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Abstract— Telemonitoring of electroencephalogram (EEG) necessary to reduce energy consumption as much as possible.
through wireless body-area networks is an evolving directn |ow energy consumption means that a system can use small
in personalized medicine. Among various constraints in de- and light batteries and sensors. Consequently, the lighghie

signing such a system, three important constraints are engy f the devi anifi v i th fort | |
consumption, data compression, and device cost. Convential 0 € device can significantly improve the comiort leve

data compression methodologies, although effective in datcom- Of patients. Besides, low energy consumption means longer
pression, consumes significant energy and cannot reduce dew battery and sensor lifetime, which reduces operationatiscos
cost. Compressed sensing (CS), as an emerging data compresof the system.

sion methodology, is promising in catering to these constiats. Another constraint is that transmitted physiological sign

However, EEG is non-sparse in the time domain and also non- hould be | | d. This is b th .
sparse in transformed domains (such as the wavelet domain). shou € largely compressed. This IS because the communi-

Therefore, it is extremely difficult for current CS algorith ms to ~ cation capacity of ultra-low-power short-haul radio degds
recover EEG with the quality that satisfies the requirementsof low and can be stressed especially in some applicationg usin

clinical diagnosis and engineering applications. Recent! Block  multiple-sensors or high-speed sampling frequency. Bssid
Sparse Bayesian Learning (BSBL) was proposed as a new methoda WBAN generally uses a smart-phone as an intermediate

to the CS problem. This study introduces the technique to - . o
the telemonitoring of EEG. Experimental results show that ts transit point. Thus, it is important that data stream does no

recovery quality is better than state-of-the-art CS algorthms, and  Overwhelm the smart-phone, disturbing its primary funtsio
sufficient for practical use. These results suggest that B3Bis such as receiving and making phone calls, playing games, and
very promising for telemonitoring of EEG and other non-sparse  other mobile-based applications.
physiological signals. The third constraint is hardware costs. Low hardware costs
Index Terms— Telemonitoring, Healthcare, Wireless Body- are more likely to make a telemonitoring system economi-
Area Network (WBAN), Compressed Sensing (CS), Block Sparse cally viable and accepted by individual customers. However
Bayesian Learning (BSBL), electroencephalogram (EEG) low hardware costs mean that data compression (on sensors)
should have low complexity and data recovery (in remote ter-
. INTRODUCTION minals) should not require sensors to pre-process raw Isigna
dvhen collecting them.
It is noted that many conventional data compression
fthodologies such as wavelet compression cannot safisfy a

Telemonitoring of electroencephalogram (EEG) via Wir
less Body-Area Networks (WBANS) is an evolving direction
in personalized medicine and home-based e-Health. In sUB k .
a system, a WBAN [1] integrates a number of sensors whidie above constraints at the same time. It has been shown

collect and compress EEG. The compressed EEG is senttol3] that compared to wavelet compression, Compressed
a nearby smart-phone via ultra-low-power short-haul mdig€"Sing (CS), when using sparse binary matrices as itsgensi

(e.g., Bluetooth), and then is transmitted to a remote teai Matrices, can reduce energy consumption while achieving
(e.g., a hospital) via the Internet. In the terminal, theyiol competitive data compression ratio. Besides, the use o$spa

EEG is recovered by a computer. Equipped with the systemnary matrices means the device <_:ost can be largely reduced

patients need not visit hospitals frequently. Insteady tBEG [3], [4]. However, current CS algorithms only work well for

can be monitored continuously and ubiquitously. sparse signals or signals w_|th sparse representauonanpatﬁ .
However, there are many constraints that have to be takBrpomMe transformed domains (e.g., the wavelet domaingeSin

into account when designing such a system. The primary O_IIEIEG is neither sparse in the original t|m(_a domain nor sparse
is energy constraint [2]. Due to limitation on battery lifeis in transformed domains, current CS algorithms cannot aehie

