion
	See Also

	Removing NULL Elements from a List
	Problem
	Solution
	Discussion
	See Also

	Removing List Elements Using a Condition
	Problem
	Solution
	Discussion
	See Also

	Initializing a Matrix
	Problem
	Solution
	Discussion
	See Also

	Performing Matrix Operations
	Problem
	Solution
	Discussion

	Giving Descriptive Names to the Rows and Columns of a Matrix
	Problem
	Solution
	Discussion

	Selecting One Row or Column from a Matrix
	Problem
	Solution
	Discussion

	Initializing a Data Frame from Column Data
	Problem
	Solution
	Discussion

	Initializing a Data Frame from Row Data
	Problem
	Solution
	Discussion
	See Also

	Appending Rows to a Data Frame
	Problem
	Solution
	Discussion

	Selecting Data Frame Columns by Position
	Problem
	Solution
	Discussion
	See Also

	Selecting Data Frame Columns by Name
	Problem
	Solution
	Discussion
	See Also

	Changing the Names of Data Frame Columns
	Problem
	Solution
	Discussion
	See Also

	Removing NAs from a Data Frame
	Problem
	Solution
	Discussion

	Excluding Columns by Name
	Problem
	Solution
	Discussion

	Combining Two Data Frames
	Problem
	Solution
	Discussion

	Merging Data Frames by Common Column
	Problem
	Solution
	Discussion
	See Also

	Converting One Atomic Value into Another
	Problem
	Solution
	Discussion

	Converting One Structured Data Type into Another
	Problem
	Solution
	Discussion
	See Also


	6. Data Transformations
	Applying a Function to Each List Element
	Problem
	Solution
	Discussion
	See Also

	Applying a Function to Every Row of a Data Frame
	Problem
	Solution
	Discussion

	Applying a Function to Every Row of a Matrix
	Problem
	Solution
	Discussion

	Applying a Function to Every Column
	Problem
	Solution
	Discussion
	See Also

	Applying a Function to Parallel Vectors or Lists
	Problem
	Solution
	Discussion
	See Also

	Applying a Function to Groups of Data
	Problem
	Solution
	Discussion

	Creating a New Column Based on Some Condition
	Problem
	Solution
	Discussion
	See Also


	7. Strings and Dates
	Classes for Dates and Times
	See Also
	Getting the Length of a String
	Problem
	Solution
	Discussion

	Concatenating Strings
	Problem
	Solution
	Discussion

	Extracting Substrings
	Problem
	Solution
	Discussion

	Splitting a String According to a Delimiter
	Problem
	Solution
	Discussion
	See Also

	Replacing Substrings
	Problem
	Solution
	Discussion
	See Also

	Generating All Pairwise Combinations of Strings
	Problem
	Solution
	Discussion
	See Also

	Getting the Current Date
	Problem
	Solution
	Discussion
	See Also

	Converting a String into a Date
	Problem
	Solution
	Discussion

	Converting a Date into a String
	Problem
	Solution
	Discussion

	Converting Year, Month, and Day into a Date
	Problem
	Solution
	Discussion

	Getting the Julian Date
	Problem
	Solution
	Discussion

	Extracting the Parts of a Date
	Problem
	Solution
	Discussion

	Creating a Sequence of Dates
	Problem
	Solution
	Discussion


	8. Probability
	Names of Distributions
	Getting Help on Probability Distributions
	See Also
	Counting the Number of Combinations
	Problem
	Solution
	Discussion
	See Also

	Generating Combinations
	Problem
	Solution
	Discussion
	See Also

	Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	Generating Reproducible Random Numbers
	Problem
	Solution
	Discussion
	See Also

	Generating a Random Sample
	Problem
	Solution
	Discussion
	See Also

	Generating Random Sequences
	Problem
	Solution
	Discussion

	Randomly Permuting a Vector
	Problem
	Solution
	Discussion
	See Also

	Calculating Probabilities for Discrete Distributions
	Problem
	Solution
	Discussion
	See Also

	Calculating Probabilities for Continuous Distributions
	Problem
	Solution
	Discussion
	See Also

	Converting Probabilities to Quantiles
	Problem
	Solution
	Discussion
	See Also

	Plotting a Density Function
	Problem
	Solution
	Discussion


	9. General Statistics
	Null Hypotheses, Alternative Hypotheses, and p-Values
	Confidence Intervals
	See Also
	Summarizing Your Data
	Problem
	Solution
	Discussion
	See Also

	Calculating Relative Frequencies
	Problem
	Solution
	Discussion

	Tabulating Factors and Creating Contingency Tables
	Problem
	Solution
	Discussion
	See Also

	Testing Categorical Variables for Independence
	Problem
	Solution
	Discussion
	See Also

	Calculating Quantiles (and Quartiles) of a Dataset
	Problem
	Solution
	Discussion

	Inverting a Quantile
	Problem
	Solution
	Discussion
	See Also

	Converting Data to z-Scores
	Problem
	Solution
	Discussion

	Testing the Mean of a Sample (t-Test)
	Problem
	Solution
	Discussion
	See Also

	Forming a Confidence Interval for a Mean
	Problem
	Solution
	Discussion

	Forming a Confidence Interval for a Median
	Problem
	Solution
	Discussion
	See Also

	Testing a Sample Proportion
	Problem
	Solution
	Discussion

	Forming a Confidence Interval for a Proportion
	Problem
	Solution
	Discussion
	See Also

	Testing for Normality
	Problem
	Solution
	Discussion
	See Also

	Testing for Runs
	Problem
	Solution
	Discussion
	See Also

	Comparing the Means of Two Samples
	Problem
	Solution
	Discussion
	See Also

	Comparing the Locations of Two Samples Nonparametrically
	Problem
	Solution
	Discussion
	See Also

	Testing a Correlation for Significance
	Problem
	Solution
	Discussion
	See Also

	Testing Groups for Equal Proportions
	Problem
	Solution
	Discussion
	See Also

	Performing Pairwise Comparisons Between Group Means
	Problem
	Solution
	Discussion
	See Also

	Testing Two Samples for the Same Distribution
	Problem
	Solution
	Discussion


	10. Graphics
	The Illustrations
	Notes on ggplot2 Basics
	“Long” Versus “Wide” Data with ggplot
	Graphics in Other Packages
	Creating a Scatter Plot
	Problem
	Solution
	Discussion
	See Also

	Adding a Title and Labels
	Problem
	Solution
	Discussion

	Adding (or Removing) a Grid
	Problem
	Solution
	Discussion
	See Also

	Applying a Theme to a ggplot Figure
	Problem
	Solution
	Discussion
	See Also

	Creating a Scatter Plot of Multiple Groups
	Problem
	Solution
	Discussion
	See Also

	Adding (or Removing) a Legend
	Problem
	Solution
	Discussion

	Plotting the Regression Line of a Scatter Plot
	Problem
	Solution
	Discussion
	See Also

	Plotting All Variables Against All Other Variables
	Problem
	Solution
	Discussion

	Creating One Scatter Plot for Each Group
	Problem
	Solution
	Discussion
	See Also

	Creating a Bar Chart
	Problem
	Solution
	Discussion
	See Also

	Adding Confidence Intervals to a Bar Chart
	Problem
	Solution
	Discussion
	See Also

	Coloring a Bar Chart
	Problem
	Solution
	Discussion
	See Also

	Plotting a Line from x and y Points
	Problem
	Solution
	Discussion
	See Also

	Changing the Type, Width, or Color of a Line
	Problem
	Solution
	Discussion
	See Also

	Plotting Multiple Datasets
	Problem
	Solution
	Discussion

	Adding Vertical or Horizontal Lines
	Problem
	Solution
	Discussion
	See Also

	Creating a Boxplot
	Problem
	Solution
	Discussion
	See Also

	Creating One Boxplot for Each Factor Level
	Problem
	Solution
	Discussion
	See Also

	Creating a Histogram
	Problem
	Solution
	Discussion
	See Also

	Adding a Density Estimate to a Histogram
	Problem
	Solution
	Discussion
	See Also

	Creating a Normal Quantile–Quantile Plot
	Problem
	Solution
	Discussion
	See Also

	Creating Other Quantile–Quantile Plots
	Problem
	Solution
	Discussion

	Plotting a Variable in Multiple Colors
	Problem
	Solution
	Discussion
	See Also

	Graphing a Function
	Problem
	Solution
	Discussion
	See Also

	Displaying Several Figures on One Page
	Problem
	Solution
	Discussion
	See Also

	Writing Your Plot to a File
	Problem
	Solution
	Discussion
	See Also


	11. Linear Regression and ANOVA
	ANOVA
	Example Data
	See Also
	Performing Simple Linear Regression
	Problem
	Solution
	Discussion

	Performing Multiple Linear Regression
	Problem
	Solution
	Discussion
	See Also

	Getting Regression Statistics
	Problem
	Solution
	Discussion
	See Also

	Understanding the Regression Summary
	Problem
	Discussion
	See Also

	Performing Linear Regression Without an Intercept
	Problem
	Solution
	Discussion

	Regressing Only Variables That Highly Correlate with Your Dependent Variable
	Problem
	Solution
	Discussion