good recovery quality.
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technique for EEG, which is an example of a signal with amost physiological signals like EEG are not sparse in the tim
arbitrary waveform and without distinct block structurénelT domain and not sparse enough in transformed domains. The
fidelity of recovered EEG signal is assessed by subsequissue now can be solved by the BSBL framework [5].
signal processing such as independent component analysis. The BSBL framework was initially proposed for recovering
The rest of the paper is organized as follows. Secfibn dl signal with block structure [5], [6]. It assumes the signal
briefly introduces the CS model and the BSBL framework can be partitioned into a concatenation of non-overlapping
Sectior[TIl presents the results. The last two sectionsudisc blocks, and a few of blocks are non-zero. Thus, it requires
the results and conclude the paper. users to define the block partition of. However, it turns
out that such user-defined block partition does not need to
Il. COMPRESSEDSENSING AND BLOCK SPARSEBAYESIAN  pe consistent with the true block partition of the signal; [7]
LEARNING in fact, the user-defined block partition can be viewed as a
Compressed Sensing (CS) [8] is a new data compresslieégularization for the estimation of the signal’s covacen
paradigm, in which a signal of lengtlV, denoted byx € matrix. Further, in this work we found even if a signal has no
RN>1is compressed by a full row-rank random matrixdistinct block structure, the BSBL framework is still effe.
denoted by® € RM*N (M < N,Rank(®) = M), i.e., This makes feasible using BSBL for the CS of EEG and
adopting the mode[{2) for recovery, since EEG has arbitrary
y = ®x, @) waveforms and the representation coefficientgenerally lack
wherey is the compressed data, afidis called thesensing  block structure (see Fig.1).
matrix, which is known to CS algorithms for recovery. CS The BSBL framework has a pruning mechanism, which
algorithms use the compressed dgtand the sensing matrix prunes out blocks is (or in z if using the modell(2)) when the
& to recover the original signad. Their successes rely on theblocks have very small norms. However, EEG is non-sparse
key assumption that most entries of the signare zero (i.e., in both the time domain and transformed domains. Therefore,
x is sparse). When this assumption does not hold, one o&@ disabled the pruning mechanism in our experiments.
seek adictionary matrix, denoted byD € RM*M  so thatx Currently, there are three algorithms in the BSBL frame-
can be expressed as= Dz andz is sparse. Then, the modelwork. In our experiments we chose a bound-optimization
(@) can be re-written as based algorithm, denoted by BSBL-BO. Details on the algo-
rithm and the BSBL framework can be found in [5].

y = ®Dz. (2)
Thus, CS algorithms can first recoveusingy and®D, and 1. EXPERIMENTS OFCOMPRESSEDSENSING OFEEG
then recover the original signal by x = Dz. The following experimen&compared BSBL-BO with some

When CS is used in a telemonitoring system, signals diepresentative CS algorithms in terms of recovery quéiey.
compressed on sensors according[fb (1). This compressi@tise all the CS algorithms adopted the same sensing matrix,
stage consumes on-chip energy of the WBAN. The signdRey had equal energy consumption. Thus, the comparison of
are recovered by a remote computer accordindto (2), whé&@ergy consumption is excluded.
the matrix® is known to a CS algorithm and the matiixis ~ Two performance indexes were used to measure recovery
determined by a user. This stage does not consume any enélggfity. One was the Normalized Mean Square Error (NMSE),
of the WBAN. defined as||x — x||%/|x||3, wherex was the estimate of

CS has several advantages over wavelet compressionth@ true signak. The second was the Structural SIMilarity
[3], [7] it is shown that when the sensing matri& is a index (SSIM) [9] for 1-dimensional signals (the length of
sparse binary matrix, in which most entries are zeros aHte sliding window wasl00). SSIM measures the similarity
only few entries are ones, CS algorithms cost less enefggtween the recovered signal and the original signal, which
but have competitive compression ratio compared to waveigta better performance index than the NMSE for structured
compression. For example, when compressing a signal ségnals. Higher SSIM means better recovery quality. When th
length N, CS left-multiplies it by anM x N(M < N) recovered signal is the same as the original signal, SSIM =
sparse binary matrix. Then amplitudes of the compressed ~ The following experiments used the model (2) to recover
data are coded. In contrast, in wavelet compression tH&G. In the first experimenD was an inverse Discrete
signal is first left-multiplied by anV x N wavelet transform Cosine Transform (DCT) matrix, and thus(z = D~ 'x) are
matrix with real entries. The wavelet coefficients with krgDCT coefficients. In the second experimddtwas an inverse
amplitudes are found by a search algorithm, and both th&ubechies-20 Wavelet Transform (WT) matrix, which was
amplitudes and locations are coded. Thus, CS requires fewgggested in [4] for compressing EEG. In both experiments
code execution on CPU. A second advantage of CS is thattit¢ sensing matrice were sparse binary matrices, in which
compression operator greatly facilitates hardware desigoe €very column contained5 entries equal tol with random
the implementation of multiplication with a binary matrixlocations while other entries were zeros. For BSBL-BO,
needs only accumulator registers. In wavelet comprestien, We defined a block partition, where the starting location of
compression involves multiplications of real numbers, akhi €ach block was incremented 2y (i.e., 1,25,49,---). The
cannot be implemented by merely accumulator registers. maximum number of iterations for BSBL-BO was seto

Despite of these advantages, the use of CS in telemonitoringe,eriment codes can be downloaded at:
is only limited to a few types of signals, mainly becauskttps://sites. googl e. conisitel/resear chbyzhang/ bsbl|
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Fig. 1. (a) An EEG epoch, and its DCT coefficients. (b) The vecp results w TR L “ :Z PR L L S "
by BSBL-BO, ¢1, and Model-CoSaMP when using the moddl (2). 240 R e B ‘ 18 it TS
Fap I T QTR F o S
TABLE | 20| i ilily el 20| ol } B
AVERAGED PERFORMANCE INEXPERIMENT 1. 9 LT 0L AL NER I 1 .
A - /\ JeLAL NI WS A A\ pe N
_ W "W B e st AV R 4
NMSE (mean + SSIM (mean + 1000 500 ©0 _ 500 1000 1500 1000 500 ©0 _ 500 1000 1500
Std) Std) Time (ms) Time (ms)
DCT-based BSBL-BO | 0.078+ 0.046 0.85+ 0.08 ©) (d)
BSBL-BO without DCT | 0.116E 0.066 0.81+ 0.09 . _ _ S
DCT-based’; 0.493+F 0.121 048 L 0.11 Fig. 2. An IC with focal back-projected scalp distributiorrived (a) from
DCT-based Block-CoSaMB 0.434 L 0.070 045X 0.10 the original EEG dataset and (b) from the recovered datasmbther IC

with dispersive scalp distribution derived (c) from thegimal EEG dataset
and (d) from the recovered dataset. Each subfigure showsattiegvojected
scalp map, the ERP image, and the averaged ERP of an IC.

A. Experiment 1. Compressed Sensing with DCT

This example used a common dataset (‘eeglata.set) in - component (IC) [12]. Therefore, it is important to examine
the EEGLab [10] to mimic the telemonitoring scenario by firgfpather the obtained ICs from the recovered EEG dataset by
compressing it and then recovering it. This dataset costaigsg| -BO are the same as those from the original ddlaset
EEG signals of32 channels with sequence length &#720  This study performed ICA decomposition on the original
data points, and each channel signal containepochs each ggg gataset and the recovered EEG dataset by BSBL-BO,
containing384 points. Artn‘a_cts caused by muscle moveme%spectively, using the Extended-Infomax algorithm witle t
are also contained in the signals. same initialization, which is a build-in program in the EE&%L_

To compress the signals epoch by epoch, we ust®a<  [10) Then, we calculated the back-projected scalp map, the

384 sparse binary matrix as the sensing maixand a384 X ERp image [12], and the averaged ERP of each IC from the
384 inverse DCT matrix as the dictionary matr. original dataset and the reconstructed dataset.

Two representative CS algorithms were compared in thisgjgre[2 shows the results of two typical ICs (with large
experiment. One was the ModeI—CoSaMP [11], which has hl%ergy) from the recovered dataset (Figdre 2 (b)(d)), ard th
performance for signals V\_/Ij[h known block structure. Here fugits of corresponding ICs from the original datasetyFeg
used the same block _part|t|on as BSBL-BO. The second WE(c)). Comparing Figur@ 2 (a) with (b) and Figiie 2 (c) with
an ¢, algorithm used in [4] to recover EEG. The paramete(g) reveals that there is little difference in terms of saaigps,
of the two algorithms were tuned for optimal results. ERP images, and averaged ERPs. This implies that BSBL-BO

Figure[1(a) shows an EEG epoch and its DCT coefficienisyy recover EEG signals with satisfactory quality, engurin
Clearly, the DCT coefficients were not sparse and had Q@bsequent signal analysis with high fidelity.

block structure. FigurEl1(b) shows the recovery resulthef t
three algorithms. Only BSBL-BO recovered the epoch witg Experiment 2: Compressed Sensing with WT

good quality; characteristic EEG peaks/troughs and agoily i ) )
activities were accurately presented in the recoveredatign The second experiment used the dataset in [13]. It consists

Table[] shows the averaged NMSE and SSIM of the thr&f multiple channel signals, each channe_l signa’I cont‘g_inin
algorithms on the whole dataset. It also lists the resulterwh220 €POChS for each of two events (lleft direction” and "tigh
BSBL-BO directly recovered the signals without using th@iréction’). Each epoch consists of 256 sampling points Th
dictionary matrix (i.e., using the moddll (1)). The DCT-based02! In [13] is to differentiate the averaged ERP for thetlef
BSBL-BO evidently had the best performance, and it todiirection’ with the averaged ERP for the nghtdwecuoﬁor
we randomly chose a channel signal from the left

0.105 second per epoch on average on a computer with 2 gggplicity,

CPU and 6G RAM. BSBL-BO without using the dictionaryP2r€tal area. BSBL-BO and the previots algorithm were
matrix took 0.271 second per epoch on average. compared. The sensing matrix had the size ofi28 x 256,

In EEG analysis, a regular methodology is performin@nd the dictionary matridD had the size o256 x 256.