	Performing Linear Regression with Interaction Terms
	Problem
	Solution
	Discussion
	See Also

	Selecting the Best Regression Variables
	Problem
	Solution
	Discussion
	See Also

	Regressing on a Subset of Your Data
	Problem
	Solution
	Discussion

	Using an Expression Inside a Regression Formula
	Problem
	Solution
	Discussion
	See Also

	Regressing on a Polynomial
	Problem
	Solution
	Discussion
	See Also

	Regressing on Transformed Data
	Problem
	Solution
	Discussion
	See Also

	Finding the Best Power Transformation (Box–Cox Procedure)
	Problem
	Solution
	Discussion
	See Also

	Forming Confidence Intervals for Regression Coefficients
	Problem
	Solution
	Discussion
	See Also

	Plotting Regression Residuals
	Problem
	Solution
	Discussion
	See Also

	Diagnosing a Linear Regression
	Problem
	Solution
	Discussion
	See Also

	Identifying Influential Observations
	Problem
	Solution
	Discussion
	See Also

	Testing Residuals for Autocorrelation (Durbin–Watson Test)
	Problem
	Solution
	Discussion
	See Also

	Predicting New Values
	Problem
	Solution
	Discussion
	See Also

	Forming Prediction Intervals
	Problem
	Solution
	Discussion

	Performing One-Way ANOVA
	Problem
	Solution
	Discussion
	See Also

	Creating an Interaction Plot
	Problem
	Solution
	Discussion
	See Also

	Finding Differences Between Means of Groups
	Problem
	Solution
	Discussion
	See Also

	Performing Robust ANOVA (Kruskal–Wallis Test)
	Problem
	Solution
	Discussion

	Comparing Models by Using ANOVA
	Problem
	Solution
	Discussion


	12. Useful Tricks
	Peeking at Your Data
	Problem
	Solution
	Discussion
	See Also

	Printing the Result of an Assignment
	Problem
	Solution
	Discussion
	See Also

	Summing Rows and Columns
	Problem
	Solution
	Discussion

	Printing Data in Columns
	Problem
	Solution
	Discussion

	Binning Your Data
	Problem
	Solution
	Discussion

	Finding the Position of a Particular Value
	Problem
	Solution
	Discussion
	See Also

	Selecting Every nth Element of a Vector
	Problem
	Solution
	Discussion
	See Also

	Finding Minimums or Maximums
	Problem
	Solution
	Discussion
	See Also

	Generating All Combinations of Several Variables
	Problem
	Solution
	Discussion
	See Also

	Flattening a Data Frame
	Problem
	Solution
	Discussion
	See Also

	Sorting a Data Frame
	Problem
	Solution
	Discussion

	Stripping Attributes from a Variable
	Problem
	Solution
	Discussion
	See Also

	Revealing the Structure of an Object
	Problem
	Solution
	Discussion

	Timing Your Code
	Problem
	Solution
	Discussion

	Suppressing Warnings and Error Messages
	Problem
	Solution
	Discussion
	See Also

	Taking Function Arguments from a List
	Problem
	Solution
	Discussion
	See Also

	Defining Your Own Binary Operators
	Problem
	Solution
	Discussion
	See Also

	Suppressing the Startup Message
	Problem
	Solution
	Discussion

	Getting and Setting Environment Variables
	Problem
	Solution
	Discussion
	See Also

	Use Code Sections
	Problem
	Solution
	Discussion
	See Also

	Executing R in Parallel Locally
	Problem
	Solution
	Discussion
	See Also

	Executing R in Parallel Remotely
	Problem
	Solution
	Discussion
	See Also


	13. Beyond Basic Numerics and Statistics
	Minimizing or Maximizing a Single-Parameter Function
	Problem
	Solution
	Discussion
	See Also

	Minimizing or Maximizing a Multiparameter Function
	Problem
	Solution
	Discussion
	See Also

	Calculating Eigenvalues and Eigenvectors
	Problem
	Solution
	Discussion

	Performing Principal Component Analysis
	Problem
	Solution
	Discussion
	See Also

	Performing Simple Orthogonal Regression
	Problem
	Solution
	Discussion
	See Also

	Finding Clusters in Your Data
	Problem
	Solution
	Discussion
	See Also

	Predicting a Binary-Valued Variable (Logistic Regression)
	Problem
	Solution
	Discussion
	See Also