Independent Compon?nt Anff‘lySiS (ICA) on scalp EEG dataeyy only need to pay attention to the ICs with large energyesin regular
and then analyzing single-trial ERPs for each Independeot analysis of EEG, ICs with large energy are reliable andanimgful.
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wavelet coefficients (using the same wavelet transform), we
obtained the ERPs with higher quality: the SSIM and the
NMSE were 0.99 and 0.0003, respectively. Clearly, if energy
consumption is not a problem, wavelet compression may be

Magnitude
|
Magnitude

Magnitude
|
|

I—ERP (Left Condition) 7ER‘P(LeﬂCondmon) 0 7ER"P(LeﬁCendmmn) a' better ChOICE BUt Sometlmes hlgher recovery quallty IS
—ERP (Right Condition) —ERP (Right Condition) —ERP (Right Condition) not necessarlly requ”-ed for praCtIC&' app'lC&thﬂS. mmg

50 _100 150 200 250 50 _100 150 200 250 50 _100 150 200 250 R R .
Time Points Time Points Time Points the ERP analysis in the second experiment, the recovery
@ 4 (b) BSBL-BO (c) Original Dataset  quality by BSBL-BO satisfied the requirement of the ERP

analysis, and thus higher recovery quality is not needed or
Fig. 3. The ERPs corresponding to two event conditionst('tfd ‘right')  attractive, especially at the cost of more energy conswanpti
averaged (a) from the recovered epochs by heaigorithm, (b) from the ¢ o rse, the choice between CS and wavelet compression (or
recovered epochs by BSBL-BO, and (c) from the original d#tas . . .
other compression techniques) for the telemonitoring oGEE
probably differs case by case and thus needs further study.
For each event, we calculated the ERP by averaging the
associated 250 recovered epochs. Fiflire 3 (a) shows the ERP V. CONCLUSIONS
for the ‘left direction’ and the ERP for the ‘right direction ~Compressing EEG for telemonitoring is extremely difficult
averaged from the dataset recovered by thealgorithm. for current CS algorithms, because EEG is not sparse in the
Figure[3 (b) shows the two ERPs averaged from the recoveti#de domain nor sparse in transformed domains. To alleviate
dataset by BSBL-BO. Figuilg 3 (c) shows the averaged ER#¢ problem, this study proposed to use the framework ofbloc
from the original dataset (called genuine ERPs). Cleahly, tsparse Bayesian learning, which has superior performance t
resulting ERPs by thé; algorithm were noisy. Although they other existing CS algorithms in recovering non-sparseaggn
maintained the main peaks of both genuine ERPs, they did foperimental results showed that it recovered EEG signals
maintain other details of the genuine ERPs. Particulahlg, twith good quality, ensuring subsequent signal analysisisTh
difference between the two resulting ERPs from te'" to itis very promising for wireless telemonitoring based citige
the 250" time points was not clear. Besides, we found theeuroscience studies and engineering applications.
were many brief oscillatory bursts in the recovered epoghs b
the ¢; algorithm (due to space limit we omit the results here). _ _
In contrast, the ERPs averaged from the recovered epochs B} H. Cao, V. Leung, C. Chow, and H. Chan, “Enabling techgs for
BSBL-BO maintained all the details of the genuine ERPS with .. less body area networks: 2 survey and outlodiEEE Communi-
) ] . g cations Magazine, vol. 47, no. 12, pp. 84-93, 2009.
high fidelity. [2] A. Milenkovic, C. Otto, and E. Jovanov, “Wireless sensetworks for
The SSIM and the NMSE of the resulting ERPs by the personal health monitoring: Issues and an implement&tiGomputer
| ith 0.92 d 0.044 ivelv. | At communications, vol. 29, no. 13-14, pp. 2521-2533, 2006.
algorithm were 0. an : ’ _respectlve y. In contrasd, t [3] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergkgy‘Com-
SSIM and the NMSE of the resulting ERPs by BSBL-BO were  pressed sensing for real-time energy-efficient ECG corsfmesn wire-

0.97 and 0.008, respectively. In the experiment BSBL-BGktoo s body sensor node$EEE Transactions on Biomedical Engineering,
vol. 58, no. 9, pp. 2456-2466, 2011.

0.06 second per epoch on average on the previous COMPUtEH b, Gangopadhyay, E. Allstot, A. Dixon, and D. Allstot, y&tem
considerations for the compressive sampling of EEG and E6nGS
IV. DISCUSSIONS signals,” inBioCAS 2011, pp. 129-132.

n dicti . [5] Z.Zhang and B. D. Rao, “Extension of SBL algorithms foe tfecovery
CS often resorts to a dictionary matrix to recover a non- of block sparse signals with intra-block correlationEEE Trans. on

sparse signal. However, the success of this approach fieavil Sgnal Processing, vol. 61, no. 8, pp. 2009-2015, 2013.
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