	Bootstrapping a Statistic
	Problem
	Solution
	Discussion
	See Also

	Factor Analysis
	Problem
	Solution
	Discussion
	See Also


	14. Time Series Analysis
	Other Representations
	Date Versus Datetime
	See Also
	Representing Time Series Data
	Problem
	Solution
	Discussion
	See Also

	Plotting Time Series Data
	Problem
	Solution
	Discussion
	See Also

	Extracting the Oldest or Newest Observations
	Problem
	Solution
	Discussion
	See Also

	Subsetting a Time Series
	Problem
	Solution
	Discussion
	See Also

	Merging Several Time Series
	Problem
	Solution
	Discussion

	Filling or Padding a Time Series
	Problem
	Solution
	Discussion

	Lagging a Time Series
	Problem
	Solution
	Discussion

	Computing Successive Differences
	Problem
	Solution
	Discussion

	Performing Calculations on Time Series
	Problem
	Solution
	Discussion
	See Also

	Computing a Moving Average
	Problem
	Solution
	Discussion
	See Also

	Applying a Function by Calendar Period
	Problem
	Solution
	Discussion

	Applying a Rolling Function
	Problem
	Solution
	Discussion

	Plotting the Autocorrelation Function
	Problem
	Solution
	Discussion

	Testing a Time Series for Autocorrelation
	Problem
	Solution
	Discussion
	See Also

	Plotting the Partial Autocorrelation Function
	Problem
	Solution
	Discussion
	See Also

	Finding Lagged Correlations Between Two Time Series
	Problem
	Solution
	Discussion

	Detrending a Time Series
	Problem
	Solution
	Discussion

	Fitting an ARIMA Model
	Problem
	Solution
	Discussion
	See Also

	Removing Insignificant ARIMA Coefficients
	Problem
	Solution
	Discussion

	Running Diagnostics on an ARIMA Model
	Problem
	Solution
	Discussion

	Making Forecasts from an ARIMA Model
	Problem
	Solution
	Discussion

	Plotting a Forecast
	Problem
	Solution
	Discussion
	See Also

	Testing for Mean Reversion
	Problem
	Solution
	Discussion
	See Also

	Smoothing a Time Series
	Problem
	Solution
	Discussion
	See Also


	15. Simple Programming
	Choosing Between Two Alternatives: if/else
	Problem
	Solution
	Discussion
	See Also

	Iterating with a Loop
	Problem
	Solution
	Discussion
	See Also

	Defining a Function
	Problem
	Solution
	Discussion
	See Also

	Creating a Local Variable
	Problem
	Solution
	Discussion

	Choosing Between Multiple Alternatives: switch
	Problem
	Solution
	Discussion
	See Also

	Defining Defaults for Function Parameters
	Problem
	Solution
	Discussion

	Signaling Errors
	Problem
	Solution
	Discussion
	See Also

	Protecting Against Errors
	Problem
	Solution
	Discussion
	See Also

	Creating an Anonymous Function
	Problem
	Solution
	Discussion
	See Also

	Creating a Collection of Reusable Functions
	Problem
	Solution
	Discussion
	See Also

	Automatically Reindenting Code
	Problem
	Solution
	Discussion
	See Also


	16. R Markdown and Publishing
	Creating a New Document
	Problem
	Solution
	Discussion

	Adding a Title, Author, or Date
	Problem
	Solution
	Discussion
	See Also

	Formatting Document Text
	Problem
	Solution
	See Also

	Inserting Document Headings
	Problem
	Solution
	Discussion

	Inserting a List
	Problem
	Solution
	Discussion
	See Also

	Showing Output from R Code
	Problem
	Solution
	Discussion
	See Also

	Controlling Which Code and Results Are Shown
	Problem
	Solution
	Discussion
	See Also

	Inserting a Plot
	Problem
	Solution
	Discussion

	Inserting a Table
	Problem
	Solution
	Discussion
	See Also

	Inserting a Table of Data
	Problem
	Solution
	Discussion

	Inserting Math Equations
	Problem
	Solution
	Discussion

	Generating HTML Output
	Problem
	Solution
	Discussion
	See Also

	Generating PDF Output
	Problem
	Solution
	Discussion
	See Also

	Generating Microsoft Word Output
	Problem
	Solution
	Discussion
	See Also

	Generating Presentation Output
	Problem
	Solution
	Discussion
	See Also

	Creating a Parameterized Report
	Problem
	Solution
	Discussion
	See Also

	Organizing Your R Markdown Workflow
	Problem
	Solution
	See Also


	Index

